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ABSTRACT

This thesis is devoted to the study of two problems in statistics which involve complex data
structure of high heterogeneity or large scale. Heterogeneous data arises when each data sample can
come from a multiplicity of distributions, creating a population distribution that is a finite mixture
of these distributions. The large scale may be due to large data samples, or the large number of
variables related to the samples, or the imagined infinite dimensions in nonparametric or functional
data. In this thesis, we establish theoretical results in both problems, based on techniques from
harmonic analysis, random matrix theory, random geometric graphs, and Stein’s method.

Mixtures of product distributions are a powerful device for learning about heterogeneity within
data populations. In this class of latent structure models, de Finetti’s mixing measure plays the
central role for describing the uncertainty about the latent parameters representing heterogeneity. In
the first part of this thesis posterior contraction theorems for de Finetti’s mixing measure arising
from finite mixtures of product distributions will be established, under the setting the number of
exchangeable sequences of observed variables increases while sequence length(s) may be either
fixed or varied. The role of both the number of sequences and the sequence lengths will be carefully
examined. In order to obtain concrete rates of convergence, a first-order identifiability theory for
finite mixture models and a family of sharp inverse bounds for mixtures of product distributions
will be developed via a harmonic analysis of such latent structure models. This theory is applicable
to broad classes of probability kernels composing the mixture model of product distributions for
both continuous and discrete domain X. Examples of interest include the case the probability kernel
is only weakly identifiable in the sense of [HN16a], the case where the kernel is itself a mixture
distribution as in hierarchical models, and the case the kernel may not have a density with respect to
a dominating measure on an abstract domain X such as Dirichlet processes.

An important problem in large scale inference is the identification of variables that have large
correlations or partial correlations with at least one other variable. Recent work in correlation
screening has yielded breakthroughs in the ultra-high dimensional setting when the sample size n is
fixed and the dimension p→∞ (see [HR12]). Despite these advances, the correlation screening
framework suffers from some serious practical, methodological and theoretical deficiencies. For
instance, theoretical safeguards for partial correlation screening requires that the population co-
variance matrix be block diagonal. This block sparsity assumption is however highly restrictive in

ix



numerous practical applications. As a second example, results for correlation and partial correlation
screening framework requires the estimation of dependence measures or functionals, which can be
highly prohibitive computationally, rendering the framework impractical and unappealing in the
very setting it is designed for. In the second part of this thesis, we propose a unifying approach
to correlation and partial correlation screening which specifically goes beyond the block diagonal
correlation structure, thus yielding a methodology that is suitable for modern applications. By mak-
ing insightful connections to random geometric graphs, total number of highly correlated or partial
correlated variables are shown to have a novel compound Poisson limit, and are obtained for both
the finite p case and when p→∞ . Our approach also obviates the need to estimate dependence
measures rendering the framework readily scalable. The unifying framework also demonstrates an
important duality between correlation and partial correlation screening with important theoretical
and practical consequences.
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CHAPTER 1

Introduction

Twenty-first-century technology and science confront applied mathematicians and statisticians
with complex data that requires geometric perspectives. Heterogeneous data arises when each data
sample can come from a multiplicity of distributions, creating a population distribution that is a
finite mixture of these distributions. The large scale may be due to large data samples, or the large
number of variables related to the samples, or the imagined infinite dimensions in nonparametric or
functional data.

In broad terms, this thesis lies at the intersection of Probability, Geometry and Statistics. More
specifically, this thesis addresses these issues of complex heterogeneity and large scale from
probabilistic and geometric perspectives. From a methodological standpoint, this thesis analyze
models based on nonparametric and graphical statistics, with a particular concern for the issues that
arise in exchangeable data or high dimensional data.

The two topics that are the focus of this thesis are as follows. The first topic is to address
heterogeneous data by the mixture of product distribution (exchangeable data), i.e. mixture model
where each component consists of samples from repeated measurements. The second topic ad-
dresses variable screening via thresholding when the variables are of high dimension. These two
problems arise in many practical applications, like Latent Dirichlet Allocation in topic modeling,
and covariance selection in Gaussian graphical models. The problems are challenging since the data
structures are complicated and beyond classical statistical settings: they either involve exchangeable
structures instead of i.i.d. structures or involve extreme high dimensional structures while the
number of samples is finite and fixed. In this thesis, we develop fundamental theoretical results
on parameter estimation and hypothesis testing that requires characterizing the distributions of
statistical quantities of interest. The thesis utilizes diverse proof techniques in harmonic analysis,
random matrix theory, random geometric graphs, and Stein’s method. The common feature of this
thesis is the geometric perspective that guides the analysis and provides intuition for interpreting
our results.
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1.1 Problem Formulations

In this section we present concise (and simplified) problem formulations for the two problems
studied in this thesis, mixture of product distribution and screening in high dimensional data.

1.1.1 Mixture of product distribution

Consider a family of probability distributions {Pθ}θ∈Θ on measurable space (X,A), where θ
is the parameter of the family and Θ ⊂ Rq is the parameter space. For N ∈ N, the N -product
probability family is denoted by {Pθ,N :=

⊗N Pθ}θ∈Θ on (XN ,AN), where AN is the product
sigma algebra. Given a mixing measure G =

∑k
i=1 piδθi ∈ Ek(Θ), the mixture of N -product

distributions induced by G is given by

PG,N =
k∑
i=1

piPθi,N .

Each exchangeable sequence X i
[N ] = (Xi1, . . . , XiN), for i = 1, . . . ,m, is an independent sample

distributed according to PG,N . It is easy to see that the sequence X i
[N ] is exchangeable for each fixed

i. Due to the role they play in the composition of distribution PG,N , we also refer to {Pθ}θ∈Θ as a
family of probability kernels on (X,A). The probability kernel and the number of components k is
known, and the goal is to estimate the mixing proportions pi, and component parameters θi. The
parameters of interest are always encapsulated by a discrete mixing measure G ∈ Ek(Θ), the space
of discrete measures with k distinct support atoms residing in a set Θ ⊂ Rq.

Given m independent sequences of exchangeable observations of equal length N , X i
[N ] =

(Xi1, · · · , XiN) ∈ XN for i = 1, 2, · · · ,m. Each sequence X i
[N ] is assumed to be a sample drawn

from a mixture ofN−product distributions PG,N for some "true" mixing measureG = G0 ∈ Ek0(Θ).
A Bayesian statistician endows upon (Ek0(Θ),B(Ek0(Θ))) a prior distribution Π and obtains the
posterior distribution Π(dG|X1

[N ], . . . , X
m
[N ]) by Bayes’ rule, where B(Ek0(Θ)) is the Borel sigma

algebra w.r.t. W1 distance, the L1 Wassertein distance. We study the asymptotic behavior of this
posterior distribution as the amount of data m×N tend to infinity.

It is also customary to express the above Bayesian model in the following hierarchical fashion:

G ∼ Π, θ1, θ2, · · · , θm|G
i.i.d.∼ G

Xi1, Xi2, · · · , XiN |θi
i.i.d.∼ Pθi for i = 1, · · · ,m.

As above, the m data sequences are denoted by X i
[N ] = (Xi1, Xi2, · · · , XiN) ∈ XN for i =

1, 2, · · · ,m.
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We will show in Chapter 2 that the posterior distribution Π(·|X1
[N ], X

2
[N ], . . . , X

m
[N ]) contracts

around the truth G0, of which the precise meaning will be made clear later, if X i
[N ]

i.i.d.∼ pG0,N and
m→∞.

1.1.2 Screening in high dimensional data

The objective is to reliably extract summary statistics on topological properties of a dependency
graph based on a sample correlation or inverse correlation matrix. Such properties include edges
and vertex degree, among others.

Available is a matrix of multivariate samples

X = [x(1),x(2), · · · ,x(n)]T = [x1,x2, · · · ,xp] ∈ Rn×p, (1.1)

where {x(i)}ni=1 ⊂ Rp are samples from a p-dimensional distribution. The setting is the ultra high
dimensional regime where n is far less than p and the regime that n and p are both finite.

The sample mean is

x̄ =
1

n

n∑
i=1

x(i) =
1

n
XT1

and the sample covariance matrix S is

S =
1

n− 1

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T =
1

n− 1
(X − 1x̄T )T (X − 1x̄T ). (1.2)

The sample correlation matrixR is defined as:

R = diag(S)−
1
2Sdiag(S)−

1
2 , (1.3)

where diag(A) for a matrixA ∈ Rn×n is the diagonal part ofA andB−1/2 for a diagonal matrix
B is a diagonal matrix by raise every diagonal element of B to the power −1/2. Since R might
not be invertible, we defineR† as the Moore-Penrose pseudo-inverse ofR and define the sample
partial correlation matrix P by

P = diag(R†)−
1
2R†diag(R†)−

1
2 . (1.4)

The (partial) correlated graph is obtained by thresholding (P ) R at a certain threshold ρ to
obtain an adjacency matrix of the graph. For δ ≥ 2, let N (R)

Vδ
(N (P )

Vδ
) be the number of variables that

have sample correlation (partial correlation) above threshold ρ or less than −ρ with at least δ other
variables. These variables are connected to at least δ other variables in the graph. For δ = 1, define
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N
(R)
Vδ

(N (P )
Vδ

) to be the twice number of edges in the corresponding graph. The goal is to study the
distribution of the random quantities N (R)

Vδ
(N (P )

Vδ
) in the regime n, p are both finite or the regime

p→∞ while n remains fixed.
We will show in Chapter 3 that their distributions are all approximately a compound Poisson,

where the parameters of the compound Poisson characterized in terms of the parameters of associated
random geometric graphs.

1.2 Challenges and Contributions

In this section we provide the background and challenges for the problems considered in this
thesis. The contribution of this thesis on those two problems is summarized at the end of each
subsection.

1.2.1 Mixture of product distribution

Latent structure models with many observed variables are among the most powerful and widely
used tools in statistics for learning about heterogeneity within data population(s). An important
canonical example of such models is the mixture of product distributions, which may be motivated
by de Finetti’s celebrated theorem for exchangeable sequences of random variables [Ald85, Kal06].
Before the efficiency question can be addressed, one must consider the issue of (classical) identi-
fiability: under what conditions does the data distribution PG,N uniquely identify G? I.e., when
is the map G 7→ PG,N injective? This question has been of great interest to a number of authors
[Tei67, EHN05, HNPE05], with decisive results obtained recently by [AMR09]. Their results are
quite general, and apply to the case where the observed variables X1, . . . , XN are conditionally
independent but not necessarily identically distributed given θ. Here, the condition is in the form of
N ≥ n0, for some natural constant n0 ≥ 1. We shall refer to n0 as (minimal) zero-order identifiable

length, or 0-identifiable length for short (a formal definition will be given later). However, their
results do not apply in our setup where the data are conditionally independent and identically
distributed.

Partial answers to estimating the mixing measure G were obtained in several settings of mixtures
of product distributions. [HT00] proposed to discretize data so that the model in consideration
becomes a finite mixture of product of identical binomial or multinomial distributions, but they
only consider estimate the mixing propositions pi. Restricting to this class of models, a maximum
likelihood estimator was applied, and a standard asymptotic analysis establishes root-m rate for
mixing proportion estimates. [HZ03, HNPE05] investigated a number of nonparametric estimators
for G, and obtained the root-m convergence rate for both mixing proportion and component
parameters in the setting of k = 2 mixture components under suitable identifiability conditions.
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It seems challenging to extend their method and theory to a more general model setting, e.g.,
k > 2. Moreover, while the role of N on identifiability was discussed, no result on the effect of
N on parameter estimation efficiency seems to be available. Recently, [Ngu16, Ngu15] studied
the posterior contraction behavior of several classes of Bayesian hierarchical model (including
hierarchical Dirichlet processes) under an analogous setting where the sample size is specified by
m sequences of N observations. His approach requires that both m and N tend to infinity and thus
cannot be applied to our present setting where N may be fixed.

In Chapter 2 we shall present a parameter estimation theory for general classes of finite mixtures
of product distributions. An application of this theory will be posterior contraction theorems
established for a standard Bayesian estimation procedure, according to which the de Finetti’s
mixing measure G tends toward the truth G0, as m tends to infinity, under suitable conditions. We
established that as soon as N is sufficiently large, under the Bayesian estimation procedure, the
supporting atoms θi of G converge toward their true values at the rate bounded from above by
(ln(mN)/(mN))1/2. Meanwhile, the mixing probabilities pj converge toward their true values at
the rate bounded by (ln(mN)/m)1/2. Note mN is the total volume of data. In plain terms, we
may say that with finite mixtures of product distributions, the posterior inference of atoms of each
individual mixture component receives the full benefit of "borrowing strength" across sampled
sequences; while the mixing probabilities gain efficiency from only the number of such sequences.
This appears to be the first work in which such a posterior contraction theorem is established for de
Finetti’s mixing measure arising from finite mixtures of product distributions.

1.2.2 Screening in high dimensional data

In Chapter 3 we consider the problem of screening n independent and identically distributed
p-variate samples for variables that have high correlation or high partial correlation with at least
one other variable in the ultra-high dimensional regime when the sample size n ≤ C0 ln p.1 In the
screening framework one applies a threshold to the sample correlation matrix or the sample partial
correlation matrix to detect variables with at least one significant correlation, with the threshold
aiming to separate signal from noise. Correlation and partial correlation screening in ultra-high
dimensions have become increasingly important in many modern applications as the per-sample
cost of collecting high dimensional data is much more costly than per-variable cost. For example, in
biomedical settings the cost of high throughput technology, like oligonucleotide gene microchips
and RNAseq assays is decreasing, while the cost of biological samples is not decreasing at the same
rate [HR15b]. In such situations p is much larger than n.

The ultra-high dimensional regime when n ≤ C0 ln p is very challenging since the number of

1Here C0 is some universal constant satisfying C0 ≥ 1. A “universal constant" or “absolute constant", is a constant
that does not depend on any model parameter.
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samples is insufficient to apply many (if not most) reliable statistical methods. For example, one
way to undertake partial correlation screening is to first estimate the population covariance matrix,
then obtain the inverse, from which a partial correlation matrix can be estimated. However, to get
a reliable estimate of a general covariance matrix, the number of samples n must be at least O(p)

as shown in Section 5.4.3. in [Ver12]. Even if the covariance matrix has a special structure like
sparsity, covariance estimation requires a number of samples of order O(ln p) [RBLZ08].

While estimating the covariance matrix or partial correlation matrix is challenging in ultra-high
dimensions, recent work has shown that it is possible to accurately test the number of highly (partial)
correlated variables under a false positive probability; in particular the probability that a variable is
highly (partially) correlated with at least one other variable [HR11, HR12]. In this thesis we show
that the sparsity assumptions in [HR11, HR12] are overly restrictive and can be relaxed. We also
correct an error in the proof of one of the theorems in [HR12].

In Chapter 3 we propose a novel unifying framework for correlation and partial correlation
screening that delivers a practical and scalable methodology in the ultra-high dimensional regime,
which is simultaneously armed with theoretical safeguards. By making novel and insightful
connections to random pseudo geometric graphs we demonstrate that the distribution of the number
of discoveries tends to a compound Poisson limit. Specifically, let R, P denote respectively the
sample correlation matrix and sample partial correlation matrix. N (R)

Vδ
(N (P )

Vδ
) be the number of

variables that have sample correlation (partial correlation) above threshold ρ or less than −ρ with at
least δ other variables. We show that, under some sparse assumption on the covariance matrix, as
long as the threshold ρ is chosen to satisfy that (1− ρ)(n−2)/2p1+1/δ converges to some constant,

N
(k)
Vδ
→ compound Poisson in distribution

as p→∞ for fixed n and δ, where k ∈ {R,P } ∈ Rp×p. The parameters of the compound Poisson
are also characterized and they are in terms of random geometric graphs. We further established
that when n or δ are suitably large, the limit compound Poisson is approximately a Poisson. To the
best of our knowledge, such a novel limit has not previously appeared in the correlation screening
setting.

1.3 Geometric Observations

In this section some key geometric observations that underpin the results in this thesis are
discussed. All these observations involve geometric perspectives and are not only conceptually
important but also play important roles in the proofs.
Mixture of product distribution (Chapter 2) The parameters of interest are {{(pi, θi)}ki=1|

∑
i pi =

1, θi ∈ Θ}. There are many different ways to represent such parameters, and the advantage to
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represent it as a discrete measure G =
∑k

i=1 piδθi as in Section 1.1.1 is to use the Wasserstein
distance, which is well studied and convergence in Wasserstein distance automatically implies
convergence in pi and θi. The key to proving the posterior contraction rate is to study the geometric
property of the map from the space of mixing measure to space of mixture density. More specifically,
by showing the map is coercive the convergence of mixture density implies convergence of mixing
measures. That is, the heart of the matter lies in the establishment of a collection of general inverse

bounds, the type of inequalities of the form

DN(G,G0) ≤ C(G0)V (PG,N , PG0,N),

where DN(G,G0) is a variant distance of Wasserstein distance to be discussed in detail in Section
2.3.

Note that (2.2) provides an upper bound on distance DN of mixing measures in terms of the
variational distance between the corresponding mixture of N -product distributions. Inequalities of
this type allow one to transfer the convergence (and learning rates) of a data population’s distribution
into that of the corresponding distribution’s parameters (therefore the term "inverse bounds").

Screening in high dimensional data (Chapter 3) One may decompose the sample correlation
matrixR = UTU , whereU ∈ Rn−1×p satisfies: ui, the i-th column ofU , has unit Euclidean norm
for each 1 ≤ i ≤ p. Then the event that the absolute value of the sample correlation between the
i-th variable and the j-th variable is above the threshold ρ, is

{|Rij| ≥ ρ} = {‖ui − uj‖2 ≤
√

2(1− ρ)} ∪ {‖ui + uj‖2 ≤
√

2(1− ρ)}.

If one identifies there is an edge between the i-th variable (or ui) and the j-th variable (or uj)
when the above event holds, then the random graph with vertexes {ui}pi=1 are similar to a random
Euclidean geometric graph [Pen03]. A key difference, however, is that the vertices of this random
graph are not independent and they lie on the unit sphere instead of the whole Euclidean space, a
case not covered by the classical Euclidean geometric graph theory of [Pen03]. This observation
motives the conclusion and the proof for results on NR

Vδ
, the number of highly correlated variables.

1.4 Outline of the thesis and list of relevant publications/preprints

In Chapter 2, parameters estimation in the mixture of product distribution is discussed and is
based on the following paper.

• Yun Wei, XuanLong Nguyen, Convergence of de Finetti’s mixing measure in latent structure
models for observed exchangeable sequences, Annals of Statistics (under review), 103 pages,
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2020

In Chapter 3, variable screening in high dimensional data is discussed and is based on the
following paper.

• Yun Wei, Alfred Hero and Bala Rajaratnam, Correlation and partial correlation screening in
dimension with relaxed sparsity conditions, to be submitted to Annals of Statistics, 70+ pages

Chapter 2 and Chapter 3 are both self-contained, and the readers can read the two chapters in
arbitrary order.
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CHAPTER 2

Mixture of Product Distribution

2.1 Introduction

Latent structure models with many observed variables are among the most powerful and widely
used tools in statistics for learning about heterogeneity within data population(s). An important
canonical example of such models is the mixture of product distributions, which may be motivated
by de Finetti’s celebrated theorem for exchangeable sequences of random variables [Ald85, Kal06].
The theorem of de Finetti states roughly that if X1, X2, . . . is an infinite exchangeable sequence
of random variables defined in a measure space (X,A), then there exists a random variable θ in
some space Θ, where θ is distributed according to a probability measure G, such that X1, X2, . . .

are conditionally i.i.d. given θ. Denote by Pθ the conditional distribution of Xi given θ, we may
express the joint distribution of a N -sequence X[N ] := (X1, . . . , XN), for any N ≥ 1, as a mixture
of product distributions in the following sense: for any A1, . . . , AN ⊂ A,

P (X1 ∈ A1, . . . , XN ∈ AN) =

∫ N∏
n=1

Pθ(Xn ∈ An)G(dθ).

The probability measure G is also known as de Finetti’s mixing measure for the exchangeable
sequence. It captures the uncertainty about the latent variable θ, which describes the mechanism
according to which the sequence (Xi)i is generated via Pθ. In other words, the de Finetti’s mixing
measure G can be seen as representing the heterogeneity within the data populations observed
via sequences X[N ]. A statistician typically makes some assumption about the family {Pθ}θ∈Θ,
and proceeds to draw inference about the nature of heterogeneity represented by G based on data
samples X[N ].

In order to obtain an estimate of mixing measure G, one needs multiple copies of the ex-
changeable sequences X[N ]. As mentioned, some assumption will be required of the probability
distributions Pθ, as well as the mixing measure G. Throughout this chapter it is assumed that the
map θ 7→ Pθ is injective. Moreover, we will confine ourselves to the setting of exact-fitted finite
mixtures, i.e., G is assumed to be an element of Ek(Θ), the space of discrete measures with k distinct
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supporting atoms on Θ, where Θ is a subset of Rq. Accordingly, we may express G =
∑k

j=1 pjδθj .
We may write the distribution for X[N ] in the following form, where we include the subscripts G
and N to signify their roles:

PG,N(X1 ∈ A1, . . . , XN ∈ AN) =
k∑
j=1

pj

{ N∏
n=1

Pθj(Xn ∈ An)

}
. (2.1)

Note that when N = 1, we are reduced to the standard formulation of a mixture distribution
PG := PG,1 =

∑k
j=1 pjPθj . Due to the role they play in the composition of distribution PG,N ,

we also refer to {Pθ}θ∈Θ as a family of probability kernels on X. Given m independent copies
of exchange sequences {X i

[Ni]
}mi=1 each of which is respectively distributed according to PG,Ni

given in (2.1), where Ni denotes the possibly variable length of the i-th sequence. The primary
question of interest in this chapter is the efficiency of the estimation of the true mixing measure
G = G0 ∈ Ek(Θ), for some known k = k0, as sample size (m,N1, . . . , Nm) increases in a certain
sense.

Before the efficiency question can be addressed, one must consider the issue of (classical)
identifiability: under what conditions does the data distribution PG,N uniquely identify G? I.e.,
when is the mapG 7→ PG,N injective? This question has occupied the interest of a number of authors
[Tei67, EHN05, HNPE05], with decisive results obtained recently by [AMR09]. Their results are
quite general, and apply to the case where the observed variables X1, . . . , XN are conditionally
independent but not necessarily identically distributed given θ. Here, the condition is in the form of
N ≥ n0, for some natural constant n0 ≥ 1. We shall refer to n0 as (minimal) zero-order identifiable

length, or 0-identifiable length for short (a formal definition will be given later). In particular,
when X = Rd, for some d ≥ 1, suppose the family of probability measures {Pθ}θ∈Θ are linearly
independent and absolutely continuous with respect to the Lebesgue measure on X, then PG,N
uniquely identifies G as soon as N ≥ 3. (Note that in the conditional i.i.d. setting, the linear
independence condition immediately entails that identifiability holds for all N ≥ 1. However, the
situation is unclear when the linear independence condition is not satisfied). When domain X is a
finite set, then identifiability is achieved up to a Lebesgue measure-zero set of θ ∈ Θ, provided that
N ≥ d2 log|X| k0e+ 1.

Drawing from existing identifiability results, it is quite apparent that the observed sequence
length N (or more precisely, N1, . . . , Nm, in case of variable length sequences) must play a crucial
role in the estimation of mixing measure G, in addition to the number m of sequences. Moreover, it
is also quite clear that in order to have a consistent estimate of G = G0, the number of sequences m
must tend to infinity, whereas N may be allowed to be fixed. It remains an open question as to the
precise roles m and N play in estimating G and on the different types of mixing parameters: the
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component parameters (atoms θj) and mixing proportions (probability mass pj), and the rates of
convergence of a given estimation procedure.

Partial answers to this question were obtained in several settings of mixtures of product distri-
butions. [HT00] proposed to discretize data so that the model in consideration becomes a finite
mixture of product of identical binomial or multinomial distributions. Restricting to this class of
models, a maximum likelihood estimator was applied, and a standard asymptotic analysis establishes
root-m rate for mixing proportion estimates. [HZ03, HNPE05] investigated a number of nonpara-
metric estimators for G, and obtained the root-m convergence rate for both mixing proportion and
component parameters in the setting of k = 2 mixture components under suitable identifiability
conditions. It seems challenging to extend their method and theory to a more general model setting,
e.g., k > 2. Moreover, while the role of N on identifiability was discussed, no result on the effect
of N on parameter estimation efficiency seems to be available. Recently, [Ngu16, Ngu15] studied
the posterior contraction behavior of several classes of Bayesian hierarchical model (including
hierarchical Dirichlet processes) under an analogous setting where the sample size is specified by
m sequences of N observations. His approach requires that both m and N tend to infinity and thus
cannot be applied to our present setting where N may be fixed.

In this chapter we shall present a parameter estimation theory for general classes of finite
mixtures of product distributions. An application of this theory will be posterior contraction
theorems established for a standard Bayesian estimation procedure, according to which the de
Finetti’s mixing measure G tends toward the truth G0, as m tends to infinity, under suitable
conditions. In a standard Bayesian procedure, the statistician endows the space of parameter Θ

with a prior distribution Π, which is assumed to have compact support in this theorem, and apply
Bayes’ rule to obtain the posterior distribution on Ek0(Θ), to be denoted by Π(dG|{X i

[Ni]
}mi=1). To

anticipate the distinct convergence behaviors for the atoms and probability mass parameters, for any
G,G′ ∈ Ek(Θ) defined by

DN(G,G′) = min
τ∈Sk

k∑
i=1

(
√
N‖θτ(i)− θ′i‖2 + |pτ(i)− p′i|) ∀G =

k∑
i=1

piδθi , G
′ =

k∑
i=1

p′iδθ′i ∈ Ek(Θ),

where Sk denotes all the permutations on the set [k] := {1, 2, . . . , k}. It can be verified that this is a
valid metric in Ek(Θ).

Suppose that Ni = N are fixed for all i. We shall naturally require that the sequence length
N ≥ n0. Moreover, to get fast rate of convergence, we need also N ≥ n1 for some minimal
natural number n1 := n1(G0) ≥ 1. We shall call n1 the minimal first-order identifiable length, or
1-identifiable length for short (a formal definition will be given later). In Theorem 2.6.2, it will be
established that as soon as N ≥ max{n0, n1}, M̄m is any sequence of numbers tending to infinity,
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the posterior probability

Π

(
G ∈ Ek0(Θ) : DN(G,G0) < C(G0)M̄m

√
ln(mN)

m

∣∣∣∣X1
[N ], X

2
[N ], . . . , X

m
[N ]

)
tends to 1 in ⊗mPG0,N -probability as m→∞. In the above display, the constant C(G0) depends
on G0 but is independent of m and N . Expressing this statement more plainly, under the Bayesian
estimation procedure, as long as N exceeds 0- and 1-identifiable lengths, the supporting atoms
of G converge toward their true values at the rate bounded from above by (ln(mN)/(mN))1/2.
Meanwhile, the mixing probabilities pj converge toward their true values at the rate bounded by
(ln(mN)/m)1/2. Note that under additionally stronger identifiability conditions, we may have
n1 = n0 = 1, in which cases it follows that the above claim of posterior contraction rates holds for
N ≥ 1.

In a more realistic setting, for each i = 1, . . . ,m, sequence X i
[Ni]

is of variable length Ni,
which represents the number of repeated measurements for the observed exchangeable sequence.
Assume that {Ni}mi=1 are uniformly bounded from above by an arbitrary unknown constant, a similar
posterior contraction theorem is established (cf. Theorem 2.6.5), where the posterior contraction
rate for the mixing proportions remains upper bounded by m−1/2, up to a logarithmic quantity. On
the other hand, the posterior contraction rate for mixture components’ supporting atoms given by

OP

(√
ln(
∑m

i=1Ni)∑m
i=1 Ni

)
.

Note that the sum
∑m

i=1 Ni represents the full volume of the observed data set. Elaborated further,
as long as miniNi ≥ max{n0, n1} and supiNi <∞, we obtain

Π

(
G ∈ Ek0(Θ) : D∑m

i=1 Ni/m
(G,G0) ≤ C(G0)M̄m

√
ln(
∑m

i=1 Ni)

m

∣∣∣∣X1
[N1], . . . , X

m
[Nm]

)
→ 1

in PG0,N1 ⊗ · · · ⊗ PG0,Nm-probability as m → ∞. Here, constant C(G0) is independent of m,
sequence lengths {Ni}mi=1 and their supremum. In plain terms, we may say that with finite mixtures
of product distributions, the posterior inference of atoms of each individual mixture component
receives the full benefit of "borrowing strength" across sampled sequences; while the mixing
probabilities gain efficiency from only the number of such sequences. This appears to be the first
work in which such a posterior contraction theorem is established for de Finetti’s mixing measure
arising from finite mixtures of product distributions.

The Bayesian learning rates established appear intuitive, given the parameter space Θ ∈ Rq

is of finite dimensions. On the role of m, they are somewhat compatible to the previous partial
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results [HT00, HZ03, HNPE05]. However, we wish to make several brief remarks at this juncture.

• First, even for exact-fitted parametric mixture models, "parametric-like" learning rates of the
form root-m or root-(mN) should not to be taken for granted, because they do not always
hold [HN16a, HN19]. This is due to the fact that the kernel family {Pθ}θ∈Θ may easily violate
assumptions of strong identifiability often required for the root-m rate to take place. In other
words, the kernel family {Pθ} may be only weakly identifiable, resulting in poor learning
rates for a standard mixture, i.e., when N = 1 or N is small.

• Second, the fact that by increasing the observed exchangeable sequence’s length N so that
N ≥ n1 ∨ n0, one may obtain parametric-like learning rates in terms of both N and m is
a remarkable testament of how repeated measurements can help to completely overcome a
latent variable model’s potential pathologies, both parameter non-identifiability by making
N ≥ n0, and parameter estimation inefficiency inherent in a weakly identifiable mixture
model, by making N ≥ n1. For a deeper appreciation of this issue, we will turn to Section 2.2
for a background on identifiability in parameter estimation as investigated in the literature,
which motivates further development in this chapter.

Although the posterior contraction theorems for finite mixtures of product distributions pre-
sented in this chapter are new, such results do not adequately capture the complex behavior of the
convergence of parameters for a finite mixture of N -product distributions. In fact, the heart of the
matter lies in the establishment of a collection of general inverse bounds, the type of inequalities of
the form

DN(G,G0) ≤ C(G0)V (PG,N , PG0,N). (2.2)

Note that (2.2) provides an upper bound on distance DN of mixing measures in terms of the
variational distance between the corresponding mixture of N -product distributions. Inequalities
of this type allow one to transfer the convergence (and learning rates) of a data population’s
distribution into that of the corresponding distribution’s parameters (therefore the term "inverse
bounds"). Several points to highlight are:

• The local nature of (2.2), which may hold only for G residing in a suitably small DN -
neighborhood of G0 whose radius may also depend on G0 and N , while constant C(G0) > 0

depends on G0 but is independent of N . In addition, the bound holds only when N exceeds
threshold n1 ≥ 1, unless further assumptions are imposed. For instance, under a first-order
identifiability condition of Pθ, n1 = 1, so this bound holds for all N ≥ 1 while remaining
local in nature.

• The inverse bounds of the form (2.2) are established without any overt assumption of identifi-
ability. However, they carry striking consequences on both first-order and classical identifia-
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bility, where one can deduce from (2.2) under a compactness condition (cf. Proposition 2.5.1):
using the notation n0(G0) and n1(G0) to denote the dependence of 0- and 1-identifiable
lengths on G0, respectively, we have

sup
G0∈∪k≤k0

Ek(Θ◦)

n0(G0) ≤ sup
G0∈E2k0

(Θ◦)

n1(G0) <∞.

Note that classical identifiability captured by n0 describes a global property of the model
family while first-order identifiablity captured by n1 is local in nature. The connection
between these two concepts is made possible because when the number of exchangeable
variables N gets large, the force of the central limit theorem comes into play to make the
mixture model eventually become identifiable, either in the classical or the first-order sense,
even if the model may not be initially identifiable (when N = 1).

• The established inverse bounds are sharp in a number of ways. For instance, it can be shown
that the quantity N in DN cannot be improved by Dψ(N) for any sequence ψ(N) such that
ψ(N)/N →∞. Quantifying the effects of identifiability conditions on the strengthening of
inverse bounds is a constant theme threading through the chapter.

• These inverse bounds hold for very broad classes of probability kernels {Pθ}θ∈Θ. In particular,
they are established under very mild regularity assumptions on the family of probability kernel
Pθ on X, when either X = Rd, or X is a finite set, or X is an abstract space. A standard but
non-trivial example of our theory is the case the kernels Pθ belong to the exponential families
of distributions. A more unusual example is the case where Pθ is itself a mixture distribution
on X = R. Kernels of this type are rarely examined in theory, partly because when we set
N = 1 a mixture model using such kernels typically would not be parameter-identifiable.
However, such "mixture-distribution" kernels are frequently employed by practitioners of
hierarchical models (i.e., mixtures of mixture distributions). As the inverse bounds entail,
this makes sense since the parameters become strongly identifiable eventually with repeated
exchangeable measurements.

• More generally, inverse bounds are established when Pθ does not necessarily admit a density
with respect to a dominating measure on X. An example considered in the chapter is the case
Pθ represents probability distribution on the space of probability distributions, namely, Pθ
represents (mixtures of) Dirichlet processes. As such, the general inverse bounds are expected
to be useful for models with nonparametric mixture components represented by Pθ, the kind
of models that have attracted much recent attention, e.g., [TJBB06, RDG08, CLOP19].

The above highlights summarize how the inverse bounds obtained in Section 2.4 and Section 2.5
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play the central role in this work. They help to deepen our understanding of the questions of
parameter identifiability and provide detailed information about the convergence behavior of
parameter estimation. In addition to an asymptotic analysis of Bayesian estimation for mixtures of
product distributions that will be carried out in this chapter, such inverse bounds may also be useful
for deriving rates of convergence for non-Bayesian parameter estimation procedures, including
maximum likelihood estimation and distance based estimation methods. The proofs of these bounds
contain novel techniques and insights that may be of independent interest. An overview of the proof
will be given in Section 2.2.

The rest of the chapter will proceed as follows. Section 2.2 presents additional related work in
the literature and a high-level overview of our approach and techniques. Section 2.3 prepares the
reader with basic setups and several useful concepts of distances on space of mixing measures that
arise in mixtures of product distributions. Section 2.4 is a self-contained treatment of first-order
identifiability theory for finite mixture models, leading to several new results that are useful for
subsequent developments. Section 2.5 presents inverse bounds for broad classes of finite mixtures
of product distributions, along with specific examples. An immediate application of these bounds
are posterior contraction theorems for de Finetti’s mixing measures, the main focus of Section 2.6.
Section 2.7 gives several technical results demonstrating the sharpness of the established inverse
bounds, and which allow to derive minimax lower bounds for estimation procedures of de Finetti’s
mixing parameters. Particular examples of interest for the inverse bounds established in Section 2.5
include the case the probability kernel Pθ is itself a mixture distribution on X = R, and the case
Pθ is a mixture of Dirichlet processes. These examples require development of new tools and are
deferred to Section 2.8. Finally, (most) proofs of all theorems and lemmas will be provided from
Section 2.9 to Section 2.16.
Notation For any probability measure P and Q on measure space (X,A) with densities respec-
tively p and q with respect to some base measure µ, the variational distance between them is
V (P,Q) = supA∈A |P (A) − Q(A)| =

∫
X

1
2
|p(x) − q(x)|dµ. The Hellinger distance is given

by h(P,Q) =
(∫

X
1
2
|
√
p(x)−

√
q(x)|2dµ

) 1
2
. The Kullback-Leibler divergence of Q from P is

K(p, q) =
∫
X
p(x) ln p(x)

q(x)
dµ. Note that when a probability measure, say P or PG, admits a density

with respect to a dominating measure, we shall use the lower case to denote such density, say p or
pG, respectively. B(·) denotes the Borel sigma algebra on the corresponding space. A measurable
set A ∈ A is µ-positive if µ(A) > 0; is µ-negligible if µ(A) = 0. Write P ⊗Q to be the product
measure of P and Q and ⊗mP for the n-fold product of P .

For any vector x ∈ Rd, it is a column vector with its i-th coordinate denoted by x(i). The inner
product between two vectors a and b is denoted by aT b or 〈a, b〉. ‖ · ‖2 for a vector represents its
Euclidean distance to the origin. ‖ · ‖2, ‖ · ‖F for a matrix are respectively its spectral norm and
Frobenius norm.
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The gradient of a function f(x) at x0 is ∇f(x0) = ∇f(x)|x=x0 . Similar rules apply to partial
derivatives or higher order derivatives of a function. The bold i denotes the imaginary number. The
maximum of two real numbers a, b is denoted by max{a, b} or a ∨ b; their minimum is denoted by
min{a, b} or a ∧ b.

In the presentation of inequality bounds and proofs, C(·), c(·) are positive finite constants
depending only on its parameter and may differ from line to line. Write a . b if a ≤ cb for some
universal constant c; write a .ξ b if a ≤ c(ξ)b. Write a � b if a . b and b . a; write a�ξb (or

a
ξ
� b) if a .ξ b and b .ξ a.

2.2 Background and overview

2.2.1 First-order identifiability and inverse bounds

In order to shed light on the convergence behavior of model parameters as data sample size
increases, stronger forms of identifiability conditions shall be required of the family of probability
kernels Pθ. For finite mixture models, such conditions are often stated in terms of a suitable
derivative of Pθ with respect to parameter θ, and the linear independence of such derivatives as θ
varies in Θ . The impacts of such identifiablity conditions, or the lack thereof, on the convergence
of parameter estimation can be quite delicate. Specifically, let X = Rd and fix N = 1, so we
have PG =

∑k
j=1 pjPθj . Assume that Pθ admits a density function f(·|θ) with respect to Lebesgue

measure on Rd, and for all x ∈ Rd, f(·|θ) is differentiable with respect to θ; moreover the combined
collection of functions {f(·|θ)}θ∈Θ and {∇f(·|θ)}θ∈Θ are linearly independent. This type of
condition, which concerns linear independence of the first derivatives of the likelihood functions
with respect to parameter θ, shall be generically referred to as first-order identifiability condition
of the probability kernel family {Pθ}θ∈Θ. A version of first-order identifiablity condition was
investigated by [HN16b], who showed that their condition will be sufficient for establishing an
inverse bound for the form

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

W1(G,G0)
> 0. (2.3)

where W1 denotes the first-order Wasserstein distance metric on Ek0(Θ). The infimum limit
quantifier should help to clarify somewhat the local nature of the inverse bound (2.2) mentioned
earlier. The development of this local inverse bound and its variants plays the fundamental role
in the analysis of parameter estimation with finite mixtures in a variety of settings by several
authors, where stronger forms of identifiability conditions based on higher order derivatives may
be required [Che95, Ngu13, RM11, HN16b, HN16a, HK18, HN19]. In addition, [Ngu13, Ngu16]
studied inverse bounds of this type for infinite mixture and hierarchical models.
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As noted by [HN16b], for exact-fitted setting of mixtures, i.e., the number of mixture components
k = k0 is known, conditions based on only first-order derivatives of Pθ will suffice. Under a suitable
first-order identifiability condition based on linear independence of {f(·|θ),∇θf(·|θ)}θ∈Θ, along
with several additional regularity conditions, the mixing measure G = G0 may be estimated via
m-i.i.d. sample (X1

1 , . . . , X
m
1 ) at the parametric rate of convergence m−1/2, due to (2.3) and the

fact that the data population density pG0 is typically estimated at the same parametric rate. However,
first-order identifiability may not be satisfied, as is the case of two-parameter Gamma kernel,
or three-parameter skewnormal kernel, following from the fact that these kernels are governed
by certain partial differential equations. In such situations, not only does the resulting Fisher
information matrix of the mixture model become singular, the singularity structure of the matrix
can be extremely complex — an in-depth treatment of weakly identifiable mixture models can
be found in [HN19]. Briefly speaking, in such situations (2.3) may not hold, the rate m−1/2 may
not be achieved [HN16a, HN19]. In particular, in the case of skewnormal kernels, extremely slow
rates of convergence for the component parameters θj (e.g., m−1/4,m−1/6,m−1/8 and so on) may
be established depending on the actual parameter values of the true G0 for a standard Bayesian
estimation or maximum estimation procedure [HN19]. It remains unknown whether it is possible
to devise an estimation procedure to achieve the parametric rate of convergence m−1/2 when the
finite mixture model is only weakly identifiable, i.e., when first-order identifiability condition fails.

In Section 2.4 we shall revisit the described first-order identifiability notions, and then present
considerable improvements upon the existing theory and deliver several novel results. First, we iden-
tify a tightened set of conditions concerning linear independence of f(x|θ) and∇θf(x|θ) according
to which the inverse bound (2.2) holds. This set of conditions turns out to be substantially weaker
than the identifiability condition of [HN16b], most notably by requiring f(x|θ) be differentiable
with respect to θ only for x in a subset of X with positive measure. Our weaker notion of first-order
identifiability allows us to broaden the scope of probability kernels for which the inverse bound (2.3)
continues to apply (cf. Lemma 2.4.2). Second, in a precise sense we show that this notion is in
fact necessary for (2.3) to hold (cf. Lemma 2.4.4), giving us an arguably complete characterization
of first-order identifiability and its relations to the parametric learning rate for model parameters.
Among other new results, it is worth mentioning that when the kernel family {Pθ}θ∈Θ belongs to
an exponential family of distribution on X, there is a remarkable equivalence among our notion of
first-order identifiability condition and the inverse bound of the form (2.3), and the inverse bound in
which variational distance V is replaced by Hellinger distance h (cf. Lemma 2.4.16).

Turning our interest to finite mixtures of product distributions, a key question is on the effect of
number N of repeated measurements in overcoming weak identifiability (e.g., the violation of first-
order identifiability). One way to formally define the first-order identifiable length (1-identifiable
length) n1 = n1(G0) is to make it the minimal natural number such that the following inverse bound
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holds for any N ≥ n1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

W1(G,G0)
> 0. (2.4)

The key question is whether (finite) 1-identifiable length exists, and how can we characterize it. The
significance of this concept is that one can achieve first-order identifiability by allowing at least
N ≥ n1 repeated measurements and obtain the m−1/2 learning rate for the mixing measure. In fact,
the component parameters can be learned at the rate (mN)−1/2, the square root of the full volume
of exchangeable data (modulo a logarithmic term). The resolution of the question of existence and
characterization of n1 leads us establish a collection inverse bounds involving mixtures of product
distributions that we will describe next. Moreover, such inverse bounds are essential in deriving
learning rates for mixing measure G from a collection of exchangeable sequences of observations.

2.2.2 General approach and techniques

For finite mixtures of N -product distributions, for N ≥ 1, the precise expression for the inverse
bound that we aim to establish will be of the form: under certain conditions of the probability kernel
{Pθ}θ∈Θ: for a given G0 ∈ Ek0(Θ◦), there holds

lim inf
N→∞

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
> 0. (2.5)

Compared to inverse bound (2.3) for a standard finite mixture, the double infimum limits reveals
the challenge for analyzing mixtures of N -product distributions; they express the delicate nature of
the inverse bound informally described via (2.2). Moreover, (2.5) entails that n1 defined by (2.4)
exists.

Inverse bound (2.5) will be established for broad classes of kernel Pθ and it can be shown
that this bound is sharp. Among the settings of kernel that the bound is applicable, there is a
setting when Pθ belongs to any regular exponential family of distributions. More generally, this
also include the setting where X may be an abstract space and no parametric assumption on Pθ
will be required. Instead, we appeal to a set of mild regularity conditions on the characteristic
function of a push-forward measure produced by a measurable map T acting on the measure space
(X,A). Actually an even stronger bound is established relating to the positivity of a suitable notion
of curvature on the space of mixtures of product distributions (cf. (2.24)). We will see that this
collection of inverse bounds, which are presented in Section 2.5, enables the study for a very broad
range of mixtures of product distributions for exchangeable sequences.

The proof of (2.5) and (2.24) represents the core of the chapter. For simplicity, let us first
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describe the gist of our proof techniques by considering the case kernel Pθ belongs to an exponential
family of distribution on X (cf. Theorem 2.5.7). Suppose the kernel admits a density function pθ(x)

with respect to a dominating measure µ on X. At a high-level, this is a proof of contradiction: if (2.5)
does not hold, then there exists a subsequence {N`}∞`=1 →∞ of natural numbers according to which
there exists a sequence of mixing measures {G`}∞`=1 ⊂ Ek0(Θ)\{G0} such that DN`(G`, G0)→ 0

as `→∞ and the integral form

V (PG`,N` , PG0,N`)

DN`(G`, G0)
=

∫
XN`

∣∣∣∣pG`,N`(x1, . . . , xN`)− pG0,N`(x1, . . . , xN`)

DN`(G`, G0)

∣∣∣∣d⊗N` µ(x1, . . . , xN`)→ 0.

(2.6)
One may be tempted to applying Fatou’s lemma to conclude that the integrand must vanish as
` → ∞, and from that one may hope to derive an apparent contradiction. This is basically the
proof technique of Lemma 2.4.2 for establishing inverse bound (2.3) for finite mixtures, but this
would not work here, because the integration domain’s dimensionality increases with `. Instead
we can exploit the structure of the mixture of N`-product densities in pG`,N` , and rewrite the
integral as an expectation with respect to a suitable random variable of fixed domain. What
comes to our rescue is the central limit theorem, which is applied to a Rq-valued random variable
Z` =

(∑N`
n=1 T (Xn)−N`Eθ0

α
T (X1)

)
/
√
N`, where Eθ0

α
denotes the expectation taken with respect

to the probability distribution Pθ for some suitable θ = θ0
α chosen among the support of true mixing

measure G0. Here T : X→ Rq denotes the sufficient statistic for the exponential family distribution
Pθ(dxn), for each n = 1, . . . , N`.

Continuing with this plan, by a change of measure the integral in (2.6) may be expressed as
the expectation of the form E|Ψ`(Z`)| for some suitable function Ψ` : Rq → R. By exploiting
the structure of the exponential families dictating the form of Ψ`, it is possible to obtain that for
any sequence z` → z, there holds Ψ`(z`) → Ψ(z) for a certain function Ψ : Rq → R. Since
Z` converges in distribution to Z a non-degenerate zero-mean Gaussian random vector in Rq,
it entails that Ψ`(Z`) converges to Ψ(Z) in distribution by a generalized continuous mapping
theorem [WVdV96]. Coupled with a generalized Fatou’s lemma [Bil96], we arrive at E|Ψ(Z)| = 0,
which can be verified as a contradiction.

For the general setting where {Pθ}θ∈Θ is a family of probability on measure space (X,A), the
basic proof structure remains the same, but we can no longer exploit the parametric assumption
on the kernel family Pθ (cf. Theorem 2.5.14). Since the primary object of inference is parameter
θ ∈ Θ ⊂ Rq, the assumptions on the kernel Pθ will center on the existence of a measurable map
T : (X,A)→ (Rs,B(Rs)) for some s ≥ q, and regularity conditions on the push-forward measure
on Rs: Pθ#T := Pθ ◦ T−1. This measurable map plays the same role as that of sufficient statistic
T when Pθ belongs to the exponential family. The main challenge lies in the analysis of function
Ψ` described in the previous paragraph. It is here that the power of Fourier analysis is brought
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to bear on the analysis of Ψ` and the expectation Eθ0
α
Ψ`(Z`). By the Fourier inversion theorem,

Ψ` may be expressed entirely in terms of the characteristic function of the push-forward measure
Pθ#T . Provided regularity conditions on such characteristic function hold, one is able to establish
the convergence of Ψ` toward a certain function Ψ : Rs → R as before.

We shall provide a variety of examples demonstrating the broad applicability of Theorem 2.5.14,
focusing on the cases Pθ does not belong to an exponential family of distributions. In some cases,
checking for the existence of map T is straightforward. When Pθ is a complex object, in particular,
when Pθ is itself a mixture distribution, this requires substantial work, as should be expected. In this
example, the burden of checking the applicability of Theorem 2.5.14 lies primarily in evaluating
certain oscillatory integrals composed of the map T in question. Tools from harmonic analysis
of oscillatory integrals will be developed for such a purpose and presented in Section 2.8. We
hope that the tools developed here present a useful stepping stone toward a more satisfactory
asymptotic treatment of complex hierarchical models (models that may be viewed as mixtures of
mixtures of distributions, e.g. [TJBB06, RDG08, Ngu16, CLOP19]), which have received broad
and increasingly deepened attention in the literature.

2.3 Preliminaries

We shall start by setting up basic notions required for the analysis of mixtures of product
distributions. Throughout this chapter the exchangeable data sequences are denoted by X i

[Ni]
:=

(X i
1, . . . , X

i
Ni

) for i = 1, . . . ,m, while Ni denotes the length of sequence X i
[Ni]

. For ease of
presentation, for now, we shall assume that Ni = N for all i. Later on we will allow the observed
exchangeable sequences to be of variable lengths. These sequences are composed of elements
in a measurable space (X,A). Examples include X = Rd, X is a discrete space, X is a space of
measures. Regardless, the parameters of interest are always encapsulated by a discrete mixing
measure G ∈ Ek(Θ), the space of discrete measures with k distinct support atoms residing in a set
Θ ⊂ Rq.

The linkage between parameters of interest, i.e., the mixing measure G, and the observed data
sequences is achieved via the mixture of product distributions that we now define. Consider a family
of probability distributions {Pθ}θ∈Θ on measurable space (X,A), where θ is the parameter of the
family and Θ ⊂ Rq is the parameter space. For N ∈ N, the N -product probability family is denoted
by {Pθ,N :=

⊗N Pθ}θ∈Θ on (XN ,AN), where AN is the product sigma algebra. Given a mixing
measure G =

∑k
i=1 piδθi ∈ Ek(Θ), the mixture of N -product distributions induced by G is given by

PG,N =
k∑
i=1

piPθi,N .
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Each exchangeable sequence X i
[N ] = (X i

1, . . . , X
i
N), for i = 1, . . . ,m, is an independent sample

distributed according to PG,N . Due to the role they play in the composition of distribution PG,N , we
also refer to {Pθ}θ∈Θ as a family of probability kernels on (X,A).

In order to quantify the convergence of mixing measures arising in mixture models, an useful
device is a suitably defined optimal transport distance [Ngu13, Ngu11]. Consider the Wasserstein-p
distance w.r.t. distance dθ on Θ: ∀G =

∑k
i=1 piδθi , G

′ =
∑k′

i=1 p
′
iδθ′i , define

Wp(G,G
′; dθ) =

(
min
q

k∑
i=1

k′∑
j=1

qijd
p
θ(θi, θ

′
j)

)1/p

, (2.7)

where the infimum is taken over all joint probability distributions q on [k]× [k′] such that, when
expressing q as a k×k′ matrix, the marginal constraints hold:

∑k′

j=1 qij = pi and
∑k

i=1 qij = p′j . For
the special case when dθ is the Euclidean distance, write simplyWp(G,G

′) instead ofWp(G,G
′; dθ).

Write G`
Wp→ G if G` converges to G under the Wp distance w.r.t. the Euclidean distance on Θ.

We will see in this chapter that for mixing measures arising in mixtures of N -product dis-
tributions, a more useful notion is the following. For any G =

∑k
i=1 piδθi ∈ Ek(Θ) and G′ =∑k

i=1 p
′
iδθ′i ∈ Ek(Θ), define

DN(G,G′) = min
τ∈Sk

k∑
i=1

(
√
N‖θτ(i) − θ′i‖2 + |pτ(i) − p′i|)

where Sk denote all the permutations on the set [k].
It is simple to verify that DN(·, ·) is a valid metric on Ek(Θ) for each N and relate it to a suitable

optimal transport distance metric. Indeed, G =
∑k

i=1 piδθi ∈ Ek(Θ), due to the permutations
invariance of its atoms, can be identified as a set {(θi, pi) : 1 ≤ i ≤ k}, which can further be
identified as G̃ =

∑k
i=1

1
k
δ(θi,pi) ∈ Ek(Θ× R). Formally, we define a map Ek(Θ)→ Ek(Θ× R) by

G =
k∑
i=1

piδθi 7→ G̃ =
k∑
i=1

1

k
δ(θi,pi) ∈ Ek(Θ× R). (2.8)

Now, endow a metric MN on Θ×R defined by MN((θ, p), (θ′, p′)) =
√
N‖θ− θ′‖2 + |p− p′| and

note the following fact.

Lemma 2.3.1. For any G =
∑k

i=1
1
k
δθi , G

′ =
∑k

i=1
1
k
δθ′i ∈ Ek(Θ) and any distance dθ on Θ,

W p
p (G,G′; dθ) = min

τ∈Sk

1

k

k∑
i=1

dpθ(θi, θ
′
τ(i)).
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A proof of the preceding lemma is available as Proposition 2 in [Ngu11]. Apply Lemma 2.3.1
with Θ, dθ replaced respectively by Θ×R and MN , then for any G,G′ ∈ Ek(Θ), W1(G̃, G̃′;MN) =
1
k
DN(G,G′), which validates that DN is indeed a distance on Ek(Θ), and moreover it does not

depend on the specific representations of G and G′.
The next lemma establishes the relationship between DN and W1 on Ek(Θ).

Lemma 2.3.2. a) A sequence Gn ∈ Ek(Θ) converges to G0 ∈ Ek(Θ) under Wp if and only if

Gn converges to G0 under DN . That is, Wp and DN generate the same topology.

b) Let Θ be bounded. Then W1(G,G′) ≤ max
{

1, diam(Θ)
2

}
D1(G,G′) for any G,G′ ∈ Ek(Θ).

More generally for any G =
∑k

i=1 piδθi and G′ =
∑k

i=1 p
′
iδθ′i ,

W p
p (G,G′) ≤ max

{
1,

diamp(Θ)

2

}
min
τ∈Sk

k∑
i=1

(
‖θτ(i) − θ′i‖

p
2 + |pτ(i) − p′i|

)
.

c) Suppose Θ◦ is not empty. Then inf
G,G′∈Ek(Θ)

W1(G,G′)
D1(G,G′)

= 0.

d) Fix G0 ∈ Ek(Θ). Then lim inf
G
W1→G0

G∈Ek(Θ)

W1(G,G0)
D1(G,G0)

> 0 and lim inf
G
W1→G0

G∈Ek(Θ)

D1(G,G0)
W1(G,G0)

> 0. That is, in a

neighborhood of G0 in Ek(Θ), D1(G,G0) �G0 W1(G,G0).

e) Fix G0 ∈ Ek(Θ) and suppose Θ is bounded. Then W1(G,G0) ≥ C(G0, diam(Θ))D1(G,G0)

for any G ∈ Ek(Θ), where C(G0, diam(Θ)) is a constant that depends on G0 and diam(Θ).

See Section 2.9 for a proof. We see that W1 and D1 generate the same topology on Ek(Θ),
and they are equivalent in the sense that they differ from each other by only a constant factor
while fixing one argument. The benefit of Wp is that it is defined on

⋃∞
k=1 Ek(Θ) while DN is only

defined Ek(Θ) for each k since its definition requires the two arguments has the same number of
atoms. The benefit of using DN is that it allows us to quantify the distinct convergence behavior for
atoms and probability mass, by placing different factors (or even different powers, cf.(2.17)) on the
atoms and the probability mass, while Wp fails to do so. For example, one may tempt to consider
W p
p (G,G′; dθ) with dθ(θ, θ′) =

√
N‖θ − θ′‖2 to put a

√
N factor on the atoms but it will not work

as illustrated by the following example.

Example 2.3.3. ConsiderG1 = p1
1δθ1 +p1

2δθ2 andG2 = p2
1δθ1 +p2

2δθ2 ∈ E2(Θ) with p1
1 6= p2

1. When
N is sufficiently large, DN(G1, G2) = |p1

1− p2
1|+ |p1

2− p2
2|, a constant independent of N . But with

dθ being Euclidean distance multiplied by
√
N

W p
p (G1, G2; dθ)

22



= min
q

(q12 + q21)
(√

N‖θ1 − θ2‖2

)p
=
(√

N‖θ1 − θ2‖2

)p 1

2

(
|p1

1 − p2
1|+ |p1

2 − p2
2|
)
,

where q is a coupling as in (2.7). SoWp(G1, G2; dθ) =
√
N‖θ1−θ2‖2

(
1
2
(|p1

1 − p2
1|+ |p1

2 − p2
2|)
)1/p,

which increases to∞ when N →∞. Even G1 and G2 has the set of atoms, Wp(G1, G2; dθ) is still
of the order

√
N . Thus, Wp(G1, G2; dθ) couple atoms and probability; in other words it does not

separate them in the way DN does. In the sequel it will be shown that DN is the "right" distance to
use when we develop general inverse bounds of mixtures of product measures. �

2.4 First-order identifiability theory

Let N = 1, a finite mixture of N -product distributions is reduced to a standard finite mixture
of distributions. Mixture components are modeled by a family of probability kernels {Pθ}θ∈Θ on
X, where θ is the parameter of the family and Θ ⊂ Rq is the parameter space. As discussed in
the introduction, throughout the chapter we assume that the map θ 7→ Pθ is injective; it is the
nature of the map G 7→ PG that we are after. Within this section, we further assume that {Pθ}θ∈Θ

has density {f(x|θ)}θ∈Θ w.r.t. a dominating measure µ on (X,A). Combining multiple mixture
components using a mixing measure G on Θ results in the finite mixture distribution, which admits
the following density with respect to µ: pG(x) =

∫
f(x|θ)G(dθ). The goal of this section is to

provide a concise and self-contained treatment of identifiability of finite mixture models. We lay
down basic foundations and present new results that will prove useful for the general theory of
mixtures of product distributions to be developed in the subsequent sections.

2.4.1 Basic theory

The classical identifiability condition posits that PG uniquely identifyG for allG ∈ Ek0(Θ). This
condition is satisfied if the collection of density functions {f(x|θ)}θ∈Θ are linearly independent. In
order to obtain rates of convergence for the model parameters, it is natural to consider the following
condition concerning the first-order derivative of f with respect to θ.

Definition 2.4.1. The family {f(x|θ)}θ∈Θ is ({θi}ki=1,N ) first-order identifiable if

(i) for every x in the µ-positive subset X\N where N ∈ A, f(x|θ) is first-order differentiable
w.r.t. θ at {θi}ki=1; and

(ii) {θi}ki=1 ⊂ Θ◦ is a set of k distinct elements and the system of two equations with variable
(a1, b1, . . . , ak, bk):

k∑
i=1

(
aTi ∇θf(x|θi) + bif(x|θi)

)
= 0, µ− a.e. x ∈ X\N , (2.9a)
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k∑
i=1

bi = 0 (2.9b)

has only the zero solution: bi = 0 ∈ R and ai = 0 ∈ Rq, ∀1 ≤ i ≤ k.

This definition specifies a condition that is weaker than the definition of identifiable in the

first-order in [HN16b] since it only requires f(x|θ) to be differentiable at a finite number of points
{θi}ki=1. Moreover, it does not require f(x|θ) as a function of θ to be differentiable for µ-a.e. x.
Our defined first-order identifiability requires only linear independence between the density and its
derivative w.r.t. the parameter over the constraints of the coefficients specified by (2.9b). We will
see shortly that in a precise sense that the conditions given Definition 2.4.1 are also necessary.

The significance of first-order identifiability conditions is that they entail a collection of inverse
bounds that relate the behavior of some form of distances on mixture densities PG, PG0 to a
distance between corresponding parameters described by D1(G,G0), as G tends toward G0. For
any G0 ∈ Ek0(Θ◦), and define

BW1(G0, r) =

{
G ∈

k0⋃
k=1

Ek(Θ)

∣∣∣∣W1(G,G0) < r

}
. (2.10)

It’s obvious that BW1(G0, r) ⊂ Ek0(Θ) for small r.

Lemma 2.4.2 (Consequence of first-order identifiability). Let G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Sup-

pose that the family {f(x|θ)}θ∈Θ is ({θ0
i }
k0
i=1,N ) first-order identifiable in the sense of Defini-

tion 2.4.1 for some N ∈ A.

a) Then

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
> 0. (2.11)

b) If in addition, for every x in X\N f(x|θ) is continuously differentiable w.r.t. θ in a neighbor-

hood of θ0
i for i ∈ [k0], then

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG, PH)

D1(G,H)
> 0. (2.12)

To put the above claims in context, note that the following inequality holds generally for any

probability kernel family {Pθ}θ∈Θ (even those without a density w.r.t. a dominating measure), cf.
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Lemma 2.7.1:
sup

G0∈Ek0
(Θ)

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
≤ 1/2. (2.13)

Note also that
lim
r→0

inf
G,H∈BW1

(G0,r)
G6=H

V (PG, PH)

D1(G,H)
≤ lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)

for any probability kernel Pθ and for any G0 ∈ Ek0(Θ◦). Then (2.12) immediately entails (2.11).
However, (2.11) is sufficient for translating a learning rate for estimating a population distribution
PG into that of the corresponding mixing measure G. To be concrete, if we are given an m-i.i.d.
sample from a parametric model PG0 , a standard estimation method would yield root-m rate of
convergence for density pG, which means that the corresponding estimate of G admits root-m rate
as well.

Remark 2.4.3. Lemma 2.4.2 is a generalization of the Theorem 3.1 in [HN16b] in several key
features. Firstly, ({θ0

i }
k0
i=1,N ) first-order identifiable assumption in Lemma 2.4.2 is weaker since any

identifiable in the first-order in the sense of [HN16b] implies ({θ0
i }
k0
i=1,N ) first-order identifiable

with N = ∅. Example 2.10.1 gives a specific instance which satisfies the notion of first-order
identifiability specified by Definition 2.4.1 but not the condition specified by [HN16b]. Secondly, it
turns out that uniform Lipschitz assumption in Theorem 3.1 in [HN16b] is redundant and Lemma
2.4.2 does not require it (such Lipschitz condition appears to be still needed for the inverse bounds
on the sup-norm of mixture densities, cf. [HN16b]). Finally, given some additional features of f , the
first-order identifiable notion can be further simplified; such details will be given in Section 2.4.2. �

Proof of Lemma 2.4.2 a): Suppose the lower bound of (2.11) is incorrect. Then there exist G` ∈
Ek0(Θ)\{G0}, G`

W1→ G0 such that

V (pG` , pG0)

D1(G`, G0)
→ 0, as `→∞.

We may write G` =
∑k0

i=1 p
`
iδθ`i such that θ`i → θ0

i and p`i → p0
i as ` → ∞. With subsequences

argument if necessary, we may futher require

θ`i − θ0
i

D1(G`, G0)
→ ai ∈ Rq,

p`i − p0
i

D1(G`, G0)
→ bi ∈ R, ∀1 ≤ i ≤ k0, (2.14)

where bi and the components of ai are in [−1, 1] and
∑k0

i=1 bi = 0. Moreover, D1(G`, G0) =
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∑k0

i=1

(
‖θ`i − θ0

i ‖2 + |p`i − p0
i |
)

for sufficiently large `, which implies

k0∑
i=1

‖ai‖2 +

k0∑
i=1

|bi| = 1.

It also follows that at least one of ai is not 0 ∈ Rq or one of bi is not 0. On the other hand,

0 = lim
`→∞

2V (PG` , PG0)

D1(G`, G0)

≥ lim
`→∞

∫
X\N

∣∣∣∣∣
k0∑
i=1

p`i
f(x|θ`i )− f(x|θ0

i )

D1(G`, G0)
+

k0∑
i=1

f(x|θ0
i )

p`i − p0
i

D1(G`, G0)

∣∣∣∣∣µ(dx)

≥
∫
X\N

lim inf
`→∞

∣∣∣∣∣
k0∑
i=1

p`i
f(x|θ`i )− f(x|θ0

i )

D1(G`, G0)
+

k0∑
i=1

f(x|θ0
i )

p`i − p0
i

D1(G`, G0)

∣∣∣∣∣µ(dx)

=

∫
X\N

∣∣∣∣∣
k0∑
i=1

p0
i a
T
i ∇θf(x|θ0

i ) +

k0∑
i=1

f(x|θ0
i )bi

∣∣∣∣∣µ(dx).

where the second inequality follows from Fatou’s Lemma. Then

k0∑
i=1

p0
i a
T
i ∇θf(x|θ0

i ) +

k0∑
i=1

f(x|θ0
i )bi = 0

for µ − a.e.x ∈ X\N . Thus we find a nonzero solution to (2.9a), (2.9b) with k, θi replaced by
k0, θ

0
i .

However, the last statement contradicts with the definition of ({θ0
i }
k0
i=1,N ) first-order identifi-

able.
Proof of part b) continues in the Appendix.

Lemma 2.4.2 states that under (i) in Definition 2.4.1, the constrained linear independence
between the density and its derivative w.r.t. the parameter (item (ii) in the definition) is sufficient for
(2.11) and (2.12). For a converse result, the next lemma shows (ii) is also necessary provided that
(i) holds for some µ-negligible N and the density f(x|θ) satisfies some regularity condition.

Lemma 2.4.4 (Lack of first-order identifiability). Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Suppose

a) there exists N (that possibly depends on G0) such that µ(N ) = 0 and for every x 6∈ N ,

f(x|θ) is differentiable w.r.t. θ at {θ0
i }
k0
i=1;

b) equation (2.9a) (or equivalently, system of equations (2.9a) and (2.9b)) with k, θi replaced

respectively by k0, θ
0
i has a nonzero solution (a1, b1, . . . , ak0 , bk0);
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c) there exist γ0 > 0 such that ∀ 1 ≤ i ≤ k0, ∀ 0 < ∆ ≤ γ0,∣∣∣∣f(x|θ0
i + ai∆)− f(x|θ0

i )

∆

∣∣∣∣ ≤ f̄(x), µ− a.e. x ∈ X\N ,

where f̄(x) is integrable w.r.t. the measure µ;

then

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG, PH)

D1(G,H)
= lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
= 0. (2.15)

Remark 2.4.5. Condition c) in the preceding lemma is to guarantee the exchange of the order
between limit and the integral and one may replace it by any other similar condition. A byproduct
of this condition is that it renders the constraint (2.9b) redundant (cf. Lemma 2.4.14 b)). While
condition c) is tailored for an application of the dominated convergence theorem in the proof, one
may tailored the following condition for Pratt’s Lemma.

Condition c’): there exist γ0 > 0 such that ∀ 1 ≤ i ≤ k0, ∀ 0 < ∆ < γ0,∣∣∣∣f(x|θ0
i + ai∆)− f(x|θ0

i )

∆

∣∣∣∣ ≤ f̄∆(x), µ− a.e. x ∈ X\N

where f̄∆(x) satisfies lim∆→0+

∫
X\N f̄∆(x)dµ =

∫
X\N lim∆→0+ f̄∆(x)dµ.

Condition c’) is weaker than condition c) since the former reduces to the latter if one let
f̄∆(x) = f̄(x) <∞. �

Combining all the conditions in Lemma 2.4.2 and Lemma 2.4.4, one immediately the following
equivalence between (2.11), (2.12) and the first-order identifiable condition.

Corollary 2.4.6. Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Suppose for µ-a.e. x ∈ X, f(x|θ) as a function

θ is continuously differentiable in a neighborhood of θ0
i for each i ∈ [k0]. Suppose that for any

a ∈ Rq and for each i ∈ [k0] there exists γ(θ0
i , a) > 0 such that for any 0 < ∆ ≤ γ(θ0

i , a),∣∣∣∣f(x|θ0
i + a∆)− f(x|θ0

i )

∆

∣∣∣∣ ≤ f̄∆(x|θ0
i , a) µ− a.e. X (2.16)

where f̄∆(x|θ0
i , a) satifies

lim
∆→0+

∫
X

f̄∆(x|θ0
i , a)dµ =

∫
X

lim
∆→0+

f̄∆(x|θ0
i , a)dµ.

Here f̄∆(x|θi, ai) possibly depends on θ0
i and a. Then (2.12) holds if and only if (2.11) holds if and

only if (2.9a) with k, θi replaced respectively by k0, θ
0
i has only the zero solution.
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The Lemma 2.4.4 presents the consequence of the violation of first-order identifiability. Indeed,
the conclusion (2.15) suggests that D1(G,G0) may vanish at a much slower rate than V (PG, PG0),
i.e., the convergence of parameters representing G may be much slower than the convergence of
data distribution PG. Moreover, the impact may be different for different types of parameters, as
already noted in [HN19]. To explicate the distinct behavior for the mixing probability parameters pi
and for the atoms θi, define the following notion of distance, for any G =

∑k
i=1 piδθi ∈ Ek(Θ) and

G =
∑k

i=1 p
′
iδθ′i ∈ Ek(Θ), r1 ≥ 1 and r2 ≥ 1,

Dr1,r2(G,G′) := min
τ∈Sk

k∑
i=1

(
‖θi − θ′τ(i)‖

r1
2 + |pi − p′τ(i)|r2

)
. (2.17)

Although Dr1,r2 might not be a proper metric, but by Lemma 2.3.2 b) and similar to Lemma 2.3.2
e), for a fixed G0 ∈ Ek(Θ), Dr,1(G0, G) �G0,diam(Θ) W

r
r (G0, G) provided that Θ is bounded, i.e.

there exists c1(G0, diam(Θ)) and c2(diam(Θ)) such that for any G ∈ Ek(Θ)

c1(G0, diam(Θ))Dr,1(G0, G) ≤ W r
r (G0, G) ≤ c2(diam(Θ))Dr,1(G0, G).

The conclusion of Lemma 2.4.4 can be refined further by the following result.

Lemma 2.4.7 (Impacts on different parameters). Suppose all conditions in Lemma 2.4.4 are

satisfied.

a) If at least one of bi is not zero, then for any r ≥ 1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

Dr,1(G,G0)
= lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

W r
r (G,G0)

= 0.

b) If at least one of ai is not zero, then for any r ≥ 1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1,r(G,G0)
= 0.

Next, we highlight the role of condition c) of Lemma 2.4.4 in establishing either inverse bound
(2.11) or (2.15) based on our notion of first-order identifiability. As mentioned, condition c) posits
the existence of an integrable envelope function to ensure the exchange of the limit and integral.
Without this condition, the conclusion (2.15) of Lemma 2.4.4 might not hold. The following two
examples demonstrate the role of c), and serve as examples which are not first-order identifiable but
for which inverse bound (2.11) still holds.
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Example 2.4.8 (Uniform probability kernel). Consider the uniform distribution family f(x|θ) =
1
θ
1(0,θ)(x) with parameter space Θ = (0,∞). This family is defined on X = R with the dominating

measure µ to be the Lebesgue measure. It is easy to see f(x|θ) is differentiable w.r.t. θ at θ 6= x and

∂

∂θ
f(x|θ) = −1

θ
f(x|θ) when θ 6= x.

So f(x|θ) is not first-order identifiable by our definition. Note for any G0 ∈ Ek0(Θ) this family
does not satisfy the assumption c) in Lemma 2.4.4 and hence Lemma 2.4.4 is not applicable. Indeed
by Lemma 2.4.9 this family satisfies (2.11) and (2.12) for any k0 and G0 ∈ Ek0(Θ). �

Lemma 2.4.9. Let f(x|θ) be the uniform distribution family defined in Example 2.4.8. Then for

any G0 ∈ Ek0(Θ◦), inverse bounds (2.11) and (2.12) hold.

Example 2.4.10 (Location-scale exponential distribution kernel). Consider the location-scale ex-
ponential distribution on X = R, with density with respect to µ =Lebesgue measure given
by f(x|ξ, σ) = 1

σ
exp

(
−x−ξ

σ

)
1(ξ,∞)(x) with parameter θ = (ξ, σ) and parameter space Θ =

R× (0,∞). It is easy to see f(x|ξ, σ) is differentiable w.r.t. ξ at ξ 6= x and

∂

∂ξ
f(x|ξ, σ) =

1

σ
f(x|ξ, σ) when ξ 6= x.

So f(x|ξ, σ) is not first-order identifiable. Note for any G0 ∈ Ek0(Θ) this family does not satisfy the
third assumption in Lemma 2.4.4 and hence Lemma 2.4.4 is not applicable. Indeed by Lemma 2.4.11
this family satisfies (2.11) for any k0 and G0 ∈ Ek0(Θ). This lemma also serves as a correction
for an errornous result (Prop. 5.3 of [HN16a]). The mistake in their proof may be attributed to
failing to account for the envelope condition c) that arises due to non-identical support of mixture
components with distinct ξ values. �

Lemma 2.4.11. Let f(x|ξ, σ) be the location-scale exponential distribution defined in Example

2.4.10. Then for any G0 ∈ Ek0(Θ◦), inverse bound (2.11) holds.

In some context it is of interest of establish inverse bounds for Hellinger distance rather than
variational distance on mixture densities, e.g., in the derivation of minimax lower bounds. Since
h ≥ V , the inverse bound (2.11), which holds under first-order identifiability, immediately entails
that

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
> 0. (2.18)
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Similarly, (2.12) entails that

lim
r→0

inf
G,H∈BW1

(G0,r)
G6=H

h(PG, PH)

D1(G,H)
> 0.

For a converse result, the following is the Hellinger counterpart of Lemma 2.4.4.

Lemma 2.4.12. Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Suppose

a) there exists N (that possibly depends on G0) such that µ(N ) = 0 and for every x 6∈ N ,

f(x|θ) is differentiable w.r.t. θ at {θ0
i }
k0
i=1;

b) (2.9a) with k, θi replaced respectively by k0, θ
0
i has a nonzero solution (a1, b1, . . . , ak0 , bk0);

c) the density family has common support, i.e. S = {x ∈ X|f(x|θ) > 0} does not depend on

θ ∈ Θ;

d) there exist γ0 > 0 such that ∀ 1 ≤ i ≤ k0, ∀ 0 < ∆ ≤ γ0,∣∣∣∣∣f(x|θ0
i + ai∆)− f(x|θ0

i )

∆
√
f(x|θ0

i )

∣∣∣∣∣ ≤ f̄(x), µ− a.e. x ∈ S\N ,

where f̄(x) satisfies
∫
S\N f̄

2(x)dµ <∞;

then

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

h(PG, PH)

D1(G,H)
= lim inf

G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
= 0 (2.19)

Remark 2.4.13. Similar to Remark 2.4.5, one may replace the condition d) in the preceding lemma
by the following weaker condition: Condition d’): there exist γ0 > 0 such that ∀ 1 ≤ i ≤ k0,
∀ 0 < ∆ ≤ γ0, ∣∣∣∣∣f(x|θ0

i + ai∆)− f(x|θ0
i )

∆
√
f(x|θ0

i )

∣∣∣∣∣ ≤ f̄∆(x), µ− a.e. x ∈ S\N ,

where f̄∆(x) satisfies lim∆→0+

∫
S\N f̄

2
∆(x)dµ =

∫
S\N lim∆→0+ f̄ 2

∆(x)dµ <∞. �

2.4.2 Finer characterizations

In order to verify if the first-order identifiability condition is satisfied for a given probability
kernel family {f(x|θ)|θ ∈ Θ}, according to Definition 2.4.1 one needs to check that system of
equations (2.9a) and (2.9b) does not have non-zero solutions. For many common probability kernel
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families, the presence of normalizing constant can make this verification challenging, because the
normalizing constant is a function of θ, which has a complicated form or no closed form, and its
derivative can also be complicated. Fortunately, the following lemma shows that under a mild
condition one only needs to check for the family of kernel {f(x|θ)} defined up to a function of θ
that is constant in x. Moreover, under additional mild assumptions, the equation (2.9b) can also be
dropped from the verification.

Lemma 2.4.14. Suppose for every x in the µ-positive subset X\N for some N ∈ A, f(x|θ) is

differentiable w.r.t. θ at {θi}ki=1. Let g(θ) be a positive differentiable function on Θ◦ and define

f̃(x|θ) = g(θ)f(x|θ).

a) (2.9a) has only the zero solution if and only if (2.9a) with f replaced by f̃ has only the zero

solution.

b) Suppose µ(N ) = 0. For a fixed set {ai}ki=1 ⊂ Rq and for each i ∈ [k] there exists γ(θi, ai) >

0 such that for any 0 < ∆ ≤ γ(θi, ai),∣∣∣∣f(x|θi + ai∆)− f(x|θi)
∆

∣∣∣∣ ≤ f̄(x|θi, ai) µ− a.e. X (2.20)

where f̄(x|θi, ai) is µ-integrable, then (a1, b1, . . . , ak, bk) is a solution of (2.9a) if and only if

it’s a solution of the system of equations (2.9a), (2.9b). Here γ(θi, ai) and f̄(x|θi, ai) depend

on θi and ai. Moreover, (2.20) holds for some µ-integrable f̄ if and only if the same inequality

with f on the left side replaced by f̃ holds for some µ-integrable f̄1.

c) Suppose the conditions in b) hold for any set {ai}ki=1. Then (2.9a) has the same solutions

as the system of equations (2.9a), (2.9b). Hence, the family {f(x|θ)}θ∈Θ is ({θi}ki=1,N )

first-order identifiable if and only if (2.9a) with f replaced by f̃ has only the zero solution.

Note similar extension as in Remark 2.4.5 can be made in Lemma 2.4.14 b) and c).

