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Abstract

Kinetic equations have played a significant role in optics since the introduction of the
radiative transport equation (RTE) by Schuster in the early 20th century. Now they are
applied in many scientific fields such as atmospheric physics and biomedical imaging to
understand how light interacts with a complex medium. In this thesis we investigate how
these equations arise in

1. models of classical optics in an inhomogeneous disordered scattering medium
2. in fully quantum real space models with a random distribution of atoms
In certain spatial and temporal regimes it has been empirically observed that light

interacting with a highly disordered scattering medium may be described by a radiative
transport equation with a constant scattering coefficient. One way to derive such equations
frommicroscopic principles is to model the medium as a random field which is statistically
homogeneous. We show that in a quasi-homogeneous media, where statistical correlations
vary rapidly on small length scales and slowly on large length scales, light obeys a radiative
transport equation with variable scattering coefficient.

In the second part of this thesis we introduce a new model in quantum optics which
allows us to treat a quantized electromagnetic field coupled to a medium of two level
atoms, both in real space. The rest of the chapter focuses on the interaction of atoms with
a field consisting of at most one photon. First we recover a classical result due to Wigner
and Weisskopf on the rate of single atom spontaneous emission. Next we show that in a
statistically homogeneous distribution of two level atoms the field and atomic amplitude
satisfy linear kinetic equations. Finally we show that at sufficiently long times and large
distances these amplitudes are asymptotically governed by diffusion equations which may
be solved analytically.

In the final chapter we use the previous model to analyze a system in which there can
be at most two photons. This allows us to study the time evolution of states that initially
contain two entangled photons, a phenomenon which has no classical analogue. We show
that the various probability amplitudes satisfy linear two particle kinetic equations which
again may be asymptotically evaluated at large distances and long times.

ix



Chapter 1

Introduction

1.1 Outline

This thesis is organized as follows. The remainder of this contains a brief background of
some relevant material in classical optics and scattering theoring, including discussions of
Maxwell’s equations, the radiative transport equation (RTE), and the diffusion approxima-
tion (DA) to the RTE. This is followed by an introduction to quantum mechanics and the
quantization of the free electromagnetic field in quantum field theory. Lastly, we discuss
two key phenomena which may be described through the formalism of quantum optics:
spontaneous and stimulated emission.

The second chapter discusses a generalization of the derivation of the RTE from the
Helmholtz equation in random media. While generally the medium is assumed to be
statistically homogeneous and isotropic, in which case the correlation function depends
only on the distance between the two points, we consider quasihomogeneous media in
which the correlation function is the product of two terms. One term varies rapidly and
depends on the distance between the two points, while the other varies slowly and depends
on their center of mass coordinate. We show that in such a medium one may derive a RTE
with a spatially varying scattering coefficient.

In the third chapter we introduce a general model for studying the interaction of a
quantized scalar field with a collection of stationary two level atoms. We use this to study
the dynamics associated to a one excitation state, where an excitation is either an excited
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atom or a photon present in the field. First we recover a classical result due to Wigner and
Weisskopf on the rate of spontaneous emission from a single atom. Next, we introduce a
stochastic model of the distribution of two level atoms in real space. We show that in a high
frequency limit the probability densities associated to these orthogonal states are linear
combinations of solutions to transport equations. Within a suitable diffusion approximation
we extract algebraic pointwise decay estimates for both the atomic and photonic probability
densities.

In the fourth chapter we focus primarily on the dynamics of a general two excitation
state. This state is the superposition of three possible physical cases: two photons in the
field, two excited atoms, or one excited atom along with a field containing one photon. We
start by calculating the rate of stimulated emission from a single atom in the presence of one
photon. Then we introduce the same stochastic model of matter which was discussed in the
third chapter. In order to study the affect of entangled photons on such an interaction, we
assume the two photon state is initially nonfactorizable and that there are no excited atoms.
We use an asymptotic approach to show that in a high frequency limit the probability
densities associated to these three cases are integrated linear combinations of solutions to
two particle kinetic equations. Once again we are able to show that at large times and
distances far away from the origin these probability densities decay algebraically.

The final chapter is a brief discussion of several possible directions for future research.
Most of these directions focus on ways to generalize or incorporate new physics into the
model described in chapter 3 or the corresponding systems of equations governing the
dynamics of the one and two excitation states.

1.2 Maxwell’s Equations

In classical optics the electric and magnetic fields E(x, C) and B(x, C) are vector fields
whose dynamics are determined by a system of four coupled partial differential equations
due to James Maxwell. In SI units, in a nonmagnetic inhomogeneous medium without any
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external sources these equations are given

∇ × E + mB
mC

= 0 , (1.1a)

∇ · (nE) = 0 , (1.1b)

∇ × B − `0n0n
mE
mC

= 0 , (1.1c)

∇ · B = 0 , (1.1d)

where `0, n0 and n are the permeability of free space, permittivity of free space and dielectric
function respectively [43]. The speed of light in vacuum 2 is defined as 2 = 1/√`0n0.
These equations, along with the Lorentz force law

F = @E + @v × B , (1.2)

give a complete description of the electromagnetic field in classical optics. In the case
of monochromatic light at a frequency l, as long as the dielectric function varies slowly
on the scale of the wavenumber of the light, :0 = l/2, one can show that the field E(x)
satisfies a vector Helmholtz equation of the form

∇2E + :2
0nE = 0 , (1.3)

We note that the dielectric function n determines the speed of this wave and the case n ≡ 1
corresponds to a homogeneous medium in which the speed is that of light in a vacuum.
Although the components of the field E(x) are not independent, one frequently works with
a scalar model of the electric field* (x) which satisfies a scalar Helmholtz equation of the
form

Δ* + :2
0n* = 0 . (1.4)
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1.3 Scattering

Scattering occurs when the dielectric function n (x) in Eq. (1.4) is nonconstant. Generally it
has the form n (x) = 1+[(x) where [ is a compactly supported function which corresponds
to the presence of one or several scatterers. This has the affect of changing the speed of
the wave in these regions in space and altering the behavior of an incident wave, even
very far from the scatterers. A fundamental result in scattering theory is known as the
Lippmann-Schwinger equation, which gives the field * (x) at a point x in terms of its
values inside the region in which the scatterers are present [16]. If we suppose that [(x) is
supported in a volume + , then we may decompose the field * = *8 +*B where *8 is the
incident field and*B is the scattered field which satisfy

Δ*8 + :2
0*8 = 0 , (1.5a)

Δ*B + :2
0*B = −:

2
0[(x)* (x) . (1.5b)

Solving these equations allows us to rewrite* (x) as

* (x) = *8 (x) + :2
0

∫
+

�0(x, x′)[(x′)* (x′)33A′ , (1.6)

where �0 is the Green’s function associated to Eq. (1.4) with [ = 0 and is explicitly given
by the formula

�0(x, x′) =
48:0 |x−x′ |

4c |x − x′| . (1.7)

Eq. (1.6) is the Lippmann-Schwinger equation and may be iterated to give an infinite series
expansion of* (x) in terms of the incident field*8 (x)

* (x) = *8 (x) + :2
0

∫
+

�0(x, x′)[(x′)*8 (x′)33G′ (1.8)

+ :4
0

∫
+

�0(x, x′)[(x′)�0(x′, x′′)[(x′′)*8 (x′′)33G′33G′′ + · · · . (1.9)
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This expansion is known as the Dyson series and when truncated to first order is referred
to as the Born approximation. If we have a collection of # point scatterers at locations
x1, · · · x# then the function [(x) is of the form

[(x) = U0

#∑
9=1
X(x − x 9 ) , (1.10)

with U0 the polarizability of the scatterer which has units of volume. This leads to a system
of algebraic equations for the value of the total field at the points x:

*8 (x 9 ) =
#∑
:=1

� 9 :* (x: ) , (1.11)

where

� 9 : = X 9 : − U0:
2
0�0(x 9 , x: ) . (1.12)

These algebraic equations due to Foldy and Lax [30] are quite useful for a small number
of scatterers, but are computationally costly to solve as # gets large.

1.4 Radiative Transport

Themicroscopic description of light given byMaxwell’s equation is theoretically satisfying
and valid on scales close to the wavelength of the light. However, it can be difficult to obtain
useful solutions in scattering mediums where the dielectric function n (x) is complicated.
Because of this, it is reasonable to search for another description of the propagation of light
waves through a scattering medium that is valid on scales larger than that of the wavelength.
This scale, referred to as the mesoscale, is related to the fundamental quantity known as
the scattering length ℓB which is the mean distance between interactions with the scatterers.

As early as 1887 physicists including von Lommel and Khvolsen wrote down integro-
differential equations phenomenolically for the flow of light energy through matter on this
scale [62]. These equations were influenced by the work of Bolztmann on the kinetic
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theory of gases and are linear analogues of the Boltzmann equation. Later work due to
Schuster and Planck [62] led to the radiative transport equation (RTE) in it’s modern form

k · ∇� (x, k̂) + (`B + `0)� (x, k̂) = `B
∫

32 :̂′�(k̂, k̂′)� (x, k̂′) , (1.13)

where � (x, k̂) is the specific intensity of light, a spatially and angularly resolved measure-
ment of the light at a point x flowing in direction k̂. The constants `B and `0 are scattering
and absorption coefficients and the function �(k̂, k̂′) is a phase function or scattering
kernel. This equation was first derived as a conservation law for the total amount of light
gained and lost through absorption and scattering at each point and direction in space.
However, it is quite natural to try and derive it from microscopic principles such as the
scalar wave equation in an attempt to connect the physical laws that describe the behavior
of light on different scales. While in general this connection is still not fully understood,
in certain cases it is possible to derive RTEs from electromagnetic theory.

1.5 Random Media

One way to arrive at at an RTE from a scalar wave equation is to model the inhomogeneous
medium of scatterers as a random field with specified correlations. To this end we suppose
the dielectric function n (x) is has the form

n (x) = 1 + [(x) , (1.14)

and that [(x) is a mean zero Gaussian random field satisfying

〈[(x)〉 = 0 , (1.15a)

〈[(x)[(x′)〉 = � (x − x′) . (1.15b)

The function � (x) is the correlation function and 〈· · · 〉 denotes statistical averaging over
realizations of the medium. Additionally, it is required that the medium is statistically
homogeneous and isotropic which corresponds to imposing the restriction that the corre-
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lation function depends only on the distance between the two points x and x′. The goal
of introducing random media is to obtain an equation satisfied by the specific intensity
� (x, k̂), which may be defined in terms of average values of the correlations of the field
* (x), where the phase function �(k̂, k̂′) and the scattering coefficient `B are determined by
the correlation function � (x). One must ask, do these solutions which involves averaging
over many realizations of the medium provide useful information about a single realization
of the medium? This question can be addressed in two ways: 1) If the fluctuations in
the correlations between various realizations of the medium are small, then the averages
give accurate answers. 2) If the randomness present is ergodic, then we may equate a
time average with a spatial average to see that the results obtained are useful in a single
realization after a sufficient amount of time.

1.6 Derivation of RTE

There are two main techniques that are used to derive an RTE from the scalar wave
equation with a random dielectric function: diagrammatic perturbation theory and multi-
scale asymptotic analysis. While the two methods are quite distinct, they both require a
quasiprobability distribution introduced by Eugene Wigner in 1932 known as the Wigner
transform [93]. The Wigner transform, (x, k) associated to a function* (x) is defined

, (x, k) =
∫

33:

(2c)3
48k·x

′
* (x − x′/2)*∗(x + x′/2) , (1.16)

where the ∗ denotes complex conjugation. The Wigner transform is a phase space repre-
sentation of the correlations which is resolved in space and momentum. While the Wigner
transform itself is not a measurable quantity, one can recover several important measurable
quantities from its moments. The zeroth and first order moments are the intensity of the
field and the energy current density respectively.

The diagrammatic approach, pioneered by physicists [11, 91, 31, 57], involves ob-
taining an expression for the field correlations through an expansion similar to the Born
series given in Eq. (1.8). This infinite series solution can be expressed graphically as a
collection of diagrams and the process of averaging over realization of the medium has a
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specific combinatorial interpretation. Additionally, the diagrams can be categorized and
the expression factored which allows for only the diagrams whose contribution are the
largest to be retained. This selection of the most important diagrams, known as the ladder
approximation, has been placed on rigorous footing cite. From this simplified expression
for the correlations, one can show that the Wigner transform is localized in the magnitude
of the variable k and that it satisfies an RTE.

The other approach, involving asymptotic analysis, is due to applied mathematicians
[48, 32]. In this case the goal is to study the behavior of the Wigner transform in a high
frequency limit. To this end, a dimensionless parameter n is introduced and the strength
of the correlations are appropriately rescaled to order n . Moreover, one separates the slow
and fast spatial scales x and x/n and treats them as independent variables. By expanding
the Wigner transform in powers of n , one obtains a hierarchy of equations which may be
solved given a specific closure hypothesis. Once again one finds that the Wigner transform
is localized in the magnitude of k and that it satisfies an RTE.

The relationship between the two methods is not completely understood. In particular
it is of interest to understand the analogue of the key assumption in each derivation [19].
What is the analogue of the ladder approximation in the asymptotic approach? And what
is the analogue of the closure hypothesis in the diagrammatic approach?

1.7 Diffusion

Again, except in a small number of situations, exact solutions to the RTE can be quite
difficult to obtain. At distances much greater than the scattering length, ℓB and times
much greater than ℓB/2, the solution to the RTE can be approximated by the solution to
a diffusion equation [16]. This approximation also breaks down if the system is weakly
scattering or strongly absorbing. The idea is to split the intensity � into two pieces � = �B+�3
where �B corresponds to ballistic and singularly scattered terms and �3 corresponds to all
higher orders of scattering. The term �B may be solved for exactly and the term �3 can be
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approximated as

�3 (x) =
2

4c
(D(x) + ℓCk · ∇D(x)) (1.17)

where ℓC is the fundamental length scale associated with diffusion and D satisfies the
diffusion equation

−�ΔD + 2`0D = 0 . (1.18)

The diffusion constant � and ℓC are determined by the scattering and absorption coefficients
`B and `0 as well as the phase function �(k̂, k̂′).

1.8 Quantum Mechanics

In quantum mechanics, particles no longer have trajectories in phase space and instead
states are given by vectors in a fixed Hilbert space, H . The measurable quantities, such
as position and momentum, which are functions in classical mechanics are replaced by
self adjoint operators on H and the spectra of these operators correspond to the possible
outcomes of measurements [75]. For any system of particles there is an associated self
adjoint operator, �, called the Hamiltonian which represents the sum of potential and
kenetic energies of the system. The dynamics associated to any initial state k0 ∈ H is
completely determined by the Schrödinger equation

8ℏmCk = �k , (1.19a)

k |C=0 = k0 , (1.19b)

where ℏ is the reduced Planck’s constant. A case of particular interest is the one dimensional
single particle harmonic oscillator where the potential is a quadratic function of position.

� =
?2

2<
+ 1

2
<l2G2 . (1.20)
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Here ? is the momentum operator, G is the position operator, < is the mass of the particle
and l which is the frequency of the oscillation. The position and momentum operators
satisfy the canonical commutation relations

[G, ?] = 8ℏ . (1.21)

In order to factor the Hamiltonian, we introduce the ladder operators 0† and 0 through the
change of variables

0† =

√
<l

2ℏ
(G + 8

<l
?) , (1.22a)

0 =

√
<l

2ℏ
(G − 8

<l
?) . (1.22b)

One can show that the Hamiltonian has a discrete spectrum consisting of positive eigven-
values increasing to infinity �0 < �1 < �2 < · · · [75]. The operator 0† raises a state with
energy �= to a state of energy �=+1 while the operator 0 lowers a state with energy �= to a
state with energy �=−1. Hence, these operators act as a way to move up and down the rungs
of the ladder of eigenvalues associated to the Hamiltonian. Moreover, one can rewrite the
Hamiltonian using these ladder operators as

� = ℏl

(
0†0 + 1

2

)
. (1.23)

The extra ℏl/2 appears due to the fact that 0 and 0† do not commute but instead have a
commutator equal to 1. Physically this additional term corresponds to a positive background
energy present in the system and is known as the zero point energy.

1.9 Quantum Optics

Quantum optics is the study of the interaction of light and matter on the quantum scale.
Often this means considering a quantum system of particles and coupling them to an
electromagnetic field via an interaction term in the Hamiltonian. This formulation, in
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which thematter is treated quantummechanically and the electromagnetic field is a classical
field satisfying Maxwell’s equations is known as semiclassical optics. While semiclassical
optics is an extremely fruitful area of research and application, in a fully quantum optical
model, the electromagnetic radiation must also be treated quantum mechanically. This
means that the electric and magnetic fields should be elevated to fields of operators [35].
Since we work with a scalar transport equation we will describe the process of quantizing
the scalar field* (x) which satisfies a scalar wave equation

Δ* − 1
22
m2*

mC2
= 0 . (1.24)

To do this we first assume we are working in a finite box of side length ! with no
sources present. The side length of the box ! will be taken to infinity before recovering
any physical result, but for the meantime we impose periodic boundary conditions on the
field. The solution can be expressed as a solution of plane waves of the form

* (x, C) =
∑

k

[
*k(C)48k·x +*k(C)∗4−8k·x

]
, (1.25)

where the sum is over a discrete set of wave vectors k due to the periodic boundary
conditions. The coefficients*k(C) satisfy

:2*k +
1
22
m2*k

mC2
= 0 , (1.26)

whence this expansions is given by

* (x, C) =
∑

k

[
*k4

8k·x−8l: C +*k(C)∗4−(8k·x−8l: C)
]
, (1.27)

with l: = 2 |k|. The Hamiltonian associated to the wave equation is given by

� =
1
2

∫
33G

(
1
22 (mC*)

2 + (mG*)2
)
, (1.28)
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and can be expressed in terms of the modes*k as

� = +
∑

k
l2
:*k*

∗
k , (1.29)

where + = !3 is the volume of the box. This is strikingly similar to the harmonic
oscillator Hamiltonian in Eq. (1.23) and shows that the system is equivalent to a collection
of uncoupled harmonic oscillators. This suggests rewriting the Hamiltonian in terms of the
canonical position and momentum variables, elevating their status to operators and then
rewriting the Hamtilonian in terms of the associated ladder operators 0†k and 0k. This leads
to the expression

�� =
∑

k
ℏl:

(
0
†
k0k +

1
2

)
. (1.30)

Wemay interpret 0†k as a creation operator which has the effect of introducing an additional
photon into the systemwithwave vectork, and 0k as an annihilation operatorwhich destroys
a photon of wave vector k if there was already one present in the system. The presence
of the additional ℏl/2 in each term is more troubling as the sum over all modes diverges.
While we may resolve this issue by neglecting the vacuum energy for large frequencies,
it is an extremely important term in the Hamiltonian and leads to interesting quantum
phenomena such as spontaneous emission, the Lamb shift and the Casimir effect [35].

1.10 Quantized Field Coupled to a Two Level Atom

Many of the most studied phenomena in quantum optics involve the transition of an atom
between various energy levels. In the absence of an an electromagnetic field, eigenstates of
theHamiltonian are by definitionfixed points of the dynamics introduced by the Schrödinger
equation. Once the particle is coupled to an electromagnetic field, these states are no longer
eigenstates for the new Hamiltonian and can transition to higher or lower energy levels. A
simple, yet effective model for studying these transitions considers a two level stationary
atom. The atom can be found either in its ground state |6〉 where the energy has been
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shifted to 0, or its excited energy state |4〉 with an energy ℏΩ [35]. There are raising and
lowering operators f† and f which when applied to one of the states outputs the other.
That is

f† |6〉 = |4〉 (1.31a)

f |4〉 = |6〉 . (1.31b)

Since the atom has only one excited state above the ground state, these operators satisfy
fermionic anticommutation relations

{f, f†} = 1 , (1.32)

and the Hamiltonian associated to just the atom is given by

�� = ℏΩf
†f . (1.33)

The field E then interacts with the atom through the dipole moment D and leads to an
interaction Hamiltonian, �� , which is bilinear in the creation/annihilation operators of the
field and raising/lowering operators associated to the atom. Specifically we have

�� =
∑
k,B
ℏ(f + f†) (6k0k + 6∗k0

†
k) , (1.34)

where 6k is the coupling of the atom to the electric field mode of wavevector k and
polarization B. It is common to employ the rotating wave approximation (RWA) in which
we neglect the quickly oscillating terms which do not conserve the number of excitations
in the system, namely f†0†k and f0k. It is straightforward to generalize this to a system of
# two level atoms located at the points x1, · · · , x# . There are now a collection of # pairs
of raising and lowering operators f9 and f†9 , 9 = 1, · · · , # , which satisfy anticommutation
relations of the form

{f9 , f†: } = X 9 : , (1.35)

13



and the atomic and interaction Hamiltonians become

�� =
∑
9

ℏΩ 9f
†
9
f9 , (1.36a)

�� =
∑
9 ,k,B

ℏ(6∗k4
−8k·x 9f90

†
k + 6k4

8k·x 9f
†
9
0k) . (1.36b)

In order to solve for the dynamics of the system with given initial conditions, one expresses
the general state of the system in a basis of simple tensors of the atomic and field states
with time dependent coefficients.. These simple tensors are the eigenvectors of the sum
�� +�� . By plugging these states into the Schrödinger equation and projecting back onto
the basis vectors, one arrives at a system of coupled ordinary differential equations for the
coefficients. However the number of these equations grows exponentially in the number of
atoms present in the system and hence are costly to solve. This is analogous to the situation
of the Foldy-Lax equations which arise in classical optics with # point scatterers.

