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Abstract: Quantile is an important quantity in reliability analysis, as it is related to the resis-

tance level for defining failure events. This study develops a computationally efficient sampling

method for estimating extreme quantiles using stochastic black box computer models. Importance

sampling has been widely employed as a powerful variance reduction technique to reduce estima-

tion uncertainty and improve computational efficiency in many reliability studies. However, when

applied to quantile estimation, importance sampling faces challenges, because a good choice of

the importance sampling density relies on information about the unknown quantile. We propose

an adaptive method that refines the importance sampling density parameter toward the unknown

target quantile value along the iterations. The proposed adaptive scheme allows us to use the

simulation outcomes obtained in previous iterations for steering the simulation process to focus on

important input areas. We prove some convergence properties of the proposed method and show

that our approach can achieve variance reduction over crude Monte Carlo sampling. We demon-

strate its estimation efficiency through numerical examples and wind turbine case study.

Keywords: Monte Carlo sampling, Reliability, Variance Reduction

1 Introduction

This study concerns the quantile estimation of an output of interest in a system using stochastic

computer models, which can help determine an important design parameter of a system. In par-

ticular, this study is motivated by estimating extreme load responses in a wind turbine (Ragan

& Manuel, 2008). To avoid catastrophic failures of the wind turbine structure, the International

∗Correspondence to: E. Byon (ebyon@umich.edu)

1

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/nav.21938

http://dx.doi.org/10.1002/nav.21938
http://dx.doi.org/10.1002/nav.21938


Electrotechnical Commission (IEC)’s design standard requires estimating extreme load responses

imposed on turbine subsystems such as blades (International Electrotechnical Commission, 2005).

At the design stage, wind turbine manufacturers can install a prototype turbine to collect data,

but doing so is very expensive and time-consuming (Lee et al., 2013). Recent advancements in

numerical computer modeling provide opportunities to quantify load responses and their variabil-

ity. For example, an aeroelastic simulator has been developed by the U.S Department of Energy’s

National Renewable Energy Laboratory (NREL) to help design reliable turbines (B. J. Jonkman,

2009; J. M. Jonkman & Buhl, 2005).

Simulating the load response with the NREL simulator uses a nested procedure where a random

input (e.g., wind speed), X ∈ Rp, is first generated from its pre-specified probability density function

(pdf), p(x), and then fed into the simulator to generate the load response (e.g., blade bending

moment), Y (Choe et al., 2018). The NREL simulator uses a stochastic (or noisy) computer

model which generates random outputs even at the same input. This is because it embeds a high-

dimensional random vector, ξ, inside the simulator to generate stochastic turbulence around rotor

blades (B. J. Jonkman, 2009; J. M. Jonkman & Buhl, 2005). The embedded ξ may, or may not,

depend on X. In either case, ξ is hidden inside the black box computer model and thus, one cannot

sample ξ from its distribution, but can sample X only from p(x). Related types of simulation

models also arise in several other applications (Ankenman et al., 2010; Shi & Chen, 2018; Sun et

al., 2011).

When a system response depends on the probabilistic input condition, X, the failure probability,

P(Y > y), is generally expressed as

P(Y > y) =

∫
X
P(Y > y|X = x)p(x)dx. (1)

Here, p(x) is assumed to be known. At the design stage, p(x) is often specified in the design

standard (International Electrotechnical Commission, 2005). This failure probability is also called

the probability of exceedance (POE).

Given a pre-specified failure probability, α, the (1-α)-quantile is defined as

yα = inf{y : P(Y > y) ≤ α}, (2)

where “inf” represents the infimum. In the reliability analysis, yα implies a resistance level for guar-

anteeing a failure probability, α. For designing a highly reliable system, it is crucial to accurately

estimate the resistance level that can satisfy a target failure probability. For estimating yα, one

needs to accurately estimate the tail distribution. This type of problems is inherently challenging,

because the simulator output is stochastic, the density of Y is unknown, the input-output relation-

ship is complex and cannot be prescribed analytically due to the black box nature, and running

the simulator takes time.

In the computer experiment literature, emulator-based approaches are commonly used (Ba &

Joseph, 2012; Bastos & O’Hagan, 2009; Oakley, 2004; Ranjan et al., 2008; Yang et al., 2007).
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Recently, Gaussian process (GP) modeling, or stochastic Kriging, becomes the most common among

many different choices of metamodeling approaches with stochastic computer models. Wang &

Hu (2015) show that the prediction performance of stochastic Kriging, measured by the mean

squared error (MSE), monotonically improves as the number of sampling points increases in a

sequential computer experimental setting. Stochastic kriging is also employed in Chen et al. (2012)

for estimating the conditional value-at-risk. Binois et al. (2019) further develop a new algorithm

that sequentially decides sampling points for obtaining a globally accurate GP metamodel where

the accuracy is defined with the integrated MSE. Other nonparametric approaches have been also

studied. Hong et al. (2017) use the kernel smoothing to estimate the conditional expectation of the

portfolio loss given the risk factor. The focus of these studies is, however, to improve the metamodel

accuracy for estimating the computer model’s response surface in general. When the problem is to

characterize extreme tail properties of Y , such approach can lose estimation accuracy, as discussed

in Cannamela et al. (2008).

It is conceivable that a method for reliability will have to involve some type of variance reduction

techniques that can guide the simulation process to generate outputs of interest (large Y values in

our case). Among various variance reduction methods, importance sampling (IS) has been proven

to be a powerful tool in many applications (Bulteau & El Khadiri, 2002; Cannamela et al., 2008;

Chu & Nakayama, 2012; Hesterberg, 1995). Rather than sampling the input from the original

density, p(x), IS uses a biased density, q(x), to sample X, aiming to allocate greater sampling

efforts over important input regions.

Most studies that develop the IS methods consider simulators that generate a deterministic

output at the same input. The line of work on IS with deterministic computer models can be

viewed as the reliability counterpart of emulator modeling (or metamodeling) for deterministic

computer experiments (Table 1). Then, the line of work on IS with stochastic computer models is

the reliability counterpart of metamodeling for stochastic computer experiments.

Recently, Choe et al. (2015) develop a new IS method, called stochastic importance sampling

(SIS), for estimating reliability with stochastic black box computer models. The results in Choe et

Emulator (metamodeling) Reliability analysis

Deterministic black
box computer model

Emulators such as GP (Ba &
Joseph, 2012; Bastos & O’Hagan,
2009; Oakley, 2004; Ranjan et
al., 2008; Yang et al., 2007)

Importance sampling and other
variance reduction techniques
(Cannamela et al., 2008; Chu &
Nakayama, 2012; Glynn, 1996;
Hesterberg, 1995; Kurtz & Song,
2013; Neddermeyer, 2009; Zhang,
1996)

Stochastic black box
computer model

GP with nugget effect, stochatic
krigging (Ankenman et al., 2010;
Binois et al., 2019; Chen et al.,
2012; Wang & Hu, 2015)

Stochastic importance sampling
(Choe et al., 2015)

Table 1: Computer experiments for black box computer models, serving different purposes.
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al. (2015) suggest that SIS is effective for estimating the failure probability of 1% or higher. In real

life analyses, this probability will have to be smaller, e.g., 10−4. The approach in Choe et al. (2015)

develops a non-adaptive (i.e., one-time) IS density. To estimate the extreme quantile associated

with a very small probability, it is understandable that the SIS method could be reinforced with

additional adaptive mechanisms.

This study develops a sequential method that informatively updates the IS density for efficiently

estimating the extreme quantile with stochastic black box computer models. Specifically, as we

iterate our quantile estimate, we use updated information to adjust the IS density parameter. To

the best of our knowledge, this study is the first to develop an adaptive IS scheme for quantile

estimation in the setting of stochastic black box computer models. We study some convergence

properties of our approach and demonstrate its benefits through numerical examples with a wide

range of settings and a wind turbine case study. Implementation results suggest that our proposed

method elicits substantial computational improvements over alternative approaches.

This paper is structured as follows. Section 2 reviews relevant studies and discusses challenging

issues. Section 3 develops a new adaptive approach and provides its properties. Sections 4 and 5

present numerical examples and conduct a case study for the wind turbine extreme load estimation,

respectively. Section 6 concludes the paper.

2 Background and Literature Review

2.1 Importance sampling with deterministic black box computer models

Crude Monte Carlo (CMC) sampling, which samples simulation inputs from p(x), is the simplest

way. However it is ineffective, because it generates samples most frequently in the main part of the

density of Y . Unlike CMC, IS modifies its sampling focus on a different region of the density, e.g.,

upper tail density.

Most studies that develop IS consider deterministic computer models that generate a fixed

output given the input where the conditional failure probability, P(Y > y|X = x) in (1), becomes

an indicator function, i.e., I(Y > y|X = x) (Cannamela et al., 2008; Glynn, 1996; Hesterberg,

1995). When the target quantile is yα, the optimal IS density that asymptotically minimizes the

estimation variance is

qDIS(x) =
1

CDIS
p(x)I(Y > yα|X = x), (3)

where CDIS is a normalizing constant (Morio, 2012).

Although qDIS(x) in (3) is theoretically optimal, it is not directly implementable in practice,

because I(Y > yα|X = x) and yα are unknown. Therefore, estimating quantiles using IS requires

approximating the unknown optimal IS density. In the literature with deterministic computer

models, the metamodel approximation has been used in obtaining a good IS density. Using the

Taylor expansion, Glasserman et al. (1999, 2000) employ the delta and delta-gamma approximations
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to the financial loss in the portfolio value. Cannamela et al. (2008) state that a metamodel can be

available from a previous study or from a physical model in industrial practice.

2.2 Nested simulation and adaptive importance sampling

This section reviews two prominent research areas relevant to this study, namely, nested simulation

and adaptive IS. First, the nested simulation schemes have been actively studied in the portfolio

risk measurement literature. Glasserman et al. (1999, 2000) propose a quantile (value-at-risk)

estimation method using the combination of IS and stratified sampling. They design the IS density

with the exponential tilting by changing the density parameter in an exponential distribution family.

Gordy & Juneja (2010) dealt with the risk measurement problem that inevitably requires nested

simulation due to the uncertainty between risk evaluation point and the horizon. They used two risk

measures: value-at-risk and the probability of large loss. Having a limited budget of simulation, they

provided a method to allocate the number of runs between outer and inner simulations minimizing

the MSE. Similarly, Broadie et al. (2011) consider the probability of large loss as a risk measure

and propose a sequential approach for allocating more simulation budget to the inner simulation

of the outer scenarios located close to the boundary of the tail probability, i.e., close to yα for the

estimator of P (Y > yα), using the optimization problem that maximizes the probability of a sign

change. Gordy & Juneja (2010) and Broadie et al. (2011), however, do not consider the IS scheme.

Recently Hong et al. (2017) use the kernel smoothing to estimate the conditional expectation of

the portfolio loss given the risk factor, but they do not use the kernel estimator in Monte Carlo

simulation.

