
High Order Schemes for Gradient Flows

by

Alexander James Zaitzeff

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2020

Doctoral Committee:

Professor Selim Esedoḡlu, Co-Chair
Professor Krishna Garikipati, Co-Chair
Professor Smadar Karni
Arthur F Thurnau Professor Robert Krasny

Alexander J Zaitzeff

azaitzef@umich.edu

ORCID iD: 0000-0001-9731-1873

c© Alexander J Zaitzeff 2020

ACKNOWLEDGEMENTS

Chapter II, chapter IV, and chapter V are papers that I wrote with Professor Selim

Esedoḡlu and Professor Krishna Garikipati, both of whom helped write and edit the

manuscripts. Additionally, my thesis abstract is based on the abstract of those

papers. Professor Selim Esedoḡlu conceptualized many of the ideas that germinated

into the theoretical results of this thesis. I gratefully acknowledge support from the

NSF grant DMS-1719727. I also acknowledge the support of Benjamin Butler, who

helped many of my IT issues for the computational aspects of my thesis.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vii

LIST OF APPENDICES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Overview of Multiphase Mean Curvature Motion 4
1.2 Front Tracking methods . 4
1.3 Level Set Methods . 5
1.4 Variational Model . 6
1.5 Voronoi Implicit Interface Method . 7
1.6 Phase Field Methods . 7
1.7 Threshold Dynamics . 8

II. Variational Extrapolation of Implicit Schemes for General Gradient Flows 11

2.1 Introduction . 11
2.2 The New Schemes: Stability . 15
2.3 The New Schemes: Consistency . 22
2.4 The New Schemes: Examples . 25

2.4.1 Second Order Examples . 26
2.4.2 Third Order Example . 27

2.5 The New Schemes: Numerical Tests . 27
2.5.1 Ordinary Differential Equations . 28
2.5.2 Partial Differential Equations . 29

2.6 Conclusion . 35

III. Variational Extrapolation of Semi-Implicit Schemes for General Gradient
Flows for Fixed and Solution Dependent Inner Products 37

3.1 Introduction . 37
3.2 Stability of Our New Schemes . 40
3.3 Examples of the New Schemes for Gradient Flows 49
3.4 Schemes for Solving Gradient Flows with Solution Dependent Inner Product 52

3.4.1 Second Order Method . 53
3.4.2 Third Order Method . 54

iii

3.5 Numerical Examples . 59
3.5.1 Gradient Flows with Fixed Inner Product 59
3.5.2 Gradient Flow For Solution Dependent Inner Product 62

3.6 Conclusion . 65

IV. Second Order Threshold Dynamics Schemes for Two Phase Motion by
Mean Curvature . 66

4.1 Introduction . 66
4.2 Previous Work . 68
4.3 Second Order Motion by Mean Curvature . 70
4.4 A More Natural Two Kernel Extrapolation 72

4.4.1 Consistency . 72
4.5 Unconditionally Stable Multistage Methods 75

4.5.1 Consistency Equations . 76
4.5.2 Unconditional Stability . 80
4.5.3 A Second Order Unconditionally Stable Example 82
4.5.4 Consistency In Higher Dimensions 82

4.6 Numerical Tests . 83
4.6.1 Highly Accurate Threshold Dynamics For Graphs 84
4.6.2 Numerical Results . 85

4.7 Conclusion . 87

V. On the Voronoi Implicit Interface Method . 90

5.1 Introduction . 90
5.2 Multiphase Motion by Mean Curvature . 92
5.3 The Voronoi Implicit Interface Method . 93
5.4 Testing the VIIM using Parameterized Curves 97

5.4.1 “Grim Reaper” Solution . 97
5.4.2 The VIIM via Parameterized Curves 99
5.4.3 Experimental Results . 104

5.5 Threshold Dynamics . 105
5.6 Correcting the VIIM: Dictionary Mapping 107

5.6.1 Self-Similar Solution to Curvature Motion 111
5.6.2 Projecting onto the Template Surface 115
5.6.3 The DMIIM’s Relationship to the VIIM 117
5.6.4 Numerical Results for the DMIIM 119
5.6.5 Level Set Examples of the DMIIM 121

5.7 Conclusion . 122

VI. Conclusion . 124

APPENDICES . 127

BIBLIOGRAPHY . 139

iv

LIST OF FIGURES

Figure

2.1 The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE on
the ODE u′ = − sinh(u) with energy E(u) = cosh(u) 29

2.2 The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.29) (right) and the new third six-stage scheme (2.6) & (2.29) (left) on the ODE
induced by gradient flow on non smooth energy (2.30) 29

2.3 The new third order six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE
induced by gradient flow on non smooth energy (2.30) 30

2.4 The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the one-
dimensional heat equation ut = uxx . 31

2.5 The double well potentials used in the Allen-Cahn (2.31) and Cahn-Hilliard (2.33)
equations: One with unequal and the other with equal depth wells. 31

2.6 The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (2.31) with a potential that has
unequal depth wells. 32

2.7 Initial condition and the solution at final time for the 2D Allen-Cahn equation with
a potential that has equal depth wells. 33

2.8 Initial condition and the solution at final time for the 2D Cahn-Hilliard equation
with a potential that has equal depth wells. 34

3.1 The double well potentials used in the Allen-Cahn (3.44) and Cahn-Hilliard (3.46)
equations: One with unequal depth wells and the other with equal depth wells. . . 59

3.2 The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (3.44) with a potential that has
unequal depth wells. 59

3.3 Initial condition and the solution at final time for the 2D Allen-Cahn equation with
a potential that has equal depth wells. 61

3.4 Initial condition and the solution at final time for the 2D Cahn-Hillard equation
with a potential that has equal depth wells. 62

3.5 The initial (black) and final (grey) data for our porous medium example. 65
4.1 The original threshold dynamics algorithm 6 and algorithm 9 evolving a dumbbell

by mean curvature motion. Top: the initial dumbbell. Center: algorithm 6 be-
fore and after the topological change. Bottom: algorithm 9 before and after the
topological change at the same time values as the center row. 88

4.2 Initial (right) and final shape (left) for a test of how algorithm 9 behaves after a
topological change. 89

5.1 How the VIIM works: On the left we have the ε level sets (dotted lines), in the
center we have the sets after being evolved by (5.5), the figure on the right shows
the new interfaces after Voronoi reconstruction (solid line). 93

5.2 “Grim Reaper” exact solutions for angles (left to right) (120◦, 120◦, 120◦), (90◦, 135◦, 135◦),
(75◦, 135◦, 150◦) with µi = 1 and (75◦, 135◦, 150◦) with µi = 1

σi
. The black line is

t = 0 and the gray line is t = 18
512 . 98

v

5.3 A schematic of the dictionary reconstruction step. The dashed lines are the inter-
faces at T = 0 and the solid lines are sets at time T = ∆t. In this example the
point would be allocated to Σ2. 111

5.4 Two “Grim Reapers” colliding, computed using the DMIIM algorithm (practical
implementation on uniform grid). The initial (90◦, 135◦, 135◦) angles change to
(120◦, 120◦, 120◦) after the collision, as expected. The multiple junction that mo-
mentarily forms at collision appears to be handled appropriately. 122

5.5 Two grains undergoing topological changes on the face of the grains. In the first
grain, four quadruple points collide. In the second grain, a quadruple point splits. . 123

vi

LIST OF TABLES

Table

2.1 The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.27) on the ODE u′ = − sinh(u) with energy E(u) = cosh(u). 28

2.2 The new third order accurate, unconditionally stable, six-stage scheme (2.6) &
(2.29) on the ODE u′ = − sinh(u) with energy E(u) = cosh(u). 28

2.3 The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.27) on the one-dimensional heat equation ut = uxx. 30

2.4 The new third order accurate, unconditionally stable, six-stage scheme (2.6) &
(2.29) on the one-dimensional heat equation ut = uxx. 30

2.5 The new second order accurate, unconditionally stable, three-stage scheme (2.6)
& (2.27) on the one-dimensional Allen-Cahn equation (2.31) with a traveling wave
solution. 32

2.6 The new third order accurate, unconditionally stable, six-stage scheme (2.6) &
(2.29) on the one-dimensional Allen-Cahn equation (2.31) with a traveling wave
solution. 32

2.7 The new second order accurate, unconditionally stable, three-stage scheme (2.6)
& (2.27) on the two-dimensional Allen-Cahn equation (2.31) with a potential that
has equal depth wells. 33

2.8 The new third order accurate, unconditionally stable, six-stage scheme (2.6) &
(2.29) on the two-dimensional Allen-Cahn equation (2.31) with a potential that
has equal depth wells. 33

2.9 The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.27) on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that
has equal depth wells. 34

2.10 The new third order accurate, unconditionally stable, six-stage scheme (2.6) &
(2.27) on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that
has equal depth wells. 35

3.1 The new second (3.31) and third (3.32) order accurate, conditionally stable schemes
(3.8) on the one-dimensional Allen-Cahn equation (3.44) with a traveling wave
solution. 60

3.2 The new second (3.31) and third (3.32) order accurate, conditionally stable schemes
(3.8) on the two-dimensional Allen-Cahn equation (3.44) with a potential that has
equal depth wells. 61

3.3 The new second (3.31) and third (3.32) order accurate, conditionally stable schemes
(3.8) on the two-dimensional Cahn-Hilliard equation (3.46) with a potential that
has equal depth wells. 63

3.4 The new second (algorithm 4) and third (algorithm 5) order accurate, conditionally
stable schemes for gradient flows with solution dependent inner product on the
negative entropy (3.47) with L(u) = −∇ · u∇ in the inner product to simulate the
heat equation. 64

vii

3.5 The new second and third order accurate, unconditionally stable schemes (see re-
mark III.6) for gradient flows with solution dependent inner product on energy∫
u2dx with L(u) = −∇ · u∇ in the inner product to simulate the porous medium

equation. 65
4.1 Ordinary Threshold Dynamics, algorithm 6, on the ‘Grim Reaper Wave.’ 86
4.2 Algorithm 9 on the ‘Grim Reaper Wave.’ . 86
4.3 Algorithm 10 with γ’s given in (4.29) on the ‘Grim Reaper Wave.’ 87
4.4 Algorithm 9 on an interface in R3 . 87
4.5 Algorithm 9 on an shape that undergoes a topological change in R3. 87
5.1 Boundary Conditions for PDE (5.7) . 102
5.2 limε→0+ lim∆t→0, θ1 = 120◦ . 105
5.3 limε→0+ lim∆t→0, θ1 = 90◦ . 105
5.4 limε=c

√
∆t→0+ , θ1 = 120◦ . 105

5.5 limε=c
√

∆t→0+ , θ1 = 90◦ . 105
5.6 lim∆t→0 with ε = 0, θ1 = 120◦ . 106
5.7 lim∆t→0 with ε = 0, θ1 = 90◦ . 106
5.8 Threshold Dynamics θ1 = 120◦ . 106
5.9 Threshold Dynamics θ1 = 90◦ . 106
5.10 DMIIM, θ1 = 120◦ . 120
5.11 DMIIM, θ1 = 90◦ . 120
5.12 DMIIM, (75◦, 135◦, 150◦), µi = 1 . 120
5.13 DMIIM, (75◦, 135◦, 150◦), µi = 1

σi
. 120

viii

LIST OF APPENDICES

Appendix

A. The Parameters that Render the Six-Step DIRK Scheme to be Third Order Accurate
and Unconditionally Stable . 128

B. A Third Order Fully Implicit Method for Gradient Flows with Solution Dependant
Inner Product . 130

C. Taylor Expansion of Characteristic Function with a Gaussian Kernel 132

D. The Parameters that Render the Four-Step Threshold Dynamic Scheme to be Second
Order Accurate . 137

ix

ABSTRACT

First, two new classes of energy stable, high order accurate Runge-Kutta schemes for

gradient flows in a very general setting are presented: a class of fully implicit methods

that are unconditionally energy stable and a class of semi-implicit methods that are

conditionally energy stable. The new schemes are developed as high order analogs of

the minimizing movements approach for generating a time discrete approximation to

a gradient flow by solving a sequence of optimization problems. In particular, each

step entails minimizing the associated energy of the gradient flow plus a movement

limiter term that is, in the classical context of steepest descent with respect to an

inner product, simply quadratic. A variety of existing stable numerical methods can

be recognized as (typically just first order accurate in time) minimizing movement

schemes for their associated evolution equations, already requiring the optimization

of the energy plus a quadratic term at every time step. Therefore, our methods give

a painless way to extend the existing schemes to high order accurate in time schemes

while maintaining their stability. Additionally, we extend the schemes to gradient

flows with solution dependent inner product. Here, the stability and consistency

conditions of the methods are given and proved, specific examples of the schemes are

given for second and third order accuracy, and convergence tests are performed to

demonstrate the accuracy of the methods.

Next, two algorithms for simulating mean curvature motion are considered. First

is the threshold dynamics algorithm of Merriman, Bence, and Osher. The algorithm

x

is only first order accurate in the two-phase setting and its accuracy degrades fur-

ther to half order in the multi-phase setting, a shortcoming it has in common with

other related, more recent algorithms. As a first, rigorous step in addressing this

shortcoming, two different second order accurate versions of two-phase threshold dy-

namics are presented. Unlike in previous efforts in this direction, both algorithms

come with careful consistency calculations. The first algorithm is consistent with

its limit (motion by mean curvature) up to second order in any space dimension.

The second achieves second order accuracy only in dimension two but comes with

a rigorous stability guarantee (unconditional energy stability) in any dimension – a

first for high order schemes of its type.

Finally, a level set method for multiphase curvature motion known as Voronoi

implicit interface method is considered. Here, careful numerical convergence studies,

using parameterized curves to reach very high resolutions in two dimensions are

given. These tests demonstrate that in the unequal, additive surface tension case,

the Voronoi implicit interface method does not converge to the desired limit. Then a

variant that maintains the spirit of the original algorithm is presented. It appears to

fix the non-convergence and as a bonus, the new variant extends the Voronoi implicit

interface method to unequal mobilities.

xi

CHAPTER I

Introduction

In this thesis, we develop higher order schemes for gradient flows with state of the

art stability conditions. As a specific application, among others, we develop second

order methods for two-phase threshold dynamics for simulating mean curvature mo-

tion. Both of these results are a first step in developing an efficient stable multi-phase

mean curvature motion of first order and higher.

A gradient flow, or steepest descent, is an evolution equation of the form

(1.1) u′ = −∇HE(u).

for E : H → R and H is a Hilbert space with inner product 〈·, ·〉. A fundamental

property of equation (1.1) is that it dissipates the energy over time:

(1.2)
d

dt
E(u) = 〈∇HE(u), u′〉 = −||∇HE(u)||2 ≤ 0.

Our focus is on discretizations which are both high order in time and energy stable.

By energy stable, we mean numerical schemes that have the discrete version of (1.2):

(1.3) E(UN+1) ≤ E(UN).

Our schemes can be seen as diagonally implicit Runge-Kutta (DIRK) multi-stage

methods for generating unconditionally energy stable, high order in time numerical

1

2

schemes. The advantage of the aforementioned method is accomplished by a black-

box implementation of a standard backward Euler step. This allows one to increase

the order of accuracy while preserving stability without developing new techniques.

We briefly cover the vast literature of DIRK methods. For an extensive review of

DIRK methods, see [27]. Diagonally implicit Runge-Kutta methods are linear M -

stage schemes of the following form:

1. Set U0 = un.

2. For m = 1, . . . ,M :

(1.4) Um = U0 − k
m∑
i=1

αm,i∇HE(Ui).

3. Set un+1 = UM .

The constants αm,i are chosen to satisfy desired consistency and stability require-

ments.

When the energy E is convex, there are many DIRK methods that have some type

of non-linear stability. For example, algebraic stability [4] and energy stability [45].

To our knowledge, there has been little, if any, work of non-linear stability of DIRK

methods for general energies. We provide energy stable, high order DIRK methods

for general energies in chapter II. We also exhibit an example, namely threshold

dynamics, in which E is concave, yet the scheme is unconditionally stable with very

low time step cost.

One downside to the DIRK method for non-linear ∇HE is (1.4) involves solving

an often costly system of non-linear equations. The implicit-explicit additive Runge-

Kutta (ARK IMEX) [1] seeks to remedy this drawback by splitting the energy E

into implicit and explicit parts. Specifically, let E(u) = E1(u) + E2(u) where E1 is

3

treated implicitly and E2 is treated explicitly. The ARK IMEX method is a linear

M -stage scheme of the following form:

1. Set U0 = un.

2. For m = 1, . . . ,M :

(1.5) Um = U0 − k
m∑
i=1

αm,i∇HE1(Ui)− k
m−1∑
i=1

α̃m,i∇HE2(Ui).

3. Set un+1 = UM .

Where once again the constants αm,i and α̃m,i are chosen to satisfy desired consistency

and stability requirements. There are second and third order unconditionally energy

stable ARK IMEX methods [44]. However, the methods require that the part of the

energy that is treated implicitly, E1, is convex. In this thesis, we give conditionally

energy stable higher order methods with no conditions on E1 and E2.

We extend both types of Runge-Kutta schemes to gradient flows with solution

dependent inner product,

(1.6) u′ = −L(u)∇HE(u).

where L(u) is a positive definite operator. To our knowledge, this is the first time

high order energy stable schemes for (1.6) have been proposed in a general setting.

We adapt our high order, energy stable schemes to threshold dynamics for sim-

ulating mean curvature motion. Unfortunately, threshold dynamics is not of form

(1.1), so DIRK methods do not immediately generate high order schemes. However,

threshold dynamics can be formally recognized as a gradient flow and, as such, some

of our results apply. We briefly review mean curvature motion and algorithms for

simulating its flow and indicate why we choose to focus on threshold dynamics.

4

1.1 Overview of Multiphase Mean Curvature Motion

Multiphase mean curvature motion arises as the gradient descent dynamics for

energies of the form

E(Σ1, . . . ,Σn) =
∑
i 6=j

σijArea(Γij).(1.7)

Where Γij = (∂Σi) ∩ (∂Σj) are the interfaces between the phases Σ1, . . . ,Σn that

partition a domain D ⊂ Rd, d ≥ 2:

Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for any i 6= j, and
N⋃
i=1

Σi = D.

The positive constants σij = σji are known as surface tensions (or surface energy

density). They need to satisfy the triangle inequality

σij + σik ≥ σjk for any distinct i, j and k

for well-posedness of the model (1.7) (this inequality prevents “wetting” - where an

interface between two phases is replaced by a thin third phase). Let a triple junction

be formed by the meeting of three phases Σ1, Σ2, and Σ3. They are points in two

dimensions and occur along curves in three dimensions. Let θi be the angle between

Γij and Γik at the junction. Then:

sin θ1

σ23

=
sin θ2

σ13

=
sin θ3

σ12

(1.8)

has to hold. This is known as the Herring angle condition [23]. We will now review

algorithms for simulating mean curvature motion in this challenging multiphase set-

ting.

1.2 Front Tracking methods

Front Tracking methods represent each interface as a parameterized curve γ(s, t)

for s ∈ [0, 1] [3]. Take the case of 3 parameterized curves γ1,γ2,γ3 (representing, for

5

example, Γ12, Γ23, and Γ13 respectively) that form a triple junction with angles θ1,

θ2, and θ3. Let γ1(1, t) = γ2(1, t) = γ3(1, t) and γ1(0, t), γ2(0, t), γ3(0, t) ∈ δD. Each

curve evolves according to γt = γss
||γs||2 constrained to be perpendicular at the bound-

ary and satisfy γ1
s (1,t)

||γ1
s (1,t)|| ·

γ2
s (1,t)

||γ2
s (1,t)|| = cos θ1 and γ2

s (1,t)
||γ2
s (1,t)|| ·

γ3
s (1,t)

||γ3
s (1,t)|| = cos θ2 at the triple

junction. The second condition ensures that (1.8) is satisfied during the evolution.

The advantage of the method is that it is highly accurate. The major disadvantage is

that it fails to model topological changes well. When a curve becomes smaller than a

certain tolerance, it is deleted and the remaining curves are reorganized, termed as a

‘surgery’. In order to perform a ‘surgery’ front tracking uses additional information

about the physical system being modeled and each situation is implemented as a

separate case. As a result, handling topological changes in front tracking is compli-

cated and inelegant. Moreover, surgery in 3D is much harder and requires additional

assumptions.

1.3 Level Set Methods

Introduced in [34], the level set formulation of only two phases is as follows:

Denote one phase as Σ and the other as Σc and the interface as Γ. The interface is

then embedded in a higher dimensional function φ(x) such that

φ(x) > 0 x ∈ Σ

φ(x) = 0 x ∈ Γ

φ(x) < 0 x ∈ Σc.

Often the signed distance function, dΓ(x) = minz∈Γ ||x− z||2, is used for φ. For any

level set function curvature at a point x ∈ Γ is given by ∇ · (∇φ(x)
|∇φ(x)|). To evolve Γ in

6

time by curvature motion the function φ(x, t) is evolved by the initial value PDE

φt −∇ · (
∇φ
|∇φ|

)|∇φ| = 0(1.9)

φ(x, t = 0) = dΓ(x),(1.10)

The zero level set of φ(x, t) gives the interface after evolving by curvature motion for

time t.

To extend this into the multiphase setting [30] suggested evolving each level set

separately followed by a reconstruction of the phases. The steps are given in algo-

rithm 1.

Algorithm 1 MBO Algorithm A

1: Let nt = T/∆t.
2: For Σ1, . . . ,ΣN let Γi be the interface between Σi and Σci .
3: Let φ0

i (x, 0) = dΓi

4: for k ← 1 to nt do
5: Evolve each φk−1

i using φt −∇ · (∇φ|∇φ|)|∇φ| = 0 for time ∆t.

6: Let φki (x, 0) = φk−1
i (x,∆t)−maxj 6=i φ

k−1
j (x,∆t)

7: Then the new phases evolved under curvature motion for time T are Σi = {x|φnti (x) ≥ 0}

The authors suggest replacing φki with the distance function of its zero level step

at every step stating for numerical stability, but this turns out to be essential to the

convergence of algorithm.

1.4 Variational Model

To extend this ad hoc method into the case of different surface tensions and give

some theoretical backing, [48] proposed the following variation model based on the

work of [36]:

n∑
i=1

σi

∫ ∫
δ(φi(x, y, t))|∇φi(x, y, t)|dxdy

subject to
n∑
i=1

H(φi(x, y))− 1 = 0

(1.11)

7

where σij = σi + σj. Curvature motion is given by gradient descent of (1.11). In or-

der to apply the method they replace the above constraint with
∫

Ω
(
∑

iH(φi(x, y))−

1)2dxdy = ε << 1 and the δ(φ)’s with |∇φ|. As pointed out in [17] the constraint

may contribute to the stiffness of the problem and it is not clear that the dynamics of

the system match that of mean curvature motion. Additionally, only a small subset

of surface tensions that material scientists would like to model can be represented

by this model. Additionally, the authors [48] give no numerical evidence of conver-

gence in the unequal surface tension case. The authors of [17] give an unconstrained

formulation but the method also suffers from stiffness and the convergence in the

unequal surface tension case is unclear.

1.5 Voronoi Implicit Interface Method

Another way to extend level set methods into multiphase is the Voronoi Implicit

Interface Method (VIIM) given by Saye and Sethian [40]. We will go into detail on

this method in chapter V. The VIIM only works on a small subset of surface tensions

and, as we show in chapter V, it does not converge in the unequal surface tension

case.

1.6 Phase Field Methods

With two phases, Modica and Mortola [31] proposed the following energy:

E(u) =

∫
Ω

ε|∇u|2 +
1

ε
W (u)dx.(1.12)

The variable u acts as a relaxation of a characteristic function. The function W ,

called a potential, is bistable with wells of equal depth (e.g. W (u) = u2(1 − u)2).

W (u) penalizes u for violating the constraint u(x) ∈ {0, 1}. Applying gradient

descent to (1.12) results in the Allen-Cahn equation, ut = ε∆u− 1
ε
W (u), which has

8

been shown to converge to mean curvature motion.

Building on this [19] looked at the following energy

E(u) =

∫
Ω

εf(u,∇u) +
1

ε
W (u)dx(1.13)

where f is the generalized gradient energy. One part of the phase field is how

to choose f and W in order to implement the curvature motion with the correct

angle condition. One such example is f(u,∇u) =
∑

i<j
σ̃ij
µ̃ij

= |ui∇uj − uj∇ui|

and W (u) = 16
π2

∑
i<j µ̃ijσ̃ijuiuj +

∑
i<j<k σijkuiujuk. For this they have σ̃ij = σij,

µ̃ij = µij and σijk = 5. For these more general versions of phase field, the energy

gradient terms in the energy are no longer quadratic resulting in gradient descent

that is no longer a semilinear parabolic PDE. As a result the solution becomes more

complicated. Additionally, the ε adds stiffness into the PDE.

1.7 Threshold Dynamics

The authors [30] looked at the splitting method applied to the Allen-Cahn equa-

tion which is

1. Evolve ūt = ε∆ū with ū(x, 0) = un for time Td.

2. Evolve ut = −1
ε
W (u) with u(x, 0) = ū(x, Td) for some time Tr.

3. Set un+1 = u(x, Tr).

The question then becomes how to choose Td and Tr to obtain the right solution. The

correct solution can be found by taking limTr = ∞. This results in a convolution

step, where the ū is evolved by the heat equation (ut = ∆u) to obtain ū(x, Td), then

a thresholding step where un+1(x) = 1 where ū(x, Td) ≥ 1
2

and zero elsewhere. The

extension to multiple phases is given in algorithm 2.

To generalize the MBO method [15] considers the following approximation to

9

Algorithm 2 MBO algorithm

1: Let Gδt(x) = 1
(4π(δt))d/2

e−
|x|2
4(δt)

2: Given a initial partition Σ0
1, . . . ,Σ

0
N and nt = T/δt

3: for k ← 1 to nt do
4: Let φki = Gδt ∗ 1Σk−1

j
.

5: Σki = {x|φki (x) ≥ maxj 6=i φ
k
j (x)}

perimeter Pδt(Σ) = 1√
dt

∫
Σc
Gδt ∗ 1Σdx where Gδt(x) = 1

(4π(δt))d/2
e−

|x|2
4(δt) . As a result

Per(Γi,j) ≈
1√
δt

∫
1ΣiGδt ∗ 1Σjdx(1.14)

and

E(Σ1, . . . ,ΣN) ≈ Eδt(Σ1, . . . ,ΣN) =
1√
δt

N∑
i,j=1

σi,j

∫
1ΣiGδt ∗ 1Σjdx.(1.15)

Gradient descent on the energy approximation produces the algorithm 3. In future

Algorithm 3 EO algorithm

1: Given a initial partition Σ0
1, . . . ,Σ

0
N and nt = T/δt

2: for k ← 1 to nt do
3: Let φki = Gδt ∗

∑N
j=1 σi,j1Σk−1

j
.

4: Σki = {x|φki (x) ≤ minj 6=i φ
k
j (x)}

work, the authors extend the method to anisotropic surface tensions [14]. One disad-

vantage is on a grid, taking too small a time step will cause the motion to get stuck,

though there are various ways to avoid this. A variant of threshold dynamics that

avoids this is distance function-based diffusion-generated motion [16]. Despite this

drawback, threshold dynamics provably works for gradient flows of (1.7) for surface

tension of interest to material scientists. Because of this, we focus on developing

higher order methods for threshold dynamics.

This thesis is broken into four chapters.

• In chapter II, we develop new 2nd and 3rd order implicit schemes for general

gradient flows that are unconditionally stable.

10

• In chapter III, we develop new 2nd and 3rd order semi-implicit schemes for

general gradient flows that are conditionally stable and extend the results to

gradient flows with solution dependent inner products.

• Chapter IV presents new 2nd order threshold dynamics algorithms, including

an second order, energy stable algorithm in two dimensions.

• Chapter V presents highly accurate numerical convergence studies of the VIIM,

showing that the VIIM does not converge in the unequal surface tension case.

We also develop a new method in the spirit of the VIIM that fixes the non-

convergence.

CHAPTER II

Variational Extrapolation of Implicit Schemes for General
Gradient Flows

2.1 Introduction

We are concerned with numerical schemes for evolution equations that arise as

gradient flow (steepest descent) for an energy E : H → R, where H is a Hilbert

space with inner product 〈·, ·〉:

(2.1) u′ = −∇HE(u).

Equation (2.1) may represent a (scalar or vectorial) ordinary or partial differential

equation. A fundamental property of equation (2.1) is that it dissipates the energy

over time:

d

dt
E(u) = 〈∇HE(u), u′〉 = −||∇HE(u)||2 ≤ 0.

Our focus is on unconditionally energy stable, high order in time discretizations. To

be precise, by energy stable we mean the following dissipative property:

(2.2) E(un+1) ≤ E(un)

where un denotes the approximation to the solution at the n-th time step. Thus, in

the context of PDEs, where H is infinite dimensional, we are concerned with discrete

in time, continuous in space schemes.

11

12

The backward Euler method for the abstract equation (2.1), with time step size

k > 0, reads

(2.3)
un+1 − un

k
= −∇HE(un+1).

As is well known and immediate to see, a solution un+1 for the implicit scheme (2.3)

can be found via the following optimization problem

(2.4) un+1 = arg min
u

(
E(u) +

1

2k
||u− un||2

)
since (2.3) is the Euler-Lagrange equation for the optimization (2.4); here, ‖ · ‖2 =

〈·, ·〉. It follows that

(2.5) E(un+1) ≤ E(un+1) +
1

2k
||un+1 − un||2 ≤ E(un) +

1

2k
||un − un||2 = E(un)

so that scheme (2.3) is unconditionally stable, provided that optimization problem

(2.4) can be solved.