1.11 Spontaneous Emission

As previously discussed, a single excited two level atom which is not coupled to an
electromagnetic field will not decay to the ground state; however, in the presence of such
a field the atom will transition to a lower energy state by emitting a photon, even if
electromagnetic field has no photons present. This phenomenon is known as spontaneous
emission. In 1916 Einstein derived a heuristic value for the rate of spontaneous emission in
a cavity of two level atoms [26]. In 1930, physicists Eugene Wigner and Victor Weisskopf
showed that in the case of a single two level atom initially in its excited state, the probability
of finding this atom in the excited state at later times decays exponentially on short time
scales [92]. This result, known as Wigner Weisskopf theory, has corrections at longer time
scales which have also been investigated [64]. Here we will reproduce a calculation of
Wigner Weisskopf spontaneous emission for the scalar model described in the previous
section.
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Recall that the Hamiltonian � = �� + �� + �� is given by

�� = ℏΩf
†f , (1.37a)

�� =
∑

k
ℏl:0

†
k0k , (1.37b)

�� = ℏ6
∑

k

(
0
†
kf + f

†0k

)
, (1.37c)

where we have neglected the polarization of the photons and also made the Markovian
approximation in which each mode of the field couples to the atom with the same strength
6k = 6. The general state of the system can be expressed in basis of simple tensors as

|Ψ(C)〉 = 2(C) |4, 0〉 +
∑

k
2k(C) |6, 1k〉 . (1.38)

By substituting Eq. (1.38) into the Schrödinger equation

8ℏmC |Ψ(C)〉 = � |Ψ(C)〉 , (1.39)

along with the definition of the Hamiltonian � given in Eq. (1.37) and projecting onto the
state |4, 0〉 and |6, 1k〉 respectively, we arrive at a system of coupled ordinary differential
equations

8mC2 = Ω2 + 6
∑

k
2k , (1.40a)

8mC2k = l:2k + 62 , (1.40b)

along with the initial conditions

2(0) = 1, 2k(0) = 0 for all k , (1.40c)

which correspond to the atom initially in its excited state and no photons present in the
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electromagnetic field. Using the Laplace transform defined by

5 (I) =
∫ ∞

0
4−IC 5 (C)3C , (1.41)

we can solve for 2(I) as

2(I) = 1
I + 8Ω + 8Σ(I) , (1.42)

where the self-energy Σ(I) is defined

Σ(I) = 62
∑

k

1
l: − 8I + 8n

. (1.43)

The term 8n is a small regularization parameterwhichwill be sent to 0 during the calculation.
In order to compute the inverse Laplace transform, and arrive at a result for the amplitude
2(C) we make an approximation due to Wigner and Weisskopf in which we replace Σ(I)
by it’s value of greatest contribution, Σ(−8Ω). This approximation is sometimes referred
to as the quasiparticle pole (QPP) approximation. Upon making this approximation and
inverting the Laplace transform we find that

2(C) = 4−8(Ω+XΩ)C4−ΓC/2 , (1.44)

where XΩ and −Γ/2 are the real and imaginary parts of Σ(−8Ω) respectively. XΩ is
commonly referred to as the Lamb shift and Γ is the decay rate of the atom. The decay rate
can be computed directly

Γ =
+62Ω2

c23 , (1.45)

and the probability of finding the atom in its excited state is

|2(C) |2 = 4−ΓC , (1.46)

which is seen to decay exponentially.
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1.12 Stimulated Emission

A related phenomenon is that of stimulated emission. This is the process by which the
presence of a photon in an electromagnetic field coupled to an atom may interact with the
atom causing it to drop to a lower energy level. We may also use the scalar model from
the previous section to calculate the rate of stimulated emission for a single two level atom
located at the origin. For this we assume that initially there is exactly one photon present
in the field with frequency k0 and the atom is in its excited state, which corresponds to the
initial condition

|k(0)〉 = |1, 1k0〉 . (1.47)

The general two excitation state of the system is given by

|Ψ(C)〉 =
∑

k
�k(C) |4, 1k〉 +

∑
k,k′

�k,k′ (C) |6, 1k1k′〉 , (1.48)

and our initial condition on the state |Ψ〉 imposes initial conditions on the �k’s and �k,k’s
of the form

�k(0) = Xk,k0 , (1.49a)

�k,k′ (0) = 0 , for all k, k′ . (1.49b)

Inserting the general state into the Schrödinger equation and projecting onto the vectors
|4, 1k〉 and |6, 1k1k′〉 we arrive at the following system of coupled ordinary differential
equations

8mC�k = (l0 + l: )� + 26
∑
k′
�k,k′ , (1.50a)

8mC�k,k′ = (l: + l: ′)�k,k′ +
6

2
(�k + 6�k′) . (1.50b)

By applying the Laplace transform given in Eq. (1.41), we may eliminate the coefficient
�k,k′ (I) and arrive at an algebraic equation for �k(I). We apply an approximation anal-
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ogous to the quasi-particle pole approximation of Wigner and Weisskopf and invert the
Laplace transform to arrive at equations for the coefficients �k(C)

�k(C) =
624−8(l0−Xl)C−ΓC/2

(l:0 − l0) (l:0 − l: )
[
4−8l: C − 4−8l:0 C

]
, k ≠ k0 , (1.51a)

�k0 (C) = 4−8(l0+l:0−Xl)C−ΓC/2
[
1 + 862C

l:0 − l0

]
, (1.51b)

where Γ and Xl are given by the same formulas as in the previous section. This shows that
the coefficients |�k |2 still decay at a rate of Γ in time.
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Chapter 2

Radiative Transport in
Quasi-homogeneous Random Media

2.1 Introduction

The theory of light scattering is a subject of fundamental interest and considerable applied
importance. In the multiple-scattering regime, radiative transport theory is widely used
to describe the propagation of light on macroscopic scales [20, 40, 18, 58, 7, 61, 6].
Nevertheless, the microscopic origins of the theory remain a topic of current research.
Indeed, two conceptually different approaches to the derivation of the radiative transport
equation (RTE) have been advanced. Both are based on the theory of wave propagation in
randommedia, in one case proceeding by diagrammatic perturbation theory [11, 91, 31, 57],
while in the other by multiscale asymptotic analysis [48, 32]. A comparative exposition of
the two approaches has been presented in [19].

The fundamental physical quantity of radiative transport theory is the specific intensity
� (r, ŝ), which is defined as the intensity of light at the position r in the direction ŝ. The
specific intensity obeys the RTE

ŝ · ∇� + `4 � = `B
∫

3ŝ′�(ŝ, ŝ′)� (r, ŝ′) , (2.1)

which is a conservation law that accounts for gains and losses of electromagnetic energy.
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Here `4 and `B are the extinction and scattering coefficients of the medium, and `4 = `B in
the absence of absorption. It is important to note that if the random medium is statistically
homogeneous and isotropic, then `4 and `B are constant [19].

Up to now, the derivation of the RTE has been restricted to statistically homogeneous
media. Indeed, the foundations of radiative transport theory for inhomogeneous media,
where `4 and `B are generally position-dependent, are not firmly established [58]. Since
inhomogeneous media are of great interest in applications, particularly to biomedical
imaging [8], the problem of justifying radiative transport theory in this setting is of some
importance.

Quasi-homogeneous media are a broad class of random media with correlations that
are rapidly varying on small length scales and slowly varying on large scales [78, 17]. They
have been extensively studied in the weak-scattering regime, especially in connection with
coherence theory and inverse problems [28, 29, 87, 95, 22]. In comparison to homogeneous
media, the aforementioned separation of scales compensates for the loss of translational
invariance on average.

In this paper, we investigate the theory of radiative transport in quasi-homogeneous
media. By making use of diagrammatic perturbation theory, we derive the radiative
transport equation that governs the propagation of light in such media. This result pro-
vides sufficient conditions under which it is justified to apply radiative transport theory to
spatially-inhomogeneous media.

The remainder of the paper is organized as follows. In Section 2, we introduce the
theory of scalar waves in quasi-homogeneous random media. The computation of the
average field using diagrammatic perturbation theory is presented in Section 3, which is
followed by a discussion of field correlations in Section 4. The RTE is then derived in
Section 5. Our conclusions are formulated in Section 6.
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2.2 Quasi-homogenous Media

We consider the propagation of a monochromatic scalar wave in a random medium. The
field* obeys the wave equation

∇2* (r) + :2
0 (1 + 4c[(r))* (r) = −4c((r) , (2.2)

where :0 is the wave number in vacuum and ( is the source. For simplicity, the effects
of polarization are not considered and the susceptibility [ is taken to be purely real, so
that the medium is nonabsorbing. We also assume that [ is a Gaussian random field with
correlations

〈[(r)〉 = 0 , (2.3)

〈[(r)[(r′)〉 = � (r, r′) , (2.4)

where � is the two-point correlation function and 〈· · · 〉 denotes statistical averaging. If
� depends only upon the quantity |r − r′|, the medium is said to be statistically homoge-
neous and isotropic. In this situation, the specific intensity obeys the RTE with constant
coefficients and a phase function that is invariant under rotations [19].

In a quasi-homogeneous random medium, the correlation function is taken to be of the
form

� (r, r′) = � 5 ( |r − r′|)�B ((r + r′)/2) , (2.5)

where �B varies more slowly than � 5 . Such a model describes a medium that is homo-
geneous and isotropic on small length scales, but also varies over large scales. Possible
examples include biological tissue and the atmosphere. A case of particular interest has
correlations of the form

� 5 (r) = �04
−A2/;2

5 , �B (r) = 4−A
2/;2B , (2.6)

where �0 is constant and the correlation lengths ;B, ; 5 obey the condition ;B � ; 5 . We also
require that :0; 5 � 1, so that the average field varies slowly on the scale of the wavelength,
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meaning that spatial dispersion can be neglected. Models with non-Gaussian correlations
can also be considered.

In an infinite medium, the solution to the wave equation (2.2) obeying the outgoing
radiation condition is of the form

* (r) =
∫

33A′� (r, r′)((r′) . (2.7)

Here the Green’s function � obeys the integral equation [14]

� (r, r′) = �0(r, r′) + :2
0

∫
33A′′�0(r, r′′)[(r′′)� (r′′, r′) , (2.8)

where the unperturbed Green’s function �0 is given by

�0(r, r′) =
48:0 |r−r′ |

|r − r′| . (2.9)

For later reference, we note that �0 can be written as the Fourier integral

�0(r, r′) = 4c
∫

33:

(2c)3
48k·(r−r′)

:2 − :2
0 − 8n

, (2.10)

where the limit n → 0+ is implied, consistent with the outgoing radiation condition that
�0 obeys.

2.3 Average Field

It follows immediately from Eq. (2.7) that the average field is determined by the aver-
age Green’s function, provided that the source ( is deterministic. Following standard
procedures [19], the average Green’s function can be seen to obey the Dyson equation

〈� (r, r′)〉 = �0(r, r′) +
∫

33A13
3A2�0(r, r1)Σ(r1, r2)〈� (r2, r′)〉 , (2.11)
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Σ =

Figure 2.1: The lowest order self-energy diagram.

where Σ is the self-energy. There is a convenient diagrammatic expansion for Σ. To lowest
order in perturbation theory, which is known as the weak-scattering approximation, Σ is
given by

Σ(r1, r2) = :4
0�0(r1, r2)� (r1, r2) . (2.12)

The corresponding diagram is shown in Fig. 2.1. A straight line with a left pointing arrow
corresponds to a factor of the Green’s function �0 and a line connecting two vertices
corresponds to a factor of :4

0�.
For a statistically homogeneous medium, Eq. (2.11) can be solved by Fourier trans-

formation due to the translational invariance of 〈�〉 and Σ [19]. We will see that quasi-
homogeneous media can also be analyzed, but the loss of translational invariance must
be properly handled. To proceed, we transform to relative and center of mass coordinates
according to

R =
r + r′

2
, R′ = r − r′ . (2.13)

Eq. (2.11) thus becomes

�(R,R′) = �0(R′) +
∫

33A13
3A2�0(R + R′/2 − r1)Σ(r1, r2)

×�((r2 + R − R′/2)/2, r2 − R + R′/2) , (2.14)

where

�(R,R′)= 〈� (R + R′/2,R − R′/2)〉 , �0(r − r′) = �0(r, r′) . (2.15)
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It will prove useful to introduce the Fourier transform of� with respect to R′:

�̃(R, k) =
∫

33'′48k·R
′
�(R,R′) , (2.16)

which allows the treatment of the large-scale variations of the medium in real space, and
the high-frequency variations in Fourier space. After straightforward calculation, we find
that

�̃(R, k) = �̃0(k) + �B (R)�̃0(k)Σ0(k)�̃(R, k) , (2.17)

where

�̃0(k) =
4c

:2 − :2
0 − 8n

, (2.18)

Σ0(k) = :4
0

∫
33:′

(2c)3
�̃ 5 (k − k′)
:′2 − :2

0 − 8n
, (2.19)

and we have used Eqs. (2.10) and (2.12). We have also made use of the approximations

�B (R + R′) ≈ �B (R) , �̃(R + R′, k) ≈ �̃(R, k) , (2.20)

consistent with the slow variation of�B. It follows immediately from Eqs. (2.17) and (2.18)
that

�̃(R, k) = 4c
:2 − :2

0 − 4c�B (R)Σ0(k) − 8n
. (2.21)

Next, we separate Σ0 into its real and imaginary parts by making use of the identities

1
:2 − :2

0 − 8n
= %

1
:2 − :2

0
+ 8cX(:2 − :2

0) , (2.22)

X(:2 − :2
0) =

1
2:0
(X(: − :0) + X(: + :0)) , (2.23)
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where % denotes the principal value. We thus obtain

ReΣ0(k) = :4
0%

∫
33:′

(2c)3
�̃ 5 (k − k′)
:′2 − :2

0
, (2.24)

ImΣ0(k) = :5
0

∫
3ŝ′

4c
�̃ 5 (k − :0ŝ′) , (2.25)

where we have used the fact that � 5 is real-valued. Now, ReΣ0 can be neglected by
introducing a high-frequency cutoff in Eq. (2.24). Physically, such a cutoff corresponds
to introducing a minimum scale for the spatial variations of � 5 (the size of the smallest
scatterer). Let us define the scattering length ℓB (on-shell) as

1
ℓB
= :4

0

∫
3ŝ′�̃ 5 (:0 |ŝ − ŝ′|) , (2.26)

which is constant due to the statistical isotropy of the medium. We now find that in the
weak-scattering limit :0ℓB � �B, Eq. (2.21) becomes

�̃(R, k) = 4c
:2 − ^2(R) − 8n

, (2.27)

where
^(R) = :0

(
1 + 8�B (R)

2:0ℓB

)
. (2.28)

Performing an inverse Fourier transform to obtain�(R,R′) and inverting the transforma-
tion to relative and center of mass coordinates, we see that the average Green’s function is
given by

〈� (r, r′)〉 = 4
8:0 |r−r′ |

|r − r′| exp [−�B ((r + r′)/2) |r − r′|/2;B] . (2.29)

We conclude that the average field decays exponentially on the scale of the scattering
length, modulated by the slowly-varying function �B.

25



Γ =

Figure 2.2: The lowest order irreducible-vertex diagram.

2.4 Field Correlations

We now turn to the problem of calculating the second-order correlation function of the
field. We begin by observing that

〈* (r)*∗(r′)〉 =
∫

33A13
3A2〈� (r, r1)�∗(r′, r2)〉((r1)(∗(r2) , (2.30)

which follows from Eq. (2.7) and the assumption that ( is deterministic. The correlation
function 〈��∗〉 can be shown to obey the Bethe-Salpeter equation [19]

〈� (r1, r2)�∗(r′1, r
′
2)〉 = 〈� (r1, r2)〉〈�∗(r′1, r

′
2)〉

+
∫

33A33A′〈� (r1, r)〉〈�∗(r′1, r
′)〉Γ(r, r′)

× 〈� (r, r2)�∗(r′, r′2)〉 , (2.31)

where Γ is the irreducible vertex. Here we have made the weak-scattering approximation
in which Γ is of the form

Γ(r, r′) = :4
0� (r, r

′) . (2.32)

In a manner similar to the construction of the self-energy, there is an analogous diagram-
matic expansion for Γ. The corresponding diagram is shown in Fig. 2.2. Note that the
Bethe-Salpeter equation can be solved by iteration, leading to a sum of ladder diagrams,
as shown in Fig. 2.3. The sum can be calculated analytically in a homogeneous medium
with short-range correlations. At large distances, this leads to diffusive transport of light.
However, for quasi-homogeneous media this approach is not applicable. Instead, it is
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〈��∗〉 = +

+ + · · ·

Figure 2.3: The correlation function 〈��∗〉 in terms of ladder diagrams. A double line
with a left-pointing arrow denotes a factor of 〈�〉 and a double line with a right-pointing
arrow denotes a factor of 〈�∗〉.

advantageous to introduce a phase-space representation of the field correlations, which
directly leads to the theory of radiative transport.

2.5 Radiative transport

In this section we present the derivation of the RTE for quasi-homogeneous media. We
begin by introducing the Wigner transform of the field, which provides a phase-space
representation of the field correlation function. To this end, we define theWigner transform
, (r, k) as

, (r, k) =
∫

33A′

(2c)3
48k·r

′〈* (r − r′/2)*∗(r + r′/2)〉 . (2.33)

The Wigner transform has several important properties. It is real-valued and related to the
average intensity � = 〈|* |2〉 by

� (r) =
∫

33:, (r, k) . (2.34)

By Fourier inversion, theWigner transform is related to the correlation function of the field
by

〈* (r)*∗(r′)〉 =
∫

33:4−k·(r−r′), ((r + r′)/2, k) . (2.35)
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Thus the Wigner transform is a measure of the spatial coherence of the field, with random-
ness due to fluctuations in the medium rather than the source [94].

In order to handle the loss of translational invariance, we introduce a shift Δr in
the spatial coordinate of the Wigner transform, and consider the Fourier transform of
, (r + Δr, k) with respect to Δr. We find, as shown in Appendix A, that ,̃ is given by

,̃ (Q, k) = 4−8Q·r〈*̃ (−k +Q/2)〉〈*̃∗(k +Q/2)〉/(2c)3

+ :4
04
−8Q·r

�̃(r,−k/2 +Q)�̃∗(r, k/2 +Q)�B (r)

×
∫

33:′

(2c)3
�̃ 5 (k − k′),̃ (Q, k′) , (2.36)

where the dependence of ,̃ on r is not directly indicated. Here we have made use of
Eqs. (2.30), (2.31) and (2.32), and the slowvariation in�B, as reflected in the approximations
(2.20). Next, we use (2.17) and the algebraic identity

01 =
0 − 1

1/1 − 1/0 (2.37)

to obtain the relation

�̃(r,−k/2 +Q)�̃∗(r, k/2 +Q) = Δ�(r,Q, k)
2k ·Q + ΔΣ(r,Q, k) , (2.38)

where

Δ�(r,Q, k) = 4c(�̃(r,−k +Q/2) − �̃∗(r, k +Q/2)) , (2.39)

ΔΣ(r,Q, k) = 4c�B (r)
(
ΔΣ0(−k +Q/2) − ΔΣ∗0(k +Q/2)

)
. (2.40)
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It follows from the above that Eq. (2.36) becomes

(2k ·Q + ΔΣ(r,Q, k)) ,̃ (Q, k) = :4
0Δ�(r,Q, k)�B (r)

×
∫

33:′

(2c)3
�̃ 5 (k − k′),̃ (Q, k′)

+ 1
(2c)3

Δ�(r,Q, k)(̃(−k +Q/2)(̃∗(k +Q/2) . (2.41)

Finally, computing the inverse Fourier transform of ,̃ (Q, k), we obtain the integral equa-
tion obeyed by the Wigner transform:

k · ∇r, (r, k) +
1
28

∫
33@

(2c)3
4−8Q·rΔΣ(r,Q, k),̃ (Q, k)

=
:4

0
28

∫
33@

(2c)3
4−8Q·r

∫
33:′

(2c)3
�B (r)Δ�(r,Q, k)�̃ 5 (k − k′)

× ,̃ (Q, k′)

+ 1
28

∫
33@

(2c)6
4−8Q·rΔ�(r,Q, k)(̃(−k +Q/2)(̃∗(k +Q/2) . (2.42)

In order to obtain the RTE, we take the long wavelength limit Q → 0 in Eq. (2.42).
That is, we assume the average Wigner transform varies slowly on the scale over which � 5

varies. In performing the limit, we replace ΔΣ(r,Q, k) and Δ�(r,Q, k) by ΔΣ(r, 0, k)
and Δ�(r, 0, k), respectively. In addition, we apply Eqs. (2.22) and (2.27) in the weak-
scattering limit to obtain

Δ�(r, 0, k) = 28(2c)3
:0

X(: − :0) . (2.43)

Likewise, we use Eqs. (2.25) and (2.26) to obtain

ΔΣ(r, 0, k) = 28:�B (r)/;B . (2.44)

Using the above results along with Eq. (2.26), and defining the specific intensity �, phase
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function �, scattering coefficient `B and source �0 by

X(: − :0)� (r, ŝ) = :0, (r, : ŝ) , (2.45)

�(ŝ, ŝ′) = :4
0;B�̃ 5 (:0(ŝ − ŝ′)) , (2.46)

`B (r) = �B (r)/;B , (2.47)

�0(r, ŝ) =
1
:2

0

∫
33@

(2c)3
4−8Q·r(̃(−:0ŝ +Q/2)(̃∗(:0ŝ +Q/2) , (2.48)

we find that Eq. (2.42) becomes

ŝ · ∇r� (r, ŝ) + `B (r)� (r, ŝ) = `B (r)
∫

3ŝ′�(ŝ, ŝ′)� (r, ŝ′)

+ �0(r, ŝ) . (2.49)

Eq. (2.49) is the RTE in a quasi-homogeneous random medium. Several comments
on this result are necessary. First, when �( is constant, Eq. (2.49) reduces to the RTE in
a homogeneous medium. Second, we note that `B and � are determined by correlations
in the medium. Since � 5 is a function of |r − r′|, � depends only on ŝ · ŝ′, and `B does
not depend on the direction ŝ. Third, for the case of short-range correlations we have
� 5 (r) = �0X(r), where �0 is constant. It follows that `B (r) = �0:

4
0�B (r) and � = 1/(4c),

which corresponds to spatially-modulated isotropic scattering. Fourth, our results are
easily generalized to allow the susceptibility [ to be complex-valued. It can then be seen
that the extinction coefficient `4 is proportional to the imaginary part of the self-energy.
Fifth, the Wigner transform, although real-valued, is not necessarily nonnegative. In
contrast, the specific intensity cannot take on negative values. This inconsistency can
be resolved by noting that only the high-frequency behavior of the Wigner transform is
of physical interest [19]. Finally, under certain conditions, the solution to the RTE can
be well approximated by the solution to a diffusion equation. This so-called diffusion
approximation is widely used in applications [18, 8]. For quasi-homogeneous media, it is
easily seen that the diffusion approximation can be derived from Eq. (2.49), and that the
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corresponding diffusion equation is of the form

− ∇ · � (r)∇D(r) = &(r) . (2.50)

Here the energy density D and source & are defined by

D(r) = 1
2

∫
3ŝ� (r, ŝ) , &(r) =

∫
3ŝ�0(r, ŝ) , (2.51)

and the diffusion coefficient is given by

� (r) = 2

3(1 − 6)`B (r)
, 6 =

∫
ŝ · ŝ′�(ŝ, ŝ′)3ŝ′ , (2.52)

where 6 is the anisotropy of scattering and 2 is the speed of light.

2.6 Discussion

We have derived the radiative transport equation that governs the propagation of multiply-
scattered scalar waves in quasi-homogeneous random media. An alternative derivation of
Eq. (2.49) may be possible using a multiscale asymptotic analysis [48, 32]. This is consis-
tent with the equivalence, for homogeneous media, of diagrammatic perturbation theory
and multiscale asymptotics [19]. We note that it would be of interest to extend our results
to the radiative transport of electromagnetic and elastic waves. In the electromagnetic case,
the calculation of the self-energy for quasi-homogeneous media poses a challenge, and thus
the asymptotic approach to the derivation of the RTE may be worthy of exploration. The
associated inverse problems is likely to have applications to polarization-sensitive imaging
with diffuse light [8].

2.7 Appendix

In this appendix, we present the derivation of Eq. (2.36). We begin by noting that the
Bethe-Salpeter equation (2.31) in combination with Eqs. (2.7) and (2.32) can be used to
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obtain the correlation function of the field. We thus obtain

〈* (r)* (r′)〉 = 〈* (r)〉〈* (r′)〉 + :4
0

∫
33'33'′〈� (r,R)〉〈�∗(r′,R′)〉� 5 (R − R′)

× �B ((R + R′)/2)〈* (R)* (R′)〉 . (2.53)

We introduce the shifted Wigner transform , (r + Δr, k), whose Fourier transform with
respect to Δr is given by

,̃ (Q, k) = ,̃1(Q, k) + ,̃2(Q, k) , (2.54)

where

,̃1(Q, k) =
1
(2c)3

∫
33ΔA33A′48Q·Δr48k·r

′〈* (r + Δr − r′/2)〉〈*∗(r + Δr + r′/2)〉

(2.55)

and

,̃2(Q, k) =
:4

0
(2c)3

∫
33ΔA33A′33'33'′48Q·Δr48k·r

′〈� (r + Δr − r′/2,R)〉 (2.56)

× 〈�∗(r + Δr + r′/2,R′)〉� 5 (R − R′)�B ((R + R′)/2)〈* (R)* (R′)〉 .

Making a change of variables to relative and center of mass coordinates, ,̃1(Q, k) becomes

,̃1(Q, k) =
4−8Q·r

(2c)3
〈*̃ (−k +Q/2)〉〈*̃ (k +Q/2)〉 , (2.57)
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where *̃ is the Fourier transform of *. Recalling the definition of � from Eq. (2.15),
Eq. (2.56) becomes

,̃2(Q, k) =
:4

0
(2c)3

∫
33ΔA33A′33'33'′48Q·Δr48k·r

′

×�((r + Δr − r′/2 + R)/2, r + Δr − r′/2 − R)
×�∗((r + Δr + r′/2 + R′)/2, r + Δr + r′/2 − R′)� 5 (R − R′)
× �B ((R + R′)/2)〈* (R)* (R′)〉 . (2.58)

Upon making further a change of variables to relative and center of mass coordinates,
invoking the approximations (similar to Eq. (2.20))

�(r + Δr, r′) ≈ �(r, r′) , (2.59)

�B (r + Δr) ≈ �B (r) , (2.60)

and defining  (r, r′) = � 5 (r′)〈* (r − r′/2)* (r + r′/2)〉, Eq. (2.58) becomes

,̃2(Q, k) =
:4

0
(2c)3

∫
33ΔA33A′33'33'′ 48Q·(Δr+R)48k·(r

′−R′)
�(r, r − r′/2 + R′) (2.61)

×�∗(r, r + r′/2 − R′)�B (r) (r + R,R′) .