Remark 2.4.15. Part b), or Part c), of Lemma 2.4.14 shows that under some differentiability
condition (i.e. µ(N ) = 0) and some regularity condition on the density f(x|θ) to ensure the
exchangibility of limit and the integral, in the definition of ({θi}ki=1,N ) first identifiable (2.9b) adds
no additional constraint and is redundant. In this case for first-order identifiability, we can simply
check whether (2.9a) has only zero solution or not. In addition, according to Part c) of Lemma
2.4.14, for first-order identifiability it is sufficient to check whether (2.9a) with f replaced by f̃ has
only zero solution or not, provided that the µ(N ) = 0 for N corresponds to f̃ and (2.20) with f on
the left side replaced by f̃ hold. �
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Probability kernels that belong to the exponential families of distribution are frequently employed
in practice. For these kernels, there is a remarkable equivalence among the first-order identifiability
condition and the inverse bounds for both variational distance and the Hellinger distance.

Lemma 2.4.16. Suppose that the probability kernel Pθ has a density function f in the full rank

exponential family, given in its canonical form f(x|θ) = exp(〈θ, T (x)〉 − A(θ))h(x) with θ ∈ Θ,

the natural parameter space. Then (2.9a) has the same solutions as the system of equations

(2.9a), (2.9b). Moreover for a fixed G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦) the following five statements are

equivalent:

a) limr→0 infG,H∈BW1
(G0,r)

G6=H

V (PG,PH)
D1(G,H)

> 0.

b) lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,PG0
)

D1(G,G0)
> 0;

c) limr→0 infG,H∈BW1
(G0,r)

G6=H

h(PG,PH)
D1(G,H)

> 0.

d) lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG,PG0
)

D1(G,G0)
> 0;

e) With k, θi replaced respectively by k0, θ
0
i , equation (2.9a) has only the zero solution.

In the last result, the exponential family is in its canonical form. The same conclusions hold for
the exponential family represented in general parameterizations.

Lemma 2.4.17. Consider the probability kernel Pθ has a density function f in the full rank

exponential family, f(x|θ) = exp (〈η(θ), T (x)〉 −B(θ))h(x). Suppose the map η : Θ→ η(Θ) ⊂
Rq is a homeomorphism1. Fix G0 =

∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Suppose the Jacobian matrix of the

function η(θ), denoted by Jη(θ) := ( ∂η
(i)

∂θ(j) (θ))ij exists and is full rank at θ0
i for i ∈ [k0]. Then with

k, θi replaced respectively by k0, θ0
i , (2.9a) has the same solutions as the system of equations (2.9a),

(2.9b). Moreover the b), d) and e) as in Lemma 2.4.16 are equivalent. If in addition Jη(θ) exists

and is continuous in a neighborhood of θ0
i for each i ∈ [k0], then the equivalence relationships of

all the five statements in Lemma 2.4.16 hold.

Despite the simplicity of kernels in the exponential families, classical and/or first-order iden-
tifiability is not always guaranteed. For instance, it is well-known and can be checked easily that
the mixture of Bernoulli distributions is not identifiable in the classical sense. We will discuss
the Bernoulli kernel in the context of mixtures of product distributions in Example 2.5.10. The
following example is somewhat less well-known.

1A homeomorphism is a continuous function between topological spaces that has a continuous inverse function.
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Example 2.4.18 (Two-parameter Gamma kernel). Consider the gamma distribution f(x|α, β) =
βα

Γ(α)
xα−1e−βx1(0,∞)(x) with θ = (α, β) ∈ Θ := {(α, β)|α > 0, β > 0} and the dominating

measure µ is the Lebesgue measure on X = R. This is a full rank exponential family. For k0 ≥ 2

define G ⊂ Ek0(Θ◦) = Ek0(Θ) as

G := {G ∈ Ek0(Θ)|G =

k0∑
i=1

piδθi and there exist i 6= j such that θj − θi = (1, 0)}.

For any G0 =
∑k0

i=1 piδθ0
i
∈ G, let i0 6= j0 be such that θ0

j0
− θ0

i0
= (1, 0), i.e. α0

j0
= α0

i0
+ 1 and

β0
j0

= β0
i0

. Then observing

∂

∂β
f(x|α, β) =

α

β
f(x|α, β)− α

β
f(x|α + 1, β),

(a1, b1, . . . , ak0 , bk0) with ai0 = (0, βi0/αi0), bi0 = −1, bj0 = 1 and the rest to be zero is a
nonzero solution of the system of equations (2.9a), (2.9b) with k, θi replaced respectively by k0, θ

0
i .

Write gamma distribution in exponential family as in Lemma 2.4.17 with η(θ) = (α − 1, β) and
T (x) = (ln x,−x). Since η(θ) satisfies all the conditions in Lemma 2.4.17, hence

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
= lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
= 0.

This implies that even if V (pG, pG0) vanishes at a fast rate, D1(G,G0) may not.
Finite mixtures of Gamma were investigated by [HN16a], who called G is a pathological set

of parameter values to highlight the effects of weak identifiability (more precisely, the violation
of first-order identifiability conditions) on the convergence behavior of model parameters when
the parameter values fall in G. On the other hand, for G0 ∈ Ek0(Θ◦)\G, it is shown in the proof of
Proposition 5.1 (a) in [HN16a] that (2.9a) with k, θi replaced respectively by k0, θ

0
i has only the

zero solution.2 Thus by Lemma 2.4.17,

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
≥ lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
> 0.

Notice that a) and c) in Lemma 2.4.17 also holds but is omitted here. Thus, outside of pathological
set G the convergence rate of mixture density pG towards pG0 is carried over to the convergence of G

2Their original proof there only works under the stringent condition α ≥ 1 for the parameter space. But multiplying
their (26) by x should reach the same conclusion for the general case α > 0. A direct proof is also straightforward by
using Lemma 2.10.4 b) and is similar to Example 2.5.12. In addition, by applying Lemma 2.4.17 we produce additional
results on Hellinger distance and drop the unnecessary condition α ≥ 1 in the parameter space.
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toward G0 under D1. It is the uncertainty about whether the true mixing measure G0 is pathological
or not that that makes parameter estimation highly inefficient. Givenm-i.i.d. from a finite mixture of
Gamma distributions, where the number of components k0 is given, [HN16a] established minimax
bound for estimating G that is slower than any polynomial rate m−r for any r ≥ 1 under Wr metric.
�

We end this section with several remarks, motivated by a concern for the situation of weak
identifiability. It may be of interest to devise an efficient parameter estimation method (by, perhaps,
a clever regularization or reparameterization technique) that may help to overcome the lack of
first-order identifiability. We are not aware of a general way to achieve this. Absent of such methods,
a promising direction for the statistician to take is to simply collect more data: not only by increasing
the number of i.i.d. observation of m, but also by increasing the number of repeated measurements.
Finite mixtures of product distributions usually arise in this practical context: when one deals
with a highly heterogeneous data population which is made up of many latent subpopulations
carrying distinct patterns, it is often possible to collect observations presumably coming from the
same subpopulation, even if one is uncertain about the mixture component that a subpopulation
may be assigned to. Thus, one may aim to collect m independent sequences of N exchangeable
observations, and assume that they are sampled from a finite mixture of N -product distribution
denoted by PG,N .

One natural question to ask is, how does increasing the number N of repeated measurements
(i.e., the length of exchangeable sequences) help to overcome the lack of strong identifiability such
as our notion of first-order identifiability. This question can be made precise in light of Lemma 2.4.2:
whether there exist a natural number n1 ≥ 1 such that the following inverse bound holds for any
N ≥ n1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

D1(G,G0)
> 0. (2.21)

Observe that since V (PG,N , PG0,N) increases in N while the denominator D1(G,G0) is fixed in
N , if (2.21) holds for some N = n1, then it also holds for all N ≥ n1. Moreover, what can
we say about the role of N in parameter estimation in presence of such inverse bounds? In the
next section we will address these questions by studying conditions under which inverse bounds
involving mixtures of product distributions can be established. Such theory will also be used to
derive tight learning rates for mixing measure G from a collection of exchangeable sequences of
observations.
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2.5 Inverse bounds for mixtures of product distributions

Consider a family of probability distributions {Pθ}θ∈Θ on some measurable space (X,A)

where θ is the parameter of the family and Θ ⊂ Rq is the parameter space. This yields the N -
product probability kernel on (XN ,AN), which is denoted by {Pθ,N :=

⊗N Pθ}θ∈Θ. For any
G =

∑k
i=1 piδθi ∈ Ek(Θ) as mixing measure, the resulting finite mixture for the N -product families

is a probability measure on (XN ,AN), namely, PG,N =
∑k

i=1 piPθi,N .
The main results of this section are stated in Theorem 2.5.7 and Theorem 2.5.14. These theorems

establish the following inverse bound under certain conditions of probability kernel family {Pθ}θ∈Θ

and some time that of G0: for a fixed G0 ∈ Ek0(Θ◦) there holds

lim inf
N→∞

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
> 0. (2.22)

By contrast, an easy upper bound on the left hand side of (2.22) holds generally (cf. Lemma 2.7.1):

sup
N≥1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
≤ 1/2. (2.23)

In fact, a strong inverse bound can also be established:

lim inf
N→∞

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,N , PH,N)

DN(G,H)
> 0. (2.24)

These inverse bounds relate to the positivity of a suitable notion of curvature on the space of
mixtures of product distributions, and will be shown to have powerful consequences. It’s easy to
see that (2.24) implies (2.22).

Section 2.5.2 is devoted to proving these bounds for Pθ belonging to exponential families
of distributions. In Section 2.5.3 the inverse bounds are established for very general probability
kernel families, where X may be an abstract space and no parametric assumption on Pθ will be
required. Instead, we appeal to a set of mild regularity conditions on the characteristic function of a
push-forward measure produced by a measurable map T acting on the measure space (X,A, Pθ).
We will see that this general theory enables the study for a very broad range of mixtures of product
distributions for exchangeable sequences.
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2.5.1 Implications on classical and first-order identifiability

Before presenting the section’s main theorems, let us explicate some immediate implications of
their conclusions expressed by inequalities (2.22) and (2.24). These inequalities contain detailed
information about convergence behavior of de Finetti’s mixing measure G toward G0, an useful
application of which will be demonstrated in Section 2.6. For now, we simply highlight striking
implications on the basic notions of identifiability of mixtures of distributions investigated in
Section 2.4. Note that no assumption on classical or first-order identifiability is required in the
statement of the theorems establishing (2.22) or (2.24). In plain terms these inequalities entail that
by increasing the number N of exchangeable measurements, the resulting mixture of N -product
distributions becomes identifiable in both classical and first-order sense, even if it is not initially so,
i.e., when N = 1 or small.

To make our statement precise, for a fixed G0 ∈ Ek0(Θ◦), define

n0 := n0(G0) := min

{
n ≥ 1

∣∣∣∣∀G ∈ ∪k0
k=1Ek(Θ

◦) \ {G0}, PG,n 6= PG0,n

}
,

n1 := n1(G0) := min

{
n ≥ 1

∣∣∣∣ lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,n, PG0,n)

D1(G,G0)
> 0

}
,

n2 := n2(G0) := min

{
n ≥ 1

∣∣∣∣ limr→0
inf

G,H∈BW1
(G0,r)

G 6=H

V (PG,n, PH,n)

D1(G,H)
> 0

}
. (2.25)

n0 is called minimal zero-order identifiable length, or 0-identifiable length for short. n1 is called
minimal first-order identifiable length, or 1-identifiable length for short. Since W1(G,G0) �G0

D1(G,G0) in small neighborhood of G0 (cf. Lemma 2.3.2 d)), the two metrics can be exchangeable
in the denominator of the above definition for n1 and n2. Note that n0 describes a global property of
classical identifiability, a notion determined mainly by the algebraic structure of the mixture model’s
kernel family and its parameterization. (This is also known as "strict identifiability" as opposed
to "generic identifiability", cf., e.g., [AMR09]). On the other hand, both n1 and n2 characterize
a local behavior of mixture densities pG,N near a certain pG0,N , a notion that relies primarily on
regularity conditions on the kernel, as we shall see in what follows.

The following proposition provides the link between classical identifiability and strong notions
of local identifiability provided either (2.22) or (2.24) holds. In a nutshell, as N gets large, the two
types of identifiability can be connected by the force of the central limit theorem, which is one of
the key ingredients in the proof of the inverse bounds. Define two related and useful quantities: for
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any G0 ∈ Ek0(Θ◦)

N1 := N1(G0) := min

{
n ≥ 1

∣∣∣∣ inf
N≥n

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
> 0

}
(2.26)

N2 := N2(G0) := min

{
n ≥ 1

∣∣∣∣ inf
N≥n

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,N , PH,N)

DN(G,H)
> 0

}
. (2.27)

Note that (2.22) means N1(G0) <∞, while (2.24) means N2(G0) <∞. The following proposition
collects connections among n0, n1, n2, N1 and N2.

Proposition 2.5.1. a) Consider any G0 ∈ Ek0(Θ◦), then n1(G0) ≤ n2(G0). Moreover, there

exists r := r(G0) > 0 such that

sup
G∈BW1

(G0,r)

n1(G) ≤ n2(G0).

b) Consider any G0 ∈ Ek0(Θ◦). If N1(G0) <∞, then n1(G0) = N1(G0) <∞.

If N2(G0) <∞ then n2(G0) = N2(G0) <∞. In particular, the first or the second conclusion

holds if (2.22) or (2.24) holds respectively.

c) There holds

sup
G∈
⋃
k≤k0

Ek(Θ◦)

n0(G) ≤ sup
G∈E2k0

(Θ◦)

n1(G).

d) Suppose the kernel family Pθ admits density f(·|θ) with respect to a dominating measure µ

on X. Fix G0 =
∑k0

i=1 ∈ Ek0(Θ◦). Moreover, assume all conditions in Corollary 2.4.6 hold

for the f(x|θ). Then, n2(G0) = n1(G0).

e) Suppose that (2.22) holds for every G0 ∈ ∪k≤2k0Ek(Θ◦), where Θ is a compact set. Moreover,

suppose all conditions in part d) are satisfied for every G0 ∈ ∪k≤2k0Ek(Θ). Then

sup
G∈∪k≤k0

Ek(Θ◦)

n0(G) ≤ sup
G∈E2k0

(Θ◦)

n1(G) <∞.

f) Suppose that (2.24) holds for every G0 ∈ ∪k≤2k0Ek(Θ◦), where Θ is a compact set. Then the

conclusion of part e) holds.

Remark 2.5.2. Part a) and part b) of Proposition 2.5.1 highlight an immediate significance of
inverse bounds (2.22) and (2.24): they establish pointwise finiteness of 1-identifiable length n1(G0).
Moreover, under the additional condition on first-order identifiability, one can have the following
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strong result as an immediate consequence: Consider any G0 ∈ Ek0(Θ◦). If (2.11) and (2.22)
hold, then n1(G0) = N1(G0) = 1. If (2.12) and (2.24) hold, then n1(G0) = N1(G0) = n2(G0) =

N2(G0) = 1. �

Remark 2.5.3. Part e) and part f) in the above proposition establish a rather surprising consequence
of inverse bounds (2.22) and (2.24), provided that the domain of support Θ is compact: they yield
the finiteness of both 0-identifiable length n0(G) and 1-identifiable length n1(G) uniformly over
subsets of mixing measures with finite number of support points. In particular, as long as (2.22) or
(2.24) (along with some regularity conditions in the former) holds for every G0 ∈ ∪k≤2k0Ek(Θ◦),
then PG,N will be strictly identifiable and first-identifiable on ∪k≤k0Ek(Θ◦) for sufficiently large N .
That is, taking product helps in making the kernel identifiable in a strong sense. As we shall see
in the next subsection, (2.24) holds for every G0 ∈

⋃∞
k=1 Ek(Θ◦) when {Pθ} belongs to full rank

exponential families of distributions. This inverse bound also holds for a broad range of probability
kernels beyond the exponential families.

Proof of Proposition 2.5.1: a) It is sufficient to assume that n2 = n2(G0) < ∞. Then there
exists r0 > 0 such that

inf
G,H∈BW1

(G0,r0)
G 6=H

V (PG,n2 , PH,n2)

D1(G,H)
> 0

Then fixing G in the preceding display yields n1(G) ≤ n2(G0) and the proof is complete
since G is arbitrary in BW1(G0, r0).

b) By the definition of N1,

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N1
, PG0,N1

)

D1(G,G0)
≥ lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG,N1
, PG0,N1

)

DN1
(G,G0)

> 0, (2.28)

which entails that n1 ≤ N1. On the other hand, for any N ∈ [n1,N1] we have

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
≥ lim inf

G
W1→G0

G∈Ek0
(Θ)

1√
N

V (PG,n1 , PG0,n1)

D1(G,G0)

≥ 1√
N1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,n1 , PG0,n1)

D1(G,G0)
> 0,

which entails N1 ≤ n1. Thus N1 = n1. The proof of n2 = N2 <∞ is similar.

c) If suffices to prove for the case n̄ := supG∈E2k0
(Θ◦) n1(G) < ∞. Take any G ∈ Ek(Θ◦) for

1 ≤ k ≤ k0, suppose that n0(G) > n̄. Then there exists a G1 ∈ Ek̄(Θ◦) for some 1 ≤ k̄ ≤ k0
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such that PG,n̄ = PG1,n̄ but G1 6= G. Collecting the supporting atoms of G and G1, there
are at most 2k0 of those, and denote them by θ0

1, . . . , θ
0
k′ ∈ Θ◦. Supplement these with a set

of atoms {θ0
i }

2k0

i=k′+1 to obtain a set of distinct 2k0 atoms denoted by {θ0
i }

2k0
i=1. Now take G0

to be any discrete probability measure supported by θ0
1, . . . , θ

0
2k0

. Since PG,n̄ = PG1,n̄, the
condition of Lemma 2.11.1 for G0 is satisfied and thus

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,n̄, PG0,n̄)

D1(G,G0)
= 0.

But this contradicts with the definition of n̄.

d) By part a) it suffices to prove for the case n1 = n1(G0) <∞. By Lemma 2.11.3, the product
family

∏n1

j=1 f(xj|θ) satisfies all the conditions in Corollary 2.4.6. Thus by Corollary 2.4.6,

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,n1 , PH,n1)

D1(G,H)
> 0

It follows that n2(G0) ≤ n1, which implies that n2(G0) = n1(G0) by part a).

e) By part b) and part d), n2(G0) <∞ for every G0 ∈ ∪k≤2k0Ek(Θ). Associated each G0 with a
neighborhood BW1(G0, r(G0)) as in part a) such that its conclusion holds. Due to the fact that
∪k≤2k0Ek(Θ) is compact and part a), we deduce that n1(G) is uniformly bounded. Combining
with part c) to conclude the proof.

f) By part b) n2(G0) <∞ for every G0 ∈ ∪k≤2k0Ek(Θ◦). The rest of the argument is the same
as part e).

We can further unpack the double infimum limits in its expression of (2.22) to develop results
useful for subsequent convergence rate analysis in Section 2.6. First, it is simple to show that the
limiting argument for N can be completely removed when N is suitably bounded.

Lemma 2.5.4. Fix G0 ∈ Ek0(Θ◦). Suppose (2.22) holds. Then for any N0 ≥ n1(G0), there exists

c(G0, N0) depending on G0 and N0, such that ∀G ∈ Ek0(Θ) : W1(G,G0) < c(G0, N0)

V (PG,N , PG0,N) ≥ C(G0)DN(G,G0) ∀N ∈ [n1(G0), N0]

where C(G0) > 0 is a constant that depends on G0.

A key feature of the above claim is that the radius c(G0, N0) of the local W1 ball centered at G0

over which the inverse bound holds for G depends on N0, but the multiple constant C(G0) does not.
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Next, given additional conditions, most notably the compactness on the space of mixing
measures, we may remove completely the second limiting argument involving G. In other words,
we may extend the domain of G on which the inverse bound of the form V & W1 & D1 continues
to hold, where the multiple constants are suppressed here.

Lemma 2.5.5. Fix G0 ∈ Ek0(Θ◦). Consider any Θ1 a compact subset of Θ containing G0. Suppose

the map θ 7→ Pθ from (Θ1, ‖ · ‖2) to ({Pθ}θ∈Θ, h) is continuous. Let n1(G0) be given by (2.25).
Suppose there exists n0 ≥ 1 such that map G 7→ PG,n0 is identifiable at G0 on

⋃k0

k=1 Ek(Θ1)), i.e.

for any G ∈
⋃k0

k=1 Ek(Θ1))\{G0}, PG,n0 6= PG0,n0 . If n1(G0) ∨ n0 <∞, then

V (PG,N , PG0,N) ≥ C(G0,Θ1)W1(G,G0), ∀G ∈
k0⋃
k=1

Ek(Θ1), ∀N ≥ n1(G0) ∨ n0,

where C(G0,Θ1) > 0 is a constant that depends on G0 and Θ1.

Finally, a simple and useful fact which allows one to transfer an inverse bound for one kernel
family Pθ to another kernel family by means of homeomorphic transformation in the parameter space.
If g(θ) = η for some homeomorphic function g : Θ→ Ξ ⊂ Rq, for any G =

∑k
i=1 piδθi ∈ Ek(Θ),

denote Gη =
∑k

i=1 piδg(θi) ∈ Ek(Ξ) . Given a probability kernel family {Pθ}θ∈Θ, under the new
parameter η define

P̃η = Pg−1(η), ∀η ∈ Ξ.

Let Gη also denote a generic element in Ek0(Ξ), and P̃Gη ,N be defined similarly as PG,N .

Lemma 2.5.6 (Invariance under homeomorphic parameterization with local invertible Jacobian).
Suppose g is a homeomorphism. For G0 =

∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦), suppose the Jacobian matrix of

the function g(θ), denoted by Jg(θ) := ( ∂g
(i)

∂θ(j) (θ))ij exists and is full rank at θ0
i for i ∈ [k0]. Then ∀N

lim inf
Gη

W1→Gη0
Gη∈Ek0

(Ξ)

V (P̃Gη ,N , P̃Gη0 ,N)

DN(Gη, Gη
0)

G0� lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
. (2.29)

Moreover, if in addition Jg(θ) exists and is continuous in a neighborhood of θ0
i for each i ∈ [k0],

then ∀N

lim
r→0

inf
Gη ,Hη∈BW1

(Gη0 ,r)
Gη 6=Hη

V (P̃Gη ,N , P̃Hη ,N)

D1(Gη, Hη)

G0� lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,N , PH,N)

D1(G,H)
.

Lemma 2.5.6 shows that if an inverse bound (2.22) or (2.24) under a particular parametrization
is established, then the same inverse bound holds for all other parametrizations that are homeo-
morphic and that have local invertible Jacobian. This allows one to choose the most convenient
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parametrization for a probability kernel family; for instance, one may choose the canonical form for
an exponential family or another more convenient parametrization, like the mean parametrization.

2.5.2 Probability kernels in regular exponential family

We now present the first inverse bound for the mixture of products of exponential family
distributions. Suppose that {Pθ}θ∈Θ is a full rank exponential family of distributions on X. Adopting
the notational convention for canonical parameters of exponential families, we assume Pθ admits a
density function with respect to a dominating measure µ, namely f(x|θ) for θ ∈ Θ.

Theorem 2.5.7. Suppose that the probability kernel {f(x|θ)}θ∈Θ is in a full rank exponential family

of distributions in canonical form as in Lemma 2.4.16. For any G0 ∈ Ek0(Θ◦), (2.22) and (2.24)
hold.

In the last theorem the exponential family is in its canonical form. The next corollary shows the
same conclusions hold for the exponential family in general form under mild conditions.

Corollary 2.5.8. Consider the probability kernel Pθ has a density function f in the full rank

exponential family, f(x|θ) = exp (〈η(θ), T (x)〉 −B(θ))h(x), where the map η : Θ→ η(Θ) ⊂ Rq

is a homeomorphism. Suppose that η is continuously differentiable on Θ◦ and its the Jacobian is of

full rank on Θ◦. Then, for any G0 ∈ Ek0(Θ◦), (2.22) and (2.24) hold.

As a consequence of Theorem 2.5.7 (more pertinently, Corollary 2.5.8), Lemma 2.5.1 and
Lemma 2.4.17, we immediately obtain the following interesting result for which a direct proof may
be challenging.

Corollary 2.5.9. Let the probability kernel {f(x|θ)}θ∈Θ be in a full rank exponential family of

distributions as in Corollary 2.5.8 and suppose that all conditions there hold. Then for any k0 ≥ 1

and for any G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦), n1(G0) = n2(G0) = N1(G0) = N2(G0) are finite.

Moreover,

k0∑
i=1

(
aTi ∇θ

N∏
n=1

f(xn|θ0
i ) + bi

N∏
n=1

f(xn|θ0
i )

)
= 0,

N⊗
µ− a.e. (x1, . . . , xN) ∈ XN (2.30)

has only the zero solution:

bi = 0 ∈ R and ai = 0 ∈ Rq, ∀1 ≤ i ≤ k0

if and only if N ≥ n1(G0).
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Corollary 2.5.9 establishes that for full rank exponential families of distribution specified in
Corollary 2.5.8 with full rank Jacobian of η(θ), there is a finite phase transition behavior specified
by n1(G0) of the N -product in (2.30): the system of equations (2.30) has nonzero solution when
N < n1(G0) and as soon as N ≥ n1(G0), it has only the zero solution. This also gives another
characterization of n1(G0) defined in (2.25) for such exponential families, which also provides
a way to compute n1(G0) = N1(G0) = n2(G0) = N2(G0). A byproduct is that n0(G0) does not
depend on the p0

i of G0 since (2.30) only depends on θ0
i .

We next show two nontrivial examples of mixture models that are either non-identifiable or
weakly identifiable, i.e., when N = 1, but become first-identifiable by taking products. We work
out the details on calculating n0(G0) and n1(G0) for each of the examples and they should serve as
convincing examples to the discussion at the end of Section 2.4.2.

Example 2.5.10 (Bernoulli kernel). Consider the Bernoulli distribution f(x|θ) = θx(1−θ)1−x with
parameter space Θ = (0, 1). Here the family is defined on X = R and the dominating measure is
µ = δ0 + δ1. It can be written in exponential form as in Lemma 2.4.17 with η(θ) = ln θ− ln(1− θ)
and T (x) = x. It’s easy to check that η′(θ) = 1

θ(1−θ) > 0 and thus all conditions in Lemma 2.4.17,
Corollary 2.5.8 and Corollary 2.5.9 are satisfied. Thus any of those three results can be applied. In
particular we may use the characterization of n1(G0) in Corollary 2.5.9 to compute n1(G0).

For the n-fold product, the density fn(x1, x2, . . . , xn|θ) :=
∏n

j=1 f(xj|θ) = θ
∑n
j=1 xj(1 −

θ)n−
∑n
j=1 xj . Then the derivative w.r.t. θ of fn(x1, x2, . . . , xn|θ) is

∂

∂θ
fn(x1, . . . , xn|θ)

=

(
n∑
j=1

xj

)
θ
∑n
j=1 xj−1(1− θ)n−

∑n
j=1 xj −

(
n−

n∑
j=1

xj

)
θ
∑n
j=1 xj(1− θ)n−

∑n
j=1 xj−1.

We now compute n1(G) for any G =
∑k

i=1 piδθi ∈ Ek(Θ). Notice the support of f is {0, 1} and
hence the support of fn is {0, 1}n. Thus (2.30) with N , θ0

i replace respectively by n and θi become
a system of n+ 1 linear equations: ∀j = 0, 1, . . . , n

k∑
i=1

ai
(
j(θi)

j−1(1− θi)n−j − (n− j)(θi)j(1− θi)n−j−1
)

+
k∑
i=1

bi(θi)
j(1− θi)n−j = 0. (2.31)

As a system of n+ 1 linear equations with 2k unknown variables, it has nonzero solutions when
n+ 1 < 2k. Thus n1(G) ≥ 2k − 1.

Let us now verify that n1(G) = 2k − 1 for any G ∈ Ek(Θ). Indeed, for any G =
∑k

i=1 piδθi ∈
Ek(Θ), the system of linear equations (2.31) with n = 2k−1 isAT z = 0 with z = (b1, a1, . . . , bk, ak)

T
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and

Aij =

fj(θm) i = 2m− 1

f ′j(θm) i = 2m
for j ∈ [2k],m ∈ [k],

where fj(θ) = θj−1(1−θ)n−(j−1) with n = 2k−1. By Lemma 2.5.11 d) det(A) =
∏

1≤α<β≤k(θα−
θβ)4, with the convention 1 when k = 1. Thus, A is invertible and the system of linear equations
(2.31) with n = 2k − 1 has only zero solution. Thus by Corollary 2.5.9 n1(G) ≤ 2k − 1. By the
conclusion from last paragraph n1(G) = 2k − 1 for any G ∈ Ek(Θ).

We now turn our attention to n0. For any G ∈ Ek(Θ), there are 2k − 1 parameters to determine
it. fn(x1, . . . , xn) has effective n equations for different value (x1, . . . , xn) since

∑n
j=1 xj can takes

n+ 1 values and fn is a probability density. Thus to have PG,n strictly identifiable for G ∈ Ek(Θ),
a necessary condition is that n ≥ 2k − 1 for almost all G under Lebesgue. In fact, in Lemma 2.11.4
part e) it is established that n0(G) ≥ 2k − 1 for all G ∈ Ek(Θ).

Let us now verify that n0(G) = 2k − 1 for any G ∈ Ek(Θ). In the following n = 2k − 1. For
any G =

∑k
i=1 piδθi and consider G′ =

∑k
i=1 p

′
iδθ′i ∈

⋃k
i=1 Ek(Θ) such that pG′,n = pG,n. Notice

that G′ ∈
⋃k
i=1 Ek(Θ) means that it is possible some of p′i is zero. pG′,n = pG,n implies

k∑
i=1

p′i(θ
′
i)
j(1− θ′i)n−j −

k∑
i=1

pi(θi)
j(1− θi)n−j = 0 ∀j = 0, 1, · · · , n. (2.32)

Note that by multiplying each equation j by
(
n
j

)
and sum them up, we obtain

∑k
i=1 p

′
i =

∑k
i=1 pi.

Thus in the above system of equations the equation with j = n (or arbitrary j) can be replaced by∑k
i=1 p

′
i =

∑k
i=1 pi.

We now show that the only solution is G′ = G, beginning with the following simple observation.
Notice that for a set {ξi}2k

i=1 of 2k distinct elements in (0, 1), the system of linear equations of
y = (y1, . . . , yk′) with k′ ≤ 2k:

k′∑
i=1

yi(ξi)
j(1− ξi)n−j = 0 ∀j = 0, 1, . . . , n = 2k − 1

has only the zero solution since by setting ỹi = (1− ξi)nyi the system of equations of ỹ:

k′∑
i=1

ỹi

(
ξi

1− ξi

)j
= 0 ∀j = 0, 1, . . . , n

has its coefficients of the first k′ equations forming a non-singular Vandermonde matrix.
If some θi is not in {θ′i}ki=1, then by the observation in last paragraph pi = 0 which contradict

with G ∈ Ek(Θ). As a result, {θ′i}ki=1 = {θi}ki=1. Suppose θ′li = θi for i ∈ [k]. Then the system of
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equations (2.32) become

k∑
i=1

(p′li − pi)(θi)
j(1− θi)n−j = 0 ∀j = 0, 1, . . . , n.

Applying the observation from last paragraph again yields p′li = pi for i ∈ [k]. That is, the only
solution of (2.32) isG′ = G. Thus n0(G) ≤ 2k−1, which together with the fact that n0(G) ≥ 2k−1

yield n0(G) = 2k − 1 for any G ∈ Ek(Θ).
�

Part d) of the following lemma is used in the previous example on Bernoulli kernel.

Lemma 2.5.11. a) Let f(x) be a polynomial with f ′ its derivative. Define q(1)(x, y) = f(x)−f(y)
x−y ,

q(2)(x, y) = f ′(x)−f ′(y)
x−y , q̄(2)(x, y) = q(1)(x,y)−f ′(y)

x−y , and q̄(3)(x, y) =
q̄(2)(x,y)− 1

2
q(2)(x,y)

x−y . Then

q(1)(x, y), q(2)(x, y), q̄(2)(x, y) and q̄(3)(x, y) are all multivariate polynomials.

b) Let fj(x) be a polynomial and f ′j(x) its derivative for j ∈ [2k] for a positive integer k. For

x1, . . . , xk ∈ R define A(k)(x1, . . . , xk) ∈ R(2k)×(2k) by

A
(k)
ij (x1, . . . , xk) =

fj(xm) i = 2m− 1

f ′j(xm) i = 2m
for j ∈ [2k],m ∈ [k].

Then for any k ≥ 2, det(A(k)(x1, . . . , xk)) = gk(x1, . . . , xk)
∏

1≤α<β≤k(xα−xβ)4 , where gk
is some multivariate polynomial.

c) For the special case fj(x) = fj(x|k) = xj−1, A(k)(x1, . . . , xk) defined in part b) has

determinant det(A(k)(x1, . . . , xk)) =
∏

1≤α<β≤k(xα − xβ)4, with the convention 1 when

k = 1.

d) For the special case fj(x) = fj(x|k) = xj−1(1−x)n−(j−1) with n = 2k−1, A(k)(x1, . . . , xk)

defined in part b) has determinant det(A(k)(x1, . . . , xk)) =
∏

1≤α<β≤k(xα − xβ)4, with the

convention 1 when k = 1.

Example 2.5.12 (Continuation on two-parameter Gamma kernel). Consider the gamma distribution
f(x|α, β) discussed in Example 2.4.18. Let k0 ≥ 2 and by Example 2.4.18 for any G0 ∈ Ek0(Θ)\G,
n1(G0) = 1 and for any G0 ∈ G, where we recall that G denotes the pathological subset of the
Gamma mixture’s parameter space,

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
= lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
= 0.
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This means n1(G0) ≥ 2 for G0 ∈ G.
We now show that for G0 ∈ Ek0(Θ) n1(G0) ≤ 2 and hence n1(G0) = 2 for G0 ∈ G. Let

f2(x1, x2|α, β) := f(x1|α, β)f(x2|α, β) =
β2α

(Γ(α))2
(x1x2)α−1e−β(x1+x2)1(0,∞)×(0,∞)(x1, x2)

be the density of the 2-fold product w.r.t. Lebesgue measure on R2. Let g(α, β) = (Γ(α))2/β2α,
which is a differentiable function on Θ and let f̃2(x1, x2|α, β) := g(α, β)f2(x1, x2|α, β) to be the
density without normalization constant. Note that ∂

∂α
f̃2(x1, x2|α, β) = f̃2(x1, x2|α, β) ln(x1x2) and

∂
∂β
f̃2(x1, x2|α, β) = −(x1 + x2)f̃2(x1, x2|α, β). Then (2.9a) with f replaced by f̃2 is

k0∑
i=1

(
a

(α)
i ln(x1x2)− a(β)

i (x1 + x2) + bi

)
(x1x2)αi−1e−βi(x1+x2) = 0. (2.33)

Let
⋃k
i=1{βi} = {β′1, β′2, · · · , β′k} with β′1 < β′2 < . . . < β′k′ where k′ is the number of distinct

elements. Define I(β′) = {i ∈ [k]|βi = β′}. Then (2.33) become for µ-a.e. x1, x2 ∈ (0,∞)

0 =
k′∑
j=1

 ∑
i∈I(β′j)

(
a

(α)
i ln(x1x2)− a(β)

i (x1 + x2) + bi

)
(x1x2)αi−1

 e−β
′
j(x1+x2)

=
k′∑
j=1

 ∑
i∈I(β′j)

a
(α)
i (x1x2)αi−1 ln(x1)+

∑
i∈I(β′j)

(
a

(α)
i ln(x2)− a(β)

i (x1 + x2) + bi

)
(x1x2)αi−1

 e−β
′
jx2e−β

′
jx1

When fixing any x2 such that in the µ-a.e. set such that the preceding equation holds, by Lemma
2.10.4 b) for any j ∈ [k′],

∑
i∈I(β′j)

a
(α)
i (x1x2)αi−1 ≡ 0 for any x1 6= 0. Since αi are distinct for

i ∈ I(β′j) and x2 > 0, a(α)
i = 0 for any i ∈ I(β′j) for any j ∈ [k′]. That is a(α)

i = 0 for any i ∈ [k].
Analogously fixing x1 produces a(β)

i = 0 for any i ∈ [k]. Plug these back into the preceding display
and one obtains for µ-a.e. x1, x2 ∈ (0,∞)

0 =
k′∑
j=1

 ∑
i∈I(β′j)

bi(x1x2)αi−1

 e−β
′
jx2e−β

′
jx1

Fixing any x2 such that in the µ-a.e. set such that the preceding equation holds, and apply Lemma
2.10.4 b) again to obtain bi = 0 for i ∈ [k]. Thus (2.33) for any G ∈ Ek(Θ) has only the zero
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solution. By Lemma 2.4.17, for G0 ∈ Ek0(Θ)

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,2, PG0,2)

D1(G,G0)
> 0.

Thus n1(G0) ≤ 2, and hence n1(G0) = 2 for any G0 ∈ G.
Following an analogous analysis, one can show that {f(x|θi)}ki=1 are linear independent for any

distinct θ1, . . . , θk ∈ Θ for any k, i.e. the equations of (b1, . . . , bk)

k∑
i=1

bif(x|θi) = 0 ∀x ∈ (0,∞)

has only the zero solution. This linear independence immediately imply that pG is identifiable on⋃∞
j=1 Ej(Θ), i.e. for any G ∈ Ek(Θ) and any G′ ∈ Ek′(Θ), pG 6= pG′ . Thus, n0(G) = 1 for any

G ∈
⋃∞
j=1 Ej(Θ). �

The above examples demonstrate the remarkable benefits of having repeated (exchangeable)
measurements: via the N -fold product kernel

∏N
j=1 f(xj|θ) for sufficiently large N , one can

completely erase the effect of parameter non-identifiablity in Bernoulli mixtures, and the effect of
weak-identifiability in the pathological subset of the parameter spaces in two-parameter Gamma
mixtures. We have also seen that it is challenging to determine the 0- or 1-identifiable lengths
even for these simple examples of kernels. It is even more so, when we move to a broader class of
probability kernels well beyond the exponential families.

2.5.3 General probability kernels

Unlike Section 2.5.2, which specializes to the probability kernels that are in the exponential
families, in this section no such parametric assumption will be required. In fact, we shall not

require that the family of probability distributions {Pθ}θ∈Θ on X admit a density function. Since the
primary object of inference is parameter θ ∈ Θ ⊂ Rq, the assumptions on the kernel Pθ will center
on the existence of a measurable map T : (X,A) → (Rs,B(Rs)) for some s ≥ q, and regularity
conditions on the push-forward measure on Rs: Pθ#T := Pθ ◦ T−1.

Definition 2.5.13 (Admissible transform). A Borel measurable map/transform T : X→ Rs with
s ≥ q is admissible with respect to a set Θ1 ⊂ Θ◦ if for each θ0 ∈ Θ1 there exists γ > 0 and r ≥ 1

such that T satisfies the following three properties.

(A1) (Moment condition) For θ ∈ B(θ0, γ) ⊂ Θ◦, the open ball centered at θ0 with radius γ,
suppose λ(θ) = λθ = EθTX1 and Λθ := Eθ(TX1 − EθTX1)(TX1 − EθTX1)T exist where
X1 ∼ Pθ. Moreover, Λθ is positive definite on B(θ0, γ) and is continuous at θ0.
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(A2) (Exchangeability of partial derivatives of characteristic functions) Denote by φT (ζ|θ) the
characteristic function of the pushforward probability measure Pθ#T on Rs, i.e., φT (ζ|θ) :=

Eθei〈ζ,TX1〉, where X1 ∼ Pθ.
∂φT (ζ|θ)
∂θ(i) exists in B(θ0, γ) and as a function of ζ it is twice

continuously differentiable on Rs with derivatives satisfying: ∀θ ∈ B(θ0, γ)

∂2φT (ζ|θ)
∂ζ(j)∂θ(i)

=
∂2φT (ζ|θ)
∂θ(i)∂ζ(j)

,
∂3φT (ζ|θ)

∂ζ(`)∂ζ(j)∂θ(i)
=

∂3φT (ζ|θ)
∂θ(i)∂ζ(`)∂ζ(j)

, ∀ζ ∈ Rs,∀j, ` ∈ [d], ∀i ∈ [k0]

where the right hand side of both equations exist.

(A3) (Continuity and integrability conditions of characteristic function) φT (ζ|θ) as a function of θ
is twice continuously differentiable in B(θ0, γ). There exists U1(θ0), U2(θ0) <∞ such that:
for any i ∈ [q], j ∈ [s],

sup
θ∈B(θ0,γ)

max

{
sup
ζ∈Rs

∣∣∣∣∂φT (ζ|θ)
∂θ(i)

∣∣∣∣ , sup
‖ζ‖2<1

∣∣∣∣∂2φT (ζ|θ)
∂ζ(j)∂θ(i)

∣∣∣∣
}
≤ U1(θ0) <∞,

and for any i, j ∈ [q],

sup
θ∈B(θ0,γ)

max

{∫
Rs
|φT (ζ|θ)|r

(
1 +

∣∣∣∣∂2φT (ζ|θ)
∂θ(j)∂θ(i)

∣∣∣∣) dζ, sup
‖ζ‖2<1

∣∣∣∣∂2φT (ζ|θ)
∂θ(j)∂θ(i)

∣∣∣∣
}
≤ U2(θ0) <∞.

Theorem 2.5.14. FixG0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). Assume that for each θ0

i , there exists measurable

transform Ti : (X,A)→ (Rsi ,B(Rsi)) that is admissible with respect to {θ0
i }ki=1 with si ≥ q such

that 1) the mean map λi(θ) of Ti defined in (A1) is identifiable at θ0
i over the set {θ0

i }
k0
i=1, i.e.,

λi(θ
0
j ) 6= λi(θ

0
i ) for any j ∈ [k0]\{i} and 2) the Jacobian matrix of λi is of full column rank at θ0

i .

Then (2.22) and (2.24) hold.

The following corollary is a special case of Theorem 2.5.14 when the admissbile transform Ti

are the same for all i = 1, . . . , k0.

Corollary 2.5.15. Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ◦). If there exists one measurable transform

T : (X,A) → (Rs,B(Rs)) that is admissible with respect to {θ0
i }ki=1 with s ≥ q such that 1) the

mean map λ(θ) of T defined in (A1) is identifiable over the set {θ0
i }
k0
i=1, i.e., λ(θ0

j ) 6= λ(θ0
i ) for any

distinct i, j ∈ [k0] and 2) the Jacobian matrix of λ is of full column rank at θ0
i for any i ∈ [k0]. Then

(2.22) and (2.24) hold.

The proofs of Theorem 2.5.7 and Theorem 2.5.14 occupy the bulk of the chapter. They
contain a number of potentially useful techniques. The presentation of these proofs are deferred to
Section 2.12. We make the following remarks.
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Remark 2.5.16. In many cases one may construct a single measurable transform T that is admissible
and is mean identifiable, then Corollary 2.5.15 is useful. Indeed, as will be illustrated by examples,
for some simple cases, the identity map T suffices, and for some one dimensional probability
families, the moment map Tx = (x1, · · · , xs) suffices. However, for some complicated probability
kernel families, constructing a single admissible transform Ti to have their Jacobi matrix of its mean
map of full column rank at every atoms θ0

i or to have its mean map identifiable at atoms may be
challenging. In such cases, Theorem 2.5.14 offers a tool since we may construct a sequence of
admissible maps, each of which only needs to have these properties specified at one atom. Although
in such cases one might still be able to construct one single admissible map by combining Ti, yet
this single map is likely of higher dimension and may be difficult to construct directly without
constructing {Ti}k0

i=1 first. �

Remark 2.5.17. Although Theorem 2.5.14 provides inverse bounds for a very broad range of
probability kernels, it seems not straightforward to apply it to nondegenerate discrete distributions
on lattice points, like Poisson, Bernoulli, geometric distributions etc. The reason is that for
nondegenerate discrete distributions on lattice points, its characteristic function is periodic (cf.
Lemma 4 in Chapter XV, Section 1 of [Fel08]), which prevents its characteristic function from
being in Lr. That is, it does not satisfy (A3) in the definition of admissible transform. Thus to
apply Theorem 2.5.14 to such distributions one has to come up with a measurable transform T

which induce distributions over a countable support that is not lattice points. On the contrary,
Theorem 2.5.7 can be readily applied to discrete distributions that are in the exponential family,
including Poisson, Bernoulli, geometric distributions, etc. �

2.5.4 Examples of non-standard probability kernels

The power of Theorem 2.5.14 lies in its applicability to classes of probability kernels that do not
belong to the exponential family of distributions.

Example 2.5.18 (Continuation on uniform probability kernel). In Example 2.4.8 this example has
been shown to satisfies inverse bound (2.11) and (2.12) for any G0 ∈ Ek0(Θ). In the following it
will be shown that the uniform distribution family satisfies (2.22) and (2.24) for any G0 ∈ Ek0(Θ).
Note this family is not an exponential family and thus Theorem 2.5.7 or Corollary 2.5.8 is not
applicable.

Take the T in Corollary 2.5.15 to be the identity map. Then λ(θ) = θ
2
, Λθ = θ2

12
. So condition

(A1) is satisfied. The characteristic function is

φ(ζ|θ) =
eiζθ − 1

iζθ
1(ζ 6= 0) + 1(ζ = 0).
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One can then calculate

∂

∂θ
φ(ζ|θ) =

eiζθ(e−iζθ − 1− (−iζθ))
iζθ2

1(ζ 6= 0),

∂2

∂ζ∂θ
φ(ζ|θ) =

−eiζθ(e−iζθ − 1− (−iζθ)− (−iζθ)2)

iζ2θ2
1(ζ 6= 0) +

i

2
1(ζ = 0),

∂2

∂θ2
φ(ζ|θ) =

−2eiζθ(e−iζθ − 1− (−iζθ)− 1
2
(−iζθ)2)

iζθ3
1(ζ 6= 0),

and verify the condition (A2). To verify (A3) the following inequality (see (9.5) in [Res14])∣∣∣∣∣eix −
j∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ 2
|x|j

j!

comes handy. It follows that∣∣∣∣ ∂∂θφ(ζ|θ)
∣∣∣∣ ≤ 2

θ
,

∣∣∣∣ ∂2

∂ζ∂θ
φ(ζ|θ)

∣∣∣∣ ≤ 3

2
,

∣∣∣∣ ∂2

∂θ2
φ(ζ|θ)

∣∣∣∣ ≤ 2|ζ|
θ
.

Then U1(θ0) = 2( 2
θ0

+ 3
2
) suffices. Finally take r = 3, observe

|φ(ζ|θ)|3
(

1 +

∣∣∣∣ ∂2

∂θ2
φ(ζ|θ)

∣∣∣∣) ≤
1 + 2

θ
|ζ| ≤ 1

8
|ζ|3θ3

(
1 + 2|ζ|

θ

)
|ζ| > 1

,

and one may choose appropriate U2(θ0) such that (A3) holds. We have then verified that the identity
map T is admissible on Θ.

It’s easy to see that λ(θ) = θ/2 is injective on Θ and that its Jacobian Jλ(θ) = 1
2

is full rank.
Then by Corollary 2.5.15 (2.22) and (2.24) hold for any G0 ∈ Ek0(Θ) for any k0 ≥ 1. Moreover by
Remark 2.5.2, n1(G0) = N1(G0) = n2(G0) = N2(G0) = 1 for any G0 ∈ Ek0(Θ) for any k0 ≥ 1.
�

Example 2.5.19 (Continuation on location-scale exponential distribution kernel). In Example 2.4.10
this example has been shown to satisfy inverse bound (2.11) for any G0 ∈ Ek0(Θ). In the following
it will be shown that this family satisfies (2.22) and (2.24) for any G0 ∈ Ek0(Θ). Note this family is
not exponential family and thus Theorem 2.5.7 or Corollary 2.5.8 is not applicable.

Take the T in Corollary 2.5.15 to be Tx = (x, x2)T as a map from R → R2. Then one may
check λ(ξ, σ) = (ξ + σ, σ2 + (σ + ξ)2)T . From here one can easily check λ : Θ→ R2 is injective,
its Jacobi determinant det(Jλ) = 2σ > 0, which implies Jλ is of full rank on Θ. The characteristic
function φT (ζ|ξ, σ) = eiζξ/(1 − iσζ). The rest of verification that T is admissible are simple
calculations and are omitted. Then by Corollary 2.5.15 (2.22) and (2.24) holds for any G0 ∈ Ek0(Θ)
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for any k0 ≥ 1. Moreover by Remark 2.5.2, n1(G0) = N1(G0) = 1 for any G0 ∈ Ek0(Θ) for any
k0 ≥ 1. �

Example 2.5.20 (Pθ is itself a mixture distribution). Here, we consider the situation where Pθ
is a rather complex object: it is itself a mixture distribution. With this example we are moving
from a standard mixture of product distributions to hierarchical models (which describe mixtures
of mixture distributions). Such models are central tools in Bayesian statistics. Theorem 2.5.7 or
Corollary 2.5.8 is obviously not applicable in this example, which indeed requires the full strength
of Theorem 2.5.14 or Corollary 2.5.15. The application of the theorem, however, is non-trivial
requiring the development of tools for evaluating oscillatory integrals of interest. Such technical
tools also prove useful in other contexts (such as Example 2.5.21). Due to the technical nature we
defer a complete treatment of the current example to Section 2.8. �

Example 2.5.21 (Pθ is a mixture of Dirichlet processes). This example illustrates the applicability of
our theory to models using probability kernels defined in abstract spaces. Such kernels are commonly
found in nonparametric Bayesian modeling literature [HHMW10, GvdV17]. In particular, in our
specification of mixture of product distributions we will employ Dirichlet processes as the basic
building block [Fer73, Ant74]. We defer a treatment of this example to Section 2.8. �

2.6 Posterior contraction of de Finetti’s mixing measures

2.6.1 Data are equal-length exchangeable sequences

Given m independent sequences of exchangeable observations of equal length N , X i
[N ] =

(Xi1, · · · , XiN) ∈ XN for i = 1, 2, · · · ,m. Each sequence X i
[N ] is assumed to be a sample drawn

from a mixture ofN−product distributions PG,N for some "true" mixing measureG = G0 ∈ Ek0(Θ).
A Bayesian statistician endows upon (Ek0(Θ),B(Ek0(Θ))) a prior distribution Π and obtains the
posterior distribution Π(dG|X1

[N ], . . . , X
m
[N ]) by Bayes’ rule, where B(Ek0(Θ)) is the Borel sigma

algebra w.r.t. D1 distance. In this section we study the asymptotic behavior of this posterior
distribution as the amount of data m × N tend to infinity. Later in Section 2.6.2 we extend the
posterior contraction theory to the more realistic setting where the m sequences are of variable
lengths.

Suppose throughout this section, the probability family {Pθ}θ∈Θ has density {f(x|θ)}θ∈Θ w.r.t.
a σ-finite dominating measure µ on X; then PG,N for G =

∑k0

i=1 piδθi has density w.r.t. to µ:

pG,N(x̄) =

k0∑
i=1

pi

N∏
j=1

f(xj|θi), for x̄ = (x1, x2, · · · , xN) ∈ XN .
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Then the density of X i
[N ] conditioned on G is pG,N(·). Since Θ as a subset of Rq is separable, Ek0(Θ)

is separable. Moreover, suppose the map θ 7→ Pθ from (Θ, ‖ · ‖2) to ({Pθ}θ∈Θ, h) is continuous.
Then the map from (Ek0(Θ), D1)→ (pG,N , h) is also continuous by Lemma 2.7.2. Then by [AK06]
Lemma 4.51, (x,G) 7→ pG,N(x) is measurable for eachN . Thus the posterior distribution (a version
of regular conditional distribution) is the random measure given by

Π(B|X1
[N ], X

2
[N ], . . . , X

m
[N ]) =

∫
B

∏m
i=1 pG,N(X i

[N ])dΠ(G)∫
Ek0

(Θ)

∏m
i=1 pG,N(X i

[N ])dΠ(G)

for any Borel measurable subset of B ⊂ Ek0(Θ). For further details of why the last quantity is a
valid posterior distribution, we refer to Section 1.3 in [GvdV17]. It is also customary to express the
above Bayesian model in the following hierarchical fashion:

G ∼ Π, θ1, θ2, · · · , θm|G
i.i.d.∼ G

Xi1, Xi2, · · · , XiN |θi
i.i.d.∼ f(x|θi) for i = 1, · · · ,m.

As above, the m data sequences are denoted by X i
[N ] = (Xi1, Xi2, · · · , XiN) ∈ XN for i =

1, 2, · · · ,m.
The following assumptions are required for the main theorem of this section.

(B1) (Prior assumption) Suppose there is prior measure Πθ on Θ1 ⊂ Θ with its Borel sigma algebra
possessing a density w.r.t. Lebesgue measure that is bounded away from zero and infinity,
where Θ1 is a compact subset of Θ. Suppose there is a prior measure Πp on k0-probability
simplex possessing a density w.r.t. Lebesgue measure on Rk0−1 that is bounded away from
zero and infinity. Then Πp × Πk0

θ is a measure on {((p1, θ1), . . . , (pk0 , θk0))|pi ≥ 0, θi ∈
Θ1,

∑k0

i=1 pi = 1}, which induce a measure on Ek0(Θ1), identified as the quotient space of
preceding space by the equivalence relationship of permutation invariance.3 Here the prior Π

is generated by such mechanism with independent Πp and Πθ and the support Θ1 of Πθ is
such that G0 ∈ Ek0(Θ1).

(B2) (Identifiability at truth) There exists n0 ≥ 1 such that map G 7→ PG,n0 is identifiable at G0 on⋃k0

k=1 Ek(Θ1)), i.e. for any G ∈
⋃k0

k=1 Ek(Θ1))\{G0}, PG,n0 6= PG0,n0 .

(B3) (Kernel assumption) Suppose K(f(x|θ1), f(x|θ2)) ≤ L1‖θ1 − θ2‖α0
2 for some α0 > 0 and

some L1 > 0. Suppose h(f(x|θ1), f(x|θ2)) ≤ L2‖θ1 − θ2‖β0

2 for some β0 > 0 and some
L2 > 0. Here θ1, θ2 are any distinct elements in Θ1.

3Rigorously speaking, Ek0(Θ1) is only a proper subspace of the quotient space since a point in the quotient space
might have θi = θj . But the set of such points have probability zero under the induced measure.
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Remark 2.6.1. (B1) on the boundedness of the support Θ1 of prior distribution Πθ is a standard
assumption so as to obtain concrete rates of posterior contraction for the data population’s distri-
bution PG (cf. [GvdV17]). Moreover, the compactness of Θ1 is required in order to transfer the
convergence rates of PG into that of G (cf. Lemma 2.5.5).

(B2) is a necessary condition since otherwise there is no way to recover G0. The n0 can be
taken to be n0(G0) defined in (2.25) when Θ1 ⊂ Θ◦. In this case, due to Proposition 2.5.1 f), it
can be implied provided (2.24) is satisfied for every G0 ∈ Ek0(Θ◦), which holds for all full rank
exponential family specified in Corollary 2.5.8, or for more general family by checking Theorem
2.5.14 for every G0 ∈ Ek0(Θ◦).

Note that (B3) do imply some implicit constraints on α0 and β0. Specifically, if (2.11) holds
for some G0 ∈ Ek0(Θ◦) and (B3) holds, then β0 ≤ 1 and α0 ≤ 2. Indeed, for any sequence
G` =

∑k0

i=2 p
0
i δθ0

i
+p0

1δθ`1 ∈ Ek0(Θ)\{G0} converges to G0 =
∑k0

i=1 p
0
i δθ0

i
, by (2.11), Lemma 2.11.2

with N = 1 and (B3), for large `

C(G0)‖θ`1 − θ0
1‖2 = C(G0)D1(G`, G0) ≤ V (PG` , PG0)

≤ V (f(x|θ`1), f(x|θ0
1)) ≤ h(f(x|θ`1), f(x|θ0

1)) ≤ L2‖θ`1 − θ0
1‖
β0

2 , (2.34)

which implies β0 ≤ 1 if divide both sides by ‖θ`1 − θ0
1‖2 and let `→∞. In the preceding display

C(G0) =
1

2
lim inf
G
W1→G0

G∈Ek0
(Θ)

V (pG, pG0)

D1(G,G0)
> 0.

By (2.34) and Pinsker’s inequality, for large `

C(G0)‖θ`1 − θ0
1‖2 ≤ V (f(x|θ`1), f(x|θ0

1)) ≤
√

1

2
K(f(x|θ0

1), f(x|θ`1)) ≤
√

1

2
L1‖θ`1 − θ0

1‖α0
2 ,

which implies α0 ≤ 2 if divide both sides by ‖θ`1− θ0
1‖2 and let `→∞. The same conclusion holds

if one replace (2.11) with (2.22) by an analogous argument. �

Theorem 2.6.2. Fix G0 ∈ Ek0(Θ◦). Suppose (B1), (B2) and (B3) hold. Suppose additionally (2.22)
holds. Let n1(G0) be given by (2.25).

a) There exist a constant C(G0) > 0 such that as m→∞ while fixing N ≥ n1(G0) ∨ n0, for

every M̄m →∞, there holds

Π

(
G ∈ Ek0(Θ1) : DN(G,G0) ≥ C(G0)M̄m

√
ln(mN)

m

∣∣∣∣X1
[N ], X

2
[N ], . . . , X

m
[N ]

)
→ 0

in
⊗m PG0,N -probability as m→∞.
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b) If in addition, (2.11) is satisfied. Then the claim in part a) holds with n1(G0) = 1.

In the above statement, note that the constant C(G0) also depends on Θ1, k0, q, upper and lower
bounds of the densities of Πθ, Πp and the density family f(x|θ) (including α0, β0, L1, L2 etc). All
such dependence are suppressed for the sake of clean presentation; it is the dependence on G0 and
the independence of m,N that we want to emphasize. Further remarks of Theorem 2.6.2 is available
as in Remark 2.6.6 with N̄m replaced by N . These remarks are deferred to the next section, where
we establish posterior contraction in a more general setting.

As already discussed in the Remark 2.6.1, the condition (B2) is satisfied for full rank exponential
families of kernels. Indeed (B3) can also be verified for for full rank exponential families and hence
we have the following corollary from Theorem 2.6.2.

Corollary 2.6.3. Consider a full rank exponential family for kernel Pθ specified as in Corollary

2.5.8 and assume all the requirements there are met. Fix G0 ∈ Ek0(Θ◦). Suppose that (B1) holds

with Θ1 ⊂ Θ◦.

a) There exist a constant C(G0) > 0 such that as m→∞ while fixing N ≥ n1(G0) ∨ n0(G0),

for every M̄m →∞, there holds

Π

(
G ∈ Ek0(Θ1) : DN(G,G0) ≥ C(G0)M̄m

√
ln(mN)

m

∣∣∣∣X1
[N ], X

2
[N ], . . . , X

m
[N ]

)
→ 0

in
⊗m PG0,N -probability as m→∞.

b) If in addition, (2.11) is satisfied. Then the claim in part a) holds with n1(G0) = 1.

Proof: By Corollary 2.5.8 and Proposition 2.5.1 f), (2.22) holds and n0(G0) <∞. Moreover since
Θ1 ⊂ Θ◦ (B2) holds with n0 there be n0(G0) <∞. Moreover, by easy calculations

|K(f(x|θ1), f(x|θ2))| = |〈θ1 − θ2,Eθ1Tx〉 − (B(θ1)−B(θ2))| ≤ L1(Θ1)‖θ1 − θ2‖2.

By changing to its canonical parametrization and appeal to Lemma 2.13.2 b),

|h(f(x|θ1)− h(f(x|θ2)))| ≤ L2(Θ1)‖θ1 − θ2‖2.

Here L1(Θ1) and L2(Θ1) are constants that depend on Θ1. In summary (B3) is satisfied. Then the
conclusions are obtained by applying Theorem 2.6.2.

We end this subsection by applying the Corollary 2.6.3 to the Bernoulli kernel and two-paramters
Gamma kernel.
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Example 2.6.4 (Posterior contraction for weakly identifiable kernels: Bernoulli and Gamma). Fix
G0 ∈ Ek0(Θ◦). Suppose that (B1) holds with Θ1 ⊂ Θ◦.

Consider the Bernoulli kernel as in Example 2.5.10. As already shown in Example 2.5.10,
n1(G0) = n0(G0) = 2k0− 1. Then the conclusion a) in Corollary 2.6.3 holds for any N ≥ 2k0− 1.

Consider the Gamma kernel as in Example 2.4.18, 2.5.12. As already shown in Example 2.5.12,
n1(G0) = 2 when G0 ∈ G and n1(G0) = 1 when G0 ∈ Ek0(Θ◦)\G; n0(G0) = 1. Then the
conclusion a) in Corollary 2.6.3 holds for any N ≥ 2. Moreover, the same conclusion holds with
N ≥ 1 if additional information G0 6∈ G is known. �

2.6.2 Data are variable-length exchangeable sequences

Now we turn to a realistic setting where the m observed exchangeable sequences are of variable
lengths. For i = 1, 2, · · · ,m, denote X i

[Ni]
= (Xi1, Xi2, · · · , XiNi) ∈ XNi , where Ni is the length

of X i
[Ni]

sequence. Consider the hierarchical model:

G ∼ Π, θ1, θ2, · · · , θm|G
i.i.d.∼ G

Xi1, Xi2, · · · , XiNi |θi
i.i.d.∼ f(x|θi) for i = 1, · · · ,m.

As in Section 2.6.1, the probability family {Pθ}θ∈Θ has density {f(x|θ)}θ∈Θ w.r.t. a σ-finite
measure µ on X; then PG,Ni for G =

∑k0

i=1 piδθi has density w.r.t. to µ:

pG,Ni(x̄) =

k0∑
i=1

pi

Ni∏
j=1

f(xj|θi), for x̄ = (x1, x2, · · · , xNi) ∈ XNi .

Then the density of X i
[Ni]

conditioned on G is pG,Ni(·). Thus, given the m data sequences
X1

[N1], . . . , X
m
[Nm], the posterior distribution of mixing measure G is given by

Π(B|X1
[N1], . . . , X

m
[Nm]) =

∫
B

∏m
i=1 pG,Ni(X

i
[Ni]

)dΠ(G)∫
Ek0

(Θ)

∏m
i=1 pG,Ni(X

i
[Ni]

)dΠ(G)
, for B measurable subset of Ek0(Θ).

An useful quantity is the average sequence length

N̄m =
1

m

m∑
i=1

Ni.

In fact, the posterior contraction theorem will be characterized in terms of distance DN̄m(·, ·), which
extends the original notion of distance DN(·, ·) by allowing real-valued weight N̄m. Specifically,
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for any real r > 0, for G =
∑k0

i=1 piδθi ∈ Ek0(Θ) and G′ =
∑k0

i=1 p
′
iδθ′i ∈ Ek0(Θ) define

Dr(G,G
′) = min

τ∈Sk0

k0∑
i=1

(
√
r‖θτ(i) − θ′i‖2 + |pτ(i) − p′i|),

where Sk0 denotes the set of all permutations on the set [k0].

Theorem 2.6.5. Fix G0 ∈ Ek0(Θ). Suppose (B1), (B2), and (B3) hold. Suppose additionally (2.22)
holds. Let n1(G0) be given by (2.25).

a) There exists some constant C(G0) > 0 such that as long as n0 ∨ n1(G0) ≤ miniNi ≤
maxiNi <∞, for every M̄m →∞ there holds

Π

(
G ∈ Ek0(Θ1) : DN̄m(G,G0) ≥ C(G0)M̄m

√
ln(mN̄m)

m

∣∣∣∣X1
[N1], . . . , X

m
[Nm]

)
→ 0

in
⊗m

i=1 PG0,Ni-probability as m→∞.

b) If in addition, (2.11) is satisfied. Then the claim in part a) holds with n1(G0) = 1.

We make the following remarks.

Remark 2.6.6. a) In the above statement, note that the constant C(G0) also depends on Θ1, k0,
q, upper and lower bounds of the densities of Πθ, Πp and the density family f(x|θ) (including
α0, β0, L1, L2 etc). All such dependence are suppressed for the sake of clean presentation; it
is the dependence on G0 and the independence of m, {Ni}i≥1 and N0 := supiNi <∞, that
we want to emphasize. In addition, although C(G0) and hence the vanishing radius of the
ball characterized by DN̄m does not depend on N0, the rate at which the posterior probability
statement concerning this ball tending to zero may depend on it.

b) Roughly speaking, the theorem produces the following posterior contraction rates. The
posterior contraction toward mixing probabilities p0

i is of the rate OP ((ln(mN̄m)/m)1/2).
Individual atoms θ0

i receive much faster posterior contract rate, which utilizes the full volume
of the data set:

OP (ln(mN̄m)/mN̄m)1/2) = OP

(√
ln(
∑m

i=1Ni)∑m
i=1Ni

)
. (2.35)

c) The distinction between the two parts of the theorem highlights the role of first-order iden-
tifiability in mixtures of N -product distributions. Under first-order identifiability, (2.11) is
satisfied, so we can establish the aforementioned posterior contraction behavior for a full
range of sequence lengthNi’s, as long as they are uniformly bounded by an arbitrary unknown
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constant. When first-order identifiability is not satisfied, so (2.11) may fail to hold, the same
posterior behavior can be attained only when the sequence lengths exceed certain constant
depending on the true G0.

�

2.7 Sharpness of bounds and minimax theorem

Much efforts in the previous sections, particularly Section 2.4 and Section 2.5, were devoted
to establishing so-called inverse bounds for mixtures of product distributions of exchangeable
sequences. These are lower bounds of distances between a pair of distributions (PG0,N , PG,N ) in
terms of distance DN(G0, G) between corresponding de Finetti’s mixing measures (G0, G). The
distance DN(G0, G) brings out the role of the sample size N of exchangeable sequences. Under
suitable identifiability and regularity conditions we established the convergence of certain mixing
parameters with a rate proportional to N−1/2. In this section, we shall examine the sharpness of the
inverse bounds obtained, by presenting suitable opposing upper bounds. These relatively easy upper
bounds are also useful in establishing minimax theorems for the estimation of mixing measures.

2.7.1 Sharpness of inverse bounds

Inverse bounds of the form (2.22) hold only under some identifiability conditions, while the
following upper bound holds generally and is much easier to show.

Lemma 2.7.1. Let k0 ≥ 2 and fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ). Then for any N ≥ 1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
≤ lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

D1(G,G0)
≤ min

1≤i<j≤k0

1

2
V (

N⊗
Pθ0

i
,
N⊗
Pθ0

j
) ≤ 1

2
.

Proof: ConsiderG` =
∑k0

i=1 p
`
iδθ0

i
with p`i = p0

i for 3 ≤ ` ≤ k0 and p`1 = p0
1 + 1

`
, p`2 = p0

2− 1
`
. Then

for sufficiently large `, p`1, p
`
2 ∈ (0, 1) and hence G` ∈ Ek0(Θ)\{G0} and satisfies DN(G`, G0) =

D1(G`, G0) = 2/`. Thus for sufficiently large `,

V (PG,N , PG0,N)

D1(G,G0)
=
`

2
sup
A∈A

∣∣∣∣∣1`
N⊗
Pθ0

1
(A)− 1

`

N⊗
Pθ0

2
(A)

∣∣∣∣∣ =
1

2
V (

N⊗
Pθ0

1
,

N⊗
Pθ0

2
) ≤ 1

2
.

The proof is then complete by observing the above analysis indeed holds for any pair θ0
i , θ

0
j instead

of θ0
1, θ

0
2.

The next lemma establishes a upper bound for Hellinger distance of two mixture of product
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measures by Hellinger distance of individual components. Such result is useful later in Lemma
2.7.3 and Theorem 2.7.5. A similar result on variation distance is Lemma 2.11.2.

Lemma 2.7.2. For any G =
∑k0

i=1 piδθi and G′ =
∑k0

i=1 p
′
iδθ′i ,

h(PG,N , PG′,N) ≤ min
τ

√N max
1≤i≤k0

h
(
Pθi , Pθ′τ(i)

)
+

√√√√1

2

k0∑
i=1

∣∣∣pi − p′τ(i)

∣∣∣
 ,

where the minimum is taken over all τ in the permutation group Sk0 .

The inverse bounds expressed by Eq. (2.22) are optimal as far as the role of N in DN is
concerned. This is made precise by the following result.

Lemma 2.7.3 (Optimality of
√
N ). Fix G0 =

∑k0

i=1 piδθ0
i
∈ Ek0(Θ◦). Suppose there exists j ∈ [k0]

such that lim inf
θ→θ0

j

h(Pθ,Pθ0
j

)

‖θ−θ0
j ‖2

<∞ . Then for ψ(N) such that ψ(N)
N
→∞,

lim sup
N→∞

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG,N , PG0,N)

Dψ(N)(G,G0)
= 0.

A slightly curious and pedantic way to gauge the meaning of the double infimum limiting
arguments in the inverse bound (2.22), is to express its claim as follows:

0 < lim inf
N→∞

lim inf
G
W1→G0

G∈Ek0
(Ξ)

V (PG,N , PG0,N)

DN(G,G0)
= lim

k→∞
inf
N≥k

lim
ε→0

inf
G∈BW1

(G0,ε)\{G0}

V (PG,N , PG0,N)

DN(G,G0)
,

where BW1(G0, R) ⊂ Ek0(Θ) is defined in (2.10). It is possible to alter the order of the four
operations and consider the resulting outcome. The following lemma shows the last display is the
only order to possibly obtain a positive outcome.

Lemma 2.7.4. a)

lim
k→∞

lim
ε→0

inf
N≥k

inf
G∈BW1

(G0,ε)\{G0}

V (PG,N , PG0,N)

DN(G,G0)

= lim
k→∞

lim
ε→0

inf
G∈BW1

(G0,ε)\{G0}
inf
N≥k

V (PG,N , PG0,N)

DN(G,G0)
= 0

b)
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lim
ε→0

lim
k→∞

inf
N≥k

inf
G∈BW1

(G0,ε)\{G0}

V (PG,N , PG0,N)

DN(G,G0)

= lim
ε→0

lim
k→∞

inf
G∈BW1

(G0,ε)\{G0}
inf
N≥k

V (PG,N , PG0,N)

DN(G,G0)
= 0

c)

lim
ε→0

inf
G∈BW1

(G0,ε)\{G0}
lim
k→∞

inf
N≥k

V (PG,N , PG0,N)

DN(G,G0)
= 0.

Proof: The claims follow from

inf
N≥k

inf
G∈BW1

(G0,ε)\{G0}

V (PG,N , PG0,N)

DN(G,G0)
= inf

G∈BW1
(G0,ε)\{G0}

inf
N≥k

V (PG,N , PG0,N)

DN(G,G0)

and
inf
N≥k

V (PG,N , PG0,N)

DN(G,G0)
≤ inf

N≥k

1

DN(G,G0)
= 0.

2.7.2 Minimax lower bounds

Given G =
∑k0

i=1 piδθi ∈ Ek0(Θ) and G′ =
∑k0

i=1 p
′
iδθ′i ∈ Ek0(Θ), define additional notions of

distances4

dθ(G
′, G) := min

τ∈Sk0

k0∑
i=1

‖θ′τ(i) − θi‖2 (2.36)

dp(G
′, G) := min

τ∈Sk0

k0∑
i=1

|p′τ(i) − pi|. (2.37)

These two notions of distance are pseudometrics on the space of measures Ek0(Θ), i.e., they share
the same properties as a metric except that allow the distance between two different points may
be zero. dθ(G′, G) focus on the distance between atoms of two mixing measure; while dp(G′, G)

focus on the mixing probabilities of the two mixing measures. It is clear that

D1(G,G′) ≥ dθ(G,G
′) + dp(G,G

′). (2.38)

We proceed to present minimax lower bounds for any sequence of estimates Ĝ, which are mea-
surable functions of X1

[N ], . . . , X
m
[N ]. The minimax bounds are stated in terms of the aforementioned

(pseudo-)metrics dp and dθ, as well as the usual metric D1 studied.

4Notice that we denote dθ to be a distance on Θ in Section 2.3. Here the dθ with bold subscript is on Ek0(Θ).
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Theorem 2.7.5 (Minimax Lower Bound). a) Suppose there exists θ0 ∈ Θ◦ and β0 > 0 such

that lim sup
θ→θ0

h(Pθ,Pθ0)
‖θ−θ0‖

β0
2

< ∞. Moreover, suppose there exists a set of distinct k0 − 1 points

{θi}k0−1
i=1 ⊂ Θ\{θ0} satisfying ρ1 = min0≤i<j≤k0−1 h(Pθi , Pθj) > 0. Then

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndθ(Ĝ, G) ≥ C(β0)

(
1

√
m
√
N

) 1
β0

.

b) Let k0 ≥ 2.

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndp(Ĝ, G) ≥ C(k0)
1

m
,

c) Let k0 ≥ 2. Provided that the assumptions of part (a) holds. Then,

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,ND1(Ĝ, G) ≥ C(β0)

(
1

√
m
√
N

) 1
β0

+ C(k0)
1

m
.

In all three bounds the infimum is taken for all Ĝ measurable functions of X1
[N ], . . . , X

m
[N ].

Remark 2.7.6. a) The condition that there exists a set of distinct k0 − 1 points {θi}k0−1
i=1 ⊂

Θ\{θ0} satisfying ρ1 = min0≤i<j≤k0−1 h(Pθi , Pθj) > 0 immediately follows from the injec-
tivity of the map θ 7→ Pθ (recall that this condition is assumed throughout the chapter).

b) The condition that there exists θ0 ∈ Θ◦ and β0 > 0 such that lim sup
θ→θ0

h(Pθ,Pθ0)
‖θ−θ0‖

β0
2

<∞ holds for

most probability kernels considered in practice. For example, it is satisfied with β0 = 1 for
all full rank exponential families of distribution in their canonical form as shown by Lemma
2.13.2. It can then be shown that this condition with β0 = 1 is also satisfied by full rank
exponential families in general form specified in Corollary 2.5.8. Notice that the same remark
applies to the condition in Lemma 2.7.3.

c) If conditions of Theorem 2.7.5 a) hold with β0 = 1, then

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndθ(Ĝ, G) ≥ C
√
m
√
N
.

That is, the convergence rate of the best possible estimator for the worst scenario is at
least 1√

m
√
N

. Recall that Theorem 2.6.2 implied that the convergence rate of the atoms is

OP (
√

ln(mN)
mN

), which is obtained by replacing N̄m with N in (2.35). It is worth noting that
while the minimax rate seems to match the posterior contraction rate of the atoms except for a
logarithmic factor, such comparison is not very meaningful as pointwise posterior contraction
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bounds and (local) minimax lower bounds are generally not considered to be compatible. In
addition, in the posterior contraction theorems presented in the previous section, the truth G0

is fixed and the hidden constant OP (
√

ln(mN)
mN

) depends on G0, which is clearly not the case
in the above results obtained under the minimax framework. In short, we do not claim that
the Bayesian procedure described in the previous section is optimal in the minimax sense;
nor do we claim that the bounds given in Theorem 2.7.5 are sharp (i.e., achievable by some
statistical procedure). �

2.8 Hierarchical model: kernel Pθ is itself a mixture distribution

In this section we apply Theorem 2.5.14 to the cases where Pθ itself is a rather complex object:
a finite mixture of distributions. Combining this kernel with a discrete mixing measure G ∈ Ek0(Θ),
the resulting PG represents a mixture of finite mixtures of distributions, while PG,N becomes a
k0-mixture of N -products of finite mixtures of distributions. These recursively defined objects
represent a formidable and popular device in the statistical modeling world: the world of hierarchical
models. In this section we shall illustrate Theorem 2.5.14 on only two examples of such models.
However, the tools required for these applications are quite general, chief among them are bounds
on relevant oscillatory integrals for suitable statistical maps T . We shall first describe such tools
in subsection 2.8.1 and then proceed to applying Theorem 2.5.14 to the case Pθ is a k-component
Gaussian location mixture as introduced in Example 2.5.20. Finally, subsection 2.8.4 studies the
case Pθ is a mixture of Dirichlet processes as introduced in Example 2.5.21.

2.8.1 Bounds on oscillatory integrals

A key condition in Theorem 2.5.14, namely condition (A3), is reduced to the Lr integrability of
certain oscillatory integrals: ∥∥∥∥∫

X

eiζ
TTxf(x)dx

∥∥∥∥
Lr(Rs)

(2.39)

for a broad class of functions f : X → R and multi-dimensional maps T : X → Rs. When
X = Rd, the oscillatory integral

∫
X
eiζ

TTxf(x)dx is also known as the Fourier transform of measures
supported on curves or surfaces; bounds for such quantities are important topics in harmonic analysis
and geometric analysis. We refer to [BGG+07] and the textbook [SM93] (Chapter 8) for further
details and broader contexts. Despite there are many existing results, such results are typically
established when f(x) is supported on a compact interval or is smooth, i.e. f has derivative
of arbitrary orders. We shall develop an upper bound on (2.39) for our purposes to verify the
integrability condition in (A3) for a broad class of f , which is usually satisfied for probability
density functions.
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We will start by stating the following fact, which provides an useful estimate for oscillatory
integrals of the form

∫
eiλφ(x)ψ(x)dx, where function φ is called the phase, and function ψ the

amplitude.

