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ABSTRACT

Reduced order models (ROMs) are finite systems of ordinary differential equations
(ODEs) that approximate the dynamics of the governing partial differential equations. This
work considers ROMs for Rayleigh’s 1916 mathematical model of thermal convection. A
hierarchy of reduced models is developed that satisfy energy, temperature, and vorticity
balance laws to promote agreement with the physics of thermal convection. These balance
laws are generalized from idealized versions considered by previous authors, and new
criteria are established for the vorticity balance in the general case. Each model in the
hierarchy is an extension of the Lorenz equations and includes Fourier modes capable of
producing zonal flow—horizontal mean flow that vertically shears the fluid.

Upper bounds on time-averaged heat transport are obtained for several models in the
hierarchy. Bounds for the ODE models are derived by constructing auxiliary functions such
that certain polynomial expressions are nonnegative. Nonnegativity is enforced by requiring
these polynomial expressions to admit sum-of-squares representations. Polynomial auxiliary
functions subject to such constraints can be optimized computationally with semidefinite
programming, minimizing the resulting bound. Upper bounds are compared to particular
solutions to the ODEs obtained using bifurcation analysis and numerical integration. An
eight-ODE model in the hierarchy is explored in detail, revealing sharp or nearly sharp
bounds on mean heat transport for numerous values of the model parameters, the Rayleigh
and Prandtl numbers and the domain aspect ratio. In all cases where the Rayleigh number
is small enough for the ODE models to closely approximate the physics of the governing
equations, mean heat transport is maximized by the steady states that emerge from the first
instability of the static state. These equilibria do not exhibit zonal flow, suggesting that this
type of flow does not enhance heat transport. Analytical parameter-dependent bounds are
derived for the eight-ODE model with quadratic auxiliary functions, and they are sharp for
sufficiently small Rayleigh numbers.

xi



CHAPTER 1

Rayleigh–Bénard Convection

1.1 Introduction

Thermal convection is a fundamental process in fluid dynamics, consisting of buoyancy-
driven flow in the presence of an imposed temperature gradient. Convection occurs when
warmer, less dense fluid lies below cooler, denser fluid and the resulting buoyancy forces
are large enough to exceed the resistance provided by the fluid’s viscosity. This process is
realized in a wide variety of physical systems. Atmospheric convection, induced by radiative
heating from the Sun, drives global wind and weather patterns [82]. Temperature gradients
inside the Earth cause large-scale convection in the mantle, producing continental drift and
generating the Earth’s magnetic field [40]. Heat is transported towards the outer layers of
stars in the convection zone [69]. Convective heat transport is also utilized in a variety of
engineering applications.

The basic mathematical model describing natural thermal convection is Rayleigh–Bénard
convection, and was first proposed by Lord Rayleigh [58]. In Rayleigh’s original model, a
fluid is contained between two infinite-length, horizontal, impermeable boundaries, and a
temperature gradient is imposed within the fluid by fixing the temperatures along the top
and bottom of the domain, with the higher temperature along the lower boundary. When the
temperature difference is sufficiently small, the physics are simple: the fluid remains still,
and thermal energy is transported only by conduction. At higher temperatures, buoyancy
overcomes viscous damping, and the fluid develops a regular pattern of counter-rotating
“convection cells” that actively transfer heat from the lower boundary. As the temperature is
raised further, the flow in the bulk eventually becomes turbulent.
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Figure 1.1: Temperature profiles for turbulent Rayleigh–Bénard convection at one instant in time obtained by
numerical simulations performed by Hannah L. Swan, as depicted in [12]. At high temperatures, hot and cold
plumes emerge from thermal boundary layers and enhance heat transport across the domain.

1.2 The Boussinesq equations

Consider a Newtonian fluid with density ρ and dynamic viscosity µ, subject to gravita-
tional acceleration g aligned with the vertical (z) axis. The velocity, v(x, t), and pressure,
p(x, t), are governed by the Navier–Stokes equations [14]:

(∂t + v · ∇) (ρv) = −∇p+ µ∇2v − ρgẑ (1.1)

∂tρ+∇ · (ρv) = 0. (1.2)

Suppose the fluid is encased above and below by parallel impermeable walls. A temperature
gradient is supplied by heating the lower boundary to a temperature Tb, while the upper
boundary is held fixed at a temperature Tt. The temperature T (x, t) of the fluid is governed
by an advection-diffusion equation [14], with diffusion modulated by the coefficient of
thermal diffusivity, κ:

∂tT +∇ · (vT ) = κ∇2T. (1.3)

Rayleigh considered fluid dynamics in the Boussinesq approximation1, where density
variations are considered negligible except in the term representing the buoyancy force, ρgẑ.
In this term, the density takes the form ρ = ρ0 (1− α(T − Tb)) where ρ0 is the reference
density and α is the coefficient of thermal expansion. On the left-hand sides of (1.1) and (1.2),
the density is replaced by the reference density ρ0. Under the Boussinesq approximation,

1The Boussinesq approximation [70], or Oberbeck–Boussinesq approximation, is commonly employed
in studies of Rayleigh–Bénard convection when density variations are small in comparison to the reference
density of the fluid.
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the material parameters ρ0, µ, α and κ are treated as constants. Making these simplifications
reduces the Navier–Stokes equations to

∂tv + v · ∇v = − 1

ρ0

∇p+ ν∇2v − (1− α(T − Tb))g ẑ, (1.4)

∇ · v = 0, (1.5)

∂tT + v · ∇T = κ∇2T, (1.6)

where ν := µ/ρ0 is the kinematic viscosity.
Rayleigh–Bénard convection can be modeled in two or three spatial dimensions, but

the focus of this thesis is on two-dimensional convection. This case is of interest in part
due to its simplicity. As the temperature gradient of a fluid at rest is increased, the first
instability that develops is two-dimensional [45]. Even when the flow becomes turbulent so
that three-dimensional flow is expected, simplifying the problem to two dimensions may
help to understand the mechanisms underlying turbulent convection. We therefore consider
a fluid contained in a rectangular domain (x, z) ∈ [0, πAd]× [0, πd] of height πd and aspect
ratio A. The velocity field in two dimensions is v = ux̂ +wẑ and equation (1.5) implies that
the flow is incompressible. Two-dimensional incompressible flows admit a stream function
whose spatial derivatives are the components of the velocity field. Here we define the stream
function as

∂zψ := u, ∂xψ := −w. (1.7)

Assume that ψ has continuous second order partial derivatives so that the continuity equa-
tion (1.5) is automatically satisfied. The evolution of ψ is determined by taking the curl
of the momentum equation (1.4). Letting the Jacobian of two functions be given by
{f, g} = ∂xf∂zg − ∂zf∂xg, (1.4) becomes

∂t∇2ψ − {ψ,∇2ψ} = ν∇4ψ − gα∂xT. (1.8)

The energy equation (1.6) may also be expressed in simpler form. Let Tc(z) be the linear
conduction profile satisfied by a fluid in the static state, defined in dimensional form as

Tc(z) := Tb −
∆T

πd
z, (1.9)

3



and let θ be the negative deviation from the conduction state:

θ := Tc(z)− T. (1.10)

Hence (1.6) becomes:

∂tθ − {ψ, θ} = κ∇2θ +
∆T

πd
∂xψ. (1.11)

To express the evolution equations for ψ and θ in dimensionless form, we scale length by d,
time by d2/κ, and the stream function by κ. The remaining dimensional quantities form two
dimensionless groups. These are typically chosen as the Prandtl number, σ, and Rayleigh
number, Ra, given by:

σ =
ν

κ
, Ra =

gα(πd)3∆T

νκ
. (1.12)

The Rayleigh number is a distinguished dimensionless group for thermal convection because
it determines the stability of the conduction state. It is convenient to work with a modified
Rayleigh numberR = Ra/π4 to avoid extra factors of π in the dimensionless equations, and
to scale the temperature by ∆T/(πR). Therefore, the dimensionless equations governing
Rayleigh–Bénard convection in two dimensions become [22]

∂t∇2ψ − {ψ,∇2ψ} = σ∇4ψ + σ∂xθ

∂tθ − {ψ, θ} = ∇2θ +R∂xψ.
(1.13)

These equations are often called the Boussinesq equations (or Oberbeck–Boussinesq equa-
tions) and we do so throughout this thesis.

1.3 Boundary conditions

Boundary conditions must be specified for (1.13) so that the system of partial differential
equations (PDEs) is well-posed. The vertical component of velocity vanishes along the
impermeable horizontal walls at z = 0 and z = π. Another boundary condition is required
to fully specify the velocity field; the most common choices are stress-free and no-slip

conditions. In the former, the fluid does not impart a shear stress on the wall, meaning that
the normal derivative of the horizontal velocity must vanish. Together, the stress-free and
impermeability conditions imply

ψ, ∂zzψ = 0, at z = 0, π. (1.14)

4



The impermeability condition only requires ψ to be constant along the boundaries, but
without loss of generality we demand that this constant is zero along each boundary by
choosing the constant of integration implied in the definition of ψ.2 Stress-free conditions are
employed in this thesis in part because it is straightforward to construct Fourier series whose
basis elements satisfy these boundary conditions. This is advantageous for the construction
of reduced order models presented in Chapter 2 that are studied throughout this thesis. If
the stress-free conditions are replaced by no-slip boundary conditions, this requires that the
fluid is at rest along the boundary. The stream function then satisfies

ψ, ∂zψ = 0, at z = 0, π. (1.15)

There are a few options of boundary conditions for the temperature as well. We employ
fixed-temperature (isothermal) boundary conditions, meaning that the temperature is con-
stant along the walls. Since θ is the deviation from the linear temperature profile, it vanishes
along the isothermal horizontal boundaries:

θ = 0, z = 0, π. (1.16)

T = 1, θ = 0, ψ = ∇2ψ = 0

T = 0, θ = 0, ψ = ∇2ψ = 0

x

z

0

π

0 Aπ

Figure 1.2: Schematic of the Rayleigh–Bénard domain with isothermal, stress-free walls at the top and bottom
boundaries. All variables are periodic in x with period Aπ.

Another option is to impose fixed-flux conditions that specify the derivative of temperature
normal to the boundary, but these conditions will not be explored in this thesis.

2If ψ takes different constant values along the two horizontal walls, (1.7) implies that the fluid has a net
horizontal flux through any vertical strip. In an inertial reference frame, this flux is zero and so without loss of
generality, ψ takes the same value along both boundaries.
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It is common in studies of Rayleigh–Bénard convection to define periodic boundary
conditions in the horizontal direction. We do so for all models constructed in this thesis,
letting ψ and θ be periodic in x with period Aπ. Periodic domains are physically relevant in
a variety of circumstances, including toric geometries and domains where the aspect ratio is
sufficiently large. Other considerations can be made for fully enclosed domains, but we do
not explore this type of geometry.

1.4 Heat transport and the Nusselt number

Rayleigh–Bénard convection is a mechanism of heat transport, and the dependence of
the heat flux through the layer on the applied temperature gradient is of interest. To deduce
this relationship, one typically seeks a relationship between the temperature difference,
given in dimensionless form by the Rayleigh number, and the time-averaged rate of heat
transport for solutions to (1.13). The dimensionless parameter that expresses heat transport
is the Nusselt number, Nu, defined as the ratio of total heat transport, averaged over volume
and infinite time, to the heat transport in the purely conductive state. Define the volume
average as

〈f〉 :=
1

Aπ2

∫ π

0

∫ Aπ

0

f(x, z) dx dz, (1.17)

the horizontal average as

〈f〉x :=
1

Aπ

∫ Aπ

0

f(x, z, t) dx, (1.18)

and the infinite-time average as

f = lim
τ→∞

1

τ

∫ τ

0

f(τ) dτ, (1.19)

assuming the limit exists. In the variables ψ and θ, the Nusselt number is

Nu = 1 + 1
R〈θ∂xψ〉. (1.20)

Therefore, Nu = 1 when the fluid is in the purely conductive state. The Nusselt number
can be equivalently expressed with various other spatial integrals that have the same value
as (1.20) when averaged over infinite time. One such alternative is the ratio of total heat
transport at any fixed height z ∈ [0, π], averaged horizontally and over time, to conductive
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transport. This version of Nu is expressed as [22]:

Nu(z) = 1 + 1
R

[
∂z〈θ〉x(z) + 〈θ∂xψ〉x(z)

]
. (1.21)

For any statistically steady flow, this definition of Nu is independent of z and equivalent
to (1.20). In either case, the Nusselt number generally depends on the choice of initial
condition. Therefore one may consider the Nusselt number along particular solutions to
(1.13), or seek its maximum or minimum among all flows satisfying the boundary conditions.

A major theoretical challenge is to determine the relationship between the Rayleigh
number and Nusselt number for a fluid with Prandtl number σ, in a domain with aspect ratio
A. It is often presumed that in the large-Ra limit, the Nusselt number along any statistically
steady flow is asymptotic to a power function of Ra, that is

Nu ∼ σpRaq, Ra→∞, (1.22)

for some scaling exponents p and q. A major unsolved problem in the theory of thermal
convection is to determine the value of these exponents (if such a relationship exists).
Numerous investigators have addressed this problem, and a brief history of such works is
presented below.

Malkus [43] and Priestley [56] each proposed that Nu ∼ Ra1/3 asR →∞. This follows
from the scaling argument that for fully developed, high-Ra flows at large aspect ratio, the
time-averaged vertical heat flux is independent of the layer height. Another dimensional
argument was offered by Spiegel [68, 69], who hypothesized Nu ∼ (σRa)1/2. Spiegel
postulated that at large-R, hot and cold plumes originating from the boundary layer would
approach the fluid’s free fall velocity. In this so-called “ultimate” regime, transport across
the bulk, rather than across thermal boundary layers, is the rate-limiting process.

Numerous studies have been conducted to determine the scaling law at largeR, including
laboratory experiments [64, 50, 51, 78] and direct numerical simulations [71, 34, 33] .
Recent results suggest that the 1/3 scaling law persists over at least five orders of magnitude
(from Ra ≈ 1010 to 1015) [33, 12]. Whether a transition to the ultimate regime postulated
by Spiegel occurs is yet to be determined.

Both simulations and experiments introduce uncertainties that cannot be completely
controlled. An alternative theoretical approach is to derive upper or lower bounds on
Nu(Ra, σ, A) directly from the equations of motion. Variational methods are used in [81, 79],
where the maximal heat transport is rigorously bounded for two dimensional Rayleigh–
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Bénard convection with stress-free isothermal boundaries. The tightest variational bounds
establish that q ≤ 5/12 in (1.22) [79]. This does not rule out the q = 1/2 scaling in
the general case, but it implies that if the ultimate regime of convection exists, it must
either occur for domains with no-slip boundaries or include fluid motions that are fully
three-dimensional.

1.5 Outline of the dissertation

The focus of this dissertation is to study the heat transport properties of reduced order
models of Rayleigh–Bénard convection. Reduced order models are discussed in Chapter 2,
including the derivation of such models and a discussion of the properties that result
in distinguished convection models. In Chapter 3, we study particular solutions of a
distinguished eight-ODE model of Rayleigh-Bénard convection first studied by Gluhosvky,
et al. [21]. Chapter 4 outlines a recently developed technique that provides bounds on time-
averaged quantities for dynamical systems. This method is applied to produce upper bounds
on heat transport for Gluhovsky’s eight-ODE model in Chapter 5. Numerical bounds are
constructed using computational techniques in §5.1, and an analytical approach is employed
in §5.2 to establish rigorous upper bounds. The results in Chapters 3 and 5, along with
Appendices A, B and C are adapted from [52]. Chapter 6 explores presents upper bounds
on the Nusselt number for some reduced models with dimension larger than eight, and
compares these bounds to various particular solutions. The work of Appendix D is tangential
to this work, and explores a technique for diagnosing the accuracy of numerical simulations
of the incompressible Euler equations.

Most of the work in this thesis was performed under the guidance of Charles Doering,
William Schultz, and David Goluskin, who also provided editing throughout. This research
was supported in part through computational resources and services provided by Advanced
Research Computing at the University of Michigan, Ann Arbor.
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CHAPTER 2

Reduced Order Convection Models

2.1 Introduction

A substantial body of research has been devoted to studying the dependence of the heat
transport on the Rayleigh number in Rayleigh–Bénard convection. Even so, there remains a
gap between the rigorous upper bounds on the Nusselt number derived from the equations of
motion, and the maximal heat transport obtained from laboratory experiments and numerical
simulations. As a complementary approach, one may construct reduced order models, or
ROMs. These are finite systems of ordinary differential equations (ODEs) derived from the
governing equations. Ideally, ROMs should approximate the dynamics of fluid convection.
Various ODE models have been derived for Rayleigh–Bénard convection, beginning with
the atmospheric model of Saltzman [60] that inspired the seminal study by Lorenz of a three-
dimensional ROM now known as the Lorenz equations [41]. Following the work of Lorenz,
many other ROMs have been studied as simplified convection models [32, 73, 74, 29, 21].
This chapter provides details on the construction of reduced order models for 2D Rayleigh–
Bénard convection with stress-free isothermal boundaries in a horizontally periodic domain.

2.2 Galerkin expansions and low-order models

The Lorenz equations are constructed using a three-term Fourier expansion [41]:

ψ(x, z, t) =
√

2 k2+1
k
X(τ) sin(kx) sin(z), (2.1)

θ(x, z, t) =
√

2 (k2+1)3

k2
Y (τ) cos(kx) sin(z) + (k2+1)3

k2
Z(τ) sin(2z), (2.2)

where k := 2/A is the fundamental horizontal wavenumber for a domain of aspect ratio A,
and τ = (k2 + 1)t. Substituting (2.1)–(2.2) into the Boussinesq equations and projecting the
result onto the three Fourier modes in the expansions for ψ and θ produces a system of ODEs

9



for the evolution of the coefficient functions X, Y and Z. In doing so, some terms outside
the span of the original Fourier modes are discarded, and therefore this type of system is
sometimes called a truncated model. Letting β = 4/(k2 + 1) and ρ = Rk2/(k2 + 1)3 so
that the onset of convection corresponds to ρ = 1, we obtain the well-known system

Ẋ = −σX + σY,

Ẏ = −Y +X(ρ− Z),

Ż = −βZ +XY.

(2.3)

Although the Lorenz equations are a simplified model of Rayleigh’s PDE, the ODE system
correctly predicts the minimal Rayleigh number where convection can occur and accurately
models the physics of 2D Rayleigh–Bénard convection near the onset of convection.1

Lorenz discovered that under certain conditions, solutions of the Lorenz equations approach
a chaotic attractor that is now the prototype for chaotic behavior in continuous dynamical
systems.

The derivation of the Lorenz equations is an example of a general technique known as
Galerkin expansion, where dependent variables are expanded in terms of an orthogonal set
of basis functions that each satisfy the boundary conditions, producing an ROM. Stress-free
boundaries are chosen for models constructed in this work in part because this allows
expansion in terms of the Fourier basis. Square-integrable functions ψ and θ satisfying the
boundary conditions are given by the series

ψ(x, z, t) =
∞∑
m=0

∞∑
n=1

(
amn(t) cos(mkx) + bmn(t) sin(mkx)

)
sin(nz),

θ(x, z, t) =
∞∑
m=0

∞∑
n=1

(
cmn(t) cos(mkx) + dmn(t) sin(mkx)

)
sin(nz).

(2.4)

The subscripts on the coefficients in the above expansions correspond to the indices on
the horizontal and vertical mode numbers of the associated Fourier modes. Inserting the
expansions (2.4) into the Boussinesq equations (1.13) and projecting the resulting expression
onto each basis element results in a system of ordinary differential equations describing
the time evolution of the coefficient functions. Practical applications require that the series
expansions be truncated to some finite number of terms in (2.4), resulting in a system of

1The onset of convection corresponds to the first instability of the zero equilibrium as the Rayleigh number
is raised.
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ODEs that approximates the full PDE. Nonlinear interactions between the Fourier modes
produce terms outside the span of the modes in the truncated model; these excess terms are
discarded when projecting onto only the included modes.

