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ABSTRACT

In the big data era, regression models with a large number of covariates have
emerged as a common tool to tackle problems arising from business, engineering,
genomics, neuroimaging, and epidemiological studies. Drawing statistical inference
for these models has sparked much interest over the past few years. Albeit successful
for high dimensional linear models, high dimensional inference approaches beyond
linear regression are limited and present unsatisfactory performance, theoretically or
numerically. In this dissertation, we focus on de-biased lasso, which has been one of
the most popular methods for high dimensional inferences. We propose procedures
that provide better bias correction and confidence interval coverage, and draw reliable
inference for regression parameters in the “large n, diverging p” scenario. In general,
we caution against applying de-biased lasso and its variants to models beyond linear
regression when parameters outnumber the sample size.

Following an overview outlined in Chapter I, we focus on the generalized linear
models (GLMs) in Chapter II. Extensive numerical simulations indicate that de-biased
lasso may not adequately remove biases for high dimensional GLMs, and thus yield
unreliable confidence intervals. We have further found that several key assumptions,
especially the sparsity condition on the inverse Hessian matrix, may not hold for
GLMs. In a “large n, diverging p” scenario, we consider an alternative de-biased lasso
approach that inverts the Hessian matrix of the concerned model without requiring
matrix sparsity, and establish the asymptotic distributions of linear combinations of

the estimates. Simulations evidence that our proposed de-biased estimator performs
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better in bias correction and confidence interval coverage for a wide range of p/n
ratios. We apply our method to the Boston Lung Cancer Study, an epidemiology
study on the mechanisms underlying lung cancer, and investigate the joint effects of
genetic variants on overall lung cancer risks.

In Chapter III, we draw inference based on the Cox proportional hazards model
with a diverging number of covariates. As the existing methods assume sparsity on
the inverse of the Fisher information matrix, which may not hold for Cox models,
they typically generate biased estimates and under-covered confidence intervals. We
modify de-biased lasso by using quadratic programming to approximate the inverse
of the information matrix, without posing matrix sparsity assumptions. We establish
the asymptotic theory for the estimated regression coefficients when the covariate
dimension diverges with the sample size. With extensive simulations, our proposed
method provides consistent estimates and confidence intervals with improved coverage
probabilities. We apply the proposed method to assess the effects of genetic markers
on overall survival of non-small cell lung cancer patients in the aforementioned Boston
Lung Cancer Study.

Stratified Cox proportional hazards model, with extensive applications in large
scale cohort studies, are useful when some covariates violate the proportional hazards
assumption or data are stratified based on factors, such as transplant centers. In
Chapter IV, we extend the de-biased lasso approach proposed in Chapter III to draw
inference for the stratified Cox model with potentially many covariates. We provide
asymptotic results useful for inference on linear combinations of the regression pa-
rameters, and demonstrate its utility via simulation studies. We apply the method to
analyze the national kidney transplantation data stratified by transplant center, and

assess the effects of many factors on graft survival.
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CHAPTER I

Introduction

With the advent of big data era, it becomes increasingly common that a large
number of covariates are collected to study important and complex scientific problems
arising from areas such as engineering, genomics, neuroimaging, and other biomedical
studies. For example, in genome-wide association studies, the traditional method is
typically to screen marginal associations between single nucleotide polymorphisms
(SNPs) and complex traits. However, the marginal approach does not take into
account the complicated structural relationships among SNPs. Jointly modeling the
effects of SNPs within target genes can pinpoint functionally impactful loci in the cod-
ing regions (Taylor et al., 2001; Repapi et al., 2010), better understand the molecular
mechanisms underlying complex diseases (Guan and Stephens, 2011), reduce false
positives around true causal SNPs and improve prediction accuracy (He and Lin,
2010). In the Boston Lung Cancer Study (BLCS), which is a large cancer epidemiol-
ogy cohort investigating molecular mechanisms underlying lung cancer, an analytical
goal is to study the joint effects of genetic variants residing in multiple disease related
pathway genes on lung cancer risk and patient survival. The results can potentially
aid personalized medicine as individualized therapeutic interventions are only possi-
ble with proper characterization of relevant SNPs in pharmacogenomics (Evans and

Relling, 2004).



