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ABSTRACT

Murmurations of birds, schools of fish, and herds of migrating animals are macroscale

examples of self-propelled units exhibiting emergent collective behavior. We call

such systems “active matter”. On the colloidal scale, active matter systems of self-

propelled particles exhibit a rich array of emergent phenomena with the potential for

useful responsive and transport behaviors. A particularly intriguing aspect of active

matter is that it is a non-equilibrium phase transition with no explicit equilibrium

mapping, as active systems undergo phase separation from a sparse gas phase to a

dense phase-separated regime even in the absence of explicit inter-particle attraction.

One way of tailoring the interactions between particles without adding explicit inter-

action terms is to give particles shape, thereby adding steric effective interactions to

the system. Understanding the role of effective interactions on the phase separation

and emergent behavior in active matter systems will be of great utility as the field

looks to engineer targeted behavior through particle and system design.

In this thesis, I computationally and theoretically describe the role of particle

shape on the phase separation and emergent behavior of 2D self-propelled polygons

in an active matter system.

In the first project, I perform a systematic study of the impact of particle shape

on the phase separation behavior in active systems. I find that structure in the

phase-separated cluster resembles that of the shape’s densest packing in equilibrium

systems. I develop a method for quantifying the impact of an effective interaction

(e.g. shape) on the onset of phase separation in “collision efficiency”, capturing the

ability of inter-particle collisions to slow down particles during motility-induced phase

separation (MIPS). Importantly, this also allows me to explain a previously-observed

xvi



steady-state “oscillatory” regime as a natural consequence of particle shape in active

systems.

In the second project, I investigate a simple method of varying inter-particle colli-

sions at a system level: through mixing particle types. I uncover emergent phenomena

not yet seen in active Brownian particle systems, including microphase separation and

stable fluid clusters that can coexist at steady state with solid clusters and a sparse

gas phase. I quantify a measurable, implicit steric attraction between active parti-

cles as a result of shape and activity. This provides the first evidence that implicit

interactions in active systems, even without explicit attraction, can lead to a calcula-

ble effective preferential attraction between particles. Importantly, that the narrow

slice of system and particle design space I investigate still exhibits such rich emergent

phenomena highlights the potential for a wide variety of behavior to be accessible to

active matter systems through simple parameter designs.

In the third project, I take a fundamental approach to understanding the impact

of particle shape in active systems by investigating whether systems of different self-

propelled particles with shape fall into different universality classes. By mapping

active matter near the order-disorder transition onto a non-equilibrium percolation

model, I identify three distinct cluster evolution curve collapses of similar-behaving

shapes. I further find that the quasi-critical behavior of the cluster scaling distribution

predicts the same groupings as the collapsed cluster evolution curves. Further work

will be needed to confirm the critical exponents, including a more rigorous finite size

scaling approach to identify the critical point of each system.

xvii



CHAPTER I

Introduction

Active matter is a field of rapidly expanding interest and research activity over

the last decade [4–7]. Vicsek’s pioneering work showed a collection of point particles

with alignment rules displays rich collective behavior, including phase separation [8].

However, theoretical work describing the collective behavior of bacteria demonstrates

that phase separation behavior is not reliant upon explicit alignment rules [9]. In a

phenomenon known as “motility-induced phase separation” (MIPS), systems of disks

were found to phase separate as a consequence of density-dependent particle velocity

[10]. This phase separation behavior of isotropic particles has been explained using a

variety of models, including: athermal phase separation [11], the kinetic steady-state

balancing of particle fluxes [12, 13], classical nucleation [14, 15], and the balancing

of collision and ballistic timescales [16]. Importantly, phase separation predicted

by theory has been observed in experiments, which confirm the activity-dependent

formation of clusters and “active crystals” [17–19].

In real-world systems, particles (e.g. bacteria) are rarely isotropic in shape. Thus,

one thrust in the active matter community has focused on understanding how particle

anisotropy will change the behavior theoretically predicted for systems of isotropic

particles. In a simple anisotropic model, simulations of rods with varying aspect ratios

and densities display a rich variety of collective motion, such as laning, swarming, and
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jamming [20–22]. Additionally, simply changing the direction of the driving force

relative to a fixed particle shape drastically alters the resulting collective behavior

and onset of phase separation [23, 24].

Few general mechanisms have been proposed for the impacts of particle anisotropy,

which can lead to a variety of emergent behaviors. Active squares display a steady

state “oscillatory” regime in which large clusters break up and re-form [25]. Mix-

tures of gear-shaped “spinners” with opposite rotational driving forces phase separate

through competing steric interactions [26–28]. In systems of active “dumbbells”, par-

ticle anisotropy allows for the stabilization of cluster rotation [29, 30]. This cluster

rotation is also observed in active squares [25], but is notably absent in clusters of

frictionless isotropic particles.

From these studies, we can see a general description of the impact of particle shape

anisotropy on the phase separation and emergent system behavior is needed. Such a

description would allow us to tailor the form and onset of critical behavior in active

systems through “implicit” steric means, rather than explicit interaction rules.

In this thesis, I computationally and theoretically describe the role of particle

shape on the phase separation and emergent behavior of 2D self-propelled polygons

in an active matter system. This thesis is organized as follows.

In Chapter II, I provide an overview of the progress in designing systems of active,

self-propelled particles and theoretical descriptions of their critical and emergent be-

havior motivating this work. In Chapter III, I outline the 2D active polygon model

and dynamics I use for Chapters IV-VI.

In Chapter IV, I perform a systematic study of the impact of particle shape

on the phase separation behavior in active systems. I find that structure in the

phase-separated cluster resembles that of the shape’s densest packing in equilibrium

systems. I develop a method for quantifying the impact of an effective interaction

(e.g. shape) on the onset of phase separation I call “collision efficiency”, capturing
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the ability of inter-particle collisions to slow down particles during motility-induced

phase separation (MIPS). Importantly, this also allows me to explain a previously-

observed steady-state “oscillatory” regime as a natural consequence of particle shape

in active systems.

In Chapter V, I investigate a simple method of varying inter-particle collisions

at a system level: through mixing particle types. I uncover emergent phenomena

not yet seen in active Brownian particle systems, including microphase separation

and stable fluid clusters that can coexist at steady state with solid clusters and a

sparse gas phase. I quantify a measurable, implicit steric attraction between active

particles as a result of shape and activity. This provides the first evidence that

implicit interactions in active systems, even without explicit attraction, can lead to

a calculable effective preferential attraction between particles. Importantly, that the

narrow slice of system and particle design space I investigate still exhibits such rich

emergent phenomena highlights the potential for a wide variety of behavior to be

accessible to active matter systems through simple parameter designs.

In Chapter VI, I take a fundamental approach to understanding the impact of

particle shape in active systems by investigating whether systems of different self-

propelled shapes fall into different universality classes. By mapping active matter

near the order-disorder onto a non-equilibrium percolation model, I identify distinct

cluster evolution curve collapses of similar-behaving shapes. I further find that the

quasi-critical behavior of the cluster scaling distribution predicts the same groupings

as the collapsed cluster evolution curves. Further work will be needed to confirm the

critical exponents, including a more rigorous finite size scaling approach to identify

the critical point of each system.

The work in this thesis opens a variety of intriguing questions about the potential

for effective interactions to be a rich avenue for engineering active matter systems. I

conclude with thoughts on future work in Chapter VII.
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This thesis contains work that is currently in preparation or undergoing peer

review. The results contained in Chapter IV have been submitted for peer review,

while the projects reported in Chapters V and VI are currently in preparation.
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CHAPTER II

Background

The work in this thesis samples from and builds upon a wide foundation of theo-

retical work in active matter. After motivating this study by highlighting potential

applications of active matter as currently theorized, I propose a framework for un-

derstanding the potential of active matter engineering and where this thesis adds to

that body of work.

2.1 Why active matter, matters

Active matter’s non-equilibrium nature means it is not bound by the typical re-

strictions on equilibrium material systems. Harnessing the potential for directed, re-

sponsive motion, we could look to engineer colloidal-scale systems with the ability to

transport materials, respond to stimuli, or do work on a system [31, 32]. Thoroughly

understanding the impact of design choices on system behavior while developing the-

oretical bases for future design is an overarching goal for the field, and motivates the

framework for design choices presented below.

2.2 Framework for design of active matter systems

As we look to design active matter systems, a framework for the degrees of design

freedom is needed. I propose such a framework in Figure 2.1, and expand upon the
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PARTICLE DESIGN, e.g.
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Implicit interactions Hydrodynamic interactions, anisotropy

Particle size

Strength of driving force Active/passive mix, variable force

Mode of driving force Torque, translation, external field

Relative sizes of particles in a mixture

Alignment rules, contact rules, attraction

Stoichiometry
One v Multi-type

Density
Packing fraction Φ

Peclet
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Plane, egg carton
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2D, 3D

ACTIVE DESIGN SPACE

CRITICAL 
ONSET
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BEHAVIOR Swarming , structure

Critical system design for a particle design

Cluster formation and evolution

Collective behavior

Nucleation

Thermodynamic arguments describing active 
matter physics

Figure 2.1: The design space for active matter can be broken into two components:
System Design and Particle Design. In changing aspects of these two design com-
ponents, we seek to engineer the Critical and Emergent Behavior a system exhibits.
In this thesis, I vary (indicated by the blue stars) the stoichiometry (in the creation
of a 2-component mixture) and implicit interactions (shape) and identify emergent
behaviors not previously seen in active matter systems. The discovery of novel active
behavior by tuning just a narrow set of parameters in this space highlights the richness
of this design space, and the opportunity for further theoretical work to understand
the role of System and Particle Design on system behavior. (Seminal citations for
each design component and target behavior are included in the text.)
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key aspects of design and targeted behavior in the sections following. This review of

the literature is meant to be representative by highlighting foundational work in the

field.

2.2.1 System design of active systems

Stoichiometry: By “stoichiometry”, we also include the inclusion of two com-

ponents in a system. Such mixtures have included mixtures of particles with varying

speed [33], different force directors [23], or rotational directions [28]. Studies have

also used small numbers of active particles to effect structural change on a medium

[34–36].

Density and Péclet: Phase separation diagrams and theories have largely been

developed as a function of these two parameters [11–16, 37].

Topology: Much of the theoretical work describing phase separation in isotropic

active particles has focused on motion on flat surfaces. However, curvature can also

impact the behavior of active systems. Microswarming on a sphere is curvature

dependent, with areas of preferential clustering on surfaces of non-constant curvature

[38]; an ellipsoid surface was used to change the emergent behavior of a nematic

system [39]; vorteces and polar bands are found on a sphere [40]; and curvature-

induced vortices occur on an ellipsoid [41]. Activity and curvature remains an area

ripe for further exploration.

