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ABSTRACT

Despite the recent popularity of word embedding methods, there is only a small

body of work exploring the limitations of these representations. In this thesis,

we consider several aspects of embedding spaces, including their stability. First,

we propose a definition of stability, and show that common English word embed-

dings are surprisingly unstable. We explore how properties of data, words, and

algorithms relate to instability. We extend this work to approximately 100 world

languages, considering how linguistic typology relates to stability. Additionally,

we consider contextualized output embedding spaces. Using paraphrases, we ex-

plore properties and assumptions of BERT, a popular embedding algorithm.

Second, we consider how stability and other word embedding properties affect

tasks where embeddings are commonly used. We consider both word embed-

dings used as features in downstream applications and corpus-centered applica-

tions, where embeddings are used to study characteristics of language and indi-

vidual writers. In addition to stability, we also consider other word embedding

properties, specifically batching and curriculum learning, and how methodologi-

cal choices made for these properties affect downstream tasks.

Finally, we consider how knowledge of stability affects how we use word em-

beddings. Throughout this thesis, we discuss strategies to mitigate instability and

provide analyses highlighting the strengths and weaknesses of word embeddings

in different scenarios and languages. We show areas where more work is needed

to improve embeddings, and we show where embeddings are already a strong tool.

xiii



CHAPTER 1

Introduction

“Black-box” methods are becoming increasingly common in natural language processing
(NLP) and machine learning. These methods have clear inputs and outputs, but the map-
ping between inputs and outputs is complex and not necessarily well understood. Word
embeddings, low-dimensional vectors that capture some semantic and syntactic informa-
tion about individual words, can be considered black-box methods. While they have been
tremendously useful as features in many tasks, the strengths and limitations of word embed-
dings are not fully understood. We know how embedding algorithms work mathematically,
but more work is needed to have a clear understanding of what they are learning. This
thesis focuses on understanding the limits and properties of word embedding algorithms,
as well as how these affect usage in downstream applications.

1.1 Word Embeddings

The concept of representing words in a corpus using co-occurrence statistics and other in-
formation theoretic measures goes back a long way in NLP (see Turney and Pantel [123] for
a survey). However, with the recent availability of larger corpora and new neural network-
based methods, such as word2vec [86, 83], word embeddings have gained ubiquity in NLP,
becoming integrated into nearly every system and even driving new areas of research. Be-
fore introducing this dissertation’s research questions, we briefly discuss various uses of
word embeddings, as well as types of algorithms that have emerged.

In many cases, word embeddings are used as features in a larger system architecture.
Collobert et al. [25] was an early paper that took this approach, incorporating word em-
beddings as inputs to a neural network that performed part-of-speech tagging, chunking,
named entity recognition, and semantic role labeling. This line of work has been expanded
to include many other tasks, including text similarity [66], sentiment analysis [40], and
machine translation [85].
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Word embedding research has also developed in a parallel direction, corpus-centered
research [6]. In this paradigm, embeddings are used to study the language of a corpus and
to draw direct conclusions from the corpus. Word embeddings are not simply a means to
better performance on a downstream task; they are a window into the language and the
culture of the author of the corpus being examined. This kind of research is prevalent in
the digital humanities and computational social sciences. For instance, previous work has
used word embeddings to investigate shifts in word meaning over time [51].

Another example of corpus-centered research is the analysis of bias in corpora used in
NLP systems. Bolukbasi et al. [15] use word embeddings to show that stereotypically fe-
male occupations (e.g., homemaker, nurse, receptionist) are more closely related to female
words (e.g., she, woman), while stereotypically male occupations (e.g., warrior, architect,
philosopher) are more closely related to male words (e.g., he, man). Garg et al. [46] addi-
tionally demonstrate that racial stereotypes are present in word embedding spaces. Caliskan
et al. [18] formalize the notion of bias by studying embeddings using an adapted version
of the Implicit Association Test, a test commonly used in psychology to measure gender,
racial, and other biases in humans [49].

While the research described so far has focused on English, word embeddings have
proven to be useful in many different languages and have particularly been leveraged for
low-resource languages [2, 62]. To build embeddings across many different languages
efficiently, recent research has focused on building cross-lingual embedding spaces, where
words from different languages are embedded in the same vector space [108, 20]. There has
also been recent interest in using word embeddings as input to a single model that works
across a wide range of languages, for instance, in sentiment analysis [135].

As word embeddings have gained popularity, many different types of embedding al-
gorithms have emerged. These algorithms can be roughly divided into two categories:
context-free output embeddings and contextualized output embeddings. Context-free out-
put algorithms produce one embedding per word, regardless of the context (surrounding
words) that the word appears in. Contextualized output algorithms produce separate em-
beddings for the same word, depending on the context of the word (see Chapter 2 for a
thorough discussion of these methods).

The majority of this thesis (Chapters 3-5) focuses on context-free output embeddings.
While contextualized output word embeddings have made great advancements and are con-
tinuing to grow in effectiveness, there is still an important place for research on context-free
output embeddings.

Many contextualized output embedding algorithms, such as ELMo [99], BERT [31],
and XLNet [130], require huge amounts of computational resources and data. For example,
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it takes 2.5 days to train XLNet with 512 TPU v3 chips. Similarly, it takes two weeks to
train ELMo with three NVIDIA GTX 1080 Ti GPUs [117]. Strubell et al. [117] estimate
that this costs between $433 and $1,472 and emits 262 lbs of CO2. In addition to requiring
heavy computational resources, most contextualized output embedding algorithms need
large amounts of data. XLNet uses over 29GB of language data from five different corpora,
and BERT uses 3.3 billion words of training data.

In contrast to these large corpora, many datasets from low-resource languages are fairly
small [78]. To support scenarios where using huge amounts of data and computational re-
sources is not feasible, it is important to continue developing our understanding of context-
free output word embeddings, such as GloVe [96] and word2vec [86]. These algorithms
continue to be used in a wide variety of situations, including the computational humanities
[1, 53] and languages where only small corpora are available [64]. According to Google
Scholar, in 2019 alone, GloVe was cited approximately 4,700 times and word2vec was
cited approximately 5,740 times.1

Furthermore, recent work by Arora et al. [7] show that in many scenarios, GloVe is able
to perform within 5-10% accuracy of BERT on standard benchmark tasks. While there are
scenarios that contextualized output embedding algorithms do better on (particularly tasks
with language containing complex structure, ambiguous word usage, and words unseen in
training), there are many applications where context-free output embeddings work equally
well.

At the end of this thesis, in Chapter 6, we shift our focus to a popular contextualized
output embedding algorithm, BERT, and extend our analysis to this category of algorithms.

1.2 Properties of Word Embeddings

Much of the previous research using context-free output word embeddings assumes that
these embeddings learn meaningful relations, and that relations present in the text between
words will always be captured in the embedding spaces. The vast majority of these papers
only run their word embedding algorithm once, making the assumption that the embeddings
produced are reliable and reasonably consistent.

In this thesis, we examine these assumptions by looking closely at some of the proper-
ties of word embeddings. Specifically, we introduce a new metric, stability, and show how
this can be used to measure the consistency of word embeddings across various settings.

Consider the example embedding spaces shown in Figure 1.1. Both the left and the

1Papers are cited for many reasons, but citation count can be used as a rough estimate for the popularity
of an algorithm.
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Figure 1.1: The word cookie and its fifteen nearest neighbors in two separate embedding
spaces. Both spaces are trained on Wikipedia using word2vec; the random seed used to
initialize word2vec varies between the two spaces. Here, we show the two-dimensional
PCA [94, 58] projection of the embeddings (visualized partially with Parallax [89]). Near-
est neighbors are chosen using cosine similarity distance. Food-related words are colored
blue, technology-related words are colored red, and ambiguous words are colored purple.

right embedding space are trained using the same algorithm (word2vec), the same data
(Wikipedia), and the same parameters. The only aspect that varies between these spaces
is the random seed used to initialize the word2vec algorithm. Yet, we can see that there
are substantial qualitative differences between these two spaces. In the left space, cookie

is part of a cluster of words dealing with sweet foods (candy, doughnut, etc.). In the right
space, cookie is between words related to sweet foods and words related to the computer
sense of cookie (HttpOnly, firmware, etc.). Some words are close to cookie in the left space
and not close to cookie in the right space, and vice versa. If a researcher were studying the
usage of the word cookie based on one of these two embedding spaces, she might come to
different conclusions than if she were using the other embedding space. As is evident from
this example, inconsistency between embedding spaces has consequences for research that
uses embeddings in a corpus-centered way.

We attempt to quantify some of this qualitative inconsistency using the notion of stabil-
ity. Specifically, this dissertation focuses on three main research questions:

• Research Question #1. Are word embeddings stable across variations in data,
algorithmic parameter choices, words, and linguistic typologies?

We introduce the metric of stability, which measures the consistency of local neigh-
borhoods across two or more context-free output embedding spaces.2 We show that

2This metric was concurrently introduced in Antoniak and Mimno [6].
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common English word embedding spaces are surprisingly unstable, even across sim-
ple variations such as the change in random initialization of an algorithm. Through
exploring the relationship between instability and data properties, word properties,
and algorithm properties, we make several interesting observations. Concerning the
embedding algorithm used, the algorithm’s curriculum (the order of training data
given to the algorithm) is important to stability, and GloVe is a more stable em-
bedding algorithm than word2vec or PPMI (see Chapter 2 for a full description of
these methods). Properties of individual words also matter; part-of-speech is one of
the biggest factors in stability. Finally, the data used to create embedding spaces is
important. We show that word frequency within a corpus is not a major factor in
stability, but stability when using the same domain data for training and testing is
greater than stability across separate domains of data.

We additionally extend this work to approximately 100 languages around the world,
where we consider how linguistic typology is related to stability. We draw out several
aspects of the relationship between linguistic properties and stability, including that
languages with more affixing tend to be less stable, and languages with no gender
systems tend to be more stable. These insights can be used in future work to inform
the design of embeddings in many languages.

Finally, we consider how to extend stability to contextualized output embeddings.
Our initial definition of stability does not work in a contextualized output embed-
ding space, since it relies on a single word having a fixed set of nearest neighbors.
Instead, in order to understand how contextualized output embeddings shift under
different circumstances, we utilize a unique source of data: paraphrases. Paraphrases
give us the ability to control for word semantics, and we use this property to explore
properties and assumptions of BERT, a popular contextualized output embedding al-
gorithm. We find the BERT controls for the semantics of paraphrases reasonably
well, though not perfectly, and we draw out insights about how BERT handles poly-
semy, stopwords, and punctuation.

• Research Question #2. How does our knowledge of stability and other word
embedding properties affect tasks where word embeddings are commonly used,
both downstream applications and corpus-centered applications?

In our initial discussion of stability, we explore how instability affects two down-
stream applications, word similarity and part-of-speech tagging. We find that there is
a relationship between stability and performance on word similarity tasks. For part-
of-speech tagging, our LSTM architecture shifts unstable word embeddings more
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than the stable embeddings, perhaps “compensating” for the instability of the origi-
nal embeddings.

When expanding this to many languages around the world, rather than considering
specific tasks in diverse languages, we pinpoint linguistic features in certain lan-
guages that are likely to lead to lower performance of word embeddings in a variety
of scenarios.

Finally, in addition to stability, we also consider other word embedding properties,
specifically batching and curriculum learning, and how methodological choices made
for these properties affect downstream tasks. This is motivated by our initial study of
stability, where we found that the curriculum (order of data given to an algorithm) is
related to the stability of the resulting word embeddings. We systematically compare
curriculum learning and batching strategies to understand how they affect perfor-
mance on three downstream tasks, text classification, sentence and phrase similarity,
and part-of-speech tagging. We find that certain curriculum learning and batching
decisions do increase performance substantially for some tasks.

• Research Question #3. How does our knowledge of stability and other word
embedding properties affect our usage of embeddings?

Throughout this thesis, we discuss strategies for how to mitigate instability in both
downstream applications and corpus-centered applications. In our discussion of En-
glish word embeddings, we give several basic suggestions to use embeddings more
robustly, such as using in-domain embeddings whenever possible, preferring GloVe
to word2vec, and learning a curriculum for word2vec.

When we expand this discussion to multiple languages, we highlight particular lin-
guistic properties that cause embeddings to be less stable in a variety of scenarios.
Having an understanding of how embeddings change based on language properties
will lay the groundwork for building new, stronger embedding methods in various
languages.

By considering curriculum learning and batching in addition to stability, we are able
to suggest strategies to improve performance on the three downstream tasks that we
consider, text classification, sentence and phrase similarity, and part-of-speech simi-
larity.

In answering these research questions, we provide a deeper understanding of the
strengths and limits of word embeddings, and we show how this knowledge can be used
practically in multiple languages and applications.
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1.3 Thesis Organization

This thesis is organized as follows.
Chapter 2 surveys recent work concerning word embeddings, their applications, and

their properties.
Beginning in Chapter 3, we address our main research questions. Chapter 3 introduces

the concept of stability and discusses several factors related to stability in English word
embeddings. We show that even relatively high frequency words (100-200 occurrences)
are often unstable. We provide empirical evidence for how various factors contribute to the
stability of word embeddings, and we analyze the effects of stability on two downstream
tasks, word similarity and part-of-speech tagging.

Chapter 4 extends our study of stability to a group of diverse languages around the
world. We discuss linguistic properties that are related to stability, drawing out insights
about correlations with affixing, language gender systems, and other features.

Building on the result in Chapter 3 that curriculum is related to stability, in Chapter 5,
we consider how batching and curriculum learning affect the stability of word embeddings
and their usage in downstream applications. In order to better understand the impact of
these decisions, we present a systematic analysis of different curriculum learning strategies
and different batching strategies. We consider multiple datasets for three diverse tasks:
text classification, sentence and phrase similarity, and part-of-speech tagging. Our exper-
iments demonstrate that certain curriculum learning and batching decisions do increase
performance substantially for some tasks.

Finally, in Chapter 6, we shift our focus to English contextualized output algorithms.
We use paraphrases as a unique source of data to analyze a popular algorithm, BERT.
Because paraphrases naturally encode word and phrase semantics, we can use them to
examine investigate properties of BERT, such as how BERT handles polysemous words
and phrase similarity. We see that BERT does a reasonable, but not perfect job recognizing
paraphrases, and that BERT correctly handles polysemy in paraphrases. However, BERT
unexpectedly gives words that are farther apart lower cosine similarity scores. We also
examine previously reported results about how BERT contextualizes certain words and
find that BERT gives less contextualized representations to paraphrased words than non-
paraphrased words.

We close with conclusions and final thoughts on the research questions in Chapter 7.
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CHAPTER 2

Background and Related Work

In this chapter, we cover background on word embeddings, including different embedding
algorithms and previous analysis done on embeddings. We also talk about a particular
methodology, regression modeling, that we use throughout this dissertation.

2.1 Word Embeddings

Word embeddings are low-dimensional, dense vector representations that capture semantic
and syntactic properties of words. Many different algorithms have been proposed for word
embeddings, and these algorithms can be roughly divided into two categories: context-free

output embeddings and contextualized output embeddings. Context-free output embedding
algorithms produce one embedding per word, regardless of the context (surrounding words)
that the word appears in. Contextualized output embedding algorithms produce separate
embeddings for the same word, depending on the context of the word. Here, we survey
some of the most common algorithms.

2.1.1 Context-Free Output Embedding Algorithms

Many context-free output embedding algorithms are based on the distributional hypothesis,
the idea that words that occur in similar contexts tend to have similar meanings [52, 43].

2.1.1.1 Positive Pointwise Mutual Information (PPMI) Matrices

One traditional way to build embedding spaces (also denoted vector space models) is by
using positive pointwise mutual information (PPMI) matrices. Let M be a matrix, where
each row of M represents a word w, and each column of M represents a context (word)
c. A word w appears in the context c if w and c occur within a window of some size.
Each cell Mwc represents the association between a particular word w and a context c.
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This association is measured using positive pointwise mutual information (PPMI) [23], a
non-negative variant of pointwise mutual information (PMI). PPMI can be estimated as:

PMI(w, c) = log
P̂ (w, c)

P̂ (w)P̂ (c)
= log

count(w, c)× |D|
count(w)× count(c)

(2.1)

PPMI(w, c) = max(PMI(w, c), 0) (2.2)

where |D| is the number of (word, context) pairs in the corpus, count(w, c) is the number
of times that word w and context c occur together in the corpus, count(w) is the number of
times that word w occurs in the corpus, and count(c) is the number of times that context
c occurs in the corpus. Bullinaria and Levy [17] show that a PPMI matrix outperforms a
PMI matrix on a number of semantic tasks.

In this work, we use a PPMI matrix factored using singular value decomposition (SVD)
to obtain a denser matrix [38]. This technique is also used in NLP in Latent Semantic
Analysis (LSA) [30]. In SVD, the matrixM is decomposed into a product of three matrices:

M = U · Σ · V > (2.3)

where U and V have orthonormal columns and Σ is diagonal, with positive diagonal el-
ements (eigenvalues) ordered in decreasing order. As long as M is a real or a complex
matrix, the decomposition shown in Equation 2.3 exists. To obtain a d-dimensional em-
bedding matrix Md using SVD, we keep the top d rows of Σ:

Md = Ud · Σd · V >d (2.4)

2.1.1.2 word2vec

A more recent word embedding algorithm, word2vec [86, 83] uses a shallow neural net-
work to learn word embeddings by predicting context words. There are two separate al-
gorithms included in word2vec, the skip-gram model and the continuous bag-of-words
(CBOW) model (see Figure 2.1). CBOW aims to predict a target word given its context
words, while skip-gram aims to predict the context words given a target word. In this thesis,
we primarily focus on the more common skip-gram model.

