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ABSTRACT

First, two new classes of energy stable, high order accurate Runge-Kutta schemes for
gradient flows in a very general setting are presented: a class of fully implicit methods
that are unconditionally energy stable and a class of semi-implicit methods that are
conditionally energy stable. The new schemes are developed as high order analogs of
the minimizing movements approach for generating a time discrete approximation to
a gradient flow by solving a sequence of optimization problems. In particular, each
step entails minimizing the associated energy of the gradient flow plus a movement
limiter term that is, in the classical context of steepest descent with respect to an
inner product, simply quadratic. A variety of existing stable numerical methods can
be recognized as (typically just first order accurate in time) minimizing movement
schemes for their associated evolution equations, already requiring the optimization
of the energy plus a quadratic term at every time step. Therefore, our methods give
a painless way to extend the existing schemes to high order accurate in time schemes
while maintaining their stability. Additionally, we extend the schemes to gradient
flows with solution dependent inner product. Here, the stability and consistency
conditions of the methods are given and proved, specific examples of the schemes are
given for second and third order accuracy, and convergence tests are performed to
demonstrate the accuracy of the methods.

Next, two algorithms for simulating mean curvature motion are considered. First

is the threshold dynamics algorithm of Merriman, Bence, and Osher. The algorithm



is only first order accurate in the two-phase setting and its accuracy degrades fur-
ther to half order in the multi-phase setting, a shortcoming it has in common with
other related, more recent algorithms. As a first, rigorous step in addressing this
shortcoming, two different second order accurate versions of two-phase threshold dy-
namics are presented. Unlike in previous efforts in this direction, both algorithms
come with careful consistency calculations. The first algorithm is consistent with
its limit (motion by mean curvature) up to second order in any space dimension.
The second achieves second order accuracy only in dimension two but comes with
a rigorous stability guarantee (unconditional energy stability) in any dimension — a
first for high order schemes of its type.

Finally, a level set method for multiphase curvature motion known as Voronoi
implicit interface method is considered. Here, careful numerical convergence studies,
using parameterized curves to reach very high resolutions in two dimensions are
given. These tests demonstrate that in the unequal, additive surface tension case,
the Voronoi implicit interface method does not converge to the desired limit. Then a
variant that maintains the spirit of the original algorithm is presented. It appears to
fix the non-convergence and as a bonus, the new variant extends the Voronoi implicit

interface method to unequal mobilities.
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CHAPTER I

Introduction

In this thesis, we develop higher order schemes for gradient flows with state of the
art stability conditions. As a specific application, among others, we develop second
order methods for two-phase threshold dynamics for simulating mean curvature mo-
tion. Both of these results are a first step in developing an efficient stable multi-phase
mean curvature motion of first order and higher.

A gradient flow, or steepest descent, is an evolution equation of the form
(1.1) u = —-VyE(u).

for E: H — R and H is a Hilbert space with inner product (-,-). A fundamental

property of equation (1.1) is that it dissipates the energy over time:

(1.2) © Bu) = (VuB(),w!) = || VuE@|P <0.

Our focus is on discretizations which are both high order in time and energy stable.

By energy stable, we mean numerical schemes that have the discrete version of (1.2):
(1.3) EUNTY < B(UM).

Our schemes can be seen as diagonally implicit Runge-Kutta (DIRK) multi-stage

methods for generating unconditionally energy stable, high order in time numerical



schemes. The advantage of the aforementioned method is accomplished by a black-
box implementation of a standard backward Euler step. This allows one to increase
the order of accuracy while preserving stability without developing new techniques.
We briefly cover the vast literature of DIRK methods. For an extensive review of
DIRK methods, see [27]. Diagonally implicit Runge-Kutta methods are linear M-

stage schemes of the following form:
1. Set U() = Up.

2. Form=1,..., M:
(1.4) Un=Uo— k> anVuE(U).
=1

3. Set w1 = Upy.

The constants o, ; are chosen to satisfy desired consistency and stability require-
ments.

When the energy F is convex, there are many DIRK methods that have some type
of non-linear stability. For example, algebraic stability [4] and energy stability [45].
To our knowledge, there has been little, if any, work of non-linear stability of DIRK
methods for general energies. We provide energy stable, high order DIRK methods
for general energies in chapter II. We also exhibit an example, namely threshold
dynamics, in which E is concave, yet the scheme is unconditionally stable with very
low time step cost.

One downside to the DIRK method for non-linear Vg E is (1.4) involves solving
an often costly system of non-linear equations. The implicit-explicit additive Runge-
Kutta (ARK IMEX) [1] seeks to remedy this drawback by splitting the energy E

into implicit and explicit parts. Specifically, let E(u) = F(u) + F3(u) where Ej is



treated implicitly and Fj is treated explicitly. The ARK IMEX method is a linear

M-stage scheme of the following form:
1. Set Uy = u,,.

2. Form=1,..., M:
m m—1
(1.5) Un=Upo= kY amiVuEi(U;) = kY dn:VuEa(Uy).
=1 =1

3. Set u,y1 = Uy

Where once again the constants o, ; and &, ; are chosen to satisfy desired consistency
and stability requirements. There are second and third order unconditionally energy
stable ARK IMEX methods [44]. However, the methods require that the part of the
energy that is treated implicitly, F, is convex. In this thesis, we give conditionally
energy stable higher order methods with no conditions on F; and Ej.

We extend both types of Runge-Kutta schemes to gradient flows with solution

dependent inner product,
(1.6) u = —L(u)VyE(u).

where L£(u) is a positive definite operator. To our knowledge, this is the first time
high order energy stable schemes for (1.6) have been proposed in a general setting.

We adapt our high order, energy stable schemes to threshold dynamics for sim-
ulating mean curvature motion. Unfortunately, threshold dynamics is not of form
(1.1), so DIRK methods do not immediately generate high order schemes. However,
threshold dynamics can be formally recognized as a gradient flow and, as such, some
of our results apply. We briefly review mean curvature motion and algorithms for

simulating its flow and indicate why we choose to focus on threshold dynamics.



1.1 Overview of Multiphase Mean Curvature Motion

Multiphase mean curvature motion arises as the gradient descent dynamics for

energies of the form

(17) E(El,,Zn) = ZO'IJAIE&(FZ])
i#]
Where I';; = (0%;) N (0%;) are the interfaces between the phases 34, ...,%, that

partition a domain D C R?, d > 2:
N
SN, = (0%;) N (9%;) for any i # j, and | J%; = D.
=1

The positive constants o;; = o0;; are known as surface tensions (or surface energy

density). They need to satisfy the triangle inequality
0i; + oy, > 0, for any distinct ¢, j and &

for well-posedness of the model (1.7) (this inequality prevents “wetting” - where an
interface between two phases is replaced by a thin third phase). Let a triple junction
be formed by the meeting of three phases Y1, ¥s, and 3. They are points in two
dimensions and occur along curves in three dimensions. Let 6; be the angle between
I';; and I';; at the junction. Then:

(1.8) sin 64 _ sin 6 _ sin 05

023 013 012

has to hold. This is known as the Herring angle condition [23]. We will now review
algorithms for simulating mean curvature motion in this challenging multiphase set-

ting.

1.2 Front Tracking methods

Front Tracking methods represent each interface as a parameterized curve (s, t)

for s € [0,1] [3]. Take the case of 3 parameterized curves y!,v%v3 (representing, for



example, ['19, T'a3, and I'13 respectively) that form a triple junction with angles 6,
0y, and 63. Let v'(1,t) = v*(1,¢) = 7*(1,t) and ~*(0,¢),7%(0,t),7°(0,t) € 6D. Each

curve evolves according to v, = ﬁ constrained to be perpendicular at the bound-

() | 3
(g @HOI - (L)l

ary and satisfy ||$83H . \QE%H = cosf; and = cos fy at the triple
junction. The second condition ensures that (1.8) is satisfied during the evolution.
The advantage of the method is that it is highly accurate. The major disadvantage is
that it fails to model topological changes well. When a curve becomes smaller than a
certain tolerance, it is deleted and the remaining curves are reorganized, termed as a
‘surgery’. In order to perform a ‘surgery’ front tracking uses additional information
about the physical system being modeled and each situation is implemented as a
separate case. As a result, handling topological changes in front tracking is compli-

cated and inelegant. Moreover, surgery in 3D is much harder and requires additional

assumptions.

1.3 Level Set Methods

Introduced in [34], the level set formulation of only two phases is as follows:
Denote one phase as > and the other as X¢ and the interface as I'. The interface is
then embedded in a higher dimensional function ¢(z) such that
o) >0 zeX
Vo(z) =0 zel

o(r) <0 xeXe

\
Often the signed distance function, dr(x) = min,cr ||z — z||2, is used for ¢. For any

Vo(x)

level set function curvature at a point x € I' is given by V - (Iv 5]

). To evolve I' in



time by curvature motion the function ¢(x,t) is evolved by the initial value PDE

v (Yo _
(1.9) 6= V- ()96l =0

(1.10) o(z,t =0) = dp(zx),

The zero level set of ¢(z,t) gives the interface after evolving by curvature motion for
time t.

To extend this into the multiphase setting [30] suggested evolving each level set
separately followed by a reconstruction of the phases. The steps are given in algo-

rithm 1.

Algorithm 1 MBO Algorithm A

: Let nt = T/At.

: For ¥4,..., Xy let I'; be the interface between 3; and X¥.
: Let ¢?($,0) = dri

: for k < 1 to nt do

Evolve each ¢! using ¢; — V - (%)|V¢| = 0 for time At.

Let ¢¥(z,0) = ¢F(x, At) — max;4 ¢?71(x, At)

K2

N9 s W e

: Then the new phases evolved under curvature motion for time 7" are ¥; = {x|¢!(z) > 0}

The authors suggest replacing ¢ with the distance function of its zero level step
at every step stating for numerical stability, but this turns out to be essential to the

convergence of algorithm.

1.4 Variational Model

To extend this ad hoc method into the case of different surface tensions and give
some theoretical backing, [48] proposed the following variation model based on the

work of [36]:

Soo [ [ 8(6e.0.0)Vo e,y ldody
(1.11) =

subject toZH(@-(:v,y)) —-1=0

i=1



where 0;; = 0, + 0;. Curvature motion is given by gradient descent of (1.11). In or-
der to apply the method they replace the above constraint with [,(3>°, H(¢i(x,y)) —
1)?dzdy = € << 1 and the §(¢)’s with |[V¢|. As pointed out in [17] the constraint
may contribute to the stiffness of the problem and it is not clear that the dynamics of
the system match that of mean curvature motion. Additionally, only a small subset
of surface tensions that material scientists would like to model can be represented
by this model. Additionally, the authors [48] give no numerical evidence of conver-
gence in the unequal surface tension case. The authors of [17] give an unconstrained
formulation but the method also suffers from stiffness and the convergence in the

unequal surface tension case is unclear.

1.5 Voronoi Implicit Interface Method

Another way to extend level set methods into multiphase is the Voronoi Implicit
Interface Method (VIIM) given by Saye and Sethian [40]. We will go into detail on
this method in chapter V. The VIIM only works on a small subset of surface tensions
and, as we show in chapter V, it does not converge in the unequal surface tension

case.

1.6 Phase Field Methods
With two phases, Modica and Mortola [31] proposed the following energy:
5 1
(1.12) E(u) = [ €Vul* + -W(u)dz.
QO €

The variable u acts as a relaxation of a characteristic function. The function W,
called a potential, is bistable with wells of equal depth (e.g. W(u) = u?(1 — u)?).
W (u) penalizes u for violating the constraint u(z) € {0,1}. Applying gradient

descent to (1.12) results in the Allen-Cahn equation, u, = eAu — £W (u), which has



been shown to converge to mean curvature motion.

Building on this [19] looked at the following energy
1
(1.13) E(u) = / ef(u, Vu) + —W(u)dx
Q €

where f is the generalized gradient energy. One part of the phase field is how
to choose f and W in order to implement the curvature motion with the correct

angle condition. One such example is f(u,Vu) = 3._. %79 = |u; Vu; — u; V|

and W(u) = ;—2 i<j iOijuiug + ZKKk oijuujug. For this they have &;; = oy,
ftij = i and o5, = 5. For these more general versions of phase field, the energy
gradient terms in the energy are no longer quadratic resulting in gradient descent
that is no longer a semilinear parabolic PDE. As a result the solution becomes more

complicated. Additionally, the e adds stiffness into the PDE.

1.7 Threshold Dynamics

The authors [30] looked at the splitting method applied to the Allen-Cahn equa-

tion which is
1. Evolve @; = eAu with @(z,0) = u™ for time Tj.
2. Evolve u, = —1W (u) with u(z,0) = u(z, Ty) for some time 7.
3. Set u"t! = u(x,T}).

The question then becomes how to choose T,; and T, to obtain the right solution. The
correct solution can be found by taking lim 7, = oo. This results in a convolution
step, where the w is evolved by the heat equation (u; = Au) to obtain u(x,T}), then
a thresholding step where u"™*(z) = 1 where u(x,T;) > % and zero elsewhere. The

extension to multiple phases is given in algorithm 2.

To generalize the MBO method [15] considers the following approximation to



Algorithm 2 MBO algorithm

1: Let Gsi(x) = Wef 408
2: Given a initial partition %9,... X% and nt = T/dt
3: for k < 1 to nt do
4: Let (bf = G * ]12@-71.
J
5 3= {alob(@) > max ok(2)}

|2
perimeter Py (X)) = \/%Tt fzc Gsi * Indx where Gg () = Wei 161 . As a result
1
(114) Per(I‘m-) ~ ﬁ ﬂgiG& * ﬂgjdl’

and

N
1
(115) E(Zl, .. .,EN) =~ Egt(zl, .. .,EN) = — Z 04,5 / :ﬂ_giG& * I]_Edl‘
mi,j:l ’

Gradient descent on the energy approximation produces the algorithm 3. In future

Algorithm 3 EO algorithm

1: Given a initial partition ¥?,..., %%, and nt = T/§t
2: for k < 1 to nt do
3: Let d)f = Gy * Zjvzl 0','7j]].21;—1.

J

4 XF = {2|¢f (z) < minjy, ¢F(x)}

work, the authors extend the method to anisotropic surface tensions [14]. One disad-
vantage is on a grid, taking too small a time step will cause the motion to get stuck,
though there are various ways to avoid this. A variant of threshold dynamics that
avoids this is distance function-based diffusion-generated motion [16]. Despite this
drawback, threshold dynamics provably works for gradient flows of (1.7) for surface
tension of interest to material scientists. Because of this, we focus on developing
higher order methods for threshold dynamics.

This thesis is broken into four chapters.

e In chapter II, we develop new 2nd and 3rd order implicit schemes for general

gradient flows that are unconditionally stable.
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e In chapter III, we develop new 2nd and 3rd order semi-implicit schemes for
general gradient flows that are conditionally stable and extend the results to
gradient flows with solution dependent inner products.

e Chapter IV presents new 2nd order threshold dynamics algorithms, including
an second order, energy stable algorithm in two dimensions.

e Chapter V presents highly accurate numerical convergence studies of the VIIM,
showing that the VIIM does not converge in the unequal surface tension case.
We also develop a new method in the spirit of the VIIM that fixes the non-

convergence.



CHAPTER II

Variational Extrapolation of Implicit Schemes for General
Gradient Flows

2.1 Introduction

We are concerned with numerical schemes for evolution equations that arise as
gradient flow (steepest descent) for an energy E : H — R, where H is a Hilbert

space with inner product (-, -):

(2.1) W = —VyEu).

Equation (2.1) may represent a (scalar or vectorial) ordinary or partial differential
equation. A fundamental property of equation (2.1) is that it dissipates the energy
over time:

d

S Ew) =(VrE(u)u) = ~IVeE()]]* < 0.

Our focus is on unconditionally energy stable, high order in time discretizations. To

be precise, by energy stable we mean the following dissipative property:
(2:2) Bltnn) < E(u,)

where u,, denotes the approximation to the solution at the n-th time step. Thus, in
the context of PDEs, where H is infinite dimensional, we are concerned with discrete

in time, continuous in space schemes.

11
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The backward Euler method for the abstract equation (2.1), with time step size
k > 0, reads

Upa1 — Up,
(2.3) % — —VuE(tns).

As is well known and immediate to see, a solution wu,; for the implicit scheme (2.3)

can be found via the following optimization problem

1
(2.4) Upp1 = arg min (E(u) + ﬁHu - un||2)
since (2.3) is the Euler-Lagrange equation for the optimization (2.4); here, || - ||* =

(-,-). It follows that

1
+ %Hun - unH2 = E(un)

(25)  Blun) < Blnin) + o s — wl” < B
so that scheme (2.3) is unconditionally stable, provided that optimization problem
(2.4) can be solved.

Energetic formulation (2.4) of the backward Euler scheme (2.3) is often referred to
as minimizing movements. It enables extending numerical schemes for the stationary
optimization problem min,, E(u) to the dynamic, evolutionary problem (2.1) provided
an additional, typically quadratic term in the cost function can be accommodated.
The quadratic term 5 [|u— u,[|* in (2.4) is often referred to as the movement limiter,
as it opposes deviation from the current configuration w,. It encodes the inner
product with respect to which the gradient flow is being generated. Beyond numerical
analysis and computation, minimizing movements approximation of gradient flows
have been instrumental in the analysis of evolution equations of the form (2.1), e.g.

in defining and finding weak solutions beyond the formation of singularities when

classical notions of solution cease to exist.

The following combination of desirable properties distinguish the new schemes

introduced in this chapter:
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1. Complete generality. There is no assumption (e.g. convexity) on the energy E

in (2.1) beyond sufficient differentiability.
2. Unconditional energy stability.
3. High (at least up to third) order accuracy.

4. Each time step requires a few standard minimizing movements solves, equivalent
to backward Euler substeps, or optimization of the associated energy plus a

quadratic term.

Property 4 is perhaps the most unique and appealing aspect of the new framework:
There are many existing schemes that can be recognized as some form of minimizing
movements, sometimes relying on efficient optimization algorithms to solve (2.3) via
(2.4). Our contribution shows how to painlessly jack up the order of accuracy of
these schemes while preserving unconditional stability, relying only on a black-box
implementation of the standard backward Euler scheme. In that sense, our new
schemes can be understood as a variational analogue of Richardson extrapolation on
(2.3), which in its standard form lacks the stability guarantees of our new schemes.

Many general purpose numerical schemes can certainly be used for solving (2.1),
such as multistep or Runge-Kutta methods [5]. However, the energy stability of
the standard examples of such schemes is either not immediate, or not true at all,
at the level of generality we seek here, when applied to an equation of the form
(2.1). Our focus is on high order schemes whose stability can be guaranteed over
an entire class of evolution laws, namely gradient flows (2.1). Nevertheless, after
some appropriate transformations, the new schemes we propose can be seen as a
new, special class of diagonally implicit Runge-Kutta (DIRK) schemes tailored to
these important dynamics. In the extensive literature on Runge-Kutta methods, one

of the related contributions to the nonlinear notion of stability (2.2) we seek is B-
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stability for evolutions that satisfy a monotonicity (contractivity) condition [6]. In
the context of gradient flows, this requires convexity of the energy E in (2.1), which
is too restrictive for the applications we have in mind (see e.g. Examples (2.31) and
(2.33) in section 2.5.2). Very recently, [44] & [45] propose high order Runge-Kutta
schemes for gradient flows with stability guarantees. Among these, [45] concerns fully
implicit schemes, as in the present work, but is again restricted to convex energies
as in earlier works on B-convexity. The paper [44] studies implicit-explicit schemes
that, in the spirit of convexity splitting [18], break up the energy into convex and
concave parts, and treat the convex part implicitly and the concave part explicitly.
The present work differs in placing no convexity assumptions on F, which is treated
fully implicitly. An example where the energy is in fact concave, yet the optimization
(2.4) is solvable at very low cost, is the threshold dynamics algorithm for motion by
mean curvature [29, 30] that is known to be unconditionally energy stable [15]. We
show in chapter IV how ideas developed in the present chapter can be used to jack
up the order of accuracy of this intriguing algorithm while preserving its desirable
stability properties, which appears to be beyond the scope of previous contributions.
See also remark I1.6 of section 2.5.2 in this context. Finally, we also mention recent
work on the scalar auxiliary variable method [42] as another approach focusing on
unconditional energy stability for gradient flows.

The rest of the chapter is organized as follows:

e section 2.2 presents the general framework for the new scheme, focusing on

unconditional energy stability.

e section 2.3 focuses on consistency, showing how to attain 2nd and 3rd order

accuracy.

e section 2.4 gives 2nd and 3rd order examples of the new schemes.
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e section 2.5 presents numerical convergence studies on a number of well-known

ordinary and partial differential equations that are gradient flows.

The code for section 2.5 is publicly available, and can be found at https://github.

com/AZaitzeff/gradientflow.

2.2 The New Schemes: Stability

In this section, we formulate a wide class of numerical schemes that are energy
stable by construction. We thus place stability front and center, leaving consistency
to be dealt with subsequently. It is therefore important to allow many degrees of
freedom in the scheme at this stage, in the form of a large number of coefficients,
that will eventually be chosen, in the next section, to attain consistency at a high
order of accuracy.

Our method is a linear M-stage scheme of the following form:
1. Set Uy = u,,

2. Form=1,...,M:

(2.6) U, = argmin (E(u) + Z

u

Tm.i 7712
- Ui,

3. Set Upt+1 = UM

Notice that the proposed scheme (2.6), as promised, merely requires the solution
of exactly the same type of problem at every time step as the standard backward
Euler scheme: minimization of the associated energy plus a quadratic term.

At this point, it is not clear why a scheme such as (2.6) should dissipate energy
E at every iteration as in (2.2). However, in this section we establish quite broad
conditions on the coefficients 7,,,; that ensure energy dissipation (2.2); this is the

essential observation at the heart of the present chapter. To demonstrate the idea,


https://github.com/AZaitzeff/gradientflow
https://github.com/AZaitzeff/gradientflow
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consider the following two-stage special case of scheme (2.6):

@ = agmin (B0 + 20 - u?)

u

(2.8) Uy = arg min (E( )+ %OHU— n||2—|—721|| U1||2)

u

and impose the conditions

2
Y
(29) Y1,0 — 20 Z 0 and V2,0 + V2,1 >0
V2,0 + V2,1

on the parameters. Set # = —2%—_ Note that (2.8) is equivalent to
72,0+72,1

210) ey = argain (B) + 222 (g, - 00 ).

This can be seen by expanding the norm squared and comparing the quadratic
and linear terms in u. The constant terms are not equal but that does not matter
for the minimization.

We have

+
E(tni1) < E(tny) + % [ttns1 = (Qun + (1= O)TL)[]* (by (2.9))
< B(Uy) +w 1U) = (0un + (1 — 0)0) | (by (2.10))
720 2
=EU)+ ————||U1 —un
00) + s 10 =l
< B(Uy) + 222 U1 — ua? (by (2.9))
< E(un) (by (2.7))

establishing unconditional energy stability of scheme (2.7) and (2.8) under the
condition (2.9) on its parameters. We offer some insight to the conditions in (2.9).

First, the condition v+ ¥2,1 > 0 is reasonable as it requires that the function being
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minimized in (2.8) goes to +00 as ||u|| — co. What is more surprising is that one
of the second stage coefficients can be negative while maintaining unconditionally
stability. We can ‘reward’ the distance to one of the previous stages as long as

the distance to the other stage is penalized sufficiently strongly. The condition

2
72,0

72,0+72,1

70 2 requires that the penalization in the first stage has to be strong
relative to the penalization in the second stage.

We will now extend this discussion to the general, M-stage case of scheme (2.6):

Theorem I1.1. Define the following auziliary quantities in terms of the coefficients

Ym.i of scheme (2.6):

M ~
~ ~ S m
(211) Ym,i = VYmi — Z Vi 57
j=m+1 )
m—1
(2.12) S =S5,
1=0

Where if m = M, the sum in (2.11) is considered to be zero. If S'mm > 0 for
m =1,..., M, then scheme (2.6) satisfies the energy stability condition (2.2): For

everyn =0,1,2,... we have E(up41) < E(uy).

