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Abstract
Quantile is an important quantity in reliability analysis, as it is related to the

resistance level for defining failure events. This study develops a computationally

efficient sampling method for estimating extreme quantiles using stochastic black

box computer models. Importance sampling has been widely employed as a pow-

erful variance reduction technique to reduce estimation uncertainty and improve

computational efficiency in many reliability studies. However, when applied to quan-

tile estimation, importance sampling faces challenges, because a good choice of the

importance sampling density relies on information about the unknown quantile. We

propose an adaptive method that refines the importance sampling density param-

eter toward the unknown target quantile value along the iterations. The proposed

adaptive scheme allows us to use the simulation outcomes obtained in previous itera-

tions for steering the simulation process to focus on important input areas. We prove

some convergence properties of the proposed method and show that our approach

can achieve variance reduction over crude Monte Carlo sampling. We demonstrate

its estimation efficiency through numerical examples and wind turbine case study.
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1 INTRODUCTION

This study concerns the quantile estimation of an output

of interest in a system using stochastic computer models,

which can help determine an important design parameter

of a system. In particular, this study is motivated by esti-

mating extreme load responses in a wind turbine (Ragan &

Manuel, 2008). To avoid catastrophic failures of the wind

turbine structure, the International Electrotechnical Commis-

sion (IEC)’s design standard requires estimating extreme load

responses imposed on turbine subsystems such as blades

(IEC, 2005). At the design stage, wind turbine manufac-

turers can install a prototype turbine to collect data, but

doing so is very expensive and time-consuming (Lee, Byon,

Ntaimo, & Ding, 2013). Recent advancements in numerical

computer modeling provide opportunities to quantify load

responses and their variability. For example, an aeroelas-

tic simulator has been developed by the U.S Department of

Energy’s National Renewable Energy Laboratory (NREL) to

help design reliable turbines (B. J. Jonkman, 2009; J. M.

Jonkman & Buhl, 2005).

Simulating the load response with the NREL simulator uses

a nested procedure where a random input (e.g., wind speed),

X∈Rp, is first generated from its prespecified probability

density function (pdf), p(x), and then fed into the simulator

to generate the load response (e.g., blade bending moment),

Y (Choe, Lam, & Byon, 2018). The NREL simulator uses a

stochastic (or noisy) computer model which generates ran-

dom outputs even at the same input. This is because it embeds

a high-dimensional random vector, 𝝃, inside the simulator

to generate stochastic turbulence around rotor blades (B. J.

Jonkman, 2009; J. M. Jonkman & Buhl, 2005). The embed-

ded 𝜉 may, or may not, depend on X. In either case, 𝜉 is hidden

inside the black box computer model and thus, one cannot

sample 𝜉 from its distribution, but can sample X only from

p(x). Related types of simulation models also arise in several

524 © 2020 Wiley Periodicals LLC wileyonlinelibrary.com/journal/nav Naval Res Logistics 2020;67:524–547

https://orcid.org/0000-0002-1988-2707
https://orcid.org/0000-0002-2506-1606
https://orcid.org/0000-0003-0659-6688


PAN ET AL. 525

TABLE 1 Computer experiments for black box computer models, serving different purposes

Emulator (metamodeling) Reliability analysis

Deterministic black box computer

model

Emulators such as GP (Ba & Joseph, 2012; Bastos

& O’Hagan, 2009; Oakley, 2004; Ranjan

et al., 2008; Yang et al., 2007)

Importance sampling and other variance reduction

techniques (Cannamela et al., 2008; Chu &

Nakayama, 2012; Glynn, 1996;

Hesterberg, 1995; Kurtz & Song, 2013;

Neddermeyer, 2009; Zhang, 1996)

Stochastic black box computer model GP with nugget effect, stochatic krigging

(Ankenman et al., 2010; Binois et al., 2019;

Chen et al., 2012; Wang & Hu, 2015)

Stochastic importance sampling (Choe, Byon, &

Chen, 2015)

other applications (Ankenman, Nelson, & Staum, 2010; Shi

& Chen, 2018; Sun, Apley, & Staum, 2011).

When a system response depends on the probabilistic input

condition, X, the failure probability, P(Y > y), is generally

expressed as

P(Y > y) = ∫X
P(Y > y|X = x)p(x)dx. (1)

Here, p(x) is assumed to be known. At the design stage, p(x)

is often specified in the design standard (IEC, 2005). This

failure probability is also called the probability of exceedance

(POE).

Given a prespecified failure probability, 𝛼, the (1− 𝛼)-

quantile is defined as

y𝛼 = inf {y ∶ P(Y > y) ≤ 𝛼}, (2)

where “inf” represents the infimum. In the reliability anal-

ysis, y𝛼 implies a resistance level for guaranteeing a failure

probability, 𝛼. For designing a highly reliable system, it is

crucial to accurately estimate the resistance level that can sat-

isfy a target failure probability. For estimating y𝛼 , one needs

to accurately estimate the tail distribution. This type of prob-

lems is inherently challenging, because the simulator output is

stochastic, the density of Y is unknown, the input-output rela-

tionship is complex and cannot be prescribed analytically due

to the black box nature, and running the simulator takes time.

In the computer experiment literature, emulator-based

approaches are commonly used (Ba & Joseph, 2012; Bas-

tos & O’Hagan, 2009; Oakley, 2004; Ranjan, Bingham,

& Michailidis, 2008; Yang, Ankenman, & Nelson, 2007).

Recently, Gaussian process (GP) modeling, or stochastic

Kriging, becomes the most common among many different

choices of metamodeling approaches with stochastic com-

puter models. Wang and Hu (2015) show that the prediction

performance of stochastic Kriging, measured by the mean

squared error (MSE), monotonically improves as the num-

ber of sampling points increases in a sequential computer

experimental setting. Stochastic kriging is also employed in

Chen, Nelson, and Kim (2012) for estimating the conditional

value-at-risk. Binois, Huang, Gramacy, and Ludkovski (2019)

further develop a new algorithm that sequentially decides

sampling points for obtaining a globally accurate GP meta-

model where the accuracy is defined with the integrated MSE.

Other nonparametric approaches have been also studied.

Hong, Juneja, and Liu (2017) use the kernel smoothing to

estimate the conditional expectation of the portfolio loss given

the risk factor. The focus of these studies is, however, to

improve the metamodel accuracy for estimating the computer

model’s response surface in general. When the problem is to

characterize extreme tail properties of Y , such approach can

lose estimation accuracy, as discussed in Cannamela, Garnier,

and Iooss (2008).

It is conceivable that a method for reliability will have

to involve some type of variance reduction techniques that

can guide the simulation process to generate outputs of

interest (large Y values in our case). Among various vari-

ance reduction methods, importance sampling (IS) has been

proven to be a powerful tool in many applications (Bul-

teau & El Khadiri, 2002; Cannamela et al., 2008; Chu &

Nakayama, 2012; Hesterberg, 1995). Rather than sampling

the input from the original density, p(x), IS uses a biased den-

sity, q(x), to sample X, aiming to allocate greater sampling

efforts over important input regions.

Most studies that develop the IS methods consider simula-

tors that generate a deterministic output at the same input. The

line of work on IS with deterministic computer models can

be viewed as the reliability counterpart of emulator modeling

(or metamodeling) for deterministic computer experiments

(Table 1). Then, the line of work on IS with stochastic com-

puter models is the reliability counterpart of metamodeling

for stochastic computer experiments.

Recently, Choe et al. (2015) develop a new IS method,

called stochastic importance sampling (SIS), for estimating

reliability with stochastic black box computer models. The

results in Choe et al. (2015) suggest that SIS is effective for

estimating the failure probability of 1% or higher. In real

life analyses, this probability will have to be smaller, for

example, 10−4. The approach in Choe et al. (2015) devel-

ops a nonadaptive (i.e., one-time) IS density. To estimate the

extreme quantile associated with a very small probability, it is

understandable that the SIS method could be reinforced with

additional adaptive mechanisms.

This study develops a sequential method that informa-

tively updates the IS density for efficiently estimating the

extreme quantile with stochastic black box computer mod-

els. Specifically, as we iterate our quantile estimate, we use

updated information to adjust the IS density parameter. To the

best of our knowledge, this study is the first to develop an

adaptive IS scheme for quantile estimation in the setting of
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stochastic black box computer models. We study some con-

vergence properties of our approach and demonstrate its bene-

fits through numerical examples with a wide range of settings

and a wind turbine case study. Implementation results suggest

that our proposed method elicits substantial computational

improvements over alternative approaches.

This paper is structured as follows. Section 2 reviews rel-

evant studies and discusses challenging issues. Section 3

develops a new adaptive approach and provides its proper-

ties. Sections 4 and 5 present numerical examples and conduct

a case study for the wind turbine extreme load estimation,

respectively. Section 6 concludes the paper.

2 BACKGROUND AND LITERATURE
REVIEW

2.1 Importance sampling with deterministic black
box computer models

Crude Monte Carlo (CMC) sampling, which samples simu-

lation inputs from p(x), is the simplest way. However it is

ineffective, because it generates samples most frequently in

the main part of the density of Y . Unlike CMC, IS modifies

its sampling focus on a different region of the density, for

example, upper tail density.

Most studies that develop IS consider deterministic com-

puter models that generate a fixed output given the input

where the conditional failure probability, P(Y > y |X = x) in

(1), becomes an indicator function, that is, I(Y > y|X = x)
(Cannamela et al., 2008; Glynn, 1996; Hesterberg, 1995).

When the target quantile is y𝛼 , the optimal IS density that

asymptotically minimizes the estimation variance is

qDIS(x) =
1

CDIS
p(x)I(Y > y𝛼|X = x), (3)

where CDIS is a normalizing constant (Morio, 2012).

Although qDIS(x) in (3) is theoretically optimal, it is not

directly implementable in practice, because I(Y > y𝛼|X = x)
and y𝛼 are unknown. Therefore, estimating quantiles using

IS requires approximating the unknown optimal IS den-

sity. In the literature with deterministic computer models,

the metamodel approximation has been used in obtaining a

good IS density. Using the Taylor expansion, Glasserman,

Heidelberger, and Perwez (1999); Glasserman, Heidelberger,

and Shahabuddin (2000) employ the delta and delta-gamma

approximations to the financial loss in the portfolio value.

Cannamela et al. (2008) state that a metamodel can be avail-

able from a previous study or from a physical model in

industrial practice.

2.2 Nested simulation and adaptive importance
sampling

This section reviews two prominent research areas relevant

to this study, namely, nested simulation and adaptive IS.

First, the nested simulation schemes have been actively stud-

ied in the portfolio risk measurement literature. Glasserman

et al. (1999, 2000) propose a quantile (value-at-risk) esti-

mation method using the combination of IS and stratified

sampling. They design the IS density with the exponential

tilting by changing the density parameter in an exponential

distribution family.

Gordy and Juneja (2010) dealt with the risk measurement

problem that inevitably requires nested simulation due to the

uncertainty between risk evaluation point and the horizon.

They used two risk measures: value-at-risk and the probabil-

ity of large loss. Having a limited budget of simulation, they

provided a method to allocate the number of runs between

outer and inner simulations minimizing the MSE. Similarly,

Broadie, Du, and Moallemi (2011) consider the probability of

large loss as a risk measure and propose a sequential approach

for allocating more simulation budget to the inner simula-

tion of the outer scenarios located close to the boundary of

the tail probability, that is, close to y𝛼 for the estimator of

P(Y > y𝛼), using the optimization problem that maximizes the

probability of a sign change. Gordy and Juneja (2010) and

Broadie et al. (2011), however, do not consider the IS scheme.

Recently Hong et al. (2017) use the kernel smoothing to esti-

mate the conditional expectation of the portfolio loss given

the risk factor, but they do not use the kernel estimator in

Monte Carlo simulation.

Regarding the adaptive IS, Au and Beck (1999) propose

a kernel-based sampling scheme for reliability estimation

with a deterministic computer model. They devise a two-step

algorithm where the first step uses Metropolis algorithm

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953)

to generate input points lying in the failure region and the

second step constructs kernel-based IS with the generated

samples. They call their approach adaptive IS, because the

next input sample is adaptively generated from the current

sample in the Metropolis algorithm. Therefore, their adaptiv-

ity is different from the general notion of iterative updating of

the importance density toward the unknown optimal density.

Recent studies provide more adaptive features that itera-

tively update the IS density using past samples, similar to

the adaptivity implied in this study. Balesdent, Morio, and

Marzat (2013) combine the Kriging metamodeling technique

into the IS scheme. Specifically, they estimate the response

surface with Kriging model and choose next sample points

that can minimize the estimation uncertainty measured by the

standard deviation in the Kriging response surface. Cornuet,

Marin, Mirea, and Robert (2012), building upon the deter-

ministic multiple mixture IS technique (Owen & Zhou, 2000),

recompute importance weights of all simulated inputs gener-

ated from multiple densities. This approach is different from

the standard approach that defines the importance weight as

the likelihood ratio of the original input density to a single

importance sampling density. Extensions on multiple IS have

been made in Elvira, Martino, Luengo, and Bugallo (2017,

2019) where theoretical properties, including consistency and
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variance reduction over standard weight scheme, are derived.

These studies focus on estimating probability estimators.

For the quantile estimation, Morio (2012) uses the quantile

estimate to update the IS density iteratively in a nonparamet-

ric framework, however, without any theoretical justification.