The skip-gram model is a one-layer feed-forward neural network seeking to optimize
the log probability of a target word given its context words. Specifically, the distribution of
a (word w, context c) pair appearing in the data D is modeled using the softmax equation:

P (D = 1|w, c) = σ(~w · ~c) =
1

1 + e−~w·~c (2.5)
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Figure 2.1: CBOW and Skip-gram architectures. w(t) indicates the word at position t.
Figure taken from Mikolov et al. [83].

P (D = 0|w, c) = 1− P (D = 1|w, c) (2.6)

where ~w represents a d-dimensional word embedding and ~c represents a d-dimensional
context embedding, both parameters to be learned by the model. The skip-gram model
optimizes P (D = 1|w, c) for (w, c) pairs observed in the data, while maximizing
P (D = 0|w, c) for randomly selected pairs of (w, c). These randomly selected pairs are
called “negative samples,” and the assumption is made that most (w, c) pairs will be nega-
tive samples. Thus, the objective function of skip-gram for a single (w, c) pair is to maxi-
mize the following:

log σ(~w · ~c) + k · EcN∼PD
[log σ(−~w · ~cN)] (2.7)

where k is the number of negative samples and cN is the sampled context, drawn according
to the following empirical distribution:

PD(c) =
count(c)

|D|
(2.8)

Here, count(c) is the number of times that c appears in the data, and |D| is the number of
(word, context) pairs (this formulation of the skip-gram objective function is from Levy
and Goldberg [71]). Other optimizations, such as hierarchical softmax and subsampling of
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frequent words, are used to speed up the computation of the skip-gram model. Throughout
this thesis, we use the Python Gensim implementation of word2vec,1 which implements
standard optimizations, specifically negative sampling with five negative samples and no
hierarchical softmax.

2.1.1.3 GloVe

Another recent method for creating word embeddings, GloVe, is based on factoring a matrix
of ratios of co-occurrence probabilities [96]. Specifically, GloVe creates d-dimensional
word vectors (~w) and context vectors (~c) that satisfy the following equation:

~w · ~c+ bw + bc = count(w, c) (2.9)

where bw and bc are bias terms that are learned in the model. To satisfy Equation 2.9, GloVe
factors a log-count matrix shifted by the entire vocabularies’ bias terms:

M log(count(w,c)) ≈ W · C> + ~bw + ~bc (2.10)

where W is a matrix of word embeddings, C is a matrix of context embeddings, and ~bw

and ~bc are learned parameters.

2.1.1.4 Other Algorithms

Other word embedding algorithms have been proposed that incorporate additional infor-
mation from a corpus. Levy and Goldberg [70] extend word2vec to use different contexts,
particularly context from dependency parse trees, and Garimella et al. [47] introduce demo-
graphic information of the writer into the skip-gram model. Retro-fitting [40] after training
has additional been proposed as a way to refine word embeddings by incorporating seman-
tic information from outside sources such as WordNet [41].

We do not consider these methods in this thesis, because these methods are less com-
mon than the main word embedding algorithms discussed above.

2.1.1.5 Analysis

Various aspects of the embedding spaces produced by these algorithms have been pre-
viously studied. Particularly, the effect of parameter choices has a large impact on how
word2vec, GloVe, and PPMI behave [72]. Further work shows that the parameters of
word2vec influence the geometry of the created word vectors and context vectors [88].

1Available online at https://radimrehurek.com/gensim/index.html.
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These parameters can be optimized; Hellrich and Hahn [54] posit optimal parameters for
word2vec’s negative sampling and the number of epochs to train for. They also demonstrate
that in addition to parameter settings, word properties, such as word ambiguity, affect em-
bedding quality.

Depending on the algorithm parameters and other design decisions, nearest neighbors
vary in created embedding spaces [101]. Additional work has looked at how various word
properties (both semantic and syntactic information) change as properties of word embed-
dings shift [8, 129].

At a higher level of granularity, Tan et al. [119] analyze word embedding spaces by
comparing two spaces. They do this by linearly transforming one space into another space,
and they show that words have different usage properties in different domains (in their case,
Twitter and Wikipedia).

Finally, embeddings can be analyzed using second-order properties of embeddings,
which are properties of a word embedding derived from nearest neighborhood topologi-
cal features in an embedding space. Newman-Griffis and Fosler-Lussier [91] validate the
usefulness of second-order properties by demonstrating that embeddings based on second-
order properties perform as well as typical first-order embeddings.

2.1.1.6 Evaluation of Word Embeddings

There has been much interest in evaluating the quality of different word embedding algo-
rithms. This is typically done extrinsically, by measuring performance on a downstream
task, but there have also been efforts to build reliable intrinsic evaluation techniques.

The most common intrinsic evaluation techniques are using embeddings to measure
word similarity and relatedness, as well as to complete analogies [48]. Another, linguis-
tically inspired, intrinsic evaluation is using word embeddings to predict FrameNet [10]
edges, which capture inheritance, causation, and other relationships [69]. Bakarov [9] pro-
vides a survey of additional intrinsic analysis techniques.

In this thesis, we use word similarity as a way to evaluate word embeddings intrinsi-
cally. This is a very similar evaluation to word analogies, and these two methods are the
most common intrinsic evaluation methods.

2.1.2 Contextualized Output Embedding Algorithms

More recently, contextualized output word embeddings have been used in downstream
tasks. These models provide different embeddings for the same word depending on the
word’s context.
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Figure 2.2: A typical pre-training and fine-tuning workflow for BERT. Figure taken from
Devlin et al. [31].

One of the first major contextualized output embedding algorithms was ELMo [99].
ELMo is a bi-directional language model (biLM), implemented using forward and back-
wards LSTMs [56] and trained to maximize the log likelihood of seeing a target word given
both the words before the target word (forward language model) and the words after the
target word (background language model). To get embeddings, ELMo takes a weighted
average of the layers of the biLM for a given word in context. These layer weights are
typically learned by a downstream task architecture.

More recent contextualized output word embedding algorithms include BERT [31],
ULMFiT [59], XLM [68], RoBERTa [74], and XLNet [130].

As noted in Chapter 1, contextualized output word embedding algorithms require
tremendous amounts of computational resources and data to be effective. For instance,
it takes 2.5 days to train XLNet with 512 TPU v3 chips, and BERT uses 3.3 billion words
of training data. This computational cost makes contextualized output word embedding
models unfeasible in some situations.

2.1.2.1 BERT

In Chapter 6, we focus primarily on BERT, since this has become one of the most popular
contextualized output embedding algorithms, and many newer algorithms are variants of
it (see [106]). BERT is composed of stacks of bi-directional Transformer [124] encoder
layers.

Typically, the BERT workflow is broken down into two parts: pre-training and fine-
tuning, visualized in Figure 2.2. Instead of a traditional language model training objective,
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pre-training uses two unsupervised objectives: masked language modeling (MLM) and next
sentence prediction (NSP). For the MLM, or cloze [121], objective, a certain percentage of
input tokens are masked at random, and the model must predict these tokens. For the NSP
objective, 50% of the time, sentences are presented in the correct order, and 50% of the
time, sentences are presented randomly. The model must learn when they are in the correct
order and when they are not. Pre-training provides a generic, task-agnostic model. BERT
can then be fine-tuned to get embeddings for a particular task. In this step, one or more
fully connected layers are added on top of the pre-trained model, and all the parameters are
updated using task-specific inputs and outputs. Compared to pre-training, this is a relatively
computationally inexpensive task.

BERT has shown impressive performance on a large number of tasks, such as the GLUE
benchmark [125], the Stanford Question Answering Dataset (SQuAD) [104], and the Sit-
uations With Adversarial Generations (SWAG) dataset [132]. BERT has recently been
expanded to 104 languages.2 While this is a high number of languages, it is only a fraction
of the 7,111 languages that exist in the world today [37]. There are still many scenarios
where there is not enough data to train BERT for a particular language. BERT is also
a general-purpose embedding algorithm and does not have domain-specific embeddings,
where there is typically far less training data.

2.1.2.2 Analysis

Dubbed “BERTology,” there has been a growing amount of research studying the inner
workings of BERT and trying to quantify what this algorithm learns in various scenarios
[107].

Of particular interest to this thesis is work that analyzes the embeddings output from
BERT. Recent studies have found that BERT embeddings, created from the final layer of
BERT, tend to cluster according to word senses [127], though this varies somewhat based
on the position of a word in a sentence [82]. The final BERT layers also produce more
contextualized word embeddings than the beginning layers [39].

2.2 Methodologies: Regression Analysis

Throughout this thesis, as part of our evaluation of word embedding properties, we will
use regression analysis, a statistical method to measure the relationship between one or
more variables of interest. Specifically, given N ground-truth data points with M extracted

2See https://github.com/google-research/bert/blob/master/multilingual.md.
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features per data point, let xn ∈ R1×M be the features for sample n and let y ∈ R1×N be the
set of labels. Then, a regression model learns a set of weights w ∈ R1×M by minimizing
the least squares function

L(w) =
1

2

N∑
n=1

(yn −w>xn)2 (2.11)

Regression models have previously been used to measure the impact of individual features
[112].

Ridge regression [57] is a form of regression modeling that regularizes the magnitude
of the model weights, producing a more interpretable model than non-regularized linear
regression. Ridge regression adds a regularization term, altering Equation 2.11 to

L(w) =
1

2

N∑
n=1

(yn −w>xn)2 +
λ

2
||w||2 (2.12)

where λ is a regularization constant. In scenarios where there are two correlated features,
both features will have similar, but reduced, coefficients. In highly collinear cases, both
feature weights will be penalized the same amount.

The goodness of fit of a regression model is measured using the coefficient of determi-
nationR2. This measures how much variance in the dependent variable y is captured by the
independent variables x. A model that always predicts the expected value of y, regardless
of the input features, will receive an R2 score of 0. The highest possible R2 score is 1, and
the R2 score can be negative.
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CHAPTER 3

Factors Influencing the Surprising Instability of
Word Embeddings

A version of the content in this chapter appeared in the Proceedings of the
2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies [126].

Although word embeddings are widely used across NLP, their stability has not yet been
fully evaluated and understood. In this chapter, we explore the factors that play a role in
the stability of English word embeddings, including properties of the data, properties of the
algorithm, and properties of the words. We find that word embeddings exhibit substantial
instabilities, which can have implications for downstream tasks.

Using the overlap between nearest neighbors in an embedding space as a measure of
stability (see Section 3.1 below for more information), we observe that many common
embedding spaces have large amounts of instability. For example, Figure 3.11 shows the
instability of the embeddings obtained by training word2vec on the Penn Treebank (PTB)
[77]. As expected, lower frequency words have lower stability, and higher frequency words
have higher stability. What is surprising however about this graph is the medium-frequency
words, which show huge variance in stability. This cannot be explained by frequency, so
there must be other factors contributing to their instability.

In the following experiments, we explore which factors affect stability, as well as how
this stability affects downstream tasks that word embeddings are commonly used for. To
our knowledge, this is the first study comprehensively examining the factors behind insta-
bility.

1Throughout this dissertation, figures are plotted using the Python libraries matplotlib
(https://matplotlib.org) [60] and seaborn (https://seaborn.pydata.org). We additionally organize our
data using the Python pandas library (https://pandas.pydata.org) [81].
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Figure 3.1: Stability of word2vec as a property of frequency in the PTB. Stability is mea-
sured across ten randomized embedding spaces trained on the training portion of the PTB
(determined using language modeling splits [84]). Each word is placed in a frequency
bucket (x-axis), and each column (frequency bucket) is normalized.

Concurrent work by Antoniak and Mimno [6] evaluates how document properties affect
the stability of word embeddings. We also explore the stability of embeddings, but focus
on a broader range of factors, and consider the effect of stability on downstream tasks. In
contrast, Antoniak and Mimno focus on using word embeddings to analyze language (e.g.,
[46]), rather than to perform tasks.

3.1 Defining Stability

We define stability as the percent overlap between nearest neighbors in an embedding
space.2 Given a word W and two embedding spaces A and B, take the ten nearest neigh-
bors of W in both A and B. Let the stability of W be the percent overlap between these
two lists of nearest neighbors. 100% stability indicates perfect agreement between the two
embedding spaces, while 0% stability indicates complete disagreement. In order to find the
ten nearest neighbors of a wordW in an embedding spaceA, we measure distance between
words using cosine similarity.3 This definition of stability can be generalized to more than
two embedding spaces by considering the average overlap between two sets of embedding
spaces. Let X and Y be two sets of embedding spaces. Then, for every pair of embedding

2This metric is concurrently explored in work by Antoniak and Mimno [6].
3We found comparable results for other distance metrics, such as l1 norm, l2 norm, and l∞ norm, but we

report results from cosine similarity to be consistent with other word embedding research.
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Model 1 Model 2 Model 3

metropolitan ballet national
national metropolitan ballet
egyptian bard metropolitan
rhode chicago institute
society national glimmerglass
debut state egyptian
folk exhibitions intensive
reinstallation society jazz
chairwoman whitney state
philadelphia rhode exhibitions

Table 3.1: Top ten most similar words for the word international in three randomly intial-
ized word2vec models trained on the NYT Arts Domain. Words in all three lists are in
bold; words in only two of the lists are italicized.

spaces (x, y), where x ∈ X and y ∈ Y , take the ten nearest neighbors of W in both x and
y and calculate percent overlap. Let the stability be the average percent overlap over every
pair of embedding spaces (x, y).4

Consider an example using this metric. Table 3.1 shows the top ten nearest neigh-
bors for the word international in three randomly initialized word2vec embedding spaces
trained on the NYT Arts domain (see Section 3.2.3 for a description of this corpus). These
models share some similar words, such as metropolitan and national, but there are also
many differences. On average, each pair of models has four out of ten words in common,
so the stability of international across these three models is 40%.5

The idea of evaluating ten best options is also found in other tasks, like lexical substitu-
tion (e.g., [80]) and word association (e.g., [47]), where the top ten results are considered in
the final evaluation metric. To give some intuition for how changing the number of nearest
neighbors affects our stability metric, consider Figure 3.2. This graph shows how the sta-
bility of GloVe changes with the frequency of the word and the number of neighbors used
to calculate stability; please see the figure caption for a more detailed explanation of how
this graph is structured. Within each frequency bucket, the stability is consistent across
varying numbers of neighbors. Ten nearest neighbors performs approximately as well as a

4Another possible way to define stability would be to align our embedding spaces using a non-linear
transformation and then to measure the distance between words. The reason that we chose not to use this
metric was because it is currently still an open question how to align embedding spaces well. Aligning the
embedding spaces would need to include scaling the spaces so that distances are equivalent in multiple spaces,
and it is inconclusive what the best way to do this would be. For these reasons, we choose to use the simpler
definition presented here.

5Here, the two sets of embedding spaces X and Y are identical.
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Figure 3.2: Stability of GloVe on the PTB. Stability is measured across ten randomized
embedding spaces trained on the training data of the PTB (determined using language mod-
eling splits [84]). Each word is placed in a frequency bucket (left y-axis) and stability is
determined using a varying number of nearest neighbors for each frequency bucket (right
y-axis). Each row is normalized, and boxes with more than 0.01% of the row’s mass are
outlined.

higher number of nearest neighbors (e.g., 100). We see this pattern for low frequency words
as well as for high frequency words. Because the performance does not change substan-
tially by increasing the number of nearest neighbors, it is computationally less intensive to
use a small number of nearest neighbors. We choose ten nearest neighbors as our metric
throughout the rest of the chapter.
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3.2 Factors Influencing Stability

As we saw in Figure 3.1, embeddings are sometimes surprisingly unstable. To understand
the factors behind the (in)stability of word embeddings, we build a regression model that
aims to predict the stability of a word given: (1) properties related to the word itself; (2)
properties of the data used to train the embeddings; and (3) properties of the algorithm used
to construct these embeddings. Using this regression model, we draw observations about
factors that play a role in the stability of word embeddings.

3.2.1 Methodology

We use ridge regression, measured using the coefficient of determination R2, to model
these various factors [57]. We set the regularization coefficient λ = 1. In addition to ridge
regression, we tried non-regularized linear regression. We obtained comparable results, but
many of the weights were very large or very small, making them hard to interpret.

Given this model, we create training instances by observing the stability of a large
number of words across various combinations of two embedding spaces. Specifically, given
a word W and two embedding spaces A and B, we encode properties of the word W , as
well as properties of the datasets and the algorithms used to train the embedding spaces A
and B. The target value associated with these features is the stability of the word W across
embedding spaces A and B. We repeat this process for more than 2,500 words, several
datasets, and three embedding algorithms.

Specifically, we consider all the words present in all seven of the data domains we are
using (see Section 3.2.3), 2,521 words in total. Using the feature categories described be-
low, we generate a feature vector for each unique word, dataset, algorithm, and dimension
size, resulting in a total of 27,794,025 training instances. To get good average estimates
for each embedding algorithm, we train each embedding space five times, randomized dif-
ferently each time (this does not apply to PPMI, which has no random component). We
then train a ridge regression model on these instances. The model is trained to predict the
stability of word W across embedding spaces A and B (where A and B are not necessarily
trained using the same algorithm, parameters, or training data). Because we are using this
model to learn associations between certain features and stability, no test data is necessary.
The emphasis is on the model itself, not on the model’s performance on a specific task.

We describe next each of the three main categories of factors examined in the model.
An example of these features is given in Table 3.2.
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Word Properties

Primary part-of-speech Adjective
Secondary part-of-speech Noun
# Parts-of-speech 2
# WordNet senses 3
# Syllables 5

Data Properties

Raw frequency in corpus A 106
Raw frequency in corpus B 669
Diff. in raw frequency 563
Vocab. size of corpus A 10,508
Vocab. size of corpus B 43,888
Diff. in vocab. size 33,380
Overlap in corpora vocab. 17%
Domains present Arts, Europarl
Do the domains match? False
Training position in A 1.02%
Training position in B 0.15%
Diff. in training position 0.86%

Algorithm Properties

Algorithms present word2vec, PPMI
Do the algorithms match? False
Embedding dimension of A 100
Embedding dimension of B 100
Diff. in dimension 0
Do the dimensions match? True

Table 3.2: Consider the word international in two embedding spaces. Suppose embedding
space A is trained using word2vec (embedding dimension 100) on the NYT Arts domain,
and embedding space B is trained using PPMI (embedding dimension 100) on Europarl.
This table summarizes the resulting features for this word across the two embedding spaces.

