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 ABSTRACT 

 

Salivary gland carcinomas are rare and heterogenous malignancies that present 

diagnostic and treatment challenges for clinicians. Amongst them, mucoepidermoid 

carcinoma (MEC) is the most common salivary gland cancer. Little is known about the 

pathobiology of MEC, partly due to limited preclinical research models. Our group and 

others have shown that cancer stem cells (CSC), ALDHhighCD44high cells, drive MEC 

tumorigenesis. We have found that treatment of human MEC cell lines (UM-HMC-1, UM-

HMC-3A, UM-HMC-3B) with sub-lethal doses of MI-773, an MDM2 inhibitor that results 

in accumulation of p53 and activation of downstream signaling, significantly decreases 

the CSC fraction both in vitro and in xenograft tumors. Furthermore, upon p53 activation 

there is a decrease in Bmi-1 protein levels. Bmi-1 has been widely studied as a marker 

of stem cell and CSC self-renewal. We hypothesized that the p53 pathway regulates MEC 

CSC maintenance. In this thesis we aim to: 1) determine the role of p53 in MEC CSC 

fate and 2) investigate the therapeutic potential of MDM2 inhibitors in murine 

models of MEC. We found that while activation of p53 signaling does not cause apoptosis 

of MEC CSCs, it changes their cell cycle profile through p21. Furthermore, p53 activation 

causes a decrease in the sphere forming ability and self-renewal of MEC CSCs and in 

their Bmi-1 protein levels, independent of p21 signaling. Additionally, we found an 

induction of pan-cytokeratin expression, indicating differentiation of the CSCs. In contrast, 

shRNA downregulation of p53 resulted in increased Bmi-1 protein levels, enhanced CSC 
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self-renewal, and an expansion of the stem cell pool in vivo. While no changes in Bmi-1 

mRNA levels were detected after treatment with MDM2 inhibitors, we found a decrease 

in Bmi-1 protein stability. Importantly, we found that therapeutic activation of p53 using 

MI-773 prevented tumor recurrence in mice. Further characterization of the regulation of 

Bmi-1 by p53 still needs to be evaluated. These results indicate p53 signaling regulates 

the cell cycle and self-renewal of MEC CSC through p21 and Bmi-1 signaling axes. This 

body of work enhances our understanding of the role of p53 in MEC CSC biology and 

gives insight into the potential therapeutic benefits of MDM2 inhibitors or other p53-

activating therapies for MEC. 
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CHAPTER 1. Introduction: Thesis Overview, Background, and Aims*1 

 

1.1 Thesis Overview 

This dissertation focuses on determining the role of p53 in regulating the cell fate of 

mucoepidermoid carcinoma (MEC) cancer stem cells (CSCs). Using tools such as MDM2 

inhibitors and genetic silencing of p53, we studied the effects of p53 signaling in the 

regulation of MEC CSC maintenance. Particularly, we focused on studying how the p53 

pathway regulates the self-renewal and differentiation potential of MEC CSCs. We had 

previously found the MEC CSC population decreases with the use of inhibitors of the 

MDM2-p53 protein interaction.1 CSCs, like normal adult stem cells, are defined by their 

ability to self-renew and produce cells that can differentiate. The tumor suppressor p53 is 

primarily known for its role in maintaining genome integrity by halting the cell cycle or 

inducing apoptosis of cells with damaged DNA. However, research in stem cell biology 

has shown that p53 can also regulate processes such as stem cell self-renewal.2-5 To 

carefully assess the effects of p53 activation on the loss of the CSC pool, we looked at 

p53-dependent cell cycle arrest and apoptosis and distinguished these from the stemness 

properties of self-renewal and differentiation. Furthermore, we assessed the therapeutic 

potential of activating p53 using MDM2 inhibitors and explored the potential of sensitizing 

 
 
1  A part of this chapter was taken from work originally published in Critical ReviewsTM in Oncogenesis. Christie 
Rodriguez-Ramirez & Jacques E. Nör. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to 
Chemotherapy. Crit Rev Oncog 23, 173-187 (2018). Ó Begell House Inc. 
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these highly resistant cells to conventional chemotherapy upon p53 pathway activation. 

This chapter provides an overview of concepts important for this dissertation work, 

introduces the development of a new in vivo model of MEC, and concludes with our aims. 

1.2 The CSC Hypothesis 

The CSC hypothesis states that a small subset of cancer cells are endowed with tumor 

initiating, self-renewal, and multi-lineage differentiation potential.6 This hypothesis is 

based on evidence that: (1) only a small population of cancer cells within a tumor are 

capable of initiating and propagating tumors in immunodeficient mice; (2) tumors resulting 

from CSCs contain a mixture of tumorigenic and nontumorigenic cells that recapitulate 

original tumor heterogeneity; and (3) tumors generated by CSCs can be serially 

transplanted, demonstrating self-renewal capabilities. On the other hand, the bulk of a 

tumor is composed of transit-amplifying cells and post-mitotic differentiated cells that do 

not contribute to tumor initiation.  

Rather than proposing CSCs are equal to physiological stem cells, the CSC 

hypothesis attempts to explain that CSCs share similar characteristics to adult stem cells. 

The first studies supporting the CSC hypothesis showed that tumors have a distinct 

hierarchy of cells, similar to that observed in adult tissues.7  Within a tumor, cells can be 

distinguished by the expression of different cell lineage markers. This hierarchical 

organization was first evident in leukemic cells and later proven in breast cancer and other 

solid malignancies.8-11 Furthermore, CSCs maintain plasticity between epithelial and 

mesenchymal cell stages, and molecular and environmental cues can shift between 

acquiring or loosing these stem-like characteristics.12-15 
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 The frequency and prevalence of CSCs can vary by tumor type and amongst 

patients with the same type of cancer.16-18 Studies have shown that CSCs can be used 

as predictive and prognostic indicators for patient survival.16-18 However, there are no 

CSC-specific markers that enable isolation of these cells with high specificity. Instead, 

existing markers can only enrich for CSC populations.19 This complicates the study of 

CSCs and presents challenges for using CSC-markers to develop targeted therapies.  

1.3 Bmi-1 and Self-renewal 

The Bmi-1 gene (B cell-specific Moloney murine leukemia virus integration site 1) was 

originally identified as an oncogene that cooperates with c-Myc during 

lymphomagenesis.20-22 Bmi-1 is a core member of the Polycomb Repressive Complex 1 

(PRC1) required for mono-ubiquitination of histone 2A.23 It usually functions as an 

epigenetic silencer controlling development by regulating genes involved in cell growth 

and differentiation.24 Bmi-1 knockout mice suffer from skeletal malformations, 

abnormalities in the hematopoietic and nervous systems, and growth retardation.25,26 

These effects are partially due to de-repression of the Ink4a/Arf locus.27,28 Using 

alternative reading frames, this locus codes for two proteins, p16Ink4a and p19Arf, that are 

important regulators of the retinoblastoma and p53 pathways.29 In-kyung Park and 

colleagues showed that the absence of Bmi-1 caused defects in hematopoietic stem cell 

self-renewal.30 Afterwards, Iwama and collaborators went on to show that Bmi-1 is the 

only component from the PcG family that is critical for hematopoietic stem cell self-

renewal where forced expression of Bmi-1 significantly increased symmetric stem cell 

divisions.31 Since then, many groups have shown the importance of Bmi-1 in self-renewal 
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of adult stem cells and CSCs.32-34 Importantly, they have shown that Bmi-1 regulates self-

renewal partly through the Ink4a/Arf locus.28,32  

Bmi-1 levels are tightly regulated and display dosage sensitivities and tissue and 

cell-type specific requirements for cell proliferation and stem cell self-renewal.27,28 The 

Ring-domain in Bmi-1 was shown to be important for its tumorigenic function in 

lymphomas.22 Bmi-1 forms a heterodimeric Ring-Ring complex with Ring1b that 

enhances the E3 ligase activity of Ring1b.35 This Ring-domain is important for the 

regulation of the Ink4a/Arf locus. Bmi-1 promotes proliferation by repressing the Ink4a/Arf 

locus encoding the CDK4/6 inhibitor p16Ink4a and the p53 activator p19Arf. p19Arf controls 

p53 activity by sequestering MDM2 (Mouse double minute 2), an E3 ubiquitin ligase of 

p53 that targets p53 for proteasomal degradation. The p16Ink4a protein inhibits the binding 

of Cyclin D to CDK4/6 resulting in cell cycle arrest. By repressing p16Ink4a, Bmi-1 induces 

cell proliferation. The absence of Bmi-1 can also directly regulate p53 protein stability. 

Bmi1 regulates p53 levels in an Ink4a/ARF-independent manner by directly binding, 

together with Ring1A and Ring1B E3 ligases, to the p53 protein inducing its 

polyubiquitination and subsequent degradation.36 On the other hand, lack of Bmi-1 

expression causes premature entry into cellular senescence.37 Bmi-1 can cooperate with 

other oncogenes in processes that can lead to cell transformation.21,37 This is consistent 

with findings that the Ink4a locus is tumor suppressive.38,39 

A study found that Bmi-1 mRNA is overexpressed in a subset of head and neck 

squamous cell carcinoma (HNSCC) patients.40 They found that pharmacological inhibition 

of Bmi-1 by PTC-209 reduces tumorsphere formation and the percentage of ALDH+ 

cancer stem cells in HNSCC cell lines. Importantly, they found that PTC-209 significantly 
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reduces tumor growth of HNSCC xenograft models. These results indicate that 

pharmacological inhibition of Bmi-1 is a potential therapeutic strategy for HNSCC 

patients, in particular those with aberrant Bmi-1 overexpression. Our group found that 

treatment of HNSCC cell lines with cisplatin induces Bmi-1 expression and enhances the 

fraction of CSCs.41 Meanwhile, Chen and collaborators showed that targeting Bmi-1+ 

CSCs overcame chemoresistance and inhibited metastasis in HNSCC.42 Through genetic 

lineage tracing they showed that Bmi-1 marks a population of slow cycling CSCs 

responsible for tumor initiation, progression, and cervical lymph node metastasis. They 

demonstrated that these cells are resistant to cisplatin treatment. Importantly, they found 

that combination treatment with cisplatin and PTC-209 had better therapeutic response 

than monotherapy alone. They also showed that recurrent tumors that became resistant 

to cisplatin, were sensitive to this combination therapy. These findings support the 

hypothesis that CSCs are chemoresistant and contribute to tumor metastasis and 

recurrence. Furthermore, their findings support the hypothesis that combination 

treatments that target both the CSCs and the bulk tumor cells are better at eradicating 

tumors.  

1.4 Mucoepidermoid Carcinoma 

MEC is the most common malignancy of the major and minor salivary glands, accounting 

for about 30-35% of all salivary gland carcinomas.43,44 It is a heterogeneous cancer that 

consists of mucin-producing, epidermoid, and intermediate cells. MEC is histologically 

classified into low-, intermediate-, or high-grade disease. Clinical behavior can vary from 

slow growing and indolent to locally aggressive and highly metastatic tumors. High-grade 

MEC have a prominent epithelial/solid component and have an infiltrative border. 
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Although epidermoid cells predominate, intermediate and mucous cells are also present 

and distinguish these cancers from squamous cell carcinomas. Intermediate-grade MEC 

often present with demarcated borders and are mostly solid, with intermediate cells 

predominating over mucinous cells. Finally, low-grade MEC have a prominent 

cystic/mucous component and are well-demarcated, with pushing margins.  

MEC tumors are thought to originate from stem cells in the excretory duct of the 

salivary gland.45 Very little is known about their pathobiology, limiting the development of 

effective mechanism-based therapies. As such, as of May 2020 the FDA has not 

approved any systemic therapy for MEC patients. Their standard of care involves radical 

surgery and radiation therapy, resulting in high morbidity, facial disfigurement and poor 

survival, as many patients progress towards disseminated disease.  

Over 80% of MEC cases contain a t(11;19)(q21-22;p13) translocation that results 

in a fusion between the MAML2 and CRCT1 or CRCT3 genes.46 In this fusion, the Notch-

binding domain of MAML2 is replaced by the CREB-binding domain of CRCT1/3.47 The 

molecular and pathological consequences of this fusion are still being elucidated, but it is 

thought CREB dysregulation, mediated by this fusion, participates in tumorigenesis.48 It 

has been suggested that the CRCT1-MAML fusion is an early event in MEC pathogenesis 

and that it can serve as a biomarker of MEC. As such, a sub-group of fusion-negative 

high-grade tumors are suspected of being a different class of carcinomas and that only 

fusion-positive tumors should be classified as MEC.49  

Apart from the CRCT-MAML fusion, very few recurrent genetic alterations (GAs) 

have been found in MEC. Recent genomic studies have shown that TP53 GAs can occur 

in 20-30% of MEC patients and that they positively correlate with high-grade disease.46 
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Additionally, gene amplification of human epidermal growth factor 2 (HER2) or increased 

copy number of either HER2 or epidermal growth factor receptor (EGFR) are associated 

with high-grade MEC irrespective of MAML2 fusion status, and with worse overall 

survival.50,51  

1.5 In Vitro and In Vivo Models of MEC 

Salivary gland cancers are understudied malignancies. The development of effective 

mechanism-based therapies for MEC has been hindered by a lack of good pre-clinical 

research models. To date, no genetic mouse models of MEC have been successfully 

generated. Additionally, few patient-derived xenograft models (PDX) exist. Until recently, 

there were no tumorigenic cell lines of MEC and most studies relied on retrospective 

analysis of paraffin-embedded tissues. Our laboratory is uniquely equipped for the study 

of MEC as we generated the first tumorigenic cell lines from MEC patients52, allowing us 

to conduct both in vitro and in vivo mechanistic and therapeutic studies. Importantly, one 

of these cell lines came from a recurrent tumor while another from a lymph node 

metastasis in the same patient. These cell lines contain the CRCT1-MAML fusion 

characteristic of MEC (>80% of patients).  

