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ABSTRACT

Machine Learning, especially Deep Neural Nets (DNNs), has achieved great success in a
variety of applications. Unlike classical algorithms that could be formally analyzed, there is less
understanding of neural network-based learning algorithms. This lack of understanding through
either formal methods or empirical observations results in potential vulnerabilities that could be
exploited by adversaries. This also hinders the deployment and adoption of learning methods in
security-critical systems.

Recent works have demonstrated that DNNs are vulnerable to carefully crafted adversarial
perturbations. We refer to data instances with added adversarial perturbations as “adversarial
examples”. Such adversarial examples can mislead DNNs to produce adversary-selected results.
Furthermore, it can cause a DNN system to misbehavior in unexpected and potentially dangerous
ways. In this context, in this thesis, we focus on studying the security problem of current DNNs
from the viewpoints of both attack and defense.

First, we explore the space of attacks against DNNs during the test time. We revisit the integrity
of Lp regime and propose a new and rigorous threat model of adversarial examples. Based on this
new threat model, we present the technique to generate adversarial examples in the digital space.

Second, we study the physical consequence of adversarial examples in the 3D and physical
spaces. We first study the vulnerabilities of various vision systems by simulating the photo taken
process by using the physical renderer. To further explore the physical consequence in the real
world, we select the safety-critical application of autonomous driving as the target system and
study the vulnerability of LiDAR-perceptual module. These studies show the potentially severe
consequences of adversarial examples and raise awareness on its risks.

Last but not least, we develop solutions to defend against adversarial examples. We propose a
consistency-check based method to detect adversarial examples by leveraging property of either
the learning model or the data. We show two examples in segmentation task (leveraging learning
model) and video data (leveraging the data), respectively.

xv



CHAPTER 1

Introduction

Background Machine Learning, especially Deep Neural Networks (DNNs), has achieved great
success in many applications [26, 48, 50, 70, 74]. The essence of most ML tasks is to approximate
an unknown mapping from an input domain to an output domain given samples of input-output
pairs. To obtain this mapping function, ML algorithms are proposed. These algorithms usually split
the data into two sets: training data with both input and output (label) domain information and test
data with only input domain information. They learn the mapping function using the training data
and are then applied to the test data to assess their accuracy. These algorithms are developed based
on a strong assumption that the distribution of the training data is similar to the distribution of the
test data. However, this assumption introduces potential problems.

First of all, when we randomly sample data into a training set and a test set, it may introduce
sampling bias (out-of-distribution data in the test set), which can be hard to eliminate and results in
uncertain prediction results. More importantly, this assumption is built upon a benign environment
free of adversarial manipulation in either the training data or the test data. In practice, there exist
many incentives for data manipulation, some adversarial in nature, due to the wide deployment of
DNNs system in a variety of safety-critical applications, such as spam detection and autonomous
vehicles. For instance, spam detection is one of the first widely used application which employs
machine learning to detect spam [34]. It did not take long for attackers to launch evasion attacks
through content manipulating to evade detection and send spam [34]. In this thesis, we aim to study
such security problems of modern DNNs by discovering and fixing identified vulnerabilities in
adversarial environments where an attacker could perform adversarial manipulation.

Within this context, two types of security threats have been defined based on when adversarial
manipulations are performed. An attack during the training stage is called a poisoning attack, while
one during the test stage an evasion attack (or adversarial machine learning). In this thesis, we focus
on the latter, the security threats on the test stage where parameters of a DNN are fixed.

The robustness of a targeted DNN. is typically evaluated/tested using generated input instances
called adversarial examples. These adversarial examples are designed to lead to erroneous and
undesirable output by the target DNN, but deemed harmless or ineffective when used on humans.
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The problem of generating such adversarial examples is formalized as follows: Given a learned
classifier f : X ! Y from an input domain X (e.g. image) to a set of classification outputs Y (e.g.
label), an adversary aims to generate an adversarial example xadv for an original instance x 2 X

with its ground truth label y 2 Y , so that the classifier predicts f(xadv) 6= y (untargeted attack)
or f(xadv) = t (targeted attack) where t is the target class, while a typical human can easily (and
correctly) recognize f(xadv) as y.

Adversarial examples have been shown to subvert malware detection, fraud detection, or even
potentially mislead autonomous navigation systems [38, 43, 95], and therefore pose security risks
when applied to security-critical applications. A comprehensive study on adversarial examples is
required to enable effective defense and to develop safe and reliable machine learning systems.

Motivation One important criterion for adversarial examples in the digital space is that the
perturbed input should “look like” the original instances. Traditional attack strategies adopt L2 (or
other Lp) norm distance as a perceptual similarity metric to evaluate the distortion [44] [18, 41, 41,
91, 93, 95, 108, 112]. We will refer to this as the Lp-based threat model. However, while the Lp-
norm distance measurement is a convenient source of adversarial perturbations, it is by no means a
comprehensive description of all possible adversarial perturbations. It is not an ideal metric [58, 63]
as L2 similarity is sensitive to lighting and viewpoint changes of a pictured object; or, an image
can be shifted by one pixel, which leads to large L1 distance, but in both cases the translated
image actually appears “the same” by human perception. Motivated by this, the first part of this
thesis explores the space of adversarial examples in terms of generating new types of adversarial
examples beyond Lp-based threat model in the digital space. Note that, in this part, we mainly
focus on the whitebox setting where the attacker know the perfect knowledge of the f including the
network work parameters, to explore what a powerful adversary can do based on the Kerckhoffss
principle [103] to better motivate defense methods. The works related to black-box settings where
the attacker could not access to f including hard label [11, 21, 24] or soft label [3, 9, 22, 56, 114]
attacks are not the main task of this thesis.

Adversarial examples produced using standard techniques often fail to fool classifiers in the
physical world, when these examples were first captured over varying viewpoints and affected
by natural phenomena such as lighting and camera noise [82, 83]. Additionally, attacks in the
digital space based on adversarial examples through direct manipulation of pixels can be defended
(relatively easily) by securing the camera, so that these generated images may not be realizable in
practice. For this reason, there has been significant prior work on generating physically possible
adversarial examples [5, 13, 38, 72], by altering the texture of a 3D surface, i.e. by applying
adversarial printable 2D patches or painting patterns. Such attacks, however, are less suitable for
textureless objects, because adding texture to an otherwise textureless surface may increase the
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chance of it being detected and defended. Moreover, for texture-oblivious instruments such as
Light Detection and Ranging (LiDAR) and Radio Detection and Ranging (RaDAR), texture-based
perturbations will not make a difference and therefore are ineffective. Comprehensive studies
including both texture and shape-based perturbations are thus needed. This motivates the second
part of the thesis where we systematically study adversarial behaviors in the 3D and physical worlds.

A deep understanding of attack mechanisms and adversarial examples is only one side of the
equation. Ultimately we need to build better and more robust learning systems that can defend
themselves against these attacks. Many defenses have been proposed in the literature [18, 41,
91, 95, 108], only to be broken shortly after [6, 15], with the notable exception of adversarial
training [41, 93, 112] and their variants [102, 143, 145]. In general, there are two types of defenses,
detecting adversarial examples (detection) and making correct predictions on adversarial examples
(adversarially robust classifier). The latter enables us to build a new (robust) machine learning model
which could classify any inputs including adversarial examples and normal examples correctly.
Adversarial training is an instance of the adversarially robust classifier, and is the most efficient
algorithms in this category. However, adversarial training is very time-consuming because it
requires generating adversarial examples during training and is only effective against small sets of
adversarial examples that are generated in a similar way during training. Certificated robustness [35,
42, 90, 119, 123] is another instance of the adversarially robust classifier with a provable guarantees
under certain (Lp) threat model. Detecting adversarial examples belongs to the first category, and
could be viewed as a binary classifier to distinguish adversarial from benign (normal) examples.
Characterizing adversarial examples can enable us to identify valid input to DNNs. It can be
embedded and deployed before the input layer of a DNN. Once an input is identified as adversarial,
the system can reject it (or refuse to perform classification on it), thereby avoiding making an
erroneous determination. The third and last part of the thesis is on improving the robustness of
DNNs against adversarial input, by focusing on detection based methods that exploits properties
inherent in either the learning models or the data, respectively.

Thesis Statement In this thesis, we focus on studying the vulnerabilities of DNNs in adversarial
environments at test time, including both attack and defense.

Overview of the thesis On the attack side, we revisit the integrity of the Lp-based threat model
and propose a new rigorous threat model of adversarial examples. We argue that adversarial
examples should be perceptually realistic examples that could fool the machine learning model
without confusing human. We propose ways to generate adversarial examples based on the Lp and
out of Lp-based threat model respectively in the digital space in chapter 2.

We further study the physical consequence of adversarial examples in the physical space. We
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systematically study the vulnerabilities of DNNs by simulating the photo-taking process with a
physical renderer in Chapter 3. Based on this study, we then generate the physical adversarial
examples against the real-world safety-critical system of autonomous vehicles in Chapter 4.

On the defense side, we propose a consistency-check based method to distinguish adversarial
examples by leveraging the property of the learning models or the data in Chapter 6. We will show
two examples in the segmentation task by using the property of the learning model) in Chapter 5
and video data by using the property of video data in Chapter 6 respectively.

Contributions of the thesis Our main contributions fall in two directions: adversarial examples
generation and characterizing adversarial examples. The former can help us better understand
the proprieties of adversarial behavior, which can further help us develop robust machine learning
algorithms. In adversarial examples generation, our contributions are as follows.

• We introduce a new way to generate adversarial examples based on the Lp-based threat model
efficiently in chapter 2.

• We study the limitation of the commonly used Lp-based threat model of adversarial examples
and present a new one. Using this, we present a new type of adversarial examples, as opposed
to manipulating the pixel values directly under the Lp regime. Our work provides a new
direction in adversarial example generation and the design of corresponding defenses.

• We explore the adversarial examples in the 3D and physical world. In Chapter 3, we simulate
the photo-taking process with a physical renderer and then generate adversarial examples
to attack this process. We then propose an algorithm to physically attack the real-world
safety-critical application, the autonomous driving system in Chapter 4. Moreover, instead
of showing adversarial examples in the vision domain, we study the physical attack in the
LiDAR-perceptual module of the autonomous driving system. We select the industry-level
system, Baidu Apollo, as the target system. We show that adversarial examples also exist
beyond vision components in the physical world .

On the defense front, we propose a consistency-check based method to distinguish adversarial
examples by leveraging the properties of the learning models and the data. Specifically, we study the
spatial consistency property of segmentation and observe that spatial consistency information can be
leveraged to detect adversarial examples robustly even when a strong adaptive attacker has access
to the model and detection strategy. Based on this observation, we propose a method to characterize
adversarial examples based on spatial context information property of semantic segmentation in
Chapter 5. Besides the explorations of the property of learning models, we further explore the
property of the data and find that the temporal continuity property of the video could be used to
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detects adversarial frames in video clips. Therefore, we develop a simple yet effective algorithm
with 100% detection rate under different tasks: segmentation, human pose estimation, and object
detection in Chapter 6. We show that this mechanism is robust against proposed strong adaptive
adversaries as well.

Organization The remainder of this thesis is organized as follows. In Chapter 2, we will study
the vulnerabilities of DNNs by generating adversarial examples. We will show what should be the
threat model of adversarial examples and introduce the ways to generate them in digital space based
on the published work [127, 128]. In Chapter 3 and Chapter 4, we go one step further to study the
vulnerabilities of DNNs in the physical world. Specifically, we will describe our work [129] to
simulate the photo-taken process to study the vulnerabilities of DNNs by using physical renderer in
Chapter 3. Based on the studies in the simulation environment, we next introduce ways to generate
adversarial examples physically to attack the real-world safety-critical application autonomous
driving system in Chapter 4. Based on the studies of vulnerabilities of current DNNs, we study ways
to fix the vulnerabilities of current DNNs in terms of detecting adversarial examples by leveraging
the property of learning models [127] in Chapter 5 and the property of the data [131] in Chapter 6.
Chapter 7 concludes and discusses potential future directions.
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CHAPTER 2

Adversarial Example Crafting in the Digital Space

2.1 Introduction

This chapter describes how to craft adversarial examples in the digital spaces. With the discovery
of the adversarial behavior by [107], different algorithms have been proposed for generating such
adversarial examples, such as the gradient descent-based method (FGSM) [41, 93] and optimization-
based methods (CW) [16, 80].

The current attack algorithms [16, 80] rely on optimization schemes with simple pixel space
metrics, such as L1 distance from a benign image, to encourage visual realism. Such optimization-
based strategy limits the generation speed due to the requirements of the multiple forward and
backward passes. To generate perceptually realistic adversarial examples efficiently, we propose
to train a feed-forward network to generate perturbations such that the resulting examples must
be realistic according to a discriminator network. We apply generative adversarial networks
(GANs) [40] to produce adversarial examples. As conditional GANs are capable of producing
high-quality images [58], we apply a similar paradigm to produce perceptually realistic adversarial
instances. We name this attack method AdvGAN. Note that in the previous white-box attacks,
such as FGSM and optimization methods, the adversary needs to have white-box access to the
architecture and parameters of the model all the time. However, by deploying AdvGAN, once
the feed-forward network is trained, it can instantly produce adversarial perturbations for any
input instances without requiring access to the model itself anymore. We name this attack setting
Semi-whitebox .

In general, as shown in Table 2.1, in terms of computation efficiency AdvGAN performs much
faster than others even including the efficient FGSM, although AdvGAN needs extra training time
to train the generator. In addition, although the perturbations generated by AdvGAN are constrained
with Lp-distance metric, as we leverage the GAN strategy, it could provide the new realism term
(GAN loss) to benefit these adversarial instances in appearing closer to real instances compared to
other attack strategies (CW &. FGSM). It could potentially help to explore the Lp-based adversarial
subspace more thoroughly. To verify it, we also apply the state-of-the-art adversarial training based
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defense methods [41, 93, 112] trained on Lp-based adversarial examples to defend against the
adversarial examples generated by AdvGAN. Our results show that adversarial examples generated
by AdvGAN can achieve a higher attack success rate which potentially verifies our guess.

Before moving towards more advanced methods, we take a step back and review previous
methods. For the previous method, a Lp norm distance metric is used as a perceptual similarity
metric to evaluate the distortion of adversarial examples. We name it Lp-based threat model for
convenience. This distance metric enables the adversarial examples should look like the original
instances. However, while the Lp-norm distance measurement is a convenient source of adversarial
perturbations, it is by no means a comprehensive description of all possible adversarial perturbations.
Moreover, Lp-norm distance metric is not an ideally perceptual metric [58, 63], as L2 distance
metric is sensitive to lighting and viewpoint change of a pictured object and L1 distance metric
is sensitive to position shifting. Therefore, in this chapter, we give a new rigorous threat model
of adversarial examples. We argue that adversarial examples should be the perceptually realistic
examples which could fool the machine learning model without confusing human. Based on this
new threat model, another goal in this chapter is to look for other types of adversarial examples
beyond the Lp-based threat model.

Based on this new threat model, we propose a new method named stAdv which explores the new
adversarial space to generate adversarial examples. Different from previous adversarial examples
(e.g. AdvGAN, FGSM, CW) with the additive perturbations, stAdv creates perceptually realistic
examples by changing the positions of pixels instead of directly manipulating existing pixel values,
which has been shown to better preserve the identity and structure of the original image [149]. In
order to verify whether the adversarial examples generated by stAdv is a new type of adversarial
examples beyond the Lp-based threat model, we evaluate them by using the same adversarial training
based defense methods which are trained on Lp-based adversarial examples. The results show that
previous adversarial training based defense method may appear less effective against stAdv because
the spatially transformed adversarial examples are generated through a rather different principle,
whereby what is being minimized is the local geometric distortion rather than the Lp pixel error
between the adversarial and original instances. This fact convinces that the adversarial examples
generated by stAdv have never been seen before.

stAdv broadens attack generation beyond Lp-norm regime. It opens up a new challenge on
how to defend against such attacks, as well as other attacks that are not based on direct pixel value
manipulation. We also visualize the spatial deformation generated by stAdv; it is seen to be locally
smooth and virtually imperceptible to the human eye.

Our contributions in this chapter are summarized as follows:

• We proposed AdvGAN to train a conditional adversarial network to directly produce Lp-based
adversarial examples , which are both perceptually realistic and achieve state-of-the-art attack
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success rate against different target models.

• We use state-of-the-art defense methods to defend against adversarial examples and show that
AdvGAN achieves a higher attack success rate under current defenses.

• We explore the new space which containing the adversarial examples and propose stAdv to
generate a new type of adversarial examples based on spatial transformation instead of direct
manipulation of the pixel values.

• We provide visualizations of optimized transformations and show that such geometric changes
are small and locally smooth, leading to high perceptual quality.

• We empirically show that, compared to other attacks, adversarial examples generated by
stAdv are more difficult to detect with current defense systems.

2.2 Generating Adversarial Examples using Adversarial Nets

To generate perceptually realistic adversarial examples efficiently, we propose to train a feed-
forward network to generate perturbations such that the resulting example must be realistic according
to a discriminator network. We apply generative adversarial networks (GANs) [40] to produce
adversarial examples. We named this algorithm AdvGAN. Once the feed-forward network is trained,
it can instantly produce adversarial perturbations for any input instances without requiring access to
the model itself anymore. Table 2.1 shows the advantages of AdvGAN compared to others.

Table 2.1: Comparison with the state-of-the-art attack methods. Run time is measured for generating
1,000 adversarial instances during test time. C&W represents the optimization based method, and
Trans. denotes black-box attacks based on transferability.

FGSM C&W Trans. AdvGAN
Run time 0.06s >3h - ¡0.01s

target Attack X X Ens. X

2.2.1 AdvGAN Framework

Figure 2.1 illustrates the overall architecture of AdvGAN, which mainly consists of three parts:
a generator G, a discriminator D, and the target neural network f . Here the generator G takes the
original instance x as its input and generates a perturbation G(x). Then x + G(x) will be sent to
the discriminator D, which is used to distinguish the generated data and the original instance x.
The goal of D is to encourage that the generated instance is indistinguishable with the data from
its original class. To fulfill the goal of fooling a learning model, we first perform the white-box
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Figure 2.1: Overview of AdvGAN

attack, where the target model is f in this case. f takes x+ G(x) as its input and outputs its loss
Ladv, which represents the distance between the prediction and the target class t (target attack), or
the opposite of the distance between the prediction and the ground truth class (untarget attack).

The GAN loss [40] can be written as: 1

LGAN = Ex logD(x) + Ex log(1�D(x+ G(x))). (2.1)

Here, the discriminator D aims to distinguish the perturbed data x+ G(x) from the original data x.2

Note that the real data is sampled from the true class, so as to encourage that the generated instances
are close to data from the original class.

The loss for fooling the target model f in a target attack is:

L
f

adv = Ex`f (x+ G(x), t), (2.2)

where t is the target class and `f denotes the loss function (e.g., cross-entropy loss) used to train the
original model f . The Lf

adv
loss encourages the perturbed image to be misclassified as target class t.

Here we can also perform the untarget attack by maximizing the distance between the prediction
and the ground truth, but we will focus on the target attack in the rest of this section.

To generate adversarial examples under the Lp threat model, we bound the magnitude of the
perturbation, which is a common practice in prior work [8, 16, 80]. For instance, here, we add a
soft hinge loss on the L2 norm as

Lhinge = Ex max(0, kG(x)k2 � c), (2.3)
1For simplicity, we denote the Ex ⌘ Ex⇠Pdata(x)
2Note that we only use the generator to produce the perturbation G(x).
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where c denotes a user-specified bound. This can also stabilize the GAN’s training, as shown in
[58].

Finally, our full objective can be expressed as

L = L
f

adv + Lperceptual

= L
f

adv + ↵LGAN + �Lhinge, (2.4)

where ↵ and � control the relative importance of each objective. The perceptual loss consists of
GAN loss (LGAN and hinge loss Lhinge. Note that LGAN here is used to encourage the perturbed data
to appear similar to the original data x, while L

f

adv is leveraged to generate adversarial examples,
optimizing for the high attack success rate. We obtain our G and D by solving the minmax game
argminG maxD L

2.3 A New Type of Adversarial Examples: Spatially Transformed Adversarial Examples

In computer vision and graphics literature, two main aspects determine the appearance of a
pictured object [110]: (1) the lighting and material, which determine the brightness of a point as
a function of illumination and object material properties, and (2) the geometry, which determines
where the projection of a point will be located in the scene. Most previous adversarial attacks [41]
build on changing the lighting and material aspect, while assuming the underlying geometry
stays the same during the adversarial perturbation generation process. Moreover, in the literature,
adversarial examples are described as datapoints which are added by imperceptible perturbations
bounded by Lp-norm regime to existing datapoints. It is a pretty limited set of manipulation function
and the bounded Lp-norm regime is not necessarily the best choice of imperceptibility. For instance,
L2-norm is sensitive to lighting and viewpoint changes of a pictured object; shifting pixels will lead
to large Linf distance, while the translated image appears the same to human perception.

Therefore, our research sought to broaden attack generation beyond Lp-norm regime. We argued
that the threat model of adversarial examples should be perceptually realistic inputs which could be
correctly recognized by humans but mislead machine learning models. Inspired by this threat model,
we proposed stAdv to create perceptually realistic examples to fool machine learning models by
changing pixel positions instead of directly manipulating existing pixel values. We call this method
stAdv. Figure 2.2 shows the pipeline of stAdv.

In the following paragraphs, we introduce our geometric image formation model and then
describe the objective function for generating spatially transformed adversarial examples.

Spatial transformation We use x(i)
adv

to denote the pixel value of the i-th pixel and 2D coordinate
(u(i)

adv, v
(i)

adv) to denote its location in the adversarial image xadv. We assume that x(i)
adv

is transformed
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Figure 2.2: Generating adversarial examples with spatial transformation: the blue point denotes the
coordinate of a pixel in the output adversarial image and the green point is its corresponding pixel
in the input image. Red flow field represents the displacement from pixels in the adversarial image
to pixels in the input image.

from the pixel x(i) from the original image. We use the per-pixel flow (displacement) field f to
synthesize the adversarial image xadv using pixels from the input x. For the i-th pixel within xadv at
the pixel location (u(i)

adv, v
(i)

adv), we optimize the amount of displacement in each image dimension,
with the pair denoted by the flow vector fi := (�u(i),�v(i)). Note that the flow vector fi goes from
a pixel x(i)

adv
in the adversarial image to its corresponding pixel x(i) in the input image. Thus, the

location of its corresponding pixel x(i) can be derived as (u(i), v(i)) = (u(i)

adv+�u(i), v(i)adv+�v(i)).
As the (u(i), v(i)) can be fractional numbers and does not necessarily lie on the integer image grid,
we use the differentiable bilinear interpolation [59] to transform the input image with the flow field.
We calculate x(i)

adv
as:

x(i)
adv

=
X

q2N (u(i),v(i))

x(q)(1� |u(i)
� u(q)

|)(1� |v(i) � v(q)|), (2.5)

where N (u(i), v(i)) are the indices of the 4-pixel neighbors at the location (u(i), v(i)) (top-left, top-
right, bottom-left, bottom-right). We can obtain the adversarial image xadv by calculating Equation
2.5 for every pixel x(i)

adv
. Note that xadv is differentiable with respect to the flow field f [59, 149].

The estimated flow field essentially captures the amount of spatial transformation required to fool
the classifier.