Dimensions: Though much theory was first developed in 2D, research has shown

that the onset of phase separation in 2D and 3D occurs at different system densities

[10, 16].

2.2.2 Particle design of active systems

Explicit Interactions: The pioneering example of active matter is Tamás Vic-

sek’s pioneering work on a system of point particles with explicit neighbor alignment
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rules [8]. In addition to such specific alignment rules, we can also envision systems

which have explicit rules upon particle interaction such as slowing upon contact [42]

or proximity-induced attractions [43]. Such attraction can also be variable, such as

chemotaxis and other sensing behaviors such as those seen in bacteria [44]. Interac-

tions also need not be reciprocal between particle types.

Implicit Interactions: As has been suggested by the title of this thesis, shape

is a particularly interesting type of implicit interaction. By “implicit”, we mean

here that there is not a clearly defined set of interaction rules. Instead, behaviors

arise as a result of individual particle properties. As examples: systems of rods of

varying aspect ratios display laning, swarming, and jamming [20–22]; active squares

display a steady state “oscillatory” regime in which large clusters break up and re-

form [25]; mixtures of gear-shaped “spinners” with opposite rotational driving forces

phase separate through competing steric interactions [26–28]; and systems of active

“dumbbells” stabilize cluster rotation [29, 30].

Other types of implicit interactions may be non-specific results of particle motion.

One example is particle hydrodynamics, which may be thought of as a non-specific

implicit interaction and is well-studied in active matter [5].

Particle size: Relative particle size can impact the other aspects of a particle

design’s ability to interact. Active depletants can be implemented as active disks

which can induce effective interactions on large passive particles [45]. Systems of

particles of polydisperse size can exhibit a glassy, rather than solid, phase-separated

regime [46].

Strength of driving force: While passive/active mixtures are mentioned else-

where in this framework, the ability to modulate the strength of a particle’s driving

force is its own powerful design lever. To recall a few specific examples, active par-

ticles can help shepherd passive particles [33], pin dislocations in crystals [34], and

anneal grain boundaries in a passive colloidal crystal [36].
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Mode of driving force: In this thesis I will focus solely on self-propelled trans-

lational active matter. However, entire fields of active matter explore particles in

external fields, periodic external fields, rotational active matter, and run and tumble

particles, to name a few [4, 5]. While some of the fundamental interactions may be

similar across these classes of behavior, it is not immediately obvious that the same

theoretical foundations will apply.

2.3 Theoretical understanding of active matter

Design of active particles would allow us to tailor two specific types of behavior:

the onset of phase separation (distinct from a critical point, but what we will call

critical onset) and emergent collective behavior. While experimentation can shed light

on the behavior of specific systems, theoretical frameworks allow us to understand

and potentially predict the behavior of systems in lieu of experimentation.

We highlight key theoretical work below. We note that a key limitation in these

theories is that they do not offer ways of accounting for experimental conditions, e.g.

hydrodynamic interactions of swimming particles [17]. We would expect to need to

add correction factors to theories to be able to theoretically calculate precise behavior

predictions (e.g. critical density).

2.3.1 Critical onset

The dominant explanation for phase separation in active Brownian particles is

that of “motility-induced phase separation” (MIPS) [10]. In this foundation work, a

density-dependent particle velocity leads to an emergent slowing of particles in areas

that become clusters. I will directly build on this theory in Chapter IV.

Additional theories have taken a variety of approaches to describing the phase be-

havior, including: describing the phase separation as the consequence of an athermal

clustering instability [11], kinetic steady-state balancing of particle fluxes [12, 13],
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and classical nucleation [14, 15].

Two other theories are worth highlighting here as bases for work in this thesis.

A collision theory based argument balances the time scales of ballistic movement

and collision time to back out the phase separation behavior [16]. We will borrow

this mapping of active matter onto collision theory for rescaling the timescales of our

simulations in Chapter VI. Additionally, a propulsion-induced swim pressure has been

used to develop thermodynamic arguments for active matter, including descriptors

of phase separation onset [37]. The concept of a pressure induced through particle

collisions is one we will adapt in our calculation of “collision efficiency” in Chapter

IV.

2.3.2 Emergent behavior

We have already highlighted some interesting emergent behavior due to shape

interactions above while discussing implicit interaction particle design. However,

systems of particles with explicit interactions can also exhibit a wealth of emergent

behavior: contact triggered active particles exhibit traveling waves, 4- or 6-fold order,

and coexisting domains [43]; a system in which particles stop upon colliding with

another particle can form fractal-like structures [42]; and even the original Vicsek

model exhibited spontaneously selected system directionality [8].
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CHAPTER III

Computational methods

A common particle model was used for all studies in this thesis, and is described

here. Any changes to this particle model are noted in the respective chapters. The

analytical methods, which are the major contributions to this thesis, are also sum-

marized in their respective chapters.

3.1 Particle model

The model particles used in this thesis are shown in Figure 3.1. We study a

family of regular polygons of side number 3≤n≤8. Particles interact through a fric-

tionless, purely repulsive, excluded volume Weeks-Chandler-Anderson (WCA) po-

tential, U(r) = 4ε[(σWCA/r)
12 − (σWCA/r)

6] + ε for r < rcut, where σ = 2rWCA,

rcut = 2(1/6)σWCA, and the radius of the potential rWCA = 1 for all simulations [47].

This rWCA introduces an effective “rounding” to each shape about the vertex points.

We set particle side length a to maintain a constant “side-to-rounded-corner“ perime-

ter ratio, ζ, to ζ =
∑

s as
2πrWCA

= 9 over all sides s. We know from equilibrium studies

[48–50] and other works on active anisotropic particle systems [25] that self assembly

and critical behavior is sensitive to the effective “roundness” of particle vertices. As

the repulsive interaction introduces a slight “rounding” to the shapes, maintaining a

constant ζ over all simulations ensures our systems can be compared with one an-
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Figure 3.1: (a) Shape anisotropy is studied with a family of regular polygons of
side length a. Here we show a pentagon as example. Particles interact through a
purely repulsive WCA potential characterized by rWCA. (b) Simulation timescales
are characterized by τ , the time for a particle to ballistically travel its characteristic
length, σ, calculated as the diameter of an equiarea (A) disk. (c) Force anisotropy
is defined by the active force director, n̂A, which propels the shape either edge- or
vertex-forward. A key feature of this system is that collisions of anisotropic particles
can sustain translational and/or rotational motion. Illustrative collisions are provided
for each force director.

other. This value ζ = 9 was chosen to balance shape fidelity (less rounding) and

simulation feasibility with computational demands.

We also explore anisotropy in the constant active force director

(F A
i = v0n̂i

A(cos θi, sin θi)) applied to each particle i. For a given simulation, we set n̂i

to be either perpendicular to a side of the particle (edge-forward) or bisecting a vertex

(vertex-forward), as shown in Figure 3.1c. The active force director n̂i is initialized

randomly for each particle from the set of possible vertex-forward or edge-forward

directions for each simulation, and is locked in the particle’s frame of reference. The

active force direction changes only with particle rotation due to thermal fluctuations

and collisions.

We took further care to ensure consistent anisotropy through our choice of active
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force magnitude and temperature. Our systems were run at Péclet (Pe) number of

Pe = 150, where Pe is a measure of active (advective) to diffusive motion (Pe = v0σ
kBT

,

where σ is the diameter of an equi-area disk for a given shape). In this Pe regime, we

can treat the active driving force as the primary contributor to particle motion over

thermal fluctuations. By setting the temperature of the thermal bath governing the

fluctuations to kBT = v0σ
Pe

and the magnitude of the active driving force v0 = 1, we

ensure that the interaction distance between interacting particles remains constant

for all simulations.

Particle motion was solved for using the Langevin equations of motion.

miv̇i =
∑
j

F Ex
ij − γ · vi + F A

i + FR
i (3.1)

miθ̈i =
∑
j

T Ex
ij − γR · ωi +

√
2DRη(t)Ri (3.2)

Mass (mi) is set to 1× 10−2 such that the dynamics closely approximate the Brown-

ian limit in line with the expected dynamics of bacteria and colloidal-scale particles.

The forces and torques due to excluded volume (F Ex
ij and T Ex

ij ) were calculated using

a discrete element method [51], which calculates interparticle interactions between a

point on one particle perimeter and a point on another particle’s perimeter. Transla-

tional and rotational velocities are given by vi and ωi, respectively. We parametrized

the implicit solvent via the translational drag coefficient γ = 1 and γR = σ3γ
3

per the

Stokes-Einstein relationship. These parameter choices correspond to the overdamped,

diffusive limit. Our model does not account for solvent-mediated hydrodynamic in-

teractions between active particles. Although there is a small inertial component in

our model, we confirmed that it is not critical for any of the observed behavior. The

last term in both equations accounts for thermal fluctuations. Noise is included via

Gaussian random forces FR
i =

√
2γkBTη(t) that model a heat bath at temperature T .

Here η(t) are normalized zero-mean white-noise Gaussian processes (〈ηi(t)〉 = 0 and
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〈ηi(t)ηj(t′)〉 = δijδ(t − t′)). This ensures thermodynamic equilibrium in the absence

of the externally applied forces (F A
ij ).

3.2 Dynamics and simulation methods

The area fraction covered by N particles was calculated as φ = NAi

Abox
, where the

area Ai of particle i includes both the hard shape and the rounding of rWCA = 1

induced by the WCA potential. Each simulation contains N = 1× 104 particles in a

square simulation box with periodic boundaries, with box size chosen to achieve the

desired density.

The timescale of the simulation, τ , is the time for a particle to ballistically travel

its own diameter (τ = σγ
v0

). The Langevin equations of motion were numerically

integrated using a stepsize of 1× 10−3, chosen to balance efficiency with simulation

stability. Particle positions were randomly initialized and allowed to relax with a

repulsive isotropic potential between particle centroids at φ = 0.10 for 5× 105 time

steps. This isotropic potential was then turned off and the WCA excluded volume

potential between particle perimeter points was turned on while the box was slowly

compressed to the target system density over 5× 105 time steps. Only after these

initialization steps was the active force turned on and the simulation run for 5000τ .

We assert that the simulations have reached steady state when the total system

inter-particle collision pressure has reached a constant value. Ten replicates were run

at each statepoint to provide sufficient statistics.

