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ABSTRACT

Self-assembly of soft matter is a phenomena that can be influenced by multiple

factors including particle shape, ligand decoration and thermodynamic properties

such as temperature and pressure. In this highly anisotropic landscape of particle

properties, it is crucial to understand the set of attributes that can contribute to the

self-assembly of nanomaterials with novel physical properties including photonic and

plasmonic response to be utilized in materials application.

We determine and then employ different set of design rules that allow us to govern

the nanoarchitecture that results from the assembly. We demonstrate that topolog-

ically protected colloidal matter at maximum pressure preserves topological order

that can persist when no longer at maximum pressure, and that this is general to

systems that can be described via topological sets of nanoparticle packings. We

also show that the self-assembly of regular, patchy polygons with highly anisotropic

patch distribution can be controlled into selecting specific desired morphologies with

novel void shape, and that hierarchical self-assembly can be applied for even more

complicated structures. Lastly, we show how ligand architecture can control the

self-assembly behavior of nanoplates, and that ligand coated nanoplates can have

controllable orientation in the plane when subjected to similar ligated cubes. This

dissertation delivers roadmaps for the rational design of specific and highly targeted

materials with tunable physical features and will help to realize new materials with

complex order in experiment.

xi



CHAPTER I

Introduction

1.1 Self-Assembly of Nanoparticles

Self-assembly is the process under which nanoparticles spontaneously order them-

selves into organized crystalline structures with long-range translational and/or ro-

tational order. Recent developments in the ability to tune particle size, shape and

surface interaction [4] have allowed for the employment of many different building

blocks to be utilized in studies of self-assembly, characterized along a series of alchem-

ical dimensions [1]. In this dissertation, I will explore the affect of various anisotropy

dimensions on the assembly of nanoparticles, including faceting (Chapters 2 and 3),

patchiness (Chapters 3, 4, 5) and variations in ligand architecture (Chapters 4 and

5).

Hard particles are particles that interact through volume exclusion alone (i.e. par-

ticles are not allowed to overlap with one another). Hard particles of many different

geometries have been synthesized in experiment [5, 6, 7] and can be packed into their

densest packing at high pressure [2], leading to their usage in material applications

such as plamonics [8]. When systems of hard particles becomes sufficiently dense,

particles seek to maximize their entropy and spontaneously self-assemble into crys-

talline structures [9, 10], and such mechanisms have been shown to be unrelated to
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their packing phase [11].

Patchy particles are a class of materials that harbor interactions between desig-

nated sites on the particle surface, where highly-directional interactions can be pro-

grammed for complex interaction [12]. Patches may be entropic [13] in the sense that

particles will tend to align along larger facets (entropic patches) or enthalpic, where

patches are made up of some surface functionalization via DNA [14, 15], polymers

[16, 17], or other material [18]. Patchy particles in the past were typically described

as spheres [19], particularly the Janus particle [20] which is named for the two-faced

Roman god Janus since it has two faces, one hydrophobic and one hydrophilic, but

in reality, any shape can be enthalpically patchy if decorated with some complex

interaction [21, 22, 23]. Patchy particles are useful in many applications due to their

highly-directional nature and can be used to target porous structures which can

be used in photonics applications [24], gas storage materials [25], molecular sieves

[26, 27] and many others.

1.2 The Need for Design Rules

Given that there is such an expansive space of potential nanocrystalline candidates

to be considered, scientists are always looking for ways to filter out the search space

for material candidates that will assemble crystals with their desired properties.

Studies of the self-assembly of hard polyhedra [28] showed that the different assembly

categories (liquid crystals, plastic crystals, crystals and disordered phases) could be

predicted via calculable parameters of the particles themselves, such as the fluid

phase coordination number CNf and the isoperimetric quotient IQ. This work

investigated 145 convex polyhedra and showed that that by using these parameters,

polyhedra could be grouped into such categories. In another work [2], the densest

2



packing of several truncation families of similar polyhedra was studied, which allowed

for the determination of different densely packed phases solely based on the shape

truncations applied to cubes, octahedrons, etc. The same families were studied in

the assembly limit [29] and showed that different crystalline phases (FCC, BCC,

etc.) could be predicted from shape truncations as well. The anisotropy dimension

considered here is faceting alone, since these materials do not require ligands or other

decoration to be assembled in experiment [5].

Nanoparticle self-assembly can become far more complicated when extra anisotropy

dimensions are introduced, especially if assembly becomes highly dependent on two

or more dimensions. Figure 1.1 demonstrates some of the different anisotropy di-

mensions that could be considered and how they could potentially be combined into

a large design space. One example of a complicated design space is the self-assembly

of DNA grafted nanoparticles into superlattices where the final lattice might have

particles of different sizes, lattice spacing or crystallographic symmetry. Design rules

were developed [30] which consider factors such as the hydrodynamic radii, nanopar-

ticle core radii and the DNA linker ratio between two sets of nanoparticles sharing a

DNA bond which allow for the assembly of nine distinct colloidal crystal structures.

Many nanoparticles possess anisotropic cores which can have odd or complex geom-

etry but additionally have ligands which surround the core to facilitate the bonding

to other nanoparticles, which makes this design rule approach relevant and useful.

In this dissertation, we demonstrate work that takes advantage of the natural in-

tersection of different anisotropy dimensions that occur when considering the pack-

ing/assembly of nanoparticles. In Chapter 2, we demonstrate design rules that take

advantage of the topological nature of the densest packing of nanoparticles in or-

der to stabilize their crystalline order against thermal fluctuation. In this work, the

3



Figure 1.1: Different anisotropy axes all demonstrating branching (patchiness (i), roughness (ii),
faceting (iii) (left)). Anisotropy space combining three different measures of anisotropy (right).
Image reproduced from [1].

anisotropy dimensions are simple (two axes of faceting) and define the construction of

all packing structures considered in the work. In Chapter 3, we consider nanoplates

consisting of regular polygons, decorated with various edge-patterning representing

A-B attraction of short ligands, and demonstrate that they can be assembled into a

wide variety of different morphology. This represents a combination of two anisotropy

dimensions, faceting and patchiness, but one could imagine expanding such a space

to include varied ligand design, including length and bulkiness. Chapter 4 consid-

ers the effect of ligand bulkiness explicitly on rhombic nanoplates and demonstrates

that ligand design can effect the partitioning of ligands onto a nanoparticle surface

and control the final layer-by-layer morphology. Finally, Chapter 5 demonstrates

that one can use inverse design to investigate the effect of ligand architecture on the

self-assembly of binary systems, and then use that information to target complex

co-assembly of these species.
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CHAPTER II

Topological Order in Densely Packed Anisotropic Colloids

This chapter is adapted from Ref. [31], a publication in Physical Review E,

authored in 2019 by W. Zygmunt, E. G. Teich, G. van Anders and S. C. Glotzer.

2.1 Introduction

Topological phases are exotic states of matter that are typically associated with

strongly interacting quantum systems, in which topological protection stabilizes cer-

tain physical behaviors against environmental perturbations [32]. In quantum sys-

tems, protection of this type can be invaluable in applications for which coherence

is crucial. In a similar spirit, many applications for classical soft matter systems

of colloidal nanoparticles would benefit from topological order in the presence of

environmental perturbations. In colloidal systems, entropic effects are important

[10, 29, 33] and typical interaction strengths are on the order of the thermal scale.

Indeed, recent work has shown that thermal fluctuations in soft systems can, in a

variety of contexts, drive structural reconfiguration [34, 35, 36, 37], an important fea-

ture of functional nanomaterials. However, for other applications, the preservation of

structural order against thermal fluctuations is vital. If soft matter was topologically

ordered, it could be used in building structures with robust features.

Recent work [38] has shown that topological states can exist in specialized clas-
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sical mechanical systems, and that the dynamics of classical systems can manifest

topological effects [39, 40]. The topological states that occur in those systems are

expressed in terms of Witten indices, whose existence relies on the spectrum of exci-

tations in nearly-isostatic lattices. Additionally, topologically protected phases exist

in a variety of classic phononic [41, 42, 43, 44, 45, 46] and photonic [47] systems.

Here, we show that the point-set topology of contacts that distinguishes structures

of hard colloids at infinite pressure (aka “putative densest packings”) [2] leads to the

existence of topologically distinct phases. We prove perturbatively that, in general,

topologically distinct putative densest packings lead to the existence of associated

thermodynamic phases away from infinite pressure. We demonstrate numerically

that topological order persists at finite pressure. Surprisingly, we find that ther-

modynamic phases that are topologically protected at the highest possible packing

densities preserve near-perfect topological order at packing densities sufficiently low

that topological protection need not persist.

Our approach provides a general framework for investigating and classifying the

structure of thermodynamic systems of hard colloids near the dense packing limit.

The topological order we observe is of a strikingly different origin – and consequently,

has different properties – than topological states in quantum matter. Ref. [38] showed

that the existence of topological phases is not uniquely the preserve of strongly

interacting quantum matter, and our results raise the possibility that topological

order is a widespread phenomenon in classical systems.

2.2 Analytical First-Order Phase Transition at Infinite Pressure

Ref. [2] showed that, for families of hard anisotropic shapes at infinite pressure,

continuous deformations of particle shape result in continuous changes in putative
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φ

α

φ∨

α∨

Protected λA

Packing
Protected λB

Packing

Unknown

µα(φ∨)

αα∨

Figure 2.1: Surfaces (solid blue and green lines) of maximal packing density (φd) as a function of
particle shape (α) have been shown [2], in general, to exhibit non-analytic behavior at the point
(α∨, φ∨) that is associated with a change in the topology of contacts between adjacent particles.
Within the blue and green triangular regions, dense packings exhibit topological distinction by
particle contacts. However, within the gray region bounded above by the dashed blue and green
lines, it is unknown, in general, whether topological contact types persist (top panel). We show
that there is a first-order phase transition, indicated by the divergence of the so-called alchemical
potential [3] near the valley packing discontinuity (bottom panel).
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densest packings. It was also shown that non-analytic behavior in curves, surfaces,

or hypersurfaces φd(αi) of maximal packing density φd as a function of particle shape

αi occur if and only if there is a change in the point-set topology of contacts between

particles in the dense packing structure; Figure 2.1 illustrates this point. We argue

that, generically, this leads to distinct, solid thermodynamic phases away from infi-

nite pressure. Since pressure is defined in units of kBT , we can think of the infinite

pressure limit as a sort of zero temperature limit of the system, which may be a

more useful way to think about these hard particle systems in reference to other

works involving topological order. Note that the focus of this analysis is to draw a

distinction between adjacent solid phases, rather than on the existence of distinct

solid and liquid phases.

We make our argument using the framework of digital alchemy [3]. Digital alchemy

extends the traditional thermodynamic ensemble for particle self-assembly through

consideration of thermodynamically conjugate variables (termed “alchemical poten-

tials” µ) coupled to changes in particle attributes. Here, we consider changes in

particle shape as the alchemical variable for the packings in [2] and the associated

alchemical potential is given by

(2.1) µα =
1

N

∂F

∂α
,

whereN is the number of particles in the system, F is the free energy, and α is a shape

parameter. To understand the phase behavior of dense suspensions of anisotropic

colloids away from infinite pressure, it is convenient to study the alchemical potential

in the vicinity of the intersection of two packing curves, where there is a change in

the topology of particle contacts (α∨, φ∨ in Figure 2.1).

It was previously shown [2] that for generic, anisotropic colloids, each fragment

of the dense packing surface is a topologically distinct packing. We will assert that
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in each topological equivalence class of packings there are the same number of “mi-

crostates” or entropy. This is a reasonable assumption because in most cases there is

only one topologically allowed dense packing, and in the cases where there are sliding

surfaces, the sliding surfaces should be topologically equivalent. We assume that, for

some shape with alchemical parameter α describing the particle shape, there is a

densest packing φd. We can find the free energy at a lower packing density φ via

thermodynamic integration according to

(2.2) F (φ, α) = F (φd(α), α)−
∫ φd

φ

dφ′
∂F (φ′, α)

∂φ′
.

Using the relationship between packing density and volume, and the definition of

pressure, this can be written as

(2.3) F (φ, α) = F (φd(α), α)−
∫ φd

φ

dφ′
N`dP (φ′)

φ′2
,

where ` is a characteristic length scale for the system, which we take to be the parti-

cle size, and assume that changes in α preserve the particle volume. For convenience,

we will take P ∗ = `dβP to be the dimensionless pressure (where β is inverse temper-

ature).We decompose the free energy into the kinetic part and the configurational

part. We assume that the configurational part F̃ (φd(α), α) is constant along a single

topological family of packings, and the kinetic part Fk does not depend on density,

so that

(2.4) F (φ, α) = Fk(α) + F̃ (φ∨, α∨)−
∫ φd

φ

dφ′
NP ∗(φ′)

βφ′2
,

where we are following the notation of [3] for decomposing the free energy into kinetic

and configurational parts 1. Take ∆α as the range over which the packing is optimal,

1Strictly, F̃ should be evaluated at φd(α−∨ ), α−∨ because the free energy of the packing at α+
∨ might be different;

we use F̃ (φ∨, α∨) for convenience.
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and also take δα so that

(2.5) 0 < δα� ∆α.

We then approximate F (φ∨, α∨ − δα) using the midpoint rule as

(2.6) F (φ∨, α∨−δα) ≈ Fk(α∨−δα)+F̃ (φ∨, α∨)−
N(φd − φ∨)

2β

(
P ∗(φd)

φ2
d

+
P ∗(φ∨)

φ2
∨

)
where φd is evaluated at α∨ − δα. We can approximate

(2.7) φd(α∨ − δα)− φ∨ ≈ δα

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

so that

F (φ∨, α∨ − δα) ≈Fk(α∨ − δα) + F̃ (φ∨, α∨)

− Nδα

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)

φ2
d

+
P ∗(φ∨)

φ2
∨

)
.

(2.8)

We can estimate the alchemical potential in the limit that α approaches α∨ from the

left as

µα ≈
1

Nδα

(
Fk(α∨)− Fk(α∨ − δα)

+
Nδα

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)

φ2
d

+
P ∗(φ∨)

φ2
∨

))(2.9)

so that

(2.10) µα ≈
1

N
F ′k(α∨) +

1

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)

φ2
d

+
P ∗(φ∨)

φ2
∨

)
.

The first term in Eq. 2.10 is a correction factor that comes from differentiating

the trace of the moment of inertia tensor. As long as the shape parametrization

is continuous, this term is finite and in [2] it certainly always is. However, P ∗(φd)

is formally infinite. That means µα → ∞ as α → α−∨ . If we carry out the same

consideration for α∨+ δα everything carries through up to Eq. 2.10, except that the
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sign of the second term is reversed. This means µα → −∞ as α→ α+
∨ . A sketch of

this result is in Figure 2.1.

µα is a first derivative of the free energy, which means that φ∨, α∨ is a first order

thermodynamic phase transition. Another way of seeing this is the fact that the

alchemical potential diverges near α∨, meaning that at φ∨ for any finite alchemical

potential the system will have a thermodynamically preferred α that is a finite dis-

tance from α∨. This means that if we regard α as an order parameter, there is no

way at φ∨ of having it take the value of α∨, so that it must change discontinuously.

