
The Satellites and Stellar Halos of Nearby Milky
Way-Mass Galaxies

by

Adam James Smercina

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Astronomy and Astrophysics)
in The University of Michigan

2020

Doctoral Committee:

Professor Eric F. Bell, Chair
Associate Professor Jeremy Bailin
Professor David Gerdes
Professor Mario Mateo
Professor John-David T. Smith
Research Professor Monica Valluri



Deer Mountain, RMNP



Adam Smercina

asmerci@umich.edu

ORCID iD: 0000-0003-2599-7524

© Adam Smercina 2020

All Rights Reserved



For Darian, my love and greatest friend.

ii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the love and support of a

number of very special people. I first want to thank my Mom and Dad. Throughout

my formative years, you always encouraged me to ask questions — like: “how does

Davis–Besse work?” (Davis–Besse is the local nuclear plant in Ottawa County, OH)

— and think creatively. Whether I was interested in dinosaurs or LEGOs, you al-

ways provided me a space to grow and find myself. This encouragement and support

ultimately fueled my creative spirit, my quest for greater knowledge, and my drive to

follow my dreams. You have also continued to support me with unending enthusiasm

through these later years, most importantly throughout my graduate career at Michi-

gan. Whether it be driving to Ann Arbor and meeting for dinner or downloading and

reading my papers as soon as they showed up on the arXiv (after learning what the

arXiv was), you have remained constant pillars of support and joy in my life. None of

my accomplishments, including this dissertation, would have been possible without

you.

Next, I want to thank my twin brother, Drew. I think most people view their

siblings as their early partners in life, but a twin is something different. We shared

nearly every aspect of our early lives: playing, fighting, growing, and learning about

the world. We have each found our own directions in life, both very different. Yet,

even as we follow different paths, you continue to inspire me with your intelligence,

groundedness, and resilience. Whether being ‘Best Man’ at my wedding, helping to

change the brakes on my car, or driving to meet me at a conference in Aspen, you

iii



continue to have such a positive influence on my life and I’m proud to call you my

brother. Many times during the work which forms this dissertation, I have been

frustratingly stuck by a problem and have asked myself “what would Drew do?”

Thank you for your constant support and encouragement in all I do.

On a professional note, I have benefited from the support of countless people

throughout my time at Michigan. I first want to acknowledge and thank the entire

University of Michigan Department of Astronomy, especially the faculty who taught

my graduate courses. My time at Michigan has been marked by such intellectual and

professional growth and, though challenging at times, has culminated in a graduate

education that I am proud of. This Department is a truly special place, full of

special people, and I am exceedingly grateful to have had such a fulfilling graduate

experience. I also want to thank my fellow graduate students. The support of one’s

fellow students is such an important part of ‘surviving’ the ups-and-downs of graduate

school. Throughout all of the milestones — graduate coursework, prelim exam, job

application season — the friendship and fellowship I found in my peers helped me

to persevere. In particular, I’d like to thank Ryan Farber. Ryan, you and I have

undergone this journey together from the start, and even further, during the UW

Madison REU program. Throughout all of my time at Michigan, you have been

a constant friend and colleague, always able to provide thoughtful insight on any

problem.

I’ve also been fortunate, throughout nearly all of the work related to this disserta-

tion, to have a close group of collaborators. In particular, I’d like to thank Antonela

Monachesi, Jeremy Bailin, Colin Slater, and Paul Price. You have all been such a

huge part of my growth as a scientist, helping me to write and refine nearly every

paper and proposal I’ve produced thus far in my career. My work is inarguably better

because of your thoughtful and insightful contributions, and friendship.

In the same vein, I’d like to thank the members of the Stellar Halos Group at

iv



Michigan: Monica Valluri, Ian Roederer, Oleg Gnedin, Sarah Loebman, Kohei Hat-

tori, Gillen Brown, and Molly Meng. The list is long, but each and every one of you

has been part of my scientific community every week. Though many of you have

moved on to other things, you have all played a huge role in making this weekly

meeting a joy to attend over the years. My growth has been so impacted by all of

our discussions, from arXiv papers to hot-off-the-press figures. You have often been

the first group of people to which I have brought new results, and your insight has

always proved useful. You have all been incredible mentors, colleagues, and friends

and I cannot thank you enough.

Next, a few people deserve special thanks for their role in my professional devel-

opment. First, I want to thank JD Smith. JD, you were my earliest scientific mentor,

teaching me all of the initial skills one needs in this career: how to code, how to read

papers, how to write. I have already passed on a number of your pearls of wisdom to

many undergradute students, such as (parahrasing) “the computer doesn’t do any-

thing you didn’t tell it to do”. I truly believe that the freedom you gave me in my

early research has helped shape me into the scientist I am today. I am especially for-

tunate to have been able to continue working with you as a colleague during graduate

school. I’ll never forget workshopping the ‘After The Fall’ paper on the phone, while

driving across Iowa on my way to Colorado. Ritter will always feel like home because

of your mentorship and friendship.

I’d also like to thank Richard D’Souza. I am so fortunate to have overlapped with

you during your time at Michigan. You are truly one of the kindest and most insightful

people I have met in this field, not to mention my life in general. Your diligent and

creative approach to science is truly inspiring, and a model of the scientist I strive

to be. So many of the ideas and results presented in this dissertation were inspired

by our afternoon coffee chats, or joint discussions in Eric’s office. I also consider you

the ‘master of the introduction’. So many of my proposals and papers in recent years

v



have been improved due to your critical eye and knack for seeing the story through

the ‘weeds’. I look forward to all of our collaboration in the future (you are now my

excuse to visit Rome!). Thank you.

Last, but certainly not least of these special people, I want to thank my advisor,

Eric Bell. Eric, my time working with you has truly been the highlight of my years at

Michigan. Starting graduate school is such an enormous and often frightening step.

Yet, from our first correspondence in my senior year at Toledo, I knew I had chosen

the right advisor. For the past five years, your office has been such a safe, encouraging

place for me. Coming up and knocking on your door, I’ve so often been met with

the sight of you on your couch, feet up, hands behind your head, face reflective.

This has always prefaced a stimulating scientific discussion, often a long one! Your

enthusiasm is infectious, and your broad understanding of astrophysics is something

I strive to emulate daily. But your real special power has been your ability to mentor

me while also making me feel like a colleague, and that has been perhaps the single

most valuable aspect of my entire graduate career. I will never forget our trip to

observe with Subaru; you put me in the ‘driver’s seat’, listened to my opinions, and

made me feel like my interpretation of the observations were truly valuable. While

I also love the ‘lonely giant’ project for other, scientific, reasons, our teamwork in

building the story from beginning to end is the big one. I am sad that my time under

your tutelage is coming to a close, but I look forward to our continued collaborative

efforts. You have been a colleague, a mentor, and, above all else, a friend. Thank

you for everything.

I also want to thank my dissertation committee: Eric Bell, Jeremy Bailin, David

Gerdes, Mario Mateo, JD Smith, and Monica Valluri. Many of you have been men-

tioned elsewhere in these acknowledgements, but I want to separately express my

gratitude to all of you for your part in the completion of this dissertation. I know

that committee meetings can often be a source of stress for graduate students, but

vi



that has never been the case for me. Over the last few years, you have been the best

committee one could hope for, giving me the guidance, advice, and support I needed

to get this dissertation to the finish line.

This next person comes last because of their unending, holistic contribution to

my personal, as well as professional, growth: my wife, Darian. Darian, it’s hard to

find the words to express what your love has meant to me during the writing of this

dissertation. You have accompanied me on all parts of this journey. You are the

person I’ve celebrated with following my successes, as well as the person from whom

I’ve drawn support and comfort following my failures. From helping me study for

my prelim exam, to listening to practice-talks, and your proof-reading of proposals,

manuscripts, and countless emails, your feedback and insight has been constant and

invaluable. Your kindness, perseverance, and brilliance have inspired me in so many

ways. This inspiration has, undoubtedly, been the cornerstone of this dissertation. I

am so proud and overjoyed to have embarked on this journey of life with you, and I

am certain of one thing: I could not have done this without you. For that, I dedicate

this dissertation to you. Thank you from the bottom of my heart for your constant

love and friendship.

Darian and I have embarked on a number of adventures together during my time in

graduate school. These forays ranged from the woods of central Michigan to the lush

rainforests of the Olympic Peninsula, high-alpine ridges of the Rockies, painted walls

of the Grand Canyon, snow-covered wonderlands of the Cascades, and wildflower-

covered slopes of Gran Sasso, to name a few. I have drawn such an inspiration from

these diverse faces of nature. Included as the frontispiece of this dissertation is a

picture of one such excursion in Rocky Mountain National Park, Colorado. Walking

down a trail, the smell of crushed pine needles, peaks all around, and the loudest

sound my own feet crunching along the rocky path: it is in these moments that I feel

a true connectedness with the universe I study. Staring at the band of the Milky Way

vii



under a dark sky, in the middle of the eastern Washington desert for example, gives

an unbelievable sense of scale. The visible stars, star clusters, and dust lanes are but

a hint of the full scale of the Galaxy, not to mention the countless others, such as the

M81 triplet I often search for in my binoculars. At times like these, I appreciate in

full the magnitude of what I do. Deciphering the origins of these shockingly complex

and expansive systems we call galaxies begins to feel like the highest of callings.

“The trip has been long and the cost has been high,

but no great thing was ever attained easily. A long

tale, like a tall Tower, must be built a stone at a time.”

— Stephen King, The Dark Tower

viii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Galactic formation and structure in Cold Dark Matter . . . . 1
1.2 Challenges to CDM at Dwarf Galaxy Scales . . . . . . . . . . 4
1.3 Merging and Accretion as Drivers of Galaxy Evolution . . . . 7
1.4 The Importance of Placing the Local Group in Context . . . 11
1.5 Aims of this work . . . . . . . . . . . . . . . . . . . . . . . . 15

II. d1005+68: A New Faint Dwarf Galaxy in the M81 Group . 18

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Discussion and Closing Remarks . . . . . . . . . . . . . . . . 26

III. A Lonely Giant: The Sparse Satellite Population of M94
Challenges Galaxy Formation . . . . . . . . . . . . . . . . . . . . 32

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



3.3.1 Completeness . . . . . . . . . . . . . . . . . . . . . 36
3.4 Satellite Properties . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Implications for Galaxy Formation . . . . . . . . . . . . . . . 40
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV. The Saga of M81: Global View of a Massive Stellar Halo in
Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Star–Galaxy Separation & RGB Selection . . . . . . . . . . . 56
4.5 HST Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Density Calibration . . . . . . . . . . . . . . . . . . 58
4.5.2 Color Calibration . . . . . . . . . . . . . . . . . . . 59

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.1 The Minor Axis: Estimating M81’s Past Accretion

History . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.2 The Global Stellar Halo of M81 . . . . . . . . . . . 66

4.7 The Saga of M81 . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.1 A Quiet History . . . . . . . . . . . . . . . . . . . . 69
4.7.2 The Formation of a Massive Stellar Halo . . . . . . 70

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Appendix: Minor Axis Profile Table . . . . . . . . . . . . . . 76

V. A Link Between Satellite Populations and Merger History . 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 The Diverse Satellite Population of MW-mass Galaxies 90
5.2.2 Inferring a Galaxy’s Most Dominant Merger from its

Stellar Halo Properties . . . . . . . . . . . . . . . . 93
5.3 Comparing Galaxies’ Most Dominant Mergers with their Satel-

lite Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Comparison to Galaxy Formation Simulations . . . 96

5.4 This Unexpected Relationship Presents a Challenge for Galaxy
Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

VI. Coda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Ongoing Work & Outlook . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Detecting Ultra-Faint Dwarfs in the Local Volume . 107

x



6.2.2 Exploring the Merger–Satellite Connection in Addi-
tional Systems . . . . . . . . . . . . . . . . . . . . . 109

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



LIST OF FIGURES

Figure

2.1 Top left: the g− r vs. r CMD (de-reddened) of all stars (see § 2.3) in
the Subaru field, separated into ∼0.01 mag bins. The RGB is encap-
sulated within the drawn polygon, which has been divided into three
metallicity bins by eye, blue being the most metal-poor. The blue
locus is likely a combination of young Helium burners and unresolved
high-redshift background galaxies. The stripe at bright magnitudes is
composed of Milky Way foreground stars. The yellow lines are 12 Gyr
PARSEC isochrones (Bressan et al., 2012), with [Fe/H] = −2.1 (left),
[Fe/H] = −1.7 (center), and [Fe/H] = −1.2 (right), shown here for
reference. Bottom left: the g− r vs. r− i color-color diagram of pho-
tometrically identified sources. The stellar locus (High et al., 2009)
is shown as a yellow curve. RGB stars defined by our morphologi-
cal, CMD, and stellar locus criteria (§ 2.3) are shown as either blue,
green, or red points, corresponding to their metallicity bin. The dark-
est region is the galaxy locus. Right: a cutout of the map of M81’s
stellar halo in resolved RGB stars (Smercina et al., 2019). The colors
correspond to the metallicity bins defined on the CMD in the top
left figure. The known galaxies in the field are labeled. d1005+68 is
located at the bottom left of the map, indicated by a black arrow. It
appears as a significant overdensity of blue (metal-poor) RGB stars,
very near to the dwarf spheroidal, BK5N. . . . . . . . . . . . . . . . 28

xii



2.2 Left: the HSC i-band image of d1005+68. The concentric green cir-
cles correspond to apertures with 1 and 2× the derived half-light ra-
dius, centered on the estimated centroid. Member stars are encircled,
with stars passing the 0.′′84 size cut shown in red and those passing
the broader 1.′′34 size cut in blue (see § 2.4). Top right: the curve
of growth for d1005+68, using RGB stars defined by the 1.′′34 size
cut (the union of the blue and red stars). The red curve corresponds
to an N = ΣBGr

2 model of the background, using the derived Pois-
son mean with a 10% correction (ΣBG ∼ 3.3 RGB stars arcmin−2).
Bottom right: the background-subtracted curve of growth. The red
line denotes the median value of N − ΣBGπr

2, which we take as the
number of member stars. The “sawtooth” nature of the radial profile
is simply due to random over- and underdensities in the halo. . . . 29

2.3 Left: the color-magnitude diagram of d1005+68. Stars shown are
identified with the 0.′′84 size cut (see § 2.4), extending to∼0.′5 or∼3rh.
The TRGB is shown as a red line, with the 90% confidence shown as
the red shaded region. The three blue curves on each diagram corre-
spond to the best-fit 12 Gyr isochrones at each distance bound, with
respective metallicities (from left to right) of [Fe/H] = −1.76 (green),
−1.90 (blue), and −2.02 (orange). Center left: The CMD of BK5N
in RGB stars, with ∼ 100 detected RGB stars. Center right: BK5N’s
CMD, randomly down-sampled to match the number of member stars
in d1005+68. Right: the i-band completeness function, φ. . . . . . 30

2.4 Half-light radius–luminosity diagram for Milky Way, M31, Local Group,
and M81 Group satellites. Milky Way satellites are shown as blue
circles, M31 satellites as red circles, general Local Group members
(outside the virial radius of MW or M31) as green circles, and M81
members as filled purple circles. Local Group data are compiled
from the catalog of McConnachie (2012), from the recent slew of
Dark Energy Survey (Bechtol et al., 2015; Drlica-Wagner et al., 2015;
Koposov et al., 2015) and Pan-STARRS (Laevens et al., 2015) dis-
coveries, and from other isolated discoveries (Belokurov et al., 2014;
Kim et al., 2015; Homma et al., 2016). M81 Group data are compiled
from Karachentsev et al. (2000), Lianou et al. (2010), and Chiboucas
et al. (2013). In the absence of MV and rh uncertainties in the litera-
ture, typical Local Group uncertainties of 20% have been adopted for
M81 members. d1005+68 is shown as a black star. Lines of constant
surface brightness are shown for reference. Our derived rh and MV

for d1005+68 place it well within the locus of Local Group satellites,
while it is one of the faintest members of the M81 Group. . . . . . 31

xiii



3.1 Right panel: A ∼5×5 �° SDSS image centered on M94 (magenta
circle). The colored circles show the six-pointing HSC survey foot-
print, while the red circle shows a circle of the same area with 150 kpc
‘effective’ radius. Blue denotes pointings observed in g-band, green
in r-band, and red in i-band. The two deep pointings are labeled.
The positions of Dw1 and Dw2 are shown as yellow stars. Bottom
panel: Deep r-band image of Dw1, accompanied by a CMD of de-
tected stars in the dwarf. Red points represent RGB stars and blue
points represent candidate core Helium-burning stars. The dashed
line and gray region show the best-fit TRGB with uncertainty, while
the green curve is the best-fit isochrone at that distance. Top panel:
Imaging and CMD for Dw2, following the same schema as for Dw1.
Left panel: Deep image of M94, taken from Trujillo et al. (2009). . . 46

3.2 Results of our artificial satellite tests. Top left: Size–luminosity re-
lation for all satellites of the Local Group in McConnachie (2012).
Lines of constant SB are shown at 24 (blue), 26 (orange), 28 (green),
30 (red) mag arcsec−2. The red patch denotes the approximate region
probed by our artificial satellite tests. Bottom left: Recovery com-
pleteness map for injected artificial satellites in size–luminosity space.
The red circles are LG satellites. The cyan stars represent Dw1 and
Dw2. Right panel : Completeness as a function of SB for artificial
satellites. The red line shows our 85% detection completeness for
LG satellites in the range −9.1 > MV > −10.3. Right: Selected ex-
amples of detected artificial dwarfs in three different luminosity/SB
regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Left: The SMHM relation for DM halos in EAGLE using ‘stan-
dard’ halo occupation. The dashed red curve is taken from Behroozi
et al. (2013). A standard 0.2 dex log-normal scatter is assumed for
Mh,peak > 5 ×109M�. Below this mass, increased mass-dependent
scatter and a steeper slope are adopted following Munshi et al. (2017).
Gray points denote galaxies which are likely unobservable in our sur-
vey of M94. Right: A radically altered SMHM relation, reflecting
the stochastic halo occupation implied by M94’s sparse satellite pop-
ulation. Increased, mass-dependent scatter is adopted for all halos
with Mh,peak < 1011M�. A significantly steeper slope is also assumed
for halos with Mh,peak < 3×1010M�, along with a fixed 10% rate of
galaxy failure for Mh,peak < 1010M�. . . . . . . . . . . . . . . . . . . 48

xiv
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4.3 Left: Grayscale density map of RGB stars in M81’s halo. Exist-
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4.4 Top left: Stacked g−i CMD of stars (black points) in the 13 GHOSTS
fields used for calibration, converted from F606W−F814W using isochrone
models. Our Subaru RGB selection box (Table 4.2) is overlaid in or-
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ABSTRACT

The outskirts of galaxies like the Milky Way (MW) are important testing grounds

for our understanding of galaxy formation and evolution. Models and observations

agree that their vast accreted halos, while incredibly faint and difficult to observe, tan-

talizingly encode the properties of past merger events. Further, discrepancies between

the predicted properties and distribution of their satellite galaxy populations consti-

tute one of the most important open challenges to galaxy formation models. Yet,

to-date, our observational insight in both of these regimes has been limited to the

Local Group. To address this deficit, I have conducted a survey of the halos and satel-

lite populations of two nearby galaxies with the Subaru Hyper Suprime-Cam. Using

deep resolved stellar populations allows measurement of the stellar halo to unprece-

dented surface brightness depths and the detection satellites down to the threshold

of ultra faint dwarf galaxies, such as the faint M81 satellite d1005+68. Though the

survey is ongoing, these systems have yielded a number of important insights. The

sparse satellite population of the ‘lonely giant’ M94 challenges all current model pre-

dictions, and suggests that low-mass galaxy formation could be more stochastic than

previously thought. Additionally, I have used the stellar halo of M81 to show that it

has experienced a surprisingly quiet accretion history to this point. Yet, its current

interaction with M82 (and NGC 3077) will eventually result in one of the most mas-

sive stellar halos in the nearby universe, rivaling the behemoth M31. Lastly, building

on these revelations of the unexpected diversity in satellite populations and merger

histories of MW-mass systems, and including the numerous other recent satellite and

stellar halo surveys of nearby systems, I investigate a possible relationship between

xxiv



these two fundamental galactic components. Using data from seven nearby systems,

I find a strong and previously-unknown positive correlation between their satellite

populations and the mass of their most massive merger events. Surprisingly, current

flagship galaxy formation simulations fail to reproduce this relationship — an acute

shortcoming of the theoretical framework upon which our current galaxy formation

paradigm is built.

xxv



CHAPTER I

Introduction

1.1 Galactic formation and structure in Cold Dark Matter

Our Galaxy: a complex amalgam of stars, gas, and dust, with each playing a

distinct, nuanced role in maintaining the galactic ecosystem. The interplay between

these components, mediated by radiation and gravity, forms the Milky Way (MW)

as we see it from our ‘Pale Blue Dot’. However, the band of light we see above us on

a clear night is but a piece of a much larger galactic environment.

Humans have been studying the large-scale structure of the MW for thousands of

years — long before the era of modern galactic astronomy. As an example, ancient

bark paintings of the Large and Small Magellanic Clouds — the MW’s largest satellite

companions — have been found among the native peoples of Australia (Mountford ,

1956). Aristotle’s Meteorologica even suggests that some ancient Greek philosophers,

such as Democritus, speculated that the via lactea (i.e. ‘Milky Way’) was composed

of distant stars. Though we did not then have a sense of the scale of our own ‘galactic

neighborhood’, we have since pieced together a cohesive picture of our Galaxy over

the centuries. We now know that most of the MW’s stars are embedded in a disk,

which is host to several spiral arms, as well as a central stellar bar.

In the last century, our view of the Milky Way system expanded. It was discovered

that numerous observed, confounding ‘spiral nebulae’ were actually distinct galactic
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systems from our Galaxy (Hubble, 1925). This revolution in our understanding of

the universe resulted in the realization that the MW actually resides within a rela-

tively rich ‘group’ environment. This group includes a number of much less massive,

gravitationally-bound ‘satellite’ galaxies (Baade and Hubble, 1939), which reside in

the MW’s halo, as well as a close neighbor — M31, the Andromeda galaxy — less

than 1 Mpc away (e.g., Hubble, 1925; Schmidt-Kaler , 1967), with its own population

of satellite galaxies (van den Bergh, 1974). Around the same time, it was discovered

that the MW has another, much more extended component: a stellar halo. Stars in

the stellar halo were found to exist at substantially larger distances than the disk, and,

rather than following disk-like orbits, these stars follow orbits that are much more

random, with low net angular momentum (e.g., Spitzer and Shapiro, 1972). Not only

did we learn that there are nearly innumerable distinct galaxies in the universe, but

our own MW extends far beyond its visible disk (that so enthralled ancient humans)

and resides at the center of a vast ecosystem.

With this newfound insight into the structure of the universe, the field began

searching for a model which could describe this seemingly hierarchical distribution of

matter in the universe. Early models suggested that galaxies like the MW form via

top-down collapse: first forming giant, galaxy group-scale clouds of gas (i.e. ‘proto-

galaxies’) and fragmenting to form galactic disks and globular clusters (Eggen et al.,

1962; Larson, 1969; Tinsley and Larson, 1978) — akin to prevailing theories of the

formation of stars within molecular clouds (e.g., Shu et al., 1987). However, while

relatively successful in producing disk galaxies, these models struggled to explain the

observed clustering of galaxies and the full range of galaxy masses and morpholo-

gies (e.g., Peebles , 1978; Tohline, 1980). Around this same time, a vastly different

model was rapidly gaining acclaim: cold dark matter (CDM). Evidence from the

divergence (flattening) of spiral galaxy rotation curves (e.g., Rubin, 1983), relative

to Keplerian expectations, as well as the mass distributions of galaxy clusters (e.g.,
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Clowe et al., 2004), suggested that galaxies actually reside in much larger halos of

‘dark matter’. The stellar halo of the MW appears to be largely spatially coincident

with this extended mass distribution. Rather than ‘top-down’ fragmentation, galaxy

formation proceeds in these hierarchically-assembled dark matter halos, with smaller

halos merging to form larger larger structures. Galaxy formation within these hierar-

chical dark structures much better explains the observed clustering of galaxies (White

and Rees , 1978). In the years since, dark matter has become the central player in our

theory of structure formation in the universe.

In the current CDM paradigm, following Big Bang nucleosynthesis and the pro-

duction of a ‘primordial soup’ of highly-ionized Hydrogen and Helium nuclei, dark

matter, with little initial kinetic energy, forms quantum density perturbations in the

early universe, which then grow as the universe expands (e.g., Press and Schechter ,

1974; Peebles , 1982). As these density perturbations grow to form early dark matter

halos (DMHs), the ionized medium eventually cools and recombines as the universe

expands, forming neutral Hydrogen and Helium. Following this recombination, the

newly-released baryons fall into these ready-made dark matter halos, setting the stage

for the era of galaxy formation (Ryden and Gunn, 1987). The scientific direction of

observational astronomy was shaped by this new cosmological model. The new mil-

lennium ushered in a new era of wide-field, digital galaxy redshift surveys — imaging

and obtaining spectra for millions of galaxies. The striking similarity between the

large-scale structure produced in dark-matter-only (DMO) simulations and the ob-

served structure seen in these surveys, such as the Sloan Digital Sky Survey (SDSS;

York et al., 2000) and the more recent Dark Energy Survey (DES; Melchior et al.,

2015), serves as some of the strongest evidence in favor of the CDM model of the

universe.

