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ABSTRACT

Multidimensional Item Response Theory (MIRT) is widely used in assessment and eval-

uation of educational and psychological tests. It models the individual response patterns

by specifying functional relationship between individuals’ multiple latent traits and their

responses to test items. One major challenge in parameter estimation in MIRT is that the

likelihood involves intractable multidimensional integrals due to latent variable structure.

Various methods have been proposed that either involve direct numerical approximations to

the integrals or Monte Carlo simulations. However, these methods have some limitations in

that they are computationally demanding in high dimensions and rely on sampling from a

posterior distribution.

In the second chapter of the thesis, we propose a new Gaussian Variational EM (GVEM)

algorithm which adopts a variational inference to approximate the intractable marginal like-

lihood by a computationally feasible lower bound. The optimal choice of variational lower

bound allows us to derive closed-form updates in EM procedure, which makes the algorithm

efficient and easily scale to high dimensions. We illustrate that the proposed algorithm can

also be applied to assess the dimensionality of the latent traits in an exploratory analysis.

Simulation studies and real data analysis are presented to demonstrate the computational

efficiency and estimation precision of the GVEM algorithm in comparison to the popular

alternative Metropolis-Hastings Robbins-Monro algorithm. In addition, theoretical guar-

antees are derived to establish the consistency of the estimator from the proposed GVEM

algorithm.

One of the key elements in MIRT is the relationship between the items and the latent

xi



traits, so-called a test structure. The correct specification of this relationship is crucial for

accurate assessment of individuals. Hence, it is of interest to study how to accurately estimate

the test structure from data. In the third chapter, we propose to apply GVEM to solve a

latent variable selection problem for MIRT and empirically estimate the test structure. The

main idea is to impose L1-type penalty to the variational lower bound of the likelihood to

recover a simple test structure in iterative procedures. Simulation studies show that the

proposed method accurately estimates the test structure and is computationally efficient. A

real data analysis on the large-scale assessment test called National Education Longitudinal

Study of 1988 is presented.

In the last chapter, we discuss some of the interesting extensions of our proposed method.

The first extension is to develop the estimation method via GVEM procedures for the Mul-

tidimensional 4-Parameter Logistic model, which is known to be more challenging than

previously discussed MIRT models. The second extension is to study Differential Item Func-

tioning (DIF) analysis in MIRT. In brief, DIF occurs when groups (such as defined by gender,

ethnicity, or education) have different probabilities of responses for a given test item even

though people have the same latent abilities. Our goal is to identify test items that have

DIF. We formulate the DIF analysis in MIRT as the regularization problem and solve it via

our proposed GVEM approach. Simulation studies are presented to show the performance

of our proposed method on these topics.

xii



ChapterI

Introduction

Educational and psychological assessment refers to a way of testing individuals on their

latent abilities, characteristics and behavior using combinations of techniques. Its goal is to

develop good understanding of the individuals’ latent traits using the observed responses on

questionnaires or assessment tests. It is widely used in various fields including education,

psychology, and medicine. For example, the proper psychological assessments of individuals

would potentially help prepare customized treatments to individuals with mental disorders.

In addition, teachers can provide personalized feedback to students and improve the learning

process of students. Another interesting application is the online recommender system.

The latent preference of online consumers can be measured by analyzing their shopping or

viewing history and this could help make predictions for the individualized recommendations.

Hence our proposed methods and discussions could be potentially applied in various fields

although we mainly focus on the setting of psychological and educational assessment in this

dissertation.

The measurement of psychological properties has been a long-lasting quest that origi-

nated in the 19th century (Sijtsma & Junker, 2006). Various statistical models have been

proposed for psychological assessment since then. Classical test theory (CTT, Gulliksen,

1950; Spearman, 1907, 1913) has been the most popular measurement model for most of
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the 20th century. Fundamental idea of CTT is that the observed test scores contain a true

score plus some random error component. That is, CTT assumes that due to random error

an observable test score often is not the value representative of a testee’s true performance

on the test. The main purpose of CTT is to determine the degree in which test scores are

influenced by random error. This has lead to a multitude of methods for estimating the

reliability of a test score, of which Cronbach’s alpha (Cronbach, 1951) is the most famous.

CTT was the dominant statistical approach to psychological measurement until the item

response theory was introduced (Rasch, 1960; Lord, 1968). Item response theory (IRT) is

a general framework for specifying mathematical functions that describe the relationships

between individuals’ latent traits and characteristics of test items. Unlike the classical test

theory, the item response theory considers the items to be heterogeneous. For example, items

may differ in terms of their difficulty levels. IRT is generally regarded as being superior to

classical test theory (Embretson & Reise, 2000) and has become the preferred method for

developing scales in high-stake tests (e.g. Graduate Record Examination and Graduate

Management Admission Test).

The early research on IRT primarily involved unidimensional IRT models that measure

only a one latent trait that may represent. As an extension, several multidimensional IRT

models have been proposed for modeling the individuals’ response patterns driven by their

multiple latent traits (e.g. McKinley & Reckase, 1982; Bock, Gibbons, & Muraki, 1988;

Revuelta, 2014). The increasing availability of rich educational and psychological tests has

made MIRT an attractive model to handle complex assessment data measuring multiple

latent traits at the same time. However, there are some challenges in parameter estimation

problem for MIRT. That is, the likelihood involves intractable multidimensional integrals due

to multidimensional latent variable structure. With the advancement of computational and

statistical techniques, various methods have been proposed that either involve direct numer-

ical approximations to the integrals or Monte Carlo simulations. However, these methods

still have some limitations in that they are computationally demanding in high dimensions

2



and rely on sampling from a posterior distribution. In this thesis, we attempt to tackle

the challenging estimation problems in MIRT and develop accurate and efficient estimation

algorithms.

The thesis is organized as follows. In the second chapter, we propose a new Gaussian

Variational EM (GVEM) algorithm which adopts a variational inference to approximate

the intractable marginal likelihood by a computationally feasible lower bound. The optimal

choice of variational lower bound allows us to derive closed-form updates in EM procedure,

which makes the algorithm efficient and easily scale to high dimensions. We also illustrate

that the proposed algorithm can also be applied to assess the dimensionality of the latent

traits in an exploratory analysis. A series of simulation studies and real data analysis are

presented to demonstrate the performance of the proposed GVEM method in comparison to

the popular alternative Metropolis-Hastings Robbins-Monro algorithm. In essence, GVEM

method produces more precise parameter estimations and is computational efficient. We

also present theoretical guarantees of the estimator from the proposed GVEM algorithm to

establish its consistency.

In the third chapter, we propose to apply GVEM to solve a latent variable selection

problem for MIRT and empirically estimate the test structure. The test structure illustrates

a relationship between the items and the latent traits being measured in a test. The correct

specification of this relationship is crucial for accurate assessment of individuals and further

model calibration. In practice, practitioners often use fixed test structure based on their

prior knowledge for the analysis. However, wrong specification of the relationship would

lead to biased estimation. Hence, we would like to study how to accurately estimate the

test structure from data. The main idea is to impose L1-type penalty to the variational

lower bound of the likelihood to recover a simple test structure in iterative procedures.

Simulation studies show that the proposed method accurately estimates the test structure

and is computationally efficient. A real data analysis on the large-scale assessment test called

National Education Longitudinal Study of 1988 is presented to examine it in terms of the

3



test design.

In the last chapter, we discuss interesting extensions of our proposed method; (1) to de-

velop the estimation method via GVEM procedures for the Multidimensional 4-Parameter

Logistic (M4PL) model and (2) to study Differential Item Functioning (DIF) analysis in

MIRT. M4PL model has been less preferred so far in the field of education and psychology

probably due to its challenge in parameter estimation. In most research, Bayesian approaches

with MCMC sampling were used for the parameter estimation in unidimensional 4PL mod-

els. However, it gets time consuming for the high dimensional assessment data even for

unidimensional latent trait. M4PL models incorporates multiple latent traits at the same

time, resulting in intractable multidimensional integrals in the calculation of log-likelihood

and making the parameter estimation even more challenging. We develop the variational

EM method to facilitate the paraemter estimation in M4PL and discuss the performance

with some simulation studies. In the second half of the last chapter, we discuss DIF anlaysis

in MIRT. DIF occurs when groups (such as defined by gender, ethnicity, or education) have

different probabilities of responses for a given test item even though people have the same

latent abilities. Our goal is to identify biasedness in test items (i.e. that have DIF). We

formulate the DIF analysis in MIRT as the regularization problem and solve it via our pro-

posed GVEM approach. Simulation studies are presented to show the performance of our

proposed method on these topics. Lastly we discuss some of the challenges remained and

talk about future directions.

4



ChapterII

Gaussian Variational EM for

Multidimensional Item Response

Theory

II.1 Introduction

The increasing availability of rich educational survey data and the emerging needs of assess-

ing competencies in education pose great challenges to existing techniques used to handle

and analyze the data, in particular when the data are collected from heterogeneous popula-

tions. Different forms of multilevel, multidimensional item response theory (MIRT) models

have been proposed in the past decades to extract meaningful information from complex

education data. The advancement of computational and statistical techniques, such as the

adaptive Gaussian quadrature methods, the Metropolis-Hastings Robbins-Monro algorithm,

the stochastic expectation maximization algorithm, or the fully Bayesian estimation meth-

ods, also help promote the usage of the MIRT models. However, even with these state-of-the-

art algorithms, the computation can still be time-consuming, especially when the number

of factors is large. The main aim of this chapter is to propose a new Gaussian variational
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expectation maximization (GVEM) algorithm for high-dimensional MIRT models.

As summarized in Reckase (2009), the MIRT models contain two or more parameters

to describe the interaction between the latent traits and the responses to test items. In

this chapter, we focus on the logistic model with dichotomous responses. Specifically for

the multidimensional 2-Parameter Logistic (M2PL) model, there are N individuals who

respond to J items independently with binary response variables Yij, for i = 1, . . . , N and

j = 1, . . . , J . Then the item response function of the ith individual to the jth item is modeled

by

P (Yij = 1 | θi) =
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
, (II.1)

where αj denotes a K-dimensional vector of item discrimination parameters for the jth item

and bj specifies the corresponding difficulty level with item difficulty parameter as bj/‖αj‖2.

θi denotes the K-dimensional vector of latent ability for student i.

For the multidimensional 3-Parameter Logistic (M3PL) model, there is an additional

parameter cj, which denotes the guessing probability of the jth test item. The item response

function is expressed as

P (Yij = 1 | θi) = cj + (1− cj)
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
. (II.2)

For both the M2PL and M3PL models, denote all model parameters as Mp. Then given

the typical local independence assumption in IRT, the marginal log-likelihood of Mp given

the responses Y is

l(Mp; Y) =
N∑
i=1

logP (Yi |Mp) =
N∑
i=1

log
∫ J∏

j=1
P (Yij | θi,Mp)φ(θi)dθi. (II.3)

where Yi = (Yij, j = 1, . . . , J) is the ith subject’s response vector and J is the total num-

ber of items in the test. The φ denotes the K-dimensional Gaussian distribution of θ with

mean 0 and covariance Σθ. The maximum likelihood estimators of the model parameters

6



are then obtained from maximizing the log-likelihood function. However, due to the latent

variable structure, maximizing the log-likelihood function involves a K dimensional integrals

that are usually intractable. Direct numerical approximation to the integrals have been pro-

posed in the literature, such as the Gauss–Hermite quadrature (Bock & Aitkin, 1981) and

the Laplace approximation (Lindstrom & Bates, 1988; Tierney & Kadane, 1986; Wolfin-

ger & O’connell, 1993). However, the Gauss–Hermite quadrature approximation is known

to become computationally demanding in the high-dimensional setting, which happens in

MIRT especially when the dimension of latent traits increases. The Laplace approximation,

though computationally efficient, could become less accurate when the dimension increases

or when the likelihood function is in skewed shape. Other numerical approximation meth-

ods based on Monte Carlo simulations have also been developed in the literature, such

as the Monte Carlo expectation-maximization (McCulloch, 1997), stochastic expectation-

maximization (von Davier & Sinharay, 2010), Metropolis-Hastings Robbins-Monro algo-

rithms (Cai, 2010b, 2010a). These methods usually depends on sampling data points from

a posterior distribution and would be computationally involving. Recently, S. Zhang, Chen,

and Liu (2020) proposed to use the stochastic EM algorithm (Celeux & Diebolt, 1985) for

the item factor analysis, where an adaptive-rejection-based Gibbs sampler is still needed for

the stochastic E step. Moreover, Chen, Li, and Zhang (2019) studied the joint maximum

likelihood estimation by treating the latent abilities as fixed effect parameters instead of

random variables as in (II.3).

In this chapter, we propose a computationally efficient method that is based on the

variational approximation to the log-likelihood. Variational approximation methods are

mainstream methodology in computer science and statistical learning, and they have been

applied to diverse areas including speech recognition, genetic linkage analysis, and document

retrieval (Blei & Jordan, 2004; Titterington, 2004). Recently, there is an emerging interest

in developing and applying variational methods in statistics (Blei, Kucukelbir, & McAuliffe,

2017; Ormerod & Wand, 2010). In particular, Gaussian variational approximation methods

7



were developed for standard generalized linear mixed effects models (GLMM) with nested

random effects (Ormerod & Wand, 2012; Hall, Ormerod, & Wand, 2011). However, the

variational methods have only been slowly recognized in psychometrics and educational

measurement, with the pioneer papers by Rijmen and Jeon (2013) as well as Jeon, Rijmen,

and Rabe-Hesketh (2017).

In essence, variational approximations refer to a family of deterministic techniques for

making approximate inference for parameters in complex statistical models (Ormerod &

Wand, 2010). The key is to approximate the intractable integrals (e.g. Eq.(II.3)) with a

computational feasible form, known as the variational lower bound to the original marginal

likelihood. In psychometrics, Rijmen and Jeon (2013) first developed a variational algorithm

for a high dimensional IRT model, but their algorithm was limited to only discrete latent

variables. Recently, Jeon et al. (2017) proposed a variational maximization-maximization

(VMM) algorithm for maximum likelihood estimation of GLMMs with crossed random ef-

fects. They showed that VMM outperformed Laplace approximation with small sample

size. However, their study is limited in several respects: (i) They only considered the Rasch

model. Although extending their algorithm to the 2PL model may be straightforward, its

generalization to 3PL is unknown because 3PL does not belong to the GLMM family; (ii)

The key component in their algorithm is the mean-field approximation (Parisi, 1988) that

assumes independence of the latent variables given observed data. Even though it seems

acceptable to assume independence of each random item effect, this independence assump-

tion can no longer apply to the MIRT models when different dimensions are assumed to be

correlated; (iii) In their first maximization step, the closed-form solution still contains a two-

dimensional integration where adaptive quadrature is used; in the second maximization step,

a Newton-Raphson algorithm is used. Therefore, both steps involve iterations, which may

slow down the algorithm. Instead, our proposed GVEM algorithm has closed-form solutions

for all parameters in both the E and M steps, and it can deal with high-dimensional MIRT

models when the multiple latent traits are correlated. Moreover, the GVEM algorithm is

8



established for both the M2PL and M3PL models. Consistency theory of the estimators from

our proposed algorithm is established, and the performance of the algorithm is thoroughly

evaluated via simulation studies.

The rest of the chapter is organized as follows. Section II.2 introduces the general frame-

work of the Gaussian Variational method and derivation of EM algorithm in MIRT models.

Section II.3 presents the GVEM algorithm for M2PL with the use of local variational ap-

proximation and presents the theoretical properties of the proposed algorithm. Section II.4

extends the GVEM algorithm to M3PL and also presents the stochastically optimized algo-

rithm to further improve its computational efficiency. Section II.5 and section II.6 illustrate

the performance of the proposed GVEM method with simulation studies and on real data,

respectively. The chapter is concluded with Section II.7, which discusses any future steps.

The Supplementary Material includes the detailed mathematical derivations of the EM steps

and the proofs of the theorem and proposition.

II.2 Gaussian Variational EM (GVEM)

From here onwards, for the MIRT models in (II.1) and (II.2), we denote the model parameters

by A = {αj, j = 1, . . . , J}, B = {bj, j = 1, . . . , J}, and C = {cj, j = 1, . . . , J}. As defined

in Section II.1, we use the notation Mp = {A,B,C} in the 3PL model and Mp = {A,B}

in the 2PL model for simplicity. Latent traits θ from different dimensions are correlated,

resulting in a K by K covariance matrix Σθ. To fix the origin and units of measurement, it

is conventional to fix the mean and variance of all θ’s to be 0 or 1, respectively. To remove

rotational indeterminacy in the exploratory analysis, (i.e. to ensure the model identifiability)

researchers often either assume Σθ = IK or assume A contains a K by K lower triangular

matrix (Reckase, 2009).

On the other hand, in the confirmatory analysis, the zero structure of the loading matrix

A is completely or partially specified while the remaining nonzero elements are left unknown.
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In this case, the correlation of latent traits θ is of interest and we need to estimate the

covariance matrix Σθ. In this chapter, we consider a general setting of Σθ that works for

both exploratory and confirmatory analyses.

The idea of variational approximation is to approximate the intractable marginal likeli-

hood function, which involves integration over the latent random variables, by a computa-

tionally feasible lower bound. We follow the approach of variational inference (Bishop, 2006)

to derive this lower bound.

The marginal log-likelihood of responses Y is

l(Mp; Y) =
N∑
i=1

logP (Yi |Mp) =
N∑
i=1

log
∫ J∏

j=1
P (Yij | θi,Mp)φ(θi)dθi,

where φ denotes a K-dimensional Gaussian distribution of θ with mean 0 and covariance

Σθ. Note that the log-likelihood function l(Mp; Y) can be equivalently rewritten as

l(Mp; Y) =
N∑
i=1

∫
θi

logP (Yi |Mp)× qi(θi)dθi,

for any arbitrary probability density function qi satisfying
∫
θi
qi(θi)dθi = 1. Since P (Yi |

Mp) = P (Yi,θi |Mp)/P (θi | Yi,Mp), then we can further write

l(Mp; Y) =
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
P (θi | Yi,Mp)

× qi(θi)dθi

=
N∑
i=1

∫
θi

log P (Yi,θi |Mp)qi(θi)
P (θi | Yi,Mp)qi(θi)

× qi(θi)dθi

=
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
qi(θi)

× qi(θi)dθi +KL{qi(θi)‖P (θi | Yi,Mp)}

where KL{qi(θi)‖P (θi | Yi,Mp)} =
∫
θi

log qi(θi)
P (θi|Yi,Mp)× qi(θi)dθi is the Kullback-Leibler (KL)

distance between the distributions qi(θi) and P (θi | Yi,Mp). The KL distanceKL{qi(θi)‖P (θi |

Yi,Mp)} ≥ 0 with the equality holds if and only if qi(θi) = P (θi | Yi,Mp). Therefore, we
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have a lower bound of the marginal likelihood as

l(Mp; Y) ≥
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
qi(θi)

× qi(θi)dθi (II.4)

=
N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi −
N∑
i=1

∫
θi

log qi(θi)× qi(θi)dθi

and the equality holds when qi(θi) = P (θi | Yi,Mp) for i = 1, . . . , N .

The follow-up question is how to design the candidate distribution function qi(θi) that

gives the best approximation of the marginal likelihood. From the above argument, the best

choice is the unknown posterior distribution function P (θi | Yi,Mp). Although this choice of

qi(θi) is intractable, it provides a guideline to choose qi(θi) in the sense that a good choice

of qi(θi) must approximate P (θi | Yi,Mp) well. The well-known EM algorithm follows this

idea and can be interpreted as a maximization-maximization (MM) algorithm (Hunter &

Lange, 2004) based on the above decomposition. In particular, the E-step chooses qi to be

a distribution that minimizes the KL distance function, which corresponds to the estimated

posterior distribution P (θi | Yi, M̂p) with M̂p from the previous step estimates. The E-step

then evaluates the expectation with respect to qi’s, i.e.,

N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi, (II.5)

which is equal to the lower bound in (II.4), except the additional constant term

−∑N
i=1

∫
θi

log qi(θi) × qi(θi)dθi that does not depend on model parameters Mp. In the M-

step, we maximize the above expectation term to estimate model parameters and this is

equivalent to maximizing the lower bound in (II.4).

However, one challenge in the EM algorithm is to evaluate the expectation in (II.5)

with respect to the posterior distribution of θi. In the MIRT model, it is known that this

integral in (5) does not have an explicit form and in the literature, numerical approximation

methods are often used, such as the Gauss–Hermite approximation, Monte Carlo expectation-
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maximization (McCulloch, 1997), and stochastic expectation-maximization (von Davier &

Sinharay, 2010).

To avoid directly evaluating the posterior distribution of θi, the variational inference

method uses alternative choices of the qi(θi)’s to approximate the marginal likelihood func-

tion. The choices of qi(θi) not only approximate the posterior P (θi | Yi,Mp) well, but also

are easy to compute and usually give closed form evaluations in the algorithm. In particular,

from the MIRT literature, we know that as the number of items J becomes reasonably large,

the posterior distribution P (θi | Yi,Mp) can be well approximated by a Gaussian distri-

bution (Bishop, 2006). Motivated by this observation, we use the Gaussian approximation

procedure that chooses qi(θi) from a family of Gaussian distributions such that the KL dis-

tance between qi(θi) and P (θi | Yi,Mp) is minimized. The estimation is then taken as a

two-step iterative procedure. In the variational E-step, we choose qi(θi) by minimizing the

KL distance between qi(θi) and P (θi | Yi,Mp) and evaluate the expectation of the likelihood

function with respect qi(θi), which is (II.5). In the M-step we update the unknown model

parameters by maximizing the above expectation. The algorithm repeats the two steps until

convergence. In the following sections, we present the detailed algorithm steps for the M2PL

and M3PL models.

II.3 GVEM for the M2PL Model

In this section we present the GVEM algorithm for the M2PL model. Without loss of

generality, we first focus on the ith subject’s likelihood function due to the independence of
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different subjects’ responses. The joint distribution function of θi and Yi is

logP (Yi,θi | A,B)

= logP (Yi | θi,A,B) + log φ(θi)

=
J∑
j=1

{
Yij log

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

+ (1− Yij) log 1
1 + exp(α>j θi − bj)

}
+ log φ(θi)

=
J∑
j=1

{
Yij(α>j θi − bj) + log 1

1 + exp(α>j θi − bj)

}
+ log φ(θi).

The difficulty of handling the marginal distribution of Yi mostly comes from the logistic

sigmoid function, which makes the integration over θ not in a closed form in the E-step (i.e.,

Eq. (II.5)).