Objective function Most of the previous methods constrain the added perturbation to be small
regarding a Lp metric. Here instead of imposing the Lp norm on pixel space, we introduce a
new regularization loss Lflow on the local distortion f, producing higher perceptual quality for
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adversarial examples. Therefore, the goal of the attack is to generate adversarial examples which
can mislead the classifier as well as minimizing the local distortion introduced by the flow field f.

Formally, we could put all of above to our universal objective function. Given a benign instance
x, we obtain the flow field f by minimizing the following objective:

f⇤ = argmin
f

Ladv (x,f) + ⌧Lflow(f), (2.6)

where Ladv encourages the generated adversarial examples to be misclassified by the target classifier.
Lflow ensures that the spatial transformation distance is minimized to preserve high perceptual
quality, and ⌧ balances these two losses.

The goal of Ladv is to guarantee the target attack g(xadv) = t where t is the target class, different
from the ground truth label y. Recall that we transform the input image x to xadv with the flow
field f (Equation 2.5). In practice, directly enforcing f(xadv) = t during optimization is highly
non-linear, we adopt the objective function suggested in [16].

Ladv(x,f) = max(max
i 6=t

f(xadv)i � f(xadv)t,�), (2.7)

where fi(x) represents the i-th element of the output (logit) of model f , and  is used to control the
attack confidence level.

To compute Lflow , we calculate the sum of spatial movement distance for any two adjacent
pixels. Given an arbitrary pixel p and its neighbors q 2 N (p), we enforce the locally smooth spatial
transformation perturbation Lflow based on the total variation [100]:

Lflow(f) =
all pixelsX

p

X

q2N (p)

q
||�u(p) ��u(q)||22+||�v(p) ��v(q)||22. (2.8)

Intuitively, minimizing the spatial transformation can help ensure the high perceptual quality for
stAdv, since adjacent pixels tend to move towards close direction and distance. We solve the above
optimization with L-BFGS solver [79].

2.4 Experimental Results

In this section, we first evaluate AdvGAN under Semi-whitebox and stAdv under whitebox
settings on MNIST [73] , CIFAR-10 [71] and ImageNet [70]. We apply AdvGAN and stAdv to
generate adversarial examples on different target models and evaluate the attack success rate for
them under state-of-the-art defenses to show that our methods can achieve higher attack success
rates compared to other existing attack strategies (FGSM and CW). We generate all adversarial
examples for different attack methods based on the under L1 bound of 0.3 on MNIST and 8 on
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Table 2.2: Accuracy of different models on pristine data, and the attack success rate of adversarial
examples generated against different models by AdvGAN on MNIST and CIFAR-10.

MNIST CIFAR-10
Model A B C ResNet-32 Wide ResNet-34

Accuracy 98.97% 99.17% 99.09% 92.41% 95.01%
Attack Success Rate 97.9% 97.1% 98.3% 94.71% 99.30%

Table 2.3: Accuracy of different models on pristine data, and the attack success rate of adversarial
examples generated against different models by stAdv on MNIST and CIFAR-10.

MNIST CIFAR-10
Model A B C ResNet-32 Wide ResNet-34

Accuracy 98.58% 98.94% 99.11% 93.16% 95.82%
Attack Success Rate 99.95% 99.98% 100.00% 99.56% 98.84%

CIFAR-10 and ImageNet, for a fair comparison.
For MNIST, in all of our experiments, Models A and B are used in [113], which represent

different architectures. For CIFAR-10, we select ResNet-32 and Wide ResNet-34 [48, 141] for our
experiments. Specifically, we use a 32-layer ResNet implemented in TensorFlow3 and Wide ResNet
derived from the variant of “w32-10 wide.”4 We show the classification accuracy of pristine MNIST
and CIFAR-10 test data in Table 2.2 and Table 2.3 5.
Implementation Details of AdvGAN We adopt a similar architecture from image-to-image trans-
lation literature [58, 151]. In particular, we use the architecture of generator G from [63], and our
discriminator D’s architecture is similar to the model used in [16] for MNIST and ResNet-32 for
CIFAR-10. We apply the loss in [18] as our loss Lf

adv = max(maxi 6=t f(xadv)i � f(xadv)t,�),
where t is the target class, and f represents the target network in the Semi-whitebox setting. We set
the confidence  = 0 for both CW and AdvGAN. We use Adam as our solver [67], with a batch size
of 128 and a learning rate of 0.001. For GANs training, we use the least squares objective proposed
by LSGAN [86], as it has been shown to produce better results with more stable training.
Implementation Details of stAdv We use the same target models of AdvGAN with different
random seed for stAdv. We set ⌧ as 0.05 for all our experiments. We use confidence  = 0 for both
CW and stAdv for a fair comparison.

3https://github.com/tensorflow/models/blob/master/research/ResNet/ResNet model.py
4https://github.com/MadryLab/cifar10 challenge/blob/master/model.py
5Note that, we use the same architecture of AdvGAN with different random seed to train the models of stAdv.
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Target class
0 1 2 3 4 5 6 7 8 9

(a) A — AdvGAN

Target class
0 1 2 3 4 5 6 7 8 9

(b) B — AdvGAN

Target class
0 1 2 3 4 5 6 7 8 9

(c) A — stAdv

Target class
0 1 2 3 4 5 6 7 8 9

(d) B — stAdv

Figure 2.3: Adversarial examples generated from the same original image to different targets
by AdvGAN and stAdv on MNIST. We use the format ”model — attack method” to label the
subcaption. On the diagonal, the original images are shown.

2.4.1 Attack Effectiveness under Whitebox (Semi-whitebox ) Setting

We apply AdvGAN and stAdv to perform Semi-whitebox and whitebox attack against each
model on MNIST dataset respectively. From the performance shown in Table 2.2 and Table 2.3, we
can see that both AdvGAN and stAdv are able to generate adversarial instances to attack all models
with high attack success rates.

FGSM

C&W

StAdv

Figure 2.4: Comparison of adversarial examples generated by FGSM, C&W and stAdv. (Left:
MNIST, right: CIFAR-10) The target class for MNIST is “0” and “air plane” for CIFAR-10. We
generate adversarial examples by FGSM and C&W with perturbation bounded in terms of L1 as
0.3 on MNIST and 8 on CIFAR-10.

We also visualize the adversarial examples generated from the same original instance x and
predicted as the different target classes in Figure 2.3, Figure 2.5 and Figure 2.6. We can see that all
of the generated adversarial examples for different models appear close to the ground truth/pristine
images (lying on the diagonal of the matrix) and can be successfully misclassified as the target class
shown on the top. If we compare the adversarial examples generated by AdvGAN and stAdv, we
could find that adversarial examples generated by stAdv slightly change the shape of the digits but
still look visually realistic. Figure 2.4 further visualize the adversarial examples generated by stAdv
with the other Lp based adversarial examples (FGSM and CW). It shows the difference adversarial
space explored by stAdv.
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(a) CIFAR (b) ImageNet

Figure 2.5: Adversarial examples generated by AdvGAN on CIFAR-10 and ImageNet. For the left
image, the image from each class is perturbed to other different classes and the original images
are shown on the diagonal. For the right image, images shown on the first column are the original
images. The following columns are the corresponding adversarial examples which are classified as
(from left to right) poodle, ambulance, basketball, and electric guitar.

One of the potentially limitations of the GAN-based algorithms is that the ability to generate
high resolution images. To evaluate AdvGAN’s ability to generate high resolution adversarial
examples, we also apply AdvGAN to generate adversarial examples on the ImageNet as shown in
the right of Figure 2.5 with L1 bound as 8. The added perturbation is unnoticeable while all the
adversarial instances are misclassified into other target classes with high confidence.

For AdvGAN, we also analyze the influence of different loss terms on MNIST. Under the
same bounded perturbations (0.3), if we replace the full loss function in equation 2.4 with L =

||G(x)||2+L
f

adv, which is similar to the objective used in [7], the attack success rate becomes 86.2%.
If we replace the loss function with L = Lhinge + L

f

adv, the attack success rate is 91.1%, compared
to that of AdvGAN, 98.3%. The potential reason is that our GAN-based design could help explore
the adversarial space more thoroughly.

2.4.2 Visualizing the spatial transformation of stAdV

To better understand the spatial transformation applied to the original images, we visualize
the optimized transformation flow for different datasets, respectively. Figure 2.7 visualizes a
transformation on an MNIST instance, where the digit “0” is misclassified as “2.” We can see that
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Target class
0 1 2 3 4 5 6 7 8 9

(a) wide ResNet34

Target class
0 1 2 3 4 5 6 7 8 9

(b) ResNet32

Figure 2.6: Adversarial examples generated by stAdv against different models on CIFAR-10. The
ground truth images are shown in the diagonal while the adversarial examples on each column are
classified into the same class as the ground truth image within that column.

the adjacent flows move in a similar direction in order to generate smooth results. The flows are
more focused on the edge of the digit and sometimes these flows move in different directions along
the edge, which implies that the object boundary plays an important role in our stAdv optimization.
Figure 2.8 illustrates a similar visualization on CIFAR-10. It shows that the optimized flows often
focus on the area of the main object, such as the airplane. We also observe that the magnitude
of flows near the edge are usually larger, which similarly indicates the importance of edges for
misleading the classifiers. This observation confirms the observation that when DNNs extract edge
information in the earlier layers for visual recognition tasks [117]. In addition, we visualize the

Figure 2.7: Flow visualization on MNIST. A digit “0” is misclassified as “2”.
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Figure 2.8: Flow visualization on CIFAR-10. An “airplane” image is misclassified as “bird”.

(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat
Figure 2.9: Flow visualization on ImageNet. (a): the original image, (b)-(c): images are misclassified
into goldfish, dog and cat, respectively. Note that to display the flows more clearly, we fade out the
color of the original image.

similar flow for the ImageNet dataset [32] in Figure 2.9. The top-1 label of the original image in
Figure 2.9 (a) is “mountain bike”. Figure 2.9 (b)-(d) show target adversarial examples generated
by stAdv, which have target classes “goldfish,” “Maltese dog,” and “tabby cat,” respectively, and
which are predicted as such as the top-1 class. An interesting observation is that, although there are
other objects within the image, nearly 90% of the spatial transformation flows tend to focus on the
target object bike. Different target class corresponds to different directions for these flows, which
still fall into the similar area.

2.4.3 Human Perceptual Study

To quantify the perceptual realism of the adversarial examples generated by AdvGAN and
stAdv, we perform a user study with human participants on Amazon Mechanical Turk (AMT). We
follow the same perceptual study protocol used in prior image synthesis work [58, 146]. In our
study, the participants are asked to choose the more visually realistic image between an adversarial
example generated by AdvGAN or stAdv and its original image. During each trial, these two images
appear side-by-side for 2 seconds. After the images disappear, our participants are given unlimited
time to make their decision. To avoid labeling bias, we allow each user to conduct at most 50 trails.
For each pair of an original image and its adversarial example, we collect about 5 annotations from
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different users.
Examples generated by AdvGAN and stAdv were chosen as the more realistic in 49.4%±1.96%

and 47.01%± 1.96% of the trails (perfectly realistic results would achieve 50%) respectively. This
indicates that our adversarial examples are almost indistinguishable from natural images.

2.4.4 Attack Effectiveness Under Defenses

Facing different types of attack strategies, various defenses have been provided. Among
them, different types of adversarial training methods are the most effective. [41] first propose
adversarial training as an effective way to improve the robustness of DNNs, and [112] extend it
to ensemble adversarial learning. [93] have also proposed robust networks against adversarial
examples based on well-defined adversaries. Given the fact that AdvGAN strives to generate
adversarial instances from the underlying true data distribution, it can essentially produce more
photo-realistic adversarial perturbations compared with other attack strategies. Thus, AdvGAN
could have a higher chance to produce adversarial examples that are resilient under different defense
methods. In this section, we quantitatively evaluate this property for AdvGAN compared with other
attack strategies. Additionally, we argue that stAdv explores the new adversarial space beyond the
traditionally Lp-based threat model. Therefore, we also use the adversarial training based defense
methods which trained on previous Lp-based adversarial examples to validate correctness of the
above argument.

Settings Here we generate adversarial examples in the white-box setting and test different defense
methods against these samples to evaluate the strength of these attacks under defenses. We mainly
focus on the adversarial training defenses due to their state-of-the-art performance. We apply three
defense strategies in our evaluation: the FGSM adversarial training (Adv.) [41], ensemble adversarial
training (Ens.) [112], and projectile gradient descent (PGD) adversarial training [93] methods6. For
each architecture evaluated by our attacks, we apply the above defense methods on them. In detail,
we replace f with our the defense models respectively to generate adversarial examples by using
AdvGAN and stAdv. We use FGSM and CW as baseline methods for comparison.

The results on the MNIST and CIFAR-10 datasets are shown in Table 2.4. We observe that the
three defense strategies can achieve high performance (less than 10% attack success rate) against
FGSM and C&W attacks. AdvGAN could achieve a higher attack success rate. It indicates that the
GAN structure could benefit the process to find adversarial examples.

However, compare to stAdv, these defense methods only achieve low defense performance on
6 Each ensemble adversarial trained model is trained using (i) pristine training data, (ii) FGSM adversarial examples

generated for the current model under training, and (iii) FGSM adversarial examples generated for naturally trained
models of two architectures different from the model under training.
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stAdv, which improve the attack success rate to more than 30% among all defense strategies. The
potential reason is that the defense methods are trained on Lp-based threat model and stAdv is a new
type of adversarial examples which are beyond the scope to Lp-based threat model. On the other
side, for stAdv, we do not use Lp norm to bound the distance as translating an image by one pixel
may introduce large Lp penalty. We instead constrain the spatial transformation flow. Therefore,
the previous adversarial trained model for Lp-baesd adversarial examples could not defend against
our attack. These results also indicate that a new type of adversarial strategy, such as our spatial
transformation-based attack, may open new directions for developing better defense systems.

Table 2.4: Attack success rate of adversarial examples generated by AdvGAN and stAdv under
defenses on MNIST and CIFAR-10.

Data Model Defense FGSM C&W AdvGAN stAdv

MNIST

A
Adv. 4.3% 4.6% 8.0% 36.62%

Ensemble 1.6% 4.2% 6.3% 48.07%
Iter.Adv. 4.4% 2.96% 5.6% 48.38%

B
Adv. 6.0% 4.5% 7.2% 50.17%

Ensemble 2.7% 3.18% 5.8% 46.14%
Iter.Adv. 9.0% 3.0% 6.6% 49.28%

CIFAR

ResNet
Adv. 13.10% 11.9% 16.03% 43.36%

Ensemble. 10.00% 10.3% 14.32% 36.89%
Iter.Adv 22.8% 21.4% 29.47% 49.19%

Wide ResNet
Adv. 5.04% 7.61% 14.26% 31.66%

Ensemble 4.65% 8.43% 13.94 % 29.56%
Iter.Adv. 14.9% 13.90% 20.75% 31.60%

2.5 Conclusion

In this chapter, we propose AdvGAN to generate adversarial examples using generative adver-
sarial networks (GANs). In our AdvGAN framework, once trained, the feed-forward generator can
produce adversarial perturbations efficiently. It can also perform both Semi-whitebox and black-box
attacks with high attack success rate. In addition, when we apply AdvGAN to generate adversarial
instances on different models without knowledge of the defenses in place, the generated adversarial
examples can attack the state-of-the-art defenses with higher attack success rate than examples
generated by the competing methods. This property makes AdvGAN a promising candidate for
improving adversarial training defense methods. The generated adversarial examples produced by
AdvGAN preserve high perceptual quality due to GANs’ distribution approximation property.

Different from the AdvGAN that generate adversarial examples by directly manipulating pixel
values, we also introduce a new type of perturbation based on spatial transformation, which aims to
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preserve high perceptual quality for adversarial examples. We have shown that adversarial examples
generated by stAdv are more difficult for humans to distinguish from original instances. One of
the future direction is to propose a general framework to defend against the adversarial examples
generated by stAdv. One of the potential way to defend against adversarial examples generated by
stAdv is to incorporate them into the training process. To achieve this goal, we still need constrain
the manipulation of the flow and give a training budget. Recently, Zhang and Wang [144] introduce
a spatial transformation-based attack with budget and further integrate both pixel and spatial attacks
into one generation model to improving the overall model robustness against both attacks. However,
how to defend against spatial transformed adversarial examples without budget is still an open
problem now.
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CHAPTER 3

Adversarial Examples in the 3D Space

3.1 Introduction

The previous chapter introduced adversarial examples in the 2D digital space. Such digital space
studies still leaves open the question of the existence of adversarial examples in the physical space.
Digital attacks generated by directly manipulating pixels can be defended by securing the camera, so
that the generated images are not realizable in practice. Understanding adversarial examples in the
physical/3D world is an important step towards the resilient learning algorithms and there has been
significant prior progress on generating physically possible adversarial examples [5, 13, 38, 72]
by altering the texture of a 3D surface, i.e. applying adversarial printable 2D patches or painting
patterns.Such attacks, however, are less suitable for textureless objects, because adding texture to an
otherwise textureless surface may increase the chance of being detected and defended. Additionally,
for the texture-ignore cyber physical equipment such as LiDAR and RaDAR, the texture-based
perturbations will not be collected resulting in the ineffectiveness and ambiguity of the existence
problem of adversarial perturbation in the physical world. Digital images are formed by the
processing of illumination, shape and texture. Therefore, in this chapter, we explore a new avenue of
attacks where we generate physically possible adversarial examples by simulating the photo-taken
process. We explore 3D objects that have rich shape features but minimal texture variation, and
show that we can still fulfill the adversarial goal by perturbing the shape of those 3D objects, while
the same method can still be applied to textures. Specifically, we propose meshAdv to generate
adversarial meshes with negligible perturbations. We leverage a physically-based differentiable
renderer [66] to accurately render the mesh under the certain camera and lighting parameters. A
deep network then outputs a prediction given the rendered image as input. Since this whole process
is differentiable, gradients can be propagated from the network prediction back to the shape or
texture of the mesh. Therefore, we can use gradient-based optimization to generate shape-based or
texture-based perturbation by applying losses on the network output. The entire pipeline is shown
in Figure 3.1.

Even though we are only manipulating physical properties (shape and texture) of a 3D object,
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Figure 3.1: The pipeline of “adversarial mesh” generation by meshAdv.

we can always fool state of the art DNNs (see Section 3.5.2). Specifically, we show that for any
fixed rendering conditions (i.e. lighting and camera parameters), state of the art object classifiers
(DenseNet [54] and Inception-v3 [109]) and detector (Yolo-v3 [98]) can be consistently tricked by
slightly perturbing the shape and texture of 3D objects. We further show that by using multiple views
optimization, the attack success rate of “adversarial meshes” increases under various viewpoints
(see Table 3.2). In addition, we conduct user studies to show that the generated perturbations are
negligible to human perception.

Since the perturbation on meshes is adversarially optimized with the help of a differentiable
renderer, a natural question to ask is whether a similar method can be applied in practice when
the rendering operation is not differentiable and even the renderer parameters are known. We try
to answer this question by proposing a pipeline to perform black-box attack on a photo-realistic
renderer (with non-differentiable rendering operation) under unknown rendering parameters. We
show that via estimating the rendering parameters and improving the robustness of perturbation, our
generated “adversarial meshes” can attack a photorealistic renderer.

Additionally, we visualize our shape based perturbation to show possible vulnerable regions
for meshes. This can be beneficial when we hope to improve the robustness (against shape
deformation) of machine learning models that are trained on 3D meshes [20, 104, 124] for different
tasks such as viewpoint estimation [106], indoor scene understanding [46, 89, 104, 147] and so
on [23, 88, 99, 116, 136].

To summarize, our contributions in this chapter are as follows:

• We propose an end-to-end optimization-based method stAdv to generate 3D “adversarial
meshes” with negligible perturbations, and show that it is effective in attacking different
machine learning tasks;

• We demonstrate the effectiveness of our method on a black-box non-differentiable renderer
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with unknown parameters;

• We provide insights into vulnerable regions of a mesh via visualizing the flow of shape based
perturbations;

• We conduct user studies to show that our 3D perturbation is subtle enough and will not affect
user recognition.

We organize this chapter as follows. We introduce the problem definition in Section 3.2, chal-
lenges in Section 3.2, and methodology in Section 3.3. We show how to attack a non-differentiable
renderer in section 3.4.

3.2 Problem Definition and Challenges

Similar to the formation in the previous chapter, in the 2D domain, let f be a machine learning
model trained to map a 2D image x to its category label y. For f , an adversarial attacker targets
to generate an adversarial image xadv such that f(xadv) 6= y (untargeted attack) or g(xadv) = t

(targeted attack), where y is the ground truth label and t is our specified malicious target label.
Unlike adversarial attacks in 2D space, here the image x is a rendered result of a 3D object

S: x = R(S;P, L), computed by a physically-based renderer R with camera parameters P and
illumination parameters L. In other words, it is not allowed to directly operate the pixel values of I ,
and one has to manipulate the 3D object S to generate Sadv such that the rendered image of it will
fool f to make incorrect predictions: xadv = R(Sadv;P, L).

Achieving the above goals is non-trivial due to the following challenges: 1) Manipulation
space: When rendering 3D contents, shape, texture and illumination are entangled together to
generate the pixel values in a 2D image, so image pixels are no longer independent with each
other. This means the manipulation space can be largely reduced due to image parameterization.
2) Constraints in 3D: 3D constraints such as physically possible shape geometry and texture are
not directly reflected on 2D [142]. Human perception of an object is in 3D or 2.5D [87], and
perturbation of shape or texture on 3D objects may directly affect human perception of them. This
means it can be challenging to generate unnoticeable perturbations on 3D meshes.

3.3 Methodology

Here we assume the renderer R is known (i.e. white box) and differentiable to the input 3D
object S in mesh representation. To make a renderer R differentiable, we have to make several
assumptions regarding object material, lighting models, interreflection etc. With a differentiable
renderer, we can use gradient-based optimization algorithms to generate the mesh perturbations in
an end-to-end manner, and we denote this method meshAdv.
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3.3.1 Differentiable Rendering

A physically-based renderer R computes a 2D image x = R(S;P, L) with camera parame-
ters P , a 3D object S and lighting parameters L by approximating physics, e.g. the rendering
equation [57, 64]. A differentiable renderer makes such computation differentiable w.r.t. the input
S, P, L by making assumptions on illumination models and surface reflectance, and simplifying the
ray-casting process. Following common practice, we use 3D triangular meshes for object represen-
tation, Lambertian surface for surface modeling, directional lighting with a uniform ambient for
illumination, and ignore interreflection and shadows. Here, we further explain the details regarding
3D mesh representation S = (V, F, T ), illumination model L and camera parameters P used in
differentiable rendering in this work.

For a 3D object S in 3D triangular mesh representation, let V be the set of its n vertices in 3D
space, and F be the indices of its m faces:

V = {v1,v2, · · · ,vn 2 R3
}, F = {f1,f2, · · · ,fm 2 N3

} (3.1)

For textures, traditionally, they are represented by 2D texture images and mesh surface parameteri-
zation such that the texture images can be mapped onto the mesh’s triangles. For simplicity, here
we attach to each triangular face a single RGB color as its reflectance:

T = {t1, t2, · · · , tm 2 R+3
} (3.2)

For the illumination model, we use k directional light sources plus an ambient light. The lighting
directions are denoted Ldir, and the lighting colors (in RGB color space) are denoted as Lcolor for
directional light sources and a for the ambient light:

Ldir = {ld1, l
d

2, · · · l
d

k
2 R3

}, Lcolor = {lc1, l
c

2, · · · l
c

k
2 R3

} (3.3)

We put the mesh S = (V, F, T ) at the origin (0, 0, 0), and set up our perspective camera
following a common practice: the camera viewpoint is described by a quadruple P = (d, ✓,�, ),
where d is the distance of the camera to the origin, and ✓, �,  are azimuth, elevation and tilt angles
respectively. Note that here we assume the camera intrinsics are fixed and we only need gradients
for the extrinsic parameters P .

