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Abstract

Electronic structure calculations are an integral step in the design and engineering of materials.
Kohn-Sham Density Functional Theory (KS-DFT) is a computationally tractable first-principles
formulation of electronic structure that is widely used to predict material properties. KS-DFT
represents the electron density in terms of single-electron wavefunctions by replacing explicit
electron-electron interactions with a mean-field interaction and an approximation of an exchange-
correlation functional. The development of numerical methods for KS-DFT is an ongoing area of
research; more efficient numerical methods will enable the simulation of larger and more challenging
materials systems and improve KS-DFT’s predictive capability.

The goal of this work was to develop an integral equation based numerical method for KS-DFT,
both to investigate the feasibility and to explore any advantages of an integral equation approach
compared to the preexisting numerical methods based on differential equations. We achieved this
goal through the development of Treecode-Accelerated Green Iteration (TAGI). We used the method
of Green’s functions to convert the eigenvalue problem for the Kohn-Sham differential operator into
a fixed-point problem for an equivalent integral operator. We developed real-space discretization
techniques to numerically evaluate the integral operators with high accuracy, including adaptive
mesh refinement schemes, a higher order Fejér quadrature rule, and singularity-subtraction schemes
to weaken the Green’s function singularities. Next, we leveraged fixed-point acceleration techniques
to improve the convergence rates of the fixed-point iterations. Finally, we developed treecodes based
on barycentric interpolation; these fast summation algorithms reduce the computational complexity
of evaluating the discretized integral operators. We developed these barycentric treecodes to run
efficiently on high performance computing architectures; in particular, parallelized the computations
with a distributed memory Message Passing Interface (MPI) implementation, and accelerated
the computations with Graphics Processing Units (GPUs). We achieved high GPU efficiency by
leveraging an extra level of parallelism afforded by the barycentric approximations that is not
present for previous treecodes based on multipole expansions.

We developed TAGI for two types of calculations; all-electron and Optimized Norm-Conserving
Vanderbilt (ONCV) pseudopotential. In all-electron calculations, atomic nuclei are represented
by singular Coulomb potentials, and wavefunctions are computed for each electron in the system.
The singular nuclear potential, which gives rise to sharply varying wavefunctions near the nuclei,
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requires substantial mesh refinement to achieve high accuracy. In pseudopotential calculations, the
singular nuclear potentials are replaced with smooth, non-singular pseudopotentials. These are
generated by absorbing an atom’s chemically inert core electrons into its nucleus, leaving only the
chemically active valence electrons to be computed. These calculations require significantly less
local refinement near the nuclei, enabling TAGI calculations of larger systems.

We demonstrated TAGI by computing the ground-state energy of a variety of molecules for
all-electron and pseudopotential calculations. We showed TAGI’s ability to systematically converge
to chemical accuracy through the adaptive mesh refinement schemes. These calculations were
performed on up to eight compute nodes containing a total of thirty two GPUs. The techniques
developed in this work have enabled TAGI to calculate chemically accurate ground state energies
of molecules containing up to a few hundred electrons in several hours (all-electron C6H6 in 4
hours, pseudopotential Si30H40 in 3 hours, and pseudopotential C60 in 8 hours). While TAGI does
not outperform the more mature methods based on differential equations, this work constitutes a
substantial proof of concept for treecode-accelerated integral equation based methods for KS-DFT
and presents numerous opportunities for further improvement.
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Chapter 1

Introduction

1.1 Application: Kohn-Sham Density Functional Theory

Electronic structure calculations based on first-principles formulations of quantum mechanics
are an integral part of materials design and engineering. Many macroscopic physical properties of a
material can be derived and computed from its electronic structure [1]. Through simulation, scientists
are able to rapidly screen many candidate materials for desirable properties before attempting to
synthesize them [2, 3, 4]. Improving the numerical methods for electronic structure calculations
is an active area of research [5, 6, 7, 8], with goals to both accelerate the rate of screening and
discovery and to extend calculations to larger and more complex materials systems. In this work we
develop a Green’s function and integral equation based method for electronic structure calculations,
specifically for Kohn-Sham Density Functional Theory (KS-DFT), in order to assess the feasibility
of this alternative approach and explore any potential advantages over the preexisting differential
equation based methods.

Consider a material system containing N electrons. Denoting xi = (ri, si) as the combined
spatial coordinates ri and spin si of electron i, the time-independent Schrödinger equation is a
first-principles formulation of the electronic structure problem based on a many-body wavefunction
Ψ(x1,x2, . . . ,xN) and a many-body HamiltonianHS that explicitly accounts for electron-electron
interactions. The Schrödinger equation is given by

HSΨ(x1,x2, . . . ,xN) = EΨ(x1,x2, . . . ,xN), (1.1)

where E is the ground state energy. Despite the ubiquity of the Schrödinger equation in electronic
structure theory, numerical methods for computing the many-body wavefunction scale exponentially
in the number of electrons N and are intractable for large systems. Density Functional Theory
(DFT) is an alternative first-principles formulation of electronic structure that is based directly on
the electron electron density ρ(r). DFT follows from the Hohenberg-Kohn theorems [9], which
state that (1) the external potential of a system is uniquely determined (up to an additive constant)
by the system’s ground state electron density, and (2) there exists an energy functional which is
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minimized by the ground state electron density. The most widely used form of DFT is Kohn-Sham
Density Functional Theory (KS-DFT) [10], which replaces the system of interacting electrons with
a fictitious system of non-interacting electrons that give rise to an identical electron density. This
formulation gives rise to the Kohn-Sham equations for a set of N single-electron wavefunctions
ψi(r), and resulting electron density,

HKS[ρ(r)]ψi(r) = εiψi(r), i = 1, 2, . . . , N, ρ(r) =
N∑
i=1

|ψi(r)|2, (1.2)

where εi are the eigenvalues corresponding to each single-body wavefunction. In principle, since
the fictitious system of non-interacting electrons gives rise to the same electron density as the real
material system, the Hohenberg-Kohn theorems state that the Kohn-Sham formulation is exact for the
ground state properties of the system. However, the Kohn-Sham HamiltonianHKS[ρ(r)] contains an
exchange-correlation functional in order to implicitly model electron-electron interactions, which is
not known explicitly and is modeled in practice. Approximating the exchange-correlation functional
is an active area of research [11, 12, 13], and better approximations enable Kohn-Sham DFT to
more accurately predict ground state materials properties. Importantly, computing the set of single-
body wavefunctions in Eq. (1.2), and subsequently the electron density, scales only cubically in
the number of electrons. This has led to DFT becoming the workhorse for electronic structure
calculations in recent decades [13], where it has aided in the research and development of materials
in a wide range of applications, several of which are discussed below.

One scientific application that has benefited greatly from electronic structure calculations is
renewable energy. DFT has been used extensively in the design and engineering of materials
for a wide range renewable energy applications [2] ranging from batteries, to photovoltaics, to
superconductors, to thermoelectrics. The success of many renewable energy sources is critically
dependent on improving the efficiency of energy devices, for example the efficiency with which
a photovoltaic extracts energy from sunlight and the efficiency of batteries to store excess energy
during the daytime for use at nighttime. DFT calculations are used to computationally screen
large numbers of potentially efficient materials for advantageous properties, accelerating the rate
of discovery of efficient materials. One example where DFT has helped guide the design and
engineering of energy related materials is batteries. Lithium-ion battery development has been
aided by predictive DFT calculations such as those by [3, 4] to compute the energies of different
lithium-ion crystal structures and resulting cathode voltages arising during charging. Similarly,
DFT calculations have been performed for battery anodes such as the prediction of 2D carbide
materials [14, 15]. Calculations of aluminum and magnesium compounds aided in the development
of rechargeable batteries by computing Natural Bond Orbitals (NBO), relaxed geometries, and
theoretical Raman spectra [16]. A second example of DFT calculations guiding material design
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is for photovoltaics, which convert energy from sunlight. Designing materials to both increase
the conversion efficiency and reduce the manufacturing cost is essential to the success of this
renewable source. DFT calculations have been used in the screening of potentially efficient inorganic
compounds [17, 18] and the design of efficient sensitizers for dye-sensitized solar cells [19, 20, 21].
A third example of DFT calculations aiding in energy material design is thermovoltaics, which can
be used to convert waste heat into usable electricity and thereby improve efficiency of other energy
devices. In particular, DFT calculations have been used to investigate structural, electronic, magnetic,
phononic, and thermoelectric properties of rare earth multiferroic manganite compounds [22], group
IV-VI semiconductors [23], and the multi-cation compound Cu2COSnS4 [24], to name a few.

Despite its tremendous impact thus far, there are still significant computational challenges facing
KS-DFT. Although the cubic complexity is more tractable than the exponential complexity of the
original Schrödinger problem, large-scale KS-DFT calculations strain the computational capability
of the world’s largest supercomputers. Alternative linearly scaling methods have been developed
that efficiently treat large-scale insulating systems [25, 26], however many scientific inquiries
require simulating large metallic systems that cannot be handled by these alternatives [2, 27]. Hence
the development of highly efficient and parallelizable numerical methods for KS-DFT remains an
active area of research.

There are a variety of numerical approaches for KS-DFT, each of which face challenges that
limit the system size. For example, the most commonly used methods are based on plane-waves and
discretization of Fourier space [7, 28, 29], however these face limitations in parallel scalability and
inefficiencies in non-periodic settings. Real-space methods were developed with Gaussian bases
to alleviate some of the plane-wave limitations [6]. Such methods scale well, but lack systematic
convergence due to the incompleteness of the basis set. This has led to development of other real-
space methods based on finite-differences [30, 31, 32, 33] and finite-elements [34, 35, 36, 37]. State
of the art KS-DFT codes running on the world’s largest supercomputers are capable of simulating
metallic systems containing roughly 100,000 electrons [38, 39, 40, 5].

This work proposes, implements, and demonstrates a novel real-space KS-DFT method based on
Green’s functions and treecode-accelerated convolution integrals called Treecode-Accelerated Green
Iteration (TAGI). Unlike the previously described methods which solve an eigenvalue problem for
the Kohn-Sham differential equations, TAGI solves a fixed-point problem for an equivalent integral
equation. This approach is made possible by the ongoing development of the parallelized and GPU-
accelerated barycentric treecode presented in Chapter 2. While our preliminary implementation of
TAGI is not as mature as the preexisting approaches based on differential equations, and we are not
able to scale to such large problem sizes, we are able to demonstrate a significant proof of concept
and scale to several hundred electrons. We are also able to systematically converge to desired
accuracy through our adaptive mesh refinement schemes. The KS-DFT formulation and the details
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of TAGI are the focus of Chapters 3 and 4. Specifically, Chapter 3 develops TAGI for all-electron
calculations, which use the true singular nuclear potentials for each atom and explicitly account for
all of the electrons. Chapter 4 presents the extension of TAGI to pseudopotential calculations, in
which the “core” electrons are absorbed into the atomic nucleus; in this formulation the nuclear
potential is regularized and only the “valence” electron wavefunctions are computed, enabling the
simulation of larger systems.

1.2 Analytic Formulation: The Method of Green’s Functions

The Kohn-Sham equations represent a nonlinear eigenvalue problem for the Kohn-Sham Hamil-
tonianHKS , which is a second order linear differential operator given by

HKS = −1

2
∇2 + Veff [ρ](r), r ∈ R3. (1.3)

Here, Veff [ρ](r) is the effective potential for the non-interacting electrons; it depends on the
electron density ρ, therefore Eq. (1.2) represents a nonlinear eigenvalue problem. The details of
the expression for the effective potential are reserved for Chapter 3; for now it is sufficient to
know that the operator is a second order linear differential operator. All of the preexisting methods
described above have one thing in common; they discretize the differential operator numerically
and solve the resulting finite-dimensional eigenvalue problem. However, there is an alternative
approach for linear differential equations called the method of Green’s functions [41] that begins
by analytically inverting the differential operator to obtain an equivalent integral equation. There
are numerical methods for solving the resulting integral equation, distinct from those described
above. The properties of the discrete integral operator are inherently different than the properties
of the discrete differential operator; hence the numerical methods for the integral equation face
different challenges than those of the differential equation and it is worthwhile to investigate their
performance in comparison.

There are two steps to the method of Green’s functions; the first involves deriving or constructing
a suitable Green’s function, the second involves using that Green’s function to analytically invert the
differential equation. To illustrate, the following discussion presents these two steps for a modified
Helmholtz equation in R3 with free-space boundary conditions, which is relevant for the integral
equation formulation of the Kohn-Sham problem described in detail in Chapter 3.

Step 1: Deriving the Green’s function. Consider the boundary value problem for the modified
Helmholtz operator in R3,

(∇2 − k2)u(r) = f(r), (1.4)

for k > 0, with free-space boundary conditions on u(r), i.e. u(r)→ 0 as |r| → ∞. Noting that the
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operator is self-adjoint, the Green’s function for the modified Helmholtz operator with free-space
boundary conditions satisfies the equation

(∇2 − k2)G(r, r′) = δ(r− r′), (1.5)

where δ(r− r′) is the Dirac-delta function [42] and G(r, r′) is also subject to free-space boundary
conditions, as discussed below. Note that G(r, r′) = G(r− r′) for constant coefficient differential
operators such as the modified Helmholtz operator. We write Eq. (1.5) in spherical coordinates
(r, θ, φ) centered at the singular point r′, where r =

√
|r− r′|2, θ is the polar angle, and φ the

azimuthal angle. Since the modified Helmholtz operator is rotationally invariant, we enforce radial
symmetry on the Green’s function G(r− r′) = g(r), and the Helmholtz equation reduces to(

1

r2

d

dr

(
r2 d

dr

)
− k2

)
g(r) = δ(r). (1.6)

For r > 0, g(r) satisfies the homogeneous equation(
1

r2

d

dr

(
r2 d

dr

)
− k2

)
g(r) = 0, (1.7)

which simplifies to
d2

dr2
g(r) +

2

r

d

dr
g(r)− k2g(r) = 0. (1.8)

This is a Bessel equation of order zero, with general solution

g(r) = C1
e−kr

r
+ C2

ekr

r
. (1.9)

The free-space boundary condition forces C2 = 0, and C1 can be determined from the normalization
condition, ∫

B
δ(r− r′)dr = 1, (1.10)

for any ball B containing the singular point r′. In particular, taking a ball of arbitrary radius ε
centeres at r′, substituting from Eq. (1.5), and using the divergence theorem yields

1 =

∫
Bε
δ(r− r′)dr =

∫
Bε

(∇2 − k2)G(r, r′)dr =

∫
∂Bε

∂G

∂n
(r, r′)dσ − k2

∫
Bε
G(r, r′)dr (1.11a)

= C1

∫
∂Bε

e−k|r−r
′|

|r− r′|

(
−k − 1

|r− r′|

)
dσ − C1k

2

∫
Bε

e(−k|r−r′|)

|r− r′|
dr. (1.11b)
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Evaluating the surface integral on Bε gives∫
∂Bε

e−k|r−r
′|

|r− r′|

(
−k − 1

|r− r′|

)
dσ = 4πe−kε (−1− kε) . (1.12a)

Evaluating the volume integral gives

− k2

∫
Bε

e(−k|r−r′|)

|r− r′|
dr = 4πe−kε

(
1 + kε− ekε

)
. (1.13)

Hence, Eq. (1.11b) becomes

1 = 4πC1e
−kε (−1− kε+ 1 + kε− ekε

)
, (1.14)

giving C1 = −1/4π and

G(r, r′) =
−e−k|r−r′|

4π|r− r′|
. (1.15)

Now that the Green’s function is derived we will use it to analytically invert the modified Helmholtz
equation in Eq. (1.4) with the following procedure.

Step 2: Analytically inverting the differential operator. The Green’s function G(r, r′) can
be used to analytically invert the modified Helmholtz equation (1.4) with the following procedure.
Multiplying through by the Green’s function and integrating yields∫

R3

G(r, r′)(∇2 − k2)u(r′)dr′ =

∫
R3

G(r, r′)f(r′)dr′. (1.16)

Repeated integration by parts gives∫
R3

(∇2−k2)G(r, r′)u(r′)dr′+

∫
Γ

(G(r, r′)∇u(r′)−∇G(r, r′)u(r′))·ndΓ =

∫
R3

G(r, r′)f(r′)dr′,

(1.17)
where n is the outward pointing normal vector, and the boundary Γ is taken to infinity. The free-
space boundary condition on u(r) ensures the first expression in the boundary term is zero since
u(r)→ 0 as r→∞ implies∇u(r) ·n→ 0 as r→∞. Similarly, the imposed free-space boundary
conditions on G(r, r′), i.e. G(r, r′)→ 0 as |r− r′| → ∞, ensures that the second expression in the
boundary term is also zero, leaving∫

R3

(∇2 − k2)G(r, r′)u(r′)dr′ =

∫
R3

G(r, r′)f(r′)dr′. (1.18)
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Then, since (∇2 − k2)G(r, r′) = δ(r− r′), the left hand side reduces to∫
R3

u(r′)δ(r− r′)dr′ = u(r), (1.19)

and hence Eq. (1.18) simplifies to

u(r) =

∫
R3

G(r, r′)f(r′)dr′. (1.20)

The solution u(r) to the modified Helmholtz boundary value problem in Eq. (1.4) is given
in Eq. (1.20) as a convolution with the Green’s function and the inhomogeneous term f(r). The
solution given by Eq. (1.20) is exact, however in general it must be evaluated numerically which
presents two significant practical challenges. First, the convolution must be evaluated accurately.
This is made difficult by both the singularity in the Green’s function in Eq. (1.15) and any complexity
in the inhomogeneous term f(r). In particular, in the electronic structure method developed in this
work, the inhomogeneous term is comprised of functions with cusps and singularities. We achieve
sufficient accuracy with a combination of methods including adaptive mesh refinement, higher order
quadrature rules, and singularity subtraction schemes. Second, once the convolution is accurately
discretized, the discrete sums must be evaluated efficiently. Naive evaluation costs O(N2) work per
convolution for an N -point discretization. Fast summation methods evaluate the discrete sums in
subquadratic work, but introduce approximation errors. To achieve a good balance of accuracy and
efficiency we implement and use a GPU accelerated treecode based on barycentric interpolation,
described below.

Provided the convolution can be evaluated accurately and efficiently, the method of Green’s
functions results in a viable alternative approach to boundary value problems for differential opera-
tors. As described in Chapter 3, this technique can be applied to Kohn-Sham Density Functional
Theory to convert the eigenvalue problem for the Kohn-Sham Hamiltonian into an equivalent
fixed-point problem for an integral operator. This reformulation enables the development of new
numerical methods for KS-DFT, those based on integral operators and fixed-point problems rather
than differential operators and eigenvalue problems. Given that improved numerical methods will
expand the scientific impact of KS-DFT, exploring this alternative Green’s function approach is
valuable, as the challenges faced by the approaches differ and there may be advantages to the
Green’s function method.

1.3 Numerical Method: Treecode-Accelerated Discrete Convolutions

The analytic inversion using the method of Green’s functions results in the convolution integral
in Eq. (1.20) that must be evaluated numerically. The details of the discretizations used for the
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electronic structure calculations are described in Chapters 3 and 4. For now, we introduce the
treecode algorithm that accelerates the evaluation of the discrete sum following the discretization.
Consider an N -point discretization of the convolution integral in Eq. (1.20), which gives the discrete
sum,

ui =
N∑
j=1
j 6=i

G(ri, rj)fjwj, i = 1, 2, . . . , N, (1.21)

where rj and wj are the quadrature points and weights, fj = f(rj), and ui ≈ u(ri). Direct
evaluation of this sum requires O(N2) operations. Accurate discretization of the continuous integral
can require large N , especially for higher dimensional calculations such as those in R3 considered
throughout this work, and the direct sum becomes prohibitively expensive. Therefore subquadratic-
scaling fast summation approximations are essential for the success of Green’s function methods.

Several hierarchical fast summation methods are available for computing approximations to the
direct sum in Eq. (1.21) in subquadratic work. Two common tree-based methods are the treecode,
developed by Barnes and Hut [43], and the Fast Multipole Method, developed by Greengard and
Rokhlin [44, 45]. Both algorithms are viable for this application; we employ a recently developed
treecode based on barycentric interpolation because it is well suited for acceleration using GPU
coprocessors. An overview of the key ideas behind the Barnes-Hut treecode is introduced here, while
Chapter 2 describes in more detail the higher-accuracy version based on barycentric interpolation,
as well as our progress in implementing this version for heterogeneous high performance computing
architectures, specifically distributed compute nodes containing GPU coprocessors.

Treecodes were initially developed by computational astrophysicists for N-body gravitational
simulations and are also used for electrostatics interactions. For an intuitive description of the
treecode, the algorithm is presented in the context of interacting charged particles where G(ri, rj)

represents the interaction potential, rather than for the discrete convolution sum. Consider a set of
particles with positions rj and electric charges qj . Equation (1.21), which was initially defined in
the context of a discretized convolution integral, also gives the the electrostatic potential ui at each
particle, after setting fjwj = qj . Denote {ri} as the target particles at which the potential is to be
computed, and {rj} as the source particles which contribute to the potential. The treecode begins by
partitioning the source particles into a hierarchical tree of clusters, as diagrammed in 1-dimension
in Fig. 1.1. The left side shows the particles and how they are partitioned at each level of the tree,
and the right side shows the corresponding tree representation. Level 0, also called the root cluster,
consists of all the source particles. Level 1 is constructed by partitioning the root into two child
clusters, each containing a subset of the source particles. Subsequent levels are constructed by
recursive partitioning. In this diagram, the partitioning is terminated at level 2, which represents the
leaves of the tree.
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Figure 1.1: An example of tree partitioning of a set of particles in 1-dimension; (a) shows the
particles and cluster partitions, (b) shows the corresponding hierarchical tree structure. Level 0 is
the root of the tree and consists of all the particles. Level 1 divides the particles into two clusters,
and level 2 into four clusters. In this example the level 2 clusters are the leaves of the tree.

The treecode then replaces particle-particle interactions with particle-cluster approximations
using a recursive procedure described in detail in Chapter 2. For now it is sufficient to know that this
procedure results in each target particle interacting with O(logN) clusters, hence the complexity
for evaluating the sum for all N target particles is O(N logN).

There are several options for computing the particle-cluster approximation. The first, and
simplest approximation represents each cluster as a monopole. The sum of charges of all source
particles in the cluster is assigned to a fictitious monopole particle at the cluster’s center of mass.
Figure 1.2 diagrams one such monopole particle-cluster approximation. In Fig. 1.2(a), a target
particle interacts directly with each source particle in the source cluster, which involves computing
three independent interactions. In Fig. 1.2(b), the target particle instead interacts with the fictitious
monopole particle, which involves computing only one interaction, regardless of the number of
source particles contained in the cluster. This reduction in computation comes at the cost of intro-
ducing an approximation error. One way to control the approximation error is to use higher accuracy
cluster representations. In particular, the monopole approximation can be viewed as a first order
approximation within a class of higher order methods based on multipole expansions [46, 47, 48, 49].
Alternatively, Chapter 2 introduces a recently developed class of higher order approximations based
on barycentric interpolation [50, 51, 52], which is the version of the treecode developed and used
throughout this work.

The remainder of the chapters are organized as follows. Chapter 2 presents the development
of a GPU-accelerated and MPI-parallelized barycentric treecode library called BaryTree, publicly
available on GitHub at github.com/Treecodes/BaryTree. Chapters 3 and 4 present the development
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Figure 1.2: Monopole particle-cluster approximation. (a) the original interaction between a target
particle (solid black circle) with a cluster of source particles (box containing open circles). (b) the
monopole approximation, where the interactions with each individual source particle are replaced
by a single interaction with the fictitious particle representing the cluster at the center of mass.

of the electronic structure application called Treecode-Accelerated Green Iteration (TAGI) that
employs BaryTree to evaluate discrete convolutions. Specifically, Chapter 3 presents TAGI for all-
electron calculations, in which the true nuclear potential is used for each atom, and wavefunctions
for all of the electrons are explicitly computed. Chapter 4 then presents the extension of TAGI to
pseudopotential calculations, in which the core electrons are absorbed into the nucleus, resulting in
smooth and non-singular nuclear potentials, and only the wavefunctions of the valence electrons are
computed. Chapter 5 summarizes the progress so far and provides several paths forward to further
improve this integral equation method for Kohn-Sham Density Functional Theory.
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Chapter 2

BaryTree: GPU-Accelerated Barycentric Treecodes

This chapter describes a GPU-accelerated and MPI-parallelized treecode for fast summation of
long-range particle interactions based on barycentric Lagrange [50] and barycentric Hermite [51]
interpolation. It follows closely the paper “A GPU-Accelerated Barycentric Lagrange Treecode,”
authored by Nathan Vaughn, Leighton Wilson, and Robert Krasny, which will appear in the
Proceedings of the 21st IEEE International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-2020) [52]. In addition to the kernel-independent barycen-
tric Lagrange treecode (BLTC) presented in the paper, this chapter presents the weakly kernel-
dependent barycentric Hermite treecode (BHTC). The code is publicly available on GitHub at
github.com/Treecodes/BaryTree, as both a standalone executable and a library, with examples.

Discrete sums of the form given below in Eq. (2.1) occur in a variety of scientific computing
applications. In the Kohn-Sham DFT application presented in this work, these sums occur following
discretization of convolution integrals. However these sums also occur in applications that compute
particle interactions, for example gravitational simulations or electrostatic calculations. The fast
summation algorithm presented below applies to both discretized convolutions and interacting
particles; for clarity, we describe the algorithm in terms of interacting charged particles.

2.1 Introduction

The calculation of particle interactions is essential in many areas of computational physics,
for example computing gravitational or electrostatic potentials and forces. In a system with N
particles, the cost of direct summation scales like O(N2) and is often prohibitively slow, but the
computations can be accelerated using improved hardware and algorithms. Direct summation has
been implemented on graphics processing units (GPUs) with significant speedup, for example 25x
over an optimized CPU implementation [53] and 250x over a portable C implementation [54]. The
GPU implementation of direct summation enables simulations of larger problems but does not
improve the algorithmic scaling. On the other hand several algorithms with subquadratic scaling are
available, for example the fast multipole method (FMM) [44] and the treecode [43], which extend
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the accessible problem sizes much further than the hardware speedup alone.
Related previous work. Algorithmic and hardware advances can be combined to accurately

and efficiently compute larger N -body calculations. Parallelizing the hierarchical algorithms is
significantly more complex than parallelizing the direct sum, but, substantial progress has been
made throughout the years. The kernel-independent FMM has been parallelized on heterogeneous
architectures and applied to systems of 30 billion particles by Biros and co-workers, [55, 56, 57],
running on hundreds of thousands of CPU cores and up to 192 GPUs, using OpenMP and CUDA for
intra-node parallelization. Darve and others in 2012 ported the most critical steps of the black-box
FMM to GPUs using CUDA [58]. More recently, Fortin and Touche [59] have implemented a dual
tree traversal code on AMD and Intel accelerators using OpenCL.

The Barnes–Hut treecode has been implemented on GPUs and scaled to billions of particles [60,
61, 62]. Hamada et al.’s 2009 Gordon Bell entry introduced CUDA implementations of a treecode
for a gravitational N -body simulation and FMM for a turbulence simulation that ran on 256 GPUs
and achieved at the time unprecedented performance. Bédorf et al. in 2012 presented a CUDA
Barnes-Hut gravitational N -body code known as Bonsai running entirely on the GPU [61]. In
2014 Bonsai was used in a Milky Way Galaxy simulation that ran on 18600 GPUs on ORNL Titan.
Burtscher and Pingali in 2011 presented a CUDA implementation of a Barnes-HutN -body algorithm
in GPU Computing Gems which focused on replacing the pointer-chasing recursion present in many
CPU treecodes with iterating over array structures [63]. Yokota and Barba implemented a GPU
FMM and treecode with multipole expansions for simulating leapfrogging vortex rings [64].

