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ABSTRACT

Elucidating the process by which a biological system evolves and properly iden-

tifying hidden states and influential underlying factors are important for studying

biological functions and origins of diseases. However, due to the small length and

time scale of many biological systems, these evolution processes are “invisible” under

current microscopy techniques. The goal of this dissertation is to provide mathemat-

ical and computational models to help re-construct the dynamics inside biological

systems from limited experimental observations and aid the understanding of sys-

tem properties. Three different types of models were developed using first principles,

mathematical abstraction and data-based statistical inference.

To describe the dynamical transport of intracellular cargoes and reveal underlying

factors that impair transport efficiency, a multi-physics stochastic model is developed

based on first principles and solved by Monte Carlo simulation. In the model, the

transport of a cargo by multiple kinesin motors along tracks (microtubules) is sim-

plified as a spherical cargo being moved forward by several non-linear springs along

cylindrical and intersecting tracks. The thermal diffusion of cargo, walking motion

of motors, and interactions between cargo, motors and tracks are considered based

on fundamental physics laws. Using the model, comprehensive collective behaviors

of motor kinesins influenced by the topology of tracks were uncovered and studied

based on macroscopic experimental observations such as the transport directions and

pausing time at track intersections.

To connect the macroscopic particle distribution with its microscopic properties,

xviii



such as particle moving direction and speed, a generalized random walk model is in-

troduced. Particularly, the influence of directional heterogeneity (i.e. probability of

moving along θ direction is non-uniformly distributed between 0 and 2π) on particle

diffusion coefficient and mean square displacement is studied. We observed that when

directional heterogeneity only depends on space, particle performs normal diffusion

with directed drifting. Including the correlation between directional persistence (i.e.

probability of maintaining current moving direction) and particle speed leads to Fick-

ian but non-Gaussian particle diffusion. Furthermore, the self-reinforced directional

persistence leads to superdiffusive motion of particles. The generalized random walk

model can be used as a mathematical abstraction of the movements of many biolog-

ical particles, such as cell migration and intracellular protein diffusion. Given the

macroscopic distribution of biological particles, the proposed model provides insights

about their moving speed and directional persistence.

In the end, an image-based tissue profiling and trajectory inference algorithm is

developed. This algorithm extracts morphological and intensity features from tissue

images fixed at discrete time points. By projecting high-dimensional feature data set

to new coordinates based on tissue similarities, the algorithm helps reduce systematic

noise coming from the tissue heterogeneity and inference a continuous developmen-

tal trajectory. Following the trajectory, the bifurcating expressions of proteins were

predicted and applied to understand tissue development dynamics. In particular,

the developmental progression of embryonic-like tissues, including the morphological

changes and appearance of new cell types, are studied based on the algorithm.
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CHAPTER I

Introduction

1.1 Overview

One important goal in biomedical science is to achieve predictable understanding of

functions and mechanisms involved in living cells, tissues and even whole organisms.

To date, much effort has been directed toward understanding static “snapshots” of

biological systems from microscopy. For example, fluorescent images of cells and tis-

sues are widely used to characterize cell types and their spatial organizations [9]. The

conformation of nano-size molecules and proteins is visualized based on X-ray crys-

tallography [10]. In reality, however, living systems dynamically alternate between

transient sub-states. Many biological functions and biochemical mechanisms largely

depend on the temporal regulation and spatial compartmentalization of the dynam-

ical system. For example, static microtubules (MTs) are aligned along the neuronal

axon to support transport of proteins, while dynamic MTs, which undergo continuous

polymerization and depolymerization, accumulate at neuronal growth cone to produce

forces for axonal elongation [11, 12]. Therefore, besides the information acquired

from discrete image snapshots, mathematical and computational tools are developed

to elucidate the continuous evolution of the structure and morphology and predict

long-time associated functions and rare events. In this dissertation, three types of

mathematical and computational tools are developed to understand the multi-scale
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dynamical biological systems. Specifically, a multi-physics computational algorithm

is built based on first principles to understand the intracellular transport dynamics

mediated by kinesins. A coarse-grained probabilistic model is proposed for particle

diffusion and transport. It can be applied to investigate cell migration dynamics. Fur-

thermore, a statistical data-driven method is applied to inference the morphological

and proteinomic bifurcating development of embryonic-like tissues. In the following

sections in this chapter, I am going to introduce the background biology knowledge

related to intracellular transport, cell migration and development of embryonic-like

tissues. At the end of this chapter, the major contribution of this dissertation is

summarized.

1.2 Intracellular transport (axonal transport)

Adult-onset neurodegenerative diseases (AOND) contains a group of neurological dis-

orders, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) and

Huntington’s disease (HD). In the past decades, studies based on post-mortem brains,

animal models and in vitro cultured neuron cells have revealed that a certain popula-

tion of neurons, which usually extend axons to distant targets, undergo a gradual loss

of functions and connectivity at the early stage of AOND diseases [13, 14, 15]. The

AOND pathology begins many years before the emergence of cognitive impairment

symptoms. Understanding the pathogenic mechanisms of AOND diseases through

molecular and genetic aspects can help develop biomarkers for early diagnosis as well

as providing insights to therapeutic interventions.

The causes of neuronal dysfunction and disconnection at the early stage of AOND

appear multifactorial. The defective axonal transport, which leads to the accumula-

tion of phosphorylated neuronal proteins in the proximal axons, is a primary hallmark

during the disease progression [13, 16, 17, 18]. The axonal transport refers to a group

of intracellular trafficking events that happen inside neuronal axon to deliver syn-
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thesized organelles and proteins, remove degraded and misfolded materials and help

maintain structural and functional heterogeneity and integrity among axonal and

dendritic subdomains. The axonal transport is achieved by groups of molecular mo-

tor proteins, including kinesin, dynein and myosin, moving along the microtubules

(MTs) (Figure 1.1 a). Specifically, MTs are long, hollow cylindrical shape and made

up of many α- and β-tubulin heterodimers. α, β-tubulin dimers undergo continuous

polymerization and depolymerization at the two ends of the MT. One MT end has

α-tubulin exposed. This end points toward cell body and grows slow, which is defined

as the minus end. Another end has β-tubulin exposed and points toward the axon

tips and grows fast, which is the plus end (Figure 1.1 b). Motor proteins on the

MT, including kinesin, dynein and myosin, convert chemical energy from Adenosine

triphosphate (ATP) to mechanical motions of intracellular cargoes. Kinesin-1 (con-

ventional kinesin) walks toward the plus end of the MT (anterograde transport) in a

step-wise fashion. In this dissertation, kinesin-1 is referred to as kinesin. Kinesin has

two heavy chains and two light chains. Each heavy chain contains a globular head

domain, a neck linker, a α-helical stalk and a tail. The head domain interacts with

MT and ATP. The tail domain connects to the kinesin light chain and modulate the

binding to the cargoes, as shown in Figure 1.1 c [19]. Dynein moves in the opposite

direction along the MT (retrograde transport). Dynein has two heavy chains interact

with the MT and a doughnut-shape head responsible for the force-generating ATPase

activity [20]. Myosin walks along the actin filaments enriched in nerve terminals and

is involved in retrograde transport and cellular force generation [21].

Most current studies about deficit axonal transport focus on investigating how the

binding affinity between motor proteins, cargoes and MTs influence axonal transport

efficiency (quantified by transport speed and protein distributions) and what signaling

pathways are involved. The binding affinity between kinesin and its cargo is found

to be modulated by the phosphorylation of kinesin light chains and mutation of
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Figure 1.1: Axonal transport. a, Intracellular organelles and proteins are trans-
ported by molecular motor protein kinesin and dynein along the MT. b,
MT is comprised by many α, β-tubulin dimers. c, Electron microscope
image of the kinesin [1]. d, Schematic illustration of the structure of the
kinesin [2]. Kinesin contains two heads, a long stalk and two tails.

proteins which interact with kinesin light chains, such as c-Jun-N-terminal kinase

related proteins [22]. For example, in the model of AD, the depletion of kinesin

light chains increases the retrograde transport of amyloid precursor protein (APP),

enhances the production of toxic amyloid-β peptide and causes the axonal swelling

[23]. The binding affinity between kinesin and MT is found to be influenced by MT-

associated proteins and tubulin acetylation [16, 24]. For example, MT-associated

protein tau promotes the detachment of kinesin from MT. Under a high concentration

of tau proteins, the axonal transport is likely to be dominated by dyneins toward the

minus end of the MT, while a low concentration of tau facilitates the anterograde

transport by kinesins [25].

However, the axonal transport of cargoes is a complicated dynamical process that

involves not only the binding between cargo, MT and kinesin, but also generation

of mechanical forces and continuous motion of cargo-kinesin complex [26]. Until

now, most live cell imaging tools only allow capturing the static distribution of many
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fluorescent cargoes and the topology of MT networks where each MT is visualized

as a two dimensional line [27]. Based on the image information and pharmacological

perturbations, for example, Ali et al. found that compared with parallel MT bundles,

networks containing lots of intersecting MTs inhibit the growth of axonal tip. But

why and how transport gets impeded by disorganized structures is not understood

because of the difficulty of visualizing the movements of cargoes and motor proteins.

Uncovering high-resolution and dynamical structures of MTs and motor proteins,

such as the growth and shrinkage of MTs and walking of motor proteins, requires

advanced fluorescent labeling and imaging techniques. For example, Shaul et al.

analyzed the dynamical MT organization inside the motor neuron of C. elegans using

a self-developed light microscopy, and found that MT length and coverage area limits

transport efficiency by influencing the run length and pausing frequency of cargoes

[28]. Using total internal reflection fluorescence microscopy (TIRF), Brigette et al.

visualized the distribution of tau and MAP7 proteins along a MT inside neuronal

axon. They found that MT associated protein MAP7 can displace tau from MT

lattices and recruit kinesins to the MT [29].

Due to limited sources of advanced microscopy and extensive analysis required

to process specimens at various time points, little knowledge about the dynamical

transport process has been provided. Alternative methods, including computational

models and statistical inference algorithms, could be applied to assist the under-

standing of axonal transport. Specifically, at a length scale of sub-nanometer and

nanometer, the molecular dynamics based methods are used to study the evolution

of structure and inner stress of a motor protein when it walks along a MT during a

time interval of several hundred nanoseconds. For example, Wang et al. studied the

molecular origin of susceptibility to external force for a kinesin and found that the key

effect of external force on kinesin velocity is through controlling ATP releasing rate

from the MT [30]. At a length scale of sub-micrometer, the comprehensive structure

5



of a motor protein is simplified as a non-linear spring that can apply mechanical force

to the cargo when its heads move forward and the motor gets stretched. For exam-

ple, Bergman et al. simplified the transport system as multiple springs randomly

distributed on a spherical cargo. Motors attaching to and detaching from MTs are

regulated by constant rates. When motors attach to a track, it moves forward and

pull the cargo. Based on the model, they predicted probabilities of choosing different

transport directions or being trapped at MT intersections. The model predictions are

further verified based on in vitro cargo transport experiments [31]. At a large length

scale of several micrometers and millimeters, distinct axonal transport modes, includ-

ing fast and slow transport, anterograde and retrograde transport and diffusion, are

described based on multi-state transition models [32]. In practice, the hidden Markov

algorithm is applied to extract diffusive and transport states of axonal proteins based

on experimentally measured protein trajectories [33, 34].

1.3 Cell migration

Cell migration plays a critical role in the development of tissues and organs. The

migration of ill-regulated cell motility is often related to the onset of diseases, such

as tumor metastasis, wound healing and immunological responses [35, 36, 37, 38, 39].

For example, resistance to parasites, such as T. gondii in the central nerve system,

relies on T cells migrating within lymphoid tissues and targeting pathogens in sites

of inflammation [35]. Generally, studies about cell migration focus on two aspects,

single cell migration statistics and collective cell behaviors.

To understand the self-generated movements of single cells, in the experiments,

cells are cultured on 2D substrate or embedded in 3D gel matrix, and time series of

cell positions are acquired [40, 41]. Several studies further adjust the stiffness and

chemical gradient of extracellular environment to study durotaxis and chemotaxis

properties [41, 39]. It has also become feasible to track fluorescent protein expressing
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cells in animal models by multi-photon imaging and measure their migration trajec-

tory [35, 36]. Based on the trajectory, the mean square displacement (MSD) as well

as the probability distribution of displacements are calculated over time and used as

identifiers of migration statistics. It has been found that for some types of cells, the

MSD of cell displacement is superlinear with time and the displacement distribution

is non-Gaussian [42, 35, 43, 38]. The anomalous migration statistics usually indicate

specific cell properties and functions, and can be used to understand disease related

mechanisms. For example, Harris et al. showed that the MSD of antigen-specific T

cells grows with time approximately as t1.4, and the displacement probability distri-

bution diverges from Gaussian (i.e. the probability of large displacements is much

larger than Guassian). The large displacements help improve the efficiency of finding

rare pathogens by reducing oversampling [35].

The collective migration within a confluent cell sheet preserves glassy-like dynam-

ics. At short time, each cell is constrained by the crowding of neighboring cells and

maintain fixed and solid-like property. At longer times, cell sheets flow like fluid.

The transition between fluid-like and solid-like states is reminiscent of the glass tran-

sition (thus named as glassy-like dynamics). The glassy transition is determined by

properties of cells and environments [44, 45, 46, 47, 48, 49]. For example, Vedula et

al. showed that changing environmental constraints surrounding the cell sheet can

lead to distinct migration modes. They found that cells migrating inside a narrow

strip show contraction-elongation type of motion, while cells in a wide strip form

large-scale vortices [47].

1.4 Development of embryonic-like tissues

During the second week of embryonic development, the embryo attaches to the uterine

wall of the mother and undergoes consecutive morphological and genetic changes. By

the end of second week, the amniotic cavity and yolk sac are formed and the dorsal-
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ventral and anterior-posterior body axes (Figure 1.1 a) are established. Specifically,

at around day 5, the structure growing from a fertilized egg, referred to as blastocyst,

contains a fluid-filled cavity surrounded by a layer of trophoblast cells. At one side of

the cavity, there is an aggregate of cells, referred to as inner cell mass. The inner cell

mass then differentiates into epiblast cells and hypoblast cells, where epiblast cells are

located near trophoblast cells and hypoblast cells are near the cavity. Epiblast cells

start to secret proteins and ions into cell-cell boundaries. Due to osmotic pressure

balance, fluid enters into cell boundaries and drives the formation of a cavity, the

amniotic cavity, inside the inner cell mass. At the same time, proteolytic enzymes

secreted by trophoblast break down the extracellular matrix in the endometrium. Tro-

phoblast cells begin penetrating into the space between endometrial cells and pulling

the embryo into the uterine wall. At around day 12, cells between trophoblast and

amniotic cavity differentiate into a thin and squamous membrane. The membrane,

named as amniotic epithelium, is one of the four extraembryonic membranes and its

appearance represents the development of dorsal-ventral body axis. The dorsal side

is close to the amniotic membrane and the ventral side has columnar epiblast cells.

Hypoblast cells migrate and form primary yolk sac. At the end of the second week,

a longitudinal midline structure, the primitive streak, is formed at the posterior side.

The formation of primitive streak represents the onset of gastrulation. During gas-

trulation, epiblast cells ingress along primitive streak and form definitive endoderm

and mesoderm (Figure 1.2).

To understand mechanisms that drive embryogenesis and development of body

axes in mammals, animal models such as embryos of mouse and cynomolgus mon-

key are used. In mouse model, embryos at different stages are collected from timed

mating of outbred mouses or genetic mutant mouses. For cynomolgus monkey, a

series of reproductive technologies, including oocyte collection, sperm injection, pre-

implantation embryo culture and transfer embryo into foster mother, are performed.
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Figure 1.2: Embryonic development during post-implantation period. a,
Schematic illustration of dorsal-ventral and anterior-posterior body axes.
b, Developmental landmarks of pre-gastrulation embryonic development,
including lumenogenesis, amniogenesis and gastrulation.

Afterwards, embryos are recovered from the uterus and analyzed by dissection mi-

croscopy and histological examination [4]. Based on the loss- or gain-of-function

assays, it has been found that Nodal signaling, BMP/TGFβ signaling and WNT sig-

naling are critical in the development of dorsal-ventral and anterior-posterior axes

in mouse. For example, in the posterior side of mouse embryo, the extraembryonic

ectoderm secretes BMP, which activates regulatory pathway of WNT and activates T

expression, and later form primitive streak. At the anterior side, the anterior visceral

endoderm secretes nodal antagonists CER 1 and DKK1 to regulate the epiblast pat-

terning (Figure 1.3 a). The structure of pre-gastrulation monkey embryo is different

from the mouse embryo but more similar to human embryo. Some recent immunos-

taining and sequencing data suggests that BMP and Nodal signaling might also play

important and similar roles in regulating anterior and posterior patterning in monkey

embryo (Figure 1.3 b). However, until now, no fundamental assays have been success-

fully conducted to confirm the role of BMP and Nodal signaling nor providing other

mechanistic understanding about amniogenesis and gastrulation of monkey embryo.

Due to the limited sources of human embryos and ethical issues, synthetic em-

bryonic models generated based on human pluripotent stem cells have been proposed

as an alternative method for studying the early human development in recent years

[50, 51, 52, 53, 54]. Human pluripotent stem cells, including embryonic stem cells

9



Figure 1.3: Signaling activities which lead to the spatial patterning in the embryos
of a, mouse [3] and b, cytonomolgus monkey [4]. ExE: extraembryonic
ectoderm; Epi: epiblast; VE: visceral endoderm; AVE: anterior visceral
endoderm; TB: trophoblast.

(ESC) and induced pluripotent stem cells (iPSC) share molecular similarity with

post-implantation epiblast cells, and have the ability to self-renew and give rise to all

cell types of tissues and organs [55]. Yue et al. showed that human embryonic stem

cells are able to self-organize into spherical aggregates and then undergo processes

similar to in vivo lumenogenesis and amniogenesis [50, 51]. Simunovic et al. stud-

ied the spontaneous symmetry breaking and the development of anterior-posterior

axis in ESC spheroids uniformly exposed to a small dose of BMP [53]. Furthermore,

using microfluidic devices, Zheng et al. presented a reliable model for generating

asymmetric amniotic sac by applying BMP to one side of the cell aggregates [52].

1.5 Dissertation contribution

During my PhD, I focus on developing mathematical (statistical) and computational

tools to help elucidate hidden dynamics in above-mentioned three biological systems,

and reveal underlying biological functions of cellular patterns or intracellular struc-

tures. Compared with the traditional biological assays, these approaches view biolog-

ical observations from a different angle and provide new insights about fundamental

mechanisms.

• In chapter II and III, I will discuss a multi-physics dynamical model of kinesin-
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mediated cargo transport. This model, for the first time, captures the 3D diffusive

motions of cargo and kinesins, and their interactions within different topology MTs,

with an acceptable computational cost. We demonstrated the feasibility and flexi-

bility of the model for studying mechanisms that reduce cargo transport efficiency

and lead to transport defects.

• In chapter IV, I will introduce a generalized persistent random walk model for con-

necting microscopic particle motion with macroscopic distribution and diffusion

properties. This model, for the first time, considered the effects of angular het-

erogenity on particle diffusion and transport. We further discussed how the spa-

tial dependent angular heterogeneity and the self-reinforced angular heterogeneity

(with memory) lead to anomalous diffusion phenomena.