We note that µα can also be interpreted as a stress that results from a strain dα [3].

This transition exists solely because of the non-analytic behavior of the dense packing

surface, which reflects the topology of contacts among densely packed particles.

2.3 Delineation of Topological Phases

Next we consider what happens below maximum packing density. We consider

packings λi where i ∈ {A,B}; λA and λB are on either side of the phase transi-

tion shown schematically in Figure 2.1. To distinguish between these packings, we

construct an order parameter that takes advantage of the way λA and λB are de-

fined topologically. Ref. [2] defines each packing according to the types of contacts

(face-face, face-vertex, face-edge, vertex-vertex, vertex-edge and edge-edge) shared

between adjacent particles. These contacts map to a set of intersection equations

that mathematically describe each contact by relating particle shape parameters to

the geometry of the two particle unit cell of the packing, described by vectors for the

lattice and particle(s) within the unit cell. Each packing λi has Ki unique (mean-

ing unshared with the other packing) intersection inequalities
∣∣Ci,k∣∣ ≥ 0 (where

k = 1, 2, . . . , Ki) that define the packing. As an example, a packing λA might be
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described by a relation CA,1 = [a· < −1, 1, 1 > −(αa+αc)], where a is a lattice vector

and αa and αc are parameters that describe particle shape. Note that the range of

parameters could include any lattice vector (a, b, c), the displacement vector between

the two particles in the unit cell (d), or any of three shape parameters (αa, αb, αc).

Three shape parameters fully characterize the family of particle shapes [2] considered

in this paper; we describe them fully in the next section.

When the shape parameters and unit cell geometry correspond to densest packing,

all the Ci,k = 0. If the geometry of the unit cell does not correspond to the densest

packing, then some
∣∣Ci,k∣∣ ≥ 0. Changes in unit cell geometry (while particle shape

is fixed) effectively provide a means of measuring changes to particle contact; at

lower packing densities, then, the saturation or near-saturation of the intersection

inequalities (i.e. all Ci,k ≈ 0) would imply that particle contacts have (through

thermal fluctuation) remained approximately equal to the particle contacts at infinite

pressure, preserving unit cell geometry and topological order.

We now define an order parameter of the form θij where i represents a stable or

metastable thermodynamic phase that is putatively isostructural with λi
2 and λj is

the packing against which the state will be evaluated. For example, θAA is defined as

the evaluation of a packing λA in its own intersection equations (those of λA), and

it evaluates to unity at maximal packing density by construction. Conversely, θAB

(pertaining to the same packing λA evaluated in the intersection equations of λB)

evaluates to zero at maximal packing by construction.

To construct θij, several variables must first be defined. The packing λi is a

function of particle shape α and packing density φ ≤ φd by definition. We define ξij

(a function of particle shape α and packing density φ) to reflect the evaluation of

2Note that if subsequent evaluation of the order parameter indicates the state is not isostructural with λi it
implies those structures are thermodynamically unstable
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packing λi in the intersection equations of packing type λj as

(2.11) ξij(φ, α) = e
− 1

Kj

Kj∑
k=1

∣∣Cj,k(λi(φ,α))

∣∣
.

When φ = φd, ξij describes the saturation of λj’s intersection equations by λi at its

maximum packing density, lying on its putative densest packing surface. We thus

denote this special case by

(2.12) ξideal
ij = ξij(φd, α).

To construct a generalized order parameter for a set of two adjacent packings λA

and λB, we then compute four quantities (ξAA, ξAB, ξBA, ξBB) that consider all four

evaluation types in i ∈ {A,B} and j ∈ {A,B}, which we use to build vectors that

represent coordinates in the [ξiA, ξiB] plane

(2.13) DA =

[
ξAA, ξAB

]
, DB =

[
ξBA, ξBB

]
.

Similarly, we construct vectors to represent the maximum density packings

(2.14) Dideal
A =

[
ξideal
AA , ξideal

AB

]
, Dideal

B =

[
ξideal
BA , ξideal

BB

]
.

The distance between the ideal structures in the [ξiA, ξiB] plane is

(2.15) Dideal
AB =

√
(Dideal

A −Dideal
B ) · (Dideal

A −Dideal
B ).

Finally, we define θij to distinguish the topology of the two packings, making a

generalized expression for any packing λi evaluated in the intersection equations of

a packing type λj

(2.16) θij = 1−

√
(Di −Dideal

j ) · (Di −Dideal
j )

Dideal
AB

.

Since we do not have a method to directly measure the topological invariant of

a packing, we use our order parameter to estimate topological order of a packing λi
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being evaluated using the intersection equations of a packing type λj. We find that

our order parameter, in some specific packings, can tend to underreport topological

order by a small amount but visual inspection confirms that the same contacts still

manifest themselves in these packings. Since we are trying to show the mere existence

of topological order in these systems, a slight underreport does not affect our overall

conclusions.

2.4 Numerical Methods

Topologically distinct packings can be found for a range of families of anisotropic

colloids. For concreteness, we considered packings in the two-parameter family of tri-

angle invariant polyhedral shapes, ∆323, reported in Ref. [2]. This family of shapes in-

cludes three Platonic solids (tetrahedron, octahedron, cube) and truncations thereof.

The family can be described by two independent shape parameters, αa and αc (fol-

lowing the convention of [37]), denoting shape edge truncation and vertex truncation

respectively. In [2], these variables are instead called u and v respectively. A third

shape parameter that appears in the intersection equations, αb, is equal to 1 in

this shape family. Authors in [2] showed the existence of 75 topologically distinct

two-particle dense packings of polyhedra in this family. This family has the largest

number of closely spaced packings, which one might expect could reduce stability,

making this set of systems a suitable candidate for investigating stability. Also, be-

cause the number of adjacent packing states is too large to study exhaustively, we

arbitrarily chose two for extensive study. We chose two distinct packing boundaries

(valleys which have a packing λi on either side, where i ∈ {A,B}), with one bound-

ary (I) located between phases labelled ‘52’ and ‘58’ and the other boundary (II)

between phases labelled ‘74’ and ‘69’ (numbering convention can be found in Ref.
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[2]).

For each boundary, we chose one shape parameter (either αa or αc) to remain

constant, and then moved along the axis of the other α. For boundary I, we studied

a range of constituent particles in αa = [2.80, 2.88] and set αc = 1.52 (the difference in

topology of these packings is shown in Figure 2.2). In the packing labelled ’52’, both

particles in the unit cell have a coordination number of 14 (coordination numbers

were measured using the particles located in the first nearest neighbor shell), across

the range of αa studied. Similarly, in the packing labelled ’58’, both particles in

the unit cell have a coordination number of 14, across the range of αa studied.

For boundary II, we set αa = 1.80 and studied a range of constituent particles in

αc = [1.90, 1.96] (the difference in topology of these packings is shown in Figure.

2.3). In the packing labelled ’74’, both particles in the unit cell have a coordination

number of 12, across the range of αc studied. However, in the packing labelled ’69’,

both particles in the unit cell have a coordination number of 12 near αc = 1.90 but

eventually have a coordination number of 13 near αc = 1.96.

We initialized systems of 1024 identical particles in both λA and λB at various

densities. Particle positions and orientations were well defined for initialization in [2].

We sampled systems in the isochoric ensemble using the hard particle Monte Carlo

(HPMC) [48] extension of the simulation toolkit HOOMD-blue [49, 50]. Although

the volume remained fixed, box shear and aspect ratio moves were allowed, and move

sizes were tuned such that acceptance ratios were approximately 0.3. We computed

pressure during these simulations via the scaled distribution function [51], whose

measurement is implemented in HPMC [48]. Ensemble averages were taken over five

replicates and five snapshots per replicate simulation, where each simulation snapshot

was separated by 106 MC timesteps, well beyond the calculated autocorrelation time
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Figure 2.2: Example dense packing structures (where packing λA=52 is blue and packing λB=58 is
green) of anisotropic shapes, including “exploded” views that show the location and orientation of
neighboring particles, and densely packed units.

of the system pressure. For each data point, we constructed a system in the ideal

putative densest packing structure and then expanded this structure to the target

packing density.

Free energies were computed via the Frenkel-Ladd [52, 53] method. The Ein-

stein crystals for these simulations were the same packings described above, with an

expansion performed down to the desired packing density at the beginning of the

simulation. An external force field Λ tethered particles to their crystal sites with a

spring constant of k = exp(25) in units of kBT . We fixed length units by taking par-

ticles to have unit volume. Every 1.4× 105 timesteps, k was linearly decreased until

it was eventually 0; each time k was changed, move sizes were tuned, 105 timesteps

were run for equilibration, and the lattice energy was computed in the remaining

4.0× 104 timesteps.
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Figure 2.3: Example dense packing structures (where packing λA=74 is blue and packing λB=69 is
green) of anisotropic shapes, including “exploded” views that show the location and orientation of
neighboring particles, and densely packed units.
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Figure 2.4: Panel (a) shows the curves of maximal packing density at φ∨, outlining the two protected
packing regions, where packing λA=52 is blue and packing λB=58 is green. Lower curves indicate
computed free energies at three packing densities (0.85, 0.80, 0.75). Darker shaded colors indicate
protected regions, while lighter shaded colors indicate free energy preferred regions of the (α, φ)
phase diagram. The gray region is a region where the preferred phase is unknown. Panels (b, d,
f) indicate topological order evaluated using the intersection equations for λA=52 and panels (c,
e, g) indicate the same using the intersection equations for λB=58. The dotted black line roughly
demarcates boundaries between thermodynamically preferred packings as a function of packing
density, and is meant to guide the eye.
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Figure 2.5: Panel (a) shows the curves of maximal packing density at φ∨, outlining the two protected
packing regions, where packing λA=74 is blue and packing λB=69 is green. Lower curves indicate
computed free energies at three packing densities (0.85, 0.80, 0.75). Darker shaded colors indicate
protected regions, while lighter shaded colors indicate free energy preferred regions of the (α, φ)
phase diagram. The gray region is a region where the preferred phase is unknown. Panels (b, d,
f) indicate topological order evaluated using the intersection equations for λA=74 and panels (c,
e, g) indicate the same using the intersection equations for λB=69. The dotted black line roughly
demarcates boundaries between thermodynamically preferred packings as a function of packing
density, and is meant to guide the eye.
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2.5 Results

2.5.1 Boundary I

Figure 2.4(a) shows the curves of maximal packing density φd for each packing

type, indicating the protected regions in darker shading under them. Below that

are curves of free energy as a function of both packing and shape at various packing

densities φ well below the maximum packing density φd. Several possibilities exist

below φd, and we test for these possibilities:

• Packing states could become thermodynamically unstable at any finite packing

density below φd, meaning that packing is a kind of singular limit with no

associated thermodynamic phase.

• Distinct phases persist below φd, but these phases do not preserve topologi-

cal order, which would occur if other contacts proliferate in the lower packing

density phases.

• Distinct phases with topological order persist.

To rule out non-existent phases, we compute the free energy of decompressed

packing states. Plots of free energy (Figure 2.4(a)) show that even at packing den-

sities well below φd, two phases persist up to some crossing. The location of this

crossing at packing densities below φ∨ need not be at α∨, and we find that it does

deviate from α∨ at lower packing density. The thermodynamically preferred regions

are colored in lighter shades of the protected regions. To verify that the two phases at

finite pressure have persistent and distinct topology of particle packing, we compute

the relevant order parameters from Eq. 2.16 for each structure. This calculation is

performed by extracting the unit cells of the thermalized packings of λA and λB at

a packing density φ.
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To rule out the possibility that the phases lose topological order, we computed the

θij order parameters in the phases corresponding to thermodynamic states in our free

energy calculations. We find that at packing densities well below φ∨, phases identified

by the free energy calculation correspond to phases that differ in the topology of

particle contacts measured through the order parameters θij. In Figure 2.4(b, d, f)

we evaluate the order parameter θiA on structures λi where i ∈ {A = 52, B = 58}

and find that over a range of packing densities, θiA evaluates to near unity on λA and

vanishes on λB. Conversely, in Figure 2.4(c, e, g) we evaluate the order parameter

θiB on λA and λB and find that over a range of packing densities, θiB evaluates to

near unity on λB and vanishes on λA.

These results indicate that the phases can be identified by the topology of the

related putative densest packings, and possess residual topological order, or order

that matches the order of a topological state at a packing density where topological

protection has not been proven to exist. The residual topological order we observe

in Figure 2.4 suggests that crystal structures present in densely packed colloidal

suspensions maintain a topologically consistent set of contacts between particles at

densities where other competing contact topologies could exist, but are unlikely to

do so due to the existence of a more thermodynamically favorable topological state.

2.5.2 Boundary II

Figure 2.5(a) contains similar results for the 2nd boundary studied in this work,

as it shows that a free energy crossing exists at packing densities well below the

maximal packing density. In Figure 2.5(b, d, f) we evaluate the order parameter θiA

on structures λi where i ∈ {A = 74, B = 69} and find that over a range of packing

densities, θiA evaluates to near unity on λA and vanishes on λB. Conversely, in Figure

2.5(c, e, g) we evaluate the order parameter θiB on λA and λB and find that over
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a range of packing densities, θiB evaluates to near unity on λB and vanishes on λA.

Again, these results indicate that the phases can be identified by the topology of

the related putative densest packings, and possess residual topological order. These

results also suggest that this type of residual topological order can be found at valleys

throughout this packing landscape, and that this type of behavior is generalizable to

many different dense colloidal packings.

In this system though, it should be noted that there is noticeable deviation in the

order parameters θBA and θBB as αc approaches the value of 1.96. θBA (in Figure

2.5(f)) trends slightly upward and θBB (in Figure 2.5(g)) slightly downward, and it

is a subtlety of the packing (λB=69) that, when captured by our order parameter,

produces such deviation. We do not believe that this slight deviation indicates a

change in topology.

2.6 Discussion

The topologically distinct phases of dense suspensions of anisotropic colloids that

we find here are dissimilar to topological phases in quantum matter in almost all

respects, except in their stability against perturbations. For instance, whereas the

topological entropy of ground-state degeneracy that arises from entanglement is im-

portant in quantum systems [54], in our systems, instead, shape entropy [10] quan-

tifies ground state degeneracy. Moreover, whereas the geometric topology that un-

derlies topological order in quantum systems allows a considerable mathematical

apparatus to be brought to bear in understanding those states, the point-set topol-

ogy that underlies the classical, topological order we identify here is more limited.

Nevertheless, despite the rudimentary form of the topological order reported here,

colloidal systems remain robust against perturbation, since they persist even at lower
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packing densities where topological protection is no longer required. This robust per-

sistence would be a key desirable feature for applications in regimes away from the

infinite pressure limit. Moreover, because the form of topological order is more rudi-

mentary, previous work [2] demonstrating that topological features (such as particle

contact types between faces, edges and vertices) generically distinguish phases of

densely packed colloids suggests that this form of topological order is widespread in

colloidal systems [55, 56, 57, 58, 59].