Another adaptive approach is the stochastic approximation

(SA) approach, which is a stochastic analog to the gradi-

ent descent method in deterministic nonlinear programming

(Kushner & Yin, 2003). SA sequentially updates the quantile

estimate, based on the difference between the failure prob-

ability estimate and the target probability. In the literature

(Bardou, Frikha, & Pages, 2009; Egloff & Leippold, 2010;

Kohler, KrzyZak, & Walk, 2014), SA is applied to find the

root for a variance minimization problem to approximate the

optimal IS density with deterministic computer models.

The adaptive IS scheme has been also studied in the

Bayesian inference when a posterior density is known up to

a normalizing constant. Comprehensive review of adaptive

IS for the Bayesian inference as well as variance reduction is

available in Bugallo et al. (2017).

2.3 Importance sampling with stochastic black box
computer models

With deterministic black box computer models, the original

joint density of all random variables used in the simulation is

known and takes a closed-form expression. This prerequisite

is not satisfied for the stochastic black box computer model

where the internal process is unknown and the input-output

relationship is not deterministic. As discussed in Section 1,

the stochastic computer model generates stochastic outputs

even at the same input, because the random vector, 𝝃, is hid-

den inside the model. In the nested simulation with stochastic

black box computer models, the input X is first sampled and

then the black box simulator, which embeds random vector 𝜉,

generates the random output Y given X (Choe et al., 2018).

The embeded 𝜉 may, or may not, depend on X. In either case,

𝜉 is hidden inside the black box computer model and thus,

one cannot sample 𝜉 from its distribution. Consider the NREL

simulator. It embeds over 8 million random variables and

the joint density of X and 𝝃 is not known to simulator users

(instead, only the density of X is known).

Below we review the SIS method which minimizes the POE

estimation variance using stochastic computer models (Choe

et al., 2015). Let Xi (i = 1, 2, … , m) denote the ith input

sample drawn from the IS density, q(x; 𝜃) for some parameter

𝜃, and m be the input sample size. Due to the randomness

in the output, SIS runs the simulator multiple times (say ni
times) at each Xi to obtain ni outputs of Yij (j = 1, 2, … , ni).

Then the POE estimator for the probability that Y exceeds the

resistance level, y, becomes

P̂SIS(y) =
1

m

m∑
i=1

(
1

ni

ni∑
j=1

I(Yij > y)

)
p(Xi)

q(Xi; 𝜃)
. (4)

The estimator, P̂SIS(y), is unbiased when the sup-

port of q(x; 𝜃), denoted as supp{q(x; 𝜃)}, includes

supp{P(Y > y |X = x)p(x))}. In other words, the following

condition is required for P̂SIS(y) to be unbiased: If q(x; 𝜃) = 0,
then P(Y > y |X = x)p(x) = 0 for any x. The unbiasedness

condition can be also satisfied by the uniform continuity

condition q(x; 𝜃) = 0 whenever p(x) = 0.

Given the total number of simulation runs nT , Choe

et al. (2015) show that the optimal IS density that minimizes

the variance of P̂SIS(y) is

q(x; 𝜃) = 1

Cq
p(x)

√
s(x; 𝜃)

√
1

nT
+
(

1 − 1

nT

)
s(x; 𝜃), (5)

where Cq is the normalizing constant. In q(x; 𝜃), 𝜃 can be

viewed as a density parameter where the optimal value for

minimizing the variance of P̂SIS(y) is given by 𝜃 = y, and

s(x; 𝜃) represents the conditional POE,

s(x; 𝜃) = P(Y > 𝜃|X = x). (6)

Suppose that m inputs, xi (i = 1, … , m), are sampled from

q(x; 𝜃). Choe et al. (2015) further show that the optimal run

size at each xi is

ni = nT

√
nT (1−s(xi;𝜃))

1+(nT−1)s(xi;𝜃)∑m
i=1

√
nT (1−s(xi;𝜃))

1+(nT−1)s(xi;𝜃)

. (7)

When ni is not an integer, it can be rounded to the nearest

integer subject to ni ≥ 1. With rounding, we lose the theoret-

ical optimality, but the loss would not be significant. Note

that we use xi to denote the realized value of the random

variable Xi.

In this approach the choice of 𝜃 is critical, because it

affects the estimation efficiency. When we estimate P(Y > y)

with a prespecified y, the optimal 𝜃 in q(x; 𝜃) is y, because

it provides the unbiased POE estimation and minimizes the

estimation variance. This paper considers quantile estimation

problem. Given a pre-specified failure probability, quantile

is defined in (1). When the cumulative density of Y is con-

tinuous and strictly monotonic, the quantile can be rewritten

as y𝛼 = F−1(1− 𝛼), where F denotes a cdf of Y . Therefore,

we can view the quantile estimation problem as the inverse

of the POE estimation problem. However, y𝛼 in our case is

unknown a priori. In the next section we present an adaptive

approach that steers the SIS density toward the optimal den-

sity, when quantiles are estimated via stochastic black box

computer models.

3 METHODOLOGY

3.1 Adaptive importance sampling

The ideal IS density for quantile estimation is the one used

to estimate the POE, P(Y > y𝛼). Here, the “ideal” implies the

optimality in terms of variance minimization. It has been
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(A) (B)

FIGURE 1 Example of wind turbine load response. (A) Flapwise bending moment. (B) SIS densities with different parameters [Colour figure can be viewed

at wileyonlinelibrary.com]

shown that using Taylor expansion, we have

ŷ𝛼 = y𝛼 −
P̂SIS(y𝛼) − 𝛼

fY (y𝛼)
+ Rn, (8)

where ŷ𝛼 denotes the quantile estimate and Rn is a remainder

which vanishes as the sample size grows under certain con-

ditions (Chu & Nakayama, 2012; Pan, Byon, & Ko, 2020).

Therefore, to minimize the variance of ŷ𝛼 , we need to mini-

mize the variance of P̂SIS(y𝛼), and the density that minimizes

the POE estimation variance also minimizes the quantile esti-

mation variance. For the stochastic black box models, it is

q(x; 𝜃) in (5) and ni in (7) with 𝜃 = y𝛼 . Based on these key

properties, our approach is to refine 𝜃 sequentially toward y𝛼
throughout the iterative process.

We first examine the impact of 𝜃 on the estimation perfor-

mance. Note that q(x; 𝜃) in SIS allocates sampling efforts on

the area.

supp{q(x; 𝜃)} = supp{s(x; 𝜃)p(x)} (9)

= supp{P(Y > 𝜃|X = x)p(x)}, (10)

where supp{P(Y > 𝜃 |X = x)p(x)} implies the input sampling

area that the exceedance event, {Y > 𝜃}, can possibly happen.

Therefore, the density parameter, 𝜃, controls the input sam-

pling area, which further affects the output samples that can

be obtained from the simulator. When q(x; 𝜃) uses a large 𝜃

(e.g., 𝜃high in Figure 1), the sampling efforts unduly focus on

the narrow input region in practice, so the resulting quantile

estimate can be substantially different from the true quantile.

On the other hand, a too small 𝜃 (e.g., 𝜃low in Figure 1) dis-

tracts sampling efforts over unnecessarily large input areas

(see C(𝜃low) in Figure 1b), losing simulation efficiency.

Consider an iterative simulation process. Let 𝜃k denote the

IS density parameter used at the kth iteration where K is the

total number of iterations. During the simulation process, 𝜃k

is determined based on the generated data, so it becomes ran-

dom and even a carefully selected 𝜃k can possibly deviate

from y𝛼 . To handle the randomness of 𝜃k, we employ a new

sampling density, q̃(x; 𝜃k), that supports on the whole input

space, ΩX. Specifically, similar to the defensive sampling

approach (Hesterberg, 1995), we modify qk(x; 𝜃k) as.

q̃(x; 𝜃k) =
1

Cq̃
p(x)

√
s̃(x; 𝜃k) ⋅

√
1

nT
+
(

1 − 1

nT

)
s̃(x; 𝜃k),

(11)

where Cq̃ is the normalizing constant and,

s̃(x; 𝜃k) =
(

1 − 𝛿

k𝛽
)

s(x; 𝜃k) +
𝛿

k𝛽
(1 − s(x; 𝜃k)) (12)

=
(

1 − 2𝛿

k𝛽
)

s(x; 𝜃k) +
𝛿

k𝛽
, (13)

with some positive constants 𝛿(<0.5) and 𝛽. Here, s̃(x; 𝜃k)
ranges between 0 and 1 (i.e., 0 < s̃(x; 𝜃k) < 1). For 𝛿 < 0.5,

s̃(x; 𝜃k) increases as s(x; 𝜃k) increases. With small 𝛿, the first

term in (13) enables the sampling efforts to be focused on the

important input area with high failure probability, whereas

the second term allows some portion of sampling efforts to

be allocated over the entire input domain. The construction of

s̃(x; 𝜃k) in (13) guarantees that the variance of the POE esti-

mator is bounded, which is proved in Lemma 1 and used in

showing the consistency properties later.

At each iteration, we sample m inputs, xi,k (i = 1, 2, … , m),

from q̃(x; 𝜃k). At each xi,k, we also modify the allocation size,

ni in (7), to

ñi,k = nT

√
1−s̃(xi,k ;𝜃k)

1+(nT−1)̃s(xi,k;𝜃k)∑m
i=1

√
1−s̃(xi,k ;𝜃k)

1+(nT−1)̃s(xi,k ;𝜃k)

. (14)

When ñi,k is not an integer, we round it to the nearest integer.

If the nearest integer is zero, we set ñi,k = 1.

http://wileyonlinelibrary.com
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It should be noted that the variance minimizing properties

in (5)–(7) are not completely carried to Equations (11)–(14)

due to 𝛿 ≠ 0. However, as iterations proceed, the second term

in (13) diminishes. Thus, if 𝜃k converges to the target quantile

y𝛼 , the variance minimizing properties become more clear at

later iterations. On the other hand, earlier iterations explore

wider input areas at the cost of increased variance, but such

wider exploration is needed for accommodating insufficient

information in choosing right 𝜃k.

In practice, the conditional failure probability, s(x; 𝜃k), is

not available. A reasonable approximation is to use its meta-

model as a substitute for s(x; 𝜃k). We present our method

and its properties with the exact s(x; 𝜃k) and then extend the

analysis when s(x; 𝜃k) is approximated by its metamodel.

Now we discuss how to choose 𝜃k at each iteration. Con-

sidering that the most desirable density parameter is y𝛼 , we

propose to use the quantile estimate to guide the simula-

tion process (Morio, 2012). Specifically, to get the quantile

estimate, we use the following combined POE estimator,

P̂1∶K(y) =
1

K

K∑
k=1

P̂k(y) (15)

with

P̂k(y) =
1

m

m∑
i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

, (16)

where Yij,k is the jth (j = 1, 2, … , ñi,k) output at each xi,k,

P̂k(y) is the individual POE estimator at the kth iteration, and

P̂1∶K(y) aggregates the K POE estimators to fully utilize the

information obtained from all iterations.

Because s̃(x; 𝜃k) is strictly positive over Ωx, q̃(x; 𝜃k) = 0

implies P(Y > y |X = x)p(x) = 0 for any x∈ΩX. Therefore,

the POE estimator, P̂1∶K(y), is unbiased, ∀y∈ΩY , where ΩY
denotes the output space. Moreover, the variance of the POE

estimator is bounded, thanks to the construction of s̃(x; 𝜃k) in

(13), as shown in Lemma 1.

Lemma 1 (a) Variance of P̂k(y) in (16) is
bounded, ∀y∈ΩY . (b) Variance of P̂1∶K(y) in
(15) is also bounded, ∀y∈ΩY .

Using the combined POE estimator, the intermediate quan-

tile estimate after the kth iteration is defined as

ŷ𝛼k = min{y ∶ 0 < P̂1∶k(y) ≤ 𝛼}. (17)

or

ŷk,𝛼 = max{y ∶ P̂1∶k(y) ≥ 𝛼}, (18)

where ŷ𝛼k and ŷk,𝛼 can be obtained using order statistics among

the outputs obtained up to the current iteration (Choe, Pan,

& Byon, 2016). Any of these two estimates can be used as

the next density parameter, 𝜃k+ 1. In our implementation, we

use ŷk,𝛼 , that is, 𝜃k+1 = ŷk,𝛼 . Specifically we sort the outputs

(Yij,h, i = 1, … , m, j = 1, … , ñi,k, h = 1, … , k) obtained

up to the kth iteration. Let Y (s) denote the sth smallest values

among all Yij,h’s. We sequentially compute P̂1∶k(Y(s)) from

the largest value. Then the order statistic Y (s) that satisfies

P̂1∶k(Y(s)) ≥ 𝛼 and P̂1∶k(Y(s+1)) ≤ 𝛼 is identified as 𝜃k+ 1.

In our implementation we use the “sort” function in Mat-

lab to obtain order statistics. With the knT samples obtained

up to the kth iteration, the complexity is O(knT ⋅ log(knT )) on

average (Mathworks, 2004).

As a remark, instead of the POE estimator in (15) and (16),

we can also use the self-normalized estimator (Owen, 2013).

Both estimators are consistent estimators (Owen, 2013), so

they can be used with the proposed scheme. We brifely com-

pare the two estimators. First, the estimator in (15) and (16)

provides the unbiased probability estimation with any sample

size, and this form of the estimator has been widely used in the

IS literature (Bucklew, 2004). The self-normalized estimator

is asymptotically unbiased, that is, it converges to the true

probability when the sample size gets large (Owen, 2013).