To enhance our ability to study MEC tumor biology, we developed a simple 

protocol for generating orthotopic xenograft tumors by injecting MEC cell lines into the 

submandibular glands (SMG) of mice. To do this, a small, 1-mm incision is made in the 

skin above the salivary gland area of immunodeficient mice. After identifying the SMGs, 

a small volume (<10µL) of a MEC cell suspension is injected into the SMG gland and the 

incision is closed using sutures (Figure 1.1, a). Growing tumors are easily palpable 

(Figure 1.1, b) and, similar to orthotopic breast xenograft tumors in the mammary fat pad 
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of mice, can be roughly measured with the use of calipers. More precise measurement 

for comparing tumor sizes among study groups can be done with the use of cell imaging 

techniques such as in vivo bioluminescence. Nevertheless, another way to reliably detect 

phenotypic differences in tumor growth is to weigh the salivary glands upon termination 

of the experiment. While both SMG can be certainly excised together and measured, 

these glands can be easily separated from each other. However, orthotopic xenograft 

tumors can be difficult to separate from nearby salivary glands as these tumors can 

readily invade the surrounding tissues.   

We observed that the developing tumors recapitulate disease presentation in 

patients, allowing us to identify the three cell types found in MEC (i.e. epidermoid, mucin 

producing, and intermediate cells) (Figure 1.1, c). Xenograft tumors generated 

subcutaneously are primarily solid and undifferentiated with sparing presence of mucin-

producing cells, measured by mucicarmine stain. However, we see a wider distribution of 

the three main cell types that make up MEC tumors in the orthotopic xenografts (Figure 

1.1, c). Importantly, tumor growth is well tolerated in mice with no apparent weight loss 

before tumor endpoint (i.e. 2 mm3). Of note, we found these tumors were also capable of 

forming micro-metastasis in the lungs of mice (Figure 1.1, d), which is not observed in 

mice harboring subcutaneous xenografts. One striking finding is that while the UM-HMC-

1 cell line establishes tumors with low frequency in our subcutaneous xenograft model, 

100% of tumors are evident within a month after cell transplantation into the 

submandibular gland of SCID mice. Furthermore, we can use cells from digested 

orthotopic salivary gland tumors to conduct flow cytometry analysis of different cell 

markers including those that enrich for MEC CSCs (Figure 1.1, e). We employed this new 
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orthotopic model in studies presented in this thesis project that attempt to understand the 

effects of p53 signaling on MEC tumor pathobiology. 

Figure 1.1. Mucoepidermoid carcinoma orthotopic xenograft model. a Demonstration of 
orthotopic injection of cells into the submandibular gland (SMG) of SCID mice. b Macroscopic 
view of salivary gland tumors and normal SMG glands. c Microscopic view of tumor composition 
(H&E) and mucin-production (Mucicarmine stain). d Micro-metastasis in lung tissues of tumor-
bearing orthotopic xenograft mice. e Flow cytometry analysis of ALDHhighCD44high cells from 
digested orthotopic xenograft tumors. Dot plots include DEAB overlay (gray). 

 

1.6 Specific Aims 

The long-term goal of this work is to develop a therapeutic approach for ablation of cancer 

stem cells in MEC and for the sensitization of this cancer to systemic therapies. The 

overall objective is to understand the role of p53 signaling in the pathobiology of MEC 

cancer stem cells. The central hypothesis is that p53 signaling regulates MEC CSC 

maintenance. The rationale for this work is that understanding and targeting essential 

pathways involved in MEC stem cell maintenance will allow for the development of 
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effective therapeutic regimens that will increase survival rates and quality of life for MEC 

patients in the future. Here, we tested this hypothesis through the following specific aims: 

Specific Aim 1: Determine the role of p53 on mucoepidermoid carcinoma stem cell 

fate. We observed that therapeutic inhibition of MDM2-p53 mediates a decrease in the 

fraction of MEC cancer stem cells. However, the mechanisms explaining this effect are 

unknown. Here, we hypothesized that inhibition of the MDM2-p53 interaction decreases 

the fraction of cancer stem cells by altering their cell fate, ultimately reducing their self-

renewal and inducing their differentiation.  

Specific Aim 2: Investigate the therapeutic potential of inhibition of the MDM2-p53 

protein interaction in in vivo models of MEC. We observed that an inhibitor of the 

MDM2-p53 interaction reduces the fraction of cancer stem cells in MEC cell lines and 

xenograft tumors. Additionally, we previously showed that these inhibitors sensitize 

adenoid cystic carcinoma (ACC) patient-derived xenograft (PDX) tumors to cisplatin and 

eliminate tumor recurrence.53 However, we do not know the clinical benefit of using these 

inhibitors in MEC. Here, we hypothesize that treatment with inhibitors of the MDM2-p53 

interaction significantly decrease tumor growth and the recurrence of MEC xenograft 

tumors.  
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CHAPTER 2. P53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to 

Chemotherapy*2 

 

2.1 Summary 

Head and neck cancers are deadly diseases that are diagnosed annually in approximately 

half a million individuals worldwide. Growing evidence supporting a role for cancer stem 

cells (CSCs) in the pathobiology of head and neck cancers has led to increasing interest 

in identifying therapeutics to target these cells. Platinum-based chemotherapies are the 

standard of care for most common head and neck cancers, yet they can induce stemness 

properties and increase the proportion of CSCs in tumors. Emerging research supports a 

significant role for p53 in physiological stem cell and CSC maintenance and 

reprogramming beyond its canonical tumor suppressor functions. Therefore, p53 has 

become a promising target to sensitize head and neck CSCs to chemotherapy. In this 

chapter, we highlight the role of p53 in stem cell maintenance and discuss potential 

implications of targeting p53 for the treatment of patients with head and neck cancers. 

 
 
2 This chapter was modified from work originally published in Critical ReviewsTM in Oncogenesis. Christie Rodriguez-
Ramirez & Jacques E. Nör. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit 
Rev Oncog 23, 173-187 (2018). Ó Begell House Inc. 
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2.2 Introduction 

The tumor suppressor TP53 is the most commonly mutated gene in cancer. Known as 

the “guardian of the genome”, it can be considered a master regulator of cell fate. 

Although p53-null mice are viable, they have early onset of sporadic cancers.54 In 

addition, people with Li-Fraumeni syndrome, which harbor p53 germline mutations, 

frequently develop cancers.55 Given the major impact of p53 in cancer biology, most 

investigators have focused on its role as a tumor suppressor through its involvement in 

apoptosis, cell cycle arrest, and senescence. Nonetheless, p53 is important in normal 

cellular and developmental processes.56,57 Notably, strong evidence shows involvement 

of p53 in stem cell self-renewal and differentiation.58,59  

Two emerging roles for p53 include its ability to inhibit cancer stem cell (CSC) 

formation and regulate the CSC state. CSCs share many properties with adult stem cells. 

For example, they have the ability to self-renew and differentiate into committed 

progenitor cells with limited self-renewal potential.60 CSCs are known to be resistant to 

standard chemotherapy and radiation therapies and have increased tumorigenic 

capacity, often playing a role in tumor recurrence and metastasis in vivo.61 This chapter 

will highlight some of the functions of p53 relevant to CSC maintenance (e.g. self-renewal 

and differentiation) and the potential implications of targeting p53 to sensitize CSCs to 

conventional chemotherapy in head and neck malignancies.  
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2.3 p53: “The Guardian of the Genome” 

Functioning primarily as a transcription factor, p53 regulates the expression of a large 

number of protein coding genes and microRNAs that mediate its downstream responses. 

Known as “the guardian of the genome”, p53 is mutated in >50% of sporadic human 

cancers and is thought to be functionally inactivated in a significant portion of the 

remaining cancers.62-64 p53 is involved in preserving genome integrity by eliminating cells 

with damaged or mutated DNA. It can transiently halt the cell cycle to allow for DNA 

damage repair or can irreversibly block proliferation through senescence or apoptosis 

(programmed cell death). 

In normal conditions p53 is under tight regulation and its abundance is kept low in 

non-stressed cells. However, upon cytotoxic or genotoxic insults p53 is protected from 

degradation via several post-translational modifications.65 The p53 protein is comprised 

of: an N-terminal transactivation domain, a proline-rich domain that mediates responses 

to DNA damage, a tetramerization domain, a sequence-specific DNA-binding domain, 

and a C-terminal regulatory domain with three nuclear localization signals (NLS) and a 

nuclear export signal (NES) (Figure 2.1). Post-translational modifications occur in 

different locations in these domains and have different roles in regulating p53 activity and 

protein stability.65  

Mouse double minute 2 (MDM2) is the main negative regulator of p53. It functions 

as an E3 ubiquitin ligase that cooperates with MDMX to target p53 for proteasomal 

degradation.66 Additionally, MDM2 can inhibit p53 transcriptional activity by binding to the 

N-terminal of p53.67,68 MDM2 is also a transcriptional target of p53, resulting in a negative 

autoregulatory mechanism for p53 signaling (Figure 2.1).69 The levels of p53, MDM2, and 
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MDMX are tightly controlled to sense and respond to stress.70 This coordinated network 

is very important in normal homeostasis and development.67,71 Some cancers bypass p53 

function by overexpressing or amplifying MDM2.72,73 Responses of p53 on a cell are 

stress and tissue specific. Below, we explore some of the evidence supporting the role of 

p53 in stem cells and CSCs. 

Figure 2.1. The p53 structure 
and regulatory feedback loop.  
a The p53 protein is comprised 
of an N-terminal transactivation 
domain (TAD), a proline-rich 
domain (PRD), a tetramerization 
domain (TET), a sequence-
specific DNA-binding domain 
(DBD), and a C-terminal 
regulatory domain with three 
nuclear localization signals 
(NLS) and a nuclear export 
signal (NES). The p53 protein 
can get phosphorylated, 
acetylated, methylated or 
ubiquitinated throughout these 
different domains and these 
post-translational modifications 
regulate p53 stability and 
activity. b When p53 is activated 
it accumulates in the nucleus 
and act as a transcription factor 
regulating the expression of 

many genes and miRNAs. MDM2 is a transcriptional target of p53 and an E3 ubiquitin ligase that 
targets p53 for proteasomal degradation. This serves as an autoregulatory feedback for p53 
protein levels. (Diagram in (a) was modified from Miller et al.74). 

 

2.4 p53 in Stem Cells 

There are several mechanisms by which p53 is thought to regulate both normal stem cells 

and CSCs.75 In this chapter, we focus only on two of these mechanisms. The first involves 

the effects of p53 on stem cell self-renewal and the second on stem cell differentiation.  
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2.4.1 p53 in self-renewal 

Stem cells are defined by their ability to self-renew and to produce progenitor cells that 

can ultimately generate multiple cell lineages (i.e. multipotency). Both of these tasks are 

centered on a single mitotic division event. Whereas, symmetric stem cell division yields 

two identical daughter cells, asymmetric division will produce one stem cell and one 

proliferative progenitor cell (Figure 2.2). When a stem cell undergoes symmetric division, 

it can yield two identical daughter stem cells or two proliferative progenitor cells. Both of 

these processes are essential during development and tissue homeostasis to maintain a 

stem cell pool and produce specialized cells. p53 plays an important role in the balance 

between self-renewal and differentiation in embryonic and adult stem cells, and this 

balance is important in cancer development and progression.58,59  

Figure 2.2. Stem cell divisions. Stem cells can 
undergo both symmetric and asymmetric division 
events, resulting in expansion, exhaustion, or 
maintenance of the stem cell pool. When a stem cell 
undergoes asymmetric division, it can produce an 
identical daughter cell (self-renewal) and committed 
progenitor (differentiation). If a stem cell divides 
symmetrically, two daughter stem cells or two daughter 
progenitor cells can result. These modes of division are 
regulated by pathways that govern self-renewal and 
differentiation. (This figure was modified from 
Rodriguez-Ramirez et al.76)  

 

In mammary stem cells, p53 has been found to regulate the polarity of cellular 

divisions.77 The absence of p53 promotes self-renewal of these cells, allowing for the 

expansion of the stem cell pool and resulting in unlimited and symmetric self-renewing 

divisions. Confirming these findings, p53 knockout mice contain higher percentage of 

cells capable of forming mammospheres in culture and repopulating the mammary gland 

in vivo, corresponding to increased stem cell numbers.78  
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Furthermore, Numb can directly interact with p53 and MDM2 and is thought to 

regulate p53 signaling by preventing MDM2-mediated ubiquitination of p53.79 Numb is a 

cell fate determinant that distributes asymmetrically in daughter cells during mitosis and 

inhibits Notch signaling. Asymmetric stem cell divisions can be measured by looking at 

its distribution in daughter cells.80 Phosphorylation of Numb by NANOG destabilizes p53 

and promotes cancer stem cell self-renewal.81 

Several groups have shown that deregulation of pathways that control self-renewal 

of normal stem cells can lead to their transformation into cancer cells.3,6,82 Indeed, p53 

regulates the self-renewal of myeloid progenitor cells transforming them into leukemia-

initiating cells that resemble CSCs.3 Conversely, p53 loss promotes CSC-pool 

expansion.83,84 Meanwhile, mutant p53 induces CSC marker expression in colorectal 

cancer.85 Such findings suggest a strong role for p53 in regulating the self-renewal of 

CSCs, but the mechanism by which p53 regulates this process is not yet clear.  