Yet, numerous mysteries remain. As dark matter is not (currently) directly de-

tectable, the most viable method of testing and constraining the CDM model is
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studying how baryonic matter behaves in dark matter’s presence. Galaxies in the

observable universe display a broad diversity of properties, including their masses,

morphologies, baryonic content, levels of star formation, and environments. Yet, all

of the complexity of galaxies — their interactions and evolution — is a façade covering

their much more massive reservoirs of dark matter. These dark matter halos likely

govern the assembly and evolution of galaxies in diverse and complex ways, driving

the formation and evolution of galaxies like our MW, and their associated structures.

1.2 Challenges to CDM at Dwarf Galaxy Scales

Though seemingly insignificant relative to massive galaxies such as the MW, or

behemoths such as giant ellipticals, dwarf galaxies are among the most important

galaxy populations for testing and refining the CDM model. CDM predicts that

cosmic structure grows hierarchically, with the smallest dark matter structures as-

sociated with and ‘feeding’ the largest structures. The properties of these smallest

structures (i.e. halos) are among the most robust predictions of the CDM model, yet

we can only detect and study the halos which host baryons. Thus an optimal testing

ground for CDM is the regime where halos are massive enough to hold onto some

baryons, but the existing baryons are vastly outweighed by dark matter: this is the

realm of dwarf galaxies. It is at precisely these dwarf galaxy scales that some of the

largest tensions between the CDM model and observations exist.

More than two decades ago, results from dark matter-only (DMO) simulations

brought into focus a tension between the number of dark matter subhalos predicted

to exist within a halo similar to that of our MW and the number of observed, luminous

satellite galaxies, which should reside in these subhalos (Klypin et al., 1999; Moore

et al., 1999) — the ‘Missing Satellites’ problem. Since then, it has become clear that,

indeed, the number and mass distribution of the subhalos produced in these DMO

simulations differ from the properties of observed dwarf galaxy populations our Local
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Group (LG) environment. In addition to the ‘Missing Satellites’ problem, there has

long been a discrepancy between the observed mass distribution and rotation curves

in low surface brightness (LSB) galaxies (McGaugh and Bothun, 1994; Zwaan et al.,

1995; McGaugh and de Blok , 1998; van den Bosch et al., 2000). Upon discovery that

this discrepancy extended to nearby dwarf galaxies, which defied the ‘cusp’-like mass

profiles predicted in CDM in favor of central cores (Simon et al., 2003; Weldrake et al.,

2003; Simon et al., 2005), the tension was generalized as the ‘Core–Cusp’ problem.

A recasting of this problem found that the central velocities of the brightest MW

satellites, measured from spectroscopy of individual stars (e.g., Mateo et al., 1991,

1993; Armandroff et al., 1995; Mateo et al., 1998), which should also reside in the

most massive subhalos, are substantially lower than CDM predictions for these most

massive subhalos (Boylan-Kolchin et al., 2011) — the ‘Too Big to Fail’ problem.

Motivated largely by these tensions, the past decade has seen an explosion of dwarf

galaxy science. Both the MW and M31 were already known to host approximately

10 low-mass dwarf satellite galaxies each, with many more in the large-scale Local

Group environment (e.g., Mateo, 1998, and references therin). However, with the

advent of digital sky surveys, a new class of ‘ultra faint’ dwarf galaxies (UFDs) were

discovered (e.g., Willman et al., 2005a,b; Zucker et al., 2006a,b; Belokurov et al., 2006,

2007; Simon and Geha, 2007, and others) with stellar masses less than ∼105M�1 (see

McConnachie, 2012, for a more recent census that includes many of these faint dis-

coveries). These UFDs have such low surface brightness that they are undetectable

in traditional astronomical imaging. Their detection requires the identification of a

concentration of resolved stars in a color–magnitude diagram (CMD). The discovery

of these UFDs bridged the gap between our more solid understanding of galaxy for-

mation physics at large scales and our dearth of knowledge about how small galaxies

form. These UFDs are extreme dwarf galaxies, with nearly uniform ancient stellar

1M� = The mass of the sun
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populations — suggesting that the majority of their star formation ended many bil-

lions of years ago, in contrast with normal galaxies. The most common interpretation

of this early star formation shutdown is that the halos in which these tiny galaxies

formed are of such low mass that their virial temperatures were below the temperature

of the intergalactic medium (IGM) at the time of reionization and, thus, their growth

quickly halted (e.g., Bullock et al., 2001; Benson et al., 2002). Recent observations

have refined this idea, suggesting UFDs (M?< 105M�) form >80% of their stars by

z= 2, compared to ∼30% for higher-mass galaxies (Brown et al., 2014; Weisz et al.,

2014).

Simultaneously, work continued on the discrepancy between observed and pre-

dicted dwarf galaxy mass distributions. Motivated by the ‘Core–Cusp’ and ‘Too Big

to Fail’ problems, there was substantial progress on physical avenues that could lead

to the observed velocity differences — feedback from star formation was an early

proposition (Navarro et al., 1996). In the last decade, models which include baryons

have begun to show the viability of feedback from star formation — mainly super-

novae (SNe) and winds from massive stars (e.g, McKee and Ostriker , 1977) — as

a substantial agent in effecting changes to the central dark matter distribution in

intermediate DMHs (e.g., Macciò et al., 2010; Font et al., 2011). Further evidence

has shown that for DMHs in the mass range of 1010–1011M� — precisely where the

‘Cusp–Core’ and ‘Too Big to Fail’ problems are most contentious — these winds are

predicted to be efficient at driving rapid expulsion and or redistribution of gas at the

potential’s center (Brooks et al., 2013; Wetzel et al., 2016).

Despite this important progress, robust comparisons between observed dwarf

galaxy populations and modern hydrodynamic simulations remain largely elusive.

The baryonic mass resolution required to simulate low-mass ‘classical’ dwarfs, let

alone UFDs, prohibits many models from producing them. For example, field-standard

cosmological hydrodynamic models, such as Illustris (Pillepich et al., 2014; Vogels-
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berger et al., 2014) or EAGLE (Schaye et al., 2015), are only able to confidently resolve

dwarf galaxies with stellar masses M?> 108M� (e.g., Elias et al., 2018). More cru-

cially, the relationship between the stellar masses and DMH masses — the ‘stellar

mass–halo mass’ (SMHM) relation (van den Bosch et al., 2003; Berlind et al., 2003;

Conselice et al., 2005; Yang et al., 2008; Behroozi et al., 2013) — of these low-mass

dwarfs is substantially shallower (biased to high stellar masses) than the most current

constraints from observations. Yet, these observational constraints are also fraught

with uncertainty. Currently, every single dwarf galaxy which has both a robust stel-

lar mass measurement and an estimate of its dynamical mass from resolved stellar

kinematics is a satellite of either the MW or M31. Consequently, many may have ex-

perienced some loss of mass — i.e. tidal processing — due to the group environment

(e.g., Mayer et al., 2001; Zolotov et al., 2012), leading to substantial uncertainty in

what their DMH mass may have been at the time of formation (i.e. ‘peak’ halo mass),

which, in CDM, is what should set the initial stellar mass of the galaxy. As such, the

field still lacks a robust model of which DMHs the lowest-mass galaxies inhabit.

1.3 Merging and Accretion as Drivers of Galaxy Evolution

Another consequence of the hierarchical growth of structure predicted in CDM

is frequent interactions — i.e. ‘mergers’ — between galaxies (e.g., White and Rees ,

1978; Bullock et al., 2001). These galaxy mergers are predicted to have potentially

drastic impacts on galaxies and their dark matter halos, including the growth of stellar

mass, morphology, and dynamical structure (Toomre and Toomre, 1972). Due to the

conservation of momentum, mergers between galaxies funnel gas to the center of the

joint gravitational potential, often stimulating the formation of new generations of

stars, and enriching the existing interstellar medium (ISM) with metals from these

newly formed stars (Barnes and Hernquist , 1991).

These mergers can be massive, with merger ratios — the mass ratio of the ‘sec-
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ondary’ compared to the ‘primary’ — close to unity and representing a significant

stellar mass growth pathway (e.g., Gallagher and Ostriker , 1972; Richstone, 1976),

or can be much smaller ‘accretions’ of dwarf satellites by the central galaxy. These

smaller accretions are by far the most common mode of galaxy interaction. As the

secondary falls into the central potential, it experiences increasing tidal forces, until

it eventually disrupts completely — as is currently occurring to the Sagittarius dwarf

galaxy around the MW (Ibata et al., 1994). Throughout the tidal disruption process,

a substantial amount of material from the accreting satellite is deposited at large

galactic radii. The composite reservoir of accreted stellar material from all accretion

events resides in the stellar halo (e.g., Spitzer and Shapiro, 1972; Searle and Zinn,

1978).

The significance of these merger events to galaxy evolution has remained one of

the primary open questions in extragalactic astronomy for the better part of the last

century. Much of the work in that time has regarded galaxies currently in the midst of

merger events, such as the seminal paper of Toomre and Toomre (1972), as, though

locally rare, these events are highly distinct and, therefore, easier to study. From

the generation of large, statistical galaxy samples, gathered across broad swaths of

both the sky, such as Galaxy Zoo with SDSS (Darg et al., 2010), and redshift, such

as CANDELS with HST (e.g., Grogin et al., 2011), galaxy mergers have emerged as

the most oft-suggested primary drivers of numerous fundamental galaxy properties.

These include the growth of stellar bulges (e.g., Baugh et al., 1996; Kauffmann, 1996;

Aguerri et al., 2001; Springel and Hernquist , 2005; Eliche-Moral et al., 2006; Hop-

kins et al., 2010), the growth of central supermassive black holes (SMBHs), including

the triggering of quasars, and the formation of giant elliptical galaxies (e.g., Springel

et al., 2005; Hopkins et al., 2006), and the origin of infrared-luminous galactic star-

bursts (Sanders and Mirabel , 1996; Hopkins et al., 2006; Armus et al., 2009). Yet, as

these properties are both diverse (e.g., the properties of stellar bulges) and rare (e.g.,
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the occurrence of quasars and starbursts), extracting unbiased inferences about how

merger history impacts galactic evolution can be difficult.

An alternative approach would be to focus on nearby galaxies, for which their

merger histories can be extracted both more extensively (i.e. more ancient merger

events) and in greater detail. The two best case studies we have at our disposal to

better understand the impact of mergers on galaxies are our own MW and our nearest

neighbor, M31, The Andromeda Galaxy. A relatively substantial merger is occurring

in our own backyard: the MW itself is currently interacting with its two largest

satellites, the Large and Small Magellanic Clouds (e.g., Kerr , 1957), in addition to

the Sagittarius dwarf galaxy (Ibata et al., 1994). There has been much discussion

about the impact these interactions have had on our galaxy, such as warping of the

galactic disk (Kerr , 1957; Fujimoto and Sofue, 1976; Spight and Grayzeck , 1977;

Davies and Wright , 1977; Laporte et al., 2018), and on the buildup of the MW’s

stellar halo (e.g., Helmi and White, 1999; Bullock and Johnston, 2005; Bell et al.,

2008).

Recently, our view of the MW’s assembly has been transformed. The Gaia space-

craft (Gaia Collaboration et al., 2016), launched in 2013, has currently measured the

parallax distances and proper motions of more than one billion stars in the MW, and

radial velocities for more than six million (as of Data Release 2; Gaia Collaboration

et al., 2018). These data from Gaia have allowed the separation of MW disk and halo

stars using their kinematics, allowing the discovery of numerous new halo streams

and substructures (e.g., Malhan et al., 2018), revealing the MW’s rich accretion his-

tory. With the vastly improved distinguishing power of Gaia, a distinct population

of MW halo stars was identified with radial orbits and high metallicities. These stars

are thought to be the remnants of a significant ancient merger event, coined ‘Gaia-

Enceladus’, which may have been the origin of the MW’s chemically-distinct ‘thick

disk’ (Helmi et al., 2018).
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Our view of our neighbor M31 has been similarly transformed. Detailed studies of

M31 have revealed the history of our neighbor system in never-before-seen-detail. The

Panchromatic Hubble Andromeda Treasury (PHAT) survey (Dalcanton et al., 2012)

used the Hubble Space Telescope (HST ) to resolve more than 100 million individual

stars across ∼1/3 of M31’s disk. PHAT leveraged the essentially common distances

of these stars (i.e. all at the 780 kpc distance of M31, as opposed to studies of stars

in the MW) to study properties such as M31’s star formation history (SFH; e.g.,

Williams et al. 2015), its dust content (e.g., Dalcanton et al., 2015), and its lifetime

transport of metals (e.g., Telford et al., 2019). Likewise the first of its kind, the Pan-

Andromeda Archaeological Survey (PAndAS; McConnachie et al. 2010) used several

hundred hours on the Canada-France-Hawaii Telescope (CFHT), with the MegaCam

wide-field imager, to perform a wide-field survey of M31 out to 150 kpc in galactic

radius — more than 300 deg2 in all, spread over four years. With this exquisite first-

of-its-kind dataset, PAndAS resolved nearly all of M31’s stellar halo in unprecedented

detail.

Together with additional studies, such as the Spectroscopic and Photometric

Landscape of Andromeda’s Stellar Halo (SPLASH) survey (Gilbert et al., 2012), these

ground-breaking surveys provide a powerful window onto M31’s history: it appears

to have experienced a substantial merger event — with a 1:2–1:4 merger ratio —

approximately 2–4 Gyr ago2 (Hammer et al., 2018; D’Souza and Bell , 2018b). This

merger appears to have had a substantial impact on M31’s properties. Around the

same time as the merger, M31’s disk was thickened to a nearly 1 kpc scale height

(Dalcanton et al., 2015; Williams et al., 2015) — 3× thicker than the MW’s disk

at a comparable radius. These intermediate-age disk populations, traced by several

Gyr-old giant-branch stars also possess substantially higher velocity dispersions —

∼90 km s−1 — than comparable MW populations (Dorman et al., 2015). Moreover,

21 Gyr = 1 billion years
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the entire disk of M31 appears to have undergone a burst of star formation commen-

surate in time with the final stages of this large merger, followed by a general decline

— or ‘quenching’ — of its star formation up to the present day (Williams et al., 2015,

2017).

Together, the MW and M31 show us that even for galaxies of approximately the

same mass and structure — i.e. disk galaxies with stellar mass M?' 5×1010M� —

may have experienced very different ‘dominant’ mergers throughout their lives. The

MW experienced a much earlier, much lower mass merger, relative to M31, whose

large dominant merger event was quite recent. This stark contrast suggests that

there is considerable diversity in the mergers that MW-mass galaxies experience, yet

the magnitude of this diversity remains unclear.

1.4 The Importance of Placing the Local Group in Context

Though they are comparable in mass (MW: M? = 6.1×1010M�, Licquia and New-

man 2015; M31: M? = 11.7×1010M�, Geehan et al. 2006, Sick 2018), the MW and

M31 are quite different. First, they have very different structure; M31’s disk is thicker

than the MW’s and it possesses a substantially larger central bulge. Their merger

histories are also very different, with M31 experiencing a much larger and much more

massive merger, which may contribute to their structural differences (e.g., § 1.3). M31

also hosts roughly twice the number of satellites at all galactic radii within 150 kpc

(e.g., McConnachie, 2012). Moreover, recent evidence suggests that the satellite

radial profiles are very different, with the MW possessing very few satellites beyond

150 kpc (Samuel et al., 2020). How do these two different systems generalize to galaxy

populations at large?

Even as the nearest examples, studying the satellites and stellar halos of both the

MW and M31 present considerable observational difficulties. Both components pos-

sess very low surface brightness, requiring either sensitive imaging with well-controlled
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scattered light and precise background estimation (e.g., Malin and Hadley , 1997), or

deep photometry of faint, individual stars (e.g., Ibata et al., 2001). As such, over the

last several decades, during the time that the CDM model and CDM-founded galaxy

formation have come to the fore, our Local Group has served as the benchmark. As

such, the properties of MW-mass systems have directed the scope of some of the

most important problems in galaxy formation. Models predict that they should ex-

perience diverse merger histories, manifesting in diverse stellar halo properties (e.g.,

Bullock and Johnston, 2005; Deason et al., 2015a), and should also exhibit some di-

versity in their satellite galaxy populations, including their SFHs (e.g., Simpson et al.,

2018; Garrison-Kimmel et al., 2019a,b). Yet, with the Local Group serving as the

sole benchmark of the validity of model predictions in this critical regime of galaxy

formation, we have no reliable method to determine the true scatter in these fun-

damental properties. The processes which give rise to these properties — e.g., dark

matter–baryon interactions, feedback processes, evolution in group environments, the

galaxy stellar mass function — are thus intrinsically tied to the generalizability of the

MW and M31 systems; a fragile ‘house of cards’ foundation for galaxy formation.

The optimal way to alleviate this potential ‘house of cards’ is to study the satel-

lite populations and stellar halos of nearby MW-mass systems (e.g., central galaxies

with stellar masses of M?> 3×1010), to help place the MW and M31 in context.

Great strides have recently been made towards this goal, with a number of differ-

ent approaches taken, including: (1) integrated light surveys (e.g., Chiboucas et al.,

2009; Mart́ınez-Delgado et al., 2010; Merritt et al., 2016; Watkins et al., 2016), (2)

narrow-field HST -based resolved star surveys (e.g., Radburn-Smith et al., 2011; Re-

jkuba et al., 2011), (3) wide-field resolved star surveys (e.g., Martin et al., 2013; Ibata

et al., 2014; Crnojević et al., 2016; Carlin et al., 2016), and (4) wide-field spectro-

scopic surveys (e.g., Geha et al., 2017). These studies not only vary in technique, but

also in radial coverage, photometric detection limits, surface brightness depth, and
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image resolution, often making comparisons to each other, and to the Local Group,

difficult.

In general, most studies of MW-analog satellite populations have thus far been

sensitive only to dwarf galaxies well within the MW’s ‘classical’ mass regime —

MV <−10, M?> 106. As such, it has taken some care to contextualize the results of

these surveys with the MW, particularly given the discovery of UFDs. Even so, these

works have provided useful context. Many MW-analogs in the nearby Universe, such

as M81 (Karachentsev and Kudrya, 2014), Centaurus A (Müller et al., 2015b; Crno-

jević et al., 2019), and NGC 4258 (Spencer et al., 2014), appear to host substantially

more satellites than the MW, comparable to M31. Likewise, some appear to host less

than expected, such as NGC 253 (e.g., Carlin et al., 2016). Additionally, while nearly

every MW satellite with M?< 107M� is quenched (e.g., Slater and Bell , 2014), this

may not be the case around other hosts (e.g., Spencer et al., 2014; Carrillo et al.,

2017; Geha et al., 2017). These results are tantalizing evidence of a diversity in the

satellite populations of MW-mass galaxies.

Similarly, the stellar halos of a number of nearby galaxies have now been studied

using a variety of techniques, each with their own merits and challenges. Programs

such as the Dragonfly Nearby Galaxy Survey (Merritt et al., 2016), using the Dragon-

fly Telephoto Array (Abraham and van Dokkum, 2014), have now studied the global

diffuse stellar halos of more than a dozen galaxies within the Local Volume. However,

while integrated light techniques can provide stellar mass estimates, this requires as-

sumptions regarding the stellar populations present, as they do not resolve individual

stars. This also precludes measurement of more direct properties, such as metallicity,

age, or recent star formation, making inferences about the merger history from the

stellar halo difficult. In contrast, deep individual star measurements with HST, as

was done in the Galactic Halos, Outer disks, Substructure, Thick disks, and Star

clusters (GHOSTS) survey (Radburn-Smith et al., 2011), can directly measure these
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properties of the stellar halo populations. The weakness of such surveys is that they

necessarily cover only small fractions of stellar halo, due to HST ’s small field-of-view

(FOV), relative to ground-based telescopes. GHOSTS, for example, targets fields

along the major and minor axes of the observed galaxies. This is potentially limit-

ing, as models of stellar halos suggest that they are highly structured (e.g., Bullock

and Johnston, 2005). Last is the hybrid method of employing wide-field imagers on

large telescopes to resolve stellar halo populations on large scales, modeled after the

PAndAS survey. This method provides comparable area to the best integrated light

surveys, while also providing the advantages of resolved stellar populations. However,

the ground-based image quality is substantially poorer than HST, resulting in much

higher ‘contamination’ from distant, background galaxies that are small enough to

resemble stars in the ground-based imaging. Thus, achieving comparable fidelity to

HST -based measurements requires significant care.

With the results from these numerous recent studies in hand, the field has begun

the difficult task of deciphering the stellar halos of these nearby galaxy samples.

Results from surveys such as Dragonfly and GHOSTS indicate that MW-mass galaxies

exhibit a diversity of stellar halo properties, including masses (Merritt et al., 2016;

Harmsen et al., 2017), shape (Harmsen et al., 2017), and metallicity (Monachesi

et al., 2016a). A possible complication presents itself in the form of in situ stars

— stars which formed in the central potential, but which have been kicked out to

larger galactic radii, representing a potentially significant confounding population

when attempting to decipher the accreted stellar populations (Purcell et al., 2010;

Pillepich et al., 2015; Monachesi et al., 2019). However, recent comparisons between

these observational results and galaxy formation models indicate that this diversity

in stellar halo properties is likely grounded in differences in the stellar populations

these galaxies have accreted, due to experiencing different merger histories (Monachesi

et al., 2016b; D’Souza and Bell , 2018a; Monachesi et al., 2019) — as has been hinted
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at by the stark difference between the MW and M31.

It is clear from studies of both the satellite populations and stellar halos of nearby

galaxies that the context they provide is sorely needed. Though approached using

a variety of methods, the satellite populations of MW-mass galaxies in the nearby

universe are clearly diverse, both in number and star formation properties. Likewise,

stellar halo surveys appear to present an encouraging route to deciphering the ap-

parently diverse merger histories experienced by MW-mass galaxies. Moving forward

with more complete surveys, the question now becomes: does this diversity in the

large-scale properties of MW-mass systems fit with, or require modifications to, our

understanding of galaxy formation?

1.5 Aims of this work

Substantial progress has been made in our understanding of the assembly of the

MW and the Local Group, including their satellite galaxy populations and merger

histories — both of which have strong predictions in CDM. The success of improved

galaxy formation models, including baryons, at easing tensions between observed

satellite galaxy properties (see § 1.2) has led to pronouncements that these problems

have been solved (e.g., Simon and Geha, 2007; Kim et al., 2017). However, we under-

stand little about how generalizable the MW and M31 truly are. Galaxy formation

models are often specifically tuned to produce Local Group-like galaxy groups and

reproduce satellite galaxy populations comparable to the MW and M31 (e.g., Simp-

son et al., 2018; Garrison-Kimmel et al., 2019a), due in large part to the dearth of

complete satellite surveys for other MW-analogs. Yet, these same simulations often

fail to reproduce merger histories comparable to the MW, or other low-mass halos

such as M81 (Harmsen et al., 2017) or M101 (Jang et al., 2020), instead predicting

more massive, more recent accretions for most simulated MW-mass systems (e.g.,

Sanderson et al., 2018; Monachesi et al., 2019). Is the MW unusual in this regard?
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Alternatively, is its satellite population typical, and thus appropriately generalizable,

afterall? Until we understand how these properties of the MW compare to other sim-

ilarly massive galaxies, much of our galaxy formation foundation is built on a ‘house

of cards’.

This work attempts to alleviate the current lack of context regarding the satellite

populations and merger history of the MW, which in many cases serve as solitary

tests of the CDM model. Is the MW representative of galaxies at its mass scale and

how might the answer impact our understanding of galaxy formation?

Specifically, this work introduces new observations of the outskirts of two nearby

MW-mass central galaxies — analogs of our own MW — including their satellite

populations and stellar halos. Until about 10 years ago, we had a strikingly poor un-

derstanding of the large-scale structure of nearby MW-mass systems, relative to our

own galaxy. This work includes new resolved-star techniques for detecting faint satel-

lite galaxies in these distant systems and measuring their stellar halos, and attempts

to contextualize these new measurements with all recent literature results. For the

first time, the satellite populations and stellar halo properties have been measured

for a sample of MW-analogs.

Chapter II will present the discovery of a new faint satellite around M81, as part

of a deep resolved-star survey with the Subaru Hyper Suprime-Cam (HSC). As one of

the faintest galaxies every detected outside of the Local Group, as well as potentially

the first known ‘satellite-of-a-satellite’ (predicted in a ‘self-similar’ CDM model), this

work will contribute to ushering in a new era of dwarf galaxy discovery in the coming

decades. Chapter III presents a Subaru HSC survey of the nearby galaxy M94. In this

survey, reaching out to a projected radius of 150 kpc from M94, only two low-mass

satellite galaxies were detected, despite being sensitive to all dwarf galaxies within

the MW’s ‘classical’ dwarf mass range (M?& 4×105M�). This is in stark contrast

with the MW’s eight satellites and M31’s 12 within the same radius — a completely
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unexpected result. Moreover, when compared to predictions from galaxy formation

simulations, M94’s sparse satellite population is in tension with all current models,

suggesting that our small-scale problems with CDM are not yet solved.