Second, the self-normalized estimator is beneficial when an

unnormalized version of p or q̃ is only available. Lastly, it is

more complicated to obtain the self-normalized POE variance

estimate and its bound, in particular, in an adaptive setting.

Therefore, we employ the original estimator in (15) and (16)

and present asymptotic properties of the proposed approach

in the next section. In our future study, we plan to compare the

theoretical properties and estimation performance between

the two estimators.

3.2 Asymptotic properties

This section establishes some asymptotic properties of the

proposed adaptive approach. In particular, we prove consis-

tency and variance reduction properties of our approach. The

relevant proofs and derivations are available in the Appendix.

A key issue in showing the consistency properties is that 𝜃k
is random. Suppose that the importance sampler in (11), q̃, is

employed with ñi (i = 1, … , m) in (14) and that 𝜃k is refined

with the quantile estimate.

Assumption 1 The cdf of Y is continuous and
strictly increasing.

First, based on the results in Lemma 1, Theorem 1 specifies

two conditions on 𝛽 to make the POE estimator converge to

the true POE, P(Y > y𝛼), in probability and almost surely. The

results suggest that a too large 𝛽 may make the POE estima-

tor fail to be consistent. This is because a large 𝛽 shrinks the

support of IS density rapidly. So 𝛽 should be chosen with care.

Theorem 1 Suppose that Assumption 1 holds.
Then P̂1∶K(y)

P
→ P(Y > y), ∀y ∈ ΩY , as

K →∞, for 0 < 𝛽 < 1. Moreover, P̂1∶K(y)
a.s.
→

P(Y > y), ∀y ∈ ΩY , as K →∞, for 0 < 𝛽 < 0.5.

Next we show the consistency properties of the quan-

tile estimators. First, Corollary 1 shows that ŷ𝛼K in (17) is a

consistent estimator of the target quantile, y𝛼 .
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Corollary 1 Suppose that Assumption 1
holds. Then ŷ𝛼K

P
→ y𝛼 , as K →∞, for 0 < 𝛽 < 1.

Recall that we use ŷk,𝛼 as the next density parameter value.

Corollary 2 also shows the convergence of 𝜃K to y𝛼 as K
becomes large.

Corollary 2 Suppose that Assumption 1
holds. Then 𝜃K

P
→ y𝛼 , as K →∞, for 0 < 𝛽 < 1.

These consistency properties are important, because they

indicate that q̃(x; 𝜃k) in (11) approaches the ideal density,

q(x; y𝛼) in (5), as K gets larger. This result can be translated

into variance reduction of our approach over CMC. Con-

sider the following POE estimator of CMC with the same

computational budget, KnT .

P̂CMC(y𝛼) =
1

KnT

KnT∑
i=1

I(Yi > y𝛼), (19)

where each input xi is sampled from p(x) and Yi is simulated

at xi. The variance of P̂CMC(y𝛼) is given by

Var[P̂CMC(y𝛼)] =
P(Y > y𝛼)[1 − P(Y > y𝛼)]

KnT
= 𝛼(1 − 𝛼)

KnT
.

(20)

or equivalently,

Var[
√

KnTP̂CMC(y𝛼)] = 𝛼(1 − 𝛼). (21)

We can also consider another CMC sampling scheme that

allows multiple runs at each sampled input, referred to as

CMC2. Given the total computational budget, KnT , we gener-

ate m inputs, Xi, i = 1, … , m, from p(x). At each Xi, CMC2

obtains ni outputs of Yij’s, such that
∑m

i=i ni = KnT . Therefore,

the CMC2’s POE estimator becomes.

P̂CMC2(y𝛼) =
1

m

m∑
i=1

(
1

ni

ni∑
j=1

I(Yij > y𝛼)

)
. (22)

While this CMC2 scheme shares some similarity with SIS in

that multiple replications are allowed at each sampled input,

it uses the input density p(x) only, ignoring the geometric

structure of response surface. When we use the equal sam-

ple sizes, that is, ni = (KnT )/m, it turns out that the variance

of P̂CMC2(y𝛼) is larger than that of P̂CMC(y𝛼). Detailed discus-

sion and derivation are available in Appendix A7. As such,

allowing multiple replicates is not beneficial in the CMC pro-

cedure and thus, we do not consider the CMC2 scheme in the

subsequent discussion.

Theorem 2 states that our approach can achieve variance

reduction over CMC. It indicates that our method is always

beneficial over CMC, unless the conditional POE at y𝛼 ,

s(x; y𝛼), is constant with respect to x. When s(x; y𝛼) is con-

stant, q̃(x; 𝜃K) converges to p(x). In this special case there is

no need to bias the input density, so equality holds in (23).

Theorem 2 Suppose that Assumption 1 holds.
Then

lim
K→∞

Var[
√

KnTP̂1∶K(y𝛼)] ≤ 𝛼(1 − 𝛼), (23)

for 0 < 𝛽 < 1, where the equality in (23) holds
if and only if s(x; y𝛼) is constant over the entire
input domain, Ωx. In other words, the asymp-
totic variance of the POE estimator in the pro-
posed approach is always strictly smaller than
CMC’s except the special case where s(x; y𝛼) is
constant over Ωx.

The aforementioned convergence properties are established

for K tending to infinity. In practice, it could be impractical to

have a large K, when simulation is computationally expensive.

However, the asymptotic results developed in this study high-

lights the benefit of using the adaptive procedure we propose.

Numerical studies in Sections 4–6 show that the quantile esti-

mates from our approach become close to the target quantile

within a relatively small number of iterations, for example, 25

iterations, in many cases.

3.3 Approximation of s(x;𝜽k) and implementation
summary

The proposed approach requires information on s(x; 𝜃k) in (6)

in order to define q̃(x; 𝜃k) and ñi,k in (11) and (14), respec-

tively. In practice, s(x; 𝜃k) is unknown for stochastic black box

computer models, so it needs to be approximated. Depend-

ing on applications, different statistical models, for example,

GP, can be employed. For the wind turbine simulation, Choe

et al. (2015) suggest using the generalized additive model for

location, scale and shape (GAMLSS) (Rigby & Stasinopou-

los, 2005) (more details will be discussed in Section 6).

Let sa(x; 𝜃k) denote a metamodel that approximates s(x; 𝜃k)

satisfying 0≤ sa(x; 𝜃k)≤ 1, ∀x∈ΩX. Suppose that we replace

s(x; 𝜃k) with sa(x; 𝜃k) in the importance sampler defined in

(11)–(14) and the POE estimator in (15). With sa(x; 𝜃k), the

results in Theorem 1, Corollaries 1 and 2, and Theorem 2

still hold. To prove this, we just need to replace s(x; 𝜃k) with

sa(x; 𝜃k) in our derivations provided in the Appendix.

However, achieving the variance reduction over CMC with

sa(x; 𝜃k), similar to the result in Theorem 2, requires accu-

rate approximation of s(x; 𝜃k). Below we show that variance

reduction can hold under certain conditions. Let || ⋅ || denote

the norm on the continuous function space w.r.t. the input

vector, that is, ||s(x; y)|| ≔ maxx∈ΩX |s(x; y)|.
Theorem 3 Let F(y) = P(Y >

y). With Assumption 1, suppose that
pmax ≔ maxx∈ΩX p(x) < ∞ and||sa(x; 𝜃k)− s(x; 𝜃k)|| = o(k−𝛽). We further
assume that s(x; y) and F

−1
(p) are locally

Lipschitz continuous at y = y𝛼 and p = 𝛼,
respectively. Then, after s(x; 𝜃k) is replaced
with sa(x; 𝜃k) in (11)–(14), it holds
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lim
K→∞

Var[
√

KnTP̂1∶K(y𝛼)] ≤ 𝛼(1 − 𝛼), (24)

for 0 < 𝛽 < 0.5.

In Theorem 3, ||sa(x; 𝜃k)− s(x; 𝜃k)|| = o(k−𝛽) implies that

the maximum difference between the estimated and true con-

ditional failure probability decreases at a rate faster than k−𝛽
as iterations proceed. In other words, this condition requires

a high-quality metamodel in the tail portion of the condi-

tional output density. Admittedly, this condition is strong and

it is difficult to show whether this condition is satisfied for

stochastic black box computer models. The simulation pro-

cess can be possibly steered in a wrong direction with poor

approximation of s(x; 𝜃k).

In the literature the metamodel approximation has been

used in obtaining a good IS density (Balesdent et al., 2013;

Cannamela et al., 2008; Glasserman et al., 1999, 2000). The

focus of this study is to develop a procedure for estimating

extreme quantiles, assuming a good metamodel is available.

The proposed approach, regardless of the metamodel qual-

ity, provides a unbiased POE estimation, which leads to an

unbiased quantile estimation with the sample size sufficiently

large. Our numerical results with different metamodel quali-

ties in Section 4 suggest that the proposed adaptive approach

is robust to the approximation quality. However, admittedly

the metamodel quality affects the efficiency of the procedure.

To the best of our knowledge, how the metamodel approxi-

mation error affects the efficiency in Monte Carlo simulation

has not been studied yet in the literature. Understanding how

the approximation error is transferred to the SIS density is a

subject of our future research.

We call the proposed approach adaptive SIS (shortly,

A-SIS). In particular, when ŷ𝛼K is used for estimating y𝛼 , we

refer the method to as A-SIS1, while estimating y𝛼 with ŷK,𝛼

is referred to as A-SIS2. Both A-SIS1 and A-SIS2 are collec-

tively called A-SIS in the subsequent discussion. We assume

the metamodel, sa(x; y), for approximating s(x; y), is available.

When it is not available, we can build it using pilot sam-

ples. Below we summarize the implementation procedure of

A-SIS.

Algorithm 1. ASIS quantile estimation procedure

Initialization: Set parameters 𝛽, 𝛿, m, nT , K and the initial

parameter 𝜃1. Set k = 1.

1: Sample xi,k from q̃(x; 𝜃k) in (11) and determine the alloca-

tion size ñi,k in (14) for each xi,k (i = 1, … , m).

2: Run simulation ni,k times at each xi,k to generate Yij,k (i= 1,

· · ·, m, j = 1, … , ni,k).

3: Obtain 𝜃k+ 1 in (18). If k < K, set k = k+ 1 and go to Step

1. Otherwise, go to Step 4.

4: Obtain the (1-𝛼)-quantile estimate using ŷ𝛼K in A-SIS1, or

𝜃K + 1 in A-SIS2.

Remark 1 In Step 1 of Algorithm 1,

we can use the acceptance-rejection

algorithm for drawing samples from q̃(x; 𝜃k)
(Asmussen & Glynn, 2007). We note that

acceptance-rejection may have a low acceptance

rate, so it may not lead to overall computation

efficiency improvement in situations where the

efficiency is based on the number of input gen-

eration to draw samples from q̃(x; 𝜃k). In our

case, however, the computational bottleneck is

the evaluation of the computer model given the

input, not the generation of the inputs. Thus, we

can afford to sample a large number of inputs to

generate the IS density. For example, consider

an experiment with m = 30 and nT = 100 at each

iteration. In our wind turbine case study, it takes

about 0.01 seconds to draw inputs from the IS

density, whereas running the simulator takes

about 100 minutes at each iteration. Therefore,

the computational overhead to draw samples

from the proposed IS density can be consid-

ered as negligible. Other sampling methods, for

example, Markov chain Monte Carlo (MCMC),

can also be used for sampling the inputs.

Remark 2 Although our approach requires

approximating s(x; 𝜃k), it is different from the

emulator-based approach that replaces the com-

puter model with a metamodel (or surrogate

model). In our approach, the metamodel is used

to approximate the true conditional failure prob-

ability, thus to guide the adaptive IS procedure.

4 EXAMPLE 1

To investigate the performance of the proposed method, we

employ the numerical example with the following data gen-

erating structure.

X ∼ N(0, 𝜎2
X) (25)

Y|X ∼ N(X, 𝜎2
Y|X) (26)

with 𝜎X = 5 and 𝜎Y |X = 1. Therefore, the conditional POE in

this example becomes.

s(x; 𝜃k) = P(Y > 𝜃k|X = x) = 1 − Φ
(
𝜃k − X
𝜎Y|X

)
, (27)

where Φ denotes the standard normal cdf. Plugging (27) into

Equation (13), we can get s̃(x; 𝜃k), which in turn provides

q̃k(x; 𝜃k) in (11) and ñi,k in (14). We first consider the perfect

metamodel and use 𝛽 = 0.1, 𝛿 = 0.1, and 𝜃1 = 1 as a base-

line setting. We also set m = 30, nT = 100 and K = 25. Then

we conduct sensitivity analysis with other settings, including

imperfect metamodels. In all cases, we focus on estimating the

extreme quantile for 10−4. In this data generating structure,
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Y ∼ N(0, 𝜎2
X + 𝜎2

Y|X), so the true quantile can be calculated

explicitly. With 𝛼 = 10−4, the true quantile is y𝛼 = 19.0.

As a remark, when the density of Y does not take a

closed-form, we obtain the true quantile estimate using CMC

in evaluating the estimation performance. For example, in the

wind turbine case study in Section 6, we use the CMC esti-

mate with 106 replications. To check if 106 replications are

sufficient, we conduct 25 CMC experiments (each with 106

replications) with the above example. The standard deviation

and MSE of the CMC estimates obtained from 25 experiments

are 0.013341 and 0.000179, respectively (note that we use the

true quantile, y𝛼 = 19.0, when we compute MSE). The average

difference between individual CMC estimates and true value

is 0.002370. These results justify the use of CMC quantile

estimate with 106 replications in 1-dimensional case study in

Section 6.

