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Abstract 
 

The pituitary gland produces polypeptide hormones that regulate many functions 

including growth, lactation, reproduction, metabolism, and the stress response.  Pituitary 

thyrotrope cells produce the heterodimeric glycoprotein hormone thyrotropin, which is critical for 

stimulating thyroid gland development and production of thyroid hormone.  Less is known about 

the drivers of thyrotrope cell fate than the other specialized cells in this organ.  The transcription 

factor POU1F1 is critical for generation of thyrotropes, somatotropes and lactotropes, and 

GATA2 is critical for both thyrotropes and gonadotropes.  Additional factors are likely involved in 

driving thyrotrope fate.  SV40-immortalized cell lines have been invaluable for studying the 

regulation of pituitary hormone production.  Here I use two established immortalized cell lines to 

identify epigenomic and gene expression changes that are associated with adoption of the 

thyrotrope fate.  GHF-T1 cells represent a POU1F1-expressing progenitor which does not 

produce hormones, and TaT1 cells represent a thyrotrope-like line that expresses POU1F1, 

GATA2 and thyrotropin (TSH).  I also developed a novel, genetically engineered mouse line that 

expresses SV40 in response to cre recombinase, and I used this line to develop novel pituitary 

cell lines.  These cell lines can be used for transcriptome and epigenome studies to understand 

the development and function of the pituitary gland. 

I identified the transcription factors and epigenomic changes in chromatin that are 

associated with thyrotrope differentiation.  I generated and integrated genome-wide information 

about DNA accessibility, histone modifications, POU1F1 binding and RNA expression data to 
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identify regulatory elements and candidate transcriptional regulators.  I identified POU1F1 

binding sites that are unique to each cell line.  POU1F1 binding sites are commonly associated 

with bZIP factor motifs in GHF-T1 cells and Helix-Turn-Helix or basic Helix-Loop-Helix motifs in 

TαT1 cells, suggesting classes of transcription factors that may recruit POU1F1 to unique sites.  

I validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and Tshb 

by transfection in TαT1 cells.  Finally, I confirmed that an enhancer element near Tshb can drive 

expression in thyrotropes of transgenic mice and demonstrated that GATA2 enhances Tshb 

expression via this element.  These data extend the ENCODE analysis to an organ that is 

critical for growth and metabolism.  This information could be valuable for understanding 

pituitary development and disease pathogenesis. 

Targeted oncogenesis is the process of driving tumor formation by engineering 

transgenic mice that express an oncogene under the control of a cell-type specific promoter.  

Using CRISPR/Cas9 we inserted a cassette with coding sequences for SV40 T antigens and 

IRES-GFP into the Rosa26 locus, downstream from a stop sequence flanked by loxP sites: 

Rosa26LSL-SV40-GFP.  These mice were mated with previously established Prop1-cre and Tshb-cre 

transgenic lines.  The majority of Rosa26LSL-SV40-GFP/+; Prop1-cre and all Rosa26LSL-SV40-GFP/+; 

Tshb-cre mice developed dwarfism and large tumors by 4 weeks.  Prop1-cre-mediated 

activation of SV40 expression affected cell specification, reducing thyrotrope differentiation and 

increasing gonadotrope cell fate selection.  GFP-positive cells from flow-sorted Rosa26LSL-SV40-

GFP/+; Prop1-cre and Rosa26LSL-SV40-GFP/+; Tshb-cre mice express PROP1 and TSH, respectively.  

Tumors from both of these mouse lines were adapted to growth in cell culture.  I established a 

progenitor-like cell line (PIT-P1) that expresses Sox2 and Pitx1, and a thyrotrope-like cell line 

(PIT-T1) that expresses Cga and Pou1f1.  These studies demonstrate the utility of the novel, 

Rosa26LSL-SV40-GFP mouse line for targeted oncogenesis and development of cell lines. 
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Chapter 1: Introduction 
 

Introduction 

 

 The pituitary gland is located at the base of the brain, and it is a small organ, 

approximately the size of a pea in humans.  It is often referred to as the master gland because it 

is a key regulator of multiple organ systems, controlling growth, fertility, the stress response, 

and homeostasis.  The pituitary gland develops between 5-9 wks gestation in humans and 

embryonic day 10-19 in mice [1].  An invagination of oral ectoderm, called Rathke’s pouch, 

forms the anterior and intermediate lobes of the pituitary gland, and evagination of the neural 

ectoderm forms the posterior lobe of the pituitary gland and pituitary stalk.  The posterior lobe 

contains the axon terminals for oxytocin and vasopressin and pituicytes.  The anterior lobe is 

comprised of cells specialized in the secretion of polypeptide hormones (Fig. 1).  Hypothalamic 

neurons secrete factors into the hypophyseal portal system that regulate pituitary function.  In 

the past three decades, a great deal of progress has been made in understanding the 

mechanisms that drive the differentiation of hormone-producing cells of the anterior pituitary 

gland during development.  Multiple transcription factors and signaling pathways are involved, 

and defects in the genes that encode these factors and pathways are an important contributor to 

congenital pituitary hormone deficiency [2-5].  The focus of this chapter will be on the pituitary 

transcription factors that drive the differentiation of pituitary hormone-producing cells with an 

emphasis on the history of discovery for those that are most relevant to human pituitary   
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Figure 1: Anatomy of the murine pituitary gland and base of the hypothalamus.  

The pituitary gland contains anterior (ant) and intermediate (int) lobes derived from the oral ectoderm that forms 
Rathke’s pouch. The posterior lobe (post) and pituitary stalk are derived from neural ectoderm of the ventral 
diencephalon, and they contain the axon terminals of vasopressin and oxytocin neurons that project from both the 
supraoptic nucleus and the paraventricular nucleus of the hypothalamus. Hypothalamic peptides regulate the release 
of anterior pituitary hormones into the hypophyseal portal system. 

1  
                                                
 
1 This introduction has been published: Alexandre Z. Daly and Sally A. Camper, “Pituitary Development 
and Organogenesis: Transcription factors in development and disease,” in Developmental 
Neuroendocrinology, Ed: Susan Wray, Seth Blackshaw.  In Masterclass in Neuroendocrinology, Vol. 9.  
Series Ed: John A. Russell, William E. Armstrong, Springer, 2020. 
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insufficiency.  Other chapters in this volume review the development of the hypothalamus and 

its regulation of pituitary function (See the reviews by Placzek and Towers on the development 

of the hypothalamus, the review from Alvarez-Bolado on SHH and GLI in the hypothalamus and 

Lee’s review on the arcuate nucleus) 

The hypophyseal portal system, pituitary vasculature, and accessory cells of the 

pituitary gland 

The hypophyseal portal system refers to the blood vessels that provide connections 

between the hypothalamus and the anterior pituitary gland.  This vasculature develops e14.5-

e18.5 in mice and appears complete by 12 wks gestation in humans [1].  The capillaries are 

highly fenestrated, facilitating rapid molecular exchange between the hypothalamus and 

pituitary lobes.  Oxygen levels and blood flow are regulated and have an effect on pituitary 

hormone production and secretion [6, 7]. 

The mature pituitary gland has six distinct hormone-producing cell types, as well as 

folliculo-stellate cells and pituicytes (Fig. 2).  The hormone-producing cell types in the anterior 

lobe include corticotropes that produce adrenocorticotropin (ACTH) from the pro-hormone pro-

opiomelanocortin (POMC), somatotropes that produce GH, lactotropes that produce prolactin, 

gonadotropes that produce the heterodimeric glycoprotein hormones luteinizing hormone (LH) 

and follicle stimulating hormone, (FSH) and thyrotropes that produce the heterodimeric 

glycoprotein hormone thyroid stimulating hormone (TSH).  The intermediate lobe, which 

remains distinct in rodents, contains melanotropes that produce melanocyte stimulating 

hormone from POMC.  Folliculo-stellate (FS) cells are non-endocrine cells that were named 

because of their star-like morphology of cytoplasmic processes [8].  FS cells appear between 

postnatal day 10-20 in the rat, throughout the anterior lobe parenchyma, directly adjacent to the 

hormone-producing cells [9].  FS cells serve a support function for hormone-producing cells 

through the release cytokines and growth factors.  FS cells are excitatory and are involved in 

the coordinated, pulsatile release of hormones from the hormone-producing cells, which  
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Figure 2: Critical transcription factors control the development of specialized hormone-producing cells.  

The major hormone-producing cell types of the anterior and intermediate lobes of the pituitary gland are derived from 
SOX2-expressing progenitor cells. Combinations of transcription factors drive specific cell fates and antagonize 
differentiation into alternate fates. Each cell type has distinctive secretory granules and shape [10]. Proliferating 
precursors leave the cell cycle and differentiate into hormone-producing cells during gestation. 
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themselves form homotypic networks [11, 12].  Pituicytes are glial-like cells located within the 

posterior lobe.  The larger parenchymatous pituicytes regulate hormone output by completely 

enveloping the neurosecretory processes of the oxytocin and vasopressin axons when hormone 

secretion is low, and they recede as hormone secretion increases.  They also regulate hormone 

output by secretion of taurine [13].  The smaller fibrous pituicytes do not appear to be involved 

in this regulatory function and are less well understood [14].  

The vasculature is important for pituitary gland function because it transports molecules 

from pituitary target organs that feed back at the level of the pituitary gland and hypothalamus, 

maintaining homeostasis.  This multi-organ feedback regulation is called an axis.  The best 

known of these axes are the hypothalamic-pituitary-gonadal axis, hypothalamic-pituitary-adrenal 

axis and the hypothalamic-pituitary-thyroid axis, although axes involving bone, liver and other 

organs also exist [15-19].  

Cell signaling during pituitary gland development 

Some of the major signaling pathways that have been implicated in pituitary 

development are SHH, FGF, BMP, Wnt, Notch, Hippo, EGF, and retinoic acid [20-23].  

Hypothalamic SHH is necessary for inducing expression of the pituitary transcription factors 

LHX3 and LHX4, which drive progenitor proliferation and prevent cell death [24].  FGF8 and 

FGFR1 mutations cause pituitary hormone deficiency in humans [5], and mouse studies show 

reduced cell proliferation and enhanced cell death in the pituitary primordia of Fgf8, Fgf10, and 

Fgfr2 mutants [25].  BMP and the antagonist noggin affect pituitary growth and shape during 

development, and altered BMP signaling is associated with pituitary adenomas [26-29].  

Similarly, WNT signaling regulates pituitary organogenesis and acts in a paracrine manner to 

stimulate excess cell proliferation in adenomas [30].  The ligand, beta-catenin, is a cofactor for 

several key pituitary transcription factors including PITX2, TCF7L2 (TCF4), LEF1, NR5A1, and 

PROP1.  Notch signaling regulates the timing of pituitary progenitor cell cycle exit and 

differentiation [31-33].  YAP and TAZ are transcriptional regulators downstream of the Hippo 



 
 

6 

signaling pathway, which suppresses their function by phosphorylation.  This pathway plays an 

essential role in regulation of pituitary progenitor expansion and normal organ size [23].  There 

is a great deal of crosstalk between these pathways, in that perturbation of one signaling 

pathway typically affects the other signaling pathways.  EGF and retinoic acid signaling are 

recognized as important signaling pathways but their precise roles during organogenesis have 

not been established [34, 35]. 

Hypopituitarism 

 The major pathologies associated with the pituitary are adenomas, which can be 

associated with either over- or under-production of hormones, and congenital or acquired 

hypopituitarism [36, 37].  The main emphasis of this review will be on congenital 

hypopituitarism, which had an estimated prevalence of 45.5 per 100,000 people [38].  This is a 

genetically heterogeneous condition that can present with a single pituitary hormone deficiency 

or with multiple deficiencies.  About 50% of cases that originally present with isolated growth 

hormone deficiency (IGHD) progress to combined pituitary hormone deficiency (CPHD).  CPHD 

is defined as a reduction of at least two pituitary hormones, and usually GH is one of them.  It 

has a prevalence of 1 in 8,000 individuals, and more than 30 genes have been implicated as 

causal factors for CPHD [5]. 

Overview 

 Here we review the transcription factors that are critical for developing the specialized 

cells of the anterior and intermediate lobes of the pituitary gland, emphasizing the history of 

scientific discovery surrounding each factor, from its discovery through to its most recent 

characterization.  This reveals the continuing evolution and diversity of effective technical 

approaches.  These include identification of cis-acting sequences important for regulation of 

hormone gene expression and identification of the trans-acting factors that bind those sites, 

positional cloning of mutations in mice and human patients, and exploration of epigenomic 

regulation of chromatin accessibility.  We also highlight areas for future discovery that may take 
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advantage of high-throughput sequencing and high-efficiency, targeted germline disruption 

tools. 

 

SOX2 (LCC, YSB) 

 

Gene discovery 

Sox2 was first discovered in a whole-embryo cDNA screen in search of genes similar to 

the male, sex-determining gene Sry, which binds DNA through a motif or box characteristic of 

high mobility group proteins [39].  Sox2 is expressed in progenitor cell populations in many 

tissues, and its expression is negatively correlated with differentiation [40-42].  SOX2 is one of 

the factors that, along with OCT3/4, c-MYC, and KLF4, were demonstrated by Yamanaka and 

colleagues to be sufficient to induce pluripotency in differentiated cells from mice and humans 

[43, 44].  

Knockout mouse phenotype, Down-stream targets, Interacting factors 

Sox2 is expressed in the developing pituitary and hypothalamus, and it has a role in 

pituitary development [43, 44].  Embryos homozygous for Sox2 loss of function alleles die 

around implantation, and heterozygous mice have genetic background-dependent reduction in 

body size and male infertility [42].  The developing pituitaries of heterozygous mutants are 

bifurcated, similar to the dysmorphology observed in Wnt5a mutants, and both males and 

females exhibit reduced differentiation into somatotropes and gonadotropes (Fig. 3) [45, 46].  

About ⅔ of the heterozygotes survive to adulthood, and in these survivors, the reduction in 

pituitary size is modest, and GH and LH content is only significantly reduced in males.   

Martinez-Barbera and colleagues generated a conditional deletion of Sox2 using the 

Hesx1-cre strain, deleting Sox2 in the pituitary gland and areas of the brain between e10.5 and  
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Figure 3: The effect of transcription factor mutations on pituitary development has been revealed using 
genetically engineered and spontaneous mutant mice.  

Deletion of Pitx1 has modest effects including slight reduction of TSH and LH, slight increase in POMC and no 
change in GH and αGSU, as observed by in situ hybridization in P0 animals [47]. In situ hybridization in newborn 
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mice homozygous for a hypomorphic allele of Pitx2, Pitx2 neo/neo, revealed normal Pomc expression, reduction in Gh 
and Tshb expression, and no detectable Lhb or Fshb transcripts (panels bordered in purple) [48]. Pitx2-/- embryos had 
arrested the development of Rathke’s pouch and reduced expression of αGSU at e13.5 mice [49]. Trace amounts of 
Pomc transcripts were present, but all other hormones were not detectable (not shown). In situ hybridization in the 
Lhx3 knockout mice revealed a near-total loss of Pomc, Tshb, Gh, and Cga (αGSU) transcripts, and 
immunohistochemistry failed to detect significant amounts of LH.  In situ hybridization of Lhx4 knockout pituitaries 
revealed a significant reduction in Tshb, Lhb, Gh, and Cga transcripts at e18.5 and immunohistochemistry showed 
largely similar POMC expression in e14.5 mice [50]. Immunohistochemistry of Sox2 heterozygous null mice revealed 
reduced staining for GH and LH at e18.5 [51]. There is no detectable POU1F1 staining in Hesx1cre/+ ; Sox2flox/flox mice 
at e14.5 or later in gestation (not shown) [52]. The staining for αGSU and POMC was somewhat normal at e15.5, 
considering the hypoplasia of the organ.  Only Pou1f1-independent TSH-expressing cells were detected. 
Immunohistochemistry of Prop1-/- pituitaries revealed POMC expression but little or no detectable caudomedial 
staining for TSH, LH, or GH at e18.5 [53].  αGSU staining was modestly reduced at e14.5 in Prop1df/df mice, but 
NR5A1 cells were normal at birth [54].  In situ hybridization analysis of e17.5 Hesx1R160C/R160C mutants revealed 
approximately normal levels of Pomc, Tshb, Lhb, Gh, and Cga expression, although the pituitaries were dysmorphic 
[55].  These missense mutant mice have similar pituitary features to mice homozygous for a null allele, but the 
forebrain is less affected.  Analysis of newborn SF1-mutant mice revealed undetectable LH, diminished Cga 
transcripts and normal immunostaining for ACTH, TSH, and GH [56].  Pou1f1dw/dw mutant newborns have normal 
POMC immunostaining, undetectable TSH and GH, and increased LH [57].  CGA appeared reduced. 
Immunohistochemical analysis of Tpit knockouts revealed undetectable POMC, no effect on caudomedial staining of 
GH, TSH, LH, or αGSU in the anterior lobe, but ectopic expression of TSH, LH, and αGSU in the intermediate lobe 
[58]. 

 
e12.5 [46].  This resulted in severe pituitary hypoplasia and greatly reduced expression of 

Pou1f1, Gh, and Tshb.  Gonadotropin deficiency appeared to be secondary to the reduction in 

GnRH neurons in these mice.  Cell proliferation is significantly decreased in the conditionally 

deleted Sox2 pituitary glands, and it appears that the progenitors have not migrated from the 

progenitor zone of Rathke’s pouch to colonize the anterior lobe.  This suggests that Sox2 has an 

important role in pituitary progenitor proliferation and transition to differentiation. 

Robinson and colleagues discovered that Sox2-expressing cells in the adult mouse 

pituitary were still mitotically active and that, given appropriate culture conditions, these SOX2 

positive cells can self-renew and differentiate in vitro into all of the hormone producing cells of 

the anterior lobe of the pituitary gland [59].  Both Lovell-Badge and Martinez-Barbera and 

colleagues used lineage tracing to demonstrate that SOX2-positive cells give rise to all of the 

different hormone-producing cells in the pituitary gland in vivo [60, 61].  SOX2-positive cells 

contribute to tissue homeostasis, and they are involved in responding to end-organ ablation, 

such as adrenalectomy and gonadectomy.  Mice with a constitutively active allele of β-catenin 

exhibit clusters of pituitary cells that over-express β-catenin, express Sox2, and induce 

transformation of neighboring cells that mimic craniopharyngioma, a childhood tumor [62].  
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Taken together these studies established that SOX2-expressing cells represent progenitors of 

the hormone-producing cells the developing pituitary. 

Patient mutations 

 Most patients with SOX2 mutations have serious eye abnormalities that can include 

anophthalmia, microphthalmia, and/or optic nerve hypoplasia, and hypopituitarism characterized 

by pituitary gland hypoplasia and hypogonadotropic hypogonadism [39, 51, 62, 63].  While all of 

the patients with SOX2 mutations exhibited reduced gonadotrope function, the degree of GH 

deficiency varied. The response of patients to GnRH stimulation was also variable. 

 

PITX Factors (PITX1: Ptx1, Bft, P-OTX; PITX2: Brx, Munc30, Otlx2, Rieg) 

 

Gene Discovery 

 The PITX transcription factors, PITX1 and PITX2, are expressed early in pituitary gland 

development and persist through adulthood.  Their names derive from their pituitary expression 

and paired-like homeobox DNA binding domains, and they have important functions in the 

hindlimb, heart, eye, and other tissues [47, 49, 64-66].  These factors were found in very 

different ways, and they have overlapping functions within the pituitary gland [67]. 

 Pitx1 was discovered by searching for factors that bind the regulatory elements of the 

pro-opiomelanocortin gene (Pomc).  POMC is a pro-hormone that is expressed in both 

corticotropes of the anterior lobe and melanotropes or the intermediate lobe.  POMC undergoes 

differential cleavage to produce adrenocorticotropin (ACTH) in corticotropes and melanocyte 

stimulating hormone (MSH) and b-endorphin in melanotropes.  In vitro analysis revealed that 

the major regulatory region of the Pomc promoter-proximal region was between 166 and 480 bp 

upstream of the transcription start site [68].  Drouin and colleagues found that deleting a small 

section from the middle of this element nearly ablated Pomc expression [69].  They screened a 
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cDNA expression library from AtT-20 cells, an immortalized corticotrope-like cell, for factors that 

bind this element, and identified Pitx1, which has high homology with the mouse Otx genes.  

Pitx1 was identified independently by screening the same cDNA expression library for factors 

that interact with POU1F1 [70], a pituitary transcription factor described below. 

 PITX2 was discovered as one cause of Rieger syndrome, which was first described in 

the 1800s as a genetic disorder characterized by eye malformations, dental hypoplasia, 

craniofacial dysmorphism, and umbilical stump abnormalities.  The causal gene was mapped to 

a 50kb region on chromosome 4 [71].  Genomic DNA from CpG islands in this region were used 

to screen human craniofacial and fetal brain cDNA libraries, and a contig of RIEG cDNAs were 

obtained [72].  RIEG was most closely related to Pitx1, and it was later renamed PITX2.  Murray 

and colleagues reported mutations in six families with Rieger syndrome.  Pitx2 was discovered 

independently by screening an adult mouse pituitary cDNA library for homeobox genes [73].  It 

was predicted to be a regulator of anterior structure formation in mice based on its expression 

pattern and its location on mouse chromosome 3 within a region of synteny homology to the 

region of human 4q25 where Rieger syndrome had been mapped.  

Gene Expression 

 The expression patterns of Pitx1 and Pitx2 differ, but there are some regions of striking 

overlap.  Pitx1 is expressed in the pituitary, intestine, tongue, oral epithelium, the mandible, 

salivary glands, duodenum, nasal epithelium, and the hindlimb [69, 70, 74].  Pitx1 is expressed 

in the pituitary primordia by embryonic day 9.5 (e9.5) [75].  Pitx2 is expressed in the eye, the 

dental lamina, limb mesenchyme, umbilical vessels, and in Rathke’s pouch as early as e8.5 

[72].  The early expression of both PITX factors suggested their importance for pituitary 

development. 

Down-stream Targets 

 PITX1 binds the promoters of several genes that encode pituitary hormones, including 

Cga (chorionic gonadotropin alpha, the common subunit of the heterodimeric hormones LH, 
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FSH and TSH), Gh, and Prl, and induces their transcription [70].  PITX1 was also implicated in 

the transcription of Gnrhr, Pou1f1, Tshb, Nr5a1, and Lhx3 using cell transfection assays [76].  

However, immunostaining suggests that the gonadotropes and thyrotropes have the most 

abundant expression of PITX1 and PITX2 in the adult pituitary gland [77].  PITX2 activity is 

enhanced by b-catenin, and the complex regulates Cyclin D2 expression [78]. 

Knockout Mice  

 Mice homozygous for Pitx1 deletion had disrupted hindlimb formation and a very mild 

pituitary phenotype with a slight reduction of gonadotropes and thyrotropes [47].  All of the major 

transcription factors were largely unaffected, and Pomc expression was normal.  

 By comparison, Pitx2 had a much stronger effect on the developing pituitary.  Four 

independent Pitx2 knockout mouse lines were published in 1999 [49, 64-66].  Camper and 

colleagues developed several alleles, which included a hypomorphic or reduced function allele, 

Pitx2neo, a null allele, Pitx2 -, and an inducible null allele [48].  Various combinations of these 

alleles were used to assess dosage sensitive effects of Pitx2 loss of function, i.e. an allelic 

series.  Pitx2-/- and Pitx2neo/neo embryos die in utero, at e13.5 and e18.5 respectively.  Both 

exhibit right lung isomerism, and dosage sensitive effects on eye, pituitary gland, and heart 

development.  The ventral body wall of Pitx2 -/- embryos fails to close, resulting in externalization 

of the heart, liver, and abdominal organs.  Pitx2 heterozygotes accurately model the ocular 

features of Rieger syndrome [79]. 

The initial induction of Rathke’s pouch occurs at e10.5 in Pitx2 -/- embryos, but there is 

extensive cell death and reduced cell proliferation, resulting in a very small pituitary primordium 

at e12.5 [64, 67].  Hesx1, Prop1, and Lhx4 are not expressed in these mutants, but Lhx3 is 

activated.  Little or no hormone cell specification is detected [49].  In contrast to the small 

pituitaries in Pitx2-/- and Pitx2neo/- embryos, there was no obvious reduction in the size of 

Pitx2neo/neo pituitaries [48].  Somatotropes and thyrotropes were reduced, and gonadotropes 
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were ablated.  Pitx2neo/neo pituitaries had reduced expression of the transcription factors Gata2, 

Egr1, Nr5a1, and Pou1f1. 

The overlapping expression patterns of Pitx1 and Pitx2 suggested the possibility of 

compensatory function.  Indeed, double heterozygotes (Pitx1+/-, Pitx2+/- and Pitx1+/-, Pitx2+/neo) 

have very poor viability, and hypoplastic pituitaries [67].  Lhx3 expression was not detectable in 

rare double mutants, suggesting that Pitx genes are required for Lhx3 expression.   

Human mutations 

 Heterozygous PITX1 loss of function mutations have been reported in two families with 

lower extremity abnormalities [80-82].  Genomic rearrangements that result in ectopic 

expression of PITX1 in the developing forelimbs cause Liebenberg syndrome, a homeotic 

transformation of the arms to a leg morphology [83, 84]. 

Rieger syndrome is a rare, autosomal dominant disorder affecting development of the 

eyes, teeth and abdominal wall.  It can be caused by mutations in PITX2 or FOXC1.  The 

majority of patients with Rieger syndrome have normal height, although there are some 

anecdotal reports of Rieger syndrome patients with growth insufficiency.  For example, a three-

generation family with Rieger syndrome and either short stature or growth hormone deficiency 

was reported [85].  The proband responded to GH replacement therapy.  The nature of the 

mutation in this family and other historical cases are unknown.  Many Rieger syndrome patients 

have been screened for PITX2 mutations, but no systematic screening of CPHD patients 

without eye defects has been reported.   

 

LIM homeodomain proteins: LHX2 (ap, apterous, Lh-2, LH2A), LHX3 (P-LIM, 

Lim3), LHX4 (Gsh-4) 

 

Gene Discovery 
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LHX proteins contain both LIM-domains, comprised of two contiguous zinc fingers, and a 

Homeobox-domain.  Three LHX factors involved in pituitary development, Lhx2, Lhx3 and Lhx4, 

and they were discovered independently.  Lhx2 was discovered in a screen of cell lines for VDJ 

recombinase activity [86].  Lhx3 was discovered in a screen for Lhx factors in a cDNA library 

generated from Xenopus gastrula (called Xlim3 in Xenopus) [87].  Lhx4 (previously known as 

Gsh-4) was discovered in a screen for homeobox genes in mouse genomic DNA [88].  Lhx2 is 

expressed in developing B cells, telencephalon, retina, ventral diencephalon, posterior pituitary 

gland and infundibulum [89].  Lhx3 is expressed in the pituitary and pineal glands, the retina, 

spinal cord, and hindbrain.  Lhx4 is expressed in the developing pituitary, neural tube, hindbrain, 

spinal cord [50, 90]. 

Knockout Mice  

Mouse knockouts of Lhx2, Lhx3 and Lhx4 revealed the importance of each gene for 

pituitary development [50, 54, 90-93].   