In addition to multipole expansions, treecodes can be extended to higher accuracy regimes by
approximating a particle-cluster interaction with a Cartesian Taylor series expansion [46, 47, 49].
More recently polynomial interpolation for approximating particle-cluster interactions has been
investigated [50], using the barycentric Lagrange form of the interpolating polynomial with second
kind Chebyshev points [65]. Unlike Taylor series expansions, this approach is independent of the
functional form of the interaction kernel, requiring only the function values of the kernel at the
interpolation points. We note here that the concept of kernel-independent FMMs has been well
developed by Biros, Darve, and others [66, 67, 68, 58, 69, 56, 57, 70]. The barycentric interpolation
approach can be further extended to Hermite polynomials in a weakly kernel-dependent approach,
requiring only the function values and 2d − 1 partial derivatives of the kernel at the interpolation
points for a d−dimensional calculation [51].

Present work. The focus of this work is the development of a scalable implementation of the
barycentric treecodes for modern high performance computing architectures. In particular, we
employ an MPI + OpenACC framework that uses MPI for inter-node parallelization and OpenACC
for intra-node acceleration on GPUs. For completeness, we include a shared memory parallelzation
using OpenMP that is used to collect some benchmark results and is used in Chapter 3. We
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implement the kernel-independent Barycentric Lagrange Treecode (BLTC) and the weakly kernel-
dependent Barycentric Hermite Treecode (BHTC) in this framework, both of which are available in
the BaryTree library. We compare these implementations to their CPU counterparts for the Coulomb
kernel and demonstrate significant GPU acceleration. We also compare the BLTC and BHTC, and
identify the regimes where each is preferred. Lastly, we demonstrate the parallel scalability on up to
32 GPUs, computing the interactions between 64 million particles in 16.2 seconds with an L2 error
of 5.9e-6, while maintaining 83% parallel efficiency.

The remainder of this chapter is organized as follows. Section 2.2 describes the two treecodes
based on barycentric interpolation. Section 2.3 describes the shared memory implementation
with OpenMP, the distributed memory implementation with MPI, and the GPU acceleration with
OpenACC. Section 2.4 presents numerical results for the BLTC and BHTC implementations for test
systems consisting of randomly distributed particles. Section 2.5 discusses the results of the MPI +
OpenACC implementation, addresses several areas for further improvement, and describes a plan to
extend this implementation to cluster-particle and cluster-clusters barycentric treecodes.

2.2 Barycentric Treecodes

This section describes two forms of the treecode, the Barycentric Lagrange Treecode (BLTC)
and the Barycentric Hermite Treecode (BHTC), which are based on the barycentric forms of the
Lagrange and Hermite interpolating polynomials. The treecodes are fast summation algorithms for
the N-body interaction sums of the form

ϕ(xi) =
N∑
j=1

G(xi,yj)fj, i = 1, . . . , N, (2.1)

which arise in gravitational simulations, electrostatics, and discretized convolution integrals.
Eq. (2.1) can be viewed as a set of particle-particle interactions, and direct evaluation requiredO(N2)

operations. The treecodes described below compute fast approximations to ϕ(xi) in O(N logN)

operations. In particular, these treecodes approximate interactions between a target particle and
a cluster of source particles using formulas derived from barycentric Lagrange and barycentric
Hermite interpolation. As will be shown below, this form of the particle-cluster approximation
is well suited for GPU acceleration. We begin with a description of this approximation for both
Lagrange and Hermite interpolation, then in Section 2.2.4 describe the algorithm that makes use of
these approximations to reduce the computational complexity to O(N logN).
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2.2.1 Barycentric Lagrange Formulation

The BLTC is based on the barycentric form of the Lagrange interpolating polynomial. Given a
function f(x) evaluated at n+1 points sk, the Lagrange interpolating polynomial is

pn(x) =
n∑
k=0

f(sk)Lk(x), (2.2)

where Lk(x) is given in barycentric form by

Lk(x) =
ak(x)
n∑
`=0

a`(x)

, k = 0, . . . , n, (2.3)

where
ak(x) =

wk
x− sk

, wk =
1∏n

j=0,j 6=k(sk − sj)
. (2.4)

The x = sk singularity does not pose a problem in interpolation, and likewise does not pose a
problem in the particle-cluster approximations that follow. The handling of the singularity will be
discussed in Section 2.2.3.

The BLTC uses Chebyshev points of the second kind due to their good interpolation proper-
ties [71, 65]. For the interval [−1, 1], the Chebyshev points of the second kind are given by

sk = cos θk, θk = πk/n, k = 0, . . . , n, (2.5)

and their corresponding interpolation weights are given by

wk = (−1)kδk, (2.6)

where δk = 1/2 if k = 0 or n, and δk = 1 otherwise. We note that the interpolation weights wk are
O(1) for Chebyshev points, independent of the interpolation degree, whereas for uniformly spaced
points, the interpolation weights vary exponentially in the degree and lead to numerical instabilities.
Furthermore, polynomial interpolation experiences the Runge phenomenon, where pointwise errors
grow near the boundaries as the degree increases, unless the distribution of interpolation points
approaches a density of 1/

√
1− x2 as n → ∞ [65]. However, Chebyshev points have exactly

this property, avoiding the Runge phenomenon that occurs for uniform points and bounding the
interpolation error uniformly over the interval.

In many cases G(x,y) is singular at x = y, as in the Coulomb kernel 1
|x−y| and the Yukawa

kernel e
−κ|x−y|

|x−y| used in this work. However, away from the singularity, G(x,y) is smooth and can
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be approximated locally with a polynomial. As a demonstration, consider the 1D case of a target
particle located at x = 0, a cluster C on the interval [1, 3], and the kernel G(x, y) = 1

|x−y| . For now
it is sufficient to know that the cluster C contains a localized set of source particles yj , and the
target particle x is not contained within the bounds of the cluster. The cluster can be represented by
a set of interpolation points, and the kernel G(x, y) can be accurately represented by interpolating
polynomials inside C, given by

G(x, y) ≈
n∑
k=0

G(x, sk)Lk(y), (2.7)

where sk are a set of interpolation points inside the cluster. Figure 2.1 demonstrates this kernel
interpolation in 1D. Figure 2.1(a) shows the target particle at x = 0 (closed circle), the source
cluster C from [1, 3] (dashed lines), and a set of interpolation points inside the cluster (open circles).
Figure 2.1(b) shows the kernel G(x, y) (solid black curve) as well as the interpolating polynomials
of degree 1, 4 and 7 (blue, orange, green dashed curves). Inside the cluster, the interpolating
polynomials converge to G(x, y). Figure 2.1(c) shows the interpolation errors for each degree,
demonstrating the convergence to G(x, y) as the degree of interpolation is increased, as well as
the property of Chebyshev interpolation that the interpolation error is bounded uniformly over the
interval; there is no Runge phenomenon near the boundaries.

Figure 2.1: 1-dimensional example of interpolating the kernel G(x, y) = 1
|x−y| inside a cluster C on

the interval [1, 3] due to a source point at x = 0; a) diagrams the particle-cluster interaction, showing
a target particle at x = 0 (closed circle), a cluster on [1, 3] (dot-dashed lines), and interpolation
points in the cluster (open circles), b) shows the kernel G(x, y) (solid black curve), and three
interpolating polynomials of degree 1, 4, and 7 (dashed colors), c) shows the interpolation errors,
which decay inside the cluster as the degree increases from 1 to 4 to 7.

Similarly, in 3D, consider a target particle x = (x1, x2, x3) and a cluster C of source particle
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yj . Each source particle yj has position (yj1, y
j
2, y

j
3) and charge f j . The potential ϕ at x due to the

particle-cluster interaction is given by

ϕ(x, C) =
∑
yj∈C

G(x,yj)f j. (2.8)

The kernel G(x,y) can be approximated using a tensor product of (n + 1)3 interpolation points
sk = (sk1 , sk2 , sk3) with the barycentric interpolation formula,

G(x,y) ≈
∑

k1,k2,k3

G(x, sk)Lk1(y1)Lk2(y2)Lk3(y3), (2.9)

where the sum over k1, k2, k3 is performed in each index for ki = 0, . . . , n for interpolation degree
n. Using the interpolation points sk and the barycentric Lagrange interpolation from Eq. (2.9), the
particle-cluster interaction in Eq. (2.8) can be approximated by

ϕ(x, C) ≈
∑
yj∈C

∑
k1,k2,k3

G(x, sk)Lk1(y
j
1)Lk2(y

j
2)Lk3(y

j
3)f j. (2.10)

Importantly, the summation order can be changed to

ϕ(x, C) ≈
∑

k1,k2,k3

G(x, sk)f̂k, (2.11)

where f̂k, the modified weights, are given by

f̂k =
∑
yj∈C

Lk1(y
j
1)Lk2(y

j
2)Lk3(y

j
3)f j. (2.12)

There are two important consequences of this rearrangement. First, each f̂k is independent of the
target particle and can be precomputed, stored, and reused for all particles that interact with this
cluster. Second, the structure of the approximation in Eq. (2.11) is the same as the structure of the
direct calculation in Eq. (2.8), where in the first case the target interacts with the Chebyshev points
and in the latter with the source particles. In both cases, the interactions are independent and can be
computed simultaneously. This structure is essential to the efficient GPU implementation described
in Section 2.3.3.

2.2.2 Barycentric Hermite Formulation

The BHTC [51] is based on the barycentric form of the Hermite interpolating polynomial. Given
a function f(x) and its derivative f ′(x) evaluated at n + 1 points sk, the Hermite interpolating
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polynomial is

pn(x) =
n∑
k=0

(
f(sk)Hk(x) + f ′(sk)H̃k(x)

)
, (2.13)

where Hk(x) and H̃k(x) in barycentric form are

Hk(x) =
bk(x)
n∑
`=0

b`(x)

, H̃k(x) =
ck(x)
n∑
`=0

b`(x)

, (2.14)

where
bk(x) =

uk
x− sk

+
vk

(x− sk)2
, ck(x) =

vk
x− sk

. (2.15)

Using Chebyshev points of the second kind, the interpolation weights are given by

uk =


sk

1− s2
k

, k = 1 : n− 1

− 1
12

(1 + 2n2) , k = 0

1
12

(1 + 2n2) , k = n

, vk = δ2
k, (2.16)

where, again, δk = 1/2 if k = 0 or n, and δk = 1 otherwise. Similar to Eq. (2.9), a kernel G(x,y)

can be approximated using interpolation points sk = (sk1 , sk2 , sk3) with the Hermite interpolation

G(x,y) ≈
∑

k1,k2,k3

[
Hk1(y1)

(
Hk2(y2)

(
Hk3(y3)G(x, sk) + H̃k3(y3)G3(x, sk)

)
+H̃k2(y2)

(
Hk3(y3)G2(x, sk) + H̃k3(y3)G23(x, sk)

))
+H̃k1(y1)

(
Hk2(y2)

(
Hk3(y3)G1(x, sk) + H̃k3(y3)G13(x, sk)

)
+H̃k2(y2)

(
Hk3(y3)G12(x, sk) + H̃k3(y3)G123(x, sk)

))]
,

(2.17)

where we denote the partial derivatives ∂G(x,sk)
∂x1

by G1(x, sk), ∂
2G(x,sk)
∂x1x2

by G12(x, sk), and so forth.
The method requires all mixed partial derivatives of G(x,y) of degree zero or one in the x, y, and z
dimensions resulting in eight terms. As in the Lagrange case, we approximate the particle-cluster
interaction in Eq. (2.8) by interpolating the kernel and rearranging the sums, giving

ϕ(x, C) ≈
∑

k1,k2,k3

(
G(x, sk)f̂k +G1(x, sk)f̂k1 +G2(x, sk)f̂k2 +G3(x, sk)f̂k3

+G12(x, sk)f̂k12 +G13(x, sk)f̂k13 +G23(x, sk)f̂k23 +G123(x, sk)f̂k123

)
.

(2.18)
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where the modified weights are given by

f̂k =
∑
yj∈C

Hk1(y
j
1)Hk2(y

j
2)Hk3(y

j
3)f j, f̂k1 =

∑
yj∈C

H̃k1(y
j
1)Hk2(y

j
2)Hk3(y

j
3)f j,

f̂k2 =
∑
yj∈C

Hk1(y
j
1)H̃k2(y

j
2)Hk3(y

j
3)f j, f̂k3 =

∑
yj∈C

Hk1(y
j
1)Hk2(y

j
2)H̃k3(y

j
3)f j,

f̂k12 =
∑
yj∈C

H̃k1(y
j
1)H̃k2(y

j
2)Hk3(y

j
3)f j, f̂k13 =

∑
yj∈C

H̃k1(y
j
1)Hk2(y

j
2)H̃k3(y

j
3)f j,

f̂k23 =
∑
yj∈C

Hk1(y
j
1)H̃k2(y

j
2)H̃k3(y

j
3)f j, f̂k123 =

∑
yj∈C

H̃k1(y
j
1)H̃k2(y

j
2)H̃k3(y

j
3)f j.

(2.19)

Similar to Eq. (2.12) for BLTC, we can precompute the modified weights for the Hermite approxima-
tions. While the structure of the approximation in Eq. (2.18) is not identical to the direct interaction
in Eq. (2.8), as was the case for the BLTC, the BHTC still benefits from the fact that the interactions
between a target particle and each of the interpolation points are independent and can be computed
simultaneously, enabling an efficient parallel implementation of the BHTC.

2.2.3 Interpolation Singularities

Both the Lagrange and Hermite modified weights in Eq. (2.12) and Eq. (2.19) are singular when
one of the coordinates of a source particle is coincident with one of the coordinates of a Chebyshev
point (yji = ski for i = 1, 2, or 3). As will be discussed below, when generating clusters, we use the
minimal bounding box surrounding the particles, thereby guaranteeing that some particles share
coordinates with some interpolation points resulting in singularities. However, these singularities
can be handled in a straightforward way.

Consider the 1D case of x coincident with sk for the set of Lagrange polynomials Lj(x) given
in Eq. (2.3). Taking the limit as x→ sk gives

lim
x→sk

Lj(x) = lim
x→sk

wj
x−sj
n∑̀
=0

w`
x−s`

=
wj
wk

lim
x→sk

x− sk
x− sj

=

1 j = k,

0 j 6= k.
(2.20)

Thus, when computing the Lagrange modified weights for a cluster, we check for each particle j if
a Chebyshev point sk is coincident with that particle in any Cartesian direction i. If so, we set all
terms L`i(y

j
i ) for `i = 0, . . . , n to zero, except for `i = ki, which we set to 1.

Now, consider the 1D case of an x coincident with sk for the set of Hermite polynomials Hj(x)
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and H̃j(x) given in Eq. (2.2.2). Taking the limit as x→ sk, we get

lim
x→sk

Hj(x) = lim
x→sk

uj
x−sj +

vj
(x−sj)2∑n

`=0
u`
x−s`

+ v`
(x−s`)2

=
vj
vk

lim
x→sk

(x− sk)2

(x− sj)2
=

1 j = k

0 j 6= k,

(2.21)

for the polynomials Hj(x), and

lim
x→sk

H̃j(x) = lim
x→sk

vj
x−sj∑n

`=0
u`
x−s`

+ v`
(x−s`)2

=
vj
vk

lim
x→sk

(x− sk)2

x− sj
= 0.

(2.22)

for the polynomials H̃j(x). Similar to the Lagrange case, if particle j is coincident with sk in
direction i, we set all terms H`i(y

j
i ) and H̃`i(y

j
i ) for `i = 0, . . . , n to zero, except for Hki(y

j
i ), which

we set to 1.

2.2.4 Treecode Description

Source Clusters and Target Batches. The treecode begins by constructing a hierarchical tree
of source clusters with leaf clusters containing fewer than NL particles. The root cluster is the
minimal bounding box containing all source particles. The root is recursively divided into child
clusters where the recursion terminates when a cluster contains NL or fewer particles. The cluster
division occurs at the midpoint of the three dimensions of the bounding box. This is diagrammed
in 2D in Fig. 2.2 for a set of 300 non-uniformly distributed particles inside a ball of radius 1. A
quadtree is constructed with NL = 10. Figure 2.2(a) shows the root of the tree, a single cluster
containing all 300 particles; Fig. 2.2(b) shows the tree with maximum depth 1, Fig. 2.2(c) shows
the tree with maximum depth 2, and so on through maximum depth 5. At each level of the tree, a
cluster is divided if it has more than NL particles and is not yet at the prescribed maximum depth.

We make a minor modification to the tree construction described above that improves efficiency.
After division of a cluster, the bounding box of each child is shrunk to the minimal bounding
box containing the particles. Shrinking improves the accuracy of the approximations, because the
Chebyshev points represent a smaller volume, however this technique can result in clusters with bad
aspect ratios. To avoid this, a cluster can divide into only 4 or 2 children if dividing into 8 would
cause poor aspect ratios.

Following the source tree construction, the treecode constructs a set of localized target batches
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(a) root cluster (b) max depth 1 (c) max depth 2

(d) max depth 3 (e) max depth 4 (f) max depth 5

Figure 2.2: 2D tree construction diagram for 300 particles distributed inside a ball of radius 1, with
the highest density at the center of the ball. At each level of the tree, any clusters containing more
than NL = 10 particles are divided into four children. (a) shows the root of the tree, consisting of
the whole set of particles; (b) shows the tree of maximum depth 1, (c) shows the tree of maximum
depth 2, and so on.
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containing fewer than NB target particles per batch. In practice, we use the same partitioning routine
described above for the source particles, however we only retain the leaf clusters (which will be the
target batches), rather than retaining the whole hierarchical tree. The effect of target batching on the
GPU implementation efficiency will be discussed below.

Multipole Acceptance Criteria. The particle-particle interactions in Eq. (2.1) are reorganized
into batch-cluster interactions. For a given batch-cluster interaction, the approximation in Eq. (2.11)
or Eq. (2.18) is used if the Multipole Acceptance Criteria (MAC) are accepted, which in this work
are given by

rB + rC
R

< θ, h(n+ 1)3 < NC , (2.23)

where rB is the radius of the target batch, rC is the radius of the source cluster, R is the distance
between the batch and cluster centers, θ is the user-defined MAC parameter, h is a prefactor
depending on the approximation used (Lagrange or Hermite), n is the interpolation degree, and NC

is the number of source particles in the cluster. The first criterion (rB + rC)/R < θ ensures the
accuracy of the approximation and is diagrammed in Fig. 2.3. The second criterion, h(n+1)3 < NC ,
is the cluster size checking which will be explained below, and ensures the efficiency of the
approximation.

Figure 2.3: A 2D schematic of the particle-cluster interaction. The target batch of radius rB
containing randomly distributed target particles (open circles) separated by a distance R from a
source cluster of radius rC containing Cartesian product of Chebyshev interpolation points (×’s).
The batch-cluster approximation will be accepted if (rB + rC)/R < θ for the user input MAC
parameter θ.

Algorithm. The treecode algorithm given in Algorithm 2.1 is the same for the BLTC and BHTC,
the only difference being in their cluster approximations. The input consists of the particle data
and treecode parameters. The output consists of the approximate potential. Line 4 constructs the
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hierarchical tree of source clusters and set of localized target batches. In lines 5-6, the modified
weights are computed for each cluster using Eq. (2.12) for BLTC and Eq. (2.19) for BHTC. In lines
7-8, each target batch interacts with the root cluster via the recursive function COMPUTEPOTENTIAL.
There are three options within the COMPUTEPOTENTIAL function. If the MAC is satisfied, then
the batch-cluster approximation is computed (Eq. (2.11) for BLTC, Eq. (2.18) for BHTC). If the
MAC fails because (rB + rC)/R ≥ θ then there are two possibilities: if the cluster is a leaf then
the batch interacts directly with the cluster by Eq. (2.8), otherwise COMPUTEPOTENTIAL is called
recursively for each of the cluster’s children. If the MAC fails because h(n + 1)3 ≥ NC then
the interaction is computed directly by Eq. (2.8). This algorithm computes approximations to the
potential in O(N logN) operations compared to the O(N2) direct summation of Eq. (2.1).

Algorithm 2.1 Treecode
1: input: particle data xi,yi, fi, i = 1, . . . , N
2: input: treecode parameters θ, n, NL, NB

3: output: approximate potential ϕi, i = 1, . . . , N
4: build tree of clusters {C} and set of batches {B}
5: for each source cluster do
6: compute weights in Eq. (2.12) or (2.19)
7: for each target batch do
8: COMPUTEPOTENTIAL(B, root cluster)
9:

10: function COMPUTEPOTENTIAL(Batch, Cluster)
11: if MAC is satisfied then
12: compute approximation by Eq. (2.11) or (2.18)
13: else if (rB + rC)/R ≥ θ then
14: if Cluster is a leaf then
15: compute interaction by direct sum in Eq. (2.8)
16: else
17: for each Child of Cluster do
18: COMPUTEPOTENTIAL(Batch, Child)
19: else if h(n+ 1)3 ≥ NC then
20: compute interaction by direct sum in Eq. (2.8)

2.3 Implementation Details

This section presents the implementation details of BaryTree for (1) shared memory systems,
(2) distributed memory systems, and (3) GPUs. The shared memory parallelization uses OpenMP,
the distributed memory parallelization uses MPI, and the GPU acceleration uses OpenACC. Both
the shared and distributed memory implementations are combined with the GPU implementation by
assigning one GPU per OpenMP thread, or one GPU per MPI rank, accordingly.
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2.3.1 Shared Memory OpenMP Implementation

We begin by describing a shared memory implementation of BaryTree using OpenMP. It is
significantly simpler than the distributed memory parallelization described below, but is limited
to a single compute node. While scaling to modern high performance computing architectures
demands the distributed memory approach, we include this shared memory parallelization as it was
a precursor to the distributed memory version and was used throughout Chapter 3 for all-electron
Treecode-Accelerated Green Iteration calculations.

Modified Charges. To compute the modified charges we loop over each cluster in the tree
(Alg. 2.1, lines 5-6) and compute the expressions in Eq. (2.12) or (2.19). These calculations
are independent for each cluster; therefore we can parallelize the loop with #pragma omp

parallel for. For a tree containing NT clusters and a calculation using t OpenMP threads, this
assigns the firstNT/t clusters to the first thread, the nextNt/t clusters to the second thread, and so on.
However, we note that the cost of computing modified charges is not equal for all clusters, and this
naive distribution of the loop can result in load imbalance. In particular, for a cluster containing NC

particles and (n+ 1)3 interpolation points, computing the modified charges involves O(NC(n+ 1)3)

operations. Clusters near the top of the tree contain many more particles than those near the leaves
of the tree, therefore there is a significant difference in the cost of computing the modified charges.
To mitigate this load imbalance, we use OpenMP guided scheduling, #pragma omp parallel

for schedule(guided). This approach divides the loop into many “chunks,” then assigns
one chunk of the loop to each thread. When a thread completes its chunk it returns to the scheduler
and is assigned another chunk, until all chunks are complete. With guided scheduling the chunk
size decreases over time; specifically, the chunk size is proportional to the number of remaining
loop iterations divided by the number of threads. Therefore, as the calculation progresses, the
chunk sizes become smaller and smaller, until each chunk corresponds to only a single cluster. This
scheduling pattern alleviates load imbalances that occur due to the non-uniform cost of each iterate
in the loop; by assigning chunks upon completion, different threads may be assigned a different
number of chunks, however to total work performed by each thread will remain balanced.

Batch-Cluster Interactions. We parallelize the main compute phase by distributing the batch-
cluster interactions among the OpenMP threads. We loop over each target batch (Alg. 2.1, lines 7-8),
and for each target batch we compute all of its batch-cluster interactions. For this shared memory
parallelization, we distribute the target batches over the OpenMP threads using the same pragma as
before, #pragma omp parallel for schedule(guided). Hence, each thread will be
assigned chunks of target batches. The thread will compute all interactions for these target batches,
then request a new chunk, until the work is complete. Again, there can be an imbalance in the work
required for each target batch, as the number of interactions per batch depends both on the location
of the batch and the distribution of particles. However this potential imbalance is again mitigated
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(a) four partitions (b) six partitions

Figure 2.4: A diagram of the recursive coordinate bisection of the unit square for four and six
processes. Coordinate bisections occur in the y coordinate then x coordinate, repeating until the
target number of partitions is achieved. Each begins with a bisection of the y coordinate at y = 0.5,
assigning half the processors to the top and half to the bottom region. The second bisections differ
depending on how many processes were assigned to each partition after the first bisection. The area
owned by each process in (a) is 1/4, the area owned by each process in (b) is 1/6.

through the use of scheduling.
This shared memory parallelization is suitable for CPU or GPU calculations, where each

OpenMP thread is assigned to either one CPU-core or one GPU. In the case of the GPU paralleliza-
tion, the GPUs do no share memory locations, so the data is copied onto each GPU on the node. In
the event that the data fits on a single compute node, but not within a single GPU, we can instead
use the distributed memory MPI implementation described below.

2.3.2 Distributed Memory MPI Implemetation

In this section we describe the MPI implementation of the barycentric treecodes. We first
describe the distributed memory framework based on Local Essential Trees (LETs) [72], then
describe our MPI implementation using Remote Memory Access (RMA).

Locally Essential Trees. BaryTree uses recursive coordinate bisection (RCB) for domain
decomposition and Locally Essential Trees [72] (LET) for reduced-order global communication.
RCB proceeds by recursively partitioning the domain with a hyperplane that (1) is perpendicular to
one of the coordinate axes and (2) balances the number of particles with the number of ranks for
each side of the partition. Fig. 2.4 diagrams a 2D RCB decomposition of a unit square into four
and six partitions, where the area assigned to each partition is balanced. Following the recursive
coordinate bisection of the domain, each processor owns particles in a local and compact region
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of the domain and constructs its local source tree. The union of all processors’ source trees is the
global source tree, which is never constructed but is a useful concept in the discussion to follow.
The key observations about LETs are (1) that each target particle interacts with only a portion of the
global source tree, and (2) that nearby target particles interact with similar sub-trees. A processor’s
LET is the union of the interaction sub-trees for all of its target particles. This LET accounts for
all the remote data that must be acquired by the processor. By construction, the LET will contain
only O(logN) remotely owned clusters, with neighboring processors exchanging many clusters
and well-separated processors exchanging few clusters. Hence, while the construction of the LETs
is an all-to-all communication pattern, the amount of data that must be obtained by each processor
only grows logarithmically with the problem size.

Remote Memory Access. We use MPI passive target synchronization Remote Memory Access
(RMA) to perform the construction and communication of the LETs. First introduced in the
MPI-2 standard, RMA provides a one-sided communication model within MPI. In MPI one-sided
operations, an origin process can put or get data on or from a target process, through specially
declared memory windows, with no active involvement from the target process. In active target
synchronization, or active RMA, the target process sets bounds on when its windows can be
accessed; in passive target synchronization, or passive RMA, the target process sets no limitations
on accesses to its windows, and instead the origin process locks the target window to perform
operations on it. Passive RMA in particular is similar in spirit to the partitioned global address
space (PGAS) model used in languages like UPC. In our implementation, we use passive RMA to
communicate data between processes.

We perform the construction of the LETs in two steps, which we describe for a two process
example. The tree arrays, which contain cluster midpoints and radii for all tree nodes, the source
particles, and the cluster weights on both processes are all contained within RMA windows which
can be accessed by other processes. In the first step, process 1 gets the tree array (containing cluster
midpoints and radii) from process 2 and creates interaction lists, and vice versa. These interaction
lists consist of all clusters on process 2 that a target particle on process 1 interacts with directly or
via the approximation. Then, in the second step, process 1 uses the newly constructed interaction
lists to get the necessary source particle and cluster weight data from process 2, filling process 1’s
LET. Simultaneously, process 2 gets the data from process 1 to build its LET. At the conclusion
of the second step, every process contains all the data needed to perform its calculation, and each
process proceeds to compute the potential at its target particles as in the serial case.