Lemma 2.8.1 (van der Corput’s Lemma). Suppose φ(x) ∈ C∞(a, b), and that |φ(k)(x)| ≥ 1 for all

x ∈ (a, b). Let ψ(x) be absolute continuous on [a, b]. Then∣∣∣∣∫
[a,b]

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ ckλ
− 1
k

[
|ψ(b)|+

∫
[a,b]

|ψ′(x)|dx
]

and ∣∣∣∣∫
[a,b]

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ ckλ
− 1
k

[
|ψ(a)|+

∫
[a,b]

|ψ′(x)|dx
]

hold when:

1. k ≥ 2, or

2. k = 1 and φ′(x) is monotonic.

The constant ck is independent of φ, ψ, λ and the interval [a, b].

Proof: See the Corollary on Page 334 of [SM93] for the proof of the first display; even in its
original version in this reference, ψ is assumed to be C∞ but its proof only needs ψ to be absolute
continuous on [a, b]. The second display follows by applying the first display to ψ̃(x) = ψ(a+b−x).

It can be observed from Lemma 2.8.1 the condition on derivatives of the phase function plays a
crucial role. For our purpose the phase function will be supplied by use of monomial map T . Hence,
the following technical lemma will be needed.

Lemma 2.8.2. Let A(x) ∈ Rd×d with entries Aαβ(x) = 0 for α > β and Aαβ(x) =
jβ !

(jβ−jα)!
xjβ−jα

for 1 ≤ α ≤ β ≤ d, where 1 ≤ j1 < . . . < jd are given. Let Smin(A(x)) be the smallest singular

value of A(x). Then Smin(A(x)) ≥ c3 max{1, |x|}−(jd−j1)(d−1), where c3 is a constant that depends

only on d, j1, . . . , jd.

The following lemma provides a crucial uniform bound on oscillatory integrals given by a phase
given by monomial map T .

Lemma 2.8.3. Let T : R → Rd defined by Tx = (xj1 , xj2 , . . . , xjd)T with 1 ≤ j1 < j2 < . . . jd.

Consider a bounded non-negative function f(x) that is differentiable on R\{bi}`i=1, where b1 <

b2 < . . . < b` with ` a finite number. The derivative f ′(x) ∈ L1(R) and is continuous when exists.
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Moreover, f(x) and |x|α1f(x) are both increasing when x < −c1 and decreasing when x > c1 for

some c1 ≥ max{|b1|, |b`|}, where α1 = (jd − j1)(d− 1)/j1. Then for λ > 1,

sup
w∈Sd−1

∣∣∣∣∫
R

exp(iλwTTx)f(x)dx

∣∣∣∣
≤C(d, j1, . . . , jd)λ

− 1
jd (c1 + 2)α1

(
‖|x|α1f(x)‖L1(R) + (`+ 1)‖f‖L∞(R)+

‖(|x|α1 + 1) f ′(x)‖L1(R)

)
,

where C(d, j1, j2, . . . , jd) is a constant that only depends on its parameters.

Applying Lemma 2.8.3 we can obtain the following bound for the oscillatory integral in question.

Lemma 2.8.4. Let T and f satisfy the same conditions as in Lemma 2.8.3. Define g(ζ) =∫
R e

iζTTxf(x)dx for ζ ∈ Rd. Then for r > djd,

‖g(ζ)‖Lr(Rd)

≤C(r, d, j1, . . . , jd)(c1 + 2)α1
(
‖|x|α1f(x)‖L1(R) + (`+ 1)‖f‖L∞(R)+

‖(|x|α1 + 1)f ′(x)‖L1(R) + ‖f‖L1(R)

)
where C(r, d, j1, . . . , jd) is a constant that depends on its parameters.

2.8.2 Kernel Pθ is a mixture of Gaussian distributions

This and the next subsection are devoted to the application of Theorem 2.5.14 to case kernel Pθ
is a mixture of k Gaussian distributions. Let

Θ = {θ = (π1, π2, . . . , πk−1, µ1, µ2, . . . , µk) ∈ R2k−1|0 < πi < 1, ∀i; µi < µj, ∀1 ≤ i < j ≤ k}

and Pθ w.r.t. Lebesgue measure on R has probability density

f(x|θ) =
k∑
i=1

πifN (x|µi, σ2) (2.40)

where πk = 1−
∑k−1

i=1 πi and fN (x|µ, σ2) is the density ofN (µ, σ2) with σ a known constant. The
goal is to recover G0 =

∑k0

i=1 p
0
i δθ0

i
with θ0

i = (π0
1i, . . . , π

0
(k−1)i, µ

0
1i, . . . , µ

0
ki) from sequences x̄

distributed according to the mixture of product distributions, which admits the following density
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w.r.t. Lebesgue measure on RN :

pG0,N(x̄) =
k∑
i=1

p0
i

N∏
j=1

f(xj|θ0
i ), for x̄ = (xT1 , . . . , x

T
N)T ∈ RN ,

where f is given by (2.40). Let us now verify that Corollary 2.5.15 with the map

Tx = (x, x2, . . . , x2k−1)T

can be applied for this model.
The mean of TX1 is λ(θ) ∈ R2k−1 with its j-th entry given by

λ(j)(θ) = EθXj
1 =

k∑
i=1

πiE(σY + µi)
j, j = 1, . . . , 2k − 1 (2.41)

where X1 has density (2.40) and and Y is one dimensional standard Gaussian distribution N (0, 1).
The covariance matrix of TX1 is Λ(θ) ∈ R(2k−1)×(2k−1) with its jβ entries given by

Λjβ(θ) = EθXj+β
1 − λ(j)(θ)λ(β)(θ) =

k∑
i=1

πiE(σY + µi)
j+β − λ(j)(θ)λ(β)(θ).

It follows immediately from these formulae that λ(θ) and Λ(θ) are continuous on Θ. That is, (A1)
in Definition 2.5.13 is satisfied.

The characteristic function of TX1 is

φT (ζ|θ) = Eθ exp(iζTTX1) =
k∑
i=1

πih(ζ|µi, σ) (2.42)

where h(ζ|µ, σ) = E exp(iζTT (σY + µ)). Denote by fN (x|µ, σ) the density of N (µ, σ2). The
verification of (A2) in Definition 2.5.13 is omitted since the essence is the same as the next four
equations due to the dominated convergence theorem.

It is easy to verify by the dominated convergence theorem or Pratt’s Lemma:

∂h(ζ|µ, σ)

∂µ
=

∫
R

exp(i
k∑
i=1

ζ(i)xi)
∂fN (x|µ, σ)

∂µ
dx,

∂2h(ζ|µ, σ)

∂µ2
=

∫
R

exp(i
k∑
i=1

ζ(i)xi)
∂2fN (x|µ, σ)

∂µ2
dx,
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∂h(ζ|µ, σ)

∂ζ(j)
=

∫
R
ixj exp(i

k∑
i=1

ζ(i)xi)fN (x|µ, σ)dx, j ∈ [k]

and
∂2h(ζ|µ, σ)

∂ζ(j)∂µ
=

∫
R
ixj exp(i

k∑
i=1

ζ(i)xi)
∂fN (x|µ, σ)

∂µ
dx, j ∈ [k].

Then ∣∣∣∣∂h(ζ|µ, σ)

∂µ

∣∣∣∣ ≤ ∫
R

∣∣∣∣∂fN (x|µ, σ)

∂µ

∣∣∣∣ dx =

√
2

π

1

σ
(2.43)∣∣∣∣∂2h(ζ|µ, σ)

∂µ2

∣∣∣∣ ≤ ∫
R

∣∣∣∣∂2fN (x|µ, σ)

∂µ2

∣∣∣∣ dx ≤ 2

σ2
, (2.44)

max
j∈[k]

∣∣∣∣∂h(ζ|µ, σ)

∂ζ(j)

∣∣∣∣ ≤ max
j∈[k]

∫
R

∣∣xjfN (x|µ, σ)
∣∣ dx := h1(µ), (2.45)

max
j∈[k]

∣∣∣∣∂2h(ζ|µ, σ)

∂ζ(j)∂µ

∣∣∣∣ ≤ max
j∈[k]

∫
R

∣∣∣∣xj ∂fN (x|µ, σ)

∂µ

∣∣∣∣ dx := h2(µ), (2.46)

where h1(µ) and h2(µ) are continuous functions of µ, with their dependence on the constant σ
suppressed. It follows that gradient w.r.t. θ is

∇θφT (ζ|θ)

=

(
h(ζ|µ1, σ)− h(ζ|µk, σ), . . . , h(ζ|µk−1, σ)− h(ζ|µk, σ), π1

∂h(ζ|µ1, σ)

∂µ
, . . . , πk

∂h(ζ|µk, σ)

∂µ

)T
(2.47)

and Hessian w.r.t. θ with ij entry for j ≥ i given by

∂2

∂θ(j)∂θ(i)
φT (ζ|θ) =



∂h(ζ|µi,σ)
∂µ

i ∈ [k − 1], j = k − 1 + i

−∂h(ζ|µk,σ)
∂µ

i ∈ [k − 1], j = 2k − 1

πi−(k−1)
∂2h(ζ|µi−(k−1),σ)

∂µ2 k ≤ i ≤ 2k − 1, j = i

0 otherwise

(2.48)

and the lower part is symmetric to the upper part.
Then by (2.43), (2.44), (2.45), (2.46), (2.47) and (2.48), for any i, j ∈ [k]:∣∣∣∣∂φT (ζ|θ)

∂θ(i)

∣∣∣∣ ≤ 2 +

√
2

π

1

σ
,∣∣∣∣∂2φT (ζ|θ)

∂θ(i)∂θ(j)

∣∣∣∣ ≤
√

2

π

1

σ
+

2

σ2
,
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∣∣∣∣∂2φT (ζ|θ)
∂ζ(j)∂θ(i)

∣∣∣∣ ≤ k∑
i=1

(h1(µi) + h2(µi)) ,

where the right hand side of the last display is a continuous function of θ since h1 and h2 are
continuous. Hence to verify the condition (A3) of Theorem 2.5.14 it suffices to establish there exists
some r ≥ 1 such that

∫
R2k−1 |φT (ζ|θ)|r dζ on Θ is upper bounded by a finite continuous function of

θ.
As we have seen the verification of conditions (A1), (A2) and parts of (A3) in Definition 2.5.13

is fairly straightforward by simply checking the specific definition of the probability kernel Pθ. The
remaining condition of (A3) requires results from subsection 2.8.1.

Note that fN (x|µ, σ) is differentiable everywhere and ∂fN (x|µ,σ)
∂x

∈ L1(R). Moreover α1 in
Lemma 2.8.4 for T is 4(k − 1)2 and fN (x|µ, σ), x4(k−1)2

fN (x|µ, σ) are increasing on(
−∞,− |µ|+

√
µ2+16(k−1)2σ2

2

)
and decreasing on

(
|µ|+
√
µ2+16(k−1)2σ2

2
,∞
)

. By Lemma 2.8.4, for

r > (2k − 1)2, and for Tx = (x, x2, · · · , x2k−1)∥∥∥∥∫
R
eiζ

TTxfN (x|µ, σ)dx

∥∥∥∥
Lr

≤C(r)

(
|µ|+

√
µ2 + 16(k − 1)2σ2

2
+ 2

)4(k−1)2

(
‖|x|4(k−1)2

fN (x|µ, σ)‖L1 +
1√
2πσ

+

∥∥∥∥(|x|4(k−1)2

+ 1)
∂fN (x|µ, σ)

∂x

∥∥∥∥
L1

+ 1

)
:=h3(µ, σ),

where C(r) is a constant that depends only r. It can be verified easily by the dominated convergence
theorem that h3(µ, σ) is a continuous function of µ. Then

‖φT (ζ|θ)‖Lr ≤
k∑
i=1

πi

∥∥∥∥∫
R
eiζ

TTxfN (x|µi, σ)dx

∥∥∥∥
Lr
≤

k∑
i=1

πih3(µi, σ),

which is a finite continuous function of θ = (π1, . . . , πk−1, µ1, . . . , µk). Thus (A3) in Definition
2.5.13 for T is verified.

In conclusion, we have verified that T is admissible with respect to Θ. In the next subsection we
continue to verify that the mean map λ(θ) is injective and its Jacobian is of full column rank.
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2.8.3 Moment map is injective and its Jacobian is of full column rank

We first show that λ(θ) is injective. By (2.41), for any j ∈ [2k − 1]:

λ(j)(θ) =
k∑
i=1

πi(µ
j
i +
∑̀
`=1

σ`EY `µj−`i ) =
k∑
i=1

πi(µ
j
i +

j∑
`=2
` even

σ`(`− 1)!!µj−`i )

=
k∑
i=1

πiµ
j
i +

j∑
`=2
` even

σ`(`− 1)!!
k∑
i=1

πiµ
j−`
i . (2.49)

Thus λ(θ) = λ(θ̄) if and only if

k∑
i=1

πiµ
j
i =

k∑
i=1

π̄iµ̄
j
i , ∀j ∈ [2k − 1] ∪ {0}, (2.50)

where the equation for j = 0 is due to
∑k

i=1 πi =
∑k

i=1 π̄i = 1. Suppose that k̃ = |{µi}ki=1 ∩
{µ̄i}ki=1| < k, and let {µi}ki=1 ∪ {µ̄i}ki=1 = {µ̃i}2k−k̃

i=1 be the distinct elements. Then the preceding
displays can be written as

k̃∑
i=1

aiµ̃
j
i = 0, ∀j ∈ [k] ∪ {0}. (2.51)

There exists some µ̃i 6∈ {µi}ki=1 ∩ {µ̄i}ki=1 and its coefficient ai is either π` or −π̄` for some ` ∈ [k].
But the coefficients of the first k̃ equations (j = 0, 1, . . . , k̃− 1) of system of linear equations (2.51)
form a Vandermonde matrix and thus all ai = 0 for i ∈ [k̃]. That means for some ` ∈ [k], π` = 0 or
π̄` = 0, which is a contradiction. Hence k̃ = k and consequently µi = µ̄i for i ∈ [k]. Then system
of equations (2.50) become

k∑
i=1

(πi − π̄i)µji = 0, ∀j ∈ [2k − 1] ∪ {0}.

Since the coefficients of the first k equations (j = 0, 1, . . . , k − 1) form a Vandermonde matrix, the
unique solution is πi = π̄i for i ∈ [k]. In conclusion, θ = θ̄, which establishes that λ(θ) is injective.

Next we show that Jλ(θ) is of full column rank for any θ ∈ Θ, where Jλ(θ) is the Jacobian
matrix of λ(θ). Denote λ̄(j)(θ) =

∑k
i=1 πiµ

j
i and λ̄(θ) = (λ̄(1)(θ), . . . , λ̄(2k−1)(θ)) ∈ R2k−1. By

(2.49), λ(j)(θ) = λ̄(j)(θ) +
∑j

`=2
` even

σ`(`− 1)!!λ̄(j−`)(θ), which implies

∇θλ
(j)(θ) = ∇θλ̄

(j)(θ) +

j∑
`=2
` even

σ`(`− 1)!!∇θλ̄
(j−`)(θ).
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Since∇θλ
(j)(θ) and ∇θλ̄

(j)(θ) are respectively the j-th row of Jλ(θ) and Jλ̄(θ),

det(Jλ(θ)) = det(Jλ̄(θ)). (2.52)

Also, observe

det(Jλ̄(θ))

=

(
k∏
`=1

π`

)
det


µ1 − µk, . . . µk−1 − µk, 1, . . . 1

µ2
1 − µ2

k, . . . µ2
k−1 − µ2

k, 2µ1, . . . 2µk
...

...
...

...
...

...
µ2k−1

1 − µ2k−1
k , . . . µ2k−1

k−1 − µ
2k−1
k , (2k − 1)µ2k−1

1 , . . . (2k − 1)µ2k−1
k



=

(
k∏
`=1

π`

)
(−1)k+1det



1, . . . 1, 1, 0, . . . 0

µ1, . . . µk−1, µk, 1, . . . 1

µ2
1, . . . µ2

k−1, µ2
k 2µ1, . . . 2µk

...
...

...
...

...
...

...
µ2k−1

1 , . . . µ2k−1
k−1 , µ2k−1

k (2k − 1)µ2k−1
1 , . . . (2k − 1)µ2k−1

k


=

(
k∏
`=1

π`

)
(−1)k+1

(
k∏
i=1

(−1)k+i−2i

) ∏
1≤α<β≤k

(µα − µβ)4 (2.53)

where the second equality holds since we may subtract the k-th column of the 2k × 2k matrix from
each of its first k−1 columns and then do Laplace expansion along its first row, and the last equality
follows by observing that the (k + i)-th column of the 2k × 2k matrix is the derivative of the i-th
column and by Lemma 2.5.11 c) after some column permutation.

By (2.52) and (2.53), det(Jλ(θ)) 6= 0 on Θ. That is Jλ(θ) is of full column rank for any θ ∈ Θ.
In summary, we have showed that λ(θ) is injective and its Jacobian is of full column rank,

which means the condition 1) and 2) in Corollary 2.5.15 are satisfied. Together with the preceding
subsection, all the conditions in Corollary 2.5.15 and by Corollary 2.5.15, for Pθ having the density
in (2.40), the inverse bounds (2.22) and (2.24) hold for any G0 ∈ Ek0(Θ).

2.8.4 Kernel Pθ is mixture of Dirichlet processes

Using the tools developed in subsection 2.8.1, we are now in a proper position to complete
Example 2.5.21, which is motivated from modeling techniques in nonparametric Bayesian statistics.
In particular, the kernel Pθ is now defined as a distribution on a space of probability measures: Pθ is
a mixture of Dirichlet processes, so that PG,N is in fact a finite mixture of products of mixtures of
Dirichlet processes.
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Let X = P(Z) be the space of all probability measures on a Polish space (Z,Z ). X is equipped
with the weak topology and the corresponding Borel sigma algebraA. Let DαH denote the Dirichlet
distribution on (X,A), which is specified by two parameters, concentration parameter α ∈ (0,∞)

and base measure H ∈ X. Formal definition and key properties of the Dirichlet distributions can be
found in the original chapter of [Fer73], or a recent textbook by [GvdV17]. In this example, we take
the probability kernel Pθ to be a mixture of two Dirichlet distributions with different concentration
parameters, while the base measure is fixed and known: Pθ = π1Dα1H + (1 − π1)Dα2H . Thus,
the parameter vector is three dimensional which shall be restricted by the following constraint:
θ := (π1, α1, α2) ∈ Θ = {(π1, α1, α2)|0 < π1 < 1, 2 < α1 < α2}. Kernel Pθ so defined is a simple
instance of the so-called mixture of Dirichlet processes first studied by [Ant74], but considerably
more complex instances of model using Dirichlet as the building block have become a main staple
in the lively literature of Bayesian nonparametrics [HHMW10, TJBB06, RDG08, CLOP19]. For
notational convenience in the following we also denote Qα := DαH for α = α1 and α = α2, noting
that H is fixed, so we may write Pθ = π1Qα1 + (1− π1)Qα2 .

Having specified the kernel Pθ, now let G ∈ Ek(Θ). The mixture of product distributions PG,N
is defined in the same way as before (cf. Eq. (2.1)). Now we shall show that for G0 ∈ Ek0(Θ◦) =

Ek0(Θ), (2.22) and (2.24) hold by an application of Corollary 2.5.15 via a suitable choice of map T .
Consider a map T : X→ R3 defined by Tx = ((x(B))2, (x(B))3, (x(B))4)T for some B ∈ Z

to be specified later. The reason we restrict the domain of Θ is so that this particular choice of
map will be shown to be admissible. Define T1 : X → R by T1x = x(B) and T2 : R → R3 by
T2z = (z2, z3, z4)T . Then T = T2 ◦ T1. For X ∼ Pθ, T1X has induced probability measure on R

Pθ ◦ T−1
1 = π1

(
Qα1 ◦ T−1

1

)
+ π2

(
Qα2 ◦ T−1

1

)
.

where π2 = 1 − π1. By a standard property of Dirichlet distribution, as Qα = DαH , we have
Qα ◦ T−1

1 corresponds to Beta(αH(B), α(1−H(B))), a Beta distribution with parameter induced
from the Dirichlet distribution. Thus with ξ = H(B), Qα ◦T−1

1 has density w.r.t. Lebesgue measure
on R

g(z|α, ξ) =
1

B(αξ, α(1− ξ))
zαξ−1(1− z)α(1−ξ)−11(0,1)(z),

where B(·, ·) is the beta function. Then Pθ ◦T−1
1 has density w.r.t. Lebesgue measure π1g(z|α1, ξ)+

π2g(z|α2, ξ).
Now, the push-forward measure Pθ ◦ T−1 = (Pθ ◦ T−1

1 ) ◦ T−1
2 has mean λ(θ) ∈ R3 with

λ(j)(θ) =
2∑
i=1

πi

∫
R
zj+1g(z|αi, ξ)dz =

2∑
i=1

πi

j∏
`=0

αiξ + `

αi + `
∀j = 1, 2, 3
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and has covariance matrix Λ with its jβ entry given by

Λjβ(θ) =
2∑
i=1

πi

∫
R
zj+β+2g(z|αi, ξ)dz − λj(θ)λβ(θ) =

2∑
i=1

πi

j+β+1∏
`=0

αiξ + `

αi + `
− λj(θ)λβ(θ).

It follows immediately from these formula that λ(θ) and Λ(θ) are continuous on Θ. That is, (A1) in
Definition 2.5.13 is satisfied. Furthermore, observe that Pθ ◦ T−1 has characteristic function

φT (ζ|θ) = π1h(ζ|α1, ξ) + π2h(ζ|α2, ξ)

where h(ζ|α, ξ) =
∫
R exp(i

∑3
j=1 ζ

(j)zj)g(z|α, ξ)dz. The verification of (A2) in Definition 2.5.13
is omitted since the essence is the same as the next four equations due to the dominated convergence
theorem.

It is easy to verify by the dominated convergence theorem or Pratt’s Lemma:

∂h(ζ|α, ξ)
∂α

=

∫
R

exp(i
3∑
i=1

ζ(i)zi+1)
∂g(z|α, ξ)

∂α
dz,

∂2h(ζ|α, ξ)
∂α2

=

∫
R

exp(i
3∑
i=1

ζ(i)zi+1)
∂2g(z|α, ξ)

∂α2
dz,

∂h(ζ|α, ξ)
∂ζ(j)

=

∫
R
izj+1 exp(i

3∑
i=1

ζ(i)zi+1)g(z|α, ξ)dz, j = 1, 2, 3

and

∂2h(ζ|α, ξ)
∂ζ(j)∂α

=
∂2h(ζ|α, ξ)
∂α∂ζ(j)

=

∫
R
izj+1 exp(i

3∑
i=1

ζ(i)zi+1)
∂g(z|α, ξ)

∂α
dz, j = 1, 2, 3.

From the preceding four displays,∣∣∣∣∂h(ζ|α, ξ)
∂α

∣∣∣∣ ≤ ∫
R

∣∣∣∣∂g(z|α, ξ)
∂α

∣∣∣∣ dz := h1(α) (2.54)∣∣∣∣∂2h(ζ|α, ξ)
∂α2

∣∣∣∣ ≤ ∫
R

∣∣∣∣∂2g(z|α, ξ)
∂α2

∣∣∣∣ dz := h2(α), (2.55)

max
j=1,2,3

∣∣∣∣∂h(ζ|α, ξ)
∂ζ(j)

∣∣∣∣ ≤ max
j=1,2,3

∫
R

∣∣zj+1g(z|α, ξ)
∣∣ dz := h3(α), (2.56)

max
j=1,2,3

∣∣∣∣∂2h(ζ|α, ξ)
∂ζ(j)∂α

∣∣∣∣ ≤ max
j=1,2,3

∫
R

∣∣∣∣zj+1∂g(z|α, ξ)
∂α

∣∣∣∣ dz := h4(α), (2.57)

where h1(α), h2(α), h3(α) and h4(α) are continuous functions of α by dominated convergence
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theorem, with their dependence on the constant ξ suppressed.
It follows that gradient w.r.t. θ is

∇θφT (ζ|θ) =

(
h(ζ|α1, ξ)− h(ζ|α2, ξ), π1

∂h(ζ|α1, ξ)

∂α
, π2

∂h(ζ|α2, ξ)

∂α

)T
, (2.58)

and Hessian w.r.t. θ is

HessθφT (ζ|θ) =

 0 ∂h(ζ|α1,ξ)
∂α

−∂h(ζ|α2,ξ)
∂α

∂h(ζ|α1,ξ)
∂α

π1
∂2h(ζ|α1,ξ)

∂α2 0

−∂h(ζ|α2,ξ)
∂α

0 π2
∂2h(ζ|α2,ξ)

∂α2

 . (2.59)

Then by (2.54), (2.55), (2.56), (2.57), (2.58) and (2.59), for any i, j ∈ {1, 2, 3}:∣∣∣∣∂φT (ζ|θ)
∂θ(i)

∣∣∣∣ ≤ 2 + h1(α1) + h1(α2),∣∣∣∣∂2φT (ζ|θ)
∂θ(i)∂θ(j)

∣∣∣∣ ≤ 2∑
i=1

(h1(αi) + h2(αi)) ,∣∣∣∣∂2φT (ζ|θ)
∂ζ(j)∂θ(i)

∣∣∣∣ ≤ 2∑
i=1

(h3(αi) + h4(αi)) ,

where the right hand side of the preceding 3 displays are continuous functions of θ since h1, h2, h3

and h4 are continuous.
So far we have shown some properties of T for every B. For some other properties we

will need to specify B. For G0 =
∑k0

i=1 p
0
i δθ0

i
with θ0

i = (π0
1i, α

0
1i, α

0
2i) ∈ Θ, let B be such that

ξ = H(B) ∈ (1/mini∈[k0] α
0
1i, 1−1/mini∈[k0] α

0
1i). Notice that since α0

1i > 2, (1/mini∈[k0] α
0
1i, 1−

1/mini∈[k0] α
0
1i) is not empty. Hence to verify the condition (A3) in Definition 2.5.13 w.r.t. {θ0

i }
k0
i=1

for T with the B specified it suffices to establish there exists some r ≥ 1 such that
∫
R3 |φT (ζ|θ)|r dζ

in a small neighborhood of θ0 is upper bounded by a finite continuous function of θ for each
θ0 ∈ {θ0

i }
k0
i=1.

Since g(z|α, ξ) is differentiable w.r.t. to z on R\{0, 1} and when z 6= 0, 1

∂g(z|α, ξ)
∂z

=
1(0,1)(z)

B(αξ, α(1− ξ))
(
(αξ − 1)zαξ−2(1− z)α(1−ξ)−1 − (α(1− ξ)− 1)zαξ−1(1− z)α(1−ξ)−2

)
,

which is in L1 when α ≥ mini∈[k0] α
0
1i− γ such that αξ > 1 and α(1− ξ) > 1, where γ depends on

T through ξ. Moreover, g(z|α, ξ) and z2g(z|α, ξ) are both increasing on (−∞,−1) and decreasing

70



on (1,∞). Now, by appealing to Lemma 2.8.4, for r > 12, and for α ≥ mini∈[k0] α
0
1i − γ

‖h(ζ|α, ξ)‖Lr

≤C(r)(1 + 2)2

(
‖z2g(z|α, ξ)‖L1 + 3‖g(z|α, ξ)‖L∞ +

∥∥∥∥(z2 + 1)
∂g(z|α, ξ)

∂z

∥∥∥∥
L1

+ 1

)
:=h5(α, ξ),

where C(r) is a constant that depends only on r. It can be verified easily by the dominated
convergence theorem that h5(α, ξ) is a continuous function of α. Then for θ in a neighborhood of
θ0 ∈ {θ0

i }
k0
i=1 such that α1, α2 ≥ α0

1i − γ,

‖φT (ζ|θ)‖Lr

≤π1 ‖h(ζ|α1, ξ)‖Lr + π2 ‖h(ζ|α2, ξ)‖Lr
≤π1h5(α1, ξ) + π2h5(α2, ξ),

which is a finite continuous function of θ = (π1, α1, α2). We have thus verified that T with the
specified B is admissible w.r.t. {θ0

i }
k0
i=1.

Moreover, it can also be verified that λ(θ) for T is injective on Θ provided that ξ 6= 1
3
, 1

2
, 2

3
. By

calculation,

det(Jλ)(θ) = −6(ξ − 1)3ξ3(2ξ − 1)(3ξ − 1)(3ξ − 2)π1π2(α1 − α2)4∏2
i=1 ((1 + αi)2(2 + αi)2(3 + αi)2)

6= 0

on Θ provided that ξ 6= 1
3
, 1

2
, 2

3
; so Jλ(θ) is of full rank for each θ ∈ Θ provided that ξ 6= 1

3
, 1

2
, 2

3
. In

summary, for G0 =
∑k0

i=1 p
0
i δθ0

i
with θ0

i = (π0
1i, α

0
1i, α

0
2i) ∈ Θ, Tx = ((x(B))2, (x(B))3, (x(B))4)T

with B such that ξ = H(B) ∈ ( 1
mini∈[k0] α

0
1i
, 1− 1

mini∈[k0] α
0
1i

)\{1
3
, 1

2
, 2

3
} satisfies all the conditions in

Corollary 2.5.15 and thus (2.22) and (2.24) hold.

2.9 Proofs of lemmas in Section 2.3

Proof of Lemma 2.3.2: a) The proof is trivial and is therefore omitted.

b) Let G =
∑k

i=1 piδθi and G′ =
∑k

i=1 p
′
iδθ′i be their increasing representation. Let τ be the

optimal permutation that achieves D1(G,G′) =
∑k

i=1

(
‖θτ(i) − θ′i‖2 + |pτ(i) − p′i|

)
. Let q

be a coupling of the mixing probabilities p = (p1, . . . , pk) and p′ = (p′1, . . . , p
′
k) such that

qτ(i),i = min{pτ(i), pi} and then the remaining mass to be assigned is
∑k

i=1(pτ(i) − qτ(i),i) =
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1
2

∑k
i=1 |pτ(i) − pi|. Thus,

W1(G,G′)

≤
k∑
i=1

qτ(i),i‖θτ(i) − θ′i‖2 +
1

2

k∑
i=1

|pτ(i) − pi|diam(Θ) ≤ max

{
1,

diam(Θ)

2

}
D1(G,G′).

The proof for the general case proceed in the same procedure.

c) Let θ ∈ Θ◦ and then for sufficiently small positive a, θ+ ae1 ∈ Θ where e1 = (1, 0, . . . , 0) is
the first canonical basis. Consider G =

∑k
i=1 piδθi with pi = 1

k
for 1 ≤ i ≤ k and θk−1 = θ

and θk = θ + ae1, and {θi}k−2
i=1 be any arbitrary distinct k − 2 points that are different from

θ and θ + ae1. Let G′ =
∑k

i=1 p
′
iδθ′i with p′i = pi for 1 ≤ i ≤ k − 2, p′k−1 = 1

k
+ a

2
‖e1‖2,

p′k = 1
k
− a

2
‖e1‖2 and θ′i = θi for 1 ≤ i ≤ k.

Let q be a coupling of p = (p1, . . . , pk) and p′ = (p′1, . . . , p
′
k−2, p

′
k−1, p

′
k) such that

qij =



1
k

1 ≤ i = j ≤ k − 1,

1
k
− a

2
‖e1‖2 i = j = k,

a
2
‖e1‖2 i = k, j = k − 1,

0 otherwise.

Then
W1(G,G′) ≤

∑
i,j

qij‖θi − θ′j‖2 =
a

2
‖e1‖2 × a‖e1‖2.

Moreover, it’s easy to see D1(G,G′) = a‖e1‖2 when a is sufficiently small. Thus

inf
G,G′∈Ek(Θ)

W1(G,G′)

D1(G,G′)
≤ lim

a→0

a

2
‖e1‖2 = 0.

d) Consider any Gn ∈ Ek(Θ) and Gn
W1→ G0, and one may write Gn =

∑k
i=1 p

n
i δθni for n ≥ 0

such that pni → p0
i and θni → θ0

i . Then when n is sufficiently large, Gn ∈ Ek(Θ1) for
Θ1 =

⋃k0

i=1 B(θ0
i ,

1
2
), where B(θ0

i , ρ) ⊂ Rq is the open ball with center at θ0
i of radius ρ. Then

by b) for large n, W1(Gn, G0) ≤ C(G0)D1(Gn, G0), which entails lim inf
G
W1→G0

G∈Ek(Θ)

D1(G,G0)
W1(G,G0)

> 0.

On the other hand, for sufficiently large n, one can verify

W1(Gn, G0) ≥1

2

k∑
j=1

p0
j‖θnj − θ0

j‖2 +
1

8
min

1≤i<`≤k
‖θ0

i − θ0
`‖2

k∑
j=1

|pnj − p0
j |
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≥1

2
min

{
min
`
p0
` ,

1

4
min

1≤i<`≤k
‖θ0

i − θ0
`‖2

} k∑
j=1

(‖θnj − θ0
j‖2 + |pnj − p0

j |)

=
1

2
min

{
min
`
p0
` ,

1

4
min

1≤i<`≤k
‖θ0

i − θ0
`‖2

}
D1(Gn, G0),

which entails lim inf
G
W1→G0

G∈Ek(Θ)

W1(G,G0)
D1(G,G0)

> 0.

e) Based on d), there exists c(G0) > 0 such that for G ∈ Ek0(Θ) satisfying W1(G,G0) < c(G0)

W1(G,G0) ≥ C1(G0)D1(G,G0).

For G ∈ Ek0(Θ) satisfying W1(G,G0) ≥ c(G0)

W1(G,G0)

D1(G,G0)
≥ c(G0)

k0diam(Θ) + 1
.

2.10 Proofs and auxiliary lemmas of Section 2.4

2.10.1 Additional examples and proofs of results in Section 2.4.1

Example 2.10.1 (Location Gamma kernel). For gamma distribution with fixed α ∈ (0, 1)
⋃

(1, 2)

and β > 0, consider its location family with density f(x|θ) = βα(x−θ)α−1e−β(x−θ)

Γ(α)
1(θ,∞)(x) w.r.t.

Lebesgue measure µ on X = R. The parameter space Θ = R. Observe

lim
a→0+

f(θ0|θ0 + a)− f(θ0|θ0)

a
= 0

and
lim
a→0+

f(θ0|θ0 − a)− f(θ0|θ0)

a
=

βα

Γ(α)
lim
a→0+

aα−2e−βa =∞,

since α < 2. Then for any x, f(x|θ) as a function of θ is not differentiable at θ = x. So it’s not
identifiable in the first order as in [HN16b].

However, this family does satisfy the ({θi}ki=1,N ) first-order identifiable definition with N =⋃k
i=1(θi − ρ, θi + ρ) where ρ = 1

4
min1≤i<j≤k |θi − θj|. Indeed, observing

∂

∂θ
f(x|θ) =

(
β − α− 1

x− θ

)
f(x|θ), ∀θ 6= x,
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then (2.9a) become

0 =
k∑
i=1

(
ai
∂

∂θ
f(x|θi) + bif(x|θi)

)
=

k∑
i=1

(
aiβ − ai

α− 1

x− θi
+ bi

)
f(x|θi) for µ−a.e. x ∈ R\N .

Without loss of generality, assume θ1 < . . . < θk. Then for µ−a.e. x ∈ (θ1, θ2)\N = [θ1+ρ, θ2−ρ],
the above display become(

a1β − a1
α− 1

x− θ1

+ b1

)
βα(x− θ1)α−1e−β(x−θ1)

Γ(α)
= 0

which implies a1 = b1 = 0 since α 6= 1. Repeating the above argument on interval (θ2, θ3), . . . (θk,∞)

shows ai = bi = 0 for any i ∈ [k].
So for {θi}ki=1 this family is ({θi}ki=1,N ) first-order identifiable. Moreover, for every x in R\N

f(x|θ) is continuously differentiable w.r.t. θ in a neighborhood of θ0
i for i ∈ [k0]. By Lemma 2.4.2

b) for any G0 ∈ Ek0(Θ) (2.12) holds. �

Proof of Lemma 2.4.2 b): Suppose the equation (2.12) is incorrect. Then there exists G`, H` ∈
Ek0(Θ) such that 

G` 6= H`, ∀`

G`, H`
W1→ G0, as `→∞

V (PG` ,PH` )

D1(G`,H`)
→ 0, as `→∞.

We may relabel the atoms of G` and H` such that G` =
∑k0

i=1 p
`
iδθ`i , H` =

∑k0

i=1 π
`
iδη`i with

θ`i , η
`
i → θ0

i and p`i , π
`
i → p0

i as `→∞ for any i ∈ [k0]. With subsequences argument if necessary,
we may futher require

θ`i − η`i
D1(G`, H`)

→ ai ∈ Rq,
p`i − π`i

D1(G`, H`)
→ bi ∈ R, ∀1 ≤ i ≤ k0, (2.60)

where bi and the components of ai are in [−1, 1] and
∑k0

i=1 bi = 0. Moreover, D1(G`, H`) =∑k0

i=1

(
‖θ`i − η`i‖2 + |p`i − π`i |

)
for sufficiently large `, which implies

k0∑
i=1

‖ai‖2 +

k0∑
i=1

|bi| = 1.

It also follows that at least one of ai is not 0 ∈ Rq or one of bi is not 0. On the other hand,

0 = lim
`→∞

2V (PG` , PG0)

D1(G`, G0)
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≥ lim
`→∞

∫
X\N

∣∣∣∣∣
k0∑
i=1

p`i
f(x|θ`i )− f(x|η`i )

D1(G`, H`)
+

k0∑
i=1

f(x|η`i )
p`i − π`i

D1(G`, H`)

∣∣∣∣∣µ(dx)

≥
∫
Xd\N

lim inf
`→∞

∣∣∣∣∣
k0∑
i=1

p`i
f(x|θ`i )− f(x|η`i )

D1(G`, H`)
+

k0∑
i=1

f(x|η`i )
p`i − π`i

D1(G`, H`)

∣∣∣∣∣µ(dx)

=

∫
X\N

∣∣∣∣∣
k0∑
i=1

p0
i a
T
i ∇θf(x|θ0

i ) +

k0∑
i=1

f(x|θ0
i )bi

∣∣∣∣∣µ(dx),

where the second inequality follows from Fatou’s Lemma, and the last step follows from Lemma
2.10.3 a). Then

∑k0

i=1 p
0
i a
T
i ∇θf(x|θ0

i ) +
∑k0

i=1 f(x|θ0
i )bi = 0 for µ− a.e. x ∈ X\N . Thus we find

a nonzero solution to (2.9a), (2.9b) with k, θi replaced by k0, θ
0
i .

However, the last statement contradicts with the definition of ({θ0
i }
k0
i=1,N ) first-order identifiable.

Proof of Lemma 2.4.4: By Lemma 2.4.14 b) (a1, b1, . . . , ak0 , bk0) is also a nonzero solution of
the system of equations (2.9a), (2.9b). Let a′i =

ai/p
0
i∑k0

i=1(‖ai/p0
i ‖2+|bi|)

and b′i = bi∑k0
i=1(‖ai/p0

i ‖2+|bi|)
.

Then a′i and b′i satisfy
∑k0

i=1 (‖a′i‖2 + |b′i|) = 1 and (p0
1a
′
1, b′1, . . . , p

0
k0
a′k0

, b′k0
) is also a nonzero

solution of the system of equations (2.9a), (2.9b) with k, θi replaced respectively by k0, θ
0
i . Let

G` = p`iδθ`i with p`i = p0
i + b′i

1
`

and θ`i = θ0
i + 1

`
a′i for 1 ≤ i ≤ k0. When ` is large, 0 < p`i < 1

and θ`i ∈ Θ since 0 < p0
i < 1 and θ0

i ∈ Θ◦. Moreover,
∑k0

i=1 p
`
i = 1 since

∑k0

i=1 b
′
i = 0.

Then G` ∈ Ek0(Θ) and G` 6= G0 since at least one of a′i or b′i is nonzero. When ` is large
D1(G`, G0) =

∑k0

i=1

(
‖θ`i − θ0

i ‖2 + |p`i − p0
i |
)

= 1
`
. Thus when ` is large

2V (PG` , PG0)

D1(G`, G0)
=

∫
X\N

∣∣∣∣∣
k0∑
i=1

p`i
f(x|θ`i )− f(x|θ0

i )

1/`
+

k0∑
i=1

b′if(x|θ0
i )

∣∣∣∣∣µ(dx). (2.61)

Since by condition c)

∣∣∣∣f(x|θ`i )− f(x|θ0
i )

1/`

∣∣∣∣ =

∣∣∣∣∣∣f(x|θ0
i + 1

`

‖a′i‖2
‖ai‖2ai)− f(x|θ0

i )

1/`

∣∣∣∣∣∣ ≤ ‖a
′
i‖2

‖ai‖2

f̄(x),

the integrand of (2.61) is bounded by
k0∑
i=1

1/p0
i∑k0

i=1(‖ai/p0
i ‖2+|bi|)

f̄(x)+
k0∑
i=1

|b′i|f(x|θ0
i ), which is integrable

w.r.t. to µ on X\N .
Then by the dominated convergence theorem

lim
`→∞

2V (PG` , PG0)

D1(G`, G0)
=

∫
X\N

∣∣∣∣∣
k0∑
i=1

p0
i 〈a′i,∇θf(x|θ0

i )〉+

k0∑
i=1

b′if(x|θ0
i )

∣∣∣∣∣µ(dx) = 0.
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Thus
lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
= 0.

and the proof is completed by

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG, PH)

D1(G,H)
≤ lim inf

G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
.

Proof of Lemma 2.4.7: The proof of b) is similar to that of a) and hence only the latter is presented.
Let G` be the same as in the proof of Lemma 2.4.4. Then when ` is large

Dr,1(G`, G0) =

k0∑
i=1

(‖a′i‖r2(1/`)r + |b′i|(1/`)) ≥ 1/`

k0∑
i=1

|b′i|

and thus
D1(G`, G0)

Dr,1(G`, G0)
≤ 1/`

1/`
∑k0

i=1 |b′i|
=

1∑k0

i=1 |b′i|
<∞.

Moreover, as shown in the proof of Lemma 2.4.4,

lim
`→∞

V (pG` , pG0)

D1(G`, G0)
= 0.

Combining the last two displays establishes

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

Dr,1(G,G0)
= 0.

It can be verified that for large `

W r
r (G,G0) ≥ 1

8

(
min

1≤i<j≤k
‖θ0

i − θ0
j‖2

) k∑
i=1

|p`i − p0
i | =

1

8

(
min

1≤i<j≤k
‖θ0

i − θ0
j‖2

)
1

`

k0∑
i=1

|b′i|.

The rest of the proof is similar to above to establish

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

W r
r (G,G0)

= 0.
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Proof of Lemma 2.4.9: It suffices to prove (2.12) since (2.11) is a direct consequence of (2.12).
Without loss of generality, assume θ0

1 < θ0
2 < . . . < θ0

k0
. Let N =

⋃k0

i=1(θ0
i − ρ, θ0

i + ρ), where
ρ = 1

4
min1≤i<j≤k0 |θ0

i − θ0
j |. Notice that for x ∈ R\N , f(x|θ) as a function of θ is continuously

differentiable on (θ0
i − ρ, θ0

i + ρ) for each i ∈ [k0].
Suppose (2.12) is not true. Proceed exactly the same as the proof of Lemma 2.4.2 b) except the

last paragraph to obtain a nonzero solution (p0
i ai, bi : i ∈ [k0]) of (2.9a), (2.9b) with k, θi replaced

by k0, θ
0
i . For the uniform distribution family, one may argue that the nonzero solution has to satisfy

− p0
i ai/θ

0
i + bi = 0 ∀i ∈ [k0]. (2.62)

Indeed, start from the rightmost interval that intersects with the support from only one mixture
component, for µ− a.e. x ∈ (θ0

k0−1, θ
0
k0

)\N = [θ0
k0−1 + ρ, θ0

k0
− ρ]

0 =

k0∑
i=1

(
p0
i ai

∂

∂θ
f(x|θ0

i ) + bif(x|θ0
i )

)

=

k0∑
i=1

(
−p0

i ai/θ
0
i + bi

)
f(x|θ0

i )

=
(
−p0

k0
ak0/θ

0
k0

+ bk0

)
/θ0

k0
,

which implies −p0
k0
ak0/θ

0
k0

+ bk0 = 0. Repeat the above argument on interval (θ0
k0−2, θ

0
k0−1), . . .,

(θ0
1, θ

0
2), (0, θ0

1) and (2.62) is established.
Combining (2.62) with the fact that some of the ai or bi is non-zero, it follows that |aα| > 0 for

some α ∈ [k0]. When ` is sufficiently large, θ`i , η
`
i ∈ (θ0

i − ρ, θ0
i + ρ). For sufficiently large `

2V (PG` , PH`)

D1(G`, H`)

≥ 1

D1(G`, H`)

∫ max{θ`α,η`α}

min{θ`α,η`α}
|pG`(x)− pH`(x)| dx

(∗)
=

1

D1(G`, H`)

∫ max{θ`α,η`α}

min{θ`α,η`α}

∣∣∣∣∣(π`α1(θ`α < η`α) + p`α1(θ`α ≥ η`α))

max{θ`α, η`α}
+

k0∑
i=α+1

p`i
θ`i
−

k0∑
i=α+1

p0
i

θ0
i

∣∣∣∣∣ dx
(∗∗)
=

1

D1(G`, H`)
|θ`α − η`α|

∣∣∣∣∣(π`α1(θ`α < η`α) + p`α1(θ`α ≥ η`α))/max{θ`α, η`α}+

k0∑
i=α+1

p`i
θ`i
−

k0∑
i=α+1

p0
i

θ0
i

∣∣∣∣∣
→|aα|

p0
α

θ0
α

> 0,

where the step (∗) follows from carefully examining the support of f(x|θ), the step (∗∗) follows
from the integrand is a constant, and the last step follows from (2.60). The last display contradicts
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with the choice of G`, H`, which satisfies V (PG` ,PH` )

D1(G`,H`)
→ 0.

Proof of Lemma 2.4.11: Without loss of generality, assume ξ0
1 ≤ ξ0

2 ≤ . . . ≤ ξ0
k0

. Let N =⋃k0

i=1{ξ0
i }. Notice that for x ∈ R\N , f(x|θ) as a function of θ is differentiable at θ0

i = (ξ0
i , σ

0
i ) for

each i ∈ [k0].
Suppose (2.11) is not true. Proceed exactly the same as the proof of Lemma 2.4.2 a) except

the last paragraph to obtain a nonzero solution (p0
i ai, bi : i ∈ [k0]) of (2.9a), (2.9b) with k, θi

replaced by k0, θ
0
i . Write the two-dimensional vector ai as ai = (a

(ξ)
i , a

(σ)
i ). For the location-scale

exponential distribution, one may argue that the nonzero solution has to satisfy

a
(σ)
i = 0, p0

i a
(ξ)
i /σ0

i + bi = 0, ∀i ∈ [k0]. (2.63)

Indeed, let
⋃k0

i=1{ξ0
i } = {ξ′1, ξ′2, . . . , ξ′k′} with ξ′1 < ξ′2 < . . . < ξ′k′ where k′ is the number of distinct

elements. Define I ′(ξ) = {i ∈ [k0] : ξ0
i = ξ}. Then for µ− a.e. x ∈ R\N

0 =

k0∑
i=1

(
p0
i 〈ai,∇(ξ,σ)f(x|ξ0

i , σ
0
i )〉+ bif(x|ξ0

i , σ
0
i )
)

=
k′∑
j=1

∑
i∈I′(ξ′j)

(
p0
i 〈ai,∇(ξ,σ)f(x|ξ′j, σ0

i )〉+ bif(x|ξ′j, σ0
i )
)

=
k′∑
j=1

∑
i∈I′(ξ′j)

(
p0
i a

(ξ)
i

1

σ0
i

+ p0
i a

(σ)
i

x− ξ0
i − σ0

i

(σ0
i )

2
+ bi

)
f(x|ξ′j, σ0

i ).

Start from the leftmost interval that intersects with the support from only one mixture component,
for µ− a.e. x ∈ (ξ′1, ξ

′
2)\N = [ξ′1 + ρ, ξ′2 − ρ],

0 =
∑

i∈I′(ξ′1)

(
p0
i a

(ξ)
i

1

σ0
i

+ p0
i a

(σ)
i

x− ξ0
i − σ0

i

(σ0
i )

2
+ bi

)
f(x|ξ′1, σ0

i )

=
∑

i∈I′(ξ′1)

(
p0
i a

(ξ)
i

1

σ0
i

+ p0
i a

(σ)
i

x− ξ0
i − σ0

i

(σ0
i )

2
+ bi

)
exp

(
ξ′1
σ0
i

)
exp

(
− x

σ0
i

)
.

Since σ0
i for i ∈ I ′(ξ′1) are all distinct, by Lemma 2.10.4 a)

a
(σ)
i = 0, p0

i a
(ξ)
i /σ0

i + bi = 0, ∀i ∈ I ′(ξ′1).

Repeat the above argument on interval (ξ′2, ξ
′
3), . . . , (ξ′k′−1, ξ

′
k′), (ξ

′
k′ ,∞) and (2.63) is established.

Since at least one of ai or bi is not zero, from (2.63) it is clear that at least one of {bi}k0
i=1
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is not zero. Then by
∑k0

i=1 bi = 0 at least one of bi is positive. By (2.63) at least one of a(ξ)
i is

negative. Let α ∈ arg max
i∈{j∈[k0]:a

(ξ)
j <0}

a
(ξ)
i . That is a(ξ)

α is a largest negative one among {a(ξ)
i }i∈[k0].

Let ρ = 1
2

min1≤i<j≤k′ |ξ′i − ξ′j| to be half of the smallest distance among different {ξ′i}k
′
i=1. By

subsequence argument if necessary, we require for any i ∈ [k0], ξ`i ∈ (ξ0
i − ρ, ξ0

i + ρ).
Let I(α) = {i ∈ [k0]|ξ0

i = ξ0
α} to be the set of indices for those sharing the same ξ0

i as ξ0
α. We

now consider subsequences such that ξ`i for i ∈ I(α) satisfies finer properties as follows. Divide the
index set I(α) into three subsets, J(α) := {i ∈ I(α)|a(ξ)

i = a
(ξ)
α }, J<(α) := {i ∈ I(α)|a(ξ)

i < a
(ξ)
α }

and J>(α) := {i ∈ I(α)|a(ξ)
i > a

(ξ)
α }. Note J(α) is the index set for those sharing the same ξ0

i as
ξ0
α and sharing the same a(ξ)

i as a(ξ)
α (so their a(ξ)

i are also largest negative ones among {a(ξ)
i }i∈[k0]),

while J>(α) corresponds for indices i for which ξ0
i = ξ0

α and a(ξ)
i ≥ 0, and J<(α) corresponds for

indices i for which ξ0
i = ξ0

α and a(ξ)
i < a

(ξ)
α . To be clear, the two subsets J<α and J>α may be empty,

but Jα is non-empty by our definition.
For any i ∈ J<(α), j ∈ J(α)

ξ`i − ξ0
α

D`(G`, G0)
→ a

(ξ)
i < a(ξ)

α ←
ξ`j − ξ0

α

D`(G`, G0)
.

Then for large `, ξ`i < ξ`j for any i ∈ J<(α) and j ∈ J(α). Similarly for large `, ξ`j < ξ`k for any
j ∈ J(α) and k ∈ J>(α). Thus by subsequence argument if necessary, we require ξ`i additionally
satisfy the conditions specified in the last two sentences for all `.

Consider maxj∈J(α){ξ`j} and there exists ᾱ ∈ J(α) such that ξ`ᾱ = maxj∈J(α){ξ`j} for infinitely
many ` since J(α) has finite cardinality. By subsequence argument if necessary, we require
ξ`ᾱ = maxj∈J(α){ξ`j} for all `. Moreover, since aξᾱ = aξα < 0 we may further require ξ`ᾱ < ξ0

α for
all `. Finally, for each k ∈ J>(α) such that a(ξ)

k > 0, we may further require ξ`k > ξ0
α for all ` by

subsequences.
To sum up, {ξ`i} for i ∈ I(α) satisfy:

ξ`i ≤ ξ`ᾱ < ξ0
α, ∀`, ∀ i ∈ J<(α)

⋃
J(α)

ξ`i > ξ`ᾱ, ∀`, ∀ i ∈ J>(α)

ξ`i > ξ0
α, ∀`,∀i ∈ J>(α) and a(ξ)

i > 0

. (2.64)

Let ξ̄` = min

{
min

i∈{j∈I(α):a
(ξ)
j =0}

ξ`i , ξ
0
α

}
with the convention that the minimum over an empty

set is∞. Then ξ̄` ≤ ξ0
α and ξ̄` → ξ0

α. Moreover, by property (2.64), ξ̄` > ξ`ᾱ. Thus on (ξ`ᾱ, ξ̄
`),

1) for any i > max I(α), f(x|ξ`i , σ`i ) = 0 = f(x|ξ0
i , σ

0
i ) since ξ`i , ξ

0
i ≥ ξ0

α ≥ ξ̄`; 2) for i ∈ J>(α),
f(x|ξ`i , σ`i ) = 0 due to ξ`i ≥ ξ̄` due to (2.64); 3) for i ∈ I(α), f(x|ξ0

i , σ
0
i ) = 0 since ξ0

i = ξ0
α ≥ ξ̄`.
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Then

2V (PG` , PG0)

D1(G`, G0)

≥ 1

D1(G`, G0)

∫ ξ̄`

ξ`ᾱ

|pG`(x)− pG0(x)| dx

=
1

D1(G`, G0)

∫ ξ̄`

ξ`ᾱ

∣∣∣∣∣∣
∑

i∈J<(α)
⋃
J(α)

p`i
1

σ`i
exp

(
−x− ξ

`
α

σ`i

)

+
∑

i<min I(α)

(
p`i

1

σ`i
exp

(
−x− ξ

`
i

σ`i

)
− p0

i

1

σ0
i

exp

(
−x− ξ

0
i

σ0
i

))∣∣∣∣∣∣ dx. (2.65)

Denote the integrand (including the absolute value) in the preceding display by A`(x). Then as
a function on [ξ0

α − ρ, ξ0
α], A`(x) converges unifomrly to

∑
i∈J<(α)

⋃
J(α)

p0
i

1
σ0
i

exp
(
−x−ξ0

α

σ0
i

)
:= B(x).

Since B(x) is positive and continuous on compact interval [ξ0
α − ρ, ξ0

α], for large `

|A`(x)−B(x)| ≤ 1

`
≤ 1

2
minB(x) ≤ 1

2
B(x), ∀x ∈ [ξ0

α − ρ, ξ0
α],

which yields

A`(x) ≥ 1

2
B(x) ≥ 1

2
p0
ᾱ

1

σ0
ᾱ

exp

(
−x− ξ

0
α

σ0
ᾱ

)
≥ 1

2
p0
ᾱ

1

σ0
ᾱ

, ∀x ∈ [ξ0
α − ρ, ξ0

α].

Plug the preceding display into (2.65), one obtains for large `,

2V (PG` , PH`)

D1(G`, H`)
≥ 1

D1(G`, G0)

∫ ξ̄`

ξ`ᾱ

1

2
p0
ᾱ

1

σ0
ᾱ

dx

=

(
ξ0
α − ξ`ᾱ

D1(G`, G0)
− ξ0

α − ξ̄`

D1(G`, G0)

)
1

2
p0
ᾱ

1

σ0
ᾱ

→(−a(ξ)
ᾱ − 0)

1

2
p0
ᾱ

1

σ0
ᾱ

> 0 (2.66)

where the convergence in the last step is due to (2.14). (2.66) contradicts with the choice of G`,
which satisfies V (PG` ,PG0

)

D1(G`,G0)
→ 0.

Proof of Lemma 2.4.12: Take f̃(x) = maxi∈[k0] f̄(x)
√
f(x|θ0

i ). Then f̃(x) is µ-integrable by
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Cauchy-Schwarz inequality. Moreover for any i ∈ [k0] and any 0 < ∆ ≤ γ0∣∣∣∣f(x|θ0
i + ai∆)− f(x|θ0

i )

∆

∣∣∣∣ ≤ f̃(x) µ− a.e. x ∈ X.

Then by Lemma 2.4.14 b) (a1, b1, . . . , ak0 , bk0) is a nonzero solution of the system of equations
(2.9a), (2.9b).

Let a′i =
ai/p

0
i∑k0

i=1(‖ai/p0
i ‖2+|bi|)

and b′i = bi∑k0
i=1(‖ai/p0

i ‖2+|bi|)
. Then a′i and b′i satisfy

k0∑
i=1

(‖a′i‖2 + |b′i|) = 1

and (p0
1a
′
1, b′1, . . . , p

0
k0
a′k0

, b′k0
) is also a nonzero solution of (2.9a), (2.9b) with k, θi replaced

respectively by k0, θ
0
i . Let G` = p`iδθ`i with p`i = p0

i + b′i
1
`

and θ`i = θ0
i + 1

`
a′i for 1 ≤ i ≤ k0. When

` is large, 0 < p`i < 1 and θ`i ∈ Θ since 0 < p0
i < 1 and θ0

i ∈ Θ◦. Moreover,
∑k0

i=1 p
`
i = 1 since∑k0

i=1 b
′
i = 0. Then G` ∈ Ek0(Θ) and G` 6= G0 since at least one of a′i or b′i is nonzero. When ` is

large D1(G`, G0) =
∑k0

i=1

(
‖θ`i − θ0

i ‖2 + |p`i − p0
i |
)

= 1
`
. Thus when ` is large

2h2(PG` , PG0)

D2
1(G`, G0)

=

∫
S

∣∣∣∣∣pG`(x)− pG0(x)

D1(G`, G0)

1√
pG`(x) +

√
pG0(x)

∣∣∣∣∣
2

µ(dx)

=

∫
S\N

∣∣∣∣∣
(

k0∑
i=1

p`i
f(x|θ`i )− f(x|θ0

i )

1/`
+

k0∑
i=1

b′if(x|θ0
i )

)
1√

pG`(x) +
√
pG0(x)

∣∣∣∣∣
2

µ(dx).

The integrand of the last integral is bounded by∣∣∣∣∣
k0∑
i=1

p`i√
p0
i

f(x|θ`i )− f(x|θ0
i )

1/`×
√
f(x|θ0

i )
+

k0∑
i=1

b′i√
p0
i

√
f(x|θ0

i )

∣∣∣∣∣
2

≤2k0

k0∑
i=1

(p`i)
2

p0
i

∣∣∣∣∣f(x|θ`i )− f(x|θ0
i )

1/`×
√
f(x|θ0

i )

∣∣∣∣∣
2

+ 2k0

k0∑
i=1

(b′i)
2

p0
i

f(x|θ0
i )

≤2k0

k0∑
i=1

1

p0
i

(
1/p0

i∑k0

i=1 (‖ai/p0
i ‖2 + |bi|)

)2

f̄ 2(x) + 2k0

k0∑
i=1

(b′i)
2

p0
i

f(x|θ0
i ),
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which is integrable w.r.t. to µ on S\N . Here the last inequalities follows from

∣∣∣∣∣f(x|θ`i )− f(x|θ0
i )

1/`×
√
f(x|θ0

i )

∣∣∣∣∣ =

∣∣∣∣∣∣f(x|θ0
i +

‖a′i‖2
‖ai‖2ai∆)− f(x|θ0

i )

∆
√
f(x|θ0

i )

∣∣∣∣∣∣ ≤ ‖a
′
i‖2

‖ai‖2

f̄(x).

Then by the dominated convergence theorem

lim
`→∞

2h2(PG`(x), PG0(x))

D2
1(G`, G0)

=

∫
S\N

∣∣∣∣∣
(

k0∑
i=1

p0
i 〈a′i,∇θf(x|θ0

i )〉+

k0∑
i=1

b′if(x|θ0
i )

)
1

2
√
pG0(x)

∣∣∣∣∣
2

µ(dx)

=0.

The proof is completed by

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

h(PG, PH)

D1(G,H)
≤ lim inf

G
W1→G0

G∈Ek0
(Θ)

h(PG, PG0)

D1(G,G0)
.

2.10.2 Proofs in Section 2.4.2

Proof of Lemma 2.4.14:

a) For any x ∈ X\N ,∇θf̃(x|θi) = g(θi)∇θf(x|θi)+f(x|θi)∇θg(x|θi). Then (ã1, b̃1, . . . , ãk, b̃k)

is a solution of (2.9a) with f replaced by f̃ if and only if (a1, b1, . . . , ak, bk) with ai = g(θi)ãi

and bi = 〈ãi,∇θg(θi)〉 + b̃ig(θi) is a solution of (2.9a). We can write ãi = ai/g(θi)

and b̃i = (bi − 〈ai,∇θg(θi)〉/g(θi))/g(θi). Thus (ã1, b̃1, . . . , ãk, b̃k) is zero if and only if
(a1, b1, . . . , ak, bk) is zero.

b) Under the conditions, by Dominated Convergence Theorem∫
X\N
〈ai,∇θf(x|θi)〉dµ = 〈ai,∇θ

∫
X\N

f(x|θ)dµ〉
∣∣∣∣
θ=θi

= 0.

where the last step follows from µ(N ) = 0 and the fact that f(x|θ) is a density w.r.t. µ. Thus
for (a1, b1, . . . , ak, bk) any solution of (2.9a),

k∑
i=1

bi =

∫
X\N

k∑
i=1

(〈ai,∇θf(x|θi)〉+ bif(x|θi)) dµ = 0.

So (a1, b1, . . . , ak, bk) is also a solution of the system (2.9a),(2.9b).
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It remains to show (2.20) is equivalent to the same conditions on f̃ . Suppose (2.20) is true.
Then there exists small enough γ̃(θi, ai) < γ(θi, ai) such that for 0 < ∆ ≤ γ̃(θi, ai)∣∣∣∣∣ f̃(x|θi + ai∆)− f̃(x|θi)

∆

∣∣∣∣∣
≤g(θi + ai∆)

∣∣∣∣f(x|θi + ai∆)− f(x|θi)
∆

∣∣∣∣+

∣∣∣∣g(θi + ai∆)− g(θi)

∆

∣∣∣∣ f(x|θi)

≤C(g, θi, ai, γ̃(θi, ai))(f̄(x|θi, ai) + f(x|θi)) µ− a.e. X

and thus one can take µ-integrable f̄1(x|θi, ai) = C(g, θi, ai, γ̃(θi, ai))(f̄(x|θi, ai) + f(x|θi)).
The reverse direction follows similarly.

c) It’s a direct consequence from parts a) and b).

Proof of Lemma 2.4.16: Notice that f(x|θ) is continuously differentiable at every θ ∈ Θ◦ when
fixing any x ∈ X. By Lemma 2.10.2 and Lemma 2.4.14 c), (2.9a) has the same solutions as the
system (2.9a),(2.9b).

It’s obvious that a) implies b) and that c) implies d). That a) implies c) and that b) implies d)
follow from V (pG, pG0) ≤ h(pG, pG0). e) implies a) follows from Lemma 2.4.2 b). It remains to
prove d) implies e).

Suppose d) holds and the system of equations (2.9a), (2.9b) with k, θi replaced respectively by
k0, θ

0
i has a nonzero solution (a1, b1, . . . , ak0 , bk0). By Lemma 2.10.2, the condition d) of Lemma

2.4.12 is satisfied with γ0 = mini∈[k0] γ(θ0
i , ai) and f̄(x) = maxi∈[k0] f̄(x|θ0

i , ai). Thus by Lemma
2.4.12, d) does not hold. This is a contradiction and thus d) implies e).

Lemma 2.10.2. Let f(x|θ) be the density of a full rank exponential family in canonical form

specified as in Lemma 2.4.16. Then for any θ ∈ Θ◦ and a ∈ Rq there exists γ(θ, a) > 0 such that

for any 0 < ∆ ≤ γ(θ, a),∣∣∣∣∣f(x|θ + a∆)− f(x|θ)
∆
√
f(x|θ)

∣∣∣∣∣ ≤ f̄(x|θ, a) ∀x ∈ S = {x|f(x|θ) > 0}

with
∫
X
f̄ 2(x|θ, a)dµ <∞ and∣∣∣∣f(x|θ + a∆)− f(x|θ)

∆

∣∣∣∣ ≤ f̃(x|θ, a) ∀x ∈ X

with
∫
X
f̃(x|θ, a)dµ <∞. Here γ(θ, a), f̄(x|θ, a) and f̃(x|θ, a) depend on θ and a.
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Proof of Lemma 2.10.2: Let γ > 0 be such that the line segment between θ − aγ and θ + aγ lie
in Θ and

∫
X
e4γTT (x)f(x|θ)dµ < ∞,

∫
X
e−4γTT (x)f(x|θ)dµ < ∞ due to the fact that the moment

generating function exists in a neighborhood of origin for any given θ ∈ Θ◦. Then for ∆ ∈ (0, γ]

and for any x ∈ S∣∣∣∣∣f(x|θ + a∆)− f(x|θ)
∆
√
f(x|θ)

∣∣∣∣∣
=
√
f(x|θ)

∣∣∣∣exp(〈a∆, T (x)〉 − (A(θ + a∆)− A(θ)))− 1

∆

∣∣∣∣
(∗)
≤
√
f(x|θ)

∣∣∣∣〈a, T (x)〉 − A(θ + a∆)− A(θ)

∆

∣∣∣∣ e〈a∆,T (x)〉−(A(θ+a∆)−A(θ))

≤
√
f(x|θ)

(
|〈a, T (x)〉|+ ‖a‖2 max

∆∈[0,γ]
‖∇θA(θ + a∆)‖2

)
e∆|〈a,T (x)〉| max

∆∈[0,γ]
e−(A(θ+a∆)−A(θ))

≤
√
f(x|θ) 1

γ
eγ|〈a,T (x)〉|+γ‖a‖2 max∆∈[0,γ] ‖∇θA(θ+a∆)‖2 eγ|〈a,T (x)〉| max

∆∈[0,γ]
e−(A(θ+a∆)−A(θ))

=C(γ, a, θ)
√
f(x|θ)e2γ|〈a,T (x)〉|

≤
√
C2(γ, a, θ)f(x|θ) (e4γ〈a,T (x)〉 + e−4γ〈a,T (x)〉), (2.67)

where step (∗) follows from |et − 1| ≤ |t|et. Then the the first conclusion holds with

f̄ =
√
C2(γ, a, θ)f(x|θ) (e4γ〈a,T (x)〉 + e−4γ〈a,T (x)〉).

Take f̃(x) = f̄(x)
√
f(x|θ) and by Cauchy–Schwarz inequality

∫
X
f̃(x)dµ ≤

∫
X
f̄ 2(x)dµ <∞.

Moreover by (2.67) ∣∣∣∣f(x|θ0
i + ∆ai)− f(x|θ0

i )

∆

∣∣∣∣ ≤ f̃(x) ∀x ∈ X.

Proof of Lemma 2.4.17: Consider f̃(x|η) := f(x|θ) to be the same kernel but under the new
parameter η = η(θ). Note {f̃(x|η)}η∈Θ with Ξ := η(Θ) is the canonical parametrization of the
same exponential family. Write η0

i = η(θ0
i ). Since Jη(θ) = ( ∂η

(i)

∂θ(j) (θ))ij exists at θ0
i and at those

points,
∇θf(x|θ0

i ) =
(
Jη(θ

0
i )
)T ∇ηf̃(x|η0

i ), ∀i ∈ [k0]

and thus

k0∑
i=1

(
〈ai,∇θf(x|θ0

i )〉+ bif(x|θ0
i )
)

=

k0∑
i=1

(
〈Jη(θ0

i )ai,∇ηf̃(x|η0
i )〉+ bif̃(x|η0

i )
)
. (2.68)
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Then (2.9a), (2.9b) with k, θi replaced respectively by k0, θ
0
i has only the zero solution if and only

if (2.9a), (2.9b) with k, θi, f replaced respectively by k0, η
0
i , f̃ has only the zero solution.

Suppose that (a1, b1, . . . , ak0 , bk0) is a solution of (2.9a) with k, θi replaced respectively by k0, θ
0
i .

Then by (2.68) (ã1, b̃1, . . . , ãk0 , b̃k0) with ãi = Jη(θ
0
i )ai, b̃i = bi is a solution of (2.9a) with k, θi, f

replaced respectively by k0, η
0
i , f̃ . Then by Lemma 2.4.16, it necessarily has

∑k0

i=1 bi =
∑k0

i=1 b̃i = 0.
That is, (a1, b1, . . . , ak0 , bk0) is a solution of the system of equations (2.9a), (2.9b) with k, θi replaced
respectively by k0, θ

0
i . As a result, with k, θi replaced respectively by k0, θ

0
i , (2.9a) has the same

solutions as the system (2.9a),(2.9b).
The rest of the proof is completed by appealing to Lemma 2.5.6 and Lemma 2.4.16.

2.10.3 Auxiliary Lemmas

Lemma 2.10.3. Consider g(x) on Rd is a function with its gradient∇g(x) continuous in a neigh-

borhood of x0.

a) Then when x→ x0 and y → x0

|g(x)− g(y)− 〈∇g(x0), x− y〉| = o(‖x− y‖2)

b) If in addition, the Hessian∇2g(x) is continuous in a neighborhood of x0. Then for any x, y

in a closed ball B of x0 contained in that neighborhood,

|g(x)− g(y)− 〈∇g(x0), x− y〉|

≤
∫ 1

0

∫ 1

0

‖∇2g(x0 + s(y + t(x− y)− x0))‖2dsdt ‖x− y‖2 max{‖x− x0‖2, ‖y − x0‖2}

≤d
∑

1≤i,j≤d

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2g

∂x(i)x(j)
(x0 + s(y + t(x− y)− x0))

∣∣∣∣ dsdt×
‖x− y‖2 max{‖x− x0‖2, ‖y − x0‖2}.

Moreover

|g(x)− g(y)− 〈∇g(x0), x− y〉| ≤ L‖x− y‖2 max{‖x− x0‖2, ‖y − x0‖2}.

where L = supx∈B ‖∇2g(x)‖2 <∞.
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Proof: a)

lim
x 6=y,x→x0,y→x0

|g(x)− g(y)− 〈∇g(x0), x− y〉|
‖x− y‖2

= lim
x 6=y,x→x0,y→x0

|〈∇g(ξ), x− y〉 − 〈∇g(x0), x− y〉|
‖x− y‖2

≤ lim
x 6=y,x→x0,y→x0

‖∇g(ξ)−∇g(x0)‖2

=0,

where the first step follows from mean value theorem with ξ lie in the line segment connecting
x and y, the second step follows from Cauchy-Schwarz inequality, and the last step follows
from the continuity of∇g(x) and ξ → x0 when x, y → x0.

b) For x 6= y in B specified in the statement,

|g(x)− g(y)− 〈∇g(x0), x− y〉|
‖x− y‖2

=
|
∫ 1

0
〈∇g(y + t(x− y)), x− y〉dt− 〈∇g(x0), x− y〉|

‖x− y‖2

=
|
∫ 1

0

∫ 1

0
〈〈∇2g(x0 + s(y + t(x− y)− x0)), y + t(x− y)− x0〉, x− y〉dsdt|

‖x− y‖2

≤
∫ 1

0

∫ 1

0
|〈〈∇2g(x0 + s(y + t(x− y)− x0)), y + t(x− y)− x0〉, x− y〉|dsdt

‖x− y‖2

≤
∫ 1

0

∫ 1

0

‖∇2g(x0 + s(y + t(x− y)− x0))‖2‖y + t(x− y)− x0‖2dsdt

≤
∫ 1

0

∫ 1

0

‖∇2g(x0 + s(y + t(x− y)− x0))‖2dsdt max{‖x− x0‖2, ‖y − x0‖2}, (2.69)

where the first two equalities follows respectively form fundamental theorem of calculus for
R-valued functions and Rd-valued functions. Moreover, observe for any matrix A ∈ Rd×d,

‖A‖2 ≤ ‖A‖F ≤ d max
1≤i,j≤d

|Aij| ≤ d
∑

1≤i,j≤d

|Aij|

where ‖ · ‖F is the Frobenius norm. Apply the preceding display to (2.69),∫ 1

0

∫ 1

0

‖∇2g(x0 + s(y + t(x− y)− x0))‖2dsdt

≤d
∑

1≤i,j≤d

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2g

∂x(i)x(j)
(x0 + s(y + t(x− y)− x0))

∣∣∣∣ dsdt
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Following (2.69),

|g(x)− g(y)− 〈∇g(x0), x− y〉|
‖x− y‖2

≤ Lmax{‖x− x0‖2, ‖y − x0‖2}.

Lemma 2.10.4. Let k be a positive integer, b1 < . . . < bk be a sequence of real numbers and let µ

be the Lebesgue measure on R.

a) Let {hi(x)}ki=1 be a sequence of polynomials. Consider any nonempty interval I . Then

k∑
i=1

hi(x)ebix = 0 µ− a.e. x ∈ I

implies hi(x) ≡ 0 for any i ∈ [k].

b) Let {hi(x)}ki=1 be a sequence of functions, where each is of the form
∑mi

j=1 ajx
γj , i.e. a finite

linear combination of power functions. Let {gi(x)}ki=1 be another sequence of such functions.

Consider any nonempty interval I ⊂ (0,∞). Then

k∑
i=1

(hi(x) + gi(x) ln(x))ebix = 0 µ− a.e. x ∈ I

implies when x 6= 0 hi(x) ≡ 0 and gi(x) ≡ 0 for any i ∈ [k].

Proof:

a) Define F (x) =
∑k

i=1 hi(x)ebix. From the condition F (x) = 0 on a dense subset of I . Then
F (x) = 0 on the closure of that subset, which contains I , since it is a continuous function on
R. Let a ∈ I◦ and consider its Taylor expansion F (x) =

∑∞
i=0

F (i)(a)
i!

(x− a)i for any x ∈ R.
It follows from F (x) = 0 on I that F (i)(a) = 0 for any i ≥ 0. Thus F (x) ≡ 0 on R. Then

0 = lim
x→∞

e−bkxF (x) = lim
x→∞

hk(x).

This happen only when hk(x) ≡ 0. Proceed in the same manner to show hi(x) ≡ 0 for i from
k − 1 to 1.

b) Define H(x) =
∑k

i=1(hi(x) + gi(x) ln(x))ebix. From the condition H(x) = 0 on a dense
subset of I . Then H(x) = 0 on the closure of that subset excluding 0, which contains I ,
since it is a continuous function on (0,∞). Let a1 ∈ I◦ and consider its Taylor expansion
at a1 H(x) =

∑∞
i=0

H(i)(a1)
i!

(x− a1)i for x ∈ (0, 2a1), since the Taylor series of ln(x), xγ at
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a1 converges respectively to ln(x), xγ on (0, 2a1) for any γ. It follows from H(x) = 0 on I
that H(i)(a1) = 0 for any i ≥ 0. Thus H(x) = 0 on (0, 2a1). Now take a2 = 3

2
a1 and repeat

the above analysis with a1 replaced by a2, resulting in H(x) = 0 on (0, 2a2) = (0, 3a1).
Then take a3 = 3

2
a2 and keep repeating the process, and one obtains H(x) = 0 on (0,∞)

since a1 > 0. Let γ0 be the smallest power of all power functions that appear in {gi(x)}ki=1,
{hi(x)}ki=1, and define H̃(x) = x−γ0H(x). Then H̃(x) = 0 on (0,∞). Then

0 = lim
x→∞

e−bkxH̃(x) = lim
x→∞

(x−γ0hk(x) + x−γ0gk(x) ln(x)),

which happens only when x−γ0hk(x) ≡ 0 and x−γ0gk(x) ≡ 0. That is, when x 6= 0,
hk(x) ≡ 0 and gk(x) ≡ 0. Proceed in the same manner to show when x 6= 0, hi(x) ≡ 0 and
gi(x) ≡ 0 for i from k − 1 to 1.

2.11 Proofs in Section 2.5

This section contains all the proofs in Section 2.5 except that of Theorem 2.5.7 and Theo-
rem 2.5.14. The proofs of Theorem 2.5.7 and Theorem 2.5.14 occupy the bulk of the chapter and
will be presented in Section 2.12.

2.11.1 Proofs in Section 2.5.1

Proof of Lemma 2.5.4: In this proof we write n1 and N1 for n1(G0) and N1(G0) respectively. By
Lemma 2.5.1 b), n1 = N1 < ∞. For each N ≥ 1, there exists RN(G0) > 0 such that for any
G ∈ Ek0(Θ)\{G0} and W1(G,G0) < RN(G0)

V (PG,N , PG0,N)

DN(G,G0)
≥ 1

2
lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
. (2.70)

Take c(G0, N0) = min
1≤i≤N0

Ri(G0) > 0. Moreover, by the definition (2.27) for any N ≥ N1,

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
≥ inf

N≥N1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
> 0.
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Combining the last two displays completes the proof with

C(G0) =
1

2
inf

N≥N1

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG,N , PG0,N)

DN(G,G0)
.

Proof of Lemma 2.5.5: In this proof we write n1 for n1(G0) . By the definition of n1, for any
N ≥ n1

lim inf
G
W1→G0

G∈Ek0
(Θ1)

V (PG,N , PG0,N)

D1(G,G0)
> 0. (2.71)

By Lemma 2.3.2 b) one may replace the D1(G,G0) in the preceding display by W1(G,G0). Fix
N1 = n1 ∨ n0. Then there exists R > 0 depending on G0 such that

inf
G∈BW1

(G0,R)\{G0}

V (PG,N1 , PG0,N1)

W1(G,G0)
> 0, (2.72)

where BW1(G0, R) is the open ball in metric space (
⋃k0

k=1 Ek(Θ1),W1) with center at G0 and radius
R. Here we used the fact that any sufficiently small open ball in (

⋃k0

k=1 Ek(Θ1),W1) with center in
Ek0(Θ1) is in Ek0(Θ1).

