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Abstract—This paper focuses on state of charge (SOC) estimation in a lithium ion battery, using 
measurements of terminal voltage and bulk force.  A nonlinear observer designed using Lyapunov 
analysis relying on lower and upper bounds of the Jacobian of the nonlinear output function is 
utilized.  Rigorous analysis shows that the proposed observer has feasible design solutions only in 
each piecewise monotonic region of the output functions and has no constant stabilizing observer 
gain when the entire SOC range is considered.  The non-monotonicity challenge is then addressed 
by designing a hybrid nonlinear observer that switches between several constant observer gains.    
The global stability of the switched system is guaranteed by ensuring overlap between regions and 
an adequate dwell time between switches.  The performance of the observer is evaluated first 
through simulations using a high-fidelity battery model and then through experiments. The 
performance of the nonlinear observer is compared with that of an extended Kalman Filter. 
Simulation results show that with no model uncertainty the nonlinear observer provides estimates 
with an RMS error of 1.1% while the EKF performs better providing an RMS error less than 1%.  
However, when model error is introduced into this non-monotonic system, the EKF becomes 
unstable for even very small model errors in the output curves.  The nonlinear observer, on the 
other hand, continues to perform very well, providing accurate estimates and never becoming 
unstable. The experimental results verify the observations from the simulation and the 
experimental EKF is found to become unstable due to model errors, while the hybrid nonlinear 
observer continues to work reliably. 
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I. INTRODUCTION 

A. Background 
Lithium-ion cells dominate the battery market for automotive propulsion and for consumer 

electronics due to their advantages of high energy density and slow self-discharge [1], [2].  The 
state-of-charge (SOC) of a lithium ion battery is a basic indicator of the fraction of charge that 
remains in the battery cells. SOC needs to be estimated accurately in real-time, since it is indicative 
of the remaining range of operation of the battery, which is especially critical in the case of an 
electrical vehicle. The estimation of SOC, power capability and cell capacity are important 
functions of the battery management system, needed to safely manage the cells to prevent over-
charging and over-discharging [3].  

SOC is typically estimated using a measurement of the terminal voltage, an electrical circuit 
model and by effectively inverting the voltage-SOC curves of the battery.  In this regard, the 
sensitivity of the voltage curves to the SOC is very important in order to estimate SOC accurately 
[4]. In the case of the Lithium-ion-Iron-Phosphate (LFP) battery used in this paper, the relationship 
between voltage and SOC has an almost-flat slope for most of the SOC range (30-70%), as seen 
in Fig. 3.  Hence the estimation of SOC from the voltage measurement is quite difficult under 
noisy measurements [4], [5], [6], [7]. This paper, therefore, considers the use of an additional 
sensor, namely a load cell force sensor, to estimate SOC. 
B. Review of State of Charge Estimation Methods 

The state of charge (SOC) of a battery is an indicator of the remaining energy in it, and can be 
defined as: 

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 1 −
∫ 𝐼𝐼 𝑑𝑑𝑑𝑑𝑡𝑡
0
𝐶𝐶𝑛𝑛

 (1) 

Here 𝐼𝐼 is the current supplied by the battery and 𝐶𝐶𝑛𝑛   is the nominal capacity of the battery.  
While 𝐶𝐶𝑛𝑛 has the SI units of 𝐴𝐴. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the above equation, the units of 𝐴𝐴.ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is more typically 
used to describe a battery’s capacity. In general, 

 0 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ≤ 1 (2) 

Different methods for estimating the SOC have been explored in the literature.  These include 
coulomb counting, open circuit voltage measurement, internal resistance measurement, bulk force 
measurement and electrochemical impedance spectroscopy. A few of these SOC estimation 
methods are briefly discussed below. 
Coulomb Counting 

The easiest method for estimation of SOC is coulomb counting which is essentially measuring 
and integrating the current from the battery over time, as in equation (1). Even though this method 
seems straightforward, an integrator is a marginally stable dynamic system and is highly prone to 
drift errors. For example, even a very small bias in current measurement will cause large 
cumulative errors in the estimator.  To prevent drift or to manage drift for long time intervals, the 
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current has to be measured very accurately and further the integral has to be reset each time the 
battery is fully charged (the only condition in which the SOC is accurately known). 
Open Circuit Voltage 

It has been observed that the open circuit voltage 𝑉𝑉𝑂𝑂𝑂𝑂 of the battery is an algebraic function of 
SOC, therefore the inverse of this function can be utilized in the estimation algorithm. There are 
three major problems associated with using 𝑉𝑉𝑂𝑂𝑂𝑂 for SOC estimation [7]: 
1) The 𝑉𝑉𝑂𝑂𝑂𝑂 is quite a sensitive function of SOC at low and high SOC values.  But there are 

intermediate regions of SOC where 𝑉𝑉𝑂𝑂𝑂𝑂  is not a sensitive function of SOC, as seen in Fig. 3(a). 
2) Sometimes, a significant hysteresis in battery terminal voltage can be observed with respect to 

SOC [7].  
3) 𝑉𝑉𝑂𝑂𝑂𝑂 itself cannot be directly measured, but must instead be estimated from the terminal voltage 

𝑉𝑉𝑡𝑡 of the battery.  The relationship between 𝑉𝑉𝑡𝑡 and OCV is described in the plant model 
equations in section II A. 

Bulk Force 
It has been known that the insertion of Lithium ions into the electrode host materials 

(intercalation and de-intercalation) during charging and discharging can cause expansion of the 
crystal lattice of the material. This expansion of the particles in the electrode results in a volume 
change of the battery. It was shown by Mohan et al. [8] that the force exerted on the casing of the 
battery as a result of this change in volume is an algebraic function of SOC.  Hence, if the bulk 
force can be measured, the SOC could potentially be estimated from it in real-time.  The use of 
bulk force measurements by some of the authors of this paper and by others has been previously 
reported in [4], [8], [9], [10], [11], [12] and [13]. Model development and validation can be seen 
in [12], [13] and [14]. In the case of the lithium iron phosphate (LFP) cathode battery chemistry 
used in this paper and in [4], the relationship between the bulk force and SOC of the battery is 
quite nonlinear and non-monotonic, making the design of the estimation algorithm quite 
challenging.  Previously, this has been handled by using piecewise linearization of the output 
nonlinear function and use of a traditional Kalman filter [4].   
 