Chapter IV follows the survey of M81 presented in Chapter II, focusing on a

global view of M81’s stellar halo. This is the most detailed map of a stellar halo

outside of our own Local Group ever constructed. Though M81’s stellar halo is

found to be currently low-mass and metal-poor, its current interaction with M82 and

NGC 3077 is shown to foreshadow the creation of an enormous, M31-like stellar halo

in the near-future. Chapter V introduces new, unpublished work on a compilation

of nearby galaxy satellite populations and stellar halo properties. Combining the

work in Chapter III and Chapter IV with recent studies of other MW-analogs, this

work defines a new metric for the largest merger a galaxy has or will experience.

Using this new metric, this new work finds a strong relationship between the largest

merger experienced by a MW-mass galaxy and its total number of satellites above

M?& 4×105M�. Surprisingly, this relationship is not seen in any current galaxy

formation model, likely due to the complexities of star formation feedback in and

tidal processing of satellites. Chapter VI summarizes the work presented here and

presents an outlook on how this work will contribute to related future efforts.
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CHAPTER II

d1005+68: A New Faint Dwarf Galaxy in the M81

Group

2.1 Abstract

We present the discovery of d1005+68, a new faint dwarf galaxy in the M81 Group,

using observations taken with the Subaru Hyper Suprime-Cam. d1005+68’s color-

magnitude diagram is consistent with a distance of 3.98+0.39
−0.43 Mpc, establishing group

membership. We derive an absolute V-band magnitude, from stellar isochrone fitting,

of MV = −7.94+0.38
−0.50, with a half-light radius of rh = 188+39

−41 pc. These place d1005+68

within the radius–luminosity locus of Local Group and M81 satellites and among the

faintest confirmed satellites outside the Local Group. Assuming an age of 12 Gyr,

d1005+68’s red giant branch is best fit by an isochrone of [Fe/H] = −1.90± 0.24. It

has a projected separation from nearby M81 satellite BK5N of only 5 kpc. As this is

well within BK5N’s virial radius, we speculate that d1005+68 may be a satellite of

BK5N. If confirmed, this would make d1005+68 one of the first detected satellites-

of-a-satellite.

18



2.2 Introduction

The past decade has seen an awakening in the field of dwarf galaxy discov-

ery. Large photometric surveys such as the Sloan Digital Sky Survey (SDSS), the

Panoramic Survey Telescope Rapid Response System (Pan-STARRS), and the Dark

Energy Survey (DES) have permitted the discovery of >30 faint and ultrafaint dwarf

galaxy (UFD) candidates in the Local Group (e.g., Belokurov et al., 2006; Martin

et al., 2013; Drlica-Wagner et al., 2016; Homma et al., 2016). These discoveries

have informed the nearly two-decade-old “missing satellites problem” (hereafter MSP;

Klypin et al. 1999). This apparent tension between the low-end halo mass function

slope, predicted by ΛCDM, and the considerably flatter slope of the Milky Way dwarf

galaxy luminosity function is a sensitive probe of dark matter properties and galaxy

formation in the lowest-mass dark matter halos (e.g., Macciò et al., 2010; Brooks

et al., 2013). Yet, with improved understanding, new puzzles have emerged. An

apparent dearth of luminous high-velocity subhalos – the “too big to fail” problem

(hereafter TBTF; Boylan-Kolchin et al. 2011) — is an extension of MSP that is not

alleviated by the discovery of UFDs (see Simon and Geha 2007, Macciò et al. 2010,

Font et al. 2011, and Brooks et al. 2013 for discussion of possible solutions to MSP

and TBTF). Furthermore, mounting evidence suggests that both the Milky Way’s and

M31’s satellites form potentially planar structures (Pawlowski et al., 2013). Though

ΛCDM predicts anisotropic accretion due to infall along cosmic filaments (e.g., Li

and Helmi 2008), potentially resulting in planar satellite distributions (Sawala et al.,

2016), the thinness of the Local Group planes remains difficult to replicate.

ΛCDM predicts that all galaxy halos host subhalos, the most massive of which

will host luminous satellites. Consequently, many of the satellites around Milky

Way–mass galaxies also likely possess, or possessed before infall, their own orbiting

subhalos. These “satellites-of-satellites” are difficult to detect, owing to their intrinsic

faintness. Recent work suggests that several of the Milky Way satellites nearest to
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the Magellanic Clouds may be satellites of the Clouds themselves (Drlica-Wagner

et al., 2016), with possibly > 30% of Milky Way satellites originating around the

Large Magellanic Cloud (LMC; Jethwa et al., 2016).

It is clear that our understanding of dwarf galaxy populations in the ΛCDM

paradigm is currently limited. A key hurdle is that our understanding of dwarf

galaxy luminosity functions, spatial distributions, and properties is almost entirely

confined to the Local Group. Characterization of satellite populations around other

Local Group analogs is crucial if we are to obtain a complete description of low-mass

galaxy formation.

Propelled by the advent of wide-field imagers on large telescopes, discovery and

characterization of faint ‘classical dwarfs’ (MV < −10) has become possible in nearby

galaxy groups and clusters using large area (approaching 100 deg2) diffuse light sur-

veys (e.g., Chiboucas et al., 2009; Müller et al., 2015a; Muñoz et al., 2015; Ferrarese

et al., 2016). Observationally expensive, smaller area deep surveys of resolved stellar

populations in nearby galaxy groups are bringing even fainter dwarf galaxies within

reach (e.g., Sand et al., 2015; Carlin et al., 2016; Crnojević et al., 2016; Toloba et al.,

2016).

In this Letter, we present the discovery of a faint dwarf spheroidal galaxy in the

M81 group, d1005+68 (following the naming convention of Chiboucas et al. 2013),

detected as an overdensity of stars in observations taken with the Subaru Hyper

Suprime-Cam. At MV = −7.9 (see § 2.4), d1005+68 is one of the faintest confirmed

galaxies discovered outside of the Local Group.

2.3 Detection

We use observations taken with the Subaru Hyper Suprime-Cam (HSC; Miyazaki

et al. 2012) through NOAO Gemini-Subaru exchange time (PI: Bell, 2015A-0281).
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Table 2.1. d1005+68 Parameters

Parameter Value

α (J2000) 10h05m31.s82± 1.s1
δ (J2000) +68◦14′19.′′56± 5.′′95

DTRGB 3.98+0.39
−0.43 Mpc

MV
a −7.94+0.38

−0.50

rh 9.′′7± 2.′′0
rh 188+39

−41 pc

log10(M∗/M�) b 5.40+0.22
−0.16

[Fe/H] c −1.90± 0.24

Note. — a Isochrone fitting, assuming DTRGB. b Current stellar mass, assuming 40%
mass loss. c Metallicity of best-fit isochrone, assuming [α/Fe] = 0.25.

The observations consist of two pointings for a survey footprint area of ∼ 3.5 deg2,

in three filters: g, r, and i, with ∼ 3600 s per filter per pointing. The data were

reduced using the HSC pipeline (Bosch et al., 2018), which was developed from the

LSST Pipeline (Axelrod et al., 2010). The data were calibrated using photometry and

astrometry from Pan-STARRS1 (Magnier et al., 2013). An aggressive background

subtraction using a 32 pixel region for determining the background was used. Objects

are detected in i band and forced photometry is performed in g and r. The average

FWHM in M81 Field 2 (in which d1005+68 was discovered) is∼0.′′7 in all bands, giving

limiting 5σ point-source magnitudes of g ∼ 27, r ∼ 26.5, and i ∼ 26. All magnitudes

use the SDSS photometric system, corrected for foreground Galactic extinction using

the Schlegel et al. (1998) maps as calibrated by Schlafly and Finkbeiner (2011b).

As the dwarf galaxies of interest are low surface brightness and possess little diffuse

emission, we detect dwarf candidates by resolving them into individual stars. At the

distance of M81 (3.6 Mpc; Radburn-Smith et al. 2011), only stars in the top ∼25%,

or tip of the RGB (TRGB), are visible. TRGB stars are relatively numerous, and as

they trace the old stellar population of galaxies, their number can be scaled to a total
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luminosity with modest uncertainty (Harmsen et al., 2017).

At our survey depths, contaminants – high-redshift background galaxies – dom-

inate. The majority of these galaxy contaminants must be removed in order to

reach the surface brightness sensitivity necessary to detect faint dwarf satellites

(µV . 28 mag arcsec2). We reject galaxies using a combined morphology and color

cut; such a process sacrifices completeness in order to dramatically suppress contam-

ination (this will be revisited in § 2.4). To be defined as a star, a source must satisfy

two criteria: (1) FWHM 6 0.6′′ across all three bands (we will consider less stringent

cuts later), and (2) consistent with the g − r vs. r − i stellar locus within σg−r (the

photometric uncertainty) + 0.2 mag (intrinsic scatter; High et al. 2009). Next, we

locate stars on the RGB from the g − r vs. r color-magnitude diagram (CMD) and

divide them into three metallicity bins using simple polygonal boundaries (see Figure

2.1).

d1005+68 stands out as a significant overdensity of metal-poor stars in the sparse,

metallicity-binned RGB star map of M81’s stellar halo (Figure 2.1), with nine RGB

stars visible in a 1′ × 1′ region centered on d1005+68. To quantify the prominence

of this overdensity against the surrounding diffuse stellar halo, we extract 500 1′ ×

1′ (independent) regions from a 0.14 deg2 region south of d1005+68, away from the

stellar debris associated with the tidal disruption of NGC 3077. We compute the

discrete probability distribution of the number of RGB stars returned in each region

and fit it to a Poisson distribution, p(N |λ). From the best-fit Poisson distribution, we

take a mean background of λ = 0.38±0.03 RGB stars arcmin−2. Integrating over the

best-fit distribution, and correcting for the number of independent 1 arcmin2 regions

(104) in the target footprint, we obtain a cumulative probability of drawing nine RGB

stars arcmin−2 of 4.2 × 10−6 ± 3.5 × 10−6. Placed into terms of standard error, this

is a 4.5− 5σ detection. Thus, we expect to detect 0.01 such random overdensities in

our target footprint. In the following section, we discuss the derivation of d1005+68’s
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properties, which are summarized in Table 2.1. Its position relative to other M81

Group members is shown in the map of M81’s stellar halo in Figure 2.1. In Figure 2.2

we show the i-band image of d1005+68 with detected RGB stars encircled, as well as

the curve of growth.

2.4 Properties

The g−i vs. i CMD of probable member stars of d1005+68 are shown in Figure 2.3.

We define membership based on the shape of the curve of growth (Figure 2.2, bottom

right panel), where the background-subtracted profile asymptotes to a ∼constant

value. In contrast to the stringent cut used for detection of the dwarf, we use broader

criteria for membership determination and the derivation of the dwarf’s properties.

At low signal-to-noise, the measured sizes of objects are subject to significant scatter,

causing tight tolerances on size to reject many true stars. Consequently, the stars

shown on the CMD were chosen using the same color constraint as for detection, but

with a looser size constraint – FWHM in x and y 6 0.′′84. Also shown in Figure 2.3

are CMDs of nearby (in projection) dwarf galaxy BK5N – both full and randomly

down-sampled to the number of observed stars in d1005+68.

The centroid, half-light radius, and number of member stars (and therefore lumi-

nosity) are the averages of a range of values estimated by varying the size cut between

0.′′6 and 1.′′34, the number of stars used to define the position of the center (relative to

the optical center) between 5 and 12, and the Poisson background value (see § 2.3).

For each iteration, the number of member stars are determined using the turnover of

the background-subtracted curve of growth, from which the half-light radius is also

derived. The mean values of the centroid and half-light radius can be found in Table

2.1, along with the standard deviations of the various iterations.

The TRGB can be used as a robust distance estimator, due to its near-constant lu-

minosity (MI = −4.04 in the Johnson-Cousins system) at low metallicities (Bellazzini
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et al., 2001). The TRGB for d1005+68’s CMD (see Figure 2.3) was calculated as in

Monachesi et al. (2016a), but also includes the completeness in the model luminosity

function (LF), φ (see below), as in Makarov et al. (2006):

φ(m|x) =

∫
ψ(m′|x) e(m|m′) ρ(m′) dm′ (2.1)

where ψ is the true LF, e is the Gaussian error kernel, ρ is the completeness, and

x is the vector of model parameters that we fit. See Appendix C of Monachesi

et al. (2016a) for details. The completeness was tabulated in 0.3 mag i-band bins

using the area in common with GHOSTS and smoothed with a three-bin boxcar (the

smoothing has no effect on the derived TRGB magnitudes). We find a TRGB of

iTRGB = 24.48+0.17
−0.26. Using a SDSS “Lupton prescription,” 1, in the JC system, this

corresponds to ITRGB = 23.96+0.20
−0.25, or a distance modulus of m −M = 28.00+0.20

−0.25.

Thus, we derive a distance to d1005+68 of 3.98+0.39
−0.43 Mpc.

d1005+68’s luminosity was estimated using the number of stars visible to a certain

i-band “depth” below the TRGB. To convert the number of observed stars to a total

number of stars above this i-band limit, we use the GHOSTS fields for M81 (Radburn-

Smith et al., 2011) to compute the stellar completeness in the Subaru field, as a

function of i-band magnitude, for our three size cuts (0.′′6, 0.′′84, 1.′′34). For all three

size cuts, we estimate a total number of 32 ± 6 RGB stars to a depth of ∼1.2 mag

below the TRGB, and 25 ± 4 to a depth of ∼1.1 mag below the TRGB. We then

randomly sample our best-fit isochrone in that magnitude range given a Chabrier

(2003) stellar initial mass function (IMF). We record the resulting number of RGB

stars drawn at each stellar mass and compute a probability distribution of drawing

the observed number of stars at each mass, at the given RGB depth. We obtain a

most probable initial mass of log10(M∗/M�) = 5.62, which, after the standard 40%

mass-loss correction (Bruzual and Charlot , 2003), corresponds to a current stellar

1https://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php
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mass of log10(M∗/M�) = 5.40 or M∗ = 2.5 × 105M�. We then convert the stellar

mass distribution to a V -band luminosity, while randomly varying the number of stars

in each isochrone, at a fixed stellar mass. Accounting for the variance in the different

depths considered, as well as sampling variance along the IMF, we obtain a V -band

luminosity ofMV = −7.94+0.38
−0.50. The primary uncertainties on this estimate come from

our TRGB distance range and the width of the best-fit stellar mass distribution.

To estimate the metallicity, we fit a suite of PARSEC stellar isochrone models

(Bressan et al., 2012) with a fixed 12 Gyr age, from Z = 0.0001 − 0.001. The best-

fit isochrone, for the g − i vs. i CMD, corresponds to a metallicity of Z = 0.0004.

Assuming [α/Fe] = 0.25, this corresponds to [Fe/H] = −1.90. For each iteration in

the centroid calculation (above) we draw 10 bootstrap samples and compute the best-

fit isochrone for each case. We then combine the standard deviation of the resulting

distribution with the TRGB distance uncertainties. We obtain a final metallicity

estimate of [Fe/H] = −1.90± 0.24.

d1005+68 has a projected separation from M81 of 1.◦22, or, using the distance to

M81, 76.4 kpc. Using the adopted TRGB distance to d1005+68 of 3.98+0.39
−0.43 Mpc,

this corresponds to a large range in possible 3D distances. The projected physical

separation between d1005+68 and the nearby (on the sky) dwarf spheroidal BK5N

is only ∼ 5 kpc at the distance of BK5N (3.78 Mpc; Karachentsev et al. 2000).

Assuming a stellar mass for BK5N of ∼ 107M� (MV = −11.33; Caldwell et al. 1998)

and extrapolating from the stellar mass–halo mass relation of Behroozi et al. (2013),

the virial radius of BK5N is likely ∼ 40 kpc. Therefore, were d1005+68 at a similar

distance as BK5N, it would be well within BK5N’s virial radius. In support of this,

the CMD of d1005+68 is well approximated by a random sampling of BK5N’s CMD,

as in Figure 2.3. However, the 3D separation could be much higher when factoring

in the uncertainty in d1005+68’s TRGB distance.
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2.5 Discussion and Closing Remarks

In this Letter, we presented a new faint dwarf galaxy, d1005+68, with properties

consistent with being a satellite of the M81 Group. It was detected as a 5σ overdensity

in our 3.5 deg2 Subaru Hyper Suprime-Cam survey of M81’s resolved stellar halo. We

find that the CMD is best fit by an isochrone of age 12 Gyr and metallicity [Fe/H]

= −1.90 ± 0.24. d1005+68 has projected physical distances from M81, NGC 3077,

and BK5N of ∼76 kpc, 40 kpc, and 5 kpc, respectively. The estimated heliocentric

TRGB distance of 3.98+0.39
−0.43 Mpc provides strong evidence for group membership;

however, the high uncertainties prohibit accurate estimates of 3D separation from

other group members. Its current stellar mass, determined from isochrone fitting, is

M∗ = 2.5+1.7
−0.8 × 105M�, corresponding to an absolute V -band magnitude of MV =

−7.94+0.38
−0.50.

Figure 2.4 shows d1005+68 in context of Local Group and M81 Group members.

d1005+68 is among the faintest confirmed galaxies discovered outside of the Local

Group – similar in brightness to M81 group member d0944+69 (Chiboucas et al.

2013; MV = −8.05 with no claimed uncertainty), NGC 2403 member MADCASH

J074238+652501-dw (Carlin et al. 2016; MV = −7.7±0.7), Centaurus group member

Dw5 (Crnojević et al. 2016; MV = −7.2 ± 1.0), and Fornax cluster member Fornax

UFD1 (Lee et al. 2017; MV = −7.6 ± 0.2) – and probes the very faintest end of the

known M81 satellite luminosity function.

The projected separation between d1005+68 and BK5N of 5 kpc is well within

the estimated virial radius of BK5N (∼ 40 kpc). With our highly uncertain TRGB

distance (due to scarcity of stars) and the similarity between the two CMDs (Figure

2.3), this introduces the possibility that d1005+68 is a satellite of BK5N. If confirmed

(via more accurate distance estimates and line of sight velocity information), this

would make it the first satellite-of-a-satellite discovered outside of the Local Group.
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Figure 2.1: Top left: the g− r vs. r CMD (de-reddened) of all stars (see § 2.3) in the
Subaru field, separated into ∼0.01 mag bins. The RGB is encapsulated within the
drawn polygon, which has been divided into three metallicity bins by eye, blue being
the most metal-poor. The blue locus is likely a combination of young Helium burners
and unresolved high-redshift background galaxies. The stripe at bright magnitudes
is composed of Milky Way foreground stars. The yellow lines are 12 Gyr PARSEC
isochrones (Bressan et al., 2012), with [Fe/H] = −2.1 (left), [Fe/H] = −1.7 (center),
and [Fe/H] = −1.2 (right), shown here for reference. Bottom left: the g− r vs. r− i
color-color diagram of photometrically identified sources. The stellar locus (High
et al., 2009) is shown as a yellow curve. RGB stars defined by our morphological,
CMD, and stellar locus criteria (§ 2.3) are shown as either blue, green, or red points,
corresponding to their metallicity bin. The darkest region is the galaxy locus. Right:
a cutout of the map of M81’s stellar halo in resolved RGB stars (Smercina et al.,
2019). The colors correspond to the metallicity bins defined on the CMD in the
top left figure. The known galaxies in the field are labeled. d1005+68 is located at
the bottom left of the map, indicated by a black arrow. It appears as a significant
overdensity of blue (metal-poor) RGB stars, very near to the dwarf spheroidal, BK5N.
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Figure 2.2: Left: the HSC i-band image of d1005+68. The concentric green circles
correspond to apertures with 1 and 2× the derived half-light radius, centered on the
estimated centroid. Member stars are encircled, with stars passing the 0.′′84 size cut
shown in red and those passing the broader 1.′′34 size cut in blue (see § 2.4). Top right:
the curve of growth for d1005+68, using RGB stars defined by the 1.′′34 size cut (the
union of the blue and red stars). The red curve corresponds to an N = ΣBGr

2 model
of the background, using the derived Poisson mean with a 10% correction (ΣBG ∼
3.3 RGB stars arcmin−2). Bottom right: the background-subtracted curve of growth.
The red line denotes the median value of N −ΣBGπr

2, which we take as the number
of member stars. The “sawtooth” nature of the radial profile is simply due to random
over- and underdensities in the halo.
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Figure 2.3: Left: the color-magnitude diagram of d1005+68. Stars shown are identi-
fied with the 0.′′84 size cut (see § 2.4), extending to ∼0.′5 or ∼3rh. The TRGB is shown
as a red line, with the 90% confidence shown as the red shaded region. The three blue
curves on each diagram correspond to the best-fit 12 Gyr isochrones at each distance
bound, with respective metallicities (from left to right) of [Fe/H] = −1.76 (green),
−1.90 (blue), and −2.02 (orange). Center left: The CMD of BK5N in RGB stars, with
∼ 100 detected RGB stars. Center right: BK5N’s CMD, randomly down-sampled to
match the number of member stars in d1005+68. Right: the i-band completeness
function, φ.
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Figure 2.4: Half-light radius–luminosity diagram for Milky Way, M31, Local Group,
and M81 Group satellites. Milky Way satellites are shown as blue circles, M31 satel-
lites as red circles, general Local Group members (outside the virial radius of MW or
M31) as green circles, and M81 members as filled purple circles. Local Group data
are compiled from the catalog of McConnachie (2012), from the recent slew of Dark
Energy Survey (Bechtol et al., 2015; Drlica-Wagner et al., 2015; Koposov et al., 2015)
and Pan-STARRS (Laevens et al., 2015) discoveries, and from other isolated discov-
eries (Belokurov et al., 2014; Kim et al., 2015; Homma et al., 2016). M81 Group data
are compiled from Karachentsev et al. (2000), Lianou et al. (2010), and Chiboucas
et al. (2013). In the absence of MV and rh uncertainties in the literature, typical
Local Group uncertainties of 20% have been adopted for M81 members. d1005+68 is
shown as a black star. Lines of constant surface brightness are shown for reference.
Our derived rh and MV for d1005+68 place it well within the locus of Local Group
satellites, while it is one of the faintest members of the M81 Group.
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CHAPTER III

A Lonely Giant: The Sparse Satellite Population

of M94 Challenges Galaxy Formation

3.1 Abstract

The dwarf satellites of ‘giant’ Milky Way (MW)-mass galaxies are our primary

probes of low-mass dark matter halos. The number and velocities of the satellite

galaxies of the MW and M31 initially puzzled galaxy formation theorists, but are

now reproduced well by many models. Yet, are the MW’s and M31’s satellites rep-

resentative? Were galaxy formation models ‘overfit’? These questions motivate deep

searches for satellite galaxies outside the Local Group. We present a deep survey of

the ‘classical’ satellites (M?>4×105M�) of the MW-mass galaxy M94 out to 150 kpc

projected distance. We find only two satellites, each with M?∼106M�, compared with

6–12 such satellites in the four other MW-mass systems with comparable data (MW,

M31, M81, M101). Using a ‘standard’ prescription for occupying dark matter halos

(taken from the fully hydrodynamical EAGLE simulation) with galaxies, we find that

such a sparse satellite population occurs in < 0.2% of MW-mass systems — a < 1%

probability among a sample of five (known systems + M94). In order to produce

an M94-like system more frequently we assume satellite galaxy formation is much

more stochastic than is currently predicted, by dramatically increasing the slope and
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scatter of the stellar mass–halo mass (SMHM) relation. Surprisingly, the SMHM re-

lation must be altered even for halos masses up to 1011M� — significantly above the

mass scales predicted to have increased scatter from current hydrodynamical models.

The sparse satellite population of this ‘lonely giant’ thus advocates for an important

modification to ideas of how the satellites around MW-mass galaxies form.

3.2 Introduction

While the Λ-Cold Dark Matter (ΛCDM) paradigm successfully explains the large-

scale properties of the Universe, many of its predictions on small scales appear to

be in tension with the number and properties of dwarf galaxies (see the review by

Bullock and Boylan-Kolchin, 2017). While the Milky Way (MW) hosts ∼10 ‘classical’

dwarf satellite galaxies with velocity scales of &10 km s−1 (see McConnachie 2012),

dramatically more DM halos were predicted to exist at those scales — the ‘Missing

Satellites Problem’ (MSP; Klypin et al. 1999; Moore et al. 1999). Later work appeared

to sharpen the problem by suggesting that the velocities of the few satellites the MW

does have are substantially lower than the velocity scales of the most massive predicted

dark matter (DM) halos — the ‘Too Big to Fail’ problem (TBTF; Boylan-Kolchin

et al. 2011).

While it is possible that these observations may signal the need for an important

modification to ΛCDM, it is widely accepted that improved galaxy formation physics

is the likely resolution to these problems. Feedback from supernovae is predicted to

dramatically suppress the number of stars in even relatively massive DM halos (Mh ∼

1010M�) (Macciò et al., 2010; Font et al., 2011). Furthermore, supernovae-driven

outflows can drag DM to larger radii and could reduce the central velocities of these

halos to observed values (Brooks et al., 2013; Wetzel et al., 2016). Recently, it has

been suggested that tidal disruption of satellites and their subhalos around massive

galaxies like the Milky Way reduces the number of predicted satellites further (e.g.,
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Garrison-Kimmel et al., 2017b). These models, along with more a more complete

census of MW satellites from surveys such as SDSS and DES, have been so successful

that it has been argued ‘there is no missing satellites problem’ (Kim et al., 2017).

