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ABSTRACT

We investigate two constructions on metric graphs, using the framework of tropical

geometry. On a metric circle, i.e. a genus 1 tropical curve, each of these constructions

produces a set of n points which are evenly spaced around the circle.

In the first part, we study Weierstrass points for a divisor on a metric graph (i.e.

tropical curve). On a smooth algebraic curve, these are points which have “special”

tangency behavior with respect to a given projective embedding. The Weierstrass

locus on a metric graph may fail to be a finite set; we define a stable Weierstrass

locus which is always finite. The stable locus agrees with the “naive” Weierstrass

locus for a generic divisor class. We then investigate the distribution of Weierstrass

points for a high-degree divisor. We show that in high degree, the distribution of

Weierstrass points converges to Zhang’s canonical measure. This measure can be

described by probabilities of weighted spanning trees, or alternatively by current

flows in an electrical resistor network. This distribution result is a tropical analogue

of a theorem of Neeman concerning Weierstrass points on a complex algebraic curve.

In the second part, we consider how a metric graph under the Abel–Jacobi em-

bedding intersects torsion points of its Jacobian. The Manin–Mumford conjecture

states that this intersection is finite for a smooth algebraic curve of genus g ≥ 2; this

conjecture was proved by Raynaud. For a metric graph, this conjecture fails when the

edge lengths are all rational numbers. However, we show that the Manin–Mumford

conjecture does hold for metric graphs (of genus g ≥ 2) which are biconnected and

have edge lengths which are “sufficiently irrational” in a precise sense. Under these

assumptions we prove a bound on the size of the intersection which depends only on

the genus, namely #(AJ(Γ) ∩ Jac(Γ)tors) ≤ 3g − 3. Next we consider higher-degree

analogues of the Manin–Mumford conjecture, concerning the maps sending d-tuples

of points to the Jacobian. This motivates the definition of the “independent girth” of

a graph, which gives a strict upper bound for d such that the higher-degree Manin–

Mumford property holds. For a metric graph with large genus g, the independent

girth is bounded above by O(log g).
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CHAPTER 1

Introduction

In this thesis, we study two generalizations of a simple construction: dividing a

circle in N equal parts. These division points are called torsion points of the circle.

Figure 1.1: Torsion points on a circle.

The word “torsion” comes from algebraic terminology—if we equip the circle with

the additive structure R/Z, i.e. how we usually think of adding angles together, then

the N -torsion points are points x which satisfy N · x = x + · · ·+ x = 0. (There are

N such points.)

A circle is a simple example of a metric graph. A metric graph captures the

structure of a network, meaning something made up of nodes and edges, where

additionally each edge is assigned a positive real length. If we take just one node

and one edge, with the edge joined to the node at both ends, then we get a circle. If

we use more nodes and edges, we can get a more complicated metric graph.

Figure 1.2: A metric graph, with 5 nodes and 8 edges.

For an arbitrary metric graph, we can ask: How does one divide this object into

n “equal parts”? There is probably no single good answer to such a question, but we

consider two constructions which generalize N -torsion points of a circle to arbitrary

metric graphs. Both constructions are taken from the study of complex algebraic

curves, via the framework of tropical geometry.
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In algebraic geometry, the analogue of a circle is an elliptic curve. An elliptic

curve over the complex numbers is topologically equivalent to a parallelogram with

opposite sides glued together. The elliptic curve also has an additive structure of

R2/Λ, coming from addition of vectors in R2 modulo integer combinations of vectors

forming the sides of the parallelogram. The N -torsion points are the points which

satisfy the equation Nx = x+ · · ·+ x = 0 with respect to this addition law. In this

case there are N2 such points.

Figure 1.3: Torsion points on a complex elliptic curve.

The torsion points may also be constructed without reference to an addition law,

as follows. Given a curve X in projective space Pr, a flex point is a point p on X

such that some hyperplane intersects X at p with multiplicity at least r + 1. If we

embed an elliptic curve into projective space Pr using a complete linear system of

degree N divisors, then the set of flex points is in fact a set of N -torsion points (for

some choice of 0 on the elliptic curve).

Figure 1.4: Flex point (right) on an embedded curve in P2.

There are two ways to take this concept of torsion points on an elliptic curve

(genus g = 1) and generalize it to a smooth algebraic curve of higher genus (g ≥ 2).

In the first perspective, torsion points come from some additive group law, and this

leads to the study of torsion points of the Jacobian—a g-dimensional variety with

group structure, which naturally contains the higher-genus curve as a 1-dimensional

subvariety (up to a choice of translation). The second perspective of torsion points,

as the flex points of some projective embedding, leads to the study of (generalized)

Weierstrass points in higher genus.

1.1 Tropical geometry

Tropical geometry is a relatively new area of mathematics which allows one to

translate statements about algebraic curves to graph theory, and vice versa. For a

2



thorough introduction to tropical geometry and tropical curves, we refer the reader

to [18, 38, 41].

Algebraic geometry is the study of solutions to polynomial equations such as

x4 + y4 = 1. Over the complex numbers, the set of solutions is known as a Riemann

surface. Tropical geometry allows us to turn a Riemann surface into a graph. This

Figure 1.5: A genus three Riemann surface.

may be achieved from either an “embedded” or “non-embedded” perspective.

In the embedded perspective, given a complex algebraic variety in Cn we may con-

sider the image in Rn under the logarithm map (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).
This image is called the amoeba of the algebraic variety. Bergman [12] observed that

the limit of this amoeba, when “zooming out to infinity,” forms a polyhedral complex.

This polyhedral complex is known as the logarithmic limit set of the variety.

Example 1.1 (Logarithmic limit set). Consider the solutions to x3+y3+4xy+1 = 0

where x, y ∈ C2. The amoeba of this complex curve is shown on the left side of

Figure 1.6, shaded in gray, and the logarithmic limit set is on the right.

 

Figure 1.6: Amoeba and logarithmic limit set of x3 + y3 + 4xy + 1 = 0.

Under the process of sending zi 7→ log |zi| and “zooming out to infinity,” the effect

is that

lim
|z|→∞

log |anzn + (lower-order terms)|
log |z|

= lim
|z|→∞

log |an|+ n log |z|
log |z|

= n.

In words, a polynomial with leading term anz
n is replaced with n log |z|. One way to

algebraically formalize, or mimic, this process is to work with the non-Archimedean

valuation

val(ant
n + (lower-order terms in t)) = n

applied to the field of Laurent series K = C((t−1)) (or Puiseux series ∪n≥1C((t−1/n))),

and consider varieties over the ground field K rather than C. Then given a va-

3



riety X ⊂ Kn cut out by polynomials in K[x1, . . . , xn], its tropicalization (or non-

Archimedean amoeba) is the image ofX under (z1(t), . . . , zn(t)) 7→ (val z1(t), . . . , val zn(t)).

It turns out that this image is a polyhedral complex in Rn, no zooming out needed.

A fundamental theorem of tropical geometry is that the tropicalization of X, as

defined above, may be computed via the following process on the polynomials cutting

out X. (For simplicity, we describe the case of polynomials in two variables.) Given

a polynomial f =
∑

i,j≥0 ai,j(t)x
iyj ∈ K[x, y], its tropicalization is defined as

trop(f) = max
i,j≥0
{val(ai,j(t)) + ix+ jy}.

This expression trop(f) defines a piecewise-linear function (x, y) 7→ trop(f) on R2.

The break locus of trop(f) is the subset of R2 where the function is not linear.

Theorem 1.2 (Fundamental theorem of tropical geometry). Given some polynomial

f ∈ K[x1, . . . , xn], suppose (z1(t), . . . , zn(t)) ∈ Kn lies on the variety cut out by

f = 0. Then the point (val z1(t), . . . , val zn(t)) ∈ Rn lies in the break locus of trop(f).

The converse of Theorem 1.2 is not true, but there is some sense in which the

converse holds for a “sufficiently general” f ∈ K[x1, . . . , xn].

Example 1.3. The tropicalization of the polynomial f = x3 + y3 + tNxy + 1 is the

piecewise-linear function

trop(f) = max{3x, 3y, N + x+ y, 0}.

If N > 0, this tropicalized function has four domains of linearity. We illustrate its

break locus in Figure 1.7, with the domains of linearity labelled by the correspond-

ing linear function. The break locus consists of three bounded segments and three

unbounded segments. The bounded segments have endpoints (N,N), (−N, 0), and

(0,−N).

N+x+y
3x

3y

0

Figure 1.7: Break locus of trop(f) = max{3x, 3y, N + x+ y, 0}.

In the abstract (non-embedded) perspective, tropicalization is achieved via de-

generating a smooth algebraic curve to a curve with nodal singularities, along a

4



one-parameter family, then taking the dual graph of the nodal curve. This degen-

eration process turns meromorphic (i.e. rational) functions on the Riemann surface

(i.e. complex algebraic curve) to piecewise linear functions on the dual graph. These

tools were developed by Baker–Norine [9] and others [32, 20].

  

Figure 1.8: Tropicalizing a Riemann surface (left) to a graph (right).

The non-embedded perspective of tropicalization has been used to prove powerful

results that relate moduli spaces of smooth algebraic curves, and their compactifi-

cations by stable curves, to corresponding moduli spaces of tropical curves; see e.g.

Caporaso [14] and Abramovich et. al. [1].

1.2 Summary of results

Recall the above discussion of torsion points on an elliptic curve, as (1) flex points

of a projective embedding, or (2) algebraically torsion with respect to the additive

structure of the Jacobian. This thesis is concerned with studying the analogous

constructions in the tropical setting. We state the main results and discuss related

work in the sections below.

For background on complex algebraic curves, see [33]. In the following we assume

all algebraic curves are proper and smooth, unless stated otherwise explicitly. We

restrict our attention to tropical curves Γ have no “hidden genus” at vertices and no

infinite legs, i.e. to those Γ arising as the skeleton of Xan with totally degenerate

reduction and no punctures.

1.2.1 Weierstrass points

Suppose X is a smooth, proper complex algebraic curve. The Weierstrass points

of a divisor D on X are the flex points of the projective embedding X → Pr corre-

sponding to the complete linear system of D. This defines a finite subset of X.

Historically, mathematicians were first interested in studying the Weierstrass

points of the canonical divisor on a curve of genus g ≥ 2. Hurwitz [25] showed

that an algebraic curve of genus g ≥ 2 has finite automorphism group by using the

Weierstrass points of the canonical divisor. A generic curve has g3 − g such points.

In the literature, the Weierstrass points of a divisor D, which is not the canonical di-

visor, are sometimes referred to as “higher Weierstrass points.” (Sometimes, “higher

Weierstrass points” refers to Weierstrass points of nK, where K is the canonical

5



divisor and n ≥ 2 is an integer.) See [16] for a well-written historical survey of the

study of Weierstrass points.

In [34], Mumford notes that the Weierstrass points associated to a divisor of degree

n should be viewed as a higher-genus analogue of the n-torsion points on an elliptic

curve. The fact that n-torsion points on a complex elliptic curve become “evenly

distributed” as n grows large leads one to ask whether the same phenomenon holds

for Weierstrass points on other algebraic curves.

An answer was given by Neeman [35], who showed that for a complex curve (i.e.

Riemann surface) of genus g ≥ 2, when n → ∞ the Weierstrass points of degree n

divisors become distributed according to the Bergman measure.

Theorem 1.4 (Neeman [35]). Let X be a compact Riemann surface of genus g ≥ 2,

and let {Dn : n ≥ 1} be a sequence of divisors on X with degDn = n. Let Wn

denote the Weierstrass locus of the divisor Dn, and let δn = 1
gn2

∑
x∈Wn

δx denote the

normalized discrete measure on X associated to Wn (where δx is the Dirac measure

at x). Then as n → ∞, the measures δn converge weakly to the Bergman measure

on X.

Before Neeman’s result, Olsen [36] showed that given a positive-degree divisor D on

a complex algebraic curve X, the union of the Weierstrass points of the multiples

nD, over all n ≥ 1, is dense in X in the complex topology.

If one replaces the ground field C with a non-Archimedean field, one may consider

the same question of how Weierstrass points are distributed inside the Berkovich

analytification Xan of an algebraic curve, say after retracting to a compact skeleton

Γ. This was addressed by Amini in [3]. Here the Weierstrass points are distributed

according to the Zhang canonical admissible measure, constructed by Zhang in [42].

Theorem 1.5 (Amini [3]). Let X be a smooth proper curve of genus g ≥ 1 over

a complete, algebraically closed, non-Archimedean field K with non-trivial valuation

and residue characteristic 0. Let Γ be a skeleton of the Berkovich analytification Xan

with retraction map ρ : Xan → Γ. Let D be a positive-degree divisor on X(K). Let

Wn denote the Weierstrass locus of the divisor nD, and let δn = 1
#Wn

∑
x∈Wn

δρ(x)

denote the normalized discrete measure on Γ associated to Wn (where δx is the Dirac

measure at x). Then as n → ∞, the measures δn converge weakly to the Zhang

canonical measure on Γ.

Zhang’s canonical measure does not have support on bridge edges, so it is inde-

pendent of the choice of skeleton. Zhang’s construction was motivated by Arakelov’s

pairing for divisors on a Riemann surface [5], for the purpose of answering ques-

tions in arithmetic geometry. Here we follow an approach of Chinburg–Rumely [17]
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and Baker–Faber [7] along more elementary lines, describing µ in terms of electric

potential and current flow in a network of resistors.

In [6], Baker studies ordinary Weierstrass points on graphs and on metric graphs,

and mentions several applications of number theoretic significance. These results are

stated for Weierstrass points associated to the canonical divisor, without discussion

of generalized Weierstrass points for other divisors. In [3], Amini raises the question

of whether the distribution of (generalized) Weierstrass points is possibly intrinsic to

the metric graph Γ, without needing to identify Γ with the skeleton of some Berkovich

curve Xan. One major obstacle to this idea is that on a metric graph, the Weierstrass

locus for a divisor may fail to be a finite set of points.

We give two approaches to get around this obstacle. One approach is to sidestep

the issue by showing that on a tropical curve, the Weierstrass locus is finite for a

generic divisor class. We also define a stable Weierstrass locus which is finite for an

arbitrary divisor class. The stable Weierstrass locus is nicely compatible with the

non-stable locus when D is a non-special divisor in the sense of the Riemann–Roch

theorem; the relation is complicated for divisors which are Riemann–Roch special.

We compute the cardinality of the stable Weierstrass locus of a generic divisor

class, by showing that if we introduce a notion of multiplicity, the stable locus has

constant cardinality along a family of divisor classes. This cardinality depends only

on the degree of the divisor and the genus of the underlying curve. The agreement

of the stable and non-stable Weierstrass locus for a non-special divisor class allows

us to extend the same result, generically, to the number of (non-stable) Weierstrass

points.

With the assumption of genericity, we also show that there is a limiting distri-

bution of Weierstrass points of high degree that is intrinsic to the tropical curve Γ.

This gives a tropical result analogous Theorems 1.4 and 1.5, and answers Amini’s

question in [3]. The tropical Weierstrass points become distributed according to the

same measure µ that appears in Amini’s theorem.

We now state our results in more detail. Given a connected metric graph Γ and a

divisor D of degree n and rank r = r(D), we define the Weierstrass locus W (D) as

W (D) = {x ∈ Γ : D ∼ (r + 1)x+ E for some E ≥ 0},

where ∼ denotes linear equivalence. We define the stable Weierstrass locus of D as

W st(D) = {x ∈ Γ : br[D − (n− g)x] = x+ E for some E ≥ 0}

if the degree n ≥ g and W st(D) = ∅ otherwise, where br[D] denotes the break

divisor representative of a degree g divisor D. See Chapter 2 for definitions of linear

equivalence, rank, and break divisor.
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The locus W (D) may fail to be finite; in some cases it contains all of Γ. The

stable Weierstrass locus is finite for any divisor. If D has rank r(D) = n− g, i.e. D

is non-special, then we have the containment W st(D) ⊂ W (D). In particular, this

containment holds when the degree n ≥ 2g − 1.

Our first result addresses the question of counting the number of Weierstrass

points. Here “generic” means on a dense open subset of the space of divisor classes.

Theorem 4.20. Let Γ be a connected metric graph of genus g.

(a) For a generic divisor class of degree n ≥ g, the Weierstrass locus W (D) is finite

with cardinality

#W (D) = g(n− g + 1).

For a generic divisor class of degree n < g, W (D) is empty.

(b) For an arbitrary divisor class of degree n ≥ g, the stable Weierstrass locus

W st(D) is a finite set with cardinality

#W st(D) ≤ g(n− g + 1),

and equality holds for a generic divisor class.

Parts (a) and (b) of Theorem 4.20 are connected by showing that W (D) = W st(D)

for a generic divisor class.

The next main theorem describes the distribution of tropical Weierstrass points.

Here, note that the condition “W (D) is a finite set” is satisfied for generic [D] ∈
Picn(Γ) by Theorem 4.20.

Theorem 4.24. Let Γ be a metric graph of genus g, and let {Dn : n ≥ 1} be a

sequence of divisors on Γ with degDn = n. Let Wn be the Weierstrass locus of Dn.

Suppose each Wn is a finite set, and let

δn =
1

n

∑
x∈Wn

δx

denote the normalized discrete measure on Γ associated to Wn (where δx is the Dirac

measure at x). Then as n → ∞, the measures δn converge weakly to the Zhang

canonical measure µ on Γ.

The Zhang canonical measure is defined in Section 3.4. We use a different normal-

ization for µ than previous authors; namely we have total measure µ(Γ) = g rather

than µ(Γ) = 1. We also obtain a quantitative version of this distribution result which

specifies a bound on the rate of convergence; see Theorem 4.26.
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1.2.2 Torsion points of the Jacobian

As discussed above, a smooth algebraic curve X of genus one with a chosen

basepoint x0 ∈ X is equipped with a natural additive structure on points of X.

Given an algebraic curve with fixed basepoint x0, we say that x is a torsion point

if the divisor n(x− x0) is linearly equivalent to 0 for some positive n. Equivalently,

x is a torsion point if the Abel–Jacobi embedding AJ : X → Jac(X) (with respect

to x0) sends x to the torsion subgroup Jac(X)tors of the Jacobian. The Jacobian

of a genus g algebraic curve (over C) is a compact abelian group, isomorphic to

Cg/Z2g ∼= H1(X,C)/H1(X,Z)∨; its torsion subgroup is isomorphic to Q2g/Z2g.

Faltings’s theorem, previously known as Mordell’s conjecture, states that a smooth

algebraic curve of genus g ≥ 2 has finitely many rational points, i.e. points whose

coordinates are in Q. Motivated by analogy with Mordell’s conjecture, Manin and

Mumford conjectured that an algebraic curve of genus g ≥ 2 has finitely many torsion

points. This conjecture was proved by Raynaud [39].

Theorem 1.6 (Raynaud; formerly the Manin–Mumford conjecture). For any smooth

algebraic curve X of genus g ≥ 2, the intersection AJ(X) ∩ Jac(X)tors is finite.

The following stronger result remains open, though it is suspected to be true.

Problem 1.7 (Uniform Manin–Mumford bound). Is there a function N(g) such that

any smooth algebraic curve X of genus g ≥ 2 has #(AJ(X) ∩ Jac(X)tors) ≤ N(g)?

See Baker and Poonen [10, p. 111] for discussion of related problems and results;

they use the equivalent language of torsion packets on curves.

Katz, Rabinoff, and Zureick-Brown made important progress towards resolving

Problem 1.7 in [28], where they consider curves defined over a number field K and

their K-rational torsion points.

Theorem 1.8 (Katz–Rabinoff–Zureick-Brown [28, Theorem 1.2]). Suppose X is a

smooth algebraic curve of genus g ≥ 3 over a number field K of degree d = [K : Q].

There is an explicit function N(g, d) such that #(AJ(X(K) )∩Jac(X)tors) ≤ N(g, d).

When K = Q, for example, they prove that N(g, 1) = 84g2 − 98g + 28 satisfies the

above bound. They also prove a more complicated explicit bound N†(g, d) on the

number of torsion points1 #(AJ(X) ∩ Jac(X)tors), but only conditional on added

assumptions concerning the reduction of X modulo a prime. In the same paper [28],

Katz et. al. make progress towards a uniform version of Faltings’s’ theorem, for

curves which satisfy a condition on their Mordell–Weil rank. Tropical geometry (as

outlined above and in Chapter 2) plays a major role in their proofs, as well as the

1where X is defined over K but AJ(X) is not restricted to K-rational points

9



p-adic integration theory of Chabauty and Coleman. For more details and related

work, we refer the reader to [28, 29] and the references therein.

While Problem 1.7 remains open algebraic curves, we show that—conditionally—

there is a nice uniform bound for the number of torsion points on a tropical curve.

Theorem 5.24 (Uniform tropical Manin–Mumford bound). Let Γ be a connected

metric graph of genus g ≥ 2. If the intersection AJq(Γ)∩Jac(Γ)tors is finite, then we

have the uniform bound

#(AJq(Γ) ∩ Jac(Γ)tors) ≤ 3g − 3.

However, not all higher-genus metric graphs satisfy the hypotheses of Theo-

rem 5.24. In particular, the finiteness condition is not satisfied if all edge lengths of Γ

are rational. This observation is a consequence of the fact that on a graph with unit

edge lengths, the degree-0 divisor classes supported on vertices form a finite abelian

group, known as the critical group of the graph. This means that vertex-supported

divisor classes are always torsion; this reasoning can then be repeated on the vertex

sets obtained from taking uniform edge-subdivisions of the original graph.

Say a metric graph Γ satisfies the Manin–Mumford condition (or is Manin–Mumford

finite) if the intersection AJq(Γ) ∩ Jac(Γ)tors is finite, for every q ∈ Γ. We prove the

following tropical version of the Manin–Mumford conjecture.

Theorem 5.30. Let G be a biconnected graph of genus g ≥ 2. For a very general

choice of edge lengths ` : E(G) → R>0, the metric graph Γ = (G, `) satisfies the

Manin–Mumford condition.

Recall that a graph G is biconnected (or two-connected) if G is connected after

deleting any vertex. We say that a property holds for a very general point of some

real parameter space if it holds outside of a countable collection of proper Zariski-

closed subsets. In this theorem, it suffices that the edge lengths of Γ do not satisfy

any integer-coefficient polynomial relation of degree at most g − 1.