As we will see in section 2.3, the conditions on the parameters +; ; of scheme (2.6)
imposed in theorem II.1 are loose enough to enable meeting consistency conditions
to high order. We will establish theorem II.1 with the help of the following two
lemmas. The first lemma is the multi-step version of the equivalence of (2.8) and

(2.10) in our two step example:

Lemma I1.2. Let the auxiliary quantities S'j’m, and v, ; be defined as in theorem I1.1.



We have

m—1
arg min (E(u) + Z 72”]? | — UiHZ)
i=0
1

M G2 m—! Fis
=argmin | E(u) + ALY Py REEN §8 2)
g (() 2 g k=2 Ul

u

Proof. As in the two step case the proof consists of expanding the norm squared
terms and showing that all the quadratic and linear terms of u are equal. First the

expansion of 37! | |lu — Usl]? is

9 m—1 1 m—1
(2.13) % 2 Yrni — E(u, ; Ym,iU;) + terms that do not depend on w.

Next, we will establish two identities to help us expand

1 M52 A
LSSy, e
First by rearranging (2.11),
M ~
~ Sm
o i

Next, an identity of S‘m,m:

i=0 j=m+1
m—1 M m—1 5, m—1 M 2
= Ym,i — Z |: ’S/j,i:| S?Jn = Z Ym,i — Z S?’m
1=0 j=m+1 * =0 J5J 1=0 j=m+1 ~J1J
We use this identity to establish the following:
(2.15)
M S‘Q ~ M o2 m—1 M ~2 M S‘Q m—1
Z ”’J’m:Sm,m"i_ Z ﬂ: /Ym,i_ Z ﬂ‘i‘ Z ”’Jym:Zer,z
j=m Sjuj j=m+1 SJ J =0 j=m+1 ~J1J j=m-+1 SJ J =0



19

Now we can calculate the expansion:

M
Yj.i
LS S Z L P
] m -7 = J,m
||u||2M5? LS 8 s S
= == — —(u, Yj,i ) + terms that do not depend on u
2k S.. k
j=m ~JJ =0 j=m ]
[ = 1
= ok Ym,i — E(u, WmJ-UZ-) + terms that do not depend on w.
i=0 i=0

Where the last equality follows from (2.14) and (2.15). Since this expansion matches

(2.13) up to a constant in u the proof is complete. O

Now we will use lemma II.2 to relate the energy of sub-step m to sub-step m — 1.

This lemma is the crux of the proof of the theorem and where we use the condition

that S’mm > 0 for all m.

Lemma I1.3. Let the auziliary quantities gj,m, Ym.i be given in theorem I1.1 and let

§m7m>0f07“m:1,...,M. Then

M g2 m—1 o
E Jm Tid 712
)+ 5. 5,10 25, U

J=m

1 - 52 —1 Y,
SEUn) 4o D0 ||Um1—zsf Uil

j=m—1 S]v i=0 “Jm—1

Proof. By (2.6) and lemma II.2,

1 M52 m—1 o
U,, = argmin F/ Py — wELy yAlES
g1 (w) + % 25 | ;Sj,m |

Since U, is the minimizer of the above optimization problem
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52 m—1 ’?
2.1 E — 2L |
(2.16) (Un >+2k &M= 2 Uil
=m 1=0 J»
1 M, g2 mz_l o
(2.17) < E(Upn-1)+ =Y 25| Un-1 — LU
2k =~ 5}, = 5.

Next using the definition of auxiliary variables we can state an identity that will

simplify (2.17). For m > 1 and j > m

52 m—1 o 2 Fim1 m—2 o

Uy — 222U P = 22| U (1— - ) =y P
5. [ Unm—1 ;Sjm |* = 5 U1 5 ; - |
Szm S m—1 - Yj.i S2m 1 = v 9
=5 HUM(J ) ZSL ill* === HUml—ZSJ Uil|*.
J\J Jm J,m JJ i=0 ~Jim—1

Using this identity (2.17) is equal to

1 M 5,2 m—2 5/
(2.18) E(Up_1) + — I Uy — > =2 U2
2k = Sj; ; Sjm—1
Now since Sm,Lm,l > 0,
52 5
(2.19) | . 1—2 L g > 0.
m—1,m—1 m 1,m—1

By adding (2.19) to (2.18), we have that (2.18) is less than or equal to

M 2 m—2 .

]- ST)’L Z
EUp 1) + — 2 1||Um1—2 LA AT

2k
j=m—1 J =0 ]m 1

concluding the proof. m

Proof. (of theorem) The main idea of the proof is to use lemma II.3 repeatedly to

relate the energy of E(uy41) to E(u,). First, since Sy > 0

Z 7M1 U||2
=0

E(unt1) = E(Un) < E(Un) +

QkSMM
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The right hand side of the equation is of the form required by lemma II.3. By using

the lemma II.3 repeatedly we have

IYMz 2
E(U U
(UM) + MMM Z [
1 M &2 M—2 5
SE(UM—l)""% Z ]SM 1HUM 1— Z 3 2 U||2
j=M—1 *3.J i=0 “i,M-1

1 M521 4,0
<E(U +—§ LU L2017
=B 2k <= Sj,j” b Sja1 I

By (2.6) and lemma II.2
1 52

S5 V5,0
U, = argmin F(u) + — Lol — 222U, |12
= sngmin £(u) + 35 3 22— 2200

j=1
SO
M &2 M &2
1 Sii 5.0 1 Sia
EU) + — LU, — 22012 < BE(Up) + = LUy — U||? = E(uy)
2k <= Sj; S 2k <= Sj;
completing the proof of the theorem. O

Now the condition that Sm,m >0 form =1,..., M is the multi-step equivalent of
(2.9) in the two step case. Given the +’s you can calculate the auxiliary quantities
(2.11) and (2.12) explicitly as follows:
form=MM-1,...,1:

1. Calculate ¥, fori =1,2,...,m

2. Calculate S'jym forj=mm+1,..., M.

Thus given v’s we can easily check if they satisfy the hypothesis of theorem II.1.
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2.3 The New Schemes: Consistency

We now turn to the question of whether the coeflicients 7,,,; in scheme (2.6) can
be chosen to ensure its high order consistency with the abstract evolution law (2.1).
As mentioned before, the schemes are diagonal implicit Runge-Kutta, whose order
conditions are well established (for example in [5]). For completeness, we derive the
conditions here. From (2.6), each stage U, satisfies the Euler-Lagrange equation:

(2.20) [ZW]U +kVgE(, Zym i

=0

The consistency equations for the «s are found by carrying out a Taylor series
expansion of U,, around U, = u(ty). We will calculate the one-step error. For

ne{1,2,3,...}, let D"E(u) : H* — R denote the multilinear form given by

o
D”E(u)(vl, . ,?}n) = 831—88E(u + S1U1 + SoUg + - - - + Sn?}n)

§1=89=+-=8,=0
so that the linear functional D" E(u)(vy,vs,...,vy_1,-) : H — R may be identified
with an element of H, which will be denoted simply as D" E(vy,vg, ..., v,_1) in what

follows. We begin with the exact solution starting from wu(ty):

up=—-VE(u) t>t

U(to) = U()

The Taylor expansion of u(k + to) around ¢y is

(2.21)
1 2 1 3
u(k + to) :u(to) + kut(to) + §k Utt(to) + ék uttt(to) + h.o.t.
1
=Uy — kDE(Uy) + 5k:QD%E(UO)DE(UO)

- ékﬁ [D*E(Us) (D*E(Us) (DE(Uy))) + D*E(Us) (DE(Up), DE(Up))] + h.o.t.
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We now present the error at each stage of the multi-stage algorithm, (2.6), and

the conditions required to achieve various orders of accuracy:

Claim I1.4. Let U,, be given in (2.6) form =0,1,..., M. The Taylor expansion of

U at each stage has the same form as (2.21), namely:

(2.22) U, = Uy — Br.imkDE(Up) + Bomk?D*E(Uy) DE(Uy)

—k*[B3.m D*E(Uy) (D*E(Up) (DE(Up))) +B1,mD* E(Us) (DE(Up), DE(Uy)) | +O(k*)

where the coefficients obey the following recursive relation

Bro = B2o = P30 = Bao=0
r m—1
L+ Z ”Ym,zﬂl,z}
L i=1

r m—1
Brm + Z 7m,i52,i:|
: i=1

ﬂl,m =

(2.23) Bam =

=1

64,771 -

1

S
1

St
1 r m—1

Bam = 5 Ba,m + Z %n,iﬁs,i]

1

St

with S,, = Z?:ol Ym.i- Furthermore, the following conditions for Uy in scheme (2.6)

are necessary and sufficient for various orders of accuracy:

First Order: Second Order: Third Order:

BI,M =1 ﬂl,M =1 ﬂl,M =1
(2.24) Por =1/2 Por =1/2
Banm =1/6

Bam =1/6
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Proof. We will now show by induction that the aforementioned consistency formulas,
(2.22) and (2.23), hold.

Stage zero: U trivially satisfies (2.22) and (2.23).

Stage m: Assume (2.22) and (2.23) up to stage m — 1. First we are going to

solve for U, — Uy in (2.20):

]{? 1m—1
2.25 Up,—Uy=——DFEU,,) + — m.iUi — Up.
(225) 0=~ G DEWn) + g3 mili = Ui

Now Taylor expand DE(U,,) around Uy in (2.25):

k 1
Up — Uy = — T {DE(UO) + D*E(U)(Uy, — Uy) + §D3E(U0)(Um — Up, Uy — Up)
1 m—1

i
o

Substituting the ansatz Uy + kA, + k*Ay + k3 A3z + O(k*) for U,, and equation

(2.22) for U;, and retaining up to terms of third order, we have that

(2.26)

kA, 4+ k* Ay + k3 A5 =

m—1 m—1

Sm m i=1
3 1 2 iy 2
~ K| -D E(Uo)(A2+ Y YmiBsiD*E(Uo) DE(Uy))
m i=1
11 m—1

+ EngE(U()) (A1, A1) + i ; ’Ym,i54,iD3E(U0) (DE(U0)> DE(UO»} + O(k4)

Solving for A;, Ay, A3 by matching terms of the same order in (2.26), we arrive
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at:

1
A =— 5 {1 + ; ’Ym,zﬂl,z} DE(Uy)

m—1

Ay :SLDQE(UO)( — A+ Z ’Ym,zﬂmDE(Uo))

m i=1

[1 + Z Vi, } + = Z vmﬁzz) E(Uo)(DE(U))

m—1

1
A = — S_D E(U) (A2 + Y YmiBasi D E(Us) DE(Up))

i=1

m—1
— %SLD?’E(UO)(AM Ar) - si Ym,iB1:D* E(Ug) (DE(Uy), DE(Uy))
mo=1
m—1
(813 []_ + Z Ym, 151 z:| + == Z ’}/mﬂ'ﬁgﬂ'
m S i=1
m—1
+ % Z; vm,iﬁs,i) D*E(Uy) (D*E(Us) (DE(Uy)))

m—1

m—1 2
11 1
— == |1 mi1 — mllDEU DEUy), DE(U,
(25%{‘1‘;7,51,] S ; 54) (Uo)(DE(Us), DE(Uy))
completing the induction step.
Matching the consistency equations, (2.22) and (2.23), at Uy, with the one step
error (2.21) gives the conditions on Uy, for various orders of accuracy (2.24), com-

pleting the proof. m

In the next section, we give examples of v’s that satisfy the consistency equations

(claim I1.4) as well as the hypothesis of theorem II.1 concurrently.
2.4 The New Schemes: Examples
In this section, we exhibit second and third order examples of scheme (2.6) that

satisfy concurrently the hypothesis guaranteeing unconditional energy stability (the-

orem II.1) and the consistency equations (claim I1.4) up to second and third order.
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We found the +’s by the following numerical procedure: we first found a set of +’s
that satisfied the conditions of theorem II.1. Then we used the interior point method
with the conditions of theorem II.1 as our constraint and an objective function that
penalized the mismatch between the current 5y 5 and s (and B and Sy for
third order) and (2.24). After obtaining +’s that satisfied the consistency equations
up to some small tolerance as well as our constraint, we sought a nearby algebraic so-
lution to the consistency equations that still satisfied the conditions in theorem II.1.
For some number of stages M, it is impossible to satisfy the consistency equation
for a given order and the stability conditions. Therefore, we searched for +’s that
encoded stable algorithms of various orders with different total number of stages and
report a set of 7’s with the lowest number of stages for a given order here. Using this
method we were able to find second and third order stable schemes. Whether even
higher order accuracy (together with stability) can be obtained with this class of
schemes will require a more systematic approach to the solvability of the conditions

on v, and will be the subject of future work.

2.4.1 Second Order Examples

It can be shown that there is no unconditionally energy stable second order two-

stage method. However, it turns out that three stages are sufficient for unconditional

stability:
Y0 0 0 5 0 0 50 0 0
(2.27) Y= Y2,0 V2,1 0 = -2 6 0 ~ —2.0 6.0 0 .
V3,0 V31 V3,2 -2 2 4 -2.0 022 6.29

This choice of 7’s that endows the three-stage method (2.6) with unconditional
stability and second order accuracy is by no means unique; indeed, here is another
that has the additional benefit of having each one of its stages depend only on the

previous one and u,,:
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g 0 0 4.5 0 0
(2.28) v = -4 2 0 ~| -18 629 0 |.
miel (e 194 0 637

2.4.2 Third Order Example

We now exhibit a six stage version of scheme (2.6) that concurrently satisfies the
conditions for unconditional energy stability (theorem II.1) as well the consistency
equations (claim II.4) up to third order:

11.17 0 0 0
—7.5 1943 0 0
—-1.05 —-4.75 13.98 0
1.8 0.06 —-7.83 13.8
6.2 —-7.17 —-1.33 1.63 11.52
—2.83 4.69 246 —11.55 6.68 11.95

0

0

0

(2.29) y A 0

0
0
0
0
0
The exact values of the 4’s above are given in the appendix (chapter A); they are

all rational numbers but with long fractional representations. Again, we cannot rule

out other solutions for v, possibly with fewer stages.

2.5 The New Schemes: Numerical Tests

In this section, we will apply the second order (2.27) and third (2.29) order accu-
rate unconditionally stable schemes to a variety of gradient flows. We found (2.27)
before (2.28) and therefore ran all our numerical tests with the former. The gradient
flows considered span linear and non-linear ordinary and partial differential equa-
tions. The corresponding energies include convex and non-convex forms. Careful
numerical convergence studies are presented in each case to verify the anticipated

convergence rates of previous sections.

Remark 11.5. Note that equation (2.6) can be rewritten using only one quadratic
movement limiter term, so a black box implementation for backward Euler (2.3), or

equivalently (2.4), is all that is needed for our method, and is called once per stage.
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2.5.1 Ordinary Differential Equations

First, we turn to the ODE «' = — sinh(u) with the corresponding energy F(u) =
cosh(u). With initial condition u(0) = —2, the exact solution is u. (t) = —2 coth™ (exp(t) coth(1)).
Table 2.1 and table 2.2 show the error in the solution at time ¢ = 2 computed by
the second order scheme (2.6) & (2.27) and the third order scheme (2.6) & (2.29),
respectively, at various choices of the time step size. The anticipated order of con-
vergence is clearly observed for both schemes. Figure 2.1 shows the energy at every
time step for the third order method with 16 time steps. As expected, the energy
decreases at every time step. There is little visual difference between fig. 2.1, the

plot of the second order method with 16 time steps and the plot of the exact energy.

Number of
time steps 24 2° 26 27 28
Error at t =2 | 5.25e-04 | 1.31e-04 | 3.27e-05 | 8.18e-06 | 2.05e-06
Order - 2.00 2.00 2.00 2.00

Table 2.1: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the ODE u' = — sinh(u) with energy F(u) = cosh(u).

Number of
time steps 24 2° 26 27 28
Error at t =2 | 1.19e-05 | 1.48e-06 | 1.85e-07 | 2.30e-08 | 2.88e-09
Order - 3.00 3.00 3.00 3.00

Table 2.2: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the ODE v = —sinh(u) with energy E(u) = cosh(u).

We next turn to an ODE with the non-smooth energy

(2.30) E(u) =

Since the energy is non-smooth we do not expect higher order convergence. As shown

in fig. 2.2, the second (2.6) & (2.27) and third order scheme (2.6) & (2.29) obtain



29

Figure 2.1: The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE on the
ODE v = —sinh(u) with energy E(u) = cosh(u)

first order convergence on average. Notwithstanding, the energy decreases at every

time step as shown in fig. 2.3 for the third order method with 16 time steps.

1072 e 102

10-4; 4 10 3
5 5
L L
6 i
10 ] 10 3
r 8l i
107 E
10° s T T S S
10 10 10 10 10 10 10 10
ot ot

Figure 2.2: The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.29) (right) and the new third six-stage scheme (2.6) & (2.29) (left) on the ODE
induced by gradient flow on non smooth energy (2.30)

2.5.2 Partial Differential Equations

For PDEs, we start with a preliminary test on the one dimensional heat equation
U = Uge on z € [—1,1] subject to periodic boundary conditions with initial data
u(x,0) = sin(mz). This is gradient flow with respect to the L? inner product for the
energy E(u) = % [u2dz. The exact solution is u.(x,t) = sin(rz) exp(—n?t). The

spatial domain [—1, 1]. For this example as well as the other PDEs in this section, we
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E(u(t))

Figure 2.3: The new third order six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE
induced by gradient flow on non smooth energy (2.30)

choose the discretization of the Laplacian and number of spatial points so that the
contribution to the error from the spatial discretization is negligible. Table 2.3 and
table 2.4 show the L? error in the approximate solution at ¢t = %, computed via the
second order accurate scheme (2.6) & (2.27), and the third order accurate scheme
(2.6) & (2.29), respectively. Figure 2.4 shows the energy at every time step for the

third order method with 16 time steps. We see that the energy decreases at every

time step.
Number of
time steps 22 23 24 25 26 27
L2 1.09e-03 | 2.66e-04 | 6.59e-05 | 1.64e-05 | 4.09e-06 | 1.02e-06
Order - 2.03 2.01 2.01 2.00 2.00

Table 2.3: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the one-dimensional heat equation u; = ugg.

Number of
time steps 22 23 24 25 26 27
L2 2.30e-05 | 2.75e-06 | 3.36e-07 | 4.16e-06 | 5.17e-09 | 6.37e-10
Order - 3.06 3.03 3.02 3.01 3.02

Table 2.4: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the one-dimensional heat equation u; = .

We now turn to less trivial examples, starting with the Allen-Cahn equation

(2.31) u = Au — W' (u)
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Figure 2.4: The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the one-dimensional
heat equation u; = Uy

W) vs. &

Figure 2.5: The double well potentials used in the Allen-Cahn (2.31) and Cahn-Hilliard (2.33)
equations: One with unequal and the other with equal depth wells.

where W : R — R is a double-well potential. This is gradient flow for the energy
1 2
(2.32) E(u) = §|Vu] + W(u) dx

with respect to the L? inner product.

First, we consider equation (2.31) in one space dimension, with the potential
W (u) = 8u — 16u® — Su® + 8u*. This is a double well potential with unequal depth
wells; see fig. 2.5. In this case, equation (2.31) is well-known to possess traveling wave
solutions on x € R, see fig. 2.6. We choose the initial condition u(z,0) = tanh(4x +
20); the exact solution is then w,(z,t) = tanh(4x + 20 — 8t). The computational
domain is = € [—10,10]. We approximate the solution on R by using the Dirichlet
boundary conditions u(410,¢) = £1: The domain size is large enough that the
mismatch in boundary conditions do not substantially contribute to the error in

the approximate solution over the time interval ¢ € [0,5]. Table 2.5 and table 2.6
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Figure 2.6: The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (2.31) with a potential that has
unequal depth wells.

Number of
time steps 27 28 29 210 A 212
L2 5.14e-02 | 1.26e-02 | 3.13e-03 | 7.79e-04 | 1.94e-04 | 4.86e-05
Order - 2.02 2.01 2.01 2.00 2.00

Table 2.5: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the one-dimensional Allen-Cahn equation (2.31) with a traveling wave solution.

tabulate the error in the computed solution at time ¢t = 5 for our two new schemes.

Number of
time steps 27 28 29 210 A 212
L2 9.06e-04 | 9.97e-05 | 1.20e-05 | 1.48e-06 | 1.85e-07 | 2.37e-08
Order - 3.18 3.06 3.02 3.00 2.97

Table 2.6: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the one-dimensional Allen-Cahn equation (2.31) with a traveling wave solution.

Next, we consider the Allen-Cahn equation (2.31) in two space dimensions, with

the potential W (u) = u?(1 —u)? that has equal depth wells; see fig. 2.5. We take the

1

initial condition u(z,y,0) = o (7o)
exp|—(7.o—y/Z°+Yy

on the domain z € [—10,10]%, and
impose periodic boundary conditions. We run the system to find u at ¢t = 20, (fig. 2.7
shows u at t = 0 and ¢t = 20). As a proxy for the exact solution of the equation
with this initial data, we compute a very highly accurate numerical approximation

u.(z,y,t) via the following second order accurate in time, semi-implicit, multi-step
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Figure 2.7: Initial condition and the solution at final time for the 2D Allen-Cahn equation with a
potential that has equal depth wells.

Number of
time steps 25 26 27 28 29 210
L2 3.43e-03 | 8.73e-04 | 2.21e-04 | 5.55e-05 | 1.39e-05 | 3.49e-06
Order - 1.98 1.98 1.99 1.99 2.00

Table 2.7: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the two-dimensional Allen-Cahn equation (2.31) with a potential that has equal depth
wells.

scheme [7] on an extremely fine spatial grid and take very small time steps:
3 n+1 n 1 n—1 n+1 (.. n 1/ n—1
U —2u +§u = kAU — QW' (u") — W (u"7)).

Table 2.7 and table 2.8 show the errors and convergence rates for the approximate

solutions computed by our new multi-stage schemes.

Number of
time steps 23 24 25 26 27 28
L2 4.60e-03 | 5.41e-04 | 6.44e-05 | 7.98¢-06 | 1.02e-06 | 1.33e-07
Order - 3.09 3.07 3.01 2.97 2.94

Table 2.8: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the two-dimensional Allen-Cahn equation (2.31) with a potential that has equal depth
wells.

As a final example, we consider the Cahn-Hilliard equation
(2.33) u = —A(Au— W' (u))

where we take W to be the double well potential W (u) = u?(1 —u)? with equal depth
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Figure 2.8: Initial condition and the solution at final time for the 2D Cahn-Hilliard equation with
a potential that has equal depth wells.

Number of
time steps 22 23 24 2° 20
L2 1.16e-03 | 2.62e-04 | 6.41e-05 | 1.64e-05 | 4.22¢-06
Order - 2.15 2.03 1.97 1.95

Table 2.9: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that has equal
depth wells.

wells and impose periodic boundary conditions. This flow is also gradient descent

for energy (2.32), but with respect to the H~! inner product:

(u,v) = /uAlvdx.

1
1+exp[—(5— \/x2+2y2)]

Starting from the initial condition u(z,y,0) = and running the
system until ¢ = 20 (see fig. 2.8). We computed a proxy for the “exact” solution once

again using the second order accurate, semi-implicit multi-step scheme from [7] [43]:

3 1
§u”+1 —2u™ + éu"_l = —kA[Au™T — BQW (u™) — W' (u"1))]

where the spatial and temporal resolution was taken to be high to ensure the errors
are low. Table 2.9 and table 2.10 show the errors and convergence rates for the

approximate solutions computed by our new multi-stage schemes.