Regarding the adaptive IS, Au & Beck (1999) propose a kernel-based sampling scheme for

reliability estimation with a deterministic computer model. They devise a two-step algorithm where

the first step uses Metropolis algorithm (Metropolis et al., 1953) to generate input points lying in

the failure region and the second step constructs kernel-based IS with the generated samples. They

call their approach adaptive IS, because the next input sample is adaptively generated from the

current sample in the Metropolis algorithm. Therefore, their adaptivity is different from the general

notion of iterative updating of the importance density toward the unknown optimal density.

Recent studies provide more adaptive features that iteratively update the IS density using past

samples, similar to the adaptivity implied in this study. Balesdent et al. (2013) combine the

Kriging metamodeling technique into the IS scheme. Specifically, they estimate the response surface

with Kriging model and choose next sample points that can minimize the estimation uncertainty

measured by the standard deviation in the Kriging response surface. Cornuet et al. (2012), building

upon the deterministic multiple mixture IS technique (Owen & Zhou, 2000), recompute importance

weights of all simulated inputs generated from multiple densities. This approach is different from

the standard approach that defines the importance weight as the likelihood ratio of the original

input density to a single importance sampling density. Extensions on multiple IS have been made in

Elvira et al. (2017, 2019) where theoretical properties, including consistency and variance reduction

over standard weight scheme, are derived. These studies focus on estimating probability estimators.
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For the quantile estimation, Morio (2012) uses the quantile estimate to update the IS density

iteratively in a non-parametric framework, however, without any theoretical justification. Another

adaptive approach is the stochastic approximation (SA) approach, which is a stochastic analog to

the gradient descent method in deterministic nonlinear programming (Kushner & Yin, 2003). SA

sequentially updates the quantile estimate, based on the difference between the failure probability

estimate and the target probability. In the literature (Bardou et al., 2009; Egloff & Leippold,

2010; Kohler et al., 2014), SA is applied to find the root for a variance minimization problem to

approximate the optimal IS density with deterministic computer models.

The adaptive IS scheme has been also studied in the Bayesian inference when a posterior density

is known up to a normalizing constant. Comprehensive review of adaptive IS for the Bayesian

inference as well as variance reduction is available in Bugallo et al. (2017).

2.3 Importance sampling with stochastic black box computer models

With deterministic black box computer models, the original joint density of all random variables

used in the simulation is known and takes a closed-form expression. This pre-requisite is not satisfied

for the stochastic black box computer model where the internal process is unknown and the input-

output relationship is not deterministic. As discussed in Section 1, the stochastic computer model

generates stochastic outputs even at the same input, because the random vector, ξ, is hidden inside

the model. In the nested simulation with stochastic black box computer models, the input X is first

sampled and then the black box simulator, which embeds random vector ξ, generates the random

output Y given X (Choe et al., 2018). The embeded ξ may, or may not, depend on X. In either

case, ξ is hidden inside the black box computer model and thus, one cannot sample ξ from its

distribution. Consider the NREL simulator. It embeds over 8 million random variables and the

joint density of X and ξ is not known to simulator users (instead, only the density of X is known).

Below we review the SIS method which minimizes the POE estimation variance using stochastic

computer models (Choe et al., 2015). Let Xi (i = 1, 2, ...,m) denote the ith input sample drawn

from the IS density, q(x; θ) for some parameter θ, and m be the input sample size. Due to the

randomness in the output, SIS runs the simulator multiple times (say ni times) at each Xi to obtain

ni outputs of Yij (j = 1, 2, ..., ni). Then the POE estimator for the probability that Y exceeds the

resistance level, y, becomes

P̂SIS(y) =
1

m

m∑
i=1

 1

ni

ni∑
j=1

I (Yij > y)

 p(Xi)

q(Xi; θ)
. (4)

The estimator, P̂SIS(y), is unbiased when the support of q(x; θ), denoted as supp{q(x; θ)},
includes supp{P(Y > y | X = x) p (x))}. In other words, the following condition is required for

P̂SIS(y) to be unbiased: If q(x; θ) = 0, then P(Y > y | X = x) p(x) = 0 for any x. The unbiasedness

condition can be also satisfied by the uniform continuity condition q(x; θ) = 0 whenever p(x) = 0.

Given the total number of simulation runs nT , Choe et al. (2015) show that the optimal IS
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density that minimizes the variance of P̂SIS(y) is

q(x; θ) =
1

Cq
p(x)

√
s(x; θ)

√
1

nT
+

(
1− 1

nT

)
s(x; θ), (5)

where Cq is the normalizing constant. In q(x; θ), θ can be viewed as a density parameter where the

optimal value for minimizing the variance of P̂SIS(y) is given by θ = y, and s(x; θ) represents the

conditional POE,

s(x; θ) = P(Y > θ|X = x). (6)

Suppose that m inputs, xi (i = 1, ...,m), are sampled from q(x; θ). Choe et al. (2015) further

show that the optimal run size at each xi is

ni = nT

√
nT (1−s(xi;θ))

1+(nT−1)s(xi;θ)∑m
i=1

√
nT (1−s(xi;θ))

1+(nT−1)s(xi;θ)

. (7)

When ni is not an integer, it can be rounded to the nearest integer subject to ni ≥ 1. With

rounding, we lose the theoretical optimality, but the loss would not be significant. Note that we

use xi to denote the realized value of the random variable Xi.

In this approach the choice of θ is critical, because it affects the estimation efficiency. When

we estimate P(Y > y) with a pre-specified y, the optimal θ in q(x; θ) is y, because it provides the

unbiased POE estimation and minimizes the estimation variance. This paper considers quantile

estimation problem. Given a pre-specified failure probability, quantile is defined in (1). When the

cumulative density of Y is continuous and strictly monotonic, the quantile can be rewritten as

yα = F−1(1 − α), where F denotes a cdf of Y . Therefore, we can view the quantile estimation

problem as the inverse of the POE estimation problem. However, yα in our case is unknown a

priori. In the next section we present an adaptive approach that steers the SIS density towards the

optimal density, when quantiles are estimated via stochastic black box computer models.

3 Methodology

3.1 Adaptive Importance Sampling

The ideal IS density for quantile estimation is the one used to estimate the POE, P(Y > yα). Here,

the “ideal” implies the optimality in terms of variance minimization. It has been shown that using

Taylor expansion, we have

ŷα = yα −
P̂SIS(yα)− α

fY (yα)
+Rn, (8)

where ŷα denotes the quantile estimate and Rn is a remainder which vanishes as the sample size
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grows under certain conditions (Chu & Nakayama, 2012; Pan et al., 2020). Therefore, to minimize

the variance of ŷα, we need to minimize the variance of P̂SIS(yα), and the density that minimizes

the POE estimation variance also minimizes the quantile estimation variance. For the stochastic

black box models, it is q(x; θ) in (5) and ni in (7) with θ = yα. Based on these key properties, our

approach is to refine θ sequentially toward yα throughout the iterative process.

We first examine the impact of θ on the estimation performance. Note that q(x; θ) in SIS

allocates sampling efforts on the area

supp{q(x; θ)} = supp{s(x; θ)p(x)} (9)

= supp{P(Y > θ | X = x) p(x)}, (10)

where supp{P(Y > θ | X = x) p(x)} implies the input sampling area that the exceedance event,

{Y > θ}, can possibly happen. Therefore, the density parameter, θ, controls the input sampling

area, which further affects the output samples that can be obtained from the simulator. When

q(x; θ) uses a large θ (e.g., θhigh in Figure 1), the sampling efforts unduly focus on the narrow input

region in practice, so the resulting quantile estimate can be substantially different from the true

quantile. On the other hand, a too small θ (e.g., θlow in Figure 1) distracts sampling efforts over

unnecessarily large input areas (see C(θlow) in Figure 1(b)), losing simulation efficiency.

(a) Flapwise bending moment (b) SIS densities with different parameters

Figure 1: Example of wind turbine load response.

Consider an iterative simulation process. Let θk denote the IS density parameter used at the

kth iteration where K is the total number of iterations. During the simulation process, θk is

determined based on the generated data, so it becomes random and even a carefully selected θk

can possibly deviate from yα. To handle the randomness of θk, we employ a new sampling density,

q̃(x; θk), that supports on the whole input space, ΩX. Specifically, similar to the defensive sampling
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approach (Hesterberg, 1995), we modify qk(x; θk) as

q̃(x; θk) =
1

Cq̃
p(x)

√
s̃(x; θk) ·

√
1

nT
+

(
1− 1

nT

)
s̃(x; θk), (11)

where Cq̃ is the normalizing constant and

s̃(x; θk) =

(
1− δ

kβ

)
s(x; θk) +

δ

kβ
(1− s(x; θk)) (12)

=

(
1− 2δ

kβ

)
s(x; θk) +

δ

kβ
, (13)

with some positive constants δ(< 0.5) and β. Here, s̃(x; θk) ranges between 0 and 1 (i.e., 0 <

s̃(x; θk) < 1). For δ < 0.5, s̃(x; θk) increases as s(x; θk) increases. With small δ, the first term

in (13) enables the sampling efforts to be focused on the important input area with high failure

probability, whereas the second term allows some portion of sampling efforts to be allocated over

the entire input domain. The construction of s̃(x; θk) in (13) guarantees that the variance of

the POE estimator is bounded, which is proved in Lemma 1 and used in showing the consistency

properties later.

At each iteration, we sample m inputs, xi,k (i = 1, 2, · · · ,m), from q̃(x; θk). At each xi,k, we

also modify the allocation size, ni in (7), to

ñi,k =nT

√
1−s̃(xi,k;θk)

1+(nT−1)s̃(xi,k;θk)∑m
i=1

√
1−s̃(xi,k;θk)

1+(nT−1)s̃(xi,k;θk)

. (14)

When ñi,k is not an integer, we round it to the nearest integer. If the nearest integer is zero, we

set ñi,k = 1.

It should be noted that the variance minimizing properties in (5)-(7) are not completely carried

to Equations (11)-(14) due to δ 6= 0. However, as iterations proceed, the second term in (13)

diminishes. Thus, if θk converges to the target quantile yα, the variance minimizing properties

become more clear at later iterations. On the other hand, earlier iterations explore wider input

areas at the cost of increased variance, but such wider exploration is needed for accommodating

insufficient information in choosing right θk.

In practice, the conditional failure probability, s(x; θk), is not available. A reasonable approx-

imation is to use its metamodel as a substitute for s(x; θk). We present our method and its

properties with the exact s(x; θk) and then extend the analysis when s(x; θk) is approximated by

its metamodel.