To leverage this topological order in experiment we note that though our order

parameters are based on contact types that nominally arise at infinite pressure, we

showed that topological order persists at finite pressure, meaning that alterations

in contact do not proliferate at lower packing densities. This finding is potentially

useful in constructing plasmonic materials that have robust response in the presence

of thermal fluctuations, changes in particle shape [13] or the behavior of stabilizing

ligands [60, 61]. It is known that the plasmonic response of systems of anisotropic

nanoparticles depends strongly on the type of contacts between nanoparticles [8].

We find that the topology of contacts between anisotropic nanoparticles is stable

over a broad range of packing densities. When situated in the context of the zoo of

distinct sets of contact types that has been shown to exist [2] in families of anisotropic

nanoparticles and the variety of synthesis techniques that can readily produce such

particles in the laboratory [5, 6, 7, 62], our work points to potential avenues for

creating nanomaterials with a diversity of robust forms of plasmonic response.
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CHAPTER III

Design Rules for the Self-Assembly of Regular Polygons

This chapter is adapted from a publication in preparation, authored by W. Zyg-

munt, T. Vo, J. A. Anderson and S. C. Glotzer.

3.1 Introduction

The desire for porous 2D nanostructures is driven by a plethora of applications,

including their use as molecular sieves [26, 27], gas storage materials [25] and photonic

applications [24]. These materials can possess novel physical properties such as

negative Poisson’s ratio [63, 64] and tunable pore size, useful for applications such

as gas filtration [65]. Such studies often involve the usage of patchy particles [12],

which can often be defined by a decoration of a nanocrystalline core with attractive

and highly-directional tethers. Much work has gone recently into designing patchy

protostructures which have the ability to self-assemble into complex open structures

including work on building blocks with tunable pore size [66, 67], colloidal building

blocks with tunable specificity [67], patchy non-convex hexagonal platelets [68] and

atom-mimicking patchy spheres [69]. Studies of selective patches on patchy rhombi

[70] have also been shown to allow tuning from close-packed tilings structures to open

lattices using specific sets of design interactions and in a further work showed how

protostructures procured here could be used to perform self-assembly in a hierarchical

23



fashion [71].

Regular polygons are materials that can be synthesized with relative ease [72,

73, 74], which makes them ideal candidates for such design considerations. In fact,

regular polygons were shown to self-assemble into the Archimedean tilings via a set

of design rules [22] which used edge-specific, A-B attraction between pairs of such

polygons. Such design rules allowed for the targeting of each tiling based on the

shapes and interactions involved in the self-assembly process. Design rules such

as these are powerful tools, as they allow for classification of the space of particle

features that contribute to the the self-assembly, of which there can be many [1].

Design rules have been used in many self-assembly studies, from establishing rules

for how to create cage compounds to form faceted polyhedra [75] to rules established

for nanoparticle superlattice engineering [76]. In the latter, such rules account for the

interplay of the size ratio of nanoparticle size ratio and DNA linker ratio to account

for all possible self-assembly outcomes.

In [22], regular polygons were patterned to specifically target the Archimedean

tilings, and the question remains: what other structures can be achieved through

selective edge-edge binding, and are there more structures that can be predicted via

the way one chooses to pattern the edges of regular polygons? In this work, we

consider a set of design rules that focuses strictly on the self-assembly of pairs of

regular polygons via complementary A-B binding. Each polygon has some subset

of it’s edges that are allowed to participate in attraction, which allows for selective

edge-edge binding between pairs of polygons. We consider all members of a polygon’s

edge-pattern family (see Methods section), which is the set of different ways one can

permute edges that can act as available sites for binding (we define these families

mathematically in the Methods). We show that when the members of a shape’s
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edge-pattern family is set up to self-assemble with members of another shapes’s

edge-pattern family, a clear set of design principles emerge which can be used to

target specific morphological classes.

Our design rules consider multiple factors that contribute to the assembly, includ-

ing the number of edges and patch structure of both particles (which includes the

symmetry and number of patches along the polygon edge) as well as the stoichiometry

φA. The design rules developed here allow for the targeting of a variety of different

morphology including terminal structures, fibers, rings and lattice structures (pack-

ing and open structures). Additionally, we demonstrate and describe how many of

these morphology may be used in various hierarchical design schemes [77, 78] in order

to target open structures for various applications. Our design rules also describe how

the stoichiometry should be set in order to obtain certain morphology, and how the

number of patches is a good predictor of the void fraction of lattice structures.

3.2 Methods

3.2.1 Binary Systems of Edge-Pattern Polygon Families

In order to understand how many patchy polygons could exist for some regular

polygon with n sides, we first must establish a method for counting every way one

could permute such patches. This problem can be represented as a k-ary necklace of

length n, an equivalence class of n-length of which each element is assigned some state

k. Consider a regular polygon with n sides and that each side can have no attractive

patch or an attractive patch (k = 2 options). Then, the number of members in an

n-sided polygon’s edge-pattern family N is given by:

(3.1) N(n, k) =
1

n

v(n)∑
i=1

φ(di)k
n/di − 1
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where di are divisors of n, v(n) are the number of divisors of n and φ(x) is Euler’s

totient function. The subtraction of 1 is to account for the state where there are no

patches on the particle.

In this work, we aim to explore the self-assembly behavior of all members of a

shape’s edge-pattern family against all members of a second shape’s edge-pattern

family (for example, this could be triangles and squares (N(3, 2) against N(4, 2)) or

triangles with themselves (N(3, 2) against N(3, 2)). Consider two general shapes,

the first with nA sides and the second with nB sides; the total number of patchy

polygon pairs are:

(3.2) P (na, nb) =


N(na, 2)×N(nb, 2) na 6= nb

1
2

[
N(n, 2)2 +N(n, 2)

]
n = na = nb

.

As an example, we take the case of regular triangle and regular squares, which we

study in this work as one of the basis for our rules. Using Eq. 3.1, one can calculate

the number of members of the triangle edge-pattern family as N(3, 2) = 3 and

the square edge-pattern family as N(4, 2) = 5, which can be seen in Figure 3.2(a).

Therefore, there are P (3, 4) = 3 × 5 = 15 total combinations of members of the

triangle and square edge-pattern families that should be explored with self-assembly

simulations.

The motivation for these design rules can be shown from the math; for example, if

one wanted to determine the number of patchy polygon pairs that would have to be

simulated in order to understand the self-assembly behavior of all patchy hexagons

with all patchy octagons, you would need 455 simulations, far more than is compu-

tationally feasible.
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3.2.2 Potential for Ligand-Ligand Interaction

In order to connect our simulations to experimentally relevant systems, we first

compute an effective potential of interaction between patchy particles that explicitly

accounts for the distribution of ligands mediating directed self-assembly. Here, we

assume that ligands are uniformly distributed within a given patchy region. However,

for anisotropic particles, the effect of local curvature on ligand confinement must be

explicitly considered. Previous works involving both theory and simulations [17,

79, 80, 81] have rigorously shown that, for uniform grafting, ligands attached to

locations of lower curvature on the particle’s surface experience increased crowding

from nearby grafts. This local confinement forces ligands to extend further out from

the particle surface in order to minimize their steric repulsion with neighboring grafts.

As a result, the probability P (h,Ω) of finding an interacting ligand end necessarily

depends on both the distance h away from the particle surface as well as the local

curvature Ω. Employing a developed scaling relation for predicting ligand extensions

[82], we can write the probability of finding a ligand end at position R away from

the surface as P ∼ exp(−βF ) where βF ∼ R2

Nb2
+ νN2

(ΩR)3
and R ∼ N1/3Ω−1 for short

ligands. Here, b is the ligand size, ν defines the excluded volume of the ligand (taken

as νb3) and N is the ligand length. The effective potential between two neighboring

patches is then

(3.3) V (r) ∼
∫ r

0

Pi(r
′
,Ωi)Pj(r

′ − h,Ωj)dr
′
dΩ.

Figure 3.1 shows the functional form of the computed potential between neighbor-

ing patchy particles with interacting patches facing each other. We note that the

functional form of the effective potential of interaction between patchy particles is
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Figure 3.1: Comparison of the edge-edge interaction computed from the PMFT to the computed
potential employed in this work.

similar to a square-well potential with an approximate 1/r decay in the well depth

(Figure 3.1)

(3.4) V (r) =



∞ r < σ

−ε/r σ < r < σ + hm

0 r > σ + hm

.

Thus, for computational efficiency, we employ Eq. 3.4 within our simulations to

approximate this interaction.

3.2.3 Simulation Methods

We performed simulations using HOOMD-blue’s [83] HPMC package [48] for

Monte Carlo simulations. We implement the pair potential described above between

A and B particles in our simulation and let the system equilibrate by performing

translational and rotational moves on particles in the system. We also perform clus-

ter moves via the geometric cluster algorithm [84] and use line reflections [85], which

allow us to move large clusters of particles by performing pi rotation around an axis
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for our anisotropic particles.

The A-B attraction simulations are conducted with two particle types where one

polygon (with nA sides, pA patch distribution and mA number of patches) has the

described attractive forces to a second polygon (nB, pB, mB). For each statepoint,

we initialize 1024 particles into a simulation box with a stoichiometry of φA and

perform NPT simulations (βP = 1.0 unless otherwise noted) where we allow the box

volume and shape to fluctuate during the course of the simulation. Initially, we run

these systems without A-B attraction for 1 M timesteps to randomize them from

their initial configuration and then tune the box moves so they have an acceptance

ratio of 0.3. We estimated εm (the inverse temperature around where we anneal

our simulations) for each statepoint by implementing a slow ramp from ε = 0.0 to

ε = 20.0 over 10 M timesteps and employ a clustering algorithm from Freud [86]

to generate a logistical function, used to approximate εm. Next, we slowly ramped

up to εm over 5.4 M timesteps and then anneal for an additional 30 M timesteps to

assure that our final structure is indeed the equilibrium structure. Lastly, we ramp

ε up to ε = 20.0 over 5 M timesteps to freeze remaining single particles in place.

3.3 Design Rules

We establish a set of design rules which we determined from binary Monte Carlo

simulations of all members of the simplest edge-pattern families (triangles against

triangles, squares against squares, triangles against squares) (Figure 3.2(a) shows

the members of these families). We use a modulated, square-well potential to rep-

resent the functionalization of selected edges of two polygons with short ligands

(described in the Methods) and perform Monte Carlo simulations using HOOMD-

blue [83]. Briefly, simulations were implemented over a variety of stoichiometry
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(φA = [0.1, 0.2, ...0.9]) and pressure was held constant at βP = 1.0 (unless otherwise

stated) (see Methods for more details). With each rule, we discuss these morphology

in the context of a hierarchical design framework (if appropriate) and how they can

be utilized for higher-order structures.

3.3.1 Terminal Structures

Terminal structures can be obtained if at least one particle in the pair of polygons

has a single patch, provided particle shape allows for binding at adjacent edges.

We define terminal structures as structures where all available edges for binding

on both particles become satisfied. These structures are not subject to the typical

kinetic traps found in systems of patchy particles, due to the lack of choice in binding

sites. The rule is designed so that if one particle (A) has mA > 1 patches and the

other (B) only has one, then B particles will bind to A particles and close off any

available growth sites. For example, consider Figure 3.2(b), where we demonstrated

that a one-patch triangle with cover a four-patch square in order to form four-arm

isotoxal stars. Stoichiometry controls the yield and for this shape, the maximum

yield occurs when there is a 4:1 ratio of triangles to squares. This rule applies only

when particles can bind along adjacent edges of the particle with more patches; if

they can, then the ideal stoichiometry can always be determined by computing the

following equation (where mi is the number of patches):

(3.5) φA =
mB

mA +mB

In binary systems of triangles, we demonstrate the formation of a variety of com-

posite shapes (Figure 3.3) including rhombuses, trapezoids, and larger regular trian-

gles in perfect yield at the appropriate stoichiometry. In binary systems of squares,
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Figure 3.2: Edge-pattern families for both regular triangles and regular squares (a). Design rules
demonstrate the formation of different structures from members of these families, including self-
terminating structures (b), fibers (c), lattice structures (d), and ring structures (e). Ring structures
can be assembled in higher yield with the addition of hierarchical assembly (HA) to overcome kinetic
effects. We show that stoichiometry can control the final structure and has a sizable affect on yield
(f). Lastly, we demonstrate that the void fraction is dependent on the number of patches on each
particle and can be used to control void shape (g).

31



a

c

b

a

Figure 3.3: Composite shapes for triangle-triangle (a), square-square (b) and triangle-square (c)
terminal assembly rule.

we are able to produce a variety of different polyominoes [87] including the concave

plus-sign shaped pentomino; given that a square can, at most, harbor four attractive

edges, pentominoes are the largest terminal structure that systems of binary squares

can assemble. Triangle-square systems give by far the most diverse morphology,

allowing us to access concave shapes such as the four-arm isotoxal star (shown in

Figure 3.2(b)), the elongated hexagon (whose self-assembly is well-understood [21])

and concave nonagons. We demonstrate formation of the plus-sign pentomino in

Figure 3.4(a, left snapshot) and the four-arm star in Figure 3.4(b, left snapshot).

Given that the goal of this work was to target open structures, it became clear

that the concave shapes might be the most interesting candidates for a hierarchical

design approach, where the first stage consists of assembling the composite shape

from regular polygons and the second stage consists of compression into an ordered

structure. To do this, we first took the plus-sign pentomino and the isotoxal star

and extracted the vertices of these shapes to make a composite concave shape for

Monte Carlo simulation under compression. We initialized these shapes in the fluid
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and compressed them by stepping up the pressure by βP = 0.1 every 5 × 104 steps

until we reached a final pressure of βP = 10 and formed a square tiling for the

plus-sign pentominoes (Figure 3.4(a, right snapshot)) and an open structure with

periodic rhombic voids for the four-arm star (Figure 3.4(b, middle snapshot)).

The composite shapes we’ve studied under compression also have the distinction

that they are motifs which appear in two different Archimedean tilings (the square

tiling and the snub square tiling). We explored the possibility of co-assembly of our

composite shapes with the complementary shapes required to form such tilings. The

plus-sign pentomino packs neatly into it’s densest packing and the squares forming

these shapes form a square tiling, so additional squares will not affect the final assem-

bly. The four-arm star motif is present in the snub square tiling (which is a densest

packing of triangles and squares) but is lacking the squares that sit in the gaps be-

tween these motifs. We added squares to our starting fluid of the four-arm stars (in

a 1:1 ratio) and co-assembled a snub square tiling with a 11213 coloring; this color-

ing is different than the one achieved by isotropically patchy triangles and squares

(11212), because the extra squares added for the co-assembly do not necessarily need

to be the same ones used to form the four-arm stars.

In order to test the extendability of this rule to regular polygons with even more

sides, we show the self-assembly of hexagram shaped particles from one-patch tri-

angles and isotropically-patterned hexagons (Figure 3.4(c, left snapshot)) and that

subsequent compression leads to another open structure densest packing, this time

an Archimedean tiling (the snub hexagonal tiling), possessing triangular voids (Fig-

ure 3.4(c, middle snapshot)). In the presence of extra hexagons, we demonstrate

co-assembly into the space-filling trihexagonal tiling (Figure 3.4(c, right snapshot)).