Lhx2 is expressed in the developing ventral diencephalon from e9.5-e12.5, in regions 

that become the pituitary infundibulum and posterior lobe [91].  Embryos homozygous for Lhx2 

null alleles have pituitary dysmorphology including bifurcation of Rathke’s pouch, excess 

proliferation in the infundibular area, and failure of the neural ectoderm to evaginate.  Despite 

this, all hormone producing cell types of the anterior lobe are detectable, consistent with the 

expression of critical signaling molecules such as BMP and FGFs by the abnormal infundibular 

structure.  The mice are not viable and also have anophthalmia, anemia and malformations of 

the cortex [89].  A cohort of 59 patients with pituitary deficiency and eye abnormalities were 

negative for LHX2 mutations [94]. 

Lhx3 is expressed in the pituitary placode at e9.5 and persists through adulthood [92].  

Lhx3+/- mice are phenotypically normal and fertile, but mice homozygous for the null allele were 

either stillborn or died within 24 hours after birth.  Rathke’s pouch formed in Lhx3-/- embryos but 

failed to expand.  The thin, underdeveloped pouch fails to separate from the oral ectoderm.  
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These mutant pouches exhibited reduced cell proliferation and enhanced cell death, and there 

is evidence of abnormal dorsal-ventral polarity [93].  The cyclin dependent kinase inhibitor 

Cdkn1a (p21) is expressed more dorsally than normal, and Cdkn1c (p57) is absent in the caudal 

region of the pouch [95].  Hesx1 and Isl1 expression were initiated at e10.5 but failed to be 

sustained at e12.5.  Induction of lineage-specific transcription factor gene expression -- Tbx19, 

Neurod1, Nr5a1, and Pou1f1 -- were very poor.  Lhx3-/- embryos contained a few differentiated 

corticotropes but no other differentiated hormone producing cells were detected.  

Lhx4 is expressed in the pituitary primordium between e9.5 and e12.5, and it is restricted 

to the prospective anterior lobe at e12.5 [50].  Expression diminishes at e15.5, but it is detectable 

in adult pituitary anterior and intermediate lobes.  Lhx4-/- newborns appear normal but die shortly 

after birth due to failure of the lungs to inflate [90].  Dexamethasone treatment, used to accelerate 

lung development, improved but did not completely rescue survival.  Pituitary insufficiency can 

result in poor lung development in certain genetic backgrounds [53].  Lhx4-/- embryos have anterior 

pituitary lobe hypoplasia [50].  Enhanced cell death is evident at e12.5, and Lhx3 expression is 

significantly delayed [54, 95].  Isl1 expression does not become ventralized at e11.5 and it is not 

detected at e12.5.  Pitx2 expression is also not maintained.  Expression of pituitary hormone 

genes is reduced but detectable.   

The functions of Lhx3 and Lhx4 overlap [50].  Both Lhx3+/-, Lhx4-/- and Lhx3-/-, Lhx4+/- 

embryos can form Rathke’s pouch, but it fails to expand and is more severely affected than in 

either single mutant.  Lhx3-/-, Lhx4-/- double mutants have a very severe pituitary phenotype [50].  

The double mutants form a pouch rudiment, and invagination of the oral ectoderm occurs, but the 

rudiment fails to separate from the oral ectoderm and remains at the pharyngeal cavity beneath 

the palate.   

Human mutations 

 Following characterization of the Lhx3-/- mice, patients with Combined Pituitary Human 

Deficiency (CPHD) were screened for LHX3 mutations.  Loss of function mutations were found 
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in several unrelated patients [96-106].  Generally, the mutations were recessive and associated 

with multiple pituitary hormone deficiencies.  Limited neck rotation, hyperplastic anterior pituitary 

gland, sensorineural hearing impairment, respiratory problems, and skeletal abnormalities were 

found in some cases.  Heterogeneity in the presentation of pituitary size is observed in CPHD 

patients with mutations in other genes including PROP1 [107]. 

 Mutations in LHX4 have been identified in multiple unrelated patients with CPHD.  One 

is a homozygous lethal missense variant (p.T126M) [104], but the rest are heterozygous loss of 

function mutations with incomplete penetrance [108-113].  This indicates that the dosage 

sensitivity to LHX4 loss of function is more extreme in humans and mice. 

 In conclusion, LHX3 and LHX4 have essential and overlapping roles in anterior pituitary 

development in mouse and man, while LHX2 has a role in posterior pituitary lobe development.   

 

HESX1 (Rpx) 

 

Gene discovery and Gene expression 

Hesx1 was discovered by a screen for Homeobox factors in an Embryonic Stem cell 

cDNA library, and independently, in a screen for homeobox factors expressed during 

gastrulation, at e7.5 [114-116].  Hesx1 is expressed sequentially in the anterior visceral 

endoderm, anterior definitive endoderm and the cephalic neural plate.  While officially known as 

Hesx1, it was also named Rathke’s Pouch homeobox (Rpx1) because of its robust expression 

in the developing pituitary primoridia at e9.5.  Its expression in the developing pituitary gland is 

extinguished by PROP1 at e14.5 [117, 118].  

Knockout mouse phenotype, Down-stream targets, upstream regulators 

Robinson and colleagues generated a Hesx1 deletion in mice and demonstrated that 

93% of homozygous mutants died before weaning [119].  The phenotype was variable and 
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included developmental abnormalities of the forebrain, eye, and pituitary gland.  The pituitary 

glands were missing (5%), misplaced, dysmorphic and/or small [118].  Hesx1 deficiency permits 

excessive FGF signaling, resulting in multiple invaginations of oral ectoderm instead of a single 

Rathke’s pouch [118].  Most mice heterozygous for the deletion were normal, but 1% displayed 

mild abnormalities of the same organs affected in homozygous mice.   

Rosenfeld and colleagues demonstrated that HESX1 acts as a repressor of Pou1f1 

expression by binding the Pou1f1 early enhancer [118, 120].  HESX1 binds the co-repressor 

transducin-like enhancer of split 1 (TLE1) through its engrailed homology domain and also 

interacts with a co-repressor, histone deacetylase complex containing Nuclear Receptor Co-

Repressor (NCoR).  Forced expression of HESX1 and TLE1 during pituitary development is 

sufficient to suppress POU1F1-dependent cell lineages.  Both HESX1 and PROP1 are paired 

type homeodomain transcription factors that can compete for the same DNA binding sites.  In 

the presence of beta-catenin, PROP1 binds the early enhancer of Pou1f1 and initiates Pou1f1 

gene expression. 

Both Lhx3 and Pitx2 are necessary upstream regulators of Hesx1 in the developing 

pituitary gland [64, 92].  A 100 bp element that directs spatial expression of Hesx1 in Rathke’s 

pouch lies ~3.3 kb 3’ of the gene and is bound by PITX2 and GATA2 [121].  The promoter 

proximal -570 bp, exons 1 and 2 and intron 1 of Hesx1 are sufficient for transgene reporter 

expression in the anterior visceral endoderm, anterior neural ectoderm, and anterior neural 

plate.  A negative element that suppresses Hesx1 expression in the hypothalamus, and 

responds to inductive signals from Rathke’s pouch, has been mapped -568 to-532 bp upstream 

of the gene.   

Patient mutations 

The phenotypes of Hesx1 knockout mice suggested that HESX1 mutations might cause 

pituitary and anterior structure malformations in humans.  A screen of 61 patients with 

holoprosencephaly, Septo-Optic Dysplasia (SOD), or pituitary insufficiency uncovered two 
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siblings with agenesis of the corpus callosum and panhypopituitarism that were homozygous for 

a missense mutation in HESX1, p.R53C, which abrogates DNA binding [119].  This disease 

association was confirmed by screening a larger cohort of 228 patients with congenital pituitary 

defects for mutations in HESX1 [122].  Three heterozygous missense mutations were identified, 

p.S170L, p.C509T, and p.A541G, which were associated with incomplete penetrance and 

variable phenotypic presentation from SOD to hypopituitarism, or Isolated Growth Hormone 

Deficiency (IGHD). 

Summary 

Hesx1 was discovered in two independent cDNA screens for homeobox transcription 

factors.  LHX1, LHX3, and LMX1B activate its expression in early head development, and 

PITX2 and GATA2 activate its expression in Rathke’s pouch.  Pituitary expression is 

extinguished by PROP1, which also releases HESX1-mediated repression of Pou1f1, activating 

the development of somatotropes, lactotropes and thyrotropes.  Homozygous mutations in mice 

and heterozygous mutations in humans cause variable phenotypes that include reduced 

forebrain, anophthalmia, and pituitary dysfunction.  The cause of variable presentation is not 

known. 

 

PROP1 

 

Gene discovery 

Prophet of Pit1 or PROP1 is a pituitary specific transcription factor that was identified by 

positionally cloning a spontaneous dwarf mouse mutant, Ames dwarf, df [123].  These mice 

were first described phenotypically 58 years ago by Drs. Schaible and Gowen at Iowa State 

University in Ames, Iowa, as they studied the descendants of an irradiation experiment [124].  

Homozygous mutant mice have anterior pituitary hypoplasia, growth insufficiency, 
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hypothyroidism and infertility, which are attributed to lack of growth hormone, prolactin and 

thyroid-stimulating hormone [125-127].  Hesx1 expression was not properly repressed in the 

df/df mutant pituitaries, placing the df locus downstream of Hesx1 [127].  No expression of 

Pou1f1 could be detected in the pituitaries of developing df/df mutants by in situ hybridization, 

indicating that Prop1 is required for activation of Pou1f1 [117, 128].  However, small clusters of 

cells expressing Pou1f1 and GH, PRL or TSH could be detected in adult df/df mutant pituitaries 

by immunohistochemistry [127].  These committed somatotropes did not express detectable 

levels of Ghrhr and were insensitive to increased stimulation by growth hormone releasing 

hormone [127].  

Genetic mapping placed the df locus on mouse chromosome 11 in a region of synteny 

homology with human chromosome 5q [129].  Using genetically directed representational 

difference analysis, the critical region was narrowed to a 400-600 kb window [123].  Genomic 

clones from this region were probed with cDNA from the developing pituitary, resulting in the 

identification of Prop1, which encodes a 233 amino acid paired homeodomain containing 

protein.  The Ames dwarf mice had a missense mutation in the homeodomain, p.S83P, that 

abrogates DNA binding.  A null allele of Prop1 was genetically engineered by inserting a 

LacZ/Neo cassette into the first exon of Prop1 [53].  These Prop1-/- mice essentially phenocopy 

the Prop1df/df mice when compared on the same genetic background.  Prop1 expression is 

highly restricted to the pituitary, beginning at embryonic day 10.5, reaching a peak at e12.5, 

declining through development, and remaining detectable in the postnatal period [123, 130].  

Down-stream targets 

 PROP1 binds b-catenin and competes with the HESX1-co-repressor complex for binding 

at the early enhancer of Pou1f1 to induce Pou1f1 expression [118, 120, 123].  Deletion of β-

catenin before the expression of Pou1f1 blocks Pou1f1 expression, while deletion of β-catenin 

after the onset of Pou1f1 expression had no effect, suggesting a narrow critical window of β-

catenin expression in lineage determination.  This β-catenin phenotype occurs independent of 
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LEF1, TCF3, or TCF4 action.  PROP1 interacts directly with the co-repressors TLE, Reptin, and 

HDAC1 to bind and repress the expression of Hesx1.    

Lineage tracing reveals that all hormone-producing cell types of the anterior and 

intermediate lobes of the pituitary descend from Prop1-expressing cells [131].  This places 

Prop1 just downstream of Sox2 expression in pituitary progenitors [130] (Fig. 2).  Prop1df/df mice 

have a vascularization defect, reduced expression of cyclin D1 and cyclin D2 in pituitary 

progenitors, and a failure of proliferating cells to migrate away from the stem cell niche into the 

parenchyma, which appears to be a failed epithelial to mesenchymal-like transition [132].  Many 

mutant cells undergo apoptosis.  Notch signaling is normally active in the transitional zone 

between the stem cell niche and the differentiating cells, but Prop1 mutants do not express 

Notch2 [31, 133].  Colony forming assays and RNA-Seq were used to assess the effect of 

Prop1 deficiency on stem cells.  Mutants had a reduced stem cell pool, abnormal colony 

morphology, and changes in gene expression consistent with a failed epithelial to mesenchymal 

transition.  To identify additional downstream targets of Prop1 that might underlie the features of 

mutant pituitaries, Pérez Millán and colleagues developed a biotin-tagged allele of PROP1 in an 

immortalized pituitary cell line, facilitating direct identification of PROP1 binding sites in 

chromatin [130].  Binding sites were identified in or near Notch2, Gli2 and Zeb2.  Zeb2 activation 

appeared to be an essential step in the process of engaging progenitors to undergo EMT. 

Upstream regulators 

Multiple species alignment of PROP1 genomic sequences from a variety of mammals 

revealed three areas of high conservation: upstream, downstream, and within intron 1 of Prop1 

[134].  In the context of the Cga promoter, the intronic enhancer is sufficient to drive expression 

in the stem cell niche, located in the dorsal aspect of the pituitary gland in transgenic mice.  The 

Cga promoter alone drives expression in the more ventral aspect of the organ, consistent with 

the location of differentiating gonadotropes and thyrotropes.  This enhancer sequence is bound 

by RBpJK, indicating that Notch signaling feeds back to upregulate Prop1 expression [32].   
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Patient mutations  

 Quickly after the discovery of mouse Prop1 by positional cloning, the human ortholog 

was identified and recessive loss of function mutations were found in four unrelated families with 

CPHD [135].  All three mutations either reduced or completely eliminated PROP1’s ability to 

bind DNA, convincingly implicating these lesions as the cause of CPHD.  Mutations in PROP1 

are the most common, known cause of CPHD [136, 137].  The most frequent mutations are 

frameshifts causing premature termination; many patients are homozygous for c.[301-

302delAG] or c.[150delA].  Portuguese [138], Lithuanian [139] and Czech [140] cohorts have a 

high incidence of the 2 bp deletion, and the 1 bp deletion is common in Croatia [141].  A 

thorough investigation of the haplotype revealed that the 2 bp deletion founder mutation arose 

approximately 101 generations ago in central eastern Europe, and it either re-occurred or was 

transferred to the Iberian peninsula approximately 23 generations ago [141].  The Iberian 

haplotype and mutation were subsequently transferred to Latin America.  Combining all 

population groups analyzed so far, PROP1 mutations are estimated to cause ~11% of familial 

and sporadic cases of CPHD [5].  All mutations discovered to date are recessive, and the 

phenotype includes deficiency of GH, TSH, gonadotropins, and progressive loss of ACTH.  We 

speculate that the progressive hormone loss may result from depletion of the pituitary stem cell 

pool. 

 

POU1F1 (PIT-1, GHF-1)  

 

Gene discovery 

 Karin and Rosenfeld independently discovered the first pituitary-specific transcription 

factor, demonstrated that it regulated expression of the Gh and Prl genes, and named it GHF1 

and PIT1, respectively [142, 143].  It was later renamed POU1F1.  Rosenfeld’s group identified 
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cis-acting sequences in the Gh and Prl genes that were necessary for their expression in 

pituitary cell cultures and used them as probes to screen a pituitary cDNA expression library 

[143, 144].  They identified the Pou1f1 cDNA, detected transcripts only in pituitary gland, and 

showed that Pou1f1 expression vectors were sufficient to activate Gh and Prl reporter genes in 

transfected, heterologous cells.  Karin’s group took the approach of biochemically purifying the 

protein that bound the cis-acting sequences in the Gh promoter and obtaining the amino acid 

sequence of a peptide from the binding protein [142, 145].  Probes complimentary to the peptide 

sequence were used to screen pituitary cDNA libraries and GHF1 was identified.  Loss of GHF1 

resulted in loss of Gh expression [146].  Subsequent structure-function analyses revealed the 

presence of the nuclear localization signal and the roles of the homeodomain and POU-specific 

domain in specificity of DNA binding [147].   

Knockout Mice  

George D. Snell described the phenotype of an autosomal recessive, spontaneous dwarf 

mouse mutant in 1929, and it was named dw [148].  The growth insufficiency of the mutant mice 

is evident fourteen days postnatally, and adult mutants also exhibit hypothyroidism and 

hypogonadism.  Tissue transplantation experiments demonstrated that the multi-organ defects 

were rescued by pituitary tissue, and mutant pituitaries did not improve function when implanted 

in the sella of normal mice, pinpointing the pituitary as the root cause of the hormone 

deficiencies [149, 150].   

 Finally, sixty-one years after the dw Snell dwarf mutation was described phenotypically, 

lesions in Pou1f1 were implicated as causal [151, 152].  Pou1f1 was tightly linked genetically to 

the dw locus, and the gene was rearranged in an allelic variant, dwJ [153].  DNA sequencing 

revealed a G→T missense mutation, resulting in a p.W251C change of a highly conserved 

residue in the homeodomain that abrogates DNA binding.  These findings extended the role of 

Pou1f1 from direct activation of Gh and Prl gene expression to include stimulating the 
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development and specification of cells that express Gh, Prl, and Tshb.  These three specialized 

cell types became known as the Pou1f1 lineage. 

Patient mutations  

 Two years after linking the mouse dwarfism phenotype to lesions in Pou1f1, Khono and 

colleagues identified the first POU1F1 mutation found in a patient with TSH, GH, and prolactin 

deficiencies [154].  This c.C638T nonsense mutation resulted in a truncation, p.R172X, N-

terminal to the homeodomain of POU1F1.  Numerous POU1F1 mutations have been described 

in patients with CPHD (reviewed in [5]).  The majority are recessive loss of function mutations 

that present with deficiency of GH, PRL and TSH.  However, there are a few notable 

exceptions.  The p.R271W mutation is dominant negative and incompletely penetrant, possibly 

due to variability in mono-allelic expression of the mutant vs. normal allele [155-157].  The 

p.R271W mutation interferes with binding to C/EBP�, and it permits recruitment to centromeric 

heterochromatin [158].  The mutation also interferes with tethering of POU1F1 dimers to the 

nuclear matrix via interactions with  b-catenin, SATB1 and matrin-3 [159].  A p.K216E mutation 

in the homeodomain is also a dominant cause of CPHD [20].  This mutation acts by interfering 

with the ability of POU1F1 to autoactivate its late enhancer in response to retinoic acid 

stimulation (see below).  A p.P76L mutation in the transactivation domain causes dominant 

IGHD in humans and recessive growth insufficiency in mice [160].  TSH and PRL were not 

measured in the mouse model.  The amino acid substitution increases DNA binding at the 

human GH1 locus control region and increases binding to several transcription factors, including 

PITX1, LHX3a, and ELK1.  The p.P76L change decreases transactivation of Gh, but it has no 

effect on the Prl promoter.  Two other proline substitutions in the transactivation domain have 

been reported in children with GH, PRL and TSH deficiency: p.P14L and p.P24L [156, 161].  

Detailed functional studies were not carried out.  The p.P14L variant appears dominant with 

incomplete penetrance, and no inheritance data were presented for the p.P24L allele.  In sum, 
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mutations in POU1F1 can cause CPHD or IGHD and be recessive or dominant, and dominant 

mutations are informative about the normal mechanism of action. 

Upstream regulators 

 Pou1f1 expression is selectively high in the anterior lobe of the pituitary.  The cis-acting 

sequences necessary for Pou1f1 expression were mapped extensively in transgenic mice [34].  

A 390 bp enhancer located ~10.4-10.2 kb upstream of the Pou1f1 transcription start site is 

sufficient for Pou1f1 expression postnatally in the context of the minimal 327 bp Pou1f1 

promoter [162].  This distal or ‘late enhancer’ is bound by POU1F1 in an autoregulatory loop 

necessary for maintaining expression.  Another enhancer element located between ~8 kb 

upstream of Pou1f1 is bound by PROP1 and  b-catenin, inducing initial expression of Pou1f1, 

but this proximal or ‘early enhancer’ is not sufficient for the sustained expression of Pou1f1 into 

adulthood [120, 123, 162].   

Down-stream targets 

The role of POU1F1 in establishing thyrotropes and Tshb expression was discovered 

later [77, 163, 164].  Ridgway and colleagues mapped cis-acting sequences necessary for Tshb 

expression in thyrotropic tumor cells and identified binding sites for POU1F1 and GATA2 within 

-133 to -88 of the Tshb transcription start site.  Neither transcription factor had a major impact 

on Tshb transcription individually, but together they synergistically activated Tshb.  Using 

dominant negative and ectopic gene expression transgenic approaches, Rosenfeld and 

colleagues discovered that POU1F1 and GATA2 interact to promote thyrotrope development, 

while GATA2 alone promotes gonadotrope development.  Specifically, they showed that broadly 

expressing Gata2 throughout the developing pituitary blocks Pou1f1 expression, reduces 

thyrotrope and somatotrope differentiation, and increases gonadotrope specification.  

Conversely, expressing Pou1f1 broadly throughout the developing pituitary drives high levels of 

thyrotrope and somatotrope differentiation, and blocks gonadotrope specification. Camper and 

Ridgway collaborated to show that a pituitary-specific knockout of GATA2 diminished thyrotrope 
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and gonadotrope differentiation.  At birth, the mice have very few thyrotropes, but they recover 

as the mice age, likely through sensitive feedback loops that maintain thyroid hormone 

production at the proper level.  These mice also became fertile.  Marked upregulation of Gata3 

was observed, which may compensate for loss of Gata2.  A pituitary-specific Gata2, Gata3 

double knockout would be necessary to assess whether loss of both GATA factors is sufficient 

to block gonadotrope and thyrotrope development.  Nevertheless, these studies established an 

important role for both Pou1f1 and Gata2 in pituitary development.    

  POU1F1-mediated regulation of gene expression and cell fate requires interaction with 

chromatin modifying factors.  POU1F1 binds to the Gh promoter by e13.5-e14.5, but Gh 

transcription is not activated until a complex containing the histone lysine demethylase, LSD1 is 

recruited [165].  A pituitary-specific deletion of Lsd1 has little effect on Pou1f1 expression, but 

there is little or no expression of Gh, Tshb, or Prl.  Differentiation appears to be suppressed 

because Notch signaling fails to be silenced.  LSD1 binds and activates the Gh promoter 

through interaction with an MLL1 co-activator complex.  A region of the Gh promoter located at -

161 to -146 is necessary for silencing Gh expression in lactotropes postnatally.  ZEB1, a 

homeodomain transcription factor with seven Zn fingers, binds this element with a constellation 

of co-factors including LSD1 and co-repressors.  Estrogen, an activator of Prl expression, 

enhances the recruitment of LSD1 and ZEB1 mediated repression of Gh in lactotropes during 

the postnatal period in mice. 

Recently, other POU1F1 binding partners were identified, shedding light on its 

mechanism of action [159].  Using immunoprecipitation and mass spectrometry, POU1F1 was 

discovered to interact with matrin-3, β-catenin, and SATB1. The dominant negative POU1F1 

p.R271W mutation interferes with POU1F1’s interaction with β-catenin and SATB1 which, in 

turn, results in the failure to interact with matrin-3 and reduced expression of POU1F1 target 

genes.  Gene expression is rescued by fusing POU1F1 (p.R271W) with matrin-3.  This shows 
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convincingly that the multi-protein complex must be tethered to the nuclear matrix for optimal 

activity. 

  

NR5A1 (Steroidogenic Factor 1, SF1, Ftz-f1, adrenal 4-binding protein) 

 

Gene discovery 

NR5A1 is considered to be the signature transcription factor for driving pituitary 

gonadotrope cell fate.  It was initially discovered in the search for transcription factors regulating 

steroidogenic enzyme biosynthesis in the adrenal cortex.  Parker and Morohashi independently 

made the observation that multiple cis-regulatory elements driving expression of steroidogenic 

enzyme genes and cytochrome P450 genes in the adrenal cortex had highly similar AGGTC 

motifs, suggesting that a single factor might regulate the expression of these proteins [166, 167].  

In support of this, the factor(s) that bound all six of these elements were the same molecular 

weight and had identical chromatographic properties.  They took a biochemical purification 

approach to identify the transcription factor binding these elements.  Y1 adrenocortical tumor 

cells did not produce sufficient protein for purification and characterization.  To circumvent this 

limitation, they took advantage of evolutionary conservation of regulatory networks among 

mammals.  The promoters of these three genes have high sequence similarity in cows and mice 

[168], and the bovine factor that binds the mouse regulatory elements is the same size as the 

mouse factor [169, 170].  They collected bovine adrenal cortex tissues, purified the binding 

protein, and named it steroidogenic factor 1 or SF1.  This 53kD protein could bind all six 

regulatory elements.  Because the AGGTC motif is similar to the binding sites of nuclear 

hormone receptors, they predicted that SF1 would have a DNA binding domain similar to the 

nuclear hormone receptor family.  They screened a Y1 cDNA library with a probe designed to 

hybridize to the consensus sequence encoding a nuclear hormone receptor DNA binding 
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domain.  One of the cDNAs fit the expected expression profile of SF1, namely expression in the 

adrenal glands, the corpus luteum, and the testis.  They proved that they had cloned the correct 

cDNA by expressing the protein in bacteria and demonstrating that it had the same binding 

affinity as that of SF1 purified from the bovine adrenal gland.  The SF1 cDNA sequence 

encoded an orphan nuclear hormone receptor related to the Drosophila segmentation gene, 

fushi tarazu or ftz, which also specifies neuronal identity in flies.  The gene was renamed 

NR5A1 according to the nomenclature for orphan nuclear receptors. 

Gene expression 

In mice, Nr5a1 transcripts were detected by in situ hybridization in the developing 

hypothalamus and the urogenital ridge, which is the precursor to the adrenal glands and gonads 

[171].  Nr5a1 sustains high expression in the adrenal glands through adulthood. Conversely, it is 

expressed highly in the developing bipotential gonad, and it is maintained in testes, particularly 

in Sertoli cells. Meanwhile its expression in ovaries is reduced when the ovary first becomes 

morphologically distinct from the testis. Nr5a1 expression in the bipotential gonad suggested a 

function in sexual development.  Nr5a1 was expressed in the ventromedial hypothalamus 

(VMH), which is involved in feeding, fear, thermoregulation, and sexual activity [172].  These 

studies indicated that Nr5a1 was expressed early in organ development and could therefore be 

a driver of cell fate in mammals. 

Down-stream targets 

Mellon and colleagues identified a DNA element that regulates gonadotrope expression 

of Cga, which encodes the alpha-subunit of the heterodimeric glycoprotein hormones, 

luteinizing hormone (LH), follicle stimulating hormone (FSH), and thyroid stimulating hormone 

(TSH) [173].  Mellon showed that this element (which they called GSE for Gonadotrope-Specific 

Element) was bound by a 54 kD protein, which they labeled GSEB-1 (GSE-Binding factor 1).  

They demonstrated that GSEB-1 is NR5A1 by showing that NR5A1 binds specifically to the 
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GSE in vitro and that NR5A1-specific antibodies antagonize GSEB-1 function [174].  This was 

the first evidence that NR5A1 had a role in the pituitary gland.  

 Mellon discovered that NR5A1 regulates the transcription of Lhb.  This represented the 

second known direct target of NR5A1 in the pituitary gland.  NR5A1 binds a GSE in the 

promoter region of Lhb and increases its expression [173, 175].  Nilson and colleagues showed 

that 776 bp of the bovine LHB proximal promoter region was sufficient to drive gonadotrope-

specific expression in transgenic mice [176].  This sequence contained the GSE, was 

responsive to GnRH regulation but was not androgen or estrogen responsive.  A mutation in the 

GSE element reduced transgene expression ten-fold [177].  This suggested that NR5A1 

stimulates LHB expression by binding the promoter proximal GSE in cell culture and in vivo.  

