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1 Detailed Proofs

1.1 Proof of deducting average NDE and the average NIE from observed data Given

the assumptions in Section 2, we can express E[Yi(a,Mi(a?)|Ci] as below,

E[Yi(a,Mi(a?))|Ci]

=
∫
m
E[Yi(a,m)|Ci,Mi(a?) = m]P (Mi(a?) = m|Ci)dm

=
∫
m
E[Yi(a,m)|Ci]P (Mi(a?) = m|Ci, Ai = a?)dm

(by assumption (4) & (3))

=
∫
m
E[Yi(a,m)|Ai = a,Ci]P (Mi(a?) = m|Ci, Ai = a?)dm

(by assumption (1))

=
∫
m
E[Yi(a,m)|Ai = a,Mi = m,Ci]P (Mi = m|Ci, Ai = a?)dm

(by assumption (2) and consistency)

=
∫
m
E(Yi|a,m,Ci)P (Mi = m|Ci, a?)dm

(by consistency)
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If we replace a with a? in E[Yi(a,Mi(a?))|Ci], then we get E[Yi(a?,Mi(a?))|Ci] =
∫
mE(Yi|a?,m,Ci)×

P (Mi = m|Ci, a?)dm . Therefore, we can express the average natural direct effect condi-

tional on C as,

E[Yi(a,Mi(a?))− Yi(a?,Mi(a?))|Ci]

=
∫
m
{E(Yi|a,m,Ci)− E(Yi|a?,m,Ci)}P (Mi = m|Ci, a?)dm. (1)

If we replace a? with a in E[Yi(a,Mi(a?))|Ci], then we get E[Yi(a,Mi(a))|Ci] =
∫
mE(Yi|a,m,Ci)×

P (Mi = m|Ci, a)dm, and thus the average indirect effect conditional on C is given by,

E[Yi(a,Mi(a))− Yi(a,Mi(a?))|Ci]

=
∫
m
E(Yi|a,m,Ci){P (Mi = m|Ci, a)− P (Mi = m|Ci, a?)}dm. (2)

Finally, one can get the average NDE and NIE by taking expectation over C of the two

conditional effects defined in (1) and (2). Importantly, Equation (1) and (2) show that

if the assumptions in Section 2 hold, the average NDE and the average NIE can then be

identified by modeling Yi|Ai,Mi,Ci and Mi|Ai,Ci using observed data.
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1.2 Proof of Equation (3), (4)

NDE: E[Yi(a,Mi(a?))− Yi(a?,Mi(a?))|Ci]

=
∫
m
{E(Yi|a,m,Ci)− E(Yi|a?,m,Ci)}P (Mi = m|Ci, a?)dm

=
∫
m

(aβa − a?βa)P (Mi = m|Ci, a?)dm

= βa(a− a?)

NIE: E[Yi(a,Mi(a))− Yi(a,Mi(a?))|Ci]

=
∫
m
E(Yi|a,m,Ci){P (Mi = m|Ci, a)− P (Mi = m|Ci, a?)}dm

=
∫
m

(mTβm + aβa +CiTβc){P (Mi = m|Ci, a)

−P (Mi = m|Ci, a?)}dm

= {E(Mi|Ci, a)− E(Mi|Ci, a?)}Tβm

= αa
Tβm(a− a?)

= (a− a?)
p∑
j=1

(αa)j(βm)j

2 Posterior Sampling Algorithm Details for Bayesian Mediation Analysis

Let θ1 = (βm, βa, πm, rm, σ2
m1, σ

2
m0, σ

2
a, σ

2
e) denote all the unknown parameters in the out-

come model, and θ2 = (αa, πa, ra, σ2
ma1, σ

2
ma0, σ

2
g) for the mediator model. The joint log

posterior distribution is,

logP (θ1,θ2|(Yi,Mi, Ai)ni=1)

∝
n∑
i=1

logP (Yi|θ1, Ai,Mi) +
n∑
i=1

logP (Mi|θ2, Ai) + logP (θ1) + logP (θ2)