We can ask the same question about torsion points in the image of the higher-

degree Abel–Jacobi map AJ
(d)
D : Γd → Jac(Γ), defined by

(x1, . . . , xd) 7→ [
d∑
i=1

xi −D].

We say a metric graph Γ satisfies the degree d Manin–Mumford condition (or, is

Manin–Mumford finite in degree d) if AJ
(d)
D (Γd) intersects only finitely many torsion

points of Jac(Γ), for every D ∈ Symd(Γ). When d = 1, this is the usual Manin–

Mumford condition. If the degree d Manin–Mumford condition holds, then it also

holds in degree d′ for any 1 ≤ d′ ≤ d.
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Given that a metric graph Γ of genus g ≥ 1 satisfies the degree d Manin–Mumford

condition, it is straightforward to show that d < g. We show that this naive bound

can be improved to d < C log g for an explicit2 constant C (Corollary 5.39). The

argument is to find a combinatorial invariant γind = γind(Γ) such that the Manin–

Mumford degree must satisfy d < γind, and to show that γind < C log g.

We call γind the independent girth of a graph, which we define as

γind(G) = min
C
{ rk⊥(E(C)) }

where the minimum is taken over all cycles C in G, and rk⊥ denotes the rank function

of the cographic matroid M⊥(G). Recall that the girth of a graph is the minimal

length of a cycle, γ(G) = minC{#E(C)}; it follows that γind ≤ γ. In contrast to

girth, the independent girth is invariant under subdivision of edges, so γind(Γ) is

well-defined for a metric graph Γ.

If Γ = (G, `) is Manin–Mumford finite in degree d, we first observe that d < γ(G)

and then improve this bound to d < γind(G). The bound d < γind is sharp in the

following sense.

Theorem 5.38. Let G be a finite connected graph of genus g ≥ 1 with independent

girth γind. For a very general choice of edge lengths ` : E(G) → R>0, the metric

graph Γ = (G, `) is Manin–Mumford finite in degree d if and only if 1 ≤ d < γind.

We also prove a conditional uniform Manin–Mumford bound in the higher-degree

case, see Theorem 5.25.

1.3 Outline

In Chapter 2, we review background material on metric graphs and their divisor

theory. In Chapter 3, we review the interpretation of a metric graph as an electrical

resistor network, define Zhang’s canonical measure, and give Kirchhoff’s formulas for

the voltage function in terms of weighted sums over spanning trees. In Chapter 4,

we define the Weierstrass locus and stable Weierstrass locus for a divisor on a metric

graph, give examples, and we prove that W (D) is generically finite and compute

its cardinality. We then prove results on the distribution of Weierstrass points on a

metric graph. The results in this chapter appeared earlier in the preprint [40]. In

Chapter 5, we prove results on the Jacobian torsion points of a metric graph. We

give a tropical analogue of Raynaud’s theorem, and give a uniform bounds on the

number of torsion points assuming very general edge lengths.

2C = 4/ log 2 ≈ 5.771
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CHAPTER 2

Tropical Curves

In this section we define metric graphs and linear equivalence of divisors on metric

graphs. We use the terms “metric graph” and “abstract tropical curve” interchange-

ably. We recall the Baker–Norine rank of a divisor, and state the Riemann–Roch

theorem which is satisfied by this rank function.

2.1 Metric graphs and divisors

A metric graph is a compact, connected metric space which comes from assigning

positive real edge lengths to a finite connected combinatorial graph. Namely, we

construct a metric graph Γ by taking a finite set of edges E = {ei}, each isometric

to a real interval ei = [0, Li] of length Li > 0, gluing their endpoints to a finite set

of vertices V , and imposing the path metric. The underlying combinatorial graph

G = (E, V ) is called a combinatorial model for Γ. We allow loops and parallel edges

in a combinatorial graph G. We say e is a segment of Γ if it is an edge in some

combinatorial model.

The valence val(x) of a point x on a metric graph Γ is defined to be the number on

connected components of a sufficiently small punctured neighborhood of x. Points

in the interior of a segment of Γ always have valence 2. All points x with val(x) 6= 2

are contained in the vertex set of any combinatorial model.

The genus of a metric graph Γ is its first Betti number as a topological space,

g(Γ) = b1(Γ) = dimRH1(Γ,R).

If G is a combinatorial model for Γ, the genus is equal to g(Γ) = #E(G)−#V (G)+1.

Example 2.1. The metric graph on the left of Figure 2.1 has genus 0. A minimal

combinatorial model has 8 vertices and 7 edges.

Example 2.2. The metric graph on the right of Figure 2.1 has genus 2. A minimal

combinatorial model has 2 vertices and 3 edges.
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Figure 2.1: Metric graphs of genus 0 (left) and genus 2 (right).

A divisor on a metric graph Γ is a finite formal sum of points of Γ with integer

coefficients. The degree of a divisor is the sum of its coefficients; i.e. for the divisor

D =
∑

x∈Γ axx, we have deg(D) =
∑

x∈Γ ax. We let Div(Γ) denote the set of all

divisors on Γ, and let Divd(Γ) denote the divisors of degree d. We say a divisor is

effective if all of its coefficients are non-negative; we write D ≥ 0 to indicate that D

is effective. More generally, we write D ≥ E to indicate that D − E is an effective

divisor. We let Symd(Γ) denote the set of effective divisors of degree d on Γ. Symd(Γ)

inherits from Γ the structure of a polyhedral cell complex of dimension d.

We let DivR(Γ) denote the set of divisors on Γ with coefficients in R. In other

words, DivR(Γ) = Div(Γ)⊗Z R.

2.2 Principal divisors and linear equivalence

We define linear equivalence for divisors on metric graphs, following Gathmann–

Kerber [20] and Mikhalkin–Zharkov [32]. This notion is analogous to linear equiv-

alence of divisors on an algebraic curve, where rational functions are replaced with

piecewise Z-linear functions.

A piecewise linear function on Γ is a continuous function f : Γ → R such that

there is some combinatorial model for Γ such that f restricted to each edge is a linear

function, i.e. a function of the form

f(x) = ax+ b, a, b ∈ R,

where x is a length-preserving parameter on the edge. We let PLR(Γ) denote the set

of all piecewise linear functions on Γ.

A piecewise Z-linear function on Γ is a piecewise linear function such that all its

slopes are integers, i.e. f restricted to each edge has the form

f(x) = ax+ b, a ∈ Z, b ∈ R

(for some combinatorial model). We let PLZ(Γ) denote the set of all piecewise Z-

linear functions on Γ. The functions PLZ(Γ) are closed under the operations of

addition, multiplication by Z, and taking pairwise max and min.
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We let UTxΓ denote the unit tangent fan of Γ at x, which is the set of “directions

going away from x” on Γ. For v ∈ UTxΓ, the symbol εv for sufficiently small ε ≥ 0

means the point in Γ that is distance ε away from x in the direction v. For v ∈ UTxΓ
and a function f : Γ→ R we let

Dvf(x) = lim
ε→0+

f(x+ εv)− f(x)

ε

denote the slope of f while travelling away from x in the direction v (if it exists).

Given f ∈ PLZ(Γ), we define the principal divisor ∆(f) ∈ Div0(Γ) by

(2.1) ∆(f) =
∑
x∈Γ

axx where ax =
∑

v∈UTxΓ

Dvf(x).

In words, the coefficient in ∆(f) of a point x is equal to the sum of the outgoing slopes

of f at x. On a given segment, this divisor is supported on the finite set of points

at which f is not linear, sometimes called the “break locus” of f . If ∆(f) = D − E
where D,E are effective divisors with disjoint support, then we call D = ∆+(f) the

divisor of zeros of f and E = ∆–(f) the divisor of poles of f .

We say two divisors D,E are linearly equivalent, denoted D ∼ E, if there exists

a piecewise Z-linear function f such that

∆(f) = D − E.

Note that linearly equivalent divisors must have the same degree. We let [D] denote

the linear equivalence class of divisor D, i.e.

[D] = {E ∈ Div(Γ) : E ∼ D} = {D + ∆(f) : f ∈ PLZ(Γ)}.

We say a divisor class [D] is effective, or write [D] ≥ 0, if there is an effective

representative E ∼ D, E ≥ 0 in the equivalence class.

We let |D| denote the (complete) linear system of D, which is the set of effective

divisors linearly equivalent to D. We have

|D| = {E ∈ Div(Γ) : E ∼ D, E ≥ 0}
= {D + ∆(f) : f ∈ PLZ(Γ), ∆(f) ≥ −D}.

Unlike [D], the linear system |D| is naturally a compact polyhedral complex, with

topology induced by the inclusion |D| ⊂ Symd(Γ).

Remark 2.3. The map ∆ : PLZ(Γ) → Div(Γ) is also known as the metric graph

Laplacian on Γ. This comes from identifying Div(Γ) with the space of integer-valued

discrete measures on Γ, via

D =
n∑
i=1

aixi ←→ δ =
n∑
i=1

aiδxi
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so that ∆(f) coincides with the (distributional) second derivative − d2

dx2f(x). (The

second derivative here must be extended to accommodate points of valence 6= 2.) The

definition of the Laplacian on piecewise Z-linear functions, equation (2.1), naturally

extends to arbitrary piecewise linear functions on Γ with real slopes, if we also allow

real-valued coefficients in the divisor ∆(f). This yields a map

PLR(Γ)
∆−→ DivR(Γ)

from the space of all piecewise-linear functions of Γ, to R-valued discrete measures on

Γ. The kernel of this map is the set of constant functions. The cokernel of this map

is simply the degree function DivR(Γ)
deg−−→ R. We will see why this is the cokernel in

Section 3.1 on voltage functions. This fits in the short exact sequence

0→ R const−−−→ PLR(Γ)
∆−→ DivR(Γ)

deg−−→ R→ 0.

(Compare to the integral case, where the short exact sequence is

0→ R const−−−→ PLZ(Γ)
∆−→ Div(Γ) −→ Pic(Γ)→ 0,

with Pic(Γ) ∼= Z× (S1)g; see Section 2.3 below.)

Remark 2.4 (Linear equivalence as chip firing). We sometimes speak of a degree n

effective divisor on Γ as a collection of n “chips” placed on Γ. Changing the divisor D

to a linearly equivalent divisor D′ can be achieved through a sequence of “chip firing

moves” where we choose and simple cut1 of Γ consisting of m segments of length

ε, and on each edge move a chip from one end to the other. The piecewise-linear

Figure 2.2: Chip firing across an elementary cut.

function associated to such a chip firing move has slope 0 outside the cut segments,

and slope 1 on the cut segments. For more discussion of chip-firing see [4, Remark

2.2], [9, Section 1.5] and the references therein.

Remark 2.5 (Linear interpolation along f). Given a function f ∈ PLZ(Γ), we may

associate to f a 1-parameter family of effective divisors which “linearly interpolate”

between the zeros ∆+(f) and poles ∆–(f). We can think of this construction as

specifying a unique “geodesic path” between any two points in the complete linear

system |D|. This notion previously appeared in [31] under the name t-path.

1 A simple cut is a collection of segments of Γ such that removing the interiors of these segments disconnects Γ
into exactly two components.
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Namely, for λ ∈ R we let λ ∈ PLZ(Γ) also denote the constant function on Γ by

abuse of notation, and we define the effective divisor f−1
∆ (λ) by

f−1
∆ (λ) = ∆–(f) + ∆(max{f, λ}).

See Figure 2.3 for an illustration. Note that according to this definition, f−1
∆ (λ) = ∆–(f)

for λ sufficiently large and f−1
∆ (λ) = ∆+(f) for λ sufficiently small. It is clear from

definition that for any λ, f−1
∆ (λ) is linearly equivalent to ∆+(f) and to ∆–(f).

Figure 2.3: Linear interpolation showing the divisor f−1
∆ (λ).

2.3 Picard group and Jacobian

Let Pic(Γ) denote the Picard group of Γ, which is the abelian group of all linear

equivalence classes of divisors on Γ. The addition operation on Pic(Γ) is induced

from addition of divisors in Div(Γ). In other words, Pic(Γ) is the cokernel of the

map ∆ sending a piecewise Z-linear function to its associated principal divisor:

PLZ(Γ)
∆−→ Div(Γ)→ Pic(Γ)→ 0.

The kernel of ∆ is the set of constant functions on Γ.

Since the degree of a divisor class is well-defined, we have a disjoint union decom-

position

Pic(Γ) =
⊔
d∈Z

Picd(Γ),

where Picd(Γ) consists of divisor classes of degree d. The degree-0 component Pic0(Γ)

is known as the Jacobian of Γ, denoted Jac(Γ) := Pic0(Γ). The Jacobian Jac(Γ) is a

compact abelian group.

Theorem 2.6 (Abel–Jacobi theorem for metric graphs). Let Γ be a metric graph of

genus g. Then there is an isomorphism of compact abelian topological groups.

Jac(Γ) ∼= (S1)×g =

g︷ ︸︸ ︷
S1 × · · · × S1 .

Proof. See Mikhalkin–Zharkov [32]. The proof follows the same idea as the classical

Abel–Jacobi theorem, to show that Pic0(Γ) = H1(Γ,R)/H1(Γ,Z)∨ ∼= Rg/Zg.
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Addition of divisor classes induces an action of Jac(Γ) on Picd(Γ), for any fixed

degree d ∈ Z. Since Picd(Γ) is a torsor (or principal homogeneous space) for Jac(Γ)

under this action, the Abel–Jacobi theorem also implies there are homeomorphisms

Picd(Γ) ∼= (S1)×g.

We let Effd(Γ) denote the set of divisor classes on Γ of degree d which have an

effective representative. In other words, Effd(Γ) is the image of Symd(Γ) under the

(degree-d restriction of the) cokernel map Div(Γ)→ Pic(Γ):

Symd(Γ) Divd(Γ)

Effd(Γ) Picd(Γ).

coker ∆

The space Effd(Γ) is naturally a polyhedral complex of pure dimension d when

0 ≤ d ≤ g (see Gross et. al. [22]). In degree d ≥ g, we have Effd(Γ) = Picd(Γ),

i.e. every divisor class has an effective representative. This fact follows from the

theory of break divisors; see Section 2.5 below.

As a particularly important case, the theta divisor Θ = Θ(Γ) is Θ = Effg−1(Γ),

which lives inside Picg−1(Γ) as a codimension 1 polyhedral complex. Another impor-

tant case is in degree 1; Eff1(Γ) is the image of the map Γ→ Pic1(Γ) which sends a

point x to the divisor class [x]. If Γ has no bridge edge, then the map Γ → Eff1(Γ)

is a homeomorphism. This allows us to think of the metric graph Γ as a subset of

Pic1(Γ) in a canonical way.

There is a standard way to map a metric graph to its Jacobian, which depends

on a choice of basepoint. Given a choice of basepoint q ∈ Γ, the Abel–Jacobi map is

defined by

AJq : Γ→ Jac(Γ)(2.2)

x 7→ [x− q].

2.4 Reduced divisors

A divisor class [D] is typically very large, so it is convenient to have a method

of choosing a (somewhat-)canonical representative divisor inside [D]. When D has

arbitrary degree, we can do so after fixing a basepoint q on our metric graph Γ, using

the q-reduced divisor construction.

Given a point q ∈ Γ, the q-reduced divisor redq[D] is the unique divisor in [D]

which is effective away from q, and which minimizes a certain energy function among

such representatives. Intuitively, redq[D] is the divisor in [D] whose chips are “as

close as possible” to the basepoint q. We defer giving the full definition until Section
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3.2, following [11, Appendix A]. For now, we state these important properties of the

reduced divisor:

(RD1) [D] ≥ 0 if and only if redq[D] ≥ 0

(RD2) for any integer m, redq[mq +D] = mq + redq[D]

(RD3) the degree of redq[D] away from q is at most g, the genus of Γ (follows from

Riemann’s inequality, Corollary 2.15)

(RD4) for a fixed effective divisor D, the map Γ→ |D| sending q 7→ redq[D] is contin-

uous (due to Amini [2, Theorem 3]).

2.5 Break divisors and ABKS decomposition

When a divisor D has degree g, there is a canonical representative of [D] without

any choice of basepoint, using the concept of break divisor. This notion was intro-

duced by Mikhalkin–Zharkov [32] and studied extensively by An–Baker–Kuperberg–

Shokrieh [4]. We review some of their results in this section.

A break divisor is an effective divisor of degree g (the genus) which can be con-

structed in the following manner: choose a combinatorial model G = (V,E) for Γ

and choose a spanning tree T of G, then place one chip on each edge in the comple-

ment E\E(T ). (Note that E\E(T ) contains exactly g edges.) Placing a chip on the

endpoint of an edge is allowed.

The set of break divisors does not depend on the choice of combinatorial model.

We use Brg(Γ) to denote the set of all break divisors on Γ. We may view Brg(Γ) as

a topological space, using the topology induced from the inclusion in Symg(Γ).

Example 2.7. In Figure 2.4 we show three examples of break divisors, on the left,

and three examples of non-break divisors, on the right, on a genus 3 metric graph.

Figure 2.4: Break divisors and non-break divisors.

For a divisor class [D] whose degree is g, the genus of the underlying curve, there

is a unique representative of [D] which is a break divisor.

Theorem 2.8 (see [4, Theorem 1.1], [32, Corollary 6.6]). Let Γ be a metric graph of

genus g.
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(a) Every divisor class [D] ∈ Picg(Γ) contains a unique break divisor, which we

denote br[D].

(b) The map br : Picg(Γ) → Symg(Γ) sending a divisor class to its break divisor

representative is continuous and injective. Its image is the space of all break

divisors Brg(Γ).

(c) The map br : Picg(Γ) → Symg(Γ) is the unique continuous section of the map

[−] : Symg(Γ)→ Picg(Γ) taking an effective divisor to its linear equivalence class.

Namely, br is the unique continuous map such that the composition

Picg(Γ)
br−→ Symg(Γ)

[−]−→ Picg(Γ)

is the identity homeomorphism.

If we choose a combinatorial model (G, `) for the metric graph Γ, An–Baker–

Kuperberg–Shokrieh [4] showed that the theory of break divisors implies a nice com-

binatorial decomposition of Picg(Γ). (Picg(Γ) is defined in Section 2.3.)

Theorem 2.9 (ABKS decomposition, see [4, Section 3.2]). Suppose Γ = (G, `) is a

metric graph with a combinatorial model. Let T (G) denote the set of spanning trees

of G. Then

Picg(Γ) =
⋃

T∈T (G)

CT

where

CT = {[x1 + · · ·+ xg] : E(G)\E(T ) = {e1, . . . , eg}, xi ∈ ei}

denotes the set of divisor classes represented by summing a point from each edge of

G not in T . The cells CT have disjoint interiors, as T ∈ T (G) varies.

For fixed T , if we parametrize each edge ei 6∈ E(T ) as the closed real interval

[0, `(ei)], there is a natural surjective map
∏g

i=1[0, `(ei)] → CT . This map always

restricts to a homeomorphism on the respective interiors
∏g

i=1(0, `(ei)) → C◦T , but

may be non-injective on the boundary.

The proof is to combine Theorem 2.8 with the definition of break divisor, using

the auxiliary data of the spanning tree. Since Picg(Γ) is canonically homeomorphic

to Brg(Γ), we may view Theorem 2.9 as a decomposition of Brg(Γ).

Remark 2.10. If we take the combinatorial model for Γ to be sufficiently subdivided,

then for each T = G\{e1, . . . , eg}, the surjection
∏g

i=1[0, `(ei)] → CT is a (global)

homeomorphism. In particular, for this to hold it suffices that G has girth > g (i.e.

every cycle contains more than g edges). A necessary condition is that G has no

loops or parallel edges (if g ≥ 2).
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Example 2.11. Consider the metric graph shown on the left side of Figure 2.5. Its

minimal combinatorial model Γ = (G, `) contains two vertices and three edges. The

associated ABKS decomposition of Pic2(Γ) is shown on the right side of Figure 2.5;

segments on the boundary are glued to the parallel boundary segment. There are

three cells, corresponding to the three spanning trees in G.

Here Pic2(Γ) is homeomorphic to a torus (cf. Theorem 2.6). Each cell CT is

homeomorphic to a rectangle with a pair of opposite vertices glued together.

Figure 2.5: Metric graph of genus 2 (left), with ABKS decomposition of Pic2(Γ).

Proposition 2.12. Let q ∈ Γ be an arbitrary basepoint on a genus g metric graph.

(a) For a generic divisor class [D] of degree g, the reduced divisor redq[D] is equal

to the break divisor br[D].

(b) For a generic divisor class [D] of degree n, the reduced divisor redq[D] is equal

to

redq[D] = (n− g)q + E

where E is a break divisor.

Proof. (a) This follows from [4, Lemma 3.5], which states that inside an open cell of

the ABKS decomposition, a divisor class [D] has only a single effective representative.

(b) This follows from (a) and the property (2.4) that taking the q-reduced repre-

sentative is equivariant with respect to adding a multiple of q.

A semibreak divisor is an effective divisor which is a “partial sum” of a break

divisor, in the sense that E ∈ Symd(Γ) is a semibreak divisor if

E + E ′ is a break divisor, for some E ′ ∈ Symg−d(Γ).

In contrast to the case d = g, when 0 ≤ d < g an effective divisor class [E] ∈ Effd(Γ)

may have more than one semibreak representative. However, every divisor class in

this range has at least one semibreak representative.

Theorem 2.13. On a metric graph Γ of genus g, suppose 0 ≤ d ≤ g. Any effective

divisor of degree d is linearly equivalent to a semibreak divisor of degree d.

Proof. This is a result of Gross–Shokrieh–Tóthmérész; see [22, Theorem A].
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2.6 Rank and Riemann–Roch

We recall the definition of the rank of a divisor on a metric graph, originally

due to Baker and Norine [9] for divisors on a combinatorial graph, and extended

to metric graphs by Gathmann–Kerber [20] and Mikhalkin–Zharkov [32]. The rank

function is a natural way to extend the important distinction between effective and

non-effective divisor classes on a metric graph. Divisor classes with larger rank are

in a sense “further away” from the set of non-effective divisor classes, where distance

between divisors is given by adding or subtracting single points.

The rank r(D) of a divisor D on Γ is defined as

r(D) = max{r ≥ 0 : [D − E] ≥ 0 for all E ∈ Symr(Γ)}

if [D] is effective, and r(D) = −1 otherwise. Equivalently,

r(D) =

−1 if [D] is not effective,

1 + min
x∈Γ
{r(D − x)} if [D] is effective.