2.3 Model construction

The series (2.4) for ψ and θ represent a class of functions that are equivalent up to a
horizontal phase shift. Without loss of generality, we consider solutions of fixed horizontal
phase by setting a11 ≡ 0, as in the derivation of the Lorenz equations. This restricts the
frame of reference such that the pair of steady convection rolls present at the onset of
convection is symmetric about the center of the domain. Making this choice determines
the phase of all terms in (2.4) to maintain consistency upon substitution into the governing
equations. For example, it immediately implies that d11 ≡ 0 since this would appear on the
right-hand side of the a11 equation. As a result of this convention, exactly one coefficient
remains in each term of the Fourier expansions for ψ and θ. Letting ψmn and θmn be the
remaining coefficients under our convention, these new coefficients are related to those in
(2.4) as shown in Table 2.1. One consequence of imposing this phase convention is that all
modes of the form ψ0n (also called shear modes) must have odd vertical wavenumber, while
modes of the form θ0n must have even vertical wavenumber.

Table 2.1: Coefficients in the expansions for ψ and θ satisfying our phase convention.

m+ n even m+ n odd

ψmn bmn amn
θmn cmn dmn

The modes included in (2.4) are capable of capturing the dynamics of zonal flow, where
mean horizontal flows near the top and bottom boundaries vertically shear the fluid [22].
Zonal flow has been observed in experiments of turbulent convection [35] and occurs in
toroidal plasmas [11] and planetary atmospheres [5]. Interest in such mean horizontal flows
motivated Howard and Krishnamurti [32] to augment the Lorenz equations by including the
ψ01, ψ12 and θ12 modes. That model helped illuminate a mean-flow instability but is not
suitable for studying heat transport even as a low-order model because some of its trajectories
are unbounded. Another issue with this model is that expressions for time-averaged heat
transport such as (1.20) and (1.21) that are equivalent in the PDE dynamics give expressions
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that generally differ in the ODE dynamics once projected onto the chosen set of six modes.
Thiffeault and Horton [73, 74] found that adding the θ04 mode restores boundedness of
trajectories and equality between the two truncated versions of Nu, (1.20) and (1.21), as
well as conservation of mechanical energy in the dissipationless limit ν, κ→ 0. Separately,
Hermiz et al. [29] found that adding the ψ03 mode results in an ODE system whose solutions
conserve the truncated version of total vorticity in the inviscid limit. These ideas culminated
in an eight-dimensional model introduced by Gluhovsky et al. [21], who confirmed that
including the θ04 mode added by Thiffeault and Horton [73, 74] and the ψ03 mode added by
Hermiz et al. indeed combines the benefits of both. This system is called the HK8 model
because it is the minimal extension of the six-mode model that restores these basic integral
identities of the PDE. It is presented in §2.5, and studied in detail in Chapters 3 and 5.

We now describe the general form of reduced order convection models satisfying the
above properties, presented previously in [76, 73]. Suppose a low-order model is defined by
selecting a finite number of modes from the expansions of ψ and θ. Let Mψ and Mθ be the
sets of ordered pairs (m,n) corresponding to the indices of modes included in the truncated
expansions for ψ and θ, respectively. Galerkin expansion yields the following system of
ODEs [73]:

ψ̇mn = −σρmnψmn + (−1)m+nσ
mk

ρmn
θmn +

k

ρmn
Qmn, (2.5)

θ̇mn = −ρmnθmn + (−1)m+nR(mk)ψmn + kQ̃mn, (2.6)

where ρmn := (mk)2 + n2 are the eigenvalues of −∇2, and Qmn, Q̃mn are given by the
sum of all quadratic terms in the reduced order model. The quadratic terms arise from the
nonlinear terms of (1.13) and their exact expressions are provided below. For fixed (m,n),
each term in Qmn is proportional to ψpq ψrs whose modal pairs lie in the set

Sψ(m,n) = {(p, q), (r, s) ∈Mψ : m = |p± r|, n = |q ± s|, (p, q) > (r, s)}, (2.7)

where (p, q) > (r, s) is the lexicographical ordering, defined by

(p, q) > (r, s) ⇐⇒ p > r or (p = r and q > s). (2.8)

Writing Sψ in this way ensures each term in Qmn is associated with a unique choice of the
four indices in Sψ. Similarly, the terms in Q̃m are proportional to ψpq θrs, represented by the
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set
Sθ(m,n) = {(p, q), (r, s) ∈Mθ : m = |p± r|, n = |q ± s|}. (2.9)

No ordering is needed on the pairs in Sθ since commuting the modal pairs yields a distinct
term in the sum. The quadratic terms are then expressed as

Qmn =
∑

Sψ(m,n)

µ1

d

[
BpmrBsnq(ps)−Bqns(qr)

]
(ρpq − ρrs)ψpqψrs, (2.10)

Q̃mn =
∑

Sθ(m,n)

µ2

d

[
BpmrBsnq(ps)− µ3BqnsBrpm(qr)

]
ψpqθrs, (2.11)

where B, µ1, µ2, µ3 and d are defined by

Bijk =

−1, i = j + k,

1, else,
(2.12)

µ1 =


Bpmr, (m+ n) even, (r + s) odd,

−Bpmr, (m+ n) odd, (r + s) odd,

−1, else,

(2.13)

µ2 =



µ3Brpm, (m+ n) even, (r + s) odd,

Bmpr, (m+ n) odd, (r + s) even,

Bpmr, (m+ n) even, (r + s) even,

1 else,

(2.14)

µ3 =

−1, m = 0,

1, else,
(2.15)

d =

2, p = 0 or r = 0,

4, else.
(2.16)

Given an ROM of the form (2.5)–(2.6), a version of the Nusselt number can be defined
by projecting either version of Nu described in §1.4 onto Mψ ∪Mθ. We denote the Nusselt
number of each reduced model by N to distinguish it from the PDE quantity Nu that it
approximates. When the truncated Fourier series are inserted into the volume-averaged
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definition of Nu (1.20), orthogonality reduces the expression to

N = 1 +
1

4R

∑
(m,n)∈Mψ∩Mθ

(−1)m+n(mk)ψmnθmn. (2.17)

Alternatively, deriving the expression for N from (1.21) yields

N = 1 +
1

R

∑
(0,2n)∈Mθ

(2n) θ0,2n. (2.18)

Whether the two definitions of N are equivalent in the long-time average depends on the
choice of modes in the truncation model. Equivalence of these expressions is a desirable
property for ROMs because an analogous result holds for the expressions (1.20) and (1.21)
in the Boussinesq equations. Motivated by the study of optimal heat transport in Rayleigh–
Bénard convection, we seek to determine the maximum Nusselt number, N∗, given by

N∗ := max
x(t)

N, (2.19)

where the maximization is over all solutions x(t) for a given reduced order model, and
generally depends on the parametersR, σ and k.

2.4 Conservation properties

Constructing a Galerkin-truncated model of the Boussinesq equations requires selecting
a finite set of modes in the Fourier expansions for ψ and θ. There is no universally accepted
way to choose which modes to include, although a few guidelines have been established
to promote consistency with the Boussinesq equations. Authors in previous studies of low-
order models [76, 73, 29, 21] have suggested imposing criteria based on certain conservation
laws derived from the Boussinesq equations. In §2.4.1 we examine the restrictions on
mode selection imposed by the conservation of energy, temperature and vorticity in the
dissipationless limit ν, κ→ 0, and in §2.4.2 we show that these restrictions do not change
if one considers the analogous integral balance laws derived from the full Boussinesq
equations.
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2.4.1 Conservation laws in the dissipationless limit

The dimensionless form of the Boussinesq equations (1.13) is not amenable to taking
the dissipationless limit, since some variable scalings depend on ν and κ. Instead, we
nondimensionalize the equations by scaling length by d, time by

√
d/gα∆T , the stream

function by
√
gα∆Td3 and temperature by ∆T as in [73]. As ν, κ → 0, the governing

equations become

∂t∇2ψ − {ψ,∇2ψ} = ∂xθ, (2.20)

∂tθ − {ψ, θ} = ∂xψ. (2.21)

The dissipationless version of the reduced equations is similar to (2.5)–(2.6), except that the
first term on the right-hand side of each equation is removed, and factors of σ and R are
absent. The equations (2.20)–(2.21) admit a number of conserved quantities [73, 21]. One
such quantity is the energy, E = K + U , where K and U satisfy

K =
1

2

〈
|∇ψ|2

〉
, (2.22)

U =
〈
zθ
〉
, (2.23)

with the volume average 〈·〉 defined by (1.17). To verify that this is conserved by the
dissipationless Boussinesq equations, multiply (2.20) by ψ and average over the domain,
imposing boundary conditions and integrating by parts when necessary, to obtain

1

2
∂t
〈
|∇ψ|2

〉
= −

〈
ψ∂xθ

〉
. (2.24)

Likewise, multiplying (2.21) by z and taking the volume average produces

∂t
〈
zθ
〉

=
〈
ψ∂xθ

〉
. (2.25)

Adding these two expressions provides the desired result ∂tE = 0. Thiffeault and Horton [73,
74] found that all Galerkin-truncated models conserving energy in the dissipationless limit
must satisfy:

Criterion 1 (Energy balance). If (m,n) ∈Mψ ∩Mθ, then (0, 2n) ∈Mθ.

The Lorenz equations have Mψ ∩Mθ = {(1, 1)} and (0, 2) ∈Mθ, satisfying Criterion
1. On the other hand, the model of Howard and Krishnamurti includes (1, 2) ∈Mψ ∩Mθ
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but is missing (0, 4) ∈ Mθ; adding θ04 restores the energy balance [73]. There are a few
important consequences of selecting reduced models that satisfy the energy criterion. All
trajectories of such models remain bounded, even in the presence of dissipation [73]. This is
significant because unbounded trajectories have been observed for certain ODE models [32],
marking a significant divergence from the physics of Rayleigh–Bénard convection. Also,
the two definitions of N , (2.17) and (2.18), are equivalent along all solutions of models
satisfying the energy criterion [73]. Finally, these models also satisfy the conservation of
total temperature,

∂t
〈
θ
〉

= 0, (2.26)

derived by taking the volume average of (2.21).
The Boussinesq equations also satisfy conservation of the integral of vorticity [21] in

the dissipationless limit:
∂t

〈
∇2ψ

〉
= 0, (2.27)

determined by taking the volume average of (2.20). Next we identify the criterion for
reduced models to satisfy vorticity conservation in the dissipationless limit. Let the function
sc(mkx) represent either sin(mkx) or cos(mkx) according to the convention established in
Table 2.1. Projecting the integral of vorticity onto Mψ yields

〈
∇2ψ

〉
=

〈
−
∑

(m,n)∈Mψ

ρmnψmn sc(mkx) sin(nz)

〉
(2.28)

= −
∑

(m,n)∈Mψ

ρmnψmn
〈
sc(mkx) sin(nz)

〉
. (2.29)

The volume average vanishes for each term with m 6= 0 and for all even n, so that only
the shear modes ψ0n remain. For these terms, ρ0n = n2, so after integrating, the volume-
averaged vorticity reduces to

〈
∇2ψ

〉
= − 1

π

∑
(0,n)∈Mψ

1−cos(πn)
n

n2 ψ0n (2.30)

= − 1
π

∑
(0,n)∈Mψ

n odd

2nψ0n. (2.31)
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Taking the time derivative and using (2.5) in the special case m = 0, we obtain

∂t〈∇2ψ〉 = − 1
π

∑
(0,n)∈Mψ

2n ψ̇0n (2.32)

= − 1
π

∑
(0,n)∈Mψ

2n ψ̇0n (2.33)

= − 1
π

∑
(0,n)∈Mψ

2k
n

∑
Sψ(0,n)

(−1)p+sp (s+Bqns q) (q2 − s2)ψpqψps. (2.34)

The set Sψ(0, n) (2.7) contains all pairs of modes contributing to the quadratic part of the
ODE for the shear mode ψ0n. These pairs take the form {(p, q), (p, s)}, where p 6= 0 and
either n = q + s or n = |q − s|, and correspond to terms proportional to ψpq ψps. Suppose
that Mψ contains the modes (p, q), (p, s) and (0, |q − s|). To ensure cancellation of the
resulting term in (2.34), the mode (0, q + s) must also be included in Mψ. Then (2.34) has
exactly two terms proportional to ψpqψrs, whose sum is

(−1)p+s p (q2 − s2) k
2

(
1

(q+s)
(s+ q) + 1

|q−s|(−|s− q|)
)
ψpqψps = 0. (2.35)

Criterion 2 (Vorticity balance). If (p, q) ∈Mψ and (p, s) ∈Mψ, then (0, |q − s|) ∈Mψ if
and only if (0, q + s) ∈Mψ.

The six-ODE and seven-ODE models discussed above include (1, 1), (1, 2) ∈ Mψ as
well as the shear mode (0, 1) ∈ Mψ. Hence vorticity conservation is enforced by adding
(0, 3) ∈Mψ [29].

2.4.2 Integral balances in the presence of dissipation

For each of the conservation laws of the dissipationless Boussinesq equations, there
exists an analogous integral balance derived from the full PDE (1.13). The resulting energy,
temperature and vorticity balance laws are

∂t
[

1
2

〈
|∇ψ|2

〉
+ σ〈zθ〉

]
= σ

〈
z∇2θ

〉
− σ

〈
(∇2ψ)2

〉
, (2.36)

∂t〈θ〉 =
〈
∇2θ

〉
, (2.37)

∂t
〈
∇2ψ

〉
= σ

〈
∇4ψ

〉
. (2.38)
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Here we show that if a reduced order model obeys conservation of energy, temperature and
vorticity in the dissipationless limit, it also satisfies the corresponding balance equations for
the PDE with dissipation.

If the truncated Fourier expansions for ψ and θ are substituted into (2.36), orthogonality
reduces the left-hand side of the energy balance to

∂tE =
∑

(m,n)∈Mψ

m6=0

1
4
ρmnψmnψ̇mn +

∑
(0,n)∈Mψ

1
2
n2ψ0nψ̇0n − σ

∑
(0,n)∈Mθ

1
2n
θ̇0,2n. (2.39)

The proof in [73] shows that the above expression vanishes in the absence of dissipation
provided the modes are selected as specified in §2.4.1. Here, similar cancellation occurs,
leaving only the terms resulting from the dissipative terms of (1.13):

∂tE = −
∑

(m,n)∈Mψ

m6=0

1
4
ρ2
mnσψ

2
mn −

∑
(0,n)∈Mψ

1
2
n4σψ2

0n + σ
∑

(0,n)∈Mθ

n
2
θ0,2n. (2.40)

The projection of the right-hand side of (2.36) onto any Fourier-truncated ψ and θ is identical
to the above expression, so the general energy balance holds under the exact same conditions
as its dissipationless version. The truncated versions of the integral balances for temperature
(2.37) and vorticity (2.38) also follow directly from their conservation in the dissipationless
case, and can be proved in a similar manner. We call low-order models that obey each of the
conservation laws above distinguished models.

2.5 The HK8 model

The smallest distinguished model that includes nontrivial zonal flow is the HK8 model
first considered by Gluhovsky, et al. [21]. We analyze particular solutions to the HK8 model
in Chapter 3 and construct upper bounds on the heat transport in Chapter 5. The HK8 system
is derived by projecting the Boussinesq equations onto the Fourier modes in the ansatz

ψ(x, z, t) = ψ11(t) sin kx sin z + ψ12(t) cos kx sin 2z + ψ01(t) sin z + ψ03(t) sin 3z,

θ(x, z, t) = θ11(t) cos kx sin z + θ12(t) sin kx sin 2z + θ02(t) sin 2z + θ04(t) sin 4z,
(2.41)

The chosen Galerkin truncation includes the triplet {ψ11, θ11, θ02} that alone produces a
scaled version of the Lorenz equations (2.3). It also includes the analogous triplet with the
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vertical mode numbers doubled, {ψ12, θ12, θ04}, alone yielding a rescaled version of the
Lorenz equations. Modes in each triplet are coupled together by the two remaining modes,
ψ01 and ψ03. The HK8 model obtained by projecting the PDEs (1.13) onto the modes in
(2.41) is [22]

ψ̇11 = −σ(k2 + 1)ψ11 + σ k
k2+1

θ11 + k
2
k2+3
k2+1

ψ01ψ12 − 3k
2
k2−5
k2+1

ψ12ψ03,

ψ̇01 = −σ ψ01 − 3k
4
ψ11ψ12,

ψ̇12 = −σ(k2 + 4)ψ12 − σ k
k2+4

θ12 − 1
2

k3

k2+4
ψ11ψ01 + 3k

2
k2−8
k2+4

ψ11ψ03,

θ̇11 = −(k2 + 1)θ11 +Rkψ11 − kψ11θ02 − k
2
ψ01θ12 + 3k

2
θ12ψ03,

θ̇02 = −4 θ02 + k
2
ψ11θ11,

θ̇12 = −(k2 + 4)θ12 −Rkψ12 + k
2
ψ01θ11 − 3k

2
ψ03θ11 + 2kψ12θ04,

ψ̇03 = −9σ ψ03 + k
4
ψ11ψ12,

θ̇04 = −16 θ04 − kψ12θ12.

(2.42)

When projected onto the modes in the HK8 truncation, the volume-averaged expression
(1.20) for the Nusselt number becomes

N = 1 + k
4R(ψ11θ11 − ψ12θ12), (2.43)

while the horizontally-averaged expression (1.21) becomes

N = 1 + 1
R(2θ02 + 4θ04), (2.44)

where the bar denotes the time average integral, given by (1.19). It is shown in [73] that the
infinite-time averages (2.43) and (2.44) must be equal for all solutions of the HK8 model.
The truncated Nusselt number provides a measure of heat transport along solutions of the
HK8 model, and is studied in detail in Chapters 3 and 5.
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CHAPTER 3

Particular Solutions of the HK8 Model

The HK8 model is a distinguished reduced order model for Rayleigh–Bénard convection
with stress-free isothermal boundary conditions in a horizontally periodic domain, and was
first considered in [21]. We examine various particular solutions of the HK8 model (2.42),
providing candidates for (and lower bounds on) the optimal heat transport. We begin by
summarizing the bifurcation structure of steady states of the HK8 model reported in [22]
and verified here. Then we examine the heat transport along some time-dependent solutions.
The results of this chapter are originally reported in [52]. The maximum N among these
particular solutions provides a candidate for the maximum among all solutions, and we use
it to assess the sharpness of upper bounds on N reported in Chapter 5.

3.1 Steady states

The HK8 system has three branches of nonzero equilibria that we call L1, L2, and
TC in analogy with [32]. At sufficiently small R the unique asymptotic state is the zero
equilibrium, corresponding to the purely conductive state in the PDE. When R = RL1 ,
given by

RL1 :=
(k2 + 1)3

k2
, (3.1)

the zero state undergoes a pitchfork bifurcation giving rise to L1 equilibria that exist
wheneverR > RL1 , so-named because the only nonzero modes are the first Lorenz triplet,

ψ11 = ±
√

8 1
k2+1

√
R−RL1 , θ11 = ±

√
8 k2+1

k

√
R−RL1 , θ02 = R−RL1 . (3.2)

As shown in Figure 3.1(a), the L1 states are an approximation of a PDE steady state
with two convection rolls. The Rayleigh number RL1 reaches a minimum of 27/4 when
k2 = 1/2, corresponding exactly to the onset of convection for 2D stress-free Rayleigh–
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(a)

(b)

(c)

Figure 3.1: Streamlines overlaid on contours of total temperature (T ) for approximations of steady convection
states whose mode amplitudes in the truncated Galerkin expansion (2.41) are equilibria of the HK8 model
with (k2, σ) = (1/2, 10). Each of the three types of equilibria is depicted near its onset: (a) an L1 state at
R = 10, (b) an L2 state at R = 185, and (c) a TC state at R = 150. The T scale ranges from 0 (dark) to 1
(light). Positive and negative vorticity is indicated by solid and dashed streamlines, respectively. The TC
states, in particular, display unphysical behavior due to the truncation of the PDE, evidenced by the internal
temperature maximum in (c).