4.1 Alternative methods

We compare the estimation performance of A-SIS with alter-

native approaches. We first consider the nonadaptive SIS

(NA-SIS) method where we use q̃k(x; 𝜃k) in (11) with 𝜃1 = 1

as an IS density and do not update the IS density. By com-

paring A-SIS with NA-SIS, we can evaluate the advantage of

parameter updating.

Also, considering SA has been used as an adaptive

IS approach for deterministic computer models (Bardou

et al., 2009; Kohler et al., 2014), we implement SA in

the stochastic setting. The Robbins-Monro algorithm (Rob-

bins & Monro, 1951) provides a prototypical SA method,

and Polyak (1990) and Ruppert (1988) further improve the

Robbins-Monro algorithm by introducing an averaging idea.

Specifically, we use the same importance sampler, q̃k(x; 𝜃k),
in (11) and update 𝜃k using the averaging idea (Polyak, 1990;

Ruppert, 1988). That is, the IS density parameter is updated

as follows.

𝜃SA
k+1

= 1

k + 1

k+1∑
s=1

Vs, (28)

with.

Vk+1 = 𝜃SA
k + a

k𝛾
⋅ (P̂k(𝜃k) − 𝛼), (29)

where P̂k(𝜃k) is the POE estimator defined in (16). After the

last iteration, 𝜃SA
K becomes the SA’s quantile estimator. In

implementing SA, we use a = 100 and 𝛾 = 0.5.

Note that the implemented SA with (28) and (29) is simi-

lar to A-SIS, in the sense that they use the same importance

sampler, q̃k(x; 𝜃k), and update the density parameter through-

out iterations. The main difference is the updating rule: A-SIS

updates the IS density parameter based on the quantile esti-

mate using all the past samples, whereas SA updates it based

on the difference between the target and estimated POEs.

4.2 Implementation results

Table 2 summarizes the implementation results from

100 experiments under the baseline setting. The average

TABLE 2 Quantile estimation results from 100 experiments
under the baseline setting

Methods Sample std. Avg. diff MSE

A-SIS1 1.9 0.5 3.8

A-SIS2 1.2 −0.9 2.3

NA-SIS 1.2 −3.3 12.5

SA 1.6 3.1 12.0

TABLE 3 Quantile estimation results with different θ1 (In SA, a = 50,
200, and 1000 are used in SA for θ1 = 1, 8, and 15, respectively)

𝜽1 Methods Sample std. Avg. diff MSE

1 A-SIS1 1.9 0.5 3.8

A-SIS2 1.2 −0.9 2.3

NA-SIS 1.2 −3.3 12.5

SA 1.6 3.1 12.0

8 A-SIS1 1.8 0.5 3.5

A-SIS2 1.4 −0.8 2.5

NA-SIS 1.2 −1.9 5.1

SA 3.6 1.0 13.9

15 A-SIS1 1.5 0.4 2.5

A-SIS2 1.0 −0.9 1.1

NA-SIS 1.1 −1.3 3.0

SA 2.2 −1.5 7.2

difference (Avg. diff.) in the third column denotes the aver-

aged difference between the true quantile and quantile esti-

mates from 100 experiments. The results indicate that the

estimated quantiles from A-SIS1 and A-SIS2 are close to y𝛼
with small difference. The NA-SIS’s average difference is

more than three times larger than A-SIS, mainly because it

does not update the IS density.

It should be noted that the result of SA is highly sensitive

to the choice of a. In Section 4.3, detailed sensitivity analysis

results are discussed. In this example we explore a wide range

of a and choose an appropriate value that generates small esti-

mation errors, which is a = 50. Even after carefully tuning

a, SA yields a large difference, because its sequence does not

converge within 25 iterations.

4.3 Sensitivity analysis

We conduct sensitivity analysis under widely different param-

eter settings. First we compare our approach with NA-SIS

and SA with different initial parameters. Table 3 summarizes

results with three different 𝜃1 values. The estimation perfor-

mance of NA-SIS differs, depending on 𝜃1. When 𝜃1 is closer

to the target quantile y𝛼 = 19.0, its estimation results gen-

erally become better. With 𝜃1 = 15, the initial IS density is

already close to the optimal one, so NA-SIS produces small

estimation errors. These results indicate that the NA-SIS’s

estimation capability highly depend on the initial parameter

choice. In particular, the average difference from NA-SIS gets

larger, as the initial parameter is more different from the target
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FIGURE 2 Parameter sequence in A-SIS with different 𝜃1 values [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Parameter sequence in SA with different 𝜃1 values [Colour figure can be viewed at wileyonlinelibrary.com]

value. While we observe a similar pattern in SA, the results

also depend on the step size, a. Table 3 reports the SA results

with carefully tuned step sizes.

Unlike SA and NA-SIS, our approach is robust to the choice

of initial parameter and consistently generates lower errors

with all three different 𝜃1’s. Figure 2 further depicts the tra-

jectories of 𝜃k along the iterations in A-SIS. Even with very

small 𝜃1 (e.g., 𝜃1 = 1), 𝜃k increases reasonably fast after a

small number of iterations and become quite close to y𝛼 within

25 iterations. On the contrary, Figure 3 shows that SA does

not appropriately update the parameter after the first few iter-

ations and cannot reach the target value within 25 iterations.

We further investigate the impacts of metamodel qual-

ity. For reflecting a metamodel approximation error, we use

a metamodel that incorrectly specifies the conditional dis-

tribution. Specifically, the standardized conditional density

of Y given X is assumed to follow the t-distribution in the

metamodel. Table 4, which summarizes the result with dif-

ferent degrees of freedom in the studentized t-distribution,

demonstrates that the proposed approach generates robust

performance. The performance of the proposed approach is

comparable to that with the perfect metamodel in Table 2.

Next, we study how the values of 𝛽 and 𝛿 affect the esti-

mation capability. Tables 5 and 6 summarize the results of

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 4 Quantile estimation results with different degrees of freedom in the metamodel with the studentized t-distribution

A-SIS1 A-SIS2 SA

Sample Avg. Sample Avg. Sample Avg.
df Std. Diff. MSE Std. Diff. MSE Std. Diff. MSE

5 1.4 0.2 1.8 1.1 −1.2 2.7 1.8 3.2 13.1

15 1.9 0.3 3.5 1.2 −1.2 2.8 1.5 3.0 11.3

25 1.7 0.3 2.9 1.0 −1.0 2.1 1.9 3.3 14.0

TABLE 5 Quantile estimation results with different β values

A-SIS1 A-SIS2 SA

Sample Avg. Sample Avg. Sample Avg.
𝜷 Std. Diff. MSE Std. Diff. MSE Std. Diff. MSE

0.01 1.5 0.0 2.1 1.1 −1.4 3.2 1.6 3.2 12.6

0.1 0.9 0.5 3.8 1.2 −0.9 2.3 1.6 3.1 12.0

0.2 1.4 −0.1 1.9 1.1 −1.2 2.5 1.6 3.3 13.1

TABLE 6 Quantile estimation results with different δ values

A-SIS A-SIS SA

Sample Avg. Sample Avg. Sample Avg.
𝛅 Std. Diff. MSE Std. Diff. MSE Std. Diff. MSE

0.01 0.6 −0.2 0.5 0.6 −0.5 0.7 0.9 3.3 11.9

0.1 0.9 0.5 3.8 1.2 −0.9 2.3 1.6 3.1 12.0

0.2 1.9 −0.4 3.6 1.1 −1.9 4.9 2.3 3.2 15.6

TABLE 7 Quantile estimation results with different a and γ in SA

SA

a 𝛄 Sample std. Avg. diff MSE

25 0.1 0.7 −6.7 44.8

0.5 0.7 −7.0 49.3

0.9 0.8 −7.2 51.8

50 0.1 1.6 3.1 12.1

0.5 1.6 3.1 12.0

0.9 1.7 3.3 13.7

75 0.1 2.6 14.0 202.4

0.5 2.6 13.6 192.5

0.9 2.4 13.6 190.0

our approach with different 𝛽 and 𝛿 values, respectively. The

implementation results with a wide range of settings suggest

that our procedure generates stable estimations, demonstrat-

ing its robust performance. In all cases, A-SIS provides better

estimation results, compared with SA.

It is worthwhile to mention that one critical disadvantage

of SA is that its performance is sensitive to the choice of step

parameters, a and 𝛾 . Table 7 demonstrates that SA’s estima-

tion performance varies substantially, depending on the step

parameters, in particular, the value of a.

In summary, the implementation results with a wide range

of settings suggest that the proposed method is robust to the

parameter setting. It also consistently provides better results,

compared to alternative approaches. Between A-SIS1 and

A-SIS2, A-SIS1 generates quantile estimates closer to the

target quantile in general. It is mainly because A-SIS1 uses

the higher order statistics, ŷ𝛼k , than A-SIS2 with ŷk,𝛼 . While

A-SIS1 appears to perform slightly better when K is small,

the estimates from A-SIS1 and A-SIS2 would become closer

to each other with larger K.

4.4 Computational budget allocation

This section examines the impact of computational budget

allocation on the estimation performance. In our study, given

the total computational resource of K ⋅ nT , the budget allo-

cation rules involve the number of sample points (m), the

number of replications for each sampled point (ni), the com-

putational budget at each iteration (nT ) and the number of

iterations (K).

First, in the original SIS method presented in Choe

et al. (2015), given the number of sample points (m) and the

computational budget (nT ), variance-minimizing ni at each

sampled xi is decided with Equation (7). Moreover, Choe

et al. (2015) empirically demonstrate that the estimation per-

formance, in terms of the variance, is not sensitive to the

choice of m, given nT in their experiments in a wide range of

setting.
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FIGURE 4 Multiple cases with different nT sequences in A-SIS [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 8 Quantile estimation results when nT is linearly increasing
(Case 1), linearly decreasing (Case 2), logarithmically increasing (Case 3)
and logarithmically decreasing (Case 4) throughout iterations

A-SIS A-SIS

Sample Avg. Sample Avg.
Std. Diff. MSE Std. Diff. MSE

Case 1 1.2 −0.7 1.9 0.9 −1.6 3.3

Case 2 1.7 0.5 3.1 1.1 −1.0 2.0

Case 3 1.0 −0.9 1.7 0.8 −1.6 3.2

Case 4 1.9 0.5 3.7 1.2 −0.9 2.1

In the proposed sequential procedure, we need to further

decide nT , given the total resource K ⋅ nT . In our study, we

assign an equal budget to all K iterations with a fixed nT . A

small nT (or large K) increases the variance of individual POE

estimator in (16) at each iteration. On the other hand, with

large nT (or small K), 𝜃k may not converge to the target quan-

tile, given the fixed budget K ⋅ nT . To handle this trade-off,

one possible way is to use different sample sizes at each itera-

tion, considering potentially different variances of individual

POE estimators in (16) over k. We empirically evaluate the

estimation performance with different forms of nT through-

out iterations. We consider multiple cases where nT is linearly

increasing (Case 1), linearly decreasing (Case 2), logarith-

mically increasing (Case 3) and logarithmically decreasing

(Case 4), as shown in Figure 4. The total budget is set to be

2500 in all cases. Table 8 summarizes the results, indicating

that there are no clear patterns in the estimation performance.

Although varying the budget allocation throughout itera-

tions do not show clear benefits in this example, such treat-

ment could further enhance the IS procedure in our adaptive

framework. We hope to extend our framework for further

improving the budget allocation rules and analyzing theoreti-

cal properties with adaptive sample sizes in our future study.

5 EXAMPLE 2

We evaluate the proposed approach for a multi-dimensional

input case. Let p denote the dimension of the input vector.

TABLE 9 Quantile estimation results with multidimensional input vector
(In SA, a = 25, 50, and 50 are used in SA for p = 2, 3, and 5, respectively)

p y𝛂 Methods
Sample
Std.

Avg.
diff MSE

2 26.0 A-SIS 3.3 −1.3 12.4

A-SIS 2.3 −3.9 20.3

NA-SIS 1.5 −4.8 25.4

SA 1.2 −8.0 65.8

3 28.8 A-SIS 3.1 −1.2 10.8

A-SIS 2.6 −3.1 15.9

NA-SIS 1.8 −4.7 25.5

SA 2.8 8.3 76.7

5 33.2 A-SIS 2.8 −2.0 11.8

A-SIS 2.0 −4.3 21.9

NA-SIS 2.8 −5.0 32.5

SA 2.7 6.2 45.9

We consider the following data generating structure.

X ∼ MVN(0, 𝜎2
X ⋅ Ip×p) (30)

Y|X ∼ N(𝜇(X), 𝜎2
Y|X), (31)

with 𝜎2
X = 5, 𝜇(X) = ||X||2 and 𝜎2

Y|X = ||X||2, where ||⋅||2
denotes a 2-norm. We investigate the quantile estimation for

𝛼 = 10−4 with the same baseline parameter setting in Example

1.

Table 9 summarizes the results from 25 experiments,

assuming the perfect metamodel. The SA performance greatly

varies, depending on a. We test the SA performance with dif-

ferent values of a and choose the value that provides small

performance error. While our adaptive procedure’s standard

deviation is comparable to those in NA-SIS and NA, it esti-

mates the true quantile much closely, resulting in smaller

average difference and MSE.