Nearly all of our understanding of the small-scale challenges to ΛCDM has been

based on observations of satellites in the Local Group (LG), prompting important

questions:

1. Are the LG’s satellites representative?

2. Are galaxy formation models in turn representative, or have they instead been

over-tailored to fit the LG’s satellites?

These questions motivate a deep census of the satellites of ‘giant’ MW-mass galax-

ies and low-mass field dwarf galaxies. A variety of approaches are being taken: deep

spectroscopic surveys (e.g., Spencer et al., 2014; Geha et al., 2017), field H i ob-

servations (Papastergis et al., 2015; Yaryura et al., 2016), large-area integrated light

surveys around nearby galaxies (e.g., Chiboucas et al., 2009; Müller et al., 2015b;

Danieli et al., 2017), and narrower and deeper surveys which allow satellites to be

resolved into stars (e.g., Toloba et al., 2016; Carlin et al., 2016; Crnojević et al., 2016;

Smercina et al., 2017). Discovering and confirming a complete sample of even ‘clas-

sical’ satellites around nearby galaxies requires a formidable combination of depth

and area. Such a sample exists for only four MW-like systems: the MW and M31

(McConnachie, 2012), M81 (Karachentsev and Kudrya, 2014), and M101 (Danieli

et al., 2017).

In this paper we present the discovery of two low-mass satellites of the nearby

MW-mass galaxy M94 (NGC 4736; M? ' 4×1010M�, Karachentsev et al. 2013; D =

4.2 Mpc, Radburn-Smith et al. 2011), detected in a deep Hyper Suprime-Cam (HSC)

survey with an effective radius of 150 kpc. Rather than discovering the ∼10 ‘classical’

satellites which were expected by scaling the other MW-mass systems, we discovered
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only two, both with stellar masses only . 106M� — a satellite population completely

unlike any other known galaxy. We further show that, more than being unexpected,

M94’s satellite population cannot be explained using ‘standard’ galaxy formation

models — directly advocating for significant modifications to the physics of low-mass

halo occupation.

3.3 Observations

Our HSC survey, carried out through the NOAO Gemini–Subaru exchange pro-

gram (PI: Smercina, NOAO 2017A-0312), consists of six HSC pointings in g-band

(for satellite discovery), three in i, and two in r (for stellar halo characterization).

The deepest two fields were observed for ∼7200s per filter in gri. The remaining four

fields were observed for 1200s per filter. The average seeing FWHM in g-band is ∼0.′′8

for all fields. The g-band survey footprint is symmetric around M94 and has an area

equal to a 150 kpc radius circular region, giving an ‘effective’ radius of 150 kpc (see

Fig. 3.1).

The data were reduced as described in Smercina et al. (2017), using the updated

HSC pipeline (Bosch et al., 2018). Data were calibrated using the Pan-STARRS1

survey (Magnier et al., 2013), but all magnitudes are in the SDSS photometric system

and have been corrected for foreground Galactic extinction using the updated Schlafly

and Finkbeiner (2011b) corrections.

The satellite-focused part of the survey consists of six fields with moderately deep

to very deep g-band data. These six fields were visually inspected for low surface

brightness (SB) candidate dwarf galaxies with resolved or semi-resolved stars with

luminosities and half-light radii similar to Local Group satellites following Chiboucas

et al. (2009) — only two were found. One of these dwarfs, M94-Dw1, was detected

as a dwarf galaxy candidate (dw1255+40) in the integrated light survey of Müller

et al. (2017). The locations and properties of these dwarfs are given in Figure 3.1
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and Table 3.1.

3.3.1 Completeness

In order to understand our satellite detection completeness limits we conducted

∼500 individual artificial galaxy tests in the g-band data. Satellites were inserted

with a range of projected distances to M94 of 15 < D/kpc < 150. Tests were done by

eye on isolated images to eliminate subconscious cross-referencing with known areas

in the field, and with multiple authors to produce independently verifiable results.

Dwarf galaxies were simulated by sampling random stars from a 12 Gyr isochrone

and injecting them into the survey images. These artificial galaxies were created

from single stellar populations and thus resemble quiescent satellites in the LG. The

positions of stars were drawn randomly from independent Gaussian profiles in X and

Y, with randomly-generated galaxy centers, elliptical half-light radii ranging from

0.1–1 kpc, and corresponding ellipticities ε 6 0.9. Position angles were also chosen at

random, ranging from 0°–360°. Additionally, in a given test there was a 30% chance

of not injecting an artificial galaxy.

Most effort was spent sampling galaxies with luminosities −9.1 > MV > −10.3,

spanning the range of the two candidates — constituting 300 tests. We conducted

an additional 140 tests in the luminosity range −10.3 > MV > −12.3. As further ex-

plained in § 3.5, we account for up to 1 Mpc uncertainty in line-of-sight (LOS) distance

between satellites and the central galaxy (M94 in this case). LOS distance variance

only significantly affects the luminosity of satellites at the distance of M94 when it

exceeds 0.4 Mpc (∼0.2 mag). From simulations (see § 3.5), the distribution of satellite

LOS distances from MW-mass galaxies is well-fit by a Lorentzian distribution — the

large-distance wings stemming from the two-point correlation function of galaxies.

We estimate that ∼10% of apparent satellites around MW-mass galaxies likely have

∆ d = ±0.4–1 Mpc. To explore this effect on our test results, 30 additional tests were
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conducted, focused on satellites in the −9.1 > MV > −10.3 luminosity range (∼10%

of our original 300 tests in that luminosity range), and placed at varying distances,

drawn from a Lorentzian distribution with ∆ d = ±0.4–1 Mpc.

Figure 3.2 shows the results of our tests, with three example artificial satellites.

Overall completeness was high, with >70% of all injected satellites recovered. The

rate of false detection was very low (2%) and only occurred in the very lowest-

surface brightness (µV . 28 mag arcsec−2) cases. Completeness is a relatively smooth

function of SB (middle panel), with ∼80% completeness corresponding to a SB of

µV = 27 mag arcsec−2. Overall completeness is ∼10% higher on average in the two

deeper fields, but otherwise there is little dependence on field location, even when

binning by SB. The lower left panel shows the completeness binned as a function of

luminosity and half-light radius, along with the LG satellites with luminosities approx-

imately within our test range. Applied to the properties of LG satellites, we estimate

an average completeness of 85% in the range −9.1 > MV > −10.3. Our satellite tests

in the range −10.3 > MV > −12.3 yield a very high 97% average completeness, and

is ∼100% when applied to LG satellites. The effect of LOS distance variance was neg-

ligible, following our 30 additional tests. Average completeness remained the same,

likely owing to the competing effects of lower completeness at farther LOS distances

and proportionally higher completeness at closer distances.

Scaling from the mass-to-light ratios of LG satellites (McConnachie, 2012), our

85% completeness limit of MV = −9.1 corresponds to M?∼4×105M�. Consequently,

M94, a MW-mass galaxy, very likely hosts only two satellite galaxies with projected

radii < 150 kpc and M? & 4×105M� — a satellite population unlike any other known

galaxy of its kind.

37



Table 3.1. Dwarf Parameters

Parameter M94-Dw1 M94-Dw2

α (J2000) 12h55m02.s49 12h51m04.s4
δ (J2000) 40◦35′21.′′9 41◦38′09.′′9
DTRGB 4.1± 0.2 Mpc 4.7+0.2

−0.4 Mpc

MV
a −10.1± 0.1 −9.7−0.1

+0.2

rh 618± 90 pc 316± 40 pc
µV,eff

b 27.4 mag arcsec−2 26.4 mag arcsec−2

M?
c 9.7×105M� 6.7×105M�

[Fe/H]d −2.1± 0.1 −2.1± 0.1

Note. — a Profile fitting, assuming DTRGB. b Effective V -band surface brightness within
the half-light radius. c Comparing to dwarf irregulars of similar luminosity in the Local
Group (McConnachie, 2012). d Metallicity of best-fit isochrone, assuming [α/Fe] = 0.25.

3.4 Satellite Properties

The two dwarfs were detected in the two fields with gri imaging, allowing for

analysis of their stellar populations. In Figure 3.1 we show the r-band images and

color–magnitude diagrams (CMDs) of the dwarfs. Aperture photometry using succes-

sive elliptical apertures was used to construct brightness profiles and a total flux for

each dwarf. The profiles were also used to determine half-light radii. g and r-band

magnitudes were converted to V -band using the SDSS ‘Lupton 2005’ photometric

transformation1.

Distances for the dwarfs were determined from the tip of the red giant branch

(TRGB), estimated using a maximum-likelihood analysis following Appendix C of

Monachesi et al. (2016a) and Smercina et al. (2017). We determined r-band com-

pleteness using artificial stars for the highly crowded regions of M94-Dw2. Dw1 and

Dw2 are 4.1±0.2 Mpc and 4.7+0.2
−0.4 Mpc away, both reasonably consistent with M94

1http://www.sdss.org/dr12/algorithms/sdssubvritransform
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group membership (DM94∼4.2 Mpc). We thus estimate absolute V -band magnitudes

of −10.1 and −9.7, with 0.1–0.2 mag uncertainties dominated by the TRGB distance.

Projected distances from M94 are 69 kpc for Dw1 and 38 kpc for Dw2.

Both Dw1 and Dw2 have stars bluer than the RGB with colors typical of young

main sequence and intermediate-age core helium-burning stars (Radburn-Smith et al.,

2011), indicating ongoing star formation. Furthermore, both dwarfs have irregular

morphologies characteristic of star-forming galaxies at similar magnitudes (Carrillo

et al., 2017). While isolated dwarf galaxies are invariably star-forming (Geha et al.,

2012), the vast majority of LG satellites are quiescent (Slater and Bell , 2014) —

assumed to be due to ram-pressure stripping during infall (e.g., Emerick et al., 2016;

Simpson et al., 2018). Consequently, the star formation in M94’s two satellites, with

projected distances < 100 kpc, is puzzling. If these galaxies are shown to be signif-

icantly further from M94, it would make their star formation easier to understand,

but would mean that M94 hosts even fewer satellites within its virial radius. Al-

ternatively, this may indicate that M94 lacks the hot gas required to strip gas from

satellites (Slater and Bell , 2014).

Given Dw1 and Dw2’s V -band luminosities and a stellar M/LV∼1 for similar

star-forming dwarf galaxies in the LG (following McConnachie 2012), we estimate

stellar masses of 9.7×105M� and 6.7×105M�.

Metallicities were determined by fitting PARSEC isochrone models (Bressan et al.,

2012) to the g−r colors and r-band magnitudes, with a fixed 12 Gyr age and metallic-

ities in the range Z = 0.0001–0.001. The best-fit isochrones, placed at the respective

TRGB distances for each dwarf, each have metallicity Z = 0.0002, corresponding to

an iron abundance of [Fe/H] = −2.1, assuming an [α/Fe] = 0.25. This is consistent

with the RGB-derived metallicities of similarly-massive star-forming dwarf galaxies

in the LG (e.g., Sagittarius dIrr; McConnachie 2012).
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3.5 Implications for Galaxy Formation

As discussed in § 3.2, the satellite populations of only four other MW-mass galax-

ies are known down to < 106M� with good completeness: the MW, M31, M81, and

M101 — all central galaxies in low-density environments. Among these four, the aver-

age number of satellites with M? > 4×105M�, within a projected 150 kpc radius from

the central, is 9± 3. Projected distances for MW and M31 satellites were determined

using the derived physical LG coordinates of Pawlowski et al. (2013), and simulat-

ing 10,000 random LOS’s from external reference positions. All four galaxies also

host at least one satellite with M? > 109M�. Placed in context with these systems,

the satellite population of M94, a MW-mass central galaxy in a low-density environ-

ment, is completely unexpected — possessing only two ‘classical’ satellites, with a

most massive satellite of only ∼106M�. However, was such a system predictable in

simulations?

While a thorough theoretical analysis is beyond the scope of this paper, we ex-

plore the implications of our results for galaxy formation models using a simple halo

occupation approach. For such an exercise, we require a simulation which a) provides

a large diversity of accretion histories for MW-mass halos, b) resolves dark matter

subhalos capable of hosting the satellites we are interested in (Mh,peak > 109M�), and

c) can accurately account for subhalo disruption due to the potential of the central

disk (e.g., Garrison-Kimmel et al., 2017b). The current generation of large-volume

cosmological hydrodynamical simulations best meet these criteria. Here we use the

dark matter subhalos of the large-volume, (∼100 Mpc3) fully hydrodynamical ver-

sion of the EAGLE simulation (Schaye et al., 2015). We confirm the robustness of

EAGLE’s subhalo catalogs at low masses by comparing the average subahlo mass

function to a higher-resolution simulation (∼ 25 Mpc3) also made available by the

EAGLE collaboration, finding that they converge for Mh,peak > 109M�. This is more

than sufficient for our purposes, as most current models predict that cosmic reioniza-
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tion and stellar feedback should produce mostly ‘dark’ halos below Mh,peak < 109M�

(e.g., Sawala et al., 2015; Ocvirk et al., 2016; Munshi et al., 2017). We choose not

to directly use the stellar masses and properties of satellites from EAGLE (see e.g.,

Shao et al. 2018) in this analysis, primarily because we need to explore the impact of

varying prescriptions about how satellite galaxies populate dark matter halos.

We assign galaxies to dark matter halos and subhalos using their ‘peak’ (or infall)

mass (denoted as Mh,peak). Our halo occupation model, which applies equally for both

central and satellite galaxies, follows the commonly-adopted Behroozi et al. (2013)

SMHM relation, with a fixed 0.2 dex log-normal scatter, down to Mh,peak> 5×109M�.

The SMHM relation at low masses is very uncertain and an extrapolation of the

Behroozi et al. (2013) SMHM relation over-predicts the number of dwarf satellites

of the Milky Way (e.g., Dooley et al., 2017). Consequently, we adopt a somewhat

steeper slope with increased mass-dependent scatter for Mh,peak < 5×109M�, fol-

lowing Munshi et al. (2017). Figure 3.3 (left panel) shows the adopted relationship

between halo/subhalo mass and galaxy stellar mass for EAGLE dark matter halos.

Next, we define ‘MW-mass galaxies’ to be central halos with 6×1011M� 6Mh,peak 6

3×1012M�, which host a galaxy with model-derived stellar mass of M? > 4 ×1010M�

— a sample of 1,500 galaxies. As these halos are centrals, they automatically exclude

halos in dense environments (cluster members or other satellites), but otherwise span

a range of large-scale environments. In turn, we define ‘satellites’ within a range

of projected radii 15 kpc<Dproj <150 kpc from each EAGLE MW-mass central, and

within 1 Mpc in LOS (Z) distance — a realistic observational constraint for satellites

around nearby galaxies.

Figure 3.4 (left panel) shows the resulting satellite mass function for MW-mass

galaxies in EAGLE, against known satellite mass functions within 150 kpc projected

distance from the central. The simulated satellite mass functions have been completeness-

corrected to match our results for M94 (see § 3.3.1) — 85% for 4×105 M� < M∗ <
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1.2×106 M� (−9.1 > MV > −10.3). The ‘standard’ halo occupation model typically

produces more satellites than all nearby MW-mass systems, in particular producing

a MW-mass galaxy with 6 2 satellites < 0.2% of the time. Treating each of the five

known galaxies as an independent binomial trial, a < 0.2% success rate should yield

one success with a < 1% probability. Moreover, there is not a single simulated galaxy

whose most massive satellite has M?6 106M�. Interestingly, in our ‘standard’ model,

the typical galaxy with a satellite population similar to M94 has approximately the

mass of the Large Magellanic Cloud.

To further explore this unexpected result, we also adopt a schematic altered

SMHM relation (see Figure 3.3; right panel), with increased mass-dependent scat-

ter starting at a halo mass of 1011M�, and a significantly steeper slope (∼3) for halos

< 3×1010M�, along with a 10% probability of not forming a galaxy at all (a 10%

‘failure rate’; e.g., Sawala et al. 2015) below 1010M�. Figure 3.4 (right panel) shows

that this ‘stochastic’ halo occupation model reproduces more accurately the typical

number of satellites of a MW-mass galaxy, and gives a significantly higher likelihood

of producing an M94-like system: >4% of MW-mass galaxies host 6 2 satellites — a

>16% chance for five galaxies. Additionally, several systems are produced which host

a most massive satellite with M? . 106M�, though the probability is still < 1%.

While this ‘stochastic’ model is primarily used for illustrative purposes, it nonethe-

less strongly resembles the model used by Garrison-Kimmel et al. (2017a) to help

alleviate the TBTF problem. A broader range in the observed satellite populations

around MW-mass hosts in surveys like SAGA (Geha et al., 2017), and even in nearby

systems excluding M94 (e.g., M101/MW vs. M81), seems to provide tentative sup-

port for this approach. The adopted slope in our stochastic model is quite similar to

that of Moster et al. (2013) extrapolated to lower halo masses (Dooley et al., 2017).

However, we find that adopting such a slope without dramatically increasing the

scatter up to high masses cannot adequately reproduce M94’s lack of a M? & 107M�
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satellite.

To summarize, M94 directly challenges the ‘standard’ halo occupation model.

While our exploration is far from exhaustive, we find that the sparse and low-mass

satellite system of M94 may indicate that galaxy formation within DM halos is much

more stochastic than predicted, even for halos as massive as ∼1011M� — far above

the TBTF mass scale predicted to signal an increase in stochasticity by most current

hydrodynamical models (e.g., Munshi et al., 2017; Fitts et al., 2017; Garrison-Kimmel

et al., 2019a).

3.6 Conclusions

We have presented the discovery of two low-mass satellites of the MW-mass galaxy

M94 in a deep, 150 kpc-radius Subaru HSC survey. Both satellites have MV ∼−10

and M?. 106M�. Both also appear to be actively star-forming, despite projected

distances from M94 of < 100 kpc.

We have conducted artificial galaxy tests and have found that our ‘classical’ dwarf

(MV &−9.1; M?& 4×105M�) detection completeness is 85% within our survey foot-

print up to ∼106M� and is >99% at higher masses — M94 very likely hosts only two

‘classical’ satellites between projected radii of 15 kpc and 150 kpc.

Furthermore, we have found that most currently accepted SMHM relations and

‘standard’ method of DM halo occupation cannot produce a satellite population like

M94’s with sufficient likelihood — . 0.2% of MW-mass central galaxies painted onto

EAGLE dark matter halos host 6 2 ‘classical’ satellites within 150 kpc in projection,

and none host a most massive satellite with M? 6 106M�. Furthermore, ‘stan-

dard’ halo occupation reproduces the overall satellite population of MW-mass galax-

ies poorly. In order to substantially increase the probability of forming an M94-like

system and improve the fit to the overall population, we have presented a model

which increases the scatter in the SMHM relation above 0.2 dex for halos as massive
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as 1011M�, culminating in >1 dex of scatter for 109M� halos. We also increased the

power-law slope of the SMHM relation to ∼3 for halos < 3×1010M� and assume that

some fraction of <1010M� halos fail to form visible galaxies. Consequently, M94 —

a ‘lonely giant’ which appears to only host two low-mass satellites and is completely

devoid of massive companions — may advocate for an important modification to cur-

rent ideas of how the satellites around MW-mass galaxies form.
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Figure 3.1: Right panel: A ∼5×5 �° SDSS image centered on M94 (magenta circle).
The colored circles show the six-pointing HSC survey footprint, while the red circle
shows a circle of the same area with 150 kpc ‘effective’ radius. Blue denotes pointings
observed in g-band, green in r-band, and red in i-band. The two deep pointings
are labeled. The positions of Dw1 and Dw2 are shown as yellow stars. Bottom
panel: Deep r-band image of Dw1, accompanied by a CMD of detected stars in the
dwarf. Red points represent RGB stars and blue points represent candidate core
Helium-burning stars. The dashed line and gray region show the best-fit TRGB with
uncertainty, while the green curve is the best-fit isochrone at that distance. Top panel:
Imaging and CMD for Dw2, following the same schema as for Dw1. Left panel: Deep
image of M94, taken from Trujillo et al. (2009).
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Figure 3.2: Results of our artificial satellite tests. Top left: Size–luminosity relation
for all satellites of the Local Group in McConnachie (2012). Lines of constant SB are
shown at 24 (blue), 26 (orange), 28 (green), 30 (red) mag arcsec−2. The red patch
denotes the approximate region probed by our artificial satellite tests. Bottom left:
Recovery completeness map for injected artificial satellites in size–luminosity space.
The red circles are LG satellites. The cyan stars represent Dw1 and Dw2. Right
panel : Completeness as a function of SB for artificial satellites. The red line shows
our 85% detection completeness for LG satellites in the range −9.1 > MV > −10.3.
Right: Selected examples of detected artificial dwarfs in three different luminosity/SB
regimes.
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Figure 3.3: Left: The SMHM relation for DM halos in EAGLE using ‘standard’ halo
occupation. The dashed red curve is taken from Behroozi et al. (2013). A standard
0.2 dex log-normal scatter is assumed for Mh,peak > 5 ×109M�. Below this mass,
increased mass-dependent scatter and a steeper slope are adopted following Munshi
et al. (2017). Gray points denote galaxies which are likely unobservable in our survey
of M94. Right: A radically altered SMHM relation, reflecting the stochastic halo
occupation implied by M94’s sparse satellite population. Increased, mass-dependent
scatter is adopted for all halos with Mh,peak < 1011M�. A significantly steeper slope
is also assumed for halos with Mh,peak < 3×1010M�, along with a fixed 10% rate of
galaxy failure for Mh,peak < 1010M�.
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Figure 3.4: Satellite stellar mass functions and statistics for M94 and other nearby
galaxies and EAGLE halos, assuming two halo occupation models. Left: Satellite
mass functions for nearby galaxies: M94 (orange), the MW (blue), M31 (red), M81
(green), and M101 (purple). Also shown are the median (black line) and 50% (dark
gray), 90% (gray), and 99% (light gray) confidence intervals for simulated satellite
mass functions for MW-mass galaxies in EAGLE (completeness-corrected for M∗ <
106 M�), assuming the ‘standard’ halo occupation described in Figure 3.3. ‘Standard’
halo occupation produces M94-like systems < 1% of the time. Top panel : Normalized
histogram of the most massive satellite formed around each central EAGLE. Known
galaxies are shown by vertical lines. Right panel : Normalized histogram of the total
number of M? > 4 ×105M� satellites for each central in EAGLE. Known galaxies are
shown by horizontal lines. Right: Same as the left panel, but assuming stochastic
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of the time.
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CHAPTER IV

The Saga of M81: Global View of a Massive

Stellar Halo in Formation

4.1 Abstract

Recent work has shown that Milky Way-mass galaxies display an incredible range

of stellar halo properties. Yet, the origin of this diversity is unclear. The nearby

galaxy M81 — currently interacting with M82 and NGC 3077 — sheds unique light

on this problem. We present a Subaru Hyper Suprime-Cam survey of the resolved

stellar populations in M81’s halo. Using a unique three-filter strategy, and numer-

ous HST calibration fields, we reveal M81’s halo in never-before-seen detail. We

resolve the halo to unprecedented V -band equivalent surface brightnesses of >34 mag

arcsec−2, and produce the first-ever global stellar mass density map for a Milky Way-

mass stellar halo outside of the Local Group (LG). Using the minor axis, we confirm

the previous assessment of M81 as one of the lowest mass and metal-poorest stellar

halos known (M? ∼ 109M�, [Fe/H] ∼ −1.2) — indicating a relatively quiet prior

accretion history. Yet, in our global stellar mass census we find that tidally unbound

material from M82 and NGC 3077 provides a substantial infusion of metal-rich mate-

rial (M? ' 6×108 M�, [Fe/H] ' −0.9). We further show that, following the accretion

of its massive satellite M82 (and the LMC-like NGC 3077), M81 will host one of the
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most massive and metal-rich stellar halos in the nearby universe. Thus, the saga of

M81: following a relatively passive history, M81’s merger with M82 will completely

transform its halo from a low-mass, anemic halo rivaling the MW, to a metal-rich be-

hemoth rivaled only by systems such as M31. This dramatic transformation indicates

that the observed diversity in stellar halo properties is primarily driven by diversity

in the largest mergers these galaxies have experienced.

4.2 Introduction

In the Λ–Cold Dark Matter (ΛCDM) paradigm, galaxies assemble hierarchically,

experiencing frequent mergers with other galaxies (e.g., White and Rees , 1978; Bullock

et al., 2001). These events transform the morphological and kinematic structure of

the central galaxy (Toomre and Toomre, 1972), and funnel cold gas into the center

of the gravitational potential, stimulating the formation of new generations of stars

and enriching the existing interstellar reservoirs (Barnes and Hernquist , 1991). As

a result of short (.1 Gyr) dynamical and star formation timescales, the impacts of

such mergers quickly become well-mixed into the main body of the galaxy, making

it incredibly difficult to infer the properties of the progenitor merging system long

afterwards.

