
Intelligent Product Agents for Multi-Agent
Control of Manufacturing Systems

by

Ilya Kovalenko

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2020

Doctoral Committee:

Associate Professor Kira Barton, Co-Chair
Professor Dawn Tilbury, Co-Chair
Professor Stéphane Lafortune
Associate Professor Dimitra Panagou
Professor Birgit Vogel-Heuser, Technical University of Munich

Ilya Kovalenko

ikoval@umich.edu

ORCID iD: 0000-0003-4764-9117

c© Ilya Kovalenko 2020

mailto:ikoval@umich.edu

ACKNOWLEDGEMENTS

I would like to thank the Department of Mechanical Engineering, Rackham Grad-

uate School, and the University of Michigan for giving me the opportunity to pursue

the doctoral degree and providing me with financial support during my time at the

university. In addition, I would like to thank the National Science Foundation and

Rockwell Automation for providing financial assistance.

Most importantly, I would like to thank Professors Kira Barton and Dawn Tilbury.

They have been extremely helpful in helping me grow and develop my technical,

professional, and personal skills since meeting them five years ago. My graduate school

experience has been greatly enhanced in large part due to their support and guidance

throughout my time at the University of Michigan. I would also like to thank each of

my committee members: Professor Stéphane Lafortune, Professor Dimitra Panagou,

and Professor Birgit Vogel-Heuser for providing me their support and feedback that

improved the dissertation.

In addition to providing unwavering support, I appreciate the culture and en-

vironment that Professor Barton and Professor Tilbury have fostered in their labs.

This work in this dissertation would not have been possible without support from

each and every member of the two groups. Specifically, I would like to thank Efe

Balta, Mingjie Bi, Gary Zheng, Issac Spiegel, Felipe Lopez, Miguel Saez, and Yassine

Qamsane for helping me develop the agent architectures described in this work. I

would also like to thank the Secure Cloud Manufacturing Multidisciplinary Design

Project Team at the University of Michigan for helping me implement the developed

architectures, methods, and algorithms in the various testbeds at the University of

Michigan.

ii

Outside of the University of Michigan, I would like to thank Professor Vogel-

Heuser and her lab at the Technical University of Munich for hosting me for several

months during the course of my dissertation. This opportunity was immensely help-

ful in the design and implementation of the multi-agent controller described in this

dissertation. Specifically, I would like to thank Felix Ocker, Daria Ryashentseva, and

Juliane Fischer for helping me navigate the lab, the university, and the city during

this time. In addition, I would like to thank Professor Jun Ueda at Georgia Tech for

growing my interest in research as an undergraduate student.

Last, but not least, I would like to thank my family and friends for supporting

me during the past several years. I will fondly remember my time at the University

of Michigan and in Ann Arbor because of all of the people I encountered, friends I

made, and experiences I had. My parents have been supportive of my pursuit of my

degree and I am eternally grateful for their ever-present guidance.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Contributions . 5
1.3 Dissertation Overview . 7

II. Background . 9

2.1 Multi-agent Control of Manufacturing Systems 9
2.2 Intelligent Product Agents 11

2.2.a Rule-based product agents 12
2.2.b Model-based product agents 14
2.2.c Product Agent Exploration 16
2.2.d Product Agent Cooperation 17

III. Model-Based Architecture . 20

3.1 Overview . 21
3.2 Product Agent Knowledge Base 24

3.2.a Desires . 26
3.2.b Beliefs . 27
3.2.c Intentions . 30

3.3 Product Agent Intelligence 31
3.3.a Decision Director 31

iv

3.3.b Exploration . 33
3.3.c Planning . 38
3.3.d Execution . 42

3.4 Case Studies . 44
3.4.a Case-study set-up 44
3.4.b Product Agent Architecture Implementation 46
3.4.c Case-studies for the PA architecture 47
3.4.d Insights from Case Studies 49

3.5 Conclusions . 50

IV. Dynamic Exploration . 52

4.1 Multi-agent Architecture . 53
4.1.a Resource Agent Knowledge 53
4.1.b Product Agent Knowledge 55
4.1.c Agent Communication 56

4.2 Resource Agent Task Negotiation 57
4.2.a Product Agent Bid Request 58
4.2.b Resource Agent Task Negotiation 58
4.2.c Product Agent Bid Compilation 62

4.3 Key Attributes of the Proposed Approach 64
4.3.a Dynamic Network of Resource Agents 64
4.3.b Benefits of Proposed Negotiation Strategy 65

4.4 Conclusions . 66

V. Direct, Active Cooperation . 67

5.1 Priced Timed Automata . 68
5.2 Knowledge Base . 71

5.2.a Goals . 71
5.2.b Environment Model 74
5.2.c Decision Making Model 81

5.3 Cooperation Framework . 84
5.3.a Model Creation . 85
5.3.b Path Planning . 87
5.3.c Coordination . 89
5.3.d Scheduling . 93

5.4 Case Study . 94
5.4.a Simulation setup . 94
5.4.b Case study: small manufacturing system 95

5.5 Conclusions . 98

VI. Implementations . 100

6.1 Fischertechnik . 100

v

6.1.a Agent control and communication architecture . . . 101
6.1.b Fischertechnik case studies and insights 104

6.2 myJoghurt Demonstrator . 105
6.2.a Agent control and communication architecture . . . 105
6.2.b Case study descriptions 107
6.2.c Insights from myJoghurt case studies 110

6.3 System-level Manufacturing and Automation Research Testbed 111
6.3.a Agent control and communication architecture . . . 114
6.3.b SMART case study and insights 114

6.4 Lessons Learned and Insights 115

VII. Conclusions and Future Directions 118

7.1 Contributions . 119
7.2 Limitations and Future Work 122

7.2.a Cooperative learning for product agents 122
7.2.b Developing complementary intelligence for resource

agents . 123
7.2.c Integration of intelligent product agents with a cen-

tralized control architecture 124
7.3 Outlook and Impact . 125

BIBLIOGRAPHY . 127

vi

LIST OF FIGURES

Figure

1.1 High-level overview of the communication between product and re-
source agents for control of manufacturing systems. 3

2.1 Overview of the communication between product agents and resource
agents in multi-agent control strategy. 10

3.1 Overview of the model-based product agent architecture. 22
3.2 Components in the model-based product agent architecture. 25
3.3 Decision making flow chart for the model-based product agent. . . . 32
3.4 Exploration components for the model-based product agent. 33
3.5 Example of the exploration of a PA in a manufacturing system. . . 37
3.6 Planning components for the model-based product agent. 38
3.7 Execution components for the model-based product agent. 42
3.8 The set-up for the model-based architecture simulation case studies. 45
3.9 Case study results for testing the model-based architecture. 46
4.1 Agent communication for the proposed exploration methodology. . . 57
5.1 A visualization of the decision making model for direct, active coop-

eration. 82
5.2 A high-level overview of the direct, active cooperation for the product

agent. 84
5.3 A sequence diagram for negotiation between two direct, actively co-

operating product agents. 91
6.1 An overview of the Fischertechnik testbed. 101
6.2 The setup of the Java Agent Development Framework (JADE) on

the Fischertechnik testbed. 102
6.3 Fischertechnik testbed multi-agent control architecture. 103
6.4 myJoghurt demonstrator multi-agent control architecture. 106
6.5 Set-up for the example scenario demonstrating the PA exploration . 107
6.6 An annotated screenshot of the communication when a new RA enters

the system. 108
6.7 An overview of the System-level Manufacturing and Automation Re-

search Testbed. 112
6.8 Components in the System-level Manufacturing and Automation Re-

search Testbed. 113

vii

7.1 Three of the core contributions for the dissertation. 120

viii

LIST OF TABLES

Table

3.1 Nomenclature for the PA Knowledge Base 24
3.2 Manufacturing processes times for each station 44
4.1 Resource agent knowledge model example. 55
5.1 State properties, invariants, and costs for example in Fig. 5.1 83
5.2 Event descriptions for example in Fig. 5.1. 83
5.3 Time limits for resource actions in the simulation 96

ix

ABSTRACT

The current manufacturing paradigm is shifting toward more flexible manufactur-

ing systems that produce highly personalized products, adapt to unexpected distur-

bances in the system, and readily integrate new manufacturing system technology.

However, to achieve this type of flexibility, new system-level control strategies must

be developed, tested, and integrated to coordinate the components on the shop floor.

One strategy that has been previously proposed to coordinate the resources and parts

in a manufacturing system is multi-agent control.

The manufacturing multi-agent control strategy consists of agents that interface

with the various components on the shop floor and continuously interact with each

other to drive the behavior of the manufacturing system. Two of the most impor-

tant decision-making agents for this type of control strategy are product agents and

resource agents. A product agent represents a single product and a resource agent

represents a single resource on the plant floor. The objective of a product agent is

to make decisions for an individual product and request operations from the resource

agents based on manufacturer and customer specifications. A resource agent is the

high-level controller for a resource on the shop floor (e.g., machines, material-handling

robots, etc.). A resource agent communicates with other product and resource agents

in the system, fulfills product agent requests, and interfaces with the associated re-

source on the plant floor.

While both product agents and resource agents are important to ensure effective

performance of the manufacturing system, the work presented in this dissertation im-

proves the intelligence and capabilities of product agents by providing a standardized

x

product agent architecture, models to capture the dynamics and constraints of the

manufacturing environment, and methods to make improved decisions in a dynamic

system. New methods to explore the manufacturing system and cooperate with other

agents in the system are provided. The proposed architecture, models, and methods

are tested in a simulated manufacturing environment and in several manufactur-

ing testbeds with physical components. The results of these experiments showcase

the improved flexibility and adaptability of this approach. In these experiments, the

model-based product agent effectively makes decisions to meet its production require-

ments, while responding to unexpected disturbances in the system, such as machine

failures or new customer orders. The model-based product agent proposed in this

dissertation pushes the fields of manufacturing and system-level control closer to re-

alizing the goals of increased personalized production and improved manufacturing

system flexibility.

xi

CHAPTER I

Introduction

1.1 Motivation

The manufacturing sector is an important part of the global economy, being re-

sponsible for 16% of the Gross World Product [75]. In the United States, manufac-

turing accounts for 11% of the Gross Domestic Product, provides 12 million jobs,

and supports many other services across the economy [89]. Recent technological ad-

vancements in the areas of sensing, computation, and communication have led to the

promise of a new manufacturing paradigm known as Smart Manufacturing in the

United States and Industry 4.0 in Europe [54, 68]. The goal of this new paradigm

is to increase personalized production, improve system flexibility, and enhance man-

ufacturing productivity by connecting the different stages of the product lifecycle,

gathering data from every stage, and using this data to dynamically adapt the sys-

tem to variations in production demands and operating conditions [19, 40, 129]. The

design, implementation, and analysis of a fully connected manufacturing enterprise

presents a number of scientific and technical challenges [54].

To improve manufacturing system flexibility and enable customized production,

manufacturers are looking to incorporate more advanced manufacturing technology on

the plant floor. Current manufacturing systems are starting to integrate traditional

manufacturing technology, such as CNC (Computer Numerical Control) machines

1

and conveyor systems, with recent manufacturing technology, e.g additive manufac-

turing, automated guided vehicles (AGV), smart industrial robots [33, 51], and the

Industrial Internet of Things [114]. As both the capabilities of individual components

and customer expectations for highly personalized products increase, the control and

coordination of the components on the plant floor become increasingly more compli-

cated. Coordination of the components on the plant floor, also known as system-level

control, presents a number of interesting fundamental research problems [11,119].

One of the major challenges in this area of system-level control is the development

of control strategies that can rapidly adapt to unexpected disturbances on the shop

floor. A system-level controller has to handle unexpected machine faults or break-

downs, respond to changing customer orders, and quickly integrate new machines

into the shop floor, to name a few objectives [11]. One strategy for responding to

these system disturbances is through the use of a centralized, hierarchical control

architecture [67,119]. For this control strategy, the disturbance is handled by a single

controller that has access to all of the information in the manufacturing system. How-

ever, finding new schedules and coordinating all of the system components becomes

more difficult as the complexity of the manufacturing system increases [10]. There-

fore, distributed strategies for manufacturing system-level control have been proposed

to increase the flexibility of the manufacturing system [18,69,83].

One particular distributed control strategy that can be leveraged to address the

challenge of coordinating complex systems is multi-agent control [128]. Agent-based

control of manufacturing systems has been a growing area of research over the past 30

years [56,60,61,112,122]. In this control strategy, a number of software agents make

high-level decisions for various manufacturing system components (e.g., machines,

physical parts, product orders, etc.) [56, 122]. These decisions are determined based

on an agent’s goals, communication with other agents in the system, and information

available from the physical system. The high-level decisions of the various agents

2

Figure 1.1: An overview of the communication between product agents and resource
agents for multi-agent control of manufacturing systems. The background picture of
the smart manufacturing system is taken from [115].

determine the performance of the entire manufacturing system [10,90].

The multi-agent architectures proposed in existing works contain various combi-

nations of agents, with each agent having its own purpose and objective [123]. These

agents are representations of different manufacturing system components, such as re-

sources on the plant floor, parts in the manufacturing system, and customer orders,

among others. The product agent (or a similarly named agent) is a key part of a ma-

jority of these multi-agent architectures. A product agent makes decisions for a single

part in the manufacturing system [29, 78, 123]. The objective for the product agent

(PA) is to schedule and request various operations from the system resources based on

customer specifications. The PA accomplishes its objective through communication

and negotiations with other product agents and resource agents in the system. A

resource agent (RA) is a high-level controller for a resource (e.g. robot, machine) on

the shop floor. RAs attempt to safely and efficiently schedule and complete logistic

or manufacturing tasks in the system.

Figure 1.1 provides a high-level example and overview of the communication be-

3

tween product and resource agents. In the multi-agent control strategy, the PAs need

to communicate with RAs to accomplish required customer specifications. Therefore,

the PAs make decisions and send requests (shown by the filled, green message boxes)

in a limited communication area. Meanwhile, RAs respond to the relevant messages

and make scheduling and operation decisions based on the capabilities, availability,

and status of the associated resource. These decisions are relayed to both product and

resource agents, as shown in Figure 1.1 via the white, unfilled message boxes. This

type of communication and coordination occurs in the entire manufacturing system,

as multiple product agents and resource agents communicate to fulfill the customer

and manufacturer requirements. More details and definitions of both product and

resource agents are provided in Chapter II.

While both both product and resource agents are important components of the

multi-agent control strategy, this dissertation focuses on the development of an in-

telligent, autonomous, and adaptive product agent. In fact, there remain a number

of challenges that must be addressed in the design, development, and implementa-

tion of PAs to fulfill the Industry 4.0 goals of customized production and improved

system flexibility [78]. A majority of existing PAs use rule-based reasoning during

decision making. While rule-based reasoning is easy to develop and implement in real

world systems, it reduces the flexibility and adaptability of the PA, especially in the

presence of unexpected disturbances.

A few model-based approaches to PA intelligence have been proposed to improve

the performance of PAs in manufacturing systems [5, 23, 102, 104, 108]. The model-

based approaches described in [5,23,108] do not describe and define a detailed archi-

tecture that can be integrated with existing multi-agent controllers for manufacturing

systems. The work in [102, 104] describes and uses an architecture for PA decision

making. However, the architecture in [102, 104] does not contain the components

and methods to dynamically build and update models used during decision making.

4

In addition, all of the previously proposed model-based PAs [5, 23, 102, 104, 108] use

passive cooperation techniques. This passive cooperation methodology does not allow

the PA to identify and negotiate over conflicting constraints in the system, reducing

the flexibility of this control strategy.

This dissertation presents new methods to develop autonomous, adaptive, and

cooperative PAs. Specifically, this dissertation proposes a novel software architecture

for the PA and provides methods that can be used by the PA to improve its per-

formance. The developed methods enable the PA to efficiently build a model of the

system capabilities in a dynamic environment, use this model to autonomously plan

and execute actions through communication with other agents in the system, and

cooperate with other agents in the system during planning and scheduling. Overall,

this dissertation work can be used as a blueprint for developing intelligent PAs that

can fulfill highly personalized customer orders, while meeting the various constraints

found in the manufacturing environment.

1.2 Contributions

The core contributions of the dissertation are described in this section.

1) A model-based architecture for product agents:

In most existing multi-agent architectures, PAs use rule-based reasoning to make

decisions in a manufacturing system [29,59,71,76,80,106,116,120]. While rule-based

reasoning is a viable control strategy, it is difficult to scale this approach to a large,

complex manufacturing system with numerous constraints and incorporate flexible

decision making algorithms to improve the performance of the agent. An alternative

control strategy is to use a continuously updated model of the system and optimization

techniques for PA decision making. A few works have focused on developing model-

based PAs, but the software architecture of the proposed model-based PAs are not

outlined in full detail [5, 23, 104, 108]. Therefore, the first contribution of this

5

dissertation is a model-based PA architecture that autonomously makes intelligent

decisions in an unknown manufacturing environment and cooperates with RAs to

schedule and execute actions to guide parts through the manufacturing system. The

model-based architecture is presented in Chapter III and in [44,47].

2) An exploration methodology for efficient product agent model creation in a dynamic

manufacturing environment:

To enable effective decision making in a manufacturing environment, a PA must

understand the state of the physical part and the capabilities of the surrounding re-

sources. Thus, the PA should be able to dynamically explore the capabilities of the

manufacturing environment through communication with other agents in the system.

In existing architectures, PA exploration is accomplished by either supplying the PA

with a holistic view of system capabilities or by allowing the PA to query all of the

resource agents (RAs) in the system. Both of these techniques provide the PA with

too much information, either creating unnecessary communication overhead or pop-

ulating the PA knowledge base with extraneous information. Therefore, the second

contribution of this dissertation is a novel methodology to enable PA exploration

based on a dynamic network of RAs. In the proposed methodology, RAs are able

to coordinate and form teams to enable efficient PA exploration. This exploration

methodology is described in Chapter IV and in [45].

3) A framework to enable direct and active cooperation for the product agent:

A PA must cooperate with other PAs and RAs when making decisions. Specif-

ically, when planning and scheduling future resource actions, a PA must cooperate

with both PAs and RAs to find a sequence of resource actions to complete its associ-

ated part’s production requirements and not conflict with other parts in the system.

Prior work has focused on a passive approach to PA cooperation, where the PA has

to find a set of feasible resource actions without negotiating with other agents to re-

solve scheduling constraints [10,29,50,55,58,104,127]. However, the PA is not always

6

able find a sequence of actions that satisfies all of the existing scheduling constraints

and accomplishes its production goals [47]. This limitation of the passive cooperation

approach reduces the flexibility of the PA and, in turn, reduces the flexibility and

adaptability of the multi-agent control strategy. To improve the flexibility of the PA,

a direct, active cooperation approach can be utilized during the PA’s planning and

scheduling phase. In this type of cooperation, the PA can identify conflicting actions

and, through negotiation, find resolutions for these conflicts. Therefore, the third

contribution of this dissertation is a model-based decision making framework to

enable direct, actively cooperative product agents. This framework is presented in

Chapter V and further details about the framework and its applications are in [43,48].

4) Integration of the model-based product agent with industrial system controllers:

One major challenge in the development of multi-agent control for manufacturing

systems is the integration of agents with industrial system controllers and architec-

tures [61, 123]. To ensure the compatibility of the proposed model-based product

agent, the architecture, models, and methods proposed in this dissertation have been

tested in several manufacturing system testbeds. Therefore, the fourth contri-

bution of this dissertation is the integration of the model-based product agent with

existing, standardized system-level controllers for manufacturing systems. Chapter re-

fchap6 presents a description of multi-agent control implementations in three man-

ufacturing testbeds: the Fischertechnik testbed at the University of Michigan [131],

the myJoghurt Demonstrator at the Technical University of Munich [2,121], and the

System-level Manufacturing and Automation Research Testbed at the University of

Michigan [46].

1.3 Dissertation Overview

This dissertation focuses on the development of intelligent product agents to im-

prove system flexibility. The proposed product agent can explore the local manu-

7

facturing environment, make autonomous decisions in a dynamic system, and coop-

erate with other product agents and resource agents in the system to resolve con-

flicts. Chapter II provides background information and limitations for existing prod-

uct agents. Chapter III presents the architecture developed for the product agent.

This proposed architecture is a baseline architecture for a model-based product agent

that is expanded in the following sections. Chapter IV describes a method for prod-

uct agent exploration via dynamic resource task negotiation. Chapter V proposes

a framework for active and direct cooperation for the product agent. Chapter VI

describes implementations of the product agent in physical manufacturing testbeds.

Finally, Chapter VII provides concluding remarks for the dissertation and proposes

several future directions for this work.

8

CHAPTER II

Background

In this chapter, an overview of the current state of multi-agent control for man-

ufacturing systems is provided. Then, several sections survey the existing work in

the development of intelligence for the product agent, one of the agents commonly

found in this control strategy. Specifically, the existing architectures, exploration

techniques, and cooperation methods for product agents are presented.

2.1 Multi-agent Control of Manufacturing Systems

The field of agent-based systems and multi-agent control has been developed over

the past several decades to tackle problems in a variety of application domains [20,

93, 105, 128]. A number of large, complex systems, from multi-robot systems [30, 95]

to power grids [42,77], have been analyzed and controlled via agent-based technology.

In the area of manufacturing, agent-based technology has been used at various

levels of production, from the supply chain level [27, 39, 81] to the factory floor [56,

60, 122]. For system-level control of manufacturing systems, a wide variety of multi-

agent architectures have been developed [56,61,112,122]. Most of these architectures

identify the roles and responsibilities of the different manufacturing system agents and

develop the communication requirements for this control strategy. Therefore, as part

of these architectures, a number of agents have been proposed to represent customer

9

Figure 2.1: The interactions between product agents, resource agents, and the factory
floor in a multi-agent architecture.

orders, parts in the manufacturing system, resources (e.g. robots and machines) on

the shop floor, among a number of other components [123]. However, for real-time

system level control during production, a large majority of the architectures rely on

the cooperation and decision making of two types of agents: product agents (PAs)

and resource agents (RAs) [119,123].

A resource agent (RA) is a high-level controller for a resource (e.g. robot, machine)

on the shop floor [29,65]. The RA captures the capabilities and current status of the

associated resource, relays that information to other agents in the system, and sends

high-level parameters and actuation commands to the resource (e.g. pick up a specific

part, start a particular manufacturing operation, etc.). The goal of the RA is to safely

and efficiently schedule and complete logistic or manufacturing tasks in the system.

A product agent (PA) makes decisions for a single part in the manufacturing

system [29]. The PA receives information about the status of the physical part and

10

the capabilities of the manufacturing system from the RAs. Based on the information

received from the RAs and a set of production requirements [113], the PA makes a

decision to: (1) obtain the capabilities and plans of other PAs and RAs in the system,

(2) plan and schedule future resource actions, or (3) request the execution of a resource

action. Figure 2.1 shows the general flow of information for product agents, resource

agents, and the factory floor for a multi-agent control strategy.

A number of multi-agent architectures have been integrated into existing man-

ufacturing facilities with promising results [61, 87]. These existing implementations

have showcased only the potential of the multi-agent control strategy, as these works

have focused on developing agents to make decisions in the presence of very specific

disturbances (e.g. a single machine going down) in small-scale manufacturing sys-

tems [57]. Thus, there are a number of challenges that must be addressed before this

strategy can be used in larger, more complex industrial manufacturing systems. One

of the primary challenges is to create more flexible agents that autonomously make

decisions in the presence of multiple, different disturbances (e.g., multiple machine

failures, addition of new resources to the manufacturing system, unexpected changes

to a customer order, etc.). Another challenge is the development of methods and al-

gorithms to allow agents to identify and cooperate with only a subset of the agents in

the multi-agent controller. This dissertation focuses on addressing these challenges for

only one type of agent: the product agent. The following section provides background

information about the product agent’s decision making, exploration, and cooperation

capabilities and identifies some of the limitations of the existing architectures and

methods.

2.2 Intelligent Product Agents

A wide variety of multi-agent architectures have been introduced to control indus-

trial systems. Most of these proposed system-level architectures contain an instance

11

of the product agent (PA) [123]. This section overviews the existing architectures

and frameworks used to enable product agent intelligence for the control of parts in

a manufacturing system.

2.2.a Rule-based product agents

PROSA (Product-Resource-Order-Staff Architecture) is one of the first examples

of a decentralized, distributed control architecture developed to improve manufac-

turing system flexibility [120]. In this system-level control architecture, the Order

Holon, the component most resembling the PA, is responsible for tracking the state

of the physical product and initiating work requests. The Order Holon stores the

state of the physical product, the progress of the current tasks (i.e. events), and the

historical progression of accomplished tasks. Once initialized, the Order Holon is able

to request a process plan, request an optimal schedule from a scheduling agent, and

cooperate with other holons (i.e. agents) in the system. While the general behavior

and communication of the Order Holon is described, only a brief, general description

of the stored information and decision making of the Order Holon is provided.

Another example of a multi-agent architecture for manufacturing is PABADIS

(Plant automation based on distributed systems) [72]. The proposed system-level

control architecture was developed to improve the flexibility and scalability of man-

ufacturing systems by making some agents, such as the PA, more autonomous and

active during the decision making process of the system controller [71]. In [71], the

PA life-cycle is identified as (1) creation, (2) scheduling, (3) migration, (4) execution,

and (5) termination. This life-cycle is adopted for our proposed, adaptive PA archi-

tecture. Similar to PROSA, while the general behavior of the PA is described, the

internal architecture and decision making of the PA are not described in detail.

A recently proposed system-level control architecture that was designed in a for-

mal manner is ADMARMS [29]. ADMARMS uses qualitative design principles to

12

identify the basic knowledge and communication necessary for agents in reconfig-

urable manufacturing systems. In [29], the requirements for the stored information,

functionality, and communication capabilities of the ADMARMS PA are provided.

However, while the required PA data structures are presented in detail, a decision

making strategy for the PA that uses this information is not provided. The data

structures and PA-RA (resource agent) communication requirements introduced in

ADMARMS are taken into consideration when developing our proposed, adaptive

PA.

ADACOR (ADAptive holonic COntrol aRchitecture) is one of the first archi-

tectures to provide a formal specification to describe the behavior of its proposed

agents [62]. The behavior of the Product Holon, the component similar to a PA in

the ADACOR architecture, is specified using a Petri Net [59]. Additionally, a gen-

eral structure and algorithm that prevents erratic behavior of the holon is described

in ADACOR2, a second iteration of the multi-agent architecture [9, 10]. Although

the general guidelines of the Product Holon are provided, the decision making of the

Product Holon is driven by a set of rules.