Bénard convection. Therefore, we define the critical Rayleigh numberRc as

Rc :=
27

4
. (3.3)

Similarly, when the Rayleigh number isRL2 , defined as

RL2 :=
(k2 + 4)3

k2
, (3.4)
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the zero solution undergoes a second pitchfork bifurcation, giving rise to L2 equilibria when
R > RL2 . The nonzero modes are the second Lorenz triplet,

ψ12 = ±
√

8 1
k2+4

√
R−RL2 , θ12 = ∓

√
8 k2+4

k

√
R−RL2 , θ04 = 1

2
(R−RL2).

(3.5)
As shown in Figure 3.1(b), the L2 states are an approximation of a PDE steady state with
a two-by-two array of convection rolls. In the full PDE there are counterparts to the L1

and L2 branches that bifurcate from the conductive state at the sameR values. They agree
asymptotically with the truncated states in the weakly nonlinear regime but this resemblance
decreases asR grows.

The L1 and L2 equilibria are scaled versions of the nonzero equilibria of the Lorenz
equations. In fact, if the HK8 equations are restricted to the three-dimensional subspaces
spanned by the nonzero variables in either (3.2) or (3.5), the resulting dynamics are equiv-
alent to those of the Lorenz equations. This implies that for any solution to the Lorenz
equations, a corresponding solution to the HK8 system can be obtained by a suitable linear
change of variables. In the HK8 system, these lower-dimensional dynamics appear to be
unstable for all sufficiently largeR.

The third branch of equilibria found in the HK8 model is called the TC branch because
it corresponds to so-called tilted cells [32]. As shown in Figure 3.1(c), a pair of steady
convection rolls produces a mean horizontal flow whose direction breaks the symmetry of the
L1 and L2 states. All eight modes are nonzero in the TC states, and here we compute them
numerically using the numerical continuation software MATCONT [10]. The temperature
field in Figure 3.1(c) appears unphysical, as evidenced by the existence of interior maxima,
reflecting the fact that the truncated model is not capturing the full PDE dynamics at thisR.

Depending on the values of k2 and σ asR is varied, there are five different bifurcation
structures where the TC branch connects to the L1 or L2 branch, or both. Figure 3.2
shows an example of each possible bifurcation structure, along with the regimes in the
k2–σ parameter plane where each structure occurs. In regimes III–V, a pair of TC branches
connects to each L1 branch in a pitchfork bifurcation atRTC1 , where [22]

RTC1

RL1

= 1 +
27σ2

k2 + 1

k4 + 5k2 + 7

(10σ + 3σ2)(k2 + 1)2 + 2(k2 + 4)(5k2 − 4)
. (3.6)

The above denominator is negative in regimes I and II, so the TC and L1 branches do not
connect. Similarly, in regimes I–IV, a pair of TC branches connects to each L2 branch in a
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pitchfork bifurcation atRTC2 , where

RTC2

RL2

= 1 +
27σ2

k2 + 4

k4 + 5k2 + 7

(10σ − 3σ2)(k2 + 4)2 + 2(k2 + 1)(5k2 + 11)
. (3.7)

For parameter combinations in regime V the TC and L2 branches do not connect, as the
denominator of (3.7) is negative. The bifurcations connecting the branch of TC equilibria
to the L1 and L2 branches are quantitatively accurate only in the σ → 0 limit since this is
when they occur in the weakly nonlinear regime. Counterparts to the TC branch have been
observed for the full PDE, at least for some values of k2 and σ [22].

The L1, L2, and TC states are the only nonzero steady states of the HK8 model [22],
so finding the maximum N among them at a given parameter set yields the maximum heat
transport by any steady state. Evaluating (2.43) or (2.44) to find N in the HK8 model gives
the heat transport by the L1 and L2 equilibria:

NL1 = 3− 2
RL1

R
, NL2 = 3− 2

RL2

R
. (3.8)

Both values approach 3 as R → ∞, but NL1 > NL2 at any parameters where both states
exist. We computedNTC numerically at many parameter values in all five parameter regimes.
In regimes I–IV we found NL1 > NTC in all cases, meaning the L1 branch maximizes
heat transport among steady states. In regime V, at sufficiently large R the TC branch
maximizes N among steady states. Whether these maximal steady N values are maximal
among time-dependent solutions as well remains to be determined by the bounds computed
in Chapter 5. We note that the results at large R are unlikely to be representative of the
PDE: the values of NL1 begin to deviate from the values of Nu for the analogous steady
solutions of the Boussinesq equations (i.e., the primary branch of convection rolls that
arises as the first instability of the conduction state) near R = 10, and the steady states
develop internal maxima. Mean horizontal flow has been observed to reduce heat transport
in simulations of 2D Rayleigh–Bénard convection in a horizontally periodic domain with
stress-free boundaries [25].

All three nonzero steady branches can undergo Hopf bifurcations. Determining k2

and σ for the various pitchfork, saddle-node, and Hopf bifurcations to exist (with R as
the bifurcation parameter) subdivides the five parameter regimes of Figure 3.2 into 16
regimes, as reported in [22]. The Hopf bifurcation on the L1 branch involves only the three
Lorenz modes {ψ11, θ11, θ02} and is precisely the Hopf bifurcation found in the Lorenz

23



10
0

10
1

10
2

10
3

1

2

3

4

pf pf

pf

I L1

L2 TC

10
0

10
1

10
2

10
3

1

2

3

4

pf pf

pf

sn

II

10
0

10
1

10
2

10
3

1

2

3

4

pf pf

pf

pf

sn

III

10
0

10
1

10
2

10
3

1

2

3

4

pf pf

pf

pf

IV

10
0

10
1

10
2

10
3

1

2

3

4

pf pf

pf

V

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

I

II

III

IV

V

Figure 3.2: Examples of the five bifurcation structures of steady states of the HK8 model, with R as the
bifurcation parameter (top). The k2–σ parameter regimes where each bifurcation structure occurs are also
shown and numbered correspondingly (bottom). Stars (F) in parameter space indicate the particular values for
each example bifurcation diagram. Pitchfork (‘pf’) and saddle-node (‘sn’) bifurcations are labeled. Stability of
steady states and locations of Hopf bifurcations are not indicated. In region I, the TC branch bifurcates from
the L2 branch at a Rayleigh number slightly larger thanRL2

. The results in this figure were reported by [22]
and independently verified here.
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equations [41]. With the present variables (scaled differently from the Lorenz equations),
the Hopf bifurcation exists when σ > 1 + 4/(k2 + 1) and occurs atRH1 , where

RH1

RL1

= 1 + (σ + 1)
σ(k2 + 1) + (k2 + 5)

σ(k2 + 1)− (k2 + 5)
. (3.9)

Since the L2 subspace is another rescaling of the Lorenz equations, its Hopf bifurcation is
similar. It exists when σ > 1 + 16/(k2 + 4) and occurs atRH2 , where

RH2

RL2

= 1 + (σ + 1)
σ(k2 + 4) + (k2 + 20)

σ(k2 + 4)− (k2 + 20)
. (3.10)

Additional Hopf bifurcations may occur on the TC branch, as detailed in [22].
Periodic states emerging from Hopf bifurcations of the L1 and L2 branches cannot

produce larger heat transport than NL1 . This is because these periodic states remain in
their respective subspaces of Lorenz triplets, and in the Lorenz equations the truncated
Nusselt number is maximized on the nonzero equilibria [23, 44]. It remains possible that
time-dependent states involving all eight modes can have larger N than all steady states; we
examine such states in the next section.

3.2 Time-dependent states

We numerically integrated (2.42) to search for attracting time-dependent solutions of the
HK8 model for (k2, σ) = (1/2, 10). These parameter values lie in regime V of Figure 3.2,
and they correspond to the standard choice (β, σ) = (8/3, 10) in the Lorenz equations. This
k value minimizes the Rayleigh numberRL1 of convective instability in both the HK8 model
and the PDE. Numerical integration was carried out using MATLAB’s ode45 function with
absolute and relative tolerances of 10−12 and 10−9, respectively, and all other settings at
their default values. The time-averaged Nusselt number (2.44) was computed by averaging
periodic trajectories over several full periods and by averaging nonperiodic trajectories over
104 to 105 time units (after initial transients).

When (k2, σ) = (1/2, 10), the TC branch has subcritical Hopf bifurcations at
R ≈ 21.8Rc and R ≈ 999Rc. At values of R slightly beyond the first bifurcation,
numerical integration with a variety of randomly generated initial conditions gives trajec-
tories where all eight modes appear to be chaotic. The system exhibits period doubling
bifurcations as R is increased from the first Hopf bifurcation of the TC branch and as R
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is decreased from R ≈ 46Rc into the nonperiodic regime, but the possibility of a period
doubling cascade was not explored in detail. Figure 3.3 (top row) shows part of an apparently
chaotic trajectory atR = 250. We were able to find such trajectories forR/Rc ∈ (21.8, 45)

and again at R & 1.8 × 103Rc; between these two intervals, the only states we found
using numerical integration are periodic. An example at R = 500 is shown in Figure 3.3
(bottom row). Bistability was detected forR & 1.8× 103Rc, where some initial conditions
produced solutions that approached periodic trajectories, while others tended towards a
nonperiodic attractor similar to those depicted in the top row of Figure 3.3. Such behavior
was not identified for any smaller values ofR.
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Figure 3.3: Evolution of the Lorenz modes (ψ11, θ11, θ02) and the ψ12 mode in phase space for trajectories
obtained by direct time integration of the HK8 system. The top row displays orbits of an apparently chaotic
trajectory atR = 250, while the bottom row depicts a stable periodic trajectory atR = 500. In each case, all
eight variables are generically nonzero along orbits.

Figure 3.4 shows N versusR for all steady states and time-dependent states found using
time integration. The N values in the nonperiodic regime lie below the steady maximum,
NTC . AsR is raised, the N values of the periodic states surpasses NTC , meaning that heat
transport is not maximized by a steady state at largeR. At such largeR, however, the HK8
model is not expected to closely reflect behavior of the PDE. At smallerR we did not find
any time-dependent states with N larger than the steady state maximum. For R . 71Rc

the steady states indeed maximize heat transport, as follows from our sharp upper bounds
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on N in §5.1 that are equal to max{NL1 , NTC}.
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Figure 3.4: Nusselt number of steady and time-dependent solutions of the HK8 model for (k2, σ) = (1/2, 10).
Solid lines denote linearly stable equilibria while dashed lines denote unstable equilibria. Locations of Hopf
bifurcations are indicated by red squares (�). Symbols denote time averages over time-dependent states that
are periodic (•) or appear to be chaotic (×).
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CHAPTER 4

Auxiliary Functions, Convex Optimization, and Sums-of-Squares

4.1 Introduction

Time averages of functions of dynamical variables are often of interest for nonlinear
dynamical systems, more so than the value of the function at any particular instant in
time. In recent years, a general technique has been developed to determine upper or lower
bounds on time-averaged quantities for ordinary differential equations [7]. Such results
are global in the sense that they provide a bound on a given quantity over all solution
trajectories with initial conditions in a given domain. These methods involve choosing an
auxiliary function defined on the state space of the ODE that facilitate proving the desired
bound. Using auxiliary functions to prove bounds on time averages is reminiscent of the
common technique of using Lyapunov functions to determine global stability properties
for ODEs. Like the functions used in Lyapunov’s method, auxiliary functions need not
have any particular relationship to the system dynamics. The auxiliary function method
has been applied for a variety of systems [23, 24, 17], including modal equations of PDEs
such as the models described in Chapter 2. We present an overview of the auxiliary function
method in §4.2. The application to polynomial dynamical systems is discussed in §4.3,
where bounds are computed numerically with techniques of convex optimization (§4.4).
Finally, an application of the auxiliary function method to the Lorenz equations is provided
as an example of the technique.

4.2 Maximal time averages for ODEs

Consider a well-posed autonomous ODE ẋ = f(x), where x ∈ Rn and f : Rn → Rn,
and ẋ denotes the time derivative of x. Let x(t) be a trajectory of the ODE with initial
condition x(0) = x0. The long-time average of a scalar quantity Φ(x) along x(t) is given
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by

Φ(x0) := lim
τ→∞

1

τ

∫ τ

0

Φ(x(τ)) dτ. (4.1)

In this chapter, we define Φ = 1 + 1/R(2θ02 + 4θ04) so that Φ = N (2.44), the finite-
dimensional analogue of the horizontally averaged Nusselt number for Rayleigh–Bénard
convection.

Computing (4.1) exactly is only possible when trajectories of the ODE are known exactly,
such as at the equilibria. In practice, when formulae for the relevant trajectories are not
explicitly known, the time average may be estimated by numerically integrating the ODE
over a sufficiently large time and using the result to approximate the limit in (4.1). Estimates
obtained in this way may converge slowly, and are restricted to only sufficiently stable
trajectories stemming from a set of chosen initial conditions. It is generally impossible to
perform this computation over all relevant initial conditions, especially in systems exhibiting
chaotic behavior.

Auxiliary functions [7] allow another way to obtain information about time-averaged
quantities for dynamical systems, without selecting a particular trajectory. The auxiliary
function method provides bounds that are global in the sense that the bounds on (4.1) hold
over all trajectories (or equivalently, over all initial conditions) of the ODE. Accordingly,
define the maximal time average, Φ

∗
, by

Φ
∗

:= max
x0∈Ω

Φ(x0), (4.2)

where Ω ⊂ Rn is a compact domain containing the attracting region of the ODE, and seek a
global upper bound U ∈ R so that U ≥ Φ

∗
. While U must be independent of the choice of

trajectory, it may depend on the values of various model parameters. For example, upper
bounds on N will generally depend onR, σ, and k.

A global upper bound could be constructed simply by maximizing Φ pointwise [75]:

Φ
∗ ≤ max

x∈Ω
Φ(x). (4.3)

However, in practice this will almost always produce bounds that are much larger than
Φ
∗
, and will not produce a meaningful result unless Φ is bounded on Ω. More useful

bounds can be determined by introducing an auxiliary function V : Rn → R in the class
C1 of continuously differentiable functions. Any such V remains bounded along bounded
trajectories. This implies f · ∇V = 0 on every trajectory, where the gradient is with respect
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to x, since [23]

f(x(t)) · ∇V (x(t)) = d
dt
V (x(t)) (4.4)

= lim
τ→∞

1

τ

∫ τ

0

d
dt
V (x(t)) dt (4.5)

= lim
τ→∞

1

τ

[
V (x(τ))− V (x(0))

]
= 0. (4.6)

This identity implies that given any initial condition x0 ∈ Ω and V ∈ C1,

Φ = Φ + f · ∇V ≤ max
x∈Ω

[Φ(x) + f(x) · ∇V (x)] . (4.7)

This is useful because computing or estimating the right-hand maximum requires no knowl-
edge of trajectories. While Φ(x) may be unbounded over Ω, a judicious choice of V (x)

makes the above maximum finite. Since (4.7) applies to all trajectories in bounded sys-
tems and for all V ∈ C1, it remains true when we maximize Φ over initial conditions and
minimize the upper bound over V to find

Φ
∗ ≤ inf

V ∈C1
max
x∈Ω

[Φ(x) + f(x) · ∇V (x)] . (4.8)

It was proved in [75] that for all bounded well-posed ODEs and continuous Φ(x), the
inequality in (4.8) is an equality. Their result guarantees the existence of an auxiliary
function (or sequence thereof) that yield arbitrarily sharp bounds on Φ

∗
. In practice, the

infimum in (4.8) can often be attained, and we do so for the Lorenz equations in §4.6, and
for the HK8 model in Chapter 5. A convenient way to express (4.8) is to define a function
S(x) as

S(x) := U − Φ(x)− f(x) · ∇V (x). (4.9)

Then, an upper bound is implied by the nonnegativity of S, and the optimization prob-
lem (4.8) can be expressed as [75]

Φ
∗

= inf
V ∈C1

S≥0

U, (4.10)

where S ≥ 0 must hold for all x ∈ Ω. The equality (4.10) means that for every U that is a
valid upper bound on Φ

∗
, there exists a sequence of auxiliary functions certifying this bound.

The challenge is to construct such a V and verify that indeed S ≥ 0.
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4.3 Polynomial dynamical systems and sum-of-squares optimization

The right-hand side of (4.10) is an optimization problem over the infinite-dimensional
space C1, and determining the optimal auxiliary function is intractable in general. When
the right-hand side of the ODE, f , as well as the quantity Φ are each polynomial in x, the
problem can be made tractable by restricting the class of auxiliary functions [23]. The first
step is to let V be a polynomial of degree no larger than d, giving an optimization problem
over the finite-dimensional set Pn,d of such polynomials in n variables. Optimization over
this smaller set sometimes gives a bound strictly larger than Φ

∗
, but if so the bound improves

as d is raised.
Deciding whether a polynomial is non-negative over Ω ⊂ Rn is generally NP-hard [48] in

both the degree and dimension. This means that as either d or n are increased the computation
time asymptotically increases faster than any polynomial. Therefore a modification of this
constraint is necessary to make the problem tractable. We thus use a relaxation that has
become standard for polynomial optimization since its introduction two decades ago [37, 49,
53]: nonnegativity of S is ensured by the stronger requirement that S admits a representation
as a sum-of-squares (SOS) of other polynomials.

Let P+
n,d be the space of non-negative, real-valued, degree-d polynomials in n variables,

and Σn,d be the analogous space of SOS polynomials. Clearly the degree d must be even
for either set to be nonempty, and Σn,d ⊆ P+

n,d for all n, d. Equivalence of these two sets
holds in only a few cases [59]: for polynomials of at most two variables (n ≤ 2), quadratic
polynomials (d ≤ 2), or quartic polynomials of three variables (n = 3, d = 4). In all
other cases, there exist non-negative polynomials that do not admit an SOS representation.
Techniques of polynomial optimization have been applied to prove global stability results by
constructing Lyapunov functions [53], to identify the region of attraction for ODEs [54], and
to determine global bounds on time-averaged quantities [7]. One benefit of using an SOS
constraint is that deciding whether a polynomial is in Σn,d can be performed in polynomial
time in both n and d. An efficient algorithm for this purpose was developed in [55], based
on theoretical work on SOS polynomials by Shor [62, 63].

If S is assumed to be SOS, then for each fixed degree d, the upper bound from the
resulting polynomial optimization problem is [7, 17, 23]

Φ
∗ ≤ U∗d := min

V ∈Pn,d
U s.t. S ∈ Σn,d. (4.11)
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The SOS-constrained polynomial optimization problem on the right-hand side of (4.11) is
computationally tractable if d and n are not too large. If a chosen degree d does not yield
a sharp upper bound, raising d improves bounds at the expense of computational cost. In
practice bounds often converge rapidly as the degree of V is raised [17, 23].