Now we discuss how to choose θk at each iteration. Considering that the most desirable density

parameter is yα, we propose to use the quantile estimate to guide the simulation process (Morio,

2012). Specifically, to get the quantile estimate, we use the following combined POE estimator,
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P̂1:K(y) =
1

K

K∑
k=1

P̂k(y) (15)

with

P̂k(y) =
1

m

m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)
, (16)

where Yij,k is the jth (j = 1, 2, · · · , ñi,k) output at each xi,k, P̂k(y) is the individual POE estimator

at the kth iteration, and P̂1:K(y) aggregates the K POE estimators to fully utilize the information

obtained from all iterations.

Because s̃(x; θk) is strictly positive over Ωx, q̃(x; θk) = 0 implies P(Y > y | X = x) p(x) = 0 for

any x ∈ ΩX. Therefore, the POE estimator, P̂1:K(y), is unbiased, ∀y ∈ ΩY , where ΩY denotes the

output space. Moreover, the variance of the POE estimator is bounded, thanks to the construction

of s̃(x; θk) in (13), as shown in Lemma 1.

Lemma 1. (a) Variance of P̂k(y) in (16) is bounded, ∀y ∈ ΩY . (b) Variance of P̂1:K(y) in (15) is

also bounded, ∀y ∈ ΩY .

Using the combined POE estimator, the intermediate quantile estimate after the kth iteration

is defined as

ŷαk = min{y : 0 < P̂1:k(y) ≤ α}. (17)

or

ŷk,α = max{y : P̂1:k(y) ≥ α}, (18)

where ŷαk and ŷk,α can be obtained using order statistics among the outputs obtained up to the

current iteration (Choe et al., 2016). Any of these two estimates can be used as the next density

parameter, θk+1. In our implementation, we use ŷk,α, i.e., θk+1 = ŷk,α. Specifically we sort the

outputs (Yij,h, i = 1, · · · ,m, j = 1, · · · , ñi,k, h = 1, · · · , k) obtained up to the kth iteration. Let Y(s)

denote the sth smallest values among all Yij,h’s. We sequentially compute P̂1:k(Y(s)) from the largest

value. Then the order statistic Y(s) that satisfies P̂1:k(Y(s)) ≥ α and P̂1:k(Y(s+1)) ≤ α is identified

as θk+1. In our implementation we use the “sort” function in Matlab to obtain order statistics.

With the knT samples obtained up to the kth iteration, the complexity is O(knT · log(knT )) on

average (Mathworks, 2004).

As a remark, instead of the POE estimator in (15)-(16), we can also use the self-normalized

estimator (Owen, 2013). Both estimators are consistent estimators (Owen, 2013), so they can be

used with the proposed scheme. We brifely compare the two estimators. First, the estimator
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in (15)-(16) provides the unbiased probability estimation with any sample size, and this form of

the estimator has been widely used in the IS literature (Bucklew, 2004). The self-normalized

estimator is asymptotically unbiased, i.e., it converges to the true probability when the sample size

gets large (Owen, 2013). Second, the self-normalized estimator is beneficial when an unnormalized

version of p or q̃ is only available. Lastly, it is more complicated to obtain the self-normalized POE

variance estimate and its bound, in particular, in an adaptive setting. Therefore, we employ the

original estimator in (15)-(16) and present asymptotic properties of the proposed approach in the

next section. In our future study, we plan to compare the theoretical properties and estimation

performance between the two estimators.

3.2 Asymptotic Properties

This section establishes some asymptotic properties of the proposed adaptive approach. In partic-

ular, we prove consistency and variance reduction properties of our approach. The relevant proofs

and derivations are available in the Appendix. A key issue in showing the consistency proper-

ties is that θk is random. Suppose that the importance sampler in (11), q̃, is employed with ñi

(i = 1, · · · ,m) in (14) and that θk is refined with the quantile estimate.

Assumption 1. The cdf of Y is continuous and strictly increasing.

First, based on the results in Lemma 1, Theorem 1 specifies two conditions on β to make the

POE estimator converge to the true POE, P(Y > yα), in probability and almost surely. The results

suggest that a too large β may make the POE estimator fail to be consistent. This is because a

large β shrinks the support of IS density rapidly. So β should be chosen with care.

Theorem 1. Suppose that Assumption 1 holds. Then P̂1:K(y)
P−→ P(Y > y), ∀y ∈ ΩY , as K →∞,

for 0 < β < 1. Moreover, P̂1:K(y)
a.s.−−→ P(Y > y), ∀y ∈ ΩY , as K →∞, for 0 < β < 0.5.

Next we show the consistency properties of the quantile estimators. First, Corollary 1 shows

that ŷαK in (17) is a consistent estimator of the target quantile, yα.

Corollary 1. Suppose that Assumption 1 holds. Then ŷαK
P−→ yα, as K →∞, for 0 < β < 1.

Recall that we use ŷk,α as the next density parameter value. Corollary 2 also shows the conver-

gence of θK to yα as K becomes large.

Corollary 2. Suppose that Assumption 1 holds. Then θK
P−→ yα, as K →∞, for 0 < β < 1.

These consistency properties are important, because they indicate that q̃(x; θk) in (11) ap-

proaches the ideal density, q(x; yα) in (5), as K gets larger. This result can be translated into

variance reduction of our approach over CMC. Consider the following POE estimator of CMC with

the same computational budget, KnT .

P̂CMC(yα) =
1

KnT

KnT∑
i=1

I(Yi > yα), (19)

11
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where each input xi is sampled from p(x) and Yi is simulated at xi. The variance of P̂CMC(yα) is

given by

V ar[P̂CMC(yα)] =
P(Y > yα)[1− P(Y > yα)]

KnT
=
α(1− α)

KnT
. (20)

or equivalently,

V ar[
√
KnT P̂CMC(yα)] = α(1− α). (21)

We can also consider another CMC sampling scheme that allows multiple runs at each sampled

input, referred to as CMC2. Given the total computational budget, KnT , we generate m inputs, Xi,

i = 1, · · · ,m, from p(x). At each Xi, CMC2 obtains ni outputs of Yij ’s, such that
∑m

i=i ni = KnT .

Therefore, the CMC2’s POE estimator becomes

P̂CMC2(yα) =
1

m

m∑
i=1

 1

ni

ni∑
j=1

I(Yij > yα)

 . (22)

While this CMC2 scheme shares some similarity with SIS in that multiple replications are

allowed at each sampled input, it uses the input density p(x) only, ignoring the geometric structure

of response surface. When we use the equal sample sizes, i.e., ni = (KnT )/m, it turns out that

the variance of P̂CMC2(yα) is larger than that of P̂CMC(yα). Detailed discussion and derivation

are available in Appendix A7. As such, allowing multiple replicates is not beneficial in the CMC

procedure and thus, we do not consider the CMC2 scheme in the subsequent discussion.

Theorem 2 states that our approach can achieve variance reduction over CMC. It indicates that

our method is always beneficial over CMC, unless the conditional POE at yα, s(x; yα), is constant

with respect to x. When s(x; yα) is constant, q̃(x; θK) converges to p(x). In this special case there

is no need to bias the input density, so equality holds in (23).

Theorem 2. Suppose that Assumption 1 holds. Then

lim
K→∞

V ar[
√
KnT P̂1:K(yα)] ≤ α(1− α), (23)

for 0 < β < 1, where the equality in (23) holds if and only if s(x; yα) is constant over the entire

input domain, Ωx. In other words, the asymptotic variance of the POE estimator in the proposed

approach is always strictly smaller than CMC’s except the special case where s(x; yα) is constant

over Ωx.

The aforementioned convergence properties are established for K tending to infinity. In practice,

it could be impractical to have a large K, when simulation is computationally expensive. However,

the asymptotic results developed in this study highlights the benefit of using the adaptive procedure

we propose. Numerical studies in Sections 4-6 show that the quantile estimates from our approach

become close to the target quantile within a relatively small number of iterations, e.g, 25 iterations,

12

This article is protected by copyright. All rights reserved.



in many cases.

3.3 Approximation of s(x; θk) and Implementation Summary

The proposed approach requires information on s(x; θk) in (6) in order to define q̃(x; θk) and ñi,k

in (11) and (14), respectively. In practice, s(x; θk) is unknown for stochastic black box computer

models, so it needs to be approximated. Depending on applications, different statistical models,

e.g., GP, can be employed. For the wind turbine simulation, Choe et al. (2015) suggest using the

generalized additive model for location, scale and shape (GAMLSS) (Rigby & Stasinopoulos, 2005)

(more details will be discussed in Section 6).

Let sa(x; θk) denote a metamodel that approximates s(x; θk) satisfying 0 ≤ sa(x; θk) ≤ 1,

∀x ∈ ΩX. Suppose that we replace s(x; θk) with sa(x; θk) in the importance sampler defined

in (11)-(14) and the POE estimator in (15). With sa(x; θk), the results in Theorem 1, Corollaries 1

and 2, and Theorem 2 still hold. To prove this, we just need to replace s(x; θk) with sa(x; θk) in

our derivations provided in the Appendix.

However, achieving the variance reduction over CMC with sa(x; θk), similar to the result in

Theorem 2, requires accurate approximation of s(x; θk). Below we show that variance reduction

can hold under certain conditions. Let || · || denote the norm on the continuous function space w.r.t.

the input vector, i.e., ||s(x; y)|| := max
x∈ΩX

|s(x; y)|.

Theorem 3. Let F̄ (y) = P(Y > y). With Assumption 1, suppose that pmax := max
x∈ΩX

p(x) <∞ and

||sa(x; θk) − s(x; θk)|| = o(k−β). We further assume that s(x; y) and F̄−1(p) are locally Lipschitz

continuous at y = yα and p = α, respectively. Then, after s(x; θk) is replaced with sa(x; θk)

in (11)-(14), it holds

lim
K→∞

V ar[
√
KnT P̂1:K(yα)] ≤ α(1− α), (24)

for 0 < β < 0.5.

In Theorem 3, ||sa(x; θk)− s(x; θk)|| = o(k−β) implies that the maximum difference between the

estimated and true conditional failure probability decreases at a rate faster than k−β as iterations

proceed. In other words, this condition requires a high-quality metamodel in the tail portion of the

conditional output density. Admittedly, this condition is strong and it is difficult to show whether

this condition is satisfied for stochastic black box computer models. The simulation process can be

possibly steered in a wrong direction with poor approximation of s(x; θk).

In the literature the metamodel approximation has been used in obtaining a good IS density

(Balesdent et al., 2013; Cannamela et al., 2008; Glasserman et al., 1999, 2000). The focus of this

study is to develop a procedure for estimating extreme quantiles, assuming a good metamodel is

available. The proposed approach, regardless of the metamodel quality, provides a unbiased POE

estimation, which leads to an unbiased quantile estimation with the sample size sufficiently large.

Our numerical results with different metamodel qualities in Section 4 suggest that the proposed

13
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adaptive approach is robust to the approximation quality. However, admittedly the metamodel

quality affects the efficiency of the procedure. To the best of our knowledge, how the metamodel

approximation error affects the efficiency in Monte Carlo simulation has not been studied yet in

the literature. Understanding how the approximation error is transferred to the SIS density is a

subject of our future research.