3.2.2 Word Properties

We encode several features that capture attributes of the word W . First, we use the primary
and secondary parts-of-speech (POS) of the word. Both of these are represented as bags-
of-words of all possible POS, and are determined by looking at the primary (most frequent)
and secondary (second most frequent) POS of the word in the Brown corpus6 [44]. If the
word is not present in the Brown corpus, then all of these POS features are set to zero.

6Here, we use the universal tagset, which consists of twelve possible POS: adjective, adposition, adverb,
conjunction, determiner / article, noun, numeral, particle, pronoun, verb, punctuation mark, and other [100].
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Vocab. Num. Tokens /
Dataset Sentences Size Vocab. Size

NYT US 13,923 5,787 64.37
NYT NY 36,792 11,182 80.41
NYT Business 21,048 7,212 75.96
NYT Arts 28,161 10,508 65.29
NYT Sports 21,610 5,967 77.85
All NYT 121,534 24,144 117.98
Europarl 2,297,621 43,888 1,394.28

Table 3.3: Dataset statistics.

To get a coarse-grained representation of the polysemy of the word, we consider the
number of different POS present. For a finer-grained representation, we use the number of
different WordNet senses associated with the word [87, 41].

We also consider the number of syllables in a word, determined using the CMU Pro-
nuncing Dictionary.7 If the word is not present in the dictionary, then this is set to zero.

3.2.3 Data Properties

Data features capture properties of the training data (and the word in relation to the training
data). For this model, we gather data from two sources: the New York Times (NYT) [109]
and Europarl [67]. Overall, we consider seven domains of data: (1) NYT - U.S., (2) NYT
- New York and Region, (3) NYT - Business, (4) NYT - Arts, (5) NYT - Sports, (6) All of
the data from domains 1-5 (denoted “All NYT”), and (7) All of English Europarl. Table 3.3
shows statistics for these datasets. The first five domains are chosen because they are the
top five most common categories of news articles present in the NYT corpus. They are
smaller than “All NYT” and Europarl, and they have a narrow topical focus. The “All
NYT” domain is more diverse topically and larger than the first five domains. Finally,
the Europarl domain is the largest domain, and it is focused on a single topic (European
Parliamentary politics). These varying datasets allow us to consider how data-dependent
properties affect stability.

We use several features related to domain. First, we consider the raw frequency of
word W in both the domain of data used for embedding space A and the domain of data for
space B. To make our regression model symmetric, we effectively encode three features:
the higher raw frequency (between the two), the lower raw frequency, and the absolute
difference in raw frequency.

7Available online at http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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We also consider the vocabulary size of each corpus (again, symmetrically) and the
percent overlap between corpora vocabulary, as well as the domain of each of the two
corpora, represented as a bag-of-words of domains. Finally, we consider whether the two
corpora are from the same domain.

Our final data-level features explore the role of curriculum learning in stability. It has
been posited that the order of the training data affects the performance of certain algo-
rithms, and previous work has shown that for some neural network-based tasks, a good
training data order (curriculum learning strategy) can improve performance [12]. Curricu-
lum learning has been previously explored for word2vec, where it has been found that op-
timizing training data order can lead to small improvements on common NLP tasks [122].
We will further explore the effects of curriculum on word embeddings in Chapter 5. In
this chapter, of the embedding algorithms we consider, curriculum learning only affects
word2vec. Because GloVe and PPMI use the data to learn a complete matrix before build-
ing embeddings, the order of the training data will not affect their performance. To measure
the effects of training data order, we include as features the first appearance of word W in
the dataset for embedding space A and the first appearance of W in the dataset for embed-
ding space B (represented as percentages of the total number of training sentences).8 We
further include the absolute difference between these percentages.

3.2.4 Algorithm Properties

In addition to word and data properties, we encode features about the embedding algo-
rithms. These include the different algorithms being used, as well as the different parame-
ter settings of these algorithms. Here, we consider three embedding algorithms, word2vec,
GloVe, and PPMI. The choice of algorithm is represented in our feature vector as a bag-of-
words.

For each algorithm, we choose common parameter settings. For word2vec, two of the
parameters that need to be chosen are window size and minimum count. Window size
refers to the maximum distance between the current word and the predicted word (e.g.,
how many neighboring words to consider for each target word). Any word appearing less
than the minimum count number of times in the corpus is discarded and not considered in
the word2vec algorithm. For both of these features, we choose standard parameter settings,
namely, a window size of 5 and a minimum count of 5. For GloVe, we also choose standard
parameters. We use 50 iterations of the algorithm for embedding dimensions less than 300,
and 100 iterations for higher dimensions.

8All word2vec experiments reported here are run in a multi-core setting, which means that these percent-
ages are approximate. However, comparable results were achieved using a single-core version of word2vec.
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Feature Weight

Lower training data position of word W -1.52
Higher training data position of W -1.49
Primary POS = Numeral 1.12
Primary POS = Other -1.08
Primary POS = Punctuation mark -1.02
Overlap between corpora vocab. 1.01
Primary POS = Adjective -0.92
Primary POS = Adposition -0.92
Do the two domains match? 0.91
Primary POS = Verb -0.88
Primary POS = Conjunction -0.84
Primary POS = Noun -0.81
Primary POS = Adverb -0.79
Do the two algorithms match? 0.78
Secondary POS = Pronoun 0.62
Primary POS = Determiner -0.48
Primary POS = Particle -0.44
Secondary POS = Particle 0.36
Secondary POS = Other 0.28
Primary POS = Pronoun -0.26
Secondary POS = Verb -0.25
Number of word2vec embeddings -0.21
Secondary POS = Adverb 0.15
Secondary POS = Determiner 0.14
Number of NYT Arts Domain -0.14
Number of NYT All Domain 0.14
Number of GloVe embeddings 0.13
Number of syllables -0.11

Table 3.4: Regression weights with a magnitude greater than 0.1, sorted by magnitude.

We also add a feature reflecting the embedding dimension, namely one of five embed-
ding dimensions: 50, 100, 200, 400, or 800.

3.3 Lessons Learned: What Contributes to the Stability
of an Embedding

Overall, the regression model achieves a coefficient of determination R2 score of 0.301
on the training data, which indicates that the regression has learned a linear model that
reasonably fits the training data given. Using the regression model, we can analyze the
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(a) word2vec.

10
0101

0.
1

0.
010

Position in Training Data (%, log scale)

100
75
50

25

10

5

2

0

%
 S

ta
bi

lit
y 

(lo
g 

sc
al

e)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

%
 V

oc
ab

ul
ar

y

(b) GloVe.

Figure 3.3: Stability of both word2vec and GloVe as properties of the starting word position
in the training data of the PTB. Stability is measured across ten randomized embedding
spaces trained on the training data of the PTB (determined using language modeling splits
[84]). Boxes with more than 0.02% of the total vocabulary mass are outlined.

weights corresponding to each of the features being considered, shown in Table 3.4. These
weights are difficult to interpret, because features have different distributions and ranges.
However, we make several general observations about the stability of word embeddings.

Observation 1. Curriculum learning is important. This is evident because the top two
features (by magnitude) of the regression model capture where the word first appears in the
training data. Figure 3.3 shows trends between training data position and stability in the
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Primary POS Avg. Stability

Numeral 47%
Verb 31%
Determiner 31%
Adjective 31%
Noun 30%
Adverb 29%
Pronoun 29%
Conjunction 28%
Particle 26%
Adposition 25%
Punctuation mark 22%

Table 3.5: Percent stability broken down by part-of-speech, ordered by decreasing stability.

PTB. This figure contrasts word2vec with GloVe (which is order invariant).
To further understand the effect of curriculum learning on the model, we train a regres-

sion model with all of the features except the curriculum learning features. This model
achieves an R2 score of 0.291 (compared to the full model’s score of 0.301). This indicates
that curriculum learning is a factor in stability.9

Observation 2. Part-of-speech is one of the biggest factors in stability. Table 3.4 shows
that many of the top weights belong to POS-related features (both primary and secondary
POS). Table 3.5 compares average stabilities for each primary POS. Here we see that the
most stable POS are numerals, verbs, and determiners, while the least stable POS are punc-
tuation marks, adpositions, and particles.

Observation 3. Stability within domains is greater than stability across domains. Ta-
ble 3.4 shows that many of the top factors are domain-related. Figure 3.4 shows the results
of the regression model broken down by domain. This figure shows the highest stabilities
appearing on the diagonal of the matrix, where the two embedding spaces both belong to
the same domain. The stabilities are substantially lower off the diagonal.

Figure 3.4 also shows that “All NYT” generalizes across the other NYT domains better
than Europarl, but not as well as in-domain data (“All NYT” encompasses data from US,
NY, Business, Arts, and Sports). This is true even though Europarl is much larger than “All
NYT”.

Observation 4. Overall, GloVe is the most stable embedding algorithm. This is partic-

9When looking at all of the words in the training data of the PTB, frequency and the position where a
word first appears in the training data are negatively correlated, with a Spearman’s correlation [115] of -0.60.
This indicates that Figure 3.3 is showing a different trend from Figure 3.1.
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Figure 3.5: Percent stability broken down by algorithm (in-domain data only).

ularly apparent when only in-domain data is considered, as in Figure 3.5. PPMI achieves
similar stability, while word2vec lags considerably behind.

To further compare word2vec and GloVe, we look at how the stability of word2vec
changes with the frequency of the word and the number of neighbors used to calculate sta-
bility. This is shown in Figure 3.6 and is directly comparable to Figure 3.2. Surprisingly,
the stability of word2vec varies substantially with the frequency of the word. For lower-
frequency words, as the number of nearest neighbors increases, the stability increases ap-
proximately exponentially. For high-frequency words, the lowest and highest number of
nearest neighbors show the greatest stability. This is different than GloVe, where stability
remains reasonably constant across word frequencies, as shown in Figure 3.2. The behav-
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Figure 3.6: Stability of word2vec on the PTB. Stability is measured across ten random-
ized embedding spaces trained on the training data of the PTB (determined using language
modeling splits [84]). Each word is placed in a frequency bucket (left y-axis) and stability
is determined using a varying number of nearest neighbors for each frequency bucket (right
y-axis). Each row is normalized, and boxes with more than 0.01% of the row’s mass are
outlined.

ior we see here agrees with the conclusion of Mimno and Thompson [88], who find that
GloVe exhibits more well-behaved geometry than word2vec.

Observation 5. Frequency is not a major factor in stability. To better understand the
role that frequency plays in stability, we run separate ablation experiments comparing re-
gression models with frequency features to regression models without frequency features.
Our current model (using raw frequency) achieves an R2 score of 0.301. Comparably, a
model using the same features, but with normalized instead of raw frequency, achieves a
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Figure 3.7: Absolute error for word similarity. Word 1 is the more stable word in the pair
of words being compared.

score of 0.303. Removing frequency from either regression model gives a score of 0.301.
This indicates that frequency is not a major factor in stability, though normalized frequency
is a larger factor than raw frequency.

Finally, we look at regression models using only frequency features. A model using
only raw frequency features has an R2 score of 0.008, while a model with only normalized
frequency features has an R2 score of 0.0059. This indicates that while frequency is not
a major factor in stability, it is also not negligible. As we pointed out in the introduction,
frequency does correlate with stability (Figure 3.1). However, in the presence of all of these
other features, frequency becomes a minor factor.

3.4 Impact of Stability on Downstream Tasks

Word embeddings are used extensively as the first stage of neural networks throughout NLP.
Typically, embeddings are initalized based on a vector trained with word2vec or GloVe and
then further modified as part of training for the target task. We study two downstream tasks
to see whether stability impacts performance.

Since we are interested in seeing the impact of word vector stability, we choose tasks
that have an intuitive evaluation at the word level: word similarity and POS tagging.
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3.4.1 Word Similarity

To model word similarity, we use 300-dimensional word2vec embedding spaces trained
on the PTB. For each pair of words, we take the cosine similarity between those words
averaged over ten randomly initialized embedding spaces.

We consider three datasets for evaluating word similarity: WS353 (353 pairs) [42],
MTurk287 (287 pairs) [103], and MTurk771 (771 pairs) [50]. For each dataset, we normal-
ize the similarity to be in the range [0,1], and we take the absolute difference between our
predicted value and the ground-truth value. Figure 3.7 shows the results broken down by
stability of the two words (we always consider Word 1 to be the more stable word in the
pair). Word similarity pairs where one of the words is not present in the PTB are omitted.

We find that these word similarity datasets do not contain a balanced distribution of
words with respect to stability; there are substantially more unstable words than there are
stable words. However, we still see a slight trend: As the combined stability of the two
words increases, the average absolute error decreases, as reflected by the lighter color of
the cells in Figure 3.7 while moving away from the (0,0) data point.

3.4.2 Part-of-Speech Tagging

Part-of-speech (POS) tagging is a substantially more complicated task than word similarity.
We use a bidirectional LSTM implemented using DyNet [90]. We train nine sets of 128-
dimensional word embeddings with word2vec using different random seeds. The LSTM
has a single layer and 50-dimensional hidden vectors. Outputs are passed through a tanh

layer before classification. To train, we use SGD with a learning rate of 0.1, an input noise
rate of 0.1, and recurrent dropout of 0.4.

This simple model is not state-of-the-art, scoring 95.5% on the development set, but
the word vectors are a central part of the model, providing a clear signal of their impact.
For each word, we group tokens based on stability and frequency. Figure 3.8 shows the
results.10 Fixing the word vectors provides a clearer pattern in the results, but also leads
to much worse performance: 85.0% on the development set. Based on these results, it
seems that training appears to compensate for stability. This hypothesis is supported by
Figure 3.8c, which shows the similarity between the original word vectors and the shifted
word vectors produced by the training. In general, lower stability words are shifted more
during training.

Understanding how the LSTM is changing the input embeddings is useful information

10The unusual dark spot that occurs at medium-high stability and low frequency is caused primarily by
words that have a substantially different POS distribution in the test data than in the training data.
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(a) POS error probability with fixed vectors.
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(b) POS error probability when vectors may shift in training.
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Figure 3.8: Results for POS tagging. The top two graphs show average POS tagging error
divided by the number of tokens (darker is more errors) while either keeping word vectors
fixed or not during training. The bottom graph shows word vector shift, measured as cosine
similarity between initial and final vectors. In all graphs, words are bucketed by frequency
and stability.
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for tasks with limited data, and it could allow us to improve embeddings and LSTM training
for these low-resource tasks.

3.5 Conclusion and Recommendations

Word embeddings are surprisingly variable, even for relatively high frequency words. Us-
ing a regression model, we show that domain and part-of-speech are key factors of insta-
bility. Downstream experiments show that stability impacts tasks using embedding-based
features, though allowing embeddings to shift during training can reduce this effect. In
order to use the most stable embedding spaces for future tasks, we recommend either us-
ing GloVe or learning a good curriculum for word2vec training data. We also recommend
using in-domain embeddings whenever possible.

The code used in the experiments described in this chapter is publicly available
from http://lit.eecs.umich.edu/downloads.html, under the heading “Embedding Stability
(code)”.
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CHAPTER 4

Analyzing the Surprising Variability in Word
Embedding Stability Across Languages

As we have seen, common English embedding spaces are surprisingly unstable, which has
implications for work that uses embeddings as features in downstream tasks, and work that
uses embeddings to study specific properties of language [6, 126]. However, research to
date on word embedding stability has been exclusively done on English and is not repre-
sentative of all languages. In this chapter, we explore the stability of word embeddings in
languages around the world.

Specifically, we consider how stability varies for different languages and how linguistic
properties are related to stability, a previously understudied relationship. Using regression
modeling, we capture relationships between linguistic properties and average stability of
a language, and we draw out insights about how linguistic features relate to stability. For
instance, we find that languages with more affixing tend to be less stable. Our findings
provide crucial context for research that uses word embeddings to study language properties
and trends (e.g., [53, 55, 1]), which often rely on raw embeddings created by GloVe or
word2vec. If these embeddings are unstable, then research using them needs to take this
into account in terms of methodologies and error analysis.

4.1 Data

In order to explore the stability of word embeddings in different languages, we work with
two datasets, Wikipedia and the Bible. While Wikipedia has more data, the Bible covers
more languages. Wikipedia is a comparable corpus, whereas the Bible is a parallel corpus.
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4.1.1 Wikipedia Corpus

We use pre-processed Wikipedia dumps in 40 languages taken from Al-Rfou et al. [4].1

Specifically, the Wikipedia texts that we use have been previously segmented using an
OpenNLP probabilistic tokenizer whenever possible,2 and a Unicode text segmentation
model offered by Lucene when no model is available3 [4]. In order to verify that this word
segmentation is reasonable, we asked speakers of several of the languages4 to look over a
subset of the data and describe any errors that they saw. All languages that we checked
were confirmed to have reasonable word segmentation, though a few small inconsistencies
were observed. In Finnish, several word cases were handled inconsistently, and in Italian
and French, determiners followed by words beginning with a vowel were not segmented
correctly. However, speakers of these languages confirmed that these inconsistencies are
relatively minor and most of the text is well-segmented.

The size of these Wikipedia corpora varies from 329,136 sentences (Tagalog) to
75,241,648 sentences (English), with an average of 9,292,394 sentences. For all of our
experiments, we downsample each corpus to work with comparably sized data (details in
Section 4.2.2).

4.1.2 Bible Corpus

We consider 97 languages from the Bible corpus [79]:5 all languages for which at least
75% of the Bible (≥ 23,326 verses) is present.6 This excludes many languages for which
there is only a partial Bible, e.g., just the New Testament, which would be insufficient for
training word vectors. We use the pre-processing already done by McCarthy et al. [79]. We
consider two sets of languages with the Bible corpus: languages that overlap with the set of
Wikipedia languages (26 languages), and all languages in the Bible corpus (97 languages).