Given the above description, the 2D image produced by the differentiable renderer can be
symbolized as follows:

x = rasterize(P, T · shading(L, normal(V, F ))) (3.4)
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normal(·, ·) computes the normal direction ni for each triangular face fi in the mesh, by
computing the cross product of the vectors along two edges of the face:
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(3.5)

shading computes the shading intensity vs.i on the face given the face normal direction ni and
lighting parameters:

vs.i = a+
kX

i=1

lc
i
max(ld

i
· ni, 0) (3.6)

Given face reflectance ti for each face i, we compute the color ci of each face i by elementwise
multiplication:

ci = ti � vs.i (3.7)

rasterize projects the computed face colors ci in 3D space onto the 2D camera plane by
raycasting and depth testing. We also cap the color values to [0, 1].

For implementation, we use the off-the-shelf PyTorch implementation [68, 97] of the Neural
Mesh Renderer (NMR) [66].

3.3.2 Optimization Objective

Here, instead of optimizing the input image x, we optimize the S.

L(Sadv) = Ladv(Sadv, f) + �Lperceptual(Sadv) (3.8)

In this equation, Ladv is the adversarial loss to fool the model f , given the rendered image xadv =

R(Sadv;P, L) as input. Lperceptual is the loss to keep the “adversarial mesh” perceptually realistic.
� is a balancing hyper-parameter.

We further instantiate Ladv and Lperceptual in the next subsections, regarding different tasks
(classification or object detection) and perturbation types (shape or texture).

3.3.2.1 Adversarial Loss

Classification For a classification model f , the output is usually the probability distribution of
object categories, given an image of the object as the input. We use the cross entropy loss [31] as
the adversarial loss for meshAdv:

Ladv(Sadv; g, t) = t log(g(xadv)) + (1� t) log(1� g(xadv)), (3.9)

where xadv = R(Sadv;P, L), and t is one-hot representation of the target label.
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Object Detection For object detection, we choose a state-of-the-art model Yolo-v3 [98] as our
victim model. It divides the input image x into Z ⇥ Z different grid cells. For each grid cell,
Yolo-v3 predicts the locations and label confidence values of B bounding boxes. For each bounding
box, it generates 5 values (4 for the coordinates and 1 for the objectness score) and a probability
distribution over N classes. Here the adversary’s goal is to make the victim object disappear from
the object detector, called disappearance attack. So we use the disappearance attack loss [39] as
our adversarial loss for Yolo-v3:

Ladv(Sadv; g, t) = max
z2Z2,b2B

H(z, b, t, g(xadv)), (3.10)

where xadv = R(Sadv;P, L), and H(·) is a function to represent the probabilities of label t for
bounding box b in the grid cell z, given Iadv as the input of the model g.

3.3.2.2 Perceptual Loss

To keep the “adversarial mesh” perceptually realistic, we leverage a Laplacian loss similar to
the total variation loss [118] as our perceptual loss:

Lperceptual(Sadv) =
X

i

X

q2N (i)

��xi
adv
� x

q

adv

��2
2
, (3.11)

where xi is the RGB vector of the i-th pixel in the image xadv = R(Sadv;P, L), and N (i) is the
4-connected neighbors of pixel i.

We apply this smoothing loss to the image when generating texture based perturbation for Sadv.
However, for shape based perturbation, manipulation of vertices may introduce unwanted mesh
topology change, as reported in [66]. Therefore, instead of using Eq. (3.11), we perform smoothing
on the displacement of vertices such that neighboring vertices will have a similar displacement flow.
We achieve this by extending the smoothing loss to 3D vertex flow, in the form of a Laplacian loss:

Lperceptual(Sadv) =
X

vi2V

X

vq2N (vi)

���vi
��vq

��2
2
, (3.12)

where �vi = vi

adv � vi is the displacement of the perturbed vertex vi

adv from its original position
vi in the pristine mesh, and N (vi) denotes connected neighboring vertices of vi defined by mesh
triangles.

3.4 Transferability to Black-Box Renderers

Our meshAdv aims to white-box-attack the system f(R(S;P, L)) by optimizing S end-to-end
since R is differentiable. However, we hope to examine the potential of meshAdv for 3D objects in
practice, where the actual renderer may be unavailable.
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We formulate this as a black-box attack against a non-differentiable renderer R0 under unknown
rendering parameters P ⇤, L⇤, e.g. we have limited access to R0 but we still want to generate Sadv

such that R0(Sadv, P ⇤, L⇤) fools the model f . Because we have no assumptions on the black-
box renderer R0, it can render photorealistic images at a high computational cost, by enabling
interreflection, occlusion and rich illumination models etc such that the final image is an accurate
estimate under real-world physics as if captured by a real camera. In this case, the transferability
of “adversarial meshes” generated by meshAdv is crucial since we want to avoid the expensive
computation in R0 and still be able to generate such Sadv. We analyze two scenarios for such
transferability.

Controlled Rendering Parameters Before black-box attacks, we want to first test our “adver-
sarial meshes” directly under the same rendering configuration (lighting parameters L, camera
parameters P ), only replacing the differentiable renderer R with the photorealistic renderer R0. In
other words, while xadv = R(Sadv;P, L) can fool the model f as expected, we would like to see
whether xadv = R0(Sadv;P, L) can still fool the model f .

Unknown Rendering Parameters In this scenario, we would like to use meshAdv to attack a
non-differentiable system g(R0(S;P ⇤, L⇤)) under fixed, unknown rendering parameters P ⇤, L⇤. In
practice, we will have access to the mesh S and its mask M in the original photorealistic rendering
x0 = R0(S;P ⇤, L⇤), as well as the model f . Directly transfer from one renderer to another may not
work due to complex rendering conditions. To improve the performance of such black-box attack,
we propose a pipeline as follows:

1. Estimate camera parameters P̂ by reducing the error of object silhouette
kRmask(S;P )�Mk2, where Rmask(S;P ) renders the mask of the object S (lighting is
irrelevant to produce the mask);

2. Given P̂ , estimate lighting parameters L̂ by reducing the masked error of rendered images:���M � (R(S; P̂ , L)� I 0)
���
2

, where the operator � is Hadamard product;

3. Given P̂ , L̂, use meshAdv to generate the “adversarial mesh” Sadv such that R(Sadv; P̂ , L̂)

fools g; To improve robustness, we add random perturbations to P̂ and L̂ when optimizing;

4. Test Sadv in the original scene with photorealistic renderer R0: obtain the prediction g(R0(Sadv;P ⇤, L⇤)).

3.5 Experimental Results

In this section, we first show the attack effectiveness of “adversarial meshes” generated by
meshAdv against classifiers under different settings. We then visualize the perturbation flow of
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vertices to better understand the vulnerable regions of those 3D objects. User studies show that
the proposed perturbation is subtle and will not mislead human recognition. In addition, we show
examples of applying meshAdv to object detectors in physically realistic scenes. Finally, we
evaluate the transferability of “adversarial meshes” generated by meshAdv and illustrate how to use
such transferability to attack a black-box renderer.

3.5.1 Experimental Setup

Perturbation
Type Model Test

Accuracy
Best Case Average Case Worst Case

Avg. Distance Succ. Rate Avg. Distance Succ. Rate Avg. Distance Succ. Rate

Shape DenseNet 100.0% 8.4⇥ 10�5 100.0% 1.8⇥ 10�4 100.0% 3.0⇥ 10�4 100.0%
Inception-v3 100.0% 4.8⇥ 10�5 100.0% 1.2⇥ 10�4 99.8% 2.3⇥ 10�4 98.6%

Texture DenseNet 100.0% 3.8⇥ 10�3 100.0% 1.1⇥ 10�2 99.8% 2.6⇥ 10�2 98.6%
Inception-v3 100.0% 3.7⇥ 10�3 100.0% 1.3⇥ 10�2 100.0% 3.2⇥ 10�2 100.0%

Table 3.1: Attack success rate of meshAdv and average distance of generated perturbation for differ-
ent models and different perturbation types. We choose rendering configurations in PASCAL3D+
renderings such that the models have 100% test accuracy on pristine meshes so as to confirm the
adversarial effects. The average distance for shape based perturbation is computed using the 3D
Laplacian loss from Equation 3.12. The average distance for texture based perturbation is the
root-mean-squared error of face color change.

For victim learning models f , we choose DenseNet [54] and Inception-v3 [109] trained on
ImageNet [32] for classification, and Yolo-v3 trained on COCO [77] for object detection. For
meshes (S), we preprocess CAD models in PASCAL3D+ [126] using uniform mesh resampling
with MeshLab [25] to increase triangle density. Those meshes are then scaled to [�1, 1] and put
into the scene. Then, we use Neural Mesh Renderer (NMR) to generate synthetic renderings
using these unitized meshes with uniformly sampled random camera parameters: azimuth from
[0�, 360�), elevation from [0�, 90�]. As for lighting, we used a directional light and an ambient light
for PASCAL3D+ Renderings. The direction is uniformly sampled in a cone such that the angle
between the view and the lighting direction is less than 60�.

In order to obtain the groundtruth labels, we map the object classes in PASCAL3D+ to the
corresponding classes in the ImageNet. Next, we feed the synthetic renderings to DenseNet and
Inception-v3 and filter out the samples that are misclassified by either network, so that both models
have 100% prediction accuracy on our PASCAL3D+ renderings. We then save the rendering
configurations for evaluation of meshAdv.

For the differentiable renderer (R), we use the off-the-shelf PyTorch implementation [68, 97] of
the Neural Mesh Renderer (NMR) [66] to generate “adversarial meshes”. For rendering settings
(R(·;P, L)) when attacking classifiers, we randomly sample camera parameters P and lighting
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(b) Perturbation on texture

Figure 3.2: Benign images (diagonal) and corresponding adversarial examples generated by me-
shAdv on PASCAL3D+ renderings tested on Inception-v3. Adversarial target classes are shown at
the top. We show perturbation on (a) shape and (b) texture.

parameters L, and filter out configurations such that the classification models have 100% accuracy
when rendering pristine meshes. These rendering configurations are then fixed for evaluation, and
we call meshes rendered under these configurations PASCAL3D+ renderings. In total, we have 7
classes, and for each class we generate 72 different rendering configurations.

For optimizing the objective, we use Adam [67] as our solver. In addition, we select the
hyperparameter � in Equation 3.8 using binary search, with 5 rounds of search and 1000 iterations
for each round.

3.5.2 meshAdv on Classification

In this section, we evaluate the quantitative and qualitative performance of meshAdv against
classifiers.

For each sample in our PASCAL3D+ renderings, we try to targeted-attack it into the other
6 categories. Next, for each perturbation type (shape and texture) and each model (DenseNet
and Inception-v3), we split the results into three different cases similar to [18]: Best Case means
we attack samples within one class to other classes and report on the target class that is easiest
to attack. Average Case means we do the same but report the performance on all of the target
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(b) Perturbation on texture

Figure 3.3: Benign images (diagonal) and corresponding adversarial examples generated by me-
shAdv on PASCAL3D+ renderings tested on Inception-v3. Adversarial target classes are shown at
the top. We show perturbation on (a) shape and (b) texture.

classes. Similarly, Worst case means that we report on the target class that is hardest to attack.
The corresponding results are shown in Table 3.1, including attack success rate of meshAdv, and
the evaluation on generated shape and texture based perturbation respectively. For shape based
perturbation, we use the Laplacian loss from Equation 3.12 as the distance metric. For texture
based perturbation, we compute the root-mean-square distance of texture values for each face of the
mesh:

q
1
m

P
m

i=1(t
adv
i
� ti)2, where ti is the texture color of the i-th face among the mesh’s total

m faces. The results show that meshAdv can achieve an almost 100% attack success rate for either
adversarial perturbation types.

Figure 3.2 shows the generated “adversarial meshes” against Inception-v3 after manipulating the
vertices and texture respectively. The diagonal shows the images rendered with the pristine meshes.
The target class of each “adversarial mesh” is shown at the top, and similar results for DenseNet are
included in Figure 3.3. Note that the samples in the image are randomly selected and not manually
curated. It is worth noting that the perturbation on object shape or texture, generated by meshAdv,
is barely noticeable to human, while being able to mislead classifiers. To help assess the vertex
displacement in shape perturbation, we discuss the flow visualization and human perceptual study
in the following paragraphs.
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(a) Rendered view
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(b) Canonical view

(c) Vertex flow of an “adversarial mesh” targeting “bicycle” (d) Perturbation (top) vs curvature
(bottom)

Figure 3.4: (a) and (b) are visualization of shape based perturbation with respect to Figure 3.2(a). (c)
is a close view of flow directions, and (d) is an example to compare the magnitude of perturbation
with the magnitude of curvature. Warmer color indicates greater magnitude and vice versa.

Visualizing Vertex Manipulation In order to better understand the vulnerable regions of 3D
objects, in Figure 3.4, we visualize the magnitude of the vertex manipulation flow using heatmaps.
The heatmaps in the figure correspond to the ones in Figure 3.2(a). We adopt two viewpoints in
this figure: the rendered view (i), which is the same as the one used for rendering the images;
and the canonical view (ii), which is achieved by fixing camera parameters for all shapes: we set
the azimuth angle to 135� and the elevation angle to 45�. From the heatmaps we observe that the
regions with large curvature value and close to the camera (such as edges) are more vulnerable, as
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Victim Set Size Azimuth Range

45� ⇠ 60� 35� ⇠ 70� 15� ⇠ 75�

5 views 67% 45% 28%
10 views 73% 58% 38%
15 views 79% 74% 48%

Table 3.2: Targeted attack success rate for unseen camera views. We attack using 5, 10, or 15 views,
and test with 20 unseen views in the same range.

shown in the example in Figure 3.4(d). We find this is reasonable, since vertex displacement in
those regions will bring significant change to normals, thus affecting the shading from the light
sources and causing the screen pixel value to change drastically.

In addition to magnitude, we additionally show an example of flow directions in Figure 3.4(c),
which is a close-up 3D quiver plot of the vertex flow in the vertical stabilizer region of an aeroplane.
In this example, the perturbed aeroplane mesh is classified as “bicycle” in its rendering. From this
figure, we observe that the adjacent vertices tend to flow towards similar directions, illustrating the
effect of our 3D Laplacian loss operated on vertex flows (Equation 3.12).

Human Perceptual Study We conduct a user study on Amazon Mechanical Turk (AMT) in
order to quantify the realism of the adversarial meshes generated by meshAdv. We uploaded
the adversarial images which are misclassified by DenseNet and Inception-v3. Participants were
asked to recognize those adversarial object to one of the two classes (the ground-truth class and
the adversarial target class). The order of these two classes was randomized and the adversarial
objects are appeared for 2 seconds in the middle of the screen during each trial. After disappearing,
the participant has unlimited time to select the more feasible class according to their perception.
For each participant, one could only conduct at most 50 trials, and each adversarial image was
shown to 5 different participants. In total, we collect 3820 annotations from 49 participants. In
99.29 ± 1.96% of trials the “adversarial meshes” were recognized correctly, indicating that our
adversarial perturbation will not mislead human as they can almost always assign the correct label
of these “3D adversarial meshes”.

Multiview Robustness Analysis In addition to a fixed camera when applying meshAdv, we also
explore the robustness of meshAdv against a range of viewpoints for shape based perturbation. First,
we create a victim set of images rendered under 5, 10 or 15 different azimuth angles for optimizing
the attack. We then sample another 20 unseen views within the range for test. The results are shown
in Table 3.2. We can see that the larger the azimuth range is, the harder to achieve a high attack
success rate. In the meantime, meshAdv can achieve a relatively high attack success rate when
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(a) Benign

(b) Table | Shape (c) All | Shape

(d) Table|Texture (e) All | Texture

Figure 3.5: “Adversarial meshes” generated by meshAdv in a synthetic indoor scene. (a) represents
the benign rendered image and (b)-(e) represent the rendered images from “adversarial meshes” by
manipulating the shape or texture. We use the format “adversarial target | perturbation type” to
denote the victim object aiming to hide and the type of perturbation respectively.

more victim instances are applied for training. As a result, it shows that the attack robustness can
potentially be improved under various viewpoints by optimizing on a large victim set.

3.5.3 meshAdv on Object Detection

For object detection, we use Yolo-v3 [98] as our target model.

Indoor Scene First, we test meshAdv within the indoor scene which is pure synthetic. We
compose the scene manually with a desk and a chair to simulate an indoor setting, and place in the
scene a single directional light with low ambient light. We then put the Stanford Bunny mesh [115]
onto the desk, and show that by manipulating either the shape or the texture of the mesh, we can
achieve the goal of either removing the target table detection or removing all detections while
keeping the perturbation almost unnoticeable, as shown in Figure 3.5.

Outdoor Scene Given a real photo of an outdoor scene, we hope to remove the detections of
real objects in the photo. Different from the indoor sceen in which lighting is known, we have to
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(a) S | GT (b) Sadv | Dog (c) S | GT (d) Sadv|Bicycle

Figure 3.6: “Adversarial meshes” generated by meshAdv for an outdoor photo. (a) and (c) show
images rendered with pristine meshes as control experiments, while (b) and (d) contain “adver-
sarial meshes” by manipulating the shape. We use the format “ S/Sadv | target” to denote the
benign/adversarial 3D meshes and the target to hide from the detector respectively.

estimate the parameters of a sky lighting model [52] using the API provided by [51] as groundtruth
lighting and adapt to the differentiable renderer. We then use this lighting to render our mesh onto
the photo. In the real photo, we select the dog and the bicycle as our target objects and aim to
remove the detection one at a time. We show that we successfully achieve the adversarial goal with
barely noticeable perturbation, as in Figure 3.6.

3.5.4 Transferability to Black-Box Renderers

As mentioned in Section 3.4, the final adversarial goal is to black-box attack a system g(R0(S;P, L))

in which the renderer R0 is a computationally intensive renderer that is able to produce photorealistic
images. Here we choose Mitsuba [60] as such renderer, and focus on shape based perturbation.

Controlled Rendering Parameters Before perform such attacks, we first evaluate the transfer-
ability under controlled parameters. We directly render the “adversarial meshes” Sadv generated
in Section 3.5.2 using Mitsuba, with the same lighting and camera parameters. We then calculate
the targeted/untargeted attack success rate by feeding the Mitsuba-rendered images to the same
victim classification models g. The result of untargeted attacks are shown in Table 3.3, and the
confusion matrices for targeted attacks are show in Figure 3.7. We observe that for untargeted
attack, the “adversarial meshes” can be transferred to Mitsuba with relatively high atttack success
rate for untargeted attack; while as shown in Figure 3.7, the targeted attack barely transfers in this
straightforward setting.

Unknown Rendering Parameters To more effectively targeted attack the system f(R0(S;P ⇤, L⇤))

when rendering parameters P ⇤, L⇤ are unknown, we apply the pipeline from Section 3.4 on a classi-
fier and an object detector, respectively. we first use the Adam optimizer [67] to obtain the camera
estimate P̂ , then estimate the lighting L⇤ using 5 directional lights and an ambient light L̂. Note that
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Model/Target aeroplane bicycle boat bottle
DenseNet 65.2% 69.1% 66.7% 63.0%

Inception-v3 67.1% 83.3% 39.6% 76.9%

Model/Target chair diningtable sofa average
DenseNet 37.1% 70.3% 47.9% 59.8%

Inception-v3 32.1% 75.0% 52.3% 60.9%

Table 3.3: Untargeted attack success rate against Mitsuba by transferring “adversarial meshes”
generated by attacking a differentiable renderer targeting different classes.

Figure 3.7: Confusion matrices of targeted success rate for evaluating transferability of “adversarial
meshes” on different classifiers. Left: DenseNet; right: Inception-v3.

the groundtruth lighting L⇤ spatially varies due to interreflection and occlusion, so it is impossible to
have an exact estimate using the global lighting model in NMR. Then we manipulate the shape Sadv

in the NMR until the image xadv = R(Sadv : P̂ , L̂) can successfully targeted-attack the classifier or
the object detector g with a high confidence. During this process, we add small random perturbation
to the estimated parameters (P̂ , L̂) such that Sadv will be more robust under uncertainties. For
testing, we re-render Sadv with Mitsuba using the original setting and test the rendered image
x0
adv = R0(Sadv, P ⇤, L⇤) on the same model f .

For classification, we place an aeroplane object from PASCAL3D+ and put it in an outdoor scene
under sky light. As is shown in Figure 3.8, we successfully attacked the classifier to output the target
“hammerhead” by replacing the pristine mesh with our “adversarial mesh” in the original scene.
Note that even we do not have an accurate lighting estimate, we still achieve the transferability by
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Viewpoint and lighting estimate
Black-box rendering of an airplane mesh

Prediction: “airliner”
NMR rendering + Background

(d, ș��ĳ��ȥ)

Re-render using the black-box renderer
Prediction: “hammerhead”

Shape perturbations by MeshAdv
Target: “hammerhead”

Figure 3.8: Transferability of “adversarial meshes” against classifiers in unknown rendering en-
vironment. We estimate the camera viewpoint and lighting parameters using the differentiable
renderer NMR, and apply the generated “adversarial mesh” to the photorealistic renderer Mitsuba.
The “airliner” is misclassified to the target class “hammerhead” after rendered by Mitsuba.

(a) Benign (b) S | NMR (c) S | Mit. (d) Sadv | NMR (e) Sadv | Mit.

Figure 3.9: Transferability of “adversarial meshes” against object detectors in unknown rendering
environment. (b) (c) are controlled experiments. Sadv is generated using NMR (d), targeting to hide
the leftmost chair (see red arrows), and the adversarial mesh is tested on Mit. (Mitsuba) (e). We use
“S/Sadv

| renderer” to denote whether the added object is adversarially optimized and the renderer
that we aim to attack with transferability respectively.

adding perturbation to lighting parameters. For object detection, we modified a scene from [10], and
placed the Stanford Bunny object into the scene. The adversarial goal here is to remove the leftmost
chair in the image. Without an accurate lighting estimate, Figure 3.9 shows that the “adversarial
meshes” can still successfully remove the target (the leftmost chair) from the detector.

3.6 Conclusion

In this chapter, we proposed meshAdv to generate “adversarial meshes” by manipulating the
shape or the texture of a mesh. These “adversarial meshes” can be rendered to 2D domains to mislead
different machine learning models. We evaluate meshAdv quantitatively and qualitatively using
CAD models from PASCAL3D+, and also show that the adversarial behaviors of our “adversarial
meshes” can transfer to black-box renderers. This provides us a better understanding of adversarial
behaviors of 3D meshes in practice, and can motivate potential future defenses.
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CHAPTER 4

Adversarial Examples in the Physical World

The previous chapter introduced the adversarial behavior of DNNs in the 3D space. In this
chapter, we hope to demonstrate that an adversary could pose a threat in real-world complicated
industry-level systems. Previous studies propose to generate physical attacks — stickers or printable
textures that are able to fool a vision sensor on an autonomous driving vehicle to mis-recognize a
stop sign in practice [5, 38]. However, real world systems, such as an autonomous driving system,
would not only depend on vision sensors. Different sensor fusion mechanisms have been applied
and demonstrated to help improve model robustness [75]. For instance, most autonomous driving
detection systems are equipped with LiDAR (Light Detection And Ranging) or RADAR (Radio
Detection and Ranging) devices which are able to directly probe the surrounding 3D environment
with laser beams. As a result, the pure texture based perturbation would not be effective against
such models given the fact that they cannot manipulate the object shape directly to mislead the beam
reflection. Therefore, is it possible to generate “adversarial objects” in the 3D world to compromise
LiDAR based recognition systems? Are these LiDAR based detection systems robust in practice?
How effective these attack would be under various physical conditions?