Sampling βmj and rmj

logp(βmj|rmj = 1, .) = −
β2
mj

2σ2
m1
−

n∑
i=1
{(M (j)

i βmj)2

2σ2
e

+σ−2
e M

(j)
i (Yi−Aiβa−

∑
s 6=j

M
(s)
i βms−CiTβc)βmj}

p(βmj|rmj = z, .) = N(µmjz, s2
mjz), z = 0, 1
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µmjz =
∑n
i=1 M

(j)
i (Yi − Aiβa −

∑
s 6=jM

(s)
i βms −CiTβc)

σ2
e/σ

2
mz + ∑n

i=1(M (j)
i )2

, s2
mjz = 1

1/σ2
mz + ∑n

i=1(M (j)
i )2/σ2

e

p(rmj = z|.) ∝ exp(µ2
mjz/2s2

mjz + log(smjz)− log(σmz) + log(p(rmj = z)))

Sampling βa

logp(βa|.) = − β2
a

2σ2
a

−
n∑
i=1
{(Aiβa)2

2σ2
e

+ σ−2
e Ai(Yi −Mi

Tβm −CiTβc)βa}

p(βa|.) = N(µa, s2
a)

µa =
∑n
i=1 Ai(Yi −Mi

Tβm −CiTβc)
σ2
e/σ

2
a + ∑n

i=1 A
2
i

, s2
a = 1

1/σ2
a + ∑n

i=1 A
2
i /σ

2
e

Sampling αaj and raj

logp(αaj|raj = 1, .) = −
α2
aj

2σ2
ma1
−

n∑
i=1
{(Aiαaj)2

2σ2
g

+ σ−2
g Ai(M (j)

i − (αcCi)j)αaj}

p(αaj|raj = z, .) = N(
∑n
i=1 Ai(M

(j)
i − (αcCi)j)

σ2
g/σ

2
maz + ∑n

i=1 A
2
i

,
1

1/σ2
maz + ∑n

i=1 A
2
i /σ

2
g

)

p(raj = z|.) ∝ exp(µ2
αjz/2s2

αjz + log(sαjz)− log(σmaz) + log(p(raj = z))), z = 0, 1

Sampling σ2
m1, σ

2
m0

logp(σ2
m1|.) = −(

∑q
j=1 rmj

2 + km + 1)log(σ2
m1)− (

∑q
j=1 rmjβ

2
mj

2 + lm)σ−2
m1

logp(σ2
m0|.) = −(

∑q
j=1(1− rmj)

2 + km + 1)log(σ2
m0)− (

∑q
j=1(1− rmj)β2

mj

2 + lm)σ−2
m0

p(σ2
m1|.) ∼ inverse-gamma(

∑q
j=1 rmj

2 + km,

∑q
j=1 rmjβ

2
mj

2 + lm)

p(σ2
m0|.) ∼ inverse-gamma(

∑q
j=1(1− rmj)

2 + km,

∑q
j=1(1− rmj)β2

mj

2 + lm)

Sampling σ2
a
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logp(σ2
a|.) = −(1

2 + ka + 1)log(σ2
a)− (β

2
a

2 + la)σ−2
a

p(σ2
a|.) ∼ inverse-gamma(1

2 + ka,
β2
a

2 + la)

Sampling σ2
ma1, σ

2
ma0

logp(σ2
ma1|.) = −(

∑
j raj
2 + kma + 1)log(σ2

ma1)− (
∑
j rajα

2
aj

2 + lma)σ−2
ma1

logp(σ2
ma0|.) = −(

∑
j(1− raj)

2 + kma + 1)log(σ2
ma0)− (

∑
j(1− raj)α2

aj

2 + lma)σ−2
ma0

p(σ2
ma1|.) ∼ inverse-gamma(

∑
j raj
2 + kma,

∑
j rajα

2
aj

2 + lma)

p(σ2
ma0|.) ∼ inverse-gamma(

∑
j(1− raj)

2 + kma,

∑
j(1− raj)α2

aj

2 + lma)