To avoid dealing with intractable likelihood in E-step, we use a local variational method

initially proposed in the machine learning literature (Bishop, 2006; Jordan, Ghahramani,

Jaakkola, & Saul, 1999), which finds bounds on functions over individual variables or groups

of variables within a model instead of the full posterior distribution over all random variables.

For notational simplicity, hereafter, we denote xi,j = bj −α>i θi. Because of the concavity of

the logistic sigmoid function log(1/(1 + e−xi,j)), by the local variational method we have the

following result

exi,j

(1 + exi,j) = max
ξi,j

eξi,j

(1 + eξi,j) exp
{

(xi,j − ξi,j)
2 − η(ξi,j)(x2

i,j − ξ2
i,j)
}
,

where ξi,j is a variational parameter that is introduced to approximate the objective function

exi,j/(1 + exi,j), and

η(ξi,j) = 1
2ξi,j

[
eξi,j

(1 + eξi,j) −
1
2

]
.

Therefore, we have the following variational lower bound on the logistic sigmoid function,

exi,j

(1 + exi,j) ≥
eξi,j

(1 + eξi,j) exp
{

(xi,j − ξi,j)
2 − η(ξi,j)(x2

i,j − ξ2
i,j)
}
. (II.6)
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We then aim to estimate the variational parameter ξi,j that achieves the equality of the

above display. By introducing an additional variational parameter ξi,j, we successfully avoid

the problem of estimating the intractable integral in the E-step. The values of ξi,j’s will be

iteratively updated in the M-step.

Using the lower bound on the logistic sigmoid function, we obtain a closed-form lower

bound for logP (Yi,θi | A,B) as follows

logP (Yi,θi | A,B) ≥
J∑
j=1

log eξi,j

(1 + eξi,j) +
J∑
j=1

Yij(α>j θi − bj) +
J∑
j=1

(bj −α>j θi − ξi,j)
2

−
J∑
j=1

η(ξi,j){(bj −α>j θi)2 − ξ2
i,j}+ log φ(θi)

=: l(Yi,θi, ξi | A,B)

where ξi = (ξi,j, j = 1, . . . , J)>.

The key step is to find the optimal variational distribution qi(θi), which we describe in

detail in the next section.

II.3.1 Algorithm Details

Choice of qi Conditional on the model parameters A,B and the variational parameters

ξi,j for i = 1, . . . , N, j = 1, . . . , J , by the variational inference theory, it can be shown that

the variational distributions qi(θi), i = 1, . . . , N that minimize the KL divergence with the

posterior distributions P (θi|A,B), i = 1, . . . , N take the following form:

log qi(θi) ∝
J∑
j=1

(
Yij −

1
2

)
α>j θi −

J∑
j=1

η(ξi,j)(bj −α>j θi)2 − θ
>
i Σ−1

θ θi
2 .

The standard nonlinear optimization technique is exploited to show that qi(θi) ∼ N(θi |

µi,Σi) minimizes the KL divergence among all normal distributions where the mean param-
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eter is

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1
2

}
α>j (II.7)

and the covariance matrix is determined by

Σ−1
i = Σ−1

θ + 2
J∑
j=1

η(ξi,j)αjα>j . (II.8)

With the variational densities qi(θi)’s, we aim to estimate model parameters ξi’s, αj’s

and bj’s by maximizing the lower bound of the marginal likelihood. Suppose we have ξi’s

from a previous step’s estimation or the initial values, denoted by ξ(t)
i . Similarly, define

A(t) = {α(t)
j , j = 1, . . . , J}, B(t) = {b(t)

j , j = 1, . . . , J}, Σ(t)
θ , µ(t)

i and Σ(t)
i . The EM iteration

is presented below.

E-Step In E-step, we evaluate the closed-form lower bound of the expected log likeli-

hood with respect to the variational distributions qi’s. With iteratively updated varia-

tional parameters µ(t)
i and Σ(t)

i , we easily evaluate the tth iteration’s lower bound of the

expected log-likelihood. Denote the tth iteration’s variational density as q(t)
i (θi) = qi(θi |

ξ
(t)
i ,A

(t),B(t),Σ(t)
θ ). Then, the tth iteration’s lower bound can be derived as

E(t)(A,B, ξ) :=
N∑
i=1

∫
θi
l(Yi,θi, ξi | A,B)× q(t)

i (θi)dθi

=
N∑
i=1

J∑
j=1

(
log eξ

(t)
i,j

(1 + eξ
(t)
i,j )

+ (1
2 − Yij)b

(t)
j + (Yij −

1
2)α(t)>

j µ
(t)
i −

1
2ξ

(t)
i,j

−η(ξ(t)
i,j ){b(t)2

j − 2b(t)
j α

(t)>
j µ

(t)
i +α(t)>

j [Σ(t)
i + (µ(t)

i )(µ(t)
i )>]α(t)

j − ξ
(t)2
i,j }

)

+N2 log |(Σ(t)
θ )−1| −

N∑
i=1

1
2Tr((Σ

(t)
θ )−1[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]).

M-Step In M-step, we maximize the estimated lower bound to update the model parame-

ters (A,B, ξ,Σθ). This is achieved by simply setting the derivative of the lower bound with
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respect to (A,B, ξ,Σθ) to be zero. As a result, it can be shown that each update of the

model parameters are done in a closed form, which makes the proposed GVEM algorithm

computationally efficient. The updating step is presented below. The most recently updated

copies of the parameters are used for each iterative update.

αj = 1
2

[ N∑
i=1

η(ξi,j)Σi + η(ξi,j)µiµ>i
]−1 N∑

i=1

[(
Yij −

1
2 + 2bjη(ξi,j)

)
µ>i

]
, (II.9)

bj =

∑N
i=1

[
(1

2 − Yij) + 2η(ξi,j)α>j µi
]

∑N
i=1 2η(ξi,j)

, (II.10)

ξ2
i,j = b2

j − 2bjα>j µi +α>j [Σi + µiµ
>
i ]αj. (II.11)

For the covariance matrix Σθ, in the exploratory analysis, we can keep Σθ = IK during the

GVEM estimation and then later performed proper rotation; in the confirmatory analysis,

we update Σθ by

Σθ = 1
N

N∑
i=1

[Σi + µiµ
>
i ]. (II.12)

Note that if the Σθ is assumed to be the correlation matrix with diagonals being 1, then

we need to standardize the estimated Σθ to get correlation matrix. Detailed derivations

regarding the above EM steps are given in the Supplementary Material.

In light of the above exposition, the GVEM algorithm for M2PL can be summarized as

follows.

Algorithm 1 GV-EM algorithm
1: Initialize M (0)

p = {A0,B0}, ξ(0).
2: repeat
3: E step : For step t ≥ 1, update µ(t)

i and Σ(t)
i according to closed-form equations (II.7)

and (II.8).
4: M step : Further update M (t)

p and ξ(t) according to closed-form equations (II.9),
(II.10), and (II.11), iteratively. Fix Σ(t)

θ = IK in the exploratory analysis or update
Σ(t)
θ according to (II.12) in the confirmatory analysis.

5: until convergence
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Remark II.1. The algorithm complexity increases with the sample size N , which makes the

algorithm computationally inefficient for large data sets. Thus, we can stochastically optimize

the EM algorithm by sub-sampling the data to form noisy estimates of the variational lower

bound and model parameters. Please refer to Section II.4.2 for detailed explanation of the

stochastic GVEM.

Remark II.2. Under the IRT framework, test dimensionality is one of the major issues

explored in order to validate the design of a test and help practitioners with test development.

As a byproduct of the algorithm, we can empirically estimate the number of latent dimensions

from data. Specifically, the information criteria such as AIC or BIC can be used to compare

the model fit with varying number of dimensions. Because we approximate the true log-

likelihood by its lower bound in GVEM, the information criteria also need to be modified by

replacing the true log-likelihood with the variational lower bound, resulting in the following

modified AIC and BIC, denoted as AIC? and BIC?. The approximated information criteria

are as follows, AIC? = 2(‖A‖0 + ‖B‖0 + ‖Σθ‖0)− 2E(Â, B̂, ξ̂) and BIC? = ln(N)(‖A‖0 +

‖B‖0 + ‖Σθ‖0) − 2E(Â, B̂, ξ̂) where E(Â, B̂, ξ̂) is the estimated variational lower bound

and Â, B̂, ξ̂ are the final estimates from GVEM estimation procedure. The notation ‖A‖0

of matrix A denotes the zero norm of the matrix A, which is simply the number of non-

zero entries of A. The advantage of using GVEM to estimate test dimensionality is that it

is computationally more efficient especially under high dimensional data and more complex

model. This procedure can be easily applied in both the 2PL and the 3PL models. Please see

the simulation study for more discussions.

II.3.2 Theoretical Properties

In this section, we establish theoretical bounds on the estimation of the model parameters

under the high-dimensional setting where both N and J go to infinity. The dimension of

latent traits, K, is assumed known for this analysis and thus fixed. As defined in Section

II.2, A = [αjk]J×K denotes a matrix of factor loadings. Additionally, let Θ = [θij]N×K
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denote a matrix of random variables following qi(θi) and let Θ̂ = [θ̂ij]N×K denote a matrix

of estimated latent abilities from data. Define Eθ̂∼q̂ to be the expectation with respect to

the estimated variational densities {q̂i(θ̂i) ∼ N(µ̂i, Σ̂i) : i = 1, . . . , N} from data. Lastly, a

superscript ∗ denote a true parameter. For example, θ∗i denotes the ith person’s true latent

ability, which is a deterministic realization from its population distribution. We assume that

the true parameters Θ∗ and A∗ satisfy

(A1). ‖θ∗i ‖2 ≤ C and ‖α∗j‖2 ≤ C for all i, j for some positive constant C

Theorem II.3 derives the bound on the expected Frobenius norm of the error, ‖Θ̂Â> −

Θ∗(A∗)>‖F , where ‖M‖F =
√∑

i,jM
2
ij denotes the Frobenius norm of a matrix M.

Theorem II.3. Suppose that condition (A1) is satisfied for the true parameters Θ∗ and

A∗. With optimally estimated variational densities q̂i from data and estimated parameter

matrix Â that maximizes the variational lower bound, there exists absolute constants C1 and

C2 such that

1
NJ

Eθ̂∼q̂[‖Θ̂Â
> −Θ∗(A∗)>‖F ] ≤ C2Ce

C

√
J +N

JN

√
1 + log(N + J)

N + J

is satisfied with probability 1− C1/(N + J).

The proof of Theorem II.3 can be found in the Supplementary Material.

Remark II.4. Theorem II.3 states that the expected estimation error measured by Frobenius

norm goes to 0 as both N → ∞ and J → ∞. The proof of Theorem II.3 follows a similar

argument from Davenport, Plan, Van Den Berg, and Wootters (2014) and Theorem 1 in

Chen et al. (2019). However, the previous work by Chen et al. (2019) treats θi as fixed

effects while this work follows the conventional MIRT model setting with θi random effects

and following a normal population distribution.

Remark II.5. The Gaussian family as the candidate choice of q is reasonable according

to Laplace approximation of the posterior distribution P (θi|Yi). The Laplace approximation

18



of P (θi|Yi) is a normal distribution with MLE θ̂i as mean and inverse of observed Fisher

information I−1(θ̂i) as variance. Denote θ∗i as the true parameter. By Bernstein-von Mises

Theorem, since P (Yi | θi), i = 1, . . . , N have same support and θi → logP (Yi | θi) is

twice continuously differentiable, then θ̂i → θ∗i almost surely and the Laplace approximated

distribution N(θ̂i, I−1(θ̂i)) converges in distribution to the true limiting normal distribution

N(θ∗i , I−1(θ∗i )) as J →∞ where I−1(θ∗i ) is the inverse of expected Fisher information. This

supports our choice of variational density qi as a multivariate Gaussian distribution provides

an asymptotically good approximation for the true posterior distribution of θ.

Remark II.6. Compared with the existing stochastic estimation algorithms, such as the

Metropolis-Hastings Robbins-Monro algorithm and the stochastic EM algorithm, the proposed

estimation method has the advantage that each of the estimation iterations has simple closed-

form update and it does not involve the stochastic samplings from some intermediate posterior

distributions as in the current stochastic estimation algorithms. As discussed in Remark II.5,

even though variational distributions are used to approximate the posterior distributions in

our method, the normal approximation is asymptotically valid. Simulation studies in Section

II.5 further illustrate this. Moreover, the above variational EM development can be easily

generalized to the M3PL model and can also be naturally combined with the idea of the

stochastic EM, as illustrated in the next section.

II.4 GVEM for the M3PL Model

Derivation of the variational lower bound is trickier in the M3PL function since the cancella-

tion of log and exponential function, which was essential in simplifying the variational lower

bound in M2PL, is impossible due to the addition of a guessing parameter. To solve this

problem, we introduce another latent variable, Zij which is an indicator function of whether

ith individual answered jth item based on their latent abilities or guessed it correctly (von

Davier, 2009). We define Zij = 1 if ith individual solved item j based on his or her latent
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ability, and Zij = 0 if he or she guessed item j correctly. Notice here that for the case of

Zij = 1, Yij can be either 0 or 1. However, when Zij = 0, Yij has to be 1 by the definition

of Zij. Hence, {Yij = 0, Zij = 0} cannot occur.

Proposition II.7. Given the two latent variables θi and Zij, then P (Yij | θi) under the

following hierarchical model is equivalent to (II.2) of the 3PL model.

Zij ∼ Bernoulli(1− cj),

Yij | θi, Zij = 1 ∼ Bernoulli(
[ exp(α>j θi − bj)
1 + exp(α>j θi − bj)

]
),

Yij | θi, Zij = 0 ∼ Bernoulli(I(Yij = 1)).

The distribution of observation Yij given latent variables θi and Zij is then

P (Yij|Zij,θi) =
{[ exp(α>j θi − bj)

1 + exp(α>j θi − bj)

]Yij[ 1
1 + exp(α>j θi − bj)

]1−Yij
}Zij

I(Yij = 1)1−Zij .

Without loss of generality we first focus on the ith subject’s likelihood function due to the

independence of different subjects. Denote Zi = {Zi1, Zi2, . . . , ZiJ} and its distribution as

p(Zi) = ∏J
j=1 p(Zij). Then the complete data likelihood of the ith subject is

logP (Yi,θi,Zi | A,B,C)

= logP (Yi | θi,Zi,A,B,C) + log φ(θi) + log p(Zi)

=
J∑
j=1

{
YijZij log

[ exp(α>j θi − bj)
1 + exp(α>j θi − bj)

]
+ (1− Yij)Zij log

[ 1
1 + exp(α>j θi − bj)

]}

+
J∑
j=1
{(1− Zij) log I(Yij = 1)}+ log φ(θi) + log p(Zi)

=
J∑
j=1

{
YijZij(α>j θi − bj) + Zij log 1

1 + exp(α>j θi − bj)
+ (1− Zij) log I(Yij = 1)

}
+ log φ(θi) + log p(Zi).

Following the result from Proposition II.7, the hierarchical formulation of the 3PL model
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with the new latent variable Zij could be used to derive the GVEM algorithm for the 3PL

model. Please refer to the Supplementary Material for the proof of Proposition II.7. Similar

data augmentation scheme was proposed in Albert (1992) in the Bayesian framework.

In this section, we derive the optimal choices of the variational densities for the latent

variables Zij and θi. The approach is similar to that of the 2PL model. For any arbitrary

density functions qi and rij of the latent variables θi and Zij, the following equation always

holds

logP (Yi | A,B,C) =
∫
θi

∑
Zi

logP (Yi | A,B,C)× qi(θi)ri(Zi)dθi.

where ri(Zi) = ∏J
j=1 rij(Zij).

Note that P (Yi | A,B,C) = P (Yi,θi,Zi | A,B,C)/P (θi,Zi | Yi,A,B,C). We can

write

logP (Yi | A,B,C) =
∫
θi

∑
Zi

log P (Yi,θi,Zi | A,B,C)
P (θi,Zi | Yi,A,B,C) × qi(θi)ri(Zi)dθi

=
∫
θi

∑
Zi

log P (Yi,θi,Zi | A,B,C)
qi(θi)ri(Zi)

× qi(θi)ri(Zi)dθi

+KL{qi(θi)ri(Zi)‖P (θi,Zi | Yi,A,B,C)}.

Since the KL distance is ≥ 0 by definition, we get a lower bound on the marginal likelihood

similarly as in the 2PL model.

logP (Yi | A,B,C) ≥
∫
θi

∑
Zi

logP (Yi,θi,Zi | A,B,C)× qi(θi)ri(Zi)dθi (II.13)

−
∫
θi

∑
Zi

log
(
qi(θi)ri(Zi)

)
× qi(θi)ri(Zi)dθi (II.14)

Since (II.14) doesn’t depend on parametersA,B andC, we focus on (II.13) for the derivation

21



of the lower bound. Again, the ith subject’s likelihood function is

logP (Yi,θi,Zi | A,B,C)

=
J∑
j=1

{
YijZij(α>j θi − bj) + Zij log 1

1 + exp(α>j θi − bj)
+ (1− Zij) log I(Yij = 1)

}
+ log φ(θi) + log p(Zi).

Using the same variational lower bound (II.6) on the logistic sigmoid function as in the 2PL

model, we show

logP (Yi,θi,Zi | A,B,C)

≥
J∑
j=1

Zij log eξi,j

(1 + eξi,j) +
J∑
j=1

ZijYij(α>j θi − bj) +
J∑
j=1

1
2Zij(bj −α

>
j θi − ξi,j)

−
J∑
j=1

Zijη(ξi,j){(bj −α>j θi)2 − ξ2
i,j}+

J∑
j=1
{(1− Zij) log I(Yij = 1)}

+ log φ(θi) + log p(Zi)

=: l(Yi,θi,Zi, ξi | A,B,C).

Recall that if Yij = 0, then we always have Zij = 1 by the design of our model. In other

words, {Yij, Zij} = {0, 0} cannot occur. To accommodate this constraint, we replace Zij by

Z ′ij = 1−Yij +ZijYij so that Z ′ij = Zij if Yij = 1 and Z ′ij = 1 if Yij = 0. This makes sure that

the case of {Yij, Zij} = {0, 0} is not included as a possible scenario during the estimation
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procedure. By this substitution, we have

l(Yi,θi,Zi, ξi | A,B.C)

=
J∑
j=1

(1− Yij + ZijYij) log eξi,j

(1 + eξi,j) +
J∑
j=1

(1− Yij + ZijYij)Yij(α>j θi − bj)

+
J∑
j=1

1
2(1− Yij + ZijYij)(bj −α>j θi − ξi,j)

−
J∑
j=1

(1− Yij + ZijYij)η(ξi,j){(bj −α>j θi)2 − ξ2
i,j}

+
J∑
j=1
{Yij(1− Zij) log I(Yij = 1)}+ log φ(θi) +

J∑
j=1

log p(Z ′ij)

where log p(Z ′ij) = (1− Yij + ZijYij) log(1− cj) + Yij(1− Zij) log(cj).

With variational distributions qi’s and ri’s, we have the following expression for the

variational lower bound of the marginal likelihood, which is an expectation of the joint

distribution with respect to qi’s and ri’s, i.e.,

E(t)(A,B,C, ξ) :=
N∑
i=1

∫
θi

[∑
Zi

l(Yi,θi,Zi, ξi | A,B,C)× r(t)
i (Zi)

]
× q(t)

i (θi)dθi. (II.15)

Appropriate choices of the variational distributions will lead to a closed form expression

of the lower bound expressed in (II.15). As in the 2PL model, we choose the variational

distributions for each latent variable by finding a distribution that best approximates the

posterior distribution of each latent variable.
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II.4.1 Algorithm Details

Choice of qi Let Er denote the expectation with respect to. the variational densities of

Zij’s, i.e. rij(Zij)’s. We can write

Er(A,B,C, ξ) :=
N∑
i=1

∑
Zij

l(Yi,θi,Zi, ξi | A,B,C)× rij(Zij)

=
N∑
i=1

[
J∑
j=1

(1− Yij + Er[Zij]Yij) log eξi,j

(1 + eξi,j) +
J∑
j=1

(1− Yij + Er[Zij]Yij)Yij(α>j θi − bj)

+
J∑
j=1

(1− Yij + Er[Zij]Yij)
1
2(bj −α>j θi − ξi,j)

−
J∑
j=1

(1− Yij + Er[Zij]Yij)η(ξi,j){(bj −α>j θi)2 − ξ2
i,j}

+
J∑
j=1
{Yij(1− Er[Zij]) log I(Yij = 1)}+ log φ(θi) +

J∑
j=1

Er[log p(Z ′ij)]
]

Conditional on the model parameters A,B,C and the variational parameters ξi where i =

1, . . . , N , by the variational inference theory, we can show that the variational distributions

qi(θi), i = 1, . . . , N that minimize the distances between them and the posterior distributions

take the following form;

log qi(θi) ∝
J∑
j=1

(1− Yij + Er(Zij)Yij)
(
Yij −

1
2

)
α>j θi

−
J∑
j=1

(1− Yij + Er(Zij)Yij))η(ξi,j)(bj −α>j θi)2 − 1
2θ
>
i Σ−1

θ θi.

The above likelihood function implies that qi(θi) ∼ N(θi | µi,Σi) where the mean parameter

of the normal distribution is

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1
2

}
(1− Yij + Er(Zij)Yij)α>j (II.16)
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and the covariance matrix is determined by

Σ−1
i = Σ−1

θ + 2
J∑
j=1

(1− Yij + Er(Zij)Yij)η(ξi,j)αjα>j . (II.17)

Choice of rij We follow the similar steps as qi. That is, we take the expectation of the

lower bound l(Yi,θi,Zi, ξi | A,B,C) with respect to the variational density of θi, qi(θi)

and derive the variational distributions for Zij, i = 1, . . . , N, j = 1, . . . , J . The variational

distribution minimizes the distances between them and the posterior distributions of Zij

given model parameters A,B,C and the variational parameters ξi.