Self-assembly of patchy hexagrams have been studied in prior work [88] and have

33



a

b

c

+

+

+

Figure 3.4: Hierarchical design approaches for lattices obtained from the terminal structure rule.
Squares assemble into plus-sign pentominoes which pack into a square lattice (a). Four-arm isotoxal
stars pack into an open structure with rhombic voids and co-assemble into a snub square tiling with
free squares (b). Triangles and hexagons assemble into hexagrams which pack into a snub hexagonal
lattice and co-assemble into a trihexagonal tiling with free hexagons (c).

been shown to form ordered lattices with rhombic voids when patches are applied

on the tips of the triangular arms, and this rule could assist in forming the starting

material with the core (hexagon) and the spikes (triangles) using potentially different

materials.

3.3.2 Fibers

Fibers will be obtained if both particles in the pair of polygons have two patches on

parallel edges.

Fiber formation encompasses a very limited scope of our self-assembly space, due
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to the small number of cases where they can form. Fibers in our context consist of

long, straight chains of polygons of alternating type. In this construction, patches

must exist perfectly on the opposite edges of both particles, because deviation from

perfectly parallel edge locations will induce an angular dependency in the growth

front and disrupt the straight nature of fiber growth. When considering binary

systems of triangles, fibers will not form because triangles contain no parallel edges,

and therefore, growth cannot occur along one consistent direction; this similarly

prevents the formation of fibers in binary triangle-square systems. Fibers made of

alternating squares are possible however, since they meet this criteria. Stoichiometry

controls the yield of fibers, with no kinetic traps present because rotation of either

particle will not change the orientation of locking. Maximal yield always occurring

at φA = 0.50 where particles can maximize their alternating motif. We demonstrate

that for binary systems of squares that we form long fibers of alternating square

types as demonstrated in Figure 3.2(c).

We further demonstrate that fibers also form when we pattern hexagons with two

patches on their parallel edges (Figure 3.5(bottom, d)) and in general, we expect that

any pair of polygons with even numbers of edges will form fibers, as long as patches

appear on parallel edges, meaning that would occur in pairs of squares, hexagons,

octagons, etc. Additionally, we see that these fibers line up against each other in an

attempt to minimize the space between them (fibers of squares and fibers of hexagons

can form Archimedean tiling structures when lining up is perfect).

3.3.3 Lattices

Lattice structures can form if both particles in the pair of polygons have patch distri-

butions that can bind symmetrically.
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Formation of lattice structures are the fastest route to finding open structures,

since they do not require additional hierarchical stages beyond the initial formation

of the lattice. It is an open question, however, of how to best pattern shapes with

patches to effectively assemble such lattices such that kinetic traps are not an issue in

the formation. Consider the shapes shown in Figure 3.2(d) and the lattice structure

they form, the rhombitrihexagonal tiling; note that if connecting the triangle to the

square, one could rotate each shape to another patch in the patch distribution and

not change the directionality of the other patches. This prevents kinetic traps in

the formation, since the symmetrical binding abilities of the patch set eliminates

random branching from patches pointing in random directions incommensurate with

the lattice structure.

Considering the triangle and square systems, we find that triangles have one

particle that fits this description (patches on all three edges) and squares have two

(the square with patches on parallel edges and the square with patches on all four

edges). We demonstrate that combinations of these patchy polygons lead to lattice

formation, with an exception in the case of the two-patch square with another two-

patch square leading to fiber formation (Figure 3.5(top, e)). As a consequence of

the way the lattice rule is designed, we find that the rule for fibers is actually a

subset of this rule, since the particles described in the fiber rule fall naturally under

the description of particles with symmetrically-binding patch sets. Lattices found

include the triangular tiling, the open rhombitrihexagonal tiiling, the snub square

tiling, the square tiling (1213 uniform coloring) and the square tiling (1212 uniform

coloring) (Figure 3.5(top, (a, b, c, f, i))). The remaining lattices (d, g, h) are simply

recoloring of the same lattices shown in (b, c, f).

Stoichiometry of these lattices are indicated as φA where A represents the particles
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on the y-axis (the blue particles). The stoichiometry for lattices must be considered

carefully as deviation from the optimal value can have one of the following effects on

formation: it can simply depress the yield of the desired lattice or it can completely

suppress the lattice formation. We find that if a lattice can form by saturating every

patchy edge in the system, it will always do so, and stoichiometry only controls the

yield of the lattice. Some systems, such as the snub square tiling shown in Figure

3.5(top, c), require the presence of open patchy edges (one triangular edge must be

kept open) and there, stoichiometry must be carefully considered (see Section 3.3.5).

Pressures were constant for all of these lattices at βP = 1.0, but we had to compress

the snub square tiling after crystallization had concluded in order to achieve the

tiling structure which is free of voids resulting from the unbonded triangle-triangle

edge.

In order to verify that this rule holds for a larger range of polygons, we perform

similar simulations on the patchy triangle that fits the description dictated by this

rule along with all patchy hexagons that do so (the hexagon with patches on parallel

edges, the three-patch hexagon with three-fold symmetry and the hexagon with

patches on all six edges). Like in the triangle-square systems, the two-patch hexagon

simulated with another two patch hexagon form hexagonal fibers (Figure 3.5(bottom,

d)), confirming the intersection of these two rules.

Triangle-hexagon lattice-forming particles form a few variations of the trihexago-

nal tiling with hexagram voids, a cantic hexagonal tiling (which has triangular voids)

and the space-filling trihexagonal tilings (Figure 3.5(bottom, (a, b, c))). Hexagon-

hexagon lattice formers make different constructions of the hexagonal tiling includ-

ing an open structure with a concave octadecagon void, an open structure with a

hexagonal void and several variations of the space-filling hexagonal tiling (Figure
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3.5(bottom, (e, h, f, i, l))). The remaining lattices (g, j, k) are simply recoloring of

the same lattices shown in (e, f, i). All lattices were formed at βP = 1.0 except for

Figure 3.5(bottom, (e, g)) which due to it’s large void fraction would only form at

βP = 0.25.

While this rule serves as a good predictor of lattice formation, it’s weakness is its

inability to distinguish between open structures and space-filling tilings and tilings.

The only way to guarantee an open structure is to encapsulate the void via a ring

of nanoparticles, which can be formed uniformly and then self-assembled into the

higher-order open structure.

3.3.4 Rings

Rings can be formed if both particles in the pair of polygons have two patches, and

at least one of them does not have them on parallel edges.

Rings are useful candidates for hierarchical design if the shape of the ring can be

assembled into a higher-order structure, since that order effectively orders the hollow

centers into a periodic and open structure. The ring design rule requires two particles,

each with a set of two patches (where at least one does not have those patches on

parallel edges) that connect in an alternating fashion; this rule is specific as to avoid

the conditions for the fiber rule (both particles with two patches on parallel edges).

It is possible to select two-patch candidates that will not form open rings, so care

must be taken so the selected particles close an open ring. We study two cases of

rings: square rings with square holes (formed by two kinds of patchy squares) and

dodecagonal rings with hexagonal holes (formed by a patchy triangle and a patchy

square). Stoichiometry must be fixed at φA = 0.50 in order to guarantee ring closure

(since particles have A-B attraction and particles connect in an alternating fashion).
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Figure 3.5: We demonstrate the application of the lattice rule to the edge-pattern families of
triangles against triangles, squares against squares and triangles against squares (top) as well as
triangles against hexagons and hexagons against hexagons (bottom). The shapes along the axis
indicate the symmetrically patchy polygons used in the pairing, where the edges of blue shapes (A)
are attracted to edges on orange shapes (B). We denote the packing fraction required to form the
lattice (φA) as well as the ideal void fraction (α) calculated from the unit cell.
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Initial simulations of both systems demonstrate some ring formation, but high-yield

self-assembly is precluded by the presence of kinetic traps.

At least one of the particles, by design, must have patches on non-parallel edges

and because of this, the remaining open patches could point in different directions

on attachment to the next particle. When this particle attaches, it may connect via

either of its two patchy sites and since they are not on parallel edges, one connection

is “correct” (leading to ring formation) and the other leads to a kinetically trapped

structure. At every stage of particle addition to a ring, it is possible to form such

kinetic traps, making it difficult to achieve high yield of rings without misconnection

occurring and precluding ring formation. Simulations of N = 1024 particles (chosen

so that our maximum yield is 1024/8 = 128 rings) over five replicates (where we

annealed for 40 M timesteps) gave a yield of 50.6 ± 6.5 % (Figure 3.6(a)) which is

low, and observations of the system show the formation of structures incommensurate

with ring formation.

We implement a series of hierarchical design choices which help to close off some

of the routes leading to such kinetic traps, similar to the approach in [89] in which

they use pre-assembled subunits to reduce the conformational freedom in micelle

structures. In process 1 (Figure 3.6(c)) we utilize our terminal structure rule to

create “corner” particles and then self-assemble those with two-patch squares; this

process lowers the number of particle attachments required to form the final ring

(from eight down to four) and gives an improved yield of 70.9 ± 4.0 %. However,

we can boost yield even further by following process 2 (Figure 3.6(e)) which reduces

the number of particle attachments and also makes two of the four particles involved

in the self-assembly have the ability to bind symmetrically, lowering the number of

kinetically trapped microstates even further, boosting our yield to 88.5 ± 0.7 %.
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Consider the larger dodecagonal ring, consisting of 12 particles, where one would

expect the yield to be lower for each process, simply due to the increased number

of correct connections that must be made. Indeed, the yield for the original process

for making such rings (Figure 3.6(b)) has a very low yield of 5.0 ± 2.2 % (N = 1296

particles, chosen so that our maximum yield is 1296/12 = 108 rings), (we annealed

here for 60 M steps due to the larger system size). We implemented processes similar

to those for the squares (demonstrated in Figure 3.6(d and f) and find increased

yields of 18.7 ± 3.1 % and 62.4 ± 1.7 % for process 1 and 2, respectively. Finally, we

demonstrate the generalizability of this rule by applying it to hexagonal rings (with

star-shaped voids) formed by patchy triangles and squares Figs. 3.6(g). In this case,

we do not attempt assembly via the non-hierarchical route or the hierarchal route

with lower yield, instead opting for the route with the highest yield informed by our

understanding of which process leads to the fewest kinetic traps.

Figs. 3.6(e, f, g) demonstrate robust assembly of ring structures, all of which

contain voids of varying shape. Self-assembling rings is difficult due to the presence

of kinetic traps but since a void is guaranteed (if you choose the right starting

materials) the extra effort makes the process desirable. These particular rings were

chosen because they can support voids in their interior, and also for the fact that

they all have densest packings of the rings themselves, allowing for compression into

these structures for an ordered open structure. The square rings and the hexagonal

rings will pack easily into their regular tilings and the dodecagonal rings will pack

into a truncated hexagonal tiling [90], where there will be periodic void shapes (the

hexagonal hole developed here and the triangular void that results from compression).
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Figure 3.6: Ring structures can be formed by patterning two particles with two patches each. We
attempt formation of square and dodecagonal rings without the use of a hierarchical assembly
process (a, b) and find that kinetically trapped structures lower the yield of rings. We apply two
different sets of hierarchical self-assembly processes for square rings (c, e) and dodecagonal rings
(d, f) and find that these processes improve the reported yield. Lastly, we use the best form of
hierarchical design rule to make hexagonal rings (g) in good yield.
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3.3.5 Stoichiometry

Stoichiometry can control the yield of a desired structure and sometimes preclude its

formation.

So far, each design rule has some stoichiometric element attached to it. In the

rules for terminal structures, fibers and rings, the stoichiometry gives an effective

control over the yield of the final structure, but doesn’t change the actual structure

that is formed. In the cases of lattices, there are two kinds of structures that can

form: those that form with exposed patchy edges and those that do not. If the

final structure doesn’t have any such sites, then stoichiometry will again control

only the yield, since the same bond types will be formed over and over, without the

possibility of a secondary structure appearing. If a desired structure has such sites,

then stoichiometry can control how and where particles attach, and studies have

demonstrated that stoichiometry can control the final structure of certain crystalline

structures, in systems of spherical nucleic acid nanoparticle conjugates [91] and DNA-

grafted nanoparticles [92]. In the latter, the authors note that deviations away from

ideal stoichiometry force the system to behave similarly to a series of competing

parallel reactions, which we think could also represent the attempted formation of

other less ideal structures in our systems.

We first consider the case of the snub square tiling first shown in Figure 3.5(top,

c), which forms in systems of isotropically-patterned triangles and squares, with an

optimal stoichiometry of φsquare = 0.67. As can be seen from the simulation snapshot,

one attractive edge of the triangle is always exposed in forming the tiling. Due to this

requirement, stoichiometry should be balanced so that the number of squares never

overtakes the number of triangles in a way that could lead to capping of all patchy
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triangular edges. In order to quantify the presence of the desired snub square tiling,

we use environment matching (implemented in Freud [86]) to compute the motif that

each square makes along with the four squares that it’s vertices make contact with.

Briefly, environment matching checks each square in the system to see if the four

vectors which connect it to its four square neighbors are similar, up to a threshold of

0.3×D, where D = 1+
√

3
2

is the magnitude of the vector connecting a center square

to a neighbor (the motif created by these squares is shown in Figure 3.7(top, a)). We

compute this matching over the final frame of our simulation, averaged over three

replicates for a range of stoichiometry and show that the snub square environment

presence peaks at the optimal stoichiometry (Figure 3.7(top, b)). We do not expect

the matching to reach 100%, since squares on the edge will by construction not match

the desired environment.

Next, we show the consequence of stoichiometric control in a case where a set of

particles have the ability to form more than one lattice. Isotropically patchy squares

and hexagons can form one of two lattices: a square tiling with hexagons acting

as bridges between the squares (when φsquare = 0.33) and a rhombitrihexagonal

tiling (when φsquare = 0.75) (Figure 3.7(bottom, a)). Once again, we simulated

three replicates at stoichiometry from 0.1 to 0.9, including the ideal stoichiometry

for the two lattices in question. At low amounts of squares, the system favors the

structure where the square lattice arrangement occurs, and each hexagon gets two

attached squares; the squares are completely covered by hexagons, due to their low

amount in the system. At higher amounts of squares we observe the formation of the

Archimedean tiling, formed by the excess squares isotropically covering the hexagons

and allowing formation of the tiling. We compute presence of two environments with

thresholds of 0.3 × Di, where D1 = 1 +
√

3 for the first environment (purple) and
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D2 = 1+
√

3
2

for the second environment (green). Figure 3.7(bottom, b) shows peaks

which match the ideal stoichiometry for both lattices shown.

3.3.6 Void Fraction

Void fraction is controlled by the number of patches on each particle; the more patches

between particles, the smaller the void fraction.