Compared to the image based perturbation, there are several additional challenges for synthesiz-
ing adversarial objects against real-world LiDAR systems: 1) The LiDAR-based detection system
consists of multiple non-differentiable components, rather than a single end-to-end network, which
largely limits the use of existing gradient-based end-to-end attacks. 2) LiDAR-based detection
system first projects 3D shape to a point cloud using physical LiDAR equipment, and then the point
cloud is fed into the machine learning detection system. How the shape perturbation affects the
scanned point clouds, as well as the projected 2D presentation is unclear. 3) The perturbation space
against LiDAR systems is limited due to multiple aspects. First, we need to ensure the perturbed
object can be reconstructed (3D printed) in real world and “looks like” a normal object, so it needs
to be smooth and regular. Second, a valid LiDAR scan of an object is a constrained subset of point
clouds, making the perturbation space much smaller compared to perturbing unconstrained point
clouds or 2D image pixels directly [125].

To overcome the above challenges, we introduce LiDARadv to generate an adversarial object
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Figure 4.1: Overview of LiDARadv. The first row shows the control experiment where a regular
box is detected by the LiDAR-based detection system; row 2 shows the generated adversarial object
with similar size cannot be detected.

against the real-world LiDAR system The pipeline is shown in Figure 4.1. In detail, we first use a
differentiable renderer to simulate the functionality of LiDAR. The differentiable design could make
the flow between 3D objects and LiDAR scans (or point clouds) differentiable which further enables
the end-to-end optimization. We then formulate 3D feature aggregation with a differentiable proxy
function. Finally, we devise different loss functions to ensure the smoothness of the generated 3D
adversarial objects. With such the system design, we could use the optimization-based method to
generate adversarial examples.

To better demonstrate the flexibility of the proposed attack approach, we evaluate our attacking
approach under two different attack scenarios: 1) Hiding Object: synthesizing an “adversarial
object” that will not be detected by the detector. 2) Changing Label: synthesizing an “adversarial
object” which will be mis-recognized as a specified adversarial target by the LiDAR detector.

To evaluate the real-world impact of LiDARadv, we 3D print out the generated adversarial
objects and test them on the Baidu Apollo autonomous driving platform, an industry-level system
which is not only widely adopted for research purpose but also actively used in industries. We show
that based on the 3D perception LiDAR sensor and a production-level multi-stage detector, we are
able to mislead the autonomous driving system to achieve different adversarial targets.

To summarize, our contributions in this chapter are as follows:

• We propose LiDARadv, an end-to-end approach to generate physically plausible adversarial
objects against LiDAR-based autonomous driving detection systems.

• We select Baidu Apollo, an industry-level autonomous driving platform as the targeted system
to illustrate the effectiveness and robustness of the attacks in practice. We also compare the
objects generated by LiDARadv with an evolution algorithm to show that LiDARadv can
provide smoother objects.
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Figure 4.2: Overview of LiDAR-based detection on AV.

• We conduct physical experiments by 3D-printing the optimized adversarial object and show
that it can consistently mislead the LiDAR system equipped in a moving car.

The organization of this chapter is as follows. Section 4.1 will give a system overview about
LiDAR-based detection system of Baidu Apollo. Section 4.2 will introduce how to apply our
universal formalization to solve this problem and the corresponding challenges and technique
details. Section 4.3 will show the experimental results.

4.1 LiDAR-based Detection System

In this section, we provide the details of the LiDAR-based detection system that is directly
related to our proposed adversarial attack An overview of the system is shown in Fig. 4.2. First,
a LiDAR sensor scans the 3D environment and obtains a raw point cloud of the scene. Next, the
point cloud goes through preprocessing, and is fed to a detection model. Finally, post-processing is
applied to the detection output to obtain the detection predictions. LiDAR A LiDAR sensor scans
the surrounding environment and generates a point cloud as X 2 Rn⇥4 (3D coordinates + intensity
value). First, a sensor fires off an array of laser beams in horizontal and vertical directions. It then
captures the light intensity reflected, and calculates the time that photons have traveled along each
beam (Time of Flight). The distance and the coordinate of the surface points along the beam can
then be computed, and these point clouds will form a raw point cloud of the object surfaces in the
environment. LiDAR sensors are supposedly robust to object surface textures, as the Time of Flight
is not easily affected by texture change. Though it also detects the intensity of reflected lights, it is
unclear how adversarial algorithms designed for natural lighting in image space can be adapted to
invisible laser beams used as light sources. Therefore, image-based adversarial attacks may have
limited effects on such LiDAR-based detection system.

Preprocessing In this step, the input is the raw point cloud X from LiDAR, and the output is a
statistics map of H ⇥W ⇥ 8. First, the point cloud X is sliced into H ⇥W vertical columns. For
each column, the statistics of the points are then aggregated to form a vector of size 8, including
intensity, point counts, average/max heights etc. (see Table. 4.1).
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Table 4.1: Machine learning model input features extracted in the preprocessing phase.

Feature Description

Max height Maximum height of points in the cell.
Max intensity Intensity of the highest point in the cell.
Mean height Mean height of points in the cell.
Mean intensity Mean intensity of points in the cell.
Count Number of points in the cell.
Direction Angle of the cells center with respect to the origin.
Distance Distance between the cells center and the origin.
Non-empty Binary value indicating whether the cell is empty or occupied.

Table 4.2: Output metrics of the segmentation model.

Metric Description

Center offset (off) Offset to predicted center of the cluster the cell belongs to.
Objectness (obj) The probability of a cell belonging to an obstacle.
Positiveness (pos) The confidence score of the detection.
Object height (hei) The predicted object height.
i-th Class Probability (clsi) The probability of the cell being from class i (vehicle, pedestrian, etc.).

In this procedure, some dimensions (e.g. max height, count) introduce zero gradients due to the
“hard” assignment of points to different columns (slicing), so the end-to-end optimization-based
attack algorithms are not directly applicable.

Prediction (f ) In this step, the input is the statistics map of size H ⇥W ⇥ 8, and the output is a
metrics map of H ⇥W ⇥ 10. In Apollo, this is done by an autoencoder-like deep neural network.
For the output metrics map of size H ⇥W ⇥ 10, the 10-D detection vector in each column includes
center offset (2D), objectness, positiveness, object height and 5 class probabilities. The descriptions
of these metrics are detailed in Table. 4.2. This metric map is then used to determine the final
detection result in the post-processing step.

Post-processing The post-processing phase aggregates previous prediction results from the deep
networks and outputs the final object detection result. It can be roughly divided into 3 sequential
components: clustering, box building and tracking. The clustering process composes obstacle
candidates using both the metrics maps and the point cloud X . In the clustering process, objectness
score, center offset confidence in the metrics maps are used to generate the initial candidates. The
class probabilities in the metrics maps are then used to assign the object classes of the candidates.
The box builder then reconstructs the bounding boxes including the height, width, length of the
object candidates from the corresponding points. Finally, the tracker integrates multiple frames of
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processed results to track the objects and to get additional information such as speed.
Note that in this chapter, we only consider a single frame for the adversarial attacks as a

demonstration of feasibility. For the case of multiple frames, it can be treated as enhancing
robustness against object motions, and such robustness against different locations is shown in
experiments later (§ 4.3.4).

4.2 Generating Adversarial Object Against LiDAR-based Detection

4.2.1 Framework Overview

Given a 3D object S in a scene, a LiDAR sensor scans the scene to generate a point cloud X:

X = render(S, background)

For pre-processing, this point cloud X is sliced and aggregated to generate the statistics map x

of size H ⇥W ⇥ 8:
x = �(X)

Then a machine learning model M maps this 2D feature x to O = f(x), where O 2 RH⇥W⇥10

is the metrics map. O is then fed to the clustering process  to generate the confidence yconf and
label ylabel of detected obstacles: (yconf, ylabel) =  (O)

An attacker aims to manipulate the object S to fool the detector. Here we define two types of
adversarial goals: 1) Hiding object: Hide an existing object S by manipulating S; 2) Changing
label: Change the label y of the detected object S to a specified target y0.

To achieve the above adversarial goals in LiDAR-based detection is non-trivial, and there are the
following challenges: 1) Multiple pre/post-processing stages. Unlike the adversarial attacks on
traditional image-space against machine learning tasks such as classification and object detection,
the LiDAR-based detection here is not a single end-to-end learning model, It consists of the
differentiable learning model M and several non-differentiable parts including preprocessing and
post-processing. Thus, the direct gradient based attacks are not directly applicable. 2) Manipulation
constraints. Instead of directly manipulating the point cloud X as in [125], we manipulate the 3D
shape of S given the limitation of LiDAR. The points in X are the intersections of laser beams
and object surfaces and cannot move freely, so the perturbations on each point may affect each
other. Keeping the shape plausible and smooth adds additional constraints [129]. 3) Limited
Manipulation Space. Consider the practical size of the object versus the size of the scene that is
processed by LiDAR, the 3D manipulation space is rather small (< 2% in our experiments), as
shown in Fig. 4.1.

Given the above challenges, we design an end-to-end attacking pipeline. We hope to change
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the metrics map O, by alternating the input shape S, since O is a function of the input shape:
O = F (S) = f(�(R(S))). However, the LiDAR scan R(S) happens in the physics world and we
can only simulate it; the function � has non-differentiable parts if we want to apply gradient-based
optimizers. Now let’s see how we deal with these problems.

4.2.2 Differentiable Renderer

LiDAR simulation The renderer R simulates the physics of a LiDAR sensor that probes the
objects in the scene by casting laser beams. The renderer first takes a mesh S as input, and computes
the intersections of a set of predefined ray directions to the meshes in the scene to generate point
cloud X . After depth testing, the distance along each beam is then captured, representing the surface
point of a mesh that it first encounters, as if a LiDAR system receives a reflection from an object
surface. Knowing ray directions of the beams, the exact positions of the intersection points can be
inferred from the distance, in the form of point clouds X .

In detail, the renderer simulates the physics of a LiDAR sensor that probes the objects in the
scene by casting laser Nray rays: R = {ri 2 R3, krik= 1, i = 1, 2, · · · , Nray}, with ri representing
the direction of the i-th ray. Given a shape S with the surface @S as input, the renderer computes the
intersections of rays R to the mesh faces in the scene. For each ray ri, the intersection coordinate Pi

are computed through depth testing (assuming the center of the rays is at origin, i.e. the reference
frame of LiDAR):

pi = argmin
p

{kpk | 9t > 0,p = t · ri,p 2 @S},

i = 1, 2, · · · , Nray

(4.1)

In detail, the shape S is described by triangle vertex coordinates and a fixed set of triangle
faces. Then, this pi is an intersection of the ray described by ri and the plane described by the three
vertex coordinates of the triangle it intersects, so pi is a function differentiable to the triangle vertex
coordinates in S.

Real background from a road scene We render our synthetic object onto a realistically captured
point cloud. First, we obtain the 3D scan of a road scene, using the LiDAR sensor mounted on a
car. Then, we obtain the laser beam directions by computing the normalized vectors from the origin
(LiDAR) pointing to the scanned points. This fixed set of ray directions are then used for rendering
our synthetic objects throughout the chapter.

Hybrid rendering of synthetic objects onto a realistic background Notice that we have a
predefined set of rays R. To obtain these rays, one can refer to the specifications of a LiDAR device.
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In our method, we directly compute the directions from the captured background point cloud P 0, so
that the rays are close to real world cases:

ri =
p0
i

kp0
i
k

(4.2)

With this, Eq. (4.1) becomes:

pi = argmin
p

{kpk | p = p0
i
_ p = t · ri, t > 0,p 2 @S}, i = 1, 2, · · · , Nray (4.3)

This means when rays intersect with an object, the corresponding background points blocked by the
above-ground parts of the object are removed during depth testing; if the object is below the ground,
the intersections leave those corresponding background points intact also due to depth testing. In
this way, we obtain a semi-real synthetic point cloud scene: the background points come from the
captured real data; the foreground points are physically accurate simulations based on the captured
real data.

4.2.3 Differentiable Proxy Function

As in Section 4.1, the computation of statistics map � includes operations such as count,
max height, and mean height, intensity and non-empty: they are non-differentiable to the point
coordinates because each point is assigned to one column grid. If we want to apply end-to-end
optimizers to for our synthetic object S, we need to pass the gradient through this step, with the
help of our proxy functions.

Given a point cloud X with coordinate (uX , vX , wX), we count the number of points falling
into the cells of a 3D grid G 2 RH⇥W⇥P . For a point Xi with location(uXi , vXi , wXi), it is assigned
to cells, with trilinear weights based on the distance to the cell centers:

Gc,i = (1� d(uc, u
Xi)) · (1� d(vc, w

Xi)) · (1� d(wc, w
Xi)), (4.4)

where j is the cell index and i is the point index and d(·, ·) represents the L1 distance with a max of
1. 1� d(·, ·) means how much the point i contributes to the statistics in cell c. Note that at most 8
cells can have non-zero weights for any point i, so G is a sparse matrix.

Then, the count statistics xcount for cell c is the value Gc =
P

i
Gc,i. Note that this count is no

longer an integer and can have non-zero gradients w.r.t. the point coordinates.
We then use this soft count Gc to compute “mean height” and “max height” statistics. Assume

Tc stores the height of cell c. Next, we can formulate the mean height xmean�height and max
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(a) �0(X)count (b) �0(X)count - �(X)count (c) M(�0(X))obj (d) M(�0(X))obj - M(�(X))obj

(e) �00(X)count (f) �00(X)count - �(X)count (g) M(�00(X))obj (h) M(�00(X))obj-M(�(X))obj

Figure 4.3: The performance of trilinear approximator and tanh approximator. The format “�(·)00count
represents the 2D count feature calculated by trilinear approximator �0; M(�0(X))obj represents
visualization of the “objectiveness ” metric in the output of model M using trilinear approximator
with; �0(X)count - �(X)count represents the approximator ’s error of �0. The same notation for
tanh approximiator �00

height xmax�height by weighting Tc with soft counts:

xmean�height =

P
c2C Gc · TcP
c2C Gc + ✏

and xmax�height = max
c2C

sign(Gc) · Tc (4.5)

where C is the set of all the cells in a column which we want to comput the statistics for. ✏ is
to prevent zero denominators. Note that the sign function (indicating whether there are points in
the cell) is non-differentiable, so we approximate the gradient using sign(G) = G during back
propagation. The feature intensity has the similar formulation of height so we omit them here. The
feature non-empty, formulated as xnon�empty = sign(G), is also dealt in this way.

We denote the above trilinear approximator as �0, in constrast to the original non-differentiable
preprocessing step �. A visualization of output of our �0(X)count compared to the original
�(X)count is shown in Figure 4.3. Since our approximation introduces differences in counting,
�0(X) is not strictly equal to �(X), resulting in different obj (objectiveness) values of the final
model prediction. We observe that this difference will raise new challenges to transfer the adversarial
object generated based on �0 to �. To solve this problem, we reduce the difference between �0 and
�, by replacing the L1 distance d in Eq. 4.4 with d(u1, u2) = 0.5 + 0.5 · tanh(µ · (u1 � u2 � 1))
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where µ = 20. We name this approximation “tanh approximator” and denote it �00. We observe
that the input difference between �00 and the original � is largely reduced compared to �0, allowing
for smaller errors of the model predictions and better transferability. To extend our approximator
and further reduce the gap betweer �00 and �, we interpolate the distance: d(u1, u2) = ↵ · (0.5 +

0.5 · tanh(5µ · (u1 � u2 � 1))) + (1� ↵) · (u1 � bu2c), where ↵ is a hyper-parameter balancing
the accuracy of approximation and the availability of gradients.

4.2.4 Objective Functions

Our objective is to generate a synthetic adversarial object Sadv from an original object S by
perturbing its vertices, such that the LiDAR-based detection model will make incorrect predictions.
We first optimize Sadv against the semi-real simulator detection model f .

L(Sadv) = Ladv(Sadv, f) + �Lperceptual(Sadv;S) . (4.6)

The objective function L consists of two losses. Ladv is the adversarial loss to achieve the target
goals while the Lperceptual is the distance loss to keep the properties of the “realistic” adversarial 3D
object Sadv. We optimize the objective function by manipulating the vertices. The distance loss is
defined as follows:

Lperceptual =
X

vi2V

X

q2neighbor(vi)

k�vi ��vqk
2
2 + �

X

vi2V
k�vik

2
2 , (4.7)

where �vi = vadv
i
� vi represents the displacement between the adversarial vertex vadv

i
and

pristine vertex vi. � is the hyperparameter balancing these two losses. The first losses [129] is a
Laplacian loss preserving the smoothness of the perterbation applied on the adversarial object Sadv.
The second part is the L2 distance loss to limit the magnitude of perturbation.

Objective: hide the inserted adversarial object As introduced in the background section, the ex-
istence of the object highly depends on the “positiveness” metric, namely the confidence. H(⇤,M, S)

denotes a function extracting ⇤ metric from the model M given an object S. A is the mask of the
target object’s bounding box. Our adversarial loss is represented as follows:

Ladv = H(pos,M, S) · A (4.8)

Objective: changing label In order to change the predicted label of the object, it needs to increase
the logits of the target label and decrease the logits of the ground-truth label. Moreover, it also
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needs to preserve the high positiveness. Based on this, our adversarial loss is written as

Ladv = (�H(cy0 ,M, S) +H((c)y,M, S) · A ·H(pos,M, S) (4.9)

In order to ensure that adversarial behaviors still exist when the settings are slightly different, we
create robust adversarial objects that can perform successful attacks within a range of settings,
such as different object orientations, different positions to the LiDAR sensor etc. To achieve such
goal, we sample a set of physical transformations to optimize the loss expectation. In reality, we
create a victim set D by rendering the object S at different positions and orientations. Instead
of optimizing an adversarial object S by attacking single position and orientation, we generate a
universal adversarial object S to attack all positions and orientations in the victim set D.

4.2.5 Blackbox Attack

In reality, it is possible that the attackers do not have complete access to the internal model
parameters, i.e. the model is a black box. Therefore, in this subsection, we also develop an
evolution-based approach to perform blackbox attack.

In evolution, a set of individuals represent the solutions in the search space, and the fitness score
defines how good the individuals are. In our case, the individuals are mesh vertices of our adversarial
object, and the fitness score is �L(Sadv). We initialize m mesh vertices using the benign object S.
For each iteration, new population of n mesh vertices is generated by adding random perturbations,
drawn from a Gaussian distribution N (0, �), to each mesh vertices in the old population. m mesh
vertices with top fitness scores will remain for the next iteration, while the others will be replaced.
We iterate the process until we find a valid solution or reach a maximum number of steps.

4.3 Experiments

In this section, we first expose the vulnerability of the LiDAR-based detection system via the
evolution-based blackbox algorithm by achieving the goal of “hiding object”, because missing
obstacles can cause accidents in real life. We then show the qualitative results and quantitative
results of LiDARadv under whitebox settings. In addition, we also show that LiDARadv can achieve
another adversarial goals such as “changing label”. Moreover, the point clouds are continuously
captured in real life, so attacks in a single static frame may not have much effect in real-world
cases. Therefore, in our experiments, we generate a universal robust adversarial object against a
victim dataset which consists of different orientations and positions. We 3D-print such universal
adversarial object and conduct the real-world drive-by experiments, to show that they indeed can
pose a threat on road.
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4.3.1 Experimental Setup

Autonomous Driving Systems. We evaluate on the perception module of Baidu Apollo, an open
source autonomous driving platform.
LiDARadv Settings We initialize the adversarial object as a resampled 3D cube-shaped CAD
model using MeshLab [25]. For rendering, we implement a fully differential LiDAR simulator
with predefined laser beam ray directions extracted from a real scene captured by the Velodyne
HDL-64E sensor, as stated in § 4.2.2. It has around 2000 angles in the azimuth angle and around 60
angles in the elevation angle. We use Adam [67], and choose � as 0.003 in Eq. 4.6 using binary
search. For the evolution-based blackbox algorithm , we choose � = 0.1, n = 500 and m = 5.

4.3.2 LiDARadv under Blackbox Settings

We first evaluate the existence of the vulnerability using our evolution-based blackbox attacks,
with the goal of “hiding object”. We generate adversarial objects in different size (50cm and 75cm
in edge length). For each object, we select 45 different position and orientation pairs for evaluation,
and the results are shown in Table 4.3. The results indicate that the LiDAR-based detection system
is vulnerable. The visualization of the adversarial object is shown in Figure 4.4(a) and (c).

4.3.3 LiDARadv with Different Adversarial Goals

(a) 50cm: Evo. (b) LiDARadv (c) 75cm: Evo. (d) LiDARadv

Figure 4.4: Adversarial meshes of different sizes can fool the detectors even with more LiDAR hits.
We generate the object with LiDARadv and evolution-based method (Evo.).

After showing the vulnerability of the LiDAR-based detection system, here we focus on whitebox
settings to explore what a powerful adversary can do, since “the design of a system should not
require secrecy” [103]. Therefore, we evaluate the effectiveness of our whitebox attack LiDARadv
with the goal of “hidding object”. We also evaluate the feasibility of LiDARadv to achieve another
goal of “changing label”.
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Table 4.3: Attack success rate of LiDARadv and evolution based method under different settings.

Attacks Object size
50cm 75cm

LiDARadv 32/45 (71%) 23/45 (51%)
Evolution-based 28/45 (62%) 16/45 (36%)

Hiding object We follow the same settings as in the above sections, and Table 4.3 shows the
results. We find that LiDARadv can achieve 71% attack success rate with size 50cm. The attack
success rate is consistently higher than the evolution-based blackbox attacks. Figure 4.4 (b) and (c)
show the visualizations of the adversarial objects. We visually observe that the adversarial objects
generated by LiDARadv are smoother than that of evolution.

Table 4.4: The attack success rate of the adversarial objects generating using LiDARadv, starting
from different types of pristine meshes. The target labels are the other four labels different from the
original predictions.

Cube Sphere Tetrahedron Cylinder Overall

Attack Success Rate 100% 100% 75% 50% 75%

Changing label The result shown in Figure 4.5 and Table 4.4 indicates that we can successfully
change the label of the object. We also experiment with different initial shapes and target labels.
We select 3 pristine meshes (cuba, sphere, tetrahedron) and set the target label to the other 4 labels
except for the original label. The results are shown in Table 4.4, showing that our LiDARadv has a
high chance to trick the detector to output target labels, regardless of different pristine meshes that
it starts from.

(a) 3D mesh
(Benign) (b) Predictions (Benign)

(c) 3D Mesh
(Adv.) (d) Predictions (Adv.)

Figure 4.5: The adversarial mesh generated by LiDARadv is mis-detected as a “Pedestrian”.

48



Table 4.5: Robust Adversarial Object against different angles. The original confidence is x. Our
success rate is 100%. (Xrepresents no object detected)

Angle -10� -5� 0� 5� 10�

Objectness
(Confid.)

Model X X X X X
Apollo X X X X X

4.3.4 LiDARadv on Generating Robust Physical Adversarial Objects

To ensure the generated LiDARadv preserves adversarial behaviors under various physical
conditions, we optimize the object by sampling a set of physical transformations such as possible
positions and orientations as follows.