Using RMA provides a few potential advantages over traditional sends and receives. Depending
on the underlying distribution of particles in the entire domain, the data that one process needs from
another can be highly irregular in size. In addition, the cluster weights and source particles needed
by a process from another will not be contiguous in the memory of the target process. In a standard
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round-robin approach for two-sided communication, all pairs of communicating processes must
wait for the most expensive communication to complete before each process can communicate with
its next partner. Even with asynchronous sends and receives, both the sender and receiver must
know the size and layout of the data on both sides of the transfer. In the passive RMA approach, we
can asynchronously launch all of our communications with no input from the target process, and the
origin process need only know the layout of the data to be received from the target process. There is
no need to pack the data on the sender’s side so that it can be received in a contiguous buffer on
the receiver’s side. Additionally, if the network hardware exists, the application can use Remote
Direct Memory Access (RDMA) to execute the get operations more efficiently, with no need for
any involvement from the target process CPU. However, despite these advantages, we note that the
startup cost for creating the RMA windows is non-negligible, and for small problem sizes it may be
more efficient to use two-sided communication and avoid the RMA window creation cost. We note
further that our specific implementation of LET communication is not necessarily more efficient than
a well-designed two-sided communication scheme that does not require communication between
all nodes. However, we believe a more efficient scheme could also potentially benefit from using
passive RMA as describe above.

2.3.3 GPU Implementation

This section describes the GPU implementation details of the BLTC and BHTC. Specifically, it
describes two algorithmic modifications called target batching and cluster size checking, and several
OpenACC implementation details involving host and device memory management, GPU compute
kernels, and asynchronous streams. The GPU implementation is extended to multiple GPUs in
a straightforward manner using the MPI implementation described above with one MPI rank per
GPU.

Target Batching. To efficiently use GPUs it is important to saturate them with enough work to
occupy as many of the compute units as possible. We accomplish this by simultaneously processing
the interactions between a batch of target particles and a source cluster. The treecode was originally
posed without target batching [43], allowing for each target particle to follow its own path through
the tree based on its own evaluations of the MAC criterion. Attempting to parallelize this on a GPU
would result in thread divergence, where different threads follow different logic paths, diminishing
performance. To avoid this issue, while also saturating the GPU with work, we make use of the
observation that nearby targets interact with nearly the same sub-trees. We group nearby target
particles into batches, where a batch contains all the target particles in some cuboid, and apply the
MAC in Eq. (2.23) to the entire batch, as opposed to making individual decisions for each target
in the batch. While this is not necessarily optimal for each individual target, it minimizes thread
divergence. We find that this is advantageous for the GPU implementation.
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To perform target batching, we use the same partitioning routines that build the octree of sources
to build an octree of target particles. The set of leaves of this octree are the target batches.

Cluster Size Checking. The second condition in the MAC (h(n + 1)3 < NC) introduces a
cluster size check to avoid computing approximations that are more expensive than the original
direct interaction. For example, for a target batch of NB particles interacting with a source cluster
of NL particles and (n+ 1)3 interpolation points, the direct interaction consists of NBNL pairwise
interactions and the approximate interaction consists of NB(n + 1)3 pairwise interactions. For
large enough n and small enough NL, the approximation may be more expensive than the direct
interaction. Therefore we introduce the second MAC condition, with a prefactor h tuned for either
Lagrange or Hermite.

For the Lagrange approximation, the targets interact with the interpolation points in Eq. (2.11)
in exactly the same way that they interact with source particles in Eq. (2.8). Therefore, we set
h = 1 and the MAC checks whether NL > (n+ 1)3. If this criteria is satisfied, then performing the
approximation is cheaper than interacting with the cluster directly and the approximation is accepted.
If this criteria fails, it is faster to compute the interaction directly. For the Hermite approximation,
Eq. (2.18) involves many more floating point operations than the direct interaction. The value h = 4

was empirically determined to be a good choice in this case.
Host and Device Data Management. The host (CPU) and device (GPU) do not share the same

memory. Data copying between host and device is expensive, so poor memory management can
inhibit GPU acceleration. For a given MPI rank, all data movements are managed with OpenACC
data regions. Data must be copied to and from the GPU twice. Algorithm 0 shows the steps for
both MPI related communication and host-device communications, labelled HtD for host-to-device
and DtH for device-to-host. First, in line 2 the source particles are copied onto the GPU, and
in lines 3-4 the modified weights computed for each cluster. In line 5 these weights are then
copied back to the CPU’s RMA windows where other MPI ranks can access them during LET
construction. The RMA windows into the local data are created in line 6. Lines 9-11 contain the
MPI communication between ranks in order to construct the Locally Essential Trees. Then in line
12, following construction of the LET, the targets, LET sources, and LET clusters are copied onto
the GPU before beginning the potential calculation. Finally, after all interactions are computed on
the GPU in lines 13-14, the resulting potential is copied back to the CPU in line 15.

Compute Kernels. For clarity, we note that routines compiled to run on GPUs are called
kernels, not to be confused with the interaction kernels G(x,y) that occur throughout this chapter.
The GPU implementation uses four compute kernels, two during preprocessing and two during the
tree evaluation. The preprocessing kernels are called once for each cluster and compute the modified
weights given in Eq. (2.12) and Eq. (2.19). The tree evaluation kernels compute the interactions
between a target batch and a source cluster, either via the cluster approximations in Eq. (2.11), (2.18)
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Algorithm 2.2 MPI + OpenACC BLTC

1: build tree of clusters {C} and set of batches {B} from local particles
2: HtD: copy source data
3: for each source cluster do
4: compute modified charges f̂k in Eq. (2.12) on GPU
5: DtH: copy modified charges
6: create MPI RMA windows to local data
7: for each remote rank do
8: MPI: get tree arrays from remote rank
9: construct interaction lists from tree arrays

10: for each remote rank do
11: MPI: get required particle and cluster data from remote rank and fill into LET
12: HtD: copy LET
13: for each target batch do
14: COMPUTEPOTENTIAL(B, LET root) on GPU
15: DtH: copy final potential

or direct sum in Eq. (2.8). The kernels are generated with OpenACC directives, compiled with the
PGI C compiler. For example, we enclose the compute regions with #pragma acc kernels

and identify the parallelizable loops with #pragma acc loop independent.
From the hardware perspective, GPUs consist of multiple streaming multiprocessors (SM), each

of which works concurrently and independently. Further, each SM consists of many compute cores,
each of which works concurrently and shares a common memory bank in addition to their local
registers. In the case of the NVIDIA Tesla P100 GPUs used in this chapter, each GPU has 60 SMs,
each of which has 32 double-precision compute cores, for a total of 1,920 double-precision compute
cores that can perform concurrent computations. From the software perspective, work is organized
into thread-blocks and threads. A thread-block is executed by a streaming multiprocessor, and each
thread is executed by a compute core. Next we describe how the various treecode computations are
mapped to thread-blocks and threads to take advantage of this parallelism.

Preprocessing Kernels. We describe the two preprocessing kernels for the BLTC to show how
the modified weights are calculated in Eq. (2.12), noting that the BHTC uses the same general
procedure to compute each of the eight terms in Eq. (2.19). The first preprocessing kernel computes
the intermediate quantity

f̃ j =
f j

n∑
k1=0

ak1(y
j
1)

n∑
k2=0

ak2(y
j
2)

n∑
k3=0

ak3(y
j
3)
, (2.24)

for each source particle in the cluster. The jth block is responsible for the jth source particle in the
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cluster. Within each block, the threads parallelize over the interpolation degree n, computing each
term of the three denominator sums simultaneously, followed by a reduction.

The second preprocessing kernel computes the modified weights for each of the interpolation
points

f̂k =
∑
yj∈C

ak1(y
j
1)ak2(y

j
2)ak3(y

j
3)f̃ j. (2.25)

Each block is responsible for a single Chebyshev point, giving (n+ 1)3 blocks. Within each block,
the threads are parallelized over the source particles in the cluster, with the jth thread computing
ak1(y

j
1)ak2(y

j
2)ak3(y

j
3)f̃ j , followed by a reduction over the threads to compute f̂k. If the number of

source particles exceeds the number of threads per block in the kernel launch, each thread will be
responsible for multiple source particles. This holds for the kernels below where the threads are
parallelized over a cluster’s source particles or interpolation points. For interpolation degree n and a
cluster containing NL source particles, the first preprocessing kernel performs O((n+ 1)NL) work
and the second performs O((n+ 1)3NL) work for each cluster.

Batch-Cluster Direct Kernel. The first tree evaluation kernel is responsible for direct inter-
actions between the target particles in a batch and the source particles in a cluster. This kernel is
launched whenever the MAC fails. The kernel computes Eq. (2.8) for every target particle in the
batch. This calculation involves an outer loop over the target particles in the batch and an inner loop
over the source particles in the cluster. The outer loop is naturally parallelizable as the potential at
different target particles is independent, while the inner loop can be parallelized with a reduction.
The GPU kernel is structured as follows. The ith block is responsible for the ith target particle xi in
the batch. The threads are parallelized over the source particles in the cluster where the jth thread
computes G(xi,yj)f

j , then a reduction is performed over the threads. For a batch containing NB

target particles and a cluster containing NL source particles, this kernel call performs O(NLNB)

work.
The diagram in Fig. 2.5 shows the structure of the batch-cluster direct kernel. Fig. 2.5(a) shows

an interaction matrix for a set of target batches and a set of source clusters. This is a visual aid for
the structure of the work; this matrix is never formed. Each row corresponds to a target particle,
which are organized into batches (bold horizontal partitions). Each column corresponds to a source
particle, which are organized into clusters (bold vertical partitions). Highlighted in blue is the
(i, j) batch-cluster interaction which is computed by one launch of the batch-cluster direct kernel.
Fig. 2.5(b) shows the structure of the kernel calculation. Each row corresponds to a target particle
and is assigned to one block. Each element in the row corresponds to the interaction with one source
particle and is assigned to a different thread. The green highlighted row corresponds to a single
block which is executed on the streaming multiprocessor to compute the interactions for a single
target particle. A reduction is performed along the row after all threads complete their interactions.
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Kernel Launch−−−−−→

Figure 2.5: a) A diagram showing the GPU kernel launch pattern for the direct interactions.
Highlighted in blue is the interaction between the jth target batch and the ith source cluster, which
is computed by a single kernel launch on the GPU. (b) A diagram showing how the batch-cluster
interaction is performed by the GPU. Highlighted in green is one block, which is computed in
parallel on one single streaming multiprocessor.

Batch-Cluster Approximation Kernel. The second tree evaluation kernel is responsible for
the approximate interactions between a batch of target particles and a cluster represented by
interpolation points. This kernel is launched whenever the MAC passes for a batch of targets and
a cluster of sources. For every target particle in the batch, the interaction is approximated with
either Eq. (2.11) for BLTC or Eq. (2.18) for BHTC. Importantly, the structure of the approximate
calculation is the same as the structure of the direct calculation, where the inner loop over source
particles is replaced by an inner loop over Chebyshev points; and the diagram in Fig. 2.5 applies
to this kernel as well. The GPU kernel is structured as follows. The ith block is responsible for
the ith target particle xi in the batch. The threads are parallelized over the (n + 1)3 Chebyshev
points in the cluster where the kth thread computes G(xi, sk)f̂k, then a reduction is performed over
the threads to sum the potential at xi. For a batch containing NB target particles, this kernel call
performs O((n+ 1)3NB) work.

The independent nature of the higher-order particle-cluster approximations is the distinguishing
feature of the barycentric treecodes that enable efficient GPU implementations. The target particle
can interact with each interpolation point simultaneously allowing for parallelization that is not pos-
sible in some other higher order approaches, such as Taylor treecodes which rely on fundamentally
serial recurrence relations to compute high order approximations.

Direct-Sum Kernel. To compute reference values we also parallelized the direct sum on the
GPU. The simplicity of the direct sum allows for easy and efficient parallelization with OpenACC
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using just a single kernel around the nested loops over the N target particles and N source particles.
Each block is responsible for one target particle, with the threads parallelized over the source
particles. The single kernel call performs all O(N2) work.

Asynchronous Streams. During the treecode evaluation the CPU is responsible for looping
through the interaction lists and launching the kernels on the GPU. When a kernel is launched, the
calculation is performed on the GPU and the CPU waits to regain control until after the calculation
completes. There are several sources of inefficiency in this process: 1) the CPU is sitting idle while
the GPU is working, 2) there is an initialization cost associated with each kernel call before the GPU
begins its calculation and 3) a single kernel might not saturate the GPU with work. The result is that
the GPU is only performing calculations approximately 75-80% of the time during the calculation,
with the remaining time spent waiting or initializing. We improve this by using asynchronous
streams (#pragma acc kernels async(streamID)) which allows the CPU to queue the
kernel on the GPU and immediately regain control without waiting for the calculation to complete.
The CPU will then queue the next interaction from the interaction list on a different stream, before
the first has completed. As we loop through the interaction lists we cycle streamID through the
number of available streams, which, for the GPUs used in this work, is four. With this approach
the initialization times are overlapped with the computation on other streams, reducing the GPU
idle time. Furthermore, the GPU may decide to work on multiple streams at the same time if it
has available resources, further improving efficiency. To handle memory access conflicts and race
conditions, we use an atomic update (#pragma acc atomic) when updating the potential for
a given target particle. Asynchronous streams significantly increase the performance of our GPU
implementation. For example, in the 1 million particle test case that is described in Section 2.4,
for the BLTC with the Coulomb kernel, θ = 0.7, and n = 7, asynchronous streams reduce the
computation time from 39.99 seconds to 29.56 seconds, a 35% improvement.

Code Availability. The code, as both a standalone executable and a library, with examples, is
publicly available on GitHub at github.com/Treecodes/BaryTree.

2.4 Results

We demonstrate the barycentric treecodes on a series of test cases ranging from 1 million to 64
million particles. In each case the particles are randomly uniformly distributed in the [−1, 1]3 cube,
with charges randomly uniformly distributed on [−1, 1]. All reported times are wall clock time in
seconds. For these tests, the targets and sources refer to the same set of particles, although the code
is not restricted to this case. Further, we restrict results to the Coulomb kernel 1/(|x − y|) and
Yukawa kernel e−k|x−y|/(|x− y|) for clarity and consistency, but note that the code is fully capable
of treating more complex kernels. The kernel-independent BLTC can be used for any kernel, and
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the weakly kernel-dependent can be used for any kernel for which the required partial derivatives
are available.

Single GPU vs. Single 6-Core CPU. We begin by comparing the GPU implementations to
portable CPU implementations for a 106 particle test case. We use the Flux HPC Cluster at the
University of Michigan to perform the calculations. The CPU calculations are run on a 6-core 2.67
GHz Intel Xeon X5650 processor using the OpenMP shared memory parallelization described in
Section 2.3.1. The GPU calculations are run on a single NVIDIA Titan V.

Fig. 2.6 shows the computation time versus error in the potential for each of the cases considered.
The error is the relative L2 error measured with respect to the direct sum calculations, given by

E =

(
N∑
i=1

(ϕdsi − ϕtci )2/

N∑
i=1

(ϕdsi )2

)1/2

(2.26)

where ϕdsi are the value computed by direct sum and ϕtci are the value computed by the treecode.
Fig. 2.6(a,b) shows the BLTC and BHTC for the Coulomb kernel, while Fig. 2.6(c,d) shows
the BLTC and BHTC for the Yukawa kernel. The batch size and cluster size parameters are
NB = NC = 2000. Each curve represents constant θ for θ in {0.5, 0.7, 0.9}, where the interpolation
degree is swept from 1 to 14 or until machine precision is achieved, with solid lines corresponding
to CPU results and dashed lines to GPU results. We draw several conclusions from the following
figures: (1) on their respective architectures, the treecode outperforms the direct sum for 1M
particles, (2) the BLTC and BHTC are both capable of achieving very high accuracy, (3) the GPU
implementation tends to be at least 100x faster than the CPU for this problem size of 1 million
particles on these architectures. We note that while the GPU direct sum is faster than the CPU
treecode for this problem size, this will not be the case for large enough problems due to the O(N2)

scaling of the direct sum.
BLTC vs. BHTC. We now perform a comparison of the BLTC and BHTC on system of 10

million particles interacting via the Coulomb kernel, NL = NB = 4000. Again, we hold θ fixed
and increase the interpolation degree, measuring the time versus accuracy. We sweep θ from 0.5
to 0.9 and p from 1 to 14, or until machine precision is reached. As in Fig. 2.6, we plot the time
versus relative L2 error. The optimal treecode parameters depend on the desired accuracy, evident
by the intersection of curves in Fig. 2.6. For clarity in comparing the BLTC to BHTC, we plot the
optimal envelope instead of the entire curves of constant θ. A data point belongs to the optimal
envelope if there are no treecode parameters that achieve better accuracy in less time. Fig. 2.7 shows
this envelope for the 10 million particle test case. The BHTC is more efficient than the BLTC for
accuracies of 1e-5 or better. The discrepancy grows for higher accuracies, resulting in up to a 2×
speedup before reaching machine precision.
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(a) Lagrange, Coulomb (b) Hermite, Coulomb

(c) Lagrange, Yukawa (b) Hermite, Yukawa

Figure 2.6: Run time versus accuracy for the 1 million random particle example, curves of constant
θ for (a) the BLTC for the Coulomb kernel, (a) the BHTC for the Coulomb kernel, (a) the BLTC for
the Yukawa kernel, and (d) the BHTC for the Yukawa kernel. 6-core 2.67 GHz Intel Xeon X5650
CPU results are shown with solid lines, NVIDIA Titan V GPU results with dashed lines.

We note that while the BHTC outperforms the BLTC in the high accuracy regime, it lacks the
kernel-independence of the BLTC. If the kernel’s partial derivatives are readily available and high
accuracy is desired, the BHTC is preferred. Otherwise, the BLTC is preferred.

Single node parallel scaling of GPU code. This subsection documents the parallel efficiency
of the BLTC on a single GPU node running with 1, 2 or 4 GPUs, using the shared memory OpenMP
scheme described above in Section 2.3.1 to parallelize across GPUs with one thread assigned to
each GPU. The test system has 10 million particles randomly located in a cube interacting via the
Coulomb kernel. The work is divided into two stages; stage 1 encompasses the precomputing tasks
in lines 5-6 of Algorithm 2.1 and stage 2 encompasses the batch-cluster computing in lines 7-8.
Figure 2.8 shows the parallel efficiency of each stage and the entire computation as the number of
GPUs increases from 1 to 4. The precompute stage scales less efficiently than the compute phase,
due to some serial computation embedded in these tasks (85% on 2 GPUs, 63% on 4 GPUs), but
this accounts for only a small fraction of the total computation time. The compute stage has close to
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Figure 2.7: Comparing the BLTC and BHTC computation time versus accuracy for 10M particles
with the Coulomb kernel. θ is swept from 0.5 to 0.9 and p from 1 to 14 (or until machine precision
is achieved), and the optimal envelopes are plotted.

ideal scaling (98% on 2 GPUs, 94% on 4 GPUs); moreover this stage accounts for a large fraction
of the total computation time and therefore the treecode achieves 90% efficiency for the entire
computation on 4 GPUs.

Single node comparison of GPU and CPU codes. We compare the treecode times running on
a GPU node and a CPU node on Comet. The CPU calculations use a standard compute node with
two Intel Xeon E5-2680v3 CPUs for a total of 24 cores, while the GPU calculations use a GPU
node with four NVIDIA Tesla P100s. The CPU code is run with 24 OpenMP threads, one for each
core, while the GPU code is run with 4 OpenMP threads, one for each GPU. To compare the nodes,
calculations were performed for three problem sizes, N = 105, 106, 107, using the barycentric
Lagrange treecode BLTC with MAC θ = 0.8 interpolation degree n = 8, and cluster and batch
sizes NL = NB = 2000. The treecode parameter settings yield 6-7 digit accuracy and the CPU and
GPU implementations achieve identical errors.

Table 2.1 presents the computation run time and error for CPU and GPU nodes, for the Coulomb
potential (left) and Yukawa potential (right, κ = 0.5). The GPU node achieves a speedup of 37×
over the CPU node for the Coulomb potential, and 49× for the Yukawa potential; the speedup is
larger for the Yukawa potential because in that case the GPU more efficiently handles the additional
floating point operations required to evaluate the exponential function.

Weak Scaling. We demonstrate the weak scaling of the MPI + OpenACC treecode on Comet
by holding the number of particles per GPU fixed and increasing the number of GPUs from 1 to
32. We use the BLTC with treecode parameters θ = 0.8, n = 8, NL = NB = 4000. Fig. 2.9
shows the computation times for the Coulomb potential (dashed lines) and Yukawa potential (solid
lines) with the number of particles per GPU set to 8, 16, and 32 million (circles, triangles, squares).
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Figure 2.8: Shared memory parallel efficiency of BLTC on a single GPU node for 10 million
particles interacting via Coulomb kernel. Treecode MAC parameter θ = 0.7 and interpolation
degree n = 7 yield treecode approximation error 2.31e-06 (L2 error with respect to direct sum).
The results show computation time (s) and ideal scaling time (s) using 1, 2 and 4 GPUs for (a) stage
1 (precompute), (b) stage 2 (compute), and (c) total time. For comparison, the direct sum time on
4 GPUs is 1668 s.

Importantly, as the problem size grows, the computation times only modestly increase. This is
consistent with the expected scaling. Since the total work W scales like W ∝ N logN , and the
total number of particles N is proportional to the number of ranks p, N ∝ p, the total work per rank
is W/p ∝ logN ∝ log p. Hence the work per rank grows logarithmically during the weak scaling
study, in agreement with the observed results.

Strong Scaling. We demonstrate the strong scaling of MPI + OpenACC BaryTree on Comet
using up to 32 NVIDIA P100 GPUs. The test systems consists of 16 million and 64 million particles
interacting via the Coulomb and Yukawa kernels. We use the Lagrange treecode with parameters
θ = 0.8, n = 8, NL = NB = 4000, giving relative L2 errors 4.0e-6 and 5.9e-6 respectively. Note
that for these large systems the error was sampled at a random subset consisting of 10% of the
target points. Fig. 2.10(a) and 2.11(a) show the strong scaling efficiency of these calculations by
showing total time versus the number of GPUs. The efficiency is measured with respect to a single
GPU and compared to ideal speedup (dotted lines). For the Coulomb kernel, as the number of
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Coulomb potential
N error, E CPU (s) GPU (s) speedup

105 1.44e-07 4.05 0.18 22.03
106 5.31e-07 44.86 1.31 34.36
107 1.22e-06 640.89 17.13 37.42

Yukawa potential (κ = 0.5)
N error, E CPU (s) GPU (s) speedup

105 1.61e-07 4.73 0.17 27.35
106 5.56e-07 74.68 1.51 49.43
107 1.75e-06 1048.45 21.34 49.13

Table 2.1: Single node performance of the BLTC for Coulomb potential (left) and Yukawa potential
(right, κ = 0.5), treecode parameters MAC θ = 0.8 and degree n = 8 yielding 6-7 digit accuracy,
results show CPU and GPU run times (s), calculations are performed on Comet using either a single
CPU node (two Intel Xeon E5-2680v3 CPUs, total 24 cores) or a single GPU node (four NVIDIA
Tesla P100s).

GPUs is increased to 32, the 64M particle example maintains higher efficiency (83%) than the 16M
particle example (64%). The Yukawa kernel maintains slightly higher efficiencies of 84% and 73%.
Figure 2.10(b) and 2.11(b) shows the distribution of time spent in each phase of the calculation
as the number of GPUs increases from 1 to 32 for the 64M particle example. The setup phase
(orange) includes the data movements and communication required for each rank to begin its local
calculation. Specifically, the setup consists of organizing the local source particles into an octree
and target particles into batches, the construction and communication of the LET, and the creation
of the interaction lists for each target batch. The precompute phase (green) consists of computing
the modified weights for each locally owned source cluster. The compute phase (blue) consists of
computing the potential at each target particle. Each bar is colored based on the percent of time
spent in each phase, with the total time listed atop the bar. Up to 32 ranks (2M particles/rank) the
compute phase dominates the total time (>80% of total time). However, as the number of GPUs
increases, the distribution of work shifts towards the setup and precompute phases. The fraction of
time spent in the setup phase grows because the communication costs grow; more interactions are
with remotely owned data that must be communicated. The fraction of time spent in the precompute
phase grows because the modified weight kernels do not saturate the GPUs with work as the number
of particles per rank decreases.
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Figure 2.9: Weak scaling for the GPU accelerated treecode. Computation times for the Coulomb
and Yukawa potentials with particles per GPU set to 8, 16, and 32 million, increasing the number of
GPUs from 1 to 32.

(a) parallel efficiency (b) time distribution

Figure 2.10: Coulomb kernel, strong scaling of the BLTC up to 8 nodes (32 GPUs) demonstrated on
16M and 64M particles using n = 8 and θ = 0.8, giving relative 2-norm errors 4.0e-6 and 5.9e-6.
(a) 16M and 64M, computation times labeled with their efficiency relative to a single GPU. (b) 64M,
the percent of time spent in the setup, precompute, and compute phases as the number of GPUs
increases, with the total time labeled above each bar.

2.5 Conclusion

We have presented an MPI + OpenACC implementation of two treecodes based on barycentric
interpolation, the barycentric Lagrange treecode (BLTC) and the barycentric Hermite treecode
(BHTC), both part of the BaryTree library. The distributed memory parallelization achieves
efficiency by only communicating data required to fill Locally Essential Trees, implemented with
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(a) parallel efficiency (b) time distribution

Figure 2.11: Yukawa kernel, strong scaling of the BLTC up to 8 nodes (32 GPUs) demonstrated on
16M and 64M particles using n = 8 and θ = 0.8. giving a relative 2-norm error 5.9e-6. (a) 16M and
64M, computation times labeled with their efficiency relative to a single GPU. (b) 64M, the percent
of time spent in the setup, precompute, and compute phases as the number of GPUs increases, with
the total time labeled above each bar.

Remote Memory Accesses (RMA). The GPU acceleration achieves good efficiency due to the
batch processing of target particles and the unique structure of the barycentric particle-cluster
approximations, specifically the independence of interactions between a target particle and each
interpolation point. First we demonstrated significant speedups of the GPU-accelerated BLTC and
BHTC over the CPU counterparts for randomly distributed particles interacting via the Coulomb
kernel. Next we compared the BLTC and BHTC, and observed the main advantages of each to
be that unlike the BHTC, the BLTC is kernel-independent, however the BHTC outperforms the
BLTC in the high accuracy regime. We then demonstrated good parallel scaling up to eight nodes
containing four P100s each for a total of 32 GPUs. For the test system consisting of 64 million
particles, the treecode computes the potential in 16.2 seconds, with a relative error of 5.9e-6, while
maintaining a parallel efficiency of 83%.

This treecode is the workhorse behind the Green’s function based electronic structure calcula-
tions described in Chapters 3 and 4, in which a vast majority of the overall work resides in evaluating
discrete convolution sums.

38



Chapter 3

Treecode-Accelerated Green Iteration for All-Electron Kohn-Sham Density
Functional Theory

This chapter presents the development of a Green’s function based method for Kohn-Sham
Density Functional Theory calculations. Specifically, this chapter focuses on all-electron calcula-
tions, in which all electrons are explicitly accounted for and the nuclear potentials are the singular
Coulomb potentials, while Chapter 4 extends this work to pseudopotential calculations in which
“core” electrons are absorbed into the nucleus, resulting in a smooth and non-singular nuclear
pseudopotential. The code developed here, called Treecode-Accelerated Green Iteration (TAGI),
relies heavily on the GPU-accelerated treecode called BaryTree developed in Chapter 2. TAGI and
BaryTree were developed concurrently; therefore not all features of BaryTree were available during
the development of TAGI. In particular, this chapter restricts calculations to a single compute node
using the shared-memory parallelization presented in Section 2.3.1, rather than the fully distributed
memory MPI capability described in Section 2.3.2. The extension of TAGI to multiple compute
nodes is left for Chapter 4.