2.4.2 p53 in differentiation 

A correlation between the grade of differentiation and the presence of p53 mutations has 

been observed in several malignancies.86,87 Cancers with p53 mutations or functional p53 

inactivation by downstream regulators (e.g. overexpression of MDM2) correlate with poor-

grade and undifferentiated tumors.88 In many cancers, histological grade remains one of 

the best prognostic factors for patient survival.89,90 This has certainly been the case for 

most squamous cell carcinomas and salivary gland cancers (SGC).91,92 
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Endogenous p53 was shown to induce the differentiation of mouse embryonic 

stem cells by suppressing Nanog expression after DNA damage.93 Nanog is an important 

gene for embryonic stem cell self-renewal.94 Not only does Nanog plays a role in 

embryonic stem cells, but it also regulates dedifferentiation of primary p53-deficient 

mouse astrocytes into CSC-like cells.95 p53 can regulate the differentiation of several cell 

types,96 and its loss can also induce reprogramming of pluripotent stem cells, further 

supporting a role for p53 in differentiation. Furthermore, it has been shown that p53 

transcriptionally activates miRNAs responsible for downregulating stem cell transcription 

factors.97 We find that the role of p53 in regulating cell fate is a balance between stem 

cell differentiation and self-renewal (Figure 2.3). This balance is “hijacked” in cancer to 

expand the CSC pool. Deregulation of these differentiation and self-renewal pathways 

can be responsible for the formation of cancer stem-like cells.  

Figure 2.3. The p53 protein is a key 
regulator of stem cell fate, balancing self-
renewal and differentiation. When p53 is 
activated in a stem cell, it tilts this balance 
towards asymmetric division. Cancer stem 
cells frequently downregulate p53 activity. This 
leads to changes in cell polarity increasing 
symmetric stem cell division, thus expanding 
the stem cell population. Activating p53 in 
cancer stem will differentiate these cells 

leading to a decreased stem cell pool and sensitizing these otherwise resistant cells to 
conventional chemotherapies. (This figure was modified from Rodriguez-Ramirez et al.76) 

2.5 Sensitizing Cancer Stem Cells to Chemotherapy 

Two main approaches can be used to target CSCs. The first, and most studied, is to find 

agents that can specifically kill these cells.98 CSCs are resistant to standard 

chemotherapy agents and radiotherapy used in the clinic.99 For example, breast CSCs 

(i.e., CD44highCD24low cells) appear to be intrinsically resistant to conventional 
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chemotherapy and radiation therapy.100-103 Their unique biology allows them to bypass 

many of the mechanisms used to target cancer cells. For this reason, a CSC-specific 

treatment must be developed to kill these cells. Several clinical trials targeting CSC-

specific pathways are currently underway globally.97 

The second approach is to find agents that can differentiate CSCs to sensitize 

them to chemotherapy and radiation therapy. CSCs exploit physiological stem cell 

pathways to maintain a more undifferentiated state in such a way that they can self-renew 

and give rise to the different cells comprising a tumor.60 In theory, differentiating the CSCs 

will make them loose their potential to self-renew, therefore becoming short-lived. This 

approach is gaining increasing interest because the idea of sensitizing otherwise resistant 

cells to standard chemotherapy regimens is an attractive approach for the clinic. 

Nevertheless, more about the potential to differentiate CSCs must be understood 

because CSCs in many different tumor types (different from adult stem cells) have not 

been fully characterized and may present undistinguished differentiation fates. 

One prominent challenge in studying CSCs is that the percentage and markers 

used to identify these cells in tumors varies by cancer and cancer subtype.104 Compelling 

evidence for the importance of CSCs in tumorigenesis and correlations with patient 

outcomes has been observed in different tumors.105-107 Apart from surgery, chemotherapy 

and ionizing radiation are the most common therapies used to treat cancer, but a good 

number of cancers do not respond to therapy and some develop resistance over time.108 

CSCs can be resistant to conventional chemotherapy through several mechanisms.99 It 

is thought that these cells are intrinsically less susceptible to chemotherapy because they 

are slow cycling. Because chemotherapy agents are DNA damaging, they are most 
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effective on rapidly proliferating cancer cells. Apart from this, CSCs have ABC 

transporters that can effectively efflux chemotherapy drugs and are resistant to DNA 

damaged-induced death.109,110  

Furthermore, intravenously injected chemotherapy drugs are capable of 

penetrating just a few layers of cells in tumor tissues.111,112 This implies that deeper cell 

layers in the tumor receive lower doses of these agents. Given the intrinsic resistance of 

CSCs to chemotherapeutic drugs, sub-cytotoxic doses received by cells could explain the 

increase in the fraction of CSCs observed in tumors treated with chemotherapy.41,113-115 

This increase could also be due to the intrinsic nature of these cells to be more resistant 

to chemotherapeutic agents, thus surviving while the rest of the tumor cells succumb to 

treatment. Residual CSCs that remain after treatment are thought to be responsible for 

tumor recurrence and metastasis due to their increased cell invasiveness, survival, and 

tumorigenic potential.61  

Chemotherapy is also capable of inducing transdifferentiation of cancer cells into 

cancer stem cells, creating a population of chemotherapy-resistant cells that rely on 

similar mechanisms to the generation and maintenance of induced pluripotent stem cells 

(iPSCs).116,117 A study by Auffinger and colleagues showed that temozolomide induced 

an increase in the glioma CSC pool and that this increase is a result of a phenotypic shift 

of the nonCSC pool to a CSC-like state.117 These authors showed that the newly 

transdifferentiated cells are more tumorigenic, invasive, and chemoresistant than the 

original tumor source. 

Clinical studies monitoring the prevalence of CSCs before and after chemotherapy 

treatment have shown that CSCs are resistant to therapy, confirming results observed in 
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in vitro and in preclinical studies.118,119 As an example, breast cancer patients undergoing 

neoadjuvant chemotherapy who underwent biopsies before and after treatment showed 

that cells with CSC markers persisted even as tumor mass regressed.100 CSCs resistant 

to radiotherapy have also been observed in patients who have received high doses of 

irradiation.120 

Using Nanog as a reporter of cancer stem cell formation, Saydaminova and 

colleagues identified GDM-1515, a regulator of histone demethylases, is capable of 

sensitizing CSCs to cisplatin-induced apoptosis.99 They showed that this compound was 

able to inhibit EMT and the induction of CSCs by cisplatin. On the other hand, an unbiased 

screen for small-molecules that are cytotoxic to CSCs revealed salinomycin, a natural 

compound that can reduce the expression of CSC genes, mammary tumor growth, and 

can increase epithelial differentiation of mammary gland tumors.99 Further studies have 

proven the effectiveness of this compound in targeting CSCs in other cancers.121-124 

However, severe toxicity of this compound in normal cells impedes its clinical use.125,126 

Meanwhile, other researchers have shown that targeting pathways that regulate CSC 

self-renewal can lead to sensitization of CSCs to chemotherapy.127 Bmi-1 (B cell-specific 

Moloney murine leukemia virus integration site 1) is a component of the polycomb-

repressor complex I and a known regulator of self-renewal. Targeting Bmi-1 results in 

sensitization of platinum-based chemotherapies in CSCs.127 

2.6 p53 in Head and Neck Cancer 

Head and neck cancers constitute ~4% of all cancers worldwide. They arise in mucosal 

surfaces of the oral cavity, nasopharynx, oropharynx, hypo-pharynx, larynx, paranasal 

sinuses, nasal cavity, and salivary glands. Among those, more than 90% are head and 
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neck squamous cell carcinomas (HNSCCs). HNSCC is the sixth most common cancer 

worldwide, occurring in more than 550,000 individuals and resulting in greater than 

380,000 deaths each year.128 Despite advancement in treatment modalities, there has 

been limited improvement in patient survival over the last three decades.  

HNSCC can be stratified based on their human papilloma virus (HPV) infection 

status; HPV-positive HNSCC have a better survival rate than HPV-negative cancers.129-

133 Accumulating epidemiological, molecular, and clinical evidence supports HPV-positive 

cancer to be a distinct subtype of head and neck cancers.134-136 Although the overall 

incidence of head and neck cancers has declined slightly in industrialized countries, there 

has been an increase in the incidence of HPV-positive cancers of the oropharynx.137-140  

Mutations in TP53 are the most frequent genomic alterations in HNSCC and have 

been correlated with poor patient survival.130,141-143 An analysis of 279 HNSCC patients 

from The Cancer Genome Atlas (TCGA) showed TP53 mutations in 70.4% of tumors.130 

TP53 mutations are thought to be an early event in HNSCC carcinogenesis because they 

have been found in pre-malignant lesions, and their incidence is associated with cancer 

progression.144 Although TP53 is frequently mutated in HPV-negative tumors, it is 

typically wild-type in HPV-positive tumors.130,145,146 Nevertheless, it has been shown that 

the HPV16 E6 protein in HPV-positive tumors can bind and target the p53 protein for 

proteasomal degradation, resulting in functional inactivation of p53 signaling.147 These 

results indicate p53 signaling is key in HNSCC carcinogenesis of both HPV-negative and 

HPV-positive HNSCC.  

Although TP53 is commonly mutated in HNSCC, it is rarely mutated in SGC when 

compared to other neoplasms.148 SGCs are rare malignant tumors that account for ~6% 
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of all head and neck cancers. There are 22 subtypes of malignant salivary gland tumors 

according to the most recent classification of the World Health Organization.149 Their 

histological and clinical diversity results in diagnostic and management challenges for 

clinicians.150 Standard of care commonly involves radical surgery and/or radiation 

therapy, with conventional chemotherapy employed as a palliative treatment for recurrent 

or metastatic disease. There is limited clinical trial data on systemic therapeutic 

approaches for SGCs, a problem that has largely been a result of challenges in recruiting 

enough patients (due to the rarity of these tumors), or lack of patient stratification by tumor 

type. SGCs can originate in any of the major or minor salivary glands. SGC-subtype and 

gland location are prognostic factors of patient survival.  

Mucoepidermoid carcinoma (MEC) and adenoid cystic carcinoma (ACC) are the 

two most common malignant SGCs.149 They are characterized by recurrent chromosomal 

translocations which are thought to play an important role in tumorigenesis.151 Despite 

these findings, the role of these translocations in tumor progression is not fully 

understood. Limited genomic studies of SGCs have hindered the understanding of the 

pathobiology of these cancers and of the identification of molecular candidates for 

targeted therapies.  

Varying reports on the p53 mutational status in MEC samples have been 

reported.152,153 These studies have been limited by small sample sizes and by unbiased 

detection of p53 mutations. Whole-exome sequencing of a cohort of 18 patients found 

p53 to be mutated in 30% of all MEC cases.46 In this study, p53 mutations were only 

found in intermediate and high-grade tumors. A comprehensive genomic profiling of 48 

MEC patient samples further confirmed p53 as a common genetic alteration (GA) in MEC, 
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found in about 40% of the cases analyzed and prevalent in higher disease grade 

samples.154 Similar results were observed in a previous study using 

immunohistochemistry, where aberrant expression of p53 was detected in higher 

histological graded tumors.153 p53 mutational status and its implications in MEC 

pathobiology need to be further evaluated to determine the frequency of these GAs and 

understand their implications in disease progression.  

2.7 Head and Neck CSCs 

2.7.1 CSCs in HNSCC 

Increasing evidence supports a role for CSCs in the pathogenesis and progression of 

HNSCC. CSCs in HNSCC were first described as CD44high cells by Prince and 

colleagues.155 CD44, a type I transmembrane glycoprotein involved in cell-cell 

interactions, adhesion and migration, can act as a receptor for hyaluronic acid and other 

extracellular matrix proteins. In these experiments, cells expressing high levels of CD44 

had increased tumorigenic potential over cells that expressed low levels.128 Moreover, 

tumors generated from the CD44high cells were capable of reproducing the original tumor 

heterogeneity, observed by the presence of both CD44high and CD44low cells.  Gene 

expression analysis showed that the CD44high cells differentially expressed the Bmi-1 

gene, a self-renewal protein. Their findings suggested self-renewal and differentiation 

potential of the CD44high cells, supporting the CSC hypothesis in HNSCC.  

Similar experiments using ALDH showed that ALDH-positive cells had higher 

tumorigenic potential than ALDH-negative cells.156,157 ALDH is an enzyme involved in the 

oxidation of aldehydes, cellular detoxification, retinoic acid metabolism, protection from 

reactive oxygen species, amongst other important cellular pathways.158 Clay and 
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colleagues found that as few as 500 ALDHhigh cells were sufficient to form tumors in mice 

and that these tumors replicated the original tumor cell heterogeneity.156 Notably, ALDH-

positive cells isolated from patient samples were radioresistant and could initiate tumors 

in mice.159 Krishnamurthy and colleagues went on to show that combined ALDHhigh and 

CD44high expression further enhanced the ability of enriching for CSCs and that tumors 

generated with ALDHhighCD44high cells resembled original patient histology.160 Moreover, 

using serial transplantations in vivo, they showed these cells had increased Bmi-1 

expression and self-renewal abilities. Further studies using these markers continue to 

prove the existence and role of these CSCs in the pathogenesis of HNSCC.  