The usual computational approach to solving an SOS-constrained optimization problem
of the form (4.11) is to reformulate it as a semidefinite program (SDP), a standard type of
conic optimization problem. Most modern SOS algorithms utilize the Gram matrix form [8],
wherein the polynomial S is represented as:

S = bTQb, (4.12)

where b is a vector of polynomial basis functions. The vector b must be chosen so that S is
in the span of the scalar polynomial terms in bbT , so that at least one Q satisfies (4.12). It
can be shown that S ∈ Σn,d if and only if there exists a basis vector b such that the resulting
Gram matrix is symmetric positive semidefinite, written Q � 0 [55]. This reduces the task
of deciding whether a polynomial is SOS to a convex optimization problem with a matrix
constraint (an SDP). Efficient algorithms exist for solving SDPs, as discussed in §4.4.

Given a basis b, the polynomial optimization (4.11) can be formulated equivalently as

Φ
∗ ≤ U∗d := min

V ∈Pn,d
U s.t. S = bTQb

Q � 0.

(4.13)

In the above optimization problem, the bound U and the coefficients of the polynomial V
are tunable. The equality S = bTQb is enforced by expanding the right-hand product and
matching coefficients on each monomial term, amounting to affine constraints on the entries
of Q. Thus the optimization is over symmetric matrices Q subject to affine and semidefinite
constraints. The tunable variables—U and the coefficients of the ansatz for V—appear
linearly in the constraints on Q. These two types of constraints on a semidefinite matrix are
what define an SDP [4]. Various software is available to solve such SDPs computationally,
and such results are reported in Chapter 4. Analytical solutions are possible in cases leading
to very small SDPs, as in [23, 55].
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4.4 Convex optimization and semidefinite programming

A semidefinite program (SDP) is a standard type of conic optimization problem with a
matrix decision variable, where the feasible region is given by the intersection of a convex
cone (Q � 0) and a hyperplane describing linear constraints (S = bTQb). The objective
function depends on the entries in Q—in the case of (4.13), it is just the quantity U that
appears in the constant term of bTQb.

Various software is available to solve SDPs computationally, including the solver
MOSEK [47]. In MOSEK, SDPs are solved using a primal-dual interior point method, as
described below. An SDP can be written in the general form [54]:

min 〈C,Q〉,

s.t. 〈Ai,Q〉 = pi,

Q � 0,

(4.14)

where Q ∈ Rn×n is the matrix decision variable, Ai, C ∈ Rn×n and p ∈ Rm are given,
and the angled brackets represent the matrix inner product 〈A,B〉 =

∑
i,j AijBij . The dual

problem associated with (4.14) is given by

max bTy,

s.t.
m∑
i=1

yiAi � C,
(4.15)

for y ∈ Rn. The feasible sets for these two optimization problems are given by the set of all
decision variables satisfying the constraints. In the typical case, where both feasible sets
are nonempty, the SDP has the strong duality property: (4.14) and (4.15) have the same
optimal solution [54]. Primal-dual algorithms take advantage of this property by solving
both primal and dual problems simultaneously. Convergence can be obtained by solving
the problem iteratively, terminating when the “duality gap” between the two solutions falls
below a pre-determined threshold. Sum-of-squares optimization problems can be expressed
in the form (4.14) with the MATLAB package YALMIP [38].

33



4.5 Scaling and monomial reduction

If the SDP corresponding to (4.11) is solved without simplification, computational cost
and numerical ill-conditioning quickly become prohibitive as the polynomial degree is
raised. Both aspects may be improved by restricting the ansatz for the auxiliary function
V . Numerical conditioning can be improved by scaling the phase space variables in the
governing ODE system.

Symmetry conditions can be used to restrict the ansatz for V . Suppose that both Φ

and the ODE are invariant under a symmetry given by the linear transformation Λ, so that
Φ(Λx) = Φ(x) and f(Λx) = Λf(x). Then any bound proved using the auxiliary function
method can be proved with symmetric V , so that V (Λx) = V (x) [24, 36]. Symmetry
reductions are convenient to implement for sign-symmetries of the variables in x, where Λ

is a diagonal matrix such that each diagonal entry is ±1. Given Φ and f , let monomials be
represented in vector form by multi-indices α ∈ Zn, where

xα = xα1
1 x

α2
2 · · · xαnn . (4.16)

Next, let a symmetry Λ of the form described above be represented by s ∈ Zn2 , with si = 1 if
xi is reflected under Λ, and si = 0 otherwise. For example, the vector (1, 1, 0) corresponds
to the symmetry (x, y, z) 7→ (−x,−y, z). Within this framework, a monomial is invariant
under the symmetry Λ if and only if s · α ≡ 0 (mod 2). This provides a computationally
efficient way to determine if a candidate monomial in the general ansatz for V is symmetric.
The set of symmetries for a given problem can be determined in much the same way. First,
construct the matrix A whose rows are the multi-indices of each term in the polynomials
xifi(x) and Φ(x). Any symmetry must then satisfy As ≡ 0 (mod 2).

The V ansatz can be further restricted by observing that the SOS constraint on S requires
the highest-degree monomials in S to be of even degree. Such monomials generally come
from the f · ∇V term in (4.9). If the highest-degree monomials in V are of even degree d,
then for the reduced order models studied in this thesis, the polynomial f · ∇V generally
includes terms of odd degree d+ 1. Hence the SOS constraint can be satisfied only if the
leading terms in V are constrained such that the highest-degree terms in f · ∇V cancel. This
condition amounts to linear constraints on the coefficients of the highest-degree terms of
V . In Chapters 5 and 6 these conditions are applied, leading to a significant reduction in
the monomial basis. The smaller V ansatz leads to the same bounds and leads to smaller
numerical error and decreased computational complexity.
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Scaling the ODE variables has a significant impact on the numerical conditioning of the
SDP computations. A common heuristic when using SOS optimization to study dynamical
systems is to scale the state variables so that the relevant trajectories lie within the region
[−1, 1]n, as in [23, 28]. In practice, doing so often improves numerical conditioning of the
SDP.

4.6 Example: Sum-of-squares bounds on the Lorenz equations

As a simple example of the auxiliary function method, we consider the Lorenz equa-
tions (2.3), and seek upper global upper bounds on the truncated analogue of the Nusselt
number, given by Φ = 1 + 2

ρ
Z. For ρ ≤ 1, the origin is globally asymptotically stable, so

we obtain the trivial bound Φ∗ = 1. When ρ > 1, the bound Φ ≤ 3− 2
ρ

is proved using the
sum-of-squares method with

V =
1

ρβ

[
1

ρ− 1

(
X2

σ
+ Y 2 + Z2

)
− 2Z

]
. (4.17)

To obtain the desired bound, notice that after some simplification, the polynomial S in (4.9)
constructed from the above function V admits the sum-of-squares factorization

S =

(
3− 2

ρ

)
− Φ− f · ∇V =

2

βρ(ρ− 1)
(x− y)2 +

2

ρ(ρ− 1)
(z − (ρ− 1))2, (4.18)

where 3 − 2
ρ

is the minimal value of U such that the polynomial S is SOS if and only if
ρ > 1. In fact, this bound is achieved by the equilibria of the Lorenz equations,

(X, Y, Z) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
, (4.19)

meaning that the equilibria maximize Φ for all ρ > 1. Both analytical and numerical
sum-of-squares computations are performed in [23] for the Lorenz equations with various
choices of Φ.

35



CHAPTER 5

Application of SOS Optimization to the HK8 Model

In this chapter, upper bounds on heat transport in the HK8 model (2.42) are constructed
with the sum-of-squares method. This is done numerically in §5.1 with semidefinite pro-
gramming techniques. Rigorous upper bounds are established in §5.2 by constructing
quadratic auxiliary polynomials by hand that certify an upper bound on N∗. Results in this
chapter were originally reported in [52].

5.1 Numerical upper bounds

To compute upper bounds on N∗—the maximum of N among all trajectories in the HK8
model—we numerically solved polynomial optimization problems of the form (4.13). In
the definition (4.9) of S, the vector f is the right-hand side of the HK8 model (2.42), and we
choose

Φ = 1 + 1
R (2θ02 + 4θ04) , (5.1)

so that Φ = N according to (2.44). As discussed in Chapter 3, the two expressions for
the Nusselt number, (2.43) and (2.44), are equivalent along all time-averaged trajectories.
Upper bounds on the two quantities proved using the auxiliary function method are also
identical. To see this, notice that if V0 := θ02/2 + θ04/4, then

k
4

(ψ11θ11 − ψ12θ12) = 2θ02 + 4θ04 + f · ∇V0, (5.2)

where the quantity on the left-hand side is the function whose time average corresponds to
(2.43). Therefore, if an upper bound on (2.43) is obtained with the auxiliary function V , the
same bound on (2.44) can be established with the auxiliary function V + V0.

Following the notation established in Chapter 4, the resulting upper bound is U∗d ≥ N∗,
with auxiliary functions V of polynomial degree d = 2, 4, 6, and 8. We first discuss details
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on the implementation of the auxiliary function method, and discussion of the results begins
in §5.1.2.

5.1.1 Numerical procedure

We first detail the specific monomial reduction and scaling implemented to produce
the results of §5.1. When solving the optimization problem in (4.13) to find the bound U∗d ,
we need not apply a fully general polynomial ansatz for V because some structure of V
can be anticipated by examining the structure of the HK8 model. Restricting the V ansatz
accordingly improves numerical conditioning and reduces computational cost. One source
of structure that may be exploited is symmetry. The ODE (2.42) and the quantity to be
bounded (5.1) are each invariant under both of the following symmetries:

(ψ11, ψ01, ψ12, θ11, θ02, θ12, ψ03, θ04) 7→ (−ψ11, ψ01,−ψ12,−θ11, θ02,−θ12, ψ03, θ04),

(ψ11, ψ01, ψ12, θ11, θ02, θ12, ψ03, θ04) 7→ (ψ11,−ψ01,−ψ12, θ11, θ02,−θ12,−ψ03, θ04).
(5.3)

Without loss of generality, we impose these same symmetries on the V ansatz, since this
does not change the optimal bounds U∗d [24, 36]. The first symmetry in (5.3) dictates that the
degrees of ψ11, θ11, ψ01, and ψ03 have an even sum in each monomial of the V ansatz, and
the second symmetry in (5.3) dictates the same for ψ12, θ12, ψ01, and ψ03. The symmetric
monomials take the form

(ψ01ψ03)d1(ψ11θ11)d2(ψ12θ12)d3 θd402 θ
d5
04 (p(x))2, (5.4)

where d1, . . . d5 are non-negative integers and p(x) is a polynomial of the HK8 variables.
Since Φ, V , and the ODE share the same symmetries, the polynomial S defined by (4.9)
does also. The Gram matrix representing S therefore can be written in block diagonal form,
for a properly ordered polynomial basis vector, without changing the optimum of the SDP.
This is automated by YALMIP, and in §5.2 it is illustrated explicitly for the case of quadratic
V . During computation, the blocks are treated separately, often resulting in a significant
decrease in both time and memory cost.

The second structural constraint on V comes from the requirement that the highest-
degree terms in the polynomial f · ∇V be of even degree—a necessary condition for the
SOS constraint in (4.13) to be satisfied. In general one expects an odd maximum degree of
d+ 1 since f is quadratic. To avoid this we require that the highest-degree terms cancel in

37



f · ∇V . This imposes linear constraints on the highest-degree terms in V that we encode
into the V ansatz. In the present application to the HK8 model, these linear constraints
imply that the degree d terms take the form

(ψ01ψ03)a(q(x))2, (5.5)

where a is a non-negative integer and q(x) is a polynomial of degree (d − a)/2. This
condition on V , along with the imposed symmetry, gives an ansatz with far fewer than
the
(

8+d
d

)
monomials in a general degree-d polynomial in eight variables, as summarized

in Table 5.1. In theory the smaller V ansatz leads to the same bounds, but in practice it
approximates these bounds with less numerical error, as well as lower computational cost.

Table 5.1: Number of monomials in the ansatz for the auxiliary function V of degree d
before and after reducing the ansatz using the structure of the HK8 model. The number
of monomials before reduction is

(
8+d
d

)
. Average computation time is reported when

the memory cost is not prohibitive. In the unreduced case, some monomial reduction is
automated by the solver.

Unreduced Reduced

d Monomials Time (s) Monomials Time (s)

2 45 0.3 11 0.3
4 495 2 88 0.5
6 3003 180 488 12
8 12870 - 2084 4300
10 43758 - 7251 -

Scaling the ODE variables has a significant impact on the numerical conditioning of
the SDP computations. A common heuristic applied in SOS optimizations of dynamical
systems is to scale the state variables so that the relevant trajectories lie within the region
[−1, 1]n [23, 28]. The variable scalings for the HK8 system were determined empirically
using a combination of time integration and SOS bounds on the time average of each state
variable. To achieve the desired scaling across a wide range of parameter values, the two
Lorenz triplets {ψ11, θ11, θ02} and {ψ12, θ12, θ04} were scaled by their values at the L1 (3.2)
and L2 (3.5) steady states, respectively. The remaining variables, ψ01 and ψ03, were scaled
by
√
R and

√
R/27, respectively, motivated by their values at the TC equilibria. For many

computations, all variables were scaled down further, typically by a factor of two, to ensure
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that trajectories remained within [−1, 1]8.
After defining the ansatz for V with the above conditions and scaling the ODE variables

as described above, we formulated the SOS problems of the form (4.11) as SDPs with the
MATLAB software YALMIP [38, 39] (version R20190425). The resulting optimization
problems were then solved using the optimizer MOSEK (version 9.0.98) [47]. Most compu-
tations were performed on a 3.0 GHz Intel Xeon processor, with some smaller problems
solved on a laptop with a 2.2 GHz Intel i5 processor.

Several criteria were used to assess the accuracy of the SDP results. One such criterion
is that the residual r is small, where r is defined as the largest coefficient in absolute value of
any monomial in the difference S − bTQb. While the Gram matrix returned by the solver
must be semidefinite at each iteration, in practice the polynomial bTQb does not exactly
match the polynomial S, violating the equality constraint in (4.13). As a result, computed
upper bounds will often slightly underestimate the solution to the SOS problem. Sufficiently
small residuals indicate that the Gram matrix provides an accurate approximation to the
polynomial S, implying this infeasiblity error is small. Often, larger residuals indicate poor
numerical conditioning due to improperly scaled state variables. Residuals for a few selected
cases are given by the quantity r in Table 5.2.

One way to directly assess the accuracy is to compare the numerical upper bounds to
the maximal Nusselt number N∗ in cases where the bound is sharp. For instance, analytical
bounds obtained in §5.2 provide an interval of R (e.g. at the standard parameters with
R ≤ 14Rc) where all bounds constructed with V of degree at least two must be sharp. In
such cases, a measure of the accuracy of the bounds is given by

δ1 :=
|U − L|

L
, (5.6)

where L is the lower bound on N∗ determined by the largest N among all known particular
solutions. In the optimal case, L = N∗ and small δ1 implies sharpness of the bounds. When
the bounds are not sharp, δ1 simply provides the gap between upper and lower bounds on
N∗. Another way to assess the accuracy of the SDP is to compute the difference between
bounds computed using the two equivalent definitions for N at the same set of parameters.
If U1 and U2 denote bounds on Φ corresponding to (2.43) and (2.44), respectively, then the
relative difference is

δ2 :=
|U2 − U1|

U1

. (5.7)

We used each of the three quantities defined above—r, δ1, and δ2—as diagnostic tools
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to assess the validity of the bounds obtained via SDP. These quantities are displayed in
Table 5.2.

Table 5.2: Upper bounds (U ) on the Nusselt number computed using SOS optimization with
auxiliary polynomials of maximum degree two up to eight. The upper bounds are compared
to the maximum Nusselt number among all known solutions (L). The residual r is displayed
as defined above, along with δ1 and δ2 as defined in (5.6) and (5.7).

R = 10, L = 1.65 R = 100, L = 2.865

d U log10 δ1 log10 δ2 log10 r U log10 δ1 log10 δ2 log10 r

2 1.6500000 −12.5 −12 −13.1 2.8684439 −2.9 −14.1 −13.1

4 1.6500000 −14 −14 −12.6 2.8650000 −15.1 −16 −13.2

6 1.6500000 −13.2 −13.4 −10.8 2.8650000 −14.2 −14.9 −12.2

8 1.6500000 −16 −12.9 −9.7 2.8650000 −16 −13 −11.2

R = 500, L = 4.1158818 R = 1000, L = 4.4442202

U log10 δ1 log10 δ2 log10 r U log10 δ1 log10 δ2 log10 r

2 4.2815436 −1.4 −14.2 −13.9 4.6304838 −1.4 −13.1 −13

4 4.2099533 −1.6 −9.5 −10.4 4.5377972 −1.7 −11.9 −10.6

6 4.1158840 −6.3 −6.2 −9.1 4.4442203 −8 −8.6 −9.1

8 4.1158827 −6.7 −8.4 −8.7 4.4442202 −8.6 −7.7 −8.5

R = 5000, L = 4.5887705 R = 10000, L = 4.4941571

U log10 δ1 log10 δ2 log10 r U log10 δ1 log10 δ2 log10 r

2 4.9247139 −1.1 −13.1 −12.7 4.9622777 −1 −14.6 −13.9

4 4.8410437 −1.3 −10.7 −10.8 4.8940532 −1 −11.6 −10.2

6 4.7433890 −1.5 −7.9 −8.1 4.8386286 −1.1 −9.3 −8.4

8 4.6540188 −1.8 −4.6 −6 4.7949268 −1.2 −4.3 −5.2

5.1.2 Upper bounds at the standard parameters

As a first example we fix k2 = 1/2 and σ = 10, and consider the dependence of the
upper bound on R. In this case, the first bifurcation from the zero state, RL1 , takes its
minimal valueRc = 27/4. Figure 5.1(a) shows the upper bounds we computed in this case
using SOS methods. Also shown are lower bounds on N∗ found by searching among various
trajectories of the HK8 system as described in Chapter 3. Close agreement of upper and
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lower bounds on N∗ implies that the upper bounds are sharp or very nearly so, and that the
corresponding trajectories maximize N . The relative gap between upper bounds and lower
bounds on N∗ established in this chapter are depicted in Figure 5.1(b); forR . 560Rc, the
best upper and lower bounds agree to at least five significant digits.
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Figure 5.1: (a) Upper bounds (U∗
d ) on the truncated Nusselt number (N ) computed by solving the SOS

optimization (4.13) with degree-d auxiliary polynomials, compared to N on particular solutions of the HK8
model with k2 = 1/2 and σ = 10. (b) Relative difference between the U∗

d and the lower bound L, determined
by finding the maximum N over the known particular solutions obtained in Chapter 3.

Different trajectories saturate the upper bounds (and hence maximize N ) over variousR
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intervals. WhenR ≤ RL1 , all trajectories satisfy N = 1 since they tend to the equilibrium
at the origin. On the subsequent interval RL1 ≤ R ≤ RTC1 ≈ 20.8Rc, the L1 equilibria
maximize N . At the present k2 and σ, NTC > NL1 for all R > RTC1 , and TC equilibria
are maximal at least on the intervalRTC1 ≤ R . 69Rc. Time-dependent states appear to
maximize N for larger R, with periodic orbits saturating the upper bound on the interval
69Rc . R . 520Rc. We draw this conclusion because N on the periodic orbits agrees
with the best upper bound to within the expected numerical error of our SOS computations.
In such cases we say for simplicity that the periodic orbit saturates the bound. Strictly
speaking we do not expect periodic orbits to exactly saturate a bound computed with V
of any finite degree d, as explained in [23], but we ignore this distinction provided U∗d
is sufficiently converged to the large-d limit. The branch of periodic orbits that saturates
the upper bound is the one that emerges, initially unstable, from the Hopf bifurcation at
RH1 ≈ 21.80Rc. ForR larger than 520Rc, time-dependent solutions may still maximize
N , but our upper bounds on N∗ are not sufficiently sharp to confirm it.