We call the proposed approach adaptive SIS (shortly, A-SIS). In particular, when ŷαK is used for

estimating yα, we refer the method to as A-SIS1, while estimating yα with ŷK,α is referred to as

A-SIS2. Both A-SIS1 and A-SIS2 are collectively called A-SIS in the subsequent discussion. We

assume the metamodel, sa(x; y), for approximating s(x; y), is available. When it is not available,

we can build it using pilot samples. Below we summarize the implementation procedure of A-SIS.

Algorithm 1 ASIS quantile estimation procedure

Initialization: Set parameters β, δ, m, nT , K and the initial parameter θ1. Set k = 1.

1: Sample xi,k from q̃(x; θk) in (11) and determine the allocation size ñi,k in (14) for each xi,k
(i = 1, ...,m).

2: Run simulation ni,k times at each xi,k to generate Yij,k (i = 1, · · · ,m, j = 1, · · · , ni,k).
3: Obtain θk+1 in (18). If k < K, set k = k + 1 and go to Step 1. Otherwise, go to Step 4.
4: Obtain the (1-α)-quantile estimate using ŷαK in A-SIS1, or θK+1 in A-SIS2.

Remark 1: In Step 1 of Algorithm 1, we can use the acceptance-rejection algorithm for drawing

samples from q̃(x; θk) (Asmussen & Glynn, 2007). We note that acceptance-rejection may have a

low acceptance rate, so it may not lead to overall computation efficiency improvement in situations

where the efficiency is based on the number of input generation to draw samples from q̃(x; θk). In

our case, however, the computational bottleneck is the evaluation of the computer model given the

input, not the generation of the inputs. Thus, we can afford to sample a large number of inputs

to generate the IS density. For example, consider an experiment with m = 30 and nT = 100 at

each iteration. In our wind turbine case study, it takes about 0.01 seconds to draw inputs from the

IS density, whereas running the simulator takes about 100 minutes at each iteration. Therefore,

the computational overhead to draw samples from the proposed IS density can be considered as

negligible. Other sampling methods, e.g., Markov chain Monte Carlo (MCMC), can also be used

for sampling the inputs.

Remark 2: Although our approach requires approximating s(x; θk), it is different from the emulator-

based approach that replaces the computer model with a metamodel (or surrogate model). In our

approach, the metamodel is used to approximate the true conditional failure probability, thus to

guide the adaptive IS procedure.
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4 Example 1

To investigate the performance of the proposed method, we employ the numerical example with

the following data generating structure.

X ∼ N(0, σ2
X) (25)

Y |X ∼ N(X, σ2
Y |X) (26)

with σX = 5 and σY |X = 1. Therefore, the conditional POE in this example becomes

s(x; θk) = P(Y > θk|X = x) = 1− Φ

(
θk −X

σY |X

)
, (27)

where Φ denotes the standard normal cdf. Plugging (27) into Equation (13), we can get s̃(x; θk),

which in turn provides q̃k(x; θk) in (11) and ñi,k in (14). We first consider the perfect metamodel

and use β = 0.1, δ = 0.1, and θ1 = 1 as a baseline setting. We also set m = 30, nT = 100 and

K = 25. Then we conduct sensitivity analysis with other settings, including imperfect metamodels.

In all cases, we focus on estimating the extreme quantile for 10−4. In this data generating structure,

Y ∼ N(0, σ2
X + σ2

Y |X), so the true quantile can be calculated explicitly. With α = 10−4, the true

quantile is yα = 19.0.

As a remark, when the density of Y does not take a closed-form, we obtain the true quantile

estimate using CMC in evaluating the estimation performance. For example, in the wind turbine

case study in Section 6, we use the CMC estimate with 106 replications. To check if 106 replications

are sufficient, we conduct 25 CMC experiments (each with 106 replications) with the above example.

The standard deviation and MSE of the CMC estimates obtained from 25 experiments are 0.013341

and 0.000179, respectively (note that we use the true quantile, yα = 19.0, when we compute MSE).

The average difference between individual CMC estimates and true value is 0.002370. These results

justify the use of CMC quantile estimate with 106 replications in 1-dimensional case study in

Section 6.

4.1 Alternative methods

We compare the estimation performance of A-SIS with alternative approaches. We first consider

the non-adaptive SIS (NA-SIS) method where we use q̃k(x; θk) in (11) with θ1 = 1 as an IS density

and do not update the IS density. By comparing A-SIS with NA-SIS, we can evaluate the advantage

of parameter updating.

Also, considering SA has been used as an adaptive IS approach for deterministic computer models

(Bardou et al., 2009; Kohler et al., 2014), we implement SA in the stochastic setting. The Robbins-

Monro algorithm (Robbins & Monro, 1951) provides a prototypical SA method, and Polyak (1990)

and Ruppert (1988) further improve the Robbins-Monro algorithm by introducing an averaging

idea. Specifically, we use the same importance sampler, q̃k(x; θk), in (11) and update θk using the
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averaging idea (Polyak, 1990; Ruppert, 1988). That is, the IS density parameter is updated as

follows.

θSAk+1 =
1

k + 1

k+1∑
s=1

Vs, (28)

with

Vk+1 = θSAk +
a

kγ
·
(
P̂k(θk)− α

)
, (29)

where P̂k(θk) is the POE estimator defined in (16). After the last iteration, θSAK becomes the SA’s

quantile estimator. In implementing SA, we use a = 100 and γ = 0.5.

Note that the implemented SA with (28)-(29) is similar to A-SIS, in the sense that they use the

same importance sampler, q̃k(x; θk), and update the density parameter throughout iterations. The

main difference is the updating rule: A-SIS updates the IS density parameter based on the quantile

estimate using all the past samples, whereas SA updates it based on the difference between the

target and estimated POEs.

4.2 Implementation results

Table 2 summarizes the implementation results from 100 experiments under the baseline setting.

The average difference (Avg. diff.) in the third column denotes the averaged difference between the

true quantile and quantile estimates from 100 experiments. The results indicate that the estimated

quantiles from A-SIS1 and A-SIS2 are close to yα with small difference. The NA-SIS’s average

difference is more than three times larger than A-SIS, mainly because it does not update the IS

density.

Methods Sample Std. Avg. Diff MSE
A-SIS1 1.9 0.5 3.8
A-SIS2 1.2 -0.9 2.3
NA-SIS 1.2 -3.3 12.5

SA 1.6 3.1 12.0

Table 2: Quantile estimation results from 100 experiments under the baseline setting.

It should be noted that the result of SA is highly sensitive to the choice of a. In Section 4.3,

detailed sensitivity analysis results are discussed. In this example we explore a wide range of a and

choose an appropriate value that generates small estimation errors, which is a = 50. Even after

carefully tuning a, SA yields a large difference, because its sequence does not converge within 25

iterations.
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4.3 Sensitivity Analysis

We conduct sensitivity analysis under widely different parameter settings. First we compare our

approach with NA-SIS and SA with different initial parameters. Table 3 summarizes results with

three different θ1 values. The estimation performance of NA-SIS differs, depending on θ1. When

θ1 is closer to the target quantile yα = 19.0, its estimation results generally become better. With

θ1 = 15, the initial IS density is already close to the optimal one, so NA-SIS produces small

estimation errors. These results indicate that the NA-SIS’s estimation capability highly depend on

the initial parameter choice. In particular, the average difference from NA-SIS gets larger, as the

initial parameter is more different from the target value. While we observe a similar pattern in SA,

the results also depend on the step size, a. Table 3 reports the SA results with carefully tuned step

sizes.

θ1 Methods Sample Std. Avg. Diff MSE

1

A-SIS1 1.9 0.5 3.8
A-SIS2 1.2 -0.9 2.3
NA-SIS 1.2 -3.3 12.5

SA 1.6 3.1 12.0

8

A-SIS1 1.8 0.5 3.5
A-SIS2 1.4 -0.8 2.5
NA-SIS 1.2 -1.9 5.1

SA 3.6 1.0 13.9

15

A-SIS1 1.5 0.4 2.5
A-SIS2 1.0 -0.9 1.1
NA-SIS 1.1 -1.3 3.0

SA 2.2 -1.5 7.2

Table 3: Quantile estimation results with different θ1 (In SA, a = 50, 200 and 1, 000 are used in
SA for θ1 = 1, 8 and 15, respectively.)

Unlike SA and NA-SIS, our approach is robust to the choice of initial parameter and consistently

generates lower errors with all three different θ1’s. Figure 2 further depicts the trajectories of θk

along the iterations in A-SIS. Even with very small θ1 (e.g., θ1 = 1), θk increases reasonably fast

after a small number of iterations and become quite close to yα within 25 iterations. On the

contrary, Figure 3 shows that SA does not appropriately update the parameter after the first few

iterations and cannot reach the target value within 25 iterations.

We further investigate the impacts of metamodel quality. For reflecting a metamodel approxima-

tion error, we use a metamodel that incorrectly specifies the conditional distribution. Specifically,

the standardized conditional density of Y given X is assumed to follow the t-distribution in the

metamodel. Table 4, which summarizes the result with different degrees of freedom in the stu-

dentized t-distribution, demonstrates that the proposed approach generates robust performance.

The performance of the proposed approach is comparable to that with the perfect metamodel in

Table 2.

Next, we study how the values of β and δ affect the estimation capability. Tables 5 and 6
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Figure 2: Parameter sequence in A-SIS with different θ1 values

Figure 3: Parameter sequence in SA with different θ1 values

summarize the results of our approach with different β and δ values, respectively. The implementa-

tion results with a wide range of settings suggest that our procedure generates stable estimations,

demonstrating its robust performance. In all cases, A-SIS provides better estimation results, com-

pared with SA.

It is worthwhile to mention that one critical disadvantage of SA is that its performance is

sensitive to the choice of step parameters, a and γ. Table 7 demonstrates that SA’s estimation

performance varies substantially, depending on the step parameters, in particular, the value of a.

In summary, the implementation results with a wide range of settings suggest that the proposed

method is robust to the parameter setting. It also consistently provides better results, compared to

alternative approaches. Between A-SIS1 and A-SIS2, A-SIS1 generates quantile estimates closer to

the target quantile in general. It is mainly because A-SIS1 uses the higher order statistics, ŷαk , than

A-SIS2 with ŷk,α. While A-SIS1 appears to perform slightly better when K is small, the estimates

from A-SIS1 and A-SIS2 would become closer to each other with larger K.
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df
A-SIS1 A-SIS2 SA

Sample Avg.
MSE

Sample Avg.
MSE

Sample Avg.
MSE

Std. Diff. Std. Diff. Std. Diff.