CD44 expression has been correlated with worse disease grade and prognosis in 

pharyngeal and laryngeal cancers.161,162 Moreover, CD44 concentration in peripheral 

blood has potential to serve as a prognostic and diagnostic tool for HNSCC patients.162 

CD44-positive cells in HNSCC were found to have an epithelial-to-mesenchymal (EMT) 

phenotype, to overexpress PD-L1, and to be less immunogenic than CD44-negative 

cells.163 ALDH1 isoenzyme expression has also been correlated with decreased overall 

patient survival.164 Clinical studies have shown that ALDH1A1 expression correlates with 

poor tumor differentiation and worse patient prognosis.165 A recent study showed that 

NCT-501, an ALDH1A1 inhibitor, is able to sensitize cisplatin-resistant HNSCC cells to 

cisplatin while decreasing CSC markers, self-renewal, and tumorigenic potential.166 

Furthermore, ALDH1A1 is immunogenic in HNSCC and an effective target for CD8(+) T-

cell-mediated immune response.167,168 A recent transcriptome analysis of TCGA data for 

five different cancers including 520 HNSCC tumors versus 40 normal samples found that 

differential expression of 19 ALDH isoforms correlated with cancer prognosis.169  
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2.7.2 Salivary gland CSCs 

Recent studies have also identified ALDHhighCD44high as markers for CSCs in salivary 

MEC and ACC.170,171 Similar to what was shown with HNSCC, serial transplantation and 

in vitro sphere assays demonstrated self-renewal and differentiation potential of these 

cells in both MEC and ACC. A recent study found that ALDH and CD44 markers enriched 

for CSCs in ACC and MEC patient-derived xenografts, validating the use of these markers 

in salivary gland CSC research.172 Three patient-derived xenografts of a high grade MEC 

were generated from successive relapse surgeries (~9 months) in the same patient. 

Further genomic characterization of these tumors showed increased mutational burden 

and stem cell marker expression with decreased expression of tumor suppressors such 

as TP53 during disease progression. Additionally, increased sphere-forming abilities and 

a larger fraction of ALDHhighCD44high cells in the later relapses.  

2.8 Conclusion 

Given the increasing evidence supporting a significant role for head and neck CSCs in 

tumor progression, we postulate that targeting pathways involved in CSC maintenance 

can potentially sensitize resistant cancers to conventional therapies and result in better 

eradication of tumor cells. In this chapter, we highlight some of the evidence showing the 

importance of p53 signaling in CSC maintenance. We know that p53 has a prominent role 

in self-renewal and differentiation of normal and tumorigenic stem cells.75 Aberrant p53 

signaling or inactivation in either HPV-positive or -negative tumors correlates with tumor 

progression in head and neck cancers. Moreover, p53 mutational status in head and neck 

cancers has been associated with poor patient prognosis.144 Furthermore, p53 mutations 

correlate with higher disease grade in salivary gland cancers.  
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MDM2 inhibitors can activate endogenous wildtype p53173 and reduce tumor 

volume, rate of recurrence, and CSC population in SGC.53,174 They can also sensitize 

HNSCC to chemotherapy.175 MDM2 inhibitors are in phase I and II clinical trials for the 

treatment of several malignancies.176,177 Other methods for activating p53 include 

reactivation of wild-type p53 function in mutant p53 and the use of viral vectors to deliver 

wild-type p53 in p53-deficient cells.152 A better understanding of the mechanisms by which 

p53 decreases self-renewal and induces differentiation of CSCs in head and neck tumors 

could inform a new therapeutic paradigm for cancer. Cancer patients might benefit from 

p53-induced differentiation of CSCs that can sensitize these cells to conventional 

chemotherapy.  
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CHAPTER 3. P53 Regulates Stemness in Mucoepidermoid Carcinoma 

 

3.1 Summary 

Mucoepidermoid carcinoma (MEC) is a poorly understood salivary gland malignancy with 

limited therapeutic options. Cancer stem cells (CSCs) are considered drivers of cancer 

progression by mediating tumor recurrence and metastasis. We have shown that clinically 

relevant small molecule inhibitors of the MDM2-p53 interaction activate p53 signaling and 

reduce the fraction of cancer stem cells (CSCs) in MEC. Here, we examined the functional 

role of p53 in regulating cell fate processes of MEC CSCs. We found, that although p53 

activation does not induce apoptosis of MEC CSCs, it reduces stemness properties such 

as self-renewal by regulating Bmi-1 protein stability and driving CSCs towards 

differentiation. In contrast, downregulation of p53 causes an expansion of the CSC 

population while promoting tumor growth. Remarkably, therapeutic activation of p53 

prevented tumor recurrence in a preclinical trial in mice. Collectively, these results 

demonstrate that p53 regulates stemness properties in MEC and suggest that therapeutic 

activation of p53 may have clinical utility in patients with mucoepidermoid carcinoma. 
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3.2 Introduction 

Few recurrent genetic alterations have been found in MEC, with CRCT1/MAML2 fusions 

being the most common.46,49 In this fusion, the NOTCH-binding domain of MAML2 is 

replaced by the CREB-binding domain of CRCT1 resulting in disruption of NOTCH 

signaling and activation of c-AMP responsive target genes.178,179 Although this fusion is 

thought to play a role in tumorigenesis, there has been conflicting evidence as to how its 

presence affects patient outcomes.180-183 Unlike other head and neck cancers, p53 is not 

frequently mutated in MEC suggesting that p53 activating therapeutics may have clinical 

utility for the treatment of this disease.148,184,185 Such therapeutics include MDM2 

inhibitors which activate p53 signaling by disrupting the binding between MDM2 (Mouse 

double minute 2) and p53. MDM2 is an E3 ubiquitin ligase that targets p53 for 

proteasomal degradation. MDM2 is also a transcriptional target of p53 resulting in a 

negative feedback loop that keeps p53 levels in check.69 p53 is the most commonly 

mutated gene in cancer. Cancers that do not directly have mutated p53 inactivate p53 

signaling by overexpressing MDM2 or deregulating downstream p53 effectors. 

Importantly, p53 is considered a master regulator of cell fate by controlling processes 

involved in cell survival, cell division and stem cell and cancer stem cell self-renewal and 

differentiation.76 Studies have shown cancer stem cells are resistant to conventional 

therapeutics and are thought to be responsible for tumor recurrence and metastasis.99,186 

Furthermore, they can serve as predictive or prognostic markers for different 

cancers.161,162 

MEC cancer stem cells (CSCs) are defined by high ALDH enzymatic activity and 

CD44 expression and are highly tumorigenic, have self-renewal capacity, and have the 
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ability to generate the different cell phenotypes that make up MEC tumors.171,172 We have 

previously demonstrated that treatment of MEC cells with the MDM2 inhibitor MI-773 

activates p53 signaling and decreases the MEC CSC population.1,173 However, the 

mechanisms underlying this effect are not known. Here, we evaluated the functional role 

of p53 in regulating MEC cancer stem cell fate and unveiled the therapeutic potential of 

targeting this pathway in pre-clinical trials in murine models of MEC. 

3.3 Results 

3.3.1 p53 depletion leads to an expansion of the cancer stem cell population  

We evaluated the baseline levels of several proteins involved in p53 signaling in a panel 

of human mucoepidermoid carcinoma cell lines, i.e. UM-HMC-1, UM-HMC-3A, and UM-

HMC-3B (Figure 3.1, a).  The UM-HMC-1 cell line was generated from a primary tumor; 

meanwhile, the UM-HMC-3A cell line was generated from a recurrent tumor and the UM-

HMC-3B cell line was generated from a lymph node metastasis in the same patient as 

UM-HMC-3A.52 Interestingly, the UM-HMC-3B cell line expresses higher p53 and lower 

MDM2 levels then UM-HMC-3A, suggesting p53 signaling might be regulated differently 

in this cell line (Figure 3.1, a). Whole-exome sequencing on these cells revealed no 

mutations in either MDM2 or TP53 that might explain this differential expression.  

A small molecule inhibitor of the MDM2-p53 interaction (MI-773) was used as a 

tool to activate p53 signaling in MEC cells. Cytotoxicity assays confirmed our prior 

findings that UM-HMC-1 and UM-HMC-3A cells are more responsive than UM-HMC-3B 

cells to inhibition of the MDM2-p53 interaction (Figure 3.1, b).1 Meanwhile, western 

blotting confirmed that p53 signaling is activated in a dose-dependent manner evidenced 

by accumulation of p53 transcriptional targets, p21 and MDM2 (Figure  3.1, c). Consistent 
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with the cytotoxicity assays, UM-HMC-3B cells are less responsive to MI-773 than UM-

HMC-1 or UM-HMC-3A. Of note, MI-773 treatment decreases Bmi-1 expression in all 

three cell lines (Figure 3.1, c). This polycomb protein is an important regulator of stem 

cell self-renewal and is frequently used as a CSC marker.187 Confirming this observation, 

low cytotoxic doses of MI-773 caused a significant decrease in the CSC fraction 

(ALDHhighCD44high) in the sensitive MEC cells, while no significant difference was 

observed in the less responsive UM-HMC-3B cells (Figure 3.1, d). 

A second generation inhibitor of MDM2-p53 interaction called APG-115 was used 

to activate p53 signaling and verify the effects on MEC CSCs188. As observed with MI-

773, cytotoxicity assays confirmed UM-HMC-3B cells are more resistant than UM-HMC-

1 and UM-HMC-3A to the MDM2 inhibitor (Figure 3.1, e). p53 pathway activation as well 

as decreased Bmi-1 expression was confirmed via Western blot (Figure 3.1, f), and a 

decrease in the CSC fraction was observed in the sensitive UM-HMC-1 cells (Figure 3.1, 

g). Of note, we found multiple MDM2 protein bands in the UM-HMC-3B cells that we do 

not observe in the other cell lines. These multiple band patterns are an artifact of using 

higher antibody concentrations and doing longer exposures times of the WB membranes 

in order to detect MDM2 proteins in the UM-HMC-3B cell lysates. The same band patterns 

are observed in whole cell lysates in the other cell lines when we use higher primary 

antibody concentrations. 
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Figure 3.1. MDM2 inhibitors decrease the fraction of mucoepidermoid carcinoma cancer 
stem cells in vitro. a Western blot showing baseline protein levels for MDM2, p53, p21 and Bmi-
1 in human mucoepidermoid carcinoma (MEC) cell lines (UM-HMC-1, UM-HMC-3A, UM-HMC-
3B). b Graph showing the half-maximal inhibitory concentration (IC50) of MI-773 in UM-HMC cells. 
c Accumulation of p53 and downstream effectors (MDM2 and p21) and decrease in Bmi-1 levels 
by MI-773, a 1st generation small molecule inhibitor of the MDM2-p53 interaction. d MEC cell lines 
were treated with MI-773 for 72 hours and the fraction of cancer stem cells (ALDHhighCD44high) 
was measured using flow cytometry. e Sulforhodamine-B assay measuring the effect of APG-115 
on cell viability after 72 hours. Data was normalized against vehicle controls. f Western blot 
verifying activation of p53 signaling with APG-115, a 2nd generation small molecule inhibitor of the 
MDM2-p53 interaction. g Fraction of cancer stem cells (ALDHhighCD44high) measured using flow 
cytometry in MEC cell lines treated with APG-115 for 72 hours. All results are representative of at 
least two independent experiments. Data was analyzed by one-way ANOVA followed by post-hoc 
Tukey. ** P<0.01, *** P<0.001, ns=not significant. 

 

To confirm that the decrease in MEC CSCs is due to activation of p53 signaling 

and not due to off target effects of the MDM2-p53 inhibitor, we used short hairpin RNAs 

(shRNA) to silence p53 expression in MEC cells. Successful p53 silencing was obtained 
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with sequences -1 and -2, while sequence -3 did not mediate adequate silencing and was 

used as a control (Figure 3.2, a). In p53 knockdown cells MI-773 failed to activate p53 

downstream signaling and caused significantly less cytotoxicity compared to scrambled 

vector-transduced cells, confirming the specificity of the inhibitor (Figure 3.2, b, c). 

Importantly, no significant difference in cell proliferation was observed between the 

control and p53-silenced cells as determined from their growth curves and doubling times 

(DT) (Figure 3.2, d). Nonetheless, in the absence of accumulated p53 we no longer 

observed a decrease in the CSC population upon inhibition of the MDM2-p53 interaction 

(Figure 3.2, e, f), suggesting that increased p53 protein levels can regulate the 

maintenance of MEC CSCs.  
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Figure 3.2. p53 silencing abrogates the decrease on cancer stem cells by MDM2 inhibitors. 
a Western blot showing knockdown levels of p53 with different shRNA constructs in the UM-HMC 
cell lines. b Western blots of p53-silenced and control cells treated with MI-773 for 48 hours. c 
Sulforhodamine-B assay measuring the effect of increasing doses of MI-773 for 72 hours on cell 
viability (IC50). Data was normalized against vehicle controls. d Growth curves and doubling time 
(DT) calculations in control and p53-silenced cells. e Dot plots of flow cytometry analysis of the 
ALDHhighCD44high cell fraction in vector control and p53-silenced cells treated with MI-773 for 72 
hours. f Quantification of (e). All results are representative of at least two independent 
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experiments. Data was analyzed by one-way ANOVA followed by post-hoc Tukey (a=0.05). ** 
P<0.01, *** P<0.001, ns=not significant. 