Statistical methods that can tackle the challenging high-dimensionality of covari-
ates have been increasingly popular in methodological research and real world ap-
plications over the past two decades. Variable selection is one of the most popular
topics, which usually assumes that there is only a small number of important variables
and concerns selecting the most relevant subset of variables to facilitate interpretation
and prediction. Some well acknowledged regularization methods for variable selection
include the lasso ( Tibshirani, 1996, 1997), the elastic net (Zou and Hastie, 2005), the
adaptive lasso (Zou, 2006; Zhang and Lu, 2007), the Dantzig selector (Candes and
Tao, 2007; Li et al., 2014) and SCAD (Fan and Li, 2001, 2002), among many others.

However, scientific discoveries demand solid statistical evidence based on infer-
ence, e.g. confidence interval estimation, hypothesis testing and p-values. In the
presence of high-dimensional covariates, conventional methods, such as ordinary least
squares, maximum likelihood estimation and maximum partial likelihood estimation,
will generate biased parameter estimates and confidence intervals with poor coverage,
or even no longer be feasible. Inferential methods suitable for drawing inference on
high-dimensional regression models are needed.

Some recent efforts in this direction have received much attention. One stream
is conditional inference based on the selected models (Lee et al., 2016), which often
neglects the uncertainty in model selection. Inference for the selected variables based
on the asymptotic results in Fan and Li (2001), Zou (2006) and Zhang and Lu (2007)
shares a similar flavor, and thus is super-efficient. Another main stream concerns de-
biasing the lasso estimator, providing inference for every model parameter. Most
existing literature on de-biasing the lasso has been developed under linear regression
models (van de Geer et al., 2014; Zhang and Zhang, 2014; Javanmard and Montanari,
2014), as well as some extensions, for example, to simultaneous inference (Zhang and
Cheng, 2017; Dezeure et al., 2017). Regression models for other types of outcomes,

such as binary, count, ordinal and time-to-event data, are very commonly used in



real data analysis. Among the limited literature beyond linear regression (see, for
example, van de Geer et al. 2014; Ning and Liu 2017; Kong et al. 2018; Yu et al.
2018; Fang et al. 2017), we have found that there is severe insufficient bias correction
from the lasso estimator, especially for large signals, and the corresponding confidence
intervals have poor coverage probabilities. Moreover, the theoretical developments for
the “large p, small n” case, where the number of covariates exceeds the sample size,
are heavily dependent on assumptions related to the sparsity of the inverse Fisher
information matrix, which lack practical interpretation and can hardly hold in general
settings beyond linear regression.

In this dissertation, we focus on the challenging high-dimensional models beyond
linear regression. We scrutinize the empirical and theoretical limitations of the exist-
ing inferential methods beyond linear regression with high-dimensionality, and present
methodologies, theories and real data applications based on the idea of de-biasing the
lasso with an emphasis on sufficient bias correction and reliable and honest confidence
regions in the “large n, diverging p” scenario, where the sample size is still larger than
the number of covariates, while the latter is allowed to increase with the sample size.
In particular, we consider in Chapter II the generalized linear models (GLMs) that
are commonly used to model binary, count and ordinal outcomes, and the Cox pro-
portional hazards model for right censored time-to-event outcomes in Chapter III.
In the analysis of large survival studies, stratification also occurs often due, for ex-
ample, to violation of proportional hazard assumption, stratum effects not being of
interest or computational burden. In Chapter IV, we propose an inferential method

for stratified Cox proportional hazards model.