Remark 11.6. As further evidence of the generality and flexibility of the new schemes

introduced in this chapter, we note that they can also be used to jack up the order of
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Number of
time steps 22 23 24 25
L2 2.20e-04 | 4.12e-05 | 6.73e-06 | 1.05e-06
Order - 2.42 2.62 2.67

Table 2.10: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.27)
on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that has equal
depth wells.

accuracy in time of less conventional numerical algorithms such as threshold dynamics

29, 30]. Also known as diffusion generated motion, threshold dynamics is an uncon-

ditionally stable algorithm for simulating the motion of interfaces by mean curvature,

merely by alternating the two simple steps of convolution and thresholding. It was
given a variational formulation in [15] that exhibits it as carrying out an approximate
minimizing movements procedure at every time step. Although the stability calcula-
tion of section 2.2 applies verbatim, the consistency calculations of section 2.3 have

to be redone. This is because (a) motion by mean curvature, although formally a

gradient flow on perimeter, does not quite fit the classical formulation (2.1), and (b)

the variational formulation in [15] shows that threshold dynamics carries out mini-

mizing movements for approrimately the right energy with respect to approximately
the right metric: these additional errors have to be taken into account. Due to the
substantial modifications to the consistency calculation required, extension of the
new schemes to enhancing the order of accuracy of threshold dynamics will be taken

up in chapter IV.

2.6 Conclusion

We presented a class of unconditionally stable, high order in time schemes for
gradient flows. The new schemes can be thought of as a variational analogue of
Richardson extrapolation: they enable jacking up the order of accuracy of standard

backward Euler method, while maintaining its unconditional stability, at the expense
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of taking multiple backward Euler time substeps per full time step. What results is a
universal method to jack up the accuracy to at least third order in time whenever a
blackbox implementation of the standard backward Euler scheme is available, while
increasing overall complexity by only a constant factor. We demonstrated the method
and its advertised accuracy on a number of linear and nonlinear ODEs and PDEs.
Whether this class of schemes can be used to achieve arbitrarily high (i.e. > 4)

order in time accuracy will be the topic of a future investigation.



CHAPTER III

Variational Extrapolation of Semi-Implicit Schemes for
General Gradient Flows for Fixed and Solution Dependent
Inner Products

3.1 Introduction

This chapter is an extension of the ideas we developed in chapter II. Once again, we
are concerned with numerical schemes for evolution equations that arise as gradient

flow for an energy f: H — R, where H is a Hilbert space with inner product (-, -):
(3.1) W =—-VygE(u).

Additionally, we will study gradient flows with a solution dependent inner product:
(3.2) u' =—L(u)VyFE(u)

where L£(u) is a positive definite operator that depends on u. One property of (3.1)
and (3.2) is dissipation: £ E(u) < 0, to see this

%E(u) = (VygE(u),uv)=—(VyE(u), L(u)VyE(u)) <O0.

In chapter II, we focused on unconditionally stable numerical methods to solve (3.1).
In this chapter, our first focus is on conditionally energy stable, semi-implicit meth-

ods. Specifically, let

B(u) = Ei(u) + Ex(u)

37
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where in our numerical implementation we will handle E; implicitly and Es explicitly.
Our numerical methods will guarantee that when the time step is less than a constant

depending only on E5 the following numerical dissipation property will hold:
(3.3) E(un41) < E(un)

where u,, denotes the approximation to the solution at the n-th time step. In the
context of PDEs, where H is infinite dimensional, we are concerned with discrete in
time, continuum in space schemes.

A basic semi-implicit scheme for the abstract equation (3.1), with time step size

k > 0, reads

Up, — Up
(3.4) % = —VuFEi(tnp) — Vi Es(uy,).

Let Ly(u,u,) be the linearization of Ey around wu, so

Lo(u, uy) = Ea(uyn) + (Vi Ea(un), u — uy,)

Then (3.4) is the Euler-Lagrange equation for the optimization problem

1
(3.5) Up41 = argmin Fy (u) + La(u, uy,) + o |l — )
where || - [|> = (-,-). For
(3.6) A = max{0, Iﬁléﬁx D?Es(u)(v,v)}
u,||v]|=1

where by D?Es(u) (v, w) we mean #;Eg(u + €10 + ew) we have
A 2

(3.7) Er(u) < La(u,p) + 5 llu = pl*-

for any u and p. It follows that when k < %

1
E(un-H) = El<un+1) + EZ(un+1) < El(un-i-l) + L2<un+1a un) + ”Um—l - unH2

2k

< El(un) + Lo (tn, Un) |un - un||2 = El(“ﬂ) + EQ(un) = E(un)

4L
2k
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so that scheme (3.4) is conditionally stable. These methods are equivalent to implicit-
explicit additive Runge-Kutta (ARK IMEX) [1]. There are unconditionally energy
stable ARK IMEX that rely on convexity splitting, the case where E; convex and
E5 concave [44]. Our class of methods have no assumption (e.g. convexity) on the
implicit and explicit energies (F; and F,), are conditional energy stability and high
(at least up to third) order accuracy. Additionally, each time step requires a few
standard minimizing movements solves, equivalent to semi-implicit substeps. This
allows our schemes to effortlessly increase the order of existing stable semi-implicit
methods.

Our second focus is on extending implicit and semi-implicit methods for general
gradient flows to solve (3.2), the case when the inner product is solution dependent.
There are stable methods for (3.2) on case by case basis, for example Cahn-Hillard
with degenerate mobility [8, 22] and the porous medium equation [10, 11, 47]. To
our knowledge, this is the first time energy stable methods for general gradient flows
with solution dependent inner products have been considered.

The rest of the chapter is organized as follows:

e Section 3.2 presents and proves the conditions for conditional energy stability

for our schemes.

e Section 3.3 states the consistency equations for the ARK IMEX schemes for

solving gradient flows (3.1) and gives 2nd and 3rd order examples.

e Section 3.4 gives 2nd and 3rd order methods for solving gradient flows with

solution dependent inner product (3.2) and provides consistency calculations.

e Section 3.5 presents numerical convergence studies several of well-known partial

differential equations that are gradient flows.

The code for section 3.5 is publicly available, and can be found at https://github.


https://github.com/AZaitzeff/SIgradflow
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com/AZaitzeff/SIgradflow.

3.2 Stability of Our New Schemes

In this section, we formulate a wide class of numerical schemes that are energy
stable by construction. The first of these schemes are Implicit-Explicit Additive
Runge-Kutta (ARK IMEX) schemes, but we will write the schemes in what we will
call minimizing movements form in order to prove energy stability more easily. The

minimizing movement form of the M-stage of an ARK IMEX scheme is:
1. Set UO = Up.

2. Form=1,...,M:

m—1 m—1
. f}/m,i
(3.8) Un = argqun (El(u) + ZEO Om,iLo(u,U;) + ZEO ok

|u—U,-||2).

where
(3.9) Ly(u,p) = Ex(p) + (VuE2(p), v — p)

3. Set Upt+1 = UM

The schemes for solving a gradient flow with solution dependent inner product are
a series of embedded ARK IMEX methods. The norm is fixed for each ARK IMEX
step allowing the stability results of this section to apply schemes for solving (3.2).
Now we establish quite broad conditions on the coefficients 7,,; 0,,; that ensure
conditional energy dissipation (3.3). Before we state and prove the conditions in

generality, consider the following two-stage special case of scheme (3.8):


https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow
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(3.10) U, = arg min (El(u) + Lo(u,u,) + % l|lu — un||2)

Upq1 = arg min (EQ(U) + 01 Lo(u, Uy) + 020La(u, uy,)

(3.11)

# 22 =l + 2 - 0 )

Let A = max{0, max, ju=1 D*Es(z)(v,v)}. Note that this implies
A >
(3.12) Bafu) < Lafu,p) + 2 flu =l

for any u and p. Also note that Lo(u,u) = E(u). Impose the conditions

(72,0 - k’Agz,o)2

— kA — >0,
o (V2,0 + 72,1 — kA2 o — kAO2 1) —
(3.13) Yo, + V2,0 — kAOy o — kAGy ;> 0,
‘9271 + ‘9270 =1 and
021,020 >0
on the parameters. Set y = - +7321:i25i3k e First note that (3.11) is equiva-
lent to

(3.14)  wpy1 = argmin Ey(u) + 61 La(u, Uy) + O20La(u, u,) + G20\ [|[u — UnH2 "
— kAOy o — KAO
Do [ — U [P 720 22 = A2 — kG,

2%k lu— (e + (1 = ) ||

This can be seen by expanding the norm squared and comparing the quadratic

and linear terms in u. With these tools in hand we can prove energy dissipation:
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E(um—l)
=E1(tuny1) + Ea(uni1)

A
<Ey(tuny1) + O21[Lo(tny1, Ur) + 5 | tni1 — Ulﬂz]

A
+ 02,0[La(un+1, un) + 5 1 — ][] (by (3.12))

A
<Ey(tuny1) + O21[Lo(tni1, Ur) + 5 | tns1 — U1||2]

A
+ 020 Lo (tnt1, upn) + EHun—H — u,||?]

V2,0 + V2,1 — kAOy g — kAOy
2k

A
<E(Uy) 4 021 E2(Uy) + 02,0[L2(Uy, un) + §HU1 — Uy ?]

+ |wns1 — (pun + (1 — p)U;) H2 . (by (3.13))

V2,0 + Y21 — Ao — Abs g
2k

A
§E1<Ul> + 82,1[L2(U17un) + §Hun+1 - Un||2]

+ |07 = (ptn + (1 = )0y ||° (by (3.14))

A
+ 020[La2(Uy, uy) + §HU1 - un”2]

(’Yz,o - k92,0)2
(v2,0 + v21 — kAO2 g — kNG, 1)2k

HUI _UNHQ

71,0 — EA
2k

<E(uy,). (by (3.10))

A
<EV(Uh) + [La(Un, wn) + S (1T = ua*] + 10 —wal®  (by (3.12))

The first two conditions (3.13) require k to below a certain threshold. Hence the
dissipation of (3.10) & (3.11) is conditional.

We will now extend this discussion to general, M-stage case of scheme (3.8):

Theorem IIL.1. Fiz a time step k. Define A = max{0, max,, jv=1 D?Es(z)(v,v)}

and the following auxiliary quantities in terms of the coefficients vy, ; and 0p,; of
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scheme (3.8):

~ Sim
(3'15) TYmi = VYmi — Z 7] ~_
S .
j=m+1
~ m—1
(3.16) Sim = Vi
i=0

If S'mm >0form=1,...,M, 0y_1;> ;>0 and Z?jol Omi = 1, then scheme
(3.8) satisfies the energy stability condition (3.3): For everyn = 0,1,2,... we have

E(uni1) < E(uy).

As we will see in section 3.3, the conditions on the parameters v;; and 0,,; of
scheme (3.8) imposed in theorem III.1 are loose enough to enable meeting consistency
conditions to high order. We will establish theorem III.1 with the help of a couple

of lemmas:

Lemma III.2. Let the auxiliary quantities Sjm, and Y, be defined as in theo-

rem III.1. We have

m—1 m—
argminE(u)—l—ZQm,iLg Z i |u— U
i=0 i=0
m—1 1 M &2 m— 2
=argmin F(u) + Om.i|Lo(u, U;) + = ||u— Ui||?] —kzgj— Z =
i=0 j=m 3 i=0 Pim

Proof. As in the two step case the proof consists of expanding the norm squared

terms and showing that all the quadratic and linear terms of u are equal. First, the

m—1 Ym,i
2k

u— Uil is

expansion of ) "/

9 m—1

Z Ymi — Z Ym,iU;) + terms that do not depend on w.

(3.17)
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Next, we will establish two identities to help us expand

m—1
ok Z N Z S“ Uil
=m =0 m

First by rearranging (3.15),

.

Sjm
(3.18) Vi — kO =y 2
j:m jﬂj
Next, an identity of S'mm
m—1 m—1 M S“,
S’mm: ~mZ: 'm,i kAemz_ Y i j,m:|
; 7 =0 |:’y ’ _ ’y‘% S y
1= 1= Jj=m+1 J5
m—1 M m—1 5‘,
= Z Ym,i kAem,z} - Z |: N] z:| ﬂ
=0 |: j=m+1 - i=0 SJ',J'
m—1 M &2
i — kA0 i | — ULy
1= j=m+1 757
We use this identity to establish the following:
M ~2 M ”2 m—1
(3.19) DR S T o [% - k;Aem}
j=m Sji j=m+1 P5I i=0
Now we can calculate the expansion:
ii i, |u—Z o U|P+Ze Al - U
2k j=m =0 !
X N mzlf«i RS0 SUNERS
2]{3 =~ SjJ k ) e 7,0 ] m,i m,i z

+ terms that do not depend on u

2 m—1
||;]! Z Z Ym.iU;) + terms that do not depend on u.
i=0
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Where the last equality follows from (3.18) and (3.19). Since this expansion matches

(3.17) up to a constant in u the proof is complete. ]

Lemma II1.3. Let A and the auxiliary quantities S’j’m, Ym.i be given in theorem III.1.
Additionally, let S’mm >0 form=1,...,M. Then

m—1

M
1
Ev(Un) + Y OmilLa(Un, Us) + ||U ~ Uil _k Z

l

g

T

“s

A
<E(Up-1) + Z Om—1:[L2(Upn—1,U;) + 3 |Up—1 — Ui||2]

Proof. By (3.8) and lemma II1.2,

m—1
Uy, = argmin E(U)"‘Z Om.i[La(w, Us) +AfJu — UiHQ] 57 ﬂHU—Z LU
i=0 =0

u

Since U, is the minimizer of the above optimization problem

m—1
A

i—0

A
<Ey(Un1) + mm1 B2 (Un1) + Y Omil La(Un, UD) + 5 Uy = U]

2
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We give two inequalities to aid us in the proof. First, using the definition of the

auxiliary variables, we can state an identity that will simplify (3.20). For m > 1 and

j=m
- 2 - 2
SQ m—1 - SQ ~ . m—2 .
I U = Y 20| = 22 Uy (1 2 ) 5 Dy,
(3 21) SJ] i=0 “im Sj,j J,m i=0 “im
. - 2 ~ 2
S . m—2 . S . m—2 . N
=2 Um—l — - — Uz = 2= Um 1 ~7],Z Uz
J:J J,m i=0 “Im JiJ i=0 ~3m—1
Now since Sm—l,m—l > 0,
&2 m—2 5 2
—1,m—1 —1,
(3.22) = Uy = Y =—=U;|| > 0.
m—1m—1 i=0 ¥m—1m—1

Using (3.21) and (3.22) we have

(3.23)
M &2 m—1 2
1 Sjm jm 1 ’YJZ
— = m—1— Ui Z Un-1— Z
2k j=m Sjaj i=0 PJm 2k = ]m !
1 M ~2 i ’
YK
TP o R

Next, since 227:11 O = 1 for all m we have the equality

m—2 m—2 m—2
(3.24) Ot =1 > Oi = Ori— D O
i=0 i=0 =0

Using (3.12) and (3.24), we have our second inequality:
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m—2
A
Omm—1E2(Upn—1) + ; Om,ilLo(Up—1,U;) + 5 | Um—1 — UiHQ]
m—2 m—2 A
= (Om—1,i — Omi) Ea(Up—1) + Z Om,ilLo(Up—1,U;) + 5 | Unm—1 — Ui||2]
=0 1=0

A
(825) <D (Om-si = Omi)[Le(Un1, Up) + 5 [|[Uns — Ui’
+ ) O LU, Us) + A U1 — U]
m,i |12 m—1, Y4 2 m—1 7

A
= Om—1.i[Lo(Upn—1,U;) + 3 U1 — Ui||*]

Using inequalities (3.23) and (3.25), we have that (3.20) is less than or equal to

m—2
A 2
Ey(Upn-1) + iz_; Om—1,i[Lo(Unn—1, Us) + 5 |Um—-1—Uil|"]
2
1 - Sfm 1 - Z Vi
2k 2= ) = Sjm—1
concluding the proof. O

Proof. (of theorem) The main idea of the proof is to use lemma III.3 repeatedly to
relate the energy of E(u,i1) to E(u,). First, by (3.12) and our assumption that

SMJ\/[ >0

E(Un+1) = El(UM) + EQ(UM)

M-1
1 SMM ~— ~M’L 2
U;

By using the lemma II1.3 repeatedly we have
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M-1
A
E\(Unt) + Y Oaal Lo(Uns, Us) + 5 1Unr = Uill"] +

=0

QkSMM

Z ’VMz U||2
=0

M—2
A
<E1(Up-1) + ZQM 1i[Lo(Unr-1, Us) + §||UM—1_U1‘||2]

1=0

2

1 L S2y,
P

7 1

UMl—Z lii_y,

i=0 ]Ml

A 2y 1 7 0
< _ _ J 13, 2
<Ei(U1) + La(Us, Up) + 5 U = Upl|” + %21 ([0 U I
By (3.8) and lemma II1.2
M 2 ~
Uy = arg min By (u) + Lo(u, Up) + = Hu Ul + 5 Z Si1 %UOHQ
u 1 3,1
SO
A 1 L S2
Eu(U0) + La(Uh, Uo) + 5 [0 = Ol + 57 57 2% o, - 'V”U Ik
2 2k j=1 ]J Jl
M 2
<E1(Up) + Ea(Uo) + —||U0—U0’ + o5 Z i ||U0—U0||
=E(uy)
completing the proof of the theorem. n

Remark 111.4. In the above proof, we assume that Es(u) is two times differentiable.
You can drop this assumption if you replace Ly(u,p) with another approximation
Ay(u, p) that has the properties As(u,u) = Fy(u) and for some choice A, Ey(u) <

As(u,p) + 4 |lu — p||* for all u and p.
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3.3 Examples of the New Schemes for Gradient Flows

In this section, we give examples of higher order schemes for gradient flows that
are conditionally stable. First, we give the conditions on ~,,; and 6,,; in scheme (3.8)
to ensure its high order consistency with the abstract evolution law (3.1). Recall that

Uy = u,. From (3.8), each stage U, satisfies the Euler-Lagrange equation:

m—1 m—1 m—1
(3.26) [Z ’ym] Un + kVaE\(Un) = = Y k0 Vi Es(U) + > YmaUi.
=0 1=0 =0

(3.26) is equivalent to the form more often seen for ARK IMEX methods:

m m—1
=1 =1

where oy, ; and @, ; depend on ,,, and 6,,;. The consistency equations for ARK
IMEX methods have been previously worked out [26, 35, 44, 49]. As such, we will
state without proof the conditions required to achieve various orders of accuracy in

terms of v and 6:

Claim II1.5. Let U; be given in (3.8). The Taylor expansion of U; at each stage has

the form:

(3.28)

U; = Uy — B1,kDE(Uy) + k* [ B2,ik> D* E1 (U ) DE(Uy) + B3, D B2 (Ug) DE(U)|
— k*[Ba:D*Ey (Up) (D*Er(Uo) (DE(Uy))) + B5:D*Eq(Up) (D*Es(Us) (DE(Uy)))
+ Bs;D*Es(Uy) (D*E1(Us) (DE(Uy))) + Br:D?Es(Us) (D?E2(Us) (DE(Uy)))
+ BsiD*E1 (Ug) (DE(Uy), DE(Up)) + B D Ex(Us) (DE(Uy), DE(Up))] + h.o.t.
where for 1 € {1,2,3,...}, D'E(u) : H' — R denotes the multilinear form given

by
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al
DZE(U) (Ul, e ,Ul) = mE(U + S1U1 + SoUg + -+ - + Sﬂ]l)

s1=s0=":-=5;=0
so that the linear functional DZE(u)(vl,vg, e U1, ) : H — R may be identified
with an element of H, and so on. The coefficients of (3.28) obey the following

recursive relation:

Bro = B2 = = B0 =0
1 m—1
61,m = S_ 1+ Z ’Ym,iﬁl z:|
m i=1
1 r m—1
62,771 = S_ Bl m T Z ’Ym,i52 z:|
mL i=1
1 -rm—1 m—1
o = | 22 s+ 3 ]
1 r m—1
Bam = 5 Ba,m + Z 7m,i54,i]
mL i=1
(3.29) 1T m—1
BS,m - S_ B3,m + Z ’7m,i65,i:|
mL i=1
1 rm—1 m—1
s, Sm_; ,ﬁz,—i‘;V ,BG,]
1 rm—1 m—1
B, Sm_iz:(; ,53,‘1‘;7 ,57,1
1 [Bim | =
Bs,m E T + ; Vim,i38i
1 —1 m—1 m—1
_ 2
Bom = S 5 ; Om.iB1 i + ; ’Ym,z'59,z}

with S,, = 2?:01 Ymi- Furthermore, the following conditions for u,+1 = Uy in

scheme (3.8) are necessary and sufficient for various orders of accuracy:
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First Order: Second Order: Third Order:

Bi,m
Bo,m
B30

v =1 v =1

(3.30) 1/2 Por =1/2

12 By =1/2

Banr = Bsy = ... = Poy = 1/6

Now, we give second order and a third order example of method (3.8). However,
The examples we give are not unique by any means. We begin with a five step

method that is second order accurate:

1. 0 0 0 0
0.009 0991 0 0 0

O~ | 0009 0991 0 0 0
0 0 0 1. 0
0 0 0 1. 0

(3.31)

8.841 0 0 0 0
—0.925  5.360 0 0 0

v | —4.443  6.041  0.950 0 0
—-3.288 5895 —0.351 0172 0
—3.805 —0.335 4.964 —1.722 7.684

which is stable for kA < 3/872.

Next we have a thirteen step method that is third order accurate:

1. 0 0 0 0 0 0 0 0 0 0 0 0
0.049 0.951 0 0 0 0 0 0 0 0 0 0 0
0.024 0.075 0.901 0 0 0 0 0 0 0 0 0 0
0.017 0.042 0.113 0.829 0 0 0 0 0 0 0 0 0
0.012 0.029 0.071 0.386 0.501 0 0 0 0 0 0 0 0
0.01 0.023 0.06 0.366 0.457 0.085 0 0 0 0 0 0 0
0~ 0.007 0.018 0.05 0.351 0.437 0.06 0.076 0 0 0 0 0 0
0.003 0.005 0.006 0.008 0.009 0.011 0.028 0.929 0 0 0 0 0
0.002 0.002 0.002 0.002 0.003 0.004 0.009 0.029 0.948 0 0 0 0
0 0.001 0.001 0.001 0.001 0.002 0.004 0.007 0.011 0.971 0 0 0
0 0 0.001 0.001 0.001 0.001 0.003 0.005 0.008 0.912 0.069 0 0
0 0 0 0 0 0.001 0.002 0.003 0.005 0.107 0.025 0.857 0
330 0 0 0 0 0 0 0.001 0.001 0.002 0.013 0.007 0.018 0.958
¢ ) 11. 0 0 0 0 0 0 0 0 0 0 0 0
2.1 15.5 0 0 0 0 0 0 0 0 0 0 0
1.4 1.6 17. 0 0 0 0 0 0 0 0 0 0
0.2 1.6 —2.4 18.1 0 0 0 0 0 0 0 0 0
0.3 —8.5 3. 9.6 7.8 0 0 0 0 0 0 0 0
—1.4 —5.9 —0.1 2. 8. 4.1 0 0 0 0 0 0 0
v R —4. —0.5 —0.4 —1.8 5.1 6.8 0.9 0 0 0 0 0 0
—9.2 4.8 2.7 —3.2 2.5 6.2 2.5 4.6 0 0 0 0 0
—1.7 —3.6 —0.1 1.3 5.7 3.4 —0.8 —0.8 0.4 0 0 0 0
—2.7 —3.5 0.6 1.4 6.1 3.5 —0.7 —0.2 —0.4 0.5 0 0 0
5.9 —4.8 —5.1 —3.1 3.4 6.6 —0.7 —5.2 4.9 —0.8 8.2 0 0
7.1 0.9 —3.1 —2.7 —5.8 —1.9 0.6 —3.4 4.3 —1.3 9.2 9.1 0
3.8 1.9 2.7 2.1 —7.5 —10.6 —1.2 2. 0.7 0.2 —0.2 9.5 12.
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which is stable if kA < 18/28567. The coefficients to machine precision as well as
code to verify theorem III.1 and claim IIL.5 can be found at https://github.com/
AZaitzeff/SIgradflow. In the following section, we consider methods for (3.2),

when the inner product changes with the solution.

3.4 Schemes for Solving Gradient Flows with Solution Dependent Inner
Product

Now we move on to the problem of simulating flow (3.2),
u = —L(u)VyE(u).