Before we 3D-print the object, we add additional results to evaluate the robustness of the
generated objects against different positions and different angles. By doing so, it can provide insight
into the performance of our adversarial object in real-world settings.

(a) Benign frame (b) Adv (-10� ) (c) Adv (0� ) (d) Adv (10� )

Figure 4.6: The visualization of the adversarial object with different angles. In the benign frame
(a), the system is able to detect the cube. When we replace the cube with our adversarial object,
the system fails to detect the object at all three angles. We visualize the mesh along with the point
clouds in a close-up view in (b), (c) and (d).

Different Angles We generate the adversarial objects by attacking for 9 angles simultaneously
and evaluate the attack success rate among these angles. Our approach achieves 100% attack success
rate (Table 4.5) both on our approximate model and the Apollo system. This indicates that our
designed differentiable proxy functions are accurate enough to transfer the adversarial behavior
to Apollo. Figure 4.6 shows qualitative results of the adversarial object from different close-up
views. We can observe that the adversarial example is smooth and can be easily reconstructed in the
real-world.

Different Positions Similarly, we generate a single robust adversarial object against different
positions simultaneously, as is shown in Figure 4.7. We select 9 positions and use our algorithm
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Figure 4.7: Our adversarial object can successfully attack the detection system, while placed at
different positions. The red spheres mark the locations we place the adversarial object.

Figure 4.8: The optimized robust adversarial objects from 6 principal views and a particular view,
compared with the original pristine object.

Table 4.6: Robust Adversarial Object against different positions. The original object can be detected
by Apollo. Our success rate is 100%. (Xrepresents no object detected)

Position Objectness (Confid.) Position Objectness (Confid.) Position Objectness (Confid.)
Ours Apollo Ours Apollo Ours Apollo

(-50, -50) X X (0, -50) X X (50, -50) X X
(-50, 0) X X (0, 0 ) X X (50, -50) X X
(-50, 50) X X (0, 50) X X (50, 50) X X

to generate a universal robust adversarial example against different positions. Figure 4.8 shows
7 views of the generated object from different angles, compared to the original object. This
adversarial example is smooth from all views. It shows that our approach is able to achieve the
goal while keeping the shape plausible, so we can easily print the object to perform the physical
attack. Table 4.6 show the detailed results of our adversarial object against these 9 positions: it
can successfully attack the system among these 9 positions. We show that the generated robust
adversarial object is able to achieve the attack goal of hiding the object with a high success rate in
Table 4.7. An interesting phenomenon is that some attack performance under the unseen settings is
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Table 4.7: Attack success rates of LiDARadv at different positions and orientations under both
controlled and unseen settings.

Controlled Setting Unseen Setting

Distance (cm) & Orientation (� ) Attack Distance (cm) Orientation (� )
0-50 50-100 0-5 0-10

{0,±50}⇥ {0,±2.5,±5} 91% 96% 91% 100% 90%
{0,±50}⇥ {0,±2.5,±5} 96% 96% 90% 80% 100%

(a) Adversarial object (b) Benign object

Figure 4.9: Results of physical attack. Our 3D-printed robust adversarial object by LiDARadv is
not detected by the LiDAR-based detection system in a moving car. Row 1 shows the point cloud
data collected by LiDAR sensor, and Row 2 presents the corresponding images captured by a dash
camera.

even better than that within the controlled environment. This implies that our adversarial objects are
robust enough to generalize to unseen settings.

Physical Furthermore, we evaluate the generated robust adversarial object in the physical world
by 3D printing the generated object. We 3D-print our robust adversarial object at 1:1, and drive a
real car mounted with LiDAR and dashcams. The adversarial object is put on the road, and a car
drives by, collecting scanned point clouds and the reference dashcam videos. For comparison, we
also put the benign object, which is a box of same size at the same location and follow the same
protocol when collecting the point clouds. Figure 4.10 shows our physical experiment setting.

We collect the point cloud data using a Velodyne HDL-64E sensor with a real car driving by
and evaluate the collected traces on the LiDAR perceptual module of Baidu Apollo. As shown in
Figure 4.9a, we find that the adversarial object is not detected around the target position among all
36 different frames. To compare, the box object (in Figure 4.9b) is detected in 12 frames among all
18 frames. The number of total frames is different due to the different vehicle speeds.
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(a) the road where we perform the physical experiment (b) the benign object for comparison

(c) the car used to collect the dashcam videos and the point clouds (d) our adversarial object

Figure 4.10: Our physical experiment setting. We 3D-print the generated adversarial object at 1:1,
and drive a car mounted with LiDAR and dashcams to collect the scanned point clouds and the
reference videos.

4.4 Conclusions

In this chapter, we have showed that LiDAR-based detection systems for autonomous driving
are vulnerable against adversarial attacks. By integrating our proxy differentiable approximator,
we are able to generate robust physical adversarial objects. We show that the adversarial objects
are able to attack the Baidu Apollo system at different positions with various orientations. We also
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show LiDARadv can generate a much smoother object than the evolution based attack algorithm.
Our findings raise great concerns about the security of LiDAR systems in AV, and we hope this
work will shed light on potential defense methods.
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CHAPTER 5

Detecting Adversarial Examples by Using the Property of the Learning
Model

Previous chapters have introduced the vulnerability of DNNs to adversarial examples. In the
following chapters, we discuss the defense. Here, we aim to defend against adversarial examples in
the digital space and leave the physically adversarial examples as the future work.

Given the intriguing properties of adversarial examples, various analyses for understanding
adversarial examples have been proposed [84, 85, 121, 122], and potential defense/detection
techniques have also been discussed mainly for the image classification problem [30, 53, 85]. For
instance, image pre-processing [36], adding another type of random noise to the inputs [133], and
adversarial retraining [41] have been proposed for defending/detecting adversarial examples when
classifying images. However, researchers [17, 49] have shown that these defense or detection
methods are easily attacked again by attackers with or even without knowledge of the defender’s
strategy. Such observations bring up concerns about safety problems within diverse machine
learning based systems.

In order to better understand adversarial examples against different tasks, in this chapter, we
aim to analyze adversarial examples in the semantic segmentation task instead of classification.
We hypothesize that adversarial examples in different tasks may contain unique properties that
provide in-depth understanding of such examples and encourage potential defensive mechanisms.
Different from image classification, in semantic segmentation, each pixel will be given a prediction
label which is based on its surrounding information [29]. Such spatial context information plays a
more important role for segmentation algorithms, such as [69, 76, 137, 148]. Whether adversarial
perturbation would break such spatial context is unknown to the community. In this chapter, we
propose and conduct image spatial consistency analysis, which randomly selects overlapping patches
from a given image and checks how consistent the segmentation results are for the overlapping
regions. Our pipeline of spatial consistency analysis for adversarial/benign instances is shown
in Figure 5.1. We find that in segmentation task, adversarial perturbations can be weakened for
separately selected patches, and therefore adversarial and benign images will show very different
behaviors in terms of the spatial consistency information. Moreover, since such spatial consistency
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is highly random, it is hard for adversaries to take such constraints into account when performing
adaptive attacks. This renders the system less brittle even facing the sophisticated adversaries, who
have full knowledge about the model as well as the detection/defense method applied..

We use image scale transformation to perform detection of adversarial examples as a baseline,
which has been used for detection in classification tasks [111]. We show that by randomly scaling
the images, adversarial perturbation can be destroyed and therefore adversarial examples can be
detected. However, when the attacker knows the detection strategy (adaptive attacker), even without
the exact knowledge about the scaling rate, attacker can still perform adaptive attacks against the
detection mechanism, which is similar to the findings in classification tasks [17]. On the other hand,
we show that by incorporating spatial consistency check, existing semantic segmentation networks
can detect adversarial examples (average AUC 100%), which are generated by the state-of-the-art
attacks considered in this chapter, regardless of whether the adversary knows the detection method.
Here, we allow the adversaries to have full access to the model and any detection method applied to
analyze the robustness of the model against adaptive attacks. We additionally analyze the defense in
a black-box setting, which is more practical in real-world systems.

mIOU

mIOUmIOU

Random Patch Selection Spatial Consistency

Figure 5.1: Spatial consistency analysis for adversarial and benign instances in semantic segmenta-
tion.

5.1 Spatial Consistency Based Method

In this section, we will explore the effects that spatial context information has on benign and
adversarial examples in segmentation models. We conduct different experiments based on various
models and datasets, and due to the space limitation, we will use a small set of examples to
demonstrate our discoveries and relegate other examples to the appendix. Figure 5.2 shows the
benign and adversarial examples targeting diverse adversarial targets: “Hello Kitty” (Kitty) and
random pure color (Pure) on Cityscapes; and “Hello Kitty” (Kitty) and a real scene without any
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(a) Cityscapes (b) BDD

Figure 5.2: Samples of benign and adversarial examples generated by Houdini on Cityscapes
(targeting on Kitty/Pure) and BDD100K (targeting on Kitty/Scene). We select DRN as our target
model here. Within each subfigure, the first column shows benign images and corresponding
segmentation results, and the second and third columns show adversarial examples with different
adversarial targets.

cars (Scene) on BDD video dataset, respectively. In the rest of the chapter, we will use the format
“attack method — target” to label each adversarial example. Here we consider both DAG [132] and
Houdini [27] attack methods.

(a) Benign example (b) Heatmap of benign image

(c) DAG — Kitty (d) DAG — Pure (e) Houdini — Kitty (f) Houdini — Pure

Figure 5.3: Heatmap of per-pixel self-entropy on Cityscapes dataset against DRN model. (a) and
(b) show a benign image and its corresponding per-pixel self-entropy heatmap. (c)-(f) show the
heatmaps of the adversarial examples generated by DAG and Houdini attacks targeting “Hello Kitty”
(Kitty) and random pure color (Pure).

5.1.1 Spatial Context Analysis

To quantitatively analyze the contribution of spatial context information to the segmentation
task, we first evaluate the entropy of prediction based on different spatial contexts. For each pixel
m within an image, we randomly select K patches {P1, P2, ..., PK} which contain m. Afterward,
within each patch Pi, the pixel m will be assigned with a confidence vector based on Softmax
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Figure 5.4: Examples of spatial consistency based method on adversarial examples generated by
DAG and Houdini attacks targeting on Kitty and Pure. First column shows the original image and
corresponding segmentation results. Column P1 and P2 show two randomly selected patches, while
column O1 and O2 represent the segmentation results of the overlapping regions from these two
patches, respectively. The mIOU between O1 and O2 are reported. It is clear that the segmentation
results of the overlapping regions from two random patches are very different for adversarial images
(low mIOU), but relatively consistent for benign instance (high mIOU).

prediction, so pixel m will correspond to K vectors in total. We discretize each vector to a one-hot
vector and sum up these K one-hot vectors to obtain vector Vm. Each component Vm[j] of the
vector represents the number of times pixel m is predicted to be class j. We then normalize Vm by
dividing K. Finally, for each pixel m, we calculate its self-entropy

H(m) = �
X

j

Vm[j] logVm[j]

and therefore calculate the self entropy for each vector. We utilize such entropy information of each
pixel to convey the consistency of different surrounding patches and plot this information in the
heatmaps in Figure 5.3. It is clear that for benign instances, the boundaries of original objects have
higher entropy, indicating that these are places harder to predict and can gain more information by
considering different surrounding spatial context information.

5.1.2 Patch Based Spatial Consistency

The fact that surrounding spatial context information shows different spatial consistency be-
haviors for benign and adversarial examples motivates us to perform the spatial consistency check
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hoping to potentially tell these two data distributions apart.
First, we introduce how to generate overlapping spatial contexts by selecting random patches

and then validate the spatial consistency information. Let s be the patch size and w, h be the
width and height of an image x. We define the first and second patch based on the coordinates of
their top-left and bottom-right vertices (u1, u2, u3, u4), (v1, v2, v3, v4), where Let (du1,v1 , du2,v2) be
displacement between the top-left coordinate of the first and second patch: du1,v1 = v1�u1, du2,v2 =

v2 � u2. To guarantee that there is enough overlap, we require (du1,v1 and du2,v2) to be in the
range (blow, bupper). Here we randomly select the two patches, aiming to capture diverse enough
surrounding spatial context, including information both near and far from the target pixel. The
patch selection algorithm (getOverlapPatches) is shown in Algo 1.

Algorithm 1: Patch Selection Algorithm (getOverlapPatches)
input :patch size s

image width w
image height h
bound blow, bupper

output :Two random patches P1 and P2: (u1, u2, u3, u4), (v1, v2, v3, v4)
1 Generate two random integer numbers I1, I2, where

0 < I1 < w � s� bupper, 0 < I2 < h� s� bupper. ;
2 Generate two random integer numbers I3, I4, where blow < I3, I4 < bupper. ;

Return: (I1, I2, I1 + s, I2 + s), (I1 + I3, I2 + I4, I1 + I3 + s, I2 + I4 + s)

Next we show how to apply the spatial consistency based method to a given input and therefore
recognize adversarial examples. The detailed algorithm is shown in Algorithm 2. Here K denotes
the number of overlapping regions for which we will check the spatial consistency. We use the mean
Intersection Over Union (mIOU) between the overlapping regions O1, O2 from two patches P1, P2

to measure their spatial consistency. The mIOU is defined as 1
ncls

P
i
nii/(

P
j
nij +

P
j
nji � nii),

where nij denotes the number of pixels predicted to be class i in O1 and class j in O2, and ncls is the
number of the unique classes appearing in both O1 and O2. getmIOU is a function that computes
the mIOU given patches P1, P2 along with their overlapping regions O1 and O2.

5.2 Scale Consistency Analysis

We have discussed how spatial consistency can be utilized to potentially characterize adversarial
examples in segmentation task. In this section, we will discuss another baseline method: image
scale transformation, which is another natural factor considered in semantic segmentation [62,
81]. Here we focus on image blur operation by applying Gaussian blur to given images [19],
which is studied for detecting adversarial examples in image classification [111]. Similarly, we
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Algorithm 2: Spatial Consistency Check Algorithm
input: Input image x;

number of overlapping regions K;
patch size s;
segmentation model f ;
bound blow, bupper;

output: Spatial consistency threshold c;

Initialization : cs [], w  x.width, h x.height;
1 for k  0 to K do
2 (u1, u2, u3, u4), (v1, v2, v3, v4) getOverlapPatches(s, w, h, blow, bupper);
3 P1 = X[u1 : u3, u2 : u4], P2 = X[v1 : v3, v3 : v4];

/* get prediction result of two random patches from f */;
4 pred1

 argmax
c
fc(P1), pred2

 argmax
c
fc(P2);

/* get prediction of the overlap area between two patches
*/;

5 p1  {pred1
i,j
|8(i, j) 2 pred1, i > v1 � u1, j > v2 � u2};

6 p2  {pred2
i,j
|8(i, j) 2 pred2, i < s� (v1 � u1), j < s� (v2 � u2)};

/* get consistency value (mIOU) from two patches */;
7 cs

+
 getmIOU(p1, p2);

8 end
9 c Mean(cs);

Return: c

will analyze the effects of image scaling on benign/adversarial samples. Since spatial context
information is important for segmentation task, scaling or performing segmentation on small
patches may damage the global information and therefore affect the final prediction. Here we aim
to provide quantitative results to understand and explore how image scale transformation would
affect adversarial perturbation.

5.2.1 Scale Consistency Property

Scale theory is commonly applied in image segmentation task [101], and therefore we train scale
resilient models to obtain robust ones, which we perform attacks against. On these scale resilient
models, we first analyze how image scaling affect segmentation results for benign/adversarial
samples. We applied the DAG [132] and Houdili [27] attacks against the DRN and DLA models
with different adversarial targets. The images and corresponding segmentation results before and
after scaling are shown in Figure 5.5. We apply Gaussian kernel with different standard deviations
(std) to scale both benign and adversarial instances. It is clear that when we apply Gaussian blurring
with higher std (3 and 5), adversarial perturbation is harmed and the segmentation results are not
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longer adversarial targets for scale transformed adversarial examples as shown in Figure 5.5 (a)-(e).

(a) Benign example

(b) DAG — Kitty (c) DAG — Pure

(d) Houdini — Kitty (e) Houdini — Pure

Figure 5.5: Examples of images and corresponding segmentation results before/after image scaling
on Cityscapes against DRN model. For each subfigure, the first column shows benign/adversarial
image, while the later columns represent images after scaling by applying Gaussian kernel with
std as 0.5, 3, and 5, respectively. (a) shows benign images before/after image scaling and the
corresponding segmentation results; (b)-(e) present similar results for adversarial images generated
by DAG and Houdini attacks targeting on Kitty and Pure.

5.3 Experimental Results

In this section, we conduct comprehensive large scale experiments to evaluate the image spatial
and scale consistency information for benign and adversarial examples generated by different attack
methods. We will also show that the spatial consistency based detection method is robust against
sophisticated adversaries with knowledge about defenders, while scale transformation method is
not.

5.3.1 Implementation Details

Datasets. We apply both Cityscapes [28] and BDD100K [140] in our evaluation. We show results
on the validation set of both datasets, which contains 500 high resolution images with a combined
19 categories of segmentation labels. These two datasets are both outdoor datasets containing

60



instance-level annotations, which would raise real-wold safety concerns if they were attacked.
Comparing with other datasets such as Pascal VOC [37] and CamVid [12], these two dataset are
more challenging due to the relatively high resolution and diverse scenes within each image.

Semantic Segmentation Models. We apply Dilated residual networks (DRN) [138] and Deep
Layer Aggregation (DLA) [139] as our target models. More specifically, we select DRN-D-22
and DLA-34. For both models, we use 512 crop size and 2 random scale during training to obtain
scale resilient models for both the BDD and Cityscapes datasets. The mIOU of these two models
on pristine training data are shown in Table 5.1. More result on different models can be found in
appendix.

Adversarial Examples We generate adversarial examples based on two state-of-the-art attack
methods: DAG [132] and Houdini [27] using our own implementation of the methods. We select
a complex image, Hello Kitty (Kitty), with different background colors and a random pure color
(Pure) as our targets on Cityscapes dataset. Furthermore, in order to increase the diversity, we
also select a real-world driving scene (Scene) without any cars from the BDD training dataset as
another malicious target on BDD. Such attacks potentially show that every image taken in the
real world can be attacked to the same scene without any car showing on the road, which raises
great security concerns for future autonomous driving systems. Furthermore, we also add three
additional adversarial targets, including “ECCV 2018”, “Remapping”, and “Color strip” in appendix
to increase the diversity of adversarial targets.

We generate 500 adversarial examples for Cityscapes and BDD100K datasets against both DRN
and DLA segmentation models targeting on various malicious targets (More results can be found in
appendix).

5.3.2 Spatial Consistency Analysis

To evaluate the spatial consistency analysis quantitatively for segmentation task, we leverage
it to build up a simple detector to demonstrate its property. Here we perform patch based spatial
consistency analysis, and we select patch size and region bound as s = 512, blow = 32, bupper = 64.
We select the number of overlapping regions as K 2 {1, 5, 10, 50}. Here we first select some benign
instances, and calculate the normalize mIOU of overlapping regions from two random patches.
We record the lower bound of theses mIOU as the threshold of the detection method. Note that
when reporting detection rate in the rest of the chapter, we will use the threshold learned from a
set of benign training data; while we also report Area Under Curve (AUC) of Receiver Operating
Characteristic Curve (ROC) curve of a detection method to evaluate its overall performance.
Therefore, given an image, for each overlapping region of two random patches, we will calculate
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the normalize mIOU and compare with the threshold calculated before. If it is larger, the image is
recognized as benign; vice versa. This process is illustrated in Algorithm 2. We report the detection
results in terms of AUC in Table 5.1 for adversarial examples generated in various settings as
mentioned above. We observed that such simple detection method based on spatial consistency
information can achieve AUC as nearly 100% for adversarial examples that we studied here. In
addition, we also select s with a random number between 384 to 512 (too small patch size will
affect the segmentation accuracy even on benign instances, so we tend not to choose small patches
on the purpose of control variable) and show the result in appendix. We observe that random patch
sizes achieve similar detection result.

Method Model mIOU
Detection Detection Adap

DAG Houdini DAG Houdini
Pure Kitty Pure Kitty Pure Kitty Pure Kitty

Scale
(std)

0.5
DRN

(16.4M) 66.7
100% 95% 100% 99% 100% 67% 100% 78%

3.0 100% 100% 100% 100% 100% 0% 97% 0%
5.0 100% 100% 100% 100% 100% 0% 71% 0%

0.5
DLA

(18.1M) 74.5
100% 98% 100% 100% 100% 75% 100% 81%

3.0 100% 100% 100% 100% 100% 24% 100% 34%
5.0 100% 100% 100% 100% 97% 0% 95% 0%

Spatial
(K)

1
DRN

(16.4M) 66.7

91% 91% 94% 92% 98% 94% 92% 94%
5 100% 100% 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100% 100% 100% 100%

1
DLA

(18.1M) 74.5

96% 98% 97% 97% 99% 99% 100% 100%
5 100% 100% 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.1: Detection results (AUC) of image spatial (Spatial) and scale consistency (Scale) based methods
on Cityscapes dataset. The number in parentheses of the Model shows the number of parameters for the
target mode, and mIOU shows the performance of segmentation model on pristine data. We color all the
AUC less than 80% with red.

5.3.3 Image Scale Analysis

As a baseline, we also utilize image scale information to perform as a simple detection method
and compare it with the spatial consistency based method. We apply Gaussian kernel to perform
the image scaling based detection, and select stddetect 2 {0.5, 3, 5} as the standard deviation
of Gaussian kernel. We compute the normalize mIOU between the original and scalled images.
Similarly, the detection results of corresponding AUC are shown in Table 5.1. It is demonstrated

62



that detection method based on image scale information can achieve similarly high AUC compared
with spatial consistency based method.

5.3.4 Adaptive Attack Evaluation

(a) Image scaling (b) Convergence analysis (c) spatial consistency

Figure 5.6: Performance of adaptive attack. (a) shows adversarial image and corresponding
segmentation result for adaptive attack against image scaling. The first two rows show benign
images and the corresponding segmentation results; the last two rows show the adaptive adversarial
images and corresponding segmentation results under different std of Gaussian kernel (0.5, 3, 5 for
column 2-4). (b) and (c) show the performance of adaptive attack against spatial consistency based
method with different K. (b) presents mIOU of overlapping regions for benign and adversarial
images during along different iterations. (c) shows mIOU for overlapping regions of benign and
adversarial instances at iteration 200.

Regarding the above detection analysis, it is important to evaluate adaptive attacks, where
adversaries have knowledge of the detection strategy.

As Carlini & Wagner suggest [17], we conduct attacks with full access to the detection model to
evaluate the adaptive adversary based on Kerckhoffs principle [103]. To perform adaptive attack
against the image scaling detection mechanism, instead of attacking the original model, we add
another convolutional layer after the input layer of the target model similarly with [17]. We select std
2 {0.5, 3, 5} to apply adaptive attack, which is the same with the detection model. To guarantee that
the attack methods will converge, when performing the adaptive attacks, we select 0.06 for the upper
bound for adversarial perturbation, in terms of L2 distance (pixel values are in range [0,1]), since
larger than that the perturbation is already very visible. The detection results against such adaptive
attacks are shown in Table 5.1 on Cityscapes (We omit the results on BDD to appendix). Results on
adaptive attack show that the image scale based detection method is easily to be attacked (AUC of
detection drops dramatically), which draws similar conclusions as in classification task [17]. We
show the qualitative results in Figure 5.6 (a), and it is obvious that even under large std of Gaussian
kernel, the adversarial example can still be fooled into the malicious target (Kitty).