6 WIND TURBINE CASE STUDY

This section estimates the extreme load response in a wind

turbine using the set of NREL simulators, TurbSim (version

http://wileyonlinelibrary.com
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FIGURE 5 Simulation process using NREL’s wind turbine simulator

[Colour figure can be viewed at wileyonlinelibrary.com]

1.50) (B. J. Jonkman, 2009) and FAST (version 7.01.00a-bjj)

(J. M. Jonkman & Buhl, 2005). Following the design speci-

fication in the international standard, IEC 61400-1 (Interna-

tional Electrotechnical Commission, 2005), we consider the

10-minute average wind speed as the simulation input, which

is assumed to follow a truncated Rayleigh distribution on the

interval [3, 25] (m/s) with the scale parameter of
√

2∕𝜋 ⋅ 10.

Given the input wind speed, Turbsim generates stochastic

turbulence around blade rotor plane. In doing so, 8 million

random variables (𝜉) are used, but TurbSim itself automat-

ically draws 𝜉 from its density embedded inside TurbSim.

Because the density of 𝜉 is hidden inside TurbSim, a simulator

user does not know its density and is not allowed to sam-

ple 𝜉. Then, taking the turbulence generated from Turbsim,

FAST generates structural responses such as flapwise bending

moment (see Figure 5).

In particular, we consider the 10-minute maximum flapwise

bending moment, which is one of important load types in the

wind turbine reliability analysis (Byon, Choe, & Yampikul-

sakul, 2016; Moriarty, 2008; Yampikulsakul, Byon, Huang,

Sheng, & You, 2014). In Choe et al. (2015, 2018), the flapwise

bending moments were calculated using the results from the

FAST outputs, following the procedure in Moriarty (2008).

This study uses a newer version of TurbSim and obtain the

flapwsie bending moments directly generated from FAST

(Manuel, Nguyen, & Barone, 2013). The CPU time for each

run takes about 1 minute.

In NREL simulators we approximate the conditional failure

probability s(x; 𝜃), as suggested in Choe et al. (2015). Specif-

ically, we fit a nonhomogeneous GEV distribution under the

GAMLSS framework with small-scale pilot samples obtained

from 600 runs. We model the location and scale param-

eters of the GEV distribution using the cubic smoothing

spline functions of input and estimate the model parameters

that maximize the log-likelihood penalized by the roughness

of parameters (Rigby & Stasinopoulos, 2005). We evalu-

ate the goodness-of-fit using the Kolmogorov-Smirnov test.

Detailed procedure for approximating s(x; 𝜃) is available in

Choe et al. (2015).

We conduct 25 experiments with 𝜃1 = 12 000 (kNm).

Table 10 summarizes the estimation results for 𝛼 = 10−4. The

theoretical quantile, estimated from 1 050 000 CMC sam-

ples, is y𝛼 ≈ 15 589. The average difference results suggest the

estimated quantiles from A-SIS1 and A-SIS2 are closer to y𝛼
than those from NA-SIS and SA. The proposed approach also

generates smaller sample standard deviations and MSEs.

In comparison with CMC, we conduct 25 experiments

each with 104 runs and obtain the sample standard deviation,

TABLE 10 Quantile estimation results for flapwise bending
moment (unit: kNm)

Methods Sample Std. Avg. diff MSE

A-SIS1 131.5 86.6 24 100.2

A-SIS2 136.5 −38.2 19 346.6

NA-SIS 201.6 −266.9 110 250.0

SA 165.8 −855.2 757 907.0

average difference and MSE of 386.2, −257.5 and 214,922.6,

respectively. Note that A-SIS uses 600 pilot samples and

2500 runs in each experiment. Therefore, even accounting

for the overhead of constructing the metamodel with 600

samples, A-SIS achieves much better estimation performance

than CMC with a smaller than one third of CMC computa-

tional runs.

7 SUMMARY

This study aims at efficiently estimating the quantile (or resis-

tance level) for satisfying the required reliability level with

stochastic black box computer models. The focus in relia-

bility analysis is on rare events in the tail portion in the

output density, which means that one does not have much

information to start with and nor is it easier to get many

relevant, valuable data points when one simply runs the sim-

ulator blindly. In the context of computationally expensive

simulations especially, being able to select high-quality inputs

can save tremendous computational resources in the quan-

tile estimation. Our contribution is to extend the nonadaptive

sampling structure of SIS (Choe et al., 2015) in order to

informatively adjust the IS density with justification on con-

vergence properties. Numerical evidence through numerical

examples and a wind turbine case study shows that our pro-

posed method elicits substantial computational improvements

over the alternatives, which makes the resulting method much

closer to being practical.

The proposed method requires the knowledge of the condi-

tional POE. In this study we approximate it using a statisti-

cal metamodel. Building a metamodel incurs computational

overhead, but it is needed to derive the simulation process

effectively. Although our numerical studies indicate that the

proposed approach is robust to the metamodel quality, build-

ing a high-quality metamodel can be of significant benefit. In

the future, we plan to explore other metamodel techniques,

depending on application contexts. For example, in our wind

turbine case study, the nonhomogeneous GEV distribution

provides a good fit (Choe et al., 2015). In the financial

risk analysis, the delta-gamma approximation (Glasserman

et al., 2000) and nonparametric approach (Hong et al., 2017)

are shown to be effective. On the other hand, developing

the general metamodeling methodology, or providing use-

ful guidelines in the metamodel development, is needed. We

will study the metamodeling techniques tailored to the IS

http://wileyonlinelibrary.com
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procedure, which can be generally applicable to a wide range

of applications.

The IS scheme for high-dimensional problem is consid-

ered challenging in general. Our study was motivated by

estimating the extreme load in a wind turbine application,

which is a low-dimensional problem where our proposed

scheme with the assumption of a good metamodel has mer-

its. While our results for high-dimensional problems are

promising, devising a good metamodel is challenging. For

high-dimensional problems, some simple metamodels, such

as quadratic (e.g., delta-gamma) or polynomial approxima-

tion, can be employed (Cannamela et al., 2008; Glasserman

et al., 2000). We will further investigate other IS schemes, for

example, cross-entropy method (Kurtz & Song, 2013), expo-

nential twisting (Glasserman et al., 2000), IS with a mixture

of densities (Owen & Zhou, 2000) or nonparametric densi-

ties (Hong et al., 2017; Morio, 2012; Neddermeyer, 2009;

Zhang, 1996). We also plan to investigate more theoretical

properties of our approach, for example, convergence rate,

finite-time performance, in the future.

ACKNOWLEDGMENTS
The authors greatly appreciate editorial board members and

anonymous reviewers for their thorough review and com-

ments that helped improve the manuscript greatly. This work

was partially supported by the National Science Founda-

tion (Grant No. IIS-1741166, IIS-1849280, and CAREER

CMMI-1834710) and the University of Michigan MCubed

Grant. This research was also supported in part by the Basic

Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Edu-

cation (Grant No. NRF-2016R1D1A1B04933453).

ORCID

Qiyun Pan https://orcid.org/0000-0002-1988-2707

Eunshin Byon https://orcid.org/0000-0002-2506-1606

Young Myoung Ko https://orcid.org/

0000-0003-0659-6688

REFERENCES

Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for

simulation metamodeling. Operations Research, 58, 371–382.

Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation: Algorithms

and analysis. Berlin: Springer Science and Business Media.

Au, S., & Beck, J. (1999). A new adaptive importance sampling scheme

for reliability calculations. Structural Safety, 21(2), 135–158.

Ba, S., & Joseph, V. R. (2012). Composite Gaussian process models for

emulating expensive functions. The Annals of Applied Statistics, 6,

1838–1860.

Balesdent, M., Morio, J., & Marzat, J. (2013). Kriging-based adaptive

importance sampling algorithms for rare event estimation. Structural
Safety, 44, 1–10.

Bardou, O., Frikha, N., & Pages, G. (2009). Computing VaR and

CVaR using stochastic approximation and adaptive unconstrained

importance sampling. Monte Carlo Methods and Applications, 15,

173–210.

Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process

emulators. Technometrics, 51, 425–438.

Binois, M., Huang, J., Gramacy, R. B., & Ludkovski, M. (2019). Repli-

cation or exploration? Sequential design for stochastic simulation

experiments. Technometrics, 61(1), 7–23.

Broadie, M., Du, Y., & Moallemi, C. C. (2011). Efficient risk estima-

tion via nested sequential simulation. Management Science, 57(6),

1172–1194.

Bucklew, J. A. (2004). Introduction to rare event simulation. Berlin:

Springer-Verlag.

Bugallo, M. F., Elvira, V., Martino, L., Luengo, D., Miguez, J., & Djuric,

P. M. (2017). Adaptive importance sampling: The past, the present,

and the future. IEEE Signal Processing Magazine, 34(4), 60–79.

Bulteau, S., & El Khadiri, M. (2002). A new importance sampling Monte

Carlo method for a flow network reliability problem. Naval Research
Logistics, 49(2), 204–228.

Byon, E., Choe, Y., & Yampikulsakul, N. (2016, April). Adaptive learn-

ing in time-variant processes with application to wind power sys-

tems. IEEE Transactions on Automation Science and Engineering,

13(2), 997–1007.

Cannamela, C., Garnier, J., & Iooss, B. (2008). Controlled stratifica-

tion for quantile estimation. The Annals of Applied Statistics, 2,

1554–1580.

Chen, X., Nelson, B. L., & Kim, K. (2012). Stochastic kriging for condi-
tional value-at-risk and its sensitivities. In Proceedings of the 2012

winter simulation conference (pp. 1–12), Piscataway, New Jersey.

Choe, Y., Byon, E., & Chen, N. (2015). Importance sampling for relia-

bility evaluation with stochastic simulation models. Technometrics,

57, 351–361.

Choe, Y., Lam, H., & Byon, E. (2018). Uncertainty quantification of

stochastic simulation for black-box computer experiments. Method-
ology and Computing in Applied Probability, 20(4), 1155–1172.

Choe, Y., Pan, Q., & Byon, E. (2016). Computationally efficient uncer-

tainty minimization in wind turbine extreme load assessments.

ASME Journal of Solar Energy Engineering: Including Wind Energy
and Building Energy Conservation, 138, 041012: 1–8.

Chu, F., & Nakayama, M. K. (2012). Confidence intervals for quantiles

when applying variance-reduction techniques. ACM Trans. Model.
Comput. Simul., 22, 10:1–10:25.

Cornuet, J.-M., Marin, J.-M., Mirea, A., & Robert, C. P. (2012). Adaptive

multiple importance sampling. Scandinavian Journal of Statistics,

39(4), 798–812.

Egloff, D., & Leippold, M. (2010). Quantile estimation with adaptive

importance sampling. The Annals of Statistics, 38, 1244–1278.

Elvira, V., Martino, L., Luengo, D., & Bugallo, M. F. (2017). Improv-

ing population Monte Carlo: Alternative weighting and resampling

schemes. Signal Processing, 131, 77–91.

Elvira, V., Martino, L., Luengo, D., & Bugallo, M. F. (2019). Generalized

multiple importance sampling. Statistical Science, 34(1), 129–155.

Glasserman, P., Heidelberger, P., & Perwez, S. (1999). Importance
sampling and stratification for value-at-risk. In Proceedings of the

sixth international conference on computational finance (pp. 7–24).

Cambridge, MA: MIT Press.

Glasserman, P., Heidelberger, P., & Shahabuddin, P. (2000). Variance

reduction techniques for estimating value-at-risk. Management Sci-
ence, 46(10), 1349–1364.

Glynn, P. W. (1996). Importance sampling for Monte Carlo estimation
of quantiles. In Mathematical methods in stochastic simulation and

https://orcid.org/0000-0002-1988-2707
https://orcid.org/0000-0002-1988-2707
https://orcid.org/0000-0002-2506-1606
https://orcid.org/0000-0002-2506-1606
https://orcid.org/0000-0003-0659-6688
https://orcid.org/0000-0003-0659-6688
https://orcid.org/0000-0003-0659-6688


538 PAN ET AL.

experimental design: Proceedings of the 2nd St. Petersburg work-

shop on simulation, St Petersburg, Russia: Publishing House of Saint

Petersburg University.

Gordy, M. B., & Juneja, S. (2010). Nested simulation in portfolio risk

measurement. Management Science, 56(10), 1833–1848.

Hesterberg, T. (1995). Weighted average importance sampling and

defensive mixture distributions. Technometrics, 37, 185–194.

Hong, L. J., Juneja, S., & Liu, G. (2017). Kernel smoothing for nested

estimation with application to portfolio risk measurement. Opera-
tions Research, 65(3), 657–673.

International Electrotechnical Commission. (2005). Wind
turbines—Part 1: Design requirements, IEC/TC88,61400-1 ed.3.

Jonkman, B. J. (2009). Turbsim user’s guide: Version 1.50, National

Renewable Energy Laboratory, Golden, CO, Technical Report No.

NREL/TP-500-46198.

Jonkman, J. M., & Buhl, M. L. (2005). Fast user’s guide. National

Renewable Energy Laboratory, Golden, CO, Technical Report No.

NREL/EL-500-38230.

Kohler, M., KrzyZak, A., & Walk, H. (2014). Nonparametric recursive

quantile estimation. Statistics and Probability Letters, 93, 102–107.

Kurtz, N., & Song, J. (2013). Cross-entropy-based adaptive importance

sampling using Gaussian mixture. Structural Safety, 42, 35–44.

Kushner, H., & Yin, G. G. (2003). Stochastic approximation and recur-

sive algorithms and applications. Berlin: Springer Science & Busi-

ness Media.

Lee, G., Byon, E., Ntaimo, L., & Ding, Y. (2013). Bayesian spline

method for assessing extreme loads on wind turbines. Annals of
Applied Statistics, 7(4), 2034–2061.