These four multi-agent system-level architectures (PROSA, PABADIS,

ADMARMS, and ADACOR) focus on developing the required agents and the neces-

sary communication to effectively control manufacturing systems. Some more exam-

ples and implementations of system-level multi-agent architectures with PAs can be

found in [63,76,80,106,116]. Since the focus of these architectures is to construct all

of the agents in the system, the decision making of specific agents (e.g. the PA) is

usually rule-based reasoning.

While rule-based reasoning is a viable control strategy, it is difficult to scale these

types of reasoners to larger systems. More complex manufacturing systems (e.g.

systems with a higher product variety and more technologically advanced resources)

require a larger set of rules for the PA. As the number of rules increases, it is more

13

challenging to develop new rules, find conflicting rules, and verify the behavior of the

product agent. In addition, as more rules are added, the flexibility of the agent’s

behavior is reduced. Thus, it is difficult to scale these rule-based PAs to larger, more

complex manufacturing systems. One approach that is used to address some of these

challenges is model-based reasoning. This approach focuses on developing a model of

the system and using optimization techniques for decision making of the PA.

2.2.b Model-based product agents

In the general field of agent-based system and multi-agent control, agents often

use a systematic, model-based optimization approach during the decision making pro-

cess [107]. Hence, model-based reasoning has recently been proposed to improve the

autonomy and adaptability of PAs [5,23,55,102,104]. PAs can leverage various types

of models of the manufacturing environment to complete required manufacturing op-

erations and meet the provided specifications.

The most common modeling approach for model-based PAs is the use of finite-

state machines (FSMs) to represent the available resources and operations in the

manufacturing system [5, 23, 55, 102, 104]. These models encode sequences of logistic

and manufacturing operations (i.e., events) that lead to changes in the location or

physical composition of the associated part on the plant floor (i.e., states). FSM

models use static weights (costs) on events to capture the time required to complete

processing, handling, and buffering operations [5, 55]. There have been several ex-

tensions of the FSM modeling approach, such as the utilization of Markov decision

processes (MDPs) to incorporate the stochastic nature of manufacturing operations

on the plant floor [5, 23].

However, even though model-based reasoning has been proposed as a potential

alternative to rule-based decision making, a full, detailed architecture for model-based

PAs has not been proposed. The work in [5, 23] leverages the belief-desire-intentions

14

(BDI) architecture to build the model-based product agent. However, while an MDP

model of the manufacturing system capabilities and a planning algorithm for this

model are described, a full architecture (with models, decision making algorithms,

and communication components) that allows the product agent to gather knowledge,

schedule future actions, and request actions from RAs is not provided. The work

in [102–104] uses the reference architecture developed in [126] for the design of both

product and resource agents. The developed product agent architecture contains the

following modules: planning and strategy, knowledge base, resource module control,

and diagnosis. While a detailed description of the FSM model in the knowledge base

and a shortest-path based planning algorithm in the planning and strategy modules

is described in detail in [102, 104], only a high-level overview is provided for the

other components in this architecture. In addition, the work in [102–104] does not

describe the communication and information requirements that enable product agent

knowledge gathering in a dynamic manufacturing environment. Chapter III provides

a description of a full architecture for model-based PAs that fulfills the communication

and behavior requirements set in prior work, e.g., the architectures described in [29,

71,76,80,106,116,120,123]. The product agent architecture presented in Chapter III

incorporates models and algorithsm that allow the product agent to gather knowledge,

schedule future actions, and request actions from RAs.

In addition, there are limitations to the current modeling frameworks used by the

PA. For example, existing PA models encode the scheduling constraints of the PA

as hard constraints, i.e., these constraints cannot be violated or negotiated by the

PA. However, these scheduling constraints in a manufacturing system are sometimes

flexible and can be violated through negotiation with other agents in the system.

Current model-based PAs do not capture the negotiable actions, i.e., soft constraints,

in their planning and scheduling models. Therefore, Chapter V describes an extension

to existing environment models to capture the soft constraints in a manufacturing

15

system.

2.2.c Product Agent Exploration

In existing multi-agent architectures, the PA gathers knowledge about the manu-

facturing environment either by utilizing a global view of the system or by querying

all of the system RAs.

A global view of system capabilities has been used to help PAs make decisions

in some agent architectures [55, 102, 104, 108]. In these works, a formal model of the

entire manufacturing environment is generated offline by a manufacturer or central

controller. This model is provided to the PA during initialization and is dynami-

cally updated when making planning decisions [55,108]. Effective implementations of

this type of exploration strategy can be found in [102, 104, 108]. While these imple-

mentations work well for the case studies provided in those works, this exploration

methodology becomes more computationally intensive as the manufacturing systems,

and the corresponding models, scale in size and complexity. In addition, the global

view models contain information that is not always used during PA decision mak-

ing. For example, these models may contain resources (e.g. robots and machines)

that are not necessary to finish the associated part’s production requirements, adding

unnecessary complexity for the PA’s planning and scheduling. Therefore, to enable

more efficient decision making, PA’s should use “local models” of the manufacturing

environment that are tailored to their production requirements.

Another method for PA exploration is to send operation requests to all RAs in

the system, as described in [111]. For example, in [50,66,125], the PAs contact all of

the RAs in a manufacturing system, allowing the RAs to formulate bids to respond

to PA desires. A downside of allowing the PA to contact all of the system RAs is the

large amount of communication overhead. Thus, architectures that utilize this type of

approach have to manually design a filter that prevents the PA from sending infeasible

16

requests to the RAs. For example, in [66], material handling is ignored to limit the

amount of communication overhead. The PA sends a request only to the RAs that

control the resources in the same communication zone as the PA’s associated physical

part. The PA will not be able to find the RAs that are outside the communication

zone and, therefore, might not find all of the feasible sequences of actions that will

take the physical part to the next desired state.

Both exploration techniques run into problems for larger, more complex manu-

facturing systems. A single model for the entire system grows in storage space and

computational complexity, making it difficult to dynamically update all of the individ-

ual states and events. Similarly, the communication overhead necessary to negotiate

with all of the RAs increases in size and complexity if a PA tries to communicate

with all of the system RAs. However, the PA does not need to know about the status

of all of the system resources to make intelligent decisions. The need to store a single

model or to communicate with all of the system RAs can be prevented by leveraging

the structure of the manufacturing system. Therefore, Chapter IV proposes a tech-

nique that uses a connected network of RAs. The exploration technique described

in that chapter inherently incorporates dynamic changes to the system, improves PA

exploration efficiency, and removes unnecessary PA knowledge and communication

overhead.

2.2.d Product Agent Cooperation

During decision making, a PA must cooperate with other PAs and RAs in the

system. Specifically, when planning and scheduling future resource actions, a PA

must cooperate with both PAs and RAs to find a sequence of resource actions to

complete its associated part’s production requirements and not come into conflict

with other agents in the system.

To put existing PA cooperation strategies into context, the following definitions

17

are provided for direct, indirect, passive, and active cooperation. Using the defini-

tion in [96], direct cooperation between two agents is defined as the utilization of a

one-to-one communication link between the agents for the exchange of information.

Indirect cooperation between two agents implies that agents pass information and

cooperate with each other through other agents or through the environment. Using

the general agent cooperation descriptions found in [64, 100], passively cooperating

agents are defined as a pair of agents that can only request actions that do not conflict

with decisions from other agents. On the other hand, actively cooperating agents can

identify conflicting actions and, through negotiation, find resolutions for these con-

flicts during decision making. Using these definitions, the cooperation used by PAs

in existing multi-agent architectures can be defined.

As shown in Fig. 2.1, PAs have to cooperate with other PAs (PA-PA cooperation)

or with RAs (PA-RA cooperation) in the system. PA-RA cooperation is often direct

and passive. PAs directly communicate to the RAs in the system. However, during

this direct communication, PAs can only request resource actions that fulfill the

scheduling constraints provided by the RA. Examples of this type of cooperation can

be found in most multi-agent frameworks for manufacturing systems [10,29,45,47,55,

58,104].

Most of the product agent to product agent (PA-PA) cooperation is indirect and

passive [10, 34, 45, 47, 58, 102, 108]. In these examples, a PA captures the plans of

other PAs in the system through information provided by another agent. For example,

when queried by a PA, RAs provide other PA schedules as scheduling constraints that

cannot be violated. These types of multi-agent architectures are usually first-come-

first-serve for the PAs in the system. Therefore, there is never direct communication

between PAs in the system and, as previously mentioned, there is no negotiation over

the scheduling constraints.

For these passive cooperation approaches, the PA is not always able to find a

18

sequence of actions that satisfies all of the existing scheduling constraints and ac-

complishes its production goals. This limitation of the passive cooperation approach

reduces the flexibility of the PA and, in turn, reduces the flexibility and adaptabil-

ity of the multi-agent control strategy. Direct and active cooperation would allow a

PA to negotiate with agents when the PA identifies a conflicting event. This type

of cooperation provides more flexibility for the PA, allowing the agent to identify

previously infeasible solutions that more effectively achieve its goals and react to un-

expected disturbances. Chapter V proposes a framework to enable direct and active

cooperation for the product agent during planning and scheduling.

19

CHAPTER III

Model-Based Architecture

This chapter presents the work published in [44,47] that proposes an architecture

for model-based product agents. As described in Section 2.2, a number of multi-agent

architectures have been proposed for the control of manufacturing systems. Most

of the existing literature on multi-agent control for manufacturing systems focuses

on the communication and behavior requirements for each agent, rather than the

development of decision-making strategies for each individual agent. As described in

Section 2.2.b, a few works focus on developing model-based PAs that use optimization

to make decisions. While these works provide high-level overviews of architectures

for model-based PAs, a comprehensive architecture that explicitly identifies all of the

models, interfaces, and algorithms to enable automatic model creation, autonomous

decision making, and adaptation to unexpected disturbances has not been previously

developed. This chapter provides such an architecture for model-based, adaptive

PAs that fulfills the existing communication and behavior requirements for intelligent

products.

The primary contributions of this chapter are: (1) the formulation of the in-

ternal components for a model-based product agent based, (2) the utilization of

optimization-based planning to schedule future resource actions, and (3) a demon-

stration of the PA behavior within a simulated manufacturing facility. The proposed

20

adaptive PA autonomously makes intelligent decisions in an unknown manufacturing

environment and cooperates with existing resources to schedule and execute actions

to guide parts through the manufacturing system. Additionally, the architecture is

designed for integration and implementation into existing multi-agent controllers.

The rest of the chapter is organized as follows. A high-level overview of the PA is

presented in Section 3.1. Section 3.2 describes the desires, beliefs, and intentions of

the PA. The PA’s decision making and communication are discussed in Section 3.3. In

Section 3.4, a simulation case study with the proposed PA architecture is presented.

Concluding remarks are presented in Section 3.5.

3.1 Overview

An architecture for multi-agent, manufacturing controllers has been previously

developed for resource agents in the manufacturing system [65]. This RA architec-

ture contains a Communication Management component, a Decision Making mod-

ule, a World Model Repository, and a Low Level Interface. The RA architecture is

described in more detail and implemented in [102–104]. However, as described in

Chapter II, a number of the architecture components and communication require-

ments are not described in full detail. This chapter uses the high-level descriptions

for the resource agent Communication Management, Decision Making, and World

Model Repository modules from [65] to develop the components, models, algorithms,

and communication requirements for a product agent.

The proposed PA architecture consists of the following components: the Knowl-

edge Base, the Decision Maker, and the Communication Manager. The relationship

between these components is shown in Figure 3.1. The Knowledge Base contains

beliefs, desires, and intentions of the PA. The Communication Manager provides the

link between the PA and the RAs in the system. The Decision Maker integrates

the information from the Knowledge Base and the Communication Manager to make

21

Figure 3.1: An abstracted software architecture for the product agent with general
descriptions of each component and the shared information.

decisions regarding action requests. The proposed PA architecture goes through the

following lifecycle:

1. Creation and goal initialization

2. Operation (i.e., exploration, planning, and execution)

3. Archiving

When the PA is created, the PA goals must be initialized to match the goals of the

associated physical part. These production goals include the manufacturing processes

to be completed. The goals are initialized by another intelligent agent or entity

(e.g., a Manufacturing Execution System or a human operator) that understands the

22

requirements of the associated physical part for the specific manufacturing system.

Once initialized, the PA waits for an update regarding the initial state of the part.

The update comes from an RA that senses and identifies the associated physical part

and provides this information to the PA.

Once an RA sends a message to the PA about the initial state of the associated

physical part (e.g. the part has been moved to a certain location), the PA begins the

operation phase. During this phase, the PA takes initiative and cycles through the

following three tasks:

• Exploring the system: Query local RAs to understand if a manufacturing pro-

cess can be accomplished

• Planning: Find a sequence of desired resource actions and request appointments

for resource utilization

• Execution: Request desired events from RAs

The decision making process for choosing whether the PA should explore, plan, or

execute is described in Section 3.3.a. The specific details regarding each of the three

tasks are described in Sections 3.3.b to 3.3.d.

Finally, the PA is archived once it is removed from the manufacturing system. It

can be removed from the manufacturing system if all of the desired physical properties

in the process plan have been completed or if the PA decides that it cannot find a

feasible solution for the next step in the process plan.

A detailed implementation of the proposed PA architecture, including specific

components and component-to-component information exchange, is shown in Fig-

ure 3.2.

23

Table 3.1: Nomenclature for the PA Knowledge Base

Desires
pd A desired physical property
Pd Process plan
RAexit Agent to remove part from the system
eexit Exit event to be queried

Beliefs
Mh The product history
Me The environment model
X A set of states of the physical part
x One state of the physical part
E Set of manufacturing system events
e One manufacturing system event
Tr State transition function
Prp Map of states to physical properties
Ag Map of events to the associated agent
xc Current state of the physical part
sh Sequence of past events for the part
Mete Set of mappings of events to metrics
T (e) Time duration of an event

Intentions
Plan The agent plan
sp The string of planned events
Tep Map of events to start and end times

3.2 Product Agent Knowledge Base

Intelligent agents must be able to perceive and respond to a changing environment

(reactivity), take initiative to achieve their individual goals (proactiveness), and in-

teract with other agents in the system (social ability) [128]. A number of functional

architectures have been proposed to design intelligent agents [107, 128]. One widely-

used functional architecture that has been used in various agent applications is the

belief-desire-intention (BDI) architecture [38]. The BDI architecture provides a mod-

ular framework to design intelligent agents based on the ideas behind human practical

reasoning [32]. The architecture proposes partitioning the agent’s information of the

surrounding environment (beliefs), the goals that the agent would like to achieve

24

Figure 3.2: The full implementation of the product agent architecture. The com-
ponents of the Knowledge Base, Decision Maker, and Communication Manager are
identified. In addition, the figure illustrates the communication between each of the
components. The information transfer between the product agent and other agents
is also displayed.

(desires), and the plans that the agent creates (intentions) into separate modules.

Utilizing these modules, a decision making algorithm is built for the agent to intelli-

gently interact with the surrounding environment. In this work, a BDI framework is

used to develop the PA Knowledge Base.

The Knowledge Base is composed of the beliefs, desires, and intentions modules.

This section describes each of these modules in more detail. Table 3.1 provides the

nomenclature used in this section.

25

3.2.a Desires

The desires represent the requirements for the associated physical part. As shown

in Figure 3.2, the PA desires include a process plan and an exit plan. The process

plan contains all of the desired manufacturing processes that must be performed on

the associated physical part as well as the locations that must be visited. The exit

plan contains the information that the PA uses to make the physical part leave the

manufacturing system. Both the process plan and exit plan can be accessed, but not

modified, by the Decision Director.

3.2.a.1 Process Plan

A process plan, Pd, is an ordered list of sets of desired physical properties. The

PA is responsible for requesting actions from the RAs that will help the physical part

attain these desired physical properties. A physical property can be a location in the

manufacturing system or a completed manufacturing process. Thus, the process plan

can be represented as the following ordered list:

Pd = (Pd1, Pd2, ...Pdn), where

Pd1 = {pd11, ..., pd1a}

Pd2 = {pd21, ..., pd2b}

...

Pdn = {pdn1}

where pd represents a desired physical property. In this representation, the sets of

physical properties are ordered. For example, the physical part must accomplish all

of the physical properties in the first set, Pd1, before trying to achieve the second set

of properties, Pd2. The physical properties in each set (e.g. pd11, ..., pd1a) can be done

26

in any order. The final set of physical properties, {pdn1}, will usually represent the

final location for the physical part to leave the manufacturing system.

3.2.a.2 Exit Plan

The exit plan represents an alternative goal for the PA if the process plan cannot

be accomplished. The exit plan consists of the name of an agent, RAexit, and an

exiting event call, eexit. The PA should be able to request eexit from RAexit if it is

unable to find a feasible plan based on the explored environment. More information

regarding the decision to exit the system is discussed in Section 3.3.a.

3.2.b Beliefs

The beliefs represent the PA’s current understanding of the physical world. The

beliefs consist of the product history and an environment model. The product history

is the representation of the past and current states of the physical part. The environ-

ment model is an abstraction of the capabilities of the current local manufacturing

environment. Both the product history and the environment model are represented

via finite state machines [22]. The product history and environment models consist

of states that can be mapped to the physical properties of the associated part (e.g.

“Part at Storage,” “Part with Rounded Corners,” etc.) and events that represent

resource actions (e.g. “Move to Machine,” “Run Milling Program,” etc.). To build

and update both of these models, the fusion operation is utilized.

3.2.b.1 Product History

The product history contains information regarding the previous and current

states of the associated physical part. The product history model, Mh, is updated

based on information provided by the RAs through the PA’s execution components.

Mh is defined as the following tuple:

27

Mh = (Xh, Eh, T rh, P rph, Agh, xc, sh), where

Xh = {x0, ..., xn}: a set of states of the physical part

Eh = {e0, ..., em}: a set of events

Trh : Xh × Eh → Xh: a state transition function

Prph : Xh → Px : a function that maps the state to its physical properties

Agh : Eh → RA: an one-to-one event-agent association function between each

event and the RA that performs that event

xc ∈ Xh: the current state of the physical part

sh = e0e1...el: a string (sequence of events) that represents events that have

occurred

3.2.b.2 Environment Model

The PA’s unique representation of the capabilities of the manufacturing system is

the environment model. Unlike the product history, which represents past states of the

physical part, the environment model represents the reachable states of the physical

part. The model of the local environment, Me, is constructed using the exploration

components of the architecture. The exploration components are discussed in detail

in Section 3.3.b. Me is updated as the physical part traverses the manufacturing

system using the PA execution components. More details regarding the execution

components are discussed in Section 3.3.d.

Me is defined as the following tuple:

Me = (Xe, Ee, T re, P rpe, Age,Mete, xc), where

Xe, Ee, T re, P rpe, Age, xc follow the definitions of the product history, Mh

28

Mete = {f1, ..., fn}, where fi : E → R, 1 ≤ i ≤ n. Mete is a set of functions

that map events to numerical metrics (e.g. time duration, quality, etc.)

Note that the time duration, T (e), is required to be one of the functions in Mete for

the PA’s planning components, as discussed in Section 3.3.c.

Both the product history and environment model are used by the PA to explore

the local environment, plan, and execute desired events in the manufacturing system.

3.2.b.3 Fusion Operation

A fusion operation [99] is used by the PA to update both the product history

and environment model. Given two tuples, M1 and M2, that contain the following

elements (X,E, Tr, Prp,Ag), the fusion operation performs the following steps to

create a new tuple, Mnew, in the following manner:

1. Remove all events from M2 that are part of M1, i.e. remove all e ∈ E2 from E2

if e ∈ E1

2. Perform the following fusion of M1 and M2:

X = X1 ∪X2: a union of all the possible states

E = E1 ∪ E2: a union of all of the events, with E1 ∩ E2 = ∅

Tr :


Tr1(x, e) if x ∈ X1 and e ∈ E1

Tr2(x, e) if x ∈ X2 and e ∈ E2

Prp :


Prp1(x) if x ∈ X1

Prp2(x) if x ∈ X2

Ag :


Ag1(e) if e ∈ E1

Ag2(e) if e ∈ E2

29

Output the new tuple: Mnew = (X,E, Tr, Prp,Ag).

The fusion operation is utilized during PA exploration and execution. During

exploration, the fusion operation is used to combine bids from RAs to create the

environment model. A description of the exploration methodology and an algorithm

for the fusion operation for exploration is provided in Chapter IV and briefly described

in Section 3.3.b. During execution, this operation is used to incorporate information

about the state of the physical part into the PA’s product history, as described in

Section 3.3.d.

Note that if the common event between the two tuples, e ∈ E1 ∩ E2, then Tr,

Prp, and Ag in Mnew are all obtained from M1. From a practical implementation

perspective, the PA should not obtain two tuples with the following properties: e ∈

E1 ∩ E2 and Tr1(x, e) 6= Tr2(x, e) or Ag1(e) 6= Ag2(e). This occurrence signifies that

there is mismatching information provided to the PA. However, to ensure autonomous

decision making, the proposed architecture will set the more recently provided tuple

as M1 to capture the latest available information in Mnew.

3.2.c Intentions

The intentions of the PA are represented using a plan. The plan consists of a

sequence of events that the PA has scheduled based on its desires and beliefs. It is

defined as follows:

Plan = (sp, Agp, T ep), where

sp = e0, ..., en: the planned string (sequence of events)

Agp : Ep → RA: the event-agent association function

Tep : Ep → (R+,R+): a function that maps events to start and end times

Note that the start and end times in the agent plan are based on a clock that is

available to all of the agents in the system.

30

This plan is constructed using the planning components of the PA architecture.

Following its construction, it is utilized by the PA’s execution components to request

specific events from the RAs. More information regarding plan construction and

utilization can be found in Sections 3.3.c and 3.3.d, respectively.

3.3 Product Agent Intelligence

The decision making and communication aspects of the PA are described in this

section. Section 3.3.a describes how the Decision Director decides whether to explore

the surrounding environment, make plans based on its beliefs, or start requesting

actions from RAs. Sections 3.3.b through 3.3.d go into more detail on how each of

the three tasks (exploration, planning, and execution) are performed using the com-

ponents of the architecture (i.e. Knowledge Base, Decision Maker, Communication

Manager).

3.3.a Decision Director

The Decision Director is responsible for making high-level decisions regarding

whether the PA should explore, plan, or execute based on its current information.

Figure 3.3 shows the decision flow chart for the Decision Director

The Decision Director’s process begins when a new plan is requested by the Ac-

tion Request Manager. The request for a new plan can occur when the PA is first

created (since there is no initial plan), finishes the current plan, or is notified of

an unplanned event. More information regarding each of those possibilities is dis-

cussed in Section 3.3.d. Once this request is received, the Decision Director starts PA

exploration.

The PA finishes exploring when the Decision Director receives a new environment

model, Me,new, or the exploration takes too long to conclude. If Me,new is empty (i.e.

no set of RAs are able to take the associated physical part to a desired state) or the

31

Plan Requested
by Action Request Manager

Start exploration

Exploration
timed out?

Received
Me,new?

Is Me,new

empty?

Start planning

Planning
timed out?

Received
Plannew?

Is Plannew

empty?

Start execution

Share
Raexit, eexit

with
Action Request

Manager

No

No

Yes

No

No

Yes

No

No

Yes

Yes

Figure 3.3: The flowchart showing how the Decision Director chooses whether to
explore, plan, or execute.

exploration timeout is reached, the PA will request to remove the associated physical

part from the manufacturing system. This exit strategy is executed by sending the

exit plan to the PA’s Action Request Manager. If an exit strategy is not employed,

the Decision Director starts PA planning.

Similar to exploration, the PA stops planning when the Decision Director receives

a new agent plan, Plannew, or reaches a planning timeout. If Plannew is empty (i.e. a

feasible plan was not obtained) or the planning timeout is reached, the exit strategy

32

(a)

(b)

Figure 3.4: (a) shows the architecture components utilized during exploration. (b)
displays the sequence diagram for exploration. When the product history and set of
desired physical properties are sent to the Bid Manager (1), the PA starts to query
(2a, 2b) and obtain bids from the local RAs (3a, 3b). Once the PA is satisfied with
the number of bids, a new environment model is created and updated (4).

is executed. Otherwise, the Decision Director starts PA execution, requesting events

from RAs. Thus, if RAs keep updating the PA regarding the states of the associated

physical part, the Decision Director will either find a new plan or force the physical

part to exit the system.

3.3.b Exploration

The goal of PA exploration is to obtain an up-to-date environment model of the

local manufacturing system through communication with various RAs. The proposed

PA architecture utilizes a novel bidding process to obtain the environment model. As

shown in Figure 3.4a, the PA leverages the product history and process plan to send

a call for bids to the RAs, which are then synthesized into the environment model.

33

Algorithm 1 Finding A Set of Incomplete, Desired Physical Properties

Input: Pd, T rh, P rph, xc, sh
Output: Pn
Initialize: Flag = False,Xcheck = (xc)
1: // Obtain the states that have been visited by the PA:
2: for all e ∈ sh do
3: Add Trh(e) to Xcheck in sequential order
4: end for
5: // Populate Pn:
6: for all Pdi ∈ Pd do
7: Find the first instance of a sequence of states,
8: Xd = x0x1... ∈ Xcheck, that satisfies:
9: ∀pdi,s ∈ Pdi,s,∃x ∈ Xd, s.t. pdi = Prph(x)
10: where Pdi,s ⊆ Pdi is the largest possible subset that satisfies the above condition

11: if Pdi,s ⊂ Pdi then
12: Add incomplete, desired physical properties, p, to Pn that satisfy p ∈ Pdi\Pdi,s

13: return Pn
14: else
15: Remove Xd from Xcheck

16: end if
17: end for

The sequence of steps for exploration is illustrated in Figure 3.4b.

3.3.b.1 Start of Exploration

The first step in exploration is to obtain the set of desired physical properties that

have yet to be achieved, Pn. Algorithm 1 shows how the PA obtains Pn by comparing

its process plan (Pd) to components of its product history (Trh, P rph, xc, sh). Once

Pn is calculated, the Decision Director can send Pn and the product history, Mh, to

the Bid Manager.

3.3.b.2 Sending Out a Bid Request

The Bid Manager is responsible for formulating and sending the bid requests to

the Bid Translator. A bid request consists of:

34

PA: the PA requesting for bids

xc: current state of the associated physical part

Pn: PA’s set of incomplete, desired physical properties

tbound: PA’s maximum allowable time to complete Pn

where xc is obtained from Mh and tbound is set by the Bid Manager. tbound represents

the longest time that a set of RAs will be allowed to finish Pn.

In addition to the bid request, the Bid Manager must also provide a primary agent

to contact, Ac, to the Bid Translator. Ac is responsible for starting the coordination

of the RAs. Previous architectures have utilized a bidding supervisor [17] or one of

the RAs in a system [125] for RA coordination. For the proposed architecture, the

PA contacts the last RA in its product history, Ac = Agh(el), where el is the final

event of sh in Mh.