 

To verify these in vitro observations, we evaluated the effects of p53 silencing on 

MEC tumors using subcutaneous and orthotopic xenograft models. Cancer cells either 

transplanted into the subcutaneous space or in the submandibular glands (SMG) of 

immunodeficient mice were monitored for tumor growth and all mice were euthanized 

when the first tumors reached study endpoint (2mm3). We found that p53 knockdown 

dramatically enhanced tumor growth in xenograft tumors generated with the sensitive 

UM-HMC-3A cell line (Figure 3.3, a-f). The p53-silenced tumors reached endpoint ~2 

months after transplantation. Importantly, no proliferative advantage was observed in the 

p53-silenced cells that might explain the increased growth rate of these tumors (Figure 

3.2, d). Given the limited tumor growth by the vector control cells at study endpoint, we 

had insufficient tissue to perform flow cytometry analysis of the ALDHhighCD44high CSC 

population. As an alternative, we performed immunohistochemistry for ALDH1 in cells 

seeded in the scaffold of the UM-HMC-3A xenograft tumors in order to understand the 

impact of p53 silencing on the fraction of the cancer stem cells in vivo. While all tumors 

in the p53 shRNA group contained CSCs as determined by high ALDH1 expression, very 

few ALDH1-positive cells were found in control specimens (Figure 3.3, g, h).  
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Figure 3.3. p53 depletion increases tumor growth and leads to an expansion of ALDH-
expressing cancer stem cells in vivo. a Macroscopic image of subcutaneous xenograft tumors 
generated with UM-HMC-3A cells transduced with p53 shRNA or vector control. Outlier tumor in 
Control shRNA group was excluded from further analysis. b Kaplan-Meier curves depicting tumor-
free survival. Failure was defined as tumors that reached a volume of 200 mm3. c Tumor weights 
at study endpoint. d Macroscopic image of orthotopic xenograft tumors generated with UM-HMC-
3A cells injected in the submandibular glands of mice. e Kaplan-Meier curves depicting tumor-
free survival. Failure was defined as palpable salivary gland tumors. f Weight of the 
submandibular glands at study endpoint. g H&E and immunohistochemical analysis of ALDH1 in 
subcutaneous tumors from (a), scale bar = 100 µM. h Average ALDH1 scores of 5 randomly 
selected microscopic fields per tumor (g). Microscopic fields were scored as follows: 0 – no cells 
with ALDH1 staining; 1 – 1 to 10 cells stained for ALDH1; 2 – more than 10 cells with high ALDH1 
expression. Kaplan-Meier graphs were analyzed using Gehan-Breslow-Wilcoxon test. All other 
data was analyzed by two-tailed student’s t-test. **P<0.01, ****P<0.0001. 
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These experiments were repeated with the less responsive UM-HMC-3B cells and 

no detectable difference in the establishment and growth of the xenograft tumors was 

found between the control and the p53 shRNA groups (Figure 3.4, a-c, e-g). 

Nevertheless, even in tumors generated with these less responsive cells we observed a 

trend of higher percentages of CSCs in the p53 shRNA tumors when compared to vector 

control tumors, as measured through flow cytometry (Figure 3.4, d, h). 

Figure 3.4. p53 depletion does not increase tumor growth in xenograft tumors with the 
resistant UM-HMC-3B cells. a Macroscopic image of subcutaneous xenograft tumors generated 
with UM-HMC-3B cells. b Kaplan-Meier curves depicting tumor-free survival. Failure was defined 
as tumors that reached a volume of 200 mm3. c Tumor weights at study endpoint. d Fraction of 
cancer stem cells (ALDHhighCD44high) in tumors generated with UM-HMC-3B cells transduced with 
p53 shRNA or vector control. e Macroscopic image of orthotopic xenograft tumors generated with 
UM-HMC-3B cells. f Kaplan-Meier curves depicting tumor-free survival. Failure was defined as 
palpable salivary gland tumors. g Weight of submandibular glands at study endpoint. h Orthotopic 
xenograft experiment with UM-HMC-3B cells was repeated (n=13) and the fraction of cancer stem 
cells was analyzed. Graph depicting the fraction of cancer stem cells (ALDHhighCD44high) in tumors 
generated with UM-HMC-3B cells transduced with p53 shRNA or vector control. Samples with 
less than 3,000 tumor cells obtained from digested tissues were excluded from flow cytometry 
analysis. Kaplan-Meier graphs were analyzed using Gehan-Breslow-Wilcoxon test. All other data 
was analyzed by two-tailed student’s t-test. *P<0.05. 
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Figure 3.5. Gating schematic for apoptosis and cell cycle profile analysis of bulk and 
cancer stem cells. Representative gating shows how apoptosis and cell cycle profiles were 
measured in the bulk cell population (a) and in the cancer stem cells (b), ALDHhighCD44high. 
Cancer stem cells were analyzed by gating on high ALDH enzymatic activity using DEAB as a 
negative control for AldeRed substrate, followed by high CD44 expression. Afterwards, gates for 
Annexin V or DyeCycle-Orange based on the bulk cell population were applied to the cancer stem 
cells. 

3.3.2 p53 activation does not preferentially induce apoptosis of cancer stem cells 

To understand how induction of p53 decreases the population of MEC CSCs, we first 

assessed whether activating p53 signaling depletes this population by preferentially 

inducing its apoptosis. Annexin V staining is commonly used to detect early apoptotic 

events in viable cells and is compatible with ALDH enzymatic detection assays such as 

ALDEFLUOR™ and ALDERED™. This approach allowed for the examination of apoptotic 

events specifically in the CSCs (Figure 3.5). Cells were treated with a low dose of MI-773 

(1 µM) to activate p53 signaling and apoptosis was measured at different time points. 

Under these conditions, apoptosis was observed only in the bulk cell population of the 

UM-HMC-3A cell line (Figure 3.6, a). Nevertheless, treatment was sufficient to cause a 

decrease in the CSCs fraction at 48 and 72 hours in both sensitive cell lines (UM-HMC-

1, UM-HMC-3A) (Figure 3.6, b). Remarkably, no apoptosis was detected in the CSC 
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fraction that could account for this decrease (Figure 3.6, 3c) suggesting p53 activation 

does not preferentially induce apoptosis of MEC CSCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. p53 activation does not preferentially induce apoptosis of cancer stem cells. 
UM-HMC cell lines were treated with either vehicle or MI-773 and subsequently analyzed for 
apoptotic cells using Annexin V staining. a Apoptosis measured in the bulk cell population after 
24-72-hour treatment with 1 µM MI-773 or vehicle control. b Fraction of cancer stem cells 
(ALDHhighCD44high) after 24-72-hour treatment with 1 µM MI-773 or vehicle control. c Graphs 
depicting the fraction of apoptotic cancer stem cells (ALDHhighCD44high) after 24-72-hour treatment 
with MI-773 or vehicle control. All results are representative of at least two independent 
experiments. Data was analyzed by two-way ANOVA followed by post-hoc Bonferroni. **P<0.01, 
***P<0.001, ****P<0.0001, ns=not significant. 
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3.3.3 p53 activation changes the cell cycle profile of the cancer stem cells through 

p21 signaling 

A non-toxic cell permeable DNA dye (DyeCycle-Orange) compatible with the ALDH 

enzymatic assay was used to evaluate the effect of p53 activation on the cell cycle of 

MEC CSCs (Figure 3.5). Focusing on the sensitive cell lines, MEC cells were again 

treated with a low dose of MI-773 (1µM) to activate p53 signaling without appreciable 

cytotoxicity. The cell cycle profiles were analyzed 24 hours after treatment. MI-773 

increased the proportion of bulk cells in G1 suggestive of a G1 cell cycle arrest (Figure 

3.7, a, b), an effect that correlates with increased p21 expression.1 When we focused our 

cell cycle analysis on the CSCs, we observed that a high percentage of CSCs were in 

G2/M at baseline, which is the opposite of the bulk cell population in which most untreated 

cells are in G1 (Figure 3.7, a, b). Nevertheless, activation of p53 with MI-773 increased 

the proportion of CSCs in G1 when compared to untreated cells, a response similar to 

that seen in the bulk cell population (Figure 3.7, a, b).  

Since p53 affects the cell cycle by transcriptional activation of p21, we knocked 

down p21 using shRNA to determine its role in cell cycle regulation of the CSCs. 

Knockdown was confirmed with two different shRNA constructs, i.e. sequence -2 and -3 

(Figure 3.7, c). Sequence -2 was used for the remaining experiments. As expected, p21 

silencing did not affect p53 protein accumulation and activation of its downstream 

signaling by MI-773, as evidenced by the accumulation of MDM2 (Figure 3.7, d). 

Additionally, Bmi-1 protein levels decreased with MI-773 treatment, suggesting that the 

regulation of Bmi-1 is independent of the p21 signaling axis. Although p21 knockdown 

had little effect on the cell cycle of the bulk cell population, it attenuated the MI-773-
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mediated G2/M to G1 shift in the CSCs (Figure 3.7, e, f). Collectively, these results 

demonstrate that MI-773-induced activation of p53 causes a shift towards G1 in the cell 

cycle of the CSCs that is dependent on downstream p21 signaling.  

 

Figure 3.7. Activation p53-p21 signaling shifts the cell cycle of mucoepidermoid carcinoma 
stem cells. The cell cycle of UM-HMC cells was analyzed with DyeCycle-Orange after being 
treated with vehicle or MI-773 for 24 hours. a Representative cell cycle plots for bulk (top) and 
cancer stem cells (bottom), ALDHhighCD44high, treated with vehicle or 1 µM MI-773 for 24 hours. 
b Quantification of bulk and cancer stem cells in each phase of the cell cycle from (a). c Western 
blot showing knockdown levels of p21 with different shRNA constructs in UM-HMC cell lines.  d 
Western blot depicting the impact of increasing concentrations of MI-773 for 48 hours on p53 
pathway activation in UM-HMC cells transduced with p21 shRNA or scrambled-vector control. e 
Representative cell cycle plots of bulk cells or cancer stem cells (ALDHhighCD44high) in UM-HMC 
cells transduced with p21 shRNA or vector control and treated with vehicle or MI-773 for 24 hours. 
f Graphs depicting the quantification of the cell cycle phases of UM-HMC cells in (e). All results 
are representative of at least two independent experiments. Means not sharing any lower-case 
letters are significantly different by two-way ANOVA followed by post-hoc Tukey (a=0.001). 
***P<0.001, ****P<0.0001, ns=not significant. 
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3.3.4 p53 signaling blocks self-renewal and induces differentiation of cancer stem 

cells  

To understand how p53 activation affects the stemness phenotype of MEC CSCs, protein 

expression of CSC and bulk cell fractions were analyzed after treatment with MI-773 for 

72 hours (Figure 3.8, a). As expected, we observed higher baseline Bmi-1 expression in 

the CSC fraction when compared to nonCSCs. Although a modest decrease in Bmi-1 was 

observed in the resistant UM-HMC-3B cell line, we observed a significant reduction in 

Bmi-1 protein levels in the sensitive UM-HMC-3A CSCs treated with MI-773. These 

results indicate that p53 signaling decreases CSC self-renewal and/or increases 

differentiation. To further explore this finding, pan-Cytokeratin was used as a marker of 

differentiation. We observed significantly higher expression of pan-Cytokeratin in CSCs 

treated with MI-773, when compared to controls (Figure 3.8, b, c). CSCs were co-stained 

for Bmi-1 and pan-Cytokeratin to identify a possible inverse relationship between these 

markers (Figure 3.8, d-f). As expected, activation of p53 with MI-773 caused a 

progressive loss in Bmi-1 expression and a gain in pan-Cytokeratin over time (Figure 3.8, 

e, f). Remarkably, cells expressing high levels of pan-Cytokeratin rarely co-expressed 

high levels of Bmi-1 (Figure 3.8, d). These results suggest that activation of p53 signaling 

with MI-773 induces differentiation of MEC CSCs. 
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Figure 3.8. p53 activation induces pan-Cytokeratin expression and decreases Bmi-1 in 
cancer stem cells. a-c UM-HMC cell lines were sorted for cancer stem cells (ALDHhighCD44high) 
and non-cancer stem cells (ALDHlowCD44low) after being treated with MI-773 for 72 hours. 
Immediately after, (a) the collected cells were used to make whole-cell lysates for western blot 
analysis or (b) cultured in a 4-well chamber slide for two days prior to fixing and staining for pan-
Cytokeratin and DAPI (scale bar=100µm). c Graph depicting quantification of pan-Cytokeratin 
expression in (b). d-f Cells were sorted for cancer stem cells and immediately plated in a 4-well 
chamber slide and cultured for 24 hours prior to treatment with 1 µM MI-773. d Slides were fixed 
at 48- and 72-hours post-treatment and subsequently stained for pan-Cytokeratin and Bmi-1 
(scale bar=100µm). e Graph depicting quantification of nuclear Bmi-1 expression in cancer stem 
cells or non-cancer stem cells. f Graph depicting quantification of pan-Cytokeratin expression in 
cells treated with 1 µM MI-773 or vehicle. Immunofluorescence was measured as the mean gray 
value normalized to DAPI. At least 5 arbitrary areas per chamber were selected for quantification. 
Two-tailed student’s t-test was used for two group comparisons, two-way ANOVA with post-hoc 
Tukey was used in (f) and one-way ANOVA was used for all other comparisons. *P<0.05, 
****P<0.0001. 

 

Salispheres can be used to measure the stemness and self-renewal of salivary 

gland cancer stem cells171,172. Since UM-HMC-1 cells have limited sphere forming 

capacity, only the UM-HMC-3A and UM-HMC-3B cells were used for these studies. 