We consider the case where £(u) is strictly positive definite. Our approach will be

as follows:
1. Generate a u, from wu,,.
2. Construct L£(uy).
3. Use the algorithm (3.8) with norm ||-||i_1(u*) = (-, L7 (u,)-) to generate .
One advantage to constructing L£(u,) and then using it in (3.8) is that theo-
rem 1.1 immediately gives conditional energy stability for coefficients such as (3.31)

or (3.32). Thus, we only need to consider what choice of u, will give our algorithm

the desired level of accuracy. Now at every step we are solving

(3.33)

m—1 m—1 m—1
[Z ym] Un + kL) Va BV (Up) = =kL(.) Y OmiVuE2(Ui) + Y Ymils.
=0 =0 =0

We will set up the consistency equations for (3.2). Let u,, = u(tp). For conve-
nience, denote L(u,) as L, and FE(u,) as E,. We begin with the exact solution

starting from wu(ty):


https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow
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u=—-VE() t>t

U(to) = Uo

By Taylor expanding around ¢, we find

1 1
(3.34) u(k +to) = ulto) + kus(to) + §k2utt(t0) + 6/k:i”um(lto) + O(kY)

where the higher derivatives in time are found using (3.2):

w(to) = — L, DE,
wy(to) =DL,(L,DE,)DE, + £L,D*E,(L,DE,)
ui(to) = — DL (DL, (L, DE,)DE,)DE, — D*L,(L,DE,, L,DE,)DE,
— DL, (L.(D*E,(L,DE,)))DE, —2DL,(L,DE,)D*E,(L,DE,)
— L,D*E, (DL, (L,DE,))DE, — L,D?E,(L,D*E, (L,DE,))

— L,D*E,(L,DE,, L,DE,)

where for [ € {1,2,3,...}, D'L(u) : H' — H denotes the multilinear form given by

al
DZL(U) (Ul, R ,’Ul) = mL(U + 8101 + SoUg + -+ - + Sﬂ)l)

s1=s9="-=5,=0
so that D'L(u) (vl, Vg, ... ,vl) is a linear operator from H to H.

In the next two subsections, we provide second and third order examples and
accompanying consistency calculations. Both of these examples also have the addi-
tional property that F(u.) < E(uy,).

3.4.1 Second Order Method

Our second order algorithm is laid out in algorithm 4. Now we will prove that it

is indeed second order. First, the expansion of u, is
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Algorithm 4 A second order method for solving gradient flows with solution dependent inner
product

Fix a time step size k > 0. Set u, = ug. Alternate the following steps:

1. Find u,:

1 1
Uy + §k£nVE1 (us) = up, — ikﬁnVEg(un)

2. Find w41 using (3.33) with coefficients (3.31) and £(u.) in the movement limiter.

1
(3.35) s =ty — SKL,DE, + O(k?)

We use (3.29) to get an expansion of uy,1:

(3.36) Ups1 = Up — kL(u) DE, + %kQE(u*)D2En(£(u*)DEn) +O(k?)
Now, expand u, around u,, in (3.36):
Upi1 =Up — kL, DE, — kDL, (u, — u,)DE,
+ %k;?an?En(anEn) + O(K?)
=u, — kL,DE, + %kzDﬁn(CnDEn)DEn
+ %kzﬁnDQEn(ﬁnDEn) + O(K?)
The Taylor expansion of u,; matches (3.34) to second order.

3.4.2 Third Order Method

Now we present our third order algorithm for solving (3.2). It requires the use of

two new sets of coefficients,

0 0 1.000

1.833 0 0.
v~ 0.556  0.667 0

1. 0 0.
0~ —0.667 0.333 0

(3.37)

1.030 —-0.026 0.159
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Algorithm 5 A third order method for solving gradient flows with solution dependent inner product

Fix a time step size ¥ > 0 and set u, = wugp. For convenience, we will denote
D?L(uy) (L(us)VE(uy), L(us)VE(uy)) as D2L(u.).
Alternate the following steps:

1. Find u,, using (3.33) with the coefficients (3.37), £,, in the movement limiter and time step
1
=k.
6

2. Find @ using (3.33) with coefficients (3.32), L(u,) — #5k*D?L(u,,) in the movement limiter
and time step %k:

3. Find v, ;:

2 2
Usey , + 3k£nVE1(u*271) =u, — 5k£nVE2(un).
4. Find us, , using (3.33) with the coefficients (3.38), L£(us, ,) in the movement limiter and time
step %k.

5. Find w41 using (3.33) starting at u (instead of u,) with coefficients (3.32), L(u.,,) —
%ijQﬁ(u*m) in the movement limiter and time step %k‘

and
1. 0 0 0 0 0 0
0.708 0.292 0 0 0 0 0
0.013 0.018 0969 0 0 0 0
0~ | 0.008 0.012 0.867 0.113 0 0 0
0.006 0.009 0.206 0.056 0.724 0 0
0 0.005 0.05 0.025 0053 0867 0
5,38 0 0 0015 0009 0015 0.04 0.920
(3:38) 7.727 0 0 0 0 0 0
0.594  2.241 0 0 0 0 0
3.056 —0.455 0.636 0 0 0 0
vy~ | —1571 5091 —1.063 2.786 0 0 0 )
—3.714 31  —1.267 1545 9.655 0 0
—6.923 5.1  —2.056 3.471 4.571 4.033 0

—2.467 =21 0.009 —0.182 0.660 7.224 9.428

to achieve particular Taylor expansions. The values of (3.37) and (3.38) to ma-
chine precision can be found at https://github.com/AZaitzeff/SIgradflow.

Algorithm 5 details our third order version for solving gradient flows with solution
dependent inner product. The method adds another condition for stability to hold,

namely:

1

(3.39) L) - =

E*D?L(u)(w, w)


https://github.com/AZaitzeff/SIgradflow
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needs to be positive definite for all v and w. Now we will prove that algorithm 5
produces a third order approximation.

By applying (3.29), the coefficients (3.37) give the following expansion for u,,:

1 1
(3.40) ey =ty = kLo DE, + %k’?ﬁnD?En(ﬁnDEn) + O(k%)

Now we can expand @ by using (3.29) and expanding u,, around u,,

1 1
U= Uy, — §k£(u*l)DEn + gerE(u*l)DzEn(ﬁ(u*l)DEn)

B %k3£(u*1)D2En (’C(u*1)D2EH (E(u*l)DE"))

— 4—18k3£(u*1)D3En (L(us,)DE,, L(u,)DE,)

1 1 1
= u, — kL, DE, + —k*DL,(L,DE,)DE, + =k*£, D*E, (L, DE,)

N %k?» DL (L D*En(LnDE,))DE,

1
— 4—8k3LnD2En(Dcn(£nDEn)DEn)

- %Sk?’D.cn(.anEn)D?En(anEn)

1
- 4—8k3£nD2En (£,D*E, (L,DE,))

1

e k*L,D*E,(L,DE,, L,DE,) + O(k")

Now we will apply the same steps to derive the expansions of w,, ,

2
(3.42) Uy, =ty = ZhLWDE, + O(k?)

and 1y, ,
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11
ey, =t — gkz(u*Q,l)DEn 2Ly ) DB (£ (s, ) DE,) + O(F)
(3.43) o, — gk:ﬁnDEn

1 11
+ ngD[,n(EnDEn)DEn + %k’?L‘%DQEn([%DEn) + O(k*)

Finally, we can find the expansion of u, ;. We will first apply (3.29) around @

s = 0= SR (e, DE(E) + KL (1, ) D*B(@) (£l ) DE ()

— RO, ) D) (£, ) D E(®) (L(u,,) DE(®)))

— KL, D B(a) (£, ) DE (), L., DE(w))

R D) (£ DB ey, £ts,) DE (1)) DE() + O(K)

expand ., ,

1
Upiq = U — %kﬁnDE(a) + %k:ZDﬁn(/JnDEn)DE(ﬂ) + gk;?,an?E(a)(ﬁnz)E(a))

— ékSDL’n(Dﬁn(ﬁnDEn)DEn)DE(fa)

- ék?’D?ﬁn(anEn, L,DE,)DE,)DE(u)

_ %k;?’DLn(LnDzEn(EnDEn))DE(ﬂ)
_ %/ﬁ DLo(LnDE(@)D*E(7)(L,DE(q))

_ %k%n D*E(u)(DL,(L,DE(u))DE())

_ %kg £,D*E(a) (£,D*E(a) (L, DE(q)))

_ %;ﬁﬁn D*E(u) (L, DE(a), £,DE()) + O(k")
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then expand u around wu,,:

1 1
Upi1 = Un — kL, DE, + §k2D£n(£nDEn)DEn + §k2£nD2En(£nDEn)

- ékSD.cn(Dﬁn(LnDEn)DEn)DEn

1
- 6k3D2£n(£nDEn, L,DE,)DE,)DE,

- ék3D£n(£nD2En(£nDEn))DEn

- %k?’Dﬁn(ﬁnDEn)DQEn(ﬁnDEn)

- ék?’LnDQEn(DEn(EnDEn)DEn)
- ék?’EnDQEn (£,D*E, (L,DE,))

_ ék?’ﬁnD?’En (L.DE,, £,DE,) + O(k")

The Taylor expansion of u,; matches (3.34) to third order. As long as (3.39)
holds,

E(uny1) < E(u) < E(un)
by theorem III.1.

Remark TI1.6. In algorithm 4 and algorithm 5, we can instead handle E(u) fully
implicitly, as we do in chapter II. We need to substitute higher order implicit methods
for the corresponding semi-implicit methods. In this case, the second order method is
unconditionally stable and the third order is unconditionally stable if D?L(u) (w, w)
is negative semi-definite for all v and w. We detail the 3rd order, fully implicit
algorithm for gradient flows with solution dependent inner product in the appendix

chapter B.
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3.5 Numerical Examples

In this section, we will apply the second and third order accurate conditionally
stable schemes to a variety of gradient flows, some with fixed inner product and
some with solution dependent inner product. Careful numerical convergence studies
are presented in each case to verify the anticipated convergence rates of previous

sections.

3.5.1 Gradient Flows with Fixed Inner Product

10 ) VS § ~Wvs. £

Figure 3.1: The double well potentials used in the Allen-Cahn (3.44) and Cahn-Hilliard (3.46)
equations: One with unequal depth wells and the other with equal depth wells.

Figure 3.2: The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (3.44) with a potential that has
unequal depth wells.

We start with the Allen-Cahn equation
(3.44) u = Au — W' (u)

where W : R — R is a double-well potential. This corresponds to gradient flow for
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Number of
time steps 29 210 A 212 213
L? error (2nd order) | 2.08e-01 | 5.96e-02 | 1.61e-02 | 4.22e-03 | 1.08e-03
Order - 1.81 1.89 1.94 1.97
L? error (3rd order) | 2.06e-03 | 3.26e-04 | 4.68¢-05 | 6.32e-06 | 8.33e-07
Order - 2.66 2.80 2.89 2.92

Table 3.1: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes (3.8)
on the one-dimensional Allen-Cahn equation (3.44) with a traveling wave solution.

the energy
1
(3.45) Blu) = /§||VU||2+W(U) da

with respect to the L? inner product.

First, we consider equation (3.44) in one space dimension, with the potential
W(u) = 8u — 16u® — Su® + 8u*. This is a double well potential with unequal
depth wells; see fig. 3.1. In this case, equation (3.44) is well-known to possess
traveling wave solutions on x € R, see fig. 3.2. We choose the initial condition
u(z,0) = tanh(4x + 20); the exact solution is then w,(z,t) = tanh(4x + 20 — 8t).
The computational domain is x € [—10, 10|, discretized into a uniform grid of 8193
points. We approximate the solution on R by using the Dirichlet boundary conditions
u(£10,t) = £1: The domain size is large enough that the mismatch in boundary
conditions do not substantially contribute to the error in the approximate solution
over the time interval ¢ € [0,5]. We use E)(u) = [ 5|Vu|*dz and Ey(u) = [ W (u)dz.
Table 3.1 tabulates the error in the computed solution at time 7" = 5 for our two
new schemes.

Next, we consider the Allen-Cahn equation (3.44) in two space-dimensions, with

the potential W (u) = u?(1 — u)? that has equal depth wells; see fig. 3.1. We take

the initial condition u(z,y,0) = p— (751 T on the domain = € [—10,10]%
exp[—(7.5—1/x%+y

and impose periodic boundary conditions. Once again we use Ei(u) = [ 1||Vul/*dz
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Figure 3.3: Initial condition and the solution at final time for the 2D Allen-Cahn equation with a
potential that has equal depth wells.

and Ey(u) = [ W(u)dz. As a proxy for the exact solution of the equation with this
initial data, we compute a very highly accurate numerical approximation u,(z,y,t)
via the following second order accurate in time, semi-implicit, multi-step scheme [7]

on an extremely fine spatial grid and take very small time steps:
3 1
§u”+1 —2u" + §u”_1 = kAU — kW' (u™) — W (u™h)).

This method has not been proven to be energy stable, but instead satisfies a less
strict stability property. Table 3.2 show the errors and convergence rates for the

approximate solutions computed by our new multi-stage schemes.

Number of
time steps 28 29 210 211 212
L? error (2nd order) | 3.62e-05 | 9.07e-06 | 2.27e-06 | 5.68e-07 | 1.41e-07
Order - 2.00 2.00 2.00 2.00
L? error (3rd order) | 2.35e-05 | 3.18¢-06 | 4.15e-07 | 5.29¢-08 | 6.24e-09
Order - 2.88 2.94 2.97 3.08

Table 3.2: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes
(3.8) on the two-dimensional Allen-Cahn equation (3.44) with a potential that has equal
depth wells.

As a final example, we consider the Cahn-Hilliard equation

(3.46) u = —A(Au— W' (u))
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Figure 3.4: Initial condition and the solution at final time for the 2D Cahn-Hillard equation with
a potential that has equal depth wells.

where we take W to be the double well potential W (u) = u*(1 —u)? with equal depth
wells and impose periodic boundary conditions. This flow is also gradient descent

for energy (3.45), but with respect to the H~! inner product:

(u,v) = /uAlvdx.

1
Ltexp[—(5—/x2+y2)]’

Starting from the initial condition u(x,y,0) = we computed a
proxy for the “exact” solution once again using the second order accurate, semi-

implicit multi-step scheme from [7]:

1
;un+1 - 2un 4 §un71 — —kA[Au”H o (ZW’(U”) o W/(unfl))]

where the spatial and temporal resolution was taken to be high to ensure the errors
are small. Table 3.3 show the errors and convergence rates for the approximate

solutions computed by our new multi-stage schemes.

3.5.2 Gradient Flow For Solution Dependent Inner Product

Our first example we present in this section is the heat equation, u; = Awu, but

with a different energy. Under the Wasserstein metric (denoted as W), the heat
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Number of
time steps 27 28 29 210 211
L? error (2nd order) | 6.20e-04 | 1.92e-04 | 5.59e-05 | 1.55e-05 | 4.09e-06
Order - 1.69 1.78 1.85 1.92
L? error (3rd order) | 6.45¢-06 | 1.35e-06 | 2.51e-07 | 4.15e-08 | 7.20e-09
Order - 2.25 2.43 2.60 2.53

Table 3.3: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes (3.8)
on the two-dimensional Cahn-Hilliard equation (3.46) with a potential that has equal
depth wells.

equation is a gradient flow for the negative entropy [25]:

(3.47) Eu) = / wlog(u)dz.
However the minimization

1
argmin E(u) + — W3 (u, uy,)

" 2k

is a difficult optimization problem. On the other hand, we can approximate the the

Wasserstein metric, Wa(u, v), with
(3.48) (u—v, L(uw) " (u—v))r2 where L(u) = =V - uV
when v and v are near each other. Indeed
—L(u)V2E(u) =V -uV(log(u) + 1) = Au.

Thus, we can alternatively think of the heat equation as minimizing movements
on negative entropy with respect to the solution dependent inner product (3.48)
and therefore use algorithm 4 and algorithm 5 to evolve the heat equation while
decreasing the negative entropy (3.47) at every step.

We use the exact solution u(z,t) = cos(mx) exp(—tm?) +2 as our test with domain
x € [0, 1] using derivative zero Neumann boundary conditions. Our initial data is

u(x,0) and we run the simulation to final time 7' = 5. We use Ei(u) = 5 [u*dx
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Number of
time steps 23 24 25 26 27
L? error (2nd order) | 1.06e-03 | 3.11e-04 | 8.58e-05 | 2.27e-05 | 5.85e-06
Order - 1.77 1.86 1.92 1.96
L? error (3rd order) | 1.00e-05 | 1.57e-06 | 2.20e-07 | 3.04e-08 | 4.29e-09
Order - 2.69 2.82 2.87 2.83

Table 3.4: The new second (algorithm 4) and third (algorithm 5) order accurate, conditionally
stable schemes for gradient flows with solution dependent inner product on the negative
entropy (3.47) with £(u) = —V - uV in the inner product to simulate the heat equation.

and Ey(u) = [ulog(u)dz — 1 [u?dz in (3.8) so at every step we are solving a linear
systems of equation. We run simulation for 7" = %0' See table 3.4 for results.

The next example is the porous medium equation in one dimension,
u = Au?.

It is a gradient flow for the energy

under the Wasserstein metric. As with the heat equation, we can again replace the
Wasserstein movement limiter with (3.48). Since VE is linear, we let E(u) = F(u)
and Ey(u) = 0. Our initial data is

exp—z + g if Jzl <1
u(z,0) =

100 otherwise

in x € [—3, 3] with derivative zero Newman boundary conditions. We run the simu-
lation for T' = 2. See fig. 3.5 for our initial and final curve. We generate the ‘true’
solution using a explicit second order predictor corrector method with an high spatial

and temporal resolution. See table 3.5 for results.
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Figure 3.5: The initial (black) and final (grey) data for our porous medium example.

Number of
time steps 25 26 27 28 29
L? error (2nd order) | 5.28¢-05 | 1.16e-05 | 2.71e-06 | 6.58¢-07 | 1.62e-07
Order - 2.19 2.09 2.04 2.02
L? error (3rd order) | 1.11e-06 | 7.44e-07 | 1.62e-07 | 2.51e-08 | 3.36e-09
Order - 0.57 2.21 2.68 2.90

Table 3.5: The new second and third order accurate, unconditionally stable schemes (see re-
mark IIL.6) for gradient flows with solution dependent inner product on energy [ u?dx
with £(u) = =V - uV in the inner product to simulate the porous medium equation.

3.6 Conclusion

We presented a new class of implicit-explicit additive Runge-Kutta schemes for
gradient flows that are high order and conditionally stable. Additionally, we devel-
oped new high order stable schemes for gradient flows on solution dependent inner
products. Both of these methods allow us to painlessly increase the order of accu-
racy of existing schemes for gradient flows without sacrificing stability. We provided
many numerical examples of gradient flows, including those that have solution de-
pendent inner product, and shown the methods achieve their advertised accuracy.
Now whether these schemes can be used to achieve arbitrarily high (i.e. > 4) order

in time is left to future work.



CHAPTER IV

Second Order Threshold Dynamics Schemes for Two Phase
Motion by Mean Curvature

4.1 Introduction

In this chapter, we will describe new, second order accurate in time versions of a
popular algorithm for simulating the motion of interfaces by mean curvature known
as threshold dynamics. The original version of the algorithm, which is only first
order accurate in time in the two-phase setting, was proposed by Merriman, Bence,
and Osher in [29, 30]. Since then, many extensions of the algorithm have been given,
for instance to multiphase mean curvature motion, where it has proven particularly
useful and flexible. There have also been high order accurate versions of the algorithm
proposed in several previous studies, discussed in detail in section 4.2.

For a (d — 1)-dimensional smooth interface I' C R given as the boundary of a
set ¥ C R?, the original threshold dynamics algorithm generates a discrete in time

approximation to its motion by mean curvature as follows: Here, Gs; is the Gaussian

Algorithm 6 Original Threshold Dynamics of MBO’92
Fix a time step size dt > 0. Alternate the following steps:

1. Convolution:
P(x) = Gt * Lyn.

2. Thresholding:
DI {Jc D p(x) >

3

DN | =

66
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kernel:
1 - x|
(47t )d/?

46t

G(st(X) =

Our goal in this chapter is to take a step towards providing more accurate versions
of threshold dynamics. The accuracy issue is particularly acute in the multi-phase
setting, where it decreases to half-order in time due to the presence of junctions.
Here, we focus on the easier yet still challenging two-phase setting, to find a version

of algorithm 6 that

e Maintains the simplicity and spirit of the original threshold dynamics algorithm

(algorithm 6),
e Achieves second order accuracy in time,

e Maintains the variational interpretation, and the resulting stability properties,

given in [15] for the original algorithm.
The chapter is organized as follows:

e In section 4.2, we recall previous efforts in designing second order versions of

threshold dynamics.
e In section 4.3, we discuss necessary conditions for second order accuracy.

e In section 4.4, we present our first new algorithm: a natural two kernel extrapo-
lation method, applied to the original threshold dynamics algorithm, to achieve

second order accuracy in any space dimension.

e In section 4.5, we present our second new algorithm: a multi-step method that
is second order accurate in two space dimensions, and unconditionally energy

stable in any dimension.

e In section 4.6, we provide numerical verification of the advertised order of ac-

curacy for both of our new algorithms.
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The code for section 4.6 is publicly available, and can be found at https://

github.com/AZaitzeff/secondorderTD.

4.2 Previous Work

In [38], Ruuth proposed the following method based on Richardson extrapolation

to jack up the order of accuracy of algorithm 6 to second order in time:

Algorithm 7 Ruuth’s Second Order Threshold Dynamics
Fix a time step size ¢ > 0. Set ¢¥(x) = 150 (z). Alternate the following steps:

1. First half time step:
1
Y= {f : Gsiyo x gF > 5}

2. Second half time step:
1
22:{25 N th/2*12125}.

3. Full time step:
1
Y3 = {x : th*¢k > 5}

4. Linear combination:
Pl =215, — 15,.

Although numerical experiments indicate this version indeed improves the accu-
racy in time to second order for smooth interfaces undergoing two-phase motion
by mean curvature, the algorithm sacrifices an attractive simplicity of the original
MBO scheme: it no longer generates binary functions exclusively that can be nat-
urally identified with sets. Perhaps more importantly, there appears to be no clear
extension of the variational interpretation given in [15] for the original algorithm 6
to this case. No comparison principle is expected to hold, as a non-positive weighted
sum is involved. Hence, there is no rigorous result indicating the stability of the
algorithm (or its convergence).

In [20], Grzhibovskis & Heinz propose another approach to improving the order

of accuracy of algorithm 6 to second order. The idea is natural: To cancel out the


https://github.com/AZaitzeff/secondorderTD
https://github.com/AZaitzeff/secondorderTD

69

leading order error in threshold dynamics by taking a linear combination of convo-

lutions with two different radially symmetric kernels: The coefficients o and (8 are

Algorithm 8 Algorithm of Grzhibovskis & Heinz

1. Convolution step:
¢($) = (OzKl - ﬁKg) * 1Ek.

3

2. Threhsolding step:
o = {a s gfe) 2

N | =

chosen so that the leading order correction to curvature in the standard consistency
calculation for the original threshold dynamics algorithm 6 cancels out. Crucially,
this necessitates that the resulting combined convolution kernel changes sign, even
when the individual kernels K7 and K, are positive. This means that the resulting
algorithm can violate the comparison principle. But far more importantly, we show
in section 4.3, that this algorithm does not give second order accuracy in time; it
merely achieves a more accurate evaluation of the mean curvature term at every
time step. In general, the dynamics generated is still only first order accurate, at
least without being much more specific and deliberate about the choice of the kernels
K, and K5 — which the authors do not specify. (For example, in case both K; and
K, are Gaussians — with potentially different mass and/or width — no choice of the
coefficients o and f results in a second or higher order accurate in time scheme for
motion by mean curvature.)

