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ABSTRACT

In a large number of real world domains, such as the control of autonomous

vehicles, team sports, medical diagnosis and treatment, and many others, multiple

autonomous agents need to take actions based on local observations, and are in-

terdependent in the sense that they rely on each other to accomplish tasks. Thus,

achieving desired outcomes in these domains requires interagent coordination. The

form of coordination this thesis focuses on is commitments, where an agent, referred

to as the commitment provider, specifies guarantees about its behavior to another,

referred to as the commitment recipient, so that the recipient can plan and execute

accordingly without taking into account the details of the provider’s behavior. This

thesis grounds the concept of commitments into decision-theoretic settings where the

provider’s guarantees might have to be probabilistic when its actions have stochas-

tic outcomes and it expects to reduce its uncertainty about the environment during

execution.

More concretely, this thesis presents a set of contributions that address three core

issues for commitment-based coordination: probabilistic commitment adherence, in-

terpretation, and formulation. The first contribution is a principled semantics for the

provider to exercise maximal autonomy that responds to evolving knowledge about

the environment without violating its probabilistic commitment, along with a family

of algorithms for the provider to construct policies that provably respect the semantics

and make explicit tradeoffs between computation cost and plan quality. The second

contribution consists of theoretical analyses and empirical studies that improve our

understanding of the recipient’s interpretation of the partial information specified in

a probabilistic commitment; the thesis shows that it is inherently easier for the re-

cipient to robustly model a probabilistic commitment where the provider promises

to enable preconditions that the recipient requires than where the provider instead

promises to avoid changing already-enabled preconditions. The third contribution

focuses on the problem of formulating probabilistic commitments for the fully coop-

erative provider and recipient; the thesis proves structural properties of the agents’

values as functions of the parameters of the commitment specification that can be

exploited to achieve orders of magnitude less computation for 1) formulating optimal

viii



commitments in a centralized manner, and 2) formulating (approximately) optimal

queries that induce (approximately) optimal commitments for the decentralized set-

ting in which information relevant to optimization is distributed among the agents.
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CHAPTER I

Introduction

The capability of making sequences of decisions to accomplish complex tasks is a

fundamental characteristic of both humans and artificial intelligent systems. Thus,

developing sequential decision makers, or agents, that are capable of accomplishing

tasks in uncertain, complex environments is a core research area in Artificial Intelli-

gence (AI). Agent-based systems, which are designed to support intelligent decision

making, address many important AI applications, such as household robots, medical

diagnosis and treatment, online recommendation systems, video game AI, etc.

In multiagent systems, multiple agents make decisions in a distributed manner,

in the sense that each agent’s decisions are based on its local information, with lim-

ited or even no communication with others. When agents are purely selfish with

potential conflict of interests, each agent aims to find its optimal strategy given oth-

ers’ strategies. This is the scenario that is commonly studied in game theory. This

thesis focuses on a different situation in which agents’ interests are (at least par-

tially) aligned, so that they have incentives to cooperate on shared goals that require

collective efforts. Successful cooperation often requires coordination among agents,

especially when agents are interdependent in the sense that one agent’s actions will

not yield desired outcomes unless other agents act in concert. Coordination can be

best achieved by a centralized decision maker that can directly control all agents.

However, the distributed nature of multiagent systems often precludes that, making

multiagent coordination a challenging problem.

This thesis focuses on the two-agent coordination problem where one agent de-

pends on the other to achieve goals. In such a dependency, successful coordination

requires the agent that is depended on to provide some guarantee on the outcomes

of its actions, so that the other agent can plan its own actions accordingly. When

a centralized decision maker is precluded, how can the two agents be coordinated in

a distributed manner? Commitments in a multiagent system capture relationships
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between two agents, and thus can be used to achieve successful coordination for such

dependencies. By making a commitment, the depended-on agent probabilistically

guarantees to bring about outcomes that the other agent needs. In this thesis, we

refer to the agent that makes a commitment as the commitment provider, and to

the other agent as the commitment recipient. A commitment decouples the plan-

ning between the provider and the recipient. The provider can freely exercise its

individual autonomy as long as its actions are in accordance with the commitment,

and the recipient autonomously plans its own actions with the expectation that the

commitment will be realized. Other than the commitment, neither agent needs to

take into account the details of the other agent. This decoupling effectively divides

the coordination problem into two independent subproblems, making commitments

a flexible and scalable framework for multiagent coordination.

Due to their efficacy, commitments are pervasive both in human society and among

artificial intelligent agents. Drivers use turn signals as commitments to changing lanes

shortly, so that other drivers can react safely. When a doctor is treating a patient, the

(perhaps implicit) commitment by the doctor is to cure the patient. As an instance

in artificial intelligence systems, consider a rover sent by a spacecraft to collect rocks

on the surface of Mars. After collection, the rover should deliver the rocks to a base

station, where the spacecraft will pick up the rocks and send them back to Earth.

The rover can make a commitment that specifies the time it will arrive at the base

station, so that, instead of staying idle, the spacecraft can be occupied with other

missions before the time the rover commits to. Commitments can also exist between

humans and artificial agents. Consider another example, in which a household robot

is washing dishes while its human user has asked it to make a cup of coffee in 5

minutes. The request from the human can be modeled by the robot as a commitment

it has made. If the robot can finish the ongoing dishwashing task quickly enough,

it might want to finish it first before making the coffee; otherwise, the robot should

pause and fulfill its commitment first. In a more complicated scenario, if there is no

clean cup at the moment, the robot might need to pause immediately and clean a

cup first. By modelling and reasoning with commitments it has made, the robot can

efficiently and reliably meet the human user’s requests.

1.1 Problems and Contributions

Although a commitment framework is a general notion for multiagent coordina-

tion, to make it useful, computational models of commitments are needed to address
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challenges that arise from inherent uncertainty in the agents’ environment. This

section introduces the core problems of interest in the commitment framework, and

summarize the contributions of this thesis that solve these problems.

The outcome of actions might be uncertain, immediately giving rise to a challenge

for the commitment provider. We say that a commitment is realized if the provider

has successfully brought about the outcome specified in the commitment. Due to

the uncertainty in the outcome of actions, the provider might still fail to realize the

commitment despite its best effort. Therefore, such uncertainty might preclude the

perfect guarantee that a commitment can be surely realized. In the doctor-patient

commitment, for instance, the prescribed treatment might not be effective for the

patient, despite that it is effective for most other people. In the rover-spacecraft

commitment, the extreme weather on Mars might be so impeding that the rover can

be delayed on its way to the base station. Under the uncertainty about the outcome

of the provider’s actions, how can the provider be trusted by the recipient if the

commitment cannot be surely realized, and how should we specify such uncertain

commitments to facilitate coordination between the agents?

To answer such questions, people have framed the uncertainty of actions’ out-

comes using probability models, such as the Markov Decision Process (MDP), which

is going to be reviewed in Section 2.1, and have developed the notion of probabilistic

commitments this thesis adopts [XL00, WD07, BLG10]. In MDPs, we assume that

the possible outcomes of actions are known, and the likelihood of each outcome is

quantified with some probability. Thus, a commitment can be associated with a prob-

ability that quantifies the likelihood of the commitment being realized, which defines

a probabilistic commitment. The provider can be trusted to adhere to a probabilistic

commitment if it takes a course of action that would have realized the commitment

with sufficient likelihood, even if in a particular instance the specified outcome was not

realized. In the doctor-patient commitment, for instance, the doctor could be deemed

to adhere to the commitment in a trustworthy manner if the prescribed treatment is

appropriate for the patient’s condition, even if the condition may not end up being

improved. Moreover, by using a probability to quantify the provider’s action outcome

uncertainty, the commitment gains predictive value for coordination with the recip-

ient, because the recipient can predict the likelihood of possible outcomes, plan to

exploit the outcome of the commitment being realized, and at the same time prepare

against the opposite outcome.
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Contribution 1 - Trustworthy Adherence to Probabilistic Commitments

After making a probabilistic commitment, the provider exercises its own autonomy

to maximize its own utility as long as it takes a course of action that realizes the

commitment with a probability that is at least what was promised. The provider

can solve this commitment-constrained planning problem offline if it has a model of

its environment, which computes the probability of realizing the commitment for any

course of action, along with the utility associated with the course of action. In general,

however, the provider only has partial knowledge about its environment at the time of

making a commitment, and thus it is uncertain about the model it needs for planning;

as the provider interacts with its environment after making the commitment, it can

obtain information to refine the model. The refined model might reveal that the

commitment, already agreed to, is more/less preferable or more/less possible for the

provider to realize. When the Mars rover makes the commitment, for instance, it

might be uncertain at the beginning about how the weather on Mars can change over

time, and it is also uncertain about which areas on Mars have more valuable rocks to

collect. The rover’s uncertainty will be reduced when it actually explores Mars after

the commitment is already made: it could be that the weather suddenly turns worse,

increasing its difficulty to move to the base station, or the rover could discover that a

remote area has more valuable rocks, thus adjusting its plan to visit that area. The

uncertainty about the model gives rise to a problem for the commitment provider.

What is the semantics of a probabilistic commitment, if at the time of making it the

provider is uncertain about how likely its course of action would be to realize it? How

can the provider respond to its evolving knowledge about the environment model to

maximize its utility without violating its probabilistic commitment?

The first contribution of this thesis, based on joint work with Edmund Durfee and

Satinder Singh [ZDS+16, ZSD17, ZDS20b], generalizes the framework of probabilistic

commitments to situations where the provider has Bayesian uncertainty about its

preferences and/or the environment dynamics at the time it makes a probabilistic

commitment. Crucially, in such a setting the provider expects to learn information

in the midst of execution that improves its knowledge about how preferable and/or

possible it is to realize the commitment. This thesis develops a formal semantics

that builds on the novel perspective that the provider, under the Bayesian model un-

certainty, should fulfill the commitment’s probabilistic guarantee with respect to its

Bayesian prior. This semantics equips the provider with the flexibility to respond to

its evolving uncertainty while still preserving the provider’s trustworthiness that se-

cures effective coordination with the recipient. It is the first prescriptive commitment
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semantics under decision-theoretic model uncertainty. In an illustrative domain, we

compare it to several alternative semantics in related work and show how our prescrip-

tive probabilistic commitment semantics allows agents to achieve better coordination

than these alternatives.

Further, this thesis develops a family of methods for the provider to construct

policies that provably respect the semantics. These methods use novel techniques that

implement parametrized lookahead and online iterations to make it practical for the

provider to plan with its evolving posterior in a careful way that provably fulfills

the commitment’s probabilistic guarantee. In several classic planning domains under

model uncertainty, we show that these methods are able to strike a balance between

computation cost and plan quality. The techniques developed in the methods are well

suited for a wide range of settings where an agent is learning about the environment to

maximize its value while its behavior is regulated by predefined constraints, including

but not restricted to probabilistic commitments.

Contribution 2 - Robust Interpretation of Probabilistic Commitments

Another major challenge for the probabilistic commitment framework comes from

the other end of a commitment, which is the recipient. Conditioning on the provider’s

adherence to the commitment, the recipient aims to find its own action selection policy

that is best aligned with its own interests. As the provider’s guarantee is in general not

perfect (the probability of realizing the commitment is less than one), the recipient’s

action selection policy should exploit the likely outcome that the commitment will be

realized, while at the same time prepare against the possibility that the commitment

will not. Moreover, even when the provider realizes the commitment, the provider

might be unable to specify the exact timing of the realization, as it responds to its

evolving knowledge about the environment.

For the second contribution, this thesis formally analyzes alternative strategies the

recipient can use to plan its action selection policy for the commitment’s uncertain

outcomes. Specifically, given a probabilistic commitment, there is a set of candidate

behaviors of the provider that respect the commitment semantics, including various

timings of realizing the commitment, and the possibility that the commitment will

not be realized, and the recipient is uncertain about which of these behaviors the

provider will eventually follow. To deal with such uncertainty for the recipient, this

thesis considers alternative strategies to model a candidate behavior of the provider,

which is then used for the recipient’s planning. To compare the performance between

alternative strategies, this thesis develops a novel notion of suboptimality that quan-
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tifies loss in plan quality against the provider’s possible behaviors in the candidate

set.

To better analyze the recipient’s alternative strategies, this thesis further makes

a clear distinction between two types of commitment by formally defining them in

the probabilistic commitment framework. Specifically, we are concerned with com-

mitments of achievement, where the provider commits to enabling a precondition

needed by the recipient, and also commitments of maintenance, where the provider’s

commitment is instead to avoid changing a precondition that is already enabled for

the recipient. This thesis is the first to give formal definitions of the two types of

commitment in the probabilistic commitment framework.

With the novel notion of suboptimality and the formal definitions, this thesis

presents results showing that, despite strong superficial similarities between the two

types of commitment, there is an inexpensive strategy with low suboptimality for mod-

elling commitments of achievement, while no such strategy exists for maintenance.

The results are obtained from a combination of theoretical analyses on worst-case

suboptimality in an exemplar domain for the recipient, and empirical studies on the

suboptimality for rational commitments in that domain. These results assure us that

the recipient can robustly interpret achievement commitments, and thus the agents

can reliably coordinate well with them, while leaving the question open of how to

improve the representation and reasoning for coordination with maintenance com-

mitments. This is the second contribution of this thesis, based on joint work with

Edmund Durfee and Satinder Singh [ZDS18, ZSD20].

Contribution 3 - Efficient Formulation of Cooperative Commitments

With the prior contributions that apply to an arbitrary probabilistic commit-

ment, the third and final contribution of this thesis focuses on the question of what

probabilistic commitment the agents should agree upon. This thesis takes on this

question in the fully cooperative case where the objective is for the agents to agree

on a commitment that induces behavior that optimizes their joint performance. The

joint performance is measured by the sum of the provider’s value and the recipient’s

value of the commitment they have agreed on. As the third contribution, this thesis

solves the problem of how the agents can efficiently determine a commitment of high

joint performance in the setting where the information of the two agents is precisely

known to a centralized coordinator, and the setting where the information is dis-

tributed among the agents. This contribution is based on joint work with Edmund

Durfee and Satinder Singh [ZDS20a].
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Specifically, this thesis reveals structural properties of the agents’ values as func-

tions of the parameters of the commitment specification, where these properties can

be provably exploited to efficiently formulate optimal cooperative commitments in a

centralized manner. For the provider, this thesis proves the structural properties of

its commitment value function by analyzing the mathematical program that solves its

planning problem, where the commitment parameters appear as the program’s con-

straints. This novel angle of analyzing the commitment value allows us to show the

regularity of the provider’s value as a function the commitment parameters. For the

recipient, the structural properties of its commitment value function are proved by

establishing that the recipient’s robust interpretation defines its commitment value as

a linear function of probability. Excitingly, the structural properties for the two agents

are compatible in a way that the optimal cooperative commitment can be efficiently

formulated with a binary search procedure in the centralized setting.

Further, this thesis considers the decentralized setting in which information rele-

vant to optimization is distributed among the agents. It turns out that the structural

properties define a small number of commitments with potentially high summed value

of the two agents, which can be exploited to develop an efficient querying approach for

the agents to exchange information to converge on (approximately) optimal coopera-

tive commitments. Even on problem instances with randomly-generated MDPs that

have minimal structural assumptions, the method empirically proves to be orders of

magnitude more computationally efficient than several alternatives that are ignorant

of the structural properties. The properties reveal the structure of the commitment

space, and thus they not only lead to efficient solutions to the problems in this thesis,

but also provide insights to any problems involving optimization over the commitment

space.

1.2 Thesis Structure

Chapter II presents the technical background for this thesis, including the for-

mal notions of Markov Decision Processes (MDPs), Bayesian model uncertainty, and

probabilistic commitments. With the technical background, Chapter III formulates

the three problems of interest in this thesis, which we have introduced in Section 1.1,

in the context of related work. The three problems are solved in Chapters IV, V,

and VI, respectively, with the three core contributions unrolled in detail. Chapter

VII concludes this thesis with the emphasis of how the thesis work contributes to the

broader research community, and suggests future research directions.
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CHAPTER II

Background

In this chapter, we introduce the computational models this thesis uses for proba-

bilistic commitments and for the decision-making problems of both the provider and

the recipient.

2.1 Markov Decision Processes

We first provide background on the Markov Decision Process (MDP) [Put14],

which describes the interactions between a single agent and its environment. A finite

MDP is formally defined by a tuple M = (S,A, P, R,H) where

• State space S is a finite set of states that the agent might encounter.

• Action space A is a finite set of actions that are available for the agent.

• P : S ×A → ∆(S), where ∆(S) denotes the set of all probability distributions

over S, is the transition function. P (st+1|st, at) specifies the probability of

transitioning into state st+1 upon taking action at in state st.

• R : S ×A → R is the reward function. R(st, at) is the immediate reward upon

taking action at in state st. Note that we assume that the reward only depends

on st and at deterministically. In general, the reward may also depend on

st+1 and may even be stochastic. With respect to expected cumulative reward,

which we ultimately care about, this general setup can be reduced to our setup

by defining R(st, at) = E[rt+1|st, at], where rt+1 is the immediate reward upon

(st, at) that can be dependent on st+1 and stochastic.

• H is the decision horizon. This thesis considers the finite horizon case, in which

the agent interacts with the environment over a finite number, H, of transitions.
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With the horizon being finite, the state space is partitioned into disjoint sets by

the time step, S =
⋃H
t=0 St, and the agent starts in an initial state s0 ∈ S0. In this

thesis, the notation of state s implicitly specifies its time step (i.e. s ∈ St for some t),

and st explicitly specifies its time step. At each time step t = 0, 1, ..., H−1, the agent

takes an action at ∈ A in state st ∈ St, obtains a reward rt+1 = R(st, at), and transits

to a new state st+1 ∈ St+1 stochastically drawn from P (·|st, at), or st+1 ∼ P (·|st, at).
In this thesis, we consider the case in which the initial state is fixed, i.e. S0 = {s0}.

2.1.1 MDP Planning

A (stochastic) policy π : S → ∆(A) specifies a decision-making strategy for which

the agent chooses actions based on the current state s, i.e. a ∼ π(·|s). Starting in

initial state s0, a sequence of transitions (s0, a0, r1, s1, ..., sH−1, aH−1, rH , sH) is gener-

ated, which records the entire history up to horizon H. The record

ht = (s0, a0, r1, s1, ..., st−1, at−1, rt, st)

up to time t is referred to as history ht. The value function of π is V π
M(s) =

E[
∑H

t′=t+1 rt′|π, st = s] where t is such that s ∈ St. There always exists an optimal

policy, denoted as π∗M , that maximizes V π
M for all s ∈ S. Planning refers to the prob-

lem of computing an optimal policy with the MDP specification M = (S,A, P,R,H)

given.

There are several planning algorithms. Here we summarize one based on linear

programming (LP) [Put14]. Each policy π has a corresponding occupancy measure

xπ : S × A → [0, 1], where xπ(s, a) is the expected number of times action a will be

taken in state s over horizon H, starting in initial state s0:

xπ(s, a) = E
[
1{st=s,at=a}|s0, π

]
,

where t is such that s ∈ St, and 1E is the indicator function that takes value one if

event E occurs and zero otherwise. We will use shorthand notation x in place of xπ

when policy π is clear from the context. Policy π can be recovered from its occupancy

measure via

π(a|s) =
x(s, a)∑
a′ x(s, a′)

.

Figure 2.1 is the linear program that solves an MDP M . It introduces the occupancy

measure as decision variables, and the policy is constructed from the program’s op-
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max
x

∑
s,a

x(s, a)R(s, a) (2.1a)

subject to ∀s, a x(s, a) ≥ 0; (2.1b)

∀s′
∑
a′

x(s′, a′) =
∑
s,a

x(s, a)P (s′|s, a) + δ(s′, s0). (2.1c)

Figure 2.1: The linear program for MDP planning.

timal solution. Constraints (2.1b) and (2.1c) guarantee that x is a valid occupancy

measure, where δ(s′, s0) is the Kronecker delta that returns 1 when s′ = s0 and 0

otherwise. The expected cumulative reward can be expressed using x in the objective

function (2.1a).

2.2 Bayesian Model Uncertainty

For a single agent, it can solve its planning problem and find the optimal policy

if it knows precisely its MDP tuple M . In this thesis, we will also consider a more

realistic scenario where the agent has uncertainty about the transition and reward

functions of its MDP. This type of uncertainty is referred to as model uncertainty.

Formally, we will consider the Bayesian setting in which the agent’s true MDP is

one out of K possible MDPs drawn from a known prior distribution µ0, where all

MDPs share identical state and action spaces but possibly different transition and

reward functions, and the state and the reward are fully observable during execution.

Thus, the environment with Bayesian model uncertainty is formally defined by the

tuple (S,A, {Pk, Rk}Kk=1, s0, µ0, H). The agent’s objective under Bayesian model un-

certainty is to maximize its initial state value with respect to the prior. For policy π,

its value for initial state s0 under Bayesian model uncertainty is defined as

V π
µ0

(s0) = EMk∼µ0
[
V π
Mk

(s0)
]

where Mk is the k-th candidate MDP, and the expectation is with respect to prior

µ0. During execution, the agent can use the knowledge provided by the history so far

to infer which MDP is more/less likely to be the true MDP it is facing. Therefore,

to maximize value V π
µ0

(s0), the agent’s policy should choose actions depending on
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the history (instead of only on the current state). We use π(at|ht) to denote the

probability of choosing action at given history ht up to time t when following a

history-dependent policy π starting from s0. We refer to a policy that chooses actions

only depending on the current state, as those discussed in Section 2.1, as a Markov

policy. With no model uncertainty, there is no loss of optimality by restricting to

Markov policies.

2.3 Probabilistic Commitments

Using MDPs, this section formulates the dependency between the provider and

the recipient established by a probabilistic commitment.

2.3.1 Provider-Recipient Decision-Making Model

This thesis uses MDPs to model the decision-making problems for both the provider

and the recipient, denoted by superscripts p and r, respectively. Thus, the provider’s

MDP is Mp = (Sp,Ap, P p, Rp, Hp) with initial state sp
0, and the recipient’s MDP is

M r = (Sr,Ar, P r, Rr, Hr) with initial state sr
0. We assume the two MDPs share the

same horizon H = Hp = Hr. Intuitively, the provider’s actions not only determine

the transitions in its own MDP but also influence the transitions in the recipient’s

MDP, and therefore, by making a commitment, the provider can promise to bring

about transitions desired by the recipient with some probability.

To formulate such a coupling between the two MDPs, this thesis adopts the

Transition-Decoupled Partially Observable MDP (TD-POMDP) model [WD07, WD10],

which assumes that states in each MDP can be factored into features, and models

the coupling as the dependency between shared state features. Specifically, both the

provider’s state sp and the recipient’s state sr can be factored into state features. The

provider can fully control its state, in the sense that the next provider state sp
t+1 is

entirely dependent on the current provider’s state and action (sp
t , a

p
t ), but not on the

recipient’s state or action. The recipient’s state can be factored as sr = (lr, u), where

lr is the set of all the recipient’s state features locally controlled by the recipient,

and u is the set of state features uncontrollable by the recipient but shared with the

provider, i.e. u = sp ∩ sr. Formally, the recipient’s transition function is factored as

P r = (P r
l , P

r
u):

P r
(
sr
t+1|sr

t, a
r
t

)
=P r

(
(lrt+1, ut+1)|(lrt , ut), ar

t

)
=P r

u(ut+1|ut)P r
l

(
lrt+1|(lrt , ut), ar

t

)
,
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where the transition dynamics of u, P r
u, is determined only by the provider’s policy

(i.e., it is not a function of ar
t). We refer to P r

u as the true influence that the provider

exerts on the recipient’s MDP.

2.3.2 Predictive Commitment Semantics

A probabilistic commitment is concerned with state features u that are shared

by both agents but only controllable by the provider. Intuitively, a probabilistic

commitment partially specifies how the provider will influence u’s dynamics P r
u , and

therefore can be exploited by the recipient to plan accordingly. Definition II.1 formally

gives the definition of a probabilistic commitment regarding the provider’s MDP Mp

and the recipient’s MDP M r.

Definition II.1. Regarding Mp and M r, a probabilistic commitment is formally

defined as a tuple c = (uc, Tc, pc):

• uc is the commitment value for features u.

• Tc is the commitment time.

• pc is the commitment probability.

As a predictive semantics, the commitment probability pc gives a lower bound on

how likely the shared state features u will be taking the value of uc at time Tc, i.e.

Pr(ut=Tc = uc) ≥ pc, based on whatever policy the provider is following.

With its predictive semantics, the probabilistic commitment quantifies the pos-

sibility that the commitment can be unrealized due to action outcome uncertainty.

For example, actions might stochastically have irreversible outcomes from which the

commitment value is unrealizable.

2.3.3 Commitment-based Multiagent Coordination

Since the commitment is concerned with the shared state features, it can be used

to achieve coordination among the two agents. With the commitment’s predictive

semantics, the recipient can make useful predictions about the provider’s influence

and plan accordingly, and the provider can plan its policy to improve its own value

as long as it meets the commitment’s probabilistic guarantee. Thus, high-quality

coordination can be achieved if the two agents agree on an appropriate commitment.

In the next chapter, we will formulate problems solved in this thesis that arise in the

commitment-based multiagent coordination framework.
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Before moving on to the next chapter, we here review alternative frameworks for

multiagent coordination by listing below the strengths of commitment-based coordi-

nation compared with these alternatives.

Improved scalability over centralized multiagent planning. Researcher have

developed a variety of decision-making models that describe the interaction between

multiple agents via shared state features, such as the Multiagent Markov Decision

Process (MMDP) introduced in [Bou96], and the Decentralized MDP (Dec-MDP)

introduced in [BGIZ02], which can be viewed as a variation and a generalization of

the TD-POMDP model this thesis adopts, respectively. For these models, several

solution methods have been proposed that either solve multiagent planning exactly

or approximately. Optimal solution methods include extensions of dynamic program-

ming [HBZ04], heuristic search [SCZ05], and iterative policy optimization [BAHZ09].

