
Reachability-based Trajectory Design

by

Shreyas Kousik

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2020

Doctoral Committee:

Assistant Professor Ramanarayan Vasudevan, Chair
Associate Professor Dmitry Berenson
Professor Jessy Grizzle
Associate Professor Necmiye Ozay

Shreyas Kousik

skousik@umich.edu

ORCID iD: 0000-0003-1348-7463

© Shreyas Kousik 2020

DEDICATION

For Thatha, who listened with delight to my defense.

ii

ACKNOWLEDGMENTS

This work would not have been possible without the many friends I made
along the way. At UM, I want to thank my Mechanical Engineering cohort,
my Munger friends, the Stats crew, and Patrick. In Michigan, I want to thank
my friends and mentors from GM, especially los Boricuas, and all my mu-
sic lovers and townies in Ann Arbor. I also would not have been able to get
this done without the immense and unwavering support from my family. Most
importantly, my parents, who are always just a phone call away when life is
challenging – I am lucky to have your unconditional love and support. Next,
I have to thank my labmates and collaborators. Sean, it has been a pleasure
to work with someone so bright and passionate, who is always down to kick
around a strange idea. Wheels are better than legs! Patrick, I’m so glad we got
to play with ’topes for the past few years. It’s really rare to find someone who
can be such a dear friend, excellent colleague, and optimal hiking companion.
Fan, Hannah, Pengcheng, Utkarsh, Bohao, Daphna, Corina, Shankar, James,
Stew, and MJR – I cherish our chats and struggles to get all those papers out
the door. To everyone else in ROAHM Lab, thank you for being such a support-
ive, caring, and wonderful group of people. You made my time at Michigan a
blast. To all my current collaborators, I’m excited to see what we’ll come up
with next! Finally, thank you, Ram. I knew you would be an awesome advisor
from that very first phone call, when I was just some kid at Georgia Tech, and
you already believed in me. From the start, you always told me and Pat to be-
lieve in ourselves instead of comparing ourselves to others – but of course, we
have to compare ourselves to you! Over the years, I’ve grown so much because
of your constant support and belief that I can indeed get cool stuff done. I hope
to be as good a teacher, mentor, and friend to others as you have been to me.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . xi

List of Tables . xvii

Abstract . xix

Chapter

1 Introduction . 1

1.1 Overview . 1
1.1.1 Scope and Goals . 1
1.1.2 Receding-Horizon Planning . 2
1.1.3 The Planning Hierarchy . 3
1.1.4 Reachability Analysis . 3
1.1.5 Research Gap . 4

1.2 Contributions . 4
1.2.1 Summary of Contributions . 4
1.2.2 Contributions per Paper . 5

1.3 Dissertation Organization . 7
1.4 Notation . 9

2 Safe Motion Planning in the Literature . 11

2.1 Safety . 11
2.1.1 Defining Safety . 11
2.1.2 Enforcing Safety in the Planning Hierarchy 11

2.2 Path Planners . 12
2.2.1 Sample-and-Check Methods . 12
2.2.2 Gradient-Based Methods . 13
2.2.3 Collision Checking . 14
2.2.4 Path Planner Summary . 14

2.3 Trajectory Planners . 15
2.3.1 Sample-and-Check Methods . 15
2.3.2 Gradient-Based Methods . 16
2.3.3 Trajectory Planner Summary . 16

iv

2.4 Tracking Controllers . 17
2.4.1 Invariant Set Methods . 17
2.4.2 Reachable Set Methods . 18
2.4.3 Tracking Controller Summary . 19

2.5 RTD in Context . 20
2.5.1 Research Gap Revisited . 20
2.5.2 Method Summary . 20
2.5.3 Flexibility of RTD . 21
2.5.4 Collision Checking . 21

2.6 Chapter Review . 22

3 A Unified Theoretical Framework for Safe Trajectory Planning 23

3.1 Chapter Summary . 23
3.2 The High-Fidelity Model . 24

3.2.1 Time, States, Inputs, and the High-Fidelity Model 24
3.2.2 Projection Operators . 25
3.2.3 Maximum and Minimum Velocity and Acceleration 25

3.3 Receding-Horizon Timing . 26
3.4 Workspace, Obstacles, and Sensing . 26

3.4.1 The Workspace and Forward Occupancy 26
3.4.2 Obstacles, Safety, and Fault . 27
3.4.3 Predictions and Sensing . 27

3.5 The Planning Model . 28
3.5.1 The Planning Model . 28
3.5.2 The Planning Frame and the World Frame 30
3.5.3 Lifting the Planning Model to the High-Fidelity Model 30
3.5.4 Using Trajectory Parameters Online . 32

3.6 Tracking Controller and Error . 32
3.6.1 The Tracking Controller . 32
3.6.2 Tracking Error . 33
3.6.3 Bounds on Choice of Plans . 34
3.6.4 Modeling Error . 34

3.7 Reachable Sets . 34
3.7.1 The Forward Reachable Set . 35
3.7.2 The Planning and Error Reachable Sets 36
3.7.3 Predictions as Reachable Sets . 38

3.8 Online Planning . 38
3.8.1 The Initial Condition . 39
3.8.2 Identifying Unsafe Plans . 40
3.8.3 Trajectory Optimization . 40
3.8.4 The High-Level Planner . 41
3.8.5 The Online Planning Algorithm . 41
3.8.6 Provably Safe, Not-at-Fault Planning 42

3.9 Chapter Review . 44
3.9.1 Chapter Summary . 44

v

3.9.2 What Is Missing? . 45

4 Forward Reachable Sets via Sums-of-Squares Programming 46

4.1 The Tracking Error Model . 47
4.2 A Simplified FRS for SOS Reachability . 48
4.3 An Infinite-Dimensional Linear Program . 49
4.4 Implementing the LP with SOS Programming 51

4.4.1 SOS Polynomials . 51
4.4.2 SOS Relaxation of the Infinite-Dimensional LP 52
4.4.3 Sums-of-Squares Memory Usage . 53

4.5 System Decomposition . 54
4.5.1 Self-contained Subsystems . 54
4.5.2 Subsystem FRSes . 55
4.5.3 FRS Reconstruction . 55

4.6 The FRS Over Small Time Intervals . 56
4.6.1 Time Interval Motivation . 57
4.6.2 A Secondary Infinite-Dimensional LP 57
4.6.3 SOS Relaxation . 58

4.7 Recovering the Original FRS . 59
4.8 Online Planning . 59

4.8.1 Generic Constraint Formulation . 60
4.8.2 Static Obstacles Formulation . 60
4.8.3 Time Interval FRS Formulation . 61
4.8.4 An Infinite-Dimensional Problem . 61

4.9 Chapter Review . 61
4.9.1 Chapter Summary . 61
4.9.2 What Is Missing? . 62

5 A Discretized Obstacle Representation for Safe, Real-Time Planning 63

5.1 Discretized Obstacle Motivation . 64
5.1.1 Obstacles and Safety via the FRS . 64
5.1.2 The Discretized Obstacle . 65
5.1.3 Incorporating Dynamic Obstacles . 66
5.1.4 Unsafe Parameters for a Point Obstacle 66

5.2 Definitions and Assumptions . 67
5.2.1 Geometric Objects . 67
5.2.2 Robot Assumptions and Motion . 68
5.2.3 Obstacle Assumptions . 69

5.3 Five Geometric Quantities . 70
5.3.1 Buffer and Point Spacing Motivation 70
5.3.2 The Buffer and Its Bound . 70
5.3.3 The Point Spacing, Arc Point Spacing, and Their Bound 72
5.3.4 Examples . 73

5.4 Finding the Geometric Quantities . 73
5.4.1 The Point Spacing Bound . 74

vi

5.4.2 The Buffer Bound . 78
5.4.3 The Point Spacing . 80
5.4.4 The Arc Point Spacing . 84

5.5 Constructing the Discretized Obstacle for Static Environments 87
5.5.1 The Buffered Obstacle . 87
5.5.2 Sampling the Boundary of the Buffered Obstacle 88
5.5.3 Constructing the Discretized Obstacle 88

5.6 Proving Safety . 88
5.7 Extension to Dynamic Obstacles . 90

5.7.1 A Reminder of Dynamic Environments and Unsafe Plans 91
5.7.2 A Reminder of Geometric Quantities for Obstacle Discretization 91
5.7.3 Continuous Time Discretized Dynamic Obstacle 92
5.7.4 Time Interval Discretized Dynamic Obstacle 97

5.8 Chapter Review . 98
5.8.1 Example Discretized Obstacle Usage for Polynomial FRS 98
5.8.2 Chapter Summary . 99
5.8.3 What is Missing? . 99

6 Forward Reachable Sets via Zonotopes . 100

6.1 Zonotopes . 100
6.1.1 Definition and Notation . 100
6.1.2 Zonotope Properties . 102

6.2 Zonotope FRS . 102
6.2.1 The Planning Reachable Set . 102
6.2.2 The Error Reachable Set . 104
6.2.3 The Forward Reachable Set . 106

6.3 Slicing the Zonotope FRS . 107
6.3.1 Slicing Definition . 107
6.3.2 Sliceability . 107
6.3.3 Slicing the Zonotope FRS . 108

6.4 Online Planning . 109
6.4.1 Obstacle Representation . 110
6.4.2 Zonotope Intersection . 110
6.4.3 Identifying Unsafe Plans . 111
6.4.4 Numerical Constraint Formulation . 113
6.4.5 Trajectory Optimization Formulation 114

6.5 Chapter Summary . 114
6.5.1 Chapter Summary . 114
6.5.2 What is Missing? . 115

7 Error Reachable Sets via Sampling . 116

7.1 Maximizing Tracking Error . 116
7.1.1 FRS Reminder . 117
7.1.2 A Partition of the Initial Condition Set 117
7.1.3 Forecasting A Sampling Strategy . 117

vii

7.1.4 Where is Tracking Error Maximized? 117
7.2 Sampling to Compute the ERS . 120

7.2.1 Notation Review . 120
7.2.2 Partition of the Generalized Velocity Space 120
7.2.3 Sampling Generalized Velocities . 121
7.2.4 Sampling Trajectory Parameters . 122
7.2.5 Computing the Tracking Error for Each Sample 123
7.2.6 Storing the Worst-Case Tracking Error 123
7.2.7 The ERS Estimation Algorithm . 124

7.3 ERS Representations . 124
7.3.1 ERS Representation for the Polynomial FRS 124
7.3.2 ERS Representation for the Zonotope FRS 126

7.4 Chapter Review . 127
7.4.1 Chapter Summary . 127
7.4.2 What is Missing? . 127

8 Forward Reachable Set via Rotatotopes . 129

8.1 Manipulator Notation and Assumptions . 129
8.1.1 Kinematics . 129
8.1.2 Dynamics . 130

8.2 Manipulator RTD Overview . 130
8.2.1 Offline Reachability Analysis . 131
8.2.2 Online Planning . 131

8.3 Rotatotopes . 131
8.3.1 Matrix Zonotopes . 131
8.3.2 Indeterminate Products . 132
8.3.3 Rotatotopes . 132

8.4 Rotatotope FRS . 135
8.4.1 Offline JRS Computation . 136
8.4.2 From Zonotopes to Matrix Zonotopes 137
8.4.3 Online Rotatotope FRS Construction 140

8.5 Slicing Rotatotopes . 140
8.5.1 Indeterminate Removal and Inclusion 141
8.5.2 The Slicing Algorithm . 141
8.5.3 Slicing the Rotatotope FRS . 142

8.6 Online Planning . 143
8.6.1 Obstacle Representation . 143
8.6.2 Fully-Sliceable Generators . 144
8.6.3 Identifying Unsafe Plans . 145
8.6.4 Numerical Constraint Formulation . 146
8.6.5 Trajectory Optimization Formulation 147

8.7 Chapter Review . 148
8.7.1 Chapter Summary . 148
8.7.2 What is Missing? . 148

viii

9 Implementations and Comparisons . 150

9.1 The Segway Wheeled Robot . 150
9.1.1 High-Fidelity Model . 151
9.1.2 Planning Model . 152
9.1.3 Tracking Controller . 152
9.1.4 Forward Reachable Set . 153
9.1.5 Simulation in Static Environments . 153
9.1.6 Simulation in Dynamic Environments 159
9.1.7 Hardware Demonstration . 160

9.2 The Rover Wheeled Robot . 160
9.2.1 High-Fidelity Model . 161
9.2.2 Planning Model . 162
9.2.3 Tracking Controller . 162
9.2.4 Forward Reachable Set . 162
9.2.5 Simulation in Static Environments . 163
9.2.6 Hardware Demonstration . 164

9.3 The Fusion Passenger Sedan . 165
9.3.1 High-Fidelity Model . 166
9.3.2 Planning Model . 167
9.3.3 Tracking Controller . 167
9.3.4 Forward Reachable Set . 167
9.3.5 Simulation in Static Environments . 168

9.4 The EV Wheeled Robot . 170
9.4.1 High-Fidelity Model . 171
9.4.2 Planning Model . 171
9.4.3 Tracking Controller . 172
9.4.4 Forward Reachable Set . 172
9.4.5 Simulation in Dynamic Environments 172
9.4.6 Hardware Demonstration . 175

9.5 The Hummingbird Quadrotor . 176
9.5.1 High-Fidelity Model . 176
9.5.2 Planning Model . 178
9.5.3 Tracking Controller . 179
9.5.4 Forward Reachable Set . 180
9.5.5 Simulation in Static Environments . 181

9.6 The Mambo Quadrotor . 183
9.6.1 High-Fidelity Model . 183
9.6.2 Planning Model . 185
9.6.3 Tracking Controller . 185
9.6.4 Forward Reachable Set . 185
9.6.5 Simulation in Static Environments . 185
9.6.6 Simulation in Dynamic Environments 187
9.6.7 Hardware Demonstration . 188

9.7 The Fetch Manipulator . 189

ix

9.7.1 Robot Model . 189
9.7.2 Forward Reachable Set . 190
9.7.3 Simulation in Static Environments . 190
9.7.4 Hardware Demonstration . 193

9.8 Chapter Review . 194
9.8.1 Chapter Summary . 194
9.8.2 What is Missing? . 194

10 Conclusion and Future Directions . 195

10.1 Dissertation Review and Contributions . 195
10.2 Future Research Directions . 196
10.3 Final Remarks . 197

Bibliography . 198

x

LIST OF FIGURES

FIGURE

1.1 A Segway robot (left) and a Rover robot (right) use RTD to safely and successfully
perform trajectory planning through a variety of random and structured static scenes
[KVB+20]. Each robot’s trajectory is shown fading from dark to light with the passage
of time. 2

1.2 A bird’s eye view shows RTD planning in a dynamic environment [VKL+19]. Here,
the Segway robot moves from left to right, and dodges a red, box-shaped virtual obsta-
cle moving from right to left. The blue arrow shows the Segway’s trajectory, and the
red arrow shows the obstacle’s trajectory; both arrows are offset from Segway/obstacle
for visual clarity. At one time instance, we see the Segway’s time-varying reachable
set as a green pear shape, and the prediction of the obstacle’s motion as a light red set;
both of these shapes fade from light to dark to indicate the flow of time. 7

1.3 The Fetch robot’s manipulator arm uses RTD to plan from a start pose (purple on a
low shelf) to a goal pose (green on a high shelf) around a cabinet [HKZ+20]. The
transparent arms show intermediate poses planned by RTD. One particular pose is
shown in blue, with a callout on the left, to demonstrate how RTD sees its environment
and plans. In the callout, the grey volume is the arm’s reachable set of all possible
trajectories in the given receding-horizon planning iteration. The blue volume, with
several time steps shown, is the reachable set for the particular choice of trajectory
parameters in the particular iteration; this blue volume is guaranteed to not intersect
with the cabinet (light red), since RTD is able to provably generate collision-free
trajectory plans. 8

3.1 An overview of the FRS for a wheeled robot in dark blue; the FRS is shown in light
blue, projected into the trajectory parameter space on the left and the workspace on
the right. An obstacle in the workspace corresponds to a set of unsafe trajectory pa-
rameters. At runtime, we use this unsafe set as a collision avoidance constraint for
trajectory optimization; any feasible solution is provably collision-free. An example
feasible (safe) plan is shown as a green point in the parameter space and as a dashed
blue line in the workspace, along with the green collision-free subset of the FRS cor-
responding to that plan. In this figure, the obstacle and workspace are shown in the
robot’s planning frame, with the robot at the initial condition x0. 35

xi

3.2 A single online planning iteration. Note, predictions of the obstacles are not shown.
The high-level planner generates an intermediate waypoint (black star), which defines
a cost function in the trajectory parameter space (shown as a gradient). The FRS is
used to identify unsafe trajectory parameters, shown as the intersection of the FRS and
an obstacle in the workspace, and as a pink region of the parameter space. Trajectory
optimization finds a feasible plan, shown as a green point in the parameter space, and
a dashed line in the workspace, with the corresponding subset of the FRS in green.
The solid line shows the high-fidelity model trajectory with tracking error, which is
contained in the green subset of the FRS corresponding to the safe plan. 39

5.1 Motivation and method for buffering and discretizing obstacles. In each subfigure,
the trajectory parameter space K is on the left, and the robot’s workspace is on the
right. The robot has a rectangular body B in blue. In the first subfigure, the obstacle
consists of two points, labeled Odisc; the corresponding unsafe trajectory parameters
Kdisc are shown in K on the left. A safe k is chosen, and the corresponding subset
of the FRS is shown on the right. In the second subfigure, the obstacle is a closed,
compact polygon O, with corresponding pink unsafe plans Kunsf shown on the left.
A discretized obstacle is constructed by sampling ∂O, and the corresponding unsafe
parameters are shown as Kdisc on the left; we see that there exist parameters that
are safe with respect to this discretized obstacle, but unsafe for the actual obstacle
O. In the third subfigure, we remedy this issue by buffering the obstacle to produce
Obuf, then constructing the discretized obstacle from the buffered obstacle boundary.
The unsafe plans for the discretized (buffered) obstacle are a provably superset of the
unsafe plans for the (unbuffered) obstacle. 71

5.2 Examples (and visual proof) of the geometric quantities rmax, r, b, and a, used to
construct the discretized obstacle, for rectangular and circular robot bodies. 74

5.3 Passing through (as in Definition 5.12), penetrating (as in Definition 5.16), and pene-
trating into a circle (as in Definition 5.21). In each subfigure, a family {H(t)} of con-
tinuous rotations and translations attempts to pass the convex, compact set B through
the line segment I with endpoints EI . At t = 0, B lies in the halfplane PI , defined
by I . Each figure contains B at its initial position H(0)B and final position H(tf)B
indicated by a dark outline. The lighter outlines between these positions show exam-
ples of B being translated and rotated as each H(t) is applied. In Figure 5.3a, B is
able to pass fully through I; the index t0 ∈ Tplan where B first touches I is also shown
with a dark outline. In Figure 5.3b, B is unable to pass fully through I , but penetrates
through I by some distance into P C

I . In Figure 5.3c, the line segment I has length 0,
so B cannot pass through it, but instead stops as soon as it touches I , and achieves 0
penetration distance through I . Note that, in this case, PI is defined by a line perpen-
dicular to the line segment from I to the center of mass of B, as per Definition 5.11.
In Figure 5.3d, the circle Ω has a chord C, and B penetrates into Ω through C by the
penetration distance shown. The halfplane defined by C is denoted PC 76

xii

5.4 An arbitrary, compact, convex set B lies in the plane. In Figure 5.4a, the line segment
I defines the closed halfplane PI (the filled grey area) using the function δ± from
(5.27). If the endpoints of I are labeled e1 and e2, then the set PI contains all points
p ∈ R2 for which the sign of δ±(e1, e2, p) is the same as the sign of δ±(e1, e2, c0),
where c0 is the center of B. In Figure 5.4b, a unit vector û is fixed to the origin with
angle θ. The thickness of B is given by the distance between the two unique lines that
are tangent to B and perpendicular to û. 77

5.5 An arbitrary compact, convex set B of width rmax penetrates a line segment Irmax by
the distance bmax when a transformation family {H(t)} is applied to pass B through
Irmax . Since Irmax is of length rmax, B cannot pass fully through by Lemma 5.14. At
the initial index t = 0 and the final index t = tf, the sets H(0)B and H(tf)B are shown
with dark outlines. A sampling of intermediate indices t ∈ (0, tf) are shown with light
outlines. The first subfigure shows a suboptimal solution; the second subfigure shows
the optimal solution to identify the buffer bound bmax. 79

5.6 An illustration of Program (5.33) in Figures 5.6a and 5.6b, and Program (5.36) in
Figure 5.6c. The set B is an arbitrary convex, compact shape, and starts at t = 0 in
the left half-plane PI . The transformation family {H(t)} attempts to pass B through
Irmax . At time T , H(tf)B is stopped such that its penetration distance through Irmax is
the distance b. Program (5.33) attempts to find the smallest line segment Ir that can be
created when passing B through Irmax up to the penetration distance b; a suboptimal,
feasible solution is shown in Figure 5.6a, and an optimal solution is shown in Figure
5.6b. Program (5.36) attempts to find the smallest chord Ca of a circle Ωb for which
B cannot penetrate farther than b into Ωb through Ca. This is shown in Figure 5.6c,
which starts from a feasible solution to (5.33), then centers the circle Ωb on a point
of H(tf)B that has penetrated to the distance b past Irmax . The chord Ca is defined by
points in the intersection of ∂H(tf)B with Ωb, and is therefore also a chord of H(tf)B.
In this case, the optimal Ca is shown. 84

5.7 Discretized obstacles for dynamic environments. Time is shown fading from light to
dark for both the robot and the obstacle prediction. The robot is moving from left
to right for a given plan, with the corresponding FRS shown in green for the entire
trajectory, and with dark outlines for two times. An obstacle prediction, discretized as
in §5.7.3, is shown at the corresponding times. By ensuring collision avoidance at t1
and t2 ∈ Tplan, and choosing the buffer size and discretization fineness correctly, we
can ensure collision avoidance for all of Tplan. 93

6.1 An example zonotope Z (the grey volume) in Rn with three generators (in orange,
green, and blue), and a center c (in black). 101

6.2 An illustration of the PRS for an aerial robot. The PRS is shown as a sequence of
high-dimensional zonotopes, projected into K and W as boxes. The particular subset
of the PRS corresponding to one plan k is also shown, with the resulting sliced PRS
shown as a sequence of zonotopes surrounding the trajectory parameterized by k. This
subset is found by slicing the zonotope PRS as in (6.28). 105

xiii

6.3 An illustration of the ERS as a collection of zonotopes for a single trajectory plan and
the resulting tracking error. The tracking error zonotopes are shown in the space Rnhi

on the left, along with the tracking error as a solid blue curve. The planned trajectory
is a dashed curve on the right, with the executed trajectory as a solid curve. The
tracking error zonotopes are overlaid on both trajectories to show how they can be
constructed to contain the error when they are shifted to contain the planned trajectory. 105

6.4 A visual proof of the intersection of zonotopes using the Minkowski sum. The grey
and pink zonotopes intersect on the left (generators shown in black, and centers shown
as points), meaning the center of the grey zonotope is inside the Minkowski sum of
the pink zonotope with the generators of the grey zonotope. 111

8.1 An overview of the proposed method for a 2-D, 2-link arm. Offline, RTD computes
the JRSs, shown as the collection of small grey zonotoeps overlaid on the unit circle
(dashed) in the sine and cosine spaces of two joint angles. Note that each JRS is
conservatively approximated, and parameterized by trajectory parameters K. Online,
the JRSs are composed to form the arm’s reachable set, comprised of rotatotopes
(large light grey sets in the workspace W), maintaining a parameterization by K. An
obstacle O (light red) is mapped to the unsafe set of trajectory parameters Kunsf ⊂
K on the left, by intersection with each rotatotope. The parameter k represents a
trajectory, shown at five time steps (blue arms in W , and blue dots in joint angle
space). The subset of the arm’s reachable set corresponding to k is shown for the last
time step (light blue boxes with black border), critically not intersecting the obstacle,
which is guaranteed because k 6∈ Kunsf. 135

9.1 The Segway wheeled robot. 151
9.2 Sample simulation environments for the Segway, which starts on the west (left) side

of the environment, with the goal plotted as a dotted circle on the east (right) side of
the environment. The Segway’s pose is plotted as a solid circle every 1.5 s, or less
frequently when the Segway is stopped or spinning in place. For RTD, contours of the
FRS are plotted to show the reachable set corresponding to the plans in each planning
iteration. The actual (non-buffered) obstacles for all three planners are plotted as solid
boxes. For RTD, the discretized obstacle is plotted as points around each box. For
RRT and NMPC, the buffered obstacles are plotted as light lines around each box.
This figure shows an environment where all three planners are successful. Row 2
shows an environment where RTD is successful, but RRT and NMPC are not. 156

9.3 Sample simulation environments for the Segway, with the same plotting convention
as Figure 9.2. RTD is successful, whereas RRT and NMPC are not. RRT attempts
to navigate a gap between several obstacles, where it is unable to find a new plan; it
collisides when it tries to brake along its previously-planned trajectory. NMPC brakes
because it cannot compute a safe plan to navigate the same gap where RRT collided;
here, NMPC happens to brake safely and gets stuck because it cannot find a new plan
fast enough. 157

xiv

9.4 Sample simulation environments for the Segway, with the same plotting convention
as Figure 9.2. RTD stops safely, but fails to reach the goal, whereas RRT and NMPC
do reach the goal. RTD initially turns north more sharply than RRT or NMPC, which
forces it to brake safely; it then finds a safe path south, which causes the high-level
planner to reroute it even farther south to where there is no feasible solution, causing
RTD to get stuck because the southern route is considered feasible by the high-level
planner. RRT and NMPC reach the goal because they do not turn north as sharply
initially, so the high-level planner is able to route them north and around the obstacles. 158

9.5 The Rover wheeled robot. 161
9.6 Two sample environments from the Rover simulations. The Rover’s trajectory, starting

from the far left, is a solid line, and its pose at several sample time instances is plotted
with solid rectangles. Obstacles are plotted as red boxes. Buffered obstacles for RRT
and NMPC are plotted with light solid lines. Subfigures (a) and (b) show RTD avoid-
ing the obstacles. The subset of the FRS associated with the optimal parameter every
1.5 s is plotted as a contour. Subfigures (c) and (d) show the RRT method. In Subfig-
ure (c), RRT is unable to safely track its planned trajectory around the first obstacle.
In Subfigure (d), RRT is able to come to a stop before the second obstacle. Subfigures
(e) and (f) show NMPC, which stops due to enforcement of real-time planning limits. . 165

9.7 The Fusion passenger sedan using RTD to safely and autonomously plan and perform
a double lane-change around static obstacles at 15 m/s (which is the speed limit of the
road shown). The robot is simulated in the high-fidelity CarSim environment [Mec18],
which models the robot’s hybrid powertrain and tire dynamics. Using RTD, the robot
successfully navigated a 1 km test track, populated with random obstacles, with no
collisions. 166

9.8 The Fusion passenger sedan navigating a section of a 1 km test track using RTD at
up to 15 m/s. The robot is plotted every 1.5 s (that is, every third receding-horizon
planning iteration, since tplan = 0.5 for this robot); its FRS subset corresponding to
each planned trajectory is shown in green, and static obstacles are shown in orange.
Since the FRS lies outside of all obstacles, the robot provably avoids collision. 169

9.9 An illustration of the EV performing an obstacle avoidance maneuver around a rect-
angular dynamic obstacle. Past positions of the EV and the obstacle are shown with
opacity increasing with time. For the current planning iteration, a prediction of the
obstacle is shown fading from light to dark, and the corresponding unsafe trajectory
parameters are shown in the inset space K. The EV’s particular choice of trajectory
plan is shown as a green point inK, and the corresponding subset of the FRS is shown
in green fading from light to dark as time passes. 170

9.10 Timelapse of EV (blue) completing a left turn. Figures show time at 0.0, 2.0, 3.0, and
5.0 s from top to bottom. Obstacles and their prediction are plotted in red. The vehicle
obstacles are traveling at 5 m/s. The pedestrian is traveling at 2 m/s. The EV begins the
scenario stopped at the intersection. The FRS intervals are shown in green. Obstacle
predictions and the FRS intervals fade from dark to light with increasing time. The
left turn maneuver is longer in duration, and therefore requires longer predictions,
than the driving-straight maneuvers (which begin after the ego vehicle completes the
turn at t = 3.0 s). 175

xv

9.11 An example trajectory planned online in a cluttered environment with obstacles in
light red and the ground in brown. The tube of light blue boxes, which does not
intersect any obstacles, is the subset of the zonotope FRS for the current plan plus
tracking error, so the quadrotor (in dark blue) is guaranteed to fly within the tube. The
world and trajectory are shown in Figure 9.12. 182

9.12 The example simulated world from Figure 9.11, with obstacles in light red, the ground
in brown, world boundaries as axes, and the global goal as a light green sphere. A
trajectory of the quadrotor is shown in dark blue, and goes from left to right. The
quadrotor’s reachable set (light blue) is shown for the same planning iteration as in
Figure 9.11. 182

9.13 The Parrot Mambo navigates around static obstacles to reach a global goal (green
sphere on the right) without collision despite tracking error. The callout in the bot-
tom right shows the drone’s planned trajectory (dashed blue), realized trajectory (solid
blue, also overlaid in the photo), and current speed. The blue box is the FRS corre-
sponding to the plan at the time shown, composed of a sequence of zonotopes, all of
which lie outside of the obstacles thereby ensuring collision avoidance. 183

9.14 A Random Obstacles trial with 8 obstacles in which CHOMP [ZRD+13] converged
to a trajectory with a collision (collision configurations shown in red), whereas RTD
successfully navigated to the goal (green); the start pose is shown in purple. CHOMP
fails to move around a small obstacle close to the front of the Fetch. 192

9.15 The set of seven Hard Scenarios (number in the top left), with start pose shown in
purple and goal pose shown in green. There are seven tasks in the Hard Scenarios set:
(1) from below to above a table, (2) from one side of a wall to another, (3) between
two vertical posts, (4) from one set of shelves to another, (5) from inside to outside of
a box on the ground, (6) from a sink to a cupboard, (7) through a small window. 193

xvi

LIST OF TABLES

TABLE

1.1 Notation used throughout this work. 9
1.2 RTD-specific notation used throughout this work. 10

9.1 Segway simulation/comparison results in 1000 random static environments. We com-
pare to an RRT based on [KFT+08, PKA16, PLM06], and NMPC [PR14]. Note, 1

indicates that real-time planning (the timeout tplan) was enforced, and 2 indicates that
real-time planning was not enforced. This distinction is also shown with a dashed line. 155

9.2 Segway simulation/comparison results in 1000 random dynamic environments. RTD
outperforms a State Lattice (SL) approach [McN11], and causes no at-fault collisions.
RTD outperforms both RRT and NMPC when real-time planning is enforced. 160

9.3 Rover simulation/comparison results in 1000 mock-road static environments. Note, 1

indicates that real-time planning (the timeout tplan) was enforced, and 2 indicates that
real-time planning was not enforced. This distinction is also shown with a dashed line.
When real-time planning is enforced, RTD reaches nearly as many goals as RRT, but
with no collisions; and NMPC cannot reach any goals because it is unable to plan fast
enough. 164

9.4 Fusion simulation/comparison results in 10 trials of a 1 km test track with random
static obstacles. Note, 1 indicates that real-time planning (the timeout tplan) was en-
forced, and 2 indicates that real-time planning was not enforced. This distinction is
also shown with a dashed line. RTD outperforms both RRT and NMPC because those
methods struggle to plan with the robot’s high-fidelity model in real time, and instead
have to frequently plan safe stopping maneuvers. 169

xvii

9.5 EV simulation/comparison results in 1000 random scenarios, and 100 left turn sce-
narios. RTD is treated with two different methods of representing obstacles. First the
time discretization method (disc), and second, the time interval method (int). We also
compare against a State Lattice (SL) method [McN11] in the random scenarios, and a
generic linear MPC method [GPM89] in the left turn scenarios. We compare the per-
centage of goals reached, the percentage of trials that had at-fault collisions (AFC),
the average time taken to reach the goal (ATTG), and the average speed (AS). Note,
the average speed for the left turns appears low because the robot begins stopped, and
must wait until it finds an entire feasible left turn trajectory, then must accelerate to 5
m/s to navigate through the intersection. RTD never causes an at-fault collision, as ex-
pected. In the random scenarios, the time interval RTD formulation reaches the most
goals, in the shortest time, with the highest average speed. In the left turn scenarios,
the time interval formulation reaches the most goals by taking on slightly more con-
servatism than the linear MPC approach, which is aggressive (hence its lowest time to
goal and highest average speed) at the expense of causing collisions. 174

9.6 Hummingbird implementation parameters . 177
9.7 Static obstacles results from 1000 trials for the Mambo microdrone. The slash sep-

arates trials run on two different processors (3.4 / 2.8 GHz). Our proposed RTD
reaches the most goals, and never causes collisions, regardless of processor speed.
We also see that sampling methods outperform derivative-based methods (quadprog
and fmincon) for trajectory optimization. 187

9.8 Dynamic obstacles results from 1000 trials for the Mambo microdrone. The slash
separates trials run on two different processors (3.4 / 2.8 GHz). The trends are the
same as for static obstacles (see Table 9.7). Notice the potential field low-level con-
troller [FKS20] has nearly identical numbers regardless of processor speed, which is
expected since it is not performing trajectory optimization. 188

9.9 Simulation results for the Fetch mobile manipulator on the 100 Random Obstacles
trials. RTD uses the straight-line (SL) and RRT* HLPs; CHOMP [ZRD+13] uses the
default settings from MoveIt [CSCC14]. MST is mean solve time (per planning iter-
ation for RTD, and total for CHOMP) and MNPD is mean normalized path distance.
MNPD is only computed for trials where the task was successfully completed, i.e. the
path was valid. 193

9.10 Simulation results for the seven Hard Scenario simulations. RTD uses the straight-line
(SL) and RRT* HLPs. The entries are “O” for task completed, “C” for a crash, or “S”
for stopping safely without reaching the goal. 194

xviii

ABSTRACT

Autonomous mobile robots have the potential to increase the availability and accessibility of goods
and services throughout society. However, to enable public trust in such systems, it is critical to
certify that they are safe. This requires formally specifying safety, and designing motion planning
methods that can guarantee safe operation (note, this work is only concerned with planning, not
perception).

The typical paradigm to attempt to ensure safety is receding-horizon planning, wherein a robot
creates a short plan, then executes it while creating its next short plan in an iterative fashion,
allowing a robot to incorporate new sensor information over time. However, this requires a robot
to plan in real time. Therefore, the key challenge in making safety guarantees lies in balancing
performance (how quickly a robot can plan) and conservatism (how cautiously a robot behaves).
Existing methods suffer from a tradeoff between performance and conservatism, which is rooted
in the choice of model used describe a robot; accuracy typically comes at the price of computation
speed.

To address this challenge, this dissertation proposes Reachability-based Trajectory Design
(RTD), which performs real-time, receding-horizon planning with a simplified planning model,
and ensures safety by describing the model error using a reachable set of the robot.

RTD begins with the offline design of a continuum of parameterized trajectories for the plan-
ning model; each trajectory ends with a fail-safe maneuver such as braking to a stop. RTD then
computes the robot’s Forward Reachable Set (FRS), which contains all points in workspace reach-
able by the robot for each parameterized trajectory. Importantly, the FRS also contains the error
model, since a robot can typically never track planned trajectories perfectly. Online (at runtime),
the robot intersects the FRS with sensed obstacles to provably determine which trajectory plans
could cause collisions. Then, the robot performs trajectory optimization over the remaining safe
trajectories. If no new safe plan can be found, the robot can execute its previously-found fail-safe
maneuver, enabling perpetual safety.

This dissertation begins by presenting RTD as a theoretical framework, then presents three
representations of a robot’s FRS, using (1) sums-of-squares (SOS) polynomial programming, (2)
zonotopes (a special type of convex polytope), and (3) rotatotopes (a generalization of zonotopes
that enable representing a robot’s swept volume). To enable real-time planning, this work also de-
velops an obstacle representation that enables provable safety while treating obstacles as discrete,

xix

finite sets of points. The practicality of RTD is demonstrated on four different wheeled robots
(using the SOS FRS), two quadrotor aerial robots (using the zonotope FRS), and one manipulator
robot (using the rotatotope FRS). Over thousands of simulations and dozens of hardware trials,
RTD performs safe, real-time planning in arbitrary and challenging environments.

In summary, this dissertation proposes RTD as a general purpose, practical framework for
provably safe, real-time robot motion planning.

xx

CHAPTER 1

Introduction

While people are capable of performing a wide variety of tasks, they cannot always guarantee that
any task will be completed safely and successfully. This is especially true for tasks that are difficult
or dangerous to perform consistently and repeatedly, such as long-distance delivery, emergency
response, and in-home care for the elderly.

Autonomous robots, if carefully developed and deployed, have the potential to perform many
tasks in place of humans. But, what tasks should, and can, be automated? Much of farming and
manufacturing is already automated. However, it is much harder to automate the distribution of
goods, construction of infrastructure, and collaboration between robots and people. Many such
tasks can be solved using mobile robots and manipulators, which can move through, and interact
with, the world. One could certainly build such a robot without regard for the health and safety of
people, but this robot is not likely to integrate well into society or be widely used. Therefore, while
we should certainly build robots that are capable of completing tasks successfully, we should also
be able to certify that such robots are safe.

This dissertation addresses how to perform provably-safe robot motion planning by propos-
ing a method called Reachability-based Trajectory Design (RTD). This chapter introduces RTD by
presenting an overview of the scope and goals of this work, then listing specific technical contri-
butions. We also present the dissertation’s organization and notation.

1.1 Overview

We now present the scope, goals, and context of this dissertation.

1.1.1 Scope and Goals

To move through or interact with the world, a robot must perceive its surroundings, predict the mo-
tion of other mobile actors, and plan its own motion. This work is only concerned with planning,
not perception or prediction.

1

Figure 1.1: A Segway robot (left) and a Rover robot (right) use RTD to safely and successfully
perform trajectory planning through a variety of random and structured static scenes [KVB+20].
Each robot’s trajectory is shown fading from dark to light with the passage of time.

The overall goal of this work is safe, real-time, receding-horizon robot motion planning. Achiev-
ing this goal requires addressing several sub-goals. First, we must specify mathematical descrip-
tions of robots that are complex enough to describe robots accurately, but simple enough to enable
real-time planning. Second, we must be able to compensate for our imperfect models. Third,
we must be able to represent the salient information in a robot’s environment necessary for safe
planning.

Next, we discuss the context of this work. We introduce receding-horizon planning, which is
performed using a planning hierarchy. Then, we briefly discuss reachability analysis, the underly-
ing tool that enables RTD. Finally, we state the research gaps that RTD addresses.

1.1.2 Receding-Horizon Planning

Robots acquire new information from sensors with limited range, which we call a finite sensor
horizon. To incorporate new sensor information into motion planning, robots typically use a
receding-horizon strategy, wherein a robot executes a short plan while creating a new short plan
in an iterative fashion. This strategy applies across different robot morphologies, such as wheeled
robots [HGK10, KQCD15], aerial robots [GKM10], and manipulator arms [Hau12, MSS18].

Receding-horizon planning requires the robot to plan in real time. Real-time planning in static
environments means the robot must create a new plan before it finishes executing its previously-
planned trajectory. When a robot always has a plan available, we call its planning algorithm
persistently feasible [KVB+20]. If each plan is long in duration, this may not be difficult to
achieve; similarly, if each plan ends with the robot stopped, then the robot can execute an entire
plan, then stay stopped while planning its next motion. However, when environments are dynamic
(that is, containing other moving actors), the robot must plan with respect to predictions of other
actors’ behavior. Since prediction accuracy decreases as prediction duration increases [JHJRV17],

2

it is important that a robot can re-plan quickly, so that its plans (and predictions) can be of shorter
duration.

1.1.3 The Planning Hierarchy

Receding-horizon planning is typically broken up into a three-tiered planning hierarchy (see, e.g.,
[KQCD15, GPMN15, KVB+20, McN11, UAB+08]). At the top of the hierarchy is a path plan-
ner that attempts to rapidly find a path through the robot’s workspace from start to goal, typically
by ignoring the robots dynamics. The output of the path planner is passed to a trajectory plan-
ner, which attempts to produce a dynamically-feasible trajectory that tracks the path as closely as
possible. The output of the trajectory planner is passed to a tracking controller, which generates
inputs for the robot’s actuators to track a trajectory, typically using state feedback.

We discuss how one can attempt to enforce safety at each tier of this hierarchy in §2, wherein
we review the relevant literature. In short, we find the following. The path planning tier may
struggle to enforce safety because it sacrifices an accurate representation of the robot’s dynamics
for planning speed. The tracking controller tier may similarly struggle to enforce safety without
incurring excessive conservatism, because a common approach to enforcing safety is to treat the
path and trajectory planners as a disturbance. This leads us to develop RTD as a trajectory planner,
which is able to safely bridge the gap between unsafe path planners and unsafe tracking controllers.

1.1.4 Reachability Analysis

To enable safe robot motion planning, we require a mathematical framework for describing how
these robots move through the world. The particular framework used in this work is reachability
analysis, hence the name Reachability-based Trajectory Design. Here, we briefly discuss what
reachability analysis is, and why it is useful; we provide particular examples in §2.

Reachability analysis is concerned with how sets evolve when subject to vector fields. This
framework can be used to assess the safety of a robot by expressing its body and states as elements
of sets, and its motion as a vector field. In particular, we care that all points in space that are
reachable by a robot, when executing a particular motion plan, lie outside of obstacles.

In this dissertation, we present a generic formulation of reachable sets for motion planning in
§3. To implement this formulation, we perform reachability analysis using sums-of-squares (SOS)
programming (§4), zonotope reachability (§6 and §8), and sampling (§7). Examples of each of
these methods are discussed in §2.

3

1.1.5 Research Gap

The key challenge in robot motion planning is to enforce safety without sacrificing performance;
this challenge arises from the high-dimensional models typically used to accurately describe robots,
in contrast to the simplified models typically used for real-time planning. In other words, one must
compensate for tracking error between accurate models and simplified planning models.

The key challenge in reachability analysis is to numerically represent and compute reachable
sets for high-dimensional systems. Indeed, it is typically possible to compute reachable sets for
simplified planning models, but, as with the challenge of real-time planning, one must incorporate
tracking error.

RTD addresses this research gap by specifying how one should create a simplified planning
model and represent tracking error, and by specifying a variety of methods to compute reachable
sets. Note, we revisit these research gaps later in §2 in the context of the literature.

1.2 Contributions

The proposed method of this dissertation is Reachability-based Trajectory Design (RTD). This
section introduces the reader to RTD, and lays the foundation for the rest of the dissertation. First,
we summarize the contributions of RTD. Second, we list the specific contributions of each paper
in which RTD has been developed.

1.2.1 Summary of Contributions

This work summarizes the development and implementation of RTD. As detailed across sev-
eral papers, RTD has been applied to wheeled robots [KVJRV17, KVB+20, VSK+19, VKL+19,
VLK+19], quadrotor drones [KHV19], and manipulator arms [HKZ+20].

RTD is a real-time, provably-safe, receding-horizon trajectory planner for robots in arbitrary
environments. The method is successfully demonstrated on a wide variety of robot morphologies.
RTD outperforms other methods in the current literature in terms of both safety and performance,
meaning that a robot using RTD is more often able to reach desired locations without suffering
collisions.

The particular contributions of this work are: (1) offline computation of parameterized reach-
able sets for a variety of robot morphologies; (2) online, receding-horizon computation of provably-
safe trajectory plans; (3) simulations demonstrating RTD outperforming other recent methods in
terms of both safety and task completion; (4) hardware demonstrations on five different platforms
that demonstrate the versatility and efficacy of RTD.

4

1.2.2 Contributions per Paper

We now summarize the development of RTD in terms of the papers [KVJRV17, KVB+20, VSK+19,
VKL+19, VLK+19, KHV19, HKZ+20]. This section presents a summary of each paper, and how
they are linked together. The body of this dissertation breaks these papers apart into their the-
oretical and practical components, and reorganizes them into a cohesive framework, which we
summarize in §1.3.

1.2.2.1 Safety for Wheeled Robots

The theory underlying RTD was first presented in [KVJRV17]. This work uses SOS programming
(represented with a semidefinite program, or SDP) to compute a parameterized FRS of an au-
tonomous car’s trajectories, plus tracking error, offline; the FRS is represented as a semialgebraic
set. At runtime, the FRS is intersected with obstacles, represented as semialgebraic sets, by solving
another SDP, producing a semialgebraic set that overapproximates the unsafe trajectory parameters
in a particular receding-horizon planning iteration. This work also establishes the minimum time
horizon required for each plan, and the minimum sensor horizon required to certify safe planning.
The autonomous car is described by a dynamic unicycle model, and the parameterized trajectories
are Dubins paths [Dub57], with speed and yaw rate as the trajectory parameters. While this work
provides sufficient bounds to ensure the safety of RTD’s receding-horizon planning, the runtime
SDP is too slow for real-time planning.

1.2.2.2 Real-time Performance

We solved the problem of real-time, safe planning with RTD in [KVB+20], as shown in Figure 1.1.
This work provides a detailed method for representing obstacles as discrete, finite sets of points, as
opposed to semialgebraic sets. Then, instead of using a SOS program to compute the set of unsafe
trajectory parameters in each planning iteration, we need only perform a polynomial evaluation,
which is three orders of magnitude faster. This work also extends a system decomposition ap-
proach, presented in [CHV+18] for HJB reachability, to SOS reachability analysis, enabling RTD
to be applied for a bicycle model of a car with a lane change parameterization. In this work, RTD
is applied to a Segway robot and a car-like Rover. This work bridges the gap between safety and
real-time performance, thereby addressing the most important challenge discussed in the litera-
ture review. Furthermore, this work performs a comparison between RTD, RRT, and NMPC, and
shows that RTD is able to outperform the other two planners in terms of safety and performance.
However, the robots in this work only move at under 2 m/s, meaning that they are able to use a
short trajectory duration, leaving it unclear how to extend RTD to larger robots in more realistic
scenarios.

5

1.2.2.3 Increased Model Complexity

To show the practicality of RTD for larger robots at higher speeds in more realistic scenarios, we
demonstrated the method on a high-fidelity model of a passenger car [VSK+19]. The car is simu-
lated in CarSim [Mec18]. Using RTD, the car is able to autonomously navigate a 1 km test track
(in the MCity proving ground [UMT15]) safely at up to 15 m/s (the speed limit of the test track),
despite randomly-placed obstacles. We also showed that, when there is no feasible path forward,
RTD causes the car to safely brake to a stop. The car is described by a high-dimensional bicy-
cle model [LDM15, Eq. (1)], plus uncertainty to accommodate nonlinearities and modeling error
resulting from gear shifts, tire forces, and the hundreds of states that are modeled in CarSim. Im-
portantly, RTD is able to navigate the test track safely while planning in real time, which RRT and
NMPC fail to do. However, this paper and all the previous work only consider static environments.

1.2.2.4 Planning in Dynamic Environments

We extended RTD to dynamic environments in [VKL+19], as shown in Figure 1.2. This work
introduces the notion of fault to RTD, and provides a method for provably not-at-fault planning.
Note, since RTD is only concerned with planning, not perception or prediction, we assume predic-
tions are handed to the planner. The method is shown in simulation and hardware on the Segway,
and on a carlike Electric Vehicle (EV). It outperforms a state lattice planner [McN11] in terms
of safety and performance, by reaching desired goal locations more often, without causing any
at-fault collisions. Unfortunately, this method uses a time discretization to represent moving ob-
stacles, which adds conservatism to ensure not-at-fault planning, resulting in low average speeds
and difficulty planning around many obstacles.

We enabled faster planning in more realistic and complex dynamic environments in [VLK+19].
This application of RTD uses a time partition instead of a time discretization, by computing an
FRS over several time intervals, and treating predictions of obstacles as static within each interval.
This approach drastically reduces the number of constraints required to represent unsafe plans at
runtime, and reduces conservatism by removing the need to buffer obstacles to compensate for
time discretization. Consequently, RTD is able to plan for the EV to drive at higher speeds (up to
7 m/s, whereas [VKL+19] could only plan up to 3 m/s). In addition, the EV is able to successfully
traverse realistic scenarios, such as unsignaled, crowded four-way intersections.

1.2.2.5 Extensions Beyond Wheeled Robots

All of the previous work only considered wheeled mobile robots, represented in the plane. We
have addressed this in two ways.

6

Figure 1.2: A bird’s eye view shows RTD planning in a dynamic environment [VKL+19]. Here,
the Segway robot moves from left to right, and dodges a red, box-shaped virtual obstacle moving
from right to left. The blue arrow shows the Segway’s trajectory, and the red arrow shows the
obstacle’s trajectory; both arrows are offset from Segway/obstacle for visual clarity. At one time
instance, we see the Segway’s time-varying reachable set as a green pear shape, and the prediction
of the obstacle’s motion as a light red set; both of these shapes fade from light to dark to indicate
the flow of time.

We extended RTD to 3-D, for drones in static environments, in [KHV19]. This paper also pro-
vides a novel method for computing the parameterized FRS, by using zonotope reachability instead
of SOS programming. Furthermore, this paper specifies a physics-based method for computing a
quadrotor’s tracking error with respect to parameterized trajectories; this was necessary due to the
22-dimensional space describing the quadrotor and parameterized trajectories, where the previous
work never required sampling in more than 3 dimensions to compute tracking error.

We extended RTD to manipulator arms in [HKZ+20], as shown in Figure 1.3. This paper
generalizes the zonotope reachability developed in [KHV19] for redundant manipulators, and en-
ables planning with respect to arbitrary polytopic obstacles. RTD outperforms vanilla CHOMP
[ZRD+13] on a variety of planning problems with varying difficulty in simulation, and is able to
solve real-time planning problems on hardware. Notably, RTD is able to respond safely to the
sudden appearance of an obstacle in front of the arm while it is in motion.

1.3 Dissertation Organization

The remainder of this document is organized as follows:

§2 We review the relevant literature.

§3 We develop a generic theoretical framework for RTD; in particular, we formally specify
notions of safety and fault, and show how reachable sets can be used to formulate safe
motion planning.

7

Figure 1.3: The Fetch robot’s manipulator arm uses RTD to plan from a start pose (purple on a
low shelf) to a goal pose (green on a high shelf) around a cabinet [HKZ+20]. The transparent arms
show intermediate poses planned by RTD. One particular pose is shown in blue, with a callout on
the left, to demonstrate how RTD sees its environment and plans. In the callout, the grey volume is
the arm’s reachable set of all possible trajectories in the given receding-horizon planning iteration.
The blue volume, with several time steps shown, is the reachable set for the particular choice of
trajectory parameters in the particular iteration; this blue volume is guaranteed to not intersect with
the cabinet (light red), since RTD is able to provably generate collision-free trajectory plans.

§4 To implement the theory from §3, we develop an offline sums-of-squares polynomial ap-
proach to compute the robot’s Forward Reachable Set (FRS) as a polynomial, and show how
to use this polynomial at runtime to enable provably-safe motion planning.

§5 We specify a novel discretized obstacle representation for arbitrary planar (i.e., wheeled)
robots that enables safe and real-time planning with the polynomial FRS.

§6 To extend RTD to robots outside the plane, we develop an FRS representation using zono-
topes, a special type of convex polytope.

§7 We show how to incorporate tracking error into the polynomial and zonotope FRSes.

§8 We introduce rotatotopes, an extension of zonotopes that make RTD tractable for multi-link
robots such as manipulators, whereas the polynomial and zonotope methods were restricted
to single rigid-body robots.

§9 We demonstrate RTD on wheeled, aerial, and manipulator robots in simulation and hardware.

§10 We provide concluding remarks and future research directions.

8

1.4 Notation

We use the following notation throughout this work. Generic notation is summarized in Table 1.1.
RTD-specific notation is summarized in Table 1.1.

Scalars and vectors, and functions that output them, are lowercase italic (e.g., a point x); the
exception is ∆, used to denote a positive scalar. Sets and arrays/matrices, and functions that output
them, are uppercase italic (e.g., a space X). Subscripts denote contextual information (e.g., a point
xhi ∈ Xhi denotes the state in a robot’s high-fidelity model). Superscripts in parentheses denote
indices (e.g., a point x(1) ∈ {x(i)}ni=1. Exponents are in superscripts without parenthesis (e.g., x2).
The set containing the point x is {x}. We round a real number up (resp. down) to the nearest
integer with dxe (resp. bxc). If f is a function its preimage (or inverse, if the inverse exists) is
f−1. If A is a set, its power set is pow (A), its interior is interior(A), its complement is AC, and its
boundary is ∂A.

Category Symbol Meaning

spaces
N natural numbers
Rn n-dimensional Euclidean space with n ∈ N
Sn n-dimensional unit sphere
SO(n)/SE(n) special orthogonal/Euclidean group associated with Rn

scalars,
vectors, and
sets

{x(i)}ni=1 superscripts denote indices
x∗ subscripts denote contextual information
f−1 preimage (or inverse, if it exists) of a function f
{x} the set containing the point x
pow (A) the power set of a set A
interior(A) the interior A
AC the complement of A
∂A the boundary of A

Table 1.1: Notation used throughout this work.

9

Category Symbol Meaning

timing
T time, T = [0,∞)

T (i) time horizon of ith planning iteration, T (i) ⊂ T
t(i) time at beginning of ith planning iteration
tf duration of each plan (i.e., length of each T (i))
tplan planning timeout

state
Q generalized coordinate space (i.e., configuration space)
Q̇ generalized velocity space (∼= tangent space to Q)
Xhi high-fidelity model state
fhi high-fidelity model, f : T ×Xhi × U → Rnhi

xhi high-fidelity model state or trajectory
X planning model state
f planning model, f : T ×X ×K → RnX

x planning model state or trajectory
p/v/a position / velocity / acceleration
θ/ω heading / yaw rate

control
inputs

U control input space
u control input u ∈ U or input signal u : T → U

uk feedback controller for plan k ∈ K
trajectory
parameters

K trajectory parameter space
K

(i)
unsf unsafe trajectory parameters in the ith iteration

k generic trajectory parameter k ∈ K, also called a plan
k(i) trajectory plan for the ith planning iteration

workspace
W workspace, R2 or R3

O obstacle, O : T → pow (W)

P(i) prediction in ith planning iteration, P : T (i) → pow (W)

reachable
sets

RFRS Forward Reachable Set (FRS)
Rplan Planning Reachable Set (PRS)
Rerr Error Reachable Set (ERS)
Robs Obstacle Reachable Set (ORS)

space sizes
nQ / nQ̇ configuration / generalized velocity space size
nhi high-fidelity model state space size
nX planning model state space size
nU control input space size
nK trajectory parameter space size

Table 1.2: RTD-specific notation used throughout this work.

10

CHAPTER 2

Safe Motion Planning in the Literature

This chapter discusses the motion planning literature in four parts. We begin by discussing safety.
Then, we explain how one can attempt to enforce safety at each tier of the receding-horizon plan-
ning hierarchy. Finally, we place RTD’s contributions in the context of the literature.

2.1 Safety

2.1.1 Defining Safety

This work is concerned with safe receding-horizon planning. Safety means not colliding with
obstacles, which can be static objects or other dynamic actors. Since safety is not always possible
to enforce in dynamic environments, we must also consider fault, in the sense that the robot should
be not-at-fault if a collision does occur with a dynamic obstacle [VKL+19, VLK+19, CSW+19,
SSSS17].

To simplify the exposition, we only use the term “safety” for the remainder of this chapter, with
the implication that safety encompasses not-at-fault behavior in dynamic environments.

2.1.2 Enforcing Safety in the Planning Hierarchy

Recall that receding-horizon planning is broken into a three-tiered planning hierarchy in §1.1.3.
A path planner generates a coarse path that is handed to a trajectory planner, which obeys the
dynamics of the robot and outputs a trajectory that is tracked by a tracking controller.

One could attempt to enforce safety at every tier of the planning hierarchy, but this may be un-
necessarily conservative, which correlates with reduced performance. To avoid such conservatism,
one can enforce safety at one tier, as long as one shows that this encompasses the behavior of
the other tiers. This leads to three safety paradigms: (1) safety in the path planner, (2) safety in
the trajectory planner, and (3) safety in the tracking controller. The proposed RTD method is in
paradigm 2, meaning that it enforces safety in the trajectory planner.

11

Next, we discuss path planners, trajectory planners, and tracking controllers in terms of both
safety and performance. We then summarize the challenges in the literature.

2.2 Path Planners

In path planning, one attempts to find a path (i.e., a connected curve) in the robot’s configuration
space from a start pose to a goal pose [LaV06]. In terms of safety, every point on the path should
be collision free, but the path itself need not obey any dynamic model of the robot, since it is
typically not parameterized by time (including time parameterization is the role of the trajectory
planner). Ignoring time and dynamics allows one to reduce the computational effort required for
generating the path, and instead spend that effort on collision checking; that is, checking if the
points on the path are collision-free. Indeed, collision checking is the primary challenge in making
these methods effective for real-time, safe planning.

A variety of methods exist for path planning, which can broadly be separated into sample-
and-check methods and gradient-based methods. In this section, we discuss these two classes of
methods in terms of advantages and disadvantages. We then briefly discuss collision checking.

2.2.1 Sample-and-Check Methods

Sample-and-check methods generate paths, as the name suggests, by iteratively sampling points
in configuration space and collision checking the paths connecting the samples to nearby points.
This approach allows one to build a family of paths as a discrete graph, for which choosing a
particular path can be done quickly using, e.g., Dijkstra’s algorithm. The speed and effectiveness
of representing paths with discrete graphs has been well studied for decades, at least since the
publication of the A* algorithm [HNR68].

We now present a few representative examples of sample-and-check methods. Perhaps the most
well-known sample-and-check methods are Rapidly-exploring Random Trees (RRT) [LKJ01] and
Probabilistic RoadMaps (PRM) [KSLO96]. Both of these admit “complete” versions, RRT* and
PRM*, which are certified to eventually find an optimal collision-free path if one exists [KF11].
They can also be extended to dynamic environments [OF15] in a receding-horizon way [Hau12].
Since collision checking is computationally expensive, one can take a “lazy” approach to perform
as few collision checks as possible [BK00, MSS18], which can result in rapid planning if one
precomputes a PRM as though no collisions exist [KRSV10, MFJQ+16]. To split the difference
between sampling at runtime and sampling offline, one can use precomputed edges, based on a
dynamic model of a robot, to build a graph of paths online; this approach is called a state lattice
[PKK09, McN11].

12

The advantage of sample-and-check methods is that they transform the search for a continuous,
connected path of configurations into a search on a discrete graph, which can be solved rapidly on
a computer. However, achieving this requires discretizing a path, which makes it difficult to certify
if the continuous path between discrete points is actually collision free; furthermore, depending on
how one represents the continuous paths between points, it may not be possible to certify that a
safe path can be transformed into a safe trajectory (i.e., the robot can typically not perfectly track
a path).

2.2.2 Gradient-Based Methods

Gradient-based methods use the gradient of the distance from the robot to obstacles, for a sequence
of configurations, to “push” the path out of collision. A classical example is the potential field
method [BL91, War89], which uses gradient information to improve the quality of a graph that is
built much in the same way as sample-and-check methods. Another classical example is the elastic
band method [QK93], which attempts to bridge the gap between path and trajectory planning by
smoothing a given path with gradient information. These classical methods are impressive first
efforts to solve difficult planning problems; however, they do not make safety guarantees.

Recent gradient-based methods, such as CHOMP [ZRD+13], TrajOpt [SDH+14], and ITOMP
[PPM12], expand on the idea of elastic bands with nonlinear optimization, inspired by optimal con-
trol. By initializing with an entire path from start to goal, these methods have the potential to find
paths more quickly than sampling-based methods. Furthermore, by including path smoothness as
an optimization cost, these methods can produce paths that are nearly dynamically-feasible, sim-
plifying the subsequent step of trajectory planning. However, they can often converge to infeasible
(i.e., unsafe) solutions, because a robot’s environment is typically non-convex. These methods rely
on finite differencing [QK93, ZRD+13] or linearization [SDH+14] to compute the gradient of the
distance from a robot to obstacles, since it is difficult to represent the gradient analytically. There-
fore, they make a tradeoff between safety and performance depending upon the fineness of path
discretization. That is, they must choose between a faithful robot representation and computation
speed. Methods exist to use the geometry and kinematics of a robot to conservatively produce
swept-volumes and reduce the impact of coarse discretization [LaV06, SDH+14]. However, the
recent methods [ZRD+13, SDH+14, PPM12] also rely on penalizing collision avoidance in the
nonlinear optimization cost (as opposed to using hard constraints), meaning that they cannot prov-
ably guarantee safety; that is, any solution to the nonlinear optimization must be validated by an
external collision-checker [CSCC14, C+13].