Simulations were run using the open-source molecular dynamics software HOOMD-

blue (v2.2.1 with CUDA 7.5). The Langevin integrator uses a velocity-Verlet imple-

mentation [52]. Simulations were performed on graphics processing units (GPUs)

[52, 53]. Shape interactions were modeled using the discrete element method im-

plementation in HOOMD-blue[51] using an optimized rigid body routine for particle

rotations[53]. The isotropic repulsive potential during initialization was implemented
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using the dissipative particle dynamics (DPD) pair force implemented in HOOMD-

blue[54].

3.3 Open source software used

The open-source simulation software HOOMD-blue, mentioned above, was used to

perform the Molecular Dynamics simulations that form the basis of this work [52, 53].

Additional open source software managed within the Glotzer group was critical

to completion of this work. Clustering, density, and nearest neighbor analyses (as

detailed in later chapters) were implemented with Freud [55]. Data and simulation

workflows were managed using the signac framework [56]. File format management

was performed using the garnett package1.

The open source Python community also provided packages instrumental to per-

forming the analysis here, including Jupyter notebooks[57] and the scipy[58] and

numpy[59] packages.

Simulation data in Chapter IV were visualized using Plato2 and Chapter IV-VI

were visualized using Ovito[2].

1https://garnett.readthedocs.io/en/stable/
2https://github.com/glotzerlab/plato
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CHAPTER IV

Self-propelled Particle Shape Tailors Phase

Separation Onset Through Effective Interactions

This chapter is adopted with minor modifications from a manuscript with co-

authors Isaac R. Bruss and Sharon C. Glotzer.

Note that in this chapter, the “critical density of phase separation” refers to the

density at which phase separation occurs under the given parameters of Pe = 150

(with calculations detailed in Section 4.2.1). This is not to be confused with the true

critical density in Pe/Φ space.

4.1 Introduction

In this chapter we aim to develop a generalized description of the role of active

particle anisotropy through direct comparison to frictionless active disks (i.e. isotropic

particles). We study a family of translationally self-propelled 2D polygons (of side

number 3≤n≤8) with force director anisotropy implemented as shown in Figure 3.1.

This choice of shapes systematically extends previous studies on triangles with inertia

[23], triangles with friction [24], and squares [25]. Full simulation parameters and

additional details can be found in Section 4.2 and Chapter III.

We show that the onset of phase separation at a critical density φ∗ is highly
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dependent on the shape of the particle given constant Pe. In our system, we observe

phase separation at densities as low as φ∗ = 0.01 in vertex-forward 6-gons, or as high

as φ∗ = 0.37 in edge-forward 3-gons– both below and above φ∗ of disks. Interestingly,

we find that the direction of the force director is sufficient for changing the φ∗ for a

given shape, but not for changing the relative phase separation onset between different

shapes. Specifically, edge-forward active particles have higher φ∗ than their vertex-

forward counterparts. Additionally, the internal structure of the phase-separated

cluster is primarily determined by the particle shape and resembles each shape’s

equilibrium densest packing. This resemblence suggests a link between structure and

critical density not yet explored in active systems.

In addition to this systematic study, this work’s contribution to the study of

anisotropic active matter is the introduction of a “collision efficiency” measure. We

find that systems with the lowest critical densities are also those that maximize par-

ticle deceleration per unit increase in inter-particle collision pressure, Pcoll. That is,

some shapes can more efficiently convert particle collisions into decreases in particle

velocity, v, leading to phase separation. This allows us to quantitatively attribute

changes to φ∗ in systems of shapes versus disks to steric impacts on collisions, and

directly shows that we can tune critical behavior of active systems by tuning the

nature of the inter-particle collision dynamics.

We note that 3- and 4-gons (the only two previously studied active polygons)

behave fundamentally differently from other polygons. We attribute this to the slip

planes present in their densest packings. As these shapes have been used as model

systems for a number of previous studies [23–25], we show why such results should

not be generalized to systems that do not have slip planes.
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4.2 Analysis Methods

4.2.1 Phase separation density calculation

Multiple methods exist in the literature to determine the critical density for phase

separation in active systems. In an active system of squares[25], a system was con-

sidered “clustered” if the fraction of system particles in the largest cluster was ≥0.2.

However, we found this method to be ill-suited for our systems, some of which are

comprised of many small clusters. In disks, studies have used local-density histograms

about randomly-sampled points of the simulation box [16] or about each particle [13].

If the histogram displayed two peaks, the system was considered phase separated.

However, the very low system densities studied here limit the efficacy of the random-

sample approach (e.g. at a packing fraction of 0.01, the high-density “peak” would

be ≤2% of the magnitude of the larger peak). In dumbbells, studies used both a grid-

based and Voronoi-based local density calculation to develop local density histograms,

to equal effect [60].

To determine phase separation even at low densities, we calculated two separate

histograms of local densities within a 2.5rmax radius (1) of randomly sampled points

(N = 1× 105) and (2) about each particle (N = 1× 104). For each shape, rmax

was calculated as the circumscribing radius about the shape. We then calculated

a position-normalized local density histogram of the system by multiplying the fre-

quencies of local densities in each local density bin by one another. If the resulting

histogram has a high-density peak ≥20% the height of the low-density peak, we con-

sider the system to be phase separated.

The onset of this phase separation is characterized by a critical particle density, φ∗,

at which the system transitioned from a homogeneous mixture to coexisting low and

high density phases. We define the critical density, φ∗, as the lowest density at which

> 50% of the system replicates phase separate. In Figure 4.1, error bars are given
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as the range of densities which have some replicates exhibiting both homogenous and

with others exhibiting phase-separating behavior.

4.2.2 Structural order in clusters

We examine internal cluster structure with two order parameters. We first calcu-

lated the k-atic order parameter, i.e. the bond-orientation order parameter for k-fold

rotational symmetry.

ψk(i) =
1

n

n∑
j

ekiθij (4.1)

The parameter k governs the symmetry of the order parameter while the parameter

n governs the number of neighbors of particle i to average over. For calculating bond

order, θij is the angle between the vector rij and (1, 0), i.e. the angle of the bond

between particle i and particle j with respect to the x-axis. In other systems, ψk

has been used to identify hexagonal (k = 6) order in systems of active disks [13] and

ordering on a square lattice (k = 4) in systems of active squares [25].

The body-orientation order parameter tells us relative orientations of local parti-

cles,

ξs(j) = eisθj (4.2)

taking into account s-fold symmetry, where θj is the angle that rotates particle j from

a reference frame into a global coordinate system and i is the imaginary unit. For

particles with even n, s = n; for particles with odd n, we set s = 2n to account for

anti-parallel packings [61].

4.2.3 Collision pressure calculation

In a 2D system of particles, we used HOOMD (v2.2.1) to calculate the instan-

taneous (scalar) pressure of the system as P = (2K + 0.5W )/A, where K is the

total kinetic energy, W is the configurational component of the pressure virial, and
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A is the area of the box. We can isolate the pressure due to inter-particle collisions,

W/A = 1
2A

∑
i

∑
j 6=i Fij · rij = P − 2K

A
. We further normalize the pressure by the

thermal energy as Pcoll ≡ (W/A)/kBT to facilitate comparison among systems of

particles, as kBT is varied by shape to maintain constant Pe = 150. While pressure

in equilibrium systems is typically taken over an ensemble, here we use it as an in-

stantaneous measure of the location in configuration space of the system. This allows

us to view particle trajectories in velocity and configuration space, allowing for the

definition of a unique master curve for each system.

To calculate each shape’s “trajectory” through v/Pcoll space shown in Figure 4.10,

we sampled complete simulation trajectories for simulations below, at, and above the

critical density, and calculated a distinct Pcoll and average particle velocity 〈v〉 for

each time step. We then binned the Pcoll values into equal-size bins, and calculate an

overall average 〈v〉 and standard deviation of 〈v〉 for each bin. These averages and

standard deviations are normalized by the vballistic calculated for each shape, and are

plotted against the average Pcoll value in the corresponding bin.

4.3 Impact of particle shape on the system density of phase

separation onset

As we increase the number of vertices (i.e. become more “disk-like”), we expected

to see monotonically increasing critical density[62] from lower critical densities of

high-anisotropy 3-gons towards higher critical densities of lower anisotropy 8-gons.

Instead, as shown in Figure 4.1a, phase-separation behavior does not vary mono-

tonically with n. For shapes of n = [3, 4], we observe a φ∗ near that of disks in this

Pe regime, with exact value dependent on the force director. As we increase n to 5,

we see a sharp decrease in φ∗ with continued dependence on the force director. The

lowest critical densities are observed for shapes of n = 6, above which we observe the
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Figure 4.1: Critical density and collective behavior of active anisotropic systems.
(a) Critical density for systems of each n-gon, calculated as described in Section
4.2.1. Lower error bar bounds indicate the minimum system φ at which at least one
replicate phase separated, while the upper error bar bounds indicate the minimum φ
at which all replicates phase separated. (b) Representative steady-state local density
snapshots in the critical (φ∗) and phase separated (> φ∗) regimes. A distinctive
feature of phase separation in systems of anisotropic particles is the formation of
multiple stable clusters that persist for long time scales. A representative snapshot
of particle orientation in the cluster is shown in the far right column.
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expected monotonic increase in φ∗ as n is increased to [7,8].[63]

We first address the impact of the force director. We expect φ∗ to depend on the

nature of the active force director because the stability of small cluster depends on the

force directors, as suggested in the collision example diagram in Figure 3.1. Specifi-

cally, for vertex-forward shapes, the only stable dimer sustains translational motion.

For edge-forward shapes, stable dimers exist that are either stationary and/or can

sustain translational motion. Looking only at the mechanical force balance on con-

figurations of edge- versus vertex-forward particle clusters, we might expect that

edge-forward particles would phase separate more easily due to more effective inter-

particle slowing. However, the sustained translational motion of small clusters allows

increased inter-cluster collisions in the vertex-forward systems. It is clear that this

increased inter-cluster collision phenomena wins out, with lower φ∗ for vertex forward

n = [3, 4, 5]. Following this logic, the translational speed of a vertex-forward dimer

relative to the particle ballistic velocity should decrease with increasing n. We hy-

pothesize that for n > 6, this decrease in small cluster translational speed leads to

the lack of difference between edge- and vertex-forward φ∗. Representative small-N

clusters are shown for each combination of n-gon and force director in Figure 4.2.

