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Abstract

This dissertation lies at the intersection of international trade and macroeconomics,

and it related to topics on economic growth, innovation and productivity, monetary

policy, and economic geography.

Chapter 1 evaluates and quantifies the importance of production proximity for

innovation efficiency. First, using a novel and comprehensive establishment-level

dataset from the U.S. Census Bureau, I document that innovation and production

activities are coagglomerated in the majority of manufacturing industries. The geo-

graphic concentration of innovation and production provides suggestive evidence on

the importance of the two activities being colocated. Second, I develop an empirical

model that allows for spillovers from local production to innovation and apply it

to measure the private returns to R&D investment for a panel of U.S. R&D firms

during 2002-2012. My estimates show that the proximity to production raises the

returns to R&D, suggesting there are positive spillovers from the local manufacturing

to innovation. Third, I evaluate the macroeconomic implications of my empirical

findings in a multi-region production and trade model featuring the local spillovers

from production to innovation. I find that the relocation of production workers due

to the China trade shock leads to a moderate reduction in both process and product

innovation. States with a larger decline in manufacturing employment experience a

more substantial loss in innovation efficiency.

Chapter 2 studies differential responses of prices faced by different consumers

following macroeconomic shocks. Monetary shocks have distributional consequences if

they affect relative prices across goods consumed by different households. We docu-

ment that the prices of the goods consumed by high-income households are stickier

and less volatile than those of the goods consumed by middle-income households.

Following a monetary policy shock, the estimated impulse responses of high-income

households’ consumer price indices are about one-third smaller than those of the

middle-income households. We evaluate the implications of these findings in a quanti-

tative multi-sector New-Keynesian model featuring heterogeneous households. The

distributional consequences of monetary policy shocks are large and similar to those

xii



in the econometric model.

Chapter 3 estimates the impact of foreign sectoral demand and supply shocks on

real income. Our empirical strategy is based on a first-order approximation to a wide

class of small open economy models that feature sector-level gravity in trade flows.

The framework allows us to measure foreign shocks and characterize their impact on

income in terms of reduced-form elasticities. We use machine learning techniques to

group 4-digit manufacturing sectors into a smaller number of clusters and show that

the cluster-level elasticities of income with respect to foreign shocks can be estimated

using high-dimensional statistical techniques. We find clear evidence of heterogeneity

in the income elasticities of different foreign shocks. Foreign demand shocks in complex

intermediate and capital goods have large impacts on real income, and both supply

and demand shocks in capital goods have particularly large impacts in poor countries.

Counterfactual exercises show that both comparative advantage and geography play a

quantitatively large role in how foreign shocks affect real income.
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Chapter 1

The Coagglomeration of Innovation and
Production

1.1 Introduction

What factors can enhance innovation is a question of enormous interest, as creation

of new technology is the key driver of long-run economic growth. There is a growing

recognition that the transmission of knowledge plays an essential role in the develop-

ment of new ideas (Cohen and Levinthal, 1989; Aghion and Jaravel, 2015). Going

back to Marshall (1920), economists have argued that the transmission of knowledge is

facilitated by geographic proximity. Geographic proximity not only improves the infor-

mation flows across innovation activities, but also fosters the communications between

the production workers and the researchers. While studies have focused on knowledge

spillovers across innovation activities (Jaffe et al., 1993; Caragliu and Nijkamp, 2015),

little attention has been paid to the potential spillovers from production to innovation.

Understanding the role of production in fostering innovation is particularly relevant as

the employment in US manufacturing has shrunk by nearly 30 percent since the year

2000. In this paper, I evaluate and quantify the importance of production proximity

for innovation efficiency.

First, I document the geographic concentration of innovation and production activ-

ities for US manufacturing industries by using a novel and comprehensive plant-level

data from the Census Bureau. To identify the innovation and production activities

at the micro-level, I link the Longitudinal Business Database (LBD) with the Busi-

ness R&D and Innovation Survey (BRDIS). It enables me to measure the spatial

distribution of these activities.

I quantify the concentration pattern of innovation and production activities from

two aspects. I begin by using the Ellison and Glaeser (1997, hereafter EG) metric

of agglomeration to measure the location pattern of innovation and production ac-

tivities, respectively. Then I use the EG metric of coagglomeration to measure how

1



colocated the innovation and production activities are within an industry. I find that

(i) innovation is more agglomerated than production in the majority of industries; and

ii) innovation and production activities are coagglomerated both in the absolute sense

and relative to the coagglomeration of industrial production. The spatial distribution

of innovation and production suggests that gains from geographic concentration are

more significant for innovation than production (Capello and Lenzi, 2014; Buzard et

al., 2015). More importantly, it highlights the importance of locating innovation and

production facilities close to each other.

Second, motivated by the stylized facts, I develop and estimate an empirical model

of production and innovation within a manufacturing firm to quantify the private

returns to R&D, measured in terms of productivity gains generated by a marginal

increase in R&D. The primary goal is to assess if the returns to R&D are higher

when innovation plants are in regions with more production workers from their own

industry. Building on the recent work by Aw et al. (2011), Doraszelski and Jau-

mandreu (2013) and Bøler et al. (2015), the model assumes that a plant’s revenue

is subject to the plant-specific performance which evolves according to a Markov

process. The increment in plant performance depends on the R&D investment of the

plant itself, the interaction between its R&D investment and the local manufacturing

employment, as well as the transfer of technology from the other R&D plants within

the same firm. A unique feature of my model is to consider spillovers from the local

manufacturing to innovation explicitly. The inclusion of the spillovers allows for the

possibility of learning from the production process. Local production workers are a

source of knowledge that can enhance plants’ R&D efficiency, which, in turn, has an

impact on plant performance.

I construct a unique plant-level panel data on R&D investment and domestic

production for US R&D firms in the manufacturing sector from 2002-2012 for my

estimation. These data allow me to observe the input and output for each production

plant, and the R&D expenditures for each innovation plant.

My empirical results show that innovating plants obtain significantly higher returns

to R&D if they are located in counties with more of their own industry production

workers. It suggests that there are positive spillovers from the local production to

innovation. All else equal, doubling the local own industry manufacturing employment

increases the impact of a plant’s own investment on its productivity by 21.4%. My

analysis is informative for understanding the role of local manufacturing in enhancing

the efficiency of innovation plants. It supports the view put forth in Naghavi and

Ottaviano (2009) that feedback from manufacturing plants is important for research

2



labs.

Third, I evaluate the macroeconomic implications of my empirical findings by

extending the multi-region production and trade model developed by Arkolakis et al.

(2018) with two key modifications: (i) allowing firms to increase productivity through

R&D; and (ii) incorporating the spillovers from local manufacturing to innovation.

Guided by my empirical findings, my model assumes that regions’ capability in foster-

ing innovation increases with their employment of production workers. Firms born in

regions that are more capable of fostering innovation enjoy a higher return to R&D

and spend more on innovation. New technologies created through R&D can be used

in multi-region production (MP). Firms face a tradeoff between market proximity

and production capability when choosing where to locate their production. Given the

difference in regions’ capability in innovation and production, the availability of MP

leads some regions to specialize in production and others in innovation.

I take the model to the data in year 2012, and calibrate it to 48 states in the US

and the rest of the world (ROW). My quantitative analysis uses the China shock to

evaluate the effects of production reallocation on the innovation efficiency. I model the

rise of China as the productivity shocks to the ROW, and use the predicted changes in

the US imports from China during 1997-2012 to quantify the size of these productivity

shocks. I find that the relocation of production workers due to the China trade shock

leads to a moderate reduction in both process and product innovation. States with

a larger decline in manufacturing employment experience a more substantial loss in

innovation efficiency.

My analysis brings together three strands of the literature. First, it contributes

to the literature on the agglomeration and coagglomeration of economic activities.

Ellison and Glaeser (1997) and Duranton and Overman (2008) find that industrial

production is geographically concentrated. The agglomeration of industrial production

can be explained by the Marshall forces of labor pooling, input sharing and knowledge

spillovers (Ellison et al., 2010; Faggio et al., 2017). Much less is known about the

coagglomeration of innovation and production activities due to limitation in data

availability (Audretsch and Feldman, 1996; Carlino and Kerr, 2015). I contribute

to this line of research by using a novel micro-level dataset to uncover the spatial

distribution of innovation and production activities.

Second, my analysis is closely related to the work on R&D investment and plant

productivity. Building on the knowledge capital model by Griliches et al. (1979), as

well as more recent work by Aw et al. (2011), Doraszelski and Jaumandreu (2013), and

Bøler et al. (2015), I evaluate the impact of R&D investment on plant productivity.

3



The focus on multi-unit firms also relates my analysis to Bilir and Morales (2016),

which allows for the intra-firm transfer of technology. My approach is novel in its

explicit consideration of the local employment impact on innovation efficiency. The

estimates support the theories proposed by Duranton and Puga (2001) and Naghavi

and Ottaviano (2009) that production plays an important role in fostering innovation.

Third, my paper also contributes to the studies that seek to understand the conse-

quences of trade shocks for innovation. The empirical evidence about the impact of

trade shocks on innovation is mixed. While Bloom et al. (2016) finds that European

firms facing higher levels of Chinese import competition create more patents, raise

their IT intensity and increase their productivity, Dorn et al. (2016) shows that the

foreign import competition reduces US patent production. I propose a new channel

to evaluate the impact of trade shocks on innovation. Trade shocks affect local in-

novation through production reallocation. Innovation efficiency is enhanced by local

manufacturing. The increased exposure to import competition leads to the decline

of manufacturing, and thus reduces the local innovation efficiency. To quantify the

impact of trade shocks on innovation through the new channel, I extend Arkolakis et

al. (2018) by incorporating the local spillovers from innovation and production.

The rest of this paper is organized as follows. Section 1.2 documents stylized facts

about the geographic concentration of innovation and production activities. Section

1.3 develops and estimates the empirical model to assess the spillovers from the local

manufacturing to innovation. Section 1.4 extends the Arkolakis et al. (2018) model

to evaluate the macroeconomic implications of my empirical findings. Section 1.5

concludes.

1.2 The Location Pattern of Innovation and Pro-

duction

Economic activities are geographically concentrated to utilize the advantages of prox-

imity.1 Activities with more substantial gains from proximity tend to be more closely

located (Ellison and Glaeser, 1997; Ellison et al., 2010). Thus, the concentration

patterns of economic activities provide suggestive evidence on the importance of

geographic proximity to these activities.

In this section, I use a novel plant-level dataset of innovation and production to

1According to Marshall (1920), economic activities are geographically concentrated to reduce
the costs of obtaining inputs and supplying outputs, to share a broader labor market, and to enjoy
intellectual or technology spillovers.
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establish two important stylized facts of their agglomeration and coagglomeration

patterns.

1.2.1 EG Metrics and Data

Measuring the spatial distribution of innovation and production activities has long

been recognized as extremely difficult due to the lack of micro-level data (Audretsch

and Feldman, 1996; Carlino and Kerr, 2015). In this section, I exploit detailed and

comprehensive establishment-level data from two Census Bureau surveys —the Lon-

gitudinal Business Database (LBD) and the Business R&D and Innovation Survey

(BRDIS)—to document the geographic concentration of innovation and production

activities for manufacturing industries. The LBD covers the universe of establishments

in the US and contains annual data on their employment, industry and geographic

location. The BRDIS is a confidential firm-level survey conducted annually by the US

Census Bureau in partnership with the National Science Foundation (NSF). It collects

detailed information on firms’ R&D activities including R&D-related employment,

R&D expenditure, and the geographic location of domestic and foreign R&D perfor-

mance. Linking the LBD with the BRDIS allows me to identify the innovation and

production activities at the establishment level. Thus, it enables me to document the

geographic concentration of innovation and production activities for manufacturing

industries.

I measure the industry-level geographic concentration of innovation and production

activities by using Ellison and Glaeser (1997) metrics.2 The EG metrics are derived

from a sequential profit-maximizing plant location choice model. It compares the

degree of spatial concentration of economic activities in an industry with what would

arise if these activities were randomly distributed across locations. I will focus on the

four-digit manufacturing industries of the 2002 North American Industry Classification

System (NAICS) and measure the concentration of these activities at the county level

for the sample period 2008-2012.

I quantify the concentration pattern of innovation and production activities in two

ways. First, I use the EG metric of agglomeration to measure the location pattern of

innovation and production activities, respectively. The EG agglomeration measure for

2Another widely used coagglomeration metric is the continuous measure developed by Duranton
and Overman (2005).

5



economic activity A in industry k is

γAk ≡
∑

l

(
sAlk − xl

)2 − (1−
∑

l x
2
l )H

A
k

(1−
∑

l x
2
l ) (1−HA

k )
(1.1)

where A ∈ {P, I} denotes the type of economics activities. A = P when measuring

the agglomeration pattern for production activities and A = I for innovation ones. sAlk
is the production (innovation) employment share in industry k at county l and xl is

county l’s share of total population.3 HA
k is the Herfindahl index of the industry k’s

production (innovation) establishment size distribution.4

The EG metric of agglomeration measures the tendency for production (innovation)

activities to be closely located. γAk = 0 is a no-agglomeration benchmark such that

production (innovation) activities are randomly located given the profitability of

each county l. γAk = 1 indicates that production (innovation) activities are perfectly

agglomerated with all the production (innovation) employment in a single county.

Second, I use the EG metric of coagglomeration to quantify how collocated the

innovation and production activities are within an industry.5 The EG coagglomeration

measure of innovation and production for industry k takes the form:

γck ≡
∑

l

(
sPlk − xl

) (
sIlk − xl

)
1−

∑
l x

2
l

(1.2)

where sPlk is the production employment share in industry k at county l, sIlk is the

innovation employment share in industry k, and xl is the population share of county l.

The EG coagglomeration measure captures the tendency for innovation activities

to locate near production ones. It is closely related to the covariance of the county’s

employment shares in innovation and production. Negative values of the coagglom-

eration measure arise when innovation and production activities are agglomerated

in different areas. The coagglomeration measure is zero when the production and

production activities are randomly located.

3In Ellison and Glaeser (1997),xl = π̄l∑
l π̄

, where πl is a random variable reflecting the profitability

of locating in county l. In practice, xl could be measured as the county l’s share of overall manufac-
turing employment or county l’s share of the total population. As long as, a county with a higher
level of xl will have a higher level of profits.

4The subtraction of HA
k is an adjustment that accounts for the fact that

∑
l

(
sAlk − xl

)2
measure is

expected to be larger in industries consisting of fewer larger plants if locations were chosen completely
at random.

5The EG coagglomeration metric takes a simpler form when applied to measure the concentration
of two activities. See appendix for the relationships between EG coagglomeration measure for two
economic activities and for a group of activities.
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1.2.2 Two Facts on the Spatial Distribution of Innovation
and Production

Fact 1: Innovation activities are more agglomerated than production ones in the

majority of manufacturing industries.

Figure 1.1 plots the agglomeration of production in each manufacturing industry

against that of its innovation. Each circle represents a four-digit NAICS industry, and

the size of the circle reflects the size of the industry. The x-axis measures the agglom-

eration pattern of innovation activities, and the y-axis measures that of production

ones. The solid line is the 45-degree line. Most of the circles lie under the 45-degree

line, implying that innovation activities are geographically more concentrated than

production ones in the majority of manufacturing industries. This pattern suggests

that the gains from concentration are more significant for innovation than production

activities.

Figure 1.1 Agglomeration Indices of Innovation and Production
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Notes: The figure plots the agglomeration indices of production in each manufacturing industry against agglomeration
indices of innovation. Each circle represents a four-digit NAICS manufacturing industry, and the size of the circle
reflects the size of the industry. The solid line is the 45-degree line.

Fact 2: Innovation and production activities are coagglomerated in the majority of

manufacturing industries.

Figure 1.2 plots the density of the coagglomeration measures. The dash line plots

the distribution of the coagglomeration measures for innovation and production. The

majority of coagglomeration measures is greater than 0, implying that innovation
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Figure 1.2 Kernel Density Estimates of the Coagglomeration Indices

Notes: The figure plots the Kernel density estimates of the coagglomration indices. The dash line plots the distri-
bution of the coagglomeration measure for innovation and production. The solid line reports the distribution of the
pairwise cross-industry coagglomeration measures for production.

tends to locate closely with production in most manufacturing industries.

To evaluate the strength of the coagglomeration between innovation and production

within each industry, I compare it with the coagglomeration measures of industrial

production. Production activities are known to be closely colocated across industries

(Ellison et al., 2010; Duranton and Overman, 2008; Faggio et al., 2017)6, and therefore,

the coagglomeration of production serves as a good benchmark. For each industry, I

compute the pairwise coagglomeration measures for its production with other man-

ufacturing industries’ production. 7 The solid line reports the distribution of the

pairwise cross-industry coagglomeration measures for production, which is centered

around 0. While there is overlap between the two distributions, the distribution for

innovation and production coagglomeration measures lie clearly to the right of that for

the industrial production pairs. It implies that innovation and production are more

coagglomerated than the industrial production.

6Ellison et al. (2010) finds that the coagglomeration of the industry’s production can be explained
by the Marshallian forces of input sharing, labor pooling, and knowledge spillovers.

7Table A.1 in the Data Appendix summarizes the mean, 25th percentile, median, 75th percentile,
and max coagglomeration indices of the cross-industry production for each manufacturing industry.
The mean and median coagglomeration of cross-industry production are centered at zero and skewed
towards positive values.
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1.3 The Returns to R&D When Innovation Collo-

cated with Production

The coagglomeration of innovation and production provides suggestive evidence on

the importance of the two activities being closely located. This section provides

econometric evidence on the importance of proximity to production on innovation

efficiency.

1.3.1 Empirical Model

I develop and estimate an empirical model of production and innovation within the

manufacturing firm to quantify the returns to R&D, primarily to assess if the returns

are higher when innovation plants are located in places with more own industry

production workers. The empirical model considers a manufacturing firm i with a set

of active plants j ∈ Ji,t.8 In each period, it determines the optimal levels of variable

inputs, capital investment, R&D expenditures, and output prices for each of its plants

to maximize the firm-level profits. As my focus is on exploring the spillovers from

the local production to innovation, I restrict attention here to the R&D investment

decisions and process of plant performance evolution and abstract from the innovation

plants’ decision to enter or exit. In the subsections below, I will first model the revenue

functions for these production plants within the firm, then model the evolution of the

plants’ performance, and finally define the firms’ maximization problem.

Revenue Function

Assume plant j locates at l and operates in industry k. Following Aw et al. (2011)

and Bøler et al. (2015), I model its short-run marginal cost function at period t as 9

ln cjt = β0 + βk ln kjt + βw lnwkt − ψjt, (1.3)

where kjt is the capital stock of plant j at period t, wkt is the wage common to all

plants in industry k, and ψjt is the plant-specific productivity. The marginal costs of

8Plants within a manufacturing firm can be one of the following functional forms: innovation
plants, production ones, and the mixed ones that both innovate and produce. For simplicity, in this
paper, innovation plants refer to these that conduct R&D. It can either be a plant only conducts
R&D or a mixed one. The same applies to production plants.

9The marginal cost function here only considers the marginal cost of production. The R&D
investment decisions and the cost of innovation will be modeled in the Section 1.3.1.
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production are lower for plants with higher productivities. Labor is a variable input,

whereas capital is determined by the investment and capital stock in the previous

period.

The product market is characterized by monopolistic competition, and the demand

faced by plant j in industry k is

qjt = Qkt (pjt/Pkt)
−σ exp [ζjt (σ − 1)] , (1.4)

where σ > 1 is the constant elasticity of substitution, pjt is the output price of

plant j, and ζjt is a plant-specific demand shifter. The variable Qkt and Pkt are the

industry-level demand and price index.

Given the cost and demand function described above, firm i sets the optimal price

pjt to maximize the plant j’s profits. The log revenue of plant j depends on the

aggregate market conditions, the capital stock, and the plant-specific performance,

lnRevjt = γ0 + ln (QktP
σ
kt) + (1− σ) βw lnwkt + (1− σ) (βk ln kjt − zjt) + ujt, (1.5)

where γ0 ≡ (1 − σ)ln( σ
σ−1

) + (1 − σ)β0, and ujt is the measurement error. Denote

zjt = ψjt+ζjt as the plant performance. It is an endogenous state variable that captures

two sources of heterogeneity: plant-specific productivity ψjt and plant-specific demand

shock ζjt. R&D investment can boost plant performance by raising its productivity or

product quality. Plants with higher performance zjt obtain a higher revenue.

The Impact of Innovation on Plant Performance

The performance of plant j evolves as a Markov process that depends on its own

investment in R&D, the transfer of technology from other plants in the same firm and

a random shock,10

zjt = α0 + α1zjt−1 + α2z
2
jt−1 + Vjt +

∑
j′∈Jt

γjj′Vj′t + ηjt, (1.6)

where Vjt captures the increase in plant performance through its own investment in

R&D. Following Aw et al. (2011), Doraszelski and Jaumandreu (2013) and Bøler et

al. (2015), I assume that the increment in plant performance at period t depends on

10The main focus of this paper is to explore and quantify the spillovers from the local manufacturing
to innovation. Thus, I restrict my attention to the existing innovation plants and look at a subset of
predetermined innovation plants. Tecu (2013) estimate an R&D location choice model to assess the
importance of manufacturing on firms’ innovation location choice. She finds that manufacturing plays
an important role in determining innovation location, and both the internal and external linkages
between innovation and production are important for the innovation plants.
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its investment in R&D in the previous period. To explore and quantify the spillovers

from the local production, I assume it also depends on the interaction between R&D

investment ln rjt−1 and the employment of local production workers in its own industry

ln (emplkt−1). The increment in plant performance Vjt is written as

Vjt = β1 ln rjt−1 + β2 ln rjt−1 ln (emplkt−1) . (1.7)

The inclusion of ln rjt−1 ln (emplkt−1) allows for the possibility of spillover from

production to innovation within the same industry.11 The rationale is that the local

employment of its industrial production workers is a source of knowledge that can

enhance plant innovation, through which it affects the plant’s future performance.

The empirical analysis also includes an alternative specification with discrete R&D

expenditure (R&D dummy).

The term
∑

j′∈Jt γjj′Vj′t in Equation (1.7) captures intrafirm impact of R&D in-

vestment. Bilir and Morales (2016) shows that technological improvements developed

in a plant can be shared with other plants within the same firm. I incorporate the

sharing of proprietary technology in my empirical model by allowing the intra-firm

transfer of proprietary technology across plants in the same industry.12 τjj′ captures

the knowledge communication frictions when transferring technology from plant j′ to

plant j. Assume the decay of technology is a function of the distance between plant j

and j′ as follows ∑
j′∈Jt

τjj′Vj′t =
∑
j′∈Jt

[β4 + β5 ln β (distjj′)]Vj′t. (1.8)

The term ηjt in Equation (1.6) represents shocks to the performance of plant j at

time t that are not anticipated at t− 1.

Firm Optimization Problem

In each period t, firm i determines the optimal levels of labor Lit, capital investment

Iit, R&D investment Rit, and output prices Pit for each of its plants j active at time

11The spillover from local production to innovation considers both the internal feedbacks from its
own local factories but also the manufacturing know-how learned from the other firms.

12In the case when the innovation-only plants conduct R&D to improve the performance of the
production and the mixed plants, the spillovers are from the industry to which it provides technology.
For example, if the innovation plant invests in R&D to improve the performance of the auto manufac-
turing plants, then the local production workers in the auto industry will be sources of expertise that
can enhance the innovation plant R&D efficiency. My data sample includes firms that run businesses
in more than one 3-digit NAICS industries. In this case, I restrict the transfer of technology to be
only within the plants in the same 3-digit NAICS industry.
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t, as well as the set of plants that will be active at t+ 1, Ji,t+1. These decisions are

made based on the state vector Sit that firm i faces.

The state vector for plant j is

Sijt =
(
zjt, kjt−1, wjt, Pkt, Qkt, p

k
jt, ln (emplkt−1) , Fjt

)
, (1.9)

where pkjt is the price of capital and Fjt is a fixed cost of operating plant j.

Decisions at period t regarding plant j’s investment and employment depend on

zjt. Labor is a variable input, whereas capital is fixed in the short run. It’s determined

by the investment and capital stock in period t− 1, according to the law of motion

kjt = (1− δk)kjt−1 + ijt−1. Decisions on plant j’s investment in R&D also depend on

the local employment of its own industry production workers ln (emplkt−1).

If plant j is active at period t, the profit function of plant j is

Π(sjt, ijt, ljt, pjt, rjt) =
1

σ
Rev (Zjt, kjt, Pjkt, Qjkt, wjt)− rjt − Ck

(
ijt, p

k
jt, kjt

)
− Fjt,

(1.10)

where Ck(·) is the cost function of investment in capital.

The firm i’s optimization problem is

V (Sit) = maxXit

[∑
j∈Jit

Π (sijt, iijt, nijt, pijt, rijt) + δE (V (Sit+1) |Sit, Iit,Rit, Jit+1)

]
,

(1.11)

where Xit = (Jit+1,Lit,Mit, Iit,Rit,Pit) is a vector of control variables, V (·) is the

value function, Π(·) is the profit function and δ is the discount factor.

1.3.2 Estimation

To estimate the impact of local manufacturing on the returns to R&D, I proceed in

two steps. First, I estimate the revenue function in Equation (1.5). Second, I estimate

the Markov process governing the evolution of firm performance in Equation (1.6).

Step 1 Estimating Revenue Function Plant performance zjt is likely to

affect its demand for labor and capital. Therefore, OLS estimates of the revenue

function suffer from the simultaneity bias. I utilize the insights from Olley and Pakes

(1996) and Levinsohn and Petrin (2003) and rewrite the unobserved performance

in terms of some observed variables that are correlated with it. In general, plants’

usages of materials, electricity and energy depend on the level of its performance.

Therefore, I rewrite the level of productivity, conditional on the capital stock, as a
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function of the variable input levels, i.e. zjt (kjt,mjt, njt, ejt). This allows me to use

the expenditures on materials mjt, electricity ejt and energy nit by the firm to control

for the productivity in Equation (1.5).

The Equation (1.5) can be rewritten as

lnRevjt = γ0 + dkt + h (kjt,mjt, njt, ejt) + ujt, (1.12)

where the function h (kjt,mjt, njt, ejt) = (1− σ) (βk ln kjt − zjt (kjt,mjt, njt, ejt)) cap-

tures the combined effects of capital and plant performance on revenue and dkt =

ln (QktP
σ
kt) + (1− σ) βw lnwkt is a set of industry-time dummies capturing industry-

wide demand and cost trends. I specify h(·) as a cubic function of its arguments and

estimate Equation (1.12) by OLS.

Step 2 Estimating Performance Evolution Function In the second step, I

rewrite the plant performance zjt in terms of predicted ĥjt from the first stage

zjt = − 1

1− σ
ĥjt + βk ln kjt. (1.13)

Substituting the zjt into Equation (1.6) for the performance evolution gives the

estimation equation

ĥjt = −α∗0 + β∗k ln kjt + α1

(
ĥjt−1 − β∗k ln kjt−1

)
− α∗2

(
ĥjt−1 − β∗k ln kjt−1

)2

− (β∗1 ln rj,t−1 + β∗2 ln rj,t−1 ln (emplkt−1)) (1.14)

−
∑
j′

(β3 + β4 ln (distjj′)) (β∗1 ln rj′,t−1 + β∗2 ln rj′,t−1 ln (empl′kt−1))− η∗jt,

where the superscript ∗ denotes that the coefficient is multiplied by 1− σ.13

The second stage estimation equation relates the predicted revenue to the current

and lagged capital stock, the lagged predicted revenue, lagged R&D expenditure of its

own, and that of other plants in the same firm, as well as the lagged local production

employment of its industry.

I estimate the second stage equation with the generalized method of moments

(GMM). The identification of the parameters depends on the timing assumptions. ηjt

are the shocks to plant performance between t− 1 and t that are unanticipated by the

firm. By construction, the shocks are not correlated with the predetermined variables

kjt−1,rjt−1, rj′t−1, ln(empjt−1), ln(empj′t−1) and ln(distjj′t−1). I allow the constant in

the Markov process to vary by industry by including industry fixed effects (3-digit

13Except for α∗2, α∗2 = α2

1−σ .
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NAICS). In total, it gives me 31 moment conditions with 28 unknown.

The α and β can be backed out given an estimate of σ. The demand elasticity σ

is estimated from the total variable cost function. Given the CES demand, the total

variable cost TCjt can be written as a function of its total revenue Revjt:

TCjt = (1− 1

σ
)Revjt + εjt, (1.15)

where the error term εijt is the measurement error in total cost.

1.3.3 Data

Estimating the impact of local manufacturing on the plant innovation efficiency re-

quires data on R&D expenditure for each innovation plant, input and output for each

production plant, as well as the local employment of manufacturing industries. By

combining several confidential datasets from the Census Bureau, I create a plant-

level panel data on R&D investment and domestic production for US R&D firms in

the manufacturing sector from 2002-2012. Details regarding data construction are

documented in the Data Appendix.

Firm-level data on R&D investment are available between 1972 and 2015 from the

BRDIS.14 The BRDIS utilizes a stratified sample frame and samples firms propor-

tionally within each stratum to their known R&D activity, or to their payroll if R&D

activity is unknown. It surveys about 45,000 firms each year and includes a certainty

component for firms with payroll or R&D expenditures above a certain threshold. My

data sample is mainly composed of these large firms which are consistently surveyed

by the BRDIS. The BRDIS asks respondents to report the total domestic R&D

expenditure as well as the allocation of their spending across states.15 The firm-level

information on the geographic location of domestic R&D activities allows me to

identify innovation plants and their R&D expenditure within an R&D-performing firm

when supplemented by the plants location information from the LBD. In my empirical

model, the innovation plants are predetermined, thus I define an establishment as an

14This survey was known as the Survey of Industrial Research Development (SIRD) from 1972
through 2007. The SIRD is the predecessor of the BRDIS.

15In the BRDIS survey, R&D is defined as planned, creative work aimed at discovering new knowl-
edge or developing new or significantly improved goods and services. This includes 1) activities aimed
at acquiring new knowledge or understanding without specific immediate commercial application or
use (basic research); 2)activities aimed at solving a specific problem or meeting a specific commercial
objective (applied research) 3) systematic use of research and practical experience to produce new or
significantly improved goods, services, or processes (development). Thus costs for routine product
testing, quality control, and technical services are not included in the R&D expenditure.
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innovation plant if it has ever done R&D during the period pre-sample 1972-2001.

Plant-level production data are from the Census of Manufacturers (CMF) for years

ending in 2 and 7, and from the Annual Survey of Manufactures (ASM) in other

years.16 The CMF/ASM collects production data for manufacturing establishments on

their value of shipments, employment and payroll, cost of inputs, number of products,

and capital. The local manufacturing employment is constructed by using data from

the LBD. It’s measured at the county level and on the 4-digit NAICS manufacturing

industries.

In total, my data sample includes 1,500 R&D firms. Table 1.1 provides the sum-

mary statistics of the R&D firms. Within an R&D firm, the average number of

innovation sites is 3.3, and the median is 2. These innovation sites locate in about

1200 counties and 400 commuting zones. The average number of production sites

is 9.7, with a median of 4. On average, the innovation sites spend 12,860 thousand

dollars on R&D each year.

Table 1.1 Summary Statistics of the R&D Firms

Number of R&D firms 1500†

Average number of innovation plants within a firm 3.3
Median number of innovation plants within a firm 2
Average number of production plants within a firm 9.7
Median number of production plants within a firm 4
Average R&D expenditure at innovation plants (thousands) 12, 860†

Number of innovation counties 1200†

Number of innovation commuting zones 450†

Notes: This table reports the summary statistics of the R&D firms in the data sample. † indicates number is rounded
to thousands or hundreds to meet the Census disclosure requirements.