Fortunately, mergers also deposit a significant amount of loosely-bound stellar

material which is retained within the DM halo — the integral debris of all such

events comprises the central galaxy’s ‘stellar halo’ (e.g., Spitzer and Shapiro, 1972;

Bullock and Johnston, 2005). Stellar halos act as index fossils of past merger events,

encoding the properties of these events long after their impact has been all-but-erased

from typical observational diagnostics within the galaxy. Taking advantage of their

close proximity, the stellar halos of the Milky Way (MW) and the Andromeda galaxy

(M31) have been studied in exquisite detail, from their stellar populations (e.g., Bell

et al., 2008, 2010; Ibata et al., 2014; Gilbert et al., 2014; Williams et al., 2015), to
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their structure (e.g., Ibata et al., 2001; Carollo et al., 2010; Deason et al., 2011) and

kinematics (e.g., Kafle et al., 2012; Gilbert et al., 2018).

The stellar halos of a number of MW-mass galaxies in the Local Volume (LV)

have also been studied in detail. As stellar halos of MW-mass galaxies are both large

(∼100 kpc) and diffuse (µV > 28 mag arcsec−2), there are several approaches which

have been taken: (1) deep integrated light surveys (e.g., Merritt et al., 2016; Watkins

et al., 2016), (2) deep ‘pencil beam’ Hubble Space Telescope (HST) surveys which

resolve individual stars (e.g., GHOSTS; Radburn-Smith et al., 2011; Monachesi et al.,

2016a; Harmsen et al., 2017), and (3) wide field, ground-based surveys which resolve

individual stars (e.g., M31, Ibata et al. 2014; M81, Okamoto et al. 2015; Cen A,

Crnojević et al. 2016). Each approach has competing strengths and limitations, in-

cluding field-of-view (advantage: integrated light), star–galaxy separation (advantage:

HST ), and sensitivity to global halo properties (advantage: ground-based resolved

stars). Many nearby MW-like galaxies reside in regions of the sky plagued by sig-

nificant galactic cirrus. This cirrus emission can substantially limit the sensitivity

of integrated light to even bulk halo properties (e.g., Watkins et al., 2016; Harmsen

et al., 2017). In these cases, resolved stellar populations are the optimal approach.

These efforts have revealed that, among the ∼10 best-measured stellar halos of

nearby MW-mass galaxies, there exists a spread of nearly two orders of magnitude

in stellar halo mass, and more than 1 dex in stellar halo metallicity (e.g., Monachesi

et al., 2016a; Harmsen et al., 2017; Bell et al., 2017, and references therein). Surpris-

ingly, the MW and M31 sit on opposite ends of this distribution — the MW being

the least massive and metal-poorest (e.g., Bell et al., 2008), while M31 is the most

massive and metal-rich (e.g., Ibata et al., 2014) — highlighting the enormous diversity

in the accretion histories of MW-mass galaxies.

Hints of this diversity in stellar halo properties have begun to appear in simulations

(e.g., Monachesi et al., 2016b; D’Souza and Bell , 2018a; Monachesi et al., 2019),
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with indications that much of this diversity can be explain by the slope and scatter

in the galaxy stellar mass–halo mass relation below L∗. Yet, the process of stellar

halo assembly, and the associated mergers’ impacts on the evolution of the central

galaxies, is unclear. The question remains: how are these halos built?

• It is now becoming clear from models that the most massive merger a galaxy

experiences may dominate the observed properties of its stellar halo (e.g., D’Souza

and Bell , 2018a,b; Fattahi et al., 2019; Lancaster et al., 2019). Yet, what other

important mergers did the galaxies experience before the largest event?

• Do large stellar halos require a higher number of substantial mergers over a galaxy’s

life, as seen in many simulations (e.g., Johnston et al. 2008; Monachesi et al. 2019),

and interpreted from observations of galaxies such as M31 (e.g., Ibata et al. 2014;

McConnachie et al. 2018; Mackey et al. 2019)? Or, can halo properties be domi-

nated by a single merger?

The mergers a galaxy experiences throughout its life are likely important drivers of

its evolution. However, if stellar halo properties are, indeed, dominated by a single

dominant merger, then the other substantial mergers a galaxy may have experienced

will be effectively hidden from us for most systems. A powerful approach to address

this observational impairment would be to study in detail the stellar halos of systems

which are currently undergoing significant (i.e. dominant) mergers. This could si-

multaneously enable the inference of, and comparisons between, both their past and

future largest mergers, and how such an event impacts the stellar halo. When com-

bined with current measurements for non-merging systems, such an approach could

shed invaluable light on the build-up of stellar halos and the evolution of MW-mass

systems.

In this paper, we present a Subaru Hyper Suprime-Cam (HSC) survey of the

resolved stellar halo populations of the interacting M81 Group (see Fig. 4.1; similar

to the earlier survey of Okamoto et al. 2015) — the most detailed study of a stellar
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Table 4.1. M81 HSC Observations

Field 1 Field 2

Integration timeb Integration time
Filter # Exposuresa (s) # Exposures (s)

g 14 4200 18 5400
r 11 3300 12 3600
i 11 3300 11 3300

Note. — a Total number of 300 s exposures for a single field. b Total integration time (i.e.
300 s×Nexp).

halo yet obtained outside of the Local Group (LG). The M81 Group is a quintessential

example of a triple-interacting system — hosting vast bridges of tidally stripped H I

gas liberated from the two interacting satellites, M82 and NGC 3077 (Yun et al.,

1994; de Blok et al., 2018) — and is the nearest ongoing significant merger (3.6 Mpc;

Radburn-Smith et al. 2011). Using a three-filter, equal-depth observing strategy,

as well as numerous overlapping HST calibration fields, we combine the relative

advantages of ‘pencil beam’ and ground-based surveys, revealing M81’s stellar halo

in never-before-seen detail. We use this new quantitative insight to show that, in

a single merger event, M81 will span nearly the entire stellar halo mass–metallicity

relation: transitioning from a low-mass, metal-poor halo, to one of the most massive,

metal-rich halos known — rivaled only by the halos of galaxies such as M31.

4.3 Observations

These observations were taken with the Subaru HSC, through the Gemini–Subaru

exchange program (PI: Bell, 2015A-0281). Imaging was undertaken in the ‘classical’

observing mode over the nights of March 26–27, 2015. The survey consists of two
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pointings (each ∼1.◦5 FOV), in each of three (g, r, i) filters. Pointings were primar-

ily chosen to fully cover the outer regions of all three interacting galaxies — M81,

M82, and NGC 3077. Integration times for each field+filter combination are given

in Table 4.1. Differences in observing time between the two fields in the same filter

reflect adjustments made in response to changing conditions (e.g., sky transparency,

background, and seeing).

The data were reduced with the HSC optical imaging pipeline (Bosch et al.,

2018). The pipeline performs photometric and astrometric calibration using the Pan-

STARRS1 catalog (Magnier et al., 2013), but reports the final magnitudes in the

HSC natural system, which we then finally correct to the SDSS filter system. The

version of the pipeline adopted here performs background subtraction with an ag-

gressive 32-pixel mesh, optimizing point-source detection and removing most diffuse

light. Sources are detected in all three-bands, though i-band is prioritized to deter-

mine reference positions for forced photometry. Forced photometry is then performed

on sources in the gri co-added image stack.

All magnitudes were corrected for galactic extinction following Schlafly and Finkbeiner

(2011a). We find that, broadly, the M81 Group has relatively consistent E(B–V)' 0.1.

However, the innermost regions of M82 suffer ‘contamination’ from dust emission,

causing artificially higher estimated extinction. Because of this, we limit E(B–V) to

a maximum of 0.1 in the region of M82. Image depth was nearly uniform across

the two fields, yielding extinction-corrected point source detection limits of g= 27,

r= 26.5, and i= 26.2, measured at ∼5σ. See Bosch et al. (2018) for an in-depth

discussion of the photometric uncertainties output by the HSC pipeline. Seeing was

relatively stable, resulting in consistent point-sources sizes of 0.′′7–0.′′8 down to the

detection limits.
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4.4 Star–Galaxy Separation & RGB Selection

For galaxies such as M81, which are well beyond the Local Group (DM81' 3.6 Mpc;

Radburn-Smith et al. 2011), the bulk of the resolvable stellar populations (i.e. the

stellar main sequence) is too faint to observe. In M81, for example, the main-sequence

turn-off of the average halo population (e.g., Age∼ 9 Gyr, [M/H]∼−1.2; Durrell et al.

2010) occurs around i∼ 31. Characterization of the stellar halo populations therefore

requires a more luminous sub-population to trace the underlying stellar population.

Red giant branch (RGB) stars are numerous, luminous, and are well-tied to the

underlying stellar population, making them excellent tracers. We detect RGB stars

to two magnitudes below the tip (the ‘TRGB’).

At the depths achieved by this survey (i.e. g∼27, r∼26.5, g∼26.2), the majority

of detected sources are background galaxies, rather than stars in M81’s halo. As

an example, an initial morphological cut selecting sources with FWHM6 0.′′75 elim-

inates 80% of sources from our catalog. For shallower ground-based observations

(e.g., the PAndAS survey Ibata et al., 2014), detected background galaxies at the

relevant magnitudes are typically more morphologically distinct than at deeper lim-

its, and such a cut results in reasonable star–galaxy separation. Likewise, for HST

observations, despite reaching comparable limits to this survey, the majority of even

faint high-redshift galaxies are morphologically distinguishable from stars (see e.g.,

Radburn-Smith et al., 2011).

It is at the interface reached by this survey — deep detection limits, yet ground-

based image quality — where star–galaxy separation becomes truly challenging. In

this regime, many faint background galaxies are as equally point-like as stars, motivat-

ing selection criteria beyond morphological cuts. As they are amalgams of numerous

stellar populations, galaxies exist at virtually every position in the color–magnitude

diagram. Many distant galaxies are located at relatively bluer g−i colors compared

to RGB stars, resulting in a CMD feature located at g−i∼ 0.1. However, select-

56



Table 4.2. RGB Selection Criteria

Type Description Criterion

θx(g)< 0.′′75 θy(g)< 0.′′75
Morphological Size constraints in each filter and along each axis θx(r)< 0.′′75 θy(r)< 0.′′75

θx(i)< 0.′′75 θy(i)< 0.′′75

Color–Color Proximity to stellar locus in g−r color |(g−r)− (g−r)SL|<σg−r + 0.2

(g−i, i) =
Color–Magnitude Vertices of the g−i vs. i RGB selection box (0.75,26.0), (1.55,26.0), (2.8,24.5),

(2.25,24.2), (1.4, 24.2), (1.0,25.0)

Note. — Morphological: Size is FWHM along each axis. Color–Color: (g−r)SL is the g−r color of the stellar locus
at a given r−i. σg−r is the measured source uncertainty in g−r.

ing RGB stars by their position in the CMD does not eliminate contamination from

background galaxies.

Fortunately, stars inhabit a well-defined ‘stellar locus’ (SL) in broadband (e.g.,

g−r/r−i) color–color space (e.g., Ivezić et al., 2007; High et al., 2009; Davenport

et al., 2014). Our addition of the r filter allows us to leverage this distinct color–

color information to distill our RGB sample by an additional 30%. ‘Stars’ are clas-

sified as sources <0.′′75 in size (along both axes) and with g−r distance from the SL

< σg−r + 0.2 mag at a measured r−i color, where σg−r is the g−r photometric color

uncertainty and 0.2 mag is the adopted systematic width of the SL (from High et al.

2009; see also Smercina et al. 2017). Figure 4.2 demonstrates this selection process,

showing the CMD and color–color diagrams of all sources, as well as the final, distilled

CMD following our selection algorithm. Though the RGB is easily distinguishable

using the SL, the unresolved background galaxy locus at blue colors remains. The

locations of each are marked. Finally, we show the CMD of ‘contaminant’ sources

thrown out by our selection. While very similar to the full CMD, the RGB is sig-

nificantly weaker, especially at bright magnitudes. This highlights the success of our

selection process, but also indicates the likely continued presence of faint RGB stars

in our ‘contaminant’ sample, which did not meet our stringent selection criteria. This
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choice reflects our HST calibration technique, described in § 4.5, which prioritizes

the purity of the RGB sample, rather than overall completeness. Table 4.2 gives the

parameters for our selection process. The resulting culled sample of 45,619 RGB stars

is used throughout the rest of the paper.

4.5 HST Calibration

4.5.1 Density Calibration

Though our sample of RGB stars is highly pure, due in large part to the addition

of the r-band filter and excellent ground-based image quality, we face a number of

competing issues which work to inhibit quantitative inferences from the observed stel-

lar populations — mainly: (1) remaining contamination (from background galaxies),

(2) crowding, and (3) incompleteness. We attempt to simultaneously correct for all

three of these issues by using existing Hubble Space Telescope (HST) observations

from the GHOSTS survey, similar to the strategy adopted by Bailin et al. (2011)

for NGC 253. Within our HSC footprint, there are 13 ACS and WFC3 fields with

high-quality stellar catalogs from GHOSTS (Radburn-Smith et al., 2011; Monachesi

et al., 2013, 2016a). Furthermore, Harmsen et al. (2017) calibrate GHOSTS RGB

counts, detected in the F606W/F814W filters, to V -band surface brightness (µV ),

taking into account survey completeness with artificial star tests.

In order to simultaneously account for crowding and incompleteness, we cali-

brate our Subaru RGB counts against those obtained using HST, within each of the

GHOSTS field regions. Figure 4.3 shows a greyscale density map of RGB stars in

M81’s halo with the positions of existing GHOSTS HST fields overlaid. Additionally,

we show the sub-linear power-law relationship between RGB surface density measured

with HST and Subaru,

log10 ΣSubaru
RGB = 0.68 log10 ΣGHOSTS

RGB − 0.055, (4.1)
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which arises primarily from crowding at high densities and photometric incomplete-

ness at low densities. The conversion from density to µV in mag arcsec−2, assuming

a 10 Gyr, [M/H] =−1.2 isochrone, is then

µV = −2.5 log10(ΣGHOSTS
RGB × 2.09×10−10), (4.2)

where ΣGHOSTS is in units of arcsec−2 (Harmsen et al., 2017).

The relationship is quite tight, suggesting that all three issues (contamination,

crowding, and incompleteness) are relatively uniform across the footprint. Conducting

10,000 bootstrap fits to the data gives a 68% confidence interval which yields only a

0.1 dex uncertainty at the lowest and highest densities, respectively. This method thus

allows us to robustly predict the RGB source density one would measure with HST,

across our entire HSC footprint — allowing derivation of quantitative halo properties

such as inferred surface brightness and stellar mass (see § 4.6.1).

4.5.2 Color Calibration

Perhaps the more nuanced measurement of the observed stellar populations is

that of color, and in turn estimates of abundance. Our survey is optimally geared to

efficiently detecting RGB stars at colors of g−i= 1–1.5. For M81, this corresponds

to limiting g-band magnitudes of ∼27. However, the most metal-rich RGB stars,

i.e. those with [M/H]�−0.5, will have g-band magnitudes of 28–29 — substantially

fainter than the depths achieved by this survey. Therefore, unless g-band observations

are substantially deeper than i-band, any metal-rich populations that might exist will

be too faint to observe in this survey, and all similarly-designed ground-based surveys.

However, the GHOSTS data for M81 reaches to substantially redder colors in the 13

overlapping fields used in the RGB density calibration (§ 4.5.1). We attempt to use

the GHOSTS data to correct for this effect.
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Monachesi et al. (2016a) measured color profiles along the major and minor axes of

the GHOSTS sample, including M81. To measure more robust colors, which also are

intrinsically better-tied to population changes due to metallicity, they adopt a revised

color metric, Q. As the isochrone model curve for a metal-poor stellar population is

nearly a straight line for the upper portion of the RGB, the Q-color corresponds to a

CMD which has been rotated around a point 0.5 magnitudes below the TRGB, such

that the RGB is nearly vertical. We adopt the Q metric for this paper as well, for all

of our color-based analysis. As we are operating in the g−i filters, we define a new

QCol corresponding to a rotation angle of −22°.

For direct comparison to our Subaru observations, we convert the GHOSTS CMDs,

in each of the 13 fields, from F606W−F814W vs. F814W to g−i vs. i, using a

[M/H] =−1.2, 10 Gyr old isochrone model (following Monachesi et al., 2016a; Harm-

sen et al., 2017). A stacked CMD of the 13 fields is shown in Figure 4.4 (top left),

as well as a comparison CMD of Subaru stellar candidate sources (top right). The

resulting QCol distributions (bottom left), show a distinct red cut-off in the Subaru

sources, relative to GHOSTS. This cut-off results in an offset in the median QCol,

between Subaru and GHOSTS, of 0.2 mag bluewards. To better understand this off-

set, we plot the predicted F606W−F814W vs. g−i color–color curves for a grid of

10 Gyr PARSEC isochrones (Bressan et al., 2012; Chen et al., 2015), ranging from

[M/H] =−1.5 to 0 (Figure 4.4, bottom right). The median F606W−F814W color in

each GHOSTS field (Monachesi et al., 2016a) is shown, against the corresponding

QCol-based median g−i color measured in Subaru. Four of the fields used for density

calibration are very stochastic in their measured colors, as only one or two RGB stars

are detected with Subaru. We neglect these fields for our color analysis. The rest of

the Subaru/GHOSTS points are well-fit by curves of the same shape as the models,

but offset by the same 0.2 mag as seen in the QCol distributions. This consistent

presence of this 0.2 mag ‘blue-bias’ indicates that we can correct our Subaru colors to
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a GHOSTS-equivalent colors, which include the hidden red populations.

We caution that without similar extensive overlap with high-quality HST -derived

stellar catalogs, it would be impossible to estimate the contribution from higher-

metallicity stellar populations and, thus, this ‘blue-bias’ is unable to be reliably cor-

rected for. This effect has been, and will continue to be, an issue for all similarly-

designed ground-based stellar population surveys at distances �1 Mpc.

4.6 Results

In this section, we first present quantitative measurements along M81’s minor axis,

including average surface brightness (SB) and g−i color profiles (given in Table 4.3

of the appendix). We then present our results for the global stellar halo, including

a map of resolved RGB stars, as well as a census of stellar mass in the M81 Group,

including the contribution of tidal debris to the stellar halo.

4.6.1 The Minor Axis: Estimating M81’s Past Accretion History

The minor axes of galaxy halos are predicted to be relatively free of contamination

by in situ stars (generally defined as stars which were formed in the central galac-

tic potential, rather than accreted; e.g., Pillepich et al. 2015 and references therein)

beyond 10 kpc (Monachesi et al., 2016b). As M81 is a highly-inclined galaxy (incli-

nation = 62°; Karachentsev et al. 2013), its projected minor axis should be relatively

free of such in situ stellar populations, allowing minor axis measurements to directly

trace the accreted stellar populations. As its current interaction appears to still be

in its early stages, M81’s minor axis is also relatively free of ‘contamination’ from the

debris of M82 and NGC 3077 (e.g., Okamoto et al., 2015, Fig. 4.3). We discuss the

properties and impact of accounting for this debris in § 4.6.2. Thus, M81 is in a unique

stage, where despite its ongoing interaction, its minor axis provides a reliable window

onto its past (&1 Gyr ago) accretion history. Figure 4.5 shows the measured average
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SB and g−i color profiles along M81’s minor axis. Their derivations are described in

§ 4.6.1.1 and § 4.6.1.2, respectively.

4.6.1.1 Surface Brightness Profile

We define the minor axis according to the region shown in Figure 4.3 (left panel) in

red. Leveraging our large survey footprint, we define a much wider minor axis region

than is covered by the GHOSTS survey, allowing for more robust averaging and

inclusion of any potential substructure absent in the sparse GHOSTS measurements.

We divide the minor axis into projected radial bins, 2 kpc wide from 10–40 kpc,

and wider 5 kpc bins outside 40 kpc, to account for the lower number of sources.

In each bin, we evaluate the density of RGB-like sources in ∼1 arcmin× 1 arcmin

square bins. We then take the mean density across all density bins for each radial

bin. Visually inspecting the CMDs in each bin, we find that at radii >60 kpc along

the minor axis, the RGB was indistinguishable from a ∼uniform background. We

thus consider the halo beyond 60 kpc along the minor axis to be undetected. The

mean density in each bin is then converted to HST -equivalent RGB counts using the

method described in § 4.5. Finally, the density was converted to surface brightness

using Equation 4.2 (assuming a 10 Gyr, [M/H] =−1.2 isochrone model).

Uncertainties on the density measurements were carefully accounted for from three

distinct sources. First, we assume errors on the average density in each bin by tak-

ing the standard deviation in density across all pixels, divided by the square root of

the number of pixels. Second, we account for the uncertainty in the Subaru–HST

conversion, denoted by the red 68% confidence region in Figure 4.3. Last, we es-

timate the systematic uncertainty due to changes in isochrone model parameters,

such as age, metallicity, and IMF assumption. To account for this uncertainty, we

estimate the change in integrated brightness assuming: age — 10±2 Gyr, metallicity

— −1.2±0.2 dex, and IMF — Chabrier (2001) vs. (Kroupa, 2001). Of these ef-
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fects, age accounts for a 15% uncertainty, IMF 27%, and metallicity 3%. Combined,

these yield a ∼36% systematic error due to model uncertainty, corresponding to a of

0.5 mag arcsec−2 uncertainty in SB.

Figure 4.5 shows the minor axis SB profile for M81. Our measurements are shown

in blue, with the GHOSTS points shown in gray for comparison. Our measurements

extend∼30% farther than GHOSTS and reach remarkable depths of µV > 34 mag arcsec−2

at 60 kpc. This is among the deepest SB profiles ever measured (e.g., compare to:

µV ∼ 32 mag arcsec−2, PISCeS Survey, Crnojević et al. 2016; µV ∼ 30 mag arcsec−2,

Dragonfly Survey, Merritt et al. 2016).

Fitting a power-law of the form Σ∝ rα to the density profile yields a slope of

α=−3.54, in good agreement with the results of Harmsen et al. (2017), despite cov-

ering a much wider area along the minor axis. Following (Harmsen et al., 2017),

we integrate the profile from 10–40 kpc, using elliptical annuli with the same as-

sumed projected axis ratio of 0.61, obtaining an accreted stellar mass from 10–40 kpc

of M?,10−40 = 3.73×108M�. Extrapolating to total accreted mass using the Harm-

sen et al. (2017) 10–40-to-total ratio of 0.32, we estimate a total accreted mass of

M?,Acc = 1.16×109M� — within 2% of the GHOSTS estimate.

Finally, we compare our resolved star-based minor axis SB profile to integrated

light measurements, which excel in the bright innermost parts of the galaxy, where

resolved star measurements suffer from strong crowding. Figure 4.6 combines our

measured profile with a near-infrared version of M81’s minor axis SB profile, following

Harmsen et al. (2017). In this case, we have chosen the WISE W1 (3.4 µm) profile

measured as part of the WISE Enhanced Resolution Galaxy Atlas (Jarrett et al.

2012; Jarrett et al. 2013; T.H. Jarrett, private communication; Jarrett et al. 2019).

We have adjusted the elliptically-averaged profile to a minor axis-only version using

the measured axis ratio for each elliptical annulus. Then, using the same 10 Gyr,

[Fe/H] =−1.2 isochrone model which was used to convert our RGB counts to µV , we
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instead convert these counts to W1. The WISE profile agrees well with our resolved

star-based profile, with the the different methods converging nicely at 10 kpc.

4.6.1.2 Color Profile

We calculate the average minor axis g−i color profile using the same minor axis

region, radial bins, and ∼arcmin2 pixels as used for the SB profile (§ 4.6.1.1). For

detected sources in each bin, we convert the measured g−i color to QCol by rotating

the CMD−22° around a point (1.62,24.8) 0.5 mag below the TRGB (see § 4.5.2; Figure

4.4). To estimate the average color, we take the median QCol in each bin and then

rotate it back to g−i. Finally, we add a 0.2 mag color-correction, following § 4.5.2.

We accounted for uncertainties on our average color measurements from three

sources. As described above for the SB profile, we first calculate the standard Poisson

uncertainties (from the square root of the number of stars in each bin). Second,

we account for uncertainties associated with our HST color-correction by drawing

10,000 boostrap samples from both the stacked Subaru and stacked GHOSTS QCol

distributions (see Fig. 4.4), and computing the standard deviation of the difference

in the median between the two — resulting in a 0.013 mag uncertainty. The final

considered source of uncertainty stems from the intrinsic crowding which afflicts our

ground-based data at high densities. Crowding preferentially affects the detection of

fainter stars. Because of the increasing RGB g−i color towards brighter RGB stars,

as the data become more crowded (i.e. at smaller radii relative to M81, as evident

by its steep density profile), the average detected RGB star will also be redder. In

an attempt to account for this, we construct distributions of i-band magnitude for

stars in each radial bin. We then measure the median magnitude and assess whether

this average value shifts with radius. Though not a large effect, we do find that at

radii & 25 kpc the median magnitude is ∼constant (at i' 25), while getting brighter

towards smaller radii — culminating in a maximum difference of 0.25 mag at 10 kpc.
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To fold this effect into the uncertainties, we use a range of PARSEC isochrone models

(Bressan et al., 2012, and references therein), Age = 10 Gyr and [Fe/H] =−1 to −2,

to calculate the change in g−i color, given the measured change in i at each radius.