Nonlinear Observer Design 

Nonlinear observers and LMI-based methods of nonlinear observer design have been 
developed by several researchers in literature, including Arcak and Kokotovic [24], 
Phanomchoeng, et. al. [25], Boizot, et. al. [26] and Wang, et al. [19].  However, as will be shown 
later in section III C, all of these observer design methods from literature fail to yield a feasible 
constant gain stable observer, when the involved nonlinear function is non-monotonic.  Other 
advanced estimation techniques have also been explored during the last 15 years [27], [29], [30].   
C. Paper Outline 

This paper focuses on the use of the terminal voltage and a force sensor with the LFP battery 
for real-time estimation of the battery SOC.  The design of a nonlinear observer which provides 
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globally stable SOC estimation for the nonlinear system is demonstrated.  It turns out that the non-
monotonic nature of the nonlinear function prevents the existence of a single constant observer 
gain that can provide stability over the entire operating regime of the battery.  Hence a hybrid 
observer that uses a finite state machine to switch between a few constant gain nonlinear observers 
is utilized.   

The clear advantages of the new nonlinear observer over a traditional estimation algorithm 
such as the extended Kalman Filter are demonstrated in this paper.  In particular, model errors in 
the output nonlinear function coupled with the non-monotonic nature can easily cause the EKF to 
diverge.  While careful choice of the covariance characteristics for the EKF can be used to prevent 
divergence, these choices come with significant performance trade-offs.  The hybrid nonlinear 
observer developed in this paper, on the other hand, provides accurate and robust performance in 
the presence of model error, and does not need any careful tuning of parameters. 

The outline of the paper is as follows:  Section 2 presents the dynamic plant model and output 
functions for the lithium-ion-battery used in this study.  Section 3 presents the nonlinear observer 
design method proposed to be used for this plant and also provides an analytical proof that a single 
constant observer gain over the entire SOC range cannot exist for this system. Section 4 presents 
the design of a hybrid nonlinear observer that utilizes switched observer gains to obtain global 
stability. Section 5 presents extensive results from simulation using both the nonlinear observer 
and an extended Kalman filter (EKF). Section 6 discusses the influence of model error, especially 
at the zero-slope point for this non-monotonic system.  Section 7 discusses the initial condition 
and initial gain determination.  Section 8 presents experimental results which verify the robustness 
and performance of the nonlinear observer and its superiority over the EKF.  Section 9 contains 
the conclusions. 

II. LITHIUM ION BATTERY DYNAMIC MODEL 
A. Plant Model for Observer Design 

Models with different levels of complexity have been proposed in the literature for the electrical 
dynamics of lithium-ion batteries [15], [16], [22].  Here an equivalent circuit 𝑉𝑉𝑂𝑂𝑂𝑂-R-RC-RC model 
will be used to model the electrical dynamics, as shown in Fig. 1 [4]. 
 

 
Fig. 1 𝑽𝑽𝑶𝑶𝑶𝑶-R-RC-RC model for battery [3] 
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For the model in Fig. 1, the dynamic equations of the battery can be represented as [4]: 

 
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=
−𝑉𝑉1
𝑅𝑅1𝐶𝐶1

+
𝐼𝐼
𝐶𝐶1

 (3) 

 

 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=
−𝑉𝑉2
𝑅𝑅2𝐶𝐶2

+
𝐼𝐼
𝐶𝐶2

 (4) 

 

 𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑

= −
𝐼𝐼
𝐶𝐶𝑛𝑛

 (5) 

where 𝑉𝑉1, 𝑉𝑉2 and 𝑖𝑖 are voltages and current, as seen in Fig. 1, 𝑅𝑅1, 𝑅𝑅2, 𝐶𝐶1, 𝐶𝐶2 are electrical model 
parameters and 𝐶𝐶𝑛𝑛 is the capacity of the battery.  Model development is available in [4] and the 
references therein.  

Two output measurements will be considered here; first the terminal voltage 𝑦𝑦1 which is a 
function of all three states and second, the bulk force 𝑦𝑦2 which is assumed to be an algebraic 
function of the SOC. 

 𝑦𝑦1 =  𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑂𝑂𝑂𝑂(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝐼𝐼𝐼𝐼 − 𝑉𝑉1 − 𝑉𝑉2 (6) 

 𝑦𝑦2 = 𝐹𝐹 = 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) (7) 

Thus, considering equations (3)-(7), the plant model is of the following form: 
 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (8) 

 
 𝑦𝑦 = 𝐶𝐶𝐶𝐶 + ℎ(𝑥𝑥) (9) 

 
where 𝑥𝑥 = [𝑉𝑉1 𝑉𝑉2 𝑆𝑆𝑆𝑆𝑆𝑆]𝑇𝑇, and 𝑦𝑦 = [𝑦𝑦1 𝑦𝑦2]𝑇𝑇.  It can be seen that the process dynamics are 
linear while the output functions are nonlinear. A six-degree polynomial was used to fit a curve 
for the non-monotonic bulk force versus SOC relationship whose experimental data is shown in 
Figure 3(b): 
𝑦𝑦2 = 𝐹𝐹 = 755 𝑆𝑆𝑂𝑂𝐶𝐶6 − 2902 𝑆𝑆𝑆𝑆𝐶𝐶5 + 4118 𝑆𝑆𝑆𝑆𝐶𝐶4 − 2564 𝑆𝑆𝑆𝑆𝐶𝐶3 + 590 𝑆𝑆𝑆𝑆𝐶𝐶2 + 26 𝑆𝑆𝑆𝑆𝑆𝑆

+ 1667 (10) 

Likewise, an algebraic nonlinear monotonic function was fit to the open-circuit voltage data 
shown in Figure 3(a) [4]: 

𝑦𝑦1 = 𝑉𝑉𝑂𝑂𝑂𝑂 = −2.4354 + 0.1162 ∗ (1 − exp(−5.7469 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆)) − 0.0098 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 + 1.2942