1.3.4 Empirical Results

Baseline Estimates

The estimates of the empirical model described above are reported in Table 1.2. The

upper panel presents the estimates of structural parameters in Equation (1.14). The

16The ASM is a sample survey of approximately 50,000 establishments. For sample efficiency and
cost consideration, the big and important establishments in each industry are overrepresented. A
number of establishments are included in the sample with certainty and the remaining establishments
are sampled at a probability that is consistent with their relative importance in the industry or other
key aggregations. Further details on the ASM are provided in the Data Appendix.
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lower panel evaluates the mean plant performance elasticities with respect to its

own R&D investment, other plants’ R&D investment, and the distance between the

technology receiving and providing plants, by using estimated structural parameters

in the upper panel. Columns (a) and (b) use a discrete measure of R&D, while (c)

and (d) use a continuous measure.

In columns (a) and (c), I first evaluate the influence of R&D investment on plant

performance in a specification that does not allow the spillovers from the local manu-

facturing to innovation. The benchmark estimates show that a plant’s performance

increases in R&D investment. The results qualitatively match the recent estimates by

Aw et al. (2011), Doraszelski and Jaumandreu (2013), Bøler et al. (2015) and Bilir

and Morales (2016). The performance impact of a plant’s own R&D investment is

economically significant, and that of other plants’ R&D investment is positive yet not

precisely estimated.

In columns (b) and (d), I include the interaction between R&D investment and

local manufacturing employment. The estimates of β2 are positive and statistically

significant, evidencing that innovating plants obtain significantly higher gains if they

are located in counties with more of their own industry production workers. It suggests

that there are positive spillovers from local manufacturing to innovation. All else

equal, the estimates in column (b) indicate that doubling the local own industry

manufacturing employment increases the impact of a plant’s own investment on its

performance by 21.4%. The empirical results contribute to our understanding of the

role of local manufacturing in enhancing efficiency of innovation plants and it support

the view put forth in Naghavi and Ottaviano (2009) that feedback from manufacturing

plants is important for research labs. The complementarity between innovation and

manufacturing that I find in columns (b) and (d) is also of importance from the

innovation policy perspective.

The capital coefficient βk is negative and statistically significant across all specifi-

cations. It implies that with higher capital stock, the marginal costs are lower and

revenue is higher for firms. The coefficients α1 and α2 measure the impact of lagged

productivity on current productivity. The estimates are strong and precisely estimated,

indicating the impact of R&D on plant performance is persistent. The coefficients

β3 and β4 quantify knowledge communication frictions when transferring technology

within the firm across plants, and the lower panel calculates the mean performance

elasticity with respect to distance. The estimates show that the longer the distance

between the technology receiving and providing plants, the larger the performance

losses will be. I check the validity of the instruments with an overidentification test
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and the p-values from the test are listed below the estimates in each column.

To retrieve the structural parameter α and β, I estimate σ from Equation (1.15).

The estimates of 1− 1
σ

is 0.6618 with the standard error of 0.0111.

Table 1.2 GMM Estimates: Baseline

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4073∗∗∗ -0.4087∗∗∗ -0.4073∗∗∗ -0.4083∗∗∗

(0.0043) (0.0043) (0.0043) (0.0042)
α1 Performancet−1 0.9088∗∗∗ 0.9120∗∗∗ 0.9093∗∗∗ 0.9114∗∗∗

(0.0112) (0.0115) (0.0112) (0.0114)
α2 Performance2

t−1 0.0969∗∗∗ 0.0979∗∗∗ 0.0972∗∗∗ 0.0979∗∗∗

(0.0084) (0.0085) (0.0083) (0.0084)
β1 Log(R&Dt−1) 0.0014∗∗∗ -0.0005 0.0118∗∗∗ -0.0086∗

(0.0002) (0.0005) (0.0021) (0.0045)
β2 Log(R&Dt−1 )× Log(Empt−1) 0.0003∗∗∗ 0.0031∗∗∗

(0.0001) (0.0008)
β3 Constant 0.3216 0.2804 0.379 0.2187

(0.2567) (0.2464) (0.2628) (0.2467)
β4 Log(Dist.) -0.0763∗ -0.0783∗∗ -0.0788∗ -0.0631∗

(0.0398) (0.0375) (0.0407) (0.0375)

Own Plant R&D Elasticity 0.0014∗∗∗ 0.0014∗∗∗ 0.0118∗∗∗ 0.0124∗∗∗

(0.0002) (0.0002) (0.0021) (0.0019)
Other Plant R&D Elasticity 0.0001 0.0000 0.0016 -0.0000

(0.0002) (0.0001) (0.0016) (0.0011)
Distance Elasticity -0.0002∗ -0.0002∗∗ -0.0014∗ -0.0009∗

(0.0001) (0.0001) (0.0007) (0.0006)

Overidentification Test (p value) 0.81 0.31 0.82 0.34
Observations 106,000 106,000 106,000 106,000
Industry Effects Yes Yes Yes Yes

Notes: The upper panel reports the GMM estimates of structural parameters in Equation (1.14). Columns (a) and
(c) presents the estimates of the benchmark specification. Robust standard errors in parentheses are clustered by
county. Each specification reports the p-value for the overidentification restrictions test (Hansen, 1982). The lower
panel evaluates the mean plant performance elasticities by using estimated structural parameters in the upper panel.
R&D is measured as log(1+R&D) in columns (a) and (b), and a binary variable in columns (c) and (d). *** denotes
1% significance, ** 5%, and * 10%.

Instrumenting Local Manufacturing Employment with Predicted Employ-
ment

A potential concern is the local employment might be positively correlated with the

unobserved shocks to plant performance. To address this concern, I instrument the lo-

cal manufacturing employment with a predicted one. The predicted local employment
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is constructed by interacting the initial local employment shares with national growth

of industry employment a la Bartik (1991).

Using the pre-sample year 1997 as the base year, I predict the local manufacturing

employment for each 4-digit NAICS manufacturing industry by interacting the initial

shares of 6-digits NAICS subindustry in year 1997 with the national growth of the

6-digits NAICS subindustry employment. The formula is as follows

pemplk4dt =
∑

k6d∈k4d

slk6d,1997 × gk6d,t, (1.16)

where pemplk4dt is the predicted manufacturing employment at county l in 4-digit

NAICS industry k at time t, slk6d,1997 is the initial share of each 6-digit NAICS

subindustry within the 4-digit NAICS industry k at county l in the year 1997 and the

gk6d,t is the national growth rate of each 6-digit NAICS subindustry between the year

1997 and time t.

Table 1.3 reports the estimates when instrumenting local manufacturing employ-

ment with a predicted one. It gives similar estimates on the structural parameters as

our baseline estimation in Table 1.2. The impact of local manufacturing on innovation

efficiency β2 is slightly lower.

Robustness Checks

Spillovers from the Local R&D A potential concern is that other than the

spillovers from the local manufacturing to the plant innovation, there are also spillovers

from the local R&D activities of the other firms. As a robustness check, I estimate a

specification that controls the spillovers from the local innovation. The increment in

plant performance in Equation (1.7) is written as

Vjt = β1 ln rjt−1 + β2 ln rjt−1 ln (emplkt−1) + β5 ln rjt−1 ln(rdemplt−1). (1.17)

where ln(rdemplt−1) is the local R&D employment. Due to the data availability, I

measure the local R&D employment at the commuting zone level.17 Local R&D em-

ployment is measured as the total employment in the NAICS 5417 Scientific Research

and Development Services industry.

17The plant-level data on R&D employment from the BRDIS is highly correlated with the R&D
expenditure. Since the R&D investment is lumpy, local R&D employment measured by data from the
BRDIS is lumpy as well. Instead, I measure the local R&D employment by using data from the LBD
and measured it as the employment in the Scientific Research and Development Services industry.
The county-level R&D employment is limited, and thus I measure the local R&D employment at the
county level.
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Table 1.3 GMM Estimates: Instrumenting Local Employment with Predicted Emp.

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4073∗∗∗ -0.4088∗∗∗ -0.4073∗∗∗ -0.4083∗∗∗

(0.0043) (0.0042) (0.0043) (0.0042)
α1 Performancet−1 0.9088∗∗∗ 0.9125∗∗∗ 0.9093∗∗∗ 0.9118∗∗∗

(0.0112) (0.0115) (0.0112) (0.0113)
α2 Performance2

t−1 0.0969∗∗∗ 0.0986∗∗∗ 0.0972∗∗∗ 0.0985∗∗∗

(0.0084) (0.0084) (0.0083) (0.0084)
β1 Log(R&Dt−1) 0.0014∗∗∗ -0.0001 0.0118∗∗∗ -0.0051

(0.0002) (0.0005) (0.0021) (0.0044)
β2 Log(R&Dt−1 )× Log(Empt−1) 0.0002∗∗ 0.0025∗∗∗

(-0.0001) (0.0008)
β3 Constant 0.3216 0.3638 0.379 0.3016

(0.2567) (0.2546) (0.2628) (0.2600)
β4 Log(Dist.) -0.0763∗ -0.0905∗∗ -0.0788∗ -0.0758∗

(0.0398) (0.0392) (0.0407) (0.0398)

Own Plant R&D Elasticity 0.0014∗∗∗ 0.0013∗∗∗ 0.0118∗∗∗ 0.0118∗∗∗

(0.0002) (0.0002) (0.0021) (0.0019)
Other Plant R&D Elasticity 0.0001 0.0001 0.0016 0.0004

(0.0002) (0.0001) (0.0016) (0.0012)
Distance Elasticity -0.0002∗ -0.0002∗∗ -0.0014∗ -0.0011∗

(0.0001) (0.0001) (0.0007) (0.0006)

Overidentification Test (p value) 0.81 0.25 0.82 0.34
Observations 106,000 106,000 106,000 106,000
Industry Effects Yes Yes Yes Yes

Notes: The upper panel reports the GMM estimates of structural parameters in Equation (1.14), instrumenting local
employment with the predicted one. Columns (a) and (c) presents the estimates of the benchmark specification.
Robust standard errors in parentheses are clustered by county. Each specification reports the p-value for the overi-
dentification restrictions test (Hansen, 1982). The lower panel evaluates the mean plant performance elasticities by
using estimated structural parameters in the upper panel. R&D is measured as log(1+R&D) in columns (a) and (b),
and a binary variable in columns (c) and (d). *** denotes 1% significance, ** 5%, and * 10%.

Table 1.4 reports the estimates for the robustness check. The inclusion of the

spillovers from the R&D activities to the plants’ innovation has a negligible impact

on my results. The estimated coefficient β5 for the spillovers from local R&D is not

significantly different from zero. Thus, there is no evidence suggesting the spillovers

from local R&D to plant innovation.

The Direct Impact of Local Employment on Plant Performance Another

concern is that the local employment might have a direct impact on plant performance.

To account for this possibility, I consider a specification that includes the employment
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levels in the performance increment function as follows,

Vjt = β1 ln rjt−1 + β2 ln rjt−1 ln (emplkt−1) + β6 ln (emplkt−1) . (1.18)

Accounting for the direct effect of local manufacturing employment does not change

the conclusions from my baseline estimation. The local manufacturing employment

has no direct impact on plant performance, and it only affects the performance through

interacting with the R&D investment.

Table 1.4 GMM Estimates: Robustness

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4085∗∗∗ -0.4087∗∗∗ -0.4081∗∗∗ -0.4083∗∗∗

-0.0043 -0.0042 -0.0042 -0.0042
α1 Performancet−1 0.9115∗∗∗ 0.9123∗∗∗ 0.9110∗∗∗ 0.9117∗∗∗

-0.0114 -0.0114 -0.0113 -0.0113
α2 Performance2

t−1 0.0977∗∗∗ 0.0985∗∗∗ 0.0977∗∗∗ 0.0985∗∗∗

-0.0084 -0.0084 -0.0084 -0.0084
β1 Log(R&Dt−1) -0.0002 -0.0002 -0.0055 -0.006

-0.0006 -0.0006 -0.0052 -0.0051
β2 Log(R&Dt−1 )× Log(Empt−1) 0.0003∗∗∗ 0.0002∗∗ 0.0034∗∗∗ 0.0022∗∗∗

-0.0001 -0.0001 -0.0008 -0.0003
β5 Log(R&Dt−1 )× Log(RDempt−1) -0.0001 -0.0008

-0.0001 -0.0007
β6 Log(Empt−1) 0.0001 0.0004

-0.0002 -0.0003
β3 Constant 0.2889 0.3574 0.2296 0.2791

-0.2339 -0.2436 -0.2349 -0.2303
β4 Log(Dist.) -0.0793∗∗ -0.0872∗∗ -0.0644∗ -0.0684∗

-0.036 -0.038 -0.036 -0.0357

Overidentification Test (p value) 0.32 0.25 0.35 0.34
Observations 106,000 106,000 106,000 106,000
Industry Effects Yes Yes Yes Yes

Notes: This table reports GMM estimates corresponding to variants of Equation (1.14). Columns (a) and (c) allow
for spillovers from the local R&D activities to innovation. Columns (b) and (d) incorporate the direct impact of local
manufacturing employment on plant performance. Robust standard errors in parentheses are clustered by county.
Each specification reports the p-value for the overidentification restrictions test (Hansen, 1982). R&D is measured as
log(1+R&D) in columns (a) and (b), and a binary variable in columns (c) and (d). *** denotes 1% significance, **
5%, and * 10%.
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1.4 A Model of Innovation and Production

Motivated by the facts presented in section 1.2 and the empirical evidence on the

positive spillovers from local manufacturing to innovation in section 1.3, I extend the

trade and multi-region production model developed by Arkolakis et al. (2018) with

two key modifications: (i) allowing firms to increase productivity through R&D; and

(ii) incorporating the spillovers from local manufacturing to innovation.

1.4.1 Setup

Consider an economy with n = 1 · · ·N regions. There are L̄n workers in region n.

Workers with CES preferences consume a continuum of goods indexed by ω ∈ Ω:

Un =

(∫
ω∈Ω

q(ω)
σ−1
σ dω

) σ
σ−1

. (1.19)

There are two activities in the economy: innovation and production. Workers

possess heterogeneous abilities in these activities. Some are good at production while

others are good at research. Their abilities in these two activities are characterized

by the efficiency units of labor with which they are endowed, E = (Ee, Ep). Ee

denotes the endowment of efficiency units of labor which can be supplied to innova-

tion activities, and Ep denotes the endowment that can be supplied to production.

Assume that Ee = ue/Γ (1− 1/κ) and Ep = up/Γ (1− 1/κ), with ue and up drawn

independently from the distribution F (u) = exp [−u−κ], where κ > 1 and Γ (·) is the

Gamma function.

Workers are immobile across different regions but mobile across innovation and

production activities within each region.18 Wage per efficiency unit of innovation

labor is wen, and per efficiency unit of production labor is wpn. Workers will choose to

work in innovation activities if Eewen ≥ Epwpn, otherwise they will choose to work in

production. Given the wages wen and wpn, the supply of labor units to innovation and

production activities in region i are given by

Len = L̄n

[
1 +

(
wen
wpn

)−κ]1/κ−1

, (1.20)

18There is limited empirical evidence of geographic mobility. Caliendo et al. (2015) find that
only 2% of the US population moves across states in a year. Autor et al. (2013) find that trade
shocks induced only small population shifts across regions in the US. In the appendix, I consider an
extension of the benchmark model where workers can move across regions.
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and

Lpn = L̄n

[
1 +

(
wpn
wen

)−κ]1/κ−1

. (1.21)

Labor units supplied to innovation and production activities depend on the relative

wage wen
wpn

. With a finite κ, workers are heterogeneous in their productivity across

activities. The change of relative wage will lead to the expansion of one activity and

the contraction of the other. With κ→∞, workers are homogeneous and perfectly

mobile across activities. There is no mobility across activities when κ→ 1.

1.4.2 The R&D Firm’s Problem

A firm born in region i only conducts R&D in its birth region.19 New technologies

created through R&D can be used in multi-region production (MP). MP occurs when

the technology from region i is used for production in region l. The firm’s productivity

in region l is denoted as zl. Engaging in MP incurs a productivity loss γil due to the

transfer of technology. γil is an iceberg cost, with γil > 1 and γll = 1. There is a fixed

cost Fn in units of labor and an iceberg trade cost τln when selling a variety produced

in l to n. Labor is the only input of production, and therefore the marginal cost of a

variety from i produced in region l to serve market n is ciln =
γilw

p
l τln
zl

. Given the CES

preference, firms will set the prices piln = σ̃ciln, where σ̃ = σ
σ−1

is the markup over the

marginal cost. To enter market n, the variable profits earned in market n should be

able to cover the fixed cost wnFn, and thus the unit cost of production needs to be

lower than c∗n =
(
σwpnFn
Xn

)1/(1−σ)
Pn
σ̃

, where Xn is the total expenditure in region n and

Pn =
(∫

ω∈Ω
p1−σ
n dω

)1/(1−σ)
is the aggregate price index in region n.

Innovation

An R&D firm at region l can invest f̄i efficiency units of innovation labor to come up

with a new variety (product innovation).20 The new variety can be produced in regions

different from where it is created. Assume that the vector of productivity at each

potential production site z = (z1, z2, . . . , zN) is randomly drawn from the multivariate

19For the origin-production-market triplet below, I use index i to denote the source of idea, index l
to denote the location of production and index n to denote the product market.

20To line up with my empirical model, innovation site within an R&D firm is predetermined.
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Pareto distribution

Gi (z1, . . . , zN) = 1−

(
N∑
l=1

[(
T̄ ei v

)
T pl z

−θ
l

] 1
1−ρ

)1−ρ

(1.22)

with support zl ≥
∑

l

[
T

1/(1−ρ)
il

] 1−ρ
θ

, θ > max (1, σ − 1) and ρ ∈ [0, 1).21 The shape

parameter θ controls the heterogeneity across realizations of different productivity

vectors, and the correlation parameter ρ controls the correlation of the elements within

the productivity vector.

The scale parameter
(
T̄ ei v

)
T pl determines the average productivity of varieties

created in i and produced in l. T pl is the productivity in production at region l.(
T̄ ei v

)
determines the quality of ideas created in region i, and can be thought of as

the productivity in innovation. T̄ ei is the fundamental productivity in innovation at

location i. The R&D firm can also invest in R&D to increase productivity, and thus

lower the marginal cost of production (process innovation). v is the level of process

innovation chosen by the firm.

To achieve v level of process innovation, the R&D firm incurs a cost of vβi (βi > 1)

efficiency units of innovation labor. The region-specific parameter βi reflects the

capability of a region in fostering innovation. A lower βi indicates that region i is

better at fostering innovation. In this case, the marginal cost of process innovation

will be lower and the returns to R&D are higher. In section 1.3, I find that returns to

R&D are higher when innovation plants are located in a region with more manufac-

turing employment. In other words, regions with a higher employment in production

are better at fostering innovation. Thus, I impose the following assumption on the

region-specific parameter βi.

Assumption: βi = 1

g(Lpi )
is an decreasing function in Lpi .

Regions with a higher level of employment in production are better at fostering in-

novation. In this case, the cost of process innovation v

1

g(Lpi ) is lower. Denote T ei = T̄ ei v

as the post process innovation productivity. With a higher T ei , the new varieties

created in region i will have higher productivity at all potential production sites.

Production

The R&D firm from region i faces a tradeoff between market proximity and production

capability when choosing where to produce for market n. It can either locate in a

21See Arkolakis et al. (2017) for detail information of the distribution properties and boundary
conditions.
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region closer to the market (a smaller τln) or in a region with lower production cost (a

lower
wpl γil
zl

). Given the multivariate Pareto distribution of the productivity vector,

the probability that a variety created from i serving market n through region l is

ψiln ≡ Pr (argminlCiln = l|minlCiln ≤ c∗n) =

(
T pl (γilw

p
l τln)−θ

)1/(1−ρ)

∑
m

(
T pm (γimw

p
mτmn)−θ

)1/(1−ρ)
.

(1.23)

The probability depends on the production capacities of region l relative to other

regions. The numerator represents a region’s production capacity, which depends on

the region’s productivity in production T pl , the proximity to technology γil and market

τln, and the wage of production labor wpl . The denominator in equation is the sum

of all potential production sites’ capacities, and can be thought of as the access to

production for firms from region i.

Given the access to production, the probability of R&D firm from i serving market

n at a cost lower than c, for c ≤ c∗n, is

Pr (minlCiln ≤ c) = T ei

(∑
m

T pm (γimw
p
mτmn)−θ

)1/(1−ρ)
1−ρ

θcθ−1. (1.24)

Denote Φin(v) =
(
T̄ ei v

) [(∑
m T

p
m (γimw

p
mτmn)−θ

)1/(1−ρ)
]1−ρ

as the market poten-

tial of firms from region i in serving market n. With higher productivity in innovation

and greater access to production, firms from i gain a higher market potential in n.

Optimal Level of Process Innovation

The R&D firms choose the optimal level of process innovation to maximize their

profits. Given the probability of serving market n by firms from i in Equation 1.24

and the probability of producing in region l in Equation (1.23), the expected sales of

a firm from i serving market n through region l can be written as

E(xiln) = φilnΦin(v)Xnσ̃
1−σP σ−1

n

∫ c∗n

0

θcθ−σdc, (1.25)

and the total expected profits net of innovation costs for a firm innovating in i and

conducting v level of process innovation is

E [πi(v)] =
σ − 1

θ − σ + 1

∑
n

Φin(v)

(
XnP

σ−1
n

wpnFn

σ

σ̃1−σ

) θ
σ−1

wpnFn − wei f̄i − wei vβ. (1.26)
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The first-order condition for the choice of the optimal level of process innovation

and the zero expected profit condition due to the free entry yields v =
(

1
1−g(Lpi )

f̄i

)g(Lpi )

.

The optimal level of process innovation is an increasing function in its production

labor Lpi . R&D firms locating in regions with higher employment in production will

choose a higher level of process innovation.

1.4.3 Aggregation

The R&D firm from region i will spend fi efficiency units of labor on innovation,

which is the sum of its expenditures on product innovation f̄i and process innovation
1

g(Lpi )
f̄i. In region i, Lei efficiency units of labor are allocated to innovation and the

measure of varieties created in region i is Mi =
Lei
fi

. The total sales of varieties created

in i serving the market n through region l can be written as

Xiln = Mixiln = φiln
MiΦin∑
kMkΦkn

Xn. (1.27)

Given the aggregate trilateral technology and trade flows Xiln, the total value of

varieties produced in region l is denoted as Yl ≡
∑

i,nXiln and the total expenditure

in region n is Xn ≡
∑

i,lXiln. Xiln can be used to construct three sets of aggregate

bilateral shares:

the expenditure shares

λEin ≡
∑

lXiln

Xn

=
MiΦin∑
kMkΦkn

, (1.28)

the trade shares

λTln ≡
∑

iXiln

Xn

=
∑
i

φilnλ
E
in, (1.29)

and the MP shares

λMil ≡
∑

nXiln

Yl
=

∑
n φilnλ

E
inXn

Yl
. (1.30)

1.4.4 Equilibrium

Given the measure of varieties created in region i and the profits earned by the R&D

firm in Equation (1.26), the total profits earned by firms from region i can be written

as Πi = Miπi = η
∑

n λ
E
inXn − weiLei , where η = σ−1

θσ
. Zero profit condition implies
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that labor market clearing condition for innovation workers can be written as follows,

η
∑
n

λEinXn = weiL
e
i . (1.31)

The labor demand for production in region l equals the total output Yl minus the

profits associated with the output Yl
σ

, which gives
∑
n λ

T
lnXn
σ̃

. The labor demand for

serving the market (entry) is (1− η − 1
σ̃
)Xl, which depends on the total consumption

in region l. The labor marketing clearing condition for innovation workers can be

written as follows, ∑
n λ

T
lnXn

σ̃
+ (1− η − 1

σ̃
)Xl = wpl L

p
l . (1.32)

Following Dekle et al. (2007), this model allows for aggregate trade and MP imbal-

ances via exogenous cross region transfer ∆i with
∑

i ∆i = 0. The budget balance

condition can then be written as:

wpiL
p
i + weiL

e
i + ∆i = Xi. (1.33)

Equations (1.31) and (1.32) can be written in terms of wages by substituting Lei

and Lpi using Equations (1.20) and (1.21), and Xi using Equation (1.33). Equilibrium

wages can be obtained by solving a system of 2N equations.

1.4.5 Calibration

I take the model to the data in year 2012, and restrict my analysis to 48 states in the

US and the rest of the world (ROW) for which I have good data for trade, output

and multi-region production.22 The parameters to be calibrated in the model are

the multi-variate Pareto distribution parametrs ρ and θ; the Frechet distribution

parameter κ; the elasticity of substitution σ; the entry cost of innovation fi; the

parameters that determine bilateral trade and MP cost τln and γil; the productivity

parameters T ei and T pl ; and regions’ capability in fostering innovation g(Lpi ).

To calibrate these parameters, I construct data on the bilateral trade and MP flows,

the number of varieties in each region and the endowment of equipped labor in each

region. For domestic trade, I aggregate the firm-level manufacturing trade flow data

from the Commodity Flow Survey (CFS) to the state level to get the bilateral trade

flows between the 48 states. I get the trade flows between each state and the ROW

from Longitudinal Firm Trade Transaction Database (LFTTD). For the trade flows

22Alaska, Hawaii and D.C. are excluded from my data sample.
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within the ROW Xrow,row, I take it from the World Input-Output Database. With

these data, I construct the 49× 49 matrix of trade shares λTln, a vector of aggregate

expenditure on manufacturing goods Xn =
∑

lXln, and a vector of aggregate output

in manufacturing Yl =
∑

nXln.

The empirical counterpart of bilateral MP flows from region i to region l is defined

as the output in region l that is using the technology from region i. To construct the

domestic MP flows, I link the BRDIS with Census of Manufactures (CMF). The data

from the BRDIS allow me to identify the origin state of technology within a firm and

the data from the CMF provide me with the information of output. I measure the

outward MP flows from the US to the ROW as the output of the R&D firms’ foreign

affiliates. To measure the inward MP flows from the ROW to each state, I link the

Survey of Business Owners (SBO) with CMF to identify the foreign firms’ operations

in each state. I take the MP flows from ROW to ROW from Arkolakis et al. (2018).

In this way, I obtain the 49× 49 matrix of trade shares λMil .

The number of varieties created in each state and the ROW Mi are measured by

linking the BRDIS (or SBO) with CMF. The data from the BRDIS and SBO allow

me to identify the origin of technology for firms’ production, and the data from the

CMF provide information on the number of products.

The aggregate labor endowments for the US and the ROW are measured by using

total equipped labor data from Penn World Table (PWT), multiplied by the share of

employment in manufacturing sector from the UNIDO. The equipped labor in each

state is then constructed by multiplying the share of employment in each state by the

total equipped labor measured from the PWT.

Calibrated Parameters and Targeted Moments

Table 1.5 summarizes the calibrated parameters and the targeted moments in the

data. I take the multi-variable Pareto shape parameter θ = 4.5, correlation parameter

ρ = 5.5, and the elasticity of substitution from σ = 4 from Arkolakis et al. (2018). I

set Frechet distribution parameter κ = 3 following Hsieh et al. (2013) and Lagakos

and Waugh (2013).

The rest of the parameters are calibrated following Arkolakis et al. (2018). First,

I implement an extended version of Head and Ries (2001) approach to estimate the

bilateral trade and MP costs. Given the data on trade, MP shares and the total

consumption Xn, the model determines all the trilateral trade flows Xiln.23 Assume

23See appendix for the proofs.
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that both the trade costs and MP costs are symmetric, I compute the matrices

τ̂ln =
(√

XinnXill
XilnXinl

) 1−ρ
θ

and γ̂il =
(√

XiinXlln
XilnXlin

) 1−ρ
θ

.

Given the estimated matrices of trade and MP cost, I set parameters T ei , T pi and

fi to match MP deficit
∑

l λ
M
il Yl − Yi, the total output Yi and the number of varieties

respectively.

Table 1.5 Calibrated Parameters and Data Targets

Parameters Value Description Target/Source

σ 4 elasticity of substitution Arkolakis et al. (2018)

κ 3 Frechet shape parameter
Lagakos and Waugh (2013),
Hsieh et al. (2013)

θ 4.5 MVP shape parameter Arkolakis et al. (2018)
ρ 0.55 MVP correlation parameter Arkolakis et al. (2018)
f̄ innovation entry cost number of varities
τln trade cost bilateral trade shares
γil MP cost bilateral MP shares
TPi productivity in production gross output
T ei productivity in innovation MP deficit

Notes: This table summarizes the calibrated parameters and the targeted moments in the data.

Mapping Revenue Equation to the Empirical Revenue Function

The region’s capability in fostering innovation g(Lpi ) is estimated by mapping the rev-

enue function from the theoretical model to the empirical model. Given the expected

sales of firm i serving the market n through l in Equation (1.25), the log expected

revenue of firms from i with innovation level v =
(
fi − f̄i

)g(Lpi )
choosing region l to

serve all potential markets can be written as24

ln (xil)−
1

1− ρ
ln
(
T pl w

−θ
l

)
− ln (Dil)− lnT ei +

θ

1− ρ
ln (γil) = g

(
LPi
)

ln
(
fi − f̄i

)
,

(1.34)

where Dil =
∑

n

∑
l T

p
l (γilwpl τln)

−θ∑
kMkΦkn

(Xnτln) can be thought of as the aggregate demand

for the production plants using technologies from region i to serve the markets, and

f̃i − fi = 1
1−g(Lpi )

fi is the R&D expenditure that firm i spends on process innovation.

The log revenue in the empirical model is a function of the aggregate market

conditions, the capital stock and the plant-specific performance, as in Equation (1.5).

24Firms from region i will choose the optimal level of process innovation v =
(

1
1−g(Lpi )

f̄i

)g(Lpi )

=(
fi − f̄i

)g(Lpi )
.
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Plant-specific performance evolves over time, and depends on its own investment in

R&D, as well as the transfer of technology from other R&D plants in the same firm.

The performance evolution function is general enough to cover different organization

structures of production and innovation within an R&D firm. For example, it allows

more than one innovation plant within an R&D firm to provide technology for the

production plants. The theoretical model is a simplification of what we can observe in

the real data, assuming there is only one innovation plant within an R&D firm. To map

the log revenue function to the empirical model, I simplify the performance evolution

function by considering the case that there is only one innovation plant within an

R&D firm, and I look at the long-run impact of innovation on plant performance.25

The log revenue function from the empirical model can then be written as

τ−1
jj′

(
lnRevj − djk −

σ − 1

1− α1

α0

)
=

σ − 1

1− α1

(
β1 ln rj′ + β2 ln rj′ ln

(
empj′

l′k

))
, (1.35)

where plant j is the technology-receiving plant and plant j′ is the innovation plant.26

Comparing the revenue function from the theoretical model in Equation (1.34)

with that from the empirical model in Equation (1.35), the left hand side of both

equations gives the production plants’ revenue after controlling for region-specific

characteristics in production, the aggregate demand, the fundamental productivity

and the loss of technology from the transferring. The region-specific productivity

in production is captured by the term ln
(
T pl w

−θ
l

)
in the theoretical model, and the

empirical counterpart is djk . The aggregate demand depends on Dil, which is captured

by djk in equation 1.35. Both equations relate revenue to the long-run predicted

productivity. T̄ ei determines the fundamental productivity in innovation in the model

and σ−1
1−α1

α0 captures the long-run effects of innovation on productivity. The friction

of technology transfer is captured by γil theoretically and by τjj′ empirically.