In investigating the structures formed by particles in the phase-separated cluster,

we find that without exception the particles have assembled into their densest packing,

as shown in the far right column of Figure 4.1b. Using this information, we make

the following observations. For 6-gons (the shape with the lowest φ∗), the densest

packing has neither void space nor slip planes. For 5-, 7-, and 8-gons, the densest

packing has void space, but no slip planes. For 3- and 4-gons, the densest packing

has no void space, but has slip planes. In the context of this system of 2D polygons,

a slip plane refers to a plane along which two otherwise undisturbed grains can slide

in opposing directions. This leads us to hypothesize that a system’s ability to inhibit

particle movement in the cluster (where void space and slip planes play a role) is
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critical to understanding the critical behavior.

Additionally, the only two shapes in our simulations that exhibit an “oscillatory”

regime in their phase behavior are 3- and 4-gons (See Video Figures 4.4,4.5). These

shapes are also the only two that have slip planes in their densest packings. In

the literature, other studies have noted oscillation as novel behavior accessed via

anisotropy and activity [25, 64]. We posit that the oscillatory regime for anisotropic

particles is in fact a natural consequence of the preferred steady-state structure of the

component particle shapes in these systems. We will revisit this claim more rigorously

in Section 4.5.

Our final observation on the critical behavior is that the nature of the phase

separation varies significantly based on shape, as shown in Figure 4.1b. Beyond the

critical regime, we see the formation of many stable clusters at steady state for n≥5

(See Video Figures 4.6,4.7). This is in contrast to systems of isotropic disks, where

secondary cluster formation is short-lived with phase separation characterized by a

single large cluster [12, 13]. The phenomena of multiple phase-separated clusters at

steady state is theoretically predicted in bacteria [9], but not in other theoretical

models focused on isotropic active particle phase separation[11, 15].

4.4 Cluster growth and coarsening dynamics

It remains an open question in the literature as to how shape may affect the

kinetics of phase separation, e.g. coarsening and domain growth laws in active sys-

tems. Here, we investigate how particle shape enables the observed phase separation

initially into multiple small clusters with coarsening at steady state.

Before phase separating, systems exhibit localized areas of high-density fluctua-

tions, as described in many other theoretical studies of active systems [10, 11]. These

localized areas of high density are hexagonally ordered, with the exception of 4-gons,

which order on a square lattice. Following this initial structuring, orientational order
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develops consistent with the known densest packing of each regular polygon [61]. An

example of this phase separation process in vertex-forward 8-gons is shown in Figure

4.3.

This transition from random orientation to close-ordered densest packing is due to

the active collision pressure on the clusters. Studies on active disk cluster nucleation

have confirmed that inward-pointing particles at the cluster boundary is a necessary

condition for nucleation [14, 15]. Similarly, active polygon clusters possess a net-

inward force (Figure 4.3a). However, unlike in clusters of disks, the rotation of n-gons

within the cluster is sterically inhibited. Thus, there exists a sustained inward-facing

pressure on the clusters driving the structure to a densest packing.

We observe that the nature of the phase separation dynamics for shapes resembles

that of quenched disks[13] for n≥5, as seen in Figure 4.1b. Multiple small clusters

form and are stable at steady state (where steady state is determined by the methods

described in Section 4.2). However, the coarsening behavior between shapes differs.

As seen in Fig. 4.1, the critical-regime onset phase separation for n = [5, 7, 8] is

characterized by the formation of one (or few) clusters that quickly form and slowly

grow, while for n = 6, cluster nucleation is so favorable that we see the nucleation of

many small clusters even in the critical regime.

We demonstrate this coarsening behavior in Figure 4.8, where the fraction of the

system in a cluster (NC/N) is plotted over time (in units of τ , where τ is the time for

a particle to ballistically travel its own diameter). At low densities, but even at those

above the critical system density for a given shape, we observe rapid nucleation and

growth of small clusters, which remain stable at steady state (this behavior is also

observed in the low density/activity limit of dumbbells [29]). At higher densities, the

size of the clusters increases the likelihood of another cluster colliding with it and

merging to make a larger cluster.

This leads us to another key aspect of anisotropic systems not seen in disks: sus-
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tained rotational and translational motion of clusters (Figure 4.9). Previous studies

on squares found that sustained motion drove the system into an oscillatory behav-

ior [25]. We find that such motion is also critical to the coarsening of clusters of

active shapes. In contrast, clustered disks cannot sustain motion, and quenched sys-

tems coarsen through the dissolution of some clusters and growth of others rather

than inter-cluster collisions. The only net motion within clusters of disks is at the

boundaries, where a balance of particle fluxes in/out characterizes the steady state

configuration [13]. As a result, the steady state of multiple small clusters in a system

of isotropic particles is unfavorable, as clusters in such systems are only stabilized by

particles being self-propelled into the cluster.

4.5 Collision efficiency as a method of quantifying the impact

of shape on phase separation behavior

Phase separation due to MIPS is the result of particle slowing as local density

increases, with v(ρ) [10]. Here, we demonstrate a method for quantifying the impact

of shape on dv/dρ.

To build our intuition for this approach: at a particle level, we can describe MIPS

as collision-induced slowing. In a system of frictionless disks, collisions between small

numbers of particles are not stable, with clusters of small size (nC < 10) generally

having a short lifespan (< τ). (Nucleation in disk systems is facilitated by local

polarization of the active force directors leading to a stable nucleation seed [14, 15].)

In contrast, collisions between anisotropic particles can create long-lasting clusters of

small nC , “seeds”, such as those highlighted in Figure 4.2. In addition to lifetimes

lasting � τ , some seeds can sustain translational motion and/or stabilize collisions

from external particles. While these seeds are not a necessary condition for phase

separation, they facilitate the process by slowing both constituent seed particles and
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single particles colliding with the seed, leading to localized areas of high density.

At a system level, we can translate this collision-induced slowing to a “collision

efficiency” during the nucleation and growth of clusters. We hypothesize that those

systems in which collision work is more efficiently transformed into a decrease in

average particle velocity (i.e. greater −dv/dρ) are also those that are able to phase

separate at lower system densities (lower φ∗). As the system density φ is a proxy

for the number of collisions a particle experiences [16], particles with higher collision

efficiency need fewer collisions– and thus lower φ– to reduce the average particle speed

and lead to phase-separation of the system.

To demonstrate this quantitatively, we measure the instantaneous pressure Pcoll

due to inter-particle collisions (calculations detailed in Section 4.2.3). In Figure 4.10a,

we plot the trajectories of systems through v/Pcoll space. We find that each system

type (n and force direction) falls onto a well-defined trajectory with short nucleation,

long growth, and flat steady-state regions. The slope of this growth regime, −dv/dρ,

is what we term the “collision efficiency”. We observe that relative slopes of the

growth regimes correctly predict the relative critical densities of the shapes studied,

including the relative critical densities of edge-forward and vertex-forward systems of

the same shape.

Notably, 3- and 4-gons require significantly higher collision pressure to reach

steady state, as shown in Figure 4.10b. These systems fall on the same master curve,

suggesting that some feature similarity in the system drives similarity in v/Pcoll space.

Using the concept of collision efficiency, we can now quantitatively demonstrate how

the slip planes observed in 3- and 4-gon densest packings lead to the “oscillatory”

behavior discussed earlier and observed in previous works [25]. As shown in Fig-

ure 4.10c, systems of shapes whose densest packings do not have slip planes (like

the edge-forward 5-gons shown) proceed monotonically through v/Pcoll space with

τ , eventually resulting in phase separation. In contrast, systems with slip planes do
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not proceed through v/Pcoll space monotonically with τ . In the system shown of

vertex-forward 3-gons, a phase-separating system proceeds through v/Pcoll space as

the phase-separated clusters form. At high Pcoll, however, the system is no longer able

to sustain the inter-particle collision pressure and the cluster breaks apart, retracing

its path through v/Pcoll. Additionally, the lack of hysteresis in this path through

v/Pcoll space during cluster dissolation confirms that this oscillatory phenomenon is

not path dependent or a function of simulation protocol, but rather a function of

the particle anisotropy alone. The oscillatory regime can be described as a system’s

inability to stabilize the inter-particle collision pressure.

In collision efficiency, we have introduced a metric that quantitatively explains

how shape impacts the critical density in active systems. This framework tells us

that we can tune the critical behavior of a system by altering how efficiently particles

decelerate other particles in collisions.

4.6 Conclusions

In this work, we investigated the critical phase behavior of a 2D active matter

system of anisotropic particles in which anisotropy was implemented through polygon

shape and active force director. We demonstrated that we can quantitatively describe

the critical behavior as a function of “collision efficiency”, which can be tuned by

engineering particle interactions (here, we explore only shape). Further, we observe

that this critical behavior is related to the structure of the component particle shapes’

densest packing at equilibrium.

We showed that increasing the efficiency of inter-particle collisions in slowing

particles down during cluster growth is a key driver of decreasing critical densities.

This observation is closely related to a number of theoretical developments in the

field of active matter. We can think of this efficiency as a determinable scaling

coefficient on the change in particle velocity with local density (dv/dρ) in MIPS [9].
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Similarly, an analytical determination of the average collision time for an inter-particle

collision would allow prediction of critical onset through the balancing of τcollision and

τballistic timescales [16]. Such an analytical determination would need to account for

all possible angles of collision between anisotropic particles and all iterations of force

anisotropy.

An analytical description linking driving force and anisotropy to collision time

may enable prediction of critical system densities. Additionally, while the nature

of the densest packing in equilibrium can be used to explain the structure seen in

dense phase-separated regions, further work is needed to elucidate the link between

equilibrium packing and non-equilibrium assembly. As an understanding of the ther-

modynamics of active matter continues to develop, establishing the phase behavior

of active assemblies will be of intense interest as a means of achieving directed, non-

equilibrium self-assembly.

While anisotropic active particles are in the early stages of being synthesized in

labs they are ubiquitous in nature. Biology presents us with a number of intriguing

test cases for our framework– e.g. particle softness, shape irregularity, or non-uniform

attraction. How does changing these particle design parameters (as some biological

systems are able to do) impact the v/Pcoll curve? For systems with explicit attractive

interactions, e.g. chemotaxis, how can we formulate that interaction as a collision

efficiency?