Carrying out the indicated Fourier transforms in the second arguments of�,�∗ and  , we
find that

,̃2(Q, k) = :4
04
−8Q·r

�̃(r,−k/2 +Q)�̃∗(r, k/2 +Q)�B (r)
∫

33:′

(2c)3
�̃ 5 (k − k′),̃ (Q, k′) .

(2.62)

Finally, putting Eqs. (2.57) and (2.62) together, we obtain Eq. (2.36).
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Chapter 3

Collective Spontaneous Emission in
Random Media

3.1 Introduction

The quantum theory of light-matter interactions has historically been concerned with sys-
tems consisting of a small number of atoms [58]. To some extent, this is due to the early
emphasis on such systems in atomic physics. However, the recent focus on cold atom sys-
tems [38, 33], waveguide quantum electrodynamics [96, 23], and semiconductor quantum
optics [46], has served to stimulate research on quantum many-body problems. Progress
in this direction can be expected to lead to significant advances in controlling quantum
systems, with applications to quantum simulations, quantum information processing, and
precision measurements [45, 37, 39].

Perhaps the simplest many-body problem in quantum optics arises in a system of two-
level atoms interacting with a single photon. Suppose that one of the atoms is initially in
its excited state and there are no photons present in the field. The atom can then decay
by spontaneous emission, thereby transferring its excitation to the field. The resulting
photon can then excite the remaining atoms, which likewise decay. This process, which is
referred to as collective or cooperative emission, results in the transmission of light through
the system. Two regimes are usually distinguished, depending on the wavelength and the
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size of the system: superradiance and radiation trapping. In single-photon superradiance,
certain states decay much faster than the single-atom decay rate. Alternatively, there is
very slow decay, and the states are said to be trapped. Moreover, in contrast to single-atom
spontaneous emission, where the Lamb shift is divergent, the Lamb shift can be finite in
single-photon superradiance.

The theory of collective emission has been considered from several points of view.
One approach is based on a Hamiltonian describing the atoms, the optical field and their
interaction. Eliminating the optical field yields an effective Hamiltonian for the atomic
degrees of freedom [50, 44, 85, 9, 60]. A master equation can then be derived, and has
been shown to describe quantum effects in light scattering. However, the computational
cost of this procedure, which scales exponentially with the number of atoms, limits its
utility to systems consisting of a small number of atoms. An alternative approach, which
makes use of the eigenstates and corresponding eigenvalues of the effective Hamiltonian,
can be employed to describe the dynamics of the system [69, 70, 68, 56, 2, 1, 86]. This
method is especially fruitful in the setting of single-photon superradiance, where analytical
expressions for the collective decay rate have been obtained for dense atomic gases.

In this paper, we consider the problem of collective emission for a random medium of
two-level atoms. We emphasize that randomness is employed as a proxy for information
about the medium. That is, the medium is modeled as a realization of a random process
with known statistics. In this setting, we investigate the dynamics of the field and atomic
probability amplitudes for a one-photon state of the system. At long times and large
distances, we find that the corresponding average probability densities can be determined
from the solutions to a pair of kinetic equations. There are several novel mathematical
aspects of our work. We employ a real-space quantization procedure for the optical field.
In contrast, quantization of the field is normally carried out in terms of Fourier modes. The
advantage of the real-space approach is that it allows the field and atomic degrees of freedom
to be treated on an equal footing. Moreover, the field and atomic probability amplitudes
obey a system of nonlocal partial differential equations with random coefficients. Using
this result, we show that the average Wigner transform of the amplitudes obeys a kinetic
equation, whose diffusion limit is extracted. Here the average over the random medium
is carried out by means of a multiscale asymptotic expansion in a suitable high-frequency
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limit [48, 10, 19, 16].
This paper is organized as follows. In section 3.2 we introduce the model we study,

carry out the real-space quantization of the optical and atomic fields, and derive the
equations obeyed by the atomic and one-photon amplitudes. These equations are studied
in section 3.3 for the case of a single atom, where we recover the Wigner-Weisskopf theory
of spontaneous emission, and in section 3.4 for the case of a medium of constant density.
Random media are introduced in sections 3.5, where the average behavior of energy
eigenstates is established. A related approach leads to the derivation of kinetic equations.
The paper concludes with a discussion of our results in section 3.7. The technical details
of the calculations are presented in the appendices.

3.2 Model

We consider the following model for the interaction between a quantized field and a system
of two-level atoms [25, 36]. The atoms are taken to be stationary and sufficiently well
separated that interatomic interactions can be neglected. The overall system is described
by the Hamiltonian � = �� + �� + �� . The Hamiltonian of the field is of the form

�� =

∫
33:

(2c)3
ℏlk 0

†
k0k , (3.1)

where we have neglected the zero-point energy and for simplicity have adopted a scalar
theory of the electromagnetic field. Here lk = 2 |k| is the frequency of the field mode
with wave vector k and 0†k (0k) is the corresponding creation (annihilation) operator. The
operators 0k and 0†k obey the commutation relations

[0k, 0
†
k′] = X(k − k′) , (3.2)

[0k, 0k′] = 0 . (3.3)
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The Hamiltonian of the atoms is given by

�� =
∑
9

ℏΩf
†
9
f9 , ;014;��1 (3.4)

where Ω is the resonance frequency of each atom and f†
9
(f9 ) is the raising (lowering)

operator of the 9 th atom. The operators f9 and f†9 obey the anticommutation relations

{f9 , f†9 ′} = X 9 9 ′ , (3.5)

{f9 , f9 ′} = 0 . (3.6)

The interaction between the field and the atoms is governed by the Hamiltonian

�� =
∑
9

∫
33:

(2c)3
ℏ6k

(
0k + 0†k

) (
48k·x 9f9 + 4−8k·x 9f

†
9

)
, (3.7)

where 6k is the field-atom coupling and x 9 is the position of the 9 th atom.
In order to treat the atoms and the field on the same footing, it is useful to introduce

a real-space representation of the Hamiltonian (3.1). To this end, we define the operator
i(x) as the Fourier transform of 0k:

i(x) =
∫

33:

(2c)3/2
48k·x0k . (3.8)

Making use of (3.2) we find that i is a Bose field which obeys the commutation relations

[i(x), i†(x′)] = X(x − x′) , (3.9)

[i(x), i(x′)] = 0 . (3.10)

It follows immediately that �� becomes

�� = ℏ2

∫
33G(−Δ)1/2i†(x)i(x) . (3.11)
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Here the operator (−Δ)1/2 is defined by the Fourier integral

(−Δ)1/2 5 (x) =
∫

33:

(2c)3
48k·x |k| 5̃ (k) , (3.12)

5̃ (k) =
∫

33G4−8k·x 5 (x) . (3.13)

We note that (−Δ)1/2 has the non-local spatial representation

(−Δ)1/2 5 (x) = 1
c2

∫
33H

5 (x) − 5 (y)
|x − y|4

. (3.14)

We note that real-space quantization has proven to be a powerful tool for one-dimensional
systems in the setting of waveguide quantum electrodynamics [77].

To facilitate the treatment of random media, it will prove convenient to introduce
a continuum model of the atomic degrees of freedom. The atomic Hamiltonian then
becomes

�� = ℏΩ

∫
33Gd(x)f†(x)f(x) , (3.15)

where d is the number density of atoms. In addition, the operators f9 are replaced by a
Fermi field f which obeys the anticommutation relations

{f(x), f†(x)} = 1
d(x) X(x − x′) , (3.16)

{f(x), f(x)} = 0 . (3.17)

We find that the interaction Hamiltonian is given by

�� = ℏ6

∫
33Gd(x)

(
i(x) + i†(x)

) (
f(x) + f†(x)

)
, (3.18)

where we have made the Markovian approximation 6k = 6 for all k, so that the atom-
field coupling is frequency independent. We also impose the rotating wave approximation
(RWA), in which we neglect the rapidly oscillating terms i†f† and if. The total Hamil-
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tonian thus becomes

� = ℏ

∫
33G

[
2(−Δ)1/2i†(x)i(x) +Ωd(x)f†(x)f(x)

+6d(x)
(
i†(x)f(x) + i(x)f†(x)

)]
, (3.19)

which is the model we will investigate for the remainder of this paper.
We suppose that the system is in a one-photon state of the form

|Ψ〉 =
∫

33G
[
k(x, C)i†(x) + d(x)0(x, C)f†(x)

]
|0〉 , (3.20)

where |0〉 is the combined vacuum state of the field and the ground state of the atoms. Here
0(x, C) denotes the probability amplitude for exciting an atom at the point x at time C and
k(x, C) is the amplitude for creating a photon. The state |Ψ〉 is the most general one-photon
state that is consistent with the RWA. In addition, |Ψ〉 is normalized so that 〈Ψ|Ψ〉 = 1. It
follows from (4.2) and (4.7) that the amplitudes obey the normalization condition∫

33G
(
|k(x, C) |2 + d(x) |0(x, C) |2

)
= 1 . (3.21)

The dynamics of |Ψ〉 is governed by the Schrodinger equation

8ℏmC |Ψ〉 = � |Ψ〉 . (3.22)

Projecting onto the states i†(x) |0〉 and f†(x) |0〉 and making use of (4.2) and (4.7), we
arrive at the following system of equations obeyed by 0 and k:

8mCk = 2(−Δ)1/2k + 6d(x)0 , (3.23)

8d(x)mC0 = 6d(x)k +Ωd(x)0 . (3.24)

The details of the derivation are given in Appendix A. The overall factors of d(x) in (3.24)
will be cancelled as necessary.
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3.3 Single Atom

In this section we consider the problem of spontaneous emission by a single atom. We
assume that the atom is located at the origin and put d(x) = X(x). We also assume that
the atom is initially in its excited state and that there are no photons present in the field.
We thus impose the initial conditions 0(x, 0) = 1 and k(x, 0) = 0. Taking the Laplace
transform in C and the Fourier transform in x of (3.23) and (3.24), and applying the initial
conditions gives

8Ik̃(k, I) = 2 |k|k̃(k, I) + 60(0, I) , (3.25)

8(I0(0, I) − 1) = 6k(0, I) +Ω0(0, I) . (3.26)

Here we have defined the Laplace transform by

5 (I) =
∫ ∞

0
3C4−IC 5 (C) , (3.27)

and we denote a function and its Laplace transform by the same symbol. Solving the above
equations by making use of the relation

k(0, I) =
∫

33:

(2c)3
k̃(k, I) , (3.28)

leads to an expression for 0(0, I) of the form

0(0, I) = 1
I + 8Ω − 8Σ(I) , (3.29)

where Σ is defined by

Σ(I) = 62
∫

33:

(2c)3
1

2 |k| − 8I − 8n , (3.30)
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where n → 0+. Inverting the the Laplace transform in (3.29), we obtain

0(0, C) =
∫

3I

2c8
4IC

I + 8Ω − 8Σ(I) . (3.31)

In order to carry out the integral (3.31), we make the pole approximation in which we
evaluate Σ near resonance. That is, we replace Σ(I) with Σ(−8Ω). In addition, we split
Σ(−8Ω) into its real and imaginary parts:

ReΣ(−8Ω) = Xl , (3.32)

ImΣ(−8Ω) = Γ/2 , (3.33)

which defines Xl and Γ. By making use of the identity

1
2 |k| −Ω − 8n = %

1
2 |k| −Ω + 8cX(2 |k| −Ω) , (3.34)

where % denotes the principal value, we find that Γ is given by

Γ = 262c

∫
33:

(2c)3
X(2 |k| −Ω) (3.35)

=
62Ω2

c23 . (3.36)

We also obtain

Xl =
62

2c2

∫ 2c/Λ

0

:23:

2: −Ω , (3.37)

where we have introduced a high-frequency cutoff to regularize the divergent integral.
Finally, making use of (3.31), (3.32) and (3.33), we find that 0 is given by

0(0, C) = 4−8(Ω−Xl)C4−ΓC/2 . (3.38)

We immediately see that the probability the atom decays is exponentially decreasing:

|0(0, C) |2 = 4−ΓC . (3.39)
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We note that the decay rate Γ agrees with Wigner-Weisskopf theory formulated within
scalar electrodynamics and that Xl is the corresponding Lamb shift.

Next we determine the behavior of the amplitude k. Making use of (3.25), (3.29) and
inverting the Laplace transform, we find that

k̃(k, C) =
∫

3I

2c8
64IC

(8I − 2 |k|) (I + 8Ω − 8Σ(I)) . (3.40)

Carrying out the above integral in the pole approximation, we obtain

k̃(k, C) = 6

2 |k| − (Ω − Xl) + 8Γ/2

(
4−82C |k| − 4−ΓC/24−8(Ω−Xl)C

)
. (3.41)

At long times (ΓC � 1), we see that the one-photon probability density is given by

|k̃(k, C) |2 = |6 |2

[2 |k| − (Ω − Xl)]2 + Γ2/4
, (3.42)

which has the form of a Lorentzian spectral line.

3.4 Constant Density Problem

In this sectionwe consider the problemof emission and absorption of one photon interacting
with a collection of atoms with constant number density d0. We will start with (3.23) and
(3.24) and d(x) equal to d0. That is

8mCk = 2(−Δ)1/2k + 6d00 , (3.43)

8mC0 = 6k +Ω0 , (3.44)

where we have cancelled the density from (3.23). Defining the vector quantity 	(x, t) as

	(x, t) =
[
k(x, C)
√
d00(x, C)

]
, (3.45)
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then the previous system becomes

8mC	 = A	 , (3.46)

where

�(x) =
[
2(−Δ)1/2 6

√
d0

6
√
d0 Ω

]
. (3.47)

Taking the Fourier transform of (3.46), we arrive at the system of ordinary differential
equations

8mC	̂ = �̂	̂ , (3.48)

where

	̂(k, C) =
∫

33G4−8k·x	(x, t) , (3.49)

and

�̂(k) =
[
2 |k| 6

√
d0

6
√
d0 Ω

]
. (3.50)

The eigenvalues and eigenvectors of �̂ are given by

_±(k) =
(2 |k| +Ω) ±

√
(2 |k| −Ω)2 + 462d0

2
, (3.51)

v±(k) =
1√

(_± −Ω)2 + 62d0

[
_± −Ω
6
√
d0

]
. (3.52)

The solution to (3.49) is given by

	̂(k, C) = �+(k)4−8_+Cv+(k) + �−(k)4−8_−Cv−(k). (3.53)
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Solving for the coefficients �±(k) we find

�+(k) =
(k̂06 − 0̂0(_− −Ω))

√
(_+ −Ω)2 + 62d0

6(_+ − _−)
, (3.54)

�−(k) =
(0̂0(_+ −Ω) − 6k̂0)

√
(_− −Ω)2 + 62d0

6(_+ − _−)
. (3.55)

We assume that initially there is a localized region of excited atoms around the origin with
width ;B. The initial amplitudes are taken to be

k(x, 0) = 0 , (3.56)

√
d00(x, 0) =

(
1
c;2B

)3/4
4−|x|

2/2;2B . (3.57)

Taking the Fourier transform of (3.56) and (3.57) and using (3.54) and (3.55), we see that
the components of 	(k, t) are given by

k̂(k, C) = 6d0;
3/2
B

23/2c5/2
4−8_+ (k)C − 4−8_− (k)C
_+(k) − _−(k)

4−;
2
B |k|2/2 , (3.58)

√
d00̂(k, C) =

;
3/2
B

23/2c5/2
(_+(k) −Ω)4−8_− (k)C − (_−(k) −Ω)4−8_+ (k)C

_+(k) − _−(k)
4−;

2
B |k|2/2. (3.59)

Inverting the Fourier transforms, we find that

k(x, C) = 6
√

2d0;
3/2
B

c3/2 |x|

∫ ∞

0
3: :

4−8_+ (:)C − 4−8_− (:)C
_+(:) − _−(:)

4−;
2
B :

2/2 sin(: |x|) , (3.60)

√
d00(x, C) =

√
2;3/2B

c3/2 |x|

∫ ∞

0
3:
(_+(:) −Ω)4−8_− (:)C − (_−(:) −Ω)4−8_+ (:)C

_+(:) − _−(:)
× 4−;2B :2/2: sin(: |x|) . (3.61)

Figure 3.1 illustrates the time-dependence of the probability densities |k |2 and d0 |0 |2,
where we have set the dimensionless quantities Ω/(√d06) = 2/(;B

√
d06) = 1. We see that

the probability densities are oscillatory and decay in time.
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Figure 3.1: Time-dependence of atomic and field probability densities for the constant
density problem with |x| = ;B

3.5 Energy Eigenstates

3.5.1 Radiative Transport

In this section we investigate the energy eigenstates of the Hamiltonian � in a random
medium. We consider the time-independent Schrodinger equation � |Ψ〉 = ℏl|Ψ〉, where
|Ψ〉 is of the form (3.20) and ℏl is the energy. It follows that the amplitudes 0 and k,
which are independent of time, obey the equations

2(−Δ)1/2k + 6d(x)0 = lk , (3.62)

6k +Ω0 = l0 . (3.63)
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By eliminating 0 from the above system, we immediately obtain the equation obeyed by k,
which is given by

(−Δ)1/2k + 62d(x)
2(l −Ω)k = :k , (3.64)

where : = l/2.
For the remainder of this work, we assume that the atomic density d(x) is of the form

d(x) = d0(1 + [(x)) , (3.65)

where d0 is constant and [(x) is a real-valued random field that accounts for statistical
fluctuations in the density. We further assume that the correlations of [ are given by

〈[(x)〉 = 0 , (3.66)

〈[(x)[(y)〉 = � (x − y) , (3.67)

where � is the two-point correlation function and 〈· · · 〉 denotes statistical averaging. If �
depends only upon the quantity |x− y|, the medium is said to be statistically homogeneous
and isotropic. To make further progress, we consider the relative sizes of the important
physical scales. The solution to (3.64) oscillates on the scale of the wavelength _ = 2c/: .
However, we are interested in the behavior of the solutions on themacroscopic scale ! � _.
We thus introduce a small parameter n = _/! and rescale the position x by x → x/n . In
addition, we assume that the randomness is sufficiently weak so that the correlation function
� is $ (n). Thus (3.64) becomes

n (−Δ)1/2kn + :0(1 +
√
n[(x/n))kn = :kn , (3.68)

where the n dependence of k is indicated explicitly and

:0 =
62d0

2(l −Ω) . (3.69)

Note that we have also rescaled [ to be consistent with the $ (n) scaling of �.

46



We now introduce the Wigner transform of the amplitude k, which provides a phase-
space representation of the correlation function of k. The Wigner transform ,n (x, k) is
defined as

,n (x, k) =
∫

33G′

(2c)3
4−8k·x

′
kn (x − nx′/2)k∗n (x + nx′/2) . (3.70)

The Wigner transform has several important properties. It is real-valued and related to the
probability density |kn |2 by

|kn (x) |2 =
∫

33:,n (x, k) . (3.71)

Next we derive a useful relation governing the Wigner transform. Let Φn (x1, x2) =
kn (x1)k∗n (x2). Since [ is real-valued, it follows thatΦn (x1, x2) satisfies the pair of equations

n (−Δx1)1/2Φn (x1, x2) − :Φn (x1, x2) + :0(1 +
√
n[(x1/n))Φn (x1, x2) = 0 , (3.72)

n (−Δx2)1/2Φn (x1, x2) − :Φn (x1, x2) + :0(1 +
√
n[(x2/n))Φn (x1, x2) = 0 . (3.73)

Subtracting (3.72) from (3.73) yields

n

[
(−Δx1)1/2 − (−Δx2)1/2

]
Φn (x1, x2) +

√
n :0 [[(x1/n) − [(x2/n)]Φn (x1, x2) = 0.

(3.74)

We now perform the change of variables

x1 = x − nx′/2 , (3.75)

x2 = x + nx′/2 , (3.76)

and Fourier transform the result with respect to x′, thus arriving at∫
33@

(2c)3
48q·x [| − k + nq/2| − |k + nq/2|] ,̃n (q, k) +

√
n!,n (x, k) = 0 , (3.77)
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where the Fourier transform of the Wigner transform is defined by

,̃n (q, k) =
∫

33G4−8q·x,n (x, k) (3.78)

and

!,n (x, k) = :0

∫
33@

(2c)3
48q·x/n [̃(q) [,n (x, k + q/2) −,n (x, k − q/2)] . (3.79)

The details of the calculation are given in Appendix B.
We now consider the behavior of,n in the high-frequency limit n → 0, which allows

for the separation of microscopic and macroscopic scales. To this end we introduce a
multiscale expansion for,n of the form

,n (x, k) = ,0(x, k) +
√
n,1(x,X, k) + n,2(x,X, k) + · · · , (3.80)

where X = x/n is a fast variable and,0 is taken to be deterministic. We treat x and X as
independent variables and make the replacement

∇x → ∇x +
1
n
∇X . (3.81)

Eq. (3.77) thus becomes∫
33@

(2c)3
33&

(2c)3
48q·x+8Q·X [| − k + nq/2 +Q/2| − |k + nq/2 +Q/2|] ,̃n (q,Q, k) (3.82)

+
√
n!,n (x,X, k) = 0 , (3.83)

where

,̃n (q,Q, k) =
∫

33G33-4−8q·x−8Q·X,n (x,X, k). (3.84)
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Inserting (3.80) into (3.82) and equating terms of the same order in n , we find that at$ (
√
n)∫

33&

(2c)3
48Q·X [| − k +Q/2| − |k +Q/2|] ,̃1(x,Q, k) +

√
n!,0(x, k) = 0. (3.85)

Eq. (3.85) can be solved by Fourier transforms with the result

,̃1(x,Q, k) = :0[̃(Q)
[,0(x, k +Q/2) −,0(x, k −Q/2)]
|k +Q/2| − | − k +Q/2| − 8\ , (3.86)

where \ → 0 is a positive regularizing parameter. At order $ (n) we find that∫
33@

(2c)3
33&

(2c)3
48q·x+8Q·X [| − k +Q/2| − |k +Q/2|] ,̃2(q,Q, k) + k̂ · ∇,0(q, k)

+:0

∫
33@

(2c)3
48q·X[̃(q) [,1(x,X, k + q/2) −,1(x,X, k − q/2)] = 0 . (3.87)

Next we average (3.87) over realizations of the random medium. To do so, we impose
the condition 〈[| − k +Q/2| − |k +Q/2|] ,̃2(q,Q, k)〉 = 0, which closes the hierarchy
relating the terms in the multiscale expansion, and corresponds to the assumption that,2

is statistically stationary in the fast variable X. Eq. (3.87) thus becomes

k̂ · ∇x,0(x, k) + :0

∫
33@

(2c)3
48q·X〈[̃(q) [,1(x,X, k + q/2) −,1(x,X, k − q/2)]〉 = 0.

(3.88)

After substituting (3.86) into (3.88) and using the identity

〈[̃(p)[̃(q)〉 = (2c)3X(p + q)�̃ (p) (3.89)

we find, as shown in Appendix C, that,0 satisfies

k̂ · ∇x,0(x, k) + :2
0

∫
33@

(2c)2
�̃ (q − k)X( |q| − |k|),0(x, k)

= :2
0

∫
33@

(2c)2
�̃ (q − k)X( |q| − |k|),0(x, q) . (3.90)
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Here we define the scattering coefficient `B and phase function � as

`B =
:2

0 |k|
2

4c2

∫
3k̂′ �̃

(
|k| (k̂ − k̂′)

)
, (3.91)

�(k̂, k̂′) =
:2

0 |k|
2

`B
�̃

(
|k| (k̂ − k̂′)

)
(3.92)

Making use of these definitions, (3.90) becomes

k̂ · ∇x,0(x, k) + `B,0(x, k) = `B!,0(x, k) , (3.93)

where the operator ! is defined by

!,0(x, k) =
∫

3k̂′�(k̂, k̂′),0(x, k′). (3.94)

Eq. (3.93), which has the form of a time-independent radiative transport equation, is the
main result of this section. We note that `B and � are defined in terms of the correlations of
the medium. Since the density fluctuations [ are statistically homogeneous and isotropic,
�̃ depends only on the quantity |k − k′|, and hence the phase function � depends only on
k̂ · k̂′ and |k|. Similarly, `B only depends on the magnitude |k|.