∗ �1 − exp �
3.0014𝑒𝑒 − 4

1 − 𝑆𝑆𝑆𝑆𝑆𝑆
�� + 0.0206 ∗ tanh(

𝑆𝑆𝑆𝑆𝑆𝑆 − 0.2321
0.0626

) + 5.6185

∗ tanh �
𝑆𝑆𝑆𝑆𝑆𝑆 + 0.0513

0.0406
� + 0.0166 ∗ tanh(

𝑆𝑆𝑆𝑆𝑆𝑆 − 0.6799
0.0306

) 
 

(11) 
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B. Simulation Model 
While equations (3)-(7) will constitute the battery model that will be used to design the observer, 

in order to evaluate the observer in simulations, the following modifications were made to the 
model for purposes of the simulation: 
• A small unknown bias was added to the current (the current was assumed to have a small bias 

error when its measurement is used in the observer). 
• Gaussian noise was added to both measurement signals in the simulations. 

The simulated outputs and current input are presented in Fig. 2.  This simulation scenario 
consists of multiple cycles of Dynamic Stress Testing (DST) which is a standard procedure to test 
the performance of a battery on electric vehicles [17], [18], [22].  The test consists of a long series 
of step charge/discharge current inputs with non-zero average that are used back-to-back to charge 
and discharge a battery.  Here we see three rounds of battery charge and discharge in this 
simulation scenario. 

 

 

 
Fig. 2 - Measurements and the input current for simulation studies 
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C. Output functions  
The two functions 𝑉𝑉𝑂𝑂𝑂𝑂(𝑆𝑆𝑆𝑆𝑆𝑆) and 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) involved in the output equations (6) and (7) are 

shown as curves in Fig. 3.[28]  As seen in Fig. 3, both these functions are nonlinear functions of 
𝑆𝑆𝑆𝑆𝑆𝑆.  However, 𝑉𝑉𝑂𝑂𝑂𝑂(𝑆𝑆𝑆𝑆𝑆𝑆) can be represented entirely using a monotonic polynomial curve while 
the bulk force 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) is clearly a non-monotonic function. 

 
(a) 

 
(b) 

 (a) Monotonic fitted curve for Voc      (b) Bulk force measured curve as a function of SoC 
Fig. 3 - Output functions for the battery system 

III. NONLINEAR OBSERVER DESIGN 

A. Nonlinear Observer for Bounded Jacobian Output Functions 
For the plant model given by equations (8)-(9), the following nonlinear observer is proposed: 
  𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝐵𝐵 + 𝐿𝐿[𝑦𝑦 − 𝐶𝐶𝑥𝑥� − ℎ(𝑥𝑥�)] (12) 

Let the estimation error be 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥�.  Then the estimation error dynamics obtained by subtracting 
equation (12) from (8) is 
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  𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑥𝑥� − 𝐿𝐿[ℎ(𝑥𝑥) − ℎ(𝑥𝑥�)] (13) 

The presence of the nonlinear function ℎ(𝑥𝑥) − ℎ(𝑥𝑥�) in equation (13) means a linear observer 
cannot ensure globally stable estimation for this nonlinear system.   

It is clear that the system is linear in the process dynamics and has nonlinear measurement 
equations.  Furthermore, the nonlinear functions in the output (measurement) equations are smooth 
and differentiable with bounded slopes at every operating point.  Hence, a nonlinear observer 
design method that allows a nonlinear function in the output equations and uses the lower and 
upper bounds on the Jacobian of this nonlinear function is utilized [19].    The key observer design 
result that will be utilized is as follows: 

Theorem 1: Let 𝐾𝐾1 and 𝐾𝐾2 be the lower and upper bounds of the Jacobian of the nonlinear function 
ℎ(𝑥𝑥) of equation (10), so that the (𝑖𝑖, 𝑗𝑗)th elements of the matrices 𝐾𝐾1 and 𝐾𝐾2 satisfy 

 
 𝐾𝐾1(𝑖𝑖, 𝑗𝑗) ≤ 𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
≤ 𝐾𝐾2(𝑖𝑖, 𝑗𝑗) (14) 

If the observer gain matrix 𝐿𝐿 and a positive definite matrix 𝑃𝑃 are determined such that they satisfy 
the following linear matrix inequalities 

 𝑃𝑃 > 0 (15) 

�(𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃
−𝐿𝐿𝑇𝑇𝑃𝑃 0

� 

−�

𝐾𝐾1𝑇𝑇𝐾𝐾2 + 𝐾𝐾2𝑇𝑇𝐾𝐾1
2

−
𝐾𝐾1𝑇𝑇 + 𝐾𝐾2𝑇𝑇

2

−
𝐾𝐾1 + 𝐾𝐾2

2
𝐼𝐼

� < 0 

 
 

(16) 

then the observer given by equation (12) is exponentially stable, with an exponential convergence 
time constant of at least 𝜎𝜎. 
Proof: This result is based on use of a previous nonlinear observer design method from a 
theoretical publication of our research group [19].  From Theorem 2.1 of [19], if  

a) the nonlinearity in the process dynamics is set to zero (i.e. 𝑓𝑓(𝑥𝑥) = 0),  
b) the output error injection in the output nonlinearity is removed (i.e. 𝐿𝐿2 = 0) and  
c) the Lyapunov asymptotic stability condition 𝑉̇𝑉 < 0 is replaced by the exponential 

convergence rate condition 𝑉̇𝑉 < −𝜎𝜎𝜎𝜎,  
then the observer design condition of equation (16) can be obtained. 
 
B. Non-existence of a Stable Observer Due to Non-Monotonicity 

Theorem 2: If the nonlinear functions in ℎ(𝑥𝑥) are non-monotonic, then a constant observer gain 𝐿𝐿 
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that satisfies equation (16) cannot exist. 
Proof: Part 1: In this part, we show that the linear portion of the estimation error dynamics is NOT 
stable in this application and can never be stabilized, no matter how the observer gain 𝐿𝐿 is chosen. 
Hence the nonlinear output functions are needed for stabilization. 