The right hand sides of both equations relate the production plant’s revenue to

the investment in R&D. In the theoretical model, the plant’s revenue depends on

the investment in R&D at the innovation plant, as well as the regions’ capacity in

fostering innovation. The capacity is an increasing function of the local manufacturing

employment, denoted as g(Lpi ). Empirically, the plant’s revenue depends on the

investment in R&D σ−1
1−α1

(β1 ln rj) and the spillovers from the local manufacturing

σ−1
1−α1

(
β2 ln rj′ ln

(
empj′

l′k

))
. Given that the estimate of β1 in Equation (1.7) is not

25The long run effect of R&D investment on plant performance is captured by α1 and α2. More than
90% of current period can be explained by its performance in the previous period. For simplification,
I only consider the first-order effects of R&D investment on plant long-run performance.

26I surpress the constant term γ0 = log( θ
θ−σ+1 ) in the equation.
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significantly different from zero, I will mainly focus on the spillover effects from the

local manufacturing. Assume innovation capacity g(Lpi ) = µ lnLpi , where µ captures

the strength of the spillovers from the local manufacturing to innovation. The spillover

strength parameter takes the value µ = σ̂−1
1−α̂1

β̂2, where the estimates are from Table 1.3

column (b). With α̂1 = 0.9125, β̂2 = 0.0002 and σ̂ = 2.9568, the strength parameter

is estimated to be µ = 0.005.

The benchmark estimation in the empirical section also considers the case of no

spillovers from the local manufacturing to innovation. In this case, the plant’s revenue

only depends on the innovation plant’s investment in R&D. To shut down the spillovers

from the local manufacturing in the model, I assume the local innovation capacity

is a constant and it equals g(·) = σ̂−1
1−α̂1

β̂1, where the estimates are taken from Table

1.3 column (a). With α̂1 = 0.9088, β̂2 = 0.0014 and σ̂ = 2.9568, the constant local

innovation capacity is estimated to be g(·) = 0.03. In the counterfactural exercises, I

will compare the changes of innovation efficiency in cases where there are spillovers to

these cases where there are no spillovers.

1.4.6 Counterfactural Exercises

The increase in US imports from China has asymmetric impacts across regions. Autor

et al. (2013) shows that labor markets with greater exposure to the increase in import

competition from China experienced a larger decrease in manufacturing employment.

In this section, I will use the China import competition to quantify the effects of

production reallocation on the local innovation efficiency.

Identifying the Trade Shocks

Given that not all the observed changes in US imports from China are the results of

a change in Chinese productivity, I replicate the procedure in Autor et al. (2013) to

identify the supply-driven components of Chinese imports. I compute the predicted

changes in the US imports from China a la Bartik. The predicted changes are the

inner product of the initial US imports in each sector and the sectoral growth of

Chinese imports in eight other developed countries,27

∆IMPChina→US =
∑
k

IMP k
1997 × gkChina→OTH , (1.36)

27The eight other developed countries are Australia, Denmark, Finland, Germany, Japan, New
Zealand, Spain, and Switzerland.
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where IMP k
1997 is the US imports from China in 1997, gkChina→OTH is the growth of

Chinese imports in eight other developed countries in sector k, and ∆IMPChina→US

is the changes in imports during the period 1997-2012.

I model the rise of China as the productivity shocks to the ROW ∆T pROW , and

use the predicted changes in the US imports from China to quantify the size of the

productivity shocks. I calibrate these shocks such that the simulated changes in

aggregate expenditure shares on goods from the ROW match the change in these

expenditure shares that is driven by the rise of China during 1997-2012.

The Impact of Production Reallocation on Innovation

In this section, I will remove the China shock to see how that will affect the innovation

and production across all states.

Figure 1.3 plots the percentage changes in innovation and production labor for

each state when removing the import competition from China. In this case, each

state will have a larger employment in production but less employment in innovation.

That is to say, most states will be less specialized in innovation when comparing with

the current equilibrium. In another words, the rise of China leads to the decrease

in production cost in the ROW, which makes it possible for each state in US to be

more concentrated in innovation and reallocate some of its productions to the ROW.

Michigan experiences the largest decline in manufacturing, followed by Massachusetts,

Connecticut, and Texas due to the rise of China.28

Figure 1.4 plots the percentage changes in innovation productivity against the

changes in production workers. When there are no trade shocks, states with a larger

increase in production workers will also experience a more substantial growth in

innovation efficiency.

Spillovers versus No Spillovers

I consider another counterfactual exercise by shutting down the spillovers from the

local manufacturing to innovation. For cases with and without spillovers from the

local manufacturing to innovation, I compute the changes in welfare, innovation

productivity, and the number of varieties due to the exogenous trade shocks.

In the following, I will compare the difference in changes across the two scenarios.

28Autor et al. (2016) also find that these states face the highest exposure to trade shocks.
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Figure 1.3 Reallocation of Innovation and Production Labor
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Notes: This figure plots the percentage changes in innovation and production labor for each state when removing the
import competition from China.

Figure 1.4 The Impact of Production Labor Reallocation on Innovation Efficiency
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Notes: This figure plots the percentage changes in innovation productivity against the changes in production workers
when removing the import competition from China.

In Figure 1.5, the y-axis in both subfigures plots the difference in welfare changes.

The x-axis in the left panel reports the difference in innovation productivity. When

there are positive spillovers from the local manufacturing to innovation, the increase
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in production employment leads to an increase in innovation efficiency. With higher

productivity in innovation, it obtains higher welfare compared with the case of no

spillovers. The scatterplot of the left panel indicates that the increase in innovation

productivity due to the positive spillovers from the local manufacturing results in

higher welfare. More than that, higher productivity in innovation also leads to a

larger investment in R&D. As a result, more workers will be allocated to innovation

activities. The increase in innovation labor further results in the increase in the

number of varieties being created, as plotted on the x-axis in the right panel of the

Figure 1.5.

Figure 1.5 Difference in Welfare Changes
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(a) Productivity in innovation
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(b) Number of varieties

Notes: This figure compares the difference in welfare changes, innovation productivity, and the number of varieties
for cases with and without spillovers from local manufacturing to innovation. The y-axis in both subfigures plots the
difference in welfare changes. The x-axis in the left panel reports the difference in innovation productivity and in the
right panel displays the difference in the number of varieties.

1.5 Conclusion

This paper finds evidence that production proximity is crucial for innovation efficiency.

I document two novel patterns on the spatial distribution of innovation and produc-

tion: (i) innovation activities are more agglomerated than production ones, and (ii)

innovation and production activities are geographically concentrated. Motivated by

the stylized facts, I propose that local manufacturing can enhance innovation and

develop an empirical model to allow for the spillovers from the local manufacturing to

innovation. In my empirical model, the increment in plant performance depends both

on its investment in R&D, and the interaction between R&D and local manufacturing

workers. I estimate the model by using a unique confidential plant-level panel data
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on innovation and production from the US Census Bureau. My estimates show that

with more manufacturing workers in the local area, the returns to R&D are higher.

My empirical finding is consistent with the idea that geographic proximity facilitates

the transmission of knowledge (Audretsch and Feldman, 2004). I extend Arkolakis et

al. (2018) to incorporate the positive spillovers from production to innovation that

I find in the empirical study, calibrating it to 48 states in the US and the ROW. I

then evaluate the impact of China’s trade shock on innovation efficiency through the

new channel of local spillovers. I find that states with a more significant decline in

the manufacturing sector due to the China shock experience a more substantial loss

in innovation efficiency.
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Chapter 2

Price Stickiness Along the Income
Distribution and the Effects of Monetary

Policy1

Co-authored with Javier Cravino and Andrei A. Levchenko

2.1 Introduction

There is growing recognition that monetary policy shocks have distributional conse-

quences. An active literature argues that monetary policy can have differential effects

across various types of agents: savers vs. borrowers (Doepke and Schneider, 2006),

financially constrained vs. unconstrained (Williamson, 2008), or young vs. old (Wong,

2016). In turn, the heterogeneity in the impact of monetary policy across agents can

determine its overall effectiveness (Auclert, 2017; Beraja et al., 2017; Kaplan et al.,

2018). Coibion et al. (2017) show empirically that monetary contractions increase both

income and consumption inequality. In all of these contributions, the distributional

consequences of monetary policy arise from its heterogeneous impact on the value of

agents’ income or wealth.

This paper proposes and quantifies a novel mechanism through which monetary

policy shocks have distributional consequences. If the effects of monetary shocks on

prices are heterogeneous across types of goods (Boivin et al., 2009), and consumption

baskets differ across the income distribution (e.g., Almås, 2012), then shocks will

differentially affect the prices faced by households of different incomes. We document

1This chapter is published in the Journal of Monetary Economics (2018). We are grateful to the
editor (Yuriy Gorodnichenko), an anonymous referee, Andres Blanco, John Leahy, Indrajit Mitra,
and workshop participants at different institutions for helpful comments, to Geoffrey Paulin, David
Johnson, Steve Henderson, and John Bieler for help with the CES data, and to Sam Haltenhof for
excellent research assistance. Financial support from the National Science Foundation under grant
SES-1628879 and from the Washington Center for Equitable Growth is gratefully acknowledged.
Email: jcravino@umich.edu, tinglan@umich.edu, alev@umich.edu.
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that the prices of the goods consumed by high-income households are (i) more sticky

and (ii) less volatile than those of the goods consumed by middle-income households.

We then use both econometric estimates and a New Keynesian DSGE model to quan-

tify the distributional consequences of monetary policy shocks. Both methodologies

indicate that these consequences are large relative to the aggregate impact of monetary

policy on prices.

Our analysis uses three main sources of data. The first is the US Consumer

Expenditure Survey (CES), from which we obtain expenditure shares across detailed

product categories for households at different percentiles of the income distribution.

The second is the item-level consumer price data from the BLS, which are the most

finely disaggregated consumer prices publicly available for the US. Finally, we employ

the measures of price stickiness constructed by Nakamura and Steinsson (2008), who

report the frequency of price adjustment (i.e. the probability that a price changes in

a particular month) for every detailed product category in the US CPI.

We combine these data to compute the average frequencies of price changes for the

baskets of goods purchased by households at each income percentile in the CES. We

find systematic differences in the price-stickiness of the consumption baskets of differ-

ent households. On average, 22% of the goods consumed by households in the middle

of the income distribution change prices in a given month. However, the frequency of

price changes is 24% lower for the goods consumed by the richest percentile.2 We also

compute income-specific consumer price indices (CPIs), following the procedure that

the BLS adopts for computing the aggregate CPI.3 We show similar differences in the

volatility of prices faced by different households: the standard deviation of the CPI of

the top percentile is 38% lower than that of the CPI of the middle-income households.

These differences across consumption baskets imply that income-specific CPIs may

respond differentially to monetary policy shocks. In particular, the CPIs of high-

income households should be less responsive to monetary shocks than the CPIs in the

middle of the income distribution. We evaluate this hypothesis both econometrically

and quantitatively. We first estimate the impulse responses of income-specific CPIs to

monetary policy shocks identified using the narrative approach of Romer and Romer

2These numbers correspond to frequencies of regular price changes (i.e. excluding sales). The
results are similar for the frequency of all price changes (including sales).

3When building aggregate consumer price indices, the BLS periodically changes the base year for
expenditure weights. In computing income-specific CPIs, we follow the BLS procedure for switching
base years after 2004. The information on income is less reliable in the CES prior to 2004, and thus
we use 2004 household-specific expenditure weights for CPIs prior to 2004. Using official BLS weights
or 2004 aggregate weights produces nearly identical pre-2004 aggregate CPI. See Appendix B.1.2 for
more detail.
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(2004), as extended by Coibion et al. (2017). We compute the impulse responses

using the local projections method (Jordà, 2005). Our estimates show that after 36

months, the CPIs of high-income households respond by about one-third less to the

same monetary policy shocks than the CPIs of the middle-income households. Thus,

the differences in price stickiness and inflation volatility across consumption baskets

have the expected impact on the differential responses of households-specific CPIs to

monetary policy shocks in the data.

We then perform a quantitative assessment using a multi-sector, multi-household

model with Calvo-style nominal rigidities. In the model, sectors are heterogeneous

with respect to their price stickiness, and households are heterogeneous with respect to

their income levels and consumption baskets. We calibrate the model to the observed

levels of price stickiness and observed cross-household differences in consumption

patterns, and simulate the model’s response to a monetary policy shock, paying special

attention to how a monetary shock differentially affects households. As expected, high-

income households’ CPIs respond less to a monetary policy shock than middle-income

households’ CPIs. The difference is once again quantitatively large: after 12 months,

the CPI of the households in the top percentile of the income distribution responds

by 13% less than that of the middle-income households. We also show that shifting

the distribution of income towards households that consume more sticky goods (i.e.

more income inequality) would increase the effectiveness of monetary policy, although

this effect is modest for realistic changes in inequality.

Our paper draws on, and contributes to, two literatures. The first is the research

agenda on the distributional aspects of monetary policy reviewed above. The second

is the literature on the differential responses of prices faced by different consumers

following macroeconomic shocks. Cravino and Levchenko (2017) document that after

a large devaluation in Mexico, consumption price indices of high-income households in-

creased by far less than consumption price indices of the poor. Argente and Lee (2015)

show that in the US Great Recession, prices of groceries and general merchandise

items consumed by the poorer households increased by more than those consumed by

the richer households, while Jaravel (2017) shows that over the past 15 years, product

variety increased the most, and inflation was lowest, for the consumption basket of the

high-income households. Kaplan and Schulhofer-Wohl (2017) document substantial

cross-sectional dispersion in household inflation rates, while Coibion et al. (2015)

study the impact of local economic conditions on the geographical variation in prices

paid by consumers. Kim (2018) shows that low-quality brands change prices more

frequently than high-quality brands within narrow product categories, and evaluates
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the impact of monetary policy across consumers buying goods of different qualities.

Ongoing work by Clayton et al. (2018) focuses on differences in price stickiness of

goods consumed by, and produced by, college-educated workers. Our paper documents

new facts and proposes a novel mechanism that is based on differential price stickiness

of consumption items along the income distribution.

The rest of the paper is organized as follows. Section 2.2 lays out a simple model

that illustrates the main mechanism at work, and highlights the key objects of interest

that should be the focus of the empirical analysis. Section 2.3 describes the data and

documents consumption basket differences across households. Section 2.4 presents the

econometric evidence, and Section 2.5 presents the quantitative model and reports

the responses of household-specific inflation to an aggregate monetary shock. Section

2.6 concludes.

2.2 A Simple Sticky Price Model

Before presenting our data, we describe a simplified sticky price model to build intu-

ition on how aggregate shocks can have distributional consequences when nominal

rigidities are heterogeneous across goods and households consume different baskets of

goods.

Setup: Consider a two-period economy populated by H types of households

indexed by h, each consuming a different basket of goods. In the first period, the state

of the world is known, and in the second period the economy can experience one of

infinitely many shocks or states, s.4 The (log) price of the consumption basket (i.e.

the CPI) consumed by household h in period t is given by

pht (s) ≡
∑
j

ωhj pj,t (s) ,

where ωhj is the share of goods from sector j in household h’s consumption bas-

ket. We define the aggregate price index as pt (s) ≡
∑

h s
hpht (s) =

∑
j ωjpj,t (s) ,

where sh denotes household h’s share in the aggregate consumption expenditures, and

ωj ≡
∑

h s
hωhj is the economy-wide expenditure share in sector j.

Sectoral goods are aggregates of a continuum of intermediates that are produced

by monopolistically competitive firms. We introduce price stickiness by assuming

4The set of shocks can include monetary shocks, but at this stage we do not need to specify the
exact nature of the shocks.
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that in the second period, only a fraction θj of producers in each sector j can observe

the realization of the state before setting their prices. The remaining producers

must set prices before observing the realization of the state. To isolate the role of

sectoral differences in price rigidities, we assume all producers operate the same CRS

technology and set constant markups. In the first period, all the producers know

the state and so they set the same price, which we label p1. In the second period,

all producers that observe the state set the same price, which we label p̄2 (s). The

producers that don’t observe the state set a price that we label pe2. Note that pe is

not a function of the state. Without loss of generality we assume that the shocks are

mean zero, so that pe2 = p1.

The average price in sector j in the second period is then given by:

pj,2 (s) = θj p̄2 (s) + [1− θj] p1. (2.1)

Let πh ≡ ph2 (s) − p1 define the household-specific inflation rate. The difference in

inflation faced by two households, h and h′, is:

πh (s)− πh′ (s) = [p̄2 (s)− p1]
∑
j

[
ωhj − ωh

′

j

]
θj.

This expression highlights that the difference between two households’ CPIs is driven

by the covariance between the differences in their expenditure shares across sectors,

ωh
′
j − ωhj , and the price stickiness of those sectors, θj. Households that consume less

price-sticky goods will experience larger CPI changes following a shock than households

consuming relatively more price-sticky goods. Dividing by the aggregate inflation

π (s) ≡ p2 (s)− p1, yields an expression relating the differences in household-specific

inflation to objects that can be measured in the data:

πh (s)− πh′ (s)
π (s)

=
θ̄h − θ̄h′

θ̄
, (2.2)

where θ̄h ≡
∑

j ω
h
j θj and θ̄ ≡

∑
h s

hθ̄h. Note that this expression is independent of

the realization of the state.

Discussion: Equation (2.2) shows how aggregate shocks can have distributional

consequences when price rigidities are heterogeneous across goods and households

consume different baskets of goods. In this simple model where all firms face the same

costs and markups are constant, the weighted average frequencies of price changes,

θ̄h, are sufficient statistics for all the distributional consequences, irrespective of the

nature of the aggregate shocks. Equation (2.2) states that, in response to a shock that
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generates positive inflation, inflation will be relatively high for households consuming

goods with relatively more flexible prices (i.e. high θ̄h).

To get a sense of the magnitude of these distributional consequences we can do a

back of the envelope calculation using US data (described in detail below). In our data,

θ̄t ≈ 0.17 for households in the top percentile of the income distribution, θ̄m ≈ 0.22

for households at the middle of the income distribution, and θ̄ ≈ 0.21. These numbers

result in θ̄t−θ̄m
θ̄
≈ −0.24, which indicates that a shock that increases the aggregate CPI

relative to its unconditional mean by 1% will also generate a −0.24% gap between the

price of the consumption baskets consumed by the top vs. the middle of the income

distribution.

The simple model also illustrates the connection between sectoral price stick-

iness and sectoral price volatility. From (2.1), we can see that sectoral inflation,

πj (s) ≡ pj,2 (s)− p1, is less volatile in more sticky-priced sectors:

σπj = θjσp̄,

where σπj is the standard deviation of inflation in sector j price, and σp̄ is the un-

conditional standard deviation of p̄2 (s). The ratio of standard deviations of sectoral

inflation relative to the standard deviation of aggregate inflation is then given by the

ratio of the sectoral to the aggregate frequency of price changes:

σπj
σπ

=
θj
θ̄
, (2.3)

Differences in sectoral price volatility translate into differences in household-level CPI

volatility. The standard deviation of household-specific inflation, normalized relative

to the aggregate is:

σπh

σπ
=
θ̄h

θ̄
. (2.4)

Households consuming more price-sticky goods experience less volatile price changes.

The following section evaluates the relationships (2.3) and (2.4) in the data. Of course,

these relationships may not hold if the standard deviation of the desired price change

σp̄ is sector-specific (as would be the case for example if there are sector-specific

shocks).

To summarize, our illustrative model establishes that in order to understand how

the CPIs of different households react to monetary or other shocks, we must exam-

ine the differences in price stickiness of consumption baskets across households. In

addition, it suggests a one-to-one relationship between sectoral price stickiness and
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sectoral price volatility. Thus, a closely related object to be examined in the data is

differences in inflation volatility across households.

2.3 Empirical Findings

This section describes our data sources and documents our two empirical findings on

how consumption baskets differ across the income distribution. It then evaluates the

relationship between frequencies of price changes and inflation volatility suggested

by equations (2.3) and (2.4). Appendix B.1 describes in detail the construction of

expenditure shares from the CES and of the income-specific CPIs.

2.3.1 Data

We combine data on expenditure shares from the CES with the item-level consumer

prices from the BLS and with the frequency of price adjustment data from Nakamura

and Steinsson (2008). The CES contains two main modules, the Interview and the

Diary. The Interview module collects responses from about 30,000 households annually,

and asks households about the purchases they make in all categories, as well as other

demographic information. Each household is interviewed for up to 4 consecutive

quarters in the Interview module. The Diary module surveys about 10,000 households

per year, at weekly frequency. The Diary questionnaire contains detailed questions

about daily purchases, such as groceries. All in all, there are questions on 350 distinct

expenditure categories in the Interview module, and on 250 distinct grocery and

related categories in the Diary module.

The large majority of households do not report expenditures in all possible cat-

egories in a given year. In addition, a different set of households is surveyed in the

Interview and in the Diary files, so the full consumption profile (both Diary and

Interview module expenditures together) of any particular household is never observed.

This means that we cannot compute expenditure shares for each household. Rather,

we aggregate households into percentiles and work with percentile-level expenditure

shares. Each percentile contains about 300 households responding to the Interview

questions, and 100 households responding to Diary questions. Table B.1 in Appendix

B.1.1 reports the income cutoffs and average incomes in the selected quantiles of

the income distribution. It is important to note that income categories in the CES

(such as wage income) are subject to top-coding. Nonetheless, there is a great deal of
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variation in incomes of households present in the CES, with incomes of the top 5%

of households an order of magnitude higher than those at the median. Throughout

the paper, the percentiles of the income distribution are defined based on income

information in the CES rather than any external data source.

We use these data to compute the measures of income-specific frequencies of

price changes, price indices, and price volatility defined in Section 2.2. The average

frequencies of price changes, θ̄h =
∑

j ω
h
j θj, combine the income-specific expenditure

weights ωhj from the CES with the product-specific frequencies of price changes θj

from Nakamura and Steinsson (2008).5 To compute them, we match CES expenditure

categories to the Entry Level Items (ELIs), a basic category in the CPI for which

Nakamura and Steinsson (2008) report frequencies. There are a total of 265 ELI

categories. In this exercise, we use the expenditure shares from the year 2015, but the

results are quite similar for expenditure shares in other years.

We calculate household-specific inflation as πht ≡ pht − pht−1, where the household-

specific price indices are given by pht ≡
∑

j ω
h
j,τpj,t. The time-varying income-specific

expenditure weights ωhj,τ come from the CES, and are updated following the procedure

used by the BLS to compute the aggregate CPI. See Appendix B.1.2 for the complete

description of the procedure.6 The item-level price indices pj,t also come from the BLS.

The item level is the finest publicly available level of disaggregation in the US CPI

data (the BLS does not report inflation numbers at the ELI level), and is slightly more

coarse than ELI, containing 178 distinct expenditure categories starting in 1998. The

price data are monthly, for the period 1969-2008, though prior to 1998 the BLS used

a different product classification. We take 12-month log-differences to obtain annual

growth rates. We then compute the standard deviations of those annual growth rates

for the price indices at each income level.

2.3.2 Two Facts About Consumption Basket Differences
Across Households

Fact 1: Prices of goods consumed by middle-income households are rel-

atively flexible. Figure 2.1 presents the scatterplot of the weighted mean frequency

5Nakamura and Steinsson (2008) calculate these frequencies as the fraction of prices that change
in a given a month, both for all prices, and for regular prices (excluding sales).

6Like aggregate measures of inflation, our household-specific price indices are subject to substitu-
tion bias. This bias is second-order, and is likely to be negligible for realistic monetary policy shocks.
Appendix B.3 shows that the differences in inflation rates computed from a Laspeyres vs. a Paasche
price index between 1987 and 2016 are an order of magnitude smaller than the inflation rate.
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of price adjustment, θ̄h, for households at each of the 20 quantiles of the income

distribution in the CES. Thus, each dot corresponds to 5% of households. The solid

line through the data is the local polynomial fit, and the shaded area is the 95%

confidence interval. The left panel depicts θ̄h when θj is measured as the frequency of

regular (non-sale) price changes, while the right panel measures θj as the frequency of

all price changes, including sales. Mean frequencies of price changes are hump-shaped

along the income distribution: middle-income households consume goods with more

frequent price changes, while high- and low-income households consume goods with

less frequent price changes. Table 2.1 summarizes the underlying magnitudes. It

Figure 2.1 Weighted mean frequency of price changes
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Notes: This figure plots the weighted mean frequency of price changes for households in 20 quantiles of the income

distribution. Each dot represents 5% of the income distribution.

reports, for different slices of the income distribution, the weighted mean frequency

of price adjustment. For the households around the median – the 40-60 income

percentiles – the frequency of regular price adjustment is 22.16 percent per month.

For all the households from the 1st to the 95th percentile, that frequency is 21.17

percent per month. By contrast, the frequency falls to 19.27 for the households in the

96th to 99th percentile, and further to 16.82 for the top percentile in the distribution.

Thus, the weighted mean frequency of price adjustment is some 25% lower for the

households in the top 1% of income compared to the households around the median

income. Including sales, the results are quite similar. In particular, the top 1% of the

income distribution has an 18% lower weighted mean frequency of price adjustment

than the middle of the income distribution.
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Table 2.1 Weighted mean frequency of price changes and CPI volatility at different points
on the income distribution

Income percentile

40-60 1-95 96-99 100

Frequency of price changes:

Regular prices 22.16 21.17 19.27 16.82

All prices (incl. sales) 26.90 26.16 23.75 22.17

Standard deviation of CPI: 0.021 0.020 0.015 0.013

Note: This table reports the weighted mean frequency of price changes, and the standard deviation

of the 12-month log change in CPI for consumers of different incomes.

Fact 2: Prices of goods consumed by middle-income households are rela-

tively volatile. Figure 2.2 reports the standard deviation of πht , the income-specific

inflation. Inflation volatility is also hump-shaped along the income distribution. The

households with middle incomes experience the highest inflation volatility, whereas the

lowest volatility is found at the top of the income distribution. The bottom of Table 2.1

reports the values of the standard deviation of inflation faced by consumers of different

incomes. The annual inflation rate has a standard deviation of 0.020 for consumers in

the bottom 95% of the income distribution, and 0.021 for consumers in the middle

(40-60th percentiles). By contrast, the standard deviation of annual inflation is 0.015

for households in the 96th to 99th percentile of the income distribution, and 0.013 for

those in the top 1%.

Discussion: What consumption patterns are responsible for these differences in

price stickiness and volatility across baskets? Table B.3 reports the 10 consumption

items with the largest differences in the expenditure shares between the middle 20%

of the income distribution and the top 1% of the income distribution.

The top categories in which the middle-income consumers exhibit highest expen-

diture shares relative to the top 1% are mainly goods such as Gasoline, Electricity,

Motor Vehicle Insurance, and Used Cars. The items with the largest expenditure

shares of the top 1% relative to the middle income consumers are mostly services, such

as Elementary School and College Tuition, Child Care, Airfare, Domestic Services,
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Figure 2.2 Standard deviation of the changes in consumption price indices
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Notes: This figure plots the standard deviation of the 12-month log difference in the consumption price indices for

households in 20 quantiles of the income distribution. Each dot represents 5% of the income distribution.

and Club Membership Fees. Among the 10 categories consumed more intensively at

the middle of the income distribution, the frequency of monthly price adjustment is

in excess of 30%. Among the 10 items most disproportionately consumed by the top

1%, the frequency of regular price adjustment is 16%, and total price adjustment 18%.

In either case, the difference in average price adjustment frequency between these two

sets of items is pronounced. The pattern of price stickiness is not universal. Among

the top 1%’s (relative) top 10 items is Airfare, with price adjustment frequency of

almost 60% per month. On the flip side, General Medical Practice and Limited Service

Meals are in the middle 20%’s top 10, and among the price-stickiest categories.

The left panel of Figure 2.3 plots the frequency of the regular price adjustment on

the y-axis against the difference in the expenditure shares between the top 1% and

the middle 20%, with positive values meaning that the top 1% has higher expenditure

shares in that category. The majority of categories are concentrated on 0, implying

that the high- and the middle-income categories have similar expenditure shares.

There is a large range, however, and all in all the relationship between these relative

shares and the frequency of price adjustment is negative. The correlation between the

x-axis and y-axis variables is −0.251.

The categories with the largest expenditure share differences also differ substantially

in the standard deviation of item-level price changes. The mean standard deviation of

12-month log price changes in the set of goods consumed most disproportionately by

the middle-income households is 0.049, more than double the 0.023 mean in the set of

goods consumed by high-income households.

The outlier sector here is Gasoline, whose standard deviation is 0.208, and which
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Figure 2.3 Expenditure differences, frequency of price changes, and standard deviation of
price changes

Frequency of Regular Price Changes St. Dev. of Price Changes

0
2
0

4
0

6
0

8
0

1
0
0

F
re

q
u
e
n
c
y
 o

f 
R

e
g
u
la

r 
P

ri
c
e
 C

h
a
n
g
e
, 
M

o
n
th

ly

−.04 −.02 0 .02 .04
Difference in Expenditure Shares, 100th percentile − 40−60th percentiles

0
.0

5
.1

.1
5

.2
.2

5
S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f 
P

ri
c
e
 C

h
a
n
g
e

−.04 −.02 0 .02 .04
Difference in Expenditure Shares, 100th percentile − 40−60th percentiles

Notes: The left panel plots the frequency of price changes against the difference in sectoral expenditure shares between

households in the top 1% and the middle 20% of the income distribution. The right panel plots the standard deviation

of 12-month log price change against the difference in sectoral expenditure shares between households in the top 1%

and the middle 20% of the income distribution. Both panels include the OLS fit through the data.

is also the sector with the single largest expenditure share discrepancy – in either

direction – between the middle- and high-income households. But the differences

persist even if we focus on the median standard deviation, or drop Gasoline when

computing the mean.7 The right panel of Figure 2.3 displays the scatterplot of the

standard deviation of log price change at the item level against the expenditure

share difference between the high- and middle-income consumers. Once again, most

expenditure share differences are close to zero. Nonetheless, the correlation between

the expenditure share differences and standard deviation of price changes is negative

at −0.255.

2.3.3 Frequency of Price Changes and Inflation Volatility

This section evaluates the relationship between frequency of price changes and inflation

volatility suggested by equations (2.3) and (2.4) of Section 2.2, by providing the data

counterparts of those postulated relationships. The left panel of Figure 2.4 plots

the empirical counterpart of (2.3), along with a 45-degree line. As (2.3) expresses

7If we exclude Gasoline, the differences across households reported in Figure 2.1 and Table 2.1
are attenuated, but the basic patterns hold. Gasoline appears to be responsible for about half of the
difference in the weighted average frequency of price adjustment between the top-income and the
middle-income households. Dropping Gasoline, Figure 2.2 is somewhat modified. It is still true that
high-income households have lower inflation volatility than middle-income ones, but now the highest
inflation volatility occurs in the bottom income tercile.
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both the right- and left-hand side variables relative to the average, we rescale both

the product-level standard deviation and the frequency of price adjustment by their

means across items. Each dot represents one of the 178 disaggregated CPI items. A

positive relationship with a slope close to unity is evident in this plot; the correlation

coefficient between these two variables is 0.715.

The right panel plots the empirical counterpart of (2.4), once again with both y-

and x-axis variables rescaled by their respective means and adding a 45-degree line.

Each dot represents 5% of the income distribution, as in Figures 2.1-2.2. There is an

evident positive relationship between these two variables, with the correlation coeffi-

cient of 0.643. Households consuming more flexible-priced goods tend to experience

higher CPI volatility. This is not surprising, as we are in effect plotting the y-axes of

Figures 2.1 and 2.2 against each other, and both follow a similar inverse U-shape with

respect to income quantile.