13

2.2.3 Collision Checking

A wide variety of methods exist to check a path for collisions, and can be applied to either sample-
based or gradient-based methods, with the caveat that gradient-based methods typically need the
distance from the robot to obstacles, as opposed to just a binary value.

The most common collision-checking approach is to consider discrete points along a path, and
buffer obstacles to compensate for this discretization; for each discrete configuration, one checks
if the corresponding robot volume in workspace intersects with the buffered obstacles [LaV06].
Alternatively, in the workspace of the robot, one can fit a convex hull around pairs of such dis-
crete points, and collision check the hull to compensate for the robot’s motion between the discrete
points [SDH+14]. Extensive work has also gone into continuous collision checking, wherein one
checks an entire continuous (connected) path. For example, in the plane, one can fit polynomial
splines to the motion of a robot’s body through space, then collision check discrete points along
these splines, then use the robot’s body geometry and the curves’ polynomial structure to detect
collision points between the discretized points [YLJS18]; however this means one must spend tens
of milliseconds checking a single path, as opposed to under a millisecond per discrete point. Simi-
larly, in a 3-D workspace, one can represent a robot’s swept volume along a path as a sphere swept
along a surface, and conservatively represent this surface as a mesh [RLMK04]; one can make this
method run in tens of milliseconds by applying a hierarchy of progressively more accurate (but
conservative) representations of the robot to cull collision-free areas of the workspace, and thereby
identify a time of first contact. This technique can be applied to high degree-of-freedom (DOF)
robots and probabilistic environments while still providing collision checks in tens of milliseconds
with parallelization [PPM20]. Finally, one can instead attempt to identify velocity obstacles, or
choices of velocity through workspace that can cause a collision [VDBGLM11]; when robots are
represented as collections of spheres, this can identify unsafe workspace velocities in microseconds
per rigid body.

Unfortunately, each of these methods assumes that the robot can perfectly track a given path.
When this is not the case, one must apply a heuristic to buffer, or dilate, obstacles in the workspace
to account for tracking error or the robot’s dynamics [LaV06]. On the other hand, if one considers
the robot’s dynamics directly when generating paths (i.e., by generating trajectories), one pays a
computational penalty for increasing modeling accuracy.

2.2.4 Path Planner Summary

To summarize, path planners can often rapidly find paths to accomplish a task. However, since
they use approximations such as discretization, finite differencing, and linearization, they typically
do not certify safety, and instead only attempt to achieve high performance. Furthermore, it is

14

often not possible to directly treat a collision-free path as a trajectory, meaning that any safety
guarantees made by a path planner may not certify safety for the actual robot. In addition, since
path planners do not produce time-parameterized plans, they can only attempt to certify collision
avoidance in dynamic environments by conservatively treating the motion of any other dynamic
actor as a single, static obstacle.

2.3 Trajectory Planners

In trajectory planning, one takes a given path and attempts to produce a trajectory to track the
path. A trajectory should typically be dynamically-feasible with respect to a dynamic model
of the robot. As noted above, collision-free paths may not be dynamically feasible if converted
directly into trajectories. Therefore, trajectory planners must also perform collision checking.
Furthermore, to guarantee safety, trajectory planners must account for tracking error, meaning a
nonzero difference between a robot’s actual state and the desired state in a trajectory plan. Tracking
error arises from uncertainty such as model error and measurement noise, and results in a robot’s
inability to perfectly track a trajectory plan [MT16, KVB+20, BPA17]

As with path planners, we can broadly divide trajectory planners into sample-and-check and
gradient-based methods. Note that RTD is most closely related to the gradient-based methods.
We save all discussion of RTD for §2.5, after presenting the challenges of the existing methods in
the literature.

2.3.1 Sample-and-Check Methods

Sample-and-check trajectory planners attempt to find a single trajectory by choosing samples and
checking them for collision. These methods have been used for a variety of robots, such as au-
tonomous cars [KFT+08] and quadrotor drones [MHD15, RBR16, MT16]. They typically rely on
a path given by a path planner, so they are not concerned with building a graph throughout a robot’s
configuration space. In particular, a path planner provides waypoints for navigation, which can ei-
ther be specified a priori (such as for autonomous driving on structured roads) or found by, e.g.,
an RRT before performing trajectory planning (for drones in arbitrary environments). This means
the trajectory planner need only find a trajectory that satisfies a differential equation representing
the robot in a state space.

Sample-and-check trajectory planners often do not directly address safety. Some approaches
partially relegate safety to the path planner [MHD15, RBR16]; that is, the methods trust that the
path planner actually has found a collision-free path, so a collision-free trajectory can be found by
staying as close to the path as possible while incorporating the robot’s dynamics. Others ensure that

15

trajectories lie inside safe sets, which can be semi-algebraic [MT16] or polytopic [CSS15, CLS16,
TLEH20]. For manipulator arms, trajectory planners typically relegate safety to the path planner,
since collision checking is computationally expensive [PJ87, KS12]. However, since path plans
cannot necessarily be tracked perfectly, some recent approaches generate and collision-check both
a trajectory along a path and a separate fail-safe trajectory (braking to a stop) [AGLP19, PA15].

Sample-and-check trajectory planners can find solutions quickly when trajectories can be pa-
rameterized or specified a priori, and when attempting to track paths that are not near obstacles.
However, since they do not make use of gradient information, it can be difficult for them to plan
when many or all samples are in collision (such as may happen when near obstacles).

2.3.2 Gradient-Based Methods

Gradient-based trajectory planners, much like gradient-based path planners, represent a robot’s
trajectory as a sequence of discrete points, and use the gradient of each discrete point with respect
to the decision variable of an optimization program to “push” the discrete points out of collision.
However, these trajectory planners include additional constraints so that the discrete points along
the trajectory are linked by forward-integrating the robot’s dynamic (state space) model. The
decision variables are therefore typically specified as the control inputs at each discrete point in
time.

By the definition stated above, gradient-based trajectory planners are in fact an application
of model predictive control (MPC) [KQCD15, BM99]. Therefore, they often combine the roles
of trajectory planner and tracking controller. When a robot is described by linear dynamics, or
the dynamics are linearized along the reference trajectory, one can formulate trajectory planning
as a quadratic program, which can be solved quickly (assuming feasible solutions exist) [WB09].
Indeed, in the linear case (with convex constraints), robustness to disturbance (which can be used to
formulate safety guarantees) is well-studied [BM99, VSG+12]. Unfortunately, robots are typically
described with nonlinear dynamics, but Nonlinear MPC (NMPC) cannot make the same rapid
convergence guarantees due to solving a nonlinear program [PR14, KQCD15, KVB+20]. For
some robots (notably autonomous cars), a variety of methods leverage road structure to convexify
the MPC problem, enabling safety guarantees in specific contexts [VSG+12, PKA19].

2.3.3 Trajectory Planner Summary

To summarize, enforcing safety in the trajectory planner shares the challenge of collision checking
with safety in the path planner (see §2.2.3). However, since the trajectory planner considers the
dynamics of the robot, it is possible to consider tracking error, and to subsume the role of the
tracking controller via MPC, making strict safety guarantees more tractable. The challenge, then,

16

is to represent the nonlinear dynamics of the robot in a way that enables real-time, safe planning
despite having to solve a nonlinear program. Some methods achieve this by leveraging the structure
of the robot’s environment, but, to the best of our knowledge, no general method exists that can
guarantee safety without sacrificing performance.

2.4 Tracking Controllers

A tracking controller takes in a trajectory plan (often with associated nominal inputs) and the
robot’s current state, and generates a control input to drive the robot along the plan. Note, since
the tracking controller directly generates actuator inputs, it typically operates at a much higher rate
than the path planner or trajectory planner. For example, an MPC controller may operate on the
order of hundreds of Hertz [WB09], as opposed to often under ten Hertz for path or trajectory
planning [KVB+20].

Recall that robots experience tracking error due to uncertainty from sources such as imperfect
sensors and imperfect models. To enforce safety, a tracking controller must bound tracking error in
a robot’s position. Based on how they ensure safety, we can broadly divide tracking controllers into
two categories: invariant set methods and reachable set methods. Note that these two categories
are similar in that invariant sets and reachable sets can often be computed using the same numerical
methods [MBT05, SA19]. Also note that there are many other types of controllers, some of which
attempt to enforce strict bounds given, e.g., bounded uncertainty. Here, we limit the scope of this
discussion to what we feel are the most relevant controllers to this work.

2.4.1 Invariant Set Methods

An invariant set is a set of states within which a system will remain for all time [KMO+12]. We
discuss two methods that use invariant sets: Control Barrier Functions (CBFs) and Hamilton-Jacobi
(HJ) reachability analysis.

If one can specify a safe set a priori, then CBFs provide a method for certifying that the set
is invariant, by synthesizing a controller that maintains that invariance [ACE+19]. CBFs have
been applied to cases such as automotive lane keeping and cruise control [XGTA17], low-speed
robots in crowds [CPG17], planar quadrotor flight [WS16], and manipulator trajectory tracking
[SNGA19]; see [ACE+19] for many more examples. CBFs have the advantage of formulating
control synthesis as a quadratic program, which can solve quickly online (if there exists a feasible
solution). In addition, CBFs are agnostic to the method used to generate trajectories, and can there-
fore enforce safety for potentially-unsafe trajectory plans. However, these approaches compute a
safety-enforcing control input only for the current time instant (i.e., they do not consider the future

17

of a planned trajectory); this can cause a robot to behave conservatively, because it must maintain
safety with respect to any possible future state that results from the current input. That is to say,
this tracking controller method treats all higher-level planners as a disturbance.

HJ reachability analysis can be used to conservatively identify an invariant set of tracking error,
by modeling the relative state between a robot’s model and a (typically simpler) trajectory plan-
ning model [HCH+17]. The relative dynamic model is treated as a differential game, and solve
the resulting partial differential equation (PDE) by gridding the relative state and control spaces
[MBT05]. This approach can be used to synthesize a controller that maintains invariance, if one
selects the robot model and reference trajectory model appropriately [HCH+17]. HJ reachability
has been applied to control synthesis for quadrotors [HCH+17, CHV+18] and low-speed wheeled
robots [BBB+19]. Much like CBFs, HJ approaches are agnostic to the trajectory planner, and can
enforce safety given unsafe inputs. However, these approaches also treat all higher-level planners
as a disturbance, leading to conservatism. Furthermore, since the synthesized controller is repre-
sented on a discrete grid, safety guarantees only hold in the limit as the grid spacing approaches
zero [MBT05, Section III-A]. Luckily, due to the formulation as a differential game (in which the
trajectory planning model attempts to escape from the robot), approximate solutions to the HJ PDE
are usually sufficiently conservative to compensate for the gridding approach in practice. Next, we
discuss reachable set tracking controllers.

2.4.2 Reachable Set Methods

A reachable set is the set of all states reached by a trajectory, or family of trajectories, under a
particular control policy. Reachability analysis, as introduced in §1.1.4, is the framework used to
compute reachable sets. We discuss two reachable set methods that are used for safe control: MPC
(Model-Predictive Control), and Sums-of-Squares (SOS) programming.

Before discussing MPC as a tracking controller, recall that MPC often combines the roles of tra-
jectory planning and tracking controller, as noted in §2.3. However, there is utility in maintaining
separate roles, because nonlinear and robust MPC methods typically find a feasible solution more
quickly (if one exists) when provided with a better initial guess at a solution [PR14, KQCD15,
KVB+20]. In other words, if one spends computational effort on trajectory planning via, e.g., a
sample-and-check approach, then it may be possible to compute inputs for trajectory tracking at a
high rate using MPC.

MPC can be used to render a reachable set of tracking error invariant for some nonlinear sys-
tems [BAC06, YMCA13, BM99]; note, one must compensate for the requisite time discretization.
A key advantage of MPC is that it produces a sequence of control inputs in a receding-horizon
manner, as opposed to picking a control input only for the current time instant, or treating higher-

18

level planners as a disturbance. This enables a less conservative choice of control inputs (with
respect to ensuring safety), because the controller does not need to anticipate every possible future
state that could result from the current control input. However, since MPC must discretize the
trajectory, it has the same tradeoff between safety and performance that we saw for all path and
trajectory planners that rely on discretization.

SOS programming can be used to synthesize polynomial feedback controllers for controlled
polynomial systems via (backwards) reachability analysis. In particular, given a reference trajec-
tory, one can conservatively approximate all initial conditions (and compute associated feedback
controllers) that converge to within some distance of the trajectory, within some finite amount of
time [TMTR10, SVBT14]. This approach has been applied to a variety of mobile robots, such as
ground and aerial vehicles [MT16, SVBT14]. Note that [SA19] computes invariant sets for bipedal
robots using SOS programming; we mention it here to show the connection between invariant set
and reachable set methods.

The advantages and disadvantages of the SOS approach are as follows. Much like MPC, the
SOS approach considers the entire duration of a reference trajectory, which reduces conservatism.
Furthermore, since the dynamics and controller are polynomials, this method does not always need
to discretize in time, resulting in safety guarantees without additional buffering of obstacles to com-
pensate for discretization (note, time discrezation is used in [MT16]). Unfortunately, it is difficult
to compute such feedback controllers for systems with more than three or four states due to the size
of the semidefinite program (SDP) representation typically used to solve the SOS program [Las10].
Therefore, it can be difficult to certify robustness to some types of uncertainty, since adding param-
eteric uncertainty requires including parameters as additional dimensions [HKMV16]. Similarly,
one may need to add dimensions to tolerate arbitrary trajectory plan inputs [SCH+18, SYA19],
so some existing SOS approaches instead require fixed, pre-specified trajectory plans to make the
reachability analysis tractable [MT16].

2.4.3 Tracking Controller Summary

To summarize, enforcing safety in the tracking controller requires a tradeoff between safety and
performance, just as with path planners and trajectory planners. For MPC approaches, this oc-
curs due to approximations used to represent a trajectory plan and a robot’s dynamics, which may
prevent one from certifying safety for the original system. CBF, HJ, and SOS approaches, on the
other hand, can provably certify safety, but may produce conservative behavior. In particular, CBF
and HJ approaches treat higher-level planners as a disturbance, which produces additional conser-
vatism. For SOS approaches, the memory required to compute the tracking controller increases as
the conservatism decreases, limiting these approaches to low-dimensional system representations.

19

It is similarly difficult to compute CBFs or perform HJ reachability on high-dimensional systems.

2.5 RTD in Context

We now place RTD in the context of the literature. First, we revisit the research gap that RTD
addresses at a high level. Second, we summarize the method to illustrate how it relates to the
literature. Third, we comment on the generality of RTD. Fourth, we discuss how RTD performs
(and provides novelty in) collision checking.

2.5.1 Research Gap Revisited

As mentioned before, the key challenge in robot motion planning is to enforce safety without
sacrificing performance. This challenge appears because robots are typically described by high-
dimensional, nonlinear models, which are difficult to use for real-time planning while making
guarantees. Approximations such as time discretization of a plan, linearization of a robot’s model,
and not including the robot’s dynamics, all can enable rapid planning. Unfortunately, each approx-
imation made for the sake of performance introduces modeling error, which manifests as tracking
error when the robot attempts to execute any given plan. It is challenging to provably account
for tracking error at any tier of the planning hierarchy without incurring severe conservatism. In
short, the research gap is to produce a safe, real-time, receding-horizon planning algorithm that
can operate in arbitrary environments.

2.5.2 Method Summary

RTD directly addresses the aforementioned research gap: it is a trajectory planner that performs
safe, real-time, receding-horizon planning in arbitrary environments. Enforcing safety at the tra-
jectory planning tier allows RTD to incorporate a robot’s dynamics (unlike many path planners),
and the time evolution of tracking error (unlike many tracking controllers).

RTD uses reachable sets, which we noted throughout §2.4 can be conservative and difficult to
apply to high-dimensional systems; in other words, we would expect a reachable set method to
suffer in terms of performance to ensure safety. However, by using reachable sets for trajectory
planning, instead of tracking, RTD is able to certify safety while achieving performance that rivals
or exceeds other trajectory planning methods. This dissertation demonstrates such performance in
later chapters.

RTD begins with offline modeling and reachability analysis. RTD uses a high-fidelity model
to describe a robot’s behavior, and a user-specified planning model to generate plans for the robot.

20

The planning model uses trajectory parameters, drawn from a compact set, to produce trajecto-
ries of finite duration. Importantly, every parameterized trajectory ends with a fail-safe maneuver;
in this work, this maneuver is braking to a stop. By specifying that the planning model only pro-
duces bounded trajectories, and by requiring the high-fidelity model has bounded dynamics for
a user-specified tracking controller, one can bound the tracking error. RTD then computes a
Forward Reachable Set (FRS) conservatively for all parameterized trajectories of the planning
model, plus tracking error, thereby containing all states reachable by the robot itself.

Online, RTD performs trajectory optimization in each receding-horizon planning iteration.
First, the FRS is used to project obstacles from the robot’s position states into the space of trajec-
tory parameters, thereby identifying the set of unsafe parameters for the current iteration. Second,
RTD performs trajectory optimization over the safe parameters, while enforcing a time limit on
planning; if it can find a new trajectory plan within the time limit, then RTD passes that plan to the
tracking controller. Otherwise, the robot continues executing its previous plan, which ends with a
fail-safe maneuver.

2.5.3 Flexibility of RTD

RTD enforces safety at the trajectory planning tier of the planning hierarchy, which enables flexibil-
ity in the choice of path planner and tracking controller. RTD is agnostic to unsafe paths produced
by a path planner, which frees the path planner from needing perfect collision checking. This
approach enables RTD to achieve good performance with respect to navigating a robot through a
cluttered environment, because the path planner can plan quickly without concern for safety. RTD
is also agnostic to the type of tracking controller used, as long as one can upper bound the track-
ing error produced by that controller with respect to RTD’s parameterized trajectories (note, one
can trivially satisfy this bound by choosing a large tracking error amount, thereby incurring con-
servatism without sacrificing safety). This approach gives the user a choice in how conservatively
RTD behaves, since one can use a smaller bound as soon as one designs a better tracking controller.

2.5.4 Collision Checking

Recall the variety of collision-checking methods discussed in §2.2.3. The key challenge is the
tradeoff between accuracy and computation speed; indeed, to consider continuous time collision
checking, or a robot’s dynamics and uncertainty, one typically must allot more computation time.
RTD addresses this tradeoff in two ways. First, by using the FRS, we generate continuous-time
swept volumes of the robot that can be used for collision checking, thereby avoiding the challenge
of choosing a discretization fineness; furthermore, the FRS can contain the motion of the robot
subject to its dynamics, not just a kinematic model. Second, for planar robots, we prescribe an ob-

21

stacle discretization in §5 that enables provably-conservative continuous time and space collision
checking.

Furthermore, recall that, for certain cases of robot representations and kinematics, one can
identify velocity obstacles [VDBGLM11]. By identifying trajectory parameter obstacles using the
FRS, RTD enables a generalization of this notion. For example, if one parameterizes a robot’s
velocity, then the FRS enables one to identify velocity obstacles. If one uses a more complex
parameterization, such as time-varying velocity profiles, then RTD instead find velocity profile
obstacles.

2.6 Chapter Review

In this chapter, we discussed the relevant literature in motion planning. In particular, we presented
how one can attempt to enforce safety at each of the tiers of the planning hierarchy. We identified
challenges, and discussed how RTD addresses these challenges.

The challenges, in short, are as follows. First, there is a tradeoff between the accuracy of
describing the robot, and the ease of performing real-time motion planning. Furthermore, while a
variety of methods exist to consider tracking error, they are often conservative, or require applying
a heuristic that prevents formal safety guarantees to enable real-time performance. Finally, for path
and trajectory planning, collision checking is the underlying cause of computational expense.

RTD addresses these challenges in four ways by leveraging reachable sets. First, by repre-
senting the robot continuously in time and space, RTD’s reachable sets avoid the tradeoff between
discretization fineness and performance. Second, by incorporating tracking error in the reachable
sets, RTD enables compensating for the robot’s dynamics, as opposed to requiring one to assume a
kinematic model for collision checking. Third, by parameterizing trajectories in the reachable sets,
RTD enables a generalization of velocity space obstacles to parameter space obstacles. Fourth, as
is shown in the following chapters, RTD prescribes obstacle representations that allow for contin-
uous time and space collision checking which can be used for real-time planning, and to generate
collision-avoidance constraints with gradients.

This concludes the literature review. Next, we present a theoretical overview of RTD.

22

CHAPTER 3

A Unified Theoretical Framework for Safe
Trajectory Planning

This chapter provides a theoretical overview of RTD. That is, we present and discuss mathematical
objects and operations independent of how they are implemented or represented numerically. This
allows us to broadly unify the various applications of RTD across different robot morphologies.
We begin with a summary to provide a roadmap for the chapter. We then step through each part in
more detail, to introduce logic and notation.

3.1 Chapter Summary

This chapter unifies all of the currently-published RTD papers into a single underlying theory. For
the interested reader, the specific papers are [KVJRV17, KVB+20, VKL+19, VSK+19, VLK+19]
for wheeled robots, [KHV19] for aerial robots, and [HKZ+20] for manipulators.

Given a robot, the overall goal of RTD is to generate safe trajectory plans in real time. We
do so by using reachable sets, computed offline, to describe a continuum of trajectory plans. At
runtime, we choose one trajectory out of the continuum of plans in a receding-horizon fashion; that
is, the robot picks one plan, then attempts to pick a new plan while tracking its previous plan. To
pick plans, RTD uses an optimization formulation. To ensure these plans are collision-free, RTD
uses reachable sets to identify the set of unsafe plans in any planning iteration, and then treats this
unsafe set as a constraint for optimization. By repeatedly choosing safe plans, RTD enables the
robot to be safe for all time. Note, as mentioned in the introduction, we consider a notion of fault in
addition to safety when a robot is operating in dynamic environments, where it may be impossible
to certify collision-free behavior.

The sections of this chapter are as follows. (§3.2) We begin by introducing the high-fidelity
model that describes the robot’s equations of motion; we also introduce the Segway robot as a
running example for the chapter. (§3.3) Then, we explain how the high-fidelity model is used for

23

receding-horizon planning. (§3.4) Next, we introduce the robot’s workspace, and explain how
the robot and obstacles occupy volume, which allows us to define safety and fault in a collision;
we also discuss how the robot senses and predicts obstacles. (§3.5) Since planning safe, not-
at-fault trajectories with the high-fidelity model in real time is typically intractable, we introduce
a simplified planning model that generates paramterized plans. (§3.6) We then introduce the
tracking controller used to drive the high-fidelity model towards these parameterized plans, and
discuss the resulting tracking error. (§3.7) To enable compensating for tracking error at runtime,
we introduce the Forward Reachable Set (FRS), which contains the motion of the high-fidelity
model tracking any parameterized plan; the FRS is computed offline. (§3.8) Finally, we discuss
how the FRS is used to generate collision-avoidance constraints for online planning. (§3.9) We
conclude the chapter with a brief summary.

3.2 The High-Fidelity Model

We now introduce the high-fidelity model used to describe the robot, and introduce the Segway
robot as a running example to illustrate the various theoretical objects defined in this chapter. We
then introduce a family of projection operators, which we use to relate the various subspaces that
appear in motion planning. Finally, we discuss bounds on the robot’s velocity and acceleration.

3.2.1 Time, States, Inputs, and the High-Fidelity Model

Let T = [0,∞) ⊂ R represent time. Let Q ⊂ RnQ denote the configuration space of generalized
coordinates for the robot. Let Q̇ ⊂ RnQ̇ denote generalized velocities. Let Xhi = Q× Q̇ ⊂ Rnhi

denote the robot’s state space, with the state denoted xhi = (q, q̇). Let U ⊂ RnU denote the space
of control inputs.

The robot’s equations of motion are given by a high-fidelity model, denoted fhi : T × Xhi ×
U → Fhi, for which

ẋhi(t) = fhi(t, xhi(t), u(·)), (3.1)

where xhi : T → Xhi is a trajectory of the model with input u(·) ∈ U . We require that Fhi and
U are compact and fhi is Lipschitz continuous on T , Xhi, and U . Note, we leave the domain of
u ambiguous for now, but a typical example is a feedback controller u : T × Xhi → U . By this
definition, for any compact subset of T and initial condition xhi,0 ∈ Xhi, the trajectory xhi (with
input u) exists [KG02, Theorem 3.1]. We define such compact subsets of T below, in §3.3.

To facilitate understanding, we use the Segway as an example through the chapter:

24

Running Example 3.1. The Segway robot can be described with generalized coordinates of its

center-of-mass position and its heading (p1, p2, θ) ∈ Q = SE(2), and generalized (longitudinal

and angular) velocities, (v, ω) ∈ Q̇ ⊂ R2. Note, we usually refer to v as just the “velocity.”

The high-fidelity model is a dynamic unicycle with control inputs for longitudinal and angular

acceleration:

fhi(t, xhi(t), u(·)) =


ṗ1(t)

ṗ2(t)

θ̇(t)

v̇(t)

ω̇(t)

 =


v(t) cos(θ(t))

v(t) sin(θ(t))

ω(t)

satv (βv · (uv(·)− v(t)))

satω (βω · (uω(·)− ω(t)))

 , (3.2)

where u = (uv, uω) is typically a feedback controller that the robot uses to track planning trajec-

tories (we provide an example of u later in this chapter). The functions satv and satω saturate the

accelerations. The constants βv and βω ∈ R are found using system identification.

3.2.2 Projection Operators

We are often concerned with the position or velocity of the robot. To extract this information
from an arbitrary state xhi ∈ Xhi, we now introduce a generic family of operators to project to a
subspace. Let S be any subspace of Xhi. We define the projection operator projS : Xhi → S that
maps points from Xhi to S via the identity relation.

Running Example 3.2. For the Segway, denote Q = P × Θ, with P = R2 for position and

Θ = S1 for heading. Similarly denote Q̇ = V × Ω, with V ⊂ R and Ω ∼= R (the tangent space of

the unit circle). Then, if xhi ∈ Xhi is the Segway’s state, its position is projP (xhi), and its velocity

is projV (xhi).

3.2.3 Maximum and Minimum Velocity and Acceleration

Notice that, since Fhi (the domain of fhi) is compact, the robot’s generalized velocity is bounded.
Since the state space Xhi includes states for velocity and Fhi is compact, we further have that the
robot’s generalized accelerations are also bounded. Such acceleration bounds typically follow from
the compactness of the control input spaceU (e.g., if the control inputs map to torques/accelerations).

We denote the robot’s maximum (resp. minimum) generalized velocity as q̇max (resp. q̇min) ∈ Q̇.
We denote the maximum (resp. minimum) generalized acceleration as q̈max (resp. q̈min) ∈ RnQ̇ (that
is, these bounds have the same dimension as Q̇).

25

Note that these bounds are defined coordinate-wise, and do not incorporate state dependence.
State-dependent limits appear in the model fhi. For example, fhi can represent the decrease in a
wheeled robot’s maximum possible yaw rate as a function of (increasing) speed in the plane.

Running Example 3.3. The Segway’s maximum velocity is vmax = projV (q̇max).

3.3 Receding-Horizon Timing

Recall that RTD is a receding-horizon framework, meaning that the robot generates a plan of short
duration, then generates a new plan while executing the current plan in an iterative manner. We
now define plans and their timing (i.e., we explain what we mean by “short” duration).

For each ith receding-horizon planning iteration, a plan is a trajectory x(i)
plan : T (i) → Xhi, with

T (i) =
[
t(i), t(i) + tf

]
⊂ T, where (3.3)

t(i) = (i− 1) · tplan, (3.4)

and 0 < tplan < tf. We call tplan the timeout, which is an amount of time within which the robot
must find a new plan; so, the robot generates a new plan every tplan seconds. We call tf the plan
time horizon, or duration of each plan. Note, x(i)

plan is not necessarily a trajectory of the high-
fidelity model, but it is a trajectory in the high-fidelity model’s state space. We clarify this notion
after introducing a simplified planning model below.

In each ith iteration, if the robot cannot find a new plan within tplan, it must continue executing
its previous plan, x(i−1)

plan : T (i−1) → Xhi. Therefore, we assume there exists an initial plan x(0)
plan :

[0, tf]→ Xhi. Typically, this initial plan is for the robot to stay stationary, so this assumption is not
difficult to satisfy.

3.4 Workspace, Obstacles, and Sensing

Since RTD is concerned with collision avoidance, we now define the workspace, obstacles, and the
robot’s sensor behavior.

3.4.1 The Workspace and Forward Occupancy

The workspace W ⊆ R2 or R3 is the space in which the robot and other entities (such as obstacles
or world boundaries) occupy volume.

26

Though W is not a subspace of Xhi, we define a special projection operator, projW : Xhi → W ,
to return the robot’s center-of-mass position in workspace for wheeled and aerial robots. For
manipulators, this returns the position of the robot’s baselink.

To define how the robot occupies volume, we use the following map. The forward occupancy
map FO : Xhi → pow (W) returns the subset of the workspace containing the volume of the robot
at a state xhi ∈ Xhi.

Running Example 3.4. The Segway robot has a circular footprint; suppose it is of radius r. Then,

at any state xhi ∈ Xhi, its forward occupancy is given by

FO(xhi) = {p ∈ W | ‖projP (xhi)− p‖2 ≤ r} , (3.5)

where P is the robot’s position subspace and W ⊆ R2.

3.4.2 Obstacles, Safety, and Fault

We define an obstacle as a map O : T → pow (W). Suppose that, at time t ∈ T , the robot
is at a state xhi(t) ∈ Xhi. We say the robot is in collision if it intersects the obstacle, meaning
FO(xhi(t)) ∩ O(t) 6= ∅; so, safe means not in collision. Note, static obstacles are those for which
O(t1) = O(t2) for any t1, t2 ∈ T . We assume that no obstacle travels faster than some known
quantity, vmax,obs ≥ 0.

When obstacles are able to move, there are situations where it is impossible to avoid collision
(e.g., an obstacle can move into our robot even if our robot is stationary). Therefore, we consider
fault in a collision with a dynamic obstacle. In this work, our robot is not-at-fault if it is stationary,
which is typically acceptable for, e.g., low-speed wheeled robots and collaborative manipulators.
Note, we assume the robot can stay stopped indefinitely.

This definition of fault allows us to establish a general framework of safe and not-at-fault
motion planning, without requiring us to model interactions between our robot and other agents
(meaning, we can focus on planning without closing the planning/perception loop for now). Note
that RTD is not limited to this definition of fault; but, we leave the extension to interaction model-
ing, and more general definitions of fault (e.g., [CSW+19]), for future work.

3.4.3 Predictions and Sensing

The robot does not typically have direct access to information about obstacles for infinite time, so
we instead consider predictions of obstacles in each planning iteration. Consider the ith planning
iteration. Suppose there are n ∈ N obstacles that the robot must consider for collision avoidance

27

during T (i), denoted O(j), j = 1, · · · , n. Then a prediction is a map P(i) : T (i) → pow (W) for
which

P(i)(t) ⊇
n⋃
j=1

O(j)(t). (3.6)

Note, this definition requires predictions to be correct (they do contain the motion of all obstacles
in the workspace within the time horizon T (i) and conservative (they may contain points that are
not reached by any obstacle during T (i)). This type of conservatism is also called a buffer, or
dilation of the size of each obstacle. In the later chapters, for each robot morphology, we specify
how to produce this buffer.

We now present a simplified notion of sensing obstacles; recall that this work is concerned with
planning, not with perception. In particular, we define the sensor horizon, dsense > 0, as a distance
within which the robot can sense and predict obstacles. Suppose the robot is at a state xhi(t), and
consider Dsense : Xhi → pow (W) defined as

Dsense(xhi(t)) = {p ∈ W | ‖projW (xhi(t)− p)‖2 ≤ dsense} . (3.7)

That is,Dsense returns a closed ball of radius dsense about the robot’s position in workspace. Suppose
O is an obstacle; if O(t) ∩ Dsense(xhi(t)), we say that O is sensed. We assume that, at any t ∈
T , there is a finite number of sensed obstacles. We further assume that the robot can generate
predictions of all sensed obstacles.

3.5 The Planning Model

To generate safe plans, one must consider obstacles and then generate a trajectory for the high-
fidelity model within the timeout tplan. Doing so can be intractable for complex high-fidelity mod-
els, so we instead use a simplified planning model, which generates parameterized plans.

In this section, we introduce the planning model, discuss the coordinate frame used for plan-
ning, and explain how to lift simplified planning model trajectories to the high-fidelity state space
to enable full-state feedback control. Finally, we preview how our parameterized plans are used at
runtime; the online planning procedure is detailed in §3.8.

3.5.1 The Planning Model

To define the planning model, we introduce the following spaces. Let Tplan = [0, tf] ⊂ R be the
plan time horizon, which is of duration tf, just like each ith planning iteration T (i). Let X ⊂ RnX

28

(nX ∈ N) be the planning space, which is a subspace of Xhi; typically, X = Q, but it can
also include some or all of the states in Q̇. Let K ⊂ RnK (nK ∈ N) be a space of trajectory
parameters.

The planning model is f : Tplan ×X ×K → RnX for which

ẋ(t; k) = f(t, x(t; k), k) (3.8)

k̇ = 0, (3.9)

so x : Tplan → X is a trajectory of the planning model, and the notation x(t; k) denotes that the
trajectory is parameterized by k. From here on, we refer to any such trajectory x of the planning
model as a plan, which overlaps with the definition of a plan as a trajectory x(i)

plan : T (i) → Xhi of
the high-fidelity model; below, in §3.5.3, we lift x to x(i)

plan to resolve this conflict.
We require the planning model to have three additional properties. First, f is continuous and

differentiable almost everywhere in Tplan, X , and K. Second, there exists a point in the planning
space X from which every plan begins; we denote this point x0 ∈ X such that x(0; k) = x0 for
all k ∈ K. Third, every plan ends with a stop, meaning f(tf, ·, k) = 0 for all k ∈ K. Note, we
elaborate on this second property below, in §3.5.2.

Running Example 3.5. For the Segway, X = P , the position subspace of Q = P ×Θ, with state

x = (p1, p2) ∈ X . The planning model is

f(t, x(t; k), k) = s(t)

[
k1 − k2 · (p2(t; k)− p2,0)

k2 · (p1(t; k)− p1,0)

]
with (3.10)

s(t) =

1 t ∈ [0, tplan)

1− t−tplan

tf−tplan
t ∈ [tplan, tf]

, (3.11)

with the point x0 = (p1,0, p2,0) ∈ P . Trajectories of this model end in a stop because of the scaling

function s : Tplan → [0, 1].

This model creates circular arc trajectories (that is, Dubins’ paths parameterized by time),

with longitudinal velocity k1 and angular velocity k2, initial position x0, and an initial heading of

θ(0) = 0. To see why, rewrite the model as

ẋ(t; k) = s(t)

[
0 −k2

k2 0

]
︸ ︷︷ ︸

A(k)

x(t; k) + s(t)

[
k1 + k2p2,0

−k2p1,0

]
︸ ︷︷ ︸

b(k)

. (3.12)

Therefore, for any fixed k ∈ K, A(k) defines a linear time-varying system with complex eigenval-

29

ues at any t ∈ Tplan; this produces a circular vector field about the point b(k).

3.5.2 The Planning Frame and the World Frame

By starting every parameterized plan at x0, each evolves in a coordinate frame relative to the robot
at the beginning of any plan. Another way to think of this is that every plan begins at the same
pose relative to the robot at each time t(i). Therefore, we call the coordinate frame centered at
x0 ∈ X the planning frame. Fixing x0 in this way makes it tractable to compute reachable sets,
introduced in later in this chapter and used to formulate collision-avoidance constraints.

However, obstacles do not appear in the world frame, not the planning frame. To resolve this,
we introduce a pair of operators, world2plan : W × Xhi → W and plan2world : W × Xhi →
W . These operators transform points back and forth between the world origin, 0 ∈ W , and the
coordinate frame centered at projW (x0) and rotated, if necessary, for the robot’s pose. Note, for a
manipulator robot with a fixed baselink, these functions are not needed.

Running Example 3.6. Suppose the Segway is at a state xhi = (p, θ, v, ω) ∈ Xhi, where p ∈ X ⊂
R2 is the robot’s center-of-mass position. Then, a point w ∈ W can be shifted to the robot’s local

frame by

world2plan(w, xhi) =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
(p− w) + x0. (3.13)

Notice that X ∼= W , so we abuse notation to directly add a point in X to a point in W . To shift

from the planning frame to the world frame, we similarly use

plan2world(w, xhi)

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(p− x0) + w. (3.14)

3.5.3 Lifting the Planning Model to the High-Fidelity Model

The previous discussion explains the spatial relationship between the planning model and the
robot’s workspace. We now discuss the relationship between the planning model and the high-
fidelity model. In particular, we resolve the definition of a plan as both a trajectory x(i)

plan in the
high-fidelity model’s state space, and a trajectory x of the planning model.

To do so, we define a map liftplan : N × X → Xhi, which is specific to a given robot and
planning model. Suppose the robot is in the ith planning iteration, and recall that t(i) ∈ T is the
time at the beginning of T (i) ⊂ T . So, let the robot be at initial state x(i)

hi,0 at time t(i), with plan

30

k(i) ∈ K. Then, the lifted plan is x(i)
plan : T (i) → Xhi for which

x
(i)
plan(t; k

(i)) = liftplan(i, x(t− t(i); k(i))) (3.15)

= x
(i)
hi,0 +

∫ t

t(i)
flift(τ, x

(i)
plan(τ ; k(i)), k(i))dτ, (3.16)

where the argument i ∈ N to liftplan is used in place of t(i), k(i), and x(i)
hi,0, which would otherwise

be needed as arguments. Here, flift : T (i)×Xhi×K → Rnhi is the lifted planning model, which is
specific to any given robot and trajectory parameterization. Typically, flift has the property that, for
any k ∈ K, flift(t, xhi(t; k), k) is equivalent to f(t, x(t; k), k) in each coordinate of the planning
space X , even though the initial conditions of the lifted plan and planning model trajectory are
not the same (that is, projX(x

(i)
plan(0; k)) 6= x(0; k)). Another way to think of this is that the lifted

plan evolves as though plan2world has been applied to the entire planning frame, so projX(x
(i)
hi,0) =

plan2world(x0).
Notice that liftplan shifts the domain of x from Tplan to T (i). Furthermore, liftplan does not

necessarily just extend the codomain of f from X to Xhi; instead, the lifted planning model flift

enables x(i)
plan to evolve in Xhi as well as in X (this is made more clear by the running example

below). Since the lifted plan evolves in Xhi, the argument x(i)
hi,0 ensures that it starts at the robot’s

initial state at the ith planning iteration. This lets us generate a full-state trajectory that the high-
fidelity model can track using, e.g., closed-loop feedback.

Running Example 3.7. To lift Segway plans generated by (3.10) from X to Xhi, we apply the

planning model to the states of the high-fidelity model as expected. Note, from the above discussion,

we need only define flift as per (3.16). With (∗) = (t, x
(i)
plan(t; k), k) to replace the input arguments

for space, we have

flift(∗) =


ṗ1(∗)
ṗ2(∗)
θ̇(∗)
v̇(∗)
ω̇(∗)

 =


s(t− t(i))k1 cos(θ(t; k))

s(t− t(i))k1 sin(θ(t; k))

s(t− t(i))k2

d
dt
s(t− t(i))k1

d
dt
s(t− t(i))k2

 . (3.17)

Notice that we shift time from T (i) to Tplan for the scaling function s from the planning model. Also,

this example of flift creates discontinuous longitudinal and angular acceleration profiles due to the
d
dt
s(·) terms; but, this is produces a full-state trajectory that can be tracked by the Segway.

31

3.5.4 Using Trajectory Parameters Online

Per the above definitions, each trajectory parameter k ∈ K maps to a plan. We take advantage
of this to use K as the domain for trajectory optimization at runtime. Consequently, we further
conflate the word plan with k ∈ K; that is, in each ith iteration, we call any choice of k a plan.

While using parameterized plans is a limitation in contrast to traditional MPC approaches
(which optimize over, e.g., inputs u : T → U), this approach has several benefits. First, it en-
ables computing reachable sets that are less conservative than would be for any possible input.
Second, it simplifies the design of a tracking controller for the high-fidelity model, since we need
not track any arbitrary trajectory. Third, by optimizing over the parameters at runtime, we are
able to certify continuous-time safety, whereas approaches that optimize over inputs drawn from
U typically have to discretize time (e.g., [PR14, YMCA13, WB09]). Note, this third benefit relies
on our ability to compute reachable sets that capture the motion of the robot over continuous time.

The online planning procedure using the trajectory parameters is summarized later on, in Al-
gorithm 1, in §3.8.

3.6 Tracking Controller and Error

Now, we discuss how the robot tracks plans using a controller, and we discuss the resulting tracking
error. We then discuss the relationship between the robot’s initial condition and its possible choices
of plans, in the sense that some plans will cause more tracking error than others. Finally, we address
the modeling error between the high-fidelity model and the actual robot.

3.6.1 The Tracking Controller

Suppose the robot is in its ith planning iteration, and has generated a plan k ∈ K to track. Further
on in this work, we use k(i) (as opposed to just k ∈ K) to denote the ith plan, but we omit the index
i to ease notation here. Going forward, we say k to mean the plan parameterized by k ∈ K; for
example, we say the robot tracks k.

To drive the high-fidelity model towards k, the robot uses a feedback controller

uk : T (i) ×Xhi → U, (3.18)

where the subscript indicates that this controller attempts to track k. This controller results in a
closed-loop high-fidelity model given by

ẋhi(t; k) = fhi
(
t, xhi(t; k), uk

(
t, xhi(t; k)

))
. (3.19)

32

To perform feedback control, we typically use a lifted plan, as shown in the following example.

Running Example 3.8. The Segway uses a proportional-derivative controller. Let GP ∈ R2×2,

GΘ ∈ R1×1, and GQ̇ ∈ R2×2 be matrices of control gains. Suppose the Segway is in the ith

planning iteration, starting from initial condition x(i)
hi,0, and let k ∈ K. Then, the Segway’s tracking

controller is given by

uk(t, xhi(t; k)) = GP eP (t; k) +GΘ · (θ(t; k)− s(t− t(i))k2t) + (3.20)

+GQ̇

[
s(t− t(i))k1 − v(t; k)

s(t− t(i))k2 − ω(t; k)

]
, (3.21)

with the position error eP given in the robot’s body-fixed coordinate frame:

eP (t; k) =

[
cos(θ(t; k)) sin(θ(t; k))

− sin(θ(t; k)) cos(θ(t; k))

]
projP (xhi(t; k)− x(i)

plan(t; k)), (3.22)

where x(i)
plan(t; k) = liftplan(i, x(t − t(i); k)). Notice that k2t = projΘ(x

(i)
plan(t; k)) and similarly the

error terms for v and ω are functions of the lifted plan.

3.6.2 Tracking Error

Notice from the example above that the purpose of the tracking controller is to reduce the error
between the robot’s state and the (lifted) plan. We now consider this notion of error independent of
any particular planning iteration; that is, we consider error as a function of just the robot’s initial
condition and trajectory parameter for the duration of any plan. To that end, we define the tracking
error as a trajectory xerr : Tplan → Rnhi for which

xerr(t;x
(i)
hi,0, k) = xhi(t; k)− liftplan(i, x(t− t(i); k)), (3.23)

where xhi : T (i) → Xhi is the trajectory of the closed-loop high-fidelity model (3.19), and x :

Tplan → Xhi is the trajectory of the planning model.
Note, (3.18) gives the error in the high-fidelity model’s state, which is why the codomain of xerr

is the same dimension as Xhi. However, for the purpose of collision avoidance, we are concerned
with the tracking error in workspace; to this end, we revisit this notion of tracking error later in the
chapter, when we introduce reachable sets.

33

3.6.3 Bounds on Choice of Plans

Notice that the tracking error in (3.23) is a function of the robot’s initial condition at the beginning
of any plan. If the robot is allowed to pick any arbitrary k ∈ K, given an initial condition xhi,0,
then it is possible that the tracking error is very large. For example, if the robot is traveling at high
speed, and then chooses a plan with zero parameterized speed.

To mitigate tracking error as a function of the initial condition, we define a generic parameter
bounds function Klim : Xhi → pow (K) that returns a subset of K containing allowable choices
of plans for a given initial condition. Note, Klim is defined for each robot and planning model.

Running Example 3.9. For the Segway, recall that (k1, k2) ∈ K ⊂ R2 parameterizes the robot’s

longitudinal and angular velocities. Let ∆v,∆ω > 0 be allowable bounds on the commanded

change in either velocity, for a given initial velocity. Then, for any xhi,0 ∈ Xhi,

Klim(xhi,0) =
{

(k1, k2) ∈ K | |k1 − projV (xhi,0)| ≤ ∆v and |k2 − projΩ(xhi,0)| ≤ ∆ω

}
. (3.24)

3.6.4 Modeling Error

The purpose of RTD is to plan safe trajectories that compensate for tracking error, which presumes
that the high-fidelity model is correct. However, this is not always true in practice. To compensate
for such modeling error, we introduce the following assumption concerning the robot hardware.

Assumption 3.1. Suppose the robot is tracking k in its ith planning iteration, so t ∈ T (i). Let

xj(t; k) be the value of the j th coordinate of the state xhi(t; k) given by the closed-loop high-fidelity

model as in (3.19). We assume that there exists a value εxj > 0, and that the robot is able to

perform state estimation, such that xj(t; k) is within εxj of the value of the robot’s actual j th

coordinate.

We introduce modeling error here, after introducing trajectory parameters and the correspond-
ing feedback controllers, to emphasize that our parameterized plans and receding-horizon formu-
lation make such an assumption reasonable.

Running Example 3.10. For the Segway hardware, we find εp1 , εp2 ≈ 0.1 m when running indoors

on a tile floor. Due to the robot’s wheel encoders, accelerometer, and high-torque motors, we find

that εθ, εv, and εω are negligible.

3.7 Reachable Sets

At this point, we have established the robot’s high-fidelity and planning models, and begun to relate
them through tracking error. We have also established obstacles as portions of the workspace to

34

avoid. To enable the identification of collision-avoiding plans, we use objects called reachable sets
(RSs), hence the name Reachability-based Trajectory Design.

In particular, we define a Forward Reachable Set (FRS), which contains the forward occupancy
of the robot tracking any parameterized plan (meaning, it includes tracking error). This set is
defined over the robot’s time, initial condition, workspace, and trajectory parameters. This lets us
consider the reachable subsets corresponding to any particular plan. The overall goal of RTD is to
find a plan (in each receding-horizon iteration) for which the corresponding subset of the FRS does
not intersect predictions of obstacles. In practice, the FRS is computed offline, then used online
for planning.

In this section, first, we define the FRS. Second, we redefine the FRS in terms of the planning
model and tracking error, to better understand its structure. Third, we redefine predictions as
reachable sets, to allow us to compare the FRS with predictions directly during online planning, as
illustrated in Figure 3.1.

Figure 3.1: An overview of the FRS for a wheeled robot in dark blue; the FRS is shown in light
blue, projected into the trajectory parameter space on the left and the workspace on the right.
An obstacle in the workspace corresponds to a set of unsafe trajectory parameters. At runtime,
we use this unsafe set as a collision avoidance constraint for trajectory optimization; any feasible
solution is provably collision-free. An example feasible (safe) plan is shown as a green point in
the parameter space and as a dashed blue line in the workspace, along with the green collision-free
subset of the FRS corresponding to that plan. In this figure, the obstacle and workspace are shown
in the robot’s planning frame, with the robot at the initial condition x0.

3.7.1 The Forward Reachable Set

To define the FRS, we first define a special set of initial conditions:

Xhi,0 = {xhi,0 ∈ Xhi | projX(xhi,0) = x0} , (3.25)

where x0 is the initial condition of each plan in the planning frame.

35

The FRS, denoted RFRS, contains all times and points in workspace reachable by the robot,
including tracking error, for each trajectory parameter, and for each initial condition drawn from
Xhi,0:

RFRS =

{
(t, xhi,0, p, k) ∈ Tplan ×Xhi,0 ×W ×K | xhi(0; k) = xhi,0,

ẋhi(t; k) = f
(
t, xhi(t; k), uk(t, xhi(t; k))

)
, k ∈ Klim(xhi,0),

and p ∈ FO(xhi(t; k))

}
.

(3.26)

This means that the FRS is defined in the planning frame, not the world frame, per §3.5.2. Note, in
the model fhi, the use of the tracking controller uk for each k implies that RFRS includes tracking
error.

Instead of presenting a running example here, we treat the Segway’s FRS implementation in
detail in §4. See the Segway implementation details and numerical results in §9.1.

3.7.2 The Planning and Error Reachable Sets

To better understand the structure of the FRS, we first consider an RS of the planning model, called
the Planning Reachable Set (PRS). Then, we consider an RS for the tracking error, called an Error
Reachable Set (ERS). Finally, we generate the FRS by combining the PRS and ERS; informally,

FRS = ERS + PRS.

The reason for this decomposition is that, when implementing the FRS numerically, we typically
have to compute the PRS and ERS separately, then combine them together either offline or at
runtime.

The PRS, denotedRplan, contains all times and planning states reachable by the planning model
for each trajectory parameter:

Rplan =

{
(t, x, k) ∈ Tplan ×X ×K | x = x0 +

∫ t

0

f(τ, x̃(τ ; k), k)dτ

}
, (3.27)

where again x0 ∈ X is the initial condition for every planning model trajectory per the definition
in §3.5; as expected,Rplan is in the planning frame.

The ERS, denoted Rerr, contains all times and tracking errors achieved by the robot for each

36

possible initial condition:

Rerr =

{
(t, xhi,0, e) ∈ Tplan ×Xhi,0 × Rnhi | ∃ k ∈ Klim(xhi,0) s.t.

e = xhi(t; k)− xplan(t; k), where

ẋhi(t; k) = f
(
t, xhi(t; k), uk(t, xhi(t; k))

)
, xhi(0; k) = xhi,0,

ẋplan(t; k) = flift
(
t, xplan(t; k), k

)
, and xplan(0; k) = xhi,0

}
.

(3.28)

Note, this definition makes use of the lifted planning model, but, since the ERS is independent of
any particular planning iteration, we do not use liftplan.

The condition projX(xhi,0) = x0 ensures that the ERS is also defined in the planning frame, so
the robot starts from the same state (in the planning spaceX) as each plan k ∈ Klim(xhi,0). Without
this condition, the tracking error could be made arbitrarily large at t = 0 ∈ Tplan. Typically, this
means that, at t = 0, there is zero generalized coordinate error (i.e., in the Q coordinates of Xhi),
but nonzero generalized velocity error (the Q̇ coordinates). In other words, we assume that the
high-fidelity model of the robot is accurate, so we’re able to accurately estimate the robot’s state at
the beginning of each receding-horizon planning iteration by using the high-fidelity model. This
assumption is reasonable because tplan is usually small (i.e., we replan often). See §3.6.4 for how
we treat modeling error (which is not a focus of this work).

We can now rewrite the FRS in terms of the PRS and ERS.

Proposition 3.2.

RFRS =

{
(t, xhi,0, p, k) ∈ Tplan ×Xhi,0 ×W ×K | ∃ x ∈ X s.t.

(t, x, k) ∈ Rplan, (t, xhi,0, e) ∈ Rerr, and p ∈ FO(x+ projX(e))

}
,

(3.29)

where projX(e) means the projection of the tracking error into the coordinates of Rnhi correspond-

ing to X , since Xhi ⊂ Rnhi .

Proof. First, note that projX(xhi,0) = x0, so the initial condition requirement of RFRS is obeyed.
Furthermore, k ∈ Klim(xhi,0) is implied since (t, xhi,0, e) ∈ Rerr; that is, the bounds on the choice of
trajectory parameter are respected by the robot’s initial condition. Then notice that projX : Xhi →
X is linear, because both X and Xhi are embedded in vector spaces. To complete the proof, we
must show that, if we add the (projected) tracking error to the planning model state, we recover the

37

high-fidelity model’s state in the subspace X . Notice that

projX(e) = projX(xhi(t; k)− xplan(t; k)) (3.30)

= projX(xhi(t; k))− projX(xplan(t; k)) (3.31)

= projX(xhi(t; k))− x, (3.32)

where xhi and xplan are as in (3.28). Here, (3.31) follows from the linearity of the projection operator
and (3.32) follows from (3.28). Then we have the desired result: x+ projX(e) = projX(xhi(t; k)).

3.7.3 Predictions as Reachable Sets

Recall that a prediction is a map P(i) : T (i) → pow (W). We can consider the graph of a prediction
as a forward reachable set for all sensed obstacles, and then intersect this reachable set with the
FRS to identify plans that could cause collisions. To that end, we define an obstacle reachable set
(ORS), given the prediction P(i) in the ith planning iteration:

R(i)
obs =

{
(t, p, k) ∈ Tplan ×W ×K | p = world2plan(w, x

(i)
hi,0),

w ∈ P(i)(t+ t(i)), and k ∈ K
}
,

(3.33)

where x(i)
hi,0 is the robot’s initial condition at the beginning of the ith planning iteration. Notice

that R(i)
obs is in the planning frame, which enables direct comparison to the FRS in the following

section.

3.8 Online Planning

In each ith receding-horizon planning iteration, RTD attempts to find a new plan k(i) ∈ K. To do
so, we solve an optimal control problem over the parameter space K, with constraints representing
collision avoidance, and bounds on the parameters due to the robot’s initial condition x(i)

hi,0.
The cost function for this optimal control problem comes from a high level planner, which

typically ignores the dynamics of the robot and returns an intermediate pose, or waypoint, for the
robot to attempt to reach in the ith iteration.

The online planning procedure is summarized in Algorithm 1 at the end of this section. A
single planning iteration is illustrated in Figure 3.2.

38

Figure 3.2: A single online planning iteration. Note, predictions of the obstacles are not shown.
The high-level planner generates an intermediate waypoint (black star), which defines a cost func-
tion in the trajectory parameter space (shown as a gradient). The FRS is used to identify unsafe
trajectory parameters, shown as the intersection of the FRS and an obstacle in the workspace, and
as a pink region of the parameter space. Trajectory optimization finds a feasible plan, shown as
a green point in the parameter space, and a dashed line in the workspace, with the corresponding
subset of the FRS in green. The solid line shows the high-fidelity model trajectory with tracking
error, which is contained in the green subset of the FRS corresponding to the safe plan.

3.8.1 The Initial Condition

Recall that the robot attempts to create a new plan while simultaneously tracking a previous plan.
Therefore, the initial condition for the new plan must be predicted, using the robot’s closed loop
high-fidelity model. In other words, if the robot is currently tracking plan k(i−1) while attempting
to find k(i), it uses

x
(i)
hi,0 = xhi(t

(i) + tplan; k
(i−1)) (3.34)

as the initial condition for the ith planning iteration. The initial condition is at time t(i) + tplan

because every planning iteration is of duration tplan. Here,

ẋhi(t; k
(i−1)) = fhi(t, xhi(t; k

(i−1)), uk(i−1)(·)) ∀ t ∈ [t(i), t(i) + tplan] (3.35)

is given by the closed-loop high-fidelity model. Per §3.1, for the purpose of this work, we assume
that x(i)

hi,0 is a correct estimate of the robot’s state (see Assumption 3.1 for when this assumption
does not hold).

We must then consider the appropriate subset of the FRS for the given initial condition. For the

39

initial condition x(i)
hi,0, we denote this set

R(i)
FRS =

{
(t, p, k) ∈ RFRS | (t, x

(i)
hi,0, p, k) ∈ RFRS

}
, (3.36)

where i is used to refer to the initial condition in a similar way to liftplan, which uses i as an
argument to refer to t(i), k(i), and x(i)

hi,0.

3.8.2 Identifying Unsafe Plans

We conservatively identify all unsafe plans for the ith planning iteration by projection the intersec-

tion of the FRS and ORS into the trajectory parameter space; we confirm that doing so is correct
with the following proposition.

Proposition 3.3. Suppose the robot is in the ith planning iteration, with initial condition x(i)
hi,0 ∈ Xhi.

The set of unsafe plans in the ith receding-horizon planning iteration is overapproximated by the

parameter space projection of the FRS intersected with the ORS:

K
(i)
unsf ⊆ projK

(
R(i)

FRS ∩R
(i)
obs

)
. (3.37)

Proof. This proposition follows from the construction of the FRS and ORS; we proceed by unrav-
eling definitions. Suppose k ∈ K could cause a collision during T (i); that is, there exists t ∈ Tplan

and some obstacle O : T → pow (W) such that O(t + t(i)) ∩ FO(xhi(t; k)) 6= ∅, where xhi(t; k) is
the trajectory of the closed-loop high-fidelity model starting from initial condition x(i)

hi,0 (and using
the controller uk). So, we must show that k ∈ K

(i)
unsf. From the FRS definition (3.26) and from

(3.36), for any p ∈ FO(xhi(t; k)), we have (t, p, k) ∈ R(i)
FRS. From the prediction definition (3.6),

we know that p ∈ O(t + t(i)) =⇒ p ∈ P(i)(t + t(i)). Consequently, from the ORS definition
(3.33), we know that p ∈ P(i)(t + t(i)) =⇒ (t, p, k) ∈ R(i)

obs. Therefore, since (t, p, k) is in both
R(i)

FRS andR(i)
obs, k ∈ projK(R(i)

FRS ∩R
(i)
obs), completing the proof.

3.8.3 Trajectory Optimization

Let cost : K → R be an arbitrary cost function for trajectory optimization (we specify how we
typically construct cost below in §3.8.4). Then, in each planning iteration, we attempt to solve the

40

following program within the timeout tplan:

k(i) = argmin
k(i) ∈ K

cost(k(i)) (3.38)

s.t. k(i) 6∈ projK(R(i)
FRS ∩R

(i)
obs) (3.39)

k(i) ∈ Klim(xhi,0). (3.40)

Recall that the parameter bounds functionKlim that produces a subset of the spaceK that is feasible
for the robot’s initial condition x(i)

hi,0.
If (3.38) cannot be solved within tplan seconds, then the robot continues tracking its previous

plan k(i−1), which ends in a stop per the definition of every parameterized plan. While tracking
k(i−1), the robot can still attempt to replan (i.e., to find k(i+1) to begin at time t(i) + tplan).

3.8.4 The High-Level Planner

Recall that we typically break planning into a three-tiered hierarchy (see §1.1.3 and §2), with a
high-level planner at the top, a trajectory planner in the middle, and a tracking controller at the
bottom. In this chapter, we have developed RTD as a trajectory planner, and discussed how we
treat the tracking controller. To complete the hierarchy, we use a high-level planner to generate the
cost function for trajectory optimization each receding-horizon planning iteration.

RTD is agnostic to the high-level planner. For wheelend and aerial robots, we typically use
RRT or A* [LaV06] as the high-level planner; these ignore the robot’s high-fidelity and planning
models, and are only tasked with generating a waypoint in W between the robot’s initial condi-
tion projW (x

(i)
hi,0) and a global goal location. Note, the waypoint need not be collision-free; but,

using intermediate waypoints is convenient for encoding a coarse way to guide a robot around an
obstacle.

Running Example 3.11. Suppose that x(i)
des ∈ W is a waypoint generated by the high-level planner

in the ith iteration. An example cost function for the Segway is

cost(k(i)) =
∥∥∥x(tplan; k

(i))− world2plan(x
(i)
des)
∥∥∥2

2
, (3.41)

where x : Tplan → X is the trajectory of the planning model.

3.8.5 The Online Planning Algorithm

We now put all of the previous portions of this chapter together for safe, real-time, online planning.
RTD uses Algorithm 1 in each ith planning iteration.

41

For the purpose of enforcing the timeout tplan, we assume that Lines 2–5 execute instanta-
neously. In practice, we usually allot ≈ 0.1 seconds for these lines. Note, the cost function
generation and obstacle can prediction can be run in parallel to the rest of the algorithm, in an
anytime fashion.

Algorithm 1 The ith receding-horizon planning iteration (executes while robot is tracking k(i−1))

1: require previous trajectory x(i−1)
hi : T (i−1) → Xhi, previous plan k(i−1) ∈ K, FRS RFRS, and

parameter bounds function Klim

2: cost(i) ← GenerateCostFunc(x
(i−1)
hi (t(i)))

3: x
(i)
hi,0 ← PredictInitialState(x

(i−1)
hi)

4: R(i)
FRS ← GetFRS(RFRS, x

(i)
hi,0)

5: R(i)
obs ← PredictObstacles(x

(i)
hi,0)

6: k(i) ← FindTrajectory(tplan, cost(i),R(i)
FRS,R

(i)
obs,Klim(x

(i)
hi,0))

7: return new plan k(i) or else continue k(i−1)

3.8.6 Provably Safe, Not-at-Fault Planning

To conclude this chapter, we confirm that using Algorithm 1 ensures safe, not-at-fault planning for
all time (that is, it ensures persistent feasibility). To do so for wheeled and aerial robots, we specify
a minimum sensor horizon dsense as in §3.4, to ensure the robot can sense and predict any obstacle
that it would need to avoid in any planning iteration. In the case of (stationary) manipulators, we
assume that dsense is large enough to sense and predict any obstacle that would enter the workspace
during any planning iteration.