 Morohashi and colleagues found two regulatory elements of Nr5a1, showing that NR5A1 

binds one of them to stimulate its own expression in adrenal cells [170], while Clay and 

colleagues demonstrated that NR5A1 directly regulates expression of Gnrhr via a GSE in the 

promoter proximal region [178].  

Interacting factors 

 NR5A1 interacts with other transcription factors to promote gene expression.  The 

Drouin lab demonstrated that PITX1 and NR5A1 interact directly and synergize to activate Lhb 

promoter but not Cga gene expression [76, 179].  The PITX1 binding site is not required for this 

activity.  NR5A1 also interacts with the zinc-finger transcription factor EGR1 to regulate the 

expression of Lhb [180, 181].  Both the NR5A1 and EGR1 binding sites are required for the 

synergism.  Milbrandt and Charnay independently demonstrated that EGR1 is necessary for 

Lhb expression in mice [180, 182].  There are no exact obvious NR5A1 binding sites in the Fshb 

promoter, but Mellon and colleagues found two sites bound by NR5A1 [183].  NR5A1 interacts 

with Nuclear Factor Y (NFYA) on the Fshb promoter to synergistically activate Fshb 

transcription.   

Knockout mouse phenotype 
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Nr5a1 knockout mice were generated by homologous recombination in embryonic stem 

(ES) cells [184].  Homozygous mutant mice lack adrenal glands and gonads, revealing that 

NR5A1 is not only critical for expression of steroidogenic enzymes in these tissues, but it has a 

critical role early in adrenal and gonadal organogenesis.  Moreover, the pituitaries of Nr5a1-null 

mice lack detectable transcripts for Lhb, Fshb, and the gonadotropin releasing hormone 

receptor, Gnrhr [56].  Expression of other pituitary hormones was normal.  Nr5a1 transcripts 

were detected at e13.5-e14.5, prior to expression of other gonadotrope markers, suggesting 

that NR5A1 could be involved in gonadotrope differentiation, but it was still unclear whether 

Nr5a1 was involved in differentiation or maintenance. 

 Nr5a1 mutants had structural abnormalities in the VMH, implicating NR5A1 in three 

levels of the reproductive axis: hypothalamus-pituitary-gonad [185].  However, the GnRH 

neurons were normal.  A 24 hr treatment regime of GnRH injections can rescue expression of 

Lhb and Fshb in hypogonadal mutants, Gnrhhpg/hpg, and Nr5a1 knockout mutants, suggesting 

that the gonadotrope progenitors are present in Nr5a1 mutants, and that NR5A1 is not strictly 

required for gonadotrope fate [185].  GnRH induces expression of many transcription factors in 

the pituitary gland, including Egr1, Atf3, c-Jun, and TCF/LEF, and increased expression of these 

factors may compensate for NR5A1 deficiency [181, 186-188]. 

 To distinguish direct effects of NR5A1 on the pituitary gland from indirect effects 

resulting from altered hypothalamic and or gonadal inputs to the pituitary gland, researchers 

developed a floxed allele of Nr5a1 and induced deletion in the pituitary with a Cga-cre 

transgene [189, 190].  This ablated expression of Fshb, Lhb, and Gnrhr.  These deficiencies 

caused failure to develop mature reproductive organs and infertility.  Injection of these pituitary-

specific knockout mice with pregnant mare serum gonadotropin (PMSG), a hormone produced 

by the equine placenta that has luteinizing and follicle stimulating activity, was sufficient to 

induce pituitary expression of Lhb and Fshb.  This demonstrated that Nr5a1 deficiency impacts 
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pituitary development and function directly, but it can be overcome by supra-physiologic 

hormonal stimulation.   

Patient mutations 

The first patient with an NR5A1 mutation was reported in 1999 [191]. The patient 

presented with primary adrenal failure, complete XY sex reversal, and streak-like gonads.  Her 

pituitary gland responded to GnRH stimulation.  She was heterozygous for a two bp mutation 

that causes a p.G35A missense in the first zinc finger of NR5A1 that abrogates DNA binding.  

Her phenotype is consistent with NR5A1’s role in adrenal function and stimulation of LH and 

FSH expression.  The sex reversal was surprising because mice heterozygous for a null allele 

of Nr5a1 are phenotypically normal.  Loss of function mutations have been associated with 

other cases of 46XY sex reversal [192-195], 46XX sex reversal [196, 197], under-virilization 

[198], adrenocortical insufficiency [199, 200], premature ovarian failure [201] and spermatogenic 

failure [202].  Most mutations were dominant, some were associated with incomplete 

penetrance, and some were recessive [203-206].  

Upstream regulators 

Mice homozygous for a hypomorphic Pitx2neo allele have no Nr5a1 expression and, 

consequently, no Lhb, Fshb or Gnrhr expression [48].  This suggests that Pitx2 is upstream of 

Nr5a1 in the transcriptional hierarchy regulating pituitary development.  Later, PITX2 was shown 

to bind a pituitary gonadotrope-specific enhancer within intron 6 of the Nr5a1 gene [207].  

Several groups used transgenic mice to localize elements necessary for Nr5a1 expression in 

various tissues [172, 208, 209].  The action of Nr5a1 in promoting gonadotrope fate is 

antagonized by TBX19 [58].  

 

POMC transcription in corticotropes (TBX19, NEUROD1) 
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Factor discovery 

Pro-opiomelanocortin (POMC) is a pro-hormone that is cleaved in anterior pituitary 

corticotropes to become adrenocorticotropic hormone (ACTH) and in melanotropes of the 

intermediate lobe into melanocyte stimulating hormone (MSH) and beta endorphin.  Drouin used 

the AtT-20 mouse corticotrope tumor cell line to identify cis-acting elements that regulate Pomc 

expression.  One element contained an E-box motif, which is typically bound by helix-loop-helix 

(HLH) transcription factors [210].  The beta HLH factor NeuroD1 is expressed in corticotrope 

cells and binds this element, acting together with PITX1 to activate Pomc expression [211].  The 

detection of Neurod1 expression in the developing pituitary gland from e12-e16 is consistent 

with a role in initiating Pomc expression.  Neurod1 is transiently expressed in corticotropes, 

suggesting that there are other factors involved in sustained Pomc transcription [212].  

 PITX1 was identified in an effort to identify a trans-acting factor that bound another cis-

acting sequence within the promoter proximal region of Pomc [69].  This element was sufficient 

to confer reporter gene expression in AtT-20 cells but not heterologous cells.  Drouin and 

colleagues used this sequence to screen a cDNA expression library for DNA binding proteins, 

which led to the discovery of a novel homeodomain transcription factor PTX, now known as 

Pitx1.  Pitx1 is expressed in the pituitary primordium, and is detected in all pituitary cell types, 

but it is enriched in adult gonadotropes and thyrotropes [67, 74].  Mice homozgyous for Pitx1 

knockout die at birth and have severe defects in mandible and hindlimb development, but there 

is little effect on pituitary development due to functional overlap with the related Pitx2 gene [47, 

67, 74].  

A cis-acting sequence adjacent to the PITX1 binding site is required for Pomc 

expression, and the sequence motif, TCACACCA, is a T box transcription factor binding site 

[213].  PCR-amplification of Tbox cDNAs in AtT-20 cells identified a novel factor, TPIT (officially 

known as TBX19), which is expressed early in pituitary development and is enriched in 

corticotropes and melanotropes.  Ectopic expression of Tpit under the control of the Cga 
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promoter in mice is sufficient to drive Pomc expression, but not Neurod1 expression.  Patients 

with isolated ACTH deficiency were screened and two unrelated individuals were identified with 

mutations in TPIT, confirming the critical role of this gene in POMC expression.  Homozygous 

deletion of Tpit results in almost complete loss of POMC in both the anterior and intermediate 

lobes, and the intermediate lobe is hypoplastic [58].  Neurod1 expression is not obviously 

affected, suggesting that the commitment to corticotrope and melanotrope fate has been 

initiated.  In the absence of TPIT, the progenitors in the intermediate lobe express Nr5a1 and 

the alpha and beta subunits of TSH, FSH, and LH, suggesting that TPIT has a repressive effect 

on gonadotrope and thyrotrope cell fates.  TPIT interacts directly with NR5A1 to inhibit its 

transcriptional activity.  It is noteworthy that Pou1f1, Gh and Prl are not ectopically expressed in 

the intermediate lobes of Tpit mutants.  Overexpressing Tpit under the control of the Cga 

promoter had little effect on Tshb expression, but it is sufficient to suppress expression of 

Nr5a1, Lhb and Fshb, consistent with the idea that TPIT drives corticotrope and melanotrope 

fate while suppressing gonadotrope fate.   

Patient mutations 

TPIT mutations are the most common, known cause of congenital, isolated ACTH 

deficiency [214-217].  Patients with homozygous loss of function mutations typically present with 

undetectable plasma ACTH and corticosterone, and hypoplastic adrenal glands.  Affected 

babies may have cholestatic jaundice and potentially fatal hypoglycemia.  Tpit null mice have 

more yellow pigment than wild type mice, due to the lack of MSH, but no obvious pigment 

defects are present in human patients.   

Summary 

 Pomc transcription and the corticotrope and melanotrope cell fates are promoted by 

several transcription factors including TPIT, NeuroD1, PITX1, and PITX2.  TPIT is a T box 

transcription factor that binds promoter proximal region of POMC and induces its expression in 

concert with PITX factors.  It is selectively expressed in corticotropes and melanotropes, 
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activating the corticotrope and melanotrope lineage while repressing the gonadotrope lineage 

by antagonizing NR5A1 function in a DNA binding-independent manner.  Loss of TPIT results in 

neonatal-onset isolated ACTH deficiency, but not juvenile-onset. 

 

PAX7 

 

Gene discovery 

 Pax7-/- mice were generated more than twenty years ago and revealed the importance of 

Pax7 for muscle and brain development [218-224].  The homozygous mutants die 3 weeks after 

birth, but the pituitary gland was not characterized [225].  Karlstrom and colleagues showed that 

the SHH-responsive gene Pax7 is expressed in the melanotropes of the developing zebrafish 

pituitary gland [226].  Spatial and temporal gene expression profiling revealed that Pax7 is 

expressed in progenitors that give rise to intermediate lobe melanotropes in mice, and it was 

hypothesized to be a critical factor for intermediate lobe cell fate through direct regulation of 

Notch signaling [227-229].  

Down-stream targets, Pioneering activity 

 Drouin and colleagues showed that Pax7-/- mice lack intermediate lobe melanotropes, 

and the deficiency of Pax7 permits ectopic differentiation of progenitors into corticotropes [229].  

Moreover, ectopic expression of Pax7 in the immortalized, corticotrope-like AtT-20 cells is 

sufficient to convert them to a melanotrope identity associated with both reduced expression of 

corticotrope-enriched transcripts such as the NeuroD1, glucocorticoid receptor, CRH receptor, 

and vasopressin receptor 1b and activation of melanotrope-enriched transcripts such as the 

dopamine receptor Drd2 and prohormone convertase 2, Pcsk2, which cleaves Pomc to produce 

MSH.  Thus, Pax7 is a selector of intermediate lobe melanotrope cell identity.   
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To understand the underlying mechanism of PAX7 action in reprogramming AtT-20 cells 

to the melanotrope fate, binding sites for TPIT, PAX7 and H3K4me1 were identified by 

chromatin immunoprecipitation (ChIP-Seq) and open chromatin was identified using FAIRE-

Seq (Formaldehyde-Assisted Isolation of Regulatory Elements).  Methylation of histone H3 at 

lysine 4 (H3K4me1) is associated with enhancers.  Drouin and colleagues demonstrated that 

PAX7 can bind heterochromatin and act as pioneer factors to open the chromatin, yielding a 

FAIRE-Seq signal and permitting the binding of additional transcription factors such as TPIT 

[230].   

 To further characterize PAX7 action, the corticotrope and melanotrope transcriptomes 

and epigenomes were compared. In so doing, these authors confirmed much of what they had 

shown previously, that PAX7 is necessary and sufficient for establishing a melanotrope 

transcriptome and epigenome. These authors made the interesting discovery that the majority of 

PAX7 action on the epigenome occurs at regions far from gene promoters, as the promoters of 

most genes in corticotropes and melanotropes are similar.  They went on to show that the areas 

of the genome that PAX7 opens and activates represents a minor, but sizable fraction of PAX7 

binding sites.  Interestingly, they revealed a large fraction of sites containing a PAX7 binding 

motifs that are impervious to PAX7 binding.  These sites were characterized by CTCF binding, 

and constitutive heterochromatin.  While constitutive heterochromatin was resistant to PAX7 

remodeling, facultative heterochromatin was readily bound by PAX7.  Using inducible nuclear 

localization of PAX7 in AtT20- PAX7+ cells, these authors showed that PAX7 binds to open 

DNA very quickly (within 30 minutes), while it takes much longer (nearly 24 hours) for PAX7 to 

bind areas of closed DNA.  Unsurprisingly, it takes even longer for PAX7 to remodel bound, 

heterochromatin sites, requiring more than 3 days to fully open these areas of DNA.  Finally, 

areas of PAX7 binding and opening were subject to reduction in CpG methylation, a very stable 

form of epigenetic memory, and most sites opened by PAX7 pioneering activity remain open 

long after PAX7 has been removed from the nucleus.  With this information, the authors put 
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forth a model which involves PAX7 binding to both euchromatin and facultative heterochromatin, 

remodeling of the areas of heterochromatin into areas of euchromatin, allowing factors like 

TBX19 and STAT3 to bind DNA, and drive expression.  This clearly defines the function of a 

pioneering transcription factor, and it leaves us with the question of whether this mechanism of 

pioneering action represents a broader pattern of pioneer action, or whether it is specific to 

PAX7. 

Patient Mutations 

 PAX7 translocations resulting in fusion with the forkhead in rhabdomyosarcoma gene, 

FKHR, can cause pediatric alveolar rhabdomyosarcoma [231].  Loss of function mutations 

would be expected to be lethal in the homozygous state, and none have been reported in 

humans [225].  

Summary 

 PAX7 is the first validated pioneer transcription factor acting within the pituitary. 

Important for both muscle and brain development, it was not implicated in pituitary function until 

2010.  Melano/corticotrope precursor cells can become either cell type in development.  The 

presence of PAX7 railroads the development to a melanotrope fate, whereas the absence of 

PAX7 results in a corticotrope fate.  PAX7 does this by making melanotrope-specific TPIT 

binding sites available to TPIT by binding to heterochromatin and converting it to euchromatin.  

The Drouin lab has shown a very thorough mechanism by which PAX7 does this, revealing the 

amount of time this chromatin-changing process takes, and showing its stability through 

repeated DNA replication cycles.  However, the exact complex required for this change in the 

epigenetic landscape is unclear.  Furthermore, all of the work done to date has focused on the 

‘opening’ of DNA that is specific to melanotropes, while it is yet unclear whether PAX7 ‘closes’ 

corticotrope-specific DNA. 
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Current Model for the Transcription Factors of the Pituitary Gland and 

Open Questions 

 

 A complex cascade of transcription factors is responsible for the development and 

maintenance of the pituitary gland.  PITX and LHX proteins are some of the earliest factors in 

promoting pituitary formation.  Pitx1 and Pitx2 compensate for one another and are responsible 

for turning on Lhx3.  LHX3 and LHX4 also have overlapping functions, and together, they are 

necessary for the pouch rudiment to expand.  During these early stages, the majority of cells are 

undifferentiated, proliferating progenitor cells, defined by their expression of SOX2.  Then, Lhx3 

activates Prop1 throughout Rathke’s pouch from e10.5 to e12.5, and Prop1 quickly becomes 

restricted to the progenitors that are undergoing an epithelial to mesenchymal like transition, 

involving activation of Zeb2, and have silenced Sox2 expression.  PROP1 represses Hesx1 

expression and induces Pou1f1, the major lineage-determining transcription factor for 

somatotropes, lactotropes, and thyrotropes.  POU1F1 interacts with epigenomic regulators to 

activate and repress expression of target genes necessary for the sub-specialization into three 

different hormone-producing cell fates.  LSD1, ZEB1, estrogen receptor, and GATA2 are some 

of the factors involved in sub-specialization.  During the last few days of embryogenesis, 

GATA2, NR5A1, and EGR1 drive gonadotrope fate, and TPIT and NEUROD1 drive corticotrope 

fate.  PAX7 and TPIT act together to drive melanotrope fate.   

 This attractive model represents decades of sophisticated, pioneering work, and 

explains many basic steps in pituitary development.  There are, however, questions that remain 

unanswered.  How is the switch from proliferation to differentiation regulated?  What additional 

transcription factors and signaling pathways are involved in cell specification? 

 SOX2 is firmly established as the marker for cycling progenitor cells in the developing 

mouse pituitary, and it is also expressed in the quiescent stem cell reserve in adult pituitary.  



 
 

37 

The steps involved in switching cells from their SOX2-expressing, cycling state to their specific 

lineage is unclear.  A thorough analysis of cell cycle regulators from e11.5 through e16.5 helped 

clarify this, as it revealed three distinct populations [232].  There is a cycling precursor 

population (defined as Ki67-positive, and presumably SOX2-positive), a non-cycling precursor 

population (defined as p57-positive and p27-negative), and a non-cycling differentiated 

population (p57-negative and p27-positive).  Drouin and colleagues showed that deletion of the 

major transcription factor TPIT resulted in an unusual population of non-cycling, undifferentiated 

progenitors that were p57+, p27+.  This suggests that p57 marks cell cycle exit, and major 

factors (PROP1, TPIT, NR5A1) silence p57, permitting differentiation, and locking cells into their 

fate.  Unlike the temporal phasing of neuronal differentiation in the brain and retina, nearly all 

cells in the pituitary leave the cell cycle at approximately the same time between e11.5 and 

e13.5 [233].  Two major questions remain: what triggers the transition from the proliferating to 

non-proliferating state, and how are the major transcription factors exclusively turned on in 

different progenitors?  Notch, WNT and YAP/TAZ signaling play important roles in regulating 

progenitor proliferation [23, 33, 62]  The second question concerning how each factor is turned 

on is almost certainly specific to the factor, as common regulatory networks across cell lineages 

would fail to explain the highly unique transcription network in the different cell types. 

 The prevailing model of cell-type differentiation in the pituitary involves an exit from the 

cell cycle with a major transcription factor that inexorably pushes it down a single path to induce 

a specific and exclusive fate.  There is evidence to suggest, however, that the differentiation is 

not as linear as once thought, and the fate may be more plastic than the model suggests. Early 

analyses of the pituitary led Romeis to propose a “one cell one hormone” model [234].  

However, a single gonadotrope can express and secrete both LH and FSH [235, 236] and GH 

and TSH are co-expressed in hypothyroid mice [237].  Cells that express both GH and PRL may 

be a transient population that represents a precursor of both somatotropes and lactotropes [238, 

239].  Or, they may represent a transition from a GH-expressing cell to PRL-expressing through 
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the action of POU1F1, LSD1 and ZEB1 [165].  Boehm and colleagues discovered that at e17.5, 

nearly all cells expressing FSH also express TSH, and that many of these cells express NR5A1, 

suggesting a close relationship between gonadotropes and thyrotropes [240].  These studies 

highlight how closely related the various cell types are, challenging the idea that major 

transcription factors direct an inflexible cell fate.  

 

Technical Developments and Future Directions 

 

Four major technological innovations are now available to gain insight into cell fate 

decisions during development: innovative DNA library preparation methods coupled with high-

throughput sequencing, single-cell sequencing, CRISPR, and organoids. 

High Throughput Sequencing 

Advances in sequencing technology have made genome-wide analyses of gene 

expression feasible.  Sequencing mRNA from genetically marked pituitary cells has been 

invaluable to the pituitary field.  Subpopulations of pituitary cells have been purified from 

transgenic mice with fluorescently labeled cells and fluorescence-activated cell-sorting (FACS).  

This approach revealed heterogeneity of gonadotrope gene expression in different sexes at 

different times [241] and the similarity between corticotropes and melanotropes, with only ~500 

differentially expressed genes [230].  This method also revealed novel regulators of cell identity 

for somatotropes and lactotropes [242].  There are limitations, however, to applying this 

technology to small numbers of cells collected from developing pituitaries, as they may contain 

different factors that drive cell fate from those that are employed to maintain it in adult animals.  

Identification of genome-wide regions of open chromatin and transcription factor binding 

sites in specialized cells is valuable for understanding cell fate decisions.  DNase 

hypersensitivity mapping has been largely replaced by Assay for Transposase-Accessible 
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Chromatin with sequencing (ATAC-seq) for identification of putative regulatory elements [243].  

These powerful methods have successfully been used in the pituitary, finding regulatory 

elements in melanotropes and corticotropes [229], implicating PAX7 as a pioneering 

transcription factor, and further characterizing the speed at which PAX7 euchromatinizes DNA 

and the longevity of the subsequent epigenetic marks [230].  Similarly, they have shown the 

chromatin accessibility at STAT3 and Glucocorticoid receptor binding sites in corticotropes 

[244].  Software programs are available to identify footprints of transcription factors in ATAC-seq 

data and DNA binding motifs that underlie transcription factor binding [245].  Genome-wide 

binding sites for PROP1 [130] were identified using Chromatin Immunoprecipitation with 

sequencing (ChIP-seq) [246].  POU1F1 binding at active enhancers with Matrin3 have been 

reported also [159].  

ChIP-seq for epigenomic marks on histones can identify putative poised enhancers 

(histone H3 lysine 4 methylation, H3K4me1 alone) and active enhancers (H3K4me1 coupled 

with histone H3 lysine 27 acetylation, H3K27ac) [247].  H3K27me3 marking is a little more 

nuanced, as the presence of this mark across the gene body is correlated with repression, 

whereas enrichment at the transcription start site or the promoter may be a sign of bivalency or 

even active transcription [248].   

 Chromatin Conformation Capture (3C) enables researchers to determine which 

regulatory elements and promoters are interacting.  This is important because enhancer 

elements may not regulate the closest gene, and they may lie at substantial distance from the 

gene they regulate.  Liebhaber and colleagues initially used traditional techniques of DNase I 

hypersensitivity mapping and transgenic animal models to discover and characterize the Locus 

Control Region (LCR) for the human growth hormone gene cluster [249].  There are several 

different enhancers within the LCR that selectively regulate the expression of GH1 and the 

surrounding GH-related genes in the pituitary and the placenta, respectively.  The 3C method 

was used to discover the interaction of different enhancers within the LCR with the promoters of 
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GH1 and the neighboring related genes  [250-252].  This method was also used to show that 

the early and distal enhancers of Pou1f1 interact with the Pou1f1 promoter sequentially, and this 

shift requires POU1F1, establishing an auto-regulatory network, that results in enrichment of 

H3K27ac at the Pou1f1 promoter [253].  Further application of this method will link enhancers 

found using ChIP-seq to the genes they regulate.  A remaining challenge for the field is scaling 

the technology to small numbers of cells available during pituitary development and the 

tendency for individual enhancers to be redundant [254].  

Single Cell Sequencing 

RNA-sequencing of single cells (scRNA-seq) is now possible [255].  Various methods 

can be used to capture single cells including fluidics, manual capture, and FACS [256], and 

there are different approaches for obtaining the RNA sequences from individual cells, including 

bar-coding RNA library preparations from single cells followed by next generation sequencing 

[257, 258].  scRNA-seq analysis algorithms allow researchers to map out a shared 

differentiation pathway in an asynchronous population of cells [259].  Temporal changes in gene 

expression that occur as differentiation proceeds can be inferred, revealing candidate genes 

that may drive these differentiation pathways.  The scRNA-seq methods are particularly 

valuable for analysis of rare cell types or situations in which the relative contribution of individual 

cell types to the whole is shifting.  Currently, very few publications containing single-cell 

sequencing data from pituitary exist [260, 261].  But the work that has been done already shows 

that this approach is powerful and can reveal previously unappreciated sub-populations of cells 

and novel markers of specialized cell types.    

CRISPR 

Genetically engineered mice have been invaluable for understanding the role of 

individual genes in pituitary development [262].  Transgenic mice were used to identify the 

regulatory elements of the Gh gene [249] and Nr5a1 [208, 209] and to tease apart the 

differentiation of the somatolactotrope [239].  Homologous recombination in embryonic stem 
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cells was used to characterize the function of Hesx1 [118] and numerous other pituitary genes, 

as described earlier.  Despite the importance of these technologies, there are significant 

shortcomings, including expense and inefficiency, and position effects associated with random 

integration of transgenes.  CRISPR– Cas9 (clustered regularly interspersed short palindromic 

repeats-CRISPR-associated protein 9) technology has reduced the time and expense needed to 

make genetic modifications in mammalian genomes [263].  Suddenly, knockouts, knockins, 

conditional alleles, and even more complex tissue specific CRISPR mice were developed.  This 

technology will have a high impact on the field as it is more broadly implemented.  

Organoids 

Organoids offer the opportunity to study developmental processes ex-vivo, which has 

helped in understanding the differentiation the gut [264], retina [265], kidneys [266], and pituitary 

gland [267, 268].  Pituitary Sox2-expressing and verapamil-sensitive cells can be cultured as 

pituispheres and differentiate into each of the anterior pituitary hormone-producing cell types 

[59, 269].  Subsequently, Sasai and colleagues demonstrated an incredible ability of mouse and 

human embryonic stem cells to self-organize and differentiate into functional pituitary hormone-

producing cells that could rescue hormone deficiency, giving promise for future cell-based 

therapies for hypopituitarism [267, 268].   

 

Future Directions 

These powerful technological advances will help us clarify many questions that remain in 

understanding pituitary development, namely understanding the switch from proliferation to 

differentiation and the factors responsible for the differentiation of the cell types.  Single-cell 

sequencing will reveal more nuanced populations of cells that will clarify the exact pathway from 

a Sox2-expressing progenitor cell, through a non-cycling intermediate precursor, to a cell-type 

that has some combination of major transcription factors and hormones, to finally, a 
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differentiated cell type that expresses high levels of hormones.  Knowing exactly which factor is 

in which cell will rigorously generate a model for differentiation that will be less prone to revision.  

Highly enriched motifs and footprints in ATAC-seq data will implicate transcription factors that 

are critical to this process, shortening the long list of factors that will be generated by single-cell 

RNA-seq.  ATAC-seq will also (in concert with ChIP-seq for histone marks) find the regulatory 

elements for these major factors, revealing transcriptional networks that are active at different 

timepoints during pituitary development.  Using CRISPR, each factor’s necessity and function 

will be directly assessed in vivo.  Finally, once a larger suite of factors has been implicated, 

whose expression profile is clear, and whose function has been characterized, we will be able to 

generate highly accurate organoids, knowing which ingredients are necessary and sufficient for 

creating a pituitary gland. 