Once the Bid Translator receives a bid request and Ac, it sends out the bid request

to the Ac, starting the RA’s bid formulation process. The Bid Translator will wait

for a certain period of time, ttimeout, for bids to come in.

3.3.b.3 RA Bid Formulation

A bid represents how a set of RAs can take the physical product from its cur-

rent state to a state with desired physical properties. A bid is defined as Bid =

(Xb, Eb, T rb, P rpb, Agb, (Mete)b, xc). Each of those elements has the same definition

as the environment model described in Section 3.2.b.2.

The coordination of bids is left to the RAs in the multi-agent architecture. Chap-

ter IV presents a method to explore the system efficiently. In this section, a brief

overview of the exploration methodology from Chapter IV is provided.

The proposed framework for coordinating bids is through the propagation of bids

to “neighboring RAs.” In this framework, an RA finds a neighbor, updates all ele-

35

ments of the bid, and passes the bid request and an updated bid to the neighbor. A

neighboring RA is a resource that has access to the same state of the physical part.

For example, a material handling RA (e.g. robot RA) and a manufacturing machine

RA (e.g. mill RA) are neighbors if the material handling resource can move the phys-

ical part to/from the manufacturing machine. Once a neighbor is found, the RA will

update the elements of the Bid based on its own capabilities. The events and states

of the Bid are updated only if they are within the tbound from xc. If the neighbor

RA can be reached within the tbound constraint, the RA passes the bid request and

the bid to this neighbor. This process continues until all of the RAs in the tbound

are contacted. During this time, if an RA can accomplish Pn, that RA contacts the

requesting PA and submits the full bid representing the capabilities of a set of RAs.

3.3.b.4 PA’s Synthesis of RA Bids

The Bid Translator passes a submitted bid to the Bid Manager. Once ttimeout is

reached, the Bid Manager decides if there are enough satisfactory bids. The number

of satisfactory bids is a tunable parameter defined during PA creation (e.g. the Bid

Manager needs at least 1 or 2 bids, the Bid Manager needs bids from 10 different

agents, etc.). If the Bid Manager is satisfied with the number of bids, it compiles

these bids into a new environment model, Me,new. Me,new is compiled by iteratively

performing the fusion operation described in Section 3.2.b.3 to combine all of the

bids (i.e. first two bids are fused to create Me,new, the third bid is fused with Me,new,

etc.). Note that to prevent any potential mismatch in information, as described in

Section 3.2.b.3, the bids should be ordered in the reverse order that they were received

in, i.e. the first bid should be the most recently received one and the last bid should

be the first bid received. The final Me,new is then sent to the Decision Director.

If there are not enough satisfactory bids obtained by the Bid Manager, it can

start to increase the number of RAs to contact by increasing the tbound. The Bid

36

Figure 3.5: An example of the exploration of a PA in a manufacturing system with
Autonomous Guided Vehicles (AGV) and multiple manufacturing machines. Note
that tbound includes both the transportation time and manufacturing operation time.

Manager can increase tbound until a maximum limit, tmax, is reached. If there are no

bids submitted when tbound = tmax, the Bid Manager will send an empty Me,new to

the Decision Director. This signifies that the exploration process was unable to find

a set of RAs that can perform the set of incomplete, desired physical properties.

3.3.b.5 Exploration Example

An example scenario of PA exploration is shown in Figure 3.5. In this scenario, the

PA’s associated physical part is located on an Autonomous Guided Vehicle (AGV)

in a manufacturing system containing various machines (M1, M2, etc.). M1 and M2

are part of the current “local neighborhood” of the PA. M3 and M4 can be added to

the “local neighborhood” if tbound is increased. The bid request from this particular

PA cannot reach M5 or M6 as they fall outside tmax (i.e. the largest possible tbound).

If a bid request is sent out in the current configuration, then an RA bid may contain

information from the AGV, M1, and/or M2.

37

(a)

(b)

(c)

Figure 3.6: (a) shows the architecture components for planning. (b) displays the
planning sequence diagram. Once the environment model, desired physical properties,
and old plan are passed to the Planning Manager (1), a new plan is formulated. After
the Planning Manager identifies events to schedule (2), the Scheduling Translator
contacts various RAs (3). When all of the RAs have been contacted, the new plan is
passed to the Decision Director (4). (c) provides the sequence diagram for re-planning.
When an RA wants to reschedule an event, the Planning Manager is contacted (5a,
5b) and a new Plan is requested (6).

3.3.c Planning

The PA’s planning components, shown in Figure 3.6a, create plans for the PA

using the process plan and the environment model. The PA planning and re-planning

sequences are shown in Figure 3.6b and Figure 3.6c, respectively.

3.3.c.1 Plan Formulation

After the Decision Director obtains Pn using Algorithm 1, it sends Pn, Me, and

the current plan to the Planning Manager. The Planning Manager uses Pn to mark

states in Me. The set of marked states, Xd, is:

38

Xd := {x : x ∈ Xe and Prp(x) ∈ Pn}

where Xe is the set of states of Me and Prp is the function that maps a state to its

physical properties.

Utilizing the updated Me, the following multi-objective, event planning optimiza-

tion problem can be formulated to find the set of events that need to be scheduled:

s∗ ∈ arg min
sk

|sk|∑
i=1

α1f1(eki),

|sk|∑
i=1

α2f2(eki), ... (3.1)

s.t. fi ∈Mete and αi ∈ {−1, 0, 1}

ek0ek1...ekn = sk

x0 = xc and xi+1 = Tr(xi, ei), for 1 ≤ i ≤ n

Xd ⊆ {xi : 0 ≤ i ≤ n+ 1}

where s∗ is the desired string (sequence of events) that starts at the physical part’s

current location and visits all x ∈ Xd. The PA will find the strings that maximize (α =

−1), ignore (α = 0), or minimize (α = 1) functions from Mete of the environment

model.

To solve Eq. 3.1, the event planning optimization problem, an appropriate opti-

mization algorithm must be used. In Section 3.4, the product agent transforms the

multi-objective optimization problem into a weighted single-objective problem and

uses Dijkstra’s shortest path [26] to find a solution. Since the RAs only return bids

to the PA if a feasible path for the associated part can be found (see Section 3.3.b

and Chapter IV), a solution to the shortest path, weighted single-objective problem

will always be feasible. A complexity analysis for a similar environment model and

shortest path algorithm can be found in [104]. The results in [104] show that there is

a need to reduce the complexity of the problem to allow the product agent to make

timely decisions. As described in Section 3.3.b and Chapter IV, this reduction in

39

complexity can be accomplished by developing an efficient exploration methodology.

In addition, note that, as part of the proposed product agent architecture, a time-out

for the running time of the the optimization algorithm is required to prevent the PA

from stalling during planning. If a time-out of the optimization is reached and an s∗

is not found, an empty Plannew is sent to the Decision Director.

Note that the optimization problem in Eq. 3.1 is a local optimization problem for

the system. The solution to Eq. 3.1 depends on the individual goals of the product

agent and the local environment model built through the exploration methodology

proposed in Section 3.3.b and described in detail in Chapter IV. While the solution to

the problem is a local optimum, the case studies described in Section 3.4 show that the

local solutions found by the PAs will drive the global behavior of the system to finish

manufacturing the parts in a timely manner. Future work will look at understanding

the difference in system performance when decisions are made by individual agents

with a local view of the system and when decisions are made by a centralized controller

with a global view of the system.

If s∗ = e0e1...em...em+n is found, the Planning Manager compiles a new agent

plan, Plannew = (spn , Agpn , T epn), with each component defined similarly to the PA’s

Plan. Each component is obtained in the following manner:

spn = e0e1...em

Agpn(ei) = Age(ei), where 0 ≤ i ≤ m

Tepn(ei) =
(
T (e0) + T (e1) + ...+ T (ei−1),

T (e0) + ...+ T (ei−1) + T (ei) + ε
)

, where 0 ≤ i ≤ m

The agent association function, Age, and event time duration, T , are obtained from

the environment model. ε is a small amount of time added to the plan to allow for

small changes in the time duration of ei. Note that the length of spn , a substring of

40

s∗, defines how long into the future the PA will plan events. After Plannew, the PA

begins to communicate with the RAs to schedule these events.

3.3.c.2 Event Scheduling

First, the Planning Manager collects any future events from the current plan,

Plan, by computing the set:

Er = {ei | Tep,1(ei) > tcurrent, ∀e ∈ sp, sp ∈ Plan}

where Tep,1(e) is the start time of the event and tcurrent is the current time. Us-

ing this information, the Planning Manager sends to the Scheduling Translator each

future event that needs to be removed, er ∈ Er, the RA that performs the event,

Agpn(er), and the event’s time duration, Tepn(er). The Scheduling Translator uses

this information to contact the corresponding RA to remove er from its schedule. By

removing scheduled events, an RA can use its previously booked time for other tasks

(e.g. schedule other PAs or maintenance activities).

After removing all of the future events from Plan, the Planning Manager schedules

the events in Plannew with the RAs. For each es ∈ spn , the Planning Manager sends

to the Scheduling Translator the event, the RA that performs the event, Agpn(es),

and the time duration of that event, Tepn(es). The Scheduling Translator uses this

information to contact the corresponding RA to add es to each RA’s schedule.

Finally, the Planning Manager sends Plannew to the Decision Director to update

the PA’s plans. Once it receives Plannew, the Decision Director updates the existing

plan with Plannew.

3.3.c.3 Re-planning Based on RA Information

The Scheduling Translator is also responsible for listening to rescheduling requests

from the RAs. A rescheduling request is sent to the PA if the RA can not accomplish

a scheduled action due to some unforeseen change in the manufacturing environment

41

(a)

(b)

Figure 3.7: (a) displays the architecture components involved in execution. (b) shows
the sequence diagram for execution. RA information regarding states of the physical
part is passed to the Decision Director (1a, 1b, 1c). If an unexpected event occurs,
the Action Request Manager requests (2) and receives (3) a new plan. Once the PA
has a feasible plan, the PA continues to request actions from the RAs (4a,4b).

(e.g. unexpected machine malfunction). Once notified by the RA, the Scheduling

Translator sends the event to reschedule, ers, to the Planning Manager. The Planning

Manager requests information that is necessary to start the planning sequence shown

in Figure 3.6b. Afterwards, the PA starts to follow the same planning methodology

as described previously in this section. However, when computing s∗ in Eq. 3.1, the

Planning Manager adds a constraint, ers 6∈ s∗, in the optimization problem to ensure

that a new plan is found.

3.3.d Execution

The PA execution components, shown in Figure 3.7a, receive RA information

regarding completed events in the manufacturing system and send event execution

requests to the RAs. The sequence of events for the execution process is shown in

42

Figure 3.7b.

The execution process starts when one of the RAs informs the PA of an event that

occurred in the physical system by sending a manufacturing system output, Mo, to

the Event Translator. The system output, Mo = (Xo, Eo, T ro, P rpo, Ago, xc,o, so), is

defined similarly to the product history of the PA. After being informed about Mo,

the Event Translator passes Mo to the Action Request Manager.

The Action Request Manager checks Mo to see if the product agent is still following

the desired plan. The Action Request Manager obtains the last event, eol, from the

system output’s string of occurred events, so. Then, using each of the components of

Plan, (i.e. sp, Agp, Tep), the Action Request Manager performs the following actions:

1. The planned start and end times of eol are checked against the current time

using Tep(eol)

2. The next desired event, ed, is obtained from the string of planned events, sp

3. The start time of the next desired event is calculated using Tep(ed)

4. ed and the RA associated with the event, Agp(ed), are sent to the Event Trans-

lator once the start time is reached

Once the Event Translator receives ed and Agp(ed), a request is sent to Agp(ed)

asking for ed.

Note that the Action Request Manager will request a new plan from the Decision

Director if:

• The last event was not planned, eol 6∈ sp

• The current time did not fall between the planned start and end times of eol

• There is no next desired event, ed (i.e. the current plan is finished)

43

Table 3.2: Manufacturing processes times for each station

Process Number Process Time
P1 (Diffusion) 150 ticks/lot
P2 (Ion Implementation) 60 ticks/lot
P3 (Lithography) 110 ticks/lot
P4 (Ion Implementation) 100 ticks/lot
P5 (Diffusion) 170 ticks/lot
P6 (Lithography) 20 ticks/lot

In addition to determining the next desired event, the Decision Director updates

the product history and environment model in the Knowledge Base using the system

output. The Decision Director performs the fusion operation, described in Section

3.2.b, on the X,E, Tr, Prp, and Ag components of Mh and Mo to obtain a new Mh.

Additionally, the following components of Mh are also updated:

xc = xc,o, where xc,o is obtained from the Mo

sh = shso, where so is appended to the end of sh

The current state, xc, of the environment model, Me, is similarly updated using xc,o.

3.4 Case Studies

To test the feasibility and performance of the PA architecture, a simulation of

a manufacturing system under multi-agent control1 was evaluated. In this section,

the set-up of the system and the PA are described and the results from various case

studies of the PA are provided.

3.4.a Case-study set-up

The Repast Symphony (RepastS) platform [91] can be used to model and simu-

late the behavior of manufacturing systems that are controlled via multi-agent strate-

1https://github.com/ikovalenko92/SemiconductorSimulation

44

Figure 3.8: The set-up for the model-based PA simulation case studies.

gies [8]. Due to the high modeling power of the Repast environment [74], this plat-

form was chosen to simulate the complex behavior of manufacturing systems. In this

work, the RepastS software was used to create a scaled-up version of the Intel Mini-

Fab [130], a semiconductor manufacturing facility. The simulated facility contains 20

stations that are connected via a network of 9 material handling robots, as shown in

Figure 3.8. Buffers without size constraints are placed between each of the robots.

Similar, infinite-sized buffers are placed at each of the machining stations. The robots

take around 2-5 ticks (RepastS unit of time) to move the lots between the various

buffers.

Each robot, machine, and buffer has an RA that makes high-level control decisions

for its associated resource. Each RA is able to satisfy all of the communication (i.e.

exploration, planning, and execution) requests of the PA. The RAs have a schedule

that keep track of the scheduling request of the PAs. If necessary, the RAs relay

information regarding any scheduling or execution conflicts back to the PA.

Wafer lots are deposited at the facility via the entrance. After completing a set

of desired production steps, the lots leave the facility through the exit, as shown in

45

(a) (b)

(c)

Figure 3.9: Figures (a)-(c) represent the behavior of the PAs for Case Studies (1)-(3).
Larger nodes (red circles and blue squares) represent longer times that the PAs spent
at that location. Similarly, thicker edges (grey lines) represent the number of times
that the particular path was taken for the completed parts. The two, independent
scale factors (for node size and edge thickness) are the same across all three cases.

Figure 3.8. There are six different processes (P1-P6) that are provided by the ma-

chines in this facility. The specific process times and stations are shown in Table 3.2.

The order of the manufacturing processes depends on the lot type, as described in

the following separate case-studies.

3.4.b Product Agent Architecture Implementation

A product agent is created when a lot enters the manufacturing facility. Once the

PA is created, its process plan is initialized by providing an ordered set of manufac-

turing system processes that the lot must accomplish. In addition, an exit plan is

generated to enable the lot to exit the production system under specified conditions.

46

The product history and environment model are created using a custom, weighted,

directed graph from the Java Universal Network/Graph (JUNG) Framework [94].

Initially, the product history only contains the location of the lot at the entrance and

the environment model is empty. In addition, an empty agent plan is created using

a customized Java class. The beliefs and intentions of the PA are updated as the PA

explores, plans, and executes actions in the simulated environment.

Once the PA is initialized, it begins the operation phase. In this phase, the Deci-

sion Director cycles through exploring the system, planning, and executing actions.

The Decision Director sets the exploration and planning time-out times to 1 tick.

Note that for non-simulated testbeds, the time-outs need to be tuned through exper-

imentation. For example, for the myJoghurt testbed described in Chapter VI, the

time-out time 150 ms and 50 ms for exploration and planning, respectively.

During exploration, the initial tbound is set to 300 ticks and the tmax is set to 10000

ticks. tbound is increased by 500 ticks until the PA receives a set of feasible Resource

Agents that can take the lot to the next desired physical property or tbound reaches

tmax. The PA combines the bids from the RAs to update the environment model.

During planning, the PA minimizes the amount of time that it will take for the

lot to arrive at the next desired manufacturing process. For this problem, the PA

applies Dijkstra’s shortest path algorithm with event times as edge weights [26] to

find the shortest path between the PA’s current state and a desired state. Using

the shortest path, the PA constructs a plan of events (maximum of 20) and schedules

these events with the associated RAs. After the plan is constructed, the PA continues

its execution steps.

3.4.c Case-studies for the PA architecture

In this section, the results from three case studies of the PA architecture are

described in detail. The results from the case studies are shown in Figure 3.9.

47

3.4.c.1 One Lot Type, Fully Functioning System

Case study 1 demonstrates the production paths of the PAs through the simulated

system. The study considers 150 wafer lots entering the system every 200 ticks. The

initialized process plan, Pd0, is P1 → P2 → P3 → P4 → P5 → P6.

The case study was performed five times. On average, 135.4 lots were produced

by the system and 14.6 exited the system without finishing. The average flow time

for the completed parts was around 1700 ticks/part. Fig 3.9a shows the decisions

that were made by the PAs as they traversed the simulated semiconductor fab. Most

of the wait times for the PAs are due to waiting on the robots to move them between

the various points in the system, as illustrated by the larger red circles in Figure 3.9a.

3.4.c.2 One Lot Type, Two Machines Breakdown

Case study 2 demonstrates the production paths of the PAs through a manufac-

turing system with machine breakdowns. The number of lots, the frequency of lots,

and the initialized process plan are the same as case study 1. In this case study,

two lithography stations are taken down 2000 ticks into the simulation. As shown

in Fig 3.9b, the PAs chose not to go to the broken down resource based on RA in-

formation. The PAs autonomously chose to visit different stations to complete their

process plans.

The case study was performed five times in the simulated environment. On aver-

age, 134.6 lots were produced by the system and 15.4 exited the system. The average

flow time for the completed parts was around 2500 ticks/part. While the PA archi-

tecture was able to produce around the same number of finished parts, the amount

of time taken to produce the parts was significantly longer.

48

3.4.c.3 Three Lot Types, Fully Functioning System

Case study 3 demonstrates the production paths of PAs with various process plans.

The number of lots and the frequency of lots are the same as case studies 1 and 2.

Two other process plans, from [130], are introduced into the system. The first new

process plan, Pd1, is P2 → P1 → P3 → P5 → P4 → P6. The second new process

plan, Pd2, is P4 → P5 → P6 → P1 → P2 → P3. For new lots, the initialization of

process plans alternates between Pd0, Pd1, and Pd2. Thus, each process plan should

be followed by 50 different lots.

Similarly, the case study was performed five times in the simulated environment.

On average, PAs initialized with Pd0 completed 42.8 and exited 7.2 lots, PAs initialized

with Pd1 completed 40.6 and exited 9.4 lots, and PAs initialized with Pd2 completed

44.6 and exited 5.4 lots. The average flow time for the completed parts was around

1800 ticks/part. Thus, the PA architecture was able to follow each of the process

plans and adapt to different process plan sequences.

3.4.d Insights from Case Studies

The case studies presented in this section showcase the feasibility of using a model-

based, adaptive PA to drive the behavior of products in a multi-agent manufacturing

system. Each individual PA was able to systematically construct an environment

model of the system that contains the starting location of the product, the capabili-

ties of individual resources, and the most up-to-date schedule of each resource. The

environment model, combined with the PA’s process plan, product history, and inten-

tions, was used to make an individually optimized decision. In most cases, these types

of model-based, goal-based software architectures allow for greater agent flexibility

and scalability to larger systems when compared to rule-based architectures [107].

In the case studies, the goal of every PA was to minimize the time spent in the

system, while completing all of the events in its process plan. However, information

49

regarding other factors, such as product quality or energy expenditure of the system,

can be incorporated into the model. Note that different, individualized objectives

(e.g. minimizing energy usage, meeting production deadlines, etc.) can be integrated

in the PA optimization function.

Additionally, the inclusion of the exit plan in the proposed PA guarantees that

all of the PAs either complete their process plan or exit the system. Due to the

modularity of the software architecture, the bounds on the PA exploration, and the

use of the Decision Maker’s time-outs, a PA’s associated physical part will not occupy

a single resource for an unreasonable amount of time. This property of the PA software

architecture is beneficial if the PA is unable to adapt to an unexpected occurrence or

a conflict in the system, as observed in each of the case studies.

The RepastS case studies show that a model-based PA can be used for manufac-

turing systems. However, to implement the PA in a physical manufacturing system,

an agent-based developmental platform should be used [49]. The PAs would com-

municate with other agents using existing communication protocols. An example

platform to incorporate the model-based PAs into existing multi-agent manufactur-

ing implementations is the Java Agent Development Framework (JADE) [3, 60].

3.5 Conclusions

Manufacturing system flexibility can be improved through the utilization of multi-

agent control strategies. One important component of a multi-agent controller for

manufacturing systems is the product agent. In this chapter, the design and test-

ing of a software product agent architecture that uses a model-based optimization

approach is presented. The proposed product agent contains a Knowledge Base,

Decision Maker, and Communication Manager. These components are used by the

product agent to explore the capabilities of surrounding resources, formulate plans

based on this knowledge, and request actions to be taken by various resources based

50

on the production goals of its associated physical part. This product agent soft-

ware architecture can be used to create customized products and guide parts through

dynamically changing manufacturing systems. These product agent capabilities are

showcased in a simulated semiconductor manufacturing environment.

51

CHAPTER IV

Dynamic Exploration

This chapter presents the work published in [45] that proposes a methodology

for dynamic resource agent task negotiation to enable product agent exploration. As

described in Chapter III, a PA is tasked with making various intelligent decisions,

such as requesting an RA to execute a manufacturing process or to schedule future

operations. Prior to making this decision, a PA must understand the state of the

physical part and the capabilities of the surrounding resources. Thus, the PA should

be able to dynamically explore the capabilities of the manufacturing environment

through communication with the RAs and build an environment model. As described

in Section 2.2.c, PA exploration in existing architectures is accomplished by either

supplying the PA with a holistic view of system capabilities or by allowing the PA to

query all of the system RAs. Both of these techniques provide the PA with too much

information, either creating unnecessary communication overhead or populating the

PA knowledge base with extraneous information. Therefore, the primary contribution

of this chapter is a novel methodology to enable PA exploration based on a dynamic

network of RAs. In the proposed methodology, RAs are able to coordinate and form

teams to enable efficient PA exploration.

The rest of the chapter is organized as follows. Section 4.1 provides the set-up

for the new PA exploration technique. Section 4.2 explains how a network of RAs

52

can enable PA exploration and Section 4.3 provides attributes of this exploration

approach. Conclusions are stated in Section 4.4.

4.1 Multi-agent Architecture

In this section, the resource agent and product agent knowledge needed for explo-

ration via a dynamic resource network is described. The structures used by the PAs

and RAs for communication are provided.

4.1.a Resource Agent Knowledge

To utilize the proposed PA exploration, RAs are provided a model of their capa-

bilities and the states that are shared with neighboring RAs.

4.1.a.1 Capabilities Model

A finite state-machine can be used by an RA to represent its resource capabili-

ties [104]. To enable effective communication and cooperation, a resource capabilities

model for one RA is defined similarly to the PA environment model in Chapter III.

The resource capabilities model is defined as the following tuple:

M = (X,E, Tr, Prpp, P rpnp, T, Tc, xi, Xm), where:

X = {x0, ..., xn}: a set of states that can be achieved by any physical part

utilizing the resource

E = {e0, ..., el}: a set of events that the RA can trigger that correspond to

processes in the physical system

Tr : X × E → X: a state transition function

Prpp : X → Pp : a function that maps states to Pp, which is the set of physical

properties that represent a change in the physical composition of the part

53

Prpnp : X → Pnp : a function that maps states to Pnp, which is the set of

physical properties that represent no changes to the physical composition of the

part

T : E → R+ : the time it takes for the event to occur

Tc : E → Sce : the current schedule for each event

xi ∈ X : an initial state (updated for every bid request)

Xm ⊆ X : a set of marked states (updated for every bid request)

Events can be logistic or manufacturing operations [31]. An example element of Prpp

is an addition of a feature to a part [7]. Example elements of Prpnp are the location

and orientation of a part. Sce = {(t0, t1), (t2, t3), ..., (tk−1, tk)} represents times when

a resource is available for event e, with 0 ≤ t0 < t1 < t2 < ... < tk. Thus, the event

can be scheduled between t0 and t1, between t2 and t3, etc.

This capabilities model is constantly updated as the RA receives information from

the resources on the shop floor (e.g., sensor data that identifies a new state for the

physical part) and other agents in the system. T is updated based on the RA’s

estimation of event duration. The estimation can be improved with data from the

manufacturing system. Sce is updated as PAs and other agents request to use the

associated resource. Note that xi and Xm are updated based on an incoming bid

request, as described in Section 4.2.b.

4.1.a.2 Neighboring RAs

For cooperation with other RAs, each RA is provided the states, Xs ∈ X, shared

between itself and other resources. Note that shared states have to be a part of

the RA’s capabilities model. For example, a machine RA and a material handling

RA might share a state with one physical property: the drop-off location inside the

54

Table 4.1: Resource agent knowledge model example.

X {“At mill1”, “Milled pocket”}
E {“Mill pocket”, “Set for pickup”}
Tr Tr(“At mill1”, “Mill pocket”) = “Milled pocket”

Tr(“Milled pocket”, “Set for pickup”) = “At mill1”
Prpp Prpp(“At mill1”) = ∅,

P rpp(“Milled pocket”) = {(pocket, 5x5x2 cm, ...)}
Prpnp Prpnp(“At mill1”) = Prpnp(“Milled pocket”) = {(mill1)}
T T (“Mill pocket”) = 120 sec, T (“Set for pickup”) = 5 sec
Tc Tc(“Mill pocket”) = {(0,120),(500,620)},

Tc(“Set for pickup”) = {(120,125),(620,625)}
N N(“At mill1”) = {Robot1 Agent,Robot2 Agent}

machine. Each RA stores this information in a table that relates the shared states to

specific RAs, N : Xs → 2RA, where 2RA denotes a power set of RA and RA is the set

all resource agents in the system. All of the RAs in that table, RAneigh = {N(x) :

x ∈ Xs}, are the neighboring RAs.

4.1.a.3 Resource Agent Knowledge Example

An example description of a resource capabilities model for a mill is provided

in Table 4.1. In this scenario, the mill has pocket milling capabilities and has two

neighboring robots, which pick up finished parts and place new parts into the mill.