Sampling σ2
e

logp(σ2
e |.) = −(n2 + ke + 1)log(σ2

e)− (
∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + le)σ−2
e

p(σ2
e |.) ∼ inverse-gamma(n2 + ke,

∑n
i=1(Yi −Mi

Tβm − Aiβa −CiTβc)2

2 + le)

Sampling σ2
g

logp(σ2
g |.) = −(qn2 + kg + 1)log(σ2

g)− (
∑n
i=1

∑
q(M

(q)
i − Aiαaq − (αcCi)q)2

2 + lg)σ−2
g

p(σ2
g |.) ∼ inverse-gamma(qn2 + kg, (

∑n
i=1

∑
q(M

(q)
i − Aiαaq − (αcCi)q)2

2 + lg))

Sampling βcw

logp(βcw|.) = −
n∑
i=1
{(Ciwβcw)2

2σ2
e

+ σ−2
e Ciw(Yi −Mi

Tβm − Aiβa −
∑
s 6=w

Ciwβcw)βcw}

p(βcw|.) = N(
∑n
i=1 Ciw(Yi − Aiβa −Mi

Tβm −
∑
s6=w Ciwβcw)∑n

i=1 C
2
iw

,
σ2
e∑n

i=1 C
2
iw

)
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Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1
{(Ciw(αcw)j)2

2σ2
g

+ σ−2
g Ciw(M (j)

i − Aiαaj −
∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(
∑n
i=1 Ciw(M (j)

i − Aiαaj −
∑
s 6=w Cis(αcs)j)∑n

i=1 C
2
iw

,
σ2
g∑n

i=1 C
2
iw

)

Sampling πm, πa

For πm, πa, their conditional distributions don’t appear to be of any known form, so we use

a random-walk standard Metropolis-Hastings algorithm to draw posterior samples of them.

As for the proposal distribution, we update the parameters by adding a random variable

from U(-0.07, 0.07) to the current value. New values that lie outside the boundary [0,1] are

reflected back.

3 Convergence Diagnosis

We used the potential scale reduction factor (PSRF) [1] to quantify the mixing property of

the proposed MCMC algorithm. With multiple MCMC chains, PSRF for a parameter is

essentially the ratio between the overall-chain variance and the average within-chain vari-

ance. A PSRF value in the range of (0.9, 1.2) suggests that the MCMC algorithm has good

mixing property and the posterior samples converge well. As an example, in Figure 1, we

present the PSRFs for the PIPs of 60 top significant mediators identified from univariate

analysis in the baseline simulation setting with the number of mediators p = 2, 000. We

find that all the PSRFs from our MCMC algorithm fall within (0.9, 1.2), which indicates

the good mixing property of our algorithm.

4 Power Comparison with Spike-and-slab Priors and Horseshoe Priors

Both horseshoe priors and spike-and-slab priors [2, 3] are widely used methods for Bayesian

shrinkage, and it is natural to apply them to the two regression models in high-dimensional

mediation analysis. The horseshoe prior can be represented as a scale mixture of normals,

with the mixing distribution being a standard half-Cauchy distribution. The horseshoe prior
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Figure 1: Potential scale reduction factors (PSRF) of the Bayesian posterior inclusion probabili-
ties of 60 top marginally significant mediators with 3, 8, 15, and 20 MCMC chains, where PSRF
within (0.9, 1.2) suggests good mixing property.
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is not a discrete mixture prior and therefore it does not directly categorize mediators into

one actively mediating group and three inactive (null) groups. To achieve categorization

and selection of mediators, one can use the shrinkage factors [3] for the coefficients and

develop a thresholding rule on the continuous values to determine inclusion or not. For

the spike-and-slab prior, we can directly use the posterior inclusion probability to perform

mediator selection.