• In chapter V, I will discuss an image-based tissue profiling approach for revealing

the dynamics of embryonic-like tissue development. A pipeline is developed to ex-

tract topological and intensity features from fluorescent images of embryonic tissues

fixed at discrete time points. A continuous bifurcating developmental trajectory

is inferred from discrete tissue samples. By mapping protein expressions to the

trajectory, proteinomic variations can be acquired and used to understand factors

that drive the bifurcation and symmetry breaking during development.
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CHAPTER II

Intracellular Cargo Transport Influenced by

Microtubule Topology

2.1 Abstract

Kinesins transport a variety of cargo along microtubules (MTs) in the cytoplasm.

Although much is known about the walking of a kinesin along a single MT, the

effects of the spatial distribution of MTs on kinesin-mediated transport has not been

sufficiently understood and quantified. In this study, we present a 3D stochastic

multi-physics model to study the dynamics of a kinesin in the presence of multiple

MTs. In the model, the Brownian diffusion of the cargo, mechano-chemical dependent

kinesin walking, and binding and unbinding of the kinesin are considered. Specifically,

a stress-influenced chemical kinetics was used to describe changes in the walking and

unbinding of a kinesin due to the intersecting MTs. In addition, the binding of a

kinesin to MTs were calculated using a spatial marching method. Our model predict

a significant disturbance in the transport of kinesin when the distance between two

intersecting MTs is close to the radius of the cargo and the intersection angle between

MTs is large. Moreover, we found that a longer kinesin is more likely to maintain the

transport at the MT intersections.
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2.2 Introduction

Cells rely on cytoplasmic motors to deliver important proteins and organelles to

their specific locations. Kinesin-1 is a major cytoplasmic motor that walks along

microtubules (MTs) to transport cargoes through crowded cytoskeletal structures.

Cytoskeletal tracks such as MTs and actin filaments influence the dynamics of kinesins

and the characteristics of intracellular transport [56, 57, 58]. For example, in epithelial

cells, MTs form web-like networks to support endocytosis and transcytosis processes

[59]. In the initial segment of the neuronal axon, MTs and actin filaments function

as active filters, which selectively segregate axonal and somatodendritic components

by blocking their diffusion and transport [60]. Disorganized cytoskeletal structures

disrupt intracellular transport and can cause or contribute to various diseases such

as amyotrophic lateral sclerosis [61, 62]. Until now, it is still not clear what are the

underlying mechanisms that allow kinesins to accurately navigate through a maze of

MTs. It is also critical to investigate if cells can control the delivery of intracellular

proteins and organelles by adjusting the topology of the cytoskeletal network.

Several researchers have studied kinesin walking along a single isolated MT [63,

64, 65]. However, in the presence of neighboring MTs, the motion of kinesins ob-

served in experiments is different. The transport of cargo is slowed down. Occasional

switching in the walking directions and pausing are observed [7]. The multidirec-

tional motion of cargo is usually explained as a consequence of tug of war of multiple

motors [66, 67, 68], in which motors walking toward the different directions pull a

common cargo in an antagonistic fashion. However, some observations in previous

experiments cannot be explained by the tug of war perspective. For example, Ross et

al. [7] observed that cargo transported by a single kinesin also switched its transport

direction at MT intersections. By tracking cargo trajectories in vivo, the position of

neighboring MTs was revealed to influence the motion of cargoes significantly [69].

Even for the same topology of MTs, cargoes of different sizes also showed different
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dynamics [60, 57]. Moreover, David Breuer et al. observed the wiggling behavior of

cargo during the transport in cytoskeleton networks [70]. These observations suggest

that other regulatory mechanisms exist to generate the diverse transport dynamics.

And the dynamics is highly correlated with the interactions of motors and crowded

environments.

In chapter II and III, I discuss the Monte Carlo based computational models

developed to study the kinesin-mediated transport dynamics in different topology of

MTs. Chapter II (single-kinesin model) focuses on the effects of the MT topology on

the dynamics of a single kinesin. Chapter III (multi-kinesin model) investigates the

collective transport dynamics of many kinesins inside the MT crowded environment.

In the single kinesin model, first, a mechano-chemical cycle with transition rates

influenced by the stress inside the kinesin is used to describe the stochastic walking

motion of the kinesin. Second, the stochastic unbinding of the kinesin from an MT

is predicted by calculating the unbinding probabilities at different chemical reaction

states. Third, the Brownian diffusion of the cargo and kinesin heads are considered

and the stochastic binding of the kinesin to the MTs is calculated based on the spatial

marching method.

The single-kinesin model provides insights into transport dynamics influenced by a

neighboring MT. We found that a perpendicularly intersected MT has a considerable

influence on the transport dynamics when the distance between two MTs is close to

the cargo radius. In addition, MTs pointing toward different directions disrupts the

transport by increasing the pausing probability. Moreover, a longer kinesin cargo

linker could improve the ability of the kinesin to overcome the intersection of MTs.

2.3 Model and method

The cargo transport has two distinct modes, the active transport mode and the

passive diffusion mode. When a kinesin binds to both the cargo and the MT, it walks
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Figure 2.1: Active transport of the cargo by a kinesin molecule along the
MT. (A) Kinesin contains a long cargo linker and two heads. Kinesin
heads attach to two α-tubulin subunits on the microtubule and walks in
a step-wise fashion forward. (B) The mechanochemical cycle on kinesins
heads. After completing one mechanochemical cycle, kinesin moves on
step (8 nm) forward.

along the MT and actively transports its cargo toward the plus end of the MT. This

motion is referred to as the active transport mode. The kinesin occasionally unbinds

from the MT. After unbinding, the kinesin-cargo complex moves with Brownian mo-

tion until the kinesin binds to a new binding site on the MT. This motion is referred

to as the passive diffusion mode. The transition between the active transport and

passive diffusion modes depends on the kinesin binding and unbinding probabilities

to and from MTs.

2.3.1 Active transport

In the active transport mode, kinesin walks on the MT in a step over step fashion.

In each step, an ATP is hydrolyzed and the duration of the ATP hydrolysis process

is characterized by a mechanochemical cycle (composed of three states, [K+ATP],

[K.ATP] and [K+ADP+Pi]), as shown in Figure 2.1. At state [K+ATP], the leading

head is in the nucleotide free state and strongly bind to the MT while another head

is loosely attached to the MT. Then, an ATP binds to the leading head and causes

a conformational change in the kinesin molecule. At state [K.ATP], the trailing

head diffuses to the next binding site and the stress caused by the conformational
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change is released. By dissociating ADP, the free head strongly binds to the next

binding site. At state [K+ADP+Pi], the ATP on the leading head is hydrolyzed into

ADP and phosphate. The probabilities of staying at states [K+ATP], [K.ATP] and

[K+ADP+Pi] are denoted as PK , PATP and PADP , respectively. These probabilities

are calculated as

d

dt
PK = −k0 cATPPK + k2PATP , (2.1)

d

dt
PATP = k0 cATPPK − k1PATP − k2PADP , (2.2)

d

dt
PADP = k2PATP , (2.3)

PK + PATP + PADP = 1. (2.4)

where cATP is the concentration of ATP. Transition rates k0 and k2 are assumed to

be constants. k1 is influenced by the magnitude of the force F in kinesin, because the

most susceptible state to the external load is when the ATP releases from the MT

bound head [30]. k1 is calculated based on the equation suggested by Hendricks et

al. [71] as

k1 = k10 exp

[
k11(

|F |
k11
− k12)2

2kB T

]
, (2.5)

k10, k11 and k12 are constant parameters.

At state [K.ATP], the short neck linkers of the two kinesin heads constrain the

reachable binding sites of the trailing head. The force F inside the kinesin influences

the probabilities of the trailing head to bind to a specific site. In 3D space, a kinesin

can step along both the longitudinal and tangential directions of the MT. Therefore,

the processivity of the kinesin, which is defined as the velocity of kinesin moving along

the longitudinal direction of the MT, is influenced by two factors, the stepping rate

(or the duration of a chemical reaction cycle) and the probability of the trailing head

to bind to a forward binding site along the longitudinal direction. In particular, a
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Figure 2.2: The stepping probability influenced by force F inside the kinesin
cargo linker.

coarse-grained mechanical model proposed in previous study [72] is used to calculate

the stepping probability when the stress inside the kinesin is F (Figure 2.2).

2.3.2 Passive diffusion

When kinesin unbinds from the MT, the kinesin-cargo complex moves with Brow-

nian motion. The transnational and rotational diffusion of cargo center (Xc and θc)

are calculated as

θc(t+ ∆t)− θc(t) = r(
√

2Dr∆t), (2.6)

Xc(t+ ∆t)−Xc(t) = r(
√

2Dtt). (2.7)

where Xc and θc are the translational and rotational position of cargo center. R is

the cargo radius; δ = 8.9× 10−4Pa · s is the fluid viscosity of water. Dt =
kBT

6πRδ
and

Dr =
kBT

8πR3δ
are the transnational and rotational diffusion coefficients, respectively.

r(σ) is a vector composed of normally distributed random numbers with standard

deviation σ and zero average.
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2.3.3 Transitions between diffusion and transport

The transition between active transport mode and passive diffusion mode is de-

termined by the binding and unbinding of kinesin. The force dependent unbinding

probability of kineins is calculated based on the Bell formula in several recent studies

[73, 74, 75, 31, 76]. Bell [77] first showed that the unbinding rate between a ligand

and its receptor is influenced by the force applied to pull the complex apart . The

unbinding rate follows the expression kub = ku0 exp(
fd

kBT
), where ku0 is the unbinding

rate without force. f is the magnitude of the force. d is the changes of the distance

of the ligand and receptor from the bound state to the transition state. In our model,

the unbinding probability is calculated at states [K+ATP] and [K.ATP] separately.

At state [K+ADP+Pi], the unbinding probability is negligible because both kinesin

heads strongly bind to the MT. The average time the kinesin spends at [K+ATP]

state is at millisecond level, while the average time for state [K.ATP] is at microsec-

ond level [78, 26]. Although the duration of state [K.ATP] is short, the unbinding

probability at [K.ATP] is not negligible, because at this state the affinity between

kinesin and MT is the weakest among the whole mechanochemical cycle. Thus, the

unbinding probability at state [K.ATP] is calculated as

Pub = Pu0 exp

[
|F |d0
kBT

]
, (2.8)

The unbinding at state [K+ATP] is described based on an unbinding rate kub (i.e.

unbinding probability per unit time). The unbinding probability Pub is calculated as

Pub(tu) = 1− e−kubtu , (2.9)

kub = ku0 exp

[
|F |d1
kBT

]
, (2.10)

Pu0, d0, ku0, d1, are constant parameters. tu is the total time since the kinesin

18



binds to the MT.

At each time step after unbinding, the kinesin diffuses with the cargo until it

rebinds to a new track. The binding of kinesins to a single MT is usually described by a

Poisson process with a constant rebinding rate kb, which was measured in experiments

to be 5 s−1 [79]. At the MT intersection, the binding rate is influenced by the relative

positions of kinesins and MTs. Thus, the probability of a free kinesinto bind to the

MTs is calculated as

Pb(tb) = 1− e−kbtb , (2.11)

kb = kb0
Vb
Vd
, (2.12)

where kb is the rebinding rate. Vb is the volume surrounding the MT where the kinesin

heads can bind, which is named as accessible binding volume of kinesin (ABK); Vd is

the volume where the kinesin heads can diffuse, which is named as accessible diffusion

volume of kinesin (ADK). tb represents the time interval from the kinesin unbinding

moment to current time.

The MT topology influences Vb and Vd. For example, in Figure 2.3 (A), the

kinesin cargo linker is fixed at position S0 on the surface of the cargo. For kinesin

heads diffusing and binding to a position on MT2 behind MT1, the kinesin cargo

linker needs to wrap around the surface of MT1. Thus, ABK and ADK are restricted

by the length of cargo linker and the MT topology. To numerically calculate Vb and

Vd, the entire space of the system is discretized into small cubes with volume ∆V .

The position of the center point of a cube is represented as (i, j, k), where i, j, and k

are the positions in the x-, y-, and z-directions, respectively. At time t = 0, point S0

lies in one of the cubes (i.e., S0 = (i0, j0, k0)). The ADK volume can be computed as

Vd =
∑
i, j, k

∆V · 1Lijk≤Lc (2.13)
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Figure 2.3: Influence of a perpendicularly intersected MT on ADK and
ABK. (A) The spatial influence of a neighboring MT1 on the trans-
port dynamics along MT2. In the presence of MT1, ADK and ABK are
reduced because the cargo linker has to wrap around MT1 and its effec-
tive length decreases (from Lc decreases to the distance between S0 and
E); this is referred to as the shadow effect of MT1. (B) Illustration of
the classification of locations used in the fast marching method in a 2D
space. By solving the upwind approximation of Eikonal equation for the
neighbor locations, the algorithm spatially marches out and calculates the
shortest path between starting point S0 and any other locations in the
2D/3D space. (C) Consecutive snapshots of ADK yz projections in the
presence of neighboring MT1. Black color represents inaccessible regions.
The color contours represent different values of Lijk. (D) The change of
ABK on MT2 due to the presence of neighboring MT1. The light color
represents accessible binding sites, while the black represents inaccessible
sites. The dotted gray lines are borderlines of binding sites. (E) His-
tograms of the volume of ADK and the volume of ABK around MT2
with and without neighboring MT1, which is a geometrical constraint
that reduces the ratio of ABK to ADK and changes the probability of
kinesin heads binding to MT2.
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where 1A is an indicator function. Lc is the length of the cargo linker, and Lijk is

the length of the shortest path from the initial grid node S0 = (i0, j0, k0) to grid

node (i, j, k), subject to the geometrical constraints caused by the MTs. The ABK

volume is calculated as

Vb =
∑
i, j, k

∆V · 1Lijk≤Lc& dijk≤d0 (2.14)

where dijk is the shortest distance from location (i, j, k) to the surface of any of the

nearby MTs. Kinesin heads are assumed to be able to bind to the MT when dijk is

smaller than d0 = 1nm.

To calculate the shortest path Lijk, Fermats principle was used, according to which

the path taken by a light ray between two points is the path that can be traversed

in the least time. Thus, the shortest path can be obtained by solving the wave

equation for virtual waves traveling from S0 to points on MT surfaces. A wave front

propagates from start point S0 = (i0, j0, k0) with unit propagation speed. The speed

for all geometrical constraints (e.g. place inside MTs or at the MT surfaces) are set

to zero. Then, time T (i, j, k) required for the wave front to reach point (i, j, k) can

be calculated by solving the Eikonal equation [80, 81]

|∇T (i, j, k)|fijk = 1 (2.15)

where T (i, j, k) is the propagation time to reach location (i, j, k). fijk, the propa-

gation speed at location (i, j, k), is 1 if location (i, j, k) is outside the geometrical

constraints and 0 otherwise.

The fast marching algorithm is used to solve the Eikonal equation [82]. This

algorithm classifies grids in the system into complete, neighbor, and far points. Grid

S0 is labeled as complete. The grids adjacent to a complete node are classified as the

neighbor points, while the remaining locations are labeled as far points. Figure 4(B)
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shows a schematic classification of locations in a 2D space. At each step, T values

of the neighbor grids are calculated. Neighbor points with the smallest T value are

updated as complete points. The T value of neighbor location (i, j, k) is obtained as

follows by solving the Eikonal equation [30]:

(max[D−xijkT (i, j, k)],−D+x
ijkT (i, j, k)])2+ (2.16)

(max[D−yijkT (i, j, k)],−D+y
ijkT (i, j, k)])2+ (2.17)

(max[D−zijkT (i, j, k)],−D+z
ijkT (i, j, k)])2 =

1

f 2
ijk

(2.18)

where D−xijk , D
−y
ijk, and D−zijk are the backward finite difference operators along the x-,

y-, and z-directions, respectively. In more detail, the algorithm can be expressed as

follows.

1) Initialization

Location (i0, j0, k0) is labeled as a complete location because T (i0, j0, k0) = 0

from the beginning. All the locations adjacent to the complete location (i.e., locations

(i0 ± 1, j0 ± 1, k0 ± 1)) are labeled as neighbor points, while the remaining locations

are labeled as far points.

2) Marching Loop

a) T (i, j, k) is calculated for all locations (i, j, k) labeled as neighbor points.

Next, locations (im, jm, km) with the lowest T value among the newly calculated T

values are determined. Then, the label at location (im, jm, km) is labeled as complete.

b) If grids (im±1, jm±1, km±1) are labeled as far points, their labels are updated

as neighbors.

3) Repeat the previous step (i.e., marching loop) until any location labeled as neighbor

reaches the boundary of the modeling space. Because a unit propagation speed is

used, T (i, j, k) = Lijk, which is the length of the shortest path between (i0, j0, k0)

and (i, j, k).
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Figure 2.4: ADK influenced by a neighboring MT. (A) Without a neighboring
MT (MT1 in Figure 2.3), the available diffusion volumes and available
binding positions are large. (B) The shadow effect of MT1. Available
diffusion volumes surrounding the original MT (MT2 in Figure 2.3) and
the available binding positions on the original MT are reduced.

Figure 2.3 (C) shows an example of ADK calculated using the fast marching

method. In the calculation, two MTs are perpendicularly attached. Starting point

S0 = (i0, j0, k0) is the location where the cargo linker binds on the cargo. The

color map represents the values of Lijk at each location (i, j, k). The black region

represents the inaccessible locations (i.e., locations in the MTs and locations where

Lijk > Lc). In the absence of MTs, the shape of the accessible diffusion region is a

sphere. When the cargo is close to the MT intersection, a longer distance is required

to reach the regions behind an MT because the cargo linker will wrap around the

surface of the MT. Thus, for example, in the third snapshot in Figure 2.3 (C), the

size of the accessible region behind MT1 and surrounding MT2 is reduced compared

to the size in the absence of MT1. A comparision of the ADKs with and without an

intersecting MT (MT1) is shown in Figure 2.4.

This reduction of the accessible region due to an MT is referred to as the shadow

effect because this phenomenon is similar to the shadow area behind an object due to

the diffraction of light. By using the fast marching method, we accurately calculated

the shadow effect of the neighboring MT (Figures 2.3 (D) and (E)). The results

indicate that approximately 30% of the ABK on the original MT (namely MT2)

becomes inaccessible. The volume of ADK is also reduced by approximately 10%.

In addition, new binding sites on the neighboring MT1 are accessible. Therefore,
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Figure 2.5: Force F inside kinesin cargo linker. The gray dots represent the
magnitude of F obtained through the model and the red line shows the
trend of data acquired by fitting the data with smooth splines. Before
the cargo reaches the intersected MT (i.e., t < 2.3s in (A) and t < 1.8s in
(B)), the force in the cargo linker fluctuates around 0 pN. The variation
in the force is caused by the kinesin walking. (A) For a large cargo,
after the kinesin meets the intersected MT, the magnitude of F increases
significantly owing to the interference between the cargo and the two
MTs. (B) For a small cargo, the interference between cargo and MTs has
negligible effects on the force F .

the probability of binding to the original MT2 and maintaining the previous walking

direction decreases, while binding to the intersecting MT1 becomes probable.