42

To specify the minimum sensor horizon, consider the following program

dmin = max
k(0),k(1),xhi,0

dplan + dstop + vmax,obs · (tplan + tf) (3.42)

s.t k(0), k(1) ∈ K, xhi,0 ∈ Xhi, projX(xhi,0) = x0, (3.43)

dplan =

∫ tplan

0

∥∥projW (xhi(t; k
(0)))

∥∥
2
dt (3.44)

dstop =

∫ 2tplan+tf

tplan

∥∥projW (xhi(t; k
(1)))

∥∥
2
dt, (3.45)

xhi(0; k(0)) = xhi,0, xhi(tplan; k
(1)) = xhi(tplan; k

(0)), (3.46)

ẋhi(t; k
(0)) = fhi(t, xhi(t; k

(0)), uk(0)(·)) ∀ t ∈ [0, tplan), (3.47)

ẋhi(t; k
(1)) = fhi(t, xhi(t; k

(1)), uk(1)(·)) ∀ t ∈ T (1), (3.48)

where T (1) = [tplan, 2tplan + tf] ⊂ T . Recall that vmax,obs is the maximum speed of any obstacle. The
quantity dmin is the maximum rectilinear distance that the robot can travel during the entirety of any
plan (the distance dstop), after traveling the maximum possible distance along a previous plan (the
distance dplan), plus the maximum distance any obstacle can travel over the same duration. Before
proceeding, we check that this quantity exists:

Lemma 3.4. The quantity dmin exists.

Proof. Notice that: (1) vmax,obs · (tplan + tf) is a constant, (2) K is compact, (3) fhi produces con-
tinuous trajectories, and (4) Xhi is bounded in all of its coordinates that are not shared with X by
assumption. Since the rectilinear distance of a continuous trajectory in Rn is continuous [R+64],
(3.42) is maximizing a continuous function on a compact set, completing the proof.

Now, we use dmin to ensure safety.

Theorem 3.5. Suppose that, at t = 0 ∈ T , the robot has a safe plan k(0) for its first planning

iteration, and suppose it is at a state x(0)
hi,0. Suppose that the robot’s sensor horizon is dsense > dmin

as in (3.42). Then, using Algorithm 1 in each planning iteration, the robot is safe and not-at-fault

for all time t ∈ T .

Proof. This proof follows from the definitions and assumptions throughout this chapter, and by
induction on the planning iteration.

First, we check that dsense is sufficiently large to ensure that the robot can sense and predict all
obstacles that could cause a collision during any ith iteration. At any time t(i) at the beginning of
any planning iteration, notice that dsense is greater than or equal to the maximum distance that the
robot can travel over the time interval [t(i), t(i) + tplan + tf], plus the maximum distance that any

43

obstacle could travel over that same time interval. In other words, the robot is able to sense and
predict all obstacles that must be considered for safety in iteration (i + 1). This follows from our
definition of sensing in (3.7) (see §3.4.3).

Now, we can complete the proof by induction. First, notice that the robot is safe and not-at-
fault for its initial plan, k(0). Suppose that it is safe and not-at-fault for the ith plan. If it cannot find
a new plan k(i+1) using (3.38), then plan k(i) ensures it is safe and not-at-fault for all time, because
it comes to a collision-free stop, and can remain stopped indefinitely by assumption (see §3.4.2).
If it can find a new plan k(i+1) that is feasible to (3.38), then that new plan is safe and not-at-fault
by Proposition 3.3 and the definition of Klim (see §3.6.3).

Corollary 3.6. Recall by Assumption 3.1 that the high-fidelity model is accurate to within εxj in

each coordinate xj of xhi. Let εhi ∈ Rnhi be a vector concatenating all the εxj accuracies, and let

εW = ‖projW (εhi)‖2. When considering the robot hardware, we must ensure dsense ≥ dmin + 2εW .

Proof. At the beginning of any ith planning iteration, the robot is at most εW away from its
workspace position as given by the high-fidelity model. Then, while tracking the ith plan (assum-
ing one is found), it is at most εW away from the trajectory of the high-fidelity model. Therefore,
by adding 2εW , we compensate for the cumulative inaccuracy.

Note, to create εW , we use ‖·‖2 instead of ‖·‖∞ since our definition of sensing uses a 2-norm ball.
This concludes the online planning section. The takeaway is that we have shown how, by

following all definitions and assumptions established throughout this theoretical overview of RTD,
one can ensure that the robot is safe and not-at-fault for all time.

3.9 Chapter Review

The takeaway of this chapter is that RTD is a general framework for safe receding-horizon plan-
ning, independent of numerical representations and robot morphology.

3.9.1 Chapter Summary

In this chapter, we have provided a theoretical, generic overview of Reachability-based Trajectory
Design. We introduced the high-fidelity model used to describe the robot, and explained the context
of receding-horizon planning. We then covered how obstacles and the robot occupy volume in the
workspace, and specifies how the robot must sense and predict obstacles. Then, we introduced a
simplified planning model to make real-time, safe planning tractable. Since the high-fidelity model
cannot perfectly track the parameterized plans of the planning model, we then covered the notion
of tracking error. To compensate for tracking error during online planning, we constructed the

44

robot’s Forward Reachable Set to contain the motion of the robot when tracking any parameterized
plan, from any initial condition. Finally, we used the Forward Reachable Set to identify all unsafe
plans in each receding-horizon planning iteration, and proved that doing so renders the robot safe
and not-at-fault when using our online planning algorithm.

3.9.2 What Is Missing?

As per the takeaway above, this theoretical presentation has not discussed how to implement RTD
numerically, or for any particular robot. Implementation is nontrivial, especially for objects such as
the FRS, which contain infinitely many points that are related by the potentially high-dimensional
and nonlinear high-fidelity model of the robot. Often, we find that implementing the objects in
this chapter directly as written is intractable. In the following chapters, we therefore detail specific
methods to implement RTD for wheeled, aerial, and manipulator robots that preserve the critical
properties of real-time, safe, not-at-fault trajectory planning.

45

CHAPTER 4

Forward Reachable Sets via Sums-of-Squares
Programming

In this chapter, we use sums-of-squares (SOS) programming to perform RTD’s offline reachability
computation of the Forward Reachable Set (FRS). For now, we assume the existence of the Error
Reachable Set (ERS) in 4.1, and reserve our computation of the ERS to §7.

To place this approach in the context of the literature, note, that we have only applied it to rigid-
body wheeled robots (such as the Segway). Other approaches have applied similar SOS techniques
to reachable sets for aerial robots, but these either rely on a finite library of trajectories [MT16]
or are used to synthesize feedback controllers that treat higher-level planners as a disturbance,
incurring large conservatism [SCH+18]. For future work, it may be possible to extend the present
approach to aerial robots by leveraging system decomposition techniques [KHV19, SCH+18]. To
that end, we discuss a generic decomposition technique in this chapter.

The sections of this chapter are as follows. (§4.1) We begin by representing the ERS us-
ing a differential equation, which we call a tracking error model. (§4.2) Next, we express a
simplified version of the FRS that omits initial conditions and conservatively approximates the
robot’s forward occupancy. (§4.3) Then, to compute this simplified FRS, we formulate an infinite-
dimensional linear program (LP) over continuous functions, and show that sub/super-level sets of
these functions contain the FRS. (§4.4) To implement the infinite-dimensional LP, we conserva-
tively approximate it using SOS polynomials of finite degree by applying Lasserre’s hierarchy of
moment relaxations [Las10]; we also observe that the memory usage of this approach scales poorly
with the planning model dimension. (§4.5) To combat the memory usage challenges, we present a
system decomposition approach to compute lower-dimensional reachable sets, then combine them
into a reachable set for a higher-dimensional system. (§4.6) Next, we present a method for com-
puting the FRS over a sequence of short time intervals, which we find enables less conservative
trajectory planning in dynamic environments when compared to the FRSes computed in §4.4 and
§4.5. (§4.7) To understand how we recover the original FRS from the simplified one (as in §4.2)
used for SOS programming, we present a procedure called FRS swapping, wherein we reintroduce

46

the robot’s initial conditions to the FRS. (§4.8) Finally, to conclude the section, we explain how
to use the FRS representation produced by SOS programming online, to generate constraints for
trajectory optimization.

4.1 The Tracking Error Model

To enable SOS reachability analysis, we represent the tracking error as a differential equation,
which we call the tracking error model. Doing so lets us compute the FRS using the planning
model, plus tracking error as a disturbance, leveraging the disturbance/control synthesis approach
in [MVTT14]. Recall that the planning model is f : Tplan ×X ×K → RnX . We similarly define
the tracking error model ferr : T ×X ×K → RnX , and assume it exists as follows:

Assumption 4.1. There exists ferr : Tplan ×K → RnX for which

max
xhi,0∈Xhi,0

|projX(xhi(t; k))− x(t; k)| ≤
∫ t

0

ferr(τ, k)dτ (4.1)

for all t ∈ Tplan and k ∈ K, where and the absolute value is taken elementwise. Here, xhi is the

trajectory of the closed-loop high-fidelity model, and x is the trajectory of the planning model. We

further assume ferr is Lipschitz continuous in t, x, and k.

Recall that, if xhi,0 ∈ Xhi,0, then projX(xhi,0) = x0. So, ferr overapproximates the tracking error
in the X dimensions for all trajectories of the closed-loop high-fidelity model that evolve in the
planning frame.

We now check that this type of tracking model lets us recover any individual trajectory of the
high-fidelity model.

Lemma 4.2. Let Lδ = L1(Tplan, [−1, 1]nX]) denote the space of absolutely integrable functions

from Tplan to [−1, 1]. Suppose xhi,0 ∈ Xhi and projX(xhi,0) = x0. Then there exists a “disturbance”

δ ∈ Lδ such that, in the planning space X , the trajectory high-fidelity model is equivalent to the

trajectory of the planning model plus the tracking error model times the disturbance:

projX(xhi(t; k)) = x(t; k) (4.2)

where ẋhi(t; k) = fhi(t, xhi(t; k), uk(·)), xhi(0; k) = xhi,0,

ẋ(t; k) = f(t, x(t; k), k) + ferr(t, k) · δ(t) (4.3)

almost everywhere t ∈ Tplan, x(0; k) = x0, and ferr(·) · δ(t) is taken elementwise.

47

Proof. Using Assumption 4.1, almost everywhere t ∈ Tplan, we can pick δ(t) ∈ [−1, 1]nX such
that

projX(xhi(t; k))−
∫ t

0

f(τ, x(τ ; k), k)dτ + x0 =

∫ t

0

ferr(τ, k)δ(τ)dτ. (4.4)

We can rearrange (4.4) and apply (4.3) to fulfill (4.2).

Notice that Lemma 4.2 echoes the informal notion of FRS = PRS + ERS.

4.2 A Simplified FRS for SOS Reachability

To make computation tractable with SOS reachability, we redefine the FRS as follows. We sub-
sume the robot’s forward occupancy given by FO into a single initial condition set X0 ⊂ X , then
flow this entire set forward according to the planning model with tracking error introduced above.
In particular, we define X0 to satisfy the following:

X0 + {x(t; k)} ⊇ FO(x(t; k)) ∀ k ∈ K, (4.5)

where ẋ(t; k) = f(t, x(t; k), k) + ferr(t, k) · δ(t) almost everywhere t ∈ Tplan. Note, X0 need not
have nonzero volume in every coordinate of X .

As an example, consider the case of a robot for which X = SE(2) = P × Θ, recalling that
we restrict the current SOS approach to wheeled robots. Then X0 ⊂ P must be large enough to
contain all rotations of that rigid body for any trajectory parameter (so X0 has zero volume in the
Θ subspace of SE(2)).

So, by applying the dynamics f to the entire volume X0 during reachability analysis, we can
conservatively approximate the motion of the robot’s rigid body. At the end of this section, we
note how one can circumvent this source of conservatism by choosing the planning model f as in
the Segway running example 3.5.

Now consider the following simplified FRS:

RSOS =

{
(t, x, k) ∈ Tplan ×X ×K | ∃ xhi,0 ∈ Xhi,0, x̃0 ∈ X0, and (4.6)

δ ∈ Lδ s.t. x̃(0; k) = x0, x = x̃(t; k) + x̃0, k ∈ Klim(xhi,0), (4.7)

and ˙̃x(τ ; k) = f(τ, x̃(τ ; k), k) + ferr(τ, k) · δ(τ) ∀ τ ∈ Tplan

}
, (4.8)

where, as a reminder, x0 ∈ X is the initial condition of every plan in the planning frame. Notice
that, in comparison to the original FRS formulation, this FRS effectively takes the union over all

48

initial conditions xhi,0, and all possible rotations of the robot’s body per (4.5). This can also be
seen by the fact thatRSOS does not include FO in its defintion.

4.3 An Infinite-Dimensional Linear Program

Now, we use f and ferr to conservatively estimateRSOS by formulating an infinite-dimensional LP
on continuous functions. To do so, we use a pair of linear operators,

Lf : AC(Tplan ×X ×K)→ C(Tplan ×X ×K) and (4.9)

Lferr : AC(Tplan ×X ×K)→ C(Tplan ×X ×K), (4.10)

where AC(D) (resp. C(D)) denotes the set of absolutely continuous (resp. continuous) functions
D → R. Given a test function g : Tplan ×X ×K → R, these operators perform the following:

Lfg(t, x, k) =
∂g

∂t
(t, x, k) + (∇xg · f)(t, x, k) (4.11)

Lferrg(t, x, k) =
∂g

∂t
(t, x, k) + (∇xg · ferr)(t, x, k), (4.12)

where ∇x takes the gradient (of g) with respect to the coordinates of X . In other words, these
operators take the total derivative of g with respect to the vector fields f and ferr, hence their
linearity.

Now we set up the following LP, adapted from [MVTT14, Program (D)]:

inf
gdyn,gstat,d

∫
X×K

gstat(x, k)dλX×K (4.13)

s.t − Lfgdyn(t, x, k)− d(t, x, k) ≥ 0, (4.14)

Lferrgdyn(t, x, k) + d(t, x, k) ≥ 0, (4.15)

− Lferrgdyn(t, x, k) + d(t, x, k) ≥ 0, (4.16)

d(t, x, k) ≥ 0 (4.17)

− gdyn(0, x, k) ≥ 0 (4.18)

gstat(x, k) ≥ 0 (4.19)

gstat(x, k) + gdyn(t, x, k)− 1 ≥ 0, (4.20)

where (4.14)–(4.17) and (4.20) are on Tplan×X×K, (4.18) is on X0×K, and (4.19) is on X×K.
The given data for this problem are the models f and ferr and the sets Tplan,X , andK. The infimum
is taken over gdyn, gstat, d ∈ C1(Tplan ×X ×K).

49

We now provide some insight into this program. Note that this program is the dual to an
infinite-dimensional program on measures [MVTT14, Program (P)]; the supports of these mea-
sures represent the sets X0 andRSOS, plus the reachable sets of the disturbances δ ∈ Lδ. The deci-
sion variable gdyn is analogous to a Lyapunov function along trajectories produced by f + ferr · d,
starting from initial conditions in X0, as evidenced by the constraints (4.14)–(4.16). We use the
subscript “dyn” because the 0-sublevel set of gdyn contains states in X and associated times that are
reached by the planning + tracking error models (we prove this statement below). That is, gdyn al-
lows us to express the robot’s time-varying motion, and is later used to formulate online trajectory
optimization constraints for dynamic environments. Similarly, gstat allows us to express the robot’s
motion in X ×K over all t ∈ Tplan, thereby enabling us to formulate trajectory optimization con-
straints at runtime for static environments by inspecting the 1-superlevel set of gstat (this follows
from (4.20), as we prove shortly). Finally, d allows us to represent all δ ∈ Lδ; that is, it stands in
for the “disturbance” used to add the tracking error to the planning model. To see this, combine
(4.15)–(4.17) to get |Lferrgdyn(t, x, k)| ≤ d(t, x, k).

We now check that this program does indeed conservatively approximate the FRS:

Theorem 4.3. If (gdyn, gstat, d) is a feasible solution to (4.13), then gdyn is non-positive and de-

creasing along trajectories given by f + ferr · δ for any δ ∈ Lδ. That is, if (t, x, k) ∈ RSOS, then

gdyn(t, x, k) ≤ 0.

Proof. We use a Lyapunov-style argument. Notice from (4.18) that gdyn(0, x̃0, k) ≤ 0 for all
x̃0 ∈ X0 and k ∈ K. So, for any t ∈ Tplan, k ∈ K, and δ ∈ Lδ, we have

gdyn(t, x(t; k), k) = gdyn(0, x(0; k), k) +

∫ t

0

(
Lfgdyn(τ, x(τ ; k), k)

)
dτ +

+

∫ t

0

(
Lferrgdyn(τ, x(τ ; k), k) · δ(τ)

)
dτ

(4.21)

≤ gdyn(0, x(0; k), k) +

∫ t

0

Lfgdyn(τ, x(τ ; k), k) +

+

∫ t

0

d(τ, x(τ ; k), k)dτ

(4.22)

≤ gdyn(0, x(0; k), k). (4.23)

Here, (4.21) follows from the Fundamental Theorem of Calculus, (4.22) follows from (4.15) and
(4.16), and (4.23) follows from (4.14).

Corollary 4.4. If ∃ t ∈ Tplan for which (t, x, k) ∈ RSOS, then gstat(x, k) ≥ 1.

Proof. From (4.19), gstat(x, k) ≥ 0 on all of X × K. From (4.20) it follows that gstat(x, k) ≥
1− gdyn(t, x, k) for all t ∈ Tplan. The desired result then follows from Theorem 4.3.

50

4.4 Implementing the LP with SOS Programming

We now approximate (4.13) with finite-degree SOS polynomials.

4.4.1 SOS Polynomials

To proceed, we require the following notation and assumptions. Let R[y] denote the ring of poly-
nomials in the variable y, and let Rl[y] denote the polynomials in y up to degree l. We require
polynomial representations of the dynamics and domain of the LP above:

Assumption 4.5. The models f and ferr are polynomials of finite degree. The sets X , X0, and K

have the following semi-algebraic representations:

X = {x ∈ RnX | h(i)
X (x) ≥ 0 ∀ i = 1, · · · , nX}, (4.24)

X0 = {x ∈ RnX | h(i)
X0

(x) ≥ 0 ∀ i = 1, · · · , nX}, and (4.25)

K = {k ∈ RnK | h(i)
K (k) ≥ 0 ∀ i = 1, · · · , nK}, (4.26)

where all h(i)
K ∈ R[k], all h(i)

X , h
(i)
X0
∈ R[x]. Finally, there exists n ∈ N such that, for any q =

(t, x, x̃0, k) ∈ Tplan ×X ×X0 ×K, n− ‖q‖2
2 ≥ 0.

This last assumption is required by [Las10, Theorem 2.15]. Also, notice that Tplan admits a semi-
algebraic representation:

hTplan(t) = t · (tf − t). (4.27)

Before proceeding, we note that it is critical to scale the robot models and spaces correctly:

Remark 4.6. The planning model f and tracking error model ferr typically represent trajectories

that attain values of magnitude greater than 1 in each state. However, when representing the FRS

with SOS polynomials, we must scale f and ferr, along with the spaces Tplan, X , X0, and K, to

be contained within an interval of [−1, 1] in each state/coordinate. This is because the polyno-

mial representation of the robot’s FRS can become numerically unstable when we are evaluating

polynomials of high degree (e.g., degree 12) on values larger than 1.

Now, to ease notation, we collect the polynomials representing these sets in the following

51

subsets of R[t], R[x], and R[k]:

HTplan = {hTplan}, (4.28)

HX = {h(1)
X , · · · , h(nX)

X }, (4.29)

HX0 = {h(1)
X0
, · · · , h(nX)

X0
}, and (4.30)

HK = {h(1)
K , · · · , h(nK)

K }. (4.31)

Now, we define sets of SOS polynomials. Let Q2l(HTplan , HX , HK) be the set of polynomials
p ∈ R2l[t, x, k] that can be expressed as

p = s(0) + s(1)hTplan +

nX∑
i=1

s(i+1)h
(i)
X +

nK∑
i=1

s(i+nX+2)h
(i)
K , (4.32)

for some polynomials {s(i)}nX+nK+2
i=1 ⊂ R2l[t, x, k] that are sums-of-squares of other polynomials.

Similarly, defineQ2l(HX , HK) andQ2l(HX0 , HK) ⊂ R2l[x, k]. Note, this use ofQ2l is unrelated to
the configuration space Q; we use this notation to be consistent with our prior use in the literature
[KVB+20].

Note, by Schmüdgen’s Positivstellensatz, all such p are non-negative on the (compact) semi-
algebraic domains [Las10, Theorem 2.14]. This enables our implementation, since the constraints
in the LP require continuous functions that are positive on particular compact sets. By searching
over positive polynomials, we ensure that these constraints are satisfied.

4.4.2 SOS Relaxation of the Infinite-Dimensional LP

We now define the lth order relaxed SOS program representation of (4.13):

inf
gdyn,l,gstat,l,dl

yTX×Kvec(gstat,l) (4.33)

s.t. − Lfgdyn,l − dl ∈ Q2lf (HTplan , HX , HK) (4.34)

Lferrgdyn,l + dl ∈ Q2lerr(HTplan , HX , HK) (4.35)

− Lferrgdyn,l + dl ∈ Q2lerr(HTplan , HX , HK) (4.36)

dl ∈ Q2l(HTplan , HX , HK) (4.37)

− gdyn,l(0, ·) ∈ Q2l(HX0 , HK) (4.38)

gstat,l ∈ Q2l(HX , HK) (4.39)

gstat,l + gdyn,l − 1 ∈ Q2l(HTplan , HX , HK), (4.40)

52

where the infimum is taken over the polynomials gdyn, gstat,l, dl ∈ R2l[t, x, k]. The vector yX×K
contains moments associated with the Lebesgue measure λX×K , so∫

X×K
gstat(x, k)dλX×K = y>X×Kvec(gstat) (4.41)

for any gstat,l ∈ R2l[x, k] [MVTT14]. The numbers lf (resp. lerr) are the smallest integers so that
2lf (resp. 2lerr) are greater than the total degree of Lfgdyn,l (resp. Lferrgdyn,l). Note, this means that
the total degree of (4.33) scales with the degree of the planning model and tracking error model.

To implement (4.33), we consider the dual program, which is a semi-definite program (SDP)
[Las10, MVTT14].

Importantly, Theorem 4.3 and Corollary 4.4 hold for the relaxed program (4.33) [MVTT14,
Theorem 6]. In other words, the 0-sublevel set of gdyn,l and the 1-superlevel set of gstat,l both
contain trajectories of the planning model plus tracking error (where gdyn,l also included the time
component of any such trajectory). This means that gdyn,l and gstat,l overapproximate the FRS,
which is important for proving safety: if the subset of the overapproximated FRS corresponding
to a trajectory parameter lies outside of an obstacle, then the robot also lies outside of the obsta-
cle. Note, as the program degree l increases, the overapproximation of RSOS with gdyn,l and gstat,l

becomes provably less conservative [MVTT14, Theorem 7].

4.4.3 Sums-of-Squares Memory Usage

To motivate the next section, and to make the reader aware of the potential limitations of this SOS
approach, we discuss the memory usage required by our implementation of (4.33), which uses
Spotless [TPM13] to transform the SOS program into an SDP that is then solved with MOSEK
[Mos10].

Solving (4.33) is memory-intensive. To see why, first note that the monomials of each polyno-
mial are free variables (a polynomial of degree 2l and dimension n has

(
2l+n
n

)
monomials); each

free variable is stored as a 64 bit double. The memory required by (4.33) grows as O((n + 1)l)

for fixed l, and O(ln+1) for fixed n [MVTT14, Section 4.2]. As a second-order solver, MOSEK
computes the Hessian of each constraint in (4.33) [Mos10, Section 11.4], which requires memory
proportional to the number of free variables squared. To estimate the number of free variables gen-
erated by (4.33), one can sum the monomials in each decision variable polynomial (gdyn,l, gstat,l, dl,
which are degree 2l, and the s polynomials as in (4.32) used to produce the SOS constraints for
each semi-algebraic set, for which the degree is specified by the degree of the program).

Consider the Segway planning model in Running Example 3.5, and suppose we use a tracking
error model of degree 3; note, the model has 5 dimensions dim(Tplan×X ×K). Solving the l = 5

53

case of (4.33) requires approximately 1.4 × 105 free variables, and used approximately 100 GB
of memory. We were unable to solve l = 6. When testing (4.33) on a 7-D system, we found that
l = 3 produced 1.1× 105 free variables, and used ≈ 500 GB of memory; we were unable to solve
the l = 4 case on a computer with 3.5 TB of memory.

4.5 System Decomposition

To address the memory challenges presented above, we now present a system decomposition ap-
proach for computing the FRS with SOS programming. Here, we first compute an FRS for separate
subsystems of the planning model plus tracking error, then reconstruct the FRS of the full system
using the lower-dimensional FRSes. This is an adaptation of [CHV+18] from Hamilton-Jacobi
reachability to SOS reachability. Note that, while recovering the exact FRS of the full system is
not always possible, the recovered FRS is a guaranteed overapproximation, which is useful for
collision avoidance purposes. To proceed, we first define self-contained subsystems, then present
an infinite-dimensional LP to reconstruct an FRS given FRSes of these subsystems, and finally
present a SOS implementation.

4.5.1 Self-contained Subsystems

We define self-contained subsystems as follows; note, we present the case for two subsystems,
but this method can generalize to any number. Consider a planning model f with state x ∈ X ,
which we refer to as the full system. Suppose we can write x = (x1, x2, xs), with dynamics

ẋ1(t) = f1(t, x1(t; k), xs(t; k), k)

ẋ2(t) = f2(t, x2(t; k), xs(t; k), k)

ẋs(t) = fs(t, xs(t; k), k),

(4.42)

and notice that f1 does not depend on x2 , f2 does not depend on x1, and, fs does not depend on
either x1 or x2. Then we define z1 = (x1, xs) and z2 = (x2, xs) as the coordinates of the self-
contained subsystems. The subscript “s” denotes that the coordinates xs are shared between both
subsystems. LetZ1 andZ2 denote the subspaces ofX that contain the z1 and z2 states, respectively;
we assume that these sets admit semi-algebraic representations, just as with X , X0, and K.

54

4.5.2 Subsystem FRSes

Now, to compute the FRS for each subsystem, we specify the planning and tracking error models
as

żi(t) =

[
ẋi(t)

ẋs(t)

]
=

[
fi(t, xi(t; k), xs(t; k), k)

fs(t, xs(t; k), k)

]
+

[
ferr,i(t, k) · δi(t)
ferr,s(t, k) · δs(t)

]
, (4.43)

where (δi(t), δs(t)) ∈ L1(Tplan, [−1, 1]dim(Zi)) is the disturbance for the self-contained subsystem.
We then solve (4.13), replacing X with Zi and f and ferr with the models in (4.43).

4.5.3 FRS Reconstruction

Now we reconstruct the FRS of the full system. Let (gdyn,i, gstat,i, di) be a feasible solution to (4.13)
for self-contained subsystem i, with i = 1, 2. Then define

Grec =

{
(x, k) ∈ ×X ×K | ∃ t ∈ Tplan s.t. (4.44)

gdyn,1(t, projZ1
(x), k) ≤ 0 and gdyn,2(t, projZ2

(x), k) ≤ 0

}
, (4.45)

where the subscript “rec” denotes reconstruction. In other words, we reconstruct the FRS using the
functions gdyn,i that are negative and decreasing along trajectories of each subsystem; the recon-
structed FRS contains points in X that are reached by both subsystems (which can extend to all

subsystems if there are more than two). To find Grec, we pose the following infinite-dimensional
LP:

inf
grec

∫
X×K

grec(x, k)dλX×K (4.46)

s.t. grec(x, k) ≥ 1 ∀ (x, k) ∈ Grec (4.47)

grec(x, k) ≥ 0 ∀ (x, k) ∈ X ×K. (4.48)

We implement (4.46) as a SOS program as follows. Suppose we solve (4.33) for each self-
contained subsystem with degree l, to get gdyn,l,1, gdyn,l,2 ∈ R2l[t, x, k]; note, per (4.44), we do not
need to hold on to the other decision variables of (4.33), so we omit them here to ease notation.
Let

Hdyn = {−gdyn,l,1,−gdyn,l,2}, (4.49)

55

and let m ∈ N,m ≥ l. Then we reconstruct the FRS with the following SOS program:

inf
grec,m

∫
X×K

y>X×Kvec(grec,m) (4.50)

s.t. grec,m − 1 ∈ Q2m(Hdyn, HTplan , HX , HK) (4.51)

grec,m ∈ Q2m(HX , HK), (4.52)

where Q2m(·) denotes the degree 2m polynomials that can be written as in (4.32).
We confirm that this program reconstructs the FRS of the full system:

Theorem 4.7. Suppose gdyn,l,1, gdyn,l,2 ∈ R2l[t, x, k] are parts of the feasible solutions to (4.33) for

each self-contained subsystem with degree l. Suppose grec,m is a feasible solution to (4.50) (using

gdyn,l,1 and gdyn,l,2). ThenRSOS is a subset of the 1-superlevel set of grec,m.

Proof. Suppose that x : Tplan → X is a trajectory of the full system with ẋ(t; k) = f(t, x(·), k) +

ferr(t, k) · δ(t), and δ ∈ Lδ is a disturbance profile for the full system. By definition,RSOS contains
every such trajectory x; so, we must show that g(x(t; k), k) ≥ 1 for all t ∈ Tplan. By Theorem 4.3
and [MVTT14, Theorem 6], gdyn,l,1(t, projZ1

(x(t; k)), k) ≤ 0 for subsystem 1, and similarly with
gdyn,l,2 for subsystem 2. This means that (x(t; k), k) ∈ Grec for any t ∈ Tplan. Since grec ≥ 1 on
Grec, we are done.

Another way to think of Grec is as the intersection of the back-projections of the FRS of each
subsystem into the full planning space X . Let z1(t; k) = projZ1

(x(t; k)) for all t ∈ Tplan, and
similarly z2, where x is the trajectory from the proof above. From [CHV+18, Lemma 1], we have

x(t; k) ∈
{
x ∈ proj−1

Z1
(z1(t; k)) ∩ proj−1

Z2
(z2(t; k))

}
, (4.53)

where proj−1
S (x) = {x ∈ X | projS(x)} is the back-projection operator from a subspace S to the

full system space X .

4.6 The FRS Over Small Time Intervals

We now present a method for breaking Tplan into several time intervals and computing an FRS with
SOS programming on each one [VLK+19]. This approach enables significantly less conservative
trajectory planning in dynamic environments, because the resulting FRS representation produces
fewer constraints for online trajectory optimization than the representations presented earlier in
this chapter.

56

4.6.1 Time Interval Motivation

To motivate this section, we discuss how the FRS is used for online trajectory planning. Let gdyn

and gstat be part of a feasible solution to 4.13. Consider an obstacle O : Tplan → pow (W) that has
been mapped to the planning frame.

Suppose the obstacle is static. Then, to choose trajectories that avoid this obstacle, by Theorem
4.3, we must ensure that gstat(x, k) < 1 for all x ∈ O(t) where t is any time in Tplan. This requires
an infinite number of constraints if O(t) contains an infinite number of points (e.g., if O(t) is a
polygon in W). In §5, we present a method for conservatively representing any such O(t) with a
finite number of discrete points at online, resolving the issue in the case of static obstacles. In the
case of static obstacles, this results in safe but fast trajectory planning.

However, if the obstacle is dynamic, then we must ensure that gstat(t, x, k) > 0 for every
t ∈ Tplan and all x ∈ O(t). Therefore, this also requires an infinite number of constraints, but for
both t and x. While dynamic obstacles also admit a conservative, discretized, finite representation
in §5.7.3, unfortunately, we find that discretizing time results in an unideal tradeoff between con-
servatism and computational expense. In practice, such a time discretization means that a wheeled
robot cannot plan with respect to more than one or two dynamic obstacles at online, which is
impractical for, e.g., an autonomous car surrounded by pedestrians.

To combat the challenges with this online dynamic obstacle discretization, here, we partition
Tplan into small intervals, and compute the FRS over each such interval offline. Then, at online, by
treating dynamic obstacles as static in each small time interval, we can leverage the static obstacle
discretization mentioned above (see §5.7.4). Remarkably, doing so reduces both conservatism and
computation time for online trajectory planning.

4.6.2 A Secondary Infinite-Dimensional LP

Our approach is to use the solution to the original infinite-dimensional LP 4.13, to construct a
similar LP for of a finite number of time intervals. In other words, we solve for the functions
representing the FRS over the entirety of Tplan, then use them to find the FRS broken into time
intervals, hence the notion of a secondary LP.

Let nRS ∈ N be a number of time intervals, with the subscript as a reminder that this integer is
used for the reachable set. Let ∆t = tf/nRS, so that

Tplan = [0,∆t] ∪ [∆t, 2∆2] ∪ · · · ∪ [tf −∆t, tf] (4.54)

= I(1) ∪ I(2) ∪ · · · ∪ I(nRS) (4.55)

That is, each I(i) = [(i− 1)∆t, i ·∆t] for i = 1, · · · , nRS. We refer to this as a partition of Tplan in

57

a minor abuse of vocabulary (I(i) ∩ I(i+1) 6= ∅, but the intersection is only a single point). Recall
that, for SOS programming, we must define the domain of the cost and constraints as a compact
sets.

Suppose that, for a planning model f and tracking error model ferr, we have computed gdyn and
gstat as feasible solutions to (4.13). Then, we pose the following LP on continuous functions:

inf
g
(i)
stat

∫
X×K

g
(i)
stat(x, k)dλX×K (4.56)

s.t. g
(i)
stat(x, k) + gdyn(t, x, k)− 1 ≥ 0 on I(i) ×X ×K (4.57)

g
(i)
stat(x, k) ≥ 0 on X ×K. (4.58)

Notice the similarity between (4.57) and (4.20) (wherein gstat ≥ 1 = gdyn).

Lemma 4.8. Suppose g(i) is feasible to (4.56). If there exists t ∈ I(i) such that (t, x, k) ∈ RSOS,

then g(i)
stat(x, k) ≥ 1.

Proof. This follows from (4.57) and Corollary 4.4. That is, since gdyn(t, x, k) ≤ 0 on trajectories
in I(i) ×X ×K, it follows that g(i)

stat(x, k) ≥ 1 on those same trajectories.

4.6.3 SOS Relaxation

As before, we apply Lasserre’s hierarchy to relax (4.56) to a finite-degree SOS program of degree
l:

inf
g
(i)
stat,l

y>X×Kvec(g
(i)
stat,l) (4.59)

s.t. g
(i)
stat,l + gdyn,l − 1 ∈ Q2l(HI(i) , HX , HK) (4.60)

g
(i)
stat,l ∈ Q2l(HX , HK), (4.61)

where gdyn,l is part of a feasible solution to (4.33) and HI(i) = {hI(i)} for which

hI(i)(t) = (t− t(i))(t(i+1) − t). (4.62)

Note that applying this time interval method requires first solving (4.33), then solving (4.59) for
every I(i). Therefore, the offline computation time is greatly increased by this method. However,
this penalty is worth paying to enable faster and less conservative online trajectory planning, as
mentioned earlier.

58

4.7 Recovering the Original FRS

Recall that, in §4.2, we simplified the FRS definition by taking the union over all initial conditions.
In practice, this would be very conservative, because the tracking error model ferr would have
to hold as in Assumption 4.1 for every possible initial condition of the robot. To combat this,
we use FRS swapping. The idea, in essence, is to partition the space Xhi,0 of initial conditions
into a finite number of subsets, then compute the simplified FRS (i.e. RSOS) on each subset.
Online, at the beginning of each receding-horizon planning iteration, we select the particular FRS
corresponding to the robot’s initial condition; in other words, we swap to the correct FRS. Note,
we have already seen this logic in Algorithm 1 (see GetFRS on Line 4). Importantly, the union of
all such simplified FRSes lets us conservatively recover the original FRS,RFRS.

Note that a naı̈ve implementation of FRS swapping, where we partition the entire spaceXhi,0 ⊂
Rnhi of initial conditions, would be intractable due to the dimension nhi of the high-fidelity model.
However, notice that Xhi,0 occupies zero volume in the subspace X . This means we need only
partition the robot’s initial generalized velocity space, not its generalized coordinate space. We
find that this makes FRS swapping tractable across a variety of robot morphologies.

FRS swapping lets us conservatively recover the original FRS,RFRS ⊆ Tplan×Xhi,0×X ×K.
Consider the ith receding-horizon planning iteration, with initial condition x(i)

hi,0. Where one would
choose R(i)

FRS specific to x(i)
hi,0 ∈ Xhi,0 as in §3, we instead choose R(i)

SOS for which projXhi,0
(x

(i)
hi,0) ∈

X
(j)
hi,0, where X(j)

hi,0 is the j th subset in the partition of Xhi,0. By conservative, we mean that, if
(t, xhi,0, x, k) ∈ RFRS, then there exists a subsetX(j)

hi,0 ofXhi,0 (by construction) such that (t, x, k) ∈
R(i)

SOS. The inclusion does not necessarily hold in the opposite direction.
This idea of FRS swapping lets us forecast our approach of computing the ERS in §7. As hinted

earlier, the tracking error function ferr is typically smaller for a smaller range of initial conditions.
Therefore, by partitioning Xhi,0, we can compute a separate ferr for each subset of Xhi,0; since the
magnitude of ferr is smaller for some subsets of Xhi,0, the corresponding FRS is smaller for those
same subsets. A smaller FRS is less likely to intersect with obstacles, and thereby eliminates less
choices of plans online; so, FRS swapping reduces conservatism. The takeaway here is, while ferr

is a tracking error model representation of the ERS specific to the SOS approach, this notion of
partitioning Xhi,0 enables us to compute the ERS less conservatively than if we were to subsume
all tracking error over all initial conditions.

4.8 Online Planning

We now discuss how the polynomial representation of the FRS is used online. Suppose gdyn,l, gstat,l

are part of a feasible solution to (4.33), computed offline. Suppose that the robot is in its ith

59

planning iteration, with an obstacle reachable set R(i)
obs ⊂ Tplan ×W ×K as in (3.33). Recall that

R(i)
obs is a prediction of obstacles that has been mapped to the robot’s planning frame. The purpose

of computing the FRS is to enable us to identify the unsafe plans as in (3.37), which we restate
here:

K
(i)
unsf ⊆ projK(R(i)

FRS ∩Robs). (4.63)

4.8.1 Generic Constraint Formulation

To see how we represent the intersection of the FRS and ORS in (4.63), notice that the 0-sublevel
set of gdyn,l conservatively represents the FRS:

projTplan×W (R(i)
FRS) ⊆ {(t, x) ∈ Tplan ×W | ∃ k ∈ K s.t. gdyn,l(t, x, k) ≤ 0} , (4.64)

which follows from Theorem 4.3 and [MVTT14, Theorem 6]. It follows that, for any (t, x) ∈
projTplan×W (Robs) and k ∈ K,

k ∈ K(i)
unsf =⇒ gdyn,l(t, x, k) ≤ 0. (4.65)

Therefore, we can rewrite the trajectory optimization program (3.38) to find the ith plan, k(i), as
follows:

k(i) = argmin
k ∈ K

cost(k) (4.66)

s.t. gdyn,l(t, x, k) > 0 ∀ (t, x) ∈ projTplan×W (R(i)
obs) (4.67)

k ∈ Klim(xhi,0). (4.68)

4.8.2 Static Obstacles Formulation

Notice that (4.67) presumes dynamic obstacles inR(i)
obs. IfR(i)

obs only contains static obstacles, then
one can instead use the constraint

gstat,l(x, k) < 1 ∀ x ∈ projW (R(i)
obs). (4.69)

Note by Theorem 4.7 that this constraint formulation still holds if one instead uses the outputs of
the system decomposition SOS program.

60

4.8.3 Time Interval FRS Formulation

Suppose that we have broken Tplan into nRS intervals I(n), n = 1, · · · , nRS as in §4.6, and suppose
we compute g(n)

stat,l for each interval using (4.59). Then, for each interval I(n), we formulate the
collision-avoidance constraint as

gstat,l(x, k) < 1 ∀ x ∈ projI(n)×W (R(i)
obs). (4.70)

Notice the similarity between (4.70) and (4.69) In other words, we treat the obstacles in R(i)
obs as

static in each interval I(n).

4.8.4 An Infinite-Dimensional Problem

Unfortunately, the constraints (4.67), (4.69), and (4.70) all would typically need to be satisfied on
an infinite number of points, becauseR(i)

obs is usually a continuum (for example, if obstacle predic-
tions are represented as polytopes in the workspace). One way to remedy this challenge is to solve
an SDP at runtime to find all k ∈ K that satisfy the constraint [KVJRV17]. However, doing so is
not practical for real-time planning [KVB+20]. Therefore, in §5, we propose a finite, discretized
obstacle representation that enables real-time planning while conservatively approximating (4.67)
and (4.69).

4.9 Chapter Review

The takeaway of this chapter is that one can use SOS programming to compute an FRS represen-
tation that contains the motion of a robot in the plane for a continuum of trajectory plans, and that
includes tracking error. Importantly, the resulting polynomial representation enables one to gener-
ate constraints for online trajectory optimization such that any feasible solution to these constraints
is a provably-safe trajectory plan.

4.9.1 Chapter Summary

This chapter presented a sums-of-squares (SOS programming approach to compute the Forward
Reachable Set (FRS) offline. We began with a generic formulation [KVJRV17], and noted that it
can suffer from memory limitations. To alleviate these issues, we then presented a system decom-
position approach to enable computing the SOS FRS for higher-dimensional systems [KVB+20].
Then, noting that the outputs of these SOS programs can be difficult to use with dynamic obsta-
cles, we presented a method for computing the FRS over a prespecified set of time intervals, which

61

enables real-time planning in dynamic environments [VLK+19]. We concluded the chapter by
explaining how to use these FRS representations for online planning.

4.9.2 What Is Missing?

However, our online planning formulation, as presented, may result in a numerically-intractable,
infinite-dimensional trajectory-optimization problem. To address this challenge, in §5, we present
an obstacle representation that enables safe, real-time planning with the SOS FRS. See §5.8.1 for
an example usage of this obstacle representation.

62

CHAPTER 5

A Discretized Obstacle Representation for Safe,
Real-Time Planning

In §4, we used a sums-of-squares (SOS) programming approach to compute a robot’s Forward
Reachable Set (FRS) offline. This approach represents the FRS as polynomial level sets. To use
this FRS representation at runtime, we evaluate the polynomial on points representing obstacles in
the robot’s workspace to determine if a given plan is safe. Unforunately, for common obstacle rep-
resentations such as occupancy grids or polygons, this may require evaluating the FRS polynomial
on a potentially-infinite number of points.

To address this challenge, the present chapter develops a finite, discretized obstacle represen-
tation for wheeled robots operating in the plane (i.e., the configuration space is Q ⊆ SE(2)). We
prove that, if a trajectory plan avoids each of the discrete points, then the trajectory plan also
avoids all obstacles. Note, this chapter summarizes results developed in three papers: [KVB+20,
VKL+19, VLK+19].

Importantly, the results developed in this chapter are generalizable outside of RTD. That is,
we provide a generic discretized obstacle representation that can be used by any motion planning

algorithm for fast, correct collision checking. However, to ensure safe motion planning, the un-
derlying motion planner must be able to certify safety independent of any obstacle representation.
To that end, we pair this representation with RTD, for which we developed safety guarantees in a
generic way in §3.

Note that other discretized obstacle representations exist. For example, one can cover the
robot and obstacles with a (finite) set of closed 2-norm balls [VG18], or compute a Euclidean
distance transform of obstacles as a (discrete) voxel representation [ZRD+13]. One can also buffer
(i.e. dilate, or increase the size of) obstacles to account for continuous-time motion of a robot
[LaV06, Chapter 5.3.4]. The novelty of our proposed representation in this chapter is that, instead
of requiring the robot to be a certain distance from, e.g., the centers of a finite number of balls, we
require the robot to avoid the discrete points themselves. This means that one need not use a set-to-
point distance computation to ensure collision avoidance. Such a representation is important, for

63

example, when one represents a robot’s motion using polynomial level sets (as we do in §4), where
collision avoidance may require solving a non-convex optimization program (e.g. with set-to-point
distance as in [Fer00]) or a large semi-definite program [KVJRV17].

The sections of this chapter are as follows. (§5.1) First, we review what it means for a plan
to be safe in terms of the FRS, as per §3. (§5.2.1) Then, we formally define several common
geometric objects used throughout the chapter, and present a generic geometric definition of the
robot’s motion through space. We also discuss assumptions on the robot and obstacles. (§5.3) Next,
we introduce five geometric quantities used to construct the discretized obstacle representation in
the case of static obstacles. (§5.4) We find these quantities by constructing several optimization
programs that leverage the robot’s geometry. (§5.5) We then propose an algorithm to construct
the discretized obstacle using the found geometric quantities. (§5.6) Next, we certify that this
discretized obstacle representation ensures safety in static environments. (§5.7) Finally, we extend
our representation to dynamic obstacles. (§5.8) To conclude the chapter, we show how to use our
discretized obstacle representation with the polynomial FRS representation from §4, review the
chapter contributions, and briefly discuss future research directions.

5.1 Discretized Obstacle Motivation

To motivate this chapter, we begin by reviewing our definitions of obstacles and safety. Throughout
this chapter, we assume that the robot is in a single planning iteration (e.g., the ith iteration for time
horizon T (i) ⊂ T); we avoid the index i to ease notation.

5.1.1 Obstacles and Safety via the FRS

First, we briefly reintroduce obstacles and the obstacle reachable set (ORS). Suppose {O(n)}nobs
n=1 is

a set of obstacles O(n) : T → pow (W). Recall that Robs ⊂ Tplan ×W × K is the ORS for the
current planning iteration, as in §3.7. Per the ORS definition, if the robot has sensed nobs obstacles,
{O(n)}nobs

n=1, then, for any t ∈ Tplan,

proj{t}×W (Robs) ⊇
nobs⋃
n=1

O(n)(t). (5.1)

We begin this chapter by assuming all obstacles are static, meaning

O(n)(t1) = O(n)(t2) ∀ n ∈ {1, · · · , nobs} and t1, t2 ∈ T. (5.2)

64

Furthermore, we have

projW (Robs) ⊇
nobs⋃
n=1

O(n), (5.3)

where we have dropped the time notation for each O(n) ⊂ W since the obstacles are assumed to
be static. Note, we extend our approach to dynamic obstacles in §5.7.

Now we review our definition of safety. Recall that, in §3.4.2, the robot is unsafe along a
trajectory xhi : T → Xhi if there exists some n and t for which

FO(xhi(t)) ∩O(n) 6= ∅. (5.4)

Once we introduced the FRS, we were able to redefine safety in a new way, on a plan-by-plan
basis as in (3.37). In particular, in each ith receding-horizon iteration, we identify a set of plans
Kunsf produced by projecting the intersection of the FRS and an obstacle reachable set into the
space K:

Kunsf ⊆ projK(RFRS ∩Robs), (5.5)

where, again, we have dropped the index i denoting the current receding-horizon planning iteration.
Note this is a minor abuse of notation; we are conflating the “full” FRS, RFRS ⊂ Tplan × Xhi,0 ×
W ×K, with the FRS for the current planning iteration and initial condition xhi,0. We can think of
this as the set

RFRS ← projTplan×W×K(RFRS ∩ (Tplan × {xhi,0} ×W ×K)), (5.6)

which would usually be denotedR(i)
FRS (here,← denotes assignment of a variable at runtime).

5.1.2 The Discretized Obstacle

Unfortunately, as suggested by (5.1), Robs typically contains an infinite number of points (i.e., the
set has cardinality |Robs| = ∞); so, it can be numerically intractable to ensure collision avoid-
ance for every one of these points during online trajectory planning. To resolve this challenge, in
this chapter, we seek a finite, discretized representation of Robs. We call this representation the
discretized obstacle, which we denote

Odisc ⊂ W, (5.7)

65

for which |Odisc| <∞. The goal of this chapter is to construct Odisc such that

projK(RFRS ∩Robs) ⊆ projK(RFRS ∩ (Tplan ×Odisc ×K)), (5.8)

which implies that

Kunsf ⊆ projK(RFRS ∩ (Tplan ×Odisc ×K)) (5.9)

by (5.5).
We show examples of point obstacles and discretized obstacles in Figure 5.1.

5.1.3 Incorporating Dynamic Obstacles

Note, when we return to dynamic obstacles in in §5.7, we seek a discretization{
{t(n)} ×O(n)

disc

}nt

n=1
⊂ Tplan ×W, (5.10)

for some nt ∈ N (which we prescribe how to choose). In this case, each t(n) ∈ Tplan corresponds
to a discretized obstacle constructed in a similar manner as Odisc for static obstacles.

5.1.4 Unsafe Parameters for a Point Obstacle

To foreshadow the utility of the discretized obstacle, we now identify the set of unsafe trajectory
parameters with respect to a single point obstacle.

Lemma 5.1. Suppose the robot is in a planning iteration at initial condition xhi,0 ∈ Xhi. Let

the robot’s be as in (3.26), but only corresponding to the current initial condition; denote it as

RFRS ⊂ Tplan ×W ×K. Suppose that, in the current planning iteration, the robot has detected an

obstacle {o} ⊂ W with |{o}| = 1, so that

Robs = Tplan × world2plan ({o})×K (5.11)

is the ORS for this planning iteration. Suppose that the robot is not currently intersecting {o}, and

it is tracking a previously-found plan that avoids collision with {o}. Consider the set

Ko = projK(RFRS ∩Robs). (5.12)

If the robot tracks any k ∈ KC
o , then it does not collide with the point obstacle o at any time while

tracking that plan k.

66

Proof. Note that this use of RFRS is a minor abuse of notation as in (5.6). Allowing this notation,
the claim follows from the definition of the parameterized plans and the definition of the FRS.

Note that, though the robot avoids collision with the point obstacle in Lemma 5.1, it may come
infinitesimally close to the point obstacle when tracking some k ∈ KC

o .

5.2 Definitions and Assumptions

We now define several geometric objects used to represent obstacles and construct the discretized
obstacle. We then specify the robot’s motion through the world geometrically. Finally, we place
assumptions on obstacles.

5.2.1 Geometric Objects

We use several objects from planar geometry. Let R2 denote the plane. We refer to the canonical
coordinate axes of R2 as the (horizontal) x-axis and the (vertical) y-axis.

Let I ⊂ R2 denote a line segment, also called an interval when it lies along one of the
canonical axes of R2. Let EI = {e1, e2} denote the endpoints of I , such that I can be written:

I = {e1 + s · (e2 − e1) | s ∈ [0, 1]}. (5.13)

The length of I is the quantity length(I) = ‖e2 − e1‖2.
Suppose that I is a line segment with distinct endpoints. Then we call the line that passes

through both endpoints, denoted

LI = {e1 + s · (e2 − e1) | s ∈ R}, (5.14)

the line defined by I .
Let U ⊂ R2 be an arbitrary set with a boundary, and let u1, u2 ∈ ∂U . Then we call the line

segment

C = {a1 + s · (u2 − u1) | s ∈ [0, 1]} (5.15)

a chord of U . Note, C need not be contained entirely inside U ; that is, it may be that C 6⊂ U , such
as when U is non-convex.

A circle Ω ⊂ R2 of radius r > 0 with center p ∈ R2 is the set

Ω =
{
q ∈ R2 | ‖p− q‖2 = r

}
. (5.16)

67

An arc A ⊂ R2 is any connected, closed, strict subset of a circle.

5.2.2 Robot Assumptions and Motion

To understand how to relate the motion of the robot’s body to the discretized obstacle representa-
tion, we now provide a generic, geometric expression for the robot’s body, and forward occupancy,
and trajectories.

First, we assume the following about the shape of the robot.

Assumption 5.2. The robot’s body is a convex, compact set B ⊂ W , with nonzero volume, in the

robot’s planning frame.

Note that, if the robot’s body is not convex, but is compact, it can be bounded within a convex hull
or rectangular bounding box [FS75]. We emphasize that this method applies to arbitrary convex,
compact robot bodies.

The reader may recall the initial condition set X0 in §4. Indeed, we treat B as X0 in the case
where X = R2; and, if X = SE(2), we assume that B is equivalent to X0 at a rotation of 0 rad.
To this end, we assume that there exists a point c0 = projR2(x0) ∈ B that is the center of rotation
for the robot in its local coordinate frame (the meaning of this will become clear in the following
paragraph).

Second, we express forward occupancy as follows. Notice that, the robot’s motion, as ex-
pressed by the high-fidelity model, evolves in SE(2); that is, for the purpose of collision avoidance,
we are concerned with the rotations and translations of the robot’s body along any high-fidelity
model trajectory. To this end, we define the following object:

Definition 5.3. We define a transformation H(t) : pow (R2) → pow ((R2) indexed by a time

t ∈ Tplan and parameterized by a translation p(t) ∈ R2 and a rotation R(t) ∈ SO(2), such that, for

a singleton set {q} ⊂ R2, we have

H(t)({q}) = {R(t) · (q − c0) + p(t)}, (5.17)

where c0 is the center of rotation of the robot’s body in its local coordinate frame; typically, c0 is

the center of geometry or center of mass.

Note, t ∈ Tplan because the goal of RTD is to certify collision avoidance for each plan. We apply
these transformations to the robot’s body to understand the robot’s motion through the workspace

H(t)B = {H(t)(q) | q ∈ B}, (5.18)

68

where we omit parentheses around B to increase readability. To see how this relates to the robot’s
forward occupancy, suppose the robot is at a state xhi(t

′) ∈ Xhi at a time t′ ∈ T (i) (for example,
when tracking a trajectory in the ith receding-horizon planning iteration). We assume that

FO(xhi(t
′)) ⊆ H(t′−t(i))B ⊂ W. (5.19)

Recall that T (i) = [t(i), t(i) +tf], so t′−t(i) shifts time to Tplan = [0, tf] to match the index ofH(t)(·).
Third, we use transformations to express trajectories of the robot geometrically as follows.

Definition 5.4. We define a transformation family as a set{
H(t) | t ∈ Tplan, (p(t), R(t)) ∈ SE(2) continuous w.r.t. t

and H(0) = 0
}
,

(5.20)

where (p(t), R(t)) are the parameters of H(t) per Definition 5.3. We use the shorthand {H(t)} to

refer to such sets of transformation.

Recall that the high-fidelity model is assumed to produce continuous trajectories per §3.2. So,
Definition 5.4 allows us to generically express any continuous trajectory of the robot’s body in the
plane.

The reason for these representations is that, to understand how to discretize obstacles, we must
be able to express arbitrary (but continuous) robot motion with respect to obstacles. Note this
approach also means that the results in this chapter are not RTD-specific. That is, while we use
the receding-horizon time intervals and context of RTD to produce the discretized obstacle, this
method can be applied to collision-avoidance for any planning or controls approach that considers
a robot in SE(2). The utility of RTD is that, we can use this obstacle representation to certify

safe planning, because RTD certifies safe motion planning independent of this particular obstacle
representation.

5.2.3 Obstacle Assumptions

Recall that, to develop the discretized obstacle representation, we begin by assuming that all ob-
stacles are static in §5.1.1.

We require the following obstacle geometry.

Assumption 5.5. Let {O(n)}nobs
n=1 be the set of static obstacles in the ORS, Robs. We assume that

each O(n) ⊂ W is a closed, compact polygon with a finite number of vertices and edges.

That is, ∂O can be written as a finite collection of line segments (as defined above). Importantly,
we do not assume that each polygon obstacle is convex.

69

Note, Assumption 5.5 holds for common obstacle representations such as occupancy grids.
Also, the assumption that each O(n) is closed and compact is fulfilled by the assumption that the
robot has a finite sensor horizon (see §3.4.3). That is, even for an infinitely large obstacle, we need
only consider the portion of it that intersects the robot’s sensor horizon in each planning iteration
(and recall that §3 provides a minimum size of this sensor horizon to ensure safety).

5.3 Five Geometric Quantities

We now introduce five geometric quantities, b, bmax, r, a, and rmax, which enable construction of
the discretized obstacle. At the end of this section, we provide examples of each of these quantities
for robots with rectangular and circular bodies. In §5.4, we show that these quantities exist and
can be found for arbitrary convex, compact robot bodies.

5.3.1 Buffer and Point Spacing Motivation

Before introducing these quantities, consider the following candidate method for constructing a
discretized obstacle. Since our obstacles are closed, compact polygons by assumption, suppose
that construct Odisc by we sampling a finite number of points from the boundary of each obstacle
polygon. The rationale here is that, since the high-fidelity model of the robot produces continuous
trajectories, if the robot starts outside every obstacle, then it cannot enter any obstacle without
passing through an obstacle boundary. However, this strategy may be insufficient to prevent col-
lisions. Suppose our robot has a rectangular body. Then, for any pair of points sampled from the
boundary of an obstacle, a corner of the robot’s body could still pass between these two points and
cause a collision. This is shown in Figure 5.1b.

To resolve this issue, we must buffer the obstacle by some amount (the quantity b prescribed in
this chapter), to prevent such collisions, as shown in Figure 5.1c. Furthermore, the point spacing,
or distance between adjacent points in the discretized obstacle, must be sufficiently small such
that, even if our robot passes between a pair of points, it cannot collide with the obstacle unless it
collides with one or both points. If such a property holds, then ensuring collision avoidance with
each point is equivalent to ensuring collision avoidance with the entire obstacle.

The purpose of this chapter is to rigorously define the buffer and point spacing to enable con-
structing Odisc.

5.3.2 The Buffer and Its Bound

First, we define the buffer:

70

(a)

(b)

(c)

Figure 5.1: Motivation and method for buffering and discretizing obstacles. In each subfigure, the
trajectory parameter space K is on the left, and the robot’s workspace is on the right. The robot
has a rectangular body B in blue. In the first subfigure, the obstacle consists of two points, labeled
Odisc; the corresponding unsafe trajectory parameters Kdisc are shown in K on the left. A safe k is
chosen, and the corresponding subset of the FRS is shown on the right. In the second subfigure,
the obstacle is a closed, compact polygon O, with corresponding pink unsafe plans Kunsf shown
on the left. A discretized obstacle is constructed by sampling ∂O, and the corresponding unsafe
parameters are shown as Kdisc on the left; we see that there exist parameters that are safe with
respect to this discretized obstacle, but unsafe for the actual obstacle O. In the third subfigure,
we remedy this issue by buffering the obstacle to produce Obuf, then constructing the discretized
obstacle from the buffered obstacle boundary. The unsafe plans for the discretized (buffered)
obstacle are a provably superset of the unsafe plans for the (unbuffered) obstacle.

Definition 5.6. Let b > 0 be a distance, called a buffer. Let Obuf ⊂ W be a buffered obstacle,

Obuf ⊃
⋃nobs
n=1O

(n). In particular, this is a set such that, in any connected component of Obuf, the

maximum Euclidean distance between Obuf and any O(n) is b:

Obuf =
{
q ∈ W | ∃ n ∈ {1, · · · , nobs} and p ∈ O(n) s.t. ‖p− q‖2 ≤ b

}
. (5.21)

71

For notation’s sake, we define a function, buffer, for which

Obuf = buffer({O(n)}nobs
n=1, b). (5.22)

Since buffering obstacles reduces the free space available for motion planning, we wish to
upper bound the buffer to ensure that our obstacle representation is not unnecessarily conservative.
To that end, we introduce the buffer bound, bmax > 0. To construct the discretized obstacle, we
choose b ∈ (0, bmax).

5.3.3 The Point Spacing, Arc Point Spacing, and Their Bound

With the buffer and its bound established, we turn to the point spacing. To do so, we first inspect
the geometry of the buffered obstacle:

Lemma 5.7. Let the buffered obstacle Obuf be as in Definition 5.6. Then the boundary ∂Obuf

consists of a finite set of line segments, I, and a finite set of arcs, A. That is, suppose nI ∈ N
(resp. nA is the number of line segments (resp. arcs). Then we can write

∂Obuf =

 ⋃
I(i)∈I

I(i)

 ∪
 ⋃
A(i)∈A

A(i)

 . (5.23)

Proof. This claim follows from [FHW12, Section 9.2], which we paraphrase here. In essence,
since each O(n) is a polygon, the set Obuf is the Minkowski sum of a polygon with a closed disk of
radius b. Recall that each obstacleO(n) is closed and bounded by Assumption 5.5. The procedure of
constructing Obuf is also called “offsetting” a polygon by the distance b. Since each O(n) is closed
and bounded, Obuf is a closed and bounded shape with a boundary consisting of line segments
(corresponding to the edges of eachO(n)) and arcs (corresponding to the vertices of eachO(n)).