We implemented both horseshoe priors and spike-and-slab priors for high-dimensional me-

diation analysis and compared them with our method in simulations. We first simulated

(βm)j (j = 1, ..., p) from a mixture of two normals: πmN(0, 1) + (1 − πm)N(0, 0.001), and

(αa)j (j = 1, ..., p) from πaN(0, 1) + (1 − πa)N(0, 0.001). The other configurations are

same as the baseline setting for p = 2, 000 in the main paper. We find that our Bayesian

method with normal-normal priors outperforms the other two methods. For example, when

PV EIE = 0.8, at 0.01 FPR, our method achieves a power of 0.528, while the methods with

point-normal priors and horseshoe priors have a power of 0.484 and 0.467, respectively. The

full results are shown in Table 5.

p Setting Normal-normal priors Point-normal priors Horseshoe priors
2,000 PV EA = 0.3 0.509 0.461 0.437

PV EA = 0.5 0.474 0.424 0.461
PV EA = 0.8 0.512 0.413 0.479
PV EIE = 0.2 0.473 0.415 0.453
PV EIE = 0.4 0.474 0.424 0.461
PV EIE = 0.8 0.528 0.484 0.467
πa = 0.03 0.474 0.424 0.461
πa = 0.1 0.146 0.131 0.092
πa = 0.25 0.072 0.062 0.042
πm = 0.02 0.474 0.424 0.461
πm = 0.1 0.471 0.420 0.454
πm = 0.25 0.462 0.401 0.440

Table 1: Power comparison among our normal-normal priors, the point-normal priors and the
horseshoe priors when p = 2, 000, n = 1, 000 and the effect sizes are sampled from a mixture of
two normals. In each setting, we change one parameter at a time from the baseline setting. We
calculate the true positive rate (TPR) for the power comparison. The average TPR at FPR = 0.01
is calculated across 200 replicates for each simulation scenario.
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In addition, we also performed simulations in which (βm)j (j = 1, ..., p) is from a point-

normal prior: πmN(0, 1) + (1− πm)δ0, and (αa)j (j = 1, ..., p) from πaN(0, 1) + (1− πa)δ0,

where δ0 is a point mass at zero. The other configurations are same as the baseline setting

for p = 2, 000 in the main paper. Now the effect size distribution is not a mixture of two

normals, and favors the spike-and-slab priors, as one might expect. The results (in Table

6) show that all the three methods have similar performance in most scenarios, and our

method appears to have decent power when the effects are not polygenic and the signals are

relatively sparse.

p Setting Normal-normal priors Point-normal priors Horseshoe priors
2,000 PV EA = 0.3 0.525 0.526 0.465

PV EA = 0.5 0.483 0.503 0.490
PV EA = 0.8 0.470 0.513 0.493
PV EIE = 0.2 0.456 0.488 0.476
PV EIE = 0.4 0.483 0.503 0.490
PV EIE = 0.8 0.510 0.543 0.491
πa = 0.03 0.483 0.503 0.490
πa = 0.1 0.135 0.145 0.106
πa = 0.25 0.047 0.094 0.052
πm = 0.02 0.483 0.503 0.490
πm = 0.1 0.468 0.488 0.486
πm = 0.25 0.450 0.465 0.470

Table 2: Power comparison among our normal-normal priors, the point-normal priors and the
horseshoe priors when p = 2, 000, n = 1, 000 and the effect sizes are sampled from point-normal
priors. In each setting, we change one parameter at a time from the baseline setting. We calculate
the true positive rate (TPR) for the power comparison. The average TPR at FPR = 0.01 is
calculated across 200 replicates for each simulation scenario.

Therefore, our Bayesian mediation method with mixture of normals prior performs well in

identifying active mediators in a wide range of scenarios, and is relatively robust to the effect

size distribution, appearing to have decent power when the effects are not polygenic. Our

method can distinguish the large effects from the small effects in the polygenic model, and

is also more practically appealing than the horseshoe prior since it can directly categorize

mediators into four possible groups without the need of specifying a thresholding rule.
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5 Estimation of the Global Mediation Effects τ and the Four Proportions of

Mediators

In this section, we examine the ability of our Bayesian mediation method to estimate the

overall mediation effects and the proportion of mediators in the four different categories.