This second definition inductively gives the rank of a divisor in terms of divisors of

smaller degree; the base case is the set of non-effective divisor classes.2 Note that

the rank of a divisor D depends only on its linear equivalence class.

The canonical divisor on a metric graph Γ is defined as

K =
∑
x∈Γ

(val(x)− 2) · x.

The degree of the canonical divisor is degK = 2g−2, which agrees with the canonical

divisor on an algebraic curve.

Theorem 2.14 (Riemann-Roch for metric graphs). Let Γ be a metric graph of genus

g, and let K be the canonical divisor on Γ. For any divisor D on Γ,

r(D)− r(K −D) = deg(D) + 1− g.

Proof. See Gathmann–Kerber [20, Proposition 3.1] and Mikhalkin–Zharkov [32, The-

orem 7.3], which both adapt the arguments of Baker–Norine [9] for the case of com-

binatorial graphs.

Corollary 2.15 (Riemann’s inequality for metric graphs). For a divisor D on a

metric graph of genus g,

r(D) ≥ deg(D)− g.
2 By Riemann’s inequality, Corollary 2.15, a non-effective divisor class has degree at most g − 1.

21



Proof. This follows from Riemann–Roch since r(K −D) ≥ −1.

By Riemann’s inequality, combined with the bound r(D) ≥ −1 immediate from

the definition of rank, any divisor D satisfies r(D) ≥ max{deg(D)− g,−1}. We say

D is nonspecial if r(D) = max{deg(D)− g,−1}, and special otherwise.

2.7 Matroids

In this section we review the definition of a matroid. In particular, we recall the

graphic matroid and cographic matroid associated to a connected graph. Cographic

matroids will be useful for understanding the structure of the Jacobian of a metric

graph. For a complete reference on matroids, see [37] or [27].

A matroid M = (E,B) is a finite set E equipped with a collection B ⊂ 2E of

subsets of E, called the bases of the matroid, satisfying the basis exchange axiom:

for distinct subsets B1, B2 ∈ B, there exists some x ∈ B1\B2 and y ∈ B2\B1 such

that (B1\x) ∪ y ∈ B. In other words, we can produce a new basis by exchanging an

element of B1 with an element of B2.

An independent set of a matroid M = (E,B) is a subset of E which is a subset of

some basis. A cycle of M is a subset of E which is minimal among non-independent

sets, under the inclusion relation. The rank of a subset A ⊂ E is the cardinality of

a maximal independent set contained in A; we denote this by rk(A) or rkM(A).

Given a graph G = (V,E), the graphic matroid M(G) is the matroid on the ground

set E = E(G) with bases B = {E(T ) : T is a spanning tree of G}. An independent

set in M(G) is a subset of edges which span an acyclic subgraph. (i.e. h1(G|A) = 0.)

A cycle in M(G) is a cycle in the graph-theoretic sense, i.e. a subset of edges which

span a subgraph homeomorphic to a circle. The graphic matroid M(G) is also known

as the cycle matroid of G.

Example 2.16. Suppose G is the Wheatstone graph shown in Figure 2.6. The bases

of M(G) are {abd, abe, acd, ace, ade, bcd, bce, bde}. The cycles are {abc, abde, cde}.
(Here abc is shorthand for the set {a, b, c}.)

a b

c

d e

Figure 2.6: Wheatstone graph.

Given a graph G = (V,E), the cographic matroid M⊥(G) is the matroid on the

ground set E = E(G) whose bases are complements of spanning trees of G. An
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independent set in M⊥(G) is a set of edges whose removal does not disconnect G

(i.e. a set A ⊂ E such that G\A is connected, equivalently h0(G\A) = 1).3 A cycle

in M⊥(G) is a minimal set of edges A such that h0(G\A) = 2; this is called a simple

cut or a bond of G. The cographic matroid is also known as the cocycle matroid or

bond matroid of G. For more on cographic matroids, see [37, Chapter 2.3].

Note: when discussing the graphic or cographic matroid of a graph G, we always

use “cycle of G” to refer to a cycle in the graphic matroid sense. We use the terms

“cycle” and “simple cycle” for a graph interchangeably.

Example 2.17. Suppose G is the Wheatstone graph, shown in Figure 2.6. The

bases of the cographic matroid M⊥(G) are {ac, ad, ae, bc, bd, be, cd, ce}. The cycles

of M⊥(G) are {ab, acd, ace, bcd, bce, de}.

A consequence of Mikhalkin and Zharkov’s proof [32] of the tropical Abel–Jacobi

theorem (Theorem 2.6) is that the Abel–Jacobi map Γ → Jac(Γ) is linear on each

edge of Γ. The universal cover of Jac(Γ) is naturally identified with H1(Γ,R). The

Abel–Jacobi map, restricted to a single edge e ⊂ Γ, lifts locally to e → H1(Γ,R).

The structure of the edge-vectors in the image Γ → Jac(Γ) is exactly recorded by

the cographic matroid M⊥(G), for any combinatorial model Γ = (G, `).

Definition 2.18. Let Γ = (G, `) be a metric graph. Given edges e1, . . . , ek ∈ E(G),

let Div(e1, . . . , ek) ⊂ Divk(Γ) denote the set of effective divisors formed by adding

together one point from each edge ei. Let Eff(e1, . . . , ek) denote the corresponding

set of effective divisor classes,

Eff(e1, . . . , ek) = {[x1 + · · ·+ xk] : xi ∈ ei} ⊂ Pick(Γ).

Theorem 2.19. Let Γ = (G, `) be a metric graph. The dimension of Eff(e1, . . . , ek)

is equal to the rank of {e1, . . . , ek} in the cographic matroid M⊥(G).

Proof. For each edge ei ∈ E(G), let vi ∈ H1(Γ,R) denote a vector parallel to the

Abel–Jacobi image of ei in Jac(Γ). Then according to Definition 5.1.3 of [15, p. 156],

the set of vectors {vi : ei ∈ E(G)} form a realization of the cographic matroidM⊥(G).

This means that the cographic rank of {e1, . . . , ek} agrees with the dimension of the

linear span of {v1, . . . , vk}.
The subset Eff(e1, . . . , ek) ⊂ Pick(Γ) is naturally identified with the Minkowski

sum of the corresponding vectors v1, . . . , vk ∈ H1(Γ,R), so the claim follows.

Corollary 2.20. Let Γ = (G, `) be a metric graph of genus g. For any integer

d in the range 0 ≤ d ≤ g, the space Effd(Γ) of degree d effective divisor classes

has the structure of a cellular complex whose top-dimensional cells are indexed by

independent sets of size d in the cographic matroid M⊥(G).

3A ⊂ E(G) is called a cut of G if G\A is disconnected.
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CHAPTER 3

Resistor Networks

In this section we view a metric graph as a resistor network, where each edge is a

resistor whose resistance is equal to the length of the edge. This allows us to derive

useful properties of the local and global structure of the metric graph.

We define the Zhang canonical measure on a metric graph (due to Zhang [42]) via

the perspective of resistor networks following Baker–Faber [7].

3.1 Voltage function

We view a metric graph Γ as a resistor network by interpreting an edge of length

L as a resistor of resistance L. Note that this is well-defined on a metric graph due to

the series rule for combining resistances, so we have compatibility with subdividing

an edge into edges of shorter length. This interpretation is not only mathemati-

cally convenient, but physically honest—the electrical resistance of a wire is directly

proportional to its length, a fact known as Pouillet’s law.

On a resistor network we may send current from one point to another. On a given

segment, the voltage drop across the segment is equal to the resistance (i.e. length) of

the segment multiplied by the amount of current passing through the segment—this

is Ohm’s law.

Under an externally-applied current, the flow of current within the network is

determined by Kirchhoff’s circuit laws: the current law says that the sum of directed

currents out of any point is equal to zero (accounting for external currents), and the

voltage law says that the sum of directed voltage differences around any closed loop

is equal to zero. Our convention is that current flows from higher voltage to lower

voltage.

It is a well-known empirical fact that Kirchhoff’s circuit laws can be solved

uniquely for any externally-applied current flow which satisfies conservation of cur-

rent (i.e. internal current flows are unique). To some, it is also a well-known math-

ematical result. This is expressed in the following two definitions.
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Definition 3.1 (Physics version). Given points y, z ∈ Γ, the voltage function (or

electric potential function) jyz : Γ→ R is defined by

jyz (x) = voltage at x when sending one unit of current from y to z,

such that jyz (z) = 0, i.e. the network is “grounded” at z.

Recall that ∆ : PLR(Γ)→ DivR(Γ) is defined by ∆(f) =
∑

x axx where ax is the

“sum of outgoing slopes” at x, i.e. ax =
∑

v∈UTxΓDvf(x).

Definition 3.2 (Math version; definition–theorem). Given points y, z ∈ Γ, the volt-

age function jyz is the unique function in PLR(Γ) satisfying the conditions

∆(jyz ) = z − y and jyz (z) = 0.

Proof. For the existence and uniqueness of jyz , see Theorem 6 and Corollary 3 of

Baker–Faber [7]. Note that they use the notation jz(y,−) for jyz (−).

Note that jyz satisfies the following properties:

(V1) for any x ∈ Γ, 0 = jyz (z) ≤ jyz (x) ≤ jyz (y),

(V2) jyz (x) is piecewise linear in x,

(V3) jyz (x) is continuous in x, y, and z.

Example 3.3 (Voltage function on a graph). Consider the metric graph shown in

Figure 3.1, where one unit of current is sent from y (top left) to z (bottom left). The

left side of the figure indicates the values of jyz at trivalent points of Γ; at all other

points, jyz linearly interpolates between the values at the endpoints.

The right side of the figure indicates the magnitude of the slope of jyz along each

edge. Arrows point in the direction of negative slope.

Figure 3.1: Voltage function and currents on a metric graph.

Proposition 3.4. The voltage function jyz obeys the following symmetries.

(a) For any three points x, y, z ∈ Γ,

jyz (x) = jxz (y)
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(b) For any four points x, y, z, w ∈ Γ,

jyz (x)− jyz (w) = jxw(y)− jxw(z).

Proof. See Baker–Faber [7, Theorem 8]; they refer to (b) as the “Magical Identity”.

Note that (a) follows from (b) by setting z = w.

Remark 3.5. The existence of jyz ∈ PLR(Γ) for any y, z ∈ Γ implies that the

principal divisor map ∆ : PLR(Γ) → Div0
R(Γ) is surjective. This verifies the claim

made in Remark 2.3 concerning the exactness of the sequence

0→ R const−−−→ PLR(Γ)
∆−→ DivR(Γ)

deg−−→ R→ 0.

We many interpret any function f ∈ PLR(Γ) as a voltage function on Γ, which

results from the externally applied current ∆(f) ∈ DivR(Γ). In other words, the

voltage f results from sending current from ∆–(f) to ∆+(f) in Γ.

Proposition 3.6 (Slope-current principle). Suppose f ∈ PLR(Γ) has zeros ∆+(f)

and poles ∆–(f) of degree d ∈ R. Then the slope of f is bounded by d, i.e.

|f ′(x)| ≤ d for any x where f is linear.

(This bound is sharp; it is attained only on bridge edges, and only when all zeros

are on one side of the bridge and all poles are on the other side.)

Proof. Let λ = f(x). Then the “tropical preimage”

f−1
∆ (λ) := ∆–(f) + ∆(max{f, λ})

has multiplicity |f ′(x)| at x, since the outgoing slopes of max{f, λ} at x are |f ′(x)|
and 0. (Note x cannot be in ∆–(f) since f is linear at x.) Since the divisor f−1

∆ (λ)

is effective of degree d, this implies |f ′(x)| ≤ d as desired.

Remark 3.7. The above proposition is obvious from its “physical interpretation”:

f gives the voltage in the resistor network Γ when subjected to an external current

described by ∆–(f) units flowing into the network and ∆+(f) units flowing out. The

slope |f ′(x)| is equal to the current flowing through the wire containing x, which

must be no more than the total in-flowing (or out-flowing) current.

Next we address how the voltage function jyz ∈ PLR(Γ) may be approximated by a

sequence of functions in PLZ(Γ) (up to rescaling), which depend on reduced divisors.

We only use property (RD3) of reduced divisors.
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Proposition 3.8 (Discrete approximation of voltage function). Let {Dn : n ≥ 1} be

a sequence of divisors on Γ with degDn = n. Fix two points y, z ∈ Γ. Let redy[Dn]

and redz[Dn] denote the y– and z–reduced representatives in the divisor class [Dn],

and let fn be the unique function in PLZ(Γ) satisfying

∆(fn) = redz[Dn]− redy[Dn]

and fn(z) = 0. Then the functions 1
n
fn converge uniformly to jyz as n→∞.

Proof. If the sequence 1
n
hn converges to a limit, then the sequence 1

n+c
hn must also

converge to the same limit as n → ∞, for any constant c. Thus it suffices to show

that the functions 1
n
fn+g converge uniformly to jyz .

Let φn = 1
n
f(n+g) − jyz . We claim that the sequence of functions {φn ∈ PLR(Γ) :

n ≥ 1} converges uniformly to 0. Note that each φn is a continuous, piecewise-

differentiable function with φn(z) = 0, so for an arbitrary x ∈ Γ we may calculate

the value of φn(x) by integrating the derivative of φn along some path in Γ from z

to x. The length of such a path is bounded uniformly in x, since Γ is compact, so to

show that φn → 0 uniformly it suffices to show that the magnitude of the derivative

|φ′n| approaches 0 uniformly.

Claim: For any x ∈ Γ, |φ′n(x)| ≤ g
n
.

This follows from the slope-current principle (Proposition 3.6). By Riemann’s

inequality, the y-reduced representative in [D(n+g)] may be expressed as

redy[Dn+g] = ny + En

for some effective divisor En of degree g. Similarly, redz[Dn+g] = nz + Fn for some

effective Fn of degree g. Thus the principal divisor associated to 1
n
fn+g is

∆(
1

n
fn+g) = z +

1

n
Fn − y −

1

n
En.

Recall that ∆(jyz ) = z − y; it follows that the principal R-divisor associated to φn is

∆(φn) = ∆

(
1

n
fn+g − jyz

)
=

1

n
Fn −

1

n
En.

In particular, ∆(φn) is a difference of effective R-divisors of degree g
n
, so the zeros

∆+(φn) and poles ∆–(φn) each have degree at most g
n
. By Proposition 3.6, this

implies |φ′n(x)| ≤ g
n

as claimed.

We separate the central claim in the above proof to a named proposition, for

future reference.
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Proposition 3.9 (Quantitative version of voltage approximation). Let Γ be a metric

graph of genus g, and let Dn be a degree n divisor on Γ. Fix two points y and z on

Γ, and let fn be the unique function in PLZ(Γ) satisfying

∆(fn) = redz[Dn]− redy[Dn]

and fn(z) = 0. Then for n > g and any x ∈ Γ, |( 1
n−gfn − j

y
z )′(x)| ≤ g

n−g .

Remark 3.10. We can interpret Proposition 3.8 as follows: the existence of the

voltage function jyz : Γ→ R follows from Riemann’s inequality for divisors on Γ.

3.2 Energy and reduced divisors

Here we give a definition of q-reduced divisors on a metric graph. We will only

need to use q-reduced divisors for effective divisor classes, so we restrict our discussion

here to the effective case.

Definition 3.11. Given a basepoint q on Γ, we define the q-energy Eq : Γ→ R by

Eq(y) = jyq (y) = r(y, q).

Given an effective divisor D =
∑

i yi, we define the q-energy Eq(D) by

Eq(D) =
∑
i

∑
j

jyiq (yj).

Note that

• Eq(D) ≥ 0,

• Eq(D) is strictly positive if D has support outside of q,

• Eq(D) ≥
∑

i Eq(yi), and in general this inequality is strict.

Theorem 3.12 (Baker–Shokrieh [11, Theorem A.7]). Fix a basepoint q ∈ Γ, and let

D be an effective divisor on Γ. There is a unique divisor D0 ∈ |D| which minimizes

the q-energy, i.e. such that

Eq(D0) < Eq(E) for all E ∈ |D|, E 6= D0.

Using this result, we define the q-reduced divisor redq[D] as the unique divisor in |D|
which minimizes the q-energy Eq.

Note that this definition is non-standard; the standard definition for reduced

divisor is a combinatorial condition which can be phrased in the language of chip-

firing, see [2, p. 4854], [4, Definition 2.3].

Example 3.13. In Figure 3.2 we show a degree 4 divisor, on the left, and its reduced

representative with respect to basepoint q, on the right.
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Figure 3.2: A divisor and its reduced divisor representative.

3.3 Resistance function

In this section we recall the definition of the (Arakelov–Zhang–Baker–Faber)

canonical measure µ on a metric graph.

Definition 3.14. Let r : Γ× Γ→ R denote the effective resistance function on the

metric graph Γ. Namely, viewing Γ as a resistor network

r(x, y) = effective resistance between x and y

= total voltage drop when sending 1 unit of current from x to y

If we wish to emphasize the underlying graph, we write r(x, y; Γ). In terms of the

voltage function from Section 3.1, r(x, y) = jxy (x).

It is straightforward to verify that the resistance function satisfies the following

properties:

1. r(x, x) = 0,

2. r(x, y) > 0 if x 6= y,

3. r(x, y) is continuous with respect to x and y

4. r(x, y) = r(y, x)

In contrast with the voltage function jyz , the function x 7→ r(x, y) is not piecewise

linear; we will see that it is instead piecewise quadratic.

There is a special case of effective resistance which will be particularly useful in

the following sections.

Definition 3.15. Given a segment e in a metric graph Γ, the deleted effective re-

sistance `eff(Γ\e) is the effective resistance between endpoints of e in the e-deleted

subgraph; that is, if s, t are the endpoints of e

`eff(Γ\e) = r(s, t; Γ\e).

Note that `eff(Γ\e) = 0 when e is a loop, and `eff(Γ\e) = +∞ when e is a bridge.

The rule for combining resistances in parallel implies that for a segment e with

endpoints s and t,

r(s, t; Γ) =

(
1

`(e)
+

1

`eff(Γ\e)

)−1

=
`(e)`eff(Γ\e)
`(e) + `eff(Γ\e)

.
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Example 3.16. Let Γ be a circle of circumference L. By choosing a basepoint which

we denote as 0, we may parametrize Γ with the interval [0, L]. Identifying points in

this way, we have

r(x, 0) = parallel combination of resistances x and L− x

=
x(L− x)

x+ (L− x)
= x− 1

L
x2.

The effective resistance is maximized when x = 1
2
L, with maximum value 1

4
L. The

effective resistance is minimized when x = 0 or x = L, with effective resistance 0.

3.4 Canonical measure

Definition 3.17. The canonical measure µ = µΓ on a metric graph Γ is the contin-

uous measure defined by

µ = µ(dx) = −1

2

d2

dx2
r(x, y0) dx,

where x is a length-preserving parameter on Γ, dx is the Lebesgue measure, and y0

is a fixed point in Γ. This defines µ on the open dense subset of Γ where the second

derivative exists; at the finite set of points where r(−, y0) is not differentiable, or

where the valence of x differs from 2, we let µΓ = 0.

Remark 3.18. The first derivative of a smooth function on Γ is only well-defined up

to a choice of sign, since there are two directions in which we could parametrize any

segment. The second derivative, however, is well-defined on each segment (without

choosing an orientation) because (±1)2 = 1 so either choice of direction yields the

same second derivative.

Remark 3.19. The definition of canonical measure is independent of the choice of

basepoint y0 because of the “Magical Identity” in Proposition 3.4 (b). Namely, for

two basepoints y0, z0 we have jxy0
(x)− jxy0

(z0) = jxz0(x)− jxz0(y0) which implies

r(x, y0)− r(x, z0) = jxy0
(x)− jxz0(x)

= jxy0
(z0)− jxz0(y0) = jz0y0

(x)− jy0
z0

(x).

Since the voltage functions jz0y0
, jy0
z0

are piecewise linear, we have

d2

dx2
(r(x, y0)− r(x, z0)) =

d2

dx2
(jz0y0

(x)− jy0
z0

(x)) = 0.

Remark 3.20. The definition of canonical measure given here differs from that

used by Baker–Faber [7], in that our µ does not have a discrete part supported at

the points of Γ with valence different from 2.
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Remark 3.21. The definition of canonical measure given here is equal to Zhang’s

canonical measure [42, Section 3, Theorem 3.2 c.f. Lemma 3.7] associated to the

canonical divisor D = K, up to a multiplicative factor. Our canonical measure is

normalized to satisfy µ(Γ) = g rather than µ(Γ) = 1.

The canonical measure of Baker–Faber is equal to Zhang’s canonical measure

associated to D = 0.

Example 3.22 (Canonical measure in genus one and two).

(a) If Γ is a circle of circumference L, by Example 3.16 we have r(x, 0) = x− 1
L
x2

so the canonical measure is µ = 1
L
dx. The total measure on the metric graph is

µ(Γ) = 1.

(b) Consider the metric graph Γ of genus 2 shown in Figure 3.3, with edge lengths

a, b, c.

`(e) = a `eff(Γ\e) = bc
b+c

Figure 3.3: Genus 2 metric graph with edge lengths a, b, c.

On the edge of length a, we have `(e) = a and `eff(Γ\e) = bc
b+c

. When measuring

effective resistance between points in the interior of e, we can think of Γ as a

circle of total length `(e) + `eff(Γ\e) = ab+ac+bc
b+c

. Thus the canonical measure on

this edge is µ = b+c
ab+ac+bc

dx, by the computation for a circle in Example 3.16. The

total measure on this edge is µ(e) = ab+ac
ab+ac+bc

. By symmetry, the total measure

on the metric graph is µ(Γ) = 2.

Proposition 3.23. The canonical measure µ on a metric graph Γ is a piecewise-

constant multiple of the Lebesgue measure which vanishes on all bridge segments.

On a non-bridge segment e in Γ,

(3.1) µ|e =
1

`(e) + `eff(Γ\e)
dx

where `(e) denotes the length of e and `eff(Γ\e) denotes the effective resistance be-

tween the endpoints of e on the graph after removing the interior of e.

For a bridge segment, µ|e = 0.

Proof. See Baker–Faber [7, Theorem 12]; note that our µ is defined to be the con-

tinuous part of Baker–Faber’s µcan.