Now we can define the point spacing and arc point spacing:

Definition 5.8. Consider a discretized obstacle Odisc that is generated by selecting a finite set of

points from ∂Obuf such that the points are spaced by a distance r > 0 along the line segments, and

a distance a > 0 along the arcs. We call r the point spacing and a the arc point spacing.

We prove in §5.4 that, by choosing r and a as functions of the buffer b, the robot cannot pass
far enough between any pair of points in Odisc to cause a collision.

Similar to the upper bound bmax on the buffer, we find a point spacing bound rmax for r and a
(note, r is also an upper bound of a per Lemma 5.22 later in this chapter). Recall that bmax limits
the buffer size to prevent obstacles from reducing the free space available for planning. On the

72

other hand, rmax ensures that the discretized obstacle points are close enough to each other so that
the robot cannot pass between them.

Now we have defined the geometric quantities b (buffer), bmax (buffer bound), r (point spacing),
a (arc point spacing), and rmax (point spacing bound). In §5.4, we explain how to find each one.

5.3.4 Examples

Before proving that each of these quantities exist, and can be computed, we provide a pair of
examples for two common robot body shapes: a rectangle, and a circle. The quantities are found
analytically for these shapes, and visual proof is provided in Figure 5.2.

Example 5.9. Suppose the robot body B is a rectangle with width w > 0 and length l > w. Then

the bounds are rmax = w and bmax = w
2

. Pick b ∈ (0, bmax). Then we have

r = 2b and a = 2b sin
(π

4

)
. (5.24)

A visual proof, with bmax omitted for clarity, is shown in Figure 5.2a.

Example 5.10. Suppose the robot body B is a circle with radius ρ > 0. Then the bounds are

rmax = 2ρ and bmax = ρ. Pick b ∈ (0, bmax), and construct the (positive) angles

θ1 = cos−1

(
ρ− b
ρ

)
and θ2 = cos−1

(
b

2ρ

)
. (5.25)

Then we have

r = 2ρ sin θ1 and a = 2b sin θ2. (5.26)

A visual proof, with bmax omitted for clarity, is shown in Figure 5.2b.

5.4 Finding the Geometric Quantities

We now describe how to find the geometric quantities described in §5.3. The arguments in this
section describe a procedure to compute the quantities for an arbitrary convex, compact robot
body. Note that the examples in §5.3.4 are sufficient to enable most readers to use this proposed
method, so the more casual reader can skip this section.

This section proceeds in four steps. First, we find the upper bound rmax on the point spacing.
Second, we use rmax to find the buffer bound bmax. Third, we find the point spacing r for a choice

73

(a) (b)

Figure 5.2: Examples (and visual proof) of the geometric quantities rmax, r, b, and a, used to
construct the discretized obstacle, for rectangular and circular robot bodies.

of buffer b ∈ (0, bmax). Fourth and finally, we find the arc point spacing a, again for a choice of
buffer b ∈ (0, bmax).

5.4.1 The Point Spacing Bound

We now seek to understand how close together points must be in the discretized obstacle. We do
this by upper bounding the point spacing with the quantity rmax. We find rmax first, because finding
the remaining quantities depends on it.

This discussion builds on Theorem 1 of [Str82]. To build intuition, imagine a wall in the
workspace W , with a gap that is large enough for the robot to pass through. If we keep shrinking
this gap, eventually the robot is unable to pass through without collision. In this subsection, infor-
mally, we find the largest gap that the robot cannot pass all the way through. We use the size of
the gap as the upper bound rmax on the spacings r and a when constructing Odisc. Imagine that the
buffered obstacle’s boundary is treated as the wall. If the wall is sampled so that points are closer
than rmax apart, this is akin to a gap of width at most rmax between each pair of points.

To proceed, we first formally define the notion of passing the robot’s body through a line
segment. Then, we find the size of the “largest gap” discussed above.

To define “passing through” a gap, represented by a line segment I , we first establish a half-
plane PI that is “defined” by I; we use PI as a region that the robot begins in, so that, to pass
through I , the robot must leave the halfplane PI . To create this halfplane, consider the function
δ± : R2 × R2 × R2 → R for which

δ±(e1, e2, p) =
1

‖e2 − e1‖2

(
(e2y − e1y)px −

− (e2x − e1x)py − e2ye1y − e2ye1x

)
,

(5.27)

where the subscript x or y denotes the corresponding coordinate of a point in R2. If I has distinct

74

endpoints {e1, e2}, then δ±(e1, e2, p) is the perpendicular distance from the point p to the line
defined by I . The sign of δ±(e1, e2, p) is positive if p lies to the “left” of the line defined by I ,
relative to the “forward” direction from e1 to e2. The function δ± is illustrated in Figure 5.4a. We
use δ± to define a halfplane in R2 as follows:

Definition 5.11 (Halfplane Defined by I). Let c0 ∈ B denote the center of the robot’s body at time

0. Let I be a line segment with two distinct endpoints EI = {e1, e2}. Then PI ⊂ R2 denotes the

closed halfplane defined by I; this halfplane is determined by the line defined by I and by c0 as:

PI = {p ∈ X | sign(δ±(e1, e2, p)) = sign(δ±(e1, e2, c0))} , (5.28)

where sign(a) = 1 for a ≥ 0 and −1 otherwise. Now suppose that I is a line segment of length

0, i.e. e1 = e2, so we cannot directly define PI as in (5.28). Suppose that e1 6= c0. We can pick a

point e′ for which (e′ − e1) · (c0 − e1) = 0 where · denotes the standard inner product on R2. This

means that the line segment from e1 to c0 is perpendicular to the line segment from e1 to e′. Then,

PI is given by (5.28), but using e′ in place of e2.

In the case where e1 = e2 = c0, PI is undefined. See Figures 5.3 and 5.4a for illustrations of the
different cases of PI . Notice that, except when e1 = e2 = c0, P1 is always a closed halfplane. The
utility of PI is that, if the line defined by I does not intersect B, then B ⊂ PI , i.e. PI contains B.
So, we can use PI as a region that the robot starts in at time 0.

Definition 5.12 (Passing Through). Let I ⊂ (R2 \ B) be a line segment with endpoints EI , and

PI be the halfplane defined by I . Suppose that the robot lies fully within PI at time 0, i.e. B ⊂
interior(PI). Let {H(t)} be a transformation family. Let t0, t1 be indices in (0, tf] such that H(t)B

intersects the “middle” of I , i.e. H(t)B∩(I\EI) 6= ∅, for all t ∈ [t0, t1]. Furthermore, suppose that

H(t)B ⊂ PI for all t ∈ [0, t0), and that noH(t)B can intersect the endpointsEI (i.e. H(t)B∩EI =

∅) except at t = tf. We say that such a transformation family attempts to pass B through I . If B is

able to leave PI while passing through I , i.e. H(t)B ⊂ P C
I , then B is said to pass fully through I .

See Figure 5.3 for an illustration of passing through and passing fully through. The motion of the
robot at each t is represented by each set H(t)B.

Notice that, if B must pass through I , it is not allowed to go “around” I when passing through.
Furthermore, over the time horizon [t0, t1] in Definition 5.12, the set made by the intersection
H(t)B ∩ I is a chord of H(t)B [Str82, Theorem 1]. We now state a property of B used to bound
the size of the aforementioned “gap in a wall” in Lemma 5.14 below.

Definition 5.13 (Thickness, Width, and Diameter). Given a unit vector û in R2 at an angle θ

relative to the x-axis, the thickness of B along this unit vector is the distance between the two

75

(a) (b)

(c) (d)

Figure 5.3: Passing through (as in Definition 5.12), penetrating (as in Definition 5.16), and pen-
etrating into a circle (as in Definition 5.21). In each subfigure, a family {H(t)} of continuous
rotations and translations attempts to pass the convex, compact set B through the line segment I
with endpoints EI . At t = 0, B lies in the halfplane PI , defined by I . Each figure contains B at
its initial position H(0)B and final position H(tf)B indicated by a dark outline. The lighter outlines
between these positions show examples of B being translated and rotated as each H(t) is applied.
In Figure 5.3a, B is able to pass fully through I; the index t0 ∈ Tplan where B first touches I is
also shown with a dark outline. In Figure 5.3b, B is unable to pass fully through I , but penetrates
through I by some distance into P C

I . In Figure 5.3c, the line segment I has length 0, so B can-
not pass through it, but instead stops as soon as it touches I , and achieves 0 penetration distance
through I . Note that, in this case, PI is defined by a line perpendicular to the line segment from I
to the center of mass of B, as per Definition 5.11. In Figure 5.3d, the circle Ω has a chord C, and
B penetrates into Ω through C by the penetration distance shown. The halfplane defined by C is
denoted PC .

unique lines that are tangent to B and perpendicular to the vector. The width of B is defined as the

minimum thickness of B when searching over all θ ∈ [0, 2π), and the diameter of B is, similarly,

the maximum thickness [Str82, Section 1].

See Figure 5.4b for an illustration of thickness. Note that the width is nonzero and finite because
B is compact and has nonzero volume..

Lemma 5.14 (Point Spacing Bound). [Str82, Theorem 1] Let I ⊂ (R2 \B) be a line segment with

endpoints EI and length l > 0. Let B be the robot’s body at time 0, with width w > 0. Then B can

pass through I if and only if w < l.

Proof. While the proof is available in [Str82], we prove this lemma again here to build intuition.
Recall that B is convex and compact with nonzero volume.

Suppose a transformation family {H(t)} passes B through I . Then there exists an interval of
time [t0, t1] ⊂ (0, tf] for which H(t)B ∩ (I \ EI) is nonempty for all t ∈ [t0, t1]; note that t1 > t0

76

(a) (b)

Figure 5.4: An arbitrary, compact, convex set B lies in the plane. In Figure 5.4a, the line segment
I defines the closed halfplane PI (the filled grey area) using the function δ± from (5.27). If the
endpoints of I are labeled e1 and e2, then the set PI contains all points p ∈ R2 for which the sign
of δ±(e1, e2, p) is the same as the sign of δ±(e1, e2, c0), where c0 is the center of B. In Figure 5.4b,
a unit vector û is fixed to the origin with angle θ. The thickness of B is given by the distance
between the two unique lines that are tangent to B and perpendicular to û.

because B has nonzero volume. The set H(t)B ∩ (I \ EI) is a chord of H(t)B with length greater
than or equal to the width w. Since B can pass fully through I , the endpoints EI never intersect
any H(t)B. Therefore the length of the chord H(t)B ∩ I is always less than l, so l > w.

Now suppose w < l. If B has diameter d, then B can fit completely inside a rectangle with
short side length w and long side length d [FS75, Theorem 3] This rectangle can be rotated so that
its short side is parallel to I , then pass fully through I by pure translation, i.e. with no further
rotations. Since B fits inside the rectangle, B can pass fully through I .

From this lemma, the robot’s width defines the smallest gap that the robot can pass through.
Therefore, we define rmax as the robot’s width:

Definition 5.15. The quantity rmax denotes the point spacing bound, which is equal to the width

of the robot body B.

The maximum point spacing relates to the points in the discretized obstacle Odisc as follows. As
illustrated in Figure 5.1c, the discretized obstacle Odisc is constructed by first buffering an obstacle
O by the distance b, then sampling the boundary of the buffered obstacleObuf such that the distance
between consecutive sampled points is strictly less than rmax. Note, we refer to such consecutive
sampled points as adjacent points of the discretized obstacle Odisc.

Finding rmax correctly is critical. Suppose that we attempt to pass B through the gap between
two adjacent points of Odisc, and do not allow B to overlap with either of the points while passing
through. Since each pair of adjacent points of Odisc are strictly closer than rmax to each other, we
know by Lemma 5.14 that the robot can never pass fully through the gap. In other words, the
quantity rmax must either be found exactly or underapproximated to ensure safety. Methods exist

77

to exactly compute the width of arbitrary compact convex sets. For example, the algorithm by
[FS75] finds the smallest bounding rectangle of the set; then the length of the rectangle’s shorter
leg is the set’s width. A geometric procedure to find the width is presented in [Str82, Section 1]

Next, we use rmax to bound the buffer with the quantity bmax.

5.4.2 The Buffer Bound

As in §5.4.1, imagine a wall with gap of width rmax. Lemma 5.14 proves that the robot cannot pass
fully through this gap. However, the robot can still penetrate through the gap by some distance
before it gets stopped by the wall. In this section, we find the farthest distance that the robot can
penetrate through the gap. We use this maximum penetration distance as an upper bound bmax on
the obstacle buffer, so b ∈ (0, bmax).

Recall that our intention is to sample the boundary of the buffered obstacle to produce a set
Odisc. So, the spacing between adjacent points of Odisc must be smaller than rmax. If the robot is not
allowed to touch any points in Odisc, it cannot penetrate farther than the distance bmax between any
pair of adjacent points. So, obstacles do not need to be buffered by a distance larger than bmax. We
prove the existence of bmax below in Lemma 5.17. To proceed, we first define the word “penetrate”
precisely.

Definition 5.16 (Penetration Distance). Let I ⊂ (X\B) be a line segment. Let PI be the half-plane

defined by I , and suppose B ⊂ PI strictly. Let {H(t)} be a transformation family that attempts to

pass B through I . Suppose B cannot pass fully through I , and that H(tf)B ∩ P C
I is nonempty, so

there is some portion of B that does pass through I . Consider all line segments perpendicular to

I with one endpoint on I and the other at a point in H(tf)B in P C
I . We call the maximum length of

any of these line segments the penetration distance of B through I . The set H(tf)B penetrates I
by this distance, as in Figure 5.3b. If I is of length 0, then the penetration distance of B through I

is always 0, as in Figure 5.3c.

Lemma 5.17 (Buffer Bound). Let B be the robot’s body at time 0, with width rmax. Let Irmax ⊂
(W \ B) be a line segment of length rmax. Then there exists a maximum penetration distance bmax

that can be achieved by passing B through Irmax .

Proof. This proof is illustrated in Figure 5.5. We sketch the intuition first. To find bmax, we use
transformation families {H(t)} to passB through Irmax . Recall thatB cannot pass fully through Irmax

by Lemma 5.17. Then, we measure the penetration distance corresponding to each transformation
family to find a supremum.

Now we restate this concept more rigorously. Note that B is compact and convex with nonzero
volume. To ease the exposition, assume without loss of generality that B lies entirely in the left

78

(a) (b)

Figure 5.5: An arbitrary compact, convex set B of width rmax penetrates a line segment Irmax by the
distance bmax when a transformation family {H(t)} is applied to pass B through Irmax . Since Irmax is
of length rmax, B cannot pass fully through by Lemma 5.14. At the initial index t = 0 and the final
index t = tf, the sets H(0)B and H(tf)B are shown with dark outlines. A sampling of intermediate
indices t ∈ (0, tf) are shown with light outlines. The first subfigure shows a suboptimal solution;
the second subfigure shows the optimal solution to identify the buffer bound bmax.

half-plane of R2, and that Irmax is fixed to the origin and oriented vertically in the upper half-plane,
so Irmax = {0} × [0, rmax]; this is a reasonable assumption because all of the operations in any
transformation family are invariant to the initial rotation/translation of B. In this case, the half-
plane Prmax defined by Irmax is the closed left half-plane. This too can be done without loss of
generality because, when passing B through Irmax with a transformation family {H(t)}, we only
care about the position of B relative to Irmax at each t ∈ [0, tf].

Let Hrmax denote the set of all transformation families {H(t)} that attempt to pass B through
Irmax as per Definition 5.12. By Lemma 5.14, B cannot pass fully through Irmax because Irmax is
of length rmax; but B may penetrate Irmax by some nonzero distance, which depends upon the
transformation family {H(t)}. We must show that, across all {H(t)} ∈ Hrmax , there is a maximum
penetration distance.

Consider an arbitrary {H(t)} ∈ Hrmax . Since Irmax is collinear with the y-axis, we can find the
penetration distance of B through Irmax corresponding to {H(t)} using a function δx : pow (R2)→
R, which returns the right-most point of a set A ⊂ R2:

δx(A) = sup
a
{ ax | a ∈ A} , (5.29)

where ax is the x-component of the point a. So, given a particular {H(t)} ∈ Hrmax , δx(H(tf)B) is
the penetration distance ofB through Irmax by Definition 5.16. Recall thatB is compact (i.e. closed
and bounded in X) and that B cannot pass fully through Irmax by Lemma 5.14 (i.e. the horizontal
displacement achieved by H(tf)B is bounded). Therefore, δx(H(tf)B) is upper bounded.

We have shown that the penetration distance is bounded for each {H(t)} ∈ Hrmax . To prove the
claim that there is a maximum penetration distance, we must show that the value of δx is upper

79

bounded across all {H(t)} ∈ Hrmax . In other words, we want to know that the following supremum
is finite:

bmax = sup
{H(t)}

δx(H
(tf)B) (5.30)

s.t. {H(t)} ∈ Hrmax . (5.31)

Recall from Definition 5.13 that B has a finite diameter (suppose we denote it d), which is the
largest possible distance between two parallel lines that are tangent to B. So, for any {H(t)} ∈
Hrmax , if δx(H(tf)B) > d, then B has passed fully through I . But this is impossible by Lemma
5.14. Since {H(t)} was arbitrary, (5.30) is upper bounded.

To relate Lemma 5.17 to the robot, consider the following. If we buffered an obstacle O by the
amount bmax, and spaced points along the boundary of O by a distance less than rmax, then the
farthest that the robot could pass between any pair of adjacent points without touching either point

is strictly less than bmax. Therefore, the robot could not collide with the obstacle without touching
one of the points. In other words, if the robot avoids every such point, then the robot avoids the
obstacle. Since we choose the buffer b ∈ (0, bmax), it is critical to underapproximate bmax.

Next, we find the point spacing r using b ∈ (0, bmax).

5.4.3 The Point Spacing

Let rmax be as in Definition 5.15 and bmax as in Lemma 5.17. We choose b ∈ (0, bmax), then use
b to find the point spacing r. We prove that r exists below, in Lemma 5.20. First, we need two
intermediate results about chords of compact sets.

Lemma 5.18. Given any three distinct, parallel chords of a convex, compact set in R2, the middle

chord is not the shortest of the three.

We now restate this more formally. Let A ⊂ R2 be a convex, compact set with nonzero volume.

Let C1, C2, and C3 be three chords of A such that C1 ‖ C2 ‖ C3 and Ci ∩ Cj = ∅ for any i 6= j.

Suppose the chords have lengths l1, l2, and l3, respectively. Furthermore, assume that there exists

at least one line segment within A that intersects C2, and that has one endpoint on C1 and the

other endpoint on C3; in other words, C2 lies between C1 and C3. Thenl1 ≥ l3 implies that l2 ≥ l3,

and l1 > l3 implies that l2 > l3.

Proof. Let ei,1 and ei,2 denote the endpoints of each chordCi where i = 1, 2, 3. By definition, these
endpoints lie in ∂A. Without loss of generality, assume that all three chords are oriented vertically
(rotating the chords and the shape A does not change the relative position of the chords to each
other or to A). Also suppose without loss of generality that each ei,1 is the “upper” endpoint;

80

we can do this without loss of generality because each chord is a line segment by definition, and
because we can swap the labels of the endpoints of a line segment without changing the set of
points in the line segment. Define the line segments I1 from e1,1 to e3,1 and I2 from e1,2 to e3,2.
Since A is convex, I1, I2 ⊂ A.

Suppose C1 and C3 have the same length, so l1 = l3. Then the quadrilateral with edges given
by the line segments C1, I1, C3, and I3 is a parallelogram Qpara (two of its sides are parallel and
of equal length). So, every line segment inside Qpara that is parallel to C1 has length l1 = l3.
Furthermore, Qpara lies completely inside A because A is convex; this means that C2 ∩ Qpara is a
chord of Qpara that is parallel to C1, and C2∩Qpara ⊆ C2. Then, since the length of C2∩Qpara = l1,
the length of C2 is l2 ≥ l1 ≥ l3.

Now suppose l1 > l3. Then the quadrilateral with edges C1, I1, C3, and I3 is a trapezoid Qtrap

(two of its sides are parallel and of different lengths) that lies within A. Since l1 > l3, every line
segment inside Qtrap that is parallel to C1 is strictly shorter than C1. So, similar to the logic for
Qpara above, the length of κ2 ∩Qtrap is greater than l3, meaning that l2 > l3.

Next, we use Lemma 5.18 to understand the shape of the body as it passes through a line seg-
ment in Lemma 5.19. In particular, Lemma 5.19 shows that, as the robot penetrates farther through
a line segment, the size of the intersection between the robot and the line segment increases. We
use this result in Lemma 5.20 to bound r above and below.

Lemma 5.19. Let B be the robot’s body at time 0, with width rmax. Let Irmax ⊂ (R2 \ B) be a line

segment of length rmax. Let Prmax be the closed half-plane defined by Irmax and containing B, and

suppose that B ⊂ Prmax . Suppose the transformation family {H(t)} attempts to pass B through

Irmax . Suppose t0 > 0 such that, for each t ∈ [t0, tf], the set Ct := H(t)B ∩ Irmax is nonempty and

is a chord of H(t)B. Then, for any t > t0, every chord of H(t)B that is parallel to Irmax and lies in

PC
rmax

is shorter than Ct.

Proof. This claim follows directly from Definition 5.12 of passing through and from Lemma 5.18.
To see why, first recall that B is convex and compact with nonzero volume. As in Lemma 5.17,

without loss of generality assume Irmax lies along the y-axis with its lower endpoint fixed to the
origin, i.e. Irmax = {0} × [0, rmax], and that B lies in the closed left half-plane, which is Prmax . Let
t ∈ (t0, tf] be arbitrary and let Ct denote the chord H(t)B ∩ Irmax . Note that t0 exists by Definition
5.12. In addition, for any t ∈ (t0, tf], the set H(t)B ∩ Irmax is a chord of H(t)B [Str82, Theorem
1]. Notice that the length of Ct is less than or equal to rmax by the definition of passing through.
By Lemma 5.14, B cannot pass fully through Irmax . Therefore, there exists a chord C1 of H(t)B

that lies in Prmax , is parallel to Irmax , and has length greater than or equal to rmax. Otherwise, H(t)B

could pass fully through Irmax by translation. Since t > t0, H(t)B∩P C
rmax

is nonempty by Definition
5.12 of passing through. Therefore, there exist chords of H(t)B that lie in P C

rmax
and are parallel to

81

Irmax . Let C2 be any such chord. The chords C1, Ct, and C2 are three parallel, distinct chords of
the convex, compact set H(t)B, and the length of C1 is greater than the length of Ct. Therefore, by
Lemma 5.18, C2 is shorter than Ct. Since C2 was arbitrary, we are done.

Now we are ready to prove the existence of r. The proof also provides a method to construct
r, which is illustrated in Figure 5.6.

Lemma 5.20. Let B ⊂ R2 be the robot’s body at time 0, with width rmax. Let bmax be the buffer

bound corresponding to B (as in Lemma 5.17). Pick b ∈ (0, bmax). Then there exists r ∈ (0, rmax]

such that, if Ir is a line segment of length r, and if {H(t)} is any transformation family that attempts

to pass B through Ir, then the penetration distance of B through Ir is less than or equal to b.

Proof. We first sketch the intuition for the proof. As in Lemma 5.17, we attempt to passB through
a line segment Irmax of length rmax, butB cannot pass fully through Irmax by Lemma 5.14. Each time
we pass B through Irmax , we stop passing it through when the penetration distance of B through
Irmax is equal to b. Then, we measure the length of the line segment H(tstop)B ∩ Irmax , where H(tstop)

is the transformation at the time we stopped passing B through Irmax . The length of the smallest
such line segment is the desired point spacing r.

We now proceed rigorously. Let Irmax ⊂ (X \ B) be a line segment of length rmax. Without
loss of generality, suppose that Irmax is vertical with its lower endpoint at the origin, so Irmax =

{0} × [0, rmax]; and suppose that B ⊂ X ⊂ R2 lies entirely in the closed left half-plane. See the
proof of Lemma 5.17 for why Irmax and B can be placed this way without loss of generality; in
brief, the rotations and translations required can be undone.

Next, we discuss how we measure horizontal distance (to constrain the penetration distance to
b) and vertical span (to find the distance r). Unlike in Lemma 5.17, instead of letting B penetrate
through Irmax by the distance bmax, we limit the penetration distance to b < bmax. Since Irmax is
oriented vertically at the origin, we can measure the penetration distance through Irmax using the
horizontal distance given by δx from (5.29), which returns the maximum x-coordinate over all
points in a set in R2. To measure vertical span, we define the map δy : pow (R2) → R≥0 as
follows:

δy(A) = sup{ay | a ∈ A} − inf{ay | a ∈ A}, (5.32)

where ay denotes the y-component of a.
Now, we find r by constructing the line segment Ir. Let Hrmax be the set of all transformation

families {H(t)} that attempt to pass B through Irmax . Suppose that {H(t)} ∈ Hrmax is a transforma-
tion family for which, at t = T , the penetration distance of B through Irmax is b. In other words,
δx(H

(tf)B) = b. Consider the line segment Ir = H(tf)B∩Irmax (this is a line segment by Theorem 1

82

of [Str82]). Then, under the transformation family {H(t)}, B penetrates through Ir by the distance
b, and the length of Ir is given by δy(H(tf)B ∩ Irmax). So, our goal is to find the shortest Ir over all
such {H(t)}; the length of the shortest Ir is the distance r claimed by the premises. Consider the
following program to achieve this goal:

r = inf
{H(t)}

δy(H
(tf)B ∩ Irmax) (5.33)

s.t. {H(t)} ∈ Hrmax , (5.34)

δx(H
(tf)B) = b. (5.35)

We first check that feasible solutions exist for (5.33). By Lemma 5.17, there exist {H(t)} ∈
Hrmax for which δx(H(tf)B) = bmax > b. For any such {H(t)}, since H(0)B = B (which lies in the
left half-plane), we have that δx(H(0)B) ≤ 0. Then, since {H(t)} is continuous in t by Definition
5.4, there must exist some tb ∈ (0, tf) for which δx(RtbB) = b. So, again using that {H(t)} is
continuous, we can “cut off” the time index t at tb and then rescale time so that tb becomes tf as
follows. For t ∈ [0, tb], let t′ = tf

tb
t. Then the family {H(t′) | t′ ∈ [0, tf]} for which H(t′) = H(t) is

a family inHrmax for which B penetrates through Irmax by the distance b.
Now we check that r ∈ (0, rmax]. Suppose that {H(t)} is a feasible solution to (5.33). Notice

that {H(t)} cannot pass B fully through Irmax by Lemma 5.14, so δy(H
(tf)B ∩ Irmax) ≤ rmax is

immediate. By Definition 5.12 of passing through, H(tf)B ∩ Irmax must be nonempty, so r =

δy(H
(tf)B ∩ Irmax) ≥ 0.

Finally, we show that (5.33) achieves a minimum r > 0. Let {H(t)} be a feasible solution.
Suppose for the sake of contradiction that there is no ε > 0 for which r ≥ ε. Let Cr = H(tf)B ∩
Irmax , which is a chord of H(tf)B [Str82, Theorem 1]. By Lemma 5.19, no chord parallel and to the
right of Cr can be longer than Cr, because Irmax is of length rmax ≥ r and parallel to Cr. But then,
if ε = 0, since B has nonzero volume, there can be no nonempty chords to the right of Cr, which
contradicts the fact that {H(t)} attempts to pass B through I and as a result violates (5.35).

A suboptimal, feasible solution to (5.33) is shown in Figure 5.6a; an optimal solution for the
same B is shown in Figure 5.6b. With Lemma 5.20, and specifically (5.33), we find the point
spacing r.

We use r as follows. Suppose our robot has a body B, with width rmax as in Definition 5.15,
and associated maximum penetration distance bmax as in Lemma 5.17. Pick b ∈ (0, bmax). Suppose
O ⊂ X is a (polygonal) obstacle. Construct Obuf, the buffered obstacle, with (5.21). Recall by
Lemma 5.7 that the boundary of the buffered obstacle consists of line segments and arcs. Then, r
lets us construct the portion of the discretized obstacle Odisc that corresponds to the line segments
in ∂Obuf. In particular, suppose we sample each line segment of ∂Obuf such that adjacent points are

83

(a) (b)

(c)

Figure 5.6: An illustration of Program (5.33) in Figures 5.6a and 5.6b, and Program (5.36) in
Figure 5.6c. The set B is an arbitrary convex, compact shape, and starts at t = 0 in the left half-
plane PI . The transformation family {H(t)} attempts to pass B through Irmax . At time T , H(tf)B is
stopped such that its penetration distance through Irmax is the distance b. Program (5.33) attempts
to find the smallest line segment Ir that can be created when passing B through Irmax up to the
penetration distance b; a suboptimal, feasible solution is shown in Figure 5.6a, and an optimal
solution is shown in Figure 5.6b. Program (5.36) attempts to find the smallest chord Ca of a circle
Ωb for which B cannot penetrate farther than b into Ωb through Ca. This is shown in Figure 5.6c,
which starts from a feasible solution to (5.33), then centers the circle Ωb on a point of H(tf)B that
has penetrated to the distance b past Irmax . The chord Ca is defined by points in the intersection of
∂H(tf)B with Ωb, and is therefore also a chord of H(tf)B. In this case, the optimal Ca is shown.

no farther than r apart. Then, by Lemma 5.20, if Ir is a line segment between two of these adjacent
points, the robot can penetrate no further than b through Ir. In other words, the robot cannot reach
O by going “between” the adjacent points of the line segments.

However, we have not yet explained how to sample the arcs of ∂Obuf. We do so next, by finding
the arc point spacing a.

5.4.4 The Arc Point Spacing

Note that we cannot necessarily use r as the point spacing distance when sampling the arcs of
∂Obuf. To understand why, informally, imagine B penetrating into a circle Ω of radius b ∈ (0, bmax)

instead of a line segment of length rmax as in Lemma 5.20. Suppose thatB stops when it touches the
center of the circle. For the sake of argument, suppose that the boundary ∂B (which exists because
B is compact by Assumption 5.2) intersects Ω in exactly two points; then, in the intersection of B

84

with Ω, there is an arc of radius b between these two points. If the length of this arc were equal to
r, for an arbitrary convex B, then we could sample “along” each arc by the distance r. But this is
not true in general; one can check that it is false if B is circular, as in Example 5.10. Therefore,
we need a different point spacing for the arcs, which is the arc point spacing a.

Before finding the arc point spacing a, we extend the concepts of passing through and pene-
trating from line segments to circles and arcs:

Definition 5.21. Let Ω ⊂ R2 be a circle of radiusR with center p. LetB be the robot’s body at time

0. Let C be a chord of Ω. Then passing B into Ω through C is defined as passing B through the

chord C as in Definition 5.12. If the length of C is less than the width of B, then, by Lemma 5.14,

B cannot pass fully through C, but does penetrate the chord up to some distance as in Definition

5.16. Let PC be the closed half-plane defined by C as in Definition 5.11. The penetration of B into
Ω through C is the maximum Euclidean distance from any point in B ∩ C to a point in B ∩ P C

C .

This definition is illustrated in Figure 5.3d. We prove that a exists with the following lemma.

Lemma 5.22. Let B be the robot’s body at time 0 with width rmax. Let bmax be the maximum

penetration distance corresponding to B (as in Lemma 5.17). Pick b ∈ (0, bmax), and let Ω ⊂
(R2 \B) be a circle of radius b centered at a point p ∈ X . Then there exists a number a ∈ (0, rmax)

such that, if Ca is any chord of Ω of length a, then the penetration of B into Ω through C is no

larger than b.

Proof. We begin with a sketch of the proof to build intuition. This proof proceeds much as for
Lemma 5.20 to find the point spacing r. To prove that a exists, we pass B through a line segment
Irmax of length rmax, up to a penetration distance of b. Then, we translate the circle Ω of radius b
such that B is penetrating into this circle. From the intersection of the circle with B, we find a
chord Ca. The length of Ca depends on the transformation family {H(t)} used to pass B through
Irmax . We search across all such transformation families to find the smallest Ca, the length of which
is the desired arc point spacing a.

Now we proceed rigorously. Recall by Assumption 5.2 that B is compact, convex, and has
nonzero volume. Let Irmax ⊂ (R2 \B) be a line segment of length rmax. As in Lemma 5.17 (used to
find bmax), suppose without loss of generality that Irmax is oriented vertically, with its lower endpoint
fixed at the origin, so Irmax = {0} × [0, rmax]. Suppose without loss of generality that B lies fully
in the left half-plane, which is Prmax , the half-plane defined by Irmax . This can be done without loss
of generality because it only requires rotation and translation of B and Irmax , which can be undone.

Let Hrmax be the set of all transformation families that attempt to pass B through Irmax . By
Lemma 5.20, there exist {H(t)} ∈ Hrmax for which the penetration distance of B through Irmax

is equal to b. Such {H(t)} are feasible solutions to (5.33). Let Lb = {b} × R be the vertical

85

line at x = b. Let {H(t)} be a feasible solution to (5.33). Then, there exists at least one point
in H(tf)B that lies on Lb. Let Cb denote the set H(tf)B ∩ Lb, which is a chord of H(tf)B [Str82,
Theorem 1]. Note that Cb may have length 0, i.e. it is a point, and that Cb is compact, because
it is the intersection of two compact sets [Mun00, Theorem 17.1 and Theorem 26.2]. Place the
circle Ω (with radius b) tangent to the y-axis, and centered at any point pb ∈ Cb. Let Ωb denote
this translation of Ω. Recall the function δx from (5.29), which returns the right-most point of a set
in R2. With these objects, we pose following program to find the shortest chord Ca for which B
penetrates into Ωb through Ca by the buffer distance b:

a = inf
{H(t)},pb,p1,p2

‖p1 − p2‖2 (5.36)

s.t. {H(t)} ∈ Hrmax (5.37)

δx(H
(tf)B) = b, (5.38)

pb ∈ Lb ∩H(tf)B, (5.39)

p1, p2 ∈ Ωb ∩ ∂H(tf)B, (5.40)

where p1 and p2 are the endpoints of Ca.
We now construct a feasible solution to (5.36). Let {H(t)} be a feasible solution to (5.33), so

δx(H
(tf)B) = b, which satisfies (5.37) and (5.38). Since Lb ∩ H(tf)B is nonempty as discussed

above, we can pick pb to satisfy (5.39), and create Ωb centered at pb. Then Ab = Ωb ∩ H(tf)B is
an arc of radius b; we justify that Ab is indeed an arc in the next paragraph. Let p1 and p2 be the
endpoints ofAb, satisfying (5.40). Let Ca be the chord that lies between the endpoints ofAb. Then,
H(tf)B penetrates into Ωb through Ca by the distance b. This is illustrated in Figure 5.6c.

Now we justify that Ab is indeed an arc of radius b with two endpoints. First, notice that the
intersection Ωb ∩ H(tf)B is nonempty for two reasons. One, because Ωb is centered on a point
in ∂H(tf)B; and two, because δx(H(tf)B) = b, which implies that there exists at least one line
segment inside H(tf)B that is in the open right half-plane and of length b. Furthermore, because
H(tf)B has nonzero volume (Assumption 5.2), Ab has exactly two endpoints, which lie on the
boundary of H(tf)B. Otherwise, there would exist a pair of points in H(tf)B that are connected by
a line segment that does not lie fully in H(tf)B, which would violate the convexity of H(tf)B.

Now, we check that a ∈ (0, rmax). Let ({H(t)}, pb, p1, p2) be a feasible solution to (5.36). By
construction, B penetrates into Ωb through Ca by b < bmax. Then the length a of Ca is less than
rmax, otherwise, by Lemma 5.17, B could penetrate into Ωb through Ca by farther than b. Now
suppose that a = 0. Then, by Lemma 5.19, there can be no nonempty chords of H(tf)B between
Ca and the center of the circle pb, but then B does not penetrate into Ωb through Ca.

Lemma 5.22 provides the arc point spacing a ∈ (0, rmax), with a constructive method for finding a

86

for arbitrary compact, convex robot bodies. As with r, we find a analytically for rectangular and
circular bodies in Examples 5.9 and 5.10. Note that, by finding r ∈ (0, rmax) with (5.33), then
replacing Irmax with Ir (a line segment of length r) in the proof of Lemma 5.22, one can show that
a < r.

Now we have proven the existence of, and developed methods to find, the geometric quantities
rmax, bmax, r, and a. Next, we use these quantities to construct the discretized obstacle.

5.5 Constructing the Discretized Obstacle for Static Environ-
ments

We now present an algorithm to construct the discretized obstacle for static environments. That
is, the algorithm takes in a set of static obstacles, {O(n)}nobs

n=1, create a buffered obstacle Obuf,
then discretize the buffered obstacle boundary to produce the discretized obstacle Odisc. Later, in
Theorem 5.23, we prove that, if the robot cannot collide with any point in Odisc, then it also cannot
collide with the obstacle.

To proceed, first, we review the buffered obstacle. Second, we establish three useful functions
that make use of the boundary of the buffered obstacle. Third and finally, we present Algorithm 2
to construct the discretized obstacle.

5.5.1 The Buffered Obstacle

Let {O(n)}nobs
n=1 consist of polygons, as in Assumption 5.5, in the planning frame (recall that we

are currently considering the case of static obstacles in the planning frame obstacle reachable set
Robs). Suppose B is the robot’s footprint at time 0, which is compact and convex with nonzero
volume by Assumption 5.2. Suppose that rmax is found for B as in Definition 5.15 and bmax as in
Lemma 5.17. Select b ∈ (0, bmax), then find r with (5.33) and a with (5.36). Buffer the obstacle to
produce Obuf as in (5.21), which we restate here:

Obuf =
{
q ∈ W | ∃ O ∈ {O(n)}nobs

n=1 and p ∈ O s.t. ‖p− q‖2 ≤ b
}

(5.41)

= buffer({O(n)}nobs
n=1, b). (5.42)

Now, we can discretize ∂Obuf.

87

5.5.2 Sampling the Boundary of the Buffered Obstacle

We now introduce three functions, getLineSegments, getArcs, and sample to discretize the bound-
ary of the buffered obstacle.

The first two functions extract the lines and arcs from the boundary of the buffered obstacle.
Recall that, by Lemma 5.7, we can break ∂Obuf into a finite set of line segments, I, and a finite set
of arcs A. The function getLineSegments takes in the buffered obstacle Obuf and returns the set I
of all line segments on ∂Obuf. Similarly, the function getArcs takes in Obuf and returns the set A of
all arcs on ∂Obuf.

We now define a third function, sample : pow (R2) × R → pow (R2), to discretize the line
segments and arcs. Suppose S ⊂ R2 is a connected curve with exactly two endpoints and no
self-intersections; note we are conflating a curve with its image. Let s > 0 be a distance. Then
P = sample(S, s) is a set containing the endpoints of S. Furthermore, if the total arclength along
S is greater than s, then P also contains a finite number of points spaced along S such that, for any
point in P , there exists at least one other point that is no farther away than the arclength s along
S. Note that the line segments in I and the arcs in A can be parameterized, and sample can be
implemented using interpolation of a parameterized curve.

5.5.3 Constructing the Discretized Obstacle

Using the functions above, and the geometric quantities developed through this chapter, we pro-
duce the discretized obstacle with Algorithm 2.

We now briefly explain the output of Algorithm 2. Suppose that Odisc is constructed from a
buffered obstacle Obuf using Algorithm 2. Then Odisc contains the endpoints of each line segment
or arc of ∂Obuf, since it is constructed using sample. Furthermore, for each line segment of ∂Obuf,
Odisc contains additional points spaced along the line segment such that each point is within the
distance r (in the 2-norm) from at least one other point. Similarly, for each arc of ∂Obuf, Odisc

contains points spaced along the arc such that each point is within the arclength a of at least one
other point; this implies that distance between any pair of adjacent points along each arc is no
more than a. Finally, note that |Odisc| is finite, because (1) there are a finite number of polygons
in {O(n)}nobs

n=1 (see Assumption 5.5), (2) each polygon has a finite number of edges, and (3) r and
a > 0.

5.6 Proving Safety

Now, we formalize the notion that Odisc conservatively represents the obstacles {O(n)}nobs
n=1. That is,

if the robot avoids collision with every point in Odisc, then it avoids every obstacle in {O(n)}nobs
n=1.

88

Algorithm 2 Odisc = discretizeObstacle({O(n)}nobs
n=1, b, r, a)

1: Obuf ← buffer({O(n)}nobs
n=1, b) // buffer static obstacles by b, and take their union

2: I ← getLineSegments (Obuf)
3: A ← getArcs (Obuf)
4: Odisc ← ∅ // initialize output
5: for I ∈ I
6: Odisc ← Odisc ∪ sample(I, r)
7: end for
8: for A ∈ A
9: Odisc ← Odisc ∪ sample(A, a)

10: end for
11: return Odisc

In other words, we seek to prove (5.9) (restated here in Theorem 5.23).

Theorem 5.23. Let B be the robot’s body with width rmax. Let {O(n)}nobs
n=1 ⊂ (W \ B) be a set

of static obstacles in the robot’s planning frame, with corresponding unsafe parameters Kunsf =

projK(RFRS ∩Robs) as in 5.5, where projW (Robs) is the union of all of the obstacles. Suppose that

the maximum penetration depth bmax is found for B as in Lemma 5.17. Pick b ∈ (0, bmax), and find

the point spacing r with (5.33) and the arc point spacing a with (5.36). Construct the buffered

obstacle Obuf as in (5.21), then construct the discretized obstacle Odisc using Algorithm 2. Then,

the set of all unsafe trajectory parameters corresponding to {O(n)}nobs
n=1 is a subset of the trajectory

parameters corresponding to Odisc. That is, if we define

Kdisc = projK(RFRS ∩ (Tplan ×Odisc ×K)), (5.43)

then

Kunsf ⊆ Kdisc. (5.44)

Proof. In short, we show that any trajectory parameter outside of Kdisc cannot cause any point on
the robot to enter any obstacle in {O(n)}nobs

n=1 at any time t ∈ [0, tf].
First, recall that the robot’s high-fidelity model produces continuous trajectories of the robot’s

body in R2. So, we can represent the motion of the robot over the time horizon Tplan using a
transformation family {H(t)}.

Second, we review the geometry of the boundary of the buffered obstacle. Suppose k ∈ KC
disc

is arbitrary, and the robot begins at an arbitrary initial condition xhi,0 ∈ Xhi. Let {H(t)} be a
transformation family that describes the robot’s motion when tracking the trajectory parameterized
by k. Consider a pair (p1, p2) of adjacent points ofOdisc. Recall that the function sample returns the

89

endpoints of any line segment or arc on ∂Obuf, in addition to points spaced along the line segment
or arc if necessary. Therefore, by Algorithm 2, (p1, p2) is either from a line segment or from an
arc of ∂Obuf (recall that, by Lemma 5.7, ∂Obuf consists exclusively of line segments and arcs). By
construction, if p1 is on a line segment (resp. arc), then p2 is within the distance r (resp. a) along
the line segment; this also holds if either point is an endpoint of a line segment or arc. So, to prove
the claim, we will consider two cases: (1) where (p1, p2) is from a line segment, and (2) where
(p1, p2) is from an arc.

Consider the case when (p1, p2) is from a line segment I of ∂Obuf. By (5.21), the distance from
{O(n)}nobs

n=1 to any point on I is b. By the definition of Kunsf and by Lemma 5.1, when tracking
the trajectory parameterized by k, the robot can approach infinitesimally close to p1 and/or p2,
but cannot contain them, for any t ∈ [0, tf]. Then, by continuity of the robot’s trajectory and the
construction of r via Lemma 5.20, no point in the robot can penetrate farther than b through I .

Now consider when (p1, p2) is from an arbitrary arc A of ∂Obuf. By Equation (5.21), there
exists some obstacle O(n) for which the distance from O(n) to any point on A is b. Each such arc
is a section of a circle of radius b. By Lemma 5.1, the robot cannot collide with p1 or p2 for any
t ∈ [0, tf]. So, by continuity of the robot’s trajectory and by Lemma 5.22, the robot cannot pass
farther than the distance b into A through the chord (of A) with endpoints p1 and p2.

Since I and A were arbitrary, there does not exist any t ∈ [0, tf] for which H(t)B ∩ O(n) is
nonempty for any O(n) ∈ {O(n)}nobs

n=1. In other words, the robot does not collide with any obstacle
by passing through any line segment or arc of ∂Obuf. Since k was arbitrary, we conclude that
there does not exist any k ∈ KC

disc for which the robot collides with any obstacle, completing the
proof.

Theorem 5.23 provides the main result of this chapter: we can use Odisc to conservatively
approximate Kunsf for static obstacles. That is, we can represent obstacles using only a discrete,
finite subset of the robot’s workspace, and not lose safety guarantees.

5.7 Extension to Dynamic Obstacles

Up to this point, we have developed a discretized obstacle representation for collections of static
obstacles. We now extend the discretized obstacle to incorporate temporal information, enabling
collision-free guarantees with respect to dynamic obstacles. Recall that, in this work, the robot
is not at fault if it is stopped during a collision, per §3.4.2. Since every parameterized plan ends
with the robot stopped, if we can ensure collision avoidance for the entirety of a single plan, then
the robot is perpetually not-at-fault (see §3.8 for more details). To this end, we now propose two
methods of representing dynamic obstacles with a collection of discrete points.

90

To proceed, we first briefly review of dynamic obstacles and the corresponding unsafe tra-
jectory parameters. Second, we briefly restate the geometric quantities necessary for the static
discretized obstacle, which we use to construct the discretized dynamic obstacle as well. Third, we
present a discretized dynamic obstacle for the case when the FRS is represented in continuous time
(such as the first sums-of-squares FRS method in §4). Fourth, we present a discretized dynamic
obstacle for the case when the FRS is defined over time intervals (as in §4.6, and later on in §6 and
§8).

5.7.1 A Reminder of Dynamic Environments and Unsafe Plans

Let {O(n)}nobs
n=1 be the obstacles that we must consider in the current planning iteration. Sup-

pose that we have mapped the current receding-horizon planning time interval T (i) to the generic
planning time horizon Tplan; that is, we continue to drop the index i denoting the ith receding-
horizon planning iteration. Then, per (3.6), a prediction is a map P : Tplan → pow (W) such that
P(t) ⊇

⋃nobs
n=1O

(n)(t) for any t ∈ Tplan. Further recall that, per §3.4.2, no obstacle travels faster
than some known speed vmax,obs ≥ 0.

Now recall that, we used predictions to define the ORS,Robs ⊂ Tplan ×W ×K, in (3.33). The
ORS contains all times and points reached by the prediction, and associates each of these times
and points with every trajectory parameter; again, we have dropped the index i so we write Robs

instead ofR(i)
obs. Just as we assumed that all obstacles are polygons, we assume the following:

Assumption 5.24. We assume that, for any t ∈ Tplan, proj{t}(Robs) is a union of a finite number of

closed, compact polygons, each with a finite number of edges and vertices.

Finally, suppose, as we did in §5.1, that RFRS ⊂ Tplan × W × K is the robot’s FRS for the
current planning iteration (meaning, the FRS corresponding to the robot’s initial condition xhi,0).
The set of unsafe plans for the current iteration is then

Kunsf ⊆ projK(RFRS ∩Robs), (5.45)

as we saw before in §3.

5.7.2 A Reminder of Geometric Quantities for Obstacle Discretization

For the remainder of this section, suppose we have a robot with body B, width rmax, and buffer
bound bmax as found in §5.4. In each claim in this section, we pick a buffer distance b ∈ (0, bmax),
then compute the point spacing r with Lemma 5.20 and the arc point spacing a with Lemma 5.22.

91

5.7.3 Continuous Time Discretized Dynamic Obstacle

Our first approach is to discretize Tplan, then discretize the workspace obstacle at each discrete
time. That is, we pick some nt ∈ N such that the discretized obstacle is represented as a collection

Odisc =

{
O

(n)
disc ∈ Tplan × pow (W) | O(n)

disc = (n∆t, O
(n)), with

∆t = tf
nt
, O(n) ⊂ W, and |O(n)| <∞ ∀ n = 0, · · · , nt

}
.

(5.46)

However, we specify how to construct this discretization in the reverse order. That is, first, we
specify how to discretize in space at a single time n∆t ∈ Tplan, and explain the rationale behind
doing so. Then, we specify how to upper-bound the time discretization ∆t. Finally, we prove
that using the proposed discretized obstacle representation ensures collision avoidance during the
entire time horizon Tplan.

First, we specify how to discretize in space at a given time. In short, we sample the boundary
of the buffered obstacle, plus enough points in the interior of the buffered obstacle that no point is
farther than r/2 from another point. That is, we augment the sampling function, sample, which we
used to sample the line segments and arcs of the boundary of the buffered (static) obstacle in the
previous sections.

Definition 5.25. We redefine sample : pow (W)×R×R→ pow (W) to take in a buffered polygon

and return a (finite) set of discrete points O(n) as follows. Let O(t)
buf = buffer(proj{t}(Robs), b),

which consists of buffered polygons per Assumption 5.24 and Lemma 5.7. Suppose

O = sample(O
(t)
buf, r, a). (5.47)

We require that O has the following properties

1. If I and A are sets containing the line segments and arcs defining ∂O(t)
buf, then O contains

the endpoints of every such line segment and arc, plus additional points spaced no farther

than r (resp. a) apart on every line segment (resp. arc); that is, sample returns the output of

Algorithm 2.

2. The discretized obstacle O also contains points in interior(O(t)
buf) such that, for any point o ∈

O
(t)
buf, there exists a point o′ ∈ O such that its distance to o is bounded by r: ‖o− o′‖2 ≤ r.

3. For any point o sampled from I or A, there exists o′ ∈ O ∩ interior(O(t)
buf) such that its

distance to o is bounded by r: ‖o− o′‖2 ≤ r.

92

To see how it is possible to fulfill the second and third conditions, recall that O(t)
buf is compact by

assumption. Therefore, one can cover O(t)
buf with a finite number of 2-norm balls of radius r/2, each

centered either on a line segment or arc of ∂O(t)
buf, or centered on a point in interior(O(t)

buf). Then O
can be constructed from the centers of all of these balls.

The reason for sampling the interior of the buffered obstacle is as follows. At the beginning
of a planning iteration, our robot may lie inside the ORS for a dynamic obstacle at some time
t ∈ Tplan; that is, an obstacle may be predicted to occupy the same space that our robot occupies at
time 0 ∈ Tplan, so we must choose a plan to leave that area. Now suppose that an obstacle is large.
Then its prediction may entirely cover the body of our robot. In this case, if we consider only the
boundary of the prediction (i.e. O(t)

buf above) for discretizing the obstacle, then it may be possible
for us to move within the prediction without colliding with any such boundary points; but, doing
so would still cause us to collide with the interior of the predicted obstacle. Therefore, we must
sample the interior of the predictions to correctly identify unsafe plans.

Figure 5.7: Discretized obstacles for dynamic environments. Time is shown fading from light to
dark for both the robot and the obstacle prediction. The robot is moving from left to right for a given
plan, with the corresponding FRS shown in green for the entire trajectory, and with dark outlines
for two times. An obstacle prediction, discretized as in §5.7.3, is shown at the corresponding times.
By ensuring collision avoidance at t1 and t2 ∈ Tplan, and choosing the buffer size and discretization
fineness correctly, we can ensure collision avoidance for all of Tplan.

We now show that sample lets us ensure that the robot is collision free at an arbitrary time
t ∈ Tplan (but only at that time).

Lemma 5.26 (Not-at-fault at a time t ∈ Tplan)). Pick b ∈ (0, bmax), and construct r with (5.33)
and a with (5.36). Let t ∈ Tplan. Suppose we use sample to discretize O(t)

buf = proj{t}(Robs) as in

Definition 5.25:

O
(t)
disc = sample(O

(t)
buf, r, a) (5.48)

93

Consider the set

K
(t)
unsf = projK(RFRS ∩ {t} ×O(t)

disc ×K). (5.49)

Suppose the robot tracks any k ∈ K \K(t)
unsf, and suppose it is not in collision at any time in [0, t).

Then, the robot is not in collision at time t.

Proof. From the proof of Theorem 5.23 and the definition ofRobs, we have that the robot is not at
fault with respect to the boundary of the obstacles at time t. Let

B(t,k) = projW (RFRS ∩ {t} ×W × {k}), (5.50)

where we use “B” to remind the reader that this subset of RFRS contains all possible locations of
the body of the robot for plan k at time t. Consider the case where the prediction is completely
overlapping our robot, meaning

B(t,k) ⊂ O
(t)
buf. (5.51)

To complete the proof, we must show that

B(t,k) ∩O(t)
disc 6= ∅, (5.52)

which would imply that k ∈ K(t)
unsf (a contradiction). Recall that O(t)

disc contains points in the interior
of O(t)

buf such that no two points are farther than r apart, by construction. But, since r < rmax (the
width of the robot’s body B), there exists no configuration of the robot such that its body can lie
inside O(t)

buf without intersecting at least one point in O(t)
buf, which follows from Lemma 5.14. Since

B(t,k) is not smaller than B by the FRS definition, it follows that B(t,k) ∩ O(t)
disc 6= ∅. By “not

smaller” we mean that there exists at least one rotation and translation of B such that B ⊂ B(t,k)

strictly.

Recall that the purpose of this entire chapter is to find discrete sets of points such that, if the robot
avoids collision with all such points, then it avoids collision with the obstacle itself. To this end,
Lemma 5.26 tells us that, by picking enough points in the interior of the prediction at time t, we
ensure that safe plans force the robot to be outside of the prediction, otherwise its body will overlap
the discretized obstacle points. As a reminder, though we have posed Lemma 5.26 in the language
of RTD (that is, the robot is tracking a plan k ∈ K), this discretized obstacle representation can be
used to formulate collision-avoidance constraints for any motion planning method.

Now we extend Lemma 5.26 to a short time interval. First, we define a new type of buffer, and
thereby derive bounds on the time discretization.

94

Definition 5.27. Recall that our robot has a maximum generalized velocity q̇max per §3.2.3. Here,

let vmax = q̇max denote the robot’s maximum speed in the plane (as a reminder that we are consid-

ering robots for which Q = SE(2)). Let vrel = vmax + vmax,obs (i.e., the maximum relative speed

between the robot and any obstacle). We define a temporal buffer

bt ∈
(

0,
1

2
tf · vrel

)
. (5.53)

and a corresponding maximum time discretization

∆t,max =
2bt
vrel

. (5.54)

Now we use the temporal buffer to guarantee the robot is collision-free over a short time inter-
val:

Lemma 5.28 (Collision avoidance for a short time interval). Pick b ∈ (0, bmax), and construct r

with (5.33) and awith (5.36). Pick bt ∈ (0, 1
2
tf·vrel), and ∆t ∈ (0,∆t,max). Let t1 ∈ [0, tf−∆t,max] ⊂

Tplan, and t2 = t1 + ∆t. Let

O
(t1)
buf = buffer(proj{t1}(Robs), b+ bt), (5.55)

and similarly O(t2)
buf . Then create

O
(t1)
disc = sample(O

(t1)
buf , r, a), (5.56)

and similarly O(t2)
disc . Consider the set

K
(t1)
unsf = projK(RFRS ∩ {t1} ×O(t1)

disc ×K), (5.57)

and similarly K(t2)
unsf . Consider an arbitrary trajectory parameter

k ∈ K \ (K
(t1)
unsf ∪K

(t2)
unsf). (5.58)

If the robot tracks k, and is not in collision at any time in [0, t1), then it is not in collision at any

time in the interval [t1, t2].

Proof. By Lemma 5.26, the robot is not in collision at t1. Furthermore, the closest the robot can
be to any obstacle at time t1 is the distance bt (since the obstacle is buffered by b + bt. Therefore,
for the robot to collide with any obstacle in [t1, t2], it must travel a relative distance strictly greater

95

than 2bt. However, the farthest the robot can travel between t1 and t2 relative to any obstacle is

vrel ·∆t ≤ vrel ·
2bt
vrel

= 2bt, (5.59)

since ∆t ∈ (0,∆t,max).

The time discretization in Lemma 5.28 is illustrated in Figure 5.7.
Finally, we extend Lemma 5.28 to the whole interval Tplan.

Theorem 5.29 (Collision avoidance for all t ∈ Tplan). Let Robs ⊂ Tplan ×W ×K be the obstacle

reachable set for the current planning iteration. Pick b ∈ (0, bmax), and construct r with (5.33) and

a with (5.36). Pick bt ∈ (0, 1
2
tf · vrel), and construct ∆t,max = 2bt/vrel. Choose nt ∈ N such that

∆t = tf/nt ≤ ∆t,max. Let

Tdisc = {0,∆t, 2∆t, · · · , nt∆t}. (5.60)

For each t(n) ∈ Tdisc, construct

O
(n)
buf = buffer(proj{t(n)}(Robs), b+ bt), (5.61)

O
(n)
disc = sample(O

(n)
buf , r, a), and (5.62)

K
(n)
unsf = projK(RFRS ∩ {t(n)} ×O(n)

disc ×K). (5.63)

Consider an arbitrary trajectory parameter

k ∈ K \

(
nt⋃
n=1

K
(n)
unsf

)
. (5.64)

Suppose the robot tracks k, is not in collision at t = 0, and does not begin tracking any new plan

during Tplan. Then it is not in collision at any t ∈ Tplan, and it is not-at-fault for any t ≥ tf.

Proof. The collision free claim follow follows from applying Lemma 5.28 successively on each
time interval [(n− 1) ·∆t, n ·∆t] for n = 1, · · · , n1 − 1. Since every k ∈ K ends with the robot
stopped, the robot is not-at-fault for all time after tf.

Theorem 5.29 lets us guarantee collision-free behavior by discretizing the dynamic obstacle reach-
able set in time and space. That is, we have constructed the representation desired in (5.46).

Unfortunately, as one might notice from Definition 5.25, there is a tradeoff between conser-
vatism and discretization fineness. That is, one must use a larger temporal buffer bt to enable
a larger time discretization via ∆t,max. A smaller ∆t,max is therefore preferable. But choosing

96

a smaller ∆t,max results in more discrete obstacle points. Recall that we treat each point as a
collision-avoidance constraint at runtime; in general, more constraints results in slower online tra-
jectory optimization (see, e.g., [KVJRV17] or [KZZV20, Section V]). Since we limit RTD to a
duration tplan in each receding-horizon planning iteration, having fewer constraints is preferable.
We address this challenge next.

5.7.4 Time Interval Discretized Dynamic Obstacle

Recall that, in §4.6, we broke the planning time horizon Tplan into a collection of nRS intervals
{I(n)}nRS

n=1, with the intention being to treat predictions of obstacles as static in each of these in-
tervals (note, we are now using I(n) to refer to time intervals as in §4.6, not line segments as we
did in §5.2.1). From the dynamic discretized obstacle construction above, one may notice that, if
we can choose nRS < nt, then we should be able to produce less discretization points, and there-
fore less constraints for online trajectory optimization. However, there is an additional benefit: by
treating obstacles as static for each I(n), we eliminate the temporal buffer bt, and therefore reduce
the conservatism of our approach as well.

We make use of the same sampling strategy as above, and essentially restate Lemma 5.28 for
the case when Tplan (and the ORS) is broken into nRS short time intervals. First, we have to assume
that we still have a polygonal representation of predictions:

Assumption 5.30. LetRobs ⊂ Tplan×W×K be the obstacle reachable set for the current planning

iteration. Suppose that we have broken the planning time horizon in to nRS ∈ N intervals, so that

Tplan =
⋃nRS
n=1 I

(n). We assume that, for any I(n), the set proj{I(n)}(Robs) is a polygon, or can be

overapproximated by a polygon.

Now we can construct the discretized dynamic obstacle on the time intervals I(n):

Theorem 5.31. LetRobs and {I(n)}nRS
n=1 be as in Assumption 5.30. Pick b ∈ (0, bmax), and construct

r with (5.33) and a with (5.36). For each I(n), construct

O
(n)
buf = buffer(proj{I(n)}(Robs), b), (5.65)

O
(n)
disc = sample(O

(n)
buf , r, a), and (5.66)

K
(n)
unsf = projK(RFRS ∩ {t(n)} ×O(n)

disc ×K). (5.67)

Consider an arbitrary trajectory parameter

k ∈ K \

(
nt⋃
n=1

K
(n)
unsf

)
. (5.68)

97

Suppose the robot tracks k, is not in collision at t = 0, and does not begin tracking any new plan

during Tplan. Then it is not in collision at any t ∈ Tplan, and it is not-at-fault for any t ≥ tf.