Figure 2.4 is consistent with the prediction of our time-dependent pricing model

from Section 2.2 that more sticky sectors should have less volatile prices. If the

frequencies of price adjustment are endogenous, it could be that the differences in

the volatility of sectoral shocks are what drives the frequency of price adjustment.

Note that irrespective of the direction of causality, the correlation between inflation

volatility and frequency of price adjustment across households of different incomes is

that depicted in Figure 2.4. The following section shows that some households are

more sensitive to monetary policy shocks than others. For those results, we do not

need to specify whether the difference in the frequency of price adjustment across

sectors is exogenous or driven by the volatility of sectoral shocks.8

2.4 Impulse Responses of Income-specific CPI to

Monetary Policy Shocks

The previous section shows that prices of goods consumed by high-income households

are more sticky and less volatile than those of the goods consumed by middle-income

households. This suggests that monetary shocks can have distributional consequences

by affecting the relative prices of consumption baskets of households at different points

on the income distribution. We now present evidence that monetary policy shocks

indeed lead to smaller CPI changes for households at the top of the income distribution

8Indeed, Boivin et al. (2009) provide evidence that prices of more volatile goods react systematically
more strongly to monetary policy shocks.
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Figure 2.4 Stickiness and volatility
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Notes: The left panel plots the standard deviation of 12-month log price change at the item level vs. the frequency

of price adjustment for that item. The right panel plots the standard deviation in the 12-month log change in overall

household CPI against the weighed mean frequency of price adjustment for that household type; each dot represents

5% of the income distribution. Both plots include the 45-degree line.

relative to the middle. Our baseline specification adopts the local projection method

of Jordà (2005) to estimate the responses of income-specific CPIs to monetary policy

shocks. Online Appendix B presents impulse responses of income-specific price indices

using the FAVAR methodology following Bernanke et al. (2005) and Boivin et al.

(2009).

The local projection method estimates regressions of the dependent variable at

horizon t + s on the shock in period t and uses the coefficient on the shock as the

impulse response estimate. We estimate the following series of regressions:

pht+s − pht = αs + θsshock
RR
t +

J∑
j=1

βs,j(p
h
t+1−j − pht−j) +

I∑
i=1

γs,ishock
RR
t−i + εt+s. (2.5)

Here, pht is the log of income-specific CPIs, and shockRR is the Romer and Romer

(2004) narrative-based measure of monetary policy shocks from Coibion et al. (2017).

The control variables include 48 lags of the shocks (I = 48) and 6 lags of monthly

income-specific inflation (J = 6). The coefficient θs gives the response of income-

specific prices at t+ s to a monetary policy shock at t. We estimate impulse responses

over a horizon of 48 month with s = 0, 1, . . . , 48.

In our application, we estimate the impulse response of income-specific prices

for each income percentile. We use monthly data for the sample period 1969m1 to
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2008m12. Figure 2.5 plots the estimated impulse responses of income-specific prices

for selected percentiles to a 100-basis-point of contractionary monetary policy shock.

The consumer price indices of the high-income households react substantially less to

monetary policy shocks than those for the middle of the income distribution. The

difference is economically meaningful. After 36 months, the top-1% households’ CPI

responds by 38% less, and the 96-99th percentile households by 26% less, than the

CPI of the households in the middle of the income distribution (40-60th percentiles).

After 48 months, the differences are still 33% and 22%, respectively.

Figure 2.5 Income-specific CPI impulse responses to a monetary policy shock
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Notes: This figure plots the impulse responses of income-specific price indices to a monetary policy shock identified

using the narrative approach of Romer and Romer (2004), as extended by Coibion et al. (2017). The impulse responses

are computed using the local projections method (Jordà, 2005)

Our main object of interest is not the overall response of prices to a monetary

shock, but rather the differential response of the CPIs of different households. We

estimate a version of equation (2.5) using the difference between the (log) CPI of

the top 1% and the (log) CPI of the middle 20% of the income distribution, and the

difference between the top 1% and the aggregate CPI to quantify the effect of monetary

policy on inflation faced by different households. Figure 2.6 plots the difference in the

response of the CPIs of different households. The dark and light grey areas indicate

1 and 1.65 standard deviation confidence intervals, respectively. The figures show

that following a contractionary monetary shock, the price level for the the top income

households falls by less than the price level for middle income households (so that the

difference between the two is positive). The difference is statistically significant, and

49



is about a third of the size of the response of aggregate inflation to the same monetary

shock reported in Figure 2.5.

The econometric evidence thus suggests that monetary shocks can have large

distributional effects across households of different incomes. The following section com-

plements this evidence using a New Keynesian model that quantifies the mechanisms

described in Section 2.2.

Figure 2.6 Differences in inflation changes between income groups
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2.5 Quantitative Framework

This section sets up a sticky price model with multiple households and sectors to

evaluate how monetary shocks affect consumption price indices for households at

different points of the income distribution.

2.5.1 Setup

Preliminaries: We consider an economy populated by H types of households

indexed by h. Households get utility from consuming a bundle of goods produced

by J different sectors of the economy indexed by j. Sectoral goods are produced by

aggregating the output of a continuum of monopolistic intermediate producers indexed

by i. The monetary authority sets the nominal interest rate following a Taylor rule.
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Households: Each type of household h has preferences given by:

Uh = E0

∞∑
t=0

βt
[
lnCh

t −Nh
t

]
, (2.6)

and faces the budget constraint:

P h
t C

h
t + Θt,t+1B

h
t+1 = WtA

hNh
t + T ht +Bh

t . (2.7)

Here, Ch
t is the bundle of goods consumed by households of type h, and P h

t is the

price of this bundle. Nh
t and Ah respectively denote labor supply and the efficiency

of household h, and Wt is the nominal wage per efficiency unit. Bh
t+1 is a bond that

pays one dollar in t+ 1, and Θt,t+1 is the date t price of that bond. Finally, T ht are

transfers to the households from the government and from firms’ profits.

The bundle of goods consumed by each type of household is:

Ch
t =

[
J∑
j

[
ωhj
] 1
η
[
Ch
j,t

] η−1
η

] η
η−1

, (2.8)

where Ch
j,t denotes household h’s consumption of final goods from sector j, and ωhj

is a household-specific taste shifter for sector j. Note that the parameters ωhj are

associated with a particular household h that has efficiency Ah. These parameters

allow us to capture in a reduced form the non-homotheticities that may lead to the

cross-household differences in expenditure shares observed in the data. The model

will be calibrated directly to household-specific expenditure shares. The price index

associated with this bundle is:

P h
t =

[
J∑
j

ωhjP
1−η
j,t

] 1
1−η

,

where Pj,t is the price of the sector j aggregate. Note that both Ch
t and P h

t are indexed

by h, as the bundle (2.8) differs across households. Monetary shocks can differentially

affect households if households put different weights across sectors and shocks have

heterogeneous effects across sectoral prices Pj,t.

Sectoral Demands and Technologies: The demand function associated with

the bundle (2.8) is given by:

Ch
j,t = ωhj

[
Pj,t
P h
t

]−η
Ch
t .
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Adding across households, aggregate demand for the final good produced in sector j is

Pj,tCj,t = ωj,t

[
Pj,t
Pt

]1−η

PtCt, (2.9)

where PtCt are aggregate nominal expenditures, ωj,t ≡
∑

h ω
h
j s
h [Pht ]

η−1∑
h sh[Pht ]

η−1 , and

Pt ≡
[∑

j ωj,tP
1−η
j,t

] 1
1−η

. In these expressions, sh is the share of household h in

aggregate expenditures.

Sectoral goods are produced by aggregating the output of a continuum of interme-

diate producers according to

Yj,t =

[∫
Yj,t (i)

γ−1
γ di

] γ
γ−1

.

Total demand faced by intermediate producer i is then:

Yj,t (i) =

[
Pj,t (i)

Pj,t

]−γ
Yj,t. (2.10)

Intermediate Good Producers: Intermediate producers behave as monopolis-

tic competitors and set prices as in Calvo (1983). The probability that a producer

can change its price in any period depends on the sector in which it operates, and is

given by θj. The producers operate a linear technology

Yj,t (i) =N̄j,t (i) , (2.11)

where N̄j,t (i) denotes the efficiency units of labor used by producer i. The profit-

maximizing price for an intermediate producer that gets to adjust prices satisfies:

P̄j,t = arg max

{
∞∑
k=0

[1− θj]k Et
{

Θt,t+k

[
P̄j,t −Wt+k

]
Yj,t+k (i)

}}
(2.12)

subject to (2.10).

Monetary Policy: The monetary authority sets nominal interest rates according

to a Taylor rule:

exp (it) = exp (ρiit−1)

[
Πφπ
t

[
Yt
Ȳ

]φy]1−ρi

exp (νt) ,
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where it ≡ −logQt,t+1 is the nominal interest rate, Πt ≡ Pt/Pt−1 is aggregate inflation,

and Ȳ is the efficient level of output. Finally, νt is a monetary shock that satisfies

νt = ρννt + εν,t, (2.13)

with εν,t ∼ N (0, σεν ) .

Equilibrium: An equilibrium for this economy is a set of allocations for the

households {Ch
t , C

h
j,t, N

h
t }∀j,h,t, sectoral good producers {Y j

t ,
{
Y j
t (i)

}
i
,
{
N̄ j
t (i)

}
i
}∀j,t ,

and price policy functions for intermediate producers
{
P̄j,t
}
∀j,t, such that given prices:

(i) households maximize (2.6) subject to (2.7); (ii) sector j final producers minimize

costs according to equations (2.9) and (2.10); (iii) intermediate producers maximize

profits by solving (2.12); and (iv) goods and labor markets clear,
∑

hC
h
j,t = Y j

t and∑
hA

hNh
t =

∑
j A

h
∫
N̄j,t (i) di.

We now characterize the equilibrium of a log-linearized version of this economy

around a non-stochastic steady state, following the tradition in the New Keynesian

literature. In what follows, we use lower-case letters to denote the log-deviations of a

variable from its non-stochastic steady state. The optimality conditions associated

with the household problem are the labor-leisure condition:

P h
t C

h
t = AhWt,

and the Euler equation:

Θt,t+1 = βEt
{

P h
t C

h
t

P h
t+1C

h
t+1

}
.

Adding the labor-leisure condition across households we obtain that each type of house-

hold gets a constant share of nominal consumption expenditures, sh ≡ Pht C
h
t

PtCt
= Ah

A
,

where A ≡
∑

hA
h. Substituting into the optimality conditions and log-linearizing we

obtain:

wt − pt = ct, (2.14)

and

ct = Et {ct+1} − [it − Et {πt+1} − ρ] , (2.15)

with ρ ≡ −logβ. Goods market clearing implies yt = ct. Substituting into equation
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(2.15) we obtain:

yt = Et {yt+1} − [it − Et {πt+1} − ρ] . (2.16)

The optimal log-price that solves (2.12) can be written recursively as:

p̄j,t = [1− β [1− θj]]wt + β [1− θj]Et [p̄j,t+1] ,

and the law of motion for the sectoral price indices is

pj,t = θj p̄j,t + [1− θj] pj,t−1.

Combining we these two equations we obtain a sectoral Phillips curve,

πj,t = λj [wt − pj,t] + βEt {πj,t+1} , (2.17)

with λj ≡ θj [1−β(1−θj)]
[1−θj ] . Finally, the Taylor rule is:

it = ρiit−1 + [1− ρi] [ρ+ φππt + φyỹt] + νt. (2.18)

Equations (2.14)-(2.18) can be used to solve for all sectoral inflation rates, along

with the output gap, real marginal costs, real wages, the nominal interest rate, and

the aggregate inflation rate. Sectoral inflation rates can then be used to compute

household-specific inflation according to:

πht =
∑
j

ωhj πj,t.

Note that as a result of taking the first-order approximation, we dropped the time

subscripts on the expenditure weights ωhj , since changes in prices only affect expen-

diture shares to a second order. This second-order substitution bias is likely to be

negligible for realistic monetary policy shocks, as discussed in Online Appendix C.

In what follows, we will use the model to ask two questions: (i) what is the effect of

a monetary policy shock εν,t on household-specific inflation?, and (ii) how do changes

in the distribution of income sh affect the response of inflation πt and the output yt

to a monetary shock?
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2.5.2 Results

Calibration

To evaluate the impact of monetary shocks, we need to assign values for the discount

factor β, the coefficients in the Taylor rule, ρi, φπ and φy, the process for the shocks,

ρν and σεν , the sectoral frequencies of price changes, θj, ∀j, the sectoral household-

specific expenditure shares, ωhj , and the household shares in aggregate consumption

spending, sh. We calibrate the model to monthly data and use values for most of these

parameters that are standard in the literature. In particular, we set β = 0.961/12,

which corresponds to an annualized real interest rate of 4 percent, and take the Taylor

rule parameters ρi = 0.95, φπ = 1.5 and φy = 0.5/12 and set the persistence of the

shocks to ρν = 0, as in Christiano et al. (2010). Finally, we calibrate the model to 265

sectors and 20 household types, and calibrate the frequencies of price changes θj and

the expenditure shares ωhj and sh using the data from Nakamura and Steinsson (2008)

and the CES data presented in Section 2.3.

Distributional Consequences of Monetary Shocks

We now evaluate the distributional consequences of a monetary shock in this model.

Figure 2.7 plots the impulse response of the household-specific price indices to a one

standard deviation shock to εν.t. The figure shows that the shock has distributional

effects: prices of the middle-income households are the most sensitive to the shock,

and prices are the least sensitive for the top-income households. This is not surprising,

since in our model, as in the data, households at the top of the income distribution

consume the goods that are the most sticky and thus respond more sluggishly to

shocks.

Table 2.2 reports the price indices faced by households at different points of the

income distribution following the monetary shock, expressed relative to the aggregate

price index. The table shows that the cumulative response after 6 months of the prices

faced by the top 1 percent is about 13% smaller than that of the aggregate price index,

and almost 20% smaller than the response of the prices faced by the households at the

middle 5 percent of the income distribution. These differences are quite persistent,

the cumulative change in prices faced by the richest 1% is still 10% smaller than that

faced by the middle income households 18 months after the shock.
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Figure 2.7 Impulse responses of household-specific CPIs to a monetary shock
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Notes: This figure plots the impulse responses of income-specific CPIs to a monetary policy shock, simulated using

the model in this section.

Table 2.2 Cumulative inflation, relative to aggregate

Bottom 5% Middle 5% 96-99 % Top 1%

6 months 0.993 1.059 0.952 0.874

12 months 1.003 1.036 0.964 0.898

18 months 1.004 1.023 0.974 0.917

24 months 1.004 1.015 0.982 0.934

30 months 1.003 1.009 0.988 0.948

36 months 1.002 1.006 0.992 0.959

Notes: The table reports the impulse responses of the household-specific price indices Pht for households at the bottom,

middle, and 5% of the income distribution, and for households at the top 1% of the income distribution, expressed

relative to the impulse response of the aggregate price index, Pt.

Changes in the Income Distribution and the Effectiveness of Monetary
Policy

This section investigates the impact of changes in the income distribution on the

effectiveness of monetary policy. With this in mind, we simulate the response of aggre-

gate prices to a monetary shock in two counterfactual calibrations of the model with

different levels of income inequality. In the first counterfactual, we reduce inequality

so that the share of aggregate income held by households at the top decile of the

income distribution is reduced by one half. This change in the share of income held
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by top households would roughly correspond to taking income inequality in the US

back to 1980 levels.9 In the second counterfactual, we increase share of income in the

hands of the top decile in national income by 50 percent. In each counterfactual, we

rescale the share of income of all the households below the top decile proportionally.

Specifically, in the counterfactuals we set the shares to

shc =

αc × s
h
b if h ∈ top decile

shb
1−s10%c

1−s10%b

else
,

where shb and shc are the baseline and counterfactual shares of aggregate spending by

households of type h, respectively. We set αc1 = 0.5 in the first counterfactual and

αc2 = 1.5 in the second counterfactual.

To conduct these counterfactuals, we calibrate the household-specific productiv-

ities Ahc to match the desired income distribution, while leaving aggregate income

unchanged. More generally, one could imagine that the shares would also change

as we change each household’s income. To reflect these counterfactual changes we

proceed in two steps. First, for each product category j, we split the households in

the CES into consumption percentiles and perform a local polynomial regression of

ωhj on shb . Second, we calculate the predicted value of ωhj at the counterfactual shares

shc . We use these predicted values as the sectoral expenditure shares for households

with counterfactual income Ahc .

Figure 2.8 plots the impulse responses of the aggregate price index and of output

in the two counterfactuals to a monetary shock that increases the nominal interest

rate by 0.125 basis points on impact. The figure shows that prices are more responsive

to monetary shocks in the baseline than in the counterfactual with more income

inequality, and less responsive than in the counterfactual with less inequality. This is

expected, since households at the top of the income distribution spend more of their

income in sectors with more sticky prices. Prices decline by about 3.5% more in the

counterfactual model with low income inequality for every horizon up to 24 months.

However, the magnitude of the difference between the impulse responses of output is

negligible. We conclude that realistic changes in inequality do not substantially alter

how aggregate prices and output respond to monetary policy.

9Between 1980 and 2014, the share of US income held by the top 10% increased from 34% to
47%, and the share of income held by the top 1% increased from 10% to 20% according to the World
Inequality Database (Alvaredo et al., 2016).
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Figure 2.8 Response of the aggregate CPI and output to a monetary shock: Baseline vs.
counterfactual income distributions

Aggregate CPI Output

0 5 10 15 20

Months

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Baseline

Counterfactual 1

Counterfactual 2

0 5 10 15 20

Months

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Notes: This figure plots the impulse responses of the aggregate price indices and output in the baseline calibration

and in counterfactual a calibrations described in Section 2.5.2.

2.6 Conclusion

It has been known since at least Engel (1857, 1895) that households with different

incomes consume different goods. This paper documents two novel patterns in how

consumption baskets differ: in the United States, households at the top of the income

distribution consume more sticky-priced goods and face substantially lower overall

inflation volatility than households in the middle of the income distribution. Since the

price stickiness, the volatility, and the response of prices to monetary policy differs

across goods categories, these patterns suggest distributional consequences of monetary

policy shocks. Because the prices of goods consumed by the high-income households

are less responsive to monetary shocks, the overall CPIs of those households will react

less to those shocks. We document both empirically and quantitatively that this is

indeed the case. The estimated impulse responses to monetary shocks identified using

the narrative approach of Romer and Romer (2004) show that CPIs of the high-income

households react by about 38% less to a given monetary policy shock than CPIs of

middle-income households 36 months after the shock. We then set up a multi-sector,

heterogeneous-household model with sticky prices, parameterizing it to the observed

sectoral heterogeneity in price stickiness and household heterogeneity in consumption

baskets. In the model, the CPIs of high-income households respond 13% less to a

monetary shock than the CPIs of middle-income households after 12 months.
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Chapter 3

Specialization, Market Access and Real
Income1

Co-authored with Dominick Bartelme and Andrei A. Levchenko

3.1 Introduction

The goal of this paper is to empirically estimate the effects of foreign demand and

supply shocks on the real income of different countries. The notion that shocks to the

size and the sectoral composition of external demand and supply lead to changes in

income dates back to the origins of international economics. A voluminous theoretical

literature has elaborated a number of mechanisms through which external conditions

interact with the structure of domestic comparative advantage to affect real income.

It has become clear that the qualitative and quantitative impacts of foreign shocks

depend crucially on the strength of the various mechanisms at play, and are therefore

ultimately an empirical matter.2

Empirical work on this question faces a number of challenges. There are many sec-

tors and theories, but relatively few real income observations in the data. Econometric

issues of endogeneity and omitted variable bias loom large. Faced with these challenges,

the existing literature has coalesced around three basic approaches. One abstracts

from sectoral heterogeneity altogether and focuses on the relationship between real

income and the size of the external market, as determined by geography (Frankel and

1We thank Fernando Parro, John Ries, Andrés Rodŕıguez-Clare and workshop participants
at several institutions for helpful suggestions. Email: dbartelm@umich.edu, tinglan@umich.edu,
alev@umich.edu.

2Handbook chapters by Costinot and Rodŕıguez-Clare (2014) and Ventura (2005) review and
quantify the impact of changes in openness on income levels and growth rates, respectively, under
various assumptions on the structure of the economy. Rodriguez and Rodrik (2001) and Harrison
and Rodŕıguez-Clare (2010) provide critical reviews of the empirical work on openness and income.
Lederman and Maloney (2012) summarize the theoretical and empirical literature on trade patterns
and income.
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Romer, 1999; Redding and Venables, 2004; Feyrer, 2018). Another examines whether

certain features of comparative advantage are associated with growth (e.g. Prebisch,

1959; Humphreys et al., eds, 2007; Hausmann et al., 2007). This approach abstracts

from cross-country variation in external demand and supply, and lacks a common

theoretical foundation. The third calibrates fully specified general equilibrium models

and conducts counterfactuals (e.g. Whalley, 1985; Aguiar et al., 2016; Hsieh and Ossa,

2016). These methods deliver precise and interpretable answers, but depend heavily

on the assumed model structure and a large number of parameters.

This paper develops a unified approach to quantifying the impact of foreign shocks

in different sectors that strikes a balance between the clarity and rigor of structural

models and more model-robust statistical methods that “let the data speak.” We

begin by analyzing a class of small open economy models with many sectors that

satisfy four key assumptions: i) bilateral trade obeys sector-level gravity, ii) a homo-

thetic upper-tier utility aggregator, iii) competitive goods and factor markets, and

iv) a unique and smooth equilibrium mapping from the primitives to the endogenous

outcomes. The production side of the economy is quite general, allowing for any

number of factors, intermediate goods linkages, and external effects within and across

sectors. This class contains small open economy versions of most of the quantitative

trade models in the literature as special cases, including isomorphisms with various

frameworks featuring monopolistic competition.

The framework delivers natural measures of sector-level foreign demand and supply

shocks, which we label external firm and consumer market access respectively. These

variables contain all relevant information for a country’s interaction with foreign

markets, and are easily estimated from the trade data using standard techniques. We

employ a first order approximation to express a log change in a country’s real income

in terms of export and import share-weighted averages of the foreign shocks, along

with domestic demand and supply shocks. The elasticities on the foreign variables

measure how different foreign shocks, interacted with the domestic sectoral composi-

tion, generate different general equilibrium income impacts, thus providing a direct

answer to the question posed by this paper. These elasticities also map directly to

relevant parameters for trade policy.

Estimation of the model-derived equation must confront two primary challenges.

The first is that there are hundreds of traded sectors and thus potentially hundreds

of income elasticities that can be estimated. This is clearly not feasible given the

relatively small sample of available GDP per capita data. To reduce the number of

parameters to be estimated, we employ a machine learning technique to group sectors
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based on their characteristics into a small number of clusters. We then estimate the

much smaller number of cluster-level income elasticities.

The second challenge is the common one in growth regressions: omitted variables

and endogeneity. We first provide formal conditions under which the average within-

cluster income elasticities are identified by an OLS regression that fully conditions

on the initial equilibrium observables. The result exploits the typical invertibility

properties of gravity models. To deal with the high dimensionality of the control

vector we employ the Post-Double-Selection method of Belloni et al. (2014b, 2017),

which is based on the approximate sparsity of the control vector to select a lower-

dimensional set of “important” controls while maintaining consistency and uniformly

valid inference. We rely on the fact that most countries are small in foreign markets

to eliminate any direct causal from domestic shocks to foreign variables, and measure

the foreign shocks in such a way as to minimize the practical relevance of this channel.

We implement our approach on UN COMTRADE trade data and decadal real

income changes from the Penn World Table 9.0 over 1965-2015, with a sample of 127

countries and 268 sectors. We use the k-means clustering algorithm (MacQueen et

al., 1967) along with 7 sectoral characteristics measured from US data to cluster 233

manufacturing industries into 4 clusters. It turns out that this procedure results in

clusters with features that are easy to verbalize: i) processing of raw materials, ii)

complex intermediate inputs, iii) capital goods, and iv) consumer goods. We group

agriculture and mining sectors into their own clusters for a total of 6 clusters and

therefore 12 cluster-level foreign shocks.

We find significant heterogeneity in the average impact of different foreign shocks

on real income across clusters. Foreign demand shocks in complex intermediate and

capital goods producing sectors have the largest impacts, with the capital goods

elasticity being somewhat imprecisely estimated. Foreign demand shocks in all other

sectors have small and positive income impacts. Turning to the supply shocks, we

find that the largest impacts come from the capital and consumer goods sectors,

although the confidence intervals are rather large. This finding reflects in part the lack

of variation across countries in the identifiable foreign component of supply shocks

relative to the demand shocks.

We subject our specification to robustness checks along a number of dimensions

including the number of clusters, the tuning parameter used for selecting controls,

measurement error in the cluster characteristics and dropping important trading

partners. The most robust result is that demand shocks in complex intermediate

goods have highincome elasticities and non-intermediate, non-capital goods sectors
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have small elasticities. The result that both supply and demand shocks in capital

goods sectors have high income elasticities is moderately robust. Interestingly, when

we split the sample into developed and developing countries, we find that both capital

goods elasticities are much higher (and relatively precisely estimated) for developing

countries across all specifications. While intriguing, the practical importance of this

finding on the demand side is limited by the low shares of these goods in the export

baskets of developing countries.

We conclude by examining the quantitative implications of our estimates. Given

our estimated elasticities, the real income impacts are determined by the size and

pattern of foreign shocks (“geography”) interacted with the trade shares (“comparative

advantage”). Our first exercise holds geography constant and computes the total

elasticity of income with respect to uniform foreign demand and supply shocks for each

country in our sample. There is substantial cross-country heterogeneity in the impacts,

with rich countries benefiting more from foreign demand shocks on average due to

their higher propensity to specialize in high income-elasticity sectors. Our second

exercise illustrates the role of geography by holding comparative advantage constant

and subjecting each country to the foreign shocks experienced by different countries in

the same time period. We find that geography plays a non-trivial role in determining

the growth experiences of different countries. For example, East Asian countries

benefited to the tune of roughly half a percentage point of growth per year (relative

to the median country) over the sample period from the rapid growth of surrounding

countries, while Western European countries lost roughly half a percentage point of

growth due to slow overall growth in the region.

Our paper contributes to the literature on trade and growth. A number of influ-

ential papers estimate the impact of overall openness on real income (e.g. Frankel

and Romer, 1999; Rodriguez and Rodrik, 2001; Redding and Venables, 2004; Feyrer,

2018). Our paper is closer to the literature on trade patterns and income. Most of

this literature studies either export or import patterns, but not both, and considers

only one characteristic of trade patterns at a time. Some examples on export side

include the natural resource curse literature (e.g. Humphreys et al., eds, 2007), the

work on “high-income goods” (Hausmann et al., 2007), the location in the product

space (Hidalgo et al., 2007), specialization in primary goods (Prebisch, 1959), or

skill-intensity (Atkin, 2016; Blanchard and Olney, 2017). The literature also consid-

ered imports of capital goods (Eaton and Kortum, 2001a; Caselli and Wilson, 2004),

skill-intensive goods (Nunn and Trefler, 2010; Atkin, 2016; Blanchard and Olney,

2017), or intermediate inputs (e.g. Amiti and Konings, 2007; Kasahara and Rodrigue,
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2008). On the theory side, our framework is related to recent work using families of

general equilibrium models to conduct trade counterfactuals (Adao et al., 2017; Allen

et al., 2019; Bartelme, 2018).

The rest of the paper is organized as follows. Section 3.2 lays out the model, while

Section 3.3 discusses identification and estimation. Section 3.4 describes the data and

Section 3.5 presents the results. Section 3.6 discusses the quantitative implications.

The details of the derivations, data construction and manipulation, and additional

empirical results are collected in the Appendices.

3.2 Model

3.2.1 Economic Environment

We consider the steady state of a small open economy Home (H) in a world with N

other countries (indexed by n) and K sectors indexed by k. Each sector produces a

homogeneous good. Home is “small” in the sense that Home variables do not affect

foreign aggregates, but it may be large in its own domestic market and will face

downward sloping demand for its products in international markets (the Armington

assumption).

Technology and Market Structure

There are J factors of production indexed by j, that are in fixed supply L̄H,j and mobile

across sectors. Input and output markets are competitive. Firms are infinitesimal and

perceive a production technology that is constant returns to scale in their own inputs,

but may feature external economies of scale that operate both within and across

sectors. Given these assumptions, we can characterize the production technology

in each sector by the unit cost function cH,k({wH,j}, {PH,k}, {LH,jk}, {TH,k}), where

{wH,j} are factor prices, {PH,k} are intermediate goods prices, {LH,jk} are the factor

allocations and {TH,k} are exogenous productivities. We allow this cost function to

be quite general, requiring only that it is continuously differentiable. Note that we

allow for cross-sectoral productivity spillovers in that the allocation of factors to other

sectors may affect the unit costs in sector j.
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Demand

All factor income accrues to a representative consumer. Consumers have homothetic

preferences over sectoral quantity bundles QC
H,k.

3 Within sectors, consumers combine

Home and foreign varieties in a CES fashion,

QC
H,k =

(
z

1
σk
H,k · (q

C
H,k)

σk−1

σk +
∑
n∈N

(qCnH,k)
σk−1

σk

) σk
σk−1

(3.1)

where zH,k is an exogenous demand shifter. This formulation allows consumers to

have home bias in consumption, so that Home products can potentially have large

market share in the Home market. We assume that producers use the same aggregator

for intermediate goods. We denote the sectoral CES price indices by PH,k and the

aggregate price index by PH .

These assumptions on the lower tier demand functions imply a sector-level gravity

equation for expenditure shares on goods from various sources. Foreign prices have

two components: the source-specific costs and an iceberg bilateral component τnH,k.

With these assumptions, we can write the gravity equation as

pnH,k · qnH,k =
(cn,k · τnH,k)1−σk

P 1−σ
H,k

· EH,k, pHH,k · qHH,k = zH,k
c1−σk
H,k

P 1−σ
H,k

· EH,k (3.2)

where P 1−σ
H,k = zH,kc

1−σk
H,k +

∑
n∈N (cn,kτnH,k)

1−σk and EH,k is Home sectoral expenditure

on both consumption and intermediate goods. Foreign demand for Home’s commodi-

ties also takes the gravity form, with foreign imports facing some iceberg bilateral

trade barriers τHn,k,

pHn,k · qHn,k = (cH,k · τHn,k)1−σk · En,k
P 1−σk
n,k

. (3.3)

We now define two key quantities. By summing export revenues across foreign

export destinations, we get total foreign revenues as a function of Home costs and

external Firm Market Access (FMA),4∑
n∈N

pHn,kqHn,k = c1−σk
H,k ·

∑
n∈N

τ 1−σk
Hn,k ·

En,k

P 1−σk
n,k︸ ︷︷ ︸

FMAH,k

(3.4)

3We assume homotheticity in order to equate welfare with real income via a well-defined aggregate
price index, which in turn allows us to make contact with national accounts data in the empirical
section.

4This concept differs from the usual definition of market access in that it excludes the contribution
of domestic demand.
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Likewise, summing import expenditures across foreign sources, we get total imports

as a function of Home expenditures, prices and external Consumer Market Access

(CMA), ∑
n∈N

pnH,k · qnH,k =
EH,k

P 1−σk
H,k

·
∑
n∈N

(cn,k · τnH,k)1−σk

︸ ︷︷ ︸
CMAH,k

(3.5)

From Home’s perspective, external firm and consumer market access are exogenous.

Moreover, they are sufficient statistics for Home’s interaction with foreign markets.