Manuel, L., Nguyen, H. H., & Barone, M. F. (2013). On the use of a large
database of simulated wind turbine loads to aid in assessing design
standard provisions. In Proceedings of the 51st AIAA aerospace

sciences meeting including the new horizons forum and aerospace

exposition. The conference was held in Grapevine, TX: American

Institute of Aeronautics and Astronautics.

Mathworks. (2004). An adventure of sorts-behind the scenes of a
MATLAB upgrade. Retrieved from http://www.mathworks.com/

company/newsletters/articles/an-adventure-of-sortsbehind-the-scenes

-of-a-matlab-upgrade.html.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &

Teller, E. (1953). Equation of state calculations by fast computing

machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Moriarty, P. (2008). Database for validation of design load extrapolation

techniques. Wind Energy, 11, 559–576.

Morio, J. (2012). Extreme quantile estimation with nonparametric adap-

tive importance sampling. Simulation Modelling Practice and The-
ory, 27, 76–89.

Muresan, M. M. (2009). A concrete approach to classical analysis. New

York: Springer.

Neddermeyer, J. C. (2009). Computationally efficient nonparametric

importance sampling. Journal of the American Statistical Associa-
tion, 104, 788–802.

Oakley, J. (2004). Estimating percentiles of uncertain computer code

outputs. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 53, 83–93.

Owen, A. (2013). Monte carlo theory, methods and examples. Retrieved

from https://statweb.stanford.edu/owen/c/

Owen, A., & Zhou, Y. (2000). Safe and effective importance sampling.

Journal of the American Statistical Association, 95, 135–143.

Pan, Q., Byon, E., & Ko, Y. M. (2020). Uncertainty quantification

for extreme quantile estimation with stochastic computer models.

IEEE Transactions on Reliability, https://ieeexplore-ieee-org.proxy.

lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkA

KysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813m

WkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g. DOI: 10.1109/

TR.2020.2980448.

Polyak, B. T. (1990). New stochastic approximation type procedures.

Automation and Remote Control, 7, 937–1008.

Ragan, P., & Manuel, L. (2008). Statistical extrapolation methods for

estimating wind turbine extreme loads. Journal of Solar Energy
Engineering, 130, 031011: 1–15.

Ranjan, P., Bingham, D., & Michailidis, G. (2008). Sequential experi-

ment design for contour estimation from complex computer codes.

Technometrics, 50, 527–541.

Rigby, R. A., & Stasinopoulos, M. D. (2005). Generalized additive mod-

els for location, scale and shape. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 54, 507–554.

Robbins, H., & Monro, S. (1951). A stochastic approximation method.

The Annals of Mathematical Statistics, 22, 400–407.

Ruppert, D. (1988). Efficient estimations from a slowly convergent
Robbins–Monro process (Tech. Rep.). Cornell University Operations

Research and Industrial Engineering.

Shi, W., & Chen, X. (2018). Efficient budget allocation strategies for

elementary effects method in stochastic simulation. Naval Research
Logistics, 65(3), 218–241.

Sun, Y., Apley, D. W., & Staum, J. (2011). Efficient nested simulation

for estimating the variance of a conditional expectation. Operations
Research, 59, 998–1007.

Wang, B., & Hu, J. (2015). On the monotonic performance of stochas-
tic kriging predictors. In Proceedings of the 2015 winter simulation

conference (pp. 3825–3833). Huntington Beach, CA.

Yampikulsakul, N., Byon, E., Huang, S., Sheng, S., & You, M. (2014).

Condition monitoring of wind power system with nonparamet-

ric regression analysis. IEEE Transactions on Energy Conversion,

29(2), 288–299.

Yang, F., Ankenman, B., & Nelson, B. L. (2007). Efficient generation of

cycle time-throughput curves through simulation and metamodeling.

Naval Research Logistics, 54(1), 78–93.

Zhang, P. (1996). Nonparametric importance sampling. Journal of the
American Statistical Association, 91, 1245–1253.

How to cite this article: Pan Q, Byon E, Ko YM,

Lam H. Adaptive importance sampling for extreme

quantile estimation with stochastic black box

computer models. Naval Research Logistics
2020;67:524–547. https://doi.org/10.1002/nav.21938

http://www.mathworks.com/company/newsletters/articles/an-adventure-of-sortsbehind-the-scenes-of-a-matlab-upgrade.html
http://www.mathworks.com/company/newsletters/articles/an-adventure-of-sortsbehind-the-scenes-of-a-matlab-upgrade.html
http://www.mathworks.com/company/newsletters/articles/an-adventure-of-sortsbehind-the-scenes-of-a-matlab-upgrade.html
http://www.mathworks.com/company/newsletters/articles/an-adventure-of-sortsbehind-the-scenes-of-a-matlab-upgrade.html
https://statweb.stanford.edu/owen/c/
https://ieeexplore-ieee-org.proxy.lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkAKysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813mWkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g
https://ieeexplore-ieee-org.proxy.lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkAKysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813mWkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g
https://ieeexplore-ieee-org.proxy.lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkAKysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813mWkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g
https://ieeexplore-ieee-org.proxy.lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkAKysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813mWkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g
https://ieeexplore-ieee-org.proxy.lib.umich.edu/abstract/document/9067075?casa_token=a14_RxkAKysAAAAA:R2IupYTSI0vNUaolonGmViHW6mFLKGKZ813mWkjxwCHgO8G-9s80Vk32qh4NeqG7kS7-r_F59g


PAN ET AL. 539

APPENDIX: PROOFS AND DERIVATIONS

A1 Proof of Lemma 1

Recall that the combined POE estimator P̂1∶K(y) is given by.

P̂1∶K(y) =
1

K

K∑
k=1

⎛⎜⎜⎝ 1

m

m∑
i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

⎞⎟⎟⎠ ,
where

q̃(x; 𝜃k) =
1

Cq̃
p(x)

√
s̃(x; 𝜃k)

√
1

nT
+
(

1 − 1

nT

)
s̃(x; 𝜃k).

We obtain the variance bounds of the individual and combined estimators.

(1) Bound of Var[P̂k(y)]: From the fact that

s̃(x; 𝜃k) ≥ 𝛿

k𝛽
,√

1

nT
+
(

1 − 1

nT

)
s̃(x; 𝜃k) ≥

√
1

nT
,

Cq̃ = ∫ p(x)
√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)√
nT

dx ≤ 1,

we obtain the bound of the likelihood ratio as follows.

p(x)
q̃(x; 𝜃k)

=
Cq̃√

s̃(x; 𝜃k)
√

1

nT
+
(

1 − 1

nT

)
s̃(x; 𝜃k)

≤
√

nT√
𝛿

k
𝛽

2

≤
√

nT√
𝛿

K
𝛽

2

= DK
𝛽

2 , (A1)

where D =
√

nT∕
√
𝛿 < ∞.

Using (A1), we now have a bound for P̂k(y) as follows:

P̂k(y) =
1

m

m∑
i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

≤ DK
𝛽

2 . (A2)

(2) Bound of Var[P̂1∶K(y)]: We first show that P̂k(y) is an unbiased estimator of P(Y > y) as follows:

E[P̂k(y)] = EX1∶k−1,Y1∶k−1
E[P̂k(y)|X1∶k−1,Y1∶k−1]

= EX1∶k−1,Y1∶k−1
E[P̂k(y)|𝜃k]

= EX1∶k−1,Y1∶k−1
[P(Y > y)],

= EX1∶k−1,Y1∶k−1
[P(Y > y)],

where the subscript, 1 : k− 1, implies the data samples obtained up to the (k− 1)th iteration. Thus, we get

E[P̂1∶K(y)] = E

[
1

K

K∑
k=1

P̂k(y)

]
= P(Y > y).

Noting that P̂h(y) − P(Y > y) has conditional mean 0, given all previous information (or equivalently given 𝜃h), we get

Cov[P̂h(y), P̂l(y)] = 0. Specifically, for any 1≤ h < l≤K, it holds.

E[P̂h(y)P̂l(y)] = EX1∶h,Y1∶h EX1∶l,Y1∶l|X1∶h,Y1∶h[P̂h(y)P̂l(y)|X1∶h,Y1∶h]
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= EX1∶h,Y1∶h[P̂h(y)EX1∶l,Y1∶l|X1∶h,Y1∶h[P̂l(y)|X1∶h,Y1∶h]]

= EX1∶h,Y1∶h[P̂h(y)EX1∶l,Y1∶l|X1∶h,Y1∶h[P̂l(y)|𝜃h]]

= P(Y > y)EX1∶h,Y1∶h[P̂h(y)]

= P
2(Y > y), (A3)

where the second equality holds because, given X1 : h, Y1 : h, P̂h(y) can be treated as a constant and the second last equality holds

because of EX1∶l,Y1∶l|X1∶h,Y1∶h[P̂l(y)|𝜃h]] = P(Y > y). Then, (A3) implies Cov[P̂h(y), P̂l(y)] = 0.

Having proved that P̂k(y) is unbiased and Cov[P̂h(y), P̂l(y)] = 0, from (A2) we can obtain an upper bound of the variance of

P̂1∶K(y) as

Var[P̂1∶K(y)] = Var

[
1

K

K∑
k=1

P̂k(y)

]
≤ D2K𝛽−1.

A2 Proof of Theorem 1

(1) Proof of P̂1∶K(y)
P
→ P(Y > y): Because P̂1∶K(y) is the unbiased estimator for P(Y > y), we use Chebyshev’s inequality to

obtain

P(P̂1∶K(y) − P(Y > y)| > 𝜀) ≤ 1

𝜀2
Var[P̂1∶K(y)] =

D2K𝛽−1

𝜀2
. (A4)

Therefore, for 0 < 𝛽 < 1, we attain P̂1∶K(y)
P
→ P(Y > y), ∀y∈ΩY .

(2) Proof of P̂1∶K(y)
a.s.
→ P(Y > y): Let K = n2. Then, by the Chebyshev’s inequality, we have

P(|P̂1∶n2 (y) − P(Y > y)| > 𝜀) ≤ D2

𝜀2
n2𝛽−2. (A5)

For 0 < 𝛽 < 1/2, we know that the series consisting of (A5) converges, that is

∞∑
n=1

P(|P̂1∶n2(y) − P(Y > y)| > 𝜀) < ∞.

Then, by the Borel-Cantelli lemma, we have the following almost sure convergence result:

P̂1∶n2 (y)
a.s.
→ P(Y > y),

which implies that ∀y∈ΩY , we attain

P̂1∶K(y)
a.s.
→ P(Y > y).

A3 Proof of Corol lary 1

Recall the definitions of ŷ𝛼k and ŷk,𝛼:

ŷ𝛼k = inf {y ∶ 0 < P̂1∶K(y) ≤ 𝛼},

ŷk,𝛼 = sup {y ∶ P̂1∶K(y) ≥ 𝛼}.

From the above definitions, we get

P̂1∶K (̂y𝛼K) ≤ 𝛼 ≤ P̂1∶K (̂yK,𝛼).

Note that the difference between P̂1∶K (̂y𝛼K) and P̂1∶K (̂yK,𝛼) is at most one sample. We, therefore, have the following bound.

|P̂1∶K (̂y𝛼K) − 𝛼| ≤ P̂1∶K (̂yK,𝛼) − P̂1∶K (̂y𝛼K)

≤ 1

Kmñi,k0

p(Xi,k0
)

q̃(Xi,k0
; 𝜃k0

)

=
Cq̃

Km
√

nT s̃(Xi,k0
; 𝜃k0

)(1 − s̃(Xi,k0
; 𝜃k0

))

m∑
i=1

√
1 − s̃(Xi,k0

; 𝜃k0
)

1 + (nT − 1)̃s(Xi,k0
; 𝜃k0

)

≤ C1K𝛽−1,
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where k0 and Xi,k0
denote the iteration index and input vector that generates ŷ𝛼K , respectively, and ñi,k0

is the corresponding allo-

cation size. The second last equation is obtained using (11) and (14). The last inequality holds because
∑m

i=1

√
1−s̃(Xi,k0

;𝜃k0
)

1+(nT−1)̃s(Xi,k0
;𝜃k0

)

and Cq̃ are bounded, 𝛿K−𝛽 ≤ 𝛿k−𝛽
0

≤ 1 − s̃(Xi,k0
; 𝜃k0

) and 𝛿K−𝛽 ≤ 𝛿k−𝛽
0

≤ s̃(Xi,k0
; 𝜃k0

). Therefore, for 0 < 𝛽 < 1, as K →∞, we

attain |P̂1∶K (̂y𝛼K) − P(Y > y𝛼)| → 0. (A6)

On the other hand, by taking supremum on both sides of (A5), we have.

sup
y∈ΩY

P(|P̂1∶K(y) − P(Y > y)| > 𝜀) ≤ D2

𝜀2
K𝛽−1. (A7)

From (A7), we know that

P(|P̂1∶K (̂y𝛼K) − P(Y > ŷ𝛼K)| > 𝜀) ≤ D2

𝜀2
K𝛽−1, (A8)

which implies the convergence in probability.

Based on Equations (A6) and (A8), we get P(Y > ŷ𝛼K)
P
→ P(Y > y𝛼). Then from Assumption 1, it implies ŷ𝛼K

P
→ y𝛼 .

A4 Proof of Corol lary 2

Corollary 2 is obvious if Corollary 1 is true. Applying the similar procedure in Corollary 1, we get ŷK,𝛼

P
→ y𝛼 . The next density

parameter 𝜃k+ 1 is set to be ŷk,𝛼 , which impliess 𝜃K = ŷK−1,𝛼 . As such we obtain 𝜃K
P
→ y𝛼 as K →∞.