In the case of white noise-disorder, where � = �0X(x) with constant �0, the scattering
coefficient and phase function are given by

`B = 4c�0:
2
0 |k|

2 , (3.95)

�(k̂, k̂′) = 1
4c

, (3.96)

which corresponds to isotropic scattering.
3.5.2 Diffusion Approximation

We now consider the diffusion limit of the radiative transport equation developed in
the previous section. The diffusion approximation for a radiative transport equation of the
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form

k̂ · ∇x,0(x, k) + `B,0(x, k) = `B!,0(x, k) (3.97)

is obtained by expanding ,0 in spherical harmonics [16]. To lowest order, it can be seen
that

,0(x, k) =
1

4c

(
D(x, |k|) − ℓ∗k̂ · ∇D(x, |k|)

)
, (3.98)

where the first angular moment D(x, |k|) is defined by

D(x, |k|) =
∫

3k̂,0(x, k) , (3.99)

and the transport mean free path ℓ∗ is given by

ℓ∗ =
1

`B (1 − 6)
, 6 =

∫
3k̂′k̂ · k̂′�(k̂, k̂′) . (3.100)

The anisotropy 6 takes values between −1 and 1 and vanishes for isotropic scattering. The
quantity D satisfies the diffusion equation

ΔD = 0 in Ω , (3.101)

D = 6 on mΩ , (3.102)

where we have prescribed Dirichlet boundary conditions on a bounded domain Ω and 6
generally depends upon : . Since |k |2 is given by

|k(x) |2 =
∫

33: ,0(x, k) =
∫ ∞

0
3: :2D(x, :) , (3.103)
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it follows that |k |2 obeys

Δ |k |2 = 0 in Ω , (3.104)

|k |2 =
∫ ∞

0
3::26(x, :) on mΩ , (3.105)

where the : dependence of 6 has been made explicit.

3.6 Collective Spontaneous Emission

3.6.1 Kinetic Equations

In this section we study the time evolution of the atomic and field amplitudes in a
random medium. Our starting point is (3.23) and (3.24) (with d cancelled):

8mCk = 2(−Δ)1/2k + 6d(x)0 , (3.106)

8mC0 = 6k +Ω0 . (3.107)

A similar system of pseudodifferential equations with a random potential has been con-
sidered in [10]. If we define the vector quantity u(x, C) =

[
k(x, C), 0(x, C)√d0

])
, then u

satisfies the equation

8mCu = �(x)u + 6
√
d0[(x) u , (3.108)

where

�(x) =
[
2(−Δx)1/2 6

√
d0

6
√
d0 Ω

]
, (3.109)

 =

[
0 1
0 0

]
. (3.110)
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This definition of u has the advantage that its two components have the same dimensions
and that the matrix �(x) is symmetric. We perform the same rescaling of the variables x
and [ as previously, and we also rescale the time C as C → C/n . Thus (3.108) becomes

n8mCun = �n (x)un +
√
n6
√
d0[(x/n) un , (3.111)

where

�n (x) =
[
n2(−Δx)1/2 6

√
d0

6
√
d0 Ω

]
. (3.112)

We now consider the Wigner transform of u, which is matrix-valued and defined by

,n (x, k, C) =
∫

33G′

(2c)3
4−8k·x

′
un (x − nx′/2, C)u†n (x + nx′/2, C) . (3.113)

The probability densities |kn (x, C) |2 and |0n (x, C) |2 are related to the Wigner transform by

|kn (x, C) |2 =
∫

33: (,n )11(x, k, C) , (3.114)

d0 |0n (x, C) |2 =
∫

33: (,n )22(x, k, C) . (3.115)

If we define Φn (x1, x2, C) = un (x1, C)u∗n (x2, C), then Φn satisfies the equation

n8mCΦn = �n (x1)Φn +
√
n6
√
d0[(x1/n) Φn

−Φn �n (x2) +
√
n6
√
d0[(x2/n)Φn ) . (3.116)

Next we perform the change of variables

x1 = x − nx′/2 , (3.117)

x2 = x + nx′/2 , (3.118)
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and Fourier transform the result with respect to x′. We thus obtain

n8mC,n (x, k, C)

=

∫
33@

(2c)3
48q·x

[
�̃n (k/n − q/2),̃n (q, k, C) − ,̃n (q, k, C) �̃n (k/n + q/2)

]
+
√
n6
√
d0

∫
33@

(2c)3
48q·x/n [̃(q)

[
 ,n (x, k + q/2, C) −,n (x, k − q/2, C) )

]
, (3.119)

where

�̃n (k) =
[
n2 |k| 6

√
d0

6
√
d0 Ω

]
. (3.120)

The details of this calculation are given in Appendix D.
Once again we consider the behavior of,n in the high-frequency limit n → 0. To this

end we introduce a multiscale expansion for,n of the form

,n (x, k, C) = ,0(x, k, C) +
√
n,1(x,X, k, C) + n,2(x,X, k, C) + · · · , (3.121)

where X = x/n is a fast variable, and ,0 is taken to be deterministic and independent of
X. We treat x and X as independent variables and transform the derivative ∇x according
to (3.81). Eq. (3.119) thus becomes

n8mC,n (x,X, k, C) =
∫

33@

(2c)3
33&

(2c)3
48q·x+8Q·X

[
�̃n (k/n − q/2 −Q/2n),̃n (q,Q, k, C)

−,̃n (q,Q, k, C) �̃n (k/n + q/2 +Q/2n)
]
+
√
n6
√
d0

∫
33@

(2c)3
48q·X [ ,n (x,X, k + q/2, C)

−,n (x,X, k − q/2, C) )
]
. (3.122)

Inserting (3.121) into (3.122) and equating terms of the same order in n , we find that at
$ (1)

�̃n (k/n),0(x, k, C) −,0(x, k, C) �̃n (k/n) = 0. (3.123)
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Since �̃n (k/n) is symmetric it can be diagonalized. Its eigenvalues are given by

_±(k) =
(2 |k| +Ω) ±

√
(2 |k| −Ω)2 + 462d0

2
. (3.124)

The corresponding eigenvectors are real and are of the form

b±(k) =
1√

(_± −Ω)2 + 62d0

[
_± −Ω
6
√
d0

]
. (3.125)

It follows from (3.123) that ,0 is also diagonal in the basis {b+(k), b−(k)} and can be
expressed as

,0(x, k, C) = 0+(x, k, C)b+(k)b)+ (k) + 0−(x, k, C)b−(k)b)−(k) , (3.126)

where 0± are suitable coefficients.
At order $ (

√
n) we obtain

�̃n ((k −Q/2)/n),̃1(x,Q, k, C) − ,̃1(x,Q, k, C) �̃n ((k +Q/2)/n) (3.127)

= 6
√
d0[̃(q)

[
,0(x, k −Q/2, C) ) −  ,0(x, k +Q/2, C)

]
. (3.128)

We can then decompose ,̃1 as

,̃1(x,Q, k, C) =
∑
<,=

F<= (x,Q, k, C)b< (k −Q/2)b)= (k +Q/2) , (3.129)

for suitable coefficients F<=. Multiplying (3.127) on the left by b)< (k −Q/2), on the right
by b= (k +Q/2), and using the facts

b)< (q) b= (p) =
6
√
d0(_< (q) −Ω)√

(_< (q) −Ω)2 + 62d0
√
(_= (p) −Ω)2 + 62d0

, (3.130)

b)< (q) )b= (p) =
6
√
d0(_= (p) −Ω)√

(_< (q) −Ω)2 + 62d0
√
(_= (p) −Ω)2 + 62d0

, (3.131)
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we find that

F<= (x,Q, k, C) =
62d0[̃(Q)

(_< (k −Q/2) − _= (k +Q/2) + 8\)

× ((_= (k +Q/2) −Ω)0< (x, k −Q/2, C) − (_< (k −Q/2) −Ω)0= (x, k +Q/2, C))√
(_< (k −Q/2) −Ω)2 + 62d0

√
(_= (k +Q/2) −Ω)2 + 62d0

,

(3.132)

where \ → 0 is a positive regularizing parameter. At order $ (n) we obtain

8mC,0(x, k, C)
= !,2(x,X, k, C) + " (x, k),0(x, k, C)

+ 6√d0

∫
33@

(2c)3
48q·X[̃(q)

[
 ,1(x,X, k + q/2, C) −,1(x,X, k − q/2, C) )

]
, (3.133)

where

!,2(x,X, k, C) =
∫

33@

(2c)3
33&

(2c)3
48q·x+8Q·X

[
�̃n (k/n −Q/2n),̃2(q,Q, k, C) (3.134)

−,̃2(q,Q, k, C) �̃n (k/n +Q/2n)
]
,

" (x, k) =
[
82 k̂ · ∇x 0

0 0

]
. (3.135)

In order to obtain the equation satisfied by 0+ (0−), we multiply (3.133) on the left
by b)+ (k) (b)−(k)) and on the right by b+(k) (b−(k)) and take the average. Moreover, we
assume that 〈b)±!,2b±〉 = 0, which closes the hierarchy of equations and corresponds to
the assumption that ,2 is statistically stationary in the fast variable X. This leads to the
kinetic equations

1
2
mC0±(x, k, C) + 5±(k)k̂ · ∇x0±(x, k, C) + `±(k)0±(x, k, C)

= `±(k)
∫

3k̂′�(k, k′)0±(x, k′, C) , (3.136)

which is themain result of this paper. Here the scattering coefficients `±, the phase function
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� and transport coefficients 5± are defined by

`±(k) =
4c(62d0)2 |_±(k) −Ω|

22((_±(k) −Ω)2 + 62d0)2
√
(2 |k| −Ω)2 + 462d0 |k|2

×
∫

3k̂′

(2c)3
�̃ ( |k| (k̂ − k̂′)) , (3.137)

�(k, k′) = �̃ ( |k| (k̂ − k̂′))∫
3k̂′�̃ ( |k| (k̂ − k̂′))

, (3.138)

5±(k) =
(_±(k) −Ω)2

(_±(k) −Ω)2 + 62d0
. (3.139)

The details of this calculation are given in Appendix E.
Suppose that k and 0 have time dependences

k(x, C) = 4−8lCk0(x) , 0(x, C) = 4−8lC00(x) , (3.140)

which correspond to eigenstates of the Hamiltonian with energy ℏl. Then using (3.136), it
can be seen that the Wigner transforms of k0 and 00 satisfy the radiative transport equation
(3.93). That is, the results for the time-independent problem are consistent with those of
the time-dependent problem.

The Wigner transform ,0 can be obtained from the solution to the RTE (3.136) by
making use of (3.126). It follows from (3.114) and (3.115) that the average probability
densities 〈|k |2〉 and 〈|0 |2〉 are given by

〈|k(x, C) |2〉 =
∫

33: (,0)11(x, k, C)

=

∫
33:

[
0+(x, k, C) (_+(k) −Ω)2
(_+(k) −Ω)2 + 62d0

+ 0−(x, k, C) (_−(k) −Ω)
2

(_−(k) −Ω)2 + 62d0

]
, (3.141)

d0〈|0(x, C) |2〉 =
∫

33: (,0)22(x, k, C)

= 62d0

∫
33:

[
0+(x, k, C)

(_+(k) −Ω)2 + 62d0
+ 0−(x, k, C)
(_−(k) −Ω)2 + 62d0

]
. (3.142)
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3.6.2 Diffusion Approximation

We now consider the diffusion approximation to the kinetic equation (3.136). The
diffusion approximation for a kinetic equation of the form

1
2
mC � (x, k, C) + k̂ · ∇x� (x, k, C) + `B � (x, k, C) = `B!� (x, k, C) (3.143)

is obtained by expanding � in spherical harmonics [16]. To lowest order, it can be seen that

� (x, k, C) = 1
4c

(
D(x, |k|, C) − ℓ∗k̂ · ∇D(x, |k|, C)

)
, (3.144)

where D(x, |k|, C) is defined by

D(x, |k|, C) =
∫

3k̂� (x, k, C) , (3.145)

and ℓ∗, which depends on |k|, is defined by (3.100). We then find that D satisfies the
diffusion equation

mCD = �ΔD , (3.146)

where the diffusion coefficient � is given by

� =
1
3
2ℓ∗ . (3.147)

The solution to (3.146) for an infinite medium is given by

D(x, C) = 1
(4c�C)3/2

∫
33G′ exp

[
− |x − x′|2

4�C

]
D(x′, 0) . (3.148)

We note that the diffusion approximation is accurate at large distances and long times.
It follows from the above that the first angular moments of 0±, which are defined by

D±(x, |k|, C) =
∫

3k̂0±(x, k, C) , (3.149)
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Figure 3.2: Time dependence of atomic probability density for several initial conditions
with |x| = ;B.

satisfy diffusion equations of the form

mCD± = �±(:)ΔD± . (3.150)

Here the diffusion coefficients are given by

�±(:) =
2 5±(:)2

3(1 − 6)`±(:)
. (3.151)

In order to compute 〈|k(x, C) |2〉 and 〈|0(x, C) |2〉 from (3.141) and (3.142), we must
specify the initial conditions k(x, 0) and 0(x, 0), which in turn imply initial conditions on
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0± of the form

0+(x, k, 0) =
(,0)11(x, k, 0)

[
(_+(k) −Ω)2 + 62d0

]
(_+(k) −Ω)2 − (_−(k) −Ω)2

−
(,0)22(x, k, 0) (_−(k) −Ω)2

[
(_+(k) −Ω)2 + 62d0

]
62d0

[
(_+(k) −Ω)2 − (_−(k) −Ω)2

] , (3.152)

0−(x, k, 0) =
(,0)11(x, k, 0)

[
(_−(k) −Ω)2 + 62d0

]
(_−(k) −Ω)2 − (_+(k) −Ω)2

−
(,0)22(x, k, 0) (_+(k) −Ω)2

[
(_−(k) −Ω)2 + 62d0

]
62d0

[
(_−(k) −Ω)2 − (_+(k) −Ω)2

] . (3.153)

The corresponding initial conditions for D±(x, |k|, C) are then given by

D+(x, |k|, 0) =
∫

3k̂
(,0)11(x, k, 0)

[
(_+(k) −Ω)2 + 62d0

]
(_+(k) −Ω)2 − (_−(k) −Ω)2

−
(,0)22(x, k, 0) (_−(k) −Ω)2

[
(_+(k) −Ω)2 + 62d0

]
62d0

[
(_+(k) −Ω)2 − (_−(k) −Ω)2

] , (3.154)

D−(x, |k|, 0) =
∫

3k̂
(,0)11(x, k, 0)

[
(_−(k) −Ω)2 + 62d0

]
(_−(k) −Ω)2 − (_+(k) −Ω)2

−
(,0)22(x, k, 0) (_+(k) −Ω)2

[
(_−(k) −Ω)2 + 62d0

]
62d0

[
(_−(k) −Ω)2 − (_+(k) −Ω)2

] . (3.155)

We suppose that the atoms are initially excited near the origin in a volume of linear
dimensions ;B and that there are no photons present in the field. We thus impose the
following initial conditions on the amplitudes:

√
d00(x, 0) =

(
1
c;2B

)3/4
4−|x|

2/2;2B , (3.156)

k(x, 0) = 0 . (3.157)
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The initial conditions inherited by D± are then given by

D+(x, |k|, 0) =
4
c2

(_+(k) −Ω)2 + 62d0

(_−(k) −Ω)2 − (_+(k) −Ω)2
(_−(k) −Ω)2

62d0
4−;

2
B |k|24−|x|

2/;2B , (3.158)

D−(x, |k|, 0) =
4
c2

(_−(k) −Ω)2 + 62d0

(_+(k) −Ω)2 − (_−(k) −Ω)2
(_+(k) −Ω)2

62d0
4−;

2
B |k|24−|x|

2/;2B . (3.159)

Using (3.148), we find that the solutions to the diffusion equations (3.150) with initial
conditions (3.158) and (3.159) are given by
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D+(x, |k|, C) =
4
c2

(_+(k) −Ω)2 + 6d0

(_−(k) −Ω)2 − (_+(k) −Ω)2
(_−(k) −Ω)2

62d0
4−;

2
B |k|2

×
(

;2B

;2B + 4C�+( |k|)

)3/2
4−|x|

2/(;2B+4C�+ ( |k|)) , (3.160)

D−(x, |k|, C) =
4
c2

(_−(k) −Ω)2 + 62d0

(_+(k) −Ω)2 − (_−(k) −Ω)2
(_+(k) −Ω)2

62d0
4−;

2
B |k|2

×
(

;2B

;2B + 4C�−( |k|)

)3/2
4−|x|

2/(;2B+4C�− ( |k|)) . (3.161)

Using (3.141), we see that the average probability densities are given by the formulas

〈|k(x, C) |2〉 = 4
62d0c2

∫ ∞

0
3: :24−;

2
B :

2

×
[
[(_−(:) −Ω) (_+(:) −Ω)]2
(_−(:) −Ω)2 − (_+(:) −Ω)2

(
;2B

;2B + 4C�+(:)

)3/2
4−|x|

2/(;2B+4C�+ (:)

+ [(_+(:) −Ω) (_−(:) −Ω)]
2

(_+(:) −Ω)2 − (_−(:) −Ω)2

(
;2B

;2B + 4C�−(:)

)3/2
4−|x|

2/(;2B+4C�− (:))
]
,

(3.162)

d0〈|0(x, C) |2〉 =
4
c2

∫ ∞

0
3: :24−;

2
B :

2

×
[

(_−(:) −Ω)2
(_−(:) −Ω)2 − (_+(:) −Ω)2

(
;2B

;2B + 4C�+(:)

)3/2
4−|x|

2/(;2B+4C�+ (:))

+ (_+(:) −Ω)2
(_+(:) −Ω)2 − (_−(:) −Ω)2

(
;2B

;2B + 4C�−(:)

)3/2
4−|x|

2/(;2B+4C�− (:))
]
.

(3.163)
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At long times, we find that 〈|0 |2〉 and 〈|k |2〉 decay algebraically according to

d0〈|0(x, C) |2〉 =
�1

C3/2
− �2

C5/2
|x|2 , (3.164)

〈|k(x, C) |2〉 = �3

C3/2
− �4

C5/2
|x|2 (3.165)

where the �8 are given by

�1 =
4
c2

∫ ∞

0
3:

(
:24−;

2
B :

2

(_−(:) −Ω)2 − (_+(:) −Ω)2

)
×

[
(_−(:) −Ω)2

(
;2B

4�+(:)

)3/2
− (_+(:) −Ω)2

(
;2B

4�−(:)

)3/2]
, (3.166)

�2 =
4
;2B c2

∫ ∞

0
3:

(
:24−;

2
B :

2

(_−(:) −Ω)2 − (_+(:) −Ω)2

)
×

[
(_−(:) −Ω)2

(
;2B

4�+(:)

)5/2
− (_+(:) −Ω)2

(
;2B

4�−(:)

)5/2]
, (3.167)

�3 =
4

62d0c2

∫ ∞

0
3: :24−;

2
B :

2
(
(_−(:) −Ω)2(_+(:) −Ω)2
(_−(:) −Ω)2 − (_+(:) −Ω)2

)
×

[(
;2B

4�+(:)

)3/2
−

(
;2B

4�−(:)

)3/2]
, (3.168)

�4 =
4

;2B62d0c2

∫ ∞

0
3: :24−;

2
B :

2
(
(_−(:) −Ω)2(_+(:) −Ω)2
(_−(:) −Ω)2 − (_+(:) −Ω)2

)
×

[(
;2B

4�+(:)

)5/2
−

(
;2B

4�−(:)

)5/2]
. (3.169)

To illustrate the above results, we consider isotropic scattering with � = 1/4c, and
put the dimensionless quantities Ω;B/2 = d0(6/Ω)2 = 1. In Figure 3.3 we plot the time
dependence of 〈|k |2〉 and d0〈|0 |2〉 for |x| = 3;B. We note that the negative values of
these quantities for small times are due to the breakdown of the diffusion approximation.
Figure 3.2 shows the time dependence of d0〈|0(x, C) |2〉 for different values of |x|. As may
be expected, d0〈|0 |2〉 decays faster at larger distances away from the initial volume of
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Figure 3.4: Long-time behavior of the field probability density when |x| = ;B.

excitation. In Figures 3.4 and 3.5 we compare (3.162) and (3.163)) with the asymptotic
formulas (3.164) and (3.165). There is good agreement at long times.

3.7 Discussion

We have investigated the problem of cooperative spontaneous emission in random media.
Our main results are kinetic equations that govern the behavior of the one-photon and
atomic probability densities. Several topics for further research are apparent. An alternative
derivation of (3.136) may be possible using diagrammatic perturbation theory rather than
multiscale asymptotic analysis. This is the case for the classical theory of wave propagation
in randommedia, where a comparative exposition of the two approaches has been presented
in [19]. It would also be of interest to examine the transport of two-photon states in random
media. Here the evolution of the entanglement of an initially entangled state is of particular
importance, especially in applications to communications and imaging. Finally, it would
be of interest to extend our results to polariton transport in random media consisting of
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Figure 3.5: Long-time behavior of the atomic probability density when |x| = ;B.

atoms embedded in a dielectric. In this setting, the systems of equations (3.43) and (3.44)
is no longer nonlocal.