2.3.4 Force inside kinesin

The effective length of the kinesin motor is approximated by the distance between

the center of the two heads and the end of the cargo linker as |Xk − Xh|, where

Xk is the binding position between kinesin cargo linker and cargo surface (e.g. S0 in

Figure 2.3); Xh is the position of the center of two kinesin heads. The force inside

the kinesin caused by the extension of the kinesin motor is calculated as

F =
Xk −Xh

|Xk −Xh|
(|Xk −Xh| − Lk)Sk, (2.19)

where Lk is the unstretched length of the kinesin motor, and Sk is the stiffness of

the cargo linker. Note that, a cable-like linker is used in the model, because it

was observed in previous experiments that the stiffness of kinesin is an order of
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Unstretched length Lk 60 nm Stiffness Sk 0.3 pN/nm
Chemical reaction k0 0.0283 µM−1s−1 Unbinding ku0 2.65× 10−6s−1

Chemical reaction k2 98.875 s−1 Unbinding Pu0 0.01
Chemical reaction k10 32.921 s−1 Unbinding d0 0.0054 nm
Chemical reaction k11 3.302 pN/nm Unbinding d1 1.064 nm
Chemical reaction k12 1.2114 nm Rebinding kb0 1.3× 104s−1

Table 2.1: Parameters of the model.

magnitude lower for compression than for stretching [83]. In other words, F = 0

when |Xk −Xh| ≤ Lk.

k1, kub, and Pub are influenced by F according to Equations 2.5, 2.8 and 2.10. As

a result, large F slows down the transport and reduces the length kinesin can walk

before unbinding. Intracellular obstacles, such as MTs and proteins, can perturb

cargo diffusion and increase F . For example, when an 800 nm cargo encounters a

perpendicularly intersected MT, F increases to around 3.5 pN. Owing to the large

force in the cargo linker, k1, kub, and Pub increase. Thus, in front of an intersecting

MT, kinesin walks slower and is more likely to unbind from the original MT. The

influences of the intersecting MT on force F is size dependent. For small-sized cargoes

(e.g. 50 nm cargoes), they diffuse faster and are less likely to be trapped at the MT

intersection. Thus, force F acting on the small cargo is relatively small (Figure 2.5

(B)). Therefore, the cargo size can significantly influence the walking velocity and

unbinding probabilities of kinesin near a MT intersection.

In addition, a comprehensive algorithm used to calculate the walking motion of

kinesin influenced by the force F is provided as Algorithm 2.6.

2.4 Results

2.4.1 Parameters acquisition and model validation

When kinesin walks on a MT, the walking velocity and run length under various

external loads are measured in the experiments using optical tweezers [5, 6]. The
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Input: PK , PK.ATP , Xh, F , r1, r2, state
if state = 1 then

Update PK and PK.ATP based on Eqs. 2.1 - 2.4
if PK ≤ r1 then
state←− 2

end if
else if state = 2 then

Update Xh based on F and the stepping probabilities in Figure 2.2.
else

Update PK and PK.ATP based on Eqs. 2.1 - 2.4
if PK.ATP + PK ≤ r2 then

(PK , PK.ATP , state)←− (1, 0, 1)
(r1, r2)←− i.i.d Uniform (0, 1)

end if
end if

Output: PK , PK.ATP , Xh, r1, r2, state

Algorithm. 2.6: The walking motion of a kinesin. r1 and r2 are identical and
independent random variables uniformly distributed between 0 and
1. When the kinesin binds to the MT, PK is set to be 1, PK.ATP is
set to be 0 and state is set to be 1.
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Figure. 2.7: The walking dynamics of a kinesin on a single MT. (A) The walk-
ing velocity of kinesins over various ATP concentrations is predicted.
The circles, diamonds, and squares represent the experimentally mea-
sured data [5], and the solid lines represent results of the model. (B)
The walking velocity over various loads acting on the cargo when the
ATP concentration is 2 mM. The triangles and diamonds represent ex-
perimentally measured data (experiment 1 [5], experiment 2 [6]). The
dots and solid lines represent results obtained through the model, and the
gray bands indicate 95% confidence interval of the results of the model.
(C) Run length over various loads.

model is fitted to the force-velocity curves, force-run length curves and velocity-ATP

concentration curves to acquire values of parameters k0, k10, k11, k12, k2, ku0, d0, Pub

and d1. The parameter values are shown in Table 2.1 and the fitting results are shown

in Figure 2.7.

When the kinesin is close to the MT intersection, the binding and unbinding

probabilities of the kinesin can differ from the probabilities when the kinesin is far

from the intersection. To evaluate the changes of binding and unbinding rates due to

a MT intersection, previous observations on kinesin motion near 90◦ MT intersections

are used [7]. Figure 2.8 (A) shows the topology of the MT intersection in the model

and experiment. The bottom MT is bound to a glass slide via proteins whose length

is 135 nm. The glass slide is considered as a reflective boundary. The top MT is

perpendicularly attached to the surface of the bottom MT. The diameter of an MT

is set to be 25 nm [84]. The length of a MT varies from several hundred nanometers

to several micrometers [85]. In this study, the length of an MT is determined as 4
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µm to prevent the dynamics of kinesins near the intersection from being influenced

by the length of the MT. For a green fluorescent protein (GFP) cargo, the diameter

of the cargo is determined as 50 nm. For a bead cargo, the diameter of the cargo is

determined as 800 nm [7].

First, the motions of the kinesin when it passes the intersection by walking on the

bottom and top MT are named as underpass and overpass, respectively. Second, the

motion of the kinesincargo complex near the MT intersection is classified into four

types of dynamics: pass, pause, switch, and dissociate. If the cargo unbinds from

an MT and does not rebind to any of the two MTs for 1 s or longer, that motion is

defined as a dissociation. For a GFP-bound kinesin, the two criteria (i.e., 1 s and 300

nm) are used to differentiate motions. Specifically, the pass dynamics is defined as

the motion of a kinesin when it passes through the intersection and moves 300 nm

further on the same MT in 1 s. The switch dynamics describes the motion when the

kinesin reaches the intersection and moves 300 nm further on a different MT in 1 s.

If the kinesin stays near the intersection for 1 s or longer, the motion is defined as

pause. When the kinesin transports the cargo with a diameter of 800 nm, the time

and distance criteria used are 3 s and 1 µm. For example, passing is the motion when

the kinesin passes through the intersection and moves 1 µm further on the same MT

in 3s.

Experimental data of a GFP-bound kinesin underpassing the intersection is used

to obtain the unbinding and rebinding rates ku0 and kb0 at the intersection. The

result of fitting is shown in Figure 2.8 (B). The other three experimental results

(i.e., GFP-bound kinesin overpassing the intersection, kinesin bound to an 800-nm

cargo underpassing and overpassing the intersection) are used to validate our model,

as shown in Figure 2.8 (C). The probabilities of passing, pausing, switching and

dissociation are calculated by performing 100 simulations.

When the kinesin transports a small cargo, such as a GFP, the effect of a neighbor-
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Figure. 2.8: Transport dynamics at a 90◦ MT intersection. (A) Spatial orga-
nization of MTs and four types of transport dynamics (passing, paus-
ing, switching and dissociation) predicted by the model and observed in
experiments in [7]. The bottom MT is 135 nm above a glass slide (nu-
merically represented as a reflective boundary condition). Projecting on
the xy plane, four types of dynamics are defined based on the motion
of kinesins, represented by arrows. (B) Model training; experimental
data of the GFP-bound kinesin starting from the bottom MT is chosen
as the training set to fit the model parameters. (C) Model validation;
the fitted model predicted similar transport dynamics through the val-
idation dataset (GFP-bound kinesin overpassing the intersection, and
the kinesin bound to an 800-nm cargo underpassing and overpassing the
intersection).
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ing MT on the motion of the kinesin cargo complex is small. The Brownian motion

of the cargo does not change considerably because of the neighboring MT. Force F

fluctuates around 0 pN (Figure 2.5 (A)). The active transport velocity and unbinding

probability are less influenced. Thus, the passing probability is larger than 0.5. And

the probabilities of passing, pausing, switching and dissociation are similar in both

underpass and overpass situations, as shown in Figure 2.8 (B) and (C). In addition,

compared to a large cargo situation, the probability of dissociation is relatively large

because small cargo diffuses faster and is likely to move away from the two MTs and

dissociate.

When the kinesin transports a large cargo with a diameter of 800 nm near the

intersection, the neighboring MT disrupts the cargo motion and changes the active

and passive modes. The dynamics in the underpass and overpass are different. In the

underpass situation, the neighboring MT increases the unbinding of kinesin from the

original MT. The ABK on the original MT is reduced and more binding sites on the

neighboring MT are accessible to the kinesin. Thus, kinesin is more likely to switch

to the neighboring MT. In the overpass situation, the cargo is above the two MTs.

Force F in the cargo linker and the accessible binding sites on the original MT are

less influenced. Thus, the probability of passing the intersection is high. Note that

the effects of the cargo size on the ratio of ABK and ADK are very small because this

ratio is mostly affected by the cargo linker length and MT diameter. However, the size

of cargo can influence force F inside the cargo linker (Figures 2.5 (B)). For example,

when a large cargo is trapped at the MT intersection in the underpass situation,

the magnitude of F increases, the walking velocity is reduced, and the unbinding

probability of the kinesin is increased. Therefore, the dynamics of an 800 nm cargo

is different from the dynamics of a GFP cargo in the underpass situation.
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Figure. 2.9: Influence of distance H between two intersected MTs on the
transport dynamics. (A) The relative position of the two MTs is
characterized by distance H between the center lines of the two MTs
and polarity difference β. (B) Transport dynamics over H. The shape
and color of the markers represent the four types of dynamics (pass,
pause, switch and dissociation).

2.4.2 Influence of an arbitrary microtubule

The position of an arbitrary neighboring MT can be characterized by the distance

H and polarity difference β (Figure 2.9 (A)). Polarity difference β is defined as the

angle between two intersected unidirectional MTs. When the polarity of two MTs is

the same, β = 0◦. When the two MTs are aligned in the opposite directions, β = 180◦ .

H is defined as the distance between the center lines of the two MTs minus the radius

of two MTs. When the MTs are linked through cross-bridge proteins in vivo, distance

H varies from 0 to 100 nm [86]. In the absence of the cross-bridge proteins, H can

vary over wider ranges, from hundreds of nanometers to several micrometers. When

the cargo of interest has a diameter of 800 nm, the value of H smaller or similar to 800

nm can interrupt the transport. Thus, in this study, H ranges from 0 to 1,000 nm.

Figure 2.9 (B) shows the change in the transport dynamics over distance H. In the

overpass situation, H has a small influence on the transport. In this case, kinesins are

likely to pass the intersection and maintain the transport direction. The variations

in the probabilities at small H values are caused by the interrupted Brownian motion

of the cargo.

In the underpass situation, the transport dynamics are significantly affected by
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Figure. 2.10: The influence of polarity difference β between two intersected
MTs on the transport dynamics. (A, B) Probabilities of pass-
ing, pausing, switching and dissociation at the intersection. (C) The
schematic illustration of the asymmetric motion with respect to β = 90◦

in the underpass situation. The unbound cargo-kinesin complex tends
to move with Brownian motion B rather than motion A. When the
kinesin rebinds to the top MT, it walks toward the intersection when
β > 90◦ and walks away from the intersection when β < 90◦. When the
kinesin reaches the MT intersection again, it could pause, dissociate, or
switch.

H. That is, when H < 400nm (i.e., smaller than the cargo radius), the number of

accessible binding sites on the original MT is reduced, whereas the number of acces-

sible binding sites on the neighboring MT is increased. The probability of switching

to the neighboring MT is large. When H > 400nm, the accessible binding sites on

both MTs are reduced. The probability of switching decreases and the probability of

pausing in front of the neighboring MT increases.

MT polarities play an important role in axonal growth and guidance. Inside

the growth cone of a healthy neuronal axon, MTs are aligned parallel to the axonal

axis. In impaired neuronal axons, more than a half of the MTs are distributed with

intersection angles larger than 30◦ [87]. This distribution interrupts the transport

of intracellular cargoes such as mitochondria and vesicles. Then, the axons stop

growing and their growth cones convert into retraction-bulb-like structures. These

experimental observations suggest that MTs organized with a large polarity difference

affect the cargo transport and axonal regeneration process. Here, our model predicts
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how the polarity difference β changes the cargo transport dynamics. Figures 2.9

(A) and (B) show the quantitative evaluation of the effects of intersection angle β.

In the overpass situation, the motion of cargo is less influenced by the intersecting

MT. Kinesin is likely to walk on the original MT and pass the intersection. In

the underpass situation, kinesin frequently switches between two MTs owing to the

shadow effect of the neighboring MT. The switching probability is large. When

β = 90◦, the switching probability is the largest because once the kinesin binds to the

neighboring MT, the cargo is transported away from the original MT. The probability

of the kinesin switching back to the original MT is small. Moreover, the switching

probabilities are not symmetric with respect to β = 90◦. The switching of kinesin

depends on the unbinding motion, rebinding motion, and rebinding position. The

unbinding of kinesin is affected by the topology of the intersection. Suppose β̃ is the

angle between 0◦ and 90◦ . Then, the MT intersection with angle β1 = 90◦ − β̃

and the MT intersection with β2 = 90◦ + β̃ are symmetric about 90◦ . For both β1

and β2, the topology of the intersections are the same, as shown in Figure 2.10 (C).

Thus, both MT intersections affect the unbinding of kinesin with the same amount.

However, effects of the intersections on the rebinding of kinesin are different. When

the kinesin unbinds at the intersection, its cargo could move with Brownian motion A

or move with Brownian motion B, which are depicted in Figure 2.10 (C). However, the

unbound cargo is more likely to move with motion B due to the interference between

the cargo and the MTs. When β = β1(< 90◦), the cargo is likely to rebind on a

point close to the plus end of the top MT, as shown in Figure 2.10 (C1). Then, the

kinesin walks away from the intersection, which can be classified as switch motion.

In contrasts, when β = β2(> 90◦), the cargo is likely to rebind on a point close to the

plus minus of the top MT, as shown in Figure 2.10 (C2). Then, kinesin walks toward

the intersection again. Thus, this walking motion reduces opportunity of switching.

This difference leads to the asymmetric switching in the underpass situation.
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Figure. 2.11: Influence of cargo linker length Lc on the shadow effect and
transport dynamics. (A) The cargo and kinesin heads are connected
through the cargo linker. (B) The volumes of ADK and ABK increase
with the cargo linker length. (C) The probabilities change over the
cargo linker length both for underpass and overpass situations. In the
model, the kinesin transports 800 nm cargo toward a 90◦ intersection.
The distance between two intersected MTs is 100 nm. A longer cargo
linker reduces the shadow effect of a neighboring MT and increases the
passing and switching probabilities.

2.4.3 Influence of the cargo linker length

The shadow effect of a neighboring MT is not only influenced by the position of

the MT but also by the MT diameter and cargo linker length. Although the diameter

of MTs is almost constant, the cargo linker length can differ depending on the type

of molecular motors. For example, myosin has a longer cargo linker of approximately

160 nm, including the head and tail domain. Myosin can walk on the actin filaments

through very complicated dynamics [88]. For the same type of motor, the cargo linker

length can change with mutations [89]. This section quantitatively describes the effect

of the cargo linker length on the shadow effect and transport dynamics.

Figure 2.11 shows the variation in the volumes of ABK and ADK and changes

in the passing, pausing, switching and dissociation probabilities at the intersection

over different cargo linker lengths Lc. With a longer cargo linker, kinesin heads can

diffuse further to explore available binding positions. In the overpass situation with a

short cargo linker length, the probabilities of dissociation and pausing are large, and

the probabilities of passing and switching are small. When the cargo linker length
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increases, kinesin is more likely to reach the binding sites even when the cargo is not

close to the MTs. Thus, the probability of dissociation decreases and the passing and

switching probabilities increase. In the underpass situation, the transport dynamics

is very complicated because the cargo linker length influences the reachable binding

positions and the probability for a cargo encountering a neighboring MT when the

kinesin is still away from the MT intersection point. Our model predicts the decrease

in the probability of dissociating over the cargo linker length and the increase in the

probability of passing. The probabilities of pausing and switching show nonmonotonic

changes.

Overall, a kinesin (or other type of motors) with a short cargo linker is susceptible

to the neighboring MT. The increase of the cargo linker length may potentially help a

kinesin overcome the hindrance effect of the neighboring MT but also bring complexity

in transport dynamics.

2.5 Conclusions

In the present study, we developed a 3D multiphysical model to study the mi-

croscopic dynamics of a kinesin-mediated transport influenced by a neighboring MT.

Our model accurately captured the interference of a neighboring MT on kinesin walk-

ing, binding and unbinding dynamics, and predicted several key mechanisms of the

kinesin-mediated transport.

First, the perpendicularly intersected MT affects the mechano-chemical cycles on

kinesin heads by increasing the stresses in the cargo linker. The speed of the cargo

transport decreases, and the kinesin unbinding occurs frequently. Moreover, cargoes

in a MT-crowded environment move in different manners compared to the Brownian

diffusion with external drifting force. The velocity and direction of cargo transport

highly depends on the topology of the MT intersection, cargo linker length, and cargo

size.
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Second, a neighboring MT influences the transport characteristics, such as the

pause-and-go choice and transport direction. The shadow effect of a neighboring

MT reduces the number of available binding sites on the original MT and increases

the probability of switching to other MTs. Moreover, our model quantitatively pre-

dicted the effects of an arbitrary neighboring MT on the transport. The effects are

considerable when the distance between two MTs is similar to the cargo radius and

the polarity difference is large. Furthermore, we showed that the disruption of a

neighboring MT can be reduced if the cargo linker is longer.

Our work discussed the effects of a neighboring MT on the comprehensive cargo

transport dynamics at the molecular scale. The phenomena, such as the influence

of the separating distance and the intersection angle on the passing and switching

probabilities, predicted by our model are necessary for future studies of transport

through the cytoskeleton network. Our model can be further improved to study the

transport by multiple kinesins in the presence of several MTs and obstacles. Effects

of intracellular particles, such as proximal cargoes or large-size proteins, can also be

predicted by including the interactions between cargoes and the particles. In addition,

it is worthy to note that this model can be extended to investigate how the evolution

of the cytoskeleton structures modulates the intracellular transport.
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CHAPTER III

Collective Transport by Multiple Kinesins

3.1 Abstract

The transport of intracellular organelles is accomplished by groups of molecular

motors, such as kinesin, myosin and dynein. Previous studies have demonstrated that

the cooperative activity of kinesins on a track is beneficial for long transport. How-

ever, within crowded three-dimensional (3D) cytoskeletal networks, surplus motors

could impair transport and lead to traffic jams of cargos. A complete understanding

of the interaction between molecular motors and tracks and the resulting changes in

the 3D cargo transport dynamics are still elusive. In this work, a novel 3D stochastic

dynamic model is introduced to study the synergistic and antagonistic motions of

kinesin motors walking on multiple mircotubules (MTs). The model shows that mul-

tiple kinesins attached to a common cargo interact mechanically through the transient

forces in their cargo linkers. Under different environmental conditions, such as dif-

ferent MT topologies and kinesin concentrations, the number of kinesins connecting

between the cargo and the MTs, the transient forces in the kinesins, and the stepping

frequency and unbinding probabilities of kinesins are changed substantially. There-

fore, the macroscopic transport properties, including the stall force of the cargo, the

transport direction at track intersections, and the mean square displacement (MSD)

of the cargo along the MT bundles vary with the environmental conditions. In gen-
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eral, conditions that improve the synergistic motion of kinesins increase the stall

force of the cargo and the capability of maintaining the transport. In contrast, the

antagonistic motion of kinesins temporarily traps the cargo and slows down the trans-

port. Furthermore, this study predicts an optimal number of kinesins for the cargo

transport at MT intersections and along MT bundles.