A5 Proof of Theorem 2

We first show that the asymptotic variance of P̂k(y) is smaller than, or equal to, the CMC variance and extend the result to the

asymptotic variance of P̂1∶K(y).
(1) Proof of limk→∞Var[P̂k(y)] ≤ 𝛼(1−𝛼)

nT
: We apply the results in Corollary 2 to the analytical form of Var[P̂k(y)]. First, to obtain

Var[P̂k(y)], we use the total law of variance to get.

Var[P̂k(y)] = EX1∶k−1,Y1∶k−1
Var[P̂k(y)|X1∶k−1,Y1∶k−1] + VarX1∶k−1,Y1∶k−1

E[P̂k(y)|X1∶k−1,Y1∶k−1]

= EX1∶k−1,Y1∶k−1
Var[P̂k(y)|X1∶k−1,Y1∶k−1], (A9)

for k > 1, where the second equality holds because the second term in (A9) vanishes because E[P̂k(y)|X1∶k−1,Y1∶k−1] =
E[P̂k(y)|𝜃k] = P(Y > y), which is constant. By applying the total law of variance again, we have

Var[P̂k(y)|X1∶k−1,Y1∶k−1]

= EXk|X1∶k−1,Y1∶k−1
VarYk|X1∶k ,Y1∶k−1

⎛⎜⎜⎝ 1

m

m∑
i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

|X1∶k,Y1∶k−1

⎞⎟⎟⎠
+ VarXk|X1∶k−1,Y1∶k−1

EYk|X1∶k ,Y1∶k−1

⎛⎜⎜⎝ 1

m

m∑
i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

|X1∶k,Y1∶k−1

⎞⎟⎟⎠
= EXk|X1∶k−1,Y1∶k−1

⎛⎜⎜⎝ 1

m2
VarYk|X1∶k ,Y1∶k−1

⎛⎜⎜⎝
m∑

i=1

⎛⎜⎜⎝ 1

ñi,k

ñi,k∑
j=1

I(Yij,k > y)
⎞⎟⎟⎠

p(Xi,k)
q̃(Xi,k; 𝜃k)

|Xk, 𝜃k

⎞⎟⎟⎠
⎞⎟⎟⎠

+ VarXk|X1∶k−1,Y1∶k−1

(
1

m

m∑
i=1

s(Xi,k; y)p(Xi,k)
q̃(Xi,k; 𝜃k)

)

= 1

m2

m∑
i=1

(
EXk|X1∶k−1,Y1∶k−1

(
s(Xi,k; y)(1 − s(Xi,k; y))

ñi,k

p2(Xi,k)
q̃2(Xi,k; 𝜃k)

)
+VarXk|X1∶k−1,Y1∶k−1

(
s(Xi,k; y)p(Xi,k)

q̃(Xi,k; 𝜃k)

))
. (A10)
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Here, the second equality holds because (1) given X1 : k− 1, Y1 : k− 1, 𝜃k is determined; (2) given 𝜃k and Xk, Yij,k’s are i.i.d.

Bernoulli random variables; and (3) the mean of I(Yij,k > y) is s(Xi,k; y). The last equality holds because Xi,k’s are independently

drawn from q̃(X; 𝜃k) and the variance of I(Yij,k > y) is s(Xi,k; y)(1− s(Xi,k; y)).

Next, we calculate the two terms inside the innermost parentheses in (A10). Note that.

p(x)
q̃(x; 𝜃k)

=
Cq̃

√
nT√

s̃(x; 𝜃k) ⋅
√

1 + (nT − 1)̃s(x; 𝜃k)
. (A11)

From ñi,k in (14), we also have

1

ñi,k

√
1 − s̃(Xi,k; 𝜃k)

1 + (nT − 1)̃s(Xi,k; 𝜃k)
= 1

nT

m∑
j=1

√
1 − s̃(Xj,k; 𝜃k)

1 + (nT − 1)̃s(Xj,k; 𝜃k)
. (A12)

From (A11) and (A12), we obtain√
s̃(Xi,k; 𝜃k)(1 − s̃(Xi,k; 𝜃k))p(Xi,k)

ñi,kq̃(Xi,k; 𝜃k)
=

Cq̃
√

nT

ñi,k

√
1 − s̃(Xi,k; 𝜃k)

1 + (nT − 1)̃s(Xi,k; 𝜃k)

=
Cq̃√

nT

m∑
j=1

√
1 − s̃(Xj,k; 𝜃k)

1 + (nT − 1)̃s(Xj,k; 𝜃k)
,

and thus, we get

p(Xi,k)
ñi,kq̃(Xi,k; 𝜃k)

=
Cq̃√

nT s̃(Xi,k; 𝜃k)(1 − s̃(Xi,k; 𝜃k))

m∑
j=1

√
1 − s̃(Xj,k; 𝜃k)

1 + (nT − 1)̃s(Xj,k; 𝜃k)
. (A13)

Then, plugging (A11) and (A13) into the quantity inside the expectation of the first term in (A10), it follows

s(Xi,k; y)(1 − s(Xi,k; y))
ñi,k

p2(Xi,k)
q̃2(Xi,k; 𝜃k)

=
C2

q̃s(Xi,k; y)(1 − s(Xi,k; y))

s̃(Xi,k; 𝜃k)
√
[1 + (nT − 1)̃s(Xi,k; 𝜃k)](1 − s̃(Xi,k; 𝜃k))

m∑
j=1

√
1 − s̃(Xj,k; 𝜃k)

1 + (nT − 1)̃s(Xj,k; 𝜃k)
. (A14)

Plugging (A14) into (A10), we obtain

EXk|X1∶k−1,Y1∶k−1

(
s(Xi,k; y)(1 − s(Xi,k; y))

ñi,k

p2(Xi,k)
q̃2(Xi,k; 𝜃k)

)
= EXk|X1∶k−1,Y1∶k−1

⎛⎜⎜⎝
C2

q̃s(Xi,k; y)(1 − s(Xi,k; y))

s̃(Xi,k; 𝜃k)
√
[1 + (nT − 1)̃s(Xi,k; 𝜃k)](1 − s̃(Xi,k; 𝜃k))

⋅
m∑

j=1

√
1 − s̃(Xj,k; 𝜃k)

1 + (nT − 1)̃s(Xj,k; 𝜃k)

⎞⎟⎟⎠
= C2

q̃

⎡⎢⎢⎣∫
s(x; y)(1 − s(x; y))q̃(x; 𝜃k)

s̃(x; 𝜃k)
√
[1 + (nT − 1)̃s(x; 𝜃k)](1 − s̃(x; 𝜃k))

√
1 − s̃(x; 𝜃k)

1 + (nT − 1)̃s(x; 𝜃k)
dx (A15)

+(m − 1)∫
s(x; y)(1 − s(x; y))q̃(x; 𝜃k)

s̃(x; 𝜃k)
√
[1 + (nT − 1)̃s(x; 𝜃k)](1 − s̃(x; 𝜃k))

dx∫
√

1 − s̃(x; 𝜃k)
1 + (nT − 1)̃s(x; 𝜃k)

q̃(x; 𝜃k)dx
⎤⎥⎥⎦

=
Cq̃√

nT ∫
s(x; y)(1 − s(x; y))p(x)√

s̃(x; 𝜃k)

√
1

1 + (nT − 1)̃s(x; 𝜃k)
dx

+ m − 1

nT ∫
s(x; y)(1 − s(x; y))p(x)√

s̃(x; 𝜃k)(1 − s̃(x; 𝜃k))
dx∫

√
(1 − s̃(x; 𝜃k))̃s(x; 𝜃k)p(x)dx, (A16)

where (A15) is obtained because Xj,k’s are independently sampled from q̃(x; 𝜃k) in (11) and (A16) follows by plugging q̃(x; 𝜃k)
into (A15).Similarly, we get

VarXk|X1∶k−1,Y1∶k−1

(
s(Xi,k; y)p(Xi,k)

q̃(Xi,k; 𝜃k)

)
= ∫

(
s(x; y)p(x)

q̃(x; 𝜃k)

)2

q̃(x; 𝜃k)dx −
(
∫

s(x; y)p(x)
q̃(x; 𝜃k)

q̃(x; 𝜃k)dx
)2
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= Cq̃ ∫
s2(x; y)p(x)

√
nT√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)
dx −

(
∫ s(x; y)p(x)dx

)2

= Cq̃ ∫
s2(x; y)p(x)

√
nT√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)
dx − P

2(Y > y). (A17)

Applying the results in (A10), (A16) and (A17) to (A9), Var[P̂k(y)] becomes

Var[P̂k(y)] =
1

m
EX1∶k−1,Y1∶k−1

⎡⎢⎢⎢⎣Cq̃
√

nT ∫
s(x; y)p(x)

[
1

nT
(1 + (nT − 1)s(x; y))

]
√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)
dx

+ m − 1

nT ∫
s(x; y)(1 − s(x; y))p(x)√

s̃(x; 𝜃k)(1 − s̃(x; 𝜃k))
dx∫

√
(1 − s̃(x; 𝜃k))̃s(x; 𝜃k)p(x)dx

]
−

P
2(Y > y)

m
. (A18)

where the normalizing constant, Cq̃, is given by

Cq̃ = ∫ p(x)
√

s̃(x; 𝜃k) ⋅
√

1 + (nT − 1)̃s(x; 𝜃k)√
nT

dx. (A19)

Finally, by plugging Cq̃ in (A19) into (A18), Var[P̂k(y)] becomes

Var[P̂k(y)]

= 1

m
EX1∶k−1,Y1∶k−1

⎡⎢⎢⎢⎣∫ p(x)
√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)dx∫
p(x)s(x; y)

[
1

nT
(1 + (nT − 1)s(x; y))

]
√

s̃(x; 𝜃k)
√

1 + (nT − 1)̃s(x; 𝜃k)
dx

+ m − 1

nT ∫
s(x; y)(1 − s(x; y))p(x)√

s̃(x; 𝜃k)(1 − s̃(x; 𝜃k))
dx∫

√
(1 − s̃(x; 𝜃k))̃s(x; 𝜃k)p(x)dx

⎤⎥⎥⎥⎦ −
P

2(Y > y)
m

. (A20)

From Corollary 2, we have 𝜃k
P
→ y𝛼 , as k→∞. Therefore, as k→∞, the quantities in (A20) converge to their corresponding

values as
p(x)

√
s̃(x; 𝜃k)

√
1 + (nT − 1)̃s(x; 𝜃k)

P
→ p(x)

√
s(x; y𝛼)

√
1 + (nT − 1)s(x; y𝛼), (A21)

p(x)s(x; y𝛼)[1 + (nT − 1)s(x; y𝛼)]√
s̃(x; 𝜃k)

√
1 + (nT − 1)̃s(x; 𝜃k)

P
→ p(x)

√
s(x; y𝛼)

√
1 + (nT − 1)s(x; y𝛼), (A22)

s(x; y𝛼)(1 − s(x; y𝛼))p(x)√
s̃(x; 𝜃k)(1 − s̃(x; 𝜃k))

P
→

√
s(x; y𝛼)(1 − s(x; y𝛼))p(x), (A23)√

(1 − s̃(x; 𝜃k))̃s(x; 𝜃k)p(x)
P
→

√
s(x; y𝛼)(1 − s(x; y𝛼))p(x). (A24)

Using the above convergence results, we have

lim
k→∞

Var[P̂k(y𝛼)]

= 1

nT

[
1

m ∫ p(x)
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼)dx∫ p(x)
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼)dx

+ m − 1

m ∫
√

s(x; y𝛼)(1 − s(x; y𝛼))p(x)dx∫
√

s(x; y)(1 − s(x; y𝛼))p(x)dx
]
−

P
2(Y > y𝛼)

m

= 1

nT

[
1

m

(
∫

√
p(x)s(x; y𝛼)

√
p(x)[1 + (nT − 1)s(x; y𝛼)]dx

)2

+ m − 1

m

(
∫

√
p(x)s(x; y𝛼)

√
p(x)(1 − s(x; y𝛼))dx

)2
]
−

P
2(Y > y𝛼)

m

≤ 1

nT

[
1

m

(
∫ p(x)s(x; y𝛼)dx

)(
∫ p(x)(1 + (nT − 1)s(x; y𝛼))dx

)
+ m − 1

m

(
∫ p(x)s(x; y𝛼)dx

)(
∫ p(x)(1 − s(x; y𝛼))dx

)]
−

P
2(Y > y𝛼)

m
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= 1

nT

[
P(Y > y𝛼)(1 + (nT − 1)P(Y > y𝛼))

m
+

(m − 1)P(Y > y𝛼)(1 − P(Y > y𝛼))
m

]
−

P
2(Y > y𝛼)

m

= 1

nT
𝛼(1 − 𝛼), (A25)

where (A25) holds from Cauchy inequality. Therefore, we get

lim
k→∞

Var[P̂k(y𝛼)] ≤ 𝛼(1 − 𝛼)
nT

. (A26)

The equality in (A26) holds if and only if ∃c≥ 0, s.t. p(x)s(x; y𝛼) = cp(x)(1+ (nT − 1)s(x; y𝛼)) and ∃c′ ≥ 0, s.t.

p(x)s(x; y𝛼) = c′p(x)(1− s(x; y𝛼)). These conditions hold when s(x; y𝛼) is constant with respect to x∈Ωx.