For applying Theorem 1, the system matrices in this application are 

𝐴𝐴 = �
− 1

𝑅𝑅1𝐶𝐶1
0 0

0 − 1
𝑅𝑅2𝐶𝐶2

0
0 0 0

�,    𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡

1
𝐶𝐶1
1
𝐶𝐶2

− 1
𝐶𝐶𝑏𝑏⎦
⎥
⎥
⎥
⎤

,        

  ℎ(𝑥𝑥) = �𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆)
𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) �,    𝐶𝐶 = �−1 −1 0

0 0 0� 

 
Let the observer gain be 

𝐿𝐿 = �
ℓ11 ℓ12
ℓ21 ℓ22
ℓ31 ℓ32

� 

Then 

𝐴𝐴 − 𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎡−

1
𝑅𝑅1𝐶𝐶1

− ℓ11 −ℓ11 0

−ℓ21 −
1

𝑅𝑅2𝐶𝐶2
− ℓ21 0

−ℓ31 −ℓ31 0⎦
⎥
⎥
⎥
⎥
⎤

 

Hence (𝐴𝐴 − 𝐿𝐿𝐿𝐿) has one eigenvalue at 0 and is NOT asymptotically stable, no matter how 𝐿𝐿 is 
chosen.  It can also be easily checked that (𝐴𝐴,𝐶𝐶) is undetectable. Hence, the linear portion of the 
output cannot stabilize the dynamics and the nonlinear function in the output is needed for 
stabilization. 

 
Part 2: If the nonlinear output function 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) is non-monotonic, then  

 𝐾𝐾1 =

⎣
⎢
⎢
⎢
⎡0 0

𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚

0 0
𝜕𝜕𝜕𝜕

𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚⎦
⎥
⎥
⎥
⎤
 (17) 

and 
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 𝐾𝐾2 =

⎣
⎢
⎢
⎢
⎡0 0

𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚

0 0
𝜕𝜕𝜕𝜕

𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚⎦
⎥
⎥
⎥
⎤
 (18) 

Hence  

𝐾𝐾1𝑇𝑇𝐾𝐾2 = 𝐾𝐾2𝑇𝑇𝐾𝐾1 =

⎣
⎢
⎢
⎡
0 0 0
0 0 0

0 0 �
𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜

𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚
� �

𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚

� + �
𝜕𝜕𝜕𝜕

𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚
� �

𝜕𝜕𝜕𝜕
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)�𝑚𝑚𝑚𝑚𝑚𝑚

�
⎦
⎥
⎥
⎤
 

 
The force measurement nonlinear functions in ℎ(𝑥𝑥) 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) is non-monotonic, so that 
𝜕𝜕𝜕𝜕

𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)
�
𝑚𝑚𝑚𝑚𝑚𝑚

< 0 and  𝜕𝜕𝜕𝜕
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)

�
𝑚𝑚𝑚𝑚𝑚𝑚

> 0. 

Also, the 𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆) curve has almost zero sensitivity in some portions of the SOC range, so that 
the minimum slope  

𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)

�
𝑚𝑚𝑚𝑚𝑚𝑚

= 0.   

Further,  𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕(𝑆𝑆𝑆𝑆𝑆𝑆)

�
𝑚𝑚𝑚𝑚𝑚𝑚

> 0. 

 
Hence, from (17) and (18),  𝐾𝐾1𝑇𝑇𝐾𝐾2 + 𝐾𝐾2𝑇𝑇𝐾𝐾1 ≤ 0.  This implies  

�(𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃
−𝐿𝐿𝑇𝑇𝑃𝑃 0

� − �

𝐾𝐾1𝑇𝑇𝐾𝐾2 + 𝐾𝐾2𝑇𝑇𝐾𝐾1
2

−
𝐾𝐾1𝑇𝑇 + 𝐾𝐾2𝑇𝑇

2

−
𝐾𝐾1 + 𝐾𝐾2

2
𝐼𝐼

� < 0 

if and only if �(𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃
−𝐿𝐿𝑇𝑇𝑃𝑃 0

� < 0. 

 
In turn, this is possible if and only if  

 (𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 < 0 (19) 

But, if (𝐴𝐴 − 𝐿𝐿𝐿𝐿) is NOT asymptotically stable for any 𝐿𝐿 (from part 1), then a solution to equation 
(19) can never exist. 

Hence, this nonlinear observer cannot be stable with a constant observer gain, if the nonlinear 
function is non-monotonic. 
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C. Non-existence of a Stable Observer from Other Nonlinear Observer Results in Literature 
It can be shown that the following popular methods of observer design for nonlinear systems 

from literature all fail to yield a solution with a constant observer gain for the non-monotonic 
system considered in this paper: 
a) Observer design method of Arcak and Kokotovic using the Circle Criterion [24]: 

The method developed in [24] is also based on the solution to a LMI.  But it allows for 
nonlinear functions only in the process dynamics and not in the output equation.  Further, it 
requires the nonlinear function in the process dynamics to be monotonic.  Since the system 
considered in this manuscript has a nonlinear function in the output equation and further the 
nonlinear function happens to be non-monotonic, the observer design method of [24] is not 
applicable to this problem. 

b) Observer design method of Phanomcheong, et al for bounded Jacobian nonlinear systems [25]: 
Next, consider the class of systems and observer forms described below, with the plant: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + Φ(𝑥𝑥) + 𝑔𝑔(𝑦𝑦,𝑢𝑢)
𝑦𝑦 = 𝐶𝐶𝐶𝐶 + Ψ(𝑥𝑥)  (20) 

where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 is the state vector, 𝑢𝑢 ∈ 𝑅𝑅𝑝𝑝 is the input vector, and 𝑦𝑦 ∈ 𝑅𝑅𝑚𝑚 is the output 
measurement vector. 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 and 𝐶𝐶 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛are appropriate matrices. The 
functions Φ(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛, Ψ(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑚𝑚, and 𝑔𝑔(𝑦𝑦,𝑢𝑢):𝑅𝑅𝑚𝑚 × 𝑅𝑅𝑝𝑝 → 𝑅𝑅𝑛𝑛 are nonlinear. In 
addition, Φ(𝑥𝑥) and Ψ(𝑥𝑥) are assumed to be differentiable. The observer is assumed to be of 
the form 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + Φ(𝑥𝑥�) + 𝑔𝑔(𝑦𝑦,𝑢𝑢) + 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�)
𝑦𝑦� = 𝐶𝐶𝑥𝑥� + Ψ(𝑥𝑥�).