Energetic formulation (2.4) of the backward Euler scheme (2.3) is often referred to

as minimizing movements. It enables extending numerical schemes for the stationary

optimization problem minuE(u) to the dynamic, evolutionary problem (2.1) provided

an additional, typically quadratic term in the cost function can be accommodated.

The quadratic term 1
2k
‖u−un‖2 in (2.4) is often referred to as the movement limiter,

as it opposes deviation from the current configuration un. It encodes the inner

product with respect to which the gradient flow is being generated. Beyond numerical

analysis and computation, minimizing movements approximation of gradient flows

have been instrumental in the analysis of evolution equations of the form (2.1), e.g.

in defining and finding weak solutions beyond the formation of singularities when

classical notions of solution cease to exist.

The following combination of desirable properties distinguish the new schemes

introduced in this chapter:

13

1. Complete generality. There is no assumption (e.g. convexity) on the energy E

in (2.1) beyond sufficient differentiability.

2. Unconditional energy stability.

3. High (at least up to third) order accuracy.

4. Each time step requires a few standard minimizing movements solves, equivalent

to backward Euler substeps, or optimization of the associated energy plus a

quadratic term.

Property 4 is perhaps the most unique and appealing aspect of the new framework:

There are many existing schemes that can be recognized as some form of minimizing

movements, sometimes relying on efficient optimization algorithms to solve (2.3) via

(2.4). Our contribution shows how to painlessly jack up the order of accuracy of

these schemes while preserving unconditional stability, relying only on a black-box

implementation of the standard backward Euler scheme. In that sense, our new

schemes can be understood as a variational analogue of Richardson extrapolation on

(2.3), which in its standard form lacks the stability guarantees of our new schemes.

Many general purpose numerical schemes can certainly be used for solving (2.1),

such as multistep or Runge-Kutta methods [5]. However, the energy stability of

the standard examples of such schemes is either not immediate, or not true at all,

at the level of generality we seek here, when applied to an equation of the form

(2.1). Our focus is on high order schemes whose stability can be guaranteed over

an entire class of evolution laws, namely gradient flows (2.1). Nevertheless, after

some appropriate transformations, the new schemes we propose can be seen as a

new, special class of diagonally implicit Runge-Kutta (DIRK) schemes tailored to

these important dynamics. In the extensive literature on Runge-Kutta methods, one

of the related contributions to the nonlinear notion of stability (2.2) we seek is B-

14

stability for evolutions that satisfy a monotonicity (contractivity) condition [6]. In

the context of gradient flows, this requires convexity of the energy E in (2.1), which

is too restrictive for the applications we have in mind (see e.g. Examples (2.31) and

(2.33) in section 2.5.2). Very recently, [44] & [45] propose high order Runge-Kutta

schemes for gradient flows with stability guarantees. Among these, [45] concerns fully

implicit schemes, as in the present work, but is again restricted to convex energies

as in earlier works on B-convexity. The paper [44] studies implicit-explicit schemes

that, in the spirit of convexity splitting [18], break up the energy into convex and

concave parts, and treat the convex part implicitly and the concave part explicitly.

The present work differs in placing no convexity assumptions on E, which is treated

fully implicitly. An example where the energy is in fact concave, yet the optimization

(2.4) is solvable at very low cost, is the threshold dynamics algorithm for motion by

mean curvature [29, 30] that is known to be unconditionally energy stable [15]. We

show in chapter IV how ideas developed in the present chapter can be used to jack

up the order of accuracy of this intriguing algorithm while preserving its desirable

stability properties, which appears to be beyond the scope of previous contributions.

See also remark II.6 of section 2.5.2 in this context. Finally, we also mention recent

work on the scalar auxiliary variable method [42] as another approach focusing on

unconditional energy stability for gradient flows.

The rest of the chapter is organized as follows:

• section 2.2 presents the general framework for the new scheme, focusing on

unconditional energy stability.

• section 2.3 focuses on consistency, showing how to attain 2nd and 3rd order

accuracy.

• section 2.4 gives 2nd and 3rd order examples of the new schemes.

15

• section 2.5 presents numerical convergence studies on a number of well-known

ordinary and partial differential equations that are gradient flows.

The code for section 2.5 is publicly available, and can be found at https://github.

com/AZaitzeff/gradientflow.

2.2 The New Schemes: Stability

In this section, we formulate a wide class of numerical schemes that are energy

stable by construction. We thus place stability front and center, leaving consistency

to be dealt with subsequently. It is therefore important to allow many degrees of

freedom in the scheme at this stage, in the form of a large number of coefficients,

that will eventually be chosen, in the next section, to attain consistency at a high

order of accuracy.

Our method is a linear M -stage scheme of the following form:

1. Set U0 = un

2. For m = 1, . . . ,M :

(2.6) Um = arg min
u

(
E(u) +

m−1∑
i=0

γm,i
2k
||u− Ui||2

)
.

3. Set un+1 = UM

Notice that the proposed scheme (2.6), as promised, merely requires the solution

of exactly the same type of problem at every time step as the standard backward

Euler scheme: minimization of the associated energy plus a quadratic term.

At this point, it is not clear why a scheme such as (2.6) should dissipate energy

E at every iteration as in (2.2). However, in this section we establish quite broad

conditions on the coefficients γm,i that ensure energy dissipation (2.2); this is the

essential observation at the heart of the present chapter. To demonstrate the idea,

https://github.com/AZaitzeff/gradientflow
https://github.com/AZaitzeff/gradientflow

16

consider the following two-stage special case of scheme (2.6):

U1 = arg min
u

(
E(u) +

γ1,0

2k
||u− un||2

)
(2.7)

un+1 = arg min
u

(
E(u) +

γ2,0

2k
||u− un||2 +

γ2,1

2k
||u− U1||2

)
(2.8)

and impose the conditions

(2.9) γ1,0 −
γ2

2,0

γ2,0 + γ2,1

≥ 0 and γ2,0 + γ2,1 > 0

on the parameters. Set θ = γ2,0

γ2,0+γ2,1
. Note that (2.8) is equivalent to

(2.10) un+1 = arg min
u

(
E(u) +

γ2,0 + γ2,1

2k

∥∥u− (θun + (1− θ)U1

)∥∥2
)
.

This can be seen by expanding the norm squared and comparing the quadratic

and linear terms in u. The constant terms are not equal but that does not matter

for the minimization.

We have

E(un+1) ≤ E(un+1) +
γ2,0 + γ2,1

2k

∥∥un+1 −
(
θun + (1− θ)U1

)∥∥2
(by (2.9))

≤ E(U1) +
γ2,0 + γ2,1

2k

∥∥U1 −
(
θun + (1− θ)U1

)∥∥2
(by (2.10))

= E(U1) +
γ2

2,0

(γ2,1 + γ2,0)2k
‖U1 − un‖2

≤ E(U1) +
γ1,0

2k
‖U1 − un‖2 (by (2.9))

≤ E(un) (by (2.7))

establishing unconditional energy stability of scheme (2.7) and (2.8) under the

condition (2.9) on its parameters. We offer some insight to the conditions in (2.9).

First, the condition γ2,0 +γ2,1 > 0 is reasonable as it requires that the function being

17

minimized in (2.8) goes to +∞ as ||u|| → ∞. What is more surprising is that one

of the second stage coefficients can be negative while maintaining unconditionally

stability. We can ‘reward’ the distance to one of the previous stages as long as

the distance to the other stage is penalized sufficiently strongly. The condition

γ1,0 ≥
γ2

2,0

γ2,0+γ2,1
requires that the penalization in the first stage has to be strong

relative to the penalization in the second stage.

We will now extend this discussion to the general, M -stage case of scheme (2.6):

Theorem II.1. Define the following auxiliary quantities in terms of the coefficients

γm,i of scheme (2.6):

γ̃m,i = γm,i −
M∑

j=m+1

γ̃j,i
S̃j,m

S̃j,j
(2.11)

S̃j,m =
m−1∑
i=0

γ̃j,i(2.12)

Where if m = M , the sum in (2.11) is considered to be zero. If S̃m,m > 0 for

m = 1, . . . ,M , then scheme (2.6) satisfies the energy stability condition (2.2): For

every n = 0, 1, 2, . . . we have E(un+1) ≤ E(un).

As we will see in section 2.3, the conditions on the parameters γi,j of scheme (2.6)

imposed in theorem II.1 are loose enough to enable meeting consistency conditions

to high order. We will establish theorem II.1 with the help of the following two

lemmas. The first lemma is the multi-step version of the equivalence of (2.8) and

(2.10) in our two step example:

Lemma II.2. Let the auxiliary quantities S̃j,m, and γ̃m,i be defined as in theorem II.1.

18

We have

arg min
u

(
E(u) +

m−1∑
i=0

γm,i
2k
||u− Ui||2

)

= arg min
u

(
E(u) +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2

)
Proof. As in the two step case the proof consists of expanding the norm squared

terms and showing that all the quadratic and linear terms of u are equal. First the

expansion of
∑m−1

i=0
γm,i
2k
||u− Ui||2 is

||u||2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.(2.13)

Next, we will establish two identities to help us expand

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2.

First by rearranging (2.11),

(2.14) γm,i =
M∑
j=m

γ̃j,i
S̃j,m

S̃j,j
.

Next, an identity of S̃m,m:

S̃m,m =
m−1∑
i=0

γ̃m,i =
m−1∑
i=0

[
γm,i −

M∑
j=m+1

γ̃j,i
S̃j,m

S̃j,j

]

=
m−1∑
i=0

γm,i −
M∑

j=m+1

[m−1∑
i=0

γ̃j,i

]
S̃j,m

S̃j,j
=

m−1∑
i=0

γm,i −
M∑

j=m+1

S̃2
j,m

S̃j,j
.

We use this identity to establish the following:

(2.15)
M∑
j=m

S̃2
j,m

S̃j,j
= S̃m,m +

M∑
j=m+1

S̃2
j,m

S̃j,j
=

m−1∑
i=0

γm,i −
M∑

j=m+1

S̃2
j,m

S̃j,j
+

M∑
j=m+1

S̃2
j,m

S̃j,j
=

m−1∑
i=0

γm,i.

19

Now we can calculate the expansion:

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2

=
||u||2

2k

M∑
j=m

S̃2
j,m

S̃j,j
− 1

k
〈u,

m−1∑
i=0

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j
Ui〉+ terms that do not depend on u

=
||u||2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.

Where the last equality follows from (2.14) and (2.15). Since this expansion matches

(2.13) up to a constant in u the proof is complete.

Now we will use lemma II.2 to relate the energy of sub-step m to sub-step m− 1.

This lemma is the crux of the proof of the theorem and where we use the condition

that S̃m,m > 0 for all m.

Lemma II.3. Let the auxiliary quantities S̃j,m, γ̃m,i be given in theorem II.1 and let

S̃m,m > 0 for m = 1, . . . ,M . Then

E(Um) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||Um −

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2

≤E(Um−1) +
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j
||Um−1 −

m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2

Proof. By (2.6) and lemma II.2,

Um = arg min
u

E(u) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2.

Since Um is the minimizer of the above optimization problem

20

E(Um) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||Um −

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2(2.16)

≤ E(Um−1) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||Um−1 −

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2(2.17)

Next using the definition of auxiliary variables we can state an identity that will

simplify (2.17). For m > 1 and j ≥ m

S̃2
j,m

S̃j,j
||Um−1 −

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2 =

S̃2
j,m

S̃j,j
||Um−1

(
1− γ̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m
Ui||2

=
S̃2
j,m

S̃j,j
||Um−1

(
S̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m
Ui||2 =

S̃2
j,m−1

S̃j,j
||Um−1 −

m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2.

Using this identity (2.17) is equal to

(2.18) E(Um−1) +
1

2k

M∑
j=m

S̃2
j,m−1

S̃j,j
||Um−1 −

m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2

Now since S̃m−1,m−1 > 0,

(2.19)
S̃2
m−1,m−1

S̃m−1,m−1

||Um−1 −
m−2∑
i=0

γ̃m−1,i

S̃m−1,m−1

Ui||2 > 0.

By adding (2.19) to (2.18), we have that (2.18) is less than or equal to

E(Um−1) +
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j
||Um−1 −

m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2

concluding the proof.

Proof. (of theorem) The main idea of the proof is to use lemma II.3 repeatedly to

relate the energy of E(un+1) to E(un). First, since S̃M,M > 0

E(un+1) = E(UM) ≤ E(UM) +
1

2k

S̃2
M,M

S̃M,M

||UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui||2

21

The right hand side of the equation is of the form required by lemma II.3. By using

the lemma II.3 repeatedly we have

E(UM) +
1

2k

S̃2
M,M

S̃M,M

||UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui||2

≤E(UM−1) +
1

2k

M∑
j=M−1

S̃2
j,M−1

S̃j,j
||UM−1 −

M−2∑
i=0

γ̃j,i

S̃j,M−1

Ui||2

...

≤E(U1) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j
||U1 −

γ̃j,0

S̃j,1
U0||2.

By (2.6) and lemma II.2

U1 = arg min
u

E(u) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j
||u− γ̃j,0

S̃j,1
U0||2

so

E(U1) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j
||U1 −

γ̃j,0

S̃j,1
U0||2 ≤ E(U0) +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j
||U0 − U0||2 = E(un)

completing the proof of the theorem.

Now the condition that S̃m,m > 0 for m = 1, . . . ,M is the multi-step equivalent of

(2.9) in the two step case. Given the γ’s you can calculate the auxiliary quantities

(2.11) and (2.12) explicitly as follows:

for m = M,M − 1, . . . , 1:

1. Calculate γ̃m,i for i = 1, 2, . . . ,m

2. Calculate S̃j,m for j = m,m+ 1, . . . ,M .

Thus given γ’s we can easily check if they satisfy the hypothesis of theorem II.1.

22

2.3 The New Schemes: Consistency

We now turn to the question of whether the coefficients γm,i in scheme (2.6) can

be chosen to ensure its high order consistency with the abstract evolution law (2.1).

As mentioned before, the schemes are diagonal implicit Runge-Kutta, whose order

conditions are well established (for example in [5]). For completeness, we derive the

conditions here. From (2.6), each stage Um satisfies the Euler-Lagrange equation:

(2.20)

[m−1∑
i=0

γm,i

]
Um + k∇HE(Um) =

m−1∑
i=0

γm,iUi.

The consistency equations for the γs are found by carrying out a Taylor series

expansion of Um around U0 = u(t0). We will calculate the one-step error. For

n ∈ {1, 2, 3, . . .}, let DnE(u) : Hn → R denote the multilinear form given by

DnE(u)(v1, . . . , vn) =
∂n

∂s1 · · · ∂sn
E(u+ s1v1 + s2v2 + · · ·+ snvn)

∣∣∣∣
s1=s2=···=sn=0

so that the linear functional DnE(u)(v1, v2, . . . , vn−1, ·) : H → R may be identified

with an element of H, which will be denoted simply as DnE(v1, v2, . . . , vn−1) in what

follows. We begin with the exact solution starting from u(t0):
ut = −∇E(u) t > t0

u(t0) = U0

The Taylor expansion of u(k + t0) around t0 is

u(k + t0) =u(t0) + kut(t0) +
1

2
k2utt(t0) +

1

6
k3uttt(t0) + h.o.t.

=U0 − kDE(U0) +
1

2
k2D2E(U0)DE(U0)

− 1

6
k3
[
D2E(U0)

(
D2E(U0) (DE(U0))

)
+D3E(U0)

(
DE(U0), DE(U0)

)]
+ h.o.t.

(2.21)

23

We now present the error at each stage of the multi-stage algorithm, (2.6), and

the conditions required to achieve various orders of accuracy:

Claim II.4. Let Um be given in (2.6) for m = 0, 1, . . . ,M . The Taylor expansion of

Um at each stage has the same form as (2.21), namely:

(2.22) Um = U0 − β1,mkDE(U0) + β2,mk
2D2E(U0)DE(U0)

−k3
[
β3,mD

2E(U0)
(
D2E(U0) (DE(U0))

)
+β4,mD

3E(U0)
(
DE(U0), DE(U0)

)]
+O(k4)

where the coefficients obey the following recursive relation

β1,0 = β2,0 = β3,0 = β4,0 = 0

β1,m =
1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]

β2,m =
1

Sm

[
β1,m +

m−1∑
i=1

γm,iβ2,i

]

β3,m =
1

Sm

[
β2,m +

m−1∑
i=1

γm,iβ3,i

]

β4,m =
1

Sm

[
β2

1,m

2
+

m−1∑
i=1

γm,iβ4,i

]

(2.23)

with Sm =
∑m−1

i=0 γm,i. Furthermore, the following conditions for UM in scheme (2.6)

are necessary and sufficient for various orders of accuracy:

First Order: Second Order: Third Order:

β1,M = 1 β1,M = 1 β1,M = 1

β2,M = 1/2 β2,M = 1/2(2.24)

β3,M = 1/6

β4,M = 1/6

24

Proof. We will now show by induction that the aforementioned consistency formulas,

(2.22) and (2.23), hold.

Stage zero: U0 trivially satisfies (2.22) and (2.23).

Stage m: Assume (2.22) and (2.23) up to stage m − 1. First we are going to

solve for Um − U0 in (2.20):

Um − U0 =− k

Sm
DE(Um) +

1

Sm

m−1∑
i=0

γm,iUi − U0.(2.25)

Now Taylor expand DE(Um) around U0 in (2.25):

Um − U0 =− k

Sm

[
DE(U0) +D2E(U0)(Um − U0) +

1

2
D3E(U0)

(
Um − U0, Um − U0

)]
+

1

Sm

m−1∑
i=0

γm,iUi − U0 + h.o.t.

Substituting the ansatz U0 + kA1 + k2A2 + k3A3 + O(k4) for Um and equation

(2.22) for Ui, and retaining up to terms of third order, we have that

kA1 + k2A2 + k3A3 =

− k

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]
DE(U0) + k2

[
1

Sm
D2E(U0)

(
− A1 +

m−1∑
i=1

γm,iβ2,iDE(U0)
)]

− k3

[
1

Sm
D2E(U0)

(
A2 +

m−1∑
i=1

γm,iβ3,iD
2E(U0)DE(U0)

)
+

1

2

1

Sm
D3E(U0)

(
A1, A1

)
+

1

Sm

m−1∑
i=1

γm,iβ4,iD
3E(U0)

(
DE(U0), DE(U0)

)]
+O(k4)

(2.26)

Solving for A1, A2, A3 by matching terms of the same order in (2.26), we arrive

25

at:

A1 =− 1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]
DE(U0)

A2 =
1

Sm
D2E(U0)

(
− A1 +

m−1∑
i=1

γm,iβ2,iDE(U0)
)

=

(
1

S2
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]
+

1

Sm

m−1∑
i=1

γm,iβ2,i

)
D2E(U0)

(
DE(U0)

)
A3 =− 1

Sm
D2E(U0)

(
A2 +

m−1∑
i=1

γm,iβ3,iD
2E(U0)DE(U0)

)
− 1

2

1

Sm
D3E(U0)

(
A1, A1

)
− 1

Sm

m−1∑
i=1

γm,iβ4,iD
3E(U0)

(
DE(U0), DE(U0)

)
= −

(
1

S3
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]
+

1

S2
m

m−1∑
i=1

γm,iβ2,i

+
1

Sm

m−1∑
i=1

γm,iβ3,i

)
D2E(U0)

(
D2E(U0) (DE(U0))

)
−
(

1

2

1

S3
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]2

+
1

Sm

m−1∑
i=1

γm,iβ4,i

)
D3E(U0)

(
DE(U0), DE(U0)

)

completing the induction step.

Matching the consistency equations, (2.22) and (2.23), at UM with the one step

error (2.21) gives the conditions on UM for various orders of accuracy (2.24), com-

pleting the proof.

In the next section, we give examples of γ’s that satisfy the consistency equations

(claim II.4) as well as the hypothesis of theorem II.1 concurrently.

2.4 The New Schemes: Examples

In this section, we exhibit second and third order examples of scheme (2.6) that

satisfy concurrently the hypothesis guaranteeing unconditional energy stability (the-

orem II.1) and the consistency equations (claim II.4) up to second and third order.

26

We found the γ’s by the following numerical procedure: we first found a set of γ’s

that satisfied the conditions of theorem II.1. Then we used the interior point method

with the conditions of theorem II.1 as our constraint and an objective function that

penalized the mismatch between the current β1,M and β2,M (and β3,M and β4,M for

third order) and (2.24). After obtaining γ’s that satisfied the consistency equations

up to some small tolerance as well as our constraint, we sought a nearby algebraic so-

lution to the consistency equations that still satisfied the conditions in theorem II.1.

For some number of stages M , it is impossible to satisfy the consistency equation

for a given order and the stability conditions. Therefore, we searched for γ’s that

encoded stable algorithms of various orders with different total number of stages and

report a set of γ’s with the lowest number of stages for a given order here. Using this

method we were able to find second and third order stable schemes. Whether even

higher order accuracy (together with stability) can be obtained with this class of

schemes will require a more systematic approach to the solvability of the conditions

on γ, and will be the subject of future work.

2.4.1 Second Order Examples

It can be shown that there is no unconditionally energy stable second order two-

stage method. However, it turns out that three stages are sufficient for unconditional

stability:

(2.27) γ =

 γ1,0 0 0
γ2,0 γ2,1 0
γ3,0 γ3,1 γ3,2

 =

 5 0 0
−2 6 0
−2 3

14
44
7

 ≈
 5.0 0 0
−2.0 6.0 0
−2.0 0.22 6.29

 .

This choice of γ’s that endows the three-stage method (2.6) with unconditional

stability and second order accuracy is by no means unique; indeed, here is another

that has the additional benefit of having each one of its stages depend only on the

previous one and un:

27

(2.28) γ =

 9
2

0 0
− 11

6
44
7

0
− 287591

148306
0 944163

148306

 ≈
 4.5 0 0
−1.83 6.29 0
−1.94 0 6.37

 .

2.4.2 Third Order Example

We now exhibit a six stage version of scheme (2.6) that concurrently satisfies the

conditions for unconditional energy stability (theorem II.1) as well the consistency

equations (claim II.4) up to third order:

γ ≈


11.17 0 0 0 0 0
−7.5 19.43 0 0 0 0
−1.05 −4.75 13.98 0 0 0

1.8 0.05 −7.83 13.8 0 0
6.2 −7.17 −1.33 1.63 11.52 0
−2.83 4.69 2.46 −11.55 6.68 11.95

(2.29)

The exact values of the γ’s above are given in the appendix (chapter A); they are

all rational numbers but with long fractional representations. Again, we cannot rule

out other solutions for γ, possibly with fewer stages.

2.5 The New Schemes: Numerical Tests

In this section, we will apply the second order (2.27) and third (2.29) order accu-

rate unconditionally stable schemes to a variety of gradient flows. We found (2.27)

before (2.28) and therefore ran all our numerical tests with the former. The gradient

flows considered span linear and non-linear ordinary and partial differential equa-

tions. The corresponding energies include convex and non-convex forms. Careful

numerical convergence studies are presented in each case to verify the anticipated

convergence rates of previous sections.

Remark II.5. Note that equation (2.6) can be rewritten using only one quadratic

movement limiter term, so a black box implementation for backward Euler (2.3), or

equivalently (2.4), is all that is needed for our method, and is called once per stage.

28

2.5.1 Ordinary Differential Equations

First, we turn to the ODE u′ = − sinh(u) with the corresponding energy E(u) =

cosh(u). With initial condition u(0) = −2, the exact solution is u∗(t) = −2 coth−1(exp(t) coth(1)).

Table 2.1 and table 2.2 show the error in the solution at time t = 2 computed by

the second order scheme (2.6) & (2.27) and the third order scheme (2.6) & (2.29),

respectively, at various choices of the time step size. The anticipated order of con-

vergence is clearly observed for both schemes. Figure 2.1 shows the energy at every

time step for the third order method with 16 time steps. As expected, the energy

decreases at every time step. There is little visual difference between fig. 2.1, the

plot of the second order method with 16 time steps and the plot of the exact energy.

Number of
time steps 24 25 26 27 28

Error at t = 2 5.25e-04 1.31e-04 3.27e-05 8.18e-06 2.05e-06
Order - 2.00 2.00 2.00 2.00

Table 2.1: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the ODE u′ = − sinh(u) with energy E(u) = cosh(u).

Number of
time steps 24 25 26 27 28

Error at t = 2 1.19e-05 1.48e-06 1.85e-07 2.30e-08 2.88e-09
Order - 3.00 3.00 3.00 3.00

Table 2.2: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the ODE u′ = − sinh(u) with energy E(u) = cosh(u).

We next turn to an ODE with the non-smooth energy

(2.30) E(u) =


1
2
|u| if |u| < 1

|u− 1|+ 1
2

if |u| ≥ 1.

Since the energy is non-smooth we do not expect higher order convergence. As shown

in fig. 2.2, the second (2.6) & (2.27) and third order scheme (2.6) & (2.29) obtain

29

Figure 2.1: The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE on the
ODE u′ = − sinh(u) with energy E(u) = cosh(u)

first order convergence on average. Notwithstanding, the energy decreases at every

time step as shown in fig. 2.3 for the third order method with 16 time steps.

Figure 2.2: The new second order accurate, unconditionally stable, three-stage scheme (2.6) &
(2.29) (right) and the new third six-stage scheme (2.6) & (2.29) (left) on the ODE
induced by gradient flow on non smooth energy (2.30)

2.5.2 Partial Differential Equations

For PDEs, we start with a preliminary test on the one dimensional heat equation

ut = uxx on x ∈ [−1, 1] subject to periodic boundary conditions with initial data

u(x, 0) = sin(πx). This is gradient flow with respect to the L2 inner product for the

energy E(u) = 1
2

∫
u2
x dx. The exact solution is u∗(x, t) = sin(πx) exp(−π2t). The

spatial domain [−1, 1]. For this example as well as the other PDEs in this section, we

30

Figure 2.3: The new third order six-stage scheme (2.6) & (2.29) with 16 time steps on the ODE
induced by gradient flow on non smooth energy (2.30)

choose the discretization of the Laplacian and number of spatial points so that the

contribution to the error from the spatial discretization is negligible. Table 2.3 and

table 2.4 show the L2 error in the approximate solution at t = 1
8
, computed via the

second order accurate scheme (2.6) & (2.27), and the third order accurate scheme

(2.6) & (2.29), respectively. Figure 2.4 shows the energy at every time step for the

third order method with 16 time steps. We see that the energy decreases at every

time step.

Number of
time steps 22 23 24 25 26 27

L2 1.09e-03 2.66e-04 6.59e-05 1.64e-05 4.09e-06 1.02e-06
Order - 2.03 2.01 2.01 2.00 2.00

Table 2.3: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the one-dimensional heat equation ut = uxx.

Number of
time steps 22 23 24 25 26 27

L2 2.30e-05 2.75e-06 3.36e-07 4.16e-06 5.17e-09 6.37e-10
Order - 3.06 3.03 3.02 3.01 3.02

Table 2.4: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the one-dimensional heat equation ut = uxx.

We now turn to less trivial examples, starting with the Allen-Cahn equation

(2.31) ut = ∆u−W ′(u)

31

Figure 2.4: The new third six-stage scheme (2.6) & (2.29) with 16 time steps on the one-dimensional
heat equation ut = uxx

Figure 2.5: The double well potentials used in the Allen-Cahn (2.31) and Cahn-Hilliard (2.33)
equations: One with unequal and the other with equal depth wells.

where W : R→ R is a double-well potential. This is gradient flow for the energy

(2.32) E(u) =

∫
1

2
|∇u|2 +W (u) dx

with respect to the L2 inner product.

First, we consider equation (2.31) in one space dimension, with the potential

W (u) = 8u− 16u2 − 8
3
u3 + 8u4. This is a double well potential with unequal depth

wells; see fig. 2.5. In this case, equation (2.31) is well-known to possess traveling wave

solutions on x ∈ R, see fig. 2.6. We choose the initial condition u(x, 0) = tanh(4x+

20); the exact solution is then u∗(x, t) = tanh(4x + 20 − 8t). The computational

domain is x ∈ [−10, 10]. We approximate the solution on R by using the Dirichlet

boundary conditions u(±10, t) = ±1: The domain size is large enough that the

mismatch in boundary conditions do not substantially contribute to the error in

the approximate solution over the time interval t ∈ [0, 5]. Table 2.5 and table 2.6

32

Figure 2.6: The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (2.31) with a potential that has
unequal depth wells.

Number of
time steps 27 28 29 210 211 212

L2 5.14e-02 1.26e-02 3.13e-03 7.79e-04 1.94e-04 4.86e-05
Order - 2.02 2.01 2.01 2.00 2.00

Table 2.5: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the one-dimensional Allen-Cahn equation (2.31) with a traveling wave solution.

tabulate the error in the computed solution at time t = 5 for our two new schemes.

Number of
time steps 27 28 29 210 211 212

L2 9.06e-04 9.97e-05 1.20e-05 1.48e-06 1.85e-07 2.37e-08
Order - 3.18 3.06 3.02 3.00 2.97

Table 2.6: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the one-dimensional Allen-Cahn equation (2.31) with a traveling wave solution.