One such area that requires further investigation are the thyrotropes.  These represent 

~5% of the total number of cells in the pituitary gland [270], making them difficult to study.  It is 

clear from the Pou1f1-dwarfed mice that POU1F1 is required for the adult population of 

thyrotropes (Fig. 3), and it interacts with GATA2 to drive thyrotrope fate [164].  There could be 

additional factors that are necessary to drive thyrotrope differentiation [77].  The regulatory 

elements of Tshb are not known.  POU1F1, GATA2, and MED220 all synergize on the Tshb 

promoter to activate its expression [163, 271], but these sequences are insufficient for 

expression in transgenic mice [262].  Using single-cell sequencing, ATAC-seq and ChIP-seq for 

POU1F1 and histone marks, the factors responsible for thyrotropes, and the cis-regulatory 

elements to which they bind will become clear.
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Chapter 2: Identification of pituitary thyrotrope signature genes and regulatory elements  

 

Abstract  

 

Pituitary thyrotropes are specialized cells that produce thyroid stimulating hormone 

(Tshb), a critical factor for growth and maintenance of metabolism.  The transcription factors 

POU1F1 and GATA2 have been implicated in thyrotrope fate and regulation of Tshb 

transcription, but no transcriptomic or epigenomic analyses of these cells has been undertaken.  

The goal of this work was to discover key transcriptional regulatory elements that drive 

thyrotrope fate.  We identified the transcription factors and epigenomic changes in chromatin 

that are associated with differentiation of POU1F1-expressing progenitors into thyrotropes, a 

process modeled with a pair of cell lines: one that represents an early, undifferentiated Pou1f1 

lineage progenitor (GHF-T1) and one that is a committed thyrotrope (TαT1).  We generated and 

compared RNA-seq, ATAC-seq, histone modification CUT&RUN (including H3K27Ac, 

H3K4Me1, and H3K27Me3), and transcription factor (POU1F1) CUT&RUN in these two cell 

lines to identify regulatory elements and candidate transcriptional regulators.  We identified 

POU1F1 binding sites that were unique to each cell line.  POU1F1 binding sites are commonly 

associated with bZIP transcription factor consensus binding sites in GHF-T1 cells and Helix-

Turn-Helix (HTH) or basic Helix-Loop-Helix (bHLH) factors in TαT1 cells, suggesting that some 

classes of transcription factors may recruit or cooperate with POU1F1 binding to unique sites.  

We validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and 
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Tshb by transfection in TαT1 cells.  Finally, we confirmed that an enhancer element near Tshb 

can drive expression in thyrotropes of transgenic mice, and we demonstrate that GATA2 

enhances Tshb expression through this element.  These results extend the ENCODE multi-omic 

profiling approach to an organ that is critical for growth and metabolism, which should be 

valuable for understanding pituitary development and disease pathogenesis. 
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Introduction  

 

 Recent genome-wide association studies (GWAS) have begun to identify loci that are 

associated with sporadic pituitary adenomas and variation in normal height, but the genes 

associated with many of these loci are unknown [272-274].  Nearly 90% of GWAS hits are in 

noncoding regions, making it difficult to transition from genetic mapping to biological mechanism 

[275].  Recent studies that identify enhancer regions by undertaking large scale functional 

genomic annotation of non-coding elements like Encyclopedia of DNA Elements (ENCODE) 

have begun to yield a better understanding of some complex diseases.  Dense molecular 

profiling maps of the transcriptome and epigenome have been generated for more than 250 cell 

lines and 150 tissues, but pituitary cell lines or tissues were not included.  This represents a 

major limitation, as the cell types that comprise the pituitary gland secrete hormones 

responsible for growth (growth hormone secreted by somatotropes), reproduction 

(gonadotropins secreted by gonadotropes), adrenal gland function and the stress response 

(ACTH secreted by corticotropes), lactation (prolactin secreted by lactotropes), and thyroid 

gland function (thyroid-stimulating hormone secreted by thyrotropes).  Epigenomic and gene 

expression data are emerging for somatotropes, gonadotropes and corticotropes, but there is 

very little available data on thyrotropes [230, 241, 242, 276].   

 Thyrotropes represent ~5% of cells in the pituitary gland, and their function is to express 

and secrete Thyroid Stimulating Hormone (TSH or thyrotropin), which regulates thyroid gland 

development and thyroid hormone production.  These hormones are essential for normal growth 

and metabolism.  Up to 12% of the US population suffers from abnormal levels of thyrotropin 

[277].  The incidence of secondary hypothyroidism is estimated to be 1:20,000 to 1:80,000 

individuals [278].  Research into the regulation of thyrotrope differentiation and function is 

relevant to this public health problem.  
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A cascade of transcription factors is responsible for the differentiation of the major 

pituitary hormone-producing cell types, and three transcription factors associated with 

thyrotrope development and function are POU1F1, GATA2, and ISL1.  The pituitary 

transcription factor POU1F1 is essential for the differentiation of growth hormone, prolactin and 

TSH-producing cells [152].  It binds to the promoters of Gh, Prl, and Tshb to activate gene 

expression [143, 145, 163, 279, 280].  Defects in the POU1F1 gene cause severe growth 

insufficiency and hypothyroidism in humans and mice [5, 152].  POU1F1 and GATA2 act 

synergistically to activate Tshb expression through promoter-proximal elements [163, 164].  

Defects in GATA2 and ISL1 reduce thyrotrope differentiation in mice, but they do not appear to 

ablate it [77, 281, 282].  Despite the important role of Pou1f1 in thyrotrope development and 

function, little is known about the gene regulatory network of POU1F1 in progenitors or 

thyrotropes.   

Due to the scarcity of the thyrotrope cell-type, classical genomic techniques are 

challenging to apply.  Hormone-producing cell lines have been invaluable for understanding 

changes in chromatin and gene expression that occur during development [229, 230].  To 

discover thyrotrope-specific regulatory elements and potential drivers of differentiation, we 

generated and compared RNA-seq, ATAC-seq, histone modification CUT&RUN (including 

H3K27Ac, H3K4Me1, and H3K27Me3), and transcription factor CUT&RUN (for POU1F1) in two 

mouse cell lines, a POU1F1-expressing pituitary precursor cell line that does not express any 

hormones, GHF-T1, to a thyrotrope-like cell line, TαT1 [283, 284].  TαT1 cells behave much like 

endogenous thyrotropes in that they respond to TRH and retinoids, and secrete TSH in 

response to diurnal cues [285-287].  Finally, we evaluated putative enhancer elements for 

function using transfection assays in TaT1 cells and genetically engineered mice.  Together, 

these studies extend ENCODE-like multi-omic analyses to generate reference maps of gene 

regulation for cell types critical for growth and metabolism. 
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Results 

 

Comparison of transcriptomes  

 To identify candidate factors that drive the differentiation of thyrotropes, we performed 

RNA-sequencing on the GHF-T1 and TaT1 cell lines.  There were many differences in their 

transcriptomes, consistent with their distinctive morphology, growth rate, and hormone secretion 

properties (Fig. 4 A).  Eighty-two percent of genes were differentially expressed (FDR < 0.01).  

Pou1f1 expression levels were nearly twice as high in TaT1 cells (160 FPKM) relative to GHF-

T1 cells (85 FPKM). Other SV40 immortalized pituitary cell lines vary ten-fold in Pou1f1 

expression levels, but there was no correlation with differentiation state [288].  As expected, 

Cga and Tshb were expressed in TaT1 (3557 and 11 FPKM, respectively) but negligibly 

expressed in GHF-T1 cells (1.4 and 0 FPKM, respectively).  The GHF-T1 cells had elevated 

expression of the transcription factors Gli3, Pax3, and Foxg1 (Table 1).  TaT1 cells had 

elevated expression of Gata2 and Isl1, as expected, and Lhx3, Rxrg, Neurod4, Ascl1, and Rfx1 

were also significantly up regulated. While the functions of Lhx3, Rxrg, Neurod4, and Ascl1 

have been explored in the pituitary, RFX factors, though critical for pancreas function, have not 

been studied in the pituitary gland.    

 To uncover pathways up- and down-regulated in these cell lines, we performed GO-term 

(gene ontology) enrichment analysis on the top 5% of the most differentially expressed genes 

(by log-2 fold-change) in both lines [289, 290].  The GO  
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Figure 4: Differentially expressed genes in GHF-T1 and TaT1 cells. 

(A) Volcano plot of differential gene expression for GHF-T1 compared to TaT1 cells. Genes upregulated in GHF-T1 
cells are colored blue, and those upregulated in TaT1 cells are colored red. Labeled genes represent key thyrotrope 
factors, and genes associated with GO terms in Table 2. (B) Heatmap showing similarly and differentially expressed 
genes across GHF-T1, TaT1, Pit1-Zero and Pit1-Triple cells. Genes associated with each cluster can be found in 
Supplemental Table 1. (C) FPKM values of sodium channel genes. (D) FPKM values of potassium channel genes. 
(E) FPKM values of calcium channel genes. 
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Table 1.  Differentially expressed transcription factors (FDR <5x10-14) 

GHFT1 cells TaT1 cells 
Gene Log2 fold 

change 
rank Gene Log2 fold 

change 
rank 

GLI3 11.90 1 LHX3 11.04 8 
PAX3 10.95 12 RXRG 10.74 25 

ZFHX4 10.74 21 INSM1 10.67 30 
FOXG1 10.59 26 NEUROD4 10.56 37 
ZFP57 10.51 29 SOX3 10.23 55 

HOXC13 10.29 40 FEV 10.18 57 
KDM5D 10.19 48 MYT1L 9.93 72 
HMGA2 10.15 53 SCRT2 9.90 77 
MSX2 10.11 54 ZFP641 9.39 126 

RUNX1 10.07 55 SCRT1 9.15 145 
RHOX10 9.94 60 ZIC3 8.96 168 
MECOM 9.84 68 EN2 8.95 169 
TEAD2 9.65 80 LIN28B 8.82 184 
VAX1 9.58 85 PAX5 8.61 205 

TCF7L1 9.57 87 ZFP709 8.52 218 
HOXA1 9.52 91 PRDM16 8.30 249 
TCF24 9.46 95 POU2F2 8.15 268 
HOXC9 9.35 104 ZIM1 7.92 301 

MAF 9.32 106 NHLH1 7.85 312 
POU3F3 9.16 112 FOXL2 7.82 317 

 
The most differentially expressed transcription factors by log 2-fold-change in GHF-T1 and TaT1 cells along with their 
log 2-fold-change and their relative rank in the list of most differentially expressed genes. 
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Table 2.  Gene ontology term enrichment 

GHFT1 cells TaT1 cells 
Gene Structure & 

development1 
Expression Gene Synapse 

development & 
function2 

Expression 

A B C D E GHFT1 TaT1 F G H I J GHFT1 TaT1 
CYR61 X X X X X 117.1 0.5 NRXN1 X X X X X 0.0 4.2 
EDN1 X X X X X 7.3 0.0 UNC13A X X X X X 0.0 19.8 
BMP4 X X X X X 6.8 0.0 DRD2 X X  X X 0.0 12.4 
TGFBR2 X X X X X 65.1 0.0 CHRNB2 X X  X X 0.0 12.7 
FGF10 X X X X X 1.1 0.0 GRIN1 X X  X X 0.0 20.5 
GLI3 X X X X X 13.4 0.0 SYT4 X X  X X 0.0 86.3 
MEF2C X X X X X 7.6 0.0 GRIN3A X X  X X 0.0 11.4 
CAV1 X X X X X 10.1 0.0 SNAP25 X X  X X 0.1 107.4 
BMP5 X X X X X 3.8 0.0 SEZ6 X X X X X 0.0 39.8 
CTGF X X X X X 40.3 0.0 GABRG2 X X X X X 0.0 13.0 
GLI2 X X X X X 4.2 0.0 PCLO X X X X X 0.0 4.0 
GATA6 X X X X X 1.2 0.0 ATP2B2   X X  0.0 9.4 
TBX20 X X X X X 2.2 0.0 CHRNA4 X X   X 0.0 3.4 
MSX2 X X X X X 20.1 0.0 SHISA6 X X   X 0.0 11.3 
YAP1 X X X X X 40.3 0.2 LRRC4C   X X  0.0 1.7 
SFRP1 X X X X X 7.1 0.0 THY1    X  0.0 23.3 
HLX X X X X X 1.5 0.0 GLRA3 X X X  X 0.0 28.1 
CXCL12 X X X X X 4.2 0.0 ADGRB1   X X  0.0 9.5 
PAX3 X X X X X 9.1 0.0 GRIA1 X X   X 0.0 11.7 
FN1 X X X X X 611.8 1.0 LGI1    X  0.0 1.1 

1 A = Animal Organ Development, B = Anatomical Structure Development, C = Anatomical Structure Morphogenesis, 
D= Multicellular Organism Development, E= System Development 
2  F = Synaptic Signaling, G = Trans-Synaptic Signaling, H = Synapse Organization, I = Nervous System 
Development, J = Anterograde Transynaptic Signaling 
 
The top five GO terms enriched in each cell type by FDR resulting from an input of the top 5% of most differentially 
expressed genes by log 2-fold-change. Also, the twenty genes for each condition that are present in the greatest 
number of the top twenty GO terms and their respective expression in TaT1 and GHF-T1 cells. X’s reveal the 
association of each gene with a given go term. A volcano plot of the result of GO term enrichment and KEGG 
pathway analysis can be seen in Supplemental Figure 1. 
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terms enriched in GHFT1 cells were broadly related to development and morphogenesis (Table 

2).  Genes contributing to these GO terms include genes from the GLI family that are targets of 

hedgehog signaling (Gli2, Gli3, Glipr1, Glipr2, Glis2, Glis3), BMPs (Bmp1, Bmp4, Bmp5, 

Bmpr1a, Bmpr2, Bmper, Bmp2k), and FGFs (Fgf5, Fgf7, Fgf8, Fgf10, and Fgf21).  Increased 

expression of these factors in GHFT1 cells is consistent with the underlying the importance of 

FGF, BMP, and Hedgehog signaling in early pituitary development [24, 27, 29].  In contrast, the 

up-regulated genes in TaT1 cells were enriched for GO terms related to nervous system 

development and synaptic formation.  Some genes enriched in TaT1 cells that contribute to 

these neuronal GO terms are Neurexin, genes of the glutamate receptor family (Grin1, Grina, 

Grin2d, Grin3a), and the synaptic regulator Unc13a. KEGG-pathway enrichment analysis 

revealed an increase in neuroactive ligand-receptor interaction in TaT1 cells, consistent with the 

enrichment in GO terms found. 

 The function of several members of the bHLH family of transcription factors, including 

Ascl1, Neurod4, and Neurod1 has been investigated in pituitary development  [291].  Seventy-

one of the ninety-three bHLH factors are differentially expressed between GHF-T1 and TaT1 

cells (FDR < 0.05); NEUROD4 and ASCL1 are upregulated in TaT1 cells (Supplemental Table 

2).  Ascl1 is essential for development of all hormone-producing cell types in fish pituitary, and 

in mice, Ascl1 loss of function causes reduced production of Pomc, Lhb, and Fshb [291, 292]. 

However, these reports conflict on whether thyrotropes are affected by Ascl1 deficiency.  We 

performed TSH immunostaining on pituitaries from Ascl1-null mice and did not detect a 

reduction in thyrotropes at e18.5 (Supplemental Figure 2), suggesting Ascl1 does not affect 

thyrotrope cell specification.  Repressive bHLH genes of the ID family had the highest 

expression in both of the cell lines, but the role of these genes has not been investigated. 

We compared gene expression profiles that we obtained from GHF-T1 and TaT1 cells 

with those of other SV40-transformed pituitary cell lines, Pit1-zero and Pit1-triple cells [288].  
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Pit1-zero and Pit1-triple cells were transformed using the same Pou1f1 regulatory elements as 

the GHF-T1 cell line.  Pit1-zero cells express Pou1f1, but none of POU1F1’s downstream 

hormone genes, whereas Pit1-triple cells express Pou1f1 and all three POU1F1-dependent 

hormones, GH, PRL, and TSH.  In the TaT1 cell line, we found a statistically significant increase 

in the expression of sodium channel (p-value = 0.002) and potassium channel genes (p-value = 

2.9e-05), but not in calcium channel genes (p-value = 0.26).  The most highly expressed sodium 

channels in TaT1 cells are SCN1A, SCN8A, and SCN3A.  Notably, three sodium channel genes 

(Scn1a, Scn8a, and Scn9a) are also expressed in the Pit1-Triple cell line, the only other 

hormone-expressing cell lineage we studied.  The most highly expressed potassium channel 

genes in TaT1 cells are Kcnc3, Kcnq2, Kcnk1, and Kcnk2.  G protein-gated ion channels are 

involved in regulated hormone secretion. This marked increase in ion channel genes in the 

TaT1 cells is consistent with their GO terms associated with synapses and neuron formation 

and function.   The only calcium channel gene with differential expression was Cacna1g, which 

is highly expressed in TaT1 cells. 

Chromatin landscape around thyrotrope-signature genes 

 To assess genome-wide changes in the chromatin landscape associated with thyrotrope 

differentiation, we performed Cleavage Under Target and Release using Nuclease (CUT&RUN) 

for three major histone marks: H3K27Ac, H3K4Me1, and H3K27Me3 [293].  The presence of 

both H3K27Ac and H3K4Me1 mark active enhancers, while H3K27Me3 marks repressed 

regions [247, 294-296].  We also performed an Assay for Transposase-Accessible Chromatin 

with High-Throughput Sequencing (ATAC-seq), a method for profiling regions of accessible 

chromatin,  
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Figure 5: Expression and chromatin mark tracks at key pituitary genes. 

(A) RNA-seq, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks (TaT1 in red, GHF-T1 in blue) at Isl1, a key 
pituitary transcription factor expressed in both cell lines containing active chromatin mark across the locus in both cell 
lines. (B) Tracks at Gli3, a gene expressed and in active chromatin in GHF-T1 cells, while not expressed and 
repressed in TaT1 cells. (C) Tracks at Rxrg, a gene expressed and in active chromatin in TaT1 cells, while not 
expressed and repressed in GHF-T1 cells. 
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which are often regulatory [243].  The results are shown in Figure 5. These data (called tracks) 

reveal that Isl1 is expressed in both cell lines, and has extensive H3K27Ac, H3K4Me1, and 

ATAC-seq signal across the locus, revealing active enhancers and areas of open chromatin.  

Concretely, the stretch of H3K4Me1 and H3K27Ac signal covering Isl1’s last intron and 

penultimate exon could be indicative of an Isl1 enhancer (Fig. 5A).  

 We visualized the expression and chromatin architecture around genes that are 

differentially expressed in the precursor and differentiated cell lines.  Here we show the tracks 

for Gli3 and Rxrg which are the most and second-most differentially expressed transcription 

factors in the GHF-T1 and TaT1 cells, respectively.  Gli3 is strongly expressed in GHF-T1 cells, 

and has many H3K27Ac, H3K4Me1, and ATAC-seq peaks, revealing active enhancers in areas 

of open chromatin (Fig. 5B).  By contrast, Gli3 is not expressed in TaT1 cells.  The chromatin 

surrounding Gli3 in the TaT1 cells is devoid of H3K27Ac, H3K4Me1, and ATAC-seq peaks and 

is covered with H3K27Me3, a mark of active repression.  This shows that Gli3 is not expressed 

and is actively repressed in the TaT1 cell line.  Conversely, Rxrg, a gene whose deletion in mice 

is associated with thyroid hormone resistance, is highly expressed in TaT1 cells but not in GHF-

T1 cells [297].  Consistent with this, in TaT1 cells the Rxrg locus is decorated with H3K27Ac, 

H3K4Me1, and ATAC-seq peaks, whereas the GHF-T1 line has no such peaks, and shows 

active repression of Rxrg, with a broad H3K27Me3 signal (Fig. 5C). 

 We used ChromHMM to annotate different chromatin states based on H3K27Ac, 

H3K4Me1, H3K27Me3, and ATAC-seq signal [298].  Iterating over increasing numbers of 

possible states, we found that 11 states best captured the chromatin architecture within these 

two cell lines (Supplemental Fig 6).  Of these states, two had both H3K4Me1 and H3K27Ac, 

indicating active enhancers.  The difference between the two states was the 

presence or absence of an ATAC-seq signal, meaning one state represented open, active 

enhancers, while the other represented active enhancers in a more closed state. 
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Figure 6: Comparing POU1F1 binding in GHF-T1 and TaT1 cells. 

(A) RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks (TaT1 in red, GHF-T1 in blue) at 
Pou1f1, a gene expressed in both cell lines containing active chromatin marks and POU1F1 binding across the locus 
in both cell lines. (B) Tracks at Nrxn1, a gene whose promoter is bound only in TaT1 cells. (C) Tracks at Twist1, a 
gene whose promoter is bound only in GHF-T1 cells. (D) A Venn diagram showing shared and distinct POU1F1 
binding sites. (E) A Venn diagram showing shared and distinct POU1F1 binding sites at promoters. (F) A histogram 
showing expression of genes in GHF-T1 cells that have POU1F1 bound to their promoters in purple and that do not 
have POU1F1 bound to their promoters in green. (G) A histogram showing expression of genes in TaT1 cells that 
have POU1F1 bound to their promoters in purple and that do not have POU1F1 bound to their promoters in green. 
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POU1F1 binding 

 We performed CUT&RUN for POU1F1 in both the GHF-T1 and TaT1 cell lines to identify 

similarities and differences in POU1F1 binding at these two stages of differentiation.  Pou1f1 

has two enhancers, a proximal (5.6 kb), early-stage enhancer bound by PROP1, and a distal 

(10 kb), late-stage enhancer which POU1F1 binds to and drives its own expression in an auto-

regulatory fashion after birth [162, 299].  In both cell lines CUT&RUN shows extensive POU1F1 

binding across the Pou1f1 promoter-proximal region and both the early and late enhancers (Fig. 

6A).  The Twist1 promoter is an example of preferential POU1F1 binding in GHF-T1 cells 

relative to TaT1 cells (Fig. 6B).  TWIST1 is a bHLH protein that plays an important role in head 

development and is mutated in patients with Saethre-Chotzen syndrome [300].  Twist1 is more 

highly expressed in GHF-T1 than TaT1 cells (having a log-2-fold change value of 5).  Of note, 

POU1F1 binding was detected at the neurexin promoter in TaT1 cells, and neurexin expression 

increased from nearly zero in GHFT1 cells to 5 FPKM in TaT1 cells (Fig. 6C).  Neurexin is 

critical for proper synapse formation. 

Genome-wide analysis of POU1F1 binding at promoters revealed that only 15-16% of 

POU1F1 binding sites in GHF-T1 cells (10980 out of 69644) and TaT1 cells (9360 out of 63036) 

are within 1 kb of a transcription start site (TSS).  While only one third of all POU1F1 binding 

sites are shared between the two lines (Fig. 6D), nearly seventy percent of genes whose 

promoters are bound by POU1F1 in the differentiated line are also bound by POU1F1 in the 

precursor line (Fig. 6E).  We found that POU1F1 binding is associated with higher levels of 

gene expression in both cell lines (Fig. 6F, 6G).  

POU1F1 binding is associated with higher ATAC-seq signal in GHF-T1 than in TaT1 

cells (Fig. 7A), but in both cell lines, POU1F1 is associated with less open chromatin than TPIT 

[276]. Despite this, sites of POU1F1 binding specific to TaT1 cells are far more open in TaT1 

cells (Fig. 7B), sites of POU1F1 binding specific to GHF-T1 cells are far more open in GHF-T1 
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cells (Fig. 7C), and shared POU1F1 sites have similar chromatin openness signatures in both 

cell lines (Fig. 7D).  

Active enhancers (states containing both H3K27Ac and H3KMe1 in ChromHMM) are 

heavily enriched for POU1F1 binding in both cell lines, but GHF-T1 enhancers appear to have 

greater POU1F1 binding than do TaT1 enhancers (Fig. 7E, 7F). POU1F1 binding that is specific 

to TaT1 cells is associated with active chromatin states in TaT1, but it is less so in GHF-T1 cells 

(Fig. 7G). Conversely, GHF-T1-specific POU1F1 binding is broadly associated with active 

chromatin states in GHF-T1 cells but less so in TaT1 cells, whereas sites of POU1F1 binding in 

both cell types share similarly active chromatin states.  To identify transcription factors that may 

be associated with differential POU1F1 binding between the cell lines, we analyzed the 

chromatin states associated with shared and unique POU1F1 binding sites and screened these 

for binding motifs.  We classified genomic sites that had POU1F1 binding exclusively in TaT1 

cells, and were in active states in the TaT1 cells and in repressed states in GHF-T1 cells 

(Repressed to Active), POU1F1 binding sites that are shared between GHF-T1 and TaT1 and 

are in similarly active chromatin in both (Active to Active), and GHF-T1-specific POU1F1 binding 

sites that are in active chromatin in GHF-T1 sites and are repressed in TaT1 cells (labeled 

Active to Repressed). This revealed an expected increased POU1F1 motif density at the center 

of POU1F1 sites in both GHF-T1 and TaT1 cells (Fig. 7H). There was a striking amount of bZIP 

motifs at the center of GHF-T1-associated POU1F1 binding sites (Fig. 7I). Interestingly, there 

was remarkable helix-turn-helix motif density at the center of TaT1 POU1F1 binding sites, and 

even more so at Repressed to Active sites, suggesting HTH factors mediate POU1F1 activity in 

thyrotropes (Fig. 7J). Similarly, there was increased bHLH motif density at Repressed to Active 

sites (Fig. 7K). 

Stretch Enhancers 
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Figure 7: Characterizing POU1F1 binding at different chromatin states. 

(A) ATAC-seq signal at POU1F1 bindings sites in GHF-T1 and TaT1 cells. (B) ATAC-
seq signal at POU1F1 binding sites that are specific to TaT1 cells. (C) ATAC-seq signal 
at POU1F1 binding sites that are shared between Ta T1 and GHF-T1 cells. (D) ATAC-
seq signal at POU1F1 binding sites that are specific to GHF-T1 cells. (E) POU1F1 
signal at enhancers in GHF-T1 cells. (F) POU1F1 signal at enhancers in TaT1 cells. (G) 
Composition of TaT1-specific POU1F1 binding site chromatin states in GHF-T1 and 
TaT1 cells (gained sites, left, emissions found in Supplemental Figure 4), composition 
of shared POU1F1 binding site chromatin states in GHF-T1 and TaT1 cells (shared 
sites, center), composition of GHF-T1-specific POU1F1 binding site chromatin states in 
GHF-T1 and TaT1 cells (lost sites, right). (H) Density of POU1F1 motifs across POU1F1 
binding sites in GHF-T1 cells (GHF-T1), TaT1 cells (TaT1), at TaT1-specific POU1F1 
binding sites that are repressed in GHF-T1 cells and active in TaT1 cells (Repressed to 
Active), POU1F1 binding sites that are shared in GHF-T1 and TaT1 cells that are active 
in both (Active to Active), and POU1F1 binding sites that are specific to GHF-T1, and 
are in an active state in GHF-T1 cells and a repressed state in TaT1 cells. (I) Similar 
analysis as H, on the bZIP transcription factor, FRA1. (J) Similar analysis as H, on the 
HTH transcription factor, RFX1. (K) Similar analysis as H, on the bHLH transcription 
factor, ASCL1. Supplemental Figure 5 shows more motifs. 
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Figure 8: Characterizing stretch enhancers in GHF-T1 and TaT1 cells. 