Notice that
⋃k0

k=1 Ek(Θ1) is compact under the W1 metric if Θ1 is compact. By the assumption
that the map θ 7→ Pθ is continuous and by Lemma 2.11.2 and the triangle inequality of total variation
distance, V (PG,N , PG0,N) with domain (

⋃k0

k=1 Ek(Θ1),W1) is a continuous function of G for each
N . Then G 7→ V (PG,N ,PG0,N

)

W1(G,G0)
is a continuous map for each N . Moreover V (PG,N ,PG0,N

)

W1(G,G0)
is positive

on the compact set
⋃k0

k=1 Ek(Θ1)\BW1(G0, R) provided N ≥ n0. As a result for each N ≥ n0

min
G∈
⋃k0
k=1 Ek(Θ1)\BW1

(G0,R)

V (PG,N , PG0,N)

W1(G,G0)
> 0.

Combining the last display with N1 = n1 ∨ n0 and (2.72) yields

V (PG,N1 , PG,N1) ≥ C(G0,Θ1)W1(G,G0), (2.73)

where C(G0,Θ1) is a constant depending on G0 and Θ1. Observe V (PG,N , PG0,N) increases with
N , the proof is then complete.

Proof of Lemma 2.5.6: It’s easy to see when θ is a sufficiently small neighborhood of θ0
i ,

(2‖(Jg(θ0
i ))
−1‖2)−1‖θ − θ0

i ‖2 ≤ ‖g(θ)− g(θ0
i )‖2 ≤ 2‖Jg(θ0

i )‖2‖θ − θ0
i ‖2.
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Then when G is in a small neighborhood of G0 under W1

(2 max
1≤i≤k0

‖(Jg(θ0
i ))
−1‖2 + 1)−1DN(G,G0) ≤ DN(Gη, Gη

0) ≤ (2 max
1≤i≤k0

‖Jg(θ0
i )‖2 + 1)DN(G,G0).

Moreover V (P̃Gη ,N , P̃Gη0 ,N) = V (PG,N , PG0,N). Denote the left side and right side of (2.29) respec-
tively by L and R. Then L ≤ C(G0)R and L ≥ c(G0)R with

C(G0) = 2 max
1≤i≤k0

‖(Jg(θ0
i ))
−1‖2 + 1, c(G0) = (2 max

1≤i≤k0

‖Jg(θ0
i )‖2 + 1)−1.

The other equation in the statement follows similarly.

The rest of this subsection contains auxiliary lemmas required in the previous proofs.

Lemma 2.11.1 (Lack of first-order identifiability). Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ). Suppose

k0∑
i=1

biPθ0
i

= 0,

k0∑
i=1

bi = 0.

has a nonzero solution (b1, . . . , bk0). Here the 0 in the first equation is the zero measure on X. Then

lim inf
G
W1→G0

G∈Ek0
(Θ)

V (PG, PG0)

D1(G,G0)
= 0. (2.74)

Proof of Lemma 2.11.1: Construct G` =
∑k0

i=1 p
`
iδθ0

i
with p`i = p0

i + bi/` for i ∈ [k0]. Then for

large `, p`i ∈ (0, 1) and
∑k0

i=1 p
`
i = 1. Then for large `, G` ∈ Ek0(Θ) and G`

W1→ G0. Then the proof
is complete by for large `

V (PG` , PG0) = sup
A∈A
|PG`(A)− PG0(A)| = sup

A∈A
|1/`

k0∑
i=1

biPθ0
i
(A)| = 0.

and

D1(G`, G0) =
1

`

k0∑
i=1

|bi| 6= 0.

Lemma 2.11.2. For any G =
∑k0

i=1 piδθi and G′ =
∑k0

i=1 p
′
iδθ′i ,

V (PG,N , PG′,N) ≤

minτ

(√
N max1≤i≤k0 h

(
Pθi , Pθ′τ(i)

)
+ 1

2

∑k0

i=1

∣∣∣pi − p′τ(i)

∣∣∣) , N ≥ 2,

minτ

(
max1≤i≤k0 V

(
Pθi , Pθ′τ(i)

)
+ 1

2

∑k0

i=1

∣∣∣pi − p′τ(i)

∣∣∣) , N = 1.
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where the minimum is taken over all τ in the permutation group Sk0 .

Proof: The proof is similar as that of Lemma 2.7.2.

Lemma 2.11.3. Suppose the same conditions in Corollary 2.4.6 hold. Then for any a ∈ Rq, for

each i ∈ [k0], and for any 0 < ∆ ≤ γ(θ0
i , a),∣∣∣∣∣

∏N
j=1 f(xj|θ0

i + a∆)−
∏N

j=1 f(xj|θ0
i )

∆

∣∣∣∣∣ ≤ f̃∆(x̄|θ0
i , a,N),

N⊗
µ−a.e. x̄ = (x1, . . . , xN) ∈ XN

where f̃∆(x̄|θ0
i , a,N) satisfies

lim
∆→0+

∫
XN
f̃∆(x̄|θ0

i , a,N)d
N⊗
µ =

∫
XN

lim
∆→0+

f̃∆(x̄|θ0
i , a,N)d

N⊗
µ.

Proof: By decomposing the difference as a telescoping sum,∣∣∣∣∣
∏N

j=1 f(xj|θ0
i + a∆)−

∏N
j=1 f(xj|θ0

i )

∆

∣∣∣∣∣
≤

N∑
`=1

(
`−1∏
j=1

f(xj|θ0
i + a∆)

)∣∣∣∣f(x`|θ0
i + a∆)− f(x`|θ0

i )

∆

∣∣∣∣
(

N∏
j=`+1

f(xj|θ0
i )

)
.

Then the upper bound in the preceding display is upper bounded by

f̃∆(x̄|θ0
i , a,N) :=

N∑
`=1

(
`−1∏
j=1

f(xj|θ0
i + a∆)

)
f̄∆(x`|θ0

i , a)

(
N∏

j=`+1

f(xj|θ0
i )

)
,

N⊗
µ−a.e. x̄ ∈ XN .

For clean we write f̃∆(x̄|θ0
i , a) for f̃∆(x̄|θ0

i , a,N) in the rest of the proof. Notice f̃∆(x̄|θ0
i , a)

satisfies∫
XN
f̃∆(x̄|θ0

i , a)d
N⊗
µ =

N∑
`=1

∫
X

f̄∆(x`|θ0
i , a)dµ = N

∫
X

f̄∆(x|θ0
i , a)dµ→ N

∫
X

lim
∆→0+

f̄∆(x|θ0
i , a)dµ.

Moreover,

lim
∆→0+

f̃∆(x̄|θ0
i , a) =

N∑
`=1

(
`−1∏
j=1

f(xj|θ0
i )

)
lim

∆→0+
f̄∆(x`|θ0

i , a)

(
N∏

j=`+1

f(xj|θ0
i )

)
,

N⊗
µ−a.e. x̄ ∈ XN
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and thus∫
XN

lim
∆→0+

f̃∆(x̄|θ0
i , a)d

N⊗
µ =

N∑
`=1

∫
X

lim
∆→0+

f̄∆(x`|θ0
i , a)dµ = N

∫
X

lim
∆→0+

f̄∆(x|θ0
i , a)dµ.

2.11.2 Proofs and additional examples in Section 2.5.2

Proof of Corollary 2.5.8: Consider f̃(x|η) := f(x|θ) be the same kernel but under the new pa-
rameter η = η(θ). Note {f̃(x|η)}η∈Ξ with Ξ := η(Θ) is the canonical parametrization of the same
exponential family. Write η0

i = η(θ0
i ). The proof is then completed by applying Lemma 2.5.7 to

f̃(x|η) and then by applying Lemma 2.5.6.

Lemma 2.11.4. a) Let η1, η2, . . . , η2k be 2k distinct real numbers. Let n ≤ 2k − 2. Then the

system of (2k − 1) linear equations of (y1, y2, . . . , y2k)

2k∑
i=1

yiη
j
i = 0 ∀j ∈ [n] ∪ {0} (2.75)

has all the solutions given by

yi = −
2k∑

q=n+2

yq

n+1∏
` 6=i
`=1

(ηq − η`)
(ηi − η`)

∀i ∈ [n+ 1] (2.76)

for any yn+2, . . . , y2k ∈ R.

b) For any 0 < ηk+1 < ηk+2 < . . . < η2k and for any positive yk+1, yk+2, . . . , y2k, there exists

infinitely many η1, η2, . . . , ηk satisfying

ηk+i−1 < ηi < ηk+i, for 2 ≤ i ≤ k, and 0 < η1 < ηk+1 and

yi = −y2k

2k−1∏
` 6=i
`=1

(η2k − η`)
(ηi − η`)

∀k + 1 ≤ i ≤ 2k − 1.

c) For any 0 < ηk+1 < ηk+2 < . . . < η2k and for any positive yk+1, yk+2, . . . , y2k, the system of
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equations of (y1, . . . , yk, η1, . . . , ηk)

2k∑
i=1

yiη
j
i = 0 ∀j ∈ [2k − 2] ∪ {0}

yi < 0 ∀i ∈ [k] (2.77)

η1 ∈ (0, ηk+1), ηi ∈ (ηk+i−1, ηk+i) ∀2 ≤ i ≤ k (2.78)

has infinitely many solutions.

d) If PG,n = PG′,n for some positive integer n, then PG,m = PG′,m for any integer 1 ≤ m ≤ n.

e) Consider the kernel specified in Example 2.5.10. For any G ∈ Ek(Θ) and for any n ≤ 2k− 2,

there exists infinitely many G′ ∈ Ek(Θ) such that PG,n = PG′,n. In particular, this shows

n0(G) ≥ 2k − 1 for any G ∈ Ek(Θ).

Proof: a) By Lagrange interpolation formula over the points η1, η2, . . . , ηn+1,

xj =
n+1∑
i=1

ηji

n+1∏
6̀=i
`=1

(x− η`)
(ηi − η`)

, ∀j ∈ [n] ∪ {0}, ∀x ∈ R.

In particular, for any n+ 2 ≤ q ≤ 2k,

ηjq =
n+1∑
i=1

ηji

n+1∏
`6=i
`=1

(ηq − η`)
(ηi − η`)

, ∀j ∈ [n] ∪ {0}.

Plugging the above identity into (2.75), it is clear that the yi specified in (2.76) are solutions
of (2.75). Notice that the coefficient matrix of (2.75) is A = (ηji )j∈[n]∪{0},i∈[2k] ∈ R(n+1)×(2k)

has rank n + 1 since the submatrix consisting the first n + 1 columns form a non-singular
Vandermonde matrix. Thus all the solutions of (2.75) form a subspace of R2k of dimension
2k − (n+ 1), which implies (2.76) are all the solutions.

b) Let a > 0. Consider a polynomial g(x) such that g(0) = (−1)k+1a, g(η2k) = − 1
y2k

, and for

k + 1 ≤ i ≤ 2k − 1, g(ηi) = 1
yi

2k−1∏̀
6=i

`=k+1

(η2k−η`)
(ηi−η`)

. Then this k + 1 points determines uniquely a

polynomial g(x) with degree at most k. By our construction, g(x) satisfies

yig(ηi) = −y2kg(η2k)
2k−1∏
`6=i

`=k+1

(η2k − η`)
(ηi − η`)

, ∀ k + 1 ≤ i ≤ 2k − 1 (2.79)
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Moreover, noticing that g(ηi) > 0 for i odd integer between k + 1 and 2k, and g(ηi) <

0 for i even integer between k + 1 and 2k. Then there must exist η1 ∈ (0, ηk+1) and
ηi ∈ (ηk+i−1, ηk+i) for 2 ≤ i ≤ k such that g(ηi) = 0. Then g(x) = b

∏k
i=1(x − ηi)

where b < 0, η1, η2, . . . , ηk are constants that depend on a, ηk+1, . . . , η2k, yk+1, . . . , y2k. Plug
g(x) = b

∏k
i=1(x− ηi) into (2.79) shows that (η1, η2, . . . , ηk) is a solution for the system of

equations in the statement. By changing value of a, we get infinitely many solutions.

c) First, we apply part a) with n = 2k − 2: for any 2k distinct real numbers η1, . . . , η2k, the
system of linear equations of (x1, . . . , x2k)

2k∑
i=1

xiη
j
i = 0 ∀j ∈ [2k − 2] ∪ {0}

has a solution

xi = −y2k

2k−1∏
`6=i
`=1

(η2k − η`)
(ηi − η`)

∀i ∈ [2k − 1],

where we have specified x2k = y2k.

Next, for the ηk+1, . . . , η2k given in the lemma’s statement, by part b) we can choose η1, . . . , ηk

that satisfy the requirements there. Accordingly, xi = yi for k+ 1 ≤ i ≤ 2k. Moreover, it fol-
lows from the ranking of {ηi}2k

i=1 that xi < 0 for any i ∈ [k]. Thus (x1, . . . , xk, η1, . . . , ηk) is
a solution of the system of equations in the statement. The infinite many solutions conclusion
follows since there are infinitely many (η1, . . . , ηk) by part b).

d) PG,n−1 = PG′,n−1 follows immediately from for any A ∈ An−1, the product sigma-algebra
on Xn−1,

PG,n−1(A) = PG,n(A× X) = PG′,n(A× X) = PG′,n−1(A).

Repeating this procedure inductively and the conclusion follows.

e) By part d) it suffices to prove that n = 2k−2. WriteG =
∑k

i=1 piδθi with θ1 < θ2 < . . . < θk.
Consider any G′ =

∑k
i=1 p

′
iδθ′i ∈ Ek(Θ) with θ′1 < θ′2 < . . . < θ′k such that PG,n = PG′,n.

PG,n = PG′,n for n = 2k − 2 is

k∑
i=1

p′i(θ
′
i)
j(1− θ′i)2k−2−j =

k∑
i=1

pi(θi)
j(1− θi)2k−2−j ∀j = 0, 1, · · · , 2k − 2. (2.80)

0 < θ′1 < . . . < θ′k < 1, p′i > 0, ∀i ∈ [k] (2.81)

Note the system of equations (2.80) automatically implies
∑k

i=1 p
′
i =

∑k
i=1 pi = 1. Let yi =
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−p′i(1−θ′i)2k−2, ηi = θ′i/(1−θ′i) for i ∈ [k] and let yk+i = pi(1−θi)2k−2, ηk+i = θi/(1−θi).
Then ηk+1 < ηk+2 < . . . < η2k and yi > 0 for k + 1 ≤ i ≤ 2k. Then (p′1, . . . , p

′
k, θ
′
1, . . . , θ

′
k)

is a solution of (2.80), (2.81) if and only if the corresponding (y1, . . . , yk, η1, . . . , ηk) is the
solution of

2k∑
i=1

yiη
j
i = 0, ∀j ∈ [2k − 2] ∪ {0}.

0 < η1 < . . . < ηk, yi < 0, ∀i ∈ [k].

By part c), the system of equations in last display has infinitely many solutions additionally
satisfying (2.78). For each such solution, the corresponding (p′1, . . . , p

′
k, θ
′
1, . . . , θ

′
k) is a

solution of system of equations (2.80) (2.81) additionally satisfying 0 < θ′1 < θ1 and
θi−1 < θ′i < θi for 2 ≤ i ≤ k. By the comments after (2.80),(2.81) we also have

∑k
i=1 p

′
i =∑k

i=1 pi = 1. Thus, such (p′1, . . . , p
′
k, θ
′
1, . . . , θ

′
k) gives G′ ∈ Ek(Θ) such that PG′,2k−2 =

PG,2k−2. The existence of infinitely many such G′ follows from the existence of infinitely
many solutions (y1, . . . , yk, η1, . . . , ηk) by part c).

Proof of Lemma 2.5.11: a) It’s obvious that q(1)(x, y), q(2)(x, y) are multivariate polynomials
and that

q(1)(y, y) = lim
x→y

q(1)(x, y) = f ′(y),

q(2)(y, y) = lim
x→y

q(2)(x, y) = f ′′(y).

That means q(1)(x, y)− f ′(y) has factor x− y and thus q̄(2)(x, y) is a multivariate polynomial
and

q̄(2)(y, y) = lim
x→y

q(1)(x, y)− f ′(y)

x− y

= lim
x→y

f(x)− f(y)− f ′(y)(x− y)

(x− y)2
=

1

2
f ′′(y) =

1

2
q(2)(y, y).

Then q̄(2)(x, y)− 1
2
q(2)(x, y) has factor x− y and thus q̄(3)(x, y) is a multivariate polynomial.

b) Write A(k) for A(k)(x1, . . . , xk) in this proof. Denote A ∈ R(2k−2)×(2k) the bottom (2k− 2)×
2k matrix of A(k). Let q(1)

j (x, y), q(2)
j (x, y), q̄(2)

j (x, y) and q̄(3)
j (x, y) be defined in part a) with

f replace by fj . Then by subtracting the third row from the first row, the fourth row from the
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second row and then factor the common factor (x1 − x2) out of the resulting first two rows

det(A(k)) =(x1 − x2)2det

 q
(1)
1 (x1, x2), . . . , q

(1)
2k (x1, x2)

q
(2)
1 (x1, x2), . . . , q

(2)
2k (x1, x2)

A



=(x1 − x2)3det

 q̄
(2)
1 (x1, x2), . . . , q̄

(2)
2k (x1, x2)

q
(2)
1 (x1, x2), . . . , q

(2)
2k (x1, x2)

A



=(x1 − x2)4det

 q̄
(3)
1 (x1, x2), . . . , q̄

(3)
2k (x1, x2)

q
(2)
1 (x1, x2), . . . , q

(2)
2k (x1, x2)

A


where the second equality follows by subtracting the fourth row from first row and then factor
the common factor (x1 − x2) out of the resulting row. The last step of the preceding display
follows by subtracting 1/2 times the second row and then extract the common factor (x1− x2)

out of the resulting row. Thus (x1 − x2)4 is a factor of det(A(k)), which is a multivariate
polynomial in x1, . . . , xk. By symmetry,

∏
1≤α<β≤k(xα − xβ)4 is a factor of det(A(k)).

c) We prove det(A(k)(x1, . . . , xk)) =
∏

1≤α<β≤k(xα − xβ)4 by induction. It’s easy to verify the
statement holds when k = 1. Suppose the statement for k holds. By b),

det(A(k+1)(x1, . . . , xk+1)) = gk+1(x1, . . . , xk+1)
∏

1≤α<β≤k+1

(xα − xβ)4

for some multivariate polynomial gk+1. Since fj(x) has degree j − 1, f ′j(x) has degree j − 2,
and hence by Leibniz formula of determinant
det(A(k+1)(x1, . . . , xk, xk+1)) has degree no more than 2k+2k = 4k for any xα for α ∈ [k+1].
Moreover, in

∏
1≤α<β≤k+1(xα−xβ)4 the degree of xα is 4k and the corresponding term is x4k

α ,
which implies in gk+1(x1, . . . , xk+1) the degree of xα is no more than 0 for any α ∈ [k + 1].
As a result, gk+1(x1, . . . , xk+1) = qk+1 is a constant. Thus

det(A(k+1)(x1, . . . , xk, 0)) =qk+1

( ∏
1≤α<β≤k

(xα − xβ)4

)
k∏

α=1

x4
α, (2.82)

On the other hand,

det(A(k+1)(x1, . . . , xk, 0))
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=det



f1(x1|k + 1), f2(x1|k + 1), . . . , f2(k+1)(x1|k + 1)

f ′1(x1|k + 1), f ′2(x1|k + 1), . . . , f ′2(k+1)(x1|k + 1)
...

...
...

f1(xk|k + 1), f2(xk|k + 1), . . . , f2(k+1)(xk|k + 1)

f ′1(xk|k + 1), f ′2(xk|k + 1), . . . , f ′2(k+1)(xk|k + 1)

1, 0, . . . , 0

0, 1, 0, . . . , 0



=det



f3(x1|k + 1), f3(x1|k + 1), . . . , f2(k+1)(x1|k + 1)

f ′3(x1|k + 1), f ′3(x1|k + 1), . . . , f ′2(k+1)(x1|k + 1)
...

...
...

f3(xk|k + 1), f3(xk|k + 1), . . . , f2(k+1)(xk|k + 1)

f ′3(xk|k + 1), f ′3(xk|k + 1), . . . , f ′2(k+1)(xk|k + 1)


(2.83)

where the second equality follows by Laplace expansion along the last row. Observing
fj(x) = x2fj−2(x) and f ′j(x) = x2f ′j−2(x) + 2xfj−2(x), plug these two equations into (2.83)
and simplify the resulting determinant,

det(A(k+1)(x1, . . . , xk, 0)) = det(A(k)(x1, . . . , xk))
k∏

α=1

x4
α. (2.84)

Compare (2.84) to (2.82), together with the induction assumption that statement for k holds,

qk+1 = 1.

That is, we proved the statement for k + 1.

d) We prove det(A(k)(x1, . . . , xk)) =
∏

1≤α<β≤k(xα − xβ)4 by induction. Write fj(x|k) for
fj(x) in the following induction to emphasize its dependence on k. It’s easy to verify the case
holds when k = 1. Suppose the statement for k holds. By b), det(A(k+1)(x1, . . . , xk+1)) =

gk+1(x1, . . . , xk+1)
∏

1≤α<β≤k+1(xα − xβ)4 for some multivariate polynomial gk+1. Since
fj(x|k + 1) has degree n = 2(k + 1)− 1, f ′j(x|k + 1) has degree 2k, and hence by Leibniz
formula of determinant det(A(k+1)(x1, . . . , xk, xk+1)) has degree no more than 2k+(2k+1) =

4k + 1 for any xα for α ∈ [k + 1]. Moreover, in
∏

1≤α<β≤k+1(xα − xβ)4 the degree of xα is
4k, which implies in gk+1(x1, . . . , xk+1) the degree of xα is no more than 1. As a result, it’s
eligible to write gk+1(x1, . . . , xk+1) = h1(x1, . . . , xk)xk+1 + h2(x1, . . . , xk) where h1, h2 are
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multivariate polynomials of x1, . . . , xk. Thus

det(A(k+1)(x1, . . . , xk, 0)) =h2(x1, . . . , xk)

( ∏
1≤α<β≤k

(xα − xβ)4

)
k∏

α=1

x4
α, (2.85)

det(A(k+1)(x1, . . . , xk, 1))

=(h1(x1, . . . , xk) + h2(x1, . . . , xk))

( ∏
1≤α<β≤k

(xα − xβ)4

)
k∏

α=1

(xα − 1)4. (2.86)

On the other hand,

det(A(k+1)(x1, . . . , xk, 0))

=det



f1(x1|k + 1), f2(x1|k + 1), . . . , f2(k+1)(x1|k + 1)

f ′1(x1|k + 1), f ′2(x1|k + 1), . . . , f ′2(k+1)(x1|k + 1)
...

...
...

f1(xk|k + 1), f2(xk|k + 1), . . . , f2(k+1)(xk|k + 1)

f ′1(xk|k + 1), f ′2(xk|k + 1), . . . , f ′2(k+1)(xk|k + 1)

1, 0, . . . , 0

−(2(k + 1)− 1), 1, 0, . . . , 0



=det



f3(x1|k + 1), f3(x1|k + 1), . . . , f2(k+1)(x1|k + 1)

f ′3(x1|k + 1), f ′3(x1|k + 1), . . . , f ′2(k+1)(x1|k + 1)
...

...
...

f3(xk|k + 1), f3(xk|k + 1), . . . , f2(k+1)(xk|k + 1)

f ′3(xk|k + 1), f ′3(xk|k + 1), . . . , f ′2(k+1)(xk|k + 1)


(2.87)

where the second equality follows by Laplace expansion along the last row. Observing
fj(x|k + 1) = x2fj−2(x|k) and f ′j(x|k + 1) = x2f ′j−2(x|k) + 2xfj−2(x|k), plug these two
equations into (2.87) and simplify the resulting determinant,

det(A(k+1)(x1, . . . , xk, 0)) = det(A(k)(x1, . . . , xk))
k∏

α=1

x4
α. (2.88)

Analogous argument produces

det(A(k+1)(x1, . . . , xk, 1)) = det(A(k)(x1, . . . , xk))
k∏

α=1

(1− xα)4. (2.89)
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Compare (2.88) to (2.85), together with the induction assumption that statement for k holds,

h2(x1, . . . , xk) = 1, ∀x1, . . . , xk.

Compare (2.89) to (2.86), together with the induction assumption that statement for k holds
and the preceding display,

h1(x1, . . . , xk) = 0, ∀x1, . . . , xk.

That is, gk+1(x1, . . . , xk+1) = 1 for any x1, . . . , xk+1.

2.12 Proof of inverse bounds for mixtures of product distributions

For an overview of our proof techniques, please refer to Section 2.2. The proofs of both
Theorem 2.5.7 and Theorem 2.5.14 follow the same structure. The reader should read the former
first before attempting the latter, which is considerably more technical and lengthy.

2.12.1 Proof of Theorem 2.5.7

Proof of Theorem 2.5.7:
Step 1 (Proof by contradiction with subsequences)
Suppose (2.24) is not true. Then ∃{N`}∞`=1 subsequence of natural numbers tending to infinity such
that

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,N` , PH,N`)

DN`(G,H)
→ 0 as N` →∞.

Then ∃{G`}∞`=1, {Ψ`}∞`=1 ⊂ Ek0(Θ) such that
G` 6= H` ∀`

DN`(G`, G0)→ 0, DN`(H`, G0)→ 0 as `→∞
V (PG`,N` ,PH`,N` )

DN` (G`,H`)
→ 0 as `→∞.

(2.90)

To see this, for each fixed `, and thus fixed N`, DN`(G,G0) → 0 if and only if W1(G,G0) → 0.
Thus, there exists G`, H` ∈ Ek0(Θ) such that G` 6= H`, DN`(G`, G0) ≤ 1

`
, DN`(H`, G0) ≤ 1

`
and

V (PG`,N` , PH`,N`)

DN`(G`, H`)
≤ lim

r→0
inf

G,H∈BW1
(G0,r)

G 6=H

V (PG,N` , PH,N`)

DN`(G,H)
+

1

`
,
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thereby ensuring that (2.90) hold.
Write G0 =

∑k0

i=1 p
0
i δθ0

i
. We may relabel the atoms of G` and H` such that G` =

∑k0

i=1 p
`
iδθ`i ,

H` =
∑k0

i=1 π
`
iδη`i with θ`i , η

`
i → θ0

i and p`i , π
`
i → p0

i for any i ∈ [k0]. By subsequence argument if
necessary, we may require {G`}∞`=1, {H`}∞`=1 additionally satisfy:

√
N`

(
θ`i − η`i

)
DN`(G`, H`)

→ ai ∈ Rq,
p`i − π`i

DN`(G`, H`)
→ bi ∈ R, ∀1 ≤ i ≤ k0, (2.91)

where the components of ai are in [−1, 1] and
∑k0

i=1 bi = 0. It also follows that at least one of ai is
not 0 ∈ Rs or one of bi is not 0. Let α ∈ {1 ≤ i ≤ k0 : ai 6= 0 or bi 6= 0}.
Step 2 (Change of measure by index α and application of CLT)
Pθ,N has density w.r.t.

⊗N µ on XN :

f̄(x̄|θ,N) =
N∏
j=1

f(xj|θ) = exp

(
θT

(
N∑
j=1

T (xj)

)
−NA(θ)

)
N∏
j=1

h(xj),

where any x̄ ∈ XN is partitioned into N blocks as x̄ = (x1, x2, . . . , xN) with xi ∈ X. Then

2V (PG`,N` , PH`,N`)

DN`(G`, H`)

=

∫
XN`

∣∣∣∣∣∣
k0∑
i=1

p`i exp
(〈
θ`i ,
∑N`

j=1 T (xj)
〉
−N`A(θ`i )

)
− π`i exp

(〈
η`i ,
∑N`

j=1 T (xj)
〉
−N`A(η`i )

)
DN`(G`, H`)

∣∣∣∣∣∣×
N∏̀
j=1

h(xj)d

N⊗̀
µ

=

∫
XN`

∣∣∣∣∣∣
k0∑
i=1

p`i exp
(〈
θ`i ,
∑N`

j=1 T (xj)
〉
−N`A(θ`i )

)
− π`i exp

(〈
η`i ,
∑N`

j=1 T (xj)
〉
−N`A(η`i )

)
DN`(G`, H`) exp

(〈
θ0
α,
∑N`

j=1 T (xj)
〉
−N`A(θ0

α)
)

∣∣∣∣∣∣×
f̄(x̄|θ0

α, N`)d

N⊗̀
µ

=Eθ0
α

∣∣∣∣∣F`
(

N∑̀
j=1

T (Xj)

)∣∣∣∣∣ , (2.92)

where Xj are i.i.d. random variables having densities f(·|θ0
α), and

F`(y) :=

k0∑
i=1

p`i exp
(〈
θ`i , y

〉
−N`A(θ`i )

)
− π`i exp

(〈
η`i , y

〉
−N`A(η`i )

)
DN`(G`, H`) exp (〈θ0

α, y〉 −N`A(θ0
α))

.
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Let Z` =
(∑N`

j=1 T (Xj)−N`Eθ0
α
T (Xj)

)
/
√
N`. Then since θ0

α ∈ Θ◦, the mean and covari-
ance matrix of T (Xj) are respectively ∇θA(θ0

α) and ∇2
θA(θ0

α), the gradient and Hessian of A(θ)

evaluated at θ0
α. Then by central limit theorem, Z` converges in distribution to Z ∼ N (0,∇2

θA(θ0
α)).

Moreover,

F`

(
N∑̀
j=1

T (Xj)

)
= F`

(√
N`Z` +N`∇θA(θ0

α)
)

:= Ψ`(Z`), (2.93)

where Ψ`(z) = F`
(√

N`z +N`∇θA(θ0
α)
)
.

Step 3 (Application of continuous mapping theorem) Define Ψ(z) = p0
α 〈aα, z〉+ bα. Suppose:

Ψ`(z`)→ Ψ(z) for any sequence z` → z ∈ Rq, (2.94)

a property to be verified in the sequel, then by Generalized Continuous Mapping Theorem
([WVdV96] Theorem 1.11.1), Ψ`(Z`) convergence in distribution to Ψ(Z). Apply Theorem 25.11
in [Bil96],

E|Ψ(Z)| ≤ lim inf
`→∞

Eθ0
α
|Ψ`(Z`)| = 0, (2.95)

where the equality follows (2.90), (2.92) and (2.93). Since Ψ(z) is a non-zero affine transform and
the covariance matrix of Z is positive definite due to full rank property of exponential family, Ψ(Z)

is either a nondegenerate gaussian random variable or a non-zero constant, which contradicts with
(2.95).

It remains in the proof to verify (2.94). Consider any sequence z` → z. Write

Ψ`(z`) =

k0∑
i=1

Ii, (2.96)

where

Ii :=
p`i exp

(
g`(θ

`
i )
)
− π`i exp

(
g`(η

`
i )
)

DN`(G`, H`) exp (g(θ0
α))

,

with
g`(θ) =

〈
θ,
√
N`z` +N`∇θA(θ0

α)
〉
−N`A(θ).

For any i ∈ [k0], by Taylor expansion of A(θ) at θ0
i and the fact that A(θ) is infinitely differen-

tiable at θ0
i ∈ Θ◦, for large `,

|A(η`i )− A(θ0
i )− 〈∇A(θ0

i ), η
`
i − θ0

i 〉| ≤ 2‖∇2A(θ0
i )‖2‖η`i − θ0

i ‖2
2,
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which implies

lim
`→∞

N`|A(η`i )− A(θ0
i )− 〈∇A(θ0

i ), η
`
i − θ0

i 〉| ≤ 2‖∇2A(θ0
i )‖2 lim

`→∞
D2
N`

(H`, G0) = 0 (2.97)

where the equality follows from (2.90), and the inequality follows from that

DN`(H`, G0) =

k0∑
i=1

(
√
N`‖η`i − θ0

i ‖2 + |π`i − p0
i |) (2.98)

DN`(G`, G0) =

k0∑
i=1

(
√
N`‖θ`i − θ0

i ‖2 + |p`i − p0
i |) (2.99)

for large `. The same conclusion holds with η`i replaced by θ`i in the last two displays.
For i ∈ [k0], by Lemma 2.10.3 b) and the fact that A(θ) is infinitely differentiable at θ0

i ∈ Θ◦,
for large `

|A(θ`i )− A(η`i )− 〈∇A(θ0
i ), θ

`
i − η`i 〉| ≤ 2‖∇2A(θ0

i )‖2‖θ`i − η`i‖2(‖θ`i − θ0
i ‖2 + ‖η`i − η0

i ‖2),

which implies

lim
`→∞

N`|A(θ`i )− A(η`i )− 〈∇A(θ0
i ), θ

`
i − η`i 〉|

DN`(G`, H`)

≤2‖∇2A(θ0
i )‖2 lim

`→∞

√
N`‖θ`i − η`i‖2

DN`(G`, H`)
(DN`(G`, G0) +DN`(H`, G0))

=0 (2.100)

where the inequality follows from (2.98) and (2.99), and the equality follows from (2.90) and (2.91).
Case 1: Calculate lim`→∞ Iα.

When `→∞

g`(η
`
α)− g`(θ0

α) =
〈
η`α − θ0

α,
√
N`z`

〉
−N`

(
A(η`α)− A(θ0

α)−
〈
η`α − θ0

α,∇θA(θ0
α)
〉)
→ 0

(2.101)
by (2.90) and (2.97) with i = α. Similarly, one has

lim
`→∞

(
g`(θ

`
α)− g`(θ0

α)
)

= 0 (2.102)
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Moreover when `→∞

g`(θ
`
α)− g`(η`α)

DN`(G`, H`)
=

〈
θ`α − η`α,

√
N`z`

〉
−N`

(
A(θ`α)− A(η`α)−

〈
θ`α − η`α,∇θA(θ0

α)
〉)

DN`(G`, H`)
→ 〈aα, z〉

(2.103)
by (2.91) and (2.100) with i = α.

Thus

lim
`→∞

Iα

= lim
`→∞

p`α exp
(
g`(θ

`
α)− g`(θ0

α)
)
− π`α exp

(
g`(η

`
α)− g`(θ0

α)
)

DN`(G`, H`)

= lim
`→∞

p`α
exp

(
g`(θ

`
α)− g`(θ0

α)
)
− exp

(
g`(η

`
α)− g`(θ0

α)
)

DN`(G`, H`)
+

lim
`→∞

p`α − π`α
DN`(G`, H`)

exp
(
g`(η

`
α)− g`(θ0

α)
)

(∗)
=p0

α lim
`→∞

exp (ξ`) (g`(θ
`
α)− g`(η`α))

DN`(G`, H`)
+ lim

`→∞

p`α − π`α
DN`(G`, H`)

exp
(
g`(η

`
α)− g`(θ0

α)
)

(∗∗)
= p0

α lim
`→∞

g`(θ
`
α)− g`(η`α)

DN`(G`, H`)
+ lim

`→∞

p`α − π`α
DN`(G`, H`)

(∗∗∗)
= p0

α 〈aα, z〉+ bα, (2.104)

where step (∗) follows from mean value theorem with ξ` on the line segment between g`(θ`α)−g`(θ0
α)

and g`(η`α)− g`(θ0
α), step (∗∗) follows from g`(θ

`
α)− g`(θ0

α), g`(η`α)− g`(θ0
α)→ 0 due to (2.101),

(2.102) and hence ξ` → 0, and step (∗ ∗ ∗) follows from (2.103) and (2.91).
Case 2: Calculate lim`→∞ Ii for i 6= α.

For i 6= α,

exp
(
g`(θ

`
i )
)

exp (g`(θ0
α))

= exp
(〈
θ`i − θ0

α,
√
N`z` +N`∇θA(θ0

α)
〉
−N`

(
A(θ`i )− A(θ0

α)
))

= exp

(
−N`

(
A(θ`i )− A(θ0

α)−
〈
θ`i − θ0

α,∇θA(θ0
α)
〉
− 1√

N`

〈
θ`i − θ0

α, z`
〉))

≤ exp

(
−N`

2

(
A(θ0

i )− A(θ0
α)−

〈
θ0
i − θ0

α,∇θA(θ0
α)
〉))

for sufficiently large `, (2.105)

where the last inequality follows from lim`→∞
1√
N`

〈
θ`i − θ0

α, z`
〉

= 0 and

A(θ0
i )− A(θ0

α)−
〈
θ0
i − θ0

α,∇θA(θ0
α)
〉
> 0, (2.106)
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implied by strict convexity ofA(θ) over Θ◦ due to full rank property of exponential family. Similarly,
for sufficiently large `,

exp
(
g`(η

`
i )
)

exp (g`(θ0
α))
≤ exp

(
−N`

2

(
A(θ0

i )− A(θ0
α)−

〈
θ0
i − θ0

α,∇θA(θ0
α)
〉))

. (2.107)

It follows that for i 6= α

lim
`→∞
|Ii|

≤ lim
`→∞

p`i

∣∣∣∣∣exp
(
g`(θ

`
i )
)
− exp

(
g`(η

`
i )
)

DN`(G`, H`) exp (g`(θ0
α))

∣∣∣∣∣+ lim
`→∞

∣∣∣∣ p`i − π`i
DN`(G`, H`)

∣∣∣∣ exp
(
g`(η

`
i )
)

exp (g`(θ0
α))

≤p0
i lim
`→∞

max{exp
(
g`(θ

`
i )
)
, exp

(
g`(η

`
i )
)
}

exp (g`(θ0
α))

∣∣∣∣g`(θ`i )− g`(η`i )DN`(G`, H`)

∣∣∣∣+ |bi| lim
`→∞

exp
(
g`(η

`
i )
)

exp (g`(θ0
α))

≤ lim
`→∞

exp

(
−N`

2

(
A(θ0

i )− A(θ0
α)−

〈
θ0
i − θ0

α,∇θA(θ0
α)
〉))(

p0
i

∣∣∣∣g`(θ`i )− g`(η`i )DN`(G`, H`)

∣∣∣∣+ |bi|
)
,

(2.108)

where the second inequality follows by applying the mean value theorem on the first term and
applying (2.91) to the second term, while the last inequality follows from (2.105) and (2.107).

Since

lim sup
`→∞

1√
N`

∣∣∣∣g`(θ`i )− g`(η`i )DN`(G`, H`)

∣∣∣∣
= lim sup

`→∞

1√
N`

∣∣∣∣∣
〈
θ`i − η`i ,

√
N`z` +N`∇θA(θ0

α)
〉
−N`

(
A(θ`i )− A(η`i )

)
DN`(G`, H`)

∣∣∣∣∣
≤ lim sup

`→∞

1√
N`

∣∣∣∣∣
〈√

N`(θ
`
i − η`i ), z`

〉
DN`(G`, H`)

∣∣∣∣∣+ lim sup
`→∞

∣∣∣∣∣−
√
N`

(
A(θ`i )− A(θ0

i )−
〈
θ`i − η`i ,∇θA(θ0

i )
〉)

DN`(G`, H`)

∣∣∣∣∣
+ lim sup

`→∞

∣∣∣∣∣
√
N`

〈
θ`i − η`i ,∇θA(θ0

α)−∇θA(θ0
i )
〉

DN`(G`, H`)

∣∣∣∣∣
=
∣∣〈ai,∇θA(θ0

α)−∇θA(θ0
i )
〉∣∣ ,

where the last step follows from (2.91) and (2.100). Then for sufficiently large `∣∣∣∣g`(θ`i )− g`(η`i )DN`(G`, H`)

∣∣∣∣ ≤ (∣∣〈ai,∇θA(θ0
α)−∇θA(θ0

i )
〉∣∣+

1

`

)√
N`. (2.109)
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Plug (2.109) into (2.108), for any i 6= α,

lim
`→∞
|Ii| ≤ lim

`→∞
e−

N`
2 (A(θ0

i )−A(θ0
α)−〈θ0

i−θ0
α,∇θA(θ0

α)〉)
(∣∣〈ai,∇θA(θ0

α)−∇θA(θ0
i )
〉∣∣+

1

`

)√
N`

=0. (2.110)

Combine (2.96), (2.104) and (2.110), we see that (2.94) is established. This concludes the proof
of the theorem.

2.12.2 Proof of Theorem 2.5.14

Proof of Theorem 2.5.14: Step 1 (Proof by contradiction with subsequences)
This step is similar to the proof of Theorem 2.5.7. Suppose that (2.24) is not true. Then ∃{N`}∞`=1

subsequence of natural numbers tending to infinity such that

lim
r→0

inf
G,H∈BW1

(G0,r)
G 6=H

V (PG,N` , PH,N`)

DN`(G,H)
→ 0 as N` →∞.

Then ∃{G`}∞`=1, {H`}∞`=1 ⊂ Ek0(Θ) such that
G` 6= H` ∀`

DN`(G`, G0)→ 0, DN`(H`, G0)→ 0 as `→∞
V (PG`,N` ,PH`,N` )

DN` (G`,H`)
→ 0 as `→∞.

(2.111)

To see this, for each fixed `, and thus fixed N`, DN`(G,G0) → 0 if and only if W1(G,G0) → 0.
Thus, there exist G`, H` ∈ Ek0(Θ) such that G` 6= H`, DN`(G`, G0) ≤ 1

`
, DN`(H`, G0) ≤ 1

`
and

V (PG`,N` , PH`,N`)

DN`(G`, H`)
≤ lim

r→0
inf

G,H∈BW1
(G0,r)

G 6=H

V (PG,N` , PH,N`)

DN`(G,H)
+

1

`
,

thereby ensuring that (2.111) hold.
Write G0 =

∑k0

i=1 p
0
i δθ0

i
. We may relabel the atoms of G` and H` such that G` =

∑k0

i=1 p
`
iδθ`i ,

H` =
∑k0

i=1 π
`
iδη`i with θ`i , η

`
i → θ0

i and p`i , π
`
i → p0

i for any i ∈ [k0]. By subsequence argument if
necessary, we may require {G`}∞`=1, {H`}∞`=1 additionally satisfy:

DN`(H`, G0) =

k0∑
i=1

(
√
N`‖η`i − θ0

i ‖2 + |π`i − p0
i |) (2.112)
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DN`(G`, G0) =

k0∑
i=1

(
√
N`‖θ`i − θ0

i ‖2 + |p`i − p0
i |) (2.113)

and √
N`

(
θ`i − η`i

)
DN`(G`, H`)

→ ai ∈ Rs,
p`i − π`i

DN`(G`, H`)
→ bi ∈ R, ∀1 ≤ i ≤ k0, (2.114)

where the components of ai are in [−1, 1] and
∑k0

i=1 bi = 0. It also follows that at least one of ai is
not 0 ∈ Rs or one of bi is not 0. Let α ∈ {1 ≤ i ≤ k0 : ai 6= 0 or bi 6= 0}.
Step 2 (Transform the probability measure to support in Rs)
Let T1 : (X,A) → (Rs,B(Rs)) be an arbitrary measurable map in this step. Extend T1 to
product space by T̄1 : XN → RNs by T̄1x̄ = ((T1x1)T , . . . , (T1xN)T )T where any x̄ ∈ XN is
partitioned into N blocks as x̄ = (x1, x2, . . . , xN) with xi ∈ X. Then one can easily verify that
(
⊗N Pθ) ◦ T̄−1

1 =
⊗N(Pθ ◦ T−1

1 ), and hence for any G ∈ Ek0(Θ)

PG,N ◦ T̄−1
1 =

k0∑
i=1

pi(Pθi,N ◦ T̄−1
1 ) =

k0∑
i=1

pi

(
N⊗(

Pθi ◦ T−1
1

))
.

Further consider another measurable map T0 : (RNs,B(RNs)) → (Rs,B(Rs)) defined by T0t̄ =∑N
i=1 ti where t̄ ∈ RNs is partitioned equally into N blocks t̄ = (tT1 , t

T
2 , . . . , t

T
N)T ∈ RNs. Denote

the induced probability measure on Rs under T0 ◦ T̄1 of the Pθ,N by Qθ,N :=
(⊗N (Pθ ◦ T−1

1

))
◦

T−1
0 . Then the induced probability measure under T0 ◦ T̄1 of the mixture PG,N is

PG,N ◦ T̄−1
1 ◦ T−1

0 =

k0∑
i=1

piQθi,N := QG,N .

Note the dependences of T̄1 and T0 on N are both suppressed, so are the dependences on T1 of Qθ,N

and QG,N .
Then by definition of total variation distance

V (PG,N , PH,N) ≥ V (QG,N , QH,N), ∀N,∀ T1.

The above display and (2.111) yield

lim
`→0

V (QG`,N` , QH`,N`)

DN`(G`, H`)
= 0, ∀T1. (2.115)

Step 3 (Application of the central limit theorem)
In the rest of proof specialize T1 in step 2 to be Tα. Write T = Tα to simplify the notation in the
rest of the proof. Let γ > 0 and r ≥ 1 be the same as in Definition 2.5.13 of T = Tα with respect to
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the finite set {θ0
i }
k0
i=1 and define Θ̄(G0) :=

⋃k0

i=1B(θ0
i , γ). By subsequences if necessary, we may

further require that G` satisfy θ`i ∈ B(θ0
i , γ) for all i ∈ [k0] and N` ≥ r.

Consider {Xi}∞i=1
i.i.d.∼ Pθ. Then Y` =

∑N`
i=1 TXi is distributed by probability measure Qθ,N` ,

which has characteristic function (φT (ζ|θ))N` . For θ ∈ Θ̄(G0) by (A3) in the definition of admissible
transform, by Fourier inversion theorem Qθ,N` and Y` therefore have density fY (y|θ,N`) w.r.t
Lebesgue measure given by

fY (y|θ,N`) =
1

(2π)s

∫
Rs
e−iζ

T y(φT (ζ|θ))N`dζ. (2.116)

Then QG`,N` has density w.r.t. Lebesgue measure given by
∑k0

i=1 pifY (y|θ`i , N`), and thus

2V (QG`,N` , QH`,N`) =

∫
Rs

∣∣∣∣∣
k0∑
i=1

p`ifY (y|θ`i , N`)−
k0∑
i=1

π`ifY (y|η`i , N`)

∣∣∣∣∣ dy. (2.117)

For Y` has density fY (y|θ,N`), define Z` = (Y` − N`λθ)/
√
N`. Note this transform from Y`

to Z` depends on θ in the density of Y`. Then by the change of variable formula, Z` has density
fZ(z|θ,N`) w.r.t. Lebesgue measure, given by

fZ(z|θ,N`) = fY (
√
N`z +N`λθ|θ,N`)N

s/2
` ,

or equivalently
fY (y|θ,N`) = fZ((y −N`λθ)/

√
N`|θ,N`)/N

s/2
` . (2.118)

Now, applying the local central limit theorem (Lemma 2.16.1), fZ(z|θ,N`) converges uniformly in
z to fN (z|θ) for every θ ∈ Θ̄(G0). Next specialize to θ0

α, and define

w` = sup

{
w ≥ 0 : fZ(z|θ0

α, N`) ≥
1

(2π)s/2
1

2`
for all ‖z‖2 ≤ w

}
.

We use the convention that the supreme of ∅ is 0 in the above display. Because of the uniform
convergence of fZ(z|θ0

α, N`) to fN (z|θ0
α), we have w` →∞ when `→∞. It follows from (2.118)

that fY (y|θ0
α, N`) > 0 on B` := {y ∈ Rs|y =

√
N`z +N`λθ0

α
for ‖z‖2 ≤ w`}. Then by (2.117)

2V (QG`,N` , QH`,N`)

DN`(G`, H`)

=

∫
Rs

∣∣∣∣∣
k0∑
i=1

p`i
DN`(G`, H`)

(
fY (y|θ`i , N`)− fY (y|η`i , N`)

)
+

k0∑
i=1

p`i − π`i
DN`(G`, H`)

fY (y|η`i , N`)

∣∣∣∣∣ dy
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≥
∫
B`

∣∣∣∣∣
k0∑
i=1

p`i
DN`(G`, H`)

fY (y|θ`i , N`)− fY (y|η`i , N`)

fY (y|θ0
α, N`)

+

k0∑
i=1

p`i − π`i
DN`(G`, H`)

fY (y|η`i , N`)

fY (y|θ0
α, N`)

∣∣∣∣∣ fY (y|θ0
α, N`)dy

=Eθ0
α
|F`(Y`)|

=Eθ0
α
|Ψ`(Z`)|, (2.119)

where

F`(y)

=

(
k0∑
i=1

p`i
DN`(G`, H`)

fY (y|θ`i , N`)− fY (y|η`i , N`)

fY (y|θ0
α, N`)

+

k0∑
i=1

p`i − π`i
DN`(G`, H`)

fY (y|η`i , N`)

fY (y|θ0
α, N`)

)
1B`(y),

and
Ψ`(z) = F`(

√
N`z +N`λθ0

α
).

Observe if Z` has density fZ(z|θ0
α, N`), then Z` converges in distribution to Z ∼ N (0,Λθ0

α
).

Step 4 (Application of a continuous mapping theorem)
Define Ψ(z) = p0

α (Jλ(θ
0
α)aα)

T
Λ−1
θ0
α
z + bα, where Jλ(θ0

α) ∈ Rs×q is the Jacobian matrix of λ(θ)

evaluated at θ0
α. Suppose:

Ψ`(z`)→ Ψ(z) for any sequence z` → z ∈ Rs, (2.120)

a property to be verified later, then by Generalized Continuous Mapping Theorem ([WVdV96]
Theorem 1.11.1), Ψ`(Z`) convergence in distribution to Ψ(Z). Apply Theorem 25.11 in [Bil96],

E|Ψ(Z)| ≤ lim inf
`→∞

Eθ0
α
|Ψ`(Z`)| = 0,

where the equality follows (2.119) and (2.115). Note that Λθ is positive definite (by (A1)) and
Jλ(θ

0
α) is of full column rank. In addition, by our choice of α, either aα or bα is non-zero. Hence,

Ψ(z) is a non-zero affine function of z. For such an Ψ(z), E|Ψ(Z)| cannot be zero, which results in
a contradiction. As a result, it remains in the proof to establish (2.120).

We will now impose the following technical claim and proceed to verify (2.120), while the proof
of the claim will be given after the current proof.

Claim: For any 1 ≤ i ≤ k0, for any pair of sequences θ̄`i , η̄
`
i ∈ B(θ0

i , γ) and for any increasing
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N̄` ≥ r satisfying
√
N̄`‖θ̄`i − θ0

i ‖2,
√
N̄`‖η̄`i − θ0

i ‖2 → 0 and N̄` →∞:

J(θ̄`i , η̄
`
i , N̄`) :=N̄

s/2
` sup

y∈Rs

∣∣∣∣∣fY (y|θ̄`i , N̄`)− fY (y|η̄`i , N̄`)−
q∑
j=1

∂fN (y|θ̄0
i , N̄`)

∂θ(j)

(
(θ̄`i )

(j) − (η̄`i )
(j)
)∣∣∣∣∣

=o(
√
N̄`‖θ̄`i − η̄`i‖2), as `→∞, (2.121)

where fN (y|θ,N) is the density w.r.t. Lebesgue measure of N (Nλθ, NΛθ) when Λθ is positive
definite.

Step 5 (Verification of (2.120))
Write D` = DN`(G`, H`) for abbreviation in the remaining of this proof. Observe by the local
central limit theorem (Lemma 2.16.1)

∣∣fZ(z`|θ0
α, N`)− fN (z|θ0

α)
∣∣ ≤ sup

z′∈Rs
|fZ(z′|θ0

α, N`)− fN (z′|θ0
α)|+ |fN (z`|θ0

α)− fN (z|θ0
α)| → 0,

as `→∞, which implies
lim
`→∞

fZ(z`|θ0
α, N`) = fN (z|θ0

α). (2.122)

Hereafter
∂fY (

√
N`z`+N`λθ0α

|θ0
i ,N`)

∂θ(j) :=
∂fY (y|θ0

i ,N`)

∂θ(j)

∣∣∣
y=
√
N`z`+N`λθ0α

. Similar definition applies to

∂fN (
√
N`z`+N`λθ0α

|θ0
i ,N`)

∂θ(j) . Then for each i ∈ [k0],

1

D`

fY (
√
N`z` +N`λθ0

α
|θ`i , N`)− fY (

√
N`z` +N`λθ0

α
|η`i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
)

=
N
s/2
`

D`

fY (
√
N`z` +N`λθ0

α
|θ`i , N`)− fY (

√
N`z` +N`λθ0

α
|η`i , N`)

fZ(z`|θ0
α, N`)

1E`(z`)

≤

N s/2
`

D`

∑q
j=1

∂fN (
√
N`z`+N`λθ0α

|θ0
i ,N`)

∂θ(j)

(
(θ`i )

(j) − (η`i )
(j)
)

fZ(z`|θ0
α, N`)

+
J(θ`i , η

`
i , N`)

D`fZ(z`|θ0
α, N`)

1E`(z`), (2.123)

where the first equality follows from (2.118) and where in the first equality E` = {z ∈ Rs|‖z‖2 ≤
w`}. Observe that for any i ∈ [k0] √

N`‖θ`i − θ0
i ‖ →0, (2.124)√

N`‖η`i − θ0
i ‖ →0 (2.125)

by (2.112), (2.113) and (2.111). Then by applying (2.121) with θ̄`i , η̄
`
i , N̄` respectively be θ`i , η

`
i , N`,
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and by (2.114),

lim
`→∞

J(θ`i , η
`
i , N`)

D`

→ 0,

which together with (2.122) yield

lim
`→∞

J(θ`i , η
`
i , N`)

D`fZ(z`|θ0
α, N`)

1E`(z`)→ 0. (2.126)

Thus by (2.123) and (2.126)

lim
`→∞

k0∑
i=1

p`i
D`

fY (
√
N`z` +N`λθ0

α
|θ`i , N`)− fY (

√
N`z` +N`λθ0

α
|θ0
i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
)

=

k0∑
i=1

p0
i lim
`→∞

N s/2
`

D`

∑q
j=1

∂fN (
√
N`z`+N`λθ0α

|θ0
i ,N`)

∂θ(j)

(
(θ`i )

(j) − (η`i )
(j)
)

fZ(z`|θ0
α, N`)

1E`(z`), (2.127)

provided the right hand side exists.
Note that for each j = 1, . . . , q, and any θ ∈ Θ̄(G0), by a standard calculation for Gaussian

density,

∂fN (y|θ,N)

∂θ(j)

=fN (y|θ,N)

(
−1

2
det (Λθ)

−1 ∂det (Λθ)

∂θ(j)
+(

∂λθ
∂θ(j)

)T
Λ−1
θ (y −Nλθ)−

1

2N
(y −Nλθ)T

(
∂Λ−1

θ

∂θ(j)

)
(y −Nλθ)

)
,

so we have

∂fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

∂θ(j)

=fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

(
−1

2
det
(

Λθ0
i

)−1 ∂det(Λθ0
i
)

∂θ(j)
+(

∂λθ0
i

∂θ(j)

)T
Λ−1
θ0
i

(
√
N`z` +N`(λθ0

α
− λθ0

i
))−

1

2
(z` +

√
N`(λθ0

α
− λθ0

i
))T

(
∂Λ−1

θ0
i

∂θ(j)

)
(z` +

√
N`(λθ0

α
− λθ0

i
))

)

=N
− s

2
` fN (z` +

√
N`(λθ0

α
− λθ0

i
)|θ0

i )

(
−1

2

1

det(Λθ0
i
)

∂det(Λθ0
i
)

∂θ(j)
+
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(
∂λθ0

i

∂θ(j)

)T
Λ−1
θ0
i

(
√
N`z` +N`(λθ0

α
− λθ0

i
))−

1

2
(z` +

√
N`(λθ0

α
− λθ0

i
))T

(
∂Λ−1

θ0
i

∂θ(j)

)
(z` +

√
N`(λθ0

α
− λθ0

i
))

)
.

Thus, when i 6= α,

N
s−1

2
`

∣∣∣∣∂fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

∂θ(j)

∣∣∣∣
≤N−

1
2

` fN (z` +
√
N`(λθ0

α
− λθ0

i
)|θ0

i )C(θ0
i , z)N`

−→0, (2.128)

where the inequality holds for sufficiently large `, C(θ0
i , z) is a constant that only depends on θ0

i

and z, and the last step follows from λθ0
α
6= λθ0

i
by condition 1) in the statement of theorem.

When i = α,

N
s−1

2
`

∂fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

∂θ(j)

=N
− 1

2
` fN (z`|θ0

α)

−1

2
det
(

Λθ0
i

)−1 ∂det
(

Λθ0
i

)
∂θ(j)

+

(
∂λθ0

α

∂θ(j)

)T
Λ−1
θ0
α

(
√
N`z`)−

1

2
zT`

(
∂Λ−1

θ0
α

∂θ(j)

)
z`


−→fN (z|θ0

α)

(
∂λθ0

α

∂θ(j)

)T
Λ−1
θ0
α
z. (2.129)

Plug (2.128), and (2.129) into (2.127), and then combine with (2.122) and (2.114),

lim
`→∞

k0∑
i=1

p`i
D`

fY (
√
N`z` +N`λθ0

α
|θ`i , N`)− fY (

√
N`z` +N`λθ0

α
|η`i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
)

=p0
α

q∑
j=1

a(j)
α

(
∂λθ0

α

∂θ(j)

)T
Λ−1
θ0
α
z

=p0
α

(
Jλ(θ

0
α)aα

)T
Λ−1
θ0
α
z. (2.130)

Next, we turn to the second summation in the definition of Ψ` in a similar fashion. By (2.118),

fY (
√
N`z` +N`λθ0

α
|η`i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
)

=N
s/2
`

fY (
√
N`z` +N`λθ0

α
|η`i , N`)

fZ(z`|θ0
α, N`)

1E`(z`)
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≤N s/2
`

fY (
√
N`z` +N`λθ0

α
|θ0
i , N`) +

∑q
j=1

∂fN (
√
N`z`+N`λθ0α

|θ0
i ,N`)

∂θ(j)

(
(θ`i )

(j) − (θ0
i )

(j)
)

fZ(z`|θ0
α, N`)

1E`(z`)

+
J(η`i , θ

0
i , N`)

fZ(z`|θ0
α, N`)

1E`(z`). (2.131)

Due to (2.125), by applying (2.121) with θ̄`i , η̄
`
i , N̄` respectively be η`i , θ

0
i , N`, and by (2.111),

lim
`→∞

J(η`i , θ
0
i , N`)→ 0,

which together with (2.122) yield

lim
`→∞

J(η`i , θ
0
i , N`)

fZ(z`|θ0
α, N`)

1E`(z`)→ 0. (2.132)

Moreover for any i ∈ [k0],

N
s/2
`

q∑
j=1

∂fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

∂θ(j)

(
(θ`i )

(j) − (θ0
i )

(j)
)

≤ max
1≤j≤q

N
(s−1)/2
`

∣∣∣∣∂fN (
√
N`z` +N`λθ0

α
|θ0
i , N`)

∂θ(j)

∣∣∣∣√q√N`‖θ`i − θ0
i ‖2

→0. (2.133)

by (2.128) and (2.129) and (2.124).
Combining (2.131), (2.132), (2.133) and (2.114),

lim
`→∞

k0∑
i=1

p`i − π`i
D`

fY (
√
N`z` +N`λθ0

α
|θ0
i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
)

=

k0∑
i=1

bi lim
`→∞

N
s/2
`

fY (
√
N`z` +N`λθ0

α
|θ0
i , N`)

fZ(z`|θ0
α, N`)

1E`(z`)

=

k0∑
i=1

bi lim
`→∞

fZ(z` +
√
N`(λθ0

α
− λθ0

i
)|θ0

i , N`)

fZ(z`|θ0
α, N`)

1E`(z`) (2.134)

where the last step is due to (2.118).
When i = α, the term in the preceding display equals to 1E`(z`), which converges to 1 as

`→∞. When i 6= α,

|fZ(
√
N`(λθ0

α
− λθ0

i
) + z`|θ0

i , N`)|

≤ sup
z′∈Rs

|fZ(z′|θ0
i , N`)− fN (z′|θ0

i )|+ fN (
√
N`(λθ0

α
− λθ0

i
) + z`|θ0

i )
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→0, (2.135)

where the last step follows from Lemma 2.16.1 and λθ0
α
6= λθ0

i
by condition 1) in the statement of

the theorem. Plug (2.135) and (2.122) into (2.134):

lim
`→∞

k0∑
i=1

p`i − π`i
D`

fY (
√
N`z` +N`λθ0

α
|θ0
i , N`)

fY (
√
N`z` +N`λθ0

α
|θ0
α, N`)

1B`(
√
N`z` +N`λθ0

α
) = bα. (2.136)

Finally, combining (2.136) and (2.130) to obtain

lim
`→∞

Ψ`(z`) = Ψ(z) = p0
α

(
Jλ(θ

0
α)aα

)T
Λ−1
θ0
α
z + bα.

Thus, (2.120) is established, so we can conclude the proof of the theorem.

Proof of Claim (2.121): We will write θ`i , η
`
i , N` respectively for θ̄`i , η̄

`
i , N̄` in this proof. But

θ`i , η
`
i , N` in this proof are generic variables and might not necessarily be the same as in the proof of

Theorem 2.5.14.
For any θ ∈ Θ̄(G0), by condition (A1) ∇ζ φ(ζ|θ)|ζ=0 = iλθ, and Hessζ φ(ζ|θ)|ζ=0 =

i2
(
Λθ + λθλ

T
θ

)
exist, and by condition (A2) ∂λθ

∂θ(j) and ∂Λθ
∂θ(j) exist. Then, with condition (A1)

it follows from Pratt’s Lemma that ∂fN (y|θ,N)

∂θ(j) exists and is given by

∂fN (y|θ,N)

∂θ(j)
=

1

(2π)s

∫
Rs
e−iζ

T y exp

(
iNζTλθ −

N

2
ζTΛθζ

)(
iNζT

∂λθ
∂θ(j)

− N

2
ζT

∂Λθ

∂θ(j)
ζ

)
dζ.

(2.137)
Plugging the Fourier inversion formula (2.116) and (2.137) into (2.121), and noting |e−iζT y| ≤ 1

for all y ∈ Rs, for sufficiently large ` we obtain

J(θ`i , η
`
i , N`) ≤

N
s/2
`

(2π)s

∫
Rs

∣∣(φT (ζ|θ`i ))N` − (φT (ζ|η`i ))N` −

−N`e
iN`ζ

Tλ
θ0
i
−N`

2
ζTΛ

θ0
i
ζ

q∑
j=1

(
(θ`i )

(j) − (η`i )
(j)
)(
iζT

∂λθ0
i

∂θ(j)
− 1

2
ζT
∂Λθ0

i

∂θ(j)
ζ

)∣∣∣∣∣ dζ
≤J̌` + Ĵ`,

where

J̌` :=
N
s/2
`

(2π)s

∫
Rs

∣∣(φT (ζ|θ`i ))N` − (φT (ζ|η`i ))N`−

N`

(
φT (ζ|θ0

i )
)N`−1

q∑
j=1

(
(θ`i )

(j) − (η`i )
(j)
) ∂φT (ζ|θ0

i )

∂θ(j)

∣∣∣∣∣ dζ,
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and

Ĵ` := N
s/2+1
`

1

(2π)s

q∑
j=1

∣∣(θ`i )(j) − (η`i )
(j)
∣∣ ∫

Rs

∣∣∣∣(φT (ζ|θ0
i )
)N`−1 ∂φT (ζ|θ0

i )

∂θ(j)
−

− exp

(
iN`ζ

Tλθ0
i
− N`

2
ζTΛθ0

i
ζ

)(
iζT

∂λθ0
i

∂θ(j)
− 1

2
ζT
∂Λθ0

i

∂θ(j)
ζ

)∣∣∣∣ dζ
We will show in the sequel that J̌` = o(

√
N`‖θ`i − η`i‖2) in Step 1 and show Ĵ` = o(

√
N`‖θ`i − η`i‖2)

in Step 2, thereby establishing (2.121).
Step 1 (Prove J̌` = o(

√
N`‖θ`i − η`i‖2))

By Condition (A3) and Lemma 2.10.3 b),

J̌` ≤
N
s/2
`

(2π)s

∫
Rs

∣∣∣∣∣q ∑
1≤j,β≤q

(
‖θ`i − θ0

i ‖2 + ‖η`i − θ0
i ‖2

)
‖θ`i − η`i‖2R1(ζ; θ0

i , θ
`
i , η

`
i , j, β)

∣∣∣∣∣ dζ,
(2.138)

where with θ`(t1, t2) = θ0
i + t2(η`i + t1(θ`i − η`i ))

R1(ζ; θ0
i , θ

`
i , η

`
i , j, β),

=

∫ 1

0

∫ 1

0

∣∣∣∣N`(N` − 1) (φT (ζ|θ`(t1, t2)))N`−2 ∂φT (ζ|θ`(t1, t2))

∂θ(j)

∂φT (ζ|θ`(t1, t2))

∂θ(β)
+

+N` (φT (ζ|θ`(t1, t2)))N`−1 ∂
2φT (ζ|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣ dt2dt1.
Then ∫

Rs

∣∣R1(ζ; θ0
i , θ

`
i , η

`
i , j, β)

∣∣ dζ
≤N`

∫
Rs

∫ 1

0

∫ 1

0

|φT (ζ|θ`(t1, t2))|N`−2×(
N`

∣∣∣∣∂φT (ζ|θ`(t1, t2))

∂θ(j)

∂φT (ζ|θ`(t1, t2))

∂θ(β)

∣∣∣∣+

∣∣∣∣∂2φT (ζ|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣) dt2dt1dζ
=N`

∫ 1

0

∫ 1

0

∫
Rs
|φT (ζ|θ`(t1, t2))|N`−2×(

N`

∣∣∣∣∂φT (ζ|θ`(t1, t2))

∂θ(j)

∂φT (ζ|θ`(t1, t2))

∂θ(β)

∣∣∣∣+

∣∣∣∣∂2φT (ζ|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣) dζdt2dt1
=:N`R2(θ0

i , θ
`
i , η

`
i , j, β), (2.139)

where the first inequality follows from the fact that |φT (ζ|θ`(t1, t2)))| ≤ 1, and the last inequality fol-

114



lows from Condition (A3), Tonelli Theorem and the joint Lebesgue measurability of φT (ζ|θ`(t1, t2)),
∂φT (ζ|θ`(t1,t2))

∂θ(j) and
∣∣∣∂2φT (ζ|θ`(t1,t2))

∂θ(j)∂θ(β)

∣∣∣, as functions of ζ , t1 and t2 by Lemma 4.51 of [AK06].
Then following (2.138) and (2.139),

J̌`

≤C(q, s)N
s/2+1
`

∥∥θ`i − η`i∥∥2
(
∥∥θ`i − θ0

i

∥∥
2

+
∥∥η`i − θ0

i

∥∥
2
) max

1≤j,β≤q
R2(θ0

i , θ
`
i , η

`
i , j, β)

=C(q, s)
√
N`

∥∥θ`i − η`i∥∥2

√
N`(
∥∥θ`i − θ0

i

∥∥
2

+
∥∥η`i − θ0

i

∥∥
2
)×

max
1≤j,β≤q

∫ 1

0

∫ 1

0

∫
Rs

∣∣∣∣φT ( ζ̄√
N`

∣∣∣∣ θ`(t1, t2)

)∣∣∣∣N`−2
(
N`

∣∣∣∣∣∂φT ( ζ̄√
N`
|θ`(t1, t2))

∂θ(j)

∂φT ( ζ̄√
N`
|θ`(t1, t2))

∂θ(β)

∣∣∣∣∣
+

∣∣∣∣∣∂
2φT ( ζ̄√

N`
|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣∣
)
dζ̄dt2dt1, (2.140)

where in the first inequality C(q, s) is some constant that depends on q and s, and where the second
equality follows from (2.139) and changing variable with ζ̄ =

√
N`ζ. Denote the integrand in the

last display by Ej,β(ζ̄ , t1, t2).
Observe fY (y|θ`(t1, t2), r) exists and has upper bound 1

(2π)s

∫
Rs |φT (ζ|θ`(t1, t2))|rdζ ≤ C(s)U2(θ0

i )

by condition (A3). Then invoking Lemma 2.16.2, for ‖ζ‖2 ≤ 1,

|φT (ζ|θ`(t1, t2))|r ≤ exp

(
− C(s)‖ζ‖2

2

(λmax(Λθt(`)) + 1)λs−1
max(Λθt(`)))U

2
2 (θ0

i )

)
≤ exp

(
− C(s)‖ζ‖2

2

U3(θ0
i )U

2
2 (θ0

i )

)
,

(2.141)
where the last step follows from (λmax(Λθt(`)) + 1)λs−1

max(Λθt(`)) ≤ U3(θ0
i ) by condition (A1) with

U3(θ0
i ) being some constant that depends on θ0

i .
Moreover, by the mean value theorem and condition (A3): ∀‖ζ‖2 < 1∣∣∣∣∂φT (ζ|θ`(t1, t2))

∂θ(j)

∣∣∣∣ =

∣∣∣∣∂φT (ζ|θ`(t1, t2))

∂θ(j)
− ∂φT (0|θ`(t1, t2))

∂θ(j)

∣∣∣∣
≤ ‖ζ‖2 sup

‖ζ‖2<1

∥∥∥∥∇ζ
∂φT (ζ|θ`(t1, t2))

∂θ(j)

∥∥∥∥
2

≤
√
sU1(θ0

i )‖ζ‖2. (2.142)

Then ∫
‖ζ̄‖2<

√
N`

Ej,β(ζ̄ , t1, t2)dζ̄

≤
∫
‖ζ̄‖2<

√
N`

exp

(
− C(s)‖ζ̄‖2

2

rU3(θ0
i )U

2
2 (θ0

i )

N` − 2

N`

)((√
sU1(θ0

i )
)2 ‖ζ̄‖2

2 + U2(θ0
i )
)
dζ̄

≤
∫
Rs

exp

(
− C(s)‖ζ̄‖2

2

2rU3(θ0
i )U

2
2 (θ0

i )

)((√
sU1(θ0

i )
)2 ‖ζ̄‖2

2 + U2(θ0
i )
)
dζ̄
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=C(s, r, θ0
i ), (2.143)

where the first inequality follows from (2.141) and (2.142).
Let η := sup‖ζ‖2≥1 |φT (ζ|θ0

i )|. Since the density fY (y|θ0
i , r) w.r.t. Lebesgue exists and has

characteristic function φrT (ζ|θ0
i ), φ

r
T (ζ|θ0

i ) → 0 as ‖ζ‖2 → ∞ by Riemann–Lebesgue lemma. It
follows η is actually a maximum. Moreover, the existence of the density fY (y|θ0

i , r) w.r.t. Lebesgue,
together with Lemma 4 in Section 1, Chapter XV of [Fel08], yield |φT (ζ|θ0

i )|r < 1 when ζ 6= 0. It
follows that η < 1. By mean value theorem and (A3)

sup
ζ∈Rs
|φT (ζ|θ`(t1, t2))− φT (ζ|θ0

i )| ≤
√
qU1(θ0

i )‖θ`i − θ0
i ‖2,

which further implies supt∈[0,1] sup‖ζ‖2≥1 |φT (ζ|θ`(t1, t2))| < η + 1−η
2

:= η′ < 1 for sufficiently
large `.

Then for sufficiently large `,∫
‖ζ̄‖2≥

√
N`

Ej,β(ζ̄ , t1, t2)dζ̄

≤ (η′)
N`−2−r

∫
Rs

∣∣∣∣φT ( ζ̄√
N`

∣∣∣∣ θ`(t1, t2)

)∣∣∣∣r
(
N`U

2
1 (θ0

i ) +

∣∣∣∣∣∂
2φT ( ζ̄√

N`
|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣∣
)
dζ̄

≤ (η′)
N`−2−r

N
s/2
` (N`U

2
1 (θ0

i ) + 1)

∫
Rs
|φT (ζ| θ`(t1, t2))|r

(
1 +

∣∣∣∣∂2φT (ζ|θ`(t1, t2))

∂θ(j)∂θ(β)

∣∣∣∣) dζ
≤ (η′)

N`−2−r
N
s/2
`

(
N`U

2
1 (θ0

i ) + 1
)
U2(θ0

i ), (2.144)

where the first inequality follows from the definition of η′ and condition (A3), and the last inequality
follows from condition (A3). (2.143) and (2.144) immediately imply for any j, β:

lim sup
`→∞

∫ 1

0

∫ 1

0

∫
Rs
Ej,β(ζ̄ , t1, t2)dζ̄dt2dt1 <∞. (2.145)

The above display together with (2.140) and the conditions
√
N`‖θ`i − θ0

i ‖2,
√
N`‖η`i − θ0

i ‖2 → 0

yield J̌` = o(
√
N`‖θ`i − η`i‖2).

Step 2 (Prove Ĵ` = o(
√
N`‖θ`i − η`i‖2)). A large portion of the proof borrows ideas from Theorem

2 in Chapter XV, Section 5 of [Fel08].

Observe
Ĵ` ≤

√
N`‖θ`i − η`i‖2

√
q

(2π)s
max
1≤j≤q

K`(j) (2.146)
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where as before by a change of variable, ζ̄ =
√
N`ζ ,

K`(j) :=N
s+1

2
`

∫
Rs

∣∣∣∣(φT (ζ|θ0
i )
)N`−1 ∂φT (ζ|θ0

i )

∂θ(j)
−

− exp

(
iN`ζ

Tλθ0
i
− N`

2
ζTΛθ0

i
ζ

)(
iζT

∂λθ0
i

∂θ(j)
− 1

2
ζT
∂Λθ0

i

∂θ(j)
ζ

)∣∣∣∣ dζ
=N

s+1
2

`

∫
Rs

∣∣∣∣(e−iζTλθ0i φT (ζ|θ0
i )
)N`−1 ∂φT (ζ|θ0

i )

∂θ(j)
−

− exp

(
iζTλθ0

i
− N`

2
ζTΛθ0

i
ζ

)(
iζT

∂λθ0
i

∂θ(j)
− 1

2
ζT
∂Λθ0

i

∂θ(j)
ζ

)∣∣∣∣ dζ
=

∫
Rs

√
N`

∣∣∣∣∣
(
e
− i√

N`
ζ̄Tλ

θ0
i φT

(
ζ̄√
N`

|θ0
i

))N`−1 ∂φT ( ζ̄√
N`
|θ0
i )

∂θ(j)
−

− exp

(
i√
N`

ζ̄Tλθ0
i
− 1

2
ζ̄TΛθ0

i
ζ̄

)(
i√
N`

ζ̄T
∂λθ0

i

∂θ(j)
− 1

2N`

ζ̄T
∂Λθ0

i

∂θ(j)
ζ̄

)∣∣∣∣ dζ̄. (2.147)

Denote the integrand in the above display by A. Since λθ0
i

and Λθ0
i

exist, e
−iζTλ

θ0
i φT (ζ|θ0

i ) is twice
continuously differentiable on Rs, with gradient being 0 and Hessian being i2Λθ0

i
at ζ = 0. Then by

Taylor Theorem, ∣∣∣e−iζTλθ0i φT (ζ|θ0
i )
∣∣∣ < exp

(
−1

4
ζTΛθ0

i
ζ

)
if 0 < ‖ζ‖2 < γ1, (2.148)

for sufficient small 0 < γ1 < 1 and(
e
− i√

N`
ζ̄Tλ

θ0
i φT

(
ζ̄√
N`

|θ0
i

))N`−1

→ exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)
. (2.149)

Let η′′ := sup‖ζ‖2≥γ1
|φ(ζ|θ0)|. By the same reasoning of η < 1 in Step 1, η′′ < 1. Then for any

a > 0, ∫
Rs
Adζ̄ =

∫
‖ζ̄‖2≤a

Adζ̄ +

∫
a<‖ζ̄‖2<γ1

√
N`

Adζ̄ +

∫
‖ζ̄‖2≥γ1

√
N`

Adζ̄. (2.150)

Then, as `→∞∫
‖ζ̄‖2≥γ1

√
N`

Adζ̄

≤ (η′′)
N`−1−r√

N`

∫
Rs

∣∣∣∣φT ( ζ̄√
N`

∣∣∣∣ θ0
i

)∣∣∣∣r U1(θ0
i )dζ̄

+
√
N`

∫
‖ζ̄‖2≥γ1

√
N`

exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)(
1√
N`

∣∣∣∣ζ̄T ∂λθ0
i

∂θ(j)

∣∣∣∣+
1

2N`

∣∣∣∣ζ̄T ∂Λθ0
i

∂θ(j)
ζ̄

∣∣∣∣) dζ̄
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= (η′′)
N`−1−r

N
s+1

2
` U1(θ0

i )

∫
Rs

∣∣φT (ζ| θ0
i

)∣∣r dζ
+

∫
‖ζ̄‖2≥γ1

√
N`

exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)(∣∣∣∣ζ̄T ∂λθ0
i

∂θ(j)

∣∣∣∣+
1

2
√
N`

∣∣∣∣ζ̄T ∂Λθ0
i

∂θ(j)
ζ̄

∣∣∣∣) dζ̄
→0, (2.151)

where the first inequality follows from condition (A3) and the definition of η′′, and the last step
follows from η′′ < 1 and condition (A3).