3.8 Appendix

3.8.1 Derivation of (3.23) and (3.24)

0em Here we derive the system of equations (3.23). To proceed, we compute both sides
of the Schrodinger equation 8ℏmC |Ψ〉 = � |Ψ〉. Making use of

|Ψ〉 =
∫

33G
[
k(x, C)i†(x) + d(x)0(x, C)f†(x)

]
|0〉 , (3.170)
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we find that the left hand side is given by

8ℏmC |Ψ〉 =
∫

33G
[
8ℏmCk(x, C)i†(x) + 8ℏmC0(x, C)d(x)f†(x)

]
|0〉 . (3.171)

Next, using the definition (3.19) of the Hamiltonian � and the commutation relations (4.2)
and (4.7), the right hand side becomes

� |Ψ〉 =
∫

33G
[
ℏ2(−Δ)1/2k(x, C)i†(x) + ℏ6d(x)k(x, C)f†(x) + ℏ6d(x)0(x, C)i†(x)

+ ℏΩd(x)0(x, C)f†(x)
]
|0〉 . (3.172)

It follows that

〈0|i(x)8ℏmC |Ψ〉 = 8ℏmCk(x, C) , (3.173)

〈0|i(x)� |Ψ〉 = ℏ2((−Δ)1/2k) (x, C) + ℏ6d(x)0(x, C) . (3.174)

Likewise

〈0|f(x)d(x)8ℏmC |Ψ〉 = 8ℏmC0(x, C) , (3.175)

〈0|f(x)d(x)� |Ψ〉 = ℏ6d(x)k(x, C) + ℏΩd(x)0(x, C) . (3.176)

We thus obtain

8mCk = 2(−Δ)1/2k + 6d(x)0 , (3.177)

8d(x)mC0 = 6d(x)k +Ωd(x)0 , (3.178)

which are (3.23) and (3.24).
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3.8.2 Derivation of Eq. (3.77)

We proceed from (3.73):

n2

[
(−Δx1)1/2 − (−Δx2)1/2

]
Φn (x1, x2) +

√
n
d06

2

l −Ω [[(x1/n) − [(x2/n)]Φn (x1, x2) = 0

(3.179)

and make the change of variables

x1 = x − nx′/2 , (3.180)

x2 = x + nx′/2 . (3.181)

We then Fourier transform the result with respect to x′. The first term becomes

n2

∫
33G′

(2c)3
4−8k·x

′
[
(−Δx1)1/2 − (−Δx2)1/2

]
Φn (x − nx′/2, x + nx′/2)

=n2

∫
33G′

(2c)3
33@1

(2c)3
33@2

(2c)3
4−8k·x

′
48q1·(x−nx′/2)4−8q2·(x+nx′/2) [|q1 | − |q2 |] Φ̃n (q1, q2)

=2

∫
33@

(2c)3
48q·x [| − k + nq/2| − |k + nq/2|] ,̃n (q, k) . (3.182)

Continuing with the second term we have

√
n
d06

2

l −Ω

∫
33G′

(2c)3
4−8k·x

′
[(x/n − x′/2)Φn (x − nx′/2, x + nx′/2) (3.183)

=
√
n
d06

2

l −Ω

∫
33@

(2c)3
48q·x/n [̃(q),n (x, k + q/2) . (3.184)

The third term follows similarly:

√
n
d06

2

l −Ω

∫
33G′

(2c)3
4−8k·x

′
[(x/n + x′/2)Φn (x − nx′/2, x + nx′/2) (3.185)

=
√
n
d06

2

l −Ω

∫
33@

(2c)3
48q·x/n [̃(q),n (x, k − q/2) . (3.186)
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Combining the above yields (3.77):∫
33@

(2c)3
48q·x [| − k + nq/2| − |k + nq/2|] ,̃n (q, k) +

√
n!,n (x, k) = 0 , (3.187)

where

!,n (x, k) = :0

∫
33@

(2c)3
48q·x/n [̃(q) [,n (x, k + q/2) −,n (x, k − q/2)] . (3.188)

3.8.3 Derivation of Eq. (3.90)

We evaluate the second term in (3.88) using (3.86)

:0

∫
33@

(2c)3
48q·X〈[̃(q) [,1(x,X, k + q/2) −,1(x,X, k − q/2)] =

= :2
0

∫
33@

(2c)3
33&

(2c)3
48q·X+8Q·X〈[̃(q)

×
[
[̃(Q) [,0(x, k + q/2 +Q/2) −,0(x, k + q/2 −Q/2)]

|k + q/2 +Q/2| − | − k − q/2 +Q/2| − 8\

− [̃(Q) [,0(x, k − q/2 +Q/2) −,0(x, k − q/2 −Q/2)]
|k − q/2 +Q/2| − | − k + q/2 +Q/2| − 8\

]
〉

= :2
0

∫
33@

(2c)3
�̃ (q − k) (,0(x, k) −,0(x, q))

[
1

|k| − |q| − 8\ −
1

|k| − |q| + 8\

]
,

(3.189)

where we have made use of the relation

〈[̃(q)[̃(Q)〉 = (2c)3�̃ (q)X(q +Q) . (3.190)

Finally we put \ → 0 and use the identity

lim
\→0

(
1

G − 8\ −
1

G + 8\

)
= 2c8X(G) , (3.191)
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to obtain

:2
0

∫
33@

(2c)2
�̃ (q − k) (,0(x, k) −,0(x, q)) X( |k| − |q|) , (3.192)

which yields (3.90).
3.8.4 Derivation of Eq. (3.119)

We begin with the equation satisfied by Φn (x1, x2) = un (x1)u∗n (x2):

n8mCΦn = �n (x1)Φn +
√
n6
√
d0[(x1/n) Φn

−Φn �n (x2) +
√
n6
√
d0[(x2/n)Φn ) . (3.193)

Next we make the change of variables

x1 = x − nx′/2 , (3.194)

x2 = x + nx′/2 , (3.195)

and Fourier transform the result with respect to x′, which leads to

n8mC,n (x, k, C) =
∫

33G′4−8k·x
′ [
�n (x − nx′/2)Φn (x − nx′/2, x + nx′/2)

−Φn (x − nx′/2, x + nx′/2)�n (x + nx′/2)
]

+
√
n6
√
d0

∫
33G′4−8k·x

′
[(x/n − x′/2) Φn (x − nx′/2, x + nx′/2)

+
√
n6
√
d0

∫
33G′4−8k·x

′
[(x/n + x′/2)Φn (x − nx′/2, x + nx′/2) ) .

(3.196)
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The first term on the right hand side of (3.196) becomes∫
33G′4−8k·x

′ [�n (x − nx′/2)Φn (x − nx′/2, x + nx′/2)

−Φn (x − nx′/2, x + nx′/2)�n (x + nx′/2)]

=

∫
33G′

33@1

(2c)3
33@2

(2c)3
4−8k·x

′+8q1·(x−nx′/2)−8q2·(x+nx′/2)

×
[
�̃n (q1)Φ̃n (q1, q2) − Φ̃n (q1, q2) �̃n (q2)

]
=

∫
33@

(2c)3
48x·q

[
�̃n (k/n − q/2),̃n (q, k) − ,̃n (q, k) �̃n (k/n + q/2)

]
. (3.197)

The second term is seen to be

√
n6
√
d0

∫
33G′4−8k·x

′
[(x/n − x′/2) Φn (x − nx′/2, x + nx′/2)

=
√
n6
√
d0

∫
33@

(2c)3
48q·x/n [̃(q) ,n (x, k + q/2) . (3.198)

The third term is handled similarly:

√
n6
√
d0

∫
33G′4−8k·x

′
[(x/n + x′/2)Φn (x − nx′/2, x + nx′/2) )

=
√
n6
√
d0

∫
33@

(2c)3
48q·x/n [̃(q),n (x, k − q/2) . (3.199)

Putting the above together yields (3.119).
3.8.5 Derivation of Eq. (3.136)

The first two terms on the left hand side of (3.136) are easily obtained. The remaining
terms come from considering

〈b)+ (k)6
√
d0

∫
33@

(2c)3
48q·X[̃(q)

[
 ,1(x,X, k + q/2) −,1(x,X, k − q/2) )

]
b+(k)〉

(3.200)
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The first term above is given by

〈b)+ (k)
∫

33@

(2c)3
48q·X[̃(q) ,1(x,X, k + q/2, C)b+(k)〉

=

∫
33@

(2c)3
33&

(2c)3
48q·X+8Q·X〈b)+ (k)[̃(q) 

∑
<,=

F<= (x,Q, k + q/2, C)b< (k + q/2 −Q/2)

× b)= (k + q/2 +Q/2)b+(k)〉

=

∫
33@

(2c)3
�̃ (k − q)

×
∑
<

(62d0)3/2(_+(k) −Ω) ((_+(k) −Ω)0< (x, q, C) − (_< (q) −Ω)0+(x, k, C)
((_< (q) −Ω)2 + 62d0) ((_+(k) −Ω)2 + 62d0) (_< (q) − _+(k) + 8\)

.

(3.201)

The second term becomes

〈b)+ (k)
∫

33@

(2c)3
48q·X[̃(q),1(x,X, k − q/2, C) )b+(k)〉

=

∫
33@

(2c)3
33&

(2c)3
48q·X+8Q·X〈b)+ (k)[̃(q)

∑
<,=

F<= (x,Q, k − q/2, C)b< (k − q/2 −Q/2)

× b)= (k − q/2 +Q/2) )b+(k)〉

=

∫
33@

(2c)3
�̃ (k − q)

×
∑
=

(62d0)3/2(_+(k) −Ω) ((_= (q) −Ω)0+(x, k, C) − (_+(k) −Ω)0= (x, q, C)
((_+(k) −Ω)2 + 62d0) ((_= (q) −Ω)2 + 62d0) (_+(k) − _= (q) + 8\))

.

(3.202)

Subtracting (3.201) and (3.202), letting \ → 0 and using (3.191) yields

〈b)+ (k)6
√
d0

∫
33@

(2c)3
48q·X[̃(q)

[
 ,1(x,X, k + q/2) −,1(x,X, k − q/2) )

]
b+(k)〉

=
2c(62d0)2(_+(k) −Ω)2
(_+(q) −Ω)2 + 62d0)2

∫
33@

(2c)3
�̃ (k − q)X(_+(q) − _+(k)) [0+(x, k) − 0+(x, q)] ,

(3.203)
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where only the < = + contribution is included. Putting everything together we see that 0+
satisfies the equation

1
2
mC0+(x, k, C) +

(
(_+(k) −Ω)2

(_+(k) −Ω)2 + 62d0

)
k̂ · ∇x0+(x, k, C)

+
[

2c(62d0)2(_+(k) −Ω)2
2((_+(k) −Ω)2 + 62d0)2

∫
33@

(2c)3
�̃ (k − q)X(_+(q) − _+(k))

]
0+(x, k, C)

=
2c(62d0)2(_+(k) −Ω)2
2((_+(k) −Ω)2 + 62d0)2

∫
33@

(2c)3
�̃ (k − q)X(_+(q) − _+(k))0+(r, q, C) . (3.204)

The delta function X(_+(q) − _+(k)) can be expressed as

X(_+(q) − _+(k)) = 2X( |q| − |k|)
√
(2 |k| −Ω)2 + 462d0

2(_+(k) −Ω)
. (3.205)

Hence (3.204) becomes

1
2
mC0+(x, k, C) +

(
(_+(k) −Ω)2

(_+(k) −Ω)2 + 62d0

)
k̂ · ∇x0+(x, k, C)

+ `+(k)0+(x, k, C) = `+(k)
∫

3k̂′

(2c)3
�(k, k′)0+(r, k′, C) ,

where

`+(k) =
4c(62d0)2 |_+(k) −Ω|

22((_+(k) −Ω)2 + 62d0)2
√
(2 |k| −Ω)2 + 462d0 |k|2

×
∫

3k̂′

(2c)3
�̃ ( |k| (k̂ − k̂′)) , (3.206)

�(k, k′) = �̃ ( |k| (k̂ − k̂′))∫
3k̂′�̃ ( |k| (k̂ − k̂′))

. (3.207)

This is (3.136). The equation for 0− is derived in the same manner.
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Chapter 4

Kinetic Equations for Two-photon Light
in Random Media

4.1 Introduction

The propagation of light in random media is generally considered within the setting of
classical optics [90]. However, there has been considerable recent interest in phenomena
where quantum effects play a key role [54, 81, 83, 66, 67, 82, 89, 53, 51, 52, 65, 13, 88, 12].
Of particular importance is understanding the impact of multiple scattering on entangled
two-photon states, with an eye towards characterizing the transfer of entanglement from
the field to matter [13, 49, 66, 42, 21, 15, 55]. Progress in this direction can be expected
to lead to advances in spectroscopy [80], imaging [47, 84, 3, 5, 34, 73, 72, 27, 24, 74] and
communications [63, 79, 76] .

The propagation of two-photon light is generally considered either in free space or, in
some cases, with account of diffraction [71, 4] or scattering [41]. In this paper, we consider
the propagation of two-photon light in a randommedium. A step in this direction was taken
in [59], where a model in which the field is quantized and the medium is treated classically
was investigated. The main drawback of that work is that it is does not allow for the
transfer of entanglement between the field and the atoms or between the atoms themselves.
Instead, we treat the problem from first principles, employing a model in which the field
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and the matter are both quantized. We show that for a medium consisting of two-level
atoms, the field and atomic probability amplitudes for a two-photon state obey a system of
nonlocal partial differential equations with random coefficients. Using this result, we find
that at long times and large distances, the corresponding average probability densities in
a random medium can be determined from the solutions to a system of kinetic equations.
These equations follow from the multiscale asymptotics of the average Wigner transform
of the amplitudes in a suitable high-frequency limit [48, 10, 19, 16]. This formulation
of the problem builds on earlier research by the authors on collective emission of single
photons in a random medium of two-level atoms. In that work, we employed a formulation
of quantum electrodynamics in which the field is quantized in real space, thus allowing for
the field and atomic degrees of freedom to be treated on the same footing.

This paper is organized as follows. In section II we formulate our model for the
propagation of two-photon light and derive the equations governing the dynamics of the
field and atomic amplitudes. Section III is concerned with the application of the real-space
formalism to the problem of stimulated emission by a single atom. In section IV we study
the dynamics of a two-photon state and in section V we discuss the problem of stimulated
emission in a randommedium and obtain the governing kinetic equations. Section VI takes
up the general problem of two-photon transport in random media and presents the relevant
kinetic equations. Our conclusions are formulated in section VII. The appendices contain
the details of long calculations.

4.2 Model

We consider the following model for the interaction between a quantized massless scalar
field and a system of two-level atoms. The atoms are taken to be identical, stationary
and sufficiently well separated that interatomic interactions can be neglected. The overall
system is described by the Hamiltonian � = �� + �� + �� . In order to treat the atoms
and the field on the same footing, it is useful to introduce a real-space representation of �.
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The Hamiltonian of the field is of the form

�� = ℏ2

∫
33G(−Δ)1/2i†(x)i(x) , (4.1)

where i is a Bose field that obeys the commutation relations

[i(x), i†(x′)] = X(x − x′) , (4.2)

[i(x), i(x′)] = 0 . (4.3)

where we have neglected the zero-point energy. The nonlocal operator (−Δ)1/2 is defined
by the Fourier integral

(−Δ)1/2 5 (x) =
∫

33:

(2c)3
48k·x |k| 5̃ (k) , (4.4)

5̃ (k) =
∫

33G4−8k·x 5 (x) . (4.5)

We note that (4.1) is equivalent to the usual oscillator representation of �� .
To facilitate the treatment of random media, it will prove convenient to introduce a

continuummodel of the atomic degrees of freedom. The Hamiltonian of the atoms is given
by

�� = ℏΩ

∫
33Gd(x)f†(x)f(x) , (4.6)

where Ω is the atomic resonance frequency, d(x) is the number density of the atoms, and
f is a Fermi field that obeys the anticommutation relations

{f(x), f†(x′)} = 1
d(x) X(x − x′) , (4.7)

{f(x), f(x′)} = 0 . (4.8)

The Hamiltonian describing the interaction between the field and the atoms is taken to
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be

�� = ℏ6

∫
33Gd(x)

(
i†(x)f(x) + f†(x)i(x)

)
, (4.9)

where 6 is the strength of the atom-field coupling. Here we have made the Markovian
approximation, in which the coupling constant is independent of the frequency of the
photons or positions of the atoms, and have imposed the rotating wave approximation
(RWA).

We suppose that the system is in a two-photon state of the form

|Ψ〉 =
∫

33G13
3G2

(
k2(x1, x2, C)i†(x1)i†(x2) + k1(x1, x2, C)d(x1)f†(x1)i†(x2)

(4.10)

+ 0(x1, x2, C)d(x1)d(x2)f†(x1)f†(x2)
)
|0〉 ,

where |0〉 is the combined vacuum state of the field and the ground state of the atoms.
Here the atomic amplitude 0(x1, x2, C) is the probability amplitude for exciting two atoms
at the points x1 and x2 at time C, the one-photon amplitude k1(x1, x2, C) is the probability
amplitude for exciting an atom at x1 and creating a photon at x2, and the two-photon
amplitude k2(x1, x2, C) is the probability amplitude for creating photons at x1 and x2. The
functions k2 and 0 are symmetric and antisymmetric, respectively:

k2(x2, x1, C) = k2(x1, x2, C) , 0(x2, x1, C) = −0(x1, x2, C) , (4.11)

consistent with the bosonic and fermionic character of the corresponding fields.
The state |Ψ〉 is the most general two-photon state within the RWA. In addition, |Ψ〉 is

normalized so that 〈Ψ|Ψ〉 = 1. It follows from (4.2) and (4.7) that the amplitudes obey the
normalization condition∫

33G13
3G2

(
2|k2(x1, x2, C) |2 + d(x1) |k1(x1, x2, C) |2 + 2d(x1)d(x2) |0(x1, x2, C) |2

)
= 1 .

(4.12)
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If the amplitudes 0(x1, x2, C), k1(x1, x2, C) andk2(x1, x2, C) are factorizable as functions
of x1 and x2, then there are no quantum correlations and the state |Ψ〉 is not entangled.
Otherwise |Ψ〉 is entangled. If k2 alone is not factorizable, we say that |Ψ〉 is an entangled
two-photon state.

The dynamics of |Ψ〉 is governed by the Schrodinger equation

8ℏmC |Ψ〉 = � |Ψ〉 . (4.13)

Projecting onto the states i†(x) |0〉 and f†(x) |0〉 and making use of (4.2) and (4.7), we
arrive at the following system of equations obeyed by 0, k1 and k2:

8mCk2(x1, x2, C) = 2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C)

+ 6
2
(d(x1)k1(x1, x2, C) + d(x2)k1(x2, x1, C)) , (4.14)

d(x1)8mCk1(x1, x2, C) = 26d(x1)k2(x1, x2, C) + d(x1)
[
2(−Δx2)1/2 +Ω

]
k1(x1, x2, C)

− 26d(x1)d(x2)0(x1, x2, C) , (4.15)

d(x1)d(x2)8mC0(x1, x2, C) = d(x1)d(x2)
6

2
(k1(x2, x1, C) − k1(x1, x2, C))

+ 2Ωd(x1)d(x2) 0(x1, x2, C) . (4.16)

The overall factors of d(x) in the above will be cancelled as necessary. The details of the
calculations are presented in Appendix A.

4.3 Single-Atom Stimulated Emission

In this sectionwe consider the problem of stimulated emission by a single atom. We assume
that the atom is located at the origin and put d(x) = X(x). Thus the system (4.14)–(4.16)
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becomes

8mCk2(x1, x2, C) = 2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C)

+ 6
2
(X(x1)k1(x1, x2, C) + X(x2)k1(x2, x1, C)) , (4.17)

X(x1)8mCk1(x1, x2, C) = 26X(x1)k2(x1, x2, C) + X(x1)
[
2(−Δx2)1/2 +Ω

]
k1(x1, x2, C) ,

(4.18)

where the term X(x1)X(x2)0(x1, x2, C) does not contribute due to the antisymmetry of 0.
We assume that initially there is only one photon present in the system, which means that
the initial conditions for the amplitudes k1 and k2 are given by

k1(0, x, 0) = 48k0·x ,

k2(x1, x2, 0) = 0 ,

where k0 is the wavevector of the photon. Note that the amplitude of k1 is set to unity for
convenience. To proceed, we take the Laplace transform with respect to C and the Fourier
transforms with respect to x1 and x2 of (4.17) and (4.18). We thus obtain

8Ik2(k1, k2, I) = [2 |k1 | + 2 |k2 |] k2(k1, k2) +
6

2
[k1(k1, I) + k1(k2, I)] ,

(4.19)

8 [Ik1(k, I) − X(k − k0)] = 26
∫

33:′k2(k′, k, I) + [2 |k| +Ω] k1(k, I) . (4.20)

Here we have employed the Fourier transform convention

5̃ (k) =
∫

4−8k·x 5 (x)33G . (4.21)

and have defined the Laplace transform by

0(I) =
∫ ∞

0
3C4−IC0(C) , (4.22)
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where we denote a function and its Laplace transform by the same symbol. Solving (4.19)
and (4.20) leads to an integral equation for k1(k, I) of the form

k1(k, I) =
X(k − k0)

I + 8(2 |k| +Ω) − 8Σ(k, I)

+ 862

I + 8(2 |k| +Ω) − 8Σ(k, I)

∫
33:′

k1(k′, I)
(2 |k′| + 2 |k|) − 8I , (4.23)

where

Σ(k, I) = 62
∫

33:′
1

(2 |k′| + 2 |k|) − 8I − 8n , (4.24)

and n → 0+. In order to evaluate the integral in (4.23), we make the pole approximation
where near resonance we replace Σ(k, I) with Σ(k,−8(Ω + 2 |k|)). We note that this
quantity is independent of k and I, and so we will denote it by Σ. For consistency, we also
replace I by −8(Ω + 2 |k|) under the integral in (4.23). This approximation arises in the
Wigner-Weisskopf theory of spontaneous emission. In addition, we split Σ into its real and
imaginary parts:

ReΣ = Xl , (4.25)

ImΣ = Γ/2 . (4.26)

We can calculate Γ and Xl by making use of the identity

1
2 |k| −Ω − 8n = %

1
2 |k| −Ω + 8cX(2 |k| −Ω) . (4.27)

We find that

Γ = 262c

∫
33:

(2c)3
X(2 |k| −Ω) (4.28)

=
62Ω2

c23 , (4.29)

and
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4.4 Constant Density

In this section we consider the case of a homogeneous medium and set d(x) = d0, where
d0 is constant. It is useful to define the function k̃1(x1, x2, C) = k1(x2, x1, C) and write
(4.16) as a 4 × 4 symmetric system. If we further define the vector

	(x1, x2, t) =



√
2k2(x1, x2, C)√
d0/2k1(x1, x2, C)√
d0/2k̃1(x1, x2, C)√
2d00(x1, x2, C)


, (4.30)

then (4.16) can be written as

8mC	 = A	 , (4.31)

where

� =


2(−Δx1)1/2 + 2(−Δx2)1/2 6

√
d0 6

√
d0 0

6
√
d0 2(−Δx2)1/2 +Ω 0 −6√d0

6
√
d0 0 2(−Δx1)1/2 +Ω 6

√
d0

0 −6√d0 6
√
d0 2Ω


. (4.32)

This definition of 	 has the advantage that the matrix � is symmetric. The Fourier
transform of (4.31) with respect to the variables x1 and x2 is given by

8mC	̂ = �̂	̂ (4.33)

where

�̂(k1, k2) =


2 |k1 | + 2 |k2 | 6

√
d0 6

√
d0 0

6
√
d0 2 |k2 | +Ω 0 −6√d0

6
√
d0 0 2 |k1 | +Ω 6

√
d0

0 −6√d0 6
√
d0 2Ω


. (4.34)
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The matrix �̂ has eigenvalues

_1 = 11 −
√
12 − 2

√
13

2
,

_2 = 11 +
√
12 − 2

√
13

2
,

_3 = 11 −
√
12 + 2

√
13

2
,

_4 = 11 +
√
12 + 2

√
13

2
,

where

11 = Ω +
2 |k1 |

2
+ 2 |k2 |

2
, (4.35)

12 = 2Ω2 + 8 62d0 + 22 |k1 |2 + 22 |k2 |2 − 2Ω 2 |k1 | − 2Ω 2 |k2 | , (4.36)

13 = Ω
4 − 2Ω3 2 |k1 | − 2Ω3 2 |k2 | +Ω2 22 |k1 |2 + 4Ω2 22 |k1 | |k2 | +Ω2 22 |k2 |2

+ 8Ω2 62d0 − 2Ω 23 |k1 |2 |k2 | − 2Ω 23 |k1 | |k2 |2 − 8Ω 2 62d0 |k1 |
− 8Ω 2 62d0 |k2 | + 24 |k1 |2 |k2 |2 + 4 22 62d0 |k1 |2 + 4 22 62d0 |k2 |2. (4.37)
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The components of the associated eigenvectors v8 (k1, k2) are given by

E81 = −
2Ω3 − 2Ω 62d0 + 2Ω2 2 |k1 | + 2Ω2 2 |k2 |

62d0 (2 |k1 | − 2 |k2 |)

+ −2 6
2d0 |k1 | − 2 62d0 |k2 | + 2Ω 22 |k1 | |k2 |

62d0 (2 |k1 | − 2 |k2 |)
−
(4Ω + 2 |k1 | + 2 |k2 |) _2

8

62d0 (2 |k1 | − 2 |k2 |)

+
_8

(
5Ω2 − 2 62d0 + 3Ω 2 |k1 | + 3Ω 2 |k2 | + 22 |k1 | |k2 |

)
62d0 (2 |k1 | − 2 |k2 |)

+
_3
8

62d0 (2 |k1 | − 2 |k2 |)
,

E82 =
_2
8

6
√
d0 (2 |k1 | − 2 |k2 |)

+
2

(
Ω2 + 2 |k1 |Ω − 62d0

)
6
√
d0 (2 |k1 | − 2 |k2 |)

− (3Ω + 2 |k1 |) (_8)
6
√
d0 (2 |k1 | − 2 |k2 |)

,

(4.38)

E83 =
_2
8

6
√
d0 (2 |k1 | − 2 |k2 |)

+
2

(
Ω2 + 2 |k2 |Ω − 62d0

)
6
√
d0 (2 |k1 | − 2 |k2 |)

− (3Ω + 2 |k2 |) (_8)
6
√
d0 (2 |k1 | − 2 |k2 |)

,

(4.39)

E84 = 1. (4.40)

It follows that the solution to (4.33) is

	(x1, x2, t) =
4∑

i=1

∫
d3k1

(2c)3
d3k2

(2c)3
eix1·k1+ix2·k2Ci(k1, k2)e−ig√d0_i (k1,k2)tvi(k1, k2) , (4.41)

where the values �8 are solutions to the linear system

	̂(k1, k2, 0) =
4∑
8=1

v8 (k1, k2)�8 (k1, k2). (4.42)

In order to study the emission of photons, we assume that initially there are two localized
volumes of excited atoms of linear size ;B centered at the points r1 and r2. The initial
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Figure 4.1: Probability densitieswith distances |x1−r1 | = |x2−r1 | = |x1−r2 | = |x2−r2 | = ;B

amplitudes are taken to be

k2(x1, x2, 0) = 0 , (4.43)

k1(x1, x2, 0) = 0 , (4.44)

0(x1, x2, 0) =
(

1
c;2B

)3/2 (
4−|x1−r1 |2/2;2B 4−|x2−r2 |2/2;2B − 4−|x2−r1 |2/2;2B 4−|x1−r2 |2/2;2B

)
. (4.45)

Figure (4.1) illustrates the time dependence of k1, k2 and 0, where we have set the di-
mensionless quantities Ω/√d06 = 2/;B

√
d06 = 1. Note that the atomic amplitude is

antisymmetric, consistent with (4.7) and that it corresponds to an entangled state. We ob-
serve that the amplitudes oscillate and decay in time. Moreover, the atomic and one-photon
amplitudes are out of phase with one another, and the two-photon amplitude is an order of
magnitude smaller.