(A) A Venn diagram showing shared and distinct enhancers in GHF-T1 and TaT1 cells (top). A Venn diagram 
showing shared and distinct stretch enhancers in GHF-T1 and TaT1 cells (bottom). (B) A histogram showing the 
distribution of enhancer sizes in GHF-T1 (in blue) and TaT1 cells (in red). (C) A histogram showing the log 2-fold-
change of the genes that are closest to GHF-T1-specific stretch enhancers (in blue), TaT1-specific stretch enhancers 
(in red), and shared stretch enhancers (in black). (D) Number of TaT1 (red) and GHF-T1 (blue) stretch enhancers 
within 100kb (50kb upstream or downstream) of TSS of 25 genes known to be important for thyrotrope function. 
Underneath is a histogram of the number of TaT1 stretch enhancers surrounding (within 100kb) 10,000 iterations of 
25 randomly selected genes (normalized for gene expression). (E) The odds ratio of observing such an enrichment of 
SNPs for the neuroticism sub-phenotype of feeling miserable within stretch enhancers of all tissues tested. 
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Twenty-four percent of the enhancers that we identified were present in both the 

precursor and differentiated cell lineages, as defined by at least 25% bidirectional overlap (Fig. 

8A).  There were 15% more enhancers in the differentiated, thyrotrope state than the precursor 

state. The distribution of enhancer sizes was very similar between the two cell lines (Fig. 8B). 

Enhancers larger than 3 kb in length, called stretch enhancers, represent 5-10% of all 

enhancers, are typically cell-type specific and often enriched in disease-associated areas [301, 

302].  Stretch enhancers represent 4.9% of the enhancer population in the precursor cell 

lineage and 7.1% of the enhancer population in the differentiated thyrotrope population.  This is 

within the expected fraction, and the increased abundance in TaT1 cells is consistent with their 

more differentiated state.  While GHF-T1 and TaT1 cells share twenty-four percent of all 

enhancers, only ten percent of stretch enhancers are shared between the two cell-types (Fig. 

8A).   

 We compared the expression of the closest gene to each stretch enhancer and found 

that expression was highly cell-type specific.  Genes closest to precursor stretch enhancers 

were heavily upregulated in the precursor cell line, whereas the genes closest to thyrotrope 

stretch enhancers were heavily upregulated in the thyrotrope cell line (Fig. 8C).  Genes closest 

to shared stretch enhancers had similar gene expression in both cell lines. 

We sought to determine whether genes associated with thyrotrope function in both 

mouse and man were closer to stretch enhancers.  We generated a list of 25 candidate genes 

associated with thyrotrope differentiation and/or function (Supplemental Table 3), and we 

found that the TSS’s of all of these genes were within 100 kb of 28 TaT1 stretch enhancers and 

only 6 GHF-T1 stretch enhancers (Fig. 8D).  To determine whether this result was significant, 

we randomly selected 25 genes 10,000 times, ensuring the genes had similar expression levels, 

and we counted the number of stretch enhancers within 100 kb of the transcription start site of 

those randomly selected genes.  The randomly selected genes were within 100 kb of 28 TaT1 
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stretch enhancers only 2 times out of 10,000, yielding an empirical p-value of 0.0002, which 

confirms the enrichment of TaT1 stretch enhancers at thyrotrope-signature genes.   

 To probe the potential value of these data for application to human disease studies, we 

mapped the mouse enhancers in TaT1 and GHF-T1 cells from the mm9 genome onto the 

human genome, hg19.  Because ~90% of GWAS SNPs are intronic or intergenic, and stretch 

enhancers are heavily enriched for disease SNPs, we expected to implicate thyrotropes in 

disease phenotypes by uncovering enrichment of disease SNPs in TaT1 stretch enhancers 

[275, 301].  We used GARFIELD to measure the enrichment of these SNPs in GHF-T1 and 

TaT1 and stretch enhancers, while accounting for linkage disequilibrium, minor allele frequency, 

and distance to TSS [303].  We compared their enrichment to stretch enhancers found in 

heterologous cell lines including but not limited to Islet cells, GM12878 (human B-lymphocyte 

cells), and K562 (human myelogenous leukemia cells) cells [301].  The study that exhibited the 

greatest enrichment of SNPs in TaT1 stretch enhancers (odds ratio of 4.7) was from GWAS 

done on the neuroticism sub-phenotype of feeling miserable (Fig. 8E) [304]. While the 

significance of this is uncertain, untreated hypothyroidism can be associated with fatigue and 

depression. Supplemental Figure 8 shows the enrichment odds ratios for all GWAS studies 

and cell line stretch enhancers, as well as their p-values. 

In vitro validation of enhancers 

We sought to test putative enhancers of thyrotrope-signature genes, namely Gata2, 

Cga, and Pitx1, by transient transfection of TaT1 cells.  We identified putative regulatory 

elements as regions with significantly enriched ATAC-seq signals near these genes.  The 

promoter proximal sequences of each gene were amplified from genomic DNA and fused to a 

luciferase reporter gene.  Putative regulator elements were amplified from genomic DNA and  
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Figure 9: In vitro testing of putative regulatory elements surrounding thyrotrope-signature genes. 

(A) RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks (TaT1 in red, GHF-T1 in blue) at 
Gata2, with the pieces of DNA cloned for the luciferase assay highlighted in red, orange, green, light blue and dark 
blue. (B) Level of luciferase activity of each element. Prom 1, 2, and 3 represent the 0.2, 0.9, and 2.8kb promoters 
tested, and 1, 2, and 3 represent the three similarly highlighted elements in A tested in both the forward (circles) and 
reverse (x’s) orientation upstream of the Gata2 0.2kb promoter. (C) Same tracks as in A, at the Cga locus, where 
elements tested are highlighted. (D) Level of luciferase activity of each element, color-coordinated with the 
highlighted elements in C in both the forward (circles) and reverse (x’s) orientation. (E) Same tracks as in A at the 
Pitx1 locus, where elements tested are highlighted. (F) Level of luciferase activity of each element, color-coordinated 
with the highlighted elements in F. Elements were tested only in the forward orientation. 
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cloned in both the forward and reverse orientation upstream of the promoter proximal region.  

The transfection efficiency of TaT1 cells is low (~20%), and the results vary, likely due to their 

poor adherence to the plate.  Thus, all experiments were performed with six replicates.  We 

detected one enhancer element for Gata2, two elements that function as enhancers for Cga, 

and two elements for Pitx1 (Fig. 9, position of cloned promoters and elements can be seen in 

Supplemental Table 4). 

Gata2 is implicated in Tshb transcription and proper thyrotrope function [77, 163, 164].  

Gata2 has two promoters, and each are upstream of a non-coding exon [305]. The more distal 

promoter is located ~5 kb upstream of the more proximal promoter, and it drives expression in 

Sca-1+/c-kit+ hematopoietic progenitor cells, while the downstream promoter drives Gata2 

expression in most other tissues.  The downstream promoter is the only one utilized in TaT1 

and GHF-T1 cells, according to our RNA-seq data.  Gata2 expression is five-fold higher in TaT1 

cells than in GHF-T1 cells and there is a larger area of accessible chromatin upstream of Gata2 

in the TaT1 cells (~2.8 kb vs 0.9 kb, Fig. 9A).  There is no difference in activity between the 0.2 

kb and 0.9 kb promoter proximal region in TaT1 cells, but the larger, 2.8 kb promoter-proximal 

region stimulated luciferase activity 5-fold (p-value = 0.009).  This indicates the probable 

presence of enhancer elements between 0.9 and 2.8 kb of the common TSS for Gata2.  We 

tested three distal elements, fusing them with the smallest, 0.2 kb Gata2 promoter construct, 

and we discovered that the element ~100 kb 3’ of the Gata2 common promoter, that had 

significant POU1F1 binding, drove the highest levels of luciferase expression, increasing 

luciferase activity 3-fold (p-value = 0.005). Thus, we identified two enhancer elements for Gata2 

expression in thyrotropes, one in the proximal promoter region, within 2.8 kb of the TSS, and a 

more distal one, approximately 110 kb downstream. 

 Cga is the alpha-subunit of thyrotropin, the major hormone secreted by thyrotropes, and 

follicle stimulating hormone and luteinizing hormone, the major hormones secreted by pituitary 
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gonadotropes, which are responsible for stimulation of ovulation and spermatogenesis.  We 

tested three Cga enhancer elements, and two appeared to have activity, although they did not 

reach statistical significance.  The element ~7 kb upstream of Cga increased luciferase activity 

1.5-fold, and it has not been previously described.   The element located 4.6 kb upstream of the 

Cga gene increased luciferase activity 1.6-fold and approached statistical significance (p-value 

= 0.07).  This element was previously demonstrated to be sufficient for developmental 

activation, cell type specific expression, and hormonal regulation in transgenic mice (Fig. 9B) 

[280, 306].   

Pitx1 was initially identified as a pituitary transcription factor and demonstrated to have a 

role in POMC expression in cells and hindlimb formation in mice and humans [69, 307].  Pitx1 

has overlapping functions in pituitary development with the related transcription factor Pitx2 [67].  

Pitx1 and Pitx2 are expressed in thyrotropes and gonadotropes, and Pitx1 expression is 

elevated in pituitaries of mice with Pitx2 ablated in thyrotropes, suggesting the possibility of 

functional compensation [308].   The Pitx1 regulatory landscape extends over 400 kb and 

includes a pituitary enhancer 110 kb upstream [309].  ATAC-seq signatures revealed two 

previously undescribed thyrotrope-specific regions of open chromatin 9 and 19 kb upstream of 

the Pitx1 TSS (Fig. 9C).  The proximal element did not have statistically significant enhancer 

activity.  The distal element, however, increased luciferase activity 3-fold (p-value = 0.009). 
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Figure 10: Characterization of Tshb regulatory element. 

(A) RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks (TaT1 in red, GHF-T1 in blue) at 
Tshb where elements tested are highlighted. (B) Level of luciferase activity of each element, color-coordinated with the 
highlighted elements in A in both the forward (circles) and reverse (x’s) orientation. (C) Element 4 from B tested in 
heterologous CV1 cells in the absence or presence of POU1F1 and GATA2 expression vectors either singly or 
together. (D) POU1F1 and ATAC-seq tracks across the 1.4 kb region of Element 4. Below represent rug plots of 
predicted POU1F1, GATA2, and PITX1 binding sites within Element 4 that reach a confidence of at least 0.8 in 
JASPAR. Extended list of motifs found in Element 4 are presented in Supplemental Table 5. (E) Pituitary gene 
expression analysis in transgenic founder 399 with co-immunostaining for YFP (red) and TSHB (green), revealing 
overlap in expression (yellow). (F) Same as E, in founder mouse 423. (G) The number of YFP-positive cells per unit 
area in each founder. (H) The percentage of thyrotropes that express YFP in each founder. (I) The fraction of YFP-
positive cells that are thyrotropes in each founder. 
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Discovery of a novel TSH b-subunit enhancer  

A bacterial artificial chromosome clone containing Tshb and 150 kb of surrounding DNA 

sequence was sufficient to drive expression in thyrotropes of transgenic mice [308], but there is 

no information about the location of key regulatory elements within this region.  In fact, multiple 

efforts to drive expression in transgenic mice with smaller constructs were unsuccessful [262].  

We sought to leverage the information we have about the chromatin states in the TaT1 cells to 

identify elements sufficient for Tshb expression in mice.  Knowing that the 150 kb BAC was 

sufficient to drive expression in thyrotropes, we limited our search to this space, and found five 

areas with high ATAC-seq signal in TaT1 cells (Fig. 10A).  We tested each of these elements 

both in the forward and reverse orientation fused to a 0.4 kb Tshb promoter proximal region 

driving luciferase expression (Fig. 10B, position of cloned promoter and elements can be seen 

in Supplemental Table 4).  We discovered that an element 7 kb upstream of the Tshb TSS 

drove significant levels of luciferase (hereafter named Element 4).  Element 4 had extensive 

ATAC-seq signal and H3K4Me1 and POU1F1 binding, consistent with the observation that 

POU1F1 is important for Tshb expression.  Because GATA2 and POU1F1 synergize on the 

Tshb promoter to drive increased Tshb expression we tested whether they acted synergistically 

on Element 4 in heterologous CV1 cells [163].  We observed that GATA2 and POU1F1 

independently increase expression of the Tshb-luc reporter gene (2.7-fold and 1.6-fold 

respectively), and together they drive higher expression (5-fold) (Fig. 10C).  On Element 4, 

POU1F1 drives modestly increased reporter gene expression (1.3-fold increase), but GATA2 

drives far higher levels (4.3-fold increase).  GATA2 and POU1F1 do not have an additive effect 

on element 4 reporter activity (4.4-fold increase) in contrast to the promoter proximal region.  

This suggests that GATA2 is a powerful regulator of Tshb expression through interaction with 

Element 4. To determine which other factors may be binding Element 4, we checked for the 

presence of over 1,000 Jaspar motifs within Element 4 at an 80% threshold. We found 
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extensive predicted GATA2 and PITX1 binding (Fig. 10D). A more complete list of predicted 

binding factors is presented in Supplemental Table 5. 

We tested whether Element 4 was sufficient to drive expression in transgenic mice by 

placing the Element 4 in front of the Tshb promoter and a YFP reporter gene.  This construct 

was injected into fertilized eggs that were subsequently transferred to pseudopregnant 

surrogate females.  We dissected the pituitaries of eleven founder transgenic mice at four 

weeks of age and examined the expression of YFP using immunohistochemistry (Fig. 10E, 

10F).  Six founders had no detectable YFP activity in the pituitary gland, three founders had low 

levels of YFP activity, and two founder mice had higher levels of YFP activity.  We analyzed the 

latter two in more detail.  87% of YFP-positive cells were also positive for TSH in one founder, 

indicating high specificity for thyrotropes (Fig. 10H).  6% of the transgenic thyrotropes were also 

positive for YFP, suggesting low penetrance of expression (Fig. 10I).  This represents the first 

regulatory element that is sufficient to drive reporter expression in thyrotropes, as several other 

constructs were insufficient for in vivo expression [262].  This serves as a proof of the principle 

that combined transcriptome and epigenome data can be valuable for identifying enhancer 

elements that function in developmentally specific cell lines and intact animals. 

 

Discussion 

 
 Our work builds on the ENCODE effort to discover regulatory elements in diverse 

tissues.  This represents the first systematic characterization of the epigenome and 

transcriptome of a thyrotrope-like cell line, providing insight into the changes that are associated 

with the differentiation of committed POU1F1 pituitary cells into thyrotropes.  We have also 

performed CUT&RUN for the key transcription factor POU1F1, revealing its similar binding 

profile at promoters in the two cell lines, differential binding elsewhere, and clear association 
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with massive shifts in chromatin states between the two cell lines. CUT&RUN for histone marks 

(H3K27Ac and H3K4Me1) revealed active enhancers globally in the two cell lines.  We 

demonstrated that many of the enhancers surrounding thyrotrope-signature genes drive 

expression in a thyrotrope cell line.  Furthermore, an enhancer element upstream of Tshb 

proved to be sufficient to drive expression in thyrotropes in transgenic mice.  The transcriptomic, 

epigenomic, and POU1F1 binding data here contributes significantly to our understanding of 

thyrotropes, which are key cells for regulation of thyroid gland development and regulation of 

thyroid hormone production. 

 As hormone-producing cells mature, they ramp up translational machinery for robust 

hormone production, and CREB3L2 is a master regulator of this process in the pituitary 

corticotropes [310].  While Creb3l2 is not highly expressed in TaT1 cells, Creb3l1 is expressed 

nearly 30-fold higher in TaT1 cells than in GHF-T1 cells (172.5 FPKM vs. 5.9 FPKM).  It is 

possible thyrotropes use a similar mechanism of increasing translation to meet the demand for 

thyrotropin.  Consistent with this, Creb3l1 is upregulated in a model of thyrotrope adenoma 

[311]. 

Pituitary endocrine cells are electrically excitable, and voltage-gated calcium influx is the 

major trigger for hormone secretion [312].  G-protein coupled receptors, ion channels, and 

hormones all are considered components of cellular identity.  For example, thyrotropes have 

unique electrical activity relative to other pituitary hormone-producing cell types.  TaT1 cells 

exhibit a bursting pattern of action potentials that are affected by exposure to TRH and thyroid 

hormone, but the nature of the ion channels regulating TSH secretion is not understood [313, 

314]. The involvement of ion channels in excitation-secretion coupling is an area of active study.  

The hypothalamic factors CRH, TRH, GHRH and somatostatin have an effect on electrical 

activity in corticotropes, lactotropes and somatotropes.  Thyrotropes have not been well studied 

in this regard.  Our study provides evidence for the acquisition of ion channel gene expression 
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as progenitors adopt the thyrotrope fate.  Voltage gated potassium channels Kcnc3, Kcnq2, 

Kcnk1, and Kcnk2 were highly expressed in TaT1 cells.  Interestingly, KCNQ1 missense 

mutations cause growth hormone deficiency [315]. We found that sodium channel genes are 

upregulated in two cell types that express hormones, Pit1-triple and TaT1. Calcium channel 

gene expression was not different amongst the four cell types: Pit1-zero, GHFT1, Pit1-triple and 

TaT1.  The most highly expressed calcium channel was CACNA1G, a low-voltage activated, T-

type channel. This suggests that the previously proposed model, in which ion channel 

expression is pruned as differentiation proceeds, needs to be updated [312].  Knowing which ion 

channels are expressed in thyrotrope cells is the first step in understanding the mechanism 

whereby TRH stimulates TSH release in a pulsatile manner and according to the appropriate 

diurnal rhythm. 

  Two pituitary cell types express POMC, corticotropes and melanotropes, and they 

process the protein differently to make adrenocorticotropin and melanocyte-stimulating 

hormone, respectively.  Although there are very few differences in the transcriptomes of these 

cells, a single pioneering transcription factor, PAX7, remodels the chromatin landscape and 

provides access to new binding sites for TBX19 (Tpit), which drives melanotrope fate [229, 230, 

276].  We observed far more differences in gene expression between an undifferentiated GHF-

T1 cells and differentiated TaT1 cells, however, suggesting that a single factor may not 

responsible for all of differences.  

 Several transcription factors were strongly upregulated in TaT1 cells relative to GHFT1, 

including ISL1, RXRG and LHX3.  Upregulation of Isl1 and Rxrg was expected because 

pituitary-specific deletion of Isl1 causes reduced thyrotrope differentiation [281], and several 

lines of evidence support a role for Rxrg.  RXRG suppresses serum TSH levels and Tshb 

transcription, Rxrg deficient mice have central resistance to thyroid hormone, and loss of 

retinoic acid signaling suppresses thyrotrope differentiation [297, 316].  Isl1 had extensive 
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POU1F1 binding across the 1 MB region surrounding it. Lhx3 expression is detectable at e9.5 in 

the mouse pituitary placode and expression persists though adulthood [50].   Thus, we expected 

to detect Lhx3 transcripts in all pituitary cell lines.  Lhx3 transcripts were nearly undetectable in 

Pit1-zero cells and in the precursor GHF-T1 lineage, transcripts were higher in Pit1-triple (1.6 

FPKM), and highest in TaT1 cells (44.2 FPKM).  Recently, an SV40-transformed pituitary 

precursor cell line was developed that expresses the stem cell marker SOX2 but not LHX3 

[317].  There may be dynamic changes in Lhx3 expression during development that have not 

been documented. 

 SHH signaling is critical for establishing the pituitary placode and induction of Lhx3 

expression [24].  The GHFT1 precursor lineage expressed GLI2 and GLI3, the downstream 

targets of SHH, at higher levels than TaT1 cells.  This is suggestive of active SHH signaling.  

Gli2 and Gli3 promoters are associated with extensive H3K4Me1 and H3K27Ac, and active 

enhancers can be found upstream, downstream, and within their introns.  By contrast, Gli2 and 

Gli3 have broad stretches of H3K27Me3 in the TaT1 line, a mark of active repression.  The 

active expression of these elements in GHF-T1 cells underline how well these cell types 

represent the early pituitary state, and suggest they could be for valuable for identifying GLI 

target genes that underlie pituitary developmental abnormalities [5]. 

POU1F1 is critical for development of thyrotropes, somatotropes and lactotropes, and it 

likely interacts with other factors that specify the three different cell fates. The work done here 

may give insight into which other factors may be involved. While POU1F1 binding is associated 

with the homeobox motif, sites of TaT-1-specific POU1F1 binding that are repressed in GHF-T1 

cells and active in TaT1 cells are heavily enriched for bHLH and HTH motifs. This raises the 

possibility that bHLH and HTH factors pioneer the binding of POU1F1 which then activates 

thyrotrope-specific expression.   



 
 

71 

 Members of the RFX family of transcription factors are attractive candidates for 

interaction with POU1F1 to drive thyrotrope fate.  These HTH factors contain DNA binding and 

heterodimerization domains and regulate cell fate in many organ systems, including the 

pancreatic islets and the sensory cells of the inner ear [318, 319].  They interact with other POU 

and SIX factors to direct fate. Rfx1, Rfx2, Rfx3, Rfx5, and Rfx7 are expressed in both GHF-T1 

and TaT1 cells. Rfx3, Rfx4, Rfx5 and Rfx7 are expressed in pituitary development between 

e12.5 and e14.5, a time when progenitors leave the cell cycle and initiate differentiation [320]. 

Future studies will be necessary to define the role of these genes in pituitary development. 

POU1F1 binding sites unique to TaT1 cells are enriched for bHLH binding sites, 

suggesting that bHLH factor(s) might drive thyrotrope fate.  However, thyrotrope commitment is 

normal in Ascl1 knockout and in triple knockout mice deficient in Ascl1 (Mash1), Neurod4 

(Math3), and Neurod1.  These bHLH activating factors have overlapping functions in promoting 

somatotrope, gonadotrope, and corticotrope development [291, 292, 321, 322].  They promote 

pituitary stem cell exit from the cell cycle and act as selectors of cell fate, as triple knockout 

mice have more SOX2-positive cells and more lactotropes.  We discovered expression of 

numerous bHLH factors that are candidates for driving thyrotrope fate. Given their electrical 

activity, it is possible that the factors regulating differentiation of thyrotropes and TaT1 cells may 

have some similarity to the factors that are involved with neuronal differentiation, which rely 

heavily on bHLH factors.  Marius Wernig convincingly showed that ASCL1 (in addition to BRN2 

and MYT1L, called BAM factors) are sufficient to transdifferentiate mouse embryonic fibroblasts 

(MEFs) into neurons, and he comprehensively characterized the mechanisms by which these 

factors act [323, 324].  MYT1L is a zinc finger transcription factor.  ASCL1 and MYT1L represent 

two of the most highly upregulated transcription factors in TaT1 cells. BRN2 barely reaches the 

limit of detection in TaT1 cells, however it is a POU factor, and POU1F1 is critical for expression 

and regulation in TaT1 cells.  While we showed definitively that loss of ASCL1 has no effect by 
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e18.5, it is possible that ASCL1, acting in concert with MYT1L and POU1F1 may be important 

for the neuron-like fate of the TaT1 cells.  While the knockout of ASCL1 alone has no apparent 

effect on thyrotrope differentiation in mice, ASCL1 is critical for zebrafish pituitary development, 

and there are many other bHLH factors expressed in thyrotropes (and TaT1 cells) that could 

have overlapping function with ASCL1. 

The top three most highly expressed bHLH factors in both of pituitary cell lines are the 

repressive bHLH factors in the ID family.  The role of these genes in pituitary development has 

not been studied, but they may be important in regulating progenitor differentiation and cell fate 

selection.  For example, a proper balance of activating and repressive bHLH factors is critical for 

cortical development [325].  Repressive ID and Hes factors are expressed in cortical 

progenitors, and induction of key activating bHLH factors drive these progenitors to differentiate. 

Astrocytes, however, require continued repressive bHLH factor expression.  The interplay of 

active and repressive bHLH factors in pituitary development is likely complex. 

We identified many putative enhancers in both the precursor and thyrotrope cell line by 

epigenomic marks and assessment of open chromatin.  To facilitate utilization of these data for 

analysis of human genome wide association analysis hits, we mapped the putative mouse 

regulatory elements onto the human genome.  We discovered that SNPs associated with a 

neuroticism subphenotype described as feeling miserable were enriched in TaT1 stretch 

enhancers. Thyrotrope dysfunction can lead to hypothyroidism, which is associated with 

depression and lethargy [326]. Thus, these stretch enhancers may be important for proper 

regulation of thyroid function in humans. 

We carried out functional testing of putative regulatory elements in and around the 

thyrotrope-signature genes Tshb, Gata2, Cga, Pitx1, and Trhr.  We tested twenty-five elements 

around these genes, and found that eight drove luciferase expression, One element for Tshb, 

two for Gata2, two for Cga, two for Pitx1, and one for Trhr.  We show here the first regulatory 
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element that is sufficient to drive reporter expression in thyrotropes in genetically engineered 

mice. Previous promoter-proximal elements have been reported to have activity in thyrotrope 

cell lines, however, have failed to drive expression in murine models. This represents a 

significant improvement in our understanding of thyrotrope regulation. In vitro studies in TaT1 

cells showed that POU1F1 binds this element and GATA2 drives Tshb expression via this 

element.  Further motif analysis suggests that PITX factors may also be binding this element. 

Full characterization of the transcription factors binding this element would give insight into the 

broader thyrotrope regulation network.   

 This work represents the first thorough characterization of the epigenome and 

transcriptome in Pou1f1 lineage progenitors and thyrotropes.  We used this genome-wide 

catalog and demonstrated enhancer function for elements in genes encoding thyrotropin, Cga 

and Tshb, the receptor for the hypothalamic releasing hormone that regulates thyrotropin, Trhr, 

and two crucial transcription factors, Gata2 and Pitx1.  This provides proof of the principle that 

the catalog is valuable for dissecting gene regulation.  In addition, we demonstrate that the Tshb 

enhancer element is sufficient for expression in thyrotropes in transgenic mice and is directly 

regulated by GATA2.  We discovered that unique POU1F1 binding sites are associated with 

bZIP factor binding motifs in Pou1f1 lineage progenitors and bHLH or bHTH binding motifs in 

thyrotropes.  This suggests candidate gene families for regulating thyrotrope differentiation, 

such as the RFX family.   Of the more than 30 known genes that are mutated in patients with 

hypopituitarism, 18 are transcription factors that regulate pituitary development and cell 

specification, indicating the clinical importance of this field of study.  The overwhelming majority 

of patients with hypopituitarism have no molecular diagnosis, suggesting additional genes 

remain to be discovered.  We provide a rich selection of candidate transcription factors that are 

differentially expressed in progenitors and thyrotropes.  Amongst the top 40 of these, 9 are 

already implicated in pituitary development and disease.  Future analysis of the remaining 31 

candidates may uncover additional disease genes.   
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Methods 

 

Cell culture and transfection 

GHF-T1 and TaT1 cells were provided by Dr. Pamela Mellon at University of California 

San Diego and grown on uncoated 100mm dishes and Matrigel-coated 60mm dishes, 

respectively. They were grown in DMEM (Gibco, 11995-065) with 10% Fetal Bovine Serum 

(Corning, 35016CV) and 1% Penicillin Streptomycin (Sigma-Aldrich P4333). Cells were split 

1:10 once they achieved 80% confluence. Six replicates of TaT1 cells were transfected using 

FuGENE 6 with a 3:1 transfection reagent/DNA ratio. Cells were collected 48 hours post-

transfection for collection and luciferase measurement was performed using Promega Dual-Glo 

(Promega #E2920), and a GloMax 96 microplate luminometer. 