By condition (A2), ∂φT (ζ|θ0
i )

∂θ(j) as a function of ζ has gradient at 0: i
∂λ

θ0
i

∂θ(j) . Then by Taylor Theorem:

√
N`

∂φT ( ζ̄√
N`
|θ0
i )

∂θ(j)
→ iζ̄T

∂λθ0
i

∂θ(j)
. (2.152)

Moreover, specialize t = 0 in (2.142): ∀‖ζ‖2 < 1∣∣∣∣∂φT (ζ|θ0
i )

∂θ(j)

∣∣∣∣ ≤ √sU1(θ0
i )‖ζ‖2. (2.153)

By combining (2.148) and (2.153), we obtain as `→∞∫
a<‖ζ̄‖2<γ1

√
N`

Adζ̄

≤
√
N`

∫
a<‖ζ̄‖2<γ1

√
N`

exp

(
−N` − 1

4N`

ζ̄TΛθ0
i
ζ̄

)√
sU1(θ0

i )

(
‖ζ̄‖2√
N`

)
+ exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)(∣∣∣∣ 1√
N`

ζ̄T
∂λθ0

i

∂θ(j)

∣∣∣∣+

∣∣∣∣ 1

2N`

ζ̄T
∂Λθ0

i

∂θ(j)
ζ̄

∣∣∣∣) dζ̄
≤
∫
a<‖ζ̄‖2<γ1

√
N`

2 exp

(
−1

8
ζ̄TΛθ0

i
ζ̄

)
C(θ0

i , s)
(
‖ζ̄‖2 + ‖ζ̄‖2

2

)
dζ̄

→C(θ0
i , s)

∫
‖ζ̄‖2>a

2 exp

(
−1

8
ζ̄TΛθ0

i
ζ̄

)(
‖ζ̄‖2 + ‖ζ̄‖2

2

)
dζ̄, (2.154)

where in the second inequality we impose N` ≥ 2 since it’s the limit that is of interest, and C(θ0
i , s)

is a constant that depends on θ0
i and s.

Finally by (2.149) and (2.152), when ‖ζ̄‖2 ≤ a

√
N`

(
e
− i√

N`
ζ̄Tλ

θ0
i φT

(
ζ̄√
N`

|θ0
i

))N`−1 ∂φT ( ζ̄√
N`
|θ0
i )

∂θ(j)
→ exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)
iζ̄T

∂λθ0
i

∂θ(j)
.
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Moreover

√
N ` exp

(
i√
N`

ζ̄Tλθ0
i
− 1

2
ζ̄TΛθ0

i
ζ̄

)(
i√
N`

ζ̄T
∂λθ0

i

∂θ(j)
− 1

2N`

ζ̄T
∂Λθ0

i

∂θ(j)
ζ̄

)
→ exp

(
−1

2
ζ̄TΛθ0

i
ζ̄

)
iζ̄T

∂λθ0
i

∂θ(j)

and hence lim`→∞A = 0 when ‖ζ̄‖2 ≤ a. One can also find an integrable envelope function for A
when ‖ζ̄‖2 ≤ a in similar steps as (2.154), and then by Dominated Convergence Theorem,∫

‖ζ̄‖2≤a
Adζ̄ → 0. (2.155)

Plug (2.155), (2.154) and (2.151) into (2.150) and (2.147),

lim sup
`→∞

K`(j)

≤C(θ0
i , s)

∫
‖ζ̄‖2>a

2 exp

(
−1

8
ζ̄TΛθ0

i
ζ̄

)(
‖ζ̄‖2 + ‖ζ̄‖2

2

)
dζ̄.

Letting a → ∞ in the above display yields K`(j) → 0, which together with (2.146) imply
Ĵ` = o(

√
N`‖θ`i − η`i‖2).

2.13 Proofs and auxiliary lemmas of Section 2.6

2.13.1 Proof of Theorem 2.6.2

Proof of Theorem 2.6.2:

a) Step 1 Write n1 for n1(G0) in the proof for clean presentation. Note that (B3) implies that
θ 7→ Pθ from (Θ, ‖ · ‖2) to ({Pθ}θ∈Θ, h) is continuous. Then due to Lemma 2.5.5 and Lemma
2.3.2 e), for any N ≥ n1 ∨ n0,

h(pG,N , pG0,N) ≥ V (pG,N , pG0,N) ≥ C(G0,Θ1)W1(G,G0)

≥ C(G0,Θ1)D1(G,G0), ∀G ∈ Ek0(Θ1). (2.156)

Moreover, by Lemma 2.5.4 for any N ≥ n1, and ∀G ∈ Ek0(Θ1) : W1(G,G0) < c(G0, N)

h(pG,N , pG0,N) ≥ V (pG,N , pG0,N) ≥ C(G0)DN(G,G0) (2.157)

where c(G0, N) is a constant that depends on G0 and N . In the rest of the proof N ≥ n1 ∨ n0

is implicitly imposed.
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By (2.156), for any ε > 0,

{G ∈ Ek0(Θ1) : h(pG,N , pG0,N) ≤ ε} ⊂
{
G ∈ Ek0(Θ1) : D1(G,G0) ≤ ε

C(G0,Θ1)

}
.

(2.158)
Recall that Θ1 ⊂ Θ ⊂ Rq and Π is supported on Ek0(Θ1). Then for any j ∈ N, by (2.158)

Π (h(pG,N , pG0,N) ≤ 2jε) ≤ Π

(
D1(G,G0) ≤ 2jε

C(G0,Θ1)

)
. k0!

(
2jε

C(G0,Θ1)

)k0−1(
2jε

C(G0,Θ1)

)qk0

, (2.159)

where the last inequality follows from (B1).

Using the argument similar to Lemma 3.2(a) in [Ngu16] for any G =
∑k0

i=1 piδθi ∈ Ek0(Θ1)

K(pG0,N , pG,N) ≤NWα0
α0

(G,G0)

≤C(diam(Θ1), α0)N min
τ∈Sk0

k0∑
i=1

(
‖θτ(i) − θ0

i ‖
α0
2 + |pτ(i) − p0

i |
)
,

where the first inequality follows from (B3) and the second inequality follows from Lemma
2.3.2 b). Then

Π
(
K(pG0,N , pG,N) ≤ ε2

)
&

(
ε2

C(diam(Θ1), α0)N

)qk0/α0
(

ε2

C(diam(Θ1), α0)N

)k0−1

.

(2.160)

Combine (2.159) and (2.160),

Π (h(pG,N , pG0,N) ≤ 2jε)

Π (K(PG0,N , PG,N) ≤ ε2)

≤ C(G0,Θ1, q, α0, k0)jqk0+k0−1N qk0/α0+k0−1ε−qk0(2/α0−1)−(k0−1).

By Remark 2.6.1 α0 ≤ 2. Then based on the last display one may verify with

εm,N = C(G0,Θ1, q, k0, α0, β0)

√
ln(mN)

m

for some large enough constant C(G0,Θ1, q, k0, α0, β0),

Π (h(pG,N , pG0,N) ≤ 2jεm,N)

Π
(
K(pG0,N , pG,N) ≤ ε2m,N

) ≤ exp

(
1

8
jmε2m,N

)
.
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Step 2 By (2.158),

sup
ε≥εm,N

lnN

(
1

2
ε, {pG,N : G ∈ Ek0(Θ1), h(pG,N , pG0,N) ≤ 2ε}, h

)
≤ sup

ε≥εm,N
lnN

(
1

2
ε,

{
pG,N : G ∈ Ek0(Θ1), D1(G,G0) ≤ 2ε

C(G0,Θ1)

}
, h

)
≤qk0 ln

(
1 +

4× 8
1
β0

C(G0,Θ1)
N

1
2β0 ε

−( 1
β0
−1)

m,N

)
+ (k0 − 1) ln

(
1 + 160ε−2

m,N

)
,

where the last inequality follows from Lemma 2.13.1. By Remark 2.6.1 β0 ≤ 1. Then based
on the last display one may verify with

εm,N = C(G0,Θ1, q, k0, α0, β0)

√
ln(mN)

m

for some large enough constant C(G0,Θ1, q, k0, α0, β0),

sup
ε≥εm,N

lnN

(
1

2
ε, {pG,N : G ∈ Ek0(Θ1), h(pG,N , pG0,N) ≤ 2ε}, h

)
≤ mε2m,N .

Step 3 Now we invoke Theorem 8.11 in [GvdV17]5, for every M̄m →∞,

Π(G ∈ Ek0(Θ1) : h(pG,N , pG0,N) ≥ M̄mεm,N |X1
[N ], X

2
[N ], . . . , X

m
[N ])→ 0 (2.161)

in
⊗m PG0,N -probability as m → ∞ while fixing N . By (2.157) and applying the union

bound,

Π(G ∈ Ek0(Θ1) : DN(G,G0) ≥ M̄m

C(G0)
εm,N |X1

[N ], X
2
[N ], . . . , X

m
[N ])

≤Π(G ∈ Ek0(Θ1) : h(pG,N , pG0,N) ≥ M̄mεm,N |X1
[N ], X

2
[N ], . . . , X

m
[N ])

+ Π(W1(G,G0) > c(G0, N)|X1
[N ], X

2
[N ], . . . , X

m
[N ])

→0

in
⊗m PG0,N -probability as m→∞ by (2.161) to the first term. The reason that the second

term vanishes is as follows. By (2.156)

{G ∈ Ek0(Θ1) : W1(G,G0) > c(G0, N)}

5The Hellinger distance defined in [GvdV17] differs from our definition by a factor of constant. But this constant
factor only affect the coefficients of εm,N̄m

but not the conclusion of convergence.
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⊂{G ∈ Ek0(Θ1) : h(pG,N , pG0,N) > C(G0, N,Θ1)}

for some constant C(G0, N,Θ1). For some slow-increasing M̄ ′
m such that M̄ ′

mεm,N → 0 as
m→∞,

{G ∈ Ek0(Θ1) : h(pG,N , pG0,N) > C(G0, N,Θ1)}

⊂{G ∈ Ek0(Θ1) : h(pG,N , pG0,N) > M̄ ′
mεm,N}

holds for large m. Combining the last two displays and (2.161) yields as m→∞

Π(G ∈ Ek0(Θ1) : W1(G,G0) > c(G0, N)|X1
[N1], . . . , X

m
[Nm])→ 0.

b) If the additional condition of part b) is satisfied, then by Remark 2.5.2 , n1(G0) = 1. That is,
the claim of part a) holds for n1(G0) = 1.

2.13.2 Proof of Theorem 2.6.5

Define the root average square Hellinger metric:

dm,h(G,G0) =

√√√√ 1

m

m∑
i=1

h2(pG,Ni , pG0,Ni).

Proof of Theorem 2.6.5: Step 1

a) Write n1 for n1(G0) in the proof for clean presentation. Note that (B3) implies that θ 7→ Pθ

from (Θ, ‖ · ‖2) to ({Pθ}θ∈Θ, h) is continuous. Then due to Lemma 2.5.5 and Lemma 2.3.2
e), for any N ≥ n1 ∨ n0, and any G ∈ Ek0(Θ1),

h(pG,N , pG0,N) ≥ V (pG,N , pG0,N) ≥ C(G0,Θ1)W1(G,G0) ≥ C(G0,Θ1)D1(G,G0).

(2.162)

By (2.162) holds, for all G ∈ Ek0(Θ1)

dm,h(G,G0) ≥ C(G0,Θ1)W1(G,G0) ≥ C(G0,Θ1)D1(G,G0). (2.163)

Then

{G ∈ Ek0(Θ1) : dm,h(G,G0) ≤ ε} ⊂
{
G ∈ Ek0(Θ1) : D1(G,G0) ≤ ε

C(G0,Θ1)

}
(2.164)
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and thus for any j ∈ N,

Π (dm,h(G,G0) ≤ 2jε) ≤ Π

(
D1(G,G0) ≤ 2jε

C(G0,Θ1)

)
. k0!

(
2jε

C(G0,Θ1)

)k0−1(
2jε

C(G0,Θ1)

)qk0

, (2.165)

where the last inequality follows from (B1).

By an argument is similar to Lemma 3.2(a) in [Ngu16], for any G =
∑k0

i=1 piδθi ∈ Ek0(Θ1)

K(pG0,Ni , pG,Ni) ≤NiW
α0
α0

(G,G0)

≤NiC(diam(Θ1), α0) min
τ∈Sk0

k0∑
i=1

(
‖θτ(i) − θ0

i ‖
α0
2 + |pτ(i) − p0

i |
)
,

where the second inequality follows from Lemma 2.3.2 b) and (B3). Then

1

m

m∑
i=1

K(pG0,Ni , pG,Ni) ≤ N̄mC(diam(Θ1), α0) min
τ∈Sk0

k0∑
i=1

(
‖θτ(i) − θ0

i ‖
α0
2 + |pτ(i) − p0

i |
)
,

and

Π

(
1

m

m∑
i=1

K(pG0,Ni , pG,Ni) ≤ ε2

)

&

(
ε2

N̄mC(diam(Θ1), α0)

)qk0/α0
(

ε2

N̄mC(diam(Θ1), α0)

)k0−1

. (2.166)

Combine (2.165) and (2.166),

Π (dm,h(G,G0) ≤ 2jε)

Π
(

1
m

∑m
i=1K(pG0,Ni , pG,Ni) ≤ ε2

)
≤ C(G0,Θ1, q, α0, k0)jqk0+k0−1N̄ qk0/α0+k0−1

m ε−qk0(2/α0−1)−(k0−1).

Recall by Remark 2.6.1 α0 ≤ 2. Then based on the last display one may verify with εm,N̄m =

C(G0,Θ, q, k0, α0, β0)
√

ln(mN̄m)
m

for some large enough constant C(G0,Θ1, q, k0, α0, β0),

Π
(
dm,h(G,G0) ≤ 2jεm,N̄m

)
Π
(

1
m

∑m
i=1 K(pG0,Ni , pG,Ni) ≤ ε2

m,N̄m

) ≤ exp

(
1

4
jmε2m,N̄m

)
.
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Step 2 By (2.164),

sup
ε≥εm,N̄m

lnN

(
1

36
ε, {G ∈ Ek0(Θ1) : dm,h(G,G0) ≤ 2ε}, dm,h

)
≤ sup

ε≥εm,N̄m
lnN

(
1

36
ε,

{
G ∈ Ek0(Θ1) : D1(G,G0) ≤ 2ε

C(G0,Θ1)

}
, dm,h

)

≤qk0 ln

(
1 +

4× 144
1
β0

C(G0,Θ1)
N̄

1
2β0
m ε

−( 1
β0
−1)

m,N̄m

)
+ (k0 − 1) ln

(
1 + 10× 722ε−2

m,N̄m

)
,

where the last inequality follows from Lemma 2.13.3. Recall by Remark 2.6.1 β0 ≤ 1. Then

based on the last display one may verify with εm,N̄m = C(G0,Θ1, q, k0, α0, β0)
√

ln(mN̄m)
m

for
some large enough constant C(G0,Θ1, q, k0, α0, β0),

sup
ε≥εm,N̄m

lnN

(
1

36
ε, {G ∈ Ek0(Θ1) : dm,h(G,G0) ≤ 2ε}, dm,h

)
≤ mε2m,N̄m . (2.167)

Step 3 Now we invoke Theorem 8.23 in [GvdV17]6, we have for every M̄m →∞,

Π(G ∈ Ek0(Θ1) : dm,h(G,G0) ≥ M̄mεm,N̄m |X
1
[N1], . . . , X

m
[Nm])→ 0 (2.168)

in PG0,N1

⊗
· · ·
⊗

PG0,Nm-probability as m → ∞. Since n1 ≤ Ni ≤ N0 := supiNi, by
Lemma 2.5.4 for G ∈ Ek0(Θ) satisfying W1(G,G0) < c(G0, N0)

dm,h(G,G0) ≥ C(G0)

√√√√ 1

m

m∑
i=1

D2
Ni

(G,G0). (2.169)

By Lemma 2.13.4 for G =
∑k0

j=1 pjδθj ∈ Ek0(Θ1) satisfying

D1(G,G0) <
1

2
ρ :=

1

2
min

1≤i<j≤k0

‖θ0
i − θ0

j‖2,

there exists a τ ∈ Sk0 such that√√√√ 1

m

m∑
i=1

D2
Ni

(G,G0) =

√√√√ 1

m

m∑
i=1

(√
Ni

k0∑
j=1

‖θτ(j) − θ0
j‖2 +

k0∑
j=1

|pτ(j) − p0
j |

)2

6The Hellinger distance defined in [GvdV17] differs from our definition by a factor of constant. But this constant
factor only affect the coefficients of εm,N̄m

but not the conclusion of convergence.
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≥

√√√√√ 1

m

m∑
i=1

Ni

(
k0∑
j=1

‖θτ(j) − θ0
j‖2

)2

+

(
k0∑
j=1

|pτ(j) − p0
j |

)2


=

√√√√N̄m

(
k0∑
j=1

‖θτ(j) − θ0
j‖2

)2

+

(
k0∑
j=1

|pτ(j) − p0
j |

)2

≥ 1√
2

(√
N̄m

k0∑
j=1

‖θτ(j) − θ0
j‖2 +

k0∑
j=1

|pτ(j) − p0
j |

)

=
1√
2
DN̄m(G,G0). (2.170)

Let G = {G ∈ Ek0(Θ1)|W1(G,G0) < c(G0, N0), D1(G,G0) < 1
2
ρ}. Then combine (2.169)

and (2.170), for any G ∈ G

dm,h(G,G0) ≥ C(G0)√
2

D̄N̄m(G,G0).

By the union bound,

Π(G ∈ Ek0(Θ1) : DN̄m(G,G0) ≥
√

2M̄m

C(G0)
εm,N̄m |X

1
[N1], . . . , X

m
[Nm])

≤Π(G ∈ Ek0(Θ1) : dm,h(G,G0) ≥ M̄mεm,N̄m |X
1
[N1], . . . , X

m
[Nm]) + Π(Gc|X1

[N1], . . . , X
m
[Nm])

→0

in
⊗m

i=1 PG0,Ni-probability as m→∞ by applying (2.168) to the first term. The reason that
the second term vanishes is as follows. By (2.163),

Gc ⊂ {G ∈ Ek0(Θ) : dm,h(G,G0) > C(G0, ρ,N0,Θ1)}

for some constantC(G0, ρ,N0,Θ1) > 0. For some slow-increasing M̄ ′
m such that M̄ ′

mεm,N̄m →
0 as m→∞,

{G ∈ Ek0(Θ1) : dm,h(G,G0) > C(G0, ρ,N0,Θ1)}

⊂{G ∈ Ek0(Θ1) : dm,h(G,G0) > M̄ ′
mεm,N̄m}

holds for large m. Combining the last two displays and (2.168) yields

Π(Gc|X1
[N1], . . . , X

m
[Nm])→ 0.
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The proof is concluded.

b) If the additional condition of part b) is satisfied, then then by Remark 2.5.2 , n1(G0) = 1.
That is, the claim of part a) holds for n1(G0) = 1.

2.13.3 Auxiliary Lemmas for Section 2.6

For B a subset of metric space with metric D, the minimal number of balls with centers in
B and of radius ε needed to cover B is known as the ε-covering number of B and is denoted by
N(ε, B,D).

Lemma 2.13.1. Fix G0 ∈ Ek0(Θ). Suppose h(f(x|θ1), f(x|θ2)) ≤ L2‖θ1 − θ2‖β0

2 for some 0 <

β0 ≤ 1 and some L2 > 0 where θ1, θ2 are any two distinct elements in Θ.

N

(
1

2
ε,

{
pG,N : G ∈ Ek0(Θ), D1(G,G0) ≤ 2ε

C(G0, diam(Θ))

}
, h

)

≤

(
1 +

4× 8
1
β0

C(G0, diam(Θ))
N

1
2β0 ε

−( 1
β0
−1)

)qk0 (
1 + 160ε−2

)k0−1
.

Proof: Consider an η1-net Λi with minimum cardinality of {θ : ‖θ − θ0
i ‖2 ≤ 2ε

C(G0,diam(Θ))
} and

an η2-net Λ̄ with minimum cardinality of k0-probability simplex {p ∈ Rk0 :
∑k0

i=1 pi = 1, pi ≥ 0}
under the l1 distance. Construct a set Λ̃ = {G̃ =

∑k0

i=1 piδθi : (p1, . . . , pk0) ∈ Λ̄, θi ∈ Λi}. Then
for any G ∈ Ek0(Θ) satisfying D1(G,G0) ≤ 2ε

C(G0,diam(Θ))
, there exists some G̃ ∈ Λ̃, such that by

Lemma 2.7.2
h(pG,N , pG̃,N) ≤

√
Nηβ0

1 +
1√
2

√
η2.

Thus
{
pG,N : G ∈ Λ̃

}
is a

(√
Nηβ0

1 + 1√
2

√
η2

)
-net of

{
pG,N : G ∈ Ek0(Θ), D1(G,G0) ≤ 2ε

C(G0, diam(Θ))

}
.

Since Λ̃ is not necessarily subset of Ek0(Θ),

N

(
2

(√
Nηβ0

1 +
1√
2

√
η2

)
,

{
pG,N : G ∈ Ek0(Θ), D1(G,G0) ≤ 2ε

C(G0, diam(Θ))

}
, h

)
≤ |Λ̃| = |Λ̄|

k0∏
i=1

|Λi|.

(2.171)
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Now specify η1 =
(

ε
8
√
N

) 1
β0 and thus

|Λi| ≤
(

1 + 2
2ε

C(G0, diam(Θ))
/η1

)q
=

(
1 +

4× 8
1
β0

C(G0, diam(Θ))
N

1
2β0 ε

−( 1
β0
−1)

)q

.

Moreover, specify η2 = ε2

32
and by Lemma A.4 of [GVDV01]

|Λ̄| ≤
(

1 +
5

η2

)k0−1

=
(
1 + 160ε−2

)k0−1
.

Plug the specified η1 and η2 into (2.171) and the proof is complete.

Lemma 2.13.2. Consider a full rank exponential family’s density function f(x|θ) w.r.t. a dominating

measure µ on X, which takes the form

f(x|θ) = exp
(
θTT (x)− A(θ)

)
h(x),

where Θ = {θ|A(θ) <∞} ⊂ Rs is the parameter space of θ.

a) For any θ0 ∈ Θ◦

lim sup
θ→θ0

h(f(x|θ), f(x|θ0))

‖θ − θ0‖2

≤
√
λmax(∇2

θA(θ0))/8,

where λmax(·) is the maximum eigenvalue of a symmetric matrix.

b) For convex compact subset Θ′ ⊂ Θ◦, there exists L2 > 0 such that

h(f(x|θ1), f(x|θ2)) ≤ L2‖θ1 − θ2‖2 ∀ θ1, θ2 ∈ Θ′.

Proof: a) It is easy to calculate

1− h2(f(x|θ1), f(x|θ2)) = exp

(
A

(
θ1 + θ2

2

)
− A(θ1) + A(θ2)

2

)
. (2.172)

Let g(θ) = exp
(
A
(
θ0+θ

2

)
− A(θ0)+A(θ)

2

)
. It is easy to verify that g(θ0) = 1,∇g(θ0) = 0 and

∇2g(θ0) = −1
4
∇2A(θ0). Then by (2.172)

lim sup
θ→θ0

h2(f(x|θ), f(x|θ0))

‖θ − θ0‖2
2

= lim sup
θ→θ0

−g(θ)− g(θ0)− 〈∇g(θ0), θ − θ0〉
‖θ − θ0‖2

2

(2.173)
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= lim sup
θ→θ0

1
8
(θ − θ0)T∇2A(θ0)(θ − θ0) + o(‖θ − θ0‖2

2)

‖θ − θ0‖2
2

≤ lim sup
θ→θ0

(
1

8
λmax(∇2A(θ0)) + o(1)

)
=

1

8
λmax(∇2A(θ0)).

b) For each θ, θ0 ∈ Θ′, by (2.173),

h2(f(x|θ), f(x|θ0))

‖θ − θ0‖2
2

=− g(θ)− g(θ0)− 〈∇g(θ0), θ − θ0〉
‖θ − θ0‖2

2

=−
1
8
(θ − θ0)T∇2g(ξ)(θ − θ0)

‖θ − θ0‖2
2

≤1

8
sup
θ∈Θ′

λmax(−∇2g(θ)),

where the second equality follows by Taylor Theorem with ξ in the line joining θ and
θ0 due to the convexity of Θ′ and Taylor theorem. The result then follows with L2 =√

1
8

supθ∈Θ′ λmax(−∇2g(θ)), which is finite since∇2g(θ), as function ofA(θ) and its gradient
and hessian, is continuous on Θ◦.

Lemma 2.13.3. Fix G0 =
∑k0

i=1 p
0
i δθ0

i
∈ Ek0(Θ). Suppose h(f(x|θ1), f(x|θ2)) ≤ L2‖θ1 − θ2‖β0

2

for some 0 < β0 ≤ 1 and some L2 > 0 where θ1, θ2 are any two distinct elements in Θ.

N

(
1

36
ε,

{
G ∈ Ek0(Θ) : D1(G,G0) ≤ 2ε

C(G0, diam(Θ))

}
, dm,h

)

≤

(
1 +

4× 144
1
β0

C(G0, diam(Θ))
N̄

1
2β0
m ε

−( 1
β0
−1)

)qk0 (
1 + 10× 722ε−2

)k0−1
.

Proof: Consider an η1-net Λi with minimum cardinality of {θ : ‖θ − θ0
i ‖2 ≤ 2ε

C(G0,diam(Θ))
} and

an η2-net Λ̄ with minimum cardinality of k0-probability simplex {p ∈ Rk0 :
∑k0

i=1 pi = 1, pi ≥ 0}
under the l1 distance. Construct a set Λ̃ = {G̃ =

∑k0

i=1 piδθi : (p1, . . . , pk0) ∈ Λ̄, θi ∈ Λi}. Then
for any G ∈ Ek0(Θ) satisfying D1(G,G0) ≤ 2ε

C(G0,diam(Θ))
, there exists some G̃ ∈ Λ̃, such that by

Lemma 2.7.2

h2(pG,Ni , pG̃,Ni) ≤
(√

Niη
β0

1 +
1√
2

√
η2

)2

≤ 2

(
Niη

2β0

1 +
1

2
η2

)
.

Thus
dm,h(G, G̃) ≤

√
2N̄mη

2β0

1 + η2.
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As a result Λ̃ is a
√

2N̄mη
2β0

1 + η2-net of
{
G ∈ Ek0(Θ) : D1(G,G0) ≤ 2ε

C(G0,diam(Θ))

}
. Since Λ̃ is

not necessarily subset of Ek0(Θ),

N

(
2

√
2N̄mη

2β0

1 + η2,

{
G ∈ Ek0(Θ) : D1(G,G0) ≤ 2ε

C(G0, diam(Θ))

}
, dm,h

)
≤ |Λ̃|

= |Λ̄|
k0∏
i=1

|Λi|. (2.174)

Now specify η1 =

(
ε

144
√
N̄m

) 1
β0

and thus

|Λi| ≤
(

1 + 2
2ε

C(G0, diam(Θ))
/η1

)q
=

(
1 +

4× 144
1
β0

C(G0, diam(Θ))
N̄

1
2β0
m ε

−( 1
β0
−1)

)q

.

Moreover, specify η2 = 1
2

(
ε

72

)2 and by Lemma A.4 of [GVDV01] |Λ̄| ≤
(

1 + 5
η2

)k0−1

=

(1 + 10× 722ε−2)
k0−1. Plug the specified η1 and η2 into (2.174) and the proof is complete.

Lemma 2.13.4. For G0 =
∑k0

i=1 piδθ0
i
∈ Ek0(Θ) with ρ = min1≤i<j≤k0 ‖θ0

i − θ0
j‖2. If G =∑k0

i=1 piδθi ∈ Ek0(Θ) satisfying D1(G,G0) < 1
2
ρ, then there exists a unique τ ∈ Sk0 such that for

all real number r ≥ 1

Dr(G,G0) =

k0∑
i=1

(√
r‖θτ(i) − θ0

i ‖2 + |pτ(i) − p0
i |
)
.

Proof: Let τ be any one in Sk0 such that

D1(G,G0) =

k0∑
i=1

(
‖θτ(i) − θ0

i ‖2 + |pτ(i) − p0
i |
)
.

For any j 6= τ(i), ‖θj − θ0
i ‖2 ≥ ‖θ0

τ−1(j) − θ0
i ‖2 − ‖θj − θ0

τ−1(j)‖2 > ρ − ρ/2 = ρ
2
. Then for any

τ ′ ∈ Sk0 that is not τ and for any real number r ≥ 1

k0∑
i=1

(√
r‖θτ ′(i) − θ0

i ‖2 + |pτ ′(i) − p0
i |
)
>
√
r
ρ

2
>
√
rD1(G,G0)

≥
k0∑
i=1

(√
r‖θτ(i) − θ0

i ‖2 + |pτ(i) − p0
i |
)
,

which with r = 1 shows our choice of τ is unique and with r ≥ 1 shows τ is the optimal permutation
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for Dr(G,G0).

2.14 Proofs in Section 2.7

Proof of Lemma 2.7.2: Step 1: Suppose p′i = pi for any i ∈ [k0]. In this case,

h2(PG,N , PG′,N) =h2

(
k0∑
i=1

piPθi,N ,

k0∑
i=1

piPθ′i,N

)

≤
k0∑
i=1

pih
2
(
Pθi,N , Pθ′i,N

)
≤N

k0∑
i=1

pih
2
(
Pθi , Pθ′i

)
≤N max

1≤i≤k0

h2
(
Pθi , Pθ′i

)
,

where the first inequality follows from the joint convexity of any f -divergences (of which squared
Hellinger distance is a member), and the second inequality follows from

h2
(
Pθi,N , Pθ′i,N

)
= 1−

(
1− h2

(
Pθi , Pθ′i

))N ≤ Nh2
(
Pθi , Pθ′i

)
.

Step 2: Suppose θ′i = θi for any i ∈ [k0]. Let p = (p1, p2, . . . , pk0) be the discrete probability
measure associated to the weights of G and define p′ similarly. Consider any Q = (qij)

k0
i,j=1 to be a

coupling of p and p′. Then

h2(PG,N , PG′,N) =h2

(
k0∑
i=1

k0∑
j=1

qijPθi,N ,

k0∑
i=1

k0∑
j=1

qijPθj ,N

)

≤
k0∑
i=1

k0∑
j=1

qijh
2
(
Pθi,N , Pθj ,N

)
≤

k0∑
i=1

k0∑
j=1

qij1(θi 6= θj), (2.175)

where the first inequality follows from the joint convexity of any f -divergence, and the second
inequality follow from the hellinger distance is upper bounded by 1. Since (2.175) holds for any
coupling Q of p and p′,

h2(PG,N , PG′,N) ≤ inf
Q

k0∑
i=1

k0∑
j=1

qij1(θi 6= θj) = V (p,p′) =
1

2

k0∑
i=1

|pi − p′i|.
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Step 3: General case. Let G′′ =
∑k0

i=1 piδθ′i . Then by triangular inequality, Step 1 and Step 2,

h(PG,N , PG′,N) ≤ h(PG,N , PG′′,N)+h(PG′′,N , PG′,N) ≤
√
N max

1≤i≤k0

h
(
Pθi , Pθ′i

)
+

√√√√1

2

k0∑
i=1

|pi − p′i|.

Finally, notice the above procedure does not depend on the specific order of atoms of G and G′, and
thus the proof is complete.

Proof of Lemma 2.7.3: Since lim inf
θ→θ0

j

h(Pθ,Pθ0
j

)

‖θ−θ0
j ‖2

<∞, there exists a sequences {θkj }∞k=1 ⊂ Θ\ ∪k0
i=1

{θ0
i } such that θkj → θ0

j and
h(Pθkj , Pθ0

j
) ≤ γ‖θkj − θ0

j‖2 (2.176)

for some γ ∈ (0,∞). Suppose

lim sup
N→∞

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG,N , PG0,N)

Dψ(N)(G,G0)
= β ∈ (0,∞],

then there exists subsequences N` →∞ such that for any `

lim inf
G
W1→G0

G∈Ek0
(Θ)

h(PG,N` , PG0,N`)

Dψ(N`)(G,G0)
≥ 3

4
β.

Thus for each `, there exists θk`j such that G` = p0
jδθk`j

+
k0∑

i=1,i 6=j
p0
i δθ0

i
∈ Ek0(Θ)\{G0}, and

h(PG`,N` , PG0,N`)

Dψ(N`)(G`, G0)
≥ β

2
.

By our choice of G`, for sufficiently large `

h(PG`,N` , PG0,N`) ≥
β

2
Dψ(N`)(G`, G0) =

β

2

√
ψ(N`)‖θk`j − θ0

j‖2.

On the other hand, by Lemma 2.7.2,

h(PG`,N` , PG0,N`) ≤
√
N`h(P

θ
k`
j

, Pθ0
j
).
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Combining the last two displays,

β

2
≤

√
N`

ψ(N`)

h(P
θ
k`
j

, Pθ0
j
)

‖θk`j − θ0
j‖2

≤ γ

√
N`

ψ(N`)
→ 0, as `→∞,

where the second inequality follows from (2.176). But the last display contradicts with β ∈ (0,∞].

Proof of Theorem 2.7.5: a) Choose a set of distinct k0−1 points {θi}k0−1
i=1 ⊂ Θ\{θ0} satisfying

ρ1 = min
0≤i<j≤k0−1

h(Pθi , Pθj) > 0.

Let ρ = min0≤i<j≤k0−1 ‖θi − θj‖2. Since lim sup
θ→θ0

h(Pθ,Pθ0)
‖θ−θ0‖

β0
2

<∞, there exist γ ∈ (0,∞) and

r0 ∈ (0,min{ρ, (ρ1/γ)1/β0}) such that

h (Pθ, Pθ0)

‖θ − θ0‖β0

2

< γ, ∀0 < ‖θ − θ0‖2 < r0. (2.177)

Consider G1 =
∑k0

i=1
1
k0
δθ1
i
∈ Ek0(Θ) and G2 =

∑k0

i=1
1
k0
δθ2
i
∈ Ek0(Θ) with θ1

i = θ2
i =

θi ∈ Θ\{θ0} for i ∈ [k0 − 1] and θ1
k0

= θ0, θ2
k0

= θ satisfying ‖θ − θ0‖2 = 2ε < r0.
Here ε ∈ (0, r0/2) is a constant to be determined. Then dθ(G1, G2) = 2ε. Moreover,
h(Pθ, Pθ0) ≤ γ (2ε)β0 < ρ1.

By two-point Le Cam bound (i.e. (15.14) in [Wai19])

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndθ(G, Ĝ) ≥ ε

2

(
1− V

(
m⊗
PG1,N ,

m⊗
PG2,N

))
. (2.178)

Notice

V

(
m⊗
PG1,N ,

m⊗
PG2,N

)
≤ h

(
m⊗
PG1,N ,

m⊗
PG2,N

)
≤
√
mh (PG1,N , PG2,N) .

With our choice of G1 and G2, by Lemma 2.7.2, the last display becomes

V

(
m⊗
PG1,N ,

m⊗
PG2,N

)
≤
√
m
√
N min

τ∈Sk0

max
1≤i≤k0

h
(
Pθ1

i
, Pθ2

τ(i)

)
=
√
m
√
Nh (Pθ0 , Pθ)

≤
√
m
√
Nγ (2ε)β0 , (2.179)
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where the equality follows from

min
τ∈Sk0

max
1≤i≤k0

h(Pθ1
i
, Pθ2

τ(i)
) = h(Pθ1

k0
, Pθ2

k0
) = h (Pθ0 , Pθ)

due to h (Pθ0 , Pθ) < ρ1. Plug (2.179) into (2.178),

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndθ(G, Ĝ) ≥ ε

2
(1− γ

√
m
√
N(2ε)β0). (2.180)

Consider any a ∈ (0, 1) satisfying a > 1−γrβ0

0 and let 2ε =
(

1−a
γ
√
m
√
N

) 1
β0 . Then 2ε ∈ (0, r0).

Plug the specified ε into (2.180), then the right hand side in the above display becomes

a

4

(
1− a

γ
√
m
√
N

) 1
β0

= C(β0)

(
1

√
m
√
N

) 1
β0

,

where C(β0) depends on β0. Notice a, γ, r0 are just some absolute constants that depends on
the probability family {Pθ}θ∈Θ.

b) Consider k0 > 3. Let 0 < ε < (1
3
− 1

3(k0−2)
)/2 . ConsiderG1 =

∑2
i=1

1
3
δθi+

∑k0

i=3
1

3(k0−2)
δθi ∈

Ek0(Θ) and G2 = (1
3
− ε)δθ1 + (1

3
+ ε)δθ2 +

∑k0

i=3
1

3(k0−2)
δθi ∈ Ek0(Θ). By the range of ε,

G2 ∈ Ek0(Θ) and dp(G1, G2) = 2ε. Similar to the proof of a),

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndp(Ĝ, G) ≥ ε

2

(
1−
√
mh (PG1,N , PG2,N)

)
.

With our choice of G1 and G2, by Lemma 2.7.2,

h (PG1,N , PG2,N) ≤
√

1

2
× 2ε =

√
ε.

Combine the last two displays,

inf
Ĝ∈Ek0

(Θ)
sup

G∈Ek0
(Θ)

E⊗m PG,Ndp(Ĝ, G) ≥ ε

2

(
1−
√
m
√
ε
)
.

The proof is complete by specifying ε = 1
m

(1
3
− 1

3(k0−2)
)/4 < (1

3
− 1

3(k0−2)
)/2. The case for

k0 = 2 and k0 = 3 follows similarly.

c) The proof follows from a), b) and (2.38).
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2.15 Proofs in Section 2.8

Proof of Lemma 2.8.2: Let c(·) be a positive constant that depends on its parameters in this proof.

Claim 1: There exists c6 > 0 that depends only on d, j1, . . . , jd such that

Smin(A(x)) ≥ c6|x|−(jd−j1)(d−1)

for any |x| > 1. Suppose this is not true, then there is {xm}∞m=1 such that |xm| > 1, and

|xm|(jd−j1)(d−1)Smin(A(xm))→ 0. (2.181)

Let B(x, t) = |x|tA(x) with t being some positive number to be specified. The characteristic
polynomial of B(x, t)BT (x, t) is

det
(
λI −B(x, t)BT (x, t)

)
= λd +

d−1∑
i=0

γi(x, t)λ
i.

When |x| > 1, since |Aαβ(x)| ≤ c4(d, j1, · · · , jd)|x|jd−j1 for any α, β ∈ [d], the entries of
B(x, t)BT (x, t) are bounded by d

(
c4(d, j1, · · · , jd)|x|(jd−j1+t)

)2. Thus

|γi(x, t)| ≤ c8(d, j1, · · · , jd)
(
|x|(jd−j1+t)

)2(d−i)

for 1 ≤ i ≤ d− 1. Moreover,

|γ0(x, t)| =
∣∣xdtdet(A(x))

∣∣2 = (
d∏
i=1

ji!)
2|x|2dt = c5(d, j1, · · · , jd)|x|2dt,

with c5(d, j1, · · · , jd) = (
∏d

i=1 ji!)
2 > 0. Let λmin(x, t) ≥ 0 be the smallest eigenvalue of

B(x, t)BT (x, t). Then

λdmin(x, t) +
d−1∑
i=0

γi(x, t)λ
i
min(x, t) = 0.

When x 6= 0, λmin(x, t) > 0 since γ0(x, t) 6= 0. Thus when x 6= 0,

1

λmin(x, t)
= − 1

γ0(x, t)
λd−1

min (x, t)−
d−1∑
i=1

γi(x, t)

γ0(x, t)
λi−1

min (x, t). (2.182)

Moreover, when |x| > 1,
∣∣∣ γi(x,t)γ0(x,t)

∣∣∣ ≤ c8(d,j1,··· ,jd)
c5(d,j1,··· ,jd)

|x|2(jd−j1)(d−i)

|x|2ti ≤ c8(d,j1,··· ,jd)
c5(d,j1,··· ,jd)

|x|2(jd−j1)(d−1)

|x|2t for any
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1 ≤ i ≤ d − 1. Then by (2.181), λmin(xm, t0) =
(
|xm|(jd−j1)(d−1)Smin(A(xm))

)2 → 0, where
t0 = (jd − j1)(d − 1), so 1

λmin(x,t0)
→ ∞. On the other hand, since | 1

γ0(xm,t0)
| and γi(xm,t0)

γ0(xm,t0)
are

bounded and λmin(xm, t0)→ 0,

lim sup
m→∞

∣∣∣∣∣− 1

γ0(xm, t0)
λd−1

min (xm, t0)−
d−1∑
i=1

γi(xm, t0)

γ0(xm, t0)
λi−1

min (xm, t0)

∣∣∣∣∣
= lim sup

n→∞

∣∣∣∣γ1(xm, α0)

γ0(xm, α0)

∣∣∣∣ ≤ c8(d, j1, · · · , jd)
c5(d, j1, · · · , jd)

.

These contradict with (2.182) and hence the claim at the beginning of this paragraph is established.
Since Smin(A(x)) > 0 on |x| ≤ 1, as a continuous function on a compact set,

min
x∈[−1,1]

Smin(A(x)) ≥ c7 > 0.

Then take c3 = min{c6, c7} and the proof is complete.

Proofs of Lemma 2.8.3: Let ψw(x) = wTTx. Then(
dj1ψw(x)

dxj1
,
dj2ψw(x)

dxj2
, . . . ,

djdψw(x)

dxjd

)T
= A(x)w

where A(x) ∈ Rd×d with entries Aαβ(x) = 0 for α > β and Aαβ(x) =
jβ !

(jβ−jα)!
xjβ−jα for α ≤ β.

Then for any w ∈ Sd−1,

max
1≤i≤d

∣∣∣∣djiψw(x)

dxji

∣∣∣∣ = ‖A(x)w‖∞ ≥
1√
d
‖A(x)w‖2 ≥

1√
d
Smin(A(x)) ≥ 1√

d
c3 max{1, |x|}−α0 ,

(2.183)
where α0 = (jd−j1)(d−1), Smin(A(x)) is the smallest singular value ofA(x) and the last inequality
follows from Lemma 2.8.2.

Case 1: j1 > 1.
Partition the real line according to the increasing sequence {at}∞t=−∞ where

at =



2at+1 t ≤ −1

b−c1c − 1 t = 0

bt 1 ≤ t ≤ `

dc1e+ 1 t = `+ 1

2at−1 t ≥ `+ 2

.
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For t ≤ −1, by (2.183) we know max
1≤i≤d

∣∣∣djiψw(x)

dxji

∣∣∣ ≥ 1√
d
c3|at|−α0 for all x ∈ [at, at+1]. In order to

appeal to Lemma 2.8.1, we need to specify the points {tβ}β0

β=0 with t0 = at < t1 < . . . < tβ0 = at+1,
where {tβ}β0−1

β=1 is defined as the set of roots in (at, at+1) of any of the following d− 1 equations,∣∣∣∣djiψw(x)

dxji

∣∣∣∣ =
1√
d
c3|at|−α0 , i ∈ [d− 1].

Thus {tβ}β0

β=0 is a partition of [at, at+1] such that for each 0 ≤ β ≤ β0−1,
∣∣∣∣djkβ ψw(x)

dx
jkβ

∣∣∣∣ ≥ 1√
d
c3|ai|−α0

holds for some index kβ ∈ [d] and for all x ∈ [tβ, tβ+1]. Since djmψw(x)
dxjm

is polynomial of degree
jd − jm, it follows that β0 − 1 ≤ 2

∑d
m=1(jd − jm). Let c̃0 be the maximum of {c̃jm}dm=1, where

c̃jm are the coefficients ck corresponds to k = jm in Lemma 2.8.1. Then by Lemma 2.8.1, for λ > 1∣∣∣∣∣
∫

[tβ ,tβ+1]

eiλψw(x)f(x)dx

∣∣∣∣∣
≤c̃0

(
c3|at|−α0λ√

d

)− 1
jkβ

(
|f(tβ+1)|+

∫
[tβ ,tβ+1]

|f ′(x)|dx

)

≤c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 λ
− 1
jd (|at|α0)

1
j1

(
f(at+1) +

∫
[tβ ,tβ+1]

|f ′(x)|dx

)
, (2.184)

where the last step follows from f(x) being increasing on (−∞,−c1). Then for λ > 1∣∣∣∣∫
[at,at+1]

eiλψw(x)f(x)dx

∣∣∣∣
≤

β0−1∑
β=0

∣∣∣∣∣
∫

[tβ ,tβ+1]

eiλψw(x)f(x)dx

∣∣∣∣∣
(∗)
≤ c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 λ
− 1
jd (|at|α0)

1
j1

(
β0f(at+1) +

∫
[at,at+1]

|f ′(x)|dx
)

(∗∗)
≤ c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 λ
− 1
jd 2

α0
j1

(
β1|at+1|

α0
j1 f(at+1) + |at+1|

α0
j1

∫
[at,at+1]

|f ′(x)|dx
)

≤C(d, j1, · · · , jd)λ
− 1
jd

(
|at+1|

α0
j1 f(at+1) +

∫
[at,at+1]

|x|
α0
j1 |f ′(x)|dx

)
, (2.185)

where the step (∗) follows from (2.184), the step (∗∗) follows from at = 2at+1 and β0 ≤ β1 :=

2
∑d

m=1(jd−jm)+1, and the last step follows from β1 ≥ 1, |at| ≥ |x| ≥ |at+1| for all x ∈ [at, at+1]

and C(d, j1, · · · , jd) = c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 2

α0
j1 β1.
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For t ≥ `+ 1, following similar steps as the case t ≤ −1, one obtain∣∣∣∣∫
[at,at+1]

eiλφw(x)f(x)dx

∣∣∣∣ ≤ C(d, j1, · · · , jd)λ
− 1
jd

(
|at|

α0
j1 f(at) +

∫
[at,at+1]

|x|
α0
j1 |f ′(x)|dx

)
,

(2.186)

where C(d, j1, · · · , jd) is the same as in (2.185).
For 0 ≤ t ≤ `, since f ′ is continuous on (at, at+1) and f ′ is Lebesgue integrable on [at, at+1],

limx→a−t+1
f(x) and limx→a+

t
f(x) exist. Define

f̃(x) = f(x)1(at,at+1)(x) + 1{at+1}(x) lim
x→a−t+1

f(x) + 1{at}(x) lim
x→a+

t

f(x).

Then f̃(x) is absolute continuous on [at, at+1]. Moreover, by (2.183) we know max
1≤i≤d

∣∣∣djiψw(x)

dxji

∣∣∣ ≥
1√
d
c3(c1 + 2)−α0 for all x ∈ [at, at+1]. Following the same argument as in the previous case, let

{t̃β}β̃0

β=0 with t̃0 = at < t̃1 < . . . < t̃β0 = at+1, where {t̃β}β̃0−1
β=1 is the set of roots in (at, at+1) of

the following d− 1 equations∣∣∣∣djiψw(x)

dxji

∣∣∣∣ =
1√
d
c3(c1 + 2)−α0 , i ∈ [d− 1].

Then {t̃β}β̃0

β=0 is a partition of [at, at+1] such that for each 0 ≤ β ≤ β̃0 − 1,
∣∣∣∣djkβ ψw(x)

dx
jkβ

∣∣∣∣ ≥ 1√
d
c3(c1 +

2)−α0 for some kβ ∈ [d] and for all x ∈ [t̃β, t̃β+1]. Since djmψw(x)
dxjm

are polynomial of degree jd − jm,
we have β̃0 − 1 ≤ 2

∑d
m=1(jd − jm). Thus by Lemma 2.8.1, for any λ > 1∣∣∣∣∣

∫
[t̃β ,t̃β+1]

eiλψw(x)f(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫

[t̃β ,t̃β+1]

eiλψw(x)f̃(x)dx

∣∣∣∣∣
≤c̃0

(
c3(c1 + 2)−α0λ√

d

)− 1
jkβ

(
|f̃(t̃β+1)|+

∫
[t̃β ,t̃β+1]

|f ′(x)|dx

)

≤c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 λ
− 1
jd ((c1 + 2)α0)

1
j1

(
‖f‖L∞ +

∫
[t̃β ,t̃β+1]

|f ′(x)|dx

)
, (2.187)

where the last step follows from |f̃(t̃β+1)| ≤ ‖f‖L∞ . Then for any λ > 1∣∣∣∣∫
[at,at+1]

eiλψw(x)f(x)dx

∣∣∣∣
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≤
β̃0−1∑
β=0

∣∣∣∣∣
∫

[t̃β ,t̃β+1]

eiλψw(x)f(x)dx

∣∣∣∣∣
≤c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 λ
− 1
jd ((c1 + 2)α0)

1
j1

(
β̃0‖f‖L∞ +

∫
[at,at+1]

|f ′(x)|dx
)

≤C(d, j1, . . . , jd)λ
− 1
jd (c1 + 2)

α0
j1

(
‖f‖L∞ +

∫
[at,at+1]

|f ′(x)|dx
)
, (2.188)

where C(d, j1, · · · , jd) is the same as in (2.185).
Hence,∣∣∣∣∫

R
eiλψw(x)f(x)dx

∣∣∣∣
=

∣∣∣∣∣
∞∑

t=−∞

∫
[at,at+1]

eiλψw(x)f(x)dx

∣∣∣∣∣
≤

∞∑
t=−∞

∣∣∣∣∫
[at,at+1]

eiλψw(x)f(x)dx

∣∣∣∣
(∗)
≤C(d, j1, . . . , jd)λ

− 1
jd (c1 + 2)

α0
j1(∑

t≤−1

|at+1|
α0
j1 f(at+1) +

∑
t≥`+1

|at|
α0
j1 f(at) + (`+ 1)‖f‖L∞ +

∥∥∥(|x|α0
j1 + 1

)
f ′(x)

∥∥∥
L1

)
(∗∗)
≤ C(d, j1, . . . , jd)λ

− 1
jd (c1 + 2)

α0
j1(∫

(∞,−c1]

|x|
α0
j1 f(x)dx+

∫
[c1,∞)

|x|
α0
j1 f(x)dx+ (`+ 1)‖f‖L∞ +

∥∥∥(|x|α0
j1 + 1

)
f ′(x)

∥∥∥
L1

)
≤C(d, j1, . . . , jd)λ

− 1
jd (c1 + 2)

α0
j1

(∥∥∥|x|α0
j1 f(x)

∥∥∥
L1

+ (`+ 1)‖f‖L∞ +
∥∥∥(|x|α0

j1 + 1
)
f ′(x)

∥∥∥
L1

)
(2.189)

where the first equality follows from the dominated convergence theorem, the step (∗) follows from
(2.185), (2.186), (2.188), and the step (∗∗) follows from the monotonicity of |x|

α0
j1 f when x < −c1,

x > c1.
Case 2: j1 = 1.
Fix ∀w ∈ Sd−1, ∃x1 < x2 < . . . < xs partition R into s + 1 disjoint open intervals such that

dψw(x)
dx

is monotone on each of those interval. Notice s ≤ jd − 2 since dψw(x)
dx

is a polynomial of
degree jd − 1, and x1, x2, . . . , xs depend on w. For t ≤ −1, on [at, at+1] when we subdivide the
interval, besides the partition points {tβ}β0

β=0, {x1, x2, . . . , xs} ∩ [at, at+1] should also be added
into the partition points. The new partition points set has at most β0 + 1 + s ≤ β1 + jd points
and hence subdivide [at, at+1] into at most β1 + jd − 1 intervals such that on each subinterval
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max
1≤i≤d

∣∣∣djiψw(x)

dxji

∣∣∣ ≥ 1√
d
c3|at|−α0 and dψw(x)

dx
is monotone. Hence Lemma 2.8.1 (part ii)) can be applied

on each subinterval. The rest of steps proceed similarly as in Case 1, and one will obtain∣∣∣∣∫
[at,at+1]

eiλψw(x)f(x)dx

∣∣∣∣ ≤ C̃(d, j1, · · · , jd)λ
− 1
jd

(
|at+1|

α0
j1 f(at+1) +

∫
[at,at+1]

|x|
α0
j1 |f ′(x)|dx

)
,

(2.190)

where C̃(d, j1, · · · , jd) = c̃0 max

{
c
− 1
j1

3 , c
− 1
jd

3

}
(
√
d)

1
j1 2

α0
j1 (β1 + jd − 1), a constant that depends

only on d, j1, . . . , jd. For the same reasoning one can obtain (2.186) for t ≥ `+ 1 and (2.188) for
0 ≤ t ≤ `, both with C(d, j1, · · · , jd) replaced by C̃(d, j1, · · · , jd). As a result, similar to (2.189),∣∣∣∣∫

R
eiλψw(x)f(x)dx

∣∣∣∣
≤C̃(d, j1, . . . , jd)λ

− 1
jd (c1 + 2)

α0
j1

(∥∥∥|x|α0
j1 f(x)

∥∥∥
L1

+ (`+ 1)‖f‖L∞ +
∥∥∥(|x|α0

j1 + 1
)
f ′(x)

∥∥∥
L1

)
.

Proof: By Lemma 2.8.3, when ‖ζ‖2 > 1,

|g(ζ)|r ≤ C(f, d, j1, . . . , jd)‖ζ‖
− r
jd

2 .

where

C(f, r, d, j1, . . . , jd) =

Cr(d, j1, . . . , jd)(c1 + 2)α1r (‖|x|α1f(x)‖L1 + (`+ 1)‖f‖L∞ + ‖(|x|α1 + 1) f ′(x)‖L1)
r
.

Then ∫
‖ζ‖2>1

|g(ζ)|rdζ

≤C(f, r, d, j1, . . . , jd)

∫
‖ζ‖2>1

‖ζ‖
− r
jd

2 dζ

≤C(f, r, d, j1, . . . , jd)|Sd−1|
∫

(1,∞)

λ
− r
jd λd−1dλ

=C(r, d, j1, . . . , jd)(c1 + 2)α1r (‖|x|α1f(x)‖L1 + (`+ 1)‖f‖L∞ + ‖(|x|α1 + 1) f ′(x)‖L1)
r
.

(2.191)

where the last inequality follows from
∫

(1,∞)
λ
− r
jd λd−1dλ is a finite constant that depends on d and
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jd for r > djd and C(r, d, j1, . . . , jd) = Cr(d, j1, . . . , jd)|Sd−1|
∫

(1,∞)
λ
− r
jd λd−1dλ. In addition,∫

‖ζ‖2≤1

|g(ζ)|rdζ ≤
∫
‖ζ‖2≤1

‖f‖rL1dζ = C(d)‖f‖rL1 , (2.192)

where C(d) is a constant that depends on d.
The proof is then completed by combining (2.191) and (2.192) and (ar + br) ≤ (a+ b)r for any

a, b > 0, r ≥ 1.

2.16 Auxiliary lemmas for Section 2.12.2

Consider a family of probabilities {Pθ}θ∈Θ on Rd, where θ is the parameter of the family and
Θ ⊂ Rq is the parameter space. Eθ denotes the expectation under the probability measure Pθ.
Consider {Xi}∞i=1 a sequence of independent and identically distributed random vectors from Pθ0 .
Suppose Eθ0X1 exists and define ZN =

∑N
i=1Xi−NEθ0X1√

N
. The next result establishes the density of

ZN converges to that of a multivariate normal distribution.

Lemma 2.16.1 (Local Central Limit Theorem). Suppose {Xi}∞i=1 a sequence of independent and

identically distributed random vectors from Pθ0 . Suppose Eθ0X1 and Λθ0 := Eθ0(X1−Eθ0X1)(X1−
Eθ0X1)T exist and Λθ0 is positive definite. Let the characteristic function of Pθ be φ(ζ|θ) := Eθeiζ

TX

and suppose there exists r ≥ 1 such that |φ(ζ|θ0)|r is Lebesgue integrable on Rd. Then when N ≥ r,

ZN has density with respect to Lebesgue measure on Rd, and its density fZ(z|θ0, N) as N tends

to infinity converges uniformly in z to fN (z|θ0), the density of N (0,Λθ0), the multivariate normal

with mean 0 and covariance matrix Λθ0 .

The special case for d = 1 of the above lemma is Theorem 2 in Section 5, Chapter XV of
[Fel08]. That proof generalize to d > 1 without much difficulties.

The next lemma is a generalization of the corollary to Lemma 1 in [Sta65].

Lemma 2.16.2. Consider a random vectorX ∈ Rd with φ(ζ) its characteristic function. SupposeX

has density f(x) w.r.t. Lebesgue measure upper bounded by U , and has positive definite covariance

matrix Λ. Then for all ζ ∈ Rd

|φ(ζ)| ≤ exp

(
− C(d)‖ζ‖2

2

(‖ζ‖2
2λmax(Λ) + 1)λd−1

max(Λ)U2

)
,

where C(d) is some constant that depends only on d, and λmax(Λ) is the largest eigenvalue of Λ.

Proof: It suffices to prove for ζ 6= 0 ∈ Rd.
Step 1
In this step we prove the special case ζ = te1 for t > 0, where e1 is the standard basis in Rd.
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Define I(ζ) = 1
2

(1− |φ(ζ)|2) and it is easy to verify

|φ(ζ)| ≤ exp(−I(ζ)). (2.193)

Denote by f̃ to be the density w.r.t. Lebesgue measure of symmetrized random vectorX−X ′, where
X ′ is an independent copy of X . Then f̃ also has upper bound U and |φ(ζ)|2 is the characteristic
function of X −X ′ and

|φ(ζ)|2 =

∫
Rd
eiζ

T xf̃(x)dx =

∫
Rd

cos(ζTx)f̃(x)dx. (2.194)

Write x = (x(1), . . . , x(d)) and let Gj = {x ∈ Rd|x(1) ∈ ( j
t
− 1

2t
, j
t

+ 1
2t

]} be the strip of length 1
t

centered at j
t

across the x(1)-axis. Then by (2.194)

I(2πζ) =

∫
Rd

sin2(πζTx)f̃(x)dx

≥
∫
B

sin2(πtx(1))f̃(x)dx

=
∞∑

j=−∞

∫
Gj
⋂
B

sin2(πtx(1))f̃(x)dx

=
∞∑

j=−∞

∫
Gj
⋂
B

sin2(πt(x(1) − j/t))f̃(x)dx

≥4t2
∞∑

j=−∞

∫
Gj
⋂
B

(x(1) − j/t)2f̃(x)dx, (2.195)

where the first inequality follows from ζ = te1 and B is a subset in Rd to be determined, and the
last inequality follows from | sin(πx)| ≥ 2|x| for |x| ≤ 1

2
.

Let B = {z ∈ Rd||z(i)| < 2
√
dλmax(Λ) ∀i ≥ 2, and |z(1)| < r

t
+ 1

2t
} with r = min{b interger :

b
t

+ 1
2t
≥ 2
√
dλmax(Λ)}. Then B ⊂

⋃r
j=−rGj and thus (2.195) become

I(2πζ) ≥4t2
r∑

j=−r

∫
Gj
⋂
B

(x(1) − j/t)2f̃(x)dx

(∗)
=4t2

r∑
j=−r

∫
G

(x(1) − j/t)2f̃(x)1Gj
⋂
B(x)dx

(∗∗)
≥ 4t2

r∑
j=−r

Q3
j

12U2(4
√
dλmax(Λ))2(d−1)
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(∗∗∗)
≥ 4t2

Q3

12(2r + 1)2U2(4
√
dλmax(Λ))2(d−1)

, (2.196)

where in step (∗)G = {z ∈ Rd||z(i)| < 2
√
dλmax(Λ) ∀i ≥ 2}, step (∗∗) withQj =

∫
Gj
⋂
B
f̃(x)dx

follows from Lemma 2.16.3 b) and step (∗ ∗ ∗) with Q =
∑r

j=−rQj =
∫
B
f̃(x)dx follows

from Jensen’s inequality. (The inequalities in step (∗∗) and (∗ ∗ ∗) are attained with f̃(x) =

U
r∑

j=−r
1Wj

(x) a.e. x ∈ G where Wj = {z||z(i)| < 2
√
dλmax(Λ),∀i ≥ 2, and |z(1) − j/t| < a}

for positive a satisfies
(2a)(4

√
dλmax(Λ))d−1U(2r + 1) = Q. )

Observe {z ∈ Rd|zT (2Λ)−1z < 2d} ⊂ B and then

Q = P (X −X ′ ∈ B) ≥ 1− P ((X −X ′)T (2Λ)−1(X −X ′) ≥ 2d) ≥ 1

2
,

where the last step follows from Markov inequality. Moreover by our choice of r, 2r + 1 ≤
4t
√
dλmax(Λ) + 2. Then (2.196) become

I(2πζ) ≥t2 1

24(4t
√
dλmax(Λ) + 2)2(4

√
dλmax(Λ))2(d−1)U2

≥ C(d)t2

(t2λmax(Λ) + 1)λd−1
max(Λ)U2

,

where C(d) is a constant that depends only on d. The last display replacing 2πζ = 2πte1 by ζ = te1,
together with (2.193) yield the desired conclusion.
Step 2
For any ζ 6= 0, denote t = ‖ζ‖2 and u1 = ζ/‖ζ‖2. Consider an orthogonal matrix Uζ with its first
row uT1 . Then φ(ζ) = EeituT1 X = EeiteT1 Z where Z = UζX . Since Z has density fZ(z) = f(UT

ζ z)

w.r.t. Lebesgue measure, fZ(z) has the same upper bound U and positive definite covariance matrix
UζΛU

T
ζ with the same largest eigenvalue as Λ. The result then follows by applying Step 1 to∣∣∣EeiteT1 Z∣∣∣.

Lemma 2.16.3. a) Consider a Lebesgue measurable function on R satisfies 0 ≤ f(x) ≤ U and∫
R f(x)dx = E ∈ (0,∞). Then for any b > 0∫

R
(x− b)2f(x)dx ≥ E3

12U2
,

and the equality holds if and only if f(x) = U1[b− E
2U
,b+ E

2U
](x) a.e..

b) For a > 0 define a set G = {z ∈ Rd||z(i)| < a ∀i ≥ 2}. Consider a Lebesgue measurable

function on Rd satisfies 0 ≤ f(x) ≤ U on G and
∫
G
f(x)dx = E ∈ (0,∞). Then for any

142



b > 0 ∫
G

(x(1) − b)2f(x)dx ≥ E3

12U2(2a)2(d−1)
,

and the equality holds if and only if f(x) = U1G1(x) a.e. x ∈ GwhereG1 = [b− E
2U(2a)d−1 , b+

E
2U(2a)d−1 ]× (−a, a)d−1.

Proof: a) It suffices to prove b = 0 since one can do the translation x′ = x − b to reduce
the general case b to the special case b = 0. Let f1(x) = f(x)1[− E

2U
, E
2U

](x), f2(x) =

f(x)1[− E
2U
, E
2U

]c(x) and fU(x) = U1[− E
2U
, E
2U

](x)− f1(x). Then∫
[− E

2U
, E
2U

]

fU(x)dx = E −
∫

[− E
2U
, E
2U

]

f1(x)dx =

∫
[− E

2U
, E
2U

]c
f2(x)dx

and hence ∫
R
x2f(x)dx =

∫
[− E

2U
, E
2U

]

x2f1(x)dx+

∫
[− E

2U
, E
2U

]c
x2f2(x)dx

≥
∫

[− E
2U
, E
2U

]

x2f1(x)dx+

(
E

2U

)2 ∫
[− E

2U
, E
2U

]c
f2(x)dx

=

∫
[− E

2U
, E
2U

]

x2f1(x)dx+

(
E

2U

)2 ∫
[− E

2U
, E
2U

]

fU(x)dx

≥
∫

[− E
2U
, E
2U

]

x2f1(x)dx+

∫
[− E

2U
, E
2U

]

x2fU(x)dx

=

∫
[− E

2U
, E
2U

]

x2Udx

=
E3

12U2
.

The equality holds if and only if the last two inequalities are attained, if and only if f(x) =

U1[− E
2U
, E
2U

](x) a.e..

b) It suffices to prove b = 0 since one can always do the translation y(1) = x(1) − b and
y(i) = x(i) for all 2 ≤ i ≤ d to reduce the general case b to the special case b = 0. By Tonelli’s
Theorem, h(x(1)) =

∫
(−a,a)d−1 f(x)dx(2) . . . dx(d) exists for a.e. x(1) and

∫
R h(x(1))dx(1) = E.

Moreover 0 ≤ h(x(1)) ≤ U(2a)d−1 a.e. . Then by Tonelli’s Theorem and a)∫
G

(x(1))2f(x)dx =

∫
R
(x(1))2h(x(1))dx(1) ≥ E3

12U2(2a)2(d−1)
.

The equality holds if and only if h(x(1)) = U(2a)d−11[− E

2U(2a)d−1 ,
E

2U(2a)d−1 ](x
(1)) a.e., if and
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only if f(x) = U a.e.x ∈ [− E
2U(2a)d−1 ,

E
2U(2a)d−1 ]× (−a, a)d−1.
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CHAPTER 3

Screening in High Dimensional Data

3.1 Introduction

This chapter considers the problem of screening n independent and identically distributed
p-variate samples for variables that have high correlation or high partial correlation with at least
one other variable in the ultra-high dimensional regime when the sample size n ≤ C0 ln p.1 In the
screening framework one applies a threshold to the sample correlation matrix or the sample partial
correlation matrix to detect variables with at least one significant correlation, with the threshold
aiming to separate signal from noise. Correlation and partial correlation screening in ultra-high
dimensions have become increasingly important in many modern applications as the per-sample
cost of collecting high dimensional data is much more costly than per-variable cost. For example, in
biomedical settings the cost of high throughput technology, like oligonucleotide gene microchips
and RNAseq assays is decreasing, while the cost of biological samples is not decreasing at the same
rate [HR15b]. In such situations p is much larger than n.

The ultra-high dimensional regime when n ≤ C0 ln p is very challenging since the number of
samples is insufficient to apply many (if not most) reliable statistical methods. For example, one
way to undertake partial correlation screening is to first estimate the population covariance matrix,
then obtain the inverse, from which a partial correlation matrix can be estimated. However, to
get a reliable estimate of a general covariance matrix, the number of samples n must be at least
O(p) as shown in Section 5.4.3. in [Ver12]. Even if the covariance matrix has a special structure
like sparsity, covariance estimation requires a number of samples of order O(ln p) [RBLZ08]. The
reader is referred to [DR17, LW18, KOR15, CKG19] and the references therein for recent work in
modern high dimensional covariance selection and estimation.

While estimating the covariance matrix or partial correlation matrix is challenging in ultra-high
dimensions, recent work has shown that it is possible to accurately test the number of highly (partial)
correlated variables under a false positive probability; in particular the probability that a variable

1Here C0 is some universal constant satisfying C0 ≥ 1. A “universal constant" or “absolute constant", is a constant
that does not depend on any model parameter.
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is highly (partially) correlated with at least one other variable [HR11, HR12]. While correlation
screening finds variables that have a high marginal correlation with at least one other variable,
partial correlation screening identifies variables that have high conditional correlations with one
other variable conditioned on the rest. In [HR11], the ultra-high dimensional correlation screening
problem is studied under a row-sparse assumption on the population covariance matrix. A phase
transition in the number of false positive correlations was mathematically characterized as a function
of the correlation threshold and the true covariance. In the case of block sparse covariance, the
critical phase transition threshold becomes independent of the true covariance. In [HR12] the partial
correlation screening problem was studied, and similar phase transition results as in correlation
screening [HR11] were obtained under the block-sparse assumption on the population covariance
matrix. The survey [HR15a] reviews the correlation and partial correlation screening problem.

Despite these important advances in correlation and partial correlation screening, the screening
framework proposed in [HR11, HR12] has some serious methodological, theoretical and practical
shortcomings. For instance, results for partial correlation imposes a highly restrictive block sparsity
assumption on the true underlying correlation matrix. The block sparsity in [HR12] assumes
only a small group of the variables are allowed to have correlation within the blocks and no
correlations with variables outside the block. This assumption is severely restrictive for most
modern applications since it is possible for variables to have correlations within a group and
also correlations with variables outside their respective groups. Furthermore, expressions for
false probabilities in [HR11, HR12] require estimating dependence functionals. Estimating such
functionals lead to computationally prohibitive non-parametric estimation, rendering the screening
methodology disconnected from the very setting it was designed for.

In this chapter we propose a novel unifying framework for correlation and partial correlation
screening that delivers a practical and scalable methodology in the ultra-high dimensional regime,
which is simultaneously armed with theoretical safeguards. By making novel and insightful
connections to random geometric graphs we demonstrate that the distribution of the number of
discoveries tends to a compound Poisson limit. To the best of our knowledge, such a novel limit has
not previously appeared in the correlation screening setting. Furthermore, our results are proved
in much generality by relaxing block-sparse assumption to a weaker (τ, κ) sparsity assumption,
defined in Section 3.2.3, on the population covariance matrix. The block-sparse assumption is a
special case of the (τ, κ) sparsity assumption. Resulting approximations under this generalized
covariance structure (τ, κ) also do not depend on dependence measures/functionals. The results
in this chapter hold for both correlation and partial correlation screening. This important duality
naturally stems from new results relating the score representation for correlation screening to that of
partial correlation screening. The proofs of the generalized results in this chapter are self-contained
and are based on Stein’s approximation, concentration of random matrices, and concentrations in
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high dimensional balls and spheres.
The theory in this chapter is relevant to hypothesis testing based on the degree distribution of

a correlation graph, a problem arising in graph mining, network science, social science, and the
natural science [CF06, KC14, Kol09]. Variables having strong sample correlations will appear in the
correlation graph as vertices having positive vertex degree. As one sweeps over fixed degree values,
the number of such vertices specifies the degree distribution of the graph. From this perspective, this
chapter provides a non-asymptotic compound Poisson characterization of the degree distribution for
large correlation graphs under relaxed sparsity conditions on the population covariance.

The remainder of this chapter is organized as follows. We begin in Section 3.2 by giving
the framework and presenting our main theorem on characterization of the limiting distribution.
In Section 3.3 a non-asymptotic version of the main theorem is presented, based on which the
main theorem follows. Section 3.4 is devoted to convergence of moments. Section 3.5 provide an
extensive study on computing and approximating the parameters in the main theorems. A number
of technical proofs and auxiliary results are given in the Appendix.
Notation ‖ · ‖2 for a vector represents its Euclidean distance to the origin. C and c denotes positive
universal constants that might defer from line to line. C and c with subscripts are positive finite
constants depending only on the parameter in their subscripts and may differ from line to line.

3.2 A unified theorem

3.2.1 Framework

Available is a matrix of multivariate samples

X = [x(1),x(2), · · · ,x(n)]T = [x1,x2, · · · ,xp] ∈ Rn×p, (3.1)

where {x(i)}ni=1 ⊂ Rp are samples from a p-dimensional distribution.
The results in this chapter apply when the n × p data matrix X follows a vector elliptically

contoured distribution. A random matrixX ∈ Rn×p is called vector-elliptical2 with positive definite
dispersion parameter Σ ∈ Rp×p and location parameter µ if its density satisfies

fX(X) = det(Σ)−n/2θ(tr((X − 1µT )Σ−1(XT − 1µT ))), (3.2)

for a shaping function θ : R → R+ such that
∫
fX(X) = 1. In (3.2), 1 is a vector with all

elements equal to 1, tr(·) is the trace of a matrix and det(·) is the determinant of a matrix. We use
shorthandX ∼ VE(µ,Σ, θ) to denote thatX follows a vector elliptically contoured distribution

2In this chapter the vector-elliptical distribution is assumed to have a density function.
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with density (3.2). The vector elliptically contoured distribution has been extensively studied in
[Dav77, AF90, And92].

An example of a vector-elliptical distributed is the centered matrix normal distribution, for which
the rows {x(i)}ni=1 ⊂ Rp are i.i.d. samples from N (0,Σ). In this special case, X ∼ VE(0,Σ, θ)

and the density ofX is given by (3.2) with θ(w) = (2π)−
np
2 exp(−1

2
w). Specifically

fX(X) = det(Σ)−n/2(2π)−
np
2 exp

(
−1

2
tr
(
XΣ−1XT

))
. (3.3)

Given a data matrixX ∼ VE(µ,Σ, θ), the sample mean is

x̄ =
1

n

n∑
i=1

x(i) =
1

n
XT1

and the sample covariance matrix S is

S =
1

n− 1

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T =
1

n− 1
(X − 1x̄T )T (X − 1x̄T ). (3.4)

The sample correlation matrixR is defined as:

R = diag(S)−
1
2Sdiag(S)−

1
2 , (3.5)

where diag(A) for a matrixA ∈ Rn×n is the diagonal part ofA andB−1/2 for a diagonal matrix
B is a diagonal matrix by raise every diagonal element of B to the power −1/2. Since R is not
necessarily invertible, we define R† as the Moore-Penrose pseudo-inverse of R and define the
sample partial correlation matrix P by

P = diag(R†)−
1
2R†diag(R†)−

1
2 . (3.6)

For convenience we define {Ψ(k)}k∈{R,P } to be matrices such that Ψ(R) = R and Ψ(P ) = P .
Given a threshold ρ ∈ [0, 1) define the undirected graph induced by thresholding Ψ(k), denoted
by Gρ(Ψ(k)), as follows. The vertex set of graph Gρ(Ψ(k)) is V(k) = [p] := {1, 2, · · · , p} and the
edge set is E (k) ⊂ V(k) × V(k), where there is an edge between i and j (i 6= j), i.e., (i, j) ∈ E (k),
if |Ψ(k)

ij | ≥ ρ. Let Φ(k)(ρ) be the adjacency matrices associated with the graph Gρ(Ψ(k)), defined
as Φ

(k)
ij (ρ) = 1(|Ψ(k)

ij | ≥ ρ) for i 6= j, where 1(·) is the indicator function. We call Gρ(Ψ(k)) the
empirical correlation graph and the empirical partial correlation graph respectively when Ψ(k) = R

and Ψ(k) = P . The dependence of Φ
(k)
ij (ρ) on ρ will be suppressed if it’s clear from context.

The focus of this chapter is correlation screening for which the objective is to identify connected
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vertices or vertices of prescribed degree in Gρ(Ψ(k)). The number of vertices of varying degrees
specifies the degree distribution. Characterization of the distributions of these counting statistics
is the main contribution of the chapter. More specifically, for the graph Gρ(Ψ(k)) with k = R or
k = P , the degree of vertex i is defined as

∑p
j=1,j 6=i Φ

(k)
ij (ρ). For 1 ≤ δ ≤ p− 1, the total number

of vertices with degree exactly δ (at least δ), denoted by N (k)

V̆δ
(N (k)

Vδ
), are of particular interest in this

chapter. Moreover, let Γδ be a star shaped graph with δ edges. For 2 ≤ δ ≤ p− 1, the number of
subgraphs in Gρ(Ψ(k)) that are isomorphic to Γδ is denoted by N (k)

Eδ
. Moreover, we define N (k)

E1
to

be twice of number of edges in Gρ(Ψ(k)). N (k)
Eδ

is referred as star subgraph counts. The following
is an example to illustrate the 6 quantities defined.

2

1

5

3

4

e
1

e2

e 3
e4

e5

Figure 3.1: A graph with 5 vertices and 5 edges.

Example 3.2.1. Let Figure 3.1 represent an empirical partial correlation graph. For this graph
the number of vertices of degree 2 is N (P )

V̆2
= 1 and the number of vertices of degree at least 2 is

N
(P )
V2

= 3. The number of subgraphs isomorphic to Γ3 is N (P )
E3

= 2. The number of connected
vertices is N (P )

V1
= 5, and N (P )

E1
= 10 as there are 5 edges.

Consider now the case where the number of sample n is fixed while there is a sequence of data
matrixX ∈ Rn×p with increasing number of dimension p. Then this induces a sequence of random
graphs Gρ(Ψ

(k)) with increasing number of vertices. This chapter derives finite sample compound
Poisson characterization of the distribution of the 6 random quantities {N (k)

i : k ∈ {R,P }, i ∈
{Eδ, V̆δ, Vδ}} for sufficiently large dimension p and correlation threshold ρ, under the some sparsity
assumption on the dispersion parameter Σ.

3.2.2 A unified theorem

As discussed in the previous subsection, the main theorem of the chapter is to study the
distribution of N̄δ, where N̄δ is a generic random variable of the 6 random quantities {N (k)

i : k ∈
{R,P }, i ∈ {Eδ, V̆δ, Vδ}}. Indeed, our main theorem establishes N̄δ converges in distribution to
compound Poisson. We will begin by defining necessary quantities and then state our main theorem
at the end of this subsection.
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For any positive number λ and a probability distribution ζ supported on positive integers, let
CP(λ, ζ) be the corresponding compound Poisson distribution, i.e. CP(λ, ζ) is the distribution of
Z =

∑N
i=1 Zi, where N is distributed as a Poisson random variable with mean λ, Zi

i.i.d.∼ ζ and N
is independent of each Zi. Here the random variable N measures the number of occurrences of
increments and the distribution ζ characterize the distribution of each increment.