Finally, while our work reveals a mechanism for how particle anisotropy in 2D

drives different collective behavior from that seen in disks, our explanation is quanti-

tatively descriptive but not yet analytically predictive of the critical density of a par-

ticle shape. Developing a comprehensive predictive theory of how particle anisotropy

will impact the critical density would be of great interest to the field.
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Figure 4.2: Representative clusters are shown for small clusters of all combinations
of shape and force director studied. Clusters of shapes in dark grey are those that
are commonly observed during cluster formation. Clusters of shapes in light grey are
those that can be observed, but are short-lived. Shaded N -mer and shape intersections
indicate combinations where there is no stable cluster observed; while it might be
possible to theoretically build a cluster of size N for these shapes, we do not see such
clusters in practice.
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Figure 4.3: Example of structural evolution of clusters in system of vertex-forward 8-
gons at φ = 0.5. a) Left column: Active force director n̂A exhibits strong polarization
at all times, pointing towards the center of the cluster both at the boundary and
throughout the cluster. Center column: Hexatic bond order ψ6 forms quickly and
uniformly through clusters. Spatial boundaries in the order parameter are the result
of cluster mergers that have not yet annealed. Right column: Body order ξ8 accounts
for particle orientation in the cluster. Strong orientational grains form in the clusters,
though they do not span clusters as completely as bond order. Grain boundaries are
apparent and do not anneal completely. b) Legend for orientation maps in (a). c)
Snapshots of bond and body order from regions highlighted in (a).
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Figure 4.4: Video snapshot: Vertex-forward 3-gons at φ=0.50. This video shows the
same simulation system whose trajectory is shown in the v/Pcoll space in Figure 4.10.
The system phase separates as the inter-particle collision pressure (Pcoll) increases.
At approximately 3000τ , the system is destabilized as inter-particle pressure builds
along slip planes and is released, leading to the break-up of the cluster. This process
has been referred to as oscillation in other works. Onset of destabilization is seen at
0:14 in the video. Video file: n3_VF_phi50.mp4
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Figure 4.5: Video snapshot: Vertex-forward 4-gons at φ=0.50. Clear slip planes are
visible in this system that allow the clusters to shear grains off large clusters. This is
an example of an ”oscillatory” behavior seen in another study of 4-gons. Video file:
n4_VF_phi50.mp4
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Figure 4.6: Video snapshot: Vertex-forward 5-gons at φ=0.50. This system exhibits
rapid cluster formation. This system notably phase-separates with a cluster that
exhibits the anti-parallel densest packing form common to 5- and 7-gons. Video file:
n5_VF_phi50.mp4
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Figure 4.7: Video snapshot: Vertex-forward 6-gons at φ=0.50. This system also
exhibits rapid cluster formation into many stable, small clusters. Video file: n6_VF_

phi50.mp4
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Figure 4.8: Example of phase separation kinetics for vertex-forward 5-gons at three
system densities (φ > φ∗). The fraction of system particles in a cluster, NC/N , is
plotted over the evolution of the simulation. Particles are considered “in a cluster”
if their local density is ≥ 0.6. Nc/N trajectories for all ten replicates for each φ are
shown, though the behavior is so similar that the replicates are only distinguishable
for φ = 0.1. Snapshots are colored by local density, colorbar shown.

35



� = 0.3 � = 0.1 � = 0.5a) b) c)

Local density

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9: Particle displacement fields for simulations at steady state, laid over a
map of local densities. (a) Clusters of disks have no net motion, with particle motion
limited to the cluster boundaries and gas phase. (Shown is a system of disks at
φ = 0.3). In contrast, clusters of anisotropic particles display both (b) net rotational
motion (shown for edge-forward 7-gons, φ = 0.1) and (c) net translational motion
(shown for vertex-forward 4-gons, φ = 0.5).
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Figure 4.10: (a) Shown are the average trajectories for 5≤n≤8 in v/Pcoll space
for both edge- and vertex-forward particle simulations. (Note the inverted axis for
velocity.) The nucleation, growth, and steady state regions are highlighted. Increasing
slope of the growth regime in v/Pcoll corresponds to decreased φ∗, and is predictive
for shapes with given force director. Error bars are the standard deviation, with
full calculations detailed in Section 4.2.3. Where error bars are not visible, they
are smaller than the data marker. (b) Trajectories for 3- and 4-gons are plotted
separately. Here, both shapes collapse onto one master curve. The master curves for
edge- and vertex-forward 3- and 4-gons also collapse onto on another. Error bars are
calculated as in (a). (c) Individual trajectories are shown for 5- and 3-gons at the
indicated φ. While velocity decreases monotonically with increasing Pcoll for 5-gons,
in 3-gons we observe an “oscillation” in which the largest cluster in the system breaks
up at φ = 0.50. Pressure and velocity snapshots are taken every 100τ .
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CHAPTER V

Shape-driven Effective Interactions Access Novel

Emergent Behavior in an Active Binary System

This chapter is adopted from a manuscript in preparation with co-author Sharon

C. Glotzer.

5.1 Introduction

Studies of self-propelled active particle systems have demonstrated that particle

shape can change the emergent and critical behavior of a system through steric-

induced changes to particle collisions. This raises the question: how would multiple

steric-induced collision types in a system impact the observed collective behavior?

Here, we computationally explore the emergent behavior found in binary mixtures

of self-propelled polygons at different stoichiometry. We find emergent phenomena

that, to our knowledge, has not been seen in other systems of active matter. First, we

identify microphase separation resulting from “steric bonding”, a shape- and activity-

induced preferential attraction we can quantify between like species in the absence of

explicit attractive interactions. Second, we observe the formation of stable fluid clus-

ters at steady state, resulting from the addition of a second shape type that disrupts

the dense-packing formation of the first shape type. This structural disruption and
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corresponding increase in particle motility also facilitates the formation of a larger

phase-separated regime. Finally, we highlight that the same mechanism that enables

fluid clusters can also stabilize a three-phase steady state with a fluid cluster, solid

cluster, and sparse gas phase. Importantly, all the observed behavior is sensitive to

chosen design parameters (stoichiometry). That we find such rich phenomena in in-

vestigating just a narrow slice of the design space for self-propelled active particles

highlights the potential for a wide range of engineered behavior in such systems.

5.2 Analysis methods

5.2.1 Choice of systems

We use the particle implementations described previously to study these systems

(see Chapter III). Here we study regular polygons of side number 3≤n≤8. In Chapter

IV, we found that the critical density of systems of active polygons for 5 sides and

above did not strongly depend on the direction of the force director. For this study,

then, we set the force director to be fixed to the particle shape propelling the shape

vertex-forward. In the previous Chapter, this was shown to lead to lower critical

densities for 3- and 4-gons than an edge-forward configuration.

We fix all systems studied here to a packing fraction of 25%. Systems studied

are all two-component systems of N = 1× 104 particles. The stoichiometry of com-

ponents in the system ranges from 10/90 to 90/10, and are as specified with the

corresponding results.

For comparison, we also studied systems where both component shapes have equal

side length. In such systems, we set all component shapes to have a standard side

length equal to that of a 6-gon of ζ = 9, while keeping rWCA = 1 (see Section 3.1

for definitions). Importantly, this means that these shapes no longer have the same

rounding (ζ). However, the constant rWCA helps ensure a consistent penetration
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length for the excluded volume potential.

5.2.2 Calculating the cluster size distribution

The cluster size distribution is given by the number of clusters (ns) of size s/N ,

where s is the number of particles in the cluster and N is the number of particles

in the system. We sample at every 100 time units (τ , the time it takes a particle

to ballistically travel its own diameter) at the steady-state configurations of each

simulation, and calculate error bars over all samples from all replicates.

5.2.3 Calculation of steric attraction

Bond homophily: Bond homophily is the preference for like-like neighbor pair-

ing of a given particle type, normalized to what would be predicted by the stoi-

chiometry of the system. As an example, in a two component system with 50%/50%

stoichiometry, if species A’s neighbors are on average 55% species A and 45% species

B, the bond homophily of species A will be 55%
50%
−1 = +10%. Using this same example,

we see that the prior statement regarding species A’s bond homophily does not give

us explicit information about species B’s bond homophily. Species B’s homophily can

only be calculated by looking at the neighbors of species B on average.

Nearest neighbors were identified using the Cluster module of the analysis package

Freud 2.1.0 [55]. Neighbor lists were calculated using the Freud package’s implemen-

tation of an Axis-Aligned Bounding Box (AABB) tree [65], with a ball query with

maximum radius equal to 2.5x the circumscribing radius of the largest shape and self-

exclusion. This choice of maximum radius is sufficient to capture the first neighbor

peak in our systems.

Calculations were done on the final frame of each simulation over all particles in

the system that had at least one other neighbor. This was done to capture steady-

state bond preferences.

40



Figure 5.1: Example of the underlying data used to calculate steric attraction, shown
here for 50/50 mixture of 4- and 6-gons. Each point represents data for one cluster,
over which the bond homophily and cluster composition are averaged. The trend
line is a linear regression best fit for each particle type. The dashed line has a slope
of 1, and indicates a hypothetical system where each increase in bond homophily
corresponds to an exact increase in cluster composition

Strength of steric attraction: We define the “strength of steric attraction” as:

Strength of steric attraction =
∆(cluster composition)

∆(bond homophily)
(5.1)

Cluster composition is the fraction of each cluster that belongs to each particle

type in the two-component systems studied here. We calculate the cluster composition

and bond homophily at 10 snapshots for each simulation, at timepoints ranging from

10τ to 5000τ (the final frame). We only considered clusters with at least 10 particles

in the calculations.

For each particle type, for each cluster, we can then plot the cluster’s composition

versus the average bond homophily for the given particle type in that given cluster.

Over all simulations for a given component mix, we can then calculate a best-fit line

whose slope is the impact of each incremental increase in particle type bond homophily
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on the cluster composition. This slope is the “steric attraction” for a given species.

A sample system is shown in Figure 5.1. The standard error of the estimate for each

calculated slope is calculated as σest =
√∑

(Y−Y ′)2

N
where Y is the actual value (in

this case of cluster composition), Y ′ is the predicted value, and N is the number of

data points.

In theory, the maximum of the slope of these linear fits should be 1. A slope of 1

indicates that each increase in bond homophily corresponds to a direct increase in the

cluster composition. We might expect to see this in systems with complete species

separation.

5.2.4 Cluster lifetime calculations

To calculate the cluster lifetime for systems of varying stoichiometry of 3-gons,

we calculate the percentage of original cluster particles at time t0 that are still in the

cluster at t1. Sampling begins after the system has reached steady state, and samples

are taken every 50τ with 500τ between t0 and t1. The resulting value for the fraction

of particles still in the cluster is calculated over all samples, over all replicates. The

error bars are given by the standard deviation over this same sample.

5.3 Emergent behavior diagram

In combining multiple components into the same system, we might expect to see

particles de-mix and separate into large like-like clusters [23, 27]. Additionally, from

our previous work in one-component systems (Chapter IV), we know that shapes pack

into their equilibrium densest structure in the phase separated cluster, and that the

structure of the densest packing can be used to explain their phase separation behav-

ior. Given this, we expected that mixtures of particles of shapes with incommensurate

densest packing structures might de-mix completely.