Next, we will apply adaptive attack against the spatial consistency based method. Due to the
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(a) Kitty (b) Pure

Figure 5.7: Detection performance of spatial consistency based method against adaptive attack with
different K on Cityscapes with DRN model. X-axis indicates the number of patches selected to
perform the adaptive attack (0 means regular attack). Y-axis indicates the number of overlapping
regions selected for during detection.

randomness of the approach, we propose to develop a strong adaptive adversary that we can think of
by randomly select K patches (the same value of K used by defender). Then the adversary will try
to attack both the whole image and the selected K patches to the corresponding part of malicious
target. The detailed attack algorithm is shown in the supplementry materials. The corresponding
detection results of the spatial consistency based method against such adaptive attacks on Cityscapes
are shown in Table 5.1. It is interesting to see that even against such strong adaptive attacks, the
spatial consistency based method can still achieve nearly 100% detection results. We hypothesize
that it is because of the high dimension randomness induced by the spatial consistency based
method since the search space for patches and the overlapping regions is pretty high. Figure 5.6 (b)
analyzes the convergence of such adaptive attack against spatial consistency based method. From
figure 5.6 (b) and (c), we can see that with different K, the selected overlapping regions still remain
inconsistent with high probability.

Since the spatial consistency based method can induce large randomness, we generate a confu-
sion matrix of detection results for adversaries and detection method choosing various K as shown
in Figure 5.7. It is clear that for different malicious targets and attack methods, choosing K = 50 is
already sufficient to detect sophisticated attacks. In addition, based on our empirical observation,
attacking with higher K increases the computation complexity of adversaries dramatically.

5.3.5 Transferability Analysis

Given the common properties of adversarial examples for both classifier and segmentation
tasks, next we will analyze whether transferability of adversarial examples exists in segmentation
models considering they are particularly sensitive to spatial and scale information. Transferability is
demonstrated to be one of the most interesting properties of adversarial examples in classification
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(a) DAG (b) Houdini

Figure 5.8: Transferability analysis: cell (i, j) shows the normalized mIoU value or pixel-wise
attack success rate of adversarial examples generated against model j and evaluate on model i.
Model A,B,C are DRN (DRN-D-22) with different initialization. We select “Hello Kitty” as target

task, where adversarial examples generated against one model is able to mislead the other model,
even if the two models are of different architectures. Given this property, transferability has become
the foundation of a lot of black-box attacks in classification task. Here we aim to analyze whether
adversarial examples in segmentation task still retain high transferability. First, we train three DRN
models with the same architecture (DRN-D-22) but different initialization and generate adversarial
images with the same target.

Each adversarial image has at least 96% pixel-wise attack success rate against the original model.
We evaluate both the DAG and Houdini attacks and evaluate the transferability using normalized
mIoU excluding pixels with the same label for the ground truth adversarial target. We show the
transferability evaluation among different models in the confusion matrices in Figure 5.81. We
observe that the transferability rarely appears in the segmentation task. More results on different
network architectures and data sets are in the appendix.

As comparison with classification task, for each network architecture we train a classifier on
it and evaluate the transferability results as shown in appendix. As a control experiments, we
observe that classifiers with the same architecture still have high transferability aligned with existing
findings, which shows that the low transferability is indeed due to the natural of segmentation
instead of certain network architectures.

This observation here is quite interesting, which indicates that black-box attacks against seg-
mentation models may be more challenging. Furthermore, the reason for such low transferability in
segmentation is possibly because adversarial perturbation added to one image could have focused
on a certain region, while such spatial context information is captured differently among different

1Since the prediction of certain classes presents low IoU value due to imperfect segmentation, we eliminate K
classes with the lowest IoU values to avoid side effects. In our experiments, we set K to be 13.
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models. We plan to analyze the actual reason for low transferability in segmentation in the future
work.

5.4 Conclusions

Adversarial examples have been heavily studied recently, pointing out vulnerabilities of deep
neural networks and raising a lot of security concerns. However, most of such studies are focusing
on image classification problems, and in this chapter we aim to explore the spatial context informa-
tion used in semantic segmentation task to better understand adversarial examples in segmentation
scenarios. We propose to apply spatial consistency information analysis to recognize adversarial
examples in segmentation, which has not been considered in either image classification or segmen-
tation as a potential detection mechanism. We show that such spatial consistency information is
different for adversarial and benign instances and can be potentially leveraged to detect adversarial
examples even when facing strong adaptive attackers. These observations open a wide door for
future research to explore diverse properties of adversarial examples under various scenarios and
develop new attacks to understand the vulnerabilities of DNNs.
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CHAPTER 6

Detecting Adversarial Examples by Using the Property of the Data

In this chapter, we show how to leverage properties of the data type to detect adversarial
examples.

While currently most research on adversarial examples focuses on static images, DNNs on
videos is a particularly interesting and important domain, as attacks against many applications have
the potential to cause serious physical and financial damage. For example, one application of DNNs
video is in autonomous vehicles; DNNs are used to identify other cars, road markings, street signs,
and pedestrians. An adversarial attack forcing a network to classify a stop sign as a speed limit sign
could easily cause a crash. Recently Wei et.al [120] proposed an adversarial attack targeting on
action recognition task in videos which again emphasizes the vulnerabilities of learners for videos.

Several defense or detection methods have been proposed on static images but most of them
are defeated by adaptive attacks [6, 17, 84, 85]. As a result, directly applying existing defenses
on static images to videos is not robust nor efficient considering the high requirements for video
processing. While the general defense approach is hard, leveraging special properties of data source
(e.g. videos) and enhancing model robustness is possible.

In this chapter, we introduce AdvIT : the adversarial frame identifier for videos by leveraging
the temporal consistency of the video. In particular, we allow the attacker to have white-box access
to the target DNNs and add adversarial perturbation to one or more frames. Here we consider
two types of attacks: independent frame attack which adds adversarial perturbation to selected
frames independently (e.g. Houdini and DAG [27, 132]); and temporal continuity attack which
generates perturbation considering the continuity among video frames (e.g. sparse and universal
attack [120]). Our temporal consistency-based detection framework AdvIT is shown in Fig. 6.1.
Given a target frame within a video, we first estimate the optical flows between the target xt and its
previous frames (xt�1, · · · , xt�k). We then fuzz the estimated optical flows with small randomness
↵ ⇠ N (0, �2) and transform the previous frames as “pseudo frames” and check the consistency
between the outputs of learning tasks based on the pseudo frames and the original target. We find
that the frame transformation described above preserves the temporal consistency of learning results
if the target frame is benign, while weakens the pseudo frames’ adversarial behaviour if the target
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frame is adversarial. This process is independent with the fact that whether the previous frames
are adversarial or not. Therefore, we can leverage the prediction results of the pseudo frame as a
reference and check its consistency to detect if the target frame is adversarial.

To demonstrate the effectiveness of AdvIT , we test our approach on four major video based
tasks including semantics segmentation, human pose estimation, object detection and action recog-
nition. Different state of the art attack approaches including Houdini, DAG, Sparse adversarial
perturbation [27, 120, 132] are evaluated. We show that our approach can detect adversarial frames
with above 95% detection rate. We also show that because of the large sample space of randomness
added to the optical flow, even attacks that are aware of our detector would be unfeasible. As
shown in the experimental section, our detection pipeline remains robust even under the proposed
strategic adaptive attacks. We perform transferability analysis for different optical flow estimators
and demonstrate that it is hard to transfer perturbation generated against one estimator to another. In
addition, we analyze the performance of the optical flow estimator and conclude that our approach
does not require an accurate estimator to achieve a high detection rate.

Our detection approach has several advantages compared to existing approaches: 1) we do not
require time-consuming retraining of machine learning models as most of the existing defenses [85,
112]; 2) our detector does not compromise the performance of the learning tasks; 3) due to the
randomness injected, it is hard to perform adaptive attacks against the detection method; 4) we do
not require the optical flow estimation to be differentiable, which ensures its wide application;

Figure 6.1: Pipeline of the proposed temporal consistency based adversarial frame identifier: AdvIT
.
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6.1 Adversarial frame identifier via temporal consistency: AdvIT

In this section, we first formally define the problem. Then, we provide an overview of the
proposed approach advIT, and discuss each step in detail.

Formally, we define the problem as follows: Let x1, . . . , xt be the sequence of image frames
of a (streaming) video, and xt is the target frame. Let g be a learner with output g(xt) = yt. In
this context, the attacker can inject small perturbation (i.e., xi  xi + ✏i) to one or more frames
to achieve g(xt) = y⇤ where y⇤ is the adversarial target depending on the learning task. Our goal
is to determine whether the target frame xt is adversarial without any other knowledge except for
the previous k frames xt�k, . . . , xt�1, and it is not clear whether the previous k frame are benign or
adversarial.

Threat Model In this work, we mainly focus on two types of frame based adversarial attacks:
independent frame attack and temporal continuity attack, both of which aim to add perturbation to
one or more frames and therefore mislead the target learner. We believe such frame based attack
could lead to severe consequences given the fact that frame based approaches are the most effective
and commonly used ones in videos [14, 98].

In particular, independent frame attack includes Houdini [27] and DAG [132] attacks for video
segmentation, object detection and human pose estimation tasks; and temporal continuity attack
includes Sparse attack [120] on action recognition and Universal perturbation [92] on the previous
three tasks.

To avoid trivial detection, an adversary needs to constraint the magnitude of the perturbation.
Our goal is to detect adversarial examples generated by previous attacks, which is Lp-based attacks.
Without loss of generality, we use l2 to bound the added perturbation. Some video attack examples
for the considered four learning tasks are shown in Fig 6.2 and Fig 6.3.

Figure 6.2: Benign and adversarial frames generated on Cityscapes and Davis Challenge 17 dataset
for video segmentation and human pose estimation respectively.
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Figure 6.3: Benign and adversarial frames generated on MPII and UCF-101 for video object
detection and action recognition respectively.
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Figure 6.4: Benign and adversarial frames generated on MPII and UCF-101 for action recognition.

6.1.1 Overview of Method

Our detection algorithm is based on temporal consistency of videos. Since the next frame in
the video is the continuation of the objects and the scene after their small movements, they can
be mostly reconstructed from the current frame if we can compute such movements. Due to this
continuity, we should have consistent learning outputs from neighbor frames [55]. However, this
may not be true when the next frame contains adversarial perturbation which may interrupt such
property.

We call the reconstructed frame as a “pseudo frame”, and can validate the learning output
temporal consistency by comparing the output of the to-be-verified target frame and the pseudo
frame. Specifically, we observe the following properties regarding the validation of the temporal
consistency with the pseudo frame. First, since adversarial perturbation is very specific to the frame,
a newly reconstructed pseudo frame is much less affected by the adversarial perturbation. Its output
is very close to that of a benign frame. Second, adversarial perturbation in the target frame breaks
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the output temporal continuity compared to the output of the pseudo frame. Thus, if the target frame
is adversarial, we can observe that the temporal consistency of the output does not hold.

Based on this observation, we propose the adversarial frame detection framework that tests
temporal consistency of the outputs as shown in Fig 6.1. First, we generate pseudo frames based on
each of the k previous frames (xt�k · · · xt�1) by estimating optical flow (OF ) from each to the target
frame Xt, and adding certain random transformation ↵ ⇠ N (0, �2). Then, we run the learner (e.g.
segmenter) on the pseudo frames and the target frame to get prediction results. Finally, we compare
their results to test if the temporal consistency is satisfied. Note that our method is independent
of the adversarial behaviour of the previous frames: they can either be adversarial or benign. The
bottom-right box in Fig. 6.1 shows the four scenarios. Next, we will introduce the two components
of the proposed method in detail: (1) Pseudo frame generation; (2) temporal consistency based test.

Pseudo Frame Generation We combine two types of transformations to generate the pseudo
frames: optical flow and random transformation. First, optical flow is a transformation caused by
movements of the viewer or the objects in the scene. This technique is able to reconstruct subsequent
frames and is the basis of a number of video codecs, such as MPEG-2 [47]. Machine learning models
have also successfully been trained to generate the vector field V when trained on videos [33, 55].
In particular, optical flow has been applied to estimate the instantaneous 2D velocity of visible
surface points from time-varying image signal. Traditional optical flow estimation methods usually
involve solving optimization problems based on assumptions of consistency, smoothness of intensity,
and gradients [78].

An optical flow estimator is a function F which generates a vector field V indicating the
direction and distance to move pixels within an image. Deep-learning-based optical flow estimation
models have been widely studied on different video tasks. Dosovitskiy et.al [33] firstly applied deep
neural network to estimate the optical flow. Here we leverage the DNNs based optical flow [55]
to characterize the continuity among video frames. Given two temporally close frames, we can
quantify the motion using an optical flow estimation algorithm. By applying the optical flow to the
first input frame, we can reconstruct the second one.

Formally, let xs and xt be a pair of temporally close frames in a video. An optical flow between
the two frames is a vector field OF = (�u,�v) that describes the displacement of pixels between
the frames and we denote an image generated by applying flow as x̂s!t. The goal of an optical flow
algorithm is to minimize the error of the generated image x̂s!t and the actual frame xt. We obtain
x̂s!t by sampling pixel intensities from xs; the pixel in x̂s!t at location (i, j) corresponds to the
pixel at location (u, v) = (i+�u(i, j), j+�v(i, j)) in image xs. As (�u,�v) can be fractional
numbers and (u, v) does not necessarily lie on the integer coordinate grid, the pixel intensity can be
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sampled via bilinear sampling.

x̂s!t(i, j) =
X

(i0 ,j0 )2N(u,v)

xs(i
0, j0)(1� |u� i0|)(1� |v � j0|) (6.1)

where N(u, v) stands for the indices of the 4-pixel neighbors at location (u, v) (top-left, top-right,
bottom-left, bottom-right). x·(i, j) represents the pixel value at location (i, j).

To further combat the creation of adversarial perturbation, we add randomness ↵ ⇠ N (0, �2)

to the flow field (�u,�v) to generate the pseudo frames. This randomness can also help make
adaptive attacks harder, where an adversary has full knowledge about the detection.

Algorithm 3: Temporal Consistency Based Test
input: target frame in a videoxt;

previous K frames of xt: xt�k, . . . , xt�1;
optical flow estimation model flow;
machine learning model g;
consistency evaluation function f ;

output: Continuity metric c;

Initialization : cs [], w  x.width, h x.height, yt  g(xt);
1 for s t� 1 to t� k do
2 (�u,�v) flow(xs, xt);

/* add randomness to optimal flow */;
3 (�ũ,�ṽ) (�u,�v) +↵;

/* generate pseudo frame xT�k */;
4 X̂s!t  warp((�ũ,�ṽ), xs);
5 Ŷs!t  g(X̂s!t);

/* measure consistency information */;
6 cs

+
 f(Ŷs!t, yt);

7 end
8 c Mean(cs);

Return: c

Temporal Consistency based Test To quantitatively demonstrate the difference of temporal
consistency between adversarial and benign cases, we first use semantic segmentation as an example
here to illustrate our findings. Suppose given k+1 consecutive frames from video, xt�k, . . . , xt�1, xt,
we estimate the OF between each of the previous k frames xs and xt, where s = t � k, ..., t � 1.
Next, we add randomness ↵ to each OF to reconstruct pseudo frame X̂s!t from xs. These pseudo
frames and xt are then sent as input to learning model g. We normalize the output of g by the
softmax function so that the prediction of every pixel is a vector indicating the probability of the
pixel belonging to every class. The prediction results of the learning models are denoted by Ŷ d

s!t
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(a) Benign frame (b) Heatmap of a benign frame

(c) ICCV (d) Stripe (e) Remapping

Figure 6.5: Heatmap of per-pixel cross-entropy. (a) and (b) show a benign frame and the correspond-
ing per-pixel cross entropy between the prediction of its pseudo frames and itself. The rest show
similar per-pixel cross entropy for adversarial frames with different targets. The labels indicate their
adversarial targets.

and Y d
t

respectively. We compute the average for the prediction vectors of k pseudo frames,
S = 1

k

P
t�1
s=t�k

Ŷ d
s!t

, and we use S(i, j)[m] to indicate the averaged probability of pixel (i, j) being
predicted to be class m in pseudo frames. Based on the k pseudo frames, we calculate the cross
entropy E between S and yt as

E =
X

m

�yd
t
[m] � logS[m]

where � denotes Hadamard product. We visualize the cross entropy E in Fig. 6.5: Fig. 6.5c to
Fig. 6.5e show the heatmaps of cross entropy when Xt is adversarial examples with different
attack targets, while Fig. 6.5b shows the heatmap of cross entropy when Xt is benign. It is clear
that for the benign instance, the prediction results for most pixels are consistent except for small
regions around the boundaries of the objects; while for the adversarial targets, most of the pixels
show inconsistent prediction results. We also observe that whether xt�k, . . . , xt�1 are benign or
adversarial has little impact on the prediction consistency for Xt.

AdvIT Based on such observation, we proposed leveraging the temporal consistency information
to distinguish adversarial frames in videos and provide the following detailed algorithm. Without
loss of generality, we assume xt is a current frame and our goal is to detect whether the current
frame xt is adversarial. Given an optical flow model, we denote the optical flow between previous
frame xs and xt by OF = (�u,�v)s!t. Randomness ↵ is added to the optical flow (�u,�v)s!t
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Figure 6.6: Examples of consistency measurement based on AdvIT for various video tasks.
The first column indicates previous Frames. The second column indicates the current frame
and corresponding prediction result. The last column indicates a sampled pseudo frame and
corresponding prediction. The consistency metric C shows quantitative results for different learning
tasks. Note that higher C for segmentation and object detection means higher consistency, while
lower C indicates more consistent for Human pose estimation since it is based on L2 distance.

to get new optical flow (�ũ,�ṽ)s!t where (�ũ,�ṽ)s!t = (u,v)s!t + ↵u,v. After obtaining
(�ũ,�ṽ)s!t for s = t� k, ..., t� 1, we generate the pseudo frames X̂s!t. We then calculate the
consistency metric c between yt = g(xt) and ys!t = g(X̂s!t) respectively with a scalar consistency
function f to determine whether xt is an adversarial frame or not, where c = 1

k

P
t�1
s=t�k

f(ys!t, yt).
The algorithm of this temporal continuity based method is shown in Algorithm 3, where warp is
achieved via bilinear sampling as defined in Eq. 6.1.

We adopt different consistency measurement functions f for various learning tasks: (1) Segmen-
tation: Pixel-wise accuracy1. (2) Human Pose Estimation: Average L2 distance over all key joints.
Note that, high distance indicates low consistency. (3) Object Detection: mIoU between bounding
boxes of pseudo frames and the current frame. (4) Action Recognition: the average of forward

1Pixel-wise accuracy and mIoU provide similar results and the former is much more computationally efficient.
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and backward KL divergence between the two categorical distributions. The detailed algorithm to
calculate the mIoU is shown in appendix.

Fig. 6.6 shows the examples of our detection method. We can observe that the inconsistency
between the target frame and corresponding pseudo frames is high for an adversarial frame and low
for benign, and this conclusion holds for various learning tasks on video.

6.2 Experimental Results

In this section, we present experimental results on detecting adversarial frames with AdvIT
against different attacks for four learning tasks on videos, including video semantic segmentation,
human pose estimation, object detection, and action recognition. We show that our adversarial
frame detection method is robust even under a strong adaptive attack where the adversary has perfect
knowledge of the learning model and detection mechanism.

6.2.1 Implementation Details

Semantic segmentation For the semantic segmentation task, we use CityScapes dataset which
consists of high-resolution (1024x2048) outdoor videos captured from a moving car. Attacks against
the CityScapes dataset pose a realistic threat to recognition models in real-world applications, in
particular autonomous driving. We adopt the state-of-the-art Dilated Residual Network [138] model
with DRN-D-22 architecture which is trained on the CityScapes dataset. The mean Intersection
Over Union (mIoU) of this model on pristine data is 66.7. We demonstrate our results on video
clips from the same dataset, each consisting of 100 high-resolution frames shot at a frame rate of
17Hz. We evaluate over three different adversarial targets: “Remapping”, “Stripe”, and “ICCV
2019”. The details of these targets are shown in appendix. We generate adversarial frames based
on two state-of-the-art attack methods: Houdini [27] and DAG [132]. Each attack was run with
a maximum perturbation of l2 = 0.03 with input frames scaled from [0, 1] until 98% pixel-wise
accuracy of the target was achieved. We select � = 0.002 for detection.

Human Pose Estimation In the human pose estimation task, we attack the Stacked Hourglass
Network model [94] trained on MPII human pose dataset [4]. The two-stack model we use is
pretrained on the MPII dataset [4] and achieved a mean PCHk score of 86.95 on the MPII validation
dataset at the threshold of 0.5. We attacked 3 clips of video data from the MPII human pose
estimation dataset and YouTube [2] using the Houdini algorithm which is the current the-state-of-
art. The attack targets we choose are “Transpose” and “Shuffle”. “Transpose” means transposing
coordinates of benign image predictions. “Shuffle” means shuffling the joints of the pose predictions.
We select � = 0.02 during detection.
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Object Detection We use YOLOv3 [98] as our target model for the object detection task. We
select two video clips randomly from DAVIS Challenge 17 dataset [1] to perform attacks on. We
select two targets for simplicity: “All” and “Person”. “All” means removing all of the bounding
boxes in the images while “Person” means removing only the bounding boxes of persons in images.
Such attacks potentially show that every image taken in the real surveillance system can be attacked
to the scene without any object or without any person which brings severe security concerns for
current surveillance systems based on object detection algorithms. We use DAG algorithm which is
the current the-state-of-the-art algorithm, to attack the YOLOv3. We run the attack with a maximum
perturbation of 0.03 with input frames scaled from [0, 1] until we achieve 100% removal of the
target objects. We select � = 0.002 during detection.

Action Recognition This task and the corresponding attack method Sparse takes the video
temporal continuity into account. The target model makes action predictions based on a whole clip
of a video instead of processing individual frame, i.e.

Y = F (X1, X2, . . . , XN)

We use the CNN+RNN model used in [120] as video action recognition model and also apply the
state of the art attack Sparse to generate adversarial video clips. The model is trained on the UCF-101
dataset [105] to predict the action from 101 classes, and uses a Inception V2 model [109] to extract
features from each frame. Given a recognition model F✓, several of video clips {C1,C2, . . . ,CN}

and their corresponding adversarial target labels {y1, y2, . . . , yN}, the attack optimizes the following
objective:

argmin
E

�||M · E||p+
1

N

NX

i=1

l(1y
⇤
i
,F✓(Ci +M · E))

where E is a universal adversarial perturbation and M is a predefined temporal mask to enforce
sparsity. l(·) represents the classification loss. The attack aims to generate a universal perturbation
for all N clips, and in our experiment the recognition model mis-classified 13245 videos out of
13320 samples. We use AdvIT to detect adversarial video clips instead of adversarial frames for
this task.