We’ve demonstrated methods to target open structures through various means,

such as hierarchal self-assembly of concave terminal structures and rings, and the

formation of lattices via particles with patch sets that allow for symmetric binding.

One useful aspect of the lattice rule is the ability to set up tables (such as those in

Figure 3.5) which allow us to walk along the axis of these particles with symmetric

binding, and observe potential trends in material characteristics as we add patches

along this axis. One such observation is that when lattices are concerned (ignoring

the fibers that this rule intersects), the void fraction of each lattice drops as a patch

is added to either particle in the pair. We compute the void fractions of the ideal

structure from the unit cell.

Consider first the lattices formed by a three-patch triangle and both the two- and

four-patch squares (Figure 3.5(top, (b, c))). The rhombitrihexagonal tiling has a

void fraction of 0.40 (with large hexagonal voids) and the snub square tilings has no

voids, which suggests that adding patches to the square tends to make the lattice

less open. We make the same observation with the lattices formed by a four-patch

square and both the two- and four-patch squares (Figure 3.5(top, (f, i))) where the

void fraction drops from 0.25 to zero via two kinds of square lattices. In order to

make certain that these trends extend to other particle pairings we test them on the

triangle-hexagon and hexagon-hexagon lattices and find similar behavior. In Figure
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Figure 3.7: We demonstrate the effect of stoichiometry on two different particle pairings. First, we
demonstrate the formations of the snub square tiling motif (top, a) and calculate the number of
squares matching that environment as a function of the stoichiometry (top, b). We present snapshots
of simulations where φsquare = 0.1, 0.2, 0.333, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (left-to-right, top-to-bottom)
(top, c) and squares matching that environment are colored purple. Next, we demonstrate the
way stoichiometry controls the formation of two different lattices, the motifs of each are shown
(bottom, a) and the number of squares matching each environment as a function of the stoichiometry
(bottom, b). Finally, squares are colored by which environment they belong to where φsquare =
0.1, 0.2, 0.333, 0.4, 0.5, 0.6, 0.7, 0.75, 0.9 (left-to-right, top-to-bottom)) (top, c).
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3.5(bottom), we observe that moving from a two- to three- to six-patch hexagon

drops the void fraction when paired with three-patch triangle Figure 3.5(a, b, c)

and with any other symmetrically-binding hexagon. The ability to control the void

fraction is useful in many material applications where robust control over pore size

is critical.

3.4 Conclusions

We have demonstrated that in the large space of anisotropic-patterned regular

polygons that one can extract a series of design principles that allow for targeting

of specific morphology, and that these rules can be used to target open structures

desirable in material applications. Rules for terminal structures allow us to access

exotic shapes which may be experimentally difficult to access and that such shapes

can be utilized in higher-order processes for forming open structures. Our rule for

lattices informs us of what shape patterning are most likely to form lattices and from

this, we learn that void fraction drops with the addition of patches. Our ring rule

gives us the most effective way to access open structures and informs us of the best

ways to avoid kinetic traps during formation. All of these rules we also shown to

work outside of the realm of triangles and squares, and may give experimentalists a

road map to designing the open structures required for novel material properties.
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CHAPTER IV

Dendrimer Ligand Directed Nanoplate Assembly

This chapter is adapted from Ref. [82], a publication in ACS Nano, authored in

2019 by K. C. Elbert*, T. Vo*, N. M. Krook, W. Zygmunt, J. Park, K. G. Yager, R.

J. Composto, S. C. Glotzer, and C. B. Murray (* indicates co-authorship). My major

contributions to this work included contributing to design of simulation protocol and

testing (Section 4.3.3) as well as discussions/contribution to the story of the paper.

4.1 Introduction

Anisotropic nanocrystals (NCs) have been employed to create a wide variety of

assembled superlattices, giving access to novel properties of the resulting films [93,

94, 95]. Control and uniformity of film architecture is of the upmost importance for

NC technology; however, there is still much to be understood about the formation of

these assemblies. Contributing factors during assembly include NC-NC interactions

[30, 74, 96], NC shape [10, 97], ligand effects [98, 99, 100], and fabrication method,

which encompasses a variety of variables such as subphase polarity [101, 102], drying

rate [103], and electric fields [104, 105]. Although many of these factors have been

investigated previously, typically, these studies utilize commercially available organic

ligands, whereas few examples exist for intentionally designed combinations [18, 106],

particularly for anisotropic NCs. It is well-known that self-assemblies of NCs rely
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on both organic and inorganic components of the NC building blocks [107]; however,

ligand design and direct comparisons to elucidate ligand effects on NC assemblies

still remain a rich area for research into diverse superlattices.

Ligand effects on NC assembly can be emphasized by employing anisotropic NCs,

as differences between ligand grafting densities on various facets of the NCs can have

a large effect on the resulting assembly [106, 108, 109]. Previous work has shown

that longer ligands of DNA preferentially bind to different faces of NC cubes due to

ligand-igand interactions on the surfaces of the NCs [81]. Simulation and theoretical

approaches aimed at characterizing the degree of ligand partitioning as a function

of faceting and relative curvature have revealed a critical interplay between ligands

and the core geometry that results in the formation of nontrivial ligand shells [79].

Self-assembly into larger superlattices is then influenced by such anisotropic coronas,

resulting in various symmetry-breaking morphologies that have not been previously

observed [21, 81].

A variety of plate assemblies due to ligand or organic surfactant effects have been

observed in previous studies for 3D micron-sized superstructures [110, 111]; how-

ever, investigations of thin films have largely focused on 2D assemblies in monolayer

films [112]. In this work, we investigate ligand effects on anisotropic NC assembly

through the use of dendrimer ligands of varying generation and cone angle in combi-

nation with rhombic plate NCs. The resulting films were analyzed with transmission

electron microscopy (TEM) and grazing-incidence small- and wide-angle X-ray scat-

tering (GISAXS and GIWAXS) to further describe their structure. Multilayered

self-assembled films exhibit a distinct, highly controlled, offset architecture between

layers of NCs, where the amount of offset increases with increased steric bulk of the

ligand grafted on the surface of the NCs. Monte Carlo (MC) and molecular dynamics
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(MD) studies were conducted to elucidate the formation of these structures, explic-

itly accounting for nonuniform grafting densities on the anisotropic NCs. The results

of these simulations show that ligand structure and steric interactions are both im-

portant considerations for NC film design, particularly for anisotropic NCs, as we

aim to further understand these principles to effectively employ rational engineering

of choice systems.

4.2 Methods

4.2.1 Modeling of Ligand Corona and Lattice Energy Computation

Here, we adapt a scaling theory developed for grafting of linear ligands to an

anisotropic core to account for nonlinear ligands. We define a chain swelling param-

eter, α, that explicitly accounts for chain branching (α5 N1/2v[NΛ]−
3
16 ), where N is

chain length, v is excluded volume, and Λ is the degree of branching. The derivation

for the scaling theory using the new swelling parameter is analogous to that of linear

chain. Scaling analysis gives the free energy of ligand grafting at various positions

on the particle surface that can then be used as a Boltzmann weight factor for the

probability of chain grafting P. A metropolis algorithm was then employed to place

chains onto the particle surface, weighted by P . The number of chains grafted are

set by the grafting density. The effective corona is then computed from averaging

over 1× 106 MC simulated coronas. PMFs are then calculate between two particles

with explicit coronas at various positions and relative orientations. The computed

PMFs are then feed into the Wertheim-style lattice prediction approach proposed by

Lu et al. to compute the excess free energy of lattice formation relative to a bare

particle limit [81, 113, 114, 115, 116].
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4.2.2 Molecular Dynamics Simulation of Ligand-Grafted Particles

We first compute the partitioning probability of ligands on the surface of the

nanoplate. This is performed via generating grid points on the particle surface and

computing partitioning probability from our scaling theory. A set of potential mean

forces was then computed between two grafted particles. While exact, creating a

unique bead type for each point, the particle surface becomes prohibitively expensive

for a molecular dynamics simulation. To reduce the complexity, we categorize the

continuous probability distribution into three distinct groups based on the value, P ,

of the scaled grafting probabilities: low for P ∈ [0, 0.33), medium for P ∈ [0.33, 0.5),

and high for P ∈ [0.5, 1]. NVT simulations are then performed at T ∗ = 0.5 for a

system of 2744 NCs. Each NC contains roughly 100 beads making up the rigid body,

giving a total of 274,400 particles in each simulation. A driving force was applied to

each particle to push them to a wall (mimicking the liquid-air interface) placed at the

top of the simulation box. The wall also has an LJ-type interaction with the beads

making up the NC. The driving force was turned off after 1 M time steps, at which

time there are enough NCs at the interface to nucleate crystallization. The system

was then allowed to further equilibrate for 5 M time steps, followed by a production

run of 10 M time steps.

4.3 Results and Discussion

4.3.1 Component Design

A series of ligands were designed and synthesized to study how different generation

and cone angle of dendrimer ligands affect NC self-assembly. The complete series is

shown in Figure 4.1, where two different generations, as well as different cone angle,

or steric bulk, within the same generation are highlighted. This series allows for a
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direct comparison of the effects of these ligands on NC self-assembly processes. The

specific ligand architecture used in this study was selected based on excellent control

of NC assemblies previously studied, where interparticle spacing could be controlled

effectively based on dendrimer generation [117]. Additionally, the larger generation

dendrimer provided sufficient steric bulk to overcome NC-NC attractive forces to

maintain interparticle spacing across various spherical particle sizes [117, 118]. Given

the structure of dendrimer ligands, they can provide surface protection of spherical

particles, as they can pack effectively around a curved surface due to their cone angle

[119]. These previous findings lead to questions of how ligands of these geometries

bind to the surfaces of anisotropic NCs, and if their distinct geometries can lead to

distinct or precisely controlled NC assemblies.

Figure 4.1: Structures of dendrimer ligands 1, 2, and 3 and oleic acid (OA) used in this study.

Complete synthetic details for the series of ligands used in this study are de-

scribed in the Supporting Information. Briefly, using a similar synthetic strategy

as was previously utilized due to its synthetic tunability [117], targeted molecules

2a and 3a were obtained by reacting 5-(chloromethyl)-1,2,3-tris(dodecyloxy)benzene

with 3,5-dihydroxybenzoate or methyl 3,4,5-trihydroxybenzoate, respectively, using

Williamson etherification. The subsequent esters were reduced with LiAlH4, chlori-

nated, and then reacted with NaN3 to obtain valuable intermediates 2d and 3d. To
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attach the selected surface binding group, phosphonic acid, which is known to bind

to rare-earth-based NCs [120], “click” chemistry was used to isolate final ligands 1,

2, and 3 [121].

Separately, NCs of Gd3:Yb/Er (20/2 mol %) were synthesized using previously re-

ported methods [95, 120, 122].These NCs are rhombic plates that have dimensions of

16.6 and 19.8 nm on their short and long sides, respectively, with a thickness of 3 nm,

and have oleic acid (OA) on their surfaces after synthesis. Subsequently, the NCs

were functionalized with each of the various dendrimers using a ligand exchange

procedure [123] where the structure of the inorganic NCs is unchanged. Previous

studies have used NMR to confirm the successful ligand exchange procedure [117];

however, the paramagnetic nature of the NCs in this study limits the characterization

techniques. Successful ligand exchange was confirmed by thermogravimetric analysis

[120] where NCs functionalized with OA show the organic decomposition at 190◦C,

whereas the dendrimer ligands all decompose above 300◦C. This is additionally con-

firmed by observation of increased interparticle spacing of NC assemblies, which will

be discussed in detail in the following discussion.

4.3.2 Interfacial Assembly

These dendrimer-NC hybrid materials (denoted ligand@NC) were then assembled

using a liquid-air interface method [124], where subphases of varying polarity were

investigated, as the Murray group has previously shown that the subphase of the

assembly can tune the NC orientation, parallel or perpendicular, relative to the

surface [101]. For the case of OA@NC, on commonly employed diethylene glycol, the

NCs assemble into a mixture of columnar and lamellar grains, which corresponds to

the NCs aligned either parallel (face-on) or perpendicular (edge-on) to the surface,

respectively; however, the lamellar structure is the dominant film orientation, as
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shown in Figure 4.2(a). This confirms previous findings, where a less polar subphase,

such as tri- or tetraethylene glycol, favors the columnar structure and a more polar

subphase directs the NCs toward a lamellar liquid-crystalline structure. The lamellar

orientation was attributed in part due to the hydrophobicity of OA, as this would

create repulsive interactions between the ligands and polar subphase.

Figure 4.2: (a) TEM image of self-assembled OA@NC with calculated fast Fourier transform inset.
(b) GISAXS and (c) GIWAXS of the same film. (d) TEM, (e) GISAXS, and (f) GIWAXS of self-
assembled 1@NC. (g) TEM, (h) GISAXS, and (i) GIWAXS of self-assembled 2@NC. (j) TEM, (k)
GISAXS, and (l) GIWAXS of self-assembled 3@NC. Scale bars are 100 nm.

Interestingly, for each dendrimer ligand, the dendrimer-NCs only align parallel

to the subphase for each subphase investigated, shown in Figure 4.2(d, g, j). In all

cases, the same assembly architecture is observed. Four subphases of varying polarity
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were selected: ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene

glycol. Due to the hydrophobicity of the ligands studied, it was hypothesized that

an extension of previous results would be observed, as there should be an increase in

the repulsive interactions between the ligands and a polar subphase. However, this

change in monolayer orientation suggests that there must be additional factors during

the self-assembly process that have a strong influence on the final film morphology.

Thus, further characterization of this film morphology was conducted to fully assess

the films.

The addition of the dendrimer ligands also allows for monolayer films to be

achieved, a challenge that was not easily accomplished in previous studies, as these

NCs form multilayer films rapidly due to their interparticle attractive forces [101].

Successful monolayer assemblies exhibit the same film architecture, with only changes

in the interparticle spacing. The interparticle spacing measured for 1@NC from TEM

images is 5.39 0.71 nm, whereas it increases to 6.28 1.17 and 6.89 0.87 nm for NCs

with larger ligands 2 and 3, respectively.

These films were characterized using GISAXS and GIWAXS, allowing for a com-

plete investigation of centimeter length-scale films transferred onto silicon wafers,

confirming film uniformity, as well as the interparticle spacing and particle orienta-

tion in the films. The 2D GISAXS images are shown in Figure 4.2, highlighting the

difference between panel b (OA@NC) and panels e, h, and k (1@NC, 2@NC, and

3@NC). The peak positions from these GISAXS patterns show the differences in NC

alignments and are further confirmed qualitatively from the GIWAXS data. Films

formed on each of the subphases were analyzed with GISAXS.

Line cuts along the in-plane direction, qr, are shown in Figure 4.3, where fitting

the primary peak was used to determine the repeat-spacing value for each lattice.
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For the case of OA@NC, the value from the primary peak of the line cut in this

direction provides the stacking distance in the z-direction, as the plates are edge-on

to the substrate. As 1@NC, 2@NC, and 3@NC are all face-on to the substrate, fitting

the primary peak in these cases provides the plate-to-plate distance in the xy plane,

which are 4.7, 5.2, and 5.7 nm, respectively, in good agreement with the measured

distance from TEM.