Let Eq denote the expectation with respect to. the variational densities qi’s and Eqi denote

the expectation with respect to qi. Taking expectation of the lower bound l(Yi,θi,Zi, ξi |

A,B,C) with respect to qi(θi), we have

Eq(A,B,C, ξ)

=
N∑
i=1

[
J∑
j=1

(1− Yij + ZijYij) log eξi,j

(1 + eξi,j) +
J∑
j=1

(1− Yij + ZijYij)Yij(α>j Eqi [θi]− bj)

+
J∑
j=1

(1− Yij + ZijYij)
1
2(bj −α>j Eqi [θi]− ξi,j)

−
J∑
j=1

(1− Yij + ZijYij)η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2
i,j}

+
J∑
j=1
{Yij(1− Zij) log I(Yij = 1)}+ Eqi [log φ(θi)] +

J∑
j=1

log p(Z ′ij)
]

(II.18)

This implies that the variational distributions rij(Zij) are

log rij(Zij) ∝ ZijYij

[
log eξi,j

(1 + eξi,j) + Yij(α>j Eqi [θi]− bj) + 1
2(bj −α>j Eqi [θi]− ξi,j)

−η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2
i,j}+ log(1− cj)

]

+Yij(1− Zij)
[

log I(Yij = 1) + log(cj)
]
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Thus, rij(Zij) ∼ Bernoulli(sij) where sij = 1 if Yij = 0 and

s−1
ij = 1 + cj

1− cj
1 + eξi,j

eξi,j
exp

{
− Yij(α>j Eqi [θi]− bj) +

1
2(bj −α>j Eqi [θi]− ξi,j)− η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2

i,j}
}

(II.19)

if Yij = 1 where Eqi [θi] = µi and Eqi [(bj −α>j θi)2] = b2
j − 2bjα>j µi +α>j [Σi + µiµ

>
i ]αj.

With the chosen qi’s and rij’s, we aim to estimate model parameters ξ, A, B and C,

by maximizing the variational lower bound of the marginal likelihood, i.e., (II.15). The EM

steps for 3PL model follow the same procedure as in 2PL case.

E-Step In every E step, we choose the optimal variational distributions qi’s and rij’s, which

is equivalent to estimating variational parameters µi, Σi, and sij for every i and j. With

iteratively updated variational parameters, (i.e. µ(t)
i , Σ(t)

i , and s(t)
ij ) and most recent updates

of model parameters (i.e. M (t)
p = {A(t),B(t),C(t)}), we derive a closed form expression of

variational lower bound at tth step as follows;

E(t)(A,B,C, ξ)

=
N∑
i=1

J∑
j=1

(1− Yij + s
(t)
ij Yij)

(
log eξ

(t)
i,j

(1 + eξ
(t)
i,j )

+ (1
2 − Yij)b

(t)
j + (Yij −

1
2)α(t)>

j µ
(t)
i

−1
2ξ

(t)
i,j − η(ξ(t)

i,j ){b(t)2
j − 2b(t)

j α
(t)>
j µ

(t)
i + (α(t)

j )>[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]α(t)

j − ξ
(t)2
i,j }

)

+
N∑
i=1

J∑
j=1

Yij(1− s(t)
ij ) log I(Yij = 1)−

N∑
i=1

1
2Tr((Σ

(t)
θ )−1[Σ(t)

i + (µ(t)
i )(µ(t)

i )>])

+N2 log |(Σ(t)
θ )−1|+

N∑
i=1

J∑
j=1
{(1− Yij + s

(t)
ij Yij) log(1− c(t)

j ) + Yij(1− s(t)
ij ) log(c(t)

j )}.

M-Step In this step, we again maximize the E(t)(A,B,C, ξ) to update the parameters

(A,B,C, ξ). This is achieved by setting the derivative of E(t)(A,B,C, ξ) with respect to

(A,B,C, ξ) to be zero. Since we have a closed-form expression of the lower bound, updates

of the model parameters are also in closed-form. Detailed derivation is provided in the
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Supplementary Material.

For ξ and Σθ, the update is the same as in 2PL model. For other parameters, we derive

the updating rule by taking derivative of the variational lower bound E(A,B,C, ξ) derived

in E step. As a result, we have the following updating rule for αj, bj and cj;

αj = 1
2

[ N∑
i=1

(1− Yij + sijYij)η(ξi,j)[Σi + µiµ
>
i ]
]−1

×
N∑
i=1

[
(1− Yij + sijYij)

(
Yij −

1
2 + 2bjη(ξi,j)

)
µ>i

]
, (II.20)

bj =

∑N
i=1(1− Yij + sijYij)

[
(1

2 − Yij) + 2η(ξi,j)α(t)>
j µi

]
∑N
i=1 2(1− Yij + sijYij)η(ξi,j)

, (II.21)

cj =
∑N
i=1(Yij − sijYij)∑N

i=1(1− Yij + sijYij) +∑N
i=1(Yij − sijYij)

= 1
N

N∑
i=1

Yij(1− sij). (II.22)

The Algorithm 2 summarizes the EM steps for GVEM algorithm in M3PL.

Algorithm 2 GV-EM algorithm for M3PL
1: Initialize M (0)

p = {A0,B0,C0}, ξ(0).
2: repeat
3: E step : For step t ≥ 1, update variational parameters µ

(t+1)
i , Σ(t+1)

i , and s
(t+1)
ij

according to closed-form equations (II.16), (II.17), and (II.19).
4: M step : Further update M (t+1)

p according to closed-form equations (II.20), (II.21),
and (II.22) iteratively. Update ξ(t+1) and Σ(t+1)

θ same as in M2PL.
5: until convergence

Remark II.8. The theoretical property of the M3PL is more challenging to derive rigor-

ously due to the addition of the guessing parameters cj’s. From Theorem 2 in Davenport

et al. (2014) we can show that the Hellinger distance of error between estimated probability

distributions and the true probability distributions is bounded above. For this discussion,

we define Hellinger distance for probability distributions and matrices. Hellinger distance

for two scalars p, q ∈ [0, 1] is defined as d2
H(p, q) := (√p − √q)2 + (

√
1− p −

√
1− q)2.

Following Davenport et al. (2014), we also allow the Hellinger distance to act on matrices

by averaging Hellinger distances over their entries. For matrices P,Q ∈ [0, 1]d1×d2, we de-
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fine d2
H(P,Q) = 1

d1d2

∑
i,j d

2
H(Pij, Qij). Let M = [Mij]N×J be the matrix with entries Mij

satisfying exp(Mij)
1+exp(Mij) = cj + (1− cj)

exp(α>j θi−bj)
1+exp(α>j θi−bj)

. Let P (Y |M) be a matrix of probability dis-

tributions P (Yij|Mij)’s where Mij denotes a collection of model parameters αij, bj, cj. Again,

M∗ denotes a matrix of true parameters and M̂ denotes estimated model parameters. Then

by Theorem 2 of Davenport et al. (2014)

d2
H(P (Y |M̂), P (Y |M∗)) ≤ C2C

√
K(N + J)

NJ

√
1 + (N + J) log(NJ)

NJ

with probability 1 − C1
N+J for absolute constants C1 and C2. Hence, the Hellinger distance

between estimated probability distribution and true probability distribution goes to 0 as both

N → ∞ and J → ∞. However, the consistency result for model parameter {αj, bj, cj : j =

1, . . . , J} in M3PL is more challenging to derive and thus left for the future research.

II.4.2 Stochastic Optimization of GVEM

In M3PL, the proposed GVEM algorithm may become computationally inefficient as sample

size increases because of the additional variational parameters and model parameters to esti-

mate compared to M2PL. Especially in the E step, variational parameters (i.e. µi,Σi, ξi,j, sij)

need to be optimized for every data points i = 1, . . . , N . Thus, the computational bur-

den increases with larger sample size N . To improve the computational efficiency of the

GVEM algorithm, we can stochastically optimize the variational approximation in the E

step (Hoffman, Blei, Wang, & Paisley, 2013). That is, at each iteration of the E step, we

subsample the data to form noisy estimate of the variational lower bound and iteratively up-

date the estimate with a decreasing step size. Then M step in Algorithm 2 follows using this

stochastically estimated variational lower bound. The stochastic optimization only affects

the E step, thus with minor changes to the original GVEM algorithm we can stochastically

optimize the algorithm for M3PL. The noisy estimates of the variational lower bound are

cheaper to compute as it only requires small subset of the data at each iteration. Also, for
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complicated models like M3PL, following such noisy estimates can also help the algorithm

to escape local optima of complex objective functions. Specifically, the stochastic EM steps

can be summarized as follows.

Stochastic E step For step t ≥ 1, choose a subset of data St with desired size. Choose a

decreasing step size εt. Update µ(t)
i , Σ(t)

i , ξ(t)
i and s

(t)
ij for data point i ∈ St only, according

to closed-form equations (II.16) and (II.17). Since we only update variational parameters

for i ∈ St, the algorithm is computationally more efficient than GVEM approach without

stochastic optimization, especially when the size of the subset St is chosen to be small.

With updated variational parameters partially for i ∈ St, calculate noisy estimate of tth

iteration’s expected variational lower bound Q̂t as follows;

Q̂t =
∑
i∈St

∫
θi

[∑
Zi

l(Yi,θi,Zi, ξi | A,B,C)× r(t)
i (Zi)

]
× q(t)

i (θi)dθi

Then we obtain a stochastic approximation of the variational lower bound by a weighted

average of previous and current step’s noisy estimates of the lower bound, i.e. (1− εt)Q̂t−1 +

εtQ̂t.

M step Once E step is done, we follow the previous M step. That is, estimate Â(t), B̂(t),

Ĉ(t), and Σ̂(t)
θ that maximizes the stochastic approximation of the variational lower bound.

Notice that this stochastic optimization idea is different from the stochastic component

in the stochastic EM (StEM) algorithm (Nielsen, 2000). In the StEM algorithm, random

samples of the unobserved latent variables θi are drawn from the conditional distribution

of θi given observed variable Yi, and these random samples are used to approximate the

otherwise intractable expectation in the E step. In our algorithm, the stochastic component

instead refers to the random sub-sampling of the observed data {Yij, i = 1, . . . , N} to form

a noisy approximation of the variational lower bound E(A,B,C, ξ) in E step.
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In theory, if a sequence of step sizes satisfies the conditions such that

∑
εt =∞ and

∑
ε2t <∞, (II.23)

which results in a sequence of decreasing step sizes, the algorithms provably converge to an

optimum (Robbins & Monro, 1951). Following the approach in Hoffman et al. (2013), we set

the tth step size as εt = (t+τ)−r where forget rate r ∈ (0.5, 1] and delay τ ≥ 0. The forget rate

controls how quickly old information is forgotten and the delay down-weights early iterations

to decrease the effect of the earlier noisy estimations. This step size obviously satisfies the

conditions (II.23). Thus the iterative stochastic optimization of E step converges to a local

optimum of the variational lower bound. In simulation, we fix the delay to be one and try

various forget rates as different values of delay didn’t play a big role for our model. Although

in theory the stochastic optimization of GVEM converges to a stationary point for any valid

forget rate r, the quality and speed of the convergence may depend on r in practice.

II.5 Simulations

II.5.1 Design

A series of simulation studies were conducted to evaluate the performance of the proposed

GVEM algorithm in comparison to the Metropolis-Hastings Robbins-Monro (MH-RM) al-

gorithm implemented in the R package, ‘mirt’ (Chalmers, 2012)1. The Metropolis-Hastings

sampler is used to draw missing data (which is θ in MIRT) in the stochastic imputation

step of the MH-RM algorithm (Cai, 2008, 2010a). In the ‘mirt’ package, “MHcand” is a

vector of values used to tune the MH sampler, with larger values yielding lower acceptance

rate. By default, these values are determined internally and adjusted on-the-fly, attempt-
1Please note that our conclusions regarding the MH-RM algorithm is based on the implementation of the algorithm

in the ‘mirt’ package. Researchers using other packages may get slightly different results. Thoroughly evaluating the
MH-RM algorithm in ‘mirt’ is beyond the scope of this thesis, but our preliminary check of the package revealed that
the MH-RM results are credible.
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ing to tune the acceptance of the draws to be between .1 and .4. In addition, the default

number of Metropolis-Hastings draws at each iteration is 5, which is considered sufficient

by Cai (2010a). Only the exploratory item factor analysis will be presented since it is a

computationally more challenging scenario than the confirmatory analysis. That is, in the

confirmatory analysis, many of the item loading parameters (or discrimination parameters)

are constrained to 0 based on the pre-specified item factor loading structure. Hence, the

update equation for α (i.e., (II.9) for the 2PL model and (II.20) for the 3PL model) only

needs minimum updates to reflect the constraints specified in the factor loading structure.

In the exploratory analysis, we do not assume any constraint on the item discrimination pa-

rameter A. Instead, to ensure model identifiability, we fix Σθ = IK during the estimation. A

post-hoc rotation can then follow to rotate the factors and allow them to be correlated. The

best-known rotation methods available in most commercial software packages are varimax

(Kaiser, 1958) in orthogonal rotation or promax (Hendrickson & White, 1964) in oblique ro-

tation. Other popular methods include, for instance, the CF-Quartimax rotation (Browne,

2001). In the simulations studies, the promax rotation was used such that the factors were

allowed to be correlated. Both the M2PL and M3PL were considered in the simulation

studies. The number of dimensions was fixed at 3 and test length was fixed at 45.

Additionally, we compared the performance of GVEM to the joint maximum likelihood

(JML) estimator given that the JML estimator is also shown to be consistent under the

same high-dimensional setting presented in Theorem II.3 and efficient (Chen et al., 2019).

The JML estimator was computed using the default settings in the R package ‘mirtjml’

implemented by Chen et al. (2019). Since Chen et al. (2019) did not study M3PL, here we

only compared the performances for M2PL.

The manipulated conditions include: (i) multidimensional structure, i.e. between-item

multidimensionality and within-item multidimensionality; (ii) correlations among the latent

traits, and (iii) sample size. In particular, for the between-item multidimensional structure,

there were 15 items loaded onto each factor; whereas for the within-item multidimensional
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structure, about one third of the items were loaded onto one, two, and three factors respec-

tively. In all cases, item discrimination parameters were simulated from Unif(1, 2) distri-

bution, and difficulty parameter bj was simulated from the standard normal distribution.

For the M3PL model, the true guessing parameters were fixed at 0.2 for all test items. The

latent traits θi were generated from multivariate normal distribution, N(0,Σθ), where Σθ is

a covariance matrix whose diagonal elements were 1 and the off-diagonals were drawn from

Uniform distribution. For the high correlation condition, the correlations were drawn from

Unif(0.5, 0.7) and for the low correlation condition, they were drawn from Unif(0.1, 0.3).

Sample size was set at either 200 or 500.

The convergence criterion for the GVEM algorithm is ‖Mp‖2 < 0.0001, where ‖Mp‖2

refers to the L2 norm of all model parameters. The number of Markov chain samples drawn

in the MHRM algorithm is by default 5000 in the R package ‘mirt’. Lastly, the JML method

adopts sequential change in log-likelihood as the convergence criterion and the tolerance of

convergence is by default 5 in the R package ‘mirtjml’. 100 replications were conducted

for each condition. Evaluation criteria include the average bias, root mean squared error

(RMSE), and computation time of both methods. The parameter recovery for Σθ is calcu-

lated by taking differences between each entries of the true Σθ and estimated Σ̂θ. Both bias

and RMSE were obtained for each model parameter across all items within a condition first

and then averaged over 100 replications.

II.5.2 Results for the M2PL model

Figures II.1 and II.2 compare the distributions of bias and RMSE of the model parameters

from the two methods under the four manipulated conditions for the between-item and

within-item M2PL model respectively. As shown, GVEM generally produces comparable or

more accurate model parameter estimates than MHRM 2 in all conditions for both between-

item and within-item models. With respect to the manipulated conditions, increasing sample
2MHRM method is run by the R package ‘mirt’
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sizes helps reduce the RMSE and bias of the parameter estimates in both GVEM and MHRM.

Moreover, the RMSE and bias are generally higher when the correlations among factors are

higher. This may be because higher correlation introduce multicollinearity among factors,

making the parameter recovery more difficult (C. Wang & Nydick, 2015). Last but not least,

the parameter recovery from the between-item multidimensional model is better than the

parameter recovery from the within-item multidimensional model. This is not surprising

since the loading structure A is more complex in the within-item model. Figures II.3 and

II.4 compare the distribution of bias and RMSE of the model parameters from GVEM and

the JML method under the four manipulated conditions for the between-item and within-

item M2PL models respectively. We observe that GVEM produces much lower RMSE and

bias than the JML estimation under all conditions for both between-item and within-item

models. The performance of the JML estimator is especially worse in small sample and high

correlation settings and under more complex within-item multidimensionality structure. This

could be due to the fact that the JML estimator assumes θi’s as fixed effects whereas GVEM

models them as random effects with multivariate Gaussian distributions which account for

the factor correlations. This result suggests that our proposed estimation method not only is

theoretically consistent but also performs better in practice particularly under these complex

simulation settings with correlated latent factors.

Figure II.5 shows the average computation times in seconds for GVEM and MHRM

algorithms over 100 replications. To demonstrate a thorough comparison of the computation

time, additional simulation settings were added for Figure II.5; three different sample sizes

(N = 200, 500, and 1000) and three different test dimensions (K = 3, 4, and 5) were

considered as the simulation settings, resulting in 9 conditions in total. Each column presents

the results for the between-item and withinin-item model respectively. Overall, GVEM

algorithm is computationally more efficient than MHRM in both low and high correlation

settings with varying sample sizes. The most reduction in computation time was observed in

between-item model with low correlation setting. Unsurprisingly, computation time increases
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for both methods when the number of dimensions increases or when sample sizes increase.
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Figure II.1: Parameter recovery of the between-item M2PL models from exploratory factor analysis
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Figure II.2: Parameter recovery of the within-item M2PL models from exploratory factor analysis
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Figure II.3: Parameter recovery of the between-item M2PL models from exploratory factor analysis using GVEM
and Joint Maximum Likelihood (JML) estimator
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Figure II.4: Parameter recovery of the within-item M2PL models from exploratory factor analysis using GVEM
and Joint Maximum Likelihood (JML) estimator
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Figure II.5: Average computation time for (a) between-item model (first column) and (b) within-item model (second
column) with low correlation (first row) and high correlation (second row).
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II.5.3 Results for the M3PL model

For the M3PL model, the sample size and forget rate for stochastically optimized 3PL

algorithm were chosen based on pilot testing of various sample sizes and forget rates. We

observed that using the whole data set for the initial estimation step helped a lot with

the estimation precision. Hence the forget rate was fixed at a small value so that the

information from entire data set in the first iteration was weighted more heavily in the

subsequest iterations (i.e. forget the information from entire data set slowly with small

forget rate). After the first iteration, only 5 data points were sampled at a time, resulting

in a huge reduction in computation time.

Figures II.6 and II.7 present the distributions of bias and RMSE of the model parameters

from the two methods under the four manipulated conditions for the between-item and

within-item M3PL model, respectively. During simulation studies, we observed that the

performance of MHRM was quite unstable and the model did not converge well in M3PL

under all manipulated conditions. Specifically, model did not converge in about 30 to 45% of

the total experiments in most conditions. In another 15 to 20% of the experiments, the model

converged but the estimates of the model parameters exploded to surprisingly high values,

which implies the instability of the parameter estimation. For MHRM method, we excluded

these results from the total of 100 experiments and reported only the values that seem more

meaningful. On the other hand, we report the results for all 100 experiments for the GVEM

method. Precisely, in Figure II.6, 40 cases for (a), 41 for (b), 28 for (c), and 40 for (d) were

reported. In Figure II.7, 48 cases for (a), 46 for (b), 54 for (c), and 47 for (d) were reported.

Note again that in both Figures, we report all 100 experiments for GVEM method because

they all converged successfully. Similarly as in the simulation studies for M2PL, increasing

sample sizes helps reduce the RMSE and bias of the parameter estimates in both GVEM

and MHRM. However, the RMSE for MHRM method is quite high with large variation

under most conditions. Overall, we observe that for varying sample sizes and correlations
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between latent traits, GVEM performs better than MHRM, even after excluding unstable

estimation results for MHRM. Given that the inclusion of guessing parameter poses model

estimation challenge is well-documented in literature (e.g, Lord, 1968; Thissen & Wainer,

1982; Yen, 1987), it is not too surprising to note the large proportion of non-converged

replications from MHRM. However, the stable performance of GVEM further reinforces its

promise as a robust alternative method to the current status-quo, in particular when guessing

parameter is included in the model. Also note that GVEM does not need much tuning for

good performance, hence it is more accessible to broader audience who may not have the

technical capacity to manually tune certain parameters, as may required by other algorithms.

II.5.4 Estimating the Number of Dimensions

In this section, a separate simulation study was conducted to evaluate if AIC? and BIC?

could help identify the correct number of factors from data. The simulation design is the same

as illustrated in Section II.5.1. The result is presented for different sample sizes and degrees

of correlation between latent traits. A total of 100 independent samples were generated

for each setting, and the proportion of replications in which the correct number of factors

identified by AIC? and BIC? were recorded.

Table II.1 and Table II.2 present the correct estimation rate of the number of dimensions

for M2PL and M3PL models respectively. As shown, increasing sample size help increase

the correct estimation rate. In addition, similar to the findings in the previous sections,

lower correlation is more preferable as it usually produced higher correct estimation rates.

There is only one exception, though, for the within-item M3PL model, in which both AIC?

and BIC? performed better for the higher correlation scenario regardless of the sample size.

There is no appreciable difference between AIC? and BIC? except a few cells in Table II.1:

AIC? performed better than BIC? for large Σθ with sample size of 200, whereas BIC?

performed better for small Σθ with sample size of 200.
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Figure II.6: Parameter recovery of the between-item M3PL models from exploratory factor analysis. For MHRM,
(a) 40, (b) 41, (c) 28, (d) 40 cases of simulation results were reported due to convergence issue. For GVEM, all 100
cases were reported under all conditions.
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Figure II.7: Parameter recovery of the within-item M3PL models from exploratory factor analysis. (a) 48, (b) 46,
(c) 54, (d) 47 cases of simulation results were reported due to convergence issue. For GVEM, all 100 cases were
reported under all conditions.
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between-item within-item
Correlation(Σθ) N AIC? BIC? AIC? BIC?

small
200 76 92 69 94
500 82 91 76 83
1000 88 93 79 85

large
200 59 25 69 58
500 66 41 82 81
1000 83 52 84 89

Table II.1: Simulation: correct estimation rate(%) in the M2PL model

between-item within-item
Correlation(Σθ) N AIC? BIC? AIC? BIC?

small
200 47 47 63 63
500 83 87 93 93
1000 93 93 84 84

large
200 40 43 83 83
500 60 60 97 97
1000 73 73 97 97

Table II.2: Simulation: correct estimation rate(%) in the M3PL model

II.6 Real Data Analysis

In this section, the GVEM and MHRM algorithms were used to conduct an exploratory

item factor analysis on the National Education Longitudinal Study of 1988 (NELS:88) data.

In this data set, a nationally representative sample of approximately 24,500 students were

tracked via multidimensional cognitive batteries from 8th to 12th grade (the first three stud-

ies) in years 1988, 1990, and 1992. In this study, we focused on the science and mathematics

test data where the multidimensional factorial structure has been previously investigated (e.g,

Kupermintz & Snow, 1997; Nussbaum, Hamilton, & Snow, 1997). For the science subject,

there are 25 items and four factors emerged from the data collected in 1988: “Elementary

science (ES)”, “Chemistry knowledge (CK)”, “Scientific reasoning (SR)” and “Reasoning

with knowledge (RK)”. For the math subject, there are 40 items in 1988 and two factors

emerged, they are “Mathematical reasoning (MR)” and “Mathematical knowledge (MK)”.