The proof idea is that when x, y lie on the segment e, the resistance function r(x, y)

behaves as if Γ were a circle of length `(e) + `eff(Γ\e); (see Example 3.22(b).)
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Note that the local expression (3.1) for the canonical measure is preserved under

subdividing an edge. If a segment e is subdivided into e1 t e2, the formula for µ|e
agrees with µ|e1 because

`(e1) = `(e)− `(e2) and `eff(Γ\e1) = `eff(Γ\e) + `(e2).

Corollary 3.24. Let Γ be a metric graph with canonical measure µ, and let e be a

segment in Γ (i.e. e is subspace isometric to a closed interval, whose interior points

all have valence 2 in Γ). Then

(a) 0 ≤ µ(e) ≤ 1;

(b) µ(e) = 0 ⇔ e is a bridge edge;

(c) µ(e) = 1 ⇔ e is a loop edge.

Proof. By Proposition 3.23, we have µ(e) = 0 for bridges and µ(e) = `(e)
`(e)+`eff(Γ\e)

otherwise.

Proposition 3.25 (Foster’s theorem). Let Γ be a metric graph of genus g, and let

µ be the canonical measure on Γ. Then the total measure on Γ is

µ(Γ) = g.

Proof. See Baker–Faber [7, Corollary 5 and Corollary 6]. An equivalent statement,

using different terminology, appeared in Foster [19].

3.5 Kirchhoff formulas

In this section we review Kirchhoff’s formulas for the currents and voltage drops

in a resistor network. These formulas were published (in some equivalent form) by

Kirchhoff in [30]. The argument is combinatorial, but can be expressed as linear

algebra and is essentially equivalent to what is known as the matrix-tree theorem.

Expositions of this material are found in Bollobás [13, §II.1] and Grimmet [21, §1.2].

The material in this section will be used in Chapter 5.

Theorem 3.26 (Kirchhoff). Suppose Γ = (G, `) is a resistor network (metric graph)

with resistance function ` : E(G) → R>0. For vertices y, z ∈ V (G), let jyz : Γ → R
denote the voltage function which sends one unit of current from y to z.

(a) The current across a directed edge ~e = (e+, e−) is

(3.2)
jyz (e+)− jyz (e−)

`(e)
=

∑
T∈T (G) sgn(T, y, z, ~e)w(T )∑

T∈T (G) w(T )
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where T (G) denotes the spanning trees of G, the weight w(T ) of a spanning tree

is defined as

w(T ) =
∏

ei 6∈E(T )

`(ei),

and

sgn(T, y, z, ~e) =


+1 if the path in T from y to z passes through ~e

−1 if the path in T from y to z passes through −~e
0 otherwise.

(b) The total voltage drop between y and z is

(3.3) jyz (y)− jyz (z) =

∑
T∈T (G0) w(T )∑
T∈T (G) w(T )

in the same notation as above, and where the graph G0 (in the numerator) is the

graph obtained from G by identifying vertices y and z.

Proof. For part (a), see Bollobás [13, Theorem 2, §II.1]. Part (b) follows from con-

sideration of the graph G+ obtained by adding an auxiliary edge to G between y and

z, and then applying part (a) to G+ with respect to the auxiliary edge.

The expressions (3.2), (3.3) for the current, resp. voltage drop, are both a ratio

of homogeneous polynomials1 in the variables {`(ei) : ei ∈ E(G)}. In (3.2), the

numerator and denominator are homogeneous of degree g; in (3.3), the denominator

has degree g while the numerator has degree g + 1. As a result, the current (3.2) is

invariant under simultaneous rescaling of edge lengths, while the voltage drop (3.3)

scales linearly with respect to simultaneously rescaling all edge lengths. This should

agree with physical intuition.

Example 3.27. Consider the theta graph shown in Figure 3.4, where a = `(e1),

b = `(e2), c = `(e3) are edge lengths (resistances). The spanning trees are {e3, e2, e1}
which have respective weights {ab, ac, bc}. The current along edge e1 is

jyz (y)− jyz (z)

a
=

bc

ab+ ac+ bc
,

according to (3.2). We have

jxy (x)− jxy (y) = a

(
bc

ab+ ac+ bc

)
=

abc

ab+ ac+ bc

in agreement with (3.3); G0 consists of three loop edges. Note the symmetry in a, b, c.

1moreover, polynomials whose nonzero coefficients are all ±1
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y z

a

b

c

Figure 3.4: Theta graph with variable edge lengths.

Example 3.28. Let G be the Wheatstone graph in Figure 3.5 (left), with edge

lengths a = `(e1), . . . , f = `(e5). The spanning trees are

T = {345, 245, 234, 145, 135, 125, 124, 123},

where 123 shorthand for spanning tree {e1, e2, e3}, and the corresponding weights

are {ab, ac, af, bc, bd, cd, cf, df}. The current along edge e3 is

jyz (e3,+)− jyz (e3,−)

c
=

ab+ af

ab+ ac+ af + bc+ bd+ cd+ cf + df
,

while the current along e1 is

jyz (y)− jyz (z)

a
=

bc+ bd+ cd+ cf + df

ab+ ac+ af + bc+ bd+ cd+ cf + df
.

The total voltage drop from y to z is

jyz (y)− jyz (z) =
abc+ abd+ acd+ acf + adf

ab+ ac+ af + bc+ bd+ cd+ cf + df
,

in agreement with (3.3); the quotient graph G0 is shown to the right in Figure 3.5.

a b

c

d f

z

y

a

d

b

c

f

y ∼ z

Figure 3.5: Wheatstone graph with variable edge lengths, and a quotient graph.

If we let d = f = 0, then we recover the formulas of Example 3.27.
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CHAPTER 4

Weierstrass Points

In this chapter we define the Weierstrass locus and the stable Weierstrass locus of

an arbitrary divisor D on a metric graph Γ. We first review the notion of Weierstrass

point on an algebraic curve. We then prove theorems regarding the distribution of

Weierstrass points.

The results in this chapter first appeared in the preprint [40].

4.1 Classical Weierstrass points

Recall that for an algebraic curve X of genus g, the ordinary Weierstrass points

are defined as follows. The canonical divisor K on X determines a canonical map

to projective space ϕK : X → Pg−1. Generically, a point on ϕK(X) will have an

osculating hyperplane in Pg−1 which intersects ϕK(X) with multiplicity g − 1. For

finitely many “exceptional” points on ϕK(X), the osculating hyperplane will intersect

the curve with higher multiplicity; the preimages of these exceptional points are the

ordinary Weierstrass points of X. These are also known as the flex points of the

embedded curve ϕK(X) ⊂ Pg−1.

This notion may be generalized by replacing K with an arbitrary (basepoint-free)

divisor. Given a divisor D on X, there is an associated map to projective space

ϕD : X → Pr, known as the complete linear embedding defined by D. The set of

flex points of the embedded curve ϕD(X), where the osculating hyperplane intersects

the curve with multiplicity greater than r, are the (generalized) Weierstrass points

associated to the divisor D. If D has degree n ≥ 2g − 1, the number of Weierstrass

points of D counted with multiplicity is g(n− g + 1)2.

The existence of an osculating hyperplane of multiplicity greater than r, at the

point ϕD(x) ∈ ϕD(X), is equivalent to the existence of a non-zero global section of

the line bundle L(X,D − (r + 1)x), i.e. to having h0(X,D − (r + 1)x) ≥ 1.
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4.2 Tropical Weierstrass points

Given a divisor D on a metric graph, we define the set of Weierstrass points of D

using the Baker–Norine rank function r(D), which is the analogue of h0(D)− 1.

Definition 4.1. Let D be a divisor on a metric graph Γ, with rank r = r(D). A

point x ∈ Γ is a Weierstrass point for D if

[D − (r + 1)x] ≥ 0.

The Weierstrass locus W (D) ⊂ Γ of D is the set of its Weierstrass points. An

ordinary Weierstrass point is a Weierstrass point for the canonical divisor K.

Note that the Weierstrass locus of D depends only on the divisor class [D].

Remark 4.2. If the divisor class [D] is not effective, i.e. r(D) = −1, then the set

of Weierstrass points of D is empty. Thus we may restrict our attention to studying

Weierstrass points for effective divisor classes.

Example 4.3. Suppose Γ is a genus 1 graph and D is a divisor of degree 6, indicated

by the black dots in Figure 4.1 with multiplicities. This divisor has rank r = 5 since

it is in the nonspecial range of Riemann–Roch. The Weierstrass locus of D consists

of 6 points evenly spaced around Γ, indicated in red.

Figure 4.1: Weierstrass points, in red, on a genus 1 metric graph.

Example 4.4. Suppose Γ is a complete graph on 4 vertices, with distinct edge

lengths. This graph has genus 3. Consider the canonical divisor K on Γ, which is

supported on the four trivalent vertices. The Weierstrass locus of K consists of 8

distinct points on Γ, shown in red in Figure 4.2.

Figure 4.2: Weierstrass locus on a genus 3 metric graph.

In the following examples, we use “chip firing” language to describe linear equiv-

alence of divisors; see Remark 2.4.
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Example 4.5 (Wedge of circles). Suppose Γ is a wedge of g circles, and let x0

denote the point of Γ lying on all g circles. For a generic divisor class [Dn] of degree

n (meaning generic inside of Picn(Γ)), the x0-reduced representative of [Dn] consists

of n− g chips at x0 and one chip in the interior of each circle. The Weierstrass locus

W (Dn) contains n − g + 1 evenly-spaced points on each circle of Γ, for a total of

g(n− g + 1) points.

Example 4.6 (Failure of W (D) to be finite). Consider the genus 3 graph shown in

Figure 4.3. Suppose D = K is the canonical divisor. By Riemann–Roch, K has rank

r = 2. It is possible to move all 4 chips to lie on the middle loop, so any point in

the middle loop has redx[D] ≥ 3x. The Weierstrass locus W (K) contains the middle

loop, but not the two outer loops.

Figure 4.3: Weierstrass locus, in red, which is not finite.

Example 4.7 (Failure of W (D) to be finite). Consider the genus 3 graph shown in

Figure 4.4. Suppose D is a degree 4 divisor supported on one of the bridge edges as

shown. (Note that D ∼ K.) This divisor has rank r ≤ 2, since we cannot move the

chips in D to lie on three distinct loops freely. However, for any point x, the reduced

divisor redx[D] has at least 3 chips at x.

Figure 4.4: Weierstrass locus which contains Γ.

Remark 4.8. For any metric graph with a bridge edge, it can be shown that the

entire bridge edge is contained in the Weierstrass locus of the canonical divisor so in

particular W (K) is not finite. We omit the details.

4.2.1 Stable tropical Weierstrass points

In this section we define the stable Weierstrass locus W st(D) of a divisor D on

a metric graph. This definition is meant to fix undesirable behavior of the naive

Weierstrass locus W (D). In particular, W st(D) is always a finite set.
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For the definition of break divisor, see Section 2.5.

Definition 4.9. Let D be a divisor of degree n on a metric graph Γ. If n ≥ g, the

stable Weierstrass locus W st(D) ⊂ Γ is the set of all points x ∈ Γ such that

br[D − (n− g)x] ≥ x

where br[E] is the break divisor representative of the divisor class [E]. In other

words, x is a stable Weierstrass point of D if

there exists a break divisor E ≥ x such that E + (n− g)x ∈ [D].

Note that if D has degree n = g, then W st(D) is exactly the support of br[D].

If D has degree n < g, we define W st(D) to be empty.

In the above definition, if n ≥ g then n − g is the rank of a generic divisor

class in Picn(Γ). If a divisor class [D] in Picn(Γ) has rank r(D) = n − g, then

W st(D) ⊂ W (D); otherwise, this containment may fail to hold. In particular, we

have W st(D) ⊂ W (D) for all divisors of degree n ≥ 2g − 1.

Example 4.10 (Divisor with W st(D) 6⊂ W (D)). Consider the genus 3 metric graph

shown in Figure 4.5. The canonical divisor K is indicated in black. This divisor has

degree n = 4 and rank r(K) = 2. The divisor is special, because r(K) > n− g = 1.

On the left side, the Weierstrass locus is shown in red; the right side shows the stable

Weierstrass locus. The stable Weierstrass locus consists of the midpoint of each edge.

The sets W (K) and W st(K) are disjoint.

W (K) W st(K)

Figure 4.5: Divisor with Weierstrass locus and stable Weierstrass locus.

4.3 Finiteness of Weierstrass points

In this section we show that the Weierstrass locus of a generic divisor class [D]

on a metric graph is a finite set whose cardinality is #W (D) = g(n− g + 1). We do

so by studying the stable Weierstrass locus W st(D), defined in Section 4.2.1.
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4.3.1 Setup

Our main technical tool is to consider the ABKS decomposition of Picg(Γ) (see

Section 2.5) and the topology of certain branched covering spaces.

As the divisor class [D] varies over Picn(Γ), we realize the stable Weierstrass loci

W st(D) as the fibers of a surjective map X → Picn(Γ). We are able to study the

cardinality of W st(D) by imposing a nice topology on X and analyzing topological

properties of the map X → Picn(Γ).

Recall that Brg(Γ) denotes the space of break divisors on Γ, viewed as a subspace

of Symg(Γ).

Definition 4.11. Let B̃r
g
(Γ) denote the space

B̃r
g
(Γ) = {(x,E) ∈ Γ× Symg−1(Γ) : x+ E is a break divisor}.

This defines a closed subset of the compact Hausdorff space Γ×Symg−1(Γ), so B̃r
g
(Γ)

is compact and Hausdorff.

Remark 4.12. We may think of B̃r
g
(Γ) as the space of “pointed break divisors” on

Γ, i.e. B̃r
g
(Γ) is homeomorphic to {(x,D) ∈ Γ× Brg(Γ) such that x ≤ D}.

Let σ : B̃r
g
(Γ) → Brg(Γ) denote the “summation” map (x,E) 7→ x + E, and let

σm : B̃r
g
(Γ) → Picm+g−1(Γ) denote the “summation with multiplicity” map defined

by

σm : (x,E) 7→ [mx+ E].

Let π1 : B̃r
g
(Γ)→ Γ denote projection to the first factor, i.e. π1(x,E) = x.

Lemma 4.13. Suppose [D] ∈ Picm+g−1(Γ), and let σm and π1 be defined as above.

(a) The stable Weierstrass locus W st(D) is equal to π1(σ−1
m [D]).

(b) We have #W st(D) = #σ−1
m [D].

Proof. (a) This follows from the definition of the stable Weierstrass locus.

(b) The claim is that π1 is injective on the preimage σ−1
m [D]. To see this, consider

two points (x,E) and (x′, E ′) ∈ B̃r
g
(Γ) in the same fiber σ−1

m [D]. This means that

[mx+ E] = [mx′ + E ′] = [D]. Suppose π1(x,E) = π1(x′, E ′), i.e. that x = x′. Then

[D − (m− 1)x] = [x+ E] = [x+ E ′] ∈ Picg(Γ).

Since both (x+ E) and (x+ E ′) are break divisors, the uniqueness of break divisor

representatives (Theorem 2.8) implies that E = E ′. This shows that the restriction

of π1 to σ−1
m [D] is injective, as desired.
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Let (G, `) be a combinatorial model for Γ, which induces a decomposition of break

divisors Brg(Γ) into a union of cells

(4.1) Brg(Γ) =
⋃

T∈T (G)

CT

indexed by spanning trees of G, where the interior of each cell CT is homeomorphic

to an open hypercube. (See Section 2.5 or [4].) Note that Brg(Γ) is homeomorphic

to Picg(Γ). The ABKS decomposition (4.1) of Brg(Γ) induces a decomposition

(4.2) B̃r
g
(Γ) =

⋃
T∈T (G)

 ⋃
e 6∈E(T )

C̃T,e


where the second union is over edges e of G not contained in the spanning tree T .

There are g such edges for any T . Namely,

C̃T,e = {(x,E) ∈ B̃r
g
(Γ) : x+ E ∈ CT , x ∈ e}

The map B̃r
g
(Γ)→ Brg(Γ) sends the cell C̃T,e surjectively to CT . On the interior C◦T

of each cell, each fiber of B̃r
g
(Γ)→ Brg(Γ) contains exactly g points.

If κ(G) = #T (G) denotes the number of spanning trees of G, the ABKS decom-

position (4.2) decomposes B̃r
g
(Γ) into a union of g · κ(G) cells.

Example 4.14. In Figure 4.6, we show the decomposition of B̃r
2
(Γ) into six cells

C̃T,e, where Γ is a theta graph. This graph has genus g = 2 and κ(G) = 3 spanning

trees. In this case Br2(Γ) ∼= Pic2(Γ) ∼= R2/Z2 is a genus 1 surface (cf. Example 2.11,

Theorem 2.6), and B̃r
2
(Γ) is a surface of genus 2. The map B̃r

2
(Γ) → Br2(Γ) is a

branched double cover ramified at two points, corresponding to the two break divisors

which consist of two chips at a trivalent vertex of Γ.

Figure 4.6: ABKS decomposition of B̃r
2
(Γ).

In Figure 4.6, each cell C̃T,e shows a representative break divisor x + E where

the point x ∈ e is marked with an extra outline. Edges of C̃T,e which have x on an

endpoint of e are marked in bold. Edges on the boundary are glued to the parallel

boundary edge which has the same weighting (bold or unbold).
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4.3.2 Point-set topology

Definition 4.15. Let M and N be compact Hausdorff spaces, and let N be path-

connected. We say p : M → N is a branched covering map if

(i) p is continuous and surjective

(ii) p is an open map (the image of an open set is open)

(iii) p−1(y) is finite for each y ∈ N

and there exists a closed subset R ⊂ N such that

(iv) N\R is path-connected

(v) R has empty interior in N

(vi) the restriction of p to M\p−1(R)→ N\R is a topological covering map.

The subspace R is a ramification locus of p, and the preimage p−1(R) is a branch

locus. (Note that properties (ii) and (v) imply p−1(R) has empty interior in M .)

It is straightforward to verify that the map B̃r
g
(Γ) → Brg(Γ) from Section 4.3.1

is a branched covering. We show below, in Proposition 4.19, that in fact each σm :

B̃r
g
(Γ)→ Picm+g−1(Γ), for m ≥ 1, is a branched covering.

Recall that a map is proper if the preimage of a compact set is compact. Recall

that a map f : X → Y is a local homeomorphism if, for any x ∈ X there is an

open neighborhood U containing x such that f(U) is open in Y and the restriction

U → f(U) is a homeomorphism. A covering map is always a local homemorphism,

but the converse is not true.

The following lemma will be used to check the last condition (vi) in Definition 4.15,

that the restriction M\p−1(R)→ N\R is a covering map.

Lemma 4.16. Suppose p : X → Y is a local homeomorphism between locally com-

pact, Hausdorff spaces. If p is proper and surjective, then p is a covering map.

This is a standard exercise in point-set topology; see e.g. Ho [24, Lemma 2].

Lemma 4.17. Suppose p : M → N is a branched covering with ramification locus

R ⊂ N such that the restriction p : M\p−1(R) → N\R is a covering map of degree

d. Then for any y ∈ N , the preimage p−1(y) has cardinality at most d.

Note: the restriction of p to M\p−1(R)→ N\R has constant degree d because in

the definition of branched cover, N\R is assumed to be path connected.

Proof of Lemma 4.17. Let y ∈ R be a point in the ramification locus, and let

x1, . . . , xk be the points in the preimage p−1(y). Since M is Hausdorff, we may

choose open neighborhoods U1, . . . , Uk with xi ∈ Ui which are disjoint, Ui ∩ Uj = ∅.
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Let C = M\(U1 ∪ · · · ∪ Uk) be the complement of these neighborhoods, which is

closed in M . Since M is compact and N is Hausdorff, the image p(C) is closed in N .

Thus V = N\p(C) is open and nonempty since y ∈ V . Note that by construction

p−1(V ) = M\p−1(p(C)) ⊂M\C = U1 ∪ · · · ∪ Uk.
Let U ′i be the intersection of p−1(V ) with Ui, which is open and nonempty because

xi ∈ U ′i . Since the Ui were chosen to be disjoint, p−1(V ) = U ′1 t · · · t U ′k.
Note that p is an open map (by definition of branched cover), so the intersection

p(U ′1) ∩ · · · ∩ p(U ′k) is an open neighborhood of y in N . Since R has empty interior

in N , we can choose some point

z ∈ (p(U ′1) ∩ · · · ∩ p(U ′k)) \R ⊂ V \R.

By the assumption that M\p−1(R)→ N\R is a degree d covering map, the preimage

p−1(z) contains d points w1, . . . , wd. Since z ∈ V by construction, each wi ∈ p−1(V ) =

U ′1 t · · · t U ′k so wi lies within U ′j for some unique j ∈ {1, . . . , k}. This relation

defines a map π : {1, . . . d} → {1, . . . , k}. Moreover, the map π is surjective because

z ∈ p(U ′j) for each j ∈ {1, . . . , k}. This proves that k ≤ d, so the preimage p−1(y)

has cardinality at most d as desired.

4.3.3 Proofs

Proposition 4.18. For any divisor D, the stable Weierstrass locus W st(D) is a

finite subset of Γ.

Proof. If D has degree n < g, the stable Weierstrass locus is defined to be empty.

Thus we assume below that D has degree n ≥ g.

Recall that B̃r
g
(Γ) = {(x,E) ∈ Γ × Symg−1(Γ) : x+ E is a break divisor} and

that σm : B̃r
g
(Γ)→ Picm+g−1(Γ) is defined by

σm : (x,E) 7→ [mx+ E].

Recall that π1 denotes the projection π1(x,E) = x. (See Section 4.3.1.) By Lemma 4.13,

for a divisor D of degree m+ g − 1 we have W st(D) = π1(σ−1
m [D]). Hence it suffices

to show that the preimage σ−1
m [D] is a finite set.

Let (G, `) be a combinatorial model for Γ, which induces the ABKS decomposition

Brg(Γ) =
⋃
T∈T (G) CT , where the cells CT are indexed by spanning trees of G. The

ABKS decomposition of Brg(Γ) induces a decomposition

B̃r
g
(Γ) =

⋃
T∈T (G)

 ⋃
e 6∈E(T )

C̃T,e

 .

Let σ
(T,e)
m : C̃T,e → Picm+g−1(Γ) denote the restriction of σm to C̃T,e.
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Claim: The preimage of [D] under σ
(T,e)
m : C̃T,e → Picm+g−1(Γ) is finite.