Next, we consider the Allen-Cahn equation (2.31) in two space dimensions, with

the potential W (u) = u2(1−u)2 that has equal depth wells; see fig. 2.5. We take the

initial condition u(x, y, 0) = 1

1+exp[−(7.5−
√
x2+y2)]

on the domain x ∈ [−10, 10]2, and

impose periodic boundary conditions. We run the system to find u at t = 20, (fig. 2.7

shows u at t = 0 and t = 20). As a proxy for the exact solution of the equation

with this initial data, we compute a very highly accurate numerical approximation

u∗(x, y, t) via the following second order accurate in time, semi-implicit, multi-step

33

Figure 2.7: Initial condition and the solution at final time for the 2D Allen-Cahn equation with a
potential that has equal depth wells.

Number of
time steps 25 26 27 28 29 210

L2 3.43e-03 8.73e-04 2.21e-04 5.55e-05 1.39e-05 3.49e-06
Order - 1.98 1.98 1.99 1.99 2.00

Table 2.7: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the two-dimensional Allen-Cahn equation (2.31) with a potential that has equal depth
wells.

scheme [7] on an extremely fine spatial grid and take very small time steps:

3

2
un+1 − 2un +

1

2
un−1 = k∆un+1 − k(2W ′(un)−W ′(un−1)).

Table 2.7 and table 2.8 show the errors and convergence rates for the approximate

solutions computed by our new multi-stage schemes.

Number of
time steps 23 24 25 26 27 28

L2 4.60e-03 5.41e-04 6.44e-05 7.98e-06 1.02e-06 1.33e-07
Order - 3.09 3.07 3.01 2.97 2.94

Table 2.8: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.29) on
the two-dimensional Allen-Cahn equation (2.31) with a potential that has equal depth
wells.

As a final example, we consider the Cahn-Hilliard equation

(2.33) ut = −∆
(
∆u−W ′(u)

)
where we take W to be the double well potential W (u) = u2(1−u)2 with equal depth

34

Figure 2.8: Initial condition and the solution at final time for the 2D Cahn-Hilliard equation with
a potential that has equal depth wells.

Number of
time steps 22 23 24 25 26

L2 1.16e-03 2.62e-04 6.41e-05 1.64e-05 4.22e-06
Order - 2.15 2.03 1.97 1.95

Table 2.9: The new second order accurate, unconditionally stable, three-stage scheme (2.6) & (2.27)
on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that has equal
depth wells.

wells and impose periodic boundary conditions. This flow is also gradient descent

for energy (2.32), but with respect to the H−1 inner product:

〈u , v 〉 =

∫
u∆−1v dx.

Starting from the initial condition u(x, y, 0) = 1

1+exp[−(5−
√
x2+2y2)]

and running the

system until t = 20 (see fig. 2.8). We computed a proxy for the “exact” solution once

again using the second order accurate, semi-implicit multi-step scheme from [7] [43]:

3

2
un+1 − 2un +

1

2
un−1 = −k∆[∆un+1 − k(2W ′(un)−W ′(un−1))]

where the spatial and temporal resolution was taken to be high to ensure the errors

are low. Table 2.9 and table 2.10 show the errors and convergence rates for the

approximate solutions computed by our new multi-stage schemes.

Remark II.6. As further evidence of the generality and flexibility of the new schemes

introduced in this chapter, we note that they can also be used to jack up the order of

35

Number of
time steps 22 23 24 25

L2 2.20e-04 4.12e-05 6.73e-06 1.05e-06
Order - 2.42 2.62 2.67

Table 2.10: The new third order accurate, unconditionally stable, six-stage scheme (2.6) & (2.27)
on the two-dimensional Cahn-Hilliard equation (2.33) with a potential that has equal
depth wells.

accuracy in time of less conventional numerical algorithms such as threshold dynamics

[29, 30]. Also known as diffusion generated motion, threshold dynamics is an uncon-

ditionally stable algorithm for simulating the motion of interfaces by mean curvature,

merely by alternating the two simple steps of convolution and thresholding. It was

given a variational formulation in [15] that exhibits it as carrying out an approximate

minimizing movements procedure at every time step. Although the stability calcula-

tion of section 2.2 applies verbatim, the consistency calculations of section 2.3 have

to be redone. This is because (a) motion by mean curvature, although formally a

gradient flow on perimeter, does not quite fit the classical formulation (2.1), and (b)

the variational formulation in [15] shows that threshold dynamics carries out mini-

mizing movements for approximately the right energy with respect to approximately

the right metric: these additional errors have to be taken into account. Due to the

substantial modifications to the consistency calculation required, extension of the

new schemes to enhancing the order of accuracy of threshold dynamics will be taken

up in chapter IV.

2.6 Conclusion

We presented a class of unconditionally stable, high order in time schemes for

gradient flows. The new schemes can be thought of as a variational analogue of

Richardson extrapolation: they enable jacking up the order of accuracy of standard

backward Euler method, while maintaining its unconditional stability, at the expense

36

of taking multiple backward Euler time substeps per full time step. What results is a

universal method to jack up the accuracy to at least third order in time whenever a

blackbox implementation of the standard backward Euler scheme is available, while

increasing overall complexity by only a constant factor. We demonstrated the method

and its advertised accuracy on a number of linear and nonlinear ODEs and PDEs.

Whether this class of schemes can be used to achieve arbitrarily high (i.e. ≥ 4)

order in time accuracy will be the topic of a future investigation.

CHAPTER III

Variational Extrapolation of Semi-Implicit Schemes for
General Gradient Flows for Fixed and Solution Dependent

Inner Products

3.1 Introduction

This chapter is an extension of the ideas we developed in chapter II. Once again, we

are concerned with numerical schemes for evolution equations that arise as gradient

flow for an energy f : H → R, where H is a Hilbert space with inner product 〈·, ·〉:

(3.1) u′ = −∇HE(u).

Additionally, we will study gradient flows with a solution dependent inner product:

(3.2) u′ = −L(u)∇HE(u)

where L(u) is a positive definite operator that depends on u. One property of (3.1)

and (3.2) is dissipation: d
dt
E(u) ≤ 0, to see this

d

dt
E(u) = 〈∇HE(u), u′〉 = −〈∇HE(u),L(u)∇HE(u)〉 ≤ 0.

In chapter II, we focused on unconditionally stable numerical methods to solve (3.1).

In this chapter, our first focus is on conditionally energy stable, semi-implicit meth-

ods. Specifically, let

E(u) = E1(u) + E2(u)

37

38

where in our numerical implementation we will handle E1 implicitly and E2 explicitly.

Our numerical methods will guarantee that when the time step is less than a constant

depending only on E2 the following numerical dissipation property will hold:

(3.3) E(un+1) ≤ E(un)

where un denotes the approximation to the solution at the n-th time step. In the

context of PDEs, where H is infinite dimensional, we are concerned with discrete in

time, continuum in space schemes.

A basic semi-implicit scheme for the abstract equation (3.1), with time step size

k > 0, reads

(3.4)
un+1 − un

k
= −∇HE1(un+1)−∇HE2(un).

Let L2(u, un) be the linearization of E2 around un so

L2(u, un) = E2(un) + 〈∇HE2(un), u− un〉

Then (3.4) is the Euler-Lagrange equation for the optimization problem

(3.5) un+1 = arg min
u

E1(u) + L2(u, un) +
1

2k
‖u− un‖2

where ‖ · ‖2 = 〈·, ·〉. For

(3.6) Λ = max{0, max
u,‖v‖=1

D2E2(u)
(
v, v
)
}

where by D2E2(u)
(
v, w

)
we mean d2

dε2dε1
E2(u+ ε1v + ε2w) we have

(3.7) E2(u) ≤ L2(u, p) +
Λ

2
‖u− p‖2 .

for any u and p. It follows that when k ≤ 1
Λ

E(un+1) = E1(un+1) + E2(un+1) ≤ E1(un+1) + L2(un+1, un) +
1

2k
‖un+1 − un‖2

≤ E1(un) + L2(un, un) +
1

2k
‖un − un‖2 = E1(un) + E2(un) = E(un)

39

so that scheme (3.4) is conditionally stable. These methods are equivalent to implicit-

explicit additive Runge-Kutta (ARK IMEX) [1]. There are unconditionally energy

stable ARK IMEX that rely on convexity splitting, the case where E1 convex and

E2 concave [44]. Our class of methods have no assumption (e.g. convexity) on the

implicit and explicit energies (E1 and E2), are conditional energy stability and high

(at least up to third) order accuracy. Additionally, each time step requires a few

standard minimizing movements solves, equivalent to semi-implicit substeps. This

allows our schemes to effortlessly increase the order of existing stable semi-implicit

methods.

Our second focus is on extending implicit and semi-implicit methods for general

gradient flows to solve (3.2), the case when the inner product is solution dependent.

There are stable methods for (3.2) on case by case basis, for example Cahn-Hillard

with degenerate mobility [8, 22] and the porous medium equation [10, 11, 47]. To

our knowledge, this is the first time energy stable methods for general gradient flows

with solution dependent inner products have been considered.

The rest of the chapter is organized as follows:

• Section 3.2 presents and proves the conditions for conditional energy stability

for our schemes.

• Section 3.3 states the consistency equations for the ARK IMEX schemes for

solving gradient flows (3.1) and gives 2nd and 3rd order examples.

• Section 3.4 gives 2nd and 3rd order methods for solving gradient flows with

solution dependent inner product (3.2) and provides consistency calculations.

• Section 3.5 presents numerical convergence studies several of well-known partial

differential equations that are gradient flows.

The code for section 3.5 is publicly available, and can be found at https://github.

https://github.com/AZaitzeff/SIgradflow

40

com/AZaitzeff/SIgradflow.

3.2 Stability of Our New Schemes

In this section, we formulate a wide class of numerical schemes that are energy

stable by construction. The first of these schemes are Implicit-Explicit Additive

Runge-Kutta (ARK IMEX) schemes, but we will write the schemes in what we will

call minimizing movements form in order to prove energy stability more easily. The

minimizing movement form of the M -stage of an ARK IMEX scheme is:

1. Set U0 = un.

2. For m = 1, . . . ,M :

(3.8) Um = arg min
u

(
E1(u) +

m−1∑
i=0

θm,iL2(u, Ui) +
m−1∑
i=0

γm,i
2k
‖u− Ui‖2

)
.

where

(3.9) L2(u, p) = E2(p) + 〈∇HE2(p), u− p〉

3. Set un+1 = UM .

The schemes for solving a gradient flow with solution dependent inner product are

a series of embedded ARK IMEX methods. The norm is fixed for each ARK IMEX

step allowing the stability results of this section to apply schemes for solving (3.2).

Now we establish quite broad conditions on the coefficients γm,i θm,i that ensure

conditional energy dissipation (3.3). Before we state and prove the conditions in

generality, consider the following two-stage special case of scheme (3.8):

https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow

41

U1 = arg min
u

(
E1(u) + L2(u, un) +

γ1,0

2k
‖u− un‖2

)
(3.10)

un+1 = arg min
u

(
E2(u) + θ2,1L2(u, U1) + θ2,0L2(u, un)

+
γ2,0

2k
‖u− un‖2 +

γ2,1

2k
‖u− U1‖2

)(3.11)

Let Λ = max{0,maxx,‖v‖=1 D
2E2(x)

(
v, v
)
}. Note that this implies

(3.12) E2(u) ≤ L2(u, p) +
Λ

2
‖u− p‖2

for any u and p. Also note that L2(u, u) = E2(u). Impose the conditions

γ1,0 − kΛ− (γ2,0 − kΛθ2,0)2

(γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1)
≥ 0,

γ2,1 + γ2,0 − kΛθ2,0 − kΛθ2,1 > 0,

θ2,1 + θ2,0 = 1 and

θ2,1, θ2,0 ≥ 0

(3.13)

on the parameters. Set µ = γ2,0−kΛθ2,0
γ2,0+γ2,1−kΛθ2,0−kΛθ2,1

. First note that (3.11) is equiva-

lent to

(3.14) un+1 = arg min
u

E1(u) + θ2,1L2(u, U1) + θ2,0L2(u, un) + θ2,0Λ ‖u− un‖2 +

θ2,1Λ ‖u− U1‖2 +
γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1

2k

∥∥u− (µun + (1− µ)U1

)∥∥2
.

This can be seen by expanding the norm squared and comparing the quadratic

and linear terms in u. With these tools in hand we can prove energy dissipation:

42

E(un+1)

=E1(un+1) + E2(un+1)

≤E1(un+1) + θ2,1[L2(un+1, U1) +
Λ

2
‖un+1 − U1‖2]

+ θ2,0[L2(un+1, un) +
Λ

2
‖un+1 − un‖2] (by (3.12))

≤E1(un+1) + θ2,1[L2(un+1, U1) +
Λ

2
‖un+1 − U1‖2]

+ θ2,0[L2(un+1, un) +
Λ

2
‖un+1 − un‖2]

+
γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1

2k

∥∥un+1 −
(
µun + (1− µ)U1

)∥∥2
. (by (3.13))

≤E1(U1) + θ2,1E2(U1) + θ2,0[L2(U1, un) +
Λ

2
‖U1 − un‖2]

+
γ2,0 + γ2,1 − Λθ2,0 − Λθ2,1

2k

∥∥U1 −
(
µun + (1− µ)U1

)∥∥2
(by (3.14))

≤E1(U1) + θ2,1[L2(U1, un) +
Λ

2
‖un+1 − un‖2]

+ θ2,0[L2(U1, un) +
Λ

2
‖U1 − un‖2]

+
(γ2,0 − kθ2,0)2

(γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1)2k
‖U1 − un‖2

≤E1(U1) + [L2(U1, un) +
Λ

2
‖U1 − un‖2] +

γ1,0 − kΛ

2k
‖U1 − un‖2 (by (3.12))

≤E(un). (by (3.10))

The first two conditions (3.13) require k to below a certain threshold. Hence the

dissipation of (3.10) & (3.11) is conditional.

We will now extend this discussion to general, M -stage case of scheme (3.8):

Theorem III.1. Fix a time step k. Define Λ = max{0,maxx,‖v‖=1D
2E2(x)

(
v, v
)
}

and the following auxiliary quantities in terms of the coefficients γm,i and θm,i of

43

scheme (3.8):

γ̃m,i = γm,i − kΛθm,i −
M∑

j=m+1

γ̃j,i
S̃j,m

S̃j,j
(3.15)

S̃j,m =
m−1∑
i=0

γ̃j,i(3.16)

If S̃m,m > 0 for m = 1, . . . ,M , θm−1,i ≥ θm,i ≥ 0 and
∑m−1

i=0 θm,i = 1, then scheme

(3.8) satisfies the energy stability condition (3.3): For every n = 0, 1, 2, . . . we have

E(un+1) ≤ E(un).

As we will see in section 3.3, the conditions on the parameters γi,j and θm,i of

scheme (3.8) imposed in theorem III.1 are loose enough to enable meeting consistency

conditions to high order. We will establish theorem III.1 with the help of a couple

of lemmas:

Lemma III.2. Let the auxiliary quantities S̃j,m, and γ̃m,i be defined as in theo-

rem III.1. We have

arg minE(u) +
m−1∑
i=0

θm,iL2(u, Ui) +
m−1∑
i=0

γm,i
2k
‖u− Ui‖2

= arg minE(u) +
m−1∑
i=0

θm,i[L2(u, Ui) +
Λ

2
‖u− Ui‖2] +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥u−
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

Proof. As in the two step case the proof consists of expanding the norm squared

terms and showing that all the quadratic and linear terms of u are equal. First, the

expansion of
∑m−1

i=0
γm,i
2k
‖u− Ui‖2 is

‖u‖2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.(3.17)

44

Next, we will establish two identities to help us expand

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
‖u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui‖2.

First by rearranging (3.15),

(3.18) γm,i − kΛθm,i =
M∑
j=m

γ̃j,i
S̃j,m

S̃j,j
.

Next, an identity of S̃m,m:

S̃m,m =
m−1∑
i=0

γ̃m,i =
m−1∑
i=0

[
γm,i − kΛθm,i −

M∑
j=m+1

γ̃j,i
S̃j,m

S̃j,j

]

=
m−1∑
i=0

[
γm,i − kΛθm,i

]
−

M∑
j=m+1

[m−1∑
i=0

γ̃j,i

]
S̃j,m

S̃j,j

=
m−1∑
i=0

[
γm,i − kΛθm,i

]
−

M∑
j=m+1

S̃2
j,m

S̃j,j
.

We use this identity to establish the following:

(3.19)
M∑
j=m

S̃2
j,m

S̃j,j
= S̃m,m +

M∑
j=m+1

S̃2
j,m

S̃j,j
=

m−1∑
i=0

[
γm,i − kΛθm,i

]
Now we can calculate the expansion:

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
‖u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui‖2 +

m−1∑
i=0

θm,iΛ ‖u− Ui‖2

=
‖u‖2

2k

M∑
j=m

S̃2
j,m

S̃j,j
− 1

k
〈u,

m−1∑
i=0

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j
Ui〉+

Λ

2
‖u‖2

m−1∑
i=0

θm,i + Λ
m−1∑
i=0

〈u, θm,iUi〉

+ terms that do not depend on u

=
‖u‖2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.

45

Where the last equality follows from (3.18) and (3.19). Since this expansion matches

(3.17) up to a constant in u the proof is complete.

Lemma III.3. Let Λ and the auxiliary quantities S̃j,m, γ̃m,i be given in theorem III.1.

Additionally, let S̃m,m > 0 for m = 1, . . . ,M . Then

E1(Um) +
m−1∑
i=0

θm,i[L2(Um, Ui) +
Λ

2
‖Um − Ui‖2] +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um −
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

≤E1(Um−1) +
m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

Proof. By (3.8) and lemma III.2,

Um = arg min
u

E(u)+
m−1∑
i=0

θm,i[L2(u, Ui)+Λ ‖u− Ui‖2]+
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
‖u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui‖2.

Since Um is the minimizer of the above optimization problem

E1(Um) +
m−1∑
i=0

θm,i[L2(Um, Ui) +
Λ

2
‖Um − Ui‖2]

+
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um −
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

≤E1(Um−1) + θm,m−1E2(Um−1) +
m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2(3.20)

46

We give two inequalities to aid us in the proof. First, using the definition of the

auxiliary variables, we can state an identity that will simplify (3.20). For m > 1 and

j ≥ m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

=
S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1

(
1− γ̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

=
S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1

(
S̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

=
S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

.

(3.21)

Now since S̃m−1,m−1 > 0,

(3.22)
S̃2
m−1,m−1

S̃m−1,m−1

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃m−1,i

S̃m−1,m−1

Ui

∥∥∥∥∥
2

> 0.

Using (3.21) and (3.22) we have

(3.23)

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m
Ui

∥∥∥∥∥
2

=
1

2k

M∑
j=m

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

≤ 1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

.

Next, since
∑m−1

i=1 θm,i = 1 for all m we have the equality

(3.24) θm,m−1 = 1−
m−2∑
i=0

θm,i =
m−2∑
i=0

θm−1,i −
m−2∑
i=0

θm,i

Using (3.12) and (3.24), we have our second inequality:

47

θm,m−1E2(Um−1) +
m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

=
m−2∑
i=0

(θm−1,i − θm,i)E2(Um−1) +
m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

≤
m−2∑
i=0

(θm−1,i − θm,i)[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

=
m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

(3.25)

Using inequalities (3.23) and (3.25), we have that (3.20) is less than or equal to

E1(Um−1) +
m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

concluding the proof.

Proof. (of theorem) The main idea of the proof is to use lemma III.3 repeatedly to

relate the energy of E(un+1) to E(un). First, by (3.12) and our assumption that

S̃M,M > 0

E(un+1) = E1(UM) + E2(UM)

≤ E1(UM) +
M−1∑
i=0

θM,i[L2(UM , Ui) +
Λ

2
‖UM − Ui‖2]

+
1

2k

S̃2
M,M

S̃M,M

‖UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui‖2.

By using the lemma III.3 repeatedly we have

48

E1(UM) +
M−1∑
i=0

θM,i[L2(UM , Ui) +
Λ

2
‖UM − Ui‖2] +

1

2k

S̃2
M,M

S̃M,M

‖UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui‖2

≤E1(UM−1) +
M−2∑
i=0

θM−1,i[L2(UM−1, Ui) +
Λ

2
‖UM−1 − Ui‖2]

+
1

2k

M∑
j=M−1

S̃2
j,M−1

S̃j,j

∥∥∥∥∥UM−1 −
M−2∑
i=0

γ̃j,i

S̃j,M−1

Ui

∥∥∥∥∥
2

...

≤E1(U1) + L2(U1, U0) +
Λ

2
‖U1 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j
‖U1 −

γ̃j,0

S̃j,1
U0‖2.

By (3.8) and lemma III.2

U1 = arg min
u

E1(u) + L2(u, U0) +
Λ

2
‖u− U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j
‖u− γ̃j,0

S̃j,1
U0‖2

so

E1(U1) + L2(U1, U0) +
Λ

2
‖U1 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j
‖U1 −

γ̃j,0

S̃j,1
U0‖2

≤E1(U0) + E2(U0) +
Λ

2
‖U0 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j
‖U0 − U0‖2

=E(un)

completing the proof of the theorem.

Remark III.4. In the above proof, we assume that E2(u) is two times differentiable.

You can drop this assumption if you replace L2(u, p) with another approximation

A2(u, p) that has the properties A2(u, u) = E2(u) and for some choice Λ, E2(u) ≤

A2(u, p) + Λ
2
‖u− p‖2 for all u and p.

49

3.3 Examples of the New Schemes for Gradient Flows

In this section, we give examples of higher order schemes for gradient flows that

are conditionally stable. First, we give the conditions on γm,i and θm,i in scheme (3.8)

to ensure its high order consistency with the abstract evolution law (3.1). Recall that

U0 = un. From (3.8), each stage Um satisfies the Euler-Lagrange equation:

(3.26)

[m−1∑
i=0

γm,i

]
Um + k∇HE1(Um) = −

m−1∑
i=0

kθm,i∇HE2(Ui) +
m−1∑
i=0

γm,iUi.

(3.26) is equivalent to the form more often seen for ARK IMEX methods:

(3.27) Um = U0 − k
m∑
i=1

αm,i∇HE1(Ui)− k
m−1∑
i=1

α̃m,i∇HE2(Ui)

where αm,i and α̃m,i depend on γmi and θm,i. The consistency equations for ARK

IMEX methods have been previously worked out [26, 35, 44, 49]. As such, we will

state without proof the conditions required to achieve various orders of accuracy in

terms of γ and θ:

Claim III.5. Let Ui be given in (3.8). The Taylor expansion of Ui at each stage has

the form:

Ui = U0 − β1,ikDE(U0) + k2
[
β2,ik

2D2E1(U0)DE(U0) + β3,iD
2E2(U0)DE(U0)

]
− k3

[
β4,iD

2E1(U0)
(
D2E1(U0) (DE(U0))

)
+ β5,iD

2E1(U0)
(
D2E2(U0) (DE(U0))

)
+ β6,iD

2E2(U0)
(
D2E1(U0) (DE(U0))

)
+ β7,iD

2E2(U0)
(
D2E2(U0) (DE(U0))

)
+ β8,iD

3E1(U0)
(
DE(U0), DE(U0)

)
+ β9,iD

3E2(U0)
(
DE(U0), DE(U0)

)]
+ h.o.t.

(3.28)

where for l ∈ {1, 2, 3, . . .}, DlE(u) : H l → R denotes the multilinear form given

by

50

DlE(u)
(
v1, . . . , vl

)
=

∂l

∂s1 · · · ∂sl
E(u+ s1v1 + s2v2 + · · ·+ slvl)

∣∣∣∣
s1=s2=···=sl=0

so that the linear functional DlE(u)
(
v1, v2, . . . , vl−1, ·

)
: H → R may be identified

with an element of H, and so on. The coefficients of (3.28) obey the following

recursive relation:

β1,0 = β2,0 = . . . = β9,0 = 0

β1,m =
1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]

β2,m =
1

Sm

[
β1,m +

m−1∑
i=1

γm,iβ2,i

]

β3,m =
1

Sm

[m−1∑
i=0

θm,iβ1,i +
m−1∑
i=1

γm,iβ3,i

]

β4,m =
1

Sm

[
β2,m +

m−1∑
i=1

γm,iβ4,i

]

β5,m =
1

Sm

[
β3,m +

m−1∑
i=1

γm,iβ5,i

]

β6,m =
1

Sm

[m−1∑
i=0

θm,iβ2,i +
m−1∑
i=1

γm,iβ6,i

]

β7,m =
1

Sm

[m−1∑
i=0

θm,iβ3,i +
m−1∑
i=1

γm,iβ7,i

]

β8,m =
1

Sm

[
β2

1,m

2
+

m−1∑
i=1

γm,iβ8,i

]

β9,m =
1

Sm

[
1

2

m−1∑
i=0

θm,iβ
2
1,i +

m−1∑
i=1

γm,iβ9,i

]

(3.29)

with Sm =
∑m−1

i=0 γm,i. Furthermore, the following conditions for un+1 = UM in

scheme (3.8) are necessary and sufficient for various orders of accuracy:

51

First Order: Second Order: Third Order:

β1,M = 1 β1,M = 1 β1,M = 1

β2,M = 1/2 β2,M = 1/2(3.30)

β3,M = 1/2 β3,M = 1/2

β4,M = β5,M = . . . = β9,M = 1/6

Now, we give second order and a third order example of method (3.8). However,

The examples we give are not unique by any means. We begin with a five step

method that is second order accurate:

θ ≈


1. 0 0 0 0

0.009 0.991 0 0 0
0.009 0.991 0 0 0

0 0 0 1. 0
0 0 0 1. 0



γ ≈


8.841 0 0 0 0
−0.925 5.360 0 0 0
−4.443 6.041 0.950 0 0
−3.288 5.895 −0.351 0.172 0
−3.895 −0.335 4.964 −1.722 7.684


(3.31)

which is stable for kΛ ≤ 3/872.

Next we have a thirteen step method that is third order accurate:

θ ≈



1. 0 0 0 0 0 0 0 0 0 0 0 0
0.049 0.951 0 0 0 0 0 0 0 0 0 0 0
0.024 0.075 0.901 0 0 0 0 0 0 0 0 0 0
0.017 0.042 0.113 0.829 0 0 0 0 0 0 0 0 0
0.012 0.029 0.071 0.386 0.501 0 0 0 0 0 0 0 0
0.01 0.023 0.06 0.366 0.457 0.085 0 0 0 0 0 0 0
0.007 0.018 0.05 0.351 0.437 0.06 0.076 0 0 0 0 0 0
0.003 0.005 0.006 0.008 0.009 0.011 0.028 0.929 0 0 0 0 0
0.002 0.002 0.002 0.002 0.003 0.004 0.009 0.029 0.948 0 0 0 0

0 0.001 0.001 0.001 0.001 0.002 0.004 0.007 0.011 0.971 0 0 0
0 0 0.001 0.001 0.001 0.001 0.003 0.005 0.008 0.912 0.069 0 0
0 0 0 0 0 0.001 0.002 0.003 0.005 0.107 0.025 0.857 0
0 0 0 0 0 0 0.001 0.001 0.002 0.013 0.007 0.018 0.958



γ ≈



11. 0 0 0 0 0 0 0 0 0 0 0 0
2.1 15.5 0 0 0 0 0 0 0 0 0 0 0
1.4 1.6 17. 0 0 0 0 0 0 0 0 0 0
0.2 1.6 −2.4 18.1 0 0 0 0 0 0 0 0 0
0.3 −8.5 3. 9.6 7.8 0 0 0 0 0 0 0 0
−1.4 −5.9 −0.1 2. 8. 4.1 0 0 0 0 0 0 0
−4. −0.5 −0.4 −1.8 5.1 6.8 0.9 0 0 0 0 0 0
−9.2 4.8 2.7 −3.2 2.5 6.2 2.5 4.6 0 0 0 0 0
−1.7 −3.6 −0.1 1.3 5.7 3.4 −0.8 −0.8 0.4 0 0 0 0
−2.7 −3.5 0.6 1.4 6.1 3.5 −0.7 −0.2 −0.4 0.5 0 0 0
5.9 −4.8 −5.1 −3.1 3.4 6.6 −0.7 −5.2 4.9 −0.8 8.2 0 0
7.1 0.9 −3.1 −2.7 −5.8 −1.9 0.6 −3.4 4.3 −1.3 9.2 9.1 0
3.8 1.9 2.7 2.1 −7.5 −10.6 −1.2 2. 0.7 −0.2 −0.2 9.5 12.8



(3.32)

52

which is stable if kΛ ≤ 18/28567. The coefficients to machine precision as well as

code to verify theorem III.1 and claim III.5 can be found at https://github.com/

AZaitzeff/SIgradflow. In the following section, we consider methods for (3.2),

when the inner product changes with the solution.

3.4 Schemes for Solving Gradient Flows with Solution Dependent Inner
Product

Now we move on to the problem of simulating flow (3.2),

u′ = −L(u)∇HE(u).

We consider the case where L(u) is strictly positive definite. Our approach will be

as follows:

1. Generate a u∗ from un.

2. Construct L(u∗).

3. Use the algorithm (3.8) with norm ‖·‖2
L−1(u∗)

= 〈·,L−1(u∗)·〉 to generate un+1.

One advantage to constructing L(u∗) and then using it in (3.8) is that theo-

rem III.1 immediately gives conditional energy stability for coefficients such as (3.31)

or (3.32). Thus, we only need to consider what choice of u∗ will give our algorithm

the desired level of accuracy. Now at every step we are solving

(3.33)[m−1∑
i=0

γm,i

]
Um + kL(u∗)∇HE1(Um) = −kL(u∗)

m−1∑
i=0

θm,i∇HE2(Ui) +
m−1∑
i=0

γm,iUi.