We pooled together data from both domains, resulting in 65 items and a complete sample
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size of N=13,488. Because the factor structure was analyzed using normal theory factor

analysis more than two decades ago, we plan to reanalyze the data using the proposed new

methods. In addition, pooling together both math and science domains result in poten-

tially high dimensional data. First, both GVEM and MHRM were conducted assuming the

number of factors were 6. The focus is on the recovery of the correlation matrix Σθ and its

comparison between two methods. Since the exploratory item factor analysis was conducted,

in both GVEM and MHRM we assumed that Σθ = IK during GVEM estimation and later

performed the same promax rotation to estimate the correlation matrix Σ̂θ. Second, GVEM

was used to explore the dimension of latent traits from the data.

Table II.3 shows the estimated Σθ from both methods assuming the number of factors is

6. The correlations in Σ̂θ from two algorithms look comparable although most values from

GVEM are slightly smaller than those from MHRM. The negative correlations on the last

row, especially, are similar between two correlation matrices. Please note that Σ̂θ is invariant

to the ordering of the latent traits (i.e., the factor labels are arbitrary), hence it is possible

to reduce the differences between two matrices by further reordering their columns in Table

II.3.

GVEM MHRM



1
.622 1
.566 .298 1
.472 .112 .426 1
.489 .869 .424 .248 1
−.767 −.388 −.701 −.512 −.595 1





1
.549 1
.697 .432 1
.635 .532 .682 1
.697 .478 .740 .544 1
−.607 −.497 −.602 −.525 −.592 1



Table II.3: Real Data: comparison of estimated Σ̂θ

To further explore the optimal number of factors from data, we applied the GVEM

algorithm with the information criteria for dimension selection. Figure II.8 presented the

results of latent dimension selection under M2PL and M3PL models. By fitting the M2PL

model to the data, the optimal dimensionality of the latent traits was estimated to be six by
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Figure II.8: Real Data: Model Selection (BIC? for both M2PL and M3PL. AIC? shows the same trend).

both AIC? and BIC? as shown in Figure II.8. This corresponds to the number of latent traits

identified in prior research. However, the dimensionality of the latent traits was estimated to

be five under the M3PL model. This result implies that some of the six latent traits may be

highly correlated under the M3PL model that they are merged. Comparing the information

criteria values across both M2PL and M3PL, it appears that AIC? and BIC? were smallest

for the M2PL model with six factors. Hence, our results further validate the number of

latent factors that could be extracted from the NELS:88 data. In addition, it suggests that

the guessing didn’t play a significant role in students’ performance on the math and science

cognitive test data.

II.7 Discussions

Variational methods are first introduced in psychometrics by Rijmen and Jeon (2013) for

high dimensional IRT model with discrete latent traits, and later by Jeon et al (2017) in a

form of a variational maximization-maximization algorithm for GLMMs with crossed random
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effects. Although their findings demonstrate great promise of variational methods as they

apply in psychometrics, their methods are not ready for calibrating high-dimensional MIRT

models with correlated latent factors and guessing parameters. In this chapter, a new method

based on variational approximation is proposed for the parameter estimation in the M2PL

and M3PL models. Compared to the existing methods, it has the advantage of avoiding

the calculation of intractable log-likelihood by approximating the lower bound to the log-

likelihood. It also greatly reduces the computation complexity by deriving the closed-form

updates in the every EM step. Moreover, the efficiency of the algorithm is further improved

in the stochastic version. Simulation studies demonstrate that the proposed methods show

better performance in terms of parameter recovery and computation time in both M2PL and

M3PL compared to the widely used MHRM method. Theoretical results are provided on

the convergence rate, which shows that the estimation error goes to 0 as both the sample

size and number of test items go to infinity. As byproducts of the GVEM algorithm, both

AIC? and BIC? could be used to help identify the optimal number of latent factors from

data, as reflected by the simulation results.

Although the current simulation study and data analysis focused on the exploratory item

factor analysis, the GVEM algorithm can also be easily applied to the confirmatory item

factor analysis. In the latter case, the loading matrix A will have structural 0’s implying

that certain items are irrelevant to certain factors. Similar to the approach in Cai (2010b),

these user-defined restrictions can be incorporated in the estimation via linear constraints.

Reflecting in the GVEM algorithm, due to the closed-form solutions in the M-step, handling

the structural 0’s basically means multiplying Â by a same size matrix of binary entries with

1’s indicating the corresponding element is estimable.

Taking one step further, the GVEM algorithm could be coupled with latent variable se-

lection (Sun, Chen, Liu, Ying, & Xin, 2016). Traditional approaches for identifying item

factor loading structure proceeds in two steps: (i) allowing all item factor loadings to be

freely estimated, and (ii) conducting a post-hoc rotation (Browne, 2001). While these ro-
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tation methods intend to produce a near-simple structure for the ease of interpretation,

an arbitrary cut-off for the rotated factor loadings is often needed. In contrast, the latent

variable selection avoids setting subjective cut-offs. The principle idea is to estimate the

non-zero elements in the A matrix. Specifically, a penalty will be added to elements in A

and when a factor is not associated with an item, the corresponding element in A will shrink

to 0. Hence, this is a one-step approach where model calibration and factor selection are

completed simultaneously. This idea was first proposed by Sun et al. (2016), but they still

used a traditional EM algorithm that can hardly be generalized to higher dimensions due to

the computation burden. The GVEM algorithm proposed in this study is a good candidate

for such one-step latent variable selection, and future studies could explore this direction.

Despite its computational efficiency and comparable estimation accuracy, GVEM does

not produce standard errors of the model parameters as a byproduct of the estimation pro-

cedure. However, one can derive standard errors of the model parameters similarly following

the existing works (Jamshidian & Jennrich, 2000). Relevant future research is needed on

exploring the accuracy and efficiency of the estimation of standard errors in the GVEM

framework. In addition, extending the GVEM framework to polytomous response models

would be of another interest for the future research as polytomous response models have a

wider range of applications including psychological and social science assessments with likert

scales.
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Appendix of Chapter II

In this section, we present the derivations and proofs for the GVEM algorithms and

theorems. Appendix A and C illustrate the derivation of the GVEM algorithm for M2PL

and M3PL models, respectively. In Appendix B, we present the proof for the Proposition

II.7. Finally in Appendix D, we prove the consistency result in Theorem II.3.

II.A Derivation of GVEM in the 2PL model

Here, we provide a step by step derivation of the GVEM algorithm in 2PL model. Especially,

EM steps are described in detail.

E-Step In E step, we evaluate the lower bound of the expected log-likelihood with respect

to the variational distributions qi(θi)’s. Recall that we can mathematically write the lower

bound as

E(A,B, ξ) :=
N∑
i=1

∫
θi
l(Yi,θi, ξi | A,B)× qi(θi)dθi. (II.A.1)

Our main interest is to evaluate the integral in (II.A.1) to derive a closed-form expression

of the variational lower bound, E(A,B, ξ). In each E step, we iteratively update the lower

bound until convergence.

The optimal variational density qi(θi) is chosen as a Gaussian distribution with mean
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and covariance determined by

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1
2

}
(αj)>, (II.A.2)

Σ−1
i = (Σθ)−1 + 2

J∑
j=1

η(ξi,j)αjα>j . (II.A.3)

Let q(t)
i (θi) = qi(θi | A(t),B(t),Σ(t)

θ , ξ
(t)
i ) denote the tth iteration’s variational density qi(θi)

with all recent updates of the model parameters (A(t),B(t),Σ(t)
θ , ξ

(t)
i ). Also, let E(t)

qi
denote

the expectation with respect to the distribution q(t)
i (θi). Then, we can write the tth iteration’s

variational lower bound as

E(t)(A,B, ξ) =
N∑
i=1

∫
θi
l(Yi,θi, ξi | A,B)× q(t)

i (θi)dθi

=
N∑
i=1

J∑
j=1

(
log eξi,j

(1 + eξi,j) + Yij(α>j E(t)
qi

[θi]− bj) + 1
2(bj −α>j E(t)

qi
[θi]− ξi,j)

−η(ξi,j){E(t)
qi

[(bj −α>j θi)2]− ξ2
i,j}
)

+ N

2 log |Σ−1
θ | −

N∑
i=1

1
2E

(t)
qi

[θ>i Σ−1
θ θi]

Note that the expectation E(t)
qi

can be expressed with µ
(t)
i and Σ(t)

i since

E(t)
qi

[θi] = µ
(t)
i , E(t)

qi
[(bj −α>j θi)2] = b2

j − 2bjα>j µ
(t)
i + (α(t)

j )>[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]α(t)

j ,

and

E(t)
qi

[θ>i Σ−1
θ θi] = E(t)

qi
[Tr(Σ−1

θ θiθ
>
i )] = Tr(Σ−1

θ E(t)
qi

[θiθ>i ]) = Tr(Σ−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]).
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Therefore, by plugging in we have the following equivalent form.

E(t)(A,B, ξ) =
N∑
i=1

J∑
j=1

(
log eξi,j

(1 + eξi,j) + Yij(α>j µ
(t)
i − bj) + 1

2(bj −α>j µ
(t)
i − ξi,j)

−η(ξi,j){b2
j − 2bjα>j µ

(t)
i + (α(t)

j )>[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]α(t)

j − ξ2
i,j}
)

+N2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>])

=
N∑
i=1

J∑
j=1

(
log eξi,j

(1 + eξi,j) + (1
2 − Yij)bj + (Yij −

1
2)α>j µ

(t)
i −

1
2ξi,j

−η(ξi,j){b2
j − 2bjα>j µ

(t)
i +α>j [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]αj − ξ2
i,j}
)

+N2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]). (II.A.4)

This gives a closed form expression of the expectation function E(t)(A,B, ξ), i.e the tth

iteration’s variational lower bound of the marginal likelihood. In every E step, we iteratively

update E(t)(A,B, ξ) (i.e. (II.A.4)) with all recently updated model parameters for t ≥ 1

steps.

M-Step In tth iteration’s M step, we maximize the E(t)(A,B, ξ) to estimate the param-

eters (A,B, ξ). This is achieved by setting the derivative of E(t)(A,B, ξ) with respect to

(A,B, ξ) to be zero.

First, consider the αj. Setting the derivative with respect to αj equal to zero, we have

∂E(t)(A,B, ξ)
∂αj

=
N∑
i=1

(Yij −
1
2)(µ(t)

i )> + 2bjη(ξi,j)(µ(t)
i )> − 2η(ξi,j)[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]αj = 0

which implies that α(t+1)
j is updated according to

αj = 1
2

[ N∑
i=1

η(ξi,j)Σ(t)
i + η(ξi,j)(µ(t)

i )(µ(t)
i )>

]−1 N∑
i=1

[(
Yij −

1
2 + 2bjη(ξi,j)

)
(µ(t)

i )>
]
. (II.A.5)
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Similarly, set the derivative with respect to bj equal to zero and we have

∂E(t)(A,B, ξ)
∂bj

=
N∑
i=1

(1
2 − Yij)− 2η(ξi,j)bj + 2η(ξi,j)α>j µ

(t)
i = 0

which implies that b(t+1)
j is updated according to

bj =

∑N
i=1

[
(1

2 − Yij) + 2η(ξi,j)α>j µ
(t)
i

]
∑N
i=1 2η(ξi,j)

. (II.A.6)

Setting the derivative with respect to ξi,j equal to zero, we have

0 = ∂E(t)(A,B, ξ)
∂ξi,j

= 1
(1 + eξi,j) −

1
2 − η

′(ξi,j){E(t)
qi

[(bj −α>j θi)2]− ξ2
i,j}+ 2η(ξi,j)ξi,j

= −η′(ξi,j){E(t)
qi

[(bj −α>j θi)2]− ξ2
i,j}.

This implies that ξ(t+1)
i,j is updated according to the equation

ξ2
i,j = E(t)

qi
[(bj −α>j θi)2] = b2

j − 2bjα>j µ
(t)
i +α>j [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]αj. (II.A.7)

When there is no constraint for Σ, i.e., all parameters of Σ are free, we set the derivative

with respect to Σ−1
θ to be 0 and we obtain

0 = N

2
∂ log |Σ−1

θ |
∂Σ−1

θ

− 1
2

N∑
i=1

∂Tr(Σ−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>])
∂Σ−1

θ

= N

2 Σθ −
1
2

N∑
i=1

[Σ(t)
i + (µ(t)

i )(µ(t)
i )>],

which gives the update of Σ(t+1)
θ as

Σθ = 1
N

N∑
i=1

[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]. (II.A.8)

Hence, we update Σθ by (II.A.8) in confirmatory factor analysis. However, in exploratory

factor analysis we keep Σθ = IK and ignore the step (II.A.8). Note that if the Σθ is assumed

51



to be the correlation matrix with diagonals being 1, then we can standardize the estimated

Σθ to get correlation matrix.

II.B Proof of Proposition II.7

Proposition II.7 states that the hierarchical formulation of the 3PL model with new latent

variable Zij is equivalent to the general IRT formulation of the 3PL model. This can be

proved by showing that the two approaches yield the same distribution, i.e. P (Yi | θi,Mp).

We first start from the hierarchical formulation of the 3PL model. The conditional

distribution of Yij given Zij and θi can be equivalently written as

P (Yij | Zij,θi,αj, bj)

=
[
(

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

)Yij( 1
1 + exp(α>j θi − bj)

)1−Yij
]Zij

I(Yij = 1)1−Zij .

Then, the joint distribution of a response Yij and a latent variable Zij is

P (Yij, Zij | θi,αj, bj, cj)

= P (Yij | Zij,θi,αj, bj)P (Zij | cj)

=
[
(

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

)Yij( 1
1 + exp(α>j θi − bj)

)1−Yij
]Zij
× I(Yij = 1)1−Zij(1− cj)Zijc1−Zij

j

=
[
(

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

)Yij( 1
1 + exp(α>j θi − bj)

)1−Yij(1− cj)
]Zij
× (I(Yij = 1)cj)1−Zij .

By summing the joint distribution over the domain of Zij, we recover the general IRT

formulation of the 3PL model.

P (Yij | θi,αj, bj, cj)

=
∑

Zij=0,1
P (Yij, Zij | θi,αj, bj, cj)

= I(Yij = 1)cj + (1− cj)
[
(

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

)Yij( 1
1 + exp(α>j θi − bj)

)1−Yij
]
.
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Hence, the result of Proposition II.7 allows us to use the hierarchical formulation of the 3PL

model instead of the general IRT formulation for the derivation of GVEM algorithm in the

case of M3PL.

II.C Derivation of GVEM in the 3PL model

In 3PL model, the EM steps are derived in the similar fashion as in 2PL model. We again

start with the derivation of the E step.

E-Step As in the M2PL model, we estimate the variational parameters first and then

compute the variational lower bound on the expected log-likelihood. As previously discussed

in Section II.4.1, the choice of the optimal variational density for the first latent variable θi

is a Gaussian distribution qi(θi) with mean and covariance determined by

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1
2

}
(1− Yij + sijYij)(αj)>, (II.C.1)

Σ−1
i = (Σθ)−1 + 2

J∑
j=1

η(ξi,j)(1− Yij + sijYij)αjα>j . (II.C.2)

The optimal variational density of the second latent variable Zij is a Bernoulli distribution

rij(Zij) with the success probability sij determined by

s−1
ij = 1 + cj

1− cj
1 + eξi,j

eξi,j
exp

{
− Yij(α>j Eqi [θi]− bj) +

1
2(bj −α>j Eqi [θi]− ξi,j)− η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2

i,j}
}
. (II.C.3)

Let the tth iteration’s variational densities for the latent variables θi and Zij be denoted

as q(t)
i (θi) = qi(θi | A(t),B(t),C(t),Σ(t)

θ , ξ
(t)
i ) and r(t)

ij (Zij) = rij(Zij | A(t),B(t),C(t),Σ(t)
θ , ξ

(t)
i )

with all recent updates of the model parameters, respectively. Then, the tth iteration’s
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variational lower bound of the expected log-likelihood is

E(t)(A,B,C, ξ) :=
N∑
i=1

∫
θi

[∑
Zi

l(Yi,θi,Zi, ξi | A,B,C)× r(t)
i (Zi)

]
× q(t)

i (θi)dθi.(II.C.4)

where r(t)
i (Zi) = ∏J

j=1 r
(t)
ij (Zij).

With the variational parameters discussed above (i.e. (II.C.1), (II.C.2), (II.C.3)), we

can derive a closed form expression of the variational lower bound. Consistent with the

previously defined notations, E(t)
r denotes the expectation with respect to the variational

distribution r
(t)
ij ’s. Now we evaluate the integrals in expectation function E(t)(A,B,C, ξ)

with respect to qi(θi)’s and rij(Zij)’s.

E(t)(A,B,C, ξ)

=
N∑
i=1

E(t)
qi

[
J∑
j=1

(1− Yij + E(t)
r [Zij]Yij)

(
log eξi,j

(1 + eξi,j) + Yij(α>j θi − bj)

+1
2(bj −α>j θi − ξi,j)− η(ξi,j){(bj −α>j θi)2 − ξ2

i,j}
)

+

J∑
j=1

Yij(1− Ez[Zij]) log I(Yij = 1) + log φ(θi) +
J∑
j=1

E(t)
r [log p(Z ′ij)]

]

=
N∑
i=1

J∑
j=1

(1− Yij + sijYij)
(

log eξi,j

(1 + eξi,j) + (1
2 − Yij)(bj −α

>
j µ

(t)
i )− 1

2ξi,j

−η(ξi,j){b2
j − 2bjα>j µ

(t)
i + (αj)>[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]αj − ξ2
i,j}
)

+
N∑
i=1

J∑
j=1

Yij(1− sij) log I(Yij = 1) + N

2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>])

+
N∑
i=1

J∑
j=1
{(1− Yij + sijYij)log(1− cj) + Yij(1− sij)log(cj)}, (II.C.5)

since Er[Zij] = sij for the Bernoulli distribution rij. The equation (II.C.5) is the closed form

expression of the tth iteration’s variational lower bound E(t)(A,B,C, ξ).

M-Step As in 2PL case, in tth iteration’s M step we maximize the E(t)(A,B,C, ξ) to

update the model parameters (A,B,C, ξ). This is again achieved by setting the derivative
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of E(t)(A,B,C, ξ) with respect to (A,B,C, ξ) to be zero.

For αj, setting the derivative with respect to αj equal to zero, we have

∂E(t)(A,B,C, ξ)
∂αj

=
N∑
i=1

(1− Yij + sijYij)
(
Yij −

1
2 + 2bjη(ξi,j)

)
(µ(t)

i )>

− 2η(ξi,j)(1− Yij + sijYij)[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]αj = 0.

This implies that α(t+1)
j is updated by

αj = 1
2

[ N∑
i=1

(1− Yij + sijYij)η(ξi,j)[Σ(t)
i + (µ(t)

i )(µ(t)
i )>]

]−1
×

N∑
i=1

[
(1− Yij + sijYij)

(
Yij −

1
2 + 2bjη(ξi,j)

)
(µ(t)

i )>
]
. (II.C.6)

Similarly for bj, the derivative of the variational lower bound with respect to bj is

∂E(t)(A,B,C, ξ)
∂bj

=
N∑
i=1

(1− Yij + sijYij)
[
(1
2 − Yij)− 2η(ξi,j)bj + 2η(ξi,j)α>j µ

(t)
i

]
= 0

Setting it equal to 0, we obtain the updating equation for b(t+1)
j as

bj =

∑N
i=1(1− Yij + sijYij)

[
(1

2 − Yij) + 2η(ξi,j)α>j µ
(t)
i

]
∑N
i=1 2(1− Yij + sijYij)η(ξi,j)

. (II.C.7)

Finally for a guessing parameter cj, we again take derivate of E(t)(A,B,C, ξ) with respect

to cj and set it equal to zero.

∂E(t)(A,B,C, ξ)
∂cj

=
N∑
i=1

[(1− Yij + sijYij)
−1

1− cj
+ Yij(1− sij)

1
cj

] = 0.

This implies that c(t+1)
j is updated according to

cj =
∑N
i=1(Yij − sijYij)∑N

i=1(1− Yij + sijYij) +∑N
i=1(Yij − sijYij)

=
∑N
i=1 Yij(1− sij)

N
. (II.C.8)
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Following the same procedure, it is easy to check that ξ and Σθ are updated with the same

updating rule as in 2PL model (i.e. (II.11), (II.A.8)). Hence this completes the derivation

of the M step for the 3PL model. In every M step, we iteratively update the tth iteration’s

estimate of the model parameters by (II.11), (II.A.8), (II.C.6), (II.C.7), and (II.C.8) until

convergence, for t ≥ 1 steps.

II.D Proof of Theorem II.3

In this section, we provide theoretical bounds on the estimation of the model parameters.

We follow the proof of Theorem 1 in Davenport et al. (2014) and Theorem 1 in Chen et al.

(2019). Define a matrix M = [Mij] = [αTj θi − bj] and define f(x) to be a logistic sigmoid

function. For simplicity, we use the notation ∑ij = ∑N
i=1

∑J
j=1 for the following proof. Then

the variational lower bound to the marginal log-likelihood is as follows.

LE(M) =
N∑
i=1

∫
θi

logP (Yi,θi|A,B)qi(θi)dθi

=
N∑
i=1

∫
θi

[
J∑
j=1

Yij log(
exp(αTj θi − bj)

1 + exp(aTj θi − bj)
)

+(1− Yij) log( 1
1 + exp(αTj θi − bj)

) + log φ(θi)
]
qi(θi)dθi

=
N∑
i=1

J∑
j=1

YijEqi

[
log(

exp(αTj θi − bj)
1 + exp(aTj θi − bj)

)
]

+(1− Yij)Eqi
[

log( 1
1 + exp(αTj θi − bj)

)
]

+
N∑
i=1

Eqi

[
log φ(θi)

]

=
∑
ij

YijEqi
[

log(f(Mij))
]

+ (1− Yij)Eqi
[

log(1− f(Mij))
]

+
N∑
i=1

Eqi
[

log φ(θi)
]
,

where Eqi denotes the expectation with respect to the distribution function qi(θi).

Define L̄E(M) = LE(M) − LE(0) where 0 is a zero matrix with the same dimension as

56



M . Then,

L̄E(M) =
∑
ij

YijEqi

[
log f(Mij)

f(0)

]
+ (1− Yij)Eqi

[
log 1− f(Mij)

1− f(0)

]
.