CHAPTER II

A Revisit to De-biased Lasso for Generalized

Linear Models

2.1 Introduction

It is of great interest, though with enormous challenges, to draw inference when
the number of covariates grows with the sample size. When the number of covari-
ates exceeds the sample size, the well known “large p, small n” scenario, maximum
likelihood estimation (MLE) is no longer feasible and regularized variable selection
methods have been developed over the decades. These include the lasso method
(Tibshirani, 1996), the elastic net method (Zou and Hastie, 2005), and the Dantzig
selector (Candes and Tao, 2007), among many others. However, these regularized
methods yield biased estimates, and thus cannot be directly used for drawing statisti-
cal inference, in particular, constructing confidence intervals with a nominal coverage.
Even when the number of covariates is smaller than the sample size but can increase
with n, conventional methods may still not be trustworthy. Sur and Candés (2019)
showed that MLE for high-dimensional logistic regression models can overestimate
the magnitudes of non-zero effects while underestimating the variances of the esti-
mates when the number of covariates is smaller than, but of the same order as, the

sample size. We encountered the same difficulty when applying MLE to the analysis



of the Boston Lung Cancer Study (BLCS) data.

Advances to address these challenges have been made recently. One stream of
methods is post-selection inference conditional on selected models (Lee et al., 2016),
which ignores the uncertainty associated with model selection. Other super-efficient
procedures, such as SCAD (Fan and Li, 2001) and adaptive lasso (Zou, 2006), share
the flavor of post-selection inference. Another school of methods is to draw infer-
ence by de-biasing the lasso estimator, termed de-biased lasso or de-sparsified lasso,
which relieves the restrictions of post-selection inference and has been shown to pos-
sess nice theoretical and numerical properties in linear regression models (van de
Geer et al. 2014; Zhang and Zhang 2014; Javanmard and Montanari 2014). When
coefficients have group structures, various extensions of de-biased lasso have been
proposed (Zhang and Cheng, 2017; Dezeure et al., 2017; Mitra and Zhang, 2016; Cai
et al., 2019).

De-biased lasso has seen applications beyond linear models. For example, van de
Geer et al. (2014) considered the de-biased lasso approach in generalized linear mod-
els (GLMs) and developed the asymptotic normality theory for each component of
the coefficient estimates; Zhang and Cheng (2017) proposed a multiplier bootstrap
procedure to draw inference on a group of coefficients in GLMs, yet without sufficient
numerical evidence for the performance; Eftekhari et al. (2019) considered a de-biased
lasso estimator for a low-dimensional component in a generalized single-index model
with an unknown link function and restricted to an elliptically symmetric design.

However, in the GLM setting, our extensive simulations reveal that biases cannot
be adequately removed by the existing de-biased lasso methods. Even after de-biasing,
the biases are still too large relative to the model based standard errors, and the
resulting confidence intervals have much lower coverage probabilities than the nominal
level. Scrutiny of the existing theories points to a key assumption: the inverse of the

Fisher information matrix is sparse (see van de Geer et al. 2014). For linear regression,



this assumption amounts to that the precision matrix for the covariates is sparse. It,
however, is unlikely to hold in GLM settings, even when the precision matrix for the
covariates is indeed sparse.

This begs a critical question: when can we obtain reliable inference results using
de-biased lasso? Deviated from the aforementioned works which mainly focused on
hypothesis testing, we are concerned with making reliable inference, such as elimi-
nating estimation bias and obtaining good confidence interval coverage. We consider
two scenarios: the “large p, small n” case where p > n, and the “large n, diverging
p” case where p increases to infinity with n but p/n — 0. In the first scenario, we
discuss a key sparsity assumption in GLMs, which is likely to fail and compromise the
validity of de-biased lasso. In the second scenario, we consider a natural alternative
for further bias correction, by directly inverting the Hessian matrix. We study its the-
oretical properties and use simulations to demonstrate its advantageous performance
to the competitors.

The remainder of the paper is organized as follows. Section 2.2 briefly reviews
de-biased lasso in GLMs. In Section 2.3, we exemplify the performance of the original
de-biased lasso estimator using simulated examples and elaborate on the theoretical
limitations. In Section 2.4, under the “large n, diverging p” regime, we introduce a
refined de-biased approach as an alternative to the node-wise lasso estimator for the
inverse of the information matrix (van de Geer et al., 2014), and establish asymptotic
distributions for any linear combinations of the refined de-biased estimates. We pro-
vide simulation results and analyze the Boston Lung Cancer Study that investigates
the joint associations of SNPs in nine candidate genes with lung cancer. We conclude
with the summarized findings in Section 2.5. Detailed technical proofs are presented