4.1.b Product Agent Knowledge

The PA contains a process plan and product history, as described in Chapter III.

The process plan is provided during PA initialization. As for the product history, the

PA keeps track of actions that affect the physical part through communication with

RAs.

55

4.1.b.1 Process Plan

The process plan is a representation of a customer order, defined as the following

ordered list: Pd = (P1, P2, ...Pn), where P1 = {p11, ..., p1a}, P2 = {p21, ..., p2b}, ...,

Pn = {pn1, ..., pnm} and p represents a desired physical property. The desired physical

property can be a feature added to a part or a specific location in the manufacturing

system, i.e. p ∈ Pp ∪ Pnp. In the process plan, all of the physical properties in a prior

set must be complete before trying to accomplish a new set of properties. For example,

all of the properties in P1 and P2 must be completed before trying to accomplish P3

properties. The goal of the PA is to request actions from RAs that will enable the

physical part to accomplish the entire process plan.

4.1.b.2 Product History

The product history is a representation of the current state of the associated

physical part. The product history is defined as: PH = (Xv, P rpv, RAc), where

Xv = x0, x1, ..., xm is a sequence of achieved states, Prpv =: Xv → Pp∪Pnp is a set of

completed physical properties, and RAc is the last RA to inform the PA of a visited

state. To keep the PA informed, the RAs match each part to an associated PA via

auto-identification technology [79] (e.g. Radio-frequency identification tags). Then,

as a resource performs actions on a part, the associated RA sends information to the

identified PA to update Xv, Prpv, and RAc.

4.1.c Agent Communication

The two structures used for agent communication are bid requests and bids. PAs

use the bid request to start the exploration process and receive bids from RAs. In the

proposed methodology, the PAs can send multiple bid requests with different desired

physical properties to the RAs. As described in Section 4.2, the bids and bid requests

are used by the RAs to enable task negotiation and by the PAs to formulate a better

56

Figure 4.1: An overview of the agent communication when the network of RAs is
used for PA exploration.

understanding of the local manufacturing environment.

4.1.c.1 Bid request

A bid request is defined as BR = (PA, xc, Pid, tbound), where PA is the requesting

PA, xc is a starting state, Pid is a set of incomplete, desired physical properties and

tbound: the maximum allowable time to complete Pid.

4.1.c.2 Bid

The bid is defined as: Bid = (Stre, Strx, Agh, P rpp, P rppn, T, Tc), where Stre =

e0e1...en−1 is a sequence of events, Strx = x0x1...xn is a sequence of states, Agh :

e → RA is an event-agent association function between each event and the RA

that performs that event, and Prpp, P rppn, T, Tc are defined similarly to the resource

capabilities model.

4.2 Resource Agent Task Negotiation

In this section, the development and utilization of a dynamic network of resource

agents to enable PA exploration is described. The PAs use a bidding process to

obtain the capabilities of surrounding resources. For this process, the RAs form

teams dynamically to respond to PA requests.

57

An overview of the PA exploration approach is shown in Figure 4.1. The goal

of PA exploration is to obtain the capabilities and schedules of the resources in the

vicinity of the associated physical part. The first step in the exploration is a bid

request from the PA to the last RA to inform the PA of a visited state. The bid

is then propagated by the RA to its neighbors until a team of RAs that can satisfy

the bid request is found. If a team of RAs is formed, then a bid is submitted to

the PA. Otherwise, RAs keep sharing the bid and bid request until the propagation

conditions are not satisfied. After waiting for RA responses, the PA synthesizes the

bids to obtain the model of the local manufacturing environment.

4.2.a Product Agent Bid Request

The PA must create a bid request to start the exploration process. For the bid

request, xc is the last state in the sequence of visited states from the PA’s product

history. Pid is created by comparing the completed physical properties in the prod-

uct history to the properties required by the process plan. Finally, the PA picks a

reasonable tbound to provide a maximum amount of time for the RAs to finish Pid.

Note that the PA can vary both the Pid and tbound to expand or limit the amount of

information it will receive from the RAs, as described in Chapter III. The initial bid

request is sent to RAc, which is the last RA to contact the PA based on the PA’s

product history. If the PA had just entered the system (i.e. no product history), it

will wait until an RA contacts it with some initial information regarding the location

of the physical product.

4.2.b Resource Agent Task Negotiation

An RA uses its resource capabilities model to submit a bid to the requesting PA or

propagate the bid request to its neighboring resources. To decide whether to submit

or propagate the bid, the RA checks if it can satisfy the bid request. We use the

58

following definitions from discrete event system theory to describe this process [22]

A string is defined as a sequence of events. L(M), the set of all strings that are

allowable in M , denotes the language generated by M . Lm(M) ⊆ L(M), the set of

strings in L(M) that end in a marked state, denotes the marked language of M .

The initial state and marked states of the capabilities model are updated using

the bid request. The initial state is defined as: xi := xc. The marked states are

defined as the desired states of the bid request:

Xm := {x ∈ X | Prpp(x) ∈ Pid or Prpnp(x) ∈ Pid} (4.1)

An RA can satisfy a bid request if it finds a string, se = e0e1...en−1, and states,

sx = x0x1...xn that satisfy a few conditions. First, the string must be in the marked

language of M and sx must be a feasible sequence of states in the RA’s capabilities

model:

se ∈ Lm(M) and xi+1 = Tr(xi, ei), for 0 ≤ i ≤ n− 1 (4.2)

In addition, all desired physical properties in the PA’s bid request must be satis-

fied. Any physical properties of x ∈ sx that alter the part’s composition must be a

part of the PA’s bid request. Thus, the following constraint must be satisfied:

∪ni=1 Prpp(xi) = Pid \ ∪ni=1Prpnp(xi) (4.3)

Note that any number of properties that do not alter the part’s composition are

allowed. However, if the states have extra properties that alter the part’s composition,

they do not satisfy this constraint. To satisfy Eq. 4.3, all of the properties in Pid

must be accomplished in sx. Finally, all of the properties must be accomplished in

the requested amount of time:

59

∑n−1

i=1
T (ei) ≤ tbound (4.4)

A bid is submitted if the RA finds se and sx to satisfy these conditions. Otherwise,

the bids are propagated to neighbors.

4.2.b.1 Submitting a Bid

If Eq. 4.2 – 4.4 are satisfied, the RA creates a bid. For the bid, Stre = se and

Strx = sx are obtained from the above equations. Prpp, P rppn, T, Tc are obtained

from the resource capabilities model. For the bid’s Agh, all of the events in Stre

are mapped to the RA creating the bid. The bid is submitted to the PA in the bid

request.

4.2.b.2 Bid Request Propagation

If Eq. 4.2 – 4.4 are not satisfied, the RA decides if the bid should be propagated.

The marked states are redefined as the set of shared states:

Xm := Xs (4.5)

The RA will propagate a bid if there exists a string, se,p = e0e1...en−1, and states,

sx,p = x0x1...xn that satisfy Eqs. 4.2 and 4.4. Note that se,p has at least one event to

ensure propagation, i.e. n > 0 . Finally, without the requirement to accomplish all

of the physical properties in the process plan, Eq. 4.3 is relaxed. However, the string

must not have any physical properties that alter the composition of the part unless

part of the desired physical properties:

∪ni=1 Prpp(xi) ⊆ Pid (4.6)

If these conditions are satisfied, the RA creates an incomplete bid, Bidic, where

60

Stre,ic = se,p, Strx,ic = sx,p, Prpp,ic, P rppn,ic, Tic, Tc,ic are obtained from the resource

capabilities model, and Agh,ic maps all of events to the current RA. In addition to

Bidic, a new bid request BRic, is created in the following manner:

PAic = PA (no change to the requesting PA)

xc,ic = xn

Pid,ic = Pid \
[⋃n

i=1

(
Prpp(xi) ∪ Prpnp(xi)

)]
tbound,ic = tbound −

∑n
i=1 T (ei)

where xc,ic is the shared state, Pid,ic are the physical properties that must be finished

to complete the bid, and tbound,ic is the allowable remaining time to complete those

properties. Bidic and BRic are sent to N(xc,i), the neighboring RAs with the shared

state.

4.2.b.3 Creating a Team of Resources

If an RA receives an incomplete bid and a bid request, the RA will try to complete

the bid by answering the provided bid request. To complete the bid, the RA tries to

find a string, se,c, and a sequence of states, sx,c, that satisfy 4.1 - 4.4 for the propagated

bid request, BRic. If these constraints are satisfied, the RA creates and submits a

completed bid. To complete the bid, the state and event sequences are appended to

the incomplete bid, i.e. Stre = e0,ic...en,ice0,c...em,c, where ei,ic ∈ Stre,ic for 0 ≤ i ≤ n,

ej,c ∈ se,c for 0 ≤ j ≤ m. In this formulation, n and m denote the length of the events

in the incomplete bid and the newly found sequence of events, respectively. Similarly,

the newly found states are appended to the states of the incomplete bid. Using the

RA’s capabilities, Prpp, P rppn, T, Tc are updated based on the newly added states

and events. Finally, for Agh, all of the added events are mapped to the RA creating

the bid. The complete bid is then sent to the PA in the bid request.

61

If the RA cannot complete the bid, it will propagate the bid further. If Eqs. 4.2

and 4.4 – 4.6 are satisfied by a sequence of events and states, the RA updates the

incomplete bid. To update the bid, the state and event sequences are appended to

the Stre,ic and Strx,ic and Prpp,ic, P rppn,ic, Tic, Tc,ic, Agh,ic are updated. The RA sends

the updated, but still incomplete, bid and a new bid request to its neighboring RAs.

4.2.c Product Agent Bid Compilation

After sending the initial bid request, the PA waits for the RAs to reply with a set

of bids. If the PA is not satisfied with the number of bids received (e.g. 0 bids), then

it would send out another bid request to re-explore the system. To obtain different

bids, the PA can change the number of states that it initially wants completed or

increase the maximum allowable time in the bid request.

If the PA is satisfied with the number of bids received, then a model of the

manufacturing environment can be compiled. For the PA, the model is the following

tuple: Me = (Xe, Ee, T re, P rpp,e, P rpnp,e, Agh,e, Te, Tc,e, xc), where xc is the current

state of the physical part, Agh,e is the event-agent association function, and all other

elements are defined similarly to the resource capabilities model. Note that the PA

can use this model to determine desired states for the part, as described in Chapter III.

The environment model can be compiled using the fusion operator [99] on the RA

bids. Algorithm 2 illustrates how to create Me using the bids and past product states

from the product history, Xv. Note that two states, xa and xb, or two events, ea and

eb, are defined as equivalent if and only if:

Prpp(xa) = Prpp(xb) and Prpnp(xa) = Prpnp(xb) (4.7)

ea = eb and Agh(ea) = Agh(eb) (4.8)

In other words, two states are equivalent if they have the same physical properties

62

Algorithm 2 Compiling all bids into an environment model

Input: Bids = Bid1, Bid2, ..., Bidm, Xv

Output: Me

Initialize: Xe, Ee, T re, P rpp,e, P rpnp,e, Agh,e, Te, Tc,e
1: // Iterate through each of the bids:
2: for all Bid ∈ Bids do
3: // Add the states and associated properties
4: for all x ∈ Strs,Bid do
5: if x 6∈ Xe (see Eq. 4.7 for state equality) then
6: Add x to Xe

7: Let Prpp,e(x) := Prpp,Bid(x)
8: Let Prpnp,e(x) := Prpnp,Bid(x)
9: end for
10: // Add the events and associated properties
11: for all en ∈ Stre,Bid do
12: if en 6∈ Ee (see Eq. 4.8 for event equality) then
13: Add en to Ee
14: Let Tre(xn, en) := xn+1

15: where xn is the nth element of Strs,Bid
16: Let Agh,e(e) := Agh,Bid(e)
17: Let Te(e) := TBid(e)
18: Let Tc,e(e) := Tc,Bid(e)
19: end for
20: end for
21: Let xc := xm, where xm is the last element in Xv

and two events are equivalent if they have the same name and the same associated

RA.

With this newly compiled environment model, the PA can plan, schedule, and

request the requisite events from RAs. Before sending scheduling requests, the PA

uses this model to understand the RA capabilities and schedules. The PA can find

paths to less congested machines and work with the RAs to minimally affect existing

RA schedules. In addition, if a PA is not able to find a feasible path after thoroughly

exploring the system, the PA will ask for assistance.

63

4.3 Key Attributes of the Proposed Approach

In this section, the dynamic nature of the RA network and the benefits of the

proposed approach are discussed.

4.3.a Dynamic Network of Resource Agents

The proposed PA exploration framework is enabled by creating a dynamic com-

munication network of RAs. The nodes in the communication network correspond

to individual RAs in the system, while the links represent the shared states between

neighboring RAs. Note that a link exists only if both resources have physical access

to the shared state.

When a new resource is added into the system, the capabilities model and the

table of neighboring resources and states are provided to a newly initialized RA.

To establish the link in the communication network, the new resource informs its

neighboring RAs about their mutually shared states. Once informed, each neighbor

RA can add the new RA to its own table of neighboring resources and states. With

the communication link established, bid requests from PAs in the system will be able

to reach the new resource agent.

Similarly, an RA can be removed from the communication network (e.g. a resource

goes down) by contacting its neighboring RAs. Once the RA is removed from a

neighbor’s table of shared states, the communication link is broken. Note that another

RA might need to take over the removed RA responsibilities if the removal causes a

drastic change in the manufacturing system (e.g. unreachable machines).

The connectivity of this network drives the time performance of PA exploration.

The speed of PA exploration can be improved when links are removed from the

network. While removing links may improve the exploration time performance, RAs

can not use the removed connection when responding to PA exploration requests.

Thus, the level of connectivity should be optimized based on the capabilities of each

64

resource, the number of PAs and RAs in the system, and the speed of the agent

communication and decision making.

4.3.b Benefits of Proposed Negotiation Strategy

4.3.b.1 Flexible part behavior

The physical part can be placed anywhere in the system and, if there exists a way

to obtain desired physical properties in a reasonable amount of time, the network

of resource agents will submit a bid that satisfies the criteria of the associated PA.

The PA does not need to have any prior knowledge of the system to function. To

obtain an accurate representation of the physical part’s environment, the RAs must

continuously keep updating the PA regarding the state of the associated physical part.

4.3.b.2 Response to changes on the plant floor

The dynamic network of RAs can help in improving the flexibility of manufac-

turing systems. The network can capture changes in the capabilities of the entire

manufacturing system as RAs are added, moved, or removed. Modifications of in-

dividual resource capabilities can also be captured in the RA models. Using the

approach presented, PAs can re-explore the system and change their plans to adapt

to dynamic conditions on the plant floor or to changes in customer orders.

4.3.b.3 Security of RA capabilities

The RAs decide how much of their capabilities they share with the PA. The

manufacturer can hide some resource capabilities from certain PAs. This provides the

manufacturer more control over the amount of shared information between agents.

In addition, there is no central storage place that contains a detailed description of

all of the resources. This removes a central point of failure from existing agent-based

manufacturing controllers.

65

4.3.b.4 Integration with existing communication protocols

Due to its bidding mechanics, the proposed technique can be implemented using

existing communication protocols. For example, for the implementation study in

the myJoghurt demonstrator described in Section 6.2, the standardized contract net

protocol [111] was used for agent communication.

4.4 Conclusions

The multi-agent control strategy consisting of product and resource agents (PAs

and RAs) has been proposed to improve manufacturing system flexibility. For this

strategy, the PAs must effectively guide an associated physical part through a man-

ufacturing system. To accomplish this goal, PAs must understand the capabilities of

the surrounding environment. In this chapter, a novel approach for PA exploration

based on the propagation of bids and bid requests over a dynamic network of RAs

is proposed. Using the proposed methodology, RAs form teams to provide PAs with

a comprehensive view of the surrounding environment. In addition to enabling RA

task negotiation, this approach limits the amount of information available to agents,

improving security and reducing communication overhead of agent systems.

The exploration methodology described in this section is used for all of the sim-

ulations described in Chapters III – V and the physical testbed implementations

presented in Chapter VI. This methodology is scalable, as the model-based PA was

able to combine bids from a number of resource agents (up to 20) in a reasonable

amount of time. The PA was able to build models with up to 100 states and up to 100

events without scalability issues. Specific exploration times for the physical testbeds

are provided in Chapter VI. Future work will look at finding the computation, storage,

and time limitations for the exploration methodology.

66

CHAPTER V

Direct, Active Cooperation

This chapter presents the work published in [43,48] that proposes direct and active

cooperation for the PA. PAs must cooperate with other PAs and RAs when making

decisions. Specifically, when planning and scheduling future resource actions, a PA

must cooperate with both PAs and RAs to find a sequence of resource actions to

complete its associated part’s production requirements and not come into conflict

with other agents in the system. As described in Section 2.2.d, prior work has fo-

cused on a passive approach to PA cooperation, where the PA has to find a set of

feasible resource actions without being able to negotiate with other agents over ex-

isting scheduling constraints. However, as shown in Chapter III the PA is not always

able find a sequence of actions that satisfies all of the existing scheduling constraints

and accomplishes its production goals. This limitation of the passive cooperation

approach reduces the flexibility of the PA and, in turn, reduces the flexibility and

adaptability of the multi-agent control strategy.

To improve the flexibility of the PA, a direct, active cooperation approach can be

utilized during the PA’s planning and scheduling phase. In this type of cooperation,

the PA has to identify the soft constraints in the system, i.e., the scheduling con-

straints that can be negotiated through communication with other agents. Then, the

PA must choose which, if any, of the soft constraints prevent the agent from accom-

67

plishing its individual goals. Finally, the PA needs to communicate and cooperate

with the appropriate agents in the system to resolve the identified conflicts.

The main contribution of this chapter is a model-based decision making framework

to enable direct, actively cooperative product agents (DA-PAs). Specifically, this

chapter proposes a model to capture the soft constraints in the system, an algorithm

that enables the DA-PA to identify which of the soft constraints are conflicting with

its individual goals, and a communication method to allow the DA-PA to negotiate

and coordinate with other agents in the system.

The rest of the chapter is organized as follows. Background information about the

priced timed automaton modeling formalism is provided in Section 5.1. Section 5.2

overviews the components of the DA-PA’s knowledge base used for the cooperation

framework. Section 5.3 describes the framework used for a direct and actively co-

operating product agent. Case studies for the cooperation framework are given in

Section 5.4. Section 5.5 provides concluding remarks.

5.1 Priced Timed Automata

In existing model-based product agents, both the scheduling constraints and other

various metrics (e.g., energy cost) are combined and encoded as edge weights on a

finite state machine (FSM) [23, 104]. This encoding approach was utilized for the

PA’s environment model presented in Chapters III and IV. This encoding makes

it difficult to identify the scheduling constraints in the system, separate them into

hard and soft constraints, and enable direct, active cooperation. Therefore, this work

proposes to leverage the priced timed automaton (PTA) modeling formalism [13, 52]

to capture the PA’s scheduling constraints.

Here we provide a formal definition of PTA, based on [13], and some additional

definitions we use in our work. A PTA is composed of a set of states, X, connected

by a set of edges, E. Each edge is labeled with an event, σ ∈ Σ. A PTA also has

68

a set of clocks, continuous variables c ∈ C = Rnc
≥0, where nc is the number of clocks

in the system. All clocks have the same constant, positive growth rate and an initial

value of zero.

A finite set of Boolean indicator functions of clock values, B, represents the con-

straints. For example, for a clock value c ∈ C, the Boolean indicator function

Ici≤a(c) ∈ B evaluates to true if and only if the ith element of c is less than or

equal to a. Each element of B is either an invariant for a location, which must evalu-

ate to true for the system to occupy the location, or a guard on an edge, which must

evaluate to true to traverse an edge. Reset maps on edges set clocks to predetermined

values when the edge is traversed.

Additionally, a PTA has costs on states and edges. Costs on edges are discrete

increments added to the total running cost when the edge is traversed, while the

states have cost rates, and steadily accumulate cost over time.

Definition V.1 (Priced Timed Automata). A PTA A is defined as an 8-tuple A =

(X,C,Σ, E, I, R, P, x0), where

• X = {x0, x1, ..., xnx} is a finite set of states of the PTA

• C = {c0, c1, ..., cnc} is the set of clocks

• Σ = {σ0, σ1, ..., σnσ} is a finite set of events

• E ⊆ X × B × Σ×X is a finite set of edges

• I : X → B is the invariant operator

• R : E × C → C is a reset operator

• K : X ∪ E → [0,∞) maps the locations and edges to their costs

• x0 ∈ X is the initial state

69

There are several differences between the PTA model described in Definition V.1

and the environment model presented in previous chapters. Note that, to align with

existing PTA definitions, the events of the environment model described in Chap-

ters III and IV have been decomposed into the edges and the events in Definition V.1.

For Definition V.1, the events, Σ, are the labels for the edges, E, in the priced timed

automaton. In addition, the costs of the system are associated with the states of

the system, as described in Section 5.2. The addition of the system clocks is the

most significant change to the environment model and is described in more detail in

Section 5.2.

The guards are embedded in the edge definition, with B denoting constraints on

the clocks for each edge, i.e., the guard conditions. A transition is a formal description

of a change in the system state and the transition type. There are two types of

transitions, discrete transitions (changes in location) and delay transitions (changes

in clock values). Let ty,z denote a transition with y ∈ {s, d} denoting if the transition

is a discrete (s) or a delay (d) transition, and z = {e, τ} where e ∈ E and τ ∈ R. We

define transitions as x′
ty,e−−→ x, where x′, x ∈ X. We provide further definitions on the

clock structure before formally defining the two types of transitions.

We utilize a two clock structure in this work. The two clock set is given as

C = {cl, cg} through the rest of the chapter, noting that additional clocks may be

added for various applications. The local clock, cl, represents the time spent at a

single state and, thus, is always reset to 0 when entering a state via a transition in

the system. The global clock, cg, represents the absolute time for the system and is

never reset in the system. Additionally we use the valuation operator val(·) to denote

the value of a clock. The valuation operator captures the values of clocks for a state

x ∈ X at the time when a discrete transition corresponding to an edge e ∈ E is taken

from the state x to a new state x′. For example val(cxg) denotes the value of the global

clock at state x at the time of transition to a new state x′ by taking an edge. Then,

70

the two types of transitions for PTA are defined as follows.

Definition V.2 (Discrete Transition). A transition x′
ts,e−−→ x is a discrete transition

if e = (x′, σ, x) ∈ E and clock valuations are incremented as val(cxg) = val(cx
′
g) and

val(cxl) = 0. Note that we say a discrete transition is taken when an edge in the

model is traversed.

Definition V.3 (Delay Transitions). A transition x′
td,τ−−→ x is a delay transition if

x′ = x, the invariant I(x′) is true, and clock valuations are incremented as val(cxg) :=

val(cxg) + τ and val(cxl) = τ .

Note that by explicitly defining the two transition types with the specific clock

valuation updates, we implicitly defined a reset operator, R, for the PTA. We omit

R in later definitions for brevity.

5.2 Knowledge Base

This section provides a description of the DA-PA’s knowledge base, namely its

goals, environment model, and decision making model. The goals and models de-

scribed in this section are used for the direct, active PA cooperation described in

Section 5.3.

5.2.a Goals

During its initialization, a DA-PA is provided a process plan, exit plan, perfor-

mance weights, and the priority of the associated part with respect to other parts in

the system. The process plan and exit plan are similar to the components described

in Chapter III. The performance weights have been added to aid in the PA’s decision

making using the PA’s environment model described later in this section.

71

5.2.a.1 Process Plan

The process plan is formulated based on a customer order and consists of an

ordered list of desired physical properties for the associated part, as described in

Chapters III and IV. Physical properties include part locations or part features, e.g.

“part at exit loading dock” or “part has hole with taper” [7,98]. Formally, the process

plan is defined as: Plan = (PPd, Dl), where PPd = (pp1, pp2, ...) is the ordered list

of desired physical properties ppi. Note that this is a simplification of the process

plan presented in Chapter III, as the process plan in Chapter III is an ordered list

of sets of desired physical properties. In addition, to enable the DA-PA to finish the

process plan per the customer order, deadlines can be added to each of the properties

in the process plan. Formally, we set Dl : PPd → R≥0 as the latest allowable finish

time for a property. The PTA-based encoding of the environment model described

later in this section enables the addition of deadlines to the process plan described in

Chapter III, allowing the PA to better meet customer requirements.

The process plan is developed offline and provided to the DA-PA (e.g. [92]). Since

the plan is computed offline and, additionally, to ensure that communication between

agents is kept in a local neighborhood as described in Chapter IV, we assume that the

DA-PA accomplishes the process plan one physical property at a time. Therefore, the

DA-PA will only look to complete the next unfinished property in the process plan.

As shown in the case study presented in Chapter III, in most cases, a model-based

PA is able to complete its process plan one property at a time. Future work will

look at developing a methodology to incorporate multiple physical properties when

making decisions and using other types of structures (e.g., temporal logic [101]) to

encode the specifications in the process plan. Note that the DA-PA keeps track of the

completed physical properties and can identify the next unfinished physical property

when required.

72

5.2.a.2 Exit Plan

The DA-PA is initialized with an exit plan that is used if the DA-PA cannot find

a sequence of resource actions to fulfill the process plan. A detailed description and

formulation of the exit plan is presented in Chapter III. The DA-PA can exit the

manufacturing system by calling an exit agent in the exit plan. For example, an exit

agent can be a human agent [131] who can retrieve the part from the manufacturing

system. The decision of the DA-PA to exit the system is discussed in detail in

Section 5.3.

5.2.a.3 Performance weights

There are various, measurable performance metrics, PM = {pm1, pm2, ..., pmn},

for resources on the plant floor, e.g., energy and material cost. These metrics are

tracked and stored by the associated RAs in the system. The RAs share these per-

formance metrics when they communicate their capabilities with the DA-PA. These

metrics are stored in the environment model of the DA-PA. A formal description of

their encoding in the environment model is provided in Section 5.2.b.

A set of performance weights is provided during the DA-PA’s initialization. These

performance weights are computed offline based on the customer order or the manu-

facturer requirements. Each performance weight corresponds to a metric. Formally,

the set of performance metrics is defined as {αpi ∈ R≥0 | pi ∈ PM}. The magnitude

of the weight represents the relative importance of the corresponding metric for the

DA-PA. For example, if a DA-PA favors minimizing material cost over energy usage,

the following relation will hold αmaterial > αenergy. The DA-PA uses the performance

weights and metrics during its decision making to identify desirable resources and

resource actions in the system.

73

5.2.a.4 Agent Priority

The DA-PA is provided an importance value, pr ∈ N, which represents the priority

of the associated physical part when compared to other parts in the system. An

importance value of 1 signifies that the part is of the highest priority. Therefore, a

part i has a higher priority than part j if pri < prj.