We will set up the consistency equations for (3.2). Let un = u(t0). For conve-

nience, denote L(un) as Ln and E(un) as En. We begin with the exact solution

starting from u(t0):

https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow

53


ut = −∇E(u) t > t0

u(t0) = U0

By Taylor expanding around t0 we find

(3.34) u(k + t0) = u(t0) + kut(t0) +
1

2
k2utt(t0) +

1

6
k3uttt(t0) +O(k4)

where the higher derivatives in time are found using (3.2):

ut(t0) =− LnDEn

utt(t0) =DLn(LnDEn)DEn + LnD2En(LnDEn)

uttt(t0) =−DLn(DLn(LnDEn)DEn)DEn −D2Ln(LnDEn,LnDEn)DEn

−DLn(Ln(D2En(LnDEn)))DEn − 2DLn(LnDEn)D2En(LnDEn)

− LnD2En(DLn(LnDEn))DEn − LnD2En(LnD2En(LnDEn))

− LnD3En
(
LnDEn,LnDEn

)
where for l ∈ {1, 2, 3, . . .}, DlL(u) : H l → H denotes the multilinear form given by

DlL(u)
(
v1, . . . , vl

)
=

∂l

∂s1 · · · ∂sl
L(u+ s1v1 + s2v2 + · · ·+ slvl)

∣∣∣∣
s1=s2=···=sl=0

so that DlL(u)
(
v1, v2, . . . , vl

)
is a linear operator from H to H.

In the next two subsections, we provide second and third order examples and

accompanying consistency calculations. Both of these examples also have the addi-

tional property that E(u∗) ≤ E(un).

3.4.1 Second Order Method

Our second order algorithm is laid out in algorithm 4. Now we will prove that it

is indeed second order. First, the expansion of u∗ is

54

Algorithm 4 A second order method for solving gradient flows with solution dependent inner
product

Fix a time step size k > 0. Set un = u0. Alternate the following steps:

1. Find u∗:

u∗ +
1

2
kLn∇E1(u∗) = un −

1

2
kLn∇E2(un)

2. Find un+1 using (3.33) with coefficients (3.31) and L(u∗) in the movement limiter.

u∗ = un −
1

2
kLnDEn +O(k2)(3.35)

We use (3.29) to get an expansion of un+1:

(3.36) un+1 = un − kL(u∗)DEn +
1

2
k2L(u∗)D

2En(L(u∗)DEn) +O(k3)

Now, expand u∗ around un in (3.36):

un+1 =un − kLnDEn − kDLn(u∗ − un)DEn

+
1

2
k2LnD2En(LnDEn) +O(k3)

=un − kLnDEn +
1

2
k2DLn(LnDEn)DEn

+
1

2
k2LnD2En(LnDEn) +O(k3)

The Taylor expansion of un+1 matches (3.34) to second order.

3.4.2 Third Order Method

Now we present our third order algorithm for solving (3.2). It requires the use of

two new sets of coefficients,

θ ≈

 1. 0 0.
−0.667 0.333 0

0 0 1.000


γ ≈

 1.833 0 0.
0.556 0.667 0
1.030 −0.026 0.159

(3.37)

55

Algorithm 5 A third order method for solving gradient flows with solution dependent inner product

Fix a time step size k > 0 and set un = u0. For convenience, we will denote
D2L(u∗)

(
L(u∗)∇E(u∗),L(u∗)∇E(u∗)

)
as D2L(u∗).

Alternate the following steps:

1. Find u∗1 using (3.33) with the coefficients (3.37), Ln in the movement limiter and time step
1
6k.

2. Find ū using (3.33) with coefficients (3.32), L(u∗1)− 1
72k

2D2L(u∗1) in the movement limiter
and time step 1

2k.

3. Find u∗2,1 :

u∗2,1 +
2

5
kLn∇E1(u∗2,1) = un −

2

5
kLn∇E2(un).

4. Find u∗2,2 using (3.33) with the coefficients (3.38), L(u∗2,1) in the movement limiter and time
step 5

6k.

5. Find un+1 using (3.33) starting at ū (instead of un) with coefficients (3.32), L(u∗2,2) −
1
72k

2D2L(u∗2,2) in the movement limiter and time step 1
2k.

and

θ ≈



1. 0 0 0 0 0 0
0.708 0.292 0 0 0 0 0
0.013 0.018 0.969 0 0 0 0
0.008 0.012 0.867 0.113 0 0 0
0.006 0.009 0.206 0.056 0.724 0 0

0 0.005 0.05 0.025 0.053 0.867 0
0 0 0.015 0.009 0.015 0.04 0.920



γ ≈



7.727 0 0 0 0 0 0
0.594 2.241 0 0 0 0 0
3.056 −0.455 0.636 0 0 0 0
−1.571 5.091 −1.063 2.786 0 0 0
−3.714 3.1 −1.267 1.545 9.655 0 0
−6.923 5.1 −2.056 3.471 4.571 4.033 0
−2.467 −2.1 0.009 −0.182 0.660 7.224 9.428


,

(3.38)

to achieve particular Taylor expansions. The values of (3.37) and (3.38) to ma-

chine precision can be found at https://github.com/AZaitzeff/SIgradflow.

Algorithm 5 details our third order version for solving gradient flows with solution

dependent inner product. The method adds another condition for stability to hold,

namely:

(3.39) L(u)− 1

72
k2D2L(u)(w,w)

https://github.com/AZaitzeff/SIgradflow

56

needs to be positive definite for all u and w. Now we will prove that algorithm 5

produces a third order approximation.

By applying (3.29), the coefficients (3.37) give the following expansion for u∗1 :

u∗1 = un −
1

6
kLnDEn +

1

36
k2LnD2En(LnDEn) +O(k3)(3.40)

Now we can expand ū by using (3.29) and expanding u∗1 around un

ū = un −
1

2
kL(u∗1)DEn +

1

8
k2L(u∗1)D2En(L(u∗1)DEn)

− 1

48
k3L(u∗1)D2En

(
L(u∗1)D2En (L(u∗1)DEn)

)
− 1

48
k3L(u∗1)D3En

(
L(u∗1)DEn,L(u∗)DEn

)
+

1

144
k3D2L(u∗1)

(
L(u∗1)DE(u∗1),L(u∗1)DE(u∗1)

)
DEn +O(k4)

= un −
1

2
kLnDEn +

1

12
k2DLn(LnDEn)DEn +

1

8
k2LnD2En(LnDEn)

− 1

72
k3DLn(LnD2En(LnDEn))DEn

− 1

48
k3LnD2En(DLn(LnDEn)DEn)

− 1

48
k3DLn(LnDEn)D2En(LnDEn)

− 1

48
k3LnD2En

(
LnD2En (LnDEn)

)
− 1

48
k3LnD3En

(
LnDEn,LnDEn

)
+O(k4)

(3.41)

Now we will apply the same steps to derive the expansions of u∗2,1

u∗2,1 = un −
2

5
kLnDEn +O(k2)(3.42)

and u∗2,2

57

u∗2,2 = un −
5

6
kL(u∗2,1)DEn +

11

36
k2L(u∗2,1)D2En(L(u∗2,1)DEn) +O(k3)

= un −
5

6
kLnDEn

+
1

3
k2DLn(LnDEn)DEn +

11

36
k2LnD2En(LnDEn) +O(k3)

(3.43)

Finally, we can find the expansion of un+1. We will first apply (3.29) around ū

un+1 = ū− 1

2
kL(u∗2,2)DE(ū) +

1

8
k2L(u∗2,2)D2E(ū)(L(u∗2,2)DE(ū))

− 1

48
k3L(u∗2,2)D2E(ū)

(
L(u∗2,2)D2E(ū)

(
L(u∗2,2)DE(ū)

))
− 1

48
k3L(u∗2,2)D3E(ū)

(
L(u∗2,2)DE(ū),L(u∗2,2)DE(ū)

)
+

1

144
k3D2L(u∗2,2)

(
L(u∗2,2)DE(u∗2,2),L(u∗2,2)DE(u∗2,2)

)
DE(ū) +O(k4)

expand u∗2,2

un+1 = ū− 1

2
kLnDE(ū) +

5

12
k2DLn(LnDEn)DE(ū) +

1

8
k2LnD2E(ū)(LnDE(ū))

− 1

6
k3DLn(DLn(LnDEn)DEn)DE(ū)

− 1

6
k3D2Ln(LnDEn,LnDEn)DEn)DE(ū)

− 11

72
k3DLn(LnD2En(LnDEn))DE(ū)

− 5

48
k3DLn(LnDE(ū))D2E(ū)(LnDE(ū))

− 5

48
k3LnD2E(ū)(DLn(LnDE(ū))DE(ū))

− 1

48
k3LnD2E(ū)

(
LnD2E(ū) (LnDE(ū))

)
− 1

48
k3LnD3E(ū)

(
LnDE(ū),LnDE(ū)

)
+O(k4)

58

then expand ū around un:

un+1 = un − kLnDEn +
1

2
k2DLn(LnDEn)DEn +

1

2
k2LnD2En(LnDEn)

− 1

6
k3DLn(DLn(LnDEn)DEn)DEn

− 1

6
k3D2Ln(LnDEn,LnDEn)DEn)DEn

− 1

6
k3DLn(LnD2En(LnDEn))DEn

− 1

3
k3DLn(LnDEn)D2En(LnDEn)

− 1

6
k3LnD2En(DLn(LnDEn)DEn)

− 1

6
k3LnD2En

(
LnD2En (LnDEn)

)
− 1

6
k3LnD3En

(
LnDEn,LnDEn

)
+O(k4)

The Taylor expansion of un+1 matches (3.34) to third order. As long as (3.39)

holds,

E(un+1) ≤ E(ū) ≤ E(un)

by theorem III.1.

Remark III.6. In algorithm 4 and algorithm 5, we can instead handle E(u) fully

implicitly, as we do in chapter II. We need to substitute higher order implicit methods

for the corresponding semi-implicit methods. In this case, the second order method is

unconditionally stable and the third order is unconditionally stable if D2L(u)
(
w,w

)
is negative semi-definite for all u and w. We detail the 3rd order, fully implicit

algorithm for gradient flows with solution dependent inner product in the appendix

chapter B.

59

3.5 Numerical Examples

In this section, we will apply the second and third order accurate conditionally

stable schemes to a variety of gradient flows, some with fixed inner product and

some with solution dependent inner product. Careful numerical convergence studies

are presented in each case to verify the anticipated convergence rates of previous

sections.

3.5.1 Gradient Flows with Fixed Inner Product

Figure 3.1: The double well potentials used in the Allen-Cahn (3.44) and Cahn-Hilliard (3.46)
equations: One with unequal depth wells and the other with equal depth wells.

Figure 3.2: The initial condition (black) and the solution at final time (gray) in the numerical
convergence study on the 1D Allen-Cahn equation (3.44) with a potential that has
unequal depth wells.

We start with the Allen-Cahn equation

(3.44) ut = ∆u−W ′(u)

where W : R → R is a double-well potential. This corresponds to gradient flow for

60

Number of
time steps 29 210 211 212 213

L2 error (2nd order) 2.08e-01 5.96e-02 1.61e-02 4.22e-03 1.08e-03
Order - 1.81 1.89 1.94 1.97

L2 error (3rd order) 2.06e-03 3.26e-04 4.68e-05 6.32e-06 8.33e-07
Order - 2.66 2.80 2.89 2.92

Table 3.1: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes (3.8)
on the one-dimensional Allen-Cahn equation (3.44) with a traveling wave solution.

the energy

(3.45) E(u) =

∫
1

2
‖∇u‖2 +W (u) dx

with respect to the L2 inner product.

First, we consider equation (3.44) in one space dimension, with the potential

W (u) = 8u − 16u2 − 8
3
u3 + 8u4. This is a double well potential with unequal

depth wells; see fig. 3.1. In this case, equation (3.44) is well-known to possess

traveling wave solutions on x ∈ R, see fig. 3.2. We choose the initial condition

u(x, 0) = tanh(4x + 20); the exact solution is then u∗(x, t) = tanh(4x + 20 − 8t).

The computational domain is x ∈ [−10, 10], discretized into a uniform grid of 8193

points. We approximate the solution on R by using the Dirichlet boundary conditions

u(±10, t) = ±1: The domain size is large enough that the mismatch in boundary

conditions do not substantially contribute to the error in the approximate solution

over the time interval t ∈ [0, 5]. We use E1(u) =
∫

1
2
|∇u|2dx and E2(u) =

∫
W (u)dx.

Table 3.1 tabulates the error in the computed solution at time T = 5 for our two

new schemes.

Next, we consider the Allen-Cahn equation (3.44) in two space-dimensions, with

the potential W (u) = u2(1 − u)2 that has equal depth wells; see fig. 3.1. We take

the initial condition u(x, y, 0) = 1

1+exp[−(7.5−
√
x2+y2)]

on the domain x ∈ [−10, 10]2,

and impose periodic boundary conditions. Once again we use E1(u) =
∫

1
2
‖∇u‖2dx

61

Figure 3.3: Initial condition and the solution at final time for the 2D Allen-Cahn equation with a
potential that has equal depth wells.

and E2(u) =
∫
W (u)dx. As a proxy for the exact solution of the equation with this

initial data, we compute a very highly accurate numerical approximation u∗(x, y, t)

via the following second order accurate in time, semi-implicit, multi-step scheme [7]

on an extremely fine spatial grid and take very small time steps:

3

2
un+1 − 2un +

1

2
un−1 = k∆un+1 − k(2W ′(un)−W ′(un−1)).

This method has not been proven to be energy stable, but instead satisfies a less

strict stability property. Table 3.2 show the errors and convergence rates for the

approximate solutions computed by our new multi-stage schemes.

Number of
time steps 28 29 210 211 212

L2 error (2nd order) 3.62e-05 9.07e-06 2.27e-06 5.68e-07 1.41e-07
Order - 2.00 2.00 2.00 2.00

L2 error (3rd order) 2.35e-05 3.18e-06 4.15e-07 5.29e-08 6.24e-09
Order - 2.88 2.94 2.97 3.08

Table 3.2: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes
(3.8) on the two-dimensional Allen-Cahn equation (3.44) with a potential that has equal
depth wells.

As a final example, we consider the Cahn-Hilliard equation

(3.46) ut = −∆
(
∆u−W ′(u)

)

62

Figure 3.4: Initial condition and the solution at final time for the 2D Cahn-Hillard equation with
a potential that has equal depth wells.

where we take W to be the double well potential W (u) = u2(1−u)2 with equal depth

wells and impose periodic boundary conditions. This flow is also gradient descent

for energy (3.45), but with respect to the H−1 inner product:

〈u , v 〉 =

∫
u∆−1v dx.

Starting from the initial condition u(x, y, 0) = 1

1+exp[−(5−
√
x2+y2)]

, we computed a

proxy for the “exact” solution once again using the second order accurate, semi-

implicit multi-step scheme from [7]:

3

2
un+1 − 2un +

1

2
un−1 = −k∆[∆un+1 − (2W ′(un)−W ′(un−1))]

where the spatial and temporal resolution was taken to be high to ensure the errors

are small. Table 3.3 show the errors and convergence rates for the approximate

solutions computed by our new multi-stage schemes.

3.5.2 Gradient Flow For Solution Dependent Inner Product

Our first example we present in this section is the heat equation, ut = ∆u, but

with a different energy. Under the Wasserstein metric (denoted as W2), the heat

63

Number of
time steps 27 28 29 210 211

L2 error (2nd order) 6.20e-04 1.92e-04 5.59e-05 1.55e-05 4.09e-06
Order - 1.69 1.78 1.85 1.92

L2 error (3rd order) 6.45e-06 1.35e-06 2.51e-07 4.15e-08 7.20e-09
Order - 2.25 2.43 2.60 2.53

Table 3.3: The new second (3.31) and third (3.32) order accurate, conditionally stable schemes (3.8)
on the two-dimensional Cahn-Hilliard equation (3.46) with a potential that has equal
depth wells.

equation is a gradient flow for the negative entropy [25]:

(3.47) E(u) =

∫
u log(u)dx.

However the minimization

arg min
u

E(u) +
1

2k
W 2

2 (u, un)

is a difficult optimization problem. On the other hand, we can approximate the the

Wasserstein metric, W2(u, v), with

(3.48) 〈u− v,L(u)−1(u− v)〉L2 where L(u) = −∇ · u∇

when u and v are near each other. Indeed

−L(u)∇L2E(u) = ∇ · u∇(log(u) + 1) = ∆u.

Thus, we can alternatively think of the heat equation as minimizing movements

on negative entropy with respect to the solution dependent inner product (3.48)

and therefore use algorithm 4 and algorithm 5 to evolve the heat equation while

decreasing the negative entropy (3.47) at every step.

We use the exact solution u(x, t) = cos(πx) exp(−tπ2)+2 as our test with domain

x ∈ [0, 1] using derivative zero Neumann boundary conditions. Our initial data is

u(x, 0) and we run the simulation to final time T = 1
10

. We use E1(u) = 1
2

∫
u2dx

64

Number of
time steps 23 24 25 26 27

L2 error (2nd order) 1.06e-03 3.11e-04 8.58e-05 2.27e-05 5.85e-06
Order - 1.77 1.86 1.92 1.96

L2 error (3rd order) 1.00e-05 1.57e-06 2.20e-07 3.04e-08 4.29e-09
Order - 2.69 2.82 2.87 2.83

Table 3.4: The new second (algorithm 4) and third (algorithm 5) order accurate, conditionally
stable schemes for gradient flows with solution dependent inner product on the negative
entropy (3.47) with L(u) = −∇ · u∇ in the inner product to simulate the heat equation.

and E2(u) =
∫
u log(u)dx− 1

2

∫
u2dx in (3.8) so at every step we are solving a linear

systems of equation. We run simulation for T = 1
10

. See table 3.4 for results.

The next example is the porous medium equation in one dimension,

ut = ∆u2.

It is a gradient flow for the energy

E(u) =

∫
u2dx

under the Wasserstein metric. As with the heat equation, we can again replace the

Wasserstein movement limiter with (3.48). Since ∇E is linear, we let E1(u) = E(u)

and E2(u) = 0. Our initial data is

u(x, 0) =


exp −1

1−x2 + 1
100

if |x| < 1

1
100

otherwise

in x ∈ [−3, 3] with derivative zero Newman boundary conditions. We run the simu-

lation for T = 2. See fig. 3.5 for our initial and final curve. We generate the ‘true’

solution using a explicit second order predictor corrector method with an high spatial

and temporal resolution. See table 3.5 for results.

65

Figure 3.5: The initial (black) and final (grey) data for our porous medium example.

Number of
time steps 25 26 27 28 29

L2 error (2nd order) 5.28e-05 1.16e-05 2.71e-06 6.58e-07 1.62e-07
Order - 2.19 2.09 2.04 2.02

L2 error (3rd order) 1.11e-06 7.44e-07 1.62e-07 2.51e-08 3.36e-09
Order - 0.57 2.21 2.68 2.90

Table 3.5: The new second and third order accurate, unconditionally stable schemes (see re-
mark III.6) for gradient flows with solution dependent inner product on energy

∫
u2dx

with L(u) = −∇ · u∇ in the inner product to simulate the porous medium equation.

3.6 Conclusion

We presented a new class of implicit-explicit additive Runge-Kutta schemes for

gradient flows that are high order and conditionally stable. Additionally, we devel-

oped new high order stable schemes for gradient flows on solution dependent inner

products. Both of these methods allow us to painlessly increase the order of accu-

racy of existing schemes for gradient flows without sacrificing stability. We provided

many numerical examples of gradient flows, including those that have solution de-

pendent inner product, and shown the methods achieve their advertised accuracy.

Now whether these schemes can be used to achieve arbitrarily high (i.e. ≥ 4) order

in time is left to future work.

CHAPTER IV

Second Order Threshold Dynamics Schemes for Two Phase
Motion by Mean Curvature

4.1 Introduction

In this chapter, we will describe new, second order accurate in time versions of a

popular algorithm for simulating the motion of interfaces by mean curvature known

as threshold dynamics. The original version of the algorithm, which is only first

order accurate in time in the two-phase setting, was proposed by Merriman, Bence,

and Osher in [29, 30]. Since then, many extensions of the algorithm have been given,

for instance to multiphase mean curvature motion, where it has proven particularly

useful and flexible. There have also been high order accurate versions of the algorithm

proposed in several previous studies, discussed in detail in section 4.2.

For a (d − 1)-dimensional smooth interface Γ ⊂ Rd given as the boundary of a

set Σ ⊂ Rd, the original threshold dynamics algorithm generates a discrete in time

approximation to its motion by mean curvature as follows: Here, Gδt is the Gaussian

Algorithm 6 Original Threshold Dynamics of MBO’92

Fix a time step size δt > 0. Alternate the following steps:

1. Convolution:
φ(x) = Gδt ∗ 1Σk .

2. Thresholding:

Σk+1 =
{
x : φ(x) ≥ 1

2

}
.

66

67

kernel:

Gδt(x) =
1

(4πδt)d/2
e−
|x|
4δt

Our goal in this chapter is to take a step towards providing more accurate versions

of threshold dynamics. The accuracy issue is particularly acute in the multi-phase

setting, where it decreases to half-order in time due to the presence of junctions.

Here, we focus on the easier yet still challenging two-phase setting, to find a version

of algorithm 6 that

• Maintains the simplicity and spirit of the original threshold dynamics algorithm

(algorithm 6),

• Achieves second order accuracy in time,

• Maintains the variational interpretation, and the resulting stability properties,

given in [15] for the original algorithm.

The chapter is organized as follows:

• In section 4.2, we recall previous efforts in designing second order versions of

threshold dynamics.

• In section 4.3, we discuss necessary conditions for second order accuracy.

• In section 4.4, we present our first new algorithm: a natural two kernel extrapo-

lation method, applied to the original threshold dynamics algorithm, to achieve

second order accuracy in any space dimension.

• In section 4.5, we present our second new algorithm: a multi-step method that

is second order accurate in two space dimensions, and unconditionally energy

stable in any dimension.

• In section 4.6, we provide numerical verification of the advertised order of ac-

curacy for both of our new algorithms.

68

The code for section 4.6 is publicly available, and can be found at https://

github.com/AZaitzeff/secondorderTD.

4.2 Previous Work

In [38], Ruuth proposed the following method based on Richardson extrapolation

to jack up the order of accuracy of algorithm 6 to second order in time:

Algorithm 7 Ruuth’s Second Order Threshold Dynamics

Fix a time step size δt > 0. Set φk(x) = 1Σ0(x). Alternate the following steps:

1. First half time step:

Σ1 =
{
x : Gδt/2 ∗ φk ≥

1

2

}
.

2. Second half time step:

Σ2 =
{
x : Gδt/2 ∗ 1Σ1

≥ 1

2

}
.

3. Full time step:

Σ3 =
{
x : Gδt ∗ φk ≥

1

2

}
.

4. Linear combination:
φk+1 = 21Σ2 − 1Σ3 .

Although numerical experiments indicate this version indeed improves the accu-

racy in time to second order for smooth interfaces undergoing two-phase motion

by mean curvature, the algorithm sacrifices an attractive simplicity of the original

MBO scheme: it no longer generates binary functions exclusively that can be nat-

urally identified with sets. Perhaps more importantly, there appears to be no clear

extension of the variational interpretation given in [15] for the original algorithm 6

to this case. No comparison principle is expected to hold, as a non-positive weighted

sum is involved. Hence, there is no rigorous result indicating the stability of the

algorithm (or its convergence).

In [20], Grzhibovskis & Heinz propose another approach to improving the order

of accuracy of algorithm 6 to second order. The idea is natural: To cancel out the

https://github.com/AZaitzeff/secondorderTD
https://github.com/AZaitzeff/secondorderTD

69

leading order error in threshold dynamics by taking a linear combination of convo-

lutions with two different radially symmetric kernels: The coefficients α and β are

Algorithm 8 Algorithm of Grzhibovskis & Heinz

1. Convolution step:

φ(x) =
(
αK1 − βK2

)
∗ 1Σk .

2. Threhsolding step:

Σk+1 =
{
x : φ(x) ≥ 1

2

}
.

chosen so that the leading order correction to curvature in the standard consistency

calculation for the original threshold dynamics algorithm 6 cancels out. Crucially,

this necessitates that the resulting combined convolution kernel changes sign, even

when the individual kernels K1 and K2 are positive. This means that the resulting

algorithm can violate the comparison principle. But far more importantly, we show

in section 4.3, that this algorithm does not give second order accuracy in time; it

merely achieves a more accurate evaluation of the mean curvature term at every

time step. In general, the dynamics generated is still only first order accurate, at

least without being much more specific and deliberate about the choice of the kernels

K1 and K2 – which the authors do not specify. (For example, in case both K1 and

K2 are Gaussians – with potentially different mass and/or width – no choice of the

coefficients α and β results in a second or higher order accurate in time scheme for

motion by mean curvature.)

In this chapter, we will provide truly second order accurate in time versions of

algorithm 6 that maintain its elegant and simple nature. Moreover, we will be able

to provide rigorous stability results for our new algorithms.

70

4.3 Second Order Motion by Mean Curvature

First, we need to identify how far a surface travels under motion by mean cur-

vature. In the vicinity of a point of interest on the surface, which we take to be

the origin, let the surface be given as the graph of a smooth function f(x, y, t) :

R2 × [0,∞) → R with f(0, 0, 0) = 0, fx(0, 0, 0) = 0 and fy(0, 0, 0) = 0. Since the

normal direction changes during the evolution, it is easier to insist that the numeri-

cally generated solution intersects a fixed line at nearly the same location as the true

solution, at any given time. Thus, we will calculate how far the surface travels along

the z-axis under mean curvature motion and under our algorithms. For a surface

given as the graph of a function, motion by mean curvature takes the following form:

(4.1) ft =
fxx(1 + f 2

y)− 2fxfyfxy + fyy(1 + f 2
x)

1 + f 2
x + f 2

y

.

By a straightforward Taylor expansion we have for small t

(4.2) f(0, 0, t) = t

[
fxx + fyy

]
+ t2

[
1

2
(fxxxx + 2fxxyy + fyyyy)− (f 3

xx + 3fxxf
2
xy + 3fyyf

2
xy + f 3

yy)

]
+O(t3)

where the functions on the right hand side are evaluated at (0, 0, 0). Over the course

of this chapter, we will denote f(0, 0, 0) as f , fx(0, 0, 0) as fx, etc. for convenience.

It has been known and verified by Taylor expansion in previous publications (e.g.

Ruuth [38]) that standard threshold dynamics is 1st order accurate. We will include

the expansion of standard threshold dynamics (algorithm 6) here as a simple example

of the method we use throughout this chapter. Let Σ0 = {(x, y, z) : z ≤ f(x, y, 0)}.

71

We work out the convolution of a Gaussian kernel with a characteristic function in

chapter C of the appendix where we had to keep many more terms than in previous

works to achieve our goals in this chapter. Applying calculation (C.11) to our problem

we have:

Gt ∗ 1Σ0(0, 0, z)− 1

2
= − z

2
√
πt

+
z3

24
√
πt3/2

+

√
t

2
√
π

(fxx + fyy)

+
t3/2

4
√
π

(fxxxx + 2fxxyy + fyyyy)−
z2

8
√
πt

(fxx + fyy)

+
z
√
t

2
√
π

(
3

4
f 2
xx +

3

4
f 2
yy +

1

2
fxxfyy + f 2

xy)

− t3/2

2π
(
5

4
f 3
xx +

5

4
f 3
yy +

3

4
fxxf

2
yy +

3

4
f 2
xxfyy + 3fxxf

2
xy + 3fyyf

2
xy) + h.o.t.

(4.3)

Next set (4.3) to zero and solve for z by using the ansatz z = z1t+ z2t
2 + remainder

and matching terms of the same order in t. Up to second order:

(4.4) z = t

[
fxx + fyy

]
+ t2

[
1

2
(fxxxx + 2fxxyy + fyyyy)−

2

3
(f 3
xx + 3fxxf

2
xy + 3fyyf

2
xy + f 3

yy)

]
+O(t3).

Equation (4.4) gives the location of ∂Σ1 along the z-axis. The equation (4.4) matches

the two dimensional version calculated by Ruuth [37]. Additionally, for three dimen-

sions some of the terms in (4.3) are calculated by Grzhibovskis & Heinz [21]. Their

paper, focusing on Willmore flow, did not require all the terms calculated in (4.3).

Comparing (4.4) to the location of the interface under mean curvature motion (4.2),

we see that threshold dynamics is only first order accurate in time. At this point,

we can also already see why algorithm 8 of Grzhibovskis & Heintz cannot be second

order accurate: It would merely move the surface by t(fxx + fyy) + O(t3), which

would still make it only a first order accurate approximation of the right hand side

of (4.2). In the next two sections, we will present two second order methods. For

each method, we will show that they do indeed match motion by mean curvature

72

(4.2) up to second order in the normal direction.

4.4 A More Natural Two Kernel Extrapolation

Our first method is a two stage algorithm using two different Gaussian kernels

with differing amplitudes and widths. We detail the method in algorithm 9. Whether

Algorithm 9 Natural Two Kernel Extrapolation

Fix a time step size δt > 0. Alternate the following steps:

1. First stage:

Σ̄ =
{
x : Gδt/2 ∗ 1Σk ≥

1

2

}
.

2. Second stage:

Σk+1 =
{
x :

√
2Gδt/2 ∗ 1Σ̄ −Gδt ∗ 1Σk√

2− 1
≥ 1

2

}
.

algorithm 9 is unconditionally stable is currently unknown. We will devote the rest

of the section to showing that algorithm 9 is indeed second order.