By the Mean Value Theorem of integrals, we can express Eqi [log f(Mij)] = log f(M̄ij) and

Eqi [log(1− f(Mij))] = log(1− f(M̃ij)) for some M̄ij and M̃ij. Since we only observe either

Yij = 0 or 1 for each data point, we then can rewrite L̄E(M) as

L̄E(M) =
∑
ij

Yij

[
log f(M̄ij)

f(0)

]
+ (1− Yij)

[
log 1− f(M̃ij)

1− f(0)

]

=
∑
ij

I{Yij=1}

[
log f(M̄ij)

f(0)

]
+
∑
ij

I{Yij=0}

[
log 1− f(M̃ij)

1− f(0)

]

=: L̄E1(M̄) + L̄E0(M̃). (II.D.1)

Define G = {M ∈ RN×J : ‖M‖∗ ≤ C
√
KNJ} ⊂ RN×J for C ≥ 0, where ‖M‖∗ is defined

as a nuclear norm of a matrix M . Define

H = {M = [Mij]1≤i≤N,1≤j≤J : Mij = α>j θi − bj st ‖θi‖2 ≤ C and ‖αj‖2 ≤ C for all i, j},

which is the set that satisfies the boundedness assumption (A1). As shown in Chen et al.

(2019), if M ∈ H then M ∈ G since

‖M‖∗ ≤
√
NJ

√
rank(M)‖M‖∞ ≤ C

√
KNJ.

Note that rank(M) = K in this proof as we assume that the number of latent traits K is fixed

and known. For the following proof, we define Cb = C0C
√
K
√
NJ(N + J) +NJ log(NJ)
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with an absolute constant C0 for simplicity. Hence we have

P
(

sup
M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ ≥ Cb

)

≤ P
(

sup
M̄∈H,M̃∈H

∣∣∣L̄E1(M̄)− E[L̄E1(M̄)] + L̄E0(M̃)− E[L̄E0(M̃)]
∣∣∣ ≥ Cb

)

≤ P
(

sup
M∈G

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ ≥ Cb

)
(II.D.2)

where the first inequality follows from (II.D.1). The last expression in (II.D.2) satisfies

conditions of Lemma A.1 of Davenport et al. (2014). Hence, we achieve the following result

in lemma II.9 for GVEM.

Lemma II.9. For absolute constants C0 and C1,

P
(

sup
M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ ≥ C0C

√
K
√
NJ(N + J) +NJ log(NJ)

)
≤ C1

N + J
.

We can show with slight modification to page 210 of Davenport et al. (2014) that for any

choice of M and M
′ ∈ H ,

E[L̄E(M ′)]− E[L̄E(M)]

= E[LE(M ′)− LE(M)]

= E

[∑
ij

YijEqi

[
log

(
f(M ′

ij)
f(Mij)

)]
+ (1− Yij)Eqi

[
log

(
1− f(M ′

ij)
1− f(Mij)

)]]

=
∑
ij

f(Mij)Eqi
[

log
(
f(M ′

ij)
f(Mij)

)]
+ (1− f(Mij))Eqi

[
log

(
1− f(M ′

ij)
1− f(Mij)

)]

= −NJEq[D(f(M)||f(M ′))] (II.D.3)

where D(P‖Q) = 1
NJ

∑
ijKL(Pij‖Qij) for P,Q ∈ [0, 1]N×J is the KL divergence defined on

the matrices of scalar inputs Pij, Qij ∈ [0, 1] for all i, j as defined in Davenport et al. (2014).

Now, define L̂E(M̂) = L̄E|µ̂i,Â,B̂,Σ̂i which is estimated lower bound evaluated at the
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estimates from GVEM. It can be written as

L̂E(M̂) =
∑
ij

YijEq̂i

[
log

(
f(M̂ij)
f(0)

)]
+ (1− Yij)Eq̂i

[
log

(
1− f(M̂ij)
1− f(0)

)]

=
∑
ij

YijEq̂i

[
log

(
f(α̂>i θi − b̂j)

f(0)

)]
+ (1− Yij)Eq̂i

[
log

(
1− f(α̂>i θi − b̂j)

1− f(0)

)]
.

Then, we have

L̂E(M̂)− L̄E(M)

= E[L̂E(M̂)− L̄E(M)] + L̂E(M̂)− E[L̂E(M̂)]−
(
L̄E(M)− E[L̄E(M)]

)
≤ E[L̂E(M̂)− L̄E(M)] + 2 sup

M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣

= −NJ × Eq̂[D(f(M)||f(M̂))] + 2 sup
M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ (II.D.4)

where (II.D.4) follows from (II.D.3). Since the estimates M̂ from GVEM should satisfy

L̂E(M̂) ≥ L̄E(M∗) for the true parameter matrix M∗ ∈ H,

−NJEq̂[D(f(M∗)||f(M̂))] + 2 sup
M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ ≥ 0. (II.D.5)

By Lemma II.9, with probability 1− C1
N+J

sup
M∈H,µi,Σi

∣∣∣L̄E(M)− E[L̄E(M)]
∣∣∣ ≤ C0C

√
K
√
NJ(N + J) +NJ log(N + J). (II.D.6)

Combining (II.D.5) and (II.D.6),

Eq̂[D(f(M∗)||f(M̂))] ≤ 2C0C
√
K√

NJ

√
(N + J) + log(N + J). (II.D.7)

Note that the KL divergence can be bounded below by the Hellinger distance; d2
H(p, q) ≤
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D(p||q). Using this fact with Lemma A.2 from Davenport et al. (2014), we have for C > 0

||M∗ − M̂ ||2F ≤
8(1 + eC)2

eC
NJ ×D(f(M)||f(M̂)) ≤ 32eCNJ ×D(f(M)||f(M̂)).(II.D.8)

From (II.D.7) and (II.D.8),

1
NJ

Eq̂[||M∗ − M̂ ||2F ] ≤ 64eCC0C
√
K

√
N + J

NJ

√
1 + log(N + J)

N + J
. (II.D.9)

This completes the proof of Theorem II.3.
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ChapterIII

Regularized Variational Estimation

for MIRT

III.1 Introduction

In large-scale educational and psychological tests, dichotomouse or polytomouse responses

are often collected to investigate respondents’ underlying latent abilities or traits. It is

not uncommon that a single test is designed to examine multiple latent abilities at the

same time. Multidimensional Item Response Theory (MIRT) is useful in this scenario as

it models multiple latent abilities simultaneously to account for different mixtures of the

abilities required by each test item. The MIRT models contain two or more parameters to

describe the interaction between the latent traits and the responses to test items (Reckase,

2009). In this chapter, we focus on the logistic model with dichotomous responses but the

proposed method can be adapted for other types of responses as well. In the multidimensional

2-Parameter Logistic (M2PL) model, the item response function of the ith individual to the

jth item is modeled by

P (Yij = 1 | θi) =
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
, (III.1)
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where there are N subjects who respond to J test items independently with binary response

variables Yij, for i = 1, . . . , N and j = 1, . . . , J . αj denotes a K-dimensional vector of item

discrimination parameters for the jth item and bj denotes the corresponding item difficulty

parameter. θi denotes the K-dimensional vector of latent ability for student i. For the

multidimensional 3-Parameter Logistic (M3PL) model, there is an additional parameter cj,

which denotes the guessing probability of the jth test item. The item response function is

expressed as

P (Yij = 1 | θi) = cj + (1− cj)
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
. (III.2)

The maximum likelihood estimators of the model parameters are then obtained from max-

imizing the log-likelihood function. However, due to the latent variable structure in MIRT,

maximizing the log-likelihood function involves a K dimensional integrals that are usually

intractable where K is the dimension of latent factor. In the literature, direct numerical

approximation to the integrals have been proposed, such as the Gauss–Hermite quadrature

(Bock & Aitkin, 1981) and the Laplace approximation (Lindstrom & Bates, 1988; Tierney

& Kadane, 1986; Wolfinger & O’connell, 1993). However, the Gauss–Hermite quadrature

approximation is known to become computationally demanding in the high-dimensional set-

ting, which happens in MIRT especially when the dimension of latent traits increases. The

Laplace approximation, though computationally efficient, could become less accurate when

the dimension increases or when the likelihood function is in skewed shape. Other numerical

approximation methods based on Monte Carlo simulations have also been developed in the

literature, such as the Monte Carlo expectation-maximization (McCulloch, 1997), stochastic

expectation-maximization (von Davier & Sinharay, 2010), and Metropolis-Hastings Robbins-

Monro algorithms (Cai, 2010b, 2010a). These methods usually depends on sampling data

points from a posterior distribution and would be computationally involving. More recently,

variational approximation to the integrals has been proposed, such as Gausssian Variational

EM (GVEM) (Cho, Zhang, Wang, & Xu, 2020). GVEM adopts a variational lower bound

of the intractable likelihood for the Expectation-Maximization procedure. This allows us to
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derive closed-form updates in the iterative EM steps, which makes the algorithm computa-

tionally efficient. Even when iterative parameter estimation under the GVEM framework

get computationally intensive as both the number of subject N and number of test item J

grows, we can stochastically optimize the variational estimation to reduce the computational

burden. The advantage of having simple closed-form updates and stochastic optimization

combined, the GVEM estimation can be computationally efficient in high dimensional MIRT

models. Additionally, it was shown that GVEM works well in complex M3PL models com-

pared to the existing methods. Hence variational approximated based method seems like a

good alternative to the existing methods that uses direct numerical approximations to the

integrals.

One of the primary goal in MIRT is to investigate a relationship between test items and

multiple latent traits, a.k.a. a test structure or a factor loading structure. It shows a set

of latent traits associated with each test item. Traditionally, identifying the factor loading

structure proceeds in two steps. First, all item factor loadings are allowed to be freely

estimated, and then a post-hoc rotation is conducted (Browne, 2001). While these rotation

methods intend to produce a near-simple structure, an arbitrary cut-off for the rotated factor

loadings is often needed to achieve a simple enough structure for interpretability. Instead,

recent work has formulated the problem of estimating a test structure in MIRT as a latent

variable selection problem (Sun et al., 2016). That is, for each test item, a set of latent

traits influencing the distribution of the responses has been selected by the L1-regularized

regression. The basic idea is to penalize the factor loadings towards zero if the corresponding

latent traits are not associated with a test item. This leads to correctly estimating an optimal

non-zero factor loading structure, instead of setting subjective cut-offs. This approach also

has the advantage over the model selection methods based on information criterion in terms

of the computational cost as it simultaneously performs model estimation and selection of

the sparse test structure. However, the computation is still quite challenging in MIRT model

due to its intractable likelihood function. For parameter estimation, Sun et al. (2016) uses
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direct numerical approximation of the likelihood in the iterative EM procedure, which can

be computationally inefficient especially in high dimensions. Specifically, they showed that

the computation time for the latent variable selection is 30 minutes for the first penalization

parameter λ and additional 10 minutes for the subsequent λs. Considering that multiple λs

have to be used for the latent variable selection via regularization, it can take a few hours

to estimate a test structure for a single dataset in high dimensions. Also, they could not

tackle the challenging estimation problem in multidimensional 3-Parameter Logistic (M3PL)

model. Hence, it is of our interest to develop computationally efficient estimation method

for the item-trait structure that is flexible enough to work well in both M2PL and M3PL

and in high dimensions.

In this chapter, we propose to apply the Gaussian Variational EM (GVEM) to facilitate

the estimation of the item-trait relationship in MIRT. GVEM was proposed as a flexible

and efficient estimation algorithm for the parameter estimation in MIRT models. It avoids

direct calculation of the intractable likelihood function by approximating the variational

lower bound to the likelihood. This leads to closed-form updates in the iterative EM algo-

rithm, which greatly reduces the computational complexity. Moreover, the GVEM can be

stochastically optimized to future improve the efficiency of the algorithm. We will apply

these aspects of the GVEM to develop a flexible estimation algorithm of the item-trait re-

lationship that extends well to more challenging scenarios involving complex M3PL model

and high dimensional data. The performance of the proposed algorithm is thorougly studied

with simulation studies.

The rest of the chapter is organized as follows. Section III.2 introduces a framework of

the Gaussian Variational method in MIRT models. In Section III.3, we presents the general

regularized variational algorithm. Section III.4 and section III.5 illustrate the performance

of the proposed method with simulation studies and on real data, respectively. The chapter

is concluded with Section III.6 to discuss future studies. Supplementary Material includes

the detailed mathematical derivations of the estimation procedures presented in Section III.3
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and additional results for the real data analysis.

III.2 Variational Estimation for MIRT

In this section, we will briefly illustrate the key idea of variational approximation discussed

in Cho et al. (2020). We will provide general idea under M3PL model but it can be easily

simplied to M2PL model. For conciseness, let us denote the model parameters for the MIRT

models in Eqn (II.2) by A = {αj, j = 1, . . . , J}, B = {bj, j = 1, . . . , J}, and C = {cj, j =

1, . . . , J}. Also, denote the responses Y = {Yi, i = 1, . . . , N} where Yi = {Yij, j = 1, . . . , J}

is the ith subject’s response vector. Given the typical local independence assumption in IRT,

the marginal log-likelihood of A, B, and C in M3PL model given the responses Y is

l(A,B,C; Y) =
N∑
i=1

logP (Yi | A,B,C) =
N∑
i=1

log
∫ J∏

j=1
P (Yij | θi,A,B,C)φ(θi)dθi (III.3)

where N is the total number of respondents and J is the total number of items in the test.

Similarly this holds for M2PL model with model parameters A and B. Here, φ denotes the

K-dimensional Gaussian distribution of θ with mean 0 and covariance Σθ. The maximum

likelihood estimators of the model parameters are then obtained from maximizing the log-

likelihood function, which is often intractable under MIRT. Hence we obtain variational

approximation of (III.3) as follows. Further denote all model parameters as Mp to be general.

Then the log-likelihood function l(Mp; Y) can be equivalently rewritten as

l(Mp; Y) =
N∑
i=1

∫
θi

logP (Yi |Mp)× qi(θi)dθi,
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for any arbitrary probability density function qi satisfying
∫
θi
qi(θi)dθi = 1. Since P (Yi |

Mp) = P (Yi,θi |Mp)/P (θi | Yi,Mp), then we can further write

l(Mp; Y) =
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
P (θi | Yi,Mp)

× qi(θi)dθi

=
N∑
i=1

∫
θi

log P (Yi,θi |Mp)qi(θi)
P (θi | Yi,Mp)qi(θi)

× qi(θi)dθi

=
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
qi(θi)

× qi(θi)dθi +KL{qi(θi)‖P (θi | Yi,Mp)}

where KL{qi(θi)‖P (θi | Yi,Mp)} =
∫
θi

log qi(θi)
P (θi|Yi,Mp)× qi(θi)dθi is the Kullback-Leibler (KL)

distance between the distributions qi(θi) and P (θi | Yi,Mp). The KL distanceKL{qi(θi)‖P (θi |

Yi,Mp)} ≥ 0 with the equality holds if and only if qi(θi) = P (θi | Yi,Mp). Therefore, we

have a lower bound of the marginal likelihood as

l(Mp; Y) ≥
N∑
i=1

∫
θi

log P (Yi,θi |Mp)
qi(θi)

× qi(θi)dθi (III.4)

=
N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi −
N∑
i=1

∫
θi

log qi(θi)× qi(θi)dθi

and the equality holds when qi(θi) = P (θi | Yi,Mp) for i = 1, . . . , N . With the optimal

choice of the variational densities qi’s, one can derive a closed-form variational lowerbound

as close as possible to the intractable log-likelihood. As a result, all parameter updates in

EM procedure is done in closed-form, which makes the estimation computationally efficient.

III.3 Regularized Estimation of Test Structure

In this chapter, our main interest is to estimate a sparse test structure, denoted asQA = (qjk)

where qjk = I(αjk 6= 0). We follow the approach of formulating this as a latent variable

selection problem in MIRT as presented in Sun et al. (2016). That is, we formulate the

problem of estimating sparse test structure as a latent variable selection problem and solve
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it using the idea of regularized regression via L1–type penalization. Our main contribution

is to apply variational approach to avoid directly calculating intractable log-likelihood in

MIRT models in solving the regularization problem.

Although Lasso regularization is a popular technique for simultaneous model estima-

tion and efficient variable selection, there has been some arguments against the lasso oracle

statement. For instance, Zou (2006) argued that there exist nontrivial conditions for the

lasso variable selection to be consistent and thus Lasso rarely enjoys oracle properties. Al-

though the computational efficiency of Lasso is appealing for the estimation problems in

high-dimensional MIRT models, the bias of the Lasso may prevent consistent variable se-

lection and model estimation. On the other hand, Adaptive Lasso is shown to enjoy oracle

properties if the regularization parameters are chosen to be data-dependent (Zou, 2006).

Since it is a convex optimization problem, its global optimizer can be efficiently solved. Ad-

ditionally Adaptive Lasso is a simple extension of Lasso, which makes it easy to implement

with the existing algorithm for the lasso and is computationally efficient as well. Hence,

Adaptive Lasso is a good candidate as a penalization method for the latent variable selec-

tion problem in MIRT. In this chapter we focucs on regularized estimation via adaptive

lasso penalization and compare its performance with Lasso. Simulation studies confirms

that Adaptive Lasso is computationally efficient and also estimates model parameters more

accurately than Lasso penalization under various conditions. See Section III.4 for more

detail.

Specifically for parameter estimation, we solve the following optimization problem;

(Âλ, B̂λ, Ĉλ) = argmaxA,B,Cl(A,B,C; Y)− λ
J∑
j=1

K∑
k=1

ŵjk|αjk| (III.5)

where ŵjk = 1
|α̂jk|γ

. In the adaptive lasso penalization, we use adaptive penalization weights

for each parameter αjk, instead of a constant penalization parameter, λ. The penalization

weight for αjk is λŵjk = λ
|α̂jk|γ

for some γ > 0. Thus, αjk < 1 will get penalized more than
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the bigger values such as αjk > 1. The weight is chosen to be dependent on data to satisfy

the regulatory conditions discussed in Zou (2006).

To choose the constant sparsity parameter λ, we apply three different information criteria;

AIC, BIC and GIC. We estimate the information criteria by substituting the log-likelihood

with the variational lower bound from GVEM algorithm. The sparsity parameter that

minimizes these information criteria will be chosen as optimal.

AIC? = maxQA=Q∗,b2(||A||0 + ||B||0 + ||C||0)− 2E(A,B,C, ξ)

BIC? = maxQA=Q∗,bln(N)(||A||0 + ||B||0 + ||C||0)− 2E(A,B,C, ξ)

GIC? = maxQA=Q∗,bln(ln(N))(||A||0 + ||B||0 + ||C||0)− 2E(A,B,C, ξ)

where ||A||0 = ∑
j,k I(αjk 6= 0) denotes the L0 norm of matrix A.

To ensure identifiability, we impose certain constraints on the a K×K sub-matrix of QA.

For the remaining part of the A matrix, we don’t assume any pre-specified zero structure and

instead the appropriate penalization was imposed to shrink αjk’s to recover the true zero

structure, Q∗A. The Σθ is considered unknown throughout the estimation, thus it requires

the estimation during GVEM steps. Below we describe two different constraints on A matrix

which satisfy the identifiability conditions. Due to more flexible constraint in constraint 2, it

is more challenging simulation setting than constraint 1. We will compare the performance

between two constraint settings in the simulation study.

Constraint 1 To ensure identifiability, we designate one item for each latent factor and

this item is associated with only that factor. That is, we set a K ×K sub-matrix of QA to

be identity matrix, IK . The Σθ is unknown and thus estimated.

Constraint 2 Instead of setting off-diagonals of a K ×K sub-matrix of QA to be zero, we

keep the sub-matrix of QA to be a triangular matrix. That is, there are test items associated

with each factor for sure and they may be associated with other factors as well. Nonzero
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entries except for the diagonal entries of QA are penalized during the estimation procedure.

Although this constraint is much weaker than the Constraint 1, it still ensures model iden-

tifiability. (Sun et al., 2016)

The parameter estimation for M3PL in practice often gets more challenging due to the

increased number of parameters to estimate and complex model design. To tackle this

challenge and improve the accuracy of the parameter estimation in M3PL, we allow to impose

additional constraints on the model parameters, B = {bj; j = 1, . . . , J} and C = {cj; j =

1, . . . , J} in addition to the parameter matrix A. Specifically for parameter estimation, we

solve the following optimization problem where Pλ(·) denotes a penalty function on each

model parameter;

(Âλ, B̂λ, Ĉλ) = argmaxA,B,C l(A,B,C; Y)− Pλ(A) + Pλ(B) + Pλ(C) (III.6)

where Pλ(A) = λ||A||1 = λ
∑J
j=1

∑K
k=1 ŵjk|αjk|, Pλ(B) = ∑J

j=1 logN(bj|µb, σ2
b ), and Pλ(C) =∑J

j=1 logBeta(cj|αc, βc) for some distribution parameters µb,σ2
b , αc, and βc. These penalty

functions were chosen to satisfy the ranges of values on which the parameters are defined.

For instance, since the guessing parameters C naturally satisfy the constraint {0 < cj <

1; j = 1, . . . , J} as they are defined as probabilities of guessing, we can assume the distribu-

tion of cj ∼ Beta(αc, βc). The penalty on bj and cj are essentially a L2-type and Laplace

penalization, respectively. By imposing these additional penalties on model parameters B

and C, the number of variational parameters to estimate during iterative EM update greatly

decreases, leading to better estimation results especially in high dimensional M3PL models.

The approach of imposing additional penalty on model parameters with the chosen dis-

tributions is similar to the Bayes Modal estimation presented by Tierney and Kadane (1986).

That is, an augmented optimization objective is employed that includes the likelihood and

some prior beliefs on the item parameters. These priors can be used to prevent deviant
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parameter estimates and help the algorithm to produce more accurate estimation in com-

plex M3PL models. Essentially, Bayes Modal estimation can be seen as a regularization on

maximum likelihood estimation where maximum likelihood estimation is a special case of

Bayes Model estimation that assumes uniform prior distributions.

The amount of penalization can be flexibly controlled using the distribution parameters.

For instance, one can use non-informative priors on C such as Beta(1, 1), which is equivalent

to flat uniform distribution on [0, 1]. Additionally, one can similarly choose non-informative

normal prior with high variance σb for B. This suggests that although additional penalization

functions are added, the algorithm also allow the flexible estimation with essentially no

penalty with the choice of non-informative distributions. The advantage of this is that

practitioners can adjust the amount of prior knowledge they would like to impose on the

model. The less prior knowledge one uses, the more flexible the estimation is and the results

will be based more on the observed data. With these prior-like penalties, our algorithm

more accurately estimates the parameters in M3PL and also is computationally efficient by

reducing the number of parameters to estimate.