We use πg1, πg2, πg3, πg4 to represent the proportion of mediators in Group 1, Group 2,

Group 3 and Group 4, respectively. We examine eight different simulation scenarios based

on different combinations of πg1, πg2, πg3 and πg4, which include four null scenarios with πg1

= 0 and four alternative scenarios with πg1 6= 0. In these simulations, we set PV Es to be

the same as in the baseline setting (PV EA = 0.5, PV EIE = 0.4, PV EDE = 0.1; except when

πg4 = 1 where PV EA and PV EIE are zero). We provide the estimated global mediation

effects (τ) and proportion of active mediators (πg1), as well as their 95% credible intervals

in Table 3. We find that our method provides decent estimates for πg1 and τ across different

scenarios, especially when p = 100. Note that our estimates for πg1 are slightly conservative

due to the fact that our model does not have full power to detect all the mediators. The

95% credible intervals of τ also shows that the posterior distribution of τ is asymmetric and

depends on the composition of the four groups.

We examine the posterior distribution of τ , which is bounded at zero and not symmetric.

The distribution also depends on the composition of the four groups. In below we show a

distribution graph (Figure 2) based on the posterior samples of τ in four different scenarios

with n = 1, 000, p = 100 as in Table 2 in the main manuscript.

6 The Runtime Comparison with HDMM

We performed simulations on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @

2.10GHz, and the runtime comparison of the proposed method relative to HDMM is shown

in Table 4. The runtime of our method is comparable to that of HDMM. In the settings of

p = 2, 000, the effective dimension of the orthogonalized meditators in HDMM is 250, and

the reduced dimension helps reduce the runtime compared to our method that uses the full

dimension. While the runtime of our method is comparable with existing methods, we still
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Figure 2: The distribution from the posterior samples of τ in four different scenarios with n =
1000, p = 100. We denote πg1, πg2, πg3 and πg4 to represent the proportion of mediators in Group
1, Group 2, Group 3 and Group 4 as defined in Table 1 in the main paper. The four settings
are: A: πg1 = 0.1, πg2 = 0.2, πg3 = 0.1, πg4 = 0.6; B: πg1 = 0.1, πg2 = 0.1, πg3 = 0.2, πg4 = 0.6; C:
πg1 = 0.1, πg2 = 0.1, πg3 = 0.1, πg4 = 0.7; D: πg1 = 0.1, πg2 = 0, πg3 = 0, πg4 = 0.9;
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Table 3: Estimation of the global mediation effects τ under different compositions. We report the
posterior mean (τ̂) of τ and its 95% credible intervals when p = 100/2, 000. We denote πg1, πg2,
πg3 and πg4 to represent the proportion of mediators in Group 1, Group 2, Group 3 and Group 4
as defined in Table 1 of the main paper, and π̂g1 is the estimated proportion of active mediators
from our Bayesian method. We also provide the 95% credible intervals (CI) for τ̂ and π̂g1.

p πg1 πg2 πg3 πg4 π̂g1 (95% CI) τ τ̂ (95% CI)
100 0 0.2 0.1 0.7 0.003 (0.000, 0.010) 0 0.025 (0.006, 0.066)

0 0.1 0.2 0.7 0.003 (0.000, 0.010) 0 0.035 (0.006, 0.117)
0 0.1 0.1 0.8 0.001 (0.000, 0.012) 0 0.009 (0.000, 0.012)
0 0 0 1 0.001 (0.000, 0.008) 0 0.000 (0.000, 0.000)

100 0.1 0.2 0.1 0.6 0.064 (0.010, 0.092) 0.128 0.194 (0.100, 0.324)
0.1 0.1 0.2 0.6 0.058 (0.030, 0.080) 0.249 0.263 (0.159, 0.400)
0.1 0.1 0.1 0.7 0.078 (0.006, 0.110) 0.110 0.172 (0.014, 0.960)
0.1 0 0 0.9 0.051 (0.040, 0.063) 0.961 0.458 (0.215, 0.792)

2,000 0 0.03 0.02 0.95 0.000 (0.000, 0.000) 0 0.230 (0.074, 0.565)
0 0.1 0.02 0.88 0.000 (0.000, 0.000) 0 0.315 (0.149, 0.644)
0 0.1 0.1 0.8 0.000 (0.000, 0.000) 0 0.211 (0.075, 0.509)
0 0 0 1 0.000 (0.000, 0.000) 0 0.000 (0.000, 0.000)