in Section 2.6



2.2 Background

2.2.1 Notation

We define commonly used notation. Denote by An.. and Ay, the largest and
the smallest eigenvalue of a symmetric matrix. For a real matrix A = (A4;;), let
|A|| = [Amax(ATA)]Y/2 be the spectral norm. The induced matrix ¢; norm is ||A||; =
max; > ; [Aj;], and when A is symmetric, |Afl; = max; }_;[A;;|. The entrywise (o
norm is ||A|« = max;; |A;;|. For a vector a, ||a||, denotes the ¢, norm, ¢ > 1. We

write x, <y, if z, = O(y,) and y, = O(z,,).

2.2.2 (Generalized linear models

Denote by y; the response variable and =; = (1,z21)T € RPt! for i = 1,--- ,n,
where the first element in @x; corresponds to the intercept, and the rest elements x;
represent p covariates. Let X be an n x (p + 1) covariate matrix with ! being the
ith row. We assume that {(v;, «;)};_, are independently and identically distributed
(ii.d.) copies of (y,x). Define the negative log-likelihood function (up to a constant
irrelevant to the unknown parameters) when the conditional density of y given x

belongs to the linear exponential family:

pe(y, @) = p(y, &) = —yx" € + b(x"€) (2.1)

where b(+) is a known twice continuously differentiable function, & = (8, 87)T € Rrt!
denotes the vector of regression coefficients and [y € R is the intercept parameter.

The unknown true coefficient vector is £° = (30, BOT)T.

2.2.3 De-biased lasso

Consider the loss function pe(y, ) = p(y, x'€) given in (2.1). Denote its first and

second order derivatives with respect to £ by pe and pg, respectively. For any function



1 n
g(y, @), let P,g = — g g(yi, ;). Then for any € € RPT! we denote the empirical loss
n
i=1
1 n
function based on the random sample {(y;, ;) }7; by P,pe = — g pe(yi, z;), and its
n
i=1

n

1 Z aIOﬁ(yivwi) and

first and second order derivatives with respect to £ by P, pe = — o€
n
i=1

. Two important population-level matrices are the

S .. 1 . a2p§(yi7mi)

n
i=1
expectation of the Hessian matrix, ¥ = EX¢ = E(P, p¢), and its inverse ¢ = Egl.

With A > 0, the lasso estimator for £€° is defined as

= argmin  {P,pe + A|B1} (2:2)
€=(50, BT)T R+

To avoid ambiguity, we do not penalize the intercept By in (2.2). The theoretical
results such as prediction and ¢; error bounds, however, are the same as those in van de
Geer (2008) and van de Geer et al. (2014) where all the coefficients are penalized
(Biihlmann and van de Geer, 2011). wvan de Geer et al. (2014) applied the node-
wise lasso method to obtain an estimator © for ©O¢o, and proposed a de-biased lasso

estimator for 5;) with:

where 0; = ,/@jigﬁf /n is the model based standard error for gj. Here, @j is the

jth row of o.

2.3 The “large p, small n” scenario

Even though the asymptotic theory has been developed for the “large p, small

7

n” scenario (van de Geer et al., 2014), we examine why de-biased lasso performs

unsatisfactorily in GLMs.



2.3.1 A simulation study

We present a simulation study that features a logistic regression model with n =
300 observations and p = 500 covariates. For simplicity, covariates are simulated
from N,(0,3,), where X, ;; = 0.7"-71, and truncated at £6. In the true coefficient
vector 3% the intercept 8) = 0 and 3y varies from 0 to 1.5 with 40 equally spaced
increments. To examine the impacts of different true model sizes, we arbitrarily choose
2, 4 or 10 additional coefficients from the rest in 3%, and fix them at 1 throughout
the simulation. At each value of 3), a total of 500 simulated datasets are generated.
We focus on the de-biased estimates and inference for 9.