Due to the intractable complexity of these models [BGIZ02], the scalability of these

optimal methods is limited. To a great extent, the successes in scaling multiagent

planning to more than two or three agents are achieved by approximate solution

methods that rely on the use of decoupled solution methods that reason about and

optimize each agent’s individual policy locally, in contrast to centralized methods that

optimize all agent’s policies in combination. For example, [NTY+03] develops Joint

Equilibrium-based Search for Policies (JESP) that converges to a set of equilibrium

local policies in which each policy is the best response given the others. Commitment-

based coordination is one of such decoupled methods because both the provider and

the recipient only optimize their local policies upon an agreed commitment, and thus

enjoys improved scalability over centralized multiagent planning.

Reduced complexity by interaction abstraction. In many decoupled solution

methods, like JESP, each agent needs to have others’ local models and/or policies in

detail in order to optimize its own decisions. In contrast, for the provider-recipient

interaction, either agent only needs to reason about the shared state feature for co-

ordination, and not other details, and this is exactly what the commitment is used

for. Thus, compared with alternative decoupled solution methods, the commitment

provides an abstraction of the multiagent interaction in a way that further reduces

the complexity of coordination.

As a quick summary, the probabilistic commitment abstracts the interaction be-

tween the two agents by partially specifying the provider’s influence on the shared

state features, and thus decouples the planning of the two agents and further reduces
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the complexity of coordination. Crucially, the commitment abstraction specifies the

provider’s influence only at a single time step Tc. How is it compared to a more de-

tailed specification that specifies the influence at multiple time steps? For example,

prior work has proposed to instead fully specify the provider’s influence on the shared

state features at every time step [WD10, OWK12]. We next compare the commit-

ment abstraction with more detailed specifications. There are two clear advantages of

using a more detailed specification over the single time step commitment abstraction:

• First, as the recipient gets more information about the influence at multiple time

steps, it can predict the provider’s behavior with more certainty, and plan with

more confidence. In contrast, for the single time step commitment abstraction,

the recipient can only estimate the values of influence at those unspecified time

steps, and inaccurate estimation can sometimes yield a policy of lower quality.

• Second, a specification that specifies the influence at multiple time steps can

be viewed as an generalization of the single time step commitment abstraction,

which can specify only one time step and leave other time steps underspecified.

Thus, advantages of the commitment abstraction can in principle be preserved

in more detailed specifications.

Despite the two advantages of more detailed specifications, in many cases the com-

mitment abstraction is still preferred due to the following reasons.

Computational efficiency for optimization. It is relatively easy to determine

a commitment that best coordinates the provider and the recipient, by identifying a

single time step as the commitment time, along with a probability. In contrast, it can

be computationally challenging to optimize a multiple time step specification due to

the combinatorics. When optimizing for coordination, the agents might prefer to use

the commitment abstraction simply for computational efficiency.

Flexibility for the provider under model uncertainty. As we will formally de-

scribe later in Chapter III, in this thesis we consider the setting in which the provider

has model uncertainty as defined in Section 2.2, and thus would need flexibility to

respond to its evolving knowledge about the model by adopting a history-dependent

policy that equivalently can shift from one Markov policy to another. For a detailed

specification, like the specification that fully specifies the influence at every time step,

it is possible but not convenient for the provider to do Markov policy shifting without

violating the detailed specification. In Chapter IV, we will see empirical evidence that
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shows how the provider’s value is greatly limited without such flexibility. In contrast,

the provider can easily gain more flexibility with the less detailed commitment ab-

straction, and Chapter IV develops methods for the provider to exploit the flexibility

that comes with the commitment. Thus, the provider under model uncertainty would

generally prefer the commitment abstraction.

Being efficiently and robustly modelled by the recipient. While the commit-

ment abstraction gives the provider flexibility, it imposes uncertainty on the recipient

about the exact specification of the influence, including the exact probability of the

commitment being realized at both the commitment time and other time steps. In

order to plan, the recipient’s estimation on the influence with such uncertainty can

yield low-quality policies. Chapter III formulates the problem that arises from such

uncertainty on the recipient, and Chapter V shows that, in many cases, it is possible

for the recipient to estimate the influence in a efficient and robust manner to yield

a high-quality policy no matter what influence the provider ultimately exerts, and

therefore the recipient’s inefficiency induced by the commitment’s partial specification

is nonetheless outweighed by the provider’s flexibility gained from the commitment’s

partial specification.

Although this thesis focuses entirely on the single-time step commitment abstrac-

tion, many of the contributions, especially in Chapters IV and VI, can be extended

to multiple time step abstractions. Chapters IV develops a family of methods based

on mathematical programming that solve the provider’s planning problem for a given

commitment. The mathematical programming techniques can be straightforwardly

extended to multiple time step abstractions by incorporating the specification at ad-

ditional time steps as additional constraints to the mathematical programs. Chapters

VI develops efficient algorithms for optimizing a commitment to induce optimal co-

operation between the two agents. These algorithms can be used as subprocedures

for optimizing multiple time step abstractions, if the optimization is performed on a

single time step at a time and alternates between time steps. These extensions to

multiple time step commitments are left for future work.
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CHAPTER III

Problem Formulation

With the provider’s and the recipient’s decision-making problem described using

two coupled MDPs as in Chapter II, probabilistic commitments that are concerned

with the shared state features that couple the MDPs provide a framework for co-

ordination. The commitment predictive semantics suggests a two-phase procedure

for coordination, which we describe now. In the first phase of commitment formula-

tion, the two agents agree on a probabilistic commitment, which is determined by a

centralized coordinator or as an outcome of communication between the agents in a

decentralized manner. In the second phase of commitment execution, the provider

and the recipient separately compute and follow their plans with respect to the com-

mitment, and in this thesis we assume there is no communication in this phase. For

the commitment execution phase, specifically, the provider should adhere to the com-

mitment by computing and following a policy that will realize the commitment with

at least the promised probability, as described in Section 2.3, because this allows the

recipient to plan its policy accordingly by predicting the provider’s influence on the

shared state features. In this chapter, we formulate the three problems relating to

the three major contributions of this thesis, all of which arise from the two-phase

procedure of the commitment-based coordination.

The first problem is regarding the provider’s commitment execution for a given

probabilistic commitment, which is formulated in Section 3.1 and solved in Chapter

IV. The second problem is regarding the recipient in the commitment execution phase,

which is formulated in Section 3.2 and solved in Chapter V. The third problem is the

commitment formulation, which is formulated in Section 3.3 and solved in Chapter

VI.
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3.1 The Provider’s Adherence under Model Uncertainty

The predictive commitment semantics from prior work defined in Section 2.3 can

fail to match commonsense notions of what making a commitment means, since it

does not in any way impede a provider from unilaterally changing its commitment

whenever it chooses to alter its policy. Therefore, in this thesis, we define and adopt

a prescriptive semantics for a probabilistic commitment. Definition III.1 formally

gives the prescriptive commitment semantics for the provider that knows precisely its

MDP.

Definition III.1. The prescriptive probabilistic commitment semantics for proba-

bilistic commitment c = (uc, Tc, pc) requires that the commitment provider, knowing

its MDP, is constrained to follow a Markov policy πp, such that

Pr(uc ∈ sp
Tc
|sp

0; πp) ≥ pc. (3.1)

By Equation (3.1), our prescriptive probabilistic commitment semantics is clear:

the provider is constrained to follow a policy, such that, starting at the initial state sp
0,

the probability of being in a state with commitment value uc at the commitment time

Tc is at least the commitment probability pc. If the provider follows such a policy,

then by Definition III.1 we say it adheres to its commitment in a trustworthy manner.

Thus, adhering to a commitment is entirely under the provider’s control, despite the

fact that the commitment might be unrealized due to action outcome uncertainty.

To satisfy the prescriptive semantics, the provider should only agree to a com-

mitment if it can find a policy with a sufficiently high probability (≥ pc) of realizing

the commitment. Formally, for a commitment c, let Πp
c be the set of all possible

provider’s policies that satisfy the commitment constraint (3.1), i.e.

Πp
c = {Markov policy πp : πp satisfies Equation (3.1)}.

We say commitment c is feasible if and only if Πp
c is non-empty. Note that since

commitment constraint (3.1) is an inequality, for a given commitment time Tc, there

is a maximum feasible probability p(Tc) such that the commitment is feasible if and

only if pc ∈ [0, p(Tc)]. This maximum feasible commitment probability p(Tc) can

be computed by solving the provider’s MDP with the reward function replaced with

a simple reward function that gives +1 reward for states where the commitment is

realized at Tc and 0 otherwise. This is because maximizing this reward is equivalent to

maximizing the probability of realizing the commitment at time step Tc, i.e., uc ∈ sp
Tc

,
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and thus the optimal initial state value is the maximum feasible probability p(Tc).

For trustworthy adherence to a given probabilistic commitment c, the provider

can choose any policy in the commitment-constrained policy set Πp
c to respect the

commitment’s prescriptive semantics. The provider would choose the optimal policy

in Πp
c that maximizes its own value of the initial state, i.e.

vp(c) = max
πp∈Πp

c

V πp

Mp(sp
0). (3.2)

We refer to vp(c) as the provider’s commitment value function. This commitment-

constrained optimization problem is illustrated in Figure 3.1.

Provider’s Adherence under Model Uncertainty
Problem Formulation

𝜋!,∗
𝜋$
!,∗

Π$
!

max
!

𝐸"![ value 𝜋 ]

i. subject to  𝐸"![ 𝑝 𝜋 ] ≥ 𝑝#

ii. where 𝜋: (𝑠$, 𝜇$) ↦ 𝑎$

1

As 𝜇$ evolves, how to characterize Π# and find 𝜋#∗ efficiently?Figure 3.1: Illustration of the provider’s commitment-constrained policy optimization
problem. The dashed circle denotes the provider’s policy set, in which the optimal
(unconstrained) policy is denoted as πp,∗. The solid circle denotes the commitment-
constrained policy set Πc for a commitment c, in which the optimal commitment-
constrained policy is denoted as πp,∗

c ∈ Πc as the solution of problem (3.2).

As the provider knows precisely its MDP Mp, in principle, it can enumerate poli-

cies in Πp
c , compute their values, and choose the one that yields the most value.

In practice, prior work has developed more efficient methods for this commitment-

constrained policy optimization. Specifically, the provider’s planning problem (3.2)

can be solved with the linear program in Figure 3.2 [Alt99, WD07], which is adapted

from the program in Figure 2.1 that solves (unconstrained) MDP planning. Specif-

ically, the decision variable xp is the provider’s occupancy measure; objective (3.3a)

and constraints (3.3b), (3.3c) are counterparts of (2.1a), (2.1b), and (2.1c), respec-

tively; and constraint (3.3d) expresses the commitment constraint of Equation (3.1).

In this thesis, we consider the scenario in which the provider, at the time of making

a probabilistic commitment, has the Bayesian model uncertainty with prior µ0 over

K candidate MDPs, as described in Section 2.2, and thus it is not able to directly

perform the commitment-constrained policy optimization in Equation (3.2). An im-

mediate question arises due to the provider’s model uncertainty, and especially due

to its uncertainty about the transition function: What does it mean for the provider
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max
xp

∑
sp,ap

xp(sp, ap)Rp(sp, ap) (3.3a)

subject to ∀sp, ap xp(sp, ap) ≥ 0; (3.3b)

∀sp′
∑
ap′

xp(sp′, ap′) =
∑
sp,ap

xp(sp, ap)P p(sp′|sp, ap) + δ(sp′, sp
0);

(3.3c)∑
spTc3uc

∑
ap

xp(sp
Tc
, ap) ≥ pc. (3.3d)

Figure 3.2: The linear program for the provider’s planning.

to adhere to its probabilistic commitment in a trustworthy manner, if the provider

cannot be certain about the probability of its policy realizing the commitment at

the time of making it? This question urges us to develop prescriptive semantics for

probabilistic commitments that can be generalized to model uncertainty. This thesis

develops such a prescriptive semantics, formally defined in Definition III.2, that gen-

eralizes the semantics in Definition III.1 to Bayesian model uncertainty with two key

modifications: the provider is allowed to follow a general history-dependent policy

(instead of only a Markov policy), and it incorporates the Bayesian prior into its

guarantee on probabilistically realizing the commitment.

Definition III.2. After making commitment c = (uc, Tc, pc) under Bayesian model

uncertainty with prior µ0, the provider is constrained to follow a (in general) history-

dependent policy πp, such that

Pr
Mp
k∼µ0

(uc ∈ sp
Tc
|sp

0,M
p
k ; πp) ≥ pc. (3.4)

where Mp
k is the provider’s k-th candidate MDP.

In words, knowing that it is facing an MDP drawn from prior µ0 over possi-

ble MDPs (Mp
k ∼ µ0), the provider is constrained to follow a (in general) history-

dependent policy πp, such that, starting at the initial state sp
0, the probability of

realizing the commitment is at least the commitment probability pc. The problem

formulated here of adhering to a probabilistic commitment under model uncertainty

is novel, and this thesis contributes the first prescriptive semantics for probabilistic

commitments under model uncertainty.
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With the novel commitment semantics (3.4) for Bayesian model uncertainty, the

set of commitment-constrained policies can be enlarged to include history-dependent

policies. With slight abuse of notation, we use

Πp
c = {History-dependent policy πp : πp satisfies Equation (3.4)}.

to denote these commitment-constrained policies, and we say commitment c is feasible

(under model uncertainty) if and only if Πp
c defined as above is non-empty.

As we have discussed in Section 2.2, including history-dependent policies enables

the provider to respond to its evolving knowledge about the environment, thus im-

proving its value. We are interested in finding a policy that maximizes the initial

state value with respect to the prior, while satisfying the constraint of a given feasible

probabilistic commitment, which is formally formulated as the following problem:

arg max
πp∈Πp

c

V πp

µ0
(sp

0).

Solving this problem involves two main challenges. First, it is non-trivial to char-

acterize Πp
c in a computationally-efficient manner that eases the policy optimization

step. Second, under model uncertainty, finding the optimal policy (even without the

constraint prescribed by the commitment semantics) requires planning with histories.

This imposes additional computational difficulty, since the space of histories grows

exponentially with the time horizon.

Related Work

There are alternative computational methods to the probabilistic commitment

framework to model commitments among agents. A comprehensive overview of

research into using formal (temporal and modal) logic to characterize and oper-

ationalize commitments has appeared [Sin12], and is based on literature in this

field (e.g., [CL90, Cas95, Sin99, MH03, CMMT13, ASBSEM14]). These represen-

tations support important objectives like the provable pursuit of mutually agreed-

upon goals, and codifying conventions and protocols for managing uncertainty (e.g.,

[Jen93, XS01, Win06]). As an example of a convention, an agent that determines

that it will not keep a commitment might be obligated to inform dependent agents

[Jen93].

Some of the logical representations above (e.g., [Jen93]) enumerate conditions

where an agent is allowed to abandon its local component of a mutual goal, where
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in general these conditions are either: (1) when the agent believes it is impossible to

achieve its local component; (2) when the agent believes the mutual goal is not worth

pursuing anymore; or (3) when the agent believes one or more of the other agents

participating in the mutual goal have abandoned their local components of it. These

conditions are logically reasonable, but fail to impose a prescriptive semantics for the

agent to use in making local decisions. For example, to satisfy the first condition, is

an agent never allowed to take an action that has even a small chance of rendering

its local component unachievable? What if all of its actions have such a chance? For

the second condition, if an agent can unilaterally drop a commitment whenever its

preferred goal changes, then has it really committed in the first place?

To make an agent more predictable, a commitment can be paired with conditions

under which it is guaranteed to hold [Raf82, Sin12, VKP09, AGJ07]. In transactional

settings, for example, an agent could commit to providing a good or service on the

condition that it first receives payment. However, if conditions can be over any-

thing, then they can make commitments worthless because a commitment might be

conditioned simply on no better option coming along. Sandholm and Lesser [SL01]

recognized the general impracticality of enumerating all the conditions that might

affect commitment adherence, and, even if the conditions could be specified, in veri-

fying they hold in a distributed setting. Their solution was a contracting framework

where a decommitment penalty is associated with each commitment, so as to accom-

modate uncertainty but discourage frivolous decommitment. However, even though

the recipient will know it will be compensated if the commitment is abandoned, it in

general will be unable to know how likely that will be, since it cannot look inside the

provider to discern how likely it is that its actions to achieve the commitment will

fail, or that it will decide that other goals should take priority.

Therefore, an alternative to a decommitment penalty is for the commitment

provider to summarize the likelihood that its commitment’s various conditions will

jointly hold (e.g., a factory’s suppliers will meet deadlines, its workers will not strike,

its shippers will fulfill orders, etc.) into a summary probability. Hence, a probabilistic

commitment [XL00, BLG10, WD09] is a form of conditional commitment where the

details of the conditions have been replaced by an estimate of the probability that

they will hold. Xuan and Lesser [XL00] have explained how probabilistic commit-

ments improve joint planning by allowing agents to find policies that are responsive

to possible contingencies, including even unlikely ones, and computing appropriate

alternative courses of action as the probabilities for commitments being met change.

A more myopic (and more tractable) variation of this approach was developed for
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the DARPA Coordinators program [MSB+08], where instead of anticipating ways

that probabilities might change, the recipient would revise its plans only when the

commitment provider would send an updated probability of the commitment being

satisfied. These prior approaches however only treat commitment probabilities as

predictions about how the provider’s plan will affect recipients. In contrast, our goal

is that probabilistic commitments not only provide such predictive information to

the recipient, but also impose prescriptive semantics on the provider to influence its

behavior into a good faith effort towards making those predictions come true.

Our work, summarized in this thesis, is the first to develop prescriptive commit-

ment semantics under decision-theoretic model uncertainty, along with algorithms

that operationalize this semantics for faithful commitment pursuit. The model uncer-

tainty that we consider in this thesis is a form of partial observability, and thus the al-

gorithms we develop can be viewed as extensions of existing techniques for solving (un-

constrained) partially-observable Markov decision problems [SS73, KLC98, Han99].

Our commitment semantics of Equation (3.4) prescribes additional constraints to the

original planning problem, and we develop algorithms that exactly meet the commit-

ment constraints under partial observability. Existing work has developed methods

for constrained decision-theoretic planning without model uncertainty [Alt99], or has

solved the constraints only approximately [PMP+15, STW16]. Others have also devel-

oped planning approaches for given commitments formulated using formal logic, which

mainly rely on techniques of heuristic search (e.g., [TMS13, MTYS15, MMS+18]).

These approaches usually amount to enumerating courses of action in search for con-

ditions that ensure the feasibility of the commitments. For example, Meneguzzi et al.

[MMS+18] develop a depth-first search algorithm to generate realizable enactments

of the commitment. These logic-based planning techniques deal with the provider’s

uncertainty about the outcomes of its actions, while we also consider the provider’s

uncertainty over the rewards and dynamics of its environment.

3.2 The Recipient’s Robust Interpretation

As we have discussed in Section 2.3, the commitment specification (uc, Tc, pc) pro-

vides partial, and also the only, information the recipient has about the provider’s

influence P r
u. As elaborated in Section 2.3.3, while specifying just a single time-

probability constraint for the provider gives it more flexibility than a more detailed

specification, doing so also increases the uncertainty for the recipient. This thesis

considers a popular procedure in the literature [WD07, WD10, ZDS+16] for the re-
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cipient to exploit such partial information to plan, which we describe next. The

recipient adopts a strategy, denoted as P̂ r
u(·), that maps a given probabilistic com-

mitment c to P̂ r
u(c) as an approximation of the provider’s true influence P r

u, which

is then used for planning [WD07, ZDS+16]. Formally, given P̂ r
u(c), let M̂ r(c) = (Sr,

Ar, P̂ r(c), Rr, Hr) be the recipient’s approximate model that differs from M r only in

terms of the dynamics of u, i.e. P̂ r(c) = (P r
l , P̂

r
u(c)). The recipient then plans in

M̂ r(c):

vr(c) = max
πr

V πr

M̂r(c)
(sr

0). (3.5)

We refer to vr(c) as the recipient’s commitment value function. For the remainder of

this section, we will abbreviate P̂ r
u(c), P̂

r(c), and M̂ r(c) as P̂ r
u, P̂

r, and M̂ r whenever

the dependency on commitment c is clear from context.

We are interested in the quality of the policy computed from approximate influence

P̂ r
u, i.e. π∗

M̂r
as the solution to Equation (3.5), when evaluated in M r with the (true)

influence P r
u. Formally, the gap between the optimal value for M r and the value

of policy π∗
M̂r

evaluated in M r is defined as the suboptimality of the approximate

influence, i.e.

Suboptimality
(
P̂ r
u(·);P r

u, c
)

= V ∗Mr(sr
0)− V

π∗
M̂r

Mr (sr
0).

Since the recipient is uncertain about P r
u because it is entirely determined by the

provider, the recipient should adopt a strategy P̂ r
u(·) that robustly induces low sub-

optimality for an arbitrary (P r
u, c) pair. This problem is referred to as the recipient’s

robust interpretation of the commitment. Specifically, this thesis studies the following

three notions of robustness:

1. Worst-case suboptimality. We are interested in finding a strategy P̂ r
u(·) that

induces low suboptimality for a worst (P r
u, c) pair, i.e.

min
P̂ r
u(·)

max
P r
u,c

Suboptimality
(
P̂ r
u(·);P r

u, c
)
.

2. Suboptimality for a general (P r
u, c) pair. We are interested in finding a strategy

P̂ r
u(·) that induces low suboptimality for a general (P r

u, c) pair which is drawn

from an underlying distribution, i.e.

min
P̂ r
u(·)

EP r
u,c

[
Suboptimality

(
P̂ r
u(·);P r

u, c
)]
.
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3. Suboptimality for a rational (P r
u, c) pair. We are interested in finding a strategy

P̂ r
u(·) that induces low suboptimality when the true influence P r

u is determined

by the provider’s optimal policy, and the commitment c is chosen to be either

a local or a joint value maximizer, i.e.

min
P̂ r
u(·)

EMp,Mr

[
Suboptimality

(
P̂ r
u(·);P r

u, c
)]
,

where P r
u is determined by π∗Mp , and c maximizes vp(c), vr(c), or vp(c) + vr(c).

In Chapter V, this thesis focuses on these notions of robustness for two types of

probabilistic commitment, achievement and maintenance, that are commonly studied

in the literature. In an achievement commitment, the provider promises to change the

shared state features of the state in a way desired by the recipient. In a maintenance

commitment, the provider instead promises not to change features that are already the

way the recipient wants them maintained. The chapter presents theoretical analyses

and empirical results showing that, perhaps surprisingly, despite strong similarities

in the provider’s modeling of the two types of commitment, there is an inexpensive

strategy for achievement that satisfies all the three notions of robustness for the

recipient’s interpretation, while no such strategy exists for maintenance.

Related Work

As we have discussed in Section 3.1, others have adopted alternative frameworks,

such as conditional commitments and contracting frameworks, for managing the un-

certainty when the commitment is being pursued. In this vein, there has been substan-

tial work for developing protocols for agents who are modeling and communicating

about commitments. The focus is on the lifecycle of a commitment, from its ini-

tial proposed creation, to the mutual agreement to adopt it, to determining whether

it has been fulfilled, to whether it is time to abandon it. Over the lifecycle, it is

important that interacting agents engage in a communication protocol that ensures

their beliefs about the status of a shared commitment are aligned. In this thesis,

we adopt the probabilistic commitment framework to study both achievement and

maintenance commitments, and focus just on the “detached” stage of the commit-

ment lifecycle where an agreed-upon commitment is being actively pursued, and the

pursuit requires a sequence of actions, where some might not have desired outcomes,

or an agent’s priorities could change in the midst of executing the sequence.

Even though the probabilistic commitment representations of, and reasoning meth-

ods for, achievement and maintenance are nearly identical, prior work has found it
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much harder to successfully coordinate for maintenance than achievement [CS08,

GMDB08, Hia09]. In the past, it has been assumed that the difficulty lies on the

provider’s side—that it might be inherently harder for a provider to find good poli-

cies that maintain a feature than to change it. However, in this thesis we claim

and justify that instead the challenge actually lies on the recipient’s side: that a

maintenance commitment is fundamentally harder for the recipient to interpret in

a robust manner than an achievement commitment is. In Chapter V, we substan-

tiate this claim theoretically and empirically. We begin by analyzing an intuitive

and straightforward strategy, adopted in previous work [WD07, WD10, ZDS+16],

where the recipient models an achievement commitment pessimistically by assuming

the feature will not (probabilistically) attain its desired value any earlier than the

commitment’s promised time. We show analytically that the worst-case suboptimal-

ity induced by such pessimism can be bounded fairly tightly. For the maintenance

counterpart, however, we show that no comparable pessimistic model, and hence no

bound on suboptimality, exists.

3.3 Efficient Formulation of Cooperative Commitments

In the previous two sections, we have formally defined the problems of the provider’s

adherence under model uncertainty and the recipient’s robust interpretation for an

arbitrary commitment, which arise from the commitment execution phase. In this

section, we turn to the earlier phase that formulates a commitment the two agents

agree on.

As will be formally stated in Chapter VI, the provider would prefer a weaker

commitment (e.g., lower commitment probability) to increase its value because the

prescriptive commitment semantics constrains its policy choice; on the other hand, the

recipient would prefer a stronger commitment (e.g., higher commitment probability)

since the outcome specified by the commitment is desired by the recipient. In this

thesis, we consider the scenario in which the two agents are cooperative and would

agree on the commitment that maximizes their summed commitment value:

max
c
vp(c) + vr(c).

Specifically, this thesis considers cooperative commitment formulation in both central-

ized and decentralized settings. In the centralized formulation process, there exists a

centralized coordinator that knows precisely the specifications of both agents’ MDPs,
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and aims to compute the optimal cooperative commitment that maximizes the joint

commitment value. Such a coordinator does not exist in the decentralized formulation

process, where neither agent has full knowledge about the other’s MDP.