Although the resistant UM-HMC-3B cells do not show a significant difference in the 

fraction of CSCs after treatment with inhibitors of the MDM2-p53 interaction in vitro, 

treatment significantly decreased primary salisphere formation in both MEC cell lines 

(Figure 3.9 a-c). Nevertheless, UM-HMC-3B spheres were less sensitive to MI-773 than 
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UM-HMC-3A spheres. To confirm that MI-773 affects primary sphere development and is 

not just toxic to cells grown in these conditions, spheres were allowed to form for 5 days 

prior to being treated with MI-773 (1µM) and were monitored for 5 to 14 days post-

treatment. No significant difference in salisphere formation was observed under these 

conditions (Figure 3.9 d, e).  

 

Figure 3.9. Activation of p53 by MDM2 inhibitors decreases the sphere forming ability of 
mucoepidermoid carcinoma cells. a Unsorted cells were plated in sphere conditions and 
treated the following day with increasing doses of MI-773. b Graph depicting the number of 
primary salispheres 7-9 days after MI-773 treatment. c Graph depicting the number of primary 
salispheres 7-9 days after APG-115 treatment. d Unsorted cells were plated in sphere conditions 
and spheres were treated 5 days after cells were plated. e Quantification of (d). All results are 
representative of at least two independent experiments. Means not sharing any lower-case letters 
are significantly different by one-way ANOVA followed by post-hoc Tukey (a=0.05). 

 

To confirm the data obtained with the MDM2 inhibitors, we performed the reverse 

experiment with p53-silenced MEC cells. We observed that p53-silenced cells formed 

more primary salispheres than cells transduced with scrambled vectors (Figure 3.10, a, 

b). To confirm these results, high-throughput sphere culture microfluidic devices were 
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used to monitor single-cell derived spheres with higher precision (Figure 3.10, c). Each 

microfluidic device contained 3,200 individual sphere culture chambers allowing for rapid 

assessment of sphere formation. Single cells were guided by hydrodynamic flow and 

captured at the trapping site in each sphere culture chamber. p53-silenced cells 

presented a higher proportion of cells capable of sphere formation as well as increased 

sphere size (Figure 3.10, d). Additionally, spheres formed from p53 shRNA cells had 

higher Bmi-1 protein levels than those formed from control cells, indicating a role for p53 

in regulating CSC self-renewal (Figure 3.10, e). Self-renewal was measured by evaluating 

secondary salisphere formation from primary spheres treated with MI-773. Treatment of 

primary salispheres caused a significant decrease in secondary sphere formation while 

p53 knock-down abrogated that effect (Figure 3.10, f). Meanwhile, there was no 

difference in primary sphere formation in response to MI-773 or Bmi-1 levels in p21 

shRNA-derived spheres (Figure 3.10, g-i). Collectively, these results demonstrate that 

p53 activation mediates blockade of CSC self-renewal and that this effect is independent 

of p21 signaling.  



 45 

 

Figure 3.10. p53 levels regulate primary salisphere formation and self-renewal independent 
of the p53-p21 signaling axis. a Microscopic view of primary salispheres formed by UM-HMC 
cells transduced with p53 shRNA or vector control cells. b Quantification of spheres represented 
in (a). c Microscopic view of single cell capture microfluidic device showing sphere growth over 
time (scale bar = 100 µm). d Graph depicting sphere diameters from single-cell salispheres 
generated in single-cell sphere microfluidic device. Dotted lines depict cut-off for minimum sphere 
size (100 µM). e Western blot analysis of primary salispheres generated by UM-HMC cells 
transduced with p53 shRNA or vector control cells. f Secondary salispheres generated from 
primary salispheres treated with MI-773 (1µM) or vehicle control. g Representative micrographs 
of primary salispheres generated with UM-HMC-3A cells transduced with p21 shRNA or 
scrambled vector control. h Western blot showing effects of p21 knockdown on Bmi-1 protein 
levels in primary salispheres. i Graph depicting the number of primary salispheres 7-9 days after 
MI-773 treatment. Means not sharing any lower-case letters are significantly different by two-
tailed student’s t-test (a=0.05) in two group comparisons or one-way ANOVA with post-hoc Tukey 
(a=0.05) in multiple group comparisons. 
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3.3.5 p53 regulates Bmi-1 protein stability 

Although Bmi-1 protein levels decrease with MI-773 treatment, there was no difference in 

mRNA levels when cells were treated with varying doses and timepoints of MI-773 (Figure 

3.11 a, b). Nevertheless, we observed increasing p21 mRNA levels confirming the 

transcriptional activity of p53 (Figure 3.11, a). This prompted us to look at Bmi-1 protein 

stability. It is known that Bmi-1 is phosphorylated upon cycloheximide treatment resulting 

in an increase in molecular weight.189,190 The lower band of Bmi-1 was used to calculate 

protein degradation rates, as shown.189 Under these conditions, Bmi-1 had a half-life of 

42 minutes, similar to the 20-40 minute half-life reported by others (Figure 3.11, c, 

d).189,190 When cells were treated with MI-773, Bmi-1 half-life decreased by almost 50% 

(T1/2=22 minutes).  Interestingly, even the phosphorylated Bmi-1 is degraded faster in the 

MI-773 treated cells when monitored for longer periods of time (Figure 3.11, e). As a 

control, we calculated the half-life of p53 (T1/2=3 hours) and, as expected, found that MI-

773 increases its half-life (T1/2=12 hours) (Figure 3.11, f). These results suggest 

accumulation of p53 regulates Bmi-1 protein stability, indicating a potential mechanism 

by which p53 regulates CSC self-renewal.  
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Figure 3.11. p53 activation decreases Bmi-1 protein stability. a Reverse transcription 
polymerase chain reaction (RT-PCR) for Bmi-1, p21 and GAPDH of cells treated for 24 hours with 
increasing concentrations of MI-773. b RT-PCR depicting time-course expression of Bmi-1 and 
GAPDH in cells treated with 10 µM MI-773. c Western blot of cells pre-treated for 3 hours with 10 
µM MI-773 followed by treatment with 50 µg/mL cycloheximide (CXH) for up to 2 hours. d Graph 
depicting protein half-life (T1/2) calculation based on unphosphorylated Bmi-1 (lower band). e 
Western blot of cells treated with 10 µM MI-773 for 3 hours prior to addition of 25 µg/mL 
cycloheximide for up to 24 hours.  f Graph depicting protein half-life (T1/2) calculation based on 
p53 from (e).  

 

3.3.6 Therapeutic induction of p53 prevents MEC tumor recurrence in mice 

A recurrence study was conducted to examine the therapeutic benefit of the small 

molecule inhibitor of the MDM2-p53 interaction in a clinically relevant neoadjuvant setting 

simulating treatment of patients with advanced MEC. We generated subcutaneous 

xenografts by transplanting MEC cells into the dorsal region of mice and waited until 

tumors reached an average of 800 mm3 (Figure 3.12 a). At that stage, tumors were 

randomly assigned to receive either MI-773 or vehicle control (Figure 3.12, b). Treatment 
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with MI-773 started 3 days prior to tumor resection and continued as weekly maintenance 

doses for 1 month (Figure 3.12, a). Tumor recurrence was monitored until palpable 

tumors were detected. At that stage, mice were euthanized and the presence of recurrent 

tumors was verified macroscopically. While 7 out of 9 tumors (78%) recurred in the vehicle 

control group, only 3 out of 8 (37.5%) recurred in the MI-773-treated group (Figure 3.12, 

c). All tumor-free mice were monitored for 250 days after which the experiment was 

terminated and the absence of recurrent tumor lesions was verified upon autopsy. This 

pre-clinical trial demonstrated that adjuvant therapy with MI-773 prevents tumor 

recurrence in mice. Notably, post-surgical tumor progression involving local recurrence is 

the most common cause of treatment failure in human patients with salivary gland 

mucoepidermoid carcinoma.191 

 

Figure 3.12. Therapeutic induction of p53 signaling prevents MEC tumor recurrence in 
mice. a Schematic showing experimental design of tumor recurrence study. UM-HMC-3B 
subcutaneous xenograft tumors were allowed to grow to an average volume of 800mm3 then 
randomly assigned to a treatment group. Mice were treated via oral gavage with either vehicle or 
one dose of 200 mg/kg of MI-773 3 days prior to tumor resection. Weekly maintenance treatments 
of MI-773 (200 mg/kg) were given for four weeks after tumor resection. Mice were monitored 
weekly for tumor recurrence by palpability. b Graph depicting tumor volumes in both experimental 
groups at start of treatment. c Kaplan-Meier curves depicting tumor-free survival. Failure was 
defined as palpable subcutaneous tumors. Kaplan-Meier graphs were analyzed using the Gehan-
Breslow-Wilcoxon test. 
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3.4 Discussion 

Much of the focus in understanding the pathobiology of mucoepidermoid carcinomas has 

been centered on the CRCT/MAML fusion. TP53 mutations have been described as rare 

events in these tumors, especially when compared to other head and neck cancers such 

as squamous cell carcinoma.148,184,185 Nevertheless, as more interest develops in 

understanding the genetic landscape of this rare malignancy and potential drivers of this 

disease, we find that p53 regulation might play an important role in MEC tumor biology. 

The first whole-exome sequencing study in MEC patients revealed that TP53 mutations 

are found in only about 30% of patients.46 Interestingly, TP53 mutations are present 

primarily in intermediate and high-grade disease and associated with higher number of 

overall mutations.154 Additionally, a group who studied serial tumor relapses from one 

MEC patient observed loss of expression of TP53 upon tumor evolution.172 Importantly 

they found that tumor recurrence in this patient correlated with a time-dependent increase 

in the CSC fraction and higher tumorigenic potential. These findings reveal that a loss in 

p53 signaling might contribute to MEC progression. Consistent with this, we showed here 

that MEC xenograft tumors with silenced p53 expression grew faster than tumors with 

functional levels of p53. Furthermore, this increased growth rate was not attributed to a 

proliferative advantage in the silenced cells. Importantly, these tumors also contained a 

higher proportion of CSCs.  

Some of the more commonly studied cell fate processes regulated by p53 are 

apoptosis and cell cycle progression. However, emergent evidence is providing support 

for a role for p53 in regulating self-renewal and differentiation. These cell fate processes 

are centered in a single mitotic event and a balance is needed in order to maintain the 



 50 

stem cell pool. For example, studies in mammary stem cells  and breast cancer have 

shown that p53 can regulate the asymmetric division of stem cells, where the absence of 

p53 can lead to an expansion of the stem cell pool through an increase in symmetric self-

renewal while overexpression leads to stem cell depletion.77,78 Our observations that 

MDM2 inhibitors cause a decrease in the cancer stem cell population while p53 

knockdown causes an increase, led us to postulate that p53 signaling also regulates this 

balance in MEC. While MEC CSCs were depleted upon activation of p53 via inhibition of 

its binding to MDM2, this decrease was not accounted for by apoptosis. Surprisingly, most 

CSCs were in a G2/M cell cycle state indicating these cells might have longer G2/M cell 

cycle phases or might be in a quiescent state in G2. Few studies have reported on G2-

quiescent stem cells and on their biological role.192,193 Stem cells in quiescence are 

considered to be in a “poised state” and serve as a reservoir that protects against stem 

cell depletion.194 Whether CSCs in MEC are in a similar G2-quiescent state needs further 

exploration. Importantly, inhibitors of the MDM2-p53 interaction shifted the cell cycle state 

of the CSCs towards G1. This G1 shift could be associated with an exit from G2/M-

quiescence. An exit from G2/M-quiescence coupled with a loss in self-renewal could 

account for the decreased CSC fraction that we observed with therapeutic inhibition of 

the MDM2-p53 interaction. Furthermore, this shift was mediated through the p53-p21 

signaling axis. As p21 has been implicated in differentiation of stem cells195, our data 

suggested that p53 activation might lead to decreased CSC fraction by promoting 

differentiation of the CSCs.    

Bmi-1 is an important regulator of stem cell self-renewal and is frequently used as 

a marker of stemness in different malignancies.196 We detected a progressive loss of Bmi-
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1 protein expression coupled with increased expression of pan-Cytokeratin (marker of 

epithelial differentiation) when MEC CSCs are treated with inhibitors of the MDM2-p53 

interaction. This suggested that p53 activation caused cells to lose their stem-like state 

while acquiring a more differentiated phenotype. We corroborated the loss of stemness 

in MEC CSCs through sphere assays and found that p53 levels are an important regulator 

of the sphere forming ability of MEC cells and their self-renewal. Importantly, while p53 

did not affect Bmi-1 mRNA levels, it decreased protein stability. It was previously reported 

that Bmi-1 and p53 can directly interact and that Bmi-1 can regulate p53 protein stability, 

but not the other way around.36 This is the first time p53 signaling has been found to 

regulate Bmi-1 protein degradation, although the mechanism by which this occurs still 

needs elucidation. Nevertheless, we propose here that p53 regulates CSC fate through 

parallel signaling mechanisms that result in induced expression of p53 targets (e.g. p21) 

and increased Bmi-1 degradation. 