In this chapter, we will provide truly second order accurate in time versions of
algorithm 6 that maintain its elegant and simple nature. Moreover, we will be able

to provide rigorous stability results for our new algorithms.
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4.3 Second Order Motion by Mean Curvature

First, we need to identify how far a surface travels under motion by mean cur-
vature. In the vicinity of a point of interest on the surface, which we take to be
the origin, let the surface be given as the graph of a smooth function f(z,y,t) :
R? x [0,00) — R with f(0,0,0) = 0, f,(0,0,0) = 0 and f,(0,0,0) = 0. Since the
normal direction changes during the evolution, it is easier to insist that the numeri-
cally generated solution intersects a fixed line at nearly the same location as the true
solution, at any given time. Thus, we will calculate how far the surface travels along
the z-axis under mean curvature motion and under our algorithms. For a surface

given as the graph of a function, motion by mean curvature takes the following form:

 fee(U D) = 2fafyfey + Fry (1 + )
B L+ 2+

(4.1) fi

By a straightforward Taylor expansion we have for small ¢

(12) 00,0 = 1] fes S

1
+ [a(fzmw + 2faayy + fyyyy) — ( :?x + 3f2733f:3y + 3fyyf3y + Sy) + O<t3)

where the functions on the right hand side are evaluated at (0,0, 0). Over the course
of this chapter, we will denote f(0,0,0) as f, f.(0,0,0) as f,, etc. for convenience.
It has been known and verified by Taylor expansion in previous publications (e.g.
Ruuth [38]) that standard threshold dynamics is 1st order accurate. We will include
the expansion of standard threshold dynamics (algorithm 6) here as a simple example

of the method we use throughout this chapter. Let X° = {(z,v,2) : 2 < f(z,y,0)}.
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We work out the convolution of a Gaussian kernel with a characteristic function in
chapter C of the appendix where we had to keep many more terms than in previous
works to achieve our goals in this chapter. Applying calculation (C.11) to our problem

we have:

Gt*]_EO(0,0,Z)—%: \j— 24\/_t3/2 2\\//—1;—1_(fxx+fyy>

t3/2
+ _(fmm + 2fmyy + fyyyy) (fm: + fyy)
(4.3) Am

8v/mt
2/t 3 1
2\/—(4 a?z—{— y+§fxa:fyy+ :?y)

_t3/2(5 3 +5
2m 47

Z

3 3
Tl T eyt T 3hea 2y By f2) ot
Next set (4.3) to zero and solve for z by using the ansatz z = 21t + 25t? + remainder

and matching terms of the same order in t. Up to second order:

@@z:{m+m]

2( o+ 3fanfiy + 3 gl + o) | + O).

1
t2 |:§(frm:x + zfmmyy + fyyyy) - 3

Equation (4.4) gives the location of 93! along the z-axis. The equation (4.4) matches
the two dimensional version calculated by Ruuth [37]. Additionally, for three dimen-
sions some of the terms in (4.3) are calculated by Grzhibovskis & Heinz [21]. Their
paper, focusing on Willmore flow, did not require all the terms calculated in (4.3).

Comparing (4.4) to the location of the interface under mean curvature motion (4.2),
we see that threshold dynamics is only first order accurate in time. At this point,
we can also already see why algorithm 8 of Grzhibovskis & Heintz cannot be second
order accurate: It would merely move the surface by t(f.. + fyy) + O(t*), which
would still make it only a first order accurate approximation of the right hand side
of (4.2). In the next two sections, we will present two second order methods. For

each method, we will show that they do indeed match motion by mean curvature
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(4.2) up to second order in the normal direction.

4.4 A More Natural Two Kernel Extrapolation

Our first method is a two stage algorithm using two different Gaussian kernels

with differing amplitudes and widths. We detail the method in algorithm 9. Whether

Algorithm 9 Natural Two Kernel Extrapolation
Fix a time step size dt > 0. Alternate the following steps:

1. First stage:

1
Y= {LE : G(St/? *]-Ek Z 5}

2. Second stage:

B = {35 : ﬁGét/Q*li_Gét*]{]k > 1}
V21 T2

algorithm 9 is unconditionally stable is currently unknown. We will devote the rest

of the section to showing that algorithm 9 is indeed second order.

4.4.1 Consistency

Once again let X0 = {(z,y,2) : 2 < f(z,y,0)} for f defined in section 4.3. First,
we need to find the location and curvature of ¥ along the z-axis. Let h(z,y) be
defined by the requirement that Gy * 1so(z,y, h(z,y)) = 1, so that & = {(z,y,2) :

z < h(z,y)}. From (4.4) we have that

(4.5) h(0,0) = %{f + fyy]

t2[1
+ — é(fzxxoc + szxyy + fyyyy) -

2
4 _( gz_‘_gfﬂm z2y+3fyy §y+ ;y) +O(t3)

3

Now we would like to find h,,(0,0) and h,,(0,0). From (C.17) in the appendix,

replacing h with f, z with h and ¢ with ¢/2, we have that h,,(0,0) satisfies
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\/_ 4f 52 2y/mt 22
V2h? V2h 3 1
fmc (_ . _fx:cfyy"" 3y)
(4.6) A4 /Tt3? 2\/_ 2

2 T
t (15 3
_%( fzx fyy+6fxm +3fyy )

- 2\/—( =t 4\/E

Plugging in h from (4.5) and solving for h,, in (4.6), using the ansatz h,, =

(fa:xmx + fmzyy)

+ f:ca:fyy + ) - (fxx + fyy) + hOt

ho + thy + remainder, we have

t
hmz = fazx + §(fxcp:rx + fa:xyy -2 ;?;U - 4fzx ;?y - 2fyy ny) + O(tQ)

We can use similar steps to find hy,. Putting h,, and h,, together we arrive at

(4-7) how + hyy = fm + fyy

t
+ 5 (fac:tzx + Qfmmyy + fyyyy) - 2( m31 + 3facacfa:2y + 3fyyf12y + g?y) + O(tQ)

Now we can solve for the location of X! along the z-axis. From the expansion of

the Gaussian kernel convoluted with a characteristic function, (C.11), we have
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(4.8)

V2 -1
[\/§G5t/2 * 12 — G(gt * 120](0, O, Z) — 5
2 23 h Vi

\/_+6\/%t3/2 + \/_ 2\/—( + yy)

s 2h h e (bt h G
+8ﬁ< zzx:p+ zzyy+ yyyy) 2\/—{:3/2 _4\/ﬁ< x:):+ yy)‘i‘m
z 2yt 3 1 h?

h(hgy + h h2 h2 hyzhy h2 _—
+2\/E( + yy) 2\/—(4 :m:+4 yy+2 + ) 6ﬁt3/2
h? Vvt 3 3 1
4\/_(hm+hyy) Qﬁh(4hix+4h§y+2h Py + h3y)
t3/2
-7 \/_(ihf’m - ihjy - 3hmh2 + ihixh vy T 3haahl, + 3hy,h%,)
+ ° - 23 - \/—<fzx+f)
0/t 244/t 21 v
t3/2 22
4\/—(fa:mx+2fmyy+fyyyy) 8\/H(f$x+fyy)
2/t 3 1
2\/—(4fxa}+ fyy+ Qfofyy+fxy)
t3/2 5 5 3 3
2\/—(4 gx—i_ 4f90?0 fzzfyy+3f1$ +3fyyfzy)+h0t

Note that the derivatives of h match the corresponding derivatives of f up to
order ¢ (stated precisely in (C.12)). Substituting (4.5) for h, (4.7) for h,, + h,, and

(C.12) for the other derivatives of h in (4.8), and simplifying, we have:



(0]

V2 -1
2

[\/§G5t/2 * 12 — G(;t * 12k]<0, O, Z) -
2z 23 {3/2

- 2\/& + 8ﬁt3/2 + 4\/%(fa€:txw +2fmyy + fyyyy)
3l B+ £+ S (et f)
3\/— T rrJ xy yyJxy \/— T vy
322 3z
= g et ) + 8f
12\/j—<fm + fyy)® — 4\\9

t3/2 5 5

Finally, we set (4.9) to zero and solve for z up to order ¢ to obtain:

(4.9)
(fow + fyy)?

(fm“‘fyy)(?) a:$+3 y+%fx:cfyy+ Q?y)

47y

(4.10) z= t[fm + fyy}

1
t2 |:§(f:v:ca:a: + Qfxa:yy + fyyyy) - ( :?x + 3fx$fm2y + 3fyyf3y + Q?y) + O(tg)

Thus, up to second order, algorithm 9 moves the interface in the normal direction
by the same amount as mean curvature motion (4.2).

The drawback to algorithm 9 is that we do not know whether it is unconditionally
stable. In the next section, we present an algorithm that is unconditionally stable

but is only guaranteed to be second order in two dimensions.

4.5 Unconditionally Stable Multistage Methods

In this section, we provide a class of unconditionally stable threshold dynamics
algorithms that are second order in two dimensions. The original threshold dynamics

algorithm (algorithm 6) is unconditionally energy stable, specifically:

(4.11) E,(3F < Ey(2F)
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for energy

(4.12) E(5) = / (1= 15)G, * 1ndady.
R?

Our class of methods preserves property (4.11) while at the same time achieving

second order accuracy. We describe our M-stage method in algorithm 10.

Algorithm 10 M-Stage Unconditionally Stable Threshold Dynamics

Fix a time step size 6t > 0 and a choice of ’s such that ZZ’:Ol Ymi = 1form=1,2,..., M. Set
T = 6t/B1,m for Bi pr defined in (4.17) and set Xy = vk,

Form=1,2,..., M:

3

|~

m—1
(4.13) S = {x LG Y Amals, >
=0

Then set Tk =5,

Unlike the previous algorithm, algorithm 10 uses the same kernel at each stage.
As will be shown later, this will allow us to prove unconditional stability (4.11).
In the rest of the section, we will derive the consistency equations for v, give the
conditions on v for unconditional stability to hold, and then give a particular choice
of v that makes algorithm 10 unconditionally stable and second order. We conclude

with a discussion of one way to extend algorithm 10 to higher dimensions.

4.5.1 Consistency Equations

Similar to in three dimensions, let f(x,t) : R x [0,00) — R be a graph that is the
interface of a set in R? with f(0,0) =0, f.(0,0) = 0. The distance the graph moves

under mean curvature motion along the y-axis is:
1
(4.14) FO.0) = ot | 3 oune = 12| + 0

We now present the consistency equations for algorithm 10:
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Claim IV.1. Let %; be given in (4.13) and let

Sy =Xk = {az:xﬁf(x,())}

Define h; as ¥; = {x cr < hi(:v)}, s0 ho(z) = f(x,0). The Taylor expansion of

h; at each stage has the same form as (4.14), namely:

Additionally, the Taylor expansion of the second derivative of h; has form

2

The coefficients in (4.15) and (4.16) obey the following recursive relation:

Bro = P = P30 = Bap = P50 =0

r m—1
Brm =|1+ Z Vm,iﬁl,i}
:1 ::31 m—1
Bom = 5 + Z Ym,iB2,i + Z ’Ym,i54,z}
:2 1:0 m—1 l:(; 1 m—1 m—1
(4.17) Bam = 3 + 6 ( Z ’Ym,zﬂu) 1 ( Z ’Ym,iﬁl,z') < Z 7m,iﬁ%7i>
L i=0 i=0 i=0
m—1 m—1 m—1
+ % Z ”szﬁfz + Z Vi3 + Z ’Ym,zﬂs,z}
i=0 i=0 i=0
m—1
Bam = [1 + Z ’Ym,zﬂ4,i]
i=0

m—1
Bsm = [2 + Z 7m,i55,i]
i=0

Furthermore, the following conditions are necessary and sufficient for second order

accuracy of algorithm 10:
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Po 1
oM
2
(4.18) Piar
ﬂ?},M -1
Bt

Proof. We will prove (4.15) and (4.16) by induction. For hy, these equations are
the two dimensional version of equations (4.5) and (4.7) worked out in the previous
section.

For the induction step, assume (4.15) and (4.16) up to m — 1. We want to solve for
y such that [Gt D P %w-ﬁm} (0,y) = % Using (C.11) for two dimensions and the

linearity of the convolution we arrive at:

Yy
—— +
2 o/wt  24y/mt3/?

m—1
d2 t2 d4 2 2 d2
nymﬂ- {hi—l—t—hﬂr——h- L L+ L2

dz? 2dxt " 4t 4 dx? 4t °

1
+
2Vt £

L " Sty &, K RE . 3 2, 52
PSS St B SR UL R S L S R L
tohigahi 5 (GEh)” gy — gl 3 hGEh) - (G
+ h.o.t.
1 y y?

T2 \/_Jr 24./Tt3/?
2 2 2 2 3
Z ’sz |:tﬁ1 zfzm +t 52 zfavxzz t 531 + tfx:p +t ﬁ4 lfzm:r:p t ﬁ5,i T

2\/_

z _ 7 ) _ 7 I 2' 2 L £2
+ 9 fa:mm: 4 Bl,zfm: 4 fm: + 4 /8172 2z T 9 BI,Z T
3ty 4 ARt _ BLit? 5 3Buit? _ §t2 3

+ h.o.t.

Setting the previous equation equal to a half and solving for y we have
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m—1 m—1 m—1
1
) _tfmc |:1 + E ’Ym,zﬁl,z:| +1 f:r;a:a:z |:2 + é_o ’Ym,zﬂ?,z + 'E_O P)/m,z/64,1:|

m—1 m—1
(4.19) —¢2 3 {_ ( Z Ym,iB1 2) - i ( Z %n,iﬁl,i) ( Z Vm,iﬁii)
=0 i=0
m—1
* _2 Z vm’iﬁii + Z Vm,iP3i + Z %n,zﬂs,i] + h.o.t.
=0 i=0 =0

Similarly, using (C.17) for two dimensions and the linearity of the convolution we

derive:
(4.20)
m—1
d:L‘z [Gt* ;’szuz} x y ))'x 0
_ Yeo  YWw
2\/_ 8y/mt3/?
\/_ d4 y2 d2 y d2
mi h; + —hi — ——5 (5h) + ——=55hi| 55
+Z’Y {2\/_d hit 5 a T s gt T (d:c2 )

3y I h2 8 3hy [ d® \°

+ —h | ——F—5—-—hi— —— | =
A/t \ da? 8\/mt3/2 da? 4/t \ dx?
1 ’ h? & @
8y/m \ dz? 8/t32 " A\/7 da? 8\/_ da?
Yzzyhi Yaza Y d?

- + h.o.t.
4/t 4\/ tdx dz? ] ©

Now substitute in (4.19), (4.15), (4.16) for y, h; and %hi respectively in (4.20):
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d2 m—1 ~
@ |:Gt * Z 'Ym,zu1:| (l’, y(ﬂf))lz:O
1=0

_ Yz 1 m_1 , ) 2 9 \/i m—1 . ‘ s
—— =t s (1 + Z vm,lﬂl,z) You fan + fom ﬁ( Z ymﬂ@l,l) 3

e (,::01 s Vs o e = S (14 s, ) 7,
. s (1 lewm 815 ) (S st ) 2+ 2 (14 st ) £
- % (: wm,iﬂl,i)Qf;Z’x Vi ( Z B ) 2 - ;Lffm
+ % (T:lvm ih z)zym«fm + \\[F(mzlwm ib, z)ymfu + %ymfu
- % (1 ; :nzlym B ) (iﬁjolvm B )yf - & (1 4 mzlwm B z>ymfm
+ h.o.t

Setting (4.21) to zero and solving for y,, we find

m—1

m—1
=0 1=0

Equations (4.19) and (4.22) give the recursive relations (4.17).

The consistency equations (4.18) follow by the change of variable 7 = ¢, 5, for

ha(0) and matching the Taylor expansion for motion by mean curvature (4.14).

4.5.2 Unconditional Stability

Next, we give conditions on the ~’s that preserve unconditional stability in any

dimension. Specifically, for energy

(423) Et(Z) = / (1 — ]-E)Gt * lgdx.

our algorithm has the property Fi(u,.1) < Ei(u,). In chapter II, we proved condi-

tions for unconditional stability of the following class of linear M-stage algorithms:

(4.24) Upr1 = Uy = arg min F(u) + Z ﬁyMl — Ui |?



81

where the intermediate stages U,,, for m > 1, are given by

m—1
(4.25) U,, = argmin E(u) + Z 72”;{;@“” — Uil

v i=0

for some energy F, fixed time step k£ and the stipulation Uy = w,. We state the
stability conditions from that chapter below, and show that algorithm 10 falls into

the desired class:

Theorem IV.2. (From chapter II) Define the following auziliary quantities in terms

of the coefficients Vi of scheme (4.24) and (4.25):

(4.26) = Yimgi — Z 500

j=m+1

O}z

3

Jm Vi

%

U
I

(4.27)

Il
o

If S’mm > 0 form = 1,..., M, then scheme (4.28) ensures that for every n =

0,1,2,... we have E(u,11) < E(uy,).

It is shown in [15] that each step of the original threshold dynamics, algorithm 6,

can be written as

Yhtl = argmin/(l —15)Gyx 1x + /(12 — 15, )G % (1y — 1y, ) dx.
5

Similarly observe that (4.13) can be written as

m—1
(4.28) %, = arg min/(l —15)Gyx 15 + Z Yrm,i /(12 —15,)Gy * (1y — 15,) dx.
x i=0

Moreover, as noted in [15], since Gy > 0,
/ uGy xu > 0dx

with equality holding if and only if u = 0. Thus, algorithm 10 is of type (4.24) and
(4.25) with energy (4.23) and inner product (u,v) = [ uG;* v dx, so that conditions

for unconditional stability identified in chapter II apply.
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In the next section, we give examples of 7’s that satisfy the consistency equations

(claim IV.1) as well as the hypothesis of theorem IV.2 concurrently.

4.5.3 A Second Order Unconditionally Stable Example

In this section we present a set of 4’s such that the second order consistency
equations (4.18) and hypothesis of unconditional stability theorem IV.2 are satisfied
simultaneously. We found the 7’s numerically and then sought a nearby algebraic so-
lution to the consistency equations that still satisfied the conditions in theorem IV.2.
It can be shown that there is no unconditionally energy stable second order two-
or three-stage method of type (4.13) for threshold dynamics. However, a four-step

method exists with the following +’s:

Y0 O 0 0 1 0 0 0

| 720 21 O 0 | —025 125 0 0

(4.29) T 50 1 vse O ~ 0.83 —0.67 0.83 0
Va0 Va1 Va2 V43 -0.73 0.5 —0.73 1.96

The exact values are in the appendix (chapter D); they are all algebraic numbers
but with long representations. This choice of 7’s that endows algorithm 10 with
unconditional stability and second order accuracy is not unique. In fact, one could
find other choices of v that preserve additional desirable properties. We summarize

our results in the following theorem:

Theorem IV.3. algorithm 10 with coefficients (4.29) is unconditionally energy stable
and first order accurate in any dimension. Moreover, it is second order accurate in

two dimensions.
4.5.4 Consistency In Higher Dimensions
Unfortunately, there does not exist a choice of +4’s such that algorithm 10 is

second order in three dimensions. Using the Gaussian (or even a linear combination

of Gaussian kernels) at every step in our multistage algorithm leads to consistency
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equations incompatible with second order mean curvature motion (4.2). Of course,
one can choose a different kernel, denoted by K;, at each stage. The consistency
equations will be different. On the other hand, if the kernel has positive Fourier

transform, K, > 0, theorem IV.2 will hold for energy
E:(E) = /(1 — 1E>Kt * 1EdX.
As an additional consideration, the energy induced by the kernel should have property

(4.30) lim E;(3) 5 cPer(X)

t—0t

for some constant c. (The Gaussian kernel has this property [31].) It is left to future
work to find a scheme with kernel and ~’s such that unconditional stability, positive
Fourier transform, and property (4.30) hold, and that, furthermore, is second order

in three (and higher) dimensions.

4.6 Numerical Tests

In this section, we present highly accurate convergence tests for the two new algo-
rithms: algorithm 9 and algorithm 10. It is well known that naive implementations
of threshold dynamics on uniform grids introduces large spatial discretization errors
due to sampling characteristic functions. In fact, if the time step size is sufficiently
small compared to the spatial discretization, interfaces can even get stuck. A very ef-
fective cure to this phenomenon is the adaptive implementation of Ruuth [38], which
entails fast convolution on non-uniform grids. In practice, we recommend that the
high order in time schemes introduced in this chapter be used in conjunction with
such a spatial implementation.

Below, our focus is on numerically verifying the improvement in the convergence

rate in time of the new threshold dynamics schemes on a few smooth interfaces. To
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ensure spatial errors are negligible in our experiments, for most of our experiments
below, we simply represent the interfaces as graphs of functions. This is, of course,
not meant as a practical implementation, but just as a very accurate and efficient
way to minimize spatial errors — it allows us to reach very high spatial resolutions
and accuracies — so that we can focus on time discretization errors. Section 4.6.1
explains the details of the implementation, and section 4.6.2 presents the results.
The latter also contains an experiment with the practical implementation of the new
schemes (albeit on uniform grids) to verify that no substantial qualitative difference
is observed in the handling of topological changes vs. the original threshold dynamics

algorithm.

4.6.1 Highly Accurate Threshold Dynamics For Graphs

This section explains how algorithm 9 and algorithm 10 have been implemented
in the special case that the interface is given as the graph of a function for the pur-
pose of numerical convergence tests given in section 4.6.2. We repeat that we are
not advocating this implementation as a practical method — it is just for numerical
convergence tests on smooth interfaces — but refer to Ruuth’s adaptive spectral im-

plementation [38] to be used in conjunction with our new algorithms.

Let ¥ = {(x,z,)|z, < f(x)} for some function f(x). Recall the definition of the

|2

Gaussian kernel G (x) = ot . Then the convolution is

1 _
(4mot)d/2 €

&
G x Isn(x,2,) = / Gsi(x — X
5t * I (X, ) . 5t ( ) T

11 _ f&) @
_§+§/Rle5t(x—x)erf( N )dx

where erf(-) is the error function. The latter integral is calculated numerically (e.g.

_ (zn—2n)?

e ot dxdz,

(4.31)

Gaussian quadrature) inside a region  C R™™! such that [,. Gs(x — X)dx < € for
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some preset tolerance e.

With this tool in hand, we can implement the original threshold dynamics (algo-
rithm 6) by tracking the interface at fixed points x throughout the evolution. We
describe this in algorithm 11. The second order versions of threshold dynamics we

proposed in this chapter, algorithm 9 and algorithm 10, are implemented similarly.

Algorithm 11 Highly Accurate Threshold Dynamics For Graphs

1: Fix total evolution time T, time step size §¢, and points {x'}¥; € D C RI-1,
2: Set X0 = {(x,2,)|zn < f(x,0)} and K = T/6t.

3: for k< 1to K do

4: For each x; find 3 such that

1 o
5 = Gy * Lyr—1 (x",9")

using e.g. the secant method, estimating the right hand side using (4.31).
5: Set f(x!, két) = y* and XF = {(x, 2|2, < f(x,k6t)}.

4.6.2 Numerical Results

In this section, we will test algorithm 9 and algorithm 10 on a couple of two phase

mean curvature motion evolution problems to demonstrate their accuracy.

In R? we run our algorithms on the ‘Grim Reaper Wave.” The interface is given by
f(z,t) = arcsinh(exp(—t) cos(z)). We run the evolution with initial data f(z,0) =
arcsinh(cos(z)) to 7' = 1 on domain z = [0, 7] with homogeneous Neumann boundary
conditions. We track 4000 points and report the L? error between final interface and
f(z,1). We include the errors for the original threshold dynamics in table 4.1 for
comparison. The error for algorithm 9 is reported in table 4.2 and the error for
algorithm 10, with ~’s given in (4.29), is tabulated in table 4.3.

In three dimensions, we run mean curvature evolution tests with initial interface
f(x,y,0) = cos(my) cos(mx) + 5 cos(my) to T = 1/10 on (z,y) € [—1,1] x [-1,1]

with periodic boundary conditions. We generate the ‘true’ solution by forward Euler
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Number of
time steps 8 16 32 64 128 256
L? error 5.4e-03 | 2.6e-03 | 1.3e-03 | 6.7e-04 | 3.3e-04 | 1.7e-04
Order - 1.0 1.0 1.0 1.0 1.0

Table 4.1: Ordinary Threshold Dynamics, algorithm 6, on the ‘Grim Reaper Wave.’