The cooperative commitment formulation is an optimization problem over the

space of the commitment tuple c = (uc, Tc, pc). This thesis focuses on the optimization

over the joint space of (Tc, pc) ∈ [H]× [0, 1] with fixed uc, where [H] = {1, 2, ..., H}.
Formally, in the centralized setting, we aim to solve problem

max
c=(Tc,pc)∈[H]×[0,1]

vp(c) + vr(c)

with the provider’s MDP Mp and the recipient’s MDP M r fully known to the cen-

tralized coordinator, where we use abbreviation c = (Tc, pc) since uc is fixed. A näıve

strategy for solving the problem is to discretize the commitment probability space

[0, 1], and evaluate every commitment probability in the discretized probability space

for every commitment time. The finer the discretization is, the more commitments

are considered and the better the solution will be. At the same time, the finer the dis-

cretization, the larger the computational cost of evaluating every commitment in the

discretized commitment space. In Chapter VI, we prove several structural properties

of the joint space of [H] × [0, 1], which enable us to develop a centralized algorithm

that efficiently searches for the optimal commitment.

In the decentralized setting, we assume each agent fully knows its own MDP

but only partially knows the other’s MDP, and they aim to find a jointly-preferred

commitment via communication. As a communication scheme, we consider a querying

approach where one agent poses a query consisting of information about a set of

feasible commitments, and the other responds by selecting the commitment from the

set that has the highest joint commitment value. To limit costs for communication

and computation, the set of commitments in the query is small. A query poser

thus should optimize its choices of commitments to include, and the responder’s

choice should reflect joint value. In general, either the provider or recipient could

be responsible for posing the query. In this thesis, though, we always assign the

provider to be the query poser and the recipient to be the responder, because the set

of feasible commitments is known only to the provider. Since our aim in this thesis

is for the agents to successfully converge quickly, after just a single query-response

round, the responder’s selected commitment must be feasible, which means the poser

must only offer feasible commitments. Only the provider can do this. In Chapter VI,

we solve the provider’s querying problem of formulating a high-quality commitment
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query, such that the two agents will be able to agree on an approximately optimal

commitment after querying.

Related Work

In this work, we assume agents are coordinating through the commitment frame-

work. The commitment framework is general, in that it can support both self-

interested agents and cooperative agents. Much of the literature considers the self-

interested case, focusing on issues of the commitment lifecycle [DNS08, GLZ16,

POM17], and on managing reputation and establishing trust among agents [SS02,

CBG02, RHJ04, HJS06, PSM13, GBL+15].

When agents are cooperative, the focus of agreeing on a commitment shifts from

strategic reasoning to joint optimization. The agents want to form a commitment

to maximize the combined rewards of their plans. Of course, there is considerable

literature on cooperative multiagent planning focused exactly on the problem of max-

imizing joint reward [LR00, KK02, BGIZ02, NTY+03, PL05]. Of that literature, the

closest prior work to our problem of centralized commitment formulation is that of

Witwicki et al. [WD07, WD10, OWK12], whose approach exploited the asymmetric

influence relationship between an agent (in our terminology, the provider) that affects

the state of another, and an agent (the recipient) that relies upon the state changes.

That work showed how the agents could improve the efficiency when maximizing joint

reward by abstracting their policies into subsets.

In contrast to that work, and the larger literature on cooperative multiagent plan-

ning, cooperative agents that can only coordinate through commitments will gener-

ally achieve lower joint reward, because the commitment specification contains less

information than the specifications used in cooperative planning systems, as we have

discussed in Section 2.3.

When the commitment formulation process is decentralized, it will involve mes-

sage passing. The literature on message-passing search techniques is large (e.g.,

[Dec87, Dur99, GKP02, Rob04, BDAMY13]). The message passing between our

decision-theoretic agents serves the purpose of preference elicitation, which is typically

framed in terms of an agent querying another about which from among a set of choices

it most prefers [CKP00, Bou02, BPPS06, VB10, RD11]. Thus, we adopt a querying

protocol. In particular, we draw on recent work that uses value-of-information con-

cepts to formulate multiple-choice queries [Bou02, VB10, CSD14, ZDS17], but as

we will explain we augment prior approaches by annotating offered choices with the

preferences of the agent posing the query.
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CHAPTER IV

Trustworthy Adherence to Probabilistic

Commitments

As we have discussed in Chapter III, if the provider knows precisely the model

of its environment (i.e. the specifications of its MDP), it is able to compute policies

(i.e. mapping from states to actions) that satisfy the commitment’s probabilistic

guarantee, and then chooses from them the one that yields the most value. This

chapter considers the problem formulated in Section 3.1, where the provider, at the

time of making a probabilistic commitment, has uncertainty about the model, or

specifically, about the transition function and reward function of its MDP, and thus

it is not able to directly perform that computation. An immediate question arises

due to model uncertainty: What does it mean for the provider to adhere to its

probabilistic commitment in a trustworthy manner, if the provider is uncertain about

the probability and the value of its policy realizing the commitment at the time of

making it? In Section 3.1, we answered this question for the setting in which the

provider’s model uncertainty is Bayesian: a trustworthy provider is required to follow

a (in general history-dependent) policy that realizes the commitment with sufficient

probability with respect to its Bayesian prior at the time of making the commitment.

This semantics, as formally defined in Definition III.2, preserves the commitment’s

predictive value for coordination with the recipient, and moreover, since the provider

is allowed to adopt a history-dependent policy that chooses the next action based

on the previous experience, it can respond to evolving knowledge about its model

to improve its utility without undermining its trustworthiness. In this chapter, we

develop tractable methods for the provider to construct policies that respect the

commitment semantics.
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4.1 Problem Statement Recapitulation

We begin by revisiting the provider’s commitment semantics under Bayesian model

uncertainty and its policy optimization problem, as formulated in Section 3.1. As

the discussion will be focused on the provider only, we will drop superscripts p for

the notations in this chapter. We consider the setting in which the provider’s true

sequential decision-making problem is one out of K possible MDPs drawn from a

known prior distribution µ0, where all MDPs share identical state and action spaces

but possibly different transition and reward functions, and the state and the reward

are fully observable during execution. Formally, the environment is defined by the

tuple (S,A, {Pk, Rk}Kk=1, s0, µ0, H), and the MDP that the provider is in is drawn

from the known prior distribution, i.e. Mk ∼ µ0. For such model uncertainty, as we

have discussed in Section 2.2, we consider history-dependent stochastic policies that

map the history up to time step t,

ht = (s0, a0, r1, s1, ..., st−1, at−1, rt, st),

to a probability distribution over the next action. Specifically, we use π(a|h) to denote

the probability of choosing action a given history h when following policy π.

For the provider operating under such Bayesian model uncertainty, Definition III.2

in Section 3.1 formally gives the semantics of a probabilistic commitment: knowing

that it is facing an MDP drawn from the prior distribution µ0 over possible MDPs

in the environment (Mk ∼ µ0), the provider is constrained to follow a (in general

history-dependent) policy π, such that, starting at the initial state s0, the probability

of reaching a state with commitment feature value uc at the commitment time Tc is at

least the commitment probability pc. This semantics is prescriptive by constraining

the provider’s choice of its policy, and thus it secures the commitment’s predictive

value for coordination with the recipient. Knowing that the provider follows a policy

respecting the semantics, the recipient can plan accordingly by predicting how likely

the shared state feature u will take value uc at time Tc. As previously said, this is the

first prescriptive commitment semantics under decision-theoretic model uncertainty.

As defined in Section 3.1, we let Πc be the set of all history-dependent policies

satisfying the constraint of commitment c and say that commitment c is feasible if

and only if Πc is not empty. We are interested in finding a policy that maximizes

the initial state value with respect to the prior, while satisfying the constraint of a

given feasible probabilistic commitment, which is formally formulated as the following
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problem:

arg max
π∈Πc

V π
µ0

(s0). (4.1)

For the remainder of this chapter, we develop tractable solutions to this problem.

4.2 Methods

This section describes several methods for constructing policies with different

tradeoffs between solution quality and computational cost, while all the constructed

policies are guaranteed to be in Πc to respect the semantics of a given commitment

c. In order to achieve high expected cumulative reward, the provider has to plan

not only with fully observable states but also with the most recent knowledge about

the true MDP it is in. Our first method, Commitment Constrained Full Lookahead

(CCFL), finds the optimal policy in set Πc by generating beforehand all possible pos-

terior distributions over possible MDPs up to the finite time horizon. As a downside,

since the number of posterior distributions generally grows exponentially as the time

horizon grows, planning with all possible posterior distributions can make CCFL com-

putationally infeasible. To this end, our Commitment Constrained Lookahead (CCL)

method, generalizes CCFL by taking as input an integer parameter, L, as the number

of time steps for posterior lookahead. Our Commitment Constrained No-Lookahead

(CCNL) method can be treated as a special case of CCL, in which L = 0, and there-

fore actions are chosen only based on the initial conditions and ignoring posterior

distributions. A small L often saves a lot of computational time compared to full

lookahead, but by being more myopic decreases the expected cumulative reward. To

partially mitigate this shortcoming of CCL (at the cost of a more modest increase in

computation), we create an iterative version of it, referred to as Commitment Con-

strained Iterative Lookahead (CCIL), which reapplies the CCL method in the midst

of execution, where the posterior lookahead of successive applications of CCL reach

closer to the time horizon.

Commitment Constrained Full Lookahead

During execution, the provider can use the knowledge provided by the history so

far to infer which MDP is more/less likely to be the true MDP it is facing. Formally,

one can summarize current history h into a belief, b := 〈s, µ〉, where s is the provider’s

current physical state, and µ is the posterior distribution over all possible MDPs
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given h. We use bt to denote the belief given history ht. The provider can find

the optimal history-dependent policy by planning in the belief MDP defined as the

tuple 〈B,A, b0, P̃ , R̃〉, where B is the set of all beliefs reachable from initial belief

b0 = 〈s0, µ0〉, which is finite because every possible true MDP k is finite and the time

horizon is finite. P̃ and R̃ are belief transition and reward functions, respectively.

Specifically, if we let b|(a, r, s′) be the belief after taking action a in belief state b,

receiving reward r and transiting to state s′, then the probability of transiting to any

belief b′ ∈ B after taking action a in belief state b can be expressed as

P̃ (b′|b, a) =
∑

{r,s′:b|(a,r,s′)=b′}
Pr(r, s′|b, a),

where Pr(r, s′|b, a) is the probability of receiving reward r and transiting to state s′

after taking action a in belief b and can be expressed using {Pk, Rk}Kk=1 as

Pr(r, s′|b, a) = Pr(r, s′|〈s, µ〉, a) =
∑K

k=1
µkPk(s

′|s, a)1{r=Rk(s,a)}.

In words, given any belief b′ ∈ B, P̃ (b′|b, a) sums up probabilities over transitions

(r, s′) which update the belief to b′. Similarly, the belief reward function can be

defined as

R̃(b, a) = R̃(〈s, µ〉, a) =
∑K

k=1
µkRk(s, a).

Our Commitment Constrained Full Lookahead (CCFL) method finds an optimal pol-

icy in Πc among all belief-based policies, i.e., policies that choose actions as a function

of the current belief, while satisfying the commitment constraint. Note since a belief

is a function of the history, then a belief-based policy also gives action probabilities as

a function of the history. For MDP k, each policy π has a corresponding occupancy

measure yπk for the expected number of times action a will be taken in belief-state b

over the time horizon H:

yπk (b, a) = E
[
1{bt=b,at=a}|b0; k, π

]
where t is such that s ∈ St for b = 〈s, µ〉. We will use shorthand notation yk in place

of yπk when policy π is clear from the context. If π is a belief-based policy, it can be

recovered from its belief-action occupancy measure in any MDP k via

π(a|b) =
yk(b, a)∑
a′ yk(b, a

′)
. (4.2)
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max
y

∑
b,a
y(b, a)R̃(b, a) (4.3a)

subject to ∀b, a y(b, a) ≥ 0; (4.3b)

∀b′
∑

a′
y(b′, a′) =

∑
b,a
y(b, a)P̃ (b′|b, a) + δ(b′, b0); (4.3c)∑

bTc :uc∈sTc

∑
a
y(bTc , a) ≥ pc. (4.3d)

Figure 4.1: CCFL program.

CCFL solves the mathematical program shown in Figure 4.1, which introduces as

decision variables the belief-action occupancy measure for all possible MDPs, and

constructs the policy via Equation (4.2) using the program’s optimal solution. The

CCFL program is a straightforward adaptation of the linear program in Figure 3.2

that solves an MDP. Constraints (4.3b) and (4.3c), which are the counterparts of

constraints (3.3b) and (3.3c) in Figure 3.2, guarantee that y is a valid occupancy

measure with the initial belief being b0 and the transition function being P̃ . The

expected cumulative reward is expressed using y in the objective function (4.3a),

which is the counterpart of objective (3.3a). The commitment semantics of Equation

(3.4) imposes an additional constraint (4.3d), which is the counterpart of objective

(3.3d).

Because the belief is a sufficient statistic (i.e. it provides as much information

for predicting the future as the history does), the CCFL program is feasible if the

commitment is feasible, and the policy constructed by CCFL is optimal among all

history-dependent policies satisfying the commitment constraint, as formally stated

in Theorem IV.1.

Theorem IV.1. If commitment c is feasible, meaning Πc 6= ∅, then the CCFL pro-

gram in Figure 4.1 is also feasible. Let y∗ be an optimal solution to the CCFL pro-

gram. The policy constructed via Equation (4.2) using y∗ is optimal with respect to

the problem in Equation (4.1).

The proofs of theorems in this section are presented at the end of this section.

Commitment Constrained No-Lookahead

Planning with all possible posterior distributions can make CCFL computation-

ally infeasible. To counter this, we now consider policies that ignore this posterior
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knowledge and only depend on the current state to choose actions. We refer to them

as Markov policies and let Π0 be the set of all Markov policies. If commitment

c is feasible for Markov policies, i.e., Πc ∩ Π0 6= ∅, our Commitment Constrained

No-Lookahead (CCNL) method will find an optimal Markov policy that maximizes

expected cumulative reward satisfying the commitment constraint, which is a solution

to the following problem:

arg max
π∈Πc∩Π0

V π
µ0

(s0). (4.4)

Note that Π0 is a subset of all history-dependent policies. When, as would gener-

ally be the case, Π0 is a much smaller policy set, the computational cost of CCNL

would be much less than that of CCFL, but the solution policy of CCNL is only

an approximation of the optimal commitment constraint-satisfying policy yielded by

CCFL.

Similar to the belief-action occupancy measure, for MDP k, any policy π has a

corresponding occupancy measure xπk of state-action pairs:

xπk(s, a) = E
[
1{st=s,at=a}|s0; k, π

]
where t is such that s ∈ St. We will use shorthand notation xk in place of xπk when

policy π is clear from the context. If π is a Markov policy, it can be recovered from

its state-action occupancy measure in any MDP k via

π(a|s) =
xk(s, a)∑
a′ xk(s, a

′)
. (4.5)

CCNL constructs the policy by solving the mathematical program shown in Fig-

ure 4.2. It introduces as decision variables the state-action occupancy measure for all

possible MDPs. Constraints (4.6b) and (4.6c), as counterparts of constraints (3.3b)

and (3.3c), guarantee that xk is a valid occupancy measure with the initial state be-

ing s0 and the transition function being Pk. The commitment semantics of Equation

(3.4) is explicitly expressed in constraint (4.6e), which is the counter counterpart of

constraint (3.3d). The expected cumulative reward is expressed using x in the objec-

tive function (4.6a), where µ0,k is the probability that the true MDP is k according

to µ0. The corresponding Markov policy can be derived via Equation (4.5). Unlike

CCFL, the CCNL program is no longer a straightforward adaptation of the linear

program in Figure 3.2 because a challenging problem here is to ensure that these K

sets of occupancy measures all derive the same Markov policy. To this end, we use
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max
x

∑
k
µ0,k

(∑
s,a
xk(s, a)Rk(s, a)

)
(4.6a)

subject to ∀k, s, a xk(s, a) ≥ 0; (4.6b)

∀k, s′
∑

a′
xk(s

′, a′) =
∑

s,a
xk(s, a)Pk(s

′|s, a) + δ(s′, s0); (4.6c)

∀k, k′, s, a xk(s, a)∑
a′ xk(s, a

′)
=

xk′(s, a)∑
a′ xk′(s, a

′)
; (4.6d)∑

sTc3uc

∑
a

(∑
k
µ0,kxk(sTc , a)

)
≥ pc. (4.6e)

Figure 4.2: CCNL program.

constraint (4.6d) to enforce alignment across all K sets of occupancy measures. The

constraints in Figure 4.2 are feasible if and only if Πc ∩ Π0 6= ∅.

Commitment Constrained Lookahead

CCFL pre-plans for every possible revision to the provider’s posterior knowledge

about the true MDP it might be in, which guarantees optimality but possibly at

a huge computational cost. At the other extreme, CCNL only considers Markov

policies that ignore this evolving posterior knowledge. Here we consider the general

case where the provider plans its first L ∈ [0, H] actions as a function of the evolving

belief, and thereafter plans actions based on the evolving state but with the belief

(including both the state and the posterior distribution) the provider was in at time

L. We refer to this parameter, L, as the belief-update lookahead boundary, which

tells the planner how far beyond the current time to look ahead about states and

posterior distributions. The resulting L-updates policy takes the form:

π(a|ht) =

π(a|bt) t < L

π(a|st, bL) t ≥ L

where bt is the belief consistent with ht, and bL is the belief consistent with hL when

t ≥ L. Note that a 0-update policy is the same as a Markov policy and an H-update

policy is a full width belief-based policy. Therefore, belief-update lookahead boundary

L defines a continuum between CCNL and CCFL.

Given a specific value of L, let ΠL be the set of all L-updates policies. If com-
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Figure 4.3: Illustration of CCL. The dashed area denotes the set of reachable beliefs
after executing L from initial belief b0 = 〈s0, µ0〉. The solid area (in green) denotes the
set of commitment constrained L-updates policies, i.e. Πc ∩ ΠL, and the solid arrow
denotes a specific history derived from such a policy. An L-update policy selects the
first L actions based on the evolving belief, i.e. π(·|bt) for t < L, and thereafter based
on the evolving state and the belief the provider was in at time L, i.e. π(·|st, bL) for
t ≥ L.

mitment c is feasible for belief-update lookahead boundary L, i.e., Πc ∩ ΠL 6= ∅, our

Commitment Constrained Lookahead (CCL) method will find an optimal L-updates

policy that maximizes expected cumulative reward satisfying the commitment con-

straint, which is a solution to the following problem:

arg max
π∈Πc∩ΠL

V π
µ0

(s0). (4.7)

Figure 4.3 illustrates the CCL’s construction of the commitment constrained L-

updates policies, with the dashed area denoting the set of reachable beliefs after

executing L from initial belief b0, the solid area (in green) denoting the set of com-

mitment constrained L-updates policies Πc ∩ ΠL, and the solid arrow denoting a

specific history derived from such a policy. CCL constructs the policy by solving the

mathematical program shown in Figure 4.4, which is a novel and carefully-crafted

combination of the techniques in CCFL and CCNL. The program introduces as de-

cision variables y and x, where y is the belief-action occupancy measure (as defined

for CCFL) for those beliefs reachable within the first L time steps of the plan, and x

is the state-action occupancy measures (as defined for CCNL) for the remaining time

steps to the horizon. We use Bbl to denote the set of reachable beliefs after executing
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exactly l actions from belief b, and Bb≤l =
⋃l′

l=0 Bbl′ to denote the set of reachable

beliefs from b by executing at most l actions starting from b. Because time is a state

feature, Bbl and Bbl′ are disjoint if l 6= l′. CCL generates beforehand all reachable be-

liefs from initial belief b(t=)0 within L actions, Bb(t=)0

≤L , as illustrated as the dashed area

in Figure 4.3. The belief-action and state-action measures enable us to express the

expected cumulative reward very conveniently in the objective (4.9a) where the first

term sums up the reward of the first L time steps, and the second term the remaining

time steps to the horizon. The occupancy measures also enable us to express commit-

ment semantics conveniently: if the lookahead does not reach the commitment time

Tc, then the commitment semantics can be expressed in terms of the belief-action

occupancy measure via constraint (4.9h); otherwise, the commitment constraint can

be expressed in terms of those state-action occupancy measures via constraint (4.9i).

Constraints (4.9b) and (4.9c) on y are the counterparts of (4.3b) and (4.3c) in the

CCFL program of Figure 4.1. Similarly, constraints (4.9e), (4.9f), and (4.9g) on x are

the counterparts of (4.6b), (4.6c), and (4.6d) in the CCNL program of Figure 4.2,

which means the CCL program is considerably more sophisticated than the original

linear program of Figure 3.2. These constraints are feasible if and only if Πc∩ΠL 6= ∅.
Any L-updates policy πL that respects the commitment semantics can be derived from

a feasible solution to the program in Figure 4.4 via:

πL(a|ht) =


πL(a|bt) =

y(bt, a)∑
a′ y(bt, a′)

t < L

πL(a|st, bL) =
xbL,k(st, a)∑
a′ xbL,k(st, a

′)
t ≥ L

. (4.8)

Theorem IV.2 states that CCL using belief-update lookahead boundary L finds

an optimal policy in Πc ∩ ΠL.

Theorem IV.2. If Πc∩ΠL 6= ∅ holds for commitment c, then the program in Figure

4.4 is feasible. Let x∗, y∗ be its optimal solution, then the policy derived via Equation

(4.8) with x∗, y∗ is the optimal policy in Πc ∩ ΠL.

Intuitively, a belief-update lookahead boundary greater than zero enables the

provider to plan actions not only based on the states it will visit, but also based

on how its actions can provide information to improve its posteriors about what its

true MDP is. Sacrifices in short-term reward may ultimately improve long-term per-

formance. Theorem IV.3 says the expected cumulative reward of the policy derived by

CCL using any L > 0 is lower bounded by that of the policy derived by CCNL. This

is because, by definition, for any L and any Markov policy, there exists an L-updates
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max
x,y

∑
b∈Bb0≤L−1,a

y(b, a)R̃(b, a) +
∑

bL∈B
b0
L ,k,s,a

xbL,k(s, a)Rk(s, a) (4.9a)

subject to

∀b ∈ Bb0≤L, a y(b, a) ≥ 0; (4.9b)

∀b′ ∈ Bb0≤L
∑

a′
y(b′, a′) =

∑
b,a
y(b, a)P̃ (b′|b, a) + δ(b′, b0); (4.9c)

∀bL ∈ Bb0L ybL =
∑

a
y(bL, a); (4.9d)

∀bL ∈ Bb0L , k, s, a xbL,k(s, a) ≥ 0; (4.9e)

∀bL = 〈sL, µL〉 ∈ Bb0L , k, s
′∑

a′
xbL,k(s

′, a′) =
∑

s,a
xbL,k(s, a)Pk(s

′|s, a) + µL,kybLδ(s
′, sL); (4.9f)

∀bL ∈ Bb0L , k, k
′, s, a

xbL,k(s, a)∑
a′ xbL,k(s, a

′)
=

xbL,k′(s, a)∑
a′ xbL,k′(s, a

′)
; (4.9g)∑

bTc∈B
b0
Tc

:sTc3uc,a
y(bTc , a) ≥ pc, if Tc < L; (4.9h)∑

bL∈B
b0
L ,k,sTc3uc,a

xbL,k(sTc , a) ≥ pc, if Tc ≥ L. (4.9i)

Figure 4.4: CCL program.
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policy that behaves exactly the same as the Markov policy, i.e. Π0 ⊆ ΠL.

Theorem IV.3. If Πc ∩ Π0 6= ∅ holds for commitment c, then for any integer

L ∈ [0, H] the CCL program in Figure 4.4 is feasible, and we have

V
π∗L
µ0 (s0) ≥ V π∗0

µ0
(s0)

where π∗L and π∗0 are the policies derived by CCL using belief-update lookahead bound-

ary L and zero, respectively.

However, one has to be careful in using deeper boundaries because the performance

of CCL is guaranteed to be monotonically non-decreasing in L only when MDPs vary

solely in reward functions, but this monotonicity cannot be guaranteed in general, as

stated in Theorem IV.4 and Theorem IV.5.

Theorem IV.4. If MDPs vary in reward functions and not in transition dynamics,

i.e. ∀k, k′, Pk = Pk′, and Πc ∩ ΠL 6= ∅ for boundary L, then for any L′ > L we have

Πc ∩ ΠL′ 6= ∅, and

V
π∗L
µ0 (s0) ≤ V

π∗
L′

µ0 (s0)

where π∗L and π∗L′ are the policies derived by CCL using boundaries L and L′, respec-

tively.

Theorem IV.5. There exists an environment, a commitment c, and boundaries 0 <

L < L′ < H satisfying Πc ∩ ΠL 6= ∅ and Πc ∩ ΠL′ 6= ∅, such that

V
π∗L
µ0 (s0) > V

π∗
L′

µ0 (s0)

where π∗L and π∗L′ are the policies derived by CCL using belief-updates boundaries L

and L′, respectively.

These theoretical results provide some insights when choosing L. If the transition

dynamics do not vary across MDPs, as suggested by Theorem IV.4, ΠL is monoton-

ically increasing in L. One should use the largest affordable L because a larger L

is likely to include more policies in Πc and improve the value. A commitment that

is infeasible for a smaller L could be feasible for a larger L. In general, though, the

transition dynamics can vary across MDPs, and ΠL is not guaranteed to be monoton-

ically increasing in L. One should use CCFL if it is affordable. CCFL considers all

policies in Πc if it is non-empty and therefore it yields optimal value. When CCFL is
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not affordable, then as suggested by Theorem IV.3 we can check the feasibility of a

commitment with CCNL because a commitment feasible to CCNL (i.e. Πc ∩Π0 6= ∅)
is also feasible for any L. For the empirical results in Section 4.3, we experiment with

several candidate values of L. Our experience suggests that L can best be chosen

with problem-specific knowledge.