4.4.1 Consistency

Once again let Σ0 = {(x, y, z) : z ≤ f(x, y, 0)} for f defined in section 4.3. First,

we need to find the location and curvature of Σ̄ along the z-axis. Let h(x, y) be

defined by the requirement that Gt/2 ∗ 1Σ0(x, y, h(x, y)) = 1
2
, so that Σ̄ = {(x, y, z) :

z ≤ h(x, y)}. From (4.4) we have that

(4.5) h(0, 0) =
t

2

[
fxx + fyy

]
+
t2

4

[
1

2
(fxxxx + 2fxxyy + fyyyy)−

2

3
(f 3
xx + 3fxxf

2
xy + 3fyyf

2
xy + f 3

yy)

]
+O(t3)

Now we would like to find hxx(0, 0) and hyy(0, 0). From (C.17) in the appendix,

replacing h with f , z with h and t with t/2, we have that hxx(0, 0) satisfies

73

0 =−
√

2hxx

2
√
πt

+

√
2h2hxx

4
√
πt3/2

+

√
2fxx

2
√
πt

+

√
t

2
√

2π
(fxxxx + fxxyy)

−
√

2h2

4
√
πt3/2

fxx +

√
2h

2
√
πt

(
3

2
f 2
xx +

1

2
fxxfyy + f 2

xy)

−
√
t

2
√

2π

(
15

4
f 3
xx +

3

4
fxxf

2
yy +

3

2
f 2
xxfyy + 6fxxf

2
xy + 3fyyf

2
xy

)
+

√
thxx

2
√

2π

(
3

4
f 2
xx +

3

4
f 2
yy +

1

2
fxxfyy + f 2

xy

)
−
√

2hhxx

4
√
πt

(fxx + fyy) + h.o.t.

(4.6)

Plugging in h from (4.5) and solving for hxx in (4.6), using the ansatz hxx =

h0 + th1 + remainder, we have

hxx = fxx +
t

2
(fxxxx + fxxyy − 2f 3

xx − 4fxxf
2
xy − 2fyyf

2
xy) +O(t2)

We can use similar steps to find hyy. Putting hxx and hyy together we arrive at

(4.7) hxx + hyy = fxx + fyy

+
t

2

[
(fxxxx + 2fxxyy + fyyyy)− 2(f 3

xx + 3fxxf
2
xy + 3fyyf

2
xy + f 3

yy)

]
+O(t2).

Now we can solve for the location of Σ1 along the z-axis. From the expansion of

the Gaussian kernel convoluted with a characteristic function, (C.11), we have

74

[
√

2Gδt/2 ∗ 1Σ̄ −Gδt ∗ 1Σ0](0, 0, z)−
√

2− 1

2

=− z√
πt

+
z3

6
√
πt3/2

+
h√
πt

+

√
t

2
√
π

(hxx + hyy)

+
t3/2

8
√
π

(hxxxx + 2hxxyy + hyyyy)−
z2

2
√
πt3/2

h− z2

4
√
πt

(hxx + hyy) +
z

2
√
πt3/2

h2

+
z

2
√
πt
h(hxx + hyy) +

z
√
t

2
√
π

(
3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)−
h3

6
√
πt3/2

− h2

4
√
πt

(hxx + hyy)−
√
t

2
√
π
h(

3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)

− t3/2

4
√
π

(
5

4
h3
xx +

5

4
h3
yy +

3

4
hxxh

2
yy +

3

4
h2
xxhyy + 3hxxh

2
xy + 3hyyh

2
xy)

+
z

2
√
πt
− z3

24
√
πt3/2

−
√
t

2
√
π

(fxx + fyy)

− t3/2

4
√
π

(fxxxx + 2fxxyy + fyyyy) +
z2

8
√
πt

(fxx + fyy)

− z
√
t

2
√
π

(
3

4
f 2
xx +

3

4
f 2
yy +

1

2
fxxfyy + f 2

xy)

+
t3/2

2
√
π

(
5

4
f 3
xx +

5

4
f 3
yy +

3

4
fxxf

2
yy +

3

4
f 2
xxfyy + 3fxxf

2
xy + 3fyyf

2
xy) + h.o.t

(4.8)

Note that the derivatives of h match the corresponding derivatives of f up to

order t (stated precisely in (C.12)). Substituting (4.5) for h, (4.7) for hxx + hyy and

(C.12) for the other derivatives of h in (4.8), and simplifying, we have:

75

[
√

2Gδt/2 ∗ 1Σ̄ −Gδt ∗ 1Σk](0, 0, z)−
√

2− 1

2

=− z

2
√
πt

+
z3

8
√
πt3/2

+
t3/2

4
√
π

(fxxxx + 2fxxyy + fyyyy)

− 2t3/2

3
√
π

(f 3
xx + 3fxxf

2
xy + 3fyyf

2
xy + f 3

yy) +

√
t

2
√
π

(fxx + fyy)

− 3z2

8
√
πt

(fxx + fyy) +
3z
√
t

8
√
π

(fxx + fyy)
2

−
√
t

12
√
π

(fxx + fyy)
3 −

√
t

4
√
π

(fxx + fyy)(
3

4
f 2
xx +

3

4
f 2
yy +

1

2
fxxfyy + f 2

xy)

+
t3/2

4
√
π

(
5

4
f 3
xx +

5

4
f 3
yy +

3

4
fxxf

2
yy +

3

4
f 2
xxfyy + 3fxxf

2
xy + 3fyyf

2
xy) + h.o.t.

(4.9)

Finally, we set (4.9) to zero and solve for z up to order t2 to obtain:

(4.10) z = t

[
fxx + fyy

]
+ t2

[
1

2
(fxxxx + 2fxxyy + fyyyy)− (f 3

xx + 3fxxf
2
xy + 3fyyf

2
xy + f 3

yy)

]
+O(t3).

Thus, up to second order, algorithm 9 moves the interface in the normal direction

by the same amount as mean curvature motion (4.2).

The drawback to algorithm 9 is that we do not know whether it is unconditionally

stable. In the next section, we present an algorithm that is unconditionally stable

but is only guaranteed to be second order in two dimensions.

4.5 Unconditionally Stable Multistage Methods

In this section, we provide a class of unconditionally stable threshold dynamics

algorithms that are second order in two dimensions. The original threshold dynamics

algorithm (algorithm 6) is unconditionally energy stable, specifically:

(4.11) Et(Σ
k+1) ≤ Et(Σ

k)

76

for energy

(4.12) Et(Σ) =

∫
R2

(1− 1Σ)Gt ∗ 1Σdxdy.

Our class of methods preserves property (4.11) while at the same time achieving

second order accuracy. We describe our M -stage method in algorithm 10.

Algorithm 10 M-Stage Unconditionally Stable Threshold Dynamics

Fix a time step size δt > 0 and a choice of γ’s such that
∑m−1
i=0 γm,i = 1 for m = 1, 2, . . . ,M . Set

τ = δt/β1,M for β1,M defined in (4.17) and set Σ̄0 = Σk.

For m = 1, 2, . . . ,M :

(4.13) Σ̄m =
{
x : Gτ ∗

m−1∑
i=0

γm,i1Σ̄i ≥
1

2

}
.

Then set Σk+1 = Σ̄M

Unlike the previous algorithm, algorithm 10 uses the same kernel at each stage.

As will be shown later, this will allow us to prove unconditional stability (4.11).

In the rest of the section, we will derive the consistency equations for γ, give the

conditions on γ for unconditional stability to hold, and then give a particular choice

of γ that makes algorithm 10 unconditionally stable and second order. We conclude

with a discussion of one way to extend algorithm 10 to higher dimensions.

4.5.1 Consistency Equations

Similar to in three dimensions, let f(x, t) : R× [0,∞)→ R be a graph that is the

interface of a set in R2 with f(0, 0) = 0, fx(0, 0) = 0. The distance the graph moves

under mean curvature motion along the y-axis is:

(4.14) f(0, t) = tfxx + t2
[

1

2
fxxxx − f 3

xx

]
+O(t2).

We now present the consistency equations for algorithm 10:

77

Claim IV.1. Let Σ̄i be given in (4.13) and let

Σ̄0 = Σk =
{
x : x ≤ f(x, 0)

}
.

Define hi as Σ̄i =
{
x : x ≤ hi(x)

}
, so h0(x) = f(x, 0). The Taylor expansion of

hi at each stage has the same form as (4.14), namely:

(4.15) hi(0) = tβ1,ifxx + t2(β2,ifxxxx − β3,if
3
xx) +O(t3).

Additionally, the Taylor expansion of the second derivative of hi has form

(4.16)
d2

dx2
hi(0) = fxx + t(β4,ifxxxx − β5,if

3
xx) +O(t2).

The coefficients in (4.15) and (4.16) obey the following recursive relation:

β1,0 = β2,0 = β3,0 = β4,0 = β5,0 = 0

β1,m =

[
1 +

m−1∑
i=0

γm,iβ1,i

]

β2,m =

[
1

2
+

m−1∑
i=0

γm,iβ2,i +
m−1∑
i=0

γm,iβ4,i

]

β3,m =

[
2

3
+

1

6

(m−1∑
i=0

γm,iβ1,i

)3

− 1

4

(m−1∑
i=0

γm,iβ1,i

)(m−1∑
i=0

γm,iβ
2
1,i

)

+
1

12

m−1∑
i=0

γm,iβ
3
1,i +

m−1∑
i=0

γm,iβ3,i +
m−1∑
i=0

γm,iβ5,i

]

β4,m =

[
1 +

m−1∑
i=0

γm,iβ4,i

]

β5,m =

[
2 +

m−1∑
i=0

γm,iβ5,i

]

(4.17)

Furthermore, the following conditions are necessary and sufficient for second order

accuracy of algorithm 10:

78

β2,M

β2
1,M

=
1

2

β3,M

β2
1,M

= 1

(4.18)

Proof. We will prove (4.15) and (4.16) by induction. For h1, these equations are

the two dimensional version of equations (4.5) and (4.7) worked out in the previous

section.

For the induction step, assume (4.15) and (4.16) up to m− 1. We want to solve for

y such that

[
Gt ∗

∑m−1
i=0 γm,iūm

]
(0, y) = 1

2
Using (C.11) for two dimensions and the

linearity of the convolution we arrive at:

[
Gt ∗

m−1∑
i=0

γm,iūi

]
(0, y)

=
1

2
− y

2
√
πt

+
y3

24
√
πt3/2

+
1

2
√
πt

m−1∑
i=0

γm,i

[
hi + t

d2

dx2
hi +

t2

2

d4

dx4
hi −

y2

4t
hi −

y2

4

d2

dx2
hi +

y

4t
h2
i

+
y

2
hi
d2

dx2
hi +

3ty

4
(
d2

dx2
hi)

2 − h3
i

12t
− h2

i

4

d2

dx2
hi −

3t

4
hi(

d2

dx2
hi)

2 − 5t2

4
(
d2

dx2
hi)

3

]
+ h.o.t.

=
1

2
− y

2
√
πt

+
y3

24
√
πt3/2

+
1

2
√
πt

m−1∑
i=0

γm,i

[
tβ1,ifxx + t2β2,ifxxxx − t2β3,if

3
xx + tfxx + t2β4,ifxxxx − t2β5,if

3
xx

+
t2

2
fxxxx −

y2

4
β1,ifxx −

y2

4
fxx +

yt

4
β2

1,if
2
xx +

yt

2
β1,if

2
xx

+
3ty

4
f 2
xx −

β3
1,it

2

12
f 3
xx −

β2
1,it

2

4
f 3
xx −

3β1,it
2

4
f 3
xx −

5

4
t2f 3

xx

]
+ h.o.t.

Setting the previous equation equal to a half and solving for y we have

79

y =tfxx

[
1 +

m−1∑
i=0

γm,iβ1,i

]
+ t2fxxxx

[
1

2
+

m−1∑
i=0

γm,iβ2,i +
m−1∑
i=0

γm,iβ4,i

]

− t2f 3
xx

[
2

3
+

1

6

(m−1∑
i=0

γm,iβ1,i

)3

− 1

4

(m−1∑
i=0

γm,iβ1,i

)(m−1∑
i=0

γm,iβ
2
1,i

)

+
1

12

m−1∑
i=0

γm,iβ
3
1,i +

m−1∑
i=0

γm,iβ3,i +
m−1∑
i=0

γm,iβ5,i

]
+ h.o.t.

(4.19)

Similarly, using (C.17) for two dimensions and the linearity of the convolution we

derive:

d2

dx2

[
Gt ∗

m−1∑
i=0

γm,iūi

]
(x, y(x))|x=0

=− yxx

2
√
πt

+
y2yxx

8
√
πt3/2

+
m−1∑
i=0

γm,i

[
1

2
√
πt

d2

dx2
hi +

√
t

2
√
π

d4

dx4
hi −

y2

8
√
πt3/2

(
d2

dx2
hi) +

y

4
√
πt3/2

hi

(
d2

dx2
hi

)
+

3y

4
√
πt

(
d2

dx2
hi

)2

− h2
i

8
√
πt3/2

d2

dx2
hi −

3hi

4
√
πt

(
d2

dx2
hi

)2

− 15
√
t

8
√
π

(
d2

dx2
hxx

)3

+
yxxh

2
i

8
√
πt3/2

+
yxx

4
√
πt
hi

(
d2

dx2
hi

)
+

3
√
t

8
√
π
tyxx

(
d2

dx2
hi

)2

− yxxyhi

4
√
πt
− yxxy

4
√
πt

d2

dx2
hi

]
+ h.o.t.

(4.20)

Now substitute in (4.19), (4.15), (4.16) for y, hi and d2

dx2hi respectively in (4.20):

80

d2

dx2

[
Gt ∗

m−1∑
i=0

γm,iūi

]
(x, y(x))|x=0

=− yxx

2
√
πt

+
1

8
√
πt

(
1 +

m−1∑
i=0

γm,iβ1,i

)2

yxxf
2
xx +

1

2
√
πt
fxx +

√
t

2
√
π

(m−1∑
i=0

γm,iβ4,i

)
f3
xx

+

√
t

2
√
π

(m−1∑
i=0

γm,iβ5,i

)
fxxxx +

√
t

2
√
π
fxxxx −

√
t

8
√
π

(
1 +

∑
γm,iβ1,i

)2

f3
xx

+

√
t

4
√
π

(
1 +

m−1∑
i

γm,iβ1,i

)(∑
γm,iβ1,i

)
f3
xx +

3
√
t

4
√
π

(
1 +

∑
γm,iβ1,i

)
f3
xx

−
√
t

8
√
π

(m−1∑
i=0

γm,iβ1,i

)2

f3
xx −

3
√
t

4
√
π

(m−1∑
i

γm,iβ1,i

)
f3
xx −

15
√
t

8
√
π
f3
xx

+

√
t

8
√
π

(m−1∑
i=0

γm,iβ1,i

)2

yxxf
2
xx +

√
t

4
√
π

(m−1∑
i=0

γm,iβ1,i

)
yxxf

2
xx +

3
√
t

8
√
π
yxxf

2
xx

−
√
t

4
√
π

(
1 +

m−1∑
i=0

γm,iβ1,i

)(m−1∑
i=0

γm,iβ1,i

)
yxxf

2
xx −

√
t

4
√
π

(
1 +

m−1∑
i=0

γm,iβ1,i

)
yxxf

2
xx

+ h.o.t.

(4.21)

Setting (4.21) to zero and solving for yxx we find

(4.22) yxx = fxx + t

[(
1 +

m−1∑
i=0

γm,iβ4,i

)
fxxxx −

(
2 +

m−1∑
i=0

γm,iβ5,i

)
f 3
xx

]
+O(t2).

Equations (4.19) and (4.22) give the recursive relations (4.17).

The consistency equations (4.18) follow by the change of variable τ = tβ1,M for

hM(0) and matching the Taylor expansion for motion by mean curvature (4.14).

4.5.2 Unconditional Stability

Next, we give conditions on the γ’s that preserve unconditional stability in any

dimension. Specifically, for energy

(4.23) Et(Σ) =

∫
Rn

(1− 1Σ)Gt ∗ 1Σdx.

our algorithm has the property Et(un+1) ≤ Et(un). In chapter II, we proved condi-

tions for unconditional stability of the following class of linear M -stage algorithms:

(4.24) un+1 = UM = arg min
u

E(u) +
M−1∑
i=0

γM,i

2k
||u− Ui||2

81

where the intermediate stages Um, for m ≥ 1, are given by

(4.25) Um = arg min
u

E(u) +
m−1∑
i=0

γm,i
2k
||u− Ui||2.

for some energy E, fixed time step k and the stipulation U0 = un. We state the

stability conditions from that chapter below, and show that algorithm 10 falls into

the desired class:

Theorem IV.2. (From chapter II) Define the following auxiliary quantities in terms

of the coefficients γm,i of scheme (4.24) and (4.25):

γ̃m,i = γm,i −
M∑

j=m+1

γ̃j,i
S̃j,m

S̃j,j
(4.26)

S̃j,m =
m−1∑
i=0

γ̃j,i(4.27)

If S̃m,m > 0 for m = 1, . . . ,M , then scheme (4.28) ensures that for every n =

0, 1, 2, . . . we have E(un+1) ≤ E(un).

It is shown in [15] that each step of the original threshold dynamics, algorithm 6,

can be written as

Σn+1 = arg min
Σ

∫
(1− 1Σ)Gt ∗ 1Σ +

∫
(1Σ − 1Σn)Gt ∗ (1Σ − 1Σn) dx.

Similarly observe that (4.13) can be written as

(4.28) Σ̄m = arg min
Σ

∫
(1− 1Σ)Gt ∗ 1Σ +

m−1∑
i=0

γm,i

∫
(1Σ − 1Σ̄i)Gt ∗ (1Σ − 1Σ̄i) dx.

Moreover, as noted in [15], since Ĝt > 0,∫
uGt ∗ u ≥ 0 dx

with equality holding if and only if u = 0. Thus, algorithm 10 is of type (4.24) and

(4.25) with energy (4.23) and inner product 〈u, v〉 =
∫
uGt ∗ v dx, so that conditions

for unconditional stability identified in chapter II apply.

82

In the next section, we give examples of γ’s that satisfy the consistency equations

(claim IV.1) as well as the hypothesis of theorem IV.2 concurrently.

4.5.3 A Second Order Unconditionally Stable Example

In this section we present a set of γ’s such that the second order consistency

equations (4.18) and hypothesis of unconditional stability theorem IV.2 are satisfied

simultaneously. We found the γ’s numerically and then sought a nearby algebraic so-

lution to the consistency equations that still satisfied the conditions in theorem IV.2.

It can be shown that there is no unconditionally energy stable second order two-

or three-stage method of type (4.13) for threshold dynamics. However, a four-step

method exists with the following γ’s:

(4.29) γ =


γ1,0 0 0 0
γ2,0 γ2,1 0 0
γ3,0 γ3,1 γ3,2 0
γ4,0 γ4,1 γ4,2 γ4,3

 ≈


1 0 0 0
−0.25 1.25 0 0
0.83 −0.67 0.83 0
−0.73 0.5 −0.73 1.96

 .

The exact values are in the appendix (chapter D); they are all algebraic numbers

but with long representations. This choice of γ’s that endows algorithm 10 with

unconditional stability and second order accuracy is not unique. In fact, one could

find other choices of γ that preserve additional desirable properties. We summarize

our results in the following theorem:

Theorem IV.3. algorithm 10 with coefficients (4.29) is unconditionally energy stable

and first order accurate in any dimension. Moreover, it is second order accurate in

two dimensions.

4.5.4 Consistency In Higher Dimensions

Unfortunately, there does not exist a choice of γ’s such that algorithm 10 is

second order in three dimensions. Using the Gaussian (or even a linear combination

of Gaussian kernels) at every step in our multistage algorithm leads to consistency

83

equations incompatible with second order mean curvature motion (4.2). Of course,

one can choose a different kernel, denoted by Kt, at each stage. The consistency

equations will be different. On the other hand, if the kernel has positive Fourier

transform, K̂t ≥ 0, theorem IV.2 will hold for energy

E∗t (Σ) =

∫
(1− 1Σ)Kt ∗ 1Σdx.

As an additional consideration, the energy induced by the kernel should have property

(4.30) lim
t→0+

E∗t (Σ)
Γ−→ cPer(Σ)

for some constant c. (The Gaussian kernel has this property [31].) It is left to future

work to find a scheme with kernel and γ’s such that unconditional stability, positive

Fourier transform, and property (4.30) hold, and that, furthermore, is second order

in three (and higher) dimensions.

4.6 Numerical Tests

In this section, we present highly accurate convergence tests for the two new algo-

rithms: algorithm 9 and algorithm 10. It is well known that naive implementations

of threshold dynamics on uniform grids introduces large spatial discretization errors

due to sampling characteristic functions. In fact, if the time step size is sufficiently

small compared to the spatial discretization, interfaces can even get stuck. A very ef-

fective cure to this phenomenon is the adaptive implementation of Ruuth [38], which

entails fast convolution on non-uniform grids. In practice, we recommend that the

high order in time schemes introduced in this chapter be used in conjunction with

such a spatial implementation.

Below, our focus is on numerically verifying the improvement in the convergence

rate in time of the new threshold dynamics schemes on a few smooth interfaces. To

84

ensure spatial errors are negligible in our experiments, for most of our experiments

below, we simply represent the interfaces as graphs of functions. This is, of course,

not meant as a practical implementation, but just as a very accurate and efficient

way to minimize spatial errors – it allows us to reach very high spatial resolutions

and accuracies – so that we can focus on time discretization errors. Section 4.6.1

explains the details of the implementation, and section 4.6.2 presents the results.

The latter also contains an experiment with the practical implementation of the new

schemes (albeit on uniform grids) to verify that no substantial qualitative difference

is observed in the handling of topological changes vs. the original threshold dynamics

algorithm.

4.6.1 Highly Accurate Threshold Dynamics For Graphs

This section explains how algorithm 9 and algorithm 10 have been implemented

in the special case that the interface is given as the graph of a function for the pur-

pose of numerical convergence tests given in section 4.6.2. We repeat that we are

not advocating this implementation as a practical method – it is just for numerical

convergence tests on smooth interfaces – but refer to Ruuth’s adaptive spectral im-

plementation [38] to be used in conjunction with our new algorithms.

Let Σ = {(x, xn)|xn ≤ f(x)} for some function f(x). Recall the definition of the

Gaussian kernel Gδt(x) = 1
(4πδt)d/2

e−
|x|2
4δt . Then the convolution is

Gδt ∗ 1Σ(x, xn) =

∫
Rd−1

Gδt(x− x̄)

∫ f(x̄)

−∞

1√
4πδt

e−
(xn−x̄n)2

4δt dx̄dx̄n

=
1

2
+

1

2

∫
Rd−1

Gδt(x− x̄) erf

(
f(x̄)− xn

2
√
t

)
dx̄

(4.31)

where erf(·) is the error function. The latter integral is calculated numerically (e.g.

Gaussian quadrature) inside a region Ω ⊂ Rn−1 such that
∫

Ωc
Gδt(x − x̄)dx̄ < ε for

85

some preset tolerance ε.

With this tool in hand, we can implement the original threshold dynamics (algo-

rithm 6) by tracking the interface at fixed points x throughout the evolution. We

describe this in algorithm 11. The second order versions of threshold dynamics we

proposed in this chapter, algorithm 9 and algorithm 10, are implemented similarly.

Algorithm 11 Highly Accurate Threshold Dynamics For Graphs

1: Fix total evolution time T , time step size δt, and points {xi}Ni=1 ∈ D ⊂ Rd−1.
2: Set Σ0 = {(x, xn)|xn ≤ f(x, 0)} and K = T/δt.
3: for k ← 1 to K do
4: For each xi find yi such that

1

2
= Gδt ∗ 1Σk−1(xi, yi)

using e.g. the secant method, estimating the right hand side using (4.31).
5: Set f(xi, kδt) = yi and Σk = {(x, xn)|xn ≤ f(x, kδt)}.

4.6.2 Numerical Results

In this section, we will test algorithm 9 and algorithm 10 on a couple of two phase

mean curvature motion evolution problems to demonstrate their accuracy.

In R2 we run our algorithms on the ‘Grim Reaper Wave.’ The interface is given by

f(x, t) = arcsinh(exp(−t) cos(x)). We run the evolution with initial data f(x, 0) =

arcsinh(cos(x)) to T = 1 on domain x = [0, π] with homogeneous Neumann boundary

conditions. We track 4000 points and report the L2 error between final interface and

f(x, 1). We include the errors for the original threshold dynamics in table 4.1 for

comparison. The error for algorithm 9 is reported in table 4.2 and the error for

algorithm 10, with γ’s given in (4.29), is tabulated in table 4.3.

In three dimensions, we run mean curvature evolution tests with initial interface

f(x, y, 0) = cos(πy) cos(πx) + 1
2

cos(πy) to T = 1/10 on (x, y) ∈ [−1, 1] × [−1, 1]

with periodic boundary conditions. We generate the ‘true’ solution by forward Euler

86

Number of
time steps 8 16 32 64 128 256
L2 error 5.4e-03 2.6e-03 1.3e-03 6.7e-04 3.3e-04 1.7e-04
Order - 1.0 1.0 1.0 1.0 1.0

Table 4.1: Ordinary Threshold Dynamics, algorithm 6, on the ‘Grim Reaper Wave.’

Number of
time steps 8 16 32 64 128 256
L2 error 1.9e-04 3.4e-05 8.4e-06 2.1e-06 5.1e-07 1.3e-07
Order - 2.5 2.0 2.0 2.0 2.0

Table 4.2: Algorithm 9 on the ‘Grim Reaper Wave.’

discretization of the PDE for mean curvature motion (4.1) using very small time

steps and a very high spatial resolution. We tabulate the L2 error between the ‘true’

interface and the output of algorithm 9 in table 4.4.

As an additional test in three dimensions, we use algorithm 9 to evolve a dumbbell

by mean curvature motion using the practical implementation of algorithm 9, albeit

on a uniform grid. The system goes through a topological change where the connected

set breaks off into two components. In fig. 4.1, we show the original threshold

dynamics algorithm 6 and algorithm 9 at time steps near the pinch off. There is a

slight difference between the two algorithms at the temporal and spatial resolutions

we have chosen. Presumably, this difference will shrink as we further refined our

temporal and spatial resolution. Regardless, algorithm 9 behaves reasonably during

the pinch off.

We expect algorithm 9 to revert to first order for any time interval containing a

topological change. This is because the Taylor expansions in our consistency calcu-

lation are not valid at the moment of pinch off. To test this, we use algorithm 9

to evolve a vase-like shape in three dimensions that breaks into two components

over time, see fig. 4.2. The surface is represented as a parametrized curve rotated

around the z-axis. We use the highly accurate threshold dynamics implementation

87

Number of
time steps 8 16 32 64 128 256
L2 error 6.6e-05 1.6e-05 4.1e-06 1.0e-06 2.6e-07 6.3e-08
Order - 2.0 2.0 2.0 2.0 2.0

Table 4.3: Algorithm 10 with γ’s given in (4.29) on the ‘Grim Reaper Wave.’

Number of
time steps 4 8 16 32 64

L2 3.3e-03 6.5e-04 1.3e-04 2.7e-05 6.3e-06
Order - 2.4 2.4 2.2 2.1

Table 4.4: Algorithm 9 on an interface in R3

for graphs from algorithm 11, treating the radius as a function of z, to ensure our

spatial errors are negligible. The initial surface is the function 2 − cos(z π
5
) rotated

around the z-axis. We evolve the surface for T = 3/4 and use periodic boundary

conditions at z = −5 and z = 5. We generate the ‘true’ solution by the original

threshold dynamics (algorithm 6) version of algorithm 11, using small time steps

and a high spatial resolution. We tabulate the L2 error between the radius of the

‘true’ interface and the output of algorithm 9 in table 4.5. As expected, algorithm 9

reverts to first order.

Number of
time steps 16 32 64 128

L2 3.9e-02 2.2e-02 1.2e-02 6.1e-03
Order - 0.8 0.8 1.0

Table 4.5: Algorithm 9 on an shape that undergoes a topological change in R3.

4.7 Conclusion

We have presented second order threshold dynamic methods for simulating two

phase mean curvature flow. Unlike the previous method, algorithm 7, our methods

represent the phases via a binary function at every step. Additionally, we present

an unconditionally stable method in two dimensions. We have demonstrated the

88

Figure 4.1: The original threshold dynamics algorithm 6 and algorithm 9 evolving a dumbbell by
mean curvature motion. Top: the initial dumbbell. Center: algorithm 6 before and
after the topological change. Bottom: algorithm 9 before and after the topological
change at the same time values as the center row.

methods and their advertised accuracy on examples in two and three dimensions.

Finding a method that is second order in three and higher dimensions and uncon-

ditionally stable in the case of two phases is a topic of future investigation.

89

Figure 4.2: Initial (right) and final shape (left) for a test of how algorithm 9 behaves after a topo-
logical change.

CHAPTER V

On the Voronoi Implicit Interface Method

5.1 Introduction

The Voronoi implicit interface method (VIIM) [40] is a type of level set method

[34] that is particularly suited to the treatment of multiphase flows. It has been

demonstrated on problems that incorporate surface tension, such as dynamics of

bubble clusters, and the motion of grain boundaries. Often, the hardest aspect of

designing numerical schemes for such problems is ensuring that the correct angle

conditions at triple junctions – in terms of the surface tensions of the interfaces

meeting there – are satisfied. The purpose of this chapter is to investigate whether

the VIIM in fact attains the correct angle conditions at junctions. To that end, and to

study this essential difficulty in isolation, we focus on problems where surface tension

is the sole driving force: multiphase motion by mean curvature. This evolution arises

in many applications, including grain boundary motion in polycrystalline materials

during annealing [32] and image segmentation algorithms in computer vision [33].