This Claim implies that the preimage σ−1
m [D] is a finite set, since B̃r

g
(Γ) is covered

by finitely many C̃T,e.

Proof of Claim: The map σT,em : C̃T,e → Picm+g−1(Γ) is locally defined by a linear

map, which we show is full rank. For a spanning tree T = G\{e, e2, . . . , eg}, there is

a natural surjective parametrization
∏g

i=1[0, `(ei)]→ C̃T,e.

Let fT,em denote the lift of
∏g

i=1[0, `(ei)] → C̃T,e −→ Picm+g−1(Γ) to the universal

cover Rg → Picm+g−1(Γ).

∏g
i=1[0, `(ei)] Rg

C̃T,e Picm+g−1(Γ)

fT,e
m

π

σT,e
m

When m = 1, coordinates may be chosen on Rg such that fT,e1 is represented by

the identity matrix. Using these same coordinates on Rg (up to a translation from

Picg to Picm+g−1), for m ≥ 1 the definition σm(x,E) = [mx+E] implies that fmT,e is

represented by the diagonal matrix
m

1
. . .

1

 .

This shows that fT,em is locally injective, which implies σT,em is locally injective as well.

Thus for any [D] ∈ Picm+g−1(Γ), the preimage under σT,em is a discrete subset of C̃T,e.

Since C̃T,e is compact, the preimage of [D] is finite as claimed.

In the following proposition, “generic” means the statement holds for [D] ∈
Picn(Γ) outside of a nowhere dense exceptional set.

Proposition 4.19. For any divisor class [D] of degree n ≥ g, we have

#W st(D) ≤ g(n− g + 1).

For a generic divisor class [D] of degree n ≥ g, the stable Weierstrass locus W st(D)

has cardinality #W st(D) = g(n− g + 1).

Proof. Let B̃r
g
(Γ), σm : B̃r

g
(Γ) → Picm+g−1(Γ), and π1 : B̃r

g
(Γ) → Γ be defined as

in Section 4.3.1. Recall that for a divisor D of degree m+g−1, we have #W st(D) =

#(σ−1
m [D]) by Lemma 4.13. Thus it suffices to show that σm : B̃r

g
(Γ)→ Picm+g−1(Γ)

is a branched covering map of degree gm, for any m ≥ 1. From this, Lemma 4.17
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implies the inequality #W st(D) ≤ gm and Definition 4.15 implies that equality holds

for [D] outside of the ramification locus.

(If D has degree n = m+ g − 1, then gm = g(n− g + 1).)

Claim 1: The map σm : B̃r
g
(Γ)→ Picm+g−1(Γ) is open, for any m ≥ 1.

Proof of Claim 1 : As above, let (G, `) be a combinatorial model for Γ, and

B̃r
g
(Γ) =

⋃
T∈T (G)

⋃
e 6∈E(T )

C̃T,e

the induced ABKS decomposition. (See Section 4.3.1.) The map σm is naturally a

piecewise affine map with domains of linearity C̃T,e.

To show that σm is open, it suffices to check that for any (x0, E0) ∈ B̃r
g
(Γ), the

image of a neighborhood contains points in all tangent directions around σm(x0, E0) ∈
Picm+g−1(Γ). To check this, we observe how σm restricts to each domain of linearity

C̃T,e containing (x0, E0). We will show that the behavior of σm on tangent directions

does not depend on the integer m.

For a point (x0, E0) in C̃T,e, let cone(σT,em (x0, E0)) denote the positive cone in Rg

spanned by

σm(x,E)− σm(x0, E0) for (x,E) in a neighborhood of (x0, E0) in C̃T,e.

(Here we identify Rg with the tangent space of Pic0(Γ) at the identity.) Since σm is

affine on C̃T,e, this cone does not depend on the neighborhood chosen. Since m ≥ 1,

the positive span of

σm(x,E)− σm(x0, E0) = m[x− x0] + [E − E0] for (x,E) in C̃T,e

is equal to the positive span of

σ1(x+ E)− σ1(x0 + E0) = [x− x0] + [E − E0] for (x,E) in C̃T,e,

so cone(σT,em (x0, E0)) = cone(σT,e1 (x0, E0)). This holds for all cells C̃(T,e) containing

(x0, E0).

Hence to show that σm is open, it suffices to show that σ1 : B̃r
g
(Γ) → Picg(Γ) is

open. This is clear from the construction of B̃r
g
(Γ) as a branched cover B̃r

g
(Γ) →

Brg(Γ), and from Theorem 2.8 which states that Brg(Γ) → Picg(Γ) is a homeomor-

phism.

Claim 2: The map σm : B̃r
g
(Γ)→ Picm+g−1(Γ) is a branched cover, for any m ≥ 1.

Proof of Claim 2 : In the definition of branched cover, Definition 4.15, condition

(ii) was verified by Claim 1 and condition (iii) was verified by Proposition 4.18.

Condition (i) is clear.1

1 The map σm is surjective because it is an open map from a compact space to a connected, Hausdorff space.
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We first identify a ramification locus R for σm, and then apply Lemma 4.16 to

show that the restriction of σm away from R is a covering map.

Let Brg(Γ) =
⋃
T∈T (G)CT be the ABKS decomposition induced by a combinatorial

model Γ = (G, `) (see Section 2.5). Let Z(2) ⊂ Brg(Γ) denote the union of faces of

CT of codimension at least 2, and let U (2) = Brg(Γ)\Z(2). In other words,

U (2) =
⋃

T∈T (G)

{interior C◦T of CT} ∪ {interiors of facets of ∂CT}.

More concretely in terms of break divisors, given a set of edges e1, . . . , eg in G whose

complement is a spanning tree, U (2) contains break divisors which are a sum of g

points taken from the interior of each e1, e2, . . . , eg, and divisors which are a sum

of one endpoint of e1 and a point in the interior of each e2, . . . , eg. We assume our

combinatorial model (G, `) is chosen to have no loops, so that each cell CT in the

ABKS decomposition has 2g distinct boundary facets.

Note that for a break divisor E,

(4.3) if E ∈ U (2), the support of E consists of g distinct points.

We let Z̃(2) and Ũ (2) denote the preimages of Z(2) and U (2) under σ : B̃r
g
(Γ) →

Brg(Γ). Note that with respect to the ABKS decomposition

B̃r
g
(Γ) =

⋃
T∈T (G)

⋃
e6∈E(T )

C̃T,e,

Z̃(2) is the union of codimension 2 faces of C̃T,e, and Ũ (2) = B̃r
g
(Γ)\Z̃(2). Thus Z̃(2)

is a closed subset of codimension 2 and Ũ (2) is a dense open subset of B̃r
g
(Γ).

Next, let R = Rm = σm(Z̃(2)). We will show that R is a valid ramification locus for

the branched cover σm. The conditions (iv) and (v) hold because R is a codimesion

2 submanifold of the connected manifold Picm+g−1(Γ). It remains to check condition

(vi), that the restriction

(4.4) σm|B̃r
g
(Γ)\σ−1

m (R) : B̃r
g
(Γ)\σ−1

m (R)→ Picm+g−1(Γ)\R

away from ramification is a covering map. To check this condition, we apply Lemma 4.16.

It is clear that the domain and codomain of (4.4) are locally compact Hausdorff

spaces.2 The map in (4.4) is surjective by construction; it is proper because σm is a

map from a compact space to a Hausdorff space, hence proper. It remains to check

2 The domain is locally compact and Hausdorff because it is an open subspace of B̃r
g
(Γ) which is a finite CW

complex, hence compact and Hausdorff. The same holds for the codomain, as an open subspace of Picm+g−1(Γ) ∼=
Rg/Zg .
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that (4.4) is a local homeomorphism, which we leave for the next claim. Note that

the domain of (4.4) is contained in Ũ (2):

B̃r
g
(Γ)\σ−1

m (R) = B̃r
g
(Γ)\σ−1

m (σm(Z̃(2))) ⊂ B̃r
g
(Γ)\Z(2) = Ũ (2).

Assuming Claim 3, Lemma 4.16 implies that σm is a covering map away from the

ramification locus R, which completes the proof of Claim 2.

Claim 3: The restriction of σm to Ũ (2) → Picm+g−1(Γ) is a local homeomorphism,

for any m ≥ 1.

Proof of Claim 3 : First consider m = 1. Observation (4.3) implies that

(4.5) the restriction σ1|Ũ(2) : Ũ (2) → U (2) is a (unbranched) covering of degree g.

Since U (2) ⊂ Picg(Γ) is open, it follows that σ1 : Ũ (2) → Picg(Γ) is a local homeo-

morphism.

Recall that Ũ (2) is the union of the interior of C̃T,e and the interiors of facets of

∂C̃T,e, over all (T, e). In the interior of C̃T,e, σm can be expressed as a full-rank linear

map so it is a local homeomorphism. Now consider how σm acts near the interior of

a facet of ∂C̃T,e. We claim that each facet is shared by exactly two cells.

Suppose T = G\{e = e1, e2, . . . , eg}. There are 2g facets of the boundary ∂C̃T,e,

indexed by choosing an edge ej and choosing one of its two endpoints. For a fixed

index j in {1, . . . , g} and v(ej) a fixed endpoint of ej, the corresponding facet of

∂C̃T,e consists of pairs (x,E) ∈ B̃r
g
(Γ) of the form

(4.6) F̃
(j,v)
(T,e) = {(x = x1, E = x2 + · · ·+ xg) :

xj = v(ej),

xi ∈ e◦i for i = 1, . . . g, i 6= j}

Let Gj = T ∪ ej. Since ej 6∈ T , the graph Gj contains a unique cycle, which must

contain v(ej) ∈ ej. Let e′j be the unique edge 6= ej in this cycle which also borders

v(ej), and let T ′ = Gj\e′j = (T ∪ ej)\e′j. Then C̃T ′,e′ is the only other cell containing

the facet (4.6), where e′ = e′1 if j = 1, and e′ = e otherwise. The facet (4.6) is then

the relative interior of C̃T,e ∩ C̃T ′,e′
As before, let fT,em denote the lift of C̃T,e → Picm+g−1(Γ) in the diagram

∏g
i=1[0, `(ei)] Rg

∏g
i=1[0, `(e′i)]

C̃T,e Picm+g−1(Γ) C̃T ′,e′

fT,e
m

π

fT
′,e′

m

and define fT
′,e′

m analogously.
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We may choose coordinates (depending on T ) on Rg such that

the matrix representing fT,em is


m

1
. . .

1

 .

In these same coordinates, the matrix representing fT
′,e′

m is
−m
∗ 1

∗ . . .

∗ 1

 if j = 1, or


m ∗

. . . ∗
−1

∗ . . .

 if j ∈ {2, . . . , g}.

(Recall that j is the index specifying which edge ej ∈ G\T has a break divisor chip

on one of its endpoints; ej is the unique edge in T ′\T .) This shows that σm is a local

homeomorphism in a neighborhood of the chosen facet of ∂C̃T,e.

Claim 4: The branched cover σm : B̃r
g
(Γ)→ Picm+g−1(Γ) has degree gm.

Proof of Claim 4 : When m = 1, it is clear that σ1 : B̃r
g
(Γ) → Picg(Γ) ∼= Brg(Γ)

is a degree g branched cover. When m > 1, we note that σm differs from σ1 by a

scaling factor of m, i.e. on a sufficiently small neighborhood U ⊂ B̃r(Γ), the Haar

measure of σm(U) is m-times as large as the Haar measure of σ1(U). (The space

Picm+g−1(Γ) carries a Haar measure since it is a torsor for the compact topological

group Pic0(Γ).) This implies that the degree of σm as a branched cover must be m

times the degree of σ1, so σm must have degree gm as desired.

Theorem 4.20. Let Γ be a compact, connected metric graph of genus g.

(a) For a generic divisor class of degree n ≥ g, the Weierstrass locus W (D) is finite

with cardinality #W (D) = g(n − g + 1). For a generic divisor class of degree

n < g, W (D) is empty.

(b) For an arbitrary divisor class of degree n ≥ g, the stable Weierstrass locus

W st(D) is finite with cardinality

#W st(D) ≤ g(n− g + 1),

and equality holds for a generic divisor class.

Proof. Part (b) is a restatement of Proposition 4.19.

For part (a), first suppose n < g. The space Picn(Γ) has dimension g, while the

subspace of effective divisor classes has dimension at most n. Thus a generic divisor
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class in Picn(Γ) is not effective, assuming n < g. By Remark 4.2, the Weierstrass

locus is empty for a non-effective divisor class.

Now suppose n ≥ g. To prove (a), it suffices to show that W (D) = W st(D) for a

generic divisor class, since then part (b) applies. To compare W (D) with W st(D), we

construct a map X → Picn(Γ) whose fiber over [D] is the Weierstrass locus W (D);

this parallels our construction in Section 4.3.1 for W st(D).

For m ≥ 1, let sm : Γ× Symg−1(Γ)→ Picm+g−1(Γ) denote the map

sm(x,E) = [mx+ E].

Let π1 : Γ× Symg−1(Γ)→ Γ denote projection to the first factor.

The Riemann–Roch formula, Theorem 2.14, implies that a generic divisor class

[D] ∈ Picm+g−1(Γ) has rank r(D) = (m+ g − 1)− g = m− 1. For such a divisor,

W (D) = {x ∈ Γ : [D −mx] ≥ 0} = π1(s−1
m [D]).

Recall that W st(D) = π1(σ−1
m [D]), where σm is defined to be the restriction of sm to

the subset B̃r
g
(Γ) ⊂ Γ× Symg−1(Γ); note that

(4.7) σ−1
m [D] = s−1

m [D] ∩ B̃r
g
(Γ) ⊂ s−1

m [D].

Under the genericity assumption on [D], we have

W st(D) = π1(σ−1
m [D]) ⊂ π1(s−1

m [D]) = W (D).

Using part (b), this observation implies that a generic Weierstrass locus W (D) con-

tains at least g(n− g + 1) points.

We consider when W (D) can be strictly larger than W st(D). By (4.7), this

happens only if s−1
m [D] is not contained in B̃r(Γ); equivalently, only if [D] lies in the

image of (Γ× Symg−1(Γ))\B̃r(Γ) under sm.

Claim: The image sm( (Γ×Symg−1(Γ))\B̃r(Γ) ) has dimension g−1 in Picm+g−1(Γ).

It is clear that sm is piecewise affine on Γ× Symg−1(Γ), with domains of linearity

indexed by g-tuples of edges (e1; e2, . . . , eg), up to reordering the edges e2, . . . , eg.

(Here we choose an arbitrary combinatorial model (G, `) for Γ.) The edges ei are not

necessarily distinct.

If the edges (e1; e2, . . . , eg) form the complement of a spanning tree T in G, then

the corresponding domain is in B̃r
g
(Γ); namely, it is the cell C̃T,e1 in the notation of

Section 4.3.1. Conversely, if the edges (e1; e2, . . . , eg) are not the complement of a

spanning tree in G, then either some edge is repeated or the edges contain a cut set

of G. In either case, the fibers of sm : Γ×Symg−1(Γ)→ Picm+g−1(Γ) have dimension

at least 1 over the interior of the corresponding domain (see [23, Proposition 13]),
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so the image of this domain under sm has dimension at most g − 1. This proves the

claim.

The claim implies that for a generic divisor class [D], the preimage s−1
m [D] is

contained in B̃r
g
(Γ). By (4.7) this implies W (D) = W st(D), as desired.

4.4 Distribution of Weierstrass points

In this section we prove Theorem 4.24, which states that for a degree-increasing

sequence of generic divisors on a metric graph, the Weierstrass points become dis-

tributed with respect to the Zhang canonical measure (defined in Section 3.3). We

also give a quantitative version of this distribution result, Theorem 4.26.

Our proofs of Theorems 4.24 and 4.26 work unchanged when W (D) is replaced

by the stable Weierstrass locus W st(D).

4.4.1 Examples

First we consider some low genus examples of Weierstrass points converging to a

limiting distribution.

Example 4.21 (Genus 0 metric graph). Let Γ be a genus 0 metric graph. For any

divisor Dn, the associated Weierstrass locus W (Dn) is empty so δn = 0. All edges

are bridges, so the canonical measure is µ = 0.

Example 4.22 (Genus 1 metric graph). Let Γ be a genus 1 metric graph which

consists of a loop of length L. For a divisor Dn of degree n, the Weierstrass locus

Wn = W (Dn) consists of n evenly-spaced points (“torsion points”) around the loop.

The distance between adjacent points is L/n, so on a segment e of length `(e) the

number of Weierstrass points is bounded by

`(e)

L/n
− 1 ≤ #(Wn ∩ e) ≤

`(e)

L/n
+ 1.

This means the associated discrete measure δn = 1
n

∑
x∈Wn

δx satisfies

δn(e) =
#(Wn ∩ e)

n
⇒ `(e)

L
− 1

n
≤ δn(e) ≤ `(e)

L
+

1

n
.

Hence δn(e)→ `(e)
L

= µ(e) as n→∞.

4.4.2 Proofs

We now address the limiting distribution of Weierstrass points W (Dn) as n→∞
in the case of an arbitrary metric graph Γ.

Lemma 4.23. Suppose the Weierstrass locus W (D) is finite. Let r = r(D).
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(a) If x is in the interior of a segment, redx[D] contains at most r + 1 chips at x.

(b) If x is in the interior of a segment e ⊂ Γ, redx[D] contains at most r + 1 chips

on e (including its endpoints).

Proof. (a) Suppose redx[D] contains r + 2 chips at x. Then for sufficiently small ε

we can move r + 1 of these chips together for a distance ε in one direction, while

moving 1 chip a distance (r + 1)ε in the other. This gives a positive-length interval

in W (D), a contradiction.

(b) Suppose redx[D] contains r + 2 chips on the closed segment e. Note that at

least r of these chips must be at x, in the interior of e. By chip-firing, we may move

all r + 2 chips to a single point x′ in the interior of e. Then part (a) applies.

Theorem 4.24. Let {Dn : n ≥ 1} be a sequence of divisors on Γ with degDn = n.

Let Wn be the Weierstrass locus of Dn. Suppose each Wn is a finite set, and let

δn =
1

n

∑
x∈Wn

δx

denote the normalized discrete measure on Γ associated to Wn. Then as n→∞, the

measures δn converge weakly to the Zhang canonical measure µ on Γ.

Recall that by definition of weak convergence, Theorem 4.24 says that for any

continuous function f : Γ→ R, as n→∞ we have convergence

1

n

∑
x∈Wn

f(x) =:

∫
Γ

f(x)δn(dx) →
∫

Γ

f(x)µ(dx).

Proof of Theorem 4.24. To show weak convergence of measures on Γ it suffices to

show convergence when integrated against step functions. Hence it suffices to inte-

grate the measures against the indicator function of an arbitrary segment of Γ.

Let e be a segment in the metric graph Γ of length `(e), with endpoints s and t.

Let Wn ∩ e denote the set of Weierstrass points of Dn lying on the segment e. It

suffices to show that

(4.8) lim
n→∞

#(Wn ∩ e)
n

= µ(e).

Recall that by Proposition 3.23,

µ(e) =
`(e)

`(e) + `eff(Γ\e)

where `eff(Γ\e) denotes the effective resistance between the endpoints of e when

the interior of e is removed from Γ. (If Γ\e is disconnected, `eff(Γ\e) = +∞ and
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µ(e) = 0.) We prove (4.8) by relating each side to the slope of a piecewise linear

function on Γ.

For the right-hand side of (4.8), consider the voltage function jst : Γ → R (see

Section 3.1). The voltage drop in Γ between endpoints of e is the effective resistance

jst (s)− jst (t) = r(s, t) =
`(e)`eff(Γ\e)
`(e) + `eff(Γ\e)

,

by the parallel rule for effective resistance. Thus we have

jst (s)− jst (t)
`(e)

=
`eff(Γ\e)

`(e) + `eff(Γ\e)
= 1− `(e)

`(e) + `eff(Γ\e)
= 1− µ(e).(4.9)

(Recall that this slope can be interpreted as the current flowing along the segment e

from s to t, since current = voltage drop
resistance

.)

To connect jst to the left-hand side of (4.8), we consider a sequence of piecewise-

linear functions which are “discrete approximations” of jst , and show that certain

slopes in these functions are related to the number of Weierstrass points.

Let fn be the piecewise Z-linear function on Γ satisfying

∆(fn) = redt[Dn]− reds[Dn] and fn(t) = 0.

(Recall that redx[D] denotes the x-reduced divisor linearly equivalent to D.) By

Proposition 3.8, as n→∞ we have uniform convergence

(4.10)
1

n
fn → jst .

Thus to show (4.8) using (4.9) and (4.10), it suffices to show that

(4.11) lim
n→∞

1

n

(
fn(s)− fn(t)

`(e)

)
= 1− lim

n→∞

#(Wn ∩ e)
n

.

We first give an intuitive explanation for (4.11): the slope of the function fn on a

directed segment is equal to the net flow of chips across the segment, as we move from

reds[Dn] to redt[Dn] along any path in the linear system |Dn|. If we follow redx[Dn]

as x varies from s to t, we have n − g chips moving in the “forward” direction of e

(following x) and some number of chips moving in the reverse direction one-by-one.

The number of “reverse-moving” chips is equal to #(Wn∩e), since x is in Wn exactly

when redx[Dn] has an “extra” chip at x, i.e. when the n− g chips on x collide with

a reverse-moving chip. Thus the net number of chips moving across the segment e is

equal to (n− g)−#(Wn ∩ e), up to some bounded error due to boundary behavior.

This yields (4.11) after dividing by n and taking n→∞.
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Now we give a rigorous argument. Let w1, w2, . . . , wm denote the Weierstrass

points on e, ordered from s to t, so that m = #(Wn∩ e). Here we use the hypothesis

that Wn is finite. (Note that m = mn depends on n.)

We partition the segment e = [s, t] into subintervals [s, w1], [w1, w2], . . . , [wm, t].

(It is possible that the intervals [s, w1] and [wm, t] are degenerate.) Let `([wi, wi+1])

denote the length of the segment [wi, wi+1] ⊂ e. We have

`(e) = `([s, w1]) + `([w1, w2]) + · · ·+ `([wm−1, wm]) + `([wm, t]).