4.1.3 WALS

To gain linguistic properties of these languages, we use the World Atlas of Language Struc-
tures (WALS),7 a database of phonological, lexical, and grammatical properties for over

1Available online at https://sites.google.com/site/rmyeid/projects/polyglot.
2Danish, German, English, French, Dutch, Portuguese
3See http://www.unicode.org/reports/tr29/.
4Finnish, German, Romanian, Italian, French, English, Arabic
5Available by contacting McCarthy et al. [79].
6To work with a maximum number of languages, we only consider the complete Protestant Bible (i.e., all

of the verses that appear in the English King James Version of the Bible).
7Available online at https://wals.info.
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2,000 languages [36]. This expert-curated resource contains 192 language features. For
example, WALS records subject, object, and verb word order for various languages.

4.2 Calculating Stability in Many Languages

The first part of this chapter is a comparison of stability across languages. Before presenting
our measurements, we analyze some important methodological decisions.

4.2.1 The Effect of Downsampling on Stability

Stability measures how changes to the input data or training algorithm affect the resulting
embeddings. Sometimes we make changes with the goal of shifting the embeddings, such
as increasing the context window size to try to get embeddings that capture semantics more
than syntax. In other cases, we would hope a change would not substantially change our
embeddings, such as changing the random seed for the algorithm. For our experiments, we
consider a previously unstudied source of instability: different data samples from the same
distribution. This is a case where we hope embeddings remain stable, given a sufficiently
large sample.

We generate data samples by downsampling a corpus to create multiple smaller cor-
pora; we then measure stability across these downsamples. The choice of sampling with or
without replacement, and the size of the sample are subtle methodological choices. In this
section, we consider whether stability across downsamples produces consistent results that
we can compare across languages.

First, we consider downsampling with replacement, shown in Figure 4.1a. We sample
five sets of 500,000 sentences multiple times, controlling the amount of overlap between
downsamples (from 10% to 60%).8 For a specific overlap amount X%, X% of 500,000
sentences is randomly sampled and included in all of the five downsamples. The remaining
(100−X)% sentences are randomly sampled for each downsample. Stability is calculated
using GloVe embeddings and the words that occur in every downsample for every overlap
percentage. For GloVe, we use 100 iterations, 300 dimensions, a window size of 5, and a
minimum word count of 5.

In Figure 4.1a, we group stability into buckets, allowing us to see patterns in stability
that are not visible from a single statistic, such as the overall average. Stability is grouped
into buckets of width 5%, e.g., 0-5%, 5-10%, ..., 95-100%. The number of words that fall

8Data drawn from an English Wikipedia corpus of 5,269,686 sentences (denoted “Large English
Wikipedia”). This data was used in Tsvetkov et al. [122] and is available by contacting the authors of that
paper.
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Figure 4.1: Measuring the impact of data sampling parameters on stability measurements.
Results when sampling with replacement consistently increase as overlap increases (a).
This poses a problem, as results may reflect corpus size rather than intrinsic stability. Re-
sults when sampling without replacement do show a consistent pattern, even when the
sample is only 50,000 sentences, a tenth of the largest sample size (b).

into each stability bucket are counted, and then normalized by the total number of words.
We see that while stability trends are similar for different overlap amounts, stability is con-
sistently higher as the overlap amount increases. This means that if we use downsampling
with replacement, we cannot reliably compare stability across multiple corpora of varying
sizes (e.g., Wikipedia and the much smaller Bible corpus). The overlap amount would
change depending on the size of the corpus, changing our stability measurement.

Instead of downsampling with replacement, we consider downsampling without re-
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placement, shown in Figure 4.1b for different downsample sizes. We see that varying the
size of the downsample does not have a large effect on the patterns of stability. Particu-
larly when looking at lower stability, the trends are remarkably consistent, even when the
downsample size varies from 50,000 sentences to 500,000 sentences. The pattern grows
less consistent when looking at higher stability, especially with smaller downsample sizes.

This comparison (Figures 4.1a and 4.1b) shows that downsampling without replace-
ment produces more consistent (and thus comparable) stability results than downsampling
with replacement. Thus, we only consider downsampling without replacement.

4.2.2 Stability for Wikipedia and the Bible

Our first study, shown in Figure 4.2, considers stability across the 26 languages included
in both Wikipedia and the Bible. These results show three settings for Wikipedia: (1)
Stability of GloVe embeddings across five downsampled corpora, (2) Stability of word2vec
embeddings across five downsampled corpora, and (3) Stability of word2vec using five
different random seeds across one downsampled corpus. For the Bible, we only show the
third case, since it is too small for downsampling.

Each downsampled corpus is 100,000 sentences, and words that occur with a frequency
less than five are ignored. Previous work [101, 126] has indicated that words that appear
this infrequently will be very unstable. We use standard parameters for both embedding
algorithms. For GloVe [96], we use 100 iterations, 300 dimensions, a window size of 5,
and a minimum word count of 5; these parameters led to good performance in Chapter 3.
For word2vec (w2v) [86], we use 300 dimensions, a window size of 5, and a minimum
word count of 5. For each embedding, we calculate the ten nearest neighbors of every word
using FAISS9 [63]. Finally, for each language, we calculate the stability for every word in
that language across all five embedding spaces.10

Figure 4.2 shows bucketed stability for both Wikipedia and the Bible. Visualizing sta-
bility in buckets allows us to see patterns in stability that are obscured in a single overall
average. Of note in Figure 4.2 is that we do see differences in stability among languages.
When considering GloVe downsamples on Wikipedia, Vietnamese is the most stable lan-
guage (avg. 2.46%), while Korean is the least stable (avg. 0.58%). In general, we see
that most of the words (in all languages) are relatively unstable, though Vietnamese has a

9We use exact, not approximate, search.
10All experiments were run on a machine with four Intel(R) Xeon(R) CPU E5-1603 v3 @ 2.80 GHz

processors, each with four cores. Timings: Training one w2v embedding on one Wikipedia corpus, 13
sec.; training one GloVe embedding on one Wikipedia corpus, 12 min., 13 sec.; calculating stability on one
Wikipedia corpus, 17 sec.; training one w2v embedding on one Bible corpus, 5 sec.; calculating stability on
one Bible corpus, 12 sec.
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Figure 4.2: Percentage of words that occur in each stability bucket for four different meth-
ods, three on Wikipedia and one on the Bible. The 26 languages in common are shown
here. The average stability for each method is shown on the individual graphs.

noticeably higher percentage of words that are stable (particularly for the Bible).
Figure 4.2 also shows that all three methods on Wikipedia generally show similar be-

havior. For further experiments, we use stability with GloVe embeddings across five down-
sampled corpora. Because the Bible corpus is substantially smaller than the Wikipedia
corpus, downsampling to calculate stability is not a feasible option. We see that word2vec
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Figure 4.3: Percentage of words that occur in each stability bucket for different Bible
translations in German and French.

with a single downsample and five different random seeds gives comparable stability re-
sults to using GloVe across five downsamples. Based on those results, we choose to use
w2v with varying seeds to calculate stability for the Bible.

Several languages have multiple Bible translations. This provides us with a way to
check the consistency of our results. Figure 4.3 shows that stability patterns are very con-
sistent. The French Parole de Vie translation (top line in yellow in Figure 4.3b) intentionally
uses simpler, everyday language, which could explain why this line follows a different pat-
tern than the other French translations. For further experiments on languages with multiple
Bible translation, we choose the Bible translation with the highest average stability.

Here, we have compared trends in stability across 26 languages and explored the con-
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sistency of results using various methods. For the rest of this paper, we use results from
GloVe across five downsampled corpora for Wikipedia, and results across five random
seeds of word2vec for the Bible.

4.3 Regression Modeling

To further explore the results from the previous section, we now examine linguistic factors
that correlate with stability. In order to draw conclusions about specific linguistic features,
we use a ridge regression model [57]11 to predict the average stability of all words in a
language given features reflecting language properties. We experiment with different reg-
ularization strengths and use the best-performing value (λ = 10).12 We choose to use a
linear model here because of its interpretability. While more complicated models might
yield additional insight, we show that there are interesting connections to be drawn from a
linear model.

4.3.1 Model Input and Output

Our model takes linguistic features of a language as input and predicts stability as output.
Since WALS properties are categorical, we turn each property into a set of binary features.
If a particular language does not have a known value for a given WALS property, then all of
these binary features are marked zero. To prevent overfitting, we remove all binary features
with fewer than five languages. Note that because all of our input features are binary, all
weights are easily comparable.

For each model, we bootstrap over the input features N = 1, 000 times, allowing us to
calculate standard error for both the R2 score and the model weights. Calculating signif-
icance for each feature allows us to discard highly variable weights and focus on features
that consistently contribute to the regression model, giving us more confidence in the re-
sults.

In order to draw out important correlations between linguistic features and stability, we
filter the languages and WALS properties that we consider. We only include languages that
have at least 25% of all WALS properties. Then, we only consider WALS properties that
cover at least 25% of the filtered languages. Each WALS property has a subset of binary

11Run using the Python package sklearn.linear.model.Ridge [95] with default parameters ex-
cept α = 10.

12We run leave-one-language-out cross-validation, described in Section 4.3.2, using the regularization
strength α values of 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, and 1000, choosing the α value with the lowest
average absolute error.
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features. We remove all WALS properties that do not have at least two features that include
at least five languages. After this filtering, we end up with 37 languages,13 and 97 WALS
properties.

We also group highly correlated WALS features together. We create the groupings by
combining features that have a Pearson correlation greater than 0.8. A feature is included
in a particular grouping if it correlates highly with any of the features already in the group.
Each grouped feature is marked as one if any of the included features are marked as one.

The output of our model is the average stability of a language, which is calculated by
averaging together the stability of all of the words in a language. If a language is present in
both corpora, we average the stabilities from the two corpora.

4.3.2 Evaluation

We evaluate our model in two ways. First, we measure goodness of fit using the coefficient
of determination R2.14 Second, we run leave-one-out cross-validation across all languages,
and report absolute error on the left-out language. We compare this to a baseline of choos-
ing the average stability over all training languages.

We use the individual feature weights to measure how much a particular feature con-
tributes to the overall model. When reporting weights, we train the model using all 37
languages. Because we are primarily using regression modeling to learn associations be-
tween certain features and stability, no test data are necessary. The emphasis is on the
model itself and the feature weights it learns, not on the model’s performance on a task.

4.4 Results and Discussion

Our regression model has a high R2 score of 0.96 ± 0.00, indicating that this model fits
the data well.15 Significant weights with the highest magnitude are shown in Table 4.1.
Running leave-one-out cross-validation across all languages, we get an average absolute
error of 0.62± 0.53.16 This is substantially better than the baseline of choosing the average
stability over all languages, which gives an average absolute error of 0.86± 0.55.

13Bengali, Bulgarian, Cherokee, Comanche, English, Estonian, Finnish, Haitian, Haitian Creole, Hebrew,
Hindi, Hmong Njua, Hungarian, Indonesian, Italian, Japanese, Korean, Latin, Latvian, Linda, Lithuanian,
Ma’di, Mam, Mandarin, Maybrat, Norwegian, Persian, Pohnpeian, Polish, Portuguese, Russian, Somali,
Spanish, Swedish, Thai, Turkish, Ukrainian, Vietnamese

14Measured using the Python package sklearn.linear.model.Ridge.score.
15Run on a 2.9 GHz Dual-Core Intel Core i5 in < 7 sec.
16Run on a 2.9 GHz Dual-Core Intel Core i5 in < 4 sec. Cross-validation has an average R2 score of 0.92

on the training data.
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Cat. WALS Attribute Weight

VC,
M

Suffixing Grouping:
·Prefixing vs. Suffixing in Inflectional Morphology: Strongly

Suffixing;
·Position of Tense-Aspect Affixes: Tense-aspect suffixes

−0.14± 0.0

L Hand and Arm: Different −0.11± 0.0
CS Relativization on Obliques: Gap −0.10± 0.0

VC
Overlap between Situational & Epistemic Modal Marking: Overlap
for both possibility & necessity

−0.09± 0.0

NC Ordinal Numerals: First, second, three-th −0.08± 0.0
NC Comitatives and Instrumentals: Differentiation −0.08± 0.0
P Rhythm Types: Trochaic −0.08± 0.0
WO Order of Adjective and Noun: Adjective-Noun −0.07± 0.0
WO Order of Adposition and Noun Phrase: Postpositions −0.07± 0.0

NC

No Gender Grouping:
· Systems of Gender Assignment: No gender;
· Sex-based and Non-sex-based Gender Systems: No gender;
· Gender Distinctions in Independent Personal Pronouns: No

gender distinctions;
· Number of Genders: None

0.05± 0.0

P Voicing and Gaps in Plosive Systems: Other 0.06± 0.0
M Prefixing vs. Suffixing in Inflectional Morphology: Little affixation 0.06± 0.0
CS ‘Want’ Complement Subjects: Subject is expressed overtly 0.06± 0.0
VC The Morphological Imperative: No second-person imperatives 0.06± 0.0
CS Purpose Clauses: Balanced 0.06± 0.0

WO

Prepositions Grouping:
·Order of Adposition and Noun Phrase: Prepositions;
·Relationship between the Order of Object and Verb and the Order

of Adposition and Noun Phrase: VO and Prepositions

0.06± 0.0

WO Order of Demonstrative and Noun: Noun-Demonstrative 0.07± 0.0
NC Position of Case Affixes: No case affixes or adpositional clitics 0.11± 0.0

Table 4.1: Weights with the highest magnitude in the regression model. Negative weights
correspond with low stability, and positive weights correspond with high stability.

Table 4.2 breaks down the regression results by broad WALS category, listing both the
number of binary features per category, as well as the average magnitude of weights for fea-
tures in that category. The two most important groups of features are Nominal Categories
and Verbal Categories. Both of these categories have a large number of features and a high
average magnitude. While the Lexicon category has a high average magnitude, it contains
very few features. To further explore these results, we highlight a few WALS property in
more detail.
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WALS Category Num. Avg.
Features Magnitude

Simple Clauses (SC) 30 0.019
Nominal Syntax (NS) 2 0.021
Other (O) 2 0.023
Complex Sentences (CS) 11 0.028
Morphology (M) 18 0.031
Word Order (WO) 32 0.031
Phonology (P) 21 0.032
Nominal Categories (NC) 40 0.036
Verbal Categories (VC) 27 0.036
Lexicon (L) 6 0.039

Table 4.2: Number of binary features and average magnitude of weights in the regression
model for different WALS categories. Grouped features are included in each category that
they cover.

4.4.1 Suffixes and Prefixes

Table 4.1 shows that three of the top features are related to affixes (suffixes and prefixes).
Specifically, we include three main WALS properties that deal with affixes: Position of
Case Affixes [33], Prefixing vs. Suffixing in Inflectional Morphology [35], and Position of
Tense-Aspect Affixes [34]. Distributions of these features in the 37 languages used for the
regression model are shown in Figure 4.4 (categories with fewer than five languages are
not shown).

For all three of these properties, more affixing is associated with lower stability. When
considering word embeddings, this result makes intuitive sense. Affixes cause there to be
many different word variations (e.g., walk, walked, walking, walker), which may not be
handled consistently by the embedding algorithm, leading to lower average stability.

4.4.2 Gendered Languages

Table 4.1 also highlights a grouping of WALS properties related to whether a language
is gendered or not. Four WALS properties are relevant to this: Systems of Gender As-
signment [28], Sex-based and Non-sex-based Gender Systems [27], Gender Distinctions in
Independent Personal Pronouns [111], and Number of Genders [26]. In general, a language
is considered to have a gender system if different parts-of-speech are required to agree in
gender (as opposed to simply having gendered nouns). Distributions of these features are
shown in Figure 4.5.
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Figure 4.4: Affixing properties compared using box-and-whisker plots.

For all of these properties, languages with no gender system tend to have higher average
stability. Again, this result makes sense in the context of word embeddings. Languages
with gender systems will have more word forms (e.g., both male and female word forms),
which may not be handled consistently by the embedding algorithm.

4.5 Conclusion

In this chapter, we considered how stability varies across different languages. This work is
important because algorithms such as GloVe and word2vec continue to be effective meth-
ods in a wide variety of scenarios [7], particularly the computational humanities and lan-
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Figure 4.5: Gender properties compared using box-and-whisker plots.

guages where large corpora are not available. We have shown that most languages have
unstable word embeddings. Because of this, when using embeddings to study language,
it is important to not rely on a single embedding space, but rather to consider multiple
embedding spaces, with slight variations in the training of the embedding spaces.

We studied the relationship between linguistic properties and stability, something that
has been previously understudied. We drew out several aspects of this relationship, includ-
ing that languages with more affixing tend to be less stable, and languages with no gender
systems tend to be more stable. These insights can be used in future work to inform the
design of embeddings in many languages. For instance, future architectures could be de-
signed specifically for gendered languages, or for languages with high amounts of affixing,
taking into account the linguistic properties particular to these languages. As we saw with
languages with high affixing, the morphology of a language is important for designing word
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embeddings. There has already been some current research on designing morphologically-
aware word embeddings (e.g., [22, 29, 5]), and our analyses in this chapter suggest that
this is a fruitful avenue of research to continue. Particularly for languages that are highly
unstable, the existing word representations that we use are not effective, and there is a need
to come up with new representations that will work well for these languages.