5.1.3 Dependence on wavenumber and Prandtl number

We now examine how the upper bounds and the states that saturate them depend on
the parameters k2 and σ. When k2 is fixed to values other than 1/2 with σ still fixed at
10, the bounds are qualitatively similar to those depicted in Figure 5.1. We have computed
upper bounds on N∗ at various wavenumbers and searched among known trajectories for
the largest N values. Figure 5.2 shows the upper bounds we computed at five different
wavenumbers using V of degree up to eight. The different line styles in Figure 5.2 indicate
the type of state that appears to saturate the upper bounds at various R and k. As in the
k2 = 1/2 case, each bound is saturated by L1 equilibria at small R, by TC equilibria at
largerR, and—at least in the smaller-k cases—by periodic orbits at still largerR. The fact
that L1 states maximize N at onset is proved analytically in [66] and in §5.2 below. The
Rayleigh number where the TC branch of equilibria bifurcates from the L1 branch changes
with k2 according to (3.6), but in each case the emerging TC states saturate the bound for
some interval of Rayleigh number.

Similarly, we may consider how the situation changes when σ is fixed to various values
while k2 = 1/2. The analytical bound proved in §5.2.2 below implies that for k2 = 1/2, the
σ-independent L1 states maximize N forR at least as large asRT (2−1/2) = 14Rc, where
RT (k) is defined by (5.11) below. For R > RT , we computed numerical upper bounds
on N for various σ ∈ [0.01, 100]. In each case, the upper bounds appear to be saturated

42



10
0

10
1

10
2

10
3

1

2

3

4

5

Figure 5.2: Upper bounds on N computed by solving the polynomial optimization problem (4.13) with V of
degree up to eight. Upper bounds were computed for various k with σ = 10 across a range of R. The line
style indicates whether the upper bound is saturated by L1 or TC equilibria ( ) or a time-periodic orbit
( ). For k2 = 1/4 and k2 = 1 sharp upper bounds at very large R were not confirmed, since the upper
bounds of degree eight do not match the maximal N of the time-dependent solutions.

by time-dependent solutions for all R sufficiently large. The main qualitative distinction
between different σ values is whether TC states saturate the upper bounds for some interval
ofR. We observe in Chapter 3 that NTC exceeds NL1 if and only if (k2, σ) lies in Region V
of Figure 3.2, corresponding to σ & 3.523 when k2 = 1/2. Indeed, for various σ > 3.523

our upper bounds are saturated by TC states over bounded intervals of R, whereas for
smaller σ we found no such intervals.

5.1.4 Optimal wavenumber

In the full PDE model (1.13) of 2D Rayleigh–Bénard convection, steady solutions of
each horizontal period exist for sufficiently largeR. Thus for the PDE it is natural to search
among all horizontal periods for the steady states that maximize heat transport. The analogue
in the HK8 model is to maximize N over k—the horizontal wavenumber of modes that are
included in the truncated Galerkin expansion (2.41). Thus we consider the quantity

N∗k∗(R, σ) := sup
k>0

N∗(R, k, σ). (5.8)
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To find upper bounds on N∗k∗ , we repeatedly solved the SOS optimization in (4.13) using
V of degree 6, sweeping through k and using the MATLAB function fminsearch to
converge to the global maximum of U∗6 over k. Lower bounds on N∗k∗ were computed by
maximizing N over k among each of the three types of states observed to maximize N at
various parameters: the L1 equilibria, the TC equilibria, and stable periodic orbits found via
time integration. For the L1 states, the optimal wavenumber is (k∗)2 = 1/2, corresponding
to convection cells of aspect ratio 2

√
2. Here NL1 attains its maximum of

max
k>0

NL1 = 3− 27

2R
, (5.9)

in the regime R > Rc where these L1 states exist. The maximum of NTC over k was
found with Mathematica by numerically optimizing the analytical expressions for the TC
equilibria at various fixed values ofR and σ. At each of theseR and σ values, the maximum
value of N over k among stable periodic orbits was determined using a search algorithm
similar to the one used to maximize the upper bound, with numerical integration performed
to determine N at each iteration. Figure 5.3 shows the upper and lower bounds on N∗k∗ in
the σ = 10 case. The upper bounds are sharp or very close to sharp over the full range ofR.
At σ = 10, the states that saturate or nearly saturate these bounds are the L1 equilibria at
smallR, the TC equilibria at intermediateR, and the stable periodic orbits at largerR. In
particular, the maximum value N∗k∗ is attained by steady states whenR . 7.39Rc.

To study the effects of changing σ, at various fixed σ we determined the intervals of
R where our k-maximized upper bounds are saturated by the L1 equilibria, TC equilibria,
or time-periodic states. Figure 5.4 summarizes the results. At each σ, we used a bisection
search to find the largest R such that an L1 equilibrium saturates the k-maximized upper
bound. That is, we computed the k-maximized upper bound and increased R when the
upper bound differed from the maximum of NL1 by less than 10−5, and we decreased R
otherwise. Analogous computations for TC equilibria were carried out to find the boundary
between regions II and III.

Regions I and II together in Figure 5.4 comprise the parameter regime in the HK8 model
where, according to our upper bounds, the maximum of N over all k is attained by steady
states. It is an open question whether steady states maximize heat transport in the Boussinesq
equations [80]. Results for the PDE suggest that the HK8 model provides heat transport
similar to that of the PDE for only a small interval of Rayleigh number. When R & 2Rc,
the value of NL1 deviates from the heat transport of the analogous roll state of the PDE (see
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Figure 5.3: Comparison of three k-maximized quantities at σ = 10: upper bounds on N∗, N values among
steady states, and N values among time-dependent states. The maximizer of the state saturating the upper
bound, k∗, generally depends onR and the type of trajectory. Upper bounds were computed using V of degree
six.
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Figure 5.4: Regions in the σ–R plane where the upper bound on N∗
k∗—the maximum heat transport over

k—is saturated by: (I) L1 equilibria and (II) TC equilibria. In region (III), time-periodic states appear to
saturate the upper bounds, but the upper bounds with V of degree six are not sufficient to prove this at all
parameter combinations. The intersection between the three regions occurs near σ = 3.5 andR/Rc = 17.6,
corresponding to the minimal σ where the Nusselt number of the TC equilibria exceed that of L1 for
sufficiently largeR.
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[80]). For the HK8 model at all σ and allR values small enough for the model to capture
PDE behavior, Figure 5.4 suggests that steady states maximize N .

5.2 Analytical upper bounds with quadratic auxiliary functions

In principle the bounding framework (4.11) can be applied numerically or analytically,
but many of the bounding computations reported in §5.1 would be analytically intractable
because the polynomial expression (4.9) for S has hundreds or thousands of terms. Bounds
can be derived analytically in the case of quadratic V , however, and we do so in this section.
The resulting bounds are rigorous and depend analytically on the parameters (R, k, σ),
whereas the numerical bounds in §5.1 were subject to rounding errors in SDP solutions, and
they had to be computed anew for each triplet of parameter values.

The best analytical upper bounds on N take different forms in four different regimes of
the k–R parameter plane. These four regimes are shown in Figure 5.5, and the bounds in
each are

N ≤



1, 0 ≤ R ≤ RL1 ,

NL1 , RL1 < R ≤ RT ,

NL1 + 1
R

[
RL1 −RL2 +

√
2
√

(R−RL1)
2 + (R−RL2)

2
]
,

R > RT , 0 < k ≤ kT ,

NL1 + 1
R

[
RL1 −RL2 +

√
(RL2 −RL1)

2 + 4(R−
√
RL1RL2)

2

]
,

R > RT , k > kT ,

(5.10)
Recall that RL1(k) and RL2(k) are defined by (3.1) and (3.4), and that NL1 = 3 − 2

RL1

R .
The character of the bounds changes atRT , defined by

RT (k) :=


1
2

(RL1 +RL2) , 0 ≤ k ≤ kT ,

−15
2(5k2−4)

RL1 +
√

11+5k2

5k2−4
RL1RL2 , k > kT ,

(5.11)

where kT ≈ 1.00319 is the positive real root of (5k2 + 11)RL1 = (5k2 − 4)RL2 . Note that
the bounds (5.10) are uniform in σ, unlike the bounds reported in §5.1 that were computed
numerically using V of degrees 4 and higher.
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Figure 5.5: Parameter regimes where the four different analytical upper bounds (5.10) on N are proved for the
HK8 model. In the cross-hatched region, N = 1 for all solutions. The bound N ≤ NL1

is proved here for
the full horizontally hatched region; it was proved in [66] only for the part of this region below the dashed
line ( ). The diagonally and vertically hatched regions correspond to the third and fourth cases in (5.10),
respectively.

The bound in the first regime of (5.10) is sharp and is saturated by the zero equi-
librium, since this state is globally attracting below the first instability at RL1 . The
bound in the second regime of (5.10) is saturated by the L1 equilibria. The same bound
was proved by Souza & Doering [66] on the strictly smaller parameter regime where
RL1 < R ≤

√
RL1RL2 . In §5.2.2 we strengthen their result by extending its applicability

up to the larger parameter value RT . The bound in the third regime of (5.10) is new and
is proved in §5.2.2. The bound in the fourth regime was proved by Souza & Doering for
R ≤

√
RL1RL2 . Their results are superseded in the second and third regimes by our new

bounds. It is possible to improve the bound in the fourth regime using quadratic V , as
suggested by the bounds we have computed numerically, but we were unable to derive an
analytical expression; partial analytical results are given in Appendix C. Bounds in the third
and fourth regimes of (5.10) are not sharp; it is evident from the numerical bounds reported
in the previous section that V of higher polynomial degrees provide better bounds.

5.2.1 Sum-of-squares construction in the quadratic case

The quadratic ansatz that we consider for the auxiliary function V need not be the most
general possible since some structure can be anticipated, as described in §5.1. First, we
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require that V is invariant under the two symmetries (5.3) because this does not change
the optimal bound. Second, we require that the cubic terms of f · ∇V cancel so that the
polynomial S contains only terms of degree two and lower. The most general quadratic V
satisfying these two constraints takes the form

V = c1θ02+c2θ04+c3ψ
2
11+c4ψ

2
01+c5ψ

2
12+c6θ

2
11+c7θ

2
02+c8θ

2
12+c9ψ01ψ03+c10ψ

2
03+c11θ

2
04,

(5.12)
where the coefficients must satisfy:

c6 = c8, c7 = 2c6, 6c4 − c9 −
4(3 + k2)

k2 + 1
c3 +

4k2

k2 + 4
c5 = 0,

c11 = 2c8,
2

3
c10 − c9 −

4(k2 − 5)

k2 + 1
c3 +

4(k2 − 8)

k2 + 4
c5 = 0.

(5.13)

The previous derivation of upper bounds on N for the HK8 model in [66] was presented
as an analogue of the “background method” for PDEs [13, 81]. In the PDE setting, the
background method can be viewed as a special case of a more general auxiliary functional
method—the PDE analogue of our general approach (4.10)—where the auxiliary functional
is quadratic [6, 24]. Likewise, the argument in [66] is equivalent to a special case of our
present analysis where the quadratic ansatz (5.12) for V has only two free coefficients (the
“background values”) rather than the six free coefficients in (5.12)–(5.13). Appendix B gives
the exact constraints on these coefficients that, if added, would make our analysis equivalent
to [66]. We do not impose these unnecessary constraints here, leading to better bounds on
N in some parameter regimes.

With the quadratic V ansatz (5.12) and coefficients constrained by (5.13), the expres-
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sion (4.9) for the polynomial S that must be SOS becomes

S = U − 1 +

(
4c1 −

2

R

)
θ02 + 16c8θ

2
02 +

(
16c2 −

4

R

)
θ04 + 64c8θ

2
04

+ 2σ(k2 + 1)c3ψ
2
11 + k

(
−1

2
c1 − 2Rc8 − 2

σ

k2 + 1
c3

)
ψ11θ11 + 2(k2 + 1)c8θ

2
11

+ 2σ(k2 + 4)c5ψ
2
12 + k

(
c2 + 2Rc8 + 2

σ

k2 + 4
c5

)
ψ12θ12 + 2(k2 + 4)c8θ

2
12

+
σ

3

(
c9 + 4

3 + k2

k2 + 1
c3 − 4

k2

k2 + 4
c5

)
ψ2

01 + 10σc9ψ01ψ03

+ 27σ

(
c9 + 4

k2 − 5

k2 + 1
c3 − 4

k2 − 8

k2 + 4
c5

)
ψ2

03.

(5.14)
For each (R, k, σ), the SOS optimization (4.11) asks for the smallest U such that the ci can
be chosen to make the above expression an SOS polynomial of the state variables. The
corresponding value of U provides an upper bound on the time-averaged Nusselt number N
over all solutions to the HK8 model. To proceed analytically, we consider the SDP (4.13)
that is equivalent to the SOS optimization (4.11). In this formulation, the SOS constraint on
expression (5.14) for S is replaced by the equivalent constraint that S = bTQb for some
positive semidefinite Gram matrix Q and vector b of polynomial basis functions.

We first choose a vector b such that S = bTQb holds for at least one matrix Q, then we
determine when Q can be positive semidefinite. A Gram matrix representation of S exists if
and only if S lies in the span of the scalar polynomial entries of the matrix bbT. Any such
b suffices; the existence of a positive semidefinite Q does not depend on the choice of b.
Here we simply choose the entries of b to be monomials:

b =


b1

b2

b3

b4

 , where b1 =

[
ψ11

θ11

]
, b2 =

[
ψ01

ψ03

]
, b3 =

[
ψ12

θ12

]
, b4 =

 1

θ02

θ04

 .
(5.15)

We have grouped the entries of b into the four sub-vectors bi to exploit symmetry. In
particular, because the expression (5.14) for S is invariant under both transformations
in (5.3), we grouped monomials such that b1, b2, b3, and b4 are invariant under, respectively,
the first transformation only, the second transformation only, neither, and both. We then
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restrict Q to be block diagonal with blocks Qi sized according to the bi. In this case the
relation S = bTQb becomes

S =
4∑
i=1

bT
i Qibi, (5.16)

and this implies that the matrices Qi are written as

Q1 =

[
2σ(k2 + 1)c3 −k

2

(
1
2
c1 + 2Rc8 + 2 σ

k2+1
c3

)
−k

2

(
1
2
c1 + 2Rc8 + 2 σ

k2+1
c3

)
2(k2 + 1)c8

]
,

Q2 =

σ3 (c9 + 43+k2

k2+1
c3 − 4 k2

k2+4
c5

)
5σc9

5σc9 27σ
(
c9 + 4k

2−5
1+k2

c3 − 4k
2−8
k2+4

c5

) ,
Q3 =

[
2σ(4 + k2)c5

k
2

(
c2 + 2Rc8 + 2 σ

k2+4
c5

)
k
2

(
c2 + 2Rc8 + 2 σ

k2+4
c5

)
2(k2 + 4)c8

]
,

Q4 =

 U − 1 2c1 − 1/R 8c2 − 2/R
2c1 − 1/R 16c8 0

8c2 − 2/R 0 64c8

 .

(5.17)

There is no loss of generality in letting all entries ofQ outside theQi blocks be zero because
if there exists any Q � 0 satisfying S = bTQb, then there exists such a Q that is block
diagonal [18]. This simplifies matters because the condition Q � 0 is equivalent to Qi � 0

holding for each block. In other words, S is an SOS polynomial if and only if each bT
i Qibi

is an SOS polynomial. To prove an upper bound N ≤ U in the following analysis, it suffices
to find coefficients ci such that Qi � 0 for all four matrices in (5.16)–(5.17). A similar
analytical procedure was implemented in [23] to exploit symmetry when bounding time
averages in the Lorenz equations.

5.2.2 Analytical bounds near the onset of convection

The origin ceases to be globally attracting when the L1 equilibria emerge asR increases
pastRL1 , corresponding to the onset of convection in the PDE model. At each k there exists
an interval of Rayleigh number where the L1 states maximize N . In this subsection we
prove that

N ≤ NL1 = 1 + 2

(
1− RL1

R

)
(5.18)
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whenRL1 ≤ R ≤ RT , whereRT (k) is defined as in (5.10). The regime of the k–R plane
where this bound is proven is represented by horizontal hatching in Figure 5.5. The bound
(5.18) may hold at some R values larger than RT for certain k2 and σ, but this cannot be
proved using V that are quadratic.

To prove (5.18), we let U = NL1 in the expression (5.14) for S. When this bound holds
it is saturated by the L1 equilibria. The auxiliary function method can give a sharp bound on
time averages only if S vanishes pointwise on all trajectories that saturate the bound [75], so
in the present case S must vanish on the L1 equilibria, whose nonzero coordinates are given
by (3.2). This is possible only if all four terms in the sum S = bT

i Qibi are SOS polynomials
that vanish at the L1 equilibria. The second and third terms vanish there for any Qi because
b2 and b3 vanish. The first and fourth terms, on the other hand, vanish at the L1 equilibria if
and only if they take the form

bT
1Q1b1 = q1

[
ψ11 − k

(k2+1)2
θ11

]2

, bT
4Q4b4 = q4 [θ02 − (R−RL1)]

2 + q5θ
2
04, (5.19)

where the SOS constraints require q1, q4, q5 ≥ 0. Applying the above identities on the
right-hand side of S = bT

i Qibi and equating coefficients on each side of this equality
determines four of the coefficients of V :

c1 = − 1

2R
, c2 =

1

4R
, c3 =

(k2 + 1)4

8σk2R(R−RL1)
, c8 =

1

8R(R−RL1)
. (5.20)

To establish the bound (5.18), the eleven coefficients of the V ansatz (5.12) must satisfy
not only the four expressions above but also the five constraints in (5.13). This ensures
Q1,Q4 � 0 when R ≥ RL1 , so it remains only to choose coefficients c5 and c9 such that
Q2,Q3 � 0. These matrix inequalities can be satisfied if and only ifRL1 ≤ R ≤ RT . To
see this, we observe that a 2-by-2 matrix is positive semidefinite if and only if its upper left
entry and determinant are both nonnegative. Applying this criterion gives four inequalities
that are equivalent to Q2 and Q3 being positive semidefinite. We performed quantifier
elimination using the Reduce and Exists commands in Mathematica to determine that
these inequalities can be satisfied if and only ifRL1 ≤ R ≤ RT . Thus, quadratic V yield
the sharp bound N∗ = NL1 on this parameter regime.
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5.2.3 Analytical bounds at larger Rayleigh number

In the regime where R ≥ RT , we have proved a new analytical bound when
k ≤ kT ≈ 1.00319 but not when k > kT . The sum-of-squares bound in the former
case is

N ≤ 3− 2RL1

R
+

1

R

[
RL1 −RL2 +

√
2
√

(R−RL1)
2 + (R−RL2)

2
]
. (5.21)

To derive this bound we consider the expression (5.14) for S where U is equal to the
right-hand side of (5.21). As in the previous subsection, we must show that the resulting
S can be written in the form S =

∑4
i=1 b

T
i Qibi, where each term in the sum is an SOS

polynomial—or, equivalently, where each Qi � 0.
Allowing for fully general SOS constraints leads to analytical difficulties, even with the

simplifying block diagonal structure of Q. Unlike in §5.2.2, we cannot anticipate where the
polynomial S must vanish. Instead we simplify the analysis by making assumptions on the
forms of the SOS representations. In particular we observe that, in the σ → ∞ limit, the
Lorenz triplets {ψ11, θ11, θ02} and {ψ12, θ12, θ04} decouple, and the maximal N is obtained
when each triplet is in the L1 and L2 states, respectively (see Appendix A.1 for details). This
motivates us to assume that the SOS representations of the first and third SOS polynomials
take the form

bT
1Q1b1 = q1

[
ψ11 −

k

(k2 + 1)2
θ11

]2

, bT
3Q3b3 = q3

[
ψ12 +

k

(k2 + 4)2
θ12

]2

. (5.22)

The above constraints are stronger than the general SOS conditions and could potentially
lead to suboptimal bounds, but this appears to not occur. At various fixed parameter values
in this regime, upper bounds computed numerically with the optimal choice of quadratic V
agree precisely with the analytical bound (5.21).