Since CSCs are thought to be responsible for recurrence and metastasis, having 

abrogated p53 signaling can give an important advantage to cancer cells and can partly 

explain why cancers with high p53 mutations have higher recurrence and metastatic 

rates.197,198 Importantly, it also strengthens the rationale for using p53-activating therapies 

for the treatment of cancers that usually have functional p53 signaling, such as 

mucoepidermoid carcinomas. To date, small molecule inhibitors of MDM2-p53 such as 

MI-773 have passed phase I safety clinical trials for several solid malignancies.177 In these 

trials, although no objective response was observed, disease stabilization occurred in 

58% of patients. Additionally, preclinical studies have shown therapeutic benefit of MI-

773 treatment in salivary gland adenoid cystic carcinoma.53,174 These results have led to 
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the recent approval of a Phase I/II trial of APG-115 (small molecule inhibitor of MDM2-

p53) for patients with salivary gland tumors (NCT03781986). In support of the rationale 

for using this class of drugs in salivary gland MEC, we observed here that tumor 

recurrence was prevented in mice treated with MI-773 in an adjuvant setting. Tumors in 

mice were allowed to grow to a big size (800mm3) before surgical resection to ensure our 

study was reflective of patients with advanced disease. Furthermore, a low maintenance 

regimen was given to these mice with just one weekly oral treatment of MI-773. These 

mice were followed for ~9 months to identify any delays in tumor recurrence. Our findings 

have major translational implications for the treatment of this orphan disease, as the most 

common reason of escape from therapy leading to MEC tumor progression and death is 

the high incidence of local and regional recurrences.  

This work represents the first report on the role of p53 signaling in the pathobiology 

of salivary gland tumors. Our results give insight into the potential therapeutic benefits of 

small molecule inhibitors of MDM2-p53 for patients with salivary gland mucoepidermoid 

carcinomas. It also provides a strong rationale for the exploration of combination 

therapies that target both the cancer stem cells (e.g. small molecule inhibitor of MDM2-

p53) as well as bulk tumor cells (e.g. conventional chemotherapy, radiotherapy) to treat 

patients with unresectable or advanced salivary gland tumors. 

3.5 Methods 

3.5.1 Cell culture and reagents 

University of Michigan Human Mucoepidermoid Carcinoma cell lines (UM-HMC-1, UM-

HMC-3A, and UM-HMC-3B)22 were cultured in high glucose Dulbecco’s Modified Eagle’s 

Medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Atlanta 
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Biologicals), 1% L-Glutamine (Gibco), 1% Antibiotic-Antimycotic (Gibco,), 400 ng/mL 

hydrocortisone (StemCell Technologies), 20 ng/mL recombinant human epidermal 

growth factor (rhEGF; R&D Systems), and 5 µg/mL recombinant human insulin (Sigma-

Aldrich). Low passage primary human microvascular endothelial cells (HDMEC; Lonza) 

were cultured in endothelial growth medium-2 for microvascular cells (EGM-2 MV; 

Lonza). Small molecule inhibitors of MDM2-p53 interaction (i.e. MI-773 and APG-115) 

were gifted from Dr. Shaomeng Wang (University of Michigan).173,188 

3.5.2 Animals 

Female 236-CB17 SCID mice obtained from Charles Rivers were used to generate 

mucoepidermoid carcinoma xenografts. Mouse sex matched the original cell line donor.22 

All studies were performed according to the experimental protocols approved by the 

University of Michigan Institutional Animal Care and Use Committee (IACUC), and all 

procedures were conducted in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals. 

3.5.3 Lentiviral knockdown 

Lentiviral particles were produced in HEK293T cells using the calcium phosphate method 

by co-transfecting pMD2.G and psPAX2 packaging vectors with either shRNA-control 

(pGIPZ scrambled or pLKO.1 scramble), p53 shRNA constructs on a pGIPZ backbone 

(University of Michigan Vector Core; seq #1: TACACATGTAGTTGTAGTG, seq #2: 

TAACTGCAAGAACATTTCT, seq #3: TACACATGTAGTTGTAGTG), or p21 shRNA 

constructs on a pLKO backbone (Sigma, seq #1: 

GACAGATTTCTACCACTCCAACTCGAGTTGGAGTGGTAGAAATCTGTC, seq #2: 

CGCTCTACATCTTCTGCCTTACTCGAGTAAGGCAGAAGATGTAGAGCG, seq #3: 
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GACACCACTGGAGGGTGACTTCTCGAGAAGTCACCCTCCAGTGGTGTC). The UM-

HMC-1,-3A,-3B cells were infected with supernatant containing the lentiviral particles and 

with 4 μg/mL polybrene (Sigma-Aldrich) overnight. Infected cells were selected with 1 

μg/mL puromycin (InvivoGen) for at least one week. pGIPZ constructs were subsequently 

sorted via FACS for GFP positive cells. Immunoblotting was used to verify p53 and p21 

knockdown of the selected cells. 

3.5.4 Cytotoxicity assays 

Sulforhodamine B assays were used to measure the cytotoxicity of small molecule 

inhibitors of MDM2-p53 interaction in UM-HMC cells. Here, 800-1,000 cells/well were 

plated in 96-well plates and were exposed the following day to either vehicle, MI-773, or 

APG-115 for 24 to 72 hours. Cells were fixed in 10% trichloroacetic acid for 1 hour at 4ºC. 

After drying, plates were stained with a 0.4% Sulforhodamine B solution (Sigma Aldrich) 

at room temperature for 30 minutes. Unbound dye was washed away with 1% acetic acid. 

The absorbed dye was resolubilized in 10 mM unbuffered Tris base and the plates were 

read in a microplate reader at 565 nm (GENios, TECAN). Results were normalized to 

vehicle control and IC50 values were calculated using the nonlinear fit of variable slope 

function in GraphPad PRISM. All conditions were evaluated in triplicate and results are 

representative of at least two independent experiments.  

3.5.5 Salisphere assays 

UM-HMC cells were cultured in ultra-low attachment (ULA) plates or flasks (Corning) in 

DMEM/F12 (Gibco) supplemented with 1% N2 Supplement (Gibco), 1% Glutamax 

(Gibco), 1% antibiotic-antimycotic (Gibco), 20 ng/mL rhEGF (R&D Systems), 20 ng/mL 

recombinant human basic FGF (R&D Systems), 10 ng/mL recombinant human insulin 
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(Sigma-Aldrich), and 1 µM Dexamethasone (Sigma-Aldrich). 2-4,000 cells/well were 

plated in 6-well ultra-low attachment plates and treated the following day with either MI-

773 or APG-115, unless otherwise stated. Secondary salispheres were generated by 

dissociating primary spheres into single cell suspensions with Accutase (StemCell 

Technologies) and plating 4,000 cells/well in 6-well ultra-low attachment plates. 

Salispheres were defined as non-adherent spheres containing ≥30 cells. All conditions 

were evaluated in triplicate and results are representative of at least two independent 

experiments. 

3.5.6 Single-cell microfluidic spheres 

The microfluidic sphere culture chip was fabricated with a patterned PDMS 

(polydimethylsiloxane, Sylgard 184, Dow Corning) bonded to another piece of blank 

PDMS. Standard soft-lithography process was used to pattern PDMS piece. A silicon 

wafer patterned with SU8 photoresist (MicroChem) was used as mold for soft lithography. 

The mold was created by a 3-layer photolithography process with a 5 µm-thick-layer for 

cell capture site, a 40 µm-thick-layer for meander escape channel, and a 100 µm-thick-

layer for sphere chambers and flow channels, following the protocol described in the 

previous work.199 25 grams of PDMS reagent was poured on silicon mold.  After curing at 

100 °C for 1 day, the PDMS piece was peeled off. Then, an inlet and an outlet were 

created using a biopsy punch. Finally, the patterned PDMS pieces were activated by 

oxygen plasma treatment (80 Watts, 60 seconds) and bonded to another piece of blank 

PDMS. The microfluidic chips were sanitized using UV radiation and primed using a 5% 

(w/w) PEO-terminated triblock polymer (Pluronic® F108, BASF) 1 day before usage. 
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The sphere culture chambers were designed to be 150 μm × 150 μm × 150 μm to 

provide enough room for sphere growth. A 40 μm-high meander escape channel was 

designed at the end of main flow channels to release the residue flow and avoid multiple 

cell capture cases. Sphere culture media was exchanged every 24h. Microfluidic device 

images were taken right after cell loading, as well as on day 6 and day 12, to keep track 

of sphere growth. The cells were stained with CellTracker green (ThermoFisher, C2925) 

for automated sphere size analysis with a Matlab program. 

3.5.7 Flow cytometry 

All flow cytometry analysis was conducted in a BD LSRFortessa instrument. An iCyt 

Synergy SY3200 cell sorter was used for fluorescence-activated cell sorting (FACS) at 

the University of Michigan Flow Cytometry Core. Staining for ALDH enzymatic activity 

was carried out using the ALDEFLUOR™ Kit (StemCell Technologies) or the 

ALDERED™ ALDH Detection Assay (EMD Millipore). For analysis of the cancer stem cell 

fraction in vitro, 5x105 cells were incubated with 2.5 µL of activated Aldefluor or Aldered 

substrate in 250 µL of buffer at 37°C for 40 minutes. DEAB controls for all treatment 

conditions were included. After incubation, cells were washed with PBS and subsequently 

stained for CD44 using one of the following antibodies: CD44-PE, CD44-APC, CD44-

BV450 (R&D Systems), or CD44-APC-Cy7 (BioLegend). CD44 staining was done at 4°C 

for 15-20 minutes. Cells were washed with PBS and DAPI was added for live/dead 

discrimination. To look at the proportion of cancer stem cells undergoing apoptosis, cells 

stained for ALDH and CD44 were subsequently incubated with 10 µL of Annexin V-PE in 

100 µl of 1X binding buffer (BD Biosciences) for 15 minutes at room temperature. Staining 

was immediately quenched with 200 µL of 1X binding buffer and DAPI was added. To 
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analyze cell cycle of the ALDHhighCD44high cells, 1.5x106 cells/tube were co-incubated 

with 7.5 µL of activated Aldefluor substrate and 3 µL of Vibrant DyeCycle-Orange Stain 

(Invitrogen) in 1 mL of PBS (Gibco) for 35 minutes at 37°C. As previously described, 

DEAB was used as a negative control for Aldefluor. After incubation, cells were spun 

down at 800rpm for 5 min, the supernatant was removed, and cells were resuspended in 

2.5 µl anti-human CD44-APC-Cy7 in 300 µL PBS for 15 minutes at 4°C. DAPI was added 

right after incubation and cells were taken immediately for flow cytometry analysis. All 

conditions were evaluated in triplicate and results are representative of at least two 

independent experiments. 

3.5.8 Western blot 

Whole-cell lysates from UM-HMC cells were prepared using a 1% Nonidet P-40 (NP-40) 

lysis buffer. Lysates were loaded onto 9-15% SDS-PAGE gels for protein separation. 

Proteins were transferred to nitrocellulose membranes (GE Healthcare Life Sciences) and 

probed with the following primary antibodies: mouse anti-p53, mouse anti-MDM2, HRP-

conjugated anti beta-Actin (Santa Cruz Biotechnology), rabbit anti-p21, and rabbit anti-

Bmi-1 (Cell Signaling). Membranes were exposed to HRP-conjugated anti-mouse or anti-

rabbit secondary antibodies (Jackson Immuno Research Laboratories) and proteins were 

visualized by SuperSignal West Pico chemiluminescent substrate (Thermo Scientific).  

3.5.9 Bmi-1 protein stability 

Cells were pre-treated with DMSO vehicle control or 10 µM MI-773 for 3 hours before 

being treated with 25-50 µM Cycloheximide to stop protein synthesis. Whole cell lysates 

were generated at different timepoints using an NP-40 lysis buffer and subsequently 
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analyzed through western blot. Protein half-life was calculated using one-phase decay 

function in GraphPad PRISM. 

3.5.10 RT-PCR 

RNA was isolated from cells with Quick-RNA Miniprep (Zymogen). 1 µg of RNA was used 

to generate cDNA using the iScript cDNA Synthesis Kit (Bio-Rad) and PCR was 

performed with Platinum Taq DNA Polymerase (Invitrogen). The following primers were 

used to generate the PCR products: Bmi-1 (Sense 5’- CAGCGGTAACCACCAATCTT -

3’, Antisense: 5’- AAAGTCTTGCCTGCTTTCCA -3’), p21 (Sense: 5’- 

AGTCAGTTCCTTGTGGAGCC -3’, Antisense: 5’- GAAGGTAGAGCTTGGGCAGG -3’), 

and GAPDH (Sense: 5′- GACCCCTTCATTGACCTCAACT -3′, Antisense: 5′- 

CACCACCTTCTTGATGTCATC -3′). RT-PCR products were verified through gel 

electrophoresis.  

3.5.11 Immunohistochemistry 

Paraffin embedded tissue section slides were incubated with Trypsin (Sigma) at 37°C for 

antigen retrieval followed by 0.1% Triton-x100 (Sigma) at room temperature. Endogenous 

peroxidase activity was inhibited by incubating with 3% hydrogen peroxide (Fisher) and 

nonspecific background antibody binding was blocked using Background Sniper (Biocare 

Medical) at room temperature. Slides were incubated overnight at 4°C with mouse anti-

ALDH (BD Transduction). Following incubation, sections were washed with 1X 

Immunohistochemistry (IHC) Wash Buffer (Dako) and afterwards incubated with MACHI 

3 Probe (Biocare Medical). Sections were washed again with 1X IHC wash buffer followed 

by incubation with MACH 3 HRP (Biocare Medical) and washed again with IHC wash 

buffer. DAB peroxidase substrate (Biocare Medical, Concord, CA, USA) was used for 



 59 

chromogenic development at room temperature. Finally, sections were incubated with 

hematoxylin, dehydrated, and permanent mounting solution (Vectamount, Vector) was 

used to fix the slide coverslip on the stained tissue section.  