83



4.5 Stimulated Emission in Random Media

4.5.1 Kinetic Equations

In this section we consider stimulated emission in a random medium. We suppose that
there is at most one atomic excitation and that there are at most two photons present in the
field. Thus we set the 0(x1, x2, C) = 0 and study the dynamics of k1 and k2. The system
(4.16) then becomes

8mCk2(x1, x2, C) = 2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C)

+ 6
2
(d(x1)k1(x1, x2, C) + d(x2)k1(x2, x1, C)) ,

8mCk1(x1, x2, C) = 26k2(x1, x2, C) +
[
2(−Δx2)1/2 +Ω

]
k1(x1, x2, C) ,

0 = k1(x2, x1, C) − k1(x1, x2, C) , (4.46)

which can be rewritten as the pair of equations

8mCk2(x1, x2, C) = 2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C)

+ 6
2
(d(x1) + d(x2))k1(x1, x2, C)) ,

8mCk1(x1, x2, C) = 26k2(x1, x2, C) +
[ 2
2
(−Δx1)1/2 +

2

2
(−Δx2)1/2 +Ω

]
k1(x1, x2, C) .

(4.47)

We will assume that the number density d(x) is of the form

d(x) = d0(1 + [(x)) , (4.48)

where d0 is a constant and [ is a real-valued random field. We assume that the correlations
of [ are given by

〈[(x)〉 = 0 , (4.49)

〈[(x1)[(x2)〉 = � (x1 − x2). (4.50)
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where � is the two-point correlation function and 〈· · · 〉 denotes statistical averaging. We
further assume that the medium is statistically homogeneous and isotropic, so that �
depends only upon the quantity |x − y|. If we define

	(x1, x2, t) =
[ √

2k2(x1, x2, C)
√
d0k1(x1, x2, C)

]
(4.51)

then the above system of equation can be rewritten as

8mC	(x1, x2, t) = A(x1, x2)	(x1, x2, t) + g
√
d0
2
([(x1) + [(x2))K	(x1, x2, t) , (4.52)

where

�(x1, x2) =
[
2(−Δx1)1/2 + 2(−Δx2)1/2

√
26√d0√

26√d0
2
2 (−Δx1)1/2 + 2

2 (−Δx2)1/2 +Ω

]
, (4.53)

 =

[
0 1
0 0

]
. (4.54)

To derive a kinetic equation in the high-frequency limit, we rescale the variables
C → C/n , x1 → x1/n , and x2 → x2/n . Additionally, we assume that the randomness is
sufficiently weak so that the correlation function � is $ (n). Eq. (4.52) thus becomes

8nmC	n (x1, x2, t) = �n (x1, x2)	n (x1, x2, t)

+
√
n6

√
d0
2
([(x1/n) + [(x2/n)) 	n (x1, x2, t) , (4.55)

where

�n (x1, x2) =
[
n2(−Δx1)1/2 + n2(−Δx2)1/2

√
26√d0√

26√d0 n 22 (−Δx1)1/2 + n 22 (−Δx2)1/2 +Ω

]
. (4.56)

Next we introduce the scaled Wigner transform, which provides a phase space repre-
sentation of the correlation functions of the various amplitudes. The Wigner transform
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,n (x1, k1, x2, k2, C) is defined by

,n (x1, k1, x2, k2, C) =
∫

33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2	n (x1 − nx′1/2, x2 − nx′2/2, t)

×	†(x1 + nx′1/2, x2 + nx′2/2, t) ,
(4.57)

where † denotes the hermitian conjugate. The Wigner transform is real-valued and its
diagonal elements are related to the probability densities |k1n |2 and |k2n |2 by

2|k2n (x1, x2, C) |2 =
∫

33:13
3:2(,n (x1, k1, x2, k2, C))11 , (4.58)

d0 |k1n (x1, x2, C) |2 =
∫

33:13
3:2(,n (x1, k1, x2, k2, C))22. (4.59)

The above factor of two is due to the symmetry of the function k2(x1, x2). The off diagonal
elements are related to correlations between the amplitudes:√

2d0k2n (x1, x2, C)k1
∗
n (x1, x2, C) =

∫
33:13

3:2(,n (x1, k1, x2, k2, C))12. (4.60)

As shown in Appendix B, the Wigner transform satisfies the Liouville equation

8nmC,n (x1, k1, x2, k2, C)

=

∫
33:′1
(2c)3

33:′2
(2c)3

48x1·k′1+8x2·k′2 �̂(k1 − nk′1/2, k2 − nk′2/2),̂n (k′1, k1, k′2, k2, C)

−
∫

33:′1
(2c)3

33:′2
(2c)3

48x1·k′1+8x2·k′2,̂n (k′1, k1, k′2, k2, C) �̂(k1 + nk′1/2, k2 + nk′2/2)

+
√
n6

√
d0
2
!
(0)
1 ,n (x1, k1, x2, k2, C) +

√
n6

√
d0
2
!
(0)
2 ,n (x1, k1, x2, k2, C) , (4.61)
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where the operators ! (0)1 and ! (0)2 are given by

!
(0)
1 ,n =

∫
33@

(2c)3
48q·x1/n [̂(q) [ ,n (x1, k1 + q/2, x2, k2, C) (4.62)

−,n (x1, k1 − q/2, x2, k2, C) )
]
, (4.63)

!
(0)
2 ,n =

∫
33@

(2c)3
48q·x2/n [̂(q) [ ,n (x1, k1, x2, k2 + q/2, C) (4.64)

−,n (x1, k1, x2, k2 − q/2, C) )
]
, (4.65)

while �̂ is defined

�̂(k1, k2) =
[
2 |k1 | + 2 |k2 |

√
2d06√

2d06 (2 |k1 | + 2 |k2 |)/2 +Ω

]
, (4.66)

and the Fourier transform ,̂ is defined as

,̂n (k′1, k1, k′2, k2, C) =
∫

33G13
3G24

−8x1·k′1−8x2·k′2,n (x1, k1, x2, k2, C). (4.67)

We study the behavior of,n in the high frequency limit n → 0. To this end, we introduce
a multiscale expasion of the Wigner transform of the form

,n (x1,X1, k1, x2,X2, k2, C) = ,0(x1, k1, x2, k2, C) +
√
n,1(x1,X1, k1, x2,X2, k2, C)

+ n,2(x1,X1, k1, x2,X2, k2, C) + · · · , (4.68)

where X1 = x1/n and X2 = x2/n are fast variables and ,0 is assumed to be both deter-
ministic and independent of the fast variables. We treat the variables x1,X1 and x2,X2 as
independent and make the replacements

∇x8 → ∇x8 +
1
n
∇X8

, 8 = 1, 2 . (4.69)
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Hence the Liouville equation becomes

8nmC,n (x1,X1, k1, x2,X2, k2, C)

=

∫
33:′1
(2c)3

33:′2
(2c)3

33 1

(2c)3
33 2

(2c)3
48x1·k′1+8x2·k′2+8X1·K1+8X2·K2

× �̂(k1 − nk′1/2 −K1/2, k2 − nk′2/2 −K2/2),̂n (k′1,K1, k1, k′2,K2, k2, C)

−
∫

33:′1
(2c)3

33:′2
(2c)3

33 1

(2c)3
33 2

(2c)3
48x1·k′1+8x2·k′2+8X1·K1+8X2·K2

× ,̂n (k′1,K1, k1, k′2,K2, k2, C) �̂(k1 − nk′1/2 +K1/2, k2 − nk′2/2 +K2/2)

+
√
n6

√
d0
2
!1,n (x1,X1, k1, x2,X2, k2, C) +

√
n6

√
d0
2
!2,n (x1,X1, k1, x2,X2, k2, C) ,

(4.70)

where

!1, =

∫
33@

(2c)3
48q·X1 [̂(q) [ , (x1,X1, k1 + q/2, x2,X2, k2, C)

−,1(x1,X1, k1 − q/2, x2,X2, k2, C) )
]
, (4.71)

!2, =

∫
33@

(2c)3
48q·X2 [̂(q) [ , (x1,X1, k1, x2,X2, k2 + q/2, C)

−,1(x1,X1, k1, x2,X2, k2 − q/2, C) )
]
, (4.72)

and the Fourier transform ,̂n (k′1,K1, k1, k′2,K2, k2, C) is defined

,̂n (k′1,K1, k1, k′2,K2, k2, C)

=

∫
33G13

3G23
3-13

3-24
−8x1·k′1−8X1·K1−8x2·k′2−8X2·K2,n (x1,X1, k1, x2,X2, k2, C) . (4.73)

Substituting (4.68) into (4.70) and equating terms of the same order in
√
n leads to a

hierarchy of equations. At $ (1) we have

�̂(k1, k2),0(x1, k1, x2, k2, C) −,0(x1, k1, x1, k2, C) �̂(k1, k2) = 0. (4.74)
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Since �̂ is symmetric it can be diagonalized by a unitary transformation. The eigenvalues
and eigenvectors of �̂ are given by

_±(k1, k2) =
33 (k1, k2) +Ω ±

√
(3 (k1, k2) −Ω)2 + 862d0

2
, (4.75)

v±(k1, k2) =
1√

(_±(k1, k2) − 3 (k1, k2) −Ω)2 + 262d0

[
_±(k1, k2) − 3 (k1, k2) −Ω

6
√

2d0

]
,

(4.76)

where

3 (k1, k2) =
2( |k1 | + |k2 |)

2
. (4.77)

Evidently,0 is also diagonal in this basis and can be expanded as

,0(x1, k1, x2, k2, C) = 0+(x1, k1, x2, k2, C)v+(k1, k2)v)+ (k1, k2)
+ 0−(x1, k1, x2, k2, C)v−(k1, k2)v)−(k1, k2). (4.78)

At order $ (
√
n) we have

�̂(k1 −K1/2, k2 −K2/2),̂1(x1,K1, k1, x2,K2, k2)
− ,̂1(k′1,K1, k1, k′2,K2, k2) �̂(k1 +K2/2, k2 +K2/2)

= 6

√
d0
2
(2c)3 ([̂(K1)X(K2) + [̂(K2)X(K1))

×
[
,0(x1, k1 −K1/2, x2, k2 −K2/2) ) −  ,0(x1, k1 +K1/2, x2, k2 +K2/2)

]
.

(4.79)
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We can then decompose ,̂1 as

,̂1(x1,K1, k1, x2,K2, k2)
=

∑
8, 9

F8, 9 (x1,K1, k1, x2,K2, k2)v8 (k1 −K1/2, k2 −K2/2)v)9 (k1 +K1/2, k2 +K2/2).

(4.80)

Multiplying (4.79) on the left by v)< (k1 − K1/2, k2 − K2/2) and the right by v= (k1 +
K1/2, k2 +K2/2), we arrive at

(_< (k1 −K1/2, k2 −K2/2) − _= (k1 +K1/2, k2 +K2/2) + 8\)
× F<,= (x1,K1, k1, x2,K2, k2)

=6

√
d0
2
(2c)3 {[(K1)X(K2) + [(K2)X(K1)}

×
[
0< (k1 −K1/2, k2 −K2/2) <,= (k1 −K1/2, k2 −K2/2, k1 +K1/2, k2 +K2/2)

]
−6

√
d0
2
(2c)3 {[(K1)X(K2) + [(K2)X(K1)}

×
[
0= (k1 +K1/2, k2 +K2/2) <,= (k1 +K1/2, k2 +K2/2, k1 −K1/2, k2 −K2/2)

]
,

(4.81)

where \ → 0 is a small positive regularizing parameter and

 <,= (k1, k2, q1, q2)
= v)< (k1, k2) v= (q1, q2)

=
6
√

2d0(_< (k1, k2) − 3 (k1, k2) −Ω)√
(_< (k1, k2) − 3 (k1, k2) −Ω)2 + 262d0

√
(_= (q1, q2) − 3 (q1, q2) −Ω)2 + 262d0

.

(4.82)
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At order $ (n) we find that

8mC,0(x1, k1, x2, k2, C) = !,2(x1,X1, k1, x2,X2, k2, C)
− " (x1, k1, x2, k2),0(x1, k1, x2, k2, C) −,0(x1, k1, x2, k2, C)" (x1, k1, x2, k2)
+ !1,1 + !2,1, (4.83)

where

!,2(x1,X1, k1, x2,X2, k2, C)

=

∫
33 1

(2c)3
33 2

(2c)3
48X1·K1+8X2·K2

[
�̂(k1 −K1/2, k2 −K2/2),̂2(x1,K1, k1, x2,K2, k2, C)

−,̂2(x1,K1, k1, x2,K2, k2, C) �̂(k1 +K1/2, k2 +K2/2)
]
,

" (x1, k1, x2, k2) =
8

2

[
2k̂1 · ∇x1 + 2k̂2 · ∇x2 0

0 2
2 k̂1 · ∇x1 + 2

2 k̂2 · ∇x2

]
. (4.84)

In order to obtain an equation satisfied by 0±, we multiply this equation on the left by
v)+ (k1, k2) (v)−(k1, k2)) and on the right by v+(k1, k2) (v−(k1, k2)) and take the average.
Additionally, we assume that 〈v)±!,2v±〉 is identically zero, which corresponds to ,2

being statistically stationary with respect to the fast variables X1 and X2. This relation
closes the hierarchy of equations and leads to the kinetic equation

1
2
mC0± + 5±(k1, k2)

(
k̂1 · ∇x1 + k̂2 · ∇x2

)
0± + `1±0± + `2±0±

= `1±

∫
3k̂′ �(k̂1, k̂′, |k1 |)0±( |k1 |k̂′, k2) + `2±

∫
3k̂′ �(k̂2, k̂′, |k2 |)0±(k1, |k2 |k̂′) ,

(4.85)

where the scattering coefficients `8±, the scattering kernel �, and the functions 5± are
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defined as

`1±(k1, k2) =
62d0c

2
 ±,±(k1, k2, k1, k2)2

2
4

���3 (k1, k2) −Ω + 3
2

√
(3 (k1, k2) −Ω)2 + 862d0

���
× |k1 |2

∫
3k̂′

(2c)3
�̂ ( |k1 | (k̂1 − k̂′)) , (4.86)

`2±(k1, k2) =
62d0c

2
 ±,±(k1, k2, k1, k2)2

2
4

���3 (k1, k2) −Ω + 3
2

√
(3 (k1, k2) −Ω)2 + 862d0

���
× |k2 |2

∫
3k̂′

(2c)3
�̂ ( |k2 | (k̂2 − k̂′)) , (4.87)

�(k̂, k̂′, :) = �̂ (: (k̂ − k̂′))∫
3k̂′�̂ (: (k̂ − k̂′))

, (4.88)

5±(k1, k2) =
(_±(k1, k2) − 3 (k1, k2) −Ω)2 + 62d0

(_±(k1, k2) − 3 (k1, k2) −Ω)2 + 262d0
. (4.89)

Some details of the derivation of (4.85) are included in Appendix C.
4.5.2 Diffusion Approximation

We now consider the diffusion limit of the kinetic equation (4.85). The diffusion
approximation (DA) to a kinetic equation of the form

1
2
mC � + 51( |k1 |, |k2 |)k̂1 · ∇x1 � + 52( |k1 |, |k2 |)k̂2 · ∇x2 � + `1( |k1 |, |k2 |)� + `2( |k1 |, |k2 |)�

= `1( |k1 |, |k2 |)
∫

3k̂′ �1(k̂1, k̂′)� ( |k1 |k̂′, k2)

+ `2( |k1 |, |k2 |)
∫

3k̂′ �2(k̂2, k̂′)� (k1, |k2 |k̂′) , (4.90)

is obtained by expanding � into spherical harmonics as

� =
1

16c2D +
3

16c2 J1 · k̂1 +
3

16c2 J2 · k̂2 + · · · , (4.91)
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where

D(x1, x2, C) =
∫

3k̂13k̂2 � (x1, k̂1, x2, k̂2, C) , (4.92)

J1(x1, x2, C) =
∫

3k̂13k̂2 k̂1� (x1, k̂1, x2, k̂2, C) , (4.93)

J2(x1, x2, C) =
∫

3k̂13k̂2 k̂2� (x1, k̂1, x2, k̂2, C) . (4.94)

Integrating (4.90) with respect to k̂1 and k̂2 we arrive at

1
2
mCD + 51∇x1 · J1 + 52∇x2 · J2 = 0. (4.95)

If instead we multiply by k̂1 and integrate we obtain

1
2
mCJ1 + 51∇x1 · f1 + 52∇x2 · f3 + `1(1 − 61)J1 = 0 , (4.96)

where

61 =

∫
3k̂1 k̂1 · k̂′1�1(k̂1, k̂′1) , (4.97)

and

f1(x1, x2, C) =
∫

3k̂13k̂2 k̂1 ⊗ k̂1� (x1, k̂1, x2, k̂2, C) , (4.98)

f3(x1, x2, C) =
∫

3k̂13k̂2 k̂1 ⊗ k̂2� (x1, k̂1, x2, k̂2, C) . (4.99)

Similarly, multiplying (4.90) by k̂2 and carrying out the indicated integrals leads to

1
2
mCJ2 + 52∇x2 · f2 + 52∇x2 · f3 + `2(1 − 62)J2 = 0 , (4.100)
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where

62 =

∫
3k̂2 k̂2 · k̂′2�2(k̂2, k̂′2) (4.101)

and

f2(x1, x2, C) =
∫

3k̂23k̂2 k̂1 ⊗ k̂2� (x1, k̂1, x2, k̂2, C) . (4.102)

Next we substitute (4.91) into (4.98), (4.99), and (4.102) and carry out the indicated
integrations. We find that

∇x1 · f1 =
1
3
∇x1D , (4.103)

∇x2 · f2 =
1
3
∇x2D , (4.104)

∇x1 · f3 = ∇x2 · f3 = 0 . (4.105)

Using the above results, (4.96) and (4.100) become

1
2
mCJ1 + `1(1 − 61)J1 = −

51
3
∇x1D , (4.106)

1
2
mCJ2 + `2(1 − 62)J2 = −

52
3
∇x2D . (4.107)

At long times (C � 1/[2(1 − 61,2)`1,2]), the first terms on the right-hand sides of (4.106)
and (4.107) can be neglected. Substituting the resulting expressions for J1 and J2 into
(4.95), we obtain the diffusion equation obeyed by D:

mCD − �1Δx1D − �2Δx2D = 0 . (4.108)

Here the diffusion coefficients are defined by

�8 =
2 5 2
8

3`8 (1 − 68)
, 8 = 1, 2 . (4.109)
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In the case of white noise disorder, where the correlation function � (x) = �0X(x), with
constant �0, the phase functions �1,2 = 1/4c, which corresponds to isotropic scattering.

The solution to (4.108) for an infinite medium is given by

D(x1, x2, C)

=
1

(4c�1C)3/2(4c�2C)3/2

∫
33G′13

3G′2 exp

[
−
|x1 − x′1 |

2

4�1C
−
|x2 − x′2 |

2

4�2C

]
D(x′1, x

′
2, 0) .

(4.110)

Making use of the above results, we see that each of the modes 0± satisfy (4.85) and
thus their first angular moments, which are defined by

D±(x1, :1, x2, :2, C) =
∫

3k̂13k̂20±(x1, :1k̂1, x2, :2k̂2, C) , (4.111)

satisfy the equations

mCD± − �1,±Δx1D± − �2,±Δx2D± = 0 , (4.112)

where

�8,± =
2 5 2
±

3`8±
. (4.113)

We assume that initially there are two photons present in the field localized around the
points r1 and r2 in a volume of linear size ;B. The corresponding initial conditions are
given by

k2(x1, x2, 0) =
1
;3B

[
4−|x1−r1 |2/2;2B 4−|x2−r2 |2/2;2B + 4−|x1−r2 |2/2;2B 4−|x2−r1 |2/2;2B

]
, (4.114)

k1(x1, x2, 0) = 0 . (4.115)

Note that k2 corresponds to an entangled two-photon state. These initial conditions imply
initial conditions for the Wigner transform ,0 from (4.57), which in turn imply initial
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conditions for the modes 0± from (4.78):

0−(x1, k1, x2, k2, 0)

=
1
c3 W−( |k1 |, |k2 |)

[
4−|x1−r1 |2/;2B 4−|x2−r2 |2/;2B + 4−|x1−r2 |2/;2B 4−|x2−r1 |2/;2B

+ 4−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B 4−8k1·(r1−r2)−8k2·(r2−r1)

+4−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B 4−8k1·(r2−r1)−8k2·(r1−r2)
]
, (4.116)

0+(x1, k1, x2, k2, 0)

=
1
c3 W+( |k1 |, |k2 |)

[
4−|x1−r1 |2/;2B 4−|x2−r2 |2/;2B + 4−|x1−r2 |2/;2B 4−|x2−r1 |2/;2B

+ 4−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B 4−8k1·(r1−r2)−8k2·(r2−r1)

+4−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B 4−8k1·(r2−r1)−8k2·(r1−r2)
]
, (4.117)

where

W±(:1, :2) =
(_±(:1, :2) − 3 (:1, :2) −Ω)2 + 262d0

(_±(:1, :2) − 3 (:1, :2) −Ω)2 − (_∓(:1, :2) − 3 (:1, :2) −Ω)2
4−;

2
B :

2
1−;

2
B :

2
2 .

(4.118)

The initial conditions for the first angular moments D± are then found using (4.111):

D−(x1, :1, x2, :2, 0)

=
16W−(:1, :2)

c

[
4−|x1−r1 |2/;2B 4−|x2−r2 |2/;2B + 4−|x1−r2 |2/;2B 4−|x2−r1 |2/;2B

+ 24−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
. (4.119)

96



D+(x1, :1, x2, :2, 0)

=
16W+(:1, :2)

c

[
4−|x1−r1 |2/;2B 4−|x2−r2 |2/;2B + 4−|x1−r2 |2/;2B 4−|x2−r1 |2/;2B

+ 24−|x1−(r1+r2)/2|2/;2B 4−|x2−(r1+r2)/2|2/;2B sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
, (4.120)

The above initial conditions are then inserted into (3.148) and the Gaussian integrals
carried out. This results in the following formulas for the angular moments D±:

D−(x1, :1, x2, :2, C)

=
16W−(:1, :2)

c

(
;2B

;2B + 4C�1,−

)3/2 (
;2B

;2B + 4C�2,−

)3/2

×
[
4−|x1−r1 |2/(;2B+4C�1,−)4−|x2−r2 |2/(;2B+4C�2,−) + 4−|x1−r2 |2/(;2B+4C�1,−)4−|x2−r1 |2/(;2B+4C�2,−)

(4.121)

+24−|x1−(r1+r2)/2|2/(;2B+4C�1,−)4−|x2−(r1+r2)/2|2/(;2B+4C�2,−) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

(4.122)

D+(x1, :1, x2, :2, C)

=
16W+(:1, :2)

c

(
;2B

;2B + 4C�1,+

)3/2 (
;2B

;2B + 4C�2,+

)3/2

×
[
4−|x1−r1 |2/(;2B+4C�1,+)4−|x2−r2 |2/(;2B+4C�2,+) + 4−|x1−r2 |2/(;2B+4C�1,+)4−|x2−r1 |2/(;2B+4C�2,+)

(4.123)

+24−|x1−(r1+r2)/2|2/(;2B+4C�1,+)4−|x2−(r1+r2)/2|2/(;2B+4C�2,+) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
.