For each i = 1, 2, . . . ,m− 1, let g
(i)
n denote the function in PLZ(Γ) satisfying

∆(g(i)
n ) = redwi+1

[Dn]− redwi
[Dn],

and let g
(0)
n and g

(m)
n denote functions satisfying

∆(g(0)
n ) = redw1 [Dn]− reds[Dn], and ∆(g(m)

n ) = redt[Dn]− redwm [Dn].

By adding an appropriate constant, we may assume that g
(i)
n (t) = 0 for each i =

0, 1, . . . ,m. By telescoping of poles and zeros, we have

∆(fn) = ∆(g(0)
n ) + ∆(g(1)

n ) + · · ·+ ∆(g(m)
n ).

With the additional constraint that fn(t) =
∑

i g
(i)
n (t) = 0, this implies that

(4.12) fn = g(0)
n + g(1)

n + · · ·+ g(m)
n .

Thus we can compute fn(s)− fn(t) by summing
∑m

i=0

(
g(i)(s)− g(i)(t)

)
.

To analyze the slopes of g(i) on segment e, we make use of Lemma 4.23. This

information is sufficient to deduce all slopes over e. We may assume without loss of

generality that r(Dn) = n− g, since this holds for n ≥ 2g − 1.

For i = 1, 2, . . . ,m−1, the function g
(i)
n has slope−(n−g) on the interval [wi, wi+1],

and slope 1 on e outside of this interval. See Figure 4.7.

Figure 4.7: Function g
(i)
n having zeros redwi+1 [Dn] and poles redwi [Dn].

Thus we have

g(i)
n (s)− g(i)

n (t) = (n− g)`([wi, wi+1])− `([s, wi])− `([wi+1, t])

= (n− g + 1)`([wi, wi+1])− `(e).(4.13)
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For i = 0 and i = m, to write an expression for g
(i)
n (x) − g(i)

n (t) we need to set

additional notation. If reds[Dn] has a chip in the interior of e, let y be the position of

this chip (which is unique by Lemma 4.23); otherwise, let y = t. Similarly, let z be

the position of the unique chip of redt[Dn] in the interior of e if it exists; otherwise

let z = s. We have

g(0)
n (s)− g(0)

n (t) = (n− g)`([s, w1])− `([w1, y])

= (n− g + 1)`([s, w1])− `([s, y])(4.14)

and

g(m)
n (s)− g(m)

n (t) = (n− g)`([wm, t])− `([z, wm])

= (n− g + 1)`([wm, t])− `([z, t])(4.14’)

Figure 4.8: Function g
(0)
n having zeros redw1

[Dn] and poles reds[Dn].

Thus adding the expressions (4.13) and (4.14) together, by (4.12) we have

fn(s)− fn(t) = (n− g + 1)
(
`([s, w1]) + `([w1, w2]) + · · ·+ `([wm−1, wm]) + `([wm, t])

)
− `([s, y])− (m− 1)`(e)− `([z, t])

= (n− g + 1)`(e)− (m− 1)`(e)− `([s, y])− `([z, t])
= (n− g −m+ 2)`(e)− `([s, y])− `([z, t])
= (n− g −m)`(e) + (`(e)− `([s, y])) + (`(e)− `([z, t]))
= (n− g −m)`(e) + `([y, t]) + `([s, z]).

Since 0 ≤ `([y, t]) + `([s, z]) ≤ 2`(e) and m = #(Wn ∩ e), this shows that

n− g −#(Wn ∩ e) ≤
fn(s)− fn(t)

`(e)
≤ n− g + 2−#(Wn ∩ e).

Dividing by n and taking the limit n→∞ yields (4.11) as desired.

Theorem 4.25. Consider the setup of Theorem 4.24.

(a) Suppose each [Dn] is generic in Picn(Γ). Then each Wn is finite and we have

weak convergence δn → µ.
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(b) Let W st
n = W st(Dn) be the stable Weierstrass locus, and define δst

n analogously to

δn. For any divisors {Dn : n ≥ 1} we have weak convergence δst
n → µ.

Proof. (a) This is part of Theorem 4.20.

(b) We may follow the same argument used in Theorem 4.24, except in place of

redx[Dn] we consider the “stable reduced divisor”

redst
x [Dn] := (n− g)x+ br[Dn − (n− g)x].

With this change in the definitions of fn and g
(i)
n , equations (4.13) and (4.14) still

hold, as does the convergence (4.10).

Theorem 4.26 (Quantitative distribution of W (D)). Let Γ be a metric graph of

genus g, let Dn be a divisor class of degree n > g and let Wn denote the Weierstrass

locus of Dn. Suppose Wn is finite. Let µ denote the Zhang canonical measure on Γ.

(a) For any segment e in Γ,

nµ(e)− 2g ≤ #(Wn ∩ e) ≤ nµ(e) + g + 2.

(b) If e is a segment of Γ with canonical measure µ(e) > 2g
n

, then e contains at least

one Weierstrass point of Dn.

(c) For a fixed continuous function f : Γ→ R,

1

n

∑
x∈Wn

f(x) =

∫
Γ

f(x)µ(dx) +O

(
1

n

)
.

Proof. It is clear that part (b) follows from part (a), since #(Wn ∩ e) must be an

integer. Part (c) is a straightforward extension of (a).

We now prove part (a). Let fn be the piecewise linear function satisfying ∆(fn) =

redt[Dn]− reds[Dn] and fn(t) = 0, where s and t are the endpoints of e. By Propo-

sition 3.9, we have

|(fn − (n− g)jst )
′(x)| ≤ g

so

|f ′n(x)| ≤ (n− g)|j′(x)|+ g.

Recall that for x on the segment e, |j′(x)| = 1− µ(e). Thus we have the bound

|f ′n(x)| ≤ n− nµ(e) + µ(e)g.

Moreover the proof of Theorem 4.24 shows that

n− g −#(Wn ∩ e) ≤ |f ′n(x)|.
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Combining these inequalities gives

nµ(e)− (1 + µ(e))g ≤ #(Wn ∩ e).

Finally, the inequality µ(e) ≤ 1 from Corollary 3.24 yields the lower bound in (a).

We similarly obtain the upper bound

#(Wn ∩ e) ≤ nµ(e) + g + 2

by combining the inequalities

n− nµ(e)− (2− µ(e))g ≤ |f ′n(x)| and |f ′n(x)| ≤ n− g −#(Wn ∩ e) + 2

and µ(e) ≥ 0 from Corollary 3.24.

4.5 Tropicalizing Weierstrass points

In this section, we describe how the Weierstrass locus for a tropical curve can be

related to the Weierstrass locus for an algebraic curve. The key result is Baker’s

Specialization Lemma [6, Lemma 2.8]; here we use a more general version given by

Jensen–Payne [26] in the language of Berkovich analytic spaces.

Throughout this section, let K denote an algebraically closed field equipped with

a nontrivial non-Archimedean valuation v : K× → R; we assume K is complete with

respect to v.

Theorem 4.27 (Specialization Lemma [26, Lemma 2.4]). Suppose X is a smooth

projective algebraic curve over K. Let Γ be a skeleton on the Berkovich analytification

Xan, let ρ : Xan → Γ be the retraction to the skeleton and let ρ∗ : Div(X)→ Div(Γ)

denote the induced map on divisors. Then for any divisor D ∈ Div(X),

rX(D) ≤ rΓ(ρ∗(D)).

Here rX denotes the dimension of a complete linear system |D| on X, and rΓ

denotes the Baker–Norine rank on Γ (see Section 2.6).

Theorem 4.28. Consider the setup of Theorem 4.27. For any divisor D ∈ Div(X)

such that ρ∗(D) ∈ Div(Γ) is Riemann–Roch nonspecial, we have

ρ∗(WX(D)) ⊆ WΓ(ρ∗(D)).

Proof. The map ρ∗ respects degree; let n = deg(D) = deg(ρ∗(D)). Recall that ρ∗(D)

is nonspecial means that

rΓ(ρ∗(D)) = max{n− g, −1}.
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In this case, Theorem 4.27 implies rX(D) ≤ max{n − g, −1} while Riemann–Roch

implies rX(D) ≥ max{n− g, −1} for any divisor. Thus rX(D) = rΓ(ρ∗(D)).

Let r denote the rank in either sense. If x ∈ WX(D), we have

rX(D − (r + 1)x) ≥ 0.

By Theorem 4.27 and linearity of ρ∗, this implies

rΓ(ρ∗(D − (r + 1)x)) = rΓ(ρ∗(D)− (r + 1)ρ∗(x)) ≥ 0.

This means ρ∗(x) ∈ WΓ(ρ∗(D)) as claimed.

The conclusion of Theorem 4.28 also holds for D = KX the canonical divisor, and

ρ∗(KX) ∼ KΓ. This was observed by Baker in [6, Corollary 4.9].
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CHAPTER 5

Torsion Points of the Jacobian

In this chapter we study torsion points in the Jacobian of a tropical curve. Given

a metric graph Γ of genus g, we are specifically interested in torsion points which

lie in the image of the Abel–Jacobi map AJ : Γ → Jac(Γ), which embeds a metric

graph (of genus g ≥ 1) in its Jacobian. In other words, we are interested in studying

the intersection

AJ(Γ) ∩ Jac(Γ)tors.

The Jacobian Jac(Γ) is a compact abelian group isomorphic to Rg/Zg. The subgroup

of torsion points Jac(Γ)tors is isomorphic to Qg/Zg.

5.1 The Manin–Mumford conjecture for tropical curves

The Manin–Mumford conjecture states that for a smooth algebraic curve X of

genus g ≥ 2, the analogous intersection AJ(X) ∩ Jac(X)tors is a finite set. This

statement was proved by Raynaud in [40]. This gives us motivation to ask whether

the analogous finiteness statement holds for a metric graph; we consider this a “trop-

ical” Manin–Mumford conjecture.

It turns out that the tropical Manin–Mumford conjecture fails for a fairly large

class of metric graphs—namely, those graphs which have rational edge lengths (Propo-

sition 5.21). For a tropical analogue to work, additional constraints are needed on

the metric graphs.

Our first main result of this chapter is that the tropical Manin–Mumford conjec-

ture does hold for a metric graph whose edge lengths are “sufficiently irrational.” We

then prove a higher-degree generalization of this theorem: assuming sufficiently gen-

eral edge lengths, we determine the values of d such that the map AJ (d) : Γd → Jac(Γ)

has finitely many torsion points in its image.

Definition 5.1. We say a metric graph Γ satisfies the Manin–Mumford condition if

#(AJq(Γ) ∩ Jac(Γ)tors) is finite for every choice of basepoint q ∈ Γ.
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(The Abel–Jacobi map AJq : Γ → Jac(Γ) is defined in Section 2.3). Our first

main theorem verifies a tropical version of the Manin–Mumford conjecture.

Theorem 5.30. Suppose G is a biconnected graph of genus g ≥ 2. For a very

general choice of edge lengths ` : E(G)→ R>0, the metric graph Γ = (G, `) satisfies

the Manin–Mumford condition.

Recall that a graph G is biconnected (or two-connected) if G is connected after

deleting any vertex. We say that a property holds for a very general point of some real

parameter space if it holds outside of a countable collection of proper Zariski-closed

subsets. See Section 5.3 for further discussion of these conditions.

5.1.1 Higher-degree Manin–Mumford

Given an effective divisor Q of degree d, there is an associated Abel–Jacobi map

AJ
(d)
Q : Γd → Jac(Γ)(5.1)

(x1, . . . , xd) 7→ [
d∑
i=1

xi −Q].

We may ask whether the image contains finitely many torsion points of Jac(Γ).

Definition 5.2. We say a metric graph Γ satisfies the degree-d Manin–Mumford

condition if the image of the d-dimensional Abel–Jacobi map

AJ
(d)
Q : Γd → Jac(Γ)

intersects finitely many torsion points of Jac(Γ), for every choice of effective base-

divisor Q ∈ Effd(Γ). We abbreviate this condition as MM(d).

When d = 1 the condition MM(1) is the usual Manin–Mumford condition on Γ.

When g = g(Γ) ≥ 1 and d ≥ g, then MM(d) cannot hold, since the higher Abel–

Jacobi map AJ
(d)
Q is surjective and Jac(Γ)tors is infinite. If a metric graph Γ satisfies

MM(d), then it also satisfies MM(d′) for every 1 ≤ d′ ≤ d.

Theorem 5.38. Let G be a connected graph of genus g ≥ 1 and independent girth

γind. For a very general choice of edge lengths ` : E(G) → R>0, the metric graph

Γ = (G, `) satisfies MM(d) if and only if 1 ≤ d < γind.

The independent girth of G is a combinatorial invariant which is defined in Sec-

tion 5.3. This invariant satisfies γind ≤ γ, where γ denotes the usual girth, i.e. the

minimal length of a cycle. We show that in relation to the genus, γind < C log g.
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5.2 The classical Manin–Mumford conjecture

Given an algebraic curve X and choice of basepoint x0, we say that x ∈ X is

a torsion point if the divisor n(x − x0) is linearly equivalent to 0 for some positive

integer n. Equivalently, x is a torsion point if the Abel–Jacobi embedding (with

respect to x0) sends x to the torsion subgroup of the Jacobian. The Jacobian of a

genus g smooth algebraic curve over C is a compact abelian group, isomorphic to

Cg/Z2g ∼= H1(X,C)/H1(X,Z)∨.

Faltings’s theorem (previously known as Mordell’s conjecture) states that a smooth

curve of genus g ≥ 2 has finitely many rational points, i.e. points whose coordinates

are all rational numbers.

By analogy with Mordell’s conjecture, Manin and Mumford conjectured that an

algebraic curve of genus 2 or more has finitely many torsion points. The Manin–

Mumford Conjecture was proved by Raynaud [39], which inspired several generaliza-

tions concerning torsion points in abelian varieties.

5.3 Definitions and setup

Given an abelian group A, the torsion subgroup Ators is the set of elements a ∈ A
such that na = a + · · · + a = 0 for some positive integer n. It may be checked that

this defines a subgroup of A. For example, the torsion subgroup of R/Z is Q/Z and

the torsion subgroup of R is {0}. Recall that the Jacobian Jac(Γ) of a metric graph

is the abelian group on the set of degree 0 divisor classes; we have

Jac(Γ)tors = {[D] : D ∈ Div0(Γ), n[D] = 0 for some n ∈ Z>0}.

We say points x, y ∈ Γ are torsion equivalent if there exists a positive integer

n such that n[x − y] = 0 in Jac(Γ). If two points x, y represent the same divisor

class [x] = [y], then x and y are torsion equivalent; hence this relation descends to

a relation on Eff1(Γ) = {[x] : x ∈ Γ}. It will be convenient for us to consider this

relation on Eff1(Γ) rather than on Γ.

Lemma 5.3. Torsion equivalence defines an equivalence relation on Eff1(Γ).

Proof. It is clear that torsion equivalence is reflexive and symmetric. Suppose n,m

are positive integers such that n[x − y] = 0 and m[y − z] = 0 in Jac(Γ). Then

mn[x − z] = mn([x − y] + [y − z]) = 0. This shows that torsion equivalence is

transitive.

It is natural to extend this relation to divisor classes of higher degree: we say

effective classes D,E ∈ Effd(Γ) are torsion equivalent if n[D − E] = 0 for some

positive integer n. We call an equivalence class under this relation a torsion packet.
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Definition 5.4. The torsion packet of [E] ∈ Effd(Γ) is the set of divisor classes

{[E]}tors = {[D] ∈ Effd(Γ) such that [D − E] ∈ Jac(Γ)tors}.

The terminology of torsion packets allows us to restate the Manin–Mumford con-

dition in a basepoint-free manner.

Proposition 5.5.

(a) Given an effective divisor class [D] ∈ Effd(Γ), there is a canonical bijection

{[D]}tors ↔ AJ
(d)
D (Γd) ∩ Jac(Γ)tors

where AJ
(d)
D : Γd → Jac(Γ) is the Abel–Jacobi map (5.1).

(b) A metric graph Γ satisfies the degree d Manin–Mumford condition if and only if

every torsion packet of degree d is finite.

Proof. For part (a), we have the diagram

{[D]}tors Jac(Γ)tors

Γd Effd(Γ) Jac(Γ)

AJ(d)

where the torsion packet {[D]}tors is the pullback of the two inclusions Effd(Γ) →
Jac(Γ) and Jac(Γ)tors → Jac(Γ), and Γd → Effd(Γ) is surjective.

Part (b) follows directly from (a) and the definitions above.

Recall that the voltage function jxy is the piecewise R-linear function satisfying

∆(jxy ) = y − x and jxy (y) = 0.

Lemma 5.6. Suppose x, y are two points on a metric graph Γ. Then [x−y] is torsion

in the Jacobian of Γ if and only if all slopes of the voltage function jxy are rational.

The above lemma is the special case d = 1 of the following statement.

Lemma 5.7. Suppose D = x1 + · · ·+xd and E = y1 + · · ·+yd are effective divisors of

degree d on a metric graph Γ. Let f ∈ PLR(Γ) be a function satisfying ∆(f) = D−E.

(Up to an additive constant, f =
∑d

i=1 j
yi
xi

.)

(a) The divisor class [D − E] = 0 if and only if all slopes of f are integers.

(b) The divisor class [D − E] is torsion if and only if all slopes of f are rational.

Proof. Part (a) is a restatement of the definition of linear equivalence (Section 2.2).

Part (b) follows from part (a) by linearity of the Laplacian ∆: [D − E] is torsion of

order n iff [n(D −E)] = [n∆(f)] = [∆(n · f)] = 0 iff all slopes of n · f lie in Z iff all

slopes of f lie in 1
n
Z.
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5.3.1 Very general subsets

A very general subset of Rn is one whose complement is contained in a countable

union of distinguished Zariski-closed sets. A distinguished Zariski-closed set is the set

of zeros of a polynomial function which is not identically zero1. Given a polynomial

f ∈ R[x1, . . . , xn], we denote

Z(f) = {(a1, . . . , an) ∈ Rn : f(a) = 0} and U(f) = {(a1, . . . , an) ∈ Rn : f(a) 6= 0}.

In this notation, a very general subset S ⊂ Rn is one which can be expressed as

S ⊃ Rn \

(⋃
i∈I

Z(fi)

)
=
⋂
i∈I

U(fi)

where I is a countable index set and each fi is nonzero. Note that the zero locus Z(f)

has Lebesgue measure zero if f is nonzero. Thus the complement of a (measurable)

very general subset of Rn has Lebesgue measure zero. However, it is still possible

that the complement of a very general subset is dense in Rn.

If D ⊂ Rn is some parameter space with nonempty interior (with respect to the

Euclidean topology), we say that a subset of D is very general if it has the form

D ∩ S for a very general subset S ⊂ Rn. In our applications, the relevant parameter

space will be the positive orthant D = (R>0)n. We say that a property holds for a

very general point of some real parameter space if it holds on a very dense subset.

Example 5.8.

(a) For a fixed nonconstant polynomial f ∈ Z[x1, . . . , xn], the set

(5.2) U(f −Q) = {(a1, . . . , an) ∈ Rn : f(a1, . . . , an) 6∈ Q}

is very general, since {f − λ : λ ∈ Q} is a countable collection of nonzero

polynomials.

(b) For polynomials f, g ∈ Z[x1, . . . , xn] with g 6= 0 and f/g nonconstant, the set

(5.3) U(
f

g
−Q) = {(a1, . . . , an) ∈ Rn :

f(a1, . . . , an)

g(a1, . . . , an)
6∈ Q}

is very general, since {f − λg : λ ∈ Q} is a countable collection of nonzero

polynomials.

(c) The set

(5.4) Un
tr. = {(a1, . . . , an) ∈ Rn : f(a1, . . . , an) 6= 0

for every f ∈ Z[x1, . . . , xn] \ {0}}
1More generally, a Zariski-closed set is the set of common zeros of a finite collection of polynomials
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is very general, since Z[x1, . . . , xn] is countable. We call Un
tr. the set of transcen-

dental points of Rn. In particular, U1
tr is the set of transcendental real numbers.

Note that in the above examples, the subsets (5.2) and (5.3) contain the tran-

scendental points Un
tr.. Conversely, Un

tr. is the intersection of (5.2) over all choices of

f (resp. (5.3) over all choices of f and g).

In the later theorem statements (5.30 and 5.38) which concern very general edge

lengths, the stated property holds when the edge lengths are transcendental (in the

sense of (5.4), n = #E(G)). More precisely, these conditions will hold on a finite

intersection of sets of the form (5.3). The polynomials f, g will come from Kirchhoff’s

formulas (see Theorem 3.26 in Section 3.5).

5.3.2 Critical group

The critical group Jac(G) of a combinatorial graph G is a finite abelian group

related to the Jacobian construction as follows. A combinatorial graph G can be

viewed as a metric graph Γ1 = (G,1) with unit edge lengths. In the metric graph

Jacobian, Jac(G) is the subgroup of divisor classes supported on vertices of G,

Jac(G) := {[D] : D ∈ Div0(V (G))} ⊂ Jac(Γ1).

The size of the critical group is equal to the number of spanning trees of G.

For more on the critical group, see Baker–Norine [9] and the references therein.

Example 5.9. Let G be the theta graph, shown below (left), which has two vertices

x and y connected by three edges. The critical group Jac(G) has order three and is

generated by the divisor class [x− y]. The multiples n[x− y] inside the metric graph

Jacobian are illustrated in Figure 5.1, to the right.

x y

Figure 5.1: Graph with critical group of order 3.

Example 5.10. Let G be the graph shown on the left of Figure 5.2. The critical

group has order 11 and is generated by the divisor class [x−y]. The multiples n[x−y]

for n = 0, 1, . . . , 10 are shown in Figure 5.2 on the right.

In contrast to the examples above, the critical group is not always cyclic. The

graph G obtained from the theta graph by subdividing each edge into m edges has

Jac(G) ∼= Z/(m)× Z/(3m).
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y

x

Figure 5.2: Graph with critical group of order 11.

In general, Jac(G) decomposes as a direct sum of k cyclic groups (e.g. in the invariant

factor decomposition), where k is bounded above by the genus of G.

5.3.3 Stabilization of metric graphs

A connected combinatorial graph G is stable if every vertex v ∈ V (G) has valence

at least 3, and semistable if every vertex has val(v) ≥ 2. A metric graph Γ is

semistable if every point x ∈ Γ has valence at least 2. Note that a nontrivial metric

graph cannot be stable, since points in the interior of an edge will have valence 2.