Instead, we see the varied emergent behavior summarized in Figures 5.2 and 5.3.
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Figure 5.2: Shown are data for simulations at 50/50 stoichiometry. Full system
snapshots (lower triangle) and snapshots of dense cluster structure (upper triangle)
at each binary mixture studied. On the diagonal are the one-component systems,
shown above their respective critical densities and colored by local density. The
systems exhibiting the novel behavior discussed in this work are highlighted as follows.
Green: Microphase separation. Blue: Fluidizer behavior. Red: Three-phase steady-
state. Snapshots A, B, and C are highlighted in Figure 5.3.
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Figure 5.3: Examples for each of the three behaviors highlighted in this work. A
snapshot of each representative system is shown at steady state at left. All systems
shown are at 50/50 stoichiometry. A) Microphase behavior in 4/6-gon mixture. Like-
like bonds are shown in the same particle colors as the keys in Figure 5.2, highlighting
that 6-gons form compact clusters within a mixed cluster. Zoomed-in snapshots are
on right. B) Fluidizer behavior in 3/7-gon mixture. Maps of both particle trajectories
and displacement highlight the internal motion in the stable cluster. C) Three-phase
steady-state in 4/7-gon mixtures. As with the fluidizer behavior, particle trajectories
highlight a fluid cluster, but also demonstrate that the second large cluster is a solid,
with both clusters existing in a third sparse gas phase.
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We find three new-to-active-matter behaviors: microphases in systems with 6-gons,

stable fluid clusters with 3-gons, and a three-phase steady-state accessible in systems

with 4-gons.

Why might we be seeing such behavior? We again turn to the structure of the

phase-separated cluster for clues. In systems with 3- and 4-gons, we note that the

edge length difference between particles leads to more compact grains of 3- and 4-

gons, with less compact grains of their partner shapes. We know that these shapes

have shear planes in their densest packings which lead to oscillatory phases in one-

component systems (Chapter IV). We posit that even the disperse grains of these

particles lead to similar behavior in multi-component systems, destabilizing the larger

cluster while its partner particles prevent the cluster from dissolving fully, and discuss

this further in Section 5.5.

At the other end of the structural similarity spectrum, we see systems of combi-

nations of 5-, 7-, and 8-gons pack into a well-mixed packing that resembles that of

disks. While like shapes still approximate their densest packing structure when with

a like neighbor, on the macroscale the behavior seems to be largely shape-agnostic.

At the macroscale, we also observe that the appearance of the phase separated

cluster changes in some systems. For systems of n≥5, steady state is characterized by

multiple stable clusters. However, upon the addition of 3- or 4-gons, steady-state in

the phase separation regime is instead characterized by one to two large clusters. This

provides a hint at the mechanism for phase separation into a fluid cluster: in addition

to shear along slip planes, fluid clusters may also be the result of multiple potential

clusters coexisting in one dense phase. We will explore this further in Section 5.6.

Finally, we see what we term “microphase separation” of 6-gons forming [rela-

tively] large grains within phase separated clusters, seen clearly in Figure 5.3. We

emphasize that we mean “microphase” in the more traditional sense of separation

of species within the same phase in multi-component polymer systems, rather than

45



recent work looking at phase separation of one-component active matter into “micro”

phase separated regimes[66].

Videos of all three phenomena are found in Video Figures 5.4, 5.5, and 5.6.

5.4 Microphase separation stems from shape-driven effective

attraction

Classical microphase separation is mediated by preferential attraction between

species [67]. In the systems studied here, particles have no explicit attraction inter-

action and only interact via excluded volume interactions. However, we know that

in equilibrium excluded volume interactions can lead to effective entropic “bond-

ing” through such interactions[68]. While the concept of equilibrium entropy-driven

behavior does not map neatly onto active matter systems, we can ask if a similar

shape-mediated “attraction” is seen in active systems.

We approach this two ways. First, we look at the micro-scale impact of parti-

cle shape on inter-particle interaction preferences. In Figure 5.7a, we measure the

preference of a particle type to bond with itself in a mixture with other particle

types. Interestingly, we find that some shapes have a negative bond preference versus

stoichiometry, indicating that such systems are more well-mixed at the microscale

level than stoichiometry would suggest. Such systems are combinations of 5-, 7-, and

8-gons– the same systems highlighted in Section 5.3 as packing like disks.

Next, we see that 6-gons strongly prefer neighbors of their own type when in mix-

tures of any other particle, up to 7% (when in combination with 8-gons) above what

would be predicted based on stoichiometry (e.g. in a system with 50/50 stoichiometry,

50% of particle bonds would be expected to be like-like versus like-unlike). Interest-

ingly, this same preferential bonding extends to the other species in the mixture with

6-gons, and we confirm this behavior is consistent when particles are resized to have

46



Figure 5.4: Video of 4- and 6-gons at 50/50 stoichiometry (screenshot shown, file:
microphase_separation.mp4). Full phase separation process is shown, including
significant time at steady state. Particles are colored as in Figure 5.2.
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Figure 5.5: Video of 3- and 7-gons at 50/50 stoichiometry (screenshot shown, file:
fluid_cluster.mp4). Full phase separation process is shown, including significant
time at steady state. Particles are colored as in Figure 5.2.
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Figure 5.6: Video of 4- and 7-gons at 50/50 stoichiometry (screenshot shown, file:
three_phase_coexistence.mp4). This video is truncated to the same period as
shown in Figure 5.11. Particles are colored as in Figure 5.2, excepting the represen-
tative “U” and “M” to highlight in-cluster particle movement.
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equal side lengths. This suggests that 6-gons are uniquely able to drive steric prefer-

ences at the micro-scale. However, phase separation, including microphase separation,

is typically seen on the macroscale.

To quantify the system-scale impact of particle shape, we look at the macro-scale

impact of particle shape interaction preferences on the composition of their resident

clusters. We can define a “strength of steric attraction” as ∆(cluster composition)
∆(bond preferences)

, with

full calculation details in Section 5.2.3. For a given cluster, we can measure the bond

preference of each species and the overall composition of the species. Over all clusters,

we can then calculate the change (∆) we see in cluster composition with changes in

bond preference.

We see in Figure 5.7b that 6-gons, in all possible system compositions, exhibit

the strongest steric bonding. That is to say, they are most effectively able to convert

microscale “bonding” preferences to macroscale cluster composition preferences. In

bond preferences, we see that 6-gons are able to effect bond preferences in their system

partner; however, we do not see 6-gons affecting the steric attraction of their system

partners. This difference further suggests that there is something different about the

6-gon particle “bonds”. Since the bonding preference for all other n-gons when paired

with 6-gons is likely 6-gon-mediated, that bonding preference is insufficient to drive

macro cluster preferences on its own.

We can see an example of what this macro/micro-preference difference looks like

in Figure 5.8. Using a binary system of 4- and 6-gons as an example, we see a strong

peak in the pair correlation function (g(r), Figure 5.8b) for 6-6 self-bonds and a

nearest-neighbor peak more than 50% smaller for 4-4 self-bonds, with a wider tail

due to 4-gons’ ability to pack into an offset “subway tiling” (see Figure 5.8 inset).

These large peaks corresponded to face-to-face packing between like particles, as

would be predicted in equilibrium through entropic bonding theory[68, 69]. Likewise,

the first peak in the smaller 4-6 bond correlation function corresponds to the face-
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to-face contact between a 4- and 6-gon. The pair correlation function highlights two

important findings. First, that particles have clear preferential self-binding that is

also found in the structure of the cluster. Second, that this self preference corresponds

with a preference for face-face interaction.

In Figure 5.8c, we take a macro view of the system and see that the self-cluster

size distributions for each shape in the system collapse onto one another. For both

shapes in the system, their distribution of the size of like-like clusters is the same. If

we predicted that bond strength would also correspond to the size of grains of like

particles, this is not what we would expect. This perhaps suggests a limit to the

impact steric interactions can have on macroscale behavior, and is seen in all systems

studied (see Figure 5.9). Actively “annealing” such systems, e.g. cycling the active

force, would be an interesting approach to exploring if this limit is a true property of

such systems.

5.5 Fluidizing is driven by increased motility in clusters with

3-gons

As it’s clear from Section 5.4 that triangles do not have any specific negative

steric binding interactions, we investigate whether they “fluidize” clusters in some

other way.

A key clue, as previously discussed, comes from the fact that we observe more

consolidated clusters of particles of size n≥5 when in systems with 3-gons than when

in one-component systems. In addition, one-component 3-gon systems exhibit an

oscillatory phase where clusters dissolve along slip plans in the densest packing. Might

these be related?

We investigate this by calculating the cluster lifetime of clusters of 3-gons and

other particle types at varying stoichiometry. We find that generally, an increasing
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percentage of 3-gons in the systems leads to shorter cluster lifetimes. This may seem

counter-intuitive, as we just stated that these fluid clusters are in fact larger and more

stable than clusters found at steady state in either of their component’s respective

one-component systems. However, if we think of 3-gons as the destabilizing force

in a cluster, leading to motion, and their mixture partner as the cluster-stabilizing

component, one can imagine that a balance of these two forces might lead to shorter-

lived small clusters with force-balanced larger, longer-lived clusters.

As we will see in the next section, fluid clusters form from combinations of smaller

clusters, lending further support to this idea that movement within and between small

clusters as part of a whole is critical for a stable fluid cluster phase.

5.6 Three-phase steady state highlights delicate balance of

structural stability in clusters

Finally, we highlight that the same fluid clusters found in systems with 3-gons can

also be found in systems with 4-gons– another shape with slip planes in its densest

packing. In this case, we observe that such clusters can coexist with a sparse gas

phase and solid cluster, as shown in Figure 5.11.

An important question is: why do some clusters become fluid, but others solid? In

Figure 5.12, we follow the evolution of the three-phase system explored quantitatively

above and find that the fluid cluster forms through early, multi-cluster combinations,

while solid clusters form through incremental addition to a solid cluster “seed”. Such

formation is also not uncommon in one-component systems. What sets these two-

component systems apart is that, like discussed in Section 5.5, there is a balance

between one component’s destabilization of the cluster (3-, 4-gons), and their system

pair’s stabilization of a solid cluster. Thus, that we get both fluid and solid clusters

possible in such two-component systems is a product of balancing possible structural
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stabilities after random initialization.