6.2.2 Temporal Consistency Based Detection

Here we evaluate the detection performance of AdvIT on different video tasks comparing with
other baseline methods. Following Algorithm 3, given a frame, we first generate pseudo frames for
its previous k frames and then calculate the consistency metric between the frame and these pseudo
frames. Based on the distribution of consistency metric C, we identify the adversarial frames if C
is low, and vice versa.
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Task Attack
Method Target Defense

Method
Detection (k)

1 3 5

Semantic
Segmentation Houdini Stripe

Replacement 50% 50% 50%
JPEG 100% - -
AdvIT 100% 100% 100%

Human
Pose

Estimation
Houdini Shuffle

Replacement 50% 50% 50%
JPEG 98% - -
AdvIT 100% 100% 100%

Object
Detection DAG Person

Replacement 50% 50% 50%
JPEG 60% - -
AdvIT 98% 99% 100%

Table 6.1: Comparison of detection results (AUC) against different attacks for AdvIT and baseline methods.

We evaluate AdvIT against two types of frame based adversarial attacks: independent frame
attack and temporal continuity attack respectively. For both scenarios, we report the Area Under
Curve (AUC) of Receiver Operation Characteristic Curve (ROC) of AdvIT and baselines.

Detecting independent frame attack Independent frame attack includes Houdini [27] and
DAG [132] on three video tasks: semantic segmentation, human pose estimate and object de-
tection. Since each frame is independent for attackers, the attacker can decide whether to attack
the previous frame so the previous frames can be either adversarial or benign. Our method aims
to identify whether the current frame is adversarial, regardless of the status of previous frames.
Therefore, we test our method and report the results under various conditions: previous frames are
purely benign, adversarial, or mixture. The result is shown in Tab. 6.1 and other result is shown in
appendix. Note that as this is the first work to detect adversarial frames within a video, there is no
existing detection methods dedicated to video to compare with. To demonstrate the effectiveness
of AdvIT , we, instead, compared our method with two baselines: a traditional static image based
method, JPEG compression [30, 36, 45] shown as JPEG and Replacement in Tab. 6.1. JPEG
compresses the current frame to generate a “pseudo frame” and then calculates the consistency
metric between the current and “pseudo frame”. Replacement directly leverages the temporal
continuity by replacing the current frame with previous frames to generate “pseudo frames”. It then
calculates the continuity metrics between the current frame and the “pseudo frame”. We evaluate
the performance by aggregating previous k frames, where k 2 {1, 3, 5}. Note that JPEG only
considers the current frame so it only applies for k = 1.

From Tab. 6.1. We also observed that even JPEG achieves a high detection rate on Semantic
segmentation and Human pose estimation, it is less robust than AdvIT and performs worse on object
detection. It indicated that the perturbation on object detection might be subtle against compression.
Compared with the baseline methods, AdvIT shows promising detection performance (almost
100%) against independent frame attacks on various learning tasks under different scenarios. (More
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detection results against different attack targets are omitted in appendix.)
To further illustrate the effectiveness of AdvIT , we show AdvIT on the two extreme cases:

previous frames are adversarial or benign. We observe that AdvIT achieve almost 100% success rate
for identifying adversarial frames all kinds of settings without requiring knowledge about whether
previous frames are adversarial. The complete results are deferred to the appendix.

Detecting temporal continuity attack Considering attacks that also take temporal continuity of
videos into account, we evaluate the effectiveness of AdvIT on temporal continuity attack, Sparse
attack [120] on video action recognition and universal perturbation for the previous three tasks. For
universal perturbation, we generate universal perturbation for 5 frames within videos. We extend the
DAG and Houdini methods to generate universal perturbation. Tab. 6.2 shows the detection results
of AdvIT against such attacks. We observe that AdvIT can defend against the universal perturbation
with 100% detection rate on different video tasks, which implies that universal perturbation can
not transfer to pseudo frames. Though Sparse attack [120] aims to generate sparse and continuous
perturbation for videos, AdvIT can still achieve a high detection rate by leveraging both temporal
consistency and randomness. Note that the detection rate increases slightly with the growth of k,
but there is no need to carefully tune k since k = 1 already achieves detection rate above 95%.
In addition, to analyze the effectiveness of AdvIT against the adversarial attack with different
strengths, we conduct an experiment by limiting the perturbation magnitude to 2, 16, 32 pixels (in
range of [0,255]). The detailed results are shown in appendix. It shows that the detection rate will
decrease a bit with the magnitude increasing. But with ensemble of previous k frames, it is still
effective.

Task Attack
Method Target Detection (k)

1 3 5

Semantic Segmentation
Universal

Strip 100% 100% 100%
Human Pose Estimation shuffle 100% 100% 100%
Object Detection all 100% 100% 100%

Action Recognition Sparse - 95% 96% 97%

Table 6.2: Detection results (AUC) against temporal continuity attack

6.2.3 Analysis of Adaptive Attacks

Given a detection method, it is important to evaluate it against a strong adaptive attacker who is
aware of the detection mechanism. Thus, we conduct experiments to simulate the strong adaptive
attacker we can think of to evaluate the robustness of AdvIT , assuming the attacker has complete
access to our fully differentiable models. First, the attacker generates a perturbation that considers
both the current and generated pseudo frames. Implementation details of the adaptive attack will
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be included in the appendix. Such attack will fail since during detection as we add randomness
↵ to make the optical flow estimation harder. Thus, we allow the attacker to use the state of
the art adaptive attack estimation method expectation of transformation to approximate potential
randomness [6]. We follow the setting in [6], and randomly select 30 possible ↵ in each iteration to
optimize the perturbation. We select l2 = 0.03 as the upper bound of the adversarial perturbation
(pixel values are in range [0,1]), as perturbation larger than that would produce noticeable visual
changes to human. The detection results against such adaptive attacks among different video tasks
are shown in Tab. 6.3 as “Detection Adap. We observe that AdvIT can still achieve above 95%
detection rate. We hypothesize that it is because (a) the high dimension of spatial randomness
introduces large search space; (b) indirect changes to the pseudo frames during attack are not
sufficient to manipulate the prediction of both the pseudo frames and target one.

Task Target Previous
Frames

Detection Adap (k)
Detection Trans (k)

(non-differential flow)
1 3 5 1 3 5

Semantic
Segmentation

ICCV Benign 100% 100% 100% 100% 100% 100%
Adversarial 95% 97% 100% 100% 100% 100%

Remapping Benign 100% 100% 100 % 100% 100% 100%
Adversarial 96% 96% 98% 100 % 100% 100%

Human
pose

estimation

Shuffle Benign 96% 97% 97% 100% 100% 100%
Adversarial 94% 97% 100% 100% 100% 100%

Transpose Benign 98% 99% 100 % 100% 100% 100%
Adversarial 95% 95% 100 % 100 % 100% 100%

object
detection

All Benign 99% 100% 100% 100% 100% 100%
Adversarial 99% 100% 100% 100% 100% 100%

Person Benign 98% 99% 100 % 100% 100% 100%
Adversarial 95% 96% 97% 100 % 100% 100%

Table 6.3: Detection results (AUC) of adaptive attacks and transferability analysis.

Transferbility analysis In addition to the randomness for optical flow estimation process, in this
section we try to analyze the transferability of the perturbation between different flow estimator.
For instance, we allow the defender to use a non-differentiable flow estimator, while the attacker
uses a differentiable one for the sake of attack convenience.

We substitute a non-differential flow estimator proposed by [78] in Algorithm 3 and evaluate
its performance against an adversary who can approximate flow using a differential flow estimator
FlowNet [33]. Such transferability based detection results are shown in Tab. 6.3 “Detection
Trans (non-differentiable flow)”. We can see that the transferability based adversarial perturbation
generated for differential flow estimator does not transfer to non-differential flow estimator and the
detection results are 100% across all k.
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Optical Flow Estimator Next we will evaluate the impact of optical flow estimator on AdvIT . We
calculate the accuracy of the applied flow estimator for different learning tasks, and the accuracy
is around 1% in different scenarios after adding randomness ↵ (detailed results are omitted to
supplementary). This observation indicates that the high detection performance of AdvIT does not
rely on very accurate optical flow estimator, which makes the proposed detection widely applicable.
Run-time Analysis For video based tasks, the frame process efficiency is important. Here we
show that our adversarial detection approach AdvIT processes the videos with minimal overhead,
compared with the source frame rate. Theoretically, our approach runs the model inference k times
more; while running the model is the major cost, and k is a small constant, we have the same time
complexity as the original learner’s inference. Empirically, we measure the additional running time
for different tasks using an Nvidia 1080Ti GPU. We present the run-time results of model inference,
detection, and overhead (subtraction of the two) in Tab. 6.4. For human pose estimation and object
detection, AdvIT has low overhead, 0.03 and 0.05 seconds respectively, yielding less than two
frames of delay. The overhead for segmentation is higher at 0.4s, while the cost to run segmentation
on the original input images is much larger, 2.58s on average, and our overhead is only 15.5%.
When run in parallel with other real-time action recognition models [96, 98] and flow estimators,
our detection pipeline can also achieve close to real-time performance.

Task Inference Detection Overhead

Segmentation 2.58± 0.29 2.98± 0.27 0.4
Human Pose Estimation 0.02± 0.01 0.05± 0.01 0.03

Object Detection 0.04± 0.01 0.09± 0.01 0.05
Action Recognition 0.50± 0.01 0.52± 0.01 0.02

Table 6.4: Detection overhead of AdvIT (in seconds).

6.3 Discussion and Conclusion

We have presented an effective and efficient adversarial frame detection method AdvIT for
various video based tasks. We have used the state of the art learners, and challenged our detector
with the best-known attacks. Further, we have done our best to identify scenarios where an adversary
is aware of the detector and may seek to use information about the detector to circumvent it. Even
with this strong adaptive adversary we are able to detect nearly all adversarial frames (above 95%).
More sophisticated future attacks, which rely on different assumptions than those laid out here may
be able to create adversarial frames while fooling our detector, which will be interesting future
directions. Given the sequential nature of video, this work indicates that developing new attacks is
likely to be more difficult in the video domain than in static image analysis.
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Our experiments rely on video tasks where video is taken from continuous sequence. An video
that contains “jump cuts” would likely introduce a small number of false positive frames into our
detector, as these cuts would be unpredictable by the optical flow algorithm. However, continuous
video is consistent with our applications (particularly autonomous driving and surveillance systems),
and is unlikely to contain such cuts. It is also possible that we could detect such cuts, as the
difference between the pseudo frames and the current frames would still be large, which needs
further studies.

It should be noted that the goal of our work is to detects adversarial frames, but is not aimed at
remediating or repairing them. Future work could include using pseudo frames as surrogates for
suspicious frames or using pseudo frames along with detected adversarial frames to reform attacks.
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CHAPTER 7

Conclusion and Future Directions

This thesis focuses on studying the security problem of current DNNs. Starting with the
traditional Lp-based threat model, we proposed an algorithm, AdvGAN, to generate Lp-based
adversarial examples efficiently by using the generative adversarial network (GAN) in chapter 2.
Once trained, the feed-forward generator can produce adversarial perturbations efficiently. When
we apply AdvGAN to generate adversarial instances on different models without knowledge of the
defenses in place, the generated adversarial examples can attack the state-of-the-art defenses with
higher attack success rate than examples generated by the competing methods (FGSM and CW).
We believe this property makes AdvGAN a promising candidate for improving adversarial training
defense methods, a conjecture supported by some follow-on work, see e.g., Jang et al. [61].

Before moving toward more advanced attacks or defenses under the traditional Lp, we revisited
the limitations of traditional Lp-based threat model and provided a rigorous threat model. Based on
this, we proposed a new type of perturbation based on spatial transformation, which aims to preserve
high perceptual quality for adversarial examples in chapter 2. We have shown that adversarial
examples generated by stAdv are more difficult for humans to distinguish from original instances.
We also analyzed the attack success rate of these examples under existing defense methods and
demonstrate they are harder to defend against, which opens new directions for developing more
robust defense algorithms.

Beyond the exploration of adversarial examples in the digital space, we also studied the adversar-
ial behavior in the physical space. We conducted a comprehensive analysis of adversarial behavior
from the 3D space by simulating the photo-taken process via a physical renderer in chapter 3.
Because the digital images are formed by the processing of illumination, shape and texture, we
studied adversarial examples both from texture and shape side. We found that both texture and
shape are vulnerable and could be manipulated to generate adversarial examples.

Based on meshAdv, we further explored the adversarial behavior of shape towards the real world
industry-level system. We selected the Baidu Apollo LiDAR perceptual module as our targeted
system. We designed an approach LiDARadv to generate a printable “adversarial mesh to mislead
the LiDAR-based perceptual system and printed the optimized adversarial object to fool the physical
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autonomous vehicle in chapter 4. Our results showed that the 3D adversarial meshes could mislead
the industry-level machine learning model in real world and caused severer consequences (e.g.
crash).

The last part of this thesis aimed at finding solutions to detect adversarial examples in the
digital space. We proposed a consistency check based framework to detect adversarial examples by
exploiting properties inherent in either learning models (in chapter 5 ) or data ( in chapter 6). We
proposed to apply spatial consistency information analysis to recognize adversarial examples in
segmentation, which has not been considered in either image classification or segmentation as a
potential detection mechanism. We showed that such spatial consistency information is different for
adversarial and benign instances and can be potentially leveraged to detect adversarial examples
even when facing strong adaptive attackers. Additionally, we also showed that we could leverage
the property of video data to detect adversarial examples as well. One of the properties of videos is
temporal consistency: the next frame is typically the continuation of the objects and scenes in the
current frame. We showed that we could leverage the property of temporal consistency to detect
adversarial examples among different learning tasks such as segmentation, human pose estimation,
and object detection.

Looking ahead, there are several future research directions.

Principled defense against various attacks. Defending against adversarial examples is one of
the most important and fundamental problems facing deep learning. Although adversarial training
based methods have made significant progress over the past few years to defend against adversarial
examples, they were only effective against the small set of Lp-bounded attacks [130] based on our
study in this thesis. Looking forward, There are several promising ways to solve this problem as we
elaborate next.

1. Designing diverse distance metrics and general training frameworks. Beyond Lp norm
distance metric, my work, stAdv [130] has proposed the spatial transformed distance metrics,
which could be used to improve the diversity of adversarial training based method to defend
our attacks. We believe more distance metrics need to be investigated to formalize the threat
model of adversarial examples. In addition to more general distance metrics, we also need to
make efforts to design general training frameworks to handle various constraints.

2. Generating diverse data. AdvGAN [128] achieved the top position in Madry’s MNIST
challenge as a result of exploring some uncovered regions by using generative adversarial nets
(GANs). Therefore, we could explore the capability of GANs to mimic unknown types of
attacks instead of just memorizing existing attacks to improve the robustness against various
adversarial examples.
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Altruistic adversarial machine learning. Methods designed in the context of adversarial ma-
chine learning are generally meant to address the security problem. However, these methods could
potentially benefit other tasks such as image generation, privacy, and generalization. Recently,
[134] showed that the carefully designed adversarial training based method could help to improve
the test accuracy of image classification. They achieved the state-of-the-art 85.5% ImageNet top-1
accuracy without extra data. Similar behavior has been discovered in Natural Language Processing
domain as well [150]. Therefore, how to broaden the usage of adversarial machine learning in more
general contexts is an important future research direction.

Adversarial machine learning inspired by cognitive science. My current research [136] suc-
cessfully improves the model general robustness via enhancing CNNs to solely use shape infor-
mation, which motivated by analyzing the robust human visual system. It inspires me to revisit
the design of the CNNs, e.g. how to make CNNs mimic human spatial cognition, how to make
CNNs truly understand the high-level abstraction and the relations before the decision. On the other
hand, researchers in cognitive science have demonstrated the success of computational approaches
based on structured, relational information that exhibit human-like learning. It results in successes
in terms of requiring few training data and stability. For instance, Kandaswamy et al. [65] leverages
Structure Mapping Engine (SME), a computational model of analogical matching a similarity base
on Structure Mapping Theory to build AI performance system for a variety of tasks. Although these
approaches do not yet achieve the STOA performance compared to deep learning systems, they
have shown better data efficiency and stability. Exploring how to combine significant achievements
of cognitive science and deep learning model to design a more robust machine learning system is an
active research direction in the future.
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APPENDIX A

Appendix of Detecting Adversarial Examples by Using the Property of the
Learning Model

A.1 Adversarial Examples For Cityscapes and BDD Datasets Against DRN and DLA
models

(a) DAG — DRN — Cityscapes (b) DAG — DRN — BDD

(c) DAG — DLA — Cityscapes (d) DAG — DLA — BDD

(e) Houdni — DLA — CityScapes (f) Houdini — DLA — BDD

Figure A.1: Samples of benign and adversarial examples. We use the format “attack method
—attack model — dataset” to label the settings of each adversarial examples. Within each subfigure,
the first column shows benign images and corresponding segmentation results, the second and third
columns show adversarial examples with different adversarial targets (targeting on Kitty/Pure in
(a),(c), (d) and on Kitty and Scene in (b),(d),(f)).

Figure A.1 shows the benign and adversarial examples targeting at diverse adversarial targets:
“Hello Kitty” (Kitty) and random pure color (Pure) on Cityscapes [28]; and “Hello Kitty” (kitty)
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Figure A.2: Attack results of additional targets on Cityscapes. The first column shows benign
instance, while 2-4 columns show adversarial examples with target “ECCV 2018”, “Remapping”,
and “Color strip”, respectively.

and a real scene without any cars (Scene) on BDD [135] dataset against DRN [138] and DLA [139]
segmentation models. In order to increase the diversity of our target set, we also apply different
colors for the background of “Hello Kitty” on BDD dataset against DLA model.

Figure A.2 shows the additional adversarial targets, including “ECCV 2018”, “Remapping”, and
“Color strip”. Here remapping means we generate an adversarial target by shifting the numerical
label of each class in the ground truth by a constant offset. This way, we can guarantee that each
target has no overlap with the ground truth mask. For “Color strip”, we divide the target into 19
strips evenly, each of which is filled with a class label, aiming to mitigate possible bias for different
classes.

A.2 Spatial Consistency Based Method

A.2.1 Spatial Context Analysis

Algorithm 1 describes the algorithm of getOverlapPatches. Figure A.3 shows the heatmaps
of the per-pixel self-entropy on Cityscapes and BDD dataset against DRN and DLA models. It
is clearly shown that the adversarial instances have higher entropy than benign ones. Table A.1
shows that the detection results (AUC) based on spatial consistency method with fix patch size.
It demonstrates that the spatial consistency information can help to detect adversarial examples
with AUC nearly 100% on BDD dataset. Table A.4 A.5 show the results on additinal targets on
Cityscapes and BDD datasets. Table A.2 A.3 show the detection results (AUC) based on spatial
consistency method with random patch size. They show that random patch sizes achieve the similar
detection result.
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Method Model mIOU
Detection Detection Adap

DAG Houdini DAG Houdini
Scene Kitty Scene Kitty Scene Kitty Scene Kitty

Scale (std=0.5)
DRN

(16.4M) 54.5
96% 100% 99% 100% 69% 89% 46% 91%

Scale (std=3.0) 100% 100% 100% 100% 31% 89% 1% 48%
Scale (std=5.0) 100% 100% 100% 100% 8% 84% 0% 36%
Scale (std=0.5)

DLA
(18.1M) 46.29

96% 88% 99% 99% 89% 90% 80% 58%
Scale (std=3.0) 100% 100% 100% 100% 66% 88% 11% 26%
Scale (std=5.0) 98% 100% 99% 100% 32% 78% 2% 12%
Spatial (K=1)

DRN
(16.4M) 54.5

98% 100% 99% 99% 89% 99% 89% 99%
Spatial (K=5) 100% 100% 100% 100% 100% 100% 100% 100%
Spatial (K=10) 100% 100% 100% 100% 100% 100% 100% 100%
Spatial (K=50) 100% 100% 100% 100% 99% 100% 99% 100%
Spatial (K=1)

DLA
(18.1M) 46.29

98% 99% 95% 95% 96% 99% 98% 95%
Spatial (K=5) 100% 100% 98% 98% 99% 100% 99% 96%
Spatial (K=10) 100% 100% 99% 99% 99% 100% 99% 96%
Spatial (K=50) 100% 100% 99% 99% 100% 100% 99% 93%

Table A.1: Detection results (AUC) of image spatial (Spatial) and scale consistency (Scale) based
methods on BDD dataset. The number in parentheses of the “Model” shows the number of
parameters for the target mode, and “mIOU” shows the performance of segmentation model on
pristine data. We color all the AUC less than 80% with red.

A.2.2 Scale Consistency Analysis

We applied image scaling to the adversarial examples generated by Houdini [27] and DAG [132]
on Cityscapes and BDD datasets against DRN and DLA models. The result shows in Figure A.4.
We can find the same phenomenon that when we applying Gaussian blurring with high std (3 and
4), adversarial perturbation is harmed and segmentation result are no longer adversarial targets.

Table A.1 shows that the method based on image scale information can achieve similarly AUC
compared with spatial consistency based method on BDD.
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Method
(Spatial) Model mIOU

Detection Detection Adap
DAG Houdini DAG Houdini

Pure Kitty Pure Kitty Pure Kitty Pure Kitty
K=1

DRN
(16.4M) 66.7

91± 0.1% 88± 0.1% 91± 0.3% 90± 0.1% 97± 0% 92± 0.1% 90± 2.5% 93± 0.1%
K=5 99± 0.1% 99± 0.1% 100± 0.0% 99± 0.1% 100± 0% 100± 0% 100± 0% 100± 0%
K=10 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=50 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=1

DLA
(18.1M) 74.5

96± 0.1% 98± 0.1% 96± 0.1% 96± 0.1% 99± 0.3% 99± 0.1% 98± 0.4% 99± 0.1%
K=5 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=10 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=50 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%

Table A.2: Detection results (AUC) of image spatial (Spatial) based method with random patch size
on Cityscapes dataset.

Method
(Spatial) Model mIOU

Detection Detection Adap
DAG Houdini DAG Houdini

Pure Kitty Pure Kitty Pure Kitty Pure Kitty
K=1

DRN
(16.4M) 54.5

91± 0.1% 88± 0.1% 91± 0.3% 90± 0.1% 97± 0% 92± 0.1% 90± 2.5% 93± 0.1%
K=5 99± 0.1% 99± 0.1% 100± 0.0% 99± 0.1% 100± 0% 100± 0% 100± 0% 100± 0%
K=10 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=50 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0% 100± 0%
K=1

DLA
(18.1M) 46.29

98± 0% 96± 0.1% 95± 0.1% 92± 0% 98± 0.1% 94± 0% 97± 0.1% 90± 0%
K=5 100± 0% 99± 0% 99± 0% 98± 0% 99± 0% 98± 0% 99± 0% 90± 0%
K=10 100± 0% 100± 0% 100± 0% 98± 0% 100± 0% 99± 0% 100± 0% 96± 0%
K=50 100± 0% 100± 0% 100± 0% 99± 0% 100± 0% 100± 0% 100± 0% 100± 0%

Table A.3: Detection results (AUC) of image spatial (Spatial) based method with random patch size
on BDD dataset.

Method
(Spatial) Model mIOU

Detection Detection Adap
DAG Houdini DAG Houdini

ECCV Remap Strip ECCV Remap Strip ECCV Remap Strip ECCV Remap Strip
K=1

DRN
(16.4M) 66.7

93% 91% 91% 91% 91% 91% 90% 92% 89% 90% 92% 90%
K=5 99% 100% 99% 99% 100% 99% 100% 99% 100% 100% 100% 99%
K=10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99%
K=50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
K=1

DLA
(18.1M) 74.5

96% 99% 97% 95% 97% 96% 99% 99% 98% 99% 99% 98%
K=5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
K=10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99%
K=50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table A.4: Detection results (AUC) of spatial consistency (Spatial) based method on Cityscapes
dataset for additional targets.