III.3.1 Computation via GVEM

To update A matrix, we use coordinate descent algorithm developed by Friedman et al.

(2010). The general estimation procedure as follows; The regularization parameter is chosen

as follows: For each λ we first obtain the estimate (Âλ, B̂λ, Ĉλ) via (III.6). Then we obtain

from a zero structure, Q̂λ matrix from Âλ. We fit a MIRT model with Q̂λ as zero structure

for A using GVEM algorithm without penalty. Hence, the final estimate Â satisfies Q(Â) =

Q̂λ. We compute the information criteria using estimates from a MIRT model without

penalization. The regularization parameter is chosen to be the one admitting the smallest

information criterion values.

For each item j, there are one difficulty parameter bj and K discrimination parameters αj.

The coordinate descent algorithm update each of the K + 1 variables iteratively according
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to the following updating rule. See appendix for detailed derivation of the updating rule.

Define a function S to be a soft threshold operator such that S(δ, λ) = sign(δ)(|δ| − λ)+

we update model parameters bj and cj following (III.7) and (III.8), respectively. For

M3PL, we penalize αj’s with adaptive lasso penalty as well. Then α̂jk is updated according

to the (III.9). See Appendix for the detailed derivation.

b
(t+1)
j =

∑N
i=1(1− Yij + sijYij)

[
1
2 − Yij + 2η(ξi,j)α>j µi

]
+ µb

σ2
b

2∑N
i=1(1− Yij + sijYij)η(ξi,j) + 1

σ2
b

, (III.7)

c
(t+1)
j =

∑N
i=1 Yij(1− sij) + α− 1
N + α + β − 2 . (III.8)

and

α
(t+1)
jk =

[
N∑
i=1

(1− Yij + sijYij)
(

2η(ξi,j)[Σi + (µi)(µi)>]k,k
)]−1

× S
(

N∑
i=1

(1− Yij + sijYij)
{

(Yij −
1
2)µi,k + 2bjη(ξi,j)µi,k − 2η(ξi,j)

∑
l 6=k
αjl[Σi + (µi)(µi)>]l,k

}
, λ

)
(III.9)

where λ is the sparsity parameter of choice.

The detailed algorithm of the regularized estimation of the test structure via Adaptive

Lasso penalization is illustrated below in Algorithm 3.

Algorithm 3 Regularization with Adaptive Lasso Penalization
1: Set a range of λ. Choose γ > 0.
2: Initialize model parameters A0, B0, Σ0 such that the identifiability condition holds.
3: Run confirmatory factor analysis (CFA) to obtain Âw := [α̂jk]J×K
4: for each λ starting from smallest do
5: Set the adaptive penalization weights, λ

|Âw(j,k)|γ for j = 1, . . . , J and k = 1, . . . , K.
6: Update A according to (III.9) using the adaptive weight as a sparsity parameter.

Update B,C according to (III.7), (III.8). Update Σθ as in regular GVEM estimation.

7: Estimate ˆAIC?, ˆBIC?, and ˆGIC? with recent updates.
8: Set Âλ,B̂λ as the initial values for next step.
9: end for

10: Find λ∗ that minimizes the information criteria. Calculate the correct estimation rate
of Âλ∗ .
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Remark III.1. Here, we present the Algorithm 4 that summarizes the detailed regularized

estimation procedure with Lasso regularization. It is to illustrate the slight difference between

Lasso and Adaptive Lasso penalization approaches. After regularization, we re-estimate pa-

rameters in the Algorithm 4 step 7 to correct for the biased estimation of Lasso. Although

this re-estimation might help correct the biasedness, it does not guarantee the consistent es-

timation after all. In addition, Lasso estimation requires more computation time due to this

additional step. However, this difference in the estimation procedure is minor and we can

easily check that the Adaptive Lasso is a simple extension of Lasso. Hence, it is easy to

implement the adaptive lasso penalization using the existing numerical algorithms for Lasso.

Algorithm 4 Regularization with Lasso Penalization
1: Set a range of λ.
2: Initialize model parameters A0, B0, Σ0 such that the identifiability condition holds.
3: for each λ starting from smallest do
4: Update A,B,C according to (III.9), (III.7), (III.8). Update Σθ as in regular GVEM

estimation.
5: Re-estimate A, B, and Σθ according to confirmatory factor analysis with most recent

updates (i.e. Âλ, B̂λ) as initial values.
6: With re-estimated A, B, and Σθ, estimate ˆAIC?, ˆBIC?, and ˆGIC?.
7: Set Âλ,B̂λ as the initial values for next step.
8: end for
9: Find λ∗ that minimizes the information criteria. Calculate the correct estimation rate

of Âλ∗ .

Remark III.2. In addition to our choice of Adaptive Lasso for Pλ(A) in Eqn (III.6), there

are generally other methods of penalizations. For instance, Fan and Li (2001) showed that the

Lasso penalization problem is suboptimal to their proposed method called smoothly clipped ab-

solute deviation (SCAD) penalty as Lasso produces biased estimates for the large coefficients.

They showed that the SCAD penalization enjoys asymptotic normality and oracle properties

with proper choice of regularization parameters. Due to its solid theoretical properties, SCAD

has been widely applied in variable selection problems (T. Wang, Xu, & Zhu, 2012; Liu, Yao,

& Li, 2016; Breheny & Huang, 2011). Additionally, Minimax Concave Penalty (MCP) has
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been presented as a fast, continuous and nearly unbiased method of penalization and hence

claimed to be a good alternative to Lasso (C. H. Zhang, 2010). Truncated lasso is also

another popular penalization method; however penalty function for these methods are non-

convex and it makes local solutions to be nonunique in general. The nonconvex optimization

problem is computationally challenging to solve as well. On the other hand, Adaptive Lasso

is a convex problem and it is also computationally efficient, which makes it a good candidate

for regularization problem under complex MIRT models. Hence, we chose Adaptive Lasso for

solving our regularized problem.

III.4 Simulation Study

III.4.1 Design

We present the simulation results for M2PL and M3PL models from 50 independent samples

generated with number of subjects N = 2000, the dimension of test structure K = 3, and

the test length J = 45. For the between-item multidimensional structure, there were 15

items loaded onto each factor with loading values set to 1, 1.5, 2 respectively for each factor.

For the within-item multidimensional structure, about 60% of the items are loaded onto

one factor, about 25% are loaded onto two factors and the rest are loaded onto all three

factors so that the data contains some single-, double- and triple-attribute test items. Their

loading values are randomly drawn from Unif(1, 2). For both models, the latent traits θ are

simulated from MVN(0,Σθ) with variance 1 and a common inter-factor correlation ρ = 0.1.

The difficulty parameters b∗j are set to zeros. Additionally in M3PL, we fixed true c∗ to

be 0.15 for all j’s and c0’s were initialized from Unif [0.05, 0.3]. For prior-penalty, we used

Beta(α, β) = Beta(2, 5) for both cj and dj so that the mode is around 0.2. For bj’s, we used

N(µb, σ2
b ) = N(0, 1). The model parameters are estimated with tuning parameter λ chosen

by the information criteria, which will be compared in terms of their estimation accuracy in

the simulation.
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As the main objective of this section is to estimate relationship between test items and

latent traits, we use the correct estimation rate of A matrix (eq. (III.10)). It measures how

well the sparsity of the A matrix is estimated by the regularized estimation. Notice that we

only calculate correct rate for entries excluding the first K by K sub-matrix since we fix this

part to have identity matrix as a zero structure to ensure identifiability.

CR = 1
K(J −K)

∑
K+1≤j<J,1≤k≤K

I(Q̂jk = Qtrue
jk ) (III.10)

We also compare the performance of Lasso and Adaptive Lasso penalization using two mea-

sures; sensitivity and specificity. In the context of our project, sensitivity is the probability

of correctly identifying nonzero entries among true nonzero entries. Specificity is the proba-

bility of correctly identifying zero entries among true zero entries. In other words, sensitivity

measures the true negative while specificity illustrates the true positive rate. Naturally, a

test with both high sensitivity and high specificity is desired, although there is always a

trade-off.

III.4.2 Simulation Results

In this section, we present the simulation results under various settings in M2PL and M3PL

with boxplots to show the distribution of correct estimation rates, sensitivities, and speci-

ficities. Among the three information criteria, GIC showed the best performance at selecting

the optimal result as it favors the models that penalizes more on the number of parameters;

thus, we present the simulation results with GIC selection criteria in Figures in this section.

As shown in Figure III.1, Lasso penalization performs well in the Between-item model

under both constraint settings. However, its performance under within-item model structure

is much worse than that of the Adaptive Lasso as you can observe in Figure III.1 (b).

Essentially, Adaptive Lasso shows close to 100% performance under all simulation settings

in M2PL. We can observe from Figure III.2 that under M3PL both Lasso and Adaptive
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Lasso penalization generally perform worse than in M2PL. However, overall Adaptive Lasso

still performs well with mostly above 80% correct rates even in more complicated simulation

conditions under more flexible identifiability constraint.
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Figure III.1: Correct estimation rates under M2PL.
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Figure III.2: Correct estimation rates under M3PL.

In addition to correct estimation rates, we compared the performance of Lasso and Adap-

tive lasso in terms of the sensitivity and specificity under various simulation settings. Figures

III.3 and III.4 show the distributions of sensitivities and specificities for M2PL under Con-

straint 1 and Constraint 2, respectively. We can observe the Lasso performs as well as the
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Adaptive Lasso in between item model. However its performance is much worse in more

complex within item model. Both sensitivities and specificities are lower than those for

Adaptive Lasso.

In Figures III.5 and III.6, we observe the distributions of sensitivities and specificities

for M3PL under Constraint 1 and Constraint 2, respectively. Adaptive Lasso generally

outperforms the Lasso penalization method under all model conditions. Considering that the

parameter estimation is much more challenging in complex M3PL, Adaptive Lasso performs

especially well for M3PL under Constraint 1. The specificities gets quite low for both Lasso

and Adaptive Lasso under Constraint 2. However the Adaptive Lasso still performs quite

well on average and much better than Lasso penalization.
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Figure III.3: Comparison of Lasso and Adaptive Lasso in M2PL under Constraint 1

76



0.90

0.92

0.94

0.96

0.98

1.00

Between item model

sensitivity specificity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Within item model

sensitivity specificity

Lasso Adaptive Lasso

Figure III.4: Comparison of Lasso and Adaptive Lasso in M2PL under Constraint 2
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Figure III.5: Comparison of Lasso and Adaptive Lasso in M3PL under Constraint 1
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Figure III.6: Comparison of Lasso and Adaptive Lasso in M3PL under Constraint 2

III.5 Real Data Analysis

In this section, we apply our proposed regularization method on the National Education

Longitudinal Study of 1988 (NELS:88) data. To revisit the data, a nationally representa-

tive sample of approximately 24,500 students were tracked via multidimensional cognitive

batteries from 8th to 12th grade (the first three studies) in years 1988, 1990, and 1992.

In this study, we focused on the science and mathematics test data where the multidimen-

sional factorial structure has been previously investigated (e.g, Kupermintz & Snow, 1997;

Nussbaum et al., 1997). Figure III.7 shows the example of the content of the questions in

science test. For the science subject, there are 25 items and four factors emerged from the

data collected in 1988: “Elementary science (ES)”, “Chemistry knowledge (CK)”, “Scientific

reasoning (SR)” and “Reasoning with knowledge (RK)”. For the math subject, there are

40 items in 1988 and two factors emerged. They are “Mathematical reasoning (MR)” and

“Mathematical knowledge (MK)”. We pooled together data from both domains, resulting in

65 items and a complete sample size of N = 13, 488.

In the previous analysis, we used GVEM to empirically estimated the optimal number
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of latent traits from the data. The result suggested there exists six latent traits being

tested by NELS:88. This finding also correspond to what the previous literature suggests as

the number of latent factors being measured by the exam (e.g, Kupermintz & Snow, 1997;

Nussbaum et al., 1997). Thus, we fix the dimension of latent factors as six for this analysis.

Also, Kupermintz and Snow (1997) and Nussbaum et al. (1997) analyzed the latent traits

required by each test item based on the content of the questions. Based on their findings,

we chose 6 questions that are only associated with each one of latent factors and performed

our proposed regularized estimation under Constraint 1.

First, we compared the GIC values for different models as shown in Table III.1. For

this analysis, we focused on adaptive lasso penalization as it was shown to perform better

than lasso penalty under most model conditions in the simulation studies. Table III.1 shows

that the M2PL with penalization has the lowest GIC value and thus is chosen as the model

that best fit the NELS:88 test data. The fact that M2PL is chosen instead of M3PL as the

optimal model implies that guessing does not play a big role on the performance in NELS:88

math and science assessment test. This result is again consistent with our previous analysis

of NELS:88.

M2PL M3PL
no penalty w/ penalty no penalty w/ penalty

8.46E5 8.31E5 1.28E06 1.81E06

Table III.1: GIC comparison with Adaptive Lasso penalty

As a second part of the analysis, we apply our proposed method of regularized estima-

tion of test structure on NELS:88 data. Following the model selection result, we report the

estimated sparse Q matrix for M2PL under constraint 1. The NELS:88 data is potentially a

high dimensional measurement data with sample size of 13,488 and 65 test items. Hence we

used stochastic optimization of the GVEM procedure to reduce the computational burden.

Specifically we used a stochastic sampling of 200 at each iteration and initially sampled 3000

for more stable convergence. Table III.2 and Table III.3 illustrate the estimated sparse test
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Figure III.7: Description of questions in science test of NELS:88
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structure from math and science test, respectively. After penalization, total of 6 factors re-

mained in the estimated test structure. We observe sparser structure between mathematrical

abilities and science questions, and between science skills and math questions. This suggests

that our regularized estimation procedure accurately shrunk the entries towards zero when

the associated latent factors are not required to answer given test items. The sparse pattern

is more apparant for the math test as shown in Table III.2. This could be because more test

items are available in the math test to measure smaller number of latent factors (i.e. MR

and MK). Although the estimated test structure in Table III.3 is less sparser overall, we do

observe bigger coefficients for the entries associated with science skills.

The sparse test structure may be challenging to obtain due to the correlatedness of the

latent traits. Although the NELS:88 test was designed so that each test item only requires

subset of the six latent skills, the correlation between facors are quite high as shown in

Table III.4. The correlations between science abilities are over 90%. Additionally some

latent abilities are tested by only few test items according to the design of NELS:88. For

example, “Reasoning with Knowledge(RK)” were intended to be measured by only S15 and

S22 according to the NELS:88 test design. This makes it even more challenging to get

accurate sparse test structure from the science test.
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Factor MR MK ES SR CK RK
M1 0 1.1882 0 0 0 0
M2 0 1.1460 0 0 0 0
M3 1.3400 0 0 0 0 0
M4 0 1.4999 0 0 0 0
M5 0 1.5282 0 0 0 0
M6 1.2909 0 0 0 0 0
M7 1.2938 0 0 0 0 0
M8 0 1.0713 0 0 0 0
M9 1.4850 0 0 0 0 0
M10 0 1.3691 0 0 0 0
M11 1.0457 0 0 0 0 0
M12 0 1.5105 0 0 0 0
M13 1.3216 0 0 0 0 0
M14 0 1.1564 0 0 0 0
M15 0.7200 0 0.0902 0 0 0
M16 1.6220 0 0 0 0 0
M17 0 1.2101 0 0 0 0
M18 0.8592 0 0 0 0 0
M19 1.1810 0 0 0 0 0
M20 1.0592 0 0 0 0 0
M21 1.5735 0 0 0 0 0
M22 0.9947 0 0 0 0 0
M23 0.3162 0.4328 0.2156 0 0 0
M24 0.2515 0.4673 0.1739 0.0302 0.0310 0.0323
M25 1.4601 0 0 0 0 0
M26 1.3114 0 0 0 0 0
M27 0 0.5693 0 0 0 0
M28 0.4440 0.6379 0 0 0 0
M29 0 0.9575 0 0 0 0
M30 1.6277 0 0 0 0 0
M31 0 1.5418 0 0 0 0
M32 1.3457 0 0 0 0 0
M33 0.3465 0.2134 0 0.7503 0.7717 0.8065
M34 0 1.3468 0 0 0 0
M35 0 0.8882 0 0 0 0
M36 1.8644 0 0 0 0 0
M37 0 1.6834 0 0 0 0
M38 0 1.8049 0 0 0 0
M39 0 0.6994 0 0 0 0
M40 0.8942 1.2048 0 0 0 0

Table III.2: Estimated sparse test structure for math test in NELS:88
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Factor MR MK ES SR CK RK
S1 0 0 0 0 1.0249 0
S2 0 0 0.8427 0 0 0
S3 0.3739 0 0.5413 0 0 0
S4 0 0.1888 0.5024 0.1793 0.1842 0.1924
S5 0 0 1.4329 0 0 0
S6 0 0 1.3383 0 0 0
S7 0 0 0.9671 0.0968 0.0997 0.1042
S8 0 0.1733 0.6884 0.2005 0.2061 0.2154
S9 0 0 0.8239 0 0 0
S10 0.1339 0.4530 0.4113 0.4632 0.4762 0.4974
S11 0 0 0 0 0 0
S12 0 1.1572 0 0 0 0
S13 0 0 0.9184 0 0 0
S14 0 1.6108 0 0 0 0
S15 0 0 0 0 0 0
S16 0.3988 0.1215 0.2026 0.7289 0.7486 0.7815
S17 0.2047 0.1176 0.5358 0.9919 1.0204 1.0665
S18 0.0748 0.3842 0.5234 0.8062 0.8293 0.8667
S19 0.0486 0.3973 0.4455 0.5574 0.5732 0.5988
S20 0.3532 0.0149 0.2353 1.0324 1.0611 1.1083
S21 0.0547 0.3287 0.2423 1.2428 1.2780 1.3354
S22 0.1667 0 0.4888 0.2285 0.2357 0.2467
S23 0.0076 0.3669 0 0.8709 0.8941 0.9331
S24 0.1065 0.2701 0.6743 0.2888 0.2971 0.3104
S25 0.1327 0.1718 0.2765 0.1455 0.1496 0.1563

Table III.3: Estimated sparse test structure for science test in NELS:88

MR MK ES SR CK RK
MR 1.0000 0.9815 0.8999 0.7150 0.8668 -0.8366
MK 0.9815 1.0000 0.9617 0.8214 0.9391 -0.9032
ES 0.8999 0.9617 1.0000 0.9212 0.9903 -0.9577
SR 0.7150 0.8214 0.9212 1.0000 0.9345 -0.8885
CK 0.8668 0.9391 0.9903 0.9345 1.0000 -0.9535
RK -0.8366 -0.9032 -0.9577 -0.8885 -0.9535 1.0000

Table III.4: Estimated Correlation between latent factors
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III.6 Discussions

In this chapter, a Gaussian variational regularization method has been proposed for the esti-

mation of the sparse item-trait relationship in M2PL and M3PL models. It has the advantage

over the model selection methods based on information criteria as it simultaneously performs

model estimation and selection of the sparse test structure. Moreover, it has the compu-

tational advantage over the exiting methods based on direct numerical approximation (e.g.

Sun et al., 2016) by avoiding the calculation of the intractable likelihood with variational

approximation and deriving closed-form EM updates. Simulation studies demonstrated that

the proposed methods performs well in correctly estimating the sparse item-trait structure

in both M2PL and M3PL models with the adaptive lasso penalization.

A future step of this chapter would be to consider adding additional individual-level

covariates to the model such as gender, race, and age, etc. These additional characteristics

of individuals would help obtain in-depth understanding of the individuals’ response pattern

compared to the MIRT analysis only considering latent traits. The interesting application of

this future study would be the recommender system. In the online recommendation system,

individual-level information such as gender or age has significant impact on the individuals’

preferences. Hence, incorporating these additional covariates in analyzing their pattern and

understanding their latent preferences would greatly help the prediction for the personalized

recommendations.
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Appendix of Chapter III

In this section, we present the detailed derivations of the regularized variational esti-

mation procedures. Appendix A and B illustrate the GVEM algorithm as presented in

Algorithm 3 for M2PL and M3PL models, respectively.

III.A Derivation in M2PL

Item discrimination parameters ajk are updated by the following steps. Let Qj(αj, bj) be

the variational lower bound only concerning jth test item. Then,

Qj(αj, bj) =
N∑
i=1

(
log eξi,j

(1 + eξi,j) + (1
2 − Yij)bj + (Yij −

1
2)α>j µ

(t)
i −

1
2ξi,j

−η(ξi,j){b2
j − 2bjα>j µ

(t)
i +α>j [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]αj − ξ2
i,j}
)

+N2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σ(t)

i + (µ(t)
i )(µ(t)

i )>]).

The first and second derivatives of the jth variational lower bound with respect to αjk are

∂Qj(αj, bj)
∂αjk

=
N∑
i=1

(
(Yij −

1
2)µ(t)

i,k + 2bjη(ξi,j)µ(t)
i,k − η(ξi,j)(2αjk[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]k,k

+2
∑
l 6=k
αjl[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]l,k)
)
,

∂2Qj(αj, bj)
∂α2

jk

= −
N∑
i=1

(
2η(ξi,j)[Σ(t)

i + (µ(t)
i )(µ(t)

i )>]k,k
)
,
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respectively. Define a function S to be a soft threshold operator such that S(δ, λ) =

sign(δ)(|δ| − λ)+ Then α̂jk is updated according to the following rule;

α̂jk = −
S(−∂2Qj(αj, bj) ∗α∗jk + ∂Qj(αj, bj), λ)

∂2Qj(αj, bj)

=
S

(∑N
i=1

[
(Yij − 1

2)µi,k + 2bjη(ξi,j)µi,k − 2η(ξi,j)
∑
l 6=kαjl[Σi + (µi)(µi)>]l,k

]
, λ

)
∑N
i=1

(
2η(ξi,j)[Σi + (µi)(µi)>]k,k

) .