2,000 0.01 0.02 0.01 0.96 0.001 (0.000, 0.003) 1.392 0.642 (0.408, 1.491)
0.01 0.04 0.01 0.94 0.001 (0.000, 0.004) 1.273 0.436 (0.156, 0.981)
0.01 0.09 0.09 0.81 0.001 (0.000, 0.003) 0.347 0.544 (0.217, 1.074)
0.01 0 0 0.99 0.010 (0.002, 0.015) 0.103 0.113 (0.018, 0.334)

Table 4: The average runtime of the proposed method relative to HDMM for n = 1, 000, p =
100/2, 000 in the simulations. Comparison was carried out on a single core of Intel(R) Xeon(R)
Platinum 8176 CPU @ 2.10GHz. For the proposed method, we ran 200,000 iterations for p = 100
and 500,000 iterations for p = 2, 000.

Method n = 1, 000, p = 100 n = 1, 000, p = 2, 000
Bayesian continuous shrinkage 1.3min 98min

HDMM 4.5min 75min

acknowledge that future development of new algorithms and/or new methods will likely be

required to scale our method to handle thousands of individuals and millions of mediators.

7 Simulations for n = 100

To enrich the simulation settings, we now examine how the method performs with a smaller

sample size, i.e., n = 100. We included the results in Table 5 (for n = 100 and p = 200) and

Table 6 (for n = 100 and p = 50). The results are consistent with simulations with large

samples presented previously in the manuscript. In particular, we find that in most cases
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our Bayesian method outperforms the other existing methods. The performance difference

becomes more apparent in the presence of large PV EIE, small PV EA, small πa and/or πm.

However, we do note that the small sample size here makes it difficult for all the methods to

identify active mediators when p > n, resulting in small power and small power differences.

This is to be expected. To achieve a decent performance with n = 100, p = 200 may

require either a much higher PV EIE (e.g. PV EIE = 0.99) or a much sparser model (e.g.

πa = 0.025) as shown in Table 5. Our example at hand, the MESA has approximately 1,200

participants in the analytic dataset and thus we discuss this case in more details in the main

text.

Table 5: Power comparison among our Bayesian mediation method, single mediation and HDMM
when p = 200, n = 100 and the effect sizes are sampled from a mixture of two normals. The
baseline setting is PV EA = 0.5, PV EIE = 0.4, πa = 0.075, πm = 0.05, and we simulate five truly
active mediators. Within each block in the table, we change one parameter at a time from the
baseline setting. We calculate the true positive rate (TPR) for the power comparison. The average
TPR at FDR = 0.10 is calculated across 200 replicates for each simulation scenario.

Setting Bayesian Method Single Mediation HDMM
Baseline 0.279 0.255 0.200

PV EA = 0.2 0.275 0.254 0.200
PV EA = 0.8 0.308 0.258 0.200
PV EIE = 0.2 0.259 0.260 0.200
PV EIE = 0.8 0.325 0.280 0.210
PV EIE = 0.99 0.439 0.297 0.200
πa = 0.025 0.567 0.470 0.240
πa = 0.125 0.241 0.243 0.200
πm = 0.025 0.290 0.283 0.200
πm = 0.125 0.287 0.262 0.200

8 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the pro-

gression of subclinical cardiovascular disease (CVD) [4]. A total of 6,814 non-Hispanic white,

African-American, Hispanic, and Chinese-American women and men aged 45−84 without

clinically apparent CVD were recruited between July 2000 and August 2002 from the fol-

lowing 6 regions in the US: Forsyth County, NC; Northern Manhattan and the Bronx, NY;

Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago, IL; and Los Angeles
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Table 6: Power comparison among our Bayesian mediation method, multivariate mediation, single
mediation and HDMM when p = 50, n = 100 and the effect sizes are sampled from a mixture of two
normals. The baseline setting is PV EA = 0.5, PV EIE = 0.4, πa = 0.3, πm = 0.2, and we simulate
five truly active mediators. Within each block in the table, we change one parameter at a time
from the baseline setting. We calculate the true positive rate (TPR) for the power comparison.
The average TPR at FDR = 0.10 is calculated across 200 replicates for each simulation scenario.