(4.124)

Finally, combining the above with (4.58), (4.78) and (4.111), we see that the average
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probability densities are given by

d0〈|k1(x1, x2, C) |2〉

=
3262d0
c

∑
8=±

∫ ∞

0

∫ ∞

0
3:13:2 [8 (:1, :2)

(
;2B

;2B + 4C�1,8̃

)3/2 (
;2B

;2B + 4C�2,8̃

)3/2

×
[
4−|x1−r1 |2/(;2B+4C�1,8̃)4−|x2−r2 |2/(;2B+4C�2,8̃) + 4−|x1−r2 |2/(;2B+4C�1,−)4−|x2−r1 |2/(;2B+4C�2,−)

+24−|x1−(r1+r2)/2|2/(;2B+4C�1,−)4−|x2−(r1+r2)/2|2/(;2B+4C�2,−) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

(4.125)

〈|k2(x1, x2, C) |2〉

=
16
c

∑
8=±

∫ ∞

0

∫ ∞

0
3:13:2 Z8 (:1, :2)

(
;2B

;2B + 4C�1,−

)3/2 (
;2B

;2B + 4C�2,−

)3/2

×
[
4−|x1−r1 |2/(;2B+4C�1,−)4−|x2−r2 |2/(;2B+4C�2,−) + 4−|x1−r2 |2/(;2B+4C�1,−)4−|x2−r1 |2/(;2B+4C�2,−)

+24−|x1−(r1+r2)/2|2/(;2B+4C�1,−)4−|x2−(r1+r2)/2|2/(;2B+4C�2,−) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

where we have introduced the notation 8̃ = −8 for 8 = ±, and the coefficients [± and Z± are
defined by

[±(:1, :2) =
:2

1:
2
24
−;2B :2

1−;
2
B :

2
2

(_±(:1, :2) − 3 (:1, :2) −Ω)2 − (_∓(:1, :2) − 3 (:1, :2) −Ω)2
, (4.126)

Z±(:1, :2) =
:2

1:
2
24
−;2B :2

1−;
2
B :

2
2 (_+(:1, :2) − 3 (:1, :2) −Ω)2

(_+(:1, :2) − 3 (:1, :2) −Ω)2 − (_−(:1, :2) − 3 (:1, :2) −Ω)2
. (4.127)

It is readily seen that long times, 〈|k1 |2〉 and 〈|k2 |2〉 decay algebraically according to the
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formulas

d0〈|k1 |2〉 =
�3

C3
− �4(x1, x2, r1, r2)

C4
, (4.128)

〈|k2 |2〉 =
�1

C3
− �2(x1, x2, r1, r2)

C4
, (4.129)

where the constants �8 for 8 = 1, 2, 3, 4 are given by

�1 =
∑
8=±

64
c

∫ ∞

0

∫ ∞

0
3:13:2 Z8 (:1, :2)

(
;2B

4�1,8̃

)3/2 (
;2B

4�2,8̃

)3/2

×
[
1 + sin(:1 |r1 − r2 |)

:1 |r1 − r2 |
sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
, (4.130)

�2 =
∑
8=±

16
c

∫ ∞

0

∫ ∞

0
3:13:2 Z8 (:1, :2)

(
;2B

4�1,8̃

)3/2 (
;2B

4�2,8̃

)3/2

×
[
|x1 − r1 |2

4�1,8
+ |x2 − r2 |2

4�2,8
+ |x1 − r2 |2

4�1,8
+ |x2 − r1 |2

4�2,8
(4.131)

+2
(
|x1 − (r1 + r2)/2|2

4�1,8
+ |x2 − (r1 + r2)/2|2

4�2,8

)
sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

�3 =
∑
8=±

3262d0
c

∫ ∞

0

∫ ∞

0
3:13:2 [8 (:1, :2)

(
;2B

4�1,8̃

)3/2 (
;2B

4�2,8̃

)3/2

×
[
2 + 2

sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
, (4.132)
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�4 =
∑
8=±

3262d0
c

∫ ∞

0

∫ ∞

0
3:13:2:

2
1 [8 (:1, :2)

(
;2B

4�1,8

)3/2 (
;2B

4�2,8

)3/2

×
[
|x1 − r1 |2

4�1,8
+ |x2 − r2 |2

4�2,8
+ |x1 − r2 |2

4�1,8
+ |x2 − r1 |2

4�2,8

+2
(
|x1 − (r1 + r2)/2|2

4�1,8
+ |x2 − (r1 + r2)/2|2

4�2,8

)
sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
.

(4.133)

To illustrate the above results, we consider the case of isotropic scattering and set the
dimensionless quantities Ω/√d06 = 2/;B

√
d06 = 1. In addition, we choose x1 = (;B, 0, 0),

x2 = (−;B, 0, 0), r1 = (0, 0, ;B) and r2 = (0, 0,−;B), so that the distances from the points
of excitation (r1 and r2) to the points of detection are equal to ;B. In Figure (4.2) we plot
the time dependence of the probability densities |〈k1〉|2 and |〈k2〉|2. We note that |k2 |2

is monotonically decreasing while |k1 |2 has a peak near ΩC = 1. A comparison of these
results with the asymptotic formulas (4.128) and (4.129) is shown in Figures (4.4) and
(4.3). There is good agreement at long times.

4.6 Two-Photon Transport in Random Media

In this section, we consider the general problem of two photons interacting with a random
medium. That is, we will study the the time evolution of the amplitudes 0(x1, x2, C),
k1(x1, x2, C) and k2(x1, x2, C). We begin with the system (4.16), where we have canceled
overall factors of d:

8mCk2(x1, x2, C) = 2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C)

+ 6
2
(d(x1)k1(x1, x2, C) + d(x2)k1(x2, x1, C)) ,

8mCk1(x1, x2, C) = 26k2(x1, x2, C) +
[
2(−Δx2)1/2 +Ω

]
k1(x1, x2, C)

− 26d(x2)0(x1, x2, C) , (4.134)

8mC0(x1, x2, C) =
6

2
(k1(x2, x1, C) − k1(x1, x2, C)) + 2Ω0(x1, x2, C) .
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Figure 4.2: One- and two-photon probability densities for stimulated emission in a random
medium.

Here the number density d is a random field of the form (4.48). Eq. (4.134) can now be
rewritten as

8mC	 = A(x1, x2)	 + g√d0[(x1)K1	 + g√d0[(x2)K2	 , (4.135)
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Figure 4.3: Comparison of diffusion approximation and long-time asymptote for 〈|k1 |2〉.

where 	 is defined by (4.30) and

�(x1, x2) =


2(−Δx1)1/2 + 2(−Δx2)1/2 6

√
d0 6

√
d0 0

6
√
d0 2(−Δx2)1/2 +Ω 0 −6√d0

6
√
d0 0 2(−Δx1)1/2 +Ω 6

√
d0

0 −6√d0 6
√
d0 2Ω


,

(4.136)

 1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


,  2 =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


. (4.137)
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Figure 4.4: Comparison of diffusion approximation and long-time asymptote for 〈|k2 |2〉.

As before. to derive a kinetic equation in the high-frequency limit, we rescale C, x1, x2

according to C → C/n , x1 → x1/n and x2 → x2/n . Additionally, we assume that the
randomness is sufficiently weak so that the correlations of [ are $ (n). Eq. (4.135) thus
becomes

8nmC	n = An (x1, x2)	n +
√
ng√d0[(x1/n)K1	n +

√
ng√d0[(x2/n)K2	n , (4.138)
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where

�n (x1, x2)

=


2n (−Δx1)1/2 + 2n (−Δx2)1/2 6

√
d0 6

√
d0 0

6
√
d0 2n (−Δx2)1/2 +Ω 0 −6√d0

6
√
d0 0 2n (−Δx1)1/2 +Ω 6

√
d0

0 −6√d0 6
√
d0 2Ω


.

(4.139)

To proceed further, we introduce the 4 × 4 matrix Wigner transform ,n which is defined
by (4.57). The diagonal elements of,n are related to the probability densities by

2|k2n (x1, x2, C) |2 =
∫

33:13
3:2(,n (x1, k1, x2, k2, C))11 , (4.140)

d0
2
|k1n (x1, x2, C) |2 =

∫
33:13

3:2(,n (x1, k1, x2, k2, C))22 , (4.141)

2d2
0 |0n (x1, x2, C) |2 =

∫
33:13

3:2(,n (x1, k1, x2, k2, C))44 , (4.142)

while the off diagonal elements of,n are related to correlations between the amplitudes. It
can be seen by direct calculation that the Wigner transform satisfies the Liouville equation

8nmC,n (x1, k1, x2, k2, C)

=

∫
33:′1
(2c)3

33:′2
(2c)3

48x1·k′1+8x2·k′2 �̂(k1 − nk′1/2, k2 − nk′2/2),̂n (k′1, k1, k′2, k2, C)

−
∫

33:′1
(2c)3

33:′2
(2c)3

48x1·k′1+8x2·k′2,̂n (k′1, k1, k′2, k2, C) �̂(k1 + nk′1/2, k2 + nk′2/2)

+
√
n6
√
d0

∫
33@

(2c)3
48q·x1/n [̂(q) [ 1,n (x1, k1 + q/2, x2, k2, C)

−,n (x1, k1 − q/2, x2, k2, C) )1
]

+
√
n6
√
d0

∫
33@

(2c)3
48q·x2/n [̂(q) [ 2,n (x1, k1, x2, k2 + q/2, C)

−,n (x1, k1, x2, k2 − q/2, C) )2
]
, (4.143)
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where �̂ is given by (4.34), and the Fourier transform ,̂n is defined by

,̂n (k′1, k1, k′2, k2, C) =
∫

33G13
3G24

−8x1·k′1−8x2·k′2,n (x1, k1, x2, k2, C). (4.144)

Once again we study the behavior of,n in the high-frequency limit n → 0 and introduce
a multiscale expansion of the Wigner transform of the form

,n (x1,X1, k1, x2,X2, k2, C) = ,0(x1, k1, x2, k2, C) +
√
n,1(x1,X1, k1, x2,X2, k2, C)

+ n,2(x1,X1, k1, x2,X2, k2, C) + · · · , (4.145)

where X1 = x1/n and X2 = x2/n are fast variables and ,0 is both deterministic and
independent of the fast variables. We will treat the slow and fast variables x1 and X1

(respectively x2 and X2) as independent and make the replacement (4.69). Hence (4.143)
becomes

8nmC,n (x1,X1, k1, x2,X2, k2, C)

=

∫
33:′1
(2c)3

33:′2
(2c)3

33 1

(2c)3
33 2

(2c)3
48x1·k′1+8x2·k′2+8X1·K1+8X2·K2

×
[
�̂(k1 −K1/2 − nk′1/2, k2 −K2/2 − nk′2/2),̂n (k′1,K1, k1, k′2,K2, k2, C)

− ,̂n (k′1,K1, k1, k′2,K2, k2, C) �̂(k1 +K2/2 + nk′1/2, k2 +K2/2 + nk′2/2)
]

+
√
n6
√
d0

∫
33@

(2c)3
48q·x1/n [̂(q) [ 1,n (x1,X1, k1 + q/2, x2,X2, k2, C)

−,n (x1,X1, k1 − q/2, x2,X2, k2, C) )1 ]

+
√
n6
√
d0

∫
33@

(2c)3
48q·x2/n [̂(q) [ 2,n (x1,X1, k1, x2,X2, k2 + q/2, C)

−,n (x1,X1, k1, x2,X2, k2 − q/2, C) )2 ] , (4.146)

where the Fourier transform ,̂n (k′1,K1, k1, k′2,K2, k2) is defined by Eq. (4.73). Next we
substitute (4.145) into (4.146) and collect terms at each order of

√
n . At order $ (1) we
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have

�̂(k1, k2),0(x1, k1, x2, k2) −,0(x1, k1, x1, k2) �̂(k1, k2) = 0. (4.147)

Since �̂ is symmetric it can be diagonalized. We then define {v8 (k1, k2), _8 (k1, k2)},
8 = 1, 2, 3, 4 be the eigenvector-eigenvalue pairs given by (4.35) and (4.38). It follows from
(4.147) that,0 is also diagonal in this basis and can be expanded as

,0(x1, k1, x2, k2, C) =
4∑
8=1

08 (x1, k1, x2, k2, C)v8 (k1, k2)v)8 (k1, k2). (4.148)

At order $ (
√
n) we find that

�̂(k1 −K1/2, k2 −K2/2),̂1(x1,K1, k1, x2,K2, k2)
− ,̂1(k′1,K1, k1, k′2,K2, k2) �̂(k1 +K2/2, k2 +K2/2)
+ 6√d0(2c)3[̂(K1)X(K2) [ 1,0(x1, k1 +K1/2, x2, k2 +K2)
−,0(x1, k1 −K1/2, x2, k2 −K2) )1

]
+ 6√d0(2c)3[̂(K2)X(K1) [ 2,0(x1, k1 +K1, x2, k2 +K2/2)
−,0(x1, k1 −K1, x2, k2 −K2/2) )2

]
= 0. (4.149)

Although,1 is not diagonal, we can still decompose its Fourier transform ,̂1 as

,̂1(x1,K1, k1, x2,K2, k2)
=

∑
8, 9

F8, 9 (x1,K1, k1, x2,K2, k2)v8 (k1 −K1/2, k2 −K2/2)v)9 (k1 +K1/2, k2 +K2/2).

(4.150)
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Multiplying (4.149) on the left by v)< (k1 − K1/2, k2 − K2/2) and the right by v= (k1 +
K1/2, k2 +K2/2), we obtain

(_< (k1 −K1/2, k2 −K2/2) − _= (k1 +K1/2, k2 +K2/2) + 8\)
× F<,= (x1,K1, k1, x2,K2, k2)

=6
√
d0(2c)3[(K1)X(K2)

×
[
0< (k1 −K1/2, k2 −K2/2) 1,<,= (k1 −K1/2, k2 −K2/2, k1 +K1/2, k2 +K2/2)

]
+6√d0(2c)3[(K2)X(K1)
×

[
0< (k1 −K1/2, k2 −K2/2) 2,<,= (k1 −K1/2, k2 −K2/2, k1 +K1/2, k2 +K2/2)

]
−6√d0(2c)3[(K1)X(K2)
×

[
0= (k1 +K1/2, k2 +K2/2) 1,<,= (k1 +K1/2, k2 +K2/2, k1 −K1/2, k2 −K2/2)

]
−6√d0(2c)3[(K2)X(K1)
×

[
0= (k1 +K1/2, k2 +K2/2) 2,<,= (k1 +K1/2, k2 +K2/2, k1 −K1/2, k2 −K2/2)

]
,

(4.151)

where

 1,<,= (k1, k2, q1, q2) = v)< (k1, k2) 1v= (q1, q2) , (4.152)

 2,<,= (k1, k2, q1, q2) = v)< (k1, k2) 2v= (q1, q2) . (4.153)
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Here \ → 0+ is a regularizing parameter. At order $ (n) we find that

8mC,0(x1, k1, x2, k2, C) = !,2(x1,X1, k1, x2,X2, k2, C)

− 8
2
",0(x1, k1, x2, k2) −

8

2
,0(x1, k1, x2, k2)"

+ 6√d0

∫
33@

(2c)3
48q·X1 [̂(q) [ 1,1(x1,X1, k1 + q/2, x2,X2, k2)

−,1(x1,X1, k1 − q/2, x2,X2, k2) )1
]

+ 6√d0

∫
33@

(2c)3
48q·X2 [̂(q) [ 2,1(x1,X1, k1, x2,X2, k2 + q/2)

−,1(x1,X1, k1, x2,X2, k2 − q/2) )2
]
, (4.154)

where

" =


2k̂1 · ∇x1 + 2k̂2 · ∇x2 0 0 0

0 2k̂2 · ∇x2 0 0
0 0 2k̂1 · ∇x1 0
0 0 0 0


(4.155)

and

!,2(x1,X1, k1, x2,X2, k2, C)

=

∫
33 1

(2c)3
33 2

(2c)3
48K1·X1+8K2·X2 �̂(k1 −K1/2, k2 −K2/2),̂2(x1,K1, k1, x2,K2, k2, C)

−,̂2(x1,K1, k1, x2,K2, k2, C) �̂(k1 +K1/2, k2 +K2/2). (4.156)

In order to obtain the equations satisfied by the 08, we multiply (4.154) on the left by
v)
8
(k1, k2) and the right by v8 (k1, k2), and take the ensemble average. In order to close

the hierarchy of equations, we assume that 〈v)
8
!,2v8〉 = 0, which corresponds to the

assumption that ,2 is statistically stationary with respect to the fast variables X1 and X2.
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Following procedures similar to those in Appendix C, we find that

1
2
mC08 + 518 (k1, k2)k̂1 · ∇x108 + 528 (k1, k2)k̂2 · ∇x208

+ `18 (k1, k2)08 (k1, k2) + `28 (k1, k2)08 (k1, k2)

= `18 (k1, k2)
∫

32 ̂ �(k̂1, K̂, |k1 |)08 ( |k1 |K̂, k2)

+ `28 (k1, k2)
∫

32 ̂ �(k̂2, K̂, |k2 |)08 (k1, |k2 |K̂) , (4.157)

where

518 (k1, k2) = v81(k1, k2)2 + v83(k1, k2)2 , (4.158)

528 (k1, k2) = v81(k1, k2)2 + v82(k1, k2)2 , (4.159)

`18 (k1, k2) =
62d0c 1,8,8 (k1, k2, k1, k2)2 |k1 |2

|mk1_8 (k1, k2) |
, (4.160)

`28 (k1, k2) =
62d0c 2,8,8 (k1, k2, k1, k2)2 |k2 |2

|mk2_8 (k1, k2) |
, (4.161)

�(k̂1, k̂2, :) =
�̃ (: (k̂1 − k̂2))∫
32 :̂′�̃ (: (k̂1 − k̂′))

. (4.162)

4.6.1 Diffusion Approximation

In this section we consider the diffusion limit of the kinetic equation (4.157). We again
specialize to the case of white-noise correlations, which leads to the phase function � =
1/4c, corresponding to isotropic scattering. Making use of the diffusion approximation
developed in section 5.2, we see that the first angular moments

D8 (x1, |k1 |, x2, |k2 |, C) =
∫

3k̂13k̂208 (x1, k1, x2, k2, C) (4.163)
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satisfy the equations

mCD8 − �18 ( |k1 |, |k2 |)Δx1D8 − �28 ( |k1 |, |k2 |)Δx2D8 = 0 , (4.164)

where

�18 =
2 5 2

18
3`18

, (4.165)

�28 =
2 5 2

28
3`28

. (4.166)

Suppose that initially there are two photons in the field localized around the points r1

and r2 in a volume of linear size ;B. The corresponding initial conditions are given by

√
2k2(x1, x2, 0) =

1
�

[
4−|x1−r1 |2/2;2B 4−|x2−r2 |2/2;2B + 4−|x1−r2 |2/2;2B 4−|x2−r1 |2/2;2B

]
, (4.167)

k1(x1, x2, 0) = 0(x1, x2, 0) = 0 , (4.168)

where

� = ‖4−|x1−r1 |2/2;2B 4−|x2−r2 |2/2;2B + 4−|x1−r2 |2/2;2B 4−|x2−r1 |2/2;2B ‖!2
x1 ,x2

. (4.169)

Note that this corresponds to an entangled two-photon state.
The above initial conditions imply initial conditions for the Wigner transform,0. The

initial conditions for the modes 08 are determined by solving the linear system
(,0)11(x1, k1, x2, k2, 0)
(,0)22(x1, k1, x2, k2, 0)
(,0)33(x1, k1, x2, k2, 0)
(,0)44(x1, k1, x2, k2, 0)


= + (k1, k2)


01(x1, k1, x2, k2, 0)
02(x1, k1, x2, k2, 0)
03(x1, k1, x2, k2, 0)
04(x1, k1, x2, k2, 0)


, (4.170)

where

(+ (k1, k2))8 9 = v 98 (k1, k2)2. (4.171)
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It follows that the initial conditions for the first angular moments are given by

D8 (x1, |k1 |, x2, |k2 |, 0) =
∫

3k̂13k̂208 (x1, k1, x2, k2, 0). (4.172)

The diffusion equations (4.164) can then be solved using (3.148). Combining this result
with (4.140)–(4.142), (4.148) and (4.163) we see that the average probability densities are
given by

〈|k2(x1, x2, C) |2〉

=
1

2�2

4∑
8=1

∫ ∞

0

∫ ∞

0
3:13:2:

2
1:

2
24
−;2B :2

1−;
2
B :

2
2v2

18 (:1, :2) (+−1)81(:1, :2)
(

;2B

;2B + 4C�18

)3/2

×
(

;2B

;2B + 4C�28

)3/2 [
4−|x1−r1 |2/(;2B+4C�18)4−|x2−r2 |2/(;2B+4C�28)

+ 4−|x1−r2 |2/(;2B+4C�18)4−|x2−r1 |2/(;2B+4C�28)

+24−|x1−
(r1+r2)

2 |2/(;2B+4C�18)4−|x2−
(r1+r2)

2 |2/(;2B+4C�28) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

(4.173)

〈|k1(x2, x1, C) |2〉

=
2

d0�2

4∑
8=1

∫ ∞

0

∫ ∞

0
3:13:2:

2
1:

2
24
−;2B :2

1−;
2
B :

2
2v2

28 (:1, :2) (+−1)81(:1, :2)
(

;2B

;2B + 4C�18

)3/2

×
(

;2B

;2B + 4C�28

)3/2 [
4−|x1−r1 |2/(;2B+4C�18)4−|x2−r2 |2/(;2B+4C�28)

+ 4−|x1−r2 |2/(;2B+4C�18)4−|x2−r1 |2/(;2B+4C�28)

+24−|x1−
(r1+r2)

2 |2/(;2B+4C�18)4−|x2−
(r1+r2)

2 |2/(;2B+4C�28) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

(4.174)
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〈|0(x1, x2, C) |2〉

=
1

2d2
0�

2

4∑
8=1

∫ ∞

0

∫ ∞

0
3:13:2:

2
1:

2
24
−;2B :2

1−;
2
B :

2
2v2

48 (:1, :2) (+−1)81(:1, :2)
(

;2B

;2B + 4C�18

)3/2

×
(

;2B

;2B + 4C�28

)3/2 [
4−|x1−r1 |2/(;2B+4C�18)4−|x2−r2 |2/(;2B+4C�28)

+ 4−|x1−r2 |2/(;2B+4C�18)4−|x2−r1 |2/(;2B+4C�28)

+24−|x1−
(r1+r2)

2 |2/(;2B+4C�18)4−|x2−
(r1+r2)

2 |2/(;2B+4C�28) sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
.

(4.175)

We note that at long times, the average probability densities decay algebraically according
to

〈|k2(x1, x2, C) |2〉 =
�11

C3
− �21(x1, x2, r1, r2)

C4
, (4.176)

〈|k1(x1, x2, C) |2〉 =
4�12

d0C3
− 4�22(x1, x2, r1, r2)

d0C4
, (4.177)

〈|0(x1, x2, C) |2〉 =
�14

d2
0C

3
− �24(x1, x2, r1, r2)

d2
0C

4
, (4.178)
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where the constants �1 9 and �2 9 , 9 = 1, 2, 4 are given by

�1 9 =
1
�2

4∑
8=1

∫ ∞

0

∫ ∞

0
3:13:2:

2
1:

2
24
−;2B :2

1−;
2
B :

2
2v2
98 (:1, :2) (+−1)81(:1, :2)

(
;2B

4�18

)3/2

(4.179)

×
(
;2B

4�28

)3/2 [
1 + 1

sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
,

�2 9 =
1

2�2

4∑
8=1

∫ ∞

0

∫ ∞

0
3:13:2:

2
1:

2
24
−;2B :2

1−;
2
B :

2
2v2
98 (:1, :2) (+−1)81(:1, :2)

(
;2B

4�18

)3/2

(4.180)

×
(
;2B

4�28

)3/2 [
|x1 − r1 |2

4�18
+ |x2 − r2 |2

4�28
+ |x1 − r2 |2

4�18
+ |x2 − r1 |2

4�28

+2
(
|x1 − (r1+r2)

2 |2

4�18
+
|x2 − (r1+r2)

2 |2

4�28

)
sin(:1 |r1 − r2 |)
:1 |r1 − r2 |

sin(:2 |r1 − r2 |)
:2 |r1 − r2 |

]
. (4.181)

In order to illustrate the above results, we consider the case of isotropic scattering
and set the dimensionless quantities Ω/√d06 = 2/;B

√
d06 = 1. In addition, we choose

x1 = (;B, 0, 0), x2 = (−;B, 0, 0), r1 = (0, 0, ;B) and r2 = (0, 0,−;B), so that the distances
from the points of excitation (r1 and r2) to the points of detection are equal to ;B. In
Figure (4.5) we plot the time dependence of the probability densities 0, |〈k1〉|2 and |〈k2〉|2.
We note that the negative values of these quantities are due to the breakdown of the diffusion
approximation at short times. We observe that the two-photon probability density increases
before eventually decaying. A comparison of these results with the asymptotic formulas
(4.176), (4.177) and (4.178) is shown in Figures (4.6), (4.7) and (4.8). There is good
agreement at long times.
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Figure 4.5: Atomic, one-photon, and two-photon probability densities in a randommedium.