The code used in the experiments described in this chapter will be publicly available
from http://lit.eecs.umich.edu/downloads.html.
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CHAPTER 5

To Batch or Not to Batch? Comparing Batching
and Curriculum Learning Strategies Across

Tasks and Datasets

When designing architectures for tasks in natural language processing (NLP), certain
methodological questions arise, such as how to order the data during training (curricu-
lum learning), what batching method to use, and what batch size to use. In Chapter 3, we
first looked at how the curriculum of a dataset affects the stability of word embeddings, and
we saw that there is a trend between where a word first appears in the training data and its
stability. In this chapter, we expand on this by analyzing curriculum and batching choices
for the training of word vectors, evaluated through three downstream tasks: text classifi-
cation, sentence and phrase similarity, and part-of-speech tagging. We consider a variety
of datasets in order to understand how these strategies work across diverse tasks and data.
We show that for some tasks, these decisions do not have a significant impact, but for other
tasks, such as text classification on small datasets, these decisions are important consider-

Figure 5.1: Basic v. cumulative batching. Rectangles represent chunks of the training data,
with different colors representing different sections of the data.
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Figure 5.2: Experimental setup for text classification, sentence and phrase similarity, and
POS tagging.

ations. Building on our analysis in Chapter 3, we additionally consider how batching and
curriculum learning strategies affect word embedding stability.

Batching. The first methodological decision we consider is batching. We focus on
two techniques shown in Figure 5.1 and described in more detail in Section 5.1.1. These
techniques were first proposed for synthetic vision and word representation learning tasks
[12] and unsupervised dependency parsing [116]. Varying the number of batches has also
been studied; Smith et al. [113] show that choosing a good batch size can decrease the
number of parameter updates to a network.

Curriculum Learning. The second decision we study is curriculum learning. Curricu-
lum refers to the order that the data is presented to the embedding algorithm, which has
some effect on the performance of the created embeddings [122]. Curriculum learning has
also been applied to other tasks in NLP, including relation extraction [76] and sentiment
analysis [24].
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5.1 Experimental Setup

We consider the downstream tasks of text classification, sentence and phrase similarity, and
part-of-speech (POS) tagging, shown in Figure 5.2. These were chosen because they have
varying degrees of complexity - from word similarity, where word embeddings are com-
pared using cosine similarity, to POS tagging, where embeddings are input to an LSTM.
We also analyze the stability of the resulting embedding spaces.

5.1.1 Initial Embedding Spaces

For each task, we begin with a dataset of sentences from Wikipedia (5,269,686 sentences;
100,003,406 words; 894,044 tokens)1 and create word2vec skip-gram embeddings [86].2

These embeddings are then input to an architecture suited for the particular task that we
are considering. In order to account for variability in embeddings [6, 126], we train ten
embedding spaces using different random seeds3 for word2vec. We use these ten spaces to
calculate average performance and standard deviation.

5.1.2 Curriculum Learning

When creating embeddings, we consider three different curriculums for the data: the de-

fault order of Wikipedia sentences, descending order by sentence length (longest to short-
est), and ascending order by sentence length (shortest to longest). Note that curriculum
learning only applies to the Wikipedia dataset used to create the word embeddings, rather
than the task-specific datasets used for training.

Qualitatively looking at Wikipedia sentences ordered by length, both the shortest and
the longest sentences tend to be unnatural sounding. The shortest sentences are only a sin-
gle token, such as a single word or a single punctuation mark. Some of these are most likely
the result of incorrect sentence tokenization. The longest sentences tend to be either run-on
sentences, or lists of a large number of items. For instance, the longest sentence is 725
tokens long, and it lists numerical statistics for different countries. This unnaturalness may
adversely affect the embedding algorithm when using either the ascending or descending
curriculum. It is possible that a more complex ordering of the data would achieve better
performance; we leave this exploration to future work.

1This data was used in Tsvetkov et al. [122] and is available by contacting the authors of that paper.
2We use 300-dimension embeddings and a context window size of 5.
32518, 2548, 2590, 29, 401, 481, 485, 533, 725, 777
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Dataset # Train Sentences # Test Sentences # Classes

Amazon Review (polarity) 3.6e6 4e5 2
Amazon Review (full) 3e6 6.5e5 5
Yahoo! Answers 1.4e6 6e4 10
Yelp Review (full) 6.5e5 5e4 5
Yelp Review (polarity) 5.6e5 3.8e4 2
DBPedia 5.6e5 7e4 14
Sogou News 4.5e5 6e4 5
AG News 1.2e5 7, 600 4
Open Domain Deception 5, 733 1, 435 2
Personal Email 260 89 2
Real Life Deception 96 25 2

Table 5.1: Data statistics for text classification. The first eight datasets are from Zhang et
al. [133].

5.1.3 Batching

As part of creating word2vec embeddings, we also consider batching the Wikipedia dataset
input to the embedding algorithm. We batch words (and their contexts) using two strate-
gies: basic batching and cumulative batching, visualized in Figure 5.1. For each batching
strategy, we consider different numbers of batches ranging exponentially between 2 and
200.
Basic Batching. As described in Bengio et al. [12], we split the data up into X disjoint
batches. Each batch is processed sequentially, and each batch is run for n epochs (Batch 1
runs for n epochs, then Batch 2 runs for n epochs, etc.). Once a batch is finished processing,
it is discarded and never returned to. Both X and n are hyperparameters.
Cumulative Batching. Our second batching strategy [116] begins in the same way, with the
data split up intoX disjoint batches. In this strategy, the batches are processed cumulatively
(Batch 1 is run for n epochs, then Batches 1 and 2 combined are run for n epochs, etc.).

5.1.4 Task 1: Text Classification

Given the input embedding spaces, the first task we consider is text classification: deciding
what category a particular document falls into. We evaluate on eleven datasets, shown in
Table 5.1.4 These datasets span a wide range of sizes (from 96 sentences to 3.6 million
training sentences), as well as number of classes to be categorized (from 2 to 14).

Of particular note are three datasets that are at least an order of magnitude smaller

4For all tasks, sentences are tokenized using NLTK’s Tokenizer.
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Dataset # Pairs # Pairs # Tokens
(Train) (Test) (Train)

Human Activity 1,373 1,000 1,446
STS Benchmark 5,749 1,379 14,546
SICK 4,439 4,906 2,251

Table 5.2: Data statistics for sentence and phrase similarity.

than the other datasets. These are the Open Domain Deception Dataset [97],5 and the Real
Life Deception Dataset [98],6 both of which classify statements as truthful or deceptive, as
well as the Personal Email Dataset [75], which classifies e-mail messages as personal or
non-personal.7

After creating embedding spaces, we use fastText [65] for text classification.8 Perfor-
mance is measured using accuracy.

5.1.5 Task 2: Sentence and Phrase Similarity

The second task that we consider is sentence and phrase similarity: determining how sim-
ilar two sentences or phrases are. We consider three evaluation datasets, shown in Table
5.2. The Human Activity Dataset [128] consists of pairs of human activities with four an-
notated relations each (similarity, relatedness, motivational alignment [MA], and perceived
actor congruence [PAC]).9 The STS Benchmark [19] has pairs of sentences with seman-
tic similarity scores,10 and the SICK dataset [13] has pairs of sentences with relatedness
scores.11

For each pair of phrases or sentences in our evaluation set, we average the embeddings
for each word, and take the cosine similarity between the averaged word vectors from both
phrases or sentences. We compare this with the ground truth using Spearman’s correlation
[115].

5Data available from https://lit.eecs.umich.edu/downloads.html, under “Open-Domain Deception.”
6Data available from https://lit.eecs.umich.edu/downloads.html, under “Real-life Deception.”
7Data available from https://lit.eecs.umich.edu/downloads.html, under “Summarization and Keyword Ex-

traction from Emails.”
8Available online at https://fasttext.cc/.
9Data available from https://lit.eecs.umich.edu/downloads.html, under “Human Activity Phrase Data.”

10Data available from https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark.
11Data available from https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC.
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Dataset # Sentences (Train) # Sentences (Test)

UD Answers 2,631 438
UD Email 3,770 606

Table 5.3: Data statistics for POS tagging.

5.1.6 Task 3: Part-of-Speech Tagging

Our final task is part-of-speech (POS) tagging: determining the correct part-of-speech for
a given word in a sentence. For evaluation, we use two datasets, the email and answers
datasets from the English Universal Dependencies Corpus (UD) [92],12 shown in Table 5.3.

After creating embedding spaces, we use a bi-directional LSTM implemented using
DyNet [90] to perform POS tagging. The LSTM has 1 layer with hidden dimension size of
50, and a multi-layer perceptron on the output. Performance is measured using accuracy.

5.1.7 Stability

After looking at performance on these three downstream tasks, we additionally measure
the stability of the resulting embedding spaces. We look at the stability distribution across
all the words in the embedding space.

5.2 Results

We now consider how each task performs with different curriculum and batching strategies,
in order to determine which strategies are most effective.

5.2.1 Task 1: Text Classification

For results on the larger text classification datasets (> 120,000 training sentences), there are
no substantial differences between different curriculum and batching strategies. However,
we do see differences for the three smallest datasets, shown in Figure 5.3. To compare
across datasets of different sizes, we show the number of sentences per batch, rather than
number of batches. Because these graphs show many combinations of curriculum and
batching strategies, we report numbers on each dataset’s dev set.

On the smallest dataset, Real Life Deception (96 training sentences), we see that above
approximately ten batches, ascending curriculum with cumulative batching outperforms the

12Data available from https://universaldependencies.org/.
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Figure 5.3: Accuracy scores on the development set for three text classification datasets.
Different lines indicate models trained with different curriculums and batching strategies
(basic, cumulative). Datasets span different ranges of the x-axis because they are different
sizes.

other methods. On the test set, we compare our best strategy (ascending curriculum with
cumulative batching) with the baseline setting (default curriculum with basic batching),
both with 100 batches, and we see no significant difference. This is most likely because the
test set is so small (25 sentences).

5.2.2 Task 2: Sentence and Phrase Similarity

Next, we consider results from the sentence and phrase similarity task, shown in Figure
5.4. Because these graphs show many combinations of curriculum and batching strategies,
we report numbers on each dataset’s train set (we use the train sets rather than the dev sets
because there is no training or hyperparemeter tuning).

First, we note that the relative performance of different strategies remains consistent
across all three datasets and across all six measures of similarity. An ascending curriculum
with cumulative batching performs the worst by a substantial amount, while a descending
curriculum with cumulative batching performs the best by a small amount. As the number
of sentences per batch increases, the margin between the different strategies decreases.
On the test set, we compare our best strategy (descending curriculum with cumulative
batching) with the baseline setting (default curriculum with basic batching), and we see in
Table 5.4 that the best strategy significantly outperforms the baseline with five batches.

For all six measures, we observe a time v. performance trade-off: The fewer sentences
are in a batch, the better the performance is, but the more computational power and time it
takes to run.
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Figure 5.4: Spearman’s correlation scores on the train set for sentence and phrase similar-
ity tasks. Different lines indicate models trained with different curriculums and batching
strategies (basic, cumulative). Datasets span different ranges of the x-axis because they are
different sizes.

Human Activity
Dataset Sim. Rel. MA PAC STS SICK

Baseline (Default Curr. + Basic Batch.) 0.36 0.33 0.33 0.22 0.27 0.51
Best (Descending Curr. + Cum. Batch.) 0.43 0.41 0.41 0.29 0.32 0.53

Table 5.4: Spearman’s correlation on the test set for similarity tasks (all have a standard
deviation of 0.0). Both the baseline method and the best method have a batch size of five.

5.2.3 Task 3: Part-of-Speech Tagging

Finally, there are no significant differences in POS tagging between batching and curricu-
lum learning strategies.

5.2.4 Stability

In addition to these three downstream tasks, we also consider the stability of the embed-
ding spaces produced by different curriculum learning and batching combinations, shown
in Figure 5.5. We see very little difference in stability for different curriculums, for either
batching strategy. For basic batching, there are also no differences in stability, but for cu-
mulative batching, we see that stability consistently increases as we increase the number of
batches. This is consistent with what we saw for text classification and sentence similarity;
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Figure 5.5: Box-and-whisker plots showing stability scores on the embedding spaces pro-
duced by different curriculum learnings and batching strategies (basic, cumulative).

cumulative batching performs better than basic batching.

5.3 Discussion and Conclusion

One strategy does not perform equally well on all tasks. On same tasks, such as POS
tagging, the curriculum and batching strategies that we tried have no effect at all. Simpler
tasks that rely most heavily on word embeddings, such as sentence similarity and text
classification with very small datasets, benefit the most from fine-tuned curriculum learning
and batching.

In general, cumulative batching outperforms basic batching. This is intuitive because
cumulative batching sees the same training example more times than basic batching, and
overall sees the training data more times. As the number of sentences per batch increases,
the differences between cumulative and basic batching shrink.

It is inconclusive what the best curriculum is. For text classification, the ascending
curriculum works best, while for sentence and phrase similarity, the descending curriculum
works best. The three curriculums that we experimented with in this chapter (default,
ascending, and descending) are relatively simple ways to order data, and more work is
needed to investigate more complex orderings. Taking into account properties such as the
readability of a sentence, the difficulty level of words, and the frequency of certain part-
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of-speech combinations could create a better curriculum that consistently works well on
a large variety of tasks. Additionally, artificially simplifying sentences (e.g., substituting
simpler words or removing unnecessary clauses) at the beginning of the curriculum, and
then gradually increasing the difficulty of the sentences, could be helpful for “teaching” the
embedding algorithm to recognize more and more complex sentences.

We have explored different combinations of curriculum learning and batching strategies
across three different downstream tasks, as well as looked at the stability of the resulting
embedding spaces. We have shown that for different tasks, different strategies are appro-
priate, but that overall, cumulative batching performs better than basic batching. Since
our experiments demonstrate that certain curriculum learning and batching decisions do
increase performance substantially for some tasks, for future experiments we recommend
that practitioners experiment with different strategies, particularly when the task at hand
relies heavily on word embeddings.

The code used in the experiments described in this chapter will be publicly available
from http://lit.eecs.umich.edu/downloads.html.
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CHAPTER 6

Using Paraphrases to Understand Properties of
Contextualized Output Embeddings

Chapters 3, 4, and 5 have focused on context-free output embedding algorithms, such as
word2vec and GloVe, both in English and approximately 100 world languages. In this
chapter, we shift our focus to English contextualized output algorithms, which have risen
in popularity recently. We concentrate on BERT [31], an algorithm which has achieved im-
pressive performance on a wide variety of tasks and has been incorporated into the Google
search algorithm.1 BERT has achieved such rapid success that many current research ef-
forts are focused on improving its architecture further (e.g., [134, 73, 74]).

Because this algorithm has received widespread adoption, we are interested in analyz-
ing it further to better understand its properties and behaviors. Similar to looking at stability
in context-free output embeddings, we want to understand how contextualized output em-
beddings shift under different circumstances. However, our definition of stability does not
work in a contextualized output embedding space, since it relies on a single word having
a fixed set of nearest neighbors. Instead, in order to understand how and when contextu-
alized output embeddings change, we utilize a unique source of data: paraphrases, which
naturally capture properties of word and phrase semantics. As far as we know, we are the
first to use paraphrases to better understand contextualized output word embeddings.

Paraphrases encode rich information about the words and phrases in the paraphrase.
If two phrases paraphrase each other and we know the word alignment between these
phrases, we can conclude that aligned words in these phrases have similar seman-
tics. For example, consider the paraphrases the goals of the world summit

and the objectives of the world summit, where goals and objectives
are aligned. We can conclude that these two words have similar meanings in these
contexts. Paraphrases also place constraints on the semantics of polysemous words.

1See https://blog.google/products/search/search-language-understanding-bert.

57

https://blog.google/products/search/search-language-understanding-bert


In the paraphrases it notes with satisfaction that and the committee

notes with appreciation that, the word notes in both phrases is aligned.
This is a highly polysemous word (13 WordNet synsets), but because these two phrases
are paraphrases, we can assume that the same sense of the word is being used in both
phrases. If we input both of these phrases to an embedding algorithm, we would expect the
embeddings of notes in the first and second phrase to be close to each other. If they are
not, then the embedding algorithm has not properly understood the semantics of that word.

We begin this chapter by examining BERT’s ability to correctly understand the seman-
tics of paraphrases. We then use the unique properties of paraphrases to investigate other
properties of BERT. We focus on specific groups of words, including polysemous words,
stopwords, and punctuation; we also examine previously reported results about how BERT
contextualizes certain words.

6.1 Data

We use the Paraphrase Database as our primary source of paraphrases, additionally using
the Microsoft Research Paraphrase Corpus to validate some results.

6.1.1 The Paraphrase Database

The Paraphrase Database (PPDB) [45, 93] is an automatically constructed database of para-
phrases collected using the bilingual pivoting method [11]. The intuition behind this collec-
tion method is that two English strings that can be translated to the same foreign language
string are paraphrases of each other (this can be extended to languages other than English).
PPDB 2.0 contains 100m+ English paraphrases, each with word alignment information, an
automatically generated quality rating, and, for a subset, a human quality rating.2 Word
alignment is a by-product of the machine translation process used in the bilingual pivoting.
Formally, a weighted synchronous context-free grammar [3, 21] is used to align words in
translation. Example paraphrases with their average human annotations and automatically
generated scores are shown in Table 6.1. In general, the phrases in this dataset are short,
as shown in Figure 6.1. The longest phrases have six tokens, and the majority have fewer
than six.

The manual quality ratings are produced by sampling 26,455 paraphrase pairs from the
PPDB and gathering five human annotations for the quality of the paraphrase. Agreement

2Available online at http://paraphrase.org.
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Phrase 1 Phrase 2 Human Score PPDB Score

are you talking do n’t they 1.0 2.7
see what ’s happening ’re seeing 2.0 3.2
internal and foreign internal and external 3.4 2.1
what ’s this all about ? what ’s she saying ? 4.2 3.9
where did they come from ? where are they from ? 4.8 4.4

Table 6.1: Example tokenized paraphrases from the PPDB, with their average human an-
notations and automatic PPDB scores.
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Figure 6.1: Distribution of phrase lengths in the PPDB.

is measured using Spearman’s ρ [115]; the average ρ between two workers is 0.57, and the
average ρ between each worker with the other four annotators is 0.65.