This notion is useful for our purposes because questions about Abel–Jacobi maps

AJ : Γ → Jac(Γ) maybe be reduced to AJ : Γ′ → Jac(Γ′) where Γ′ is a semistable

metric graph. This allows us to find explicit bounds on the number of points

#(AJ(Γ) ∩ Jac(Γ)tors) and #(AJ (d)(Γd) ∩ Jac(Γ)tors),

when these numbers are finite, see Theorems 5.24 and 5.25.

Proposition 5.11 (Metric graph stabilization). Suppose Γ has genus g ≥ 1.

(a) There is a canonical semistable subgraph Γ′ ⊂ Γ and a retract map r : Γ → Γ′

such that r is a homotopy inverse to the inclusion Γ′ → Γ.

(b) The retract r : Γ→ Γ′ induces an isomorphism Jac(Γ)→ Jac(Γ′) on Jacobians.

For a proof and further motivation, see Caporaso [14].

Example 5.12. Figure 5.3 shows the stabilization Γ′ of a metric graph Γ of genus

two. The retract map Γ → Γ′ sends a point of Γ to the closest point of Γ′ in the

path metric.

Figure 5.3: A metric graph (left) and its stabilization (right).
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Proposition 5.13. A semistable metric graph Γ with genus g ≥ 2 has a unique

stable model (G, `), (i.e. a model such that G is stable).

Proof. The unique stable model has vertex set V (G) = {x ∈ Γ : val(x) ≥ 3}. The

edges E(G) correspond to connected components of Γ \ V (G), which is isometric to

a disjoint union of open intervals of finite length.

Proposition 5.14. Suppose G is a stable graph of genus g. Then the number of

edges in G is at most 3g − 3.

Proof. Since every vertex has valence at least 3, we have

#V (G) ≤ 1

3

∑
v∈V (G)

val(v) =
2

3
·#E(G).

By the genus formula g = #E(G)−#V (G) + 1, this implies

#E(G) = g − 1 + #V (G) ≤ g − 1 +
2

3
·#E(G)

which is equivalent to the desired inequality #E(G) ≤ 3g − 3.

It follows from the previous proposition that a stable graph has genus g ≥ 2.

5.3.4 Girth and independent girth

Recall that the girth γ = γ(G) of a graph is the minimal length of a cycle; a

(simple) cycle is a subgraph homeomorphic to a circle.2 In other words,

(5.5) γ(G) = min
C∈C(G)

{#E(C)}

where C(G) denotes the set of cycles of G.

Definition 5.15. The independent girth γind of a graph is defined as

(5.6) γind(G) = min
C∈C(G)

{ rk⊥(E(C)) }

where rk⊥ is the rank function of the cographic matroid M⊥(G). (See Section 2.7 for

discussion of cographic matroids). If G has genus zero, we let γind(G) = γ(G) = +∞.

Equivalently,

γind(G) = min
C∈C(G)

{#E(C) + 1− h0(G\E(C)) }

where G\E(C) denotes deleting the interior of each edge in C, and h0 denotes the

number of connected components of a topological space.
2We use the terms “cycle” and “simple cycle” of a graph interchangeably.
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Proposition 5.16. (a) For any graph G, γind(G) ≤ γ(G).

(b) If (G, `) and (G′, `′) are combinatorial models for the same metric graph Γ, then

γind(G) = γind(G′).

Proof. (a) The rank function of any matroid satisfies rk(A) ≤ #A. The claim follows

from comparing definitions (5.5) and (5.6).

(b) The independent girth does not change under subdivision of edges, and any

two combinatorial models of Γ have a common refinement by edge subdivisions.

Proposition 5.16(b) implies that γind is a well-defined invariant for a metric graph;

given a metric graph Γ we have

(5.7) γind(Γ) := γind(G) for any choice of model Γ = (G, `).

Note that γind is also invariant under stabilization.

Example 5.17. Consider Figure 5.4. The graph on the left has seven simple cycles;

their lengths are {4, 4, 4, 6, 6, 6, 6}, and their ranks in the cographic matroid are all

3. For this graph, γ = 4 and γind = 3. After deleting a central edge, the resulting

graph on the right has three simple cycles with lengths {4, 6, 6} and cographic rank

2; hence γ = 4 and γind = 2.

Figure 5.4: Graphs with independent girth 3, resp. independent girth 2.

Example 5.18. Consider Figure 5.5. This graph has γ = 4 and γind = 3, with the

minimum achieved on the 4-cycle in the middle. After deleting one of the horizontal

edges in the middle cycle, the resulting graph has γ = 4 and γind = 4.

Figure 5.5: Graph with girth 4 and independent girth 3.

In general, under edge deletion we have γ(G\e) ≥ γ(G) since C(G\e) ⊂ C(G). The

examples above demonstrate that γind(G\e) can increase or can decrease, relative to

γind(G).
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Theorem 5.19. Let G be a stable graph of genus g ≥ 2 and girth γ. Then

γ < C log g

for some constant C.

Proof. Recall that the girth γ of a graph G is the minimal length of a (simple) cycle

in G. Let v be a vertex in V (G). Let Nr(v) denote the neighborhood of radius r

around v, in the graph G. For any radius r < 1
2
γ, the neighborhood Nr(v) is a tree

(i.e. Nr(v) is connected and acyclic).

Recall that G is stable if every vertex has valence ≥ 3. Since G is stable, we may

calculate a simple lower bound for the number of edges in Nr(v). Namely,

#E(Nr(v)) ≥ 3 + 6 + · · ·+ 3 · 2r−1 = 3(2r − 1).

This quantity is clearly a lower bound for the total number of edges #E(G). More-

over, by Proposition 5.14 we have #E(G) ≤ 3g − 3. Thus

3(2r − 1) ≤ #E(G) ≤ 3g − 3 ⇒ 2r ≤ g

for any integer r < 1
2
γ. Hence

2γ/2−1 < g ⇔ γ < 2 log2 g + 2.

By the assumption g ≥ 2, this bound implies γ < 4 log2 g, as desired.

Corollary 5.20. Let Γ be a metric graph of genus g and independent girth γind.

Then γind < C log g for some constant C.

Proof. Combine Theorem 5.19 with Proposition 5.16(a) and (5.7).

5.4 Failure of Manin–Mumford condition

In this section, we consider cases when a metric graph fails to satisfy the Manin–

Mumford condition, in degree one and in higher degree.

Proposition 5.21. If Γ = (G, `) is a metric graph whose edge lengths are all rational,

then the Manin–Mumford condition fails to hold.

Proof. Rescaling all edge lengths of Γ by the same factor does not change the valid-

ity of the Manin–Mumford condition, so we may assume that all edge lengths are

integers. This means Γ has a combinatorial model (G,1) with unit edge lengths. On

a graph with unit edge lengths, the degree-0 divisor classes supported on vertices

form a finite abelian group, known as the critical group of the graph,. This implies

that all vertices of G lie in the same torsion packet.
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Now consider taking the k-th subdivision graph G(k) of G, meaning every edge if

G is subdivided into k edges of equal length; the number of vertices is

#V (G(k)) = #V (G) + (k − 1)#E(G).

The same reasoning implies that these new vertices are also in the same torsion

packet of Γ. Taking k →∞ shows that Γ has an infinite torsion packet.

Proposition 5.21 can also be proved using part (a) of the following lemma. Recall

that given edges ei ∈ E(G), Eff(e1, . . . , ek) denotes the set of effective divisor classes

[x1 + · · · + xk] which sum a point xi ∈ ei from each edge (xi is allowed to be an

endpoint of ei).

Lemma 5.22. Let Γ = (G, `) be a metric graph.

(a) If an edge e ∈ E(G) contains two points x, y such that [x], [y] are distinct but in

the same torsion packet, then the torsion packet {[x]}tors is infinite.

(b) If Eff(e1, . . . , ed) contains distinct divisor classes [D], [E] in the same degree d

torsion packet, then the torsion packet {[D]}tors is infinite.

Proof. (a) Suppose that an edge e contains distinct points x, y such that [x − y] is

torsion. Let z denote the midpoint of x and y; we claim [x− z] is also torsion. The

midpoint satisfies [2z] = [x + y], hence 2[x− z] = [x− z] + [z − y] = [x− y]. If n is

a positive integer such that n[x− y] = 0, then 2n[x− z] = n[x− y] = 0. This proves

the claim that [x − z] is torsion. By repeating this argument on the midpoint of x

and z, we obtain infinitely many points on e in the same torsion packet {[x]}tors.

(b) Since the cell Eff(e1, . . . , ed) is convex, it contains a line segment connecting

[D] and [E]; this segment is nontrivial by the assumption [D] 6= [E]. Moreover, for

[F ] = (any rational affine combination of [D] and [E] along this line),

the class [D − F ] is torsion. This guarantees infinitely many divisor classes [F ] in

the torsion packet {[D]}tors, as claimed.

Proposition 5.23. Suppose G has a simple cycle with d edges. Then for any edge

lengths ` : E(G) → R>0, the metric graph Γ = (G, `) fails to satisfy the degree d

Manin–Mumford condition.

Proof. Let C be a simple cycle in G with edges e1, e2, . . . , ed and vertices v1, v2, . . . , vd

in cyclic order, where edge ei has endpoints vi and vi+1 (indices taken modulo d).

Consider the effective divisors D = v1 + · · · + vd and E = x1 + · · · + xd where xi is

the midpoint on edge ei.
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To show that [D − E] is torsion, we construct a piecewise linear function f with

∆(f) = D − E. Let f : Γ→ R be zero-valued outside of the cycle C, and f(vi) = 0

for each vertex (potentially required by continuity of f). On each edge ei, let f have

slope 1
2

in the directions away from vi, so that at the midpoint f(xi) = 1
2
`(ei). It is

straightforward to verify that ∆(f) = D − E as desired.

By Lemma 5.7, the slopes ±1
2

of f imply that [D − E] is a nonzero, torsion

divisor class. Moreover, both [D] and [E] lie in the same cell Eff(e1, . . . , ed). Then

Lemma 5.22(b) implies that the torsion packet {[D]}tors is infinite, which violates

the degree d Manin–Mumford condition.

5.5 Uniform Manin–Mumford bounds

In this section, we show that a metric graph which is Manin–Mumford finite

satisfies a bound on #(AJ(Γ) ∩ Jac(Γ)tors) which depends only on the genus of Γ.

Theorem 5.24. Suppose Γ is a metric graph of genus g ≥ 2. If AJq(Γ) ∩ Jac(Γ)tors

is finite, then

#(AJq(Γ) ∩ Jac(Γ)tors) ≤ 3g − 3.

Proof. The retract map r : Γ → Γ′ from a metric graph to its stabilization induces

an isomorphism on Jacobians Jac(Γ)
∼−→ Jac(Γ′) and on AJq(Γ)

∼−→ AJr(q)(Γ
′), so we

may assume that Γ is semistable and that (G, `) is a stable combinatorial model for

Γ. Proposition 5.14 states that #E(G) ≤ 3g − 3 since G is stable. Lemma 5.22(a)

implies that a finite torsion packet has at most one point on a given edge of G.

This proves that the size of a finite, degree 1 torsion packet is at most 3g − 3. By

Proposition 5.5, we are done.

We next generalize the above argument to the higher-degree case.

Theorem 5.25. Let Γ = (G, `) be a connected metric graph of genus g ≥ 2. If Γ

satisfies the Manin–Mumford condition in degree d, then

#(AJ
(d)
D (Γd) ∩ Jac(Γ)tors) ≤

(
3g − 3

d

)
.

Proof. The number #(AJ
(d)
D (Γd)∩Jac(Γ)tors) does not change under replacing Γ with

its stabilization, so we may assume Γ is semistable and (G, `) is a stable model. This

means that the number of edges #E(G) is bounded above by 3g − 3.

The image of AJ
(d)
D (Γd) is homeomorphic to Effd(Γ). (They differ by a translation

sending Picd(Γ) to Pic0(Γ).) The maximal cells in the ABKS decomposition of

Effd(Γ) are indexed by independent sets of size d in the cographic matroid M⊥(G),

c.f. Corollary 2.20. The number of maximal cells is clearly bounded above by
(

#E(G)
d

)
,
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the number of all size-d subsets of edges. Since we assumed G is stable, we have(
#E(G)

d

)
≤
(

3g−3
d

)
.

From Lemma 5.22(b), we know that a finite degree d torsion packet contains at

most one element from a given maximal cell ofAJ
(d)
D (Γd), which finishes the proof.

5.6 Manin–Mumford for generic edge lengths, degree one

In this section we prove our first main theorem, which gives conditions on when

a metric graph satisfies the Manin–Mumford condition in degree 1. In this section,

“torsion packet” will always mean a degree 1 torsion packet (c.f. Definition 5.4).

Before addressing the general case, we demonstrate an example in small genus.

Example 5.26. Let G be the theta graph (see Figure 3.4) with vertices x, y and

edges e1, e2, e3, and consider the metric graph Γ = (G, `) with edge lengths a =

`(e1), b = `(e2), c = `(e3).

If a torsion packet contains two points on e1, then Proposition 5.27 implies that

[x − y] is torsion on the deleted subgraph Γ1 = Γ\e1. By Lemma 5.6, this would

imply the voltage function which sends current from x to y on the subgraph Γ1 has

rational slopes. We can compute these slopes directly: Γ1 is a parallel combination

of wires with resistances b and c, so the slope along e2 is c
b+c

. (This calculation also

follows from Theorem 3.26.) To summarize:

(some torsion packet contains ≥ two points of e1) ⇒ c

b+ c
∈ Q.

The contrapositive statement is that

c

b+ c
6∈ Q. ⇒ (every torsion packet contains at most one point of e1).

To satisfy the Manin–Mumford condition, it suffices that every torsion packet

{[x]}tors ⊂ Eff1(Γ) contains at one point of each edge e1, e2, e3. Thus the Manin–

Mumford condition holds for Γ if the edge lengths are in set

{(a, b, c) ∈ R3
>0 :

b

a+ b
6∈ Q and

c

a+ c
6∈ Q and

c

b+ c
6∈ Q}.

This is very general subset of R3
>0, c.f. Example 5.8(b).

Proposition 5.27. Suppose Γ is a metric graph and points x, y ∈ Γ lie on the same

edge. Let Γ0 denote the metric graph with the open segment between x and y removed.

If [x− y] is torsion on Γ and [x− y] 6= 0, then [x− y] is torsion on Γ0.

Proof. Suppose [x− y] is torsion on Γ. Let jyx denote the voltage function on Γ when

one unit of current is sent from y to x. By Lemma 5.6, all slopes of jyx are rational.
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In particular, the slope of jyx on the segment between x and y is rational; let s denote

this slope. Since [x− y] 6= 0, we have s < 1.

Let Γ0 denote the metric graph obtained from Γ by deleting the interior of edge e.

It is clear that the restriction of jyx to Γ0 has Laplacian ∆(jyx
∣∣
Γ0

) = (1−s)x−(1− s)y.

Let jyx,0 denote the voltage function on Γ0 when one unit of current is sent from

y to x. Since jyx,0 = (1 − s)−1jyx, all slopes of jyx,0 are rational. By Lemma 5.6, this

implies [x− y] is torsion on Γ0 as desired.

Proposition 5.28. Suppose x, y are two vertices on a graph G. Let jyx be the voltage

function on Γ = (G, `), depending on variable edge lengths ` : E(G)→ R. Either:

(1) all slopes of jyx are 1 or 0, independent of edge lengths; or

(2) there exists some edge e such that the slope of jyx along e is a non-constant

rational function of the edge lengths.

Proof. Suppose there is a unique simple path in G from x to y. Then the slope of jyx
is 1 along this path, and 0 away from this path, since all current flowing from y to

x must follow this path. Thus we are in case (1).

On the other hand, suppose there are two distinct simple paths π1, π2 in G from

x to y. Let e be an edge of G which lies on π1 but not π2. If we fix the lengths

of edges in π1 and send all other edge lengths to infinity, then the slope of jyx along

e approaches 1. If we send the length `(e) to infinity while keeping all other edge

lengths fixed, then the slope of jyx along e approaches zero. Thus the slope of jyx
along e is a non-constant function of the edge lengths. By Kirchhoff’s formulas,

Theorem 3.26, the slope (i.e. current) is a rational polynomial function of the edge

lengths. This is case (2).

Proposition 5.29. Suppose x, y are two vertices on a graph G. Then for the metric

graph Γ = (G, `), either

(1) [x− y] = 0 in Jac(Γ) for any edge lengths `, or

(2) [x− y] is non-torsion in Jac(Γ) for very general edge lengths `.

Proof. If none of the slopes of jyx vary as a function of edge lengths, then by Propo-

sition 5.28 all slopes of jyx are zero or one. This implies that [x− y] = 0.

On the other hand, suppose for some edge e the slope of jyx along e is a non-

constant rational function p(`1,...,`m)
q(`1,...,`m)

. Then the subset

U =

{
(`1, . . . , `m) ∈ Rm

>0 :
p(`1, . . . , `m)

q(`1, . . . , `m)
6∈ Q

}
parametrizing edge-lengths where the slope at e take irrational values is very general,

c.f. Example 5.8(b). By Lemma 5.6, [x− y] is nontorsion on U , as desired.
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Theorem 5.30. Suppose G is a biconnected metric graph of genus g ≥ 2. For a very

general choice of edge lengths ` : E(G)→ R>0, the metric graph Γ = (G, `) satisfies

the Manin–Mumford condition.

Proof. Let m = #E(G) and choose an ordering E(G) = {e1, e2, . . . , em}, which

induces a homeomorphism from the space of edge-lengths {` : E(G)→ R>0} to the

positive orthant Rm
>0. We claim that for each edge ei, there is a corresponding very

general subset Ui ⊂ Rm
>0 such that

(5.8)
when edge lengths are chosen in Ui, every torsion packet

of Γ = (G, `) contains at most one point of ei.

Let e+
i , e−i denote the endpoints of ei, and let Gi = G\ei denote the graph with

edge ei deleted. If the endpoints e+
i , e−i are not connected by any path in Gi, this

contradicts our assumption that G is biconnected. If the endpoints are connected by

only one path π in Gi, then the union π ∪ {ei} is a genus 1 biconnected component

of G, which contradicts our assumption that G is biconnected and has genus g ≥ 2.

Thus e+
i , e−i are connected by at least two distinct paths in Gi.

Therefore, the divisor class [e+
i − e−i ] 6= 0 in Jac(Γi) where Γi = (Gi, `i). By

Proposition 5.29, [e+
i −e−i ] is nontorsion in Jac(Γi) on a very general subset Vi ⊂ Rm−1

>0

of edge-length space. (Note that Gi has m − 1 edges.) Finally, we let Ui be the

preimage of Vi under the coordinate projection Rm
>0 → Rm−1

>0 forgetting coordinate i.

The subset Ui is very general, and satisfies the claimed condition (5.8).

For any edge lengths in the intersection U =
⋂m
i=1 Ui a torsion packet of the

corresponding Γ = (G, `) can have at most one point on each edge ei, giving the

bound #{[x]}tors ≤ m. The subset U is very general, since it is a finite intersection

of very general subsets. This completes the proof.

5.7 Manin–Mumford for generic edge lengths, higher degree

In this section we address when a metric graph with very general edge lengths

satisfies the Manin–Mumford condition in higher degree.

The next proposition is a strengthening of Proposition 5.23. Recall that M⊥(G)

denotes the cographic matroid of G

Proposition 5.31. Suppose G contains a cycle C which has rank d = rk⊥(E(C))

in the cographic matroid M⊥(G). Then for any edge lengths ` : E(G) → R>0, the

metric graph Γ = (G, `) fails the degree d Manin–Mumford condition.

Proof. Suppose the given cycle of G consists of the edges {e1, . . . , ek} and vertices

{v1, . . . , vk} in cyclic order; note that k ≥ d. Let D = v1 + · · · + vk be the sum of
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the cycle’s vertices. In the proof of Proposition 5.23, we showed that the degree-k

torsion packet {[D]}tors has infinite intersection with the cell Eff(e1, . . . , ek), for any

choice of edge lengths `.

Recall that Eff(e1, . . . , ek) is the image of Div(e1, . . . , ek) under the linear equiv-

alence map Divk(Γ)→ Pick(Γ). The map Div(e1, . . . , ek)→ Pick(Γ) lifts to a linear

map φ in the diagram ∏k
i=1[0, `(ei)] Rg

Div(e1, . . . , ek) Pick(Γ),

φ

where
∏k

i=1[0, `(ei)]→ Div(e1, . . . , ek) is the product of isometries [0, `(ei)]→ ei and

Rg → Pick(Γ) is an isometric universal cover. By Theorem 2.19, Eff(e1, . . . , ek) has

dimension d = rk⊥({e1, . . . , ek}) (where d ≤ k). This implies that φ has rank d, so

the image of φ is covered by the restrictions of φ to the d-faces of
∏k

i=1[0, `(ei)].

Thus Eff(e1, . . . , ek) is covered by the corresponding images of the d-faces of

Div(e1, . . . , ek), which have the form

(5.9) Eff(ei : i ∈ I) + [
∑
i 6∈I

v±i ] ⊂ Eff(e1, . . . , ek),

where I is a size-d subset of {1, . . . , k} and v±i ∈ {vi, vi+1} is an endpoint of ei.

(There are
(
k
d

)
2k−d such choices.)

Since Eff(e1, . . . , ek) has infinite intersection with the torsion packet {[D]}tors,

there is some choice of I, v±i such that the subset (5.9) of Eff(e1, . . . , ek) has in-

finite intersection with {[D]}tors. This implies that the degree-d torsion packet

{[D −
∑

i 6∈I v
±
i ]}tors has infinite intersection with Eff(ei : i ∈ I), thus violating the

degree d Manin–Mumford condition.

Next, we consider the converse situation of Proposition 5.31, i.e. when an edge

set is acyclic after taking the closure in M⊥(G). Recall from Section 2.7 the no-

tation Div(e1, . . . , ek) and Eff(e1, . . . , ek). Here we introduce a slight variation: let

Div(e1, . . . , ek)
◦ denote the set of effective divisors of the form D = x1 + · · · + xk

where xi is in the interior e◦i of edge ei; respectively let Eff(e1, . . . , ek)
◦ denote the

divisor classes of the form [x1 + · · ·+ xk], where xi ∈ e◦i .