 (21) 

For the class of systems and observer forms described in equations (18) and (19), according to 
Theorem 2 in [25], if an observer gain matrix L can be chosen such that 
𝑃𝑃�𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � + �𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �𝑇𝑇𝑃𝑃 − �𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃�𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚� < 0

𝑃𝑃�𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � + �𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �𝑇𝑇𝑃𝑃 − �𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�
𝑇𝑇
𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃�𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚� < 0

𝑃𝑃�𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � + �𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑇𝑇
𝑃𝑃 − �𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃�𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚� < 0

𝑃𝑃�𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 � + �𝐴𝐴 + 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑇𝑇
𝑃𝑃 − �𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�

𝑇𝑇
𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃�𝐶𝐶 + 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚� < 0

𝑃𝑃 > 0

 (22) 

∀𝑖𝑖 = 1, … ,𝑛𝑛 ,∀𝑗𝑗 = 1, … ,𝑛𝑛 and ∀𝑘𝑘 = 1, … ,𝑚𝑚, where 

1) ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚�𝜕𝜕Φ𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗⁄ � and ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝜕𝜕Φ𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗⁄ �, 
2) 𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 
3) 𝑧𝑧𝐻𝐻 = 𝑛𝑛 × 𝑛𝑛 is the state scaling factor, 𝑛𝑛 being dimension of the state vector, 
4) 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑧𝑧𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑧𝑧𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 
5) 𝑔𝑔𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚�𝜕𝜕Ψ𝑘𝑘 𝜕𝜕𝑥𝑥𝑗𝑗⁄ � and  𝑔𝑔𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝜕𝜕Ψ𝑘𝑘 𝜕𝜕𝑥𝑥𝑗𝑗⁄ �, 
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6) 𝐺𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑘𝑘)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)𝑔𝑔𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚and 𝐺𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑘𝑘)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)𝑔𝑔𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 
7) 𝑧𝑧𝐺𝐺 = 𝑚𝑚 × 𝑛𝑛 is the output scaling factor, 𝑚𝑚 being dimension of the output vector,  
8) 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑧𝑧𝐺𝐺𝐺𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺̅𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑧𝑧𝐺𝐺𝐺𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, 

then this choice of 𝐿𝐿 leads to asymptotically stable estimates by the observer (21) for the system 
(20). 

It can be seen that if 𝐴𝐴 is not asymptotically stable, and if 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 > 0  and 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 < 0 , then 
there are no feasible solutions to the LMI system (22).  When the output nonlinear function is 
non-monotonic, then 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 > 0  and 𝐺̅𝐺𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 < 0.  Hence there are no feasible solution from the 
observer design method of [25]. 

c) High gain observer design method, when the output function is non-monotonic, as 
demonstrated in [26]: 
The high gain observer design method applies to triangular nonlinear systems, generally after 
convenient transformation [26].  The high gain observer with a constant gain requires the 
monotonicity of the output nonlinearity and of some nonlinearities in the process, see [26] and 
the references therein for systems with single outputs. Without this monotonicity assumption, 
the exponential convergence of the high-gain observer with a constant gain cannot be proved.  

IV. HYBRID NONLINEAR OBSERVER DESIGN 
From the theoretical results in section III (Theorem 2), we have seen that since the output 

function 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) is non-monotonic, we cannot find a feasible solution to the observer design 
Linear Matrix Inequality (LMI) (16).  Attempts in MATLAB to find an LMI solution that works 
over the entire SOC range of the battery failed, i.e. no feasible solutions to (16) existed for the 
output functions shown in Fig. 4.  The MATLAB evaluations thus reconfirmed the theoretical 
result of the output functions being required to be monotonic. 

With the monotonicity requirement in mind, the SOC range of the battery can be divided 
piecewise into different regions in a manner such that in each region the load cell force 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆) 
function is a monotonic function.  Such a piecewise division of the SOC range into regions 𝑅𝑅1 to 
𝑅𝑅5 is shown in Fig. 4.  Note that the boundaries of the regions lie near the slope change points of 
the force output function.  For example, 𝑅𝑅4 is a narrow region in which the slope of the output 𝑦𝑦2 
is close to zero.  In this region, only the output 𝑦𝑦1 will be used by the observer, since 𝑦𝑦2 is non-
monotonic in this region.  Regions 𝑅𝑅3 and 𝑅𝑅5 lie on either side of 𝑅𝑅4 and both of these regions can 
utilize both outputs 𝑦𝑦1 and 𝑦𝑦2.  Both 𝑦𝑦1 and 𝑦𝑦2 are monotonic in these regions.  

It is to be noted that in regions 𝑅𝑅2 and 𝑅𝑅4 the force measurement is non-monotonic and the 
voltage function has low sensitivity.  However, these regions are narrow and for the rest of the 
operation range, the combined system does have adequate sensitivity.   
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𝑅𝑅3 𝑅𝑅5

𝑅𝑅1, 𝑅𝑅3 𝑅𝑅5: 
Observer design 
using both force 
and voltage 
feedback

𝑅𝑅2, 𝑅𝑅4: Observer 
design using 
voltage feedback 
only

𝑅𝑅1 𝑅𝑅2 𝑅𝑅4

 
Fig. 4 – Creating regions around slope-change points of bulk force output function 

It should be noted that we have the liberty of relying on only one of the output measurements 
in the narrow regions with zero slope, because even with one output the system is still observable, 
although the result of estimation will not be as accurate as the case when we use both outputs, due 
to the low sensitivity of 𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆). Hence, the width of these regions was kept narrow so as to 
minimize regions in which only 1 output is used by the observer. While it is ideal to have these 
regions to be as narrow as possible, in practice their width is determined by the accuracy of the 
measurement models. For example, if we anticipate a considerable horizontal uncertainty or shift 
in the output functions, we are forced to sacrifice the estimation accuracy for the sake of stability 
by widening the low observability regions.  