Commitment Constrained Iterative Lookahead

At each time step during execution, the provider observes the state transition that

occurs and reward received to update its posterior µ about the true MDP it is in.

One might think it would be a good idea for the provider to construct and follow

an updated policy from its current state, substituting its updated belief state for the

initial belief. However, the provider cannot shift from one policy to another without

considering its commitment. Clearly, if the provider can find a plan that achieves the

original commitment probability conditioned on the current belief, then shifting to

such a plan will certainly respect the commitment semantics. Observation IV.1 says

this re-planning is not always feasible.

Observation IV.1. There exists an environment, a feasible commitment c, a policy

π ∈ Πc, and a history ht induced by π, such that

∀π′ Pr
k∼µt

(uc ∈ sTc|st, k; π′) < pc,

where 〈st, µt〉 is the belief consistent with ht.

The example shown in Figure 4.5 verifies Observation IV.1. Starting in state A,

the provider can feasibly commit to reaching the absorbing state D at time step 2

with at least probability .8. If the provider stochastically reached state C at time

step 1, there is no plan that reaches state D from state C with probability at least .8,

and this verifies Observation IV.1.

Our Commitment Constrained Iterative Lookahead (CCIL) method instead up-

dates the commitment probability in a way that guarantees feasible re-planning, and

iteratively applies CCL with that updated commitment probability during execution.

The idea is that, when re-planning, satisfying the commitment constraint does not

require meeting the original probabilistic commitment, but instead to fulfill the com-

mitment probability that had originally been associated with the physical-state history

traversed so far. Here we formally describe CCIL’s first iterative application of CCL

after having executed one or more actions. Suppose the provider now has belief
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Figure 4.5: The example that verifies Observation IV.1. There are two possible
reward functions R1 and R2 shown above with 50-50 prior. In both reward functions,
the reward only depends on the action. There are two actions, α and β, and the
transition dynamics is shown in the annotations of the edges. Starting in A, the
provider commits to reaching the absorbing location D at time step two with at least
probability .8. If the provider happens to be in C at time step one, there is no plan
that reaches D from C with probability at least .8 (verifying Observation IV.1). Even
though re-planning from C does not yield a plan that leads to D with probability
0.8, the new plan will nonetheless yield more reward because at time step one we will
know which reward function applies and can therefore choose the more rewarding
action in C.

bt = 〈st, µt〉 at time step t ≤ L after following policy π∗L derived from the initial op-

timal solution to the CCL program with belief-update lookahead boundary L. Now

the provider re-plans from st using its updated posterior µt, with the commitment

probability that its previous policy π∗L ascribed to meeting the commitment if state

st were reached:

pc,t = Pr
k∼µt

(uc ∈ sTc |st, k; π∗L). (4.10)

Specifically, the provider constructs and follows a new L-updates policy, beginning

from the current belief, by reusing the CCL program in Figure 4.4 with the following

modifications:

1. Start from current belief bt = 〈st, µt〉 instead of b0 = 〈s0, µ0〉.

2. Let L← min(L,H− t) to ensure that the lookahead from the current time step

is bounded by the time horizon, i.e. t+ L ≤ H.

3. If the provider has not reached the commitment time, i.e. t < T , plan with

the updated commitment probability by replacing pc with pc,t calculated as

in Equation (4.10) in constraint (4.9h) if T < t + L or in constraint (4.9i) if

T ≥ t+ L; otherwise, discard constraints (4.9h) and (4.9i) (e.g., let pc,t = 0).
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Revisiting the example in Figure 4.5, the initial policy could meet the commitment

probability (0.8) by committing to take action α with probability 1 if B is reached

at time 1, and otherwise the provider is unconstrained. After taking action α (or

β) at time 0, then at time 1 the provider is either in B or C, and from the reward

it just received knows the true reward function. Using CCIL, the provider re-plans.

If it is in B, then since the original policy attributed probability 1 to meeting the

commitment down this path, its new policy is constrained to take action α (whatever

the true reward is), and afterwards take the better action. If it is in C, the updated

commitment probability is zero (the original policy did not count at all on possibly

meeting the commitment down this path), so the new policy can optimize reward

without constraints.

In principle, the provider can iteratively apply the above procedure at any time

during execution. For example, the provider can apply the procedure whenever the

posterior undergoes a substantial change. We will evaluate empirically a simpler

version of CCIL that takes as input a pair of integers, (L, I), such that it iteratively

uses L as the belief-update lookahead boundary to update the policy every I ≤ L

steps. This procedure is outlined in Algorithm 1, and Figure 4.6 illustrates CCIL’s

first iteration with parameter (L, I). Theorem IV.6 proves that CCIL respects our

commitment semantics.

Theorem IV.6. Let πIL be the history-dependent policy defined as in Algorithm 1.

We have πIL ∈ Πc.

Dealing with the Quadratic Equality Constraint

The CCFL program in Figure 4.1 is a linear program straightforwardly adapted

from the program in Figure 3.2 and thus can be solved by standard linear program-

ming algorithms. The CCL program in Figure 4.4, however, is no longer a straight-

forward adaptation of Figure 3.2 because it introduces a quadratic equality constraint

(4.9g) to ensure that the action selection rules derived from occupancy measures in

all possible MDPs are identical. Similarly, the CCNL program in Figure 4.2 also

introduces such a quadratic equality constraint (4.6d). These quadratic constraints

make the mathematical programs non-convex and hard to solve. In practice, many

math-programming solvers are unable to handle programs with quadratic equality

constraints (e.g., [CPL, Gur]). Although some solvers can deal with such programs

(e.g., [MAT, OPT]), they often need to take as input a feasible solution as the start-

ing point, but finding an initial feasible solution by itself might be difficult, and the
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Algorithm 1: Commitment Constrained Iterative Lookahead (L, I)

Input: Environment tuple (S,A, {Pk, Rk}Kk=1, s0, µ0),
commitment c = 〈uc, Tc, pc〉,
integers L ∈ [0, H], I ∈ (0, H] such that Πc ∩ ΠL 6= ∅ and I ≤ L;

1 b0 ← 〈s0, µ0〉;
2 π0 ← L-updates policy derived by solving the program in Figure 4.4;
3 t← 0;
4 while t < H do
5 for i = 1, 2, ..., I do
6 Take action at ∼ πt and observe reward-state transition

(st, at, rt+1, st+1);
7 Update belief as bt+1 = 〈st+1, µt+1〉;
8 πt+1 ← πt;
9 t← t+ 1;

10 if t == H then
11 Break the while loop;
12 end

13 end
14 if t < T then
15 pc,t = Prk∼µt(uc ∈ sTc |st, k; πt);
16 end
17 else
18 pc,t = 0;
19 end
20 πt ← Policy derived by solving a modified version of the program in

Figure 4.4: let L← min(L,H − t); replace every b0 with bt; replace pc
with pc,t in constraint (4.9h) if T < t+ L or in constraint (4.9i) if
T ≥ t+ L;

21 end

final solutions are usually sensitive to starting points. Here we introduce two vari-

ant formulations of the CCL program in Figure 4.4 that avoid quadratic equality

constraints.

Deterministic CCL. The policy derived from the program in Figure 4.4 via

Equation (4.8) is in general stochastic. To enforce deterministic policies, Dolgov and

Durfee [DD04, DD05] introduced binary indicators in the linear programs for solving

MDPs. Inspired by their work, we propose a novel formulation that avoids quadratic

equality constraints by introducing binary indicators that force the action selection to

be deterministic after belief-update lookahead boundary L. Specifically, we introduce

indicators ∆ as additional decision variables into the CCL program in Figure 4.4 with
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Figure 4.6: Illustration of CCIL’s first iteration with lookahead boundary L and
iteration parameter I. Following policy π∗L computed from CCL, the provider executes
the first I actions in the dashed area (in black) starting from initial belief 〈s0, µ0〉, and
arrives in belief 〈sI , µI〉. The provider then re-plans from 〈sI , µI〉 using pc,I , which
is defined in Equation (4.10) with t = I, with another L time steps of lookahead
denoted as the other dashed area (in gold).

the following constraints replacing the quadratic equality constraint (4.9g):

∀bL ∈ Bb0L , s, a ∆bL(s, a) ∈ {0, 1};

∀bL ∈ Bb0L , s
∑

a
∆bL(s, a) ≤ 1;

∀bL ∈ Bb0L , k, s, a xbL,k(s, a) ≤ ∆bL(s, a).

This reformulation yields a Mixed Integer Linear Program (MILP) which is well stud-

ied with many available solvers (e.g., [CPL, Gur, MAT, OPT]). Any feasible solution

with the above constraints replacing constraints (4.9g) of the program in Figure 4.4

yields a policy with deterministic action selection at time steps after belief-update

lookahead boundary L via Equation (4.8), which can be alternatively expressed using

the indicator variables:

πL(a|ht) =


πL(a|bt) =

y(bt, a)∑
a′ y(bt, a′)

t < L

πL(a|st, bL) = 1{∆bL
(st,a)=1} t ≥ L

. (4.11)

Reward uncertainty only. Quadratic equality constraint (4.9g) can be avoided

when the transition dynamics do not vary across possible MDPs, i.e. ∀k, k′, Pk = Pk′ .

In this case, for the action selection at time step t ∈ [H − L,H], without loss of

optimality, the provider needs only to plan for the Bayes-optimal Markov policy
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max
x,y

∑
b∈Bb0≤L−1,a

y(b, a)R̃(b, a) +
∑

bL∈B
b0
L ,s,a

xbL(s, a)RµL(s, a)

subject to ∀b ∈ Bb0≤L, a y(b, a) ≥ 0;

∀b′ ∈ Bb0≤L
∑

a′
y(b′, a′) =

∑
b,a
y(b, a)P̃ (b′|b, a) + δ(b′, b0);

∀bL ∈ Bb0L ybL =
∑

a
y(bL, a);

∀bL ∈ Bb0L , s, a xbL(s, a) ≥ 0;

∀bL = 〈sL, µL〉 ∈ Bb0L , s
′∑

a′
xbL(s′, a′) =

∑
s,a
xbL(s, a)P (s′|s, a) + ybLδ(s

′, sL);∑
bL∈B

b0
L ,sTc3uc,a

xbL(sTc , a) ≥ pc, if L ≤ T ;∑
bTc∈B

b0
Tc

:sTc3uc,a
y(bTc , a) ≥ pc, if L > T ;

Figure 4.7: CCL program in the reward uncertainty only case, i.e. ∀k, k′ P = Pk =
Pk′ .

w.r.t. the mean reward RµL according to the belief it ended up in at time step L:

RµL(s, a) =
∑

k
µL,kRk(s, a)

The resulting mathematical program is shown in Figure 4.7. The main difference

from the original CCL program in Figure 4.4 is that it only introduces one occupancy

measure xbL for each reachable belief bL at time step L, instead of K sets of occupancy

measures {xbL,k}Kk=1 in the original CCL program. The derived policy can be expressed

via:

πL(a|ht) =


πL(a|bt) =

y(bt, a)∑
a′ y(bt, a′)

t < L

πL(a|st, bL) =
xbL(st, a)∑
a′ xbL(st, a′)

t ≥ L

Proofs

Here we present all the technical proofs of the theorems in this chapter.

Proof of Theorem IV.1. Note that the belief is a sufficient statistic: given history

ht at time step t and the corresponding belief bt consistent with ht, one does not
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need any other information in ht besides bt to predict the future state transitions

and rewards after time step t. Therefore, solving problem (4.1) is equivalent to

solving a constrained MDP, where the MDP is the belief MDP defined as the tuple

〈B,A, b0, P̃ , R̃〉 with finite state space of beliefs, and the constraint comes from the

semantics of commitment c. Our CCFL method can be viewed as a standard linear

programming approach to solving a finite state constrained MDP.

Proof of Theorem IV.2. It is sufficient to show (1) any policy in Πc∩ΠL can be derived

from a feasible solution to the program in Fig. 4.4, and (2) any feasible solution to

the program derives a policy in Πc ∩ ΠL.

To show (1), for any policy π ∈ Πc∩ΠL, we are going to define vectors mπ and nπ

such that with mπ treated as x and nπ treated as y, mπ and nπ satisfy the constraints

of the program in Fig. 4.4, and the L-updates policy π can be derived via Equation

(4.8). Specifically, given any policy π ∈ Πc∩ΠL, let nπ be its belief-action occupancy

measure for beliefs in Bb0≤L, and mπ be its state-action occupancy measure for states

from time step L on:

∀b ∈ Bb0≤L, a nπ(b, a) = Pr(bt = b, at = a|b0; π)

where t is the time of belief b, and

∀s, a mπ
bL,k

(s, a) =

Pr(st = s, at = a, bL, k|b0; π) t ≥ L

0 t < L

where t is the time of state s. Then, with mπ treated as x and nπ treated as y, mπ

and nπ satisfy the constraints of the program in Fig. 4.4, and the L-updates policy

π can be derived via Equation (4.8).

To show (2), given a feasible solution x, y to the program, let policy π be the

derived policy via (4.8). Then π is in ΠL by definition. Further we have mπ
bL,k

(s, a) =

xbL,k(s, a), nπ(b, a) = y(b, a), where mπ and nπ are defined as above. Therefore π is

also in Πc because x satisfies commitment constraints (4.9i), (4.9h).

Proof of Theorem IV.3. By Theorem IV.2, CCL with boundary L finds the optimal

policy in Πc ∩ ΠL. Therefore, it is sufficient to show

∀L > 0,Π0 ⊆ ΠL.

This holds because given any Markov policy π0 ∈ Π0 we can define an L-updates
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policy πL ∈ ΠL that is equivalent to π0:

πL(a|ht) =

πL(a|bt) = π0(a|st) t < L

πL(a|st, bL) = π0(a|st) t ≥ L
.

Thus, we know that π0 ∈ ΠL.

Proof of Theorem IV.4. It is sufficient to show that the statement holds when L′ =

L+1. We next show that when Pk = Pk′ ∀k, k′, given any policy πL ∈ ΠL, there exists

an (L+ 1)-updates policy, πL+1, that mimics πL , and therefore V
π∗L
µ0 (s0) ≤ V

π∗L+1
µ0 (s0).

For the first L actions, an (L + 1)-updates policy can map the current belief to

a distribution of the next actions identical to πL, and the action that is going to be

taken at time step L by πL can also be recovered by an (L+ 1)-updates policy, which

gives

πL+1(a|ht) =

πL+1(a|bt) = πL(a|bt) t < L

πL+1(a|bL) = πL(a|sL, bL) t = L
.

Under any L-updates policy πL, and conditioned on being in belief bL+1 at time step

L+1, the provider thereafter selects actions according to πL(·|st, bL) with probability

that the provider was in belief bL at time step L: Pr(bL|bL+1; πL). If the transition

dynamics does not vary across MDPs in the environment, it is well known [Put14]

that a Markov policy πbL+1
(·|st), t ≥ L+ 1 is sufficient to recover the state occupancy

measure of πL starting at belief bL+1. Then πL+1 can also recover πL for t ≥ L+ 1 by

demonstrating that πbL+1
satisfies

πL+1(a|ht) = πL+1(a|st, bL+1) = πbL+1
(a|st) for t ≥ L+ 1.

This guarantees that the optimal L-updates policy can be represented by an (L+ 1)-

updates policy, and thus the statement of the theorem holds for L′ = L+ 1.

Proof of Theorem IV.5. In the proof of Theorem IV.4, we have shown that for any

L-updates policy πL there exists an (L + 1)-update policy that is able to mimic πL

up to time step L + 1. Provided that Pk = Pk′ ∀k, k′, one can find a Markov policy

that mimics πL starting at any belief at time step L+ 1. When Pk = Pk′ ∀k, k′ does

not hold, however, this Markov policy in general does not exist, and therefore no

(L+ 1)-update policy is able to mimic πL. Inspired by this, we next give an example

as a formal constructive proof.
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Figure 4.8: Example as a proof of Theorem IV.5.

Consider the example shown in Fig. 4.8. The environment has 10 locations

{0,1,...,9}, action space {up, down}, time horizon T = 4, and K = 2 possible MDPs.

The agent starts in location 0 at time step t = 0 with a prior probability of 0.8 for

MDP k = 1 and a prior probability of 0.2 for MDP k = 2. In MDP k = 1, no matter

which action the provider takes, it transits to location 1 or 2 uniformly at random

at time step t = 1, and then to location 3 with probability one at time step t = 2.

Starting from location 3, on taking action up (down) the provider transits to the upper

(lower) location to the right. The transition dynamics of MDP k = 2 is the same

as MDP k = 1 until the provider reaches location 3, and thereafter the transition is

flipped: starting from location 3, on taking action up (down) the provider transits to

the lower (upper) location to the right. In both MDPs, the provider will receive large

negative reward (−∞) in locations 7 and 8. In MDP k = 1, the provider will receive

+1 reward if it reaches location 6. There is no reward elsewhere. The agent commits

to reaching location 9 with probability 0.5. Consider the following (L =)1-updates

policy: if the provider was in location 1 at time step t = 1, always choose action up; if

the provider was in location 2 at time step t = 1, always choose action down. Under

this (L =)1-updates policy the probability of reaching the commitment location 9 is

0.5 and the expected reward is 0.8 × 0.5 × 1 = 0.4. Now consider (L =)2-updates

policies. Because the provider is in location 3 with probability one at time step t = 2,

a (L =)2-updates policy amounts to a Markov policy for time steps t ≥ 2. Further

the provider should minimize the probability of reaching locations 7 and 8 that yield

large negative reward. One can verify that the only Markov policy for time steps t ≥ 2

that avoids reaching locations 7 and 8 while satisfying the commitment constraint is

to always choose action down, whose expected reward is 0, smaller than that of the

(L =)1-updates policy.
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Proof of Theorem IV.6. We need to show πIL satisfies Equation (3.4), i.e.,

Pr
k∼µ0

(uc ∈ sTc |s0, k; πIL) ≥ pc.

Let πL be the CCL L-updates policy derived from the program in Fig. 4.4. The

above inequality holds because:

Pr
k∼µ0

(uc ∈ sTc |s0, k; πIL)

=
∑

bI∈B
b0
I

Pr
k∼µ0

(bI |s0, k; πIL) Pr(uc ∈ sTc |bI ; πIL) (law of total probability)

=
∑

bI∈B
b0
I

Pr
k∼µ0

(bI |s0, k; πL) Pr(uc ∈ sTc|bI ; πIL)

(πL and πIL are identical in the first I steps)

≥
∑

bI∈B
b0
I

Pr
k∼µ0

(bI |s0, k; πL) Pr(uc ∈ sTc|bI ; πL)

= Pr
k∼µ0

(uc ∈ sTc |s0, k; πL) (law of total probability)

≥pc (πL ∈ Πc)

The first inequality holds because CCIL iteratively applies L-step lookahead with

the commitment probability achieved by the policy of the previous iteration. This

concludes the proof.

4.3 Empirical Study

Overview

As summarized in Section 4.1, we are the first to define a prescriptive semantics

for probabilistic commitments under model uncertainty, and develop algorithms that

respect the semantics. Hence, in the empirical studies that follow, we predominantly

focus on developing a deeper understanding of the strengths and limitations of dif-

ferent flavors of our algorithms. However, in an effort to illustrate empirically the

difference between our approach and prior work, in our first study in the illustrative

Windy L-Maze domain, we compare to the closest related work we could identify: a

non-prescriptive semantics for probabilistic commitments, and a prescriptive seman-

tics for non-probabilistic commitments. We show how our prescriptive probabilistic

commitment semantics allows agents to outperform either of these others because

with it agents can balance selfish and unselfish behavior.

We next use a small size Food-or-Fire domain to show how our CCL performs in an
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Figure 4.9: Windy L-Maze. The provider starts in the cell labeled a and can only
move in the vertical corridor, and the recipient starts in the cell labeled b and can
only move in the horizontal corridor. It is admissible that both agents occupy the
cell labeled c at the same time step. The table on the right specifies the reward
functions, where d is the distance, measured by number of cells, between cell c and
the provider/the recipient. For the provider, there are three possible reward functions
{Rp

k}3
k=1. The recipient’s reward, Rr (bottom row), is known for certain.

environment with both transition and reward uncertainty, and under various choices

of belief-update lookahead boundary. In the subsequent two domains of RockSample

and Change Detection, the number of possible posterior distributions can grow so

quickly with the time horizon that CCFL becomes computationally infeasible. In

RockSample, we show how the iterative version of CCL, CCIL, is able to improve

performance over CCL with modest additional computational cost. In Change De-

tection, we perform a detailed case study on the effects of the belief-update lookahead

boundary and how it should be chosen with domain-specific knowledge, along with

results reconfirming the improvement of CCIL over CCL.

Windy L-Maze

The purpose of the experiments in this domain is to illustrate how our prescriptive

probabilistic commitment semantics can improve multi-agent planning compared to

alternative semantics. The domain consists of an L-maze occupied by a commitment

provider and a recipient, as shown in Figure 4.9.

The provider starts in the cell labeled a and can only move in the vertical corridor,

and the recipient starts in the cell labeled b and can only move in the horizontal

corridor. It is admissible that both agents occupy the cell labeled c at the same time
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step. Let dp, dr be the distance, measured by number of cells, between cell c and the

provider, the recipient, respectively. For the provider, there are three possible reward

functions as functions of dp, {Rp
k}3

k=1, with a uniform prior:

for dp = 4, Rp
1(dp) = Rp

2(dp) = Rp
3(dp) = 0.1

for dp < 4, Rp
1(dp) = 0, Rp

2(dp) = −Rp
3(dp) = dp − 4

The recipient’s reward, Rr, is known as a function of dr: Rr(dr) = 0.1 if dr = 3;

Rr(dr) = 3 if dr = 0; Rr(dr) = 0 for other values of dr. The provider can move up,

down, or stay in the current cell, and its moves succeed with probability one. The

recipient can move left, right, or stay in the current cell. Initially, a door located in

cell c is open with a strong wind blowing in such that the recipient’s moves to the

left only succeed with probability 0.1, and its other moves succeed with probability

one. By occupying cell c, the provider can permanently close the door, in which case

the wind stops and all the recipient’s moves succeed with probability one. The two

agents aim to maximize the joint expected reward up to the time horizon H = 10.

Because the recipient will get a significantly larger reward in cell c than in cell b,

it is beneficial for the recipient if the provider could move to cell c to close the door.

However, under reward functions Rp
1 and Rp

2, traveling down the corridor to cell c

will yield less reward for the provider than staying in the starting cell a. Therefore,

effective coordination between the two agents is crucial to achieving high expected

joint reward, where (as we shall see) the uncertain rewards of the provider make an

“all-or-nothing” commitment suboptimal compared to a probabilistic commitment.

We compare the following three commitment semantics:

Non-Prescriptive Probabilistic Semantics: In this case, a probabilistic com-

mitment only represents a prediction of the provider’s behavior [XL00, MSB+08],

rather than a prescription for how it will act. The provider computes and follows

its history-dependent policy maximizing just its own local reward. It informs the

recipient of the probability, pc, that the door will be closed at time step T ≥ 4

under the provider’s policy, and the recipient then computes and follows its own

locally-optimal policy with respect to pc by standard methods of solving MDPs.

We refer to this semantics as selfish and no-commitment because the provider

makes no effort to consider the preferences of the recipient when computing and

executing its policy.

Prescriptive Non-Probabilistic Semantics: This semantics is the logic-based
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Table 4.1: Evaluation of Non-Prescriptive Semantics, Prescriptive Non-Probabilistic
Semantics, and Prescriptive Probabilistic Commitment on the Windy L-maze do-
main. The columns represent the cumulative rewards for the provider individually,
the recipient individually, and both agents jointly.

Semantics Provider Recipient Provider + Recipient
Non-Prescriptive Probabilistic (pc = 1/3) 9.17 4.33 13.50
Prescriptive Non-Probabilistic (pc = 1.0) 4.90 10.61 15.51
Prescriptive Probabilistic (pc = 0.6) 9.06 6.84 15.90
Prescriptive Probabilistic (pc = 0.7) 8.62 7.79 16.41
Prescriptive Probabilistic (pc = 0.8) 7.38 8.73 15.61

semantics alluded to in work on detecting commitment abandonment [POM17],

where a commitment provider will drop all else and single-mindedly pursue a com-

mitment. In this case, the provider computes and follows its history-dependent

policy that achieves the highest probability, pc, of closing the door at the earliest

possible time step which is T = 4. The recipient uses pc to compute and fol-

low its optimal policy assuming maximum help from the provider. We refer to

this semantics as unselfish and full-commitment because the provider prioritizes

satisfying the preferences of the recipient over its own rewards.

Prescriptive Probabilistic Commitment: This is the semantics we advocate

in this thesis. The provider makes a probabilistic commitment: it commits to

closing the door at time step T = 4 with at least probability pc. It uses the

CCFL algorithm to compute and follow its locally-optimal policy that respects

the commitment semantics. The recipient trusts this commitment, and computes

and follows its optimal policy assuming the door will be closed at time step T ≥ 4

with probability pc.

The performance of each of the three different semantics (with a few choices of

pc for our prescriptive probabilistic semantics) is shown in Table 4.1. Notice that

even when the provider is acting entirely selfishly (the non-prescriptive probabilistic

case), it predicts that it will nevertheless close the door with probability pc = 1/3.

This is because its optimal policy is to move down the corridor one step, observe the

reward signal to know exactly what the true reward function is, and then either go

immediately back to a, or, with probability 1/3, it will learn that the reward function

is Rp
3 and continue on to c. Following the prescriptive non-probabilistic semantics, the

unselfish provider will follow a policy guaranteed to close the door (pc = 1.0), because

its moves succeed with certainty. With the prescriptive probabilistic commitment
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semantics, the providers can choose a probability of closing the door pc ∈ [0, 1] that

balances selfishness and unselfishness in the provider to attain a higher joint reward.