Note that while the process plan, performance weights, and agent priority are all

part of the DA-PA’s individual goal, they are linked to the overall performance of the

manufacturing system. The process plan is based on a customer’s order and needs

to be designed to accomplish all of the requirements in that order [92, 113]. The

performance weights can be set by the manufacturer to prioritize certain actions for

the DA-PA (e.g., use less energy or use less material). Finally, the agent priority can

be set by the needs of the manufacturer and the importance of the customer order.

For example, if a customer sends in a highly profitable order with harsh penalties for

production delays, the DA-PAs associated with the order would be provided with a

high priority. Future work will look at understanding how to map the needs of the

manufacturing system to the goals of the DA-PA.

5.2.b Environment Model

The capabilities and scheduling constraints of the local manufacturing environ-

ment are captured by the DA-PA’s environment model, as described in Chapter

III. The environment model is updated by the DA-PA as other agents (RAs and

PAs) provide the capabilities and scheduling constraints for the resources in the local

manufacturing environment to the DA-PA. This information is communicated either

following a DA-PA request or if there is a disturbance in the manufacturing system.

The environment model is defined as the following tuple:

AEM = (X,Prp, x0,Σ, E, C,Γ, I,Knm,Ksft, Ag):

X = {x1, x2, ...} is the set of states for the associated physical part

74

Prp : X → PP maps states to physical properties

x0 ∈ X is the current state of the part

Σ = {σ0, σ1, ...} is a finite set of events, where each event represents the start

or completion of a resource action (e.g a logistic or manufacturing operation)

E ⊆ Q× Σ×Q is a finite set of edges

C = {cl, cg} are the local and the global clocks

Γ : {γxi,1, γxi,2, ...γxi+n,1, ...} is the set of slack variables, where γxi,j ∈ R is the

jth slack variable for state xi.

I : X → B[val(C), val(Γ)] maps states to their constraints as a function of the

clock and slack variables

Ag : X ∪ E ∪ B[val(C), val(Γ)]→ Agents maps states, events, and constraints

to corresponding agents

Knm : X × PM × val(C)→ R≥0 maps states, performance metrics, and valua-

tions of clocks to nominal cost values

Ksft : X × PM × val(Γ) → R≥0 maps states, performance metrics, and valua-

tions of slacks to cost-of-constraint-violation values

where X,Prp, x0, E are the discrete event dynamics, C,Γ, I encode the time-based

state constraints, Ag is the agent association function, and Knm,Ksft are the state

costs for the DA-PA.

The vectors val(C) and val(Γ) are valuations of the variables C and Γ for each

state in the system. These valuations capture the values of the clocks and associated

slack constraints for a state x ∈ X at the time when a discrete transition correspond-

ing to an edge e ∈ E is taken from state x to a new state x′. To ensure unique

75

clock and slack valuations, we enforce the AEM to be acyclic, while noting that cyclic

graphs can be “flattened” into acyclic graphs efficiently [88].

AEM is an extension of the PTA modeling formalism presented in Section 5.1.

A description of how the manufacturing environment is mapped to each component

is discussed in the rest of this section. Note that there are several differences when

AEM is compared to the PTA from Section 5.1. As previously discussed, the reset

operator, R, is left out for brevity. Only states (not edges) of AEM have constraints

and these state constraints are encoded in the invariant, I. Finally, there are a number

of extensions to the constraints and costs of AEM , which are discussed in the rest of

this section.

5.2.b.1 Discrete event dynamics

X,Prp, x0, E represent the capabilities of the manufacturing system. X are the

states of the physical part in the system. Each state is a combination of several

physical properties of the part. Physical properties define locations and physical

composition of the part (e.g. “part at machine” or “part feature completed”) [98] or

operations performed on the part (e.g. “moving the part” or “working on a manu-

facturing process”). Prp maps each state of the environment model to one or more

of these physical properties. A current state, x0, is updated when an RA informs the

DA-PA that it has started or finished a resource action. Each event, Σ, represents

an instantaneous (takes 0 time) start or completion of a manufacturing or logistic

operation [31].

5.2.b.2 Time-based Constraints

The state constraints, B, limit the amount of time that the associated part can be

in the state (e.g. how long the part can stay at a location). These constraints are split

into hard and soft constraints, B = H[val(C)] ∪ S[val(C), val(Γ)]. Hard constraints,

76

H[val(C)], cannot be violated by the DA-PA (e.g. minimum time required to com-

plete a manufacturing operation). Soft constraints, S[val(C), val(Γ)], contain slack

variables, Γ. As described in Section 5.3.c, these soft constraints may be violated by

the DA-PA through negotiation with other agents in the system. Note that there is

no limit for the number of constraints at each state. Therefore, all of the constraints

in the model are stored in the invariant mapping, I. This mapping links a state to

all of its constraints.

All time constraints, B, are logic expressions [14]. There are two types of con-

straints used in the environment model: bound constraint and interval gap constraint.

The bound constraint is a time limit that represents an absolute limit when the part

can enter a state or leave a state. The gap constraint represents an interval when

the part cannot be at a certain state. Formally, the two constraints are defined as

follows:

Definition V.4 (Bound Constraint). A bound constraint, Bb, for state, x, is satisfied

(i.e. evaluates to true) if and only if a clock valuation (either local or global) at the

state, val(cxb), for cb ∈ C satisfies:

val(cxb) ./ tb ± aγ val(γxb
)

(5.1)

where tb ∈ R≥0 is the time limit for the clock, aγ ∈ [0, 1] is the hardness coefficient,

γxb is a slack variable associated with the constraints on state x, and ./ is one of the

following logical operators: <, ≤, =, ≥, >.

Note that a bound constraint is a hard constraint if aγ = 0.

Definition V.5 (Interval Gap Constraint). An interval gap constraint, Bg, for state

x and interval (tl, tu) is satisfied if and only if the local and global clock valuations

77

at the state, val(cxl) and val(cxg), satisfy:

¬
[
X1 ∨X2

]
∧
[
X1 ∨X3

]
(5.2a)

X1 := val(cxg)− val(cxl) < tl + aγ,l val(γ
x
1) (5.2b)

X2 := val(cxg)− val(cxl) > tu + aγ,u val(γ
x
u) (5.2c)

X3 := val(cxg) ≤ tl + aγ,l val(γ
x
1) (5.2d)

where tl, tu ∈ R≥0 and tu > tl, aγl , aγu ∈ 0, 1 are the hardness coefficients, γxl , γ
x
u are

unique slack variables associated with the constraint, and ¬,∧,∨ are logic operators.

Note that the expression val(cxg) − val(cxl) represents the global clock time when a

discrete transition is taken into state x. Therefore,
[
X1∨X2

]
represents that the part

cannot enter the state during a time interval of the global clock, (tl, tu).
[
X3 ∨ X4

]
represents that if the part enters the state before the start of the interval, (tl), it must

also exit the state before the start of the interval.

5.2.b.3 Transitions

The objective of the DA-PA’s decision making is to find clock and slack variable

valuations that satisfy all of the state constraints in the system. To satisfy these

constraints, the DA-PA must choose a sequence of discrete transitions from E that

transition the agent from one state x to a new state x′ and delay transitions that

keep the agent at the same state x, but take a finite time τ ∈ R. The definitions of

these two transition modes are provided in Section 5.1. Details about how a DA-PA

chooses these transitions is provided in Section 5.3.

Remark V.6. It is always feasible to denote delay and discrete transitions in an al-

ternating sequence since delay transitions are additive, and we can define a zero time

delay transition between two consecutive discrete transitions.

78

5.2.b.4 Agent association function

The DA-PA builds the environment model by requesting capabilities from the RAs

in the system [55]. If the RAs provide their capabilities as PTA-based models, the

DA-PA can put together these models to create the proposed environment model [99].

However, to enable the proposed cooperation framework, the DA-PA must keep track

of the agents associated with the components in the environment model.

The agent association function, Ag, maps states, events, and constraints to an

associated agent. The states can be mapped to one or more agents. If a state is

mapped to more than one agent, it is a shared state (see Chapter IV). The presence

of these shared states allows for the modular composition of the environment model.

The events are mapped to a single agent so that the DA-PA can identify which agent

to contact when requesting a discrete transition. Similarly, constraints are mapped to

a single agent, representing which agent is responsible for the scheduling constraint

in the system.

5.2.b.5 State costs

The nominal cost, Kpinm(xj), for performance metric pi is the cost for a part to

stay at a state with respect to the corresponding metric (pi). Formally, the nominal

cost for performance metric pi for a single state xj is:

Kpinm(xj) = Anm · val(Cx) + bnm (5.3)

where Anm ∈ R2
≥0, bnm ∈ R≥0 are the nominal cost parameters provided by the RAs

and val(Cx) = [val(cxg), val(c
x
l)]

T are the valuations of the clocks for state x.

Similarly, the soft constraint violation cost, Kpisft(xj), is the cost for the part to

stay at a state if there is a constraint violation. The soft constraint violation cost for

79

performance metric pi for a state is:

Kpisft(xj) =
m∑
k=1

aksft val(γ
xj
k) + bksftδ(val(γ

xj
k)) (5.4)

where m = |I(xj)| is the number of constraints for the state, γk is the slack variable

associated with the kth constraint, aksft, b
k
sft ∈ R≥0,∀1 ≤ k ≤ m, and δ(·) denotes an

indicator operator with 1 if the argument is nonzero and 0 otherwise. Note that if

aksft = 0 and bksft = 0, then there is no penalty for violating constraint k. Similarly,

if the associated valuation of the slack variable is 0, then there is no violation cost

added, i.e. if val(γ
xj
k) = 0, then δ(val(γ

xj
k)) = 0 and val(γ

xj
k) + bksftδ(val(γ

xj
k)) = 0.

Thus, the sum (5.4) is a summation of slack costs for the nonzero slack valuations.

For the nominal cost, RAs estimate the Anm, bnm for each state and provide this

information to the DA-PA when queried. While determining Anm, bnm is out of the

scope of this dissertation, there are several methods that can be used to estimate these

values. For example, smart sensors can capture information relevant to Anm, bnm and

experiments can be run to determine these parameters (e.g., using an energy sensor

to determine the energy cost to perform resource actions). Resource models can also

be developed and used to determine appropriate values for Anm, bnm. For the soft

constraint violation cost, the agent associated with each soft constraint, agsc, must

provide the aksft, bsft to the DA-PA. aksft, bsft represent how undesirable the constraint

violation would be to the agent associated with the soft constraint, agsc, in terms of

performance metric k. Therefore, to ensure desirable performance of all of the other

agents, the DA-PA should (1) only violate these constraints if absolutely necessary

and (2) minimize the cost of constraint violations, as described in Section 5.3.b.

80

5.2.c Decision Making Model

A decision making model is represented as the following tuple:

ADM = (X,Prp, x0,Σ, E, C,Γ, I, Ag,Xm,K), where (X,Prp, x0,Σ, E, C,Γ, I, Ag) are

obtained from the environment model, Xm ∈ X is a set of marked states, and

K : X × val(C) × val(Γ) → R≥0 denotes the state costs. The set of marked states,

Xm, represents desired states for the DA-PA [22]. A discussion of how the decision

making model is put together is presented in Section 5.3.a.

Figure 5.1 is an example of a decision making model for a DA-PA in a manufac-

turing system composed of 2 robots (R1 and R2), 2 machines (M1 and M2), and 2

buffers (B1 and B2). There are 4 RAs in the system, one for each robot and for each

machine. The buffers are used by the robots to pick and place parts in the system

and do not have an associated agent in this example. B1 is used by R1 and B2 is used

by both R1 and R2. The machines complete a manufacturing process (P1) required

as part of the DA-PA’s process plan. This initial state state, x0, and marked states,

Xm are shown in Fig. 5.1. The dashed rectangles outline which states and events are

associated with a specific agent in the agent association function, e.g. states x1, x2, x3

and events σ1, σ2 are associated with the R1 agent.

Table 5.1 displays information about the states and constraints for this example.

All of the constraints are bound constraints (see Definition V.4), where t is the time

limit for the clock at each state.

Soft constraints represent desired, but flexible, operating conditions for the RAs.

The only soft constraint for this system is defined on state x2. This constraint rep-

resents the desired minimum operating time, tsftR1,B2, for R1 to take the part from B1

to B2. This constraint can be violated if the value of the slack variable is greater

than 0 for that state, γxl > 0. However, there is a penalty that is associated with

violating that constraint, Knrgsft (x). This penalty represents how undesirable this con-

straint violation would be to R1. The rest of the constraints in Table 5.1 are hard

81

Figure 5.1: A visualization of the decision making model for a system with 6 re-
sources – 2 robots (R1, R2), 2 machines (M1, M2), 2 buffers (B1, B2) – and 4 agents
representing R1, R2, M1, and M2. R1 moves the part from B1 (x1) to B2 (x3). R2
moves the part from B2 (x3) to M1 (x6) or M2 (x9). M1 and M2 complete manu-
facturing process 1 (P1), represented by x8 and x11. The part is at B1 and needs
P1 completed (x8 or x11) per the process plan. See Tables 5.1 and 5.2 for more
information about states and events.

constraints. Hard constraints are the boundary conditions for the RA and are defined

based on physical and safety limitations. For example, tnmR1,B2 is the hard time limit

for taking the part between B1 and B2 using the R1 agent, represented by x2. Note

that the desired, operating time for R1 should be greater than the boundary time

due to physical or safety limitations, tsftR1,B2 > tnmR1,B2.

The constraints associated with x1, x8, x11 are added during model creation, as

described in Section 5.3.a. The constraint associated with x1 is the time limit for the

DA-PA to find a new sequence of actions for the DA-PA. topt is the upper bound for the

time to solve the optimization problem and must be provided during initialization or

estimated by the DA-PA. Similarly, tcoord is an upper bound for coordination time and

must be provided or estimated by the DA-PA. In addition, there is a hard constraint

for x8 and x11 that represents a time deadline, td, to complete the manufacturing

process.

An overview of the costs is also provided in Table 5.1. The state costs are a

combination of two metrics: processing time and energy expenditure. The processing

82

Table 5.1: State properties, invariants, and costs for example in Fig. 5.1

State,
(x)

Properties,
Prp(x)

Invariant, I(x) Cost, K(x)

x1 At B1 val(cxl) > topt + tcoord αtKt(x)

x2
Moving to

B2
val(cxl) > tsftR1,B2 − val(γxl)

val(cxl) > tnmR1,B2

αtKt(x)+

αe

(
Knrgnm (x) +Knrgsft (x)

)
x3/x6/
x9

At B2/M1/
M2

None αtKt(x)

x4/x5
Moving to

M1/M2
val(cxl) > tnmR2,M1/M2 αtKt(x) + αeKnrgnm (x)

x7/x10
At M1/M2
P1 Working

val(cxl) > tnmM1/M2,P1 αtKt(x) + αeKenm(x)

x8/x11
At M1/M2
P1 Finished

val(cxg) < td αtKt(x)

Table 5.2: Event descriptions for example in Fig. 5.1.

Event, (σ) Event Name Event, (σ) Event Name

σ1, σ3, σ5
Start moving to

B2/M1/M2
σ2, σ4, σ6

Finish moving
to B1/M1/M2

σ7, σ9
Start P1 at

M1/M2
σ8, σ10

Finish P1 at
M1/M2

time cost is the amount of time spent in that state: Kt(x) = val(cxl). The energy

expenditure cost is provided by the RAs and represents the energy used by the RA

for the part to stay at the state. For example, the energy cost for moving to B2 is

evaluated to the following: Knrgnm (x) = cnm ·val(cxl) and Knrgsft (x) = csft ·val(γxl), where

cnm and csft are energy usage coefficients. Note that csft > cnm to ensure that there

is a penalty for violating the soft constraint.

Table 5.2 provides information about the events in the system. Note that the

events are associated with a single agent and can be called by the DA-PA to transition

83

Receive update/request
from PA or RA

Update the environment model

Create decision making model

Solve optimization problem

Path found?

Soft Constraint
Violation(s)?

Yes

Send constraint violation
request to agent(s)

Yes

All violation(s)
authorized?

Send constraint violation
confirmation to agent(s)

Yes

No

Schedule
path

Path not
found

No

No

Model
Creation

Path Planning

Coordination

Scheduling

Figure 5.2: A high-level overview of the direct, active cooperation for the product
agent. The framework includes 4 steps: model creation, path planning, coordination,
and scheduling. Note that the gray boxes indicate instances when the PA communi-
cates with other agents in the system.

between states. For example, the “Start P1 at M1” (σ7) can be requested from the

RA associated with M1 to start the P1 manufacturing process at the machine (x7).

5.3 Cooperation Framework

The DA-PA uses the goals, environment model, and decision making model de-

scribed to find a new path, or sequence of resource actions, in the system after re-

ceiving an update to its environment model. An update to the DA-PA’s environment

84

model occurs either (1) when the DA-PA is provided information about the environ-

ment during initialization (2) another agent contacts the DA-PA with new information

due to an unexpected disturbance or (3) when RAs reply to a PA query for new in-

formation about the environment. Direct, active cooperation is used by the DA-PA

to find paths in the system that allow all of the agents to meet their goals, if possible.

Once a path is found, the DA-PA will start to schedule these events with the RAs in

the system. If a path is not found, the DA-PA will contact an RA to exit the system.

After the DA-PA receives an update to the environment model, the DA-PA goes

through the 4 steps in the cooperation framework: (1) model creation, (2) path plan-

ning, (3) coordination, and (4) scheduling. A high-level overview of the cooperation

framework and the steps are shown in Figure 5.2 and described in detail in this

section.

5.3.a Model Creation

The DA-PA goes into the model creation phase after receiving an update to its

environment model. In this phase, the DA-PA updates the environment model to

capture the current capabilities and constraints of the environment. Then, the DA-

PA creates the decision making model used to find the next sequence of resource

actions.

5.3.a.1 Update the environment model

The DA-PA’s initial step in the model creation phase is to update the environment

model using the information provided to the DA-PA by another PA or RA in the

system. Other agents can send a message to the DA-PA to update any component

of the AEM , i.e. (X,Prp, x0, E, Tr, C,Γ, I,Knm,Ksft, Ag). These updates represent

changes in the manufacturing environment, e.g. new resources, updated scheduling

constraints, changes to the associated part’s current state, etc.

85

5.3.a.2 Create the decision making model

The DA-PA combines AEM and its goals to create the decision making model,

ADM , by taking the following steps. To create ADM , the DA-PA computes a set of

marked states and updates the constraints and costs of AEM .

The DA-PA computes the set of marked states, Xm by obtaining the next un-

finished physical property, ppd, from its process plan. The DA-PA marks a state

(i.e. adds the state to the set of marked states in ADM) if ppd matches the physical

property of a state in the environment model: ppd ∈ Prp(xi),∀xi ∈ Xm. Deadlines

are incorporated in ADM by adding a hard constraint, val(cg) < Dl(ppd), to the

constraints of the marked states, I(xi),∀xi ∈ Xm.

The DA-PA adds a constraint to the initial state in ADM to allow for path plan-

ning and coordination. Thus, the following constraint is added to the initial state:

val(cx0l) > topt + tcoord. This constraint requires the DA-PA to stay in its initial state

to complete the steps of the cooperation framework. Note that these times should be

significantly less than the time it takes to complete the resource actions.

To account for the priority of other the parts in the system, the DA-PA updates

the soft constraint violation costs from AEM before incorporating these costs into

ADM . Let the DA-PA be denoted as ac and its priority as prac . Since each constraint

is mapped to an agent with Ag, the DA-PA obtains a constraint’s associated agent

and the agent’s priority, ai, prai = Ag(Bi). Soft constraints with a higher priority

DA-PA (i.e. prai < prac) are hardened by setting the corresponding aγ = 0 (see Eq.

5.1). For soft constraints with a lower priority DA-PA (i.e. prai > prac), the penalty

for constraint violation is removed by setting aksft = 0 and bksft = 0 (see Eq. 5.4). Soft

constraints with an equal priority DA-PA (i.e. prai = prac) are not changed.

The state cost, K(xj),∀xj ∈ X is a function that depends on the valuation of soft

constraint violations and the clock valuations. The DA-PA computes the state cost

by weighing the state cost for each metric in AEM , p1, p2, ..., pn, with its performance

86

weights, αp1 , αpi , ..., αpn . Formally, the cost for each state is defined as:

K(xj) =
n∑
i=1

αpi
(
Kpinm(xj) +Kpisft(xj)

)
, (5.5)

where Kpinm(xj) and Kpisft(xj) are given as previously. Note that Kpisft(xj) is a summa-

tion of slack costs for nonzero slack valuations. Thus, the state cost is dependant on

the soft constraint violation cost only if there is a constraint violation, i.e., nonzero

slack variable valuation.

Once the DA-PA completes these steps to createADM , it will solve an optimization

problem to find the path, i.e., sequence of resource actions.

5.3.b Path Planning

A path on the environment model PTA is a sequence of transitions that will take

the associated part from its current state to a marked state in the environment model,

while satisfying the constraints in the system.

Definition V.7 (Path). A path s on a PTA is an ordered set of discrete and delay

transitions in which the post-transition state of each transition is equal to the pre-

transition state of the subsequent transition. Thus a path can be notated as

s = td,τ1 ts,e1 td,τ2 ts,e1 ... td,τn ts,em (5.6)

and the path’s total cost is given by the sum of the costs for all discrete and delay

transitions in the path.

As stated in Remark V.6, a path will always start with a delay transition, alternate

between discrete and delay transitions, and end with a discrete transition so that

n = m in Eq. 5.6.

Let ξi = (xi, ci, γi) denote a shorthand for the state, clock values, and slack values

87

respectively at the ith transition of the path s, s(i). Note that s(i) can be either a

delay or a discrete transition. To pose the path planning problem as an optimization

problem, we additionally define

φ(s, ξ1) = {ξ1
s(1)−−→ ξ2, ξ2

s(2)−−→ ξ3, . . . , ξN−1
s(N)−−→ ξN}

as the solution sequence, where ξ1 = (x1, c1, γ1) is the initial state, clock values, and

slack values respectively, and N = 2n is the total number or transitions of Eq. 5.6,

with n = m. We define the projection operator ΠG(φ(·, ·)) that projects the solution

sequence to a subspace G ⊂ ADM . For example ΠX(φ(s, ξ1)) = {x ∈ X | x ∈ φ(s, ξ1)}

projects the solution subspace to the states in ADM . We use φ(s) instead of φ(s, ξ1)

for brevity when the arguments are clear from the context.

Thus, the DA-PA solves the following optimization problem to find a cost-optimal

path:

s∗ ∈ arg min
sk

N∑
i=1

K(xi) (5.7a)

s.t. xi ∈ ΠX(φ(sk, ξ̄)) (5.7b)

sk ∈ L(ADM) (5.7c)

#(ΠΓ(φ(sk, ξ̄))) ≤ ζ, (5.7d)

where L(ADM) denotes the set of all feasible paths (i.e., the language) of ADM ,

ξ̄ = (x̄, c̄, 0) is the initial state and clock value, #(·) denotes the number of nonzero

elements in the argument, ζ ∈ Z>0 is the number of allowable constraint violations

for the solution, and sk is a path as defined in Definition V.7. The solution s∗ is a

path that minimizes the cost function K(xi), where xi are the states in the solution

sequence defined by constraint 5.7b. Constraint 5.7c ensures that the path is in the

language of ADM , ensuring that all the constraints in ADM are satisfied and all the

88

transitions are well-defined. Note that soft constraints and soft constraint violations

will satisfy Constraint 5.7c, but the violations are penalized in the cost function for

this optimization problem (Eq. 5.7a). Constraint 5.7d defines an upper bound on

the number of constraint violations so the solution sequence s∗ can violate at most

ζ constraints. Note that we recover the total number of constraint violations in the

optimal solution using #(ΠΓ(φ(s∗))).

If the number of constraint violations, #(ΠΓ(φ(s∗))), is zero, then the DA-PA

can schedule the obtained sequence of actions without the need to negotiate over

conflicting events, as described in Section 5.3.d. If a solution contains a nonzero

number of constraint violations, the DA-PA has to coordinate with agents to find

a solution to the conflicting events prior to scheduling actions. More detail about

coordination is discussed in the next section. Finally, if a solution to the above

problem cannot be obtained or this optimization problem is not solved within the

provided or estimated bounded time (topt), the DA-PA will request an exit plan, as

described in Section 5.3.d.

Similar to Chapter III, the optimization problem in Eq. 5.7 is a local optimization

problem for the system. The solution to Eq. 5.7 depends on the individual goals of

the product agent and the local environment model built through the exploration

methodology described in Chapter IV. The z3 solver [16] is used by the DA-PA to

solve this optimization problem, as described in Section 5.4.a.

5.3.c Coordination

The DA-PA has to coordinate its optimal path with other agents if there are

any constraint violations found during its path planning phase, #(ΠΓ(φ(s∗))) > 0.

The DA-PA finds the set of corresponding agents (PA or RA) for each constraint

that has a non-zero slack valuation (violated constraint): Agents = {Ag(Bv) | Bv ∈

S[val(C), val(Γ)], val(γv,i) > 0, val(γv,i) ∈ V al(Γv)}, where Γv are the slack variables

89

associated in this constraint. Note that this mapping is not one-to-one as a single

agent in the set Agents can be associated with multiple violated constraints.

The DA-PA sends a coordination request to each of these agents in Agents. For

every state x∗i in the state sequence of the optimal path ΠX(φ(s∗)), the DA-PA finds

the corresponding delay transition td,τj such that (x∗i
td,τj−−→x∗i) ∈ φ(s∗). The coordina-

tion request contains all of the states in the optimal path and the corresponding delay

transitions. Thus, the coordination request represents new scheduling constraints to

be considered by each agent, agv ∈ Agents. The contacted agent, agv, should be able

to understand, reason about, and respond to the request from the DA-PA. Examples

of how other agents understand, reason, and respond to this request is provided later

in this section.

The DA-PA waits for responses to the coordination request for a specified amount

of time, tcoord. If all of the contacted agents authorize their constraint violations, the

DA-PA sends a message confirming the new scheduling constraints that correspond

to the delay transitions in its optimal path to the other agents, agv ∈ Agents. Once

the confirmation message is sent out, the DA-PA will start to schedule the path with

the RAs, as described in Section 5.3.d.

However, a constraint violation can be denied, i.e. not authorized, by another

agent in the system. Examples of why another agent would deny a constraint vi-

olation request are discussed later in the section. If the constraint violation is not

authorized, the DA-PA may still identify feasible paths that can fulfill its goals. Thus,

if a constraint violation is denied (i.e. non-authorized), the DA-PA will update the

environment model accordingly to avoid violating the said constraint. Non-authorized

constraints are hardened by setting the hardness coefficient in the constraint to 0 (see

Definitions V.4 and V.5). Then, the DA-PA goes through each of the steps in the

cooperation framework in Figure 5.2 with the new hardened constraints.