Finding good agreement between the models, we then add the average color difference

in quadrature with the Poisson and background uncertainties.

Figure 4.7 shows the minor axis color profile for M81. Our measurements are again

shown in blue, and the GHOSTS points again in gray for comparison (Monachesi

et al., 2016a). Similarly to the SB profile, our Subaru profile agrees exceptionally well

with the GHOSTS profile, though measured over a larger area. As discussed in § 4.5.2,

this agreement is entirely contingent on our accounting for the loss of the reddest, most

metal-rich RGB stars seen in GHOSTS. We recover the GHOSTS measurement of a

∼flat profile at R& 25 kpc, g−i∼ 1.7. However, we also observe a distinct negative

color gradient for R. 25 kpc, which cannot be explained by the effects of crowding

(which is incorporated into the error bars). This gradient smoothly connects the flat

region of the profile to a single inner GHOSTS field (10 kpc), observed by Monachesi

et al. (2016a), which is quite red. At first a seemingly ‘anomalous’ point in the profile,

when combined with our Subaru observations, this inner field measurement appears

to confirm that M81 possesses a steep minor axis color gradient within 25 kpc.

To estimate how this translates to metallicity, we use the model HST –SDSS color–

color tracks (§ 4.5.2) to convert our average g−i colors to metallicity, using the cali-

bration of Streich et al. (2014). Though this conversion is somewhat uncertain, it is

heartening that the outer portion (i.e. >25 kpc) of our halo profile matches the Dur-

rell et al. (2010) estimate of [M/H] =−1.2, which used deep HST data reaching the

‘Red Clump’, almost exactly. With this metallicity calibration, we estimate that the

∼0.3 mag change in color from 10–25 kpc corresponds to a ∼0.6 dex change in [M/H],

from ∼−1.2 to ∼−0.6. This yields a metallicity gradient of slope ∼−0.04 dex kpc−1

inside 25 kpc — 4× steeper than the global metallicity profile of M31, and comparable
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to M31’s inner 25 kpc (Gilbert et al., 2014).

While this is the first observed case of such a distinct break in the color/metallicity

profile of a MW-mass galaxy, galaxies with similar metallicity profiles to M81 — i.e.

displaying negative initial gradients, which flatten at large radii — have been observed

in simulations (e.g., Monachesi et al., 2019). However, it is very rare to find even a

simulated galaxy with such a sharp transition at < 30 kpc. We discuss two possible

origins of this steep color profile in § 4.7.

4.6.2 The Global Stellar Halo of M81

While M81’s minor axis is a window onto its past accretion history, the global

halo properties provide a window onto the current interaction. We first present the

globally resolved populations in M81’s halo and conduct a census of stellar mass

(§ 4.6.2.1), followed by an accounting of the tidal debris around M82 and NGC 3077,

and how it impacts M81’s current halo properties (§ 4.6.2.2).

4.6.2.1 Stellar Populations and Stellar Mass

In Figure 4.8 we present a global map of resolved RGB stars in M81’s halo. Each

star has been color-coded by its best-fit photometric metallicity, rather than g−i

color, as metallicity is the more intuitive (while uncertain) quantity, and is more di-

rectly comparable to other similar datasets. For this result, we estimate metallicity

for each individual star, using a grid of PARSEC isochrones, Age = 10 Gyr, ranging

from [M/H] =−2 to 0 with steps of ∆[M/H] = 0.05 dex. The distance in g−i color,

at the given i magnitude, is evaluated for each star, for each isochrone. The best-fit

metallicity is then defined as the model which minimizes the data−model g−i color

residual. We then add a constant 0.4 dex to the metallicity of each star, reflecting

the change in metallicity when adjusting for the 0.2 mag blue color-bias discussed

in § 4.5.2 & 4.6.1.2. We display [M/H], rather than [Fe/H], so as to remain agnostic
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about [α/Fe]. Accounting for photometric uncertainties alone (not systematic uncer-

tainties associated with different stellar evolution models), the typical [Fe/H] error is

6 0.2 dex.

The ongoing interaction between M81, M82, and NGC 3077 is immediately visible

in the resolved star map. NGC 3077 outskirts display an ‘S’ shape, typical in tidally

disrupting systems, while M82’s debris is more compact. The tidal debris around

both satellites is quite metal-rich. The rest of the halo, however, is quite metal-poor,

comparable to M81’s minor axis. Other than the interaction debris, five previously-

known satellite galaxies are visible (IKN: Karachentsev et al. 2006; BK5N: Caldwell

et al. 1998; KDG 61: Karachentseva and Karachentsev 1998; d0955+70: Chiboucas

et al. 2009, 2013; d1005+68: Smercina et al. 2017), though there are no obvious

substructures.

Figure 4.9 turns our map of resolved RGB stars into a map stellar mass density

in M81’s halo. Using the method described in § 4.5, we convert our RGB map to

HST -calibrated counts. Again using a fiducial Age = 12 Gyr, [Fe/H]−1.2 isochrone

(following Harmsen et al. 2017), we convert RGB density to a corresponding stellar

mass density, Σ? in M� kpc−2, computed within ∼kpc× kpc pixels. We showed in

Figure 4.6 that this method of SB/stellar mass estimation agrees well with ground-

based integrated light measurements. The crowded centers of M81, M82, and NGC

3077 (see Figure 4.8) have been filled in with publicly available Ks-band images

from the 2MASS Large Galaxy Atlas (Jarrett et al., 2003). We have clipped Σ? to

>3×103M� kpc−2 — roughly equivalent to one RGB star kpc−2. Combining our star

count measurements with traditional near-infrared imaging, this map of stellar mass

spans >4 orders of magnitude — from the dense stellar bulges at the centers of the

primary galaxies, to the faintest stellar outskirts. This is among the most sensitive

maps of stellar mass-density ever constructed for a MW-mass galaxy.
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4.6.2.2 Tidal Debris Around M82 and NGC 3077

Figure 4.8 & 4.9 clearly indicate that there is a significant amount of metal-

rich stellar material around M82 and NGC 3077. While M81’s minor axis gives the

properties of its past accretion history (i.e. MAcc =1.16×109M�; see § 4.6.1.1), any

of the material around the two satellites which is unbound should be included in the

current halo properties. To estimate how much of the material is unbound from M82

and NGC 3077, we estimate their respective tidal radii, using the basic approximation

(von Hoerner , 1957; King , 1962),

rtid ' R

(
M?,sat

2Menc(R)

)1/3

, (4.3)

where rtid is the tidal radius, R is the separation between the central and the satellite

adjusted for projection (i.e. R =
√

3Rproj), M?,sat is the stellar mass of the satellite,

and Menc(R) is the total mass of the central enclosed within R. To estimate Menc(R),

we adopt the familiar approximation for a flat rotation curve,

Menc(R) =
v2

c R

G
, (4.4)

where we have taken vc = 230 km s−1 from M81’s H I rotation curve at 10 kpc (de Blok

et al., 2008).

The projected separations from M81 of M82 and NGC 3077 are 39 kpc and 48 kpc,

respectively, and their stellar masses are 2.8×1010M� and 2.3×109M� (S4G; Sheth

et al. 2010, Querejeta et al. 2015). Taking vc = 230 km s−1, this yields projected tidal

radii of 10 kpc for M82 and 8.2 kpc for NGC 3077. Circles with radii equal to these

tidal radii are shown in white on Figure 4.9. We then consider all material outside of

these circles to be unbound. This amounts to ∼6×108M� — a substantial fraction

of M81’s integral past accreted mass (∼109M�). Taking a mass-weighted average
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metallicity of this material yields [Fe/H]'−0.9 — significantly more metal-rich than

the rest of the halo.

Figure 4.10 combines Figures 4.8 and 4.9. The mass-density map is divided into

three average metallicity channels: [Fe/H]∼−0.5 (red), [Fe/H]∼−1 (green), and

[Fe/H]∼−1.5 (blue). Each channel is then intensity-weighted and combined into a

three-channel color image. This figure highlights the visual impact that the massive

and metal-rich debris around M82 and NGC 3077 has on the inferred mass and

metallicity of M81’s halo.

4.7 The Saga of M81

4.7.1 A Quiet History

As discussed in § 4.6.1.1, the sum total accreted stellar mass from M81’s past ac-

cretions is M?,Acc = 1.16×109M�, and is quite metal-poor ([Fe/H] ∼ −1.2). If we take

the limit that a single satellite dominates the halo properties, then the relationship

between stellar halo mass and the mass of the most dominant satellite from D’Souza

and Bell (2018a) suggests M81’s largest past merger was at most M?∼ 5×108M� —

the mass of the Small Magellanic Cloud (SMC; McConnachie 2012). Further, though

we cannot reliably constrain the origin of M81’s inner color profile, if it has an accre-

tion origin, the steepness of the slope (∼0.04 dex kpc−1) suggests that the event likely

occurred early in M81’s life (D’Souza and Bell , 2018a). It is interesting to note that

the MW shows tentative evidence for a rising metallicity profile inside 30 kpc as well

(Conroy et al., 2019), though the 3-D measurements, aided by precise distances, are

very different from the 2-D projected measurements presented here.

If, instead, the color gradient is driven by increasing contribution of in situ ma-

terial at small radii (e.g., Zolotov et al., 2009; Font et al., 2011), then the current

stellar halo mass estimate is an upper limit. To estimate the range of possible in
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situ fractions, we assume the color of accreted material to be the average color of the

‘flat’ part of the color profile — g−i' 1.7. The average color (using the Q method

described in § 4.5.2) of RGB stars in the center of M81 — using a central HST point-

ing from the GHOSTS survey (Field 01, ∼3 kpc) — is g−i= 2.17, which we adopt as

an upper limit on the ‘fiducial color’ of the in situ populations. Using the accreted

(fAcc) and in situ (fIS = 1−fAcc) fractions as weights to produce the observed average

color profile, we calculate fAcc as a function of radius, and then convolve it with the

observed density profile to estimate the integral change to estimated stellar halo mass.

In the case of an in situ origin for the steep inner color profile, we find a lower limit

on the accreted fraction of fAcc = 0.59 — corresponding to a lower limit on M81’s

total accreted mass of M?,Acc = 6.8×108M�.

The punch line: regardless of the origin of its intriguing steep inner color profile,

M81 has likely experienced a quiet accretion history for the vast majority of its life,

accreting only satellites the size of the SMC or smaller.

4.7.2 The Formation of a Massive Stellar Halo

That quiet history is over, however. M81 (6.3×1010M�; Querejeta et al. 2015)

is currently undergoing a ∼1:2 merger with its massive satellite M82 (2.8×1010M�;

Querejeta et al. 2015) and the ∼LMC-mass NGC 3077 (2.3×109M�; Querejeta et al.

2015). In § 4.6.2.2, we showed that there is a significant amount of metal-rich ma-

terial currently unbound from M82 and NGC 3077 — ∼6×108M�, [Fe/H]'−0.9.

Accounting for this unbound material increases M81’s average halo metallicity and

increases M81’s halo mass by ∼50%. It is clear from their star formation histories

that M82 and NGC 3077 began their interaction with M81 at the same time. More-

over, the star formation history of the group, including bursts of star formation in the

disk of M82 (e.g., Rodŕıguez-Merino et al., 2011; Lim et al., 2013), the center of NGC

3077 (e.g., Notni et al., 2004), the tidal H I field between the three galaxies (e.g., de

70



Mello et al., 2008), and ‘tidal’ dwarf galaxies such as Holmberg IX (e.g., Sabbi et al.,

2008), all suggest that this merger began < 1 Gyr ago. In < 1 Gyr this merger has

already had a substantial impact on the properties of M81’s stellar halo.

Though a robust dynamical model does not exist for the future of the M81 system,

such models have been constructed for the MW’s interaction with the LMC. Cau-

tun et al. (2019) estimate that the LMC will merge with the MW within ∼2.4 Gyr.

Though the orbital properties of M82 and NGC 3077 are unclear, M82 is significantly

more massive than the LMC, and thus will likely merge with M81 within the next

∼2 Gyr. What, then, will be the properties of M81’s stellar halo ∼2 Gyr in the future,

following its accretion of M82 and NGC 3077? The addition to the accreted mass

is simply the combined stellar mass of both satellites — an addition of ∼3×1010M�

(93% comes from M82), which is >20× larger than the total current accreted mass.

Clearly this merger event will dominate the stellar halo mass of M81. The metal-

licity will also be significantly impacted. Assuming M82 and NGC 3077 follow the

galaxy stellar mass–metallicity relation, they possess metallicities of [Fe/H]∼ 0 and

[Fe/H]∼−0.6, respectively (Gallazzi et al., 2005) — much higher than the stellar

halo’s current metallicity of [Fe/H]'−1.2.

In Figure 4.11, we show the evolution of M81’s stellar halo properties in the

context of the observed stellar halo mass–metallicity relation for eight nearby MW-

mass galaxies (e.g., Bell et al., 2017), discussed in § 4.2. Though several versions of

this relation exist in the literature, here we adopt, as metrics, total accreted stellar

mass (M?,Acc; x -axis) and metallicity measured at 30 kpc ([Fe/H]30 kpc; y-axis).

Prior to its current interaction, M81 possessed one of the lowest-mass and metal-

poorest stellar halos in the nearby universe; among the eight examples shown here,

only the MW is comparable in mass and metallicity. The massive tidal debris from

M82 and NGC 3077 augments and enriches its stellar halo, but rapidly. This is

no modest evolution of halo properties, but an initial step precipitating a giant
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leap. In the next several Gyrs, after the merger has completed, the enormous

amount (M?' 3×1010M�) of metal-rich material accreted from M82 and NGC 3077

([Fe/H]∼−0.1; mass-weighted material from both M82 and NGC 3077) will have

completely transformed M81’s stellar halo — the resulting behemoth will have few

peers in the nearby Universe. Among its few rivals will be well-known examples of

massive stellar halos such as Cen A, NGC 3115, and the stellar halo paragon: M31. In

fact, in stellar mass, central density, and starbursting nature, M82 strongly resembles

the proposed progenitor galaxy M32p, which D’Souza and Bell (2018b) hypothesize

merged with M31 ∼2 Gyr ago, resulting in M31’s current massive stellar halo.

This is the first complete view of the evolution of a galaxy’s stellar halo throughout

a merger event. It is clear that such a window on a major merger event has the

potential to help us better understand the formation and evolution of systems with

massive stellar halos, such as M31. Between the measurements along M81’s minor axis

and the analysis of its current merger with M82 and NGC 3077, we have constrained

M81’s three largest merger partners over its lifetime: (1) M82, (2) NGC 3077 —

an LMC-analog, and (3) the ancient ∼SMC-mass primary progenitor of M81’s past

halo. If not for M82, M81’s dominant merger history would closely resemble that of

the MW. M81’s ancient accreted halo is very comparable to the MW’s halo (Figure

4.11), indicating that a single stochastic, M82-like merger is capable of transforming

a MW-like halo into a halo such as M31’s. This is direct and powerful evidence that

the diversity in stellar halo properties is thus driven primarily by the diversity in the

properties of the most dominant mergers.

4.8 Conclusions

We have presented a survey of the stellar halo of M81 with Subaru HSC. Using

abundant existing HST fields, we have calibrated our wide-field, ground-based catalog

of RGB stars to space-based catalogs from the GHOSTS survey, in order to obtain
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one of the most detailed views of a stellar halo outside of the LG. We find the HST

data to be crucial for measuring accurate stellar population properties, and caution

that without similar extensive overlap with space-based stellar catalogs, the effects

of completeness and ‘blue-bias’ in any distant (�1 Mpc), ground-based stellar halo

measurements are unable to be reliably corrected for. We measure:

1. M81’s minor axis SB profile (inferred from resolved star counts) out to 60 kpc,

reaching µV > 34 mag arcsec−2 — among the deepest SB profiles ever measured.

We measure a density slope of −3.54, consistent with the profile measured by

the GHOSTS survey with HST (Harmsen et al., 2017). We also convert our

star count profile to near-infrared SB and compare to WISE W1 measurements

of the inner 10 kpc of M81, finding good agreement. Using this calibrated SB

profile, we estimate a total past accreted stellar mass for M81 of 1.16×109M�

— indicating a largest past accretion of at most the mass of the SMC.

2. M81’s average g−i color profile out to 60 kpc. We measure a flat color profile

(g−i= 1.7, [Fe/H] ∼ −1.2) from 25–60 kpc, as seen by the GHOSTS survey

(Monachesi et al., 2016a). We also observe, for the first time, a steep negative

color gradient (∼0.04 dex kpc−1) at R= 10–25 kpc. Though we are unable to

differentiate an accreted vs. in situ origin for the inner color gradient, M81’s

halo metallicity of [Fe/H]∼−1.2 at 30 kpc is in line with its past accreted mass

of ∼109M�, relative to the stellar halo mass–metallicity relation (see Figure

4.11).

3. Globally resolved stellar halo populations. Our metallicity-coded map of RGB

stars reveals the triple interaction between M81, M82, and NGC 3077, high-

lighting the stark contrast between properties of M81’s halo at large radii and

the metal-rich debris around the interacting satellites.

4. Stellar mass density on ∼1 kpc scales, down to Σ?< 104M� kpc−2. Using this
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sensitive map of stellar mass density, we estimate the amount of tidal debris

which is currently unbound from M82 and NGC 3077 — ∼6×108M�, with an

average metallicity of [Fe/H]∼−0.9. This unbound debris represents a signifi-

cant infusion of metal-rich material to the ‘current’ stellar halo of M81.

Together, these measurements allow us to piece together ‘the saga of M81’. This

MW-analog experienced a quiet history, accreting at most an SMC-mass satellite,

likely sometime early in its life. Its current mergers with M82 and NGC 3077, how-

ever, has already altered M81’s stellar halo properties on a short (< 1 Gyr) timescale,

providing a substantial infusion of unbound metal-rich material. In the next several

Gyrs, its merger with M82 will transform M81’s halo from one of the least massive

and metal-poorest, into one of the most massive and metal-rich halos known, rivaling

(perhaps even exceeding) prototypical examples of massive halos such as that of M31.

Furthermore, M81’s stochastic stellar halo transition, from a low-mass and metal-

poor halo to high-mass and metal-rich, is direct evidence that the diversity in stellar

halo properties at the MW-mass scale translates directly to a diversity in the largest

mergers these galaxies have experienced.
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4.9 Appendix: Minor Axis Profile Table

In Table 4.3 we provide the radial profiles along M81’s minor axis for µV (V -band

SB) and average g−i color, respectively. See Figure 4.5 & 4.7 for plots of each profile.

Table 4.3: Minor Axis SB & Color Profiles

R µV g−i
(kpc) (mag arcsec−2) (mag)

10 28.02± 1.46 1.99−0.13
+0.02

12 28.23± 1.02 1.94−0.09
+0.02

14 28.71± 0.66 1.89−0.09
+0.02

16 29.26± 0.45 1.90−0.09
+0.02

18 29.52± 0.44 1.78−0.04
+0.02

20 30.27± 0.34 1.79−0.05
+0.02

22 30.75± 0.29 1.79−0.02
+0.02

24 31.13± 0.31 1.75−0.02
+0.02

26 31.75± 0.31 1.76−0.02
+0.02

28 31.93± 0.32 1.72−0.02
+0.02

30 32.13± 0.33 1.71−0.02
+0.02

32 32.54± 0.35 1.70−0.02
+0.02

34 32.51± 0.34 1.67−0.02
+0.02

36 32.32± 0.34 1.70−0.02
+0.02

38 32.69± 0.36 1.71−0.02
+0.02

40 32.64± 0.35 1.69−0.02
+0.02

45 33.18± 0.39 1.71−0.02
+0.02

50 33.60± 0.42 1.72−0.02
+0.02

55 34.10± 0.45 1.67−0.03
+0.03

60 34.46± 0.48 1.68−0.02
+0.02

Note. — The radial minor axis average surface brightness and average g−i color profiles as
shown in Figure 4.5 & 4.7. See § 4.6.1.1 and § 4.6.1.2 for discussion of how the measurements and
uncertainties are computed.
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15 kpc

M81

NGC 3077

M82

The M81 Group

Figure 4.1: A deep, wide-field (∼50 kpc× 60 kpc) g-band mosaic of the M81 Group,
taken with Subaru HSC. A logarithmic stretch was used. The three primary interact-
ing group members are labeled (M81, M82, and NGC 3077). The visible dark patches
around the three galaxies, as well as bright stars, represent chip bleeds. The M81
Group is located behind a region of significant galactic cirrus, visible as patches of
scattered light. This widespread cirrus impedes the inference of stellar halo properties
through integrated light alone.
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Figure 4.2: Top left: g−i vs. i CMD of all detected sources in our survey footprint.
Top right: Color–color diagram of all detected sources. The stellar locus is shown
as a red curve. Only sources lying on the stellar locus, within their photometric un-
certainties, are selected. Bottom left: g−i vs. i CMD of all sources thrown out in
our selection process. Bottom right: g−i vs. i CMD of all morphologically (<0.′′75)
and color-selected (<σ+0.2 mag from SL) stars. The locus of unresolved background
galaxies (cyan ellipse) is now easily distinguishable from the RGB selection box (or-
ange). Three stellar isochrone models are shown (age = 12 Gyr), with metallicities of
[Fe/H] = −2, −1.5, and −1.
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Figure 4.3: Left: Grayscale density map of RGB stars in M81’s halo. Existing HST
fields from the GHOSTS survey (e.g., Radburn-Smith et al., 2011; Monachesi et al.,
2013) are overlaid (ACS—blue/WFC3—green). The region defined as M81’s ‘minor
axis’ in this paper is shown in red. Right: Plot showing our calibration of HSC RGB
counts using the GHOSTS survey. The x -axis gives the density of RGB stars within a
given GHOSTS field, corresponding to the Harmsen et al. (2017) selection box, while
the y-axis gives the density of RGB-like sources in the same area from HSC, obtained
using our selection criteria (see 4.4). The best-fit power-law is shown (blue), as well
as the confidence region containing 68% of the points (∼1σ), obtained from 10,000
bootstrap fits (red shaded). Each field is labeled individually. An inset showing the
published GHOSTS field layout on an optical image of the M81 Group is included.
Also inset is a stacked CMD of the 13 GHOSTS fields used for this analysis (taken
from Harmsen et al., 2017), presented in the F606W & F814W filters.
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Figure 4.4: Top left: Stacked g−i CMD of stars (black points) in the 13 GHOSTS
fields used for calibration, converted from F606W−F814W using isochrone models.
Our Subaru RGB selection box (Table 4.2) is overlaid in orange. The solid red
line shows the near-straight path of an adopted ‘fiducial’ isochrone ([M/H]∼−1.2)
through the CMD, with a g−i color of 1.62 (i.e. a line of constant QCol = 1.62) at a
point 0.5 mag below the TRGB (i∼ 24.8). Two additional lines of constant QCol are
shown (red dashed), showing a ±0.5 mag change in QCol. Top right: Same as left,
but for candidate stellar sources observed with Subaru in the 13 fields. Bottom left:
Stacked QCol distributions for detected Subaru RGB candidates (blue) and detected
GHOSTS RGB stars (orange) in the 13 GHOSTS fields. The median QCol for the
Subaru sources is 0.2 mag bluer than the GHOSTS median. When comparing the
CMDs obtained from Subaru and GHOSTS (top), it is clear that this offset results
from the Subaru g−i completeness curve. We fail to detect a sub-dominant, but
substantial, population of red, higher-metallicity stars present in the halo. Bottom
right: PARSEC isochrone (e.g., Bressan et al., 2012) predictions for F606W−F814W
vs. g−i color–color relationship for RGB stars, as a function of metallicity (colored
curves). Overlaid are the median F606W−F814W colors in each of the GHOSTS
fields from (Monachesi et al., 2016a) and corresponding median g−i colors, both ob-
tained using the QCol rotated-CMD metric. Blue points denote ‘halo’ fields (>10 kpc
from M81). Red points denote fields with higher-metallicity populations, which are
closer (< 10 kpc) to M81’s disk. Gray points are fields which are sparse, often with
only one or two stellar candidate sources in Subaru. The halo fields lie on a low-
metallicity (e.g., [M/H] =−1.2) model curve (blue dashed), offset bluewards by a
constant 0.2 magnitudes in g−i. Similarly, the two higher-metallicity fields lie on a
high-metallicity (e.g., [M/H] = 0) model curve (red dashed), offset 0.2 magnitudes in
g−i. Though many of the reddest stars are lacking in our Subaru observations, it
appears that the stellar halo populations are stable enough to correct for this effect
using the GHOSTS data.
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Figure 4.5: M81’s average minor axis SB profile (where SB is reported in V -band
and radii in kpc) calculated from resolved star counts as described in § 4.6.1.1. The
measurements made through this work are shown in blue, while measurements from
the GHOSTS survey (Harmsen et al., 2017) are shown in gray for comparison. Cor-
responding star counts (stars per arcmin2) are given on the right-hand y-axis. The
solid black line is the best-fit density power-law to the data. The best-fit density slope
is reported in the top right, which agrees well with the fit of Harmsen et al. (2017).
We have included a 0.5 mag arcsec−2 systematic model uncertainty in the bottom left
(§ 4.6.1.1). Reaching µ> 34 mag arcsec−2 at 60 kpc, this profile is one of the deepest
ever measured.
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Figure 4.6: Near-infrared SB profile along M81’s minor axis, combining WISE W1
(Jarrett et al., 2019), which probes M81’s interior, with the outer resolved star profile
obtained from this work. Corresponding stellar mass density is shown on the right axis
(see § 4.6.2 for conversion of µW1 to Σ?). Star counts have been converted to W1 using
our adopted fiducial isochrone model (10 Gyr, [Fe/H] =−1.2; see § 4.6.1.1). Black
points show the W1 measurements, while blue points show this work. A smooth,
integrated profile is fit to the total profile and shown in red, for visual effect.