There does not appear to be a meaningful difference in the stoichiometry or par-

ticle bond preferences between the two different cluster types.

5.7 Conclusions

In this work, we started by investigating binary systems of self-propelled polygons

in equal stoichiometric ratios. We observed three new-to-active-matter phenomena:

microphase separation, fluidizer-like behavior, and a three-phase steady state. Our

work here highlights the richness– and the wide space of unknowns– in designing

active matter systems with novel and specific emergent phenomena.
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a) b)

Figure 5.7: Quantification of shape-driven effective interactions in mixtures. a) Pref-
erence for like-like bonding versus prediction from stoichiometry. Higher values indi-
cate a higher likelihood of nearest neighbors being like particles, versus the prediction
from stoichiometry. Error for each intersection is shown as the outer ring (lower bound
of the standard deviation) and inner dot (upper bound of the standard deviation) of
each square. b) Degree to which like-like bond preference drives increased like-particle
cluster composition. The hypothetical upper value is 1.0, in which every fractional
increase in like-like bond preference leads to a corresponding increase in the compo-
sition of a cluster that is like particles. The hypothetical lower bound should be the
stoichiometry of the system, in this case 0.5 for both particles. As in (a), the error
for each intersection is shown as the outer ring (upper bound of the standard error
of the estimate) and inner dot (upper bound of the standard error of the estimate)
colors. We do not necessarily expect these plots to be symmetric.
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a) b)

c)

Figure 5.8: a) Snapshots of a 50/50 mixture of 4- (orange) and 6-gons (green) at steady
state. The bottom is a snapshot of the structure in the phase-separated cluster. b)
Pair correlation g(r) between all species in the mixture, with pair colored per the
legend. c) Cluster size distribution, as calculated in Section 5.2.2.
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Figure 5.9: Cluster size distributions for all systems under study, as calculated in
Section 5.2.2. We note that the curves collapse for all systems shown.
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Figure 5.10: Top: The fraction of original particles from time t0 still in a cluster at
t1 is used as a proxy for the average cluster lifetime. We see that higher fractions
of 3-gons in a system lead to shorter cluster lifetimes. Bottom: We highlight one
possible explanation for this: the structure of 3-gons and other particle types are
incommensurate when not at an equal side length.
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Figure 5.11: We observe coexisting gas, fluid, and solid phases in an example three-
phase steady state system of 4- and 5-gons in a 50/50 stoichiometry. In the bottom
snapshot, clusters are highlighted in the color corresponding to their color in the plot
of mean square displacements at top. All particles in clusters of size less than 10 are
included in the “Free particles” MSD calculation. In addition to the MSD, which
plots displacement over time, instantaneous displacement snapshots are shown to the
right of the system snapshots at bottom, as calculated by Ovito[2].
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𝜏 =1600

Figure 5.12: Snapshots of the system shown in Figure 5.11 evolving to steady state,
with time increasing from upper left and concluding at the first frame of Figure 5.11
calculations. A sample of particles destined for the fluid cluster are shown in yellow,
and a sample of particles destined for the solid cluster are shown in blue. We see
that as the clusters forming the fluid cluster collide, there is significant mixing at the
boundaries and sustained continued motion. In contrast, while the sample of particles
destined for the solid cluster deforms slightly, it forms the basis of the solid cluster as
additional particles are added through incremental addition, rather than large-scale
cluster addition.
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CHAPTER VI

Particle Shape Leads to Different Universal

Behavior in Active Systems

This chapter is adopted from a manuscript in preparation with co-authors Robert

Ziff and Sharon C. Glotzer.

6.1 Introduction

Active matter phase separation is a non-equilibrium phase transition with no clear

equilibrium counterpart, as phase separation occurs even in the absence of explicit

attractive forces. Recent efforts have sought to map the simplest active matter system,

isotropic active Brownian particles, onto equilibrium universality classes as means of

extending active matter theory. Given the significant impact even implicit steric

interactions can have on the phase separation behavior in such systems, we pose the

question: are changes to the effective interactions between active Brownian particles

due to steric interactions (shape) sufficient to change the universality class of an active

matter system? We propose a mapping of active matter near the order-disorder

transition onto a non-equilibrium directed percolation model. In doing so, we are

able to identify distinct curve collapses of cluster formation in the 2D active polygon

systems studied here. We further explore the critical behavior of these groups and
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find that the quasicritical behavior of the cluster scaling distribution predicts the

same groups as our curve collapses. Further work will be needed to confirm the

critical exponents, including a more rigorous finite size scaling approach to identify

the critical point of each system.

6.2 Background

Active matter phase separation is a non-equilibrium phase transition with no

clear equilibrium counterpart, as active Brownian particles undergo phase separation

into coexisting sparse and dense regions in the absence of explicit interactions [4, 5].

As discussed in Chapter II, changes to the particle design of such active Brownian

particles can effect changes to the phase separation onset parameters and emergent

behavior (e.g. swarming, arrested phase separation, clustering), even without the

addition of explicit attraction rules.

One potential approach to a theoretical framework of the impact of inter-particle

interactions on the system is to map the system onto a known universality class.

Identifying universal behavior allows us to transfer knowledge of a well-studied system

to a different, less well-characterized system.

Previously, work in this area has focused on mapping onto an equilibrium sys-

tem and investigating the non-equilibrium effects on the system’s critical behavior.

Previous studies have mapped the active Ising model[70] and a lattice model of ac-

tive Brownian particles [71] onto the equilibrium Ising universality class. Separately,

studies of the phase transition in a non-lattice system of active Brownian particles

demonstrated that system did not demonstrate scaling behavior of the equilibrium

Ising universality class[72]. That a mapping of active matter onto an equilibrium

phase transition could be sensitive to such a difference in system configuration high-

lights that changes to the active Brownian particle interactions are likely to lead to

changes in the phase transition behavior and, perhaps, changes in universal scaling
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behavior.

We propose a slightly different approach than those taken previously: can we

map an active Brownian particle phase transition onto a well-studied class of non-

equilibrium phase transitions? Such an approach has previously been used to identify

an anisotropic percolation transition in the Vicsek model with explicit interaction

terms[73]. We investigate whether changes to implicit interactions via shape are

sufficient to drive systems of different particle shape types into different universality

classes– and if so, whether they are classes new to active matter or well-known non-

equilibrium universality classes.

We expect the potential for multiple universality classes for two reasons.

First, the impact of particle shape anisotropy on system phase separation and

emergent behavior has been found to be highly shape-specific (e.g. Chapter IV and V).

Second, we can extend findings from percolation in which different local bond rules

lead to different universality classes. One of the simplest non-equilibrium universality

classes, directed percolation, describes systems in which the probability of a bond

forming is not uniform in all directions. However, changes to the local rules governing

bond formation in a non-equilibrium percolation model can lead to networks with

different universality classes [74]. Extending the analogy to active matter, we might

expect that changes to “local rules”– e.g. changing the steric interactions between

particles due to shape– might lead to different universality classes as well.

6.3 Analysis methods

6.3.1 Normalizing time to account for noise in active systems

In a non-equilibrium process with noise, systems originating from different random

configurations do not phase separate at a uniform absolute time. Typically, phase

separation requires some “nucleation”-type event to facilitate the onset of clustering.
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We use a normalized time θ/θfree to account for the likelihood of these nucleation

events with changes to shape, system density, and active force.

Here, θ is the time it takes for a given particle to ballistically travel its own

diameter, and is only a function of shape and the active driving force. To account for

differences in the system densities (which correspond to the likelihood of “nucleation”-

inducing collisions), we calculate the time for a particle to travel the mean free path,

θfree. From the classic collision theory of reaction kinetics, we can describe the mean

free path (λ) as

λ =
v0t

(2d)(v0t)Φ
=

1

(2d)Φ
(6.1)

where v0 (particle speed) and t (time) cancel out to leave λ a function only of the

shape cross-section, d, and system density, Φ. The time for a particle to travel this

mean free path, then, is:

θfree =
λ

v0

=

(
1

(2d)Φ

)(
1

v0

)
=

1

2dΦv0

(6.2)

We set θ/θfree equal to zero at the point the cluster fraction Nclustered/N > 0.5. The

final time to plot is determined by the time at which the cluster fraction reaches 0.95.

6.4 Mapping continuum active matter behavior with steric

interactions onto a percolation model

We map active systems with shape-induced steric interactions onto a percolation-

like model as outlined in Table 6.1.

However, a key element that we do not have is that of a spanning cluster. In

percolation models, the percolating cluster is one that spans the simulation box from

edge to edge. Instead, we calculate whether the system has phase separated or not,

based on the calculations laid out in Section 4.2.1.
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Value Percolation
Active

systems
Bond/site
occupancy
probability

p Φ
Probability of a “bond”
occurring

System size N or L N

Number of components
in a system that could
be connected through an
event occurring with
probability p/Φ

Largest cluster
fraction

C/N
C/N,

Nclustered/N

Largest cluster remains
the same; however, as
some systems
phase-separate very
quickly, Nclustered/N can
also be a proxy

Normalized time
/ progress

t/N θ/θfree
Time, normalized to the
system’s settings

Table 6.1: Mapping of percolation quantities to active matter system quantities.

Given what may seem to be a fundamental difference between percolation and the

active systems under study here, a natural question might be: why map this onto

percolation at all? We do this in part because other studies have successfully identified

percolation transitions in active systems [73], and in part because directed percolation

is the simplest non-equilibrium universality class we could envision a mapping to

[3]. Additionally, as discussed earlier the local preferential bonding rules of non-

equilibrium percolation models provide a simple analogy for the preferential steric

attraction and “bonding” seen in shapes. This mapping provides a useful framework

for evaluating the critical behavior of active shape systems, if not a perfect match.

6.5 Phase separation behavior

While in the thermodynamic limit P (Φ) is a step function with the jump exactly

located at the phase transition, in finite systems P (Φ) is smoothed around the finite-
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Figure 6.1: Probability of phase separation occurring in systems of varying shape
anisotropy. Probability is calculated as the fraction of replicates at each parameter
combination (Pe=150, and density as indicated) that phase separate for systems of
10,000 particles. This closely resembles P(ρ)/ρ plots for calculating the probability
of a percolating cluster over varying system densities (e.g. [3]).
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a)

b)

Figure 6.2: Evolution of phase separation in the systems under study. The evolution
of the fraction of a system that is in a cluster is plotted versus the normalized time,
θ/θfree, at the minimum system density of phase separation (Φps) a) All studied sys-
tems shown for 10k particle systems. We see two major groups of curve collapse: 5-,
7-, and 8-gons, and 3-, 4-, and 6-gons. b) 3-, 4-, and 6-gons in 40k particle systems
shown. Even at much shorter timescales than (a), we see that these particle systems
display different clustering behavior.
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size percolation point [3]. In Figure 6.1, we plot the fraction of replicates at a given

Φ that have phase-separated– effectively a P (Φ)– for a set Pe = 150. We see that

there is a similarly sharp onset of phase separation to that of a percolation model,

even at the system size of 10k particles shown.