90

Figure 5.3: A sequence diagram for negotiation between two direct, actively cooper-
ating product agents, ag1

pa and ag2
pa.

5.3.c.1 Coordination with a product agent

The DA-PA requests constraint violations from other PAs in the system by re-

questing all of the delay transitions in its optimal path. To make a decision whether

to authorize the constraint violation, the contacted PA, agpa ∈ Agents, must reason

about the effect the constraint violation will have on its planned sequence of actions

(i.e. path). If the decision making of agpa is rule-based, then agpa must have an

appropriate rule that allows it to search for alternate paths in the system. Similarly,

if agpa is a model-based PA, the the new scheduling constraints should be encoded

in the environment model of the PA. If an alternate path is not found, then the

rule-based or the model-based PA rejects the request from the DA-PA.

Since a DA-PA is classified as a model-based PA, the decision making framework

proposed in this work can be used to find alternate paths in the system. The sequence

diagram in Figure 5.3 shows what happens when one DA-PA, ag2
pa, sends a violation

request to another DA-PA, ag1
pa. In this example, ag1

pa receives a request with new

91

scheduling constraints from ag2
pa and progresses through the model creation, path

planning, and coordination phases in Figure 5.2.

The requested violated constraints are added as hard constraints to the decision

making model of ag1
pa during the model creation phase. Then, during the path plan-

ning phase, ag1
pa solves the optimization problem shown in Eq. 5.7. To prevent ag1

pa

from contacting other agents in the system, ag1
pa can set ζ to 0 when finding the op-

timal path in Eq. 5.7. The coordination phase of ag1
pa consists of a reply to DA-PA1

to authorize or deny constraints based on whether or not a path was found in the

path planning phase. Future work will look into allowing ag1
pa to request constraint

violation from other RAs and PAs in the system by allowing positive values of ζ in

Constraint (5.7d) of ag1
pa.

5.3.c.2 Coordination with resource agents

The DA-PA may request constraint violations from the RAs in the system. In

practice, the RAs often have a desired, optimal time to complete various resource

actions based on their own resource models and collected production data. However,

resources can often accomplish tasks faster if prompted. While this might be sub-

optimal to the individual RA, it might help PAs in the system to accomplish their

goals. For example, if a DA-PA requires a faster-than-usual transfer between two

locations in the system, a material handling robot can accomplish this task at the

cost of higher energy expenditure.

A soft constraint that is associated with an RA represents the RA’s desired, opti-

mal time required to finish the associated resource actions. However, when necessary

and if beneficial to the DA-PA in the system, the constraint can be violated during

a DA-PAs cooperation step. Therefore, once queried, a RA must decide whether

to authorize or deny a violation request as the request would result in sub-optimal

behaviour for the RA (e.g. much higher energy expenditure). While RA decision-

92

making is not within the scope of this work, the RA must weigh the benefits and

disadvantages of violating a constraint with respect to its associated resource. Then,

the RA makes decisions whether to allow the DA-PA to violate a constraint and

communicates this decision with the DA-PA.

5.3.d Scheduling

If a DA-PA did not find a path during the path planning phase, it will have to

exit the system via the exit plan. Therefore, the DA-PA calls the exit plan provided

during its initialization to exit the system. If the DA-PA finds a path s∗ and all of the

constraint violations are authorized by other agents, the DA-PA starts to schedule

the transitions with the RAs in the system.

For every state x∗i in the state sequence of the solution sequence ΠX(φ(s∗)), the

DA-PA finds the corresponding delay transition td,τj such that (x∗i
td,τj−−→ x∗i) ∈ φ(s∗).

Then, the DA-PA sends a scheduling request to the agents associated with the state,

x∗i ∈ Ag(x∗i). The request is a scheduling constraint based on the delay time τj.

By performing the scheduling request for all the delay transitions in s∗ the DA-PA

requests to schedule time constraints on all the RAs in the solution path.

To transition between states x∗i and x∗i+1, the DA-PA sends a request to the agent,

Ag(e) where e ∈ E is the corresponding edge in ts,e ∈ s∗, i.e. (x∗i
ts,e−−→ x∗i+1) ∈ φ(s∗).

This discrete transition request is made at a desired time, which corresponds to the

end of a current delay transition. The DA-PA continues to request the discrete tran-

sitions until it completes all of the events in the path s∗. To improve the robustness of

the DA-PA, the optimization Eq. (5.7) is run after each discrete transition is taken by

the agent. If the optimal path s∗ changes between subsequent solutions of Eq. (5.7),

the DA-PA reschedules the time constraint schedules with the RAs corresponding

accordingly.

Since the DA-PA plans for a single manufacturing process at a time, the path s∗

93

ends at a marked state x∗i ∈ Xm that signifies the completion of a manufacturing

process. After the path is finished, the DA-PA finds any unfinished manufacturing

processes as the associated physical part goes through the system and updates ADM

to solve Eq. (5.7) for the next process.

5.4 Case Study

This section presents how direct, active cooperation can be used to improve the

performance of manufacturing systems using simulations of the manufacturing envi-

ronment. The case study showcases how the cooperation framework is used for the

system introduced in Section 5.2.c.

5.4.a Simulation setup

The Repast Simphony agent-based simulation platform [91] was used to test and

analyze the behaviour of a DA-PA in a manufacturing environment. This agent-based

simulation software is discrete-time based, as the simulation is updated every time

step (also known as every tick).

The developed manufacturing simulation contains the high-level discrete-event

dynamics for material handling robots and machines used for manufacturing. The

proposed cooperation framework was added to the model-based product agents and

resource agents obtained from the simulation provided in [47]. A custom PTA mod-

elling class was developed to encode the environment model and decision making

model. The communication framework native to Repast Simphony was used to en-

code messages and enable the cooperation between agents.

A Cost Optimal Reachability Analysis (CORA) solver was developed to solve

the optimization problem in Eq. 5.7 [6]. CORA has been previously used to find

cost-optimal paths for PTA models. Two software tools that have been used to

solve CORA for PTAs are UPPAAL CORA [12,13] and satisfiability modulo theories

94

(SMT) solvers [15, 36]. UPPAAL CORA is developed by using a branch-and-bound

algorithm detailed in [13] and implemented in the UPPAAL CORA software [12].

However, there has been no development of tools for closed-loop extensions of CORA

and existing CORA algorithms do not admit constraint violations. Thus, to solve the

optimization problem with soft constraints, a custom implementation [16] of the z3

SMT solver was used to encode soft constraints and find paths in the DA-PA’s decision

making model [6]. z3 leverages an optimization modulo theories (OMT) solver. OMT

is a branch of satisfiability modulo theories (SMT) with cost functions. OMT solvers

find feasible Boolean and algebraic variables that satisfy all of the given constraints,

that are optimal with respect to an algebraic cost function, and that readily admit

constraint softening [16]. For this implementation, the dynamics and constraints of

the decision making model were transformed into first-order logic expressions [6]. The

solver output was the optimal path for the DA-PA and a set of constraint violations

used in the cooperation framework. JavaScript Object Notation (JSON) was as an

interface between the Repast Simphony simulation and the z3 SMT solver.

5.4.b Case study: small manufacturing system

The case study considers the manufacturing system described in Section 5.2.c.

The system contains two robots (R1 and R2), two machines (M1 and M2), and two

buffers (B1 and B2). New parts entering the system start at buffer 1 (B1) and, once

the part enters the system, a new DA-PA is initialized. During initialization, the

DA-PA is provided the process plan and deadlines, the exit plan, the performance

weights, and the priority for the physical properties in the process plan.

In this example, the process plan contains one physical property: complete process

1 (P1). The exit plan is an agent that can take the part associated with the DA-PA

out of the system. For this example, the DA-PAs attempts to minimize both the time

and energy expenditure in the system with αt = 1 and αe = 0.5, respectively. To

95

Table 5.3: Time limits for resource actions in the simulation

Resource Program
Time
(ticks)

Robot 1 Move to Buffer 2 15

Robot 1 Move to Buffer 2 (Fast) 5

Robot 2 Move to Machine 1 17

Robot 2 Move to Machine 2 17

Machine 1 Process 1 100

Machine 2 Process 1 150

test the DA-PA cooperation framework, various priority values and deadlines were

provided to the DA-PAs during initialization, as detailed in the following examples.

The time limits for the resource actions in the simulation are shown in Table 5.3.

The time limits in Table 5.3 are used to build the constraints in the decision making

model shown in Table 5.1. The time for optimization and coordination is 1 tick, i.e.

topt = 1 and tcoord = 1. Note that for robot 1, the energy expenditure is much greater

if the soft constraint is violated, i.e. if robot 1 has to move the part to B2 faster

than 15 ticks, Thus, cnm = 10 kWh and csft = 100 kwH are the costs for staying at

state x2, Knrgnm (x2) = cnm · val(cx2l) and Knrgsft (x2) = csft · val(γx2l). To conform with

the simulation environment, we require the part to stay in every state for at least one

tick. Therefore, an additional constraint, val(cxl) >= 1, is added for each state in the

decision making model, x ∈ X.

5.4.b.1 Example 1 - Non-cooperative PAs

This example illustrates the scenario when two DA-PAs do not need to cooperate

with each other to complete their individual goals and satisfy the system objectives.

In this example, a part comes into the system with no deadline provided for P1. A

DA-PA, ag1
pa, is created with an importance value of 2. The DA-builds the decision

96

making model shown in Figure 5.1 and calculates its optimal path using Eq. 5.7.

The solver described in the previous section is used to find a cost-optimal path in

the system. Then, after solving the optimization problem, ag1
pa schedules the path to

complete P1 at M1.

Unexpectedly, a second part comes into the system 10 ticks after the first part.

The second DA-PA, ag2
pa, does not have deadlines and has an importance value of

2. The optimal path for ag2
pa does not have any constraint violations. Thus, ag2

pa

schedules resource actions to take the associated part to the slower machine, M2, to

complete its process plan. The flow times for ag1
pa and ag2

pa to complete their process

plans are 141 and 197 ticks, respectively.

5.4.b.2 Example 2 - PA-PA cooperation with order prioritization

For this example, the manufacturer prioritizes the completion of the part associ-

ated with ag2
pa over any other parts in the system. Both ag1

pa and ag2
pa are set-up in

the same way as Example 1. However, ag2
pa is given an importance value of 1, making

it higher priority than ag1
pa.

As in example 1, ag1
pa initially chooses to go to M1 to complete the process plan.

As the part associated with ag1
pa is moving to B2 (state x2 in Figure 5.1), the more

important part enters the system and ag2
pa is initialized. By following the proposed

cooperation framework, ag2
pa requests ag1

pa to reschedule its plan. ag1
pa authorizes the

request and finds an optimal path that to take its associated part to M2 to complete

P1. In this scenario, the flow times for the ag1
pa and ag2

pa are 221 and 145 ticks,

respectively. Compared to the first example, the higher priority DA-PA is able to

complete its process plan significantly faster. Note that the total flow time of both

parts in the system is longer. However, since neither ag1
pa or ag2

pa had any deadlines

in the process plan, all of the goals of both agents were accomplished.

97

5.4.b.3 Example 3 - DA-PA, DA-PA cooperation to meet a deadline

Both ag1
pa and ag2

pa are set-up in the same way as Example 1. Unlike example

2, the priority of both parts is the same for this example. However, ag2
pa is given a

deadline of 180 ticks to complete P1.

As in examples 1 and 2, ag1
pa initially chooses to go to M1 to complete the process

plan. However, when the part associated with ag2
pa comes into the system, ag2

pa

requests the utilization of M1 from ag1
pa. Similar to example 2, ag1

pa is able to find a

new path that satisfies all of its goals that takes the associated path to M2. In this

scenario, the flow times for ag1
pa and ag2

pa are 221 and 145 ticks, respectively.

5.4.b.4 Example 4 - DA-PA, RA cooperation to meet a deadline

Only one DA-PA is considered for this example. In this example, a part comes

into the system and DA-PA is initialized with a deadline of 135 ticks. To accomplish

this task, ag1
pa cooperates with the R1 RA and requests to move to B2 faster by

violating R1’s soft constraint. Since this will ensure that ag1
pa meets its deadline, the

RA confirms this violation at the expense of a higher energy expenditure. In this

scenario, the flow time for ag1
pa is 135 ticks.

5.5 Conclusions

A model-based decision making framework to enable direct, actively cooperative

product agents is introduced. For this framework, a new environment model that

leverages the priced timed automaton modeling formalism is proposed. This model

explicitly represents the scheduling constraints in the system and separates the ne-

gotiable constraints (soft constraints) from the non-negotiable constraints (hard con-

straints). To identify which constraints conflict the product agent’s goals, an opti-

mization problem on the model is developed. A strategy for product agent coordina-

98

tion and negotiation with other agents in the system is also presented. This strategy

resolves the conflicts in the system, allowing the agents to effectively control and co-

ordinate the components on the factory floor. This framework is tested in a simulated

manufacturing environment, showing how direct, active cooperation can improve the

flexibility and performance of the manufacturing system.

99

CHAPTER VI

Implementations

Manufacturing system testbeds provide a place where new ideas can be developed

and tested without the need to disrupt the production or distribution capabilities

of an industrial plant [46]. A multi-agent controller with the model-based prod-

uct agent was developed and tested in several manufacturing system testbeds. This

chapter presents a description of multi-agent control implementations in three man-

ufacturing testbeds: the Fischertechnik testbed at the University of Michigan [131],

the myJoghurt Demonstrator at the Technical University of Munich [2,121], and the

System-level Manufacturing and Automation Research Testbed at the University of

Michigan [46]. These implementations can be used as a blueprint for future imple-

mentations of the model-based product agent framework.

6.1 Fischertechnik

A small table-top testbed made by Fischertechnik was used to initially test the

multi-agent control strategy [131]. This portable testbed is a small scale represen-

tation of a manufacturing facility, allowing us to test and study the multi-agent

control strategy in a physical setting. The Fischertechnik testbed consists of convey-

ors, infrared (IR) sensors, limit switches, and machining stations. These components

emulate functions of real-world manufacturing systems. The layout of the testbed is

100

Figure 6.1: An overview of the Fischertechnik testbed. (a) shows the arrangement
of the four cells and their logic controllers and (b) displays the agents on the Fis-
chertechnik testbed and the location of the main controller.

shown in Figure 6.1.

The physical testbed is sectioned into four cells, as shown in Figure 6.1(a). Each

cell contains a conveyor line and IR sensors to capture the location of the parts in

the system. Cells 2 and 4 have machining stations with a mechanical spinner above

the conveyor. The cell controllers can actuate this mechanical spinner, representing

a manufacturing operation in the system. Each cell is controlled by a programmable

logic controller (PLC) emulated by a Raspberry Pi (RPi) microcontroller [25]. Control

code is uploaded to these micro-controllers, which enact the low-level control (e.g.

motors) for the machines. The controllers are connected over an Internet Protocol

(IP) network with static IP addresses.

6.1.a Agent control and communication architecture

The Java Agent Development Framework (JADE) [3], an agent development en-

vironment, is used to create the agents and establish the agent communication. The

developed multi-agent architecture consists of four resource agents (RAs) and a num-

ber of product agents (PAs). The four RAs are high-level controllers for the cells

and can send actuation commands to move the conveyor or start the manufactur-

101

Figure 6.2: The setup of the Java Agent Development Framework (JADE) on the
Fischertechnik testbed.

ing operation. Model-based PAs are created when new parts enter the system. The

architecture is distributed over the five Raspberry Pis (RPis) in the system.

Four of the RPi’s stores a cell RA and the low-level control logic for that cell. The

agents and the low-level logic are hosted in JADE containers, which are native to the

JADE environment. The other RPi is the main container in the system, facilitating

the communication in the system and initializing new PAs in the system. PAs move

between the RPis as the associated part enters the system and is transferred between

the cells on the testbed. The agent platform is shown in Figure 6.2. The communi-

cation between agents in the system is accomplished using the FIPA (Foundation for

Intelligent Physical Agents) ACL Message protocol in the JADE environment. The

ACL Messages contain custom, serialized Java objects that are decoded by each of

the agents in the system.

The agent architecture is shown in Figure 6.3. The agent layer establishes the

high-level control of the testbed. At this control level, RAs and PAs communicate

102

Figure 6.3: The multi-agent control architecture for the Fischertechnik testbed.

with each other, shown by the yellow arrows, and make decisions. These decisions

are communicated to the PLC in each RPi, as shown by the dark grey arrows. Note

that there is one dark grey arrow pointing to the PA in the system, which signifies

that a PA is initialized using information obtained by that RPi.

The low-level control is established by PLC signals sent through input/output

pins from the RPis to the cells on the testbed. In the low-level control, ladder logic

in the corresponding RPi has direct access to the physical machines through GPIO

(general-purpose input/output) pins.

In addition to the cell RAs, a human resource agent (HRA) is included. The HRA

is a representation of an operator on the shop floor and is discussed in detail in [131].

The HRA interacts with the other agents to add flexibility to the system.

There are many paths of communication between the agents in the developed

multi-agent controller. PA to RA communication involves requests of services from

the PA to the RA. RA to RA communication is needed for the cooperation of machines

to send and receive parts from and to their respective cells. PA to PA communication

103

is used to implement priority of products - higher priority products can tell lower

priority ones to recirculate. The HRA interacts with other agents to perform material

handling or maintenance requests.

6.1.b Fischertechnik case studies and insights

The testbed is used to validate the behavior of the model-based product agent

presented in Chapter III and the exploration methodology described in Chapter IV.

The model-based product agent is provided a process plan that requires the associated

physical part to be machined at either cell 1 or cell 2 for a specified amount of time.

Following this machining operation, the associated part should move to the end of

the conveyor line in cell 4.

A part is placed at the start of the line in cell 1 (e.g. P1 in Figure 6.3b). Once

the cell 1 RA informs the associated PA that the part is in the system, the PA

uses the exploration technique described in Chapter IV to build the model of the

manufacturing environment. Using this model, the PA is able to find a sequence of

actions to take the part from its current location (cell 1) to the machine specified

in its process plan. The PA requests these operations and waits for feedback from

the RAs in the system. Once an RA informs the PA that the requested machining

operation is finished, the PA explores the system to find how to move to the end of

the conveyor line in cell 4. The PA then requests this sequence of actions from the

RAs in the system. Note that if an RA is ever shut down during this process, the

PAs and RAs call the HRA [131] to assist with “fixing” the shut down in the system,

showcasing the flexibility of the multi-agent architecture.

This simple manufacturing system shows that the model-based product agent is

able to accomplish a process plan and request the appropriate actions from the RAs

in the system. However, this type of testbed does not accurately represent the scale

and complexity of manufacturing systems and existing manufacturing system control

104

architectures. Therefore, to better simulate an industrial environment, the model-

based product agent was testbed in two other testbeds: the myJoghurt demonstrator

and the System-level Manufacturing and Automation Research Testbed.

6.2 myJoghurt Demonstrator

The concept of resource agent task negotiation described in Chapter IV was

tested in the myJoghurt CPPS (Cyber Physical Production System) demonstrator

at the Institute of Automation and Information Systems, Technical University of

Munich [2, 121]. myJoghurt is a production facility used to test new manufacturing

system control technologies for the production of personalized bottles of yogurt based

on various customer orders [37]. The demonstrator consists of a bottle storage facility,

a logistic system, and two filling stations with different colored pellets (Fig 6.4). Once

a customer places an order for a personalized yogurt production, a bottle is taken

from storage and placed into the logistic system. Then it is moved, by sets of con-

veyors, to desired locations around the demonstrator. The desired locations for each

bottle depend on the customized process plan created using the individual customer

order. Thus, individual bottles have different requirements based on their process

plans, current locations, deadlines, etc. In addition, the capabilities of the logistic

system are always changing due to varying routes of the bottles, conveyor mainte-

nance schedule, or alterations to the sensors and actuators in the system creating a

dynamic manufacturing environment.

6.2.a Agent control and communication architecture

The implementation of the multi-agent control architecture for the myJoghurt

demonstrator is shown in Figure 6.4. The logistic component of the demonstrator

contains 22 conveyor lines controlled via stepper motors. Switches route bottles at

conveyor junctions. Light sensors indicate the presence of a bottle at each switch and

105

Figure 6.4: The setup and infrastructure for the myJoghurt system at the Institute
of Automation and Information Systems, Technical University of Munich.

at the beginning and end of each conveyor line. The conveyor motors, switches, and

sensors are connected to four embedded PCs (a Beckhoff CX2040 and three Beckhoff

CX9020) via EtherCAT. The embedded PCs run Beckhoff TwinCAT3 to control the

conveyors, set the direction of the switches, and obtain the presence of bottles at the

light switches, among other functions.

Similarly to the Fischertechnik testbed, the multi-agent control architecture is

implemented using the JAVA Agent DEvelopment Framework [3] on a Dell Intel

Core i7 PC. Eighteen RAs are connected to the four embedded PCs using the Beckhoff

Automation Device Specifications (ADS) interface [1] over EtherCAT. The FIPA ACL

Message protocol with custom, serialized Java objects is used for communication

between agents. The RAs are initialized with individual capabilities models encoded

using the JUNG library [94].

The PAs control the behavior of the bottles in the system through communication

requests with the RAs. Each PA is provided a process plan with locations around

106

Figure 6.5: Set-up for an example scenario demonstrating the PA exploration

the system and/or the addition of pellets in the first or second filling station. Using

the process plan, the PAs attempt to explore the system, make plans, and request

actions from the RAs.

The model-based PA described in Chapter III explores the system using the ne-

gotiation strategy described in Chapter IV. Based on the returned bids, the PA can

decide whether it needs to further explore the system. If the PA finds multiple paths

to a desired state, it will plan to take the shortest time path available. After the PA

plans a sequence of actions to take, it executes these action through queries to the

respective RAs. The time-out times for the exploration and planning were 150 ms

and 50 ms.

6.2.b Case study descriptions

Two case studies were performed in the myJoghurt demonstrator. The first case

study looked at the performance of a single PA in the system, while the second case

study focused on the behavior of the system with multiple PAs.

Case study 1: One product agent in the system

Figures 6.5 and 6.6 show the setup and the communication for one example sce-

nario in the system. In this scenario, the RAs are initially provided with individual

capabilities. For example, RA2 is provided a capabilities model that contains the

following states: “C2 Start”, “C2 End”, “C2 to C3”, and “C2 to C5”. Each of these

states is linked to a presence sensor in the system to signify when a bottle arrives

107

Figure 6.6: An annotated screenshot of the communication when a new RA enters the
system. The annotations highlight how a PA re-explores the system to learn about
this unexpected change.

at the state. In addition, the events of the capabilities model represent transitions

between two states. For example, an event called “Run C2” is a transition between

the “C2 Start” and “C2 End” states. These events are linked to PLC tags in the

system. Hence, “Run C2’ is linked to a tag that starts conveyor 2 and takes a bottle

to the end of the line. Finally, the neighboring RAs and the corresponding states are

provided to each RA. For example, “C2 to C3’ is a neighboring state between RA2

and RA3.

An example of the behavior of a PA in the system is shown in Figure 6.6. In this

scenario, the bottle is located on conveyor 1 (C1). Based on its process plan, the PA

must guide the bottle to one of its two desired locations. First, the PA sends out bid

requests with a small allowable time limit. Since the RAs cannot form a team to take

the bottle from its current state to a state with a desired location in the allowable

108

time, the PA increases the time limit for its second exploration request. With the new

time limit, the team of RA2-RA3-RA4 sends the PA a bid. The PA uses Djikstra’s

algorithm to plan and schedule an event string to take the bottle from its current

state to a desired state in the shortest amount of time [47]. Finally, once the bottle

arrives at new states, the RAs inform the PA by monitoring the individual presence

sensors.

The dynamic response of the system is also shown in the example. Specifically,

C5 and C6 are placed into the system as the bottle is traveling on C1. The RAs

associated with those resources enter the network of RAs through communication

with their neighbors. Thus, when the PA re-explores the system, the RAs submit two

bids that can take the bottle to a desired state. This example shows the flexibility

of using the dynamic network of resource agents to quickly adapt to changes in the

manufacturing system.

Case study 2: Multiple product agents in the system

To test the performance of multiple PAs in the system, 20 bottles were sent to

the demonstrator. New bottles entered the system every 190 seconds, replicating

a realistic production plant. Simulating a random customer order, seven PAs were

provided a process plan that required pellets from Filling Stations 1 and 2. The

process plans of the other PAs required only Filling Station 1 pellets. The goal of each

bottle was to reach the exit of the demonstrator with the correct pellet distribution.

By utilizing the proposed negotiation procedure, the PAs representing the bottles

were able to explore, plan, and request actions from the RAs representing the convey-

ors. Overall, 18 out of 20 bottles successfully navigated the system. 2 of the bottles

became stuck due to a mechanical defect in the system. If stuck and unable to finish

their process plan, the PAs requested a human operator to remove the associated

physical part from the system.

Experiments showed that the RAs required 38± 24 (average, standard deviation)

109

milliseconds to perform task negotiation and send back a bid to the PA using JADE’s

communication infrastructure. The size of submitted bids ranged from 1 to 17 events.

The maximum amount of time for a bid to come back to the PA was 125 ms. The

exploration time variability was mostly due to message transfer speed in the JADE

environment. Once the bids were obtained, the PAs scheduled actions with the RAs.

The average time to schedule an action with an RA was 3.2 ms. Finally, the PAs had

to request actions from the RAs. On average, it took 19 ± 17 ms, with a maximum

of 124 ms, between the time that the PA requested an action to the time when the

RAs finished setting the appropriate tag in a Beckhoff PC using the ADS interface.

The variability in execution time depended on both the speed of message transfer in

the JADE environment and the speed of using the ADS interface.

6.2.c Insights from myJoghurt case studies

The feasibility of using this exploration technique in a real manufacturing system

was shown in this implementation. Exploration was integrated with a controller that

uses a common standard for industrial system control (IEC 61131-3) [118]. RAs and

PAs made timely decisions to control bottles in the system. PA exploration took at

most 125 ms with multiple agent interactions. This time may scale up as the number

of agents and the amount of communication in the system increases.

The benefits described in Section 4.3.b are showcased in this implementation. The

bottle can be placed in any location with a sensor and will start to explore the system,

plan, and execute actions to reach a desired state. The discussed dynamic network of

RAs adapts instantly to changes in the manufacturing system. These changes include

resource addition, removal or maintenance, or changes in resources capabilities. Note

that this exploration technique does not require a single global model or communica-

tion with all of the system RAs, as required by alternate exploration techniques. For

example, in Figure 6.6, RA7 does not have to divulge information about its capabili-

110

ties to the PA, preventing excess communication. Additionally, each RA updates its

own capabilities model, reducing the need to store and update a global system model

during PA exploration.