The automatic quality ratings (denoted “PPDB score”) are generated by using the hu-
man annotations to fit a supervised ridge regression model. The input to the model consists
of 209 hand-crafted paraphrase features, including WordNet features [41], distributional
similarity features, and cosine similarities of generated Multiview Latent Semantic Anal-
ysis embeddings [105]; the output is the human-annotated paraphrase score. The PPDB
score is evaluated by comparing it with the human annotations, achieving Spearman’s ρ of
0.71. In comparison, Pavlick et al. [93] report that using the word2vec embedding of the
rarest word in each paraphrase obtains Spearman’s ρ of 0.46.
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Sent. 1 Albertson’s and Kroger’s Ralphs stores locked out their workers in response.
Sent. 2 Kroger’s Ralphs chain and Albertsons immediately locked out their grocery

workers in a show of solidarity.

Sent. 1 Electronic Data Systems Corp. Thursday said the Securities and Exchange
Commission has asked the company for documents related to its large
contract with the U.S. Navy.

Sent. 2 In a regulatory filing, EDS said the SEC had asked for information related to
its troubled IT outsourcing contract with the US Navy.

Sent. 1 Nigeria and other African oil producers are increasingly important in U.S.
plans to lessen dependence on Middle Eastern suppliers for its energy
security.

Sent. 2 Nigeria and other African producers are increasingly important in the former
Texas oilman’s plans to lessen dependence on Middle Eastern suppliers for
energy security.

Table 6.2: Examples of paraphrased sentences from the MRPC.

6.1.2 The Microsoft Research Paraphrase Corpus

In addition to the PPDB, we utilize paraphrases from the Microsoft Research Paraphrase
Corpus (MRPC) [102, 32].3 This dataset contains 5,801 paired sentences collected from
news articles. Each pair of sentences was judged by at least two annotators, and 67% of the
paired sentences are labeled as paraphrases. The remaining 33% of the paired sentences
range from completely unrelated to almost semantically equivalent; for experiments in this
chapter, we ignore these sentences, because of their wide range of semantic equivalence.
Inter-annotator agreement averaged to 83%. Unlike the PPDB, we do not have word align-
ment information, so we only consider sentence-level experiments. Example paraphrases
are shown in Table 6.2. With an average length of 19.3± 5.1 words, the MRPC sentences
are much longer than the PPDB phrases.

6.2 Paraphrase Semantics in BERT

Using the PPDB and the MRPC, we examine BERT’s ability to correctly understand para-
phrase semantics. We consider both phrase-level and word-level embeddings. All experi-
ments are run using the uncased base model of BERT, using a maximum sequence length
of 128 and a batch size of 8.4

3Available online at https://www.microsoft.com/en-us/download/details.aspx?id=52398.
4Pre-trained model available online at https://github.com/google-research/bert.
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6.2.1 Phrase-Level Embeddings for the Paraphrase Database

First, we consider phrase-level embeddings that capture aggregate information about all
of the words in a given phrase. These embeddings give us information about whether
BERT can distinguish between two paraphrases and two unrelated phrases. Specifically, we
consider a set of paraphrases annotated by humans for paraphrase quality. After generating
BERT phrase-level embeddings for each phrase, we measure Spearman’s ρ between the
cosine similarities of two phrase-level embeddings and the human annotations.

Our human annotations are from 25,736 phrase pairs in the PPDB.5 We run each phrase
through the pre-trained BERT model. For each pair of phrases, we average together the
embeddings for each word to get a phrase embedding; then, we take the cosine similarity
between the two phrase embeddings. Using Spearman’s ρ, we compare all cosine similari-
ties to the ground truth annotations. We create phrase embeddings and measure Spearman’s
ρ for all twelve BERT layers, as well as for all of the layers concatenated together into a
single embedding.

We also compare BERT to a context-free output embedding method, word2vec (w2v)
[85]. We train w2v on an English Wikipedia corpus of 5,269,686 sentences,6 using di-
mension size 200, a window size of 5, and a minimum count of 5. We train five w2v
models, using five different random seeds.7 For each pair of phrases, we average together
the embeddings for each word to get a phrase embedding and take the cosine similarity
between the embeddings of the two phrases.8 We report the average and standard deviation
of Spearman’s ρ over the five models.

BERT and w2v are compared in Table 6.3, where results are broken down by the av-
erage length of each paraphrase. For all layers, BERT improves on longer paraphrases.
This is intuitive, because BERT is trained on longer sentences, and the longer the phrase,
the more it will be able to leverage contextual information. We discuss this trend more in
the next section. The last layer of BERT behaves markedly different than the other lay-
ers. While it continues to perform better on longer paraphrases, it does substantially worse

5This is marginally smaller than the entire human-annotated subset, which includes 26,455 pairs. We were
unable to map all of the human-annotated pairs back to the full PPDB, in order to obtain the automatically
generated PPDB score, which is relevant for experiments in this section. We have been in touch with the
authors of the PPDB paper and have been unable to resolve this issue. This may also explain why our reported
correlations between w2v and human annotations are lower than those reported by Pavlick et al. [93].

6This data was used in Tsvetkov et al. [122] and is available by contacting the authors of that paper. We
additionally ran these experiments on the Europarl corpus [67] and got lower correlations. This is possibly
because Wikipedia covers a wider range of topics than Europarl.

72518, 2548, 2590, 29, 401
8For both BERT and w2v, we additionally tried using the embedding of only the rarest word (with fre-

quency measured using the full PPDB), as reported in Pavlick et al. [93], but this gave us consistently lower
correlations.
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Method Avg. Length 1-2.5 Avg. Length 2.5-4 Avg. Length 4-6

BERT Layer 1 0.18 0.35 0.47
BERT Layer 2 0.18 0.35 0.49
BERT Layer 3 0.18 0.37 0.48
BERT Layer 4 0.18 0.38 0.48
BERT Layer 5 0.18 0.39 0.48
BERT Layer 6 0.19 0.39 0.49
BERT Layer 7 0.20 0.40 0.49
BERT Layer 8 0.21 0.40 0.50
BERT Layer 9 0.21 0.40 0.50
BERT Layer 10 0.22 0.38 0.48
BERT Layer 11 0.22 0.36 0.46
BERT Layer 12 0.10 0.35 0.51
BERT Concatenated 0.20 0.40 0.51

w2v Average 0.35± 0.0 0.32± 0.0 0.41± 0.0

PPDB score 0.41 0.50 0.51

Num. paired phrases 17, 517 5, 349 2, 870
Avg. human annotation 2.40± 1.0 2.94± 1.1 3.26± 1.1

Table 6.3: Spearman’s ρ between human-annotated PPDB paraphrases and different em-
bedding methods (BERT and w2v), broken down by average paraphrase length (the average
number of words in each of the two phrases in the paraphrase). At the bottom of the ta-
ble, we include the length distribution of the human-annotated paraphrases, as well as the
average human annotation for each set of grouped lengths.

on short paraphrases, slightly worse on medium paraphrases, and slightly better on long
paraphrases.

Similarly, w2v also improves on longer paraphrases, though it underperforms BERT for
all but the shortest paraphrases. While w2v does not produce contextualized embeddings, it
still has more information to incorporate into its phrase embeddings for longer paraphrases.
We also see that the automatic PPDB score does better on longer paraphrases. This could
be because it incorporates distributional information, which is richer when there are more
words. Finally, the quality of the paraphrases goes up as the paraphrases get longer, as
evidenced by the increasing human annotation score.

From Table 6.3, we conclude that the final layer of BERT outperforms w2v and per-
forms comparably to the PPDB score on the longest paraphrases. This is not a completely
fair comparison; the PPDB score has access to outside information that BERT does not,
such as WordNet features and additional features derived from the translation process used
to create the PPDB. These results give us confidence that BERT is successfully learning to
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Phrase 1 Phrase 2 Cos. Sim.

laboratoires laboratories 0.51
completly totally 0.51
fervor enthusiasm 0.52
79.0 seventy-nine 0.53
approximatly around 0.54

-mom -mother 0.91
1.350 1.35 0.92
characterises characterizes 0.92
km kilometres 0.92
garbage trash 0.96

Table 6.4: Cosine similarity scores for the last layer of BERT for one-word paraphrases
with the highest human annotation score.

distinguish between paraphrases and unrelated phrases.

6.2.2 One-Word Paraphrases in the PPDB

The case where both phrases in a paraphrase are a single word is an interesting subset of
our experiments; in the previous experiment, this equates to asking BERT to identify the
synonym level between two words, rather than whether or not two phrases are paraphrases.
In the above section, we saw that BERT does not do as well on this task as it does at
identifying longer paraphrases.

Among the subset of one-word paraphrases, there is a wide range of human annotations.
The average annotation is 2.27 ± 0.99. We focus on one-word paraphrases with a human
annotation of 5, the highest annotation score, indicating that these are the strongest syn-
onyms among the group of one-word paraphrases. Among these high-quality synonyms,
there is a wide range of cosine similarities for the last layer of BERT; the average similarity
is 0.76± 0.12. Table 6.4 shows synonyms with both the highest and lowest BERT similari-
ties. We observe that misspelled words (e.g., completly, approximatly) and foreign
words (e.g., French laboratoires) have low cosine similarities. Numbers appear on
both the low end (e.g., 79.0 and seventy-nine) and the high end (e.g., 1.350 and
1.35) of the similarity spectrum. One difference between the similar and dissimilar cases
of numbers is that in the similar case they both use digits, while in the dissimilar case one
uses digits while the other uses words.

To further explore how BERT handles individual words, we use the WordSimilarity-
353 dataset, which contains 353 pairs of words with human-assigned similarity judgments
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[42].9 We remove 24 word pairs where BERT tokenizes a single word into more than one
token; in these cases, we are unable to do a single cosine similarity comparison. For the
remaining 329 word pairs, we run each word through BERT and take the cosine similarity
between the word embeddings for each word in the pair. We use Spearman’s correlation to
compare BERT cosine similarities with the human annotations. In addition to using BERT
embeddings, we use word embeddings produced with the five word2vec embedding spaces
described in the previous section. In the 329 word pairs used, 80 words are unknown in the
word2vec embedding spaces; we use an all-zero embedding for these words.

BERT word embeddings achieve a Spearman’s correlation of 0.32, while word2vec em-
beddings give a substantially higher Spearman’s of 0.56±0.0. Part of the reason for BERT’s
poor performance on this task could be that BERT needs contextual information about a
word in order to produce an informed embedding, while word2vec does not require any
contextual information. BERT was specifically designed for sentences, and running indi-
vidual words through BERT is not how the algorithm is intended to be used. However, it is
interesting that before any fine-tuning, BERT does a poor job of recognizing synonyms, as
observed with both one-word paraphrases in the PPDB and the WordSimilarity-353 dataset.

6.2.3 Phrase-Level Embeddings for the Microsoft Research Para-
phrase Corpus

To confirm that BERT can recognize paraphrases, we verify our experiments using para-
phrases from the MRPC. We follow the same procedure as with the PPDB, running each
sentence through the pre-trained BERT model and averaging together the embeddings from
the last layer of BERT for each word to get sentence embeddings. We do not have human
annotations for this dataset, so we instead compare cosine similarities of the sentence em-
beddings for two sets of sentences: sentences marked as paraphrases in the MRPC, and
randomly paired sentences from the MRPC, shown in Figure 6.2. We see that the similarity
scores are substantially higher for paraphrases, confirming our previous experiments and
showing that BERT is able to recognize paraphrases.

6.2.4 Word-Level Embeddings for the Paraphrase Database

Phrase-level embeddings allow us to look at whether BERT is able to distinguish between
paraphrases and unrelated phrases. Word-level embeddings give us information about
whether BERT is capturing the semantics of individual words. Here, we consider four

9Available online at http://www.gabrilovich.com/resources/data/wordsim353/wordsim353.html.
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Figure 6.2: Distribution of cosine similarities using the last layer of BERT for paraphrases
and randomly paired sentences in the MRPC. Both histograms are normalized to form
probability densities.

different sets of words. First, we make a distinction between words that are aligned and
those that are unaligned. Second, we make a distinction between words that are the same

in both phrases and those that are different. Intuitively, aligned different words are likely
synonyms, and unaligned same words are polysemous words being used in different senses.
Unaligned different words are not completely unrelated words; they are a part of the same
paraphrase, and they will be more related than words from two different paraphrases.

Because the MRPC does not provide word alignment information, we use the PPDB for
all word-level experiments. We also restrict our focus to the most relevant section of the
PPDB, long paraphrases (where one of the phrases has at least six tokens) with a relatively
good PPDB score10 and no syntactic placeholders. From this set, we randomly sample
4,000 paraphrases. Our sample yields 22,751 aligned same words, 25,973 aligned different
words, 2,782 unaligned same words, and 163,474 unaligned different words. We randomly
sample 2,500 words from each category.

To generate word-level embeddings, we run each phrase through the pre-trained BERT
model and for each pair of words, we take the cosine similarity between the embeddings
of the two words. We do this for all twelve layers of BERT, as well as for all layers
concatenated together.

First, we consider the set of same aligned words and compare Spearman’s ρ between
BERT word-level cosine similarities and the PPDB scores for all layers of BERT, shown in

10Using the automatic PPDB score, the PPDB is divided into six sizes, from S up to XXXL. We use size
S, those paraphrases with the highest PPDB scores for the highest precision.
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Figure 6.3: Spearman’s ρ between BERT cosine similarities and PPDB scores for all
aligned same words, broken down by BERT layer.
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Figure 6.4: Distributions of cosine similarities using the last layer of BERT for different
groups of words in the PPDB. All histograms are normalized to form probability densities
(best seen in color).

Figure 6.3. We see a similar pattern to Table 6.3; ρ gradually increases in the later layers,
before dropping slightly in the final two layers.

Considering all four sets of words, Figure 6.4 compares cosine similarity distributions
for the last layer of BERT. The highest category consists of aligned same words. Because
these words are identical and play the same role in the paraphrase, we would expect their
BERT embeddings to have a high similarity. The remaining three groups of words have
very similar distributions. We would expect to see a difference between aligned different
words and unaligned words, and not seeing this difference indicates that BERT does not
always understand when two different words have the same meaning in a paraphrase. This
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in color).

is a failure of BERT to completely control for semantics in paraphrases. We do see that
unaligned same words have a slightly higher similarity than unaligned different words,
which is intuitive because different words often have different connotations or senses.

Aligned words can be further divided into words that have a one-to-one alignment with
another word, and words that are a part of a one-to-many or many-to-one alignment. For in-
stance, in the paraphrases members of the panel and members of the panel

of experts, the word panel in the first phrase is aligned to the set of words panel
of experts in the second phrase; this is a one-to-many word alignment. In contrast,
the word contribute in the paraphrases contribute to improving the and
contribute to the improvement of the is a one-to-one word alignment.

Same aligned words are more likely to be in a one-to-one alignment than different
aligned words; 80% of same aligned words are one-to-one, while only 26% of different
aligned words are one-to-one. We compare the cosine distributions of these sets of words
in Figure 6.5. For both same and different words, one-to-one aligned words have slightly
higher similarities. As in Figure 6.4, we see that same aligned words (both one-to-one and
not one-to-one) have higher similarity distributions than different aligned words. Looking
at alignment information adds an important nuance to the comparison of same and different
words, but it does not reverse the trends of Figure 6.4.

To further understand BERT’s word-level embeddings, we examine two cases of par-
ticular interest: words with low BERT similarity but high PPDB score, and words with
high BERT similarity but low PPDB score; examples are shown in Table 6.5. In several
cases where there is a mismatch between the PPDB score and the cosine similarity, BERT
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Figure 6.6: Cosine similarity using the last layer of BERT for aligned same words broken
down by the number of words apart that the words are in the two phrases (shown in bar
plot and left y-axis). Error bars indicate confidence intervals. The line graph and the right
y-axis show how many examples we have for each category.

appears to be detecting appropriate nuances. For instance, the word for in the phrases
: draft programme budget for the and : proposed programme budget

for the is given a very high similarity score (0.97), even though the overall paraphrase
has a lower PPDB score (0.69). In this example, the difference between the two phrases
is entirely contained in the words draft and proposed, so it is intuitive that the other
tokens of the paraphrase would have high similarities. Both stopwords and punctuation
appear frequently in this table, and we discuss these in more detail later in the chapter.

Qualitatively looking at these examples, we notice that when a token appears in a dif-
ferent position in the paraphrase, the similarity tends to be lower (e.g., the word action in
the phrases plans of action for the implementation and action plan

for the implementation has a similarity of 0.28). To explore this at a larger scale,
we consider 2,181 aligned same words where we have information about how many to-
kens apart the two words are. Figure 6.6 shows the cosine similarity of the last layer of
BERT broken down by how far apart the two words are. Spearman’s ρ = −0.29 (p-value
< 10e − 42), indicating that the farther away two words are in the paraphrase, the lower
cosine similarity they will have. This supports the conclusion drawn in Mickus et al. [82]
that the position of the sentence where the word appears in BERT affects the embeddings
of the word, most likely because of the next sentence prediction objective used in BERT.

To better understand how cosine similarities of words in the same paraphrase interact,
Figure 6.7 shows three detailed examples of paraphrases with word alignment and cosine
similarity information. In the first example (Figure 6.7a), the two phrases are identical
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(a) PPDB score: 4.3.

(b) PPDB score: 4.3.

(c) PPDB score: 5.2.