Proposition 5.32. Suppose e1, . . . , ek are edges in G such that {e1, . . . , ek} is in-

dependent in M⊥(G) and the closure of {e1, . . . , ek} in M⊥(G) spans an acyclic

subgraph of G. Then for very general edge lengths on Γ = (G, `), distinct divisor

classes in Eff(e1, . . . , ek)
◦ ⊂ Pick(Γ) are in distinct torsion packets.
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Before proving this statement, we introduce some lemmas and definitions.

Definition 5.33. Given a piecewise linear function f on Γ, say an edge of G is

current-active with respect to f if the slope f ′ is nonzero in a neighborhood of the

endpoints3; let Ec.a.(G, f) denote the current-active edges,

Ec.a.(G, f) = {e ∈ E(G) : f ′ 6= 0 in a neighborhood of e+, e− in e}.

Say an edge is voltage-active with respect to f if the net change in f across e is

nonzero; let Ev.a.(G, f) denote the voltage-active edges,

Ev.a.(G, f) = {e ∈ E(G) : f(e+)− f(e−) 6= 0 where e = (e+, e−)}.

Recall that a cut of G is a set of edges {e1, . . . , ek} such that the deletion G \
{e1, . . . , ek} is disconnected.

Lemma 5.34. Consider a metric graph Γ = (G, `) and f ∈ PLR(Γ). If Ev.a.(G, f)

is nonempty, it contains a cut of G.

Proof. Suppose e = (e+, e−) is voltage-active with respect to f , so that f(e+) > f(e−)

for some ordering of endpoints. Then we may partition V (G) into two nonempty

sets V + ∪ V −, where

V + = {v ∈ V (G) : f(v) ≥ f(e+)} and V − = {v ∈ V (G) : f(v) < f(e+)}.

It is clear that Ev.a.(G, f) contains all edges between V + and V −; such edges form a

cut of G.

Lemma 5.35. On Γ = (G, `), consider f ∈ PLR(Γ) such that ∆(f) = E − D for

D,E ∈ Div(e1, . . . , ek)
◦. If Ec.a.(G, f) is nonempty, then it contains a cycle of G.

Proof. Suppose D = x1 + · · · + xk and E = y1 + · · · + yk where xi, yi ∈ ei. Since

the divisor ∆(f) restricted to ei has the form yi − xi, the slopes of f along ei are as

shown in Figure 5.6, where slopes are indicated in the rightward direction.

Figure 5.6: Slopes on edge e where ∆(f) = y − x.

Edge ei is current-active iff the corresponding slope s (= si) is nonzero. In particular,

if ei ∈ Ec.a(G, f) it is current-active at both endpoints.

3if e ∼= [0, 1], here a “neighborhood of the endpoints” means [0, ε) ∪ (1− ε, 1] for some ε > 0
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On the other hand, consider an edge e ∈ E(G) \ {e1, . . . , ek}. Then ∆(f) is not

supported on e, so f does not change slope on e. Again in this case, if e ∈ Ec.a.(G, f)

then it is current-active at both endpoints.

By assumption that divisors D,E ∈ Div(e1, . . . , ek)
◦, ∆(f) is supported away

from the vertex set V (G). This means that around a vertex v, the outward slopes of

f sum to zero. The number of nonzero terms in the sum must be 0 or ≥ 2, and each

nonzero term corresponds to a current-active edge incident to v. Thus

Ec.a.(G, f) spans a subgraph of G where

every vertex has val(v) = 0 or val(v) ≥ 2.

The claim follows.

Lemma 5.36. Consider D,E ∈ Div(e1, . . . , ek)
◦ and f ∈ PLR(Γ) such that ∆(f) =

E −D. If D 6= E, then Ev.a.(G, f) or Ec.a.(G, f) is nonempty (or both are).

Proof. If D = x1 + · · ·+xk is not equal to E = y1 + · · ·+yk, then there is some index

i such that xi 6= yi. Consider the illustration of f in Figure 5.6, applied to the edge

with xi 6= yi. We have

(5.10) f(e−i )− f(e+
i ) = s · `(ei)− `([xi, yi]),

where `([xi, yi]) is the distance between xi and yi on ei. If s = 0, then ei is not current-

active but is voltage-active. If s = `([xi, yi])/`(ei), then ei is not voltage-active but

is current-active.

Lemma 5.37. Consider a fixed vertex-supported R-divisor D = λ1v1 + · · · + λrvr

of degree zero on G, so vi ∈ V (G), λi ∈ R and
∑
λi = 0. On Γ = (G, `), suppose

f ∈ PLR(Γ) satisfies ∆(f) = D and f has nonzero slope on e ∈ E(G). If e is not a

bridge, then the slope on e is a nonconstant rational function of edge lengths of Γ.

Proof. Suppose we let `(e) → ∞ and fix the lengths of all edges e′ 6= e; we claim

that the slope of f across e approaches zero.

The slope-current principle, Proposition 3.6, states that the slope of f is bounded

above in magnitude by Λ, where Λ = 1
2

∑
i |λi| does not depend on the edge lengths.4

Since e = (e+, e−) is not a bridge edge, there is a simple path π from e+ to e− which

does not contain e. By integration along π, |f(e−) − f(e+)| is bounded above by

Λ · `(π), which implies the bound

|f ′(e)| =
∣∣∣∣f(e−)− f(e+)

`(e)

∣∣∣∣ ≤ Λ · `(π)

`(e)
.

4Since
∑
λi = 0, we have Λ =

∑
{λi : λi > 0} = −

∑
{λi : λi < 0}.
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If we let `(e) → ∞ and keep `(e′) constant for each e′ ∈ E(G) \ {e}, this upper

bound approaches zero as claimed.

Thus the slope of f along e is a non-constant function of the edge lengths. It is a

rational function by Kirchhoff’s formulas, Theorem 3.26.

Proof of Proposition 5.32. Suppose D = x1+· · ·+xk and E = y1+· · ·+yk are divisors

in Div(e1, . . . , ek)
◦. Let f be a piecewise linear function such that ∆(f) = E − D.

By Lemma 5.7, [D] and [E] lie in the same torsion packet if and only if all slopes of

f are rational.

Let Γ0 (resp. G0) denote the metric graph (resp. combinatorial graph) obtained

from deleting the interiors of edges e1, . . . , ek from Γ (resp. G). Let f0 = f
∣∣
Γ0

denote

the restriction of f to Γ0. We have

(5.11) ∆(f0) = λ1w1 + · · ·+ λrwr,

where {w1, . . . , wr} ⊂ V (G) is the set of endpoints of edges e1, . . . , ek and λi ∈ R.

First, suppose the tuple (λ1, . . . , λr) = (0, . . . , 0). Then f0 is constant, so ev-

ery edge of G0 is neither current-active nor voltage-active with respect to f . Since

the edges {e1, . . . , ek} are assumed independent in M⊥(G), they do not contain a

cut of G so the inclusion Ev.a.(G, f) ⊂ {e1, . . . , ek} implies that Ev.a.(G, f) = ∅ by

Lemma 5.34. Since the edges {e1, . . . , ek} do not contain a cycle of G, the inclu-

sion Ec.a.(G, f) ⊂ {e1, . . . , ek} implies that Ec.a.(G, f) = ∅ by Lemma 5.35. Then

Lemma 5.36 implies that D = E.

Next, suppose the tuple (λ1, . . . , λr) ∈ Rr from (5.11) is nonzero. This means that

some edge of G0 must be current-active, so Ec.a.(G, f) is nonempty. By Lemma 5.35,

Ec.a.(G, f) contains a cycle of G. The closure of {e1, . . . , ek} with respect to the

cographic matroid M⊥(G) is equal to

{e1, . . . , ek} ∪ {b1, . . . , bj} where {b1, . . . , bj} are the bridge edges of G0.

By assumption that {e1, . . . , ek} ∪ {b1, . . . , bj} is acyclic, Ec.a.(G, f) must contain an

edge e∗ 6∈ {e1, . . . , ek} which is not a bridge in G0.5

Now consider applying Lemma 5.37 to the graph G0, the divisor (5.11), and the

edge e∗ ∈ E(G0). The lemma concludes that as a function of the edge-lengths of

Γ0, the slope of f0 (equivalently f) on e∗ is a nonconstant ratio of polynomials. In

particular,

(5.12) V (λ1, . . . , λr) = {edge lengths of Γ0 such that f ′0 is irrational on e∗}

is a very general subset of Rm−k
>0
∼= {`0 : E(G0)→ R>0}, and on this subset we have

[D] and [E] are in distinct torsion packets.
5the edge e∗ depends on the tuple (λ1, . . . , λr)
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Finally, let U(λ1, . . . , λr) be the preimage of V (λ1, . . . , λr) under the projection

Rm
>0 → Rm−k

>0 , which is very general, and let

U =
⋂

(λ1,...,λr)
∈Qr\(0,...,0)

U(λ1, . . . , λr) ⊂ Rm
>0.

The subset U is very general, as a countable intersection of very general subsets.

If edge lengths of Γ = (G, `) are chosen such that there are distinct divisors

D,E ∈ Eff(e1, . . . , ek)
◦ where [D] and [E] are in the same torsion packet, then the

tuple (λ1, . . . , λr) as in (5.11) must be rational and nonzero. Then the chosen edge

lengths on G0 ⊂ G are excluded from the subset (5.12), hence the edge lengths are

excluded also from U , as desired.

Theorem 5.38. Let G be a connected graph of genus g ≥ 1 and independent girth

γind. The metric graph Γ = (G, `) satisfies the degree d Manin–Mumford condition

for very general edge lengths ` : E(G)→ R>0 if and only if 1 ≤ d < γind.

Proof. If d ≥ γind, then d ≥ rk⊥(E(C)) for some cycle C of G. Proposition 5.31

states that Γ fails the Manin–Mumford condition in degree d′ = rk⊥(E(C)), so the

condition also fails in degree d ≥ d′.

Conversely if d < γind, then for each d-subset of edges {e1, . . . , ed}, its closure in

M⊥(G) does not contain a cycle of G. In particular, the edges for each maximal

cell Eff(e1, . . . , ed) of Effd(Γ) satisfy the hypotheses of Proposition 5.32, so there is a

very general subset of edge lengths of Γ for which every degree d torsion packet has

at most one element in the chosen cell Eff(e1, . . . , ed). Since there are finitely many

maximal cells (cf. Corollary 2.20), this implies that for very general edge lengths

there are finitely many elements in each degree d torsion packet.

Corollary 5.39. Let Γ be a metric graph of genus g ≥ 1, and suppose Γ satisfies the

Manin–Mumford condition in degree d. Then

d < C log g

for some constant C.

Proof. This follows from Proposition 5.31, which implies that d < γind, and the

bound γind < C log g from Corollary 5.20.
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APPENDIX A

Theta Intersection

In this appendix we give an alternate description of the Weierstrass locus W (D)

as the intersection of two polyhedral subcomplexes of complementary dimension in

Picg−1(Γ). This allows us to give an alternate proof that W (D) is finite for a generic

divisor class [D]. In this perspective, the stable Weierstrass locus W st(D) naturally

appears as the stable tropical intersection of these two subsets.

Throughout this section (including the above paragraph), we assume that the

divisor class [D] is (Riemann–Roch) nonspecial, meaning that its rank satisfies

r(D) =

deg(D)− g if deg(D) ≥ g,

−1 otherwise.

A generic divisor class in Picn(Γ) is nonspecial. If n ≥ 2g− 1, all divisors in Picn(Γ)

are nonspecial.

A.1 Intersection with Θ

Recall that the theta divisor Θ ⊂ Picg−1(Γ) is the space of degree g − 1 divisor

classes which have an effective representative;

Θ = {[D] ∈ Picg−1(Γ) : [D] ≥ 0}.

Given a divisor D of degree n ≥ g, let ΦD : Γ→ Picg−1(Γ) denote the map

ΦD : x 7→ [D − (n− g + 1)x].

If D has degree n < g let ΦD : x 7→ [D] be the constant map. Note that the map ΦD

depends only on the divisor class [D]. The Weierstrass locus of D may be recovered

from the image of ΦD.

Proposition A.1. Let D be a nonspecial divisor of degree n ≥ g, and let ΦD : Γ→
Picg−1(Γ) be the map ΦD(x) = [D − (n− g + 1)x]. Then

W (D) = Φ−1
D (ΦD(Γ) ∩Θ).
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Proof. This follows from the definition of Weierstrass locus, if D has rank n− g.

Proposition A.2. Suppose Γ is a bridgeless metric graph. If D has degree n ≥ g,

the map ΦD : Γ→ Picg−1(Γ) is locally injective (i.e. an immersion).

Proof. The map ΦD may be expressed as a composition of three maps

ΦD : Γ
α−→ Pic1(Γ)

β−→ Picn−g+1(Γ)
γ−→ Picg−1(Γ),

where α sends x 7→ [x], β sends [E] 7→ [(n − g + 1)E], and γ sends [E] 7→ [D − E].

The map γ = γD is a homeomorphism. The map β is a (n − g + 1)g-fold covering

map, so it is a local homeomorphism if n ≥ g. Thus it suffices to verify that the first

map α is locally injective.

This follows from the Abel–Jacobi theorem for metric graphs, see e.g. Baker–

Faber [8, Theorem 4.1 (3)(4)]. Note that Pic1(Γ) is (non-canonically) isomorphic to

the Jacobian Jac(Γ) = Pic0(Γ) by subtracting a basepoint x0.

If Γ contains bridge segments, let Γ/(br) denote the metric graph obtained from

Γ by contracting all bridges. Let S(br) ⊂ Γ/(br) denote the set of points which were

bridges in Γ.

Lemma A.3. Let π : Γ → Γ/(br) denote the canonical map contracting all bridge

segments of Γ, which induces π∗ : Picn(Γ) → Picn(Γ/(br)) for all n. For any divisor

D on Γ,

W (D) = π−1W (π∗(D)).

Proof. On Γ the linear equivalence map x 7→ [x] factors through π : Γ → Γ/(br); i.e.

we have a commuting diagram

Γ Γ/(br)

Pic1(Γ) Pic1(Γ/(br)).

[x]

π

[x]

∼

Using this, the result is clear from the definition of W (D).

Lemma A.4. Suppose S ⊂ Γ is a finite set of points in a metric graph Γ. For a

generic divisor class [D], the intersection W (D) ∩ S is empty.

Proof. It suffices to consider when S = {s} contains one point. Assuming D is

nonspecial, which holds for generic [D] ∈ Picn(Γ), we have s ∈ W (D) if and only if

[D − (n− g + 1)s] is effective ⇔ [D] = [(n− g + 1)s+ E] for some [E] ∈ Θ.

Since Θ has dimension g− 1, the space {[D] = [(n− g+ 1)s+E] : [E] ∈ Θ} also has

dimension g − 1. Hence a generic class [D] has s 6∈ W (D).
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Theorem A.5. For a generic divisor class [D] in Picn(Γ), the Weierstrass locus

W (D) is finite.

Proof. If n < g, then a generic divisor class in Picn(Γ) is not effective because the

image of Symn(Γ)→ Picn(Γ) has dimension at most n, while Picn(Γ) has dimension

g. For a non-effective divisor class [D], the Weierstrass locus W (D) is empty.

Now suppose n ≥ g. By Riemann–Roch, a generic divisor class in Picn(Γ) has

rank r(D) = n− g. (By the above paragraph, r(K −D) = −1 generically.) Thus, it

suffices to show that W (D) is finite for a generic nonspecial divisor class.

Case 1: Γ is bridgeless. As above, let ΦD : Γ → Picg−1(Γ) be the map ΦD(x) =

[D − (n− g + 1)x]. Recall that the Weierstrass locus W (D) is equal to

W (D) = Φ−1
D (ΦD(Γ) ∩Θ) ⊂ Γ

where Θ = {[E] ∈ Picg−1(Γ) : [E] ≥ 0} is the theta divisor. Note that as [D] varies,

the image ΦD(Γ) varies by translation inside Picg−1(Γ).

Recall that Θ is a (g − 1)-dimensional polyhedral complex with finitely many

facets, and ΦD(Γ) is a 1-dimensional polyhedral complex with finitely many segments.

This implies that the space of translations which cause ΦD(Γ) to intersect Θ non-

transversally has dimension at most g − 1. Hence for a generic divisor class [D], the

intersection ΦD(Γ) ∩Θ is transverse.

Suppose all intersections in ΦD(Γ) ∩ Θ are transverse, and occur in the interiors

of the respective segment and facet. Recall that ΦD is locally injective by Propo-

sition A.2. If ΦD sends x ∈ Γ to a transverse intersection, then x must have some

neighborhood U ⊂ Γ such that ΦD(U\{x}) is disjoint from Θ. This means that

W (D) = Φ−1
D (ΦD(Γ) ∩ Θ) is a discrete subset of Γ. Because Γ is compact, this

implies W (D) is finite.

Case 2: Γ has bridge segments. Let π : Γ→ Γ/(br) denote the map contracting all

bridge segments of Γ. Let S(br) ⊂ Γ/(br) denote the image of all bridges, which is a

finite subset of Γ/(br). Note that π restricts to an injection away from π−1S(br).

By Lemma A.4, a generic divisor class [D] ∈ Picn(Γ/(br)) has W (D) disjoint from

S(br). Since π induces a homeomorphism π∗ : Picn(Γ) → Picn(Γ/(br)), this implies

that a generic class [D] ∈ Picn(Γ) has W (π∗[D]) disjoint from S(br). The result then

follows from Lemma A.3 and Case 1.

A.2 Stable Weierstrass locus

In this section we describe the relation of the current setup, involving the theta

divisor Θ, and the stable Weierstrass locus defined in Section 4.2.1.
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Proposition A.6. Suppose Γ is a bridgeless metric graph of genus g. Let D be a

divisor of degree g, and let ΦD : Γ → Picg−1(Γ) send ΦD(x) = [D − x]. Then the

break divisor br[D] is equal to

br[D] = Φ−1
D (ΦD(Γ) ∩st Θ)

where Θ is the theta divisor and ∩st denotes stable tropical intersection.1

Proof. Let us denote br∗[D] := Φ−1
D (ΦD(Γ) ∩st Θ). For a generic divisor class [D] ∈

Picg(Γ), the intersection ΦD(Γ) ∩Θ is transverse so

br∗[D] = {x ∈ Γ : [D − x] ≥ 0},

i.e. br∗[D] contains the support of any effective representative of [D]. Generically,

the class [D] contains a single effective representative so br∗ : Picg(Γ) → Symg(Γ)

defines a generic section of the linear equivalence map Symg(Γ)→ Picg(Γ).

By general properties of stable tropical intersection, the map br∗ : Picg(Γ) →
Symg(Γ) is continuous. But by Theorem 2.8, the break divisor map br is the unique

continuous section of Symg(Γ)→ Picg(Γ) so we must have br∗[D] = br[D].

Recall that for a divisor of degree g, we have W st(D) = br[D]. Proposition A.6

can be generalized to the statement that

W st(D) = Φ−1
D (ΦD(Γ) ∩st Θ)

for a divisor of degree n ≥ g on a bridgeless metric graph. We omit the details here.

1 The stable tropical intersection may have multiplicities, so here we interpret the preimage to be a multiset in Γ
carrying the same multiplicities.
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Ann. Sci. Éc. Norm. Supér., 48(4):765–809, 2015.

[2] O. Amini. Reduced divisors and embeddings of tropical curves. Trans. Amer. Math. Soc.,
365:4851–4880, 2013.

[3] O. Amini. Equidistribution of Weierstrass points on curves over non-Archimedean fields,
preprint, 2014. arXiv:1412.0926.

[4] Y. An, M. Baker, G. Kuperberg, and F. Shokrieh. Canonical representatives for divisor classes
on tropical curves and the matrix tree theorem. Forum Math. Sigma, 2:e25, 2014.

[5] S. J. Arakelov. Intersection theory of divisors on an arithmetic surface. Izv. Akad. Nauk,
8:1167–1180, 1974.

[6] M. Baker. Specialization of linear systems from curves to graphs. Algebra Number Theory,
2(6):613–653, 2008.

[7] M. Baker and X. Faber. Metrized graphs, Laplacian operators, and electrical networks. In
Quantum graphs and their applications, pages 15–33. Amer. Math. Soc., Providence, 2006.

[8] M. Baker and X. Faber. Metric properties of the tropical Abel–Jacobi map. J. Algebr. Comb.,
33:349–381, 2011.

[9] M. Baker and S. Norine. Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. in
Math., 215:766–788, 2007.

[10] M. Baker and B. Poonen. Torsion packets on curves. Composition Math., 127:109–116, 2001.

[11] M. Baker and F. Shokrieh. Chip-firing games, potential theory on graphs, and spanning trees,
preprint, 2011. arXiv:1107.1313.

[12] G. Bergman. The logarithmic limit-set of an algebraic variety. Trans. Amer. Math. Soc.,
157:459–469, 1971.

[13] B. Bollobás. Graph Theory: An Introductory Course, volume 63 of Gratuate Texts in Mathe-
matics. Springer-Verlag, New York, 1979.

[14] L. Caporaso. Algebraic and tropical curves: comparing their moduli spaces. In Handbook of
moduli. Vol. I, volume 24 of Adv. Lect. Math. (ALM), pages 119–160. Int. Press, Somerville,
MA, 2013.

[15] L. Caporaso and F. Viviani. Torelli theorem for graphs and tropical curves. Duke Math. J.,
153(1):129–171, 2010.

[16] A. Del Centina. Weierstrass points and their impact in the study of algebraic curve: a historical
account from the “Lückensatz” to the 1970s. Ann. Univ. Ferrara, 54:37–59, 2008.

[17] T. Chinburg and R. Rumely. The capacity pairing. J. Reine Angew. Math., 434:1–44, 1993.

82



[18] M. Einsiedler, M. Kapranov, and D. Lind. Non-archimedean amoebas and tropical varieties.
J. Reine Angew. Math., 601:139–157, 2006.

[19] R. M. Foster. The average impedance of an electrical network. In J. W. Edwards, editor,
Reissner Anniversary Volume, Constributions to Applied Mechanics, pages 333–340. Ann Ar-
bor, MI, 1949.

[20] A. Gathmann and M. Kerber. A Riemann–Roch theorem in tropical geometry. Math. Z.,
259:217–230, 2008.

[21] G. Grimmett. Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge
University Press, second edition, 2018.
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