Some of the PA-RA communication parameters have to be tuned for the specific

application of an agent-based controller. These parameters include the number of

physical properties and the size of the time limit in the PA’s bid request, the amount of

time the PA needs to wait before it begins to plan and execute actions, and how often

the PA must re-explore the system. These parameters will dictate PA robustness and

responsiveness and are adapted to the manufacturing system. The selection of these

parameters will be based on the speed of the agent communication infrastructure,

the fidelity of each resource capabilities model, and the expected number and types

of disturbances.

6.3 System-level Manufacturing and Automation Research

Testbed

The University of Michigan has developed the System-level Manufacturing and

Automation Research Testbed (SMART) [46]. An overview of the testbed is shown

in Figure 6.7. First built within the University of Michigan’s Engineering Research

Center for Reconfigurable Manufacturing Systems in the early 2000s [85], the testbed

has been used for a variety of manufacturing research projects including: the develop-

ment and validation of a framework for logic control of a manufacturing system [28],

testing a novel anomaly detection method [4], and implementing a Factory Health

Monitoring system [109], among others [35, 70, 73]. Recently, in partnership with

Rockwell Automation, the testbed has been upgraded and equipped with the latest

control system technologies.

SMART has four computer numerical control (CNC) machine tools, two conveyors,

111

Figure 6.7: An overview of the System-level Manufacturing and Automation Research
Testbed. (a) shows the setup for the testbed and (b) provides an overview of some of
the sensors integrated into the system.

one gantry, and two industrial robots with an integrated industrial control system

(provided by Rockwell Automation) connected through Ethernet/IP with industrial

network switches. There are RFID sensors on the testbed, which identify parts in the

system and provide their location to the central controller. Pneumatic stops are used

to halt the parts at certain pick-up/drop-off locations. There are inspection cameras

on the conveyor system as well as some of the CNCs. An industrial human-machine

interface (HMI) provides necessary interfaces to control various components in the

system. Additionally, each CNC has a dedicated HMI for operators to interface with

each machine. Some pictures of the machines, robots, and conveyors in SMART are

shown in Figure 6.8(a).

Currently, each CNC contains programs that can perform a number of machining

operations to create three types of parts that can be assembled into a toy car shown

in Figure 6.8(b). By changing the parameters in the CNC programs and utilizing

112

Figure 6.8: (a) Various views of the components (clockwise from the top left): the
main conveyor line, Cell 1, the CNC and the robot from Cell 1, and the robot from
Cell 2. (b) An example of a product manufactured using SMART.

other CNC tools, these parts can be altered to create parts with various desired

dimensions. The conveyor lines and robots are able to handle a variety of parts on

the pallets and with the interchangeable grippers. The parts can be rerouted and

the speed of the robot handling, conveyor lines, and CNC processes can be altered to

change the system throughput.

A computer connected to the main programmable logic controller (PLC) in the sys-

tem is used for programming the control logic (with Rockwell’s Studio 5000 software)

and implementing Industrial Internet of Things (IIoT) applications that send/receive

data from cloud-based storage and computation resources. There are various power

monitoring sensors on the CNCs that are used to develop data analytics and predictive

maintenance solutions.

113

6.3.a Agent control and communication architecture

Similar to the Fischertechnik testbed and the myJoghurt demonstrator, a multi-

agent controller was implemented using the JADE framework for this testbed. Agents

used the FIPA ACL Message protocol with custom, serialized Java objects for com-

munication. Three RA agents were created for the system: a conveyor agent and

two cell agents. Multiple customized parts were associated by the PA that guided

the parts through the testbed. All of the PAs and RAs were developed using the

methodology described in the myJoghurt case study.

The main goal of this implementation was to test the connection between the

multi-agent controller and the Rockwell PLC. An OPC (Open Platform Communi-

cations) client for Rockwell’s RSLinx software packaged was configured to make the

PLC tags available for external client communicating with the PLC. PLC tags (i.e.

variables that point to memory locations) were manually identified for each agent in

the system. A custom interface using the JeasyOPC java libraries [24] was used to

establish the connection and pass relevant data between the Rockwell PLC and the

multi-agent controller in JADE. The conveyor agent was able to read/write the speed

of the conveyor via the variable frequency drives, read/write data to the pneumatic

stops, and read the data from the RFID (Radio-frequency identification) transceivers.

The RFID transceivers were able to identify specific parts using RFID tags [79]. The

two cell agents were able to read/write data to the robots and CNC machines.

6.3.b SMART case study and insights

The agent decision making and communication was tested in SMART. We cre-

ated an RFID tag that contained the processes for one of the three parts shown in

Figure 6.8(b) and attached this RFID tag to a wax workblock. Then, we placed the

workblock onto one of the pallets on the conveyor line. The multi-agent architecture

automatically created a PA and provided the process plan from the RFID tag. When

114

the pallet containing the part arrived at one of the RFID transceivers around the

system, the corresponding RA updated the PA with the latest state of the associated

physical part. Similar to previous case studies, the PA was able to take the part to

the appropriate resource and request the machining operation required by the process

plan. Note that the presence of RFID tags allowed the PA to be tracked through the

system. Future work includes writing information to the RFID tags to allow the PA

to store information on the physical part.

The time latency of communication between the agents and the OPC layer was

tested. The average time that it took an RA to send one request to the Rockwell PLC

and obtain the appropriate data was 187 ms over 30 trials. The average time that

it took an RA to write the data to the PLC was 2700 ms over 12 trials. Note that

writing values took a significantly longer time. While the PAs and RAs were able to

communicate efficiently and move the parts around the system, there were noticeable

occurrences when the part stayed at a single position longer than necessary. This

idling occurred because RAs were in the process of reading and writing the data to

the testbed. Therefore, both the read and write times should be incorporated in the

models and the control design of the PA to improve its decision making.

6.4 Lessons Learned and Insights

There were numerous lessons learned and insights gained during the implemen-

tations of the multi-agent controllers for the three testbeds. This section overviews

three of the most important insights and lessons learned to effectively utilize a multi-

agent control strategy for manufacturing systems. Specifically, agents used for multi-

agent control of manufacturing systems should: (1) have an accurate representation

of the states, events, and constraints in the system; (2) efficiently capture system

disturbances; and (3) account for communication delays between the multi-agent ar-

chitecture and the sensors and actuators on the shop floor. The rest of this section

115

expands on each of these topics in more detail.

The model-based PAs obtain information about the system through the explo-

ration methodology described in Chapter IV. This exploration methodology is based

on the fusion of the capabilities models from various RAs. Therefore, for the imple-

mentations, each RA needed to have an accurate representations of the capabilities

of its associated resource (see Chapter IV) and these representations had to be con-

sistent for all of the RAs in the system. For the three implementations, we estimated

the capabilities of each resource, i.e., the part states, resource actions, average time

for each action, etc. If this estimation was inaccurate (e.g., the estimated time is

significantly lower than the actual time for resource actions), then the decisions made

by the model-based PA would not match the system capabilities and, thus, the PA

would have to exit the system. Therefore, the RA capability models were created

after running a number of system identification tests for each resource in this system.

While this approach worked for the manufacturing testbed implementations described

in this section, future work will include the development of an automated approach

to estimate resource agent capabilities during initialization.

Additionally, the agents in the system have to accurately capture system distur-

bances in the environment model to ensure the effectiveness of the multi-agent control

strategy. The agents in the implementations described in this chapter captured sim-

ple disturbances such as resource failures, new resources or new resource capabilities,

and simple changes to customer orders. These disturbances were captured through

various smart sensors on the shop floor (e.g., capturing when a machine is off or when

a new conveyor line is added) and human-agent interfaces (e.g., an interface to change

the customer specifications in the process plan). Various improvements, such as al-

gorithms to capture machine degradation or the integration of new smart sensors in

the system, can further improve the performance of the multi-agent control strategy.

When making decisions, agents need to take into account the communication de-

116

lays between the multi-agent architecture, the logic controller, and the sensors and

actuators on the plant floor. For example, the model-based PA needs to incorporate

this information when making exploration, planning, and execution decisions. These

communication times need to be dynamically updated due to the varying communi-

cation overhead, e.g., due to new resources added to the system, new agents in the

system, or changes to the low-level control architecture. Similar to the resource capa-

bilities, these communication delays were obtained through a number of trials in the

system and updated. Further work will be necessary to ensure accurate estimation of

the communication delays and accelerate the communication speed for the controllers

in the system.

117

CHAPTER VII

Conclusions and Future Directions

Flexibility and adaptability are two important characteristics of manufacturing

systems. The importance of these two attributes was recently demonstrated in the

ongoing COVID-19 pandemic [41]. Manufacturers faced an unprecedented demand

for medical equipment, such as face masks and ventilators, to help with the battle

against the disease. Several companies put in significant engineering effort to recon-

figure their entire existing manufacturing systems to produce new equipment [97,110].

However, this reconfiguration process took several weeks as new technology had to

be integrated into manufacturing systems and new production schedules had to be

developed. System-level control of the various parts, machines, and robots on the

shop floor was was one of the challenges faced by manufacturers during this crisis.

One strategy that can be used to address these flexiblity and adaptability chal-

lenges faced by manufacturers is multi-agent control. In this strategy, a number of

agents use data from the system, information from other agents, and a set of indi-

vidual goals to drive the behavior of this system. This dissertation has focused on

improving the intelligence of one of the most important agents in this control strat-

egy – the product agent (PA). As described in Chapters I and II, the development of

new models, methods, and algorithms can improve the performance of existing PAs

and, thus, the multi-agent control strategy. Specifically, existing PAs primarily use

118

rule-based reasoning to obtain the capabilities of the manufacturing system, schedule

resource operations, and request actions from resource agents (RAs) in the system.

This rule-based approach reduces the flexibility and adaptability of the PA and, in

turn, of the multi-agent control strategy. Recently, model-based PAs have been pro-

posed to improve the flexibility and adaptability of PAs. However, there are still a

number of challenges that remain in the design, development, and implementation of

the model-based PAs.

This dissertation improves the intelligence and capabilities of PAs by describ-

ing the models, interfaces, and communication required to make intelligent decisions

in a dynamic manufacturing environment. The proposed product agent is able to

efficiently explore the manufacturing environment, build a discrete event model to

capture the dynamics and constraints of the system, and cooperate with other agents

to achieve its goals. A multi-agent architecture with the proposed model-based PA

was developed, tested, and analyzed using a simulated manufacturing environment

and three manufacturing testbeds with various physical components. The results

showcased in these experiments display the potential of the model-based product

agent to develop more flexible manufacturing systems that can respond to a unex-

pected disturbances in the system caused by machine failures, new product orders,

or, potentially, even a global pandemic.

7.1 Contributions

The core contributions of this dissertation are stated below. The first three con-

tributions are also illustrated in Figure 7.1.

1) A model-based architecture for the product agents:

The design and testing of an architecture for a model-based product agent is de-

scribed. As shown in Figure 7.1, the proposed product agent contains a Knowledge

Base, Decision Maker, and Communication Manager. These components are used

119

Figure 7.1: Three of the core contributions of the dissertation are (1) a model-based
product agent architecture, (2) a methodology for product agent exploration, (3) a
framework for direct, active cooperation in product agents.

by the product agent to explore the capabilities of surrounding resources, formulate

plans based on its knowledge, and request actions to be taken by various resources

based on the production goals of its associated physical part. This product agent ar-

chitecture is used to create customized products and guide parts through dynamically

changing manufacturing systems. These product agent capabilities are showcased in

a simulated semiconductor manufacturing environment.

2) An exploration methodology for efficient product agent model creation in a dynamic

manufacturing environment:

A novel approach for PA exploration based on the propagation of bids and bid

requests over a dynamic network of resource agents is presented. Using the pro-

posed methodology, resource agents form teams to provide product agents with a

120

comprehensive view of the surrounding environment. In addition to enabling RA

task negotiation, this approach limits the amount of information available to agents,

improving security and reducing communication overhead of agent systems. This

exploration was tested and analyzed in three manufacturing testbeds.

3) A framework to enable direct and active cooperation for the product agent:

A model-based decision making framework to enable direct, actively cooperative

product agents is introduced. For this framework, a new environment model that

leverages the priced timed automaton modeling formalism captures the soft schedul-

ing constraints from other agents in the system. Then, by solving an optimization

problem, the direct, actively cooperating product agent identifies which of the soft

scheduling constraints are conflicting with its individual goals. Finally, the product

agent coordinates and negotiates with other agents in the system to resolve these

conflicts and schedule its desired sequence of resource actions in the system. This

framework is tested in a simulated manufacturing environment, showing how direct,

active cooperation can improve the flexibility and performance of the manufacturing

system.

4) Integration of the model-based product agent with industrial system controllers:

To showcase the potential of the models, methods, and algorithms developed

in this dissertation, a multi-agent architecture with the model-based product agent

was integrated into three manufacturing testbeds: the Fischertechnik testbed at the

University of Michigan, the myJoghurt Demonstrator at the Technical University of

Munich, and the System-level Manufacturing and Automation Research Testbed at

the University of Michigan. The multi-agent controller was able to effectively produce

customized parts in all three systems due to the decisions made by the model-based

product agent. The communication times between the various agents and between

the multi-agent architecture and lower-level system controllers were also analyzed,

showing that this control strategy can be used in realistic, physical manufacturing

121

systems.

7.2 Limitations and Future Work

This dissertation has explored several promising areas of research in the develop-

ment of intelligent product agents for multi-agent control strategies for manufacturing.

However, there are still a lot of remaining limitations, questions, and challenges in

this field. While the model-based product agent was tested using simulations and

real physical testbeds, there are still a number of challenges to scaling this model-

based product agent to large, complex manufacturing systems. For example, there

is a need to account for continuous manufacturing in the developed multi-agent con-

troller by integrating other types of agents in the multi-agent architecture (e.g., a

process agent). Another limitation to this work is the lack of a formal analysis to

determine the difference in performance between the multi-agent control architecture

and a traditional, centralized approach. While there are a number of other limitations

and open questions for the model-based PA, three of the potential research directions

that can leverage the work in this disseration are described in this section.

7.2.a Cooperative learning for product agents

The development of learning and self-adaptation is a popular research area for

smart manufacturing systems [53, 61, 82]. However, the concept of learning has not

been applied to intelligent PAs. While the manufacturing system may change dy-

namically or a new product may be requested by the customer, the PA can use some

of the prior knowledge about the behavior of the manufacturing system to learn and

improve its performance. By aggregating information about RA capabilities and pre-

vious decisions made by other PAs, the PA can make better decisions regarding its

future plans.

An initial framework has been proposed in [92] that allows the automatic initial-

122

ization of product and resource agents in manufacturing system. This framework

takes in a customer order and information about the capabilities of the manufac-

turing system from a human to automatically create and initialize the process plan

for a PA. The framework works offline to perform this matching and does not take

into consideration the current state of the manufacturing system. An extension to

this framework is to push this framework online, allowing it to synthesize and make

decisions based on real-time data from the agents in the manufacturing system. This

extension would enable the sharing of information between newly initialized PAs,

PAs with parts in the system, and PAs that have completed their process plans. PAs

would use this information to learn and improve their decision making capabilities

over time.

7.2.b Developing complementary intelligence for resource agents

Due to the inherent nature of the multi-agent control strategy, the development

of PA intelligence is linked to the behavior and performance of other agents, more

specifically the RAs, in the system. Therefore, there is a significant amount of work to

be accomplished for the development of intelligent RAs. To ensure that model-based

PAs can effectively interact with RAs in the system, the knowledge base, decision

making, and communication capabilities of the RAs needs to be developed and stan-

dardized. In addition, in this dissertation, it was assumed that RAs can accurately

capture the capabilities of their associated resources, update their own knowledge

of the environment through data received from the system, and efficiently respond

to PA queries. However, none of these assumptions are trivial and the technology

to enable these capabilities for RAs needs to be developed and tested. Finally, the

cooperation capabilities of the RAs can be improved. For example, the methodology

of RA teams in Chapter IV can be extended to improve RA responses to disturbances

in the system. The models, methods, and algorithms proposed in this dissertation

123

can be leveraged to improve the decision making of RAs. For example, the PTA-

based environment model, the optimization formulation, and the solver developed

for direct, active cooperation can be similarly leveraged by the RAs to improve their

cooperation capabilities.

7.2.c Integration of intelligent product agents with a centralized control

architecture

The pairing of the multi-agent control strategy with more traditional, centralized

approaches is an interesting topic with a number of open research questions [21].

While traditional approaches are able to find optimal solutions to problems in system-

level control, they lack the flexibility and adaptability that is inherent in multi-agent

control strategies. Therefore, several frameworks have used a switching strategy to

merge the two approaches [21]. In these frameworks, the centralized controller is used

when production is going as planned and the multi-agent controller is turned on when

there is a disturbance in the system. However, this hybrid approach does not fully

utilize the full potential of both approaches.

Another approach to coupling both types of control strategies is to divide the

responsibilities for each controller. In this type of approach, a centralized controller

provides some control authority to agents in the system, allowing them to freely make

their own decisions [84]. In the case of the product agent, a centralized controller

would allow PAs to make decisions regarding which resource actions to schedule and

request, but supervise the PAs to ensure that the parts are on track to complete

their production requirements. A centralized controller that can interface with the

model-based product agent developed in this dissertation would need to be developed

to create this coupled control strategy.

The model-based PA developed in this dissertation should also be integrated with

existing standards and requirements for Industry 4.0 systems. For example, the mod-

124

els and behavior of the PA should align with recent developments in the area of

digital twins for manufacturing [86]. One potential standard that can be leveraged to

standardize the model-based PA is the Asset Administration Shells (AAS) [117,124].

AAS is a framework that leverages Digital Twin concepts to ensure interoperabil-

ity and exchange of information between components in Industry 4.0 systems. The

model-based PA developed in this dissertation should be adapted and extended to

meet standards and requirements of future manufacturing systems, such as the AAS

framework or the digital twin framework proposed in [86].

7.3 Outlook and Impact

The work presented in this dissertation will enable small-batch manufacturing

and more personalized production. Once the model-based PA is provided with a set

of production requirements, it makes autonomous and intelligent decisions. Manu-

facturers will be able to complete small orders without the need to reconfigure or

reschedule operations in the manufacturing system and, thus, will be more willing to

accept a wider variety of customers and personalized orders.

Additionally, the integration of the multi-agent control strategy will allow more

manufacturing technology to be incorporated into the shop floor. As shown in this

dissertation, the model-based PA recognizes and communicates with a new resource

and resource agent if both are added to the manufacturing system. Therefore, the

multi-agent control strategy enables easier integration of new machines, robots, and

other technology into the manufacturing system.

Finally, as a part travels between manufacturers, distributors, and customers,

the associated PA can move with the part and store relevant information. The PA

will be able to track the current state of the part, the completed manufacturing

processes, and the part quality, among a number of other features. The PA will

communicate this information with other agents, people, and companies, enabling a

125

more connected manufacturing supply chain and improving the manufacturing process

for manufacturers and customers alike.

126

BIBLIOGRAPHY

[1] ADS Automation Devices Specification

[2] Industrie 4.0. URL http://i40d.ais.mw.tum.de/

[3] Jade Site — Java Agent DEvelopment Framework. URL http://jade.tilab.

com/

[4] Allen, L.V., Tilbury, D.M.: Anomaly detection using model generation for
event-based systems without a preexisting formal model. IEEE Transactions on
Systems, Man, and Cybernetics Part A:Systems and Humans 42(3), 654–668
(2012). DOI 10.1109/TSMCA.2011.2170418

[5] Ansola, P.G., Garćıa, A., de las Morenas, J., de las Morenas, J.: Align-
ing Decision Support with Shop Floor Operations: A Proposal of Intelli-
gent Product Based on BDI Physical Agents. In: T. Borangiu, A. Thomas,
D. Trentesaux (eds.) Service Orientation in Holonic and Multi-agent Manu-
facturing, pp. 91–100. Springer International Publishing, Cham (2015). DOI
10.1007/978-3-319-15159-5 9

[6] Balta, E.C., Kovalenko, I., Spiegel, I.A., Tilbury, D., Barton, K.: Application of
Model Predictive Control of Priced Timed Automata Encoded with First-Order
Logic. 2019 IEEE Transactions on Control Systems Technology (Submitted)
(2019)

[7] Balta, E.C., Lin, Y., Barton, K., Tilbury, D.M., Mao, Z.M.: Production as a
Service: A Digital Manufacturing Framework for Optimizing Utilization. IEEE
Transactions on Automation Science and Engineering pp. 1–11 (2018). DOI
10.1109/TASE.2018.2842690

[8] Barbosa, J., Leitao, P.: Simulation of multi-agent manufacturing systems using
Agent-Based Modelling platforms. 2011 9th IEEE International Conference on
Industrial Informatics pp. 477–482 (2011). DOI 10.1109/INDIN.2011.6034926

[9] Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Structural Self-organized
Holonic Multi-Agent Manufacturing Systems. Industrial Applications of
Holonic and Multi-Agent Systems SE - 6 8062, 59–70 (2013). DOI 10.1007/978-
3-642-40090-2 6

127

http://i40d.ais.mw.tum.de/
http://jade.tilab.com/
http://jade.tilab.com/

[10] Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Dynamic self-organization
in holonic multi-agent manufacturing systems: The ADACOR evolution. Com-
puters in Industry 66, 99–111 (2015)

[11] Barton, K., Maturana, F., Tilbury, D.: Closing the Loop in IoT-enabled Man-
ufacturing Systems: Challenges and Opportunities. In: ACC, pp. 5503–5509.
IEEE (2018)

[12] Behrmann, G.: UPPAAL CORA (2014). URL http://people.cs.aau.dk/

{~}adavid/cora/index.html

[13] Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algo-
rithms and applications. In: International Symposium on Formal Methods for
Components and Objects, pp. 162–182. Springer (2004)

[14] Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and
constraints. Automatica 35(3), 407–427 (1999). DOI 10.1016/S0005-1098(98)
00178-2

[15] Bhave, D., Krishna, S.N., Trivedi, A.: On Nonlinear Prices in Timed Automata.
In: Electronic Proceedings in Theoretical Computer Science, vol. 232, p. 65
(2016)

[16] Bjorner, N., Phan, A.D.: νz-maximal satisfaction with z3. In: 6th International
Symposium on Symbolic Computation in Software Science, vol. 30, pp. 1—-9
(2014). DOI 10.29007/jmxj

[17] Borangiu, T., Raileanu, S., Trentesaux, D., Berger, T., Iacob, I.: Distributed
manufacturing control with extended CNP interaction of intelligent products.
Journal of Intelligent Manufacturing 25(5), 1065–1075 (2014). DOI 10.1007/
s10845-013-0740-3

[18] Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How Virtualization,
Decentralization and Network Building Change the Manufacturing Landscape:
An Industry 4.0 Perspective. International Journal of Information and Com-
munication Engineering 8(1), 37–44 (2014). DOI 10.1016/j.procir.2015.02.213

[19] Brettel, M., Klein, M., Friederichsen, N.: The Relevance of Manufacturing
Flexibility in the Context of Industrie 4.0. Procedia CIRP 41, 105–110 (2016).
DOI 10.1016/j.procir.2015.12.047

[20] Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Transactions on Industrial
informatics 9(1), 427–438 (2012)

[21] Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger, T., El-Haouzi,
H.B.: Coupling predictive scheduling and reactive control in manufacturing
hybrid control architectures: state of the art and future challenges. Journal of
Intelligent Manufacturing 28(7), 1503–1517 (2017)

128

http://people.cs.aau.dk/{~}adavid/cora/index.html
http://people.cs.aau.dk/{~}adavid/cora/index.html

[22] Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2nd
edn. Springer Science & Business Media (2009)

[23] De Las Morenas, J., Garcia-Higuera, A., Garcia-Ansola, P.: Shop Floor Con-
trol: A Physical Agents Approach for PLC-Controlled Systems. IEEE Trans-
actions on Industrial Informatics 13(5), 2417–2427 (2017). DOI 10.1109/TII.
2017.2720696

[24] Diaconescu, E., Spirleanu, C.: Communication solution for industrial control
applications with multi-agents using opc servers. In: 2012 International Con-
ference on Applied and Theoretical Electricity (ICATE), pp. 1–6. IEEE (2012)

[25] Dias, J., Barbosa, J., Leitão, P.: Deployment of industrial agents in heteroge-
neous automation environments. In: 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), pp. 1330–1335. IEEE (2015)

[26] Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik 1(1), 269–271 (1959)

[27] Du, J., Sugumaran, V., Gao, B.: Rfid and multi-agent based architecture for
information sharing in prefabricated component supply chain. IEEE Access 5,
4132–4139 (2017). DOI 10.1109/ACCESS.2017.2665778

[28] Endsley, E.W., Almeida, E.E., Tilbury, D.M.: Modular finite state machines:
Development and application to reconfigurable manufacturing cell controller
generation. Control Engineering Practice 14(10), 1127–1142 (2006). DOI
10.1016/j.conengprac.2006.02.001

[29] Farid, A.M., Ribeiro, L.: An Axiomatic Design of a Multiagent Reconfigurable
Mechatronic System Architecture. IEEE Transactions on Industrial Informatics
11(5), 1142–1155 (2015). DOI 10.1109/TII.2015.2470528

[30] Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle
formations. IEEE transactions on automatic control 49(9), 1465–1476 (2004)

[31] Ferrer, B.R., Ahmad, B., Lobov, A., Vera, D.A., Lastra, J.L.M., Harrison, R.:
An approach for knowledge-driven product, process and resource mappings for
assembly automation. IEEE International Conference on Automation Science
and Engineering 2015-Octob, 1104–1109 (2015). DOI 10.1109/CoASE.2015.
7294245

[32] Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-
desire-intention model of agency. Intelligent Agents V: Agents Theories, Ar-
chitectures, and Languages. 5th International Workshop, ATAL’98. pp. 1–10
(1998). DOI 10.1007/3-540-49057-4 1

[33] Gibson, I., Rosen, D.W., Stucker, B., et al.: Additive manufacturing technolo-
gies, vol. 17. Springer (2014)

129

[34] Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H., Hadeli, K., Valck-
enaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent coordination and
control using stigmergy. Computers in Industry 53(1), 75–96 (2004). DOI
10.1016/S0166-3615(03)00123-4

[35] Harrison, W.S., Tilbury, D.M., Yuan, C.: From hardware-in-the-loop to hybrid
process simulation: An ontology for the implementation phase of a manufactur-
ing system. IEEE Transactions on Automation Science and Engineering 9(1),
96–109 (2012)