It should be pointed out that if the battery were to operate around the 𝑅𝑅2 and 𝑅𝑅4 regions for 
sustained periods of time, the estimation accuracy would deteriorate.  The estimation method 
developed in this paper relies on these regions being narrow and prolonged operation not occurring 
in these regions.   

A switched gain observer is developed using the regions defined in Fig. 4.  As shown in Fig. 
5, the switched gain observer uses different gains in each of the discrete piecewise regions.  Since 
each region 𝑅𝑅1 through 𝑅𝑅5 has monotonic output function properties, a constant stabilizing 
observer gain exists in each of these regions.  As the operating region changes, the observer gains 
switch in value accordingly using a finite state machine of the type shown in Fig. 5. 
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𝑦𝑦 ≥ 𝑦𝑦𝑠𝑤𝑚𝑚𝑡𝑡𝑜𝑜ℎ + 𝜖

𝑦𝑦 ≤ 𝑦𝑦𝑠𝑤𝑚𝑚𝑡𝑡𝑜𝑜ℎ − 𝜖

𝑉𝑉𝑚𝑚 = 𝑥𝑥�𝑇𝑇𝑃𝑃𝑚𝑚𝑥𝑥�

Observer gain 𝐿𝐿𝑚𝑚

𝑉𝑉𝑖𝑖 = 𝑥𝑥�𝑇𝑇𝑃𝑃𝑖𝑖𝑥𝑥�

Observer gain 𝐿𝐿𝑖𝑖

 
Fig. 5. Creating regions around slope-change points of output functions 

In Fig. 5, region 𝑖𝑖 has the observer gain 𝐿𝐿𝑖𝑖 which has been designed using the LMI of equation 
(16) and the corresponding value of the Lyapunov positive definite matrix 𝑃𝑃𝑖𝑖.  Likewise, region 𝑗𝑗 
has the observer gain 𝐿𝐿𝑗𝑗 and the positive definite Lyapunov function matrix 𝑃𝑃𝑗𝑗. 

The stability of the hybrid observer of Fig. 5 consisting of different constant observer gain 
regions needs to be considered. It should be noted that inside each region, a single observer gain 
is used and therefore exponential stability is guaranteed inside this region using the Lyapunov 
function analysis of Theorem 2. However, different regions 𝑖𝑖 may have different values of the 
matrix 𝑃𝑃𝑖𝑖 > 0 in their individual Lyapunov functions. The stability of the overall switched system 
can be guaranteed if the system satisfies a minimum dwell time constraint in each region, according 
to results from a recent publication [20]. The minimum dwell time in region 𝑗𝑗 when switching 
from region 𝑖𝑖 to region 𝑗𝑗 needs to be greater than 𝑇𝑇 where 𝑇𝑇 is the amount of time needed for  
𝑉𝑉𝑗𝑗(𝑥𝑥(𝑡𝑡 + 𝑇𝑇)) < 𝑉𝑉𝑖𝑖(𝑥𝑥(𝑡𝑡)). This minimum dwell time guarantees global asymptotic stability.  

This result can be understood as follows: In each individual region, the estimation error 𝑥𝑥� keeps 
decreasing due to the Lyapunov exponentially stable design in that region. In switching between 
regions, the 𝑃𝑃 matrix may be different in the two regions. However, if the system remains in the 
same region for a minimum dwell time, the error will become smaller than the initial value at the 
time the region was entered (due to local exponential stability). Thus, if the system is constrained 
to remain in one region for a minimum dwell time, the value of the Lyapunov function after the 
dwell time in region 𝑗𝑗 is less than its value in region 𝑖𝑖 at the time the switch from 𝑖𝑖 to 𝑗𝑗 occurred. 
This guarantees overall asymptotic stability [20]. 

In the case of the observer design application for the SOC estimation system, the values of 𝑦𝑦 
at which the region is entered and at which it switches back are different (as shown in Fig. 5). This 
hysteresis between entering and switching back ensures that the minimum dwell time constraint is 
met.  

One obstacle that could affect the performance of this piecewise nonlinear observer is the initial 
condition. If we pick the initial condition to be in the wrong region (with the wrong observer gain), 
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it might result in a divergence of the observer estimates.  However, thanks to the specific shape of 
output functions for this application, there is an easy solution that can remedy this shortcoming. 
From Fig. 3, since there is a one-to-one relationship between the SOC and the ordered output pair 
that is constructed by the two output functions 𝑦𝑦1 and 𝑦𝑦2, we can identify the correct region for 
the initial condition accurately.   

V. SIMULATION RESULTS 

A. Nominal Simulations (No model uncertainty in measurement equations) 
The estimated SOC from the nonlinear observer is shown in Fig. 6 along with the actual SOC 

for the charge-discharge cycles of Fig. 2.  As is clear in the figure, the estimated SOC follows the 
actual values very closely. There are regions in the estimation curve, however, with some apparent 
deviations from the real value; these are the regions where the observer is only using the terminal 
voltage in the measurements equation and it is discarding the bulk force measurements that are 
available (regions 𝑅𝑅2 and 𝑅𝑅4 around the slope-change points in Fig. 4). It is expected that 
neglecting one of the measurements will reduce the accuracy of the estimation, especially since 
the only measurement that is being used in these regions contains hysteresis.  

Fig. 7 shows the error in estimation defined as the difference between the estimated and actual 
SOC values. The regions where only the terminal voltage is being used is also visible here.  The 
RMS of the error is 0.011 and, ignoring the initial condition part, the maximum error is seen to be 
0.036. 

 
Fig. 6 -Estimated SOC from nonlinear observer along with actual SOC 
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Fig. 7 -Estimation error of the observer 

 

B. Alternative Observer with Open-loop Estimation within the Bands  
As was stated earlier, the largest amount of error occurs in the bands where the nonlinear 

observer relies solely on the terminal voltage.  One simple solution to this problem is to ignore the 
measurement altogether in these regions, and instead just use the dynamic equations. This open 
loop observer is frequency referred to as the coulomb counting method in the literature. The results 
of using such a scheme are illustrated in Fig. 8. It can be seen that using the open loop observer 
within the slope-change bands improves the estimation in these regions and the RMS of the error 
has been reduced to 0.007 and the maximum error to 0.02.  