Number of
time steps 8 16 32 64 128 256
L? error 1.9e-04 | 3.4e-05 | 8.4e-06 | 2.1e-06 | 5.1e-07 | 1.3e-07
Order - 2.5 2.0 2.0 2.0 2.0

Table 4.2: Algorithm 9 on the ‘Grim Reaper Wave.’

discretization of the PDE for mean curvature motion (4.1) using very small time
steps and a very high spatial resolution. We tabulate the L? error between the ‘true’
interface and the output of algorithm 9 in table 4.4.

As an additional test in three dimensions, we use algorithm 9 to evolve a dumbbell
by mean curvature motion using the practical implementation of algorithm 9, albeit
on a uniform grid. The system goes through a topological change where the connected
set breaks off into two components. In fig. 4.1, we show the original threshold
dynamics algorithm 6 and algorithm 9 at time steps near the pinch off. There is a
slight difference between the two algorithms at the temporal and spatial resolutions
we have chosen. Presumably, this difference will shrink as we further refined our
temporal and spatial resolution. Regardless, algorithm 9 behaves reasonably during
the pinch off.

We expect algorithm 9 to revert to first order for any time interval containing a
topological change. This is because the Taylor expansions in our consistency calcu-
lation are not valid at the moment of pinch off. To test this, we use algorithm 9
to evolve a vase-like shape in three dimensions that breaks into two components
over time, see fig. 4.2. The surface is represented as a parametrized curve rotated

around the z-axis. We use the highly accurate threshold dynamics implementation
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Number of
time steps 8 16 32 64 128 256
L? error 6.6e-05 | 1.6e-05 | 4.1e-06 | 1.0e-06 | 2.6e-07 | 6.3e-08
Order - 2.0 2.0 2.0 2.0 2.0

Table 4.3: Algorithm 10 with +’s given in (4.29) on the ‘Grim Reaper Wave.’

Number of
time steps 4 8 16 32 64
L2 3.3e-03 | 6.5e-04 | 1.3e-04 | 2.7e-05 | 6.3e-06
Order - 2.4 24 2.2 2.1

Table 4.4: Algorithm 9 on an interface in R3

for graphs from algorithm 11, treating the radius as a function of z, to ensure our

spatial errors are negligible. The initial surface is the function 2 — cos(z%) rotated
around the z-axis. We evolve the surface for 7' = 3/4 and use periodic boundary
conditions at z = —5 and z = 5. We generate the ‘true’ solution by the original
threshold dynamics (algorithm 6) version of algorithm 11, using small time steps
and a high spatial resolution. We tabulate the L? error between the radius of the

‘true’ interface and the output of algorithm 9 in table 4.5. As expected, algorithm 9

reverts to first order.

Number of
time steps 16 32 64 128
L2 3.9e-02 | 2.2e-02 | 1.2e-02 | 6.1e-03
Order - 0.8 0.8 1.0

Table 4.5: Algorithm 9 on an shape that undergoes a topological change in R3.

4.7 Conclusion

We have presented second order threshold dynamic methods for simulating two
phase mean curvature flow. Unlike the previous method, algorithm 7, our methods
represent the phases via a binary function at every step. Additionally, we present

an unconditionally stable method in two dimensions. We have demonstrated the
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Figure 4.1: The original threshold dynamics algorithm 6 and algorithm 9 evolving a dumbbell by
mean curvature motion. Top: the initial dumbbell. Center: algorithm 6 before and
after the topological change. Bottom: algorithm 9 before and after the topological
change at the same time values as the center row.

methods and their advertised accuracy on examples in two and three dimensions.
Finding a method that is second order in three and higher dimensions and uncon-

ditionally stable in the case of two phases is a topic of future investigation.
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Figure 4.2: Initial (right) and final shape (left) for a test of how algorithm 9 behaves after a topo-
logical change.



CHAPTER V

On the Voronoi Implicit Interface Method

5.1 Introduction

The Voronoi implicit interface method (VIIM) [40] is a type of level set method
[34] that is particularly suited to the treatment of multiphase flows. It has been
demonstrated on problems that incorporate surface tension, such as dynamics of
bubble clusters, and the motion of grain boundaries. Often, the hardest aspect of
designing numerical schemes for such problems is ensuring that the correct angle
conditions at triple junctions — in terms of the surface tensions of the interfaces
meeting there — are satisfied. The purpose of this chapter is to investigate whether
the VIIM in fact attains the correct angle conditions at junctions. To that end, and to
study this essential difficulty in isolation, we focus on problems where surface tension
is the sole driving force: multiphase motion by mean curvature. This evolution arises
in many applications, including grain boundary motion in polycrystalline materials
during annealing [32] and image segmentation algorithms in computer vision [33].
Once the correct behavior at junctions has been verified, additional driving forces,
e.g. from bulk effects, fluid flow, etc., can be incorporated in the VIIM and similar
algorithms with ease.

The first contribition of this chapter is to present convergence tests at very high

90
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resolutions for the VIIM. To our knowledge, this is the first time that such highly
accurate convergence tests have been done for this method. One of our main results
is that the VIIM does not, in general, converge to the correct solution when interfaces
with unequal surface tensions meet at a triple junction. Our second contribution in
this chapter is to present a modification of the Voronoi implicit interface method that
fixes the non-convergence and ensures that the correct angle conditions are attained
at all triple junctions.

The chapter is organized as follows:

e In section 5.2 we briefly review multiphase motion by mean curvature and recall

its variational formulation.
e In section 5.3 we recall the Voronoi implicit interface method.

e In section 5.4 we present our implementation of the VIIM using parameterized
curves. We then present high resolution convergence tests indicating that the
VIIM does not converge to the correct solution when the surface tensions are

unequal.

e In section 5.5 we present convergence tests using the parametrized curve repre-
sentation of another recent algorithm, known as threshold dynamics, the con-
vergence of which is supported by many recent results in the literature. This

verifies the validity and accuracy of our parametrized curve implementation.

e In section 5.6 we present a modification to the VIIM, which may be called the
dictionary mapping implicit interface method (DMIIM), that does converge in
the unequal surface tension case. After discussing its relation to the VIIM, we
subject this new variant to the same careful numerical convergence studies, again
via an implementation on parametrized curves to reach very high resolutions,

and thus demonstrate its accuracy and convergence. We then present further
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examples of the new algorithm on implicitly defined interfaces on a grid.
The code for sections 4 through 6 is publicly available, and can be found at https:

//github.com/AZaitzeff/DMIIM.

5.2 Multiphase Motion by Mean Curvature

In this chapter, we will be concerned exclusively with gradient descent dynamics
for energies of the form
(5.1) E(S1,...,5,) = Y oyArea(Ty;).
i#]
where I';; = (0%;) N (0%,) are the interfaces between the phases ¥4,..., %, that

partition a domain D C R?, d > 2:
N
SN, = (0%;) N (9%;) for any i # j, and | J%; = D.
=1

Note that if two grains are not neighbors, the intersection is empty and the cor-
responding term in the sum of (5.1) drops out. The positive constants o;; = 0
are known as surface tensions (or surface energy density). They need to satisfy the

triangle inequality
0ij + 04, > 0, for any distinct ¢, j and k

for well-posedness of the model (5.1). Multiphase mean curvature motion arises as

L? gradient descent on energies of this form, and can be described as follows:

1. At any point p € I';; away from triple junctions where the interface is smooth,

the normal speed, denoted v, (p), is given by

(5.2) v (p) = pijoijkij(p)-

Here, k;;(p) = kji(p) is the mean curvature at point p. The positive constants

(;; are called mobilities. Unless otherwise stated, we will take p;; = 1.


https://github.com/AZaitzeff/DMIIM
https://github.com/AZaitzeff/DMIIM
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Figure 5.1: How the VIIM works: On the left we have the € level sets (dotted lines), in the center
we have the sets after being evolved by (5.5), the figure on the right shows the new
interfaces after Voronoi reconstruction (solid line).

2. Let a triple junction be formed by the meeting of three phases ¢, ¥, and 3.
They are points in two dimensions and occur along curves in three dimensions.

Let 0; be the angle between I';; and I';; at the junction. Then:

(5.3) sin 64 _ sin 69 _ sin 03

023 013 012

has to hold. This is known as the Herring angle condition [23].

Until now, the VIIM has been described only for the very special class of surface
tensions known as additive surface tensions: We call o0;; additive if they can be
written as

1
O'l'j = —(O‘i + O'j)
2
for some constants oy, 09, ...,0, > 0. Additive surface tensions thus have n degrees
of freedom, constituting therefore a very small subclass of physically relevant surface

tensions, which require (g) degrees of freedom to fully specify.

5.3 The Voronoi Implicit Interface Method
We recall the level set formulation [34] of motion by mean curvature that gives

the current configuration, 9% (), of the boundary with initial configuration 93(0)

of a given initial set ¥(0) C D in the two phase setting. Let ¢ : D x Rt — R be
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a level set function for 3(0) so that ¢(z,0) > 0 for x € ¥°(0) and ¢(z,0) < 0 for
x € X¢(0). Often, a particularly convenient choice of level set function to represent

the boundary 0% of a set ¥ is the signed distance function,

min ||x —z|[s, x€X
(5.4) dy:(x) = { 0%
—min[[x —zfly x¢ 2.

The process of “reinitializing” a level set function ¢ by replacing it with the signed
distance function to its 0-level set, dy,.(z)>01(), is known as “redistancing” in the
level set literature, and is a common operation, typically applied only sporadically to
prevent ¢ from becoming too steep or too flat (see, for example, [41]). In any case,

if ¢(x,t) solves the well-known PDE

. (Vo _
(5.5) b -V (,w)w 0.

and we set X(t) = {x € D : ¢(x,t) > 0}, then 0%(t) evolves by motion by mean
curvature.

There have been multiple algorithms proposed in the literature to extend the
level set formulation of mean curvature motion to the multiphase setting. We note,
in particular, the level set method of [46], the variational level set method of [48],
and the distance function based diffusion generated motion of [13], [16], and [12].
The latter three contributions alternate diffusion by the linear heat equation applied
individually to the level set functions of the phases (so that they are decoupled at
this stage), a simple pointwise redistribution step that couples the phases, and redis-
tancing on the new level set functions, to generate the desired multiphase evolution;
in this sense, they are a cross between the convolution generated motion of [30] and
the level set method.

In [39], Saye and Sethian introduced a variant of the algorithm in [13]. This
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new version also alternates redistancing and decoupled evolution of the level sets
of individual phases with a pointwise redistribution step that imposes the requisite
coupling. The key differences are: 1. the decoupled motion of the level sets is by the
nonlinear PDE (5.5) vs. the linear heat equation, and 2. the redistribution step takes
place after (vs. before) redistancing of the individually evolved level set functions. An
additional novelty, mostly for convenience, is an innovative step to enable evolution
of all the level set functions concurrently, by applying (5.5) to the unsigned distance

function of the union of the € > 0 super-level sets of the phases,

px) = min [x 7l e

Although only the equal surface tension case (0;; = 1 for all ¢ # j) of multiphase
motion by mean curvature was considered in the original paper [39], in a subsequent
contribution [40], Saye and Sethian proposed an extension of their method to certain
(additive) unequal surface tension networks. This is a very small subset of all surface
tensions allowed by model (5.1). Moreover, the extension in [40] takes all mobilities
to be equal, again a vast restriction over (5.2). One of the original motivations for
the present study was to investigate if the algorithm could be extended to the full

generality of model (5.1) & (5.2).

We will introduce some notation to represent various steps of the VIIM as de-
scribed in [39], including the extension to additive surface tensions in [40]. To that

end, first define the function Sa; by

(dEl(olAt,e)a dEQ(crzAt,e)a ce adEn(o'nAt,e)) = SAt(Eb 227 cee En)

where ¥;(t,e) = {x : ¢;(x,t) > €} denotes the e-super level set of the solution

¢i(x,t) of mean curvature flow equation (5.5) at time ¢, starting from the initial
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condition ¢;(x,0) = dyx,(x). Here o; is the surface tension associated with phase ¥;
whereas the surface tension corresponding to the interface I';; is %(O'i +0;).

Next, the Voronoi reconstruction step of the VIIM (that reallocates points among
the phases) will be represented by the function R,, which maps an n-tuple of func-

tions (¢1,...,¢,) to an n-tuple of sets 1, Qs, ..., Qy:

(Qla QQ) oo 7Qn) = Rv(¢17¢2a s 7¢n)

where
Q; = {x D oi(x) = maxqéj(x)}.
J
With this notation, the evolution of a multiphase system by the VIIM at the N-th

time step with time step size At, T'= NAt, is given by
(5.6) (Ry o Sad)™M (21,20, ..., ).

In [39, 40], no extension of the algorithm is given to the far more general case of (’;)
surface tensions; moreover, the mobilities of all the interfaces are assumed to be 1,
with again no indication given for greater generality. The method is summarized by

algorithm 12 and illustrated in fig. 5.1.

Algorithm 12 The Voronoi Implicit Interface Method

: Given X9, %9, ..., %0,

: Let N = T/At.

: for k< 1to N do

Evolve each ¢;(-,0) = dyr—1 by time 0;At by (5.5) to obtain ¢;(-, 0;At).
Build the signed distance functions dEjf*l(aiAt,e) = dix:¢;(x,0:08)>¢} -

Construct the new phases ©F = {x : dszl(mmﬁ) (x) = max; dszl(ajm’e) (x)}

Saye and Sethian state in [40] that convergence to the desired motion is obtained
by taking the double limit, lim lim in (5.6), with N = Alt. However, they also discuss
e—0 At—0

two other limiting procedures: the “coupled” limit, lim |, and the interchanged
e=cV/At—0+
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double limit, lim lim. In the case of equal surface tensions, the authors present
At—0e—0

numerical convergence studies for each of these three limits. In the case of unequal

surface tension, they only cite qualitative evidence and only for the coupled limit.

In the next section, we present highly accurate, exhaustive numerical convergence

studies of the VIIM, in the equal and unequal surface tension cases, for all of these

limits.

5.4 Testing the VIIM using Parameterized Curves

To carefully assess the convergence of the VIIM, we will implement it in R? using
parametrized curves to represent the interfaces I';; = (0%;) N (0%;), and test it on
exact solutions away from topological changes. This will allow us to reach resolutions
not easily attainable with the practical implementation of the algorithm for arbitrary
initial data via implicit (level set) representation of the interfaces on a uniform grid.
We stress that we are not advocating parametric representation in the context of the
VIIM as a general numerical method, as it defeats the original purpose — painless
handling of topological changes — of a level set based algorithm; we use it only to
carry out reliable convergence studies.

Below, Section 4.1 recalls the well-known “Grim Reaper” exact solution of three
phase motion by mean curvature, with equal and unequal surface tensions. Section
4.2 discusses in detail how each step of the VIIM is implemented via parametrized
curves (front tracking). Finally, Section 4.3 presents the results of our numerical

convergence study.

5.4.1 “Grim Reaper” Solution

“Grim Reapers” are a family of exact solutions to three-phase motion by mean

curvature that include unequal surface tension and mobility cases. Our domain D
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Figure 5.2: “Grim Reaper” exact solutions for angles (left to right) (120°,120°,120°),
(90°,135°,135°), (75°,135°,150°) with p; = 1 and (75°,135°,150°) with p; = Ui The

black line is t = 0 and the gray line is t = %.

will be [0,3] x [~1,1] € R?, and we will impose Neumann boundary conditions:

interfaces intersect D at right angles. In all our examples, the interface 0% () will

be given as the graph of a function f = f(x,t), at least on t € |0, %] where we

choose 18/512 to allow the curves to travel an appreciable distance in our domain.

The three phases 3 (t), Xo(t), and 33(¢) will be described in terms of f(z,t) as

follows:

50 ~{(e0) 0= f0)}
32lt) ~{ (1.0) 0 < fand < Jo.1) )

) ={ (1.9) 02 pand y < J0.0) )

Below we list a number of specific grim reaper solutions that we use for convergence

studies throughout the chapter:

o (61,0, 05) = (120°,120°, 120°)
(012,013, 023) = (1,1,1)

8=

=

% log(cos[Zx]) — %“t fo<z<

AN

f(l‘,t) =

2 log(cos[Z (5 —x)]) — &t iff<a<

N[
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o (61,0,,05) = (90°,135°,135°)
(01270137023) - (L 1, \/5)
/8 pr—

=

%log(cos[ms]) — 7t fo<z<
flx,t) =

Llog(cos[r(5 —a)]) —mt if § <z <

=

N[

o (61, 0,,05) = (75°,135°,150°)

(F+f

v 53)

(01270137023) =

- 3(av2 -3

Tarave 08(cos[§ (3 + 4v2)a]) — [ (3+4v2)t
< 2(4v2 - 3)

fo<z<
=avirs os(=7 7 cos[5(3v2 +8)(3— 2)]) — {5(3 + 4v2)t

if 3(4v/2-3)<ux <

\

o (01,065,05) = (75°,135°, 150°)

(01270137023) (f + i? ﬁ> %)
i = 55
_ 3
B=1
2 log(cos[Za]) — It fo<z <2
[z, 1) =

%log(\/ﬁcos[%ﬂ(% —x)]) — %”t if % <zr< %

fig. 5.2 shows the exact solutions at time t = 0 and t = %. In the case where
05 = 63, $(t) is the reflection of 33(¢) around z = , so we only need to track ¥ (¢)

and 35(t) on [0, 1] x [ - 3,1].

5.4.2 The VIIM via Parameterized Curves

We begin the section by describing two essential numerical procedures. The first

finds the distance between a parameterized curve and a given point, and the second
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evolves a parameterized curve by curvature motion. We then discuss our implemen-

tation of the VIIM on the “Grim Reaper” test case using parameterized curves.

Distance Estimation for a Parameterized Curve

Finding the distance between a given point and a parameterized curve is important
for constructing the € level sets and for the Voronoi reconstruction step. To measure
this distance with high accuracy we interpolate the parameterized curve with not-
a-knot cubic splines [9]. Let {(z;,y;)}!; be points on a curve that are given as the
graph of a function of x and denote its cubic spline approximation as f(x). The cubic
spline is a piecewise third order polynomial that is twice differentiable over [z1, z,]
with coordinates y; = f(x;). The signed distance between a given point (Z,§) and

the point which is closest to it on the aforementioned curve, is

sen(j— F(#) min_y/(x— )2 + (f(2) - )

z€[z1,2N]

We find the minimum using Newton’s method (algorithm 13).

Algorithm 13 Netwon’s method for finding distance between a parameterized curve and a point

1: Given a point (%,9), a cubic spline curve y = f(z), points {(z;,v;)}1, with y; = f(x;) and
tolerance 9:

Let I = argmin;(z; — )% + (y; — 9)°

Set x = 1 to be the starting point in Newton’s method

while |(z — 7) + (F(z) — §)]'(x)| > 6 do

(¢~ ) + (F2) ~ ) (2)
T+ (F(@)? + (Fla) —9) (@)

6: Output sgn(j — @)/ — )2 + (J (@) — §)°.

T < T —

Newton’s method uses the first two derivatives of the cubic spline. The interpolant
is known to converge to the true curve in C? [2].
While the foregoing discussion applies to a curve that is a function of x, the above

techniques can be used for any simple curve by applying an appropriate change of
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variables. In general, distance functions are not differentiable everywhere, however
we only use the distance function at differentiable points in the “Grim Reaper” cases

we consider.

Curvature Motion for a Parameterized Curve

Curvature motion for a parameterized curve, y(s,t) : [0, L] x RT — R? is de-
scribed by:
Ys \ 1
(5.7 =)
sl / 1sl
The differential equation (5.7) is implemented by a fully implicit Euler scheme
where each iteration involves solving multiple tridiagonal linear systems. The scheme

in time and space is

ot e [ 5t<1 1)},€1 o ek
- i + P TR e =

R S AN RV
2 2 2

where A = S8 —~F |, thrl = |vF —~F.1| and 6t is the time step size for the finite
2
difference scheme (different than oAt, the total time we evolve the curve between

reconstructions). At each step we use the Newton iteration

ot k(l4+1) ot 1 1 k(i+1) ot KO+ k
—rE T Y s T )| T R T =
R : -3 Uit} i Ml

until | SN, hf(l) -7, hf(l+1)| < § for a small § > 0 and then set 7+ = A+,

We detail how we handle all the boundary conditions in the 6, = 63 case in
table 5.1. Then (s, 0 At) is given by v for K = "6—Att with initial value 7% = (s, 0).
Note that the choice of dt is independent from At. In our numerical studies we

choose 0t so small that the contribution to the overall error from the numerical

solution (s, 0 At) is negligible.
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Table 5.1: Boundary Conditions for PDE (5.7)
Case x Boundary Condition y Boundary Condition
z(0) = z(—s) = —z(s) y(=s) =y(s)
x(L)=.25 | x(L+s)=.5—xz(L—s) y(L+s)=y(L —s)
y(L) =—.5 x(L+s)=z(L—s) y(L+s)=—-1—y(L—s)

The Implementation of the VIIM using Parameterized Curves

With these two tools in hand we can implement the VIIM using parameterized
curves. At every iterate we track a series of (z,y) points that parameterize the
interface of the sets. We will first consider the the case where 6y = 63 (see the first
two images in fig. 5.2). Since X¥ is the reflection of X5 around x = .25 we only need
to track the interface I';5. The interface I';5 remains a function of x at every time
step. Thus to parameterize I'12, we fix  values in [0,.25] and update corresponding
y values for each step in the VIIM. The simulation of mean curvature motion for

time 7' using parameterized curves is detailed below:

1. Choose At, the time between reconstructions, and n, the number of points. Set

N =T/AL

2. Pick {z;}, € [0,.25] and set y? = f(z;,0). In our implementation z;’s are

chosen so that (x; 1 —z;)?+(f(z;_1,0)— f(x;,0))* are all equal fori = 2,3,...,n.
3. For k=1,... N do the following steps:

(a) Build parameterization vt = {(z,vy) : dzszl(x,y) = ¢}: For each z;, we
find y§* such that dzszl(xi, yst) =€, then (z;,y;") is a parameterization of
~<t. To find dzxf_1(xi, yst) = €, we use the secant method
(5.8)

L L gnfl - gan
R N N Ol

w1 (ZL’i, y”—l) - dg’ffl (Z‘l‘, gn_Q)
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until
(59) |d211c71(xi, gn) - €| <9

for > 0. In our tests |%dzzf_1(a:i,y)| > 1 near the true solution, so (5.9)
can be used to bound the error in ¢”. Similar statements hold when we
employ the secant method in subsequent steps. We choose ¢ small enough
so that the error from estimating y" is negligible compared to the overall
erTor.

(b) Build parameterization v~ = {(z,y) : dz§_1(:r,y) = ¢}: We let 2f” =

.25—€
.25

T and find y{~ such that dyr- (57, y;) = € using the secant method.

Then
(2 5) ifi < n

Vi =
(x;—,yz—w—n)%) ifn+1<i<n+m

for some choice of m. We choose m such that

(=5 —yy)

~ \/($;:1 — 25 )2+ (Y1 —yn )2
(¢) Evolve v and 7~ by (5.7) for time o;At and oAt respectively. Now
vt = 98 (01 At €) and v~ = X5 (0a At ).

(d) For each x; find g; such that

dyi1(g, a0 (Tir Ui) = A1 gy ar.0) (s i)

We find g; using the secant method (the update is similar to (5.8)). To use
7~ to calculate ds, (0,0 (7, y), we apply a change of coordinates to make

¢~ a function of z.

/‘)/
(e) Then assign each g; to y~.