Cloning 

The DNA prepared for the plasmids used in the transfection experiments and transgenic 

mice was amplified from TaT1 DNA. Primers were designed to work with Phusion Green Hot 

Start II High-Fidelity PCR Master Mix (catalog # F566S). Two methods were employed to clone 

plasmids containing the regulatory element, the respective promoter, and the YFP reporter. The 

first method involved adding 10-15 nucleotides onto the insert that overlapped with the 

pCDNA3-YFP Basic plasmid that had been cut with Kpn1 and Xho1. The amplicon and 

linearized plasmid backbone were combined using the NEB HiFi DNA Assembly Master Mix 

(catalog # E2621L) with 1:2 vector:insert ratios, and 60 min incubation time at 50°C. The 

subsequent plasmid was transformed into DH5a cells. The second method was to insert the 

amplified construct into a Zero Blunt TOPO vector (ThermoFisher #450245), select clones that 

are in the forward and reverse orientation, then cut the TOPO vector containing the insert with 

Kpn1 and Xho1. The resulting fragment is then ligated into a digested pCDNA3-YFP Basic 
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plasmid that had been cut with Kpn1 and Xho1 using a standard T4 DNA Ligase protocol (NEB 

#M0202). Once the insert, plasmid, and breakpoint sequences were confirmed by Sanger 

sequencing, the plasmids were extracted from overnight 1 L cultures of DH5a cells using 

Qiagen Plasmid Maxi Kits (catalog #12163). Endotoxins were removed from the plasmids using 

the Endotoxin removal Solution (Sigma, E4274-25ML). 

RNA Seq 

One million GHF-T1 and TaT1 cells were collected for each of the three replicates for 

each cell line. Once collected, the RNA was extracted using the RNAqueous™ Total RNA 

Isolation Kit (catalog #AM1912). The RNA was prepared by the University of Michigan 

Advanced Genomic Core for mRNA enrichment followed by 50-cycle, paired-end sequencing on 

the Illumina HiSeq-4000. The RNA was checked for quality using FastQC and mapped and 

analyzed using the VIPER Snakemake pipeline [327]. Briefly, VIPER aligns the files to the mm9 

transcriptome using STAR, followed by differential expression analysis using DESeq2 and cell 

type clustering and expression quantification using QoRTs [328]. The quality of the alignment 

was also analyzed using QoRTs.  

We measured the significance of the increase in expression of sodium, potassium, and 

calcium using a one-way ANOVA. This demonstrated the significance of the increase in 

expression of the sodium and potassium, but not the calcium channel genes. 

GO Term and KEGG Pathway Enrichment 

 We performed GO-term enrichment on the top 5% of most differentially expressed genes 

(by log-2 fold-change) in both lines [289, 290]. This represented 453 genes in GHFT1 cells, and 

490 genes in TaT1 cells. We used the default settings on the web-based Gene Ontology 

Resource (geneontology.org), using the biological process and Mus Musculus options. The 

resulting GO terms were plotted by their log2 fold enrichment, and their p-values. 
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 We also performed a directional Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analysis on all of the genes using RNA-enrich [329]. We set the maximum 

number of genes per concept to 500 and the minimum number of genes per concept to 5, and 

otherwise used the default settings. The resulting KEGG pathways were plotted by their 

coefficients and p-values. 

ATAC-Seq 

The Assay for Transposase Accessible Chromatin with high-throughput sequencing 

(ATAC-seq) was performed as previously described [243, 330]. Briefly, 50,000 nuclei were 

extracted from collected GHF-T1 and TaT1 cells. The cells were transposed with Illumina 

transposase (Illumina #FC-121-1030) for 30 minutes at 37°C while shaking at 250 RPM. The 

resulting fragmented DNA was amplified using ¼ of the cycles required to reach saturation in 

the described qPCR QC. The final amplified DNA library was purified using the Qiagen PCR 

purification kit (catalog #28104) and sequenced on the Illumina HiSeq platform. The quality of 

the reads was checked using FastQC, aligned to the mm9 genome, and had its peaks called 

using the Parker lab’s Snakemake pipeline [331].  

CUT&RUN 

CUT&RUN was performed under high-digitonin conditions as described with few 

exceptions, namely all steps with < 1 ml of liquid requiring mixing were done by 500 RPM 

shaking instead of inversion [293]. Briefly, 250,000 cells per sample, and one sample per cell 

line-antibody pair were collected, washed, and bound to Concavalin A beads (Bangs 

Laboratories, BP531). The cells attached to beads were incubated at 4°C overnight with the 

respective antibodies (POU1F1 – this antibody was a kind gift from Dr. Simon Rhodes, 

University of North Florida, Jacksonville, FL [332], H3K27Me3 – Cell Signal #C36B11, H3K27Ac 

– Abcam ab4729, H3K4Me1 – Abcam ab8895, Rabbit IGG – R&D AB-105-C). The antibodies 

were washed, and no secondary antibody was used. The protein A/MNAse fusion protein was 
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added, followed by Ca2+-induced digestion at 0°C for 30 minutes. The fragmented chromatin 

was then collected and purified using Macherey-Nagel NucleoSpin Gel and cleanup columns 

(catalog #740609). Libraries of this DNA was prepared using the Kapa Biosystems library prep 

kit (catalog #KK8702) at a 100:1 adapter:sample ratio. The libraries were paired-end sequenced 

on a single lane of the Illumina HiSeq-4000 for 50 cycles. The resulting data was then checked 

for quality using FastQC, aligned to the mm9 genome using Bowtie2 using the flags 

recommended for CUT&RUN (--local --very-sensitive-local --no-unal --no-mixed --no-discordant 

--phred33 -I 10 -X 700), and peaks were called using MACS2. 

ChromHMM 

 ChromHMM was performed on both cell lines using H3K4Me1, H3K27Ac, ATAC-seq 

and H3K27Me3 as input. The number of states was iteratively increased to find the number of 

states that resulted in the fewest number of states with the best log-likelihood. An eleven-state 

model was selected as a result. Association of each state with the various marks and genomic 

features can be seen in Supplementary Figure 6. Contiguous states of value two and three 

were stitched together as enhancers using bedtool’s mergeBed function with a -d 1 flag [333].  

Association Enrichment Test 

 Enrichment analysis of disease SNPs at stretch enhancers in GHFT1, TaT1 and 

heterologous cell lines was performed using GARFIELD and stretch enhancers published 

previously [301, 303]. To find the human sequences orthologous to GHFT1 and TaT1 stretch 

enhancers we used a conversion file generated using bnMapper and an mm9 to hg19 chain file 

[334]. We selected associations that had association counts of at least 50, that had a full 

complement of summary statistics, had more than three million tested SNPs, and were in the 

harmonized data format were chosen from the GWAS catalog [335]. The resulting heatmap of 

odds ratios and p-values for each association, tissue-type pair is shown in Supplementary 

Figure 8. 
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Transgenic mice 

All mice were housed in a 12-h light, -12 h dark cycle in ventilated cates with unlimited 

access to tap water and Purina 5020 chow.  All procedures were conducted in accordance with 

the principles and procedures outlined in the National Institutes of Health Guidelines on the 

Care and Use of Experimental Animals and approved by our Institutional Animal Care and Use 

Committee. 

Recombinant DNA was generated by amplifying genomic mouse DNA regions in 

Supplemental Table 4, and the previously described Phusion polymerase. The putative 

regulatory element was then combined with 438 base pairs of the TSHb promoter 

(chr3:102,586,594-102,587,032), and a YFP reporter. These elements were combined using the 

DNA Hifi reaction into a pGEM-T Easy plasmid. The putative regulatory element, the promoter, 

the YFP, and the breakpoints were checked for accuracy with Sanger sequencing. Once the 

plasmid was confirmed, larger quantities of the plasmid were generated from overnight 1L 

cultures of DH5a cells using Qiagen Plasmid Maxi Kits (catalog #12163). To reduce the effect of 

the plasmid backbone on the viability of injected eggs, the enhancer, promoter, and YFP were 

amplified from the plasmid. The resulting amplicon was gel purified and injected into fertilized 

eggs of mice on a C57BL/6 and SJL mixed background. The resulting mice were genotyped for 

the YFP allele according to the Jackson Laboratory recommended primers and conditions [336]. 

We dissected the pituitaries from mice that were positive for the YFP transgene (and four age-

matched, negative, control littermates) at three weeks of age.  

Tissue Preparation and Immunohistochemistry 

Mouse pituitaries were fixed in 4% formaldehyde in PBS overnight at 4°C. The tissue 

was washed three times in PBS and put in 10% EDTA for 3 hours. They were then dehydrated 

by putting them in 25%, then 50%, then 70% ethanol for one hour each. The pituitaries were 

embedded in paraffin with four-hour cycles using a Tissue Tek VIP Paraffin tissue processing 



 
 

79 

machine (Miles Scientific). The embedded pituitary was cut into coronal, six-micron sections, 

and was analyzed by immunohistochemical markers as previously described [308, 337]. Anti-

YFP and anti-Tshb were used (from Abcam ab6556 and National Hormone and Peptide 

Program, respectively).  

Antibodies were detected using either the tyramide signal amplification (TSA) (33002 

CFF488A Streptavidin HRP, Biotium, Fremont, CA) and streptavidin-conjugated Alexa-fluor 488 

(1 : 200, S11223, Invitrogen). DAPI (1:200) was incubated on the slides for five minutes to stain 

nuclei. DABCO-containing permount was used to mount the slides, which were then imaged 

using a Leica DMRB fluorescent microscope. 

Data Access 

All raw sequencing data generated in this study have been submitted to the NCBI Sequence 

Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA643917, 

and will be released once published.  

 

Supplemental Figures 

 

Supplemental Figure 1: GO term enrichment and KEGG pathway analysis.  

(A) Volcano plot of GO Terms from the top 5% of the genes most highly expressed in GHF-T1 cells. (B) Volcano plot 
of GO Terms from top 5% of the most highly expressed genes in TαT1 cells. (C) KEGG pathway enrichment done on 
all genes. 
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Supplemental Figure 2: Loss of ASCL1 has minimal impact on thyrotrope number. 

(A) Immunostain for TSH in wild type e18.5 pituitary. (B) Immunostain for TSH in Ascl1-/- e18.5 pituitary. (C) Number 
of thyrotropes per surface area in six e18.5 mice (three wild type, three null) revealing no significant difference 
between the genotypes (p-value 0.71). 
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Supplemental Figure 3: Multi-omics tracks for loci with similar levels of expression and chromatin 
landscapes in both cell types. 

RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks at (A) Sox4, (B) Nr4a1, (C) Six1, (D) 
Pax7, and (E) Pitx2 loci in TaT1 cells (red) and GHF-T1 (blue). 
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Supplemental Figure 4: Multi-omics tracks for selected genes with higher levels of expression in GHF-T1 
cells.   

RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks in TaT1 (red) and GHF-T1 (blue) cells 
for (A) Gli2, (B) Pax3, and (C) Nupr1. 
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Supplemental Figure 5: Multi-omics tracks for selected loci with higher levels of expression in TaT1 cells.  

RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks from TaT1 (red) and GHF-T1 (blue) 
cells at (A) Dio2, (B) Foxl2, (C) Thrb, and (D) Neurod4. 
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Supplemental Figure 6: ChromHMM summary data.  

(A) Log likelihood of the resulting ChromHMM performed for each number of states. Eleven states had the best 
combination of the fewest states and most favorable log likelihood. (B) The emission parameters reveal the presence 
of each histone mark and the level of ATAC-seq signal for each state with darkest blue being the highest enrichment. 
(C) Genomic features of each state in GHF-T1 cells. (D) Genomic features of each state in TaT1 cells. (E) A plot 
revealing the degree of transition from each parameter to each other parameter. (F) Degree of enrichment of each 
state at TSS’s in GHF-T1 cells, revealing that state six is heavily enriched at promoters. (G) Degree of enrichment of 
each state at TSS’s in TaT1 cells, revealing that state six is heavily enriched at promoters. 
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Supplemental Figure 7: Motif density at POU1F1 binding sites in GHF-T1 and TaT1 cells.  

(A) Motif density of the representative forkhead factor FOXA1 at all TaT1 POU1F1 binding sites (TaT1), at all GHF-
T1 POU1F1 binding sites (GHF-T1), at POU1F1 binding sites that are specific to TaT1 that have repressed 
repressive marks in the precursor, GHF-T1 cells and active chromatin in the differentiated, TaT1 cells (Repressed to 
Active), at POU1F1 binding sites that are shared between both lines and have similarly active chromatin marks in 
both (Active to Active), and POU1F1 binding sites that are specific to GHF-T1 that have active chromatin in GHF-T1 
cells, and repressed chromatin in TaT1 cells (Active to Repressed). (B) Motif density of GATA2 at the same POU1F1 
binding domains as in (A). (C) Motif density of CTCF at the same POU1F1 binding domains as in (A). 
 

 
Supplemental Figure 8: Heatmap of associations with each cell type. 

(A) P-value for each enrichment test performed for each association and cell type pair. (B) Odds ratio for each 
enrichment test performed for each association and cell type pair. 
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Supplemental Figure 9: Functional enhancer testing of elements of open chromatin in and around Trhr 

(A) RNA-seq, POU1F1, H3K27Ac, H3K4Me1, ATAC-seq, and H3K27Me3 tracks (TaT1 in red, GHF-T1 in blue) at the 
Trhr locus where elements tested are highlighted. (B) Level of luciferase activity of each element, color-coordinated 
with the highlighted elements in A in both the forward (circles) and reverse (x’s) orientation.  

Supplemental Tables 
 
Supplemental Table 1: Genes Associated with SV40 Immortalized Pituitary Cell Lines. 

Cluster 1 
(Pit1-Zero + Pit1-Triple 

Cluster 2 
(GHF-T1) 

 

Cluster 3 
(TaT1) 

 
LXN FABP7 CGA 

TBX18 SDPR NNAT 
MIR692-1 VAX1 PCP4 

GYPC SHTN1 SMTNL2 
ARSJ BST2 CHGA 
PBP2 TUBA8 CHGB 

LCE1G GAS7 PNMAL1 
EREG TPRG RESP18 
LOX COX7A1 ELAVL3 
NID1 LDHB PCSK2 

CES1G LRRC17 SYP 
GREM1 1700019N19RIK SCG3 

BGN CHRNB1 SCG2 
GJA1 CGNL1 SEZ6L2 

CHRNA1 CLVS2 CELF3 
CASP8 BTBD3 SNAP25 
HEBP2 RCN3 CDK5R2 

PDGFRB HOTAIRM1 ZIM1 
PTX3 CREB5 SCG5 
TPM2 MEIS2 INSM1 
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Supplemental Table 2: bHLH genes expressed in GHF-T1 and TaT1 cells. 

Factor GHF-T1 Expression 
(FPKM) 

TaT1 Expression 
(FPKM) 

Shared Expression 
ID2 155.4 253.8 
ID1 121.2 203.8 

TCF4 99.6 166.6 
HIF1A 49.92 103.4 
TCF12 48.4 83.2 

BHLHB9 33.1 82.6 
SREBF2 61.1 44.7 

TCF3 50.2 41.9 
BHLHE40 23.3 69 

MAX 45.4 41.1 
Up in GHF-T1 

TCF24 2.3 0 
TWIST2 6.6 0 

BHLHE22 4.8 0.1 
TWIST1 17.3 0.5 
ATOH8 42.2 2.9 

MSC 3.2 0.3 
HEY2 2.3 0.3 
HES1 16.6 2.6 

EPAS1 3.3 0.7 
ID3 226.7 63.5 

TCF24 2.3 0 
Up in TaT1 

NEUROD4 0 31.9 
ASCL1 0.2 25.3 
OLIG1 0.1 3.7 
MYCN 0.3 13.9 
HEYL 0 1.3 
ID4 3.3 81.3 

TAL1 0.1 2.7 
MLXIPL 0.3 2.6 
NCOA1 2.1 13.5 
ARNTL 10.4 41.5 
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Supplemental Table 3: Thyrotrope signature genes. 

Gene Protein References (PMIDs) 
Cga Chorionic gonadotropin alpha 7544315 
Tshb Thyroid stimulating hormone beta subunit 2792087 
Trhr Thyrotropin releasing hormone receptor 9141550, 14988432 
Thrb Thyroid hormone receptor beta 22570333, 32122258 
Dio2 Deiodinase 2 11731615, 5007895 

Pou1f1 POU homeobox transcription factor (PIT1) 1302000, 15928241, 1981057, 
1977085 

Gata2 GATA binding protein 2 16543408, 12385825, 
10367888 

Gata3 GATA binding protein 3 16543408, 10935639 
Isl1 Islet 1 32453714, 27580811 

Lhx3 LIM homeobox protein 3 8638120, 16394081 

Pitx1 Paired homeodomain transcription factor 1 21775501, 10049363, 
10101115, 15761027 

Pitx2 Paired homeodomain transcription factor 2 8944018, 10498698, 
11807026 

Foxl2 Forkhead transcription factor FOXL2 
11175783, 12149404, 
15056605, 14736745, 
29800110, 16840539 

Sox4 SRY-box 4 22543271, 30661772, 
9815146 

Rxrg Retinoid receptor X gamma 16306084, 108800050 

Nr4a1 Nuclear receptor subfamily 4, group a, 
member 1 (Nurr77) 22792320, 30093910 

Creb3ll cAMP-responsive element-binding protein 
3-like 1 29311806, 27580811 

Eya3 Eyes absent transcriptional co-activator 
and phosphatase 3 21129973 

Six1  9020840, 1978983, 14628042 
Tef Thyrotroph embryonic factor 1916262, 15175240 

Nupr1 Nuclear protein transcriptional regulator 1 12429736, 18495683, 
27580811 

Tceal5 Transcription elongation factor A (SII)-like 
5 27580811 

E2f1 E2F transcription factor 1 27580811, 18794899 

Etv5 Ets variant 5 27580811, 19898483, 
16107850 

Msx1 Muscle segment homeobox 1 
12807959, 7914451, 

23371388, 1837990/0, 
16703404 

Lhx2 LIM homeodomain transcription factor 2 7513049, 19900438 
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Supplemental Table 4: Mm9 Genomic coordinates for promoter and enhancer elements tested in 
transfection. 

Gene Element Chrom Start Stop 

Gata2 200 bp 
Promoter chr6 88148535 88148762 

Gata2 900 bp 
Promoter chr6 88147851 88148762 

Gata2 2.8 kb 
Promoter chr6 88145925 88148762 

Gata2 Element 1 chr6 88139279 88141082 
Gata2 Element 2 chr6 88176353 88177232 
Gata2 Element 3 chr6 88261331 88262559 

Cga 486 bp 
Promoter chr4 34840577 34841063 

Cga Element 1 chr4 34833573 34835422 
Cga Element 2 chr4 34836822 34837786 
Cga Element 3 chr4 34846587 34847868 

Pitx1 377 bp 
Promoter chr13 55932587 55932964 

Pitx1 Element 1 chr13 55941401 55944503 
Pitx1 Element 2 chr13 55951439 55953329 

Tshb 438 bp 
Promoter chr3 102586594 102587032 

Tshb Element 1 chr3 102527463 102529377 
Tshb Element 2 chr3 102536553 102540450 
Tshb Element 3 chr3 102550639 102553942 
Tshb Element 4 chr3 102592924 102594331 
Tshb Element 5 chr3 102605012 102609378 

Trhr 957 bp 
Promoter chr15 44027215 44028172 

Trhr Element 1 chr15 44007238 44011587 
Trhr Element 2 chr15 44016635 44021495 
Trhr Element 3 chr15 44050106 44054542 
Trhr Element 4 chr15 44105357 44109171 
Trhr Element 5 chr15 44132604 44133764 

 
Supplemental Table 5: Factors that may be binding Tshb Element 4. 

Gene Number of 
Motifs 

Top Motif 
Score 

Average 
Motif 
Score 

TaT1 
Expression 

Sorted by TaT1 Expression 
PITX1 31 8 5 363.5 
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MAZ 2 16 11 187.3 
TCF4 21 13 5 166.6 

POU1F1 5 10 10 159.6 
ATF4 7 10 8 147.2 

CENPB 2 5 5 114.4 
HIF1A 4 6 5 103.4 
TFDP1 1 9 9 97.6 
TCF12 17 15 5 83.2 

PLAGL1 1 7 7 78.6 
JUND 19 8 3 77.5 

BHLHE40 6 8 4 69 
MEF2A 27 11 7 66.4 
SMAD4 6 5 5 58.2 
STAT5A 7 11 10 57.1 
PKNOX2 2 11 11 53.5 

CTCF 1 9 9 51.4 
E2F1 3 6 5 50.1 

VEZF1 4 7 6 47 
ISL1 15 11 6 45.7 

Ranked by Number of motifs (TaT1 FPKM >=1) 
FOXD2 76 7 4 2 
LHX9 76 11 5 1.3 

HOXA5 75 11 5 1.3 
GATA2 65 14 5 34.8 
FOXC1 60 9 4 4.8 
LHX4 60 10 5 1.1 
LHX1 58 9 5 8.5 

ARID3A 51 9 5 1.2 
STAT3 50 11 4 30 
LIN54 49 13 6 22.6 
HLTF 49 8 5 6.1 
DLX1 48 9 5 2.1 
HLF 47 12 7 36.7 

ETS1 47 12 5 3.1 
NKX3-2 47 12 6 1.7 

TBP 46 10 7 24.9 
VAX2 43 11 5 10.6 
ZEB1 43 11 5 9.4 
KLF4 43 10 6 7.7 

HOXA6 42 9 5 1.3 
FOXD2 76 7 4 2 
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Chapter 3: Pituitary tumors and immortalized cell lines generated by cre-inducible expression of 
SV40 T antigen 

 

Abstract 

 

Targeted oncogenesis is the process of driving tumor formation by engineering 

transgenic mice that express an oncogene under the control of a cell-type specific promoter.  

Such tumors can be adapted to cell culture, providing immortalized cell lines.  To make it 

feasible to follow the process of tumorigenesis and increase the opportunity for generating cell 

lines, we developed a mouse strain that expresses SV40 T antigens in response to cre-

recombinase.  Using CRISPR/Cas9 we inserted a cassette with coding sequences for SV40 T 

antigens and IRES-GFP into the Rosa26 locus, downstream from a stop sequence flanked by 

loxP sites: Rosa26LSL-SV40-GFP.   These mice were mated with previously established Prop1-cre 

and Tshb-cre transgenic lines.  The majority of Rosa26LSL-SV40-GFP/+; Prop1-cre and all Rosa26LSL-

SV40-GFP/+; Tshb-cre mice developed dwarfism and large tumors by 4 weeks.  Prop1-cre-mediated 

activation of SV40 expression affected cell specification, reducing thyrotrope differentiation and 

increasing gonadotrope differentiation.  Flow-sorted GFP-positive cells from Rosa26LSL-SV40-GFP/+; 

Prop1-cre and Rosa26LSL-SV40-GFP/+; Tshb-cre mice express PROP1 and TSH, respectively.  

Tumors from both of these mouse lines were adapted to growth in cell culture.  We have 

established a progenitor-like cell line (PIT-P1) that expresses Sox2 and Pitx1, and a thyrotrope-
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like cell line (PIT-T1) that expresses Cga and Pou1f1.  These studies demonstrate the utility of 

the novel, Rosa26 LSL-SV40-GFP mouse line for reliable targeted oncogenesis and development of 

unique cell lines.2  

                                                
 
2 This chapter has been submitted and is under revision: Alexandre Z. Daly*, Amanda H. Mortensen*, 
Hironori Bando, Sally A. Camper, “Pituitary tumors and immortalized cell lines generated by cre-inducible 
expression of SV40 T antigen” Endocrinology.  (*indicates co-first authors).  Ms. Mortensen conducted 
the histological staining and immunohistochemical analyses and assisted with animal colony 
management.  Dr. Bando assisted with cell line development.   
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Introduction 

 

 Immortalized cell lines have been invaluable tools for understanding the molecular 

mechanisms that underlie the pituitary gland’s response to hypothalamic regulation, feedback 

from end organs, and intracellular signaling.  They have also been useful in understanding the 

formation of pituitary adenomas [338].  Cell lines offer the ease of manipulation and obviate the 

need to rely on primary tissues.  This is particularly true for small organs like the pituitary gland.  

Additional pituitary cell lines would be useful for dissecting the changes associated with stem 

cells transitioning to differentiation and commitment to the thyrotrope fate.   

 Pituitary and hypothalamic cell lines have been developed by targeted oncogenesis.  

This involved using cell-specific transcriptional regulatory sequences to drive expression of 

large and small SV40 T antigens in transgenic mice.  Invariably, tumors develop in some of the 

mice, and the cells in these tumors can sometimes be adapted to grow in culture into stable, 

immortalized cell lines that maintain some of the features of differentiated cells.  Tumors often 

develop early and cause infertility or death, making it difficult to generate cell lines from a single 

founder mouse.  For this reason, we generated a mouse line that can express SV40 T antigen 

in response to cre-recombinase excision of a stop sequence flanked by loxP sites.   

 Both the SV40 large and small T antigen contribute to immortalization. The large T 

antigen causes transformation by binding to and disrupting the function of HSC70, Rb, p300, 

and p53, whereas the small t antigen binds to pp2A to contribute to the transformation, 

characterized by uncontrolled proliferation [339].  The ability of SV40 to inactivate p300-related 

activity is critical to its capacity to immortalize cells [340].  SV40-mediated immortalization has 

been used to create cell lines that represent pre-gonadotropes (aT3-1), gonadotropes (LbT2), 

precursors of the POU1F1 lineage (GHF-T1, Pit1-zero), differentiated cells of the POU1F1 

lineage (Pit1-triple, TaT1, and Pit1-PRL), and GnRH neurons (GT1-1) [283, 284, 288, 341, 342].  
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aT3-1 cells were developed by driving SV40 T antigen expression with 1.8 kb of the CGA 

promoter.  CGA encodes a common alpha subunit of three heterodimeric pituitary hormones: 

FSH and LH, which are expressed in the gonadotropes, and TSH, which is expressed in 

thyrotropes.  The aT3-1 cells do not express any beta subunits, but they do express Cga and 

the GnRH receptor, indicating commitment to the gonadotrope fate.  These cells have been 

invaluable for studying GnRH mediated cell signaling and regulation of gene expression [343-

346].  A more differentiated gonadotrope-like cell line, the LbT2 cell line, was generated by 

driving SV40 T antigen expression from the rat LHb gene regulatory elements.  LbT2 cells 

express GnRH receptor, CGA, LH, and FSH.  They secrete LH in response to GnRH stimulation 

and respond appropriately to steroid hormone feedback [347].  These cells have been used 

widely to study regulation of gene expression in response to various stimuli [348-352].  The 

TaT1 cell line was generated from a tumor produced by driving SV40 T antigen expression with 

an expanded, human CGA regulatory region.  These thyrotrope-like cells respond to TRH and 

retinoids, and they secrete TSH in response to diurnal cues [285-287].  Several cell lines were 

generated using the Pou1f1 regulatory elements to drive T antigen.  While each of these cell 

lines express Pou1f1, they vary in hormone expression from none (GHF-T1 and Pit1-zero) to 

three hormones (Pit1-triple), including GH, TSH and PRL.  These cell lines were valuable for 

studying regulation of the human GH gene cluster, which was introduced as a transgene, and 

for studying interactions between POU1F1 and the CCAAT enhancer binding protein, CEBPa 

[353].  A GnRH neuronal-like cell line, GT1-7, was generated by driving SV40 T antigen from 

GnRH promoter elements, and these cells were used to study GnRH expression and 

responsiveness to external stimulation [354-356].  Despite these success stories, pituitary 

tumors often lead to dwarfism, infertility and sudden death, and it can be difficult to adapt tumors 

to culture. 
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Additional pituitary cell lines would be valuable for understanding the process of 

differentiation from progenitors to hormone producing cells.  Pituitary stem cells express the 

common pluripotency factor Sox2.  SOX2-positive cells are capable of giving rise to all 

hormone-producing cells within the pituitary [59-61].  The commitment to pituitary fate is 

associated with expression of the transcription factors PITX1, PITX2, LHX3, and LHX4 [59, 

357].  Prop1 is initially co-expressed with Sox2.  Prop1 is a pituitary-specific transcription factor 

necessary for the POU1F1 lineage, which comprises thyrotropes, somatotropes and lactotropes 

[130].  Lineage tracing suggests that all cells of the anterior and intermediate lobes of the 

pituitary gland pass through a Prop1-expressing progenitor [131].  Pituitary stem cells can be 

grown as organoids and stimulated to differentiate into all hormone-producing cell types [267, 

268, 358]. This process is inefficient, making it difficult to get enough material to analyze 

chromatin accessibility and epigenomic marks.  There are currently no Sox2-expressing pituitary 

progenitor cell lines.   