Proof. This result follows by applying Lemma 5.26 (which guarantees collision-free behavior at
any t ∈ Tplan) iteratively to the Robs projected into each interval I(n) for n = 1, · · · , nRS; that is,
we treat the predictions of obstacles as static in each I(n), and are effectively taking the union of
all predicted obstacle positions during each I(n). As a reminder, since each k ∈ K ends with the
robot stopped, the robot is not-at-fault for all time after tf ∈ Tplan.

This concludes the presentation of discretized obstacles for dynamic environments, and there-
fore concludes the theoretical development of the chapter.

5.8 Chapter Review

The takeaway of this chapter is a general discretized obstacle formulation based on the geometry
of the robot. The representation enables real-time online planning for RTD, because it enables con-
verting polygonal representations of obstacles (which contain a continuum of points) into a finite,
discrete number of points. Each point becomes a constraint for online trajectory optimization, so
this finite list is numerically tractable whereas an infinite list of constraints may not be.

5.8.1 Example Discretized Obstacle Usage for Polynomial FRS

We conclude this presentation of the discretized obstacle with an example of the discretized obsta-
cle in practice, given a polynomial FRS representation generated as in §4. Suppose that gdyn,l ∈
R[t, x, k] and gstat,l ∈ R[x, k] are degree l polynomials representing the FRS, as computed in §4.
Recall that the 0-sublevel set (resp. 1-superlevel set) of gdyn,l (resp. gstat,l) provably contains the
FRS (see Theorem 4.3 and Corollary 4.4). Let Odyn ⊂ Tplan×W be a discretized dynamic obstacle
produced as in Theorem 5.29. Then, for the decision variable k at runtime, we need only enforce
the finite list of constraints

gdyn,l(t, o, k) > 0 ∀ (t, o) ∈ Odyn. (5.69)

Similarly, if Ostat ⊂ W is a discretized (static) obstacle as in Theorem 5.23, we need only enforce
the finite list of constraints

gstat,l(o, k) < 1 ∀ o ∈ Ostat. (5.70)

98

Any k that is feasible to (5.69) (resp. (5.70)) is provably collision-free, which follows from Theo-
rem 4.3 and Theorem 5.29 (resp. Theorem 5.23).

In the case of a time interval discretized dynamic obstacle, and time interval polynomial FRS
as in §4.6, we can apply Theorem 5.31 with a similar formulation to (5.70).

5.8.2 Chapter Summary

This chapter began by reviewing predictions and formulating a theoretical discretized obstacle rep-
resentation (§5.1). We then defined several geometric objects, and placed assumptions on the ge-
ometry of the robot and obstacles (§5.2.1). The majority of this chapter was then spent defining and
computing five geometric quantities that are necessary for producing the discretized obstacle rep-
resentation for static obstacles (§5.3 and §5.4). We used this quantities to construct the discretized
obstacle (§5.5), and proved that this representation ensures safety (§5.6). Finally, we extended our
method to the case of dynamic obstacles, and proved again that it ensures collision-free planning
(§5.7).

5.8.3 What is Missing?

This chapter has presented a discretized obstacle that one can use for RTD or any other motion
planning method for rigid body robots in the plane. However, this representation can generate
a large number of discrete points, each of which is typically mapped to a collision-avoidance
constraint at runtime. More constraints typically results in slower online trajectory optimization.
Furthermore, such constraints are not convex, because we seek to have the robot avoid reaching
points in its workspace; so the feasible region for each constraint is the workspace minus a point,
which is not convex. To resolve these challenges with nonlinear, nonconvex optimization, we have
explored branch-and-bound strategies for RTD [KZZV20]. But, there is still work to be done in
finding obstacle representations that produce fewer constraints, or a minimal number of constraints,
to ensure faster online optimization; this work is a first step in this direction, because we explicitly
use the robot’s geometry to bound the spacing between discrete obstacle points.

99

CHAPTER 6

Forward Reachable Sets via Zonotopes

In this chapter, we represent the Forward Reachable Set (FRS) using zonotopes, a special class
of convex polytopes in Euclidean space. Recall that the SOS FRS representation in Chapter 4
was used only for wheeled robots operating in the plane, due to dimensionality constraints. This
limitation motivates our development of zonotope reachable sets, enabling RTD for aerial robots
that have high-dimensional, nonlinear models which are currently out of reach of our SOS methods.
Later, in §8, we adapt zonotopes into a more general class of objects called rotatotopes for RTD
on manipulators.

The sections of this chapter are as follows. (§6.1) We begin by introducing zonotopes. (§6.2)
Then, we introduce the zonotope FRS representation. (§6.3) Next, we introduce a concept called
slicing, which lets us identify subsets of the zonotope FRS that correspond to particular trajectory
parameters. (§6.4) Finally, we use slicing to identify unsafe plans and thereby formulate online
trajectory optimization with the zonotope FRS.

6.1 Zonotopes

We begin this chapter by defining zonotopes and noting several useful properties that make them
amenable to numerical representation of reachable sets.

6.1.1 Definition and Notation

A zonotope is a set in Rn that can be written as the convex combination of a center c ∈ Rn and
generators g(1), · · · , g(m) ∈ Rn, m ∈ N:

Z =

{
y ∈ Rn | y = c+

m∑
i=1

β(i)g(i), −1 ≤ β(i) ≤ 1

}
. (6.1)

100

We refer to the values β(i) as the coefficients of the zonotope. We represent zonotopes numerically
by storing their centers and generators as arrays. Notice that the center and generators uniquely de-
fine any zonotope, which means the coefficients can be left implicit for most applications [KHV19].
An example zonotope is shown in Figure 6.1.

However, we make heavy use of the coefficients themselves in this work. This is because our
goal is to represent the high-dimensional set RFRS ⊂ Tplan × Xhi × X × K; as we will see, con-
structing generators that are nonzero in some dimensions of RFRS allows us to find the subsets of
RFRS corresponding to particular trajectories or obstacles. Numerically representing such subsets
requires choosing particular coefficient values for those generators, while leaving the remaining
generators alone. To that end, we introduce the following zonotope notation:

Z = c+
m∑
i=1

〈β(i)〉g(i). (6.2)

which means the zonotopeZ centered at c, with generators
{
g(i)
}m
i=1

, and indeterminates
{
〈β(i)〉

}m
i=1

.
In other words, we treat 〈β(i)〉 as symbolic coefficients that take (all of the) values in [−1, 1]. That
is, these indeterminates equivalently represent the interval [−1, 1], and one can use interval arith-
metic to understand what it means to multiply them with, e.g., generators [Alt10]. Instead of
denoting the indeterminates as intervals, our notation emphasizes their role as coefficients of the
generators; later in this section, we evaluate indeterminates by assigning them a particular value
from [−1, 1]. Note, we always use Greek lowercase letters in angle brackets to denote indetermi-
nates.

Figure 6.1: An example zonotope Z (the grey volume) in Rn with three generators (in orange,
green, and blue), and a center c (in black).

101

6.1.2 Zonotope Properties

We now note two useful properties of zonotopes, which follow from the definition in (6.1). Define
two example zonotopes

X = x+
r∑
i=1

〈χ(i)〉g(i)
X and Y = y +

s∑
j=1

〈γ(j)〉g(j)
Y . (6.3)

First, the Minkowski sum of zonotopes is given as follows:

X ⊕ Y = x+ y +
r∑
i=1

〈χ(i)〉g(i)
X +

s∑
j=1

〈γ(j)〉g(j)
Y . (6.4)

Notice that X ⊕ Y is again a zonotope, with r + s generators and indeterminates.
Second, consider a linear map A : Rn → Rn and suppose X ⊂ Rn. Then

AX = Ax+
r∑
i=1

〈χ(i)〉Ag(i)
X . (6.5)

Notice that the indeterminates are not altered by this transformation.
We present a third property, a method for checking if two zonotopes intersect, later in §6.4.

6.2 Zonotope FRS

We now discuss how we represent the FRS with zonotopes. Recall that, informally, FRS = PRS +

ERS. We make use of an open-source toolbox [Alt15] to compute the PRS, and reserve our ERS
computation for §7. Here, as with the SOS programming approach, we place specific assumptions
on the form of the ERS to make the FRS computationally tractable.

In this section, we first discuss how one can conservatively approximate a PRS as in (3.27)
with zonotopes. Then, we explain the format required for the ERS. Finally, we produce the FRS.

6.2.1 The Planning Reachable Set

First, recall the PRS definition (3.27):

Rplan =

{
(t, x, k) ∈ Tplan ×X ×K | x = x0 +

∫ t

0

f(τ, x̃(τ ; k), k)dτ

}
, (6.6)

where f denotes the planning model, x0 is the initial condition of each plan, and x̃ is the trajectory
of each plan. An example zonotope PRS is shown in Figure 6.2.

102

To compute the PRS using [Alt15], we require the following three items. First, we augment
the planning model with the parameters k as artificial states such that[

ẋ(t; k)

k̇(t)

]
=

[
f(t, x(t; k), k)

0

]
. (6.7)

Notice that the trajectory parameters do not evolve over Tplan. However, as a reminder, they still
parameterize time-varying planned trajectories. A common example, which we make use of in
later chapters, is to parameterize the coefficients of a time-varying polynomial in each planning
state.

Second, we split the time horizon Tplan into nRS ∈ N intervals just as we did for SOS reacha-
bility in §4.6. Let ∆t = tf/nRS and

Tplan = [0,∆t] ∪ [∆t, 2∆2] ∪ · · · ∪ [tf −∆t, tf] (6.8)

= I(1) ∪ I(2) ∪ · · · ∪ I(nRS) (6.9)

As before, each I(i) = [(i− 1)∆t, i ·∆t] for i = 1, · · · , nRS.
Third, we create an initial condition set as a zonotope:

Z
(0)
plan = z0 +

nK∑
i=1

〈κ(i)
ki
〉g(i)
ki
⊂ X ×K, (6.10)

with

z0 =

[
x0

k0

]
and g

(i)
ki

=

[
0nX×1

∆kieki

]
. (6.11)

We specify k0 ∈ RnK and ∆ki > 0; we use eki ∈ RnK to denote a vector of zeros with 1 in the
ith coordinate. The generators g(i)

ki
have the subscript ki to denote that they correspond to each

parameter ki; they have the superscript index i to index each of the nK such generators.
Another way to think of the generators g(i)

ki
is as the columns of a matrix

Gk =

[
0nX×nK

diag
(
∆k1 ,∆k2 , · · · ,∆knK

)] ∈ R(nX+nK)×nK , (6.12)

where diag places its arguments on the diagonal of a matrix of appropriate size, with all other
entries as zero. In fact, a common parameterization of zonotopes is as a center vector and a
generator matrix in this form, which is also typically how zonotopes are represented numerically
[Alt15].

103

Notice that each generator g(i)
ki

causes Z(1)
plan to span the distance 2∆ki in the ith coordinate of K.

Therefore, this representation assumes that K is a box-shaped set, meaning that each ith coordinate
of k is drawn from a closed interval centered at the k0, and K is the Cartesian product of all nK of
these intervals. For example,

K = [k0,1 −∆k1 , k0,1 + ∆k1]× [k0,2 −∆k2 , k0,2 + ∆k2]× · · · (6.13)

· · · × [k0,nK
−∆knK

, k0,nK
+ ∆knK

] (6.14)

in the case where nK > 2.
Using these dynamics, time intervals, and initial condition, [Alt15] then produces a set of

zonotopes for which

Z
(i)
plan = (F (i−1)Z

(i−1)
plan)⊕ L(i) ⊂ X ×K, (6.15)

where F (i−1) is the matrix exponential of the linearized augmented dynamics (6.7), and L(i) is
a zonotope that compensates for linearization error and continuous time [Alt15]. By continuous
time, we mean that each Z(i)

plan contains all states reached by the planning model at any time in the
interval I(i). Applying the operation (6.15) nRS times produces a set of zonotopes denoted

{Z(i)
plan}

nRS
i=1. (6.16)

Notice that the index runs from 1 to nRS, to match the time intervals I(i). That is, Z(0)
plan is only used

as an initial condition, and is subsumed into Z(1)
plan during the first application of (6.15).

Importantly, using [Alt10, Theorem 3.3 and Proposition 3.7], one can prove that the set {Z(i)
plan}

nRS
i=1

conservatively approximates the PRS:

Lemma 6.1. If (t, x, k) ∈ Rplan and t ∈ I(i) ⊂ Tplan, then (x, k) ∈ Z(i)
plan.

6.2.2 The Error Reachable Set

Now we specify an ERS zonotope representation. First, recall the ERS definition from (3.28):

Rerr =

{
(t, xhi,0, e) ∈ Tplan ×Xhi,0 × Rnhi | ∃ k ∈ Klim(xhi,0) s.t.

e = xhi(t; k)− xplan(t; k), where

ẋhi(t; k) = f
(
t, xhi(t; k), uk(t, xhi(t; k))

)
, xhi(0; k) = xhi,0,

ẋplan(t; k) = flift
(
t, xplan(t; k), k

)
, and xplan(0; k) = xhi,0

}
.

(6.17)

104

Figure 6.2: An illustration of the PRS for an aerial robot. The PRS is shown as a sequence of
high-dimensional zonotopes, projected into K and W as boxes. The particular subset of the PRS
corresponding to one plan k is also shown, with the resulting sliced PRS shown as a sequence
of zonotopes surrounding the trajectory parameterized by k. This subset is found by slicing the
zonotope PRS as in (6.28).

Figure 6.3: An illustration of the ERS as a collection of zonotopes for a single trajectory plan and
the resulting tracking error. The tracking error zonotopes are shown in the space Rnhi on the left,
along with the tracking error as a solid blue curve. The planned trajectory is a dashed curve on the
right, with the executed trajectory as a solid curve. The tracking error zonotopes are overlaid on
both trajectories to show how they can be constructed to contain the error when they are shifted to
contain the planned trajectory.

We require the following ERS representation for the zonotope FRS.

Assumption 6.2. Suppose we partition the space Xhi,0 into a finite number of subsets. For each

subset X(j)
hi,0 and each I(i) ⊂ Tplan, we assume that there exists a zonotope Z(i,j)

err ⊂ RdimW with the

following property. If (t, xhi,0, e) ∈ Rerr, t ∈ I(i), and xhi,0 ∈ X(j)
hi,0, then projX(e) ∈ Z(i,j)

err .

Here, projX(e) denotes that we are only considering the X dimensions of e ∈ Rnhi . Note, this
partition of Xhi,0 is essentially the same as the one used for FRS swapping in §4.7. However, in
practice, computing each Z

(i,j)
err is much less computationally intensive than computing an FRS

using the SOS programming approach; so, we typically use a much finer partition of Xhi,0 for the
zonotope approach. A subset of the ERS, represented with zonotopes, is shown in Figure 6.3.

105

6.2.3 The Forward Reachable Set

Now, we conservatively approximate the FRS with zonotopes, which enable a literal application of
the informal notion, FRS = PRS + ERS. To do so, we first have to specify how to add zonotopes
of different dimension.

Definition 6.3. Consider two zonotopes,

X = x+
r∑
i=1

〈χ(i)〉g(i)
X and Y = y +

s∑
j=1

〈υ(j)〉g(j)
Y (6.18)

with X ⊂ Rn and Y ⊂ Rm (note r, s ∈ N per the zonotope notation). Suppose that n < m. We

specify the Minkowski sum of these zonotopes as

X ⊕ Y =

[
x

0(m−n)×1

]
+ y +

r∑
i=1

〈χ(i)〉

[
g

(i)
X

0(m−n)×1

]
+

s∑
j=1

〈υ(j)〉g(j)
Y . (6.19)

In other words, we pad x and each g(i)
X with an appropriate number of zeros. Note, the order of

the dimensions of a zonotope are arbitrary. Here we assume the first n dimensions of Y ⊂ Rm

correspond to all n dimensions of X ⊂ Rn.
Now, recall the set X0 from 4.2 that is located at x0 ∈ X , and is large enough to contain all

rotations of the robot’s body when tracking any parameterized trajectory. We assume X0 exists for
wheeled or aerial robots when using the zonotope FRS method; we use a different formulation of
the FRS for manipulators that does not require X0.

Theorem 6.4. Suppose X0 ⊂ X , x0 ∈ X0, and X0 is large enough to contain all rotations of a

robot’s rigid body in the case of a wheeled or aerial robot; let X0 = ∅ for a manipulator. Further

suppose that X0 is a zonotope. If (t, xhi,0, x, k) ∈ RFRS, t ∈ I(i), and xhi,0 ∈ X(j)
hi,0, then

(x, k) ∈ X0 ⊕ Z(i)
plan ⊕ Z

(i,j)
err =: Z

(i,j)
FRS , (6.20)

where the addition of zonotopes with mismatched dimension is as in Definition 6.3.

Proof. This follows from the FRS definition (3.26), Lemma 6.1 (which ensures the zonotope PRS
is conservative), and Assumption 6.2 (which ensures the zonotope ERS is conservative).

In other words, we construct the PRS and ERS zonotopes so that they overapproximate the FRS
when added together (for each time in Tplan, and for a given initial condition). We call each Z(i,j)

FRS

an FRS zonotope.

106

6.3 Slicing the Zonotope FRS

As mentioned earlier, we make heavy use of the indeterminate representation of a zonotope’s co-
efficients. In particular, we use them for slicing, wherein we evaluate a zonotope’s indeterminates
to produce a new zonotope that is a subset, or slice, of the original. This operation allows us
to identify the subset of a zonotope FRS that corresponds to a particular trajectory or obstacle,
and therefore enables online trajectory optimization with a zonotope FRS. In this section, we first
define slicing, then show how it applies to the FRS zonotope.

6.3.1 Slicing Definition

To define slicing, we first denote the evaluation of an indeterminate 〈β〉 by removing the angle
brackets, so β ∈ [−1, 1]. Now, we use evaluation to define slicing. Consider an arbitrary zonotope
Z = c+

∑m
i=1〈β(i)〉g(i). Then

slice
(
Z, 〈χ(j)〉, χ(j)

)
= c+ χ(j)g(j) +

∑
i 6=j, i≤m

〈χ(i)〉g(i). (6.21)

By picking a value χ(j) ∈ [−1, 1] for the j th indeterminate 〈χ(j)〉, we produce a zonotope with fewer
generators/indeterminates. Notice that, since the center is linearly combined with the generators
per (6.1), when we evaluate an indeterminate, we shift the center of the original zonotope.

We can extend slicing to take in multiple indeterminates at a time. Collect the indices i in
I = {1, · · · ,m} and let J ⊂ I . Then we denote slicing as

slice
(
Z, {〈χ(j)〉}j∈J , {χ(j)}j∈J

)
= c+

∑
j∈J

χ(j)g(j) +
∑
i∈I\J

〈χ(i)〉g(i). (6.22)

6.3.2 Sliceability

Now we define the notion of sliceable generators, which is most easily understood with an exam-
ple. Let Z = c+ 〈β〉g, with just one indeterminate/generator. Suppose indeterminate 〈α〉 is passed
into slice(Z, ·, ·), and notice that 〈α〉 is not paired with any generators of Z. We would expect that
none of the indeterminates of the zonotope are evaluated. That is,

slice(Z, 〈β〉, β) = c+ βg, but (6.23)

slice(Z, 〈α〉, α) = c+ 〈β〉g. (6.24)

In this case, we say that the generator g is sliceable by 〈β〉, or 〈β〉-sliceable.. Similarly, g is not

〈α〉-sliceable. Sliceability is important because, as one might have noticed from the construction of

107

the zonotope FRS, not all generators are sliceable by the indeterminates that represent the trajectory
parameters.

In §8, we revisit slicing for a larger class of zonotope-like objects called rotatotopes, which we
use to represent rotations of a manipulator’s links.

6.3.3 Slicing the Zonotope FRS

Now we apply slicing to the zonotopes representing the FRS. First, we briefly review why slicing
is useful. Notice that each FRS zonotope Z(i,j)

FRS as in (6.20) is defined over X × K. Recall, per
§3.8, that the parameters are our decision variables for online trajectory optimization. Therefore,
for any k ∈ K, we want to ensure that the subset of each Z(i,j)

FRS corresponding to k lies outside of
obstacles. Slicing allow us to identify such subsets of the FRS zonotopes.

To make slicing tractable, we must identify which generators of an FRS zonotope are, in fact,
sliceable per §6.3.2. We formalize this notion with k-sliceable generators, the existence of which
is proven in the following lemma:

Lemma 6.5. Suppose Z(i,j)
FRS = X0⊕Z(i)

plan⊕Z
(j)
err ⊂ X×K. Then Z(i,j)

FRS has at least nK generators

{g(n)
kn
}nK
n=1, and associated indeterminates {〈κ(n)

kn
〉}nK
n=1, with the following two properties. First,

each g(n)
kn
∈ RnX+nK is zero in all of its entries corresponding to K, except for a single nonzero

element ∆kn in the nth entries. Second, each g(n)
kn

may have nonzero elements in the entries corre-

sponding to the X dimensions of Z(i,j)
FRS .

Proof. We prove this claim by induction. Notice that Z(0)
plan satisfies these conditions on its genera-

tors (and indeterminates) by construction. Recall that each Z(i)
plan is constructed as in (6.15).

First, we check that the claim holds for Z(1)
plan. Since the linearized dynamics represented by

F (0) are zero in the k dimensions, it follows from (6.5) that Z(1)
plan has the same values as Z(0)

plan for
each g(n)

kn
in the k dimensions. Also, recall from (6.5) that the operation F (0)Z

(0)
plan does not alter

any of the indeterminates of Z(0)
plan. Next, notice that the zonotope L(i) (which compensates for

linearization error and continuous time) does not add any volume in the k dimensions [Alt15],
because the augmented model (6.7) is 0 in those dimensions, and because the Minkowski sum of
zonotopes increases the number of generators, as opposed to altering the generators themselves.
By the same logic, this operation increases the number of indeterminates, but does not change any
of the existing indeterminates. Finally, notice that the addition of X0 ⊂ RnX and Z(1,j)

err ⊂ RnX to
produce Z(1)

FRS does not add any generators with nonzero volume in the k dimensions, by Definition
6.3. To see why, recall that the first nX entires of the center and generators correspond to X , and
the remaining nK correspond to K, so the zero padding in Definition 6.3 holds as written when
adding X0 and Z(1,j)

err to the Z(i)
plan ⊂ X ×K.

108

To complete the proof, suppose that Z(i−1)
plan fulfills the claim. Notice that Z(i)

plan is created by
applying (6.15) to Z(i−1)

plan , where the same logic holds for the linearized dynamics, linearization
error, and continuous time that proved the claim for Z(1)

plan. As with Z(1)
plan, the addition of X0 and

Z
(i,j)
err does not introduce any generators with nonzero elements in the k dimensions.

In other words, each FRS zonotope has exactly one 〈κ(n)
kn
〉-sliceable generator for each n =

1, · · · , nK . To ease notation, and to emphasize their utility, we call these generators k-sliceable.
Now we confirm that the zonotope FRS is conservative after it is sliced, which follows nearly

directly from the construction of the zonotope FRS:

Theorem 6.6. Suppose that (t, xhi,0, x, k) ∈ RFRS, t ∈ I(i), and xhi,0 ∈ X(j)
hi,0. Let Z(i,j)

FRS be as in

Theorem 6.4. Denote k = (k1, · · · , knK
) ∈ K, and define the values

κ(n) =
kn − k0,n

∆kn

∈ [−1, 1] (6.25)

for each n = 1, · · · , nK , where k0 = (k0,1, · · · , k0,nK
) denotes the center of K per (6.13). Then,

(x, k) ∈ slice
(
Z

(i,j)
FRS ,

{
〈κ(n)

kn
〉
}nK

n=1
, {κ(n)}nK

n=1

)
=: Z

(i,j)
slice . (6.26)

Proof. First notice that projK(Z
(i,j)
slice) = {k} by the definition of the slice operator. Now we must

show that x ∈ projX(Z
(i,j)
slice). Notice, again by definition of the slice operator and Definition 6.3

(addition of zonotopes of mismatched dimension), that we have

Z
(i,j)
slice = Z

(i)
plan,slice ⊕X0 ⊕ Z(i,j)

err , where (6.27)

Z
(i)
plan,slice = slice

(
Z

(i)
plan, {〈κ

(n)
kn
〉}nK
n=1, {κ(n)}nK

n=1

)
. (6.28)

Then, there exists p ∈ Z(i)
plan,slice (by [Alt10, Theorem 3.3. and Proposition 3.7]) and e ∈ Z(j)

err (by
Assumption 6.2) such that x = p+ e, completing the proof.

The takeaway from this section is that we can and slice the FRS to find the subset corresponding
to a given trajectory, assuming the existence of the ERS as a set of zonotopes. Next, we use this
type of slicing with zonotope intersection (Lemma 6.7) to identify unsafe plans online.

6.4 Online Planning

We now discuss how we use the zonotope FRS to generate obstacle avoidance constraints for
runtime planning. For this section, suppose the robot is in a planning iteration with initial condition

109

xhi,0 ∈ X
(j)
hi,0, and that we have constructed the set of FRS zonotopes, denoted Z

(i,j)
FRS for each

time interval I(i), plus the corresponding error zonotopes Z(i,j)
err . The goal of this section is to

(conservatively) identify a set Kunsf ⊂ K containing plans that could cause a collision. Recall the
definition (3.37), which we restate here as

Kunsf ⊆ projK(RFRS ∩Robs). (6.29)

Note, we have dropped the index i that we used earlier to denote the ith planning iteration (see
§3.8), to avoid confusion with our usage of i for the FRS time intervals I(i) ⊂ Tplan.

6.4.1 Obstacle Representation

Before we identify the unsafe parameters, we require that the Robs is represented as zonotopes.
Suppose there are nobs obstacles that are predicted in Robs. In particular, we assume that, for each
i = 1, · · · , nRS, there exists a collection of zonotopes {Z(i,m)

obs }
nobs
m=1 such that

projI(i)×X(Robs) ⊆
nobs⋃
m=1

Z
(i,m)
obs . (6.30)

That is, Z(i,m)
obs contains all points reached by obstacle m for all t ∈ I(i). In other words, we assume

the existence of a set of zonotopes that overapproximate the obstacle predictions for each time
interval of the FRS.

6.4.2 Zonotope Intersection

Our goal for this section is to identify the subset of the FRS that intersects with obstacles (if such
a subset exists), so that we can exclude it during trajectory optimization. To this end, we introduce
the following lemma to check if two zonotopes intersect.

Lemma 6.7. [GNZ03, Lemma 5.1] Let X and Y be as in (6.3). Then X and Y intersect if the

center of y is in the zonotope centered at x, with the generators/indeterminates of both X and Y :

X ∩ Y 6= ∅ ⇐⇒ y ∈

(
x+

r∑
i=1

〈χ(i)〉g(i)
X +

s∑
j=1

〈υ(j)〉g(j)
Y

)
. (6.31)

Notice that this is equivalent to checking if

y ∈ X ⊕

(
0 +

s∑
j=1

〈υ(j)〉g(j)
Y

)
. (6.32)

110

In other words, the Minkowski sum enables us to check if two zonotopes intersect, which is conve-
nient because the zonotope Minkowski sum is straightforward to implement numerically per (6.4).
Lemma 6.7 is illustrated in Figure 6.4.

Figure 6.4: A visual proof of the intersection of zonotopes using the Minkowski sum. The grey
and pink zonotopes intersect on the left (generators shown in black, and centers shown as points),
meaning the center of the grey zonotope is inside the Minkowski sum of the pink zonotope with
the generators of the grey zonotope.

6.4.3 Identifying Unsafe Plans

Now, we can we identify the unsafe trajectory parameters corresponding to just one time interval
I(i). To simplify notation, we assume that nobs = 1, so we need only consider a single obstacle
zonotope Z(i)

obs for the ith time interval. Note, we extend this single obstacle formulation to any
finite nobs ∈ N below in §6.4.5.

First, we use the notion of k-sliceable generators introduced above.

Corollary 6.8 (to Lemma 6.5). We can separate the generators of the FRS zonotope Z(i,j)
FRS into

k-sliceable and non-k-sliceable generators:

Z
(i,j)
FRS = c+

nK∑
n=1

〈κ(n)
kn
〉g(n)
kn

+
nextra∑
n=1

〈β(n)〉g(n), (6.33)

where nextra ∈ N.

Proof. This follows directly from Lemma 6.5.

Importantly, per Theorem 6.6, no matter our choice of k ∈ K, the non-k-sliceable generators are
left unchanged when Z(i,j)

FRS is sliced.
Second, we reorganize the centers and generators of the FRS and obstacle zonotopes. This lets

us leverage the relationship between zonotope intersection and Minkowski sums in Lemma 6.7 to
identify unsafe parameters.

111

Lemma 6.9. Let Z(i,j)
FRS be as in (6.33). Consider the zonotope

Z
(i,j)
k = c+

nK∑
n=1

〈κ(n)
kn
〉g(n)
kn

(6.34)

built from the center and k-sliceable generators of Z(i,j)
FRS . Suppose that we buffer the obstacle by

the non-k-sliceable generators of Z(i,j)
FRS :

Z
(i,j)
buf = Z

(i)
obs ⊕

(
0 +

nextra∑
n=1

〈β(n)〉g(n)

)
. (6.35)

Then we have the following equivalence

Z
(i,j)
FRS ∩ Z

(i)
obs = ∅ ⇐⇒ Z

(i,j)
k ∩ Z(i,j)

buf = ∅. (6.36)

Proof. Note, we use the index (i, j) for Z(i,j)
buf because the extra generators are related to the time

interval I(i) and to the error zonotopes corresponding to the j th subset of X(j)
hi,0. Also note, the

zonotope Z(i,j)
k can be written as in (6.34) by applying Corollary 6.8. The result then follows by

applying the definition of zonotope intersection as in Lemma 6.7.

Next, we check if a plan is unsafe by checking if a point lies inside a zonotope:

Theorem 6.10. Let Z(i,j)
k be as in (6.34). Consider z(i,j)

slice : K → Rdim(W) given by

z
(i,j)
slice (k) = slice

(
Z

(i,j)
k , {〈κ(n)

kn
〉}nK
n=1, {κ

(n)
kn
}nK
n=1

)
, (6.37)

where we denote k = (k1, · · · , knK
), and κ(n)

kn
= kn−k0,n

∆kn
for each n = 1, · · · , nK . Let Z(i,j)

buf be as

in Lemma 6.9. We claim that z(i,j)
slice is affine in k, and that

k ∈ K(i)
unsf =⇒ zslice(k) ∈ Z(i,j)

buf , (6.38)

where K(i)
unsf ⊂ is the set of unsafe plans for time interval I(i) ⊂ Tplan.

Proof. To see that z(i,j)
slice is affine in k, notice that, from the definition of slicing,

z
(i,j)
slice (k) = c+

nK∑
n=1

κ
(n)
kn
g

(n)
kn
∈ Rdim(W). (6.39)

where c is the center of Z(i,j)
k as in (6.34); recall that g(n)

kn
are constants with respect to k. Also note,

the codomain of zslice is Rdim(W) because, if we slice Z(i,j)
k by any k ∈ K, we produce a point; this

112

follows from Lemma 6.5, which defines k-sliceable generators of Z(i,j)
FRS , and from (6.34). The

desired result then follows from Lemma 6.7 and Lemma 6.9.

The utility of Theorem 6.10 is that it lets us construct constraints on k ∈ K that are practical
for numerical trajectory optimization below.

6.4.4 Numerical Constraint Formulation

We now present a numerically tractable formulation for the unsafe parameters as identified by
Theorem 6.10. To do so, we first require the following intermediate result, which provides a
numerical method to check if a point lies inside a zonotope using a pair of arrays:

Lemma 6.11. [Alt10, Theorem 2.1] Let Z ⊂ Rn be a zonotope with m linearly independent

generators. Let p = 2
(
m
n−1

)
. Then this zonotope admits a halfspace representation defined by a

matrix A ∈ Rp×n and a vector b ∈ Rn:

max(Ax− b) ≤ 0 ⇐⇒ x ∈ Z. (6.40)

Now, are ready to construct constraints on K that represent safe trajectory parameters numeri-
cally:

Corollary 6.12 (to Theorem 6.10). Let K(i)
unsf ⊂ denote the set of unsafe plans for time interval

I(i) ⊂ Tplan. Suppose Z(i)
obs is the zonotope obstacle representation as above. Let Z(i,j)

buf be the

buffered obstacle zonotope as in (6.35), with halfspace representation (A
(i,j)
buf , b

(i,j)
buf). Finally, let

z
(i,j)
slice : K → Rdim(W) be as in (6.37). Then we identify the safe trajectory parameters as

k ∈ K \K(i)
unsf ⇐= −max

(
A

(i,j)
buf z

(i,j)
slice (k)− b(i,j)

buf

)
< 0. (6.41)

Proof. This follows from Theorem 6.10 and Lemma 6.11.

Note that, since Abuf is a linear operator and z(i,j)
slice is affine in k, (6.41) lets us check if a plan

k is unsafe by taking the maximum of an affine operation. Another way to think of this is that
we are overapproximating the unsafe set K(i)

unsf with a polytope. So, at runtime, this constraint
representation means that we must ensure that k lies outside a polytope. Critically, this type of
constraint admits an analytic subgradient [Pol12, Theorem 5.4.5], which makes it practical for fast
(but nonlinear) optimization.

113

6.4.5 Trajectory Optimization Formulation

To conclude this section, we rewrite the trajectory optimization program (3.38) (see §3.8) using the
safety constraints produced from the zonotope FRS. For completeness’ sake, we extend the above
discussion to the multiple obstacle case, and bring back the receding-horizon planning iteration
index.

Suppose that RTD is in the nth receding-horizon planning iteration. Suppose we have a zono-
tope obstacle representation {Z(i,m)

obs }
nobs
m=1 as in (6.30), where i = 1, · · · , nRS indexes the FRS time

intervals, and m = 1, · · · , nobs indexes the obstacle zonotopes. Suppose that xhi,0 ∈ X(j)
hi,0 is used

to construct the FRS zonotopes Z(i,j)
FRS for each i = 1, · · · , nRS. Let A(i,j,m)

buf and b(i,j,m)
buf be the halfs-

pace representation of Z(i,j,m)
buf for time interval i and obstacle zonotope m. Then, RTD attempts to

solve the following optimization program to find the plan k(n):

k(n) = argmin
k ∈ K

cost(k) (6.42)

s.t. −max
(
A

(i,j,m)
buf z

(i,j)
slice (k)− b(i,j,m)

buf

)
< 0 (6.43)

k(i) ∈ Klim(xhi,0), (6.44)

where (6.43) holds for all i = 1, · · · , nRS and all m = 1, · · · , nobs.

6.5 Chapter Summary

The takeaway of this chapter is a method to compute a zonotope FRS for RTD, and a method to
use it online at runtime.

6.5.1 Chapter Summary

In this chapter, we showed how to construct an augmented planning model to enable computing
a zonotope FRS. We then introduced the concept of slicing, which lets us formulate collision
avoidance constraints by identifying unsafe subsets of the zonotope FRS. Finally, we showed how
to use this FRS representation for online planning, and noted that it produces continuous-time
collision-avoidance constraints with analytic subgradients, which are suitable for fast, real-time
nonlinear trajectory optimization.

114

6.5.2 What is Missing?

This presentation has only applied to rigid body robots so far, which is also the case with the
sums-of-squares approach from §4. We address this by extending RTD to manipulators in §8.

This chapter has also required assumptions about tracking error represented as zonotopes. We
address these assumptions next, in §7.

115

CHAPTER 7

Error Reachable Sets via Sampling

While RTD uses a simplified planning model to generate plans, it also seeks to compensate for
the tracking error that arises due to the mismatch between the high-fidelity model of the robot
and the planning model. In §4 and §6, we placed assumptions on the representation of tracking
error. In this present chapter, we present a generic approach to computing these tracking error
representations to fulfill these assumptions.

Recall that we represent tracking error theoretically (see §3.7.2) as an Error Reachable Set
(ERS). In this chapter, we rely on a sampling-based approach to compute the ERS. This is due
to the high-dimensional, nonlinear high-fidelity models typically used to describe a robot’s equa-
tions of motion, which typically render SOS and zonotope reachability intractable. However, by
leveraging our trajectory parameterization to identify where tracking error is maximized, we iden-
tify a discrete, finite subset of a robot’s initial conditions and trajectory parameters that achieve
maximum tracking error.

The sections of this chapter are as follows. (§7.1) First, we inspect the robot’s dynamics to
understand how to find worst-case tracking error. (§7.2) We then leverage this worst-case error to
develop a generic sampling-based algorithm to approximate the ERS. (§7.3) Next, we show how
this ERS sampling algorithm can be applied to the SOS polynomial FRS in §4 and to the zonotope
FRS in §6. (§7.4) We conclude with a summary and brief discussion of what work is left to do for
the ERS representation.

7.1 Maximizing Tracking Error

To begin this chapter, we identify the conditions under which tracking error is maximized. We use
this to guide our sampling strategy to compute the ERS.

116

7.1.1 FRS Reminder

First, we remind the reader of the structure of the FRS,RFRS ⊂ Tplan×Xhi,0×W ×K. Recall that,
per (3.26), the FRS contains all trajectories of the closed-loop high-fidelity model when tracking
any parameterized trajectory plan from any initial condition (in the planning frame). Therefore,
for any plan k ∈ K, the corresponding tracking error is a function of the robot’s initial condition
at the beginning of any plan, and of the plan itself.

7.1.2 A Partition of the Initial Condition Set

It is typically intractable to represent the FRS directly as in (3.26), due to the high-dimension of the
space Tplan×Xhi,0×W×K. In practice, we instead represent the FRS over subsets ofX(j)

hi,0 ⊂ Xhi,0,
where

⋃
j X

(j)
hi,0 = Xhi,0. Then, the FRS for each X(j)

hi,0 assumes the worst case tracking error holds
for every trajectory starting from every initial condition in X(j)

hi,0. The reader may recall that this
simplification of the FRS was introduced in §4.2, and was the rationale behind FRS swapping in
§4.7 for the SOS polynomial approach to computing the FRS. Similarly, we use an ERS indexed
by the initial condition sets X(j)

hi,0 for the zonotope FRS in §6.2.2.
Therefore, in this chapter, we seek to identify the worst case tracking error for a given subset

of the entire initial condition set.

7.1.3 Forecasting A Sampling Strategy

Suppose that we have an initial condition setX(j)
hi,0 ⊂ Xhi,0. Recall thatXhi,0 = {xhi ∈ Xhi | projX(xhi) =

x0}; that is, Xhi,0 is all initial conditions of the robot in its planning frame. So, we typically only
need to partition the initial conditions in the robot’s space of generalized velocities Q̇, as opposed
to partitioning the generalized coordinates Q, because projQ(Xhi,0) = x0 when X = Q (which is
the case for all robots considered in this work).

In other words, given a set of initial conditions X(j)
hi,0, we seek to sample the robot’s initial

(generalized) velocities and trajectory parameters to maximize tracking error. Then, we treat all
possible tracking error in X(j)

hi,0 as though it is this maximized tracking error. This is a conservative
approach, as one expects is necessary to make strong statements about safety; but, the conservatism
has the potential to be mitigated by choosing a finer partition of Xhi,0.

7.1.4 Where is Tracking Error Maximized?

So, we now seek to answer the question of where (in X(j)
hi,0) tracking error is maximized, meaning

which samples should we choose? Again, the goal is to choose a finite number of sampled initial
conditions and trajectory parameters that display worst-case tracking error.

117

To answer this question, we note that most robot actuators can be approximated with linear
dynamics. To see why, note that most robots use torque (acceleration) control to drive actuators
towards desired positions or speeds. Indeed, most actuators use PD or PID controllers to transform
higher-level commands (such as the output of a tracking controller) into motion. For example, the
Segway hardware [KVB+20] and the Fetch robot [WFK+16] both use PID control for their motors.
This is useful because, even if a robot’s equations of motion are nonlinear, the relationship between
actuator velocity and acceleration is linear when the acceleration is a control input. Indeed, across
a wide variety of robots, we find that this paradigm of low-level (i.e., actuator) linearity holds
[KVB+20, KHV19, VKL+19, HKZ+20].

Of course, we must address the fact that robot and actuator dynamics are not actually linear.
Consider the Segway’s high-fidelity model in Example 3.1, which treats the velocity and yaw
rate as having linear dynamics with respect to the control inputs, but then saturates the yaw and
longitudinal accelerations. But, in terms of tracking error, we expect behavior such as saturation to
only increase the tracking error; we find that the same increase in tracking error holds for systems
such as quadrotors with drag §9.6, or wheeled robots with tire forces §9.3.

Our strategy is then to consider the linear approximation of a robot to identify where tracking
error should be maximized, but then compute the tracking error using the nonlinear, closed-loop
high-fidelity model. Since we identify a finite subset ofX(j)

hi,0×K as samples at which tracking error
is maximized, we can then use standard numerical solvers to find trajectories of the high-fidelity
model for each of these samples, and evaluate the tracking error directly at each sample.

In other words, we maximize tracking error by assuming linear actuators, but computing track-
ing error for the full nonlinear system. To that end, we state the following proposition for a 1-D
linear system, which one can think of as an actuator:

Proposition 7.1. Consider a 1-D single integrator linear system with input:

d

dt

[
x(t)

ẋ(t)

]
=

[
0 1

0 0

][
x(t)

ẋ(t)

]
+

[
0

u(t, x(t))

]
, (7.1)

with x(t) ∈ R representing position. Suppose that xdes : Tplan → R is a once-differentiable desired

trajectory, and

u(t, x(t)) = κp · (x(t)− xdes(t)) + κd · (ẋ(t)− ẋdes(t)), (7.2)

where κp and κd are control gains that can be chosen freely; i.e., this is a PD controller. Suppose

that x(0) = 0 and xdes(0) = 0; i.e., the system has no tracking error initially. Further suppose that

118

the initial velocity is drawn from an interval:

ẋ(0) ∈ [ẋmin, ẋmax] ⊂ R. (7.3)

Let t ∈ Tplan. Then the tracking error magnitude, |x(t)− xdes(t)|, is maximized when ẋ(0) = ẋmin

or ẋ(0) = ẋmax.

Proof. Consider the tracking error system

z(t) =

[
z1(t)

z2(t)

]
=

[
x(t)− xdes(t)

ẋ(t)− ẋdes(t)

]
. (7.4)

Plugging in u, we can rewrite this as

ż(t) =

[
0 1

κp κd

]
z(t) = Az, (7.5)

which is an autonomous linear system with the solution

z(t) = eAtz(0) =

[
a11 a12

a21 a22

]
z(0). (7.6)

If we pick κp and κd such that a12 6= 0, then

|z1(t)| = |x(t)− xdes(t)| = |a12(ẋ(0)− ẋdes(0))|, (7.7)

which is maximized when ẋ(0) = ẋmin or ẋ(0) = ẋmax.

In other words, Proposition 7.1 states exactly what we would expect. For a given desired trajectory
and range of possible initial velocities, the worst-case tracking error is produced when the initial
velocity is as far as possible from the desired trajectory’s velocity. This tells us how to choose
velocity samples to maximize tracking error. It also tells us how to choose desired trajectory
samples to maximize tracking error:

Corollary 7.2. (to Proposition 7.1). Assume the premises of Proposition 7.1, but that ẋ(0) = ẋ0 ∈
R (i.e, we pick an initial condition). Suppose the xdes : Tplan → R is drawn from a compact set

of possible trajectories, Xdes, and that any xdes ∈ Xdes is bounded, continuous, and at least once-

differentiable. Then, if t ∈ Tplan, the tracking error |x(t) − xdes(t)| is maximized when xdes(t) is

either maximized or minimized.

Proof. First note that, sinceXdes is compact and each xdes ∈ Xdes is bounded and once-differentiable,

119

maxxdes∈Xdes ẋdes(t) exists. Similarly, minxdes∈Xdes ẋdes(t) exists. Then the desired result follows from
setting up the error system as in the proof of Proposition 7.1 and inspecting (7.7).

Corollary 7.2 tells us that, for a given initial condition, the tracking error is maximized by com-
manding the largest allowable change in velocity, as we would expect.

So, we can now answer the question of where tracking error is maximized. Given a set of
initial velocities and trajectory parameters, tracking error is maximized when the initial velocity
is maximized or minimized, and when the trajectory parameter commands the largest possible
change in velocity. We use this to guide a sampling strategy to find the worst-case tracking error
next.

7.2 Sampling to Compute the ERS

We now use the reationale developed in the previous section to estimate the ERS via sampling.
We begin by reviewing relevant notation. Then, we present our sampling procedure in four steps.
Finally, we summarize this procedure in Algorithm 3 as a general method to estimate the ERS. We
discuss particular representations of the ERS in the next section, §7.3.

7.2.1 Notation Review

Before proceeding, we review the notation of robot’s coordinates. Recall that Q is the generalized
coordinate space (i.e. the configuration space), and Q̇ is the generalized velocity space; and Xhi =

Q× Q̇ is the state space of the high-fidelity model. Recall also that Xhi,0 = {xhi,0} × Q̇ ⊂ Xhi be
the space of possible initial conditions, with projX(xhi,0) = x0; in other words, Xhi,0 contains all
generalized velocities in the planning frame.

We assume that the robot’s high-fidelity model is configuration-invariant (i.e., fhi does not de-
pend on q ∈ Q, so that we need not sample in the generalized coordinates. Note, this is not
necessarily always true, such as for a drone experiencing ground effect, which we address in the
implementation in §9.6 by adding an additional initial condition dimension for sampling the track-
ing error.

7.2.2 Partition of the Generalized Velocity Space

To begin, we partition the generalized velocity space. Note that, as we did earlier with our partition
of time in §4.6 and §6, we slightly abuse the word “partition” to mean breaking a set into subsets
for which the intersection of any two subsets is not necessarily empty, but is of measure 0 in the
Lebesgue sense.

120

Recall that the robot has maximum and minimum generalized velocities, q̇min and q̇max ∈ Q̇;
suppose that these are defined coordinatewise. Then, in each ith coordinate of Q̇, the robot’s initial
velocity can be drawn from an interval

Q̇i = [q̇min,i, q̇max,i]. (7.8)

In other words, we are assuming that Q̇ can be treated as an nQ̇-dimensional interval

Q̇ = Q̇1 × Q̇2 × · · · × Q̇nQ̇
. (7.9)

Now, suppose we partition Q̇ into npart ∈ N subsets, so

Q̇ =

npart⋃
j=1

Q̇(j), (7.10)

where each of these subsets is again an nQ̇-dimensional interval

Q̇(j) = Q̇
(j)
1 × Q̇

(j)
2 × · · · × Q̇(j)

nQ̇
. (7.11)

That is, Q̇(j)
i ⊆ Q̇i for each i = 1 · · · , nQ̇. We collect this partition of Q̇ in the set

Q̇part = {Q̇(j) | j = 1, · · · , npart}. (7.12)

7.2.3 Sampling Generalized Velocities

Let Q̇(j) ∈ Q̇part. Notice that Q̇(j) is an nQ̇-dimensional box, meaning that it has 2nQ̇ extreme
points, or “corners.” That is, for any such extreme point q̇ ∈ Q̇(j),

projQ̇i
(q̇) ∈ {q̇(j)

min,i, q̇
(j)
max,i}, (7.13)

where Q̇(j)
i = [q̇

(j)
min,i, q̇

(j)
max,i] is the interval comprising Q̇(j) in its ith coordinate. We define getVelocitySamples :

Q̇part → pow
(
Q̇
)

to extract these extreme points:

{q̇(j,n)
smpl }

2
n
Q̇

n=1 = getVelocitySamples(Q̇(j)). (7.14)

These are generalized velocity samples.

121

7.2.4 Sampling Trajectory Parameters

Now we sample worst-case feasible trajectory parameters for each generalized velocity sample.
First, we assume the following about the structure of the parameter space. Recall that, given

an initial condition xhi,0 ∈ Xhi,0, we have a feasible set of possible plans that we can choose, given
by Klim(xhi,0) as in §3.6.3. To approximate the ERS, we assume that we can write

Klim(xhi,0) = [kmin,1, kmax,1]× [kmin,2, kmax,2]× · · · × [kmin,nK
, kmax,nK

] ⊆ K. (7.15)

That is, we assume Klim : Xhi → pow (K) returns an nK-dimensional interval. If this is not the
case, then we assume that Klim(xhi,0) can be overapproximated with such an interval, which is
reasonable since K is compact. We overapproximate the set because we care about identifying
worst-case tracking error. For example, in the case of a quadrotor drone with a bounded maximum
acceleration in any direction, Klim(xhi,0) may return a closed 2-norm ball in K of possible com-
manded accelerations, which we can then overapproximate with a multidimensional interval (i.e.,
a closed∞-norm ball).

We also assume without loss of generality that the trajectory parameters that cause worst-
case tracking error are drawn from the endpoints of these intervals. This is reasonable because
the trajectory parameters usually specify commanded velocities or accelerations, and we know
from Corollary 7.2 that we can maximize tracking error by maximizing our commanded change in
velocity. The parameters in all of our implementations in §9 fulfill this assumption.

So, our strategy is, for each q̇(j,n)
smpl , we again choose the extreme points, or “corners,” of the

interval

{k(j,n,m)
smpl }

2nK

m=1 = Klim((x0, q̇
(j,n)
smpl)) (7.16)

= K
(j,n)
smpl , (7.17)

where (x0, q̇
(j,n)
smpl) ∈ Xhi,0 (under the assumption that X = Q and Xhi = Q× Q̇); recall that x0 ∈ X

is the initial condition for every plan in the planning frame. That is, we choose samples k(j,n,m)
smpl for

which either

projKi
(k

(j,n,m)
smpl) = max(projKi

(K
(j,n)
smpl)), or (7.18)

projKi
(k

(j,n,m)
smpl) = min(projKi

(K
(j,n)
smpl)), (7.19)

and notice that m = 1, · · · , 2nK because we sample both the upper and lower extrema of each ith

interval [k
(j,n)
min,i, k

(j,n)
max,i] that comprises K(j,n)

smpl (where i = 1, · · · , nK).
We define getTrajParamSamples : pow (K)→ pow (K) to extract these extreme points of the

122

multidimensional interval K(m)
smpl, meaning that

{k(j,n,m)
smpl }

2nK

m=1 = getTrajParamSamples(K
(j,n)
smpl). (7.20)

With this strategy, the total number of samples is

nsmpl = npart × (2nQ̇)× (2nK), (7.21)

which may be large. Typically, nQ̇ and nK = 2 or 3, and npart ≈ 10, resulting in hundreds of
thousands of samples. However, recall that we estimate the ERS offline; so, we can sample offline,
and in parallel. In practice, we find that sampling to compute the ERS typically takes on the order
of minutes for wheeled robots in the plane, and on the order of an hour for a quadrotor drone.

7.2.5 Computing the Tracking Error for Each Sample

Next, we compute the tracking error for each sample. Recall that, in (3.23), we defined the tracking
error as a trajectory xerr : T (i) → Rnhi in the ith receding-horizon planning iteration, for which

xerr(t;x
(i)
hi,0, k) = xhi(t; k)− liftplan(i, x(t− t(i); k)), (7.22)

where xhi : T (i) → Xhi is the trajectory of the closed-loop high-fidelity model (3.19), x : Tplan → X

is the trajectory of the planning model, and liftplan extends the codomain of x to Xhi (see (3.15)).
Now notice that each sample is of the form (q̇

(n,j)
smpl , k

(m)
smpl) ∈ Q̇×K. Therefore, we can generate

a tracking error trajectory for each sample, which we denote

x(j,n,m)
err (· ;x(j,n)

hi,0 , k
(j,n,m)
smpl) : Tplan → Rnhi , (7.23)

with x(j,n)
hi,0 = (x0, q̇

(j,n)
smpl) ∈ Xhi,0. In practice, we estimate xerr numerically using, e.g., the MAT-

LAB ode45 solver. Note that, for such solvers, since Tplan is compact and x and xhi are continuous
and twice differentiable by construction, one can provably bound the numerical integration error
at each t ∈ Tplan [Zha20, Chapter 5].

7.2.6 Storing the Worst-Case Tracking Error

Finally, for each subset of our partition of Q̇, we store the maximum and minimum (i.e. worst-
case) tracking error achieved in planning space. That is, we store the trajectories as data points

123

e
(j,t)
max and e(j,t)

min ∈ RnX for which

e(j,t)
max = elmaxn,m{projX(x(j,n,m)

err (t))} and (7.24)

e
(j,t)
min = elminn,m{projX(x(j,n,m)

err (t))}, (7.25)

where elmax and elmin take the max/min elementwise, n = 1, · · · , 2nQ̇ , and m = 1, · · · , 2nK .
Again, we estimate e(j,t)

max and e(j,t)
min numerically, and typically represent the tracking error data at a

finite, discrete set of times in Tplan as would be output by a numerical ODE solver (recall that we
represent the robot with the ODE high-fidelity model fhi and planning model f).

7.2.7 The ERS Estimation Algorithm

We summarize the above sampling steps here in Algorithm 3. We note that this procedure is
performed offline, and the outermost for loop is parallelizable. The output of this algorithm is a
collection of worst-case tracking error trajectories, which we post-process in a manner specific to
a given FRS representation in the following section.

7.3 ERS Representations

We now discuss how we post-process the tracking error data numerically for use with the sums-of-
squares polynomial FRS representation in §4, and with the zonotope FRS representation in §6.

The data are as follows. Algorithm 3 produces a collection of worst-case tracking error trajec-
tories that we can think of as the tuples

(e(j,t)
max , e

(j,t)
min) ∈ RnX × RnX (7.26)

for each j = 1, · · · , npart and t ∈ Tplan. Note, since we cannot store every t ∈ Tplan in practice, we
usually discretize Tplan and store the corresponding data.

7.3.1 ERS Representation for the Polynomial FRS

In §4.1, Assumption 4.1, we assume that the tracking error is represented with a model ferr :

Tplan ×K → RnX for which

max
xhi,0∈Xhi,0

|projX(xhi(t; k))− x(t; k)| ≤
∫ t

0

ferr(τ, k)dτ (7.27)

124

Algorithm 3 Error Reachable Set via Sampling
1: require generalized velocity partition Q̇part

2: par for j = 1, · · · , npart

3: {q̇(j,n)
smpl }2

n
Q̇

n=1 ← getVelocitySamples(Q̇(j))

4: for n = 1, · · · , 2nQ̇

5: x
(j,n)
hi,0 ← (x0, q̇

(j,n)
smpl) // create initial condition sample

6: K
(j,n)
smpl ← Klim(x

(j,n)
hi,0) // get trajectory parameter set for init. cond.

7: {k(j,n,m)
smpl }2nK

m=1 ← getTrajParamSamples(K
(j,n)
smpl) // get trajectory parameter samples

8: for m = 1, · · · , 2nK // for each trajectory parameter sample

9: compute x(j,n,m)
err : Tplan → Rnhi as in (7.23)

10: end for

11: // compute and store tracking error data at each t ∈ Tplan:

12: e
(j,t)
max ← elmaxn,m{projX(x

(j,n,m)
err (t))}

13: e
(j,t)
min ← elminn,m{projX(x

(j,n,m)
err (t))}

14: store e(j,t)
max and e(j,t)

min ∈ RnX associated with Q̇(j) ⊂ Q and each t ∈ Tplan.

15: end for

16: end par for

for all t ∈ Tplan and k ∈ K, where and the absolute value is taken elementwise. Here, xhi is the
trajectory of the closed-loop high-fidelity model, and x is the trajectory of the planning model. We
further assume ferr is Lipschitz continuous in t, x, and k.

To produce such a model, we first take the worst-case data absolute values:

e(j,t) = max{|e(j,t)
max |, |e

(j,t)
min }, (7.28)

again indexed by j and t. Then, for each j (i.e., each subset of the partition of Q̇), we fit f (j)
err ∈ R[t]

as a polynomial, ferr : Tplan → R for which

f (j)
err (t) ≥ e(j,t) (7.29)

using standard numerical polynomial fitting tools (e.g., polyfit in MATLAB). In other words,
we estimate ferr for each subset of the initial condition space.

Notice that, in each f (j)
err , we drop the dependence on k that is allowed in ferr. This is a con-

125

servative approach, in that we are assuming the same worst-case tracking error holds for every
k ∈ Klim(xhi,0) for any xhi,0 ∈ Q̇(j). However, we can mitigate this conservatism by choosing npart

(the fineness of the partition of Q̇) to be larger, and by noticing that, in each Q̇(j) ∈ Q̇part, we are
still restricting k usingKlim. In other words, we are not assuming all possible k can be chosen from
any initial condition.

By partitioning Q̇ and computing f
(j)
err for each Q̇(j) ∈ Q̇part, we require one to compute a

polynomial FRS for each j = 1, · · · , npart. Then, at runtime, one should select the correct FRS for
the robot’s current initial condition. In other words, by estimating the ERS as we have done here,
we enable FRS swapping as in §4.7.

7.3.2 ERS Representation for the Zonotope FRS

In §6.2.2, Assumption 6.2, we assume that the tracking error is represented with zonotopes

Z(i,j)
err ⊂ RdimW , (7.30)

where i = 1, · · · , nRS indexes the time intervals I(i) ⊂ Tplan over which the zonotope FRS is
computed.

We can produce this representation directly from the data as in (7.26). For this discussion,
consider time interval I(i) ⊂ Tplan.

First, we get the worst-case tracking error in that interval, and project it into the workspace
dimensions of X:

e
(i,j)
max,W = elmaxt∈I(i){projW (e(j,t)

max)}e(i,j)
min,W = elmint∈I(i){projW (e

(j,t)
min)}, (7.31)

where we abuse the notation to let projW project the corresponding dimensions of the tracking

error, which does not evolve in the planning space X (the usual domain of proj(W)), but does
evolve in RnX .

Notice that the index order is (i, j) corresponding to (time, initial condition) for the error zono-
topes, whereas the order is reversed as (j, t) for the stored tracking error from Algorithm 3. We
have deliberately left the indices in these formats to match the formats of their respective sections
of this text.

Now, we can create a center as the mean worst-case error, and generators to span the worst-case
error. That is, define a center

c(i,j)
err =

1

2

(
e

(i,j)
max,W + e

(i,j)
min,W

)
∈ Rdim(W), (7.32)

126

and a matrix

G(i,j)
err = diag

(
1

2

(
e

(i,j)
max,W + e

(i,j)
min,W

))
∈ Rdim(W)×dim(W). (7.33)

Then the error zonotope is

Z(i,j)
err = c(i,j)

err +

dim(W)∑
n=1

〈β(n)〉g(i,j,n)
err (7.34)

where g(i,j,n)
err is the nth column of G(i,j)

err . We produce these error zonotopes offline for each j th

subset of Q̇, and for each time interval I(i) ⊂ Tplan, and use them online as in §6.4.

7.4 Chapter Review

The takeaway of this chapter is a generic method of representing a robot’s tracking error via sam-
pling. Importantly, we leveraged the dynamic model of the robot to identify worst-case tracking
error, enabling a conservative tracking error computation using only a discrete, finite subset of the
robot’s initial conditions and trajectory parameters.

7.4.1 Chapter Summary

We began this chapter by identifying initial conditions and trajectory parameters that lead to worst-
case tracking error. We then developed a sampling-based algorithm, using this rationale, to store
the worst-case tracking error in a manner amenable to FRS computation with either the sums-of-
squares approach in §4 or the zonotope approach in §6.

7.4.2 What is Missing?

While we use a physics-guided sampling approach to estimate worst-case scenario tracking error,
we still have not proven that this is indeed the actual worst-case tracking error. However, we have
found in practice that this approach is sufficiently conservative to enable safe planning. The reason
for this is, when we sample to generate the worst-case tracking error, we are forcing the robot to
make large changes in its commanded velocity or acceleration. However, when we run the robot
online, we almost never command such large changes in practice. Therefore, as we report in §9, we
have seen no crashes in any of thousands of simulations or dozens of hardware demos for wheeled
robots, drones, or manipulators.

127

Furthermore, the approach detailed in this chapter is relegated to offline computation, assuming
that the robot’s high-fidelity model is correct. Recall that we do not consider modeling error in
this work, per §3.1. However, going forward, it is critical to incorporate modeling error into this
tracking error computation. Furthermore, it is important to be able to update the robot’s ERS online
if the robot learns its own model as it operates, such as by using adaptive or learning-based control
[AGST13, HWMZ20].