As pc increases, the provider’s value monotonically decreases and the recipient’s value

monotonically increases. As shown in Table 4.1, both pc = 0.6 and pc = 0.8 achieve

higher joint reward than pc and pc, and pc = 0.7 is even better than pc = 0.6 and

pc = 0.8.

These results confirm that our semantics for probabilistic commitments, coupled

with algorithms for agent decision-making that respect the semantics, can lead to

better joint performance than treating commitments either as inflexible logical con-

straints on the provider’s plan (such that it must provably satisfy the commitment)

or as non-binding predictions about the likelihood the provider’s plan will happen to

satisfy the commitment. Our semantics enable agents to strike a compromise between

these extremes.

Food-or-Fire

The purpose of the experiment in this domain is twofold: 1) it is used to simply

illustrate that CCL works well in an environment with both transition and reward

uncertainty to construct policies satisfying the constraint of a given probabilistic

commitment, and 2) it is small enough that we can show the effect of the belief-update

lookahead boundary by experimenting with all possible choices for the boundary from

zero to the time horizon.

The environment is a simple two by three grid maze with K = 3 possible scenarios,

as shown in Figure 4.10, where solid black lines indicate impassable walls. The prior

over the three scenarios is a uniform distribution. In the “empty” scenario, the

provider can move freely in four directions within the maze, and no reward signal

occurs. In the “food” scenario, there are two sections of impassable wall, and food

associated with a reward of +1 exists in the mid-left cell between the walls. The “fire”

scenario is the same as the second except that food is replaced with fire associated

with a reward of -1. The agent, starting in the bottom left cell, commits to reach the

top left cell (Exit) at the time horizon, i.e. T = H, with at least probability pc. The

agent can fully observe its current location but can only detect a wall by trying (and

failing) to move between two adjacent cells.

Because the transition dynamics vary across the three scenarios, we only imple-

mented deterministic CCL. Figure 4.11 plots the expected cumulative reward against

all possible belief-update boundaries using deterministic CCL under various choices of

Tc and pc. According to Theorem IV.5, the monotonic performance in belief-update
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Figure 4.10: Food-or-Fire. Left: the “empty” scenario. Middle: the “food” scenario.
Right: the “fire” scenario.

lookahead boundary L cannot be guaranteed, but it turns out the expected cumula-

tive reward using deterministic CCL is monotonically non-decreasing with L for all

choices of Tc and pc we tried. Thus, anecdotally, it is not hard to find cases in which a

larger L yields higher value, even though by Theorem IV.5 it is not guaranteed. More-

over, when L increases from two to three, we observe that the expected cumulative

reward increases significantly for most choices of Tc and pc. This is because a belief-

update lookahead boundary L of three is just sufficient to identify which scenario the

provider is actually facing by moving to the middle-left cell using three actions and

reasoning about the observed reward signal of food, fire, or neither. Not surprisingly,

with lower commitment probabilities, the provider is able to achieve higher expected

reward. An interesting observation is that, compared with pc = 0.8, we see the the

expected cumulative reward is more like a step function at L = 3 for pc = 0.5 and

pc = 1.0. When pc = 1.0, the provider has to reach the Exit at time Tc in all three

scenarios, so it suffices to determine the optimal behavior as soon as the provider fig-

ures out at time L = 3 which scenario it is facing. When pc = 0.5, the provider would

certainly reach the Exit in the “empty” scenario and the “fire” scenario. With the

uniform prior, these two scenarios already contribute to 2/3 ≥ pc = 0.5 probability

of fulfilling the commitment, and therefore in the “food” scenario the provider would

stay in the cell with food for the +1 reward and never exit. To achieve this behavior

when pc = 0.5, it suffices to use L = 3. For pc = 0.8, it is more complicated in the

sense that the provider also needs to reach the Exit with some positive probability in

the second (food) scenario, and our results show that, with deterministic CCL, using

L larger than 3 is able to improve the value.
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Figure 4.11: Expected cumulative reward in Food-or-Fire domain as a function of the
commitment and the belief-update lookahead boundary.

RockSample

The size of the Food-or-Fire domain is small enough for us to afford computing

belief-update boundaries up to the time horizon. In this RockSample domain and

the following Change Detection domain, the number of posterior distributions grows

so quickly as the time horizon grows that CCFL becomes computationally infeasible.

Our results show that using the iterative version of CCL, CCIL, can improve the

performance significantly with moderate additional computational cost.

RockSample [SS04] is a classic POMDP problem that models a rover exploring

an unknown environment. In an instance of RockSample(n, s), the rover can move

in an n × n grid containing s rocks. When n and s become large, a large belief-

update lookahead boundary becomes computationally infeasible. The locations of

the rocks are known. Only some of the rocks have scientific value and are of type

Good; the others are of type Bad. The type of each rock is uniformly random. The

task is to determine which rocks are valuable, approach and take samples of valuable

rocks, and leave the map by moving off the right-hand edge of the map. Each time

step, the rover can select from s + 5 actions: {North, East, South, West, Sample,

Check1,...,Checks}. Each Checki action directs the rover’s sensor to rock i, returning

a noisy observation from {Good, Bad}. The noise in the observations received by
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Figure 4.12: RockSample instances. Left: RockSample(2,2). Right: RockSam-
ple(4,4).

executing each Checki action is determined by the Manhattan distance between the

rover and the rock being checked: the probability of receiving a correct observation is

0.9, 0.7, and 0.5 when the the Manhattan distance is 0, 1, and at least 2, respectively.

In an instance of RockSample(n, s), s rocks could have 2s possible combinations of

type assignments. We treat them as K = 2s possible MDPs that only differ in reward,

and solve the program in Figure 4.7 to construct CCL and CCIL policies. During

execution, the observations from Checki actions are model-informative, suggesting

which MDP is more likely.

In the original RockSample problem, the rover chooses actions to execute until

it moves off the map and receives a positive reward. We adapted it to incorporate

the probabilistic commitment: the rover does not receive any reward by moving off

the map, but it has to move off the map by the time horizon, i.e. T = H, with at

least the commitment probability pc. We scale the reward to the range of [−1, 1]: the

rover receives a reward of 1.0 for sampling a rock of type Good, a reward of −1.0 for

sampling a rock of type Bad, and no reward occurs for re-sampling the same rock.

We evaluated CCL and CCIL on instances of RockSample(2, 2) and RockSam-

ple(4, 4) (Figure 4.12). Table 4.2 contains the results of expected reward and run

time in RockSample(2, 2) for commitment time T = 10 and commitment probabil-

ity pc = 1.0 with various choices of L and I. The run time for CCIL is the sum

of the CPU times for each iteration. Note that because 1) the rover can get pretty

accurate observations since it is always close to the rocks, 2) the types of rocks are

uniformly random, and 3) time horizon 10 is large enough, the optimal behavior can

collect in expectation one good rock, yielding an expected cumulative reward close
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to 1.0. For CCL, the results in Table 4.2 indicate that a larger belief-update looka-

head boundary indeed improves the expected reward, but the computational time

also increases dramatically. We can see that CCIL can achieve comparable expected

reward with much less computational time than CCL. Although CCIL(L = 3, I = 1),

CCIL(L = 4, I = 4), and CCL(L = 8) all achieve near-optimal expected reward,

CCIL(L = 3, I = 1) and CCIL(L = 4, I = 4) use much less computational time than

CCL(L = 8).

Table 4.2: Results on RockSample(2,2), |S| = 177, |A| = 7, |O| = 4 with T = 10,
pc = 1.0. 1000s run time limit.

L I Expected Reward Time(s)
0 n.a. 0.00 0.30
1 n.a. 0.20 0.54
2 n.a. 0.40 1.07
3 n.a. 0.60 3.05
4 n.a. 0.64 7.53
6 n.a. 0.82 45
8 n.a. 0.90 710
10 n.a. n.a. >1000
1 1 0.53±0.02 4.83±0.28
3 1 1.01±0.02 33.89±1.67
3 3 0.81±0.02 7.73±0.13
4 1 0.97±0.02 133.11±10.67
4 4 0.92±0.02 17.55±0.30

Table 4.3 contains the results in RockSample(4, 4) for commitment time T = 15

and probability pc = 1.0. With T = 15, the time is just enough for the rover to

correctly detect 3 rocks, sample the good rocks, and move off the map. Since a rock

is good with probability .5, the expected cumulative reward of the optimal behavior is

close to 1.5. For RockSample(4, 4), we can see that CCL can only scale to relatively

small belief-update boundaries. The computational time grows dramatically, and we

run out of memory when L = 5. CCL achieves an expected cumulative reward of 0.9

for L = 4, which means that a larger L is needed to find the near-optimal behavior.

CCIL performs much better than CCL because it iteratively re-plans during the

execution. The performance of CCIL(L = 1, I = 1) is between that of CCL(L = 3)

and CCL(L = 4). CCIL(L = 2, I = 2), CCIL(L = 2, I = 1), and CCIL(L =

3, I = 3) all achieve behavior with expected cumulative reward close to 1.3, which

cannot be achieved by CCL using a moderate amount of computational time. These

three choices of (L, I) achieve comparable expected reward (no statistically significant
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Table 4.3: Results on RockSample(4,4), |S| = 4097, |A| = 9, |O| = 8, with T = 15,
pc = 1.0. 1000s run time limit.

L I Expected Reward Time(s)
0 n.a. 0.00 4.33
1 n.a. 0.30 5.11
2 n.a. 0.30 8.71
3 n.a. 0.60 23.36
4 n.a. 0.90 113
5 n.a. Out of memory n.a.
1 1 0.74±0.02 83.06±0.55
2 1 1.32±0.02 482.30±31.53
2 2 1.31±0.02 132.17±3.73
3 1 n.a. >1000
3 3 1.34±0.02 634.27±67.37

difference), with CCIL(L = 2, I = 2) being the fastest because its iterative lookahead

is less frequent than CCIL(L = 2, I = 1) and shallower than CCIL(L = 3, I = 3).

Change Detection

In Change Detection, we perform a detailed case study on the effects of the belief-

update lookahead boundary, where time horizon H is short enough so that we can

experiment with every L ≤ H for CCL. We also experiment with a larger H for which

CCFL is computationally infeasible, to develop further intuitions about balancing

lookahead with iteration to achieve good performance with reasonable computation.

Change Detection is a classic constrained POMDP problem [Shi63]. The agent

can partially observe the environment, and at some point the environment will tran-

sit into a state where the alarm should be sounded by the agent. The agent aims

to minimize the delay in alerting (sounding the alarm) after the transition, and the

probability of a false alarm should be lower than a given threshold which is referred

to as the false alarm (F.A.) tolerance. Formally, the state space and action space are

S={PreChange, PostChange, PostAlarm, FalseAlarm}, A={NoAlarm, Alarm},
respectively. The environment starts in PreChange, and transits to PostChange at

a random time step if the provider has not performed action Alarm. Specifically, the

problem has a geometric change time parameter η, such that at every time step, if the

state is still PreChange, it will transit to PostChange with probability η. Once the

provider performs action Alarm, the state transits to PostAlarm from PostChange

with a positive reward, or to FalseAlarm from PreChange with no reward. The

commitment is to not reach FalseAlarm with at least a given probability. To en-
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courage early detection, the provider receives a reward of +1.0 if it executes action

Alarm immediately after transiting to PostChange, with the reward discounted each

subsequent time step. The states are not fully observable. Instead, the provider makes

an observation o every time step from the observation space O, suggesting if the en-

vironment has changed or not. The probability of making a specific observation is

determined by probability mass functions f0, f1 : O 7→ [0, 1] when the environment is

in PreChange, and PostChange, respectively. In our experiments, the provider can

make an observation every time step from a set of size |O| = 3. The reward discount

factor is set to γ = 0.8. The PreChange and PostChange observation distributions

are

f0(o1) = 0.6, f0(o2) = 0.3, f0(o3) = 0.1,

f1(o1) = 0.2, f1(o2) = 0.4, f1(o3) = 0.4.

Parameter η provides the provider with the prior distribution of the change time.

After making observations, the provider can use Bayes’ rule to calculate the posterior

distributions.

We consider the finite horizon decision problem, with the commitment time T = H

being equal to the time horizon, and define the state of the Change Detection problem

as s = 〈t, Alarmed〉 where Alarmed is a Boolean that takes the value of true when the

provider executed action Alarmed in any time step before t, or false otherwise. The

current time step t and Boolean Alarmed are both fully observable to the provider.

We define belief as b = 〈s, µ〉, where state s is augmented by probability mass function

µ that gives the probability of all possible change times up to the horizon.

Figure 4.13 contains the results when experimenting with CCL on a Change De-

tection instance with horizon H = T = 10, where CCFL is computationally feasible.

We have experimented with two choices of the geometric change time parameter,

η = 0.1, 0.2, and four choices of the false alarm (F.A.) tolerance. When F.A. toler-

ance is 0.0, the provider is forbidden to execute Alarm actions if there is any possiblity

of false alarm, and therefore the expected cumulative reward is 0 for any choice of

the belief-update lookahead boundary L. Otherwise, the expected cumulative reward

is monotonically increasing with L. Moreover, choosing a large L is most helpful

when the geometric change time parameter η is small (Figure 4.13(left)). For η = 0.1

(Figure 4.13(left)), the expected reward rises anywhere from about 3-fold (for toler-

ance=0.2) to 7-fold (for tolerance=0.05), while for η = 0.2 (Figure 4.13(right)) it is

anywhere from about 1.5-fold (for tolerance=0.2) to 3.5-fold (for tolerance=0.05). So
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Figure 4.13: Results of CCL on Change Detection with T = 10, γ = 0.8.

for the same tolerance, lookahead makes twice the impact when η = 0.1 than η = 0.2.

Small η suggests that the change is more likely to happen later, and therefore a large

L is more likely to envision it. For both choices of η, as lookahead L increases, the

relative increase in expected reward is smaller when F.A. tolerance is larger. This

is because larger tolerance inherently gets more reward regardless of lookahead, and

hence there is less reward for lookahead to recoup. These results suggest that, more

generally, the value of L should be chosen based at least upon: (1) how far into the

future the most meaningful changes to the belief state will occur (as captured by η

in this case), (2) how sensitive the provider’s reward is to making a more informed

decision (as captured by F.A. tolerance in this case), and (3) how dramatically com-

putation costs rise with farther lookahead (where in this case the branching factor of

2 (change or no change) is fairly low).

We have also experimented with a larger horizon, H = T = 50, where CCFL is not

computationally affordable. The geometric change time parameter is η = 0.04. As we

just saw, a low value like this makes the change more likely to happen later and thus

emphasizes farther lookahead. The F.A. tolerance is set to 0.2. Table 4.4 contains the

results of expected reward and run time for CCL and CCIL with various choices of

L, and of I when applicable. The run time of CCL grows dramatically with L. The

expected reward, though, grows relatively slowly, because these lookaheads are still

very short for such a small η that requires large lookahead. This can be inferred from

Figure 4.13 (left), where η = 1.0 is larger and we still see a steep increase in reward

at L = H/2. Nevertheless, there is still a 3-fold increase in reward when we increase

L for CCL until the computation budget is reached. For CCIL, we experiment with

L = 2, 4, 6 and I = 1, L/2, L. Unsurprisingly, with more frequent iterative lookahead

(smaller I), both the expected reward and the run time increase. CCIL(L = 4, I = 1)
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Table 4.4: Results on Change Detection with F.A. tolerance of 0.2, T = 50, η =
0.04, γ = 0.8. 1000s run time limit.

L I Expected Reward Time(s)
1 n.a. 0.05 0.02
2 n.a. 0.06 0.05
3 n.a. 0.07 0.16
4 n.a. 0.09 0.46
6 n.a. 0.11 4.23
9 n.a. 0.15 125
10 n.a. 0.16 761
11 n.a. n.a. > 1000
2 1 0.06±0.02 1.62±0.08
2 2 0.04±0.02 0.99±0.04
4 1 0.28±0.04 16.33±0.98
4 2 0.17±0.04 9.85±0.78
4 4 0.09±0.03 4.04±0.30
6 1 0.32±0.03 117.11±7.84
6 3 0.31±0.04 33.01±2.56
6 6 0.13±0.04 28.41±1.98

achieves reward that is higher than any CCL within the computation budget. Both

CCIL(L = 6, I = 1) and CCIL(L = 6, I = 3) double the reward of CCL(L = 10),

the largest L within the computation budget, yet use much less computation. These

results verify again the effectiveness of the iterative lookahead strategy in CCIL. Recall

that, in RockSample, setting I = L achieves significantly larger reward than CCL with

the same L. However, in Change Detection, I = L achieves no higher reward than

CCL for the values of L we consider. We conjecture that this is because the belief

changes frequently in Change Detection (every time step) and perhaps in a way that

is critical for the provider’s future decisions, making it necessary to perform frequent

iterative lookahead, while it might take several steps in RockSample to experience a

change (after taking the Checki action). From the results of L = 4, 6 and I = 1, L/2,

we observe that with larger L, the provider can use larger I without sacrificing too

much reward. Overall, CCIL(L = 4, I = 1) and CCIL(L = 6, I = 3) achieve the best

compromise for a wide range of tradeoffs between solution quality and computational

cost.

60



4.4 Summary

This chapter defined a prescriptive semantics for a probabilistic commitment

provider that is operating under model uncertainty. Our semantics is based on what

a commitment provider can control—its own actions. Specifically, we considered a

decision-theoretic setting where the provider is making sequential decisions in one out

of several MDPs drawn from a known prior. Fulfilling a commitment corresponds to

pursuing a course of action, beginning at the time the commitment was made, that

has sufficient likelihood of realizing the intended state at a certain time prescribed by

the commitment. In this semantics, the provider fulfills its commitment by follow-

ing a commitment-constrained policy even if, due to bad luck, the desired outcome

was not realized. Based on this semantics, we developed Commitment Constrained

Lookahead (CCL), a novel algorithm parameterized by the belief-update lookahead

boundary, that constructs commitment constrained policies offline for the provider.

We empirically compared our new semantics, operationalized in CCL, with prior log-

ical and predictive semantics concepts, to illustrate where and why our semantics is

superior. We also analytically and empirically investigated the impact of the belief-

update lookahead boundary that makes an explicit tradeoff between the computation

cost and performance of the computed policy. Since the lookahead boundary, and

therefore the performance, of CCL is directly limited by memory size, we have fur-

ther extended CCL to Commitment Constrained Iterative Lookahead (CCIL) that

iteratively adjusts the policy online according to the evolving posterior distribution

about the true environment, while still satisfying the commitment constraint. Our

empirical results show that CCIL can achieve the same performance as CCL with

much less computational overhead. In a nutshell, the prescriptive semantics and

the algorithms together offer tractable solutions for the provider to respond to its

evolving model uncertainty without detriment to its trustworthy adherence to the

commitment.
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CHAPTER V

Robust Interpretation of Probabilistic

Commitments

A probabilistic commitment constrains the provider’s policy choice regarding the

shared state feature at a single timestep, and while this gives the provider flexibility

to adjust its policy on the fly, the recipient has to deal with the uncertainty about

the shared feature at other timesteps. The question, then, is how should the recip-

ient interpret the commitment, that is, how can the recipient approximate the true

dynamics of the shared feature in a robust manner to yield a high quality policy?

This is the problem we have formulated in Section 3.2. In this chapter, we focus on

this question for both achievement and maintenance commitments, which are two

types of commitment commonly modeled and studied in the literature. Our notion

of robustness hinges on the suboptimality of the recipient’s approximation of the

influence, which is defined as the difference between the value of the optimal policy

associated with the approximate influence and that associated with the true dynamics

of the shared feature. This chapter presents theoretical analyses and empirical stud-

ies showing that, perhaps surprisingly, despite strong similarities in the provider’s

modeling of the two types of commitment, there is an inexpensive strategy for the

recipient to create an approximate influence with low suboptimality for achievement

commitments, while no such strategy exists for maintenance commitments.

5.1 Problem Statement Recapitulation

In this section, we revisit the problem of suboptimality of the recipient’s approx-

imate influence, as we have defined in Section 3.2. As the discussion will be focused

on the recipient only in this chapter, we will drop superscripts r for the notations.

Adopting the notations in Section 2.1 for MDPs, the recipient’s MDP is denoted as
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M = (S,A, P, R,H) with initial state s0. The optimal policy for M is denoted as

π∗M , and its value function V
π∗M
M is abbreviated as V ∗M . The value of the initial state

for policy π is abbreviated as vπM := V π
M(s0). As we have discussed in Section 2.3,

we factor the recipient’s state into features, s = (l, u), where features l are locally

controlled by the recipient and features u are shared and controlled by the provider.

Accordingly, the recipient transition function is factored as P = (Pl, Pu), where Pu is

the dynamics of u that is determined purely by the provider and referred to as the

provider’s true influence.

For a given probabilistic commitment c = (uc, Tc, pc), its specification and seman-

tics constrain the provider’s policy based on a single future timestep Tc: at time Tc,

the value of u will be uc with at least the promised probability pc. By not commit-

ting to (bounds on) the probabilities at intervening (and subsequent) timesteps, the

provider retains flexibility to revise its policy on the fly (for example, if its belief

about the reward function changes, as we have discussed in Chapter IV).

The commitment specification is also the only information that the recipient has

about Pu, and while information about only a single future timestep might give the

provider flexibility, it imposes uncertainty on the recipient. That is, while the recipient

knows something about Pu at the commitment’s timestep Tc, it can only guess at the

values of the influence at other timesteps.

Adopting the notations in Section 3.2 and dropping superscripts r, the recipient

adopts a strategy P̂u(·) that maps a given probabilistic commitment c to an approx-

imate influence P̂u(c). When commitment c is fixed, there is no need to distinguish

between a strategy P̂u(·) and the approximate influence P̂u(c) it induces, and thus we

will abbreviate them as P̂u. The approximate influence P̂u is then used for planning in

M̂ = (S,A, P̂ , R,H) where P̂ = (Pl, P̂u). For a fixed commitment, the suboptimality

of P̂u is evaluated using the difference between the value of the optimal policy for

M̂ and the value of the optimal policy for M when both policies are evaluated in M

starting in s0, i.e.

Suboptimality(P̂u;Pu) = V ∗M(s0)− V
π∗
M̂

M (s0) = v∗M − v
π∗
M̂
M .

Note that when the support of Pu is not fully contained in the support of P̂u, the

recipient’s policy π∗
M̂

can associate zero occupancy (hence plan no action) for certain

states when executed in M , which makes V
π∗
M̂

M ill-defined. In this thesis, we resolve

this by re-planning: during execution of π∗
M̂

in M , the recipient re-plans from any

zero occupancy state that it happens to reach. Thus, the recipient’s problem of
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commitment interpretation is to identify a high-quality approximate influence that

induces low suboptimality for the given commitment, while a high-quality strategy

should robustly induce low suboptimality for a range of commitments.

5.2 Achievement and Maintenance

In this chapter, we focus on two types of commitment commonly studied in the lit-

erature, which are achievement commitments and maintenance commitments. In an

achievement commitment, the provider commits to courses of action that probabilisti-

cally change the shared state features in a way desired by the recipient. For example,

the recipient plans to take an action (e.g., move from one room to another) with a

precondition (e.g., the door separating rooms is open) that the provider has promised

to likely enable by some deadline. In a maintenance commitment, the provider in-

stead commits to courses of action that, up until a promised time, are sufficiently

unlikely to change features that are already the way the recipient wants them main-

tained. After that time, the provider can freely change the features. For example, a

door the recipient wants open might initially be so, but the provider wants to close it

to clean behind it during housekeeping tasks. The provider could postpone closing it

(clean elsewhere first), but by changing other doors while cleaning elsewhere it might

accidentally introduce a draft that could prematurely close the door the recipient

wants left open.

To formally capture the differences between achievement and maintenance, we

here describe the two types of commitment as subclasses of probabilistic commit-

ments as defined in Section 2.3. Similar to prior work [HvR07, WD09], we assume

that u contains a single state feature that takes binary value and can be toggled at

most once. Let u+, as opposed to u−, be the value of u that is desirable for the recip-

ient. Intuitively, u+(u−) stands for an enabled (disabled) precondition needed by the

recipient. In transactional settings, a feature (e.g., possession of goods) changing only

once is common, as it is in multiagent planning domains where one agent enables a

precondition needed by an action of another. Some cooperative agent work requires

agents to return changed features to prior values (e.g., shutting the door after opening

and passing through it), and in extreme cases where toggling reliably repeats (e.g.,

a traffic light) there may be no need for explicit commitments. In general, when the

binary feature u can indeed toggle more than once, it can be modeled by a series of

alternating togglings in opposite directions, and thus the discussion in this chapter

can apply to such a general setting by dividing it into multiple stages, such that in
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each stage the feature toggles at most once.

Achievement Commitments. Let the recipient’s state at time t be factored as

st = (lt, ut). For achievement commitments, the initial value of the commitment

feature is u−, i.e. u0 = u−. An achievement commitment ca = (u+, Ta, pa) is a

probabilistic commitment where the commitment feature value is u+, the commitment

time is Ta, and the commitment probability is pa. Since the commitment feature value

is fixed to u+, we will abbreviate an achievement commitment ca = (u+, Ta, pa) as

ca = (Ta, pa) for the remainder of this chapter. The commitment semantics constrains

the provider to follow a policy that changes the value of u to u+ by time Ta with at

least probability pa, i.e.

Pr(uTa = u+|u0 = u−) ≥ pa. (5.1)

When planning with the achievement commitment, the provider can choose any policy

that induces an influence that respects the commitment’s semantics (5.1). Figure 5.1a

illustrates two such influences as the provider’s candidate influence for an achievement

commitment. The recipient does not know the provider’s true influence and adopts

a strategy to create an approximate influence.