Figure 2.1, with the true model size increasing from the top to the bottom, shows
that the de-biased lasso estimate for 89 has a bias almost linearly increasing with the
true size of 5Y. This undermines the credibility of the consequent confidence intervals.
Meanwhile, the model-based variance does not approximate the true variance well,
overestimating the variance for smaller signals and underestimating for larger ones in
the two smaller models, as shown by the top two rows in Figure 2.1. This partially
explains the over- and under-coverage for smaller and larger signals, respectively.
Due to penalized estimation in @, the variance of the de-biased lasso estimator is
even smaller than the “Oracle” maximum likelihood estimator obtained as if the true
model were known; see the bottom two rows in Figure 2.1. The empirical coverage
probability decreases to about 50% as the signal 3Y goes to 1.5, and when the true
model size reaches 5; see the middle row in Figure 2.1. The bias correction is sen-
sitive to the true model size, which becomes worse for larger true models. We have
also conducted simulations by changing the covariance structure of covariates to be
independent or compound symmetry with correlation coefficient 0.7 and variance 1,

and have obtained similar results.
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Figure 2.1: Simulation results of logistic regression with sample size n = 300 and p =
500 covariates. Covariates are first generated from multivariate Gaussian distribution
with mean zero, AR(1) covariance structure and correlation 0.7, and truncated at £6.
Each row presents estimation bias, empirical coverage probability and standard error
(both model-based and empirical) of the estimated Y, with 2, 4 and 10 additional
signals fixed at 1 from the top to the bottom, respectively. “ORIG-DS” and “Oracle”
stand for the original de-biased lasso estimator and the oracle estimator as if the true
model were known, respectively.

2.3.2 Reflections on the validity of theoretical assumptions

van de Geer et al. (2014) established the asymptotic properties of the de-biased
lasso estimator in GLMs under certain regularity conditions (see Section 3 of van de
Geer et al. 2014), which are imposed to regularize the behavior of the lasso estimator
E and the estimated matrix ©. van de Geer et al. (2014) employed the node-wise
lasso estimator for ®¢0, which was originally proposed by Meinshausen and Bihlmann
(2006) for covariance selection in high-dimensional graphs.

We now revisit the de-biased lasso estimator and its decomposition. The first
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order Taylor expansion of P, peo at E gives

~

Pnpﬁo = Pnpg_’_ ]P)npg(éo - E) + A) (23)

where A is a (p + 1)-dimensional vector of remainder terms with its jth element

n

1 " o ,\ p~
i=1
. T _ Pply,a) PRE TE T ¢0 —
in which p(y,a) = 2 and a} lies between x; € and x; £°. It follows that A =0
a

in linear regression models, but generally non-zero in GLMs. Multiplying both sides
of (2.3) by C:)j and re-organizing the terms, we obtain the following equality for the

7th component

I; 11 1115
.

—(?)jA) + (éjpnpg— eJT) (E— 50) — & = —O,P, per,
(2.5)
where e; is a (p+1)-dimensional vector with the jth element being 1 and 0 elsewhere.

We define three terms
I; = ~OPupg, [, = ~8;A, and I11; = (O;F, ¢ — €] ) (€~ ¢°).

They are crucial in studying the bias behavior of the de-biased lasso estimator that
can be alternatively expressed as /l;j = EJ + I;. According to (2.5), as long as
v 11;/6; = op(1), v/n 111;)6; = op(1), and \/n ©,P,pe0/d; is asymptotically
normal, the asymptotic normality of \/n (b\j — f?) /6; follows directly.

The de-biased lasso approach requires an appropriate inverse matrix estimator
with O(p?) unknown parameters. In the “large p, small n” scenario, where the number

of covariates can be as large as o(exp(n®)) for some a > 0, the (p+1) x (p+ 1) inverse

11



information matrix is not estimable without further assumptions on the structure of
©¢o. This inevitably needs regularization, and ¢;-type regularization is often adopted
due to its theoretical readiness. An important assumption on ©¢o in van de Geer et al.
(2014) is the ¢, sparsity, i.e. the number of non-zero elements of each row in o is
small. This assumption is vital for the consistency of (:)j to O¢o ; and consequently
the model-based variance, and impacts the negligibility of term I7[; in (2.5). In
particular, the third bias term in (2.5) I11; is non-negligible if the convergence rate
of (:)j to ®Ogo j, which depends on the { sparsity of the row vector ®¢o ; using the
node-wise lasso estimation, is not fast enough.