3.2 Introduction

Many cellular processes, such as mitosis, the transport of proteins and organelles,

and the beating of cilia and flagella, are driven by molecular motors [90, 91]. Although

an individual motor protein can produce continuous motion, most intracellular pro-

cesses require multiple motors to function in a cooperative manner [92, 93]. During

the last decade, the cooperative cargo transport by multiple motors along a single

track, such as a microtubule (MT) or a filament, has been well-characterized through

experiments and mathematical models [26, 94, 95, 96, 79]. These studies suggest that

the cooperative dynamics of motors along a track improves the reliability and effi-

ciency of the transport because multiple motors generate large pulling forces on the

cargo and help it overcome the intracellular obstacles such as MT associate proteins

in the highly viscous cytoplasm [97, 73, 74].

However, several experiments observed sluggish cargo motions when multiple mo-

tors transport a cargo on intersecting tracks. Schroeder et al. [98] showed that

cargoes transported by myosin V and dynein-dynactin are likely to be trapped at the

intersection of two filaments. Ross et al. [7] observed the trapping of cargoes at the

MT intersection by multiple kinesins. During the temporary trapping intervals, Gao

et al.[99] showed that the intracellular cargo exhibits rapid and directional rotation

driven by molecular motors. On bundles of multiple MTs, Stepanek et al. [100] ob-

served the existence of distinct anterograde and retrograde transport modes. When

a faster transport caught up with a slower one moving in the same direction, they

38



would progress together at the same speed.

In addition, the concentration of motors influences the transport dynamics. Neri

et al. [101] showed that when the motion of the cargo is dominated by a large number

of kinesins, the heterogeneity of cargo distribution depends on the complexity of the

entire track network. When few motors are involved in the transport and the cargo

can easily unbind from the track, the cargo distribution is influenced only by the local

track topology. Shubeita et al. [102] found that the average transport velocity of the

lipid droplets in the embryos is around 5.5% higher when the concentration of the

kinesin is reduced. Other studies observed traffic jams of cargoes along MTs when the

motor density exceeds a critical value [103, 104, 105]. These observations suggest that

the transport speed and distance of the cargo may not necessarily be improved by a

large number of motors in dense MT networks. Considering that the force generated

by a single motor is not sufficient to overcome the load fluctuations on a cargo, an

optimal concentration of motors could exist for achieving fast and robust transport

on multiple MTs.

To elucidate the complex transport dynamics, this chapter is going to discuss us-

ing a 3D stochastic dynamical model (named multiple kinesin model) to study the

collective behavior of multiple kinesins on multiple MTs. The multiple kinesin model

captures transient dynamics of the walking motion of each single kinesin, as well as

the interactions among all kinesins, their common cargo and MTs. The model pre-

dictions are verified based on the distribution of the stall force along a MT and the

transport dynamics at a 90◦ intersection of two MTs measured in previous experi-

ments [7]. The stall force is affected by the non-uniform distribution of external loads

among all bound kinesins (explicitly, kinesins that bind and walk on a MT). The

transport direction at a 90◦ intersection of two MTs is likely to be switched when one

MT disrupts cargo diffusion and the free kinesins bind to the intersecting track. Next,

the collective transport of the cargo by different number of kinesins in different MT
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topologies was studied. Fixing the number of kinesins on the cargo, two perpendicu-

larly intersecting MTs with intermediate separating distance are shown to have the

largest influence on the transport. Inside the same topology of MTs, an intermediate

number of kinesins achieves the largest switching and passing probabilities at the 90◦

MT intersection, and the fast cargo mobility (characterized by the mean square dis-

placement) along the MT bundle. Analysis of the microscopic dynamics of kinesins

further helps to illustrate that the impairment of the transport at a large number of

kinesins comes from the antagonistic motion of the kinesins that are lagged behind

the center of the cargo. Moreover, the transport along a MT bundle interrupted by

a neighboring MT was investigated.

3.3 Model and method

3.3.1 Algorithm overview

Consider the case where N identical kinesins are uniformly distributed on the

surface of a spherical cargo. The connection between cargo and kinesins are assumed

to be intact. Kinesins can bind to and unbind from the MTs. When a kinesin binds

to and walks on the MT, it exerts force and moment to the cargo. Thus, kinesins

interact mechanically and cargo undergoes Brownian motion influenced by the total

force and moment generated by bound kinesins.

To study the collective dynamics of multiple kinesins, most previous modeling

works focus on the one dimensional (1D) motion along the axial direction of a single

MT. Assuming the velocity, binding and unbinding rates are constants, the probabil-

ity of having n bound motors at time t was described by a continuous time Markov

process [73, 106, 32, 107]. Several studies further considers the fact that a motor can-

not bind to positions occupied by other motors. Therefore, the distribution of motors

on the MT is described by the totally asymmetric simple exclusion process (TASEP)
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[103, 104, 105, 108]. However, since the properties of the kinesin are influenced by

the force it experiences [109, 78] and the force fluctuates due to the cargo diffusion

and the interactions between kinesins and MTs, Monte Carlo based computational

models were proposed to include the force dependent stepping rates and unbinding

rates of kinesins [75, 89, 110, 111]. For example, the stepping motion of a kinesin

can be modeled as a Poisson process with a rate exponentially decaying with the

force[75]. The force dependent unbinding rate are modeled based on the Bell model

[77]. Combining the Monte Carlo model with the experiments, it was shown that the

transport by pairs of kinesin-1 and kinesin-3 is dominated by the motion of kinesin-1

because kinesin-1 walks slower and has a smaller unbinding probability than kinesin-3

[75]. Blackwell et al. [112] considers the forward and backward stepping motion of

motors and modeled the stepping rate through an energy perspective. They found

that the Brownian ratchet-like dynamics of motor stepping (specifically, the asym-

metric forward and backward stepping rates) lead to fast cargo transport. Recently,

Bergman et al. [31] developed a 3D dynamical model to study the effects of a MT

intersection on the transport and predict the transport directions.

In this work, there are three major improvements compared to previous models. 1)

The MTs are modeled as cylinders with discrete binding sites distributed on the sur-

face of the MT. The 3D stepping motion of kinesins influenced by the force along the

axial and tangential direction of the MT is considered. 2) The geometrical constraint

of the MTs on kinesin binding and cargo diffusion is considered. 3) Kinesin stepping

motion is described by the mechanochemical cycle on its heads. The influence of

the force on the chemical reaction speed and the unbinding probability are modeled

separately at different chemical reaction states. Specifically, the model considers that

the most susceptible state to the force is when the ATP releases from the MT bound

head, as suggested by previous experimental findings [30]. In addition, the influence

of ATP concentration on the kinesin dynamics is included. Note that the dynamics
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Input: For all kinesins i = 1, 2, ..., N :
(PKi, PATPi, Pbi, Pubi, tbi, tubi)←− (1, 0, 0, 1, 0, 0)
(state i, onMT i)←− (1, 0)
(F i,M i)←− (0, 0)
(r1i, r2i, rbi, rubi)←− i.i.d Uniform(0, 1)

For cargo: (θc, Xc)
for t = 1 to Nt do

(θc,Xc)←− Diffuse(θc,Xc,F 1,F 2, ...,FN ,M 1,M 2, ...,MN)
for i = 1 to N do

if onMT i > 0 then
tubi ←− tubi + 1
(F i,M i)←− Force(Xhi,θki,Xc,θc)
(PKi, PATPi,Xhi, r1i, r2i, state i)←−Walk(PKi, PATPi,Xhi,F i, r1i, r2i, state i)
(F i,M i)←− Force(Xhi,θci,Xc,θc)
Pubi ←− Unbind(F i,M i, tubi, state i)
if Pubi ≥ rubi then

(PKi, PATPi, Pubi, F i,M i, tubi, onMT i)←− (1, 0, 0, 0, 0, 0, 0)
rubi ←− Uniform(0, 1)

end if
end if
if onMT i = 0 then
tbi ←− tbi + 1
(Xhi, Pbi)←− Bind(Xc, θc, θki, tbi)
if Pbi ≥ rbi then

(Pbi, tbi, onMT i)←− (0, 0, 1)
(r1i, r2i, rbi)←− i.i.d Uniform(0, 1)

end if
end if

end for
end for

Output: (θc, Xc, Xhi, F i)t, for i = 1, 2, ..., N and t = 1, 2, ..., Nt.

Algorithm. 3.1: The stochastic multiple kinesin model. r1i, r2i, rbi, rubi are indepen-
dent and identically distributed (i. i. d) random variables. Function
Walk () updates the chemical reaction states and the positions of ki-
nesin heads. Function Diffuse () updates the cargo position. Function
Force () calculates the force and moment exerted by a kinesin. Func-
tion Bind () and function Unbind () calculate the probabilities for a
kinesin to bind to or unbind from a MT.
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described by the model is no longer a Markov process. The transition between the

states of the system is determined by the microscopic interactions between kinesins,

cargo and MTs. Thus, the transition is spatial-temporal dependent as well as history

dependent.

In the model, the dynamics of a kinesin i is characterized by six time-dependent

variables, Xhi(t), Xki(t), PKi(t), PATPi(t), Pbi(t) and Pubi(t). Xhi(t) is a vector

containing the position of the center of the two kinesin heads at time t. Xki(t) is

a vector containing the position where kinesin i attaches on the cargo surface. PKi

and PATPi are the probabilities of staying at chemical reaction states [K+ATP] and

[K.ATP]. Pbi(t) is the binding probability. Pubi(t) is the unbinding probability. The

Monte Carlo simulation described in Algorithm 3.1 is used to calculate the evolution of

the system under pre-defined environmental conditions. Initially, the cargo is located

at a position near the MTs, and all kinesins are unbound from the track. A time step

∆t is chosen as 0.001 s for simulations. At each time step, five parts of the system are

updated: 1) The translational and rotational motions of the cargo, characterized by

(Xc, θc), are updated based on the diffusion motion. Xc is a vector containing the

position of cargo center. θc = [θx, θy, θz] is a vector containing the angular position

of the cargo center. Where θx, θy and θz are angles with respect to the x, y and z

axes. 2) Force F i and moment M i exerted on the cargo are calculated. 3) For each

bound kinesin i, the chemical reaction, represented by the two probabilities PKi and

PATPi, as well as the center position of two kinesin heads Xhi are updated. When

the number of bound kinesins on the MT is n, the calculation of PKi, PATPi and

Xhi are performed n times at every time step. 4) For each bound kinesin i, the

unbinding probability Pubi are calculated. The calculation of unbinding probabilities

is performed n times at every time step. 5) For each unbound kinesin j, the binding

probability Pbj are calculated. When there are N kinesins on the cargo and n of them

bind to the MT, the calculation is performed N−n times at each time step. It should
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Figure. 3.2: The distribution of kinesins on the surface of a cargo.
(A)Schematic illustration of the binding position Xki of the cargo linker
end of a kinesin i on the surface of the cargo. (B) An example of ki-
nesin distribution when N = 49. The black dots represent the binding
positions of kinesin cargo linkers and the cargo.

be noted that the six book-keeping variables, Xhi(t), Xki(t), PKi(t), PATPi(t), Pbi(t)

and Pubi(t), are updated simultaneously at every time step. However, the kinesin

dynamics including the transitions between chemical reaction state, unbinding and

rebinding are characterized by PKi ≤ r1i, PATPi +PKi ≤ r2i, Pubi ≥ rubi and Pbi ≥ rbi

respectively. These kinesin dynamics occur in a sequential manner in the model.

3.3.2 Distribution of kinesins on the cargo surface

N kinesins are assumed to be uniformly attached to the surface of the cargo. For

a kinesin i, the binding position between its cargo linker end and cargo surface is

denoted as Xki. Xki is characterized by two angles αi and βi, as shown in Figure 3.2

(A). Specifically, αi = 2πu and βi = cos−1(2v − 1), where u and v are identical and

independent random variables uniformly distributed between 0 and 1. Figure 3.2 (B)

shows an example of 49 kinesins attached to the cargo surface.

Thus, the binding position Xki can be calculated based on αi, βi and cargo center

Xc as

Xki = Xc +R [sin βi cosαi, sin βi sinαi, cos βi], (3.1)
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3.3.3 Kinesin walking motion

The basic dynamics for a kinesin i is described in Chapter II. Calculation of

kinesin walking motion (function Walk ()) is based on Algorithm 2.6. Calculation of

the binding and unbinding probabilities of a kinesin (functions Bind () and Unbind ())

is based on solving Equations 2.8 - 2.12.

3.3.4 Cargo diffusion

The transnational and rotational position of cargo center (Xc and θc) are influ-

enced by the total force and moments generated by the bound kinesins as

d

dt
θc =

∑n
i=1M i

8π R3 δ
+ r(

√
2Dr), (3.2)

d

dt
Xc =

∑n
i=1 F i

6π R δ
+ r(

√
2Dt). (3.3)

where
∑n

i=1 F i and
∑n

i=1M i are the total force and moment exerted on the cargo

by n bound kinesins. The torque M i is calculated as M i = (Xki −Xc)× F i.

3.4 Results

3.4.1 Model verification

The 3D dynamical model is verified based on previous experimental studies [7]

of kinesins transporting polystyrene cargoes at a 90◦intersection of two MTs [7]. In

the experiments, first, 800 nm polystyrene cargoes were incubated with various con-

centrations of kinesins to allow different numbers of kinesins to attach to the surface

of the cargo. After the binding between kinesins and cargoes reaches equilibrium,

the medium was removed. Next, an optical trap was used to place the cargo near

a single MT or an intersection of two MTs. The stall forces of the cargoes incu-

bated with two different kinesin concentrations were measured using the optical trap.
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Figure. 3.3: Verification of the stochastic multi-physics model. (A) To cal-
culated the stall force, the cargo is transported by kinesins on a single
MT under an external load F ext. (B) The variation of the force Fext on
the cargo along the MT direction. (C) The distribution of the stall force
Fstall. (D) Schematic illustration of the transport dynamics at a 90◦ MT
intersection. (E) Probabilities for the cargo to pass, pause, switch or
dissociate at the intersection when it is moved on the bottom MT (MT1)
to the intersection (i.e., underpass). (F) Probabilities of the cargo dy-
namics when it is transported on the top MT (MT2) to the intersection
(i.e., overpass). The experimental data is from the previous study [7].
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Figure. 3.4: The distribution of the number of kinesins that bind on a single
MT or a parallel MT bundle Nbound over the different number
of kinesins on the cargo N .

When the concentration of kinesin is 0.001 µg/ml, it is estimated that only one ki-

nesin is attached to a cargo. The measured stall force distribution follows a normal

distribution with mean value of 4.2 pN. More than two kinesins are expected to be

attached to the cargo when the kinesin concentration in the medium is 0.02 µg/ml.

However, the exact number of kinesins was not determined in the experiment [7].

To acquire the approximate number of kinesins at a concentration of 0.02 µg/ml,

the distributions of stall force of a 800 nm cargo are calculated using the model for

different numbers of kinesins and compared with experimental measurements [7]. In

the calculation, an external force F ext parallel to the MT but opposite to the kinesin

walking direction is applied to the cargo. To simulate the behavior of the cargo un-

der the optical trap, the external force is assumed to be proportional to the moving

distance of the cargo. Specifically, the magnitude of the external force is calculated

as Fext = keff [Xc(t) − Xc(t = 0)], where the effective stiffness keff is 0.07 pN/nm,

similar to the experimental setup [113]. Xc is the cargo displacement along the MT

direction (Figure 3.3 (A)).

Figure 3.3 (B) shows the variation of Fext calculated using the model. Fext in-

creases as the cargo moves away from the starting point. When the cargo is stalled,

Fext stops increasing and slightly fluctuates around the maximum value. After a

few seconds, all kinesins unbind from the MT and the cargo returns to the starting
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point. Then, Fext decreases to 0 pN accordingly. Afterwards, cargo diffuses around

the starting point until one or more kinesins bind to the MT and the active transport

starts again. It is assumed the cargo is stalled when the variation of Fext is less than

2 pN within 2 s. Fstall is calculated as the average of Fext during this 2 s time inter-

val. When 36 kinesins are attached to the cargo surface, the stall force distribution

calculated using the model shows a good agreement with the distribution measured

in the experiments [7] when the kinesin concentration is 0.02 µg/ml (Figure 3.3 (C)).

When the cargo is placed next to a single MT and the number of kinesins N is

36, one or two kinesins are walking on the MT most of the time (Figure 3.4). The

stall force of one engaged kinesin follows a Gaussian distribution with a mean value

of 4.2 pN. The stall force of two engaged kinesins would be a Gaussian distribution of

mean 8.4 pN if the load on the cargo were equally distributed among kinesins. Thus,

the distribution of the stall force when N = 36 would have two peaks at 4.2 and 8.4

pN. However, both the experiments [7] and simulations show that the two peaks in

the distribution of the stall force are not exactly 4.2 pN and 8.4 pN. Particularly, the

first peak is larger than 4.2 pN and the second peak is smaller than 8.4 pN. These

results suggest that the transient binding and unbinding of kinesins and the non-

uniform distribution of forces among the engaged kinesins has a smoothing effect on

the probability distribution of the stall force. The stall force is likely to have values

between the stall forces of a single kinesin and two kinesins. In addition, a stall force

larger than 8.4 pN is frequently observed, as shown in Figure 2 (C).

Next, the cargo is placed near a 90◦ intersection of two MTs, and the transport

direction and time are calculated. Similar to the experimental setup [7], the bottom

MT is attached to a glass slide by proteins with an approximate length of 135 nm

(Figure 3 (D)).In the underpass situation, at the beginning, the cargo is placed at a

random place 1 µm away from the surface of MT2 and 400 nm away from the surface

of MT1. No kinesin binds to the MTs. At every time step, the cargo diffuses and
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the binding probabilities of all kinesins are calculated. When at least one kinesin

binds to MT1, the cargo is transported toward the MT intersection. The simulation

finishes when the cargo moves 1 µm away from the intersection or the simulation

time exceeds 8 s. In the overpass situation, the cargo is placed at a random place

1 µm from the surface of MT1 and 400 nm from the surface of MT2. The cargo

motions are classified into four different types based on the following criteria. If the

cargo moves 1 µm away from the intersection on the original MT in 3 s, then the

motion is defined as passing. If the cargo switches to the intersecting MT, and moves

1 µm away from the intersection in 3 s, the motion is defined as switching. If the

cargo remains at the intersection longer than 3 s, the motion is defined as pausing.

If the cargo diffuses away from two MTs and does not rebind in 3 s, the motion is

defined as dissociation. To verify the model, the probability distribution of the four

types of cargo motions is calculated when N = 36 and compared with experiments

[7]. Note that, to calibrate the variation in probabilities influenced by the number of

simulations, one thousand simulations are performed. The results are devided into 10

groups to acquire the error bars shown in Figure 3.3 (E) and (F). In the underpass

situation, the top MT impedes the cargo from moving forward on the original MT

and increases the switching probability (Figure 3.3 (E)). In the overpass situation, the

cargo can be transported above the two MTs and can pass the intersection. Overall,

the modeling results show good agreement to the experiments [7]. In addition, the

dwell time that a cargo spends at the MT intersection is calibrated (Figure 3.5).

In the underpass situation, the mean dwell time at the intersection is 4.7 s. In the

overpass situation, the mean dwell time at the intersection is 4.8 s. If the cargo is

transported along the MT between two intersections, the time for the cargo to move 2

µm is around 3.3 s (assuming the velocity is 600 nm/s). Thus, the intersection slows

down the transport.
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Figure. 3.5: The distribution of the dwell time Td at the intersection. Td is
calculated as Td = Te−Tb, where Tb is the time when the cargo starts to
move from a position located 1 µm away from the intersection, Te is the
time when the cargo passes the intersection and moves 1 µm away from
the intersection.