4. Then {(z;,yN)}™, gives a parameterization of the interface I'15 at time 7T'.
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5.4.3 Experimental Results

In experiments with the VIIM, it suffices to focus on the symmetric cases 0y = 63
to demonstrate non-convergence. Denote the output of the VIIM at time 1" by f]j (T)
and the true solution by X;(7"). We track essentially the relative error (RE) of the

area of symmetric difference in phase >;:

S0 amD)
(5.10)

(1) £24(0)]
where

AAB={z:(z€Aand z¢ B) or (: ¢ Aand z € B)}

but restricted to {(z,y) : 0 < x < 0.21} to exclude a small neighborhood around

the junction at x = %.

Each of the simulations uses the following parameters

The total time the system is evolved: T' = 18/512.

Number of points tracked on the parameterized curve: n = 2048.

Step size in (5.7): 6t = 2720 At.

In the equal surface tension case (1 = 120°): 07 =0y =1

e We use 6; = 90° in our test for the unequal surface tension case, so that o; =
2 — V2 and g9 = V2

Refining in 6t or n did not significantly change the relative error. Additionally, we
simulate the formal limit, lim lim , by setting e oc At'/4,
e—01+ At—0
The results are collected in table 5.2 through table 5.7. In none of the limit cases

does the unequal surface tension case converge to the correct curve. This is seen

in the non-vanishing relative error for 6, # 120°. Later we will give an alternative
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Table 5.2: lim,_,q+ lima;_.q, 61 = 120° Table 5.3: lim,_,g+ lima;_.q, 01 = 90°
At € RE Order At € RE Order
213 | 2728/4 1 0.0339 - 2-18 | 2728/ 1 0.0361 -
2141 9-29/4 10.0269 | 0.33 2-14 | 2729/4 1 0.0517 -
2715 1 273074 10,0214 | 0.33 2715 | 273074 10,0667 -
2-16 | 9=31/4 1 00172 | 0.32 2-16 | 9=31/4 1 0.0813 -

Table 5.4: lim__, /&7 o+, 6h = 120°
At | RE: ¢=4 | Order | RE: ¢ =2 | Order
2-13 0.1675 - 0.0833 -
2-14 0.1078 0.636 0.0561 0.572
2-15 0.0714 0.595 0.0383 0.551
2-16 0.0482 0.566 0.0264 0.537

to the Voronoi reconstruction step that, in our numerical tests, convergences in the

unequal surface case.

5.5 Threshold Dynamics

In this section, we present convergence studies for the threshold dynamics al-
gorithm of [15] using a parametrized curve implementation similar to the one in
chapter IV. There is by now ample evidence, including a conditional proof [28], for
the convergence of this algorithm to the correct limit, including very general unequal
surface tensions cases. This section is thus meant as a verification of the parametrized
curve implementation (rather than threshold dynamics, which is not in doubt), and
give confidence to the non-convergence results it yielded on the VIIM, presented in
the previous section.

Table 5.5: lim__, /&7 0+ 61 = 90°
At | RE:¢=4 | Order | RE: ¢ =2 | Order

2715 [ 0.0256 - 0.0524 -
27" [ 0.0826 - 0.0791 -
271" [ 0.1166 - 0.0963 -

216 0.1379 - 0.1077 -




Table 5.6: lima¢—,0 with e =0, ; = 120°

At RE Order
2-1310.0071 -
2-1410.0050 | 0.51
2-110.0035 | 0.51
216 10.0025 | 0.50
2-171°0.0017 | 0.50
2-18 1 0.0012 | 0.50
2-19°1°0.0009 | 0.50

Table 5.8: Threshold Dynamics 6; = 120°

At n RE Order
2-13 7 512 | 0.0081 -
27141771024 | 0.0056 | 0.523
2151 2048 | 0.0039 | 0.515
2-16 74096 | 0.0028 | 0.510
2171 8192 | 0.0019 | 0.507
2-18 116384 | 0.0014 | 0.504
219132768 | 0.0010 | 0.504

We use the following parameters:
e Each of the following simulations is evolved for time 7" = 18/512.
e For the equal surface tension case 6; = 120°, we use 01 = 013 = 093 = 1.

e For the unequal surface tension case with 6; = 90°, we use 015 = 013 = 1 and

0923 = \/§

The results are in table 5.8 and table 5.9. We see convergence to the correct
solution, including in the unequal surface tension case, bolstering our confidence in
the algorithm and the parametrized curve implementation developed and used in this
chapter. It is thus highly unlikely that the non-convergence observed in the previous

section with the VIIM is due to the parametrized curve representation; it is likely

due to the VIIM itself.
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Table 5.7: lima; .o with e =0, 8, = 90°

At

RE

Order

2—13

0.0056

2—14

0.0065

2715

0.0071

2—16

0.0075

2717

0.0077

2—18

0.0078

2719

0.0079

Table 5.9: Threshold Dynamics #; = 90°

At n RE Order
2-13 512 0.0095 -
2-111°1024 | 0.0067 | 0.516
21512048 | 0.0047 | 0.511
2-16 14096 | 0.0033 | 0.507
2-171 8192 | 0.0023 | 0.505
2-18 116384 | 0.0016 | 0.505
2-191°32768 | 0.0012 | 0.501
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5.6 Correcting the VIIM: Dictionary Mapping

Before the variational formulation of threshold dynamics given in [15] extended
the original algorithm of [30] from equal to arbitrary surface tensions in a systematic
manner, a more heuristic extension was proposed by Ruuth in [38]. In this approach,
a projection step is employed to “force” the correct Herring angle conditions at any
triple junction, while multiple (> 4) junctions are treated more heuristically. Ruuth’s
projection is designed so that the stationary configuration for the underlying curva-
ture flow of three flat interfaces meeting at a triple junction with the correct Herring
angles remains fized under one iteration of the overall algorithm. Motivated by Ru-
uth’s approach, in this section we propose a new algorithm: the dictionary mapping
implicit interface method (DMIIM), which replaces the Voronoi reconstruction step
of the VIIM with a dictionary reconstruction step that is designed to have as a fixed
point three flat interfaces meeting with the correct Herring angles. The three phases
in such a configuration consist of sectors and after evolution by curvature motion we
want to restore these phases to their original form by our reconstruction. As such
our dictionary reconstruction step is based on the curvature evolution of sectors. A
heuristic extension to arbitrary number of phases, much as in [38], is also discussed.
While an analogue of the more systematic approach of [15] would be more satisfac-
tory, no such variational formulation for the VIIM (that is simple and efficient to
implement) is currently available — a matter that remains under investigation.

We describe dictionary reconstruction in the case of three phases. The first step
is to build a template map for a triple junction of interfaces with surface tensions oy,
09, and o3. To that end, let (0, 6s,05) be the triple junction angles corresponding

to these surface tensions as given by equation (5.3), and fix a time step size At. Let
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;(0) for i € {1,2,3} denote the sector

i—1 i
0:(0) = {(e,r) r>0and Y 6, gegZej}
=0 =0
in polar coordinates, with the proviso 6y = 0. Let Q;(0;At) be the evolution of
;(0) via motion by mean curvature for time o;At. Recall that dg,,as is the

signed distance function to €;(0;At), see (5.4). We will define the template map,

d:R? = R3, as

(511) (I)(xa y) - (dﬁl(olAt) (x7 y)a dQQ(O’QAt) (xa y)a dQ3(U3At) ($, y))

and define the template surface S C R? as the image of R? under ®. The template
map, ®, maps points in R? to distances to the evolved sectors. The map ® is injective
and we will use ®~!: S — R? in our reconstruction algorithm.

Recall in the VIIM that 3% is phase i at time step k. We describe how the DMIIM
reconstructs the new phases, ¥ S5 and 5 from Y (0, At), Y5 (0yAt), and
Yk (o3At). Define ITg : R? — R? as the closest point projection onto S (with respect
to the standard Euclidean distance in R3). We define the reconstructed phases at

the (k 4 1)-st time step as
(5.12)

Ef“ = {Z €D :d'ollg (dEIf(UIAt) (z), dz’;(azAt)(Z)a dz‘;(agAt)<Z)) € Q,(O)}

We are thus assigning the point z to the phase (or phases) whose corresponding

sector contains the preimage of

HS(dill(alAt) (Z)7 d22(0'2At) (Z)7 d23(0'3At) (Z)) € S

under the one-to-one map ®. The configuration (£;(0), Q22(0),Q3(0)) is clearly fixed

under the DMIIM algorithm, which thus treats a triple junction with the correct
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Herring angles and straight interfaces exactly as it should. (Note that having these
triple junctions fixed is a reassuring but not necessary condition for convergence of
such algorithms; e.g. threshold dynamics [15] does not have this property in general).
See fig. 5.3 for a schematic of dictionary reconstruction.

Given the surface tensions (01, 02, 03) and a time step size At > 0, the correspond-
ing projection surface S is neither bounded nor smooth. Moreover, at its non-empty
ridge, the closest point projection map IIg : R® — S contains multiple points.
However, I15(x) is non-empty at any x € R3.

The following two claims ensure that IIg is well defined (i.e. Ilg(x) contains
a single point) and smooth in a neighborhood of the vacuum and overlap regions
formed by evolving each phase by mean curvature motion, starting from an initial
configuration of three smooth curves meeting at almost the correct Herring angles.
The claims are straightforward but tedious to check, so the proofs are omitted.

The first concerns the surface S and follows from properties of the self-similar

solution of curvature motion discussed in section 5.6.1:

Claim V.1. Given r = (r1,79,73) € (RT)?, let T, = N3_ {x € R? : dq,0)(x) < 75}
denote a neighborhood of the stationary triple junction with the exact Herring angles.
There existst > 0 and ¢ > 0 such that the closest point projection map Ilg : R® — S

is well defined and smooth on N. = {x € R? : d(x, ®(T})) < €}.

The second can be checked e.g. using the comparison principle satisfied by motion

by mean curvature:

Claim V.2. Letr,e, Ty, and N, be as in Claim 1. Let (02;(0)) N (0%;(0)), i # j, be

smooth curves meeting at a triple junction with angles (0,605, 6%). There exist 6 > 0
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and T > 0 such that if ||(01, 02, 03) — (07,05,05)|| <0 and At < T, then

1
——(ds,(r120)(X), A5y (000 (%), Aoy (X)) € N2 for anyx € | 0%;(05t).
VAL 0<t<At

je{1,2,3}

We next explain one way to extend the DMIIM algorithm just described for three
phases to the n-phase setting. Let o1, 09,...,0, be the surface tensions associated
with the n phases. Let I(z,-) : {1,2,...,n} — {1,2,...,n} be a bijection (permu-

tation of the indices) so that

dzf(Ll)(o’I(z,l)At) (Z) Z d2f<z72) (UI(z,Q)At) (Z) Z e Z dzf(z,n) (UI(z,n)At) (Z)

so that I(z, j) is the label of the phase with the j-th largest signed distance function
at the point z. Our simple extension, similar to the one in [38], is to allocate each
z using the very same dictionary mapping discussed above, where the three phases
used in the construction of the projection surface are the closest three to z. Under

this rule the new sets become

k+1 __ . .
(5.13) TH! = {z €D :Tzj) <3 and
®71 o HS (dzlf(Ll)(oI(z,l)At) (Z)7 dEf(Z’Q) (UI(Z,Q)At) <Z>7 dz?(z,s) (UI(Z,B)At) <Z>) 6 QI_l(z7j) (0)}

where Q; for j € {1,2,3}, the map ® and the surface S are constructed at each
z € D as in the three phase case, using the surface tensions oy(;,1), 01(z,2), and oy, 3).
High degree junctions are thus treated heuristically by this method. Indeed, it is not
hard to come up with alternatives to the simple extension (5.13) explained above.
Although we expect all such natural extensions to behave mostly the same, subtle
differences between them cannot be ruled out at this point. We took the simplest
example (5.13), and while points near high degree junctions can be far away from

the template surface, we will show that it behaves reasonably in section 5.6.5.
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Figure 5.3: A schematic of the dictionary reconstruction step. The dashed lines are the interfaces
at T'= 0 and the solid lines are sets at time T' = At. In this example the point would
be allocated to Xs.

The DMIIM also allows some control over mobilities. Each phase >; can be
assigned a mobility u;. In the evolution step the level sets are evolved for time

oAt by (5.5) and we use ;(p;0;At) in the construction of the template surface.

The mobility at the interface I';; becomes

_ Hi0i + [1;0;
20'1']' ’

(5.14) i
With this extra flexibility, the DMIIM allows the specification of the (72‘) physically
relevant surface tensions at the interfaces, I';;, and the products, p;0;, for each phase.
The mobility at the interface I';; is constrained by (5.14). We give an example in
section 5.6.5.

Algorithm 14 details the steps in the DMIIM. In the next two subsections we

describe how to find €;(¢) with high accuracy and how the projection is performed.

5.6.1 Self-Similar Solution to Curvature Motion

Building the template map in the DMIIM algorithm requires precomputing the
solution of motion by mean curvature of a sector (denoted €(t) in the previous
section) to high accuracy. The set () is related to a self-similar solution of mean

curvature motion; thus the computation of Q(t) can be reduced to the following
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Algorithm 14 Dictionary Mapping Implicit Interface Method

1: Given X9, %9, ...,%0 01,009, ...,0n, f1, 2, .-+, fin, At, and T.
2: Let N = T/At. Define the reduced mobilities fi; = p;0;.

3: for k< 1to N do

4 Evolve each ¥¥(0) by time ji;At to get YF(fi; At).

5 Construct the new phases

yhtl = {z €D :17'(z,i) <3 and
@_1 OHS(dEk

T(z,1) (F1(z,1) A) (Z), dzf(z,z)(ﬂl(zz)At) (), dz?(z,‘g)(ﬁI(z,S)At) (Z))

€ QI*l(z,'L') (0)}

ODE:
#'(@) = L(6(x) ~ 20/ (@) (1 + (¢ (@)
#(0) =0
(5.15)
5, ) = o0
¢(0) = ¢o > 0

on the domain x € (—00, 00) and ¢ is even. Instead of the last condition of (5.15), we

could specify a M such that lim ¢'(z) = M > 0. There is a bijective map between

T—00

¢o and M [24]. We next explain how (5.15) arises.
For a curve given as the graph of a function u(z,t), motion by curvature is de-

scribed by the PDE
o ul‘l’
Sl

Uy

When u(x,t = 0) = M|z| for some M then
u(z, t) = Vid(a/ Vi)

where ¢ satisfies (5.15). Let the positive y-axis bisect the sector ©(0) with angle 0,

then 092(0) = M|z| for M = cot(#/2) and

Qt) = {(z.y) - y > Vig(z/V1)}.
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To find the numerical solution to the ODE (5.15), we use the Newton iteration

2w ox (dF— by 2 41 4 Yo — o ? k1

2 mw [ —dE ]
611+ [ g () Jetit =

for xp = 0 and xx being sufficiently large. The boundary conditions are ¢_; = ¢,
and ¢y = Mxy. Below we prove that ¢y is close to Mxy as long as we choose
xn large enough, justifying the second boundary condition. We offer an improved

bound over
1

(5.18) o(x) :Mx—|—0<—), as r — 00.
T

given in [24], where the ODE was previously studied. The improved bound implies
we do not need to take xy so large. In our simulations we choose x to be 10.
Claim V.3. For a function ¢(x) satisfying (5.15) the following bounds hold:
z2(14+M?2)
|p(x) —aM| < Coe™ =, 220

CO _ 12(1+1\42)
4

\¢/($)—M’§?€ , x>0

_22a+M2)

0" (@) < Crem T, 220

where Cy and Cy only depend on ¢g (or M ).
We first need the following lemmas

Lemma V.4. The function ¢ satisfies the following properties:
1. ¢"(x) > 0.
2.0<¢(x) < M.

3. ¢(x) >axM.
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Proof. The proof of property 1 is given in [24]. As a result of ¢"(x) > 0, ¢'(z) is

a strictly increasing function with lim ¢'(x) = M, so property 2 follows. To prove
Tr—00

property 3, let h(z) = ¢(z) — M on x > 0. By (5.18) lim h(x) = 0 and property 2

T—00

implies h'(z) = ¢'(x) — M < 0. Thus h(x) > 0 for all x > 0. O
Lemma V.5. The function ¢ satisfies the first order differential equation

e (T4)20) = (060) — et eww (5 + S0 )+ o)

Proof. Rearrange

(519) F'(#) = S(6(7) — 3@ (1 + ()
to
_27¢"(7)

0@ - 9@ ~ L THEEN

By integrating both sides from 0 to z we obtain

(5200 2log (6(x) — 26/(x)) — 2log (o = —a? — /0 (¢ (7)2di
Now rearrange (5.19) to

20/ ()¢ (F) V() A ()2
Tr @) = @8 @) - @)

By integrating both sides from 0 to z we obtain

1

(5.21) log (1+((2))?) = £ 6°(x) — 365 - / "R () d

Both (5.20) and (5.21) have a — [ £¢'(Z)?dZ term. Solving for that term in (5.20)

and (5.21) and setting the equations equal to each other results in

log (1 +(¢/(2))*) — %qﬁ?(x) + %cb% = 2log (¢(x) — x¢/(x)) — 2log (¢o) + %ﬁ.

The conclusion of the lemma follows from taking the exponential of both sides. [
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Using the above two lemmas we can establish claim V.3:

Proof. (Of claim V.3) Applying the lemmas we have

(6(z) — 2/ (x))*

—e (= 5+ B ED 1 @
<ewp (-5 - B )1+ a2

Additionally, invoking inequalities 2 and 3 from lemma V.4.
6(x) — 2¢/(z)| = () — aM + aM — x¢/(x)| = |p(x) — aM]| + |zM — 2¢/(z)].

The first inequality follows from observing that |¢(z) — zM| < |p(x) — x¢'(z)| and
the second from |[M — ¢/'(z)| < I|p(z) — z¢/(x)| for > 0. Then using (5.19)

¢ (z)| < 3|é(z) — x¢/(2)|(1 + M?) and the third inequality follows. O

5.6.2 Projecting onto the Template Surface

Another important step in the DMIIM algorithm introduced in section 5.6 is the
closest point projection onto the template surface. Here, we discuss the details of a
highly accurate method for projecting an arbitrary point w € R? onto the template
surface S = {®(z,y) : (z,y) € R?} for the template map ® defined in (5.11). Define

the function
1 2
(522 F(a,y) = 5lw - @z, y)|3

Denote (z*,y*) as the minimum of F' or where ®(z*,y*) = llg(w). To find (z*,y*)

we will use Newton’s method,
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To choose (2°,4°), we make a coarse point cloud of the surface S and choose (z°,4°)
so that ®(2°,4°) is the nearest point to w in the point cloud.
The rest of this section details how to compute VE and D?F. First we find partial

derivatives of F' in terms of the distance functions, for example:

OF /0
% = Z (%in(Uz‘MAt)) (in(UiMiAt)(x7y) - WZ)

PF [ 52 0 2
W = Z <@d9i(0miﬁt)> (in(UiHiAt) - Wl) + (%dﬂi(amiAt)> .

i=1

We will next demonstrate how to find explicit formulas for the partial derivatives of

the distance functions. There exists a rotation of angle 6, denote as Ry, such that
Ro(Qi(oipuAt)) = {(z,y) 1 y = f(2)}

for f(x) = Vo Atd(|x|/v/oiu; At). For the moment, consider the case where 6 = 0.

Let
—(@—p)f'(p)+ - ()
L+ (f"(p))? .
Additionally, let p*(z,y) = argmin(x — p)® + (y — f(p))? be the a-coordinate of the

9(x,y.p) =

closest point on the curve (g, f(q)) to (x,y). Note that

(5.23) %ﬂw—mx+@—f@»ﬂ

pr =20 —p") +2(y — f(p") [ (p") = 0.

We have g(z,y,p*(x,y)) = do,o.uat)(,y) (see proposition 1 in [16]). We can find

the partial derivatives of the distance function by differentiating g, for example:

d *
%dﬂi(oiuiAt) =9z + gppm

d2 * * *
T30, (o st) = Gro + 2000y + G (P2)° + oD%

The partial derivatives of p* are obtained by implicitly differentiating (z — p*) + (y —
F(p)) f'(p*) = 0. We have that

[(x —p)+ (y— f() [ ()] f"(p)

R V7
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by (5.23), so we do not need to solve for p¥_. Applying the above for an arbitrary

angle 6, the partial derivatives of the distance function are

04 Ay =— cos(0) f'(p") +sin(6)
8 (oin 1+ f’(p*))2

0 o do, (osm A1) = sin(0) f'(p*) + cos(6)

oy 14 (f(p*))?

D ooy = [~ os%(8) = 25in(0) cos(0) ' (v") — s (O)(F' ()" (. y.°)
Bwdy 9 (eiman = [sin(f) cos(6) — cos(20)f(p") — sin(6) cos(0)(f'(p))*Jh(z, y.p")
82

By 5340, (0su,a0) = [—sin’(6) + 2sin(9) cos(9) ' (p7) — cos®(8) (S (p")*Ih(z, y, p")

o) — 1 ")
hlog,p’) = (1 + (f'(p*))? + [f(p*) — (zsin(9) + yCOS(Q))}f”(p*)) ([1 + (f’(p*))2]3/2)'

We now have explicit formulas for every step of Newton’s method allowing us to

quickly and accurately minimize (5.22) to find the closest point projection.

5.6.3 The DMIIM’s Relationship to the VIIM

In this section, we discuss the precise relationship between the DMIIM and the
VIIM. We consider the very special case of equal surface tensions, o; = 1 (for all
i), corresponding to the Herring angles of (120°,120°,120°). This is the one case in
which our numerical results from previous sections suggest the VIIM converges to the
correct solution. The standard maximum principle for two-phase motion by mean
curvature implies that overlaps cannot occur at the end of the curve evolution step
of the VIIM or the DMIIM. The only interesting question is how the two algorithms
allocate points in the “vacuum” region, {z : dx;(ay(2z) < 0 for all j}.

Due to the symmetry of this situation, if p € S, then any q € R? obtained by a
permutation of the components of p also satisfies q € S.

Let x € R? be given, with x; < 0 for all <. Let p = I[Ig(x) with p = ®4(z) for

some z € R%. We are thus assuming implicitly that IIg(x) consists of a single point
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pEes.
Claim V.6. x; = max(xy,Xs,x3) if and only if p; = max(p1, p2, P3)-

Proof. The proof will be broken up into three parts: For i # j (1) if x; > x; then
p: > pj, (2) if p; = p;, then x; = x; and (3) if p; > p;, then x; > x;. Statements
(1) and (3) then imply the claim.

(1) If x; > x; and p; < pj, then

|Ix —qll < [[x - pl|

where q € S is obtained from p by interchanging its i-th and j-th components (since

P; # P;, then q # p). Indeed,
Ix = plI* = [Ix — al|* + 2(xi = x;)(p; — Pi) > |Ix — ql[*.

This contradicts p = IIg(x); so the first statement is established.
(2) If p; = pj, let n denote a unit normal to S at p. A short calculation shows

that n; = n;. Indeed:

n; = n; = Dudg,(at)|e-1(p)

where u is the unit vector perpendicular to 9€2;(0)N0€2;(0) pointing into €2;(0). Since
p = [I(x) implies that x — p = fn for some § € R, we get x; = X;.
(3) Assume x; < x;. Since x; < x;, by statement (1) p; < p;. Furthermore, since

x; 7# X; statement (2) implies p; # p;. Hence p; < p;. O]

Claim V.7. Let the phases ¥ at time step k have smooth boundaries, with triple
junctions in the same neighborhood of (120°,120°,120°) as in claim V.2. Then, for

every small enough time step size At > 0, the DMIIM and the VIIM yield the same

Ykt
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Proof. Due to the symmetry z € ;(0) if and only if dg,(a¢)(z) = max; do,ay(z). A

consequence is that
(5.24) ©(€2:(0)) = {p € 5 : p; = max(p)}.

The projection map ® is well defined for points (dx;,(at)(2), ds,(ar)(2), dsyan(2)),
where ds;(ay)(z) < 0 for all j by claim V.2. Then claim V.6 along with (5.24) give

us that ds,;(aq)(z) = max; ds;ar)(2z) if and only if

s (ds, (at)(2), dsyat)(2), dsy(an(2)) € P(€2(0))
completing the proof. O

The dictionary mapping implicit interface method is then an extension of the
Voronoi implicit interface method to cases of unequal surface tension. As we show
in the next section, the DMIIM numerically converges to the exact solution in cases

of unequal surface tensions.