However, these sparsity assumptions have not been clarified in the existing litera-
ture, except for linear regression models. In a linear regression model, ©¢o is the preci-
sion matrix for covariates which is free of £°, and for multivariate Gaussian covariates,
a zero element of ®¢o implies conditional independence between corresponding covari-
ates. In contrast, the row sparsity assumption on ®¢o does not have a clear interpreta-
tion in GLMs, and may not be valid as it depends on the unknown £°. In the informa-
tion matrix Xgo, its (4, k)-th element is E [ajmxmp(yl, wZTSO)] =FE [[l?zj$zkb($;r€0)] In
the most extreme case where all covariates are independent with mean zero, 3¢o0 j;, = 0
forj#k,j=2,--,p+1L kef{k:2<k<p+1¢& =0} and then O is sparse
if the true model {j : 1 < j < p, ,BJO # 0} is small. With covariates generally cor-
related, it is unconceivable that most off-diagonal elements in ®¢0 are zero, because
b(xT¢"%) = b(BY + 27 B°) also depends on the covariates ; in a GLM, even when
the precision matrix for x; is sparse per se. This makes the sparsity assumption
for @¢o obscure in GLMs. To see this, consider the Poisson regression, which has a
closed-form expression for ®¢o. Assume the covariates &; ~ N,(0,X,) and the mean

response conditional on &; is p; = exp{AJ + ! B°} under the canonical link. Then,
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we have

T
1 b Y
250 = exp {58 + 5,30szﬂ0} ﬁ -
.00 X, +X.68°68" X%,

and
1 1
o 1 o7 0 P’ ——a'A™
B0 =exp | —fy — 55 .0 1€ { ;
—~A'a A1+ A 'aa’A!
c c

where A = 3, + %,8°8°'%,, a = £,8° and ¢ = 1 — g7 (Z;! + B°8°7) 13,
In an over-simplified case where covariates are independent (3, = I,) and B° is
sparse, A"+ %AlaaTA1 can be a sparse matrix. However, with often complicated
correlation structures between covariates, signal positions and strengths in 3%, it is
difficult to guarantee that A=! + %A‘la,a,TA_1 is sparse.

To summarize, we believe that the sparsity assumption imposed on ©¢o plays
an extremely important role in obtaining the desirable asymptotic properties and
finite sample performance of de-biased lasso in GLMs. However, such an assumption
is hardly justifiable in a GLM setting. As evidenced by our simulations, the gap
between theory and practice likely explains the problematic performance of de-biased
lasso in the “large p, small n” scenario. Also note that both bias terms //; and 111,
are not even computable and cannot be recovered, because they involve the unknown
£°. All point to that de-biased lasso generally does not work well in GLMs in the

“large p, small n” scenario.

2.4 The “large n, diverging p” scenario

We next study de-biased lasso in GLMs when p < n but p diverges to infinity with

n by eliminating more biases, where, under certain conditions, the Hessian matrix is
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invertible with probability going to one. Therefore, directly inverting the Hessian
matrix serves as a natural alternative to the node-wise lasso for ©. In the following,
we study the properties of this alternative estimator. Denote O = flgil to distinguish
it from the node-wise lasso estimator ©. Similarly, @)j represents the jth row of o.

Similar to (2.5), we have the following equality using ©:
[E+ (—émpg) + (—éA) + (éPnp'g— 1) (E— go)] &= —@P,peo.  (2.6)

With © = igﬁl, the new term /7]; in (2.6) equals 0 for all j, which is no longer a

source of bias compared to the original de-biased lasso. Then (2.6) becomes
&+ (6P, pg) + (-64)] — ¢ = —6P, e (2.7)
The new de-biased lasso estimator based on © is
b=§ - OP,pg,

which is designed to further correct biases compared to the original de-biased esti-
mator. We will show that any linear combinations of g, including each coefficient

estimate as a special case, are asymptotically normally distributed.