Systems with different percolation models can exhibit quantitatively different time

evolution of phase separation (e.g. [75, 76]). In Figure 6.2a, we see that at the phase

separation density (Φps), behavior across all systems collapses onto a few “universal”

curves. First, evolving over the largest time ranges, is 5/7/8-gons. In such systems,

we see gradual formation of clusters at Φps, which can be thought of as the minimum

probability to reliably get a percolating cluster in a percolation model. The second

group of note is 3- and 4-gons, which near the phase separation transition show rapid

phase-separation, highlighted in Figure 6.2b. While these curves follow a similar tra-

jectory and timescale, they do not completely collapse onto one another, warranting

further investigation. Finally, relative to the first grouping 6-gons cluster rapidly; but

relative to 3- and 4-gons, there is a very gradual increase in the degree of clustering.

We can replicate this behavior at a range of system sizes (2.5k to 40k particles),

suggesting that these behaviors are robust outcomes of system preferences and not

any system size effects. Further, this difference in phase separation behavior suggests

that there are fundamentally different local rules at play in these different types of

systems.

6.6 Calculating the cluster scaling distribution

While the previous section investigated the evolution of clustering, we can also

investigate the steady-state composition of the systems. In Figure 6.3a, we calculate

the cluster size distribution power law exponent, τest from the distribution at Φps.

Technically, only at the percolation point pc will the cluster size distribution be scale

free (ns∼s−τ ). As we do not have a strictly-calculated critical point for the systems
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a)

b)

Figure 6.3: Calculation of the estimated power law exponent, τest, for the cluster
size distribution. a) We see that there are two major groupings of behavior in these
estimates: 5-, 7-, and 8-gons; and 3-, 4-, and 6-gons. The yellow shaded box highlights
τ values below 2, discussed further in the text. b) An example of the quasicritical
scaling behavior discussed in the text.
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under study, it does not necessarily follow that we would observe scale-free behavior.

Despite not being at the critical point, we see power law behavior in all systems

and at a wide variety of system packing fractions, with an example given in Figure

6.3b. Such non-critical power law scaling of cluster size has been reported in other

active matter systems [77–79]. In these other studies, this “quasicritical” behavior

has been seen in the region of parameter space near the order-disorder transition [80].

It has also led some authors to speculate that the onset of collective motion should

be accompanied by a percolation transition. [73]

Additionally, we find our power law behavior falling into the same groupings as

seen in Section 6.5: the group of 5-, 7-, and 8-gons with a τest between 3 and 4, and the

group of 3-, 4-, and 6-gons with a τest of 2 or slightly below. We note that the values of

τ found for the second group are possible for systems with “a cutoff in the maximum

cluster... size” [81]. Indeed, we’ve found such behavior at the phase separation density

at which 3- and 4-gons form an oscillatory phase in their phase separated regime, and

the density at which 6-gons form stable “micro” clusters (Chapter IV). This further

suggests that the quantitatively similar behavior found in these groupings may stem

from fundamentally different interaction patterns and resulting emergent behavior.

6.7 Conclusions

In previous chapters, we have explored the role of particle shape on the emergent

behavior of active particle systems. Here, we proposed mapping active matter near

the order-disorder transition onto a non-equilibrium directed percolation model as a

means of developing a fundamental framework for understanding the general impact

of shape on emergent behavior in non-equilibrium systems. This approach allowed

us to identify distinct curve collapses of cluster formation in the 2D polygon systems

studied. The groupings of these curve collapses (5-, 7-, and 8-gons; 3- and 4-gons;

and 6-gons) mirrors groups with similar densest-packing-facilitated emergent behav-
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iors studied in Chapter IV. This suggests that we may be able to generalize this

structure-driven emergent behavior as a shared universal behavior within groups. We

further explore the critical behavior of these groups and find that the quasicritical

behavior of the cluster scaling distribution predicts the same groups as our curve

collapses. Further work will be needed to confirm the critical exponents, including a

more rigorous finite size scaling approach to identify the critical point of each system.
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CHAPTER VII

Conclusions and Future Outlook

The work presented in this thesis answers fundamental questions about the role

of shape on the phase separation and emergent behavior in active matter systems.

Importantly, these answers raise a number of intriguing questions for the field to

consider. I summarize these conclusions and future questions below.

7.1 Conclusions

In Chapter IV, we use systems of 2D active polygons to systematically investigate

the impact of particle shape on phase separation. We find that phase separation in

such systems is a function of shape, but is not a monotonic function of anisotropy.

That is, we do not find that as the “roundedness” of a shape increases, that the phase

separation density uniformly approaches that of disks. Instead, we find that the phase

separation density is closely tied to the densest packing of the component shape, with

a lack of shear planes and void space in the densest packings leading to lower system

densities of phase separation. We develop a metric of “collision efficiency”, whereby

we can attribute changes to phase separation density due to shape to the ability of

collisions between particles to lead to decreases in particle velocity. We can think of

this efficiency as a determinable scaling coefficient on the change in particle velocity

with local density (dv/dρ) in MIPS [9].
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In Chapter V, we examined one slice of design space at the intersection of sys-

tem design (stoichiometry) and particle design (particle shape, and to a lesser degree

relative size). We demonstrate that this slice of system and particle design space

can yield rich system behavior, and highlight three emergent behaviors not yet re-

ported in active matter: microphase separation of species, stable fluid clusters, and

a three-phase steady state. We quantify the preferential species attraction leading

to the microphase separation as a “steric attraction”, representing the ability of ef-

fective particle interactions due to shape (even in the absence of explicit attraction

terms) to lead to changes in the micro- and macro-scale preferences of a system. We

identify the ability of particles to lead to fluidizer behavior as a consequence of dis-

ruption to stable cluster formation, showing that increased stoichiometric ratios of

the “fluidizer” particles drives shorter cluster lifetimes during the evolution of phase

separation. When such clusters collide, the cluster instabilities can balance out and

lead to a longer-lived stable fluid cluster. Finally, we show that the fluidizer behavior

is a delicate system configuration in that it can also lead to a steady state with coex-

isting gas, fluid, and solid cluster phases. While the equilibrium concept of a “triple

point” does not map onto these non-equilibrium systems, we find it intriguing that

we can replicate the triple-phase characteristics of this equilibrium phenomenon in

non-equilibrium.

Finally, in Chapter VI we explore the fundamental impact of particle shape on the

behavior of active systems by a proposed mapping of active matter near the order-

disorder transition onto a non-equilibrium directed percolation model. In doing so,

we are able to identify distinct curve collapses of cluster formation in the 2D polygon

systems studied, suggesting some degree of shared universal behavior in the groups

with shared collapses. We further explore the critical behavior of these groups and

find that the quasicritical behavior of the cluster scaling distribution predicts the

same groups as our curve collapses. Further work will be needed to confirm the

72



critical exponents, including a more rigorous finite size scaling approach to identify

the critical point of each system.

7.2 Opportunities for future work

7.2.1 Further simulation-based explorations of the active shape design

space

In Chapter V, I explored only a slice of the potential design space for active

particles. Even in such a narrow slice, we found a rich diversity of emergent behavior.

In Chapter II, I presented a framework that could guide further explorations of design

space. Systematic explorations, while casting a wide net, may prove useful studies

for uncovering fundamental rules governing active matter self-assembly. There are

equilibrium analogues for this type of approach, e.g. the exploration of preferred self-

assembly of hard shaped particles [82]. Further wide net approaches in active matter

could provide data for predictive models or development of theoretical descriptors of

the impact of effective inter-particle interactions.

7.2.2 Quantify “temperature” changes due to particle interactions

In a classic equilibrium system, the transition from a fluid to a solid or a gas to

a solid at a constant system pressure would be a temperature-driven transition. One

thrust of theoretical development in active matter is developing a mapping of thermo-

dynamics from active to equilibrium systems, including the concept of temperature

[10, 83]. As active Brownian particles do not exchange kinetic energy, though, such

a mapping is not straightforward (for a descriptive example of this, see Section 7 of

[83]).

We note that in systems with particle shape, such as those studied in this thesis,

a solid dense cluster phase locks out the ability of particles to rotate. In doing
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so, the particles are “frozen” out of their ability to rotate freely, in a manner that

may be quantifiable as a change in “temperature” (quotations used to indicate that

there is not a direct mapping onto our standard equilibrium understanding of such

terms). Such changes are also responsible for the formation of a solid, phase-separated

cluster. We can imagine other systems in which strong effective particle interactions

reduce the ability of particles to reorient freely. While some theories, e.g. “swim

temperature”[84], are mapped as a function of density, none yet account for steric or

similar effective “freezing” interactions.

Such a theory of steric-induced “temperature” change may also be one way of unit-

ing the collision theory arguments developed in Chapter IV and the steric attraction

arguments developed in Chapter V.

7.2.3 Inform experimental design of active particles with tailored behav-

ior through simulation and theory

A challenge in active self-propelled particle systems is that it is not immediately

obvious how one would synthesize, to high precision, some of the possible particle

designs one could envision. However, that we find such rich behavior even in the

simple 2D active polygon models discussed in this thesis should encourage theorists

and experimentalists alike that complex particle design is not necessary to achieve

complex behavior.

The ultimate realization of the theoretical work in active matter, including this

thesis, would be an implementation of an active matter system with tailored emergent

behavior to complete a given task. Currently, much of the work in this vein is focused

in the colloidal robotics community, where the colloidal “robots” or “molecules” are

more complex than the shapes discussed in this thesis [85, 86]. Experimental work

validating the emergent behavior of non-isotropic particles (beyond that investigated

in [17], as an example) even in seemingly simple active particle systems would provide
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a much-needed confirmation of the theoretical work in this area.

While “experimentally realized theory-driven active particle design” remains the

widest goal in this “Future work” section, it also represents the final goal I hope

this thesis builds towards: experimental realization of active particles with targeted

properties.
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[75] Pau Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hung. Acad. Sci, 5:17–61, 1960.

[76] Raissa M. D’Souza and Jan Nagler. Anomalous critical and supercritical phe-
nomena in explosive percolation. Nature Physics, 11(7):531–538, July 2015.
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