3.1 Introduction

Electronic structure calculations complement materials engineering experiments by predicting
properties such as binding energy, inter-atomic forces, magnetization, and doping effects. Density
Functional Theory (DFT) [9], which describes a system and its properties by its electron density, has
been the workhorse of ground state electronic structure computations. For an Ne-electron system,
the Kohn-Sham approach to DFT [10] reduces the 3Ne-dimensional problem for the many-body
wavefunction to a 3-dimensional problem for the electron density. In particular, the system of Ne

interacting electrons is replaced by a fictitious system of Ne non-interacting electrons giving rise to
the same electron density. In principle, the Kohn-Sham formulation is exact for the ground state
properties of materials systems, but it requires knowledge of the exchange-correlation functional,
which is not known explicitly and is modeled in practice. Approximating the exchange-correlation
functional is an active area of research [11, 12, 13], and better approximations enable Kohn-Sham
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DFT to more accurately predict ground state materials properties.
Previous related work. There are many options for performing either all-electron or pseudopo-

tential DFT calculations, where, in the latter case, only the valence electrons are computed. Often
a basis set is used to represent the wavefunctions and electron density [73]. For periodic systems,
the plane-wave basis is widely used for pseudopotential calculations [28, 74, 75, 76, 7], and for all-
electron calculations that require higher resolution to capture the rapidly oscillating wavefunctions,
the augmented plane wave basis [77] and its variants are employed [78, 79, 80, 81, 82]. For non-
periodic systems, Gaussian basis sets are widely used in quantum chemistry codes [83, 84] as they
afford analytic evaluation of many integral and differential operators. A more recent option is the
finite-element basis [34, 35, 36, 37], which efficiently treats periodic or non-periodic boundary con-
ditions, and pseudopotential or all-electron systems using higher order finite-elements [38, 39, 40, 5].

The previously described methods are based on solving the Kohn-Sham eigenvalue equation,
a single-particle Schrödinger-like differential equation. In this work we consider an alternative
approach in which the eigenvalue problem in differential form is converted into a fixed-point problem
in integral form by convolution with the modified Helmholtz Green’s function. While integral
equation methods are extensively used for the wave equations arising in classical scattering [45, 85,
86, 87, 88, 89, 90] and quantum scattering [91, 92, 93, 94, 95, 96], these methods have received much
less attention for eigenvalue problems corresponding to ground state calculations of the Schrödinger
or Kohn-Sham equations. The integral equation approach was first applied by Kalos [97] to solve
the Schrödinger equation for 3- and 4-electron systems using Monte Carlo minimization. Later,
Zhao et al. [98] used this approach to investigate various 1-electron systems in 3D, where the
convolution integrals were computed using the Multi-Level Fast Multipole Method.

In recent work, the integral equation approach was extended to the Hartree-Fock and Kohn-
Sham equations, where the electron density was updated in self-consistent field (SCF) iterations,
and the fixed-point problem for the wavefunctions and eigenvalues in each SCF was solved by a
process called Green Iteration. Harrison et al. [99] implemented Green Iteration for the Kohn-Sham
equations in a multiwavelet basis that provides local refinement for each wavefunction, and this
is now incorporated in the MADNESS code [100]. The convergence of Green Iteration for the
many-body Schrödinger equation was investigated by Mohlenkamp and Young [101, 102], who
proved that the iteration converges for Ne = 1 and Ne = 2, provided the interaction potential
belongs to the function space L2(R3) +L∞(R3) and the L∞(R3) piece can be taken to be arbitrarily
small. Khoromskij [103] later extended this proof to Kohn-Sham DFT, where now the electron-
electron interaction potential is replaced by the exchange-correlation potential which must satisfy
the same function space requirements. Subsequently, Rakhuba and Oseledets [104, 105] applied
Green Iteration to the Hartree-Fock and Kohn-Sham equations in a Tucker tensor basis that uses
low rank approximations of the wavefunctions.

40



Present work. We present a new integral equation based method called Treecode-Accelerated
Green Iteration (TAGI) for all-electron Kohn-Sham DFT calculations. The key features of TAGI
that enable accurate and efficient calculations are (1) adaptive mesh refinement, (2) high order
quadrature, (3) singularity subtraction for convolution integrals, (4) gradient-free eigenvalue update,
(5) Anderson mixing for SCF and Green Iteration, and (6) treecode computation of discrete
convolution sums.

TAGI is a real-space method in which the fields are represented directly at quadrature points.
TAGI uses adaptive mesh refinement to efficiently represent the fields, which vary rapidly near the
nuclei but decay smoothly in the far-field. The adaptive refinement scheme results in a set of cuboid
cells, which are discretized with Chebyshev points of the first kind, and all integrals are evaluated
with the Fejér (“classical” Clenshaw-Curtis) quadrature rule [106, 107]. The convolution integrals
have singular kernels (Coulomb and Yukawa), which impede the accuracy of the quadrature rule, and
we employ singularity subtraction to reduce the error in the quadrature sums. A standard singularity
subtraction scheme is used for the Yukawa kernel [108, 109] and we developed a modified version
for the Coulomb kernel. To further improve accuracy, we use a gradient-free eigenvalue update [99]
within Green Iteration to eliminate the error arising from numerical differentiation in the standard
gradient eigenvalue update. We analyze the convergence rate of Green Iteration and use a fixed-
point acceleration technique to alleviate slow convergence. Finally, the discrete convolution sums
are efficiently evaluated using a Barycentric Lagrange Treecode [50] (BLTC), which reduces the
computational complexity from O(N2) to O(N logN) while introducing a small and controllable
approximation error. Furthermore, the BLTC is accelerated on GPUs with OpenACC [52] and
across multiple GPUs on a single node with OpenMP. We demonstrate the impact on accuracy and
efficiency of each of the previously described features on the carbon monoxide molecule, and then
perform ground state energy calculations for several atoms and molecules, demonstrating TAGI’s
ability to achieve chemical accuracy of 1 mHa/atom.

The remainder of this chapter is organized as follows. Section 3.2 presents Kohn-Sham DFT,
and the standard Self-Consistent Field iteration for computing the ground state density and wave-
functions. Section 3.3 presents the integral equation formulation we employ and Green Iteration
for the resulting fixed-point problem. Section 3.4 describes the numerical techniques developed
in this work to enhance the accuracy of the integral formulation, and demonstrates these ideas on
the carbon monoxide molecule. Section 3.5 investigates the convergence rate of Green Iteration
and demonstrates the fixed-point acceleration technique used in TAGI. Section 3.6 describes the
treecode algorithm for computing fast approximations of the convolution integrals and demonstrates
the efficiency of the GPU-accelerated implementation used in this work. Section 3.7 applies TAGI
to several atoms and small molecules, achieving chemical accuracy of 1 mHa/atom with respect to
reference values. Section 3.8 provides a summary of our findings, and discusses a path forward for
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this approach to further improve performance and scale to larger systems.

3.2 Kohn-Sham Density Functional Theory

The input to Kohn-Sham DFT consists of the positions and atomic numbers of the atoms in
the system, and the output consists of the ground-state electron density along with the Kohn-Sham
single-electron wavefunctions, from which the desired observables (including ground-state energy
and ionic forces) can be computed. The Kohn-Sham equations are

H[ρ]ψi(r) = εiψi(r), i = 1, 2, . . . , H[ρ] = −1

2
∇2 + Veff [ρ] , (3.1)

whereH[ρ] is the Kohn-Sham Hamiltonian, ρ = ρ(r) is the electron density, εi are the Kohn-Sham
eigenvalues, and ψi(r) are the Kohn-Sham eigenfunctions, also referred to as the Kohn-Sham
wavefunctions. Here, we restrict ourselves to a spin-independent formulation on non-periodic
systems, but the general ideas presented in this work can be extended to a spin-dependent formulation
and periodic geometries in a straightforward manner. The effective Kohn-Sham potential has the
form,

Veff [ρ](r) = VH [ρ](r) + Vext(r) + Vxc[ρ](r), (3.2)

where the first two terms are the Hartree potential due to the electron density and the external
potential due to the NA atomic nuclei located at Rj with charges Zj , respectively,

VH [ρ](r) =

∫
ρ(r′)

|r− r′|
dr′, Vext(r) =

NA∑
j=1

−Zj
|r−Rj|

, (3.3)

and the third term is the exchange-correlation potential Vxc[ρ] = ∂Exc[ρ]/∂ρ depending on the
exchange-correlation energy Exc[ρ]. The electron density depends on the eigenvalues and wave-
functions,

ρ(r) = 2
Nw∑
i=1

f(εi, µF )|ψi(r)|2, f(ε, µF ) =
1

e(ε−µF )/kBT + 1
, (3.4)

where f(ε, µF ) is the fractional occupation computed by Fermi-Dirac statistics [28, 25], with Fermi
energy µF , Boltzmann constant kB, and temperature T . The Fermi energy µF is determined from
the constraint on the total number of electrons Ne,

2
Nw∑
i=1

f(εi, µF ) = Ne . (3.5)
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The sums in Eq. (3.4) and Eq. (3.5) run over the Nw lowest energy wavefunctions, where Nw is
chosen so that the fractional occupation of any higher energy wavefunction is negligible.

The preceding equations constitute a non-linear eigenvalue problem and the standard solution
method uses the Self-Consistent Field iteration (SCF) outlined in Algorithm 3.1. The iteration
takes the atomic positions and an initial guess for the electron density as input. The output is
the converged electron density and wavefunctions, from which observables are computed. The
iteration starts in line 1. In line 2, at the nth step of the iteration, the effective potential Veff [ρ

(n)
in ]

is constructed from the input electron density of the current iterate by Eq. (3.2). In line 3, the
eigenvalue problem in Eq. (3.1) is solved for the eigenpairs (εi, ψi). In line 4, the Fermi energy µF
and fractional occupations f(εi, µF ) are computed. In line 5, these quantities are used to compute a
new output density ρ(n)

out by Eq. (3.4). In line 6, the scheme checks whether the density has converged
to a desired tolerance; if so, then the iteration stops and returns the latest density; otherwise a
new input density ρ(n+1)

in is constructed by the Anderson mixing scheme described below and the
iteration continues. The present work follows this approach, but focuses on the solution of the
eigenvalue problem (line 3), which is the most computationally intensive step in the SCF iteration,
using treecode-accelerated Green Iteration (TAGI) described below.

Algorithm 3.1 Self-Consistent Field Iteration (SCF)

input: atomic positions and initial guess for electron density ρ(0)
in

output: electron density ρ(n)
out and Kohn Sham wavefunctions ψ(n)

i , i = 1, . . . , Nw

1: for n = 0, 1, 2, . . .
2: given ρ(n)

in , construct effective potential Veff [ρ
(n)
in ] by Eq. (3.2)

3: using Veff [ρ
(n)
in ], solve eigenvalue problemH[ρ

(n)
in ]ψ

(n)
i = ε

(n)
i ψ

(n)
i , i = 1, . . . , Nw

4: using ε(n)
i , compute Fermi energy µF and fractional occupations f(ε

(n)
i , µF ) by Eq. (3.5)

5: using f(ε
(n)
i , µF ), ψ

(n)
i , construct new density ρ(n)

out by Eq. (3.4)
6: if ||ρ(n)

out − ρ
(n)
in ||2 < tolscf , return ρ(n)

out

7: else construct new density ρ(n+1)
in by Anderson mixing and return to step 2

Following the nth step in the SCF iteration, the output electron density ρ(n)
out has been computed

and a new input electron density ρ(n+1)
in must be initialized for the next step in the SCF iteration.

The simplest choice is ρ(n+1)
in → ρ

(n)
out, but this fails to converge except for the simplest systems, and

it is common practice in DFT simulations to instead use a density mixing scheme. Density mixing
schemes construct ρ(n+1)

in from the history of previous input and output densities in an attempt
to minimize the next residual, ||ρ(n+1)

in − ρ
(n+1)
out ||. Among various options, in this work we use

Anderson mixing [28, 110, 111]; a brief description follows.
The input density for the (n+ 1)st SCF iteration is given by

ρ
(n+1)
in = βρ̄out + (1− β)ρ̄in, (3.6)
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where β ∈ [0, 1] is a mixing parameter, and

ρ̄in =
n∑
k=0

ckρ
(n−k)
in , ρ̄out =

n∑
k=0

ckρ
(n−k)
out , (3.7)

are weighted averages of previous input and output densities. The weights ck are computed by
solving the optimization problem to minimize ||ρ̄out − ρ̄in||2. Applying the constraint

∑n
k=0 ck = 1,

Eq. (3.7) is rewritten as

ρ̄in = ρ
(n)
in +

n∑
k=1

ck(ρ
(n−k)
in − ρ(n)

in ), ρ̄out = ρ
(n)
out +

n∑
k=1

ck(ρ
(n−k)
out − ρ(n)

out). (3.8)

This converts the constrained optimization for n parameters into an unconstrained optimization
problem for n− 1 parameters, improving the conditioning of the linear system which is to be solved
for the ck’s [112]. Next, consider the quantity ρ̄out − ρ̄in. Rearranging Eq. (3.8) yields

ρ̄out − ρ̄in = (ρ
(n)
out − ρ

(n)
in ) +

n∑
k=1

ck

(
(ρ

(n−k)
out − ρ(n−k)

in )− (ρ
(n)
out − ρ

(n)
in )
)
, (3.9)

Defining F = ρout − ρin, this is rewritten as

F̄ = F (n) +
n∑
k=1

ck
(
F (n−k) − F (n)

)
. (3.10)

Minimizing ||F̄ ||2 = ||ρ̄out − ρ̄in||2 amounts to solving an overdetermined system of equations for
the weights ck and leads to the normal equations,

n∑
k=1

(
F (n) − F (n−m), F (n) − F (n−k)

)
ck =

(
F (n) − F (n−m), F (n)

)
, m = 1, . . . , n, (3.11)

where (f, g) =
∫
f(r)g(r)dr. In TAGI, these inner products are numerically computed with the

discretization scheme described below. After obtaining the weights ck, the density is constructed
from Eq. (3.6). In practice a partial history can be used, k = 0 : kmax, instead of the complete
history as presented above, k = 0 : n. Throughout this work we use default values of kmax = 10

and β = 0.5 for the history cutoff and mixing parameter.
Having obtained the converged εi, ψi(r), ρ(r) from the converged SCF iteration, the ground-state

energy of the system is
E = Ekin + Exc + EH + Eext + EZZ . (3.12)

In this expression, the first two terms are the kinetic energy and exchange-correlation energy,
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respectively,

Ekin =
Nw∑
i=1

f(εi, µF )

∫
ψi(r)

(
−1

2
∇2

)
ψi(r)dr, Exc[ρ] =

∫
εxc[ρ](r)ρ(r)dr, (3.13)

where εxc[ρ](r) is the exchange-correlation energy per electron for the chosen DFT functional, and
the remaining three terms are the Hartree energy, external electrostatic energy, and nuclear repulsion
energy, respectively,

EH [ρ] =
1

2

∫
VH [ρ](r)ρ(r)dr, Eext[ρ] =

∫
Vext(r)ρ(r)dr, EZZ =

1

2

∑
i,j 6=i

ZiZj
|Ri −Rj|

.

(3.14)
This work employs the Local Density Approximation (LDA) [113, 114] for Vxc[ρ], εxc[ρ], given by

εxc[ρ](r) = εx[ρ](r) + εc[ρ](r), (3.15)

where

εx[ρ](r) = −3

4

(
3

π

)1/3

ρ1/3(r), (3.16)

and

εc[ρ](r) =


γ

(1+β1
√
rs+β2rs)

rs ≥ 1,

A log rs +B + Crs log rs +Drs rs < 1,
(3.17)

where rs =
(

3
4π
ρ(r)

)1/3 and the parameters γ, β1, β2, A, B, C, and D are fit from Monte Carlo
calculations [113]. In practice these are computed using the Libxc package [115, 116].

3.3 Solution of Eigenvalue Problem by Green Iteration

Several methods are available for solving the eigenvalue problem in each SCF iteration (step 4 in
Algorithm 3.1). Among real-space methods, finite-difference [30, 32, 33] and finite-element [37, 40]
methods represent the differential operator as a sparse matrix and use iterative techniques to compute
the eigenpairs (εi, ψi). By contrast, in this work the differential equation is converted into an integral
equation by convolution with the modified Helmholtz Green’s function [97], and then an iterative
technique called Green Iteration is applied to obtain the eigenpairs [99, 101, 103, 104]. We describe
these steps below.

Following Kalos [97], the Kohn-Sham equations in Eq. (3.1) are rewritten in the form(
1

2
∇2 + εi

)
ψi = Veff [ρ]ψi, (3.18)
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where ρ is the electron density for a given SCF iteration. Since the bound state eigenvalues of the
Kohn-Sham Hamiltonian are negative, εi < 0, Eq. (3.18) is a modified Helmholtz equation with
Green’s function,

Gεi(r, r
′) = −e

−
√
−2εi|r−r′|

2π|r− r′|
, (3.19)

where free-space boundary conditions are assumed. Note that the factor of 2 difference between the
definitions of the modified Helmholtz Green’s function in Eq. (3.19) and Eq. (1.15) is due to the
1
2

coefficient of the Laplacian in Eq. (3.18). Then, convolution with Eq. (3.18) yields the integral
form of the Kohn-Sham eigenvalue problem,

ψi(r) = G(εi)ψi(r), i = 1, . . . , Nw, ψi ⊥ ψj, j < i, (3.20)

where
G(ε)ψ(r) =

∫
Gε(r, r

′)Veff [ρ](r′)ψ(r′)dr′, (3.21)

defines a 1-parameter family of linear integral operators.
Note that Eq. (3.20) can be viewed as a fixed-point problem and this motivates the solution

method called Green Iteration described in Algorithm 3.2. The scheme takes as input the effective
potential Veff [ρ] for the current SCF and an initial guess for the eigenpairs (ε

(0)
i , ψ

(0)
i ), and provides

the converged eigenpairs (εi, ψi) as output. Line 1 is the outer loop over wavefunctions and line
2 is the iteration for a given wavefunction. Line 3 applies the integral operator G(ε

(n)
i ) to the

current wavefunction ψ(n)
i . Line 4 updates the eigenvalue; several methods are available and we

compare some of them below. Line 5 is the deflation step that orthogonalizes the new wavefunction
ψ

(n+1)
i against the previously converged wavefunctions, and line 6 normalizes it. Line 7 checks for

convergence; if the tolerance is satisfied, then the eigenpair is stored and the process returns to line
1; otherwise the iteration in line 2 continues.

Algorithm 3.2 Green Iteration
input: effective potential Veff [ρ] for current SCF
input: initial guess for eigenpairs (ε

(0)
i , ψ

(0)
i ), i = 1, . . . , Nw

output: eigenpairs (εi, ψi), i = 1, . . . , Nw

1: for i = 1, 2, . . . , Nw

2: for n = 0, 1, 2, . . .
3: compute ψ(n+1)

i = G(ε
(n)
i )ψ

(n)
i

4: update eigenvalue ε(n+1)
i

5: orthogonalize ψ(n+1)
i against previously converged wavefunctions ψj, j < i

6: normalize ψ(n+1)
i

7: if ||ψ(n+1)
i − ψ(n)

i ||2 < tolgi set (εi, ψi) = (ε
(n)
i , ψ

(n)
i ) and return to line 1

8: else return to line 2 and continue iteration
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3.4 Spatial Discretization Techniques

This section focuses on the spatial discretization techniques used in TAGI. These include
the initialization scheme for the electron density and wavefunctions, the quadrature and adaptive
mesh refinement techniques, the singularity subtraction schemes used to evaluate the convolution
integrals, and the gradient-free approach used to update the eigenvalues. The section concludes by
demonstrating the effect of these techniques using the carbon monoxide molecule as an example.
Note that Hartree atomic units are used throughout this work.

3.4.1 Initial Electron Density and Eigenpairs

The SCF iteration uses an initial guess for the electron density of the form,

ρ(0)(r) =
Na∑
j=1

ρj(|r−Rj|), (3.22)

where ρj(|r−Rj|) is a radial 1-atom electron density associated with the jth atom. These 1-atom
densities are precomputed by solving a radial version of the Kohn-Sham problem for each atomic
species. In addition, Green Iteration requires an initial guess for the eigenpairs, (ε

(0)
i , ψ

(0)
i (r)), i =

1, . . . , Nw. The number of wavefunctions Nw is determined as follows. Since each wavefunction is
occupied up to two electrons, there is a lower bound, Nw ≥ Ne/2, however there is no sharp upper
bound. In practice Nw should be chosen large enough to accommodate all states with significant
fractional occupation f(εi, µF ). To this end, Nw is initialized to be larger than Ne/2, and upon
obtaining the eigenpairs, if the fractional occupation of the highest state is negligibly small, then
Nw is considered large enough; otherwise, Nw is increased and the process is repeated until the
check is satisfied. The initial guess for the eigenpairs depends on whether or not this is the first step
in the SCF iteration. In the first step, the wavefunctions are initialized using 1-atom wavefunctions
obtained in the radial solve for the initial electron density, ψn`(r), multiplied by appropriate spherical
harmonics, and the initial eigenvalues are computed by the Rayleigh quotient with the Kohn-Sham
HamiltonianH, ε(0)

i = 〈ψ(0)
i ,Hψ(0)

i 〉. In subsequent steps of the SCF iteration, the eigenpairs of the
previous step are taken as the initial guess.

3.4.2 Spatial Discretization and Quadrature Schemes

The energy integrals and convolution integrals will be evaluated on a set of cuboid cells
representing a bounded computational domain. Using the Hartree energy in Eq. (3.14) as an
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example,

EH =
1

2

∫
VH(r)ρ(r)dr ≈ 1

2

Nc∑
i=1

∫
Ci

VH(r)ρ(r)dr ≈ 1

2

Nc∑
i=1

(p+1)3∑
j=1

VH(rij)ρ(rij)wij, (3.23)

where Nc is the number of cells, (p+ 1)3 is the number of quadrature points in each cell, indices
i, j refer to quadrature point j in cell i, and wij are the quadrature weights. The total number of
mesh points is denoted by Nm = (p+ 1)3Nc. The quadrature scheme uses Chebyshev points of the
first kind; on the interval [−1, 1] these are given by

xj = cos θj, θj =
(j + 1/2)π

p+ 1
, j = 0 : p. (3.24)

Within each cell, the integrals are evaluated using the Fejér (or “classical” Clenshaw-Curtis) quadra-
ture rule [106, 107] with quadrature weights wij . The p+ 1 point Fejér quadrature rule integrates
pth-degree polynomials exactly, so we refer to this as a pth-order quadrature rule. For completeness,
we provide the method for computing the Fejér quadrature weights in 1-dimension using the method
of Discrete Cosine Transforms, or, equivalently, expansions in Chebyshev polynomials. Consider
the 1-dimensional integral of a smooth, but non-periodic function f(x),∫ 1

−1

f(x)dx. (3.25)

Step 1. Change of variables, x→ cos θ, dx→ − sin θdθ, yields∫ 1

−1

f(x)dx =

∫ π

0

f(cos θ) sin θdθ. (3.26)

Step 2. The Fourier cosine transform of f(cos θ) is given by

f(cos θ) =
a0

2
+
∞∑
i=1

ai cos(iθ), (3.27)

where the Fourier cosine coefficients ai are given by

ai =
2

π

∫ π

0

f(cos θ) cos(iθ)dθ. (3.28)
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Substitution into Eq. (3.25) and simplifying gives

∫ 1

−1

f(x)dx =

∫ π

0

f(cos θ) sin θdθ =

∫ π

0

[
a0

2
+
∞∑
i=1

ai cos(iθ)

]
sin θdθ (3.29a)

=
a0

2

∫ π

0

sin θdθ +
∞∑
i=1

ai

∫ π

0

cos(iθ) sin θdθ = a0 +
∞∑
i=1

a2i
2

1− (2i)2
. (3.29b)

Hence, the integral in Eq. (3.25) is given exactly in terms of the Fourier cosine coefficients ai. These
coefficients must be computed numerically using Eq. (3.28), but, importantly, these integrands are
periodic over their domain, admitting accurate results using a uniformly spaced and uniform weight
quadrature scheme (trapezoid or midpoint). Clenshaw-Curtis uses the trapezoid rule and Fejér uses
the midpoint.

Step 3. Compute the Discrete Cosine Transform (DCT) coefficients âi. Uniform discretization
of θ for the midpoint method gives

θj =
(j + 1/2)π

p+ 1
, j = 0, ..., p, ∆θ =

π

p+ 1
, (3.30)

and the discretized integral for ai becomes

âi ≈
2

π

p∑
j=0

f(cos(θj)) cos(iθj)∆θ. (3.31)

Recall from the change of variables,

xj = cos(θj) = cos

(
(j + 1/2)π

p+ 1

)
, (3.32)

i.e. the midpoint discretization of θ gives Chebyshev points of the first kind in x. Denoting
f(cos(θj)) = f(xj) = fj , substitution into Eq. (3.31) gives

âi =
2

π

p∑
j=0

fj cos(iθj)
π

p+ 1
=

2

p+ 1

p∑
j=0

fj cos(iθj). (3.33)

Step 4. DefineWi as

Wi =


1 if i = 0,

2
1−i2 if i is even,
0 if i is odd.

(3.34)
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Substitution into the original integral (3.25) and rearrangement of the sums gives∫ 1

−1

f(x)dx ≈ â0 +
∞∑
i=1

â2i
2

1− (2i)2
(3.35a)

=
∞∑
i=0

Wiâi (3.35b)

≈
∞∑
i=0

Wi

[
2

p+ 1

p∑
j=0

fj cos(iθj)

]
(3.35c)

=

p∑
j=0

fj

∞∑
i=0

Wi

[
2

p+ 1
cos(iθj)

]
(3.35d)

=

p∑
j=0

fj

∞∑
i=0

Wi

[
2

p+ 1
cos

(
i(j + 1/2)π

p+ 1

)]
. (3.35e)

Step 5. Truncate the sums for âi. Carrying the sum over i beyond p has no benefit due to
aliasing, i.e. the DCT of f(cosθ) is limited by the frequency of the discrete sampling of θj ,∫ 1

−1

f(x)dx ≈
p∑
j=0

fj

(
p∑
i=0

Wi

[
2

p+ 1
cos

(
i(j + 1/2)π

p+ 1

)])
. (3.36)

Step 6. Define the jth quadrature weight wj as

wj =

p∑
i=0

Wi

[
2

p+ 1
cos

(
i(j + 1/2)π

p+ 1

)]
, (3.37)

then the Fejér quadrature rule for the integral in Eq. (3.25) is given by∫ 1

−1

f(x)dx ≈
p∑
j=0

fjwj. (3.38)

Note that wj is independent of f(x) and can be precomputed once and reused for other integrands.
Additionally, wj can be mapped to the interval [a, b] by the linear transformation

wj →
b− a

2
wj, (3.39)

and the quadrature rule can be extended to 3-dimensions (wijk) using a tensor product of 1-
dimensional weights,

wijk = wiwjwk. (3.40)
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A tensor product grid of (p + 1)3 Chebyshev points is adapted to each cell; Fig. 3.1 shows a
2D schematic. Note that the Chebyshev points lie entirely inside the cell and never coincide with
a vertex; as explained below this is important because the cells are chosen so that the atoms are
located at cell vertices, thereby avoiding the singularity of the nuclear potential.

Figure 3.1: A tensor product grid of Chebyshev points of the first kind in Eq. (3.24) with p = 4 in a
2D cell.

The cells are defined using an adaptive refinement scheme illustrated in Fig. 3.2 for a 1-atom
example. The goal of the scheme is to produce cells that resolve the regions with significant electron
density and wavefunction variation, primarily near the atoms. Level 0 is a large cube surrounding the
atoms in the system, with dimensions chosen to ensure that the electron density and wavefunctions
are sufficiently small at the boundary. The cube is refined by bisecting it in the three coordinate
directions, resulting in eight child cells. Several levels of uniform refinement are performed, and
subsequent refinement is done adaptively in the following manner. Given a cell C, we temporarily
create the child cells Ci, i = 1 : 8, and check the following criterion,∣∣∣∣∣

∫
C

t(r)dr −
8∑
i=1

∫
Ci

t(r)dr

∣∣∣∣∣ < tolm, (3.41)

where t(r) is a test function specified below and tolm is a user-specified tolerance. The integrals in
Eq. (3.41) are evaluated using the Fejér quadrature rule. If Eq. (3.41) is satisfied, then refinement is
not needed and the child cells are discarded; otherwise the child cells are retained and the process
continues. Figure 3.2 shows the schematic of a possible outcome where the initial cell is refined
at level 1, but only the child cell containing the atom is refined at level 2. Once the tolerance is
satisfied for every cell, a final refinement step occurs; those cells containing an atom are subdivided
so that the atoms lie at cell vertices; this ensures that the Chebyshev grid points never coincide
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with an atom position and hence the fields (effective potential, wavefunctions, electron density) are
smooth on the interior of the cells. If the refinement scheme creates any cells with large aspect ratio,
these cells are refined along their longest dimension.