Any change in foreign variables affects the Home equilibrium only through their effects

on FMA and CMA.

Competitive Equilibrium

We define a competitive equilibrium in the usual way, as a set of goods and factor

prices and allocations such that firms and consumers optimize taking prices as given,

factor and output markets clear and trade balances. Under the assumptions above, we

can characterize the equilibrium set as the set of solutions to a system of simultaneous

equations in the unit cost and expenditure functions, factor prices and allocations,

and trade balance (all derivations are in Appendix C.1). If factor allocations are

uniquely determined given factor prices, we can further reduce the system to a set

of J simultaneous equations in factor prices, equating factor supply with factor de-

mand. Regardless of uniqueness, the set of equilibria is completely determined by the

functions cH,k and U(QC
H,k), the elasticities σk and the exogenous variables.

Our first order approach to estimation and counterfactual welfare analysis re-

quires a unique and smooth mapping from the exogenous variables to equilibrium

outcomes. Without uniqueness the data would contain little or no information on

how different foreign shocks systematically affect real income.5 In general, without

further restrictions on cH,k and U(QC
H,k) there may be multiple equilibria, with the

presence of external economies being the primary culprit. It is difficult to provide

sufficient conditions for uniqueness in settings with general production technology

and preferences such as ours, and hence we do not pursue a characterization of the

equilibrium properties of this class of models.6 Instead, we simply assume a unique

5Our framework does allow small differences in either domestic fundamentals or foreign market
access to have large impacts on long run real income, a feature that many models with multiple
equilibria are designed to capture.

6Propositions 3 and 6 in Kucheryavyy et al. (2018) together provide necessary and sufficient
conditions for uniqueness of an equilibrium in a labor-only small open economy with constant elasticity
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and smooth equilibrium function in the relevant parameter space for the rest of the

paper.

3.2.2 First Order Welfare Approximation

We now drop the H subscript to economize on notation. Our assumption of homoth-

etic preferences equates real expenditure with welfare, while our assumption of trade

balance equates nominal GDP with nominal expenditure. Thus we can write Home’s

welfare as

Y

P
= α ·

∑
k∈K c

1−σk
k ·

(
zk

Ek

P
1−σk
k

+ FMAk

)
P

(3.6)

where Y is nominal GDP and α is the share of value added in gross output. The term

in the numerator of the RHS is total sales, domestic and foreign. External consumer

market access enters into this expression implicitly through the sectoral price indices

Pk ≡ (zH,kc
1−σk
H,k + CMAk)

1
1−σk .

External shocks will have two types of effects on Home’s welfare in a competitive

equilibrium. There will be direct effects through increased foreign sales (when FMAk

increases) and lower prices (when CMAk increases). There will also be indirect effects

as domestic producers and factor owners alter their prices and production plans and

consumers alter their consumption patterns in response to these external shocks.

Our interest is in capturing the total effects of foreign shocks, both direct and

indirect, in an empirical setting. To do so we make use of our assumption of a unique

and smooth mapping from the domestic and foreign shocks to equilibrium quantities.

Taking natural logs of Equation (3.6) and applying Taylor’s theorem, the log change

in real income with respect to a set of log changes in foreign shocks is approximately

d ln y ≈
∑
k

δexk · [λexk d lnFMAk] +
∑
k

δimk ·
[
λimk d lnCMAk

]
, (3.7)

where y ≡ Y/P denotes real income or welfare, λexk is the share of total sales accounted

for by exports in sector k and λimk is the share of total expenditures accounted for by

imports in sector k.

The elasticities δexk and δimk measure the total impact, direct and indirect, of foreign

shocks in different industries on real income. To interpret these elasticities, consider

the following natural experiment. Two small open economies, initially identical in

external scale effects.
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every respect, experience a different pattern of foreign shocks. Specifically, suppose

economy A experiences a 1% increase in foreign demand in industry 1 while economy

B experiences a 1% increase in foreign demand in industry 2. Which economy will

experience a greater real income change? Assuming both industries have the same

initial export sales shares, the answer will be whichever economy gets the shock to

the industry with the highest δex. By focusing on external demand and supply shocks,

rather than realized trade as in much of the literature, we can in principle separate

the causal impact of external factors from that of domestic productivity or demand

shifters.7

These elasticities are not generally “structural” parameters, except in special cases.

The determinants of δexk and δimk are complex and difficult to characterize analytically,

because the Envelope Theorem does not apply to the competitive equilibrium even in

the absence of domestic externalities, due to the economy’s unexploited international

market power.8 Foreign shocks in different sectors generate different terms of trade

effects, which in turn trigger different patterns of reallocation across sectors. These

initial reallocations in turn generate factor price and productivity movements that

imply further rounds of reallocation. These effects are especially complicated when

sectors are linked through input-output relationships or productivity spillovers. Below

we offer several simple examples to give some intuition for how the underlying structure

of the economy determines the elasticities in different scenarios.

This very complexity provides one of the primary motivations for our approach.

Rather than explicitly modeling and quantifying each aspect of the underlying struc-

ture of the economy, we aim to empirically recover the reduced form elasticities that

are directly relevant to the relationship between trade and income. Our estimates will

thus be robust to model uncertainty within the wide class of trade models encompassed

by our framework, which offers a clear advantage over methods that require a complete

specification of the model. On the other hand, we provide enough structure to enable

clear interpretation, provide precise conditions for identification, and conduct local

counterfactuals. These elements are missing in the reduced form literature.

There are also some costs to achieving this robustness to model uncertainty. First,

fully specifying a (correct) model permits more efficient estimation of the relevant

7These elasticities are linked to the elasticities of real income with respect to iceberg trade costs
through the identities

δexk =
1

1− σk
· ∂ ln y

∂ ln τexk
, δimk =

1

1− σk
· ∂ ln y

∂ ln τ imk
.

8See Bartelme et al. (2019) for an analysis of trade and industrial policy in an Armington SOE.
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parameters. Second, a fully structural model reveals the economic mechanisms that

generate the results more clearly. Third, a structural model can be solved in its

non-linear form, which enables more accurate counterfactuals with respect to large

shocks. We thus view our strategy as complementary to fully structural approaches.

3.2.3 Examples

Efficient Economy

We assume that the planner directly chooses quantities and factor allocations to

maximize welfare, taking the production technology, factor supplies and the trade

balance constraint as given. In Appendix C.1 we show that an application of the

Envelope Theorem gives

δexk =
1

σk
, δimk =

1

σk − 1
, ∀k ∈ K. (3.8)

An intuition for the export elasticity comes from the fact that the optimal export tax

on industry k is 1/σk. This implies that the country earns high margins on exports

from industry k, relative to another industry with the same export sales but higher σk.

Given equal initial sales, the planner prefers a proportional increase in sales in the high

margin (low σk) industry. The intuition for the import elasticity is a bit different: the

factor 1
1−σk

simply translates the increase in market access into a decrease in prices.

Single Factor Economy with No Spillovers

We now specialize our general setting to the competitive equilibrium of a single factor

economy with no intermediate goods and no external economies of scale. We also

assume that the upper tier utility is Cobb-Douglas. Given these assumptions,

δexk = κ, δimk =

(
1

σk − 1
− κθdk

)
, ∀k ∈ K, (3.9)

κ =

∑
k∈K λ

im
k

1−
∑

k′∈K
[
λdk′ + (1− σk′)

(
λdk′(1− θdk′) + λexk′

)] .
where λdk is the initial share of domestic sales in industry k in total sales, and

θdk =
λdk

λdk+λimk
. Unlike the case of an efficient economy, here the export elasticity is con-

stant across industries. This is because in a single factor economy without spillovers,

labor allocations to exports in each industry are proportional to the export sales share

λexk . This implies that the indirect effect (through the wage) of a shock to lnFMAk
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is proportional to the export share; since the direct effect is also proportional to the

export share the overall effect is proportional as well. The constant of proportionality

κ reflects the overall importance of trade to the economy as well as the distribution

of sales across foreign and domestic customers and their covariance with the trade

elasticities. The import elasticity is modified (relative to the efficient case) to account

for the negative impact of foreign competition on domestic producers.

Single Factor Economy with Industry Spillovers

We now augment the single factor economy above with endogenous within-industry

productivity spillovers as in Kucheryavyy et al. (2018) and Bartelme et al. (2019), so

that ck = w
TkL

γk
k

. To simplify the analysis we assume a Cobb-Douglas upper tier and

zero domestic sales, as well as the condition γk(σk − 1) < 1, ∀k to ensure a unique

interior equilibrium. The elasticities are now given by

δexk = κ · 1

1− γk(σk − 1)
, δimk =

(
1

σk − 1

)
, ∀k ∈ K, (3.10)

κ =
1

1−
∑

k′∈K
(1+γk′ )(1−σk′ )
1−γk′ (σk′−1)

λexk′
.

All else equal, foreign demand shocks in sectors with larger productivity spillovers

generate a higher income change. Notice that, for a given γk, higher σk also implies a

higher income elasticity. This reflects the fact that scale economies are more valuable

in sectors with more elastic international demand; in less elastic sectors, achieving

higher productivity comes at the expense of significantly lower export prices.9

3.2.4 Isomorphisms and Extensions

We have derived our results using the competitive equilibrium of an Armington

economy to maximize clarity and simplicity. However, the crucial assumptions are

the gravity assumption on trade flows, homothetic upper tier preferences and the

unique equilibrium mapping that validates our first order approach. Thus models with

alternative micro-foundations for gravity, such as those based on Eaton and Kortum

(2002), Krugman (1980), or Melitz (2003) with a Pareto distribution for productivity,

will be isomorphic to our model in the sense that they have a first order approximation

9Our assumption of zero domestic sales implies that foreign supply shocks do not affect domestic
prices or production decisions. With positive domestic sales the formulas become quite messy, but
the general intuition is still that countries prefer demand shocks in high γk(σk − 1) sectors and prefer
supply shocks in low γk(σk − 1) sectors.
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of the same form as Equation (3.7) and the same interpretation of the market access

elasticities.

Our framework is static, and thus should be interpreted as capturing long run

differences across steady states. Our assumption of fixed factor endowments formally

rules out dynamic models of factor accumulation, but we can extend our approach to

allow for this feature as well by letting the steady state factor supplies depend on the

other exogenous variables of the model through long run factor supply equations.

3.3 Identification and Estimation

3.3.1 Identification

We now consider identification of the elasticities δexk and δimk based on Equation (3.7).

To match our empirical setting, we consider a world populated by many small open

economies (indexed by i) over many time periods (indexed by t), with a fixed set of

industries indexed by k. The log change in real income in country i between time t

and t+ 1 is approximately

d ln yi,t ≈
∑
k

δexik,t ·
[
λexik,td lnFMAik,t

]
+
∑
k

δimik,t ·
[
λimik,td lnCMAik,t

]
+
∑
k

δTik,t ·d lnTik,t

(3.11)

where d lnxik,t = lnxik,t+1 − lnxik,t for x = FMA,CMA, T .10

The variables d lnFMAik,t, d lnCMAik,t and d lnTik,t on the right hand side of

this equation are not directly observable. However, FMAik,t and CMAik,t can be con-

sistently estimated using conventional gravity equation techniques (Head and Mayer,

2014). We defer a detailed discussion of our estimation strategy for these variables

to Section 3.4, and assume that they are known with certainty for the remainder of

this section. In contrast, the domestic productivity shocks Tik,t cannot be observed

or estimated without knowledge of the full model structure. We treat the domestic

shocks as unobservable, which leads to the empirical specification

d ln yi,t = νt+
∑
k

δexik,t ·
[
λexik,td lnFMAik,t

]
+
∑
k

δimik,t ·
[
λimik,td lnCMAik,t

]
+ εi,t, (3.12)

10For expositional purposes we assume that neither the factor supplies nor the domestic demand
shifters change. It is straightforward but notationally cumbersome to add these terms. All our results
regarding identification in the presence of unobserved productivity shocks apply to these variables as
well.
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where νt is the mean time-t domestic shock term, and εi,t =
∑

k δ
T
ik,t · d lnTik,t − νt.

As written, equation (3.12) has a larger number of parameters (2K × N × T )

than observations (N × T ). In some simple examples the elasticities depend only on

industry characteristics, but in general they also depend on the initial equilibrium

(the point of approximation) and are thus country and time-specific as well. This

issue is compounded by the fact that we observe a large number of distinct traded

industries relative to the number of medium-run country-time growth rates in the

sample, making even the estimation of industry-specific elasticities problematic in our

finite sample.

We begin by clustering “similar” industries together, where similarity is defined as

closeness in the space of industry characteristics. We measure a number of industry

characteristics that are likely to affect the elasticities, then cluster the industries using

the k-means algorithm commonly used in machine learning and statistics. Section 3.4

describes the industry characteristics and the clustering algorithm in detail. For now,

simply suppose that we have arrived at some clustering scheme g ∈ G. Using this

notation, we can rewrite Equation (3.12) as

d ln yi,t = νt +
∑
g∈G

δexg · [d lnFMAig,t] +
∑
g∈G

δimg · [d lnCMAig,t] + µi,t + εi,t, (3.13)

where

δexg =
1

Kg

∑
k∈g

Ei,t[δ
ex
ik,t], d lnFMAig,t =

∑
k∈G

λexik,td lnFMAik,t, (3.14)

µi,t =
∑
g∈G

∑
k∈g

(δexik,t − δexg )
[
λexik,td lnFMAik,t

]
+
∑
g∈G

∑
k∈g

(δimik,t − δimg )
[
λimik,td lnCMAik,t

]
,

(3.15)

Kg is the number of industries in g and similar definitions apply to δimg and d lnCMAig,t.

The parameters of interest are the δg’s, which are the within-cluster average of the

average partial effects Ei,t[δik,t]. They can be interpreted as the best guess for the real

income impact of a unit shock to log market access in industry k ∈ q for a randomly

chosen country and time period, conditional only on the identity of the cluster.

Identification requires the conditional independence of the foreign shocks and the

two error components, µi,t and εi,t. As it stands, Equation (3.13) does not satisfy this

condition, since both the foreign shocks and the error components depend on the initial

equilibrium. The foreign shocks are obviously functions of the initial equilibrium, via

the trade share weights λexik,t and λimik,t. Less obviously, the error components µi,t and

εi,t are also functions of the initial equilibrium. This dependence stems from several
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sources, primarily the dependence of the country-industry-time-specific elasticities δik,t

on the initial equilibrium and any serial correlation in the domestic shocks d lnTik,t.

Intuitively, the identification challenge is to ensure that “all else is equal” across

countries receiving different “treatments,” i.e. different patterns of foreign shocks.

Note that the large number of potential channels for correlation between the errors

and the independent variables makes it impossible to sign the bias that would arise

from estimating Equation (3.13) using OLS.

This discussion suggests that we could identify the cluster-level average treatment

effects if we condition on all relevant information on the initial equilibrium. We exploit

the structure of the gravity to rigorously show how we can do so. Recall from Section

3.2 that we assume the existence of a smooth and one-to-one equilibrium map which

determines every endogenous variable, including the δik,t, as a function of the set of

exogenous variables {{Tik,t}, {zik,t}, {FMAik,t}, {CMAik,t}, {L̄ij,t}}. In principle, the

FMAik,t, CMAik,t and L̄ij,t are all observable while the domestic supply and demand

shifters Tik,t and zik,t are not. However, gravity models of trade typically have the

property that, conditional on the rest of the exogenous variables and the parameters

of the model, the trade flows λexik,t · Yi,t and λimik,t · Ei,t can be inverted to recover the

Tik,t and zik,t that generated them. We assume that the underlying model has this

property as well, which allows us to characterize any variable in the initial equilibrium

as functions of observables. Once we condition on the initial equilibrium via these

observables, identification of the elasticities follows, provided that the residual innova-

tions in domestic productivity and demand are uncorrelated with the foreign shocks.

Our small open economy assumption makes this identification condition internally

consistent with our model in the sense that there can be no direct causal relationship

between the domestic and foreign shocks, and thus it involves only restrictions on the

joint distribution of the exogenous variables.11

We now provide formal sufficient conditions for identification for two special cases

of the general model in Equation (3.13), then discuss the general case. Our discussion

assumes that the mapping from the initial equilibrium observables to the unobservables

is sufficiently smooth to be well approximated by linear combinations of functions

of initial observables, such as dummies, polynomials, splines, and interactions. We

denote the (potentially high dimensional) vector of approximating variables by wi,t,

and WLOG assume that each component has mean zero.

11In a large economy, domestic shocks will affect foreign variables. We measure our foreign shocks
so as to minimize the effect of any violations of this assumption in the data, and conduct robustness
checks with respect to this assumption in Section 3.5.
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Constant Treatment Effects Within Clusters

In this case, the elasticities are constant within cluster, i.e. δexik,t = δexg and δimik,t = δimg .

Under this assumption, we can write Equation (3.13) as

d ln yi,t = νt +
∑
g∈G

δexg · [d lnFMAig,t] +
∑
g∈G

δimg · [d lnCMAig,t] + ηwi,t + ε̃i,t, (3.16)

ε̃i,t =
∑
k∈K

ηkwi,t · ξTik,t, E[ε̃i,t] = 0, E[ξTik,t|wi,t] = 0 ∀k.

Here the ξTik,t are the component of the d lnTik,t that is unforecastable by the initial

equilibrium variables wi,t. Then a sufficient condition for an OLS regression that con-

trols for wi,t to identify the δg’s is that the conditional expectation of the productivity

innovations with respect to the foreign shocks and controls is zero,

Ei,t[ξ
T
ik,t|wi,t, {d lnFMAig,t}, {d lnCMAig,t}] = 0, ∀k. (3.17)

This condition implies that once we control for the initial equilibrium, the foreign

shocks vary independently from the domestic shocks and thus provide exogenous

variation that can be leveraged for identification.

Constant Treatment Effects Within Cluster-Country-Time

Our identification result above assumed away the problem of inference in the pres-

ence of heterogeneous treatment effects within clusters. We now allow the treatment

effects to vary by country and time period, but not across sectors within a given

cluster-country-time, i.e. δexik,t = δexig,t and δimik,t = δimig,t. Unlike the typical application,

the heterogeneity in our treatment effects is not random after conditioning on the

initial equilibrium. However, we can fully control for the remaining dependence using

interactions of the initial equilibrium variables with the treatments. Formally, let si,t

denote the vector of interactions between the initial equilibrium variables wi,t and the

k-level foreign shocks d lnFMAik,t and d lnCMAik,t. Then we can write Equation

(3.13) as

d ln yi,t = νt +
∑
g∈G

δexg · [d lnFMAig,t] +
∑
g∈G

δimg · [d lnCMAig,t] + ηwi,t + φsi,t + ε̃i,t,

(3.18)

ε̃i,t =
∑
k∈K

ηkwi,t · ξTik,t, E[ε̃i,t] = 0, E[ξTik,t|wi,t] = 0 ∀k.
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Once we control for both the initial equilibrium and the dependence of the individual

treatment effects on the initial equilibrium, our condition for identification remains

the same as in the constant elasticity case. Note that our de-meaning of wi,t ensures

that there is not full collinearity between the cluster-level treatments and the control

si,t.

General Treatment Effects

We now examine the case where the treatment effects also vary by industry within

each country-time-cluster. Here we face a more difficult challenge to identification:

the mean treatment effects by industry within a cluster vary in a way that we cannot

control for without introducing collinearity with the treatments. Formally, and with

a slight abuse of notation, let si,t now denote the vector of interactions between the

initial equilibrium variables wi,t and the k-level foreign shocks λexik,td lnFMAik,t and

λimik,td lnCMAik,t. Then we can write Equation (3.13) as

d ln yi,t =νt +
∑
g∈G

δexg · [d lnFMAig,t] +
∑
g∈G

δimg · [d lnCMAig,t] + ηwi,t + φsi,t + ε̃i,t,

(3.19)

ε̃i,t =
∑
k∈K

ηkwi,t · ξTik,t +
∑
g∈G

∑
k∈g

(δexk − δexg )λexik,td lnFMAik,t

+
∑
g∈G

∑
k∈g

(δexk − δexg )λimik,td lnCMAik,t,

E[ε̃i,t] =0, E[ξTik,t|wi,t] = 0 ∀k,

where δexk and δimk are the mean treatment effects at the industry level. Since the q-level

treatments are just sums of the k-level treatments, there is a structural correlation

between the error term and the treatments that may lead to bias.

Intuitively, the source of the bias comes from the potential for certain sectors to

contribute disproportionately to the variation of the cluster level treatment, either

because they comprise a larger share of trade or because they face more volatile foreign

shocks. If that is the case, then the estimated cluster-level mean treatment effects

will disproportionately reflect the contributions of those more highly weighted sectors.

As an extreme example, suppose that in a given cluster with 100 industries, only one

industry ever experiences a foreign shock. Clearly we cannot use any amount of data

to recover the cluster-level mean treatment effect; what we will recover instead is the

mean treatment effect for that industry.12 In the more general case, the elasticities

12To further build intuition, it may be helpful to consider the following special case in which there
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that we recover will be weighted averages of the industry-level mean treatment effects,

where the weights reflect the likelihood of treatment conditional on the controls.

3.3.2 Estimation

We have shown that the group-level treatment effects are identified under reasonable

conditions once we adequately control for the initial equilibrium observables. However,

the vector of controls may be quite high-dimensional relative to the sample size. This

is certainly the case in our application, where we have hundreds of medium-term

growth rates but thousands of controls if we include initial import and export shares,

interactions, etc. Thus conventional OLS estimation is infeasible.

To address this issue, we use the Post-Double-Selection estimator developed by

Belloni et al. (2014b, 2017). This approach involves selecting a subset of “important”

controls by regressing each dependent and independent variable on the full set of

potential controls using an estimator that sets some or all of the coefficients to zero

(e.g. LASSO). The selection is “double” in that the controls are selected based on

their correlations with both the dependent and independent variables. The union

of the sets of controls that are thus selected (i.e. have non-zero coefficients) in each

regression then form the control set for an OLS regression of the dependent variable

on the independent variables.

Belloni et al. (2014b) show that this estimator is consistent and asymptotically

normal, with the usual standard errors generating uniformly valid confidence intervals,

under conditions that are quite plausible in our setting. The most important condition

is that the true control vector admits an approximately sparse representation in the

sense that the true control function can be well-approximated by a function of a subset

of the controls.13 This condition does not require that the control function exhibit

true sparsity, only some combination of true sparsity, many small coefficients, and

high correlation between controls. These conditions seem reasonable in our setting.

is no bias: trade shares are constant within clusters for any given country-time period, and the
changes in foreign market access are i.i.d. within cluster-country-time period.

13We refer the reader to Belloni et al. (2014a), Belloni et al. (2014b) and Belloni et al. (2017) for
additional details and regularity conditions.
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3.4 Data, Clustering and Foreign Shock Estima-

tion

This section briefly summarizes our data sources and measurement strategy. Appendix

C.2 collects the detailed descriptions of all steps.

3.4.1 Data

Our empirical implementation requires data on (i) real income per capita, (ii) sectoral

bilateral trade flows and trade barriers, and (iii) sectoral characteristics. Income per

capita is sourced from the Penn World Tables 9.0, computed as the real GDP at

constant national prices divided by population. We drop countries with population

less than 2 million from our sample. Per capita income growth is computed at 10-year

intervals for a maximum of 5 ten-year growth rates per country (there are some missing

values).

The bilateral trade flow data at the 4-digit SITC Rev 2 level come from the UN

Comrade Database. We convert the trade data from the SITC to the 1997 NAICS

classification. Appendix C.2.1 describes the construction of the concordance in detail.

All in all, the 784 4-digit SITC items are matched to 268 NAICS sectors. Among them

are 233 manufacturing, 26 agricultural, and 9 mining sectors. Geographic variables

(bilateral distance and contiguity measures) come from CEPII. The final sample covers

127 countries, 268 sectors and 5 decades from 1965 to 2015, with a total of 548 10-year

GDP growth rate observations.

The 233 manufacturing sectors are grouped into clusters based on their sectoral

characteristics. We use data from the United States to measure the sectoral character-

istics, since sectoral data at a comparable 4-digit level of sectoral disaggregation are

not available for a large sample of countries. We collect data on 7 sectoral features:

investment sales shares, intermediates using shares, intermediates sales shares, 4-firm

concentration ratios, skilled worker shares, physical capital intensities, and the contract

intensity of inputs. Sectoral characteristic variables are collected from various data

sources with similar but not always identical industry classifications. We convert all

of them to the 1997 NAICS classification.

Our measures of the investment sales shares, intermediates sales shares and inter-

mediate using shares are based on data from the 1997 Benchmark Detailed Make and

Use Tables. The investment sales share is computed as the ratio of spending on sector

k for investment purposes to the the total gross output of sector k. Thus, this variable
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captures in a continuous way the extent to which sector k produces capital goods.

Similarly, intermediates sales and using shares of gross output capture the extent to

which sector k is a large producer or user of intermediate goods, respectively. The

four-firm concentration ratios are sourced from the 2002 Economic Census. The skilled

worker shares are calculated as the share of workers in sector k that have a bachelor

degree or higher, and are computed based on data from the 2000 American Community

Survey. The capital intensity variable is measured as 1 minus the labor share of value

added (payroll), based on the NBER-CES Manufacturing Industry Database. The

contract intensity of a sector is measured as the fraction of a sector’s inputs that need

relationship-specific investments, and comes from Nunn (2007). We use the version of

this variable that measures the fraction of inputs not sold on organized exchanges and

not reference priced to capture the importance of relationship-specific investments in

a sector.

3.4.2 K-means Clustering

As discussed above in Section 3.3, given our sample size and the large number of

industries, we focus on estimating average treatment effects within groups or clusters of

industries. While average treatment effects for any set of industry groups are identified,

it is more useful and interesting to group industries according to characteristics that

are both observable and related to the treatment effects. We implement this approach

by measuring the 7 characteristics (described in the previous subsection) for each

industry, then assigning industries to clusters based on their proximity in the space

of characteristics. We apply this approach to the manufacturing industries in our

sample.

We use the k-means clustering algorithm (MacQueen et al., 1967) to group sectors

into clusters. Sectors are assigned to clusters based on their characteristics so as to

minimize the within-cluster sum of squared deviations from the cluster mean. The

k-means algorithm works as follows: given m manufacturing sectors, each with a

vector of n different sectoral characteristics, x(i) ∈ Rn, i = 1, . . . ,m, assign the m

sectors into G clusters. The G clusters are labeled as g = 1, 2, . . . , G.

i. Initialize cluster centroids µ1, µ2, . . . , µG for each cluster.

ii. Assign each sector x(i) to closest cluster centroids. The cluster assignment is
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c(i) ∈ {1, 2, . . . , G},

c(i) = argmin
g∈{1,...,G}

||x(i) − µg||2.

iii. Replace cluster centroid µg by the coordinate-wise average of all points (sectors)

in the gth cluster,

µ̂g =

∑m
i=1 1(c(i) = g) · x(i)∑m

i=1 1(c(i) = g)
.

iv. Iterate on steps 2 and 3 until convergence.

We use the “k-means ++” algorithm proposed by Arthur and Vassilvitskii (2007) to

choose the initial values for the k-means clustering algorithm, and do extensive checks

using alternative starting points. Following standard practice, we normalize the values

of each characteristic to have zero mean and unit variance.14

The algorithm above requires a choice of the number of clusters. There is no

unambiguously optimal method, although there are a number of conceptually similar

approaches based on maximizing various measures of cluster fit with respect to the

number of clusters. We use the silhouette width (Rousseeuw, 1987) as our measure of

cluster fit. Loosely speaking, the silhouette width measures how similar industries

within a cluster are to each other relative to industries in the nearest cluster. A good

clustering scheme will maximize the average silhouette width while minimizing the

number of sectors near the boundaries. The silhouette analysis suggests that either

4 or 5 are good values for number of clusters. Appendix C.2.2 reports the results of

the silhouette analysis along with a fuller discussion. In the interest of parsimony

we choose to group the 233 manufacturing industries into 4 clusters in our baseline

analysis, and show that our results are insensitive to this choice in Appendix C.2.2.

Table 3.1 summarizes the characteristics of the 4 clusters. Since each cluster has

some salient features that distinguish it from others, we name the clusters based on

these key features. It is important to stress that the clustering procedure does not

produce these cluster labels, nor does our identification strategy hinge upon them.

We use the cluster names (shown in the last row of Table 3.1 purely for expositional

purposes. Note that there is no information contained in cluster numbers (1, 2, ...).

The sectors in cluster 1 have the highest intermediate sales and using shares, and

lowest contract intensity. We label these sectors “raw materials processing” sectors.

14This step is prudent because k-means clustering is not invariant to the scale used to measure the
characteristics. If a particular characteristic takes on a broader range of values than the others, it
will be given higher weight when assigning industries to clusters.
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These sectors typically involve the first stage of turning raw materials into manufac-

tured goods. Cluster 2 has the second-highest intermediate sales shares (after cluster

1), but considerably higher contract intensity than cluster 1. We thus label it “complex

intermediates.” Cluster 3 stands out most clearly as capital goods, with an average

investment share of 0.52 compared to investment shares ranging from 0.00 to 0.05 in

the other clusters. Cluster 4 has nearly the lowest average intermediate sales share,

and a negligible average investment sales share. Thus we label it “consumer goods.”

Table C.1 in Appendix C.2.2 lists the 3 most representative sectors in each cluster,

defined as those closest to the cluster centroid.

As we do not have information on these characteristics for non-manufacturing

sectors, we group all agricultural sectors to Cluster 5, and all mining sectors to Cluster

6. In total, the 268 sectors are grouped into 6 clusters.

Table 3.1 Summary Statistics of Clusters in Manufacturing

cluster
1 2 3 4 Mean Std. Dev.

Inv. Share 0.00 0.05 0.52 0.04 0.13 0.22
Int. Using 0.78 0.58 0.65 0.66 0.66 0.16
Int. Sales 0.84 0.70 0.27 0.28 0.57 0.31
Conc. Ratio 0.47 0.27 0.38 0.56 0.40 0.21
Sk. Share 0.32 0.28 0.35 0.36 0.32 0.13
Cap. Int. 0.68 0.55 0.54 0.70 0.61 0.10
Con. Int. 0.26 0.56 0.73 0.52 0.51 0.22

Num of ind. 60 84 47 42
Trade share 0.33 0.26 0.23 0.11

Label Raw Materials Complex Capital Consumer
Processing Intermediates Goods Goods

Abbreviation RAW INT CAP CONS

Notes: This table reports the summary statistics of the sectoral characteristics among the sectors selected into each
cluster. The last two columns report the mean and standard deviations of those characteristics among all manufac-
turing sectors. The row “Num. of ind” reports the number of sectors in each cluster, and “Trade share” reports the
fraction of world trade accounted for by sectors in that cluster. The bottom panel lists the intuitive labels of the
clusters, as well as 3-letter abbreviations. Both are heuristic and assigned by the authors.

3.4.3 Estimation Strategy for FMAik,t and CMAik,t

To obtain FMAik,t and CMAik,t for country i sector k at time t, we estimate structural

sector-specific gravity equations using the matrix of sectoral bilateral trade flows at

79



decadal intervals.15 For a given sector k at time t, the gravity equation (3.2) can be

rewritten as

λink,t = c1−σk
ik,t · P

σk−1
nk,t · τ

1−σk
ink,t , (3.20)

where λink,t denotes the share of n’s expenditure on sector k that is sourced from

country i. Since we do not observe domestic trade flows, we calculate λink,t as the share

of import expenditure. We model the bilateral resistance term τ 1−σk
ink,t as a function of

geographic distance and contiguity with sector-time-specific coefficients, leading to

our empirical specification

λink,t = κexik,t · κimnk,t ·Distance
ζkt
in · exp (ξkt · Contigin) · εik,t, (3.21)

where κexik,t is the exporter fixed effect, κimnk,t is the importer fixed effect, ζkt and ξkt are

the distance and common border coefficients. We estimate the non-linear equation

(3.21) using the Poisson Pseudo-Maximum Likelihood (PPML) method proposed by

Silva and Tenreyro (2006) and Eaton et al. (2012), separately for every sector and

time period.