Maintenance Commitments. As a reminder, a maintenance commitment is ap-

propriate in scenarios where the initial value of state feature u is desirable to the

recipient, who wants it to maintain its initial value for some interval of time (e.g.,

[HvR07, DTH14]), but where the provider might want to take actions that could

change it. Formally, for maintenance commitments, the initial value of the commit-

ment feature is u+, i.e. u0 = u+, and a maintenance commitment cm = (u+, Tm, pm)

is a probabilistic commitment where the commitment feature value is u+, the com-

mitment time is Tm, and the commitment probability is pm. As with an achievement

commitment, we will abbreviate an achievement commitment ca = (u+, Ta, pa) as

ca = (Ta, pa) since u+ is fixed. Given such a maintenance commitment, the provider

is constrained to follow a policy that keeps u unchanged for the first Tm time steps

with at least probability pm. Since u can be toggled at most once, this is equivalent

to probabilistically guaranteeing that u is still u+ at the commitment time Tm, i.e.

Pr(uTm = u0|u0 = u+) ≥ pm. (5.2)
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Figure 5.1: Candidate influences for an achievement commitment and a maintenance
commitment.

As with an achievement commitment, the provider can choose any policy that induces

an influence that respects the commitment’s semantics (5.2), and the recipient adopts

a strategy to create an approximate influence. Figure 5.1b illustrates two possibilities

for the provider’s candidate influence for a maintenance commitment.

Hence, from the provider’s perspective, achievement and maintenance commit-

ments are treated essentially identically, and from the recipient’s perspective, the

notions of approximate influence and suboptimality also identically apply to the two

types of commitment. Even though decision-theoretic formulations of, and reason-

ing methods for, achievement and maintenance commitments are nearly identical,

prior work has found it much harder to successfully coordinate for maintenance than

achievement [CS08, GMDB08, Hia09]. In the past, it has been assumed that the

difficulty lies on the provider’s side—that it might be inherently harder for a provider

to find good policies that maintain a feature than to change it. However, in this

chapter we claim and justify that instead the challenge actually lies on the recipient’s

side: that a maintenance commitment is fundamentally harder for the recipient to

model robustly than an achievement commitment is. We now substantiate this claim

theoretically in Section 5.3 and empirically in Section 5.4.

5.3 Bounding the Suboptimality

In this section, we develop several strategies for the recipient to approximate the

true influence, and present theoretical analyses that bound the worst-case subopti-

mality of these strategies. Our analyses make the following assumptions. Assumption

V.1 states that the recipient’s reward function only depends on its locally-controlled

features, such that the cumulative reward of an episode is based only on the trajectory

of l, (l0, l1, ..., lH). Note that, although the value of ut does not directly affect the

reward for time step t, it affects action choices that influence the value of lt+1 at the
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next time step. Assumption V.2 intuitively says that u+ establishes a precondition

for an action that would be irrational to take when u− holds. For example, if u+ is

a door being open, then the action of moving into the doorway could be part of an

optimal plan, but taking that action if the door is closed (u−) never is.

Assumption V.1. For the recipient’s reward function R, we assume

R(st, at) = R(st) = R((lt, ut)) = R(lt).

Assumption V.2. Let s− = (l, u−) and s+ = (l, u+) be a pair of states that only

differ in u. For any M with arbitrary influence Pu, there exists an optimal policy π∗M
such that

Pl
(
·|s−, π∗M(s−)

)
= Pl

(
·|s+, π∗M(s−)

)
.

To derive bounds on achievement and maintenance commitments, we will make

use of the following lemma, where M+ (M−) is defined as the recipient’s MDP iden-

tically to M except that u is always set to u+(u−). Lemma V.1 directly follows from

Assumption V.2, stating that the value of M− is no more than that of M+ and the

value of any M is between the two.

Lemma V.1. For any M with arbitrary influence Pu and initial value of u, we have

v∗M− ≤ v∗M ≤ v∗M+.

Proof. Let’s first consider the case in which Pu toggles u only at a single time step.

We show v∗M− ≤ v∗M by constructing a policy in M for which the value is v∗M− by

mimicking π∗M− . Whether u is initially u− and later toggled to u+ or vice versa, we

can construct a policy πM that chooses the same actions as π∗M− assuming u = u−

throughout the episode. Formally, for any s− = (l, u−), letting s+ = (l, u+),

πM(s+) = πM(s−) = π∗M−(s−).

By Assumption V.2, πM in M yields the same distribution over the trajectory of l as

π∗M− in M−, and therefore vπMM = v∗M− since the cumulative reward only depends on

the trajectory of l.

Similarly, we show v∗M ≤ v∗M+ by constructing a policy πM+ in M+ for which

the value is v∗M by mimicking π∗M . Formally, for time steps when u = u− in M , let

πM+(s+) = π∗M(s−). For time steps when u = u+ in M , let πM+(s+) = π∗M(s+), where

s− = (l, u−), s+ = (l, u+).
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When Pu toggles u at K > 1 time steps, we can decompose the value function for

Pu as the weighted average of K value functions corresponding to the K influences

that toggle u at a single time step, and the weights of the average are the toggling

probabilities of Pu at these K time steps.

5.3.1 Minimal Enablement Duration

We begin by analyzing an intuitive and straightforward strategy to create approx-

imate influences adopted in previous work for achievement commitments that models

a single branch, at the commitment time, for when u− probabilistically toggles to u+

[WD10, ZDS+16]. Modelling the commitment with a single branch for toggling to

u+ at the latest possible time ignores possibilities of being enabled earlier than the

deadline and of being enabled serendipitously after the deadline. Such an approxi-

mate influence models the achievement commitment pessimistically, in the sense that

it minimizes the expected duration of u being enabled over all influences that respect

the achievement commitment semantics (Equation (5.1)):

min
Pu∼ (5.1)

EPu

[∑H
t=0 1{ut=u+}

]
where Pu ∼ (5.1) means influence Pu satisfies Equation (5.1), and 1E is the indicator

function that takes value one if event E occurs and zero otherwise. We refer to this

minimizer as the minimal enablement duration influence, as formalized in Definition

V.1 and illustrated in Figure 5.2a.

Definition V.1. Given achievement commitment ca = (Ta, pa), its minimal enable-

ment duration influence P̂min+
u (ca) toggles u in the transition from time step t = Ta−1

to t = Ta with probability pa, and does not toggle u at any other time step.

For maintenance commitments, the counterpart minimizes the expected enable-

ment duration over all influences that respect the maintenance commitment semantics

(Equation (5.2)):

min
Pu∼ (5.2)

EPu

[∑H
t=0 1{ut=u+}

]
.

The minimizer models a probabilistic toggling to u− at the earliest possible time, and

a deterministic toggling to u− (if it had not toggled earlier) after the commitment

time, as formalized in Definition V.2 and illustrated in Figure 5.2b.
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Figure 5.2: Minimal enablement duration for an achievement commitment and a
maintenance commitment.

Definition V.2. Given maintenance commitment cm = (Tm, pm), its minimal enable-

ment duration influence P̂min+
u (cm) toggles u in the transition from time step t = 0 to

t = 1 with probability 1−pm, and (unless already toggled) from t = Tm to t = Tm+1

with probability one. It does not toggle u at any other time step.

As illustrated in Figure 5.2, the minimal enablement duration influence passes

through the specific point of the commitment probability at the commitment time

(i.e. (Ta, pa), (Tm, pm)), even though the provider’s true influence does not have to

(Figure 5.1). It is reasonable for the recipient to assume that the provider’s true

influence pass through the specific point, because otherwise the two agents could

have agreed on a different commitment with the higher commitment probability for

purpose of coordination. Therefore, in this thesis, we consider strategies, such as

the minimal enablement duration, that pass the specific point, and focus on the core

challenge that arises from the recipient’s uncertainty about the true influence at time

steps other than the commitment time.

Besides Assumptions V.1 and V.2, we also make Assumption V.3 for our analyses

in this section, as a simplifying assumption stating that the true influence agrees with

the minimal enablement duration influence after the commitment time, so that any

suboptimality is caused by the imperfect modeling up until the commitment time.

Assumption V.3. Pu(uh+1|uh) agrees with the minimal enablement duration influ-

ence for h ≥ T , where T is the commitment time.

Bounding Suboptimality for Achievement. Here, we derive Theorem V.1 that

bounds the suboptimality for achievement commitments as the difference between

v∗M− and v∗M+ . We use Assumptions V.2 and V.3, and Lemma V.2 which states that,

for achievement commitments, the possible ways the true influence differs from the

minimal enablement duration influence can only improve the expected value.
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Lemma V.2. Given achievement commitment ca = (Ta, pa), let P̂u = P̂min+
u (ca), then

we have v
π∗
M̂
M ≥ v

π∗
M̂

M̂
where influence Pu in M respects the commitment semantics of

ca.

Proof. For achievement commitments, the initial value of u is u−. Let Pu(t) be the

probability that u is not enabled to u+ until time step t in influence Pu, and vπt be

the initial state’s value under π when u is enabled from u− to u+ at t with probability

one. By Assumption V.3, v
π∗
M̂
M and v

π∗
M̂

M̂
can be decomposed as

v
π∗
M̂
M =

∑Ta
t=1 Pu(t)v

π∗
M̂
t + (1− pa)v

π∗
M̂

M− ,

v
π∗
M̂

M̂
= pav

π∗
M̂
Ta

+ (1− pa)v
π∗
M̂

M− .

When u is enabled at t in M , π∗
M̂

can be executed as if u is not enabled, by Assumption

V.2, yielding identical trajectory distribution of l (therefore value) as in M̂ . Therefore,

the recipient’s re-planning at t when u = u+ will derive a better policy if possible.

Therefore, the value of executing π∗
M̂

in M is no less than that in M̂ , i.e. v
π∗
M̂
t ≥ v

π∗
M̂
Ta

.

Therefore,

v
π∗
M̂
M =

∑Ta
t=1 Pu(t)v

π∗
M̂
t + (1− pa)v

π∗
M̂

M−

≥
∑Ta

t=1 Pu(t)v
π∗
M̂
Ta

+ (1− pa)v
π∗
M̂

M−

≥pav
π∗
M̂
Ta

+ (1− pa)v
π∗
M̂

M− (commitment semantics)

=v
π∗
M̂

M̂
.

Theorem V.1. Given achievement commitment ca, let P̂u = P̂min+
u (ca). The subop-

timality can be bounded as

v∗M − v
π∗
M̂
M ≤ v∗M+ − v∗M− (5.3)

where influence Pu in M respects the commitment semantics of ca. Further, there

exists an achievement commitment for which the equality is attained.

Proof. The derivation of the bound in Equation (5.3) is straightforward from Lemma

V.2:

v∗M − v
π∗
M̂
M ≤ v∗M+ − v

π∗
M̂

M̂
≤ v∗M+ − v∗M− .
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Figure 5.3: 1D Walk. Left: Example in the proof of Theorem V.1. Right: Example
in the proof of Theorem V.2.

Next, we use a simple illustrative example to give an achievement commitment for

which the equality is attained.

Example: An Achievement Commitment in 1D Walk. Consider the example of a

1D walk of L locations on [0, L− 1], as shown in Figure 5.3(left), where the recipient

starts at L0 and can move right, left, or stay still. There is a gate between 0 and 1

for which u+ denotes the state of open and u− closed. The provider toggles the gate

stochastically according to Pu. For each time step the recipient is at neither end,

it gets a reward of −1. Hence, the optimal policy is to reach either end as soon as

possible in expectation. Note that the reward function makes Assumptions V.1 and

V.2 hold.

Here, we derive an achievement commitment for which the bound in Theorem

V.1 is attained. Consider L = 10, L0 = 3, H = 10, achievement commitment (Ta =

L− 1−L0 = 6, pa = 1), and the true influence Pu in M that toggles the gate to open

at t = L0 − 1 = 2 with probability pa = 1. The optimal policy in M is to move left

to 0. Therefore, v∗M = v∗M+ = −L0 = −3. Given the minimal enablement duration

influence, moving right to L (arriving at time L−1−L0 = 6) is faster than waiting for

the gate to toggle at Ta = 6 and then reaching location 0 at time Ta+ 1 = 7. Had the

recipient known the gate would toggle at time t = L0 − 1 = 2, it would have moved

left, but by the time the gate toggles the recipient is at location L0 +L0− 1 = 5, and

continuing on to L is the faster choice. Therefore, v
π∗
M̂
M = v∗M− = −(L−1−L0) = −6,

and the bound in Theorem V.1 is attained.

Bounding Suboptimality for Maintenance. We next ask if the bound in Equa-

tion (5.3) on suboptimality in achievement commitments also holds for maintenance

commitments. Unfortunately, as stated in Theorem V.2, the optimal policy of the

minimal enablement duration influence for maintenance commitments can be arbi-

trarily bad when evaluated in the true influence, incurring a suboptimality exceeding

the bound in Equation (5.3). We give an example for an existence proof.

Theorem V.2. Consider P̂u = P̂min+
u (cm) to be the approximate influence when mod-

elling the maintenance commitment in M̂ . There exists an MDP M and a mainte-

nance commitment cm, such that the true influence Pu in M respects the commitment
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semantics of cm, v∗M = v∗M+, v
π∗
M̂
M < v∗M−, and therefore the suboptimality

v∗M − v
π∗
M̂
M > v∗M+ − v∗M− (5.4)

exceeds the bound in Equation (5.3).

Proof. As an existence proof, we give an example of a maintenance commitment in

1D Walk for which v∗M = v∗M+ and v
π∗
M̂
M < v∗M− . Consider 1D Walk with the same

L = 10, L0 = 3, H = 10 as in the example for Theorem V.1. Consider maintenance

commitment (Tm = L0 + 1 = 4, pm = 0), and Pu toggles the gate to closed at Tm = 4

with probability 1−pm = 1. As shown in Figure 5.3(right), the optimal policy should

take L0 steps to move directly to 0, for which the value is v∗M = v∗M+ . We have

computed for Theorem V.1 that v∗M− = −6. With probability 1 − pm = 1, the gate

is closed at Tm = 4, and π∗
M̂

takes L + L0 − 1 > H steps to reach L − 1. Thus,

v
π∗
M̂
M = −H = −10 < v∗M− .

In the example used in the existence proof above, the maximum suboptimality

is incurred with maintenance commitment probability pm = 0 (a no-guarantee com-

mitment), because this is when the recipient is most uncertain about the influence

and will be most negatively affected by the uncertainty. Note that for achievement,

a no-guarantee commitment still falls within the Theorem V.1 bound.

Comparing the bound Equation (5.3) in Theorem V.1 with the bound Equation

(5.4) in Theorem V.2 reveals a fundamental difference between achievement and main-

tenance commitments: maintenance commitments are inherently less tolerant to an

unexpected change in the commitment feature. For achievement commitments, the

easily-constructed minimal enablement duration influence has the property of be-

ing pessimistic, in that any unexpected changes to the feature, if they impact the

recipient at all, can only improve the expected value. Thus, if despite its minimal en-

ablement duration influence approximation, a recipient has chosen to follow a policy

that exploits the commitment, it can never experience a true influence that would

lead it to regret having done so. The same cannot be said for maintenance commit-

ments. There, the easily-constructed minimal enablement duration influence is not

pessimistic—it does not guarantee that any deviations from the influence can only

improve the expected value. As our theoretical results show, the minimal enablement

duration influence assuming toggling from u+ to u− right away can still lead to nega-

tive surprises, since if the toggling does not immediately occur the influence suggests

that it is safe to assume no toggling until Tm, but that is not true since toggling could
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happen sooner, after the recipient has incurred cost for a policy that would need to

be abandoned. In the example for Theorem V.2, the worst time for toggling to u− is

not right away, but right before the precondition would be used, where the gate shuts

just as the recipient is about to pass through it.

5.3.2 Alternative Influence Approximations

Besides using the minimal enablement duration strategy to create the approximate

influence, we next consider and analyze several alternative strategies.

Maximal Enablement Duration. As opposed to the minimal enablement du-

ration strategy, the maximal enablement duration strategy optimistically toggles u

right after the initial time step for achievement commitments, and at the commit-

ment time for maintenance commitments. Formally, given achievement commitment

ca = (Ta, pa), the maximal enable duration strategy, denoted as P̂max+
u (·), chooses the

influence P̂max+
u (ca) that toggles u in the transition from time step t = 0 to t = 1

with probability pa, and does not toggle u at any other time step; given maintenance

commitment cm = (Tm, pm), the maximal enablement duration strategy chooses the

influence P̂max+
u (cm) that toggles u in the transition from time step t = Tm − 1 to

t = Tm with probability 1−pm, and (unless already toggled) from t = Tm to t = Tm+1

with probability one. It does not toggle u at any other time step.

Constant Toggling. The constant toggling strategy, denoted as P̂ const
u (·), chooses

the influence P̂ const
u (c), for either an achievement or a maintenance commitment c, that

toggles u at every time step up to the commitment time with a constant probability,

and the probability is chosen such that the overall probability of toggling by the

commitment time matches the commitment probability. The influence P̂ const
u (c) agrees

with the minimal enablement duration influence after the commitment time.

Minimal Value Timing. Both the minimal and maximal enablement duration

strategies choose influences that model a single timestep no later than the com-

mitment time and agree with Assumption V.3 thereafter. We denote the set of

such influences as P1
u(c) for either an achievement or a maintenance commitment

c. The minimal value timing strategy, denoted as P̂minV
u (·), chooses the influence

from P1
u(c) that has the minimal optimal value. Formally, for either an achievement

or a maintenance commitment c, its minimal enablement duration influence P̂minV
u (c)

is arg minP̂u∈P1
u(c) v

∗
M̂

where P̂u is the influence in M̂ .
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Minimax Regret Timing. The minimax regret timing strategy P̂minimax
u (·) chooses

an influence from P1
u(c) based on the minimax regret principle. Formally, for either

an achievement or a maintenance commitment c, its minimax regret timing influence

P̂minimax
u (c) is

arg minP̂u∈P1
u(c) maxPu∈P1

u(c) v
∗
M − v

π∗
M̂
M

where Pu, P̂u are the influences in M, M̂ , respectively.

The four strategies to create approximate influences, together with the minimal

enablement duration strategy, include three heuristics that are computationally inex-

pensive to compute (minimal and maximal enablement duration, and constant tog-

gling), and two more heuristics that are complex and expensive to compute (minimal

value and minimax regret timing). Except for the constant toggling, all strategies

create approximate influences that model a single branch for when u probabilisti-

cally toggles, and this single branching induces minimal computation cost for the

recipient’s planning. Recall that our theoretical analysis suggests, for maintenance

commitments, the pessimistic time for toggling to u− is not right away, but right

before the recipient uses the precondition, and this causes the poor performance of

the minimal enablement duration influence. One might hypothesize that the constant

toggling can be more pessimistic for maintenance (and thus better) than the minimal

enablement duration, because it projects the possibility of toggling to u− at every

single time step before the commitment time. One might also hypothesize that the

latter two heuristics can be more pessimistic (and thus better) than the minimal en-

ablement duration influence by identifying the worst possible toggling time. However,

Theorem V.3 states that, while the minimal value timing influence coincides with the

minimal enablement duration for achievement and therefore enjoys the same bound

in Equation (5.3) for the worst-case suboptimality, the bound does not hold for any

of the alternative strategies in either achievement or maintenance.

Theorem V.3. For an achievement commitment ca, the minimal value timing influ-

ence coincides with the minimal enablement duration, i.e. P̂minV
u (ca) = P̂min+

u (ca), and

thus the bound in Equation (5.3) holds for P̂minV
u (ca). Except for this, the bound does

not hold, i.e. for P̂u ∈ { P̂max+
u (ca), P̂ const

u (ca), P̂minimax
u (ca), P̂max+

u (cm), P̂ const
u (cm),

P̂minV
u (cm), P̂minimax

u (cm)}, there exists an MDP M , and an achievement or mainte-

nance commitment, such that the true influence Pu in M respects the commitment

semantics of c ∈ {cm, ca}, and the suboptimality

v∗M − v
π∗
M̂
M > v∗M+ − v∗M−
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exceeds the bound in Equation (5.3).

Proof. We first show that the minimal value timing influence coincides with the min-

imal enablement duration for achievement commitments, i.e. P̂minV
u (ca) = P̂min+

u (ca).

Consider achievement commitment ca = (Ta, pa), and P̂u, P̂
′
u ∈ P1

u(ca) that toggles u

at T and T ′ respectively with T ′ < T ≤ Ta. We can construct a recipient’s policy for

the earlier toggling P̂ ′u that mimics the optimal policy for P̂u, and hence the optimal

value for T ′ is at least that for T , i.e. v∗
M̂
≤ v∗

M̂ ′
where P̂u and P̂ ′u are the influences in

M̂ and M̂ ′, respectively. Specifically, let π∗
M̂

be the optimal policy for P̂u and π∗
M̂

(·|s)
be the action probability distribution of π∗

M̂
in state s. For the earlier toggling time

T ′ < T , we construct a policy πT ′ that mimics π∗
M̂

: it chooses actions as if u = u−

until T . Formally, for timesteps t < T , πT ′(·|s−) = π∗
M̂

(·|s−) for any state s− = (l, u−)

in which u = u−, and πT ′(·|s+) = π∗
M̂

(·|s−) where s+ = (l, u+) and s− = (l, u−) only

differ in u; for timesteps t ≥ T , πT ′(·|sr) = π∗
M̂

(·|sr). Because πT ′ and π∗
M̂

yield the

same trajectories of l and the reward only depends on l, they achieve the same value,

and therefore v∗
M̂
≤ v∗

M̂ ′
.

As an existence proof, Table 5.1 summarizes examples for which the bound in

Equation (5.3) does not hold for P̂u ∈ { P̂max+
u (ca), P̂

const
u (ca), P̂

minimax
u (ca), P̂

max+
u (cm),

P̂ const
u (cm), P̂minV

u (cm), P̂minimax
u (cm) }. All the examples are in the 1D Walk domain

with fixed L = 10, H = 20. Besides the −1 reward for every time step until reaching

either end, the recipient also gets a one-time reward when reaching the left end of rleft,

which is an integer chosen from interval [0, 10]. We compute the suboptimality for

a commitment c, achievement or maintenance, with initial location L0 chosen from

{1, 2, 3, ..., 8}, commitment time chosen from {1, 2, ..., H} and commitment probabil-

ity chosen from {0, 0.1, 0.2, ..., 1}, with the provider’s true influence Pu chosen from

P1
u(c). For all possible combinations of rleft, c, L0, and Pu, the corresponding sub-

optimality is evaluated, and Table 5.1 reports combinations for which the bound in

Equation (5.3) does not hold.

While the analysis in this section chooses the provider’s true influence from P1
u(c)

in an adversarial manner from the recipient’s perspective, a rational provider that

maximizes its value can indeed induce such an influence in P1
u(c) for any given com-

mitment c, as formally stated in Theorem V.4.

Theorem V.4. For any commitment c, achievement or maintenance, and any influ-

ence Pu ∈ P1
u(c), there exists an MDP for the provider such that the optimal policy

induces influence Pu.

75



Table 5.1: 1D Walk Examples for Theorem V.3

Achievement Maintenance

Min Enablement The bound in Eq. (5.3) holds

L = 10, L0 = 3, rleft = 0
Tm = 4, pm = 0.0

v∗M+ − v∗M− = −3− (−6) = 3
Pu ∈ P1

u,c toggles at t=3
Suboptimality = 8.8

Max Enablement

L = 10, L0 = 6, rleft = 7
Ta = 4, pa = 0.9

v∗M+ − v∗M− = 1− (−3) = 4
Pu ∈ P1

u,c toggles at t=3
Suboptimality = 4.7

L = 10, L0 = 3, rleft = 0
Tm = 3, pm = 0.0

v∗M+ − v∗M− = −3− (−6) = 3
Pu ∈ P1

u,c toggles at t=1
Suboptimality = 4

Constant Toggling

L = 10, L0 = 3, rleft = 0
Ta = 7, pa = 0.9

v∗M+ − v∗M− = −3− (−6) = 3
Pu ∈ P1

u,c toggles at t=6
Suboptimality = 4.0

L = 10, L0 = 3, rleft = 0
Tm = 7, pm = 0.1

v∗M+ − v∗M− = −3− (−6) = 3
Pu ∈ P1

u,c toggles at t=1
Suboptimality = 3.3

Min Value The bound in Eq. (5.3) holds

L = 10, L0 = 3, rleft = 9
Tm = 7, pm = 0.3

v∗M+ − v∗M− = 6− (−6) = 12
Pu ∈ P1

u,c toggles at t=5
Suboptimality = 14.9

Minimax Regret

L = 10, L0 = 6, rleft = 7
Ta = 5, pa = 1.0

v∗M+ − v∗M− = 1− (−3) = 4
Pu ∈ P1

u,c toggles at t=4
Suboptimality = 5.8

L = 10, L0 = 3, rleft = 0
Tm = 4, pm = 0.0

v∗M+ − v∗M− = −3− (−6) = 3
Pu ∈ P1

u,c toggles at t=3
Suboptimality = 8.8

Proof. For achievement commitment c = ca = (Ta, pa) and influence Pu ∈ P1
u(ca)

that toggles at time step T ≤ Ta, consider 1D Walk of Ta + 1 locations on [0, Ta]

as the provider’s MDP, where the provider starts at location 0. The provider gets a

reward of +1 for each time step at location Ta, and a reward of 0 everywhere else.

For each time step at location T , the provider toggles the value of u from u− to u+

with probability pa. Obviously, the provider’s optimal policy is to move to and then

stay at location Ta, which induces influence Pu.