(2) Proof of limK→∞Var[
√

KP̂1∶K(y𝛼)] ≤ 𝛼(1−𝛼)
nT

: Let

aK =
K∑

k=1

Var[P̂k(y𝛼)],

bK = K.

Then, we have

lim
K→∞

Var[
√

KP̂1∶K(y𝛼)] = lim
K→∞

1

K
Var

[ K∑
k=1

P̂k(y𝛼)

]
= lim

K→∞

aK

bK

= lim
K→∞

aK+1 − aK

bK+1 − bK
(A27)

= lim
K→∞

Var[P̂K+1(y𝛼)]

≤ 𝛼(1 − 𝛼)
nT

, (A28)

where (A27) holds due to Stolz Cesàro theorem (Muresan, 2009) and the last inequality in (A28) is from (A26). In other words,

we have

lim
K→∞

Var[
√

KnTP̂1∶K(y𝛼)] ≤ 𝛼(1 − 𝛼)

A6 Proof of Theorem 3

Let sa(x; 𝜃k) denote an estimation for s̃(x; 𝜃k) and let s̃a(x; 𝜃k) ≔
(

1 − 2𝛿

k𝛽

)
sa(x; 𝜃k) + 𝛿

k𝛽
. From the proof of Theorem 2, we only

need to show that (A21)–(A24) hold with s̃a(x; 𝜃k) if ||sa(x; 𝜃k)− s(x; 𝜃k)|| = o(k−𝛽) is satisfied. Let h ≔ minx∈ΩX |s(x; y)|. The

difference between s̃a(x; 𝜃k) and s(x; y𝛼) becomes

|̃sa(x; 𝜃k) − s(x; y𝛼)|
=
||||(1 − 2𝛿

k𝛽
)

sa(x; 𝜃k) +
𝛿

k𝛽
− s(x; y𝛼)

||||
=
||||(1 − 2𝛿

k𝛽
)
(sa(x; 𝜃k) − s(x; 𝜃k)) +

(
1 − 2𝛿

k𝛽
)
(s(x; 𝜃k) − s(x; y𝛼)) +

𝛿

k𝛽
(1 − 2s(x; y𝛼))

||||
≤ (

1 − 2𝛿

k𝛽
) ||sa(x; 𝜃k) − s(x; 𝜃k)|| + (

1 − 2𝛿

k𝛽
) |s(x; 𝜃k) − s(x; y𝛼)| + 𝛿

k𝛽
(1 − 2s(x; y𝛼)).

When 𝛽 < 0.5, from (A6), (A8) and assumptions in Theorem 3, we have |𝜃k − y𝛼 | /k−𝛽 ≤O(k𝛽 − 1+ 𝛽)→ 0, as k→∞. As such,

we get |𝜃k − y𝛼 | = o(k−𝛽). Because s(x; y) is assumed to be locally Lipschitz continuous at y𝛼 , |s(x; 𝜃k)− s(x; y𝛼) | = o(k−𝛽).

Consequently, |̃sa(x; 𝜃k) − s(x; y𝛼)| ≤ 𝛿k−𝛽(1 − 2h) + o(k−𝛽). (A29)
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Note that s̃a(x; 𝜃k) ≥ 𝛿k−𝛽 , because of 0≤ sa(x; 𝜃k)≤ 1. Therefore, using (A29), it holds||||1 −
s(x; y𝛼)
s̃a(x; 𝜃k)

|||| ≤ 1 − 2h + o(1),

2h + o(1) ≤ s(x; y𝛼)
s̃a(x; 𝜃k)

≤ 2 − 2h + o(1). (A30)

Similarly, we have |(1 − s̃a(x; 𝜃k)) − (1 − s(x; y𝛼))| ≤ 𝛿k−𝛽(1 − 2h) + o(k−𝛽),
and 1 − s̃a(x; 𝜃k) ≥ 𝛿k−𝛽 , it holds ||||1 −

1 − s(x; y𝛼)
1 − s̃a(x; 𝜃k)

|||| ≤ 1 − 2h + o(1),

2h + o(1) ≤ 1 − s(x; y𝛼)
1 − s̃a(x; 𝜃k)

≤ 2 − 2h + o(1). (A31)

Next, we show that (A21) to (A24) hold with s̃a(x; 𝜃k). First,|p(x)√s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k) − p(x)
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼)|
= p(x) |̃sa(x; 𝜃k) − s(x; y𝛼)|(1 + (nT − 1)(̃sa(x; 𝜃k) + s(x; y𝛼)))√

s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k) +
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼)

≤ pmax(𝛿k−𝛽(1 − 2h) + o(k−𝛽)) (1 + 2(nT − 1))k𝛽∕2√
𝛿

≤ o(1), (A32)

where (A32) holds by plugging the result in (A29), s̃a(x; 𝜃k) ≤ 1 and s(x; y𝛼)≤ 1 in the numerator. In the denominator, we use

s̃a(x; 𝜃k) ≥ 𝛿k−𝛽 and (nT − 1)̃sa(x; 𝜃k) ≥ 0 in the first term and
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼) > 0 in the second term. This

result implies that

p(x)
√

s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k)
P
→ p(x)

√
s(x; y𝛼)

√
1 + (nT − 1)s(x; y𝛼). (A33)

Next, corresponding to (A22), we have||||||
p(x)s(x; y𝛼)[1 + (nT − 1)s(x; y𝛼)]√

s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k)
− p(x)

√
s(x; y𝛼)

√
1 + (nT − 1)s(x; y𝛼)

||||||
= p(x)

√
s(x; y𝛼)[1 + (nT − 1)s(x; y𝛼)]

⋅
||||||
√

s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k) −
√

s(x; y𝛼)
√

1 + (nT − 1)s(x; y𝛼)√
s̃a(x; 𝜃k)

√
1 + (nT − 1)̃sa(x; 𝜃k)

√
1 + (nT − 1)s(x; y𝛼)

||||||
≤ pmax(𝛿k−𝛽(1 − 2h) + o(k−𝛽)) (1 + 2(nT − 1))k𝛽∕2√

𝛿

√
s(x; y𝛼)√
s̃a(x; 𝜃k)

√
1 + (nT − 1)s(x; y𝛼)√
1 + (nT − 1)̃sa(x; 𝜃k)

(A34)

≤ o(1), (A35)

where (A34) holds by using (A32) and (A35) holds because of (A30) and the fact that the last factor is bounded by a constant.

As such, we have
p(x)s(x; y𝛼)[1 + (nT − 1)s(x; y𝛼)]√

s̃a(x; 𝜃k)
√

1 + (nT − 1)̃sa(x; 𝜃k)

P
→ p(x)

√
s(x; y𝛼)

√
1 + (nT − 1)s(x; y𝛼). (A36)

Similarly, when k≥ 21/𝛽 , it holds|√(1 − s̃a(x; 𝜃k))̃sa(x; 𝜃k)p(x) −
√

s(x; y𝛼)(1 − s(x; y𝛼))p(x)|
= p(x) |̃sa(x; 𝜃k) − s(x; y𝛼)|(1 + s̃a(x; 𝜃k) + s(x; y𝛼))√

(1 − s̃a(x; 𝜃k))̃sa(x; 𝜃k) +
√

s(x; y𝛼)(1 − s(x; y𝛼))

≤ 3pmax(𝛿k−𝛽(1 − 2h) + o(k−𝛽))√
(1 − 𝛿k−𝛽)𝛿k−𝛽

(A37)

≤ 3pmax(𝛿k−𝛽(1 − 2h) + o(k−𝛽))√
𝛿k−𝛽 − 1∕2𝛿k−𝛽

(A38)

≤ o(1), (A39)
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where (A37) holds by using the result in (A29), s̃a(x; 𝜃k) ≤ 1 and s(x; y𝛼)≤ 1 in the numerator. In the denominator, the first term

reaches its minimum when s̃a(x; 𝜃k) = 𝛿k−𝛽 or 1− 𝛿k−𝛽 and the second positive term can be dropped. (A38) holds because of

k𝛽 ≥ 2 for k≥ 21/𝛽 and thus, −𝛿k−2𝛽 ≥ − 1/2𝛿k−𝛽 . Thus, we have√
(1 − s̃a(x; 𝜃k))̃sa(x; 𝜃k)p(x)

P
→

√
s(x; y𝛼)(1 − s(x; y𝛼))p(x) (A40)

Lastly, ||||||
s(x; y𝛼)(1 − s(x; y𝛼))p(x)√

s̃a(x; 𝜃k)(1 − s̃a(x; 𝜃k))
−
√

s(x; y𝛼)(1 − s(x; y𝛼))p(x)
||||||

= p(x)
√

s(x; y𝛼)(1 − s(x; y𝛼))
|√s(x; y𝛼)(1 − s(x; y𝛼)) −

√
s̃a(x; 𝜃k)(1 − s̃a(x; 𝜃k))|√

s̃a(x; 𝜃k)(1 − s̃a(x; 𝜃k))
√
(1 − s(x; y𝛼)

= p(x)|√s(x; y𝛼)(1 − s(x; y𝛼)) −
√

s̃a(x; 𝜃k)(1 − s̃a(x; 𝜃k))| √s(x; y𝛼)√
s̃a(x; 𝜃k)

√
1 − s(x; y𝛼)√
1 − s̃a(x; 𝜃k)

≤ o(1), (A41)

(A41) holds by plugging in (A39), (A30) and (A31). Therefore,

s(x; y𝛼)(1 − s(x; y𝛼))p(x)√
s̃a(x; 𝜃k)(1 − s̃a(x; 𝜃k))

P
→

√
s(x; y𝛼)(1 − s(x; y𝛼))p(x). (A42)

Note that the convergence results in (A33), (A36), (A40) and (A42) correspond to the results in (A21)–(A24). Then the

variance reduction property follows by using the similar procedure in the proof of Theorem 2.

A7 Discussion on and derivation of the variance of CMC2’s POE estimator

Recall the CMC2’s POE estimator as

P̂CMC2(y𝛼) =
1

m

m∑
i=1

(
1

ni

ni∑
j=1

I(Yij > y𝛼)

)
.

We obtain the optimal ni which minimizes the variance of the CMC2’s POE estimator as follows:

Var[P̂CMC2(y𝛼)] = Var

[
1

m

m∑
i=1

(
1

ni

ni∑
j=1

I(Yij > y𝛼)

)]

= 1

m2
E

[
Var

[
1

ni

m∑
i=1

I(Yij > y𝛼)|X1, … ,Xm

]]
+ 1

m2
Var

[
E

[
1

ni

m∑
i=1

I(Yij > y𝛼)|X1, … ,Xm

]]

= 1

m2
E

[ m∑
i=1

1

ni
s(Xi, y𝛼)(1 − s(Xi, y𝛼))

]
+ 1

m
Var[s(X; y𝛼)], (A43)

where the second term in the last equation is obtained from the fact that Xi’s are iid.

In (A43), the second term does not include ni. To find ni that minimizes Var[P̂CMC2(y𝛼)], we minimize the first term. We let

the allocation size Ni at Xi as a function of Xi:

ni = nT ⋅
c(Xi)∑M
j=1 c(Xj)

, i = 1, 2, … ,m,

where c(X) is a nonnegative function. Then, following the the procedure in Choe et al. (2015) (see the proof of Lemma 1

therein), the optimal ni is given by

ni = nT ⋅

√
s(Xi)(1 − s(Xi))

M∑
j=1

√
s(Xj)(1 − s(Xj))

for i = 1, 2, … ,m. (A44)

There are several issues concerning the optimal form of ni in (A44). First, it needs the information of conditional POE s(Xi).

The CMC procedure, by definition, uses the input density p(x) only, ignoring the geometric structure of response surface. So,



PAN ET AL. 547

if we use the optimal ni in (A44), this procedure is not essentially CMC. Second, let us compare CMC2 with the original SIS

procedure that uses the following POE:

P̂SIS(y) =
1

m

m∑
i=1

(
1

ni

ni∑
j=1

I(yij > y)

)
p(Xi)

q(Xi; 𝜃)
.

The SIS procedure optimizes q(xi; 𝜃) and ni, i = 1, … , m, together. On the contrary, the aforementioned CMC2 optimizes ni
only, while fixing the input sampling density at p(x). Therefore, CMC2 (even though ni is optimized, assuming s(X) is known)

is suboptimal, compared to SIS. In fact, CMC2 is just a special case with q(x; 𝜃) = p(x).

Next, let us consider the equal sample size allocation. Given the total computational resource KnT , we can set ni = (KnT )/m.

Then we obtain

Var[P̂CMC2(y𝛼)]

= 1

m2
⋅ m ⋅

m
KnT ∫ s(x; y𝛼)(1 − s(x; y𝛼))p(x)dx + 1

m ∫ [s(x; y𝛼) − 𝛼]2p(x)dx

= 1

KnT
𝛼 +

(
1

m
− 1

KnT

)
∫ s(x; y𝛼)2p(x)dx − 1

m
𝛼2

= 1

KnT
𝛼(1 − 𝛼) +

(
1

m
− 1

KnT

)(
∫ s(x; y𝛼)2p(x)dx − 𝛼2

)
= 1

KnT
𝛼(1 − 𝛼) +

(
1

m
− 1

KnT

)
(E[s2(x; y𝛼)] − E[s(x; y𝛼)]2)

≥ 1

KnT
𝛼(1 − 𝛼)

Noting that the right-hand side is the variance of the original CMC that runs simulation once at each Xi, we can see that

allowing multiple replicates is not beneficial in the CMC procedure.