Figure 3.2: Illustration of the adaptive refinement scheme for a 1-atom system with the atom located
at (•). Four levels of refinement are shown where the final refinement level puts the atom at a cell
vertex.

Several options for the refinement test function were considered and we decided to use

t(r) = Vext(r)
√
ρ(0)(r), (3.42)

where ρ(0)(r) is the initial electron density in Eq. (3.22) and Vext(r) is the external potential in
Eq. (3.3). This choice is motivated by several considerations. First, it resembles the function
Veff (r)ψ(r) appearing in the integral form of the Kohn-Sham equations (3.21); this is because
near a nucleus,

√
ρ(0)(r) has the characteristics of an s-orbital atomic wavefunction, capturing

the cusp and decay rate, and although Veff (r) is not known, Vext(r) is known and contains the
Coulomb singularities that must be resolved. Second, this test function is accessible at the start of
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the computation and can be evaluated at arbitrary grid points as needed in the refinement scheme.
Figure 3.3 shows an example of coarse and fine meshes for the benzene molecule (C6H6)

obtained using the refinement scheme described above with 4th order quadrature. The molecule
lies in the z = 0 plane and a truncated portion of the mesh in that plane is shown. The coarse mesh
is generated with tolm = 1e−4 and the fine mesh with tolm = 3e−6. The resulting cell density is
highest near the twelve nuclei, and the carbon atoms are more highly refined than the hydrogen
atoms, as expected since the test function Vext(r)

√
ρ(0)(r) grows faster at heavier nuclei. Compared

to a variety of other refinement schemes we considered, this approach gave the best combination of
accuracy and efficiency. Further below we will demonstrate convergence with respect to both the
order of the quadrature rule p and the mesh tolerance parameter tolm.

(a) tolm = 1e-4 (b) tolm = 3e-6

Figure 3.3: Example of the mesh refinement scheme for the benzene molecule (C6H6). 2D slices of
the mesh are shown in the plane of the molecule generated with 4th order quadrature in Eq. (3.42)
and (a) tolm =1e-4, (b) tolm =3e-6.

3.4.3 Singularity Subtraction

Achieving the necessary accuracy for DFT calculations requires careful treatment of the singular
integrals arising in Green Iteration,

ψ(n+1)(r) = G(ε(n))ψ(n)(r) = −
∫
Veff (r

′)ψ(n)(r′)
e−
√
−2ε(n)|r−r′|

2π|r− r′|
dr′, (3.43)
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and the Hartree potential,

VH(r) =

∫
ρ(r′)

|r− r′|
dr′. (3.44)

The singular r′ = r term in the quadrature sums is skipped, but this error due to skipping the
singularity is reduced by weakening the singularities before discretization. For the integral involving
the Yukawa kernel in Eq. (3.43) we implemented a standard singularity subtraction scheme [108,
109], ∫

f(r′)
e−k|r−r

′|

|r− r′|
dr′ =

∫
(f(r′)− f(r))

e−k|r−r
′|

|r− r′|
dr′ + f(r)

∫
e−k|r−r

′|

|r− r′|
dr′. (3.45)

The second term on the right in Eq. (3.45) is evaluated analytically,

f(r)

∫
e−k|r−r

′|

|r− r′|
dr′ =

4πf(r)

k2
, (3.46)

while the singularity in the first term on the right has been weakened, so the quadrature scheme
yields a more accurate result. Note however that the exponential decay rate in the Yukawa kernel
is k =

√
−2ε, and a problem arises if ε→ 0, since in that case the singularity subtraction scheme

in Eq. (3.45) tends to the indeterminate form∞−∞. This is resolved by introducing a constant
gauge shift Vshift in the effective potential,

Veff (r)→ Veff (r) + Vshift. (3.47)

The wavefunctions are unaffected and the eigenvalues simply shift by this amount (the shift is
removed before computing energies). Throughout this work we set Vshift = −0.5, ensuring that the
eigenvalues of the occupied states are bounded away from zero.

The scheme described above however does not work for the Hartree potential in Eq. (3.44)
which corresponds to k = 0. In this case, we employ a modified form of singularity subtraction
using a Gaussian function,∫

f(r′)
1

|r− r′|
dr′ =

∫ (
f(r′)− f(r)e−|r−r

′|2/α2
) 1

|r− r′|
dr′ + f(r)

∫
e−|r−r

′|2/α2

|r− r′|
dr′, (3.48)

where α is a scaling parameter. As before, the second term on the right is evaluated analytically,

f(r)

∫
e−|r−r

′|2/α2

|r− r′|
dr′ = 2πf(r)α2, (3.49)

and the singularity in the first term has been weakened. In addition, the Gaussian remains smooth
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for r′ → r, unlike other options, and this ensures the accuracy of the quadrature scheme.
The choice of the scaling factor α is guided by the following considerations. Recall that the

first integral on the right in Eq. (3.48) is computed using a quadrature scheme on a truncated
computational domain, and hence the function f(r)e−|r−r

′|2/α2 should have certain properties. If
α is small, then the Gaussian is narrow and the quadrature scheme would struggle to resolve the
variation in this function. On the other hand if α is large, then the Gaussian is wide and this would
require increasing the size of the computational domain. In more detail, the function f(r)e−|r−r

′|2/α2

must be sufficiently small when r′ is near the domain boundary to ensure that the effect of the
domain truncation is small; there are two cases, (1) when r lies in the domain interior, then f(r)

is not necessarily small, but e−|r−r′|2/α2 is small as long as α is not too large, (2) when r lies near
the domain boundary, then f(r) is small while e−|r−r′|2/α2 is bounded. The conclusion is that
the Gaussian scaling factor α should not be too small in relation to the spatial discretization and
should not be too large in relation to the computational domain size; this work uses domains of size
[−20, 20]3 a.u. to [−30, 30]3 a.u. with α = 1 a.u., which was determined empirically.

3.4.4 Gradient-Free Eigenvalue Update

Recall that line 4 in Green Iteration updates the eigenvalue ε(n+1)
i ; in this subsection we describe

three methods for this purpose. The first method uses the Rayleigh quotient [101],

ε
(n+1)
i =

〈ψ(n+1)
i ,Hψ(n+1)

i 〉
〈ψ(n+1)

i , ψ
(n+1)
i 〉

=
−1

2
〈ψ(n+1)

i ,∇2ψ
(n+1)
i 〉+ 〈ψ(n+1)

i , Veffψ
(n+1)
i 〉

〈ψ(n+1)
i , ψ

(n+1)
i 〉

, (3.50)

whereH is the Kohn-Sham differential operator defined in Eq. (3.1), Veff is the effective potential
in the current SCF, and ψ(n+1)

i is the wavefunction computed in line 3 of Green Iteration. The
second method applies integration by parts in Eq. (3.50) to obtain,

ε
(n+1)
i =

1
2
〈∇ψ(n+1)

i ,∇ψ(n+1)
i 〉+ 〈ψ(n+1)

i , Veffψ
(n+1)
i 〉

〈ψ(n+1)
i , ψ

(n+1)
i 〉

. (3.51)

In the present framework the gradient ∇ψ(n+1)
i in Eq. (3.51) and Laplacian ∇2ψ

(n+1)
i in Eq. (3.50)

are computed by spectral differentiation using the values of the wavefunction at the Chebyshev
points in each cell [107]. The third method is a gradient-free update suggested by Harrison et al.
[99],

ε
(n+1)
i = ε

(n)
i −

〈Veffψ(n)
i , ψ

(n)
i − ψ

(n+1)
i 〉

〈ψ(n+1)
i , ψ

(n+1)
i 〉

. (3.52)

In this case, which computes a ∆εi rather than ε
(n+1)
i itself, the initial guess ε(0)

i in the first
SCF iteration can be given using either Eq. (3.50) or Eq. (3.51). The gradient-free eigenvalue
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update enables the total energy to also be computed in a gradient-free manner using the alternative
expression,

E = Eband − EH + Exc −
∫
ρ(r)Vxc[ρ](r)dr + EZZ , (3.53)

where the band energy is the weighted sum of the eigenvalues,

Eband = 2
Nw∑
i=1

f(εi, µF )εi. (3.54)

In contrast to the original expression for the total energy in Eq. (3.12), the gradient-free expression
in Eq. (3.53) avoids explicitly computing the kinetic energy Ekin in Eq. (3.13) which contains the
Laplacian; the kinetic energy is now contained implicitly in the band energy, which is obtained with
the gradient-free method. Later below we show that the gradient-free method has the best accuracy
of the three approaches described here.

3.4.5 Accuracy Results

This subsection demonstrates the effects of the previously described numerical techniques on the
carbon monoxide molecule (NA = 2, Ne = 14, Nw = 8). The computations use domain [−20, 20]3

a.u., temperature T = 200 K, gauge shift Vshift = −0.5, Green iteration tolerance tolgi =1e-7,
SCF tolerance tolscf = 1e-6, and Anderson mixing parameter β = 0.5. Except where specified, the
computations use singularity subtraction and the gradient-free eigenvalue update. We report the
energy error |ETAGI − Eref |, where ETAGI is computed using TAGI and Eref = −112.47193 Ha
is the reference value converged to 1e-4 Ha, which was computed using DFT-FE [37, 40].

3.4.5.1 Quadrature Rule and Adaptive Mesh Refinement Scheme

We first demonstrate the effect of the order p of the quadrature rule and the tolerance tolm of the
adaptive mesh refinement scheme described in section 3.4.2. To test the effect of the quadrature
rule order we generate a mesh using order p = 4 and tolerance tolm = 3e-7, and then on this mesh
the order p is varied; Table 3.1(a) shows that the error is reduced from 1.313 mHa with p = 4 to
0.179 mHa with p = 7. To test the effect of the mesh refinement tolerance we fix the quadrature
order to p = 4 and vary the mesh refinement tolerance tolm; Table 3.1(b) shows that the error is
reduced from 3.946 mHa with tolm = 3e-6 to 0.674 mHa with tolm = 1e-7.

3.4.5.2 Singularity Subtraction

Next we demonstrate the effect of the singularity subtraction schemes described in section 3.4.3.
The quadrature order is set to p = 4 and a sequence of mesh refinements is performed. The ground
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(a) p tolm # Cells # Points Error (mHa)
4 3e-7 5293 661625 1.313
5 3e-7 5293 1143288 0.605
6 3e-7 5293 1815499 0.311
7 3e-7 5293 2710016 0.179

(b) p tolm # Cells # Points Error (mHa)
4 3e-6 2962 370250 3.946
4 1e-6 3676 459500 2.550
4 3e-7 5293 661625 1.313
4 1e-7 7428 928500 0.674

Table 3.1: Error in the total energy for the carbon monoxide molecule using a (a) fixed mesh,
increasing quadrature order p from 4 to 7, and (b) fixed quadrature order p = 4, decreasing mesh
refinement parameter tolm from 3e-6 to 1e-7. The resulting number of cells and points in the
adaptively refined mesh are given in columns 3 and 4.

state calculation is performed with and without singularity subtraction; in both cases the singular
term in the discrete convolution sums is skipped. Table 3.2 shows that singularity subtraction yields
a significant improvement in the accuracy of the total energy, over two orders of magnitude for
mesh size Nm = 661625 which achieves chemical accuracy.

Error (mHa)
tolm # Cells # Points Non-SS SS
3e-6 2962 370250 823 3.946
1e-6 3676 459500 702 2.550
3e-7 5293 661625 558 1.313
1e-7 7428 928500 429 0.674

Table 3.2: Error in the total energy for the Carbon monoxide molecule without singularity subtraction
(column 4) and with singularity subtraction (column 5).

3.4.5.3 Gradient-Free Eigenvalue Update

Finally, we compare the eigenvalue update methods described in section 3.4.4, Laplacian update
(Eq. (3.50)), gradient update (Eq. (3.51)), and gradient-free update (Eq. (3.52)). The ground state
calculation is performed for a sequence of refined meshes. Figure 3.4(a) shows the energy error
versus the number of mesh points Nm for order p = 4 and figure 3.4(b) shows this for order
p = 6. We make the following three observations. First, for a given mesh, the gradient-free
update achieves significantly better accuracy than the gradient and Laplacian updates for both
order p = 4 and p = 6, and as the mesh is refined the gradient-free update achieves chemical
accuracy around Nm = 600, 000. Second, for p = 4, the gradient update error saturates around 6
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mHa/atom as the mesh is refined, indicating that the refinement scheme is not adequately refining
the correct regions to reduce the error in the kinetic energy. Third, for p = 6, the gradient update
recovers its convergence rate and is able to achieve chemical accuracy as the mesh is refined,
indicating that the higher order gradients have reduced the error in the kinetic energy that was
present for p = 4. We note that the adaptive mesh refinement scheme and choice of test function
described in section 3.4.2 were developed using feedback from the gradient-free eigenvalue update.
Different meshing schemes that prioritize accurate gradients or Laplacians of the wavefunctions
could achieve better results for their respective eigenvalue update methods than this refinement
scheme. Nevertheless, for each mesh refinement scheme we investigated we found the gradient-free
update to be the most accurate and we use this update throughout the work.

(a) order p = 4 (b) order p = 6

Figure 3.4: Error in the total energy per atom for the Carbon monoxide molecule versus the number
of mesh points Nm while using different eigenvalue update methods in Green Iteration for (a)
quadrature order p = 4 and (b) quadrature order p = 6.

3.5 Convergence Rate of Green Iteration

Previously we explained how in each SCF iteration, the Kohn-Sham eigenproblem in Eq. (3.1)
can be converted into a fixed-point problem for the integral operator in Eq. (3.20) and that the
fixed-point problem is solved by Green Iteration. This section examines the convergence rate of
Green Iteration; first an example exhibiting slow convergence is presented, then the cause of the
problem is identified by reference to power iteration, and finally Anderson mixing is applied to the
wavefunctions to accelerate convergence.
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3.5.1 Observed Convergence Rates

To illustrate the slow convergence of Green Iteration, we consider the first SCF iteration for the
carbon monoxide molecule. Figure 3.5 plots the residual of the first seven wavefunctions determined
by Green Iteration versus the iteration number. In this case the first two wavefunctions converge
rapidly, but the subsequent wavefunctions converge slowly; in particular the 4th wavefunction
converges extremely slowly. The result is that Green Iteration requires a total of 1246 iterations to
ensure that the first seven wavefunction residuals fall below 1e−8. This is a tighter tolerance than is
used in practice, however it helps illustrate the issue. In the next subsection we examine the cause
of this slow convergence.

Figure 3.5: Convergence of the eigenfunction residual ||ψ(n+1)
i − ψ(n)

i ||2 during Green Iteration in
the first SCF iterations for the carbon monoxide molecule. The observed residuals (symbols) and
the predicted convergence rates ri (black lines).

3.5.2 Convergence Analysis

Recall line 3 of Green Iteration (Algorithm 3.2), ψ(n+1)
i = G(ε

(n)
i )ψ

(n)
i , which updates the ith

eigenfunction using the operator defined in Eq. (3.21). The parameter ε(n)
i changes in each step of

the iteration, but as ε(n)
i → εi, the scheme converges to power iteration for the operator G(εi) with

deflation against the previously determined eigenfunctions ψj, j < i as indicated in line 5 of the
algorithm. This suggests that the convergence rate of ψ(n)

i depends on the spectral gap of G(εi), as
is the case for power iteration [117]. To demonstrate this it is useful to define a 1-parameter family
of curves µi(ε) and functions φi(ε) satisfying the linear eigenvalue equation,

G(ε)φi(ε) = µi(ε)φi(ε), i = 1, . . . , Nw, (3.55)
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subject to conditions specified below. Figure 3.6 shows the curves µi(ε) for the operator arising in
the first SCF iteration of the carbon monoxide molecule, where the curves µi(ε) are plotted versus ε
for i = 1 : 8. Note that for each parameter value ε, the eigenvalues µi(ε) are computed by power

Figure 3.6: First SCF iteration for the Carbon monoxide molecule. The curves µi(ε) defined
by eigenvalue problem Eq. (3.55) for the integral operator G(ε) are plotted versus parameter ε.
Intersections with the dashed line µ = 1 yield fixed-points εi of Green Iteration. The spectral gap
of the integral operator, ∆µi = 1− µi+1(εi), is indicated at the fixed-points εi, (a) i = 1, 2, 3, (b)
i = 3, 4, 5, (c) i = 5, 6, 7, 8. Numerical values are given in Table 3.3.

iteration applied to the operator G(ε), subject to the modified orthogonality condition stated below.
The key observation is that the fixed-points of Green Iteration occur when one of the curves µi(ε)
intersects the line µ = 1. In particular, Fig. 3.6(a) shows fixed-points around ε = −19 (blue curve)
and ε = −10 (green curve), Fig. 3.6(b) shows fixed-points around ε = −1.2 (red curve), ε = −0.6

(cyan curve), and ε = −0.5 (purple curve), and so on. As described below, the spectral properties
of the integral operator G(ε) at these fixed-point values of ε affect the convergence rate of Green
Iteration.

The following conditions are applied to the integral operator eigenpairs (µi, φi). For each ε, the
eigenvalues are ordered by their magnitude µ1(ε) ≥ · · · ≥ µNw(ε). Note that if µi(ε) = 1 for some
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index i and parameter value ε, then Eq. (3.55) reduces to the fixed-point problem in Eq. (3.20),
ψi = G(εi)ψi, in which case we have ε = εi and φi(ε) = ψi [101, 103]. In addition, the usual
orthogonality condition for power iteration, φi(ε) ⊥ φj(ε) for i 6= j, is modified to be consistent
with the deflation step in Green Iteration; that is, ψi ⊥ φj(ε) for i < j and εi < ε. Hence, we
terminate the curves in Fig. 3.6 when µi(εi) = 1 and φi(εi) = ψi; all subsequent orthogonalization
for ε > εi will use ψi.

Figure 3.6 also indicates the spectral gap of the operator G(εi), defined by ∆µi = 1− µi+1(εi);
due to the continuity of the curves µi(ε), these are correlated with the spectral gap of the KS-
Hamiltonian, defined by ∆εi = εi+1 − εi; hence both gaps are relatively large for i = 1, 2 in
Fig. 3.6(a), and relatively small for i = 3, ..., 7 in Fig. 3.6(b,c). Note further that the spectrum of the
CO molecule contains a degeneracy; ε5 = ε6, hence ψ5 and ψ6 span a degenerate subspace. This
degeneracy manifests itself in the spectral analysis in several ways. First, ψ5 and ψ6 converge with
identical rates in Green Iteration (Fig. 3.5 parallel purple and black), and second, the µ5(ε) and
µ6(ε) curves are identical (Fig. 3.6(c) overlapping purple and black). In the case of a degeneracy,
the convergence rate of the wavefunctions to the degenerate subspace is governed by the spectral
gap to the next distinct eigenvalue. In this example, we define the spectral gaps ∆µ5 and ∆µ6 with
respect to the 7th eigenvalue, ∆µ5 = 1 − µ7(ε5) and ∆µ6 = 1 − µ7(ε6). Finally, note that at a
fixed-point parameter εi, the largest eigenvalue of G(εi) is µi = 1, so the convergence rate of power
iteration is ri = µi+1/µi = 1−∆µi; hence a large gap ∆µi leads to rapid convergence of ψi and a
small gap ∆µi leads to slow convergence.

Table 3.3 gives the values of the fixed-points, the spectral gaps, the observed and predicted
convergence rates, the accuracy of the predictions, and the number of iterations required to achieve
the 1e-8 tolerance in Green Iteration. The predicted convergence rates ri, also shown in Fig. 3.5,
were computed using the power iteration considerations above, ri = µi+1/µi = 1−∆µi. In several
cases (ψ1, ψ2, ψ7), the observed convergence is faster than the predicted rate; this is attributed to
the iteration not entering the asymptotic power-iteration regime before the tolerance was met. In
the slower converging cases (ψ3, ψ4, ψ5, ψ6), the predicted convergence rates accurately agree
with the observed rates, with percent errors 0.115%, 0.082%, 0.053%, and 0.053%, confirming that
the convergence rates of the eigenfunctions ψi in Green Iteration are controlled by the spectral
gap ∆µi in the integral operator. These spectral gaps in the integral operator are correlated to the
spectral gaps ∆εi in the differential operator by the continuity of µi(ε). Hence, Green Iteration
may converge slowly whenever a small spectral gap exists in the Hamiltonian; the next subsection
describes a method to overcome this drawback.
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Spectral Gaps Convergence Rates
index, i εi ∆εi ∆µi observed ri predicted ri % error Number of Iterations

1 -18.870 8.862 0.221 0.460 0.779 69.3 19
2 -10.008 8.822 0.491 0.450 0.509 13.1 20
3 -1.186 0.579 0.132 0.867 0.868 0.115 110
4 -0.607 0.087 0.023 0.9752 0.976 0.082 601
5 -0.520 0.124 0.061 0.9385 0.939 0.053 208
6 -0.520 0.124 0.061 0.9385 0.939 0.053 211
7 -0.396 0.262 0.086 0.819 0.914 11.6 77

Table 3.3: First SCF iteration for the Carbon monoxide molecule. Eigenvalue index, Hamiltonian
eigenvalues εi, Hamiltonian spectral gap ∆εi, integral operator spectral gap ∆µi, observed con-
vergence rate, predicted convergence rate, accuracy of the prediction, number of iterations for the
wavefunction to converge to 1e-8 tolerance.

3.5.3 Wavefunction Mixing

While Green Iteration resembles power iteration as noted above, it is a fixed-point iteration
and hence is amenable to standard fixed-point acceleration techniques. We define the vector
x = (ε, ψ), and the inner product between two vectors x1 = (ε1, ψ1) and x2 = (ε2, ψ2) to
be (x1,x2) = ε1ε2 +

∫
ψ1(r)ψ2(r)dr. We then use Anderson mixing to update the eigenpairs

(ε
(n)
i , ψ

(n)
i ) after each step of Green Iteration, in the same way that the electron density is updated

after each step of the SCF iteration. Figure 3.7 shows the effect of applying Anderson mixing to the
wavefunctions with mixing parameter β = 0.5, for the same computation as above, the first SCF
iteration of the carbon monoxide molecule. The total number of iterations is reduced from 1246
(Green Iteration) to 188 (Green Iteration with wavefunction mixing). Wavefunctions ψ3 − ψ6 still
converge the slowest, however they converge significantly faster than without Anderson mixing.

In practice the wavefunction mixing scheme requires a good initial guess to ensure convergence.
In the first SCF iteration, to achieve a good initial guess, Green Iteration can be performed without
wavefunction mixing until convergence to a user-defined tolerance is achieved, at which point
the computed wavefunction is in the basin of attraction of the fixed-point scheme and Anderson
wavefunction mixing can be safely applied. In subsequent SCF iterations the initial guess for the
eigenpairs tend to be much better and delaying the use of wavefunction mixing is not necessary.
Furthermore, the tolerance for Green Iteration tolgi does not have to be the same throughout an SCF
iteration. We find that starting with a loose tolerance and gradually tightening it after each step in
the SCF is beneficial. The gradual reduction of tolgi increases the number of steps in the SCF for
the electron density to converge to tolscf , but it significantly reduces the cost of the first few steps
of the SCF iteration, and results in an overall reduction of computation time.
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Figure 3.7: Convergence of the eigenfunction residual ||ψ(n+1)
i − ψ(n)

i ||2 during Green Iteration in
the first SCF iterations for the carbon monoxide molecule using wavefunction mixing with mixing
parameter β = 0.5. Wavefunction mixing reduces the total number of iterations from 1246 to 188.

3.6 Treecode Acceleration

Treecode-Accelerated Green Iteration requires computing convolutions of the form,

ϕ(r) =

∫
G(r, r′)f(r′)dr′, (3.56)

where G(r, r′) is either the Yukawa kernel in the integral operator G(ε) in Eq. (3.21) needed in line
3 of Green Iteration, or the Coulomb kernel in the Hartree potential in Eq. (3.3). For the Yukawa
kernel, ϕ(r) = ψ(r) is the wavefunction and f(r) = Veff [ρ](r)ψ(r) is the effective potential times
the wavefunction, while for the Coulomb kernel, ϕ(r) = VH [ρ](r) is the Hartree potential and
f(r) = ρ(r) is the electron density. TAGI uses the barycentric treecodes described in Chapter 2,
and while many of the details remain the same, there are some key differences due to the singularity
subtraction schemes that warrant further explanation. Further, since we employ different singularity
subtraction schemes for the Coulomb and Yukawa kernels, these each require separate treatment.
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3.6.1 Discrete Singularity Subtraction Sums

In the case of the Yukawa kernel1, the standard singularity subtraction scheme described in
Section 3.4.3 gives

ϕ(r) = f(r)

∫
e−κ|r−r

′|

|r− r′|
dr′ +

∫
[f(r′)− f(r)]

e−κ|r−r
′|

|r− r′|
dr′, (3.57)

where the first term on the right hand side is evaluated analytically,

f(r)

∫
e−κ|ri−r

′|

|ri − r′|
dr′ =

4πf(r)

κ2
, (3.58)

while the singularity has been weakened in the second term on the right. Numerical discretization
of this scheme on the finite computational domain gives

ϕi ≈
Nm∑
j=1
i 6=j

fj
e−κ|ri−rj |

|ri − rj|
wj =

4πfi
κ2

+
Nm∑
j=1
i 6=j

[fj − fi]
e−κ|ri−rj |

|ri − rj|
wj, (3.59)

where ϕi ≈ ϕ(ri), fj = f(rj), and wj are the quadrature weights. This scheme introduces an
additional finite domain size effect; the added expression is evaluated analytically on R3 while the
subtracted expression is evaluated discretely on the finite computational domain. Since, in this work,
f(r) decays with free-space boundary conditions, the computational domain can be chosen large
enough that the truncation error in the discrete expression is negligible. Similarly, in the case of the
Coulomb kernel, the singularity subtraction scheme developed in Section 3.4.3 gives

ϕ(r) = f(r)

∫
e−|r−r

′|2/α2

|r− r′|
dr′ +

∫ [
f(r′)− f(r)e−|r−r

′|2/α2
] 1

|r− r′|
dr′, (3.60)

where again the first term on the right hand side is evaluated analytically,

f(r)

∫
e−|r−r

′|2/α2

|r− r′|
dr′ = 2πf(r)α2, (3.61)

and the singularity has been weakened in the second term. Numerical discretization gives

ϕi ≈
Nm∑
j=1
i 6=j

fj
1

|ri − rj|
wj = 2πfiα

2 +
Nm∑
j=1
i 6=j

[
fj − fie−|ri−rj |

2/α2
] 1

|ri − rj|
wj. (3.62)

1In this section we use κ as the Yukawa kernel parameter instead of k to avoid ambiguity below with the interpolation
point index sk, k = (k1, k2, k3).
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As described in Chapter 2, computing ϕ by direct summation requires O(N2
m) operations,

and several methods have been developed to reduce the cost including the treecode [43] and fast
multipole method [44]. This work employs a recently developed GPU accelerated barycentric
Lagrange treecode (BLTC) [50, 52], adapted to the singularity subtraction schemes, which reduces
the operation count to O(Nm logNm) using barycentric Lagrange interpolation [65]. Following
convention, throughout this section the points ri are referred to as target particles, the points
rj are referred to as source particles, and Eq. (3.62) and Eq. (3.59) express the particle-particle
interactions. Below we describe how we extend the work from Chapter 2 to accommodate the
singularity subtraction kernels used for the discrete convolution integrals in this work and present
accuracy and timing results specific to the singularity subtraction kernels and the adaptively refined
meshes used for all-electron TAGI calculations. Chapter 2 and the following references can be
consulted for more details [50, 52, 49].

3.6.2 Source Clusters and Target Batches

Recall from Chapter 2, the treecode starts by dividing the source particles into a hierarchical tree
of source clusters, where the root cluster is the minimal bounding box enclosing the computational
domain. In this case, the root consists of all Nm quadrature points. The root is then divided into
child clusters by bisection in each dimension, and the child clusters are recursively subdivided until
they contain fewer than NL particles; these are the leaves of the tree. After division each cluster
is shrunk to the minimal bounding box containing its particles. Note that the source clusters in
the treecode are rectangular boxes, and in general they are different than the cells in the adaptive
mesh. As described above, for efficiency purposes on GPUs, the target particles are also organized
into a set of localized batches containing fewer than NB particles, and then the particle-particle
interactions are organized into batch-cluster interactions between the target particles in a batch
and the source particles in a cluster. In this work we set NB = NL, and since the target particles
and source particles correspond to the same set (the Nm quadrature points), the target batches are
equivalent to the leaf source clusters in the tree.