5 1.4 0.2 1.8 1.1 -1.2 2.7 1.8 3.2 13.1

15 1.9 0.3 3.5 1.2 -1.2 2.8 1.5 3.0 11.3

25 1.7 0.3 2.9 1.0 -1.0 2.1 1.9 3.3 14.0

Table 4: Quantile estimation results with different degrees of freedom in the metamodel with the
studentized t-distribution.

β
A-SIS1 A-SIS2 SA

Sample Avg.
MSE

Sample Avg.
MSE

Sample Avg.
MSE

Std. Diff. Std. Diff. Std. Diff.

0.01 1.5 0.0 2.1 1.1 -1.4 3.2 1.6 3.2 12.6

0.1 0.9 0.5 3.8 1.2 -0.9 2.3 1.6 3.1 12.0

0.2 1.4 -0.1 1.9 1.1 -1.2 2.5 1.6 3.3 13.1

Table 5: Quantile estimation results with different β values.

δ
A-SIS1 A-SIS2 SA

Sample Avg.
MSE

Sample Avg.
MSE

Sample Avg.
MSE

Std. Diff. Std. Diff. Std. Diff.

0.01 0.6 -0.2 0.5 0.6 -0.5 0.7 0.9 3.3 11.9

0.1 0.9 0.5 3.8 1.2 -0.9 2.3 1.6 3.1 12.0

0.2 1.9 -0.4 3.6 1.1 -1.9 4.9 2.3 3.2 15.6

Table 6: Quantile estimation results with different δ values.

a γ
SA

Sample Std. Avg. Diff MSE

25
0.1 0.7 -6.7 44.8
0.5 0.7 -7.0 49.3
0.9 0.8 -7.2 51.8

50
0.1 1.6 3.1 12.1
0.5 1.6 3.1 12.0
0.9 1.7 3.3 13.7

75
0.1 2.6 14.0 202.4
0.5 2.6 13.6 192.5
0.9 2.4 13.6 190.0

Table 7: Quantile estimation results with different a and γ in SA.

4.4 Computational budget allocation

This section examines the impact of computational budget allocation on the estimation perfor-

mance. In our study, given the total computational resource of K · nT , the budget allocation rules

involve the number of sample points (m), the number of replications for each sampled point (ni),

the computational budget at each iteration (nT ) and the number of iterations (K).
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First, in the original SIS method presented in Choe et al. (2015), given the number of sam-

ple points (m) and the computational budget (nT ), variance-minimizing ni at each sampled xi is

decided with Equation (7). Moreover, Choe et al. (2015) empirically demonstrate that the estima-

tion performance, in terms of the variance, is not sensitive to the choice of m, given nT in their

experiments in a wide range of setting.

In the proposed sequential procedure, we need to further decide nT , given the total resource

K · nT . In our study, we assign an equal budget to all K iterations with a fixed nT . A small nT

(or large K) increases the variance of individual POE estimator in (16) at each iteration. On the

other hand, with large nT (or small K), θk may not converge to the target quantile, given the

fixed budget K · nT . To handle this trade-off, one possible way is to use different sample sizes

at each iteration, considering potentially different variances of individual POE estimators in (16)

over k. We empirically evaluate the estimation performance with different forms of nT throughout

iterations. We consider multiple cases where nT is linearly increasing (Case 1), linearly decreasing

(Case 2), logarithmically increasing (Case 3) and logarithmically decreasing (Case 4), as shown in

Figure 4. The total budget is set to be 2,500 in all cases. Table 8 summarizes the results, indicating

that there are no clear patterns in the estimation performance.

Figure 4: Multiple cases with different nT sequences in A-SIS

A-SIS1 A-SIS2

Sample Avg.
MSE

Sample Avg.
MSE

Std. Diff. Std. Diff.

Case 1 1.2 -0.7 1.9 0.9 -1.6 3.3

Case 2 1.7 0.5 3.1 1.1 -1.0 2.0

Case 3 1.0 -0.9 1.7 0.8 -1.6 3.2

Case 4 1.9 0.5 3.7 1.2 -0.9 2.1

Table 8: Quantile estimation results when nT is linearly increasing (Case 1), linearly decreasing
(Case 2), logarithmically increasing (Case 3) and logarithmically decreasing (Case 4) throughout
iterations

Although varying the budget allocation throughout iterations do not show clear benefits in this

example, such treatment could further enhance the IS procedure in our adaptive framework. We

20

This article is protected by copyright. All rights reserved.



hope to extend our framework for further improving the budget allocation rules and analyzing

theoretical properties with adaptive sample sizes in our future study.

5 Example 2

We evaluate the proposed approach for a multi-dimensional input case. Let p denote the dimension

of the input vector. We consider the following data generating structure.

X ∼MVN(0, σ2
X · Ip×p) (30)

Y |X ∼ N(µ(X), σ2
Y |X), (31)

with σ2
X = 5, µ(X) = ||X||2 and σ2

Y |X = ||X||2, where || · ||2 denotes a 2-norm. We investigate the

quantile estimation for α = 10−4 with the same baseline parameter setting in Example 1.

Table 9 summarizes the results from 25 experiments, assuming the perfect metamodel. The

SA performance greatly varies, depending on a. We test the SA performance with different values

of a and choose the value that provides small performance error. While our adaptive procedure’s

standard deviation is comparable to those in NA-SIS and NA, it estimates the true quantile much

closely, resulting in smaller average difference and MSE.

p yα Methods Sample Std. Avg. Diff MSE

2 26.0

A-SIS1 3.3 -1.3 12.4
A-SIS2 2.3 -3.9 20.3
NA-SIS 1.5 -4.8 25.4

SA 1.2 -8.0 65.8

3 28.8

A-SIS1 3.1 -1.2 10.8
A-SIS2 2.6 -3.1 15.9
NA-SIS 1.8 -4.7 25.5

SA 2.8 8.3 76.7

5 33.2

A-SIS1 2.8 -2.0 11.8
A-SIS2 2.0 -4.3 21.9
NA-SIS 2.8 -5.0 32.5

SA 2.7 6.2 45.9

Table 9: Quantile estimation results with multidimensional input vector (In SA, a= 25, 50 and 50
are used in SA for p = 2, 3 and 5, respectively).

6 Wind Turbine Case Study

This section estimates the extreme load response in a wind turbine using the set of NREL simulators,

TurbSim (version 1.50) (B. J. Jonkman, 2009) and FAST (version 7.01.00a-bjj) (J. M. Jonkman

& Buhl, 2005). Following the design specification in the international standard, IEC 61400-1

(International Electrotechnical Commission, 2005), we consider the 10-minute average wind speed

21

This article is protected by copyright. All rights reserved.



as the simulation input, which is assumed to follow a truncated Rayleigh distribution on the interval

[3, 25] (m/s) with the scale parameter of
√

2/π ·10. Given the input wind speed, Turbsim generates

stochastic turbulence around blade rotor plane. In doing so, 8 million random variables (ξ) are used,

but TurbSim itself automatically draws ξ from its density embedded inside TurbSim. Because the

density of ξ is hidden inside TurbSim, a simulator user does not know its density and is not allowed

to sample ξ. Then, taking the turbulence generated from Turbsim, FAST generates structural

responses such as flapwise bending moment (see Figure 5).

Figure 5: Simulation process using NREL’s wind turbine simulator

In particular, we consider the 10-minute maximum flapwise bending moment, which is one of

important load types in the wind turbine reliability analysis (Byon et al., 2016; Moriarty, 2008;

Yampikulsakul et al., 2014). In Choe et al. (2015, 2018), the flapwise bending moments were

calculated using the results from the FAST outputs, following the procedure in Moriarty (2008).

This study uses a newer version of TurbSim and obtain the flapwsie bending moments directly

generated from FAST (Manuel et al., 2013). The CPU time for each run takes about 1 minute.

In NREL simulators we approximate the conditional failure probability s(x; θ), as suggested

in Choe et al. (2015). Specifically, we fit a non-homogeneous GEV distribution under the GAMLSS

framework with small-scale pilot samples obtained from 600 runs. We model the location and scale

parameters of the GEV distribution using the cubic smoothing spline functions of input and estimate

the model parameters that maximize the log-likelihood penalized by the roughness of parameters

(Rigby & Stasinopoulos, 2005). We evaluate the goodness-of-fit using the Kolmogorov-Smirnov

test. Detailed procedure for approximating s(x; θ) is available in Choe et al. (2015).

We conduct 25 experiments with θ1 = 12, 000 (kNm). Table 10 summarizes the estimation

results for α = 10−4. The theoretical quantile, estimated from 1, 050, 000 CMC samples, is yα ≈
15, 589. The average difference results suggest the estimated quantiles from A-SIS1 and A-SIS2 are

closer to yα than those from NA-SIS and SA. The proposed approach also generates smaller sample

standard deviations and MSEs.

Methods Sample Std. Avg. Diff MSE

A-SIS1 131.5 86.6 24,100.2
A-SIS2 136.5 -38.2 19,346.6
NA-SIS 201.6 -266.9 110,250.0

SA 165.8 -855.2 757,907.0

Table 10: Quantile estimation results for flapwise bending moment (Unit: kNm)

In comparison with CMC, we conduct 25 experiments each with 104 runs and obtain the sample
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standard deviation, average difference and MSE of 386.2, −257.5 and 214, 922.6, respectively. Note

that A-SIS uses 600 pilot samples and 2,500 runs in each experiment. Therefore, even accounting

for the overhead of constructing the metamodel with 600 samples, A-SIS achieves much better

estimation performance than CMC with a smaller than one third of CMC computational runs.

7 Summary

This study aims at efficiently estimating the quantile (or resistance level) for satisfying the required

reliability level with stochastic black box computer models. The focus in reliability analysis is on

rare events in the tail portion in the output density, which means that one does not have much

information to start with and nor is it easier to get many relevant, valuable data points when

one simply runs the simulator blindly. In the context of computationally expensive simulations

especially, being able to select high-quality inputs can save tremendous computational resources in

the quantile estimation. Our contribution is to extend the non-adaptive sampling structure of SIS

(Choe et al., 2015) in order to informatively adjust the IS density with justification on convergence

properties. Numerical evidence through numerical examples and a wind turbine case study shows

that our proposed method elicits substantial computational improvements over the alternatives,

which makes the resulting method much closer to being practical.

The proposed method requires the knowledge of the conditional POE. In this study we approxi-

mate it using a statistical metamodel. Building a metamodel incurs computational overhead, but it

is needed to derive the simulation process effectively. Although our numerical studies indicate that

the proposed approach is robust to the metamodel quality, building a high-quality metamodel can

be of significant benefit. In the future, we plan to explore other metamodel techniques, depending

on application contexts. For example, in our wind turbine case study, the nonhomogeneous GEV

distribution provides a good fit (Choe et al., 2015). In the financial risk analysis, the delta-gamma

approximation (Glasserman et al., 2000) and non-parametric approach (Hong et al., 2017) are

shown to be effective. On the other hand, developing the general metamodeling methodology, or

providing useful guidelines in the metamodel development, is needed. We will study the metamod-

eling techniques tailored to the IS procedure, which can be generally applicable to a wide range of

applications.