Figure 4.3: Line cuts for qr values from 2D GISAXS patterns shown in Figure 4.2.

For multilayer films, typically the NC-NC interactions dictate NC alignment into

a columnar architecture when the NCs align face-on to the substrate [101]; however,

when the dendrimer ligands are grafted onto the surfaces of the NCs, a distinct

architecture is observed. For each layer of the assembly, the particles are directionally

offset, as highlighted in Figure 4.4, and this architecture can be achieved over large

length scales. These films were characterized with TEM tilt tomography, as shown

in Figure 4.4 where an offset of 18.4 2.4, 19.1 3.0, and 23.3 3.2% relative to the

NC side lengths were observed for 1@NC, 2@NC, and 3@NC, respectively. This

offset is calculated as the distance between the edges of the two plates in the bilayer,

highlighted in Figure 4.4, and converted to a percentage compared to the slide length
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of the NC. The observed architecture is most likely due to the large dendrimer ligands

that were employed, as additional NC “softness” has been shown to lead to a variety

of moir patterns and binary superlattices in NC thin films [117, 125]. With an

increased“softness”, the NC-NC interactions are diminished, making these differences

in morphology of multilayer films achievable. However, no other 3D morphologies

were observed, that is, changes in the architecture in the z-direction, as each layer of

NCs was observed to be directionally offset from the previous layer. If NC “softness”

is the dominant driving force of this morphology, it is expected that additional 3D

geometries would be observed, such as a rotation between NC layers, as previous

studies have shown a large variety of moir patterns present in similar NC systems

[117]. This is due to an increase in the organic component in the overall NC material,

or the“softness”, which causes slipping between NC layers. Due to the high level

of control of 3D assembly while employing such large ligands on the NCs, further

investigation of how the ligands so effectively direct assembly was conducted.

4.3.3 Monte Carlo and Molecular Dynamics Simulations of Hybrid Systems

To elucidate the role of the ligands in the formation of this set of films and pro-

vide insights for future ligand and NC design, a series of simulations and theoretical

predictions were performed. Previous studies involving the distribution of ligands on

anisotropic particles have shown a natural partitioning of ligands to surface locations

of increased curvature [17, 79, 80, 81]. This partitioning can be understood as follows:

for moderate to high grafting densities, local crowding drives each ligand to extend to

its fully stretched configuration. The effect of crowding is expected to be uniformly

distributed for an isotropic core but not for an anisotropic core. At positions of high

curvature on anisotropic particles, ligands can occupy a larger volume going radially

outward while retaining the same solid angle. The increase in accessible volume re-
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Figure 4.4: TEM tilt tomography of bilayer self-assembled 2@NC. Degree of tilt axis from the x-axis
is provided in the top left, and a cartoon representing how the offset measurements were taken.
Scale bars are 50 nm.

duces the degree of crowding felt by the ligand from its neighbors, allowing it to relax

toward an equilibrium configuration. This gain in both rotational and translational

entropy associated with ligand conformation exceeds the loss in configurational en-

tropy due to ligand partitioning and results in an anisotropic surface distribution.

To the best of our knowledge, theories developed to capture such transitions have

focused on linear ligand architecture [17, 81]. A similar trend was demonstrated for

models of simple ligands with large head groups [79], but for branching motifs, the

degree to which ligand partitioning will be affected is unknown.

To provide insight into any additional forces that might emerge due to the branched

ligand architecture and to quantify the degree of partitioning, we developed a scaling

theory that explicitly accounts for the effect of nonlinear grafts through a combination
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Figure 4.5: Scaling predictions for different ligand architectures. (a) Predicted ligand partitioning
as a function of nonlinearity parameter bnl. Colors indicate grafting probabilities (scaled between 0
and 1) at various locations on the rhombus surface. Top row shows a top-down view. Bottom row
shows a side view (b-e). Predictions for the specific ligand synthesized experimentally. Subscript
1 shows the ligand; subscript 2 shows the partition probability for the given ligand; subscript 3
shows the effective ligand corona about the rhombus (f). Cartoon describing definitions of param-
eters employed. We observe more ligand partitioning as bnl increases. The effective corona about
the rhombus also transitions from conformal to concave, which then dictates the self-assembled
morphology.

of both star polymer and branching scaling theories [81, 126, 127, 128, 129, 130, 131].

Our main result defines a ligand end-to-end distance that scales as

(4.1) R ∼ roσ
1
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where ro is the size of the in-sphere radius of the anisotropic core, σ is the core

grafting density, b is the statistical segment length of the ligand, v is the excluded

volume of the ligand, N is the degree of polymerization, and Λ is the effective degree

of ligand nonlinearity. The parameter Ω is a shape term that defines both the shape
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of the grafting core and specific position on the particle surface. R can then be used

to define the free energy of a ligand at various positions on the particle surface as

(4.2) βF ∼ R2

N
7
16 Λ−

1
16

+ ν
N2σr2

o

(ΩR)3
.

The probability of finding a ligand at different surface position is simply

(4.3) P ∼ e−βF .

Figure 4.5(a) plots the predicted partitioning probability, P, projected onto the

respective surface positions on the nanoplate for ligands of increasing nonlinearity.

Here, coloring is scaled such that the location of lowest partitioning probability is set

to 0 and the highest is normalized to 1. In the limit of a linear ligand (no branching),

we predict a slight partitioning away from the center of the larger facets (top and

bottom faces) and a near isotropic distribution about the smaller faces (along edges)

of the NC. Increasing ligand nonlinearity augments the preference for the smaller

faces but also produces a secondary partitioning toward the vertices associated with

the longer diagonal of the NC. Comparison of linear to branched scaling behavior

reveals that the observed secondary effect arises due to an increase in the effective

size of the ligand’s statistical segment length that can be directly quantified as

(4.4) bnl ∼ bl

(
σ

1
2 ro
NΛ

) 1
4

where bnl is the effective size of the nonlinear ligand and bl is the size of the lin-

ear ligand. A schematic further clarifying the definitions of the above parameters

are shown in Figure 4.5(f). These results suggest that we can employ branching

ligand architecture as an additional handle to fine-tune the surface partitioning of
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ligands and possess a systematic, theoretical approach to estimate the effective in-

crease in statistical segment size of nonlinear, grafted ligands relative to their linear

counterparts.

The predicted probability, P, is then used to compute the average corona about

the core. Briefly, the core is approximated as a series of surface mesh points that

are roughly equidistant from each other. Each surface point has a ligand attachment

probability P. A metropolis algorithm was then employed to place chains onto the

particle surface, weighted by the probability. The number of chains grafted are set

by the grafting density. The effective corona is then computed from averaging over

1 × 106 MC simulated coronas. Figure 4.5(c-e) shows the predicted partitioning

and ligand coronas for the experimentally synthesized ligands scaled relative to a

linear ligand (Figure 4.5(b)). As expected, we observe an increase in the grafting

probability with increasing ligand nonlinearity (Figure 4.5(b2-e2)), which in turn

tunes the effective corona morphology about the nanoplates (Figure 4.5(b3-e3)) [48].

Here, we show a top-down view on the left and a side view on the right. We note here

that the coronas around the NC become increasingly nonconformal with increasing

ligand branching. Additionally, the corona morphology near the vertices grows larger

in the z-direction, producing an additional concavity in the top and bottoms faces of

the NC. These nonconformal coronas highlight the nontrivial interactions between

rhombus-shaped NCs that dictate the final self-assembled morphology.

We performed MD simulations of the ligand-grafted NCs across a wide range of

ligand nonlinearity bnl using the HOOMD-Blue simulation engine [50]. The predicted

coronas (Figure 4.5(b3-e3)) indicate the likelihood of finding a ligand at a given

surface position and are directly related to how that specific location interacts with

another surface position on a neighboring particle. Thus, we can create a rigid body

61



of smaller surface beads that sit on the NC surface and attribute interaction strengths

to each bead based on the grafting probability at their respective positions. To reduce

the complexity of the simulation model, we categorize the continuous probability

distribution into three distinct groups based on the value, p, of the scaled grafting

probabilities: type A for p ∈ [0, 0.33), type B for p ∈ [0.33, 0.5), and type C for

p ∈ [0.5, 1]. Interactions between each bead type are Lennard-Jones (LJ) with ε and

cutoffs computed from our scaling theory. Simulations were then initialized with

2744 NCs isotropically distributed. Each NC contains roughly 100 beads making

up the rigid body, giving a total of 274,400 particles in each simulation. A driving

force was applied to each particle to push them to a wall (mimicking the liquid-

air interface) placed at the top of the simulation box. The wall also has an LJ-

type attraction with the beads making up the NC, again with ε computed from

our scaling theory. Simulations were run in an NVT ensemble at T ∗ = 0.5. The

driving force was turned off after 1 M time steps, at which time there are enough

NCs at the interface to nucleate crystallization. The system was then allowed to

further equilibrate for 5 M time steps, followed by a production run of 10 M time

steps. The left panels of Figure 4.6 show the final simulation snapshots for systems

ran at the bnl parameters corresponding to the synthesized ligands, and additional

viewpoints from these simulations are also provided in Figure 4.6. Comparison with

experimental TEM images (Figure 4.6(b, d, f, right panels)) shows nice agreement

between simulation and experimental results. For the nonlinear ligands, there is

an experimentally observed offset between subsequent layers of the NCs below the

liquid-air interface that is not present in the linear ligands. The amount of offset

(scaled relative to the NC side length) observed in the experimental images is 18.4

2.4, 19.1 3.0, and 23.3 3.2% as compared with the values computed from our
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simulations of 16.3 2.0, 18.6 2.0, and 20.2 2.0%.

Figure 4.6: Comparison between simulation and experimental TEM images for multilayer assem-
blies: (a, b) 1@NC; (c, d) 2@NC; and (e, f) 3@NC. Analysis of the offset from simulation produces
values of 16.3, 18.6, and 20.2 2.0% as branching increases, in good agreement with experimental
values of 18.4 2.4, 19.1 3.0, and 23.3 3.2%. Additional images from simulations at various view
points and microscopy with false coloring are provided to highlight NC offsets between layers. Scale
bars are 100 nm.

To better explain the selective transitions between offset versus lamella stacking

morphologies seen in both simulations and experiments, we utilize a Wertheim-like,

first-order perturbation theory to predict the free energy of the NCs in both config-

urations, analogous to applications of Wertheim theory proposed by Lu et al. for

DNA-mediated self-assembly [81, 113, 114, 115, 116]. Briefly, the theory calculates

the change in the energy of formation for particles arranged on a lattice upon transi-

tioning from a repulsive, “hard-particle” reference state to one where a given surface

distribution of interaction sites gives rise to a net attraction. To properly capture

the physics governing our NC system, we expand the range of solid angles available
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to each surface site to interact with other particles in order to better model the more

isotropic ligand-ligand interaction, as opposed to directed, hybridization driven inter-

actions in DNA. Figure 4.7(a) plots the measured offset from simulations compared

to theoretical predictions, revealing good agreement in the transition from a lamella

to an offset motif at bnl ∼ 3.5. Figure 4.7(c1-c3) plots the predicted optimal sets

of relative orientations and positions between the nanoplates using our theory at bnl

parameters of 1, 3, and 5, corresponding to a linear ligand, a nonlinear ligand before

the transition, and a nonlinear ligand after the transition, respectively. For clarity,

we visualize the NCs using their coronas to better represent how the shift in surface

partitioning controls the observed morphologies.

Figure 4.7: Theoretical predictions for lattice self-assembly. (a) Offset prediction as a function of
ligand nonlinearity bnl compared versus measured values from simulation. δ is the offset value, and
s is the side length of the rhombus. (b) Prediction of relative twisting angle between layers as a
function of ligand nonlinearity bnl compared versus measured values from simulation. (c) Predicted
lattice morphology for bnl of 1 (c1), 3 (c2), and 5 (c3) corresponding to a linear ligand, a nonlinear
ligand before the offset transition, and a nonlinear ligand after the offset transition, respectively.
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Our results clearly indicate that the lamellae to offset transition is dictated by

ligand crowding at the vertices with increasing graft nonlinearity (Figure 4.7(a)). For

low crowding, particles can easily increase their net total ligand-ligand interactions

with a slight twist relative to the layer above/below it. Twisting creates a lock-

and-key interaction motif in-plane such that the vertex fits into the newly formed

concave regions along the edge of the neighboring NCs while simultaneously creat-

ing additional vertex-vertex contacts with the layers above/below (Figure 4.7(c2)).

However, as crowding increases, this simple twist is not enough. Ligands partitioned

toward vertices on the nanoplate are forced to extend by an additional amount as

indicated by larger protrusions observed in the coronas, thus increasing their interac-

tion range (Figure 4.5(b3-e3)). Concurrently, increased partitioning leads to a deficit

of ligand concentration toward the center of the NCs, creating a concave motif for

the top and bottom faces (Figure 4.5(b3-e3)). The increased extension leads to more

favored vertex-vertex interactions in-plane, untwisting the NCs. However, the face-

face contacts with the layers above and below the particles are no longer favored,

as the corona is now concave. As a result, the system shifts layers upward along

the xy direction relative to the previous layer. This shift increases ligand-ligand

interactions by introducing additional vertex-vertex contacts between layers. Fur-

thermore, shifting places vertices with high ligand concentration closer to the center

of concave faces belonging to particles below it, creating another lock-and-key motif

that maximizes out-of-plane ligand-ligand interactions, analogous to the driving force

governing offsets observed in graphene layer-by-layer stacking (Figure 4.7(c3)) [132].

Direct quantification of the degree of twisting between layers further corroborates

the idea of lock-and-key driven transition as we again observe a peak in the twist

angle in both simulation and theory (Figure 4.7(b)).
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4.4 Conclusions

Ligand design plays an important role in NC applications, as they can direct many

of the resulting properties of the organic-inorganic hybrid materials, including self-

assembly of NCs. This work highlighted how varying dendrimer ligand generation

and steric interactions can be used to tune NC orientation as well as interparti-

cle spacing and offset between layers of NCs in multilayer films. These films were

characterized using GISAXS to confirm the film morphology, as well as TEM tilt to-

mography. MC and MD simulations with ligand probability distributions obtained

from scaling theory were used to elucidate the ligand grafting distribution on the

NCs, and perturbation theory was employed to characterize the driving forces gov-

erning self-assembly. As a result, we now possess a detailed molecular understanding

of the how to control architectures found in multilayer films. These studies empha-

sized how ligand grafting distribution is an important consideration when designing

systems for self-assembly, particularly for anisotropic NCs. For NC plates, large lig-

ands create a corona around the NCs, which force an offset architecture in multilayer

films due to a lock-and-key type of motif. In 2D films, this ligand corona leads to

the corners and edges of the NC plates having more repulsive interactions between

the more polar subphase used for assembly, resulting in the NC plates assembling

parallel to the subphase surface. Our findings not only emphasize the idea that

an anisotropic graft distribution plays a crucial role in controlling self-assembly but

provide a systematic way to theoretically predict the resulting morphology purely

from experimental design parameters such as core shape, grafting density, solvent

condition, and ligand architecture. Such a model serves as a natural input into an

inverse design framework that will enable us to a priori select for the best set of
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parameters to use in order to achieve a targeted self-assembled structure [133].
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CHAPTER V

Inverse Design of Directional Nanotriangle Assembly
Through Nanocube Doping and Co-Assembly

This chapter is adapted from a publication in preparation, authored by K. C.