128

CHAPTER 8

Forward Reachable Set via Rotatotopes

In §6, we introduced the zonotope FRS. This reachable set formulation assumed that robot is a
single rigid body, so it can be used for wheeled and aerial robots. Unfortunately, such an approach
is not tractable for multi-link redundant manipulators. To address this, we now introduce a more
general class of zonotope-like objects call rotatotopes, which are parameterized swept volumes that
enable representing an FRS for a manipulator. These objects are constructed by first computing a
zonotope reachable set in the space of a manipulator’s joint angles (i.e., its configuration space),
then multiplying these zonotopes by each other and by the link volume.

The sections of this chapter are as follows. (§8.1) We begin by introducing notation and as-
sumptions used to apply RTD to manipulators. (§8.2) We then present our strategy for manipulator
RTD at a high level. (§8.3) Next, we define rotatotopes. (§8.4) We then create an FRS for the
manipulator using rotatotopes. (§8.5) To enable using the FRS at runtime, we revisit the concept
of slicing from §6.3. (§8.6) Finally, we use the rotatotope FRS is for online trajectory optimization.

8.1 Manipulator Notation and Assumptions

To apply RTD to manipulators, we use the following notation and assumptions. As we have done
with the other robot morphologies, we specify X = Q, and Xhi = Q× Q̇. Therefore, we consider
a manipulator with nX ∈ N DOFs and nX + 1 links, including a 0th link, or baselink.

8.1.1 Kinematics

The manipulator kinematics are as follows. We assume that the baselink is stationary, and leave
mobile manipulators to future work. We assume that the manipulator has only (single-axis) rev-
olute joints, so its configuration space Q = SnQ where nQ is the number of degrees-of-freedom
(DOFs). We further assume the manipulator is a single kinematic chain, wherein joint j connects
the (predecessor) link j − 1 to its (successor) link j. Note, one can create multi-DOF joints by
using virtual links with zero length.

129

We denote the elements in the kinematic chain as follows. Each link j has a local coordinate
frame with its origin located at joint j. The rotation matrix Rj(xj) ∈ SO(3) describes the rotation
of link j relative to link j − 1 (by joint j). The displacement lj ∈ R3 denotes the position of joint
j + 1 on link j, in the frame of link j. The volume Lj ⊂ R3 denotes the volume occupied by link
j in its own coordinate frame. So, if x ∈ X , then we can write the forward occupancy for link j
as FOj : X → pow (W) for which:

FOj(x) =

{∑
n<j

(∏
m≤n

Rm(xm)

)
ln

}
⊕

{(∏
n≤j

Rn(xn)

)
Lj

}
, (8.1)

where xn (resp. xm) denotes the nth (resp. mth) coordinate of x, and ln is the displacement for
joint n. The curly brackets are used to emphasize that both sides of ⊕ are sets, for the purpose
of set (Minkowski) addition. For the rotation matrices here,

∏
denotes right multiplication with

increasing index:

n∏
i=1

Ri = R1R2 · · ·Rn. (8.2)

It follows that the forward occupancy of the robot (as introduced in §3.4) can be written

FO(x) =

nX⋃
j=1

FOj(x) ⊂ W. (8.3)

8.1.2 Dynamics

We treat manipulator dynamics as follows. We assume that the manipulator has a motor at each
joint, with sufficient torque to track kinematic trajectories that are prescribed separately for each
joint; we find that this is true in practice for the Fetch robot [WFK+16] to which we have applied
RTD [HKZ+20]. We further assume that there is no tracking error, and only consider the devel-
opment of the PRS for the remainder of this section. Again, in practice, the Fetch hardware had
tracking error of consistently less than 0.01 rad per joint on the trajectories we tested.

We leave alternative joint types (e.g., unactuated and prismatic), dynamic forces on each link
(e.g., Coriolis forces), and tracking error (using an approach such as [GA17]) for future work.

8.2 Manipulator RTD Overview

We now provide a high-level overview of RTD for manipulators.

130

8.2.1 Offline Reachability Analysis

We begin by computing a Joint Reachable Set (JRS) separately for each joint. The JRS is a zono-
tope FRS as has been presented earlier in this chapter, but in the space of sines and cosines of
each joint angle; that is, we observe how trajectories of the planning model evolve along the unit
circle S1. Informally, this choice makes the planning model less nonlinear by treating the sines
and cosines as states themselves. This leads to a less conservative reachable set, and avoids the
challenge of taking the sine or cosine of a zonotope, which would be necessary to generate an FRS
in the workspace if we computed the JRS in the configuration space directly.

8.2.2 Online Planning

We construct the rotatotope FRS at runtime to account for the robot’s initial conditions. Given the
JRS, we reshape the zonotopes into matrix zonotopes (defined below), then multiply these matrix
zonotopes with regular zonotopes in W that represent the link volume. This operator produces
the objects we call rotatotopes. Since the matrix zonotopes represent parameterized trajectories
in SO(3), when we multiply them by zonotopes in W , we produce parameterized swept volumes
corresponding to the arm’s motion in workspace when tracking any (parameterized) trajectory. In
other words, the rotatotopes represent the FRS. As with SOS and zonotope RTD, we use the FRS
to identify unsafe trajectory parameters, which we represent as constraints for trajectory optimiza-
tion.

8.3 Rotatotopes

We now formally introduce rotatotopes. First, we introduce matrix zonotopes. Second, revisit the
indeterminate coefficients used to define zonotopes. Third and finally, we define rotatotopes.

8.3.1 Matrix Zonotopes

We now introducte matrix zonotopes. Recall that zonotopes are sets in Rn; since one can think
of matrices as points in Euclidean space, the definition of a matrix zonotope is the same as the
definition of a zonotope:

M =

{
Y ∈ Rn×n | Y = C +

m∑
i=1

β(i)G(i), −1 ≤ β(i) ≤ 1

}
, (8.4)

with the center C and each generator G(i) ∈ Rn×n, and coefficients β(i) ∈ [−1, 1]. Note, the
elements in a matrix zonotope need not be square, but we only make use of square matrix zonotopes

131

in this work (since we use matrix zonotopes to represent rotation matrices). As with zonotopes, we
use shorthand notation for matrix zonotopes to emphasize the center, generator, and indeterminate
coefficients:

M = C +
m∑
i=1

〈β(i)〉G(i). (8.5)

8.3.2 Indeterminate Products

Recall that a zonotope can be written Z = c +
∑
〈β(i)〉g(i), with indeterminates 〈β(i)〉 per (6.2).

We now define indeterminate products, which we need for constructing rotatotopes, because mul-
tiplying matrix zonotopes requires us to multiply their indeterminates as well. Consider two inde-
terminates 〈α〉 and 〈β〉. We denote their product as

〈α〉〈β〉 = 〈αβ〉. (8.6)

Bringing both α and β inside 〈·〉 emphasizes that the resulting object behaves as a single indeter-
minate coefficient with two variables.

To show this more clearly, we define the evaluation of a product of indeterminates, analogous
to how we defined indeterminate evaluation earlier in (6.21). If α ∈ [−1, 1], then the evaluation of
〈αβ〉 is denoted

α〈β〉. (8.7)

Notice that 〈αβ〉 always produces a value in [−1, 1] when both indeterminates are evaluated. Sup-
pose that 〈αβ〉 corresponds to a generator g (such indeterminate products paired with generators
appear shortly, when we define rotatotopes). Then evaluating α results in a generator αg with
corresponding indeterminate 〈β〉; that is, since the value α is a scalar, it commutes with 〈β〉 and g.

Notice that an indeterminate product is a monomial of indeterminates. We define the degree
of an indeterminate product as number of unique indeterminate variables it contains. For example,
deg〈αβ〉 = 2, and deg〈γ1γ2 · · · γn〉 = n. The degree allows us to differentiate zonotopes from
rotatotopes.

8.3.3 Rotatotopes

To define rotatotopes, first, we define products of matrix zonotopes. Then we produce rotatotopes
by multiplying matrix zonotopes with regular zonotopes.

We now define the matrix zonotope product (assuming square matrix zonotopes). Define two

132

example matrix zonotopes in Rn×n:

X = CX +
r∑
i=1

〈χ(i)〉G(i)
X and Y = CY +

s∑
j=1

〈υ(j)〉G(j)
Y . (8.8)

That is, CX , G(i)
X , CY , and G(j)

Y ∈ Rn×n Then one can multiply X and Y :

XY =

(
CX +

r∑
i=1

〈χ(i)〉G(i)
X

)(
CY +

s∑
j=1

〈υ(j)〉G(j)
Y

)
(8.9)

= CXCY +
s∑
j=1

〈υ(j)〉CXG(j)
Y +

r∑
i=1

〈χ(i)〉G(i)
X CY +

+
r∑
i=1

s∑
j=1

〈χ(i)υ(j)〉G(i)
X G

(j)
Y .

(8.10)

Now let CXY = CXCY and G(i,j) denote all CXG
(j)
Y , G(i)

X CY , and G(i)
X G

(j)
Y terms. Notice that XY

is no longer a matrix zonotope. However, it can be overapproximated by a matrix zonotope:

Lemma 8.1. Let X and Y be as in (8.8). Let XY ⊂ Rn×n be as in (8.9). Define the matrix

zonotope

M = CXCY +
s∑
j=1

〈υ(j)〉CXG(j)
Y +

r∑
i=1

〈χ(i)〉G(i)
X CY +

r∑
i=1

s∑
j=1

〈λ(i,j)〉G(i)
X G

(j)
Y , (8.11)

where deg〈λ(i,j)〉 = 1 for all i = 1, · · · , r and j = 1, · · · , s. Then

A ∈ XY =⇒ A ∈M. (8.12)

Proof. For any values χ(i) and υ(j) of the indeterminates of X and Y , one can choose λ(i,j) =

χ(i)υ(j) ∈ [−1, 1].

Now, we define rotatotopes by multiplying one or more matrix zonotopes with a regular zono-
tope.

Definition 8.2. Consider a collection of n ∈ N matrix zonotopes, {M (i) ∈ Rn×n}ni=1. Let Z ⊂ Rn

be a zonotope. Then

V =

(
n∏
i−1

M (i)

)
Z ⊂ Rn (8.13)

is a rotatotope. Note,
∏

denotes right multiplication with increasing index.

133

Rotatotopes are in fact a specific type of polynomial zonotopes [Alt13].
We now provide an example of Definition 8.2. Consider the example zonotope Z = c +∑m
j=1〈β(j)〉g(j), with c and g(j) ∈ Rn. Taking X as in (8.8), we have

XZ =

(
CX +

r∑
i=1

〈χ(i)〉G(i)
X

)(
c+

m∑
j=1

〈β(j)〉g(j)

)
(8.14)

= CXc+
r∑
i=1

〈χ(i)〉G(i)
X c+

m∑
j=1

〈β(j)〉CXg(j) +
r∑
i=1

m∑
j=1

〈χ(i)β(j)〉G(i)
X g

(j). (8.15)

So, XZ ⊂ Rn is a rotatotope. Similar to how we often use Z for zonotopes and M for matrix
zonotopes, we typically use V to denote rotatotopes, since we use them to represent swept volume.

In general, we denote rotatotopes as

V = cV +

p∑
i=1

〈γ1γ2 · · · γ(i)
n 〉g

(i)
V . (8.16)

As with matrix zonotopes and zonotopes, rotatotopes have a center, generators, and indetermi-
nates. The notation 〈γ1γ2 · · · γ(i)

n 〉 indicates a product of n indeterminates, the entirety of which
is indexed by i. Notice that this implies V is constructed by multiplying n − 1 matrix zonotopes
with each other and with one zonotope. While not all indeterminates γj necessarily appear in every
〈γ1γ2 · · · γ(i)

n 〉, we list them all in this manner as shorthand.
We can overapproximate rotatotopes with zonotopes:

Lemma 8.3. Let V = cV +
∑p

i=1〈γ1γ2 · · · γ(i)
n 〉g(i)

V . Define the zonotope Z = cV +
∑p

i=1〈β(i)〉g(i)
V .

Then V ⊂ Z.

Proof. Suppose x ∈ V . Then, for each i = 1, · · · , p, there exists β(i) ∈ [−1, 1] such that β(i) =

γ1γ2 · · · γ(i)
n , meaning x ∈ Z.

The Minkowski sum of two rotatotopes is given as follows.

Lemma 8.4. Consider two rotatotopes, V and U ⊂ Rn, given by

V = cV +
r∑
i=1

〈γ1 · · · γ(i)
n 〉g

(i)
V and U = cU +

s∑
j=1

〈λ1 · · ·λ(j)
m 〉g

(j)
U . (8.17)

Then their Minkowski sum is

V ⊕ U = cV + cU +
r∑
i=1

〈γ1 · · · γ(i)
n 〉gV +

s∑
j=1

〈λ1 · · ·λ(j)
m 〉g

(j)
U . (8.18)

134

Proof. This follows directly from the definition of a rotatotope. To see this, notice that any point
in V ⊕{cU} can be produced on the right-hand side of (8.18) by choosing all λi = 0, and similarly
any point in U ⊕ {cV } can be produced by choosing all γi = 0.

8.4 Rotatotope FRS

Now we construct an FRS of the swept volume of a manipulator. First, we define the Joint Reach-
able Set (JRS) in terms of the sines and cosines of each joint, and represent it JRS with zonotopes.
Second, we define the swept volume FRS of each link, then represent it with rotatotopes.

Figure 8.1: An overview of the proposed method for a 2-D, 2-link arm. Offline, RTD computes
the JRSs, shown as the collection of small grey zonotoeps overlaid on the unit circle (dashed) in
the sine and cosine spaces of two joint angles. Note that each JRS is conservatively approximated,
and parameterized by trajectory parameters K. Online, the JRSs are composed to form the arm’s
reachable set, comprised of rotatotopes (large light grey sets in the workspace W), maintaining
a parameterization by K. An obstacle O (light red) is mapped to the unsafe set of trajectory
parametersKunsf ⊂ K on the left, by intersection with each rotatotope. The parameter k represents
a trajectory, shown at five time steps (blue arms in W , and blue dots in joint angle space). The
subset of the arm’s reachable set corresponding to k is shown for the last time step (light blue boxes
with black border), critically not intersecting the obstacle, which is guaranteed because k 6∈ Kunsf.

135

8.4.1 Offline JRS Computation

We now define the planning model for a single joint, augmented with the parameters for use with
[Alt15]; then, we define the JRS as the planning reachable set of this model. Note that our planning
model for manipulators defines joint angle trajectories, but we specify the model in terms of the
sines and cosines of the joint angle for each j th joint to enable the construction of (rotation) matrix
zonotopes later on. Let fj : Tplan ×K → R denote the planning model for the j th joint. Then we
write the augmented planning model as

d

dt

cos(xj(t; k))

sin(xj(t; k))

k

 =

− sin(xj(t; k))fj(t, k)

cos(xj(t; k))fj(t, k)

0

 . (8.19)

Notice that cos(xj) and sin(xj) are treated as states. Therefore, we rewrite (8.19) as

d

dt

cj(t; k)

sj(t; k)

k

 =

−sj(t; k)fj(t, k)

cj(t; k)fj(t, k)

0

 . (8.20)

With this planning model, we define the JRS of joint i as

RJRS,j =

{
(t, c, s, k) ∈ R2 ×K | c = cj(t; k), s = sj(t; k), (8.21)

and d
dt

(cj(t; k), sj(t; k), k) is as in (8.20)
}
. (8.22)

In other words,RJRS,j contains the times, sines, and cosines of the j th joint angle reached for each
k ∈ K.

We represent the JRS with zonotopes as follows. Recall that the zonotope reachability tool
[Alt15] requires three inputs: the parameter-augmented planning model above, a partition of time,
and an initial condition set. We specify the initial condition set for this sine/cosine planning model
as

J
(0)
j = z0 +

nK∑
n=1

〈κ(n)
kn
〉gkn , (8.23)

136

where

z0 =

 1

0

k0

 and gkn =

[
02×1

∆knekn

]
, (8.24)

just as we did for the regular zonotope PRS in (6.10). Notice that we assume all trajectories begin
at (cj(0; k), sj(0; k)) = (1, 0); in other words, the point x0 in the planning frame is 0 ∈ Q. This
is because we can rotate the JRS around the unit circle to compensate for different initial angles at

runtime.
We use the same partition of time (6.8), with nRS ∈ N intervals, so

Tplan =

nRS⋃
n=1

I(n) (8.25)

where I(n) = [(n− 1) ·∆t, n ·∆t] with ∆t = tf/nRS.
Finally, we produce a zonotope JRS for each j th joint, denoted

{J (n)
j }

nRS
n=1 ⊂ R2 ×K. (8.26)

8.4.2 From Zonotopes to Matrix Zonotopes

Before we construct the FRS, we explain how to produce matrix zonotopes from the JRS zonotopes
in (8.26). We illustrate this procedure with a specific example of a 3-axis rotation matrix. But, we
note that this approach is generalizable by reshaping the JRS zonotopes into, e.g., canonical Euler
rotation matrices [LaV06, Chapter 3].

We proceed in seven steps. First, we set up the example rotation matrix. Second, we confirm
that the JRS zonotopes are conservative. Third, we inspect the form of the JRS zonotopes. Fourth,
we reshapce the JRS zonotope into a matrix zonotope. Fifth, we confirm that the matrix zonotope
is conservative, meaning any rotation matrix produced by joint j is contained inside that matrix
zonotope. Sixth, we comment on the structure of the matrix zonotope. Sevent, we discuss how to
account for the initial rotation of each joint.

First, we provide the example family of rotation matrices that we will overapproximate with a
matrix zonotope. Recall that the rotation of link j produced by joint j is given by Rj(xj), where
xj ∈ X is the angle of joint j. Suppose, for example, that joint j rotates link j about its local

137

3-axis; then, by [LaV06, (3.39)], we have the rotation matrix

Rj(xj) =

cos(xj) − sin(xj) 0

sin(xj) cos(xj) 0

0 0 1

 . (8.27)

Second, we note that the relevant values in the rotation matrix above are also in our zonotope
JRS. That is, that any sine/cosine attained by the joint j for a plan k is contained in the zonotope
JRS, by Lemma 6.1. In other wordsif t ∈ I(n) = [(n− 1) ·∆t, n ·∆t] and k ∈ K, then,

(t, c, s, k) ∈ RJRS,j =⇒ (c, s) ∈ J (n)
j . (8.28)

Third, we inspect the form of the JRS zonotopes representing RJRS,j . Notice that, by Lemma
6.5, each zonotope is of the form

J
(n)
j = z

(n)
j +

nK∑
i=1

〈κ(i)
ki
〉g(n,i)
ki

+

n
(n)
extra∑
i=1

〈β(i)〉g(n,i)
extra (8.29)

where n(n)
extra ∈ N. To be clear, the index n is for the interval I(n) ⊂ Tplan, j is for the joint, and i is

for the sums of k-sliceable and extra (non-k-sliceable) generators. The extra generators are due to
linearization error and continuous time, as per (6.15). The center z(n)

j and generators of J (n)
j can

be written

z
(n)
j =

c̄
(n)
j

s̄
(n)
j

k0

 , g
(n,i)
kj

=

∆
(n,i)
cj

∆
(n,i)
sj

∆kjekj

 , and g
(i)
extra =

 c
(n,i)
extra

s
(n,i)
extra

0nK×1

 , (8.30)

where c̄(n)
j , s̄(n)

j , ∆
(n,i)
cj , ∆

(n,i)
sj , c(n,i)

extra , and s(n,i)
extra are all real numbers (found using [Alt15]) such that

(8.28) holds.
Fourth, we reshape the JRS zonotope into a matrix zonotope. Now consider the matrix zono-

138

tope

M
(n)
j =

c̄
(n)
j −s̄(n)

j 0

s̄
(n)
j c̄

(n)
j 0

0 0 1

+

nK∑
i=1

〈κ(i)
ki
〉

∆
(n,i)
cj −∆

(n,i)
sj 0

∆
(n,i)
sj ∆

(n,i)
cj 0

0 0 0

 +

+

n
(n)
extra∑
i=1

〈β(i)〉

c
(n,i)
extra −s

(n,i)
extra 0

s
(n,i)
extra c

(n,i)
extra 0

0 0 0

 .
(8.31)

Fifth, we confirm that this matrix zonotope is conservative. Indeed, it follows from (8.28) that,
if t ∈ I(n) and k ∈ K, then

Rj(xj(t; k)) ∈M (n)
j . (8.32)

So, the matrix zonotope M (n)
j contains all rotation matrices produced by joint j. Therefore, if we

multiplyM (n)
j by a link volume (represented as a zonotope), we overapproximate the rotated swept

volume of that link in its local coordinate frame during I(n). By adding the translation due to other
links, we overapproximate the swept volume of the link for any k ∈ K.

Sixth, notice that constructing M (n)
j means we omitted k0 and ∆kj . That is to say, we have

M
(n)
j ⊂ R3×3, whereas J (n)

j ⊂ R2×K. However, recall that k0 and ∆kj are chosen by construction
in (8.24); that is, these values define the space K, which we construct. Furthermore, these values
are the same for all n ∈ {1, · · · , nRS} by Lemma 6.5. Therefore, in practice, we store them
separately from all M (n)

j , and reference them as needed for numerical implementation. To see this
more clearly, recall that, if k ∈ K, then we can pick

κki =
ki − k0,i

∆ki

(8.33)

to evaluate the k-sliceable generator indeterminates.
Seventh and finally, we discuss how to account for the initial rotation of each joint. Recall that

the JRS zonotopes all begin from (ci, si) = (1, 0), corresponding to an angle of 0 for joint j; but
the actual joint angle is almost never 0 when operating the robot. Suppose that the joint is at an
initial angle xj 6= 0, and M (n)

j is the matrix zonotope for that joint. We rotate the matrix zonotope
to account for the initial condition:

M
(n)
j ← Rj(xj)M

(n)
j , (8.34)

where ← indicates that we are reassigning M (n)
j in the sense that it is being used as a variable

139

at runtime. Note that this is equivalent to rotating the JRS zonotopes about the unit circle before
reshaping them into matrix zonotopes.

Note that, while we presented this example for the case of a 3-axis rotation, using [LaV06,
Chapter 3], one can construct matrix zonotopes with the strategy presented here, but for arbitrary
joint rotation axis directions.

8.4.3 Online Rotatotope FRS Construction

We now use the JRS to produce rotatotopes representing the FRS of the entire manipulator for all
of the parameterized trajectories. Importantly, because we have to account for the initial condi-
tions of the robot as in (8.34), the rotatotope FRS is constructed online. As mentioned above, we
multiply the matrix zonotopes by the link volume and joint displacements to product a collection
of rotatotopes. The goal of this procedure is to overapproximate the forward occupancy map FOj

for each j th link and any k ∈ K. For this discussion, suppose that the robot is at an initial condition
xhi,0 ∈ Xhi.

Before proceeding, we require that the link displacements and volumes can be represented with
zonotopes as follows. First, recall that lj ∈ R3 denotes the displacement of joint j + 1 relative to
joint j in the frame of link j. Notice that lj is a zonotope (centered at lj , with no generators).
Second, recall that Lj ⊂ R3 is the volume occupied by link j in its own coordinate frame. We
assume that Lj is a zonotope (or is overapproximated by a zonotope), which is always possible for
compact sets [GNZ03].

Suppose the matrix zonotopes for each joint and each time interval I(n) ⊂ Tplan are constructed
as above, in §(8.4.2) Then, analogous to the forward occupancy map FOj in (8.1), we produce the
following rotatotope for each joint j:

V
(n)
j =

{∑
m<j

(∏
r≤m

M (n)
m

)
lm

}
⊕

{(∏
m≤j

M (n)
m

)
Lj

}
, (8.35)

where
∏

again denotes right multiplication as in (8.2). Recall that the Minkowski sum of rotato-
topes is define in Lemma 8.4.

We confirm that this rotatotope representation is conservative later, in Theorem 8.5, after revis-
iting slicing next.

8.5 Slicing Rotatotopes

We now revisit slicing from (6.21). First, we define two operations for indeterminates, which we
need for slicing as we did in §6. Then, we define the general slicing algorithm. Finally, we note

140

that the rotatotope FRS is sliceable.

8.5.1 Indeterminate Removal and Inclusion

We now define indeterminate removal and inclusion, which are both operations we need to enable
slicing.

First, to invert the indeterminate product, we define the indeterminate removal operation, de-
noted by \. Let 〈α〉 and 〈β〉 be indeterminates of degree 1. Then,

〈αβ〉 \ 〈α〉 = 〈β〉, (8.36)

〈α〉 \ 〈β〉 = 〈α〉, and (8.37)

〈α〉 \ 〈α〉 = 1 ∈ R. (8.38)

Second, we introduce indeterminate inclusion using ∈, which returns “true” if a unique inde-
terminate is a factor of an indeterminate product, or “false” otherwise. For example, 〈α〉 ∈ 〈αβ〉
is true;. Similarly, we can write 〈α〉 6∈ 〈β〉.

Notice that inclusion is related to removal as follows. Let 〈γ〉 be a product of indeterminates
(i.e., deg(γ) > 1). Then,

〈α〉 ∈ 〈γ〉 ⇐⇒ 〈γ〉 \ 〈α〉 6= 〈γ〉. (8.39)

This is equivalent to checking if deg(〈γ〉 \ 〈α〉) ≤ deg(〈γ〉) (we define deg(1) = 0).
In addition, inclusion provides an alternative definition of sliceability as in §6.3.2. Consider

an indeterminate/generator pair 〈γ〉g, where deg(γ) > 1. If 〈α〉 ∈ 〈γ〉, then g is 〈α〉-sliceable.

8.5.2 The Slicing Algorithm

We define slicing generically with Algorithm 4. The algorithm takes in a zonotope or rotatotope, V ,
a list of indeterminates {〈σ(i)〉}ni=1, and a list of values {σ(i)}ni=1 for each of those indeterminates.

To slice V , we initialize the algorithm output as the center of V , which is not sliced. Then,
we iterate through the input indeterminates/values and the generators/indeterminates of V . If an
input indeterminate is included in an indeterminate of V , then we evaluate that indeterminate
(meaning the corresponding generator is multiplied by the input value), and remove the input
indeterminate from the indeterminate of V ; the result of this evaluation/removal operation is added
to the output. If the input indeterminate is not included in an indeterminate of V , then we add that
indeterminate/generator of V to the output; that is, it is left unevaluated, and therefore unsliced.

141

Algorithm 4 Vslice = slice
(
V, {〈σ(i)〉}ni=1, {σ(i)}ni=1

)
.

1: // Let V = c +
∑m

j=1〈β(j)〉g(j) denote an input zonotope or rotatotope, with indeterminates

that may or may not include the inputs to slice(·) above. That is, each 〈β(j)〉 may be a product

of some 〈σ(i)〉, and/or of other indeterminates.

2: Vslice ← c // initialize the output

3: for i = 1, · · · , n // iterate over input indeterminates/values

4: for j = 1, · · · ,m // iterator over generators/indeterminates of V

5: if 〈σ(i)〉 ∈ 〈β(j)〉 // if this generator is σ(i)-sliceable...

6: Vslice ← Vslice +
(
〈β(j)〉 \ 〈σ(i)〉

)
σ(i)g(j) // evaluate the indeterminate and remove it

7: else

8: Vslice ← Vslice + 〈β(j)〉g(j) // do not slice this particular generator of V

9: end if

10: end for

11: end for

12: return Vslice

8.5.3 Slicing the Rotatotope FRS

Now, we check that, if we can slice the rotatotope FRS for a given plan k ∈ K, we recover the
points in workspace reachable by the arm when tracking that k.

First, we point out that the FRS rotatotopes have k-sliceable generators. Notice that the K part
of V (n)

j is left implicit. That is, just as M (n)
j ⊂ R3×3, we have V (n)

j ⊂ W . However, recall that J (n)
j

has k-sliceable generators, with indeterminates 〈κ(i)
ki
〉 for i = 1, · · · , nK . From the construction of

V
(n)
j , we know that V (n)

j also has these indeterminates, and therefore has k-sliceable generators.
Second, we remind the reader of the relationship between the FRS and forward occupancy.

Recall the general definition of RFRS in (3.26), and FO in (8.3). In particular, if the robot starts
from an initial condition xhi,0, and is tracking a plan k at time t ∈ Tplan, then

p ∈ FO(x(t; k)) ⇐⇒ (t, xhi,0, p, k) ∈ RFRS (8.40)

by construction ofRFRS.
Third and finally, we confirm that the FRS rotatotopes behave “as expected” when sliced. That

is, we check that the rotatope FRS is conservative, meaning that any point in the FRS is also in the
rotatotope FRS:

142

Theorem 8.5. Suppose t ∈ I(n), k ∈ K, and (t, xhi,0, p, k) ∈ RFRS, where p is reached by the

robot’s j th link; that is, p ∈ FOj(x(t; k)). Suppose lm and Lj are represented as zonotopes.

Suppose that each V (n)
j is constructed as in (8.35), where the matrix zonotopes M (n)

j account for

the initial joint angles due to xhi,0 as in (8.34). Denote k = (k1, · · · , knK
), and define the values

κ
(i)
ki

=
k0,i − ki

∆ki

. (8.41)

Then, p is in the j th sliced rotatotope FRS:

p ∈ slice
(
V

(n)
j , {〈κ(i)

ki
〉}nK
i=1, {κ

(i)
ki
}nK
i=1

)
. (8.42)

Proof. By Lemma 6.1, we know that the zonotope JRS is conservative, meaning that (t, c, s, k) ∈
J

(n)
j , where c and s are the cosine and sine of joint angle xj at time t for plan k. By construction of
M

(n)
j , we know thatRj(xj) ∈M (n)

j . Since the forward occupancy is given directly by the zonotope
displacements lm (with m = 1, · · · , nX), and by the zonotope volume Lj , the proof follows from
noticing that (8.35) is analogous to the definition of FOj (8.1).

8.6 Online Planning

We now discuss how to use the rotatotope FRS to generate collision avoidance constraints for
online trajectory optimization. The procedure is nearly identical to that for the zonotope FRS in
§6.4.

For this section, suppose the robot is in a planning iteration with initial condition xhi,0 ∈ Xhi,0.
Suppose also that we have an obstacle reachable setRobs of predictions of obstacle motion. Recall
that the goal in online planning is to identify the unsafe plans Kunsf ⊂ K as in (3.37):

Kunsf ⊆ projK(RFRS ∩Robs), (8.43)

where we have dropped the notation indicating a particular planning iteration (e.g., K(i)
unsf, R

(i)
FRS,

andR(i)
obs as used for the theory in §3).

8.6.1 Obstacle Representation

Before identifyingKunsf, we require thatRobs is represented with zonotopes, just as in §6.4.1. Sup-
pose there are nobs obstacles that are predicted in Robs. We assume that, for each n = 1, · · · , nRS,

143

there exists a collection of zonotopes {Z(n,m)
obs }

nobs
m=1 such that

projI(n)×X(Robs) ⊆
nobs⋃
m=1

Z
(n,m)
obs . (8.44)

In other words, each zonotope Z(n,m)
obs contains all points in workspace reached by obstaclem for all

t ∈ I(n). Note that common obstacle representations, such as voxel grids, can be easily expressed
using zonotopes.

8.6.2 Fully-Sliceable Generators

Suppose that we have constructed the FRS rotatotopes V (n)
j for each joint j and each time interval

I(n) ⊂ Tplan, given the initial condition xhi,0. Just as with zonotopes, before identifying unsafe
plans, we first separate the rotatotope generators into k-sliceable and non-k-sliceable generators:

Lemma 8.6. Each V (n)
j can be written as

V
(n)
j = c

(n)
j +

nslice∑
i=1

〈κ(i)〉g(i)
slice +

nextra∑
i=1

〈β(i)〉g(i)
extra, (8.45)

where the indeterminates κ(i) have the the following properties. First, for each i = 1, · · · , nslice,

there exists at least one j ∈ {1, · · · , nK} such that κ(j)
kj
∈ 〈κ(i)〉; that is, every 〈κ(i)〉 is a product

of at least one k-sliceable indeterminate. Second, if 〈α〉 is any non-k-sliceable indeterminate, then

〈α〉 6∈ 〈κ(i)〉; that is, every 〈κ(i)〉 is only a product of k-sliceable indeterminates.

Before we prove this lemma, note that nslice, nextra, and all the generators and indeterminates in
(8.45) are unique to each joint j and time interval n; we omit the indices n and j to ease nota-
tion. Also note that, by Lemma 6.8, each JRS zonotope J (n)

j can be divided into k-sliceable and
non-k-sliceable generators as in (8.29), meaning each M (n)

j can also be divided in this way by con-
struction. However, for V (n)

j , we make a slightly different statement: there is one set of generators
that are products of only k-sliceable generators/indeterminates, and another set of generators that
may or may not be k-sliceable.

Proof. (of Lemma 8.6) We prove this lemma by constructing the claimed generator/indeterminate
pairs.

Consider the product of the matrix zonotopesM (n)
a andM (n)

b for joints a, b ∈ {1, · · · , nX−1},
with a < b. To produce M (n)

a M
(n)
b , we multiply all the ka-sliceable generators of M (n)

a with all
the kb-sliceable generators of M (n)

b , thereby producing generators sliceable by both ka and kb, plus
other generators that are sliceable by ka, kb, or neither.

144

Now suppose we produce a rotatotope V (n)
c for joint c (with b < c ≤ nX) using the product

M
(n)
a M

(n)
b as in (8.35). Then V (n)

c contains generators produced by M (n)
a M

(n)
b Lc, where Lc is the

link volume represented as a zonotope. This means that all of the generators that are both ka-
and kb-sliceable are multiplied by the center of Lc to produce generators of V (n)

c that are again
both ka- and kb-sliceable. Similarly, for any joint d ∈ {1, · · · , c − 1}, the link displacement
terms M (n)

a M
(n)
b ld produce generators of V (n)

c that are ka- and kb-sliceable. Since a, b, and d were
arbitrary, the proof is complete. In particular, in (8.45), for any j ∈ {1, · · · , nX}, the generators
that are ka-sliceable for any a ≤ j, and not sliceable by any other indeterminates, are those that we
denote g(i)

slice; we denote the indeterminates corresponding to each of these generators as 〈κ(i)〉.

We call such generators fully k-sliceable, meaning the generators with only k-sliceable indetermi-
nates.

8.6.3 Identifying Unsafe Plans

We now identify the unsafe plans for link j, assuming a single obstacle (i.e., nobs = 1) to ease
exposition. We extend this to all of the robot’s links, and to any finite number of obstacles, at the
end of this section.

First, we overapproximate the subset of V (n)
j containing the non-fully-k-sliceable generators

with a zonotope:

Lemma 8.7. Suppose we separate the generators of V (n)
j as in Lemma 8.6. Define the zonotope

Z
(n)
extra,j = 0 +

nextra∑
i=1

〈γ(i)〉g(i)
extra, (8.46)

where deg(γ(i)) = 1 for all i = 1, · · · , nextra. Define the rotatotope

V
(n)

slice,j = c
(n)
j +

nslice∑
i=1

〈κ(i)〉g(i)
slice. (8.47)

Then

V
(n)
j ⊆ Z

(n)
extra,j ⊕ V

(n)
slice,j. (8.48)

Proof. This claim follows from Lemma 8.4 (which defines the rotatotope Minkowski sum) and
Lemma 8.7 (we can overapproximate a rotatotope with a zonotope).

Second, we notice that slicing V (n)
slice,j produces a point. This is similar to our approach of slicing

the FRS zonotopes to a point in (6.37), and enables a nearly identical constraint construction.

145

Lemma 8.8. Let V (n)
slice,j be as in (8.47). Let k = (k1, · · · , knK

) ∈ K, and define the values

κ
(i)
ki

=
k0,i−ki

∆ki
. Then slicing V (n)

slice by all 〈κ(i)
ki
〉 produces a point in R3:

slice
(
V

(n)
slice,j, {〈κ

(i)
ki
〉}nK
i=1, {κ(i)}nK

i=1

)
∈ R3. (8.49)

Proof. The claim follows from Lemma 8.6. Notice that every indeterminate 〈κ(i)〉 (for indices
i ∈ {1, · · · , nslice}) is a product of one or more of the indeterminates 〈κ(m)

km
〉 (form ∈ {1, · · · , nK},

meaning these indeterminates are of degree 1 and each corresponds to km as indicated by the
subscript). Since V (n)

slice,j only contains fully-k-sliceable generators, the slicing operation in (8.49)
results in the evaluation of every indeterminate of V (n)

slice,j .

Finally, we are ready to identify unsafe trajectory parameters for the obstacle zonotope Z(n)
obs

(recall that nobs = 1 for now).

Theorem 8.9. Let Z(n)
extra,j be as in (8.46). For each link j, define the function v(n)

slice,j : K → R3 for

which

v
(n)
slice,j = slice

(
V

(n)
slice,j, {〈κ

(i)
ki
〉}nK
i=1, {κ(i)}nK

i=1

)
, (8.50)

with the indeterminates and values are given as in the premises of Lemma (8.8). We claim that

k ∈ Kunsf =⇒ ∃ j ∈ {1, · · · , nX} s.t. v(n)
slice,j(k) ∈ Z(n)

obs ⊕ Z
(n)
extra,j. (8.51)

That is, if k is unsafe, then at least one link rotatotope (partially overapproximated by a zonotope

Z
(n)
extra,j) is in collision when sliced by k.

Proof. To prove (8.51), first notice that, by separating V (n)
j into its fully-sliceable generators and

a zonotope of all other generators, we produce a conservative overapproximation of the forward
occupancy FOj for link j using Lemma 8.3. Recall, by conservative, we mean that “ =⇒ ” holds
in (8.51), but “ ⇐= ” does not necessarily hold. This conservatism follows from two facts: (1)
V

(n)
j is already conservative by Theorem 8.5, and (2) we overapproximate the non-fully-k-sliceable

generators with a zonotope. The claim then follows from Lemma 8.6 and zonotope intersection as
in Lemma 6.7.

8.6.4 Numerical Constraint Formulation

We now provide a method for numerical implementation of the unsafe parameters identified by
Theorem 8.9. By design, this procedure is nearly identical to the one we presented in §6.4.4.

First, we note a useful property of v(n)
slice,j:

146

Lemma 8.10. The function v(n)
slice,j : K → R3 is a polynomial in k.

Proof. First, recall the construction of V (n)
j , where we multiply the indeterminates of matrix zono-

topes together and with the link zonotope. Therefore, one can think of V (n)
j as a polynomial of

indeterminates, with the rotatotope generators as coefficients. This polynomial structure is not lost
when we separate V (n)

j into its fully-k-sliceable generators to construct v(n)
slice,j . The claim then fol-

lows from the definition of slicing as evaluation of the indeterminates in v(n)
slice,j , and the fact that

v
(n)
slice,j only uses the k-sliceable generators of V (n)

j .

Now we create constraints on K to represent Kunsf:

Corollary 8.11 (to Theorem 8.9). Let Z(n)
obs , Kunsf, v

(n)
slice,j , and Z

(n)
extra,j be as in the premises of

Theorem 8.9. Let Aobs and bobs be a halfspace representation such that

x ∈ Z(n)
obs ⊕ Z

(n)
extra ⇐⇒ max (Abufx− bbuf) ≤ 0. (8.52)

Then we can identify safe trajectory parameters as:

k ∈ K \Kunsf ⇐= ∃ j ∈ {1, · · · , nX} s.t. −max
(
Abufv

(n)
slice,j(k)− bbuf

)
< 0. (8.53)

Proof. The existence of Abuf and bbuf follow from Lemma 6.11 and the construction of Z(n)
obs ⊕Z

(n)
extra

as a zonotope. The desired result then follows from Theorem 8.9,

The utility of Lemma 8.10 and Corollary 8.11 is that we can check if a given plan k is safe by
taking the max of a polynomial, which is efficient for online trajectory planning. That is, we can
collision check the entire trajectory parameterized by k in continuous time and space using a fast
polynomial evaluation. And, for the purpose of gradient-based optimization, this formulation also
admits an analytic subgradient [Pol12, Theorem 5.3.5] just as in §6.4.

8.6.5 Trajectory Optimization Formulation

To conclude this section, as did for the SOS and zonotope FRSes, we rewrite the trajectory opti-
mization program (3.38) (see §3.8) using the safety constraints above. As we did for the zonotope
case, we extend the above discussion to the multiple obstacle case, and bring back the receding-
horizon planning iteration index.

Suppose that RTD is in the nth receding-horizon planning iteration. Suppose we have a zono-
tope obstacle representation {Z(n,m)

obs }
nobs
m=1 as in (8.44), where n = 1, · · · , nRS indexes the FRS time

intervals, and m = 1, · · · , nobs indexes the obstacle zonotopes. Suppose that xhi,0 ∈ Xhi,0 is used
to construct the FRS rotatotopes V (n)

j for each joint (indexed by j = 1, · · · , nX) and each time

147

interval (indexed by n = 1, · · · , nRS). Let A(j,n,m)
buf and b(j,n,m)

buf be the halfspace representation of
Z

(n,m)
obs ⊕ Z(j,n,m)

extra for joint j, time interval n, and obstacle zonotope m.
Then, RTD attempts to solve the following optimization program to find the plan k(n) in the nth

receding-horizon iteration:

k(n) = argmin
k ∈ K

cost(k) (8.54)

s.t. −max
(
A

(j,n,m)
buf v

(n)
slice,j(k)− b(j,n,m)

buf

)
< 0 (8.55)

k(i) ∈ Klim(xhi,0), (8.56)

where (8.55) holds for all joints j = 1, · · · , nX , FRS time intervals n = 1, · · · , nRS, and obstacles
m = 1, · · · , nobs. As a reminder, Klim provides limits on the choices of plans given the robot’s
initial condition (e.g., it can prescribe a maximum commanded acceleration given the current joint
velocities in xhi,0).

8.7 Chapter Review

The takeaway of this chapter is a method for representing parameterized swept volumes of arbitrary
manipulators, which enables guaranteed collision-free motion planning.

8.7.1 Chapter Summary

We began this chapter by establishing notation and assumptions for manipulators, the most im-
portant being that, in this work, we only consider the manipulator kinematics. We then explained
manipulator RTD at a high level. Next, we introduced rotatotopes, and showed how to use them
to build a manipulator FRS. We also confirmed that rotatotopes are sliceable like FRS zonotopes,
and developed a general slicing algorithm. Finally, we showed how to use the rotatotope FRS for
online planning.

8.7.2 What is Missing?

The manipulator dynamics are the key ingredient that is necessary for future development of ma-
nipulator RTD. Note that manipulator tracking error can be represented with zonotopes [GA17].
We suspect that forces due to gravity and Coriolis effects can be included in our formulation as
additional trajectory parameters, perhaps with uncertainty over the duration of a single plan.

This concludes our presentation of the rotatotope FRS for manipulator RTD, and concludes
all theoretical contributions of RTD in this dissertation. In the following chapter, we provide

148

implement the SOS, zonotope, and rotatotope approaches RTD on specific robotic platforms in
simulation and on hardware.

149

CHAPTER 9

Implementations and Comparisons

This chapter demonstrates RTD, as developed in the previous chapters, on seven different robot
platforms with three different morphologies. In total, we demonstrate safe, real-time trajectory
planning over thousands of simulations and dozens of hardware demonstrations. We also provide
extensive comparisons to a variety of state-of-the-art methods for each robot, and show that RTD
outperforms these methods in terms of safety and task completion.

The sections of this chapter are as follows. (§9.1) We demonstrate RTD on a Segway wheeled
robot in unstructured static and dynamic scenarios. (§9.2) We then use a Rover wheeled robot
to show RTD in structured autonomous lane change scenarios. (§9.3) We extend the wheeled
robot approaches to much higher speeds with a Ford Fusion passenger sedan. (§9.4) We also
demonstrate RTD interacting with pedestrians and making guaranteed-safe unprotected left turns
with an Electric Vehicle car-like platform. (§9.5) Then, we transition to RTD for aerial robots, with
a Hummingbird quadrotor in random static environments. (§9.6) We extend the aerial robot work
to a Parrot Mambo microdrone, demonstrating RTD with aerodynamic drag, ground effect, and
dynamic obstacles. (§9.7) We conclude by presenting manipulator RTD on a Fetch manipulator.

9.1 The Segway Wheeled Robot

The Segway is a differential-drive wheeled robot. We use this platform to demonstrate how RTD
enables real-time, collision-free trajectory planning in unstructured, random environments. Note,
the Segway is used as a running example in §3. Also see Figures 1.1 and 1.2.

The robot is simulated using our open-source MATLAB simulator [KVL19], with code avail-
able [KVV19]. We use tplan = 0.5 s for the receding-horizon planning timeout.

The hardware is as follows. Note, the Segway has a circular body of radius 0.38 m. A Hokuyo
UTM-30LX planar lidar, which is accurate up to 4.0 m away, is mounted to the front of the robot.
The robot is controlled by a 4.0 GHz laptop with 64 GB of memory, running MATLAB and the
Robot Operating System [QCG+09]. We use Google Cartographer for localization and mapping

150

[HKRA16]. All computation is run onboard. We specify tplan = 0.5 s, but reserve 0.2 s in each
planning iteration for mapping and communication delays, so RTD is given 0.3 to run trajectory
optimization, which uses MATLAB’s fmincon generic nonlinear solver. A video is available:
https://youtu.be/FJns7YpdMXQ.

Figure 9.1: The Segway wheeled robot.

9.1.1 High-Fidelity Model

The Segway robot has generalized coordinates of its center-of-mass position and its heading (p1, p2, θ) ∈
Q = SE(2), and generalized longitudinal and angular velocities, (v, ω) ∈ Q̇ ⊂ R2. Note, we refer
to v as just the “velocity.” The high-fidelity model is a dynamic unicycle with control inputs for
longitudinal and angular acceleration, restated from Running Example 3.1:

fhi(t, xhi(t), u(·)) =


ṗ1(t)

ṗ2(t)

θ̇(t)

v̇(t)

ω̇(t)

 =


v(t) cos(θ(t))

v(t) sin(θ(t))

ω(t)

satv (βv · (uv(·)− v(t)))

satω (βω · (uω(·)− ω(t)))

 , (9.1)

where u = (uv, uω) commands the velocity and yaw rate. We limit the velocity to [0, 1.5] m/s
and the yaw rate to [−1, 1] rad/s. The function satv saturates the longitudinal acceleration to be
in [−5.9, 5.9] m/s2. Similarly, satω saturates the angular acceleration to be in [−3.75, 3.75] rad/s2.
The constants βv = 3.00 and βω − 2.95 are found using system identification.

For the hardware, we use modeling error of εp1 = εp2 = 0.1 m in the plane per Assumption
3.1. We find the modeling error in the other states to be negligible.

151

https://youtu.be/FJns7YpdMXQ

9.1.2 Planning Model

The Segway’s planning model is as in Running Example 3.5. We specify that X = P , the position
subspace of Q = SE(2) = P ×Θ, with state x = (p1, p2) ∈ X . The planning model is

f(t, x(t; k), k) = s(t)

[
k1 − k2 · (p2(t; k)− p2,0)

k2 · (p1(t; k)− p1,0)

]
with (9.2)

s(t) =

1 t ∈ [0, tplan)

1− t−tplan

tf−tplan
t ∈ [tplan, tf]

, (9.3)

with the point x0 = (p1,0, p2,0) ∈ P . Trajectories of this model end in a stop because of the scaling
function s : Tplan → [0, 1]. This model creates circular arc trajectories (that is, Dubins’ paths
parameterized by time), with longitudinal velocity k1 and angular velocity k2, initial position x0,
and an initial heading of θ(0) = 0. We choose tplan = 0.5 s, and tf large enough for the robot to
brake to a stop while obeying the maximum acceleration reported above.

We specify the trajectory parameter space as

k1 ∈ [0, 1.5] m/s and (9.4)

k2 ∈ [−1, 1] m/s. (9.5)

Given an initial condition xhi,0 = (p1,0, p2,0, θ0, v0, ω0) ∈ Xhi,0, we specify that

Klim(xhi,0) = [v0 −∆v, v0 + ∆v]× [ω0 −∆ω, ω0 + ∆ω] ∩K, (9.6)

where the intersection with K is to ensure that we obey the bounds on k1 and k2. We use ∆v = 0.5

m/s and ∆ω = 1 rad/s.

9.1.3 Tracking Controller

The Segway uses a proportional-derivative controller as in Running Example 3.8. Let GP ∈ R2×2,
GΘ ∈ R1×1, and GQ̇ ∈ R2×2 be matrices of control gains. Suppose the Segway is in the ith

planning iteration, starting from initial condition x(i)
hi,0, and let k ∈ K. Then, the Segway’s tracking

controller is given by

uk(t, xhi(t; k)) = GP eP (t; k) +GΘ · (θ(t; k)− s(t− t(i))k2t) + (9.7)

+GQ̇

[
s(t− t(i))k1 − v(t; k)

s(t− t(i))k2 − ω(t; k)

]
, (9.8)

152

with the position error eP given in the robot’s body-fixed coordinate frame:

eP (t; k) =

[
cos(θ(t; k)) sin(θ(t; k))

− sin(θ(t; k)) cos(θ(t; k))

]
projP (xhi(t; k)− x(i)

plan(t; k)), (9.9)

where x(i)
plan(t; k) = liftplan(i, x(t − t(i); k)). Notice that k2t = projΘ(x

(i)
plan(t; k)) and similarly the

error terms for v and ω are functions of the lifted plan. The control gain values are available in the
repository [KVV19].

9.1.4 Forward Reachable Set

To compute the Segway’s FRS, we first compute the ERS, then use sums-of-squares programming
approach in §4. To compute the ERS, we first partition its generalized velocity space, as per the
ERS computation in §7, into three subsets:

Q̇(1) = [0.0 m/s, 0.5 m/s]× [−1 rad/s,+1 rad/s] (9.10)

Q̇(2) = [0.5 m/s, 1.0 m/s]× [−1 rad/s,+1 rad/s] (9.11)

Q̇(3) = [1.0 m/s, 1.5 m/s]× [−1 rad/s,+1 rad/s]. (9.12)

We then apply Algorithm 3. We store the tracking error function f (j)
err ∈ R3[t] for each Q̇(j) as in

§7.3.1 (that is, each f (j)
err is a degree 3 time-varying polynomial).

Given the ERS representation as above, we compute the FRS by solving for the functions gdyn,l

and gstat,l in (4.33) with l = 5. We use the planning model f as in (9.2), and the error models
as above. For running the Segway in static environments, we compute the FRS without the time
scaling s; instead, we choose tf large enough that the planning model trajectories travel the same
distance without braking as they would with braking; we found that this approach led to a faster
FRS computation, with lower memory usage. See the online RTD tutorial [KV19] and Segway-
specific open-source implementation [KVV19], as well as the paper [KVB+20].

9.1.5 Simulation in Static Environments

Environment The simulated static environment for the Segway is a 9 × 5 m2 room, with the
longer dimension oriented east-west. The room is filled with 6 to 15 randomly-distributed box-
shaped obstacles with a side length of 0.3 m. A random start location is chosen on the west side of
the room and a random goal is chosen on the east side. We created 1000 such environments.

A trial is considered successful if the Segway reaches the goal without collision (i.e., touching
any obstacles). Since obstacles are distributed randomly, it may be impossible to reach the goal

153

in some trials; we address this by counting the number of collisions and number of goals reached
separately.

High-Level Planner In these environments, for the Segway’s high-level planner, we use Dijk-
stra’s algorithm on a graph representing a grid in the robot’s planning space X; this provides a
coarse path and intermediate waypoints between the Segway and the global goal. At each ith plan-
ning iteration (which begins at t(i) ∈ T), the trajectory optimization cost function is the Euclidean
distance between the waypoint and the robot’s position at time t(i) + tplan when tracking k(i) (the
decision variable for online trajectory optimization).

RTD Online Planning To implement RTD at runtime, we use the polynomial gstat,l represent-
ing the FRS to construct obstacle constraints, then solved online trajectory optimization using
MATLAB’s fmincon solver in each receding-horizon planning iteration [Mat19b]. To generate
constraints, we discretize obstacles as in §5, with b = 0.001. The Segway has a circular body with
rmax = 0.76 m, resulting in r = 0.055 m and a = 0.002 m per Example 5.10.

Comparison Methods We compare RTD to two other methods. First, an RRT trajectory planner
based on [KFT+08, PKA16, PLM06]; these papers describe a variety of heuristics for growing a
tree of a robot’s trajectories with nodes in the high-fidelity state space. Second, a pseudospectral
Nonlinear Model-Predictive Control (NMPC) method called GPOPS-II [PR14]. We test both of
these methods with and without the receding-horizon timeout tplan enforced.

Since neither of these methods prescribe how to correctly buffer obstacles to ensure safety, we
tested several buffer sizes; we found that a buffer of 0.45 m provides the best balance of perfor-
mance and safety for both methods [KVB+20, Experiment 1].

Note that NMPC methods are effective for tracking planned trajectories; however, we use
NMPC here to generate trajectory plans. As per the literature in §2, trajectory planning is typ-
ically performed by planning a collision-free path, then smoothing it reparameterizing it by time
(i.e., an RRT-style approach); or by planning a coarse path, then relying on a tracking controller to
smoothly and safely track it (i.e., an MPC-style approach). RTD lies between these two paradigms
of path planners such as RRT and tracking controllers such as NMPC, so we compare against both
to show that this middle tier of trajectory planning is the “right” place to enforce safety.

Results RTD has no collisions, as expected, and reaches goal locations the most often out all
methods with the planning timeout enforced. Both RRT and NMPC experience collisions. Impor-
tantly, when the planning timeout is enforced, both of these methods suffer significant reductions
in performance, with NMPC unable to find any solutions in the vicinity of obstacles. See Fig-

154

ures 9.2, 9.4, and 9.3 for example environments and results for all three planners. The results are
summarized in Table 9.1.

Method Goals [%] Collisions (%)
RTD1 96.3 0.0
RRT1 78.2 2.4
NMPC1 0.0 0.0
RRT2 86.2 0.6
NMPC2 97.0 0.6

Table 9.1: Segway simulation/comparison results in 1000 random static environments. We com-
pare to an RRT based on [KFT+08, PKA16, PLM06], and NMPC [PR14]. Note, 1 indicates that
real-time planning (the timeout tplan) was enforced, and 2 indicates that real-time planning was not
enforced. This distinction is also shown with a dashed line.

155

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RTD

(a)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RRT

(b)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

NMPC

(c)

Figure 9.2: Sample simulation environments for the Segway, which starts on the west (left) side of
the environment, with the goal plotted as a dotted circle on the east (right) side of the environment.
The Segway’s pose is plotted as a solid circle every 1.5 s, or less frequently when the Segway is
stopped or spinning in place. For RTD, contours of the FRS are plotted to show the reachable set
corresponding to the plans in each planning iteration. The actual (non-buffered) obstacles for all
three planners are plotted as solid boxes. For RTD, the discretized obstacle is plotted as points
around each box. For RRT and NMPC, the buffered obstacles are plotted as light lines around each
box. This figure shows an environment where all three planners are successful. Row 2 shows an
environment where RTD is successful, but RRT and NMPC are not.

156

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RTD

(a)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RRT

(b)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

NMPC

(c)

Figure 9.3: Sample simulation environments for the Segway, with the same plotting convention as
Figure 9.2. RTD is successful, whereas RRT and NMPC are not. RRT attempts to navigate a gap
between several obstacles, where it is unable to find a new plan; it collisides when it tries to brake
along its previously-planned trajectory. NMPC brakes because it cannot compute a safe plan to
navigate the same gap where RRT collided; here, NMPC happens to brake safely and gets stuck
because it cannot find a new plan fast enough.

157

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RTD

(a)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

RRT

(b)

-2.5 0 2.5 5 7.5
x (m)

-3

-1

1

3

y
(m

)

NMPC

(c)

Figure 9.4: Sample simulation environments for the Segway, with the same plotting convention
as Figure 9.2. RTD stops safely, but fails to reach the goal, whereas RRT and NMPC do reach
the goal. RTD initially turns north more sharply than RRT or NMPC, which forces it to brake
safely; it then finds a safe path south, which causes the high-level planner to reroute it even farther
south to where there is no feasible solution, causing RTD to get stuck because the southern route
is considered feasible by the high-level planner. RRT and NMPC reach the goal because they do
not turn north as sharply initially, so the high-level planner is able to route them north and around
the obstacles.

158

9.1.6 Simulation in Dynamic Environments

Environment The simulated dynamic environment for the Segway is a 20 × 10 m2 world with
1–10 0.3 × 0.3 m2 box-shaped obstacles. We ran 100 trials for each number of obstacles (1000
trials total). In each trial, a random start and goal are chosen approximately 18 m apart.

Each obstacle moves at a random constant speed, up to 1 m/s, along a random piecewise-linear
path. We ensured that obstacles do not stay on the (random) goal, so that a feasible path to the goal
always exists at some time during each simulation.

We do not model interactions; that is, the obstacles may randomly act aggressively and cause
collisions. Therefore, as per §3.4.2, we count at-fault collisions, meaning that the Segway is not
at-fault if it is stationary during a collision.

High-Level Planner We use a “straight line” HLP. That is, at each receding-horizon planning it-
eration, we generate an intermediate waypoint 1 m ahead of the robot, along a straight line between
the robot and the global goal.

RTD Online Planning We use the same FRS as computed for the static case, but using gdyn,l

instead of gstat,l, to create collision-avoidance constraints for dynamic obstacles as in §5.7. We also
computed an FRS for a [1.5, 2.0] m/s speed range (the static environments only have the Segway
traveling up to 1.5 m/s).

To represent obstacles at runtime, we use the temporal discretization based approach in §5.7,
with b = 0.15 m, bt = 0.35, and r and a computed as in Example 5.10. Note, vrel = 3.0 m/s (the
relative speed between our robot and obstacles, used to compute the temporal discretization).

Comparison Methods We compare against a State Lattice (SL) approach [McN11] to produce
a graph of possible paths at each planning iteration, which attempt to reach the intermediate way-
point generated by the straight line HLP. We search this graph using Lazy SP to minimize the
number of collision checks needed [DS16]. We parameterize the output path of SL by time to
produce a trajectory plan according to [McN11], and ensure that every such trajectory ends with
the robot stopped, to include a braking maneuver. We empirically found that it was necessary to
buffer obstacles by 0.43 m to balance performance (reaching goals often) with collisions. We also
modified the Segway to use a linear MPC controller, since the tracking controller used for RTD
resulted in a large number of collisions. In other words, we improved the Segway’s tracking ability,
thereby giving SL an advantage over RTD.

Results RTD was able to reach every goal (the environments only have dynamic obstacles, so
a feasible path to the goal always exists), with no at-fault collisions. SL, on the other hand, only

159

reached the goal 92.4% of the time, and otherwise caused collisions. We found, however, that
RTD caused the robot to travel approximately 0.1 m/s slower than SL on average; in other words,
we traded a small amonut of conservatism for the benefit of not colliding with dynamic obstacles.
Results are summarized in Table 9.2.

Method Goals [%] At-Fault Collisions [%]
RTD 100 0.0
SL 92.4 7.6

Table 9.2: Segway simulation/comparison results in 1000 random dynamic environments. RTD
outperforms a State Lattice (SL) approach [McN11], and causes no at-fault collisions. RTD out-
performs both RRT and NMPC when real-time planning is enforced.

9.1.7 Hardware Demonstration

For static environments, the Segway is run on a 4×8 m2 tile floor with 30 cm cubical obstacles ran-
domly distributed just before run time. The Segway has no prior knowledge of the obstacles. Two
points are picked on opposite ends of the room and used as the start and goal points in an alternating
fashion. A video for static environments is available: https://youtu.be/FJns7YpdMXQ.

For dynamic environments, the Segway runs indoors at up to 1.5 m/s in similar scenarios as in
simulation. Virtual dynamic obstacles (vmax,obs = 1 m/s) are created in MATLAB. The testing area
is smaller than the simulation world, so we only test with up to 3 obstacles. The room boundaries
are treated as static obstacles. A video for dynamic environments is available: https://youtu.
be/9mMZyyLUiPg.

9.2 The Rover Wheeled Robot

The Rover is a front wheel steering, all-wheel drive platform, and demonstrates the utility of RTD
in car-like applications. The robot is shown in Figure 1.1. A video is available: https://

youtu.be/bgDEAi_Ewfw.
The robot is simulated using our open-source MATLAB simulator [KVL19], with code avail-

able [KVV19]. We use tplan = 0.5 s for the receding-horizon planning timeout in simulation.
The hardware is as follows. The Rover has a rectangular body of length 0.5 m and width 0.29

m centered at the center of mass. The distance from the rear axle to the center of mass, lr, is 0.0765
m. The Rover is equipped with a front-mounted Hokuyo UST-10LX planar lidar for sensing and
localization; as the Rover runs indoors, we found this sensor to be accurate up to at least 3.5 m
away given occlusions and obstacle density. An NVIDIA TX-1 computer on-board is used to run

160

https://youtu.be/FJns7YpdMXQ
https://youtu.be/9mMZyyLUiPg
https://youtu.be/9mMZyyLUiPg
https://youtu.be/bgDEAi_Ewfw
https://youtu.be/bgDEAi_Ewfw

the sensor drivers, state estimator, feedback controller, and low-level motor controller. The Rover
uses ROS [QCG+09] to communicate with a 2.9 GHz CPU with 64 GB of memory over wifi. The
laptop is used for localization and mapping and to run RTD’s online trajectory optimization. We
use tplan = 0.375 s on the hardware, because the robot must navigate a more cluttered environment
in hardware than in simulation, so it must plan more often.