Once the correct behavior at junctions has been verified, additional driving forces,

e.g. from bulk effects, fluid flow, etc., can be incorporated in the VIIM and similar

algorithms with ease.

The first contribition of this chapter is to present convergence tests at very high

90

91

resolutions for the VIIM. To our knowledge, this is the first time that such highly

accurate convergence tests have been done for this method. One of our main results

is that the VIIM does not, in general, converge to the correct solution when interfaces

with unequal surface tensions meet at a triple junction. Our second contribution in

this chapter is to present a modification of the Voronoi implicit interface method that

fixes the non-convergence and ensures that the correct angle conditions are attained

at all triple junctions.

The chapter is organized as follows:

• In section 5.2 we briefly review multiphase motion by mean curvature and recall

its variational formulation.

• In section 5.3 we recall the Voronoi implicit interface method.

• In section 5.4 we present our implementation of the VIIM using parameterized

curves. We then present high resolution convergence tests indicating that the

VIIM does not converge to the correct solution when the surface tensions are

unequal.

• In section 5.5 we present convergence tests using the parametrized curve repre-

sentation of another recent algorithm, known as threshold dynamics, the con-

vergence of which is supported by many recent results in the literature. This

verifies the validity and accuracy of our parametrized curve implementation.

• In section 5.6 we present a modification to the VIIM, which may be called the

dictionary mapping implicit interface method (DMIIM), that does converge in

the unequal surface tension case. After discussing its relation to the VIIM, we

subject this new variant to the same careful numerical convergence studies, again

via an implementation on parametrized curves to reach very high resolutions,

and thus demonstrate its accuracy and convergence. We then present further

92

examples of the new algorithm on implicitly defined interfaces on a grid.

The code for sections 4 through 6 is publicly available, and can be found at https:

//github.com/AZaitzeff/DMIIM.

5.2 Multiphase Motion by Mean Curvature

In this chapter, we will be concerned exclusively with gradient descent dynamics

for energies of the form

E(Σ1, . . . ,Σn) =
∑
i 6=j

σijArea(Γij).(5.1)

where Γij = (∂Σi) ∩ (∂Σj) are the interfaces between the phases Σ1, . . . ,Σn that

partition a domain D ⊂ Rd, d ≥ 2:

Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for any i 6= j, and
N⋃
i=1

Σi = D.

Note that if two grains are not neighbors, the intersection is empty and the cor-

responding term in the sum of (5.1) drops out. The positive constants σij = σji

are known as surface tensions (or surface energy density). They need to satisfy the

triangle inequality

σij + σik ≥ σjk for any distinct i, j and k

for well-posedness of the model (5.1). Multiphase mean curvature motion arises as

L2 gradient descent on energies of this form, and can be described as follows:

1. At any point p ∈ Γij away from triple junctions where the interface is smooth,

the normal speed, denoted v⊥(p), is given by

v⊥(p) = µijσijκij(p).(5.2)

Here, κij(p) = κji(p) is the mean curvature at point p. The positive constants

µij are called mobilities. Unless otherwise stated, we will take µij = 1.

https://github.com/AZaitzeff/DMIIM
https://github.com/AZaitzeff/DMIIM

93

Figure 5.1: How the VIIM works: On the left we have the ε level sets (dotted lines), in the center
we have the sets after being evolved by (5.5), the figure on the right shows the new
interfaces after Voronoi reconstruction (solid line).

2. Let a triple junction be formed by the meeting of three phases Σ1, Σ2, and Σ3.

They are points in two dimensions and occur along curves in three dimensions.

Let θi be the angle between Γij and Γik at the junction. Then:

sin θ1

σ23

=
sin θ2

σ13

=
sin θ3

σ12

(5.3)

has to hold. This is known as the Herring angle condition [23].

Until now, the VIIM has been described only for the very special class of surface

tensions known as additive surface tensions: We call σij additive if they can be

written as

σij =
1

2
(σi + σj)

for some constants σ1, σ2, . . . , σn ≥ 0. Additive surface tensions thus have n degrees

of freedom, constituting therefore a very small subclass of physically relevant surface

tensions, which require
(
n
2

)
degrees of freedom to fully specify.

5.3 The Voronoi Implicit Interface Method

We recall the level set formulation [34] of motion by mean curvature that gives

the current configuration, ∂Σ(t), of the boundary with initial configuration ∂Σ(0)

of a given initial set Σ(0) ⊂ D in the two phase setting. Let φ : D × R+ → R be

94

a level set function for Σ(0) so that φ(x, 0) > 0 for x ∈ Σ◦(0) and φ(x, 0) < 0 for

x ∈ Σc(0). Often, a particularly convenient choice of level set function to represent

the boundary ∂Σ of a set Σ is the signed distance function,

dΣ(x) =


min
z∈∂Σ
||x− z||2 x ∈ Σ

−min
z∈∂Σ
||x− z||2 x 6∈ Σ.

(5.4)

The process of “reinitializing” a level set function φ by replacing it with the signed

distance function to its 0-level set, d{x :φ(x)≥0}(x), is known as “redistancing” in the

level set literature, and is a common operation, typically applied only sporadically to

prevent φ from becoming too steep or too flat (see, for example, [41]). In any case,

if φ(x, t) solves the well-known PDE

φt −∇ ·
(
∇φ
|∇φ|

)
|∇φ| = 0.(5.5)

and we set Σ(t) = {x ∈ D : φ(x, t) ≥ 0}, then ∂Σ(t) evolves by motion by mean

curvature.

There have been multiple algorithms proposed in the literature to extend the

level set formulation of mean curvature motion to the multiphase setting. We note,

in particular, the level set method of [46], the variational level set method of [48],

and the distance function based diffusion generated motion of [13], [16], and [12].

The latter three contributions alternate diffusion by the linear heat equation applied

individually to the level set functions of the phases (so that they are decoupled at

this stage), a simple pointwise redistribution step that couples the phases, and redis-

tancing on the new level set functions, to generate the desired multiphase evolution;

in this sense, they are a cross between the convolution generated motion of [30] and

the level set method.

In [39], Saye and Sethian introduced a variant of the algorithm in [13]. This

95

new version also alternates redistancing and decoupled evolution of the level sets

of individual phases with a pointwise redistribution step that imposes the requisite

coupling. The key differences are: 1. the decoupled motion of the level sets is by the

nonlinear PDE (5.5) vs. the linear heat equation, and 2. the redistribution step takes

place after (vs. before) redistancing of the individually evolved level set functions. An

additional novelty, mostly for convenience, is an innovative step to enable evolution

of all the level set functions concurrently, by applying (5.5) to the unsigned distance

function of the union of the ε > 0 super-level sets of the phases,

ϕε(x) = min
z∈∪i∂Σi

||x− z||2 − ε.

Although only the equal surface tension case (σij = 1 for all i 6= j) of multiphase

motion by mean curvature was considered in the original paper [39], in a subsequent

contribution [40], Saye and Sethian proposed an extension of their method to certain

(additive) unequal surface tension networks. This is a very small subset of all surface

tensions allowed by model (5.1). Moreover, the extension in [40] takes all mobilities

to be equal, again a vast restriction over (5.2). One of the original motivations for

the present study was to investigate if the algorithm could be extended to the full

generality of model (5.1) & (5.2).

We will introduce some notation to represent various steps of the VIIM as de-

scribed in [39], including the extension to additive surface tensions in [40]. To that

end, first define the function S∆t by

(dΣ1(σ1∆t,ε), dΣ2(σ2∆t,ε), . . . , dΣn(σn∆t,ε)) = S∆t(Σ1,Σ2, . . . ,Σn)

where Σi(t, ε) = {x : φi(x, t) ≥ ε} denotes the ε-super level set of the solution

φi(x, t) of mean curvature flow equation (5.5) at time t, starting from the initial

96

condition φi(x, 0) = dΣi(x). Here σi is the surface tension associated with phase Σi

whereas the surface tension corresponding to the interface Γij is 1
2
(σi + σj).

Next, the Voronoi reconstruction step of the VIIM (that reallocates points among

the phases) will be represented by the function Rv, which maps an n-tuple of func-

tions (φ1, . . . , φn) to an n-tuple of sets Ω1,Ω2, . . . ,Ωn:

(Ω1,Ω2, . . . ,Ωn) = Rv(φ1, φ2, . . . , φn)

where

Ωi =
{
x : φi(x) = max

j
φj(x)

}
.

With this notation, the evolution of a multiphase system by the VIIM at the N -th

time step with time step size ∆t, T = N∆t, is given by

(5.6) (Rv ◦ S∆t)
N(Σ1,Σ2, . . . ,Σn).

In [39, 40], no extension of the algorithm is given to the far more general case of
(
n
2

)
surface tensions; moreover, the mobilities of all the interfaces are assumed to be 1,

with again no indication given for greater generality. The method is summarized by

algorithm 12 and illustrated in fig. 5.1.

Algorithm 12 The Voronoi Implicit Interface Method

1: Given Σ0
1,Σ

0
2, . . . ,Σ

0
n.

2: Let N = T/∆t.
3: for k ← 1 to N do
4: Evolve each φi(·, 0) = dΣk−1

i
by time σi∆t by (5.5) to obtain φi(·, σi∆t).

5: Build the signed distance functions dΣk−1
i (σi∆t,ε)

= d{x:φi(x,σi∆t)≥ε}.

6: Construct the new phases Σki = {x : dΣk−1
i (σi∆t,ε)

(x) = maxj dΣk−1
j (σj∆t,ε)

(x)}

Saye and Sethian state in [40] that convergence to the desired motion is obtained

by taking the double limit, lim
ε→0

lim
∆t→0

in (5.6), with N = T
∆t

. However, they also discuss

two other limiting procedures: the “coupled” limit, lim
ε=c
√

∆t→0+
, and the interchanged

97

double limit, lim
∆t→0

lim
ε→0

. In the case of equal surface tensions, the authors present

numerical convergence studies for each of these three limits. In the case of unequal

surface tension, they only cite qualitative evidence and only for the coupled limit.

In the next section, we present highly accurate, exhaustive numerical convergence

studies of the VIIM, in the equal and unequal surface tension cases, for all of these

limits.

5.4 Testing the VIIM using Parameterized Curves

To carefully assess the convergence of the VIIM, we will implement it in R2 using

parametrized curves to represent the interfaces Γij = (∂Σi) ∩ (∂Σj), and test it on

exact solutions away from topological changes. This will allow us to reach resolutions

not easily attainable with the practical implementation of the algorithm for arbitrary

initial data via implicit (level set) representation of the interfaces on a uniform grid.

We stress that we are not advocating parametric representation in the context of the

VIIM as a general numerical method, as it defeats the original purpose – painless

handling of topological changes – of a level set based algorithm; we use it only to

carry out reliable convergence studies.

Below, Section 4.1 recalls the well-known “Grim Reaper” exact solution of three

phase motion by mean curvature, with equal and unequal surface tensions. Section

4.2 discusses in detail how each step of the VIIM is implemented via parametrized

curves (front tracking). Finally, Section 4.3 presents the results of our numerical

convergence study.

5.4.1 “Grim Reaper” Solution

“Grim Reapers” are a family of exact solutions to three-phase motion by mean

curvature that include unequal surface tension and mobility cases. Our domain D

98

Figure 5.2: “Grim Reaper” exact solutions for angles (left to right) (120◦, 120◦, 120◦),
(90◦, 135◦, 135◦), (75◦, 135◦, 150◦) with µi = 1 and (75◦, 135◦, 150◦) with µi = 1

σi
. The

black line is t = 0 and the gray line is t = 18
512 .

will be
[
0, 1

2

]
× [−1

2
, 1] ⊂ R2, and we will impose Neumann boundary conditions:

interfaces intersect ∂D at right angles. In all our examples, the interface ∂Σ1(t) will

be given as the graph of a function f = f(x, t), at least on t ∈ [0, 18
512

] where we

choose 18/512 to allow the curves to travel an appreciable distance in our domain.

The three phases Σ1(t), Σ2(t), and Σ3(t) will be described in terms of f(x, t) as

follows:

Σ1(t) =

{
(x, y) : y ≥ f(x, t)

}
Σ2(t) =

{
(x, y) : x ≤ β and y ≤ f(x, t)

}
Σ3(t) =

{
(x, y) : x ≥ β and y ≤ f(x, t)

}
Below we list a number of specific grim reaper solutions that we use for convergence

studies throughout the chapter:

• (θ1, θ2, θ3) = (120◦, 120◦, 120◦)

(σ12, σ13, σ23) = (1, 1, 1)

β = 1
4

f(x, t) =


3

2π
log(cos[2π

3
x])− 2π

3
t if 0 ≤ x ≤ 1

4

3
2π

log(cos[2π
3

(1
2
− x)])− 2π

3
t if 1

4
< x ≤ 1

2

99

• (θ1, θ2, θ3) = (90◦, 135◦, 135◦)

(σ12, σ13, σ23) = (1, 1,
√

2)

β = 1
4

f(x, t) =


1
π

log(cos[πx])− πt if 0 ≤ x ≤ 1
4

1
π

log(cos[π(1
2
− x)])− πt if 1

4
< x ≤ 1

2

• (θ1, θ2, θ3) = (75◦, 135◦, 150◦)

(σ12, σ13, σ23) =
(√

2
4

+
√

6
4
,
√

2
2
, 1

2

)
β = 3

46
(4
√

2− 3)

f(x, t) =



1
π
6

(3+4
√

2)
log(cos[π

6
(3 + 4

√
2)x])− π

12
(3+4

√
2)t

if 0 ≤ x ≤ 3
46

(4
√

2− 3)

1
π
12

(3
√

2+8)
log(2

2

√
2

4

cos[π
12

(3
√

2 + 8)(1
2
− x)])− π

12
(3 + 4

√
2)t

if 3
46

(4
√

2− 3) < x ≤ 1
2

• (θ1, θ2, θ3) = (75◦, 135◦, 150◦)

(σ12, σ13, σ23) =
(√

2
4

+
√

6
4
,
√

2
2
, 1

2

)
µij = 1

σij

β = 3
14

f(x, t) =


6

7π
log(cos[7π

6
x])− 7π

6
t if 0 ≤ x ≤ 3

14

6
7π

log(
√

2 cos[7π
6

(1
2
− x)])− 7π

6
t if 3

14
< x ≤ 1

2

fig. 5.2 shows the exact solutions at time t = 0 and t = 18
512

. In the case where

θ2 = θ3, Σ2(t) is the reflection of Σ3(t) around x = 1
4
, so we only need to track Σ1(t)

and Σ2(t) on
[
0, 1

4

]
×
[
− 1

2
, 1
]
.

5.4.2 The VIIM via Parameterized Curves

We begin the section by describing two essential numerical procedures. The first

finds the distance between a parameterized curve and a given point, and the second

100

evolves a parameterized curve by curvature motion. We then discuss our implemen-

tation of the VIIM on the “Grim Reaper” test case using parameterized curves.

Distance Estimation for a Parameterized Curve

Finding the distance between a given point and a parameterized curve is important

for constructing the ε level sets and for the Voronoi reconstruction step. To measure

this distance with high accuracy we interpolate the parameterized curve with not-

a-knot cubic splines [9]. Let {(xi, yi)}ni=1 be points on a curve that are given as the

graph of a function of x and denote its cubic spline approximation as f̄(x). The cubic

spline is a piecewise third order polynomial that is twice differentiable over [x1, xn]

with coordinates yi = f̄(xi). The signed distance between a given point (x̃, ỹ) and

the point which is closest to it on the aforementioned curve, is

sgn(ỹ − f̄(x̃)) min
x∈[x1,xN]

√
(x− x̃)2 + (f̄(x)− ỹ)2.

We find the minimum using Newton’s method (algorithm 13).

Algorithm 13 Netwon’s method for finding distance between a parameterized curve and a point

1: Given a point (x̃, ỹ), a cubic spline curve y = f̄(x), points {(xi, yi)}ni=1 with yi = f̄(xi) and
tolerance δ:

2: Let I = arg mini(xi − x̃)2 + (yi − ỹ)2

3: Set x = xI to be the starting point in Newton’s method
4: while |(x− x̃) + (f̄(x)− ỹ)f̄ ′(x)| ≥ δ do
5:

x← x− (x− x̃) + (f̄(x)− ỹ)f̄ ′(x)

1 + (f̄ ′(x))2 + (f̄(x)− ỹ)f̄ ′′(x)

6: Output sgn(ỹ − f̄(x̃))
√

(x− x̃)2 + (f̄(x)− ỹ)2.

Newton’s method uses the first two derivatives of the cubic spline. The interpolant

is known to converge to the true curve in C2 [2].

While the foregoing discussion applies to a curve that is a function of x, the above

techniques can be used for any simple curve by applying an appropriate change of

101

variables. In general, distance functions are not differentiable everywhere, however

we only use the distance function at differentiable points in the “Grim Reaper” cases

we consider.

Curvature Motion for a Parameterized Curve

Curvature motion for a parameterized curve, γ(s, t) : [0, L] × R+ → R2, is de-

scribed by:

γt = ∂s

(
γs
|γs|

)
1

|γs|
(5.7)

The differential equation (5.7) is implemented by a fully implicit Euler scheme

where each iteration involves solving multiple tridiagonal linear systems. The scheme

in time and space is

− δt

hk+1
i hk+1

i− 1
2

γk+1
i−1 +

[
1 +

δt

hk+1
i

(
1

hk+1
i− 1

2

+
1

hk+1
i+ 1

2

)]
γk+1
i − δt

hk+1
i hk+1

i+ 1
2

γk+1
i+1 = γki

where hki = 1
2
|γki−1−γki+1|, hki+ 1

2

= |γki −γki+1| and δt is the time step size for the finite

difference scheme (different than σ∆t, the total time we evolve the curve between

reconstructions). At each step we use the Newton iteration

− δt

h
k(l)
i h

k(l)

i− 1
2

γ
k(l+1)
i−1 +

[
1 +

δt

h
k(l)
i

(
1

h
k(l)

i− 1
2

+
1

h
k(l)

i+ 1
2

)]
γ
k(l+1)
i − δt

h
k(l)
i h

k(l)

i+ 1
2

γ
k(l+1)
i+1 = γki

until |
∑N

i=0 h
k(l)
i −

∑N
i=0 h

k(l+1)
i | < δ for a small δ > 0 and then set γk+1 = γk(l).

We detail how we handle all the boundary conditions in the θ2 = θ3 case in

table 5.1. Then γ(s, σ∆t) is given by γK for K = σ∆t
δt

with initial value γ0 = γ(s, 0).

Note that the choice of δt is independent from ∆t. In our numerical studies we

choose δt so small that the contribution to the overall error from the numerical

solution γ(s, σ∆t) is negligible.

102

Table 5.1: Boundary Conditions for PDE (5.7)
Case x Boundary Condition y Boundary Condition

x(0) = 0 x(−s) = −x(s) y(−s) = y(s)
x(L) = .25 x(L+ s) = .5− x(L− s) y(L+ s) = y(L− s)
y(L) = −.5 x(L+ s) = x(L− s) y(L+ s) = −1− y(L− s)

The Implementation of the VIIM using Parameterized Curves

With these two tools in hand we can implement the VIIM using parameterized

curves. At every iterate we track a series of (x, y) points that parameterize the

interface of the sets. We will first consider the the case where θ2 = θ3 (see the first

two images in fig. 5.2). Since Σk
3 is the reflection of Σk

2 around x = .25 we only need

to track the interface Γ12. The interface Γ12 remains a function of x at every time

step. Thus to parameterize Γ12, we fix x values in [0, .25] and update corresponding

y values for each step in the VIIM. The simulation of mean curvature motion for

time T using parameterized curves is detailed below:

1. Choose ∆t, the time between reconstructions, and n, the number of points. Set

N = T/∆t.

2. Pick {xi}ni=1 ∈ [0, .25] and set y0
i = f(xi, 0). In our implementation xi’s are

chosen so that (xi−1−xi)2+(f(xi−1, 0)−f(xi, 0))2 are all equal for i = 2, 3, . . . , n.

3. For k = 1, . . . , N do the following steps:

(a) Build parameterization γε+ = {(x, y) : dΣk−1
1

(x, y) = ε}: For each xi, we

find yε+i such that dΣk−1
1

(xi, y
ε+
i) = ε, then (xi, y

ε+
i) is a parameterization of

γε+. To find dΣk−1
1

(xi, y
ε+
i) = ε, we use the secant method

ȳn ← ȳn−1 + (dΣk−1
1

(xi, ȳ
n−1)− ε)

(
ȳn−1 − ȳn−2

dΣk−1
1

(xi, ȳn−1)− dΣk−1
1

(xi, ȳn−2)

)(5.8)

103

until

(5.9) |dΣk−1
1

(xi, ȳ
n)− ε| < δ

for δ > 0. In our tests | d
dy
dΣk−1

1
(xi, y)| > 1

4
near the true solution, so (5.9)

can be used to bound the error in ȳn. Similar statements hold when we

employ the secant method in subsequent steps. We choose δ small enough

so that the error from estimating ȳn is negligible compared to the overall

error.

(b) Build parameterization γε− = {(x, y) : dΣk−1
2

(x, y) = ε}: We let xε−i =

xi
.25−ε
.25

and find yε−i such that dΣk−1
2

(xε−i , y
ε−
i) = ε using the secant method.

Then

γε−i =


(xε−i , y

ε−
i) if i ≤ n(

xε−n , y
ε−
n + (i− n)

(−.5−yε−N)

M

)
if n+ 1 ≤ i ≤ n+m

for some choice of m. We choose m such that

(−.5− yε−n)

m
≈
√

(xε−n−1 − xε−n)2 + (yε−n−1 − yε−n)2.

(c) Evolve γε+ and γε− by (5.7) for time σ1∆t and σ2∆t respectively. Now

γε+ = ∂Σk−1
1 (σ1∆t, ε) and γε− = ∂Σk−1

2 (σ2∆t, ε).

(d) For each xi find ỹi such that

dΣk−1
1 (σ1∆t,ε)(xi, ỹi) = dΣk−1

2 (σ2∆t,ε)(xi, ỹi).

We find ỹi using the secant method (the update is similar to (5.8)). To use

γε− to calculate dΣ2(σ2∆t,ε)(x, y), we apply a change of coordinates to make

γε− a function of x.

(e) Then assign each ỹi to yki .

4. Then {(xi, yNi)}ni=1 gives a parameterization of the interface Γ12 at time T .

104

5.4.3 Experimental Results

In experiments with the VIIM, it suffices to focus on the symmetric cases θ2 = θ3

to demonstrate non-convergence. Denote the output of the VIIM at time T by Σ̂j(T)

and the true solution by Σj(T). We track essentially the relative error (RE) of the

area of symmetric difference in phase Σ1:∣∣∣Σ̂1(T)4Σ1(T)
∣∣∣∣∣∣Σ1(T)4Σ1(0)
∣∣∣(5.10)

where

A4B = {z : (z ∈ A and z 6∈ B) or (z 6∈ A and z ∈ B)}

but restricted to {(x, y) : 0 ≤ x ≤ 0.21} to exclude a small neighborhood around

the junction at x = 1
4
.

Each of the simulations uses the following parameters

• The total time the system is evolved: T = 18/512.

• Number of points tracked on the parameterized curve: n = 2048.

• Step size in (5.7): δt = 2−12σ∆t.

• In the equal surface tension case (θ1 = 120◦): σ1 = σ2 = 1

• We use θ1 = 90◦ in our test for the unequal surface tension case, so that σ1 =

2−
√

2 and σ2 =
√

2

Refining in δt or n did not significantly change the relative error. Additionally, we

simulate the formal limit, lim
ε→0+

lim
∆t→0

, by setting ε ∝ ∆t1/4.

The results are collected in table 5.2 through table 5.7. In none of the limit cases

does the unequal surface tension case converge to the correct curve. This is seen

in the non-vanishing relative error for θ1 6= 120◦. Later we will give an alternative

105

Table 5.2: limε→0+ lim∆t→0, θ1 = 120◦

∆t ε RE Order

2−13 2−28/4 0.0339 -

2−14 2−29/4 0.0269 0.33

2−15 2−30/4 0.0214 0.33

2−16 2−31/4 0.0172 0.32

Table 5.3: limε→0+ lim∆t→0, θ1 = 90◦

∆t ε RE Order

2−13 2−28/4 0.0361 -

2−14 2−29/4 0.0517 -

2−15 2−30/4 0.0667 -

2−16 2−31/4 0.0813 -

Table 5.4: limε=c
√

∆t→0+ , θ1 = 120◦

∆t RE: c = 4 Order RE: c = 2 Order
2−13 0.1675 - 0.0833 -
2−14 0.1078 0.636 0.0561 0.572
2−15 0.0714 0.595 0.0383 0.551
2−16 0.0482 0.566 0.0264 0.537

to the Voronoi reconstruction step that, in our numerical tests, convergences in the

unequal surface case.

5.5 Threshold Dynamics

In this section, we present convergence studies for the threshold dynamics al-

gorithm of [15] using a parametrized curve implementation similar to the one in

chapter IV. There is by now ample evidence, including a conditional proof [28], for

the convergence of this algorithm to the correct limit, including very general unequal

surface tensions cases. This section is thus meant as a verification of the parametrized

curve implementation (rather than threshold dynamics, which is not in doubt), and

give confidence to the non-convergence results it yielded on the VIIM, presented in

the previous section.

Table 5.5: limε=c
√

∆t→0+ , θ1 = 90◦

∆t RE: c = 4 Order RE: c = 2 Order
2−13 0.0256 - 0.0524 -
2−14 0.0826 - 0.0791 -
2−15 0.1166 - 0.0963 -
2−16 0.1379 - 0.1077 -

106

Table 5.6: lim∆t→0 with ε = 0, θ1 = 120◦

∆t RE Order
2−13 0.0071 -
2−14 0.0050 0.51
2−15 0.0035 0.51
2−16 0.0025 0.50
2−17 0.0017 0.50
2−18 0.0012 0.50
2−19 0.0009 0.50

Table 5.7: lim∆t→0 with ε = 0, θ1 = 90◦

∆t RE Order
2−13 0.0056 -
2−14 0.0065 -
2−15 0.0071 -
2−16 0.0075 -
2−17 0.0077 -
2−18 0.0078 -
2−19 0.0079 -

Table 5.8: Threshold Dynamics θ1 = 120◦

∆t n RE Order
2−13 512 0.0081 -
2−14 1024 0.0056 0.523
2−15 2048 0.0039 0.515
2−16 4096 0.0028 0.510
2−17 8192 0.0019 0.507
2−18 16384 0.0014 0.504
2−19 32768 0.0010 0.504

Table 5.9: Threshold Dynamics θ1 = 90◦

∆t n RE Order
2−13 512 0.0095 -
2−14 1024 0.0067 0.516
2−15 2048 0.0047 0.511
2−16 4096 0.0033 0.507
2−17 8192 0.0023 0.505
2−18 16384 0.0016 0.505
2−19 32768 0.0012 0.501

We use the following parameters:

• Each of the following simulations is evolved for time T = 18/512.

• For the equal surface tension case θ1 = 120◦, we use σ12 = σ13 = σ23 = 1.

• For the unequal surface tension case with θ1 = 90◦, we use σ12 = σ13 = 1 and

σ23 =
√

2.

The results are in table 5.8 and table 5.9. We see convergence to the correct

solution, including in the unequal surface tension case, bolstering our confidence in

the algorithm and the parametrized curve implementation developed and used in this

chapter. It is thus highly unlikely that the non-convergence observed in the previous

section with the VIIM is due to the parametrized curve representation; it is likely

due to the VIIM itself.

107

5.6 Correcting the VIIM: Dictionary Mapping

Before the variational formulation of threshold dynamics given in [15] extended

the original algorithm of [30] from equal to arbitrary surface tensions in a systematic

manner, a more heuristic extension was proposed by Ruuth in [38]. In this approach,

a projection step is employed to “force” the correct Herring angle conditions at any

triple junction, while multiple (≥ 4) junctions are treated more heuristically. Ruuth’s

projection is designed so that the stationary configuration for the underlying curva-

ture flow of three flat interfaces meeting at a triple junction with the correct Herring

angles remains fixed under one iteration of the overall algorithm. Motivated by Ru-

uth’s approach, in this section we propose a new algorithm: the dictionary mapping

implicit interface method (DMIIM), which replaces the Voronoi reconstruction step

of the VIIM with a dictionary reconstruction step that is designed to have as a fixed

point three flat interfaces meeting with the correct Herring angles. The three phases

in such a configuration consist of sectors and after evolution by curvature motion we

want to restore these phases to their original form by our reconstruction. As such

our dictionary reconstruction step is based on the curvature evolution of sectors. A

heuristic extension to arbitrary number of phases, much as in [38], is also discussed.

While an analogue of the more systematic approach of [15] would be more satisfac-

tory, no such variational formulation for the VIIM (that is simple and efficient to

implement) is currently available – a matter that remains under investigation.