The IS scheme for high-dimensional problem is considered challenging in general. Our study was

motivated by estimating the extreme load in a wind turbine application, which is a low-dimensional

problem where our proposed scheme with the assumption of a good metamodel has merits. While

our results for high-dimensional problems are promising, devising a good metamodel is challenging.

For high-dimensional problems, some simple metamodels, such as quadratic (e.g., delta-gamma)

or polynomial approximation, can be employed (Cannamela et al., 2008; Glasserman et al., 2000).

We will further investigate other IS schemes, e.g., cross-entropy method (Kurtz & Song, 2013),

exponential twisting (Glasserman et al., 2000), IS with a mixture of densities (Owen & Zhou, 2000)

or non-parametric densities (Hong et al., 2017; Morio, 2012; Neddermeyer, 2009; Zhang, 1996).
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We also plan to investigate more theoretical properties of our approach, e.g., convergence rate,

finite-time performance, in the future.
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Appendix: Proofs and derivations

A1. Proof of Lemma 1

Recall that the combined POE estimator P̂1:K(y) is given by

P̂1:K(y) =
1

K

K∑
k=1

 1

m

m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)

 ,

where

q̃(x; θk) =
1

Cq̃
p(x)

√
s̃(x; θk)

√
1

nT
+

(
1− 1

nT

)
s̃(x; θk).

We obtain the variance bounds of the individual and combined estimators.

(1) Bound of V ar[P̂k(y)]: From the fact that

s̃(x; θk) ≥
δ

kβ
,√

1

nT
+

(
1− 1

nT

)
s̃(x; θk) ≥

√
1

nT
,

Cq̃ =

∫
p(x)

√
s̃(x; θk)

√
1 + (nT − 1)s̃(x; θk)√

nT
dx ≤ 1,

we obtain the bound of the likelihood ratio as follows.

p(x)

q̃(x; θk)
=

Cq̃√
s̃(x; θk)

√
1
nT

+
(

1− 1
nT

)
s̃(x; θk)

≤
√
nT√
δ
k
β
2

≤
√
nT√
δ
K

β
2

= DK
β
2 ,

(32)

where D =
√
nT /
√
δ <∞.

Using (32), we now have a bound for P̂k(y) as follows:

P̂k(y) =
1

m

m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)

≤ DK
β
2 .

(33)

(2) Bound of V ar[P̂1:K(y)]: We first show that P̂k(y) is an unbiased estimator of P(Y > y) as
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follows:

E[P̂k(y)] =EX1:k−1,Y1:k−1
E[P̂k(y)|X1:k−1,Y1:k−1]

=EX1:k−1,Y1:k−1
E[P̂k(y)|θk]

=EX1:k−1,Y1:k−1
[P(Y > y)],

=P(Y > y),

where the subscript, 1 : k−1, implies the data samples obtained up to the (k−1)th iteration. Thus,

we get

E[P̂1:K (y)] = E

[
1

K

K∑
k=1

P̂k(y)

]
= P(Y > y).

Noting that P̂h(y)−P(Y > y) has conditional mean 0, given all previous information (or equivalently

given θh), we get Cov[P̂h(y), P̂l(y)] = 0. Specifically, for any 1 ≤ h < l ≤ K, it holds

E[P̂h(y)P̂l(y)] = EX1:h,Y1:h
EX1:l,Y1:l|X1:h,Y1:h

[P̂h(y)P̂l(y)|X1:h,Y1:h]

= EX1:h,Y1:h
[P̂h(y)EX1:l,Y1:l|X1:h,Y1:h

[P̂l(y)|X1:h,Y1:h]]

= EX1:h,Y1:h
[P̂h(y)EX1:l,Y1:l|X1:h,Y1:h

[P̂l(y)|θh]]

= P(Y > y)EX1:h,Y1:h
[P̂h(y)]

= P2(Y > y), (34)

where the second equality holds because, given X1:h,Y1:h, P̂h(y) can be treated as a constant and

the second last equality holds because of EX1:l,Y1:l|X1:h,Y1:h
[P̂l(y)|θh]] = P(Y > y). Then, (34)

implies Cov[P̂h(y), P̂l(y)] = 0.

Having proved that P̂k(y) is unbiased and Cov
[
P̂h(y), P̂l(y)

]
= 0, from (33) we can obtain an

upper bound of the variance of P̂1:K(y) as

V ar
[
P̂1:K(y)

]
= V ar

[
1

K

K∑
k=1

P̂k(y)

]
≤ D2Kβ−1.

A2. Proof of Theorem 1

(1) Proof of P̂1:K(y)
P−→ P(Y > y): Because P̂1:K(y) is the unbiased estimator for P(Y > y), we

use Chebyshev’s inequality to obtain

P(|P̂1:K(y)− P(Y > y)| > ε) ≤ 1

ε2
V ar[P̂1:K(y)] =

D2Kβ−1

ε2
. (35)
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Therefore, for 0 < β < 1, we attain P̂1:K(y)
P−→ P(Y > y), ∀y ∈ ΩY .

(2) Proof of P̂1:K(y)
a.s.−−→ P(Y > y): Let K = n2. Then, by the Chebyshev’s inequality, we have

P
(∣∣∣P̂1:n2(y)− P(Y > y)

∣∣∣ > ε
)
≤ D2

ε2
n2β−2. (36)

For 0 < β < 1/2, we know that the series consisting of (36) converges, i.e.,

∞∑
n=1

P
(∣∣∣P̂1:n2(y)− P(Y > y)

∣∣∣ > ε
)
<∞.

Then, by the Borel-Cantelli Lemma, we have the following almost sure convergence result:

P̂1:n2(y)
a.s.−−→ P(Y > y),

which implies that ∀y ∈ ΩY , we attain

P̂1:K(y)
a.s.−−→ P(Y > y).

A3. Proof of Corollary 1.

Recall the definitions of ŷαk and ŷk,α:

ŷαk = inf
{
y : 0 < P̂1:K(y) ≤ α

}
,

ŷk,α = sup
{
y : P̂1:K(y) ≥ α

}
.

From the above definitions, we get

P̂1:K (ŷαK) ≤ α ≤ P̂1:K (ŷK,α) .

Note that the difference between P̂1:K (ŷαK) and P̂1:K (ŷK,α) is at most one sample. We, therefore,

have the following bound.∣∣∣P̂1:K (ŷαK)− α
∣∣∣ ≤ P̂1:K (ŷK,α)− P̂1:K (ŷαK)

≤ 1

Kmñi,k0

p (Xi,k0)

q̃ (Xi,k0 ; θk0)

=
Cq̃

Km
√
nT s̃(Xi,k0 ; θk0)(1− s̃(Xi,k0 ; θk0))

m∑
i=1

√
1− s̃(Xi,k0 ; θk0)

1 + (nT − 1)s̃(Xi,k0 ; θk0)

≤ C1K
β−1,

where k0 and Xi,k0 denote the iteration index and input vector that generates ŷαK , respectively, and
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ñi,k0 is the corresponding allocation size. The second last equation is obtained using (11) and (14).

The last inequality holds because
∑m

i=1

√
1−s̃(Xi,k0

;θk0 )

1+(nT−1)s̃(Xi,k0
;θk0 ) and Cq̃ are bounded, δK−β ≤ δk−β0 ≤

1− s̃(Xi,k0 ; θk0) and δK−β ≤ δk−β0 ≤ s̃(Xi,k0 ; θk0). Therefore, for 0 < β < 1, as K →∞, we attain∣∣∣P̂1:K (ŷαK)− P (Y > yα)
∣∣∣→ 0. (37)

On the other hand, by taking supremum on both sides of (36), we have

sup
y∈ΩY

P
(∣∣∣P̂1:K(y)− P(Y > y)

∣∣∣ > ε
)
≤ D2

ε2
Kβ−1. (38)

From (38), we know that

P
(∣∣∣P̂1:K(ŷαK)− P(Y > ŷαK)

∣∣∣ > ε
)
≤ D2

ε2
Kβ−1, (39)

which implies the convergence in probability.

Based on Equations (37) and (39), we get P (Y > ŷαK)
P−→ P(Y > yα). Then from Assumption 1,

it implies ŷαK
P−→ yα.

A4. Proof of Corollary 2.

Corollary 2 is obvious if Corollary 1 is true. Applying the similar procedure in Corollary 1, we get

ŷK,α
P−→ yα. The next density parameter θk+1 is set to be ŷk,α, which impliess θK = ŷK−1,α. As

such we obtain θK
P−→ yα as K →∞.

A5. Proof of Theorem 2. We first show that the asymptotic variance of P̂k(y) is smaller than,

or equal to, the CMC variance and extend the result to the asymptotic variance of P̂1:K(y).

(1) Proof of lim
k→∞

V ar[P̂k(y)] ≤ α(1− α)

nT
: We apply the results in Corollary 2 to the analytical

form of V ar[P̂k(y)]. First, to obtain V ar[P̂k(y)], we use the total law of variance to get

V ar[P̂k(y)] =EX1:k−1,Y1:k−1
V ar[P̂k(y)|X1:k−1,Y1:k−1] + V arX1:k−1,Y1:k−1

E[P̂k(y)|X1:k−1,Y1:k−1]

(40)

=EX1:k−1,Y1:k−1
V ar[P̂k(y)|X1:k−1,Y1:k−1],

for k > 1, where the second equality holds because the second term in (40) vanishes because
E[P̂k(y)|X1:k−1,Y1:k−1] = E[P̂k(y)|θk] = P(Y > y), which is constant. By applying the total law
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of variance again, we have

V ar[P̂k(y)|X1:k−1,Y1:k−1]

=EXk|X1:k−1,Y1:k−1
V arYk|X1:k,Y1:k−1

 1

m

m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)

∣∣∣∣∣X1:k,Y1:k−1


+ V arXk|X1:k−1,Y1:k−1

EYk|X1:k,Y1:k−1

 1

m

m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)

∣∣∣∣∣X1:k,Y1:k−1


=EXk|X1:k−1,Y1:k−1

 1

m2
V arYk|X1:k,Y1:k−1

 m∑
i=1

 1

ñi,k

ñi,k∑
j=1

I (Yij,k > y)

 p(Xi,k)

q̃(Xi,k; θk)

∣∣∣∣∣Xk, θk


+ V arXk|X1:k−1,Y1:k−1

(
1

m

m∑
i=1

s(Xi,k; y)p(Xi,k)

q̃(Xi,k; θk)

)

=
1

m2

m∑
i=1

(
EXk|X1:k−1,Y1:k−1

(
s(Xi,k; y)(1− s(Xi,k; y))

ñi,k

p2(Xi,k)

q̃2(Xi,k; θk)

)
+V arXk|X1:k−1,Y1:k−1

(
s(Xi,k; y)p(Xi,k)

q̃(Xi,k; θk)

))
. (41)

Here, the second equality holds because (1) given X1:k−1,Y1:k−1, θk is determined; (2) given θk

and Xk, Yij,k’s are i.i.d. Bernoulli random variables; and (3) the mean of I(Yij,k > y) is s(Xi,k; y).