Setting Bayesian Method Multivariate Mediation Single Mediation HDMM
Baseline 0.302 0.288 0.278 0.200

PV EA = 0.2 0.293 0.294 0.278 0.200
PV EA = 0.8 0.296 0.296 0.301 0.214
PV EIE = 0.2 0.273 0.292 0.259 0.200
PV EIE = 0.8 0.429 0.380 0.279 0.231
πa = 0.1 0.522 0.458 0.465 0.267
πa = 0.5 0.278 0.280 0.250 0.200
πm = 0.1 0.341 0.327 0.296 0.216
πm = 0.5 0.275 0.300 0.266 0.230

County, CA. Each field center recruited from locally available sources, which included lists

of residents, lists of dwellings, and telephone exchanges. At Exam 1, respondents reported

the highest level of education they completed. We created a dichotomous measure of re-

spondent’s educational attainment (less than college, low adult SES = 1; college degree or

more = 0). The descriptive statistics for the exposure and outcome can be found in Table

8.

In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam

5), DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-

American, and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County,

New York, and St. Paul field centers. After excluding respondents with missing data on

one or more variables, we had phenotype and DNAm data from purified monocytes on a

total of 1,231 individuals and we focused on this set of individuals for analysis. The de-

tailed description of DNAm data collection, quantitation and data processing procedures

can be found in Liu et al [5]. Briefly, the Illumina HumanMethylation450 BeadChip was

used to measure DNAm, and bead-level data were summarized in GenomeStudio. Quan-

tile normalization was performed using the lumi package with default settings [6]. Quality

control (QC) measures included checks for sex and race/ethnicity mismatches and outlier

identification by multidimensional scaling plots. Further probe filtering criteria included:
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“detected” DNAm levels in <90% of MESA samples (detection p-value cut-off = 0.05), ex-

istence of a SNP within 10 base pairs of the target CpG site, overlap with a non-unique

region, and suggestions by DMRcate [7] (mostly cross-reactive probes). Those procedures

leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +C1i
Tψc +ZiTψu + εi, i = 1, ..., n (3)

where Ai represents adult SES value for the i’th individual and ψa is its coefficient; C1i is a

vector of covariates that include age, gender, race/ethnicity and enrichment scores for each

of 4 major blood cell types (neutrophils, B cells, T cells and natural killer cells) to account

for potential contamination by non-monocyte cell types; ZiTψu represent methylation chip

and position random effects and are used to control for possible batch effects. The error

term εi ∼ MVN(0, σ2In) and is independent of the random effects. We obtained p-values

for testing the null hypothesis ψa = 0 from the above model. We further applied the

R/Bioconductor package BACON [8] to these p-values to further adjust for possible inflation

using an empirical null distribution. Based on these marginal p-values, we selected top 2,000

CpG sites with the smallest p-values for our Bayesian multivariate analysis.

We implemented our proposed methods as well as methods with different prior specifications

and HDMM on the MESA data. The current HDMM cannot handle covariates, so we apply

it to the residuals after regressing the Y and M on the covariates. There may exist certain

numerical stability issue with the HDMM on the MESA data, and the resulting weights of

the first direction of mediation do not suggest obvious signal or pattern. The estimated first

direction of mediation across the selected 2,000 sites is presented in Figure 3.

We also listed the top 2 sites and nearby genes identified by the four methods in the Table

7,
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Figure 3: Consider the mediation trio: Adult SES → DNAm → HbA1c. The black dots are the
weights for the first direction of mediation from HDMM for the selected 2,000 CpG sites across
the genome.
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Method Top 2 sites Nearby genes
Our method cg19582614 CCND2

cg04514392 CCDC54
Spike-and-Slab Priors cg19582614 CCND2

cg26610247 RP11-10J21.3
Horseshoe Priors cg15531249 C16orf74

cg15149205 TRIB1
HDMM cg13488078 CLU

cg12880602 MAP3K7

Table 7: The top 2 sites and their nearby genes identified by our proposed method as well as
methods with different prior specifications and HDMM for mediation analysis on Adult SES →
DNAm → HbA1c.