We describe dictionary reconstruction in the case of three phases. The first step

is to build a template map for a triple junction of interfaces with surface tensions σ1,

σ2, and σ3. To that end, let (θ1, θ2, θ3) be the triple junction angles corresponding

to these surface tensions as given by equation (5.3), and fix a time step size ∆t. Let

108

Ωi(0) for i ∈ {1, 2, 3} denote the sector

Ωi(0) =
{

(θ, r) : r ≥ 0 and
i−1∑
j=0

θj ≤ θ ≤
i∑

j=0

θj

}
in polar coordinates, with the proviso θ0 = 0. Let Ωi(σi∆t) be the evolution of

Ωi(0) via motion by mean curvature for time σi∆t. Recall that dΩi(σi∆t) is the

signed distance function to Ωi(σi∆t), see (5.4). We will define the template map,

Φ : R2 → R3, as

Φ(x, y) = (dΩ1(σ1∆t)(x, y), dΩ2(σ2∆t)(x, y), dΩ3(σ3∆t)(x, y))(5.11)

and define the template surface S ⊂ R3 as the image of R2 under Φ. The template

map, Φ, maps points in R2 to distances to the evolved sectors. The map Φ is injective

and we will use Φ−1 : S → R2 in our reconstruction algorithm.

Recall in the VIIM that Σk
i is phase i at time step k. We describe how the DMIIM

reconstructs the new phases, Σk+1
1 , Σk+1

2 , and Σk+1
3 from Σk

1(σ1∆t), Σk
2(σ2∆t), and

Σk
3(σ3∆t). Define ΠS : R3 → R3 as the closest point projection onto S (with respect

to the standard Euclidean distance in R3). We define the reconstructed phases at

the (k + 1)-st time step as

Σk+1
i =

{
z ∈ D : Φ−1 ◦ ΠS

(
dΣk1(σ1∆t)(z), dΣk2(σ2∆t)(z), dΣk3(σ3∆t)(z)

)
∈ Ωi(0)

}
.

(5.12)

We are thus assigning the point z to the phase (or phases) whose corresponding

sector contains the preimage of

ΠS(dΣ1(σ1∆t)(z), dΣ2(σ2∆t)(z), dΣ3(σ3∆t)(z)) ∈ S

under the one-to-one map Φ. The configuration
(
Ω1(0),Ω2(0),Ω3(0)

)
is clearly fixed

under the DMIIM algorithm, which thus treats a triple junction with the correct

109

Herring angles and straight interfaces exactly as it should. (Note that having these

triple junctions fixed is a reassuring but not necessary condition for convergence of

such algorithms; e.g. threshold dynamics [15] does not have this property in general).

See fig. 5.3 for a schematic of dictionary reconstruction.

Given the surface tensions (σ1, σ2, σ3) and a time step size ∆t > 0, the correspond-

ing projection surface S is neither bounded nor smooth. Moreover, at its non-empty

ridge, the closest point projection map ΠS : R3 → S contains multiple points.

However, ΠS(x) is non-empty at any x ∈ R3.

The following two claims ensure that ΠS is well defined (i.e. ΠS(x) contains

a single point) and smooth in a neighborhood of the vacuum and overlap regions

formed by evolving each phase by mean curvature motion, starting from an initial

configuration of three smooth curves meeting at almost the correct Herring angles.

The claims are straightforward but tedious to check, so the proofs are omitted.

The first concerns the surface S and follows from properties of the self-similar

solution of curvature motion discussed in section 5.6.1:

Claim V.1. Given r = (r1, r2, r3) ∈ (R+)3, let Tr = ∩3
j=1{x ∈ R2 : dΩj(0)(x) < rj}

denote a neighborhood of the stationary triple junction with the exact Herring angles.

There exists r > 0 and ε > 0 such that the closest point projection map ΠS : R3 → S

is well defined and smooth on Nε = {x ∈ R3 : d(x,Φ(Tr)) < ε}.

The second can be checked e.g. using the comparison principle satisfied by motion

by mean curvature:

Claim V.2. Let r, ε, Tr, and Nε be as in Claim 1. Let (∂Σi(0))∩ (∂Σj(0)), i 6= j, be

smooth curves meeting at a triple junction with angles (θ′1, θ
′
2, θ
′
3). There exist δ > 0

110

and T > 0 such that if ||(θ1, θ2, θ3)− (θ′1, θ
′
2, θ
′
3)|| ≤ δ and ∆t ≤ T , then

1√
∆t

(dΣ1(σ1∆t)(x), dΣ2(σ2∆t)(x), dΣ3(σ3∆t)(x)) ∈ Nε for any x ∈
⋃

0≤t≤∆t
j∈{1,2,3}

∂Σj(σjt).

We next explain one way to extend the DMIIM algorithm just described for three

phases to the n-phase setting. Let σ1, σ2, . . . , σn be the surface tensions associated

with the n phases. Let I(z, ·) : {1, 2, . . . , n} → {1, 2, . . . , n} be a bijection (permu-

tation of the indices) so that

dΣk
I(z,1)

(σI(z,1)∆t)
(z) ≥ dΣk

I(z,2)
(σI(z,2)∆t)

(z) ≥ · · · ≥ dΣk
I(z,n)

(σI(z,n)∆t)
(z)

so that I(z, j) is the label of the phase with the j-th largest signed distance function

at the point z. Our simple extension, similar to the one in [38], is to allocate each

z using the very same dictionary mapping discussed above, where the three phases

used in the construction of the projection surface are the closest three to z. Under

this rule the new sets become

(5.13) Σk+1
j =

{
z ∈ D : I−1(z, j) ≤ 3 and

Φ−1 ◦ ΠS

(
dΣk

I(z,1)
(σI(z,1)∆t)

(z), dΣk
I(z,2)

(σI(z,2)∆t)
(z), dΣk

I(z,3)
(σI(z,3)∆t)

(z)
)
∈ ΩI−1(z,j)(0)

}
where Ωj for j ∈ {1, 2, 3}, the map Φ and the surface S are constructed at each

z ∈ D as in the three phase case, using the surface tensions σI(z,1), σI(z,2), and σI(z,3).

High degree junctions are thus treated heuristically by this method. Indeed, it is not

hard to come up with alternatives to the simple extension (5.13) explained above.

Although we expect all such natural extensions to behave mostly the same, subtle

differences between them cannot be ruled out at this point. We took the simplest

example (5.13), and while points near high degree junctions can be far away from

the template surface, we will show that it behaves reasonably in section 5.6.5.

111

Figure 5.3: A schematic of the dictionary reconstruction step. The dashed lines are the interfaces
at T = 0 and the solid lines are sets at time T = ∆t. In this example the point would
be allocated to Σ2.

The DMIIM also allows some control over mobilities. Each phase Σi can be

assigned a mobility µi. In the evolution step the level sets are evolved for time

µiσi∆t by (5.5) and we use Ωi(µiσi∆t) in the construction of the template surface.

The mobility at the interface Γij becomes

µij =
µiσi + µjσj

2σij
.(5.14)

With this extra flexibility, the DMIIM allows the specification of the
(
n
2

)
physically

relevant surface tensions at the interfaces, Γij, and the products, µiσi, for each phase.

The mobility at the interface Γij is constrained by (5.14). We give an example in

section 5.6.5.

Algorithm 14 details the steps in the DMIIM. In the next two subsections we

describe how to find Ωi(t) with high accuracy and how the projection is performed.

5.6.1 Self-Similar Solution to Curvature Motion

Building the template map in the DMIIM algorithm requires precomputing the

solution of motion by mean curvature of a sector (denoted Ω(t) in the previous

section) to high accuracy. The set Ω(t) is related to a self-similar solution of mean

curvature motion; thus the computation of Ω(t) can be reduced to the following

112

Algorithm 14 Dictionary Mapping Implicit Interface Method

1: Given Σ0
1,Σ

0
2, . . . ,Σ

0
n, σ1, σ2, . . . , σn, µ1, µ2, . . . , µn, ∆t, and T .

2: Let N = T/∆t. Define the reduced mobilities µ̄i = µiσi.
3: for k ← 1 to N do
4: Evolve each Σki (0) by time µ̄i∆t to get Σki (µ̄i∆t).
5: Construct the new phases

Σk+1
i =

{
z ∈ D : I−1(z, i) ≤ 3 and

Φ−1 ◦ΠS

(
dΣk

I(z,1)
(µ̄I(z,1)∆t)

(z), dΣk
I(z,2)

(µ̄I(z,2)∆t)
(z), dΣk

I(z,3)
(µ̄I(z,3)∆t)

(z)
)

∈ ΩI−1(z,i)(0)
}

ODE:

φ′′(x) =
1

2
(φ(x)− xφ′(x))(1 + (φ′(x))2)

φ′(0) = 0

lim
x→∞

φ(x) =∞

φ(0) = φ0 > 0

(5.15)

on the domain x ∈ (−∞,∞) and φ is even. Instead of the last condition of (5.15), we

could specify a M such that lim
x→∞

φ′(x) = M > 0. There is a bijective map between

φ0 and M [24]. We next explain how (5.15) arises.

For a curve given as the graph of a function u(x, t), motion by curvature is de-

scribed by the PDE

ut =
uxx

1 + u2
x

.

When u(x, t = 0) = M |x| for some M then

u(x, t) =
√
tφ(x/

√
t)

where φ satisfies (5.15). Let the positive y-axis bisect the sector Ω(0) with angle θ,

then ∂Ω(0) = M |x| for M = cot(θ/2) and

Ω(t) = {(x, y) : y ≥
√
tφ(x/

√
t)}.

113

To find the numerical solution to the ODE (5.15), we use the Newton iteration[
2

h2
− xi

2h
− xi

2h

(
φki+1 − φki−1

2h

)2]
φk+1
i−1 −

[
4

h2
+ 1 +

(
φki+1 − φki−1

2h

)2]
φk+1
i(5.16)

+

[
2

h2
+
xi
2h

+
xi
2h

(
φki+1 − φki−1

2h

)2]
φk+1
i+1 = 0(5.17)

for x0 = 0 and xN being sufficiently large. The boundary conditions are φ−1 = φ1

and φN = MxN . Below we prove that φN is close to MxN as long as we choose

xN large enough, justifying the second boundary condition. We offer an improved

bound over

φ(x) = Mx+ o

(
1

x

)
, as x→∞.(5.18)

given in [24], where the ODE was previously studied. The improved bound implies

we do not need to take xN so large. In our simulations we choose xN to be 10.

Claim V.3. For a function φ(x) satisfying (5.15) the following bounds hold:

|φ(x)− xM | ≤ C0e
−x

2(1+M2)
4 , x ≥ 0

|φ′(x)−M | ≤ C0

x
e−

x2(1+M2)
4 , x > 0

|φ′′(x)| ≤ C1e
−x

2(1+M2)
4 , x ≥ 0

where C0 and C1 only depend on φ0 (or M).

We first need the following lemmas

Lemma V.4. The function φ satisfies the following properties:

1. φ′′(x) > 0.

2. 0 ≤ φ′(x) < M .

3. φ(x) > xM .

114

Proof. The proof of property 1 is given in [24]. As a result of φ′′(x) > 0, φ′(x) is

a strictly increasing function with lim
x→∞

φ′(x) = M , so property 2 follows. To prove

property 3, let h(x) = φ(x)− xM on x ≥ 0. By (5.18) lim
x→∞

h(x) = 0 and property 2

implies h′(x) = φ′(x)−M < 0. Thus h(x) > 0 for all x ≥ 0.

Lemma V.5. The function φ satisfies the first order differential equation

exp

(
φ2(0)

2

)
φ2(0) = (φ(x)− xφ′(x))2 exp

(
x2

2
+
φ2(x)

2

)
(1 + (φ′(x))2)−1.

Proof. Rearrange

φ′′(x̃) =
1

2
(φ(x̃)− x̃φ′(x̃))(1 + (φ′(x̃))2)(5.19)

to

−2x̃φ′′(x̃)

φ(x̃)− x̃φ′(x̃)
= −x̃+ x̃(φ′(x̃))2.

By integrating both sides from 0 to x we obtain

2 log (φ(x)− xφ′(x))− 2 log (φ0 = −1

2
x2 −

∫ x

0

x̃(φ′(x̃))2dx̃.(5.20)

Now rearrange (5.19) to

2φ′(x̃)φ′′(x̃)

1 + (φ′(x̃))2
= φ(x̃)φ′(x̃)− x̃(φ′(x̃))2.

By integrating both sides from 0 to x we obtain

log (1 + (φ′(x))2) =
1

2
φ2(x)− 1

2
φ2

0 −
∫ x

0

x̃(φ′(x̃))2dx̃.(5.21)

Both (5.20) and (5.21) have a −
∫ x

0
x̃φ′(x̃)2dx̃ term. Solving for that term in (5.20)

and (5.21) and setting the equations equal to each other results in

log (1 + (φ′(x))2)− 1

2
φ2(x) +

1

2
φ2

0 = 2 log (φ(x)− xφ′(x))− 2 log (φ0) +
1

2
x2.

The conclusion of the lemma follows from taking the exponential of both sides.

115

Using the above two lemmas we can establish claim V.3:

Proof. (Of claim V.3) Applying the lemmas we have

(φ(x)− xφ′(x))2

= exp

(
− x2

2
+
φ2

0

2
− φ2(x)

2

)
(1 + (φ′(x))2)φ2

0

≤ exp

(
− x2

2
− (Mx)2

2

)
(1 +M2)φ2

0 exp
φ2

0

2

Additionally, invoking inequalities 2 and 3 from lemma V.4.

|φ(x)− xφ′(x)| = |φ(x)− xM + xM − xφ′(x)| = |φ(x)− xM |+ |xM − xφ′(x)|.

The first inequality follows from observing that |φ(x) − xM | < |φ(x) − xφ′(x)| and

the second from |M − φ′(x)| < 1
x
|φ(x) − xφ′(x)| for x > 0. Then using (5.19)

|φ′′(x)| ≤ 1
2
|φ(x)− xφ′(x)|(1 +M2) and the third inequality follows.

5.6.2 Projecting onto the Template Surface

Another important step in the DMIIM algorithm introduced in section 5.6 is the

closest point projection onto the template surface. Here, we discuss the details of a

highly accurate method for projecting an arbitrary point w ∈ R3 onto the template

surface S = {Φ(x, y) : (x, y) ∈ R2} for the template map Φ defined in (5.11). Define

the function

F (x, y) =
1

2
||w − Φ(x, y)||22.(5.22)

Denote (x∗, y∗) as the minimum of F or where Φ(x∗, y∗) = ΠS(w). To find (x∗, y∗)

we will use Newton’s method,xn+1

yn+1

 =

xn
yn

− (D2F)−1∇F (xn, yn).

116

To choose (x0, y0), we make a coarse point cloud of the surface S and choose (x0, y0)

so that Φ(x0, y0) is the nearest point to w in the point cloud.

The rest of this section details how to compute∇F and D2F . First we find partial

derivatives of F in terms of the distance functions, for example:

∂F

∂x
=

3∑
i=1

(
∂

∂x
dΩi(σiµi∆t)

)
(dΩi(σiµi∆t)(x, y)−wi)

∂2F

∂x2
=

3∑
i=1

(
∂2

∂x2
dΩi(σiµi∆t)

)
(dΩi(σiµi∆t) −wi) +

(
∂

∂x
dΩi(σiµi∆t)

)2

.

We will next demonstrate how to find explicit formulas for the partial derivatives of

the distance functions. There exists a rotation of angle θ, denote as Rθ, such that

Rθ(Ωi(σiµi∆t)) = {(x, y) : y ≥ f(x)}

for f(x) =
√
σiµi∆tφ(|x|/

√
σiµi∆t). For the moment, consider the case where θ = 0.

Let

g(x, y, p) =
−(x− p)f ′(p) + (y − f(p))√

1 + (f ′(p))2
.

Additionally, let p∗(x, y) = arg min
p

(x− p)2 + (y − f(p))2 be the x-coordinate of the

closest point on the curve (q, f(q)) to (x, y). Note that

d

dp
[(x− p)2 + (y − f(p))2]|p∗ = 2(x− p∗) + 2(y − f(p∗))f ′(p∗) = 0.(5.23)

We have g(x, y, p∗(x, y)) = dΩi(σiµi∆t)(x, y) (see proposition 1 in [16]). We can find

the partial derivatives of the distance function by differentiating g, for example:

d

dx
dΩi(σiµi∆t) = gx + gpp

∗
x

d2

dx2
dΩi(σiµi∆t) = gxx + 2gpxp

∗
x + gpp(p

∗
x)

2 + gpp
∗
xx.

The partial derivatives of p∗ are obtained by implicitly differentiating (x−p∗) + (y−

f(p∗))f ′(p∗) = 0. We have that

gp =
[(x− p) + (y − f(p))f ′(p)]f ′′(p)

(1 + (f ′(p))2)3/2
= 0

117

by (5.23), so we do not need to solve for p∗xx. Applying the above for an arbitrary

angle θ, the partial derivatives of the distance function are

∂

∂x
dΩi(σiµi∆t) =

− cos(θ)f ′(p∗) + sin(θ)√
1 + (f ′(p∗))2

∂

∂y
dΩi(σiµi∆t) =

sin(θ)f ′(p∗) + cos(θ)√
1 + (f ′(p∗))2

∂2

∂x2
dΩi(σiµi∆t) = [− cos2(θ)− 2 sin(θ) cos(θ)f ′(p∗)− sin2(θ)(f ′(p∗))2]h(x, y, p∗)

∂2

∂x∂y
dΩi(σiµi∆t) = [sin(θ) cos(θ)− cos(2θ)f ′(p∗)− sin(θ) cos(θ)(f ′(p∗))2]h(x, y, p∗)

∂2

∂y2
dΩi(σiµi∆t) = [− sin2(θ) + 2 sin(θ) cos(θ)f ′(p∗)− cos2(θ)(f ′(p∗))2]h(x, y, p∗)

h(x, y, p∗) =

(
1

1 + (f ′(p∗))2 + [f(p∗)− (x sin(θ) + y cos(θ))]f ′′(p∗)

)(
f ′′(p∗)

[1 + (f ′(p∗))2]3/2

)
.

We now have explicit formulas for every step of Newton’s method allowing us to

quickly and accurately minimize (5.22) to find the closest point projection.

5.6.3 The DMIIM’s Relationship to the VIIM

In this section, we discuss the precise relationship between the DMIIM and the

VIIM. We consider the very special case of equal surface tensions, σi = 1 (for all

i), corresponding to the Herring angles of (120◦, 120◦, 120◦). This is the one case in

which our numerical results from previous sections suggest the VIIM converges to the

correct solution. The standard maximum principle for two-phase motion by mean

curvature implies that overlaps cannot occur at the end of the curve evolution step

of the VIIM or the DMIIM. The only interesting question is how the two algorithms

allocate points in the “vacuum” region, {z : dΣj(∆t)(z) < 0 for all j}.

Due to the symmetry of this situation, if p ∈ S, then any q ∈ R3 obtained by a

permutation of the components of p also satisfies q ∈ S.

Let x ∈ R3 be given, with xi < 0 for all i. Let p = ΠS(x) with p = ΦS(z) for

some z ∈ R2. We are thus assuming implicitly that ΠS(x) consists of a single point

118

p ∈ S.

Claim V.6. xi = max(x1,x2,x3) if and only if pi = max(p1,p2,p3).

Proof. The proof will be broken up into three parts: For i 6= j (1) if xi ≥ xj then

pi ≥ pj, (2) if pi = pj, then xi = xj and (3) if pi ≥ pj, then xi ≥ xj. Statements

(1) and (3) then imply the claim.

(1) If xi ≥ xj and pi < pj, then

||x− q|| ≤ ||x− p||

where q ∈ S is obtained from p by interchanging its i-th and j-th components (since

pi 6= pj, then q 6= p). Indeed,

||x− p||2 = ||x− q||2 + 2(xi − xj)(pj − pi) ≥ ||x− q||2.

This contradicts p = ΠS(x); so the first statement is established.

(2) If pi = pj, let n denote a unit normal to S at p. A short calculation shows

that ni = nj. Indeed:

ni = nj = DudΩi(∆t)|Φ−1(p)

where u is the unit vector perpendicular to ∂Ωi(0)∩∂Ωj(0) pointing into Ωi(0). Since

p = Π(x) implies that x− p = βn for some β ∈ R, we get xi = xj.

(3) Assume xi < xj. Since xi ≤ xj, by statement (1) pi ≤ pj. Furthermore, since

xi 6= xj statement (2) implies pi 6= pj. Hence pi < pj.

Claim V.7. Let the phases Σk
i at time step k have smooth boundaries, with triple

junctions in the same neighborhood of (120◦, 120◦, 120◦) as in claim V.2. Then, for

every small enough time step size ∆t > 0, the DMIIM and the VIIM yield the same

Σk+1
i .

119

Proof. Due to the symmetry z ∈ Ωi(0) if and only if dΩi(∆t)(z) = maxj dΩj(∆t)(z). A

consequence is that

Φ(Ωi(0)) = {p ∈ S : pi = max(p)}.(5.24)

The projection map Φ is well defined for points (dΣ1(∆t)(z), dΣ2(∆t)(z), dΣ3(∆t)(z)),

where dΣj(∆t)(z) < 0 for all j by claim V.2. Then claim V.6 along with (5.24) give

us that dΣi(∆t)(z) = maxj dΣj(∆t)(z) if and only if

ΠS(dΣ1(∆t)(z), dΣ2(∆t)(z), dΣ3(∆t)(z)) ∈ Φ(Ωi(0))

completing the proof.

The dictionary mapping implicit interface method is then an extension of the

Voronoi implicit interface method to cases of unequal surface tension. As we show

in the next section, the DMIIM numerically converges to the exact solution in cases

of unequal surface tensions.

5.6.4 Numerical Results for the DMIIM

Algorithm 15 Parameterized DMIIM for “Grim Reaper” tests with θ2 = θ3.

1: Let N = T/∆t.
2: Choose points {xi}ni=1 ∈ [0, .25] and set y0

i = f(xi, 0).
3: for k ← 1 to N do
4: Use {xi, yk−1

i }ni=1 to parameterize ∂Σ1 and ∂Σ2, denoted as γ+ and γ− respectively.
5: Evolve γ+ and γ− by (5.7) for time µ1σ1∆t and µ2σ2∆t respectively.
6: For each xi find ỹi such that

(x∗, y∗) = Φ−1 ◦ΠS(dΣ1(σ1µ1∆t)(xi, ỹi), dΣ2(σ2µ2∆t)(xi, ỹi), dΣ3(σ3µ3∆t)(xi, ỹi))

satisfies (x∗, y∗) ∈ ∂Ω1(0) ∪ ∂Ω2(0).
7: yki ← ỹi

In this section, we perform on the DMIIM the same careful numerical convergence

tests that we subjected the VIIM to. In addition we test on some examples where

all the surface tensions are different. Algorithm 15 details the implementation of the

120

Table 5.10: DMIIM, θ1 = 120◦

∆t n RE Order
2−10 1024 0.0202 -
2−11 1449 0.0141 0.520
2−12 2048 0.0099 0.513
2−13 2897 0.0069 0.509
2−14 4096 0.0049 0.507
2−15 5793 0.0034 0.505
2−16 8192 0.0024 0.503
2−17 11586 0.0017 0.498

Table 5.11: DMIIM, θ1 = 90◦

∆t n RE Order
2−10 1024 0.00207 -
2−11 1449 0.00107 0.954
2−12 2048 0.00056 0.922
2−13 2897 0.00031 0.842
2−14 4096 0.00018 0.772
2−15 5793 0.00011 0.701
2−16 8192 0.00007 0.614
2−17 11586 0.00005 0.576

Table 5.12: DMIIM, (75◦, 135◦, 150◦), µi = 1
∆t n RE Order

2−10 1024 0.0067 -
2−11 1449 0.0053 0.338
2−12 2048 0.0040 0.411
2−13 2897 0.0029 0.450
2−14 4096 0.0021 0.470
2−15 5793 0.0015 0.480
2−16 8192 0.0011 0.494

Table 5.13: DMIIM, (75◦, 135◦, 150◦), µi = 1
σi

∆t n RE Order
2−10 1024 0.0138 -
2−11 1449 0.0094 0.548
2−12 2048 0.0065 0.540
2−13 2897 0.0045 0.533
2−14 4096 0.0031 0.527
2−15 5793 0.0022 0.522
2−16 8192 0.0015 0.521

DMIIM with parameterized curves for “Grim Reaper” tests with θ2 = θ3. The imple-

mentation of the non-symmetric case is similar. We note that in our implementation

of algorithm 15 that projecting onto the template surface is the computation bottle-

neck, taking about 25 times longer than the Voronoi reconstruction step it replaces

in the VIIM. This is mainly due to the number of points we use to represent each

Ωi. We choose to err on the side of caution in our numerical studies, representing Ωi

with many more points than needed.

We run the following “Grim Reaper” tests:

1. Angles (θ1, θ2, θ3) = (120◦, 120◦, 120◦) with σ1 = σ2 = σ3 = 1.

2. Angles (θ1, θ2, θ3) = (90◦, 135◦, 135◦) with σ1 = 2−
√

2 and σ2 = σ3 =
√

2

3. Angles (θ1, θ2, θ3) = (75◦, 135◦, 150◦) with σ1 = 1
4
(−2 + 3

√
2 +
√

6), σ2 = 1
4
(2−

√
2 +
√

6), σ3 = 1
4
(2 +

√
2−
√

6) and µi = 1.

4. Angles (θ1, θ2, θ3) = (75◦, 135◦, 150◦) with the same σi’s as the previous test

121

with µi = 1
σi

.

Each of the simulations use the following parameters:

• The total time the system is evolved: T = 18/512.

• Number of points tracked on the parameterized curve: n as given in the table.

• Step size in (5.7): δt = σ∆t/n.

• We are measuring the relative error (RE) of the area of symmetric difference of

phase Σ1 in {(x, y) : 0 ≤ x ≤ β − .04 or β + .04 ≤ x ≤ .5}, see (5.10).

The results are contained in table 5.10 through table 5.13.

5.6.5 Level Set Examples of the DMIIM

We demonstrate the level set formulation of the DMIIM in two and three dimen-

sions. In 2d we evolve a system that goes through a well understood topological

change. Initially, we have two “Grim Reapers” translating vertically towards each

other until they collide. After the collision, two new junctions form that travel hor-

izontally away from each other forming a new horizontal interface between the top

and bottom phases.

The initial configuration is

Σ0
1 =

{
(x, y) : y >

3

4
+ f(

1

4
− |x−

1

4
|)
}

Σ0
2 =

{
(x, y) : x <

1

4
and

1

4
+ f(x) < y <

3

4
+ f(x)

}
Σ0

3 =

{
(x, y) : x <

1

4
and

1

4
+ f(x) < y <

3

4
+ f(x)

}
Σ0

4 =

{
(x, y) :

1

4
+ f(

1

4
− |x−

1

4
|)
}

where f(x) = 1
π

log(cos(πx)). We use the surface tensions matrix

σ =


0 1 1 1

1 0
√

2 1

1
√

2 0 1
1 1 1 0



122

Figure 5.4: Two “Grim Reapers” colliding, computed using the DMIIM algorithm (practical
implementation on uniform grid). The initial (90◦, 135◦, 135◦) angles change to
(120◦, 120◦, 120◦) after the collision, as expected. The multiple junction that momen-
tarily forms at collision appears to be handled appropriately.

and (µ1σ1, µ2σ2, µ3σ3, µ4σ4) = (2 −
√

2,
√

2,
√

2, 2 −
√

2). Before the topological

change the angles are (90◦, 135◦, 135◦) at the triple junctions. After the change the

angles are (120◦, 120◦, 120◦). For the simulation we use the domain [0, 1] × [0, 1]

with periodic boundary conditions on a 512 by 512 grid. We set ∆t = 1
1600π sin(3π/4)

.

Figure 5.4 shows this system at different times.

In three dimensions, we evolve a system starting from a Voronoi diagram of 8

points taken at random on the 3-torus. Six of the phases have surface tension equal

to 1 while the other two phases have surface tension
√

2− 1. Thus three angle con-

figurations are possible: (120◦, 120◦, 120◦), (90◦, 135◦, 135◦), and ≈ (146◦, 107◦, 107◦)

Quadruple points split and collide throughout the evolution causing the faces of the

grains to undergo topological changes as seen in fig. 5.5. The two preceding examples

show reasonable behavior and demonstrate the practical use of the DMIIM as a level

set method.

5.7 Conclusion

In this work, we have presented careful numerical convergence studies showing

that the Voronoi implicit interface method gets close but does not converge to the

correct evolution in the unequal surface tension case of multiphase motion by mean

123

Figure 5.5: Two grains undergoing topological changes on the face of the grains. In the first grain,
four quadruple points collide. In the second grain, a quadruple point splits.

curvature. In addition, we proposed a correction to the method that fixes the non-

convergence while maintaining the simplicity and the spirit of the method; indeed,

the new algorithm reduces to the original in the case of equal surface tensions. The

correction is in the spirit of the projection method [38] of Ruuth proposed in the

context of threshold dynamics. We subjected the new algorithm to the same rigorous

numerical convergence studies as the original, verifying that the non-convergence

of the latter is rectified. As in [38], the new algorithm is somewhat heuristic in

the handling of higher order junctions (≥ 4) – but numerical evidence is presented

that suggests it behaves reasonably even in their presence. Nevertheless, a more

systematic approach, perhaps a variational interpretation of the VIIM in the spirit

of [15], would be far preferable, not least as a more reliable extension to arbitrary

junctions. Highlighting this need for further investigation of the VIIM is perhaps the

most notable contribution of the present study.

CHAPTER VI

Conclusion

Over the course of this thesis, we have developed high order, stable multistage

methods for gradient flows. Specifically, we have developed new second and third

order, unconditionally energy stable DIRK methods, second and third order, con-

ditionally energy stable ARK IMEX methods, and energy stable variants of the

aforementioned methods in cases of solution dependent inner products. We demon-

strated the methods on a variety of gradient flows, including the Allen-Cahn and

Cahn-Hillard equations.