82



10 20 30 40 50 60

R (kpc)

1.6

1.7

1.8

1.9

2.0

2.1

〈g
−
i〉

[M/H] of Deep

Halo Field

GHOSTS
Subaru HSC

-1.6

-1.2

-0.9

-0.7

-0.5

[M
/H

]

Figure 4.7: Average g−i color profile of resolved RGB stars along M81’s minor axis,
as described in § 4.6.1.2. Subaru HSC measurements are again shown in blue, while
GHOSTS measurements (Monachesi et al., 2016a) are shown in gray. Metallicity,
calculated from equivalent F606W−F814 color (Streich et al., 2014), is shown along
the righthand y-axis. Additionally, we show the [M/H] =−1.2 metallicity measure-
ment (dashed line) of M81’s halo estimated from deep HST data (reaching the Red
Clump; Durrell et al. 2010). We reproduce the flat outer profile (R& 25 kpc) observed
by Monachesi et al. (2016a), extending the profile to 60 kpc. We also resolve, for the
first time, a distinct break in the color profile at R. 25 kpc, inside which the profile
rises steeply — ∼0.3 mag in color, ∼ 0.6 dex in metallicity from 10–30 kpc.
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Figure 4.8: Map of resolved RGB stars in the stellar halo of M81. Points have been
color-coded by metallicity, determined from isochrone fitting (§ 4.6.2). A scale bar
giving projected distance from M81 is shown along the top x-axis. The metal-rich
debris from the triple-interaction visually dominates against the surrounding metal-
poor halo, though the minor axis remains clear of this debris.
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Figure 4.9: Stellar mass density map of the M81 Group. The map has been log-
arithmically scaled, with each decade in mass color-coded according to the bar on
the right. Density was calculated for each ∼1 kpc2 pixel, and converted to stellar
mass according to § 4.5 and § 4.6.2.1. The interior regions of M81, M82, and NGC
3077, where the data were too crowded to detect individual stars with Subaru (see
Figure 4.8), were filled in using calibrated Ks images from the 2MASS Large Galaxy
Atlas (Jarrett et al., 2003), which were re-binned to ∼1 kpc physical resolution. The
final map was lightly smoothed with a 0.5 kpc Gaussian kernel. The final map spans
an impressive four orders of magnitude in mass density. White dashed circles show
the estimated tidal radii of M82 and NGC 3077. We count all material outside of
these circles as unbound.
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Figure 4.10: Density image of RGB stars, with intensity mapped to stellar density,
where each ‘channel’ represents stars in three bins of metallicity: [Fe/H]∼−1 (red),
[Fe/H]∼−1 (green), and [Fe/H]∼−1.5 (blue). Each channel was smoothed using
first a tophat filter of size ∼20 kpc (to bring out substructure), and then a Gaussian
filter of width ∼1 kpc. The interiors of M81, M82, and NGC 3077 have been filled
with to-scale images from HST (credit: NASA, ESA, and the Hubble Heritage Team).
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Figure 4.11: The stellar halo mass–metallicity relation. Total accreted mass (M?,Acc)
is plotted against metallicity measured at 30 kpc ([Fe/H]30 kpc). The evolution of M81’s
stellar halo is shown at three points (large stars): (1) its past accretion history (blue),
measured from the minor axis (see § 4.6.1.1 & 4.6.1.2), (2) its ‘current’ halo (green),
accounting for unbound tidal debris around M82 and NGC 3077 (see § 4.6.2.2), and
(3) its estimated properties following the accretion of M82 and NGC 3077 (red; see
§ 4.7.2). For comparison, nearby galaxies (taken from Bell et al. 2017) are shown in
white; the MW and M31 are labeled separately, to highlight their opposite positions
on the relation. The MW’s stellar halo mass and metallicity are taken from Mack-
ereth and Bovy (2020) and Conroy et al. (2019), respectively. We adopt 50% larger
error bars than intially reported for each, to reflect the substantial spread from other
measurements (e.g., Bell et al., 2008; Deason et al., 2019). Metallicity-coded channel
density maps are shown as zoomed insets for both M81 (e.g., see Figure 4.10) and
M31 (PAndAS; Martin et al. 2013) as visual guides of M81’s potential halo evolution.
For points (1) and (2) we adopt 50% uncertainties on total accreted mass and 0.2 dex
uncertainties on metallicity, following Harmsen et al. (2017). For (3), the large error
in metallicity indicates our uncertainty about the final metallicity gradient of the
halo. In this case, the red star assumes the central metallicities for both M82 and
NGC 3077 (mass-weighted), while the error bar shows the impact of assuming a steep
halo metallicity gradient such as observed in M31 (Gilbert et al., 2014). Dominated
by the accreted material from M82, M81’s halo will be transformed from low-mass
and metal-poor, to a massive and metal-rich halo, rivaling that of M31.
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CHAPTER V

A Link Between Satellite Populations and Merger

History

5.1 Introduction

In our current Λ–Cold Dark Matter (ΛCDM) paradigm, galaxies assemble hierar-

chically (e.g., White and Rees , 1978). Through this hierarchical growth, they accrete

extensive populations of lower-mass ‘dwarf’ galaxies, while also experiencing frequent

mergers with galaxies of all masses, some of which are cataclysmic in their impact on

the central galaxy (e.g., Barnes and Hernquist , 1991). Modern cosmological simula-

tions, built on a ΛCDM framework, are now able to reproduce many of the large-scale

properties of galaxies, such as the galaxy luminosity function (e.g., Bell et al., 2003),

galaxy scaling relations (e.g., Kennicutt-Schmidt star formation relation, Kennicutt

1998; Tully-Fisher relation, Tully and Fisher 1977), and the cosmic star formation

rate (SFR; Madau et al. 1998). Yet, the regime of small-scale galaxy formation has

remained a ‘problem-area’ for models, mostly due to both physical and time resolu-

tion limitations, as stellar feedback can operate on both extremely small spatial and

short time scales. Thus, a model-based link between small- and large-scale galaxy

formation has thus far proved elusive.

Of the elements of this hierarchical picture of galaxy formation and evolution,
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dwarf galaxies are among the most important. Difficult to detect observationally, ow-

ing to their intrinsic faintness, dwarf galaxies are both the lowest-mass and most dark

matter-dominated galaxies in the Universe (e.g., see the recent review by Wechsler

and Tinker , 2018). As such, these small galaxies are the observational bedrock of

our understanding of small-scale cosmology, and their properties are critical bench-

marks for our models of galaxy formation (e.g., see the recent review by Bullock and

Boylan-Kolchin, 2017). While they are predicted to also exist in isolation, until re-

cently nearly all of the low-mass dwarf galaxies readily accessible to us are ‘satellites’

of Milky Way (MW)-mass galaxies (e.g., see McConnachie, 2012, for an overview of

the Local Group satellite populations) — existing within an environment which is

dominated by the central galaxy. Galaxies like the MW are not closed boxes — they

are complex ecosystems which frequently experience substantial mergers with other

such systems throughout their lives.

Recent evidence from the Local Group suggests that this may be an important

component in the lives of satellites. Studies of the MW’s satellites using Gaia data

postulate that a number of its satellites may have been brought in during the infall of

the Large Magellanic Cloud system (e.g., Gaia Collaboration et al., 2018). Addition-

ally, deep star formation histories of M31’s satellites now reveal that nearly 50% share

a common ‘shutdown’ time — ∼6 Gyr ago (Weisz et al., 2019). This is approximately

coincident with the first infall of the massive galaxy whose merger with M31 likely

formed M31’s massive stellar halo (D’Souza and Bell , 2018b). It seems as though

the merger histories of the MW and M31 may have helped to shape their satellite

populations.

Meanwhile, recent evidence suggests that the satellite populations of nearby MW-

mass galaxies are significantly more diverse than currently predicted in galaxy forma-

tion simulations (e.g., Smercina et al. 2018, also Chapter III; Bennet et al. 2019), and

that these galaxies’ merger histories are equally diverse (Harmsen et al., 2017; Bell
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et al., 2017; D’Souza and Bell , 2018a; Smercina et al., 2019, also Chapter IV). Thus,

while neither the MW’s satellites nor its merger history are ‘typical’ of galaxies at its

mass scale, it serves as the benchmark for our understanding of both. Understanding

possible relationships between galaxy merger histories and their satellite populations

represents an important new avenue to test theoretical models of galaxy formation.

Addressing this requires an empirical test of whether or not a direct correlation exists

between these two fundamental galactic components. How do mergers impact galactic

satellite populations?

5.2 Background

Addressing the question of how galaxy mergers may impact the evolution of the

satellite populations around MW-mass galaxies requires measurement of two noto-

riously difficult-to-measure properties: (1) complete satellite populations, and (2)

merger history. Efforts to study both of these properties for MW-mass systems have

remained a substantial focus of the field. However, they have been historically kept

in separate ‘intellectual boxes’. In this paper, we have combined these insights to ask

the question: how do mergers impact galactic satellites? In this section we summarize

the current insight regarding the satellites (§ 5.2.1) and merger histories (§ 5.2.2) of

nearby MW-mass galaxies.

5.2.1 The Diverse Satellite Population of MW-mass Galaxies

Understanding the origin of the MW’s satellite population has been a field-wide

effort for the last two decades. Tensions in the number and properties of observed

MW satellites, relative to model predictions — e.g., the ‘Missing Satellites’ and ‘Too

Big to Fail’ problems (Klypin et al., 1999; Moore et al., 1999; Boylan-Kolchin et al.,

2011) — constitute some of the most pressing problems for the ΛCDM paradigm (e.g.,

Bullock and Boylan-Kolchin, 2017). Solutions to these problems — often focusing on
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the impact of baryonic processes such as reionization (e.g., Bullock et al., 2001) and

stellar feedback (e.g., Brooks et al., 2013) — have used the satellite population of the

MW as a benchmark. Identically one system has been used to direct the scope of

some of the most important problems in galaxy formation.

Motivated by this potential ‘house of cards’, the field’s focus has shifted to sur-

veying the satellite populations of nearby MW-analogs (i.e. central galaxies in the

Local Volume with stellar mass M?∼ 3–10×1010M�), to help place the MW in con-

text. The fruits of these efforts? Seven MW-mass ecosystems have now been surveyed

to the depth of the MW’s ‘classical’ satellite population (MV .−9): the MW and

M31 (compiled by McConnachie, 2012), M81 (compiled by Karachentsev and Kudrya,

2014), M101 (Danieli et al., 2017; Bennet et al., 2019), Centaurus A (Crnojević et al.,

2019), M94 (Smercina et al., 2018), and M83 (e.g., Müller et al., 2015b, 2017; Carrillo

et al., 2017).

With this newfound access to a true sample of satellite populations in MW-like

galactic systems has come the realization that these populations are far more diverse

than expected. The sparse satellite population of the ‘lonely giant’ M94 constitutes

a powerful constraint: drawing on standard models of galaxy formation, M94 should

not exist (Smercina et al., 2018). Its overall paucity of satellites, coupled with its

lack of any satellite above 106 in stellar mass challenges all current galaxy formation

simulations. Combined with the discovery of additional sparse satellite populations,

such as M101 and M83, the overall diversity of satellite populations is in tension with

model predictions. Figure 5.1 shows the satellite V -band luminosity functions within

150 kpc projected galactic radius for the seven MW-mass galaxies which have been

studied down to MV .−9.

91



�20�18�16�14�12�10
MV

100

101

N
(<

M
V
)

Cen A (Crnojević+19)
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Figure 5.1: Cumulative V -band satellite luminosity functions, within a projected
150 kpc galactic radius, for the seven MW-mass systems which appear to be complete
to MV .−9 (i.e. ‘classical’ satellites). Adapted and from Smercina et al. (2018)
and updated with recent work. Highlighted particularly well by the sparse satellite
population of the ‘lonely giant’ M94, these seven systems showcase a broad diversity
in the satellite populations of galaxies at the MW-mass scale.
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5.2.2 Inferring a Galaxy’s Most Dominant Merger from its Stellar Halo

Properties

With near-equal vigor to the efforts to study the satellite populations of MW-

analogs, there has been a significant push to extract information about these galaxies’

merger histories. Motivated by insight from galaxy formation models, suggesting

that MW-mass galaxies likely experience diverse merger histories (e.g., Bullock and

Johnston, 2005), such efforts have sought to use the stellar halos of these galaxies as

probes of past merger events. Long studied as ambiguous repositories of extended, and

often metal-poor, stellar populations, comparisons between the observed properties of

MW-analogs’ stellar halos and galaxy formation models suggests that stellar halos are

primarily composed of the disrupted remnants of accreted satellites (e.g., Harmsen

et al., 2017; D’Souza and Bell , 2018a).

Further, models predict that the measurable properties of these accreted stellar

populations are often dominated by the most massive merger the central has experi-

enced (e.g., Deason et al., 2015b; D’Souza and Bell , 2018a; Monachesi et al., 2019).

Recent detailed studies of the halos of M31 (D’Souza and Bell , 2018b) and M81

(Smercina et al., 2019) support this picture. Since the stellar mass present in the

stellar halo is primarily accreted from the largest merger partner, the measured ac-

creted mass is approximately equivalent to the stellar mass of the dominant progenitor

galaxy. Samples of galaxies for which stellar halo properties have been well-measured

now exist (e.g., Merritt et al., 2016; Monachesi et al., 2016a; Harmsen et al., 2017).

The results of these surveys indicate: (1) that the stellar halos of MW-mass galax-

ies are diverse, forming a crude-but-powerful stellar halo mass–metallicity relation

(Harmsen et al., 2017), and (2) that this diversity must be primarily driven by the

properties of the most dominant merger these galaxies have experienced.

Figure 5.2 shows the inferred total accreted stellar mass plotted against inferred

photometric metallicity measured at 30 kpc along the minor axis for 13 galaxies in the
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Local Volume for which both properties have been measured (or have robust limits).

Total accreted stellar mass has been estimated for each galaxy, following Harmsen

et al. (2017), by integrating the star count-scaled projected 2-D density profile in the

range of 10–40 kpc and multiplying by a factor of 3 — obtained from comparisons to

the models of Bullock and Johnston (2005). The metallicity at 30 kpc is inferred from

the minor axis average metallicity profile of the resolved stellar populations, obtained

from stellar population modeling.

5.3 Comparing Galaxies’ Most Dominant Mergers with their

Satellite Populations

5.3.1 Observations

Through these heroic efforts in both the fields of satellite galaxy and stellar halo

surveys, the field now has access to a sample of MW-analogs for which both compo-

nents have been well-measured. This sample of seven systems — the MW, M31, M81,

Cen A, M101, M94, and M83 — constitutes our first opportunity to explore possible

connections between these two important predictions of the CDM model.

First, we will define several quantities which will be used in this analysis. Following

Smercina et al. (2018), the ‘satellite populations’, NSat, of these seven galaxies will

include all satellites within a projected galactic radius of 150 kpc and down to an

absolute V -band magnitude of MV <−9. Though some of the surveys cover a wider

area, are slightly deeper, or both, all seven systems are considered complete within

these cuts on radius and luminosity. Uncertainties are then assessed on the total

number of satellites within these criteria. We estimate a 20% uncertainty on the

number of satellites, reflecting both modest survey incompleteness (based on artificial

satellite galaxies; e.g., Smercina et al. 2018, Bennet et al. 2019), and occasional

misclassification of foreground/background dwarf galaxies due to uncertain distances
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Figure 5.2: The stellar halo mass–metallicity relation for 13 nearby galaxies. Total
accreted mass (M?,accreted), estimated following Harmsen et al. (2017) (see text), is
plotted against metallicity measured at 30 kpc ([Fe/H]30 kpc). The data were compiled
from Rejkuba et al. (2014), Monachesi et al. (2016a), Harmsen et al. (2017), Bell
et al. (2017), D’Souza and Bell (2018b), Conroy et al. (2019), Deason et al. (2019),
Smercina et al. (2019), Jang et al. (2020) and Bell et al., in prep. The lower limit on
NGC 3115’s total accreted mass was taken from Bell et al. (2017), and the limits on
M94’s accreted mass and metallicity were assessed from data that will be presented in
Smercina et al., in prep. The z= 0 stellar mass–metallicity relation (Gallazzi et al.,
2005; Kirby et al., 2013) is shown in blue for reference. The broad range of stellar halo
properties displayed here — three orders of magnitude in mass and nearly two dex in
metallicity — indicate a broad range in the mergers these galaxies have experienced.
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from the tip of the red giant branch (TRGB). We adopt a higher uncertainty of 50%

for M83, given the lack of a single, cohesive strategy for surveying its satellites.

Next, we follow D’Souza and Bell (2018a) in taking the total accreted stellar

mass, estimated from stellar halo measurements, as the mass estimate of the most

dominant merger that galaxy has experienced. However, following Smercina et al.

(2019), in systems such as M81, while currently experiencing a dominant merger

with the massive M82, the merger is not advanced enough to have redistributed the

accreted material into the stellar halo. The estimate of M81’s accreted mass, measured

along its minor axis, is ∼1/20 of its total accreted mass, represented mostly by the

mass of M82. We instead adopt a revised metric for the mass of the largest merger,

MDom, where this mass is either the total accreted mass estimated from the stellar

halo, or the mass of the most massive satellite within 150 kpc — whichever is larger.

This revised definition of MDom impacts nearly half of the sample, across a wide range

(e.g., M101, MW, and M81).

Figure 5.3 (top panel) shows MDom plotted against NSat for the seven available

MW-mass systems. A strong relationship is visible, with the systems that have ex-

perienced the largest mergers hosting the most satellites. The data return a Pearson

rank correlation coefficient of 0.98 when including the M94 limit, and 0.97 if excluded

— both indicating highly-correlated data. What is the nature of this relationship?

Are merger events responsible for bringing fresh satellites into the system?

5.3.2 Comparison to Galaxy Formation Simulations

CDM is self-similar (e.g., White and Rees , 1978), and thus hierarchical build-up of

structure is predicted. All dark matter halos should contain their own subhalos, thus

satellite galaxies should host their own populations of satellites prior to infall. There

has been some recent evidence of ‘satellites-of-satellites’ in both the Local Group

and around M81 (e.g., Deason et al., 2014, 2015a; Smercina et al., 2017; Dooley
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Figure 5.3: Top: Total number of ‘classical’ satellites, within 150 kpc projected ra-
dius, around each of seven nearby MW-mass galaxies, plotted against the mass of the
most dominant merger they have experienced (see § 5.3.1). Uncertainties of 0.3 dex
have been assumed for MDom, following Harmsen et al. (2017), Bell et al. (2017), and
D’Souza and Bell (2018a). An upper limit is estimated for M94, which displays little-
to-no observable stellar halo (Smercina et al., in-prep). A 20% uncertainty has also
been estimated for the total number of satellites, accounting for modest survey in-
completeness or misclassification of foreground/background dwarf galaxies. We adopt
a 50% uncertainty on satellite number for M83. A clear and decisive relationship is
visible. Bottom: MW-mass systems taken from the Auriga and FIRE simulations,
showing the mass of their most dominant merger plotted against the total number of
simulated satellites (M?> 105M�) within 300 kpc projected radius (Simpson et al.,
2018; Sanderson et al., 2018; Monachesi et al., 2019; Garrison-Kimmel et al., 2019a).
No relationship is visible, yet there are clear and differences between the two simu-
lations. The stark contrast between the observed systems and the results from these
high-resolution hydrodynamic simulations may represent a fundamental gap in our
understanding of galaxy formation.
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et al., 2017). In this paradigm, in the absence of baryons, the number of surviving

subhalos within a central halo should be some monotonic function of the mass of

the largest halo the central has accreted, not to mention the mass of the central

halo itself. However, the baryonic physics, involving infalling satellites’ interactions

with circumgalactic gas, tidal disruption by the central galaxy, and internal stellar

feedback, complicates matters significantly (e.g., Wetzel et al., 2015). Testing whether

or not the relationship between merger history and satellite populations shown in

Figure 5.3 is predicted in current galaxy formation theory requires simulations that:

(1) can produce realistic dwarf galaxy populations in a group environment, even down

to low masses, and (2) produce a sample of MW-mass systems with diverse merger

histories.

Currently, two fully hydrodynamic, high-resolution galaxy formation simulations

meet these criteria: the Feedback in Realistic Environments (FIRE) project (Hopkins

et al., 2014), and the Auriga project (Grand et al., 2017). Each simulation has resolved

both the satellite galaxy populations (Simpson et al., 2018; Garrison-Kimmel et al.,

2019a) and stellar halo properties (Sanderson et al., 2018; Monachesi et al., 2019)

of a sample of MW-mass galaxies, with total virial masses approximately between

8×1011M�–2×1012M�. The simulated satellite populations differ from the observed

sample in that they are reported within 300 kpc 3-D radius, rather than 150 kpc

projected. We use 300 kpc for this work also, as projection effects should not be

a substantial source of error (see Smercina et al., 2018) and Samuel et al. (2020)

report little diversity in the radial profiles, at least in FIRE. Additionally, FIRE and

Auriga achieve slightly different resolutions. While FIRE reports satellite statistics

down to M?> 105M�, Auriga only resolves satellites to M?> 5×105M�. As tidal

destruction is highly resolution-dependent, this difference in mass resolution is likely

worth considering when comparing the results of the two simulations.

In the bottom panel of Figure 5.3 we show the mass of the most dominant merger
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plotted against the number of satellites within 300 kpc with stellar mass above either

105M� (FIRE) or 5×105M� (Auriga). We adopt the same metric for the mass

of the dominant merger as in § 5.3. One potential limitation of this comparison is

that accreted mass (which we take as MDom for galaxies without larger satellites) is

directly measured in the simulations, while the estimate for observed galaxies is a

model-informed inferred quantity. A more direct comparison would use measurement

of stellar mass from 10–40 kpc along the minor axis of the simulated galaxies, as

is done in observed systems. However, this is an involved independent project (see

D’Souza and Bell , 2018a) and the results of Harmsen et al. (2017) suggest that,

while relatively large, the uncertainties on total accreted mass from the stellar halo

measurements are robust to any reasonable range of mass distributions and still much

smaller than the range of estimated MDom (see Figure 5.3).

Unlike the observations, little-to-no relationship is visible for either simulation.

Pearson rank correlation coefficients return comparable results, with a weak coeffi-

cient of 0.21 for the FIRE systems and −0.04 for Auriga, indicating a lack of cor-

relation. Moreover, the range of both dominant mergers and satellite populations

is significantly less than observed, for both simulations. There are some interesting

differences between the simulations, particularly in the distribution of both satellite

populations and dominant mergers. However, the lack of a correlation in both is

robust to these differences and, thus, is a powerful statement on the ability of our

flagship models to accurately produce galactic systems.

5.4 This Unexpected Relationship Presents a Challenge for

Galaxy Formation

CDM predicts the hierarchical buildup of structure, and thus that the build up

accreted material and satellite populations should be related. Yet, with increasing
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resolution and recent improvements which incorporate baryonic processes, current

standard galaxy formation models predict little-to-no relationship between a MW-

mass system’s satellite population and its merger history (e.g., FIRE & Auriga; see

Figure 5.3, bottom). This suggests that other factors present in the complexity of

simulated galaxy formation physics are more important in regulating the satellite

populations of galaxies at the MW-mass scale. However, surprisingly this is not what

we see in the Universe. For the first time, we have compiled a sample of MW-mass

systems for which both the most dominant mergers and satellite galaxy populations

have been robustly measured. The result is an unexpectedly tight correlation between

the mass of the most dominant merger the galaxies’ have experienced and the number

of satellites they host.

Figure 5.4: A 2-D histrogram showing the peak (virial) masses of 10,334 central
galaxies in the EAGLE simulation (Schaye et al., 2015), plotted against the total
number of subhalos with virial masses >109M� within 150 kpc radius of each. The
estimated halo mass range for the seven galaxies shown in Figure 5.3 is highlighted
in blue. The average total number of >109M� subhalos at is shown for halos at each
end of this mass range, denoted by blue squares.