3.4.2 Influence of MT topology

Based on the model, the effects of the topology of a MT intersection on the

transport dynamics are studied. As shown in Figure 3.6 (A) and (D), the intersection

topology can be characterized by the distance H and angle β. H is defined as the

shortest distance between the surfaces of two MTs. The intersection distance H is

varied from 0 nm to 1000 nm. When H > 1000 nm, the intersected MT has negligible

effects on the transport. β is defined as the angle between the two MTs. β varies

between 0◦ and 180◦. The number of kinesins on the cargo is 36.

In the overpass situation (Figure 3.6 (B) and (E)), the cargo motion is less in-

fluenced by the bottom MT. Cargo is likely to move above the two MTs, and the

kinesins is not long enough to bind to the bottom MT. Therefore, the probability of

passing is large and less influenced by the intersection topology.

In the underpass situation (Figure 3.6 (C) and (F)), the transport of a cargo

by multiple kinesins are less influenced by the intersection distance H compared to

the transport by a single kinesin. However, a decrease in the switching probability

is still noticeable as H increases. When H ≤ 200nm, the decrease is caused by

the geometrical barrier of the intersection. Cargo rotates at the intersection due to
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Figure. 3.6: Transport dynamics at the intersection of two MTs is influenced
by the intersection distance H and the angle β. (A) The schematic
illustration of the intersection distance H. (B) The influence of H on the
passing and pausing probabilities in the overpass situation when 1 or 36
kinesins are attached on the cargo. (C) The influence of H on the switch-
ing and pausing probabilities in the underpass situation. Increasing the
intersection distance significantly disrupts the transport in the underpass
situation. Multiple kinesins on the cargo (36 kinesins in the case) reduces
the impairment of H on the transport. (D) A schematic illustration of
the intersection angle β when two MTs are attached to each other. (E)
and (F) Transport dynamics influenced by the angle β in the overpass
and underpass situations.
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Figure. 3.7: The influence of intersection angle β on the transport dynamics
in the underpass situation. (A) The distribution of the number of
kinesins on MT1 and MT2 at the intersection when N is 36. (B) The
distribution of the association time on the two MTs as well as the diffu-
sion time. The association time on a MT is defined as the time interval
when at least one kinesin binds to that MT.

the moment generated by kinesins. When H ≥ 800nm, the switching probability

decreases because cargo can pass the intersection through the gap between the two

MTs. The model also predicts that the switching probability is maximized when

the two MTs are perpendicularly attached. When β = 90◦ , the average number of

kinesins on MT2 and the time duration when at least one kinesin binds to MT2 are

the largest (Figure 3.7). Therefore, the switching probability is enhanced because

more kinesins pull the cargo along the intersecting MT for a longer time. When

β > 90◦, the antagonistic dynamics between kinesins on two MTs accelerates their

unbinding probabilities. Note that, when the intersection distance H > 0nm, the

influence of the intersection angle β on transport dynamics can be different. For

example, Bergman et al. [31] showed that the switching probability is the largest

when β = 90◦ and H = 0nm. However, when H is equal to the cargo radius or

diameter, the switching probability is small at the 90◦ intersection. In addition, the

latest work from Higuchi et al. [114, 115] observed frequent direction changes in

very acute or obtuse angles inside MT networks in living cells. Thus, these results
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Figure. 3.8: collective transport dynamics influenced by the number of ki-
nesins N at a 90◦ MT intersection. (A) The schematic view of a
cargo being transported along the bottom MT and switching to the top
MT at the intersection.The intersection distance is 0 nm. (B and C) The
influence of the number of kinesins N on the transport dynamics when
the cargo is transported along the bottom MT (B) or the top MT (C)
toward the intersection. (D) In the underpass situation, the distribution
of the association time on MT1 and MT2 as well as the diffusion time
when N is 4, 25 and 64. (E) In the underpass situations, the distribution
of the number of associated kinesins on MT1 and MT2 over different N .
(F) The schematic illustration of the influence of kinesin number N on
the transport dynamics.
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Figure. 3.9: The collective transport dynamics influenced by the number of
kinesins N in the overpass situation. (A) The distribution of the
association time on MT1 and MT2 as well as the diffusion time when N
is 4, 25 and 64. (B) The distribution of the number of associated kinesins
on MT1 and MT2 over different N . The intersection distance is 0 nm
and the intersection angle is 90◦.

indicate that the distances between intersected MTs in vivo are likely to be larger

than 0 nm and comparable to the radius of intracellular cargoes. Bálint et al. [68]

measured the intersection distances inside monkey kidney cells and showed that the

intersection distances vary from 100 nm to 600 nm. Therefore, our model predictions

are consistent with previous findings.

3.4.3 Influence of kinesin number

To understand the effects of the number kinesins (usually quantified by the kinesin

concentration in experiments) on the intracellular cargo transport in different MT

topologies, multiple analyses are performed. First, when the cargo is transported

toward a 90◦ intersection of two MTs, the probabilities of an 800 nm-cargo passing,

pausing, switching and dissociating at the intersection are calculated over different

number of kinesins N . In the underpass situation, when N < 16, only one kinesin is

likely to bind to the MTs (Figure 3.8 (E)). Thus, the cargo dissociation probability

is large. When N ∈ [16, 36], the cargo has the largest switching probability, because
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Figure. 3.10: Schematic illustration of the influence of cargo levitation and
torque diffusion on the proportion distribution of motors on
different MTs. (A) Kinesins transport the cargo from MT1 toward the
intersection. (B) Cargo levitation increases the proportion of kinesins
on MT2 by changing the distances between the cargo and MTs. (C) A
counterclockwise torque changes forces inside the kinesins and increases
the proportion of kinesins on MT2.

some kinesins bind to MT1 to prevent cargo dissociation and more kinesins start

to bind to MT2 to switch transport direction. A longer average association time

on MT2 than on MT1 ensures cargo moving away from the intersection (Figure 3.8

(D)). When N > 36, the number of kinesins that bind to the original track increases

considerably. When N = 64, the average number of kinesins bind to MT1 is around

4.4. Since unbinding 4 kinesins simultaneously requires a large force, the cargo is likely

to be trapped near MT1. Similarly, in the overpass situation, when an intermediate

number of kinesins are attached to the cargo (N = 25), multiple kinesins bind to

MT2 for a sufficient long time, which leads to the large passing probability (Figure

3.9). Note that, the proportion distribution of kinesins on different MTs at the

intersection depends on the cargo levitation and the external torque (Figure 3.10).

For example, when the cargo is levitated above, a larger proportion of kinesins are

going to bind to MT2 because of the limited length of the cargo linkers. When

a counter clockwise torque is applied to the cargo, the forces between kinesins and

MT1 increase, which accelerates the unbinding from MT1 and modifies the proportion

distribution of kinesins.
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Figure. 3.11: The realization of 100 simulation results of the MSDs along a
parallel MT bundle over different kinesin number N . The grey
lines are the MSDs over time calculated in each of the 100 simulations.
Red lines are the ensemble average of the 100 MSD curves.

Next, the transport dynamics on a bundle of two parallel MTs is studied. The

distance between the surfaces of the two parallel MTs is set to be 15 nm in this

study. Compared to a single MT, a parallel bundle has more binding sites reachable

to kinesins. Thus, when N ≥ 36, the average number of kinesins on the bundle is

larger than on a single MT (Figure 3.4). In the simulation, the cargo position Xc

over time t is recorded. Then, the mean square displacement (MSD) of the cargo,

calculated as MSD(t) =
1

100

∑100
i=0

[
Xci(t) − Xci(t = 0)

]2
is used to represent the

cargo motility. Xci is the position of the cargo at time t in ith simulation. We found

that the average MSD is the largest when N = 16. When N = 1, the variation of the

MSD curves is large because the only one kinesin connecting between the cargo and

the bundle is likely to unbind and the transport is disrupted accordingly. Increasing

the kinesin number N reduces the variation, which suggests the transport becomes

more robust. However, when N ≥ 36, the slopes of all MSD curves are low, indicating

transport becomes slower. In addition, when the cargo is transported by impaired

kinesins which have a larger unbinding probability (i.e. twice of its original value)

and smaller binding probability (i.e. half of its original values), the 100 realizations

of MSDs become close to the situation when N = 1 (Figure 3.11). To understand
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Figure. 3.12: The collective transport dynamics influenced by kinesin num-
ber N along a parallel MT bundle. (A) The schematic illustration
of the kinesins binding between the cargo and the MTs. Kinesins are
classified as trailing kinesins and leading kinesins based on whether the
positions of their heads locate behind the center of the cargo. (B) The
MSDs of the cargo over different number of kinesins N . The motion
of the cargo is superdiffusive because of the active forces applied by
kinesins. In addition, the grey line represents the MSD of the cargo
transported by 16 impaired kinesins. The impairment of the kinesin is
defined as decreasing the binding rate kb0 to half of its original value
and increasing the unbinding rate Pu0 and ku0 to twice of the original
values. (C) The distribution of the number of trailing kinesins when N
is 16, 36 and 64. (D) The distribution of the duration of a chemical
reaction cycle for the leading kinesins over N . (E) The distribution of
the association time of the trailing and leading kinesins on the MTs and
the diffusion time over N .
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Figure. 3.13: Three types of collective kinesin dynamics (of two kinesins)
along a single MT. (A) Independent dynamics happens when two
identical kinesins walk with similar stepping rate and pull the cargo.
(B) Antagonistic dynamics is caused by the two kinesins pull the cargo
toward different directions. The leading kinesin experiences a resisting
force and the chemical reaction on its heads is likely to be slowed down.
(C) Synergistic dynamics helps two kinesins transport the cargo under
an external load. The leading kinesin shares a larger load and its chemi-
cal reaction happens slower than the trailing kinesins. The first column
of the plots contains the schematic representations of the cargo (black
circle), MT (green line) and two kinesins. The leading kinesin (kinesin
1) is represented as blue. The trailing kinesin (kinesin 2) is represented
as red. The second column of plots represent the distribution of forces
inside the two kinesins. Positive values represent the direction of the
force is the same as the walking direction. The third column of plots
are the distributions of the time a kinesin takes to complete a chemical
reaction cycle and walk one step forward.
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the mechanism that leads to the decreasing of the transport velocity when N is large,

the distribution of the duration of a chemical cycle of leading kinesins, the number

of trailing kinesins, and the association time of the trailing and leading kinesins are

calculated. Note that, a trailing kinesin is defined as a kinesin whose heads attach to

the binding sites behind the center of the cargo along the MT direction. A leading

kinesin has heads attaching to positions ahead of the cargo center (Figure 3.12 (A)).

Trailing kinesins pull the cargo back and apply resisting force on the leading kinesins.

The resisting force slows down the stepping frequency of the leading kinesins (Figure

3.13 (B)). On the MT bundle, as N increases, more kinesins bind behind the cargo

center (Figure 3.12 (C)). A large number of trailing kinesins causes the long duration

of a chemical reaction on the leading kinesin heads (Figure 3.12 (D)). At the same

time, a large N reduces the diffusion time and increases the association time on both

MTs. However, the increasing of the association time for the trailing motors is faster

than the leading motors. When N ≥ 36, some trailing motors remain binding to the

MT for more than 5 s. Thus, the transport speed and cargo mobility are reduced at

the high kinesin concentration.

The interference of a neighboring MT on the transport is considered in order to

study the robustness of the transport along a MT bundle for different numbers of

kinesins. In the model, the neighboring MT is placed perpendicularly to the bundle

consisting of two parallel MTs, and the distance between the surfaces of the inter-

secting MT and the bundle is chosen to be 850 nm so cargo can move through the

gap between the two parallel MTs and the neighboring MT, as shown in Figure 3.14

(A). Initially, the cargo is transported on the MT bundle towards the neighboring

MT. When the cargo fails to move 1 µm away from the neighboring track in 3 s, or

when the cargo switches moving direction, or when it dissociates from the MT, the

transport is defined as disrupted. Based on the model, the probability of passing the

neighboring MT without being disrupted is calculated over the number of kinesins N
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Figure. 3.14: The interruption of a neighboring MT on the transport for
various number of kinesins N . (A) An illustration of the situation
when a cargo is transported by kinesins along two parallel MTs. Extra
kinsesins on the cargo can bind to the neighboring track and disrupt the
transport. The neighboring track is placed perpendicularly to the two
parallel MTs. The shortest distance between the surfaces of the neigh-
boring MT and the two parallel MTs is 850 nm. (B) The probability
of passing the neighboring MT without being disrupted over different
value of N .

(Figure 3.14 (B)). When N = 16, the largest passing probability is achieved. When

N > 16, some kinesins are expected to bind to the intersecting MT and disturb the

transport. When N ≤ 9, the interference between the cargo and the intersecting MT

increases the dissociation probability.

3.5 Conclusion and future outlook

This paper proposed a 3D stochastic multi-physics model to study the collective

cargo transport by multiple kinesins in different topologies of MTs. Based on the

model, three important biological insights are observed.

First, when two identical kinesins pull a common cargo together along a track,

the external load applied on the cargo is not equally distributed among all kinesins

such that the contribution of each kinesin to the cargo transport is different. When

two kinesins are attached to adjacent positions on the surface of the cargo, the forces

inside the two kinesins are small and almost symmetrically distributed about 0 pN.

The distribution of the predicted time duration of a chemical reaction cycle is shown

in Figure 3.13 (A). The estimated average time duration calculated is 0.015 s. Since
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kinesin moves 8 nm in each step, the average velocity of the two kinesins is around 533

nm/s. The predicted average time duration of the two kinesins is similar to the ex-

perimentally measured value of a single kinesin walks along a MT [116, 5]. Thus, the

two kinesins transport the cargo independently. When the two kinesins are attached

to distant positions on the surface of the cargo, the average forces in the two kinesins

increase. The trailing kinesin experiences an assisting force while the leading kinesin

experiences a resisting force (Figure 3.13 (B)). Under an external load opposite to the

transport direction, cargo diffuses back. The leading kinesin extends longer than the

trailing kinesin and shares a larger force. Therefore, the time duration of the chemical

reaction on the leading kinesin heads is significantly increased (Figure 3.13 (C)). The

leading kinesin is likely to be stalled and the trailing kinesin keeps walking. Our anal-

ysis provides a plausible explanation to the experiments, in which Jamison et al. [74]

measured the force velocity curve of two kinesins separated by a DNA-based molec-

ular scaffold with fixed length. They found that the measured force velocity curve of

two kinesins is different from the theoretically generated curve assuming each motor

shares half of the applied load and two motors do not interact. Specifically, the mea-

sured walking velocity of two kinesins is slower than the theoretically predicted values

at low loads because of the antagonistic dynamics, and the velocity is faster at large

loads because of the synergistic dynamics. Interestingly, Uar et al. showed [117] that

two identical dyneins tend to share load equally in both steady state and during the

initial building up of internal elastic strains. It is likely the properties of two motors,

such as the length, stiffness, binding rate and unbinding rate, play important roles in

motor cooperativity. For example, Uar et al. [117] observed that the average force

generated by several strong motors with larger stall force and large unbinding rate,

such as kinesin-1, deviate strongly from their collective stall force. It suggests that

strong motors tend to have a worse cooperativity, probability because motors detach

from the track during strain generation. Wang et al. [118] showed that the degree of
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cooperativity of two kinesin motors is influenced by the stiffness of the cargo linker,

unbinding rate, and stepping rate. In particular, a smaller unbinding rate, a lower

cargo linker stiffness and a larger stepping rate lead to a higher motor cooperativity

and a longer run length. Arpa et al. [75] found that the cotransport by slow kinesin-1

and fast kinesin-3 is likely to be dominated by kinesin-1, because the leading kinesin-

3 can rapidly unbind and re-equilibrate their positions near the cargo whereas the

trailing kinesin-1 continue to pull. In our study, it is shown that the influence of the

cotransport is originated from the different extensions of the kinesin cargo linkers.

Therefore, when the length of the cargo linker of the leading kinesin is longer than

the trailing kinesin, the transport is expected to be more robust to external loads.

To confirm this behavior, additional experiments on the run lengths and velocities of

the cargo mediated by motors with different lengths are needed. Second, trailing ki-

nesins could impair the cargo transport. Ross et al. [7] measured the probabilities of

passing, switching, pausing and dissociation at the 90◦ MT intersection over different

kinesin concentrations. They found that the pausing probability increases, and the

switching probability decreases at high kinesin concentration. Based on the model,

we show that the changes in the switching and pausing probabilities over kinesin con-

centrations are caused by the fact that several trailing kinesins bind to the original

MT and act as anchors to prevent cargo being transported away from the intersection.

When multiple kinesins walk on the parallel MT bundle toward the same direction,

we found that the cargo mobility is reduced when too many kinesins are involved.

This phenomenon is reminiscent to the negative correlation between the transport

velocity and motor concentration observed in previous experiments [102, 119, 105].

Specifically, Shubeita et al. [102] found that the average transport velocity of the lipid

droplets in the embryos with reduced kinesin concentration was approximately 5.5%

higher than in wild-type embryos. Telley et al. [119] measured the concentration de-

pendence of motor characteristics, including the run length, dwell time, velocity and
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binding rate. The slow transport at high motor concentration is usually explained

as the binding sites on the MT being fully occupied by the abundant motors such

that the unbinding rates of kinesins is increased and binding rates are decreased. In

this work, we have shown that the excessive trailing motors could also reduce the

transport via the mechanical interactions between motors. In general, the pausing

phenomenon during the transport generated by excessive trailing motors could be

one of the major causes of the subdiffusive cargo motor inside the cells [120, 121].

Zaburdaev et al. [122] mathematically showed that by varying the power law tails

of the distribution of the pausing time, all the diffusion regimes (i.e. normal dif-

fusion, superdiffusion and subdiffusion) can be accessed. However, whether and at

what motor concentration the active transport will be overwhelmed by the increased

pausing time in different topology of MTs needs to be studied further. Third, the

microscopic dynamics of kinesins depends on geometrical information, including the

distribution of kinesins on the cargo, the relative position of the cargo on the MTs,

and the topology of MTs. Therefore, changing the geometrical information will lead

to changes in the microscopic kinesin dynamics. However, as an average outcome

of these microscopic dynamics, the macroscopic properties of the transport (i.e., the

ability to persist in the transport direction and move fast) show surprising similarities

in different MT topologies. Specifically, we predict that there is an optimal number

of kinesins to transport a cargo pass MT intersections and along MT bundles.

The 3D stochastic dynamic model proposed here can be extended to character-

ize more complex and in vivo-like situations. For example, the low stiffness of the

intracellular cargoes can influence the collective dynamics of kinesins. Due to the

compliance of the soft cargo, more kinesins can bind to the MT, but the mechani-

cal coupling among kinesins becomes weaker. In vitro methods, including the DNA

scaffolds and modifying the anchor point of motors on the cargo surface [89, 123]

have been used to study different mechanical couplings of kinesin motors. Combining
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our model with these in vitro experiments, general transport dynamics influenced by

the coupling stiffness and the distance between kinesins can be investigated. More-

over, it would be also interesting to study whether the selective transport of different

types of intracellular cargoes to their own destinations is determined by the cargo

stiffness, and whether the failure of intracellular transport under disease conditions

is influenced by changes in cargo stiffness.
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CHAPTER IV

Anomalous Particle Diffusion

4.1 Abstract

We provide a generalized persistent random walk (GPRW) model to describe the

anomalous diffusion-like dynamics influenced by particle velocity and directional per-

sistence. We showed that the GPRW model can be simplified as a Fokker Planck-like

equation when the magnitude of velocity is constant and the persistent time is ex-

ponentially distributed. At long time scale, the particle motion is diffusion with

directional drifting. When the velocity is correlated with persistent time, particle

performs Fickian diffusion, but its full distribution diverges from Gaussian. In addi-

tion, when the persistent time follows a non-exponential distribution, particle motion

is super-diffusive.