The last equality holds because Xi,k’s are independently drawn from q̃(X; θk) and the variance of

I(Yij,k > y) is s(Xi,k; y)(1− s(Xi,k; y)).

Next, we calculate the two terms inside the innermost parentheses in (41). Note that

p(x)

q̃(x; θk)
=

Cq̃
√
nT√

s̃(x; θk) ·
√

1 + (nT − 1) s̃(x; θk)
. (42)

From ñi,k in (14), we also have

1

ñi,k

√
1− s̃(Xi,k; θk)

1 + (nT − 1)s̃(Xi,k; θk)
=

1

nT

m∑
j=1

√
1− s̃(Xj,k; θk)

1 + (nT − 1)s̃(Xj,k; θk)
. (43)

From (42) and (43), we obtain

√
s̃(Xi,k; θk)(1− s̃(Xi,k; θk))p(Xi,k)

ñi,kq̃(Xi,k; θk)
=
Cq̃
√
nT

ñi,k

√
1− s̃(Xi,k; θk)

1 + (nT − 1)s̃(Xi,k; θk)

=
Cq̃√
nT

m∑
j=1

√
1− s̃(Xj,k; θk)

1 + (nT − 1)s̃(Xj,k; θk)
,

and thus, we get

p(Xi,k)

ñi,kq̃(Xi,k; θk)
=

Cq̃√
nT s̃(Xi,k; θk)(1− s̃(Xi,k; θk))

m∑
j=1

√
1− s̃(Xj,k; θk)

1 + (nT − 1)s̃(Xj,k; θk)
. (44)

33

This article is protected by copyright. All rights reserved.



Then, plugging (42) and (44) into the quantity inside the expectation of the first term in (41), it

follows

s(Xi,k; y)(1− s(Xi,k; y))

ñi,k

p2(Xi,k)

q̃2(Xi,k; θk)

=
C2
q̃ s(Xi,k; y)(1− s(Xi,k; y))

s̃(Xi,k; θk)
√

[1 + (nT − 1) s̃(Xi,k; θk)](1− s̃(Xi,k; θk))

m∑
j=1

√
1− s̃(Xj,k; θk)

1 + (nT − 1)s̃(Xj,k; θk)
. (45)

Plugging (45) into (41), we obtain

EXk|X1:k−1,Y1:k−1

(
s(Xi,k; y)(1− s(Xi,k; y))

ñi,k

p2(Xi,k)

q̃2(Xi,k; θk)

)

=EXk|X1:k−1,Y1:k−1

 C2
q̃ s(Xi,k; y)(1− s(Xi,k; y))

s̃(Xi,k; θk)
√

[1 + (nT − 1) s̃(Xi,k; θk)](1− s̃(Xi,k; θk))
·

m∑
j=1

√
1− s̃(Xj,k; θk)

1 + (nT − 1)s̃(Xj,k; θk)


=C2

q̃

[∫
s(x; y)(1− s(x; y))q̃(x; θk)

s̃(x; θk)
√

[1 + (nT − 1) s̃(x; θk)](1− s̃(x; θk))

√
1− s̃(x; θk)

1 + (nT − 1)s̃(x; θk)
dx (46)

+(m− 1)

∫
s(x; y)(1− s(x; y))q̃(x; θk)

s̃(x; θk)
√

[1 + (nT − 1) s̃(x; θk)](1− s̃(x; θk))
dx

∫ √
1− s̃(x; θk)

1 + (nT − 1)s̃(x; θk)
q̃(x; θk)dx

]

=
Cq̃√
nT

∫
s(x; y)(1− s(x; y))p(x)√

s̃(x; θk)

√
1

1 + (nT − 1)s̃(x; θk)
dx (47)

+
m− 1

nT

∫
s(x; y)(1− s(x; y))p(x)√
s̃(x; θk)(1− s̃(x; θk))

dx

∫ √
(1− s̃(x; θk))s̃(x; θk)p(x)dx,

where (46) is obtained because Xj,k’s are independently sampled from q̃(x; θk) in (11) and (47)

follows by plugging q̃(x; θk) into (46).

Similarly, we get

V arXk|X1:k−1,Y1:k−1

(
s(Xi,k; y)p(Xi,k)

q̃(Xi,k; θk)

)
=

∫ (
s(x; y)p(x)

q̃(x; θk)

)2

q̃(x; θk)dx−
(∫

s(x; y)p(x)

q̃(x; θk)
q̃(x; θk)dx

)2

=Cq̃

∫
s2(x; y)p(x)

√
nT√

s̃(x; θk)
√

1 + (nT − 1) s̃(x; θk)
dx−

(∫
s(x; y)p(x)dx

)2

=Cq̃

∫
s2(x; y)p(x)

√
nT√

s̃(x; θk)
√

1 + (nT − 1) s̃(x; θk)
dx− P2(Y > y). (48)
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Applying the results in (41), (47) and (48) to (40), V ar[P̂k(y)] becomes

V ar[P̂k(y)] =
1

m
EX1:k−1,Y1:k−1

Cq̃√nT ∫ s(x; y)p(x)

[
1

nT
(1 + (nT − 1)s(x; y))

]
√
s̃(x; θk)

√
1 + (nT − 1) s̃(x; θk)

dx (49)

+
m− 1

nT

∫
s(x; y)(1− s(x; y))p(x)√
s̃(x; θk)(1− s̃(x; θk))

dx

∫ √
(1− s̃(x; θk))s̃(x; θk)p(x)dx

]
− P2(Y > y)

m
.

where the normalizing constant, Cq̃, is given by

Cq̃ =

∫
p(x)

√
s̃(x; θk) ·

√
1 + (nT − 1) s̃(x; θk)√
nT

dx. (50)

Finally, by plugging Cq̃ in (50) into (49), V ar[P̂k(y)] becomes

V ar[P̂k(y)] (51)

=
1

m
EX1:k−1,Y1:k−1

∫ p(x)
√
s̃(x; θk)

√
1 + (nT − 1) s̃(x; θk)dx

∫ p(x)s(x; y)

[
1

nT
(1 + (nT − 1)s(x; y))

]
√
s̃(x; θk)

√
1 + (nT − 1) s̃(x; θk)

dx

+
m− 1

nT

∫
s(x; y)(1− s(x; y))p(x)√
s̃(x; θk)(1− s̃(x; θk))

dx

∫ √
(1− s̃(x; θk))s̃(x; θk)p(x)dx

]
− P2(Y > y)

m
.

From Corollary 2, we have θk
P−→ yα, as k → ∞. Therefore, as k → ∞, the quantities in (51)

converge to their corresponding values as

p(x)
√
s̃(x; θk)

√
1 + (nT − 1) s̃(x; θk)

P−→ p(x)
√
s(x; yα)

√
1 + (nT − 1) s(x; yα), (52)

p(x)s(x; yα)[1 + (nT − 1)s(x; yα)]√
s̃(x; θk)

√
1 + (nT − 1) s̃(x; θk)

P−→ p(x)
√
s(x; yα)

√
1 + (nT − 1) s(x; yα), (53)

s(x; yα)(1− s(x; yα))p(x)√
s̃(x; θk)(1− s̃(x; θk))

P−→
√
s(x; yα)(1− s(x; yα))p(x), (54)√

(1− s̃(x; θk))s̃(x; θk)p(x)
P−→
√
s(x; yα)(1− s(x; yα))p(x). (55)
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Using the above convergence results, we have

lim
k→∞

V ar[P̂k(yα)]

=
1

nT

[
1

m

∫
p(x)

√
s(x; yα)

√
1 + (nT − 1) s(x; yα)dx

∫
p(x)

√
s(x; yα)

√
1 + (nT − 1) s(x; yα)dx

+
m− 1

m

∫ √
s(x; yα)(1− s(x; yα))p(x)dx

∫ √
s(x; y)(1− s(x; yα))p(x)dx

]
− P2(Y > yα)

m

=
1

nT

[
1

m

(∫ √
p(x)s(x; yα)

√
p(x)[1 + (nT − 1) s(x; yα)]dx

)2

+
m− 1

m

(∫ √
p(x)s(x; yα)

√
p(x)(1− s(x; yα))dx

)2
]
− P2(Y > yα)

m

≤ 1

nT

[
1

m

(∫
p(x)s(x; yα)dx

)(∫
p(x)(1 + (nT − 1) s(x; yα))dx

)
(56)

+
m− 1

m

(∫
p(x)s(x; yα)dx

)(∫
p(x)(1− s(x; yα))dx

)]
− P2(Y > yα)

m

=
1

nT

[
P(Y > yα)(1 + (nT − 1)P(Y > yα))

m
+

(m− 1)P(Y > yα)(1− P(Y > yα))

m

]
− P2(Y > yα)

m

=
1

nT
α(1− α),

where (56) holds from Cauchy inequality. Therefore, we get

lim
k→∞

V ar[P̂k(yα)] ≤ α(1− α)

nT
. (57)

The equality in (57) holds if and only if ∃c ≥ 0, s.t. p(x)s(x; yα) = cp(x)(1 + (nT − 1) s(x; yα))

and ∃c′ ≥ 0, s.t. p(x)s(x; yα) = c′p(x)(1−s(x; yα)). These conditions hold when s(x; yα) is constant

with respect to x ∈ Ωx.

(2) Proof of lim
K→∞

V ar[
√
KP̂1:K(yα)] ≤ α(1− α)

nT
: Let

aK =
K∑
k=1

V ar[P̂k(yα)],

bK = K.
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Then, we have

lim
K→∞

V ar[
√
KP̂1:K(yα)] = lim

K→∞

1

K
V ar

[
K∑
k=1

P̂k(yα)

]
= lim

K→∞

aK
bK

= lim
K→∞

aK+1 − aK
bK+1 − bK

(58)

= lim
K→∞

V ar[P̂K+1(yα)]

≤ α(1− α)

nT
, (59)

where (58) holds due to Stolz Cesàro theorem (Muresan, 2009) and the last inequality in (59) is

from (57). In other words, we have

lim
K→∞

V ar[
√
KnT P̂1:K(yα)] ≤ α(1− α)

�

A6. Proof of Theorem 3.