We use our estimates from equation (3.21) to construct the external market access

terms as follows:

FMAik,t =
∑
n6=i

Enk,t · κimnk,t ·Distance
ζkt
in · exp (ξkt · Contigin) (3.22)

CMAnk,t =
∑
i 6=n

κexik,t ·Distance
ζkt
in · exp (ξkt · Contigin) , (3.23)

where Enk,t is n’s total foreign expenditure in k at time t.

In practice, we add two wrinkles to the method described above. First, we remove

any direct effect of a country’s exports and imports on the fixed effects of their trading

partners by estimating equation (3.21) N times for each sector and time period, each

time leaving out the trade flows from a particular country i. We then construct each

country i’s foreign shocks using the estimates from the regression that omitted its data.

Second, as is well known, κexik,t and κimnk,t are identified only up to a sector-time-specific

multiplicative constant and require normalization. Rather than the usual practice of

designating a particular numéraire country, we restrict the sum of the logged importer

effects to be zero. This normalization ensures that the relative growth rates of the

foreign shocks across industries are not driven by fluctuations in the trade flows of

the numéraire country, minimizing measurement error. Appendix C.2.3 provides a

15To reduce measurement error, we use three year averages of the trade flows.
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detailed discussion.

This procedure uses only foreign data to construct external market access and

projects bilateral flows onto a small number of variables (distance and contiguity). By

construction, it excludes domestic factors that act as country-specific average export

taxes (on FMA) or average import taxes (on CMA).16 It also excludes idiosyncratic

bilateral factors that affect trade flows. This tends to minimize concerns about domes-

tic policies or shocks influencing measured market access, but does introduce some

measurement error.

3.5 Empirical Results

3.5.1 Baseline Estimates

The top panel of Figure 3.1 presents the estimation results graphically, by displaying

the coefficients on the foreign demand shocks in the left panel, and for the foreign

supply shocks in the right panel, by cluster. Clusters 1-4 are manufacturing clusters

obtained by the k-means algorithm, cluster 5 is agriculture, and cluster 6 mining and

quarrying. The bars depict 95% confidence intervals, obtained with standard errors

clustered at the country level. The specification includes the log of initial GDP per

capita.

The first apparent feature of the results is the considerable heterogeneity in the

coefficients. Indeed, the F -tests reject the equality of these coefficients at the 1%

level of significance. When it comes to foreign demand shocks, two clusters stand

out: export opportunities in cluster 2 (“complex intermediates”, labeled “INT”), and

cluster 3 (“capital goods”, or “CAP”) seem to have a larger and statistically significant

positive real income effect than the other clusters, although the confidence interval on

CAP is wide.

On the foreign supply shock side, there is also some heterogeneity in the coefficients

(equality is rejected at the 1% level), but only the shock to the consumer goods supply

exhibits a statistically significant positive impact on income. Overall, the foreign

supply shocks have both much larger magnitudes and standard errors. The latter

feature makes it challenging to draw sharp conclusions about the impact of foreign

supply shocks on income. In practice, the variation in the FMA terms is an order of

16For example, if a country’s trading partners lowered their prices to the world by 10% but its
government raised import tariffs by the equivalent amount, our procedure would record an increase
in external CMA but it would not affect the prices experienced by consumers.
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Figure 3.1 Cluster-Specific Coefficients and Confidence Intervals

I. OLS Estimates
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II. LASSO Estimates
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(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panels), and foreign supply shocks (CMA) (right panels). All specifications control for initial GDP per capita. The
top panel displays the baseline OLS estimates. The bottom panel displays the post double-LASSO estimates. 16 con-
trol variables are selected in the double-selection step. The bars display the 95% confidence bands, that use standard
errors clustered by country. The boxes display the results of an F -test for equality of the coefficients in each plot.

magnitude larger than the variation in CMA terms. This is sensible from an economic

standpoint: examination of the functional forms for FMA and CMA in equations

(3.22) and (3.23) reveals that foreign demand shocks are determined by both changes

in foreign prices/costs as well as changes in the overall foreign expenditure. On the

other hand, foreign supply shocks are driven purely by changes in foreign costs. As a

result, the FMA terms have much greater variation in the data. Statistically, it is

thus not surprising that a regressor with a smaller standard deviation has a higher

point estimate. The large standard errors, however, imply a relative lack of confidence

in those estimates.

The bottom panel of Figure 3.1 displays the Post-Double-Selection estimation

results (Belloni et al., 2014b). The procedure is described in detail in Appendix C.2.4.
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The specification includes a full set of potential controls, namely the industry-level

initial equilibrium variables (initial import and export shares, weighted initial firm

and consumer market access levels, the squares, and the interactions), interactions

between the initial equilibrium variables and the industry-level foreign shocks, initial

capital, and initial real GDP per capita. In total, 3219 potential control variables are

included and 14 of them are selected in the double-selection procedure via LASSO.

Appendix Table C.3 lists the selected controls in the Post-Double-Selection estima-

tion.17 Substantively the results are quite similar to the OLS specification, although

some confidence intervals widen. Foreign demand shocks in complex intermediate and

capital goods retain a large estimated impact on income, while all other sectors have

low estimated impacts. The results for the foreign supply shocks are also similar to the

OLS, with a somewhat larger estimate for the capital goods sector and a somewhat

smaller one for the consumer goods sector. Once again, however, the confidence

intervals are quite wide.

3.5.2 Robustness Checks

Assignment of Sectors to Clusters

One concern with our approach is that clusters may be fragile due to some sectors

being on the margins between clusters. If those sectors are particularly influential, then

the results could be sensitive to the assignment of specific sectors to clusters. To assess

the role of marginal sectors in our results, we perform two exercises. First, we add

a 5th manufacturing cluster. The results of re-clustering on 5 clusters are presented

in Appendix Table C.4. The basic characteristics of the original 4 clusters and the

labels we attach to them remain similar. When given the opportunity to isolate a 5th

cluster, the k-means procedure creates a cluster of skill-intensive industries.18 The

income regression results with 5 clusters are presented in Appendix Figure C.5. The

5th cluster itself does not have a positive impact on income, indeed both the foreign

demand and foreign supply coefficients are relatively precisely estimated zeros. The

main findings regarding the income impacts of the other clusters are preserved.

17We follow Belloni et al. (2014a) and choose the tuning parameter for the double-LASSO procedure
through K-fold cross validation: see Appendix C.2.4. The statistics literature often chooses the
tuning parameter to be one standard deviation above the minimizing value in order to select a more
parsimonious model. Our baseline specification uses the minimizing value, which results in more
controls being selected. We also check robustness to using a smaller tuning parameter for different
specifications in Appendix Figures C.4 and C.9.

18The mean skilled labor share of this cluster, 0.54, is 21 percentage points higher than the skilled
labor share of the second-most skill-intensive cluster.
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In the second cluster robustness exercise, we assess the importance of sectors at the

margins of the cluster classification. We add noise (standard deviation of 10% of the

actual variability) to each characteristic of each sector, re-cluster sectors, and perform

the full double-LASSO estimation using the new clusters. We repeat this procedure

1000 times. The goal of this procedure is to see how the cluster-specific income-impact

coefficients are affected by switching a small number of marginal sectors from one

cluster to another.

Appendix Figure C.6 reports the results. The dots indicate our baseline coeffi-

cient estimates, whereas the dashed bars indicate the 95% range of outcomes across

simulations (not confidence intervals). For foreign demand shocks, the figure reveals

that many of the coefficient estimates are quite stable: the range of estimates across

simulations for raw materials processing, agriculture, and mining clusters is very

small. On the other hand, reclassification tends to boost the coefficients on complex

intermediate and consumption goods at the expense of the coefficient on capital goods.

These results indicate that our most robust findings are that foreign demand shocks

in raw materials processing, agriculture and mining have small income impacts and

those in complex intermediates have large income impacts, while the results for the

other sectors are less robust. In contrast, the results regarding the foreign supply

shocks are essentially all quite fragile. Combined with the large confidence intervals in

the baseline, this exercise indicates that the data yield very little useful information

regarding the impact of foreign supply shocks.

Dropping Large and Contiguous Trading Partners

We next assess the sensitivity of the results to possible violations of the small country

assumption. Country i can be a large trading partner of country n, such that the fixed

effects estimated for country n are affected by the shocks to country i itself. Note

that this concern is mitigated by the fact that the fixed effects are extracted from the

gravity equations using the leave-one-out approach, whereby country i is dropped from

the gravity sample when estimating the fixed effects that go into building country i’s

FMA’s and CMA’s. Nonetheless, we check the robustness of the results by dropping

the countries for whom i is a large trading partner from the computation of the market

access terms.

Specifically, when constructing the country i’s FMA in sector k, we drop importer

n from the summation in equation (3.22) if more than 25% of its imports in sector

k are from country i, i.e. λink,t > 0.25. When constructing the country n’s CMA in

sector k, we drop exporter i from the summation in equation (3.23) if more than 25%
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of its exports in sector k go to country n, i.e. λink,t > 0.25. The results are reported

in Appendix Figure C.7. The results are broadly similar to the baseline, especially for

the more robust results on the demand side.

Our identification relies on the assumption that country i’s unobserved productivity

shocks are uncorrelated with the foreign market access regressors. This assumption

could be violated if productivity shocks are spatially correlated, so that nearby coun-

tries are subject to similar productivity shocks. To address this concern, we omit

contiguous countries from the calculation of the market access terms and re-estimate

the model. The results are reported in Appendix Figure C.8, and reveal very little

change relative to the baseline.

3.5.3 Developed vs. Developing Countries

Our main specification pools all countries and time periods together and clusters on

the industry dimension alone. It is also interesting to consider clustering along the

country dimension, i.e. whether the impact of foreign shocks exhibits heterogeneity

across different groups of countries.19 One of the more intriguing possibilities is that

rich and poor countries systematically differ in the income impact of foreign shocks

to different sectors. To investigate this hypothesis, we split the sample into two

groups based on the World Bank’s 2016 country classification by income. Developing

countries are those assigned by the World Bank to “low income” and “lower middle

income” categories, and the developed countries the remaining group. According to

this classification, 70 countries belong to the developed group, and 57 to the developing

group. We then estimate elasticities of real income with respect to foreign shocks for

the two country groups separately.

Figure 3.2 reports the results of the baseline specifications for the developed and

developing groups. For both groups, the coefficients on demand shocks in complex

intermediates are positive and statistically significant, although the magnitude is larger

for the developed country groups. On the other hand, the capital goods coefficients

behave very differently in the two samples: it is similar to the baseline coefficient in

the developed country sample, but is very large and relatively precisely estimated

in the developing country sample. For foreign supply shocks, developed countries

exhibit high income impacts from consumer goods only, while developing countries

additionally see high (and precisely estimated) income impacts from capital goods

19This heterogeneity could come from a combination of differences in underlying parameter values
and in the point of approximation.
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imports. The large coefficient on the capital goods supply shock is consistent with

an earlier literature that documented strong correlations between prices/quantities of

capital goods (imports or domestic) and economic development in poor countries (De

Long and Summers, 1991; Lee, 1995; Eaton and Kortum, 2001b; Caselli and Wilson,

2004). One might expect that this finding would imply that foreign demand shocks in

capital goods would be worse for poor countries, since they would tend to raise the

domestic price of these goods. The fact that they do not suggests that poor countries

experience significant increasing returns to the production of these goods.

We repeat each of the robustness checks described above for the rich and poor

country sample split, with the results reported in Appendix Figures C.9-C.13. The

main results are robust to these different specifications. Interestingly, the measurement

error simulation for the split sample indicates much more stability across simulations

that the baseline case, at least for foreign demand shocks.

3.6 Quantitative Implications

To assess the economic significance of the estimated coefficients, we perform two

counterfactual exercises. The first is designed to illustrate the role of comparative

advantage. Above, we found that foreign shocks in certain sectors have a higher

income impact than in others. As a result, even a foreign shock that is completely

uniform across sectors would be predicted to change real income differently across

countries, depending on their initial trade shares. To get a sense of the extent of

this heterogeneity, we compute the elasticity of each country’s income to a worldwide

uniform log-change in FMA and CMA, that is the same in every foreign sector and

every foreign country. A simple transformation of our estimating equation leads to

the following expression for this elasticity:

d ln yi,t
d lnFMA

=
∑
g∈G

δ̂exg
∑
k∈G

λexik,t,

and

d ln yi,t
d lnCMA

=
∑
g∈G

δ̂img
∑
k∈G

λimik,t.

By imposing uniform foreign shocks across all countries and sectors, this counterfactual

allows us to focus purely on the role of industrial specialization, as reflected in the

λik,t’s. Countries that have high export shares in clusters with a high estimated income
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Figure 3.2 Developed vs. Developing Countries: Cluster-Specific Coefficients and Confi-
dence Intervals

I. Developed Countries
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(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panels), and foreign supply shocks (CMA) (right panels). The top panel displays the results for the sample of devel-
oped countries. 16 control variables are selected in the double-selection step. The bottom panel displays the results
for developing countries. 0 control variables are selected in the double-selection step. The bars display the 95%
confidence bands, that use standard errors clustered by country. The specifications control for initial GDP per capita.
The boxes display the results of an F -test for equality of the coefficients in each plot.

impact will have a more positive real income response.

The resulting elasticities calculated based on the 2015 import and export shares

and the double-LASSO estimates from the bottom panel of Figure 3.1 are plotted

in Figure 3.3 against log PPP-adjusted income per capita.20 There is indeed a great

deal of heterogeneity in the country impact of foreign shocks. The income elasticity

20As a robustness check, Appendix Figure C.14 plots the same elasticities using the estimates
from Figure 3.2, which vary across countries according to income. Despite large differences in the
estimates for capital goods, the resulting export demand elasticities with respect to the uniform
shock are quite similar for most countries. This is because while the capital goods foreign demand
shocks have a large coefficients among developing countries, capital goods exports are quantitatively
small for most poor countries (2.5% of exports on average).
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with respect to foreign demand shocks (left panel) ranges from essentially zero for

countries chiefly in Sub-Saharan Africa, to 0.4-0.5 for some Central European and

East Asian countries such as Hungary, Slovakia, Malaysia, and Taiwan. There is a

similar level, and a similar amount of heterogeneity in the elasticity of income with

respect to foreign supply shocks (right panel). Here, the relationship with per capita

income is not apparent, as countries in virtually all income groups experiencing about

the same range. Given the large differences in the estimated coefficients, this relative

uniformity across countries indicates that the cluster-level import shares do not vary

much across countries, and not systematically with per capita income.

Figure 3.3 Elasticity of Real Income with Respect to Foreign Shocks
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(a) Foreign Demand Shocks
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(b) Foreign Supply Shocks

Notes: This figure presents the scatterplot of elasticity of income rate with respect to the foreign demand shocks
(FMA) (left panel), and foreign supply shocks (CMA) (right panel) against real GDP per capita. Elasticity of in-
come is calculated using the baseline estimates of coefficients in estimating equation (3.13) and the sectoral export
and import shares in 2015.

Having illustrated the impact of heterogeneity in countries’ comparative advantage,

our next counterfactual is designed to illustrate the role of geography. Even though

there is only one importer fixed effect for each country in each sector, the same vector

of worldwide importer effects is experienced differently by each exporter due to its

geographic position. As an example, there is only one change in the demand for capital

goods in Germany, and one in China. Suppose that in a particular period, the importer

effects reveal that China is having a much larger demand shock for capital goods than

does Germany. This pair of importer-specific shocks will affect Belgium and Vietnam

quite differently, as Vietnam is closer to China than to Germany, and the opposite

is true for Belgium. What we would like to understand is how large is this type of

heterogeneity. We thus construct counterfactual real income changes that would occur

if Belgium experienced Vietnam’s market access shocks. This counterfactual answers
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the question: how much would Belgium’s real income change if in a particular time

period it were picked up and moved to the place on the globe occupied by Vietnam?

We do this for every pair of countries and in each decade.

Table 3.2 Predicted Annual Growth Difference, 2005-2015

Growth difference, actual vs:
Median 25th pctile 75th pctile

G7
Canada -1.55 -1.95 -1.07
France -0.89 -1.18 -0.51
Germany -1.31 -1.68 -0.76
Italy -0.56 -0.75 -0.29
Japan 0.80 0.66 0.96
UK -1.43 -1.75 -1.04
US 0.02 -0.13 0.20

BRICS
Brazil 0.03 -0.06 0.16
China -1.63 -1.86 -1.26
India 0.37 0.21 0.48
Russia -0.03 -0.26 0.33
South Africa 0.32 -0.05 0.69

Notes: This table reports the differences in real income growth, in percent per annum, between the actual growth and
the counterfactual growth that the country would experience if it were moved to the median (resp. 25th and 75th
percentile) geographic position.

To begin getting a sense of the magnitudes involved, Table 3.2 reports the results

for a set of prominent countries, namely the G7 and the BRICS. The first column

reports the difference between the country’s actual growth and the growth that would

obtain if the country were moved to the position of the median country, where “median”

means the median difference among all the possible counterfactual geographic positions.

So, a value of 1 in the first column implies that the country grew 1 percentage point

per annum faster in its actual geographic position, relative to being moved to the

median position in the world. The second and third columns report the counterfactual

growth differences due to being moved to the 25th and the 75th percentile geographic

position for that country.

A few features of the table stand out. First, the numbers are large and heteroge-

neous. In this period, most of the G7 countries actually grew substantially slower

than they could have in an alternative geographic position, and some of these growth

differentials are substantial, between 0.5 and 1.5 percent annually. The exception to
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this pattern is Japan, which grew 0.8 percentage points faster than it would have in

the median geographic position. The picture for the BRICS is less clear, with medians

closer to zero. The exception is China, which would have been better off locating in

the median position.

Table 3.3 reports the summary statistics by region and period. The two regions at

the extremes are East Asia & Pacific and Western Europe/North America. The median

country in East Asia has reaped a substantial and increasing benefit of geographic

location. In the most recent decade, its growth has been 0.8 percentage points per

annum higher than it would have been had it been located at the median geographic

location in the world. This benefit of East Asian location has been consistently positive

across 5 decades, and if anything increasing over time. On the opposite end, the

typical country in the Western Europe/North America region has for the most part

grown slower than it would have had it been moved to the median location. This

may first appear surprising, as these are some of the richest and most open countries

in the world. However, these comparisons capture the impact of changes in foreign

demand on economic growth rates. So the negative growth differentials are perfectly

consistent with West European countries having high market access levels. What these

results reveal is that these wealthy countries are located next to relatively slow-growing

countries, and thus foreign demand and supply have expanded more slowly for them

than they would have if they had been located in faster-growing regions of the world.

In other groups of countries, the overall growth impact of geographic location

is quite a bit smaller overall, and switches sign over time. The absolute impact of

geography on growth tends to rise over time, as countries become more open overall.

In the last decade, the Middle East, South Asia, and Sub-Saharan Africa have enjoyed

a modest benefit of their geographic position, whereas for Latin America and Eastern

Europe/Central Asia, their location has had a modest cost.
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3.7 Conclusion

Using a theoretically grounded approach and employing new empirical techniques,

we have shown that there is significant heterogeneity in the impact of foreign shocks

in different sectors. Positive foreign demand shocks in sectors producing complex

intermediate and capital goods have a significantly higher real income impact than

shocks in other sectors, while positive supply shocks to capital goods are especially

beneficial to developing countries. Our quantitative results imply that the interaction

between initial comparative advantage and the pattern of foreign shocks is important

for understanding the variety of growth experiences across countries.

Our findings do not have immediate implications for policy, except perhaps that

countries should pursue increased market access more vigorously in some sectors

relative to others. However, questions surrounding the effect of the external envi-

ronment on economic development for developing countries have been central in the

great policy debates of the past 60 years, from import-substituting industrialization

to the Washington Consensus to the “Washington Confusion” (Rodrik, 2006). Our

results speak to these debates insofar as they affirm the importance of the external

environment for real income and validate a focus on the sectoral dimensions of policy.

A fuller understanding of optimal sectoral policy requires considering domestic policies

as well (Bartelme et al., 2019), along with the ever-mysterious drivers of productivity

growth.
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Appendix A

Appendices of Chapter I

A.1 Data and Estimation Appendix

A.1.1 Census Datasets

Technical notes on the data construction is under view and will be disclosed soon.

A.1.2 EG coagglomeration index

Ellison and Glaeser (1997) propose a measure of coagglomeration of a group of I activ-

ities. Denote ωi as the activity i’s employment share in the I activities. Let s1, . . . , sL

be the share of total employment of the I activities in each of the geographic subareas,

where sl =
∑

i ω
isil. Let G =

∑
l (sl − xl)

2 be the raw geographic concentration for

the I-activity group and H =
∑

i (ω
i)

2
Hi be the Herfindahl index of the I-activity

group. The EG index of coagglomeration is

γc =
[G/ (1−

∑
l x

2
l )]−H −

∑
i γ

i (ωi)
2

(1−H i)

1−
∑

i (ω
i)2 (A.1)

where γi measures the agglomeration of activity i. The coagglomeration index

reflects excess geographic concentration of the I-activity group relative to what would

be expected if each activity were as agglomerated as it is when the locations of the

agglomeration were independent.

The coagglomeration index takes on a simpler form when used to measure coag-

glomeration of two activities.

γc =

∑
l(s

a
l − xl)(sbl − xl)
1−

∑
l x

2
l

(A.2)
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Proof The raw geographic concentration for the 2-activity group can be written

as

G =
∑
l

(
ωasal + ωbsal −

(
ωa + ωb

)
xm
)2

= ωaGa + ωbGb + 2ωaωb
∑
l

(sal − xl)(sbl − xl)

The aggomeration index of activity i is

γi ≡
∑

l (s
i
l − xl)

2 − (1−
∑

l x
2
l )H

i

(1−
∑

l x
2
l ) (1−H i)

(A.3)

Plug in γi and G into Equation A.1(
1−

∑
i

(
ωi
)2)

γc =

[
G/

(
1−

∑
l

x2
l

)]
−H −

∑
i

γi
(
ωi
)2 (

1−Hi
)

=
G−H

(
1−

∑
l x

2
l

)
−
∑
i

(
ωi
)2 (∑

l

(
sil − xl

)2 − (1−∑l x
2
l

)
Hi
)

1−
∑
l x

2
l

=
ωaGa + ωbGb + 2ωaωb

∑
l(s

a
l − xl)(sbl − xl)− ωaGa − ωbGb

1−
∑
l x

2
l

=

(
1−

∑
i

(
ωi
)2)∑

l(s
a
l − xl)(sbl − xl)

1−
∑
l x

2
l

Thus, we have

γc =

∑
l(s

a
l − xl)(sbl − xl)
1−

∑
l x

2
l

(A.4)
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Appendix B

Appendices of Chapter II

B.1 Data Appendix

B.1.1 Constructing Percentile-Level Expenditure Weights

Consumer Expenditure Survey

We use data from the Consumer Expenditure Survey (CES) to obtain the expenditure

weights of consumers. The CES data are collected by the Census Bureau, and cover

expenditures, income, and demographic characteristics of households in the United

States. The CES is the primary source of data for constructing the weights for the

US Consumer Price Index.

The CES contains two modules, the Diary and the Interview. The Diary is designed

to measure expenditures on daily items, such as groceries, personal products, and

other frequent purchases. The Interview is designed to measure large or durable

expenditures, such as major appliances, vehicles, and other large infrequent purchases.

The Diary records household spending for two consecutive survey reference weeks,

while the Interview records purchases over the previous three months.

For each survey, we make use of expenditure, income, and characteristics files in

computing expenditure weights. In the expenditure files, the CES collects household

expenditures on about 600 Universal Classification Code (UCC) categories. Questions

such as “How much did you spend on babysitting in the last quarter” are asked in

the survey and the corresponding responses are saved in UCC 340210 babysitting and

child care. Overall, there are questions on about 350 UCC categories in the Interview

module, and on 250 UCCs in the Diary module. Income files record detailed informa-

tion on household monthly income from different sources, such as wages and salaries,

or interest and dividends. Characteristics files record demographic characteristics

data for each member of the household, such as education, gender, race, etc. Income
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variables, which contain annual values for the 12 months prior to the interview month,

are also included in the characteristics files.

Diary and Interview modules survey different households each year, so a household

in the Diary will not appear in the Interview and vice versa. Thus we could never

observe the full consumption profiles of an actual household and we could not compute

expenditure shares for an actual household. Rather, we aggregate households into

percentiles and work with the percentile-level household expenditure shares.

Constructing the Concordance

The in-scope expenditures for CPI could be divided into 8 major groups, 70 expendi-

ture classes, 211 item strata (item level) and 303 entry level items (ELI). CPI uses the

item strata -- e.g. SEFT04 Spices, seasonings, condiments, sauces -- as the elementary

level of its expenditure weights and price index calculation. Within each item stratum,

one or more substrata are defined as ELIs, which are the ultimate sample units for

products. For example, there are four ELIs under item SEFT04 : FT041 Salt and

other seasonings and spices, FT042 Olives, pickles and relishes, FT043 Sauces and

gravies and FT044 Other condiments.

Using CES data to compute the item-level and ELI-level expenditure weights

from CES, we need a concordance between the UCC categories, item strata codes

and the ELIs. The concordance is constructed by following the BLS document “CPI

requirements for CE” Appendix B. The CES collects household expenditures on about

600 Universal Classification Code (UCC) categories, which could be concorded to 303

ELIs. To combine the expenditure weights with the frequency of price adjustment

data from Nakamura and Steinsson (2008), we look at a subsample of 265 ELIs. And

we could further aggregate the 265 ELIs to 178 item strata.

Compiling the Expenditure, Income, and Characteristics Files

To obtain the expenditure shares at the detailed product category level for households

at different percentiles of the income distribution, we take the following steps.

In the first step, we put together the quarterly expenditure, income, and charac-

teristics files from the Interview survey. With the compiled interview data, for each

household, we could observe its interviewed month and year, monthly expenditures

on the UCC categories in the previous three months as well as annual income for

the 12 months prior to the interview. One thing to note is that respondents are
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asked to report expenditures made since the first of the three months prior to the

interview month. For example, if a household is interviewed in February of 2015,

they are reporting expenditures for November and December of 2014, and January of

2015. Thus, to produce a 2014 annual estimate based on expenditures made in 2014

(calendar period), one needs to access five collection-quarter files, the first quarter of

2014 through the first quarter of 2015.

By the same token, we put together the expenditure, income, and characteristics

files from the Diary survey. For each household in the Diary survey, we are able to

observe its weekly expenditure on the detailed UCC categories and its annual income

for the 12 months prior to the interview. Then we append the compiled Interview

data file to the compiled Diary one to get the whole sample of UCCs.

Adjusting the Expenditure Values

In the second step, we make several adjustments to the collected expenditures in order

to meet the BLS’s requirements for the creation of CPI expenditure weights. The

adjustments are made following the BLS document “CPI Requirements of CE”.

Housing

Two adjustments are made to housing categories.

� Owners’ Equivalent Rent of Primary Residence

UCC categories only collect the value of the house, its property taxes, real

estate fees, and mortgage interests. Houses and other residential structures are

capital goods and should not be considered as CPI items. Interest costs (such

as mortgage interest), property taxes and most maintenance costs, are part of

the cost of the capital good and are not consumption expenditures either. All of

these are not useful in computing the expenditure weights for the item Owners’

equivalent rent of primary residence.

According to the BLS document “How the CPI measures price change of Own-

ers’ equivalent rent of primary residence (OER) and Rent of primary residence

(Rent)”, the expenditure weight in the CPI market basket for Owners’ equivalent

rent of primary residence (OER) is based on the following question that the

CES asks consumers who own their primary residence:

“If someone were to rent your home today, how much do you think it would rent

for monthly, unfurnished and without utilities?”

CES collects the household responses to this question and saves them in the
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variable RENTEQVX in characteristics files. We construct an artificial UCC

code “999999” to store the values of variable RENTEQVX, which provides the

household expenditure on the owners’ equivalent rent of primary residence.

� Homeowner Insurance/Maintenance/Major Appliance

The BLS adjusts the expenditures on homeowner insurance, maintenance, and

major appliances to separate the consumption components of those expenditures

from the investment component. The BLS uses a factor of 0.43 to account for

the consumption portion of a homeowner’s total expenditure on these housing

categories. The factor is based on the likelihood that renters will purchase

these types of appliances and perform these types of home maintenance and

improvement. Thus, to reflect the consumption portion of a homeowner’s to-

tal expenditure on housing insurance, maintenance, and major appliances, we

multiply the expenditures on the corresponding UCC categories by 0.43.

Medical Care

The BLS uses the National Health Expenditure (NHE) tables produced by the

Center for Medicare and Medicaid Services (CMS) to calculate the factors that redis-

tribute the weights from private health insurance and Medicare premium to medical

care services. Unfortunately, we do not have access to the underlying formulas the BLS

used to calculate these factors. By way of approximation, we take the redistributing

factors from the NHE Table 20 Private Health Insurance Benefits and Net Cost; Levels,

Annual Percent Change and Percent Distribution, Selected Calendar Years 1960-2015.1

We redistribute the expenditures from private health insurance and Medicare

premiums related UCC categories to health care services categories, such as nursing

homes and adult day services, by using factors obtained from the table mentioned

above. Note that medical reimbursements are allocated across all households to smooth

the household expenditures on medical expenses. That is to say, a household may be

reimbursed even during a period in which they had no medical expenses.

Transportation

� Used Cars

Expenditures on used cars and trucks should only reflect dealer value added.

1For more details see the link https://www.cms.gov/research-statistics-data-and-systems/

statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet.html
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Therefore, the expenditure weights on used cars and trucks should be determined

by spending on used cars and trucks, minus trade-in value of vehicles and other

sales of consumer-owned vehicles.

CES does not provide data on trade-in values of vehicles (UCC 450116 and

450216 ) and other sales of consumer owned vehicles (UCC 860100 and 860200 ).

Thus, we take the expenditure weight on used cars and trucks from the BLS

released table Relative Importance of Components in the Consumer Price Index

to recover the ratio of trade-in values and other sales of vehicles to spending on

used cars and trucks, and we find the ratio is around 1/2. Thus, we reduce the

spending on used cars and trucks to half to reflect only the dealer value added.

� Gasoline

Gasoline expenditures are not allocated into categories (regular, premium,

midgrade, etc.) at collection. To distribute the total gasoline expenditures (UCC

470111 ) amongst the gasoline ELIs (TB011 Regular Unleaded Gasoline,TB012

Midgrade Unleased Gasoline and TB013 Premium Unleased Gasoline), the BLS

constructed the distribution factors from expenditure habits in each primary

sampling unit (PSU).

However, we don’t have access to the expenditure habits of each PSU. Instead,

we follow Nakamura and Steinsson (2008), and allocate the expenditures on

gasoline to regular, premium, midgrade categories equally.

Aggregating Households into Percentiles

In the third step, we aggregate households into percentiles. Because the Interview and

the Diary survey different households, we sort the households into percentiles in two

sub-steps. First, we aggregate the households in the Interview survey into percentiles

based on imputed household annual income before tax, and then find the income

cut-offs for each percentile. Second, we use the Interview survey income cut-offs to

divide households from the Diary survey into percentiles. In this case, each household

in our data sample has been sorted into a percentile. We could get similar results by

using income cutoffs from the Diary survey to aggregate households in the Interview

survey into percentiles.