With the assumption (5.22) on SOS representations, the coefficients of V must satisfy

c3 =
(k2 + 1)

σ
RL1c8, c5 =

(k2 + 4)

σ
RL2c8,

c1 = 4(RL1 −R)c8, c2 = 2(RL2 −R)c8.

(5.23)

As a result of (5.22), the matrices Q1 and Q3 defined in (5.17) each have determinant zero,
and soQ1,Q3 � 0 as long as c8 ≥ 0. The conditionQ2 � 0 requires c8 > 0 because c8 = 0

would imply that detQ = −16σ2c2
9, which is negative for all c9. Furthermore, it can be
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Figure 5.6: Analytical upper bounds on N∗ in the k2 = 1/2 case, proved with optimal quadratic auxiliary
functions (U∗

2 ) and with the suboptimal choice of [66]. The bounds are uniform in σ. Values of NTC are
shown at several selected values of σ to demonstrate near-convergence of U∗

2 to the envelope of steady state
Nusselt numbers over σ.

shown that if c8 is positive, Q4 � 0 whenever detQ4 ≥ 0. We also observe that detQ4 = 0

must hold at the minimal U ; otherwise, there would exist smaller U such thatQ4 � 0. After
the relations (5.23) are applied to Q4, the detQ4 = 0 condition becomes

U − 1 =
(8(RL1 −R)c8 − 1/R)2 + (8(RL2 −R)c8 − 1/R)2

16c8

. (5.24)

Minimizing U over positive c8 yields the bound (5.21), where the minimizer is

c8 =
[
32R2

(
(R−RL1)

2 + (R−RL2)
2
)]−1/2

. (5.25)

It remains to find c9 such that Q2 � 0. Again performing quantifier elimination with
Mathematica’s Reduce and Exists commands, we find that such c9 exist if and only if
k ≤ kT . This condition and theR ≥ RT condition define the regime in theR–k plane where
we proved the bound (5.21). For the standard wavenumber k2 = 1/2, Figure 5.6 compares
the optimal analytical bounds—(5.18) and (5.21)—that can be proved using quadratic V , to
the upper bound from [66], as well as to the N values of various steady states.
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5.2.4 Quadratic bounds compared to steady states at maximal Prandtl number

The analytical bounds (5.10) proved using quadratic V are uniform in σ, so they are also
upper bounds on the maximum of N over σ. That is,

N∗σ∗(k,R) := max
σ>0

N∗(k, σ,R) ≤ U∗2 (k,R). (5.26)

WhenRL1 ≤ R ≤ RT (k), the quadratic-V upper bound is saturated by the σ-independent
L1 states, and N∗σ∗ = U∗2 . For R > RT , the uniform-in-σ bounds cannot always be sharp
at particular σ because there are cases where N is maximized by σ-dependent TC states.
However, this does not rule out the possibility that the uniform-in-σ bounds may be sharp
upper bounds on N∗σ∗ . Investigating this possibility, we find that the analytical bounds (5.10)
are nearly equal to N∗σ∗ but slightly larger in general whenR > RT .

The relationship between the quadratic-V upper bounds and the quantity N∗σ∗ may be
visualized by constructing an envelope of NTC curves at multiple values of σ. Figure 5.6
shows a few such curves in the k2 = 1/2 case. The SOS bound follows the contour of this
envelope, but a small separation occurs after the SOS bound diverges from NL1 . As shown
in Figure 5.7 for various fixed k, the bounds provided by quadratic auxiliary functions are
almost but not quite saturated by N∗σ∗ when R > RT . The N∗σ∗ values used in Figure 5.7
we obtained by finding exact expressions for NTC with computer algebra, then maximizing
the result over σ for various fixed values ofR and k. In each case, the maximizing σ∗ lies
in region V of Figure 3.2—the parameter regime in the k2–σ plane where the branch of
TC equilibria connects only to the L1 branch. As R → ∞, the quadratic-V bounds and
the infinite-σ limit of NTC both asymptote to N = 5; see Appendix A.1 for details on the
infinite-σ limit.
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CHAPTER 6

Heat Transport in Other Reduced Models

In this chapter, we examine a hierarchy of reduced models that build on the HK8 system
studied in Chapters 3 and 5. We apply the auxiliary function method to construct upper
bounds on maximal heat transport, N∗ (2.19), for several models in the hierarchy. Various
solutions of each model are computed through numerical bifurcation analysis and numerical
integration of the ODEs. Each particular solution provides a lower bound on maximal heat
transport for the chosen truncated model and allows comparison with the upper bounds.
Whenever the Rayleigh number is sufficiently small so that the reduced system can be
considered a reliable approximation to the PDE, the analytical upper bounds are saturated
by the branch of equilibria that arise as the first instability of the zero state.

6.1 Hierarchy of truncated models

The truncated models studied here are constructed according to the procedure outlined
in Chapter 2. First, ψ and θ are written as Fourier series:

ψ(x, z, t) =
∑

(m,n)∈Mψ

ψmn(t) sc(mkx) sin(nz), (6.1)

θ(x, z, t) =
∑

(m,n)∈Mθ

θmn(t) sc(mkx) sin(nz), (6.2)

where sc represents either sine or cosine, based on the phase convention established in
§2.2: we select sine for ψ modes and cosine for θ modes when (m+ n) is even, and make
the opposite choices when (m + n) is odd. Here k = 2/A is the fundamental horizontal
wavenumber for a domain of aspect ratio A. A reduced order model is formed by truncating
the series expansions (6.1)–(6.2) to a finite number of terms, substituting the resulting
expressions into the Boussinesq equations (1.13), and projecting the result onto the selected
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Fourier modes. This procedure yields a system of ODEs governing the time evolution of the
coefficients ψmn and θmn.

In the following discussion, let the sets of ordered pairs (m,n) of all selected modes for
ψ and θ in the reduced model be given by Mψ and Mθ, respectively. We consider models
that are distinguished in the sense that each model obeys the truncated energy, temperature,
and vorticity balance laws described in §2.4. All distinguished models obey the following
rules:

Criterion 1 (Energy balance). If (m,n) ∈Mψ ∩Mθ, then (0, 2n) ∈Mθ [73].

Criterion 2 (Vorticity balance). If (p, q) ∈Mψ and (p, s) ∈Mψ, then (0, |q − s|) ∈Mψ if
and only if (0, q + s) ∈Mψ.

The benefits of considering such models include boundedness of all trajectories of the ODEs
and equivalence of the two definitions of the time-averaged Nusselt number, (2.17) and
(2.18).

We direct our focus to the subset of truncated models including one or more “shear
modes”—i.e., those of the form ψ0n. The smallest model obeying each of the above criteria
is the HK4 model, a modified version of the Lorenz equations that includes the Fourier
modes ψ11, θ02, θ11, and ψ01. In this model, the shear mode decays exponentially along all
orbits since it satisfies the simple uncoupled equation ψ̇01 = −σψ01, so that the dynamics
are indistinguishable from those of the Lorenz equations. The next smallest model—the
first to exhibit nontrivial shear flow—is the HK8 model studied in Chapters 3 and 5. We
construct a hierarchy of distinguished models with shear that build on these two initial cases.
First, define an ordering on the mode pairs as (m1, n1) > (m2, n2) if and only if

m1 + n1 > m2 + n2 or (m1 + n1 = m2 + n2 and n1 > n2). (6.3)

Let HKMi be the ith model in the hierarchy, containing Mi modes. To construct the next
model:

1. Find the smallest pair with m,n > 0 not included in HKMi, according to (6.3).

2. Add the corresponding modes ψmn and θmn to the system.

3. Add θ0,2n and ψ0,2n−1, if not already included in HKMi.
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The final condition ensures that all models in the hierarchy are distinguished according to
the above energy and vorticity rules. In the limit as Mi →∞, the procedure enumerates all
pairs (m,n) with strictly positive indices, all shear modes with odd n, and all temperature
modes withm = 0 and even n. Therefore all Fourier modes that satisfy the phase convention
are included for sufficiently large Mi. The modes in the truncated Fourier series for several
models in the hierarchy are listed in Table 6.1, and a schematic of the selection procedure is
shown in Figure 6.1.

Table 6.1: Additional modes required to construct each HK model from the previous one in
the hierarchy up to Mi = 44.

Model Additional modes Model Additional Modes

HK4 ψ01, ψ11, θ02, θ11 HK26 ψ32, θ32

HK8 ψ03, ψ12, θ04, θ12 HK28 ψ41, θ41

HK10 ψ21, θ21 HK32 ψ09, ψ15, θ0,10, θ15

HK14 ψ05, ψ13, θ06, θ13 HK34 ψ24, θ24

HK16 ψ22, θ22 HK36 ψ33, θ33

HK18 ψ31, θ31 HK38 ψ42, θ42

HK22 ψ07, ψ14, θ08, θ14 HK40 ψ51, θ51

HK24 ψ23, θ23 HK44 ψ0,11, ψ16, θ0,12, θ16

6.2 Particular solutions of models in the HK hierarchy

6.2.1 Equilibria of truncated models

We first turn our attention to the equilibria of models in the HK hierarchy. These
solutions provide candidates for the optimal heat transport and therefore bound N∗ from
below. Such solutions are of interest because it is conjectured that steady solutions maximize
heat transport in the Boussinesq equations [80]. For all HK models, the zero equilibrium
is globally attracting for sufficiently smallR. As the Rayleigh number increases, the zero
state undergoes a series of pitchfork bifurcations, giving rise to pairs of equilibria via an
instability in the variables ψmn and θmn. These equilibria emerge at the Rayleigh number
Rmn, given by

Rmn :=
(
(mk)2 + n2

)3
/(mk)2. (6.4)

Depending on the model, these equilibria may simply be three dimensional analogues of
the nonzero equilibria of the Lorenz model, or may take a more complicated form where
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Figure 6.1: Schematic of the mode selection procedure for the first 10 models in the HK hierarchy, where
arrows indicate the order of selection and dashed lines connect modes added simultaneously. Modes with
m = 0 are added when the next (m + n) shell is reached. Each model contains the modes of all previous
models, beginning with the HK4 system.

additional variables must be nonzero. In the simpler case, we denote these equilibria as Lmn.
The nonzero variables in the Lmn equilibria are given by

ψmn = ±
√

8
(mk)2+n2

√
R−Rmn, θmn = ±(−1)m+n

√
8 (mk)2+n2

mk

√
R−Rmn,

θ0,2n = 1
n

(R−Rmn) .
(6.5)

Each of the Lmn equilibria can be related to the equilibria of the Lorenz equations by a
linear change of variables. The value of N at the Lmn equilibria, computed from either
(2.17) or (2.18), is

NLmn = 3− 2Rmn/R (6.6)

In higher-order reduced systems, the equilibria arising atRmn often take a more complicated
form. This occurs due to additional terms in the reduced system that result from nonlinear
interactions between Fourier modes.

The equilibria that bifurcate atR11 are of particular interest because they correspond to
a pair of steady convection rolls that are globally attracting at onset. In the simplest case,
these equilibria are called L11 and are equivalent to the equilibria that emerge at the first
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instability of the HK8 model (3.2). More generally, we call this branch of equilibria the
primary branch. The smallest model where the primary branch deviates from the expressions
for the L11 states occurs in the HK14 system. In this case, the primary branch has seven
nonzero components: ψ11, ψ13, θ02, θ04, θ06, θ11 and θ13. The equilibria no longer satisfy
(6.5) because the ODE for θ13 includes a term proportional to ψ11 θ02. As a result, additional
variables must be nonzero to satisfy the algebraic equation corresponding to θ̇13 = 0.

The primary branches of equilibria for several reduced order models are depicted in
Figure 6.2. For each of the models depicted, the temperature profiles display slightly
unphysical behavior atR = 5Rc, including internal temperature maxima. These features
are not present at the onset of convection and develop at some largerR, indicating that the
reduced model is not capturing the full physics of the Boussinesq equations.

In general, the expressions for the equilibria that emerge atRmn deviate from (6.5) for
models large enough such that ψm,3n and θm,3n are included. Similar to the case of HK14,
nonlinear pairing between ψmn and θ0,2n occurs in the θm,3n equation, so that additional
variables must be nonzero. We observe that the inclusion of additional modes generally
enhances heat transport from (6.6).

We studied the bifurcation structure of the HKMi models in more detail with the
numerical continuation package MATCONT [10]. For these and subsequent computations
within this chapter, the model parameters k2 and σ were fixed at 1/2 and 10 respectively. To
improve numerical stability for all computations performed on the HK models, we scale the
ψ modes byR−1/2, θ modes byR−1, and time byR1/2. As a result, the Nusselt number for
the scaled HK models is

N = 1 +
∑

(0,2n)∈Mθ

(2n) θ0,2n. (6.7)

With Mi ≤ 44, we locate all branches of equilibria detectable forR/Rc < 1000, withR as
the bifurcation parameter. We began by continuing all branches that bifurcate from the zero
state atRmn. For these and each additional branch located, we continued the equilibria until
R/Rc > 1000, or until the curve terminates. This process was repeated for each equilibria
stemming from any of the pitchfork bifurcations detected, until no additional branches of
equilibria were found. Results for a few selected models are displayed in Figure 6.3. The
primary equilibria of the HK14 model display appreciably greater heat transport than those
of the HK10 model at all values ofR past onset. This is due in large part to the mechanism
described above where the L11 equilibria are augmented with additional modes.

We maximized N among all computed equilibria for each model. In all cases, the
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(a)

(b)

(c)

(d)

Figure 6.2: Streamlines overlaid on contours of the temperature (T ) for approximations of steady convection
whose mode amplitudes in the Galerkin expansion (2.4) are given by the primary branches of equilibria. The
plots above depict several reduced models at k2 = 1/2, σ = 10 and R = 5Rc: (a) the HK8 model (b) the
HK14 model (c) the HK22 model and (d) the HK32 model. The T scale ranges from 0 (dark) to 1 (light).
Positive and negative vorticity are indicated by solid and dashed streamlines, respectively. In each model,
additional modes pair with the nonzero variables of the L11 states due to nonlinear interactions between modes,
enhancing heat transport across the domain.

primary equilibria are maximal from onset until some larger value of R. Eventually, the
heat transport of the primary states may be surpassed by some other state, but it appears
that this only happens whenR is well beyond the point where unphysical behavior is first
observed. The primary equilibria were compared to the analogous states of the Boussinesq
equations—those arising from the first instability from the static state. We observe that the
HK14 model predicts slightly larger heat transport than the PDE for some R. This may
occur as a result of the partially filled shell in the hierarchy, where only one Lorenz triple
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Figure 6.3: Bifurcation diagrams for the HK10 and HK14 models, at k2 = 1/2 and σ = 10. Filled circles
indicate pitchfork bifurcations and open circles denote Hopf bifurcations. All curves were computed by
numerical continuation with a resolution of approximately 0.1 in units ofR/Rc.

with m+ n = 4 is included in the truncation.
The bifurcation structure of the HK models becomes more complex with larger Mi, and

the number of equilibria and Hopf bifurcations rapidly increases with the dimension of the
ODE. Therefore it is not practical to attempt to locate every equilibrium branch when the
dimension becomes sufficiently large. For larger models, we consider only the primary
branch of equilibria, and conjecture that these equilibria transport heat optimally at all
physically relevant values of R. The primary equilibria for several models are shown in
Figure 6.4.

6.2.2 Time integration of the HK ODEs

For models in the HK hierarchy with Mi ≤ 44, additional candidates for the maximal
N were obtained by directly computing the time average integral (1.19) with Φ = N .
Numerical solutions were obtained by directly integrating the ODEs for 104 to 105 time
units with the MATLAB solver ode45 starting from randomly generated initial conditions
within [1, 1]Mi . The absolute and relative tolerances of the solver were set to 10−12 and
10−9, respectively. In cases where more than one stable solution was detected at a particular
Rayleigh number, we report the maximum N among such solutions. The results are
displayed in Figure 6.5. When the Rayleigh number is sufficiently small, integrating the
ODEs yields stable equilibria, while at largerRwe identify trajectories that are time-periodic
or even chaotic.
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Figure 6.4: Heat transport among the primary branch of equilibria found via numerical continuation for several
selected truncated models. Values of Nu at the equilibria arising from the first instability of the Boussinesq
equations—analogues to the primary equilibria—are plotted for comparison. For each model with Mi ≤ 40,
the primary branches were determined to provide maximal heat transport among all equilibria untilR/Rc was
greater than 20. Data for the PDE was computed by Baole Wen [80].

6.3 Upper bounds on N

We apply the auxiliary function method with sum-of-squares optimization introduced
in Chapter 4 to determine upper bounds on N∗ for models in the HK hierarchy. In the
nomenclature introduced in Chapter 4, we seek U∗d : the minimum upper bound that can be
proved with degree d auxiliary functions. In general U∗d depends on both the chosen model
and the parametersR, σ, and k.

The number of terms in the general ansatz for the auxiliary function V ∈ Pn,d grows
rapidly in both the dimension n and degree d. As a result, if the SDP corresponding to
(4.11) is solved without simplification, the computational cost becomes prohibitive in all
but the simplest examples. To make these computations tractable, we simplify the structure
of the V ansatz by taking advantage of the structure of the HK ODEs. Following the
procedure outlined in §4.5, the monomial basis for the auxiliary function V is reduced by
imposing symmetry and highest degree cancellation conditions. Table 6.2 shows the number
of monomials before and after reduction for several models with degree four V . Variables
are scaled as described in §6.2 so that the relevant dynamics lie within [−1, 1]Mi .

Bounds are constructed for HK models with degree four V when Mi ≤ 40, and with
degree two V when Mi ≤ 60. For each model in the HK hierarchy with Mi ≤ 40, the
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Table 6.2: Number of monomials in the ansatz for the auxiliary function V of degree 4 for
several models in the HK hiearchy before and after reducing the ansatz using the structure of
the ODEs. The number of monomials before reduction is

(
Mi+4

4

)
, where Mi is the dimension

of the model. The time required to solve the SDP is reported for both the reduced and
unreduced problems (the unreduced problem was not solved for Mi > 18 due to memory
constraints). As a rule of thumb, the memory and time requirements scale roughly as O(n3)
when the corresponding Gram matrix is of dimension n. Computation time for the HK26
model was comparatively slow because it has only one sign symmetry.

Unreduced Reduced

Model Monomials Time (s) Monomials Time (s)

HK8 495 2 88 0.5
HK10 1000 5 158 0.7
HK14 3059 60 381 3
HK16 4844 230 447 7
HK18 7314 450 574 9
HK22 14949 - 977 50
HK24 20474 - 1189 100
HK26 27404 - 1433 815
HK28 35959 - 1697 250

primary branch of equilibria saturate the upper bounds when the Rayleigh number is slightly
larger thanR11. The auxiliary function method provides the sharpest bounds when Mi = 14.
This model is the first one whose primary equilibria deviate from the form (6.5), with seven
nonzero modes whenR > R11, resulting in larger heat transport than the Lorenz equilibria.
As such, the primary equilibria for HK14 are maximal for a larger range of Rayleigh number
than smaller HK models, but are still simple enough to admit sharp bounds with V of low
degree.