 To expand the repertoire of cell lines available for study, we generated a mouse line that 

conditionally expresses SV40 T antigen from the Rosa26 locus: Rosa26LSL-SV40-GFP.  Well-

characterized cre strains can be used to initiate cell-type specific oncogenesis, and the 

development of tumors can be followed because targeted oncogenesis is initiated with two 

different transgenes.  This approach also provides multiple opportunities to adapt tumors to 

culture.  As rare, novel pituitary cell populations have been discovered with the use of single-cell 

RNA-seq, we have created a reagent for the generation of limitless immortalized cell lines that 

permits characterization of these elusive populations.  
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Results 

 

Constructing mice with an inducible knock-in of SV40 at the Rosa26 locus   

 Our objective was to create a mouse line with inducible oncogene expression and a 

fluorescent marker for tracking induction and generating immortalized cell lines.  We chose to 

use the SV40 large and small T Antigens (SV40 TAg) as the oncogene, given their ability to 

immortalize cells with high penetrance and their track record of successful transformation [359].  

We selected the Rosa26 locus for targeting because it has nearly ubiquitous expression 

(including in the pituitary), is a non-essential gene, and has been optimized for targeting.  We 

used a targeting vector (pR26 GFP Dest) that had arms of homology with the first intron of the 

Rosa26 locus [360].  It contains a splice acceptor sequence, a floxed-stop sequence, an internal 

ribosome entry site (IRES), and a green fluorescent protein (GFP) coding region.  We used the 

gateway recombination method to add the large and small SV40 T antigen coding sequences to 

this vector (Fig. 11).  This vector was injected into fertilized eggs together with CRISPR-Cas9 

and the short guide RNA, sgRosa26-1, to produce transgenic mice.  Genomic DNA of potential 

founder mice was genotyped by PCR.  The knock-in was highly efficient, as 16 of 79 (20%) 

potential founders had the correct allele, verified by PCR amplification and DNA sequencing. 

Cre-recombination results in dwarfed mice 

 We selected two cre transgenic lines to cross with the new Rosa26LSL-SV40-GFP/+ strain.  

Prop1-cre genetically labels a few pituitary cells in Rathke's pouch at e11.5 and completely 

labels cells in the anterior and intermediate lobes by e12.5 [131].  Tshb-cre labels thyrotropes 

beginning at e14.5 [308].  Both Rosa26LSL-SV40-GFP/+; Prop1-cre (hereafter referred to as SV40; 

Prop1-cre) and Rosa26LSL-SV40-GFP/+; Tshb-cre (hereafter referred to as SV40; Tshb-cre) mice 

and their littermates were weighed at 2, 3, and 4 weeks (Fig. 12).  There were no significant  
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Figure 11: Development of Rosa26LSL-SV40-GFP mice.  

The endogenous Rosa26 allele is shown with the arms of homology in the targeting vector and the location targeted 
by the small guide RNA (sgRNA).  Rosa26LSL-SV40-GFP knock-in allele contains the Pgk-neo stop sequence flanked by 
loxP sites and the downstream SV40 coding region, internal ribosome entry site (IRES), and GFP coding region.  
Primers used to verify that the allele was properly integrated were R26F3 and SAR, as well as R26F2 and SAR.  
Genotyping was conducted with the primers SV40F with SV40R. After cre-mediated excision of the stop sequence, 
SV40 and GFP will be expressed from the Rosa26 regulatory sequences.  Dotted lines indicate splice donors and 
acceptors for Rosa26 and the gene trap splice acceptor region (SAR) and for the SV40 small T antigen.   
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Figure 12: Induction of SV40 TAg expression with Prop1-cre and Tshb-cre causes dwarfism and large 
pituitary tumors by four weeks.  

(A) Weights of SV40; Prop1-cre and SV40; Tshb-cre mice and littermates at 2, 3, and 4 weeks.  Males and females 
are indicated with the circle and square symbols, respectively.  (B) H&E staining revealed abnormal pituitary histology 
of 4 wk old SV40; Prop1-cre and SV40; Tshb-cre mice (N=3/genotype).  Top panel magnification is 50X and scale bar 
is 1000µm.  Bottom panel magnification is 100X and scale bar is 100µm. (C) Brightfield images of whole pituitaries 
from two wk old SV40; Prop1-cre and SV40; Tshb-cre mice (N=3).  SV40; Prop1-cre and control pituitary 
magnification is 32X with 1000µm and SV40; Tshb-cre and control pituitary magnification is 50X with a 1000µm scale 
bar.  
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weight differences among the genotypes at two weeks, but both male and female SV40; Prop1-

cre mice had immature faces with midfacial hypoplasia, typical of hypopituitarism, and head 

enlargement not observed with other genotypes.  By four weeks most of the SV40; Prop1-cre 

mice exhibited dwarfism and all of the SV40; Tshb-cre did.  The dwarf mice were ~30% smaller 

than their littermates (Fig. 12A).  Most of the SV40; Prop1-cre and SV40; Tshb-cre mice had 

enlarged heads at 4 weeks (data not shown).  Males and females were equally affected.   

Mice expressing SV40 T antigen in the pituitary gland have large tumors at 4 wks  

 Mice of both the SV40; Prop1-cre and SV40; Tshb-cre genotypes had large pituitary 

masses with abnormal blood accumulation and vascularization at four weeks of age (Fig. 12B).  

At two weeks the pituitaries of SV40; Prop1-cre mice were large (n=3) (Fig. 12C).  The SV40; 

Tshb-cre mice had consistently larger and more vascular pituitaries than their littermate controls 

at two weeks (N=3).   There was some variability in the degree of enlargement and 

vascularization of SV40; Tshb-cre pituitaries at this age, but they were all significantly enlarged 

relative to littermate controls.  No sex differences were noted. 

SV40; Prop1-cre mice have altered cell specification 

To determine the onset of hyperplasia, we examined SV40; Prop1-cre mice at birth.  

Newborn SV40; Prop1-cre mice had hyperplastic pituitaries (Fig. 13).  Both the intermediate 

and anterior lobes were enlarged and stained broadly for SV40 T antigen.  No SV40 staining 

was detectable in control littermates.  In control pituitaries, immunostaining for the proliferation 

marker, Ki67, was enriched in the cells in the marginal zone and in cells scattered throughout 

the anterior lobe.  In contrast, nearly every cell in the SV40; Prop1-cre pituitaries was positive 

for Ki67, consistent with the enlarged pituitaries.  PECAM immunostaining did not reveal 

significant changes in vascularization between the controls and the SV40; Prop1-cre mutants at 

this timepoint.  PROP1 immunostaining is detectable in the cytoplasm of cells scattered 

throughout the parenchyma of the anterior lobe of control newborn mice, but very little to no  
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Figure 13: SV40, Prop1-cre mice exhibit pituitary hyperplasia and altered cell specification at birth.  

Coronal sections of P1 pituitaries from normal littermates (A-I) and SV40; Prop1-cre mice (A’-I’) were stained with 
H&E and various antibodies (N=3/genoytype).  (A, A’) H&E staining at 50X magnification with a 100 µm scale bar.  
Immunostaining for SV40 (B, B’), Ki67 (C, C’), PROP1 (D, D’), POU1F1 (E, E’), GH (F, F’), TSH (G, G’) and NR5A1 
(SF1) (I, I’).  DAPI staining (blue) of cell nuclei.  B-I’ Magnification is 100X with 100µm scale bar.  Coronal sections of 
P10 pituitaries from normal littermates (J, J’) and SV40; Prop1-cre (K, K’, L, L’) stained with H&E, (N=3/genotype) 
magnification is 50X with 100µm scale bars (J-L) and magnification is 25X with 1000µm scale bars (J’-L’). 
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PROP1 immunostaining was visible in the SV40; Prop1-cre mice.  POU1F1 immunostaining 

was similar in control and SV40; Prop1-cre mice.  GH immunostaining was significantly reduced 

in the SV40; Prop1-cre mice relative to controls, and TSH immunostaining was nearly 

undetectable.  Normally, NR5A1 staining is enriched in the midline and ventral aspect of the 

pituitary gland, but NR5A1 immunostaining was markedly increased and laterally expanded in 

the SV40; Prop1-cre anterior pituitary gland.  Thus, hyperplasia occurred before birth and 

affected cell specification in the developing pituitary.  Hematoxylin and eosin staining revealed 

that the hyperplasia of the anterior and intermediate lobes became even more severe by P10. 

Onset of hyperplasia in SV40; Tshb-cre mice 

 We examined the pituitaries of SV40; Tshb-cre mice and their littermates at birth and 

P10 (Fig. 14).  The pituitaries of SV40; Tshb-cre mice appeared normal at birth.  The size of the 

organ and histology observed by hematoxylin and eosin staining were indistinguishable.  SV40 

immunostaining was present in the ventral parenchyma, as expected, because this is where 

most thyrotropes are found.  Immunostaining for POU1F1, GH, TSH, and NR5A1 was 

indistinguishable between genotypes.  At P10 SV40; Tshb-cre mice had consistently larger 

pituitaries with varying abnormalities associated with oncogenesis, including evidence for 

increased vascularization and large, acellular spaces.  Thus, hyperplasia and oncogenesis 

occurred between P1 and P10. 

FACS sorting of genetically marked cells 

 The IRES-GFP expression cassette in the Rosa26LSL-SV40-GFP/+ line makes it feasible to 

flow sort cells derived from cre-mediated excision of the stop sequence.  Wild type mice contain 

very few auto-fluorescent pituitary cells (Fig. 15A).  Mice with genetically labeled thyrotropes 

were generated by crossing Tshb-cre mice with the cre-reporter strain,  
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Figure 14:Tshb-cre mice have normal pituitary morphology and cell specification at birth and develop tumors 
by P10.  

Coronal sections of P1 pituitaries from normal littermates (A-F) and SV40; Tshb-cre mice (A’-F’) were stained with 
H&E and various antibodies (N=3/genoytype).  The magnification is 100X with 100µm scale bar.  H&E staining (A, A’) 
and immunostaining for SV40 (B, B’), POU1F1 (C, C’), NR5A1 (SF1) (D, D’), GH, (E, E’), and TSH (F, F’).  DAPI 
staining (blue) of cell nuclei B-F’.  Coronal sections of P10 pituitaries from normal littermates (G) and SV40; Tshb-cre 
(H, H’) stained with H&E, (N=3/genotype) magnification is 50X with 100µm scale bars.  
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Figure 15: GFP labelled cells from SV40; Tshb-cre and SV40, Prop1-cre mice have elevated Tshb and Prop1 
expression, respectively.  

(A) Representative fluorescent-activated cell-sorting of a two-week old wild type mouse, a two-week old 
Gt(ROSA)26Sortm1(EYFPCos); Tshb-cre mouse (RosaYFP; Tshb-cre), and a two-week old SV40; Tshb-cre mouse. (B) 
RNA from GFP-positive and GFP-negative cells sorted from two-week old SV40; Tshb-cre animals (N=2) was 
analyzed for expression of Tshb using qRT-PCR, using GAPDH as an internal control.  Average GAPDH CT values 
were 31 and 35 for GFP-positive and GFP-negative cells, respectively. (C) RNA prepared from cells dispersed from 
two-week old SV40; Prop1-cre mice, two-week old control mice, and GHF-T1 cells was analyzed for expression of 
Prop1 by qRT-PCR. 
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Gt(ROSA)26Sortm1(EYFP)Cos (Rosa26YFP).  Pituitaries of two-week old mice of both Rosa26YFP; 

Tshb-cre and SV40; Tshb-cre mice were dispersed and subjected to FACS to serve as a control 

for the normal number of genetically labeled thyrotropes.  Approximately 3.5% of the Rosa26YFP; 

Tshb-cre cells had high levels of fluorescence, similar to the expected value of ~5% [270].  The 

SV40; Tshb-cre pituitaries had a significantly higher number of fluorescent cells, ~ 40%.  Two 

different tumors of SV40; Tshb-cre mice were collected at two-weeks of age and subjected to 

FACS.  The GFP-positive and negative cell fractions were analyzed for expression of Tshb 

using qRT-PCR.  The GFP-positive cells from each tumor had detectable Tshb expression 

(average CT value of 34.5), and no Tshb expression was detected in the negative fraction (Fig. 

15B).  

 Nearly all of the cells from a two-week old SV40; Prop1-cre pituitary had strong green 

fluorescence (data not shown), consistent with the expectation that all hormone-producing cells 

in the pituitary gland are derived from Prop1-expressing cells [131].  Prop1 expression was 

detectable in the cells from SV40; Prop1-cre pituitaries (average CT value of 36.7), but not in 2-

week-old wild type pituitaries (Fig. 15C). 

Developing Immortalized Cell Lines 

 Single pituitary tumors were dissected from a four-week-old SV40; Prop1-cre and a 

SV40; Tshb-cre mouse and dispersed separately into single cells in cell culture media (Fig. 

16A).  These heterogeneous cell populations were panned separately for two weeks to reduce 

fibroblast contamination.  After two weeks, the cells from each tumor were collected and plated 

onto Matrigel.  Once the cells reached 50% confluence, the cells were collected and cloned via 

limited dilution into a 96-well plate.  The cells were left for two weeks in the plate, and 

transferred to 24-well, and 6-well plates respectively as the cells grew confluent.  Several clonal 

cell lines were derived from a tumor from a SV40; Prop1-cre mouse and a tumor from a SV40; 

Tshb-cre mouse.   
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Figure 16: Characterization of immortalized cell lines by gene expression profiling.  

(A) Protocol for generating clonal cell lines from SV40-induced tumors. (B) The level of expression of Cga, Pou1f1, 
Tshb, and Hprt was measured by qRT-PCR in RNA prepared from the in the PIT-T1 cell line after freezing, thawing, 
and passaging five times.  (C) The level of expression of Pou1f1, Prop1, Lhx3, Pitx1, Sox2, and Hprt was measured 
by qRT-PCR in RNA prepared from the PIT-P1 cell line cell line after freezing, thawing, and passaging five times. (D) 
Brightfield image of the PIT-P1 cell line. (E) Brightfield image of the PIT-P1 cell line.   
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 We tested the cell lines for expression of several key genes using qRT-PCR, using Hprt 

as an expression control.  The precursor cell line (PIT-P1) expressed detectable levels of Pitx1 

and Sox2 (average CT values of 29.9, and 30.0, respectively).  No expression of Pou1f1, Prop1, 

or Lhx3 was detected (Fig. 16B).  The thyrotrope-like cell line (PIT-T1) had detectable 

expression of Cga and Pou1f1 (average CT values of 35.5, and 34.0, respectively), but no 

expression of Tshb was detected (Fig. 16C).  The morphology of these two cell types is subtly 

different, with the PIT-P1 line having less pronounced projections (Fig. 16D) in comparison to 

the PIT-T1 line (Fig. 16E). 

 

Discussion 

 

We have developed a mouse line that conditionally expresses the powerful SV40 T 

antigen oncogene from the Rosa26 safe harbor locus.  We demonstrate the power of this novel 

mouse line by mating it to two distinct pituitary-specific cre strains.  Both Tshb-cre and Prop1-

cre induced reproducible, high-penetrance, cell-type specific induction of SV40 T antigen 

expression and tumor formation.  We successfully adapted tumors from each of these crosses 

to cell culture, and they retained expression of some markers specific to thyrotrope cells and 

pituitary progenitors.  This demonstrates the utility of this new line as a tool for immortalizing 

stable cell lines that represent discrete stages of development.  

We observed high penetrance and rapid onset of pituitary hyperplasia and tumors in the 

SV40; Prop1-cre and SV40; Tshb-cre mice.  Pituitary hyperplasia was evident in newborn SV40; 

Prop1-cre mice, and variable degrees of oncogenesis were evident at P10.  The majority of 

SV40; Prop1-cre mice had obvious pituitary tumors by four weeks of age (N=5/8).  The onset of 

hyperplasia was slightly later in SV40; Tshb-cre mice.  Pituitaries appeared normal at birth,  
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Figure 17:  PIT-P1 and PIT-T1 cells represent two new niches within the pituitary differentiation cascade.  

Representation of transcription factors regulating pituitary growth and differentiation and the stages represented by 
commonly used immortalized cell lines.  The PIT-P1 cell line represents a Sox2- and Pitx1-expressing pituitary 
precursor, whereas PIT-T1 cells represents a pre-thyrotrope expressing Pou1f1 and Cga. 
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hyperplasia was obvious at 2 weeks, and extensive oncogenesis was obvious in all of the mice 

at 4 weeks.  Founder mice containing fusions of the regulatory elements of Pou1f1, Cga, Lhb, or 

Gh and the coding region of SV40 were infertile or died before they could be bred [283, 284, 

288].  The surviving founders developed tumors at between 4 wk - 5 mo, and the penetrance 

varied from ~ 6-20%.  The binary transgene system we developed circumvents the problems of 

infertility and sudden death, and it makes it possible to study the path from hyperplasia to 

oncogenesis in progeny of the same strain.  We hypothesize that the high penetrance and rapid 

latency of oncogenesis we observed in the binary system is the result of two factors: small 

amounts of cre recombinase are sufficient for elimination of the floxed stop sequence, and the 

Rosa26 locus drives consistent and sufficient expression of SV40 to drive hyperplasia and 

oncogenesis.  This contrasts with random integration of SV40 transgenes into the genome, 

which is subject to position effects that commonly diminish expression. 

An added benefit of having inserted the SV40 T antigen into the Rosa26 locus is the 

ability to dissect the effects of SV40 expression under different induction conditions.  The SV40; 

Prop1-cre mice consistently had earlier hyperplasia and oncogenesis than the SV40; Tshb-cre 

mice.  The Prop1-cre allele induces cre-mediated expression by e12.5 in undifferentiated 

progenitor cells, while Tshb-cre does not become active until e14.5 in cells that have stopped 

proliferating and have committed to the thyrotrope lineage [131, 308].  The earlier onset of 

hyperplasia in Prop1-cre mice may be attributable to the activation of oncogene expression prior 

to cell cycle exit. 

SV40 expression prevents cells from leaving the cell cycle.  This was made clear by the 

continued, broad expression of Ki67 in the SV40; Prop1-cre mice, and the hypertrophy in the 

pituitaries of both of the mouse lines.  While it is generally believed that cells must exit the cell 

cycle to differentiate, SV40; Prop1-cre mouse pituitaries have significant expression of lineage-

specific transcription factors (including POU1F1 and NR5A1) and hormones.  This phenotype of 

persistent proliferation and differentiation is reminiscent of p27 and p57 double knockout mice.  
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Embryonic pituitaries from p27, p57 knockout mice reveal cycling cells positive for both POMC 

and TBX19 (TPIT), suggesting that cell cycle exit is not absolutely critical for differentiation 

[232].   

The SV40; Prop1-cre mice exhibited evidence of altered cell specification.  GH 

expression was reduced, TSH was lost, and NR5A1 expression was expanded.  There is 

evidence that GATA2 drives both gonadotrope and thyrotrope fate and that competition 

between POU1F1 and NR5A1 strikes the balance between the two fates.  Although the 

expression of Pou1f1 was not obviously reduced in newborn mice, we hypothesize that Pou1f1 

expression is reduced or delayed in SV40; Prop1-cre mice during gestation, leading to reduced 

differentiation into GH and TSH-expressing cells, and increased differentiation to the 

gonadotrope fate. 

 Existing immortalized pituitary cell lines represent distinct timepoints in development 

[283].  We were successful in developing stable, clonal cell lines from SV40; Prop1-cre mice 

and SV40; Tshb-cre mice that represent pituitary precursors (PIT-P1 cells), and pre-thyrotropes 

(PIT-T1 cells) respectively.  The PIT-P1 cells we report here are the first immortalized, SOX2-

positive pituitary precursor cell line.  The expression of PITX1 indicates commitment to the 

pituitary fate, and these cells will be useful for understanding the first steps in that process.  The 

PIT-T1 cells are a pre-thyrotrope-like cell line which is characterized by the expression of 

POU1F1, and CGA.  Although Tshb expression was not detected, reduction in SV40 expression 

might permit these progenitors to differentiate [361].  Nevertheless, they provide an excellent 

companion cell line for comparison with the more differentiated TαT1 cells, just as comparison 

of αT3-1 and LbT-2 cells have revealed important genetic changes as gonadotrope 

differentiation progresses.  It is possible that the binary system we developed could give rise to 

additional cell lines that represent different times in development if tumors were adapted to 

culture from younger mice.  In support of this idea, the Mellon and Liebhaber groups have 
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generated multiple cell lines with different features from the tumors of different transgene 

founders carrying the same transgene [283, 288]. 

 These mice represent a significant advance for two reasons: 1) they are a powerful tool 

for the rapid immortalization of cell lines, and 2) they allow for careful dissection of the effect of 

SV40 T antigen-mediated immortalization on proper differentiation and organ function during the 

process of oncogenesis.  The binary system is universally applicable because Rosa26LSL-SV40-

GFP/+ mice can be mated with any cre strain, including drug inducible cre strains.  A strain with 

universal potential was previously developed that expresses a heat-labile copy of SV40 

oncogene driven by the H-2Kb promoter, and tissues incubated at 33°C in the presence of IFN-g 

are immortalized at high frequency [362].  A binary system with heat-labile SV40 oncogene is an 

intriguing future direction.  Similarly, it is valuable to have a universal system in which the 

oncogene can be extinguished after immortalization has taken place.  Such a system was 

developed in which flp recombinase can extinguish SV40 T antigen expression [363].  In the 

meantime, these mice will help to characterize rare cell types being discovered at increasing 

frequency with single-cell technology.  Our ability to generate immortalized cell lines is now only 

limited by the availability of cre alleles.  

 

Methods 

 

Donor Plasmid Construction 

The donor plasmid was constructed using pR26 GFP Dest (gift from Ralf Kuehn, 

Addgene plasmid # 74283), and SV40 small and Large T in pENTR1A (w611-7, gift from Eric 

Campeau, Addgene plasmid # 22297).  The pR26 GFP Dest plasmid was recombined with the 

SV40 small and Large T plasmid with a Gateway LR clonase II reaction (ThermoFisher, 

11791100).  The resulting plasmid was amplified and purified with the Qiagen Maxi Prep 
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Plasmid (Qiagen, 12163) kit.  Endotoxins were removed from the plasmid using the Endotoxin 

removal Solution (Sigma, E4274-25ML). 

Mice and genotyping 

 All mice were housed in a 12-h light, -12 h dark cycle in ventilated cates with unlimited 

access to tap water and Purina 5020 chow.  All procedures were conducted in accordance with 

the principles and procedures outlined in the National Institutes of Health Guidelines on the 

Care and Use of Experimental Animals and approved by our Institutional Animal Care and Use 

Committee. 

 The Rosa26LSL-SV40-GFP/+ allele was generated by microinjecting enhanced specificity Cas9 

protein (50 ng/ul from Sigma), circular DNA donor plasmid (20 ng/ul, adapted from Addgene), 

chemically modified sgRosa26-1 (30 ng/ul from Synthego.com) into fertilized eggs obtained by 

mating (C57BL/6 X SJL)F1 or C57BL/6 female mice with (C57BL/6 X SJL)F1 male mice 

purchased from the Jackson Laboratory [360].  Pronuclear microinjection was performed as 

described [364]. 

Founders were confirmed to have the correct insertion by three separate PCR reactions.  

The first set was between the first Rosa26 intron and the splice acceptor of the knock-In allele 

(forward 5’-GCCTCCTGGCTTCTGAGGACCG-3’ and reverse 5’-

CCTGGACTACTGCGCCCTACAGA-3’).  The second set of primers was designed to detect the 

presence of the presence of SV40 T antigen (forward 5’-AAAGTGGCATTGCTTTGCTT-3’ and 

reverse 5’-AAATGAGCCTTGGGACTGTG-3’).  The third set of primers were designed to 

distinguish correct insertion into the Rosa26 locus from random insertion of the donor plasmid.  

The forward primer was specific for a segment of Rosa26 genomic DNA not included in the 

donor plasmid and the reverse primer was specific to the donor plasmid: (Forward 5’-

CTGCCCGAGCGGAAACGCCACTGAC-3’ and reverse 5’-CCTGGACTACTGCGCCCTACAGA-

3’).  16 out of 79 potential founders were positive for all three PCRs.  Subsequent genotyping of 
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mice for the Rosa26LSL-SV40-GFP/+ allele was done using the T antigen specific primer pair 

described above.   

 Tg(Prop1-cre)432Sac, referred to here as Prop1-cre, were generated at University of 

Michigan [131].  They were genotyped with the following primers: forward 5’-

GGTCTCCCTCCGTTTTTCTC-3’ and reverse 5’-CTGCACACAGACAGGAGCAT-3’. 

Tg(Tshb-cre)Sac, referred to here as Tshb-cre, were generated at University of Michigan 

[308]. They were genotyped with these primers: forward 5’-

GGACATGTTCAGGGATCGCCAGGCG-3’ and reverse 5’-

GCATAACCAGTGAAACAGCATTGCTG-3’. 

 Gt(ROSA)26Sortm1(EYFP)Cos, referred to here as Rosa26YFP, were generated at Columbia 

University, and were purchased from Jackson Laboratories, stock number 006148, and were 

genotyped according to Jackson laboratory recommended primers and conditions [336]. 

 The day of birth was designated postnatal day 1 (P1).   