The CES data start to include the imputed income since 2004. Before that it only

publishes income data collected from households that are complete income reporters.

Households are defined as complete reporters if they report one of the major sources of

income, such as wages and salaries, Social Security income, or self-employment income.
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However, even a complete reporter might not provide information on all sources of

income they indicate they received. Thus, in cases when the values of income are not

reported, imputation allows them to be estimated. We sort households into percentiles

based on the imputed household income before tax, which is only available since 2004.

Because of this, therefore, we could only compute the percentile-level expenditure

weights since 2004.

Table B.1 reports the income cutoffs and average incomes in the selected quantiles

of the income distribution.
Table B.1 Income cutoffs and averages for selected quantiles of the income distribution in
the CES

Cut-offs
Lower Upper Median Mean

Bottom 5% -23,297 5,838 2,343 2,450
Middle 40-60% 36,504 62,808 48,828 48,969
96-99% 212,148 332,196 249,677 253,900
Top 1% 332,279 846,706 392,148 414,011

Notes: The table the range and the averages of the incomes in selected quantiles of the income distribution in the

CES data.

Calculating the Expenditure Shares

In the final step, we calculate the expenditure shares at the detailed product category

level for households at different income percentiles.

First, we calculate the average expenditure for each detailed UCC category for

households at different income percentiles. Note that there is a distinction between

survey period and expenditure reference period in the interview survey, as the CES

collects household spending in the three months prior to the interview month. This

distinction will affect the estimation procedure for producing household average ex-

penditure during a calendar year. For example, households interviewed in February

will report their spending for November and December of 2014 and January of 2015.

Thus, to compute the average value for expenditures made on a certain UCC category

during year 2015, they only contribute one month (January) of the expenditures they

made during the expenditure reference period to the calculation. While households

interviewed in May report their expense for February, March and April of 2015 and

could contribute all their expenditures to compute the average expenditure this house-

hold made during 2015. To reflect the number of months a household can contribute
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to the mean value of a calendar year, we follow the BLS to create a variable called

MO SCOPE. In the above example, MO SCOPE=1 for households interviewed in

February and MO SCOPE=3 for households interviewed in May. There is no such

distinction between the survey period and expenditure reference period in the Diary.

We multiply each weekly expenditure by 13 to get a corresponding quarterly expen-

diture. As there is no lag between the survey period and the expenditure reference

period, the number of months households in the Diary survey contribute to estimate

of the mean value is 3, i.e. MO SCOPE=3. We could also interpret MO SCOPE as

the number of months a household reports expenditures during a calendar year.

Following the BLS manual, we use the formula below to calculate the average

expenditure for each UCC category k at each percentile h. First, for household i at

percentile h, we sum over all the spending it made on good k during the calendar

year. Second, we weight total expenditures made by household i in percentile h on

good k up by its household-specific sampling weight. Third, we sum up the weighted

household expenditures on good k over all the households at percentile h. Fourth,

we divide the sum of weighted household expenditures on good k at percentile h

by the sum of the weighted number of months household at percentile h reported

expenditures during the calendar year, to get the monthly average income on good k

of household at percentile h. Then multiplying the monthly average expenditure by

12, we get the annualized average expenditure for each UCC category k at percentile

h:

X̄h
k =

∑
i FINLWT hi ·

∑
tC

h
i,k,t∑

i FINLWT hi ·MO SCOPEh
i

× 12

where FINLWT hi is the sampling weight for household i at income percentile h, Ch
i,k,t

is the expenditure on good k of household i at income percentile h during month

t, and MO SCOPEh
i denotes number of months household i reports expenditures

during a calendar year.

Second, we take percentile-level average expenditure for each UCC from above,

and then aggregate according to the constructed concordance between UCC categories

and ELIs (or Item Strata) to get percentile-level household average expenditure X̄h
j

for each 265 ELIs (or 178 items) and the corresponding percentile-level expenditure

share ωhj =
X̄h
j∑

j X̄
h
j

.
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B.1.2 Constructing Income-Percentile-Specific CPIs

Item-Level Consumer Price Data

To construct the income-percentile-specific consumer price indices (CPI), we need to

combine the percentile-level expenditure share data computed above with the micro

consumer price data. We obtain the consumer price data from the BLS. Each month,

the BLS releases the consumer price index at all levels of aggregation. Each price index

has a unique identifier called series id, CUUR0400AA0 for example. The series id can

be broken down to: CU–survey abbreviation–current series, U–season code–seasonal un-

adjusted, R–periodicity code–monthly, 0400–area code–Western Urban and AA0–item

code–all items. We use the US city average, all urban consumers, seasonally adjusted

item-level monthly price indices to construct the monthly income-percentile-specific

CPIs.

Concordance Between Old and New Series

The revised consumer price data were introduced by the BLS in 1998, and the revision

included an updated and revised item structure. For example, there were only 7

major groups of goods and services before 1997 and in 1998, a new group Education

and Communication was created and the new group included components previously

included in the Recreation and Housing groups. Here, we refer to the revised item

structure as the new series and to the pre-revised item structure as the old series.

Micro consumer price data are provided in the old series before 1997, and in new

series since 1997.

To combine the item-level consumer price data from the old series with the ex-

penditure share data, we manually construct a concordance from the new series to

the old series at the item level. Note that there are some new series items that are

more aggregated than the old ones, and in these cases one item in the new series is

concorded to multiple items in old series. To deal with it, we construct a concordance

weight by using the expenditure weight taken from the BLS table Relative Importance

of Components in the Consumer Price Index. One example is as follows. Item SEFF01

Chicken in the new series is concorded to SE0601 Fresh whole chicken and SE0602

Fresh/Frozen chicken parts in the old series. We find that the average expenditure

during years 1987 to 1989 on the two items are 0.152% and 0.220% respectively, and

thus we assign the concordance weights based on their relative expenditure weights

on the two items. The 265 new series items are concorded to 165 old series ones.
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item code item name item code item name exp concordance

(new) (new) (old) (old) weight weight

SEFF01 CHICKEN SE0601 FRESH WHOLE 0.152 0.409

CHICKEN

SEFF01 CHICKEN SE0602 FRESH/FROZEN 0.220 0.591

CHICKEN PARTS

Aggregation Formula

We follow the BLS manual “Chapter 17. The Consumer Price Index” in constructing

the income-percentile-specific CPI. The formula can be written as follows:

PIXh
t = PIXh

v ·
∑
j∈J

(ωhj,β ×
Pj,t
Pj,v

),

where:

PIXh
t = consumer price index for household at percentile h at time t

v = pivot year and month, usually December, prior to the month when expenditure

weights from reference period (β) are first used in the CPI

β = predetermined expenditure reference period

Pj,t = price of item j at time t

ωhj,β = expenditure weights of household at percentile h on item j during the predeter-

mined expenditure reference period β .

The BLS periodically updates its expenditure weight reference period. Historically,

it updated approximately every ten years, and since 2002, it adopted a biennial

rotation schedule to update the expenditure weight reference period. We follow the

BLS expenditure reference period schedule after 2004, and prior to that, we use the

2004 percentile-level expenditure weights to construct the income-percentile-specific

CPI. As mentioned in B.1.1, this is due to the availability of the imputed household

income before tax. We have computed the pre-2004 aggregate CPI by taking the

official expenditure weights from BLS table Relative Importance of Components in the

Consumer Price Index for the pre-2004 expenditure reference period. And comparing

it with the aggregate CPI constructed by using 2004 aggregate weights, we find the

two CPI series are almost identical.

Due to the revision of item structure in 1998, we have to construct the income-

percentile-specific CPI separately in two periods. We use old series item-level micro

price data to compute the income-percentile-specific CPI for the period 1969m1-
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1997m12 and new series price data for the post-1998 period. In the year 1997, the

BLS released item-level micro prices in both old and new series, which allows us to

bridge the two periods by using one of the months in 1997 as the pivot month (based

period) for the second period. We used both the old and new series micro price data

to construct the aggregate CPIs in 1997 and found that they give us similar results in

(log) price terms. We choose 1997m12 as the first pivot month for the construction of

the post-1998 income-percentile-specific CPIs.

Table B.2 Reference periods

pivot month (v) reference period (β) PIX (t)

1969M1 2004 1969-1997(Old series)
1997M12 2004 1998-2005(New series)
2005M12 2004-2005 2006-2007(New series)
2007M12 2006-2009 2008-2009(New series)
...

...
...

2015M12 2012-2015 2016-2017(New series)

Notes: This table lists the reference periods used to construct the CPI.

B.1.3 Categories with the Largest Expenditure Share Differ-
ences

Table B.3 reports the 10 categories with the largest differences in expenditure shares

between the top 1% and the middle 20% of households.
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B.2 FAVAR evidence

This appendix presents an alternative method to estimate the impulse responses

of income-specific CPIs to monetary policy shocks: the Factor-Augmented Vector

Autoregression (FAVAR) approach of Bernanke et al. (2005) and Boivin et al. (2009).

Let there be a large number of economic series, whose behavior is driven by a vector

of common components. This vector includes monetary policy in the form of the

Federal Funds rate it, and a small number of unobserved common factors Ft. The

joint evolution of the Federal Funds rate and the vector of factors, Ct, is characterized

by a VAR:

Ct ≡

[
Ft

it

]
,

Ct = Φ(L)Ct−1 + vt, (B.1)

where Φ(L) is a lag polynomial, and vt is an i.i.d. error term.

The vector Ft is unobservable. What is observed is a large number of economic se-

ries Xt. The FAVAR approach assumes that this set of economic series is characterized

by a factor model:

Xt = ΛCt + et, (B.2)

where Λ is the matrix of factor loadings. This representation provides a great deal

of parsimony because in practice Xt includes hundreds of series, whereas the dimen-

sionality of the vector of common factors Ft is typically small: in the Boivin et al.

(2009) implementation there are 5 common unobserved factors. The significant benefit

of estimating model (B.1)-(B.2) is that it yields impulse responses of each of the

hundreds of series contained in Xt to shocks to the elements of Ct, including monetary

policy.

In our application of this approach, the vector Xt includes the 100 income-percentile-

specific consumption price indices, as well as the additional variables included by

Bernanke et al. (2005) and Boivin et al. (2009), such as sector-level industrial pro-

duction, employment and earnings, and industry-product-level PPI series. The time

frequency is monthly, and the time period is 1978m1-2008m12. Boivin et al. (2009)

present a detailed evaluation of the performance of the FAVAR model. Here, we focus

on the element new in our paper, namely the impulse responses of income-specific

CPIs to monetary policy shocks.
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The FAVAR produces 100 of those impulse responses, one for each income per-

centile. Figure B.1 plots those impulse responses for selected percentiles. The monetary

policy shock is a 25-basis-point increase in the Federal Funds rate on impact, thus

a contraction. The consumption price indices of the high-income households react

substantially less to monetary policy shocks than those for the middle of the income

distribution. The difference is economically meaningful. After 12 months, the top-1%

households’ CPI responds by 34% less, and the 96-99th percentile households by 22%

less, than the CPI of the households in the middle of the income distribution (40-60th

percentiles). After 24 months, the differences are still 12% and 6%, respectively.

Figure B.1 Income-specific CPI impulse responses to a monetary policy shock
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Notes: This figure plots the impulse responses of income-specific price indices to a monetary policy shock, estimated

using a FAVAR.

A well-known feature of the VAR impulse responses of prices to monetary shocks

is that the confidence intervals are wide, and it is often not possible to reject a zero

impact of a monetary shock on aggregate CPI. This is the case in the Boivin et al.

(2009) FAVAR model that forms our baseline analysis. However, our main object

of interest is not the overall response of prices to a monetary shock, but rather the

differential response of the CPIs of different households. Figure B.2 plots the difference

in the impulse responses between the CPI of the top 1% and the CPI of the middle
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20% of the income distribution (left panel), and the difference between the top 1% and

aggregate CPI (right panel). Both panels include the 90% bootstrapped confidence

intervals. The difference between impulse responses is significant at the 10% level for

most of the lags between 8 and 21 months.2

Figure B.2 Differences in inflation changes between income groups
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Notes: The left panel plots the difference between the impulse responses of the price index of the top 1% of households

and the middle 20% of households to a monetary shock, while the right panel plots the difference between the impulse

responses of the price index of the top 1% of households and the aggregate price index, along the 90% bootstrapped

confidence intervals.

2Note that the impulse is a monetary contractions, and thus the changes in the CPIs are negative
after an initial few months. Since the top-income CPIs respond by less in absolute terms, the
difference between the top- and middle-income CPIs is positive.
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B.3 Substitution Bias

The results in this paper build on the assumption that changes in expenditure shares

only have second order effects on inflation. Indeed, the Laspeyres index can be thought

of as a first-order approximation to the change in the ideal price index, and thus

we rely on the first-order approximation being suitable in this setting. To evaluate

this assumption, this Appendix uses year-specific aggregate expenditure shares for

each consumption Item from the CES data to construct Laspeyres and Paasche price

indices. Since the ideal price index is in-between the Laspeyres and the Paasche, the

difference between these two indices provides the upper bound on the bias induced by

the first-order approximation.

Figure B.3 below summarizes these differences. It plots 12-month inflation rates

for the aggregate CPI computed with Laspeyres and Paasche formulas. From 2004 on-

wards, we can obtain year-specific aggregate expenditure shares for each consumption

Item from the CES data. The CES is the source of expenditure shares data used in

the paper. Unfortunately, the product and income definitions in the CES are hard

to harmonize prior to 2004. The right panel of Figure B.3 complements the CES

data using year-specific aggregate expenditure shares from the BLS between 1987 and

2004 (these expenditure shares are only available from 1987). Both the CES- and the

BLS-based measures show little difference between the Laspeyres and the Paasche

inflation rates, which confirms that the substitution bias is indeed small in these years.

Table B.4 shows that the mean and the standard deviation of the Laspeyres and the

Paasche inflation rates are an order of magnitude larger than the mean and standard

deviation of the difference between the two measures. The correlation between the

Laspeyres and the Paasche inflation rates is 0.99.

Note that the differences between the Laspeyres and the Paasche price indices

likely overstate the importance of the substitution bias. Measured expenditure shares

may change for reasons other than price changes, such as changes in the composition of

households in the expenditure surveys, or changes in tastes across years (see Redding

and Weinstein, 2016). In fact, as shown in Table B.4, the standard deviation of the

Paasche inflation is larger than of the Laspeyres inflation. Also, there are a number of

occasions in which the Paasche inflation is larger than the Laspeyres inflation. This

should not be the case if yearly changes in expenditure weights are solely due to

substitution towards lower-inflation items.

Figure B.4 uses year-specific expenditure weights by income level computed from

the CES to construct Laspeyres and Paasche inflation for the households at the middle
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Figure B.3 Aggregate Laspeyres and Paasche CPI inflation

Aggregate, CES data Aggregate, official BLS weights
−

.0
5

0
.0

5
.1

2005m1 2007m1 2009m1 2011m1 2013m1 2015m1
date

Laspeyres Paasche

Difference

−
.0

2
0

.0
2

.0
4

.0
6

.0
8

1988m1 1992m1 1996m1 2000m1 2004m1
date

Laspeyres Paasche

Difference

Notes: This figure plots the Laspeyres and Paasche indices, and the difference between the two, for aggregate 12-

month CPI inflation. The left panel uses annual aggregate expenditure weights from the CES, the right panel from

the BLS.

Table B.4 Comparison between the Paasche and Laspeyres price index inflation

πL πP πP − πL abs(πP − πL) Correl(πP , πL)

1988-2004 2.95% 3.11% 0.16% 0.17% 0.99
(1.34%) (1.44%) (0.17%) (0.15%)

2004-2016 2.08% 2.06% -0.02% 0.25% 0.98
(2.13%) (2.26%) (0.40%) (0.32%)

Notes: This table reports the mean and the standard deviation for the Laspeyres price index (πL), Paasche price

index (πP ), the difference between the two (πP − πL), and the absolute difference between the two (abs(πP − πL)).

The last column reports the correlation between the Laspeyres and Paasche inflation rates. The inflation rates are

defined as 12-month log changes in the price indices.

and at the top 1% of the income distribution. For the reasons mentioned above, we

can only construct these series starting in 2004. Summary statistics for these measures

are reported in Table B.5. For each income group, the figure shows that the difference

between the Paasche and the Laspeyres inflation is small compared to the overall

inflation rates for both groups of households.
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Figure B.4 Laspeyres and Paasche CPI inflation by income level

Middle-income households Top 1% households

−
.0

5
0

.0
5

.1

2005m1 2007m1 2009m1 2011m1 2013m1 2015m1
date

Laspeyres Paasche

Difference

−
.0

2
0

.0
2

.0
4

.0
6

2005m1 2007m1 2009m1 2011m1 2013m1 2015m1
date

Laspeyres Paasche

Difference

Notes: This figure plots the Laspeyres and Paasche indices, and the difference between the two, for the middle 20%

of the households (left panel), and the top 1% of the households (right panel) in the CES.

Table B.5 Comparison between the Paasche and Laspeyres price index inflation, top- and
middle-income households

Income πL πP πP − πL abs(πP − πL) Correl(πP , πL)

Top 1.88% 1.94% 0.05% 0.27% 0.98
(1.44%) (1.60%) (0.35%) (0.22%)

Middle 2.16% 2.12% -0.04% 0.32% 0.98
(2.36%) (2.54%) (0.50%) (0.38%)

Notes: This table reports the mean and the standard deviation for the Laspeyres price index (πL), Paasche price

index (πP ), the difference between the two (πP − πL), and the absolute difference between the two (abs(πP − πL)).

The last column reports the correlation between the Laspeyres and Paasche inflation rates. The inflation rates are

defined as 12-month log changes in the price indices.
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Appendix C

Appendices of Chapter III

C.1 Theoretical Appendix

C.1.1 Competitive Equilibrium

The competitive equilibrium of the economy can be represented as the set of solutions

to the following system of simultaneous equations:

wjLj,k = µj,k · Yk,∀j ∈ J, k ∈ K (C.1)∑
k∈K

Lj,k = L̄j, ∀j ∈ J (C.2)

E =
∑
k

∑
j

wj · Lj,k (C.3)

P 1−σk
k = zkc

1−σk
k + CMAk, ∀k ∈ K (C.4)

Yk = c1−σk
k

(
zk
ek · E +

∑
l∈K αl,kYl

P 1−σk
k

+ FMAk

)
, ∀k ∈ K (C.5)

Here ek is the fraction of consumer expenditure devoted to industry k, µj,k is the

fraction of industry k’s gross output devoted to purchasing factor input j, and αl,k is

the fraction of industry l’s gross revenue (Yl) used to purchase intermediate inputs from

sector k. By Shephard’s lemma, these shares equal the elasticities of the expenditure

or cost functions with respect to the relevant price. Note that these elasticities in

principle depend on relative prices, of goods and/or factors. However, homotheticity

and (perceived) constant returns imply that they do not depend on total expenditure

(E) or industry gross output.

The first set of conditions (C.1) are the industry factor demand equations, which

can be summed to generate aggregate factor demand. The second set of conditions

(C.2) equates factor demand with fixed factor supply. The third condition equates

total factor income and total expenditure, which also ensures (along with the other
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conditions) that trade balance holds. The fourth set of conditions (C.4) defines the

price index, while the fifth set of equations (C.5) defines gross industry revenues as

equal to total industry sales.

Notice that the last set of equations can be solved for Yk as a function of the factor

prices and factor allocations (as well as the exogenous market access terms) using

matrix algebra. We can then plug this solution into the other equations, and also plug

in the definitions of total expenditure and the price indices. We are then left with a

set of equations in factor prices and factor allocations. If there is a unique solution for

factor allocations given factor prices, i.e. a unique solution L for the factor demand

equations (C.1) given a set of factor prices w, then clearly we can reduce this system

to a system of J equating factor demand and factor supply.

In a closed economy, the J equations equating factor supply and demand are

homogeneous of degree 1, and hence a normalization is required. In the open economy

these equations are not homogeneous of degree 1 in factor prices due to the presence

of fixed foreign prices, and no normalization is required.

C.1.2 First Order Welfare Approximation

A general expression for our first order welfare approximation is

d ln y =
∑
k∈K

λexk d lnFMAk +
∑
k∈K

(
ek

σk − 1
− λdk

)
θfkd lnCMAk

+ d lnα +
∑
k∈K

λdkd lnEk +
∑
k∈K

(
(1− σk)(λk − λdkθdk)− ekθdk

)
d ln ck,

where λexk (resp. λdk) is the share total sales attributable to industry k’s export (resp.

domestic) sales, λk = λdk + λexk , ek is the consumer expenditure share on industry k,

and θdk (resp. θfk ) is the share of expenditure on industry k that is sourced domestically

(resp. foreign).

Since α, d ln ck and d lnEk are all ultimately functions of the exogenous variables

d lnFMAk, d lnCMAk and d lnTk, we can substitute in for these variables to derive

the expression in the main text.

Planner’s Problem

Denote by qc,dk the quantity of final Home consumption of domestic goods, and by

qc,fn,k the quantity of final consumption of foreign goods from country n, and use an i

superscript to indicate the corresponding intermediate use. We denote the quantity
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exported to n by qexn,k, and the production function in each sector by Fk. Define

Dn,k ≡ τ 1−σk
n,k En,k/P

1−σk
n,k .1

Using this notation, we can write the planner’s problem as

max
qc,dk ,qc,fn,k,q

i,d
k ,qi,fn,k,q

ex
n,k,Lj,k

lnU({qc,dk }, {q
c,f
n,k})

s.t. Fk

(
{Lj,k}, {qi,dk }, {q

i,f
n,k}
)

= qc,dk + qi,dn,k +
∑
n∈N

qexn,k, ∀k∑
k

Lj,k = L̄j, ∀j

∑
k

∑
n

pfn,k

(
qc,fn,k + qi,fn,k

)
=
∑
k∈K

∑
n∈N

(qexn,k)
σk−1

σk ·D
1
σk
n,k.

We first need to transform this into an expression involving FMA and CMA. Using

the first order conditions, it is easy to show that at the optimum for any two export

markets n and m

qexn,k
qexm,k

=
Dn,k

Dm,k

, ∀m,n ∈ N, k ∈ K

Likewise, from the first order conditions and our CES aggregator for both consumption

and intermediate goods, we have

qc,fn,k

qc,fm,k
=
qi,fn,k

qi,fm,k
=

(
pfn,k

pfm,k

)−σk
, ∀m,n ∈ N, k ∈ K

This implies that we can define new variables qexk =
∑

n∈N q
ex
n,k, qc,fk =

(
∑

n∈N(qc,fn,k)
σk−1

σk )
σk
σk−1 and qi,fk = (

∑
n∈N(qi,fn,k)

σk−1

σk )
σk
σk−1 such that the problem above

is equivalent to

max
qc,dk ,qc,fk ,qi,dk ,qi,fk ,qexk ,Lj,k

lnU({qc,dk }, {q
c,f
k })

s.t. Fk

(
{Lj,k}, {qi,dk }, {q

i,f
k }
)

= qc,dk + qi,dn,k + qexk , ∀k∑
k

Lj,k = L̄j, ∀j

∑
k

(
qc,fk + qi,fk

)
CMA

1
1−σk
k =

∑
k∈K

(qexk )
σk−1

σk FMA
1
σk
k

1Note that the iceberg assumption implies that the price received by the exporter is

pexn,k = (qexn,k)
− 1
σk ·D

1
σk

n,k.
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We now derive the formulas for δexk and δimk for an efficient economy. A simple

application of the Envelope Theorem gives

δexk = µ · 1

σk
, δimk = µ · 1

σk − 1

where µ is the multiplier on the trade balance constraint (and is constant across

countries). Our assumption of homotheticity allows us to normalize this constant to

equal 1.

Single Factor Economy

We assume upper tier Cobb-Douglas preferences with constant expenditure share ek.

The equilibrium conditions in this case specialize to

wL̄ =
∑
k∈K

(
w

Tk

)1−σk
·

zk ek · wL̄

zk

(
w
Tk

)1−σk
+ CMAk

+ FMAk

 .

Taking natural logs of both sides and applying Taylor’s theorem with respect to FMAk
and CMAk, we get

d lnw ≈
∑
k∈K

(
λdk + (1− σk)

(
λdkθ

f
k + λexk

))
d lnw +

∑
k∈K

λexk d lnFMAk −
∑
k∈K

λdkθ
f
kd lnCMAk

The first term captures the effect of changes in wages on domestic costs through

both foreign and domestic sales. The second term is the direct effect of changes in

export market access. The third term captures the domestic expenditure channel of

increases wages. The fourth term captures the effect of changing prices, both domestic

and foreign, on nominal income.

Collecting terms and solving for d lnw, we get

d lnw ≈
∑
k∈K

λexk d lnFMAk − λdkθ
f
kd lnCMAk

1−
∑

k′∈K

(
λdk′ + (1− σk′)

(
λdk′θ

f
k′ + λexk′

)) .
To solve for the changes in real income, we need to consider the effect on the overall

price index P =
∏

k∈K P
ek
k . Using the Cobb-Douglas assumption and the results above,

we can write

d lnP ≈
∑
k∈K

ek

(
θdkd lnw +

θfk
1− σk

d lnCMAk

)
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Putting the two results together, we get

d ln y ≈ d lnw −

[∑
k∈K

(ek − λimk )d lnw +
∑
k∈K

λimk
d lnCMAk

1− σk

]

= λimd lnw −
∑
k∈K

λimk
d lnCMAk

1− σk

= λim ·
∑
k∈K

λexk d lnFMAk − λdkθ
f
kd lnCMAk

1−
∑

k′∈K

(
λdk′ + (1− σk′)

(
λdk′θ

f
k′ + λexk′

)) −∑
k∈K

λimk
d lnCMAk

1− σk

= κ ·

[∑
k∈K

λexk d lnFMAk −
λdkθ

f
k

λimk
λimk d lnCMAk

]
−
∑
k∈K

λimk
d lnCMAk

1− σk

= κ ·
∑
k∈K

λexk d lnFMAk +
∑
k∈K

(
1

σk − 1
− κθdk

)
λimk d lnCMAk,

κ =
λim

1−
∑

k′∈K

(
λdk′ + (1− σk′)

(
λdk′θ

f
k′ + λexk′

))
where λim =

∑
k∈K λ

im
k .

This expression simplifies to the following when we set the domestic sales share in

each industry, θdk, equal to zero:

d ln y ≈ κ ·

[∑
k∈K

λexk d lnFMAk −
1

1− σk
λimk d lnCMAk

]
,

κ =
1

1−
∑

k′∈K (1− σk′)λexk′
.

External Economies

We now consider a single factor economy with upper tier Cobb-Douglas preferences

(as above), but with external economies of scale as in Kucheryavyy et al. (2018). The

cost function in each industry is given by ck = w
TkL

γk
k

. We specialize their model to

the case with zero domestic sales in any industry. The equilibrium conditions can be

expressed as

wL̄ =
∑
k∈K

(
w

TkL
γk
k

)1−σk
· FMAk

wLk =

(
w

TkL
γk
k

)1−σk
· FMAk, ∀k ∈ K.
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We assume that, for all industries, γk(σk − 1) < 1 to ensure a unique equilibrium

that will be interior (and hence exhibit smooth comparative statics). Due to the zero

domestic sales assumption, production and consumption are entirely distinct in this

economy. Since all consumption is imported, CMA only matters for welfare through

its direct impact on the consumption prices, in exactly the same manner as in the

case with no spillovers. Hence we focus on production.

Solving the individual factor demand equations for Lk in terms of w and plugging

them into the aggregate factor demand = supply equation, we get

wL̄ =
∑
k∈K

w
(1+γk)(1−σk)
1−γk(σk−1) · FMA

1
1−γk(σk−1)

k · T
σk−1

1−γk(σk−1)

k

Using this expression, it is easy to see that

d lnw ≈ κ
∑
k∈K

(
1

1− γk(σk − 1)

)
λexk d lnFMAk

where

κ =
1

1−
∑

k′∈K
(1+γk′ )(1−σk′ )
1−γk′ (σk′−1)

λexk′
.
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C.2 Data and Estimation Appendix

C.2.1 Matching the Trade Data to Industries

The international trade data from 1965 to 2015 are from the UN COMTRADE

Database, which reports bilateral trade flows at the 4-digit SITC Revision 2 level.

To concord the trade data to 1997 NAICS industry classifications, we proceed as

follows. First, we assign each 4-digit SITC item to its corresponding 6-digit NAICS

industries. For instance, 7511 Typewriters cheque-writing machines are matched to

333313 Office machinery manufacturing. Second, for those items that are matched to

more than one 6-digit NAICS industries, we check whether it could be assigned to

the upper-level 5-digit industry. For example, 8510 Footwear is matched to 316211

Rubber and plastics footwear manufacturing, 316212 House slipper manufacturing

and some other 6-digit NAICS industries with the first 5-digits “31612.” In this case,

we aggregate these 6-digit NAICS industries to the 5-digit one 31621 and concord

the 4-digit SITC items to the 5-digit NAICS industry. Third, the same is done for

the items that are assigned to more than one 5-digit NAICS industries. We matched

them to the corresponding 4-digit NAICS industries.

Overall, the 784 4-digit SITC items are matched to 268 NAICS industries. Among

them, 233 industries are in the manufacturing sector, 26 in agriculture, and 9 in

mining.

C.2.2 K-means Clustering

Selecting the Number of Clusters with Silhouette Analysis

Rousseeuw (1987) introduces the silhouette plot as a means for clustering evaluation.

With this method, each cluster is represented by a silhouette displaying which points lie

well within the cluster and which ones are marginal to the cluster. The silhouette plot

is based on the silhouette width measure, which compares the similarity (cohesion) of

a point to points in its own cluster with the ones in neighboring clusters (separation).

The silhouette width si is measured as follows:

i. (Measuring the cohesion) Measuring the average distance between point i and

all other points in the same cluster. Denote it as ai.

ii. (Measuring the separation) Measuring the average distance between i and all
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points in the nearest cluster. Denote it as bi.

iii. The silhouette width of the observation i is measured as si = bi−ai
max(ai,bi)

The silhouette ranges from -1 to 1, where a high value indicates that the point

is well assigned to its own cluster and dissimilar to neighboring clusters. A value of

0 indicates that the point is on or very close to the cluster boundary between two

neighboring clusters and negative values indicate that those points might have been

assigned to the wrong cluster.

The average silhouette width provides an evaluation of clustering validity, and can

be used as way to select an appropriate number of clusters. A high average silhouette

width indicates a strong clustering. The average silhouette method computes the

average silhouette of observations for different number of clusters G. The optimal

number of clusters G is the one that maximizes the average silhouette over a range of

possible values for G.

Appendix Figure C.1 plots the silhouette width for industries in each cluster and

Appendix Figure C.2 plots the average silhouette over the possible cluster number

range. The silhouette analysis suggests that either 4 or 5 are good values for the

number of clusters. While the average silhouette value slightly prefers 5 clusters to

4, the silhouette analysis suggests that with 4 clusters fewer industries are near the

boundary.

Figure C.1 Silhouette Analysis
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Figure C.2 Average Silhouette Value
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Representative Sectors in Each Cluster

The 233 manufacturing sectors are grouped into 4 clusters using the k-means algo-

rithm. Table C.1 lists the 3 most representative sectors in each cluster. The most

representative sectors are those closest to the cluster centroid.