When Mi is increased for fixedR, the bound U∗4 increases noticeably upon progression
to the HK14 and HK32 models. The upper bounds vary by smaller amounts within each
shell, and in some cases U∗4 decreases from one model to the next at the same parameter
set. This appears to be caused primarily by the enhancement of heat transport that occurs
when progression to the next model results in the pairing of modes with larger wavenumber
with the nonzero modes of the primary branch of equilibria. The occurs only when the total
wavenumber (m + n) of the next shell is even, since modes of odd total wavenumber do
not pair with the L11 equilibria. A consequence of this pairing mechanism is that the shear
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modes are identically zero at the primary equilibria. Similarly, in numerical simulations of
the full PDE, zonal flow has been observed to decrease the time-averaged heat transport
[25].
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Figure 6.5: Upper bounds on N obtained with the auxiliary function method for a few selected models in the
HK hierarchy. The maximum value of the Nusselt number obtained from numerical continuation and direct
integration of the ODEs are shown for comparison.
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SDPs with degree two V provide more conservative upper bounds, but are less compu-
tationally taxing to compute, allowing bounds to be constructed for much larger systems.
Such bounds are displayed in Figure 6.6 for the HK40, HK54 and HK70 models. These
are the models that complete their respective shell in the HK hierarchy. When progressing
to a shell with even modes, the primary states are augmented, often resulting in a jump in
heat transport. At eachR, the SDP bounds and the primary branch of equilibria provide an
enclosure in N around the maximal Nusselt number, N∗.

The bound U∗2 appears to be constant in σ for each model in the hierarchy, just as
observed for the HK8 model in §5.2. For each model with Mi ≤ 58, U∗2 varied by less than
1% when σ ∈ [0.01, 100] and other parameters are held fixed. As a result, the degree two
upper bounds are generally not sharp among solutions with fixed σ. When σ = 10 and
k2 = 1/2, the degree two bounds are sharp for only a small interval of Rayleigh number in
all models with Mi > 4.
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Figure 6.6: Upper bounds on N computed with degree two auxiliary functions compared to the L11 equilibria
for the HK40, HK54 and HK70 models. Values of NL11 coincide for the equilibria of the HK40 and HK70
models over this range ofR.
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CHAPTER 7

Discussion and Future Work

In this thesis, reduced order models are constructed to approximate the physics of
Rayleigh–Bénard convection. Chapter 2 includes a derivation of the general form of
Galerkin-truncated models subject to stress-free isothermal boundary conditions in a hori-
zontally periodic domain. Criteria are presented for truncating the Fourier series such that
the resulting models satisfy energy, temperature and vorticity balance laws derived from
the Boussinesq equations. It is theorized that imposing these restrictions results in models
that more faithfully represent the physics of the PDE [76]. The energy balance, in particular,
implies boundedness of all solutions to the reduced system and equivalence of the two
definitions of the truncated version of the time-averaged heat transport, N [73]. The other
two balance laws used for model selection in this thesis—the temperature and vorticity laws
presented in §2.4—are of physical relevance but their importance is not fully understood.
Future studies may determine the implications of imposing these constraints on the ODE
dynamics, or include additional constraints based on the physics of convection.

The auxiliary function method is presented in Chapter 4, including a general discussion
of its application to reduced order convection models. A crucial step in the method is the
selection of an auxiliary function, V , allowing global upper bounds on the heat transport
to be established. For polynomial dynamical systems, the auxiliary functions are typically
taken to be polynomials of fixed degree d. The number of monomials required to characterize
the ansatz for V of fixed degree increases rapidly in both the degree and the number of
variables, placing a significant limitation on the feasibility of generalizing the method to
larger models. One way to deal with this issue is to reduce the number of monomials in the
ansatz. In this thesis, we impose sign symmetry and highest-degree cancellation conditions
that offer a drastic reduction in the size of the monomial basis without sacrificing the quality
of the upper bounds. The computational complexity involved in solving the corresponding
SDPs with an n× n Gram matrix scales roughly as n3 [39], so constraints on the monomial
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basis that lead to a simpler Gram matrix would have a significant impact on computation
time and memory cost.

A second possible improvement can be achieved by using algorithms that scale better
with the size of the problem. First order methods, including the alternating direction method
of multipliers (ADMM) [83], improve computation time at the expense of accuracy by
exploiting sparsity within the SDP formulation. DSOS and SDSOS optimization (diagonally
dominant and scaled diagonally dominant SOS) [1] introduce alternatives to the SOS
constraint that allow more efficient computation at the risk of obtaining more conservative
bounds. This is because these methods consider auxiliary functions in a strictly smaller
class of polynomials. Such techniques could allow computation of SDPs of larger systems,
or with higher degree V .

Even with the above improvements, the truncated Fourier series may provide an inad-
equate description of the physics at larger Rayleigh numbers. Strongly forced convective
flows develop a wide range of length scales that require a large number of Fourier modes
to fully resolve. To develop bounds that are less sensitive to these length scales, sum-of-
squares optimization can be applied with auxiliary functionals acting on the function space
of the PDE. This approach has been implemented for other systems directly [24], and is an
extension of the background method applied to produce bounds on time-averaged quantities
in fluid dynamics [6].

In Chapter 5, the auxiliary function method was applied using sum-of-squares opti-
mization to establish upper bounds on the mean heat transport, N , among all solutions of
the HK8 system, a truncated version of Rayleigh’s PDE model [58]. Values of N were
also calculated along various particular solutions to the HK8 system. The upper bounds
were sharp in many cases, as confirmed by their coincidence with N on known steady or
time-periodic solutions. For purposes of numerical computation, SOS optimization was
performed via semidefinite programming with auxiliary functions of degrees 2, 4, 6, and 8 at
various choices of the model parametersR, σ, and k. Moreover, upper bounds were derived
analytically using quadratic auxiliary functions yielding estimates that depend explicitly on
the parametersR and k, and improve upon a previous result.

For all values of k and σ where we computed bounds on the HK8 model by SOS
optimization, steady states maximize N for a range ofR above onset. Specifically, for all
k and σ there exists an interval of R where the L1 equilibria maximize N . This interval
contains the σ-independent intervalRL1 ≤ R ≤ RT , as follows from our analytical bounds.
When σ is sufficiently large, there exists a bounded interval ofR within (RT ,∞) where the
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TC equilibria saturate the upper bound; for smaller σ the L1 equilibria transport optimally
among the steady states of the HK8 model. Numerical results suggest that time-dependent
trajectories often maximize N for sufficiently large R. The emergence of time-periodic
solutions that transport more heat than any steady state contrasts with the Lorenz equations
where the L1 equilibrium maximizes N for all R beyond onset [23, 41, 65]. Motivated
by the physics of the full PDE model, where the aspect ratio of convection cells need not
be fixed, we also maximized our bounds over k. This maximization procedure is often
applied in studies of maximal heat transport for the full PDE [27, 67, 79]. This naturally
divides the σ–R parameter space into regions (Figure 5.4) where the so-maximized bounds
are maximized by each of the three types of solutions described above. For a range of R
after the onset of convection, bounds are always saturated by steady states. This means that
maximal heat transport is achieved by steady flows, at least for the small range ofR where
the HK8 model faithfully reflects the full PDE.

For models in the HK hierarchy studied in Chapter 6, we observe that N is most often
maximized by steady states, especially when the Rayleigh number is sufficiently small
to allow quantitative comparison to the PDE. The primary branch equilibria—the steady
states that emerge as the first instability of the static state whenR is raised—maximize heat
transport for a range of R at the onset of convection. The heat transport of the primary
states is enhanced when additional modes are included in the reduced order model that pair
with the nonzero variables of the primary branch. The first such enhancement occurs in the
HK14 model, and additional jumps in the total heat transport typically occur when the HK
hierarchy begins a “shell” in the hierarchy that has even total wavenumber (m+ n). Other
distinguished modal hierarchies could potentially be constructed that take advantage of this
phenomenon to achieve greater heat transport with a similar number of modes.

We also observe that the states providing optimal heat transport do not include shear
modes except when the Rayleigh number is well beyond the point where the reduced models
closely approximate the heat transport of the full Boussinesq equations. In fact, we observe
that the shear modes are identically zero along all equilibria that bifurcate from the zero
state (the Lmn equilibria and higher-dimensional analogues). Steady states exhibiting shear
flow—analogues of the TC equilibria studied in the HK8 model—were only observed to
emerge as bifurcations from equilibria other than the zero state. The study of reduced order
models without shear is another possible direction for future research. Such models arise
naturally if one considers a fully enclosed fluid domain, rather than imposing horizontal
periodicity. Another possible direction of future research is to consider other types of
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boundary conditions, such as no-slip or fixed-flux conditions along the walls.
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[38] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In IEEE
International Conference on Robotics and Automation, pages 284–289, Taipei, Taiwan,
2004.
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[78] P. Urban, V. Musilová, and L. Skrbek. Efficiency of heat transfer in turbulent Rayleigh-
Bénard convection. Physical Review Letters, 107(1):014302, 2011.

[79] B. Wen, G. P. Chini, R. R. Kerswell, and C. R. Doering. Time-stepping approach
for solving upper-bound problems: Application to two-dimensional Rayleigh–Bénard
convection. Physical Review E, 92(4):043012, 2015.

[80] B. Wen, D. Goluskin, M. LeDuc, G. P. Chini, and C. R. Doering. Steady coherent
convection between stress-free boundaries. arXiv:2007.02530v1, 2020.

[81] J. P. Whitehead and C. R. Doering. Ultimate state of two-dimensional Rayleigh–Bénard
convection between free-slip fixed-temperature boundaries. Physical Review Letters,
106(24), 2011.

76



[82] A. A. Wing, K. Emanuel, C. E. Holloway, and C. Muller. Convective self-aggregation
in numerical simulations: A review. Surveys in Geophysics, 38(6):1173–1197, 2017.

[83] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. Chordal decom-
position in operator-splitting methods for sparse semidefinite programs. Mathematical
Programming, 180(1):489–532, 2020.

77



APPENDIX A

Limiting Cases of the HK8 Model

A.1 The HK8 system in the infinite Prandtl number limit

In this appendix, we examine the HK8 model in the limit of large Prandtl number, and
determine upper bounds on N using SOS optimization. In this limit, the HK8 dynamics
are reduced to that of two 2-dimensional ODEs that are rescaled versions of the Lorenz
equations in the same limit. Proper balancing of terms in the HK8 system suggests that
as σ → ∞, the shear modes ψ01 and ψ03 are O(σ−1), and all other variables are O(1) as
σ → ∞. Scaling the state variables of the HK8 system according to these assumptions
allows the dynamics to be reduced to two 2-dimensional systems:

θ̇11 =
k2 + 1

RL1

(
R−RL1 − θ02

)
θ11,

θ̇02 = −4θ02 +
k2 + 1

2RL1

θ2
11,

(A.1)

and

θ̇12 =
k2 + 4

RL2

(
R−RL2 − 2θ04

)
θ12,

θ̇04 = −16θ04 +
k2 + 4

RL2

θ2
12,

(A.2)

where
ψ11 =

k

(k2 + 1)2
θ11, ψ01 = −3k

4σ
ψ11ψ12,

ψ12 = − k

(k2 + 4)2
θ12, ψ03 =

k

36σ
ψ11ψ12.

(A.3)

Under a suitable change of variables, (A.1) and (A.2) are each equivalent to the large–σ
limit of the Lorenz equations studied previously in [72]:

ẏ = (ρ− 1− z) y,

ż = −βz + y2,
(A.4)
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corresponding to the restriction of Lorenz equations to the plane x = y. Under this
restriction, the nonzero equilibria (y, z) = (±

√
β(ρ− 1), ρ− 1) are globally stable within

their respective half-plane (y > 0 or y < 0) for all ρ > 1, and trajectories cannot become
chaotic [72]. To obtain (A.4) from (A.1) we change variables according to

θ11 =
√

2RL1 y, θ02 = RL1 z, (k2 + 1)t 7→ t,

β = 4/(k2 + 1), ρ = R/RL1 .
(A.5)

and a similar scaling may be applied to θ12 and θ04 to obtain (A.4) from (A.2). Therefore
the dynamics of (A.1) and (A.2) can each be understood by studying the ODE (A.4).

When R > RL2 , (A.1) and (A.2) each have three equilibria: a pair of Lorenz-like
equilibria corresponding to the L1 or L2 states, and the zero equilibrium. Any combination
of these provides an equilibrium for the full HK8 system, and therefore there are nine in
total. The four such equilibria where both Lorenz-like systems are nonzero are stable when
they exist, and correspond to the large-σ limit of the TC states. The maximum N over all
equilibria in the large-σ limit is NTC − 1 = (NL1 − 1) + (NL2 − 1). It can be shown using
SOS optimization with degree two auxiliary functions that for sufficiently largeR, the TC
equilibria saturate the upper bound U∗d , and thus:

max
x(t)

N =


1, 0 < R ≤ RL1 ,

3− 2RL1/R, 2RL1 < R ≤ RL2 ,

5− 2RL1/R− 2RL2/R, R > RL2 .

(A.6)

These upper bounds are a limiting case of the bounds constructed at finite σ in §5.2. In the
infinite-Prandtl number limit of the HK8 system, equilibria saturate the upper bound on N
for allR and k. This provides a contrast to the bounds at finite Prandtl number determined
in §5.1, where time-dependent states were observed to maximize N forR sufficiently large.

A.2 TC equilibria in the infinite-R limit

Expressions for the TC equilibria may be obtained using symbolic manipulation, yet
their exact formulae are too complicated to analyze directly. In order to better understand the
behavior of the TC equilibria, we compute asymptotic formulae for these equilibria in the
large-R limit. Solutions to the truncated model in this limit have almost no correspondence to
solutions of the full PDE; the purpose of this analysis is purely to gain a better understanding
of the HK8 model.

The qualitative behavior of the TC states at largeR may be categorized by dividing the
k2–σ plane into three distinct parameter regimes, much like the analysis performed in §3.1.
Let S1 and S2 be the regions where the TC branch connects to only L1 or L2, respectively,
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defined by

S1 := {(k2, σ) : (10σ − 3σ2)(k2 + 4)2 + 2(k2 + 1)(5k2 + 11) ≤ 0}, (A.7)
S2 := {(k2, σ) : (10σ + 3σ2)(k2 + 1)2 + 2(k2 + 4)(5k2 − 4) ≤ 0}. (A.8)

Below, we prove that the large-R limit of N is

N1
0 =

20(k2 + 1)(5k2 + 11) + 2(65k4 + 313k2 + 698)σ + 45(k2 + 4)2σ3

20(k2 + 1)(5k2 + 11) + 2(65k4 + 403k2 + 788)σ + 9(k2 + 4)2σ3
, (k2, σ) ∈ S1,

N2
0 =

20(k2 + 4)(5k2 − 4) + 2(35k4 − 83k2 − 442)σ + 45(k2 + 1)2σ3

20(k2 + 4)(5k2 − 4) + 2(35k4 + 7k2 − 82)σ + 9(k2 + 1)2σ3
, (k2, σ) ∈ S2.

(A.9)
The regions S1 and S2 correspond with regions V and I–III, respectively, in Figure 3.2. In
the part of parameter space that separates S1 and S2 (called regions III–IV in Figure 3.2),
the TC branch connects to both L1 and L2 via pitchfork bifurcations, and as a result TC
equilibria only exist for a finite range ofR. Hence, the large-R limit of the TC states need
only be considered in S1 and S2.

We first derive algebraic conditions on the TC equilibria, using the fact that all eight
variables are nonzero at the TC states. Define the variables X = ψ2

11 and Y = ψ2
12. Then,

assuming X and Y are nonzero, the algebraic system whose solutions are equilibria of the
HK8 model reduces to

0 = k (RL1 −R) +
k

8
(k2 + 1)2X +

(
(k2 + 1)α +

5k

12σ
(k2 + 4)2

)
Y

+

(
k2

8
α− 5k2

12σ
β

)
XY,

0 = k (RL2 −R)−
(

(k2 + 4)β +
5k

12σ
(k2 + 1)2

)
X +

k

8
(k2 + 4)2Y

−
(
k2

8
β +

5k2

12σ
α

)
XY,

(A.10)

where

α =
k(5k2 + 11)

12σ2
, β =

k(5k2 − 4)

12σ2
. (A.11)

After further simplification, (A.10) takes the form

X =
kR+ C0 + C1Y

D0 +D1Y
, (A.12)
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where Y solves the quadratic equation

Y 2 + (A0R+ A1)Y + (B0R+B1) = 0. (A.13)

The constants Ai, Bi, Ci, Di are independent of R and may be determined from (A.10).
To determine asymptotic expansions for X and Y as R → ∞, we let ε = 1/R and
multiply (A.13) by ε, resulting in the singular perturbation problem

εY 2 + (A0 + A1ε)Y + (B0 +B1ε) = 0. (A.14)

Solutions to (A.13) could also be determined using the quadratic formula, but simple
analytical expressions for N are simpler to derive with perturbation methods.

A.2.1 Outer approximation

The equilibria corresponding to the infinite-R limit of the TC equilibria in S2 can be
found by substituting the expansion Y ∼

∑
n

εnYn into (A.14). This yields a hierarchy of

equations for Yn, with the leading term Y0 given by

Y0 = −B0

A0

. (A.15)

Substituting the series for Y into (A.12) yields a geometric series with leading order

x0 =
k

D0 +D1Y0

. (A.16)

Because all eight variables must be real and nonzero, the above expansions provide limiting
behavior for the TC equilibria as long as x0, Y0 > 0, corresponding exactly to the set
S2. Within this region, (A.15) and (A.16) determine the limiting behavior for all eight
variables on the TC branch. In this case it is more useful to express N directly in terms of
X and Y , yielding an asymptotic series for N . After simplification, the volume-averaged
expression (2.44) for N becomes

N = 1 +
k

4R

(
(k2 + 1)2

k
X + (α− β)XY +

(k2 + 4)2

k
Y

)
. (A.17)

The expressions (A.15) and (A.16) imply that the leading order behavior of N in S2 is given
by

N2
0 =

k

4

(
(k2 + 1)2

k
x0 + (α− β)(x0Y0)

)
=

20(k2 + 4)(5k2 − 4) + 2(35k4 − 83k2 − 442)σ + 45(k2 + 1)2σ3

20(k2 + 4)(5k2 − 4) + 2(35k4 + 7k2 − 82)σ + 9(k2 + 1)2σ3
.

(A.18)
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Further terms in the expansion may be computed using the asymptotic series computed
above. It can be shown that this expansion is valid in the set S2, where the TC branch
connects only to L2, as elsewhere the leading-order terms ofX or Y will be negative. Within
the interior of S2, N2

0 is strictly increasing in both k2 and σ, reaching its maximum value of 3
along the entirety of the interior boundary of S2, and approaching its minimum value of 1 as
σ vanishes. The leading-order term has a jump discontinuity at the point (k2, σ) = (4/5, 0).

Convergence of the asymptotic series may be demonstrated by comparing its first few
terms against computed values of N at chosen parameter values. As expected, the leading-
order expansion converges at a rate of O(ε2) as ε→ 0, while including more terms improves
the order of accuracy.

A.2.2 Inner approximation

The large-R limit of the TC equilibria in S1 can be found after rescaling (A.14) by
y = εY , to obtain

y2 + (A0 + A1ε)y + (B0ε+B1ε
2) = 0. (A.19)

This scaling emerges when seeking a dominant balance between the first two terms of (A.14).
We then proceed as in A.2.1 to find that the leading-order expansion for N is given by

N1
0 = 1 +

k

4

(
(α− β)X0y0 +

(k2 + 4)2

k
y0

)
=

20(k2 + 1)(5k2 + 11) + 2(65k4 + 313k2 + 698)σ + 45(k2 + 4)2σ3

20(k2 + 1)(5k2 + 11) + 2(65k4 + 403k2 + 788)σ + 9(k2 + 4)2σ3
.