Similarly, for maintenance commitment c = cm = (Tm, pm) and influence Pu ∈
P1
u(cm) that toggles at time step T ≤ Tm, consider the same 1D Walk of Tm + 1

locations as the provider’s MDP, except that the provider toggles the value of u from

u+ to u− with probability 1−pm at location T . The provider’s optimal policy remains

the same, which induces influence Pu.
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As a brief summary, in this section we have developed several strategies for the

recipient to create the approximate influence, and theoretically analyzed their worst-

case suboptimalities for both achievement and maintenance commitments. Our the-

oretical results show that there exists a strategy, minimal enablement duration, such

that its worst-case suboptimality is reasonably bounded for achievement commit-

ments. However, such a guarantee does not hold for maintenance commitments for

any of the strategies we have considered. This not only includes the counterpart

minimal enablement duration strategy but also the strategies that are purposely de-

veloped using insights about worst-case timing of the toggling, as well as the constant

toggling strategy that models the toggling at every time step. While we cannot as-

sert that a bounded strategy does not exist for maintenance commitments, we have

shown that strategies specifically developed to account for the shortcomings of others

nonetheless can still induce the worst-case unbounded suboptimality.

5.4 Empirical Study

In Section 5.3, we have developed several strategies for the recipient to create the

approximate influence for a given (achievement or maintenance) commitment, and

analyzed their worst-case suboptimalities. Specifically, we have contrived MDPs for

the recipient in the 1D Walk domain, commitments, and the provider’s true influ-

ences respecting the commitment semantics, to maximize the suboptimality induced

by the approximate influences. We have shown that, for achievement, the worst-

case suboptimality of the minimal enablement duration influence (or equivalently the

minimal value timing influence) can be be bounded fairly tightly, while for mainte-

nance the worst-case suboptimality of any approximate influence we have developed

is effectively unbounded.

In this section, we conduct empirical evaluations of the suboptimality induced by

those approximate influences besides the worst case. In Section 5.4.1, we measure

suboptimality for general (achievement or maintenance) commitments in 1D Walk

with various choices of commitment time and probability. In Section 5.4.2, we focus on

value maximizer commitments, which either maximize the provider’s or the recipient’s

local commitment value, or maximize the joint commitment value.

5.4.1 Suboptimality for General Commitments

Here, we measure the suboptimality of the strategies to create approximate influ-

ences developed in Section 5.3 for a general achievement commitment ca = (Ta, pa)
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or maintenance commitment cm = (Tm, pm) in 1D Walk, where the commitment time

Ta, Tm ∈ {1, 2, ..., H} can be any time step by the horizon and the commitment proba-

bility pa, pm ∈ { in}
n
i=0 is chosen from the interval [0, 1] evenly discretized with n = 10.

For a given (achievement or maintenance) commitment c, we measure the subopti-

mality with respect to all the influences in P1
u(c) as the provider’s true influence. The

parameters for 1D Walk are the same as the example for Theorem V.1 except that

the horizon is longer, L = 10, L0 = 3, H = 20.

Figure 5.4 shows the mean, minimum, and maximum suboptimality over all re-

alizations of the provider’s true influence Pu ∈ P1
u for commitment time Ta, Tm ∈

{1, 5, 10, 15}. We see that for achievement commitments, the suboptimality of the

minimal enablement duration (or equivalently the minimal value timing) influence in-

curs the lowest suboptimality. The more expensive minimax regret timing influence

has comparable suboptimality. The other two, maximal enablement duration and the

constant toggling influences, incur the most suboptimality overall. For maintenance

commitments, the minimal enablement duration and the minimax regret influences

incur the most suboptimality overall, and, among the other three approximate influ-

ences, it is difficult to identify a single best influence that reliably reduces the sub-

optimality for all the maintenance commitments. The maximal enablement duration

strategy has the lowest mean suboptimality overall, yet the maximum suboptimality

it induces over candidate true influences can be quite high especially when pm is close

to one. On the contrary, the constant toggling strategy incurs higher mean subop-

timality than the maximal enablement duration, yet its maximum suboptimality is

consistently lower. The suboptimality of the minimum value timing strategy is the

median among the five.

For both achievement and maintenance commitments, a larger commitment time

and a larger commitment probability tend to induce higher suboptimality. This is

because the recipient has more uncertainty about the provider’s true influence when

both the commitment time and probability are larger. In the extreme, as shown

in Figures 5.4a and 5.4b, for commitment time Ta = Tm = 1 the recipient has no

uncertainty about the toggling time, and hence the suboptimality is zero given that

the provider’s true influence Pu ∈ P1
u matches the commitment probability. When

the commitment probability is pa = pm = 0, the suboptimality is also zero since the

recipient’s approximate influence matches the provider’s true influence in the sense

that there is no toggling in either of the two influences. The same reasoning explains

why the largest suboptimality occurs at pa = pm = 1.0.

78



0.0 0.2 0.4 0.6 0.8 1.0
pa

0

2

4

6

8

10

su
bo

pt
im

al
ity

Min Enablement
Max Enablement
Min Value
Minimax Regret
Constant

(a) Achievement, Ta = 1

0.0 0.2 0.4 0.6 0.8 1.0
1 − pm

0

2

4

6

8

10

su
bo

pt
im

al
ity

Min Enablement
Max Enablement
Min Value
Minimax Regret
Constant

(b) Maintenance, Tm = 1

0.0 0.2 0.4 0.6 0.8 1.0
pa

0

2

4

6

8

10

su
bo

pt
im

al
ity

Min Enablement
Max Enablement
Min Value
Minimax Regret
Constant

(c) Achievement, Ta = 5
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(d) Maintenance, Tm = 5
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0.0 0.2 0.4 0.6 0.8 1.0
1 − pm

0

2

4

6

8

10

su
bo

pt
im

al
ity

Min Enablement
Max Enablement
Min Value
Minimax Regret
Constant

(f) Maintenance, Tm = 10
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(g) Achievement, Ta = 15
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(h) Maintenance, Tm = 15

Figure 5.4: Suboptimality in 1D Walk. Please view in color. The results are for
the recipient with L = 10, L0 = 3, H = 20. Markers on the curves show the mean
suboptimality over possible true influences that toggles at a single time step before
the commitment time, Pu ∈ P1

u,c. Bars show the minimum and maximum.
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5.4.2 Suboptimality for Value Maximizer Commitments

So far, in both Sections 5.3 and 5.4.1, we are concerned with the suboptimality

that is concerned with general commitments with various commitment times and

probabilities. Here, we introduce an environment that explicitly incorporates the

provider’s commitment value, and we focus on commitments that are rationally chosen

to be value maximizers, which either maximize the provider’s commitment value vp(c),

the recipient commitment value vr(c), or the joint commitment value vp(c) + vr(c).

We make a note here that these rationally-chosen commitments are likely to be the

ones adopted by the agents, and they are not chosen in favor of a particular type

of commitment, nor in favor of a particular approximate influence. Moreover, in

both Sections 5.3 and 5.4.1 we have been concerned with the virtual provider with

its true influence Pu ∈ P1
u(c) toggling u at a single time step no later than the

commitment time. In this section, we are concerned with the more general situation

in which the true influence Pu is not restricted to be an element in P1
u(c); instead,

Pu is naturally determined by the provider’s policy that maximizes its own value

while respecting the commitment semantics. We first describe the recipient’s and the

provider’s environments below.

The recipient’s environment. The recipient’s environment is the same 1D Walk

domain used for the proof of Theorem V.3. Specifically, the recipient is in a one-

dimensional space with L = 10 locations represented as integers {0, 1, ..., 9}. The

starting location L0 is randomly chosen from locations 1 − 8. The horizon for both

agents is set to be H = 20. The one-time reward of rleft is randomly sampled from

[0, 10]. In a specific instantiation of the recipient’s MDP, L0 and rleft are fixed, and

they are randomly chosen to create various MDPs for the recipient. Since the left

end has higher rewards than the right end, if the recipient’s start position is close

enough to the left end and the provider commits to opening the gate early enough

with high enough probability, the recipient should utilize the commitment by checking

if the gate is open by the commitment time, and pass through it if so; otherwise, the

recipient should simply ignore the commitment and move to the right end. Thus,

the various instances of the recipient’s MDP include diverse preferences regarding the

commitments.

The provider’s environment. The provider’s MDP is randomly generated from

a distribution designed such that, in expectation, the provider’s value when enabling

the precondition is smaller than when not enabling it. This introduces tension in the
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provider between enabling the precondition to help the recipient, versus increasing

its own reward. We now describe the provider’s MDP-generating distribution. The

MDP has 10 states the provider can be in at any time step, one out of which is

an absorbing state denoted as s+, and where the initial state is chosen from the

non-absorbing states. There are 3 actions. For each state-action pair (sp, ap) where

sp 6= s+, the transition function P p(·|sp, ap) is determined independently by filling the

10 entries with values uniformly drawn from [0, 1], and normalizing P p(·|sp, ap). For

achievement commitments, feature u takes the value of u+ only in the absorbing state,

i.e. u+ ∈ sp if and only if sp = s+, and the reward Rp(sp, ap) for a non-absorbing state

sp 6= s+ is sampled uniformly and independently from [0, 1], and for the absorbing

state sp = s+ is zero, meaning the provider prefers to avoid the absorbing state, but

that state is the only one that enables the precondition and realizes the achievement

commitment. For maintenance commitments, feature u takes the value of u+ only

in the non-absorbing states, i.e. u+ ∈ sp if and only if sp 6= s+, and the reward

Rp(sp, ap) for a non-absorbing state sp 6= s+ is sampled uniformly and independently

from [−1, 0], and for the absorbing state sp = s+ is zero, meaning the provider prefers

to reach the absorbing state, but that state disables the precondition and fails the

maintenance commitment.

We observe that, for small values of commitment time, the provider’s maximum

feasible probability of toggling u, or equivalently reaching s+, by the commitment

time is fairly low. Hence, in some experiments we also introduce a fourth action for

the provider, a+, such that, after taking a+ in any non-absorbing state sp 6= s+, the

provider will transit to the absorbing state s+ with probability p+
sp , and will stay in

the current state sp with probability 1− p+
sp . For each non-absorbing state sp 6= s+,

p+
sp is sampled from a Gaussian distribution and then clipped into [0, 1]. In a specific

instantiation of the provider’s MDP, the mean of the Gaussian distribution, denoted

as p+, is chosen from {0, 0.5, 0.9}, and standard deviation is fixed to 0.1.

Results. Tables 5.2, 5.3, 5.4, and 5.5 show the suboptimality for the value max-

imizer commitments without action a+, with action a+ and p+ = 0, 0.5, and 0.9,

respectively, each reporting the means and standard errors over 2500 randomly-

generated pairs of the provider’s MDP and the recipient’s MDP. Since the problem

instances have different reward scales, the suboptimality is normalized by the bound

in Equation (5.3), i.e. v∗M+ − v∗M− . The tables highlight strategies that induce low

suboptimality for certain types of value maximizer commitments, with mean+error

≤ 5% underlined and mean+error ≤ 1% in bold.
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Table 5.2: Suboptimality for maximizer commitments (without action a+ for the
provider). The suboptimality is normalized by v∗M+−v∗M− . The results are means and
standard errors (in parentheses). Mean + standard error below 5% are underlined,
and below 1% are in bold.

Suboptimality (%)
Provider Value

Maximizer
Joint Value
Maximizer

Recipient Value
Maximizer

Achv.

Min Enablement
Min Value

0.21 (0.03) 0.27 (0.03) 0.40 (0.03)

Max Enablement 26.51 (0.61) 29.25 (0.65) 28.75 (0.65)
Minimax Regret 6.44 (0.23) 7.78 (0.26) 7.20 (0.26)

Constant Toggling 0.03 (0.01) 0.06 (0.01) 0.97 (0.04)

Maint.

Min Enablement 9.93 (0.83) 4.00 (0.56) 1.55 (0.18)
Max Enablement 11.04 (0.74) 11.04 (0.74) 11.04 (0.74)

Min Value 15.02 (1.11) 10.82 (1.06) 8.74 (0.96)
Minimax Regret 10.17 (0.83) 7.24 (0.62) 7.63 (0.58)

Constant Toggling 9.47 (1.01) 7.56 (0.91) 0.02 (0.01)

Table 5.3: Suboptimality for maximizer commitments (p+ = 0). The suboptimality is
normalized by v∗M+−v∗M− . The results are means and standard errors (in parentheses).
Mean + standard error below 5% are underlined, and below 1% are in bold.

Suboptimality (%)
Provider Value

Maximizer
Joint Value
Maximizer

Recipient Value
Maximizer

Achv.

Min Enablement
Min Value

0.01 (0.01) 0.01 (0.01) 0.31 (0.02)

Max Enablement 2.69 (0.21) 14.81 (0.33) 34.28 (0.69)
Minimax Regret 0.66 (0.09) 6.01 (0.25) 10.15 (0.37)

Constant Toggling 0.01 (0.01) 0.01 (0.01) 0.46 (0.02)

Maint.

Min Enablement 6.31 (0.67) 0.68 (0.21) 0.01 (0.01)
Max Enablement 8.12 (0.63) 8.12 (0.63) 4.80 (0.49)

Min Value 14.42 (1.15) 6.62 (0.87) 0.97 (0.33)
Minimax Regret 7.30 (0.65) 7.56 (0.60) 4.45 (0.46)

Constant Toggling 6.33 (0.83) 2.56 (0.91) 0.01 (0.01)
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Table 5.4: Suboptimality for maximizer commitments (p+ = 0.5). The suboptimal-
ity is normalized by v∗M+ − v∗M− . The results are means and standard errors (in
parentheses). Mean + standard error below 5% are underlined, and below 1% are in
bold.

Suboptimality (%)
Provider Value

Maximizer
Joint Value
Maximizer

Recipient Value
Maximizer

Achv.

Min Enablement
Min Value

0.16(0.02) 0.12 (0.01) 0.14 (0.01)

Max Enablement 28.00 (0.63) 31.69 (0.69) 38.08 (0.63)
Minimax Regret 6.82 (0.23) 9.67 (0.34) 4.53 (0.30)

Constant Toggling 0.01 (0.01) 10.66 (0.43) 0.02 (0.01)

Maint.

Min Enablement 22.66 (0.70) 3.08 (0.36) 1.74 (0.20)
Max Enablement 45.09 (1.54) 45.09 (1.54) 45.09 (1.54)

Min Value 6.33 (0.39) 2.81 (0.35) 2.17 (0.31)
Minimax Regret 22.99 (0.70) 4.72 (0.35) 10.62 (0.65)

Constant Toggling 4.36 (0.37) 2.48 (0.34) 0.01 (0.01)

Table 5.5: Suboptimality for maximizer commitments (p+ = 0.9). The suboptimal-
ity is normalized by v∗M+ − v∗M− . The results are means and standard errors (in
parentheses). Mean + standard error below 5% are underlined, and below 1% are in
bold.

Suboptimality (%)
Provider Value

Maximizer
Joint Value
Maximizer

Recipient Value
Maximizer

Achv.

Min Enablement
Min Value

0.16 (0.02) 0.10 (0.01) 0.01 (0.01)

Max Enablement 27.89 (0.63) 32.40 (0.67) 32.36 (0.67)
Minimax Regret 6.71 (0.23) 9.58 (0.36) 5.15 (0.31)

Constant Toggling 0.01 (0.01) 52.79 (1.48) 0.01 (0.01)

Maint.

Min Enablement 10.40 (0.48) 0.71 (0.16) 1.72 (0.20)
Max Enablement 46.83 (1.32) 50.00 (1.34) 50.00 (1.34)

Min Value 1.66 (0.13) 0.52 (0.11) 0.45 (0.10)
Minimax Regret 9.17 (0.42) 5.62 (0.24) 13.13 (0.64)

Constant Toggling 1.80 (0.13) 0.45 (0.10) 0.01 (0.01)
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For achievement commitments, the minimal enablement duration (or equivalently

the minimal value timing) strategy consistently induces suboptimality below 1% with

or without action a+, for all the three types of maximizer commitment, while the max-

imal enablement duration and the minimax regret often induce suboptimality higher

than 5%. Table 5.2 shows that, without action a+, the constant toggling influence

also induces suboptimality below 1% for all three types of maximizer commitment,

and this also holds with action a+ and a small p+ = 0 as shown in Table 5.3. How-

ever, as p+ increases, the constant toggling influence can induce suboptimality higher

than 5%, especially for the joint value maximizer commitments, as shown in Tables

5.4 and 5.5. Generally, the provider value maximizers are those weak achievement

commitments with late commitment time Ta and low commitment probability pa,

while the recipient value maximizers are those strong commitments with early Ta and

high pa. Since later commitment time Ta and higher commitment probability pa often

cause the recipient more uncertainty about the true influence and therefore higher

suboptimality (as evidenced by the results in Figures 5.4a, 5.4c, 5.4e, and 5.4g), it

is difficult to predict which type of value maximizer induces higher suboptimality.

Thus, it should be unsurprising that some strategies work well for one type of value

maximizer achievement commitment but not for another. Nonetheless, the minimal

enablement duration (or equivalently the minimal value timing) strategy consistently

induces low suboptimality for all types of value maximizer achievement commitment.

For maintenance commitments, the results show that none of the five strategies

has suboptimality below 1% consistently for all three types of maximizer commit-

ment, with or without action a+. Overall, the suboptimality of all five strategies for

maintenance is significantly higher than the suboptimality of the minimal enablement

duration strategy for achievement. It is worth noting that, while the maximal enable-

ment duration used to be an above-average strategy for maintenance commitments if

the true influence is chosen from P1
u(cm) that toggles only at a single time step (shown

in Figures 5.4b, 5.4d, 5.4f, and 5.4h), here we see that the maximal enablement du-

ration is overall the worst among the five strategies, confirming that being optimistic

does not result in robust interpretation of maintenance commitments. Similar to

achievement commitments, it is difficult to predict which type of value maximizer

maintenance commitment is harder for the recipient to model, and a strategy can

work well for one value maximizer but not for another. For example, the constant

toggling induces lowest suboptimality for recipient value maximizer maintenance com-

mitments, suggesting that, when the commitment time Tm is late and the toggling

probability ≤ 1− pm is low, it is empirically better to model the toggling more often
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than a single time step. However, such a claim about the constant toggling strategy

does not hold for joint value maximizers, as shown in Table 5.3.

5.5 Summary

In this chapter, we have focused on how the recipient should interpret the par-

tial information specified in a probabilistic commitment. Specifically, a commitment

specifies a lower bound on the probability of the commitment being realized at a

single time step, and this partial specification imposes uncertainty for the recipi-

ent’s planning. As described in Section 5.1, the recipient creates an approximate

influence that approximates the provider’s influence at other time steps. We are

particularly interested in the quality of this approximate influence, quantified by its

suboptimality, for two types of commitment, that of achievement and maintenance

formally defined in Section 5.2 in the probabilistic commitment framework. In Sec-

tion 5.3, we developed several strategies for the recipient to create the approximate

influence, and studied their worst-case suboptimalities that is induced in simple ex-

amples of commitments and the provider’s true influence. Using theorems in Section

5.3, we were able to identify a straightforward, computationally inexpensive strat-

egy, referred to as the minimal enablement duration, whose worst-case suboptimality

for achievement commitments can be bounded, while for maintenance commitments

the worst-case suboptimality of any of the strategies is effectively unbounded. Our

empirical study in Section 5.4 evaluated the strategies beyond worst-case examples.

The results showed that the minimal enablement duration is effective for achieve-

ment commitments, while for maintenance none of the strategies can reliably yield

low suboptimality.

With the recipient robustly interpreting an achievement commitment, successful

coordination with the provider can be secured. On the other hand, the fact that

interpreting a maintenance commitment is harder encourages future research in coor-

dination with maintenance. As an immediate next step, one can try to develop and

investigate better strategies than the ones we studied in this thesis. In a different

direction, one can explore specifications that are more detailed than the single time

step specification, which definitely reduce the recipient’s uncertainty when creating

the approximate influence, but, as a potential cost, could reduce the flexibility the

provider needs. More broadly, our results provide insights to the community designing

specifications and protocols for applying commitment-based coordination to domains

involving both achievement and maintenance.
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CHAPTER VI

Efficient Formulation of Cooperative Probabilistic

Commitments

We have seen that the semantics of a commitment constrains the provider’s policy

choice, and thus the provider would prefer a weaker commitment (e.g., lower commit-

ment probability, earlier commitment time for achievement, and later commitment

time for maintenance) if it aims to maximize its own value. On the other hand, the

recipient would prefer a stronger commitment (e.g., higher commitment probability,

later commitment time for achievement, and earlier commitment time for mainte-

nance) since the outcome specified by the commitment is desired. What commitment

should they agree on? In this chapter, we focus on formulating a commitment that

induces the optimal cooperative behavior between the agents in the sense that the

sum of their two values is maximized. This optimal cooperative commitment problem

is computationally challenging, because evaluating each commitment involves solving

a linear program that is expensive, and thus we aim to avoid exhaustively searching

the entire commitment space. We prove several structural properties of the provider’s

and the recipient’s values as functions of the parameters in the commitment specifi-

cation. This enable us to develop algorithms that exploit the properties to efficiently

formulate (near-)optimal cooperative commitments for both the centralized setting

(in which each agent’s information is known to a centralized coordinator) and the de-

centralized setting (in which the information relevant to optimization is distributed

between the agents).

6.1 Cooperative Probabilistic Commitments

As we have discussed in Section 2.3, for a given feasible probabilistic commitment

c = (uc, Tc, pc), the provider’s commitment value function vp(c) corresponds to the
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provider’s policy that maximizes the initial state value while satisfying the commit-

ment constraint. The recipient’s value of commitment c, vr, is defined to be the

optimal value of the recipient’s initial state when planning with whatever it chooses

for its approximate influence of the shared state feature. Let vp+r(c) = vp(c) + vr(c)

be the joint commitment value function. The optimal commitment is a feasible com-

mitment that maximizes the joint value, i.e. c∗ = arg maxc v
p+r(c).

In this chapter, we focus on achievement commitments, where the shared state

feature u takes binary values of u+ and u− and is initially u−. The provider is

constrained to follow a policy that sets u to uc = u+ desired by the recipient by

commitment time Tc with at least probability pc. As we have shown in Chapter V,

the minimal enablement duration, introduced in Section 5.3, is an effective strategy

for the recipient to create the approximate influence for achievement, and thus we

use it to compute the recipient’s commitment value vr(c). As the recipient’s robust

interpretation for maintenance is largely an open question, we leave the formulation

of cooperative maintenance commitments as future work beyond this thesis. Since

uc is fixed to u+, we use abbreviation c = (Tc, pc) for the remainder of this chapter.

To formulate the optimal commitment for achievement, we need to specify (Tc, pc) ∈
[H]× [0, 1] where [H] = {1, 2, ..., H}, i.e.

c∗ = arg max
(Tc,pc)∈[H]×[0,1]

vp+r(c). (6.1)

A näıve strategy for solving the problem in Equation (6.1) is to discretize the com-

mitment probability space, and evaluate every commitment in the discretized space.

The finer the discretization is, the more commitments are considered and the better

the solution will be. At the same time, the finer the discretization, the larger the

computational cost of evaluating every commitment in the discretized commitment

space. In Section 6.2, we prove structural properties of the provider’s and the recipi-

ent’s commitment value functions that enable us to develop algorithms that efficiently

search for the exact optimal commitment.

6.2 Structure of the Probabilistic Commitment Space

We show that, as functions of the commitment probability, both commitment

value functions are monotonic and piecewise linear; the provider’s commitment value

function is concave, and the recipient’s is convex. The proofs for the properties of

the provider’s commitment value function is agnostic about the commitment type,
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and thus can still apply to maintenance commitments. For the recipient, its com-

mitment value function for achievement hinges on the minimal enablement duration

influence, and the proofs of the structural properties cannot straightforwardly apply

to maintenance.

6.2.1 Properties of the Provider’s Commitment Value

Theorem VI.1. Let vp(c) = vp(Tc, pc) be the provider’s commitment value. For any

fixed commitment time Tc, v
p(Tc, pc) has the following properties as a function of

commitment probability pc:

1. vp(Tc, pc) is monotonically non-increasing in pc.

2. vp(Tc, pc) is concave in pc.

3. vp(Tc, pc) is piecewise linear in pc.

The proof of monotonicity is straightforward: by the inequality constraint in

the commitment semantics of Equation (3.1), the set of commitment-constrained

policies Πp
c is non-increasing in pc. To show the concavity and piecewise linearity, we

consider the linear program that solves the provider’s constrained planning problem

in Equation (3.2). We now provide a full proof below.

Proof of Monotonicity. By the commitment semantics of Equation (3.1), Πp
c = Πp

Tc,pc

is monotonically non-increasing in pc for any fixed Tc, i.e. Πp
Tc,p′c

⊆ Πp
Tc,pc

for any

p′c > pc. Therefore, vp(Tc, pc) is monotonically non-increasing in pc.

Proof of Concavity. Consider the linear program (LP) in Figure 3.2 for which the

optimal value is vp(c), as also presented below for convenience:

max
xp

∑
sp,ap

xp(sp, ap)Rp(sp, ap)

subject to ∀sp, ap xp(sp, ap) ≥ 0

∀sp′
∑
ap′

xp(sp′, ap′) =
∑
sp,ap

xp(sp, ap)P (sp′|sp, ap) + δ(sp′, sp
0)∑

spTc3uc

∑
ap

xp(spTc , a
p) ≥ pc.

For a fixed commitment time Tc and any two commitment probabilities pc and

p′c, let xp
c , x

p
c′ be the optimal solutions to the LP for commitments c = (Tc, pc), c

′ =
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(Tc, p
′
c), respectively. For any η ∈ [0, 1], let pc,η = ηp′c + (1 − η)pc. Consider xp

η that

is the η-interpolation of xp
c , x

p
c′ ,

xp
η(s

p, ap) = ηxp
c′(s

p, ap) + (1− η)xp
c (s

p, ap).

Note that xp
η satisfies the first two constraints, and so it is the occupancy measure of

policy πp
η defined as

πp
η (ap|sp) =

xp
η(s

p, ap)∑
ap x

p
η(sp, ap)

.