It is to be noted, however, that this result is achievable only because of the assumed high 
accuracy of the dynamic equations (since we are using synthetic measurements with miniscule 
added noise and bias).  Had the bias in current measurement been bigger or were there some larger 
noise or model uncertainty within the data, this method would have provided deteriorated 
estimation.  In addition, the stability of the observer is no longer guaranteed in this case. 
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Fig. 8 – Estimated SOC and estimation error of observer where the estimation is done open loop 
within the slope-change regions 

C. Estimation using an Extended Kalman Filter 
The Extended Kalman Filter can also be used to estimate the SOC of the nonlinear lithium-ion 

battery system. The result is presented in Fig. 9. The estimation is very accurate which is expected 
since the synthetic added noise is Gaussian and the extended Kalman filter is close to optimal in 
this situation. This will not be the case when actual experimental measurements are used and model 
uncertainty is present. The other issue is that, unlike nonlinear observers, there is no proof of global 
asymptotic stability in this case.  As we will see later, the filter might become unstable with the 
introduction of model error. 
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Fig. 9 -Results of EKF estimation 

 

VI. EKF INSTABILITY IN THE PRESENCE OF MODEL ERROR 
This section describes the influence of model error on both the EKF and the nonlinear observer.  

It will be seen that even small model errors cause the EKF to become unstable due to the non-
monotonic nature of the output functions.  The nonlinear observer continues to be stable in all 
cases. The types of model errors used in the simulations here are exactly the variations that would 
be induced by aging in the battery [21]. 
1) Gain Error in Force: Here the force-SOC curve was slightly scaled from the model value using 

F=F*1.0001. This is just a 0.1% error in the scaling factor of the output.  It is an extremely 
small error in gain, as seen in Fig. 10. However, this small error causes the EKF to diverge 
significantly from the real SOC values, as seen in Fig. 11. 
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Fig. 11 -Results of EKF estimation with scaling factor error of 0.1% 

It can be seen that the EKF diverges significantly as the SOC value approaches 0.6 (i.e. the 
slope change point) and then takes a very long time to converge back to the correct estimates.  The 
return to convergence happens after the slope changes again at a SOC of approximately 0.35.  The 
nonlinear observer, on the other hand, never becomes unstable and continues to perform well 
through the entire range of SOC values, as seen in Fig. 12. 

 
Fig. 12 -Results of nonlinear observer estimation with scaling factor error of 0.1%.  The rms error 

is 0.015 

2) Offset error in SOC: An offset of 0.05 is added to the force-SOC relationship, using 
F=f(SOC+0.05). 
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Fig. 13 – Force output curve with a lateral shift in SOC of 0.05 

The resulting difference between the actual and modeled force-SOC curves is seen in Fig. 13. 
Again, the EKF diverges for this model error scenario and never converges back.  Hence its 

simulation results are not explicitly shown here. The performance of the nonlinear observer for 
this same model error scenario is shown in Fig. 14 (a) and (b).  Again, the nonlinear observer 
remains stable through the entire charging-discharging scenario (Fig. 14(a)), and it rms error as 
seen in Fig. 14(b) is only 0.0521, even with this model error. 
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Fig. 14 -Results of nonlinear observer estimation with lateral offset in SOC 

3) Model Error at Slope-Change Points: Minor errors in the slope change points were introduced 
by slightly modifying the polynomial models for the force-SOC curves.  The errors introduced 
can be seen in Fig. 15. 

 
Fig. 15 – Error in slope-change points of force-SOC curve 
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Fig. 16 -Results of nonlinear observer estimation with error in slope-change points 

Again, the EKF estimates diverge significantly from the actual SOC values and are therefore not 
shown.  On the other hand, the nonlinear observer continues to remain stable and performs 
accurately, as seen in Fig. 16. 

It is to be noted that the EKF could be made more robust by incorporating the same logic as the 
hybrid observer i.e. to use only voltage in regions R2 and R4 and both outputs in regions R1, R3 
and R5.  Since the EKF uses varying gain it should have automatically adjusted gains based on the 
sensitivity of the output nonlinear functions, since it uses the Jacobian of the nonlinear function in 
determining the gain.  However, this automatic adjusting of the time-varying gains does not seem 
to be sufficient to provide robustness.  

VII.  ROBUSTNESS TO INITIAL CONDITION ERRORS 
For the hybrid nonlinear observer to be guaranteed to remain stable, the region of the initial 

condition needs to be identified correctly, so that the correct initial observer gain is chosen.  If the 
initial region is identified incorrectly, then the use of the wrong observer gain can lead to 
instability.  One way to identify the initial region is based on the simultaneous measured values of 
the two ordered outputs, i.e. force and terminal voltage.  Fig. 17 shows how the initial condition 
can be identified to be in one of 5 regions, based on the values of force and voltage.  For simplicity 
and a test of robustness, the observer assumes that the initial condition is the midpoint of the region 
which has been identified as the initial region.  Starting from this initial value, the estimates will 
converge to the correct values due to the stability of the observer.  Two examples with different 
initial conditions are presented below in Fig. 18.  Note that due to the fast convergence of the 
observer, the initial condition error can only be seen as a very short spike at time zero in some of 
the plots. As can be seen, when the initial point is in one of the regions where the observer is using 
both output functions (Fig. 18 a), the observer converges to the correct SOC value almost 
instantaneously. But when the simulation starts from a region where only the voltage is being used 
(Fig. 18 c), since the sensitivity of the output function is very limited, the convergence takes longer 
to happen. Even in this case the estimation error will always stay bounded within the region. 
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While the width of the regions (bands) with solely voltage output was broadly assumed to be 
0.1 of SOC here, in practice it can be minimized based on the accuracy of the bulk force model in 
experimental data, and hence the convergence can be improved. Furthermore, gridding the domain, 
instead of picking the middle point of the entire region as the unknown initial condition, could 
further improve the convergence in the regions with limited sensitivity. 