Figure 6.7: Example paraphrases from the PPDB with word alignment and word cosine
similarities using the last layer of BERT shown.

except for one word (provided in Phrase 1 v. contained in Phrase 2). Intuitively,
all of the words have high similarities except for the word that has been changed, which
has a slightly lower similarity of 0.79. This is still fairly high, because provided and
contained are highly related words. In the second example (Figure 6.7b), the second
phrase adds a word (very) that is not present in the first phrase. Again, we see that all the
word pairs except for the pair containing this added word have high similarity scores. In
this example, pleased in Phrase 1 is aligned with very pleased in Phrase 2, and the
similarity between pleased and very is intuitively low (0.57), since these are not related
words and are different parts of speech. We also saw in Figure 6.5 that words that are not
in a one-to-one alignment (such as very and pleased) tend to have lower similarities.

The third example (Figure 6.7c) is the most complex, with one word being swapped
(am in Phrase 1 and ‘m in Phrase 2), and the dash in Phrase 1 being aligned to both the
word well and a comma in Phrase 2. Surprisingly, BERT fails to recognize that ‘m is a
contraction for am and gives this word pair a very low cosine similarity (0.13). This could
be because of a difference in tokenization between the PPDB and the data that BERT is
trained on. We also see that even though the period occurs at the end of both paraphrases
following the word sorry, it has a fairly low cosine similarity (0.44). Finally, we see that
the dash in Phrase 1 has a higher cosine similarity score with the word well (0.46) than
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Figure 6.8: Distributions of cosine similarities for aligned same words across the first two
and the last two layers of BERT for words with different polysemy. All histograms are nor-
malized to form probability densities, and each is shown with a fitted Gaussian distribution
(mean and standard deviation in legends).

with another punctuation mark, the comma (0.27). This is somewhat unintuitive, and we
explore these punctuation marks more later in the chapter.

6.3 Using Paraphrases to Understand Properties of BERT

In the previous section, we showed that BERT is successfully able to identify paraphrases,
and it controls well for the semantics of aligned words in paraphrases. We now use this
information to examine other properties of BERT.

6.3.1 Polysemy

First, we look closer at how the polysemy of a word affects its representation in BERT.
Previous work has shown that BERT embeddings form clusters based on word senses [127].
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Figure 6.9: Distributions of cosine similarities for unaligned same words across the first
two and the last two layers of BERT for words with different polysemy. All histograms
are normalized to form probability densities, and each is shown with a fitted Gaussian
distribution (mean and standard deviation in legends).

However, in the context of aligned words in a paraphrase, we would expect even a highly
polysemous word to have similar embeddings in the two phrases.

To measure polysemy, we consider the number of WordNet synsets of a word, and we
focus on words that are the same in both phrases, both aligned and unaligned. In order to
have enough data to make a good comparison, we use the 4,000 sampled paraphrases from
the previous section, as well as an additional random sample of long paraphrases with at
least one unaligned same word. We then downsample the aligned same words to get 1,597
instances of both unaligned and aligned same words that are present in WordNet, with up
to 52 synsets.11

In Figures 6.8 and 6.9, we show the cosine similarity distributions for both aligned and
unaligned words with different levels of polysemy across the first two and the last two
layers of BERT. There is not a substantial difference between words with different synsets,

11We look up WordNet synsets using the Python NLTK library [14].
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Figure 6.10: Distributions of cosine similarities using the last layer of BERT for differ-
ent groups of stopwords in the PPDB. All histograms are normalized to form probability
densities (best seen in color).

which supports our conclusion that BERT successfully controls for the semantics of aligned
same words in paraphrases. We do see a difference between aligned (Figure 6.8) and un-
aligned words (Figure 6.9). Aligned words peak at a high cosine similarity, while unaligned
words roughly follow a normal distribution centered around 0.5. Note that for unaligned
words with two or three synsets, there is not enough data to draw conclusions about the co-
sine similarity distributions. Overall, these plots show that even highly polysemous aligned
same words have very similar embeddings in the context of a paraphrase.

6.3.2 Stopwords

Earlier, we saw that Table 6.5 had several examples of stopwords in it. Part of the reason
stopwords appear frequently in that table is that stopwords are common in our dataset of
paraphrases.12 Of the same aligned words, 54% are stopwords; 62% of the different aligned
words are stopwords. Stopwords make up an even greater percentage of unaligned words;
78% of same unaligned words and 77% of different unaligned words are stopwords.

To further explore stopwords, we look at the cosine similarity distribution for different
sets of stopwords for the last layer of BERT in Figure 6.10. Comparing this figure to
Figure 6.4, we do not see a substantially different distribution of cosine similarity scores for
stopwords than for all words. Ethayarajh [39] found that stopwords have some of the most
context-specific representations, but we do not see that trend in the context of paraphrases.

12We use the set of English stopwords from NLTK.
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Figure 6.11: Distributions of cosine similarities using the last layer of BERT for different
groups of punctuation in the PPDB. All histograms are normalized to form probability
densities (best seen in color).

6.3.3 Punctuation

In addition to stopwords, we also consider punctuation. This appeared frequently in the
examples in Table 6.5; we also saw unintuitive behavior around punctuation marks in Fig-
ure 6.7. Looking at punctuation has also proved to be useful for certain embedding-related
tasks. For instance, embeddings are used to generate punctuation for text that is lacking
punctuation, such as recorded transcripts [131]. Punctuation also plays an important role
in distinguishing between different types of text, such as texts by different authors [114] or
texts produced by different Twitter communities [120].

To understand how BERT handles punctuation differently than other words, we look at
the cosine similarity distribution for different sets of punctuation tokens for the last layer
of BERT in Figure 6.11.13 Comparing this figure to Figure 6.4, we see that punctuation in
general has a broader distribution of cosine similarities, indicating that punctuation embed-
dings are highly dependent on the surrounding contexts.

In Figure 6.12, we break these trends down by individual punctuation marks, focusing
only on aligned same words. We look at the four most common punctuation marks, the
comma, period, question mark, and dash. Of these four, the comma and period show the
widest distributions. Even when they play the same role in the paraphrase, they can be
given very different embeddings, indicating how highly contextualized these punctuation
marks are. The question mark and dash are less contextualized; this is most likely because
these punctuation marks are used in more prescribed circumstances. In this dataset, they are
almost always used at the beginning or the end of the paraphrase. In all but one example,

13Each category of tokens contains 335 punctuation marks.
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Figure 6.12: Distribution of cosine similarities using the last layer of BERT for aligned
same words, broken down by punctuation mark. The four most common punctuation marks
are shown here. All histograms are normalized to form probability densities.

the question mark is the last token of both phrases; the dash is the first token of both phrases
in all but two examples. Table 6.6 shows examples in context of each of these punctuation
marks.

6.3.4 Contextualization in BERT Layers

After looking at special groups of words (polysemous words, stopwords, punctuation),
we consider how context-specific the words in a paraphrase are in general. Previously,
Ethayarajh [39] showed that BERT word embeddings are more context-specific in higher
layers. They measure this using the self-similarity of words, defined as the average cosine
similarity between a word’s contextualized representations across its unique contexts, and
show that self-similarity consistently decreases with later layers of BERT, indicating that
the contextualization of words is increasing.
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Token Phrase 1 Phrase 2 Cos. Sim.
(Last Layer)

, , especially small including , in particular , the -0.00
, note , however however , it should be noted 0.13
, oh , i am so sorry i ’m sorry , doctor 0.69
, - no , it wo n’t - no , he does n’t 0.94

. yes , i am . well , that ’s true . 0.20

. - i am sorry . well , i ’m sorry . 0.44

. - yes , i am . - i ’m ready . 0.74

. , that ’s all right . , this is good . 0.93

? what ’s wrong ? - what is your problem ? 0.77
? where have you come from ? where are you from ? 0.94

- news - politics - world - news - international politics - 0.77
- - yes , thank you . - yeah , thank you . 0.99

Table 6.6: Examples of aligned punctuation marks with varying cosine similarities. The
aligned tokens are underlined.

We compare this observation to the paraphrase setting that we have been exploring in
this chapter. Because there are only two phrases in a paraphrase, we cannot implement the
full self-similarity metric. Instead, we measure the cosine similarity between words in these
two phrases, shown in Figure 6.13, which captures the same concept as self-similarity. We
see two trends reflected in this graph. The first, decreasing cosine similarity, is seen with
same words, whether aligned or unaligned, and is similar to what Ethayarajh [39] report
with decreasing self-similarity scores. This trend is stronger with unaligned words than
with aligned words, indicating that more contextualization is happening with unaligned
words and BERT is somewhat controlling for the semantics in paraphrases. The second
trend that we see is the opposite, increasing cosine similarity, and we see this trend with
different words, both aligned and unaligned. This indicates decreasing contextualization.
Surprisingly, we see that different aligned words have lower cosine similarities than un-
aligned same words. This reflects the patterns in Figure 6.4, where we noted that BERT
does not completely control for the semantics of paraphrases.

6.3.5 Intra-Sentence Similarity

Another way that Ethayarajh [39] measures contextualization is by looking at intra-
sentence similarity, defined as the average cosine similarity between each word’s embed-
ding and the overall sentence embedding (the mean of all word embeddings). In order to
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Figure 6.13: Cosine similarity for different groups of words in the PPDB across all layers
of BERT.

take into account the geometry of the final word embedding space, this measure is adjusted
for anisotropy (lack of directional uniformity in the embedding space). Specifically, when
measuring intra-sentence similarity, for each layer of BERT, they subtract the average co-
sine similarity between the representations of 5,000 uniformly randomly sampled words
from different paraphrases.

We measure intra-sentence similarity for our sample of 4,000 paraphrases in the same
way and compare our results, shown in Figure 6.14. Ethayarajh [39] found that in general,
words in the same sentence are more dissimilar to one another in upper layers. In contrast,
once we adjust for anisotropy, we see that words in the same sentence are becoming more
similar to each other in later layers of BERT. We attribute this to the fact that two phrases
which are paraphrases will have overall similar phrase embeddings. However, like Etha-
yarajh [39], we find the average similarity of words in a sentence is consistently higher than
the anisotropy baseline (e.g., two words are not necessarily close to each other because they
are in the same sentence). This indicates a nuanced contextualization.

6.4 Lessons Learned

From our analyses using paraphrases, we draw out several lessons about contextualized
word embeddings.

1. BERT does a reasonable, but not perfect job recognizing paraphrases. At the phrase
level, BERT does a good job separating paraphrases from unrelated phrases. On the PPDB,
it outperforms word2vec and does as well as the feature-based PPDB score (Table 6.3).
On the MRPC, there is a large gap in cosine similarities between paraphrases and non-
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Figure 6.14: Intra-sentence similarity, both adjusted and not adjusted for anisotrophy, mea-
sured for all BERT layers. We also include the anisotropy baseline used in the adjustment.

paraphrases (Figure 6.2).
Looking at word-level, rather than phrase-level cosine similarities, BERT gives high

similarities for aligned same words (Figure 6.4). However, BERT fails to capture the proper
semantics of words when different words are aligned. Because these words are aligned in
the paraphrase, they have similar semantics, and we would expect BERT to give them
similar embeddings. Yet, there is no substantial difference in similarity between aligned
different words and unaligned words. We even see that aligned different words have lower
cosine similarities than unaligned same words (Figure 6.13).

2. BERT correctly handles polysemy in paraphrases. If two highly polysemous words
are the same and aligned, BERT gives them very similar embeddings. This contrasts with
aligned different words, which have less similar embeddings. This supports the previous
takeaway, that BERT correctly recognizes paraphrases, even when there are polysemous
words involved.

3. Unexpectedly, BERT gives words that are farther apart lower cosine similarity
scores. Confirming observations by Mickus et al. [82], we see that aligned same words
that are farther apart from each other in the paraphrase have lower cosine similarities than
words that are in the same position in the paraphrase. This is not an intuitive result, as the
distance of words in the paraphrase does not affect the semantics of the paraphrase.

4. BERT correctly gives less contextualized representations to paraphrased words
than non-paraphrased words. The exception to this is punctuation, which has highly
contextual representations. Looking at the cosine similarity of words across layers, we
see that for aligned same words in paraphrases, contextualization decreases as the BERT
layer increases. This is intuitive, because BERT is controlling for semantics in paraphrases.
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We do however see one group of words that tends to be more contextualized than other
words: punctuation. We can attribute this to the fact that the same punctuation mark can be
used in many different contexts.

6.5 Implications

While the analyses in this chapter focus on a single algorithm, BERT, the ideas and tech-
niques used here could also be applied to other contextualized output embedding algo-
rithms. For the many different variants of BERT (such as compressed versions of BERT,
e.g., [110, 136]), we would expect to see similar results. Understanding the behavior of
contextualized output embedding algorithms in different contexts and for different groups
of words has various practical implications for how we use these algorithms.

One part of training that is not addressed in these analyses is fine-tuning. When BERT
is used for a specific downstream task, the base model is often fine-tuned for that particular
task (e.g., [118]). Fine-tuning creates a specific model for each task, so fine-tuned models
for different tasks can vary substantially. To fully understand how fine-tuned models han-
dle paraphrases, we would need to consider a large number of diverse models. However,
pre-training and fine-tuning serve different purposes; pre-training aims to capture general-
purpose properties of language that apply across a wide variety of tasks, while fine-tuning
tweaks the architecture to perform a very specific downstream task. In this chapter, we are
investigating the similarity of paraphrases, and the properties that we look at are primarily
general properties of language (synonymy, polysemy, stopwords, etc.). Because of this, we
expect that many of the trends we see with the pre-trained BERT model would continue to
be relevant in fine-tuned models.

One observation we have made is that BERT’s output embeddings are affected by ir-
relevant factors, such as how far apart two words are in a pair of phrases. All other things
being equal, the position of a word in a sentence should not affect the resulting embedding.
We have also seen that when words do not have any context (one-word phrases), BERT
does not produce good embeddings. These observations are important for tasks that com-
pare individual words or parts of sentences, such as sentiment analysis between specific
entities. For a task like that, it is important to make sure that the entities or words being
compared are appropriately contextualized in sentences, and that if pairs of sentences are
being considered, the location of the entities in the sentence needs to be consistent. Making
small adjustments like this could lead to substantially better performance on these tasks.

Finally, we have seen that paraphrases are a valuable source of data for investigating
patterns in BERT’s behavior. BERT is able to reasonably identify paraphrases versus unre-
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lated phrases. This indicates that there is potential for BERT to be used in the generation of
paraphrases, which have proved to be a valuable source of data for many NLP tasks (e.g.,
[16, 61]). Using BERT as a source of paraphrases could prove to be an relatively easy way
to generate large amounts of usable data.

6.6 Conclusion

Throughout this chapter, we have used paraphrases as a way to understand the properties
and behaviors of BERT. We have shown that BERT does a good job controlling for the
semantics of paraphrases, and we have drawn out lessons for specific groups of words
(polysemous words, stopwords, and punctuation).

We have also compared our observations with previous research on BERT. Like Mickus
et al. [82], we observe that the position of the sentence where the word appears in BERT
affects the embeddings of the word (Section 6.2.4). When looking at polysemy, we com-
pare to Wiedemann et al. [127], who find that BERT embeddings form clusters based on
word senses. Unlike them, we observe that in the context of a paraphrase, even highly
polysemous aligned same words have similar embeddings (Section 6.3.1).

Finally, we compare to several observations made by Ethayarajh [39]. They found that
stopwords have some of the most context-specific representations, but in the context of
a paraphrase, we do not see a substantially different distribution of similarity scores for
stopwords than for all words (Section 6.3.2). Ethayarajh [39] also show that BERT word
embeddings are more context-specific in higher layers. We notice a similar trend for same
words in a paraphrase, whether aligned or unaligned, but we see decreasing contextualiza-
tion for different words in a paraphrase (Section 6.3.4). Similarly, Ethayarajh [39] found
that words in the same sentence are more dissimilar to one another in upper layers. In con-
trast, we see that words in the same paraphrase are becoming more similar to each other in
later layers of BERT (Section 6.3.5).

This chapter has looked at how and when contextualized output embeddings change,
using paraphrases as a source of data. This builds on previous work in Chapters 3 and 4
looking at the concept of stability in context-free output embedding spaces. We have used
the unique properties of paraphrases to investigate assumptions and properties of BERT.
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CHAPTER 7

Conclusion

In this thesis, we explore properties and limitations of word embeddings. We show how this
affects usage of word embeddings both in downstream applications and corpus-centered
applications, where embeddings are used to study language directly. We examine a key
assumption that researchers often make about embeddings, that they learn meaningful re-
lations, and that because these relations are present in the text, they are always present in
embeddings.

We conclude this thesis by revisiting the research questions posed in the introduction.

• Research Question #1. Are word embeddings stable across variations in data,
algorithmic parameter choices, words, and linguistic typologies?

We introduce a definition of stability, and show that by this definition, common En-
glish word embedding spaces are surprisingly unstable. We show how data prop-
erties, word properties, and algorithm properties are related to this instability. Par-
ticularly, we observe for English embeddings that curriculum learning is important,
part-of-speech is one of the biggest factors in stability, stability within domains is
greater than stability across domains, GloVe is the most stable embedding algorithm,
and frequency is not a major factor in stability.

We extend this work to look at approximately 100 languages other than English,
and we draw out several aspects of the relationship between linguistic properties
and stability, including that languages with more affixing tend to be less stable, and
languages with no gender systems tend to be more stable.

Finally, we extend our analysis to contextualized output embedding algorithms. We
use paraphrases as a way to control for the semantics of individual words, and we
show that BERT is able to reasonably, though not perfectly, control for semantics.
We also highlight insights about how BERT handles polysemous words, stopwords,
and punctuation.
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• Research Question #2. How does our knowledge of stability and other word
embedding properties affect tasks where word embeddings are commonly used,
both downstream applications and corpus-centered applications?

We show that word stability affects the English tasks of word similarity and part-of-
speech tagging. In particular, we note that an LSTM used for part-of-speech tagging
shifts unstable word embeddings more than stable embeddings. When expanding
this to multiple languages, we pinpoint several linguistic properties that are related
to instability in word embeddings in various scenarios.

In addition to stability, we consider batching and curriculum learning, and we sys-
tematically study different batching and curriculum learning decisions on three tasks,
text classification, sentence and phrase similarity, and part-of-speech tagging. We
find that certain methodological decisions increase performance substantially.