4.2 Introduction

Many anomalous diffusion and transport phenomena other than Gaussian and

Fickian diffusion have been observed in complex systems, such as particles in turbu-

lent flows, intracellular protein diffusion, bacteria and animal migration and spreading

of epidemics [124, 125, 126, 127, 8]. To describe the microscopic dynamics of particles

and the macroscopic diffusion and transport process, there are two key complimen-
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tary approaches in statistical physics. The first approach is based on the concept

of (continuous-time) random walks and partial differential equations (diffusion equa-

tions), and the second is based on stochastic differential equations (Langevin ap-

proach). The random walk based approach has strength in the flexibility of model

construction and explicit physical meanings of model variables and parameters. It

has been widely applied to study and understand the real-world observations.

In the random walk based approach, the most well-known one is the diffusion

equation derived based on heat conduction by Fourier for more than a century [128].

The diffusion equation describes Gaussian and Fickian motion of the particle where

its mean square displacement (MSD, denoted as 〈x2〉) is linear in time, 〈x2〉 = 4Dt,

where D is referred to as diffusion coefficient. The MSD 〈x2〉 can be either ensemble

average over n particles, 〈x2〉n =
1

n

∑n
i=1 |xi(t) − xi(0)|2 or time average, 〈x2〉t =

1

t

∫ t
0
|x(t′) − x(0)|2dt′. In Gaussian and Fickian diffusion, 〈x2〉n = 〈x2〉t. However,

a non-physical drawback of the diffusion equation is the possibility of having infinite

particle speed. At the same time, experiments show that the MSDs can be nonlinear

in time. Specifically, 〈x2〉 = 4Dαt
α. When α < 1, the particle motion is named

as subdiffusion. When 1 < α < 2, particle performs superdiffusion. To consider

the finite speed of the moving particle, the persistent random walk (PRW) model

is proposed. The basic schematization of the PRW model can be described as: “ a

particle starts from a point 0 and moves with a constant speed v in a straight line

for time t1; it then turns through an angle θ and moves in a second straight line

for time t2. In two dimensional (2D) case, θ is uniformly distributed between 0 and

2π. The particle repeats this process n times. Thus, the PRW model describes the

probability that after these n stretches the particle is at a distance between r and

r+dr from its starting point 0.” When the moving time is a constant (ti = tj, ∀ i, j ∈

[1, n]), the PRW model can be simplified into the telegraph equation, which captures

the transient ballistic motion at short times and Gaussian Fickian diffusion at long
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times [129]. When the particle moves under random external forces (i.e. particle has

random walking time) and one disregards the random effects occurs in the order of

γ−1 (i.e. walking time follows exponential distribution with parameter γ), the PRW

model is simplified into a Fokker Planck equation [130]. When the walking time

follows a long tailed distribution, the particle motion is superdiffusive. To consider

the subdiffusive dynamics where particles spread slower than Fickian diffusion, a long-

tailed distributed waiting time between two consecutive random walks is taken into

account. Fractional telegraph equation and fractional Fokker Planck equation can

further be derived from PRW model for the superdiffusive and subdiffusive motions

[131, 132]. Furthermore, several other researches modified the framework of PRW

model and consider the different distributions of particle speed [133, 134, 122], such

as the random walks with random velocities (RWRV) model [133]. While most works

focus on the particle moving time and speed, the effects of directional heterogeneity

(specifically, the probability of a particle moving in a specific direction θ) on diffusion

and transport dynamics is largely unknown.

In this work, we proposed a generalized persistent random walk (GPRW) model

to study three different situations where the switching of particle moving direction

is non-uniform in θ and correlated with particle speed and moving history. In the

first situation, the directional switching probability is non-uniformly distributed over

θ and spatially dependent. We showed that the particle probability density in phase

space is determined by the spatial and angular particle flux. At long times, particles

maintain Fickian diffusion with directional drifting influenced by angular heterogene-

ity. In the second situation when the probability of maintaining the same walking

direction is reinforced by the particle speed (i.e. particle directional persistence is

positively correlated with speed), particle performs Fickian diffusion with a signifi-

cantly improved diffusion coefficient and its distribution diverges from Gaussian. In

the third situation, we showed that the motion of the particle is superdiffusive when
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the probability of maintaining the walking direction is reinforced by the distances the

particle has already traveled.

4.3 Model

The particle motion is simplified as a series of connected line segments as in the

PRW model [135, 136]. Each line segment is named as a sojourn. For example, in

Figure 4.1 a, from (x′, t′) to (x, t) is a sojourn. The particle velocity during a sojourn

is assumed to be invariant, and it can be represented by its magnitude and direction,

represented as u = f(U, θ). Where U is the magnitude and θ is the direction. The

time interval of a sojourn is referred to as persistence (or persistent time), denoted

as tp. For example, t − t′ is the persistence of a sojourn from (x′, t′) to (x, t). The

distribution of tp is φ(tp), and the cumulative distribution is Φ(tp) =
∫∞
tp
φ(t)dt. At

the end of a sojourn (e.g. (x, t)), particle changes moving velocity. The probability

of switching from velocity u′ to u is denoted as r(u; u′, χ), where χ represents factors

that influence the switching of particle direction. For example, r(u; u′,x, t) represents

the switching probability at position x and time t. Note that,
∫
r(u; u′, χ)du = 1.

Figure. 4.1: Schematic illustration of the microscopic motion of a particle.
a, 2D particle motion represented by connected line segments. b, 1D par-
ticle motion over time, where rates q(u′,x′, t′), q(u,x, t) and probability
density p(u,x′′, t′′) are indicated.

For easy understanding, an example of the 1D particle motion along vertical di-

rection is plotted in terms of time in Figure 4.1 b. The particle distribution at phase

68



space is described by probability density p(u,x, t), which is the probability of observ-

ing a particle at position x at time t with velocity u.
∫
p(u,x, t) du dx dt = 1. We

further define a rate q(u,x, t) to represent particles whose sojourns end at position x

and time t and are going to move with a new velocity u in the next time step. Note

that
∫
q(u,x, t) du dx dt 6= 1. p(u,x, t) and q(u,x, t) satisfy master equations

q(u,x, t) = p0(u,x)δ(t)+∫
r(u; u′,x, t) du′

∫
dx′

t∫
0

dt′q(u′,x′, t′) δ(x− x′ − u′(t− t′))φ(t− t′)

(4.1)

p(u,x, t) =

∫
dx′

t∫
0

dt′q(u,x′, t′) δ(x− x′ − u(t− t′)) Φ(t− t′) (4.2)

p0(u,x) is the initial probability distribution. Equation 4.1 is derived from the

consideration that when a particle arrives at x and t, it is because at previous time

t
′

(0 < t
′
< t) the particle starts moving from location x

′
with a velocity u

′
, where

x− x
′
= u

′
(t− t′). After arriving at x and time t, its velocity changes from u

′
to u.

Equation 4.2 considers that when a particle passes by location x at time t, it means

at a previous time t
′

(0 < t
′
< t) the particle starts moving from location x

′
with a

velocity u, where x− x
′
= u(t− t′), and the persistence time of the particle is equal

to or longer than t− t′ . It should be noted that q(u,x, t) only represents particles at

the end of a sojourn, while p(u,x, t) represents particles along a sojourn and at the

end of a sojourn,

4.4 Fickian diffusion with drifting

First, we consider the particle moves in a static and memoryless environment.

That is r(u; u′, χ) = r(u; u′,x) and φ(tp) = γe−γtp , where γ is a model parameter.
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Equation 4.1 can be rewritten as

q(u,x, t) = p0(u,x)δ(t) +

∫
r(u; u′,x)du′

t∫
0

q[x− u′(t− t′),u′, t′]φ(t− t′)dt′ (4.3)

Based on Taylor expansion,

q[x− u′(t− t′),u′, t′] =
∞∑
n=0

[−u′ · 5]n

n!
q(x,u′, t′)(t− t′)n (4.4)

Perform Laplace transform to get

q̂(u,x, s) = p̂0(u,x) +

∫
r(u;u′,x)

γq̂(u′,x, s)

s+ γ + u′ · 5
du′ (4.5)

Perform Taylor expansion and Laplace transform on equation 4.2 to get

p̂(u,x, s) =
q̂(u,x, s)

s+ γ + u · 5
(4.6)

Combine equations 4.5 and 4.6 to get

sp̂(u,x, s)− p̂0(u,x) + u · 5p̂(u,x, s) = γ

∫
r(u;u′,x)p̂(u′,x, s)du

′ − γp̂(u,x, s)

(4.7)

Performing inverse Laplace transform leads to

(∂t + u ·5)p(u,x, t) = γ

∫
r(u;u′,x) p(u′,x, t)du′ − γp(u,x, t) (4.8)

The partial differential equation (PDE) 4.8 states that the changing rate of particles

at (u,x) is determined by their spatial motion (particles move into or out of position

x) and motion in phase space (particles change velocity between u and u′). Note that

a similar PDE is reported in study [137] derived based on the Langevin approach.

Assuming the magnitude of velocity U is constant, and the changing of velocity
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direction is independent of space and follows Gaussian distribution. Specifically,

r(u; u′, χ) = r(θ; θ′) = (
Λ

2πk
)3/2exp

[
− (θ − θ′ + αθ′/Λ)2

4k/Λ

]
, the PDE can be further

simplified to Kramers-Fokker-Planck equation [138] as

(∂t + Unθ ·5)p(θ,x, t) =
γ

Λ

[
α5θ ·(nθp(θ,x, t)) + k∆θp(θ,x, t)] (4.9)

Next, we derive the asymptotic solution for equation 4.8. When the magnitude

of velocity is a constant U , r(u;u
′
, χ) = r(θ;x), where θ is the angular difference

between u and u′. Perform a moment expansion on PDE 4.8 to get

∂tpx +
U

2
5 ·[px + ρ, py] = γ(x)ρ

∫
r(θ;x) cos θdθ − γ(x)px (4.10)

∂tpy +
U

2
5 ·[py, ρ− px] = γ(x)ρ

∫
r(θ;x) sin θdθ − γ(x)py (4.11)

∂tρ+ U 5 ·[px, py] = 0 (4.12)

Where p = p(θ,x, t), px = pcosθ, py = psinθ, px =
∫
p cos 2θdθ, py =

∫
p sin 2θdθ,

and ρ =
∫
pdθ. At long times, px = py = ∂tpx = ∂tpy = 0 [137]. Therefore, at long

time, particle motion follows

∂tρ = U 5 ·
[ U

2γ(x)
5 ρ

]
− U ρ5 ·

[ ∫
r(θ;x) cos θdθ,

∫
r(θ;x) sin θdθ

]
(4.13)

Equation 4.13 shows that at the long time scale, the particle motion is a combination

of diffusion and directional drifting. Diffusion, described by the right first term, can be

represented by a point-wise diffusion coefficient D(x) =
U2

2γ(x)
. Directional drifting,

described by the right second term, can be represented by a net velocity (advection

velocity) uav = [U
∫
r(θ;x) cos θdθ, U

∫
r(θ;x) sin θdθ].

The PDE 4.8 is numerically solved with periodic boundaries. In the first case,

the model is applied to study the diffusion of particles in homogeneous (specifically,
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Figure. 4.2: The MSD of the particle in dense and dispersal networks of
tracks. In a dense network, the particle speed and persistent time are
reduced due to frequent collisions with the tracks and switching directions
at the intersections, the diffusion coefficient is smal. Vice versa. Triangles
and dots represent the experimental measurements. Solid lines are the
results calculated from PDE 4.8.

r(θ;x) =
1

2π
) polymer networks. In the experiment [139], particle speed is measured

as 72 ± 4nm/s in a dense network and 80 ± 5nm/s in a dispersal network. Mean

particle persistence (value of 1/γ) is 200 ± 20nm in a dense network and 600 ±

40nm in a dispersal network. The mean square displacement (MSD) of the particle

calculated by PDE is compared with the experimental measurements, as shown in

Figure 4.2 a. At the initial transient stage, the particle motion is superdiffusive. At

long times, particle performs diffusion with a diffusion coefficient D =
U2

2γ
(Figure

4.2 b). In the second case, the probabilities of switching from velocity direction

θ1 to θ2 are non-uniformly distributed and are influenced by the difference between

two angles, denoted as r(θ) = r(|θ1 − θ2|). Specifically, three types of distribution

are studied. Type 1: r(θ) =
cos4 θ∫ 2π

0
cos4 θdθ

; Type 2: r(θ) =
cos2 θ∫ 2π

0
cos2 θdθ

; Type 3:

r(θ) =
cos2 θ + 0.5∫ 2π

0
(cos2 θ + 0.5)dθ

. At long time, particle motion is diffusive with directional

drifting. The MSD follows power law (MSD ∝ tα, α > 1), as shown in Figure 4.3.

The second case could potentially be used to investigate and explain the relationships

between polymer heterogeneity and particle motions. For example, the formation of

the outgoing flux of intracellular particles toward the cell periphery [140] could be
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explained based on the model by considering the majority of the tracks are pointing

outward.

Figure. 4.3: The angular heterogeneity leads to the directional drifting of
particles. a, Three types of distributions r(θ) and the corresponding
MSDs of particles. b, Snapshots of particle probability distributions at
different time with type 1 angular heterogeneity.

4.5 Anomalous Fickian diffusion

Next, we consider the particle moves in a static, homogeneous environment. How-

ever, particles that move fast are likely to maintain or terminate moving direction at

the end of a sojourn. That is r(θ; θ′, χ) = r(θ; θ′, U ′). Consequently, the persistent

time of each sojourn is correlated with its moving speed. Thus, we let r(θ; θ′, χ) =
1

2π
,

but U = f(tp). The correlation between particle speed and persistence is widely seen

in many biological systems. For example, Maiuri et al. found that cells that migrate

faster are likely to maintain their migration direction because actin flows generated in

motile cells reinforce cell polarity and consequently cell persistence [42]. They showed

that the correlation between persistent time tp and instantaneous velocity v of cells

with either a mesenchymal migration mode (e.g. retinal pigment epithelial cells) or

an amoeboid migration mode (e.g. bone marrow-derived dendritic cells) follows a
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simple exponential distribution as tp = Aeλv. In the intracellular cytoplasm, the ac-

tive components, such as motor proteins and polymerization of cytoskeleton, modify

the fluctuating forces on the particle. Since the particle velocity and persistence are

originated from random active forces, factors that influence forces will inevitably lead

to simultaneous changes in velocity and persistence. For example, when motor pro-

teins transport a particle along the track, the external load on the particle reduces

the transport velocity as well as the persistent time [141, 142]. Therefore, particles

that frequently switch directions and that persist a very long distance can both be

observed in the cytoplasm [58].

Figure. 4.4: Anomalous Fickian diffusion stems from the correlated velocity
and persistence. a, The MSD at long times is proportional to time
when the speed U is positively, negatively correlated and uncorrelated to
the persistent time tp. b, c The probability distribution of the particle
displacements at the center horizontal line of the space when t = 70s.
The velocity is positively correlated (in b) and negatively correlated (in
c) to the persistent time. The center portion of the distributions follows
Gaussian (∝ e−x

2
) and the tails are exponentially distributed (∝ e−x).

In this section, two types of velocity-persistence correlations are discussed. Specif-

ically, particle speed U is proportional to persistent time tp or t
−1/2
p . By numerically

solving Equations 4.1 and 4.2 with periodic boundaries, the results show that the

time required for initial transition to equilibrium has been extended, but the particle

motions remain Fickian diffusive (i.e.
〈
∆x2

〉
∝ t) at long times (Fig. 4.4 a). When

velocity is positively correlated to persistence (U = U0tp, where U0 is a constant
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parameter), the diffusion coefficient is strikingly larger than it in Gaussian Fickian

diffusion. Since the diffusion coefficient only holds information of second-order cumu-

lants, we then analyzed the full probability distribution of the particle displacements

(Fig. 4.4 b and c). We find that the center portion of the distribution remains

Gaussian, but the large displacements decay exponentially slower. The exponential

distribution in Fig. 4.4 b stems from the self-reinforced particle persistent direction.

And it causes the significant increment of the diffusion coefficient. When velocity

is negatively correlated to persistence (U = U0t
−1/2
p ), the large displacements decay

exponentially faster than the Gaussian distribution. It should also be noted that the

anomalous particle distribution will eventually recover to a Gaussian as required by

the center limit theorem.

The non-Gaussian distribution in anomalous Fickian diffusion (also named as

anomalous yet Brownian diffusion by Wang et al. [143, 144]) has been observed

in several physical systems, including beads on the surface of a lipid bilayer tube,

beads in an entangled solution of actin filaments, and liposomes in a nematic solu-

tion [143, 144, 145]. Granick’s group and Chubynsky, Mykyta et al. analyzed this

strange diffusion phenomenon by decomposing particle displacement distribution into

normal modes and representing each mode by an effective diffusivity [144, 146]. They

found that the environmental heterogeneity can be reflected by the distribution of

the effective diffusivities. Here, from a physical and biological point of view, our

results indicate that a fundamental cause of the unevenly distributed diffusivities is

the correlation between particle velocity and persistence. That is the switching of

direction at the end of a sojourn depending on the historical traveling speed. We

expect further experiments to test our hypothesis that particles in the cytoplasm or

other systems with the universal velocity-persistence correlation will show Fickian

but Non-Gaussian diffusion.
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4.6 Anomalous diffusion

Finally, the effects of self-reinforced directionality influenced by historical traveling

distance are studied based on the GPRW model. Recall that in a memoryless system,

the direction of each sojourn is independent of the history and the persistent time is

exponentially distributed. However, in many biological and ecological systems, the

distribution of persistent time is observed as long-tailed [127, 126, 8]. A possible view

of the long-tailed distribution is that the directionality can be reinforced at the end

of a sojourn. Particles that have performed a long sojourn are likely to maintain the

traveling direction and move an extremely long distance.

Figure. 4.5: The self-reinforced directionality leads to the superdiffusion of
particle. a, The distribution of persistent time. EX represents the
exponential distribution (γe−γtp , γ = 0.5); LT represents the long tailed
distribution (γtγ−1p e−t

γ
p , γ = 0.5); NM represents the normal distribution

(tp ∼ N(2, 1)). b, The MSD over time. α = 1 is Brownian; α > 1 is
superdiffusive. c, The probability distribution of particle displacement
at the center horizontal line of the space (plot, normalized) and in the 2D
space (images). The color in the 2D images represents the probability
P (x, t).

Two types of persistence distribution other than exponential distribution are stud-

ied here. Specifically, the long tail distribution (φ(tp) = γtγ−1p e−t
γ
p ) and normal dis-

tribution (tp ∼ N(2, 1)) (Figure 4.5 a). Figure 4.5 b shows that other than expo-

nentially distributed persistence, the long tail and normal distribution of persistence

lead to superdiffusion of particle at both short and long times. While the majority
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of particles remains close to the initial position in the Gaussian Fickian diffusion, in

superdiffusion, most particles move away and form circular patterns (Figure 4.5 c and

d). In addition, when the experimentally measured distribution φ(tp) of endosomal

proteins in intracellular cytoplasm is used [8], the results also show a superdiffusion

phenomenon (Figure 4.6). Specifically, in the experiments, more than 40000 runs of

endosomes are measured, and the persistent distance (i.e. distance the endosome is

transported before switching moving direction) follows power law distribution. By

assuming the endosome moves with constant speed, the distribution of persistent

time φ(tp) also follows same power law distribution, shown by the grey dots in Figure

4.6 a. To calculate the endosomal distribution and its MSD over time based on the

GPRW model, the distribution of persistent time is approximated based on fitting the

long-tailed distribution formula φ(tp) = γtγ−1p e−t
γ
p to the experimental data. When

γ = 0.45, the continuous approximation curve, shown by the blue curve in Figure 4.6

a, can be used to replace the discrete experimental measurements. Using the contin-

uous analytic formula φ(tp), the particle distribution and MSD are calculated based

on master equations 4.1 and 4.2. The results in Figure 4.6 b show that the MSD is

super-linear in time, which indicates that endosomes perform superdiffusive motion.