 

 
Fig. 17 -The values of force and terminal voltage determine operating region and the related initial 
condition. Depending on the accuracy of the force and voltage measurements, there could be small 

areas which are shared between two regions and could have either of the initial conditions. 

 

 
(a) 
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(b)  

Fig.  18 -SOC estimation and true value for different initial conditions. (a) Initial SOC=0.25, Initial 
observer guess=0.3 (b) Initial SOC=0.65, Initial guess: 0.6 

 
Depending on the accuracy of measurement, we might have intervals in which the initial 

condition could belong to either of two neighboring regions (Fig. 17). By picking the observer 
gains conservatively, we can ensure that choosing either of the regions would guarantee stability.   

A more robust initial condition determination method can be obtained if the numerical first 
and second order derivatives of the outputs are used, in addition to their raw values.  Since change 
in SOC happens very slowly, numerical values of first and second derivatives can be obtained 
accurately using a few time samples of data, if the sampling frequency is fast. 

VIII. EXPERIMENTAL PERFORMANCE 
The developed nonlinear observer and the EKF were both evaluated using experimentally 

measured data from the University of Michigan battery test rig instrumented with sensors that 
measure terminal voltage, current and load cell force [4].  A small bias error was added to the 
current signal to represent an inexpensive current sensor that would normally be available on a 
commercial battery. 

Fig. 19 shows the force as a function of SOC for the battery during a number of charge-
discharge cycles.  The charge-discharge cycles can be seen in Fig. 20.  While the experimental 
force-SOC curve in Fig. 19 clearly shows a hysteresis type of phenomenon, the curve is modeled 
using just a single polynomial without hysteresis (shown by the dashed red curve in the figure). 
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Fig. 19 Measured experimental force-SOC curves and corresponding single polynomial model 

Fig. 20 shows the performance of the nonlinear observer in estimating the SOC.  It can be seen 
that the SOC is estimated quite well in spite of the large hysteresis error in the force-SOC model 
(as well as in the 𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆) model).  The error is typically seen to be within 2% for most of the 
operation, but rises to have a spike of 6% at the points where a switch from charging to discharging, 
or vice-versa, occur (due to hysteresis). 

 
(a) 
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(b) 
Fig. 20 Actual and estimated SOC with nonlinear observer during charge-discharge cycles 

The performance of the nonlinear observer can be compared with that of the EKF which is 
seen in Fig. 21.  Due to the hysteresis and the error in the zero-slope points of the model versus 
the actual data, the EKF often diverges completely from the actual SOC, just as it did in the 
simulations. 

 
Fig. 21 Divergence of EKF for the experimental data 

 
Fig. 22 Estimates of the nonlinear observer and of the EKF in the presence of measurement bias, 

when sensor noise covariances are chosen to be extremely large for the EKF 

To prevent the EKF from divergence, the sensor noise covariances during EKF design can be 
highly amplified so that the EKF feedback gain will be very small and the EKF estimation will 
largely rely on the model rather than on sensor feedback.  This aspect is shown in Fig. 22.  Here it 
can be seen that the EKF estimates no longer diverge from the actual SOC values.  However, they 
do suffer from a drift due to the small bias error in current measurement and no corrections from 
the output due to high sensor noise covariance.  The nonlinear observer is not affected by the 
current bias error because it continues to use the voltage and force measurements and relies not 
only on the model but also on the sensor measurements. 
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IX. CONCLUSIONS 

This paper developed a hybrid nonlinear observer for state of charge (SOC) estimation in a 
lithium ion battery, using measurements of terminal voltage and bulk force.  While both outputs 
are nonlinear functions of SOC, the force is a highly non-monotonic function.  The non-
monotonicity of the force-SOC curves poses a special challenge for observer design.   

The basic nonlinear observer for this system was designed using Lyapunov analysis relying on 
lower and upper bounds of the Jacobian of the nonlinear output function.  Rigorous analysis 
showed that the proposed nonlinear observer may only have feasible design solutions when the 
output is monotonic (i.e. in each piecewise monotonic region of the output function).  It has no 
constant observer gain feasible solution when the entire SOC range is considered. Further, several 
other nonlinear observer design methods from literature were also shown to fail in designing a 
stable observer with a feasible observer gain for this application.  The non-monotonicity challenge 
was then addressed by designing a hybrid nonlinear observer that switches between several 
constant observer gains.  In each constant-gain region, the observer is designed to be stable using 
a Lyapunov function and an LMI-based design technique.  The overall stability of the switched 
system is guaranteed by ensuring overlap between regions and an adequate dwell time between 
switches.     

The performance of the observer was evaluated first through simulations using a high-fidelity 
battery model and then through experiments. The performance of the nonlinear observer was 
compared with that of an extended Kalman Filter, which would traditionally be used for SOC 
estimation. Simulation results with the high-fidelity model showed that with no model uncertainty 
and not accounting for hysteresis, the nonlinear observer provides estimates with an RMS error of 
1.1% and a maximum error of 3.6%.  The EKF performs better when there is NO model error, 
providing an RMS error less than 1% and a maximum error of only 2%.  However, it has 
continuously varying gains, unlike the nonlinear observer which switches between only five 
constant gains. 

The nonlinear observer shines when model error is introduced into the system.  In the presence 
of model error in slope change points, the EKF becomes unstable for even very small errors in the 
output curves.  The nonlinear observer, on the other hand, continues to perform very well, 
providing accurate estimates and never becoming unstable. 

The experimental results verified the observations from simulation and the EKF was found to 
become unstable due to model errors even in the experimental data, while the hybrid nonlinear 
observer continued to work reliably for this SOC estimation problem. 

In conclusion, it is worth mentioning that the variability of the bulk force vs. SOC relationship 
with temperature and humidity, and its variation with time over the battery life remain to be 
studied.   This paper assumed that the expansion with respect to each half cell is invariant as the 
cell ages, but a loss in active material or cycleable lithium could cause the shape to change with 
respect to SOC as the battery ages according to [28]. These studies will be considered by the 
authors for future work. 
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