(A.20)

where

y0 = −A0, X0 =
k + C1y0

D1y0

. (A.21)

This solution corresponds to the asymptotic state of the TC branch in S1, which is
of particular interest since the TC equilibria maximize N among the steady states of the
HK8 model at sufficiently largeR in this parameter regime. The leading-order term N1

0 is
nearly constant in k2 and is strictly increasing in σ, rapidly approaching 5 as σ →∞. As
(k2, σ) approaches the interior boundary of S1, the TC equilibria approximate L1 states and
therefore N1

0 tends to 3.
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APPENDIX B

Special Case of the Sum-of-Squares Method: Results of Souza and
Doering

The analysis of Souza & Doering in [66] amounts to a special case of the quadratic
SOS approach implemented for the HK8 model in §5.2, with the coefficients of the general
quadratic auxiliary function (5.12)–(5.13) restricted more than necessary. The bounds they
prove are identical to those proven in §5.2 when R ≤

√
RL1RL2 , but for larger R they

prove instead that [66]

N ≤ NL1 +
1

R

[
RL1 −RL2 +

√
2
√

(R−RL1)
2 + (R−RL2)

2
]
. (B.1)

On this interval, more general quadratic V give sharper bounds, as shown by the results
of §5.1 and §5.2.

To show how the analysis of [66] fits into our present framework, let us derive the
large-R bound of (B.1) in the language of §5.2. Let z1 and z2 be constants to be chosen
below—the “background variables” in the language of [66]—and define the constant

α =
z1 + z2

z2
1 + z2

2

. (B.2)

Our approach in §5.2 reduces to the special case of [66] if the coefficients ci of V in (5.12)
are restricted such that

c1 =
1− 2αz1

2R
, c2 =

1− 2αz2

4R
, c3 =

(k2 + 1)(α− 1)

8σR
,

c5 =
(k2 + 4)(α− 1)

8σR
, c8 =

α

8R2
, c9 = 0.

(B.3)

With the coefficients constrained by (5.13) and (B.3), there are only two free parameters in
the expression for V , and therefore the auxiliary function is determined by specifying z1

and z2. Under these restrictions on V , the minimal upper bound such that the polynomial S
is sum-of-squares is

N ≤ 1 + 2(z1 + z2), (B.4)
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provided z1 and z2 are chosen so that α ≥ 0 and

RL1

R
(α− 1)− α(z1 − 1)2 ≥ 0, (B.5)

RL2

R
(α− 1)− α(z2 − 1)2 ≥ 0. (B.6)

The bound (B.1) in theR >
√
RL1RL2 case is then constructed by taking [66]

z1 =

√
RL1

[
−RL1 + 2R

√
RL2

RL1
−RL2 +

√
(RL1 +RL2)

2 + 4R
(
R− 2

√
RL1RL2

)]
2R(RL1 +RL2)

,

z2 =

√
RL2

RL1

(z1 − 1) + 1.

(B.7)
This bound is valid whenever R >

√
RL1RL2 but is not as tight as the result obtained

in §5.1 and §5.2 using the most general quadratic ansatz for V .
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APPENDIX C

Analytical Bounds in the Larger-Wavenumber Regime

This appendix gives partial results towards the analytical optimization of N with
quadratic V in the regime whereR > RT and k > kT (see Figure 5.5). In this regime the
bound (5.21) does not hold, so the assumptions (5.22) are not valid. Our best analytical
bound coincides with that of [66]:

N ≤ NL1 +
1

R

[
RL1 −RL2 +

√
(RL2 −RL1)

2 + 4(R−
√
RL1RL2)

2

]
. (C.1)

The exact auxiliary function required to prove this bound is given in Appendix B. However,
this bound is not optimal among quadratic V ; numerical solution to (4.13) with quadratic V
gives sharper bounds at many parameter values.

In order for the construction of optimal V to become analytically tractable, we want to
further restrict V in a way that will be justified a posteriori by the sharpness of the resulting
bounds, much as was done for the smaller-k regime in §5.2.3. If the bounds are saturated by
the TC equilibria, then S must vanish there. Since ψ01 = −27ψ03 on the TC equilibria,

bT2Q2b2 = q2 (ψ01 + 27ψ03)2 . (C.2)

We further observe in SOS computations with quadratic V that the determinants of Q1 and
Q3 are zero up to the tolerance of the solver. This implies that for some q1, q2, A1, and A2,

bT
1Q1b1 = q1 (ψ11 − A1θ11)2 , bT

3Q3b3 = q3 (ψ12 − A2θ12)2 . (C.3)

These restrictions impose the coefficient relationships

c1 = 8
k2 + 1

k

√
σc3c8 − 4Rc8 −

4σ

k2 + 1
c3, c3 =

(5k2 − 4)(k2 + 1)

(5k2 + 11)(k2 + 4)
c5,

c2 = 4
k2 + 4

k

√
σc5c8 − 2Rc8 −

2σ

k2 + 4
c5, c9 =

108

(k2 + 4)(5k2 + 11)
c5.

(C.4)

The semidefinite constraints will be satisfied if c5 and c8 are each nonnegative, so it remains
to determine c5 and c8 that minimize U . By the same argument used in §5.2.3, the optimal
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Q4 must have a determinant of zero, in which case the SOS optimization is equivalent to

min
c5,c8≥0

U, (C.5)

where

U − 1 =
1

16c8

[(
8Rc8 +

1

R
+

8σµ

k2 + 1
c5 − 16

k2 + 1

k
(σµc5c8)1/2

)2

+

(
8Rc8 +

1

R
+

8σ

k2 + 4
c5 − 16

k2 + 4

k
(σc5c8)1/2

)2
]
,

(C.6)

with

µ =
(5k2 − 4)(k2 + 1)

(5k2 + 11)(k2 + 4)
. (C.7)

Numerical solutions of (C.5)–(C.7) agree with numerical solutions to the full SOS optimiza-
tion problem in this parameter regime, suggesting the assumptions (C.2)–(C.3) leading to
this simpler minimization problem are not overly restrictive. However, we have not been
able to derive an analytical solution to (C.5)–(C.7) that is simple enough to be useful.
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APPENDIX D

Application of a Diagnostic Procedure to Analyze Euler Codes

D.1 Background

Numerical solvers for the 3D incompressible Euler equations are essential tools in
the endeavor to understand the many intricacies of fluid mechanics. One noteworthy
application of Euler codes has been their use in the search for evidence of finite time
singularity formation in incompressible, inviscid flows from smooth initial data. This
problem, analogous to the well-known Millennium Prize Problem for the Navier-Stokes
equations, has resulted in a wealth of research conducted towards its resolution. Numerical
studies by Grauer and Sideris [26], Pumir and Siggia [57], Luo and Hou [42], and many
others have addressed the problem, yet uncertanties have persisted, and in some cases even
convincing studies were contradicted by later evidence [31]. A more comprehensive list of
studies of singularity formation for the incompressible Euler equations is provided in [19].

The Euler equations arise as the inviscid limit of the Navier Stokes equations, expressed
as

Du
Dt

= −∇p,

∇ · u = 0,
(D.1)

for x ∈ Ω ⊆ Rn, where u(x, t) is the divergence-free velocity field, p(x, t) is the pressure
field, and D/Dt is the material derivative, given by

D

Dt
= ∂t + u · ∇. (D.2)

It is convenient to express this equation in terms of the vorticity field, where the vorticity is
defined by ω = ∇× u. The corresponding evolution equations, derived by taking the curl
of (D.1), are

Dω

Dt
= ω · ∇u, (D.3)

Several criteria have been established to provide evidence for or against the existence of
a finite-time singularity of the incompressible Euler equations, including the Beale-Kato-
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Majda (BKM) blowup criterion [3]. This condition states that a solution to the 3D Euler
equations with smooth initial data forms a singularity at time T if and only if∫ T

0

‖ω(·, t)‖∞ dt =∞, (D.4)

where ‖·‖∞ is the maximum norm over the domain. Alternatively, the Deng-Hou-Yu (DHY)
nonblowup criterion [9] provides a pair of conditions on the length and curvature of vortex
lines that cannot simultaneously be satisfied in the presence of a singularity.

For example, Luo and Hou [42] produced evidence for the potential finite-time blowup
of solutions in the 3D axisymmetric case. They solved the axisymmetric Euler equations
numerically in a vertically periodic cylinder with period H , and solid outer boundary. They
observed evidence of a singularity starting from the following initial conditions on the
azimuthal components of the velocity and vorticity fields:

uθ(r, z) = 100r · e−30(1−r2)4 sin

(
2π

H
z

)
(D.5)

ωθ(r, z) = 0. (D.6)

Careful evidence was given to support the existence of a singularity, including checking the
BKM and Deng-Hou-Yu criteria, verifying conservation of energy, and providing evidence
of self-similar solutions.

While the BKM and DHY criteria are often cited as evidence of singularity formation,
including in the study above, applying them assumes the flow is well-resolved. It is
conceivable that a computed solution may appear to become singular while the true solution
exhibits only rapid, non-singular vorticity growth. Any candidate for singular behavior will
pose a significant numerical challenge to even the most highly accurate solvers, leading to
uncertainty in this delicate classification. Even if one can ensure that the numerical method
converges, it is still possible that it does not converge to the correct solution, as demonstrated
by Mishra and Spinolo [46]. In light of these issues, devising additional tests demonstrating
the validity of the computed solutions may create a more complete picture for assessing the
potential singularity.

The time reversibility of the Euler equations for energy conserving schemes allows one
to estimate the numerical errors by assessing the program’s ability to recover the initial
condition from a future state, as proposed by Duponcheel et al. [16]. This benchmark allows
analysis of the accuracy in temporal discretization. By contrast, the diagnostic implemented
in this Appendix is an attempt to address the errors in spatial discretization. The combination
of spatial and temporal diagnostics would provide a more complete analysis of the success
of the solver, and so it is to this end that the diagnostic is presented.
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D.2 The diagnostic procedure

We next detail the proposed test, first introduced by Doering, Gibbon, and Holm [15].
First, let A(x, t) be a passive tracer field whose evolution under the dynamics of (D.3) is
governed by the advection equation:

DA

Dt
= 0. (D.7)

This quantity could represent the concentration of dye or the potential temperature1 in
geophysical flows [20], and its distribution does not influence the flow. As the test will be
constructed from gradients of the dye concentration, its initial distribution is crucial to the
application of the diagnostic. It may be scattered throughout the domain, or concentrated to
illuminate some particular feature of the flow.

Next we define the potential vorticity q as

q(x, t) = ω(x, t) · ∇A(x, t). (D.8)

Ertel’s Theorem [61] states that the potential vorticity is also conserved by the flow, i.e.

Dq

Dt
= 0. (D.9)

The potential vorticity is well known in the field of geophysical fluid mechanics, where
it represents a modified vorticity field, independent of the effects of pressure and latitude.
Since it is conserved by the Euler equations, the potential vorticity is often a quantity of
interest in atmospheric and ocean science [30], where it can be used as a Lagrangian tracer
either for predictive models or to reconstruct the flow pattern from present information. In
addition, the potential vorticity has been under recent scrutiny from Gibbon and Holm [20]
for more general applications.

Now define a divergence free vector field B as

B(x, t) = ∇q(x, t)×∇A(x, t) (D.10)

It is straightforward to verify that B obeys the same evolution equation as the vorticity:

DB

Dt
= B · ∇u. (D.11)

Any algorithm designed to compute the evolution of the vorticity field governed by (D.3)
can be directly applied to evolve B, and a small modification allows the quantities A and q
to be computed simultaneously.

Once these quantities have been defined, the diagnostic procedure is as follows [15]:

1The potential temperature is the temperature a fluid parcel would have if it were transported adiabatically
to a given reference pressure.
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1. Specify initial conditions for u and A, and compute the emergent initial data for q and
B from (D.8) and (D.10)

2. Simultaneously evolve each quantity forward in time to obtainω(x, t),A(x, t), q(x, t),
and B(x, t).

3. Compute q1(x, t) = ω(x, t) · ∇A(x, t) and B1(x, t) = ∇q1(x, t) × ∇A(x, t), and
compare to their corresponding evolved quantities q(x, t) and B(x, t).

4. Compute B2(x, t) = ∇q(x, t)×∇A(x, t) from the evolved vorticity q, and compare
this to the evolved B(x, t).

Because the diagnostic fields contain information about the velocity and vorticity fields
and their derivatives, the diagnostics can be used to illustrate the numerical errors introduced
during evolution of the Euler variables. Clearly, if no errors were introduced during computa-
tion, the evolved diagnostics would not deviate from the corresponding quantities computed
prior to computation. Furthermore, since B and ω are subject to the same equations of
motion, they may each be evolved in exactly the same manner, enabling the test to be
implemented without significant difficulty.

D.3 Application of the diagnostic procedure

The proposed test was adapted into an existing Euler code written by Diego Ayala [2].
Spatial derivatives are computed with a pseudo-spectral method, and a Runge-Kutta method
of order 2 was used for time discretization to generate the data for all of the plots shown
below. Axisymmetry allows the Euler equations to be reduced to two dimensions, and thus
all computations are performed in the r–z plane. The computational domain Ω is periodic
in the axial direction. At the outer boundary, u satisfies the Dirichlet boundary conditions

v̂ · u = 0, x ∈ ∂Ω, (D.12)

where v̂ is the outward normal vector on ∂Ω.
For such axisymmetric flows, it is convenient to define the following variables (see

Turkington [77] for a more detailed discussion):

ζ(r, z, t) =
1

r
ωθ(r, z, t), γ(r, z, t) = ruθ(r, z, t),

where ωθ, uθ are the azimuthal components of vorticity and velocity, respectively. Next,
transform the coordinate system by defining:

ρ =
1

2
r2. (D.13)
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We then define a stream function ψ such that uz = (∂rψ)/r, and ur = −(∂zψ)/r. In ρ–z
coordinates, ψ solves the Poisson problem

Lψ = ζ, (ρ, z) ∈ Ω, (D.14)

where L is defined by

L = − 1

2ρ

∂2

∂z2
− ∂2

∂ρ2
. (D.15)

Let {f, g} := ∂ρf∂zg − ∂ρf∂zf denote the Jacobian of the functions f and g. Then (D.3)
implies that ζ and γ evolve according to:

dζ

dt
+ {ζ, ψ}+ {γ, γ/2ρ} = 0, (D.16)

dγ

dt
+ {γ, ψ} = 0, (D.17)

for all (z, ρ) ∈ Ω.
In the axisymmetric case, the vectors ∇q and ∇A lie in the r-z plane, so the diagnostic

vector is given by B = Bθ êθ. For simplicity, we take B := Bθ. The equations of motion
for B take the form:

dB

dt
= {ψ,B} − 1

2ρ

∂ψ

∂z
B (D.18)

In the following, let initial conditions on ζ and γ be given by

ζ(ρ, z, 0) = γ(ρ, z, 0) = Cρ exp
[
−
(
z2 + (ρ− 0.1)2

)2
]
, (D.19)

where C is a normalizing constant, here defined such that the initial enstrophy of the initial
data takes a given value E0, that is

E0 =
1

2

∫
Ω

|ω(ρ, z, 0)|2 dρ dz. (D.20)

These initial data describe a single vortex ring with swirl, where the azimuthal components
of velocity and vorticity are localized within a toroidal region centered about r = 0 (See
Figure D.1). Fluid particles experience both toroidal and poloidal rotation.

Applying the diagnostic also requires a choice of initial condition for the tracer A. In
this study, the initial condition for A is given by

A(ρ, z, 0) = −CAzρ(ρ− 8)8 exp
[
−
(
z2 + (ρ− 0.01)2

)]
, (D.21)

where the constant CA is chosen so that ‖A‖2 = 1. The resulting distribution of the tracer
is a pair of Gaussian-like impulses in the r–z plane, as shown in Figure D.1. The initial
tracer concentration was designed so that its largest gradients are localized near the peaks in
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Figure D.1: Initial conditions for uθ (left), ωθ (right), and A (below).

the initial data for ωθ and uθ, so that the evolution of the q and B fields capture the salient
features of the dynamics.

We implement the diagnostic procedure outlined in the previous section in numerical
simulations with resolutions of 2562, 5122, and 10242 in Fourier space. A snapshot of the
flow after evolution forward to t = 1 at a resolution of 10242 is shown in Figure D.2. As a
consequence of the initial vorticity, flow through the center of the ring quickly destroys the
symmetry about z = 0, and the ring begins to roll into a crescent shape. As the vorticity
stretches, a region of negative vorticity begins to form on the front edge of the ring.

The diagnostic fields A, q and B were evolved alongside the vorticity and velocity
fields, updating each quantity at each time step. The difference between the evolved and
computed diagnostics are displayed in Figure D.3. The largest discrepancy in the diagnostic
is localized near the edges of the vortex. This is not unexpected, due to the large gradients
near the edges and rapid localization of vorticity experienced by the flow.

This procedure naturally admits two measures of the global computational error

‖q − q1‖2

‖q‖2

and
‖B−B2‖2

‖B‖2

, (D.22)

in some relevant spatial norm. Figure D.4 depicts the time evolution these quantities in
the L2 norm in simulations with spatial resolutions of 2562, 5122, and 10242. Here the
diagnostic indicates that, as one may expect, increasing the resolution results in reduced
computation error. Additionally, the diagnostic test indicates that simulating the flow at
higher resolution maintains accuracy for a longer period of time, although at all resolutions
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Figure D.2: Azimuthal velocity (left), vorticity (right), and A (below) at time t = 1, computed at a resolution
of 10242 from the initial conditions (D.19)–(D.21)

the simulation loses validity well before t = 2. This suggests that localized mesh refinement
may be necessary to perform accurate simulations over an extended period of time. At each
resolution, we observe a sharp increase in error when the second measure of the diagnostic
error nears 10−4. After this point, errors quickly begin to accumulate, indicating that the
simulation may be starting to break down.

D.4 Conclusions and Future Research

The diagnostic procedure introduced in [15] was implemented for a simulation of a
vortex ring with swirl under the dynamics of the Euler equations. By evolving higher order
derivatives of the flow, this test detects errors in the spatial discretization. It could be applied
to measure numerical errors in other simulations of the Euler equations, and may be of
particular use in analyzing candidates for finite time singularities. An obvious next step
in testing the procedure would be to apply the test to initial conditions that lead to more
complex behavior. For instance, initial conditions that lead to collision of vortex rings are
challenging computationally due to the rapid enstrophy growth and small length scales. The
vortex stretching mechanism in B may enhance the small-scale features of the flow and
illuminate problematic locations in the computational domain.

Distribution of the passive tracer A is important to the procedure outlined above. Careful
placement of the initial concentration helps illuminate the features of the flow which are
most taxing on the numerical scheme. Future studies could introduce methods for allocating
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(a)

(b)

Figure D.3: Relative error diagnostics at t = 1, computed at a resolution of 10242. In (a), the field |q − q1| is
plotted, while (b) depicts the field |B−B2|.

the initial tracer distribution to study the relevant dynamics. For example, data from previous
simulations could inform the choice of the initial condition for A in the next trial.

Another idea is to implement the diagnostic procedure for mesh refinement, since the
error in the quantities q and B indicate areas where higher resolution may be required.
This requires a carefully designed process for distributing the dye, as mentioned above. If
applied properly, this could be especially useful in identifying candidates for a singularity,
as choosing an adequate mesh can be crucial to the success of the solver.

Further research is needed to investigate the mathematical properties of both the potential
vorticity and the B vector. At present, the research into the quantities has been limited, and
a deeper investigation may open up other possibilities. Establishing a relationship between
measures of the diagnostic error and more universal measures of error relating to the flow
would be significant in justifying the applicability of the diagnostic.
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Figure D.4: Propagation of two measures of the diagnostic error in the first two time units, at spatial resolutions
of 2562, 5122 and 10242. Time discretization was performed by the Runge-Kutta method of order two. The
potential vorticity error is shown in (a) and the B diagnostic error in (b).
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