Figure 9.5: The Rover wheeled robot.

9.2.1 High-Fidelity Model

The Rover’s high-fidelity model has a state vector xhi = (p1, p2, θ, v, δ), where v is longitudinal
speed and δ is the angle of the front (steering) wheels. The high-fidelity model fhi is

d

dt


p1

p2

θ

v

δ

 =


v cos(θ)− θ̇ · (c1 + c2v

2) sin(θ)

v sin(θ) + θ̇ · (c1 + c2v
2) cos(θ)

v
c3+c4v2

tan(δ)

c5 + c6 · (v − u1) + c7 · (v − u1)2

c9 · (u2 − δ)

 , (9.13)

with u = (u1, u2) commanding the speed and steering wheel angle. Both v and u1 are in [0, 2] m/s;
both δ and u2 are in [−0.5, 0.5] rad. This model utilizes steady-state assumptions for the lateral
dynamics, but the constants c2 and c4 account for wheel slip [Raj11]. Motion capture data was
used to fit the constants, c1, · · · , c9 ∈ R. Note that acceleration bounds are enforced implicitly by
the bounds on v, δ, and u.

For the hardware, we use εp1 = εp2 = 0.1 m for the modeling error in the robot’s position in
the plane, as in Assumption 3.1 (see the robot’s states below in the high-fidelity model). We found

161

the error in the other states to be negligible.

9.2.2 Planning Model

The Rover’s planning space X is SE(2), with the planning model f given as

d

dt

p1(t)

p2(t)

θ(t)

 =

k3 · (1− 1
2
θ(t)2)− lrω(t, k) · (θ(t)− 1

6
θ(t)3)

k3 · (θ(t)− 1
6
θ(t)3)− lrω(t, k) · (1− 1

2
θ(t)2)

ω(t, k)

 (9.14)

ω(t, k) =
−1

2
k2t+ k1 · (1− t). (9.15)

We report tf below, because we compute separate FRSes for a variety
Notice that this trajectory planning model does not explicitly include braking to a stop. How-

ever, we incorporate such braking behavior implicitly, by choosing tf large enough that the robot
can stop from its max speed (2 m/s) within the distance traveled along any parameterized trajectory.

9.2.3 Tracking Controller

The Rover uses a PD controller similar to the Segway’s. See the exact controller in [KVV19].

9.2.4 Forward Reachable Set

To compute the Rover’s FRS, we first compute the ERS as follows. We partition the robot’s initial
condition space of speed, yaw rate, and heading, as per the ERS computation in §7, into 42 subsets
Q̇(j). Each subset spans one of seven evenly-spaced ranges in the steering wheel angle (drawn
from [−0.5, 0.5] rad), one of three velocity ranges (0.0–0.75, 0.75–1.5, and 1.5–2.0 m/s), and
either positive or negative initial heading. Note, we include heading because the Rover’s planning
model is specific to a road-like scenario, where the Rover’s relative heading to the road’s direction
of travel determines its possible range of lateral velocities. We then apply Algorithm 3. We store
the tracking error function f (j)

err ∈ R3[t] for each subset of the initial condition space as in §7.3.1
(that is, each f (j)

err is a degree 3 time-varying polynomial).
For each range of initial speeds, we set tf separately for the planning model, since the robot can

brake to a stop in less time at lower speeds. In particular, we use tf = 1.25 s for initial speeds of
0.0−−0.75 m/s, and tf = 1.5 s otherwise.

Given these 42 tracking error models, we then use sums-of-squares programming approach in
§4.5 to compute 42 FRSes. For each FRS, we use the system decomposition approach to leverage
the fact that the Rover’s planning model is separable in p1 and p2; we solve (4.33) with l = 4

162

for each subsystem. For the decomposed systems, we overapproximate the robot’s body with
the set X0 as a 0.58 × 0.26 m2 rectangle; this rectangular initial set is decomposed along with
the subsystems of the planning model. Given the polynomial gdyn,l for each subsystem, we then
reconstruct each full system FRS using (4.50) to find the polynomial grec,m, with m = 5.

9.2.5 Simulation in Static Environments

Environment The simulated environment for the Rover is a larger version of the mock road de-
picted in Figure 1.1. The simulated road is oriented along the high-fidelity model p1 direction, and
is centered at p2 = 0. It is 2.0 m wide (including the shoulder), with two 0.6 m wide lanes centered
at p2 = 0.3 m and p2 = −0.3 m. In each trial, three randomly sized box-shaped obstacles of
lengths 0.4–0.6 m and widths 0.2–0.3 m are placed in alternating lanes. This obstacle arrangement
is used to force the Rover to attempt two lane changes per trial; note that our RTD implementation
is not specialized to this particular obstacle arrangement. The obstacles have a random heading of
± 2 degrees relative to the road, and their centers are allowed to vary by ± 0.1 m from lane center
in the y-dimension. The spacing between the obstacles in the x-direction is given by a normal dis-
tribution with a mean of 4 m and standard deviation of 0.6 m. The Rover begins each trial centered
in a random lane, with a velocity of 0 m/s.

A trial is considered successful if the Rover crosses a line positioned 30 m after the third
obstacle without colliding with any obstacle or road boundary.

High-Level Planner Recall that the Rover operates on a mock road, with two lanes. To this end,
the Rover’s HLP attempts to place a waypoint a set “lookahead” distance ahead of the robot in the
same lane; if the straight line between the robot and this waypoint is in collision with any obstacle,
the waypoint is switched to the other lane. For the simulation, we use a lookahead distance of 4 m;
on the hardware, we use 1.5 m.

RTD Online Planning To implement RTD at runtime, we use the polynomial grec,m and the dis-
cretized obstacle representation in §5.8.1 to create collision-avoidance constraints in each receding-
horizon planning iteration. We use a buffer b = 0.01 m for the Rover, resulting in the point spacing
r = 0.02 m and arc point spacing a = 0.014 m as per Example 5.9.

We solve the online trajectory optimization program with MATLAB’s fmincon nonlinear
solver in each planning iteration.

Comparison Methods We compare RTD to the same two other methods as the Segway in
§9.1.5. First, an RRT (with heuristics from [KFT+08, PKA16, PLM06]), and NMPC (via GPOPS-

163

II [PR14]). We test both of these methods with and without the receding-horizon timeout tplan

enforced.
Since neither of these methods prescribe how to correctly buffer obstacles to ensure safety,

we tested several buffer sizes. We found that buffering obstacles by taking a Minkowski sum of
each obstacle with an axis-aligned rectangle of size 0.29 × 0.26 m2 provides the best balance of
performance and safety for both methods [KVB+20, Experiment 1].

Results RTD reaches nearly as many goals as RRT, but with no collisions; and NMPC cannot
reach any goals because it is unable to plan fast enough. We find that RRT and NMPC are able
to leverage the structured on-road scenario to display impressive performance in comparison to
the random environments of the Segway. However, these methods are not able to certify collision
avoidance. Example simulations are shown in Figure 9.6, and the results are summarized in Table
9.3.

Method Goals [%] Collisions (%)
RTD1 95.4 0.0
RRT1 97.6 0.1
NMPC1 0.0 0.0
RRT2 99.8 0.0
NMPC2 99.6 0.0

Table 9.3: Rover simulation/comparison results in 1000 mock-road static environments. Note, 1

indicates that real-time planning (the timeout tplan) was enforced, and 2 indicates that real-time
planning was not enforced. This distinction is also shown with a dashed line. When real-time
planning is enforced, RTD reaches nearly as many goals as RRT, but with no collisions; and NMPC
cannot reach any goals because it is unable to plan fast enough.

9.2.6 Hardware Demonstration

The Rover is tested on a 7 m long mock road, which is a tiled surface, as shown in Figure 1.1. This
setup resembles the simulation environment, but with a shorter road and smaller obstacles. The
robot never crashed. A video is available: https://youtu.be/bgDEAi_Ewfw.

164

https://youtu.be/bgDEAi_Ewfw

RTD

3 8 13 18 23
x [m]

-1

0

1
y

[m
]

(a)

RTD

-1 3 7 11 15
x [m]

-1

0

1

y
[m

]

(b)

RRT

-1 4 9 14 19
x [m]

-1

0

1

y
[m

]

(c)

RRT

-1 3 7 11 15
x [m]

-1

0

1

y
[m

]

(d)

NMPC

-1 4 9 14 19
x [m]

-1

0

1

y
[m

]

(e)

NMPC

-1 3 7 11 15
x [m]

-1

0

1

y
[m

]

(f)

Figure 9.6: Two sample environments from the Rover simulations. The Rover’s trajectory, starting
from the far left, is a solid line, and its pose at several sample time instances is plotted with solid
rectangles. Obstacles are plotted as red boxes. Buffered obstacles for RRT and NMPC are plotted
with light solid lines. Subfigures (a) and (b) show RTD avoiding the obstacles. The subset of the
FRS associated with the optimal parameter every 1.5 s is plotted as a contour. Subfigures (c) and
(d) show the RRT method. In Subfigure (c), RRT is unable to safely track its planned trajectory
around the first obstacle. In Subfigure (d), RRT is able to come to a stop before the second obstacle.
Subfigures (e) and (f) show NMPC, which stops due to enforcement of real-time planning limits.

9.3 The Fusion Passenger Sedan

The Fusion is a passenger sedan equipped for autonomous driving. This robot was made available
to us in the CarSim high-fidelity simulator [Mec18] by the Ford Motor Company. We use this robot
to demonstrate RTD planning at much higher speeds (up to 15 m/s) and over a longer total distance
per simulation than we did with the Segway or Rover. This shows that RTD enables real-time,
safe planning despite complicated tire and powertrain dynamics (the CarSim model has a hybrid
powertrain with an automatic transmission). See the robot in Figure 9.7. A video is available:
https://youtu.be/lmtki6elFlw.

165

https://youtu.be/lmtki6elFlw

Figure 9.7: The Fusion passenger sedan using RTD to safely and autonomously plan and perform a
double lane-change around static obstacles at 15 m/s (which is the speed limit of the road shown).
The robot is simulated in the high-fidelity CarSim environment [Mec18], which models the robot’s
hybrid powertrain and tire dynamics. Using RTD, the robot successfully navigated a 1 km test
track, populated with random obstacles, with no collisions.

9.3.1 High-Fidelity Model

We use a bicycle model similar to [LDM15, (1)] as the high-fidelity model:

xhi =
d

dt



p1

p2

θ

v1

v2

ω


=



v1 cos θ − v2 sin θ

v1 sin θ + v2 cos θ

ω
1
m
τ1 − 1

m
τf,2 sin δ + v2ω

1
m
τf,2 cos δ + 1

m
τr,2 − v1ω

lf
Iz
τf,2 cos δ − lr

Iz
τr,2


, (9.16)

where p1 and p2 are the position of the robot’s center of mass, θ is the robot’s heading in the global
coordinate frame, v1 and v2 are longitudinal and lateral speed of the center of mass, and ω is yaw
rate. The constants m, Iz, lf, and lr are the robot’s mass, yaw moment of inertia, distance from the
front wheel to center of mass, and distance of the rear wheel to center of mass.

The control inputs for this model are the steering wheel angle δ and the force τ1. We fit
polynomials relating the CarSim throttle/brake inputs to the driving force, τ1, and find a linear
relationship between wheel angle, δ, and steering wheel angle. We fit a simplified Pajecka tire
model [LDM15, (2a, 2b)] to the tire forces τf,2 and τr,2. Since τ1, τf,2, and τr,2 are continuous, this
high-fidelity model is continuous.

We found the modeling error, as in Assumption, empirically as εx1 = εx2 = 0.1 m, εθ = 0.02

rad, εv1 = 0.4 m/s, εv2 = 0.08 m/s, and εω = 0.05 rad/s.

166

9.3.2 Planning Model

The planning model for the Fusion is similar to the Segway’s in (9.2), but with a slightly different
lateral velocity profile:

f(t, x(t; k), k) =

[
k1 − k2 · (p2(t; k)− p2,0)

v∗2(k) + k2 · (p1(t; k)− p1,0)

]
(9.17)

v∗2(k) = k1

(
lr −

mlf
cr(lr + lf)

k2
2

)
(9.18)

Here, k1 specifies longitudinal speed and k2 specifies a constant desired yaw rate. The value cr is
the rear cornering stiffness from the tire force model in (9.16). The lateral speed v∗2 is derived from
steady-state, linear tire force assumptions [SHB14, Section 10.1.2].

As with the Rover, instead of explicitly including a braking maneuver, we choose tf empirically
to be large enough such that the distance traveled by any parameterized trajectory is longer than
the distance required for the robot to brake along that same trajectory.

We implement Klim (i.e., bounds on the choices of trajectory parameters as a function of the
robot’s initial condition in each planning iteration) as follows. We limit the commanded change in
speed to 1 m/s, and the commanded change in yaw rate to 0.25 rad/s. Note, a new speed and yaw
rate are commanded every 0.5 s. A more aggressive commanded change could be used, but this
was sufficient for RTD to navigate the challenging test track environment reported below.

9.3.3 Tracking Controller

We implement the tracking controller uk : Tplan × Xhi → U (for each k ∈ K) using MATLAB’s
linear MPC toolbox; in other words, we apply a standard linear MPC formulation [GPM89].

9.3.4 Forward Reachable Set

First, we compute the ERS by partitioning the robot’s space of generalized initial velocities into
intervals of 2 m/s in length, and its yaw rate into intervals of 0.25 rad/s in length, as in §7. We fit
a degree 3 time-varying polynomial, f (j)

err , to the worst-case tracking error in each j th subset of the
generalized initial velocity space as in §7.3, and as we did with the Segway and Rover above.

We then compute an FRS for each f (j)
err , using the planning model f above, and the SOS ap-

proach in (4.33). In particular, we find the polynomials gdyn,l and gstat,l with l = 5.
Note, while the robot travels up to 15 m/s, we scale the planning model and tracking error

models as in Remark 4.6 so that every state is within an interval [−1, 1], to ensure numerical
stability. A generic method to perform such scaling is available in our open-source tutorial [KV19].

167

9.3.5 Simulation in Static Environments

Environment The robot runs on a 1.036 km, counter-clockwise, closed loop test track with 7
turns (with approximate curvatures of 0.005–0.04 m−1) and two 4 m wide lanes. Twenty station-
ary obstacles (with random length of 3.3–5.1 m length and width of 1.7–2.5 m) are distributed
around the track in random lanes and randomly spaced 40–55 m apart. We generated ten such
random tracks; though the mean obstacle spacing is the same, the tracks vary in difficulty. For
example, some tracks require performing overtaking maneuvers in a corner. The robot begins each
simulation at the northwest corner of the track in the left lane, with the first obstacle at least 50 m
away. A trial is considered successful if the robot completes one lap of the track with no collisions
and without leaving the road + shoulder.

High-Level Planner Much like for the Rover, the HLP places waypoints ahead of the vehicle
at a lookahead distance proportional to the vehicle’s current speed. If the lane centerline, from
the vehicle’s current position and lane to the waypoint, intersects an obstacle, the waypoint is
switched to the other lane to encourage a lane change. Lane keeping is not explicitly enforced
but is encouraged via the trajectory optimization cost function, which is to minimize the robot’s
Euclidean distance to the waypoint in each planning iteration.

RTD Online Planning We use the obstacle discretization in §5.8.1, with gstat,l representing the
FRS as above, to construct collision-avoidance constraints at runtime. The robot has a rectangular
body of size 4.8× 1.8 m2. We choose a buffer size b = 0.05 m, so the point spacing is r = 0.1 m
and the arc point spacing is a = 0.07 m, per Example 5.9.

We solve the online trajectory optimization program with MATLAB’s fmincon nonlinear
solver in each planning iteration.

Comparison Methods We compare RTD to the same two methods as the Segway and the Rover
(see §9.1.5). First, an RRT (with heuristics from [KFT+08, PKA16, PLM06]), and NMPC (via
GPOPS-II [PR14]). We test both of these methods with and without the receding-horizon timeout
tplan enforced.

Both methods plan using the robot’s high-fidelity model, but this model only represents the
robot’s center of mass position, so we have to buffer obstacles to compensate for the size of the
robot’s body. Since neither of these methods prescribe how to buffer obstacles to ensure safety, we
found a buffer amount empirically. In particular, for our simulations, obstacles are buffered by 4
m in the robot’s direction of travel and 1.25 m in the lane width direction.

168

-18 -3 12 27 42 57 72
x (m)

144
149
154
159
164
169
174
179
184
189
194

y
(m

)

Figure 9.8: The Fusion passenger sedan navigating a section of a 1 km test track using RTD at up
to 15 m/s. The robot is plotted every 1.5 s (that is, every third receding-horizon planning iteration,
since tplan = 0.5 for this robot); its FRS subset corresponding to each planned trajectory is shown
in green, and static obstacles are shown in orange. Since the FRS lies outside of all obstacles, the
robot provably avoids collision.

Results RTD has no collisions, as expected, and is able to complete the entire test track in all 10
trials; note, we constructed the trials such that they always have a feasible route around the track, as
evidenced by NMPC’s success when real-time planning is not enforce. However, RRT and NMPC
struggle to plan for the Fusion’s high-fidelity model in real time, and therefore instead plan safe
stopping maneuvers, resulting in failure to complete a significant portion of the test track. While
one could potentially tune the hyperparameters of RRT and NMPC to increase their performance,
it is unclear how to do so while guaranteeing safety. The results are summarized in Table 9.4. RTD
is shown navigating two corners of the test track in Figure 9.8.

Method % of Track Completed Collisions Safe Stops
Avg Max

RTD1 100 100 0 0
RRT1 13 38 1 9
NMPC1 0 0 0 10
RRT2 31 86 0 10
NMPC2 100 100 0 0

Table 9.4: Fusion simulation/comparison results in 10 trials of a 1 km test track with random static
obstacles. Note, 1 indicates that real-time planning (the timeout tplan) was enforced, and 2 indicates
that real-time planning was not enforced. This distinction is also shown with a dashed line. RTD
outperforms both RRT and NMPC because those methods struggle to plan with the robot’s high-
fidelity model in real time, and instead have to frequently plan safe stopping maneuvers.

169

9.4 The EV Wheeled Robot

The EV (Electric Vehicle) is a four-wheel-drive, electric, two-passenger, car-like robot. We use
this robot much like the Fusion, to demonstrate RTD on a larger-scale passenger vehicle operating
in traffic-like scenarios, as well as crowded dynamic environments. In particular, we demonstrate
safe unprotected left turns with oncoming traffic. Two videos are available: https://youtu.
be/PGBxoPMRvg8 and https://youtu.be/5CD-9qVT3js.

The robot is simulated using our open-source MATLAB simulator [KVL19]. We use tplan = 0.5

s for the receding-horizon planning timeout in simulation.
The hardware is as follows. The EV has a rectangular 2.4 × 1.3 m2 body. ROS [QCG+09]

runs on-board on a 2.6 GHz computer, enabling access to sensor data and actuator commands.
RTD is run in MATLAB on a 3.1 GHz laptop which communicates with the on-board ROS net-
work via ethernet. The EV performs localization with a Robosense RS-Lidar-32 and saved maps
[BWWN19].

Figure 9.9: An illustration of the EV performing an obstacle avoidance maneuver around a rectan-
gular dynamic obstacle. Past positions of the EV and the obstacle are shown with opacity increas-
ing with time. For the current planning iteration, a prediction of the obstacle is shown fading from
light to dark, and the corresponding unsafe trajectory parameters are shown in the inset space K.
The EV’s particular choice of trajectory plan is shown as a green point inK, and the corresponding
subset of the FRS is shown in green fading from light to dark as time passes.

170

https://youtu.be/PGBxoPMRvg8
https://youtu.be/PGBxoPMRvg8
https://youtu.be/5CD-9qVT3js

9.4.1 High-Fidelity Model

We use the following high-fidelity model, a single-track bicycle model similar to the Rover and
Fusion: 

ṗ1

ṗ2

θ̇

δ̇

v̇

 =


v cos θ − θ̇(c1 + c2v

2) sin θ

v sin θ + θ̇(c1 + c2v
2) cos θ

tan(δ)v(c3 + c4v
2)−1

c5(δ − u1)

c6 + c7(v − u2) + c8(v − u2)2

 , (9.19)

where θ is heading, δ is steering angle, and v is speed. We bound the speed to [0, 3] m/s on the
hardware and [0, 5] m/s in simulation. Saturation limits are |δ(t)| ≤ 0.50 rad, |δ̇(t)| ≤ 0.50 rad/s,
and v̇(t) ∈ [−6.86, 3.50] m/s2. The coefficients c1, · · · , c8 are fit to localization data. We find
εp1 = εp2 = 0.1 m (as in Assumption 3.1) for the position error, and error in other states is
negligible.

9.4.2 Planning Model

We use the following planning model, which is similar to the Segway’s in (9.2), but with the time
at which the robot comes to a stop allowed to vary. This leads to a time-switched model:

f(t, x(t; k), k) = s(t, k)

[
1− k1

l
x2(t; k)

k1
l
x1(t; k)

]
, (9.20)

s(t, k) =



v0 + aacct, t ∈ T1(k)

k2, t ∈ T2(k)

k2 − abrk(t− τ1(k)− τ2(k)), t ∈ T3(k)

0, t ∈ T4(k).

(9.21)

with |k1| ≤ 0.5 rad, k2 ∈ [0, 5] m/s, and aacc = abrk = 2.0 m/s2. The final time tf is chosen large
enough for the vehicle to come to a stop when tracking any trajectory parameterized by k ∈ K.
The time intervals T1, · · · , T4 : K → pow (Tplan) are

T1(k) = [0, τ1(k)) (9.22)

T2(k) = [τ1(k), τ1(k) + τ2(k)), (9.23)

T3(k) = [τ1(k) + τ2(k), τ1(k) + τ2(k) + τ3(k)) (9.24)

T4(k) = [τ1(k) + τ2(k) + τ3(k), τ4(k)]. (9.25)

171

The times τ1, · · · , τ4 : K → [0, tf] are:

τ1(k) = k2−v0
aacc

, (9.26)

τ2(k) = k3, (9.27)

τ3(k) = k2
abrk
, (9.28)

τ4(k) = tf, (9.29)

so that Tplan =
⋃4
i=1 Ti(k) for any k ∈ K by construction. Note that this model explicitly includes

a braking maneuver.
To implement Klim, in each planning iteration, we limit commanded changes in k1 (resp. k2) to

0.1 rad (resp. 0.5 m/s) relative to the previous planning iteration.

9.4.3 Tracking Controller

We use a linear MPC controller to implement uk in simulation, similar to the Fusion [GPM89].
The hardware has a custom, black-box vector pursuit controller; we estimate its performance by
fitting the coefficients in the high-fidelity model.

9.4.4 Forward Reachable Set

We compute two types of FRSes for the EV. The first is for arbitrary scenarios, and has the range
of wheel angles and velocity parameters discussed above. The second is for left turns only, which
allows validated such maneuvers across the whole intersection; for this, the FRS initial speed and
wheel angle are limited to 0–2 m/s and -0.1 to 0.1 rad, respectively, and the time tf is large enough
to cross an entire intersection and then brake safely to a stop (e.g., 7 s).

We follow the ERS computation procedure in §7.3.1. We break the space of initial velocity and
initial steering angle into 35 (that is, 5 velocity ranges and 7 wheel angle ranges) evenly-spaced
subsets, and compute the ERS and FRS on each subset. We follow the FRS swapping procedure at
runtime as in §4.7.

We compute the FRS over time intervals as in §4.6. Notice that the time intervals in (9.22)
are k-dependent; while the formulation in §4.6 does not explicitly state that such k-dependence is
possible, in fact the SOS program (4.59) is able to accomodate this type of k-dependence without
alteration.

9.4.5 Simulation in Dynamic Environments

Environment We test two scenarios.

172

The first scenario is a 60 × 10 m2 open area with 1–10 0.3 × 0.3 m2 dynamic box-shaped
obstacles moving along random paths up to 2 m/s. We created 1000 such scenarios.

The second scenario requires an unprotected left turn at a 4-way intersection, followed by
driving straight for 30 m (see Figure 9.10). We created 100 random scenarios with lane widths and
corner radii of 3.5–4.0 m. At any time, up to 4 obstacle cars (length 2.5–4.0 m and width 1.25–2
m) travel along randomly chosen lanes, and randomly choose to turn, at constant speeds of up to 7
m/s. Up to 2 pedestrians randomly cross one of the four cross walks up to 2 m/s. The ego vehicle
starts in the right lane either at the intersection or 30 m away, with initial speed and wheel angle of
0. We created 100 such scenarios.

High-Level Planner In the first set of scenarios, the robot uses the same straight-line HLP as the
Segway. That is, it attempts to minimize its distance to a waypoint along a straight line between
itself and the goal in each planning iteration.

In the second set of scenarios (left turns), the robot attempts to reach a waypoint placed man-
ually in the lane center where it should arrive after completing a left turn; from it uses the lane
centerline to generate waypoints. In other words, the HLP returns waypoints based on the geome-
try of the road. As usual, the cost function in each planning iteration is the Euclidean distance to
the waypoint, either at tf for the left turns, or at tplan for driving in a lane.

RTD Online Planning We test both dynamic obstacle discretizations presented in §5.7, with the
point spacings computed as in Example 5.9. For the time discretization approach, we use bt = 0.35

m and b = 0.1 m. For the time interval approach, we use b = 0.1 m.
As with the Segway, Rover, and Fusion, we create collision-avoidance constraints as in §4.8.

We solve the online trajectory optimization program, subject to these constraints, with MATLAB’s
fmincon nonlinear solver in each planning iteration.

Comparison Methods For the first set of simulated scenarios, we compare RTD against itself,
with the two different dynamic obstacle discretization methods from §5.7. We also compare against
the State Lattice (SL) approach in [McN11], which was used for the Segway as well (see §9.1.5).

For the second set of simulated scenarios (left turns), we again compare RTD against itself, with
the two different dynamic obstacle discretization methods. We also compare against a standard
linear MPC controller [GPM89] performing feedback around a hand-crafted left turn trajectory
(in other words, we give the comparison method a distinct advantage over RTD by handing it a
trajectory a priori). While the robot is stopped waiting to begin the left turn, we collision check
the entire left turn trajectory at discrete times (every 0.01 s), and do not begin tracking it until the
entire trajectory is collision free with respect to all obstacles. This ensures a fair comparison, since

173

RTD seeks to validate the entire left turn before it begins the maneuver.

Results As expected, RTD produces no at-fault collisions in any scenario. In the first set of sce-
narios (random scenarios), the time interval version of RTD outperforms both the time discretiza-
tion RTD and the SL approach. In the second set of scenarios (left turns), the time interval RTD
formulation outperforms the time discretization formulation and linear MPC; however, it usually
takes 6 more seconds to complete the left turn than linear MPC. We find that this is due to the linear
MPC approach determining that the entire left turn is feasible much earlier than RTD, and begin-
ning the maneuver only to result in a collision; in other words, RTD takes on some conservatism
to ensure that the entire maneuver is actually feasible before execution.

In general, we see that the time discretization RTD formulation is much more conservative
than the time interval formulation. This is expected, because the time discretization formulation
requires the additional temporal buffer bt (i.e., obstacles are treated as larger, which reduces the
free space available for planning), and because the robot must consider many more constraints per
planning iteration; this means it is more likely to be unable to find a new trajectory in each planning
iteration, and instead must safely stop by continuing a previously-found trajectory.

The results are summarized in Table 9.5. See Figure 9.10 for an example left turn.

World Method Goals [%] AFC [%] ATTG [s] AS [m/s]

random
RTD (disc) 90.7 0.0 41.1 1.99
RTD (int) 96.8 0.0 24.1 3.06
SL 77.3 17.2 28.1 2.88

left turn
RTD (disc) 91.0 0.0 49.9 1.50
RTD (int) 99.0 0.0 20.9 2.71
Linear MPC 80.0 19.0 14.9 3.35

Table 9.5: EV simulation/comparison results in 1000 random scenarios, and 100 left turn scenarios.
RTD is treated with two different methods of representing obstacles. First the time discretization
method (disc), and second, the time interval method (int). We also compare against a State Lattice
(SL) method [McN11] in the random scenarios, and a generic linear MPC method [GPM89] in the
left turn scenarios. We compare the percentage of goals reached, the percentage of trials that had
at-fault collisions (AFC), the average time taken to reach the goal (ATTG), and the average speed
(AS). Note, the average speed for the left turns appears low because the robot begins stopped,
and must wait until it finds an entire feasible left turn trajectory, then must accelerate to 5 m/s
to navigate through the intersection. RTD never causes an at-fault collision, as expected. In the
random scenarios, the time interval RTD formulation reaches the most goals, in the shortest time,
with the highest average speed. In the left turn scenarios, the time interval formulation reaches
the most goals by taking on slightly more conservatism than the linear MPC approach, which is
aggressive (hence its lowest time to goal and highest average speed) at the expense of causing
collisions.

174

-30 -15 0 15
x 1 [m]

-10

-5

0

5

x 2 [m
]

-30 -15 0 15
x 1 [m]

-10

-5

0

5

x 2 [m
]

-30 -20 -10 0 10
-10

-5

0

5

x 2 [m
]

-30 -20 -10 0 10
x 1 [m]

-10

-5

0

5

x 2 [m
]

Figure 9.10: Timelapse of EV (blue) completing a left turn. Figures show time at 0.0, 2.0, 3.0, and
5.0 s from top to bottom. Obstacles and their prediction are plotted in red. The vehicle obstacles
are traveling at 5 m/s. The pedestrian is traveling at 2 m/s. The EV begins the scenario stopped at
the intersection. The FRS intervals are shown in green. Obstacle predictions and the FRS intervals
fade from dark to light with increasing time. The left turn maneuver is longer in duration, and
therefore requires longer predictions, than the driving-straight maneuvers (which begin after the
ego vehicle completes the turn at t = 3.0 s).

9.4.6 Hardware Demonstration

The EV runs outdoors in a large open area at up to 3 m/s, with a safety driver.
First, we tested an 80 m stretch of open pedestrian walkway, populated with static concrete

cube-shaped obstacles. The EV successfully navigates this scenario at 3 m/s with no collisions.
See the video: https://youtu.be/5CD-9qVT3js.

Second, we tested more structured, car-like scenarios, to show a variety of overtake maneuvers.
We used an open 60 m area, which is large enough that we do not consider static obstacles. Virtual

175

https://youtu.be/5CD-9qVT3js

obstacles (vmax,obs = 1.5 m/s) resembling people or cyclists are created in MATLAB. The robot
had no collisions. See the video: https://youtu.be/PGBxoPMRvg8.

9.5 The Hummingbird Quadrotor

We use a simulated Hummingbird quadrotor [Asc19] to demonstrate RTD on aerial robots using the
zonotope FRS. This implementation also demonstrates the utility of the ERS. We compare RTD
with and without trajectory-dependent tracking error, and see that, by incorporating trajectory
dependence, the robot performs with much lower conservatism. A video is available: https:
//youtu.be/toFpIC7Zh18.

The robot is simulated using our open-source MATLAB simulator [KVL19]. We use tplan =

0.75 s for the receding-horizon planning timeout.

9.5.1 High-Fidelity Model

The state space is Xhi = P × V × Ω × SO(3) with state xhi = (p, v, ω,R), where p ∈ P ⊂ R3

is position in the inertial frame; v ∈ V ⊂ R3 is velocity; ω ∈ Ω ⊂ R3 is angular velocity; and
R ∈ SO(3) is attitude. The inertial frame P is spanned by unit vectors denoted e1, e2, and e3

with e3 pointing “up” relative to the ground, so Re3 is the net thrust direction of the quadrotor’s
body-fixed frame. We write the model as per [LLM10]:

ṗ = v

v̇ = τRe3 −mge3

ω̇ = J−1 (µ− ω × Jω)

Ṙ = Rω̂,

(9.30)

where ·̂ : R3 → so(3) is the hat map that maps a 3D vector to a skew-symmetric matrix [LLM10]
(i.e., so(n) denotes the tangent space to SO(3)). The constant g = 9.81 m/s2 is acceleration due
to gravity. The quadrotor’s mass is m ∈ R, and its moment of inertia matrix is J ∈ R3×3. We
assume J is diagonal and constant, and can be written J = diag(j1, j2, j3). The control input is
u = (τ, µ) ∈ U ⊂ R4, where τ ∈ R is net thrust and µ ∈ R3 is the body moment; these inputs are

176

https://youtu.be/PGBxoPMRvg8
https://youtu.be/toFpIC7Zh18
https://youtu.be/toFpIC7Zh18

related to rotor speeds as:

[
τ

µ

]
=


kτ kτ kτ kτ

0 kτ` 0 −kτ`
−kτ` 0 kτ` 0

kµ −kµ kµ −kµ



ω2

rot,1

ω2
rot,2

ω2
rot,3

ω2
rot,4

 , (9.31)

where kτ and kµ are rotor parameters, ` is the length from quadrotor center of mass to each rotor
center, and ωrot,i is the speed of the ith rotor [PMK+13, LLM10]. We assume commanded inputs
can be achieved instantaneously (i.e., the rotor dynamics are fast compared to (9.30)), but that rotor
speed is bounded (i.e., the inputs can saturate) [LLM10, MK11, MHD15]. We set the quadrotor’s
max speed as vmax > 5 in any direction, since aerodynamic drag can be compensated by rotor
thrust up to 6 m/s [TK20, HHWT11].

Since the Hummingbird is only used in simulation, we do not consider any modeling error as
in Assumption 3.1.

We implement (9.30) with the specifications of an AscTec Hummingbird [Asc19, DGZD15]
(see Table 9.6).

The quadrotor’s high-fidelity model (9.30) is simulated by Euler integration with a 5 ms time
step; the rotation matrix dynamics are implemented as Lie-Euler integration on SO(3) as in [CMO14,
(7)] with Fyn = ω̂n. This was done to avoid Euler angle singularities. Euler integration was
found empirically to match a Runge-Kutta/Munthe-Kaas 4th order method within millimeters in
the quadrotor’s position dimensions over the time horizon Tplan, while taking approximately 25%
of the computation time. We include the numerical integration error as tracking error in the com-
putation of the ERS below.

Robot [Asc19, DGZD15] Control [MK11] Desired Traj. [MHD15]
Param. Value Param. Value Param. Value
m 0.547 kg Gx 2.00I3×3 tplan 0.75 s
j1, j2 0.0033 kgm2 Gv 0.50I3×3 tpeak 1 s
j3 0.0058 kgm2 GR 1.00I3×3 tf 3 s
kτ 1.5E-7 N

rpm2 Gω 0.03I3×3 κ±v ±5 m/s
kµ 3.75E-9 Nm

rpm2 vmax 5 m/s κ±a ±10 m/s2

` 0.27 m amax 3 m/s2 κ±peak ±5 m/s
ωrot 1100–8600 rpm dsense 12 m

Table 9.6: Hummingbird implementation parameters

177

9.5.2 Planning Model

The planning space for this robot is X = P (i.e., the position subspace of the high-fidelity model).
We use a planning model that generates desired position trajectories with polynomials in time,
generated separately in each coordinate of X , based on [MHD15], but modified so each trajectory
has two piecewise polynomial segments, to include a fail-safe maneuver. We first present a 1D
model, then extend it to 3D. Model parameters are in Table 9.6.

Consider a 1D, twice-differentiable, desired position trajectory pdes : Tplan → R, given by a
planning model f1D : Tplan ×K1D → R:

ṗdes(t;κ) = f1D(t, κ) =
c1(t, κ)

6
t3 +

c2(t, κ)

2
t2 + κat+ κv, (9.32)

where κa = p̈des(0) is the initial desired acceleration, κv = ṗdes(0) is the initial desired speed, and
κpeak is a desired peak speed to be achieved at a time tpeak ∈ [tplan, tf]. The values of c1, c2 are given
by [MHD15, (64)] as[

c1(t, κ)

c2(t, κ)

]
=

1

(c3(t))3

[
−12 6c3(t)

6c3(t) −2(c3(t))2

][
∆v(t, κ)

∆a(t, κ)

]
, (9.33)

c3(t) =

tpeak t ∈ [0, tpeak)

tf − tpeak t ∈ [tpeak, tf],
(9.34)

∆v(t, κ) =

κpeak − κv − κatpeak t ∈ [0, tpeak)

−κpeak t ∈ [tpeak, tf],
(9.35)

∆a(t, κ) =

−κa t ∈ [0, tpeak)

0 t ∈ [tpeak, tf].
(9.36)

This model produces a desired position trajectory that begins at the speed κv with acceleration κa
at t = 0. The trajectory accelerates to a speed of κpeak at t = tpeak, at which point the desired
acceleration is 0; the trajectory then slows down to desired speed and acceleration of 0 at t = tf

(this is the fail-safe maneuver). Notice that c3, ∆v, and ∆a are piecewise constant in t, with a jump
discontinuity at tpeak. Therefore, c1 and c2 are piecewise constant in t, which makes (9.32) a piece-
wise polynomial in time. By construction, (9.32) and its derivative (acceleration) are continuous
functions of time. Note, a desired position trajectory can be translated arbitrarily, so we assume
that the planning frame is centered at pdes(0) = 0 ∈ X1D. Then, any desired position trajectory
given by (9.32) is uniquely determined by κ for all t ∈ Tplan.

Note, we specify that κv, κa, and κpeak lie in compact intervals [κ−v , κ
+
v], [κ−a , κ

+
a], and [κ−peak, κ

+
peak],

178

so K1D is the Cartesian product of these three intervals. The lower and upper bounds are reported
in Table 9.6.

We now make a 3D planning model by using the model (9.32) for each dimension, and creating
a larger parameter space K = K1D × K1D × K1D ⊂ R9. For a trajectory xdes : Tplan → X , we
denote the model as f : T ×K → R3 for which

f(t, k) =

f1D(t, κ1)

f1D(t, κ2)

f1D(t, κ3)

 , (9.37)

with trajectory parameter k = (κ1, κ2, κ3) ∈ K, where each κi = (κv,i, κa,i, κpeak,i) is the peak
speed, initial speed, and initial acceleration in dimension i = 1, 2, 3. As in the 1-D case, WLOG
we let xdes(0) = 0. For notational purposes, let kpeak = (κpk,1, κpk,2, κpk,3) and similarly for kv and
ka. Then k = (kv, ka, kpeak) by reordering, and we denote K = Kv×Ka×Kpeak. By construction,
(9.37) includes a fail-safe (braking) maneuver.

We create Klim (i.e., bounds on which k can be chosen at each planning iteration) as follows.
First recall that the drone’s speed is bounded: ‖kpeak‖2

≤ vmax. Second, since kpeak is a desired
velocity and kv is the initial velocity, the quantity 1

tpeak
‖kpeak − kv‖2

determines an approximate
desired acceleration amax > 0. Therefore, for an initial condition xhi,0, Klim(xhi,0) returns all kpeak

for which 1
tpeak
‖kpeak − kv‖2

≤ amax.
Note that acceleration due to gravity is not included in the planning model. However, gravity

is accounted for by the low-level controller specified next.

9.5.3 Tracking Controller

We use a tracking controller based on [MK11]. The control input uk(t, xhi(t; k)) = (τ(t), µ(t)) is
given by

τ(t) = ‖−Gxex(t)−Gvev(t) +mge3 +mẍdes(t)‖2

µ(t) = −Gωeω(t)−GRer(t)
(9.38)

where Rdes is found as in [MK11, Section IV] and ωdes is found as in [MK11, Section III]. In
simulation, τ and µ are converted to rotor speeds and saturated using (9.31). At any time t, the

179

state error used for feedback is

ex(t) = x(t)− xdes(t)

ev(t) = v(t)− ẋdes(t)

eR(t) =
1

2

(
Rdes(t)

>R(t)−R(t)>Rdes(t)
)∨

eω(t) = ω(t)− ωdes(t),

(9.39)

where (·)∨ : so(3) → R3 is the vee map that maps a skew-symmetric matrix to a 3D vector
[LLM10]. The feedback gains and rotor speed saturation parameters are reported in Table 9.6.

Note that, by including feedforward terms for angular acceleration and fulfilling other mild
assumptions, one can modify (9.38) to provably asymptotically drive tracking error to zero as time
tends to infinity for any particular reference trajectory [LLM10]; however, since we are planning in
a receding-horizon way, we find that (9.38) tracks trajectories with low error over the time horizon
Tplan when commanding speeds up to vmax = 5 m/s and accelerations of amax = 3 m/s2.

9.5.4 Forward Reachable Set

We compute a zonotope FRS using the method in §6; that is the FRS is the PRS, plus the ERS,
plus the body.

We use the open-source toolbox [Alt15] to compute a zonotope PRS for the planning model
(9.37). We use a time discretization of ∆t = 0.02 s to create the partition of time needed for the
zonotope PRS computation; that is, since tf = 3 s, we have nRS = 150.

We represent the ERS with the method in §7.3.2. To do so, we partition the drone’s initial
velocity space into equally-sized boxes (in each of the three velocity directions) of side length 0.7
m/s, which results in approximately 103,000 subsets of Q̇ (the total number of error zonotopes
is 103,000 times nRS). Note, we do not partition the drone’s angular velocity subspace. This is
because the drone’s rotation dynamics are, by assumption, much faster than its translation dynam-
ics [HHWT11]; in other words, the drone can rapidly rotate itself to point its thrust vector in any
desired direction. Furthermore, by treating the initial attitude matrix R as the identity for every
iteration of Algorithm 3, we are in fact making a conservative assumption that the drone’s initial
rotation is not necessarily aligned with its trajectory plan. It takes approximately 1 hr to run Al-
gorithm 3 on a 3.1 GHz laptop. The error zonotopes are stored in a lookup table of approximately
8.6 MB.

We represent the body as a zonotope of size 0.55×0.55×0.55, which is large enough to include
the robot (of dimensions 0.54×0.54×0.0855 m3 [Asc19, DGZD15]) across all body attitudes that
we see in simulation.

180

9.5.5 Simulation in Static Environments

Environment We simulate 500 cluttered worlds with 120 random static obstacles each, plus
obstacles representing the world boundaries. An example simulation is shown in Figures 9.11 and
9.12. Each world is 80 × 20 × 10 m in volume, with a random start location at one end and a
random goal location at the other.

High-Level Planner We use a straight-line HLP similar to the wheeled robots in dynamic envi-
ronments reported above. That is, in each receding-horizon planning iteration, the drone attempts
to reach a waypoint along a straight line between itself and the global goal. This waypoint is
1.5 m ahead of the robot, plus a distance proportional to half its current speed. The trajectory
optimization cost function is to minimize the Euclidean distance to the waypoint at the time tpeak.

RTD Online Planning All obstacles are represented as cuboid zonotopes. We use these zono-
topes to generate collision-avoidance constraints as in §6.4.

Instead of using fmincon to solve the online trajectory optimization, we use a sampling-
based approach. That is, in each receding-horizon iteration, we sample approximately randomly-
generated 20,000 choices of k ∈ K, evaluate the collision-avoidance constraints on each one, and
then evaluate the cost function on each feasible remaining k. We find that this is faster than using
fmincon, at the expense of slightly suboptimal performance with respect to the cost function.

Note that the trajectory parameters kv and ka are fixed by the drone’s initial condition at the
beginning of each planning iteration. Therefore, we only need to sample in the space of possible
peak speeds, kpeak.

Comparison Methods We compare RTD against itself, with and without the ERS. The zonotope
ERS representation allows us to incorporate trajectory-dependent tracking error. As a comparison,
we treat tracking error as 0.1 m uniformly in every direction; that is, the ERS zonotopes Z(i,j)

err are
cubes of 0.2 m to a side for all i and j (that is, for all times and initial conditions). This size of
constant tracking error was found by taking the maximum of all tracking error in any direction
when computing the ERS with Algorithm 3.

Results RTD had no collisions with either tracking error approach, as expected. With the trajectory-
dependent tracking error, the robot reached the goal in 91.2% of trials (and otherwise stopped
safely). With the constant tracking error, the robot reached the goal in only 84.8% of trials. Note,
we did not expect 100% of goals reached, since the trials used randomly-generated obstacles, so
some simulated worlds have no feasible path between start and goal. This result confirms that
including trajectory-dependent tracking error reduces conservatism.

181

Figure 9.11 shows RTD in a single receding-horizon planning iteration. Figure 9.12 shows an
entire example simulation world, and a trajectory planned (iteratively) by RTD from start to goal;
the same planning iteration as in Figure 9.11 is shown here, but zoomed out.

Figure 9.11: An example trajectory planned online in a cluttered environment with obstacles in
light red and the ground in brown. The tube of light blue boxes, which does not intersect any
obstacles, is the subset of the zonotope FRS for the current plan plus tracking error, so the quadrotor
(in dark blue) is guaranteed to fly within the tube. The world and trajectory are shown in Figure
9.12.

Figure 9.12: The example simulated world from Figure 9.11, with obstacles in light red, the ground
in brown, world boundaries as axes, and the global goal as a light green sphere. A trajectory of the
quadrotor is shown in dark blue, and goes from left to right. The quadrotor’s reachable set (light
blue) is shown for the same planning iteration as in Figure 9.11.

182

9.6 The Mambo Quadrotor

We use a Parrot Mambo microdrone [Par19] to demonstrate RTD on aerial robot hardware. This
extends the work from the Hummingbird in §9.5 to include (1) aerodynamic drag, (2) ground
effect, and (3) dynamic obstacles. A video is available: https://youtu.be/1cldHVQK3Yw.

The robot is simulated using our open-source MATLAB simulator [KVL19]. We use tplan = 0.5

s for the receding-horizon planning timeout.
The hardware is as follows. The drone has a mass of 63 g with motion capture markers in-

cluded. Its body fits within a cube of size 0.2 × 0.2 × 0.2 m3. State estimation is provided by
a PhaseSpace Impulse X2E motion capture system. We send commands to the drone (see the
high-fidelity model control inputs below) over Bluetooth at approximately 10 Hz, using PyParrot
[McG19]; the drone tracks these commands at approximately 100 Hz with an on-board proprietary
controller.

Figure 9.13: The Parrot Mambo navigates around static obstacles to reach a global goal (green
sphere on the right) without collision despite tracking error. The callout in the bottom right shows
the drone’s planned trajectory (dashed blue), realized trajectory (solid blue, also overlaid in the
photo), and current speed. The blue box is the FRS corresponding to the plan at the time shown,
composed of a sequence of zonotopes, all of which lie outside of the obstacles thereby ensuring
collision avoidance.

9.6.1 High-Fidelity Model

We model the drone as a 3-DOF point mass (it translates, but does not rotate), with state space
Xhi = P ×V1×V2 (we treat vertical velocity V3 as an input, because the hardware is built this way

183

https://youtu.be/1cldHVQK3Yw

[Par19]). The Mambo has state x = (p1, p2, p3, v1, v2) for which

ṗ1 = v1 (9.40a)

ṗ2 = v2 (9.40b)

ṗ3 = c1uv3 + c2(u2
p + u2

r)
1
2 + c3 exp(c4p3) (9.40c)

v̇1 = c5 sin(up) + c6 sin(ur) + c7|v1|v1 (9.40d)

v̇2 = c8 sin(up) + c9 sin(ur) + c10|v2|v2. (9.40e)

The scalars c1, · · · , c10 ∈ R are model coefficients obtained from system identification. The in-
puts up, ur, and uv3 are discussed below. The terms in (9.40c), from left to right, represent the
commanded vertical speed, the reduction in vertical speed due to pitch and roll, and ground effect.
For this model, the ground plane is at p3 = 0. In (9.40d) and (9.40e), from left to right, the terms
represent acceleration due to pitch, acceleration due to roll, and aerodynamic drag.

The drone’s control inputs are u = (up, ur, uyr, uv3) ∈ U = [−1, 1]4, where up is pitch, ur is
roll, uyr is yaw rate, and uv3 is vertical speed. Notice that each control input lies within [−1, 1],
and is scaled to the appropriate units by the drone’s on-board flight controller. The yaw rate, roll,
and pitch commands are with respect to the 3-2-1 (yaw-pitch-roll) convention for converting the
drone’s attitude to Euler angles. Note that, based on the 3-2-1 Euler angle order, positive pitch
causes acceleration in the +e1 direction, but negative roll causes acceleration in the +e2 direction
(hence c6 > 0 but c8 < 0).

Our model is unusual in that we model acceleration in the plane P1 × P2, but speed in P3.
This is because the Mambo’s flight controller accepts vertical speed commands instead of thrust,
resulting in (9.40c) fitting the flight data well. For this model, we numerically implement the
velocity projection operator as projV : Xhi × U → V for which projV (xhi, u) = (v1, v2, ṗ3) with
xhi ∈ Xhi and ṗ3 as in (9.40c).

Note, we do not model the Mambo’s rotation dynamics. For our simulations and hardware
demonstration, the Mambo’s yaw is always close to 0 rad; we collected flight data accordingly for
system identification, which is why uyr does not appear in the model. Further, since the Mambo is
a microdrone, it has much faster rotational dynamics than translational dynamics; based on flight
data, we noticed that its on-board (black box) flight controller is able to achieve desired velocities in
the plane by quickly pitching or rolling to accelerate, then returning to level flight. To incorporate
a drone’s rotation dynamics, one can use the methods presented for the Hummingbird above.

A Simulink high-fidelity model of the Mambo is available [Mat19a]. However, we do not use
this model because we have changed the drone’s mass and inertia by attaching motion capture
markers, and because the Simulink model does not use the same control inputs as those we specify
above. Instead of explicitly measuring the drone’s changed mass and inertia, we represent them

184

implicitly in the model coefficients. To fit the model coefficients, we first use a PhaseSpace Impulse
X2E motion capture system to record approximately 400 s of the drone’s position and attitude at
100 Hz. The data was collected with a desired yaw of 0 rad. We fit polynomials to the position data
to smooth it, and manually discard the first and last 5–10% of the data where the polynomial fit is
poor. We then differentiate the polynomials to approximate velocity and acceleration. Finally, we
use nonlinear least squares to fit the coefficients.

9.6.2 Planning Model

We use the same planning model, based on [MHD15], as we used for the Hummingbird in §9.5.2.
However, we limit vmax to 1.5 m/s.

9.6.3 Tracking Controller

We use the same PD tracking controller, based on [MK11], as the Hummingbird (see §9.5.3). For
the hardware, we send commands generated by this controller to the drone over bluetooth using
PyParrot [McG19].

9.6.4 Forward Reachable Set

We compute the FRS in the same way as the Hummingbird in §9.5.4, using [Alt15] to compute
the PRS, and Algorithm 3 to compute the ERS. The body is overestimated by a cuboid zonotope
of size 0.2× 0.2× 0.2 m3.

Importantly, to compute the ERS, we partition the initial condition space in both velocity
and altitude (the p3 state, which determines ground effect). We partition the velocity range of
[−1.5, 1.5] m/s into 7 subsets in each of the 3 velocity dimensions. We partition the altitude range
of [0, 2] m into 9 subsets. This results in approximately 450,000 error zonotopes; it takes ap-
proximately 1.5 hours to run Algorithm 3 on a 3.4 GHz laptop. Note that this is slower than
the Hummingbird ERS computation, because we simulate the Mambo using MATLAB’S ode45

solver as opposed to Euler integration. The ERS is stored in a lookup table of approximately 4
MB.

9.6.5 Simulation in Static Environments

Environment The drone flies indoors, in a 5.4 × 2.2 × 2 m3 rectangular area (the maximum
altitude is 2 m). In every trial, the drone begins at one end of the flight area, and must traverse the
entire flight area to reach a global goal area (a sphere of radius 0.25 m) located at a height of 1.5 m.

185

We simulate 1000 static environments, which contain between 0 and 18 random cuboid obstacles.
We ensure the obstacles are not within 0.5 m of the start or goal; however, there is no guarantee
that any trial has a feasible path from start to goal. A trial is successful if the robot reaches the
global goal without any collisions.

High-Level Planner We use an RRT* HLP [KF11] to generate a waypoint up to 1 m away
from the drone, along a collision-free path, at each receding-horizon planning iteration. The RRT*
code is available online [KVL19]. The trajectory optimization cost function is to minimize the
Euclidean distance to the waypoint at the time tpeak.

RTD Online Planning All obstacles are represented as cuboid zonotopes. We use these zono-
topes to generate collision-avoidance constraints as in §6.4.

We solve RTD’s online trajectory optimization method in two ways. First, we use the fmincon
generic nonlinear solver. Second, we use the sampling approach presented for the Hummingbird
in §9.5.5. Both methods have the timeout of tplan = 0.5 s enforced.

Comparison Methods As mentioned above, we compare RTD to itself using both fmincon

and a sampling method to solve the online trajectory optimization program.
We also compare against two different state-of-the-art spline-based approaches: [RBR16],

which solves a quadratic program (QP) to generate a spline, and [MHD15], which provides an
analytic spline. For these methods, we buffer obstacles by 0.05 m to compensate for the drone’s
body, plus an additional 0.1 m to compensate for tracking error. Both of these methods are imple-
mented in MATLAB, in our open-source simulator [KVL19], as is RTD.

We run all simulations on both a 3.4 GHz processor and a 2.8 GHz processor. This is to show
how RTD performs under computation constraints such as one might find on a small drone with
limited processing power.

Results RTD has no collisions, as expected, regardless of the method used to implement its on-
line trajectory optimization. The spline-based methods cannot make collision avoidance guaran-
tees, because they do not provably account for tracking error. Furthermore, when using a sampling-
based approach to perform trajectory optimization, RTD reaches the most goals regardless of pro-
cessor speed.

We also find that RTD with sampling and the analytic splines [MHD15] reach goals more often
than the RTD and spline approaches that rely on gradient-based optimization to find trajectories.
This is especially noticeable when using the slower 2.8 GHz processor, where fmincon notably
struggles to find solutions within the tplan timeout. We were surprised to see that the quadprog

186

approach struggled, but we attribute this to the potential for numerical instability in constructing
splines in small, cluttered environments [RBR16].

Method Goals Reached [%] Collisions [%]
RTD + sampling 93.7 / 86.4 0.0 / 0.0
RTD + fmincon 72.0 / 19.0 0.0 / 0.0
spline + quadprog [RBR16] 50.1 / 41.4 5.6 / 7.7
spline + sampling [MHD15] 81.6 / 74.1 5.6 / 4.0

Table 9.7: Static obstacles results from 1000 trials for the Mambo microdrone. The slash separates
trials run on two different processors (3.4 / 2.8 GHz). Our proposed RTD reaches the most goals,
and never causes collisions, regardless of processor speed. We also see that sampling methods
outperform derivative-based methods (quadprog and fmincon) for trajectory optimization.

9.6.6 Simulation in Dynamic Environments

Environment We also simulate 1000 dynamic environments. The start, goal, and environment
size are the same as for the static environments. Each environment contains between 0 and 3 static
obstacles, and either 1 or 2 human-shaped dynamic obstacles of size 0.75 × 0.75 × 2 m3. These
obstacles travel along a randomly-generated path at a randomly-selected speed between 0.25 and
0.75 m/s. To avoid introducing additional complexity in terms of assessing fault in collisions,
we do not simulate interactions; that is, the dynamic obstacles do not alter their course to avoid
the drone. This makes it more challenging to successfully navigate the dynamic environments,
since the obstacles may be aggressive. We mitigate this by providing all methods (RTD and the
comparison method mentioned below) with perfect predictions of each obstacle’s motion up to 3 s
into the future. A trial is successful if the robot reaches the global goal without causing any at-fault
collisions.

High-Level Planner We use a straight-line HLP, where the robot attempts to reach a waypoint
1 m along a straight line between itself and the global goal in each receding-horizon planning
iteration. The trajectory optimization cost function is to minimize the Euclidean distance to the
waypoint at the time tpeak.

RTD Online Planning We use the same approach as above for the Mambo in static environ-
ments. That is, all obstacles are represented as cuboid zonotopes, and we generate collision-
avoidance constraints as in §6.4. We solve RTD’s online trajectory optimization method using the
fmincon generic nonlinear solver and the sampling approach presented for the Hummingbird in
§9.5.5. Both methods have the timeout of tplan = 0.5 s enforced.

187

Comparison Methods In addition to comparing RTD against itself with fmincon and sam-
pling, we compare to a potential field tracking controller [FKS20]. We tuned this controller empir-
ically to avoid collision with a single dynamic obstacle as presented in [FKS20]. Note, this method
is not a trajectory planner; instead, we use the output of the straight line HLP in each planning it-
eration as the desired location for the controller to drive the robot towards. The controller creates
artificial forces to repel itself from static and dynamic obstacles. We implement the controller at a
rate of 100 Hz.

Results RTD causes no at-fault collisions, as expected. It significantly outperforms the potential
field tracking controller; this shows the important of trajectory planning to enforce dynamic obsta-
cle avoidance in arbitrary scenarios. Recall that we noticed the same trend with the linear MPC for
the EV in §9.4.

The potential field tracking controller [FKS20] struggles to navigate arbitrary environments
because the dynamic obstacles often push the drone towards static obstacles, trapping the drone
and causing a collision. This is expected, because the tracking controller does not plan an entire
trajectory to avoid becoming trapped.

Method Goals Reached [%] Collisions [%]
RTD + sampling 99.4 / 92.9 0.0 / 0.0
RTD + fmincon 96.9 / 54.8 0.0 / 0.0
potential field [FKS20] 58.5 / 58.6 40.5 / 40.4

Table 9.8: Dynamic obstacles results from 1000 trials for the Mambo microdrone. The slash sep-
arates trials run on two different processors (3.4 / 2.8 GHz). The trends are the same as for static
obstacles (see Table 9.7). Notice the potential field low-level controller [FKS20] has nearly identi-
cal numbers regardless of processor speed, which is expected since it is not performing trajectory
optimization.

9.6.7 Hardware Demonstration

We applied RTD to the hardware drone in four static environments, and three dyanmic environ-
ments (using a car-like Rover robot [KVB+20], or two humans, as obstacles). The drone never
crashed. A video is available: https://youtu.be/1cldHVQK3Yw.

The hardware demonstration revealed three unmodeled aerodynamic effects. First, open vents
in the ceiling of our testing area produced wind. Second, dynamic obstacles created wake. Third,
downwash from the drone augmented the ground effect near obstacles. Due to the Mambo’s small
size (63 g including motion capture markers), the first two effects were able to push the drone up
to several centimeters out of its FRS (i.e., prevent strict collision-avoidance guarantees) on two

188

https://youtu.be/1cldHVQK3Yw

occasions (all other instances were mediated by the drone’s feedback controller). The third effect
caused the drone to struggle to maintain a low altitude, but was mediated by the goal’s 1.5 m
altitude. We plan to include these effects in RTD for future work.

9.7 The Fetch Manipulator

We use the Fetch mobile manipulator platform [WFK+16] to demonstrate RTD’s rotatotope FRS
presented in §8. To the best of our knowledge, this the is the first provably safe and real-time
manipulator trajectory planner.

The Fetch arm has 7 revolute DOFs (the robot has other DOFs for its wheeled mobile base;
we have not yet implemented RTD on the mobile base). We use the arm’s first 6 DOFs for RTD,
and treat the body as an obstacle. The 7th DOF controls end effector orientation, which does not
affect the volume used for collision checking. We command the hardware via ROS [QCG+09]
over WiFi. RTD is implemented in MATLAB, CUDA, and C++, on a 3.6 GHz computer with an
Nvidia Quadro RTX 8000 GPU.

The robot is simulated using our open-source MATLAB simulator [KVL19]. The code used
to simulate the robot is available online [HZKR20]. We use tplan = 0.5 s for the receding-horizon
planning timeout in both simulation and hardware.

9.7.1 Robot Model

First, we note that the Fetch’s motors and built-in motor controllers produce negligible tracking
error (within 0.01 rad) with respect to our choice of parameterized trajectories below. We expect
that this assumption will not hold when we move to more aggressive dynamic motion, and grasping
heavy objects; but, our current (kinematic) approach is an important first step towards these goals.
Also see §8.1.2.