• Research Question #3. How does our knowledge of stability and other word
embedding properties affect our usage of embeddings?

We give practical suggestions on how to mitigate instability in English word embed-
dings: use in-domain embeddings whenever possible, choose GloVe over word2vec,
and consider learning a good curriculum for word2vec. For multilingual word em-
beddings, we bring out certain linguistic properties that affect word embeddings, and
this can be used as a starting point for future research in building more robust multi-
lingual embedding methods.

We also suggest ways to improve batching and curriculum learning for the three
tasks that we specifically consider these properties for, text classification, sentence
and phrase similarity, and part-of-speech tagging.

Word embeddings have proven to be a powerful and versatile tool for natural language
processing, and the work in this thesis will help researchers use embeddings more robustly
and effectively.

7.1 Future Work

These analyses and experiments primarily impact two groups of researchers. First, this
research affects scientists conducting corpus-centered research, those who use embeddings
to study the language of a document and to draw conclusions from a corpus. Second,
this work impacts practitioners who use embeddings as part of a pipeline to accomplish
downstream tasks.
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For corpus-centered embedding research, we have shown that analyzing raw embed-
dings can be potentially misleading, as embeddings are unstable across variations in data,
algorithms, and parameters. We have made suggestions about how to mitigate this, such
as looking at multiple embedding spaces and reporting the variation, but more research is
needed into techniques for analyzing text using embeddings. Specifically, the community
should pursue methods for comparing multiple sources of text in a consistent manner, in
a way that would allow researchers to pull out important differences between the texts,
rather than unimportant parameter or algorithm variations. These methods would benefit
researchers in the digital humanities and social scientists and give them better computa-
tional tools to analyze texts of interest to their own communities.

The instability of word embeddings also impacts researchers who use embeddings to
achieve better performance on downstream tasks. In this more computational direction,
there are several interesting avenues of future research. First, more research is needed to
see how the stability of embeddings affects downstream tasks. This is primarily of interest
to experiments that use smaller datasets or less computationally expensive architectures.
While huge pre-trained models are gaining popularity and being used for many tasks, we
still see a need for research into smaller, task-specific architectures. These will continue
to be important for domains with small amounts of data, as well as languages with few
resources. This dissertation has presented evidence that when using smaller architectures,
stability has an impact on downstream performance. Continuing to quantify this is an im-
portant first step. There is also work to be done in learning how to mitigate this instability.
Perhaps certain architectures or design decisions will help to stabilize embeddings; this
may look different for different tasks and languages.

We have begun to explore how word embedding stability affects languages other than
English, but there is more work to be done in this area. As mentioned above, it would be
interesting to look at how stability affects performance on a multilingual task. One direction
of research coming out of this dissertation would be to use the linguistic analyses that we
have presented here in order to design better word embeddings for low-resource languages.
We have seen that properties such as how gendered a language is and whether a language
has affixing affect the stability of word embeddings. These, and other linguistic properties,
should be taken into account when designing new embedding algorithms specifically for
low-resource languages. Integrating linguistic knowledge into these algorithms will be a
fruitful direction to explore.

Finally, in this work, we have expanded the idea of stability to contextualized output
embeddings using paraphrases. There are still many open research questions that could be
analyzed here, such as how fine-tuning affects BERT’s ability to recognize paraphrases, and
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how other contextualized output embeddings process paraphrases. Additionally, it would
be interesting to look at how BERT could be used in the generation of paraphrases, which
have proved to be a valuable source of data for many NLP tasks. Our analysis of BERT
also shows areas where BERT incorrectly handles certain scenarios. For instance, words
that are farther apart in a pair of phrases will have lower cosine similarity. This is not a
desirable characteristic of BERT, and more work needs to be done in order to mitigate this
effect.

This dissertation builds on much previous research analyzing word embeddings, and
in turn suggests directions for future research. The analyses and experiments presented
here contribute to the growing science of word representation and will enable advances in
natural language processing pipelines.
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[29] COTTERELL, R., AND SCHÜTZE, H. Morphological word-embeddings. In Pro-
ceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (2015), Association
for Computational Linguistics, pp. 1287–1292.

[30] DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND

HARSHMAN, R. Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41, 6 (1990), 391–407.

[31] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (2019), pp. 4171–4186.

[32] DOLAN, B., QUIRK, C., AND BROCKETT, C. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of
the 20th International Conference on Computational Linguistics (2004), COLING,
pp. 350–356.

87



[33] DRYER, M. S. Position of case affixes. In The World Atlas of Language Structures
Online, M. S. Dryer and M. Haspelmath, Eds. Max Planck Institute for Evolutionary
Anthropology, Leipzig, 2013.

[34] DRYER, M. S. Position of tense-aspect affixes. In The World Atlas of Language
Structures Online, M. S. Dryer and M. Haspelmath, Eds. Max Planck Institute for
Evolutionary Anthropology, Leipzig, 2013.

[35] DRYER, M. S. Prefixing vs. suffixing in inflectional morphology. In The World
Atlas of Language Structures Online, M. S. Dryer and M. Haspelmath, Eds. Max
Planck Institute for Evolutionary Anthropology, Leipzig, 2013.

[36] DRYER, M. S., AND HASPELMATH, M., Eds. WALS Online. Max Planck Institute
for Evolutionary Anthropology, Leipzig, 2013.

[37] EBERHARD, D. M., SIMONS, G. F., AND FENNIG, C. D., Eds. Ethnologue: Lan-
guages of the World, 23 ed. SIL International, Dallas, Texas, 2020.

[38] ECKART, C., AND YOUNG, G. The approximation of one matrix by another of
lower rank. Psychometrika 1, 3 (1936), 211–218.

[39] ETHAYARAJH, K. How contextual are contextualized word representations? Com-
paring the geometry of BERT, ELMo, and GPT-2 embeddings. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (2019), As-
sociation for Computational Linguistics, pp. 55–65.

[40] FARUQUI, M., DODGE, J., JAUHAR, S. K., DYER, C., HOVY, E., AND SMITH,
N. A. Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (2015), Association for Computational
Linguistics, pp. 1606–1615.

[41] FELLBAUM, C. WordNet. Wiley Online Library, 1998.

[42] FINKELSTEIN, L., GABRILOVICH, E., MATIAS, Y., RIVLIN, E., SOLAN, Z.,
WOLFMAN, G., AND RUPPIN, E. Placing search in context: The concept revis-
ited. In Proceedings of the International Conference on World Wide Web (2001),
pp. 406–414.

[43] FIRTH, J. R. A synopsis of linguistic theory, 1930-1955. Studies in Linguistic
Analysis (1957).

[44] FRANCIS, W. N., AND KUCERA, H. Brown corpus manual. Brown University 2
(1979).

[45] GANITKEVITCH, J., VAN DURME, B., AND CALLISON-BURCH, C. PPDB: The
paraphrase database. In Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (2013), Association for Computational Linguistics, pp. 758–764.

88



[46] GARG, N., SCHIEBINGER, L., JURAFSKY, D., AND ZOU, J. Word embeddings
quantify 100 years of gender and ethnic stereotypes. Proceedings of the National
Academy of Sciences (2018).

[47] GARIMELLA, A., BANEA, C., AND MIHALCEA, R. Demographic-aware word as-
sociations. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (2017), Association for Computational Linguistics, pp. 2285–
2295.

[48] GLADKOVA, A., AND DROZD, A. Intrinsic evaluations of word embeddings: What
can we do better? In Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP (2016), Association for Computational Linguistics, pp. 36–
42.

[49] GREENWALD, A. G., MCGHEE, D. E., AND SCHWARTZ, J. L. Measuring indi-
vidual differences in implicit cognition: The implicit association test. Journal of
Personality and Social Psychology 74, 6 (1998), 1464.

[50] HALAWI, G., DROR, G., GABRILOVICH, E., AND KOREN, Y. Large-scale learning
of word relatedness with constraints. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (2012), pp. 1406–1414.

[51] HAMILTON, W. L., LESKOVEC, J., AND JURAFSKY, D. Diachronic word embed-
dings reveal statistical laws of semantic change. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (2016), Association for
Computational Linguistics, pp. 1489–1501.

[52] HARRIS, Z. S. Distributional structure. In Papers in Structural and Transforma-
tional Linguistics. Springer, 1970, pp. 775–794.

[53] HELLRICH, J., BUECHEL, S., AND HAHN, U. Modeling word emotion in histori-
cal language: Quantity beats supposed stability in seed word selection. In Proceed-
ings of the 3rd Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature (2019), Association for Com-
putational Linguistics, pp. 1–11.

[54] HELLRICH, J., AND HAHN, U. Bad Company—Neighborhoods in neural embed-
ding spaces considered harmful. In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers (2016), The
COLING 2016 Organizing Committee, pp. 2785–2796.

[55] HEYMAN, T., AND HEYMAN, G. Can prediction-based distributional semantic
models predict typicality? Quarterly Journal of Experimental Psychology 72, 8
(2019), 2084–2109. PMID: 30704340.

[56] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural Com-
putation 9, 8 (1997), 1735–1780.

89



[57] HOERL, A. E., AND KENNARD, R. W. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12, 1 (1970), 55–67.

[58] HOTELLING, H. Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology 24, 6 (1933), 417.

[59] HOWARD, J., AND RUDER, S. Universal language model fine-tuning for text classi-
fication. In Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (2018), Association for Computational Linguistics, pp. 328–339.

[60] HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9, 3 (2007), 90–95.

[61] JIA, X., ZHOU, W., SUN, X., AND WU, Y. How to ask good questions? Try to
leverage paraphrases. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (2020), Association for Computational Linguistics.

[62] JIANG, C., YU, H.-F., HSIEH, C.-J., AND CHANG, K.-W. Learning word em-
beddings for low-resource languages by PU learning. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (2018), pp. 1024–1034.

[63] JOHNSON, J., DOUZE, M., AND JGOU, H. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data (2019), 1–1.

[64] JOSHI, I., KORINGA, P., AND MITRA, S. Word embeddings in low resource Gu-
jarati language. In 2019 International Conference on Document Analysis and Recog-
nition Workshops (2019), vol. 5, pp. 110–115.

[65] JOULIN, A., GRAVE, E., BOJANOWSKI, P., AND MIKOLOV, T. Bag of tricks for
efficient text classification. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics (2017), Association for
Computational Linguistics, pp. 427–431.

[66] KENTER, T., AND DE RIJKE, M. Short text similarity with word embeddings.
In Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management (New York, NY, USA, 2015), CIKM 15, Association for
Computing Machinery, p. 14111420.

[67] KOEHN, P. Europarl: A parallel corpus for statistical machine translation. In Ma-
chine Translation Summit X (2005), vol. 5, pp. 79–86.

[68] LAMPLE, G., AND CONNEAU, A. Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291 (2019).

[69] LENGERICH, B., MAAS, A., AND POTTS, C. Retrofitting distributional embed-
dings to knowledge graphs with functional relations. In Proceedings of the 27th In-
ternational Conference on Computational Linguistics (2018), Association for Com-
putational Linguistics, pp. 2423–2436.

90



[70] LEVY, O., AND GOLDBERG, Y. Dependency-based word embeddings. In Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(2014), Association for Computational Linguistics, pp. 302–308.

[71] LEVY, O., AND GOLDBERG, Y. Neural word embedding as implicit matrix factor-
ization. In Advances in Neural Information Processing Systems (2014), pp. 2177–
2185.

[72] LEVY, O., GOLDBERG, Y., AND DAGAN, I. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics 3 (2015), 211–225.

[73] LI, Z., DING, X., AND LIU, T. Story ending prediction by transferable BERT.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (2019), International Joint Conferences on Artificial Intelligence Orga-
nization, pp. 1800–1806.

[74] LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS,
M., ZETTLEMOYER, L., AND STOYANOV, V. RoBERTa: A robustly optimized
BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019).

[75] LOZA, V., LAHIRI, S., MIHALCEA, R., AND LAI, P.-H. Building a dataset for
summarization and keyword extraction from emails. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (2014), European
Languages Resources Association, pp. 2441–2446.

[76] LUO, B., FENG, Y., WANG, Z., ZHU, Z., HUANG, S., YAN, R., AND ZHAO, D.
Learning with noise: Enhance distantly supervised relation extraction with dynamic
transition matrix. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (2017), Association for Computational Linguistics,
pp. 430–439.

[77] MARCUS, M. P., MARCINKIEWICZ, M. A., AND SANTORINI, B. Building a large
annotated corpus of English: The Penn treebank. Computational Linguistics 19, 2
(1993), 313–330.

[78] MAXWELL, M., AND HUGHES, B. Frontiers in linguistic annotation for lower-
density languages. In Proceedings of the Workshop on Frontiers in Linguistically An-
notated Corpora 2006 (2006), Association for Computational Linguistics, pp. 29–
37.

[79] MCCARTHY, A. D., WICKS, R., LEWIS, D., MUELLER, A., WU, W., ADAMS,
O., NICOLAI, G., POST, M., AND YAROWSKY, D. The Johns Hopkins University
Bible corpus: 1600+ tongues for typological exploration. In Proceedings of The
12th Language Resources and Evaluation Conference (2020), European Language
Resources Association, pp. 2884–2892.

91



[80] MCCARTHY, D., AND NAVIGLI, R. SemEval-2007 task 10: English lexical substi-
tution task. In Proceedings of the International Workshop on Semantic Evaluations
(2007), pp. 48–53.

[81] MCKINNEY, W. Data structures for statistical computing in Python. In Proceedings
of the 9th Python in Science Conference (2010), Stéfan van der Walt and Jarrod
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[108] RUDER, S., VULIĆ, I., AND SØGAARD, A. A survey of cross-lingual word embed-
ding models. Journal of Artificial Intelligence Research 65 (2019), 569–631.

[109] SANDHAUS, E. The New York Times annotated corpus. Linguistic Data Consor-
tium, Philadelphia 6, 12 (2008), e26752.

[110] SANH, V., DEBUT, L., CHAUMOND, J., AND WOLF, T. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108
(2019).

[111] SIEWIERSKA, A. Gender distinctions in independent personal pronouns. In The
World Atlas of Language Structures Online, M. S. Dryer and M. Haspelmath, Eds.
Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013.

[112] SINGH, A. D., MEHTA, P., HUSAIN, S., AND RAJAKRISHNAN, R. Quantifying
sentence complexity based on eye-tracking measures. In Proceedings of the Work-
shop on Computational Linguistics for Linguistic Complexity (2016), pp. 202–212.

94



[113] SMITH, S., JAN KINDERMANS, P., YING, C., AND LE, Q. V. Don’t decay the
learning rate, increase the batch size. In International Conference on Learning Rep-
resentations (2018).

[114] SOLER-COMPANY, J., AND WANNER, L. On the relevance of syntactic and dis-
course features for author profiling and identification. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguis-
tics (2017), Association for Computational Linguistics, pp. 681–687.

[115] SPEARMAN, C. Correlation calculated from faulty data. British Journal of Psychol-
ogy, 1904-1920 3, 3 (1910), 271–295.

[116] SPITKOVSKY, V. I., ALSHAWI, H., AND JURAFSKY, D. From baby steps to
leapfrog: How “less is more” in unsupervised dependency parsing. In Human Lan-
guage Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics (2010), Association for Computa-
tional Linguistics, pp. 751–759.

[117] STRUBELL, E., GANESH, A., AND MCCALLUM, A. Energy and policy consider-
ations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (2019), Association for Computational
Linguistics, pp. 3645–3650.

[118] SUN, C., QIU, X., XU, Y., AND HUANG, X. How to fine-tune BERT for text clas-
sification? In Chinese Computational Linguistics (Cham, 2019), M. Sun, X. Huang,
H. Ji, Z. Liu, and Y. Liu, Eds., Springer International Publishing, pp. 194–206.

[119] TAN, L., ZHANG, H., CLARKE, C., AND SMUCKER, M. Lexical comparison be-
tween Wikipedia and Twitter corpora by using word embeddings. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (2015), Asso-
ciation for Computational Linguistics, pp. 657–661.

[120] TATMAN, R., AND PAULLADA, A. Social identity and punctuation variation in
the #BlueLivesMatter and #BlackLivesMatter Twitter communities. In The 33rd
Northwest Linguistics Conference (2017).

[121] TAYLOR, W. L. “Cloze procedure”: A new tool for measuring readability. Journal-
ism Bulletin 30, 4 (1953), 415–433.

[122] TSVETKOV, Y., FARUQUI, M., LING, W., MACWHINNEY, B., AND DYER, C.
Learning the curriculum with Bayesian optimization for task-specific word repre-
sentation learning. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (2016), Association for Computational Linguistics,
pp. 130–139.

[123] TURNEY, P. D., AND PANTEL, P. From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research 37 (2010), 141–188.

95



[124] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ,
A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention is all you need. In Advances
in Neural Information Processing Systems (2017), pp. 5998–6008.

[125] WANG, A., SINGH, A., MICHAEL, J., HILL, F., LEVY, O., AND BOWMAN, S.
GLUE: A multi-task benchmark and analysis platform for natural language under-
standing. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP (2018), pp. 353–355.

[126] WENDLANDT, L., KUMMERFELD, J. K., AND MIHALCEA, R. Factors influencing
the surprising instability of word embeddings. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (2018), pp. 2092–2102.

[127] WIEDEMANN, G., REMUS, S., CHAWLA, A., AND BIEMANN, C. Does BERT
make any sense? Interpretable word sense disambiguation with contextualized em-
beddings. In Konferenz zur Verarbeitung natrlicher Sprache / Conference on Natural
Language Processing (2019), pp. 161–170.

[128] WILSON, S., AND MIHALCEA, R. Measuring semantic relations between human
activities. In Proceedings of the Eighth International Joint Conference on Natural
Language Processing (2017), Asian Federation of Natural Language Processing,
pp. 664–673.
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