The parameters of the limiting compound Poisson distribution in our main theorem involves
random geometric graph. Given a set of points {vi}δi=1 in Rn−2, denote by Ge

(
{vi}δi=1, r; δ, n− 2

)
the geometric graph with radius r, defined as follows. The vertex set of the graph is {vi}δi=1, and
there is an edge between vi and vj if ‖vi − vj‖2 ≤ r. Denote by NMD

(
{vi}δi=1, r; δ, n− 2

)
the

number of vertices of maximum degree δ − 1 in Ge
(
{vi}δi=1, r; δ, n− 2

)
. Let {ũi}δi=1 are i.i.d.

unif(Bn−2), the uniform distribution in Bn−2, which denotes unit ball in Rn−2. For the random
geometric graph Ge

(
{ũi}δi=1, 1; δ, n− 2

)
, denote the probability that there are exactly `−1 vertices

of maximum degree δ − 1 by

α` := P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
, ∀` ∈ [δ + 1], (3.7)

and define a probability measure ζn,δ on [δ + 1]:

ζn,δ(`) := (α`/`)/

(
δ+1∑
`=1

(α`/`)

)
, ∀` ∈ [δ + 1]. (3.8)

This ζn,δ is the distribution of each increment for the limiting compound Poisson distribution.
To ensure convergence in our main theorem, some sparsity conditions on the dispersion parame-

ter Σ are imposed. A matrix is row-κ sparse if every row of it has at most κ nonzero elements. The
next is a stronger sparsity than row-κ sparse.

Definition 3.2.2 ((τ, κ) sparsity). A p by p dimensional symmetric matrix is call (τ, κ) sparse and
it’s row-κ sparse and its right-bottom p− τ by p− τ sub-matrix is diagonal.

Another relevant quantity is the normalized determinant.

Definition 3.2.3 (Normalized determinant). For any symmetric, positive definite matrixA ∈ Rp×p,
its normalized determinant µ(A) is defined by

µ(A) :=

p∏
i=1

λi(A)

λp(A)
=

det(A)

(λmax(A))p
,

where λ1(A) ≤ λ2(A) ≤ · · · ≤ λp(A) are the eigenvalues ofA.

Denote by AI for I ⊂ [p] to be the set of all |I| by |I| submatrix of A ∈ Rp×p by ex-
tracting corresponding rows and columns indexed by I. AI consist of |I|! matrices and they
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are all equivalent to each other up to a permutation applying simultaneously to both rows and
columns. Define the local normalized determinant of degree m of a matrix A ∈ Rp×p to be
µm(A) = min{µ(AI) : I ⊂ [p], |I| = m}, where µ(AI) is well defined since µ(·) is invariant to
simultaneously applying a permutation to both rows and columns of its argument. ForA ∈ Rp×p

further define

µn,m(A) :=

[µm(A)]−
n−1

2 , A symmetric positive definite but not diagonal,

1, A symmetric positive definite and diagonal.
(3.9)

By definition µn,m(A) ∈ [1,∞).
We are now in a good position to state our main theorem, which states when p → ∞, if the

threshold ρ is chosen to approach 1 at a particular rate, then the sequence of each of the 6 quantities
{N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}, converges to a compound Poisson random variable in
distribution.

Theorem 3.2.4 (Compound Poisson Limit). Let n ≥ 4 and δ be fixed positive integers. Let

X ∼ VE(µ,Σ, θ). Choose threshold ρ as a function of p such that cn2
n
2 p1+ 1

δ (1− ρ)
n−2

2 → en,δ as

p→∞, where cn = Γ((n−1)/2)
(n−2)

√
πΓ((n−2)/2)

and en,δ is some positive constant that possibly depends on

n and δ. Denote λn,δ(en,δ) = 1
δ!

(en,δ)
δ∑δ+1

`=1
α`
`

. Suppose Σ, after some row-column permutation,

is (τp, κp) sparse with lim
p→∞

τp
p

+ µn,2δ+2 (Σ) κp
p
→ 0. Then with N̄δ a generic random variable in

the set {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}:

N̄δ → CP (λn,δ(en,δ), ζn,δ) in distribution as p→∞. (3.10)

Remark 3.2.5 (Relaxed sparsity assumption in empirical correlation graph). If only random quanti-
ties in the empirical correlation graph are of concern, then the (τp, κp) sparsity assumption can be
relaxed to row-κ sparsity. Specifically, the last two sentences in Theorem 3.2.4 can be replaced by
the following.

Suppose Σ is row-κp sparse with lim
p→∞

µn,2δ+2 (Σ) κp
p
→ 0. Then with Ñδ a generic random

variable in the set {N (k)
i : k = R, i ∈ {Eδ, V̆δ, Vδ}}:

Ñδ → CP (λn,δ(en,δ), ζn,δ) in distribution as p→∞. (3.11)

�
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Remark 3.2.6. The condition cn2
n
2 p1+ 1

δ (1− ρ)
n−2

2 → en,δ > 0 is equivalent to

p
2

n−2(1+ 1
δ )(1− ρ)→

(
en,δ

cn2
n
2

) 2
n−2

=
1

2

(
en,δ
2cn

) 2
n−2

,

which indicates that the rate ρ→ 1 is p−
2

n−2(1+ 1
δ ). One possible choice for such a threshold is by

replacing the convergence sign in the preceding display with equal sign, which yields

ρ = 1− 1

2

(
en,δ

2cnp
1+ 1

δ

) 2
n−2

. (3.12)

�

The proofs of Theorem 3.2.4 and Remark 3.2.5 will be presented in Subsection 3.3. Since for
discrete random variables convergence in distribution is equivalent to convergence in total variation,
(3.11) is equivalent to:

dTV
(
L
(
N̄δ

)
, CP (λn,δ(en,δ), ζn,δ)

)
→ 0 as p→∞,

where L (·) represents the probability distribution of the random variable in its argument, and
dTV (·, ·) is the total variation distance between two probability distributions. A quantitative version
of Theorem 3.2.4 establishing upper bound on the total variation distance between L

(
N̄δ

)
and a

compound Poisson for finite p will be presented in Theorem 3.3.11.
In Theorem 3.2.4 assumptions on (τ, κ) sparsity and the quantity µn,m(Σ) are imposed. In the

next two subsections, we will present examples of these two new definitions. We also compare each
of the new definitions with relevant classical quantities to illustrate that the assumptions on them
are not restrictive.

3.2.3 (τ, κ) sparsity

In the current subsection examples of (τ, κ) sparse matrix and the comparison between (τ, κ)

sparsity and other sparsity are presented to elaborate the (τ, κ) sparsity imposed in the Theorem
3.2.4.

The matrix below in (3.13) is an example of (τ, κ) sparse matrix with τ = 2, κ = 3. This 5× 5

symmetric matrix is (2, 3) sparse since each of the first 2 rows has at most 3 nonzero elements and
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the right-bottom 3× 3 sub-matrix is diagonal.
5 0 2 0 1

0 3 2017 0 0

2 2017 6 0 0

0 0 0 7 0

1 0 0 0 8

 (3.13)

If the adjacency matrix of a graph (V , E) is (τ, κ) sparse, then the vertices V can be partitioned
into two disjoint subsets V1 and V2 with the following properties: 1) |V1| ≤ τ ; 2) there is no edge
between any two vertices in V2; 3) the degree of any vertex in V1 is no more than κ− 1; 4) edges
connecting vertex in V1 and V2 are allowed (but not necessarily existent).

When the dispersion parameter Σ is row-κ sparse, [HR11] studied the mean of N (R)
E1

and N (R)
V1

and obtained limits of the probability when they are respectively nonzero. [HR12] extends these
results to empirical partial correlation graph when the dispersion parameter Σ is assumed to be, up
to a row-column permutations, block-τ sparse, i.e., there exists a permutation matrix T such that

TΣT T =

(
Σ11 Σ12

Σ21 Dp−τ

)
(3.14)

where Σ12 = ΣT
21 = 0 ∈ Rτ×(p−τ) andDp−τ ∈ R(p−τ)×(p−τ) is some diagonal matrix. In Theorem

3.2.4 Σ is imposed to be (τ, κ) sparse after some row-column permutation, i.e. there exists a
permutation matrix T such that (3.14) holds withDp−τ ∈ R(p−τ)×(p−τ) some diagonal matrix and
with the first τ rows (Σ11 Σ12) being row-κ sparse. It should be clear that (τ, κ) sparsity is more
general than the block sparsity since there is no restriction on Σ12 = 0. We make this comparison
precise in the next paragraph.

Obviously, (τ, κ) sparsity reduces to block-τ sparsity in [HR12] as a special case. Indeed, every
block-τ sparse matrix is (τ, κ) sparse with κ = τ . (τ, κ) sparsity with κ = τ , nevertheless, allows
non-zeros in the top-right submatrix, which mean more possible correlations between the variables
than block-τ sparsity in correlation graphical models. To see this, consider the associated graphical
model G0(Σ).3 In Figure 3.2, nodes represent the variables and edges represent the correlation
between variables. The left panel is a graphical model associated to the block-3 sparse assumption,
while the right panel satisfies (τ, κ) sparsity with (τ, κ) = (3, 3). The later has more correlations
(the red edges) across the two sets of variables in the 2 circles. (τ, κ) sparsity with κ > τ will
further enrich the possible correlations between variables.

3In Section 3.2.1 we define Gρ(·) as the induced graph with thresholding by ρ for a matrix. Here G0(·), is the
induced graph for the matrix without thresholding.
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(a) block sparsity (b) (τ, κ) sparsity

Figure 3.2: Diagram of the correlation graph G0(Σ) for p = 7 dimensional distributions with two
different 7×7 covariance matrices. The left panel is associated with a block-3 sparse assumption on
Σ. Only the τ = 3 variables in the group inside the left circle are correlated: there is no correlation
(edge) between the remaining 4 variables in the right circle and there is no correlation across the
two sets of variables in different circles. The right panel is associated with (τ, κ) = (3, 3) sparsity
on Σ, where two additional edges, representing correlations between variables, exist across the two
groups.

On the other hand, (τ, κ) sparsity is a stronger assumption than row-κ sparsity, since every (τ, κ)

sparse matrix is row-κ sparse. (τ, κ) sparsity is thus an intermediate level of sparsity lying between
block sparsity and row sparsity.

For a unified framework in empirical correlation and partial correlation graph, we supposed
that the dispersion parameter Σ, after some row-column permutations, is (τ, κ) sparse as stated in
Theorem 3.2.4.

Remark 3.2.7. Recall that we are interested in {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}, quantities

that are invariant under permutation of the p-dimensional variables. Since permutation of the
variables is equivalent to the row-column permutation to the dispersion parameter Σ, without loss
of generality, we can assume the variables are permuted such that Σ is (τ, κ) sparse. �

3.2.4 Local normalized determinant

In this subsection, we provide further details on the normalized determinant and local normalized
determinant defined in Subsection 3.2.2. Sufficient conditions to control the quantity µn,m(·) used
in Theorem 3.2.4 in terms of eigenvalues or condition numbers are also discussed.

Observe applying the same permutation simultaneously to both rows and columns of a matrix
does not change its normalized determinant. It is also obvious µ(A) ∈ (0, 1] and, µ(A) = 1 if and
only ifA is a multiple of Ip. Moreover, µ(A) is close to 1 and hence bounded away from 0, as long
as all eigenvalues concentrate around a positive number. Below is an example of a sequence of
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symmetric positive definite matrices with well-concentrated eigenvalues such that their normalized
determinants are uniformly bounded away from 0.

Example 3.2.8. Let {αi}pi=1 be positive. Let {βi}∞i=1 be a positive, decreasing sequences such

that
∞∑
i=1

βi < ∞. Consider A ∈ Rp×p be a symmetric positive definite matrix with eigenvalues

λi = αp exp(−βi) for 1 ≤ i ≤ p− 1 and λp = αp. Then

µ(A) = exp

(
−

p−1∑
i=1

βi

)
.

Consider now p is increasing, i.e. consider a sequence of matricesA of the above properties with

increasing dimension. For this sequence of matrices µ(A) ≥ exp

(
−
∞∑
i=1

βi

)
> 0, i.e. µ(A) is

bounded uniformly away from 0.

For local normalized determinant, it follows immediately by interlacing property (cf. Theorem
8.1.7 in [GVL12]) that µm(A) is decreasing with respect to m ∈ [p] for any symmetric matrix
A ∈ Rp×p. Thus µn,m(A) defined in (3.9) is increasing with respect to m ∈ [p].

It turns out the local normalized determinant of the dispersion matrix Σ will play an important
role in our study of the distribution of the six quantities {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}.
Heuristically, when δ ≥ 2, N (k)

Eδ
, as a sum of indicator functions of whether a subgraph of δ + 1

vertices is isomorphic Γδ, has the local property in the sense that each term in the summation
involves only δ + 1 variables, and thus each pair of two such terms involves at most 2(δ + 1)

variables. So heuristically µ2(δ+1)(Σ) controls the correlation between two indicator terms in the
summation of N (k)

Eδ
, which has impact on the convergence of N (k)

Eδ
to a compound Poisson. N (k)

V̆δ

and N (k)
Vδ

will be shown to have similar local property as N (k)
Eδ

in Lemma 3.3.8.
It is imposed in Theorem 3.2.4 that µn,2δ+2 (Σ) κp

p
→ 0, which holds when µn,2δ+2 (Σ) is either

bounded or increases in a rate o( p
κp

). We provide some sufficient condition on well-studied concepts
like condition number or eigenvalues of Σ to control µn,2δ+2 (Σ) in Section 3.7. Specifically, we
show µn,m(·) is upper bounded by powers of the condition number of its argument, and provide
two sets of sufficient conditions to guarantee uniform boundedness of µn,m(·) for a sequence of
symmetric positive definite matrices.

3.3 Non-asymptotic compound Poisson approximation

In this section we establish a non-asymptotic compound Poisson approximation for L (N̄δ),
with N̄δ a generic random variable in {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}, based on which we
present the proof of Theorem 3.2.4. In Subsection 3.3.1 scores representations for our model are
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introduced and these scores are key concepts in the following development. Subsection 3.3.2 is
devoted to provide an equivalent formulation of our model in terms of random geometric graphs,
where parameters of the non-asymptotic compound Poisson approximation are defined. With the
preparation of the first two subsections, Subsection 3.3.3 presents the non-asymptotic compound
Poisson approximation for star subgraph counts N (R)

Eδ
and in Subsection 3.3.4 it is developed that

all 6 quantities in {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} are close in L1 distance. Then combining

results in Subsection 3.3.3 and Subsection 3.3.4, a theorem on non-asymptotic compound Poisson
approximation is obtained, which then implies Theorem 3.2.4 in Subsection 3.3.5.

3.3.1 Score representations of sample correlation and partial correlation

In this subsection, the U -score for the empirical correlation graph and the Y -score for the
empirical partial correlation graph are defined. These scores will serve as the vertices set on which
the random geometric graphs are constructed in Subsection 3.3.2.

We first present two useful reductions to our model. The first reduction is to reduce L (X) from
vector elliptically contoured distribution as in (3.2) to a centered matrix normal distribution as in
(3.3).

Reduction to centered matrix normal data matrix
The following lemma is an immediate result of the theorem in Section 6 of [And92].

Lemma 3.3.1. SupposeX ∼ VE(µ,Σ, θ). Then the distribution ofR defined in (3.5) is invariant

to θ and µ.

Since the quantities of interest in this chapter are {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}},

functions ofR, their distribution are also invariant to θ and µ whenX ∼ VE(µ,Σ, θ). Specifically,
we may choose θ(w) = (2π)−

np
2 exp(−1

2
w) and µ = 0 such that X has density (3.3). That is,

{x(i)}ni=1, the rows of X , can be taken as i.i.d. samples from N (0,Σ), without changing the
distribution of any of the quantity {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}. Thus for the rest of
the chapter we will suppose X has density (3.3) and refer to the dispersion parameter Σ as the
population/theorectical covariance matrix. As a consequence, Σij = 0 implies variable i and
variable j are independent. In particular, the different sparsity conditions discussed in Subsection
3.2.3 imposed on Σ induces different independence structures between variables in the reduced
model.

The second reduction represents the sample covariance matrix defined in (3.4) by a sample
second moment of the projected data.
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Reduction from sample covariance matrix to sample second moment
It is shown in Theorem 3.3.2 [And03] that the sample covariance matrix of n i.i.d. normal distribu-
tion is identical to the sample second moment of n − 1 i.i.d. zero-mean normal random vectors.
Specifically, define the orthogonal n × n matrix H = [n−

1
2 1,H2:n]T . The matrix H2:n can be

obtained by Gramm-Schmidt orthogonalization and satisfies the properties

1TH2:n = 0, HT
2:nH2:n = In−1.

Then
X̃ = H2:nX ∈ R(n−1)×p (3.15)

have i.i.d. rows {x̃(i)}n−1
i=1 drawn from N (0,Σ). Moreover the sample covariance matrix defined in

(3.4)

S =
1

n− 1

n−1∑
i=1

x̃(i)(x̃(i))T =
1

n− 1
X̃TX̃. (3.16)

That is, the sample covariance matrix of the data matrix X , defined in (3.4), is the same as the
sample second moment of the data matrix X̃ .

We are now in a good position to define and analyze the scores representation of R and P .
From the second reduction above, {x̃(i)}n−1

i=1 ⊂ Rp, the rows of X̃ , are i.i.d. copy from N (0,Σ).
Let {x̃i}pi=1 be the columns of X̃ . Then ui := x̃i

‖x̃i‖2 ∈ Rn−1 has distribution unif(Sn−2) for i ∈ [p].
Denote

U = [u1,u2, . . . ,up] ∈ R(n−1)×p

and it follows from (3.16) and (3.5) that

R = UTU . (3.17)

The U in equation (3.17) is referred to as U -score of the sample correlation matrix [HR11, HR12].
Note our formulation of U -score is slightly different from the formulation in [HR11, HR12], but
it’s an easy task to check the two different formulations are equivalent. Moreover, as discussed in
the first reduction above, ui and uj are independent provided the population covariance Σij = 0.

The normalized outer product of U , defined by

B =
n− 1

p
UUT ∈ R(n−1)×(n−1) (3.18)

will play an important role in the analysis of empirical partial correlation graph.

Lemma 3.3.2. LetX ∼ VE(µ,Σ, θ) and p ≥ n. ThenB is invertible with probability 1.
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By Lemma 1 in [HR12], provided UUT is invertible or, equivalently,B is invertible,

R† = UT [UUT ]−2U =

(
p

n− 1

)2

UTB−2U . (3.19)

It follows from Lemma 3.3.2 that equation (3.19) holds a.s.. Define A = B−1 , Ȳ = AU and
hence

R† =

(
p

n− 1

)2

Ȳ T Ȳ a.s.. (3.20)

Further define

yi = ȳi/‖ȳi‖2, ∀ i ∈ p,

Y = [y1,y2, . . . ,yp] ∈ R(n−1)×p,

and thus
P = Y TY a.s. (3.21)

by equation (3.6) and (3.20). Y in equation (3.21) is referred to as the Y -score representations for
sample partial correlation matrix [HR12]. Similar to U -score, one can verify easily our formulation
of Y -score is equivalent to that in [HR12].

Let σn−2 be the spherical measure on Sn−2, i.e. σn−2 is the probability measure of uniform
distribution on Sn−2. Denote by fuj1 ,uj2 ,··· ,ujm the joint density of j1-th, j2-th, . . ., jm-th column of
U with respect to the product measure ⊗mσn−2 := σn−2 ⊗ σn−2 ⊗ · · · ⊗ σn−2︸ ︷︷ ︸

m

. The next lemma

establishes fuj1 ,uj2 ,··· ,ujm is bounded by µn,m(Σ). This highlights the role of µn,m(Σ) since the
distribution of the six quantities N (k)

V̆δ
,N (k)

Vδ
, N (k)

Eδ
with k ∈ {R,P } have local property as discussed

in Subsection 3.2.4, depending only on joint density of fuj1 ,uj2 ,··· ,ujm for every possible collection
of {ji}mi=1 and some constant m = 2δ + 2.

Lemma 3.3.3. Let X ∼ VE(µ,Σ, θ). Consider {ji}mi=1 ⊂ [p] are distinct indexes and J = {ji :

1 ≤ i ≤ m}.

(a)

µn,m(ΣJ ) ≤ µn,m(Σ)

(b) The joint density of any subset of m columns of U -score w.r.t. ⊗mσn−1 is upper bounded by

µn,m(Σ):

fuj1 ,uj2 ,··· ,ujm (v1,v2, · · · ,vm) ≤ µn,m(ΣJ ) ≤ µn,m(Σ), ∀ vi ∈ Sn−2,∀ i ∈ [m].
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Here µn,m(ΣJ ) is well defined since µn,m(·) is invariant to simultaneously applying a permu-

tation to both rows and columns.

(c) Let h : (Sn−2)
m → R be a nonnegative Borel measurable function. Then

Eh(uj1 ,uj2 , · · · ,ujm) ≤ µn,m(ΣJ )Eh(u′j1 ,u
′
j2
, · · · ,u′jm)

≤ µn,m(Σ)Eh(u′j1 ,u
′
j2
, · · · ,u′jm),

where {u′j`}
m
`=1 are i.i.d. distributed as unif(Sn−2).

Remark 3.3.4. In Lemma 3.3.3 (a), since ΣJ is m by m symmetric positive definite matrix, by the
definition in (3.9),

µn,m(ΣJ ) =

[µ(ΣJ )]−
n−1

2 , ΣJ not diagonal,

1, ΣJ diagonal.

�

The proof of Lemma 3.3.3 (b) is deferred to Appendix 3.8.2. (c) immediately follows from (b)
by writing expectation as integrals. (a) follows trivially from µm(ΣJ ) = µ(ΣJ ) ≥ µm(Σ).

Lemma 3.3.3 (c) is useful since when calculating expectation of nonnegative function of any m
columns of U , one may always assume the associated columns {uj} are independent unif(Sn−1)

with the cost of an additional multiplicative factor µn,m(Σ).

3.3.2 Random pseudo geometric graph

In this subsection we define random pseudo geometric graph and provide an equivalent formu-
lation of our model, of which the vertices set are the scores defined in Subsection 3.3.1. We also
define the increment distribution of the compound Poisson that non-asymptotically approximates 6
random quantities {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}.
From equation (3.17) and the fact that columns of U have Euclidean norm 1,

Rij = uTi uj = 1− ‖ui − uj‖
2
2

2
=
‖ui + uj‖2

2

2
− 1. (3.22)

For a threshold ρ ∈ [0, 1), define rρ :=
√

2(1− ρ) ∈ (0,
√

2]. By equation (3.22),

{Rij ≥ ρ} = {‖ui − uj‖2 ≤
√

2(1− ρ)} = {‖ui − uj‖2 ≤ rρ}.

and similarly,
{Rij ≤ −ρ} = {‖ui + uj‖2 ≤ rρ}.
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The two preceding displays yield

{|Rij| ≥ ρ} = {‖ui + uj‖2 ≤ rρ} ∪ {‖ui − uj‖2 ≤ rρ}. (3.23)

An entirely analogous derivation shows for empirical correlation graph,

{|Pij| ≥ ρ} = {‖yi + yj‖2 ≤ rρ} ∪ {‖yi − yj‖2 ≤ rρ}. (3.24)

Based on (3.23) and (3.24), presented in [HR11, HR12], we now introduce some novel geometric
contents connecting to random geometric graph.

Note (3.23) indicates, {|Rij| ≥ ρ}, the event when sample correlation between i-th and j-th
variables exceed the threshold ρ, or equivalently, the event when there exists a edge connecting the
i-th and j-th vertices in the empirical correlation graphs Gρ(Ψ(R)), is the same as the event that ui
and uj , the associated U -score, lie in some geometric set on Sn−2 × Sn−2. This insight provide an
equivalent way to construct Gρ(Ψ(R)) through the U -scores. Similar interpretation can be drawn
for (3.24). Such equivalent construction is made formal in the next few paragraphs.

Definition 3.3.5 (Pseudo geometric graph). Given m ≥ 2 and a set of points {vi}mi=1 in RN ,
denote by PGe ({vi}mi=1, r;m,N ) the pseudo geometric graph with radius r, defined as follows.
The vertex set of the graph is {vi}mi=1, and there is an edge between vi and vj if dist(vi,vj) :=

min {‖vi − vj‖2, ‖vi + vj‖2} ≤ r.

It’s easy to verify that dist(·, ·) has the following properties: for ∀v1,v2,v3 ∈ Rm,

1. dist(v1,v2) ≥ 0;

2. dist(v1,v2) = 0 if only if v1 = v2 or v1 = −v2;

3. dist(v1,v2) = dist(v2,v1) and dist(v1,v2) = dist(v1,−v2)

4. dist(v1,v2) ≤ dist(v1,v3) + dist(v3,v2).

That is, dist(·, ·) is a pseudo metric on RN , which explains the name pseudo geometric graph in
Definition 3.3.5. dist(·, ·) is indeed a metric on the quotient space of RN with any two points
symmetric about origin identified.

If the set of points generating geometric graphs or pseudo geometric graphs are random, then
the corresponding graphs are called random geometric graphs or random pseudo geometric graphs.

With the above definitions and by the discussions before Definition 3.3.5, the empirical cor-
relation graph Gρ(Ψ(R)) is isomorphic to PGe ({ui}pi=1, rρ; p, n− 1), the random pseudo geo-
metric graph generated by U -scores. Even though PGe ({ui}pi=1, rρ; p, n− 1) has additional
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geometric contents since each vertex in it is a specific point in Sn−2, it’s not necessary to dif-
ferentiate it from the empirical correlation graph as long as only the graph properties are of
concerned. As an example, we may refer to N (R)

Vδ
the number of vertices with degree at least δ

in PGe ({ui}pi=1, rρ; p, n− 1) as well. An entirely analogous analysis applies to empirical partial
correlation graph and PGe ({yi}pi=1, rρ; p, n− 1). This equivalent construction indicate the distri-
bution of each of the 3 quantities {N (k)

i : i ∈ {Eδ, V̆δ, Vδ}} with k = R (k = P ) depends only on
the pairwise pseudo distances dist(·, ·) between columns of U (Y ).

Recall NMD ({vi}mi=1, r;m,N ) denotes the number of vertices of maximum degree m− 1 in
Ge ({vi}mi=1, r;m,N ). When m ≥ 3, NMD ({vi}mi=1, r;m,N ) is also the number of subgraphs
of Ge ({vi}mi=1, r;m,N ) isomorphic to Γm−1. Define PNMD ({vi}mi=1, r;m,N ) analogously for
pseudo geometric graph.

Denote by deg(·) the degree of a given vertex in the graph. Consider {u′i}δ+1
i=1

i.i.d.∼ unif(Sn−2).
For ` ≥ 1 denote

αn,δ(`, rρ) := P
(
PNMD

(
{u′i}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `|deg(u′1) = δ
)
. (3.25)

αn,δ(`, rρ) depends only on n, δ and the threshold ρ and is abbreviated as α(`, rρ) when there is
no confusion. Moreover, α(`, rρ) = 0 when ` ≥ δ + 2. Define a probability distribution ζn,δ,ρ
supported on [δ + 1] with

ζn,δ,ρ(`) =
α(`, rρ)/`∑δ+1

`=1 (α(`, rρ)/`)
. (3.26)

Note for the special case δ = 1, by definition αn,1(2, rρ) = 1 and thus ζn,1,ρ(`) = δ{2}, the Dirac
measure at 2.

It will be shown in the next three subsections that the probability distribution ζn,δ,ρ is the
distribution of the increment of the compound Poisson that non-asymptotically approximates the
L (N̄δ), with N̄δ a generic random variable in {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}.

3.3.3 Closeness of the distribution of the star subgraph counts to compound Poisson

The first part of this subsection gives the intuition why the distribution of N (R)
Eδ

, the star
subgraph counts, approximately is a compound Poisson and derives the associated parameters for
the compound Poisson approximation based on random pseudo geometric graph representation
developed in Subsection 3.3.2. The second part states a formal proposition that establishes an upper
bound of the total variation between L

(
N

(R)
Eδ

)
and the compound Poisson distribution derived in

the first part.
Some notations have to be introduced before giving the intuition of why L

(
N

(R)
Eδ

)
approxi-

mately is a compound Poisson. Let SC(r,z) be the sphere cap with radius r at the center z ∈ Sn−2.
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Formally,
SC(r,z) = {x ∈ Sn−2 : ‖x− z‖2 ≤ r}. (3.27)

Define Pn(r) = Area(SC(r,z))
Area(Sn−2)

, where Area(·) is the area of a subset of Sn−2. Pn(r) is the normalized
area of the spherical cap with radius r. As is shown in (2.6) in [HR11] 4,

Pn(r) =
bn
2

∫ 1

1− r2
2

(1− u2)
n−4

2 du, when r ∈ [0,
√

2], (3.28)

where bn = 2Γ((n−1)/2)√
πΓ((n−2)/2)

. It follows by simple calculation that

Pn(r) = 1− Area(SC(
√

4− r2, z))

Area(Sn−2)
= 1− Pn(

√
4− r2) when

√
2 < r ≤ 2,

and Pn(r) = 1 when r > 2. Further properties of Pn(r) are summarized in Lemma 3.14.1.

Denote

C<
δ := {~i = (i0, i1, · · · , iδ) ∈ [p]δ+1 : i1 < i2 < · · · < iδ, and i` 6= i0, ∀ ` ∈ [δ]}. (3.29)

For~i ∈ C<
δ , denote by

Φ
(R)
~i

=
δ∏
j=1

Φ
(R)
i0ij

= 1

(
δ⋂
j=1

{dist(ui0 ,uij) ≤ rρ}

)
(3.30)

the indicator that vertex i0 is connected to each vertex ij for j ∈ [δ] in the empirical correlation
graph. Then by definition

N
(R)
Eδ

=
∑
~i∈C<δ

Φ
(R)
~i

. (3.31)

If Φ
(R)
~i

for different~i ∈ C<
δ are independent or weakly dependent, the distribution of N (R)

Eδ
, as a

sum of independent or weakly dependent indicator random variables, is expected to approximately
be Poisson. This however is not the case since many terms in the summations are highly dependent.
Specifically, for any~i ∈ C<

δ , Φ
(R)
~i

is highly dependent on Φ
(R)
~j

for any ~j ∈ S~i where

S~i :=

{
~j ∈ C<

δ \{~i} :
δ⋃
`=0

{j`} =
δ⋃
`=0

{i`}

}
. (3.32)

4[HR11] indeed defines P0, which is twice of Pn(rρ).
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S~i is the set of indexes sharing the same vertices with~i but with different center and thus |S~i| = δ.
Indeed, provided Φ

(R)
~i

= 1, which is equivalent to dist(ui0 ,uij) ≤ rρ for ∀j ∈ [δ],

dist(ui1 ,uij) ≤ dist(ui1 ,ui0) + dist(ui0 ,uij) ≤ 2rρ, for ∀2 ≤ j ≤ δ.

That is {uij}δ+1
j=2 are all close to ui1 and hence it’s likely there are edges connecting them. In other

words it’s likely for ~i′ = (i1, i0, · · · , iδ), Φ
(R)
~i′

= 1.5 Let

U~i =
∑
~j∈S~i

Φ
(R)
~j

(3.33)

be the sum of highly dependent terms of Φ
(R)
~i

. To sum up, if there is an increment for N (R)
Eδ

, say
Φ

(R)
~i

= 1, there is a certain probability that U~i is great than 0 due to the high dependence, causing
each increment of N (R)

Eδ
has size great than 1 with a certain probability, which is a typical behavior

of a compound Poisson distribution.
After understanding heuristically the distribution of N (R)

Eδ
approximately is a compound Poisson,

we now derive heuristically the parameters of the compound Poisson for the special case Σ is
diagonal. Let

[
~i
]

= {i0, i1, · · · , iδ} be the unordered set of indexes of any ~i ∈ C<
δ and define

[C<
δ ] :=

{[
~i
]

:~i ∈ C<
δ

}
. It follows |[C<

δ ]| =
(
p
δ+1

)
. For a given group of δ + 1 indexes

[
~i
]
,

Φ
(R)
~i

+U~i is the increment associated to this group and its value is between 0 and δ+1. Heuristically
the probability of increment size ` for ` ≥ 1 is proportional to the expectation of the fraction of the
number of groups with increment `:6

E
1

|[C<
δ ]|

∑
[
~i

]
∈[C<δ ]

1
(

Φ
(R)
~i

+ U~i = `
)

=
1

|[C<
δ ]|

1

`
E

∑
[
~i

]
∈[C<δ ]

(
Φ

(R)
~i

+ U~i

)
1
(

Φ
(R)
~i

+ U~i = `
)

=
1

|[C<
δ ]|

1

`
E
∑
~i∈C<δ

Φ
(R)
~i

1
(

Φ
(R)
~i

+ U~i = `
)

=
1

|[C<
δ ]|

1

`

∑
~i∈C<δ

P
(

Φ
(R)
~i

= 1
)
P
(

Φ
(R)
~i

+ U~i = `|Φ(R)
~i

= 1
)
.

(3.34)

5Here we without loss of generality assume i0 < ij for 2 ≤ j ≤ δ.
6Here it is implicitly assumed that the random variables with different group of δ + 1 indexes are weakly dependent,

which will be verified in the proof.
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Since Σ is diagonal, {ui}pi=1 are i.i.d. unif(Sn−2) and hence (3.34) become

E
1

|[C<
δ ]|

∑
[~i]∈[C<δ ]

1
(

Φ
(R)
~i

+ U~i = `
)

=
1

|[C<
δ ]|

1

`
|C<

δ | (2Pn(rρ))
δα(`, rρ)

=
δ + 1

`
(2Pn(rρ))

δα(`, rρ), (3.35)

where α(`, rρ) is defined in (3.25) and P
(

Φ
(R)
~i

= 1
)

= (2Pn(rρ))
δ by conditioning on ui0 . As a

consequence, the probability of increment size ` for ` ≥ 1 is:

E
1

|[C<
δ ]|

∑
[~i]∈[C<δ ]

1
(

Φ
(R)
~i

+ U~i = `
)
/
δ+1∑
`=1

E
1

|[C<
δ ]|

∑
[~i]∈[C<δ ]

1
(

Φ
(R)
~i

+ U~i = `
) = ζn,δ,ρ(`),

where the last step follows from (3.35) and (3.26). The heuristic derivation indicates ζn,δ,ρ is
the distribution of increment size of the compound Poisson approximation. Moreover, the mean
x of underlying Poisson for the compound Poisson approximation should satisfy the following
expectation constraint:

expectation of the compound Poisson = xEζn,δ,ρ = EN (R)
Eδ

,

where Eζn,δ,ρ is the expectation of ζn,δ,ρ. One can easily verify Eζn,δ,ρ = 1/
∑δ+1

`=1 (α(`, rρ)/`) and
EN (R)

Eδ
=
(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ since Σ is diagonal. Hence the mean of underlying Poisson for the
compound Poisson is

x =

(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

α(`, rρ)

`
:= λp,n,δ,ρ. (3.36)

In conclusion we heuristically derive when Σ is diagonal, the compound Poisson approximation for
N

(R)
Eδ

is CP(λp,n,δ,ρ, ζn,δ,ρ).
Despite the above analysis imposes that Σ is diagonal, the general case that Σ is not diagonal

but sparse shares the same compound Poisson approximation with a cost of being non-diagonal in
the error of the approximation. We are now in a good position to present the main results in this
subsection.

Proposition 3.3.6. Let p ≥ n ≥ 4, δ ∈ [p − 1] and γ > 0 be given. Suppose X ∼ VE(µ,Σ, θ).

Suppose 2p1+ 1
δPn(rρ) ≤ γ, and Σ is row-κ sparse. Then

dTV

(
L
(
N

(R)
Eδ

)
, CP (λp,n,δ,ρ, ζn,δ,ρ)

)
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≤Cn,δ,γ
(
C ′δ,γ

)µn,δ+1(Σ)κ−1
p

(
µn,2δ+2 (Σ)

κ

p

(
1 + µn,2δ+2 (Σ)

(
κ

p

)2
)

+ p−
1
δ

)
,

where Cn,δ,γ and C ′δ,γ are respectively two constants depending only on the parameters in their

subscript.

Remark 3.3.7. The condition 2p1+ 1
δPn(rρ) ≤ γ specifies an implicit lower bound on the threshold ρ.

To obtain an explicit lower bound, observe 2cnp
1+ 1

δ

(√
2(1− ρ)

)n−2

≤ γ is a sufficient condition

of 2p1+ 1
δPn(rρ) ≤ γ, by Lemma 3.14.1 (a). Solving for ρ, then an explicit lower bound of ρ

sufficient for 2p1+ 1
δPn(rρ) ≤ γ is

ρ ≥ 1− 1

2

(
γ

2cnp
1+ 1

δ

) 2
n−2

.

This is a non-asymptotic version of (3.12).
Even though Proposition 3.3.6 holds for any symmetric positive definite matrix Σ that is row-κ

sparse, for the results to be effective, the upper bounds in the above results should be small. As a
result, Σ has to have relatively small µn,2δ+2 (Σ) and be row-κ sparse with relative small sparsity
level κ/p, such that µn,2δ+2 (Σ)κ/p is small. A sufficient condition by Lemma 3.7.1 (b) is small
condition number of Σ to guarantee small µn,2δ+2 (Σ). In the special case when Σ is diagonal,
µn,2δ+2 (Σ)κ/p = 1/p.

Moreover, suppose Σ has small condition number and sparsity level such that µn,2δ+2 (Σ)κ/p

is small, say µn,2δ+2 (Σ)κ/p < 1. Then in the upper bound the term µn,2δ+2 (Σ) (κ/p)2 inside the
parenthesis can be dropped, resulting in an additional constant factor, since µn,2δ+2 (Σ) (κ/p)2 < 1.
In other words the effective upper bound, neglecting the coefficients depending on n, δ and γ, is
µn,2δ+2 (Σ)κ/p+ p−

1
δ .

The expressions for C ′δ,γ and Cn,δ,ρ are respectively available in (3.89) and (3.90). They are not
optimal constants since they are not of major concern in this chapter. Here possible expressions for
these coefficients are provided for completeness. �

Proposition 3.3.6 states for given n, p, δ and γ, if the threshold ρ is properly chosen, and
Σ is row-κ sparse and has small µn,2δ+2(Σ), then the distribution of N (R)

Eδ
approximately is the

compound Poisson CP (λp,n,δ,ρ, ζn,δ,ρ). In the next subsection, we will built connections among
{N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} such that Proposition 3.3.6 can be extended to the other 5

quantities.
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3.3.4 A portmanteau proposition on pairwise total variations

In this subsection upper bounds for pairwise total variation distances among the 6 quantity
{N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} are obtained. Such an result establishes the distribution
of these 6 quantities are mutually close, and together with Proposition 3.3.6 it will imply their
distributions all are close to the compound Poisson CP (λp,n,δ,ρ, ζn,δ,ρ). Like in Subsection 3.3.3,
some intuitive derivations are first presented, followed by a formal statement of the results.

Lemma 3.3.8. Consider δ ∈ [p− 2].

N
(R)
Eδ
− (δ + 1)N

(R)
Eδ+1
≤ N

(R)

V̆δ
≤ N

(R)
Vδ
≤ N

(R)
Eδ

,

N
(P )
Eδ
− (δ + 1)N

(P )
Eδ+1
≤ N

(P )

V̆δ
≤ N

(P )
Vδ
≤ N

(P )
Eδ

.

It follows directly from Lemma 3.3.8 that for Ñδ ∈
{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

E
∣∣∣Ñδ −N (R)

Eδ

∣∣∣ ≤ (δ + 1)EN (R)
Eδ+1

. (3.37)

As a result, if EN (R)
Eδ+1

is small, then N (R)

V̆δ
and N (R)

Vδ
are close to N (R)

Eδ
in L1 norm.

To heuristically see why the quantities in empirical partial correlation graph is close to those
in the empirical correlation graph, consider large p and pretend {ui}pi=1 are independent. Then
according to law of large number,

B =
n− 1

p

p∑
i=1

uiu
T
i ≈ (n− 1)EuiuTi = In−1, (3.38)

which further implies
Ȳ ≈ U , Y ≈ U .

That is, the Y -score and U -score are almost the same. Hence N (R)
Eδ

and N (P )
Eδ

, as the same function
of U and Y respectively, are close to each other. So does the other two pairs. These heuristic
arguments will be made rigorous in the proof of the next result.

The next result states all 6 quantities {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} are close to each

other in L1 norm and their distribution are then close to each other in total variation.

Proposition 3.3.9. Let p ≥ n ≥ 4 andX ∼ VE(µ,Σ, θ). Let δ ∈ [p−1]. Suppose 2p1+ 1
δPn(rρ) ≤

γ.
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(a) Suppose Σ is row-κ sparse. Then for Ñδ ∈
{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

dTV

(
L
(
Ñδ

)
,L

(
N

(R)
Eδ

))
≤ E

∣∣∣Ñδ −N (R)
Eδ

∣∣∣ ≤ (δ + 1)2

δ!
γδ+1

(
1 + µn,δ+2(Σ)

κ− 1

p

)
p−

1
δ .

(b) Suppose Σ, after some row-column permutation, is (τ, κ) sparse with τ ≤ p
2

and(√
n− 1

p
+

√
δ ln p

p

)
≤ c

hold for some positive and small universal constant c. Then

dTV

(
L
(
N

(P )
Eδ

)
,L

(
N

(R)
Eδ

))
≤E

∣∣∣N (P )
Eδ
−N (R)

Eδ

∣∣∣
≤C(P )

Eδ

(
1 +

κ− 1

p
µn,δ+1(Σ)

)(√
ln p

p
+
τ

p

)
, (3.39)

where C(P )
Eδ

is a constant depending only on n, δ and γ.

(c) Suppose the same conditions as in part (b) hold. Then

dTV

(
L
(
N

(P )

V̆δ

)
,L

(
N

(R)

V̆δ

))
≤E

∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣
≤C(P )

V̆δ

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(√
ln p

p
+
τ

p
+ p−

1
δ

)
,

(3.40)

where C(P )

V̆δ
is a constant depending only on n, δ and γ.

Remark 3.3.10. In Proposition 3.3.9 (b), the condition(√
n− 1

p
+

√
δ ln p

p

)
≤ c (3.41)

hold for some positive and small enough universal constant c is nothing but a quantitative way
of saying when p is sufficiently large. Observe the left side of (3.41) is a decreasing function of
p, and its limit is 0 when p approaches infinity. Then the smallest positive integer p0 satisfying
the inequality exists and depends only on n and δ, since c is an universal constant. Then (3.41) is
equivalent to requiring p ≥ p0. Similar interpretation applies for the corresponding condition in
Proposition 3.3.9 (c).
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N
(R)

V̆δ

N
(R)
Vδ

N
(R)
Eδ

N
(P )
Eδ

N
(P )

V̆δ

N
(P )
Vδ

(
1 + κ

pµn,δ+1(Σ)
)(√

ln p
p + τ

p

)

(
1 + κ

pµn,δ+2(Σ)
)(√

ln p
p + τ

p + p−
1
δ

)
(1 + κ

pµn,δ+2(Σ))(
√

ln p
p + τ

p + p−
1
δ )

(
1 + µn,δ+2(Σ)κp

)
p−

1
δ

Figure 3.3: This graph has the 6 quantities associated to empirical correlation or partial correlation
graph as vertices. The 4 solid edges correspond to existence of an direct upper bound of the total
variation between two vertices, with the weights respectively correspond to the 4 upper bounds
(neglecting constant coefficients) in Proposition 3.3.9. Dash edges correspond to an indirect upper
bound of the total variation between vertices, with weights computed from solid path connecting
the two vertices.

Row-κ sparsity on Σ suffices to show the quantities of empirical correlation graph are close
in L1 norm as in Proposition 3.3.9 (a). Stronger sparse condition (τ, κ) sparsity on Σ is imposed
to have quantities between empirical correlation graph and empirical partial correlation graph are
close in L1 norm as in Proposition 3.3.9 (b), (c). (τ, κ) sparsity is indeed only used to guarantee
(3.38) and have a quantitative control howB deviates from In−1.

Even though Proposition 3.3.9 holds for any symmetric positive definite matrix Σ that, after
simultaneous row-column permutation, is (τ, κ) sparse, for the results to be effective, the upper
bounds in the proposition should be small. All 3 upper bounds in the proposition, up to a constant
depending on n, δ and γ, are bounded by

(
1 + κ−1

p
µn,δ+2(Σ)

)(√
ln p
p

+ τ
p

+ p−
1
δ

)
. As a result,

for the proposition to be useful the theoretical covariance matrix Σ should has small µn,δ+2(Σ)

and be (τ, κ) sparse with small sparsity level τ
p
, κ
p
, and p should be relatively large such that(

1 + κ−1
p
µn,δ+2(Σ)

)(√
ln p
p

+ τ
p

+ p−
1
δ

)
is small. A sufficient condition by Lemma 3.7.1 (b) is

small condition number of Σ to guarantee small µn,δ+2 (Σ).
The exact expressions for C(P )

Eδ
and C

(P )

V̆δ
are available respectively at (3.109) and (3.114).

They are not optimal constants since they are not of major concern in this chapter. Here possible
expressions for these coefficients are provided for completeness.

�

Proposition 3.3.9 establishes the total variation bounds between N (k)
Eδ
, N

(k)

V̆δ
, N

(k)
Vδ

with k = R

and k = P as illustrated by Figure 3.3. Dash edges correspond to an indirect upper bound of the
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total variation between vertices, with weights computed from solid path connecting the two vertices.
For instance the weight of dash edge between N (R)

Eδ
and N (P )

Vδ
is computed from

dTV

(
L
(
N

(P )
Vδ

)
,L

(
N

(R)
Eδ

))
≤E

∣∣∣N (R)
Eδ
−N (P )

Vδ

∣∣∣
≤E

∣∣∣N (R)
Eδ
−N (P )

V̆δ

∣∣∣+ E
∣∣∣N (R)

Eδ
−N (P )

Eδ

∣∣∣
≤E

∣∣∣N (R)
Eδ
−N (R)

V̆δ

∣∣∣+ E
∣∣∣N (R)

V̆δ
−N (P )

V̆δ

∣∣∣+ E
∣∣∣N (R)

Eδ
−N (P )

Eδ

∣∣∣
≤
(
C

(P )
Eδ

+ C
(P )

V̆δ
+

(δ + 1)2

δ!
γδ+1

)(
1 +

κ− 1

p
µn,δ+2(Σ)

)(√
ln p

p
+
τ

p
+ p−

1
δ

)
,

where the first inequality follows from Lemma 3.14.4, the second inequality follows from Lemma
3.3.8, and the last inequality follows from Proposition 3.3.9 (a), (b) and (c).

From Proposition 3.3.9 and Figure 3.3, it’s easy to see by triangle inequality the 6 quantities
are all close to each other in total variation provided

(
1 + κ−1

p
µn,δ+2(Σ)

)(√
ln p
p

+ τ
p

+ p−
1
δ

)
is

relatively small. As a result, the closeness of one quantity among the 6 to some distribution in
total variation implies the closeness of all 6 quantities to that distribution. In Subsection 3.3.3 the
result that L

(
N

(R)
Eδ

)
is close to the compound Poisson CP (λp,n,δ,ρ, ζn,δ,ρ) has been established,

which immediately implies all 6 quantities {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} are close in total

variation to the same compound Poisson. A formal such result combining Proposition 3.3.6 and
Proposition 3.3.9 is presented in next subsection.

3.3.5 Unified convergence: an umbrella theorem

The following theorem is a non-asymptotic version of Theorem 3.2.4. It states if the threshold ρ
is properly chosen, and Σ satisfies (τ, κ) sparsity condition, then any random quantity in {N (k)

i :

k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}} can be approximated by a compound Poisson.

Theorem 3.3.11 (Compound Poisson Approximation in High Dimension). Let n ≥ 4, δ ∈ [p− 1],

and γ > 0 be given. Consider X ∼ VE(µ,Σ, θ). Suppose 2p1+ 1
δPn(rρ) ≤ γ. Suppose Σ,

after some row-column permutation, is (τ, κ) sparse with τ ≤ p
2

and µn,2δ+2(Σ)κ
p
< 1. Suppose√

n−1
p

+
√

δ ln p
p
≤ c hold for some positive and small universal constant c. Let N̄δ be a generic

random variable for either one in {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}. Then

dTV
(
L
(
N̄δ

)
, CP (λp,n,δ,ρ, ζn,δ,ρ)

)
≤ Cn,δ,γ

(
µn,2δ+2 (Σ)

κ

p
+ p−

1
δ + E(p, δ)

)
, (3.42)
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where

E(p, δ) =

0 if N̄δ = N
(R)
Eδ

, N
(R)

V̆δ
or N (R)

Vδ
,√

ln p
p

+ τ
p

if N̄δ = N
(P )
Eδ

, N
(P )

V̆δ
or N (P )

Vδ
.

Remark 3.3.12 (Relaxed sparsity assumption in empirical correlation graph). If only random quan-
tities in empirical correlation graph is of concern, then the (τ, κ) sparsity assumption can be relaxed
to the row-κ sparsity. Specifically, the last three sentences in Theorem 3.3.11 can be replaced by the
following.

Suppose Σ is row-κ sparse with µn,2δ+2(Σ)κ
p
< 1. Let Ñδ be a generic random variable for

either one in {N (k)
i : k = R, i ∈ {Eδ, V̆δ, Vδ}}. Then

dTV

(
L
(
Ñδ

)
, CP (λp,n,δ,ρ, ζn,δ,ρ)

)
≤ Cn,δ,γ

(
µn,2δ+2 (Σ)

κ

p
+ p−

1
δ

)
, (3.43)

where the notation Cn,δ,γ is a constant depending on n, δ and γ.

Remark 3.3.13. The condition µn,2δ+2(Σ)κ
p
< 1 is used to simplify the upper bound in (3.43) and

(3.42), in the sense that without this condition, inequalities similar to (3.43) and (3.42) but with
more complicated upper bounds still hold. This condition is not really an additional condition:
observe for upper bound in (3.43) and (3.42) (neglecting the coefficients depending only on n, δ,
and γ) to be small, the term µn,2δ+2(Σ)κ

p
should be small. See the third paragraph in Remark 3.3.7

for a detailed discussion.
Row-κ sparsity on Σ suffices to guarantee (3.43) holds, i.e. the quantities of interest in the

empirical correlation graph can be approximated by a compound Poisson. For Remark 3.3.12
to be useful, the upper bound (3.43) should be small such that the distribution of Ñδ is close to
CP (λp,n,δ,ρ, ζn,δ,ρ) can be drawn. Neglecting the coefficient depending on n, δ, and γ since n, δ
and γ are given, it suffices to have the term

(
µn,2δ+2(Σ)κ

p
+ p−

1
δ

)
be small. That is, for the above

theorem to be effective, Σ should has small µn,2δ+2(Σ), small sparsity level κ
p
, and p should be

relatively large. One sufficient condition for small µn,2δ+2(Σ) is small condition number of Σ by
Lemma 3.7.1 (b).

The stronger condition (τ, κ) sparsity on Σ is imposed to guarantee (3.42) holds, i.e. the
quantities of interest in empirical partial correlation graph can be approximated by the same
compound Poisson as that in empirical correlation graph. For Theorem 3.3.11 to be useful, Σ should
has small µn,2δ+2(Σ), small sparsity level τ

p
, κ
p
, and p should be relatively large.

Finally observe (3.43) and (3.42) do not involve the parameters µ and θ. That is, the above
theorem holds for any mean µ and any shaping function θ of the distribution of the data matrixX .
The reason for this observation has been discussed in Subsection 3.3.1. �
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Remark 3.3.14 (Comparisons between theorems). Theorem 3.3.11 is a non-asymptotic version
compound Poisson approximation and Theorem 3.2.4 is the limiting version. Note by taking the
limit p→∞, we obtain simpler formulae for parameters of the corresponding compound Poisson.
Specifically the distribution of increment ζn,δ,ρ of the approximating compound Poisson in Theorem
3.3.11 depends on conditional probabilities in random pseudo geometric graph as in (3.25). On the
other hand, the distribution of increment ζn,δ of the limiting compound Poisson in Theorem 3.2.4
depends on probabilities in random geometric graph as in (3.7), which is relatively simpler. For
instance, a closed form formula of ζn,2 is obtained later in Example 3.5.2 while obtaining a closed
formula for ζn,2,ρ does not seem straightforward.

Despite the fact that the limiting compound Poisson in Theorem 3.2.4 is relatively simpler,
the disadvantage of it is that it requires that ρ→ 1 in the specific rate p−

2
n−2(1+ 1

δ ) as discussed in
Remark 3.2.6. This particular rate, however, is very slow when n is large. Indeed if one choose ρ as
in (3.12) and require ρ ≥ 1− ε for some ε ∈ (0, 1/2), one obtains

p ≥
(
en,δ
2cn

) 1
1+1/δ

(
1

2ε

) n−2
2(1+1/δ)

.

It is clear from the preceding display that when n is large, p is huge. On the contrary, Theorem
3.3.11 does not impose the requirement that ρ approach 1 and approximates the N̄δ even for small p.
This is illustrated in Figure 3.8 in Section 3.15.

Another advantage of Theorem 3.3.11 is that explicit upper bounds for the approximation errors
are established, while only limiting results but no convergence rates are established in Theorem
3.2.4. Though from the discussion in the previous paragraph, one should expect the convergence
rate for Theorem 3.2.4 to be slow for large n. �

Theorem 3.3.11 and Remark 3.3.12 directly follow from Proposition 3.3.6 and Proposition 3.3.9
and hence the proof is omitted. In the rest of this subsection we present results on the limit of
CP(λp,n,δ,ρ, ζn,δ,ρ) when p goes to infinity and then complete the proof of Theorem 3.2.4.

To study the limit distribution for CP(λp,n,δ,ρ, ζn,δ,ρ), the following two results in random
geometric graphs are useful.

The next proposition states that the distribution of the number of vertices of maximum degree,
conditioned on the existence of one such vertex, is invariant in geometric graph and pseudo geometric
graph generated by vertices uniformly distributed on the unit sphere.

Lemma 3.3.15. Consider r < 2/
√

5 and δ ≥ 1. Suppose {u′i}δ+1
i=1

i.i.d.∼ unif(Sn−2). Then for any

` ∈ [δ + 1],

P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `|deg(u′δ+1) = δ
)
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=P
(
PNMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `|deg(u′δ+1) = δ
)
.

where deg(u′δ+1) on the left (right) side is the degree of vertex u′δ+1 in the corresponding random

(pseudo) geometric graph.

By Lemma 3.3.15,

αn,δ(`, rρ) = P
(
NMD

(
{u′i}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `|deg(u′1) = δ
)

(3.44)

when rρ < 2/
√

5 or equivalently ρ > 3/5.

Lemma 3.3.16. Let δ ≥ 1 and n ≥ 3. Suppose {u′i}δ+1
i=1

i.i.d.∼ unif(Sn−2) and {ũ}δi=1
i.i.d.∼

unif(Bn−2). Then for any ` ∈ [δ + 1],

lim
r→0+

P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `|deg(u′δ+1) = δ
)

=P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
. (3.45)

Lemma 3.3.16 states that the conditional distribution of the number of vertices of maximum de-
gree in Ge

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)
, conditioned on the existence of one such vertex, convergences.

Its limit is the distribution of number of vertices of maximum degree in Ge
(
{ũi}δi=1, 1; δ, n− 2

)
,

the random geometric graph generated by uniform distribution in the unit ball.
The condition 2p1+ 1

δPn(rρ) ≤ γ in Theorem 3.3.11 entails rρ → 0+, which is equivalent to
ρ→ 1−, when p→∞. The following lemma states if the rate of ρ→ 1− is coupled with the rate
p → ∞, CP(λp,n,δ,ρ, ζn,δ,ρ) → CP(λn,δ(en,δ), ζn,δ) in distribution, where ζn,δ is defined (3.8) and
λn,δ(en,δ) is defined in Theorem 3.2.4.

Lemma 3.3.17. Suppose as p → ∞, ρ → 1− such that cn2
n
2 p1+ 1

δ (1 − ρ)
n−2

2 → en,δ, where

cn = Γ((n−1)/2)
(n−2)

√
πΓ((n−2)/2)

and en,δ is some positive constant that possibly depends on n and δ. Then

CP(λp,n,δ,ρ, ζn,δ,ρ)→ CP(λn,δ(en,δ), ζn,δ) in distribution. (3.46)

A formal theorem summarizing the results when p→∞ has been presented in Theorem 3.2.4.

Proof of Theorem 3.2.4: It directly follows from Theorem 3.3.11 and Lemma 3.3.17.

Note Remark 3.2.5 directly follows from Remark 3.3.12 and Lemma 3.3.17.

3.4 Convergence of moments

Despite that we have shown in Theorem 3.2.4 that N̄δ → CP (λn,δ(en,δ), ζn,δ) in distribution
where N̄δ is a generic random variable in the set {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}, the
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convergence of moments remains unknown. Convergence in distribution does not necessarily induce
convergence of moments: there exists {0, 1}-valued random variables Zn that converges to 0 in
distribution but not in first moment (c.f. Example 4.5 in Chapter 3 of [Cin11]). The analogous
analysis applies to the non-asymptotic approximation result Theorem 3.3.11. However, convergence
or non-asymptotic approximation of moments is important. For instance, in [HR11] approximation
formula of the first moment is used to derive a phase transition threshold by dE[N̄δ]/dρ = −1.
In this subsection, we present the non-asymptotic approximation of the first moment and second
moment of N̄δ, which will automatically imply convergence results when p→∞.

Let Z ∼ CP(λp,n,δ,ρ, ζn,δ,ρ). Then we can represent Z =
∑N

i=1 Zi, where N is distributed as a
Poisson with mean λp,n,δ,ρ, Zi

i.i.d.∼ ζn,δ,ρ and N is independent of each Zi. The first two moments
of Z are:

EZ =ENEZ1 =

(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ, (3.47)

EZ2 =ENEZ2
1 + (ENEZ1)2

=

(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ) +

((
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

. (3.48)

The next lemma is on non-asymptotic approximation of the first moment of N (R)
Eδ

by the first
moment of the compound Poisson as in (3.47).

Lemma 3.4.1. Let p ≥ n ≥ 4, δ ∈ [p − 1] and γ > 0 be given. Suppose X ∼ VE(µ,Σ, θ).

Suppose 2p1+ 1
δPn(rρ) ≤ γ, and Σ is row-κ sparse. Then

∣∣∣EN (R)
Eδ
− EZ

∣∣∣ ≤ (δ + 1)

2((δ − 1)!)
γδµn,δ+1 (Σ)

κ− 1

p
,

where Z ∼ CP(λp,n,δ,ρ, ζn,δ,ρ) and EZ is calculated in (3.47).

By combining the preceding lemma and Proposition 3.3.9 one immediately obtains non-
asymptotic approximations for the first moment of all 6 quantities {N (k)

i : k ∈ {R,P }, i ∈
{Eδ, V̆δ, Vδ}}. If further impose cn2

n
2 p1+ 1

δ (1− ρ)
n−2

2 → en,δ as p→∞ as in Theorem 3.2.4, then
one also obtains a limit version on first moment. All these straightforward extensions are left to the
interested readers.

The approximation to second moment of N (R)
Eδ

involves approximations to terms EΦ
(R)
~i

Φ
(R)
~j

for~i,~j ∈ C<
δ , which are already available in the proof of Proposition 3.3.6 when Stein’s method is

applied. By those results and careful analysis, the approximation of second moment of N (R)
Eδ

is as
below.
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Proposition 3.4.2. Let p ≥ n ≥ 4, δ ∈ [p − 1] and γ > 0 be given. Suppose X ∼ VE(µ,Σ, θ).

Suppose 2p1+ 1
δPn(rρ) ≤ γ, and Σ is row-κ sparse. Then∣∣∣∣E(N (R)

Eδ

)2

− EZ2

∣∣∣∣ ≤ Cn,δ,γ

(
µn,2δ+2(Σ)

κ

p
+ p−1/δ

)
,

where Z ∼ CP(λp,n,δ,ρ, ζn,δ,ρ) and EZ2 is calculated in (3.48).

To extend the preceding proposition to second moments of other quantities in {N (k)
i : k ∈

{R,P }, i ∈ {Eδ, V̆δ, Vδ}}, one need to generalize Proposition 3.3.9 to L1 distance between the
square of the random quantities.

Proposition 3.4.3. Let p ≥ n ≥ 4 andX ∼ VE(µ,Σ, θ). Let δ ∈ [p−1]. Suppose 2p1+ 1
δPn(rρ) ≤

γ.

(a) Suppose Σ is row-κ sparse. Then for Ñδ ∈
{
N

(R)

V̆δ
, N

(R)
Vδ

}
,

E
∣∣∣∣(Ñδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣ ≤ Cn,δ,γ

(
1 + µn,2δ+3(Σ)

κ− 1

p

)
p−1/δ.

(b) Suppose Σ, after some row-column permutation, is (τ, κ) sparse with τ ≤ p
2

and(√
n− 1

p
+

√
δ ln p

p

)
≤ c

hold for some positive and small universal constant c. Then

E
∣∣∣∣(N (P )

Eδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣ ≤ Cn,δ,γ

(
1 + µn,2δ+2(Σ)

κ− 1

p

)(√
ln p
√
p

+
τ

p

)
.

(c) Suppose the same conditions as in part (b) hold. Then for Ñδ ∈
{
N

(P )

V̆δ
, N

(P )
Vδ

}
E
∣∣∣∣(Ñδ

)2

−
(
N

(P )
Eδ

)2
∣∣∣∣ ≤ Cn,δ,γ

(
1 + µn,2δ+3(Σ)

κ− 1

p

)
p−1/δ.

By applying triangle inequalities to the preceding proposition, one obtain for Ñδ ∈ {N (P )
Vδ

, N
(P )

V̆δ
}

E
∣∣∣∣(Ñδ

)2

−
(
N

(R)
Eδ

)2
∣∣∣∣ ≤ Cn,δ,γ

(
1 + µn,2δ+3(Σ)

κ− 1

p

)(√
ln p
√
p

+
τ

p
+ p−1/δ

)
.
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Thus we have established the L1 distance between the square of each term in {N (k)
i : k ∈

{R,P }, i ∈ {Eδ, V̆δ, Vδ}} and
(
N

(R)
Eδ

)2

.
By combining Proposition 3.4.2 and Proposition 3.4.3 one immediately obtains non-asymptotic

approximations for all 6 quantities {N (k)
i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}. If further impose

cn2
n
2 p1+ 1

δ (1− ρ)
n−2

2 → en,δ as p→∞ as in Theorem 3.2.4, then one also obtains a limit version
on second moment. All these straightforward extensions are left to the interested readers.

For general higher moments the answer remain unknown. One possible direction is to prove that
the sequence

(
N̄δ

)m indexed by p is uniformly integrable, where N̄δ is a generic random variable in
{N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}}. Then convergence of s-th moments with s < m follows by
Proposition 5.10 in [Cin11] and convergence in distribution established in Theorem 3.2.4.

3.5 Explicit characterizations

The limiting compound Poisson in Theorem 3.2.4 is defined in terms of α`, while the non-
asymptotic compound Poisson in Theorem 3.3.11 is defined in terms of α(`, rρ). Moreover the
second moment approximation established in Proposition 3.4.2 also involve the term α(`, rρ) due
to (3.48). However α` and α(`, rρ) are quantities in random geometric graphs, which might not be
easy to compute. In this section, we obtain closed-form expressions for α(`, rρ) and α(`, rρ) for
small δ and provide approximation for them for large n and δ, which implies that the compound
Poisson is approximately a Poisson for large n and δ. We shall begin in Subsection 3.5.1 with the
study of simpler quantity α`, and then study α(`, rρ) in Subsection 3.5.2.

3.5.1 Explicit characterizations for α`

The limiting compound Poisson CP(λn,δ(en,δ), ζn,δ) has parameters given in (3.8) and in The-
orem 3.2.4. However, formulae for underlying Poisson rate λn,δ(en,δ) and the distribution of
increment ζn,δ both involve {α`}`∈[δ+1] with

α` = P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
, ∀` ∈ [δ + 1],

where {ũi}δi=1 are i.i.d. unif(Bn−2). α` is the probability that there are exactly ` − 1 vertices of
maximum degree δ − 1 in the random geometric graph Ge

(
{ũi}δi=1, 1; δ, n− 2

)
.

In principle, α` can be computed by Monte Carlo method, but the cost increases when δ or n
increases. In this section we analytically calculate the α` for special cases with δ = 1 and δ = 2. For
large n and δ, we obtain approximations for α` and show that CP(λn,δ(en,δ), ζn,δ) is approximately
a Poisson.
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Example 3.5.1 (Limiting compound Poisson when δ = 1). When δ = 1, α2 = 1 since the number
of vertex of the maximum degree 0 is 1. Then α1 = 0 and ζn,1(2) = 1 and ζn,1(1) = 0. That is, the
increment size of the compound Poisson is always 2. In this case, λn,δ(en,δ) = 1

2
1
δ!

(en,δ)
δ and hence

the limiting compound Poisson is CP(1
2

1
δ!

(en,δ)
δ , δ{2}). That increment size is constant 2 makes

sense since N (k)
E1

, as twice of number of edges, has increment 2 whenever there is a new edge. In
terms of N (k)

V̆1
, the increment is always 2 since the increment always comes with a new pair. The

N
(k)
V1

, however, is less obvious. But Theorem 3.2.4 also establishes N (k)
V1

has increment 2 in the limit
when p→∞, ρ→ 1− and Σ satisfies some sparsity condition.

As a comparison, Proposition 1 and its proof in [HR11] under row-κ sparsity condition estab-
lishes that N (R)

E1
/2 converges to a Pois(λn,δ(en,δ)) and EN (R)

V1
→ 2λn,δ(en,δ) and P(N

(R)
V1

> 0)→
1− e−λn,δ(en,δ). Proposition 1 and Proposition 3 in [HR12] under block sparsity condition extend
the preceding result to corresponding version in empirical partial correlation graphs, i.e. the same
conclusions hold with R replaced by P . Our result in Theorem 3.3.11 and Theorem 3.2.4 with
δ = 1 characterize the full distribution of the 6 quantities {N (k)

i : k ∈ {R,P }, i ∈ {Eδ, V̆δ, Vδ}},
and our results in section 3.4 characterizes the first and second moment of them, which together
contain the aforementioned previous results. �

Example 3.5.2 (Limiting compound Poisson when δ = 2). When δ = 2, by Lemma 3.5.3, α2 = 0,
α3 = 3

2
I 3

4
(n−1

2
, 1

2
) and α1 = 1 − α3, where Ix(a, b) is the regularized incomplete Beta function.

Then
∑3

`=1 α`/` = 1− I 3
4
(n−1

2
, 1

2
). Thus the parameters for CP (λn,2(en,2), ζn,2) are

ζn,2(1) =
1− 3

2
I 3

4
(n−1

2
, 1

2
)

1− I 3
4
(n−1

2
, 1

2
)
, ζn,2(2) = 0, ζn,2(3) =

1
2
I 3

4
(n−1

2
, 1

2
)

1− I 3
4
(n−1

2
, 1

2
)

(3.49)

and
λn,2(en,2) =

1

2
(en,2)2

(
1− I 3

4

(
n− 1

2
,
1

2

))
.

Note this corrects an error in Proposition 1 in [HR12], where their incorrect conclusion is built
on N (R)

Eδ
for any δ ≥ 2 converges to a Poisson random variable, which is incorrect since we just

showed at least when δ = 2, the limit is indeed a compound Poisson CP (λn,2(en,2), ζn,2) but not a
Poisson.

�

Lemma 3.5.3. When δ = 2, α2 = 0, α3 = 3
2
I 3

4
(n−1

2
, 1

2
) and α1 = 1 − α3, where Ix(a, b) is the

regularized incomplete Beta function.

In Example 3.5.1 and Example 3.5.2 the limiting compound Poisson for δ = 1 and δ = 2 have
been studied. We next show that when n or δ is relatively large, the limiting compound Poisson is
approximately a Poisson. For that, the following geometric result is needed.
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Lemma 3.5.4. Let n ≥ 4 and δ ≥ 2.

(a) Consider {ũi}δi=1
i.i.d.∼ unif(Bn−2). Then

P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
≥ 1
)
≤δ(n− 2)

∫ 1

0

(
1− r2

4

) (n−2)(δ−1)
2

rn−3dr

=δ(n− 2)2n−3B

(
1

4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)
,

where B (·; ·, ·) is the incomplete beta function.

(b)

∫ 1

0

(
1− r2

4

) (n−2)(δ−1)
2

rn−3dr ≤


(

4
5

) (n−2)δ−1
2 +

(
1−

√
4
5

) (
3
4

) (n−2)(δ−1)
2 δ = 2, 3,

exp
(

1
4

) (
δ−1
δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2 m ≥ 4.

Lemma 3.5.4 (a) establishes an upper bound for the probability that there is at least one vertex
of maximum degree in the random geometric graph generated by uniform distribution in the unit
ball. Lemma 3.5.4 (b) provides a simple upper bound for the integral in (a), and this upper bound
provide insight in high dimension (large n) or when there are lots of vertices (large δ). Indeed, when
δ is fixed, P

(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
≥ 1
)

decays exponentially as n increases as illustrated
by Lemma 3.5.4. While n is fixed, it decays as δ−

n−3
2 as δ increases.

Recall α` = P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
for ` ∈ [δ + 1]. Then Lemma 3.5.4

immediately yields the following result.

Corollary 3.5.5. Consider n ≥ 4 and δ ≥ 2.

(a)

dTV
(
ζn,δ, δ{1}

)
≤

δ+1∑
`=2

α` ≤δ(n− 2)2n−3B

(
1

4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)
(3.50)

≤


δ(n− 2)

((
4
5

) (n−2)δ−1
2 +

(
1−

√
4
5

) (
3
4

) (n−2)(δ−1)
2

)
δ = 2, 3,

δ(n− 2) exp
(

1
4

) (
δ−1
δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2 δ ≥ 4.

.

(b) If in addition, (en,δ)
δ

δ!
≤ γ1, where en,δ is as in Theorem 3.2.4, then

∣∣∣∣λn,δ(en,δ)− (en,δ)
δ

δ!

∣∣∣∣ ≤ 3

2
γ1

δ+1∑
`=2

α`.
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From Corollary 3.5.5 (a), this total variation distance between the distribution of increment and
Dirac measure at 1 decays exponentially as n increases and decays as δ−

n−3
2 as δ increases. That

means that when either n or δ is large, the limiting compound Poisson is approximately a Poisson.
Corollary 3.5.5 (b) states if in addition the threshold is chosen such that en,δ satisfies (en,δ)

δ

δ!
≤ γ1

for any n and δ, then we know the rate of underlying Poisson λn,δ(en,δ) is approximately 1
δ!

(en,δ)
δ

with error decaying exponentially as n increases or decaying as δ−
n−3

2 as δ increases. In conclusion,
CP (λn,δ, ζn,δ) ≈ Pois( (en,δ)

δ

δ!
) when n or δ is large and (en,δ)

δ

δ!
≤ γ1, and in this cases, we do not

have to compute the α`, which involves evaluation of complicated integral.

(a) Log-scale comparison of the decay when δ = 2 (b) Family of upper bounds

Figure 3.4: (a) is a comparison in the log-scale between the upper bound on dTV (ζn,2, δ{1}) by
(3.50) with δ = 2 and the exact value of dTV (ζn,2, δ{1}) by (3.49). (b) is the plot of the upper bound
on dTV (ζn,2, δ{1}) as a function of n for different values of δ from 2 to 7.

As is shown in the Figure 3.4 (a), for the case δ = 2, dTV (ζn,2, δ{1}) decays to 0 exponentially
and the upper bound in (3.50) also decays to 0 exponentially as n increases. This demonstrate (3.50)
captures the rate of decay. Figure 3.4 (b) plots the upper bounds as a function n for fixed δ, and as
is clear from the plot, as long as n is above 40, the limiting compound Poisson is approximately a
Poisson for any δ. Moreover, as δ increases, the number of samples required for this approximation
decreases.

3.5.2 Explicit characterizations for α(`, rρ)

We now turn our attention to the quantity α(`, ρ) = αn,δ(`, ρ), which is the parameter of the
compound Poisson distribution CP(λp,n,δ,ρ, ζn,δ,ρ) in Theorem 3.3.11 and the parameter of the
second moment in (3.48).

By the discussion following (3.25), we know for δ = 1 and for any n, α(`, rρ) = αn,1(`, rρ) =

1(δ = 2). The next lemma studies the case when δ ≥ 2 and is an analogous result to Lemma 3.5.4
and Corollary 3.5.5 (a).
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Lemma 3.5.6. Let n ≥ 4 and δ ≥ 2.

(a) Consider {u′}δ+1
i=1

i.i.d.∼ unif(Sn−2). Then for 0 < r <
√

2

P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 2
)
≥ 2|deg(u′δ+1) = δ

)
≤h̄

(
1√

1− r2/4
, n, δ

)
δ(n− 2)

∫ 1

0

(
1−

(r1

2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1

=h̄

(
1√

1− r2/4
, n, δ

)
δ(n− 2)2n−3B

(
1

4
;
n− 2

2
,
(n− 2)(m− 1)

2
+ 1

)
,

where h̄(x, n, δ) = xn+δ−5x(n−2)(δ−1).

(b) When r ≤

2
√

1−
√

1− 1/5, δ = 2, 3

2
√

1−
√

1− 1/δ, δ ≥ 4
,

P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 2
)
≥ 2|deg(u′δ+1) = δ

)
≤ h̃(n, δ),

where

h̃(n, δ)

≤


δ(n− 2){(

√
5
4
)
δ−2

2 (
√

4
5
)

(n−2)δ−1
2 + (1−

√
4
5
)(
√

5
4
)
n+δ−5

2

(
3
√

5
8

) (n−2)(δ−1)
2 }, δ = 2, 3,

δ(n− 2) exp
(

1
4

) (√
δ
δ−1

) δ−2
2
(√

δ−1
δ

) (n−2)(δ−1)
2

(
4√

δ(δ−1)

)n−3
2

, δ ≥ 4.

,

(c) When ρ ≥ 3/5, dTV(ζn,δ,ρ, δ{1}) ≤
∑δ+1

`=2 α(`, rρ) , which shares the same upper bounds as in

part (a) with r replaced by rρ. When ρ ≥

4/
√

5− 1, δ = 2, 3

2
√

1− 1/δ − 1, δ ≥ 4
,
∑δ+1

`=2 α(`, rρ) also

shares the same upper bound as in part (b).

Lemma 3.5.6 (a) establishes an upper bound for the conditional probability that there is at least
two vertices of maximum degree in the random geometric graph generated by uniform distribution
on the sphere, conditioned the existence of one such vertex. Lemma 3.5.6 (b) provides a further
upper bound when r is relatively small, on the upper bound obtained in part (a), to provide insight
in high dimension (large n) or when there are lots of vertices (large δ). Indeed, when δ is fixed,
P
(
NMD

(
{u′i}δ+1

i=1 , rρ; δ + 1, n− 2
)
≥ 2|deg(u′δ+1) = δ

)
decays exponentially as n increases as

illustrated by Lemma 3.5.6 (b). While n is fixed, it decays as δ−
n−3

2 as δ increases provided that the
parameter r decreases in terms of δ as specified in part (b). Lemma 3.5.6 (c) uses the geometric
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consequences in part (a) and (b) to establish that the total variation distance between the distribution
of increment and Dirac measure at 1 decays exponentially as n increases and decays as δ−

n−3
2 as δ

increases. That means that when either n or δ is large, and when the threshold ρ is chosen to satisfies
the condition in part (c), the compound Poisson approximation in Theorem 3.3.11 is approximately
a Poisson.

By examining the proof, Lemma 3.5.6 (c) essentially proves that α`(1, rρ) ≈ 1 and

δ+1∑
`=2

α`(1, rρ) ≈ 0.

In this case it is not difficult to see that the λp,n,δ,ρ satisfies

λp,n,δ,ρ ≈
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ,

which then implies CP(λp,n,δ,ρ, ζn,δ,ρ) ≈ Pois(
(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ). Moreover the second moment
of CP(λp,n,δ,ρ, ζn,δ,ρ) in (3.48) approximately equals to(

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ +

((
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

.

One can obtain the errors of the approximations in the preceding two displays analogous to Lemma
3.5.6 (c), and these straightforward extensions are omitted.

We have shown that the limiting compound Poisson CP(λn,δ(en,δ), ζn,δ) in Theorem 3.2.4 can
be approximately by Pois( (en,δ)

δ

δ!
) and the non-asymptotic compound Poisson CP(λp,n,δ,ρ, ζn,δ,ρ) in

Theorem 3.3.11 can be approximated by Pois(
(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ) with small errors for large n or
δ. Figure 3.9 in is a numerical simulation to demonstrate the effect of using Poisson distributions to
approximate the distributions of random quantities in {N (k)

i : k = R, i ∈ {Eδ, V̆δ, Vδ}}.