3.6.3 Particle-Cluster Approximation by Barycentric Lagrange Interpolation

We now describe the particle-cluster approximations for the Coulomb and Yukawa singularity
subtraction kernels. Due to the differences in the singularity subtractions schemes, the form of the
particle-cluster approximation differs for the two kernels. We begin with the Yukawa kernel, as it
requires less modification from the work presented in Chapter 2.
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Particle-cluster approximation of singularity subtraction Yukawa kernel. The sum in the
right hand side of Eq. (3.59) can be rewritten as

ϕi ≈
4πfi
κ2

+
Nm∑
j=1
i 6=j

[fj − fi]
e−κ|ri−rj |

|ri − rj|
wj =

4πfi
κ2

+
∑
C

ϕ(ri, C), (3.63)

where the second sum is taken over a set of source clusters C according to the interaction lists
described in Chapter 2, and

ϕ(ri, C) =
∑
rj∈C
ri 6=rj

[fj − fi]
e−κ|ri−rj |

|ri − rj|
wj (3.64)

is the interaction between a target particle ri and a source cluster C = {rj}. To accommodate the
singularity subtraction scheme, we construct two sets of modified charges,

f̂ 1
k =

∑
rj∈C

Lk1(xj)Lk2(yj)Lk3(zj)fjwj, f̂ 2
k =

∑
rj∈C

Lk1(xj)Lk2(yj)Lk3(zj)wj, (3.65)

where rj = (xj, yj, zj) is a source particle, sk = (sk1 , sk2 , sk3) is a tensor product grid of interpola-
tion points, and Lk(t) are the 1D Lagrange interpolating polynomials defined in Eq. (2.3). Note
that the first set of modified charges correspond to the discrete field fjwj , or the continuous field
f(r′)dr′, while the second set of modified charges, once multiplied by fi, corresponds to the discrete
field fiwj , or the continuous field f(r)dr′. Then, using 3D polynomial interpolation as in Chapter 2,
we approximate the particle-cluster interaction in Eq. (3.64) by

ϕ(ri, C) ≈
∑
k

e−κ|ri−sk|

|ri − sk|
(f̂ 1

k − fi · f̂ 2
k). (3.66)

Hence, to accommodate the Yukawa singularity subtraction scheme, all that is required is to compute
an additional set of weights f̂ 2

k and to replace f̂k in Eq. (2.11) with (f̂ 1
k − fi · f̂ 2

k).
Particle-cluster approximation of singularity subtraction Coulomb kernel. The sum in the

right hand side of Eq. (3.62) can be rewritten as

ϕi ≈ 2πfiα
2 +

Nm∑
j=1
i 6=j

[
fj − fie−|ri−rj |

2/α2
] 1

|ri − rj|
wj = 2πfiα

2 +
∑
C

ϕ(ri, C), (3.67)
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where the second sum is taken over a set of source clusters C, and

ϕ(ri, C) =
∑
rj∈C
ri 6=rj

[
fj − fie−|ri−rj |

2/α2
] 1

|ri − rj|
wj (3.68)

is the interaction between a target particle ri and a source cluster C = {rj}. Again, we construct the
two sets of modified charges in Eq. (3.65) and then approximate the particle-cluster interaction by

ϕ(ri, C) ≈
∑
k

(f̂ 1
kG

1(ri, sk)− fi · f̂ 2
kG

2(ri, sk)), (3.69)

where
G1(ri, sk) =

1

|ri − sk|
(3.70)

is the original Coulomb kernel, and

G2(ri, sk) =
e−|ri−sk|

2/α2

|ri − sk|
(3.71)

is the Gaussian-augmented kernel. Hence, accommodating the singularity subtraction scheme
for the Coulomb kernel requires more modification than the scheme for the Yukawa kernel. In
particular, in addition to computing the additional set of weights f̂ 2

k, the approximation now uses
two different kernel evaluations, G1(ri, sk) and G2(ri, sk). It should be noted that while the
singularity subtraction scheme is essential for efficiently achieving high accuracy with respect
to mesh refinement, it does introduce additional floating point operations in the computation of
each interaction. Nevertheless, the singularity subtraction schemes reduce the mesh refinement
requirements drastically, as shown in Table 3.2, and are well worth the additional operations per
interaction.

It is important to note that the approximations in Eq. (3.66) and Eq. (3.69) have the same direct
sum structure as their counterpart exact interactions in Eq. (3.64) and Eq. (3.68). In one case
the target particle ri interacts with the source particles rj , and in the other it interacts with the
interpolation points sk; however in both cases the necessary kernel evaluations are independent from
one another and can be efficiently computed in parallel on a GPU. As explained in Chapter 2, this is
an additional level of parallelism not available to other fast summation schemes based on analytic
series expansions, such as the Taylor treecode [49] where the approximations are recursive, and it
is this additional level of parallelism that enables efficient GPU calculations using the barycentric
treecodes. A further point is that the approximation weights f̂ 1

k and f̂ 2
k are independent of the target

particle ri, so they can be precomputed and reused for different targets.
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3.6.4 Treecode Algorithm

As described in Chapter 2, particle-cluster interactions ϕ(ri, C) are organized into batch-
cluster interactions, where the decision on whether or not to apply the approximation is given
by the Multipole Acceptance Criteria (MAC) in Eq. (2.23) and is diagrammed in Fig. 2.3. The
primary difference for Chapter 3 is that instead of the targets being randomly distributed particles,
they are structured quadrature points coming from the adaptive mesh refinement scheme and
quadrature rule described above. As a reminder, the BLTC uses Chebyshev points of the 2nd kind
for interpolation points, given in Eq. (2.5) and (2.6), and the barycentric form of the Lagrange
interpolating polynomial [65] given in Eq. (2.3). Figure 3.8 shows a 2D example of a cluster
C comprised of seven quadrature cells; Fig. 3.8(a) shows the source particles rj in C (these are
quadrature points in the adaptive mesh, here defined with order p = 2), and Fig. 3.8(b) shows the
Chebyshev grid of interpolation points sk in C (here defined with degree n = 3, these represent
the cluster through the particle-cluster approximations in Eq. (3.66) and Eq. (3.69)). The “charge”
values on the source particles are fjwj , and the “modified charge” values on the interpolation points
are f̂ 1

k and f̂ 2
k which are computed with Eq. (3.65).

Eq. (3.65)−−−−−→

Figure 3.8: Example of a cluster C in 2D, (a) source particles rj in C (these are quadrature points
in the adaptive mesh, here defined with order p = 2), (b) Chebyshev grid of interpolation points sk
(here defined with degree n = 3, the weights at each interpolation point are computed in Eq. (3.65)).

The treecode has three options for a batch-cluster interaction. (1) If the cluster is not well
separated from the batch, and has no children, then the batch-cluster interaction is computed by
direct summation. Each target particle will interact with each of the quadrature points in Fig. 3.8(a).
As this cluster contains 7 cells each containing 9 quadrature points, this requires 63 interactions
per target. (2) If the cluster is not well separated from the batch, but has children, then the batch
can recursively interact with each of the child clusters. (3) If the cluster is well-separated from the
batch, then the batch-cluster interaction is computed by the approximations in Eq. (3.66) and (3.69).
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Each target particle interacts with the interpolation points, resulting in 16 interactions per target.
Hence, this approximation is cheaper than the direct interaction and should be used whenever the
target batch is well separated from the cluster. In general, the approximation is more efficient when
the number of quadrature points in a cluster NC is larger than the number of interpolation points
(n+ 1)3, as in this example.

In general, the treecode algorithm is the same as the algorithm presented in Chapter 2, Alg. 2.1,
with the following minor modifications to the procedures and their interpretations:

• randomly distributed particles are replaced with structured quadrature points arising from the
adaptive mesh refinement and quadrature scheme described above.

• particle charges qi are replaced by fields times quadrature weights fiwi.

• two sets of “modified charges” are computed, f̂ 1
k and f̂ 2

k in Eq. (3.65).

• interactions are computed using the singularity subtraction schemes in Eq. (3.66) and (3.69)

Next we document the treecode accuracy and efficiency for the discrete convolutions arising for
the adaptively refined mesh and using the singularity subtraction kernels.

3.6.5 Treecode Accuracy

The sums in Eq. (3.59) and Eq. (3.62) are discretizations of convolution integrals given in
Eq. (3.57) and (3.60) and introduce discretization error. This discretization error is controlled with
the adaptive mesh refinement, the quadrature rule, and the singularity subtraction schemes in order
to achieve chemical accuracy. Following discretization, we then compute fast approximations
to these discrete sums using the treecode, which introduces another error called the treecode
approximation error. It is important to ensure that the treecode approximation error is less than the
discretization error so that we achieve treecode-acceleration while maintaining chemical accuracy
in the calculations.

We document the accuracy of the treecode for the carbon monoxide molecule with domain
[−20, 20]3 a.u., quadrature order p = 4, mesh refinement tolerance tolm =3e-7, SCF tolerance
tolscf =1e-5, and Green Iteration tolerance tolgi =1e-6. In this case the number of mesh points
is Nm = 661625. We compute the ground-state energy with and without the treecode, and record
the discretization error |Eref − Eds|/NA, and treecode approximation error |Eds − Etc|/NA, where
Eref is the reference energy computed by DFT-FE, and Eds, Etc are computed by the present
method using direct summation and the treecode, respectively. Throughout this work the source
clusters and target batch size parameters are set to NL = NB = 2000. Figure 3.9 shows that the
discretization error of the present method is |Eref − Eds|/NA = 6.56e-4 Ha/atom (red dashed line),
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while the treecode approximation error is much smaller for a wide range of treecode parameters
(0.35 ≤ θ ≤ 0.8 and interpolation degree n = 6, 8, 10). This confirms that in this range of parameter
values, the numerical errors introduced by the treecode do not upset the chemical accuracy of the
discretization.

Figure 3.9: Comparison of the treecode approximation error to the underlying discretization error
for the carbon monoxide molecule. The mesh contains Nm = 661625 points and results in a
discretization error of |Eref − Eds|/NA = 6.56e-4 Ha/atom (red dashed line). Solid curves and
symbols show the treecode approximation error |Eds − Etc|/NA for treecode MAC parameter
0.35 ≤ θ ≤ 0.8 and interpolation degree n = 6, 8, 10.

3.6.6 Treecode Efficiency on a 6-core CPU and Single GPU

Relation to Chapter 2. This section documents the BLTC efficiency on a multicore CPU and
a single GPU. This investigation is similar to that of Chapter 2, however there are several key
differences, in particular the particle distributions and the interaction kernels. First, in Chapter 2
the particles were randomly located according to a uniform distribution; this results in very well-
balanced trees and relatively high speedups over the direct sum. In the present calculations,
the particles come from a highly non-uniform adaptively refined mesh; in particular, the tree is
significantly deeper near the two atomic nuclei than in the far field. Imbalanced trees tend to afford
less speedup from the treecode. In particular, in this example, a large fraction of the particles are
either very close to the oxygen atom or very close to the carbon atom. Particles near the same
atom are not going to be well-separated at higher levels of the tree, and will have to interact either
directly or at a deep level of the tree, reducing the speedup over direct sum. In this case, with
only two atoms, each particle near an atom is not well separated from a substantial fraction of the
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total set of particles. Nevertheless, we observe a speedup using the treecode which grows as the
mesh size grows, and note that for larger molecular systems (more than two atoms), each particle
will be well-separated from a larger fraction of the total set of particles and the expected treecode
speedup is even larger. Second, the interaction kernels in this chapter are the singularity subtraction
kernels described above. These kernel involve more floating point operations than those presented
in Chapter 2; we consistently observe the trend that increasing the number of operations increases
the computation time more on the CPU than on the GPU, resulting in even larger GPU versus CPU
speedups.

Hardware and parallelization schemes. The following calculations were performed on a 6-
core 2.6 GHz Intel Core i7 processor and a single NVIDIA Titan V GPU. Since this is a single-node
calculation, we employ the shared memory parallelization approach described in Section 2.3.1 for
the 6-core CPU calculations. As noted above, the GPU implementation takes advantage of the fact
that the particle-cluster interactions in Eq. (3.64) and Eq. (3.68) and the approximations in Eq. (3.66)
and Eq. (3.69) have the same direct sum structure involving independent kernel evaluations. The
GPU processes the particle-particle interactions between the target batch and source cluster in
parallel without thread divergence; this is because the MAC applies uniformly to all particles in
a given target batch [52]. In practice, interaction lists are precomputed for each target batch to
identify the source clusters interacting with the batch.

Test calculation. The performance of the BLTC on both platforms is demonstrated by com-
puting the Hartree energy EH in Eq. (3.14) for the carbon monoxide molecule using the electron
density from the first SCF iteration. Results are shown in Table 3.4 using direct summation and the
treecode, for quadrature order p = 4 and mesh refinement parameter tolm between 1e-3 and 1e-8
yielding the indicated mesh size Nm. The direct sum energy values in the 3rd column converge as
the mesh is refined, and the 4th column shows the corresponding discretization error using the value
EH = 74.88578 obtained with tolm=1e-8 as the reference. The 5th column records the treecode
approximation error for MAC θ = 0.7 and degree n = 8; this is the difference between the value of
EH computed by direct summation (column 3) and the value computed by the treecode (not shown).
The results show that the treecode approximation error is well below the discretization error and
within chemical accuracy.

The remainder of Table 3.4 records computation times on the 6-core CPU and GPU for direct
summation (ds) and the treecode (tc). Averaging over the six runs in Table 3.4, direct summation
runs 192 times faster on the GPU than on the 6-core CPU, while the treecode runs 70 times faster.
On both platforms the treecode is faster than direct summation, and the speedup (ds/tc) increases as
the mesh is refined; this is consistent with O(N2

m) scaling for direct summation and O(Nm logNm)

scaling for the treecode. In particular, for the largest mesh size with approximately 2.2 million mesh
points, the treecode computation time on the GPU is less than 18 s, which is about 4.5 times faster
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than direct summation.

6-core CPU time (s) GPU time (s)
tolm Nm EH (Ha) ds error tc error ds tc ds/tc ds tc ds/tc
1e-3 141000 74.88640 6.20e-4 5.31e-7 70.42 26.24 2.68 0.39 0.47 0.82
1e-4 184750 74.87690 8.88e-3 1.20e-6 150.13 41.40 3.63 0.67 0.68 0.97
1e-5 249500 74.88668 9.00e-4 8.85e-6 216.17 80.32 2.69 1.13 1.13 1.00
1e-6 459500 74.88551 2.70e-4 3.68e-5 638.23 196.11 3.25 3.57 2.72 1.31
1e-7 928500 74.88574 4.00e-5 6.33e-6 2509.2 486.54 5.16 13.70 6.49 2.11
1e-8 2224375 74.88578 na 2.57e-6 15239.6 1373.90 11.09 78.31 17.27 4.54

Table 3.4: Treecode accuracy and acceleration for the Carbon monoxide molecule using quadrature
order p = 4 and mesh refinement parameter tolm, giving mesh size Nm, Hartree energy EH (Ha) in
Eq. (3.14) for electron density in first SCF iteration, ds error (discretization error, computed using
tolm = 1e-8 as reference), tc error (treecode error, |EH(ds) − EH(tc)| using MAC θ = 0.7 and
interpolation degree n = 8). Run time (s) for the direct sum (ds) and treecode (tc) and treecode
speedup (ds/tc) on a 6-core CPU and a single GPU.

3.7 Ground State Energy Computations for Atoms and Molecules

The ground-state energy of several atoms (Li, Be, O) and small molecules (H2, CO, C6H6) was
computed using treecode-accelerated Green Iteration (TAGI) with the LDA exchange-correlation
functional [113, 114]. For each system the SCF iteration continued until the density residual fell
below tolscf =1e-4. tolgi was set to 3e-3 for the first step in the SCF, then gradually reduced to
1e-5 over the next four steps. The TAGI discretization parameters (quadrature order p, adaptive
mesh parameter tolm) and treecode parameters (degree n, MAC θ) were chosen to ensure chemical
accuracy of 1 mHa/atom in the computed ground-state energy. The computations were performed
on a single node, where the treecode (written in C with OpenMP+OpenACC) was run on the four
GPUs and the remainder of the code (written in Python) was run in serial on one CPU core. The
calculations were parallelized over the four GPUs using the shared memory scheme described in
Section 2.3.1.

Table 3.5 presents the parameters and results for each system. The numerical parameters
(p, tolm, n, θ) are chosen to ensure chemical accuracy in the energy, and the heavier carbon and
oxygen atoms require somewhat higher numerical resolution than the lighter hydrogen, lithium, and
beryllium atoms. In particular, a larger mesh size Nm requires slightly tighter treecode parameters
(increasing degree from n = 6 to n = 7, 8, decreasing MAC from θ = 0.8 to θ = 0.7, 0.6). Column
9 records the error in the ground-state energy computed by TAGI with respect to reference energies
computed to 0.1 mHa/atom accuracy with DFT-FE [40], showing that TAGI achieves chemical
accuracy. Column 10 records the total wall clock computation time (minutes). The benzene
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molecule (C6H6, Ne = 42) is the largest system considered; the computation used approximately
1.5 million mesh points and required less than 4 hours of wall clock time.

system mesh parameters treecode results
formula Ne p tolm Nm n θ ETAGI error (Ha/atom) time (min)

Li 3 4 7e-6 232000 6 0.8 -7.334051 4.59e-4 0.6
Be 4 3 1e-5 179712 6 0.8 -14.44566 5.32e-4 0.5
O 8 4 3e-7 421000 6 0.8 -74.46967 -3.38e-4 2.4

H2 2 3 1e-3 51200 6 0.8 -1.13584 9.05e-4 0.1
CO 14 4 3e-7 661625 7 0.7 -112.47337 -7.21e-4 15.5

C6H6 42 4 3e-6 1464500 8 0.6 -230.19316 -3.64e-4 232.5

Table 3.5: Ground-state energy computations of atoms and small molecules using TAGI with errors
computed with respect to reference values Eref computed using DFT-FE. TAGI discretization
parameters (quadrature order p, adaptive mesh parameter tolm, mesh size Nm), treecode parameters
(degree n, MAC θ); error (Ha/atom) and total wall clock computation time (minutes) on a single
node with 4 GPUs.

Figure 3.10 show 2D slices of the adaptively refined mesh and computed electron density for the
carbon monoxide molecule 3.10(a) and benzene molecule 3.10(b). Both molecules are located in
the z = 0 plane; for the CO molecule, the carbon atom is at (-1.06581,0,0) and the oxygen atom is at
(+1.06581,0,0); for the benzene molecule, the six carbon atoms are at (∓0.682781,±2.548170, 0),
(±2.548230,∓0.682767, 0), and (±1.86544,±1.86541, 0), and the six hydrogen atoms are at
(∓1.21247,±4.52502, 0), (±4.52548,∓1.21333, 0), and (±3.31252,±3.31351, 0). The slices are
taken in the z = 0 plane and show the region [−15, 15] a.u. in the xy-plane. The adaptive mesh
successfully captures the variation in magnitude of the electron density.

CO Electron Density C6H6 Electron Density

Figure 3.10: 2D slices of the adaptively refined mesh and computed electron density ρ for (a) carbon
monoxide molecule (CO), and (b) benzene molecule (C6H6). The slices are taken at z = 0 and
show [−15, 15]2 a.u. in xy-plane.

a b
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3.8 Conclusions

We presented a real-space method for all-electron Kohn-Sham DFT computations called
Treecode-Accelerated Green Iteration (TAGI). TAGI is based on a reformulation of the Kohn-
Sham equations in which the eigenvalue problem for the energies and wavefunctions (εi, ψi) in
differential form is recast as a fixed-point problem in integral form by convolution with the bound
state Helmholtz Green’s function [97]. In each SCF iteration the fixed-points are computed by
Green Iteration, where the convolution integrals are discretized on an adaptive mesh and the discrete
convolution sums are efficiently evaluated using a GPU-accelerated treecode.

TAGI relies on several key techniques to achieve chemical accuracy and computational efficiency.
First, the Fejér quadrature rule and adaptive mesh refinement based on integration of a test function
are used to compute integrals and represent the fields. Second, singularity subtraction is applied to
evaluate convolution integrals having singular kernels; in particular a standard scheme is used for the
Yukawa kernel in the Green Iteration convolutions, and we developed a new scheme for the Coulomb
kernel in the Hartree potential convolutions since the standard scheme is inapplicable in that case.
Third, a gradient-free method is employed to update the eigenvalues in Green Iteration. Fourth, the
fixed-point iteration for the wavefunctions and eigenvalues in Green Iteration is accelerated using
Anderson mixing. Fifth, the discrete convolution sums are computed efficiently using a barycentric
Lagrange treecode (BLTC), which reduces the operation count from O(N2

m) to O(Nm logNm),
where Nm is the number of mesh points. The GPU implementation of the BLTC is facilitated
by the properties of barycentric Lagrange interpolation including its scale-invariance and the fact
that the particle-cluster approximation in Eq. (3.66) and Eq. (3.69) consists of independent kernel
evaluations which can be evaluated concurrently [52].

We demonstrated the effect of these techniques on the carbon monoxide molecule. First, we
investigated the quadrature rule and adaptive mesh refinement scheme, showing that the ground-state
energy of the CO molecule is computed to within chemical accuracy of 1 mHa/atom using roughly
600,000 quadrature points and 4th order quadrature. Second, we demonstrated the effect of the
singularity subtraction schemes; the ground-state computation was performed with and without
singularity subtraction on a sequence of progressively refined meshes, and we observed a 100-fold
reduction in error using singularity subtraction. Third, we compared three methods for updating the
eigenvalues in Green Iteration, 1) Laplacian update using the Rayleigh quotient of the Hamiltonian
differential operator, 2) gradient update using integration by parts to reduce the order of the operator,
and 3) gradient-free update; on a wide range of meshes the gradient-free update yields a 10-fold
improvement in accuracy over the gradient update, and a 100-fold improvement over the Laplacian
update. Fourth, we investigated the convergence of Green Iteration in the first SCF iteration for
the CO molecule, showing that the spectral gap in the Hamiltonian eigenvalues controls the rate
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of convergence of the eigenfunctions in Green Iteration; in particular, a small gap |εi − εi+1|
implies slow convergence of the eigenfunction ψi; the convergence rates were predicted and then
verified computationally; finally we showed in the case of slow convergence, Green Iteration can
be accelerated by applying Anderson mixing to the eigenpairs, yielding a 6-fold reduction in the
number of iterations in this example. Fifth, we demonstrated the treecode’s ability to rapidly
compute accurate approximations of the discrete convolution sums; in ground-state computations
for the CO molecule, we showed that the treecode approximation error can be driven below the
discretization error; we then demonstrated the speedup of the treecode over direct summation on
both a 6-core CPU (parallelized with OpenMP) and a GPU (parallelized with OpenACC), achieving
an 11× speedup on the CPU and a 4.5× speedup on the GPU; finally we observed a 70× speedup
of the treecode running on the GPU in comparison with the CPU.

We then performed TAGI computations for several atoms and small molecules on a single node
with 4 GPUs, and verified the accuracy of the ground-state energy with respect to reference values.
The results demonstrate the chemical accuracy and computational efficiency afforded by TAGI on
these benchmark systems.
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Chapter 4

Extending Treecode-Accelerated Green Iteration to Pseudopotential
Calculations

This chapter extends the Treecode-Accelerated Green Iteration method developed in Chapter 3 in
two keys ways. First, it develops techniques for accurate and efficient pseudopotential calculations,
enabling TAGI to treat systems in either the all-electron or pseudopotential framework. Second,
this chapter develops the distributed memory parallelization required for TAGI to scale to multiple
compute nodes. While Chapter 3 presented results limited to a single GPU node containing up
to four GPUs, this chapter leverages the distributed memory MPI implementation of BaryTree to
perform calculations on up to eight nodes containing thirty-two GPUs.

4.1 Introduction

All-electron Kohn-Sham DFT calculations require substantial resolution near the atomic nuclei
in order to accurately represent the wavefunctions. In particular, due to the singular nuclear potential,
the wavefunctions for the lower energy electrons vary rapidly and may have a sharp cusp at the
nucleus, while the wavefunctions for the higher energy wavefunctions oscillate rapidly near the
nucleus in order to maintain the orthogonality condition. In the previous chapter, we resolve
these sharp cusps and rapid oscillations near the nuclei with the adaptive mesh refinement scheme.
This scheme achieves the desired accuracy, but can result in many quadrature points per atom
and expensive calculations. In this chapter we introduce an alternative approach to Kohn-Sham
DFT calculations that mitigates these effects through the use of non-singular pseudopotentials,
and present the techniques developed for TAGI that enable accurate and efficient pseudopotential
calculations. We then present various techniques implemented in TAGI related to high-performance
computing, in particular techniques that enable distributed memory MPI parallelization and that
allow for additional GPU acceleration.

The method of pseudopotentials relies on the observation that within a molecule, an atom’s
core electrons are chemically inert and remain localized to its nucleus, while its valence electrons
participate in bonding. There are a variety of pseudopotentials, each respecting a different set of
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constraints [118, 119, 120, 121], and in particular this work extends TAGI to Optimized Norm-
Conserving Vanderbilt (ONCV) pseudopotentials [121, 122, 123]. Pseudopotentials reduce the
computational cost of the calculations in two ways. First, the electrons are partitioned into core and
valence electrons; the core electrons are absorbed into the nucleus and contribute to the pseudopoten-
tial, leaving only the valence states to be computed. Second, the pseudopotentials are non-singular
and are significantly smoother than the all-electron nuclear potentials. By implicitly accounting
for the core electrons and replacing the singular potential, the resulting valence wavefunctions no
longer oscillate rapidly near the nuclei and can be resolved on significantly coarser meshes.

This chapter presents the extension of Treecode-Accelerated Green Iteration to pseudopotential
calculations and demonstrates the method on several larger systems than were demonstrated for
the all-electron case. Section 4.2 presents the ONCV pseudopotential formulation and how it
differs from all-electron formulations in Green Iteration. Section 4.3 describes the real-space
discretization techniques used to achieve accurate pseudopotential calculations on significantly
coarser meshes than all-electron calculations. Section 4.4 presents additional high performance
computing optimizations such as GPU porting of several routines and a distributed memory MPI
parallelization. Section 4.5 presents pseudopotential TAGI results for two silicon quantum dots and
two carbon fullerenes. Section 4.6 provides a summary of our pseudopotential TAGI findings and
ideas for future developments to improve its performance for larger systems.

4.2 Pseudopotential Formulation

4.2.1 Kohn-Sham Hamiltonian Construction

The structure of Kohn-Sham DFT calculations is independent of whether it is an all-electron
or pseudopotential calculation; both use the self-consistent field iteration to solve the nonlinear
eigenvalue problem for the Kohn-Sham operator,

H[ρ]ψi(r) = εiψi(r), i = 1, 2, . . . , H[ρ] = −1

2
∇2 + Veff [ρ], (4.1)

where the electron density ρ(r) is defined in Eq. (3.4). The difference between all-electron and
pseudopotential calculations is the construction of the Kohn-Sham effective potential,

Veff [ρ](r) = VH [ρ](r) + Vext(r) + Vxc[ρ](r), (4.2)

specifically the external potential Vext(r) due to the atomic nuclei. The all-electron external potential
is given by

Vext(r) =

NA∑
J=1

−ZJ
|r−RJ |

, (4.3)
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that is, the Coulomb potential due to each of the nuclei of charge ZJ located at RJ . For ONCV
pseudopotentials, the external potential is composed of a local term V J

loc(r) and a nonlocal term
V J
nonloc, defined by its action on a wavefunction ψ(r),

V J
nonlocψ(r) :=

∫
V J
nonloc(r, r

′,R)ψ(r′)dr′ =
∑
`pm

CJ
`pmh

J
`pχ

J
`pm(r,RJ), (4.4)

where χJ`pm(r,RJ) is the pseudopotential projector corresponding to quantum numbers (`, m) for
atom J located at RJ , p denotes the projector index, and CJ

`pm and hJ`p are defined by

CJ
`pm =

∫
χJ`pm(r,RJ)ψ(r)dr,

1

hJ`p
= 〈ξJ`m|χJ`pm〉, (4.5)

where ξJ`m denotes the single atom wavefunction. For the ONCV pseudopotentials, p = 1, 2. Then,
the action of the external potential is given by

V PS
ext ψ(r) =

NA∑
J=1

(
V J
loc(r)ψ(r) + V J

nonlocψ(r)
)
. (4.6)

Core electrons are absorbed into the nucleus, which is left with net charge ZJ
valence. The local poten-

tial V J
loc is a regularized potential corresponding to the nucleus and core electrons; it asymptotically

converges to −Z
J
valence

|r−RJ |
in the far field.