We do not know the truth in the real data so it is hard to evaluate the effectiveness of different

methods here. In addition to the genes CCDC54 and CCND2, which are associated with the

outcome HbA1c as discussed in the main paper, CLU is associated with diabetes, probably

through an increase in insulin resistance [9]. There is a lack of biological evidence to support

a mediating role of the other genes.

After fitting the Bayesian mediation models, we then empirically check whether the func-

tional forms of covariates in models 7 and 8 as linear terms in the main manuscript are

reasonable. We perform the posterior predictive checks on the outcome model, and create

the following graphical displays comparing the observed outcome to the replications drawn

from the posterior predictive distribution.

In Figure 4, we compare the distribution of the observed outcomes HbA1c (y) and the kernel

density estimates of replications of the outcome, yrep from the posterior predictive distribu-

tion. The distributions of the outcomes randomly generated from the posterior predictive

distribution largely resemble the true distribution of HbA1c in the data. The Bayesian pre-

dictive p-values [10] are 0.5 and 0.45 for the sample mean and variance, respectively, also

suggesting adequate fit of the outcome model in terms of moments of the posterior predictive

distribution.

We have discussed the identifiability assumptions required for causal inference in high-

dimensional mediation analysis in Section 2 of the main paper. For Assumption 1 (no
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Figure 4: The top panel shows the distribution of the observed outcomes HbA1c (y, the dark
line) and each of the 100 lighter lines is the kernel density estimate of a set of random draws of yrep
from the posterior predictive distribution of y. The bottom panel displays the separate histograms
of y and of yrep for five simulated datasets.
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unmeasured exposure-outcome confounding), we believe that the available covariates of

age, gender and race/ethnicity in model 7 are natural to control for confounders that are

associated both to adult SES and HbA1c [11]. For Assumption 2 (no unmeasured mediator-

outcome confounding given exposure), within each of the two exposure groups (low and

high adult SES), age, gender and race/ethnicity are also natural to control for mediator-

outcome confounding based on existing domain-specific literature [12]. For Assumption 3

(no unmeasured exposure-mediator confounding), we included all the important potential

exposure-mediator confounders in model 8 as in [13]. Assumption 4 (no mediator-outcome

confounding affected by the exposure) is usually a challenging condition to justify. However,

we note that Assumption 4, as well as Assumption 3, is only required for identifying natural

direct/indirect effects and is not the main focus here as we focus on estimating controlled

direct/indirect effects. The influence of violating the above identifiability assumptions can

be assessed using sensitivity analysis, which has been well-developed for the single mediator

setting [14], and additional work is required to extend that approach to the sparse high-

dimensional setting. Regarding the temporal assumptions, in MESA, adult SES (exposure)

was collected in Exam 1 between July 2000 and August 2002, and DNAm (mediators) and

HbA1c (outcome) were assessed in Exam 5, and all of them are one-time measurements.

While it is hard to disentangle the temporality between DNAm and HbA1c measurements,

our conceptual model supports the statistical model. A low level of education may lead to

fewer financial resources, which could produce stress, resulting in changes in DNAm. That

could then contribute to the development of metabolic dysregulation.
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Full
Sample
(n, %)

Low Adult
SES
%

HbA1c
Mean (SD)

Full sample 1231 (100) 67 5.99 (0.92)
Age

55−65 years 466 (38) 64 5.92 (0.97)
66−75 years 398 (32) 68 6.08 (0.98)
76−85 years 301 (24) 67 5.98 (0.80)
86−95 years 66 (5) 74 5.95 (0.72)

Race

Non-Hispanic white 582 (47) 51 5.76 (0.65)
African-American 263 (22) 72 6.23 (1.03)

Hispanic 386 (31) 86 6.16 (1.11)
Gender

Female 633 (51) 73 5.99 (0.88)
Male 598 (49) 60 5.99 (0.97)

Table 8: Descriptive statistics for adult SES measures and HbA1c. n: number of subjects. %:
proportion in the corresponding category. SD: standard deviation.
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