3.6 Conclusions and discussions

In this chapter, we studied the number of hubs in both the empirical correlation graph and the
empirical partial correlation graph in a unified framework. To be specific, we show the number
of hubs in terms of N (k)

Vδ
or N (k)

V̆δ
and the star subgraph counts N (k)

Eδ
both are close to a common

compound Poisson in distribution, asymptotically and non-asymptotically. We also establish that the
first and second moments of random quantities of interest are close to that of the compound Poisson.
The parameters in the compound Poisson are characterized in closed form in terms of quantities
from a random geometric graph. The parameters are also approximated by simple formulae, which
implies the compound Poisson can be approximated by a Poisson for reasonably large sample size
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n or reasonably hub degree δ.
In Subsection 3.3.2 we represent the empirical correlation graph as random pseudo geometric

graph with U -scores {ui}pi=1 as vertices. Then N (R)
Eδ

is the star subgraph counts and N (R)
Vδ

is the
number of vertices of degree at least δ of the random pseudo geometric graph. Note the monograph
[Pen03] studied the number of induced subgraphs isomorphic to a given graph, typical vertices, and
other graphical quantities of random geometric graph thoroughly, where they assume the vertices
of the random geometric graph are i.i.d. on Rd. It is worth pointing out that in the Example after
Corollary 3.6 in [Pen03], the author comments on the number of vertices of degree at least 3 is
asymptotically a compound Poisson without characterizing the parameters of the compound Poisson.
Here in Theorem 3.2.4 and Theorem 3.3.11, we give characterizations of the compound Poisson
distributions with closed-form formulae. Moreover, it is clear that our random pseudo geometric
graph model is different from the classic random geometric graph since our vertices ui lie in the
unit sphere instead of the whole Euclidean space and our distance is dist(·, ·) instead of Euclidean
distance. We also want to emphasize a key difference is that no independence among all vertices ui
are imposed in our model. Indeed in our model, the correlations between vertices ui are encoded by
a sparse Σ.

Future directions include generalizing the results to non-sparse Σ since it is observed from
simulations that the same compound Poisson characterization also holds for Σ dense but with many
entries of small magnitude. Another is to extend the convergence of the first and second moments
to higher moments as already discussed at the end of Section 3.4. A third direction is to develop
potential applications in the hypothesis testing to test whether the dispersion matrix Σ satisfies a
certain structure based on the compound Poisson characterizations.

3.7 Controlling local normalized determinant by extreme eigenvalues

Lemma 3.7.1. (a) For any symmetric positive definiteA, µn,m(A) is bounded by powers of the

largest local condition number:

µn,m(A) ≤

max
I⊂[p]

(
λmax(AI)
λmin(AI)

)m(n−1)
2

, A not diagonal,

1, Adiagonal.

(b) For any symmetric positive definiteA ∈ Rp×p, µn,m(A) is bounded by powers of the condition

number:

µn,m(A) ≤


(
λmax(A)
λmin(A)

)m(n−1)
2

, A not diagonal,

1, A diagonal.

181



(c) Consider a sequence of symmetric positive definite matrices Σ ∈ Rp×p with increasing

dimension p. If λmin (Σ) ≥ λ and λmax (Σ) ≤ λ for all p, then

µn,m(Σ) ≤


(
λ
λ

)m(n−1)
2

, Σ not diagonal,

1, Σ diagonal.

(d) Consider a sequence of symmetric positive definite matrices Σ ∈ Rp×p with increasing

dimension p. Let M > 0 be a constant. Suppose the variance of each variable is uniformly

bounded by M , i.e. for all p, sup1≤i≤p (Σ)ii ≤M . Moreover suppose λmin (Σ) ≥ λ for all p.

Then

µn,m(Σ) ≤


(
Mm
λ

)m(n−1)
2

, Σ not diagonal,

1, Σ diagonal.

Proof: (a) It follows directly by definition of µn,m(A) and µ(AI) ≥
(
λmin(AI)
λmax(AI)

)m
.

(b) Since µn,m(A) is inceasing in m as discussed after Example 3.2.8, µn,m(A) ≤ µn,p(A). The
proof is then complete by applying (a) to µn,p(A).

(c) It follows directly from (b).

(d) Let I ⊂ [p] with |I| = m. SinceAI is symmetric positive definite,

|(AI)ij| ≤
√

(AI)ii(AI)jj ≤M

and thus λmax(AI) = ‖AI‖2 ≤ ‖AI‖F ≤Mm. The remaining of the proof is similar to that
of (b).

3.8 Proofs in Subsection 3.3.1 and Subsection 3.3.2

3.8.1 Proof of Lemma 3.3.2

Proof of Lemma 3.3.2: X̃ , defined in (3.15), is of rank n − 1 with probability 1, since it has a
density with respect to Lebesgue measure on R(n−1)p and p ≥ n. Then U have rank n − 1 with
probability 1 as well since U is obtained by normalizing the columns of X̃ . ThusB is of the rank
n− 1 with probability 1.
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3.8.2 Proof of Lemma 3.3.3 (b)

It suffices to prove the following statement:

fuj1 ,uj2 ,··· ,ujm (v1,v2, · · · ,vm) ≤ µn,m(ΣJ ), ∀ vi ∈ Sn−2,∀ i ∈ [m].

For notation convenience, we only present the proof for m = p and J = [p] since the proof of the
general m and J follows the same proof procedure. When m = p and J = [p], the statement of
Lemma 3.3.3 (b) become:

The joint density of columns of U -score w.r.t. ⊗pσn−1 is upper bounded by µn,p(Σ):

fu1,u2,··· ,up(v1,v2, · · · ,vp) ≤ µn,p(Σ), ∀ vi ∈ Sn−2,∀ i ∈ [p]. (3.51)

Proof of (3.51): Recall {x̃(i)}n−1
i=1 ⊂ Rp, the rows of X̃ , are i.i.d. copy of N (0,Σ). Let {x̃i}pi=1

be the columns of X̃ . Then ui := x̃i
‖x̃i‖2 ∈ Rn−1 has distribution unif(Sn−2) for i ∈ [p].

When Σ is symmetric positive definite and diagonal, {x̃i}pi=1 are independent, which imply
{ui}pi=1 are independent. Thus in this case, the joint density of columns of U -score w.r.t. ⊗pσn−1

is 1.
Consider general symmetric positive definite Σ. The probability density of X̃ w.r.t. the

Lebesgue measure on R(n−1)p is

fX̃(X̃) = det(Σ)−
n−1

2 (2π)−
(n−1)p

2 exp

(
−1

2

n−1∑
j=1

(
x̃(j)
)T

Σ−1x̃(j)

)
.

Use the spherical transform for each column x̃i =
(
X̃ji : 1 ≤ j ≤ n− 1

)T
:



X̃1i = Ri cos(θ1i),

X̃2i = Ri sin(θ1i) cos(θ2i),
... for 1 ≤ i ≤ p,

X̃(n−2)i = Ri sin(θ1i) sin(θ2i) · · · sin(θ(n−3)i) cos(θ(n−2)i),

X̃(n−1)i = Ri sin(θ1i) sin(θ2i) · · · sin(θ(n−3)i) sin(θ(n−2)i),

where for each i ∈ [p]: Ri ≥ 0, θji ∈ [0, π] for 1 ≤ j ≤ n− 3 and θ(n−2)i ∈ [0, 2π).
Denote R = (Ri : 1 ≤ i ≤ p) and Θ = (θji : 1 ≤ i ≤ p, 1 ≤ j ≤ (n − 2)). Then the joint

density of (R,Θ) is:

fR,Θ(R,Θ)

183



=det(Σ)−
n−1

2 (2π)−
(n−1)p

2 exp

(
−1

2

n−1∑
j=1

(
h(j)

)T
Σ−1h(j)

)
p∏
i=1

(
Rn−2
i

n−2∏
j=1

sinn−2−j(θji)

)
,

where

h(j) =

(
Ri cos(θji)

j−1∏
q=1

sin(θqi) : 1 ≤ i ≤ p

)T

∈ Rp for 1 ≤ j ≤ n− 2

and

h(n−1) =

(
Ri

n−2∏
q=1

sin(θqi) : 1 ≤ i ≤ p

)T

∈ Rp.

Then the density of Θ is:

fΘ(Θ)

=det(Σ)−
n−1

2 (2π)−
(n−1)p

2

p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

∫
[0,∞)p

e−
1
2

∑n−1
j=1 (h(j))

T
Σ−1h(j)

p∏
i=1

(
Rn−2
i

) p∏
i=1

dRi

≤det(Σ)−
n−1

2 (2π)−
(n−1)p

2

p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

∫
[0,∞)p

e−
1
2
λmin(Σ−1)

∑n−1
j=1 ‖h

(j)‖22
p∏
i=1

(
Rn−2
i

) p∏
i=1

dRi

=det(Σ)−
n−1

2 (2π)−
(n−1)p

2

p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

∫
[0,∞)p

e−
1
2

[λmax(Σ)]−1
∑p
i=1 R

2
i

p∏
i=1

(
Rn−2
i

) p∏
i=1

dRi

=det(Σ)−
n−1

2 (2π)−
(n−1)p

2

p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

(∫
[0,∞)

e−
1
2

[λmax(Σ)]−1R2
1Rn−2

1 dR1

)p
(m)
= det(Σ)−

n−1
2 (2π)−

(n−1)p
2

p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

(
[λmax(Σ)]

n−1
2 Γ

(
n− 1

2

)
2
n−3

2

)p
(mm)
=

[
(λmax(Σ))p

det(Σ)

]n−1
2 1

|Sn−2|p
p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

where equality (m) follows from the integration of Chi distribution with degree n− 1, and equality
(mm) follows from |S(n−2)| = 2π

n−1
2 /Γ((n− 1)/2). The proof is complete by noticing fΘ(Θ) is

joint density of columns of U -score expressed in spherical coordinate and

1

|Sn−2|p
p∏
i=1

n−2∏
j=1

sinn−2−j(θji)

is the joint distribution of p independent unif(Sn−2) expressed in spherical coordinate.
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3.9 Proof of Proposition 3.3.6

3.9.1 Auxiliary lemmas for Proposition 3.3.6

Recall for any δ ≥ 1, C<
δ is defined in (3.29). For~i ∈ C<

` , define a symmetric positive definite
matrix Σ~i ∈ R(`+1)×(`+1) to be the submatrix of Σ, consisting of rows and columns Σ indexed by the
ordered components (i0, i1, . . . , i`) of~i. Let

[
~i
]

= {i0, i1, · · · , i`} be the unordered set of indexes

of any~i ∈ C<
` . Then Σ~i ∈ Σ[~i] and µn,`+1 (Σ~i) = µn,`+1

(
Σ[~i]

)
, where Σ[~i] and µn,`+1

(
Σ[~i]

)
are

defined in the paragraph after Definition 3.2.3.

Lemma 3.9.1. SupposeX ∼ VE(µ,Σ, θ). Let ` ∈ [p− 1]. Consider~i = (i0, i1, · · · , i`) ∈ C<
` .

E
∏̀
q=1

Φ
(R)
i0iq
≤ µn,`+1 (Σ~i) (2Pn(rρ))

` .

Moreover, in last display the equality holds and µn,`+1 (Σ~i) = 1 when Σ~i is diagonal.

Proof:
∏̀
q=1

Φ
(R)
i0iq

is a nonnegative Borel Measurable function of uj for j ∈
[
~i
]
. By Lemma 3.3.3

(c), it suffices to show

E
∏̀
q=1

Φ
(R)
i0iq
≤ (2Pn(r))`

for the case uj for j ∈
[
~i
]

are ` + 1 independent unif(Sn−2). The last inequality indeed holds
with equality, which follows from that the terms in the product on the left side are independent
conditioned on ui.

Lemma 3.9.1 suggests differentiating whether Σ~i is diagonal or not since µn,`+1 (Σ~i) = 1 when
Σ~i is diagonal. The next lemma is to establish in the worser case when Σ~i is not diagonal, the
number of such terms are not too many.

Lemma 3.9.2. Let Σ be row-κ sparse. Let δ ∈ [p− 1]. Then

∑
~i∈C<δ

Σ~i not diagonal

1 ≤ δ(δ + 1)

2
(κ− 1)

(
p

δ

)
≤ (δ + 1)

2((δ − 1)!)
pδ(κ− 1).

Proof: Note that ∑
~i∈C<δ

Σ~i diagonal

1 ≥ 1

δ!
p(p− κ) . . . (p− δκ),
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where the 1
δ!

is due to in our definition~i the index i1 < . . . < iδ are sorted. Then

∑
~i∈C<δ

Σ~i not diagonal

1 ≤
(
p

1

)(
p− 1

δ

)
− 1

δ!
p

δ∏
`=1

(p− `κ) ≤ δ(δ + 1)

2
(κ− 1)

(
p

δ

)
,

where the last inequality follows from Lemma 3.14.3 (b).

Note κ = 1, the Lemma 3.9.2 shows
∑

~i∈C<δ
Σ~i not diagonal

1 = 0, which means Σ is diagonal matrix.

Next we present a lemma to bound
∑

~i∈C<`
µn,`+1 (Σ~i).

Lemma 3.9.3. ∑
~i∈C<`

µn,`+1 (Σ~i) ≤
p`+1

`!

(
1 + `2µn,`+1(Σ)

κ− 1

p

)
.

Proof: ∑
~i∈C<`

µn,`+1(Σ~i) =
∑
~i∈C<`

Σ~i diagonal

1 +
∑
~i∈C<`

Σ~i not diagonal

µn,`+1(Σ~i)

≤
(
p

1

)(
p− 1

`

)
+ µn,`+1(Σ)

∑
~i∈C<`

Σ~i not diagonal

1

≤p
`+1

`!

(
1 + `2µn,`+1(Σ)

κ− 1

p

)
,

where the first inequality follows from the Lemma 3.3.3 (a), and the second inequality follows from
Lemma 3.9.2.

Lemma 3.9.4. Let X ∼ VE(µ,Σ, θ). Let {iq}αq=0, {jq}
β
q=0 ⊂ [p] be respectively a sequence of

α + 1 and β + 1 distinct integers. Let m ∈ [min{α, β}]. Suppose iq = jq for q ∈ [m] and iq 6= jq′

for q, q′ 6∈ [m]. Denote I =
⋃α
q=0{iq}

⋃(⋃β
q′=0{j′q}

)
and then |I| = α + β −m+ 2.

(a) Then

E

(
α∏
q=1

Φ
(R)
i0iq

)(
β∏

q′=1

Φ
(R)
j0jq′

)
≤ µn,|I| (ΣI) (2Pn(rρ))

α+β−m (2Pn(2rρ)) . (3.52)

(b) Then

EΦ
(R)
i0j0

(
α∏
q=1

Φ
(R)
i0iq

)(
β∏

q′=1

Φ
(R)
j0jq′

)
≤ µn,|I| (ΣI) (2Pn(rρ))

α+β−m+1. (3.53)
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(3.53) also holds with m = 0.

Proof: (a) By Lemma 3.3.3 (c), it suffices to prove (3.52) without µn,|I| (ΣI) for the case {uj}
for j ∈ I are independent unif(Sn−2). Conditioned on ui0 and uj0 , {Φ(R)

i0iq
Φ

(R)
j0iq
}mq=1 are

i.i.d., {Φ(R)
i0iq
}αq=m+1

⋃
{Φ(R)

j0jq′
}βq′=m+1 are i.i.d. and moreover, every term in {Φ(R)

i0iq
Φ

(R)
j0iq
}mq=1

is independent of every term in {Φ(R)
i0iq
}αq=m+1

⋃
{Φ(R)

j0jq′
}βq′=m+1. Thus

E

[(
α∏
q=1

Φ
(R)
i0iq

)(
β∏

q′=1

Φ
(R)
j0jq′

)∣∣∣∣∣ui0 ,uj0
]

=(E[Φ
(R)
i0i1

Φ
(R)
j0i1

∣∣∣ui0 ,uj0 ])m(E[Φ
(R)
i0iα

1(α > m) + Φ
(R)
j0jβ

1(α = m,β > m)
∣∣∣ui0 ,uj0 ])α+β−2m

=
(
E
[

Φ
(R)
i0i1

Φ
(R)
j0i1

∣∣∣ui0 ,uj0])m (2Pn(rρ))
α+β−2m , (3.54)

where for the first equality the convention 00 = 1 is used if α = β = m. Notice (3.54) also
holds for m = 0.

Denote SC(r,z) = SC(r,z) ∪ SC(r,−z). Then conditioned on ui0 and uj0 ,

Φ
(R)
i0i1

Φ
(R)
j0i1

=1
(
ui1 ∈ SC(r,ui0) ∩ SC(r,uj0)

)
=1(‖ui0 − uj0‖2 ≤ 2rρ or ‖ui0 + uj0‖2 ≤ 2rρ)1

(
ui1 ∈ SC(r,ui0) ∩ SC(r,uj0)

)
,

where the last equality follows from SC(rρ,ui0) ∩ SC(rρ,uj0) is non-empty only when
‖ui0 − uj0‖2 ≤ 2rρ or ‖ui0 + uj0‖2 ≤ 2rρ. Plug the above inequality into (3.54),

E

[(
α∏
q=1

Φ
(R)
i0iq

)(
β∏

q′=1

Φ
(R)
j0jq′

)∣∣∣∣∣ui0 ,uj0
]

=1(‖ui0 − uj0‖2 ≤ 2rρ or ‖ui0 + uj0‖2 ≤ 2rρ)(E[Φ
(R)
i0i1

Φ
(R)
j0i1

∣∣∣ui0 ,uj0 ])m (2Pn(rρ))
α+β−2m

≤1(‖ui0 − uj0‖2 ≤ 2rρ or ‖ui0 + uj0‖2 ≤ 2rρ) (2Pn(rρ))
m (2Pn(rρ))

α+β−2m .

The result then follows by taking expectation w.r.t. ui0 and uj0 .

(b) Similar to proof of (a), it suffices to prove (3.53) without µn,|I| (ΣI) for the case uj for j ∈ I
are independent unif(Sn−2). Conditioned on ui0 and uj0 ,

E

[
Φ

(R)
i0j0

(
α∏
q=1

Φ
(R)
i0iq

)(
β∏

q′=1

Φ
(R)
j0jq′

)∣∣∣∣∣ui0 ,uj0
]
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=Φ
(R)
i0j0

(
E
[

Φ
(R)
i0i1

Φ
(R)
j0i1

∣∣∣ui0 ,uj0])m (2Pn(rρ))
α+β−2m

≤Φ
(R)
i0j0

(2Pn(rρ))
m (2Pn(rρ))

α+β−2m ,

where the equality follows from (3.54). The result then follows by taking expectation w.r.t.
ui0 and uj0 . Notice (3.54) also holds for m = 0.

3.9.2 Lemmas on double summations

Denote ~i ∪ ~j =
[
~i
]⋃[

~j
]

for any ~i ∈ C<
q and any ~j ∈ C<

δ . Consider any θ~i,~j that is a non-

negative function of u` for ` ∈~i ∪~j defined for~i ∈ C<
q and ~j ∈ C<

δ with 1 ≤ δ ≤ q ≤ p− 1. In
this section an upper bound on E

∑
~i∈C<q

∑
~j∈C<δ

θ~i,~j is presented. The results in this subsection will
be used in the proofs of Proposition 3.3.6 and Proposition 3.4.3.

For i ∈ [p], let
NZ(i) := {m ∈ [p] : Σim 6= 0} (3.55)

denote the index of the variables that has non zero correlation with the i-th variable. For~i ∈ C<
q ,

define NZ
(
~i
)

:=
q⋃
`=0

NZ(i`). Since Σ is row-κ sparse, for any~i ∈ C<
q ,
∣∣∣NZ (~i)∣∣∣ ≤ (q + 1)κ,

and
p~i :=

∣∣∣[p]\NZ (~i)∣∣∣ ≥ p− (q + 1)κ. (3.56)

Note that p~i is the number of variables that are independent of variables in the group [~i].

For~i ∈ C<
q , define

J~i :=

{
~j ∈ C<

δ :
δ⋃
`=0

{j`} ⊂
q⋃
`=0

{i`}

}
, (3.57)

T~i :=

{
~j ∈ C<

δ :

(
δ⋃
`=0

{j`}

)⋂(
NZ

(
~i
))

= ∅

}
, (3.58)

N~i := C<
q \J~i\T~i. (3.59)

Here J~i is the set of indexes in C<
δ consisting of coordinates as subsets of

[
~i
]
; T~i is the set of

indexes in C<
δ consisting of coordinates outside neighborhood of~i; N~i is the set of "correlated but

not highly correlated" indexes in C<
δ , i.e. the set of indexes of which at least one coordinate is in the

neighborhood of~i, but excluding those sets of indexes of which the set of coordinates are subsets as
that of~i.
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The strategy is to decompose

E
∑
~i∈C<q

∑
~j∈C<δ

θ~i,~j = E
∑
~i∈C<q

∑
~j∈J~i

θ~i,~j + E
∑
~i∈C<q

∑
~j∈T~i

θ~i,~j + E
∑
~i∈C<q

∑
~j∈N~i

θ~i,~j

and bound each of the three terms.
The next result is an upper bound on the first two terms.

Lemma 3.9.5. Let p ≥ n ≥ 4 and X ∼ VE(µ,Σ, θ). Suppose Σ is row-κ sparse. Consider

any θ~i,~j that is a non-negative function of u` for ` ∈ ~i ∪ ~j defined for~i ∈ C<
q and ~j ∈ C<

δ with

1 ≤ δ ≤ q ≤ p− 1.

(a) Suppose there exist positive constants a, z such that Eθ~i,~j ≤ µn,q+1(Σ~i)az
q for any ~j ∈ J~i.

Then ∑
~i∈C<q

∑
~j∈J~i

Eθ~i,~j ≤ap(pz)q
q + 1

δ!(q − δ)!

(
1 + q2µn,q+1(Σ)

κ− 1

p

)

(b) Suppose there exist positive constants a, z such that Eθ~i,~j ≤ µn,q+δ+2(Σ~i∪~j)az
q+δ for any

~j ∈ T~i. Then

∑
~i∈C<q

∑
~j∈T~i

Eθ~i,~j ≤ap
2(pz)q+δ

3

δ!(q − 1)!

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)
.

Proof:
(a) Since |J~i| =

(
q+1

1

)(
q
δ

)
∑
~i∈C<q

∑
~j∈J~i

Eθ~i,~j ≤az
q

(
q + 1

1

)(
q

δ

) ∑
~i∈C<q

µn,q+1(Σ~i)

≤ap(pz)q
q + 1

δ!(q − δ)!

(
1 + q2µn,q+1(Σ)

κ− 1

p

)
,

where the last step follows from Lemma 3.9.3.

(b) ∑
~i∈C<q

∑
~j∈T~i

Eθ~i,~j

≤azq+δ
∑
~i∈C<q

∑
~j∈T~i

µn,q+δ+2(Σ~i∪~j)
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≤azq+δ

 ∑
~i∈C<q

Σ~i diagonal

∑
~j∈T~i

Σ~j diagonal

1 + µn,q+δ+2(Σ)
∑
~i∈C<q

Σ~i diagonal

∑
~j∈T~i

Σ~j not diagonal

1+

µn,q+δ+2(Σ)
∑
~i∈C<q

Σ~i not diagonal

∑
~j∈T~i

1



≤azq+δ


(
p

1

)(
p− 1

q

)(
p

1

)(
p− 1

δ

)
+ µn,q+δ+2(Σ)

(
p

1

)(
p− 1

q

) ∑
~j∈C<δ

Σ~j not diagonal

1+

µn,q+δ+2(Σ)
∑
~i∈C<q

Σ~i not diagonal

(
p

1

)(
p− 1

δ

)
≤ap2(pz)q+δ

3

δ!(q − 1)!

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)
,

where the second inequality follows from that for ~j ∈ T~i, Σ~i∪~j is diagonal if and only if Σ~i and Σ~j

are both diagonal; and the last step follows from Lemma 3.9.2.

To control E
∑

~i∈C<q

∑
~j∈N~i

θ~i,~j , we further partition N~i into 6 subsets as follows. For~i ∈ C<
q

with q ≥ δ, define

K1

(
~i
)

:=
{
~j ∈ N~i : j0 = i0

}
,

K2

(
~i
)

:=

{
~j ∈ N~i : j0 6= i0, j0 ∈

q⋃
`=1

{i`}, i0 ∈
δ⋃
`=1

{j`}

}
,

K3

(
~i
)

:=

{
~j ∈ N~i : j0 6= i0, j0 6∈

q⋃
`=1

{i`}, i0 ∈
δ⋃
`=1

{j`}

}
,

K4

(
~i
)

:=

{
~j ∈ N~i : j0 6= i0, j0 ∈

q⋃
`=1

{i`}, i0 6∈
δ⋃
`=1

{j`}

}
,

K5

(
~i
)

:=

{
~j ∈ N~i : j0 6= i0, j0 6∈

q⋃
`=1

{i`}, i0 6∈
δ⋃
`=1

{j`},

∣∣∣∣∣
(

q⋃
`=1

{i`}

)⋂(
δ⋃
`=1

{j`}

)∣∣∣∣∣ ≥ 1

}
,
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K6

(
~i
)

:=

{
~j ∈ N~i : j0 6= i0, j0 6∈

q⋃
`=1

{i`}, i0 6∈
δ⋃
`=1

{j`},

(
q⋃
`=1

{i`}

)⋂(
δ⋃
`=1

{j`}

)
= ∅

}
.

Then N~i = ∪6
w=1Kw

(
~i
)

. Let Dm
~i

= {~j ∈ N~i :
∣∣(∪q`=1{i`})

⋂(
∪δ`=1{j`}

)∣∣ = m}. We are now in a
good position to present a lemma on E

∑
~i∈C<q

∑
~j∈N~i

θ~i,~j .

Lemma 3.9.6. Let p ≥ n ≥ 4 and X ∼ VE(µ,Σ, θ). Suppose Σ is row-κ sparse. Consider

any θ~i,~j that is a non-negative function of u` for ` ∈ ~i ∪ ~j defined for~i ∈ C<
q and ~j ∈ C<

δ with

1 ≤ δ ≤ q ≤ p− 1. Suppose there exist positive constants a, b, z such that θ~i,~j satisfies:

Eθ~i,~j ≤ µn,|~i∪~j|(Σ~i∪~j)az
q+δ−m, ∀ ~j ∈ Kw

(
~i
)
∩Dm

~i
, ∀ 0 ≤ m ≤ δ − 1, ∀w ∈ {1, 3, 4};

Eθ~i,~j ≤ µn,|~i∪~j|(Σ~i∪~j)az
q+δ−m−1, ∀ ~j ∈ K2

(
~i
)
∩Dm

~i
, ∀ 0 ≤ m ≤ δ − 2;

Eθ~i,~j ≤ µn,|~i∪~j|(Σ~i∪~j)abz
q+δ−m, ∀ ~j ∈ K5

(
~i
)
∩Dm

~i
, ∀ 1 ≤ m ≤ δ;

Eθ~i,~j ≤ µn,|~i∪~j|(Σ~i∪~j)az
q+δ, ∀ ~j ∈ K6

(
~i
)
.

Then ∑
~i∈C<q

∑
~j∈N~i

Eθ~i,~j ≤ap(pz)q+1

(
1 + µn,q+δ+1 (Σ) (3q2)

κ− 1

p

)
(1 + pz)δ−1 δ

4 + b/z

(δ − 1)!
+

ap2(pz)q+δ
(δ + 1)(q + 1)

δ!q!
µn,q+δ+2 (Σ)

κ− 1

p
.

Proof: Since

N~i =
6⋃

w=1

Kw
(
~i
)
,

∑
~i∈C<q

∑
~j∈N~i

Eθ~i,~j =
6∑

w=1

∑
~i∈C<q

Iw

(
~i
)
, (3.60)

with
Iw

(
~i
)

:=
∑

~j∈Kw(~i)

Eθ~i,~j.

Case 1: p ≥ q + δ + 2

Obviously K1

(
~i
)

=
⋃δ−1
m=0

(
K1

(
~i
)
∩Dm

~i

)
. Then for any~i ∈ C<

q satisfying Σ~i diagonal,

∣∣∣~j ∈ K1

(
~i
)⋂

Dm
~i

: Σ~i
⋃
~j diagonal

∣∣∣
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=

(
q

m

)
1

(δ −m)!

∑
j1∈[p]\NZ(~i)

∑
j2∈[p]\NZ(~i)
j2 6∈NZ(j1)

∑
j3∈[p]\NZ(~i)
j3 6∈∪2

`=1NZ(j`)

· · ·
∑

jδ−m∈[p]\NZ(~i)
jδ−m 6∈∪δ−m−1

`=1 NZ(j`)

1

≥
(
q

m

)
1

(δ −m)!

δ−m−1∏
`=0

(p~i − `κ) , (3.61)

where in the first inequality we without loss of generality assume the components of ~j distinct from
~i are j1, j2, · · · , jδ−m. Then∣∣∣~j ∈ K1

(
~i
)⋂

Dm
~i

: Σ~i
⋃
~j not diagonal

∣∣∣
≤
(
q

m

)(
p− 1− q
δ −m

)
−
(
q

m

)
1

(δ −m)!

δ−m−1∏
`=0

(p~i − `κ)

=

(
q

m

)
1

(δ −m)!

(
δ−m−1∏
`=0

(p− 1− q − `)−
δ−m−1∏
`=0

(p~i − `) +
δ−m−1∏
`=0

(p~i − `)−
δ−m−1∏
`=0

(p~i − `κ)

)

≤
(
q

m

)
1

(δ −m)!
(δ −m)pδ−m−1(q + δ)(κ− 1), (3.62)

where the first inequality follows from (3.61), and the second inequality follows from Lemma 3.14.3
(a), (b) and (3.79).

Then∑
~i∈C<q

I1

(
~i
)

=
δ−1∑
m=0


∑
~i∈C<q

Σ~i diagonal

∑
~j∈K1(~i)

⋂
Dm~i

Σ~i∪~j diagonal

+
∑
~i∈C<q

Σ~i diagonal

∑
~j∈K1(~i)

⋂
Dm~i

Σ~i∪~j not diagonal

+
∑
~i∈C<q

Σ~i not diagonal

∑
~j∈K1(~i)

⋂
Dm
~i

Eθ~i,~j

≤
δ−1∑
m=0


∑
~i∈C<q

Σ~i diagonal

∑
~j∈K1(~i)

⋂
Dm~i

Σ~i∪~j diagonal

+

µn,q+δ+1 (Σ)


∑
~i∈C<q

Σ~i diagonal

∑
~j∈K1(~i)

⋂
Dm~i

Σ~i∪~j not diagonal

+
∑
~i∈C<q

Σ~i not diagonal

∑
~j∈K1(~i)

⋂
Dm
~i


 azq+δ−m
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≤
δ−1∑
m=0

((
p

1

)(
p− 1

q

)(
q

m

)(
p− 1− q
δ −m

)
+

µn,q+δ+1 (Σ)

(
p

1

)(
p− 1

q

)(
q

m

)
δ −m

(δ −m)!
pδ−m−1(q + δ)(κ− 1)

+µn,q+δ+1 (Σ)
(q + 1)

2((q − 1)!)
pq(κ− 1)

(
q

m

)(
p− 1− q
δ −m

))
azq+δ−m

≤
δ−1∑
m=0

(
1

m!(δ −m)!
+ µn,q+δ+1 (Σ)

κ− 1

p

(
(q + δ)(δ −m)

m!(δ −m)!
+

q(q + 1)

m!(δ −m)!2

))
ap (pz)q+δ−m

≤ap (pz)q+1

(
1 + µn,q+δ+1 (Σ) (3q2)

κ− 1

p

)
1

(δ − 1)!

δ−1∑
m=0

(δ − 1)!

m!(δ − 1−m)!
(pz)δ−1−m

=ap (pz)q+1

(
1 + µn,q+δ+1 (Σ) (3q2)

κ− 1

p

)
1

(δ − 1)!
(1 + pz)δ−1 , (3.63)

where the first inequality follows from µn,q+δ−m+1 (Σ) ≤ µn,q+δ+1 (Σ), and the second inequality
follows from Lemma 3.9.2 and (3.62).

Obviously

K2

(
~i
)

=
δ−2⋃
m=0

(
K2

(
~i
)⋂

Dm
~i

)
, K3

(
~i
)

=
δ−1⋃
m=0

(
K3

(
~i
)⋂

Dm
~i

)
,

K4

(
~i
)

=
δ−1⋃
m=0

(
K4

(
~i
)⋂

Dm
~i

)
, K5

(
~i
)

=
δ⋃

m=1

(
K5

(
~i
)⋂

Dm
~i

)
.

Then following a similar analysis to K1(~i), additionally with Lemma 3.9.4, one obtain

∑
~i∈C<q

I2

(
~i
)
≤ap (pz)q+1

(
1 + µn,q+δ (Σ) (3q2)

κ− 1

p

)
1

(δ − 2)!
(1 + pz)δ−2 1(δ ≥ 2), (3.64)

∑
~i∈C<q

I3

(
~i
)
≤ap(pz)q+1

(
1 + µn,q+δ+1 (Σ) (3q2)

κ− 1

p

)
1

(δ − 1)!
(1 + pz)δ−1 , (3.65)

∑
~i∈C<q

I4

(
~i
)
≤ap (pz)q+1

(
1 + µn,2δ+1 (Σ) (3q2)

κ− 1

p

)
1

(δ − 1)!
(1 + pz)δ−1 , (3.66)

∑
~i∈C<q

I5

(
~i
)
≤a
(
b

z

)
p (pz)q+1

(
1 + µn,q+δ+1 (Σ) (3δ2)

κ− 1

p

)
1

(δ − 1)!
(1 + pz)δ−1 . (3.67)

The detailed derivation of the above inequalities are omitted for clean presentation.
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Observe

K6

(
~i
)

=

{
~j ∈ C<

q :

(
q⋃
`=0

{i`}

)⋂(
δ⋃
`=0

{j`}

)
= ∅, ∃` ∈ [δ] ∪ {0} such that j` ∈ NZ

(
~i
)}

.

Then ∣∣∣K6

(
~i
)∣∣∣ =

(
p− 1− q

1

)(
p− 2− q

δ

)
−
(
p~i
1

)(
p~i − 1

δ

)
≤ 1

δ!
(δ + 1)pδ(q + 1)(κ− 1), (3.68)

where the inequality follows from Lemma 3.14.3 (a) and (3.79). Thus

∑
~i∈C<q

I6

(
~i
)
≤
(
p

1

)(
p− 1

q

)
1

δ!
(δ + 1)pδ(q + 1)(κ− 1)µn,q+δ+2 (Σ) azq+δ,

≤ap2(pz)q+δ
(δ + 1)(q + 1)

δ!q!
µn,q+δ+2 (Σ)

κ− 1

p
, (3.69)

where the first inequality follows from (3.68) and Lemma 3.3.3 (a).
Case 2: p < q + δ + 2

We have impose the condition p ≥ 2δ + 2 to derive (3.63), (3.64), (3.65), (3.66), (3.67) and (3.69).
However, one can verify directly these inequalities also holds when p < q + δ + 2. We omit these
tedious verifications here and take it for granted (3.63), (3.64), (3.65), (3.66), (3.67) and (3.69)
holds for all 1 ≤ δ ≤ q ≤ p− 1.

Thus combining (3.60), (3.63), (3.64), (3.65), (3.66), (3.67) and (3.69), yield

∑
~i∈C<q

∑
~j∈N~i

Eθ~i,~j ≤ ap(pz)q+1

(
1 + µn,q+δ+1 (Σ) (3q2)

κ− 1

p

)
(1 + pz)δ−1 δ

4 + b/z

(δ − 1)!
+

ap2(pz)q+δ
(δ + 1)(q + 1)

δ!q!
µn,q+δ+2 (Σ)

κ− 1

p
.

Combining Lemma 3.9.5 and Lemma 3.9.6 immediately yields the following lemma.

Lemma 3.9.7. Let p ≥ n ≥ 4 and X ∼ VE(µ,Σ, θ). Suppose Σ is row-κ sparse. Consider

any θ~i,~j that is a non-negative function of u` for ` ∈ ~i ∪ ~j defined for~i ∈ C<
q and ~j ∈ C<

δ with

1 ≤ δ ≤ q ≤ p − 1. Suppose there exist a, z, b such that all conditions in Lemma 3.9.5 and in

Lemma 3.9.6 hold. Moreover suppose b/z ≤ cn,δ,q for some positive constant cn,δ,q that depends

194



only on n, q and δ. Then

∑
~i∈C<q

∑
~j∈C<δ

θ~i,~j ≤ Cn,q,δ

(
p1+ 1

δ z
)q (

1 + (p1+ 1
δ z)δ

)
(1 + pz)δ−1

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)
ap1− q

δ

3.9.3 Proof of Proposition 3.3.6

In what follows in this subsection, for the sake of clean presentation, we write C< for C<
δ , and

write Φ~i for Φ
(R)
~i

, for any~i ∈ C<.

Proof of Proposition 3.3.6: Recall

N
(R)
Eδ

=
∑
~i∈C<δ

δ∏
j=1

Φ
(R)
i0ij

=
∑
~i∈C<δ

Φ~i.

To apply a Compound Poisson Approximation result, some additional notations are needed to be
introduced. For~i ∈ C<, let S~i be defined in (3.32), and let T~i, N~i be defined respectively in (3.58),
(3.59) with q = δ. Here T~i is the set of indexes consisting of coordinates outside neighborhood of~i;
N~i is the set of "correlated but not highly correlated" indexes, i.e. the set of indexes of which at
least one component is in the neighborhood of~i, but excluding those sets of indexes of which the
set of components are the same as that of~i. Denote

W~i =
∑
~j∈T~i

Φ~j, Z~i =
∑
~j∈N~i

Φ~j, (3.70)

and recall U~i =
∑

~j∈S~i
Φ

(R)
~j

is defined in (3.33). Then W~i is independent of U~i and Φ~i. Further
denote

λ0 =
∑
~i∈C<

E
(

Φ~i
Φ~i + U~i

1 (Φ~i + U~i ≥ 1)

)
,

ζ0` =
1

λ0`

∑
~i∈C<

E (Φ~i1 (Φ~i + U~i = `)) , ∀` ≥ 1 (3.71)

and a probability distribution ζ0 on positive integers with ζ0(`) = ζ0`. The mean of ζ0 is Eζ0 =∑
`≥1 `ζ0`. Moreover, let b1 =

∑
~i∈C< EΦ~iE(Φ~i + U~i + Z~i) and

b2 =
∑
~i∈C<

E (Φ~iZ~i) . (3.72)

In this proof we write λ and ζ for λp,n,δ,ρ and ζn,δ,ρ (`) respectively when there is no confusion.
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By the compound Poisson Stein’s approximation, i.e. (5.19) and (5.16) in [Bar01],

dTV

(
L
(
N

(R)
Eδ

)
, CP (λ, ζ)

)
≤ eλ0 (b1 + b2 + λ0dW (ζ ′0, ζ

′)Eζ0 + |λ0Eζ0 − λEζ|) , (3.73)

where ζ ′0(`) = `ζ0`/Eζ0 and ζ ′(`) = `ζ(`)/Eζ for ` ∈ Z+, the set of all positive integers. In
(3.73), the distance dW is the Wasserstein L1 metric on probability measures over the set of positive
integers Z+:

dW (P,Q) = sup
f∈Lip1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣
where Lip1 = {f : |f(r)− f(s)| ≤ |r − s|, r, s ∈ Z+}.

By Lemma 3.14.2,

λ0dW (ζ ′0, ζ
′)Eζ0 ≤λ0Eζ0

δ

2

δ+1∑
`=1

`

∣∣∣∣ λ0ζ0`

λ0Eζ0

− λζ(`)

λEζ

∣∣∣∣
=
δ

2

δ+1∑
`=1

`

∣∣∣∣(λ0ζ0` − λζ(`)) + (λEζ − λ0Eζ0)
λζ(`)

λEζ

∣∣∣∣
≤δ

2

δ+1∑
`=1

` |λ0ζ0` − λζ(`)|+ δ

2
|λEζ − λ0Eζ0|

δ+1∑
`=1

`
λζ(`)

λEζ

≤δ
δ+1∑
`=1

` |λ0ζ0` − λζ(`)| .

Plug the above inequalities into (3.73),

dTV

(
L
(
N

(R)
Eδ

)
, CP (λ, ζ)

)
≤ eλ0

(
b1 + b2 + (δ + 1)

δ+1∑
`=1

` |λ0ζ0` − λζ(`)|

)
. (3.74)

It remains to estimate the quantities in the right hand side of (3.74).

Part I. Upper bound for λ0 and
∑δ+1

`=1 ` |λ0ζ0` − λζ(`)|
For ` ∈ [δ + 1],

|λ0ζ0` − λζ (`)|

=

∣∣∣∣λ0ζ0` −
1

`

(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δα(`, rρ)

∣∣∣∣

196



≤1

`

∑
~i∈C<

∣∣E (Φ~i1 (Φ~i + U~i = `))− (2Pn(rρ))
δα(`, rρ)

∣∣
=

1

`

∑
~i∈C<

Σ~i not diagonal

∣∣E (Φ~i1 (Φ~i + U~i = `))− (2Pn(rρ))
δα(`, rρ)

∣∣
≤1

`
(µn,δ+1 (Σ) + 1)(2Pn(rρ))

δα(`, rρ)
∑
~i∈C<

Σ~i not diagonal

1

≤α(`, rρ)

`
µn,δ+1 (Σ) γδ

(δ + 1)

(δ − 1)!

κ− 1

p
, (3.75)

where the first inequality follows from the definition of ζ0` in (3.71), the second inequality follows
from Lemma 3.9.1 and Lemma 3.3.3 (a), and the last inequality follows from Lemma 3.9.2 and
µn,δ+1 (Σ) ≥ 1.

Then

|λ0Eζ0 − λEζ| ≤
δ+1∑
`=1

` |λ0ζ0` − λζ(`)| ≤ µn,δ+1 (Σ) γδ
(δ + 1)

(δ − 1)!

κ− 1

p
, (3.76)

where the last inequality follows from (3.75). As an immediate consequences,

λ0 ≤ λ0Eζ0

≤ |λ0Eζ0 − λEζ|+ λEζ

≤ µn,δ+1 (Σ) γδ
(δ + 1)

(δ − 1)!

κ− 1

p
+

(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

≤ γδ
(δ + 1)

(δ − 1)!

(
µn,δ+1 (Σ)

κ− 1

p
+ 1

)
, (3.77)

where the third inequality follows from (3.76).

Part II. Upper bound for b1

Since N~i ∪ S~i ∪ {~i} = C<\T~i,

b1 =
∑
~i∈C<

∑
~j∈C<\T~i

EΦ~iEΦ~j. (3.78)
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Given~i ∈ C<, by (3.56) with q = δ,

p~i :=
∣∣∣[p]\NZ (~i)∣∣∣ ≥ p− (δ + 1)κ. (3.79)

Since |T~i| = p~i
(
p~i−1
δ

)
,

|C<\T~i| = p

(
p− 1

δ

)
−p~i

(
p~i − 1

δ

)
≤ 1

δ!
(δ+1)

(
δ−1∏
α=0

(p− α)

)
(p−p~i) ≤

(δ + 1)2

δ!
pδκ, (3.80)

where the first inequality follows from Lemma 3.14.3 (a).
One straightforward upper bound is

b1 =
∑
~i∈C<

∑
~j∈C<\T~i

E

(
δ∏
l=1

Φ
(R)
i0il

)
E

(
δ∏

l′=1

Φ
(R)
j0jl′

)

≤ p

(
p− 1

δ

)
(δ + 1)2

δ!
pδκ (µn,δ+1 (Σ))2 (2Pn(rρ))

2δ

≤ (µn,δ+1 (Σ))2 (δ + 1)2

(δ!)2

(
2p1+ 1

δPn(rρ)
)2δ κ

p
,

where the first inequality follows from Lemma 3.9.1, Lemma 3.3.3 (a) and (3.80). The (µn,δ+1 (Σ))2

in the above upper bound is not very satisfactory, and can be improved by a more involved analysis.
Observe for given~i ∈ C<,∣∣∣{~j ∈ C<\T~i : Σ~j not diagonal}

∣∣∣
=|C<\T~i| −

(∣∣∣{~j ∈ C< : Σ~j diagonal}
∣∣∣− ∣∣∣{~j ∈ T~i : Σ~j diagonal}

∣∣∣)
≤ 1

δ!
(δ + 1)

(
δ−1∏
α=0

(p− α)

)
(p− p~i)−

(∣∣∣{~j ∈ C< : Σ~j diagonal}
∣∣∣− ∣∣∣{~j ∈ T~i : Σ~j diagonal}

∣∣∣) ,
(3.81)

where the inequality follows from (3.80). Then∣∣∣{~j ∈ C< : Σ~j diagonal}
∣∣∣− ∣∣∣{~j ∈ T~i : Σ~j diagonal}

∣∣∣
=

1

δ!

p∑
j0=1

∑
j1∈[p]\NZ(j0)

· · ·
∑

jδ∈[p]\
δ−1⋃
l=0
NZ(jl)

1− 1

δ!

∑
j0∈[p]

j0 6∈NZ(~i)

∑
j1∈[p]\NZ(j0)

j1 6∈NZ(~i)

· · ·
∑

jδ∈[p]\
δ−1⋃
l=0
NZ(jl)

jδ 6∈NZ(~i)

1 (3.82)
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=
1

δ!

δ∑
m=0

 ∑
j0∈[p]

j0 6∈NZ(~i)

∑
j1∈[p]\NZ(j0)

j1 6∈NZ(~i)

· · ·

∑
jm−1∈[p]\

m−2⋃
l=0
NZ(jl)

jm−1 6∈NZ(~i)

∑
jm∈[p]\

m−1⋃
l=0
NZ(jl)

jm∈NZ(~i)

∑
jm+1∈[p]\

m⋃
l=0
NZ(jl)

· · ·
∑

jδ∈[p]\
δ−1⋃
l=0
NZ(jl)

1


=

1

δ!

∑
j0∈[p]

j0∈NZ(~i)

∑
j1∈[p]\NZ(j0)

· · ·
∑

jδ∈[p]\
δ−1⋃
l=0

NZ(jl)

1 +
1

δ!

δ∑
m=1

(

∑
jm∈NZ(~i)

∑
j0∈[p]

j0 6∈NZ(~i)
j0 6∈NZ(jm)

∑
j1∈[p]\NZ(j0)

j1 6∈NZ(~i)
j1 6∈NZ(jm)

· · ·
∑

jm−1∈[p]\
m−2⋃
l=0
NZ(jl)

jm−1 6∈NZ(~i)
jm−1 6∈NZ(jm)

∑
jm+1∈[p]\

m⋃
l=0

NZ(jl)

· · ·
∑

jδ∈[p]\
δ−1⋃
l=0
NZ(jl)

1


≥ 1

δ!
(p− p~i)

δ∏
β=1

(p− βκ) +
1

δ!

δ∑
m=1

(p− p~i)

(
m∏
α=1

(p~i − ακ)

)(
δ∏

β=m+1

(p− βκ)

)

≥(δ + 1)

δ!
(p− p~i)

δ∏
α=1

(p~i − ακ), (3.83)

where the second equality follows by writing (3.82) as a telescoping sum with the convention that
the summation over j−1 for m = 0 and the summation over jδ+1 for m = δ vanish, and the third
equality follows from changing the order of the summation for m ≥ 1. Plug (3.83) into (3.81),∣∣∣{~j ∈ C<\T~i : Σ~j not diagonal}

∣∣∣
≤ 1

δ!
(δ + 1)(p− p~i)

(
δ−1∏
α=0

(p− α)−
δ−1∏
α=0

(p~i − 1− α) +
δ∏

α=1

(p~i − α)−
δ∏

α=1

(p~i − ακ)

)

≤ 1

δ!
(δ + 1)(p− p~i)

(
δpδ−1(p− p~i + 1) +

δ(δ + 1)

2
pδ−1(κ− 1)

)
≤3δ(δ + 1)3

δ!
pδ−1κ2, (3.84)

where the second inequality follows from Lemma 3.14.3 (a) and Lemma 3.14.3 (b), and the last
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inequality follows from (3.79).
Then for any~i ∈ C<,∑

~j∈C<\T~i

µn,δ+1

(
Σ~j

)
≤

∑
~j∈C<\T~i
Σ~j diagonal

1 + µn,δ+1 (Σ)
∑

~j∈C<\T~i
Σ~j not diagonal

1

≤(δ + 1)2

δ!
pδκ+ µn,δ+1 (Σ)

3δ(δ + 1)3

δ!
pδ−1κ2,

≤3δ(δ + 1)3

δ!
pδκ

(
1 + µn,δ+1 (Σ)

κ

p

)
, (3.85)

where the first inequality follows from Lemma 3.3.3 (a), and the second inequality follows from
(3.80), (3.84).

Then following (3.78),

b1 ≤
∑
~i∈C<

∑
~j∈C<\T~i

µn,δ+1 (Σ~i)µn,δ+1

(
Σ~j

)
(2Pn(rρ))

2δ

≤ pδ+1

δ!

(
1 + δ2µn,δ+1(Σ)

κ− 1

p

)
3δ(δ + 1)3

δ!
pδκ

(
1 + µn,δ+1 (Σ)

κ

p

)
(2Pn(rρ))

2δ

≤
(

3
δ3(δ + 1)3

(δ!)2
(2p1+ 1

δPn(rρ))
2δ

)
κ

p

(
1 + µn,δ+1(Σ)

κ

p

)2

, (3.86)

where the first inequality follows from Lemma 3.9.1, the second inequality follows from Lemma
3.9.3 and (3.85).

Part III. Upper bound for b2

Let Kw(~i) and Dm
~i

be the same as in Subsection 3.9.2 with q = δ. It is straightforward by Lemma
3.3.3 (c), Lemma 3.9.1 and Lemma 3.9.4 that the conditions in Lemma 3.9.6 with q = δ and
θ~i,~j = Φ~iΦ~j are satisfied with a = 1, b = 2Pn(2rρ)1(δ ≥ 2) + 2Pn(rρ)1(δ = 1) and z = 2Pn(rρ).
Moreover, b/z ≤ 2n−21(δ ≥ 2) + 1 by Lemma 3.14.1 (d). Thus by Lemma 3.9.6 with q = δ and
θ~i,~j = Φ~iΦ~j ,

b2 ≤ p(2pPn(rρ))
δ+1

(
1 + µn,2δ+2 (Σ) (3δ2)

κ− 1

p

)
(1 + 2pPn(rρ))

δ−1 δ
5 + 2n−11(δ ≥ 2)

(δ − 1)!
+

(δ + 1)2

(δ!)2
p2(2pPn(rρ))

2δµn,2δ+2 (Σ)
κ− 1

p
. (3.87)

≤γδ+1p−
1
δ

(
1 + µn,2δ+2 (Σ) (3δ2)

κ− 1

p

)(
1 + γp−

1
δ

)δ−1

δ
5 + 2n−11(δ ≥ 2)

(δ − 1)!
+

(δ + 1)2

(δ!)2
γ2δµn,2δ+2 (Σ)

κ− 1

p
, (3.88)
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where the last step follows from 2p1+ 1
δPn(rρ) ≤ γ.

By combining (3.74), (3.76), (3.77), (3.86), (3.88), together with the assumption 2p1+ 1
δPn(rρ) ≤

γ,

dTV

(
L
(
N

(R)
Eδ

)
, CP (λ, ζ)

)
≤Cn,δ,γ

(
C ′δ,γ

)µn,δ+1(Σ)(κ−1)/p
(
µn,2δ+2 (Σ)κ/p

(
1 + µn,2δ+2 (Σ) (κ/p)2)+ p−

1
δ

)
,

where
C ′δ,γ = exp

(
γδ

δ + 1

(δ − 1)!

)
, (3.89)

and
Cn,δ,γ = C

δ6 + δ22n−11(δ ≥ 2)

δ!
γδ+1(1 + γ)δC ′δ,γ. (3.90)

3.10 Proofs in Subsection 3.3.4

3.10.1 Proof of Lemma 3.3.8

Proof of Lemma 3.3.8: N (R)

V̆δ
≤ N

(R)
Vδ
≤ N

(R)
Eδ

follows trivially from their definitions. It remains
to show

N
(R)
Eδ
≤ (δ + 1)N

(R)
Eδ+1

+N
(R)

V̆δ
. (3.91)

To see this, consider δ ≥ 2 and any vertex i and denote its degree by m. If m < δ, then it contributes
zero to both sides of (3.91). If m = δ, then it contributes 1 to both sides of (3.91). If m > δ, it
contributes

(
m
δ

)
to left hand side of (3.91), while contributes (δ + 1)

(
m
δ+1

)
= (m − δ)

(
m
δ

)
. The

above observation proves (3.91). The case δ = 1 is similar and is omitted.
The above proof indeed applies to any graph and, in particular, the empirical partial correlation

graph. So the second equation in the statement of the lemma holds.

3.10.2 Proof of Proposition 3.3.9 (a)

By (3.37), it suffices to establish an upper bound on EN (R)
Eδ+1

.

Lemma 3.10.1. LetX ∼ VE(µ,Σ, θ). Suppose Σ is row-κ sparse. Let ` ∈ [p− 1]. Then

EN (R)
E`
≤ 1

`!

(
1 + `2µn,`+1(Σ)

κ− 1

p

)
p (2pPn(rρ))

` .
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Proof:

EN (R)
E`

=
∑
~i∈C<`

E
∏̀
j=1

Φ
(R)
i0ij

≤
∑
~i∈C<`

µn,`+1 (Σ~i) (2Pn(rρ))
`

≤ 1

`!

(
1 + `2µn,`+1(Σ)

κ− 1

p

)
p (2pPn(rρ))

` ,

where the first inequality follows from Lemma 3.9.1, and the second inequality follows from Lemma
3.9.3.

Proof of Proposition 3.3.9 (a): It follows from (3.37), Lemma 3.10.1 and Lemma 3.14.4.

3.10.3 Proof of Proposition 3.3.9 (b)

Similar to (3.30) and (3.31), denote

Φ
(R)
~i

=
δ∏
j=1

Φ
(R)
i0ij

= 1

(
δ⋂
j=1

{dist(ui0 ,uij) ≤ rρ}

)
.

Then by definition
N

(P )
Eδ

=
∑
~i∈C<δ

Φ
(P )
~i

. (3.92)

By (3.31) and (3.92), ∣∣∣N (P )
Eδ
−N (R)

Eδ

∣∣∣ ≤ ∑
~i∈C<δ

|Φ(P )
~i
− Φ

(R)
~i
|.

The next three lemmas establish upper bound on |Φ(P )
~i
− Φ

(R)
~i
|.

We may suppose Σ is (τ, κ) sparse throughout this proof and the proof of Proposition 3.3.9 (c)
since the conclusion is invariant to permutation of the variables by Remark 3.2.7. As a result, theU -
score may be partitioned into Û ∈ R(n−1)×τ consisting of the first τ columns and Ǔ ∈ R(n−1)×(p−τ)

consisting the remaining p− τ columns.
Denote [τ ] = {1, 2, · · · , τ}. Define a matrix B̌ by

B̌ =
n− 1

p− τ
Ǔ [Ǔ ]T =

n− 1

p− τ

p∑
i∈[p]\[τ ]

uiu
T
i . (3.93)

Denote Q̌ =
√
n− 1Ǔ . Observe Q̌ has exactly p − τ independent columns and each column
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√
n− 1ui ∼ unif(

√
n− 1Sn−2). These observations immediately give us part (a) of the following.

Lemma 3.10.2. Let {uα}pα=1 be columns of U defined in Section 3.3.1. Let B̌ be defined as in

equation (3.93).

(a) Suppose Σ is (τ, κ) sparse. B̌ = 1
p−τQQ

T , where Q ∈ R(n−1)×(p−τ) has independent

columns with each column distributed as unif(
√
n− 1Sn−2).

(b) |λmax

(
p

p−τB
)
− λmax(B̌)| ≤ n−1

p−τ τ , and λmin

(
p

p−τB
)
≥ λmin(B̌).

Proof: (b) RecallB = n−1
p

∑p
i=1 uiu

T
i . Then,

p

p− τ
B − B̌ =

n− 1

p− τ
∑
i∈[τ ]

uiu
T
i .

By Lemma 3.14.5 (a), we have:

|λmax

(
p

p− τ
B

)
− λmax

(
B̌
)
| ≤

∥∥∥∥∥∥n− 1

p− τ
∑
i∈[τ ]

uiu
T
i

∥∥∥∥∥∥
2

≤ n− 1

p− τ
∑
i∈[τ ]

‖uiuTi ‖2

≤ n− 1

p− τ
τ,

where for the last inequality, we use the fact that ui ∈ Sn−2. Moreover, by Lemma 3.14.5 (c), we
get λmin

(
p

p−τB
)
≥ λmin(B̌).

Denote h0

(
B̌
)

=
λmax(B̌)+n−1

p−τ τ

λmin(B̌)
=

Smax(B̌)+n−1
p−τ τ

Smin(B̌)
to be the perturbational condition number

of B̌, where λmax
(
B̌
)
, λmin

(
B̌
)
, Smax

(
B̌
)
, and Smin

(
B̌
)

are respectively the largest eigenvalue,
smallest eigenvalue, largest singular value and smallest singular value of B̌.

Lemma 3.10.3. Suppose p ≥ n. Let {uα}pα=1 and {yα}pα=1 be defined as in Section 3.3.1. Consider

distinct i, j satisfying 1 ≤ i, j ≤ p. Then with probability 1,

1

h0

(
B̌
)‖ui − uj‖2 ≤ ‖yi − yj‖2 ≤ h0

(
B̌
)
‖ui − uj‖2,

and
1

h0

(
B̌
)‖ui + uj‖2 ≤ ‖yi + yj‖2 ≤ h0

(
B̌
)
‖ui + uj‖2.
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Proof: Recall yα = ȳα/‖ȳα‖2 and ȳα = Auα a.s., for α = i, j. Apply the upper bound in Lemma
3.14.6,

‖yi − yj‖2 ≤
λmax(A)

λmin(A)
‖ui − uj‖2

=
λmax

(
p

p−τB
)

λmin

(
p

p−τB
) ‖ui − uj‖2 a.s.

≤
λmax

(
B̌
)

+ n−1
p−τ τ

λmin
(
B̌
) ‖ui − uj‖2,

where the equality follows from the fact thatB = A−1 a.s., and the last inequality follows from
Lemma 3.10.2 (b). The lower bound of the first desired display follows similarly, by the lower
bound in Lemma 3.14.6.

The second desired display follows analogously.

For {i, j} ∈ [p] with i 6= j, q ∈ {−1,+1}, define

S
(q)
ij (rρ) = {‖yi − qyj‖2 ≤ rρ}, F

(q)
ij (rρ) = {‖ui − quj‖2 ≤ rρ}, (3.94)

G
(q)
ij (rρ) =

{
‖ui − quj‖2 ≤

1

h0

(
B̌
)rρ} , H

(q)
ij (rρ) =

{
‖ui − quj‖2 ≤ h0

(
B̌
)
rρ
}
.

Define Fij(rρ) = F
(−1)
ij (rρ) ∪ F (+1)

ij (rρ). Gij(rρ), Hij(rρ), Sij(rρ) are defined similarly. Using
these notations, then Φ

(P )
ij (ρ) = 1 (Sij(rρ)), and Φ

(R)
ij (ρ) = 1 (Fij(rρ)). For~i ∈ C<

δ , denote

H~i(rρ) =
δ⋂
`=1

Hi0i`(rρ), H~i,−m(rρ) =
δ⋂
`=1
`6=m

Hi0i`(rρ).

When it’s clear from the context, the dependence of rρ for the above quantities will be suppressed.
By Lemma 3.10.3, with probability 1,

G
(q)
ij ⊂ S

(q)
ij ⊂ H

(q)
ij , G

(q)
ij ⊂ F

(q)
ij ⊂ H

(q)
ij . (3.95)

Lemma 3.10.4. Suppose p ≥ n. Consider δ ∈ [p− 1]. For any~i ∈ C<
δ , with probability 1,∣∣∣Φ(P )

~i
− Φ

(R)
~i

∣∣∣ ≤ ξ~i,
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where

ξ~i := 1

(
δ⋃

m=1

((
Hi0im

∖
Gi0im

)⋂
H~i,−m

))
.

Proof: Notice Φ
(R)
~i

= 1

(
δ⋂

m=1

Fi0im

)
and Φ

(P )
~i

= 1

(
δ⋂

m=1

Si0im

)
. Let4 denote the symmetriza-

tion difference of two sets. Then

∣∣∣Φ(P )
~i
− Φ

(R)
~i

∣∣∣ = 1

((
δ⋂

m=1

Fi0im

)
4

(
δ⋂

m=1

Si0im

))
≤ ξ~i,

where the inequality follows from (3.95) and Lemma 3.14.7 (a).

To control the expectation of the above term, we first bound the expectation on a high-probability
set. Define the set E(t), with t being a parameter to be determined, by

E(t) =

{[
1− C1

(√
n− 1

p− τ
+

t√
p− τ

)]2

≤ λmin(B̌)

}⋂
⋂{

λmax(B̌) ≤
[
1 + C1

(√
n− 1

p− τ
+

t√
p− τ

)]2
}
, (3.96)

to be the set such that (3.177) in Lemma 3.14.8 holds, i.e. the constant C1 in E(t) is the same
constant as C in (3.177). By Lemma 3.10.2 (a) and Lemma 3.14.8,

P(Ec(t)) ≤ 2 exp(−c1t
2). (3.97)

Since τ ≤ p
2
,

n− 1

p− τ
τ ≤ 2(n− 1)

τ

p
, (3.98)

and

C1

(√
n− 1

p− τ
+

t√
p− τ

)
≤
√

2C1

(√
n− 1

p
+

t
√
p

)
. (3.99)

Moreover, on E(t), and assuming

√
2C1

(√
n− 1

p
+

t
√
p

)
≤ 1

2
, (3.100)

one has

205



h0(B) ≤

(
1 + C1

(√
n−1
p−τ + t√

p−τ

))2

+ n−1
p−τ τ(

1− C1

(√
n−1
p−τ + t√

p−τ

))2

≤ 1 + 16
√

2C1

(√
n− 1

p
+

t
√
p

)
+ 8(n− 1)

τ

p
:= θ1(t), (3.101)

where the second inequality follows from (3.98), (3.99) and Lemma 3.14.3 (c).
For~i ∈ C<

δ , denote

F~i(rρ) =
δ⋂
`=1

Fi0i`(rρ), F~i,−m(rρ) =
δ⋂
`=1
` 6=m

Fi0i`(rρ).

Lemma 3.10.5. Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼ VE(µ,Σ, θ). Suppose Σ, after some

row-column permutation, is (τ, κ) sparse with τ ≤ p
2
. Let t be any positive number, and suppose

(3.100) holds. Then for any~i ∈ C<
δ , with probability 1,

ξ~i1 (E(t)) ≤ η~i(t),

where

η~i(t) :=1

(
δ⋃

m=1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))⋂
F~i,−m(θ1(t)rρ)

))
. (3.102)

Moreover,

E1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))⋂
F~i,−m(θ1(t)rρ)

)
≤µn,δ+1(Σ~i)2

(
Pn(rρθ1(t))− Pn

(
rρ
θ1(t)

))
(2Pn (θ1(t)rρ))

δ−1 , (3.103)

and

Eη~i(t) ≤δµn,δ+1(Σ~i)2

(
Pn(rρθ1(t))− Pn

(
rρ
θ1(t)

))
(2Pn (θ1(t)rρ))

δ−1

≤µn,δ+1(Σ~i)δn(θ1(t))nδ
(
θ1(t)− 1

θ1(t)

)
(2Pn (rρ))

δ .

Proof: By (3.101), Hij(rρ) ∩ E(t) ⊂ Fij(θ1(t)rρ) and Gij(rρ) ∩ E(t) ⊃ Fij

(
rρ
θ1(t)

)
. Then

ξ~i1 (E(t)) ≤ η~i(t). (3.104)
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E1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))⋂
F~i,−m(θ1(t)rρ)

)

≤µn,δ+1(Σ~i)P

 ⋃
q∈{−1,+1}

{
rρ
θ1(t)

< ‖u′i0 − qu
′
im‖2 ≤ θ1(t)rρ

}⋂
 δ⋂

α=1
α 6=m

 ⋃
q∈{−1,+1}

{‖u′i0 − qu
′
iα‖2 ≤ θ1(t)rρ}



 , (3.105)

where the last inequality follows from Lemma 3.3.3 (c) with

u′i0 ,u
′
i1
, · · · ,u′iδ

i.i.d.∼ unif(Sn−2).

For any w ∈ Sn−2, define Ω
(q)
w := {v ∈ Sn−2 : 1

θ1(t)
rρ < ‖v − qw‖2 ≤ rρθ1(t)}. Then

P

u′im ∈ ⋃
q∈{−1,+1}

Ω(q)
w

 = 2

(
Pn(rρθ1(t))− Pn

(
1

θ1(t)
rρ

))
.

By conditioning on u′i0 , the term in right hand side of (3.105) equals to

µn,δ+1(Σ~i)2

(
Pn(rρθ1(t))− Pn

(
1

θ1(t)
rρ

))
(2Pn (θ1(t)rρ))

δ−1 ,

which then proves (3.103).
By union bound,

Eη~i(t) ≤
δ∑

m=1

E1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))⋂
F~i,−m(θ1(t)rρ)

)
(∗)
≤δµn,δ+1(Σ~i)2

(
Pn(rρθ1(t))− Pn

(
1

θ1(t)
rρ

))
(2Pn (θ1(t)rρ))

δ−1

(∗∗)
≤ δµn,δ+1(Σ~i)2(n− 2)Pn(rρ) (θ1(t))n−3

(
θ1(t)− 1

θ1(t)

)
(2Pn(rρθ1(t)))δ−1

(∗∗∗)
≤ δµn,δ+1(Σ~i)2(n− 2)Pn(rρ) (θ1(t))n−3

(
θ1(t)− 1

θ1(t)

)(
(θ1(t))n−2 2Pn (rρ)

)(δ−1)
,

where (∗) follows from (3.103), (∗∗) follows from Lemma 3.14.1 (c), and (∗ ∗ ∗) follows from
Lemma 3.14.1 (d).
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Lemma 3.10.6. Let p ≥ n ≥ 4, δ ∈ [p− 1] and X ∼ VE(µ,Σ, θ). Let t be any positive number,

and suppose (3.100) holds. Suppose Σ, after some row-column permutation, is (τ, κ) sparse with

τ ≤ p
2
. Then ∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ 1 (E(t)) ≤
∑
~i∈C<δ

η~i(t)

and

E
∑
~i∈C<δ

η~i(t) ≤
Cn2

(δ − 1)!

(
1 + δ2κ− 1

p
µn,δ+1(Σ)

)
(θ1(t))nδ

(√
1

p
+

t
√
p

+
τ

p

)
p (2pPn (rρ))

δ ,

where C is an universal constant.

Proof: ∣∣∣N (P )
Eδ
−N (R)

Eδ

∣∣∣ 1 (E(t)) ≤
∑
~i∈C<δ

E
∣∣∣Φ(P )

~i
− Φ

(R)
~i

∣∣∣ 1 (E(t))

≤
∑
~i∈C<δ

η~i(t),

where the last inequality follows from Lemma 3.10.4 and Lemma 3.10.5.
By Lemma 3.10.5,∑
~i∈C<δ

Eη~i

≤
∑
~i∈C<δ

µn,δ+1(Σ~i)δn(θ1(t))nδ
(
θ1(t)− 1

θ1(t)

)
(2Pn (rρ))

δ

≤p
δ+1

δ!

(
1 + δ2κ− 1

p
µn,δ+1(Σ)

)
δn(θ1(t))nδ

(
θ1(t)− 1

θ1(t)

)
(2Pn (rρ))

δ

≤ Cn

(δ − 1)!

(
1 + δ2κ− 1

p
µn,δ+1(Σ)

)
(θ1(t))nδ

(√
n

p
+

t
√
p

+ n
τ

p

)(
2p1+ 1

δPn (rρ)
)δ
, (3.106)

where the third inequality follows from Lemma 3.9.3 and the last inequality follows from Lemma
3.14.3 (d) and (3.101).

Lemma 3.10.7. Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼ VE(µ,Σ, θ). Suppose Σ, after

some row-column permutation, is (τ, κ) sparse with τ ≤ p
2
. Suppose 2p1+ 1

δPn(rρ) ≤ γ and
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(√
n−1
p

+
√

δ ln p
p

)
≤ c hold for some positive and small enough universal constant c. Then

E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ ≤ C
(P )
Eδ

(
1 +

κ− 1

p
µn,δ+1(Σ)

)(√
ln p

p
+
τ

p

)
,

where C(P )
Eδ

is defined in (3.109).

Proof:

E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ ≤ E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ 1 (E(t)) +

(
p

1

)(
p− 1

δ

)
P(Ec(t)),

≤ E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ 1 (E(t)) +
pδ+1

δ!
2 exp(−c1t

2), (3.107)

where the first inequality follows from 0 ≤ N
(k)
Eδ
≤
(
p
1

)(
p−1
δ

)
for both k = R and k = P , and the

second inequality follows from (3.97).
Choose t = cδ

√
ln p with cδ =

√
5δ
2c1
≥
√(

3
2

+ δ
)
/c1 such that

2 exp(−c1t
2) ≤ 2 exp

(
−
(

3

2
+ δ

)
ln p

)
=

2

p
3
2

+δ
.

Moreover, for any c < 1

2 max
{√

5
2c1

,1
}√

2C1

,

(√
n− 1

p
+

√
δ ln p

p

)
≤ c

implies
√

2C1

(√
n− 1

p
+ cδ

√
ln p

p

)
≤ 1

2
, (3.108)

which is (3.100) with t = cδ
√

ln p. Then apply Lemma 3.10.6 with t = cδ
√

ln p to (3.107),

E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣
≤ Cn2

(δ − 1)!

(
1 + δ2κ− 1

p
µn,δ+1(Σ)

)(
θ1

(
cδ
√

ln p
))nδ (√1

p
+

√
δ ln p
√
p

+
τ

p

)
γδ +

2

δ!
√
p

≤Cn
2
√
δ

(δ − 1)!

(
1 + δ2κ− 1

p
µn,δ+1(Σ)

)
(θ1(cδ

√
ln p))nδ

(√
ln p
√
p

+
τ

p

)
γδ +

2

δ!
√
p

≤C(P )
Eδ

(
1 +

κ− 1

p
µn,δ+1(Σ)

)(√
ln p

p
+
τ

p

)
,
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where

C
(P )
Eδ

=
Cn2δ

5
2

(δ − 1)!

(
θ1

(
cδ
√

ln p
))nδ

γδ +
2

δ!
√

ln p

≤ Cn2δ
5
2

(δ − 1)!
(4n+ 5)nδ γδ +

2

δ!
, (3.109)

where the last step follows from θ1

(
cδ
√

ln p
)
≤ 9 + 4(n− 1) = 4n + 5 by (3.108) and τ ≤ p/2.

Proof of Proposition 3.3.9 (b): It follows directly from Lemma 3.10.7 and Lemma 3.14.4.

3.10.4 Proof of Proposition 3.3.9 (c)

By Lemma 3.3.8,

N
(P )
Eδ
− (δ + 1)N

(P )
Eδ+1
−N (R)

Eδ
≤ N

(P )

V̆δ
−N (R)

V̆δ
≤ N

(P )
Eδ
−N (R)

Eδ
+ (δ + 1)N

(R)
Eδ+1

,

which implies∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣ ≤ ∣∣∣N (P )
Eδ
−N (R)

Eδ

∣∣∣+ (δ + 1)
∣∣∣N (P )

Eδ+1
−N (R)

Eδ+1

∣∣∣+ (δ + 1)N
(R)
Eδ+1

. (3.110)

Lemma 3.10.8. Let p ≥ n ≥ 4, δ ∈ [p − 1] and X ∼ VE(µ,Σ, θ). Suppose Σ, after

some row-column permutation, is (τ, κ) sparse with τ ≤ p
2
. Suppose 2p1+ 1

δPn(rρ) ≤ γ and(√
n−1
p

+
√

ln p
p

)
≤ c hold for some positive and small universal constant c. Then

E
∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣ ≤ C
(P )

V̆δ

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(√
ln p

p
+
τ

p
+ p−

1
δ

)

where C(P )

V̆δ
is defined in (3.114).

Proof: Let E(t) be the same as in (3.96) with t to be determined. Consider δ ∈ [p− 2].

E
∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣
≤E

∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣ 1 (E(t)) + pP(Ec(t))

≤E
∣∣∣N (P )

Eδ
−N (R)

Eδ

∣∣∣ 1 (E(t)) + (δ + 1)E
∣∣∣N (P )

Eδ+1
−N (R)

Eδ+1

∣∣∣ 1 (E(t)) +

(δ + 1)EN (R)
Eδ+1

+ 2p exp(−c1t
2), (3.111)
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where the first inequality follows from 0 ≤ N
(k)

V̆δ
≤ p for k = R and P , the second inequality

follows from (3.110) and (3.97). If δ = p− 1, then

E
∣∣∣N (P )

V̆p−1
−N (R)

V̆p−1

∣∣∣ ≤E ∣∣∣N (P )

V̆p−1
−N (R)

V̆p−1

∣∣∣ 1 (E(t)) + pP(Ec(t))

≤E
∣∣∣N (P )

Ep−1
−N (R)

Ep−1

∣∣∣ 1 (E(t)) + 2p exp(−c1t
2),

which shows (3.111) also holds for δ = p− 1 with the convention N (P )
Ep

= N
(R)
Ep

= 0.

Choose t =
√

3
c1

ln p := c2

√
ln p, such that p exp(−c1t

2) = 1
p2 . Moreover, for any c <

1
2 max{c2,1}

√
2C1

, (√
n− 1

p
+

√
ln p

p

)
≤ c

implies
√

2C1

(√
n− 1

p
+ c2

√
ln p

p

)
≤ 1

2
, (3.112)

which is (3.100) with t = c2

√
ln p. With t = c2

√
ln p Lemma 3.10.6 become:

E
∣∣∣N (P )

Vδ
−N (R)

Vδ

∣∣∣ 1 (E(t))

≤ Cn2δ2

(δ − 1)!

(
1 +

κ− 1

p
µn,δ+1(Σ)

)
(θ1(c2

√
ln p))nδ

(√
ln p
√
p

+
τ

p

)
p (2pPn (rρ))

δ , (3.113)

Then for δ ∈ [p− 1] apply (3.113) with δ, δ + 1 and Lemma 3.10.1 to (3.111),

E
∣∣∣N (P )

V̆δ
−N (R)

V̆δ

∣∣∣
≤ Cn2δ2

(δ − 1)!

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(
θ1

(
c2

√
ln p
))nδ (√ln p

√
p

+
τ

p

)
p (2pPn (rρ))

δ +

Cn2(δ + 1)3

δ!

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(
θ1

(
c2

√
ln p
))n(δ+1)

(√
ln p
√
p

+
τ

p

)
p (2pPn (rρ))

δ+1

+ (δ + 1)
1

(δ + 1)!

(
1 + (δ + 1)2µn,δ+2(Σ)

κ− 1

p

)
p (2pPn(rρ))

δ+1 +
2

p2

≤Cn
2(δ + 1)3

(δ − 1)!

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(
θ1

(
c2

√
ln p
))n(δ+1)

(√
ln p
√
p

+
τ

p

)
γδ
(

1 + γp−
1
δ

)
+

1

δ!

(
1 + (δ + 1)2µn,δ+2(Σ)

κ− 1

p

)
γδ+1p−

1
δ +

2

p2

≤C(P )

V̆δ

(
1 +

κ− 1

p
µn,δ+2(Σ)

)(√
ln p

p
+
τ

p
+ p−

1
δ

)
,
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where the first inequality follows from additionally from µn,δ+1(Σ) ≤ µn,δ+2(Σ), and in the last
inequality

C
(P )

V̆δ
=
Cn2(δ + 1)3

(δ − 1)!

(
θ1

(
c2

√
ln p
))n(δ+1)

γδ(1 + γ)
(

1 + γp−
1
δ

)
+

2

p2− 1
δ

≤Cn
2(δ + 1)2

(δ − 1)!
(4n+ 5)n(δ+1) γδ(1 + γ)

(
1 +

δ + 1

δ
γp−

1
δ

)
+ 2. (3.114)

where the last step follows from θ1

(
c2

√
ln p
)
≤ 9 + 4(n− 1) = 4n + 5 by (3.112) and τ ≤ p/2.

Proof of Proposition 3.3.9 (c): The Lemma 3.10.8 and Lemma 3.14.4 complete the proof of Propo-
sition 3.3.9 (c).

3.11 Proofs in Subsection 3.3.5

3.11.1 Proof of Lemma 3.3.15

To utilize the notations we have defined in this chapter, we make the following adjustments on
the notations throughout this subsection. In this proof it suffices to prove the conclusion for any
δ + 1 i.i.d. random points from unif(Sn−2). Without loss of generality assume in this subsection
that the first δ + 1 U -scores {ui}δ+1

i=1 are independent. Another adjustment is to replace r by rρ.
With these adjustments Lemma 3.3.15 is equivalent to prove: when rρ < 2/

√
5, δ ≥ 1, for any

` ∈ [δ + 1],

P
(
NMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `|deg(uδ+1) = δ
)

=P
(
PNMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `|deg(uδ+1) = δ
)
. (3.115)

Take ~i = (δ + 1, 1, · · · , δ). Recall the notation ~i,Φ~i = Φ
(R)
~i

, U~i are defined in Subsection
3.3.3, where the dependence of R in Φ

(R)
~i

is suppressed throughout this subsection for the sake
of clean presentation. Then PNMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= U~i + Φ~i. Moreover, the event
{deg(uδ+1) = δ} in PGe

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

is the same as {Φ~i = 1}. Define F (q)
ij =

{‖ui − quj‖2 ≤ rρ}. Then 1

(
δ⋂
j=1

F
(+1)
j(δ+1)

)
is the indicator function that the degree of vertex

uδ+1 in Ge
(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

is δ. Hence Lemma 3.3.15 is equivalent to (3.115), which is
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equivalent to: when rρ < 2/
√

5, δ ≥ 1, for any ` ∈ [δ + 1],

P (U~i + Φ~i = `|Φ~i = 1) = P

(
NMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `

∣∣∣∣∣1
(

δ⋂
j=1

F
(+1)
j(δ+1)

)
= 1

)
.