Recall that, for the rotatotope FRS formulation, we parameterize the (kinematic) joint trajec-
tories directly. We use X = Q = S6 (that is, we are considering 6 revolute DOFs). We define a
velocity parameter kv ∈ RnQ that defines the joint’s initial velocity, and an acceleration parameter
ka ∈ RnQ that specifies a constant acceleration over [0, tplan). We write kv = (kv1 , · · · , kvnQ

) and
similarly for ka. We denote k = (kv, ka) ∈ K ⊂ RnK , where nK = 2nQ. The trajectories are
given by

ẋi(t; k) =

kv + kat, t ∈ [0, tplan)

kv+katplan

tf−tplan
(tf − t), t ∈ [tplan, tf],

, (9.41)

189

with xi(0; k) = 0 for all k (that is, x0 = 0 is the center of the planning frame for the planning
model). These trajectories brake to a stop over [tplan, tf] with constant acceleration.

We create K as the Cartesian product of a parameter interval for each joint:

K = K1 ×K2 × · · ·KnQ
m (9.42)

where Ki denotes the parameters for joint i. For each joint i, we specify Ki = Kvi ×Kai , where

Kvi =
[
kvi,0 −∆kvi

, kv0,i + ∆kvi

]
and (9.43)

Kai =
[
kai,0 −∆kai

, kai,0 + ∆kai

]
, (9.44)

with kvi,0, kai,0, ∆kvi
, and ∆kai

∈ R. We also ensure that Kai is small enough to enforce the
acceleration limits of the manipulator.

We use tplan = 0.5 s and tf = 1.0 s. For each ith joint, we treat the joint limits as ẋmax,i = π

rad/s and ẍmax,i = π/3 rad/s2.

9.7.2 Forward Reachable Set

We apply the procedure detailed in §8.4 as written. We use the toolbox [Alt15] to compute the
JRS as a set of zonotopes as in (8.26). We partition time with ∆t = 0.01 s, resulting in a JRS
represented by 100 zonotopes.

While we do not compute an ERS for the Fetch, we did find that the JRS becomes less con-
servative when we choose a smaller range for kv. Therefore, we partition the space Kvi into 400

small intervals, and set kvi,0 and ∆kvi
appropriately given ẋmax,i as above. For each subset in this

partition of Kvi , we set ∆kai
as no more than π/24 rad/s2 while ensuring that the parameter range

does not allow the robot to exceed its joint speed limits. At runtime, we choose the appropriate
JRS for each joint’s current speed (i.e., we use FRS swapping as in §4.7).

9.7.3 Simulation in Static Environments

Environment We created two sets of trials. The first set, Random Obstacles, shows that RTD can
handle arbitrary tasks (see Fig 9.14). This set contains 100 tasks with random (but collision-free)
start and goal configurations, and random box-shaped obstacles. Obstacle side lengths vary from
1 to 50 cm, with 10 trials for each nO = 4, 8, ..., 40. The second set, Hard Scenarios, shows that
RTD guarantees safety where a comparison method (see below) converges to an unsafe trajectory.
There are seven tasks in the Hard Scenarios set: (1) from below to above a table, (2) from one
side of a wall to another, (3) between two vertical posts, (4) from one set of shelves to another, (5)

190

from inside to outside of a box on the ground, (6) from a sink to a cupboard, (7) through a small
window. These are shown in Figure 9.15.

High-Level Planner To illustrate that RTD can enforce safety, we use two different HLPs, nei-
ther of which is guaranteed to generate collision-free waypoints. First, a straight-line HLP that
generates waypoints along a straight line between the arm and a global goal in configuration space.
Second, an RRT* [KF11] that only ensures the arm’s end effector is collision-free. Thus, RTD can

act as a safety layer on top of an unsafe RRT*.
Note, we allot 0.1 s of tplan to the HLP in each iteration, and give RTD the rest of tplan. We

cannot use CHOMP as a receding-horizon planner with these HLP waypoints, because it requires
a collision-free goal configuration.

The cost function for trajectory optimization is to minimize the Euclidean distance in configu-

ration space to the waypoint at each planning iteration.

RTD Online Planning We represent all obstacles as zonotopes, and apply the procedure in §8.6
as written.

We use a GPU with CUDA to compose the rotatotopes in parallel, taking approximately 10–20

ms to compose a full RS. Constraint generation is also parallelized across obstacles and time steps
(this takes approximately 10–20 ms for 20 obstacles).

We solve the online trajectory optimization program with IPOPT [WLMK20]. Note, we pass
this solver analytic subgradients for the collision-avoidance constraints.

Comparison Method To assess the difficulty of our simulated environments, we ran CHOMP
[ZRD+13] via MoveIt [CSCC14] (default settings, straight-line initialization). We emphasize that
CHOMP is not a receding-horizon planner [CSCC14]; it attempts to find a plan from start to goal
with a single optimization program. However, CHOMP provides a useful baseline to measure the
performance of RTD. To the best of our knowledge, no open-source, real-time receding-horizon
planner is available for a direct comparison. The cost function for CHOMP is the default, created
to have the arm reach the input goal configuration (which we ensure is collision free for each trial).

We did not attempt to tune CHOMP to only find feasible plans (e.g., by buffering the arm),
since this incurs a tradeoff between safety and performance. Note, in MoveIt, infeasible CHOMP
plans are not executed (if detected by an external collision-checker).

Results RTD produced no collisions in any trial, as expected. It reaches a comparable number
of goals to CHOMP in the Random Obstacles trials, but in a receding-horizon way. It is also able
to solve 5/7 of the Hard Scenarios, with which CHOMP struggled.

191

For the Random Obstacles trials, the results are as follows, and are summarized in Table 9.14
oth RTD and CHOMP reach nearly the same number of goals; however, all of CHOMP’s failures
were trials in which it converged to a collision. We report the mean solve time (MST) of RTD
over all planning iterations, while the MST for CHOMP is the mean over all 100 tasks. Directly
comparing timing is not possible since RTD and CHOMP use different planning paradigms; we
report MST to confirm RTD is capable of real-time planning (note that that RTD’s MST is less than
tplan = 0.5). We also report the mean normalized path distance (MNPD) of the plans produced by
each planner (the mean is taken over all 100 tasks). The normalized path distance is a path’s
Euclidean distance (in configuration space), divided by the Euclidean distance between the start
and goal. For example, the straight line from start to goal has a (unitless) normalized path distance
of 1. RTD’s MNPD is 24% smaller than CHOMP’s when using the straight line HLP, which
may be because CHOMP’s cost rewards path smoothness, whereas RTD’s cost rewards reaching
an intermediate waypoint at each planning iteration (note, path smoothness could be included in
RTD’s cost function).

For the Hard Scenarios, the results are as follows, and summarized in Table 9.10. With the
straight-line HLP, RTD does not complete any of the tasks but also has no collisions. With the
RRT* HLP [KF11], RTD completes 5/7 scenarios. CHOMP converges to trajectories with colli-
sions in all of the Hard Scenarios.

Figure 9.14: A Random Obstacles trial with 8 obstacles in which CHOMP [ZRD+13] converged
to a trajectory with a collision (collision configurations shown in red), whereas RTD successfully
navigated to the goal (green); the start pose is shown in purple. CHOMP fails to move around a
small obstacle close to the front of the Fetch.

192

Figure 9.15: The set of seven Hard Scenarios (number in the top left), with start pose shown in
purple and goal pose shown in green. There are seven tasks in the Hard Scenarios set: (1) from
below to above a table, (2) from one side of a wall to another, (3) between two vertical posts, (4)
from one set of shelves to another, (5) from inside to outside of a box on the ground, (6) from a
sink to a cupboard, (7) through a small window.

Method Goals [%] Collisions [%] MST [s] MNPD
RTD + SL 84 0 0.273 1.076
RTD + RRT* 62 0 0.466 1.417
CHOMP 82 18 0.177 1.511

Table 9.9: Simulation results for the Fetch mobile manipulator on the 100 Random Obstacles trials.
RTD uses the straight-line (SL) and RRT* HLPs; CHOMP [ZRD+13] uses the default settings
from MoveIt [CSCC14]. MST is mean solve time (per planning iteration for RTD, and total for
CHOMP) and MNPD is mean normalized path distance. MNPD is only computed for trials where
the task was successfully completed, i.e. the path was valid.

9.7.4 Hardware Demonstration

RTD completes arbitrary tasks while safely navigating the Fetch arm around obstacles in scenarios
similar to Hard Scenarios (1) and (4). We demonstrate real-time planning by suddenly introducing
obstacles (a box, a vase, and a quadrotor) in front of the moving arm. The obstacles are tracked
using motion capture, and are treated as static in each planning iteration. Since RTD performs
receding-horizon planning, it can react to the sudden obstacle appearance and continue planning
without collisions. A video is available: youtu.be/ySnux2owlAA.

193

https://youtu.be/ySnux2owlAA

Method 1 2 3 4 5 6 7
RTD + SL S S S S S S S
RTD + RRT* O O O S O S O
CHOMP C C C C C C C

Table 9.10: Simulation results for the seven Hard Scenario simulations. RTD uses the straight-line
(SL) and RRT* HLPs. The entries are “O” for task completed, “C” for a crash, or “S” for stopping
safely without reaching the goal.

9.8 Chapter Review

The takeaway of this chapter is that RTD provides safe, real-time planning over thousands of simu-
lations and dozens of hardware demonstrations, on seven different robots with three different mor-
phologies. An additional wheeled robot, the Turtlebot, is demonstrated in the open-source tutorial
[KV19]. Additional manipulators are available in the manipulator RTD repository [HZKR20].

9.8.1 Chapter Summary

We demonstrated RTD on four different wheeled robots: the Segway, Rover, Fusion, and EV. We
then demonstrated RTD on two different quadrotors: the Hummingbird and the Mambo. Finally,
we demonstrated RTD on a Fetch manipulator.

9.8.2 What is Missing?

For wheeled robots, we have not yet considered significant tire slip during aggressive maneuvers,
where an accurate high-fidelity model may not be available. For aerial robots, we have not yet
considered wind. For manipulators, we have yet to treat the full dynamics with, e.g., Coriolis
forces and joint torque limits. We have also not yet treated the multi-agent planning case.

194

CHAPTER 10

Conclusion and Future Directions

This dissertation has developed Reachability-based Trajectory Design (RTD) as a general frame-
work for provably-safe, real-time motion planning. The method is demonstrated on wheeled,
aerial, and manipulator robots; across thousands of simulations and dozens of hardware demonstra-
tions, RTD has enabled these robots to safely and successfully complete tasks that are challenging
or impossible for other state-of-the-art approaches.

In this chapter, we provide a review of the dissertation’s contributions, and discuss future re-
search directions.

10.1 Dissertation Review and Contributions

We first briefly review the structure of this dissertation. In §3, we developed a generic theoretical
framework for RTD; in particular, we formally specified notions of safety and fault, and showed
how mathematical objects called reachable sets can be used to formulate safe motion planning.
To implement this theory, in §4, we developed an offline sums-of-squares polynomial approach
to compute the robot’s Forward Reachable Set (FRS) as a polynomial, and showed how to use
this polynomial at runtime to enable provably-safe motion planning. Then, in §5, we specified a
novel discretized obstacle representation for arbitrary planar (i.e., wheeled) robots that enables safe
and real-time planning with the polynomial FRS. To extend RTD to robots outside the plane, in
§6, we then developed an FRS representation using zonotopes, a special type of convex polytope.
We showed how to incorporate tracking error into the polynomial and zonotope FRSes in §7. To
conclude the development of RTD, in §8 we introduced rotatotopes, an extension of zonotopes
that make RTD tractable for multi-link robots such as manipulators, whereas the polynomial and
zonotope methods were restricted to single rigid-body robots. Finally, in §9, we showed that RTD
is practical for wheeled, aerial, and manipulator robots with a large variety of simulations and
hardware demonstrations.

The key contribution of this work is RTD as a general theoretical framework. We developed

195

several mathematical formulations of reachable sets and obstacle representations to make RTD
numerically tractable. We have also made our code available and accessible [KVV19, KV19,
HZKR20]. Finally, we demonstrated the practicality of RTD with extensive evaluation and com-
parison against other state-of-the-art methods.

10.2 Future Research Directions

Several gaps remain that, if filled, can make RTD even more widely applicable and practical. We
now discuss these gaps, and potential ways forward in addressing them. We then specify which
ones shall be filled by the completion of this dissertation.

Probabilistic Obstacles Currently, all obstacle representations are expected to be deterministic
overapproximations for RTD applied to any robot morphology. This is a conservative approach,
and can lead to the robot stopping frequently. Instead, we can consider obstacles (and robot dynam-
ics) described with probability distributions (e.g., [JHJRV17, BBR+19]), and use a risk measure
such as Conditional Value-at-Risk (CVaR) [CLT+19] to define probabilistic collision-avoidance
constraints at runtime.

Tracking Error Computation So far, we have computed tracking error offline via sampling and
conservatively fitting polynomials [KVB+20] or zonotopes [KHV19] to these samples. We have
leveraged information about the high-fidelity model to choose these samples to maximize tracking
error. In cases where the high-fidelity model changes slowly (such as a drone’s battery losing
charge) or is unknown, we still want to be able to capture tracking error, without simply choosing
a large number to encompass all possible tracking error a priori. In other words, we should be able
to learn the model error at runtime, perhaps similar to a learning-based MPC approach [AGST13].

Trajectory Optimization During online receding-horizon planning, we have so far always used
a nonlinear solver for trajectory optimization, such as MATLAB’s fmincon [Mat19b], or IPOPT
[WLMK20]. These solvers can be fast, but have no certification of finding globally optimal so-
lutions, or even finding feasible solutions if they exist. To address this, we have begun exploring
branch-and-bound techniques to find optimal plans in real time [KZZV20].

Interaction Modeling In dynamic environments, we have not yet considered interactions. That
is, we have not included how other actors would react to our motion plan in the predictions of their
behavior. Ideally, we could include interaction as part of the cost or constraints for online trajectory

196

optimization, akin to a differential game formulation (e.g., [MBT05], but this application would
require a much faster solver).

Tire Friction For wheeled robots, we have not yet explicitly incorporated tire friction limits
(instead, we have implicitly included them as tracking error). This approach means we have not
yet handled cases such as driving on snow or ice. A possible intermediate step towards treating
this driving regime is to consider stable drifting trajectories such as in [GG16].

Drone Aerodynamics For quadrotor drones, we have not yet included aerodynamic disturbances
such as wind or obstacle wake, which we identified as issues with the Parrot Mambo hardware
demonstration in §9.6. A potential way forward is to use higher-dimensional, linearized versions
of the dynamics to capture these nonlinear effects, since our quadrotor planning model is linear
[KHV19]. Such an approach has been shown successfully for hard-to-model systems such as soft
robots [BRV19].

Manipulator Dynamics For manipulator arms, we have not yet considered dynamics and the
resulting trajectory-dependent bounds on actuator torque limits. Since our approach for arms uses
zonotope reachability, we may be able to incorporate these limits as zonotopes that bound tracking
error [GA17], then add them to our reachable set at runtime as is done with our approach for
drones [KHV19]. Furthermore, we have not yet performed grasping tasks with RTD; but, our
current approach can tolerate runtime changes to the arm’s geometry.

10.3 Final Remarks

The key takeaway of this work is the practicality of safe, real-time robot motion planning. We
have shown this on a variety of robots in real-world demonstrations, and have made our code and
implementations available and accessible. However, in addition to the future research directions
mentioned above, it is critical for robots to have perception guarantees, which are not addressed in
this work. To make robots in general, practical, the major next step lies in closing the loop between
perception and planning in a robust and fast way. We believe that RTD is an important step towards
this goal.

197

BIBLIOGRAPHY

[ACE+19] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil
Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications.
In 2019 18th European Control Conference (ECC), pages 3420–3431. IEEE, 2019.

[AGLP19] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira. Effortless creation of safe robots
from modules through self-programming and self-verification. Science Robotics,
4(31), 2019.

[AGST13] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. Provably
safe and robust learning-based model predictive control. Automatica, 49(5):1216–
1226, 2013.

[Alt10] Matthias Althoff. Reachability analysis and its application to the safety assess-
ment of autonomous cars. PhD thesis, Technische Universität München, 2010.

[Alt13] Matthias Althoff. Reachability Analysis of Nonlinear Systems Using Conserva-
tive Polynomialization and Non-Convex Sets. In Proceedings of the 16th Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC ’13, page
173–182, New York, NY, USA, 2013. Association for Computing Machinery.

[Alt15] M. Althoff. An Introduction to CORA 2015. In Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[Asc19] Ascending Technologies. AscTec Hummingbird, 3 2019.

[BAC06] José Manuel Bravo, Teodoro Alamo, and Eduardo F Camacho. Robust MPC of
constrained discrete-time nonlinear systems based on approximated reachable sets.
Automatica, 42(10):1745–1751, 2006.

[BBB+19] Andrea Bajcsy, Somil Bansal, Eli Bronstein, Varun Tolani, and Claire J Tomlin.
An efficient reachability-based framework for provably safe autonomous naviga-
tion in unknown environments. arXiv preprint arXiv:1905.00532, 2019.

[BBR+19] Somil Bansal, Andrea Bajcsy, Ellis Ratner, Anca D Dragan, and Claire J Tomlin.
A Hamilton-Jacobi reachability-based framework for predicting and analyzing hu-
man motion for safe planning. arXiv preprint arXiv:1910.13369, 2019.

[BK00] Robert Bohlin and Lydia E Kavraki. Path planning using lazy PRM. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE International Conference on

198

https://ieeexplore.ieee.org/document/8796030
https://robotics.sciencemag.org/content/4/31/eaaw1924
https://robotics.sciencemag.org/content/4/31/eaaw1924
https://www.sciencedirect.com/science/article/pii/S0005109813000678
https://www.sciencedirect.com/science/article/pii/S0005109813000678
https://mediatum.ub.tum.de/doc/963752/document.pdf
https://mediatum.ub.tum.de/doc/963752/document.pdf
https://dl.acm.org/doi/10.1145/2461328.2461358
https://dl.acm.org/doi/10.1145/2461328.2461358
https://tumcps.github.io/CORA/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
https://www.sciencedirect.com/science/article/pii/S0005109806001919
https://www.sciencedirect.com/science/article/pii/S0005109806001919
https://arxiv.org/abs/1905.00532
https://arxiv.org/abs/1905.00532
https://arxiv.org/abs/1910.13369
https://arxiv.org/abs/1910.13369
https://ieeexplore.ieee.org/abstract/document/844107

Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol-
ume 1, pages 521–528. IEEE, 2000.

[BL91] Jerome Barraquand and Jean-Claude Latombe. Robot motion planning: A dis-
tributed representation approach. The International Journal of Robotics Research,
10(6):628–649, 1991.

[BM99] Alberto Bemporad and Manfred Morari. Robust model predictive control: A sur-
vey. In Robustness in identification and control, pages 207–226. Springer, 1999.

[BPA17] D. Beckert, A. Pereira, and M. Althoff. Online verification of multiple safety
criteria for a robot trajectory. In 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 6454–6461, Dec 2017. View online.

[BRV19] Daniel Bruder, C David Remy, and Ram Vasudevan. Nonlinear system identifica-
tion of soft robot dynamics using koopman operator theory. In 2019 International
Conference on Robotics and Automation (ICRA), pages 6244–6250. IEEE, 2019.

[BWWN19] Julie Stephany Berrio, James Ward, Stewart Worrall, and Eduardo Nebot. Identi-
fying robust landmarks in feature-based maps. In 2019 IEEE Intelligent Vehicles
Symposium (IV), pages 1166–1172. IEEE, 2019.

[C+13] Erwin Coumans et al. Bullet physics library. Open source: bulletphysics. org,
15(49):5, 2013.

[CHV+18] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin. Decom-
position of Reachable Sets and Tubes for a Class of Nonlinear Systems. IEEE
Transactions on Automatic Control, 63(11):3675–3688, 11 2018.

[CLS16] J. Chen, T. Liu, and S. Shen. Online generation of collision-free trajectories for
quadrotor flight in unknown cluttered environments. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 1476–1483, 5 2016.

[CLT+19] Margaret P Chapman, Jonathan Lacotte, Aviv Tamar, Donggun Lee, Kevin M
Smith, Victoria Cheng, Jaime F Fisac, Susmit Jha, Marco Pavone, and Claire J
Tomlin. A Risk-Sensitive Finite-Time Reachability Approach for Safety of
Stochastic Dynamic Systems. In 2019 American Control Conference (ACC), pages
2958–2963. IEEE, 2019.

[CMO14] Elena Celledoni, Håkon Marthinsen, and Brynjulf Owren. An introduction to Lie
group integrators–basics, new developments and applications. Journal of Compu-
tational Physics, 257:1040–1061, 2014.

[CPG17] Yuxiao Chen, Huei Peng, and Jessy Grizzle. Obstacle avoidance for low-speed
autonomous vehicles with barrier function. IEEE Transactions on Control Systems
Technology, 26(1):194–206, 2017.

199

https://journals.sagepub.com/doi/abs/10.1177/027836499101000604
https://journals.sagepub.com/doi/abs/10.1177/027836499101000604
https://umsemumtam.cz/user/files/74-robust_model_predictive_control.pdf
https://umsemumtam.cz/user/files/74-robust_model_predictive_control.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8264632
https://ieeexplore.ieee.org/abstract/document/8793766
https://ieeexplore.ieee.org/abstract/document/8793766
https://ieeexplore.ieee.org/abstract/document/8814289
https://ieeexplore.ieee.org/abstract/document/8814289
https://github.com/bulletphysics/bullet3
https://ieeexplore.ieee.org/abstract/document/8267187
https://ieeexplore.ieee.org/abstract/document/8267187
https://ieeexplore.ieee.org/abstract/document/7487283
https://ieeexplore.ieee.org/abstract/document/7487283
https://ieeexplore.ieee.org/abstract/document/8815169
https://ieeexplore.ieee.org/abstract/document/8815169
https://www.sciencedirect.com/science/article/pii/S0021999113000041
https://www.sciencedirect.com/science/article/pii/S0021999113000041
https://ieeexplore.ieee.org/abstract/document/7864310
https://ieeexplore.ieee.org/abstract/document/7864310

[CSCC14] David Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Correll. Re-
ducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study.
CoRR, abs/1404.3785, 2014.

[CSS15] J. Chen, K. Su, and S. Shen. Real-time safe trajectory generation for quadro-
tor flight in cluttered environments. In 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1678–1685, Dec 2015.

[CSW+19] Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry Yershov,
Scott Pendleton, James Fu, and Emilio Frazzoli. Liability, ethics, and culture-
aware behavior specification using rulebooks. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8536–8542. IEEE, 2019.

[DGZD15] Wei Dong, Guo-Ying Gu, Xiangyang Zhu, and Han Ding. Development of a
quadrotor test bed—modelling, parameter identification, controller design and tra-
jectory generation. International Journal of Advanced Robotic Systems, 12(2):7,
2015.

[DS16] Christopher M. Dellin and Siddhartha S. Srinivasa. A Unifying Formalism for
Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-first
Search over Paths with Edge Selectors. In Proceedings of the Twenty-Sixth In-
ternational Conference on International Conference on Automated Planning and
Scheduling, ICAPS’16, pages 459–467. AAAI Press, 2016.

[Dub57] Lester E Dubins. On curves of minimal length with a constraint on average cur-
vature, and with prescribed initial and terminal positions and tangents. American
Journal of mathematics, 79(3):497–516, 1957.

[Fer00] Christophe Ferrier. Computation of the distance to semi-algebraic sets. ESAIM:
Control, Optimisation and Calculus of Variations, 5:139–156, 2000.

[FHW12] Efi Fogel, Dan Halperin, and Ron Wein. Minkowksi Sums and Offset Polygons.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[FKS20] Davide Falanga, Kevin Kleber, and Davide Scaramuzza. Dynamic obstacle avoid-
ance for quadrotors with event cameras. Science Robotics, 5(40), 2020.

[FS75] H. Freeman and R. Shapira. Determining the Minimum-area Encasing Rectangle
for an Arbitrary Closed Curve. Commun. ACM, 18(7):409–413, July 1975.

[GA17] A. Giusti and M. Althoff. Efficient Computation of Interval-Arithmetic-Based
Robust Controllers for Rigid Robots. In 2017 First IEEE International Conference
on Robotic Computing (IRC), pages 129–135, 4 2017.

[GG16] Jonathan Y Goh and J Christian Gerdes. Simultaneous stabilization and track-
ing of basic automobile drifting trajectories. In 2016 IEEE Intelligent Vehicles
Symposium (IV), pages 597–602. IEEE, 2016.

200

https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1404.3785
https://ieeexplore.ieee.org/document/7419013
https://ieeexplore.ieee.org/document/7419013
https://arxiv.org/abs/1902.09355
https://arxiv.org/abs/1902.09355
https://journals.sagepub.com/doi/abs/10.5772/59618
https://journals.sagepub.com/doi/abs/10.5772/59618
https://journals.sagepub.com/doi/abs/10.5772/59618
https://www.semanticscholar.org/paper/A-Unifying-Formalism-for-Shortest-Path-Problems-via-Dellin-Srinivasa/70e6334509db4e6f26563fbb41d4c9f81112a741
https://www.semanticscholar.org/paper/A-Unifying-Formalism-for-Shortest-Path-Problems-via-Dellin-Srinivasa/70e6334509db4e6f26563fbb41d4c9f81112a741
https://www.semanticscholar.org/paper/A-Unifying-Formalism-for-Shortest-Path-Problems-via-Dellin-Srinivasa/70e6334509db4e6f26563fbb41d4c9f81112a741
https://www.jstor.org/stable/2372560?origin=crossref&seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/2372560?origin=crossref&seq=1#metadata_info_tab_contents
https://www.cambridge.org/core/journals/esaim-control-optimisation-and-calculus-of-variations/article/computation-of-the-distance-to-semialgebraic-sets/81A1FB6CF24AC820F8A123BC6E17FC69
https://link.springer.com/chapter/10.1007/978-3-642-17283-0_9
https://robotics.sciencemag.org/content/5/40/eaaz9712
https://robotics.sciencemag.org/content/5/40/eaaz9712
https://dl.acm.org/doi/10.1145/360881.360919
https://dl.acm.org/doi/10.1145/360881.360919
https://ieeexplore.ieee.org/document/7926528
https://ieeexplore.ieee.org/document/7926528
https://ieeexplore.ieee.org/abstract/document/7535448
https://ieeexplore.ieee.org/abstract/document/7535448

[GKM10] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. A survey of motion plan-
ning algorithms from the perspective of autonomous UAV guidance. Journal of
Intelligent and Robotic Systems, 57(1-4):65, 2010.

[GNZ03] Leonidas J Guibas, An Nguyen, and Li Zhang. Zonotopes as bounding volumes.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 803–812. Society for Industrial and Applied Mathematics, 2003.

[GPM89] Carlos E Garcia, David M Prett, and Manfred Morari. model predictive control:
theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[GPMN15] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. A re-
view of motion planning techniques for automated vehicles. IEEE Transactions
on Intelligent Transportation Systems, 17(4):1135–1145, 2015.

[Hau12] Kris Hauser. On responsiveness, safety, and completeness in real-time motion
planning. Autonomous Robots, 32(1):35–48, 1 2012.

[HCH+17] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin. FaSTrack:
A modular framework for fast and guaranteed safe motion planning. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pages 1517–1522, 12
2017.

[HGK10] Thomas M Howard, Colin J Green, and Alonzo Kelly. Receding horizon model-
predictive control for mobile robot navigation of intricate paths. In Field and
Service Robotics, pages 69–78. Springer, 2010.

[HHWT11] Gabriel M Hoffmann, Haomiao Huang, Steven L Waslander, and Claire J Tomlin.
Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control
engineering practice, 19(9):1023–1036, 2011.

[HKMV16] Patrick Holmes, Shreyas Kousik, Shankar Mohan, and Ram Vasudevan. Convex
estimation of the α-confidence reachable set for systems with parametric uncer-
tainty. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages
4097–4103. IEEE, 2016.

[HKRA16] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-Time Loop
Closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1271–1278, 2016.

[HKZ+20] Patrick Holmes, Shreyas Kousik, Bohao Zhang, Daphna Raz, Corina Barbalata,
Matthew Johnson-Roberson, and Ram Vasudevan. Reachable Sets for Safe, Real-
Time Manipulator Trajectory Design, 2020.

[HNR68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

201

https://link.springer.com/article/10.1007/s10846-009-9383-1
https://link.springer.com/article/10.1007/s10846-009-9383-1
https://graphics.stanford.edu/~anguyen/papers/zonotope.pdf
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://ieeexplore.ieee.org/document/7339478
https://ieeexplore.ieee.org/document/7339478
https://link.springer.com/article/10.1007/s10514-011-9254-z
https://link.springer.com/article/10.1007/s10514-011-9254-z
https://ieeexplore.ieee.org/abstract/document/8263867
https://ieeexplore.ieee.org/abstract/document/8263867
https://link.springer.com/chapter/10.1007/978-3-642-13408-1_7
https://link.springer.com/chapter/10.1007/978-3-642-13408-1_7
https://www.sciencedirect.com/science/article/pii/S0967066111000712
https://ieeexplore.ieee.org/document/7798890
https://ieeexplore.ieee.org/document/7798890
https://ieeexplore.ieee.org/document/7798890
https://ieeexplore.ieee.org/document/7487258
https://ieeexplore.ieee.org/document/7487258
https://arxiv.org/abs/2002.01591
https://arxiv.org/abs/2002.01591
https://ieeexplore.ieee.org/document/4082128
https://ieeexplore.ieee.org/document/4082128

[HWMZ20] Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger.
Learning-based model predictive control: Toward safe learning in control. An-
nual Review of Control, Robotics, and Autonomous Systems, 3:269–296, 2020.

[HZKR20] Patrick Holmes, Bohao Zhang, Shreyas Kousik, and Daphna Raz. Autonomous
Reachability-based Manipulator Trajectory Design Repository, 2020.

[JHJRV17] Henry O Jacobs, Owen K Hughes, Matthew Johnson-Roberson, and Ram Vasude-
van. Real-time certified probabilistic pedestrian forecasting. IEEE Robotics and
Automation Letters, 2(4):2064–2071, 2017.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. The international journal of robotics research, 30(7):846–894,
2011.

[KFT+08] Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio Frazzoli, and Jonathan P
How. Motion planning for urban driving using RRT. In 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 1681–1686. IEEE,
2008.

[KG02] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall
Upper Saddle River, NJ, 2002.

[KHV19] Shreyas Kousik, Patrick Holmes, and Ram Vasudevan. Safe, Aggressive Quadro-
tor Flight via Reachability-Based Trajectory Design. Dynamic Systems and Con-
trol Conference, 3, 10 2019. V003T19A010.

[KMO+12] Shahab Kaynama, John Maidens, Meeko Oishi, Ian M Mitchell, and Guy A Du-
mont. Computing the viability kernel using maximal reachable sets. In Proceed-
ings of the 15th ACM international conference on Hybrid Systems: Computation
and Control, pages 55–64, 2012.

[KQCD15] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka.
Real-time motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions. Transportation Research Part C: Emerging
Technologies, 60:416–442, 2015.

[KRSV10] T. Kunz, U. Reiser, M. Stilman, and A. Verl. Real-time path planning for a robot
arm in changing environments. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5906–5911, 10 2010.

[KS12] Tobias Kunz and Mike Stilman. Time-Optimal Trajectory Generation for Path
Following with Bounded Acceleration and Velocity. In Robotics: Science and
Systems, 2012.

[KSLO96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
transactions on Robotics and Automation, 12(4):566–580, 1996.

202

https://www.annualreviews.org/doi/full/10.1146/annurev-control-090419-075625
https://github.com/ramvasudevan/arm_planning
https://github.com/ramvasudevan/arm_planning
https://ieeexplore.ieee.org/abstract/document/7959047
https://journals.sagepub.com/doi/abs/10.1177/0278364911406761
https://journals.sagepub.com/doi/abs/10.1177/0278364911406761
https://ieeexplore.ieee.org/abstract/document/4651075
https://www.pearson.com/us/higher-education/program/Khalil-Nonlinear-Systems-3rd-Edition/PGM298535.html
https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2019/59162/V003T19A010/1070634
https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2019/59162/V003T19A010/1070634
https://dl.acm.org/doi/abs/10.1145/2185632.2185644
https://www.sciencedirect.com/science/article/pii/S0968090X15003447
https://www.sciencedirect.com/science/article/pii/S0968090X15003447
https://ieeexplore.ieee.org/document/5653275
https://ieeexplore.ieee.org/document/5653275
http://www.roboticsproceedings.org/rss08/p27.pdf
http://www.roboticsproceedings.org/rss08/p27.pdf
https://ieeexplore.ieee.org/abstract/document/508439
https://ieeexplore.ieee.org/abstract/document/508439

[KV19] Shreyas Kousik and Sean Vaskov. RTD Tutorial, 2019.

[KVB+20] Shreyas Kousik*, Sean Vaskov*, Fan Bu, Matthew Johnson-Roberson, and Ram
Vasudevan. Bridging the Gap Between Safety and Real-Time Performance in
Receding-Horizon Trajectory Design for Mobile Robots. The International Jour-
nal of Robotics Research, 8 2020. In press.

[KVJRV17] Shreyas Kousik, Sean Vaskov, Matthew Johnson-Roberson, and Ram Vasudevan.
Safe trajectory synthesis for autonomous driving in unforeseen environments. In
ASME 2017 Dynamic Systems and Control Conference. American Society of Me-
chanical Engineers Digital Collection, 2017.

[KVL19] Shreyas Kousik, Sean Vaskov, and Hannah Larson. simulator, 2019.

[KVV19] Shreyas Kousik, Sean Vaskov, and Ram Vasudevan. Reachability-based Trajectory
Design Repository, 2019.

[KZZV20] Shreyas Kousik, Bohao Zhang, Pengcheng Zhao, and Ram Vasudevan. Safe, Op-
timal, Real-time Trajectory Planning with a Parallel Constrained Bernstein Algo-
rithm. arXiv preprint arXiv:2003.01758, 2020.

[Las10] Jean-Bernard Lasserre. Moments, positive polynomials and their applications,
volume 1. World Scientific, 2010.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press, New York,
NY, USA, 2006.

[LDM15] Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-
based autonomous racing of 1: 43 scale RC cars. Optimal Control Applications
and Methods, 36(5):628–647, 2015.

[LKJ01] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, 2001.

[LLM10] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Control of complex ma-
neuvers for a quadrotor UAV using geometric methods on SE (3). arXiv preprint
arXiv:1003.2005, 2010.

[Mat19a] MathWorks. Parrot Minidrones Support from Simulink, Nov 2019.

[Mat19b] Mathworks. MATLAB Optimization Toolbox, 2019. The MathWorks, Natick,
MA, USA.

[MBT05] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic games.
IEEE Transactions on automatic control, 50(7):947–957, 2005.

[McG19] Amy McGovern. PyParrot Documentation, Nov 2019.

203

https://github.com/skousik/RTD_tutorial
https://www.semanticscholar.org/paper/Bridging-the-Gap-Between-Safety-and-Real-Time-in-Kousik-Vaskov/0ce162c5f2c6abd65c863d7a10585a83590711a5
https://www.semanticscholar.org/paper/Bridging-the-Gap-Between-Safety-and-Real-Time-in-Kousik-Vaskov/0ce162c5f2c6abd65c863d7a10585a83590711a5
https://asmedigitalcollection.asme.org/DSCC/proceedings-abstract/DSCC2017/58271/V001T44A005/229558
https://github.com/skousik/simulator
https://github.com/ramvasudevan/RTD
https://github.com/ramvasudevan/RTD
https://arxiv.org/abs/2003.01758
https://arxiv.org/abs/2003.01758
https://arxiv.org/abs/2003.01758
https://www.worldscientific.com/worldscibooks/10.1142/p665
http://planning.cs.uiuc.edu/
https://onlinelibrary.wiley.com/doi/full/10.1002/oca.2123
https://onlinelibrary.wiley.com/doi/full/10.1002/oca.2123
https://journals.sagepub.com/doi/abs/10.1177/02783640122067453
https://arxiv.org/abs/1003.2005
https://arxiv.org/abs/1003.2005
https://www.mathworks.com/hardware-support/parrot-minidrones.html
https://www.mathworks.com/help/optim/ug/fmincon.html
https://ieeexplore.ieee.org/document/1463302
https://ieeexplore.ieee.org/document/1463302
https://pyparrot.readthedocs.io/en/latest/

[McN11] Matthew McNaughton. Parallel algorithms for real-time motion planning. PhD
thesis, Citeseer, 2011.

[Mec18] Mechanical Simulation. CarSim, 2018.

[MFJQ+16] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J. Sorin, and George Konidaris.
Robot Motion Planning on a Chip. In Robotics: Science and Systems, 2016.

[MHD15] M. W. Mueller, M. Hehn, and R. D’Andrea. A Computationally Efficient Mo-
tion Primitive for Quadrocopter Trajectory Generation. IEEE Transactions on
Robotics, 31(6):1294–1310, 12 2015.

[MK11] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and con-
trol for quadrotors. In 2011 IEEE international conference on robotics and au-
tomation, pages 2520–2525. IEEE, 2011.

[Mos10] Mosek ApS. The MOSEK optimization software, 2010.

[MSS18] Aditya Mandalika, Oren Salzman, and Siddhartha Srinivasa. Lazy receding hori-
zon A* for efficient path planning in graphs with expensive-to-evaluate edges. In
Twenty-Eighth International Conference on Automated Planning and Scheduling,
2018.

[MT16] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feed-
back motion planning. arXiv preprint arXiv:1601.04037, 2016.

[Mun00] James Munkres. Topology (2nd Edition). Pearson, 2 edition, January 2000.

[MVTT14] Anirudha Majumdar, Ram Vasudevan, Mark M Tobenkin, and Russ Tedrake. Con-
vex optimization of nonlinear feedback controllers via occupation measures. The
International Journal of Robotics Research, 33(9):1209–1230, 2014.

[OF15] Michael Otte and Emilio Frazzoli. RRT-X: Real-Time Motion Plan-
ning/Replanning for Environments with Unpredictable Obstacles. In Algorithmic
Foundations of Robotics XI, pages 461–478. Springer, 2015.

[PA15] A. Pereira and M. Althoff. Safety control of robots under computed torque control
using reachable sets. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 331–338, May 2015. View online.

[Par19] Parrot Drones. Parrot Mambo FPV, Nov 2019.

[PJ87] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. IEEE
Journal on Robotics and Automation, 3(2):115–123, 4 1987.

[PKA16] L. Palmieri, S. Koenig, and K. O. Arras. RRT-based nonholonomic motion plan-
ning using any-angle path biasing. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 2775–2781, May 2016.

204

https://www.cs.cmu.edu/~mmcnaugh/mmcnaugh-proposal.pdf
https://www.carsim.com/
https://www.researchgate.net/profile/George_Konidaris2/publication/304532889_Robot_Motion_Planning_on_a_Chip/links/57f6767708ae280dd0bb29e5.pdf
https://ieeexplore.ieee.org/abstract/document/7299672
https://ieeexplore.ieee.org/abstract/document/7299672
https://ieeexplore.ieee.org/abstract/document/5980409
https://ieeexplore.ieee.org/abstract/document/5980409
http://www. mosek. com
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/viewPaper/17785
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/viewPaper/17785
https://www.semanticscholar.org/paper/Funnel-libraries-for-real-time-robust-feedback-Majumdar-Tedrake/927af41a90a72d64521ed0461d2ec9c257990dd7
https://www.semanticscholar.org/paper/Funnel-libraries-for-real-time-robust-feedback-Majumdar-Tedrake/927af41a90a72d64521ed0461d2ec9c257990dd7
http://www.worldcat.org/isbn/0131816292
https://journals.sagepub.com/doi/full/10.1177/0278364914528059
https://journals.sagepub.com/doi/full/10.1177/0278364914528059
https://link.springer.com/chapter/10.1007/978-3-319-16595-0_27
https://link.springer.com/chapter/10.1007/978-3-319-16595-0_27
https://ieeexplore.ieee.org/abstract/document/7139020
https://www.parrot.com/us/drones/parrot-mambo-fpv
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1087090
10.1109/ICRA.2016.7487439
10.1109/ICRA.2016.7487439

[PKA19] Christian Pek, Markus Koschi, and Matthias Althoff. An online verification frame-
work for motion planning of self-driving vehicles with safety guarantees. In AAET-
Automatisiertes und vernetztes Fahren, 2019.

[PKK09] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially con-
strained mobile robot motion planning in state lattices. Journal of Field Robotics,
26(3):308–333, 2009.

[PLM06] R. Pepy, A. Lambert, and H. Mounier. Path Planning using a Dynamic Vehicle
Model. In 2006 2nd International Conference on Information Communication
Technologies, volume 1, pages 781–786, 2006.

[PMK+13] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, Bruce Kothmann, and
Vijay Kumar. Influence of aerodynamics and proximity effects in quadrotor flight.
In Experimental robotics, pages 289–302. Springer, 2013.

[Pol12] Elijah Polak. Optimization: algorithms and consistent approximations, volume
124. Springer Science & Business Media, 2012.

[PPM12] Chonhyon Park, Jia Pan, and Dinesh Manocha. ITOMP: Incremental Trajectory
Optimization for Real-Time Replanning in Dynamic Environments. In Twenty-
Second International Conference on Automated Planning and Scheduling, 2012.

[PPM20] Chonhyon Park, Jae Sung Park, and Dinesh Manocha. Fast and bounded proba-
bilistic collision detection for high-dof robots in dynamic environments. In Algo-
rithmic Foundations of Robotics XII, pages 592–607. Springer, 2020.

[PR14] Michael A Patterson and Anil V Rao. GPOPS-II: A MATLAB software for solving
multiple-phase optimal control problems using hp-adaptive Gaussian quadrature
collocation methods and sparse nonlinear programming. ACM Transactions on
Mathematical Software (TOMS), 41(1):1–37, 2014.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, volume 3.2, page 5. Kobe,
Japan, 2009.

[QK93] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path planning and
control. In [1993] Proceedings IEEE International Conference on Robotics and
Automation, pages 802–807. IEEE, 1993.

[R+64] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill
New York, 1964.

[Raj11] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business
Media, 2011.

205

https://mediatum.ub.tum.de/1470247
https://mediatum.ub.tum.de/1470247
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20285
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20285
https://ieeexplore.ieee.org/document/1684472
https://ieeexplore.ieee.org/document/1684472
https://doi.org/10.1007/978-3-319-00065-7_21
https://www.springer.com/gp/book/9780387949710
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4705
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4705
https://link.springer.com/chapter/10.1007/978-3-030-43089-4_38
https://link.springer.com/chapter/10.1007/978-3-030-43089-4_38
https://dl.acm.org/doi/abs/10.1145/2558904
https://dl.acm.org/doi/abs/10.1145/2558904
https://dl.acm.org/doi/abs/10.1145/2558904
https://www.ros.org/
https://www.ros.org/
https://ieeexplore.ieee.org/abstract/document/291936
https://ieeexplore.ieee.org/abstract/document/291936
http://pi.math.cornell.edu/~erin/undergrad/151/rudin.pdf
https://link.springer.com/book/10.1007/978-1-4614-1433-9

[RBR16] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments. In Robotics Research,
pages 649–666. Springer, 2016.

[RLMK04] Stephane Redon, Ming C Lin, Dinesh Manocha, and Young J Kim. Fast continu-
ous collision detection for articulated models. ACM Symposium on Solid Modeling
and Applications, 2004.

[SA19] Nils Paul Stephanus Smit-Anseeuw. Robust and Economical Bipedal Locomotion.
PhD thesis, University of Michigan, 2019.

[SCH+18] Sumeet Singh, Mo Chen, Sylvia L Herbert, Claire J Tomlin, and Marco Pavone.
Robust tracking with model mismatch for fast and safe planning: an SOS opti-
mization approach. arXiv preprint arXiv:1808.00649, 2018.

[SDH+14] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with
sequential convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[SHB14] Dieter Schramm, Manfred Hiller, and Roberto Bardini. Vehicle Dynamics Model-
ing and Simulation. Springer, 2014.

[SNGA19] Andrew Singletary, Petter Nilsson, Thomas Gurriet, and Aaron D Ames. Online
active safety for robotic manipulators. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 173–178. IEEE, 2019.

[SSSS17] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model
of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.

[Str82] Gilbert Strang. The Width of a Chair. The American Mathematical Monthly,
89(8):529–534, 1982.

[SVBT14] Victor Shia, Ram Vasudevan, Ruzena Bajcsy, and Russ Tedrake. Convex compu-
tation of the reachable set for controlled polynomial hybrid systems. In Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 1499–1506.
IEEE, 2014.

[SYA19] Stanley W Smith, He Yin, and Murat Arcak. Continuous abstraction of nonlinear
systems using sum-of-squares programming. arXiv preprint arXiv:1909.06468,
2019.

[TK20] Ezra Tal and Sertac Karaman. Accurate tracking of aggressive quadrotor trajecto-
ries using incremental nonlinear dynamic inversion and differential flatness. IEEE
Transactions on Control Systems Technology, 2020.

[TLEH20] Jesus Tordesillas, Brett T Lopez, Michael Everett, and Jonathan P How. FASTER:
Fast and Safe Trajectory Planner for Flights in Unknown Environments. arXiv
preprint arXiv:2001.04420, 2020.

206

https://dspace.mit.edu/handle/1721.1/106840
https://dspace.mit.edu/handle/1721.1/106840
https://asmedigitalcollection.asme.org/computingengineering/article-abstract/5/2/126/465807?casa_token=fzBhfS1lAyQAAAAA:a5nPaBkWi6cOi1KmGp5N5ejR0UfDvwcOHUo3LaLN9cHdf6A7juH9fATMiwe2JDB-Tr4TajU
https://asmedigitalcollection.asme.org/computingengineering/article-abstract/5/2/126/465807?casa_token=fzBhfS1lAyQAAAAA:a5nPaBkWi6cOi1KmGp5N5ejR0UfDvwcOHUo3LaLN9cHdf6A7juH9fATMiwe2JDB-Tr4TajU
https://deepblue.lib.umich.edu/handle/2027.42/153459
https://arxiv.org/abs/1808.00649
https://arxiv.org/abs/1808.00649
https://journals.sagepub.com/doi/full/10.1177/0278364914528132
https://journals.sagepub.com/doi/full/10.1177/0278364914528132
https://www.springer.com/gp/book/9783662544822
https://www.springer.com/gp/book/9783662544822
http://ames.caltech.edu/singletary2019online.pdf
http://ames.caltech.edu/singletary2019online.pdf
https://www.semanticscholar.org/paper/On-a-Formal-Model-of-Safe-and-Scalable-Self-driving-Shalev-Shwartz-Shammah/858f5ef370bf3b70f6680f593b7ea0ccf0bec75f
https://www.semanticscholar.org/paper/On-a-Formal-Model-of-Safe-and-Scalable-Self-driving-Shalev-Shwartz-Shammah/858f5ef370bf3b70f6680f593b7ea0ccf0bec75f
https://doi.org/10.1080/00029890.1982.11995491
https://ieeexplore.ieee.org/abstract/document/7039612
https://ieeexplore.ieee.org/abstract/document/7039612
https://arxiv.org/abs/1909.06468
https://arxiv.org/abs/1909.06468
https://ieeexplore.ieee.org/abstract/document/9121690/
https://ieeexplore.ieee.org/abstract/document/9121690/
https://arxiv.org/abs/2001.04420
https://arxiv.org/abs/2001.04420

[TMTR10] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-
trees: Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 29(8):1038–1052, 2010.

[TPM13] Mark M Tobenkin, Frank Permenter, and Alexandre Megretski. Spotless polyno-
mial and conic optimization, 2013.

[UAB+08] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
M. N. Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele
Gittleman, Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski,
Alonzo Kelly, Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peter-
son, Brian Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo,
Sanjiv Singh, Jarrod Snider, Anthony Stentz, William Whittaker, Ziv Wolkowicki,
Jason Ziglar, Hong Bae, Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi,
Jim Nickolaou, Varsha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor,
Michael Darms, and Dave Ferguson. Autonomous driving in urban environments:
Boss and the urban challenge. Journal of Field Robotics, 25(8):425–466, 2008.

[UMT15] UMTRI. Mcity Grand Opening. Research Review, 46(3), 2015.

[VDBGLM11] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal
n-body collision avoidance. In Robotics research, pages 3–19. Springer, 2011.

[VG18] Andreas Voelz and Knut Graichen. Computation of collision distance and gradient
using an automatic sphere approximation of the robot model with bounded error.
In ISR 2018; 50th International Symposium on Robotics, pages 1–8. VDE, 2018.

[VKL+19] Sean Vaskov*, Shreyas Kousik*, Hannah Larson, Fan Bu, James Ward, Stew-
art Worrall, Matthew Johnson-Roberson, and Ram Vasudevan. Towards Provably
Not-at-Fault Control of Autonomous Robots in Arbitrary Dynamic Environments.
In Robotics: Science and Systems, 2019.

[VLK+19] Sean Vaskov, Hannah Larson, Shreyas Kousik, Matthew Johnson-Roberson, and
Ram Vasudevan. Not-at-Fault Driving in Traffic: A Reachability-Based Approach.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 2785–
2790. IEEE, 2019.

[VSG+12] Ram Vasudevan, Victor Shia, Yiqi Gao, Ricardo Cervera-Navarro, Ruzena Bajcsy,
and Francesco Borrelli. Safe semi-autonomous control with enhanced driver mod-
eling. In 2012 American Control Conference (ACC), pages 2896–2903. IEEE,
2012.

[VSK+19] Sean Vaskov, Utkarsh Sharma, Shreyas Kousik, Matthew Johnson-Roberson, and
Ramanarayan Vasudevan. Guaranteed safe reachability-based trajectory design
for a high-fidelity model of an autonomous passenger vehicle. In 2019 American
Control Conference (ACC), pages 705–710. IEEE, 2019.

207

https://journals.sagepub.com/doi/abs/10.1177/0278364910369189
https://journals.sagepub.com/doi/abs/10.1177/0278364910369189
https://github.com/spot-toolbox/spotless
https://github.com/spot-toolbox/spotless
https://www.ri.cmu.edu/pub_files/pub4/urmson_christopher_2008_1/urmson_christopher_2008_1.pdf
https://www.ri.cmu.edu/pub_files/pub4/urmson_christopher_2008_1/urmson_christopher_2008_1.pdf
http://www.umtri.umich.edu/content/rr_46_3.pdf
https://link.springer.com/chapter/10.1007/978-3-642-19457-3_1
https://link.springer.com/chapter/10.1007/978-3-642-19457-3_1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8470615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8470615
http://www.roboticsproceedings.org/rss15/p51.pdf
http://www.roboticsproceedings.org/rss15/p51.pdf
https://ieeexplore.ieee.org/abstract/document/8917052
https://ieeexplore.ieee.org/abstract/document/6315654
https://ieeexplore.ieee.org/abstract/document/6315654
https://ieeexplore.ieee.org/document/8814853
https://ieeexplore.ieee.org/document/8814853

[War89] Charles W Warren. Global path planning using artificial potential fields. In Pro-
ceedings, 1989 International Conference on Robotics and Automation, pages 316–
321. Ieee, 1989.

[WB09] Yang Wang and Stephen Boyd. Fast model predictive control using online opti-
mization. IEEE Transactions on control systems technology, 18(2):267–278, 2009.

[WFK+16] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich.
Fetch and freight: Standard platforms for service robot applications. In Workshop
on Autonomous Mobile Service Robots, 2016.

[WLMK20] Andreas Waechter, Carl Laird, F Margot, and Y Kawajir. Introduction to IPOPT:
A tutorial for downloading, installing, and using IPOPT. In Revision. COIN-OR,
2020.

[WS16] Guofan Wu and Koushil Sreenath. Safety-critical control of a planar quadrotor. In
2016 American Control Conference (ACC), pages 2252–2258. IEEE, 2016.

[XGTA17] Xiangru Xu, Jessy W Grizzle, Paulo Tabuada, and Aaron D Ames. Correctness
guarantees for the composition of lane keeping and adaptive cruise control. IEEE
Transactions on Automation Science and Engineering, 15(3):1216–1229, 2017.

[YLJS18] Sangyol Yoon, Dasol Lee, Jiwon Jung, and David Hyunchul Shim. Spline-based
RRT* Using Piecewise Continuous Collision-checking Algorithm for Car-like Ve-
hicles. Journal of Intelligent and Robotic Systems, 90(3-4):537–549, 2018.

[YMCA13] Shuyou Yu, Christoph Maier, Hong Chen, and Frank Allgöwer. Tube MPC scheme
based on robust control invariant set with application to Lipschitz nonlinear sys-
tems. Systems & Control Letters, 62(2):194–200, 2013.

[Zha20] Pengcheng Zhao. Fast, Safe, and Optimal Motion Planning for Bipedal Robots.
PhD thesis, University of Michigan – Ann Arbor, 2020.

[ZRD+13] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.
Chomp: Covariant hamiltonian optimization for motion planning. The Interna-
tional Journal of Robotics Research, 32(9-10):1164–1193, 2013.

208

https://ieeexplore.ieee.org/abstract/document/100007
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5153127
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5153127
https://fetchrobotics.com/wp-content/uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf
https://github.com/coin-or/Ipopt
https://github.com/coin-or/Ipopt
https://ieeexplore.ieee.org/abstract/document/7525253
https://ieeexplore.ieee.org/abstract/document/8114339
https://ieeexplore.ieee.org/abstract/document/8114339
https://link.springer.com/article/10.1007/s10846-017-0693-4
https://link.springer.com/article/10.1007/s10846-017-0693-4
https://link.springer.com/article/10.1007/s10846-017-0693-4
https://www.sciencedirect.com/science/article/pii/S0167691112002289
https://www.sciencedirect.com/science/article/pii/S0167691112002289
https://www.sciencedirect.com/science/article/pii/S0167691112002289
https://journals.sagepub.com/doi/abs/10.1177/0278364913488805

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Overview
	Scope and Goals
	Receding-Horizon Planning
	The Planning Hierarchy
	Reachability Analysis
	Research Gap

	Contributions
	Summary of Contributions
	Contributions per Paper
	Safety for Wheeled Robots
	Real-time Performance
	Increased Model Complexity
	Planning in Dynamic Environments
	Extensions Beyond Wheeled Robots

	Dissertation Organization
	Notation

	Safe Motion Planning in the Literature
	Safety
	Defining Safety
	Enforcing Safety in the Planning Hierarchy

	Path Planners
	Sample-and-Check Methods
	Gradient-Based Methods
	Collision Checking
	Path Planner Summary

	Trajectory Planners
	Sample-and-Check Methods
	Gradient-Based Methods
	Trajectory Planner Summary

	Tracking Controllers
	Invariant Set Methods
	Reachable Set Methods
	Tracking Controller Summary

	RTD in Context
	Research Gap Revisited
	Method Summary
	Flexibility of RTD
	Collision Checking

	Chapter Review

	A Unified Theoretical Framework for Safe Trajectory Planning
	Chapter Summary
	The High-Fidelity Model
	Time, States, Inputs, and the High-Fidelity Model
	Projection Operators
	Maximum and Minimum Velocity and Acceleration

	Receding-Horizon Timing
	Workspace, Obstacles, and Sensing
	The Workspace and Forward Occupancy
	Obstacles, Safety, and Fault
	Predictions and Sensing

	The Planning Model
	The Planning Model
	The Planning Frame and the World Frame
	Lifting the Planning Model to the High-Fidelity Model
	Using Trajectory Parameters Online

	Tracking Controller and Error
	The Tracking Controller
	Tracking Error
	Bounds on Choice of Plans
	Modeling Error

	Reachable Sets
	The Forward Reachable Set
	The Planning and Error Reachable Sets
	Predictions as Reachable Sets

	Online Planning
	The Initial Condition
	Identifying Unsafe Plans
	Trajectory Optimization
	The High-Level Planner
	The Online Planning Algorithm
	Provably Safe, Not-at-Fault Planning

	Chapter Review
	Chapter Summary
	What Is Missing?

	Forward Reachable Sets via Sums-of-Squares Programming
	The Tracking Error Model
	A Simplified FRS for SOS Reachability
	An Infinite-Dimensional Linear Program
	Implementing the LP with SOS Programming
	SOS Polynomials
	SOS Relaxation of the Infinite-Dimensional LP
	Sums-of-Squares Memory Usage

	System Decomposition
	Self-contained Subsystems
	Subsystem FRSes
	FRS Reconstruction

	The FRS Over Small Time Intervals
	Time Interval Motivation
	A Secondary Infinite-Dimensional LP
	SOS Relaxation

	Recovering the Original FRS
	Online Planning
	Generic Constraint Formulation
	Static Obstacles Formulation
	Time Interval FRS Formulation
	An Infinite-Dimensional Problem

	Chapter Review
	Chapter Summary
	What Is Missing?

	A Discretized Obstacle Representation for Safe, Real-Time Planning
	Discretized Obstacle Motivation
	Obstacles and Safety via the FRS
	The Discretized Obstacle
	Incorporating Dynamic Obstacles
	Unsafe Parameters for a Point Obstacle

	Definitions and Assumptions
	Geometric Objects
	Robot Assumptions and Motion
	Obstacle Assumptions

	Five Geometric Quantities
	Buffer and Point Spacing Motivation
	The Buffer and Its Bound
	The Point Spacing, Arc Point Spacing, and Their Bound
	Examples

	Finding the Geometric Quantities
	The Point Spacing Bound
	The Buffer Bound
	The Point Spacing
	The Arc Point Spacing

	Constructing the Discretized Obstacle for Static Environments
	The Buffered Obstacle
	Sampling the Boundary of the Buffered Obstacle
	Constructing the Discretized Obstacle

	Proving Safety
	Extension to Dynamic Obstacles
	A Reminder of Dynamic Environments and Unsafe Plans
	A Reminder of Geometric Quantities for Obstacle Discretization
	Continuous Time Discretized Dynamic Obstacle
	Time Interval Discretized Dynamic Obstacle

	Chapter Review
	Example Discretized Obstacle Usage for Polynomial FRS
	Chapter Summary
	What is Missing?

	Forward Reachable Sets via Zonotopes
	Zonotopes
	Definition and Notation
	Zonotope Properties

	Zonotope FRS
	The Planning Reachable Set
	The Error Reachable Set
	The Forward Reachable Set

	Slicing the Zonotope FRS
	Slicing Definition
	Sliceability
	Slicing the Zonotope FRS

	Online Planning
	Obstacle Representation
	Zonotope Intersection
	Identifying Unsafe Plans
	Numerical Constraint Formulation
	Trajectory Optimization Formulation

	Chapter Summary
	Chapter Summary
	What is Missing?

	Error Reachable Sets via Sampling
	Maximizing Tracking Error
	FRS Reminder
	A Partition of the Initial Condition Set
	Forecasting A Sampling Strategy
	Where is Tracking Error Maximized?

	Sampling to Compute the ERS
	Notation Review
	Partition of the Generalized Velocity Space
	Sampling Generalized Velocities
	Sampling Trajectory Parameters
	Computing the Tracking Error for Each Sample
	Storing the Worst-Case Tracking Error
	The ERS Estimation Algorithm

	ERS Representations
	ERS Representation for the Polynomial FRS
	ERS Representation for the Zonotope FRS

	Chapter Review
	Chapter Summary
	What is Missing?

	Forward Reachable Set via Rotatotopes
	Manipulator Notation and Assumptions
	Kinematics
	Dynamics

	Manipulator RTD Overview
	Offline Reachability Analysis
	Online Planning

	Rotatotopes
	Matrix Zonotopes
	Indeterminate Products
	Rotatotopes

	Rotatotope FRS
	Offline JRS Computation
	From Zonotopes to Matrix Zonotopes
	Online Rotatotope FRS Construction

	Slicing Rotatotopes
	Indeterminate Removal and Inclusion
	The Slicing Algorithm
	Slicing the Rotatotope FRS

	Online Planning
	Obstacle Representation
	Fully-Sliceable Generators
	Identifying Unsafe Plans
	Numerical Constraint Formulation
	Trajectory Optimization Formulation

	Chapter Review
	Chapter Summary
	What is Missing?

	Implementations and Comparisons
	The Segway Wheeled Robot
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Static Environments
	Simulation in Dynamic Environments
	Hardware Demonstration

	The Rover Wheeled Robot
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Static Environments
	Hardware Demonstration

	The Fusion Passenger Sedan
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Static Environments

	The EV Wheeled Robot
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Dynamic Environments
	Hardware Demonstration

	The Hummingbird Quadrotor
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Static Environments

	The Mambo Quadrotor
	High-Fidelity Model
	Planning Model
	Tracking Controller
	Forward Reachable Set
	Simulation in Static Environments
	Simulation in Dynamic Environments
	Hardware Demonstration

	The Fetch Manipulator
	Robot Model
	Forward Reachable Set
	Simulation in Static Environments
	Hardware Demonstration

	Chapter Review
	Chapter Summary
	What is Missing?

	Conclusion and Future Directions
	Dissertation Review and Contributions
	Future Research Directions
	Final Remarks

	Bibliography