(III.A.1)

III.B Derivation in M3PL

The likelihood with prior-penalty on B and C can be written as

L(A,B,C,θ)×
J∏
j=1

N(bj | µb, σb)×
J∏
j=1

Beta(cj | α, β)

= L(A,B,C,θ)×
J∏
j=1

(2πσ2
b )−1/2 exp

[
− 1

2σ2
b

(bj − µb)2
]
×

J∏
j=1

cα−1
j (1− cj)(β−1)

B(α, β)

Then, the variational lower bound to the expected log-likelihood is

l(A,B,C,θ) +
J∑
j=1
{−1

2 log(2πσ2
b )−

(bj − µb)2

2σ2
b

}

+
J∑
j=1
{(α− 1) log(cj) + (β − 1) log(1− cj)− logB(α, β)}

=
N∑
i=1

J∑
j=1

(1− Yij + sijYij)
(

log eξi,j

(1 + eξi,j) + (1
2 − Yij)bj + (Yij −

1
2)α>j µi −

1
2ξi,j

−η(ξi,j){b2
j − 2bjα>j µi +α>j [Σi + (µi)(µi)>]αj − ξ2

i,j}
)
−

N∑
i=1

1
2Tr(Σ

−1
θ [Σi + (µi)(µi)>])

+
N∑
i=1

J∑
j=1

Yij(1− sij) log I(Yij = 1) + N

2 log |Σ−1
θ |+

N∑
i=1

J∑
j=1
{(1− Yij + sijYij) log(1− cj)

+Yij(1− sij) log(cj)}+
J∑
j=1
{−1

2 log(2πσ2
b )−

1
2σ2

b

(bj − µb)2 + (α− 1) log(cj) +

(β − 1) log(1− cj)− log(B(α, β))}.
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To get the updating rules, we maximize the log-likelihood with respect to parameters bj,

cj for j = 1, . . . , J . First for bj, we get the following by setting the derivative with respect

to bj equal to zero.

∂Qj(bj)
∂bj

=
N∑
i=1

(1− Yij + sijYij)
[
(1
2 − Yij)− η(ξi,j){2bj − 2α>j µi}

]
− 1
σ2
b

(bj − µb) = 0

We update b(t+1)
j according to the following equation (III.7).

b
(t+1)
j =

∑N
i=1(1− Yij + sijYij)

[
1
2 − Yij + 2η(ξi,j)α>j µi

]
+ µb

σ2
b

2∑N
i=1(1− Yij + sijYij)η(ξi,j) + 1

σ2
b

(III.B.1)

Similarly for cj, the derivative of the partial log-likelihood is

∂Qj(cj)
∂cj

= − 1
1− cj

N∑
i=1

(1− Yij + sijYij) + 1
cj

N∑
j=1

Yij(1− sij) + α− 1
cj
− β − 1

1− cj

By rearranging the equation by cj, we get a closed-form update of c(t+1)
j as follows.

c
(t+1)
j =

∑N
i=1 Yij(1− sij) + α− 1
N + α + β − 2 . (III.B.2)

For M3PL, we penalize αj’s with adaptive lasso penalty as well.

∂Qj(αj, bj)
∂αjk

=
N∑
i=1

(1− Yij + sijYij)
(

(Yij −
1
2)µi,k + 2bjη(ξi,j)µi,k − η(ξi,j)

{
2αjk[Σi + µiµ

>
i ]k,k

+2
∑
l 6=k
αjl[Σi + µiµ

>
i ]l,k

})
,

∂2Qj(αj, bj)
∂α2

jk

= −
N∑
i=1

(1− Yij + sijYij)× 2η(ξi,j)[Σi + µiµi)>]k,k,
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respectively. Then α̂jk is updated according to the following rule;

α
(t+1)
jk

= −
S(−∂2Qj(αj, bj)×α(t)

jk + ∂Qj(αj, bj), λ)
∂2Qj(αj, bj)

=
S

(∑N
i=1(1− Yij + sijYij)

{
(Yij − 1

2)µi,k + 2bjη(ξi,j)µi,k − 2η(ξi,j)
∑
l 6=kαjl[Σi + (µi)(µi)>]l,k

}
, λ

)
∑N
i=1(1− Yij + sijYij)

(
2η(ξi,j)[Σi + (µi)(µi)>]k,k

) .

(III.B.3)

where λ is the sparsity parameter of choice.
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ChapterIV

Extensions of Gaussian Variational

EM

IV.1 Introduction

In this chapter, we discuss some of the interesting extensions of the proposed Gaussian

Variational estimation approach. The first extension we study is the parameter estimation

for the Multidimensional 4-Parameter Logistic (M4PL) model, an extension of the M2PL and

M3PL models discussed previously. M4PL model can be simplified to the unidimensional

4-Parameter Logistic (4PL) model where we only model one latent ability at a time. The

4PL model has not been widely applied for a long time probably due to its challenges in

parameter estimation and a lack of evidence supporting the need for such a complex model

(Loken & Rulison, 2010). However, recent literature have expressed renewed interest in the

4PL model. For example, Liao, Ho, Yen, and Cheng (2012) and Rulison and Loken (2009)

demonstrated that the 4PL can improve the accuracy of the assessments in computerized

adaptive testing by incorporating the individuals’ careless mistakes in the early stages. In

addition, Reise and Waller (2003) and Waller and Reise (2010) argued that the 4PL model

may be more appropriate for measuring psychopathology traits than the simpler 2PL or 3PL
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models since it is very common in psychopathology measurement for a highly able subject

(i.e. subject with enough latent abilities) to be reluctant to self-report his or her attitudes.

These findings support the need to include an upper asymptote parameter in modeling the

probability of responses and develop estimation methods for the 4PL models. Furthermore,

it would be necessary to study the parameter estimation for more general multidimensional

4PL models which can handle more complex educational and psychological data by modeling

multiple latent traits at the same time.

Several parameter estimation methods for the 4PL model have been proposed in the pre-

vious literature. For instance, Loken and Rulison (2010) adopted a Bayesian approach with

the Markov chain Monte Carlo (MCMC) sampler for the parameter estimation. Feuerstahler

and Waller (2014) employed the marginal maximum likelihood method, which require less

computation time than the Bayesian approach with the MCMC sampler. However, marginal

maximum likelihood approach may not be stable and may produce deviant values in many

cases (Baker & Kim, 2004). To solve this problem, Waller and Feuerstahler (2017) recently

applied Bayes Model estimation for the 4PL model. That is, an augmented optimization

objective was used that includes the likelihood and some additional prior beliefs on the item

parameters to prevent deviant parameter estimates. However, these methods either involve

MCMC sampling or computation of complete likelihood and thus would be computationally

time-consuming for high dimensional data from the large scale assessment tests. In addi-

tion, they would be especially challenging for the parameter estimation in M4PL models

that involve intractable multidimensional integrals in the calculation of likelihood due to its

multidimensional latent varable structure. To tackle these challenges, we propose to apply

Gaussian Variational EM approach to develop a computationally efficient and accurate EM

algorithms for the parameter estimation in M4PL.

As our second extension, we demonstrate how the GVEM method can be applied to

Differential Item Functioning (DIF) analysis for MIRT. In short, DIF occurs when groups

(e.g. defined by gender or race) have different probabilities of responses for a given test
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item even when individuals share the same level of latent abilities. An item is labeled as

having DIF when people with the same level of latent abilities but from different groups have

an unequal probability of responses. An item is labeled as non-DIF when people with the

same latent abilities have equal probability of getting a test item correct, regardless of group

membership. If DIF occurs in a test, that means subgroups of the examinee population

differ on the dimensions that are other than the goal dimensions (i.e. a set of latent abilities

or traits intended to be measured by the test). Hence, the reported results in such a test

may include test and item bias (Reckase, 2009). MIRT analyses can help identify any group

differences that contribute to test bias and a clear representation of DIF using MIRT models

has been previously discussed (Ackerman, 1992).

Naturally it is desirable for the assessment test to not have differential item functioning

in any of its items. Hence, identifying the items that have DIF is crucial in evaluating and

improving the test design. On the other perspective, studying the DIF would help practi-

tioners uncover deeper understanding of individuals by studying whether certain subgroups

have different responses or characteristics. Hence, it is of interest to study DIF for many

practitioners in the field of education, psychology, epidemiology and medicine (e.g. Breslau,

Javaras, Blacker, Murphy, & Normand, 2008; Crane et al., 2007; Kwakkenbos et al., 2014;

Lewis, Yang, Jacobs, & Fitchett, 2012; Uebelacker, Strong, Weinstock, & Miller, 2009). We

formulate the DIF analysis to assess group differences in a test as a regularization problem in

MIRT and develop the estimation methods using the proposed GVEM approach. This could

be considered as the extension of the regularized variational estimation studied in Chapter

III. Our discussion of DIF analysis in this chapter is limited to the M2PL model; however

it can be naturally extended to more complex MIRT models. We leave this for the future

study.

The rest of this chapter is organized as follows. In Section IV.2, we introduce the M4PL

model formulation in detail and present the mixture modeling approach for the M4PL. Sec-

tion IV.2.1 presents the derivation of the GVEM algorithm for parameter estimation in
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M4PL under the mixture modeling framework. Section IV.2.2 shows simulation studies con-

ducted to evaluate the performance of the proposed method under various model conditions.

Section IV.3 then discusses the Differential Item Functioning for MIRT as our second ex-

tension focusing on the binary group case such as defined by gender. Section IV.3.1 present

the proposed estimation methods via GVEM approach. Simulation results in IV.3.2 shows

that our proposed GVEM approach performs well for the DIF analysis in M2PL model in

various model conditions.

IV.2 Multidimensional 4PL model

The unidimensional 4-Parameter Logistic model (4PL) was first proposed in Barton and

Lord (1981), who introduced an upper asymptote parameter, d, to incorporate the scenario

where a high-ability individual misses an easy test item. Essentially, 1−d can be considered

as the probability of making a mistake. The limitations of Barton and Lord’s model are

that all test items share a common upper asymptote parameter value and also the model

was estimated with fixed d values. Recent studies (e.g. Linacre, 2004; Rouse, Finger, &

Butcher, 1999; Rupp, 2003; Tavares, Andrade, & Pereira, 2004; Waller & Reise, 2010) have

demonstrated that the upper asymptote d varies across test items in most cases. Hence, the

4PL formulation that allows the upper asymptote parameter to be item-specific (i.e. dj for

j = 1, . . . , J) is considered more appropriate. The probability of correctly answering test

items in 4PL model is formulated as follow;

P (Yij = 1 | θi) = cj + (dj − cj)
exp(αjθi − bj)

1 + exp(αjθi − bj)
(IV.1)

where Yij denotes the observed dichotomous response of examinee i to test item j for i =

1, . . . , N and j = 1, . . . , J). Again, Yij = 1 denotes a correct response and Yij = 0 otherwise.

As previously discussed, αj denotes the item discrimination parameter and bj denotes item

difficulty parameter for the jth test time. The cj denotes the guessing parameter and dj
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denotes the upper asympotote parameter. The parameter dj is the maximum probability of

response for the jth item. Hence, 1 − dj can be considered as the slipping probability of a

student who’s able to correctly answer but missing the item by mistake. N and J are used

to denote the number of the examinees and the test length.

The unidimensional 4PL model in (IV.1) can be extended to multidimensional 4PL

(M4PL) model by substituting a single latent ability variable, θi, to a K-dim vector of

multiple latent traits, θi, as follows;

P (Yij = 1 | θi) = cj + (dj − cj)
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
(IV.2)

where K is the dimension of latent traits. Due to theK dimensional latent structure in M4PL,

the complete log-likelihood involves calculation of K-dim integrals, which is intractable as in

M2PL and M3PL. The Bayesian approach of using MCMC sampler or marginal maximum

likelihood approach could be considered as it has been discussed as the estimation methods

for the unidimensional 4PL model. However, this would be computationally time-consuming

when the dimension K is high and data is of high dimensions. Also, the marginal maximum

likelihood estimates could be biased as shown in the 4PL model (Baker & Kim, 2004). Hence,

we would like to apply our Gaussian Variational approach to approximate the intractable

likelihood and to facilitate the parameter estimation in EM procedures.

Mixture modeling approaches have been recently developed for MIRT by introducing

additional latent variables. For instance, Béguin and Glas (2001), von Davier (2009), and

Mart́ın, Del Pino, and De Boeck (2006) interpreted the 3PL model from the perspective

of a two-response strategy (with and without guessing) and formulated it as a mixture

model. Culpepper (2016, 2017) further developed a mixture modeling approach to refor-

mulate the four-parameter normal ogive model (4PNOM) and multidimensional 4PNOM.

In addition, Meng, Xu, Zhang, and Tao (2019) adopted the mixture modeling approach for

unidimensional 4PL model to develop EM based estimation approach. Following these mix-
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ture framework, we present an alternative expression for the M4PL using a mixture model.

Specifically, we introduce an additional latent variable, Zij to characterize the two response

processes. Define Zij as a binary latent variable denoting the ith individual’s capability on

jth test item. That is, Zij = 1 if ith subject is capable of correctly answering jth test item

based on his or her latent ability θi and item specific parameters (i.e. αj and bj). Naturally,

Zij = 0 if he or she does not have enough latent skills required by jth test item to answer it

correctly. The mixture modeling of M4PL is as follows;

Yij | Zij ∼ Bernoulli(dZijj c
1−Zij
j )

Zij | θi ∼ Bernoulli(
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
) (IV.3)

It can be easily shown that the marginal probability of responses Yij under the mixture

model in (IV.3) is equivalent to that of M4PL given in (IV.2).

The mixture model framework for 4PL models offers new insight into the connection

between 4PL MIRT models and the Cognitive Diagnosis Models (CDMs) (Meng et al., 2019).

The Zij can be interpreted as the attribute profile in the CDM literature, often denoted as

α. That is, Zij = 1 indicates that the ith examinee is capable of answering jth item and

Zij = 0 otherwise. Then the distribution of responses Yij is the same as the deterministic

input, noisy AND gate (DINA) model specification, where cj corresponds to the guessing

parameter and 1− dj corresponds to the slipping parameter. Meng et al. (2019) argues that

4PL can also be viewed as a generalization of the higher-order DINA model (De La Torre

& Douglas, 2004) with only one latent attribute and more generally, multi-attribute higher-

order DINA model may be considered as a sub-model of the M4PL. This emphasizes the

importance of developing estimation methods for M4PL and study the connection between

M4PL and CDM framework.
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IV.2.1 GVEM for M4PL

In this section, we present the Gaussian variational EM algorithm for M4PL model with its

mixture modeling specification. By Bayes Theorem, we have P (Yij, Zij,θi | A,B,C,D) =

P (Yij | Zij,θi,C,D)P (Zij | θi,A,B)P (θi). Then, the complete data log-likelihood for ith

subject only can be written as

logP (Yi,Zi,θi | A,B,C,D)

=
J∑
j=1

logP (Yij, Zij,θi | A,B,C,D)

=
J∑
j=1

logP (Yij | Zij,θi,C,D) +
J∑
j=1

logP (Zij | θi,A,B) + logP (θi)

=
J∑
j=1

log(dZijj c
1−Zij
j )Yij(1− dZijj c

1−Zij
j )1−Yij + logP (θi)

+
J∑
j=1

log
( exp(α>j θi − bj)

1 + exp(α>j θi − bj)
)Zij( 1

1 + exp(α>j θi − bj)
)1−Zij

=
J∑
j=1

[
Yij{Zij log dj + (1− Zij) log cj}+ (1− Yij) log(1− dZijj c

1−Zij
j )

]
+ logP (θi)

+
J∑
j=1

[
Zij(α>j θi − bj) + log 1

1 + exp(α>j θi − bj)

]
(IV.4)

By using local variational method on log-sigmoid function in Eqn (IV.4) as discussed in

previous chapters, we have

logP (Yi,Zi,θi | A,B,C,D)

≥
J∑
j=1

[
Yij{Zij log dj + (1− Zij) log cj}+ (1− Yij) log(1− dZijj c

1−Zij
j )

]
+ logP (θi)

+
J∑
j=1

Zij(α>j θi − bj) +
J∑
j=1

log eξi,j

1 + eξij
+

J∑
j=1

1
2(bj −α>j θi − ξij)

−
J∑
j=1

η(ξi,j){(bj −α>j θi)2 − ξ2
i,j}

:= l(Yi,θi,Zi, ξi | A,B,C,D) (IV.5)

95



Now, we would like to find the optimal variational densities for the latent variables θi

and Zi. Let us denote these variational densities as qθ(θi) and qz(Zij) respectively where

Zi = {Zi1, Zi2, . . . , ZiJ}. Firstly, in order to find the optimal qθ(θi) we take expectation of

the lower bound to the log-likelihood (i.e. Eqn (IV.5)) with respect to Zij’s. Then we can

show that qθ(θi) naturally follows the following form;

log qθ(θi) ∝
J∑
j=1

(Ez[Zij]−
1
2)α>j θi −

J∑
j=1

η(ξi,j)(bj −α>j θi)2 − 1
2θ
>
i Σ−1

θ θi

Then, the optimal choice of the variational density for θi is qθ(θi) ∼ N(θi | µi,Σi) with

µi = Σi ×
J∑
j=1
{2η(ξi,j)bj + Ez[Zij]−

1
2α
>
j } (IV.6)

Σi = Σ−1
θ + 2

J∑
j=1

η(ξi,j)α>j αj. (IV.7)

for i = 1, . . . , N .

Similarly, we take the expectation of the lower bound, Eqn (IV.5), with respect to θi’s in

order to find the optimal choice of the variational distributions, qz(Zij). We can easily show

that the posterior distribution of Zij has the following form;

log qz(Zij) ∝ YijZij log(dj) + Yij(1− Zij) log(cj) + (1− Yij) log(1− dZijj c
1−Zij
j )

+Zij(α>j Eθ[θi]− bj)

= Zij{Yij log(dj) + (1− Yij) log(1− dj) +α>j Eθ[θi]− bj}

+(1− Zij){Yij log(cj) + (1− Yij) log(1− cj)}

This implies that the optimal choice of the variational density for Zij is qz(Zij) ∼ Bernoulli(sij)

where

sij = 1
1 + exp

[
Yij log( cj

dj
) + (1− Yij) log( 1−cj

1−dj )−α
>
j Eθ[θi] + bj

] (IV.8)
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for i = 1, . . . , N and j = 1, . . . , J .

E step With the optimally chosen variational densities qθ(θi) and qz(Zij) for i = 1, . . . , N

and j = 1, . . . , J , we can derive a closed form expression of the variational lower bound to

the marginal log-likelihood, denoted by E[A,B,C,D, ξ], as follows in the E step;

E[A,B,C,D, ξ]

:=
N∑
i=1

∫
θi

 J∑
j=1

∑
Zij

l(Yi,θi,Zi, ξi|A,B,C,D)qz(Zij)
qθ(θi)dθi

=
N∑
i=1

J∑
j=1

[
Yij{sij log dj + (1− sij) log cj}+ (1− Yij){sij log(1− dj) + (1− sij) log(1− cj)}

]

−
N∑
i=1

1
2Tr(Σ

−1
θ [Σi + µiµ

>
i ]) + N

2 log |Σ−1
θ |+

N∑
i=1

J∑
j=1

[
sij(α>j µi − bj) + log eξi,j

1 + eξij

+1
2(bj −α>j µi − ξij)− η(ξi,j){b2

j − 2bjα>j µi +α>j [Σi + µiµ
>
i ]αj − ξ2

i,j}
]

(IV.9)

M step To get the updating rules for model parameters, we simply take derivatives of vari-

ational lower bound in Eqn. (IV.9) and set them equal to zero. By repeating this procedure

for each model parameter, we get the updating rules as in Eqn. (IV.10), (IV.11), (IV.12),

and (IV.13) for αj, bj, cj and dj repectively. Σθ and ξi,j have the same updating rule as in

M3PL, which can be referred to Chapter II.4.1.

αj =
[ N∑
i=1

2η(ξi,j)[Σi + µiµ
>
i ]
]−1
×

N∑
i=1

[
sij −

1
2 + 2bjη(ξij)

]
µ>i (IV.10)

bj =
∑N
i=1[2η(ξi,j)α>j µi − sij + 1

2 ]∑N
i=1 2η(ξi,j)

(IV.11)

cj =
∑N
i=1 Yij(1− sij) + α− 1∑N

i=1(Yij − sijYij) +∑N
i=1(1− Yij)(1− sij)

=
∑N
i=1 Yij(1− sij)∑N
i=1(1− sij)

(IV.12)

97



dj =
∑N
i=1 Yijsij∑
i=1 sij

(IV.13)

From the above updating rules, we observe that iterative EM updates for the parameter

estimation are all in closed-form, which contributes to the efficient computation for the

complex M4PL model.

IV.2.2 Simulation studies : M4PL

A series of simulation studies were conducted to evaluate the performance of the proposed

GVEM algorithm for M4PL models. The number of test dimensions was fixed at 3 and test

length was fixed at 45. In all cases, item discrimination parameters αj were simulated from

Unif(1, 2) distribution, and difficulty parameter bj was simulated from the standard normal

distribution. The probability of guessing and slipping were fixed at 0.05 for all test items.

That is, there is 5% chance of guessing the test items correctly and 5% chance of making a

mistake even with enough latent abilities.

The manipulated conditions include: (i) correlations among the latent traits, and (iii)

sample size. The latent traits θi were generated from multivariate normal distribution,

N(0,Σθ), where Σθ is a covariance matrix whose diagonal elements were 1 and the off-

diagonals were drawn from Uniform distribution. For the high correlation condition, the

correlations were drawn from Unif(0.5, 0.7) and for the low correlation condition, they were

drawn from Unif(0.1, 0.3). Sample size was set at either 500 or 2000 to consider both small

sample and large sample scenarios.

In the confirmatory analysis, some of the item loading parameters are constrained to

0 based on the pre-specified item factor loading structure. In the simulation, there were

15 items loaded onto each factor with loading values set by Unif(1, 2). In the exploratory

analysis, we do not assume any constraint on the item discrimination parameter A. Hence,

the exploratory item factor analysis for M4PL is computationally more challenging scenario

than confirmatory factor analysis. In our preliminary analysis in M4PL, we encountered
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several convergence issues with the exploratory factor analysis. This could be due to the

fact that we need additional constraints in M4PL to ensure stable model estimation since

the number of parameters to estimate is much higher and the structure is more complex in

M4PL. For this section, we mainly present the results in confirmatory factor analysis with

between item multidimensional structure. The more challenging simulation conditions will

be further discussed in Section IV.4 as a topic for the future studies.

Figure IV.1 shows the distributions of RMSE and Bias of the model parameter under

M4PL with between item multidimensional structure. Overall, higher factor correlation

increases the RMSE and Biases as expected. In terms of varying sample sizes, N , the RMSE

and Bias decreases with increasing sample size in low correlation conditions as observed in

Figure IV.1 (a) and (c). Under the high correlation condition, however, we observe less

decrease in both RMSE and Bias, which implies that parameter estimation in M4PL is more

challenging especially with highly correlated latent factors. In all simulation conditions, we

observe that the estimation error of cj and dj are relatively lower than the error of αj.

This suggests that the estimation of lower and upper asymptote values of the M4PL model

is quite accurate and less challenging. However, inclusion of these additional asymptote

parameters make the estimation of item discrimination αj more difficult. Computationally,

the estimation is done in a few seconds for the simulation conditions discussed in this section.