2.4.1 Theoretical results

Without loss of generality, we assume that each covariate has been standardized
to have mean zero and variance 1. Let sy denote the number of non-zero elements in
€Y. Let X¢ = WX be the weighted design matrix, where W is a diagonal matrix
with elements w;(€) = /p(y;, x7€), i = 1,--- ,n. Recall that for any £ € RP,
f]g = X{X¢/n and ¢ = E(f]g) The to-norms (see Vershynin 2010) introduced

below are useful for characterizing the convergence rate of 2521 For a random variable
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7, its 1o-norm is defined as
1Z 1, = supr= (B[ Z]")V".
r>1

We call Z a sub-Gaussian random variable if || Z]|,, < M < oo for a constant M > 0.

For a random vector Z, its 1»-norm is defined as

1Z]|y, = sup [{Z,a)|y,-

lalla=1

A random vector Z € RPF! is called sub-Gaussian if the inner product (Z,a) is
1

sub-Gaussian for all @ € RP*!. Let L, = [[Z>21wi(€°)||y,, which characterizes

the probabilistic tail behavior of the weighted covariates. We make the following

assumptions.

(C1) The elements in X are bounded, i.e. there exists a constant K > 0 such that

Xl < K.

(C2) Xgo is positive definite and its eigenvalues are bounded and bounded away
from 0, i.e. there exist two absolute constants ¢y, and cpa.x such that 0 <

Cmin < Amin(zgo) S )\max(zﬁo) S Cmax < OQ.

2
(C3) The derivatives p(y,a) = %p(y, a) and p(y,a) = %p(g/,a) exist for all

(y,a). For some é-neighborhood (§ > 0), p(y, a) is Lipschitz such that for some

absolute constant cr;, > 0,

max sup sup —
aoe{xT¢0} la—ao|V|a—ao|<6 yEY |CL - CL|

S CLip-

The derivatives are bounded in the sense that there exist two constants K7, Ky >
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0 such that

max sup |p(y, ao)| < K,
aoe{mw}yegw(y o)| < G

max  sup sup |p(y,a)|] < Ko.
ao€{x] €%} |a—ao| <6 yEY

(C4) || X&°| is bounded.

(C5) The matrix E(XTX/n) is positive definite and its eigenvalues are bounded

and bounded away from 0.

It is common to assume bounded covariates as in (C1) and bounded eigenvalues
of the information matrix as in (C2) in high-dimensional inference literature (van de
Geer et al., 2014; Ning and Liu, 2017). a1, - , x, are sub-Gaussian random vectors
under (C1), but we do not impose a boundedness assumption on their s-norm,
which may depend on p (Vershynin, 2010, 2012). (C2) refers to a compatibility
condition that is sufficient to derive the rate of convergence for E (C3) assumes local
properties of the derivatives of the general loss p(y, z'€) (van de Geer et al., 2014).
(C4) is commonly assumed (van de Geer et al., 2014; Ning and Liu, 2017) and ensures
the quadratic margin behavior of the excess risk and is useful to obtain the rate for
||X(§— €9|3/n (Bihlmann and van de Geer, 2011). (C5) is a mild requirement in
high-dimensional regression analysis with random designs. A similar condition can
be found in Wang (2011).

Theorem II.1 establishes the asymptotic normality result for any linear combina-
tions of 5, based on which inference can be drawn. The proof is given in Section 2.6,

as well as useful lemmas.

Theorem II.1. Assume that L;‘; — 0, v/plog(p)soA — 0, and /npseA* — 0

p*logp
N N n
asn — 0o. Let b= € — OP,pz and a, € R with ||, ||z = 1. Under (C1) - (C5),

we have

Vel (b—¢€°) 4

— — N(0,1).
v/ alOa,
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From Theorem II.1, one can construct 100 x (1 — r)th confidence intervals for

{afgo — 22/ agéan/n, afﬁo + 2r2/ agéan/n] ,

where z, /5 is the upper (r/2)th quantile of the standard normal distribution.

al as

21o
p gp_)
n

0 and /npseA? — 0 as n — oo, because /plog(p)soA — 0 and /npsyA? — 0 are

equivalent.