However, we only began to develop the mathematical theory of our methods for

gradient flows. First, the coefficients of the multi-step schemes were found by a brute

force search. For this reason, we were only able to present methods that were second

and third order. Further work is needed to prove the existence of higher order versions

of the multistage schemes and develop a systematic method of finding coefficients

that satisfy consistency and stability. Additionally, the variant of gradient flow with

solution dependent inner products introduced a new constraint on the time step for

stability in order to achieve third order accuracy. Though the constraint is mild,

a version of third order gradient flows for solution dependent inner products that

introduces no additional constraint would be beneficial. Additionally, the examples

124

125

that we used our methods on were relatively simple. The power of the methods we

developed is their ability to use efficient black-box stable implementation of existing

schemes to solve gradient flows and to painlessly jack up the order without sacrificing

stability. Future work could focus on applications of our Runge-Kutta schemes and

the solution dependent inner product variant.

In chapter IV, we showed that our stability results for Runge-Kutta schemes could

be applied to an energy stable threshold dynamics scheme for simulating two phase

mean curvature flow, albeit only in two dimensions. We also presented a second

order threshold dynamic scheme in three dimensions with accompanying rigorous

consistency calculations. An energy stable version of threshold dynamics that is

second order in any dimension is lacking and could be a goal of future work. However,

an even more important aim is to increase the order of accuracy of threshold dynamics

in the multi-phase case. Threshold dynamics, as well as other level-set like algorithms

for mean curvature motion, are only half order in the presence of more than two

phases. Our work was a step in the development of a first (and higher) order threshold

dynamic algorithm for multi-phase mean curvature flow.

Our focus on threshold dynamic methods was spurred by the fact that they are

provably convergent in cases of unequal and anisotropic surface tension. On the

other hand, we also considered the Voronoi Implicit Interface Method (VIIM). We

provided rigorous numerical convergence studies for the VIIM and showed that the

VIIM does not converge in the case of unequal surface tension. We then gave a

variant, the DMIIM, that does converge to the physically correct solution and allows

for some control over mobilities. However, the DMIIM sacrifices the efficiency of

the VIIM. Even better would be a deeper mathematical understanding of the VIIM,

including a variational formulation of the algorithm. This would allow the VIIM to

126

be extended to more general cases of unequal surface tension and mobilities.

Overall, we have begun to tap into the rich mathematical theory of high order

energy stable methods for general gradient flows, and mean curvature motion in

particular.

APPENDICES

127

128

APPENDIX A

The Parameters that Render the Six-Step DIRK Scheme to
be Third Order Accurate and Unconditionally Stable

We record here the exact values for the coefficients γ in the six-stage, third order

accurate scheme introduced in section 2.4. They are rational numbers, but the

irreducible fraction representation of some of them are quite long, and were therefore

approximated above. With the universal, exact values given below, we can rigorously

state that the new scheme introduced in this chapter can be used to jack up the order

of accuracy in time of any backward Euler scheme (2.3) for gradient flows (2.1) to

third order while maintaining unconditional energy stability.

The matrix of values is:

γ =



67
6

0 0 0 0 0
− 15

2
136
7

0 0 0 0
− 21

20
− 19

4
587
42

0 0 0
9
5

1
21

− 47
6

69
5

0 0
31
5

− 43
6

− 4
3

13
8

242
21

0
− 17

6
75
16

γ6,2 γ6,3 γ6,4 γ6,5


where

γ6,2 = −96877768305591883216465260738322381995331343806720345

39417514787340924198452679823989476266149744556295712

γ6,3 = −910677500903250179715877776918800480038125970511673389

78835029574681848396905359647978952532299489112591424

γ6,4 =
2985416726242784122189204876225493950575679989899779

446910598495928845787445349478338733176300958688160

γ6,5 =
523180952458721016795516949849623944572931703979520653

43797238652601026887169644248877195851277493951439680

It can be checked that these γ’s satisfy the inequalities in the hypothesis of the-

orem II.1 for stability, and the consistency equations in claim II.4 for third or-

129

der exactly. Code for doing so can be found at https://github.com/AZaitzeff/

gradientflow.

https://github.com/AZaitzeff/gradientflow
https://github.com/AZaitzeff/gradientflow

130

APPENDIX B

A Third Order Fully Implicit Method for Gradient Flows
with Solution Dependant Inner Product

Here we layout a fully implicit, third order algorithm for gradient flows with solution

dependant inner product,

ut = −L(u)∇E(u).

In this case, each substep has form:

(B.1)

[m−1∑
i=0

γm,i

]
Um + kL(u∗)∇HE(Um) = +

m−1∑
i=0

γm,iUi.

The algorithm is energy stable as long as

L(u)− 1

72
k2D2L(u)(w,w)

is positive definite for all u and w.

Fix a time step size k > 0. Set un = u0. For convenience, we will denote

D2L(u∗)
(
L(u∗)∇E(u∗),L(u∗)∇E(u∗)

)
as D2L(u∗).

Alternate the following steps:

1. Find u∗1 :

u∗1 +
1

6
kLn∇E(u∗1) = un.

2. Find ū using (B.1) with coefficients (2.29), L(u∗1)− 1
72
D2L(u∗1) and time step

1
2
k.

131

3. Find u∗2,1 :

u∗2,1 +
2

5
kLn∇E(u∗2,1) = un.

4. Find u∗2,2 using (B.1) with the following coefficients

(B.2)


6.17 0 0 0
−0.5 6 0 0
−3 2 7 0
−3.1 0 2.23 7.40

 ,

L(u∗2,1) and time step 5
6
k.

5. Find un+1 using (B.1) starting at ū (instead of un) with coefficients (2.29),

L(u∗2,2)− 1
72
D2L(u∗2,2) and time step 1

2
k.

The exact values for (B.2) can be found at https://github.com/AZaitzeff/

SIgradflow.

https://github.com/AZaitzeff/SIgradflow
https://github.com/AZaitzeff/SIgradflow

132

APPENDIX C

Taylor Expansion of Characteristic Function with a
Gaussian Kernel

In this appendix, we work out the Taylor expansion of the convolution of a Gaussian

kernel with a characteristic function. A simpler version of the following calculation

is worked out in two dimensions by Ruuth [37] and up to first order in arbitrary di-

mensions by Grzhibovskis & Heinz [20]. First, let us introduce the following notation

for the 1D Gaussian for convenience,

gt(x) =
1

2
√
πt

exp

[
− x2

4t

]
and let Gt(x, y, z) = gt(x)gt(y)gt(z).

Now take a function h(x, y) with the following properties:

h(0, 0) = O(t)

hx(0, 0) = O(t)

hy(0, 0) = O(t)

(C.1)

The papers mentioned above ([20, 37]) use the assumption that

(C.2) h(0, 0) = hx(0, 0) = hy(0, 0) = 0.

These simpler assumptions are sufficient for their calculation of the Taylor expansion

for a single step of threshold dynamics. However, after the first stage, the interface

133

may no longer satisfy (C.2). So we required the more general conditions given by

(C.1) for Taylor expansions of the interface after the first stage.

Now let Σ = {(x, y, z) : z ≤ h(x, y)}. The goal is to see how

[
Gt ∗ 1Σ

]
(x, y, z)

behaves along the z-axis near the origin. First, we simplify

[
Gt ∗ 1Σ

]
(x, y, z):

[
Gt ∗ 1Σ

]
(x, y, z)

=

∫
R2

gt(y − ỹ)gt(x− x̃)

∫ ∞
−∞

gt(z − z̃)1Σ(x̃, ỹ, z̃)dz̃dx̃dỹ

=

∫
R2

gt(y − ỹ)gt(x− x̃)

∫ h(x̃,ỹ)

−∞
gt(z − z̃)dz̃dx̃dỹ

=

∫
R2

gt(y − ỹ)gt(x− x̃)

∫ 0

−∞
gt(z − z̃)dz̃dx̃dỹ

+

∫
R2

gt(y − ỹ)gt(x− x̃)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ

=
1

2
− z

2
√
πt

+
z3

24
√
πt3/2

+

∫
R2

gt(x− x̃)gt(y − ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ

+ h.o.t.

(C.3)

Setting x = y = 0, we will now simplify the last term of (C.3),

(C.4)

∫
R2

gt(x− x̃)gt(y − ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ.

First note that, near z = 0,

(C.5)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃ =
1

2
√
πt

∫ h(x̃,ỹ)

0

1− (z − z̃)2

4t
dz̃ + h.o.t.

Substituting approximation (C.5) into (C.4) and integrating,

1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ

=
1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

1− (z − z̃)2

4t
dz̃dx̃dỹ + h.o.t.

=
1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

[
h(x̃, ỹ) +

−3h(x̃, ỹ)z2 + 3(h(x̃, ỹ))2z − (h(x̃, ỹ))3

12t

]
dz̃dx̃dỹ + h.o.t.

(C.6)

Denote the Taylor expansion of h(x̃, ỹ) around (0, 0) as P [ht](x̃, ỹ):

(C.7) P [ht](x̃, ỹ) = h+ x̃hx + ỹhy +
x̃2

2
hxx + x̃ỹhxy +

ỹ2

2
hyy +

x̃3

6
hxxx +

x̃2ỹ

2
hxxy +

x̃ỹ2

2
hxyy

+
ỹ3

2
hyyy +

x̃4

24
hxxxx +

x̃3ỹ

6
hxxxy +

x̃2ỹ2

4
hxxyy +

x̃ỹ3

6
hxyyy +

ỹ4

24
hyyyy + h.o.t.

Where h = h(0, 0), hx = hx(0, 0), etc. in order to simplify notation. Now substitute

the Taylor expansion of h(x̃, ỹ) about (0, 0) into (C.6):

134

(C.8)
1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ =

1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

[
P [ht](x̃, ỹ)− 1

4t
P [ht](x̃, ỹ)z2 +

1

4t

(
P [ht](x̃, ỹ)

)2
z

− 1

12t

(
P [ht](x̃, ỹ)

)3]
dx̃dỹ + h.o.t.

Now we can integrate (C.8). For a non-negative integer n we have:

(C.9)

∫ ∞
−∞

xngt(x)dx =

{
(2n)!
n!

tn/2 x for n even

0 for n odd

Using (C.9), we simplify (C.8)

1

2
√
πt

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)dz̃dx̃dỹ =

h

2
√
πt

+

√
t

2
√
π

(hxx + hyy)

+
t3/2

4
√
π

(hxxxx + 2hxxyy + hyyyy)− z2

8
√
πt3/2

h− z2

8
√
πt

(hxx + hyy) +
z

8
√
πt3/2

h2

+
z

4
√
πt
h(hxx + hyy) +

z
√
t

2
√
π

(
3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)− h3

24
√
πt3/2

− h2

8
√
πt

(hxx + hyy)−
√
t

2
√
π
h(

3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)

− t3/2

2
√
π

(
5

4
h3
xx +

5

4
h3
yy +

3

4
hxxh

2
yy +

3

4
h2
xxhyy + 3hxxh

2
xy + 3hyyh

2
xy) + h.o.t.

(C.10)

Now substituting (C.10) for the last term of (C.3) we arrive at the expansion of[
Gt ∗ 1Σ

]
(0, 0, z) near z = 0:

[
Gt ∗ 1Σ

]
(0, 0, z) =

1

2
− z

2
√
πt

+
z3

24
√
πt3/2

+
h

2
√
πt

+

√
t

2
√
π

(hxx + hyy)

+
t3/2

4
√
π

(hxxxx + 2hxxyy + hyyyy)− z2

8
√
πt3/2

h− z2

8
√
πt

(hxx + hyy) +
z

8
√
πt3/2

h2

+
z

4
√
πt
h(hxx + hyy) +

z
√
t

2
√
π

(
3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)− h3

24
√
πt3/2

− h2

8
√
πt

(hxx + hyy)−
√
t

2
√
π
h(

3

4
h2
xx +

3

4
h2
yy +

1

2
hxxhyy + h2

xy)

− t3/2

2
√
π

(
5

4
h3
xx +

5

4
h3
yy +

3

4
hxxh

2
yy +

3

4
h2
xxhyy + 3hxxh

2
xy + 3hyyh

2
xy) + h.o.t

(C.11)

In chapter IV, we use the previous calculation to find the location of an interface

along the z-axis after thresholding, i.e. finding z such that

[
Gt ∗ 1Σ

]
(0, 0, z) = 1

2
.

135

We also need to find how the derivatives of our interface, given by zx(0, 0), zy(0, 0),

zxx(0, 0) etc., relate to the derivatives of the original interface given by h(x, y). The

derivatives of z match the derivatives of h to order t:

(C.12)
∂m+n

∂xnym
z(x, y)|(x,y)=(0,0) =

∂m+n

∂xnym
h(x, y)|(x,y)=(0,0) +O(t).

Note that zx(0, 0) and zy(0, 0) are of O(t) for h having properties (C.1). For our

calculations, we also need to find zxx(0, 0) and zyy(0, 0) to O(t2). So we also include

the calculation of ∂2

∂x2

[
Gt ∗ 1Σ

]
(x, y, z(x, y))|(x,y)=(0,0):

∂2

∂x2

[
Gt ∗ 1Σ

]
(x, y, z(x, y))|(x,y)=(0,0)

=− zxx

2
√
πt

+
3z2zxx + 6z(zx)2

24
√
πt3/2

+

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)
[
x̃2 − 2t

4t2
+
x̃(z̃ − z)zx

2t2

+
(z̃ − z)2z2

x

4t2
+

(z̃ − z)zxx
2t

− z2
x

2t

]
dz̃dx̃dỹ + h.o.t.

(C.13)

The terms z(zx)2

4
√
πt3/2

and∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)
[
x̃(z̃ − z)zx

2t2
+

(z̃ − z)2z2
x

4t2
− z2

x

2t

]
dz̃dx̃dỹ

turn out to be O(t3/2), which is higher than the order needed for the calculations

in this chapter. We will simplify the two remaining terms in the integrand, starting

with the term x̃2−2t
4t2

. As in the previous calculation substitute in the approximation

(C.5) and integrate:

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)
x̃2 − 2t

4t2
dz̃dx̃dỹ

=
1

2
√
πt

∫
R2

gt(ỹ)gt(x̃)

[
P [ht](x̃, ỹ)− 1

4t
P [ht](x̃, ỹ)z2

+
1

4t

(
P [ht](x̃, ỹ)

)2
z − 1

12t

(
P [ht](x̃, ỹ)

)3] x̃2 − 2t

4t2
dx̃dỹ + h.o.t.

(C.14)

Then use (C.9) to further simplify (C.14):

136

=
hxx

2
√
πt

+

√
t

2
√
π

(hxxxx + hxxyy)

− z2

8
√
πt3/2

hxx +
z

4
√
πt3/2

hhxx +
z

2
√
πt

(
3

2
h2
xx +

1

2
hxxhyy + h2

xy

)
− h2

8
√
πt3/2

hxx −
h

2
√
πt

(
3

2
h2
xx +

1

2
hxxhyy + h2

xy

)
−
√
t

2
√
π

(
15

4
h3
xx +

3

4
hxxh

2
yy +

3

2
h2
xxhyy + 6hxxh

2
xy + 3hyyh

2
xy

)
+ h.o.t

(C.15)

We now turn to the (z̃−z)zxx
2t

term, following the same steps:

∫
R2

gt(x̃)gt(ỹ)

∫ h(x̃,ỹ)

0

gt(z − z̃)
(z̃ − z)zxx

2t
dz̃dx̃dỹ

=
1

2
√
πt

∫
R2

gt(ỹ)gt(x̃)

[
P [ht](x̃, ỹ)− 1

4t
P [ht](x̃, ỹ)z2

+
1

4t

(
P [ht](x̃, ỹ)

)2
z − 1

12t

(
P [ht](x̃, ỹ)

)3] (z̃ − z)zxx
2t

dx̃dỹ + h.o.t.

=
zxx

2
√
πt

[
h2

4t
+

1

2
h(hxx + hyy) +

3t

4
(h2
xx + h2

yy) +
t

2
hxxhyy + th2

xy −
zh

2t
− z

2
(hxx + hyy)

]
+ h.o.t.

(C.16)

Substituting (C.15) and (C.16) into (C.13), we arrive at the simplification

∂2

∂x2

[
Gt ∗ 1Σ

]
(x, y, z(x, y))|(x,y)=(0,0)

=− zxx

2
√
πt

+
z2zxx

8
√
πt3/2

+
hxx

2
√
πt

+

√
t

2
√
π

(hxxxx + hxxyy)

− z2

8
√
πt3/2

hxx +
z

4
√
πt3/2

hhxx +
z

2
√
πt

(
3

2
h2
xx +

1

2
hxxhyy + h2

xy

)
− h2

8
√
πt3/2

hxx −
h

2
√
π
√
t

(
3

2
h2
xx +

1

2
hxxhyy + h2

xy

)
−
√
t

2
√
π

(
15

4
h3
xx +

3

4
hxxh

2
yy +

3

2
h2
xxhyy + 6hxxh

2
xy + 3hyyh

2
xy

)
+

zxx

2
√
πt

[
h2

4t
+

1

2
h(hxx + hyy) +

3t

4
(h2
xx + h2

yy) +
t

2
hxxhyy + th2

xy

− zh

2t
− z

2
(hxx + hyy)

]
+ h.o.t.

(C.17)

Finding ∂2

∂y2

[
Gt∗1Σ

]
(x, y, z(x, y))|(x,y)=(0,0) is similar. We use both (C.11) and (C.17)

in several calculations throughout the course of chapter IV.

137

APPENDIX D

The Parameters that Render the Four-Step Threshold
Dynamic Scheme to be Second Order Accurate

We record here the exact values for the coefficients γ in the four-stage, second order

accurate scheme introduced in section 4.5.3. They are algebraic numbers, but the

representations of some of them are quite long and therefore we have approximated

them above. With the exact values given below, we can rigorously state that the

algorithm 10 is second order while maintaining unconditional energy stability. The

matrix of values is:

γ =


1 0 0 0
− 1

4
5
4

0 0
5
6

− 2
3

5
6

0
γ4,0

1
2

γ4,2 γ4,3

 .

γ4,2 =

(
3
√

73547857887405865499600064
√

133495318877644714344377 − 23474745371243059566207357648855848671

−
5551049511730043591353151

3
√

73547857887405865499600064
√

133495318877644714344377 − 23474745371243059566207357648855848671

− 456109196575

)
/3627134098848

γ4,3 =

(
− 5586815667458

× 3
√

73547857887405865499600064
√

133495318877644714344377 − 23474745371243059566207357648855848671

+
(
73547857887405865499600064

√
133495318877644714344377 − 23474745371243059566207357648855848671

)2/3
+

31012690382968488487137089701456460158

3
√

73547857887405865499600064
√

133495318877644714344377 − 23474745371243059566207357648855848671

+
30814150681678355363112149018994128529535197628801(

73547857887405865499600064
√

133495318877644714344377 − 23474745371243059566207357648855848671
)2/3

+ 7974522440634228925392639

)
/18386964471851466374900016

γ4,0 = 1 −
1

2
− γ4,2 − γ4,3

138

It can be checked that these γs satisfy the inequalities in the hypothesis of theo-

rem IV.2 for stability, and the consistency equations in claim IV.1 for second order

exactly.

BIBLIOGRAPHY

139

140

BIBLIOGRAPHY

[1] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–
167, 1997.

[2] Rick K Beatson. On the convergence of some cubic spline interpolation schemes. SIAM journal
on numerical analysis, 23(4):903–912, 1986.

[3] Lia Bronsard and Brian TR Wetton. A numerical method for tracking curve networks moving
with curvature motion. Journal of Computational Physics, 120(1):66–87, 1995.

[4] Kevin Burrage. Efficiently implementable algebraically stable runge–kutta methods. SIAM
Journal on Numerical Analysis, 19(2):245–258, 1982.

[5] John C Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2016.

[6] John Charles Butcher. A stability property of implicit Runge-Kutta methods. BIT Numerical
Mathematics, 15(4):358–361, 1975.

[7] Long Qing Chen and Jie Shen. Applications of semi-implicit Fourier-spectral method to phase
field equations. Computer Physics Communications, 108(2-3):147–158, 1998.

[8] Wenbin Chen, Cheng Wang, Xiaoming Wang, and Steven M Wise. Positivity-preserving,
energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential.
Journal of Computational Physics: X, 3:100031, 2019.

[9] Carl De Boor. A Practical Guide to Splines. Applied mathematical sciences. Springer, Berlin,
2001.

[10] Felix Del Teso, Jørgen Endal, and Espen R Jakobsen. Robust numerical methods for nonlocal
(and local) equations of porous medium type. part ii: Schemes and experiments. SIAM Journal
on Numerical Analysis, 56(6):3611–3647, 2018.

[11] Chenghua Duan, Chun Liu, Cheng Wang, and Xingye Yue. Numerical methods for porous
medium equation by an energetic variational approach. Journal of Computational Physics,
385:13–32, 2019.

[12] M. Elsey, S. Esedoḡlu, and P. Smereka. Simulations of anisotropic grain growth: Efficient
algorithms and misorientation distributions. Acta Materialia, 61(6):2033–2043, 2013.

[13] Matt Elsey, Selim Esedoḡlu, Peter Smereka, et al. Diffusion generated motion for grain growth
in two and three dimensions. Journal of Computational Physics, 228(21):8015–8033, 2009.

[14] Selim Esedoḡlu, Matt Jacobs, and Pengbo Zhang. Kernels with prescribed surface tension &
mobility for threshold dynamics schemes. Journal of Computational Physics, 337:62–83, 2017.

[15] Selim Esedoḡlu and Felix Otto. Threshold dynamics for networks with arbitrary surface ten-
sions. Communications on Pure and Applied Mathematics, 68(5):808–864, 5 2015.

141

[16] Selim Esedoḡlu, Steven Ruuth, Richard Tsai, et al. Diffusion generated motion using signed
distance functions. Journal of Computational Physics, 229(4):1017–1042, 2010.

[17] Selim Esodoḡlu, Peter Smereka, et al. A variational formulation for a level set representa-
tion of multiphase flow and area preserving curvature flow. Communications in Mathematical
Sciences, 6(1):125–148, 2008.

[18] David J Eyre. Unconditionally gradient stable time marching the Cahn-Hilliard equation.
MRS Online Proceedings Library Archive, 529, 1998.

[19] Harald Garcke, Britta Nestler, and Barbara Stoth. A multiphase field concept: numerical
simulations of moving phase boundaries and multiple junctions. SIAM Journal on Applied
Mathematics, 60(1):295–315, 1999.

[20] Richards Grzhibovskis and Alexei Heintz. A convolution-thresholding approximation of gen-
eralized curvature flows. SIAM journal on numerical analysis, 42(6):2652–2670, 2005.

[21] Richards Grzhibovskis and Alexei Heintz. A convolution thresholding scheme for the Willmore
flow. Interfaces and Free Boundaries, 10(2):139–153, 2008.

[22] Daozhi Han and Xiaoming Wang. A second order in time, uniquely solvable, unconditionally
stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. Journal of Computational
Physics, 290:139–156, 2015.

[23] Conyers Herring. Surface tension as a motivation for sintering. In Fundamental Contributions
to the Continuum Theory of Evolving Phase Interfaces in Solids, pages 33–69. Springer, 1999.

[24] Naoyuki Ishimura. Curvature evolution of plane curves with prescribed opening angle. Bulletin
of the Australian Mathematical Society, 52(2):287–296, 1995.

[25] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the
Fokker–Planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

[26] Christopher A Kennedy and Mark H Carpenter. Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Applied Numerical Mathematics, 44(1-2):139–181, 2003.

[27] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit Runge-Kutta methods for
ordinary differential equations. A Review. NASA Report. Langley research center. Hampton
VA, 23681:162, 2016.

[28] Tim Laux and Felix Otto. Convergence of the thresholding scheme for multi-phase mean-
curvature flow. Calc. Var. Partial Differential Equations, 55(5):Art. 129, 74, 2016.

[29] Barry Merriman, James K. Bence, and Stanley J. Osher. Diffusion generated motion by mean
curvature. The Computational Crystal Growers. AMS Selection in Math., pages 73–83, 1992.

[30] Barry Merriman, James K. Bence, and Stanley J. Osher. Motion of multiple junctions: a level
set approach. J. Comput. Phys., 112(2):334–363, 1994.

[31] Luciano Modica and Stefano Mortola. Un esempio di γ-convergenza. Boll. Un. Mat. Ital. B,
14:285–299, 1977.

[32] William W Mullins. Two-dimensional motion of idealized grain boundaries. Journal of Applied
Physics, 27(8):900–904, 1956.

[33] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on pure and applied mathematics, 42(5):577–
685, 1989.

142

[34] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: algo-
rithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1):12–49,
1988.

[35] Lorenzo Pareschi and Giovanni Russo. Implicit–explicit Runge–Kutta schemes and applica-
tions to hyperbolic systems with relaxation. Journal of Scientific Computing, 25(1):129–155,
Oct 2005.

[36] Fernando Reitich and H Mete Soner. Three-phase boundary motions under constant velocities.
i: The vanishing surface tension limit. Proceedings of the Royal Society of Edinburgh Section
A: Mathematics, 126(4):837–865, 1996.

[37] Steven J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature. PhD
thesis, University of British Columbia, 1996.

[38] Steven J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature. J.
Comput. Phys., 144(2):603–625, 1998.

[39] Robert I Saye and James A Sethian. The Voronoi implicit interface method for computing
multiphase physics. Proceedings of the National Academy of Sciences, 108(49):19498–19503,
2011.

[40] Robert I Saye and James A Sethian. Analysis and applications of the Voronoi implicit interface
method. Journal of Computational Physics, 231(18):6051–6085, 2012.

[41] James A Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, 1999.

[42] Jie Shen, Jie Xu, and Jiang Yang. The scalar auxiliary variable (sav) approach for gradient
flows. Journal of Computational Physics, 353:407–416, 2018.

[43] Jie Shen and Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard
equations. Discrete Contin. Dyn. Syst, 28(4):1669–1691, 2010.

[44] Jaemin Shin, Hyun Geun Lee, and June-Yub Lee. Unconditionally stable methods for gradient
flow using convex splitting Runge–Kutta scheme. Journal of Computational Physics, 347:367–
381, 2017.

[45] Jaemin Shin and June-Yub Lee. An energy stable Runge–Kutta method for convex gradient
problems. Journal of Computational and Applied Mathematics, 367:112455, 2020.

[46] Kurt A Smith, Francisco J Solis, and David Chopp. A projection method for motion of triple
junctions by level sets. Interfaces and free boundaries, 4(3):263–276, 2002.

[47] Michael Westdickenberg and Jon Wilkening. Variational particle schemes for the porous
medium equation and for the system of isentropic euler equations. ESAIM: Mathematical
Modelling and Numerical Analysis, 44(1):133–166, 2010.

[48] Hong-Kai Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to
multiphase motion. J. Comput. Phys., 127(1):179–195, 1996.

[49] Evgeniy Zharovsky, Adrian Sandu, and Hong Zhang. A class of implicit-explicit two-step
Runge–Kutta methods. SIAM Journal on Numerical Analysis, 53(1):321–341, 2015.

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Overview of Multiphase Mean Curvature Motion
	Front Tracking methods
	Level Set Methods
	Variational Model
	Voronoi Implicit Interface Method
	Phase Field Methods
	Threshold Dynamics

	Variational Extrapolation of Implicit Schemes for General Gradient Flows
	Introduction
	The New Schemes: Stability
	The New Schemes: Consistency
	The New Schemes: Examples
	Second Order Examples
	Third Order Example

	The New Schemes: Numerical Tests
	Ordinary Differential Equations
	Partial Differential Equations

	Conclusion

	Variational Extrapolation of Semi-Implicit Schemes for General Gradient Flows for Fixed and Solution Dependent Inner Products
	Introduction
	Stability of Our New Schemes
	Examples of the New Schemes for Gradient Flows
	Schemes for Solving Gradient Flows with Solution Dependent Inner Product
	Second Order Method
	Third Order Method

	Numerical Examples
	Gradient Flows with Fixed Inner Product
	Gradient Flow For Solution Dependent Inner Product

	Conclusion

	Second Order Threshold Dynamics Schemes for Two Phase Motion by Mean Curvature
	Introduction
	Previous Work
	Second Order Motion by Mean Curvature
	A More Natural Two Kernel Extrapolation
	Consistency

	Unconditionally Stable Multistage Methods
	Consistency Equations
	Unconditional Stability
	A Second Order Unconditionally Stable Example
	Consistency In Higher Dimensions

	Numerical Tests
	Highly Accurate Threshold Dynamics For Graphs
	Numerical Results

	Conclusion

	On the Voronoi Implicit Interface Method
	Introduction
	Multiphase Motion by Mean Curvature
	The Voronoi Implicit Interface Method
	Testing the VIIM using Parameterized Curves
	``Grim Reaper'' Solution
	The VIIM via Parameterized Curves
	Distance Estimation for a Parameterized Curve
	Curvature Motion for a Parameterized Curve
	The Implementation of the VIIM using Parameterized Curves

	Experimental Results

	Threshold Dynamics
	Correcting the VIIM: Dictionary Mapping
	Self-Similar Solution to Curvature Motion
	Projecting onto the Template Surface
	The DMIIM's Relationship to the VIIM
	Numerical Results for the DMIIM
	Level Set Examples of the DMIIM

	Conclusion

	Conclusion
	APPENDICES
	BIBLIOGRAPHY