Note that, the superdiffusion is usually described by a generalized Langevin equa-

tion (GLE) as

m
d

dt
u(t) = −m

t∫
0

Γ(t− t1)u(t1)dt1 + F (t) (4.14)

where Γ(t) is the memory kernel. When Γ(t) ∼ t−α, it can be shown that lim
t→∞
〈x2(t)〉 ∝

tα [147]. The GLE indicates that when the viscosity decreases fast enough with the

time the particle has persisted (α > 1), the process is superdiffusive at long times.

In other words, superdiffusion happens when the probability of maintaining traveling

directions increases along the persistent path.
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Figure. 4.6: The superdiffusion originated from the long tailed distribu-
tion of persistence. a, the experimentally measured distribution of
the persistent time [8] is shown by grey dots and an analytic formula
φ(tp) = 0.45t−0.55p e−t

0.45
p , used to approximate the experimental results,

shown by the solid line. b, the MSD of the particle over time calculated
by the master equations using the approximation formula φ(tp). The
MSD follows power law (i.e. MSD ∝ tα, α = 1.5). Different discretiza-
tions of time and space lead to the same calculation results.

4.7 Discussion

In this work, we extended the PRW model to study effects of angular heterogeneity

on the anomalous diffusion and transport. We showed that when the angular hetero-

geneity is spatial dependent but memoryless, analytic results can be formally derived

by performing Laplace transform and the results indicate particles perform drift dif-

fusion asymptotically. In the system with memory, the mechanism of self-reinforced

directionality influenced by historical speed and persistent time drives the system

away from Gaussian Fickian diffusion. Specifically, when speed and persistence is

correlated, particles perform Fickian but non-Gaussian diffusion. When persistence

is long-tailed distributed, particles perform superdiffusion. The self-reinforced direc-

tionality indicates that the time and space are no longer linked by a simple constant

velocity as in the PRW model. The distorted (stretched) spatial-temporal coupling

is probably the origin of the anomalous diffusion and transport phenomena. But fur-

ther careful analysis and formal proves are needed. It is also interesting to study and
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understand if and how the external energy input could help reconstruct the diffusion

process by modifying the spatial-temporal coupling and maintaining the system out

of equilibrium.
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CHAPTER V

Developmental Progression of Embryonic-like

Tissues

5.1 Abstract

Early human embryonic development involves complex spatial cellular organiza-

tion, lineage specification and tissue dynamics. To reveal mechanisms that govern

early embryonic development and how they are disrupted in disease, in vitro 3D stem

cell models that can self-organize into embryonic-like structures have been proposed

and start to become more widely accepted and used. However, the heterogeneity and

complexity inside self-organizing stem cell models limits the ability to clearly iden-

tify reliable and significant factors that control tissue growth and pattern formation.

Here, we proposed a high-throughput automatic tissue profiling technique for fast

and easy extraction of morphological and proteinomic features from embryonic-like

tissue images, as well as exploration and quantification of large image feature data

sets with single-cell resolution. Based on the tissue profiling technique, the similarity

between tissue samples is measured and used to inference a bifurcating developmental

trajectory and recover essential tissue developmental stages.

80



5.2 Introduction

Embryonic development, regulated by multi-level signaling interactions, is a ro-

bust and complex process involving a series morphological transformations. Despite

its fundamental and clinical importance, mechanisms that refine cellular patterns and

lead to diverse adult forms are less understood because of the limited accessibility

to human embryo specimens and ethical restrictions. Studies based on mouse and

other mammalian embryos have provided informed knowledge about pre-implantation

development until the formation of blastocyst because pre-implantation is fairly con-

served among species. During post-implantation period, however, distinct embryonic

architectures among species emerge and direct application of mouse embryology to

human system become questionable. Human embryonic stem cells (hESCs) exhibit

many molecular and cellular similarities with post-implantation epiblast cells in hu-

man embryo, and are shown to have the potential to differentiate into three germ

layers [55]. Therefore, in vitro synthetic models constructred from hESCs are impor-

tant alternatives for studying post-implantation human embryo development [148, 54].

Recently proposed synthetic embryonic models that can recapitulate some level of in

vivo-like cell patterns and morphologies include 2D micro-patterned hESC colonies,

3D hESC aggregates embedded in gel matrix or cultured in engineered microfluidic

devices. Specifically, Warmflash et al. showed that cells within geometrically defined

colonies exposed to BMP4 are able to form ordered array of germ layers including

trophectoderm, ectoderm and mesendoderm along the radial axis [149]. In three di-

mensional (3D) conditions, Shao et al. observed the in vivo-like lumenogenesis and

amniogenesis of hESC aggregates cultured inside a thick gel bed. They found that a

fluid-filled cavity is formed inside the cell aggregates and some cells are able to differ-

entiate into amniotic-like cells at a proper initial cell seeding density [50, 51]. Zheng et

al. achieved controllable generation of asymmetric amniotic cavity with dorsal-ventral

patterning by applying BMP4 to one side of the cell aggregates using a microfluidic
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device [52]. And Simunovic et al. studied the spontaneous anterior-posterior pat-

terning by embedding hESC aggregates in polymeric hydrogel supplemented with a

small dose of BMP4 [53]. Until now, however, only limited phenomenological ob-

servations have been provided based on the synthetic embryonic models, because of

the heterogeneity inside self-organizing systems (i.e. systems proposed by Shao et

al. [50, 51] and Simunovic et al. [53]) and limited culturing time and space and

complicated experimental procedures in engineered systems (i.e. systems proposed

by Warmflash et al. [149] and Zheng et al. [52]). To perform high-throughput and

unbiased quantification of the phenotype of synthetic embryonic models, identify un-

derlying regulatory factors and gain insights about early human development, we

developed an automated and highthroughput imaging analysis workflow, also being

known as a tissue profiling technique, that enables systematic evaluation of morphol-

ogy and protein expressions of hESC aggregates cultured inside 3D gel matrix. In this

chapter, I will first introduce the self-organizing embryonic models used to generate

asymmetric embryonic-like tissues in a high-throughput manner. This experimen-

tal method enables acquiring a large amount of immunostaining images at different

time points to study tissue developmental progression. Next, I will discuss the image

analysis pipeline, containing two major parts segmentation and feature extraction,

developed to measure morphological and staining features and use these features as

a full phenotypical spectrum of biological tissues. In the end, the high dimensional

feature set is analyzed based on advanced statistical tools to inference a continuous

bifurcating developmental trajectory. Some preliminary biological insights about the

embryonic-like tissue development acquired from the analysis will also be presented.
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Figure. 5.1: Controlled generation of three dimensional (3D) embryonic like
tissues. a, In vivo development of post-implantation human embryo.
b, Workflow of generating embryonic like tissues from human embryonic
stem cells (hESCs). c, Representative confocal images of the epiblast like
tissue, asymmetric embryonic like tissue and amniotic like tissue stained
for DAPI (nuclei), NANOG (stem cell), GATA3 (amniotic like cell) and
T (primitive streak like cell).

5.3 Results

5.3.1 Generation of embryonic-like tissues

At day 5 of embryo development, the blastocyst contains a spherical aggregate

of epiblast cells at one side of the cavity. Epiblast cells undergo apical-basal po-

larization and lumenogenesis which results in the formation of pro-amniotic cavity.

At around day 12, the amniotic cavity becomes asymmetric where on side of epiblast

cells differentiate into squamous amniotic ectoderm and another side of cells maintain

columnar shape. The formation of bipolar amniotic cavity defines the dorsal-ventral

body axis. Afterwards, the posterior epiblast cells go through epithelial-mesenchymal

transition and form primitive streak (Figure 5.1 a) [52]. We sought to reproducibly

generate aggregate of hESCs which mimic day 5 epiblast cells in pyramidal devices.

Isolated hESCs cultured in pyramid wells establish cell-cell contact and merge to-

gether after 6 hours. Cell aggregates are then transferred to the 96 well plates with
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low adhesive surface for long-time 3D suspension culture. We found that 5% geltrex

mixed with mTeSR medium is the optimal matrix to support the growth of hESC

aggregates (Figure 5.1 b). At different time points after culturing hESC aggregates

in the 3D matrix, a part of tissues are harvested for immunofluorescent staining. In

general, we observed the existence of three types of tissues. The first type tissue

has a single spherical lumen surrounded by a layer of NANOG+, OCT+ pluripotent

columnar epiblast-like cells. Because the tissue structure and cell type are similar to

day 7 epiblast, it is referred to as epiblast-like tissue. After culturing for 48 h, all

cells have lost NANOG expression and exited from pluripotency. A part of tissues

grow into asymmetric structures with GATA3+ and T+ cells. Squamous cells express

GATA3, a putative amniotic ectoderm marker, and columnar cells express T and ac-

quire mesenchymal like property. The asymmetric structures recapitulate the bipolar

posterior-side embryonic sac at around 12 days in vivo. Thus, this type of tissue

is is referred to as asymmetric embryonic-like tissues. Another part of tissues, usu-

ally small-size tissues, containing only GATA3+ cells, are referred to as amniotic-like

tissues (Figure 5.1 c).

5.3.2 Image based tissue profiling

To quantify tissue properties, including tissue morphology and cell type, we trans-

ferred fluorescent confocal images to statistical measurements based on a self-developed

automatic image processing workflow. The workflow contains two major steps, seg-

mentation and feature extraction. Segmentation is used to provide a simplified repre-

sentation of a tissue image, which contains only boundaries of tissues and individual

cells. Feature extraction provides mathematical quantification of tissue structure and

fluorescent intensity. Specifically, for whole tissue segmentation, an intensity based

watershed segmentation algorithm on a binary mask generated by Gaussian filter (or

median filter) is applied to the image (Figure 5.2 a). To identify individual cells based
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Figure. 5.2: Schematic illustrations of tissue segmentation, nuclei segmen-
tation and morphological features. a, Tissue segmentation based on
fluorescent staining image of marker T. Tissue area is labeled in white.
b, Nuclei segmentation based on fluorescent staining of Dapi. Bound-
aries of cell nucleus are labeled as white. c, Schematic representation of
four morphological features, including thickness tθ, equivalent diameter
D, major axis length and minor axis length.

on nuclei staining, a shape based watershed algorithm is used because clumped cells

usually can not be separated by less intense borders. First, cell clusters are separated

by applying Otsu thresholding. Then the thresholding image is transformed into a

distance image where the intensity of each pixel represent the distance from that pixel

to the nearest background pixel. Watershed algorithm is then applied to the inverted

intensity image to separate cells within a cluster based on roundness. In the end,

objects whose size beyond the manually defined size range is filtered out (Figure 5.2

b).

Fourteen meaningful morphological features are extracted from tissue segmenta-

tion and used to distinguish symmetric and asymmetric tissues. Asymmetric tissues

have a thin amniotic epithelium at one side of the cavity and a thick cell layer at the

opposite side, while symmetric tissue has a relatively uniform cell layer surrounding

the cavity (Figure 5.1 c). Therefore, tissue thickness, tθ, is introduced. As shown in

Figure 5.2 c, tθ is defined as the thickness at angle θ (θ ∈ [0, 2π]) in polar coordinate,

where the center of the coordinate system is at the mass center of the cavity. The
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Figure. 5.3: Morphological and intensity features of three types of tissues. a,
Asymmetric embryonic-like tissue. b, Amniotic-like tissue. c, Epiblast-
like tissue. Left three image columns are tissues co-stained with NANOG,
GATA3 and T. Right two image columns are tissue segmentation and
nuclei segmentation. In nuclei segmentation, GATA3+ cells identified
by the algorithm is labeled as green, T+ cells are labeled in purple and
NANOG+ cells are labeled as red. Cells labeled in black are identified as
not expressing any marker.
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symmetry of a tissue is quantified by thickness ratio r, where r =
max(tθ)

min(tθ)
. For a

symmetric amniotic-like tissue or epiblast-like tissue, r is close to 1. For an asym-

metric embryonic-like tissue, r is much larger than 1. To quantify the size of a tissue,

equivalent diameter defined as the diameter of the smallest circle that can cover the

whole tissue area is used (Figure 5.3 c). To quantify the roundness of a tissue, major

axis length and minor axis length are calculated. Major axis length is defined as the

length between two furthest vertices on the outer boundary of the tissue, and minor

axis length is the length between two closest vertices on the boundary (Figure 5.3 c).

More morphological features and their definitions are listed in Table 5.1.

Thirteen intensity features are extracted based on nuclei segmentation. For each

tissue, three markers, GATA3, NANOG and T, are co-stained. The average intensity

of a cell nuclei is calculated, and a manually defined threshold is used to identify

GATA3+, NANOG+ and T+ cells, as shown in Figure 5.3. Furthermore, to quantify

the distribution of different types of cells, intensity gyration is introduced. Intensity

gyration is defined as the distance between mass center of positive cells and tissue

center. For example, GATA3 gyration represents the distance between mass center

of GATA3+ cells and tissue center. GATA3 T gyration is the distance between mass

center of GATA3+ cells and mass center of T+ cells. Therefore, if GATA3 T gyration

is large, it suggests that GATA3+ cells and T+ cells are distributed at two opposite

sides of the tissue. More intensity features and their definitions are listed in Table

5.1.

5.3.3 Analysis of tissue properties

After automatically acquiring 27 features for more than 600 tissue samples, for

each feature i (i ∈ [1, 27]), feature values of all samples are normalized to zero

mean and unit variance. The Pearson correlation heatmap of 27 normalized features

is shown in Figure 5.4. The 14 morphological features except lumen eccentricity
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Figure. 5.4: Pearson correlation heatmap of normalized morphological and
intensity features. Colors represent correlation between each pair of
features.
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Figure. 5.5: Distributions of six representative features, including area,
thickness ratio, GATA3 T gyration, NANOG mean intensity,
GATA3 mean intensity and T mean intensity, of tissues fixed
at different time points. Colors represent time duration of cultur-
ing tissues in gel matrix. Kernel density estimation is used to acquire
continuous feature distribution from discrete samples.

are positively correlated (Figure 5.4 c). Intensity features of the same marker have

stronger correlation with each other (Figure 5.4 a). NANOG intensity features are

negatively correlated with GATA3 intensity features and T intensity features (Figure

5.4 b), which indicates NANOG and GATA3, T are exclusively expressed in cells. It

agrees with the fact that NANOG is expressed in pluripotent cells and GATA3 and

T are expressed when cells begin to differentiate. In addition, some features such as

major axis length, minor axis length and perimeter are highly correlated; thus, not

all of them are needed in later analysis.

Next, tissue properties characterized by morphological and intensity features are

analyzed. From density distribution profiles of tissue features, it is shown that the

average of tissue area and thickness ratio increases over time (Figure 5.5 a and b),

which indicates that tissues keep growing and could become structural asymmetric.

GATA3 is not expressed in cells at 24 hours. At 48 and 60 hours, the distributions

of GATA3 T gyration, which represents the separation between GATA3+ cells and
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Figure. 5.6: Scatter plots of pairs of tissue features. a, Tissue equivalent diam-
eter is positively correlated with tissue area. b, Tissue thickness ratio
separates into two branches at large area. c, GATA3 mean intensity
over tissue area. d, GATA3 mean intensity over thickness ratio. e,
NANOG mean intensity over tissue thickness ratio. f, Relationship be-
tween GATA3 mean intensity and T mean intensity. Each dot represents
one tissue sample. Colors represent the culturing time of tissues in gel
matrix.

T+ cells, have two peaks. In asymmetric tissues, GATA3+ cells and T+ cells locate

at two opposite sides of the tissue, which are represented by the peak that has large

GATA3 T gyration value. Another peak whose center locates at around 0 suggests

that these differentiated cells are randomly or uniformly distributed in symmetric

tissues. At 60 hours, the density of having separated two types of cells and their

separation distance is large (Figure 5.5 c). The average expression level of NANOG is

the highest at 24 hours and decreases in later times (Figure 5.5 d). GATA3 intensity

increases over time, indicating a proportion of cells differentiate into amniotic-like

cells (Figure 5.5 e). The average expression level of T is the lowest at 48 hours

(Figure 5.5 f).

Furthermore, relationships between pairs of tissue features are studied. As ex-

pected, tissue diameter increases with tissue area, because they are both describing
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tissue size. Sizes of the majority of tissues at 24 hours are smaller than tissue sizes at

48 and 60 hours. But the size difference at 48 and 60 hours is not substantial (Figure

5.6 a). For large size tissues, a part of them has large thickness ratio and another

part is symmetric (Figure 5.6 b). At 60 hours, small size tissues have higher GATA3

expression level than large tissues (Figure 5.6 c). And the thickness ratio of tissues

that have strong GATA3 expression is usually small (Figure 5.6 d), which indicates

those are symmetric amniotic-like tissues. NANOG is expressed at 24 hours and in a

small portion of symmetric tissues at 48 hours (Figure 5.6 e). At 48 hours, one group

of tissues expresses GATA3 but not T and another group of tissues expresses T but

not GATA3. At 60 hours, many tissues have both GATA3 and T expressions (Figure

5.6 f).

5.3.4 Bifurcating developmental progression of tissues

From scatter plots of tissue features, separated branches with distinct properties

are observed (indicated by grey arrows in Figure 5.6). We therefore hypothesize that

tissue development following bifurcating trajectory and yields different structures and

cell types. To quantify the tissue developmental progression and pinpoint when bi-

furcation happens, continuous single-tissue trajectory is learned using the imaging

multidimensional feature space. Specifically, tissue samples are first ordered based

on their morphological similarities. Then, a continuous trajectory is inferred from

subsamples of temporal progression with fixed tissue time courses. Furthermore,

intensity features are mapped onto the developmental trajectory to acquire the dy-

namical expression of NANOG, GATA3 and T (Figure 5.7). Details of trajectory

inference method are provided in section 5.57.