5.6.4 Numerical Results for the DMIIM

Algorithm 15 Parameterized DMIIM for “Grim Reaper” tests with 0, = 03.

1: Let N =T/At.

2: Choose points {z;}_; € [0,.25] and set 0 = f(z;,0).

3: for k< 1to N do

4: Use {z;, yf_l " | to parameterize 93, and 9%, denoted as 4t and 7~ respectively.
5 Evolve vt and v~ by (5.7) for time pio1At and psoa At respectively.

6: For each z; find g; such that

(:L'*7 y*) = (I)il © HS(dEl(UlulAt) (‘Th gl)? dEQ(O’gMgAt) (Iiv gl)ﬂ dEg(Ugug,At) (Ih gl))

satisfies (z*,y*) € 991(0) U 9Q2(0).
T yP

In this section, we perform on the DMIIM the same careful numerical convergence
tests that we subjected the VIIM to. In addition we test on some examples where

all the surface tensions are different. Algorithm 15 details the implementation of the



Table 5.10: DMIIM, 6; = 120°

120

Table 5.11: DMIIM, 6; = 90°

At n RE Order At n RE Order
2710171024 | 0.0202 - 210771024 | 0.00207 -
2-11 1 1449 | 0.0141 | 0.520 2-11 | 1449 | 0.00107 | 0.954
2-12°1 2048 | 0.0099 | 0.513 2121 2048 | 0.00056 | 0.922
2-13 1 2897 | 0.0069 | 0.509 2-13 1 2897 | 0.00031 | 0.842
2= 14096 | 0.0049 | 0.507 2= 14096 | 0.00018 | 0.772
2-151 5793 | 0.0034 | 0.505 2-15 1 5793 | 0.00011 | 0.701
21678192 | 0.0024 | 0.503 21678192 | 0.00007 | 0.614
2-17 111586 | 0.0017 | 0.498 217111586 | 0.00005 | 0.576

Table 5.12: DMIIM, (75°,135°,150°),

w; =1 Table 5.13: DMIIM, (75°,135°,150°), u; = o

At n RE Order At n RE Order
2-10 11024 | 0.0067 - 2-10 11024 | 0.0138 -
2-11 11449 1 0.0053 | 0.338 2= 11449 [ 0.0094 | 0.548
2-12 12048 | 0.0040 | 0.411 2-12 1 2048 | 0.0065 | 0.540
2-13772897 1 0.0029 | 0.450 2-1312897 | 0.0045 | 0.533
2-1%1°4096 | 0.0021 | 0.470 2-141°4096 | 0.0031 | 0.527
2-15 15793 1 0.0015 | 0.480 2-15 15793 1 0.0022 | 0.522
2-161°8192 [ 0.0011 | 0.494 2-16 18192 [ 0.0015 | 0.521

1

DMIIM with parameterized curves for “Grim Reaper” tests with #5 = 3. The imple-

mentation of the non-symmetric case is similar. We note that in our implementation

of algorithm 15 that projecting onto the template surface is the computation bottle-

neck, taking about 25 times longer than the Voronoi reconstruction step it replaces

in the VIIM. This is mainly due to the number of points we use to represent each

;. We choose to err on the side of caution in our numerical studies, representing €2;

with many more points than needed.

We run the following “Grim Reaper” tests:

1. Angles (91,02,93) = (12()0, 1200, 1200) with 01 = 09 =03 = 1.

2. Angles (01, 6,03) = (90°,135°,135°) with 01 = 2 — v/2 and 03 = 03 = /2

3. Angles (01,05, 63) = (75°,135°,150°) with oy = 2(—2 4 3v2+V6), 02 = 1(2 —
V2 +16), 03 = 12+ 2 - V/6) and p; = 1.

4. Angles (0y,05,05) = (75°,135°,150°) with the same o;’s as the previous test
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with p; = a%
Each of the simulations use the following parameters:
e The total time the system is evolved: T = 18/512.
e Number of points tracked on the parameterized curve: n as given in the table.
e Step size in (5.7): 0t = o At/n.
e We are measuring the relative error (RE) of the area of symmetric difference of
phase ¥y in {(z,y) : 0 <z < —.04or f+.04 <z < .5}, see (5.10).
The results are contained in table 5.10 through table 5.13.

5.6.5 Level Set Examples of the DMIIM

We demonstrate the level set formulation of the DMIIM in two and three dimen-
sions. In 2d we evolve a system that goes through a well understood topological
change. Initially, we have two “Grim Reapers” translating vertically towards each
other until they collide. After the collision, two new junctions form that travel hor-
izontally away from each other forming a new horizontal interface between the top
and bottom phases.

The initial configuration is

B ={@nv> T+ G-l 1)

Nl
NO

Il
&
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8
A

and %+f(x) <y< %Jrf(x)}
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where f(z) = L log(cos(mx)). We use the surface tensions matrix

T
0o 1 1
0_10\/5
11 v2 oo
1 1

O = =

1
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T=2At T=100At T=108At T=120At

08} 1 08} 1 08}
06f 1 06F 1 06f 1
04f 1 04f 1 04f 1

0.2 1 0.2 1 0.2

L L L L L L L s L s L L L s L L L L L s
-0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 0.6

Figure 5.4: Two “Grim Reapers” colliding, computed using the DMIIM algorithm (practical
implementation on uniform grid). The initial (90°,135° 135°) angles change to
(120°,120°,120°) after the collision, as expected. The multiple junction that momen-
tarily forms at collision appears to be handled appropriately.

and (py01, o0, 1303, f140y) = (2 — V2,V2,7V/2,2 — \/5) Before the topological
change the angles are (90°,135° 135°) at the triple junctions. After the change the

angles are (120°,120°,120°). For the simulation we use the domain [0,1] x [0, 1]

1

with periodic boundary conditions on a 512 by 512 grid. We set At = T600m sinGr/A)

Figure 5.4 shows this system at different times.

In three dimensions, we evolve a system starting from a Voronoi diagram of 8
points taken at random on the 3-torus. Six of the phases have surface tension equal
to 1 while the other two phases have surface tension v/2 — 1. Thus three angle con-
figurations are possible: (120°,120°,120°), (90°,135°,135°), and ~ (146°,107°,107°)
Quadruple points split and collide throughout the evolution causing the faces of the
grains to undergo topological changes as seen in fig. 5.5. The two preceding examples
show reasonable behavior and demonstrate the practical use of the DMIIM as a level

set method.
5.7 Conclusion
In this work, we have presented careful numerical convergence studies showing

that the Voronoi implicit interface method gets close but does not converge to the

correct evolution in the unequal surface tension case of multiphase motion by mean
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Figure 5.5: Two grains undergoing topological changes on the face of the grains. In the first grain,
four quadruple points collide. In the second grain, a quadruple point splits.

curvature. In addition, we proposed a correction to the method that fixes the non-
convergence while maintaining the simplicity and the spirit of the method; indeed,
the new algorithm reduces to the original in the case of equal surface tensions. The
correction is in the spirit of the projection method [38] of Ruuth proposed in the
context of threshold dynamics. We subjected the new algorithm to the same rigorous
numerical convergence studies as the original, verifying that the non-convergence
of the latter is rectified. As in [38], the new algorithm is somewhat heuristic in
the handling of higher order junctions (> 4) — but numerical evidence is presented
that suggests it behaves reasonably even in their presence. Nevertheless, a more
systematic approach, perhaps a variational interpretation of the VIIM in the spirit
of [15], would be far preferable, not least as a more reliable extension to arbitrary
junctions. Highlighting this need for further investigation of the VIIM is perhaps the

most notable contribution of the present study.



CHAPTER VI

Conclusion

Over the course of this thesis, we have developed high order, stable multistage
methods for gradient flows. Specifically, we have developed new second and third
order, unconditionally energy stable DIRK methods, second and third order, con-
ditionally energy stable ARK IMEX methods, and energy stable variants of the
aforementioned methods in cases of solution dependent inner products. We demon-
strated the methods on a variety of gradient flows, including the Allen-Cahn and
Cahn-Hillard equations.

However, we only began to develop the mathematical theory of our methods for
gradient flows. First, the coefficients of the multi-step schemes were found by a brute
force search. For this reason, we were only able to present methods that were second
and third order. Further work is needed to prove the existence of higher order versions
of the multistage schemes and develop a systematic method of finding coefficients
that satisfy consistency and stability. Additionally, the variant of gradient flow with
solution dependent inner products introduced a new constraint on the time step for
stability in order to achieve third order accuracy. Though the constraint is mild,
a version of third order gradient flows for solution dependent inner products that

introduces no additional constraint would be beneficial. Additionally, the examples

124
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that we used our methods on were relatively simple. The power of the methods we
developed is their ability to use efficient black-box stable implementation of existing
schemes to solve gradient flows and to painlessly jack up the order without sacrificing
stability. Future work could focus on applications of our Runge-Kutta schemes and
the solution dependent inner product variant.

In chapter IV, we showed that our stability results for Runge-Kutta schemes could
be applied to an energy stable threshold dynamics scheme for simulating two phase
mean curvature flow, albeit only in two dimensions. We also presented a second
order threshold dynamic scheme in three dimensions with accompanying rigorous
consistency calculations. An energy stable version of threshold dynamics that is
second order in any dimension is lacking and could be a goal of future work. However,
an even more important aim is to increase the order of accuracy of threshold dynamics
in the multi-phase case. Threshold dynamics, as well as other level-set like algorithms
for mean curvature motion, are only half order in the presence of more than two
phases. Our work was a step in the development of a first (and higher) order threshold
dynamic algorithm for multi-phase mean curvature flow.

Our focus on threshold dynamic methods was spurred by the fact that they are
provably convergent in cases of unequal and anisotropic surface tension. On the
other hand, we also considered the Voronoi Implicit Interface Method (VIIM). We
provided rigorous numerical convergence studies for the VIIM and showed that the
VIIM does not converge in the case of unequal surface tension. We then gave a
variant, the DMIIM, that does converge to the physically correct solution and allows
for some control over mobilities. However, the DMIIM sacrifices the efficiency of
the VIIM. Even better would be a deeper mathematical understanding of the VIIM,

including a variational formulation of the algorithm. This would allow the VIIM to
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be extended to more general cases of unequal surface tension and mobilities.
Overall, we have begun to tap into the rich mathematical theory of high order
energy stable methods for general gradient flows, and mean curvature motion in

particular.
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APPENDIX A

The Parameters that Render the Six-Step DIRK Scheme to
be Third Order Accurate and Unconditionally Stable

We record here the exact values for the coefficients v in the six-stage, third order
accurate scheme introduced in section 2.4. They are rational numbers, but the
irreducible fraction representation of some of them are quite long, and were therefore
approximated above. With the universal, exact values given below, we can rigorously
state that the new scheme introduced in this chapter can be used to jack up the order
of accuracy in time of any backward Euler scheme (2.3) for gradient flows (2.1) to
third order while maintaining unconditional energy stability.

The matrix of values is:

& 0 0 0 0 0

-2 B 9 0 0 0
21 19 587

—zL _13 8 0 0

v= g0 1 i L 0 0

3 4 § 2

s 43 4 i3 212
57 75 8 21

~ 6 16 Y6,2 76,3 V6,4 V6,5

where
96877768305591883216465260738322381995331343806720345

762 = T 30417514787340024198452679823989476266149744556295712
910677500903250179715877776918800480038125970511673389

768 T T 788350205 74681848396905350647978052532299480112591424
_2985416726242784122189204876225493950575679989899779

764 = T 446910508495028845787445340478338733176300958688160
_523180952458721016795516949849623944572931703979520653

765 = T Y379723865260102688716964424887719585127749395 1439680

It can be checked that these 7’s satisfy the inequalities in the hypothesis of the-

orem II.1 for stability, and the consistency equations in claim II.4 for third or-
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der exactly. Code for doing so can be found at https://github.com/AZaitzeff/

gradientflow.


https://github.com/AZaitzeff/gradientflow
https://github.com/AZaitzeff/gradientflow
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APPENDIX B

A Third Order Fully Implicit Method for Gradient Flows
with Solution Dependant Inner Product

Here we layout a fully implicit, third order algorithm for gradient flows with solution

dependant inner product,
up = —L(u)VE(u).

In this case, each substep has form:

m—1

(B.1) [i ym] Un + kL) VHEUn) =+ YmiUs.

=0 i=0

The algorithm is energy stable as long as
Lo
L(u) — ik D7 L(u)(w,w)

is positive definite for all v and w.

Fix a time step size k& > 0. Set w, = wug. For convenience, we will denote
DL (u,) (L(us)VE(u,), L(us)VE(u,)) as D?L(u.).

Alternate the following steps:

1. Find u,,:

1
Usy + EkﬁnVE(u*l) = Up,.

2. Find @ using (B.1) with coefficients (2.29), L(u.,) — % D?L(u.,) and time step

k.

N
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3. Find uy, ,:

2
Uy, + gkﬁnVE(u*m) = Uy,

4. Find u,,, using (B.1) with the following coefficients

617 0 O 0

—-05 6 0 0
(B.2) -3 2 7 0 ’
=31 0 223 740

L(u,,) and time step 2k.

5. Find w,41 using (B.1) starting at @ (instead of u,) with coefficients (2.29),

L(tsy,) — & D?L(u,,,) and time step 1.

The exact values for (B.2) can be found at https://github.com/AZaitzeff/

SIgradflow.


https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow
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APPENDIX C

Taylor Expansion of Characteristic Function with a
Gaussian Kernel

In this appendix, we work out the Taylor expansion of the convolution of a Gaussian
kernel with a characteristic function. A simpler version of the following calculation
is worked out in two dimensions by Ruuth [37] and up to first order in arbitrary di-
mensions by Grzhibovskis & Heinz [20]. First, let us introduce the following notation

for the 1D Gaussian for convenience,

() = !
x exp
gt 24/ 7t

22
[— 4_15] and let Gy(x,y,2) = g:(2)g:(y)g:(2).
Now take a function h(z,y) with the following properties:

1(0,0) = O(t)
(C.1) he(0,0) = O(t)
hy(0,0) = O(t)

The papers mentioned above (20, 37]) use the assumption that
(C.2) h(0,0) = h,(0,0) = h,(0,0) = 0.

These simpler assumptions are sufficient for their calculation of the Taylor expansion

for a single step of threshold dynamics. However, after the first stage, the interface
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may no longer satisfy (C.2). So we required the more general conditions given by
(C.1) for Taylor expansions of the interface after the first stage.

Now let ¥ = {(z,y,2) : 2 < h(z,y)}. The goal is to see how {Gt * ILE] (x,y, 2)

behaves along the z-axis near the origin. First, we simplify {Gt * ILE} (x,y,2):

Gex s i)
:/ 9:(y — J)ge(x — Z) / g:(z — 2)1x(Z, 9, 2)dzdzdy
R2 —o
h(&,9)
= / L9y = 9)gi(e — 3) / gi(z — 2)dzdzdy
R —o0

(C.3) = gy —9gi(x — &) /_ gt(z — 2)dzdzdy

1 z 23 . N h(@,9) Ndidadi
—5*2m+24ﬁt3/2+/Rzgt(m*x)gt(y*y)/o gt(z — Z)dzdidy
+ h.o.t.

Setting z = y = 0, we will now simplify the last term of (C.3),

h(Z,9)
(C.4) [, oa =21 / gu(z — 2)dzdidg.

First note that, near z = 0,

1 [hED G

dZ +h.o.t.
2\/ it 0 4t

h(z,9)
(C.5) / iz — 5)d5 =
0

Substituting approximation (C.5) into (C.4) and integrating,

1 h(2,9)
— #)g: (7 — 2)dzdidj
s L@ [ e = oazdiag

h(Z,7) s — 3 2
(C.6) :%M/RZ gt(f)gt(gj)/o ! - ) dzdidj + ho.t.
1 o [ o =3R(E )2 4 3(h(E,9)%2 — (h(E,9)°] -
o/t /R2 9¢(%)g:(7) [h(x, )+ 19t ]dzdxdy +h.o.t.

Denote the Taylor expansion of h(Z,g) around (0,0) as P[ht](Z,7):

~2 ~2 ~3 ~2 ~ ~~2
(C.7)  Ph](%,9) = h+ &he + Ghy + %hm + Fhay + %hyy + %h + %yhmy + Lg h
~3 ~4 ~3~ ~2~2 ~~3 ~4
y z 7y Ty Ty Y
+ ?hyyy + ﬂhzzzz + Thzzzy + Thzzyy + Thzyyy + ﬂhyyyy + h.o.t.

Yy

Where h = h(0,0), h, = h,(0,0), etc. in order to simplify notation. Now substitute

the Taylor expansion of h(Z, ) about (0,0) into (C.6):
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1 h@,9)
#)g: (7 — 2)d3didj =
o= L a@a) [ e 2izaza

Pht)(z, )f—P[ht]C )2+ 4115 (Pnt](z,9))"

2%/% /Rz 9t(Z)g¢(9)

1

12t( [ht](#,7))" | dZdj + h.o.t.

Now we can integrate (C.8). For a non-negative integer n we have:

o0 Cnbyn/2 o for n even
C.9 z"gi(z)dr = nt
(C.9) /,oo 9:() {O for n odd

Using (C.9), we simplify (C.8)

1 h(2,9)
— #)9:(§ — 2)dzdidj =
s L @a) [ e - 2yizaza

h \/
hzz +h
t3/2 52 22 )
4f( cezr + ZhEIyy + hyyyy) - 8ft3/2 h — 8\/7['7(1111 + hyy 8ft3/2
(C.10) Vi s 1 "
2 2 2
h(has + h K2, h > hawhyy + h2
+ 4\/H ( + yy) 2\/;( +7 UU+ 2 yy+ U) 24ﬁt3/2
h? \/ 1
32 5 o 5.4 3 ) 9
— 2ﬁ(1h” + 4h + 4hmhyy + hmhyy + 3haghay + 3hyyht,) + hoo.t.

Now substituting (C.10) for the last term of (C.3) we arrive at the expansion of

{Gt * 1]_2:| (0,0, z) near z = 0:

[Gt ) 12} (0,0, 2) =

1 z 23 h \f
- — hzz + h
t3/2 22 22 z 2
+ 4ﬁ(hxxxw + 2hzzyy + hyyyy) — 8ft3/2 h — 8\/ﬁ(hm + hyy) + Wﬁ
(C.11)
z Z\/> 3 2 2 1 hS
+ mh(hm + hyy) + 2ﬁ( how +— hyy + QhIIhyy + hTy) W
h? Vit 3 1
- m(hm + hyy) — DN h(3 hiz + 4h3y + Ghazhyy + hiy)
3% 5 5 3
_ 2\/%(4h21 + 4h3 4hmh§y + hizhyy + 3heuhZ, + 3hyyh2,) +ho.t

In chapter IV, we use the previous calculation to find the location of an interface

along the z-axis after thresholding, i.e. finding z such that {Gt * ILZ} (0,0,2) = %
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We also need to find how the derivatives of our interface, given by z,(0,0), z,(0,0),
2.2(0,0) etc., relate to the derivatives of the original interface given by h(x,y). The
derivatives of z match the derivatives of h to order t:

m—+n am—i—n
Z(.ZL', y)l(m,y):(0,0) = axnym

(C.12) Mz, )| (2m)=(0,0) + O(1)-

oxnym
Note that z,(0,0) and z,(0,0) are of O(t) for h having properties (C.1). For our
calculations, we also need to find z,,(0,0) and z,,(0,0) to O(?). So we also include
the calculation of % [Gt * 12:| (2,9, 2(2,Y)) | (2,9)=(0,0):

2

0
92 {Gt * 12} (, 9, 2(2,Y))|(z.1)=(0,0)

: 322220 4 62(22)2 o [hED) [ —2t F(ZE-2)2
C.13 =— = o : - .
(C.13) e [ a@e@ [ ae-n | T T
(5 - 2)222 (2 - Z)Za:z _ é P o g
+ pre + 57 2% dzdzdy + h.o.t.
2
The terms ;}g; 7 and
h(E.3) iz —2)z (2—2)2%22 22
~ ~ s x © _ 2o | gzdidi
/RQ gt(fv)gt(y)/o g¢(2 Z){ w2 T ap zt} ey

turn out to be O(#*?), which is higher than the order needed for the calculations

in this chapter. We will simplify the two remaining terms in the integrand, starting

with the term "’Eit’ft. As in the previous calculation substitute in the approximation

(C.5) and integrate:

h(z,9) 72 _ ot
/ 9¢(%)9:(9) / gi(z — 7)== dzdzdj
R2 0 4t

(C14) =575 |, 9 @a@ | PG D) - 4 Plhi)E.5)2°
+ %t(P[ht] @)z - %21& (P[], g))ﬂ %dmg +ho.t.

Then use (C.9) to further simplify (C.14):
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— haa _A'_i
oVt 2T

2
2 2

h2 h 2 2
8ﬁt3/2 hao — 2\/>( has + hzzhyy + hiy

2‘{}( R+ 2 hmhjy + hizhyy + 6hachay, + Shyyhzy> +h.o.t

(C.15)

(2-2)

We now turn to the == term, following the same steps:

h(Z,9) 5 — 2) 2o e o oo
/ gt(i)gt(?})/ gi(z — 2)%dzdmdy
R2 0

! o 1 o
=575 | 9 @)a@ | Plua.5) - 4Pl 5)2
(016) 1 ~ N\ 2 1 ~ ~\\3 (2 - Z)ZTr 2~
+ o (P[ht)(z,9)) 2z — 157 (P[ht)(z,7)) Tdmdy + h.o.t.
Zoz | P 3t t zh  z
2\/» [475 +t5 h(hm + hyy) + (h?cac + hiy) + §hmhyy + thiy T o i(hm + hyy)
+ h.o.t.

Substituting (C.15) and (C.16) into (C.13), we arrive at the simplification

82
92 |:Gt * ]lz] (@, y, 2(z,Y)| (z,)=(0,0)
Zxx 22211 hzz \/i
2\/7E+8\/7?t3/2+2\/ﬁ+2ﬁ( + haayy)
2
3., 1 ,
~ gt 4ft3/2hhm + = 2\/7715 (mm + Shaahyy + hw)
h2 h 3
C.17 S A - o0, hmh R
\/i 15 3 3
Zxa h 3t 2 5 t )
+ 2\F w3 h(hm +hyy) + T (hae + i) + Shaehyy +the,
h

Finding g—; |:Gt*1]_2:| (2,9, 2(%,Y))| (2,9)=(0,0) is similar. We use both (C.11) and (C.17)

in several calculations throughout the course of chapter IV.
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APPENDIX D

The Parameters that Render the Four-Step Threshold
Dynamic Scheme to be Second Order Accurate

We record here the exact values for the coefficients v in the four-stage, second order
accurate scheme introduced in section 4.5.3. They are algebraic numbers, but the
representations of some of them are quite long and therefore we have approximated
them above. With the exact values given below, we can rigorously state that the
algorithm 10 is second order while maintaining unconditional energy stability. The

matrix of values is:

1 0 0 0
1 5
-2 0 0
=1 0 o8
6 13 6
Y4,0 5 V4,2 74,3

V4,2 :( %/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671

5551049511730043591353151

;\)’/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671

- 456109196575) /3627134098848

v4,3 :( — 5586815667458

X 373547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671

+ (73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671)2/3

31012690382968488487137089701456460158

+ =
%/73547857887405865499600064 133495318877644714344377 — 23474745371243059566207357648855848671
30814150681678355363112149018994128529535197628801

(73547857887405865499600064 133495318877644714344377 — 234’74745371243059566207357648855848671)2/3

+ 79745224406342289‘25392639) /18386964471851466374900016

1
V4,0 = 1= 2 =742~ 74,3
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It can be checked that these s satisfy the inequalities in the hypothesis of theo-
rem [V.2 for stability, and the consistency equations in claim IV.1 for second order

exactly.
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