88



Method
(Spatial) Model mIOU

Detection Detection Adap
DAG Houdini DAG Houdini

ECCV Remap Strip ECCV Remap Strip ECCV Remap Strip ECCV Remap Strip
K=1

DRN
(16.4M) 54.5

99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 98% 97%
K=5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 98%
K=10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 97%
K=50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 97%
K=1

DLA
(18.1M) 46.29

99% 99% 99% 98% 97% 98% 99% 99% 99% 98% 97% 99%
K=5 100% 100% 100% 100% 99% 99% 100% 100% 100% 99% 99% 99%
K=10 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 99% 99%
K=50 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 99% 99%

Table A.5: Detection results (AUC) of spatial consistency (Spatial) based method on BDD dataset
for additional targets.

(a) Original example — DLA — Cityscapes (b) Benign example — DLA — Cityscapes

(c) DAG — Kitty — DLA
— Cityscapes

(d) DAG — Pure — DLA
— Cityscapes

(e) Houdini — Kitty —
DLA — Cityscapes

(f) Houdini — Pure —
DLA — Cityscapes

(g) Original example — DRN — BDD (h) Benign example — DRN — BDD

(i) DAG — Kitty — DRN
— BDD

(j) DAG — Scene — DRN
— BDD

(k) Houdini — Kitty —
DRN — BDD

(l) Houdini — Scene —
DRN — BDD
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(m) Original example—DLA—BDD (n) Benign example — DLA — BDD

(o) DAG — Kitty — DLA
— BDD

(p) DAG — Scene —
DLA — BDD

(q) Houdini — Kitty —
DLA — BDD

(r) Houdini — Real —
DLA — BDD

Figure A.3: Heatmap of per-pixel self-entropy. (a), (b), (g), (h), (m) and (n) show benign images
and its corresponding per-pixel self-entropy heatmaps. We use the format “examples — attack
model — dataset” to label them. For the rest, we use the format “attack method — target label —
attack model — dataset” to label each subcaption.
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(a) Benign example — DLA — Cityscapes

(b) DAG — Kitty — DLA — Cityscapes (c) DAG — Pure — DLA — Cityscapes

(d) Houdini — Kitty — DLA — Cityscapes (e) Houdini — Pure — DLA — Cityscapes

(f) Benign example — DRN — BDD

(g) DAG — Kitty — DRN — BDD (h) DAG — Scene — DRN — BDD

(i) Houdini — Kitty — DRN — BDD (j) Houdini — Scene — DRN — BDD
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(k) Benign example — DLA — BDD

(l) DAG — Kitty — DLA — BDD (m) DAG — Scene — DLA — BDD

(n) Houdini — Kitty — DLA — BDD (o) Houdini — Scene — DLA — BDD

Figure A.4: Examples of images and corresponding segmentation results before/after image scaling.
For each subfigure, the first column shows benign/adversarial images, while the following columns
represent images after scaling by applying Gaussian kernel with std as 0.5, 3, and 5, respectively.
(a),(f) and (k) show benign images before/after image scaling and the corresponding segmentation
results and we use the format “example — attack model — dataset” to identify the corresponding
model and dataset; (b)-(e), (g)-(j) and (l)-(o) present similar results for adversarial images and we
use the format “attack method — target label — attack model — dataset” to label the settings of
each image.
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(a) Benign example — DRN — Cityscapes

(b) DAG — Kitty — DRN — Cityscapes (c) DAG — Pure — DRN — Cityscapes

(d) Houdini — Kitty — DRN — Cityscapes (e) Houdini — Pure — DRN — Cityscapes

(f) Benign example — DLA — Cityscapes

(g) DAG — Kitty — DLA — Cityscapes (h) DAG — Pure — DLA — Cityscapes

(i) Houdini — Kitty — DLA — Cityscapes (j) Houdini — Pure — DLA — Cityscapes
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(k) Benign example — DRN — BDD

(l) DAG — Kitty — DRN — BDD (m) DAG — Scene — DRN — BDD

(n) Houdini — Kitty — DRN — BDD (o) Houdini — Scene — DRN — BDD
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(p) Benign example — DLA — BDD

(q) DAG — Kitty — DLA — BDD (r) DAG — Scene — DLA — BDD

(s) Houdini — Kitty — DLA — BDD (t) Houdini — Scene — DLA — BDD

Figure A.5: Examples of images and corresponding segmentation results for adaptive attack against
image scaling. For each subfigure, the first column shows benign/adversarial images, while the
following columns show images after scaling by applying Gaussian kernel with std as 0.5, 3,
and 5, respectively. (a), (f), (k) and (p) show benign images before/after image scaling and the
corresponding segmentation results and The format “example — attack model — dataset” uses
to identify the corresponding model and dataset; (b)-(e), (g)-(j), (l)-(o) and (q)-(t) present similar
results for adaptive adversarial images and we describe by the format “attack method — target label
— attack model — dataset”.
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A.2.3 Adaptive Attack Evaluation

Algorithm 4: DAG adaptive attack against spatial consistency method
input: Input image X ;

Number of attack patches K;
Patch size s;
Segmentation model f ;
L2 bound b;
Recognition targets T = {t1, t2, · · · , tN} ;
Adversarial label set Y = {Yt1 , Yt2 , · · · , YtN};
Maximal iteration M0 ;

output: Adversarial perturbation r;

Initialization :X0  X, r 0,m 0, T0  Y, w = X.width, h = X.height;
1 while m < M0 & l2norm(r) < b do
2 Tm = {tn|argmax

c
{fc(Xm, tn)} 6= Ytn};

3 rm  
P

tn2Tm rxmfYtn
(Xm, tn) ;

/* Attack C random patches */;
4 for k  0 to K do
5 Generate two random integers I1, I2 where 0 < I1 < w � s and 0 < I2 < h� s;
6 Pk = X[I1 : I1 + s, I2 : I2 + s];
7 Tk = {tn0 |argmax

c
{fc(Pk, tn0)} 6= Ytn0 & tn0 2 Tm};

8 rm
+
 

P
tn02Tk rPk

fYtn0 (Pk, tn0)

9 end
10 r0m  

�

krmk1
rm;

11 r r+ r0m;
12 Xm+1  Xm + r0m;
13 m m+ 1;
14 end

Return: r

Here we illustrate the adaptive attack algorithm based on DAG and Houdini against spatial
consistency method in Algorithm 4 and Algorithm 5. Instead of only attacking the benign image,
the adaptive attack here will randomly pick some patches and attack them with the whole image
together.

Let X be an image and K is the number of patches selected from X to perform adaptive attack.
We define T = {t1, t2, · · · , tN} as the set comprising the coordinates of the recognition target pixels.
f denotes the segmentation network, and we use f(X) to denotes the classification score of the
entire image and f(X, tn) to denote the classification score vector at pixel n. Y = Yt1 , Yt2 , · · · , YtN

denotes the adversarial label set where Ytn represents the adversarial label of pixel n. Given an input

tensor r 2 Rw⇥h⇥c, the function returns its L2 norm defined to be ||r||2=

qPw
i=1

Ph
j=1

Pc
k=1 r

2
ijk

w·h·c . In
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Algorithm 5: Houdini adaptive attack against spatial consistency method
input: Input image X ;

Number of attack patches K;
Patch size s;
Segmentation model f ;
L2 bound b;
Adversarial target label Y;
Maximal iteration M0 ;
Houdini loss H;

output: Adversarial perturbation r;

Initialization :X0  X, r 0,m 0, T0  Y, w  X.width, h X.height;
1 while m < M0 do
2 rm  0;

/* get the gradient of the perturbation from the objective
*/;

3 rm  rm +rrH(f(X+ r),Y);
4 rm  rm +rr max(l2norm(r)� b, 0) ;
5 for k  0 to K do
6 Generate two random interger numbers I1, I2 where 0 < I1 < w � s, 0 < I2 < h� s;
7 rm  rm +rrH(f((X+ r)[i : i+ s, j : j + s]),Y[i : i+ s, j : j + s]);
8 end
9 r r+ rm;

10 end
Return: r

Algorithm 5, we follow the same definition of Houdini loss H as proposed in the work [27]. We set
the maximal number of iteration to be approximately 3001 in all settings. We set L2 bound to be
0.06 for simplicity.

The detection results in term of AUC of the spatial consistency based method against such
adaptive attacks on BDD and Cityscapes are shown in Table A.1 A.2 A.3 A.4 A.5. Even against
such strong adaptive attacks, the spatial consistency based method can still achieve nearly 100%
AUC. Figure A.6 shows the confusion matrix of detection result for adversaries and detection
method choosing various K. It is clear that when we choose K = 50, it is already sufficient to
detect sophisticated attacks on Cityscapes dataset against DLA model and can also achieved 100%
detection rate with false positive rate 95% on BDD.

The detection results of the image scaling based method against adaptive attacks on BDD are
shown in Table A.1. For image scaling based detection method, it can be easily attacked (AUC
drops drastically). Figure A.5 shows the qualitative results. It is obvious that even under Gaussian

1 300 is approximately three times the average number of iterations in non-adaptive attack.
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(a) DLA — Kitty — Cityscapes (b) DLA — Pure — Citysacpes

(c) DRN — Kitty — BDD (d) DRN — Scene — BDD

(e) DLA — Kitty — BDD (f) DLA — Scene — BDD

Figure A.6: Detection performance of spatial consistency based method against adaptive attack with
different K. We use the format “attack model — target label — dataset” to label the settings for
each figure. X-axis indicates the number of patches selected to perform the adaptive attack (0 means
regular attack). Y-axis indicates the number of overlapping regions selected during detection. We
select the minimal mIOU from benign patches as our threshold on Cityscapes, and the one which
guarantees accuracy as above 95% on benign images for BDD.

kernel with large standard deviation, the adversarial example can still be fooled into predicting
different malicious targets (“Kitty”, “Pure”, “Scene”) on Cityscapes and BDD dataset against DRN
and DLA models.
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A.3 Additional Results for Transferability Analysis

We present additional results for transferability analysis in Figure A.7 to Figure A.11.
Figure A.7 to Figure A.8 show the transferability analysis results for segmentation models. We

report pixel-wise attack success rate for the pure target and normalized mIoU after eliminating K
classes with the lowest IoU values for other targets. We set K to be 13 for CityScapes dataset and 5
for BDD dataset. Additional qualitative results are presented in Figure A.9 to Figure A.10.

Fig. A.11 shows the transferability experiments results for classification models under targeted
attack. The adversarial images are generated using iterative FGSM method from MNIST and
CIFAR10 datasets. The caption of each sub-figure indicates the dataset and the attacked classification
model.

(a) DAG | Pure | DRN-D-22 (b) Houdini | Pure | DRN-D-22

(c) DAG | Pure | DRN-C-26 (d) Houdini | Pure | DRN-C-26
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(e) DAG | Hello Kitty | DRN-C-26 (f) Houdini | Hello Kitty | DRN-C-26

(g) DAG | Pure | DLA34UP (h) Houdini | Pure | DLA34UP

(i) DAG | Hello Kitty | DLA34UP (j) Houdini | Hello Kitty | DLA34UP

Figure A.7: Transferability analysis on CityScapes dataset: cell (i, j) shows the normalized mIoU
value or pixel-wise attack success rate of adversarial examples generated against model j and
evaluate on model i. Model A,B,C have the same architecture (DRN-C-26 or DLA34UP) with
different initialization. We use format “attack method | attack target | model ” to denote the caption
of each sub-figure.
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(a) DAG | Scene | DRN-D-22 (b) Houdini | Scene | DRN-D-22

(c) DAG | Hello Kitty | DRN-D-22 (d) Houdini | Hello Kitty | DRN-D-22

(e) DAG | Scene | DRN-C-26 (f) Houdini | Scene | DRN-C-26

(g) DAG | Hello Kitty | DRN-C-26 (h) Houdini | Hello Kitty | DRN-C-26
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(i) DAG | Scene | DLA34UP (j) Houdini | Scene | DLA34UP

(k) DAG | Hello Kitty | DLA34UP (l) Houdini | Hello Kitty | DLA34UP

Figure A.8: Transferability analysis on BDD dataset.

(a) DAG | Pure | DRN-D-22 (b) Houdini | Pure | DRN-D-22

(c) DAG | Hello Kitty | DRN-D-22 (d) Houdini | Hello Kitty | DRN-D-22
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(e) DAG | Pure Rider | DRN-C-26 (f) Houdini | Pure Rider | DRN-C-26

(g) DAG | Hello Kitty | DRN-C-26 (h) Houdini | Hello Kitty | DRN-C-26

(i) DAG | Pure Rider |DLA34UP (j) Houdini | Pure Rider |DLA34UP

(k) DAG | Hello Kitty |DLA34UP (l) Houdini | Hello Kitty |DLA34UP

Figure A.9: Transferability visualization on CityScapes dataset. In each sub-figure, the first row
presents the segmentation results of adversarial example on model A (targeted model) and model B.
The second row shows the adversarial target and the ground truth. We use format “attack method |

attack target | model ” to denote the caption of each sub-figure.
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(a) DAG | Scene | DRN-D-22 (b) Houdini | Scene | DRN-D-22

(c) DAG | Hello Kitty | DRN-D-22 (d) Houdini | Hello Kitty | DRN-D-22

(e) DAG | Scene | DRN-C-26 (f) Houdini | Scene | DRN-C-26
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(g) DAG | Hello Kitty | DRN-C-26 (h) Houdini | Hello Kitty | DRN-C-26

(i) DAG | Scene | DLA34UP (j) Houdini | Scene | DLA34UP

(k) DAG | Hello Kitty | DLA34UP (l) Houdini | Hello Kitty | DLA34UP

Figure A.10: Transferability visualization on BDD dataset.
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(a) MNIST | DRN-D-22 (b) CIFAR10 | DRN-D-22

(c) MNIST | DRN-C-26 (d) CIFAR10 | DRN-C-26

(e) MNIST | DLA34 (f) CIFAR10 | DLA34

Figure A.11: Transferability analysis for classification models: cell (i, j) shows the attack success
rate of the adversarial examples generated against Model j and evaluate on Model i under targeted
attack setting. Model A,B,C are model with the same architecture (DRN-D-22, DRN-C-26 or
DLA34UP) and different initialization. All the adversarial examples are generated using fast
iterative gradient sign method. The caption of each sub-figure bear the “dataset | model”.
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APPENDIX B

Appendix of Detecting Adversarial Examples by Using Properties of Data

B.1 Implementation Details

Attack setting As described in the threat model section, we limit the L2 norm of the adversarial
perturbation to be below 8 pixel in all settings because otherwise the the adversarial perturbation
would be perceptible and can be easily detected. We set a max iteration of 1000 as the breakout
condition.

Adversarial targets of semantic segmentation We evaluate over three different adversarial
targets: Remapping, Stripe, and ICCV 2019. “Remapping” means we generate an adversarial target
by shifting the numerical label of each class for the prediction from a benign frame by a constant
offset. This way, we can guarantee that each target has no overlap with the ground truth. This
dynamically generated target also reflects the movement of pixels between frames in a video. For
“Stripe”, we divide the target into 19 strips evenly, each of which is filled with a class label, aiming
to mitigate possible bias for different classes. Finally, “ICCV 2019” places the text “ICCV 2019”
over the image with contiguous spaces representing different classes.
Bounding box mIoU We use a metric called bounding box mIoU as the consistency metric for
object detection model. Given the target frame Xt and a pseudo frame X̂s!t, we iterate each the
bounding box predicted by the detection model from the pseudo frame and compute intersection
over union (IoU) value against all the bounding boxes detected in the target frame Xt, agnostic of
their class labels. The average of the largest IoU value for each bounding box in the pseudo frame
is used as our consistency metric. The computation of bounding box mIoU is fully described in
Algorithm 6 and the computation of IoU between patches is also illustrated below.

Let a patch be represented by a tuple (x1, y1, x2, y2) where (x1, y1) and (x2, y2) are the upper
left and lower right corners’ coordinates of the patch. Given two patches P = (x1, y1, x2, y2), P =

(x
0
1, y

0
1, x

0
2, y

0
2), the intersection area of the two patches A can be computed by max(0,min(x2, x

0
2)�

max(x1, x
0
1)) ·max(0,min(y2, y

0
2)�max(y1, y

0
1)). Let w and h denote the width and height of
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Algorithm 6: Bounding Box mIoU
input: array of target bounding boxes T ;

array of predicted bounding boxes P ;
output: mIoU between two arrays of bounding boxes c;

Initialization : cs [], N  T .length,M  P .length;
1 for i 1 to N do
2 IoU [];

/* Iterate over the bounding boxes in P. Each bounding
box is represented as a patch with its coordinates. */;

3 B P [i];
4 for j  1 to M do

/* Iterate over the bounding boxes in T. */;
5 B0

 T [j];
/* getIoU is a function that calculate the IoU between
two patches. */;

6 IoU
+
 getIoU(B,B0);

7 end
/* Get the IoU of the bounding box in T with the largest
overlap with B */;

8 cs
+
 Max(IoU);

9 end
10 c Mean(cs);

Return: c

P and w0, h0 denote the width and height of P 0. getIoU(P, P 0) is defined as

A

w · h+ w0 · h0 �A
(B.1)

Consistency measurement function for action recognition In our paper, we leverage the attack
method proposed by Wei et al. [120]. The target action recognition framework considered in
that work [120] is a CNN+RNN model, so we use the same model to evaluate AdvIT . Let X =

{X1,X2, . . . ,XN} be a video where Xi is the ith frame. Each frame is first fed into a Inception
V2 [109] model individually and the extracted features are further processed by a LSTM model
sequentially. The LSTM model outputs class scores (logits) Yi for each frame; the logits of all
frames are averaged and the class with the highest score is assigned to X . The sparse adversarial
perturbations are generated using the same method described in the original work [120]. We
consider the activations of all frames in our consistency metric to determine if a whole video clip is
adversarial. Let X̂ = {X̂1, X̂2, . . . , X̂N} be a sequence of pseudo-frames generated by warping
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Task Attack
Method Target Previous

Frames
Detection (k)

1 3 5

Semantic
Segmentation

Houdini

ICCV Benign 100% 100% 100%
Adversarial 100% 100% 100%

Remapping Benign 100% 100% 100%
Adversarial 100% 100% 100%

Stripe Benign 100% 100% 100%
Adversarial 100% 100% 100%

DAG

ICCV Benign 100% 100% 100%
Adversarial 100% 100% 100%

Remapping Benign 100% 100% 100%
Adversarial 100% 100% 100%

Stripe Benign 100% 100% 100%
Adversarial 100% 100% 100%

Human
Pose

Estimation
Houdini

shuffle Benign 100% 100% 100%
Adversarial 100% 100% 100%

Transpose Benign 100% 100% 100%
Adversarial 98% 99% 100%

Object
Detection DAG

all Benign 100% 100% 100%
Adversarial 100% 100% 100%

person Benign 99% 100% 100 %
Adversarial 97% 98% 100%

Table B.1: Detection results (AUC) of AdvIT against independent frame attack on various video
tasks with different attack methods and targets.

with optical flow and Ŷi be the logit of the ith frame after replacing X with X̂ . We concatenate all
the logits Yi (Ŷi for pseudo frames) together to form a one-dimensional vector with N · C elements
where C is the class number. Let F and F̂ be two one-dimensional vectors by taking the softmax
of the concatenations of Yis and Ŷis respectively. F and F̂ represent two N · C-way categorical
distributions, PF and P

F̂
. We take the average of the forward and backward KL divergence between

the two distributions, KL (PF ||PF̂
) +KL (P

F̂
||PF ), as the consistency metric between X and X̂ .

Adaptive attack algorithm Let’s use R1 to denote a flow estimator. It takes two frames Xt�i,Xt

as input, where Xt is the current frame and Xt�i is the ith previous frame, and outputs the flow
OF = (�u,�v). We formulate the above as (�u,�v) = R(Xt�i,Xt). Denote Y a

t
as the

adversarial target for frame t, l as the loss considered by the attack algorithms (e.g. Houdini [27]
and DAG [132]) and g as the targeted machine learning model. For the vanilla attack algorithm,
they try to generate the adversarial perturbation Et by optimizing the following objective:

1In our paper, we use Flownet [55] which is differentiable.
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l(g(Xt +Et),Y
a

t
) (B.2)

To perform adaptive attack, the attacker incorporates temporal continuity into the attack. It generates
a perturbation for the current frame and the perturbation can fool both current frame and the pseudo
frames. The adaptive attack objective is defined as follows:

(B.3)l(g(Xt +Et),Y
a

t
) +

kX

i =1

l(warp(R(Xt�i,Xt +Et) +↵,Xt�i),Y
a

t
)

where k is number of the previous frames considered for adversarial detection. warp represents
the function to generate the pseudo frames by using formulation (1). ↵ is random noise drawn
from N(0, �2) independently. Due to the randomness, we generate adversarial perturbation using
Expectation Over Transformation in Athalye et al. [6]. We follow the settings in Athalye et al. [6]
and sample Nz ↵s in each iteration.

l(g(Xt +Et),Y
a

t
) + 1/Nz ·

NzX

z=0

kX

i=1

l(warp(R(Xt�i,Xt +Et) +↵z,Xti),Y
a

t
) (B.4)

We set Nz = 30 in our attack.

Task Attack
Method

Previous
Frames

Accuracy[RMS](k)
1 3 5

Semantic
Segmentation Houdini Benign 0.045± 0.006 0.054±0.011 0.059±0.013

Adversarial 0.045±0.006 0.054±0.011 0.060±0.013

Human Pose
Estimation Houdini Benign 0.098±0.010 0.114±0.027 0.127±0.039

Adversarial 0.101±0.010 0.117±0.026 0.130±0.039

Object
Detection DAG Benign 0.069±0.017 0.090±0.027 0.104±0.032

Adversarial 0.069±0.017 0.090±0.027 0.104±0.032

Table B.2: Accuracy of the predicted pseudo-frames among different settings

Interval
(k)

Segmentation (✏) Object detection (✏) Human pose (✏)
2 16 32 2 16 32 2 16 32

1 100% 100% 100% 98.3% 88.3% 83.5% 98.4% 97.9% 96.3%
3 100% 100% 100% 99.8% 95.5% 91.2% 98.6% 98.4% 96.6%
5 100% 100% 100% 99.9% 97.9% 95.15% 98.7% 98.6% 96.7%

Table B.3: Detection results (AUC) of differnt attack strength
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B.2 Experimental Results

We include additional results of AdvIT in Table B.1. It shows that our method can achieve
almost 100% detection rate among all settings.

Table B.2 evaluate the accuracy of pseudo-frame prediction in terms of Root Mean Square(RMS)
error. We observe that the prediction accuracy does not significantly affect the adversarial detection
rate.

As long as the prediction accuracy is reasonable, the inconsistency phenomenon is very obvious
due to adversarial perturbation. We also show experiments results with different randomness (↵)
added to the optical flow by varying �. For semantic segmentation, 0.02 and 0.2 are considered for
the value of �. The corresponding RMS values are 0.088± 0.003 and 0.16 ± 0.006 respectively.
100% detection rates are achieved in both settings. It shows that even we more randomness to (↵)
during wrapping to make the pipeline more robust against adaptive attack, the detection efficacy of
AdvIT is not compromised.

In addition, we conducted extra experiments by limiting the perturbation magnitude to 2, 16, 32
pixels (in range of [0,255]) to evaluate the effectiveness of AdvIT against the attack with different
strength in Table B.3. It shows that the detection rate will decrease a bit with the magnitude
increasing. But with ensemble of previous k frames, it is still effective.
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[112] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. Ensemble adversarial
training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.
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