Elbert*, W. Zygmunt*, T. Vo, C. M. Vera, D. J. Rosen, N. M. Krook, S. C. Glotzer

and C. B. Murray (* indicates co-authorship).

5.1 Introduction

Recent advances in synthetic capabilities have opened up access to an extensive

library of experimentally realizable anisotropic nanocrystal (NC) building blocks

[95, 134, 135, 136, 137] Consequently, successes in shaped particle synthesis have

directed attention towards their usage in self-assembly as they have been shown to

give rise to a wide range of exciting, emergent morphologies [5, 21, 138, 139, 140, 141].

However, a common hinderance to such an approach revolves around the high degree

of kinetic traps along the path towards realizing a specific, targeted structure [142].

These kinetic barriers result from particles now having to balance their spatial as well

as orientational distributions relative to each other. As a result, the current challenge

lies not in synthesis but rather in defining design strategies aimed at selecting the

optimal assembly parameters to reliably and reproducibly drive their ordering into

targeted architectures.
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In this regard, employing thin film assembly processes for NCs is highly desirable

due to its ability to provide a high degree of order within films. This strategy has

been utilized for to create films consisting of differing NCs, particularly binary su-

perlattices, where NC shapes and ratios have been optimized to prepare films with

stoichiometric amounts of each component [74, 143, 144]. However, while many

of these studies have focused on NCs with either complementary NC composition

or size, there are few examples of co-assembly of two distinct anisotropic systems

[145, 146, 147, 148]. These anisotropic NCs are of particular interest, as NC ori-

entation within a film has been shown to affect the overall properties of a material

[101, 149]. Additionally, extensions to multicomponent materials are of specific in-

terest as the ability to combine NCs of different compositions opens up access to

metamaterials with enhanced properties [150, 151, 152, 153, 154]. Furthermore, the

ability to dope controlled ratios of NCs into a film of dissimilar NCs would allow

for a spectrum of stoichiometry to be realized [118, 155], providing an additional

handle to tune the metamaterial’s properties. However, similar to how adding ori-

entational degrees of freedom produces kinetic barriers in the assembly of shaped

particles, mixing in an extra building block species correspondingly results in ex-

tra barriers working against the formation of ordered morphologies. Control of NC

orientation, interparticle spacing, and component ratio are all adjustable variables

that contribute to co-assembly and film crystallinity in addition to NC composi-

tion, dimensionalities, and surface chemistry. The combination of kinetic traps, the

large phase space of potential design parameters, as well as the ever increasing li-

brary of building blocks for multicomponent systems make it so that a systematic

laboratory search across all possible combinations of assembly parameters is exper-

imentally intractable. For these reasons, the reverse approach where we employ an
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experimentally validated theoretical model to target the relevant design parameters

for assembly is conceptually appealing.

Here, we take advantage of the success of our previous modeling approach for

capturing the interfacial assembly of dendrimer coated nanoplates [82] as the under-

lying theory governing the selection of relevant parameters for the co-assembly of two

anisotropic building blocks - two-dimensional triangular plates and three-dimensional

cubes. Each building block is selected due to its size and shape uniformity, as well

as for being distinctly different components, LaF3 and PbTe, respectively. LaF3 is a

dielectric material that was selected as a two-dimensional building block due to its

size and shape uniformity [156] as well as its size tunability. PbTe cubes were chosen

as a model cube NC because of their optical and semiconducting properties [157, 158]

as well as the interest in assemblies of cubes as models for anisotropic NCs [159].

These two materials are known to phase segregate within films and therefore provide

a challenge in their co-assembly. We optimize across three experimental handles -

ligand types, plate to cube stoichiometric ratio, and annealing temperature - and se-

lect for the composite set of parameters that counter-balance against the segregating

tendency between plates and cubes. We then show that experimental realization of

our choice of design parameters produce the targeted self-assembled morphologies.

Lastly, we extend our developing principles of co-assembly to an example using two

two-dimensional plates of differing shape: LaF3 triangular plates and GdF3 rhom-

bic plates. These two materials typically phase segregate within films but by again

changing the surface chemistry, we achieve co-assembly as well as the first example

of substitutional doping with two anisotropic NCs.
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5.2 Theory and Inverse Design

In order to understand the driving forces underlying the conditions required to

drive interfacial co-assembly of cubes and triangular plates, we construct a phase di-

agram of relevant morphologies using a Wertheim-like thermodynamic perturbation

theory (TPT). Briefly, our TPT calculations start by defining a “hard-particle” refer-

ence for cubes and triangular plates arranged in the various co-assembled morpholo-

gies of interest. The change in lattice free energy of formation is then computed by

first assigning a distribution of interaction sites to both cubes and triangular plates.

For any given distribution surface sites, a potential of mean force (PMF) can be

computed between pairs of particles. We can then combine the PMFs and particle

configurations (defined by the “hard-particle” reference) to compute the equilibrium

constant for that lattice of interest as

(5.1) K =
∏
i

∑
j

ρ
sij
j

sij!

∫
f
sij
ij gij,c(r)d~r

where the product over i is over the types of interactions in the system and the

summation over j is over all particle types within each interaction types. fij(r) is

the traditional Mayer-f function obtained from standard cluster expansion procedure

and is equivalent to e−βV −1 where V is the PMF. The product over interaction types

is analogous to the classical thermodynamic limit of defining a net equilibrium con-

stant for a series of reactions as the product of each reaction’s individual equilibrium

constant: that is Knet =
∏

iKi . ρ is the system density, gc(r) is the radial distri-

bution function of the reference state, and s is a coordination number defined by

the given crystal structure. The pre-factor ρ
sij−1
j /sij accounts for indistinguishably

and probability of finding s− 1 particles that are of interaction type i and species j
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within the cutoff interaction distance. A full derivation of the theory can be found in

the SI of our previous works on DNA-mediated self-assembly [81, 160]. The lattice

free energy of formation ∆G can then be computed via the standard thermodynamic

relation ∆G = −kT lnKnet. We can then compute ∆G for the set of relevant com-

peting structures for the cube/plate system and construct a phase diagram across

the design handles of stoichiometric ratio and potential well depth (directly related

to inverse temperature for experiments).

To evaluate Eq. 5.1, we first need to compute the PMFs for cube-cube (CC), plate-

plate (PP) and cube-plate (CP) interactions. Doing so requires a selection to be made

regarding the ligand grafted onto each particle. Previous experimental works have

shown that oleic acid (OA) has been effective at direct colloidal assembly into a wide

range of crystalline structure and therefore provides a good starting point for our

study. In the limit of short oligomers like OA scaling arguments predict an isotropic

ligand distribution on both cube and triangular plate surfaces [82] and the PMF

between all interactions can be computed. To apply Eq. 5.1 we generate the reference

radial distribution function gij,c(r) by creating periodic images of the unit cell for

each lattice to be tested and calculate the respective CC, CP and PP distribution

functions. Evaluating Eq. 5.1 then yields the phase diagram shown in Figure 5.1(a).

By inspection, theory does predict the formation of the desired co-assembly lattice.

However, the size of the co-assembly regime is relatively small compared to those of

competing structures, presenting potential challenges for experimental realization as

assembly could get stuck in kinetic traps and form the competing lattices and this

motivates us to reassess our selection of ligand type. Along this vein, recent studies

on ligand mediated self-assembly have suggested that dendrimeric ligands can help

enhance both the yield and stability of unary colloidal crystals [82, 119]. Taking
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advantage of this knowledge, we now select for the simplest of a series of dendrimers,

a polycatenar ligand, that a previous work has employed to successfully control the

ordering of rhombus nanoplate self-assembly. Using the same scaling argument as

before, we first determine the polycatenar (PC) ligand distribution on the surface of

both cubes and plates and compute each respective CC, PP, and CP PMFs between

particle pairs. Reconstructing the phase diagram now yields the result shown in

Figure 5.1(b).

Figure 5.1: Phase diagram for cube and triangular plate co-assembly for (a) oleic acid ligand and
(b) PC ligand with ligand structures shown above. (c) Representative snapshots of the crystal
structures employed in construction of the phase diagrams with border coloring corresponds to
each respective phase.

Direct comparison between Figure 5.1(a) and 5.1(b) reveals a large growth in the

co-assembly region of interest along both the inverse temperature and stoichiometric

ratio axis. To explain the fundamental driving forces governing the expansion in the

co-assembly regime, we now dissect the composite term in Eq. 5.1 by overlaying
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the individual gij,c(r) for the co-assembled lattice of interest with their respective

PMF. Additionally, we superimposed PMFs computed for OA and the PC ligand to

highlight differences between predicted interactions, as shown in Figure 5.2(b-d).

Figure 5.2: a). Computed potential mean force (PMF) for cube-cube (CC), plate-plate (PP), and
cube-plate (CP) interactions. b). Radial distribution function for CC, gCC(r), overlaid with PMF
for CC. c). Radial distribution function for CP, gCP (r), overlaid with PMF for CP. d). Radial
distribution function for PP, gPP (r), overlaid with PMF for PP. All PMF are the for relative
orientational between particles shown in the inset for b)-d). For all panels, dashed lines indicate
PMF for oleic acid (OA) and solid line is PMF for polycatenar ligand (PC).

Before we compare the differences between PMFs for oleic acid versus the poly-

catenar ligand, it is instructive to note several interesting features that emerge from

both sets of PMFs in Figure 5.2. The most striking observation is that the computed

PMFs show the strongest net attraction for CP interactions. The naive expectation

is such that CP and PP interactions should be on par with each other as both in-

teractions are dictated by the larger facet on the triangular plate. However, for CP

interactions, the plate’s face only takes up roughly 43% of the cube’s face, leaving
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excess ligands to interact with those occupying the edge faces on the plate. This

additional face-edge contact serves to favor CP over PP interactions (as seen in the

computed PMF), pushing the system to favor co-crystallization. Furthermore, within

the co-assembled lattice, all PP contact distances - peaks in gPP (r) - fall well outside

the interaction range as defined by the PP’s PMF (Figure 5.2(d)). On the other

hand, the first peak in gCC(r) does fall inside the range of the computed PMF for

CC (Figure 5.2(b)). Physically, these features suggest that CC interactions further

stabilize the co-assembled lattice. In other words, the introduction of cubes into

systems of triangular plate serves as a handle to tune plate assembly. Due to the

strong CP face-face interactions, introducing cubes into the system induce a favoring

of face-face contacts between cubes and plates. Now the system simply builds off of

the initial cube-plate motif to account for varying cube to plate stoichiometric ratios.

PP interactions win for low cubes fraction, driving the stacking of plates away from

a cube’s face. In other words, cubes serve as the nucleation sites for growing perpen-

dicular PP stacking. Upon increasing cube concentration, the CC interactions start

to contribute, shifting the system towards co-assembly as the resultant morphology

provides more CP interactions while simultaneously gaining CC contacts.

We now discuss the enhancement in the region of co-assembly stability upon

transition from oleic acid to the polycatenar ligand. By inspection of each respective

PMFs show in Figure 5.2(a), we see that the CP interaction well depth is signifi-

cantly deeper for the polycatenar ligand than oleic acid, whereas both CC and PP

remain relatively the same. Within the morphologies tested in the construction of

our phase diagram, the co-assembly lattice favors CP contacts the most as it is

the dominant interaction driving the lattice stability. As a result, the significantly

lower CP potential well serves to increase its composite free energy of formation and
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thereby broadening the co-assembly regime. The origin of this deeper potential well

can be further understood through visualization of the ligand corona about each

particle (insets of Figure 5.2(b-d)). Switching to the polycatenar ligand results in

the formation of a dimple in the corona at the faces of each cube. This dimple en-

ables the plates to sit slightly closer to the cube as compared to a flat corona limit.

Bringing the plate closer to the cube has the additional benefit of further enhancing

the face-edge contacts discussed previously. Thus, switching to our preferred ligand

creates an emergent lock-and-key type binding between cubes and plates through

the interplay between the shape of each particle’s respective ligand shell, ultimately

resulting in the lower well depth as compared to OA. For these reasons, theoretical

calculations would favor the usage of the polycatenar ligand over oleic acid for co-

assembly and we select design parameters in stoichiometry and temperature based

on the computed phase diagram in Figure 5.1(b).

5.3 Monte Carlo Simulation

To verify the morphology predicted via thermodynamic perturbation calculations,

we employ Monte Carlo simulations of triangular nanoplates and nanocubes using

the HOOMD-blue simulation engine [83]. We selected several plate fractions (φplate =

[0.20, 0.40, 0.60, 0.80]) and inverse temperatures (ε = [6, 7, 8, 9]) and ran simulations

at statepoints defined by these parameters. Our Monte Carlo simulations attempt

translational and rotational moves of particles according to the Metropolis criterion.

We implemented the above potential of mean force for the particles decorated by

the polycatenar ligand by using a square well potential between particles, where the

interaction strengths are scaled by the relative well-depths of the various interaction

types and the surrounding ligand corona determines the interaction ranges.
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In each simulation, N=1728 particles were placed into a 3D periodic box, with

φplate stoichiometry and inverse temperature of ε. Gravitational force was applied

in the z-direction to push particles to the bottom of the simulation box in to model

self-assembly at the interface, and walls were placed at the top and bottom of the

simulation box to prevent particles from passing through the periodic boundary

at in the z-direction. Initially, particles were simulated for 1M timesteps with no

potential applied to randomize them from their initial configuration. Next, particles

were simulated for 20M timesteps with a small oscillation implemented around ε

to simulate thermal annealing; this oscillation allows for the breaking up of kinetic

traps and the eventual equilibration of the simulation, noted by a flattening of the

total energy of the system.

We then characterized the morphology of our system by analyzing the radial dis-

tribution function (implemented in Freud [86]) of the bottom layer of particles in the

simulation box. Simulations in confinement were initially attempted where particles

were initialized into a 3D box but quickly compressed into a quasi-2D single layer,

where the layer thickness was that of a single cube height, but such simulations were

inundated by kinetic traps where plates could not force themselves into the space

between cubes, and therefore were not representative of the planned experimental

approach. To better capture the experiments, we opted for the gravity-driven sim-

ulation approach where plates and cubes are free to move in and out of the bottom

layer. Snapshots of the bottom layer of the simulation box were rendered using Ovito

[161] and can be found in Figure 5.3.