[36] Hekmatnejad, M., Pedrielli, G., Fainekos, G.: Task Scheduling with Nonlinear
Costs using SMT Solvers. In: 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), vol. 2019-Augus, pp. 183–188.
IEEE, Vancouver, Canada (2019). DOI 10.1109/COASE.2019.8843048

[37] Hoffmann, M.: Adaptive and Scalable Information Modeling to Enable Au-
tonomous Decision Making for Real-Time Interoperable Factories. Dissertation,
RWTH Aachen University, Aachen (2017). DOI 10.18154/RWTH-2017-07373.
URL https://publications.rwth-aachen.de/record/697974

[38] Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents-
summary of an agent infrastructure. Management p. 6 (2001). DOI 10.1.1.133.
8934

[39] Hsieh, F.: Dynamic configuration and collaborative scheduling in supply chains
based on scalable multi-agent architecture. Journal of Industrial Engineering
International 15, 249–269 (2019)

[40] Hu, S.J.: Evolving paradigms of manufacturing: From mass production to
mass customization and personalization. Procedia CIRP 7, 3–8 (2013). DOI
10.1016/j.procir.2013.05.002

[41] Ivanov, D., Dolgui, A.: Viability of intertwined supply networks: extending the
supply chain resilience angles towards survivability. a position paper motivated
by covid-19 outbreak. International Journal of Production Research 58(10),
2904–2915 (2020)

[42] Kantamneni, A., Brown, L.E., Parker, G., Weaver, W.W.: Survey of multi-
agent systems for microgrid control. Engineering applications of artificial intel-
ligence 45, 192–203 (2015)

[43] Kovalenko, I., Balta, E.C., Tilbury, D., Barton, K.: Direct, Active Cooperation
for Product Agents in Manufacturing Systems. In-preparation (2020)

[44] Kovalenko, I., Barton, K., Tilbury, D.: Design and Implementation of an In-
telligent Product Agent Architecture in Manufacturing Systems. In: IEEE
Emerging Technology and Factory Automation (ETFA), pp. 1–8 (2017). DOI
10.1109/ETFA.2017.8247652

130

https://publications.rwth-aachen.de/record/697974

[45] Kovalenko, I., Ryashentseva, D., Vogel-Heuser, B., Tilbury, D., Barton, K.:
Dynamic Resource Task Negotiation to Enable Product Agent Exploration in
Multi-Agent Manufacturing Systems. Robotics and Automation Letters 4(3),
2854–2861 (2019). DOI 10.1109/lra.2019.2921947

[46] Kovalenko, I., Saez, M., Barton, K., Tilbury, D.: SMART: A System-Level Man-
ufacturing and Automation Research Testbed. Smart and Sustainable Manu-
facturing Systems 1(1), 232–261 (2017). DOI 10.1520/ssms20170006

[47] Kovalenko, I., Tilbury, D., Barton, K.: The model-based product agent: A
control oriented architecture for intelligent products in multi-agent manufactur-
ing systems. Control Engineering Practice 86(March), 105–117 (2019). DOI
10.1016/j.conengprac.2019.03.009

[48] Kovalenko, I., Tilbury, D., Barton, K.: Priced Timed Automata Models for
Control of Intelligent Product Agents in Manufacturing Systems. In: 15th
Workshop on Discrete Event Systems (WODES 2020) (2020)

[49] Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial
Societies and Social Simulation 18(1), 11 (2015)

[50] Krothapalli, N.K.C.C., Deshmukh, A.V.V.: Design of negotiation protocols
for multi-agent manufacturing systems. International Journal of Production
Research 37(7), 1601–1624 (1999). DOI 10.1080/002075499191157

[51] Kusiak, A.: Smart manufacturing. International Journal of Production Re-
search 56(1-2), 508–517 (2018). DOI 10.1080/00207543.2017.1351644

[52] Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P.,
Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: International Conference on Computer Aided Verification,
vol. 2102, pp. 493–505 (2001). DOI 10.1007/3-540-44585-4 47

[53] Lee, J., Bagheri, B., Jin, C.: Introduction to cyber manufacturing. Manufac-
turing Letters 8, 11–15 (2016). DOI 10.1016/j.mfglet.2016.05.002

[54] Lee, J., Bagheri, B., Kao, H.A.: A Cyber-Physical Systems architecture for
Industry 4.0-based manufacturing systems. Manufacturing Letters 3, 18–23
(2015). DOI 10.1016/j.mfglet.2014.12.001

[55] Legat, C., Schütz, D., Vogel-Heuser, B.: Automatic generation of field control
strategies for supporting (re-)engineering of manufacturing systems. Journal of
Intelligent Manufacturing 25(5), 1101–1111 (2014). DOI 10.1007/s10845-013-
0744-z

[56] Leitão, P.: Agent-based distributed manufacturing control: A state-of-the-
art survey. Engineering Applications of Artificial Intelligence 22(7), 979–991
(2009). DOI 10.1016/j.engappai.2008.09.005

131

[57] Leitao, P.: Multi-agent systems in industry: Current trends & future challenges.
In: Beyond Artificial Intelligence, pp. 197–201. Springer (2013)

[58] Leitao, P., Colombo, A.W., Restivo, F.: An Approach to the Formal Spec-
ification of Holonic Control Systems. In: First International Conference on
Industrial Applications of Holonic and Multi-Agent Systems, pp. 59–70 (2003).
DOI 10.1007/978-3-540-45185-3 6

[59] Leitão, P., Colombo, A.W., Restivo, F.: A formal specification approach
for holonic control systems: The ADACOR case. International Journal of
Manufacturing Technology and Management 8(1-3), 37–57 (2006). DOI
10.1504/IJMTM.2006.008790

[60] Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.:
Smart Agents in Industrial Cyber-Physical Systems. Proceedings of the IEEE
104(5), 1086–1101 (2016). DOI 10.1109/JPROC.2016.2521931

[61] Leitão, P., Máık, V., Vrba, P.: Past, present, and future of industrial agent ap-
plications. IEEE Transactions on Industrial Informatics 9(4), 2360–2372 (2013).
DOI 10.1109/TII.2012.2222034

[62] Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry 57(2), 121–130 (2006). DOI
10.1016/j.compind.2005.05.005

[63] Leitão, P., Rodrigues, N., Barbosa, J., Turrin, C., Pagani, A.: Intelligent prod-
ucts: The grace experience. Control Engineering Practice 42, 95–105 (2015).
DOI 10.1016/j.conengprac.2015.05.001

[64] Leitner, J.: Multi-robot cooperation in space: A survey. Proceedings - 2009
Advanced Technologies for Enhanced Quality of Life, AT-EQUAL 2009 pp.
144–151 (2009). DOI 10.1109/AT-EQUAL.2009.37

[65] Lepuschitz, W., Zoitl, A., Vallee, M., Merdan, M.: Toward self-reconfiguration
of manufacturing systems using automation agents. IEEE Transactions on Sys-
tems, Man and Cybernetics Part C: Applications and Reviews 41(1), 52–69
(2011). DOI 10.1109/TSMCC.2010.2059012

[66] Lim, M.K., Zhang, Z., Goh, W.T.: An iterative agent bidding mechanism for
responsive manufacturing. Engineering Applications of Artificial Intelligence
22(7), 1068–1079 (2009). DOI 10.1016/j.engappai.2008.12.003

[67] Lopez, F., Shao, Y., Mao, Z.M., Moyne, J., Barton, K., Tilbury, D.: A software-
defined framework for the integrated management of smart manufacturing sys-
tems. Manufacturing Letters 15, 18–21 (2018)

[68] Lu, Y.: Industry 4.0: A survey on technologies, applications and open research
issues. Journal of Industrial Information Integration 6, 1–10 (2017). DOI
10.1016/j.jii.2017.04.005

132

[69] Lu, Y., Riddick, F., Ivezic, N.: The Paradigm Shift in Smart Manufactur-
ing System Architecture. In: I. Nääs, O. Vendrametto, J. Mendes Reis, R.F.
Gonçalves, M.T. Silva, G. von Cieminski, D. Kiritsis (eds.) Advances in Pro-
duction Management Systems. Initiatives for a Sustainable World, pp. 767–
776. Springer International Publishing, Cham (2016). DOI 10.1007/978-3-319-
51133-7 90

[70] Lucas, M.R., Tilbury, D.M.: Methods of measuring the size and complexity
of PLC programs in different logic control design methodologies. International
Journal of Advanced Manufacturing Technology 26(5-6), 436–447 (2005)

[71] Lüder, A., Klostermeyer, A., Peschke, J., Bratoukhine, A., Sauter, T.: Dis-
tributed automation: PABADIS vs. HMS. IEEE Transactions on Industrial
Informatics 1(1), 31–38 (2005). DOI 10.1109/INDIN.2003.1300283

[72] Lüder, A., Peschke, J., Sauter, T., Deter, S., Diep, D.: Distributed intel-
ligence for plant automation based on multi-agent systems: The PABADIS
approach. Production Planning and Control 15(2), 201–212 (2004). DOI
10.1080/09537280410001667484

[73] Luntz, J., Moyne, J., Tilbury, D.: On-Line Control Reconfiguration at the Ma-
chine and Cell Levels: Case Studies from the Reconfigurable Factory Testbed.
In: IEEE Conference on Emerging Technologies and Factory Automation, vol. 1,
pp. 641–648 (2005)

[74] Macal, C.M., North, M.J.: Introduction to Agent-based Modeling and Simula-
tion (2006)

[75] Manyika, J., Sinclair, J., Dobbs, R., Strube, G., Rassey, L., Mischke, J.,
Remes, J., Roxburgh, C., George, K., O’Halloran, D., Ramaswamy, S.: Manu-
facturing the future: the next era of global growth and innovation. Tech. Rep.
November, McKinsey Global Institute, New York (2012). URL https://web.

archive.org/web/20200129031406/https://www.mckinsey.com/business-

functions/operations/our-insights/the-future-of-manufacturing

[76] Marchetta, M.G., Mayer, F., Forradellas, R.Q.: A reference framework follow-
ing a proactive approach for Product Lifecycle Management. Computers in
Industry 62(7), 672–683 (2011). DOI 10.1016/j.compind.2011.04.004

[77] McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziar-
gyriou, N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engi-
neering applications - part I: Concepts, approaches, and technical challenges.
IEEE Transactions on Power systems 22(4), 1743–1752 (2007)

[78] McFarlane, D., Giannikas, V., Wong, A.C.Y., Harrison, M.: Product intelli-
gence in industrial control: Theory and practice. Annual Reviews in Control
37(1), 69–88 (2013). DOI 10.1016/j.arcontrol.2013.03.003

133

https://web.archive.org/web/20200129031406/https://www.mckinsey.com/business-functions/operations/our-insights/the-future-of-manufacturing
https://web.archive.org/web/20200129031406/https://www.mckinsey.com/business-functions/operations/our-insights/the-future-of-manufacturing
https://web.archive.org/web/20200129031406/https://www.mckinsey.com/business-functions/operations/our-insights/the-future-of-manufacturing

[79] McFarlane, D., Sarma, S., Chirn, J.L., Wong, C.Y., Ashton, K.: Auto ID sys-
tems and intelligent manufacturing control. Engineering Applications of Arti-
ficial Intelligence 16(4), 365–376 (2003). DOI 10.1016/S0952-1976(03)00077-0

[80] Meyer, G.G., Hans Wortmann, J.C., Szirbik, N.B.: Production monitoring and
control with intelligent products. International Journal of Production Research
49(5), 1303–1317 (2011). DOI 10.1080/00207543.2010.518742

[81] Mishra, N., Singh, A., Kumari, S., Govindan, K., Ali, S.I.: Cloud-based multi-
agent architecture for effective planning and scheduling of distributed manufac-
turing. International Journal of Production Research 54(23), 7115–7128 (2016).
DOI 10.1080/00207543.2016.1165359

[82] Monostori, L.: AI and machine learning techniques for managing complexity,
changes and uncertainties in manufacturing. IFAC Proceedings Volumes (IFAC-
PapersOnline) 15(1), 119–130 (2002). DOI 10.1016/S0952-1976(03)00078-2

[83] Monostori, L., Váncza, J., Kumara, S.R.T.: Agent-based systems for manu-
facturing. CIRP Annals - Manufacturing Technology 55(2), 697–720 (2006).
DOI 10.1016/j.cirp.2006.10.004

[84] Moyne, J., Balta, E., Kovalenko, I., Qamsane, Y., Barton, K.: The digital twin
in the manufacturing ecosystem of the future. In: 1st International Workshop
on Smart Manufacturing Modeling and Analysis (2019)

[85] Moyne, J., Korsakas, J., Tilbury, D.M.: Reconfigurable factory testbed (RFT):
A distributed testbed for reconfigurable manufacturing systems. In: Proceed-
ings of the Japan-USA Symposium on Flexible Automation (2004)

[86] Moyne, J., Qamsane, Y., Balta, E.C., Kovalenko, I., Faris, J., Barton, K.,
Tilbury, D.M.: A requirements driven digital twin framework: Specification
and opportunities. IEEE Access 8, 107,781–107,801 (2020)

[87] Müller, J.P., Fischer, K.: Application impact of multi-agent systems and tech-
nologies: A survey. Agent-Oriented Software Engineering: Reflections on Ar-
chitectures, Methodologies, Languages, and Frameworks 9783642544, 27–53
(2014). DOI 10.1007/978-3-642-54432-3 3

[88] Myers, C.J., Meng, T.Y.: Synthesis of timed asynchronous circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 1(2), 106–119
(1993)

[89] National Association of Manufacturers: Facts About Manufacturing —
NAM. URL https://web.archive.org/web/20200129030653/https://www.

nam.org/facts-about-manufacturing/

[90] Nilsson, F., Darley, V.: On complex adaptive systems and agent-based mod-
elling for improving decision-making in manufacturing and logistics settings:

134

https://web.archive.org/web/20200129030653/https://www.nam.org/facts-about-manufacturing/
https://web.archive.org/web/20200129030653/https://www.nam.org/facts-about-manufacturing/

Experiences from a packaging company. International Journal of Opera-
tions & Production Management 26(12), 1351–1373 (2006). DOI 10.1108/
01443570610710588

[91] North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Com-
plex Adaptive Systems Modeling 1(1), 3 (2013). DOI 10.1186/2194-3206-1-3

[92] Ocker, F., Kovalenko, I., Barton, K., Tilbury, D., Vogel-Heuser, B.: A Frame-
work for Automatic Initialization of Multi-Agent Production Systems Using
Semantic Web Technologies. IEEE Robotics and Automation Letters 4(4), 1–1
(2019). DOI 10.1109/lra.2019.2931825

[93] Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in net-
worked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

[94] O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal
Network/Graph) Framework. Tech. rep., UCI-ICS (2003)

[95] Ota, J.: Multi-agent robot systems as distributed autonomous systems. Ad-
vanced engineering informatics 20(1), 59–70 (2006)

[96] Panait, L., Luke, S.: Cooperative Multi-Agent Learning: The State of the
Art. Autonomous Agents and Multi-Agent Systems 3(11), 387–434 (2005).
DOI 10.1007/s10458-005-2631-2. URL http://link.springer.com/10.1007/

s10458-005-2631-2

[97] Park, C.Y., Kim, K., Roth, S.: Global shortage of personal protective equip-
ment amid covid-19: supply chains, bottlenecks, and policy implications (2020)

[98] Pepyne, D.L., Cassandras, C.G.: Control of hybrid systems in manufacturing.
Proceedings of the IEEE 88(7), 1108–1122 (2000). DOI 10.1109/5.871312

[99] Pétin, J.F., Gouyon, D., Morel, G.: Supervisory synthesis for product-driven
automation and its application to a flexible assembly cell. Control Engineering
Practice 15(5), 595–614 (2007). DOI 10.1016/j.conengprac.2006.10.013

[100] Polycarpou, M.M., Yang, Y., Passino, K.M., Shamma, J.S., Polycarpou, M.M.,
Yang, Y., Passino, K.M.: Cooperative control of distributed multi-agent sys-
tems. IEEE Control Systems Magazine 21(June 2001), 1–27 (2001). DOI
10.1002/9780470724200

[101] Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli,
A., Seshia, S.A.: Model predictive control with signal temporal logic specifica-
tions. In: 53rd IEEE Conference on Decision and Control, pp. 81–87. IEEE
(2014)

135

http://link.springer.com/10.1007/s10458-005-2631-2
http://link.springer.com/10.1007/s10458-005-2631-2

[102] Rehberger, S.: Combining Product- and Resource-Related Reasoning for Agent-
Based Production Automation. Ph.D. thesis, Technische Universität München,
München (2020)

[103] Rehberger, S., Spreiter, L., Vogel-Heuser, B.: An Agent Approach to Flexible
Automated Production Systems Based on Discrete and Continuous Reasoning.
2016 IEEE International Conference on Automation Science and Engineering
(CASE) pp. 1249–1256 (2016). DOI 10.1109/COASE.2016.7743550

[104] Rehberger, S., Spreiter, L., Vogel-Heuser, B.: An agent-based approach for
dependable planning of production sequences in automated production systems.
At-Automatisierungstechnik 65(11), 766–778 (2017). DOI 10.1515/auto-2017-
0040

[105] Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-
agent coordination. In: Proceedings of the 2005, American Control Conference,
2005., pp. 1859–1864. IEEE (2005)

[106] Ribeiro, L., Rocha, A., Veiga, A., Barata, J., Ocha, A., Veiga, A., Barata,
J.: Collaborative routing of products using a self-organizing mechatronic agent
framework - A simulation study. Computers in Industry 68, 27–39 (2015).
DOI 10.1016/j.compind.2014.12.003

[107] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice Hall Press, Upper Saddle River, NJ, USA (2009)

[108] Sallez, Y., Berger, T., Trentesaux, D.: A stigmergic approach for dynamic
routing of active products in FMS. Computers in Industry 60(3), 204–216
(2009). DOI 10.1016/j.compind.2008.12.002

[109] Schroeder, K., Moyne, J., Tilbury, D.M.: A factory health monitor: System
identification, process monitoring, and control. 4th IEEE Conference on Au-
tomation Science and Engineering pp. 16–22 (2008)

[110] Sean O’Kane: How GM and Ford switched out pickup trucks for breath-
ing machines - The Verge (2020). URL https://www.theverge.com/

2020/4/15/21222219/general-motors-ventec-ventilators-ford-tesla-

coronavirus-covid-19

[111] Shen, W.: Distributed Manufacturing Scheduling Using Intelligent Agents.
IEEE Intelligent Systems 17(1), 88–94 (2002). DOI 10.1109/5254.988492

[112] Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H., Joong, H., Norrie, D.H.: Ap-
plications of agent-based systems in intelligent manufacturing: An updated
review. Advanced Engineering Informatics 20(4), 415–431 (2006). DOI
10.1016/j.aei.2006.05.004

136

https://www.theverge.com/2020/4/15/21222219/general-motors-ventec-ventilators-ford-tesla-coronavirus-covid-19
https://www.theverge.com/2020/4/15/21222219/general-motors-ventec-ventilators-ford-tesla-coronavirus-covid-19
https://www.theverge.com/2020/4/15/21222219/general-motors-ventec-ventilators-ford-tesla-coronavirus-covid-19

[113] Shen, W., Wang, L., Hao, Q.: Agent-based distributed manufacturing process
planning and scheduling: A state-of-the-art survey. IEEE Transactions on Sys-
tems, Man and Cybernetics Part C: Applications and Reviews 36(4), 563–577
(2006). DOI 10.1109/TSMCC.2006.874022

[114] Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial in-
ternet of things: Challenges, opportunities, and directions. IEEE Transactions
on Industrial Informatics 14(11), 4724–4734 (2018). DOI 10.1109/TII.2018.
2852491

[115] Stefan Aßmann: Potentiale von Industrie 4.0 bei Bosch. Tech. rep., Universität
Stuttgart (2014)

[116] Tang, H., Li, D., Wang, S., Dong, Z.: CASOA: An Architecture for Agent-
Based Manufacturing System in the Context of Industry 4.0. IEEE Access 6,
12,746–12,754 (2017). DOI 10.1109/ACCESS.2017.2758160

[117] Tantik, E., Anderl, R.: Integrated data model and structure for the asset ad-
ministration shell in industrie 4.0. Procedia Cirp 60, 86–91 (2017)

[118] Tiegelkamp, M., John, K.H.: IEC 61131-3: Programming industrial automation
systems, vol. 14. Springer (1995)

[119] Tilbury, D.M.: Cyber-Physical Manufacturing Systems. Annual Review of
Control, Robotics, and Autonomous Systems 2(1), null (2019). DOI 10.1146/
annurev-control-053018-023652

[120] Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Refer-
ence architecture for holonic manufacturing systems: PROSA. Computers in
Industry 37(3), 255–274 (1998). DOI 10.1016/S0166-3615(98)00102-X

[121] Vogel-Heuser, B., Diedrich, C., Pantförder, D., Göhner, P.: Coupling heteroge-
neous production systems by a multi-agent based cyber-physical production sys-
tem. Proceedings - 2014 12th IEEE International Conference on Industrial In-
formatics, INDIN 2014 pp. 713–719 (2014). DOI 10.1109/INDIN.2014.6945601

[122] Vogel-Heuser, B., Lee, J., Leitão, P.: Agents enabling cyber-physical production
systems. At-Automatisierungstechnik 63(10), 777–789 (2015). DOI 10.1515/
auto-2014-1153

[123] Vrba, P., Tichý, P., Máık, V., Hall, K.H., Staron, R.J., Maturana, F.P., Kadera,
P.: Rockwell automation’s holonic and multiagent control systems compendium.
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and
Reviews 41(1), 14–30 (2010). DOI 10.1109/TSMCC.2010.2055852

[124] Wagner, C., Grothoff, J., Epple, U., Drath, R., Malakuti, S., Grüner, S.,
Hoffmeister, M., Zimermann, P.: The role of the industry 4.0 asset adminis-
tration shell and the digital twin during the life cycle of a plant. In: 2017

137

22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8. IEEE (2017)

[125] Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for
Industry 4.0: A self-organized multi-agent system with big data based feedback
and coordination. Computer Networks 101, 158–168 (2016). DOI 10.1016/j.
comnet.2015.12.017

[126] Wannagat, A.: Entwicklung und Evaluation agentenorientierter Automa-
tisierungssysteme zur Erhöhung der Flexibilität und Zuverlässigkeit von Pro-
duktionsanlagen. Ph.D. thesis, Technische Universität München, München
(2010)

[127] Wong, T.N., Leung, C.W., Mak, K.L., Fung, R.Y.: Dynamic shopfloor schedul-
ing in multi-agent manufacturing systems. Expert Systems with Applications
31(3), 486–494 (2006). DOI 10.1016/j.eswa.2005.09.073

[128] Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. John
Wiley & Sons, West Sussex UK (2009)

[129] Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., Liu, Y.: Smart manufacturing based
on cyber-physical systems and beyond. Journal of Intelligent Manufacturing
pp. 1–13 (2017). DOI 10.1007/s10845-017-1384-5

[130] Yoon, H.J., Shen, W.: A multiagent-based decision-making system for semicon-
ductor wafer fabrication with hard temporal constraints. IEEE Transactions on
Semiconductor Manufacturing 21(1), 83–91 (2008). DOI 10.1109/TSM.2007.
914388

[131] Zheng, G., Kovalenko, I., Barton, K., Tilbury, D.: Integrating Human Oper-
ators into Agent-based Manufacturing Systems: A Table-top Demonstration.
Procedia manufacturing 17, 326–333 (2018). DOI 10.1016/j.promfg.2018.10.
053

138

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	Contributions
	Dissertation Overview

	Background
	Multi-agent Control of Manufacturing Systems
	Intelligent Product Agents
	Rule-based product agents
	Model-based product agents
	Product Agent Exploration
	Product Agent Cooperation

	Model-Based Architecture
	Overview
	Product Agent Knowledge Base
	Desires
	Process Plan
	Exit Plan

	Beliefs
	Product History
	Environment Model
	Fusion Operation

	Intentions

	Product Agent Intelligence
	Decision Director
	Exploration
	Start of Exploration
	Sending Out a Bid Request
	RA Bid Formulation
	PA's Synthesis of RA Bids
	Exploration Example

	Planning
	Plan Formulation
	Event Scheduling
	Re-planning Based on RA Information

	Execution

	Case Studies
	Case-study set-up
	Product Agent Architecture Implementation
	Case-studies for the PA architecture
	One Lot Type, Fully Functioning System
	One Lot Type, Two Machines Breakdown
	Three Lot Types, Fully Functioning System

	Insights from Case Studies

	Conclusions

	Dynamic Exploration
	Multi-agent Architecture
	Resource Agent Knowledge
	Capabilities Model
	Neighboring RAs
	Resource Agent Knowledge Example

	Product Agent Knowledge
	Process Plan
	Product History

	Agent Communication
	Bid request
	Bid

	Resource Agent Task Negotiation
	Product Agent Bid Request
	Resource Agent Task Negotiation
	Submitting a Bid
	Bid Request Propagation
	Creating a Team of Resources

	Product Agent Bid Compilation

	Key Attributes of the Proposed Approach
	Dynamic Network of Resource Agents
	Benefits of Proposed Negotiation Strategy
	Flexible part behavior
	Response to changes on the plant floor
	Security of RA capabilities
	Integration with existing communication protocols

	Conclusions

	Direct, Active Cooperation
	Priced Timed Automata
	Knowledge Base
	Goals
	Process Plan
	Exit Plan
	Performance weights
	Agent Priority

	Environment Model
	Discrete event dynamics
	Time-based Constraints
	Transitions
	Agent association function
	State costs

	Decision Making Model

	Cooperation Framework
	Model Creation
	Update the environment model
	Create the decision making model

	Path Planning
	Coordination
	Coordination with a product agent
	Coordination with resource agents

	Scheduling

	Case Study
	Simulation setup
	Case study: small manufacturing system
	Example 1 - Non-cooperative PAs
	Example 2 - PA-PA cooperation with order prioritization
	Example 3 - DA-PA, DA-PA cooperation to meet a deadline
	Example 4 - DA-PA, RA cooperation to meet a deadline

	Conclusions

	Implementations
	Fischertechnik
	Agent control and communication architecture
	Fischertechnik case studies and insights

	myJoghurt Demonstrator
	Agent control and communication architecture
	Case study descriptions
	Insights from myJoghurt case studies

	System-level Manufacturing and Automation Research Testbed
	Agent control and communication architecture
	SMART case study and insights

	Lessons Learned and Insights

	Conclusions and Future Directions
	Contributions
	Limitations and Future Work
	Cooperative learning for product agents
	Developing complementary intelligence for resource agents
	Integration of intelligent product agents with a centralized control architecture

	Outlook and Impact

	BIBLIOGRAPHY