4.2.2 Green Iteration

The method of Green’s functions for converting the eigenvalue problem for the Kohn-Sham
differential operator into a fixed-point problem for the corresponding integral operator is identical
to the all-electron case and results in the integral equations,

ψi(r) = G(εi)ψi(r), i = 1, . . . , Nw, ψi ⊥ ψj, j < i, (4.7)

where
G(ε)ψ(r) =

∫
Gε(r, r

′)Veff [ρ](r′)ψ(r′)dr′, (4.8)

and

Gε(r, r
′) = −e

−
√
−2ε|r−r′|

2π|r− r′|
. (4.9)

In the case of pseudopotentials, however, the term Veff [ρ](r′)ψ(r′) is split into the local and nonlocal
pieces as described above. The construction of the nonlocal potential in Eq. (4.4) depends on the
current estimate of the wavefunction, therefore this nonlocal construction occurs in every step in
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Green Iteration. Aside from the construction of the potential, the remainder of Green Iteration
remains the same for pseudopotential and all-electron calculations.

4.3 Numerical Implementation

4.3.1 Pseudopotential Spline Interpolation

In this work we use Optimized Norm-Conserving Vanderbilt pseudopotentials generated with
the code ONCVPSP [122, 123]. This database provides the constants hJ`p as well as discrete radial
data at {ri} = r0, r1, . . . , rcutoff for the following fields: the single atom electron density ρJ(r), the
local external potential V J

loc(r), and the projectors χJ`p(r). In the procedures described below, these
fields are evaluated at the quadrature points of the real-space mesh. This requires an interpolation of
the radial data as well as extrapolation for quadrature points outside the cutoff radius rcutoff of the
discrete data. The 3-dimensional projectors χJ`pm(r) are obtained by evaluating the radial interpolant
of χJ`p(r), and then multiplying by the appropriate spherical harmonic. For the interpolation we use
cubic splines and enforce the following specified boundary conditions.

Density. For the density ρJ(r) we use natural boundary conditions, i.e. zero second derivative,
at both r = 0 and r = rcutoff . To extrapolate beyond rcutoff , we fit a decaying exponential to the
final discrete intervals. As the single-atom density is only used to provide an initial guess for the
SCF iteration, the convergence and accuracy of the calculation does not depend sensitively on the
density spline.

Local external potential. For the local external potential V J
loc(r), we enforce first derivative

boundary conditions. At the r = 0 boundary, we set the derivative slopeL to be equal to the slope
between the first and second discrete points,

slopeL =
V J
loc(r1)− V J

loc(r0)

r1 − r0

, (4.10)

in order to avoid introducing any spurious numerical oscillations near the nucleus that would affect
accuracy. At the r = rcutoff boundary, we use the fact that V J

loc(r) asymptotes to the nuclear
Coulomb potential −ZJ

valence/r in the far field. We set the derivative slopeR at the r = rcutoff

boundary to −V J
loc(rcutoff )/rcutoff ,

slopeR =
d

dr

−Zvalence
rcutoff

=
Zvalence
r2
cutoff

= −V
J
loc(rcutoff )

rcutoff
. (4.11)

To extrapolate to quadrature points beyond rcutoff we simply evaluate −Zvalence/r. Figure 4.1
shows the local potential spline for the silicon atom; Fig. 4.1(a) shows the spline and how it differs
from −Zvalence/r near the nucleus but approaches it at the cutoff radius, and Fig. 4.1(b) shows the
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difference | − Zvalence/r − Vloc(r)|, which decays towards zero as r → rcutoff .

Figure 4.1: Silicon atom, local external potential spline interpolation and asymptotic extrapolation,
(a) the cubic spline interpolant and the asymptotic potential −Zvalence/r, and (b) the difference
between Vloc(r) and −Zvalence/r, which decays as r → rcutoff .

Projectors. For the projectors we use natural boundary conditions. ONCVPSP sets rcutoff
large enough that the projectors have decayed sufficiently close to zero by the boundary, hence we
extrapolate with zeros.

4.3.2 Mesh Generation

Motivation for two-mesh scheme. Pseudopotentials reduce computational costs in two ways.
First, they reduce the number of electrons per atom, thereby reducing the number of wavefunctions
that must be computed. Second, the resulting wavefunctions are not highly oscillatory near the
nucleus, as is the case with the all-electron potential, which alleviates the need for highly refined
meshes. Figure 4.2(a) shows the radial component of the all-electron wavefunctions ψAEn` (r) for a
silicon atom, and Fig. 4.2(b) compares the all-electron wavefunctions to the pseudopotential valence
wavefunctions ψPSPn` (r). The pseudopotential wavefunctions do not oscillate near the nucleus
like the all-electron wavefunctions, but converge to the all-electron wavefunctions away from the
nucleus. Due to having both fewer and smaller oscillations than the all-electron wavefunctions, the
pseudopotential wavefunctions can be accurately represented on significantly coarser meshes.

Figure 4.2 suggests TAGI can use a relatively coarse mesh for pseudopotential calculations
and still achieve chemical accuracy. While it is true that the pseudopotential wavefunctions can
be represented with coarse meshes, the limiting factor of accuracy is not the resolution of the
wavefunctions; instead, it is the resolution of the ONCV pseudopotential projectors from Eq. (4.4).
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Figure 4.2: Silicon atom, radial components of the (a) all-electron wavefunctions, (b) valence
wavefunctions for ONCV pseudopotential and all-electron. The pseudopotential absorbs ψ10(r),
ψ20(r), and ψ21(r) into the nucleus and eliminates the oscillation near the nucleus from ψ30(r) and
ψ31(r). The pseudopotential wavefunctions converge to the all-electron wavefunctions away from
the nucleus.

Figure 4.3 shows the radial components of (a) the wavefunctions and the (b) projectors for the
silicon atom, demonstrating the relative smoothness of the wavefunctions compared to the projectors.
The projectors oscillate more rapidly than the wavefunctions and require more refinement than the
wavefunctions. To address this we employ a two-mesh scheme that represents the wavefunctions on
a coarse mesh and the projectors on a fine mesh. Next we describe how each mesh is generated as
well as the interpolation between them. Then, below, we present the two-mesh solution procedure
that achieves both accurate and efficient calculations.

Coarse Mesh Generation. As shown in Fig. 4.2, the relative smoothness of the pseudopotential
wavefunctions suggests that they can be represented accurately on significantly coarser meshes than
the all-electron wavefunctions. In this work we generate coarse meshes based on three parameters:
(1) a ball radius rcoarse, (2) an inner mesh spacing inside the ball ∆hinner, and (3) a far-field mesh
size ∆houter. Except where specified otherwise, when cells are refined they are bisected in each
of the three dimensions, resulting in eight children cells of equal size. First, the domain is refined
uniformly so that no cells exceed the far-field mesh size parameter. In particular, none of a cell’s
three side lengths may exceed the size parameter. Second, any cells lying within the ball radius
of an atom are refined until no cells in the ball exceed the inner mesh spacing parameter. Third,
the cells outside the ball radius rcoarse are refined so that they coarsen into the far-field mesh, i.e.
cells immediately beyond rcoarse are refined until no larger than 2∆hinner, the next layer of cells
are refined until no larger than 4∆hinner, and so on until the far-field spacing ∆houter is reached.
Figure 4.4 shows an example of the all-electron and pseudopotential meshing schemes for a silicon
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Figure 4.3: Silicon atom, radial components (suppressed magnetic quantum number m) of (a) the
single-atom wavefunctions ψn`(r), and (b) the ONCV projectors χ`p(r). While the wavefunctions
are accurately represented on a coarse mesh, the projectors are not due to the frequency and
magnitude of their oscillation.

atom at the origin. The all-electron mesh is constructed with tolm =1e-6, while the pseudopotential
mesh is constructed with ball radius rcoarse = 2.0, far-field mesh spacing ∆houter = 8.0, and inner
mesh spacing ∆hinner = 0.5. The all-electron mesh contains many levels of local refinement near
the atom, as required to capture the peaks and oscillations of the all-electron wavefunctions shown
in Fig. 4.2, whereas the pseudopotential mesh merely refines to cells of size 0.5.

Fine Mesh Generation. We construct the fine mesh as a further refinement of the coarse mesh
described above. This allows for fields to be transferred between the two meshes with local cell-wise
interpolation, as described below. We construct the fine mesh from the coarse mesh by prescribing
two additional parameters: (1) an additional refinement ball radius rfine, and (2) a refinement ratio
dcf between the coarse and fine mesh spacings. Any cell belonging to the coarse mesh that lies
within the refinement ball radius rfine is further refined to generate the fine mesh. A ratio dcf = 2

causes each cell to be bisected in each dimension and results in 8 children, a ratio dcf = 3 results in
27 children, and so on. Figure 4.5 shows a slice of the refined mesh using a refinement ball radius
rfine = 3 and a ratio dcf = 2. The black lines correspond to the original coarse mesh, and the red
lines indicate the subsequent refinement. The additional refinement near the nucleus improves the
resolution of the pseudopotential projectors.

Mesh-to-Mesh Interpolation. By construction, the cells in the refined mesh are nested in
the cells of the coarse mesh; if the coarse cell lies within the refinement ball radius then it was
subdivided into a set of children cells according to the refinement ratio. During the two-mesh
solution scheme described below, some fields that are represented on the coarse mesh must be
interpolated to the fine mesh. This interpolation is done cell-wise; the field represented on the coarse
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Figure 4.4: Slice of the mesh for a Silicon atom at the origin, (a) all-electron mesh constructed
with quadrature order 4 and tolm = 1e − 6 (1,016,000 points), and (b) pseudopotential mesh
constructed with far-field mesh spacing ∆houter = 8.0, ball radius rcoarse = 2.0, and inner mesh
spacing ∆hinner = 0.5 (169,000 points). The wavefunctions that must be resolved by each mesh
are shown in Fig. 4.2.

a b

mesh cell must be interpolated to the cell’s children in the fine mesh. By construction, the fields
are represented on Chebyshev points of the first kind for the Fejér quadrature rule as described in
Chapter 3. In addition to quadrature, these points serve as interpolation points for the mesh-to-mesh
interpolation.

The Chebyshev points of the first kind on the interval [−1, 1] are given by

tk = cos θk, θk =
(j + 1/2)π

p+ 1
, j = 0 : p. (4.12)

The 1-dimensional barycentric form of the Lagrange interpolating polynomial of degree p is

Lk(x) =

wk
x− tk

p∑
k′=0

wk′

x− tk′

, wk =
1∏n

j=0,j 6=k(tk − tj)
. (4.13)

where the interpolation weights for the Chebyshev points of the first kind are given by

wk = (−1)k sin

(
(2k + 1)π

2p+ 2

)
, (4.14)

and removable singularity in the barycentric form is discussed in Section 2.2.3.
Consider interpolating from the coarse mesh cell to its children cells. Denote the quadrature
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Figure 4.5: Slice of the two-mesh scheme for x, y ∈ [8, 8] and z = 0. The black lines indicate
the coarse mesh, which was constructed with far-field mesh spacing ∆houter = 8.0, ball radius
rcoarse = 2.0, and inner mesh spacing ∆hinner = 0.5. The red lines indicate the additional
refinement for the projectors using a refinement ball radius rfine = 3.0 and refinement ratio dcf = 2.
The additional refinement is required to resolve the projectors shown in Fig. 4.3.

points in the coarse cell by r = (x, y, z) = (tk1 , tk2 , tk3), where the second equality comes from the
fact that the quadrature points are Chebyshev points. Similarly, denote the quadrature points in the
fine mesh by r′ = (x′, y′, z′), noting that the prime indicates fine mesh points. Interpolating the
wavefunction ψ(r) = ψ(x, y, z) from the coarse mesh to ψ(r′) = ψ(x′, y′, z′) in its refined child
cell requires evaluating

ψ(x′, y′, z′) ≈
∑

(k1,k2,k3)

Lk1(x
′)Lk2(y

′)Lk3(z
′)ψ(tk1 , tk2 , tk3) (4.15)

at each point (x′, y′, z′) in the refined cell, where the sum runs over each point (x, y, z) =

(tk1 , tk2 , tk3) in the coarse cell. The other fields such as the electron density and potential are
similarly interpolated from coarse mesh cells to their fine mesh child cells.

4.3.3 Two-Mesh Solution Scheme

We employ a two-mesh scheme that leverages the efficiency of representing the wavefunctions
on the coarse mesh and the accuracy of resolving the projectors and local nuclear potential on the
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fine mesh. This scheme relies on several key properties:

1. The fields that must be computed are relatively smooth (the wavefunctions and density).

2. The projectors, which require finer resolution, are available a-priori as radial data.

3. The dominant cost in the particle-cluster treecode is O(N logM), where N is the number of
target points and M is the number of source points. The scheme described below uses the
coarse mesh for the N target points and the fine mesh for the M source points.

4. High accuracy is not required until the end of the calculation, when the density and energies
are converged.

The strategy is to construct a coarse mesh suitable for the wavefunctions and a fine mesh suitable
for the projectors and local nuclear potential using the generation procedures described above. The
wavefunctions are then computed directly on the coarse mesh, and when high accuracy is required,
the potential is constructed on the fine mesh. Next we describe how the two-mesh calculation is
performed, and below we describe when the two-mesh scheme is used.

Recall that each step in Green Iteration involves a convolution of the form

ψ(n+1)(r) =

∫
Gε(r, r

′)Veff [ρ](r′)ψ(n)(r′)dr′. (4.16)

When using the two-mesh scheme we differentiate between the target mesh and source mesh in the
convolution; the set of points {r} correspond to the coarse mesh of N target points and the set of
points {r′} correspond to the fine mesh of M source points. In order to compute ψ(n+1)(r), we must
obtain ψ(n)(r′) and Veff [ρ](r′) on the fine mesh. For clarity we will separate Veff [ρ](r′)ψ(n)(r′)

into its four individual terms,

Veff [ρ](r)ψ(n)(r) = VH [ρ](r)ψ(n)(r)+Vxc[ρ](r)ψ(n)(r)+

(
NA∑
J=1

V J
loc(r)

)
ψ(n)(r)+Vnonlocψ

(n)(r),

(4.17)
and describe how each is obtained on the fine mesh. The first term is the product of the wavefunction
and the Hartree potential which depends on the density. ψ(n)(r) was computed on the coarse mesh
during the previous step of Green Iteration, and VH [ρ](r) was computed on the coarse mesh during
the previous SCF iteration. Both of these fields are interpolated onto the fine mesh with the mesh-
to-mesh interpolation scheme that is described above. Similarly, the second term is the product
of the wavefunction and the exchange-correlation potential, both of which were computed on the
coarse mesh and are interpolated onto the fine mesh. The third term is the product of the local
nuclear potential and the wavefunction; again the wavefunction is interpolated from the coarse mesh

85



onto the fine mesh, while the local nuclear potential is available a-priori as radial data and can be
interpolated directly onto the fine mesh as described above in Section 4.3.1. The fourth term is the
nonlocal term of the pseudopotential, given in Eq. (4.4). The wavefunction is interpolated onto
the fine mesh. The projectors χJ`pm(r,RJ) are available a-priori and evaluated directly on the fine
mesh quadrature points. The coefficients CJ

`pm are computed on the fine mesh, and the subsequent
construction

∑NA
J=1

∑
`pmC

J
`pmh

J
`pχ

J
`pm(r,RJ) is performed on the fine mesh.

Once each of the four terms in the right hand side of Eq. (4.17) is represented on the fine mesh,
the next wavefunction ψ(n+1)(r) can be computed on the coarse mesh. We recall key property 3
from above and note that the scaling of the treecode plays an important role in the two-mesh scheme.
In particular, we use a particle-cluster treecode where the dominant cost of the computation scales
like O(N logM), where N is the number of target points and M is the number of source points.
Crucially, the coarse mesh is used for the targets and the fine mesh is used for the sources. Therefore,
N remains relatively small and the cost of the convolution only grows logarithmically with the size
of the fine mesh M and is substantially cheaper than evaluating the convolutions directly on the fine
mesh.

This two-mesh convolution is significantly more accurate than the coarse-mesh convolution due
to the additional resolution of the projectors, while being only moderately more expensive due to
the logarithmic scaling of the particle-cluster treecode with respect to the source mesh. As a result,
the calculation achieves accuracy commensurate with fine mesh convolutions in time commensurate
with coarse mesh convolutions.

Two-mesh energy correction. We recall key property 4 from above, that high accuracy is not
required throughout the entire calculation but rather only at the end once the density has converged.
Previously, we took advantage of this property by using an adaptive convergence tolerance for
Green Iteration; we gradually tighten the Green Iteration tolerance as the SCF iteration progresses,
reducing the cost of the iterations when the density is far from converged. Now, we take advantage
of this property again when applying the two-mesh scheme. We find that rather than using the two-
mesh scheme throughout the calculation, we can use it only at the end of the calculation to compute
corrections to the eigenvalues and the energy. This approach still achieves the improved accuracy
due to representing the projectors on the fine mesh while allowing a majority of convolutions to be
performed exclusively on the coarse mesh.

Algorithm 4.1 describes the two-mesh correction scheme which takes the converged coarse
mesh density and eigenpairs as input and computes two-mesh corrected energies. This is an efficient
approach in which the fine mesh is only used at the very end of the calculation after the SCF
converges, as compared to less greedy approaches where the fine mesh is used throughout some or
all of the SCF iterations. Lines 1-3 interpolate the density to the fine mesh {r′}, and then compute a
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corrected Hartree potential on the coarse mesh {r} and subsequent Hartree energy,

V corr
H [ρ](r) =

∫
ρ(r′)

|r− r′|
dr′, Ecorr

H =
1

2

∫
V corr
H [ρ](r)ρ(r)dr. (4.18)

Line 4 interpolates the corrected Hartree potential and the exchange-correlation potential onto the
fine mesh. Line 5 evaluates the local part of the external potential directly on the fine mesh, as this
is available a-priori for each atomic species as radial data. Line 6 loops over each of the eigenpairs
in order to compute a two-mesh corrected eigenvalue. Line 7 interpolates the wavefunction onto the
fine mesh, then line 8 uses the interpolated wavefunction and the projectors evaluated directly on
the fine mesh to compute the nonlocal potential on the fine mesh. Following line 8 all pieces of the
potential are either computed on or interpolated onto the fine mesh. Line 9 performs one iteration of
the fixed-point equation, resulting in a corrected wavefunction ψcorri (r). Line 10 computes corrected
eigenvalues using the corrected wavefunction in the gradient-free eigenvalue update from Eq. (3.52),
repeated here in terms of the corrected wavefunction ψcorri ,

εcorri = εi −
〈Veffψi, ψi − ψcorri 〉
〈ψcorri , ψcorri 〉

. (4.19)

Line 11 computes the corrected band energy from the corrected eigenvalues,

Ecorr
band = 2

Nw∑
i=1

fi(ε
corr
i , µ)εcorri , (4.20)

and finally line 12 computes the corrected total energy from the corrected band and Hartree energies,

E = Ecorr
band − Ecorr

H + Exc −
∫
ρ(r)Vxc[ρ](r)dr + EZZ . (4.21)

Importantly, this greedy final energy correction scheme achieves the same level of accuracy as
the less greedy approaches of using the two-mesh scheme during the SCF iterations, with energy
differences on the order of O(10) µHa/atom for the examples demonstrated in this work, well below
the target accuracy.

4.4 High Performance Computing Optimizations

This section describes our efforts to further improve the performance of TAGI on high perfor-
mance computing architectures. First, in addition to the BaryTree convolutions, we port two more
computations onto GPUs, the mesh-to-mesh interpolation and the wavefunction orthogonalization.
Second, we implement a distributed memory MPI parallelization of TAGI that involves domain
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Algorithm 4.1 Two-Mesh Energy Correction
input: converged coarse mesh density ρ(r) and eigenpairs (ψi(r), εi) for i = 1, . . . , Nw

output: two-mesh corrected eigenvalues and total energy
1: interpolate the density ρ(r) from the coarse mesh r to the fine mesh r′

2: compute the corrected Hartree potential V corr
H [ρ(r′)](r) in Eq. (4.18) from the fine-mesh density

3: compute the corrected Hartree energy in Eq. (4.18) from V corr
H [ρ(r′)](r)

4: interpolate V corr
H [ρ(r′)](r) and Vxc(r) from the coarse mesh to the fine mesh

5: evaluate the local external potential
∑NA

J=1 V
J
loc(r) directly on the fine mesh

6: for i = 1, 2, . . . , Nw

7: interpolate the coarse mesh wavefunction ψi onto the fine mesh
8: compute the nonlocal potential with the fine mesh projectors χJ`pm and interpolated wave-

function, completing the construction of Veff (r′) on the fine mesh
9: compute the corrected wavefunction ψcorri (r) =

∫
Gε(r, r

′)Veff (r
′)ψi(r

′)dr′

10: compute corrected eigenvalue εcorri with the gradient-free update in Eq. (4.19)
11: correct the band energy with the corrected eigenvalues
12: correct the total energy with the corrected band energy and Hartree energy

decomposition, parallel mesh refinement, and load balancing. These developments enable TAGI to
make use of the distributed memory implementation of BaryTree and scale to multiple compute
nodes.

4.4.1 GPU porting

The discrete convolutions dominate the cost of the calculation in TAGI, therefore these were the
first calculation to be accelerated on GPUs which is discussed in Chapters 2 and 3. However, for
larger systems, there are other calculations occurring on the CPU that begin to take a non-negligible
amount of time. In particular, for large meshes the mesh-to-mesh interpolation becomes expensive
during the two-mesh correction, and for systems with many wavefunctions the orthogonalization
during each Green Iteration becomes expensive. We port both of these calculations to GPUs using
OpenACC to increase the efficiency of TAGI.

Mesh-to-mesh Interpolation. The mesh-to-mesh interpolation is performed on GPUs. Each
GPU kernel launch is responsible for interpolating from one parent cell to each of its child cells.
For refinement ratio dcf = 2 and quadrature order p, this amounts to interpolating fields from
(p + 1)3 coarse mesh points to 8(p + 1)3 fine mesh points. The parent-to-children interpolation
is structured as nested loops; the outer loop runs over the 8(p + 1)3 points in the fine children
cells, while the inner loop runs over the (p + 1)3 points in the coarse parent cell. The outer loop
is naturally parallelizable; the interpolation at each fine mesh point r′ is independent and can be
computed simultaneously. Therefore, the outer loop is parallelized over the thread-blocks, one
block per (x′, y′, z′). The inner loop is parallelizable with a reduction; the interpolation at a given
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point r′ is the sum over the contributions from each coarse mesh point r. These contributions can
be computed in parallel, followed by a reduction. Therefore, we parallelize the inner loop with the
threads, one thread per (x, y, z). Each thread computes one term in the sum in Eq. (4.15), followed
by a reduction over the thread-block.

Orthogonalization. In Green Iteration, after the jth wavefunction ψj is updated with a con-
volution, it must be orthogonalized against all previous wavefunctions ψi, i < j. The cost of this
orthgonalization on the CPU begins to become non-negligible compared to the GPU convolution for
systems containing ∼ O(100) electrons. We reduce the cost of the orthogonalization considerably
by porting it to also run on the GPUs. The Gram-Schmidt calculation itself maps to GPUs in a
straightforward way; the dot products between ψj and each ψi are independent and are assigned
to different thread-blocks, then each individual dot product is computed in parallel by the threads
using a reduction. However, an efficient GPU implementation requires careful treatment of the
memory. In particular, it is not efficient to copy the set of wavefunctions onto the GPU for each
call to the orthogonalization routine; instead the wavefunctions must be copied to the GPU once
and allowed to persist in the GPU memory throughout the calculation. We accomplish this using
OpenACC unstructured data regions; the wavefunctions are copied onto the GPU at the beginning
of the calculation, then updated in-place with the convolutions, then subsequently used in the
orthogonalization routines. Following orthogonalization, the jth wavefunction (and only the jth
wavefunction) is copied back to the CPU where it is needed for various other calculations that occur
on the CPU, such as the gradient-free eigenvalue update and the Anderson mixing. In future work
we will consider eliminating the need to copy back to the CPU by also performing these calculations
on the GPU, even though they are not performance bottlenecks. This procedure reduces the cost of
the orthogonalization to a negligible amount for the system sizes investigated in this work.

4.4.2 Distributed Memory MPI Parallelization

Recall that the first implementation of TAGI, described in Chapter 3, used shared memory
parallelization with OpenMP and was restricted to a single compute node. To further reduce the
computation time and make full use of BaryTree we parallelize TAGI with MPI and the mpi4py
python module. The dominant cost of TAGI calculations is the discrete convolutions, hence taking
advantage of the parallel efficiency demonstrated in Section 2.4 will significantly improve the
performance of TAGI.

Parallel Mesh Refinement, Domain Decomposition, and Load Balancing. To achieve high
parallel efficiency in the treecode we require each MPI rank to own a localized region of the
domain, ensuring each rank’s Locally Essential Tree (LET) is minimal, while also maintaining
a balanced number of quadrature points in each partition. The construction of a localized and
balanced decomposition is subject to the following constraints. First, the mesh should be generated
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in parallel, both to achieve efficiency and to avoid memory limitations of the single rank. Second,
load balancing must occur after the adaptive refinement is complete. The density of quadrature
points varies considerably throughout the domain, hence partitioning the domain prior to mesh
generation leads to significant load imbalances. Third, the decomposition of the coarse and fine
meshes must coincide so that the local cell-wise interpolation between the meshes is possible
without the need for communication. Algorithm 4.2 presents our approach to the mesh generation
that satisfies these constraints and Fig. 4.6 diagrams a 2-D example using four MPI ranks.

Figure 4.6: A 2-d diagram showing the four steps of the parallel mesh generation and load balancing
for a four-rank decomposition (each color is one rank); a) step 1, coarse partitioning of the
computational domain, b) step 2, distribution of coarse cells across MPI ranks, c) step 3, parallel
local adaptive refinement of the coarse cells, and d) step 4, load balancing and localization with
recursive coordinate bisection. In this example, the left side of the domain is more refined than the
right side. As a result, after load balancing, the red and blue ranks on the left side represent less
volume than the green and the orange on the right, but importantly, the number of cells per rank is
balanced (14 or 15 for each rank).
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The input to Alg. 4.2 are the domain bounds Lx, Ly, Lz, and initial refinement parameter `init.
The first step in the algorithm is for each processor to divide the domain [−Lx, Lx]× [−Ly, Ly]×
[−Lz, Lz] into a set of uniform coarse cells {Cinit} with side lengths not exceeding `init. This is
depicted in Fig. 4.6(a). The choice of `init is bounded above and below by the following criteria.
On the one hand, `init should be small enough that the number of cells in the resulting set {Cinit}
exceeds the number of MPI ranks. The task of refining each cell is distributed across the ranks, and
this condition ensures that each rank participates in the refinement process. On the other hand, if
`init is too small, the set {Cinit} may become very large and strain the memory limitations, since
each rank generates this initial set. In practice, for the examples demonstrated in this work, choosing
`init so that the number of cells in {Cinit} is 2×-10× the number of MPI ranks works well.

Following this initial coarse partitioning in line 1, the MPI ranks distribute the task of refining
each cell in {Cinit} in line 2. This partitioning is shown in Fig. 4.6(b). As shown, we do not attempt
to localize each rank before performing the adaptive refinement. While this localization would
reduce the communication cost of the post-refinement localization, it can also lead to load-imbalance
during the refinement process. Both options are viable, and in this work we choose to localize only
after the local refinement is complete.