Let sa(x; θk) denote an estimation for s̃(x; θk) and let s̃a(x; θk) :=

(
1− 2δ

kβ

)
sa(x; θk)+

δ

kβ
. From

the proof of Theorem 2, we only need to show that (52) - (55) hold with s̃a(x; θk) if ||sa(x; θk) −
s(x; θk)|| = o(k−β) is satisfied. Let h := min

x∈ΩX

|s(x; y)|. The difference between s̃a(x; θk) and

s(x; yα) becomes

|s̃a(x; θk)− s(x; yα)|

=

∣∣∣∣(1− 2δ

kβ

)
sa(x; θk) +

δ

kβ
− s(x; yα)

∣∣∣∣
=

∣∣∣∣(1− 2δ

kβ

)
(sa(x; θk)− s(x; θk)) +

(
1− 2δ

kβ

)
(s(x; θk)− s(x; yα)) +

δ

kβ
(1− 2s(x; yα))

∣∣∣∣
≤
(

1− 2δ

kβ

)
||sa(x; θk)− s(x; θk)||+

(
1− 2δ

kβ

)
|s(x; θk)− s(x; yα)|+ δ

kβ
(1− 2s(x; yα)).

When β < 0.5, from (37), (39) and assumptions in Theorem 3, we have |θk − yα|/k−β ≤
O(kβ−1+β)→ 0, as k →∞. As such, we get |θk − yα| = o(k−β). Because s(x; y) is assumed to be

locally Lipschitz continuous at yα, |s(x; θk)− s(x; yα)| = o(k−β). Consequently,

|s̃a(x; θk)− s(x; yα)| ≤ δk−β(1− 2h) + o(k−β). (60)
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Note that s̃a(x; θk) ≥ δk−β, because of 0 ≤ sa(x; θk) ≤ 1. Therefore, using (60), it holds∣∣∣∣1− s(x; yα)

s̃a(x; θk)

∣∣∣∣ ≤ 1− 2h+ o(1),

2h+ o(1) ≤ s(x; yα)

s̃a(x; θk)
≤ 2− 2h+ o(1). (61)

Similarly, we have

|(1− s̃a(x; θk))− (1− s(x; yα))| ≤ δk−β(1− 2h) + o(k−β),

and 1− s̃a(x; θk) ≥ δk−β, it holds ∣∣∣∣1− 1− s(x; yα)

1− s̃a(x; θk)

∣∣∣∣ ≤ 1− 2h+ o(1),

2h+ o(1) ≤ 1− s(x; yα)

1− s̃a(x; θk)
≤ 2− 2h+ o(1). (62)

Next, we show that (52) to (55) hold with s̃a(x; θk). First,

|p(x)
√
s̃a(x; θk)

√
1 + (nT − 1) s̃a(x; θk)− p(x)

√
s(x; yα)

√
1 + (nT − 1) s(x; yα)|

=p(x)
|s̃a(x; θk)− s(x; yα)|(1 + (nT − 1)(s̃a(x; θk) + s(x; yα)))√

s̃a(x; θk)
√

1 + (nT − 1) s̃a(x; θk) +
√
s(x; yα)

√
1 + (nT − 1) s(x; yα)

≤pmax(δk−β(1− 2h) + o(k−β))
(1 + 2(nT − 1))kβ/2√

δ
(63)

≤o(1),

where (63) holds by plugging the result in (60), s̃a(x; θk) ≤ 1 and s(x; yα) ≤ 1 in the numerator.

In the denominator, we use s̃a(x; θk) ≥ δk−β and (nT − 1) s̃a(x; θk) ≥ 0 in the first term and√
s(x; yα)

√
1 + (nT − 1) s(x; yα) > 0 in the second term. This result implies that

p(x)
√
s̃a(x; θk)

√
1 + (nT − 1) s̃a(x; θk)

P−→ p(x)
√
s(x; yα)

√
1 + (nT − 1) s(x; yα). (64)
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Next, corresponding to (53), we have∣∣∣∣∣ p(x)s(x; yα)[1 + (nT − 1)s(x; yα)]√
s̃a(x; θk)

√
1 + (nT − 1) s̃a(x; θk)

− p(x)
√
s(x; yα)

√
1 + (nT − 1) s(x; yα)

∣∣∣∣∣
=p(x)

√
s(x; yα)[1 + (nT − 1)s(x; yα)]

·

∣∣∣∣∣
√
s̃a(x; θk)

√
1 + (nT − 1) s̃a(x; θk)−

√
s(x; yα)

√
1 + (nT − 1) s(x; yα)√

s̃a(x; θk)
√

1 + (nT − 1) s̃a(x; θk)
√

1 + (nT − 1) s(x; yα)

∣∣∣∣∣
≤pmax(δk−β(1− 2h) + o(k−β))

(1 + 2(nT − 1))kβ/2√
δ

√
s(x; yα)√
s̃a(x; θk)

√
1 + (nT − 1) s(x; yα)√
1 + (nT − 1) s̃a(x; θk)

(65)

≤o(1), (66)

where (65) holds by using (63) and (66) holds because of (61) and the fact that the last factor is

bounded by a constant. As such, we have

p(x)s(x; yα)[1 + (nT − 1)s(x; yα)]√
s̃a(x; θk)

√
1 + (nT − 1) s̃a(x; θk)

P−→ p(x)
√
s(x; yα)

√
1 + (nT − 1) s(x; yα). (67)

Similarly, when k ≥ 21/β, it holds

|
√

(1− s̃a(x; θk))s̃a(x; θk)p(x)−
√
s(x; yα)(1− s(x; yα))p(x)|

=p(x)
|s̃a(x; θk)− s(x; yα)|(1 + s̃a(x; θk) + s(x; yα))√

(1− s̃a(x; θk))s̃a(x; θk) +
√
s(x; yα)(1− s(x; yα))

≤3pmax(δk−β(1− 2h) + o(k−β))√
(1− δk−β)δk−β

(68)

≤3pmax(δk−β(1− 2h) + o(k−β))√
δk−β − 1/2δk−β

(69)

≤o(1), (70)

where (68) holds by using the result in (60), s̃a(x; θk) ≤ 1 and s(x; yα) ≤ 1 in the numerator.

In the denominator, the first term reaches its minimum when s̃a(x; θk) = δk−β or 1 − δk−β and

the second positive term can be dropped. (69) holds because of kβ ≥ 2 for k ≥ 21/β and thus,

−δk−2β ≥ −1/2δk−β. Thus, we have√
(1− s̃a(x; θk))s̃a(x; θk)p(x)

P−→
√
s(x; yα)(1− s(x; yα))p(x) (71)
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Lastly, ∣∣∣∣∣s(x; yα)(1− s(x; yα))p(x)√
s̃a(x; θk)(1− s̃a(x; θk))

−
√
s(x; yα)(1− s(x; yα))p(x)

∣∣∣∣∣
=p(x)

√
s(x; yα)(1− s(x; yα))

|
√
s(x; yα)(1− s(x; yα))−

√
s̃a(x; θk)(1− s̃a(x; θk))|√

s̃a(x; θk)(1− s̃a(x; θk))
√

(1− s(x; yα)

=p(x)|
√
s(x; yα)(1− s(x; yα))−

√
s̃a(x; θk)(1− s̃a(x; θk))|

√
s(x; yα)√
s̃a(x; θk)

√
1− s(x; yα)√
1− s̃a(x; θk)

≤o(1), (72)

(72) holds by plugging in (70), (61) and (62). Therefore,

s(x; yα)(1− s(x; yα))p(x)√
s̃a(x; θk)(1− s̃a(x; θk))

P−→
√
s(x; yα)(1− s(x; yα))p(x). (73)

Note that the convergence results in (64), (67), (71) and (73) correspond to the results in (52)-

(55). Then the variance reduction property follows by using the similar procedure in the proof of

Theorem 2. �

A7. Discussion on and derivation of the variance of CMC2’s POE estimator .

Recall the CMC2’s POE estimator as

P̂CMC2(yα) =
1

m

m∑
i=1

 1

ni

ni∑
j=1

I(Yij > yα)

 .

We obtain the optimal ni which minimizes the variance of the CMC2’s POE estimator as follows.

V ar
[
P̂CMC2(yα)

]
= V ar

 1

m

m∑
i=1

 1

ni

ni∑
j=1

I(Yij > yα)


=

1

m2
E

[
V ar

[
1

ni

m∑
i=1

I(Yij > yα)

∣∣∣∣X1, · · · ,Xm

]]
+

1

m2
V ar

[
E

[
1

ni

m∑
i=1

I(Yij > yα)

∣∣∣∣X1, · · · ,Xm

]]

=
1

m2
E

[
m∑
i=1

1

ni
s(Xi, yα)(1− s(Xi, yα))

]
+

1

m
V ar [s(X; yα)] , (74)

where the second term in the last equation is obtained from the fact that Xi’s are iid.

In (74), the second term does not include ni. To find ni that minimizes V ar
[
P̂CMC2(yα)

]
, we

minimize the first term. We let the allocation size Ni at Xi as a function of Xi:

ni = nT ·
c(Xi)∑M
j=1 c(Xj)

, i = 1, 2, · · · ,m,
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where c(X) is a non-negative function. Then, following the the procedure in Choe et al. (2015) (see

the proof of Lemma 1 therein), the optimal ni is given by

ni = nT ·
√
s(Xi) (1− s(Xi))∑M

j=1

√
s(Xj) (1− s(Xj))

for i = 1, 2, · · · ,m. (75)

There are several issues concerning the optimal form of ni in (75). First, it needs the information

of conditional POE s(Xi). The CMC procedure, by definition, uses the input density p(x) only,

ignoring the geometric structure of response surface. So, if we use the optimal ni in (75), this

procedure is not essentially CMC. Second, let us compare CMC2 with the original SIS procedure

that uses the following POE:

P̂SIS(y) =
1

m

m∑
i=1

 1

ni

ni∑
j=1

I (yij > y)

 p(Xi)

q(Xi; θ)
.

The SIS procedure optimizes q(xi; θ) and ni, i = 1, · · · ,m, together. On the contrary, the afore-

mentioned CMC2 optimizes ni only, while fixing the input sampling density at p(x). Therefore,

CMC2 (even though ni is optimized, assuming s(X) is known) is suboptimal, compared to SIS. In

fact, CMC2 is just a special case with q(x; θ) = p(x).

Next, let us consider the equal sample size allocation. Given the total computational resource

KnT , we can set ni = (KnT )/m. Then we obtain

V ar
[
P̂CMC2(yα)

]
=

1

m2
·m · m

KnT

∫
s(x; yα)(1− s(x; yα))p(x)dx +

1

m

∫
[s(x; yα)− α]2p(x)dx

=
1

KnT
α+

(
1

m
− 1

KnT

)∫
s(x; yα)2p(x)dx− 1

m
α2

=
1

KnT
α(1− α) +

(
1

m
− 1

KnT

)(∫
s(x; yα)2p(x)dx− α2

)
=

1

KnT
α(1− α) +

(
1

m
− 1

KnT

)
(E[s2(x; yα)]− E[s(x; yα)]2)

≥ 1

KnT
α(1− α)

Noting that the right-hand side is the variance of the original CMC that runs simulation once at

each Xi, we can see that allowing multiple replicates is not beneficial in the CMC procedure.
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