In Figure 5.8 a, three distinct branches can be observed. The trunk part contains

small symmetric tissues. During development, a part of these small tissues follow

branch 2 trajectory to grow large as well as maintaining symmetry. Another part
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Figure. 5.7: Schematic illustration of the inference of tissue developmental
trajectory. Tissue samples are harvested and imaged at discrete time
points. Based on morphological similarities, tissue samples are projected
onto a new coordinate system to acquire bifurcating trajectory. Along
trajectory, the dynamical changes of tissue morphology and fluorescent
maker intensity are predicted.

of tissues goes through symmetry breaking along branch 1 trajectory. The devel-

opmental bifurcation starts around 0.4 psuedotime. Afterwards, two groups tissues

acquire different morphological and intensity features. In symmetric branch, tissue

area keeps increasing while thickness ratio is always low. In asymmetric branch, a

transient plateau of tissue growth appears right after the bifurcation point, prob-

ably because cells undergo differentiation instead of proliferation. The growth of

asymmetric tissues is rewoke after 0.7 psuedotime (Figure 5.8 b). We also examined

trends of mean intensities of NANOG and T along the trajectory. However, since

the average intensities are calculated over the whole tissue without any image pre-

processing such as illumination correction, the standard deviation of the results is

large. Moreover, the mixture of amniotic-like tissue and epiblast tissue in one branch

also influence results, because cells in epiblast-like tissue express NANOG but cells in

amniotic-like tissue should express GATA3. Nevertheless, some interesting findings

can be observed based on the intensity trajectories. For example, in the asymmetric

branch, the NANOG intensity decreases after bifurcation because cells loose pluripo-

tency and then increases probably because some cells differentiate into PGC-like cells

and start to express NANOG again [52]. The increasing of NANOG intensity hap-

pens also around 0.7 psuedotime when tissues start to regrowth. T intensity keeps
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Figure. 5.8: Trajectory of embryonic-like tissue development. a, Diffusion
map for embryonic-like tissues (n = 694 tissues). Colour-coding denotes
the trunk and two bifurcating branches. b, Morphological features, thick-
ness ratio and area, along trajectory. c, Intensity features, NANOG mean
intensity and T mean intensity, along trajectory. The light grey areas
represent the standard deviation.

increasing before bifurcation. After bifurcation, T intensity quickly reaches to the

maximum value at around 0.7 psuedotim (Figure 5.8 c). Furthermore, to verify the

inference results, live cell imaging of the growth of tissues can be acquired. For exam-

ple, the increasing of tissue area inferred based on different tissue samples acquired

at discrete time points can be compared with the growing of an individual tissue

measured based on continuous live cell imaging. A parametric sensitivity analysis

can also be performed to study the influence of modeling parameters, including the

intensity thresholds used to extract tissue morphology and identify individual cells

and parameters for trajectory inferences (Table 5.2).

5.4 Conclusion and future outlook

In this chapter, we developed a high throughput image based cell profiling strat-

egy to quantify the bifurcating developmental progression of embryonic-like tissues.

We described the experimental and computational methods developed and showed

preliminary results to demonstrate the feasibility of the proposed methods.
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The image based tissue profiling strategy can be further improved and used to

investigate mechanisms that controls symmetry breaking and cell fate selection, and

provide insights about post-implantation embryo development. For example, it would

be interesting to explore the influence of mechanobiological factors on the differentia-

tion of amniotic-like cells and formation of asymmetric cavity. In the experiments, we

discovered that symmetry breaking and formation of three types of tissues (asymmet-

ric embryonic-like tissue, amniotic-like tissue and epiblast-like tissue) is influenced

by initial cell seeding density and initial tissue size. At an intermediate cell seed-

ing density, the percentage of asymmetric embryonic-like tissues is the highest, and

amniotic-like tissues and epiblast-like tissues are observed simultaneously. At a large

cell seeding density, tissue keeps growing large while maintains symmetric structure.

Inside the large symmetric tissues, cells start to differentiate into mesoendoderm like

cells and express protein Brachyury (T), which agrees with the phenomenon reported

by Simunovic et al. [53]. At a small cell seeding density, the majority of tissues

are symmetric amniotic-like tissues with a squamous cavity. Therefore, it is possible

that single cells could sense the ’population context’, resulting in microenvironmental

effects that regulate gene expression and cell differentiation. Recently, it has been

shown that many extracellular mechanical cues, including matrix rigidity, external

stretch and cell density can lead to prominent F-actin cytoskeleton formation and

promote a high nuclear YAP/TAZ activity [150]. We therefore stained and visualized

YAP distribution in three types of tissues, shown in Figure 5.9. Interestingly, nuclear

accumulation of YAP was observed in small amniotic-like tissues and the squamous

side of asymmetric embryonic-like tissues, which indicates that the differentiation of

amniotic-like cells may be correlated with the nuclear accumulation of YAP protein.

To test whether the bifurcating differentiation of ESCs into amniotic-like cells and

mesodermal-like cells is influenced by mechanobiological factors (e.g. tissue size and

extracellular matrix stiffness) through YAP/TAZ signaling, the proposed methods
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Figure. 5.9: Nuclear accumulation of YAP in small amniotic-like tissue
(left), asymmetric embyronic-like tissue (middle) and large
epiblast-like tissue (right).

can be used to analyze the expression level and spatial distribution of YAP proteins

during the development when tissues are cultured inside various gel matrix or under

different drug perturbations.

Inference of protein expression profiles along the developmental trajectory, such as

Figure 5.8 c, is limited by the availability of primary antibodies and immunostaining

accuracy. To improve the inference accuracy and acquire a comprehensive under-

standing of the genetic and proteinomic fluctuations during development, mapping

the bulk RNA sequencing or single cell RNA sequencing results onto the develop-

mental trajectory becomes important. Traditionally, RNA sequencing and trajectory

inference focus on identifying stages and fates of cells cultured in 2D conditions [151].

For 3D tissues, RNA sequencing datasets provide only limited information because

important spatial positions of different types and stages of cells has been lost during

sequencing. To reconstruct spatially resolved gene expression data, one recent study

proposed to measure the mRNA content of tissue cells based on fluorescence in situ

hybridization and then map the RNA sequencing data onto the tissue based on a

panel of landmark genes [152]. Another method is to optimize sequencing technique

such that the spatial information of cells is included in the DNA barcodes [153]. It

would be interesting to explore the possibility of combining the image based tissue

profiling algorithm with strategies that can spatially map sequencing data onto the

tissues in order to reconstruct a spatial-temporal evolution of gene expression during
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tissue development.

5.5 Methods

5.5.1 Ethics statement

The embryonic like tissues lack the primitive endoderm and the trophoblast, and

thus cannot form yolk sac and placenta, respectively. Therefore, these embryonic-like

tissues do not have human organismal form or potential. Furthermore, all experi-

ments were terminated by no later than day 4 in vitro. All protocols used in this

work with hESCs to model early post-implantation human embryo development have

been approved by Human Pluripotent Stem Cell Research Oversight Committee at

University of Michigan, Ann Arbor.

5.5.2 Cell line

H9 human embryonic stem cell (WA09, WiCell; NIH registration number: 0062)

is used in this study. The H9 cell line has been authenticated by the original sources

as well as by immunostaining for pluripotency markers and successful differentiation

to three germ layer cells. The H9 cell line was authenticated as karyotypically normal

at the indicated passage number by Cell Line Genetics (Madison, USA). The H9 cell

line was tested negative for mycoplasma contamination (LookOut Mycoplasma PCR

Detection Kit, SigmaAldrich).

5.5.3 Cell culture

H9 cell line is maintained in a standard feeder-free culture system using mTeSR1

medium (STEMCELL Technologies) and lactate dehydrogenase-elevating virus (LDEV)-

free hESC-qualified reduced growth factor basement membrane matrix GeltrexTM

(Thermo Fisher Scientific; derived from Engelbreth-HolmSwarm tumors similarly as
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Matrigel) per the manufacturers instructions. H9 cells were used before P70.

5.5.4 Tissue generation and culturing

PDMS-based pyramidal devices are generated by replica-molding using AggreWellTM

400 (StemCell Technologies). Briefly, to make a template containing an array of

pyramidal posts, PDMS prepolymer was poured over the AggreWell, cured at 60 ◦for

12 hours, peeled off, oxidized with air plasma (Plasma Prep II; SPI Supplies) and

silanized with (tridecafluoro-1,1,2,2,-tetrahydrooctyl)-1-trichlorosilane vapor 1 hour

under vacuum. To generate the final PDMS pyramidal wells, PDMS prepolymer was

poured over the template, degassed under vacuum, cured at 60 ◦for another 12 hours

and peeled off the template.

Low adhesive 96 well plate were prepared one day before the tissue generation

experiment. To prepare the hydrogel coating solution, 1.2 g poly-HEMA (Sigma-

Aldrich) is dissolved in 40 ml ethanal at 37 ◦for 6 hours on the plate rotator. The

hydrogel coating solution is then added to the 96 well plate (30 µl per well) in a fully

opened hood overnight to dry.

To generate aggregates of hESCs, cultured hESCs were dissociated with Accutase

(Sigma-Aldrich) at 37 ◦for 10 min, centrifuged and resuspended in mTeSR1 containing

10 µM Y27632 (Tocris). hPSC were plated as single cells into the pyramidal device.

After 6 hours, single cells already merge together to form cell aggregates. Cell aggre-

gates were transferred out of device, centrifuged and resuspended in mTeSR1 with

5% geltrex without Y27632. Medium with cell aggregates was added to the 96 well

plate with low adhesive surfaces (150 µl per well) for long term culture.

5.5.5 Immunocytochemistry and microscopy

H9 cell aggregates or long-time cultured tissues were fixed in 4% paraformalde-

hyde (prepared in 1× PBS) for 3 hours, and permeabilized in 0.1% SDS (sodium
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dodecylsulfate, dissolved in PBS) solution for another 3 hours. Samples were blocked

in 4% donkey serum solution (Sigma-Aldrich) at 4 ◦for 24 hours before incubation

with primary antibody solution at 4 ◦for another 24 hours. Samples were labeled

with donkey secondary antibodies (1:500 dilution) at 4 ◦for 24 hours. Dapi (Thermo

Fisher Scientific) was used for counterstaining cell nuclei. Alexa-fluor 488, 561 or 640

dye-conjugated wheat germ agglutinin (WGA; Thermo Fisher Scientific) was used as

a pan-cell membrane marker. Primary antibodies and their sources and dilutions are

based on the work of Zheng et al. [52]. More than 600 tissues are fixed at different

time points and stained for NANOG, GATA3, T, TFAP2A and YAP.

Images were acquired on an Olympus 1X81 fluorescent microscope equipped with

a CSU-X1 spinning-disc unit (YOKOGAWA) or a Nikon-A1 laser scanning confocal

microscope (Nikon).

5.5.6 Trajectory inference

The dataset that contains 14 morphological features of 694 tissues is first nor-

malized to zero mean and unit variance. Then, similarities between any two tissue

samples i and j (i, j ∈ [1, 694]), defined as cij = e−|xi−xj |
2/2ε, are calculated. where xi

is the column vector of the morphological features of tissue i; ε is a model parameter

and ε = 0.05 in this study. When tissues i and j have similar morphology, |xi − xj|

is close to 0, and the similarity of the two tissues cij is close to 1. When tissues i and

j have different morphology, |xi − xj| is large and cij is close to 0. In a statistical

point of view, defining a similarity matrix C = cij for the dataset in a nonlinear way

as cij = e−|xi−xj |
2/2ε ensures the relationship between analogous tissues (close data

points) being preserved while distinct tissues (data points far way from each other)

playing negligible role in the calculation. Next, eigendecomposition is applied to the

similarity matrix C and the first three eigenvectors, also referred to as diffusion com-

ponents (DCs), are used as a low dimensional representation of the information inside
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Figure. 5.10: Schematic illustration of branch identification based on mutual
disagreement matrix.

the dataset. Note that, the eigendecomposition process also helps reduce unnecessary

noise inside the dataset by projecting the information onto a new coordinate system,

and the low dimensional visualization of the dataset is also referred to as diffusion

map in many other studies [154].

Morphological similarity c0i between a tissue 0 at initial developmental stage and

a tissue i at late developmental stage is used to represent the maturity of tissue i.

Therefore, tissue developmental progression can be obtained by tissue ordering based

on values of c0i. Specifically, based on the first eight diffusion components, previ-

ously proposed algorithm Wishbone is slightly adopted to order tissues and calculate

their developmental maturity, which is also referred to as developmental psuedotime

[155]. Specifically, we first manually select a small symmetric tissue which locates at

the left end of the trunk branch in Figure 5.8 a as the initial stage of development

(psuedotime = 0). Then, the shortest path between a tissue i (i ∈ [1, 694]) and

the initial stage, denoted as D0i on diffusion map is calculated. All the lengths D0i,

i ∈ [1, 694] are normalized between 0 and 1. These normalized lengths provide a

quantitative measure of the morphological difference between a tissue and the initial

developmental stage, and therefore is used to represent tissue developmental maturity

(developmental psuedotime). Afterwards, to distinguish branches, we select a sub-

sample of tissues (150 tissues in this study) and calculate the mutual disagreement

matrix Q between pairs of sub-sampled tissues. For sub-sampled tissues i and j, the

mutual disagreement is calculated as Qij = |D0i + Dij − D0j|, where Dij represents

the shortest path length between i and j. If tissues i and j are on two different
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branches, as shown in Figure 5.9, D0i + Dij shown by black arrows is much larger

than D0j shown by a red arrow. Thus, Qij � 0. Otherwise, if tissues j and k are on

the same branch, Qjk = D0j +Djk−D0k is close to zero. Finally, continuous traces of

morphological and intensity features during development are calculated as weighted

averages of tissue feature values. To acquire a continuous traces from scattered tissue

data points, for each single tissue, we assume its feature value follows a Gaussian

distribution whose center is the development psuedotime and variance is determined

by the variance of the whole dataset based on Silverman’s approximation [156]. For

the trunk part, the weighted average and variance over all tissues are calculated. For

bifurcating branches, the influence of tissues on a different branch is muted before

calculating the weighted average.

5.5.7 Feature extraction

5.5.8 Model parameters
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Feature Name Definition

Mean thickness t̄
1

N

∑i=N
i=1 t(

2πi

N
), where t(θ) is tissue thickness at angle θ.

Thickness standard
deviation σt

√
1

N − 1

∑i=N
i=1 [t(

2πi

N
)− t̄]2.

Thickness ratio rt max(t)/min(t).
Thickness skewness The skewness of thickness distribution. If an asymmetric tis-

sue has a longer thin amniotic membrane, there is more weight
in the left tail of thickness distribution and skewness value >
0.

Area Area of the cell layer surrounding the lumen in pixel.
Lumen area Area of the lumen in pixel.
Eccentricity A measure of how non-circular the outer tissue boundary is.

Calculated by python module Scikit-Image.
Lumen eccentricity A measure of how non-circular the inner tissue boundary (also

the outer lumen boundary).
Diameter The equivalent diameter (Figure 5.2 c) of tissue.
Lumen diameter The equivalent diameter of lumen.
Major axis length Length of major axis of tissue (Figure 5.2 c).
Minor axis length Length of minor axis of tissue (Figure 5.2 c).
Perimeter Perimeter of tissue outer boundary.
Cell number Number of cell nucleus calculated based on nuclei segmenta-

tion results.
GATA3 gyration Intensity gyration of GATA3 marker.
GATA3 mean inten-
sity

Mean intensity of GATA3 among all cell nucleus.

GATA3 cell number Number of GATA3+ cells.
GATA3 cell ratio The percentage of GATA3+ cells.
NANOG gyration Intensity gyration of NANOG marker.
NANOG mean inten-
sity

Mean intensity of NANOG among all cell nucleus.

NANOG cell number Number of NANOG+ cells.
NANOG cell ratio The percentage of NANOG+ cells.
T gyration Intensity gyration of T marker.
T mean intensity Mean intensity of T among all cell nucleus.
T cell number Number of T+ cells.
T cell ratio The percentage of T+ cells.
GATA3 T gyration Length between mass center of GATA3+ cells and mass center

of T+ cells.

Table 5.1: Summary of morphological and intensity features.
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Parameter name Definition and value
Intensity threshold
I1, I2

I1, I2 are used to create tissue mask. Depending on the im-
age intensity and quality, Otsu threshold or manually defined
threshold are used.

Intensity threshold
I3, I4

I3, I4 are used to identify cell clusters. Depending on the im-
age intensity and quality, Otsu threshold or manually defined
threshold are used.

Size range Size range is used for nuclear segmentation. Areas beyond the
size range will not be regarded as a cell nuclear. Size range =
(5, 30) pixels.

Intensity threshold
factor f

f is used to identify if cells express a specific marker, such

as GATA3, T and NANOG. f =
mean nuclear intensity

cavity intensity
. If

f > 2.5, cell expresses that specific marker. Otherwise, cell
does not express the marker.

Parameters for diffu-
sion map

metric = euclidean. alpha = 0.01. k = 10. n evecs = 8.
ε = 0.05. The definition of these parameters is introduced in
package website [157]

Parameters for Wish-
bone trajectory infer-
ence

k = 15. num waypoints = 150. The definition of these pa-
rameters is introduced in paper [155].

Table 5.2: Parameters used in tissue profiling pipeline.

102



CHAPTER VI

Outlooks

As the famous statement by George E.P. Box and Norman R. Draper said, “es-

sentially, all models are wrong, but some are useful”. The computational models and

tools developed in this dissertation only try to capture a part of the dynamics inside

a complex biological system and study whether these dynamics play an important

role in determining or influencing system functions. I think it is necessary to point

out some limitations of these three proposed methods in the end of this dissertation

and discuss possible future improvements and related applications.

6.1 Limitations of current models

• The multi-physics Monte Carlo model of intracellular cargo transport relies on

accurate understanding and describing transport components, including cargo

diffusion, kinesin walking motion, cargo-kinesin interaction and kinesin attach-

ing to and detaching from microtubules. Since many simplifications are made

for each transport component, it becomes hard to evaluate the effect of all sim-

plifications on model predictions. For example, cargo is assumed to be a rigid

sphere in the model, which is different from any in vivo cargoes such as soft

spherical vesicles and long cylindrical neurofilaments. The walking motion of

kinesins is assumed to be influenced only by resistant forces (i.e. forces pulling
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on the kinesin opposite to its walking direction) in the model, however, experi-

mental observations have shown that assistant forces could also influence kinesin

walking motion. Though validation of the model based on current experimen-

tal results suggest that these simplifications do not have significant influence

on model predictions, it is not clear whether these simplifications matter and

how accurate the model predictions can be applied in more general situations.

In addition, this computational model contains a lot of model parameters and

could suffer from overfitting issue. The model variance is reduced but the biased

is increased at the same time.

• The probabilistic model developed to describe particle diffusion and transport in

heterogeneous environment neglects physical sources that generate the motion,

but only focuses on particle dynamics. It contains fewer parameters which

avoid overfitting problem. At the same time, the proposed model provides a

generalized and flexible framework to connect microscopic particle movements

with macroscopic distributions. The limitation of this probabilistic model is the

complicated formula of the two master equations in the model, which can be

simplified to PDEs and asymptotic solutions only under few ideal conditions.

Solving the two master equations numerically requires a large computational

cost and could lead to large calculation errors.

• The image-based tissue profiling and trajectory inference algorithm is a data-

driven and practical method for analyzing experimental measurements. Like

many other statistical models, the proposed algorithm does not have a solid

physics foundation nor requiring understanding of underlying mechanisms. It

analyzes only the mathematical relationships between measured data points

and results and conclusions do not provide explanation of causality. The model

accuracy largely depend on features extracted from images. And for different
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data types and structures, the trajectory inference algorithm should be mod-

ified accordingly. On the other hand, however, the proposed model contains

less empirical guesses and assumptions, and could be helpful for understanding

complex systems where system dynamics can not be simplified as a few physical

laws.

6.2 Future outlooks

In practical perspective, I think it is important to connect computational mod-

els to experiments for meaningful predictions and conclusions. For example, when

transport properties (e.g. transport length, speed, cargo distribution) inside healthy

and impaired neuron axons are measured to be different, it would be interesting to

apply the multi-physics model in chapters II and III to identify influential transport

components and help understand possible mechanisms of neuronal impairment. Hav-

ing measurements of protein distribution inside cells over time, the generalized walk

model in chapter IV could be used to extract new protein diffusion statistics other

than diffusion coefficient.

During my PhD, the computational models and tools I developed are becoming

more generalized and relying on less physical laws. I believe though generalized

models have large variance on predictions, they can be applied to many other different

systems with reduced bias and potentially become more useful and impactful. For

example, the image-based analysis and trajectory inference algorithm can potentially

be used to study morphological changes of human body or moving objects, and predict

future motions and dynamics.
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