(3.116)

Proof of (3.116): For ~q = (q1, q2, · · · , qδ) ∈ {−1,+1}δ, denote F (~q)
δ+1 =

⋂δ
j=1 F

(qj)

j(δ+1). Observe

{Φ~i = 1} =
δ⋂
j=1

⋃
qj∈{+1,−1}

F
(qj)

j(δ+1) ==
⋃

~q∈{−1,+1}δ
F

(~q)
δ+1.

Since rρ < 2/
√

5 <
√

2, F (−1)
j(δ+1) and F (+1)

j(δ+1) are disjoint for every j ∈ [δ], which implies F (~q)
δ+1 for

different ~q ∈ {−1,+1}δ are disjoint. Hence,

P(Φ~i = 1, U~i = `− 1) =
∑

~q∈{−1,+1}δ
P(F

(~q)
δ+1, U~i = `− 1). (3.117)

Next observe 1(F
(~q)
δ+1) is a function of u1, · · · ,uδ+1, and hence it has the same distribution as if

replacing ui by−ui for any i ∈ [δ]. Moreover, replacing ui by−ui for any i ∈ [δ] wouldn’t change
U~i. As a result, (3.117) implies

P(Φ~i = 1, U~i = `− 1) = 2δP
(
F

(~q0)
δ+1 , U~i = `− 1

)
, (3.118)

where ~q0 = (+1,+1, · · · ,+1) is the vector in Rδ with all its components +1.
Consider ω ∈ F (~q0)

δ+1 . Then Φ~i(ω) = 1 or equivalently, Φ
(R)
i(δ+1)(ω) = 1 for any i ∈ [δ]. Then

U~i(ω) =
∑
~j∈S~i

Φ~j(ω) =
δ∑
i=1

δ+1∏
j=1
j 6=i

Φ
(R)
ij (ω) =

δ∑
i=1

δ∏
j=1
j 6=i

Φ
(R)
ij (ω). (3.119)

Since for any distinct i, j ∈ [δ], ‖ui(ω)− uj(ω)‖2 ≤ ‖ui − uδ+1(ω)‖2 + ‖ui(ω)− uδ+1(ω)‖2 ≤
2rρ < 4/

√
5, ‖ui(ω) + uj(ω)‖2 =

√
4− ‖ui(ω)− uj(ω)‖2

2 > 2/
√

5 > rρ. Thus Φ
(R)
ij (ω) =

1
F

(+1)
ij

(ω). That is, in the set F (~q0)
δ+1 , (3.119) become

U~i =
δ∑
i=1

δ∏
j=1
j 6=i

1(F
(+1)
ij ) = NMD

(
{ui}δi=1, rρ; δ, n− 1

)
, (3.120)
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which implies

(Φ~i + U~i) 1
(
F

(~q0)
δ+1

)
=
(
1 + NMD

(
{ui}δi=1, rρ; δ + 1, n− 1

))
1
(
F

(~q0)
δ+1

)
=NMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

1
(
F

(~q0)
δ+1

)
. (3.121)

Thus

P (U~i + Φ~i = `|Φ~i = 1) =
2δP

(
F

(~q0)
δ+1 , U~i = `− 1

)
P (Φ~i = 1)

=
2δP

(
F

(~q0)
δ+1 , U~i = `− 1

)
(2Pn(rρ))

δ

=
P
(
F

(~q0)
δ+1 ,NMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `
)

(Pn(rρ))
δ

=P

(
NMD

(
{ui}δ+1

i=1 , rρ; δ + 1, n− 1
)

= `

∣∣∣∣∣1
(

δ⋂
j=1

F
(+1)
j(δ+1)

)
= 1

)
,

where the first equality follows from (3.118), the second equality follows from Lemma 3.9.1, and
the third equality follows from (3.121).

3.11.2 Proofs of Lemma 3.3.16 and Lemma 3.3.17

Proof of Lemma 3.3.16: In the set {deg(u′δ+1) = δ}, it follows that

NMD
(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= NMD
(
{u′i}δi=1, r; δ, n− 1

)
+ 1.

Thus

P
(
deg(u′δ+1) = δ,NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `
)

=E1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

)
=E

(
E
(

1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1

))
=E

(
1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1 = v0

)
, (3.122)

where the last equality follows from that

E
(

1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1

)
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as a random variable of u′δ+1, due to rotation invariance property of the distribution unif(Sn−2), is
degenerate to the constant

E
(

1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1 = v0

)
a.s. with v0 = (1, 0, 0, · · · , 0) ∈ Sn−2.

Underu′δ+1 = v0, 1
(
{deg(u′δ+1) = δ}

)
=
∏δ

i=1 1 (u′i ∈ SC(r,v0)), where SC(r,v0) is defined
in (3.27). Use the following coordinate system for each u′i =

(
u′ji : 1 ≤ j ≤ n− 1

)T in the region
SC(r,v0):

u′1i = 1− r2r2
i

2
,

u′2i = rri

√
1− r2r2

i

4
cos(θ2i),

... for 1 ≤ i ≤ δ,

u′ji = rri

√
1− r2r2

i

4
cos(θji)

j−1∏
m=2

sin(θmi),

...

u′(n−2)i = rri

√
1− r2r2

i

4
sin(θ2i) · · · sin(θ(n−3)i) cos(θ(n−2)i),

u′(n−1)i = rri

√
1− r2r2

i

4
sin(θ2i) · · · sin(θ(n−3)i) sin(θ(n−2)i),

where for each i ∈ [δ]:

ri ∈ [0, 1], θji ∈ [0, π] for 2 ≤ j ≤ n− 3 and θ(n−2)i ∈ [0, 2π). (3.123)

Then

r−(n−2)δE
(

1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1 = v0

)
=r−(n−2)δE

δ∏
i=1

1 (u′i ∈ SC(r,v0)) 1
(
NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1

)
(∗)
=
r−(n−2)δ

|Sn−2|δ

∫
· · ·
∫

Ω0

1
(
NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1

)
×

δ∏
i=1

(
rn−2rn−3

i

(
1− r2r2

i

4

)n−4
2

dri

n−2∏
j=2

(
sinn−2−j(θji)dθji

))

=
1

|Sn−2|δ

∫
· · ·
∫

Ω0

1
(
NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1

)
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×
δ∏
i=1

(
rn−3
i

(
1− r2r2

i

4

)n−4
2

dri

n−2∏
j=2

(
sinn−2−j(θji)dθji

))
, (3.124)

where Ω0 in equality (∗) is the region described in (3.123). Denote by f(r) the integrand in (3.124).
f(r) is a function of ri, θji for 2 ≤ j ≤ n − 2 and 1 ≤ i ≤ δ, of which the dependences are
suppressed.

Generally NMD
(
{vi}δi=1, r; δ, n− 1

)
is a function of (1 (‖vi − vj‖2 ≤ r) : 1 ≤ i < j ≤ δ)

and it does not depend on specific location of each vertices. In (3.124) NMD
(
{u′i}δi=1, r; δ, n− 1

)
is further a function of (1

(
‖u′i − u′j‖2 < r

)
: 1 ≤ i < j ≤ δ) since ‖u′i − u′j‖2 = r contributes

nothing to the integral due to the fact it happens with zero Lebesgue measure on Ω0. Write

NMD
(
{u′i}δi=1, r; δ, n− 1

)
=g(1

(
‖u′i − u′j‖2 < r

)
: 1 ≤ i < j ≤ δ)

=g

(
1

(
1

r
‖u′i − u′j‖2 < 1

)
: 1 ≤ i < j ≤ δ

)
.

Intrinsically, 1
(
‖u′i − u′j‖2 < r

)
is tells whether there is an edge between vertex i and j, and the

function g is the function taking all edge information among δ vertices and output the number of
vertices with maximal degree δ − 1.

Then as r → 0+,

lim
r→0+

f(r) =
δ∏
i=1

(
rn−3
i

n−2∏
j=2

(
sinn−2−j(θji)

))

× lim
r→0+

1

(
g

(
1

(
1

r
‖u′i − u′j‖2 < 1

)
: 1 ≤ i < j ≤ δ

)
= `− 1

)
. (3.125)

Observe

lim
r→0+

(
1

r
‖ui − uj‖2

)2

= (ri cos(θ2i)− rj cos(θ2j))
2 +

n−2∑
q=3

(
ri

q−1∏
m=2

sin(θmi) cos(θqi)− rj
q−1∏
m=2

sin(θmj) cos(θqj)

)2

+

(
ri

n−2∏
m=2

sin(θmi)− rj
n−2∏
m=2

sin(θmj)

)2

. (3.126)
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On Ω0, for 1 ≤ i ≤ δ, define
ũ′1i = ri cos(θ2i),

ũ′ji = ri cos(θ(j+1)i)
j∏

m=2

sin(θmi), for 2 ≤ j ≤ n− 3

ũ′(n−2)i = ri
n−2∏
m=2

sin(θmi),

(3.127)

and ũ′i = (ũ′ji : 1 ≤ j ≤ n− 2) ∈ Bn−2. Then by (3.126)

lim
r→0+

1

r
‖ui − uj‖2 = ‖ũ′i − ũ′j‖2,

which, together with (3.125), imply

lim
r→0+

f(r) =
δ∏
i=1

(
rn−3
i

n−2∏
j=2

(
sinn−2−j(θji)

))
1
(
g
(
1
(
‖ũ′i − ũ′j‖2 < 1

)
: 1 ≤ i < j ≤ δ

)
= `− 1

)
=

δ∏
i=1

(
rn−3
i

n−2∏
j=2

(
sinn−2−j(θji)

))
1
(
g
(
1
(
‖ũ′i − ũ′j‖2 ≤ 1

)
: 1 ≤ i < j ≤ δ

)
= `− 1

)
=

δ∏
i=1

(
rn−3
i

n−2∏
j=2

(
sinn−2−j(θji)

))
1
(
NMD

(
{ũ′i}δi=1, 1; δ, n− 2

)
= `− 1

)
.

where the second equality holds a.s. with respect to the Lebesgue measure on Ω0,
Moreover, |f(r)| ≤ 1, which is integrable over the bounded set Ω0. Apply Dominated Conver-

gence Theorem to (3.124),

lim
r→0+

r−(n−2)δE
(

1
(
{deg(u′δ+1) = δ}

⋂
{NMD

(
{u′i}δi=1, r; δ, n− 1

)
= `− 1}

) ∣∣u′δ+1 = v0

)
=

1

|Sn−2|δ

∫
· · ·
∫

Ω0

1
(
NMD

(
{ũ′i}δi=1, 1; δ, n− 2

)
= `− 1

)
×

δ∏
i=1

(
rn−3
i dri

n−2∏
j=2

(
sinn−2−j(θji)dθji

))

=
|Bn−2|δ

|Sn−2|δ
P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
, (3.128)

where the parametrization (3.127) and the region Ω0 coincide with the spherical coordinates for
Bn−2.
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Thus

lim
r→0+

P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `
∣∣deg(u′δ+1) = δ

)
= lim

r→0+
r−(n−2)δP

(
deg(u′δ+1) = δ,NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 1
)

= `
) r(n−2)δ

(Pn(r))δ

=
|Bn−2|δ

|Sn−2|δ
P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

) 1

(cn)δ

=
1

(cn)δ
|Bn−2|δ

|Sn−2|δ
P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
=P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
= `− 1

)
,

where the second equality follows from (3.122), (3.128) and Lemma 3.14.1 (b).

Proof of Lemma 3.3.17: By (3.44), Lemma 3.3.16 and (3.7),

lim
ρ→1−

α(`, rρ) = lim
rρ→0+

α(`, rρ) = α`, ∀` ∈ [δ + 1], (3.129)

and thus
lim
ρ→1−

ζn,δ,ρ(`) = ζn,δ(`), ∀` ∈ [δ + 1]. (3.130)

By Lemma 3.14.1 (b)

lim
p→∞

2p1+ 1
δPn(rρ) = lim

p→∞
2cnp

1+ 1
δ rn−2
ρ = lim

p→∞
2
n
2 cnp

1+ 1
δ (1− ρ)

n−2
2 = en,δ.

Then the preceding display and (3.129) yield

lim
p→∞

λp,n,δ,ρ = lim
p→∞

1

δ!
pδ+1(2Pn(rρ))

δ

δ+1∑
`=1

α(`, rρ)

`
= lim

p→∞

1

δ!
(en,δ)

δ
δ+1∑
`=1

α`
`

= λn,δ(en,δ).

(3.131)
(3.130) and (3.131) immediately yield the conclusion.

3.12 Proofs in Section 3.4

3.12.1 Proofs of Lemma 3.4.1 and Proposition 3.4.2

Proof of Lemma 3.4.1:

EN (R)
Eδ
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ =
∑
~i∈C<δ

Σ~i not diagonal

(
E

δ∏
j=1

Φ
(R)
i0ij
− (2Pn(rρ))

δ

)
(3.132)
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≤ (µn,δ+1 (Σ)− 1) (2Pn(rρ))
δ

∑
~i∈C<δ

Σ~i not diagonal

1,

where the first inequality follows from Lemma 3.3.3 (c) and Lemma 3.9.1. By (3.132),

EN (R)
Eδ
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ ≥ −(2Pn(rρ))
δ

∑
~i∈C<δ

Σ~i not diagonal

1.

Combining the preceding two displays,∣∣∣∣EN (R)
Eδ
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

∣∣∣∣ ≤max{1, µn,δ+1 (Σ)− 1)} (2Pn(rρ))
δ

∑
~i∈C<δ

Σ~i not diagonal

1

≤µn,δ+1 (Σ) (2Pn(rρ))
δ (δ + 1)

2((δ − 1)!)
pδ(κ− 1)

≤ (δ + 1)

2((δ − 1)!)
γδµn,δ+1 (Σ)

κ− 1

p
,

where the second inequality follows from Lemma 3.9.2.

Proof of Proposition 3.4.2: Recall for~i ∈ C<
δ , Φ

(R)
~i

is defined in (3.30), U~i is defined in (3.33),
and Z~i and W~i are defined in (3.70). Then

N
(R)
Eδ

=
∑
~i∈C<δ

Φ
(R)
~i

= Φ
(R)
~i

+ U~i + Z~i +W~i.

Then (
N

(R)
Eδ

)2

=
∑
~i∈C<δ

Φ
(R)
~i

(
Φ

(R)
~i

+ U~i + Z~i +W~i

)
. (3.133)

Step 1:
Since Φ

(R)
~i

+ U~i takes value in [δ + 1]
⋃
{0},

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
=

δ+1∑
`=1

` EΦ
(R)
~i

1
(

Φ
(R)
~i

+ U~i = `
)

=
δ+1∑
`=1

` P
(

Φ
(R)
~i

= 1
)
P
(

Φ
(R)
~i

+ U~i = `|Φ(R)
~i

= 1
)
.
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For~i ∈ C<
δ such that Σ~i diagonal, P

(
Φ

(R)
~i

= 1
)

= (2Pn(rρ))
δ by Lemma 3.9.1 and

P
(

Φ
(R)
~i

+ U~i = `|Φ(R)
~i

= 1
)

= α(`, rρ)

by (3.44). Thus in this case,

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
= (2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ).

Moreover, when~i ∈ C<
δ such that Σ~i is not diagonal, by Lemma 3.3.3 (c)

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
≤ µn,δ+1(Σ)(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ).

Then by the preceding two displays,

∑
~i∈C<δ

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ)

=
∑
~i∈C<δ

Σ~i not diagonal

(
EΦ

(R)
~i

(
Φ

(R)
~i

+ U~i

)
− (2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ)

)
(3.134)

≤ (µn,δ+1(Σ)− 1) (2Pn(rρ))
δ

δ+1∑
`=1

`α(`, rρ)
∑
~i∈C<δ

Σ~i not diagonal

1.

By (3.134),

∑
~i∈C<δ

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ ≥ −(2Pn(rρ))
δ

δ+1∑
`=1

`α(`, rρ)
∑
~i∈C<δ

Σ~i not diagonal

1.

By combining the preceding two displays,∣∣∣∣∣∣
∑
~i∈C<δ

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ)

∣∣∣∣∣∣
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≤µn,δ+1(Σ)(2Pn(rρ))
δ

δ+1∑
`=1

`α(`, rρ)
∑
~i∈C<δ

Σ~i not diagonal

1

≤µn,δ+1(Σ)(2Pn(rρ))
δ

δ+1∑
`=1

`α(`, rρ)
(δ + 1)

2((δ − 1)!)
pδ(κ− 1)

≤µn,δ+1(Σ)(2p1+1/δPn(rρ))
δ (δ + 1)2

2((δ − 1)!)

κ− 1

p
(3.135)

where the second inequality follows from Lemma 3.9.2.

Step 2:

∑
~i∈C<δ

EΦ
(R)
~i

W~i −
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

=
∑
~i∈C<δ

∑
~j∈T~i

EΦ
(R)
~i

Φ
(R)
~j
−
∑
~i∈C<δ

∑
~j∈C<δ

(2Pn(rρ))
2δ

=
∑
~i∈C<δ

∑
~j∈T~i

EΦ
(R)
~i

EΦ
(R)
~j
−
∑
~i∈C<δ

∑
~j∈T~i

(2Pn(rρ))
2δ −

∑
~i∈C<δ

∑
~j∈C<δ \T~i

(2Pn(rρ))
2δ

=
∑
~i∈C<δ

Σ~i not diagonal

∑
~j∈T~i

(
EΦ

(R)
~i

Φ
(R)
~j
− (2Pn(rρ))

2δ
)

+
∑
~i∈C<δ

Σ~i diagonal

∑
~j∈T~i

Σ~j not diagonal

(
EΦ

(R)
~i

Φ
(R)
~j
− (2Pn(rρ))

2δ
)

−
∑
~i∈C<δ

∑
~j∈C<δ \T~i

(2Pn(rρ))
2δ (3.136)

where the last equality follows from EΦ
(R)
~i

= (2Pn(rρ))
δ for ~i ∈ C<

δ such that Σ~i diagonal by
Lemma 3.9.1. Then by (3.136),

∑
~i∈C<δ

EΦ
(R)
~i

W~i −
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

≤ (µn,2δ+2(Σ)− 1) (2Pn(rρ))
2δ

 ∑
~i∈C<δ

Σ~i not diagonal

∑
~j∈T~i

1 +
∑
~i∈C<δ

Σ~i diagonal

∑
~j∈T~i

Σ~j not diagonal

1

 ,

where the inequality follows from Lemma 3.3.3 (c).
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On the other hand, by (3.136),

∑
~i∈C<δ

EΦ
(R)
~i

W~i −
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

≥− (2Pn(rρ))
2δ

 ∑
~i∈C<δ

Σ~i not diagonal

∑
~j∈T~i

1 +
∑
~i∈C<δ

Σ~i diagonal

∑
~j∈T~i

Σ~j not diagonal

1

−∑
~i∈C<δ

∑
~j∈C<δ \T~i

(2Pn(rρ))
2δ.

Combining th preceding two displays,∣∣∣∣∣∣
∑
~i∈C<δ

EΦ
(R)
~i

W~i −
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

∣∣∣∣∣∣
≤µn,2δ+2(Σ)(2Pn(rρ))

2δ

 ∑
~i∈C<δ

Σ~i not diagonal

∑
~j∈T~i

1 +
∑
~i∈C<δ

Σ~i diagonal

∑
~j∈T~i

Σ~j not diagonal

1

+
∑
~i∈C<δ

∑
~j∈C<δ \T~i

(2Pn(rρ))
2δ

≤µn,2δ+2(Σ)(2Pn(rρ))
2δ

2
∑
~i∈C<δ

Σ~i not diagonal

∑
~j∈C<δ

1

+
∑
~i∈C<δ

∑
~j∈C<δ \T~i

(2Pn(rρ))
2δ

(∗)
≤µn,2δ+2(Σ)(2Pn(rρ))

2δ2

(
p

1

)(
p− 1

δ

)
(δ + 1)

2((δ − 1)!)
pδ(κ− 1)+(

p

1

)(
p− 1

δ

)
(δ + 1)2

δ!
pδκ(2Pn(rρ))

2δ

≤2(δ + 1)2

(δ!)2
(2p1+1/δPn(rρ))

2δµn,2δ+2(Σ)
κ

p
, (3.137)

where step (∗) follows from Lemma 3.9.2 and (3.80).
Step 3:
Notice

∑
~i∈C<δ

EΦ
(R)
~i

Z~i = b2 as in (3.72) and thus satisfies the bound (3.87). Then by (3.133),

∣∣∣∣∣E(N (R)
Eδ

)2

−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ)−
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2
∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
~i∈C<δ

EΦ
(R)
~i

(
Φ

(R)
~i

+ U~i

)
−
(
p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

δ+1∑
`=1

`α(`, rρ)

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
∑
~i∈C<δ

EΦ
(R)
~i

W~i −
((

p

1

)(
p− 1

δ

)
(2Pn(rρ))

δ

)2

∣∣∣∣∣∣+ b2

≤Cn,δ
(

(2p1+1/δPn(rρ))
δ
(
1 + 2p1+1/δPn(rρ)

)δ
µn,2δ+2(Σ)

κ

p
+ p(2pPn(rρ))

δ+1 (1 + 2pPn(rρ))
δ

)
,

(3.138)

where the last inequality follows from (3.135), (3.137) and (3.87). The proof is then completed by
2p1+1/δPn(rρ) ≤ γ.

3.12.2 Proof of Proposition 3.4.3

Proof of Proposition 3.4.3 (a):
By taking square of each terms in Lemma 3.3.8,(

N
(R)
Eδ

)2

− 2(δ + 1)N
(R)
Eδ

N
(R)
Eδ+1
≤
(
N

(R)

V̆δ

)2

≤
(
N

(R)
Vδ

)2

≤
(
N

(R)
Eδ

)2

,

which then implies for N̄δ ∈
{
N

(R)

V̆δ
, N

(R)
Vδ

}
∣∣∣∣(N̄δ

)2 −
(
N

(R)
Eδ

)2
∣∣∣∣ ≤ 2(δ + 1)N

(R)
Eδ

N
(R)
Eδ+1

= 2(δ + 1)
∑

~i∈C<δ+1

∑
~j∈C<δ

Φ
(R)
~i

Φ
(R)
~j

. (3.139)

It suffices to establish an upper bound on EN (R)
Eδ+1

N
(R)
Eδ

= E
∑

~i∈C<δ+1

∑
~j∈C<δ

Φ
(R)
~i

Φ
(R)
~j

.

Observe for ~j ∈ J~i,

EΦ
(R)
~i

Φ
(R)
~j
≤ EΦ

(R)
~i
≤ µn,δ+2(Σ~i)(2Pn(rρ))

δ+1.

For ~j ∈ T~i,
[
~j
]
∩
[
~i
]

= ∅. Thus, if Σ~i∪~j is diagonal, EΦ
(R)
~i

Φ
(R)
~j

= EΦ
(R)
~i

EΦ
(R)
~j

=

(2Pn(rρ))
2δ+1 by Lemma 3.9.1. Then for the general case that Σ~i∪~j is not necessarily diagonal, by

Lemma 3.3.3 (c),
EΦ

(R)
~i

Φ
(R)
~j
≤ µn,2δ+3(Σ~i∪~j)(2Pn(rρ))

2δ+1

It is straightforward by Lemma 3.3.3 (c), Lemma 3.9.1 and Lemma 3.9.4 that the conditions
in Lemma 3.9.6 with q = δ + 1 and θ~i,~j = Φ

(R)
~i

Φ
(R)
~j

are satisfied with a = 1, b = 2Pn(2rρ)1(δ ≥
2) + 2Pn(rρ)1(δ = 1) and z = 2Pn(rρ). Moreover, b/z ≤ 2n−21(δ ≥ 2) + 1 by Lemma 3.14.1 (d).

Thus Lemma 3.9.7 with q = δ + 1 and θ~i,~j = Φ
(R)
~i

Φ
(R)
~j

, a = 1, b = 2Pn(2rρ)1(δ ≥ 2) +

2Pn(rρ)1(δ = 1) and z = 2Pn(rρ), together with the fact that pz ≤ p1+ 1
δ z = 2p1+ 1

δPn(rρ) ≤ γ,
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yield

EN (R)
Eδ+1

N
(R)
Eδ

= E
∑

~i∈C<δ+1

∑
~j∈C<δ

Φ
(R)
~i

Φ
(R)
~j
≤ Cn,δ,γ

(
1 + µn,2δ+3(Σ)

κ− 1

p

)
p−1/δ. (3.140)

The proof is then complete by the preceding display and (3.139).

We now present a few lemmas that are used in the proof of Proposition 3.4.3 (b) and (c). Recall
Fij(rρ), Hij(rρ), Gij(rρ), F~i(rρ) are defined in Section 3.10.3.

Lemma 3.12.1. Suppose p ≥ n. 1 ≤ δ ≤ q ≤ p − 1. Then for any ~i ∈ C<
q , ~j ∈ C<

δ , with

probability 1, ∣∣∣Φ(P )
~i

Φ
(P )
~j
− Φ

(R)
~i

Φ
(R)
~j

∣∣∣ ≤ ξ~i,~j,

where

ξ~i,~j := 1

(
q⋃

m=1

((
Hi0im

∖
Gi0im

)⋂
H~i,−m

⋂
H~j

)⋃ δ⋃
`=1

((
Hj0j`

∖
Gj0j`

)⋂
H~j,−`

⋂
H~i

))
.

Proof:

∣∣∣Φ(P )
~i

Φ
(P )
~j
− Φ

(R)
~i

Φ
(R)
~j

∣∣∣ =1

((
q⋂

m=1

Fi0im
⋂ δ⋂

`=1

Fj0j`

)
4

(
q⋂

m=1

Si0im
⋂ δ⋂

`=1

Sj0j`

))
≤ ξ~i,~j

where the inequality follows from (3.95) and Lemma 3.14.7 (a).

Lemma 3.12.2. Let p ≥ n ≥ 4, 1 ≤ δ ≤ q ≤ p− 1 andX ∼ VE(µ,Σ, θ). Suppose Σ, after some

row-column permutation, is (τ, κ) sparse with τ ≤ p
2
. Let t be any positive number, and suppose

(3.100) holds. Then for any~i ∈ C<
q , ~j ∈ C<

δ , with probability 1,

ξ~i,~j1 (E(t)) ≤ η~i,~j(t),

where

η~i,~j(t) :=1

(
q⋃

m=1

((
Fi0im(θ1(t)rρ)

∖
Fi0im

(
rρ
θ1(t)

))⋂
F~i,−m(θ1(t)rρ)

⋂
F~j(θ1(t)rρ)

)⋃
δ⋃
`=1

((
Fj0j`(θ1(t)rρ)

∖
Fj0j`

(
rρ
θ1(t)

))⋂
F~j,−`(θ1(t)rρ)

⋂
F~i(θ1(t)rρ)

))
.
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Proof: By (3.101), Hij(rρ) ∩ E(t) ⊂ Fij(θ1(t)rρ) and Gij(rρ) ∩ E(t) ⊃ Fij

(
rρ
θ1(t)

)
. Then

ξ~i,~j1 (E(t)) ≤ η~i,~j(t).

Lemma 3.12.3. Let p ≥ n ≥ 4, 1 ≤ δ ≤ q ≤ p− 1 andX ∼ VE(µ,Σ, θ). Suppose Σ, after some

row-column permutation, is (τ, κ) sparse with τ ≤ p
2
. Let t be any positive number, and suppose

(3.100) holds. Suppose additionally 2p1+ 1
δPn(rρ) ≤ γ. Then

E
∑
~i∈C<q

∑
~j∈C<δ

η~i,~j(t) ≤ Cn,q,δ,γ (θ1(t))n(2δ+q)

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)(√
1

p
+

t
√
p

+
τ

p

)
p1− q

δ .

Proof: Note

∑
~i∈C<q

∑
~j∈C<δ

η~i,~j(t) =

∑
~i∈C<q

∑
~j∈J~i

+
∑
~i∈C<q

∑
~j∈T~i

+
∑
~i∈C<q

∑
~j∈N~i

 η~i,~j(t).

Step 1: ~j ∈ T~i
By union bound for indicator function,

η~i,~j(t) ≤ η~i(t)1
(
F~j(θ1(t)rρ)

)
+ η~j(t)1 (F~i(θ1(t)rρ)) , (3.141)

where η~i(t) is defined in (3.102) with δ replaced by q. Then for ~j ∈ T~i

Eη~i,~j(t) ≤ Eη~i(t)P
(
F~j(θ1(t)rρ)

)
+ Eη~j(t)P (F~i(θ1(t)rρ)) . (3.142)

Moreover, for ~j ∈ T~i, Σ~i∪~j is diagonal if and only if Σ~i and Σ~j are both diagonal.
Now suppose Σ~i∪~j is diagonal, by conditioning on uj0

P
(
F~j(θ1(t)rρ)

)
= (2Pn(θ1(t)rρ))

δ , P (F~i(θ1(t)rρ)) = (2Pn(θ1(t)rρ))
q .

The preceding display, (3.142), Lemma 3.10.5 applying to Eη~j(t), and Lemma 3.10.5 with δ = q

applying to Eη~i(t) yield

Eη~i,~j(t) ≤ (δ + q)2

(
Pn(rρθ1(t))− Pn

(
rρ
θ1(t)

))
(2Pn (θ1(t)rρ))

q+δ−1 .
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For the general case that Σ~i∪~j is not necessarily diagonal, by Lemma 3.3.3 (c), for any ~j ∈ T~i

Eη~i,~j(t) ≤ µn,q+δ+2(Σ~i∪~j)(δ + q)2

(
Pn(rρθ1(t))− Pn

(
rρ
θ1(t)

))
(2Pn (θ1(t)rρ))

q+δ−1 .

Then the condition in Lemma 3.9.5 (b) is satisfied with θ~i,~j = η~i,~j , z = 2Pn(rρθ1(t)) and

a = (δ + q)
Pn(rρθ1(t))−Pn

(
rρ
θ1(t)

)
Pn(rρθ1(t))

.

Step 2: ~j ∈ J~i
(3.141) implies

η~i,~j(t) ≤η~i(t) +
δ∑
`=1

1

(
Fj0j`(θ1(t)rρ)

∖
Fj0j`

(
rρ
θ1(t)

))
1(F~i(θ1(t)rρ)). (3.143)

For~j ∈ J~i, j0, j` ∈
[
~i
]
. If i0 ∈ {j0, j`}, without loss of generality, say i0 = j` and j0 = iα for some

1 ≤ α ≤ q. Then

E1

(
Fj0j`(θ1(t)rρ)

∖
Fj0j`

(
rρ
θ1(t)

))
1(F~i(θ1(t)rρ))

=P
((

Fi0iα(θ1(t)rρ)
∖
Fi0iα

(
rρ
θ1(t)

))⋂
F~i,−α(θ1(t)rρ)

)
≤µn,q+1(Σ~i)2

(
Pn(rρθ1(t))− Pn

(
rρ
θ1(t)

))
(2Pn (θ1(t)rρ))

q−1 , (3.144)

where the last step follows from Lemma 3.10.5 with δ replace by q.
If i0 6∈ {j0, j`}, without loss of generality, say j0 = iα, j` = iβ for some 1 ≤ α 6= β ≤ q.

Suppose for now that Σ~i is diagonal, then

E1

(
Fj0j`(θ1(t)rρ)

∖
Fj0j`

(
rρ
θ1(t)

))
1(F~i(θ1(t)rρ))

=E1

(
Fiαiβ(θ1(t)rρ)

∖
Fiαiβ

(
rρ
θ1(t)

))
1(F~i(θ1(t)rρ))

(∗)
=(2Pn(θ1(t)rρ))

q−2E1

(
Fiαiβ(θ1(t)rρ)

∖
Fiαiβ

(
rρ
θ1(t)

))
1(Fi0iα(θ1(t)rρ))1(Fi0iβ(θ1(t)rρ))

(∗∗)
≤ 2

(
Pn(θ1(t)rρ)− Pn

(
rρ
θ1(t)

))
(2Pn(θ1(t)rρ))

q−1,

where the step (∗) follows from conditioning on ui0 ,uiα ,uiβ , and the step (∗∗) follows from
dropping the term 1(Fi0iβ(θ1(t)rρ)) and then conditioning on uiα . Then for the general case that Σ~i
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is not necessarily diagonal, by Lemma 3.3.3 (c),

E1

(
Fj0j`(θ1(t)rρ)

∖
Fj0j`

(
rρ
θ1(t)

))
1(F~i(θ1(t)rρ))

≤µn,q+1(Σ~i)2

(
Pn(θ1(t)rρ)− Pn

(
rρ
θ1(t)

))
(2Pn(θ1(t)rρ))

q−1. (3.145)

By combining (3.143), (3.144), (3.145) and Lemma 3.10.5 with δ replace by q,

Eη~i,~j(t) ≤ (q + δ)µn,q+1(Σ~i)2

(
Pn(θ1(t)rρ)− Pn

(
rρ
θ1(t)

))
(2Pn(θ1(t)rρ))

q−1.

Then the condition in Lemma 3.9.5 (a) with θ~i,~j = η~i,~j , z = 2Pn(rρθ1(t)) and a = (q +

δ)
Pn(θ1(t)rρ)−Pn

(
rρ
θ1(t)

)
Pn(θ1(t)rρ)

is satisfied.

Step 3: ~j ∈ N~i
It is straightforward by Lemma 3.3.3 (c), Lemma 3.9.1 and Lemma 3.9.4 that the conditions

in Lemma 3.9.6 with θ~i,~j = η~i,~j are satisfied with a = a1 = (q + δ)
Pn(θ1(t)rρ)−Pn

(
rρ
θ1(t)

)
Pn(θ1(t)rρ)

, b =

2Pn(2rρθ1(t))1(δ ≥ 2) + 2Pn(rρθ1(t))1(δ = 1) and z = 2Pn(rρθ1(t)). Moreover, b/z ≤
2n−21(δ ≥ 2) + 1 by Lemma 3.14.1 (d).

Thus by Lemma 3.9.7 with θ~i,~j = η~i,~j , a = (q+ δ)
Pn(θ1(t)rρ)−Pn

(
rρ
θ1(t)

)
Pn(θ1(t)rρ)

, b = 2Pn(2rρθ1(t))1(δ ≥
2) + 2Pn(rρθ1(t))1(δ = 1) and z = 2Pn(rρθ1(t))

∑
~i∈C<q

∑
~j∈C<δ

η~i,~j ≤ Cn,q,δ

(
p1+ 1

δ z
)q (

1 + (p1+ 1
δ z)δ

)
(1 + pz)δ−1

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)
ap1− q

p .

(3.146)
Step 4
Observe

pz ≤ p1+ 1
δ z ≤ (θ1(t))n−2 2p1+ 1

δPn(rρ) ≤ (θ1(t))n−2 γ (3.147)

where the second inequality follows from Lemma 3.14.1 (d). Moreover by Lemma 3.14.1 (c) and
the fact that θ1(t) ≥ 1,

a ≤ (q + δ)
Pn(θ1(t)rρ)− Pn

(
rρ
θ1(t)

)
Pn(rρ)

≤ (q + δ)(n− 2) (θ1(t))n−3

(
θ1(t)− 1

θ1(t)

)
. (3.148)
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Plug (3.147) and (3.148) into (3.146) and by the fact that θ1(t) ≥ 1,

∑
~i∈C<q

∑
~j∈C<δ

η~i,~j ≤Cn,q,δ,γ (θ1(t))n(2δ+q)

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)(
θ1(t)− 1

θ1(t)

)
p1− q

p

≤Cn,q,δ,γ (θ1(t))n(2δ+q)

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)(√
n

p
+

t
√
p

+ n
τ

p

)
p1− q

p ,

where the last inequality follows from Lemma 3.14.3 (d) and (3.101).

Lemma 3.12.4. Let p ≥ n ≥ 4 and X ∼ VE(µ,Σ, θ). Suppose Σ, after some row-column

permutation, is (τ, κ) sparse with τ ≤ p
2
. Consider 1 ≤ δ ≤ p− 2 and let q ∈ {δ, δ + 1}. Suppose

2p1+ 1
δPn(rρ) ≤ γ and

(√
n−1
p

+
√

δ ln p
p

)
≤ c hold for some positive and small enough universal

constant c. Then

E
∣∣∣N (P )

Eq
N

(P )
Eδ
−N (R)

Eq
N

(R)
Eδ

∣∣∣ ≤ Cn,δ,γ

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)(√
ln p
√
p

+
τ

p

)
p1− q

δ .

Proof: For k ∈ {R,P },
N

(k)
Eq
N

(k)
Eδ

=
∑
~i∈C<q

∑
~j∈C<δ

Φ
(k)
~i

Φ
(k)
~j
.

Thus

E
∣∣∣N (P )

Eq
N

(P )
Eδ
−N (R)

Eq
N

(R)
Eδ

∣∣∣
≤E

∑
~i∈C<q

∑
~j∈C<δ

∣∣∣Φ(P )
~i

Φ
(P )
~j
− Φ

(R)
~i

Φ
(R)
~j

∣∣∣ 1 (E(t)) +

(
p

1

)(
p− 1

q

)(
p

1

)(
p− 1

δ

)
P(Ec(t))

≤E
∑
~i∈C<q

∑
~j∈C<δ

η~i,~j +
pq+δ+2

δ!q!
2 exp(−c1t

2) (3.149)

where the first inequality follows from 0 ≤ N
(k)
Eδ
≤
(
p
1

)(
p−1
δ

)
for both k = R and k = P , and the

second inequality follows from Lemma 3.12.1, Lemma 3.12.2 and (3.97).
Choose t = s0

√
ln pwith s0 =

√(
9
2

+ 2δ
)
/c1. Since q ∈ {δ, δ+1}, s0 ≥

√(
3
2

+ q + δ + q
δ

)
/c1.

Then
2 exp(−c1t

2) ≤ 2 exp

(
−
(

3

2
+ q + δ +

q

δ

)
ln p

)
=

2

p
3
2

+q+δ+ q
δ

.

Moreover, for any c < 1

2 max
{√

( 9
2

+2δ)/c1,1
}√

2C1

,

(√
n− 1

p
+

√
δ ln p

p

)
≤ c
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implies
√

2C1

(√
n− 1

p
+ s0

√
ln p

p

)
≤ 1

2
, (3.150)

which is (3.100) with t = s0

√
ln p. Then apply Lemma 3.12.3 with t = s0

√
ln p to (3.149),

E
∣∣∣N (P )

Eq
N

(P )
Eδ
−N (R)

Eq
N

(R)
Eδ

∣∣∣
≤Cn,q,δ,γ (θ1(s0 ln p))n(2δ+q)

(
1 + µn,q+δ+2(Σ)

κ− 1

p

)(√
1

p
+
s0

√
ln p
√
p

+
τ

p

)
p1− q

δ+

2

δ!q!
√
p
p1− q

δ

≤Cn,q,δ,γ
(

1 + µn,q+δ+2(Σ)
κ− 1

p

)(
s0

√
ln p
√
p

+
τ

p

)
p1− q

δ +
2

δ!q!
√
p
p1− q

δ

≤Cn,q,δ,γ
(

1 + µn,q+δ+2(Σ)
κ− 1

p

)(√
ln p
√
p

+
τ

p

)
p1− q

δ

≤Cn,δ,γ
(

1 + µn,q+δ+2(Σ)
κ− 1

p

)(√
ln p
√
p

+
τ

p

)
p1− q

δ ,

where the second inequality follows from θ1

(
s0

√
ln p
)
≤ 9 + 4(n− 1) = 4n+ 5 by (3.150) and

τ ≤ p/2; and the last step follows from q ∈ {δ, δ + 1}.

Proof of Proposition 3.4.3 (b) and (c):
(b) It follows directly from Lemma 3.12.4 with q = δ.
(c) By taking square of each terms in Lemma 3.3.8,(

N
(P )
Eδ

)2

− 2(δ + 1)N
(P )
Eδ

N
(P )
Eδ+1
≤
(
N

(P )

V̆δ

)2

≤
(
N

(P )
Vδ

)2

≤
(
N

(P )
Eδ

)2

,

which then implies for N̄δ ∈
{
N

(P )

V̆δ
, N

(P )
Vδ

}
∣∣∣∣N̄δ −

(
N

(P )
Eδ

)2
∣∣∣∣ ≤ 2(δ + 1)

(
N

(P )
Eδ+1

N
(P )
Eδ
−N (R)

Eδ+1
N

(R)
Eδ

)
+ 2(δ + 1)N

(R)
Eδ+1

N
(R)
Eδ

.

By Lemma 3.12.4 with q = δ + 1,

E
∣∣∣N (P )

Eδ+1
N

(P )
Eδ
−N (R)

Eδ+1
N

(R)
Eδ

∣∣∣ ≤ Cn,δ,γ

(
1 + µn,2δ+3(Σ)

κ− 1

p

)(√
ln p
√
p

+
τ

p

)
p−

1
δ .
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The proof is then completed by combining the preceding two displays, (3.140) and the fact that(√
ln p
√
p

+
τ

p

)
≤ 1.

3.13 Proofs in Section 3.5

3.13.1 Proofs of Lemma 3.5.3, Lemma 3.5.4 and Corollary 3.5.5

Proof of Lemma 3.5.3: When δ = 2, α2 = 0 since either both vertices have the maximum degree
1 or none. Moreover,

α3 =P(‖ũ1 − ũ2‖2 ≤ 1)

=EP(‖ũ1 − ũ2‖2 ≤ 1|ũ1)

(∗)
=E

1

Vol(Bn−2)
× 2× π(n−3)/2

Γ(n−3
2

+ 1)

∫ arccos(
‖ũ1‖2

2
)

0

sinn−2(θ)dθ

(∗∗)
=

1

Vol(Bn−2)
× 2× π(n−3)/2

Γ(n−3
2

+ 1)

Area(Sn−3)

Vol(Bn−2)

∫ 1

0

rn−3

∫ arccos( r
2

)

0

sinn−2(θ)dθdr

=
2(n− 2)

B(n−1
2
, 1

2
)

∫ 1

0

rn−3

∫ arccos( r
2

)

0

sinn−2(θ)dθdr (3.151)

where step (∗) follows from the Subsection “Volume of a hyperspherical cap” of [Li11] and
Vol(Bn−2) is the volume of Bn−2, step (∗∗) follows by observing the random quantity only depends
on ũ1 through its Euclidean norm, and in the last step B(·, ·) is the Beta function. By Fubini’s
Theorem∫ 1

0

rn−3

∫ arccos( r
2

)

0

sinn−2(θ)dθdr =

∫ π
3

0

∫ 1

0

rn−3 sinn−2(θ)drdθ +

∫ π
2

π
3

∫ 2 cos(θ)

0

rn−3 sinn−2(θ)drdθ

=
3

2(n− 2)

∫ π
3

0

sinn−2(θ)dθ

Plug the preceding formula into (3.151), α3 = 3
2
I 3

4
(n−1

2
, 1

2
), where Ix(a, b) is the regularized

incomplete Beta function. α1 = 1− α3 follows from α2 = 0.

Proof of Lemma 3.5.4:
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0 ũ1

√
1−

(
‖ũ1‖2

2

)2

ũ1

1

Figure 3.5: The solid circle represents the unit Euclidean ball Bn
2 in Rn while the dash circle

represents the unit ball centered at ũ1. Their intersection is the green region, which is contained in

contained in the ball with center at ũ1/2 and with radius

√
1−

(
‖ũ1‖2

2

)2

.
.

a) Denote by deg(·) the degree of a vertex in Ge ({ũi}mi=1, 1;m,N ). Then by union bound,

P
(
NMD

(
{ũi}δi=1, 1; , n− 2

)
≥ 1
)
≤δP (deg(ũ1) = δ − 1)

=δE (P(deg(ũ1) = δ − 1|ũ1))

=δE (P (‖ũ1 − ũ2‖2 ≤ 1, · · · , ‖ũ1 − ũδ‖2 ≤ 1| ũ1))

=δE
(
P (‖ũ1 − ũ2‖2 ≤ 1| ũ1)δ−1

)
, (3.152)

where the last equality follows by conditional independence.

As illustrated in Figure 3.5, P (‖ũ1 − ũ2‖2 ≤ 1|ũ1) is the ratio between Lebesgue measure
of green region and |Bn−2

2 |. Moreover, the Lebesgue measure of the green region is less than(
1−

(
‖ũ1‖2

2

)2
)n−2

2

|Bn−2
2 |. Then

P (‖ũ1 − ũ2‖2 ≤ 1|ũ1) ≤

(
1−

(
‖ũ1‖2

2

)2
)n−2

2

a.s. (3.153)

By combining (3.152) and (3.153),

P
(
NMD

(
{ũi}δi=1, 1; δ, n− 2

)
≥ 1
)
≤δE

(
1−

(
‖ũ1‖2

2

)2
) (n−2)(δ−1)

2

231



=δ(n− 2)

∫ 1

0

(
1− r2

4

) (n−2)(δ−1)
2

rn−3dr (3.154)

=δ(n− 2)2n−3B

(
1

4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)
,

where the first equality follows from expressing the integral in polar coordinates, and the last
step follows from changing the variables r = 2

√
y.

b) Denote f (r;α, β) =
(

1− r2

4

)α
rβ . Then it is easy to verify that for any α, β > 0,

max
r∈[0,1]

f (r;α, β) =

f (1;α, β) =
(

3
4

)α if 3β ≥ 2α,

f
(√

4β
2α+β

;α, β
)

=
(

2α
2α+β

)α (
4β

2α+β

)β
2

if 3β ≤ 2α.
(3.155)

Moreover, f(r;α, β) is increasing on [0, 1] if 3β ≥ 2α.

Let α = (n−2)(δ−1)
2

and β = n− 3. If δ = 2, then for any n ≥ 4, 3β ≥ 2α is satisfied. Then
since f(r;α, β) is increasing on [0, 1],

∫ 1

0

f (r;α, β) dr ≤
√

4

5
f

(√
4

5
;α, β

)
+

(
1−

√
4

5

)
f (1;α, β) . (3.156)

If δ = 3, then for any n ≥ 5, 3β ≥ 2α is satisfied and hence (3.156) holds. For n = 4,
3β ≤ 2α is satisfied and by (3.155),

∫ 1

0

f (r;α, β) dr ≤ f

(√
4β

2α + β
;α, β

)
= f

(√
4

5
;α, β

)
. (3.157)

If δ ≥ 4, it is easy to see for any n ≥ 4, 3β ≤ 2α holds. By (3.155)∫ 1

0

f (r;α, β) dr

≤f

(√
4β

2α + β
;α, β

)

=

(
δ − 1

δ

) (n−2)(δ−1)
2

(
4

δ

)n−3
2
(

n− 2

n− 2− 1
δ

) δ−1
2

((
n− 2

n− 2− 1
δ

)δ−1(
n− 3

n− 2− 1
m

))n−3
2

≤ exp

(
1

4

)(
δ − 1

δ

) (n−2)(δ−1)
2

(
4

δ

)n−3
2

, (3.158)
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where the last step follows from
(

n−2
n−2− 1

δ

)δ−1 (
n−3

n−2− 1
δ

)
≤ 1 and

(
n−2

n−2− 1
δ

) δ−1
2 ≤ exp

(
1
4

)
.

Then (3.156), (3.157), (3.158) and the fact that f
(√

4
5
;α, β

)
=
(

4
5

) (n−2)δ−1
2 yields the

conclusion.

Proof of Corollary 3.5.5: (a) By Lemma 3.5.4,

δ+1∑
`=2

α` ≤δ(n− 2)2n−3B

(
1

4
;
n− 2

2
,
(n− 2)(δ − 1)

2
+ 1

)

≤


δ(n− 2)

((
4
5

) (n−2)δ−1
2 +

(
1−

√
4
5

) (
3
4

) (n−2)(δ−1)
2

)
δ = 2, 3,

δ(n− 2) exp
(

1
4

) (
δ−1
δ

) (n−2)(δ−1)
2

(
4
δ

)n−3
2 δ ≥ 4.

.

It suffices to prove dTV
(
ζn,δ, δ{1}

)
≤
∑δ+1

`=2 α`. Notice that

dTV
(
ζn,δ, δ{1}

)
=

1

2

δ+1∑
`=1

|ζn,δ(`)− δ{1} (`) |

=
δ+1∑
`=2

ζn,δ(`) (3.159)

=

∑δ+1
`=2 (α`/`)

α1 +
∑δ+1

`=2 (α`/`)

≤
∑δ+1

`=2 α`

α1 +
∑δ+1

`=2 α`

=
δ+1∑
`=2

α`. (3.160)

(b) It follows from that

∣∣∣∣λn,δ(en,δ)− 1

δ!
(en)δ

∣∣∣∣ =
1

δ!
(en)δ

∣∣∣∣∣
δ+1∑
`=1

(α`/`)− 1

∣∣∣∣∣ ≤ 1

δ!
(en)δ

3

2

δ+1∑
`=2

α` ≤
3

2
γ1

δ+1∑
`=2

α`.
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3.13.2 Proof of Lemma 3.5.6

Proof of Lemma 3.5.6: (a) Denote

I := P
(
NMD

(
{u′i}δ+1

i=1 , r; δ + 1, n− 2
)
≥ 2|deg(u′δ+1) = δ

)
.

Then by union bound

I =P

(
δ⋃
i=1

deg(u′i) = δ|deg(u′δ+1) = δ

)
≤δP

(
deg(u′1) = δ|deg(u′δ+1) = δ

)
=δP

(
deg(u′1) = δ, deg(u′δ+1) = δ

)
/P
(
deg(u′δ+1) = δ

)
. (3.161)

Notice that

P
(
deg(u′δ+1) = δ

)
= E

δ∏
i=1

P(u′i ∈ SC(r,u′δ+1)|u′δ+1) = (Pn(r))δ, (3.162)

where SC(r,u′δ+1) and Pn(r) are defined in (3.27) and the paragraph after (3.27). Moreover

P
(
deg(u′1) = δ, deg(u′δ+1) = δ

)
=EP

(
deg(u′1) = δ, deg(u′δ+1) = δ|u′1,u′δ+1

)
=E1(‖u′1 − u′δ+1‖2 ≤ r)

δ∏
i=2

P
(
u′i ∈ SC(r,u′1) ∩ SC(r,u′δ+1)|u′1,u′δ+1

)
≤E1(‖u′1 − u′δ+1‖2 ≤ r)

(
Pn(h(r, ‖u′1 − u′δ+1‖2))

)δ−1 (3.163)

where the last inequality follows from Lemma 3.13.1 with

h(r, d) =

√√√√2− 2− r2√
1− (d

2
)2

.

Observing the random quantity in the expectation of (3.163) only depends the distance
between ‖u′1 − u′δ+1‖2, replace u′δ+1 with v0 = (1, 0, . . . , 0) will not change its value. Then

P
(
deg(u′1) = δ, deg(u′δ+1) = δ

)
≤ E1(‖u′1 − v0‖2 ≤ r) (Pn(h(r, ‖u′1 − v0‖2)))

δ−1
.

(3.164)
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Use the following coordinate system for each u′1 = (uj1 : 1 ≤ j ≤ n− 1)T in the region
SC(r,v0): 

u11 = 1− r2r2
1

2
,

u21 = r1r

√
1− r2r2

1

4
cos(θ2),

...

uj1 = r1r

√
1− r2r2

1

4
cos(θj)

j−1∏
m=2

sin(θm),

...

u(n−2)1 = r1r

√
1− r2r2

1

4
sin(θ2) · · · sin(θn−3) cos(θn−2),

u(n−1)1 = r1r

√
1− r2r2

1

4
sin(θ2) · · · sin(θn−3) sin(θn−2),

where
r1 ∈ [0, 1], θj ∈ [0, π] for 2 ≤ j ≤ n− 3 and θn−2 ∈ [0, 2π). (3.165)

Then the right hand side of (3.164) become

E1(‖u′1 − v0‖2 ≤ r) (Pn(h(r, ‖u′1 − v0‖2)))
δ−1

=
1

Area(Sn−2)

∫ 1

0

(Pn(h(r, r1r)))
δ−1 rn−2rn−3

1

(
1− r2r2

1

4

)n−4
2

dr1

n−3∏
j=2

∫ π

0

sinn−2−j(θj)dθj

=
1∫ π

0
sinn−3(θ)dθ

∫ 1

0

(Pn(h(r, r1r)))
δ−1 rn−2rn−3

1

(
1− r2r2

1

4

)n−4
2

dr1

=
rn−2

B(n−2
2
, 1

2
)

∫ 1

0

(Pn(h(r, r1r)))
δ−1 rn−3

1

(
1− r2r2

1

4

)n−4
2

dr1

≤ rn−2

B(n−2
2
, 1

2
)

∫ 1

0

(Pn(h(r, r1r)))
δ−1 rn−3

1 dr1. (3.166)

Plug (3.162), (3.164) and (3.166) into (3.161) and we obtain

I ≤δ rn−2

B(n−2
2
, 1

2
)Pn(r)

∫ 1

0

(
Pn(h(r, r1r))

Pn(r)

)δ−1

rn−3
1 dr1

=δ(n− 2)
cnr

n−2

Pn(r)

∫ 1

0

(
Pn(h(r, r1r))

Pn(r)

)δ−1

rn−3
1 dr1 (3.167)

where the equality follows from cn = 1
(n−2)B(n−2

2
, 1
2

)
. By Lemma 3.14.1 (a),

cnr
n−2

Pn(r)
≤ 1(

1− r2

4

)n−4
2

. (3.168)
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Since when 0 < r1 < 1, 0 < h(r, d)/r < 1, by Lemma 3.14.1 (e),

Pn(h(r, r1r))

Pn(r)
≤
(
h(r, r1r)

r

)n−2
(

1− h2(r,r1r)
4

1− r2

4

)n−4
2

≤
(

1−
(r1

2

)2
)n−2

2 1√
1−

(
r1r
2

)2

 1− h2(r,r1r)
4

(1− r2

4
)
√

1−
(
r1r
2

)2

n−4
2

(3.169)

where the second inequality follows from

(
h(r, r1r)

r

)2

=
1√

1−
(
r1r
2

)2

(
−2( r1

2
)2

1 +
√

1− ( r1r
2

)2
+ 1

)
≤ 1√

1−
(
r1r
2

)2

(
−
(r1

2

)2

+ 1

)
.

Since h2(r, r1r) is decreasing function of r1 ∈ [0, 1], (3.169) become

Pn(h(r, r1r))

Pn(r)
≤
(

1−
(r1

2

)2
)n−2

2 1√
1−

(
r
2

)2

 1− h2(r,r)
4

(1− r2

4
)
√

1−
(
r
2

)2

n−4
2

≤
(

1−
(r1

2

)2
)n−2

2 1√
1−

(
r
2

)2

(
1

(1− r2

4
)

)n−4
2

, (3.170)

where the second inequality follows from

1− h2(r, r)

4
≤
√

1− r2

4
.

Plug (3.168) and (3.170) into (3.167),

I ≤δ(n− 2)
1(

1− r2

4

)n+δ−5
2

(
1

(1− r2

4
)

) (n−4)(δ−1)
2 ∫ 1

0

(
1−

(r1

2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1

=h̄

(
1√

1− r2/4
, n, δ

)
δ(n− 2)

∫ 1

0

(
1−

(r1

2

)2
) (n−2)(δ−1)

2

rn−3
1 dr1.
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(b) Since 1√
1−r2/4

is decreasing and h̄(x, n, δ) as a function of x is increasing,

h̄

(
1√

1− r2/4
, n, δ

)
≤

h̄
((

5
4

) 1
4 , n, δ

)
, δ = 2, 3

h̄
((

δ
δ−1

) 1
4 , n, δ

)
, δ ≥ 4

=


(√

5
4

)n+δ−5
2
(√

5
4

) (n−2)(δ−1)
2

, δ = 2, 3(√
δ
δ−1

)n+δ−5
2
(√

δ
δ−1

) (n−2)(δ−1)
2

, δ ≥ 4

. (3.171)

Then the proof is complete by combining part (a), Lemma 3.5.4 (b) and (3.171).

Similar to (3.160), we have

dTV(ζn,δ,ρ, δ{1}) ≤
δ+1∑
`=2

α(`, rρ) = P
(
NMD

(
{u′i}δ+1

i=1 , rρ; δ + 1, n− 2
)
≥ 2|deg(u′δ+1) = δ

)
.

where the equality follows from (3.44). Then the conclusion follows from part (a) and part (b) since
rρ satisfies the condition there.

Lemma 3.13.1. Let n ≥ 3 and 0 < r <
√

2. If z1 and z2 are two points in Sn−2 with ‖z1−z2‖2 = d

satisfy 2− 2
√

1− (d/2)2 < r2, then

P (u′1 ∈ SC(r,z1) ∩ SC(r,z2)) ≤ Pn(h(r, d))

where u′1 has distribution unif(Sn−2) and

h(r, d) =

√√√√2− 2− r2√
1− (d

2
)2

.

Proof: The proof is based on Figure 3.6 and we use | · | to represent the length of a line segment in
this proof. In the right triangle 0z3z1, the line segment 0z3 has length |0z3| =

√
1− (d/2)2. In

the right triangle z1z3z5, |z3z5| =
√
r2 − (d/2)2. In the triangle 0z3z5, by law of Cosines,

cos(θ) =
2− r2

2
√

1− (d
2
)2

.
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0

z1

z2

z3
z4

z5

r

r

θ

1

1

Figure 3.6: 0 is the origin in Rn−2 and z1, z2, z4, z5 are on Sn−2. z3 is the midpoint of z1 and z2,
while z4 is the midpoint of the shortest arc on Sn−2 connecting z1 and z2. z5 is one of the two
intersection points of the boundary SC(r,z1) and the boundary of SC(r,z2). The angle between
line segment 0z4 and 0z5 is θ.

Then in the isosceles triangle, the line segment z4z5 has length

|z4z5| = 2 sin(θ/2) =
√

2(1− cos(θ)) =

√√√√2− 2− r2√
1− (d

2
)2

= h(r, d).

It is easy to obtain |z1z4| =
√

2− 2
√

1− (d/2)2. The condition 2− 2
√

1− (d/2)2 < r2 entails
that SC(r,z1) ∩ SC(r,z2) 6= ∅ and that |z1z4| < |z4z5| = h(r, d). In this case SC(r,z1) ∩
SC(r,z2) ⊂ SC(h(r, d), z4). Thus

P (u′1 ∈ SC(r,z1) ∩ SC(r,z2)) ≤ P (u′1 ∈ SC(h(r, d), z4)) = Pn(h(r, d)).

3.14 Auxiliary lemmas

Lemma 3.14.1. Let Pn(r) be defined as in Section 3.3.3. Suppose n ≥ 4.

(a) Recall cn = bn
2(n−2)

= Γ((n−1)/2)
(n−2)

√
πΓ((n−2)/2)

≤ 1. Then

cnr
n−2

(
1− min{r2, 4}

4

)n−4
2

≤ Pn(r) ≤ cnr
n−2

(b) limr→0+ Pn(r)/ (cnr
n−2) = 1.

(c) Let 0 ≤ β < 1 < α and 0 < r ≤ 2. Then

Pn(αr)− Pn(βr) ≤ (n− 2)Pn(r)αn−3(α− β).
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(d) Consider α > 1 and r > 0. Then

Pn(αr) ≤ αn−2Pn(r).

(e) Consider 0 < β < 1 and 0 < r < 2. Then

Pn(βr) ≤ βn−2

(
1− β2r2

4

1− r2

4

)n−4
2

Pn(r).

Proof: (a) It is easy to verify

P ′n(x) =

 bn
2
xn−3(1− x2

4
)
n−4

2 x < 2,

0 x ≥ 2.
(3.172)

Consider r > 0. Then

Pn(r)

cnrn−2
=

P ′n(ξ)

(n− 2)cnξn−3
=

(
1− ξ2

4

)n−4
2

(3.173)

where in the first equality ξ ∈ (0,min{r, 2}) due to Cauchy Mean Value Theorem and
Pn(r) 6= 0, and the second equality follows from (3.172). (3.173) directly implies

(
1− (min{r, 2})2

4

)n−4
2

≤ Pn(r)

cnrn−2
≤ 1.

(b) It follows directly by taking limit r → 0+ in (3.173).

(c) Since 0 ≤ β < 1 < α and 0 < r ≤ 2, Pn(αr)− Pn(βr) > 0 and Pn(r) > 0. Then

Pn(αr)− Pn(βr)

Pn(r)
=

(Pn(αr)− Pn(βr))− (Pn(α · 0)− Pn(β · 0))

Pn(r)− Pn(0)

=

d
dr

(Pn(αr)− Pn(βr))
∣∣
r=ξ

d
dr
Pn(r)

∣∣
r=ξ

=
αn−2

(
1− α2ξ2

4

)n−4
2 − βn−2

(
1− β2ξ2

4

)n−4
2

(
1− ξ2

4

)n−4
2

≤ αn−2 − βn−2 (3.174)

≤ (n− 2)αn−3(α− β),
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where the second equality follows from Cauchy Mean Value Theorem with ξ ∈ (0, r), the
third equality follows from (3.172) together with the fact that the numerator has to be positive,
which imply αξ < 2, the first inequality follows from 0 ≤ β < 1 < α, and the last inequality
follows from mean value theorem.

(d) When r ≥ 2, Pn(αr) = Pn(r) = 1 and the conclusion holds trivially. The case 0 < r < 2

follows from (3.174) with β = 0.

(e) Consider 0 < β < 1 and 0 < r < 2. Then

Pn(βr)

Pn(r)
=
βn−2

(
1− β2ξ2

4

)n−4
2

(
1− ξ2

4

)n−4
2

≤
βn−2

(
1− β2r2

4

)n−4
2

(
1− r2

4

)n−4
2

,

where the equality follows from Cauchy Mean Value Theorem with ξ ∈ (0, r).

Lemma 3.14.2. Consider Z1 and Z2 be two discrete random variable support on [δ]. Then

dW (L (Z1),L (Z2)) ≤ δ − 1

2

δ∑
`=1

|P(Z1 = `)− P(Z2 = `)| .

Proof: By Remark 2.19 (iii) of Section 2.2 in [Vil03],

dW (L (Z1),L (Z2)) =
δ−1∑
i=1

|P(Z1 ≤ i)− P(Z2 ≤ i)| ≤
δ−1∑
i=1

i∑
j=1

|P(Z1 = j)− P(Z2 = j)|.

On the other hand, from the above equality,

dW (L (Z1),L (Z2)) =
δ−1∑
i=1

|P(Z1 ≥ i+1)−P(Z2 ≥ i+1)| ≤
δ−1∑
i=1

δ∑
j=i+1

|P(Z1 = j)−P(Z2 = j)|.

Averaging the above two inequalities yields the desired conclusion.

Lemma 3.14.3. (a) Let p, p′,m be positive integers such that p ≥ p′. Then

m∏
i=0

(p− i)−
m∏
i=0

(p′ − i) ≤ (m+ 1)

(
m−1∏
i=0

(p− i)

)
(p− p′).
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(b) Let p, δ, κ be positive integers such that δ ≤ p− 1. Then

δ∏
`=1

(p− `)−
δ∏
`=1

(p− `κ) ≤ δ(δ + 1)

2
(κ− 1)

δ−1∏
`=1

(p− `).

(c)
(

1+x
1−x

)2 is increasing function on [0, 1
2
] and

(
1+x
1−x

)2 ≤ 1 + 16x for 0 ≤ x ≤ 1
2
.

(d) 1 + x− 1
1+x
≤ 2x for any x ≥ 0.

Proof: (c) and (d) are simple quadratic inequalities and their proof are omitted.

(a) Let f(x) =
m∏
i=0

(x− i). When p′ ≥ m, f ′(x) ≤ (m+ 1)
∏m−1

i=0 (p− i) and the conclusion then

follows by mean value theorem. When p′ ≤ m− 1,

f(p)− f(p′) ≤ f(p) ≤ (p− p′)
m−1∏
i=0

(p− i).

(b) Let f(x) =
δ∏̀
=1

(p− `x). When p < δκ,

f(1)− f(κ) ≤ f(1) ≤ (δκ− δ)
δ−1∏
`=1

(p− `) ≤ δ(δ + 1)

2
(κ− 1)

δ−1∏
`=1

(p− `).

When p ≥ δκ, f ′(x) ≥ − δ(δ+1)
2

∏δ−1
`=1(p− `) for x ∈ [1, κ]. Then the conclusion follows by

mean value theorem.

Lemma 3.14.4. For any integer-valued random variable Z1 and Z2,

dTV (L (Z1),L (Z2)) ≤ E |Z1 − Z2| .

Proof:

dTV (L (Z1),L (Z2)) = max
A Borel measurable

|P(Z1 ∈ A)− P(Z2 ∈ A)|

= max
A Borel measurable

|P(Z1 ∈ A,Z1 6= Z2)− P(Z2 ∈ A,Z1 6= Z2)|

≤ max
A Borel measurable

P(Z1 6= Z2)

= P(|Z1 − Z2| ≥ 1)
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≤ E |Z1 − Z2| .

Lemma 3.14.5 (Perturbation Theory). Consider D ∈ Sn and E ∈ Sn, where Sn is the set of all

real symmetric matrices of dimension n× n. Let {λi(·)}ni=1 be the eigenvalues of corresponding

matrix such that λ1(·) ≥ λ2(·) ≥ . . . ≥ λn(·).

(a)

|λi(D +E)− λi(D)| ≤ ‖E‖2 (i = 1, 2, . . . , n)

(b) Assume E = ωxxT , where x ∈ Sn−1. If ω ≥ 0, then

λi(D +E) ∈ [λi(D), λi−1(D)], (i = 2, 3, . . . , n),

while if ω ≤ 0, then

λi(D +E) ∈ [λi+1(D), λi(D)], (i = 1, 2, . . . , n− 1).

In either case, there exist nonnegative m1,m2, . . . ,mn such that

λi(D +E) = λi(D) +miω, (i = 1, 2, . . . , n)

with m1 +m2 + · · ·+mn = 1.

(c) Assume E =
m∑
i=1

ωixix
T
i , where {xi}mi=1 ⊂ Sn−1 and ωi ≥ 0 for all i. Then

λn(D +E) ≥ λn(D).

Proof: (a) and (b) is Corollary 8.1.6 and Theorem 8.1.8 in [GVL12]. (c) follows by induction on
the smallest eigenvalue using part (b) for ω ≥ 0.

Lemma 3.14.6. Let x1,x2 be two vectors on Sn−1, and D ∈ Rn×n be an invertible matrix. Let

Smin(D) and Smax(D) be respectively the largest and smallest singular value ofD. Define z̄i = Dxi

and zi = z̄i/‖z̄i‖2, (i = 1, 2). Then,

Smin(D)

Smax(D)
‖x1 − x2‖2 ≤ ‖z1 − z2‖2 ≤

Smax(D)

Smin(D)
‖x1 − x2‖2

Proof: Part I (Upper Bound)
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Figure 3.7: z1 and z2 are the normalized vector of z̄1 and z̄2 respectively.

Denote ∠(·, ·) the angle between two vectors. By the Law of Cosines,

cos(∠(z1, z2)) =
‖z1‖2

2 + ‖z2‖2
2 − ‖z1 − z2‖2

2

2× ‖z1‖2 × ‖z2‖2

=
2− ‖z1 − z2‖2

2

2
,

and
cos(∠(z̄1, z̄2)) =

‖z̄1‖2
2 + ‖z̄2‖2

2 − ‖z̄1 − z̄2‖2
2

2× ‖z̄1‖2 × ‖z̄2‖2

.

Observing ∠(z1, z2) = ∠(z̄1, z̄2), right hand sides of the above two equations are equal. Solving
for ‖z1 − z2‖2, we get

‖z1 − z2‖2
2 =
‖z̄1 − z̄2‖2

2

‖z̄1‖2‖z̄2‖2

+

(
2− ‖z̄2‖2

‖z̄1‖2

− ‖z̄1‖2

‖z̄2‖2

)
≤ ‖z̄1 − z̄2‖2

2

‖z̄‖2‖z̄2‖2

.

Therefore,

‖z1 − z2‖2 ≤
‖z̄1 − z̄2‖2√
‖z̄1‖2‖z̄2‖2

≤ Smax(D)‖x1 − x2‖2√
Smin(D)‖x1‖2Smin(D)‖x2‖2

=
Smax(D)

Smin(D)
‖x1 − x2‖2.

Part II(Lower Bound)
Define x̄i = D−1zi, (i = 1, 2). Notice for ∀i ∈ {1, 2}, xi and x̄i are parallel to each other, since
xi = D−1z̄i and z̄i is parallel to zi. Thus, we conclude xi = x̄i/‖x̄i‖2, (i = 1, 2). Reversing the
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role of xi and zi in Part I, one has

‖x1 − x2‖2 ≤
Smax(D

−1)

Smin(D−1)
‖z1 − z2‖2.

The lower bound follows from the relation Smax(D−1)
Smin(D−1)

= Smax(D)
Smin(D)

.

Lemma 3.14.7. Let {Di}mi=1, {Fi}mi=1, {Gi}mi=1 and {Hi}mi=1 be sets satisfying

Gi ⊂ Di ⊂ Hi, Gi ⊂ Fi ⊂ Hi, (i = 1, 2, . . . ,m).

Then

(a)

(
m⋂
i=1

Di

)
4

(
m⋂
i=1

Fi

)
⊂

m⋃
i=1

(Hi\Gi)
⋂(

m⋂
j=1

Hj

)
=

m⋃
i=1

(Hi\Gi)
⋂ m⋂

j=1
j 6=i

Hj


 .

(b) (
m⋃
i=1

Di

)
4

(
m⋃
i=1

Fi

)
⊂

m⋃
i=1

(Hi\Gi) .

Proof: (a) Obviously,

m⋂
i=1

Gi ⊂
m⋂
i=1

Di ⊂
m⋂
i=1

Hi,
m⋂
i=1

Gi ⊂
m⋂
i=1

Fi ⊂
m⋂
i=1

Hi. (3.175)

Thus, (
m⋂
i=1

Di

)
4

(
m⋂
i=1

Fi

)
⊂

(
m⋂
i=1

Hi

)
\

(
m⋂
i=1

Gi

)
.

Take ∀ω ∈ (
⋂m
i=1Hi) \ (

⋂m
i=1 Gi), we know ω ∈

⋂m
i=1Hi and ω 6∈

⋂m
i=1 Gi. The later fact

shows ∃j (which depends on ω) such that ω 6∈ Gj . Then,

ω ∈

(
m⋂
i=1

Hi

)
\Gj ⊂ Hj\Gj ⊂

m⋃
i=1

(Hi\Gi) . (3.176)

The proof is completed by combining (3.175) and (3.176).
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(b) (
m⋃
i=1

Di

)
4

(
m⋃
i=1

Fi

)
=

(
m⋃
i=1

Di

)c

4

(
m⋃
i=1

Fi

)c

=

(
m⋂
i=1

Dci

)
4

(
m⋂
i=1

F ci

)

⊂
m⋃
i=1

(Gci \Hc
i )

=
m⋃
i=1

(Hi\Gi) ,

where the inclusion step follows from (a).

Lemma 3.14.8. LetQ ∈ Rn×m(n ≤ m), with each column qi being i.i.d. unif(
√
nSn−1). Let λmin

and λmax be respectively the largest and smallest eigenvalue of 1
m
QQT . Then with probability at

least 1− 2 exp(−ct2),

[
1− C

(√
n

m
+

t√
m

)]2

≤ λmin ≤ λmax ≤
[
1 + C

(√
n

m
+

t√
m

)]2

, (3.177)

where c, C are absolute constants.

Proof: Let Smax, Smin be respectively the largest and smallest singular value of Q. Since qi are
isotropic random vector with subgaussian norm (or ψ2 norm) being a constant, by applying Theorem
5.39 in [Ver12] to QT ,

√
m− C(

√
n+ t) ≤ Smin ≤ Smax ≤

√
m+ C(

√
n+ t), (3.178)

holds with probability at least 1 − 2 exp(−ct2), where c, C are absolute constants. The proof is
completed by

λmax =
1

m
S2

max, λmin =
1

m
S2

min.

3.15 Numerical simulations and experiments
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(a) limiting compound Poisson (b) finite p compound Poisson approximation

Figure 3.8: The vertical axis of (a) is dTV(N
(k)
V1
,CP(λ20,1(1), ζ20,1)) as in Theorem 3.2.4 and that of

(b) is dTV(N
(k)
V1
,CP(λp,20,1,ρ, ζ20,1,ρ)) as in Theorem 3.3.11. For both plots the samples are generated

according toN (0,Σ) with Σ being a (τ = p0.6, κ = p0.8) sparse matrix for each p. The parameters
are n = 20, δ = 1 and the threshold ρ is chosen according to (3.12) with en,δ = 1. The blue curve
is for the empirical correlation graph (k=R) and the red curve is for the empirical partial correlation
graph (k=P ). Note since δ = 1, ζ20,1 = δ{2} = ζ20,1,ρ, by Example 3.5.1. As demonstrated by the
plots, for both empirical correlation and partial correlation graphs, the total variations in (a) decrease
very slowly while the total variations in (b) converge to 0 very fast, which has been analytically
discussed in Remark 3.3.14.
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(a) Poisson limit when p→∞ (b) Poisson approximation for finite p

Figure 3.9: The vertical axis of (a) is dTV(N
(k)
Vδ
,Pois( (en,δ)

δ

δ!
)), where we replaced CP(λn,δ(en,δ), ζn,δ)

in Theorem 3.2.4 by its approximation Pois( (en,δ)
δ

δ!
) as discussed in Subsection 3.5.1. The vertical

axis of (b) is dTV(N
(k)
Vδ
,Pois(

(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ)), where we replaced CP(λp,n,δ,ρ, ζn,δ,ρ) in Theo-
rem 3.3.11 by its approximation Pois(

(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ) as discussed in Subsection 3.5.2. For
both plots the samples are generated according to N (0,Σ) with Σ being a (τ = p0.6, κ = p0.8)
sparse matrix for each p. The parameters are n = 35, δ = 2 and the threshold ρ is chosen according
to (3.12) with en,δ = 1. Note the distributions of the increment ζ35,2 in (a) and ζ35,2,ρ in (b) are both
replaced by δ{1} since n = 35 is sufficiently large for δ = 2 as indicated by Figure 3.4 (b). That
is, the number of samples n = 35 is large enough for Corollary 3.5.5 (a) and Lemma 3.5.6 (c) to
be effective. The blue curve is for the empirical correlation graph (k=R) and the red curve is for
the empirical partial correlation graph (k=P ). As demonstrated by the plots, for both empirical
correlation and partial correlation graphs, the total variations in (a) decrease very slowly while the
total variations in (b) converge to 0 very fast. The fast convergence in Figure 3.9 (b) verifies the
validity of using Poisson distribution Pois(

(
p
1

)(
p−1
δ

)
(2Pn(rρ))

δ) to approximate the distribution of
random quantities in {N (k)

i : k = R, i ∈ {Eδ, V̆δ, Vδ}} for large n. The extremely slow decrease
in Figure 3.9 (a) is due to the slow convergence of Theorem 3.2.4, which has been extensively
discussed in Remark 3.3.14. This specific example indicates the slow convergence of Theorem
3.2.4 is due to slow convergence of λp,n,δ,ρ → λn,δ since the distribution of increments in this large
n case are both close to δ{1}.
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CHAPTER 4

Future Directions

There are several future directions for follow-on work.
In Chapter 2, where the problem of parameter estimation in mixture of product distributions is

discussed, the true number of components k is assumed to be known. This so-called "exact-fitted"
assumption practically might not be available and it is of interest to consider the "over-fitted"
scenario where only an upper bound on the true number of components is available. The parameter
estimation in mixture models in "over-fitted" case but without product structure has been previously
studied in [Ngu13, HN16b]. This generalization combines these existing work and the new product
structure considered in this thesis and makes the study of mixture of product distribution more
complete.

For the mixture of product distribution, a worthwhile direction is developing algorithms to
efficiently estimate the parameters in the mixture of product distributions. The key insight is that
the parameter information of the mixture of product distributions is contained in a mixture of
corresponding Gaussian distribution by virtue of central limit theorem (density version), which
is an important step of the proof in Chapter 2. Then based on this observation, and some recent
developments in efficiently estimating parameters of location mixture of Gaussian [DWYZ20], it is
worthwhile to explore some moment based algorithms to efficiently estimate the parameters in the
mixture of product distributions.

For screening in high dimensional data in Chapter 3, a future direction is to extend the results
in Chapter 3 to the setting of nonparametric data or functional data. Note the regime that the
number of variables increases to infinity while the number of samples is fixed is indeed a fixed
number of samples of (countably) infinite-dimensional data. This view explains the motive to extend
such results to more general infinite-dimensional setup like functional data. This line of extension
involves defining appropriate sparsity structure in the setting of nonparametric data or functional
data since the results in Chapter 3 are built on the sparsely correlated assumption.

It is also important to study the statistical and computational problems involving both hetero-
geneity and high dimensions. One example of such a problem is the mixture of location Gaussian
with the unknown location parameters that span an unknown low dimension space in the high
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dimension where the data lie in. Intuitively, the geometric properties of concentration around the
spherical shell for high dimensional gaussian and the rotation invariance for the simple case where
the covariance matrix is identity will play crucial roles. Such a problem has wide applicability but
seems open for theoretical study.
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