Following the partitioning of the coarse mesh {Cinit}, in line 3, each rank performs the local
refinement scheme for each cell it has been assigned, which is shown in Fig. 4.6(c). This generates
a set {Crank,refined} which contains the cells belonging to the refined mesh. Note that this set is not
necessarily balanced among the ranks, nor is it localized. It is not balanced because not all cells in
{Cinit} undergo equal refinement; those containing atoms will receive significantly more refinement
than those owning the far-field vacuum. Furthermore, the set {Crank,refined} is not necessarily
localized because the rank may have refined cells from different regions of the domain. Hence, line
4 calls the load balancing routines which use recursive coordinate bisection (RCB) to both localize
and balance the refined cells. In particular, we represent each cell by its midpoint, then load balance
the set of midpoints. Each rank inherits the entire quadrature cell for each midpoint it is assigned
by the load balancing. This load balancing and localization is shown in Fig. 4.6(d). Considering
this domain to be [0, 1] × [0, 1], all cell midpoints below y = 0.5 are assigned to either blue or
orange, while all cell midpoints above y = 0.5 are assigned to either red or green. Similarly, all
midpoint below x = 0.425 are assigned to either red or blue, while all midpoints above x = 0.425

are assigned to either green or orange. The non-symmetric partitioning in the x-dimension accounts
for the non-symmetric refinement observed in Fig. 4.6(c). Following this load balancing, each rank
owns either 14 or 15 quadrature cells.

Following the load balancing, each rank owns a set of cells {Crank,balanced}, which contain
roughly the same number of cells and are localized. Finally, after completing these four steps, each
rank generates the quadrature points for its cells in {Crank,balanced}, generating the corresponding
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fine mesh points where necessary. The result is each rank owning a set of quadrature points for the
coarse mesh {rc} and fine mesh {rf}. These sets are balanced and localized which enables efficient
treecode parallel scaling, and they admit the mesh-to-mesh interpolation without communication
between ranks.

Algorithm 4.2 parallel mesh generation and load balancing
input: domain bounds Lx, Ly, Lz, and initial refinement parameter `init
output: localized set of quadrature points of the coarse mesh {rc} and the fine mesh {rf}

1: Each rank partitions the domain into a set of coarse cells {Cinit} of size no greater than `init.
2: The set {Cinit} is divided evenly among the ranks, without regard for locality.
3: Each rank performs the mesh refinement scheme on its coarse cells and generates its refined

cells {Crank,refined}. The refined cells are not necessarily balanced or localized.
4: Localize and load balance the sets of refined cells using recursive coordinate bisection (RCB)

with Zoltan library [124]. Each rank now owns a set of cells {Crank,balanced}, which contain
roughly the same number of cells and are localized.

MPI Communication The calculation begins after the parallel mesh building, domain de-
composition, and load balancing. Throughout the remainder of the calculation communication is
only required in two instances, 1) to compute inner products and 2) to compute the convolutions.
Computing inner products with distributed memory fields requires a trivial all-to-all communication
in which each processor performs its local inner product, and a global reduction is performed on
the local values. In practice, this communication is handled with MPI Allreduce. The majority
of inner products are performed during orthogonalization and when computing the action of the
non-local pseudopotential. The more complex communication occurs within the treecode, when the
convolution integrals are approximated. Each process constructs its local source tree and computes
its interpolation weights. Next, each processor determines its Locally Essential Tree (LET) [72],
which is the union of source clusters throughout the entire domain that its targets interact with.
Importantly, to construct the LET, each processor must only obtain O(logN) remotely owned
clusters due to two facts: (1) each target interacts with O(logN) clusters, and (2) nearby targets
interact with a similar subset of the global source tree. Therefore, while the convolution necessarily
involves all-to-all communication, the amount of data that each processor needs to obtain only
grows logarithmically with the problem size. Further details about the implementation and parallel
efficiency of BaryTree can be found in Chapter 2 and [52].

4.5 Results

The ground-state energy of several silicon quantum dots and carbon fullerenes were computed
using Treecode-Accelerated Green Iteration (TAGI) with ONCV pseudopotentials [121, 122, 123]
and the LDA exchange-correlation functional [113, 114]. The ball and stick diagrams of the
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molecules are shown in Fig. 4.7. The silicon quantum dots are constructed in Materials Studio [125]
by first generating a silicon diamond crystal structure with Si-Si bond length of 4.42 a.u., then
removing silicon atoms beyond a cutoff radius. The resulting silicon ball contains dangling electrons
(unsatisfied valence shells) and is passivated with hydrogen atoms with Si-H bond length of 2.91
a.u. We generate two examples, one containing 10 silicon atoms passivated with 16 hydrogen atoms,
and one containing 30 silicon atoms passivated with 40 hydrogen atoms. The C20 fullerene consists
of 20 carbon atoms arranged in a dodecahedron centered at the origin, with nuclei at a radius 3.86
a.u. and nearest atoms separated by distance of 2.75 a.u. The C60 fullerene consists of 60 carbon
atoms arranged in a truncated icosahedron centered at the origin, with nuclei at a radius between
6.47 and 6.56 a.u. and nearest atoms separated by a distance of 2.62 a.u. Figure 4.8 shows the

Figure 4.7: Molecules demonstrated in pseudopotential TAGI. Top row are the Si10H16 and Si30H40

quantum dots, bottom row are the C20 and C60 fullerenes.

local potentials for the three species used in these calculations. Important to note is that the local
potentials for hydrogen and silicon are “softer” than that of carbon, evident by the slopes and depths
near r = 0. The softness of the local potential is one factor that contributes to the mesh refinement
criteria; in particular, we show below that we achieve chemical accuracy with coarser meshes for
the silicon quantum dots than for the carbon fullerenes, ∆hinner = 1.0 versus ∆hinner = 0.5.
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Figure 4.8: Local pseudopotentials for the three atomic species used in the quantum dots and
fullerenes. The potentials for hydrogen and silicon are softer than carbon’s, enabling chemically
accurate calculations of the quantum dots using inner mesh spacing ∆hinner = 1.0, whereas
chemical accuracy for the carbon fullerenes requires ∆hinner = 0.5.

Table 4.1 presents the parameters and results for each system. Columns 1-3 provide the system
information: 1) chemical formula, 2) number of atoms, and 3) number of valence electrons. Columns
4-5 provide the TAGI discretization parameters: 4) inner mesh spacing ∆hinner and 5) number of
mesh points Nm. Columns 6-8 provide the results: 6) ground state energy ETAGI , 7) error with
respect to reference values computed with DFT-FE [40], and 8) wall clock time in minutes. All
calculations use common values for all other parameters, specified below. The iteration tolerances
were set as follows. The SCF convergence tolerance is set to tolscf =1e−4 per atom. The Green
Iteration tolerance is set to tolgi =1e−2 for the first SCF iteration, then gradually tightened to
1e−5 over the first 10 SCF iterations. The mesh was generated as follows. The computational
domain was set to [−64, 64]× [−64, 64]× [−64, 64] a.u. The far-field mesh spacing parameter was
∆houter = 8.0, the coarse-mesh ball radius rcoarse = 2.0, the fine-mesh ball radius rfine = 3.0, the
refinement ratio dcf = 2. Each cell in the mesh was discretized with quadrature order p = 3. The
barycentric Lagrange treecode was used for all convolutions with interpolation degree n = 8 and
multipole acceptance criterion θ = 0.85. The computations were performed on the XSEDE cluster
Comet at the San Diego Supercomputer Center on eight nodes, using 32 NVIDIA P100 GPUs.
These parameters achieve chemical accuracy with errors below 0.1 mHa/atom for each system.
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system mesh details results
formula NA Nvalence ∆hinner Nm ETAGI error (Ha/atom) time (min)
Si10H16 26 56 1.0 511232 -48.73862 -3.52e-5 15.3
Si30H40 70 160 1.0 1683625 -141.72169 -2.18e-5 165.8

C20 20 80 0.5 642048 -113.46990 -3.87e-5 57.5
C60 60 240 0.5 1778176 -342.15098 -8.53e-5 483.8

Table 4.1: Ground-state energy computations of atoms and small molecules using TAGI with
errors computed with respect to reference values Eref computed using DFT-FE. System parameters
(formula, number of atoms NA, number of valence electrons Nvalence), discretization parameters
(inner mesh spacing ∆hinner, mesh size Nm), and results (ground state energy ETAGI , error, and
wall clock time).

4.6 Conclusion

This Chapter extends Treecode-Accelerated Green Iteration to pseudopotential calculations
using the Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials [121, 122, 123].
We developed new discretization techniques to achieve pseudopotential chemical accuracy of
0.1 mHa/atom using significantly coarser meshes than the all-electron discretization from Chapter 3.
Further, we improved TAGI for both all-electron and pseudopotential calculations by extending
calculations to multiple compute nodes using an MPI distributed memory parallelization and porting
additional computations to GPUs. These developments enabled TAGI to make full use of the
distributed memory implementation of BaryTree from Chapter 2 and to perform calculations of
systems as large as the Si30H40 quantum dot and C60 fullerene using eight GPU compute nodes.

The discretization demands are considerably different for pseudopotential and all-electron
calculations. For all-electron TAGI calculations, we dedicated a large effort to local adaptive
refinement around the nuclei in order to treat the Coulomb singularities in the external potential.
In pseudopotential calculations, the external potential is non-singular and smooth at the nuclei,
and instead the challenge is in accurately capturing the oscillatory pseudopotential projectors. In
Section 4.3 we developed a two-mesh scheme that takes advantage of the fact that the relatively
oscillatory projectors are available a-priori whereas the wavefunctions and density, which must be
computed, are relatively smooth. The two-mesh scheme computes the wavefunctions on a relatively
coarse mesh for efficiency, while interpolating the projectors onto a more refined mesh for accuracy.
Further, we identify that this two-mesh scheme only needs to be applied at the end of the calculation,
once the density has converged, enabling the coarse mesh to be used exclusively throughout most of
the calculation and further improving the efficiency.

In Section 4.4 we developed several high performance computing aspects of TAGI that apply
directly to both all-electron and pseudopotential calculations. First, we ported two calculations
that were performed on CPUs to GPUs, in particular the mesh-to-mesh interpolation that is used
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to interpolate the wavefunctions and potential from the coarse mesh to the fine mesh during the
two-mesh scheme, and the wavefunction orthogonalization used in each step of Green Iteration.
Second, we developed a distributed memory MPI parallelization that extends TAGI to multiple
compute nodes. This involves a domain decomposition, parallel mesh refinement, and load balancing
scheme. After these initialization procedures, a vast majority of all communication requirements
occur during the convolution integrals, which are already handled via the Locally Essential Trees
described in Chapter 2. Throughout the remainder of the TAGI calculations, communication only
occurs during inner products which are handled efficiently with MPI Allreduce. This enabled
TAGI calculations on Comet using eight nodes and using 32 NVIDIA P100 GPUs, the limit of our
available resources.

In Section 4.5 we demonstrated TAGI’s new capabilities on several pseudopotential calculations,
including the Si30H40 quantum dot containing 160 valence electrons and the C60 fullerene containing
240 valence electrons, considerably larger test cases than were demonstrated for all-electron
calculations. The pseudopotential calculations require many fewer quadrature points per atom to
achieve chemical accuracy than all-electron calculations, and therefore we were able to increase the
system size and the number of electrons significantly while still keeping the cost of the convolutions
reasonably low. However, this introduced new bottlenecks to the calculation. In particular, while we
drive the cost of each convolution down to a fraction of a second using the MPI parallelized and GPU
accelerated BaryTree, the total number of iterations required increases significantly as the number of
electrons and wavefunctions increases. Despite using the wavefunction mixing technique described
in Chapter 3, in some instances Green Iteration still requires in excess of 50 iterations to converge a
single wavefunction. There are several paths forward that could reduce the number of convolutions
required and significantly reduce TAGI’s computation time. First, we showed in Chapter 3 that the
convergence rate of Green Iteration is tied to the spectral gaps in the differential operator. Therefore,
it may be possible to filter the spectrum before performing the fixed-point iteration in order to
improve the convergence rate and reduce the number of iterations. Another potential path forward is
to use an alternative integral equation formulation of the Kohn-Sham equations, such as those based
on inverting the Laplacian instead of the modified Helmholtz operator. In this case, the integral
equation would be a generalized eigenvalue problem, rather than a fixed-point problem, which lends
itself to a variety of other numerical methods such as Krylov subspace methods [117]. In summary,
the techniques developed in this chapter extended the capability of TAGI to much larger system
sizes than were previously demonstrated for all-electron calculations, and methods that reduce the
number of convolutions required per SCF iteration would be beneficial for further scaling to even
larger systems.
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Chapter 5

Conclusion

This work developed a new numerical method for Kohn-Sham Density Functional Theory based
on an integral equation formulation of the Kohn-Sham equations. We accomplished this with a
combination of two projects; first, a GPU accelerated and MPI parallelized treecode library, called
BaryTree, and second, a Green’s function method for KS-DFT called Treecode-Accelerated Green
Iteration (TAGI). TAGI is unique in that it is a real-space method without a basis set, it solves fixed-
point problems for integral operators rather than eigenvalue problems for differential operators,
and it uses BaryTree to compute fast summations of discretized convolutions. TAGI achieves
systematic convergence to chemical accuracy for both all-electron and ONCV pseudopotential
calculations through adaptive refinement of the real-space domain. TAGI is accelerated with GPUs
and parallelized with MPI, suitable for modern high performance computing architectures. Next
we discuss the current state of both BaryTree and TAGI and describe several ongoing and future
developments that will further improve their performance.

5.1 BaryTree

5.1.1 Present Work

Chapter 2 presented the development of BaryTree, a library of treecodes based on barycen-
tric interpolation, which are implemented for modern high performance computing environments.
Treecodes are fast summation methods for computing N-body interactions, or equivalently for
evaluating discretized convolution sums arising in integral equations. The algorithm replaces
particle-particle interactions with particle-cluster approximations, and reduces the computational
complexity from O(N2) to O(N logN). In the case of BaryTree, the particle-cluster approxima-
tions are derived from barycentric interpolation at Chebyshev points and are well suited for GPU
acceleration. BaryTree contains treecodes based on both barycentric Lagrange and barycentric
Hermite interpolation; the Lagrange form is kernel-independent, while the Hermite form requires
first order partial derivatives of the kernel.
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HPC Performance. We developed BaryTree for modern high performance computing environ-
ments. GPUs account for a majority of the compute capability on modern clusters (95% of flop/s for
Summit at Oak Ridge National Lab [126]). Therefore, we implemented all of the expensive steps of
the algorithm for GPUs, taking advantage of nested parallelism within the barycentric interpolation
formulas. Furthermore, we parallelized BaryTree with MPI, enabling it to run on multiple compute
nodes. We demonstrated BaryTree on up to eight nodes of Comet, containing four GPUs each, for a
total of 32 GPUs. We achieved large speedups from the GPU porting, and good parallel scaling
across multiple GPU nodes [52].

Code Availability. BaryTree is publicly available at github.com/Treecodes/BaryTree under
the MIT License. In addition to the treecode library itself, the repository includes several features
to aid in usability. These include standalone example calculations on both CPUs and GPUs,
demonstrations of interfacing with BaryTree from C or Python applications, and a procedure for
creating user-defined convolution kernels.

5.1.2 Future developments for BaryTree

Mixed precision. BaryTree is implemented with double precision arithmetic in order to ensure
high accuracy approximations. However, to accommodate applications that do not demand such
high accuracy, it will be useful to implement a mixed precision scheme that uses single precision
arithmetic for far-field approximations while still using double precision for the near-field direct
interactions. This will accelerate the far-field particle-cluster approximations in cases where full
double precision is not required. This may become increasingly important if the GPU hardware
continues to support and optimize for single (and even half) precision arithmetic.

Virtual treetop for fine-grain MPI parallelization. This version of BaryTree was developed
and optimized for GPUs using one MPI rank per GPU. Typical calculations use relatively few MPI
ranks (up to 32 on Comet), with each rank performing a large amount of work on its assigned GPU.
Some of the design decisions in BaryTree reflect the optimization for GPUs and are not optimal for
fine-grain parallel CPU calculations. In particular, the current MPI implementation does not build
the virtual top of the global source tree; instead, each rank creates its own tree over its local source
particles. This is sufficient for the GPU version given the compute resources we have available
(maximum 32 GPUs), however it is not well suited for a fine-grain parallelization using a large
number of CPUs or GPUs. In a fine-grain parallelization, well-separated MPI ranks may prefer to
interact with clusters that are larger than the root of a remote cluster. In the present implementation,
this is not possible, and is a limiting factor in the fine-grain parallel scalability. Developing the
virtual treetop will improve the parallel scaling for a large number of MPI ranks by enabling larger
cluster approximations, unrestricted by the decomposition.
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Overlapping communication and computation. Next, we will investigate the advantages of
overlapping communication and computation in BaryTree. In particular, one approach is to overlap
the near-field computations involving local data with the communication that constructs the Locally
Essential Tree for the remote interactions. However, for fine-grain parallel calculations, the local
compute becomes a smaller fraction of the total work. Therefore, it may also be advantageous
to overlap the computation with one portion of the Locally Essential Tree while performing to
communication for another portion. This overlapping will be more impactful in a fine-grain
parallelization where the LET construction accounts for a larger fraction of the overall time.

Cluster-cluster BaryTree. We are developing a cluster-cluster variant of BaryTree in which
both the source particles and the target particles are organized into hierarchical trees of clusters,
each cluster represented by a grid of Chebyshev points. The particle-particle interactions are
replaced with cluster-cluster interactions in the far-field, determined by a dual-tree traversal [127].
Preliminary results have shown compute phase of the cluster-cluster treecode to be more efficient
that the compute phases of the already developed particle-cluster and cluster-particle treecodes
for a range of test cases, reducing the time required to achieve a desired accuracy. There remains
work to be done in optimizing the downward pass, as well as extending the capability to Hermite
interpolation and the singularity subtraction kernels used in TAGI.

OpenMP Offloading. NVIDIA GPUs used to be the default for high performance computing
clusters, however recently the GPU landscape has started evolving. Other vendors are providing
accelerators for some of the upcoming clusters; for example AMD is providing the accelerators
for Frontier at Oak Ridge National Laboratory and El Capitan at Lawrence Livermore National
Laboratory, and Intel is providing the accelerators for Aurora at Argonne National Laboratory.
BaryTree was initially ported to GPUs using OpenACC directives compiled with the PGI compiler.
The Portland Group Inc. (PGI) is now owned by NVIDIA, and the future of OpenACC and PGI isn’t
clear in terms of supporting a variety of accelerators. In the expanding accelerator landscape, we
want BaryTree to remain flexible and adaptable to a wide range of accelerators. To accomplish this
we plan to also perform the GPU porting with OpenMP offloading, introduced in OpenMP 4.0. The
goal is for OpenMP offloading is to make BaryTree agnostic to the exact type of accelerator, whether
it is an NVIDIA, AMD, Intel, or other brand. Between the OpenACC and OpenMP offloading, we
expect BaryTree to be flexible enough to adapt to the evolving accelerator landscape and achieve
good accelerator performance on any HPC clusters.

99



5.2 Treecode-Accelerated Green Iteration

5.2.1 Present Work

Chapters 3 and 4 present the development of Treecode-Accelerated Green Iteration (TAGI), an
integral equation based numerical method for Kohn-Sham Density Functional Theory. TAGI relies
on BaryTree for fast summation of discrete convolution sums. First, in Chapter 3, we developed
TAGI for all-electron calculations, which uses the true nuclear potential of each atom and explicitly
accounts for each electron. Second, in Chapter 4, we extended TAGI to pseudopotential calculations,
which use a regularized nuclear pseudopotential that implicitly accounts for some of the “core”
electrons. The challenges, developments, and demonstrations of both types of calculation are
discussed below.

All-Electron calculations. Achieving sufficiently accurate all-electron calculations required
the development of the techniques as described in Chapter 3. In particular, the singular nuclear
potentials led to the adaptive mesh refinement scheme based on accurate integration of appropriate
test functions combined with a higher order Fejér quadrature rule. The singular convolution kernels
led to the development of the singularity subtraction schemes, where we used a standard scheme
for the Yukawa kernel and developed a new scheme for the Coulomb kernel [128]. Analysis of the
spectra of the integral and differential operators demonstrated potentially slow convergence of the
fixed-point iteration for the wavefunctions and eigenvalues, which led to using mixing schemes to
accelerate the convergence. We demonstrated all-electron TAGI on a handful of atoms and small
molecules as large as the benzene molecule C6H6, consisting of 42 electrons.

Pseudopotential calculations. The focus of Chapter 4 was the development of TAGI for ONCV
pseudopotential calculations in order to efficiently extend the method to larger systems. We achieved
efficient discretization through the development of a two-mesh scheme that relies on the relative
smoothness of the wavefunctions compared to the pseudopotential projectors. For efficiency, the
smooth wavefunctions are computed on a relatively coarse mesh, while for accuracy, the relatively
oscillatory projectors, which are available a-priori as radial data, are evaluated on a relatively fine
mesh. This scheme results in significantly fewer quadrature points per atom than the corresponding
all-electron mesh, while still achieving chemical accuracy. Furthermore, we ported additional pieces
of TAGI to GPUs to improve performance, focusing on two calculations that become non-negligible
for larger system sizes, the mesh-to-mesh interpolation and the wavefunction orthogonalization.
Additionally, we parallelized TAGI with MPI, including a domain decomposition, parallel mesh
refinement scheme, and load balancing. This allowed us to perform TAGI calculations on up to
eight GPU nodes on Comet, containing a total of 32 GPUs. We demonstrated pseudopotential TAGI
on several larger systems including the C20 and C60 fullerenes and the Si10H16 and Si30H40 quantum
dots.

100



5.2.2 Future developments for TAGI

The convolutions remain the dominant cost in TAGI calculations, therefore TAGI will benefit
directly from many of the previously described future developments of BaryTree. Additionally,
there are a number of ideas for modifying TAGI to improve efficiency such as using an alternative
integral formulation, using a more efficient real-space discretization, and improving the parallel
scaling and GPU efficiency through wavefunction batching.

Alternative integral forms. One of the significant challenges faced by TAGI is the sequential
nature of the wavefunction calculations. Green iteration begins by computing ψ0, then ψ1 subject to
ψ1 ⊥ ψ0, and so on. Notably, as described in Chapter 3, each wavefunction is a fixed-point of a
different integral operator. This is in contrast to a standard eigenvalue problem, where the task is to
compute many eigenfunctions of a single operator. There are techniques for efficiently computing
multiple eigenfunctions, such as Krylov subspace methods [117], that cannot be directly applied to
Green Iteration. However, the integral formulation used in TAGI is not the only integral formulation
of the Kohn-Sham equations. One alternative is to rearrange the Kohn-Sham equations in order to
invert the Laplace operator, rather than the modified Helmholtz operator. Instead of a fixed-point
equation for a set of integral operators, this inversion results in a generalized eigenvalue problem
for a single integral operator. Computing the generalized eigenfunctions and eigenvalues presents
its own challenges, however it could be more efficient than sequentially computing the fixed-points
in the current formulation.

Curvilinear mesh. Another significant challenge faced by TAGI in the case of all-electron
calculations is the construction of the adaptively refined mesh. Constructing a mesh which achieves
suitable accuracy in spite of the singular nuclear potential and the sharp cusps in the wavefunctions
and density, while also maintaining an efficiently low number of quadrature points, was a major
challenge. We have presented our approach, where we discretize the domain into cuboid cells
according to a refinement criterion, then discretize each cell with a Cartesian tensor product of
Chebyshev points. However alternative approaches may be able to also achieve chemical accuracy
while requiring significantly fewer quadrature points per atom. One potential alternative meshing
scheme is based on curvilinear coordinates. In particular, this scheme could take advantage of radial
symmetry very close to the atomic nuclei while efficiently handling the singularity in the nuclear
potential. Reducing the number of quadrature points per atom would directly reduce the cost of
each convolution and increase the efficiency of TAGI.

Batch processing wavefunctions. The BaryTree convolutions are able to efficiently use the
GPUs when there are many quadrature points per MPI rank. However, to reduce computation time
we increase the number of MPI ranks, thereby reducing the target points per rank. In its current
form, BaryTree only supports computing one discrete sum at a time. One possibility for improving
efficiency is to investigate a batching scheme where the discrete sums for several wavefunctions are
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computed simultaneously, more efficiently saturating the GPU with work, similar to the batched
linear algebra routines in BLAS and cuBLAS [129, 130]. Wavefunction batching will involve both
modifying the iterations in TAGI to enable simultaneous computation of multiple fixed-points,
and generalizing BaryTree to accommodate computing multiple sets of modified weights at each
interpolation point, one for each discrete sum in the batch. The GPU compute kernels would then
be responsible for computing multiple interactions per target point, thereby increasing the GPU
occupation in the event that there are too few target points. Many of the other aspects of BaryTree
are identical for all sums in the batch, such as the interaction lists and the MPI communication
patterns. With this feature TAGI will scale more efficiently in the regime where a single convolution
does not fully saturate the GPUs with work.

5.3 Concluding Remarks

We developed a numerical method for Kohn-Sham Density Functional Theory based on an
integral equation formulation of the Kohn-Sham equations called Treecode-Accelerated Green
Iteration. Compared to the preexisting methods based on the Kohn-Sham differential operator,
TAGI enjoys several advantages and faces several unique challenges. In particular, the integral
operator presents significant challenges in both accuracy and efficiency. Considering accuracy,
the integral operators in TAGI contain singular Green’s functions and singular nuclear potentials
(for all-electron calculations). Discretizing these integrals accurately was difficult and required
the development of several numerical techniques, such as the adaptive mesh refinement scheme
for the nuclear singularities and the singularity subtraction schemes for the Green’s function
singularities. The combination of these techniques enable TAGI to systematically convergence to
chemical accuracy. Considering efficiency, evaluating the discretized integral operators is much
more expensive than evaluating corresponding differential operators for two reasons. First, the
discrete Kohn-Sham differential operator is often sparse, as is the case with finite-difference and
finite-element discretizations, for which there are very efficient algorithms for sparse matrix-vector
multiplications. Second, the discrete differential operators are local, allowing for distributed
memory parallelization of the matrix-vector products typically only requiring neighbor-to-neighbor
communication. The integral operator does not enjoy sparsity or locality, it is inherently dense and
global because every point in the domain interacts with every other point via the convolution, and
the kernels are slowly decaying (compared to applications using a Gaussian kernel, for example,
where local truncation is possible). Hence, evaluating the integral operator is expensive and does
not parallelize trivially. We overcame these challenges by developing BaryTree, a treecode library
based on barycentric interpolation. BaryTree reduces the cost of computation and communication
for evaluating the integral operator. At the expense of losing locality and sparsity, TAGI gains
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several advantages. First, TAGI avoids numerical differentiation, which tends to amplify high
frequency errors. Ultimately, this may enable TAGI to achieve chemical accuracy on coarser meshes
than the differential equation based alternatives, however this is reliant on accurately handling the
Green’s function singularities and our progress so far does not demonstrate a significant reduction
in mesh size. Second, TAGI is well suited for GPU calculations, as the convolutions computed
with BaryTree enjoy significant GPU speedups, which is important as GPUs dominate more of the
available floating point operations in HPC environments. The discrete convolution sums have high
arithmetic intensity, that is, each piece of data is used in many arithmetic operations, an important
characteristic in exploiting the increased number of floating point operations per second available
on GPUs.

The techniques developed in this work have led to a viable numerical method for KS-DFT
based on treecode-accelerated integral equations. We demonstrated the method’s ability to achieve
chemical accuracy for both all-electron and pseudopotential calculations on systems as large as
a few hundred electrons. While TAGI is not yet as efficient as the more mature methods such as
those based on plane-waves, Gaussian type orbitals, or finite elements, this work demonstrates the
feasibility of the integral equation approach to KS-DFT using treecodes. This work overcomes many
of the initial challenges faced by the method, and we see many opportunities for further improvement.
With continued effort, due to its systematic convergence and efficient GPU acceleration, TAGI has
potential to mature into a competitive method for real-space KS-DFT.
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