In Figure 5.4, we demonstrate the contribution to g(r) as we modulate the system

parameters. Pie charts indicate the major contributions to the final assembly in

the bottom layer by computing the contributions of the PP, CP and CC peaks to
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Figure 5.3: Results of Monte Carlo simulations for various (φplate, ε). The theoretical phase
diagram is overlaid by diamonds representing the matching phase (top left). We include snapshots
of the bottom layer of the simulation box (right) representing statepoints of (0.8, 7.0) (a), (0.8, 8.0)
(b), (0.6, 7.0) (c) and (0.2, 8.0) (d). Grey particles indicate particles not included in the bottom
layer. Colored outlines represent the phases that best match the snapshot. We demonstrate that
the radial distribution function can identify peaks corresponding to PP, CP and CC interactions
(green, magenta and purple peaks) (g(r) shown for (0.6, 7.0).

the summed peak height. In the cases of (0.8, 6.0), (0.8. 7.0) and (0.6, 6.0) no

long-range assembly occurs and peak contribution is dominated by phase separated

PP interactions. We observe places where co-assembly is the dominant contributor

(CP>50%) as well as places where two phases make up comparable percentages of

the sum of peak heights. Overall, these charts allow us to reliably determine the

morphology for different combinations of φplate and ε and gives us confidence that

the theory can reliable predict the accurate thermodynamic phases.
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Figure 5.4: We demonstrate the various contributions to the final assembly by computing the
contribution of peaks at PP, CP and PP respectively for various (φplate, ε). Dominant phases are
identified by comparing their relative contributions to the sum of peak heights.

5.4 Interfacial Assembly

To best follow the theory laid out above, the size of each NC component was op-

timized to be complementary to each other, where the PbTe cubes have edge lengths

of 17.7 ± 1.1 nm and the LaF3 triangular plates have edge lengths of 25.4 ± 2.1 nm

and are about 2 nm thick. The liquid-air interfacial assembly method was employed

to assemble all films for these studies [124]. First, for the case of single-component

LaF3 films, the orientation of the triangular plates can be effectively controlled by

changing the polarity of the subphase, in a similar manner to previous results for

other platelet NCs [82, 101].To achieve assembly with a columnar morphology, where

the triangular plates are oriented parallel to the surface, a non-polar subphase is em-
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ployed, such as tetraethylene glycol, as shown in Figure 5.5(b). When a more polar

subphase, such as ethylene glycol, is selected, the triangular plates align perpendicu-

lar to the surface, shown in Figure 5.5(c). This phenomenon is attributed to repulsive

interactions between the surface ligands and the polarity of the subphase. However,

after ligand exchange with the larger, more hydrophobic polycatenar ligand, shown

in Figure 5.1, the only morphology observed is parallel to the subphase, and mul-

tilayer films have an offset architecture, both of which are consistent with similar

studies using this ligand on nanoplates [82].Successful ligand exchange is confirmed

with both changes in assembly behavior as well as thermogravimetric analysis.

Figure 5.5: Single-component NCs self-assembled with oleic acid as the capping ligand. (a) PbTe
with SAED inset in lower right corner, (b) LaF3 assembled on tetraethylene glycol, and (c) LaF3
assembled on ethylene glycol forming lamella morphology. Scale bars are 100 nm, FFT images are
upper right corner insets.

Initial attempts at co-assembly of the cubes and triangular plates were initially

unsuccessful when the native ligand, Oleic Acid (OA), was on the surfaces of the

NCs. Limited co-assembly was observed, which provided initial evidence that the

cubic PbTe could control the orientation of the LaF3. However, for the majority

of a sample, significant aggregation of the PbTe was observed, as well as the loss

of NC morphology. While these effects were not taken into account when creating

the model to guide these experimental efforts, they add to the difficulty of obtaining

co-assembly with the limited co-assembly area shown in the phase diagram in Figure

5.1. Previous work has shown that polycatenar ligands can be effective protecting

surface ligands for NCs [119], leading us to hypothesize that employing these ligands
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would help to maintain NC morphology and prevent aggregation during mixing and

assembly. Additionally, these ligands have been shown to bind preferentially to

corners and edges of NC plates [82], as discussed above, which provided further

motivation for their use, as having a larger density of ligands on the corners and

edges of plates should increase their face-face interactions during assembly and guide

a lock-and-key type mechanism for assembly.

Utilizing the polycatenar ligand on only the PbTe cubes did in fact provide im-

provements with NC stability as well as co-assembly. However, when the polycatenar

ligand was grafted onto the surface of both components, true successful co-assembly

was obtained, shown in Figure 5.6. This finding is consistent with previous re-

sults, as having ligands with similar tail groups minimizes repulsive forces [118], as

well as confirming that having a non-uniform ligand corona around the NCs could

guide as assembly more effectively. Additionally, it highlights that synthesizing NCs

with complementary dimensions is not enough for successful co-assembly, and that

optimizing the surface chemistry of each component is a critical variable. In this

architecture, the PbTe cubes dictate the overall film morphology while the LaF3 fills

interstitial space in-between the cubes, consistent with the predicted model. Energy

dispersive X-ray spectroscopy confirms the dissimilar NC co-assembly is shown in

Figure 5.6(c). After examining 450 PbTe cubes, it becomes clear that the majority

of the cubes have at least one triangle assembled on each side. When three or four of

the sides of a cube have triangles assembled on their edges, it is frequently observed

that an additional triangle will assemble on at least one of the sides as well, which

is the case 212 times out of 450. Importantly, for those counted, there were zero

observed cubes without at least one triangle assembled next to it.

As stated earlier, the PbTe cubes dictate the overall film morphology when concen-
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Figure 5.6: Co-assembly of PbTe and LaF3 at various magnifications (a and b), scale bars are 100
nm with FFT insets in the upper right corners and small-angle SAED in the lower right corners.
(c) EDS spectroscopy overlay, with each element listed, scale bars are 20 nm.

trations of the cubes are optimized for yielding a crystalline superlattice. However, it

is also interesting to consider the case when there is a lower concentration of cubes,

to fully investigate the impact of doping cubes into films that are overwhelmingly

composed of triangles and to further test our model. As can be seen in Figure 5.7(b),

in areas of a majority-cube superlattice where a grain boundary is present, or there

is a gap between cubes in the film, the triangular plates can form strings, bridging

the distance between the cubes. As the concentration of cubes decreases, shown in

Figure 5.7(c, d), the cubes still cluster within a film of triangles, however in these

cases again when there is a larger distance between cubes, the triangular plates form

lamellar bridges. It is additionally observed that these lamellar strings can form

without two cubes on either end, i.e. when there is only one cube on one side of the

string, but these instances are significantly less common. Typically, these lamellar

strings are composed of three or four plates, however longer strings are achievable

as well, where a string of 13 plates is observed in Figure 5.7(c). In these exam-
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ples, the cubes still assemble on top of a film of triangular plates, which due to the

polycatenar ligand on their surfaces, assemble into architectures where one layer of

triangular plates is offset from the layer on top of it, consistent with previous results

[82]. The experimental results are compared to the predicted theory by plotting the

data points onto the previously shown phase diagram, shown in Figure 5.7. Our

theoretical model is in good agreement with the experimental results, particularly

for the bullseye case for when the two NCs co-assemble successfully into a uniform

lattice.

Figure 5.7: Comparison with the predicted phase diagram, where corresponding TEM images for
a series of points are labeled within the diagram. (a) Represents the co-assembly with highest
uniformity, a bullseye within the phase diagram, with FFT and small-angle SAED as insets in the
upper and lower right corners. String morphologies in domains with fewer cubes than triangles can
be clearly seen in panels (b-d) which match well with predicted phases. Scale bars are 100 nm for
a and 50 nm for b-d.

Taking our developing design rules for co-assembly of anisotropic NCs and expand-

ing them, combinations of two plate NCs were explored. In the previous example,

assembly of the triangular plates is guided by the cubes due to the strong face-face

interactions. The case for two two-dimensional materials is unique as the thickness

of each edge is only 2 nm, which greatly reduces the area for NC-NC interactions

when both plates assemble parallel to the substrate. Without a three-dimensional
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material, neither NC should guide the assembly of the other, rather this type of

co-assembly should be more similar to doping. Nevertheless, successful co-assembly

of two anisotropic plate materials has been elusive, as differences in material com-

position, size, or shape lead to phase segregation.

GdF3:Yb/Er (20/2 mol %) rhombic plates were chosen to combine with the previ-

ous LaF3 plates, as they have complementary shapes. These rhombic plates are 25.4

nm (± 2.4 nm) by 23.6 nm (±1.9 nm) on their long and short sides, respectively.

Similar to the previous study, initial attempts at co-assembly were unsuccessful with

the native ligand, OA, on the surface of the NCs, as both of the plates phase seg-

regate and exhibit mixed orientations with most subphase choices. Excess OA was

added to the solutions, as the presence of extra free ligand in NC solutions has aided

assembly in previous studies. However, phase segregation was still the dominant

morphology of the obtained films. Again, to align the NCs and enhance co-assembly

the polycatenar ligand was grafted to the surfaces of both the GdF3 and LaF3 and

the resulting films are shown in Figure 5.8(a, b). In these films, both components

are distributed throughout the assemblies. For the case where there are more LaF3

triangular plates present, the crystallinity of their assembly is undisturbed by the

presence of the GdF3 plates. While the polycatenar ligand is large enough to shield

some of the van der Waals forces between the NCs, clustering of similar NCs is still

present in the films. Often groupings of two or three GdF3 plates will assemble in

the films, leading us to believe that there are still attractions between NCs of the

same composition.

These groupings provide an opportunity for substitutional doping of one larger

anisotropic NC for two smaller ones. In Figure 5.8(c, d), we show that the size of

the LaF3 triangular plates can be tuned such that two triangular plates better size-
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match one rhombic plate. These smaller LaF3 triangular plates have edge lengths of

14.9 ± 0.7 nm. Using this strategy, substitutional doping can be achieved for this

system, where the film morphology is dictated by the rhombic plates, as highlighted

by the FFT insets. Interestingly, the triangular plates can also fill in void space

between grain boundaries within the film, as shown by Figure 5.8(d). This is the

first example of substitutional doping with two anisotropic materials, a key step in

advancing assembly choices of nanoscale building blocks.

Figure 5.8: Co-assembly of GdF3 rhombic plates with LaF3 triangular plates: (a and b) with larger
triangular plates where assembly can be dictated by the concentrations of each component, and
(c and d) where smaller triangular plates are used in assembly for substitutional doping into film
morphologies of the rhombic plates. FFTs are upper right insets, scale bars are 50 nm. False
coloring has been added to c and d to highlight the doping.

5.5 Conclusions

In summary, we have employed a theory and simulation driven, inverse design

approach for the selection of experimental design handles - stoichiometry, ligand type,

and temperature - to drive the co-assembly of nanocubes and triangular nanoplates

with strong phase segregation tendencies. We show that our theoretically predicted

phase diagram can be employed to guide computational and experimental selections
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of parameters across a large phase space to specifically target the co-assembly region

of interest, with good agreement across theory, simulations, and experiments, as

shown in Figures 5.3 and 5.7. Dissecting the underlying driving forces contributing

to co-assembly reveals why the polycatenar ligand can enhance both lattice yield and

stability and extension of this design principle to another system produced a similar

success in co-assembly behaviors. These results suggest that co-assembly of binary

systems can be achieved via the usage of ligand shells as a handle for tuning the

relative degree of attraction/repulsion between particles. Specifically, enhancements

in attraction is achieved through selecting for ligand shells exhibiting emergent lock-

and-key interaction motifs that prevents phase segregations that commonly plague

previous attempts at non-complementary shape co-assembly. This theory-guided

design strategy opens a potential path forward for the inverse design of the co-

crystallization of other binary shape systems that can vary the stoichiometry of each

component, a large step towards precisely designed metamaterials.
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CHAPTER VI

Conclusions and Outlook

6.1 Summary of Results

In summary, we have demonstrated that nanomaterial assembly is a complex

process which is complicated by many interacting anisotropy axes which include

nanoparticle core shape, patchy decoration and ligand bulkiness. Each study in this

dissertation showed an example of a specific material system where fundamental

understanding of particle attributes allowed for the development of design principles

to guide the assembly into a desired final morphology. These design principles have

implications for the inverse design process where they could be used to target and

design materials with complex crystalline order.

In the first study (Ch. 2), we demonstrated that densely packed polyhedra can be

used as a way of obtaining topologically ordered structures that are stabilized by the

contacts formed in the densest packing structure, and that this behavior is useful

in stabilizing structures against thermal fluctuation. This work showed that this

phenomena is generalizable to densely packed structures where their topology can

be characterized in a similar fashion (such as edge, face and vertex contacts in the

densest packing). Finally, given that such complex shapes can indeed be synthesized

experimentally, our work provides a roadmap for how such shapes could be used
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to create structures with topological order that is stable in the presence of thermal

fluctuations.

In the second study (Ch. 3), we showed that patchy polygons make up a very

large and complex materials space, where there exist many unique ways to pattern

their edges with attractive ligands. We developed rules to show how binary pairs

of these polygons can be used to access different types of morphologies including

terminating structures, fibers, lattices and rings. These rules can be used separately

or in combination to develop open, low-coordination structures which are known to

possess photonic and other novel material properties via hierarchical self-assembly

approaches. Additionally, we showed that structures with tunable pore size are

possible by utilizing a rule for lattice formation and controlling the number of patches

on both particles. The experimental approach for the process described in this work

is ongoing, as fabrication of particles with patches on targeted edges is a new and

challenging problem.

In the third study (Ch. 4), we showed that ligands of varying bulkiness partition

themselves on anisotropic nanoparticles to locations of high curvature in order to

increase their entropy. We demonstrated a scaling theory, which allowed for the

prediction of ligand partitioning on anisotropic shapes, where the ligands can have

different bulkiness. We then showed that simulations of nanoplates with such ligand

distribution mirror the experimental results, and that ligand bulkiness plays a role

in how nanoplates stack layer-by-layer.

In the fourth study (Ch. 5), we used what we learned about ligand partitioning

from the previous work and we undertook an inverse design approach to assemble

nanocubes and triangular nanoplates. In this work, the goal was to create an ordered

co-assembly of these two species which normally phase separate when there are no
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ligands attached to them. To do this, we exploited the knowledge of ligand parti-

tioning to develop phase diagrams of stoichiometry and temperature, and were able

to determine that longer ligands improved the co-assembly conditions by expanding

the range of stoichiometry and temperatures where co-assembly was possible. Fi-

nally, upon using simulations to verify the calculated phase diagram, we provided

stoichiometric values and temperatures to our experimental collaborator who was

able to successfully achieve the ordered co-assembly.

6.2 Concluding Remarks

Design principles have been used in previous works to understand the complicated

multi-dimensional design phase space inherent in anisotropic self-assembly. This

dissertation sought to expand upon those principles in order to target very specific

materials, from dense topological packings to interfacial tilings of unary and binary

systems of anisotropic particles. One can take these sets of design principles and now

consider how they might interplay with each other, such as we showed in Chapters

4 and 5, where ligand architecture is shown to play a role in both unary and binary

systems. Such overlaying of design rules gives us strong leverage over the design space

of both hard and patchy particles and could be utilized in inverse design approaches

to assemble exotic structures whose constituent nanoparticle attributes cannot be

predicted from simple observation.
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