Remark 11.2. For the lasso approach, A < /log(p) /n, we then only need L2

Remark 11.3. Theorem II.1 reveals that the required rate for p relative to n depends
on the factor L, and can be further simplified. The dependence on L, results from
that the convergence rate of © is related to L, = HE;O%zclwl(ﬁo)HwQ. In Javanmard
and Montanar: (2014) for linear models and Ning and Liu (2017) for GLMs, L, is
assumed to be a constant irrelevant to p. When covariates follow a multivariate

Gaussian distribution in a linear model, L, = O(1) holds, then it only requires that

p*logp
n 1
the utmost bound L, = O(,/p). Specifically, by definition, L, = ||, z1w1(£°)[ly, =

— 0. However, in general, L, may grow with p, and it can be shown that

1
SUP.epr+t [|(Eeo® T101 (€%), 2) ||y, where BP! is the unit ball in RP*!. Then we have

(B’ 21w (€°), 2)| < lzll2 - B0’ 21w (€°)]l2
< 1B || laerwa (€)1
< iV Ea(p+ DK

_1
Therefore, L, < ¢, 2+/K2(p+1)K. This results in the most stringent rate require-

1
1
ment 282 0, implying /npspA? = o(1) when A < y/log(p)/n.

n

Remark 11.4. In Theorem II.1, p is assumed to grow slowly with n so that p < n.
This assumption is not uncommon in the literature. Fan and Peng (2004) assumed

p°/n — 0 for a non-concave penalized maximum likelihood estimator to establish the
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oracle property and the asymptotic normality for selected variables. Yet the estimates
in Fan and Peng (2004) are super-efficient, which is not our focus. Without parameter
regularization, Wang (2011) assumed p3/n — 0 to derive asymptotic normality for
the solutions to generalized estimating equations with binary outcomes and clustered
data, which reduces to the usual logistic regression when simplified to a singleton in
each cluster. Wang (2011) studied a fixed design case, and proved the asymptotic
normality for a different quantity aZ M, (Bpo)~/?H,(Buo) (B — Bno); see Theorem 3.8
in Wang (2011). When p/n is not negligible (e.g. > 0.1), simulations show that MLE

yields biased and highly variable estimates, and is outperformed by our proposed b.

2.4.2 Simulation results

We investigate the performance of our alternative de-biased estimator b in the
“large n, diverging p” scenario, and focus on biases in estimates and coverage proba-

bilities of confidence intervals. The estimators in comparison are

(i) the original de-biased lasso estimator /b\j obtained by using the node-wise lasso

estimator © in van de Geer et al. (2014) (ORIG-DS);

(ii) the refined de-biased lasso approach based on the inverse matrix estimation

O = f]g:l, Ej, as described in this section (REF-DS);

(iii) the conventional MLE (MLE).

As simulations using logistic and Poisson regression models yield similar results,
we only report those from logistic regression. A total of n = 1,000 observations and
p = 40,100, 300,400 covariates are simulated. We assume that in z; = (1,z7)7,
x; are independently generated from N,(0,, X,) then truncated at +6, and y;|x; ~
Bernoulli(p;), where p; = exp(xl'€°)/{1 + exp(x'¢°)}. The intercept 8] = 0, and
(Y varies from 0 to 1.5 with 40 equally spaced increments. Four additional arbitrarily

chosen elements of 3° take non-zero values, two at 0.5 and the other two at 1, and
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then are fixed throughout the simulation. In some settings, MLFE estimates do not
exist due to divergence and thus are not shown. The covariance matrix X, for x; takes
one of the following three forms: identity matrix, AR(1) with correlation p = 0.7,
and compound symmetry with correlation p = 0.7. The tuning parameter in the
¢1-norm penalized regression is selected by 10-fold cross-validation, and the tuning
parameter for the node-wise lasso estimator O is selected using 5-fold cross-validation.
Both tuning parameter selection procedures are i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>