Overall, the performance of our proposed GVEM approach in challenging M4PL model is

pretty impressive both in terms of the accuracy and computational time.

IV.3 Differential Item Functioning (DIF) Analysis

Measures of differential item functioning (DIF) are used to help ensure the fairness of tests in

the applications of educational and psychometrics test. They can also be used to assess the

effect of interventions and help building better intervention strategies for biomedical research.

In this section, we study the DIF analysis in MIRT and develop the Gaussian Variational
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Figure IV.1: Parameter recovery of the between-item M4PL models from confirmatory factor analysis
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estimation procedure via regularization. For our discussion of DIF, we focus on the scenario

with a binary predictor in the M2PL model to assess its effect on the probability of responses

in assessment tests. The estimation procedure presented in this chapter is applicable to any

binary predictor of interest. For simplicity, let us consider this binary predictor as gender,

i.e. male or female, for the following discussion. We could understand the concept of DIF

with respect to gender as gender-biasedness of each test items in the assessment test. Since

gender effect may be present for each test items respectively, we consider gender coefficients

specific to each item, β1j. The model is as follows;

P (Yij = 1 | θi) =
exp(α>j θi − bj + β1jGi)

1 + exp(α>j θi − bj + β1jGi)
(IV.14)

where Gi denotes the gender status of the ith individual and non-zero β1j implies the exis-

tence of gender-bias in the jth test item. Other model parameters are defined in the same

fashion as in previously discussed MIRT models.

Our goal is identify the test items that have DIF. That is, we would like to study if

certain gender group has higher chance of correctly answering the test items and if so, which

test items they are. Hence, we formulate the problem of estimating gender effect on test

items in MIRT as a variable selection problem, in which we penalize the coefficients for the

observed predictors Gi so that we can detect the true non-zero coefficients among the β1j’s

for j = 1, . . . , J . We solve the following optimization problem with L1 penalty,

(Âλ, B̂λ, β̂1λ) = argmaxA,B,β1l(A,B,β1; Y)− λ
J∑
j=1
|β1j| (IV.15)

where λ is the penalization parameter and β1 = [β1j]j=1,...,J = {β11, . . . , β1J}. As discussed

in regularized variational estimation in Chapter III, we use variational lower bound in place

of the complete log-likelihood. In essence, we empirically estimates the biasedness of the

test items via the sparsity of the coefficient vector β1 under the GVEM framework. The

non-zero β1j’s implies that the associated jth test items are biased toward certain gender
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group. Optimal penalization parameter λ is chosen by the information criteria similarly as

discussed in Chapter III.

IV.3.1 Algorithm Details

In this section, we illustrate how the regularized estimation using Gaussian Variaitonal EM

approach can be applied to the DIF analysis in MIRT. The only difference between M2PL

model and model equation (IV.14) is the existence of the observed binary predictor, Gi for

i = 1, . . . , N . Hence the derivation of the EM procedures is similar to our previous discussion

of the regularized GVEM in M2PL models.

We first find the optimal choice of variational distributions for θi, i = 1, . . . , N . By

following the variational inference theory as in previous chapters, it can be shown that the

variational distributions qθ(θi), i = 1, . . . , N that minimizes the KL divergence with the

posterior distributions P (θi|A,B,β1) takes the following form;

log qi(θi) ∝
J∑
j=1

(Yij −
1
2)α>j θi −

J∑
j=1

η(ξi,j){bj −α>j θi − β1jGi}2 − θiΣ
−1
θ θi
2 ,

which implies that the optimal variational distribution is qθ(θi) ∼ N(θi|µi,Σi) where the

mean parameter is

µi = Σi ×
J∑
j=1

(2η(ξi,j)bj − 2η(ξi,j)β1jGi + Yij −
1
2)α>j (IV.16)

and the covariance matrix is

Σ−1
i = Σ−1

θ + 2
J∑
j=1

η(ξi,j)αjα>j . (IV.17)

E-step Following the Gaussian variational approach developed previously, we evaluate

the closed-form lower bound of the expected log likelihood with respect to the variational
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distributions qi’s under the model (IV.14) as follows;

E(A,B,β1, ξ)

=
N∑
i=1

J∑
j=1

(
log exp(ξi,j)

1 + exp(ξi,j)
+ Yij(α>j µi − bj + β1jGi) + 1

2(bj −α>j µi − β1jGi − ξi,j)

−η(ξi,j){b2
j − 2bjα>j µi +α>j [Σi + (µi)(µi)>]αj + β2

1jGi − 2bjβ1jGi

+2β1jGiα
>
j µi − ξ2

i,j}
)

+ N

2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σi + µiµ

>
i ]).

M-Step In this step, we maximize the E(A,B,β1, ξ) to update the model parameters.

This is simply achieved by setting the derivative of E(A,B,β1, ξ) with respect to (A,B,β1, ξ)

to be zero, respectively. See appendix for more details. Then, αj is updated according to

αj = 1
2

[ N∑
i=1

η(ξi,j)(Σi + µiµ
>
i )
]−1 N∑

i=1

(
Yij −

1
2 + 2bjη(ξi,j)− 2β1jGiη(ξi,j)

)
µ>i . (IV.18)

The updating rule for bj can be derived similarly, which is

bj = 1
2

[ N∑
i=1

η(ξi,j)
]−1 N∑

i=1

(1
2 − Yij + 2η(ξi,j){α>j µi + β1jGi + β>2jµiGi}

)
. (IV.19)

Setting the derivative of the variational lowerbound with respect to ξi,j equal to zero, we get

the following updating rule for ξi,j;

ξ2
i,j = E[(bj −α>j θi − β1jGi)2] (IV.20)

= b2
j +α>j

[
Σi + µiµ

>
i

]
αj + β2

1jGi − 2bjα>j µi − 2bjβ1jGi + 2β1jGiα
>
j µi.

The updating rule for Σθ is

Σθ = 1
N

N∑
i=1

[Σi + µiµ
>
i ], (IV.21)

which is same with the updating rule for M2PL model presented in Chapter II.

To update the coefficient vector β1 with L1 penalty, we use the coordinate descent al-
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gorithm by Friedman et al. (2010) as in Section III.3. The coordinate descent algorithm

update each of the β1j iteratively according to the following updating rule;

β1j =
S

(∑N
i=1 YijGi − 1

2Gi − η(ξi,j){2Giα
>
j µi − 2bjGi}, λ

)
∑N
i=1 2η(ξi,j)Gi

(IV.22)

where λ is the sparsity parameter of choice and the function S is a soft threshold operator

such that S(δ, λ) = sign(δ)(|δ| − λ)+. Refer to the appendix for detailed derivation of the

updating rules presented above.

IV.3.2 Simulation Studies : DIF

In this section, we present the simulation results conducted to assess the performance of the

proposed regularized GVEM approach for the DIF analysis in MIRT. We focus on M2PL

models as discussed in previous sections. The number of test dimensions was fixed at 3

and test length was fixed at 45. The manipulated conditions include: (i) multidimensional

structure, i.e. between-item multidimensionality and within-item multidimensionality; (ii)

correlations among the latent traits, and (iii) sample size. Similarly as in the previous stud-

ies, for the between-item multidimensional structure, there were 15 items loaded onto each

factor; whereas for the within-item multidimensional structure, about one third of the items

were loaded onto one, two, and three factors respectively. In all cases, item discrimination

parameters were simulated from Unif(1, 2) distribution, and difficulty parameter bj was

simulated from the standard normal distribution. The latent traits θi were generated from

multivariate normal distribution, N(0,Σθ), where Σθ is a covariance matrix whose diagonal

elements were 1 and the off-diagonals were drawn from Uniform distribution. Three different

correlation conditions were studied. That is, the correlations were drawn from Unif(0.5, 0.7)

for the high correlation condition, Unif(0.1, 0.3) for the low correlation condition and lastly

they were set to zero for the condition with no factor correlations. Sample size was set at

either 500 or 2000 to study to effect of varying sample sizes.

104



50 replications were conducted for each condition. Evaluation criteria include the correct

estimation rates(%) of the nonzero structure of the coefficients for the Gender predictor.

Again, the goal here is to detect any gender-biased test items via regularization. Additionally

we present the false positive and false negative rates(%) in each condition to further study

the performance of the proposed method in correctly estimating the gender biasedness of

test items. In the context of our DIF problem, false positive rate is the probability of falsely

identifying test items as gender biased. Similarly, false negative rate is the probability of

falsely identifying test items as not biased for any gender group. Naturally, we would like to

observe low false positive and low false negative rates.

Figure IV.2 and Figure IV.3 show the correct estimation rates(%) under the between-

item and within-item multidimensional structure, respectively. Overall, the correct estima-

tion rates are pretty high with most above 90% rates although we do observe several cases

with lower rates in more challenging scenario, which is within item model with large factor

correlations and small sample size (i.e. N = 500). The performance gets better on average as

sample size increases in all correlation and multidimensional structure conditions. However,

this pattern is not very strong probably since the correct estimation rate are already pretty

high in all conditions.
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Figure IV.2: Correct Estimation Rates(%) under the between-item multidimensional structure
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Figure IV.3: Correct Estimation Rates(%) for the within-item multidimensional structure
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Figure IV.4 show the false positive and false negative rates in between-item model (first

row) and within- item model (second row), respectively. We can clearly observe from false

positive and false negative rates that the performance of the regularized estimation for DIF

gets better with increasing sample sizes. Especially, false negative rages decreases to 0 in all

conditions with large sample size (i.e. N = 2000).

IV.4 Discussions

In this chapter, we discussed two interesting extensions of our proposed Gaussian variational

estimation approach; the parameter estimation in Multidimensional 4-Parameter Logistic

(M4PL) model and Differential Item Functioning (DIF) analysis in MIRT. We developed
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Gaussian Variational EM algorithm for M4PL as a computationally efficient and accurate

estimation method for M4PL parameters. In addition, we applied the regularized variational

EM approach for DIF analysis in order to assess the item bias in assessment tests with an

example with gender. Through the discussions on the two extensions of GVEM, we illustrate

how well the GVEM approach can be applied in various aspects of analyzing educational and

psychological assessment data. A series of simulation studies demonstrate that the proposed

method performs pretty well in the parameter estimation for M4PL and DIF analysis for

M2PL model.

However, there are some challenges remained. For M4PL model, we observed that the

parameter estimation gets less stable and encounters convergence issues with exploratory

factor analysis and within item multidimensional structure. This could be due to the iden-

tifiability issue since we estimate too many parameters in the M4PL exploratory analysis

and have less constraints than in confirmatory analysis. This suggests that penalization on

model parameters may be helpful in reducing the number of parameters to estimate and thus

making the estimation more stable. We leave this for the future research. Another interest-

ing future research is the DIF analysis involving multiple covariates and even interactions

between the latent traits and covariate. For example, one’s probability of response would be

dependent on a combination of his or her characteristics such as gender, race, income group,

and ethnicity. Hence, it would be interesting to study the estimation methods for scenario

with a combination of binary predictor (e.g. gender) and multiple categorical covariate (e.g.

race or ethnicity). In addition, estimation problem with interaction between latent traits

θi and covariate (e.g. Gi) needs further study. Discussions on the model identifiability and

necessary conditions to achieve consistent estimation would be necessary. It would be in-

teresting to see if the Gaussian Variational approach can be developed as the estimating

algorithm.
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Appendix of Chapter IV

In this section, we provide the detailed derivation of the estimation procedures which are

presented in Chapter IV. In Appendix A, we present the detailed derivation of the E and M

steps for the proposed GVEM method for M4PL model. Appendix B presents the detailed

derivation of the Gaussian Variational regularized estimation procedure for the DIF analysis

in M2PL model.

IV.A Derivation of EM steps for M4PL

With the optimal choice of variational distributions qθ and qz, we have the closed form

expression of variational lower bound to the marginal log-likelihood.

E(A,B,C,D) :=
N∑
i=1

∫
θi

[
J∑
j=1

∑
Zij

l(Yi,θi,Zi, ξi | A,B,C,D)qz(Zij)
]
qθ(θi)dθi

To evaluate this, we first need to choose optimal variational distributions that would give us

a nice closed form solution.
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Choice of qθ The expectation of the variational lower bound with respect to variational

density of Zij is

EZ(A,B,C,D)

=
N∑
i=1

J∑
j=1

∑
Zij

l(Yi,θi,Zi, ξi | A,B,C,D)qz(Zij)

=
N∑
i=1

[
J∑
j=1

Yij{Ez[Zij] log dj + (1− Ez[Zij]) log cj}+
J∑
j=1

(1− Yij)Ez[log(1− dZijj c
1−Zij
j )]

+ logP (θi) +
J∑
j=1

Ez[Zij](α>j θi − bj) +
J∑
j=1

log eξi,j

1 + eξi,j
+

J∑
j=1

1
2(bj −α>j θi − ξi,j)

−
J∑
j=1

η(ξi,j){(bj −α>j θi)2 − ξ2
i,j}
]

Then we can show that variational distributions qθ follows the following form;

log qθ(θi) ∝
J∑
j=1

(Ez[Zij]−
1
2)α>j θi −

J∑
j=1

η(ξi,j)(bj −α>j θi)2 − 1
2θ
>
i Σ−1

θ θi

Thus, the optimal choice of is qθ(θi) ∼ N(θi | µi,Σi) with

µi = Σi ×
J∑
j=1
{2η(ξi,j)bj + Ez[Zij]−

1
2α
>
j } (IV.A.1)

Σi = Σ−1
θ + 2

J∑
j=1

η(ξi,j)α>j αj (IV.A.2)

where we denote Ez[Zij] = sij in the following derivation.
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Choice of qz The expectation of variational lower bound with respect to θi is

Eθ(A,B,C,D)

=
N∑
i=1

J∑
j=1

∫
l(Yi,θi,Zi, ξi)qθ(θi)dθi

=
N∑
i=1

[
J∑
j=1

Yij{Zij log dj + (1− Zij) log cj}+
J∑
j=1

(1− Yij) log(1− dZijj c
1−Zij
j )

+Eθ[logP (θi)] +
J∑
j=1

Zij(α>j Eθ[θi]− bj) +
J∑
j=1

log eξi,j

1 + eξij

+
J∑
j=1

1
2(bj −α>j Eθ[θi]− ξij)−

J∑
j=1

η(ξi,j){Eθ[(bj −α>j θi)2]− ξ2
i,j}
]

Then, posterior distribution of Zij has the following form;

log qz(Zij) ∝ YijZij log(dj) + Yij(1− Zij) log(cj) + (1− Yij) log(1− dZijj c
1−Zij
j )

+Zij(α>j Eθ[θi]− bj)

= YijZij log(dj) + Yij(1− Zij) log(cj) + (1− Yij){Zij log(1− dj) +

(1− Zij) log(1− cj)}+ Zij(α>j Eθ[θi]− bj)

= Zij{Yij log(dj) + (1− Yij) log(1− dj) +α>j Eθ[θi]− bj}

+(1− Zij){Yij log(cj) + (1− Yij) log(1− cj)}

This implies that the optimal choice of the variational density is qz(Zij) ∼ Bernoulli(sij)

where

sij = 1
1 + exp

[
Yij log( cj

dj
) + (1− Yij) log( 1−cj

1−dj )−α
>
j Eθ[θi] + bj

] (IV.A.3)
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E step With optimally chosen qz and qθ, we can derive the closed form variational lower

bound.

E[A,B,C,D, ξ]

=
N∑
i=1

[
J∑
j=1

Yij{Ez[Zij] log dj + (1− Ez[Zij]) log cj}+
J∑
j=1

(1− Yij){Ez[Zij] log(1− dj)

+(1− Ez[Zij]) log(1− cj)}+ Eθ[logP (θi)] +
J∑
j=1

Ez[Zij](α>j Eθ[θi]− bj) +
J∑
j=1

log eξi,j

1 + eξij

+
J∑
j=1

1
2(bj −α>j Eθ[θi]− ξij)−

J∑
j=1

η(ξi,j){Eθ[(bj −α>j θi)2]− ξ2
i,j}
]

=
N∑
i=1

J∑
j=1

[
Yij{sij log dj + (1− sij) log cj}+ (1− Yij){sij log(1− dj) + (1− sij) log(1− cj)}

]

−
N∑
i=1

1
2Tr(Σ

−1
θ [Σi + µiµ

>
i ]) + N

2 log |Σ−1
θ |+

N∑
i=1

J∑
j=1

[
sij(α>j µi − bj) + log eξi,j

1 + eξij

+1
2(bj −α>j µi − ξij)− η(ξi,j){b2

j − 2bjα>j µi +α>j [Σi + µiµ
>
i ]αj − ξ2

i,j}
]

M step We update model parameters by taking derivatives of variational lower bound and

setting them equal to zero. First, the updating rule for αj can be derived as follows. Here,

Qj denotes the variational lower bound for the jth item only. By setting the derivative of

the variational lower bound with respect to αj as zero, we get

∂Qj(αj)
∂αj

=
N∑
i=1

[
(sij −

1
2)µ>i + 2bjη(ξi,j)µ>i − 2η(ξi,j)[Σi + µiµ

>
i ]αj

]
.

Then, αj is updated according to

αj = 1
2

[
N∑
i=1

η(ξi,j)[Σi + µiµ
>
i ]
]−1 N∑

i=1

[
{sij −

1
2 + 2bjη(ξi,j)}µ>i

]
.
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Similarly for bj, we set the following derivative equal to zero.

∂Qj(bj)
∂bj

=
N∑
i=1

[−sij + 1
2 − η(ξi,j){2bj − 2α>j µi}] = 0

Thus, we update bj by

bj =
∑N
i=1[2η(ξi,j)α>j µi − sij + 1

2 ]∑N
i=1 2η(ξi,j)

For cj, we have

∂Qj(cj)
∂cj

=
N∑
i=1

[
Yij(1− sij)

1
cj
− (1− Yij)(1− sij)

1
1− cj

]
= 0

We update cj according to

cj =
∑N
i=1 Yij(1− sij)∑N

i=1(Yij − sijYij) +∑N
i=1(1− Yij)(1− sij)

=
∑N
i=1 Yij(1− sij)∑N
i=1(1− sij)

Lastly for dj

∂Qj(dj)
∂dj

=
N∑
i=1

[
Yijsij

1
dj
− (1− Yij)sij

1
1− dj

]
= 0

Thus, we update dj according to

dj =
∑N
i=1 Yijsij∑N
i=1 sij

Σθ and ξi,j have the same updating rule as in the EM steps for M3PL.
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IV.B Derivation for DIF analysis

The derivation of the variational lower bound of the expected log likelihood and the optimal

variational distributions qi(θi) are simply extensions of the derivations shown for M2PL

models and thus are straightforward to derive. Hence, in this Appendix we start directly

with the EM steps.

E-step Similarly as presented for M2PL model, we evaluate the closed-form lower bound

of the expected log likelihood with respect to the variational distributions qθ’s under the

model (IV.14) as follows;

E(A,B,β1, ξ)

:=
N∑
i=1

∫
θi

[
l(Yi,θi, ξi | A,B,β1)

]
qθ(θi)dθi

=
N∑
i=1

J∑
j=1

(
log exp(ξi,j)

1 + exp(ξi,j)
+ Yij(α>j Ei[θi]− bj + β1jGi) + 1

2(bj −α>j Ei[θi]− β1jGi − ξi,j)

−η(ξi,j){Ei[(bj −α>j θi − β1jGi)2]− ξ2
i,j}
)

+ N

2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σi + µiµ

>
i ])

=
N∑
i=1

J∑
j=1

(
log exp(ξi,j)

1 + exp(ξi,j)
+ Yij(α>j µi − bj + β1jGi) + 1

2(bj −α>j µi − β1jGi − ξi,j)

−η(ξi,j){b2
j − 2bjα>j µi +α>j [Σi + (µi)(µi)>]αj + β2

1jGi − 2bjβ1jGi

+2β1jGiα
>
j µi − ξ2

i,j}
)

+ N

2 log |Σ−1
θ | −

N∑
i=1

1
2Tr(Σ

−1
θ [Σi + µiµ

>
i ])

where Eθ[θi] = µi and Cov[θi] = Σi, which are the model parameters for the variational

distributions qθ(θi).

M-Step In this step, we maximize the E(A,B,β1, ξ) to update the model parameters.

This is simply achieved by setting the derivative of E(A,B,β1, ξ) with respect to (A,B,β1, ξ)

to be zero, respectively.

First, consider the αj. The derivative of the variational lower bound w.r.t. αj is as
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follows;

∂E(A,B,β1, ξ)
∂αj

=
N∑
i=1

(Yij −
1
2)µ>i + 2bjη(ξi,j)µ>i − 2η(ξi,j)[Σi + µiµ

>
i ]αj

−2β1jGiη(ξi,j)(µi)>.

Setting it equal to zero, we get the updating rule for αj.

αj = 1
2

[ N∑
i=1

η(ξi,j)(Σi + µiµ
>
i )
]−1 N∑

i=1

(
Yij −

1
2 + 2bjη(ξi,j)− 2β1jGiη(ξi,j)

)
µ>i .

Now similarly, we take derivative with respect to bj.

∂E(A,B,β1, ξ)
∂bj

=
N∑
i=1

(−Yij + 1
2 − η(ξi,j){2bj − 2α>j µi − 2β1jGi}) = 0

This implies that bj is updated according to

bj = 1
2

[ N∑
i=1

η(ξi,j)
]−1 N∑

i=1

(1
2 − Yij + 2η(ξi,j){α>j µi + β1jGi + β>2jµiGi}

)
.

To update the coefficient vector β1 with L1 regularization, we first evaluate first and

second order derivatives of the variational lower bound with respect to β1j, which are

∂E(A,B,β1, ξ)
∂β1j

=
N∑
i=1

(YijGi −
1
2Gi − η(ξi,j){2β1jGi − 2bjGi + 2Giα

>
j µi})

and
∂2E(A,B,β1, ξ)

∂β2
1j

= −
N∑
i=1

2η(ξi,j)Gi.

By the coordinate descent algorithm by Friedman et al. (2010), β1j is updated as follows;

β1j = −
S(−∂2E(A,B,β1,ξ)

∂β2
1j

× β1j + ∂E(A,B,β1,ξ)
∂β1j

, λ)
∂2E(A,B,β1,ξ)

∂β2
1j
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where λ is the sparsity parameter of choice and the function S is a soft threshold operator

such that S(δ, λ) = sign(δ)(|δ| − λ)+. Evaluating above, we can show that each of the β1j is

updated iteratively according to the following updating rule;

β1j =
S

(∑N
i=1 YijGi − 1

2Gi − η(ξi,j){2Giα
>
j µi − 2bjGi}, λ

)
∑N
i=1 2η(ξi,j)Gi

for j = 1, . . . , J .
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