There is a possible source of uncertainty encoded in the range of stellar masses in

the observed galaxies. The observed seven galaxy sample ranges from approximately
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3×1010M� (M94) to 1011M� (M31, Cen A). Using the stellar mass–halo mass relation

(e.g., Behroozi et al., 2013), this corresponds to a halo mass range of ∼9×1011M�–

2×1012M�. This is almost identical to the range of halo masses probed by both

FIRE and Auriga (e.g., § 5.3.2), and both simulations also produce a comparable

range in stellar mass. In fact, the FIRE m12z simulation is an isolated MW-mass

galaxy with approximately the mass of M94, yet has substantially more satellites

(Garrison-Kimmel et al., 2019a). We better quantify this effect in Figure 5.4, where

we show the total number of all satellite subhalos within 150 kpc of all central galaxies

in the EAGLE simulation (Schaye et al., 2015), plotted against the virial mass of the

central halo. The difference in the average number of subhalos within a ∼9×1011M�

halo and 2×1012M� halo is only ∼30% — 18 and 24, respectively. This suggests

that the observations probe a comparable diversity of galaxy/halo properties as the

simulations and that differences in halo mass is not the primary driver of the observed

satellite–merger relationship. An alternative explanation is that the halo mass range

is simply much larger than expected. However, explaining the factor of seven range

in total number of satellites would require a halo mass range of ∼1011M�–1013M�

for the observed sample of MW-mass galaxies.

Using halo occupation techniques in concert with the Illustris simulation, Carlsten

et al. (2020) found that nearby galaxies display a positive correlation between stellar

mass and number of satellites, albeit with very large scatter. This correlation is a

natural outcome of CDM (e.g., Figure 5.4) when combined with the stellar mass–halo

mass relation. They argue that halo mass is thus an important factor in explaining

the observed diversity in satellite populations. However, this high-scatter correlation,

combined with no predicted correlation between MDom and M?, cannot explain the

tightness of the NSat–MDom correlation shown in Figure 5.3. In the absence of alter-

native insight, it appears that mergers help to build galactic satellite populations in

a way that our models do not currently predict.
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5.5 Conclusions

For the first time, we explored an empirical link between the satellite populations

and merger histories of a sample of MW-mass galaxies. Using surveys conducted

around seven nearby galaxies, we compared the total number of ‘classical’ satellites,

down to MV <−9, within 150 kpc projected radius of each galaxy with estimates of

the mass of the most dominant merger each galaxy has experienced. We note that

more than half of these galaxies are currently experiencing this dominant merger

event, in the form of a massive close satellite. In these cases, we adopt the stellar

mass of this most massive satellite as the most dominant merger mass.

In the seven-galaxy sample, we find a strong positive correlation: the more massive

its largest merger, the more satellites a galaxy seems to host. The correlation is

equally strong whether or not the upper limit from M94’s stellar halo is included. We

then compare the observed relationship to predictions from the high-resolution FIRE

and Auriga hydrodynamic simulations. Surprisingly, neither simulation reproduces

any correlation between the number of satellites and largest mergers of the simulated

MW-mass systems, despite nearly identical stellar and virial mass ranges for the

observed and simulated samples.

Ultimately, this crucial and potentially transformative empirical link between the

merger histories of MW-mass galaxies and the buildup of their satellite populations

is a powerful observational test of the hierarchical nature of galaxy formation. The

inability of the current highest-resolution galaxy formation simulations to reproduce

this relationship represents an acute shortcoming of the theoretical framework upon

which our current galaxy formation paradigm is built.
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CHAPTER VI

Coda

6.1 Summary

The MW and M31 are host to substantial populations of dwarf satellite galaxies

(e.g., McConnachie, 2012) and each possess stellar halos, which encode details of

their merger histories (e.g., Bell et al., 2008; Ibata et al., 2014) — two of the central

predictions in the hierarchical model of CDM. In addition to numerous differences

in the properties of the galaxies themselves, including morphology and star forma-

tion history, M31 appears to host a much richer satellite population, and to have

experienced a much more massive and recent merger (e.g., D’Souza and Bell , 2018b),

than the MW (e.g., Helmi et al., 2018). Despite these clear differenecs, the satellites

and stellar halos of the MW and M31 serve as benchmarks for our understanding of

galaxy assembly in the CDM model. Long-standing questions regarding the observed

properties of dwarf galaxies, as well as the role of merger history in galaxy evolution,

have largely been addressed using only these two systems — a fragile foundation for

galaxy formation.

Recent insight from model–observation comparison underlines the precariousness

of this lack of context. Current galaxy formation simulations predict substantial

diversity in both the satellites (e.g., Simpson et al., 2018; Garrison-Kimmel et al.,

2019a,b) and merger histories (e.g., Monachesi et al., 2016b; D’Souza and Bell , 2018a)
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of MW-mass galaxies. Yet, recent surveys, attempting to reduce the observational

deficit around other systems, indicate that these models may not be capturing the

full range of either (e.g., Spencer et al., 2014; Geha et al., 2017; Harmsen et al., 2017).

This work uses new observations of the satellite populations and stellar halos of

several nearby galaxies, along with careful comparisons to galaxy formation models, to

bridge this knowledge gap of how the Local Group’s assembly compares to other galax-

ies of similar mass. This began with the realization that deep, wide-field observations

with the Subaru Hyper Suprime-Cam (HSC) of nearby galaxy outskirts could detect

dwarf galaxies fainter than nearly any survey to-date (Chapter II). This newfound

technical insight enabled a new approach to the question: is the MW representative

of galaxies at its mass scale and how might the answer impact our understanding of

galaxy formation?

To address this, a survey of the satellite population of the nearby MW-mass

galaxy M94 was conducted with Subaru HSC (Chapter III). Reaching out to 150 kpc

in projected radius, this deep survey was sensitive to all dwarf galaxies in the ‘classical’

regime (MV <−9). Surprisingly, only two low-mass satellites were detected. Artificial

satellite testing confirmed that these are, indeed, the only two ‘classical’ satellites

within 150 kpc of M94, in contrast with the MW’s seven and M31’s 12 within the

same radius. Detailed comparisons of M94’s sparse satellite population with the

EAGLE simulation were conducted. Using a ‘standard’ model of halo occupation,

it was found that: (1) M94’s satellite population is in considerable tension with

current galaxy formation models, and moreover the observed diversity in the satellite

populations of MW-mass galaxies is considerably larger than current models predict

(e.g., Garrison-Kimmel et al., 2019a), and (2) M94’s satellite population is much

better represented by a more ‘stochastic’ halo occupation model, suggesting that the

scatter in galaxy formation even at intermediate halo masses Mh∼ 1010 may be more

stochastic than predicted in current models, which use the MW as a benchmark.
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The characteristics which make Subaru HSC perhaps the best existing for detect-

ing faint satellites around nearby galaxies — its large mirror, wide field-of-view, and

excellent seeing — also make it an outstanding instrument for the study of stellar

halos. With the same dataset used in Chapter II, a survey of the stellar halo of

M81 was conducted (Chapter IV). M81 is in an unusual evolutionary stage, having

recently begun a significant interaction with its massive satellite M82, as well as the

lower-mass NGC 3077. Using deep point-source photometry of individual red giant

branch (RGB) stars, along with exquisite overlapping archival HST fields, M81’s stel-

lar halo, and its triple-interaction, was revealed in never-before-seen detail. Using the

deepest-ever census of stellar mass in a stellar halo outside of the Local Group, M81’s

stellar halo properties were estimated at three points: (1) its ancient halo, represent-

ing its past accretion history, measured along its minor axis, (2) its ‘current’ halo,

which incorporates unbound debris from its two interacting satellites, M82 and NGC

3077, and (3) its future halo, following the accretion and incorporation of all stellar

material from M82 and NGC 3077. These three distinct evolutionary stages show

a dramatic evolution of M81’s stellar halo properties throughout its current merger,

quickly transforming from one of the least massive and metal-poorest halos around

a MW-mass galaxy to one of the most massive and metal-rich — rivaling the halo

of M31. This dramatic transformation of M81’s halo is powerful evidence that the

observed diversity in stellar halo properties (e.g., Harmsen et al., 2017) is primarily

driven by diversity in the largest mergers these galaxies have experienced.

Lastly, Chapter V combines the insight gained in Chapter III & IV, as well as the

numerous other recent studies of the satellite populations and stellar halos of nearby

MW-mass galaxies. For the first time, a possible link between satellite populations

and merger history is explored — two principal components of the CDM model. A

strong correlation was found between the mass of the most dominant merger expe-

rienced and the total number of ‘classical’ satellites in a compiled sample of seven
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nearby MW-mass galaxies. Moreover, comparison with two of the current highest-

resolution galaxy formation simulations, FIRE (Hopkins et al., 2014) and Auriga

(Grand et al., 2017), finds completely disparate results. Neither simulation shows

any discernible relationship between these same quantities, despite covering a nearly

identical stellar mass range (and therefore, presumably, virial mass range) as the ob-

served galaxy sample. The inability of current flagship galaxy formation simulations

to reproduce this relationship represents an urgent knowledge gap in the theoretical

framework upon which our current galaxy formation paradigm is built.

6.2 Ongoing Work & Outlook

The stellar halos and satellite galaxy populations of MW-mass galaxies repre-

sent some of the most stringent tests of the CDM model, and of galaxy formation

in general. This dissertation has worked to shore-up the fragile foundation to our

understanding of these galactic components, which until recently, was grounded en-

tirely on the Local Group. Both the satellite populations and stellar halos of nearby

galaxies have been found to be incredibly diverse, the former inexplicably so, and

a newfound, powerful correlation between satellite populations and merger history

completely defies model predictions.

Much of my future work will involve further exploring these discoveries in the

context of galaxy evolution. Several important gaps still exist in our understanding

of external galactic systems: (1) the detection and properties of ultra-faint dwarf

galaxies outside of the Local Group, and (2) a complete census of the ‘classical’

satellite populations of and dominant mergers experienced by MW-mass galaxies in

the Local Volume.
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6.2.1 Detecting Ultra-Faint Dwarfs in the Local Volume

Despite the considerable advancement in our understanding of the satellite pop-

ulations of other nearby MW-mass galaxies, and the surprises they have held (e.g.,

Chapter III & V), there exists a regime of galaxy formation which remains com-

pletely unexplored outside of the Local Group. No ultra-faint dwarf (UFD) galaxy

has yet been detected, which is not a MW or M31 satellite. As discussed in Chapter

I, these UFDs (M?. 105M�; MV .−8) are completely distinct from other ‘normal’

dwarf galaxies, with most forming the majority of their stellar mass by redshift of

10 (Brown et al., 2014; Weisz et al., 2014). High-resolution galaxy formation simula-

tions, such as FIRE, are just beginning to be able to resolve galaxies at these kinds

of stellar masses (e.g., Garrison-Kimmel et al., 2019a). Yet, observationally, we have

absolutely no understanding about how these UFD populations vary from system to

system beyond the MW and M31. Are surprises in store, with nearby UFD examples

that are inexplicable in our current models, as is the case with the ‘classical’ satellites

of M94 (Chapter III)?

Building on the detection of d1005+68 around M81, among the faintest galaxies

ever detected outside of the Local Group (Chapter II), the observational techniques

used in this dissertation may be the best current method of addressing this knowledge

gap. Resolving stellar populations, as we have done with Subaru HSC, is the only way

UFDs can be robustly detected. As shown in Figure 2.4, most of the MW’s UFDs are

incredibly low surface brightness (µV > 29 mag arcsec−2), and possess small half-light

radii. Surveys able to reach these depths in integrated light, such as Dragonfly (e.g.,

Danieli et al., 2018) will require deep point-source photometric follow-up to confirm

any candidates.

In work conducted alongside this dissertation and the presented M81 and M94 ob-

servations, we have compiled a complete, deep resolved-star dataset of the outskirts

of an additional nearby MW-mass system, M83, with at least four future programs
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planned for M64, NGC 253, M51, and NGC 4258. I have begun working on meth-

ods to expand our ability to detect even fainter dwarf galaxies in our existing and

planned Subaru HSC observations, including the development of artificial star and

artificial galaxy architecture, which will be crucial for quantifying the completeness

of our satellite surveys. This artificial galaxy testing indicates that complete UFD

populations down to at least MV <−6 should be accomplishable with Subaru HSC,

and other comparable ground-based, wide-field imagers, for all systems within 7 Mpc.

This would allow, for the first time, robust comparison between a diverse sample of

UFD populations and those produced in galaxy formation models like FIRE. This is

summarized in Figure 6.1, showing the substantial UFD discovery space within the

Local Volume.

Combining the seven existing satellite surveys, some of which will require further

ground-based follow-up, with our four new planned Subaru HSC surveys, will result

in a sample of 11 MW-mass systems for which their UFD populations have been sur-

veyed. The upcoming Rubin Observatory Legacy Survey of Space and Time (LSST)

will further revolutionize this science, surveying all MW-mass galaxies in the Local

Volume and the Southern half of the night sky. Though LSST is due to begin its

science in 2022, it will not achieve comparable depth to our HSC datasets until at

least 2030. Following close on the heels of LSST, the Nancy Grace Roman Space

Telescope (RST ; formerly WFIRST ) will launch, providing HST image quality over

a 100× larger field-of-view — a further ‘game-changer’ for UFD discovery in the Local

Volume. The ability to interpret LSST’s and RST ’s observations in the context of

satellite populations, as well as direct the galaxy formation models which will produce

robust predictions ahead of their full scientific outputs, will require a deep existing

observational training set. Once compiled, the sample of 11 MW-mass galactic sys-

tems discussed here will serve as the intellectual foundation for studies of the satellite

populations of MW-like systems for the next decade, and beyond.
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Observations

r < 150 kpc

6 S. Garrison-Kimmel et al.

Figure 2. Galaxy stellar mass functions. The panels indicate the satellite population (left; host distance rhost < 300 kpc), the non-satellite population around
each host (center; rhost = 300 - 1000 kpc, and distance to the paired host rother > 300 kpc where applicable), and (right) the Local Field (distance from either
host reither < 1 Mpc but distance from both hosts rboth > 300 kpc). Thin lines indicate the isolated m12 sample, which are sorted in the legend by host
virial mass. The satellite stellar mass functions are broadly consistent with that of the MW and M31, though even our richest satellite populations slightly
(by a factor of ⇠ 1.2 at 105M�) under-produces that of M31, possibly because our highest mass host is only 1.45⇥ 1012M�. Similarly, the non-satellite
populations around each host are in reasonable agreement with that of the MW and M31, with considerable scatter. The simulated Local Field populations
are also generally consistent with observations, particularly for M⇤ & 5⇥ 105M�; below that, Romeo & Juliet displays a steep upturn relative the LG.
Thelma & Louise, meanwhile, slightly overproduces the Local Field SMF at all masses. We predict a median of 2.5 additional (i.e. undetected) non-satellite
galaxies with M⇤ � 105M� and rMW = 300 - 1000 kpc, along with 4 additional MW satellites with M⇤ = 105 - 3⇥105M�.

0.37⇥1012M�. Naively scaling the two values by one another (i.e.
scatter in Nsats(M� � 105M�)/ scatter in host Mvir) yields nearly
identical values, such that our results are consistent with the FIRE
simulations predicting the same degree of scatter in the number of
luminous satellites as DMO simulations.

The FIRE satellite populations also provide a good match
to the MW satellite SMF, particularly below the masses of the
LMC and SMC,7 though the agreement is not perfect: the simu-
lated galaxies host a median of 15.5 satellites with M⇤ � 105M�,
compared with the 12 such known MW satellites, and we typically
predict a SMF that continues to rise between the relatively bright
classical dSphs (M⇤ & 3 ⇥ 105M�) and the ultra-faints dwarfs
(M⇤ . 3⇥104M�) identified in deep surveys such as SEGUE (Be-
lokurov et al. 2009) and DES (Drlica-Wagner et al. 2015). The dif-
ference is small relative to the order-of-magnitude difference re-
ferred to by the missing satellites problem – we predict a median of
4 satellites with M⇤ = 105 - 3⇥ 105M� – but it may suggest addi-
tional, relatively luminous, undetected satellites (also see Tollerud
et al. 2008). Rather than a sign of observational incompleteness, the
flattening of the MW SMF may instead reflect a feature from reion-
ization (see Bose et al. 2018); if so, our simulations do not capture
such a feature overall.

In contrast to the relative agreement with the MW SMF, all
of the simulated satellite SMFs lie slightly below that of M31. Our
hosts have, on average, 54% as many satellites with M⇤ � 105M�
as are already known around M31. The offset in the mean counts
relative to M31 is roughly constant for M⇤ . 107M� (at which
point the mean difference becomes even larger), indicating that
M31 contains systematically more satellites at fixed stellar mass
than our simulated hosts. For comparison, the mean offset between

7 The worse agreement at the high-mass end is not particularly unexpected:
none of our hosts were selected to contain an LMC-mass satellite, and a ran-
domly selected MW/M31-mass halo is statistically unlikely to have LMC
or M33-mass satellites (Busha et al. 2011; Tollerud et al. 2011).

the simulated satellite populations and that of the MW is ⇠ 2% at
the mass of CVnI (3⇥ 105M�) and remains under 20% over two
orders of magnitude (up to the mass of Fornax, 2.4⇥107M�). The
difference in satellite counts is clear, but not extreme: our host with
the largest number of satellites (m12m, with Mvir = 1.45⇥1012M�)
contains 73% as many galaxies above 105M� with an average of
74% from 105 – 3⇥ 107. As we show in Appendix B, this result
is only marginally sensitive to the radial cut used to separate satel-
lites from non-satellites. It is also qualitatively independent of the
assumed mass-to-light ratio for the observed dwarf galaxies: even
adopting a stellar mass-to-light ratio of unity for the galaxies not in-
cluded in Woo et al. (2008) yields a mean of 61% as many satellites
as M31 with M⇤ = 105M�.

The abundance of dwarf galaxies around M31 (relative both
to the MW and to our simulated hosts) may point towards a higher
M31 halo mass. Large-scale estimates for the mass of M31 typ-
ically suggest Mvir,M31 & 1.5⇥ 1012M�; for example, Diaz et al.
2014 used the net momentum of the LG to estimate Mvir,M31 =
1.7 ± 0.3⇥ 1012M�. However, Kafle et al. (2018) recently argued
for Mvir,M31 = 0.8 ± 0.1⇥ 1012M� by applying a Bayesian frame-
work to high-velocity planetary nebulae. Figure 3 shows the num-
ber of dwarf galaxies near each host, as a function of host virial
mass. Though the trends with mass are weak (e.g. our lowest mass
host contains the fifth most satellites), our results suggest that it is
difficult to match both the SMF of the MW and of M31 without a
higher virial mass for M31.

Broadly speaking, the non-satellite SMFs in Figure 2 (rhost =
300 - 1000 kpc, and excluding satellites of the paired host if ap-
plicable) generally agree with counts in the fields around the
MW/M31. However, there are again hints of undetected galaxies
with M⇤ & 105M�: we predict a median of 14.5 galaxies with
M⇤ � 105M�, compared to the 12 known around the MW. Fur-
thermore, increasing the mass of our M31 analogue may result
in even more predicted dwarfs; our predictions in the Local Field
may be a lower limit. If ultra-diffuse galaxies (UDGs) are preva-
lent in the field (as predicted by Di Cintio et al. 2017 and Chan
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Figure 6.1: Left: Cumulative V -band luminosity functions of ‘classical’ satellites
(MV <−9) within 150 kpc projected radius for four nearby MW-mass systems. The
satellite luminosity functions of the MW and M31 are also shown, but extending down
to MV <−6 — the ultra-faint regime. Corresponding stellar mass is shown along the
top axis. The discovery space for ultra-faints in the nearby universe (.5–6 kpc) using
ground-based telescopes is shown in gray. Right: Satellite stellar mass functions of
MW-mass galaxies in the FIRE simulations (Garrison-Kimmel et al., 2019a), which
extend to M?< 105M�, into the UFD regime and below detection threshold in cur-
rent observations of any galaxies other than the MW and M31. Instruments like Sub-
aru HSC provide a tremendous and important opportunity to study this unexplored
regime of galaxy formation throughout the nearby universe — crucial groundwork
leading into the LSST era.

6.2.2 Exploring the Merger–Satellite Connection in Additional Systems

Thus far, the important new insights presented in Chapter V into the surprising

relationship between the satellite populations and merger histories of nearby MW-

mass galaxies is based on 7 well-studied MW-mass systems, including the MW and

M31 — a small sample. We have barely scratched the surface of the near-field galaxy

population, an effort which will be revolutionized by the likes of next-generation

instruments such as LSST and RST. As in the case of UFD populations, directing

these future efforts, in the context of these new satellite-focused revelations, will

require a large, well-studied pilot sample of galaxies in the Local Volume. The same
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four systems which are accessible to Subaru HSC for UFD discovery — M64, NGC

253, M51, and NGC 4258 — are also prime candidates for resolving their stellar halos.

I plan to use the techniques developed and refined as part of this dissertation to

estimate the stellar halo properties, and thus dominant merger properties, of all four

of these MW-mass systems, as well as M83 and M94 using our existing Subaru HSC

datasets. Though not yet complete, these datasets show immense promise. M94, for

example, appears to have an unusually low-mass, anemic stellar halo (see Figure 5.2),

comparable to the halo of M101 (Jang et al., 2020). Did this largely secular existence

somehow contribute to its current sparse satellite population? Furthermore, data for

one of the proposed galaxies is already in hand. In a first-semester 2019 program, one

full-depth Subaru HSC field (of six) was observed around M64 in all three planned

filters (the rest of the observations were not scheduled due to weather). Though the

survey of M64 is far from complete, in this single field we observe a massive, metal-

rich, shell-like tidal feature in resolved RGB stars, shown in Figure 6.2. Owing to its

morphology, this feature was likely created during a very recent merger event (e.g.,

Johnston et al., 2008). In fact, this recent merger may have been responsible for the

formation of M64’s counter-rotating gas disk (Braun et al., 1992) — unique in the

nearby universe.

With this complete set of both satellite populations and detailed stellar halo maps

of MW-mass ecosystems in-hand, more detailed metrics can be developed to explore

the satellite–merger relationship. A large fraction of M31’s satellites show evidence

of having responded globally during M31’s massive merger (see § 5.1; Weisz et al.,

2019), suggesting that satellites brought in during merger exhibit distinct signatures.

Measuring recent star formation histories for the satellites in other systems currently

experiencing massive mergers, such as M81 and M51, will help build much-needed

intuition about which of these satellites are ‘new’ to the system. This can be done with

resolved stellar populations with HST, as well as spectroscopic follow-up. In concert
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Figure 6.2: Map of resolved RGB stars in the stellar halo of M64, in the single existing
Subaru HSC field with three-filter coverage from our 2019A program. Stars are color-
coded by inferred photometric metallicity. Never-before-resolved, M64’s stellar halo
shows a spectacular metal-rich tidal feature, with a distinctive shell morphology,
suggesting a recent accretion event (Johnston et al., 2008). This recent merger could
be the origin of M64’s unique counter-rotating gas disk (e.g., Braun et al., 1992). M64
is only the latest exemplar of the efficacy of wide-field resolved-star studies of stellar
halos in deciphering the merger histories of nearby galaxies.

with estimates of recent star formation activity, these spectroscopic observations can

be used to measure line-of-sight (LOS), or radial, velocities, which may be powerful

metrics of which satellites may have been recently accreted. If large numbers of

satellites were accreted during a recent merger, they may retain kinematic memory

of this previous association, with a bulk angular momentum axis that aligns with

the accreted material from the merger (e.g., Johnston et al., 2008). There is some

tentative evidence for this approach in the coherently rotating ‘plane’ of satellites

around Cen A, which are aligned with the major axis of its stellar halo (Crnojević
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et al., 2016; Müller et al., 2018).

In addition to observational progress, careful and detailed comparisons to galaxy

formation models will be absolutely critical to understand this unexpected satellite–

merger relation. While these simulations currently fail to reproduce the observed cor-

relation presented in Chapter V, they do produce galactic systems that are strikingly

similar to those observed in the universe. Figure 6.3 shows a side-by-side compari-

son of the metallicity-coded stellar halo density map of M31 measured by PAndAS

(Martin et al., 2013) and of a comparable MW-mass galaxy simulated in FIRE. The

two images are nearly indistinguishable. One of the strengths of such high-fidelity

simulations, such as FIRE, is the ability to change the input physics. While standard

models typically choose the optimal overall set of inputs to match a host of broad,

observed universal properties (e.g., galactic structure, galaxy luminosity function, ob-

served power spectrum), there still exists the powerful functionality to explore the

impact of different recipes for physical processes on specific observables (e.g., Kim

et al., 2014; Terrazas et al., 2020).

Making use of this flexibility could allow investigations of: (1) how many satellites

are brought into the central ecosystem during mergers and what happens to them;

under which conditions, if any, do systems which experience large mergers have larger

satellite populations, as is observed? (2) Do satellite populations in simulated sys-

tems display the same enhanced star formation signatures during large mergers as

observed systems? And, (3) which physical parameters can, or must, we change in

the simulations to better reproduce the relationship between satellites and merger his-

tory? Such detailed comparisons to the simulations will serve to ground the observed

relationship in a physics-motivated context.
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Figure 6.3: Metallicity-coded stellar mass density channel maps of the halo of M31
(left; Martin et al. 2013), and the simulated FIRE galaxy m12f (right; a new repre-
sentation, assembled using the data of Sanderson et al. 2018). Red corresponds to
[M/H]∼−0.5, green to [M/H]∼−1, and blue to [M/H]∼−1.5. Numerous faint satel-
lites are visible in each. The m12f map showcases the incredible similarity between
observed and FIRE-simulated stellar halo measurements, and satellite populations, of
MW-mass ecosystems. These simulations are a necessary tools to make detailed com-
parisons with the current and future observational evidence of the satellite–merger
relationship.
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