3.5.12 Immunocytochemistry 

Cells were plated in 4-well chamber slides and incubated overnight before any treatment. 

Cells were fixed in formaldehyde/glutaraldehyde. After fixation, chambers were removed 

from the slides and slides were incubated first with 0.1% Triton-X 100 (Sigma), followed 

by 3% hydrogen peroxide, then background sniper (Biocare Medical), and finally 

overnight at 4ºC with one of the following primary antibodies: mouse anti-pan-cytokeratin 

(Santa Cruz) and rabbit anti-Bmi-1 (Cell Signaling). The following day, slides were 

washed with 1X IHC wash buffer and incubated with fluorophore-conjugated secondary 

antibodies (Life Technologies) for 1 hour at room temperature. Slides were washed again 

with 1X IHC wash buffer and coverslip was placed with DAPI-containing mounting 

solution (Vectashield, Vector). Imaging was achieved using an inverted Leica SP5 

confocal microscope (Leica microsystems; Germany). To excite fluorescence in all 

channels, the 405 nm laser and the tunable white light laser were used. The detectors 

spectral range were set to: blue spectral range from 415 to 478 nm; green spectral range 

from 498 to 550 nm and red spectral range was from 571 to 727 nm bandpass. Channels 

were acquired sequentially between lines. Scanning speed was set to 50 Hz in 

bidirectional mode with line average set to 2.  All Images were recorded in 1,024 x 1,024 

format and pinhole size was set to 60 µm. Image analysis was conducted using Fiji200. 

The mean gray values of our channels of interest, reported as Mean Fluorescence 

Intensity, were measured using the built in “Measure” function in Fiji. For nuclear 
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quantification, the “Make Binary” function from Fiji was used in the Dapi channel and the 

resulting ROIs were used to quantify per cell nuclear expression of our channel of interest.  

3.5.13 Mucoepidermoid carcinoma xenografts (subcutaneous) 

Mucoepidermoid carcinoma subcutaneous xenograft tumors were generated, as we 

described.171 In brief, poly-L-lactic acid scaffolds were seeded with 600,000 UM-HMC-3A 

or UM-HMC-3B cells with or without 400,000 primary human HDMEC cells (Lonza) in a 

cell growth media and Matrigel (Corning) mix. The scaffolds were implanted 

subcutaneously in the dorsal region of CB17 SCID mice (Charles River). Tumor 

measurements were taken along the x and y axis using a caliper and volumes were 

calculated using the equation V=(height*width2)/2. For tumor growth studies, mice were 

monitored twice a week until tumor volumes reached 2 cm3, at which point all groups were 

euthanized. Outlier criteria for mouse tumors was defined as tumor volumes greater than 

two standard deviations away from the group mean. 

3.5.14 Mucoepidermoid carcinoma xenografts (orthotopic) 

Orthotopic xenograft tumors were generated by injecting 500,000 UM-HMC-3A or UM-

HMC-3B cells into the submandibular glands of CB17 SCID mice. Mice were euthanized 

80 days post-injection or upon significant adverse events such as weight loss. For flow 

cytometry analysis of the cancer stem cell population, tumor tissues were digested using 

collagenase (StemCell Technologies) and single cell suspensions were stained for ALDH 

and CD44 as described above.  

3.5.15 Statistical analysis 

All statistical analysis was done using GraphPad PRISM. Two-tailed student’s t-test was 

conducted on two group comparisons and analysis of variance (ANOVA) with multiple-
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comparisons post-hoc Tukey or Bonferroni was conducted on comparisons between 

more than two groups. All in vitro results were done with a minimum of three biological 

replicates and represent at least two independent experiments. Kaplan-Meier graphs 

were analyzed using the Gehan-Breslow-Wilcoxon test. Significance level was set at 

P<0.05. 
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CHAPTER 4. Conclusions 

 

4.1 Summary of Research Findings 

Despite being the most common type of salivary gland cancer in both adults and children, 

mucoepidermoid carcinoma (MEC) is a poorly understood malignancy. There have been 

no significant advances for its treatment in over two decades. Therapies have been 

limited to radical head and neck dissections and radiation that cause severe patient 

morbidities. Little is known about MEC etiology and pathobiology, but it is thought to arise 

from stem cells in the excretory duct of the salivary gland.45 New genomic studies have 

found TP53 genomic alterations (GAs) to be the second most common GA in MEC 

tumors.46,154 These GAs are found only in intermediate and high-grade disease. 

Nevertheless, p53 is wild-type in 60-70% of MEC patients making p53 activating 

therapeutics promising for the treatment of this disease.   

CSCs are chemoresistant and are responsible for tumor recurrence and 

metastasis in head and neck cancers. Cancer stem cells (CSCs) in MEC are marked by 

high ALDH enzymatic activity and CD44 cell-surface expression (ALDHhighCD44high). 

These cells are highly tumorigenic, have the ability to self-renew, and can recapitulate the 

cell heterogeneity in a tumor.171 This thesis explored the functional roles of p53 in 

regulating CSC maintenance in MEC. 

Our work stemmed from the observation that MI-773, an inhibitor of the MDM2-

p53 interaction, decreases the CSC population in MEC cell lines and xenograft tumors.
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Importantly, we found that this decrease occurred after 48 hours of treatment. Given 

apoptosis commonly occurs 12 - 24 hours after exposure to death inducing signals, we 

believed that the delayed decrease in the CSC population was not due to p53-dependent 

apoptosis. Furthermore, we found a decrease in Bmi-1 protein levels before a decrease 

in the CSC population was evident, indicating that inhibition of the MDM2-p53 interaction 

could be affecting stem cell self-renewal, thus leading to an exhaustion of the stem cell 

pool.     

Using genetic silencing of p53, we confirmed that the accumulation of p53 protein 

and activation of subsequent downstream signaling was responsible for the decrease in 

the CSC population. Furthermore, we found that both orthotopic and subcutaneous 

xenograft tumors generated with p53 knockdown cells grew faster and had a higher 

fraction of CSCs than those generated with control cells. These results indicated that 

regulation of p53 protein levels is important in CSC maintenance.  

The tumor suppressor p53 is a master regulator of cell survival and cell fate 

decisions. To understand the functional role of p53 in CSC biology, we first explored the 

effects of p53 activation on apoptosis and cell cycle. Importantly, we found no induction 

of apoptosis that could account for the decrease in CSCs seen by p53 activation. 

Meanwhile, we found MEC CSCs have a different cell cycle profile than bulk cancer cells 

and that this profile changes when p53 is activated.  We found that while most bulk cells 

are in a G1 cell cycle state at a given time, the CSCs are predominantly in a G2/M state. 

Whether this G2/M state indicates that the CSCs have a longer G2/M cell cycle phase or 

whether they are quiescent in G2 needs further evaluation. Once p53 signaling is 

activated, there is a shift in the cell cycle profile of the CSCs towards G1, resembling the 
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cell cycle state of the bulk cell population. This suggests that the CSCs are differentiating 

as they cycle, thus losing their characteristic cell cycle profile and resembling the 

nonCSCs. In agreement with this, we found that while p53 activation decreases Bmi-1 

protein levels in the CSCs, it increases the expression of pan-cytokeratin. Pan-cytokeratin 

is used as a marker of differentiation, as it is differentially expressed between the CSC 

and nonCSC populations. Moreover, we found that this cell-cycle shift was mediated 

through the p53-p21 signaling axis. However, we found that this signaling axis does not 

regulate Bmi-1 protein levels. This indicates that p53 may be regulating the CSC 

population through parallel signaling pathways of self-renewal and differentiation (i.e. 

p53-Bmi-1 and p53-p21).  

We found that activation of p53 leads to decreased sphere forming ability and 

increased self-renewal of MEC cells. Additionally, we found that Bmi-1 protein levels are 

upregulated when p53 is knocked down. On the other hand, p53 upregulation leads to 

decreased Bmi-1 protein stability. This is the first time p53 signaling has been found to 

regulate Bmi-1 protein degradation, however the mechanism by which this occurs still 

needs elucidation.  

Finally, we assessed the therapeutic potential of activating p53 using MDM2 

inhibitors and found that mice treated with MI-773 had fewer tumor recurrences then 

vehicle controls. These findings provide a strong rationale for the use of MDM2 inhibitors 

for the treatment of MEC. Importantly, it leads us to further explore the therapeutic 

potential of MDM2 inhibitors for patients with advanced disease.  
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4.2 Future Works and Conclusions 

Several unanswered questions remain when identifying the molecular mechanism by 

which p53 regulates cell fate decisions in MEC CSCs. Understanding the cell cycles of 

the CSCs vs nonCSCs remains an area of further exploration. We propose that by using 

the FUCCI cell cycle reporter system, we can track cell divisions in the CSCs using live-

cell imaging. This will allow us to measure the cell cycle phases of the CSCs and 

distinguish between proliferating and quiescent cells. One limitation of studying MEC 

CSCs is having to rely on ALDH enzymatic assays for their detection. These assays are 

incompatible with live-cell imaging systems, making it impossible to identify CSCs and 

their progeny. For this reason, a reliable ALDH reporter system will be essential for 

identifying CSCs and being able to track the polarity of cell division events. 

Although we looked at the potential of MDM2 inhibitors to prevent tumor recurrence 

in pre-clinical studies of MEC, we did not look at whether these inhibitors have other anti-

tumor effects. Preliminary studies show that MDM2 inhibitors are capable of causing 

tumor regression as a first-line therapy when given in frequent dosing in mice (Figure 4.1, 

a, c). However, we find that tumors continue to grow once treatment is stopped (Figure 

4.1, c). We know that there is plasticity in the CSC-state and that environmental cues can 

cause cells to acquire or loose these CSC-characteristics. Our results indicate that 

monotherapy is not sufficient to cause a durable response in MEC tumors.  



 66 

 

Figure 4.1. Tumor regression with MI-773 treatment. a UM-HMC-3A subcutaneous xenograft 
tumors were allowed to grow to ~300mm3 before starting daily oral gavage treatments of vehicle 
or MI-773 (100mg/kg) for two weeks. Tumor growth was monitored until tumor endpoint of 2mm3 
or adverse health events. b Average tumor volumes throughout duration of treatment showed 
tumor regression with MI-773 treatment. Tumor volumes were fitted with a simple linear 
regression model including 95% confidence intervals. c Tumor volumes were monitored after 
cessation of treatment and fitted with an exponential growth rate curve. 

In order to effectively eradicate all cancer cells, tumors must be treated with a dual-

approach by using agents that target bulk cancer cells together with CSC-specific agents 

(Figure 4.2). This thesis discussed the potential of combining p53-activating therapies 

with standard chemotherapies for head and neck cancers. Previous studies conducted in 

our lab showed that short-term cisplatin treatment (< 60 days) does not cause significant 

tumor regression of MEC xenografts (Figure 4.2, b). We conducted a preliminary study 

comparing MI-773 monotherapy to combination therapy with cisplatin and found a 

significantly better response in combination treatment (Figure 4.2, c-f). A more complete 

study must be made to compare the effectiveness of mono- vs. combination therapies for 

the treatment of advanced MEC. Nevertheless, these results seem promising for patients 

with unresectable and advanced disease.  
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 Figure 4.2. Combination therapy. a Cancer stem cells (CSCs) are resistant to conventional 
chemotherapy and radiation therapy leading to tumor recurrence. CSC-therapy alone will 
eliminate the CSCs, but because of the plasticity of the CSC-state the remaining bulk cells can 
become new CSCs. To completely eradicate a tumor, combination therapy targeting both the 
CSCs and the bulk tumor cells must be used. b Graph depicting tumor volume over time of tumors 
treated weekly with IgG Control (5mg/kg), Tocilizumab (5mg/kg), Cisplatin (15mg/kg), 
Tocilizumab + cisplatin. c Mice with orthotopic tumors were randomly distributed into groups and 
treated once weekly with vehicle, MI-773 (200mg/kg) alone, or combination MI-773 (200mg/kg) + 
cisplatin (5mg/kg). d Tumor volumes before treatment. e Tumor volumes at study endpoint (day 
21). (Panel (b) was modified from Mochizuki et al.)201 

In conclusion, this thesis identified p53 as an important regulator of cell fate 

decisions in MEC CSCs (Figure 4.3). Furthermore, it confirms that loss of p53 signaling 

contributes to disease progression in MEC tumors. Importantly, it demonstrates the 

clinical utility of using p53-activating therapies for the treatment of MEC. Finally, it 

provides a rationale for the use of combination therapy to target CSCs and bulk tumor 

cells as a form to effectively eradicate cancer cells and reduce tumor recurrence rates in 

patient with advanced MEC.  
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Figure 4.3. Thesis Summary. 
p53 activation can be achieved 
by using small molecule 
inhibitors that block the 
interaction between p53 and its 
negative regulator MDM2. This 
leads to accumulation of p53 
protein and activation of 
downstream signaling such as 
transcriptional activation of p21 
and regulation of BMI-1 protein 
stability. Downregulation of p53 
results in increased cancer 
stem cell self-renewal leading 
to an expansion of the cancer 
stem cell population and 

increased tumor growth. Meanwhile, p53 activation results in decreased cancer stem cell self-
renewal and increased differentiation resulting in depletion of the cancer stem pool. 
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