4.7 Appendix

4.7.1 Derivation of the System (4.16)

Here we derive the system (4.16). We begin by computing both sides of the time-
dependent Schrodinger equation (3.22), employing theHamiltonian� and the state (3.170).
The left-hand side is equal to

8ℏmC |Ψ〉 =
∫

33G13
3G2

(
8ℏmCk2(x1, x2, C)i†(x1)i†(x2)

+ 8ℏmCk1(x1, x2, C)d(x1)f†(x1)i†(x2)

+ 8ℏmC0(x1, x2, C)d(x1)d(x2)f†(x1)f†(x2)
)
|0〉 , (4.182)
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Figure 4.6: Comparison of diffusion approximation and long-time asymptote for 〈|k2 |2〉.

while the right-hand side is given by

� |Ψ〉 = �� |Ψ〉 + �� |Ψ〉 + �� |Ψ〉 . (4.183)
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Figure 4.7: Comparison of diffusion approximation and long-time asymptote for 〈|k1 |2〉.

We compute each term separately.

�� |Ψ〉 = ℏ
∫

33G33G13
3G2

{
2(−Δ)1/2i†(x)i(x)

}
× {k2(x1, x2, C)i†(x1)i†(x2) + k1(x1, x2, C)d(x1)f†(x1)i†(x2)
+ 0(x1, x2, C)d(x1)d(x2)f†(x1)f†(x2)}|0〉

= ℏ

∫
33G33G13

3G2{k2(x1, x2, C)2(−Δ)1/2i†(x)i(x)i†(x1)i†(x2)

+ k1(x1, x2, C)d(x1)2(−Δ)1/2i†(x)i(x)f†(x1)i†(x2)}|0〉 . (4.184)

116



200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

1.5

2
10

-7

Figure 4.8: Comparison of diffusion approximation and long-time asymptote for 〈|0 |2〉.

�� |Ψ〉 = ℏ
∫

33G33G13
3G2

{
Ωd(x)f†(x)f(x)

}
× {k2(x1, x2, C)i†(x1)i†(x2)
+ k1(x1, x2, C)d(x1)f†(x1)i†(x2)
+ 0(x1, x2, C)d(x1)d(x2)f†(x1)f†(x2)}|0〉

= ℏ

∫
33G33G13

3G2{k1(x1, x2, C)d(x1)Ωd(x)f†(x)f(x)f†(x1)i†(x2)

+ 0(x1, x2, C)d(x1)d(x2)Ωd(x)f†(x)f(x)f†(x1)f†(x2) . (4.185)
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�� |Ψ〉 = ℏ
∫

33G33G13
3G2

{
6d(x)

(
i†(x)f(x) + i(x)f†(x)

)}
× {k2(x1, x2, C)i†(x1)i†(x2) + k1(x1, x2, C)d(x1)f†(x1)i†(x2)
+ 0(x1, x2, C)d(x1)d(x2)f†(x1)f†(x2)}|0〉

= ℏ

∫
33G33G13

3G2{k1(x1, x2, C)d(x1)6d(x)i†(x)f(x)f†(x1)i†(x2)

+ 0(x1, x2, C)d(x1)d(x2)6d(x)i†(x)f(x)f†(x1)f†(x2)
+ k1(x1, x2, C)d(x1)6d(x)i(x)f†(x)f†(x1)i†(x2)
+ k2(x1, x2, C)6d(x)i(x)f†(x)i†(x1)i†(x2)}|0〉 . (4.186)

Combining these results and using the commutation and anticommutation relations (4.2)
and (4.7) we arrive at

� |Ψ〉

= ℏ

∫
33G13

3G2{(2(−Δx1)1/2k2(x1, x2, C) + 2(−Δx2)1/2k2(x1, x2, C))i†(x1)i†(x2)

+ 2(−Δx2)1/2k1(x1, x2, C)d(x1)f†(x1)i†(x2) + k1(x1, x2, C)d(x1)Ωf†(x1)i†(x2)
+ 20(x1, x2, C)d(x1)d(x2)Ωf†(x1)f†(x2) + k1(x1, x2, C)d(x1)6i†(x1)i†(x2)
− 260(x1, x2, C)d(x1)d(x2)i†(x2)f†(x1) + 6k1(x1, x2, C)d(x1)f†(x1)f†(x2)
+ 26k2(x1, x2, C)d(x1)f†(x1)i†(x2)}|0〉. (4.187)

Computing the inner products

〈0|i(x1)i(x2)8ℏmC |Ψ〉 = 28ℏmCk2(x1, x2, C) , (4.188)

〈0|i(x1)i(x2)� |Ψ〉 = 2(2(−Δx1)1/2 + 2(−Δx2)1/2)k2(x1, x2, C)
+ 6d(x1)k1(x1, x2, C) + 6d(x2)k1(x2, x1, C) , (4.189)
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yields (4.14). The inner products

〈0|i(x2)f(x1)d(x1)8ℏmC |Ψ〉 = d(x1)8ℏmCk1(x1, x2, C) , (4.190)

〈0|i(x2)f(x1)d(x1)� |Ψ〉 = (2(−Δx2)1/2 +Ω)d(x1)k1(x1, x2, C)
+ 26d(x1)k2(x1, x2, C) − 26d(x1)d(x2)0(x1, x2, C) ,

(4.191)

give (4.15), while

〈0|f(x1)f(x2)d(x1)d(x2)8ℏmC |Ψ〉 = 2d(x1)d(x2)8ℏmC0(x1, x2, C) , (4.192)

〈0|f(x1)f(x2)d(x1)d(x2)� |Ψ〉 = 6d(x1)d(x2)k1(x1, x2, C)
− 6d(x1)d(x2)k1(x2, x1, C)
+ 4Ωd(x1)d(x2)0(x1, x2, C) , (4.193)

gives (4.16).
4.7.2 Derivation of the Liouville Equation (4.61)

Here we derive (4.61). We first define

Φn (x1, x′1, x2, x′2, C) = 	n (x1 − nx′1/2, x2 − nx′2/2, t)	
†
n (x1 + nx′1/2, x2 + nx′2/2, t) .

(4.194)

The Wigner transform is defined by

,n (x1, k1, x2, k2, C) =
∫

33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2Φn (x1, x′1, x2, x′2, C) . (4.195)
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We begin by computing 8nmC,n :

8nmC,n =

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′28nmCΦn (x1, x′1, x2, x′2, C)

=

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
[{
�n (x1 − nx′1/2, x2 − nx′2/2)Φn (x1, x′1, x2, x′2, C)

+
√
n6

√
d0
2
([(x1/n − x′1/2) + [(x2/n − x′2/2)) Φn (x1, x′1, x2, x′2, C)

}
−Φn (x1, x′1, x2, x′2, C)�n (x1 + nx′1/2, x2 + nx′2/2)

+
√
n6

√
d0
2
([(x1/n + x′1/2) + [(x2/n + x′2/2))Φn (x1, x′1, x2, x′2, C) 

)

}]
=

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
�n (x1 − nx′1/2, x2 − nx′2/2)Φn (x1, x′1, x2, x′2, C)

−Φn (x1, x′1, x2, x′2, C)�n (x1 + nx′1/2, x2 + nx′2/2)
}

+
√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
[(x1/n − x′1/2) Φn (x1, x′1, x2, x′2, C)

−[(x1/n + x′1/2)Φn (x1, x′1, x2, x′2, C) 
)
}

+
√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
[(x2/n − x′2/2) Φn (x1, x′1, x2, x′2, C)

−[(x2/n + x′2/2)Φn (x1, x′1, x2, x′2, C) 
)
}
. (4.196)

The first term becomes∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
�n (x1 − nx′1/2, x2 − nx′2/2)Φn (x1, x′1, x2, x′2, C)

−Φn (x1, x′1, x2, x′2, C)�n (x1 + nx′1/2, x2 + nx′2/2)
}

=

∫
33:′1
(2c)3

33:′2
(2c)3

48x1·k′1+8x2·k′2
{
�̂(k1 − nk′1/2, k2 − nk′2/2),̂n (k′1, k1, k′2, k2)

− ,̂n (k′1, k1, k′2, k2) �̂(k1 + nk′1/2, k2 + nk′2/2)
}
, (4.197)
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where

(�n 5 ) (x1, x2) =
∫

33:1

(2c)3
33:2

(2c)3
48x1·k1+8x2·k2 �̂(nk1, nk2) 5̂ (k1, k2) . (4.198)

Likewise, the second term becomes

√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
[(x1/n − x′1/2) Φn (x1, x′1, x2, x′2, C)

−[(x1/n + x′1/2)Φn (x1, x′1, x2, x′2, C) 
)
}

=
√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

33@

(2c)3
4−8k1·x′1−8k2·x′2+8q·(x1/n−x′1/2) [̂(q) Φn (x1, x′1, x2, x′2, C)

−
√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

33@

(2c)3
4−8k1·x′1−8k2·x′2+8q·(x1/n+x′1/2) [̂(q)Φn (x1, x′1, x2, x′2, C) 

)

=
√
n6

√
d0
2

∫
33@

(2c)3
48q·x1/n [̂(q) ,n (x1, k1 + q/2, x2, k2, C)

−
√
n6

√
d0
2

∫
33@

(2c)3
48q·x1/n [̂(q),n (x1, k1 − q/2, x2, k2, C) )

=
√
n6

√
d0
2

∫
33@

(2c)3
48q·x1/n [̂(q)

×
[
 ,n (x1, k1 + q/2, x2, k2, C) −,n (x1, k1 − q/2, x2, k2, C) )

]
. (4.199)

Finally, the third term becomes

√
n6

√
d0
2

∫
33G′1
(2c)3

33G′2
(2c)3

4−8k1·x′1−8k2·x′2
{
[(x2/n − x′2/2) Φn (x1, x′1, x2, x′2, C)

−[(x2/n + x′2/2)Φn (x1, x′1, x2, x′2, C) 
)
}

=
√
n6

√
d0
2

∫
33@

(2c)3
48q·x1/n [̂(q)

×
[
 ,n (x1, k1, x2, k2 + q/2, C) −,n (x1, k1, x2, k2 − q/2, C) )

]
. (4.200)
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4.7.3 Derivation of the Kinetic Equation (4.85)

Here we derive the kinetic equation (4.85) which is satisfied by the quantity 0+. The
first two terms are elementary and so we must compute

〈v)+!1,1v+〉 , 〈v)+!2,1v+〉 . (4.201)

We compute each of the above in two steps. The first term is

〈
∫

33@

(2c)3
48q·X1 [̂(q)

[
v)+ (k1, k2) ,1(x1,X1, k1 + q/2, x2,X2, k2)v+(k1, k2)

]
〉

=〈
∫

33@

(2c)3
33 1

(2c)3
33 2

(2c)3
48q·X1+8K1·X1+8K2·X2 [̂(q)

×
[
v)+ (k1, k2) ,̂1(x1,K1, k1 + q/2, x2,K2, k2)v+(k1, k2)

]
〉

=〈
∫

33@

(2c)3
33 1

(2c)3
33 2

(2c)3
48q·X1+8K1·X1+8K2·X2 [̂(q)v)+ (k1, k2) 

×
{ ∑
<,==±

F<,= (K1, k1 + q/2,K2, k2)v< (k1 + q/2 −K1/2, k2 −K2/2)

×v)= (k1 + q/2 +K1/2, k2 +K2/2)v+(k1, k2)
}
〉. (4.202)
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Next we substitute the expression F<,= using equation (4.81) to arrive at〈∫
33@

(2c)3
33 1

(2c)3
33 2

(2c)3
48q·X1+8K1·X1+8K2·X2 [̂(q)v)+ (k1, k2) 

×
{ ∑
<,==±

6

√
d0
2
(2c)3 {[(K1)X(K2) + [(K2)X(K1)}

}
×

(
0< (k1 + q/2 −K1/2, k2 −K2/2)

_< (k1 + q/2 −K1/2, k2 −K2/2) − _= (k1 + q/2 +K1/2, k2 +K2/2) + 8\
×  <,= (k1 + q/2 −K1/2, k2 −K2/2, k1 + q/2 +K1/2, k2 +K2/2)

− 0= (k1 + q/2 +K1/2, k2 +K2/2)
_< (k1 + q/2 −K1/2, k2 −K2/2) − _= (k1 + q/2 +K1/2, k2 +K2/2) + 8\
× <,= (k1 + q/2 +K1/2, k2 +K2/2, k1 + q/2 −K1/2, k2 −K2/2)

)
× v< (k1 + q/2 −K1/2, k2 −K2/2)v)= (k1 + q/2 +K1/2, k2 +K2/2)v+(k1, k2)〉.

We separate the above into two terms and use the orthogonality of the basis {v8} to see that
= = + in the first term. We thus obtain

= 6

√
d0
2

∫
33 1

(2c)3
�̂ (K1)

∑
<=±

( [
0< (k1 −K1, k2) <,+(k1 −K1, k2, k1, k2)

]
_< (k1 −K1, k2) − _+(k1, k2) + 8\

−
[
0+(k1, k2) <,+(k1, k2, k1 −K1, k2)

]
_< (k1 −K1, k2) − _+(k1, k2) + 8\

)
 +,< (k1, k2, k1 −K1, k2)

+ 6
√
d0
2

∫
33 2

(2c)3
48K2·(X2−X1)�̂ (K2)v)+ (k1, k2) 

∑
<,==±

×
( [
0< (k1 −K2/2, k2 −K2/2) <,= (k1 −K2/2, k2 −K2/2, k1 −K2/2, k2 +K2/2)

]
_< (k1 −K2/2, k2 −K2/2) − _= (k1 −K2/2, k2 +K2/2) + 8\

−
[
0= (k1 −K2/2, k2 +K2/2) <,= (k1 −K2/2, k2 +K2/2, k1 −K2/2, k2 −K2/2)

]
_< (k1 −K2/2, k2 −K2/2) − _= (k1 −K2/2, k2 +K2/2) + 8\

)
× v< (k1 −K2/2, k2 −K2/2)v)= (k1 −K2/2, k2 +K2/2)v+(k1, k2). (4.203)
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As n → 0 the above converges to

6

√
d0
2

∫
33 

(2c)3
�̂ (k1 −K)

∑
<=±

( [
0< (K, k2) <,+(K, k2, k1, k2)

]
_< (K, k2) − _+(k1, k2) + 8\

(4.204)

−
[
0+(k1, k2) <,+(k1, k2,K, k2)

]
_< (K, k2) − _+(k1, k2) + 8\

)
 +,< (k1, k2,K, k2) , (4.205)

which follows from the Riemann-Lebesgue Lemma and the fact that,0 is independent of
the fast variables X1 and X2. Similarly the other three terms become

− 6
√
d0
2

∫
33 

(2c)3
�̂ (k1 −K)

∑
==±

( [
0+(k1, k2) +,= (k1, k2,K, k2)

]
_+(k1, k2) − _= (K, k2) + 8\

−
[
0= (K, k2) +,= (K, k2, k1, k2)

]
_+(k1, k2) − _= (K, k2) + 8\

)
 +,= (k1, k2,K, k2)

+ 6
√
d0
2

∫
33 

(2c)3
�̂ (k2 −K)

∑
<=±

( [
0< (k1,K) <,+(k1,K, k1, k2)

]
_< (k1,K) − _+(k1, k2) + 8\

−
[
0+(k1, k2) <,+(k1, k2, k1,K)

]
_< (k1,K) − _+(k1, k2) + 8\

)
 +,< (k1, k2, k1,K)

− 6
√
d0
2

∫
33 

(2c)3
�̂ (k2 −K)

∑
+,==±

( [
0+(k1, k2) +,= (k1, k2, k1,K)

]
_+(k1, k2) − _= (k1,K) + 8\

−
[
0= (k1,K) +,= (k1,K, k1, k2)

]
_+(k1, k2) − _= (k1,K) + 8\

)
 +,= (k1, k2, k1,K). (4.206)

Making use of the identity

lim
\→0

(
1

G − 8\ −
1

G + 8\

)
= 2c8X(G) , (4.207)
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we see that we must have <, = = +, to ensure that the support of the delta function is
nonempty since _+ and _− are never equal. Thus the above equation simplifies as

− 8c6
√
d0
2

∫
33 

(2c)3
�̂ (k1 −K)X(_+(K, k2) − _+(k1, k2))

×
(
0+(k1, k2) +,+(k1, k2,K, k2)2 − 0+(K, k2) +,+(K, k2, k1, k2) +,+(k1, k2,K, k2)

)
− 8c6

√
d0
2

∫
33 

(2c)3
�̂ (k2 −K)X(_+(k1,K) − _+(k1, k2))

×
(
0+(k1, k2) +,+(k1, k2, k1,K)2 − 0+(k1,K) +,+(k1,K, k1, k2) +,+(k1, k2, k1,K)

)
.

(4.208)

Putting everything together, we see that 0+ satisfies the equation

1
2
mC0+ +

[
(_+(k1, k2) − 3 (k1, k2) −Ω)2 + 62d0

(_+(k1, k2) − 3 (k1, k2) −Ω)2 + 262d0

] (
k̂1 · ∇x1 + k̂2 · ∇x2

)
0+

= − c6 d0
2

∫
33 

(2c)3
�̂ (k1 −K)X(_+(K, k2) − _+(k1, k2)) (4.209)

×
(
0+(k1, k2) +,+(k1, k2,K, k2)2 − 0+(K, k2) +,+(K, k2, k1, k2) +,+(k1, k2,K, k2)

)
− c62 d0

2

∫
33 

(2c)3
�̂ (k2 −K)X(_+(k1,K) − _+(k1, k2))

×
(
0+(k1, k2) +,+(k1, k2, k1,K)2 − 0+(k1,K) +,+(k1,K, k1, k2) +,+(k1, k2, k1,K)

)
.

(4.210)

The delta function can be simplified using the identity

X(6(G)) = X(G − G0)
|6′(G0) |

(4.211)
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where 6 has a single real root at G = G0. Thus

X(_+(K, k2) − _+(k1, k2))

=
X( |K| − |k1 |)

2
4

���2( |k| + |k2 |)/2 −Ω + 3
2

√
(2( |k| + |k2 |)/2 −Ω)2 + 862d0

��� . (4.212)

Hence (4.209) becomes

1
2
mC0+ +

[
(_+(k1, k2) − 3 (k1, k2) −Ω)2 + 62d0

(_+(k1, k2) − 3 (k1, k2) −Ω)2 + 262d0

] (
k̂1 · ∇x1 + k̂2 · ∇x2

)
0+

= − 262d0c

2

 +,+(k1, k2, k1, k2)2���3 (k1, k2) −Ω + 3
2

√
(3 (k1, k2) −Ω)2 + 862d0

��� |k1 |2

×
∫

3k̂′

(2c)3
�̂ ( |k1 | (k̂1 − k̂′))

(
0+(k1, k2) − 0+( |k1 |k̂′, k2)

)
− 262d0c

2

 +,+(k1, k2, k1, k2)2���3 (k1, k2) −Ω + 3
2

√
(3 (k1, k2) −Ω)2 + 862d0

��� |k2 |2

×
∫

3k̂′

(2c)3
�̂ ( |k2 | (k̂2 − k̂′))

(
0+(k1, k2) − 0+(k1, |k2 |k̂′)

)
, (4.213)

as desired.
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Chapter 5

Future Work

The model developed in the beginning of Chapter 3 is may be applied to many physical
scenarios and thus contains many possible directions for future research. Below we briefly
describe several of these potential projects.

5.1 Reintroduce Polarization

While the model introduced in Chapters 3 considers a scalar model of an electromagnetic
field, we could reintroduce the polarization of the field back into the model in order to
study the effects on the dynamics. This would allow us to have the coupling constant 6
depend on the polarization while still working within the Markovian approximation. One
other aspect of such a model is that the differential operator (−Δ)1/2 which is nonlocal in
our scalar model could be traded out for a local operator.

5.2 More General Coupling

Additionally, in the model presented in this paper we have made the Markovian approxi-
mation, which replaces a wave number dependent coupling 6k for a constant strength of
coupling between the matter and all modes of the electromagnetic field. There are several
ways that we could consider a more general version of coupling between the field and the
collection of atoms.
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• Reintroduce the k dependence on 6 before transferring the model to real space.

• Introduce a spatially dependent coupling constant 6(x).

• Introduce a time dependent coupling 6(C). One such time dependent coupling would
be modeled as a pulse train where a compactly supported function 60(C) is repeated
at regular or stochastic time intervals.

5.3 Other Spatial Distributions of Matter

While chapters 3 and 4 consider a medium consisting of two level atoms fluctuating
randomly about a density d0, there are many other distributions d(x) to consider. These
can be broken down into two main categories:

1. Deterministic d(x)
2. Stochastic d(x)
One extremely interesting example of a deterministic density is the case of periodic

d(x) which is supported on a Bravais lattice. In this setting one may investigate the
corresponding band structure of the Hamiltonian. A key example of such a lattice is the
hexagonal honeycomb lattice.

A related phenomenon occurs in media that vary on small scales, one can derive
effective equations for the behavior of waves in the medium on larger scales. This process
of replacing a rapidly oscillating coefficient by an effective overall coefficient is known as
homogenization. Such a constant coefficient system of equations could be derived for the
systems studied in chapters 3 and 4 given that the density d(x) oscillates rapidly.

Many other stochastic models may be considered as well. One such generalization
would be to consider a medium which is not isotropic and statistically homogeneous. In
terms of the correlation function, this would mean removing the assumption that � (x, y)
depends only on the quantity |x − y|. Additionally, while the work presented in this
thesis primarily deals with densities which fluctuate about an average value d0, one could
study many other models of random densities. Examples include perturbations of periodic
densities where the location of the sites are given by random variables.
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5.4 Time Dependent Distribution of Matter

In a similar vein to the previous subsection, it would be quite interesting to alter the model
in such a way that allowed for the density to depend on space and time d(x, C). This would
make it possible to study the effect of the motion of the atoms on the transport or diffusion
of the excitations in the electromagnetic field. Additionally, one may be able to derive a
transport equation rigorously in this case as long as there is a sufficient mixing hypothesis
placed on the time dependence of the density.

In order to introduce such a density one would need to go back and reconfigure the
Hamiltonian instead of altering the equations of motion directly. It seems that the right
approach would be to make the operators i(x) and f(x) time dependent and work in the
Heisenberg picture of quantum mechanics.

5.5 Nonlinear Hamiltonians

Incorporating terms which are nonlinear in the field operators would allow for the consid-
eration of particle particle interactions in the model. This would likely lead to systems of
coupled nonlinear pseudodifferential equations akin to the focusing or defocusing nonlinear
Schrödinger equations (NLS). There has been some work on the derivation of transport
and diffusion equations from the NLS and analogous questions for the model presented
here are quite interesting.

5.6 Coherent States

Another direction to go in is to consider the dynamics associated to different initial states
of the electromagnetic field. One important set of states are coherent states which are most
similar to classical states of light. Comparing the dynamics of states which are initially
coherent to that of states which are initially entangled could provide insight into the effect
of entanglement on the transport of light.
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