Histology and Immunohistochemistry 

Heads from mice younger than two weeks of age were fixed in PFA (5ml formaldehyde 

in 35ml of PBS) overnight, followed by three washes in PBS.  They were put in 10% EDTA for 

three days, then dehydrated for a minimum of 4 hrs in each step of a gradient of ethanol 

solutions: 25%, 50%, and 75%.  Pituitaries from mice two weeks or older were fixed overnight in 

PFA, followed by three PBS washes.  They were put in 10% EDTA for 3 hours, then dehydrated 

for a minimum of 1 hr in each step of ethanol solutions described above.  Pituitaries and heads 

were embedded in paraffin with four-hour cycles in a Tissue Tek VIP paraffin tissue processing 

machine.  Sections at 6 um thickness from each at least three different controls and 

experimental mice and analyzed by hematoxylin and eosin (H&E) and immunohistochemical 

markers as previously described[337].  Immunostaining for pituitary hormone markers was 

performed using anti-TSH and anti-GH (1:1000, National Hormone and Peptide Program, UCLA 

Medical Center, Torrance, CA, USA).  Immunostaining for proteins was performed using rabbit 
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anti-POU1F1 (kindly provided by Dr. Simon Rhodes, University of North Florida, Jacksonville) 

rabbit anti- Ki67 (1:250, Novocastra, Newcastle, United Kingdom), rabbit anti-NR5A1 (1:100, 

kindly provided by Dr. Gary Hammer, University of Michigan), guinea pig anti- PROP1 (1:100, 

kindly provided by Aimee Ryan, Montreal, Quebec), mouse-anti-SV40 (1:1000, kindly provided 

by Michael J. Imperiale, University of Michigan), and rabbit anti-PECAM (1:100, Thermo 

Scientific).  The following secondary antibodies were used: biotinylated anti-rabbit IgG (1:100, 

Jackson Immunoresearch) for anti-POU1F1, anti-PECAM, anti-Ki67, anti-NR5A1; anti-human 

biotin (1:200, ab97223, Abcam) for anti-GH, and biotinylated anti-guinea pig IgG (Jackson 

Immumoreaserach) for anti-TSH and anti-PROP1.  For anti-SV40 the M.O.M.® (Mouse on 

Mouse) Immunodetection Kit, Basic (Vecetor Laboratories, Burlingame, CBMK-2202) was used.  

Antibodies were detected using either the tyramide signal amplification (TSA) (33002 

CFF488A Streptavidin HRP, Biotium, Fremont, CA), streptavidin-conjugated Alexa-fluor 488 

(1:200, S11223, Invitrogen), streptavidin-conjugated Cy3 (Thermo Fisher 434315).  Cell nuclei 

were stained with DAPI (1:200) for 5 min.  Slides were mounted with permount mounting 

medium containing DABCO.  Images were captured with a Leica DMRB fluorescent microscope 

and a Leica MZ10F dissecting scope.  

Cell dispersion and FACS 

Pituitaries were removed from mice two weeks or older and placed in PBS.  They were 

transferred to an enzyme mix consisting of collagenase, DNAse, Fungizone, and trypsin in 

HBSS.  The pituitaries were incubated at 37°C for two hours, followed by trituration with a 

siliconized P1000 tip.  The pituitaries were incubated at 37°C for two additional hours, followed 

by trituration with a siliconized P200 tip.  The dispersed cells were collected by a 5 minute, 600 

RCF centrifugation, and resuspended in 500µL of PBS and 2µL DAPI.  The cells were sorted on 

a Synergy cell sorter with a 488nm laser.  Samples were either taken immediately for RNA or 

placed in 200uL RNA Later (Invitrogen AM 7020). 

RNA Extraction, cDNA Conversion and qPCR 
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RNA was extracted from flow-sorted cells using the RNAqueous Micro Kit (Invitrogen 

AM1931), and cDNA was made from the RNA using SuperScript First Strand (Invitrogen, 

11904-018).  Levels of Prop1 and Tshb transcripts were quantified using the TaqMan Universal 

PCR Master Mix (Applied Biosystems 4304437), and TaqMan probes Mm00839471_m1 and 

Mm03990915_g1 for Prop1 and Tshb, respectively (ThermoFisher).  The qPCR reaction 

conditions were two initial hold stages of 50°C for 2 minutes and 95°C for 10 minutes followed 

by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.  Final expression values were 

calculated by subtracting the threshold expression value (CT) from 40. 

RNA was extracted from cell lines using the Qiagen RNeasy Micro Kit (74004).  qPCR 

was performed as described above for Cga (probe Mm00438189_m1), Pou1f1 (probe 

Mm00476852_m1), Tshb (probe Mm03990915_g1), Prop1 (probe Mm00839471_m1), Lhx3, 

(probe Mm01333633_m1), Pitx1 (probe Mm00440824_m1), Sox2 (probe Mm03053810_s1), 

Hprt (probe Mm03024075_m1), and Gapdh (Thermo Fisher 4308313).  

Tissue culture 

GHF-T1 cells were provided by Pamela Mellon, University of California San Diego [5].  

Tumorous pituitaries were dispersed by mincing, and placing in a mix of HBSS (Gibco, 

14175-095) with 10mg/ml collagenase (Gibco, 17104-019) at 37°C for 30 minutes.  Cells were 

collected by centrifugation at 600G for 5 minutes, followed by resuspension in cell culture 

media.  All subsequent cell culture was done in DMEM (Gibco, 11995-065) with 10% Fetal 

Bovine Serum (Corning 35016CV), 1% Penicillin Streptomycin (Sigma-Aldrich P4333), 10µg/mL 

hEGF (Gibco, PHG0314), and 1X ITS (Corning MT25800CR).  

Panning was done by collecting the media (without trypsin) every two days, collecting 

the cells by centrifugation, resuspending in fresh media, and plating on a new, non-Matrigel-

coated plate.  After two weeks of panning, the cells were plated on Matrigel until 50-80% 
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confluence was achieved.  A sample of the heterogenous population of cells was collected for 

RNA analysis.  Clonal cell lines were developed via limited dilution.  

We passaged clonal cell lines when they achieved ~80% confluence by washing the cells, 

trypsinization (Invitrogen 25300054) for three minutes at 37°C, collection with media, 

centrifugation, resuspension, and plating on Matrigel-covered plates at approximately a 1:10 

dilution. 
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Chapter 4: Conclusion 
 

This work represents advances in both our understanding of pituitary organ formation 

and in tools that will be useful in the field for years to come.  While this work answers questions 

related to the factors and elements that are responsible for proper thyrotrope function, and how 

the pituitary responds to oncogenic insult, it raises many more questions.  Here I will discuss 

open questions that are the result of this work and possible next steps that will help to answer 

them. 

 

Pituitary transcriptome and chromatin analysis 

 

In the second chapter I discussed the analysis of the transcriptome and epigenome of two 

cell lines that represent pituitary precursor cells committed to the POU1F1 lineage and 

thyrotropes that express POU1F1 and both subunits of TSH, as well as other thyrotrope 

signature genes.  I performed analyses of gene expression and chromatin states using RNA-

seq, ATAC-seq, and CUT&RUN for the major lineage-determining transcription factor POU1F1 

and three histone marks (H3K27Ac, H3K4Me1, and H3K27Me3).  This study revealed 

transcription factors that are uniquely expressed in progenitors or thyrotropes as well as putative 

regulatory elements surrounding these genes that may be responsible for their expression. 

I identified nearly one-hundred thousand putative active enhancers across the two cell  
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Figure 18: State of each tested element:  

The chromatin state for each tested regulatory element discussed in Chapter 2. Elements with activity in TaT1 cells 
highlighted in red. 
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types, as defined by the presence of both H3K27Ac and H3K4Me1.  We tested twenty of the 

elements, in context with the gene’s promoter proximal region, for activity in TaT1 cells.  All 

twenty elements had predominantly active chromatin marks (they were state seven or lower, 

Chapter 2, Supplemental Figure 3).  Of the twenty elements, seven were predominantly active 

enhancers (more than 50% of the DNA sequence was state 2 and 3).  Only two of the seven 

predicted enhancer elements had activity in TaT1 cells.  Of the twenty elements tested in vitro, 

only seven elements (35%) had activity within TaT1 cells, and the fraction of the element that 

was labeled as an enhancer in ChromHMM was largely unpredictive of in vitro activity (Fig. 18).  

The elements were selected based on ATAC-seq signal, and no ATAC-seq-negative elements 

were tested.  It is therefore possible that seven active elements out of twenty-five represents an 

enrichment in activity over randomly selected regions in the genome.  While likely difficult to 

perform with the TaT1 cells used here due to their limited transfection efficiency, methods such 

as STARR-seq, a massively parallel enhancer testing assay, would give greater insight into 

which chromatin states are predictive of in vitro activity in TaT1 cells [365].   

Linking the putative enhancers to their respective genes would be highly valuable.  

Presuming the enhancer is acting upon the nearest gene is often wrong [366-369].  For this 

reason, circular chromatin confirmation capture (4C) would be valuable to link enhancers to their 

respective genes, thus helping us find the network of enhancers responsible for proper 

expression in thyrotropes. 

An intriguing avenue of study would be to identify and test other regulatory elements beyond 

those presented in chapter 2.  One such gene to study is ISL1, which is important for developing 

thyrotropes and gonadotropes.  The region surrounding ISL1 is laden with active chromatin 

marks [281, 282].  Extending the view across the locus reveals many more putative regulatory 

elements whose activity in the pituitary should be checked (Fig. 19).  Previous work has 

uncovered an enhancer 500 kb away from Isl1 that is derived from an ancient SINE element  
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Figure 19: Extended region surrounding key genes:  

Extending the view around thyrotrope-signature genes in TaT1 and GHF-T1 cells to show other, more distal 
regulatory elements that may play a role in regulating these genes. The gene loci are highlighted in black, and the 
putative regulatory elements are highlighted in yellow.  
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Figure 20: Pitx2 regulatory element with active chromatin marks in TaT1 and YFP expression in diencephalic 
neurons:  

Yellow bar highlights an ATAC-seq peak found in both TaT1 and GHF-T1 cells that has activity in the diencephalic 
neurons of zebrafish. 
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that drove reporter expression in ISL1-positive cell types including the head, spinal cord, the 

dorsal apical ectodermal ridge, the genital eminence, and in the trigeminal ganglion in mice 

[370].  No ISL1 element has yet been shown to drive expression in the pituitary.  Expanded 

tracks of other genes such as Tshb, Pitx1, and Pitx2 reveal other potential regulatory elements 

not tested here.  The Pitx1 and Pitx2 genes are evolutionarily related but not linked in the 

genome.  Both genes neighbor a gene desert filled with putative regulatory elements and 

POU1F1 binding sites, suggesting regulatory activity.  A heroic effort by Elena Semina’s lab 

tested thirteen highly conserved elements within Pitx2 and the neighboring gene desert [371].  

They performed reporter assays in zebrafish, and showed that these elements drove expression 

in brain, eye, and the craniofacial region.  Of the elements tested, only one was in a region 

marked by active chromatin marks in TaT1 cells (Fig. 20).  This element (Conserved Element 

12) was stated to have activity in the midbrain and diencephalic neurons.  This element seems 

like a strong candidate for further analysis in thyrotropes.  An important value of the epigenomic 

mapping is that it provides a genome-wide catalog of putative regulatory elements for future 

study. 

Some regulatory elements are required for expression in vivo but may not readily be 

identified by transfection.  Sometimes this is because the cell line used for analysis does not 

accurately reflect the differentiation state of the cells that express the gene in vivo, i.e. lacks the 

critical transcription factors that active gene expression via that enhancer element.  Likewise, 

the elements that are sufficient to drive expression in cell lines are often insufficient in vivo.  We 

tested a 1.4 kb element ~ 7 kb upstream of Tshb in the context of 0.4 kb of the promoter 

proximal region, for expression in transgenic mice.  A construct with Element 4 and promoter 

proximal sequences was sufficient to drive expression in pituitary thyrotropes in transgenic 

mice, while previous studies with ~ 6 kb of Tshb 5’ flanking DNA were not sufficient.  Very little 

expression of the Element 4, Tshb promoter construct was detected in TSH-negative cells. The 

penetrance of transgene expression in TSH immunoreactive cells was not high, however.  
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There is a large area of open chromatin between the Tshb promoter and Element 4.  It would be 

useful to generate transgenic mice with this entire 7 kb region to determine whether this 

increased the penetrance of expression.  All previous studies have focused on this promoter 

proximal region, demonstrating in vitro regulation of Tshb by GATA2, POU1F1, PITX1, PITX2, 

NCOR, NR1D1, and THR [285].  While this promoter proximal region is insufficient to drive 

expression in thyrotropes in vivo, it likely contains transcription factor binding sites that interact 

with other elements.   

GATA2 is an important regulator factor for both thyrotropes and gonadotropes.  Very little is 

known about the regulation of Gata2 expression in the pituitary gland, other than the fact that it 

is not dependent on Isl1.  We tested the sufficiency of the most distal GATA2 regulatory element 

(Chapter 2, Figure 6, GATA2 Element 3), and the expanded 2.8 kb GATA2 promoter to drive 

expression in thyrotropes.  We developed two constructs, one containing Element 3, in the 

forward orientation, cloned in front of the 2.8 kb GATA2 promoter and the YFP reporter.  The 

second construct was simply the 2.8 kb GATA2 promoter and the YFP reporter.  Both 

constructs were injected into fertilized eggs to generate transgenic mice.  This injection resulted 

in twenty-five founder mice for each of these constructs.  YFP was not detected in any pituitary 

section of any of the mice we examined.  We found this surprising, given the very strong activity 

of both the promoter proximal element and the distal element in TaT1 cells.  However, GATA2 

plays a critical role in the development of many organ systems, and transcriptional regulatory 

elements necessary for expression in other organ systems have been identified that are 

considerably distant from the gene.  Thus, regulation of expression in the pituitary may be 

complex. 

Identifying sets of motifs within regulatory elements may help clarify thyrotrope-specific 

enhancers, a method successfully used in other tissues [372].  Thus, finding the set of shared 

motifs across the seven elements we found to have enhancer activity in vitro in the thyrotropes 

may help bring insight into which of the 65,562 enhancers in TaT1 cells we should pursue first.  
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Including evolutionary conservation and ATAC-seq footprinting will help narrow the list even 

further [373].  While costlier and more time-intensive, performing CUT&RUN experiments for 

factors such as GATA2, PITX1, PITX2, NCOR, and NR1D1 would provide higher confidence in 

the set of enhancers implicated by the suggested motif analyses. 

We found that TaT1-specific POU1F1 binding sites that are associated with repressed 

chromatin in GHF-T1 cells and active chromatin in TaT1 cells have many HTH and bHLH 

motifs.  It is tempting to speculate that POU1F1 interacts with bHLH factors to drive a thyrotrope 

fate.  Consistent with this hypothesis, NEUROD4 and ASCL1 are two of the most highly 

upregulated genes in TaT1 cells.  However, inhibitory bHLH factors are highly expressed in both 

GHF-T1 and TaT1 cells.  It is difficult to bring together the findings that bHLH motifs are heavily 

enriched at these new POU1F1 binding sites that are associated with open chromatin, TaT1 

cells express ASCL1 and NEUROD4 very highly, and that the repressive ID genes are likely to 

be suppressing bHLH activity in TaT1 cells.  It is possible that astrocyte development may give 

insight into these seemingly paradoxical datasets [325].  ID and HES factors maintain cortical 

progenitors (consistent with high ID expression seen in the precursor GHF-T1 cells) and are 

also required for the differentiation of astrocytes.  The motif found at these sites does not 

preclude HES from being the bHLH element that binds these sites.  Otherwise, it is possible that 

ID factors drop in expression briefly allowing for activating bHLH factors to act upon the 

chromatin landscape before being repressed by reactivation of ID expression, though this 

seems less likely.  Exactly which set of bHLH factors is responsible for these motifs is unclear.  

However, it is unlikely to be restricted to NEUROD1, NEUROD4, and ASCL1 given the limited 

effect of their knockout on thyrotrope number in triple knockout mice [291].   

An approach to identifying the binding partners for POU1F1 in GHF-T1 and TaT1 cells 

would be to immunoprecipitate POU1F1 and identify proteins by mass spectrometry.  It is likely 

that this will reveal a short list of high confidence bHLH factors that are important for pituitary 
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function.  Alternatively, we can find more transient POU1F1 partners by leveraging the BioID 

method, thus promiscuously biotinylating POU1F1 interactors, allowing for efficient pull-down 

and mass spectrometry [374].  These experiments may also reveal RFX binding partners of 

POU1F1.  Similar to bHLH, HTH motifs were present in the set of TaT1-specific POU1F1 

binding sites that are active in TaT1 cells.  The best match for the motifs were RFX factors, 

many of which are upregulated in TaT1 cells, and have proven function in other endocrine cell 

types, namely the pancreas [318, 375].  Likewise, the bZIP factors could be identified as a 

POU1F1 binding partner in GHF-T1 cells. Remarkably, bZIP factor expression is also highly 

enriched in GHF-T1 cells, with CREB5, FOSL2, and MAFF being the three most highly 

expressed of the bZIP factors. 

In chapter 3 I present the development of an additional thyrotrope-like cell line, PIT-T1.  This 

cell line could be leveraged in the future to understand the transition from GHF-T1 cells, which 

express Pou1f1 but not thyrotropin, and TaT1 cells, which express Pou1f1, Tshb and Cga.  The 

PIT-T1 cells express Pou1f1 and Cga, but not Tshb.  The list of candidate factors for driving 

thyrotrope fate would be narrowed significantly by performing similar transcriptomic and 

epigenomic assays on these and other available pituitary cell lines, including the gonadotrope-

like aT3-1 and LbT2 line.  Doing so would help us eliminate a set of candidates that are not 

specific to the thyrotrope fate.  Having narrowed the list, I would experimentally test the 

remaining factors by knocking in a GFP reporter into the Tshb locus in both of the GHF-T1 and 

PIT-T1 cell lines.  I would then transfect pools of expression vectors containing transcription 

factors expressed in the TaT1 cells, and sort for GFP expression using FACS.  GFP expression 

would reveal that some combination of the transfected transcription factors can drive expression 

of Tshb.  By gradually reducing the pool of factors, this would ultimately reveal the set of factors 

sufficient for Tshb expression.  This work is of great clinical importance, as nearly 12% of the 

population has abnormal levels of circulating Tshb [277]. 
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Due to the limited number of thyrotropes in adult mice, this work was done entirely on 

immortalized cell lines.  Since the start of this work, new library preparation methodologies have 

come about that may allow characterizing the epigenome and transcriptome of individual 

thyrotropes directly.  We used genetic labeling and FACS to enrich for thyrotropes and analyzed 

the transcriptome using single-cell sequencing (unpublished).  This revealed the presence of 

POU1F1 negative thyrotropes, with the gene expression signatures of Tshb expressing cells in 

the pars tuberalis (pituitary stalk), and two distinct populations of POU1F1 positive thyrotropes.  

The latter two types represent the expected TSH expressing cells characteristic of the anterior 

pituitary (pars distalis) and an unexpected cell type with characteristics of gonadotropes and 

thyrotropes.  This may represent an intermediate in differentiation of cell types that express 

evolutionarily related genes.  It is interesting to note that while NR5A1 (the major gonadotrope 

transcription factor) is not expressed in TaT1 (and lowly expressed in GHF-T1) cells, it is 

marked in TaT1 (but not GHF-T1) cells with broad stretches of active chromatin marks in these 

cells, suggesting that its transcription may be possible.  Recent methods now also exist for 

uncovering DNA accessibility and histone marks at a single-cell level [376, 377].  Performing 

such transcriptomic and epigenomic experiments on purified thyrotropes is a likely fruitful, and 

certainly compelling future direction. 

 

Generation and utilization of novel pituitary cell lines 

 

The GHF-T1 and TaT1 cell lines are invaluable for uncovering regulatory elements and the 

factors that bind to them.  Such cell lines are all the more indispensable given the diminutive 

number of thyrotropes and pituitary precursor cells.  In order to understand other pituitary (or 

other rare) cell types, it is important to immortalize more such cell types to allow for these more 

sophisticated genomic, or other proteomic techniques.  For this reason, we developed a mouse 
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that conditionally expresses the SV40 small and large T-Antigens from the Rosa26 locus.  This 

allows for the induction and constitutive expression of a powerful oncogene with cell-type 

specificity.  We have performed proof of concept experiments showing that two different 

pituitary-specific cre transgenes can drive highly penetrant, aggressive tumorigenesis.  

Furthermore, we have shown that we can successfully generate clonal, stable cell lines from 

these tumors, thus greatly increasing our ability to generate high-quality mouse cell lines 

quickly. 

A major question to be answered with these SV40; pituitary-cre mice is exactly when the 

tumorigenesis starts and how SV40 expression interferes with differentiation.  It is clear that by 

P1 the Rosa26LSL-SV40-GFP/+; Prop1-cre mice (hereafter referred to as SV40; Prop1-cre) have 

hyperplasia whereas Rosa26LSL-SV40-GFP/+;  Tshb-cre mice (hereafter referred to as SV40; Tshb-

cre) appear phenotypically normal.  By P10, SV40; Tshb-cre mice have clearly become 

hyperplastic and initiated tumorigenesis.  Collecting pituitaries at additional times would be 

valuable to determine when SV40 expression begins, when Ki67 expression starts increasing, 

and when hormone expression begins to be affected in SV40; Prop1-cre mice.  Specifically, we 

hypothesize that Prop1-cre induced expression of SV40 delays activation of POU1F1 

expression, leading to an increase in gonadotrope cell specification at the expense of 

somatotrope and thyrotrope differentiation.  If this is the case, then analysis of e14.5-e16.5 

embryos would reveal reduced Pou1f1 expression and elevated expression of Nr5a1 in mutants 

relative to normal mice (as the two are antagonistic) [164].  It would be interesting to determine 

whether expression of Gata2 or other candidate thyrotrope factors is altered in conjunction with 

the reduction in thyrotrope differentiation in this model.  Similarly, collection of pituitaries 

between P10 and P21 from SV40; Tshb-cre mice might reveal an effect on thyrotrope 

differentiation and give insight into SV40-mediated pathogenesis.  Finally, most of the analysis 

completed to date has relied on immunohistochemical staining, which is informative for spatial 

and temporal expression patterns but not particularly quantitative.  Augmenting this data with 
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qRT-PCR for pituitary transcription factors and markers would provide valuable corroboration of 

quantitative changes in gene expression. 

In these two different mouse lines, the expression of key genes is greatly affected. By P1, 

Prop1 expression is much lower in the SV40; Prop1-cre mice than in wild-type mice. In the 

aforementioned time series, it would be interesting to assess how the expression of Prop1 is 

affected by SV40 over time.  Another interesting change in expression we witnessed with these 

mice is the increase in Nr5a1 expression that seems too great to simply be explained by modest 

Pou1f1 expression decrease.  An important next step would be to characterize the expression of 

the other key transcription factors (namely Tbx19, and Gata2) to determine whether these cells 

are stalling at a precursor stage.  It is possible that expression of the SV40 is resulting in a delay 

in PROP1 expression, and therefore a delay in POU1F1 expression, thus allowing NR5A1 to 

“escape” POU1F1 antagonism, and maintain abnormally high expression through P1.  

Alternatively, if these pituitaries are stuck in a semi-differentiated state, it is possible that the 

increase in NR5A1 expression is explained by over-proliferation of these NR5A1 cells in relation 

to the other cell types.  A time-series and more immunostaining would help determine which of 

these may be happening. 

In addition to further characterizing the mice, it would be valuable to further characterize the 

cell lines. One such characterization would be to determine their stability.  We have shown that 

expression of several key genes persists through five passages following a freeze-thaw cycle 

and five additional passages, but it is critical to continue monitoring after additional passages to 

ensuring their continued stability.  It would also be valuable to check expression of more genes.  

Furthermore, SV40 has a well-known effect on the ploidy of transformed cell lines. Thus, SNP 

typing or low-depth whole-genome sequencing would establish the current ploidy of these cell 

lines.  Continued verification of ploidy would be another valuable measure of the stability of 

these cell lines, and it would be key for achieving reproducibility and rigor. 

I would like to perform a similar analysis on both the precursor (PIT-P1) and pre-thyrotrope 
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(PIT-T1) cell line that I performed on the GHF-T1 and TaT1 cells.  Performing RNA-seq on 

these cell lines would help clarify exactly where in the pituitary lineage these cells lie.  

Performing ATAC-seq and CUT&RUN experiments for key factors (namely SOX2, PITX1, and 

an expressed copy of PROP1 in the PIT-P1 line and POU1F1 in the PIT-T1 line) and histone 

marks would uncover the regulatory elements important in the developing pituitary gland.  

Regulatory elements in the progenitor pituitary cells have never been interrogated in a genome-

wide manner and doing so would give great insight into the differentiation and development 

process.  

Similar to the Yamanaka-like experiments described above, it would be valuable to use both 

of these cell lines to find transcription factors important for pituitary differentiation.  Specifically, 

one could knock a GFP cassette into any of the key transcription factor genes (Prop1, Pou1f1, 

Gata2, Nr5a1, and Tbx19) to find which factors are responsible for differentiation of the 

precursor cell line (PIT-P1) to a specific fate.  The same approach could be taken to find which 

transcription factors are responsible for sustained, high expression of Tshb in PIT-T1 cells.  In 

addition to finding how genes impact Tshb expression, one could find signaling molecules 

required for its expression.  One such signaling molecule is thyroid hormone, as some cell lines 

respond to levels of thyroid hormone in culture conditions, whereas others do not.  Using 

charcoal-stripped serum devoid of thyroid hormone can increase expression of Tshb in these 

sensitive cell lines.  Finding the exact cocktail required for Tshb expression in the PIT-T1 cells 

may be helpful in explaining secondary hypothyroidism. 

While these two cell lines will certainly answer many outstanding questions, this tool has the 

capacity to generate a multitude of other cell lines, important to many fields.  It would be 

valuable to expand the set of cre-lineages crossed with these SV40 mice.  Prop1-cre and Tshb-

cre have proven to be highly informative and successful, thus we believe that using other cre’s 

developed for studying pituitary function would be equally informative and successful in 

developing interesting cell lineages.  One such cre would be the Hesx1-cre.  This mouse 
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construct replaces the coding regions of Hesx1 with cre, which results in expression of the cre 

as early as e7.5, in the developing neural plate and forebrain, in addition to Rathke’s pouch 

[378].  Hesx1-cre expression is gone by e11.5, but it has effectively marked every cell in the 

developing Rathke’s pouch.  Thus, this cre would likely result in an even more severe 

phenotype than what we saw in the SV40; Prop1-cre mice.  It is likely to result in broad pan-

brain tumorigenesis, embryonic lethality, and perhaps derivation of cell lines that represent an 

even earlier timepoint, predating even Pitx1 expression. 

This inducible SV40 expression transgenic animal is a tool is limited only by the number of 

cre mouse lines that are available.  With the increasing number of rare cell types discovered 

with the advent of single-cell sequencing technology, this tool will be invaluable for the cloning 

and expansion of these rare cell types, important for assays requiring millions of cells.  Not only 

will this be valuable for novel cre’s not yet tried, this line is likely to generate new cell lines from 

the cre’s with which it’s already been crossed.  Deriving lines from tumors that are collected 

earlier and later will certainly result in the immortalization of different precursor and thyrotrope 

populations. 

While useful, this tool can still be improved.  A possible modification would be using a 

temperature-sensitive SV40 allele.  Previous work has shown that knockdown of SV40 

expression in immortalized lines has resulted in differentiation of cells [361].  While this is 

possible with our tool using CRISPR or siRNA technology, the process would be made easier if 

the oncogene were heat labile, allowing one to simply knock down SV40 function by changing 

the temperature. 

I have been fortunate to work on highly diverse projects in my PhD, from tool development 

to basic science advancement, to mutation discovery in patients.  With the development of this 

new rapid cell-line generation tool, future work in the pituitary gland requiring millions of cells is 

now possible.  I trust that this work will be important for understanding the diverse networks of 

regulatory elements in the different cell types in the pituitary, now possible using the cell lines 
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generated from the tool we have developed, and the chromatin and transcriptome analysis 

outline we have established. 
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