Table C.1 The 3 Most Representative Sectors in Each Cluster

Clusters Label Representative Sectors
Naics Description

Raw
Materials
Processing

324199
All Other Petroleum and Coal Products
Manufacturing

Cluster 1 31131 Sugar Manufacturing
32419 Other Petroleum and Coal Products Manufacturing

Complex
Intermediates

33512 Lighting Fixture Manufacturing
Cluster 2 33531 Electrical Equipment Manufacturing

339994 Broom, Brush, and Mop Manufacturing

Capital
Goods

333911 Pump and Pumping Equipment Manufacturing
Cluster 3 333994 Industrial Process Furnace and Oven Manufacturing

333992 Welding and Soldering Equipment Manufacturing

Consumer
Goods

312130 Wineries

Cluster 4 335211
Electric Housewares and Household Fan
Manufacturing

33521 Small Electrical Appliance Manufacturing
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K-means Clustering Using a Subset of Characteristic Variables

The average silhouette value of 4 clusters is about 0.35, which indicates that the cluster

structure is somewhat weak. However, this could be due to the inclusion of irrelevant

sectoral characteristics, which tend to drag down the average silhouette value. We

investigate this hypothesis by implementing the algorithm on a subset of important

characteristic variables: the investment sales share, intermediates sales shares and

contract intensity. These variables are identified as especially important through

inspection of the cluster structure as well as more formally using methods developed

in Witten and Tibshirani (2010). The 4 clusters based on these three characteristics

closely replicate the baseline cluster structure; see Table C.2. The average silhouette

value is now about 0.65 (Figure C.3), suggesting a strong cluster structure.

Figure C.3 Average Silhouette Value
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Table C.2 Summary Statistics of Clusters: K-means Clustering Using a Subset of Charac-
teristic Variables

cluster
1 2 3 4 Mean Std. Dev.

Inv. Share 0.01 0.07 0.56 0.05 0.13 0.22
Int. Using 0.70 0.63 0.65 0.63 0.66 0.16
Int. Sales 0.83 0.78 0.28 0.25 0.57 0.31
Conc. Ratio 0.41 0.30 0.34 0.48 0.40 0.21
Sk. Share 0.30 0.31 0.35 0.33 0.32 0.13
Cap. Int. 0.64 0.55 0.55 0.64 0.61 0.10
Con. Int. 0.29 0.65 0.72 0.57 0.51 0.22

Num of ind. 87 45 42 59
Trade share 0.38 0.16 0.20 0.19
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C.2.3 Estimation of FMAik,t and CMAnk,t

Equation (3.4) and (3.5) relates external Firm Market Access (FMA) and external

Consumer Market Access (CMA) to the gravity equation. The FMAik,t and CMAnk,t

are expressed as follows:

FMAik,t =
∑
n∈N

En,k

P 1−σk
n,k

· τ 1−σk
in,k ,

CMAnk,t =
∑
i∈N

c1−σk
i,k · τ 1−σk

in,k ,

where i is exporter and n is importer. The foreign shocks are estimated by using

sectoral bilateral trade flow data and a structural gravity equation.

Gravity Regression

Gravity equation (3.2) can be rewritten as

Eink,t ≡ pink,t · qink,t = c1−σk
ik,t ·

Enk,t

P 1−σk
nk,t

· τ 1−σk
ink,t , (C.6)

where Eink,t denotes country n’s total sector k expenditure on goods from country i.

We do not observe the domestic trade flows, instead we estimate the share version of

this equation à la Eaton et al. (2012). Dividing both sides by the total imports of

country n, we get

Eink,t∑
i 6=nEink,t

= c1−σk
ik,t ·

Enk,t

P 1−σk
nk,t ·

∑
i 6=nEink,t

· τ 1−σk
ink,t .

It can be estimated by regressing bilateral trade flows on exporter and importer fixed

effects and bilateral trade distance. The estimating equation is

ln

(
Eink,t∑
i 6=nEink,t

)
= exik,t + imnk,t + ζkt lnDistancein + ξktContigin + εink,t, (C.7)

where
Eink,t∑
i 6=n Eink,t

is the share of total imports from country i to n in sector k at time

t, exik,t is the exporter fixed effect, imnk,t is the importer fixed effect, ζkt and ξkt are

the distance and common border coefficients. Distancein measures the geographic

distance between country i and n, and Contigin indicates whether country i and n

are spatially adjacent.

Importer and exporter fixed effects imnk,t and exik,t, and the bilateral distance

coefficients ζkt and ξkt are estimated from the above gravity equation using the Poisson
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pseudo-maximum likelihood approach of Silva and Tenreyro (2006). The estimation is

carried out for each sector and time period separately. We estimate the fixed effects

and distance/contiguity coefficients for 127 countries, 268 sectors, and 5 decades

spanning 1965-2015.

Shocks to large countries may affect their trading partners’ estimated importer

and exporter effects. In that case, those estimated fixed effects would not be pure

measures of foreign shocks affecting the large country, as they would pick up in part

the large country’s domestic shocks. To address this potential endogeneity, we carry

out the above gravity estimation using the leave-one-out approach. For each country

ω, we estimate a set {exik,t(ω) imnk,t(ω) ζkt(ω) ξkt(ω)} of country ω-specific exporter

and importer fixed effects and distance/contiguity coefficients by dropping country

ω from the gravity sample on both the exporter and importer side. In this notation,

indexing by ω denotes estimates when country ω is left out of the sample. In practice

this does not affect any of our conclusions. The results are very similar if we extract

the importer and exporter fixed effects from the simple gravity regression with all

countries included. This reflects the fundamental fact that most countries are small in

foreign markets.

The fixed effects of log trade flows are identified only up to a sector-time-specific

additive constant, and thus we renormalize them by restricting the sum of the importer

fixed effects to be zero:

imnk,t(ω) = imnk,t(ω)−
∑

z imzk,t(ω)

Nkt(ω)

exik,t(ω) = exik,t(ω) +

∑
z imzk,t(ω)

Nkt(ω)
,

where Nkt(ω) is the total number of countries with positive imports for industry k

and time t when ω is left out. In this way, what matters is the share of each country

in the total imports across industries, not the total imports of the numéraire country

in the fixed effects estimation.

FMAik,t and CMAnk,t

The gravity estimates from the section above can be used to construct FMAik,t and

CMAnk,t. The (log) c1−σk
ik,t and

Enk,t

P
1−σk
nk,t ·

∑
i6=n Eink,t

are estimated by using the exporter and

importer fixed effects respectively. We denote by κexik,t(ω) and κimnk,t(ω) the estimated
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c1−σk
ik,t and

Enk,t

P
1−σk
nk,t ·

∑
i 6=n Eink,t

when country ω is omitted:

κexik,t(ω) = exp{exik,t(ω)}

κimnk,t(ω) = exp{imnk,t(ω)}.

The iceberg bilateral components τ 1−σk
ink,t are estimated by using the bilateral ge-

ographic distance and the common border dummy and corresponding distance

and common border coefficients. The estimated bilateral component is given by

Distanceζktin · exp (ξkt · Contigin).

The estimated FMAik,t and CMAnk,t can then be computed as

FMAik,t =
∑
n6=i

Enk,t(i) · κimnk,t(i) ·Distance
ζkt(i)
in · exp (ξkt(i) · Contigin)

CMAnk,t =
∑
i 6=n

κexik,t(n) ·Distanceζkt(n)
in · exp (ξkt(n) · Contigin) ,

where Enk,t(i) ≡
∑

i′ 6=n,iEi′nk,t(i) is total importer n expenditure when leaving country

i out.

C.2.4 The Post-Double-Selection Method

Estimating Equation

The growth estimating equation is specified as follows:

d ln yi,t =
∑
g∈G

δexg · [d lnFMAig,t] +
∑
g∈G

δimg · [d lnCMAig,t] + ηwi,t + φsi,t +Dt + εi,t,

where d lnFMAig,t =
∑

k∈G λ
ex
ik,td lnFMAik,t, d lnCMAig,t =

∑
k∈G λ

ex
ik,td lnCMAik,t

are the log-differenced market access terms aggregated up to the cluster level, and Dt

are the time fixed effects.

The vector wi,t collects the industry-level initial equilibrium variables such as

initial import and export shares (λimik,t and λexik,t), weighted initial firm and consumer

market access (λexik,t · lnFMAik,t and λimik,t · lnCMAik,t), the squares ((λimik,t)
2 , (λexik,t)

2,

(λexik,t · lnFMAik,t)
2 and (λimik,t · lnCMAik,t)

2) and the interactions ((λexik,t)
2 · lnFMAik,t

and (λimik,t)
2 · lnCMAik,t). The vector si,t collects the interactions between the initial

equilibrium variables and the industry-level foreign shocks, such as (λexik,t)
2·d lnFMAik,t

and (λimik,t)
2 · d lnCMAik,t.

Since our estimating equation has a large number of controls relative to the sample
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size, the OLS estimation is infeasible, and dimension reduction is necessary. We

estimate the above growth equation by implementing the “post-double-selection”

method.

Post-Double-Selection Method

The post-double-selection procedure works in two steps. In the double-selection step,

LASSO is applied to select controls variables that are useful for predicting the depen-

dent and independent variables respectively. In the post-selection step, coefficients are

estimated via an OLS regression of dependent variables on the independent variables

and the selected controls.

First, let’s rewrite the estimation equation as follows:

d ln yi,t = di,tδ + xi,tβy + µi,t,

where di,t denotes the vector of treatment variables d lnFMAig,t and d lnCMAig,t,

and xi,t is the vector of control variables.

Applying LASSO directly to our estimation equation above might lead to the

omitted-variable bias if the LASSO procedure drops a control variable that is highly

correlated with the treatment but the coefficient associated with the control is nonzero.

To learn about the relationship between the treatment variables and the controls, let’s

introduce a reduced-form equation

di,t = xi,tβd + vi,t

for each element di,t of the vector di,t.

Substituting the reduced-form di,t into the growth estimation equation we get

d ln yi,t = xi,t(βdδ + βy) + (vi,tδ + µi,t)

di,t = xi,tβd + vi,t. ∀di,t

Both equations are used for variable selection. The first equation is used to select

a set of variables that are useful for predicting the dependent variable d ln yi,t and the

second equation is used to select a set of controls that are useful for predicting each of

the treatment variables di,t. The reduced form system could be further rewritten as

zi,t = xi,tβ + εi,t
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where zi,t is the vector of dependent variable d ln yi,t and all treatment variables di,t.

A feasible double-selection procedure via LASSO is then defined as follows

min
β
E(zi,t − xi,tβ)2 +

λ

n
||Lβ||1

where L = diag(l1, l2, . . . , lp) is a diagonal matrix of penalty loadings and λ is the

penalty level. The LASSO estimator is used for variable selection by simply selecting

the controls with nonzero estimated coefficients.

The double-selection procedure first selects a set of controls that are useful for

predicting the independent variable d ln yi,t and treatment variables di,t. Then in the

post-LASSO step, we estimate δexg and δimg by ordinary least squares regression of

d ln yi,t on di,t and the union of the variables selected for predicting d ln yi,t and di,t.

K-fold Cross Validation

The penalty level λ controls the degree of penalization. Practical choices for λ to

prevent overfitting are provided in Belloni et al. (2012, 2014a,b). We follow the online

appendix of Belloni et al. (2014a) and choose λ by K-fold cross validation.

The K-fold cross-validation works as follows:

i. Randomly split the data (yi,t,xi,t,di,t) into K subsets of equal size, S1, S2, . . . , SK

ii. Set the potential tuning parameter set to be [λRT − 100 : grid : λRT + 100],

where λRT = 2.2
√
nΦ(1−γ/2p) is the rule of thumb tuning parameter suggested

in Belloni et al. (2012, 2014b), γ = 0.1/log(p), n is the number of observations,

p the number of variables, and grid = 10.

iii. Given λ, for k = 1, 2, . . . , K:

(a) (Training on (yi,t,xi,t,di,t), i /∈ Sk) Leave the kth subset out, and imple-

ment the post-double-selection method with tuning parameter λ on the

K − 1 subsets. Denote the estimated coefficients as δ̂−k(λ) and β̂−ky (λ).

(b) (Validating on (yi,t,xi,t,di,t), i ∈ Sk) Given δ̂−k(λ) and β̂−ky (λ) compute

the error in predicting the kth subset,

ek(λ) =
∑
i∈Sk

(d ln yi,t − di,tδ̂
−k(λ)− xi,tβ̂

−k
y (λ))2.
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iv. This gives the cross-validation error

CV (λ) =
1

K

K∑
1

ek(λ).

v. For each value of the tuning parameter λ ∈ [λRT − 100, λRT + 100], repeat steps

3-4 and choose the tuning parameter that minimizes the CV (λ).
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Table C.3 Control Variables Selected in the Double-Selection Procedure via LASSO:
Baseline Estimation

Controls Included Controls Selected
Baseline Developed Countries Developing Countries

λexik,t λexik104,t λexik64,t
λexik176,t λexik125,t
λexik180,t λexik155,t

λexik165,t
λexik178,t
λexik210,t
λexik241,t
λexik244,t

λimik,t

λexiq,t λexiq2,t

λimiq,t

λexik,t · lnFMAik,t λexik114,t · lnFMAik114,t λexik92,t · lnFMAik92,t
λexik143,t · lnFMAik143,t λexik180,t · lnFMAik180,t
λexik179,t · lnFMAik179,t
λexik180,t · lnFMAik180,t

λimik,t · lnCMAik,t λimik80,t · lnCMAik80,t λimik71,t · lnCMAik71,t
λimik166,t · lnCMAik166,t λimik166,t · lnCMAik166,t
λimik172,t · lnCMAik172,t λimik180,t · lnCMAik180,t
λimik176,t · lnCMAik176,t λimik205,t · lnCMAik205,t
λimik180,t · lnCMAik180,t λimik230,t · lnCMAik230,t
λimik186,t · lnCMAik186,t
λimik214,t · lnCMAik214,t
λimik221,t · lnCMAik221,t
λimik222,t · lnCMAik222,t∑

k∈q λ
ex
ik,t · lnFMAik,t∑

k∈q λ
im
ik,t · lnCMAik,t

Number of Controls Selected 16 16 0
Estimates Figures Figure 3.1 Figure 3.2 Figure 3.2

Notes: Industries in our sample are relabeled by number from 1 to 281 for coding purpose, i.e. k = 1, 2, . . . , 281. The
numbers in the subscripts refers to the corresponding industries.

C.3 Additional Appendix Tables and Figures
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Table C.4 Summary Statistics of Clusters: Grouping the Manufacturing Industries to 5
Clusters

cluster

1 2 3 4 5 Mean
Std.
Dev.

Inv. Share 0.00 0.05 0.57 0.03 0.16 0.13 0.22
Int. Using 0.76 0.62 0.67 0.66 0.57 0.66 0.16
Int. Sales 0.85 0.71 0.26 0.31 0.52 0.57 0.31
Conc. Ratio 0.48 0.23 0.35 0.59 0.41 0.40 0.21
Sk. Share 0.33 0.23 0.30 0.32 0.54 0.32 0.13
Cap. Int. 0.69 0.55 0.54 0.69 0.55 0.61 0.10
Con. Int. 0.25 0.52 0.71 0.49 0.74 0.51 0.22

Num of ind. 54 70 36 44 29
Trade share 0.31 0.20 0.15 0.07 0.20

Label
Raw

Materials
Complex Capital

Con-
sumer

Skill

Process-
ing

Interme-
diates

Goods Goods
Inten-
sive

Abbreviation RAW INT CAP CONS SI
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Table C.5 Control Variables Selected in the Double-Selection Procedure via LASSO:
Robustness Checks

Controls included Controls Selected
Controls Included Dropping Large Trading Partners Dropping Contiguous Countries

λexik,t λexik94,t λexik111,t
λexik104,t λexik143,t
λexik114,t λexik176,t
λexik145,t λexik182,t
λexik158,t
λexik176,t

λimik,t

λexiq,t

λimiq,t

λexik,t · lnFMAik,t λexik82,t · lnFMAik82,t λexik179,t · lnFMAik179,t
λexik92,t · lnFMAik92,t λexik201,t · lnFMAik201,t
λexik94,t · lnFMAik94,t λexik203,t · lnFMAik203,t
λexik96,t · lnFMAik96,t
λexik102,t · lnFMAik102,t
λexik143,t · lnFMAik143,t
λexik152,t · lnFMAik152,t
λexik186,t · lnFMAik186,t
λexik190,t · lnFMAik190,t

λimik,t · lnCMAik,t λimik127,t · lnCMAik127,t λimik166,t · lnCMAik166,t
λimik164,t · lnCMAik164,t λimik180,t · lnCMAik180,t
λimik166,t · lnCMAik166,t λimik236,t · lnCMAik236,t
λimik176,t · lnCMAik176,t λimik237,t · lnCMAik237,t
λimik180,t · lnCMAik180,t λimik277,t · lnCMAik277,t
λimik203,t · lnCMAik203,t
λimik217,t · lnCMAik217,t
λimik221,t · lnCMAik221,t
λimik229,t · lnCMAik229,t∑

k∈q λ
ex
ik,t · lnFMAik,t∑

k∈q λ
im
ik,t · lnCMAik,t

Number of Controls Selected 24 12
Estimates Figures Figure C.7 Figure C.8

Notes: Industries in our sample are relabeled by number from 1 to 281 for coding purpose, i.e. k = 1, 2, . . . , 281. The
numbers in the subscripts refers to the corresponding industries.
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Figure C.4 Cluster-Specific Coefficients and Confidence Intervals With a Decreased
Tuning Parameter
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Notes: This figure reports the coefficients in estimating Equation (3.13) with a decreased tuning parameter, for the
foreign demand shocks (FMA) (left panels), and foreign supply shocks (CMA) (right panels). The figure displays
the post double-LASSO estimates. 38 control variables are selected in the double-selection step. The bars display the
95% confidence bands, that use standard errors clustered by country. The specifications control for initial GDP per
capita. The boxes display the results of an F -test for equality of the coefficients in each plot.

137



Figure C.5 Cluster-Specific Coefficients and Confidence Intervals When Grouping the
Manufacturing Industries to 5 Clusters
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II. LASSO Estimates
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Notes: This figure reports the coefficients in estimating Equation (3.13) when grouping the manufacturing industries
to 5 clusters, for the foreign demand shocks (FMA) (left panels), and foreign supply shocks (CMA) (right panels).
The top panel displays the baseline OLS estimates. The bottom panel displays the post double-LASSO estimates.
11 control variables are selected in the double-selection step. The bars display the 95% confidence bands, that use
standard errors clustered by country. The specifications control for initial GDP per capita. The boxes display the
results of an F -test for equality of the coefficients in each plot.

138



Figure C.6 Cluster Measurement Error Simulation
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Notes: This figure reports the coefficients in estimating equation (3.13), for the foreign demand shocks (FMA) (left
panel), and foreign supply shocks (CMA) (right panel), in the measurement error simulations. The vertical bars
report the 95% range of coefficient estimates. The specifications control for initial GDP per capita.

Figure C.7 Dropping Large Trading Partners: Cluster-Specific Coefficients and Confidence
Intervals
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Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panels), and foreign supply shocks (CMA) (right panels). The construction of the FMA and CMA terms omit
foreign markets for which country i is a large trading partner. The figure displays the post double-LASSO estimates.
24 control variables are selected in the double-selection step. The bars display the 95% confidence bands, that use
standard errors clustered by country. The specifications control for initial GDP per capita. The boxes display the
results of an F -test for equality of the coefficients in each plot.
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Figure C.8 Dropping Contiguous Countries: Cluster-Specific Coefficients and Confidence
Intervals
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Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panel), and foreign supply shocks (CMA) (right panel). The construction of the FMA and CMA terms omit con-
tiguous countries. The figure displays the post double-LASSO estimates. 12 control variables are selected in the
double-selection step. The bars display the 95% confidence bands, that use standard errors clustered by country.
The specifications control for initial GDP per capita. The boxes display the results of an F -test for equality of the
coefficients in each plot.
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Figure C.9 Developed vs. Developing Countries: Cluster-Specific Coefficients and Confi-
dence Intervals With a Decreased Tuning Parameter
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(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating Equation (3.13) with a decreased tuning parameter, for the
foreign demand shocks (FMA) (left panels), and foreign supply shocks (CMA) (right panels). The top panel displays
the results for the sample of developed countries. 9 control variables are selected in the double-selection step. The
bottom panel displays the results for developing countries. 2 control variables are selected in the double-selection step.
The bars display the 95% confidence bands, that use standard errors clustered by country. The specifications control
for initial GDP per capita. The boxes display the results of an F -test for equality of the coefficients in each plot.
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Figure C.10 Developed vs. Developing Countries: Cluster-Specific Coefficients and
Confidence Intervals When Grouping the Manufacturing Industries to 5 Clusters
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(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating Equation (3.13) when grouping the manufacturing industries
to 5 clusters, for the foreign demand shocks (FMA) (left panels), and foreign supply shocks (CMA) (right panels).
The top panel displays the results for the sample of developed countries. 14 control variables are selected in the
double-selection step. The bottom panel displays the results for developing countries. 6 control variables are selected
in the double-selection step. The bars display the 95% confidence bands, that use standard errors clustered by country.
The specifications control for initial GDP per capita. The boxes display the results of an F -test for equality of the
coefficients in each plot.
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Figure C.11 Developed vs. Developing Countries: Cluster Measurement Error Simulation

I. Developed Countries

0.20

1.60

2.09

0.41

−0.98

−0.01

−
2

.5
0

2
.5

5
7

.5
E

la
s
ti
c
it
y
 o

f 
re

a
l 
in

c
o

m
e

RAW INT CAP CONS AG MIN
Clusters

(a) Foreign Demand Shocks

−2.01

0.73
−0.66

7.97

−2.14
−4.42

−
1

5
0

1
5

3
0

4
5

E
la

s
ti
c
it
y
 o

f 
re

a
l 
in

c
o

m
e

RAW INT CAP CONS AG MIN
Clusters

(b) Foreign Supply Shocks

II. Developing Countries

0.03
0.65

10.42

−1.42

0.78

−0.52

−
5

0
5

1
0

1
5

E
la

s
ti
c
it
y
 o

f 
re

a
l 
in

c
o

m
e

RAW INT CAP CONS AG MIN
Clusters

(c) Foreign Demand Shocks

0.49

−3.28

18.00

6.51

−4.00

−1.26

−
1

5
0

1
5

3
0

4
5

E
la

s
ti
c
it
y
 o

f 
re

a
l 
in

c
o

m
e

RAW INT CAP CONS AG MIN
Clusters

(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating equation (3.13), for the foreign demand shocks (FMA) (left
panel), and foreign supply shocks (CMA) (right panel), in the measurement error simulations. The top panel displays
the results for the sample of developed countries. The bottom panel displays the results for developing countries. The
vertical bars report the 95% range of coefficient estimates. The specifications control for initial GDP per capita.
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Figure C.12 Developed vs. Developing Countries: Dropping Large Trading Partners
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(d) Foreign Supply Shocks

Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panels), and foreign supply shocks (CMA) (right panels). The construction of the FMA and CMA terms omit
foreign markets for which country i is a large trading partner. The top panel displays the results for the sample
of developed countries. 2 control variables are selected in the double-selection step. The bottom panel displays the
results for developing countries. 2 control variables are selected in the double-selection step. The bars display the
95% confidence bands, that use standard errors clustered by country. The specifications control for initial GDP per
capita. The boxes display the results of an F -test for equality of the coefficients in each plot.
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Figure C.13 Developed vs. Developing Countries: Dropping Contiguous Countries
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Notes: This figure reports the coefficients in estimating Equation (3.13), for the foreign demand shocks (FMA) (left
panels), and foreign supply shocks (CMA) (right panels). The construction of the FMA and CMA terms omit
contiguous countries. The top panel displays the results for the sample of developed countries. 3 control variables
are selected in the double-selection step. The bottom panel displays the results for developing countries. 1 control
variables are selected in the double-selection step. The bars display the 95% confidence bands, that use standard
errors clustered by country. The specifications control for initial GDP per capita. The boxes display the results of an
F -test for equality of the coefficients in each plot.
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Figure C.14 Developed vs. Developing Countries: Elasticity of the Growth Rate
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(a) Foreign Demand Shocks
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(b) Foreign Supply Shocks

Notes: This figure presents the scatterplot of elasticity of growth rate with respect to the foreign demand shocks
(FMA) (left panels), and foreign supply shocks (CMA) (right panels) against real GDP per capita. Elasticity of
growth rate is calculated using the developed- and developing-country-specific estimates of coefficients in estimating
equation (3.13) and the sectoral export and import shares in 2015.
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, Natalia Ramondo, Andrés Rodŕıguez-Clare, and Stephen Yeaple, “Innovation and
production in the global economy,” American Economic Review, 2018, 108 (8),
2128–73.

Arthur, David and Sergei Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” in “Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms” Society for Industrial and Applied Mathematics 2007, pp. 1027–1035.

148



Atkin, David, “Endogenous Skill Acquisition and Export Manufacturing in Mexico,”
American Economic Review, 2016, 106 (8), 2046–2085.

Auclert, Adrien, “Monetary Policy and the Redistribution Channel,” May 2017. mimeo,
Stanford University.

Audretsch, David B and Maryann P Feldman, “R&D spillovers and the geography of
innovation and production,” The American economic review, 1996, 86 (3), 630–640.

and , “Knowledge spillovers and the geography of innovation,” in “Handbook of
regional and urban economics,” Vol. 4, Elsevier, 2004, pp. 2713–2739.

Autor, David H, David Dorn, and Gordon H Hanson, “The China syndrome: Local la-
bor market effects of import competition in the United States,” American Economic
Review, 2013, 103 (6), 2121–68.

, , and , “The china shock: Learning from labor-market adjustment to large
changes in trade,” Annual Review of Economics, 2016, 8, 205–240.

Aw, Bee Yan, Mark J Roberts, and Daniel Yi Xu, “R&D investment, exporting, and
productivity dynamics,” American Economic Review, 2011, 101 (4), 1312–44.

Bartelme, Dominick, “Trade costs and economic geography: evidence from the US,”
manuscript, 2018.

Bartelme, Dominick G, Arnaud Costinot, Dave Donaldson, and Andrés Rodŕıguez-
Clare, “The Textbook Case for Industrial Policy: Theory Meets Data,” August
2019. NBER WP 26193.

Bartik, Timothy J, “Who benefits from state and local economic development policies?,”
WE Upjohn Institute for Employment Research, 1991.

Belloni, Alexandre, Daniel Chen, Victor Chernozhukov, and Christian Hansen, “Sparse
models and methods for optimal instruments with an application to eminent domain,”
Econometrica, 2012, 80 (6), 2369–2429.

, Victor Chernozhukov, and Christian Hansen, “High-dimensional methods and
inference on structural and treatment effects,” Journal of Economic Perspectives,
2014, 28 (2), 29–50.

, , and , “Inference on treatment effects after selection among high-dimensional
controls,” The Review of Economic Studies, 2014, 81 (2), 608–650.

, , Ivan Fernández-Val, and Christian Hansen, “Program evaluation and causal
inference with high-dimensional data,” Econometrica, 2017, 85 (1), 233–298.

Beraja, Martin, Andreas Fuster, Erik Hurst, and Joseph Vavra, “Regional Hetero-
geneity and Monetary Policy,” August 2017. Forthcoming, Quarterly Journal of
Economics.

149



Bernanke, Ben S., Jean Boivin, and Piotr Eliasz, “Measuring the Effects of Monetary
Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,” Quarterly
Journal of Economics, 2005, 120 (1), 387–422.

Bilir, L Kamran and Eduardo Morales, “Innovation in the global firm,” Technical
Report, National Bureau of Economic Research 2016.

Blanchard, Emily J. and William W. Olney, “Globalization and human capital invest-
ment: Export composition drives educational attainment,” Journal of International
Economics, 2017, 106, 165 – 183.

Bloom, Nicholas, Mirko Draca, and John Van Reenen, “Trade induced technical
change? The impact of Chinese imports on innovation, IT and productivity,” The
Review of Economic Studies, 2016, 83 (1), 87–117.

Boivin, Jean, Marc P. Giannoni, and Ilian Mihov, “Sticky Prices and Monetary Policy:
Evidence from Disaggregated US Data,” American Economic Review, March 2009,
99 (1), 350–84.

Bøler, Esther Ann, Andreas Moxnes, and Karen Helene Ulltveit-Moe, “R&D, interna-
tional sourcing, and the joint impact on firm performance,” American Economic
Review, 2015, 105 (12), 3704–39.

Buzard, Kristy, Gerald A Carlino, Robert M Hunt, Jake Carr, Tony E Smith et al.,
Localized Knowledge Spillovers: Evidence from the Agglomeration of American
R & D Labs and Patent Data, Federal Reserve Bank of Philadelphia, Research
Department, 2015.

Caliendo, Lorenzo, Maximiliano Dvorkin, and Fernando Parro, “The impact of trade on
labor market dynamics,” Technical Report, National Bureau of Economic Research
2015.

Calvo, Guillermo A., “Staggered Prices in a Utility-Maximizing Framework,” Journal
of Monetary Economics, 1983, 12 (3), 383–398.

Capello, Roberta and Camilla Lenzi, “Spatial heterogeneity in knowledge, innovation,
and economic growth nexus: conceptual reflections and empirical evidence,” Journal
of Regional Science, 2014, 54 (2), 186–214.

Caragliu, Andrea and Peter Nijkamp, “Space and knowledge spillovers in European
regions: the impact of different forms of proximity on spatial knowledge diffusion,”
Journal of Economic Geography, 2015, 16 (3), 749–774.

Carlino, Gerald and William R Kerr, “Agglomeration and innovation,” in “Handbook
of regional and urban economics,” Vol. 5, Elsevier, 2015, pp. 349–404.

Caselli, Francesco and Daniel J. Wilson, “Importing Technology,” Journal of Monetary
Economics, 2004, 51 (1), 1–32.

150



Christiano, Lawrence J., Mathias Trabandt, and Karl Walentin, “DSGE Models for
Monetary Policy Analysis,” in Benjamin M. Friedman and Michael Woodford, eds.,
Handbook of Monetary Economics, Vol. 3, Elsevier, 2010, chapter 7, pp. 285–367.

Clayton, Christopher, Xavier Jaravel, and Andreas Schaab, “Heterogeneous Price
Rigidities and Monetary Policy,” May 2018. Mimeo, Harvard and LSE.

Cohen, Wesley M and Daniel A Levinthal, “Innovation and learning: the two faces of
R & D,” The Economic Journal, 1989, 99 (397), 569–596.

Coibion, Olivier, Yuriy Gorodnichenko, and Gee Hee Hong, “The Cyclicality of Sales,
Regular and Effective Prices: Business Cycle and Policy Implications,” American
Economic Review, March 2015, 105 (3), 993–1029.

, , Lorenz Kueng, and John Silvia, “Innocent Bystanders? Monetary policy and
inequality,” Journal of Monetary Economics, June 2017, 88 (Supplement C), 70 –
89.
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Institut International de Statistique, 1895, 9, 1–124.

Faggio, Giulia, Olmo Silva, and William C Strange, “Heterogeneous agglomeration,”
Review of Economics and Statistics, 2017, 99 (1), 80–94.

Feyrer, James, “Trade and Income – Exploiting Time Series in Geography,” May 2018.
Forthcoming, Amedican Economic Journal: Applied.

Frankel, Jeffrey A. and David H. Romer, “Does Trade Cause Growth?,” American
Economic Review, June 1999, 89 (3), 379–399.

Griliches, Zvi et al., “Issues in assessing the contribution of research and development
to productivity growth,” Bell Journal of economics, 1979, 10 (1), 92–116.

Hansen, Lars Peter, “Large sample properties of generalized method of moments esti-
mators,” Econometrica: Journal of the Econometric Society, 1982, pp. 1029–1054.
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