Since the occupancy measure of πp
η is the η-interpolation of xp

c and xp
c′ , it is easy to

verify that πp
η is feasible for commitment probability pc,η. Therefore, the concavity

holds because

vp(Tc, pc,η) ≥ V
πp
η

Mp(sp
0) =

∑
sp,ap

xp
η(s

p, ap)Rp(sp, ap)

=
∑
sp,ap

(ηxp
c′(s

p, ap) + (1− η)xp
c (s

p, ap))Rp(sp, ap)

=ηvp(Tc, p
′
c) + (1− η)vp(Tc, pc).

Piecewise Linearity. We first convert the LP into its standard form [BT97]:

max
x̃p

rT x̃p

subject to Ax̃p = b

x̃p ≥ 0.

To convert the commitment constraint into an equality constraint, we introduce a

slack variable ξ ≥ 0: ∑
spTc3uc

∑
ap

x(sp
Tc
, ap)− ξ = pc.

The slack variable is a decision variable in the standard form, x̃p = [xp | ξ] ∈
R|Sp||Ap|+1. The standard form eliminates redundant constraints so thatA ∈ Rm×(|Sp||Ap|+1)

is full row rank (rank(A) = m). Note that the elimination produces b ∈ Rm whose

elements are linear in pc.
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Pick a set of indices B corresponding to m columns of the matrix A. We can

think of A as the concatenation of two matrices AB and AN where AB is the m×m
matrix of these m linearly independent columns, and AN contains the other columns.

Correspondingly, x̃p is decomposed into x̃p
B and x̃p

N . Then, x̃p = [x̃p
B | x̃

p
N ] is basic

feasible if x̃p
N = 0, AB is invertible, and x̃p

B = A−1
B b ≥ 0.

It is known that the optimal solution can be found in the basic feasible solutions,

vp(Tc, pc) = max
B:x̃p is basic feasible

rT x̃p

= max
B:x̃p is basic feasible

rTBx̃
p
B

= max
B:x̃p is basic feasible

rTBA
−1
B b.

Since b is linear in pc, v
p(Tc, pc) is the maximum of a set of linear functions in pc, and

therefore it is piecewise linear.

6.2.2 Properties of the Recipient’s Commitment Value

We here also make Assumptions V.1 and V.2 that we have made in Chapter V

when analyzing the worst-case suboptimality of the recipient’s approximate influence.

Recall that these assumptions imply Lemma V.1 that formalizes the notion that u+,

as opposed to u−, is the value of u that is desirable for the recipient.

Theorem VI.2. Let vr(c) = vr(Tc, pc) be the recipient’s commitment value. For

any fixed commitment time Tc, under Assumptions V.1 and V.2, vr(Tc, pc) has the

following properties as a function of commitment probability pc:

1. vr(Tc, pc) is monotonically non-decreasing in pc.

2. vr(Tc, pc) is convex in pc.

3. vr(Tc, pc) is piecewise linear in pc.

The monotonicity is due to Lemma V.1: since u+ is more desirable to the recipient,

we can show that the recipient’s value of any policy, including the recipient’s policy

that is optimal for a specific commitment, is non-decreasing in the toggling probability

pc. To prove convexity and piecewise linearity, the key idea is to express the recipient’s

commitment value as the maximum over its deterministic policies. We now provide

a full proof below.

Proof of Monotonicity. We fix the commitment time Tc. For any recipient policy πr,

let vπ
r

t be the initial state value of πr when u is enabled from u− to u+ with probability
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1 at t, and let vπ
r

Mr be the initial state value of πr for M r. It is useful to notice that,

for commitment c = (Tc, pc),

vπ
r

M̂r = pcv
πr

Tc + (1− pc)vπ
r

Mr− (6.4)

where M̂ r has the minimal enablement duration influence for commitment c. In words,

the initial state value can be expressed as the weighted sum of the two scenarios, with

the weight determined by the commitment probability. Consider the optimal policy

π∗
M̂r

for M̂ r. It is guaranteed that v
π∗
M̂r

Tc
≥ v

π∗
M̂r

Mr− because, intuitively, u+ is more

desirable than u− to the recipient. We will formally prove this later. Now consider

p′c > pc and let c′ = (Tc, p
′
c):

vr(Tc, pc) = pcv
π∗
M̂r

Tc
+ (1− pc)v

π∗
M̂r

Mr−

≤ p′cv
π∗
M̂r

Tc
+ (1− p′c)v

π∗
M̂r

Mr− ≤ vr(Tc, p
′
c).

Now, we finish the proof by formally showing v
π∗
M̂r

Tc
≥ v

π∗
M̂r

Mr− . To this end, it is useful to

recall Lemma V.1 that directly follows from Assumptions V.1 and V.2, stating that

the value when u is always set to u− is no more than the value of any arbitrary M r,

i.e. v∗Mr− ≤ v∗Mr . Now we can show v
π∗
M̂r

Tc
≥ v

π∗
M̂r

Mr− because, otherwise, we have

vr(Tc, pc) = pcv
π∗
M̂r

Tc
+ (1− pc)v

π∗
M̂r

Mr−

< pcv
π∗
M̂r

Mr− + (1− pc)v
π∗
M̂r

Mr− = v
π∗
M̂r

Mr− ≤ v∗M−

where vr(Tc, pc) < v∗M− contradicts Lemma V.1.

Proof of Convexity and Piecewise Linearity. Let Πr
D be the set of all the recipient’s

deterministic policies. It is well known [Put14] that the optimal value can be attained

by a deterministic policy,

vr(Tc, pc) = max
πr∈Πr

D

vπ
r

M̂r = max
πr∈Πr

D

pcv
πr

Tc + (1− pc)vπ
r

Mr−

which indicates that vr(Tc, pc) is the maximum of a finite number of value functions

that are linear in pc. Therefore, vr(Tc, pc) is convex and piecewise linear in pc.
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6.3 Centralized Formulation of Cooperative Commitments

Here we show how the structure in the recipient’s and provider’s value functions

presented above leads to a reduced search space for optimal commitments. This, in

turn, will allow for an efficient centralized search algorithm for optimal commitments

that we will use to benchmark the decentralized algorithms we develop.

As functions of the commitment probability, the provider’s commitment value

is non-increasing, the recipient’s commitment value is non-decreasing, and both are

piecewise linear. As an immediate consequence, the joint commitment value is piece-

wise linear in the probability, and any local maximum for a fixed commitment time

Tc can be attained by a probability at the extremes of zero and the maximum feasi-

ble probability p(Tc), or where the slope of the provider’s commitment value function

changes. We refer to these probabilities as the provider’s linearity breakpoints. There-

fore, without loss of optimality, one can solve the problem in Equation (6.1) to find an

optimal commitment by searching only over these linearity breakpoints, as formally

stated in Theorem VI.3.

Theorem VI.3. Let P(Tc) be the set of probabilities that are the linearity breakpoints

of the provider’s commitment value function for a fixed commitment time Tc. Let

C = {(Tc, pc) : Tc ∈ [H], pc ∈ P(Tc)} be the set of commitments in which the probability

is a provider’s linearity breakpoint. We have

max
c∈[H]×[0,1]

vp+r(c) = max
c∈C

vp+r(c).

Proof. This directly results from the properties in Theorems VI.1 and VI.2.

Further, the property of convexity/concavity assures that, for any fixed commit-

ment time, the commitment value function is linear in a probability interval [pl, pu] if

and only if the value of an intermediate commitment probability pm ∈ (pl, pu) is the

linear interpolation of the two extremes. This enables us to adopt a binary search

procedure to efficiently identify the provider’s linearity breakpoints. For any fixed

commitment time Tc, the strategy first identifies the maximum feasible probability

p(Tc). Beginning with the entire interval of [pl, pu] = [0, p(Tc)], it recursively checks

the linearity of an interval by checking the middle point, pm = (pl + pu)/2. The

recursion continues with the two halves, [pl, pm] and [pm, pu], only if the commit-

ment value function is verified to be nonlinear in interval [pl, pu]. This binary search

procedure is outlined in Algorithm 2, implemented using a FIFO queue. Stepping
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through Tc ∈ [H] and doing the above binary search for each will find all probability

breakpoint commitments C.

Algorithm 2: Binary search for the provider’s linearity breakpoints

Input: The provider’s MDP Mp, commitment time Tc.
Output: P(Tc): the provider’s linearity breakpoints for Tc.

1 Compute p(Tc), the maximum feasible probability for Tc
2 queue ← A FIFO queue of probability intervals
3 queue.push([0, p(Tc)])
4 Compute and save the provider’s commitment value for pc = 0, p(Tc), i.e.

vp(Tc, 0) and vp(Tc, p(Tc))
5 Initialize P(Tc)← {}
6 while queue not empty do
7 [pl, pu]← queue.pop()

8 P̂ ← P̂ ∪ {pi, pj}
9 pm ← (pl + pu)/2; compute and save vp(Tc, pm)

10 if vp(Tc, pm) is the linear interpolation of vp(Tc, pl) and vp(Tc, pu) then
11 continue
12 end
13 else
14 queue.push([pl, pm])
15 queue.push([pm, pu])

16 end

17 end

In summary, a centralized procedure to search for the optimal commitment first

constructs C as just described, and then computes the value of each c ∈ C for both

the provider and recipient. It returns the c with the highest summed value.

6.3.1 Empirical Evaluation

The principal theoretical result in this section is that, for centralized formulation,

the commitment probabilities to consider can be restricted to the linearity breakpoints

of the provider’s commitment value function without loss of optimality. Our empirical

evaluations here aim to confirm this optimality result, and test the hypothesis that

the space of breakpoints would be relatively small, allowing the search to be faster.

Our evaluations are in the domain used for studying value maximizer commitments

in Section 5.4.2. Recall that, for the provider, the domain is designed to introduce

tension between enabling the precondition to help the recipient versus increasing

its own value. For the recipient, the domain includes diverse preferences regarding
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the commitments. Thus, the commitments that maximize the joint value should be

carefully formulated.

6.3.1.1 Alternative Discretizations

To test the hypothesis of greater efficiency, we compare the breakpoints commit-

ments discretization to the following alternative discretizations:

Even discretization. A simple method that discretizes the continuous probabil-

ity space [0, 1] evenly as {p0, p1, ..., pn} with pi = i
n
, where n is referred to as the

resolution of the discretization. The larger resolution n is, the more commitments

are included in the discretization and the better commitment found will be. At

the same time, the larger resolution n is, the larger the computational cost of

evaluating every commitment in the discretization.

Deterministic Policy (DP) discretization. We also consider another discretiza-

tion, adopted in prior work [WD07, WD10], that finds all of the probabilities of

toggling feature u at the commitment time that can be attained by the provider

following a deterministic policy.

For the even discretization, we consider the resolutions n ∈ {10, 20, 50}. For

the DP discretization, we found that the number of toggling probabilities of all the

provider’s deterministic policies is large, and the corresponding computational cost

of identifying and evaluating them is high. To reduce the computational cost and for

fair comparison, we group the probabilities in the DP discretization that are within
i
n

of each other for n ∈ {10, 20, 50}.

6.3.1.2 Results

Figure 6.1 shows the joint values of the best commitments for the seven discretiza-

tions, along with runtimes for forming and evaluating the discretizations, where the

provider does not have action a+ to directly transit to the absorbing state that realizes

the commitment. We report the mean and standard error over 50 randomly-generated

pairs of the provider’s MDP and the recipient’s MDP. Since the problem instances

have different reward scales, for each instance we normalize the joint value with the

value of the best commitment for the breakpoints discretization, and the lowest value

among the seven discretizations, such that the joint value for the breakpoints dis-

cretization normalizes to 1, and the lowest joint value among the seven discretizations

normalizes to 0.
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Figure 6.1: Centralized commitment formulation comparing the even, the DP, and
the breakpoints discretizations. We report means and standard errors over 50 prob-
lem instances, each being a provider-recipient pair randomly generated as described
in Section 5.4.2. Figure 6.1a shows the optimal joint commitment value for each
discretization. Figure 6.1b shows the runtime for forming the discretization and eval-
uating the commitments in the discretization.

Figure 6.1 confirms that our breakpoints discretization yields the highest joint

commitment value in a computationally efficient manner. In Figures 6.1a, we see

that, for the even and the DP discretizations, the joint commitment value increases

with the probability resolution n, and only once we reach n = 50 is the joint com-

mitment value comparable to our breakpoints discretization. Figure 6.1b compares

the runtimes of forming the discretization and evaluating the commitments in the

discretization, confirming our hypothesis that using the breakpoints discretization

is more computationally efficient than the even and the DP discretizations with a

probability resolution that yields comparable (and no higher) joint commitment val-

ues. Table 6.1 compares the sizes of these discretizations, and confirms our intuition

that the breakpoints discretization is the most computationally efficient because it

identifies a smaller number of commitments that are sufficient for the joint value

maximization.

Figure 6.2 visualizes the commitment value functions and their linearity break-

points for a randomly-chosen problem instance for commitment time Tc = 5, 10,

and 15. The visualizations confirm the structural properties of monotonicity, con-

cavity/convexity, and piecewise linearity. We observe that although the maximum

feasible probability p(Tc) unsurprisingly increases with the commitment time Tc, the

number of the provider’s linearity breakpoints does not increase proportionally to

p(Tc). This confirms that the breakpoints discretization can be relatively small even
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Table 6.1: Averaged discretization size per commitment time. The results are means
and standard errors over the same 50 problem instances as in Figure 6.1.

n = 10 n = 20 n = 50
Even 7.8± 0.1 15.1± 0.1 37.1± 0.1
DP 6.1± 0.2 12.0± 0.3 26.5± 0.7

Breakpoints 10.0± 0.1

though the feasible commitment probability space can be large. For this problem

instance, the number of the recipient’s linearity breakpoints is significantly smaller

than that of the provider, indicating that the binary search procedure is more effi-

cient that enumeration when evaluating the provider’s breakpoints on the recipient’s

commitment value function.

Effect of the Commitment Space Size. For small values of commitment time

Tc, the maximum feasible probability p(Tc) is fairly low without the provider’s action

a+, and so is the size of the feasible commitment space. Here, we further compare the

discretizations when the feasible commitment space is increased by the introduction

of the provider’s action a+. Recall that we use p+ to denote the mean of the Gaussian

distribution associated with action a+. For p+ ∈ {0, 0.5}, Figure 6.3 shows the the

maximum feasible probability p(Tc). For each p+, we report the mean and standard

error over 50 randomly generated pairs of the provider’s MDP and the recipient’s

MDP. As shown in Figure 6.3, the maximum feasible probability dramatically in-

creases with p+ increased from 0 to 0.5. We hypothesize that, as feasibility increases,

the runtime of the even discretization also increases because its size is proportional

to the maximum feasible probability. We are interested in how the runtime of our

breakpoints discretization changes with feasibility.

Figure 6.4 shows the joint values of the best commitments for the seven dis-

cretizations and the runtimes. The results confirm that, for both values of p+, our

breakpoints discretization yields the highest joint commitment value with the small-

est runtime, which is consistent with Figure 6.1 that evaluates the discretizations

without the provider’s action a+. The results also confirm our hypothesis on the

runtime of the even discretization: comparing Figures 6.4b and 6.4d, it is noticeable

that, for n = 50, the even discretization’s runtime increases with p+. The breakpoints

discretization’s runtime does not change with p+. Perhaps surprisingly, DP’s runtime

for p+ = 0 is much larger than that for p+ = 0.5.

To have a detailed analysis on the runtime, we plot the runtimes for the even
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Figure 6.2: Visualizations of commitment value functions and their linearity break-
points for a randomly chosen problem instance. X-axis shows the commitment prob-
ability, and Y-axis shows the commitment value.

(n = 50), DP (n = 50), and the breakpoints in Figure 6.5a, where DP’s runtime

is decomposed into the runtime for forming the discretization and the runtime for

evaluating the commitments in the discretization. We see that the major reason

why DP’s runtime for p+ = 0 is larger is because forming the discretization takes

more time. For these six discretizations, Figure 6.5b shows their density defined

as the number of commitments per commitment time normalized by the maximum

feasibility commitment and averaged over the commitment time, i.e.

Discretization Density =
1

H

H∑
Tc=1

#commitments for Tc
p(Tc)

(6.5)

As confirmed in Figure 6.5b, the density of the even discretization is determined by n,

and therefore its size and runtime increases with the maximum feasible commitment

determined by p+. The density of the DP discretization is not only dependent on
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Figure 6.3: Maximum feasible commitment probability with the provider’s action
a+. X-axis shows the commitment time, and Y-axis shows the maximum feasible
commitment probability for a given commitment time. The results are means and
standard errors over 50 randomly generated MDPs for the provider.

n but also p+ that affects the structure of the state space and transition function.

Actually, as shown in Figure 6.5b, the DP’s density for p+ = 0 is larger than that for

p+ = 0.5. Similarly, the density of our breakpoints discretization for p+ = 0 is also

larger, which explains why the runtime does not increase with feasibility.

6.4 Querying Approach for Decentralized Formulation of Co-

operative Commitments

We now progress to the decentralized optimization setting where the agents try

to find a commitment that maximizes their joint value, even though neither agent

has full knowledge about the other’s environment. Recall from Section 3.3 that we

aim to develop a querying approach for eliciting the jointly-preferred commitment

based on exchanged knowledge about feasible commitment options and their local

values to an agent. In such a querying approach, the provider poses a commitment

query consisting of information about a set of feasible commitments, and the recipient

responds by selecting the commitment from the set that will best satisfy their joint

preferences. The number of commitments in the query is often small to limit costs

for communication and computation.
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(c) Joint Commitment Value, p+ = 0.5
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Figure 6.4: Centralized commitment formulation with the provider’s action a+. After
taking action a+, p+ is the probability of transiting to the absorbing state (and hence
realizing the commitment), which is sampled for each state from a Gaussian with
standard deviation of 0.1 and then clipped into [0, 1]. The mean of the Gaussian
distribution is chosen to be 0 (top) and 0.5 (bottom). The results are means and
standard errors of the optimal joint commitment value (left) and the runtime (right)
over 50 randomly generated problem instances, each being a provider-recipient pair.

Specifically, we consider a setting where the provider fully knows its MDP Mp,

and where its uncertainty about the recipient’s MDP is modeled as a probability

distribution µ over a finite set of N candidate MDPs. Given uncertainty µ, the

Expected Utility (EU) of a feasible commitment c is defined as the expected joint

value of the commitment under µ:

EU(c;µ) = Eµ
[
vp+r(c)

]
, (6.6)

where the expectation is with respect to the uncertainty about the recipient’s MDP.

If the provider had to single-handedly select a commitment based on its uncertainty

µ about the recipient, the best commitment is the one that maximizes the expected
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Figure 6.5: Profiled runtime and discretization density. The left plot decomposes the
runtime for DP (n = 50) in terms of forming the discretization (dark green, bottom
bar) and evaluating the commitments in the discretization (light green, top bar).
The right plot shows the discretization density (defined in Equation (6.5)) for even
(n = 50), DP (n = 50), and breakpoints. The results are means and standard errors
over the same 50 problem instances as in Figure 6.4.

utility:

c∗(µ) = arg max
c

EU(c;µ), with EU∗(µ) = max
c
EU(c;µ). (6.7)

But through querying, the provider is given a chance to refine its knowledge about

the recipient’s actual MDP. Formally, the provider’s commitment query Q consists of

a (small) finite number of feasible commitments. The provider offers these choices to

the recipient, where the provider also annotates each choice with its expected local

value of its optimal policy respecting the commitment (Equation (3.2)). The recipient

computes (using Equation (3.5)) its own expected value for each commitment offered

in the query, and adds that to the annotated value from the provider. It then responds

to the provider with the commitment that maximizes the summed value (with ties

broken by selecting the smallest indexed) to be the commitment the two agents agree

on. This querying approach is illustrated in Figure 6.6.

More formally, let Q  c denote the recipient’s response that selects c ∈ Q.

With the provider’s prior uncertainty µ, the posterior distribution given the response

is denoted as µ | Q  c, which can be computed by Bayes’ rule. To avoid large

communication cost, the number of commitments in the query, k = |Q|, is small, such

that the response usually cannot fully resolve the provider’s uncertainty. In that case,

the value of a query Q is the EU with respect to the posterior distribution averaged
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Response 𝑐 ∈ 𝒬 has the highest joint value 

1

Figure 6.6: Illustration of the querying approach. Both the provider and the recipient
fully know their own MDPs, Mp and M r, respectively. The provider’s uncertainty
about the recipient’s MDP is modeled as a prior distribution µ. The provider poses a
commitment query Q consists of three commitments, along with their values for the
provider. The recipient’s response c ∈ Q has the highest joint value among the three
commitments in the query.

over all the commitments in the query being a possible response, and, consistent with

prior work [VB10, ZDS17], we refer to it as the query’s Expected Utility of Selection

(EUS):

EUS(Q;µ) = EQ c;µ [EU(c;µ | Q c)] .

Here, the expectation is with respect to the recipient’s response under µ. The

provider’s querying problem thus is to formulate a query Q ⊆ [H] × [0, 1] consist-

ing of |Q| = k feasible commitments that maximizes EUS:

max
Q⊆[H]×[0,1],|Q|=k

EUS(Q;µ). (6.8)

Importantly, we can show that EUS(Q;µ) is a submodular function of Q, as

formally stated in Theorem VI.4. Submodularity serves as the basis for a greedy

optimization algorithm [NWF78], which we will discuss in detail in Section 6.5.

Theorem VI.4. For any uncertainty µ, EUS(Q;µ) is a submodular function of Q.

That is, given two queries Q ⊆ Q′, commitment c /∈ Q, we have:

EUS(Q∪ {c};µ)− EUS(Q;µ) ≥ EUS(Q′ ∪ {c};µ)− EUS(Q′;µ)

Proof. Since the recipient always chooses the commitment that maximizes the joint

value over all commitments in the query, this reduces to the scenario referred to as

the noiseless response model in prior work on EUS maximization [VB10]. The prior
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work [VB10] proves the submodularity under the noiseless response model, which also

proves Theorem VI.4.

Submodularity means that adding a commitment to the query can increase the

EUS, but the increase is diminishing with the size of the query. An upper bound on

the EUS of any query of any size k can be obtained when k ≥ N such that the query

can include the optimal commitment of each candidate recipient’s MDP, i.e.

EUS = Eµ

[
max

c∈[H]×[0,1]
vp+r(c)

]
. (6.9)

Upper bound EUS can be computed with the centralized algorithm we described in

Section 6.3.

6.4.1 Structure of the Commitment Query Space

Due to the properties of individual commitment value functions proved in Section

6.2, the expected utility EU(c;µ) defined in Equation (6.6), as calculated by the

provider alone, becomes a summation of the non-increasing provider’s commitment

value function and the (provider-computed) weighted average of the non-decreasing

recipient’s commitment value functions. With the same reasoning as for Theorem

VI.3, the optimality of the linearity breakpoint commitments can be generalized to

any uncertainty. That is, for any uncertainty µ, the commitment probability of

an expected utility maximizing commitment c∗(µ) is a linearity breakpoint of the

provider’s commitment value function, as formalized in Lemma VI.1.

Lemma VI.1. Let C be defined in the same manner as in Theorem VI.3. We have

max
c∈[H]×[0,1]

EU(c;µ) = max
c∈C

EU(c;µ).

Proof. This directly results from the properties in Theorems VI.1 and VI.2.

As a consequence of Lemma VI.1, for EUS maximization, there is no loss in only

considering the provider’s linearity breakpoints, as formally stated in Theorem VI.5.

Theorem VI.5. Let C be defined in the same manner as in Theorem VI.3. For any

query size k and uncertainty µ, we have

max
Q⊆[H]×[0,1],|Q|=k

EUS(Q;µ) = max
Q⊆C,|Q|=k

EUS(Q;µ).
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Proof. We first give Lemma VI.2 that says any discretization that contains the lin-

earity breakpoints is no worse than any other discretization.

Lemma VI.2. Let C be defined in the same manner as in Theorem VI.5. Consider

any finite set of commitments C that contains C, i.e. C ⊇ C. For any query size k

and any uncertainty µ,

max
Q⊆C,|Q|=k

EUS(Q;µ) = max
Q⊆C,|Q|=k

EUS(Q;µ). (6.10)

Proof of Lemma 6.10. Because C ⊇ C, it is obvious that “≥” holds for Equation

(6.10). We next show “≤”.

Given a commitment query Q = {c1, ..., ck}, define T (Q) as a commitment query

where each commitment is the optimal commitment with respect to the posterior

given a response for Q, i.e.

T (Q) = {c∗(µ | Q c1), ..., c∗(µ | Q ck)}.

Previous work [VB10] shows that EUS(T (Q);µ) ≥ EUS(Q;µ). Due to Lemma VI.1,

we now have c∗(µ) ∈ C for any uncertainty µ. Thus, given an EUS maximizer Q∗ for

C, T (Q∗) is a subset of C with an EUS that is no smaller, which shows “≤” holds for

Equation (6.10).

We are ready to prove Theorem VI.5. Consider the even discretization of [0, 1],

Pn = {p0, p1, ..., pn} where pi = i
n
. Because vp+r is bounded and piecewise linear in

the commitment probability, for any ε > 0, there exists a large enough discretization

resolution n, such that for any size k query Q ⊆ [H] × [0, 1], there is a size k query

Q̂ ∈ [H]× Pn that |EUS(Q;µ)− EUS(Q̂;µ)| ≤ ε. Therefore, we have

EUS(Q;µ)− ε ≤ max
Q̂⊆[H]×Pn,|Q̂|=k

EUS(Q̂;µ) ≤ max
Q⊆(C∪[H]×Pn),|Q|=k

EUS(Q;µ)

= max
Q⊆C,|Q|=k

EUS(Q;µ)

for any query Q ⊆ [H]× [0, 1] with |Q| = k, where the equality is a direct result from

Lemma VI.2. This concludes the proof.
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6.5 Efficient Commitment Query Formulation

Theorem VI.5 allows us to develop an efficient procedure for solving the query

formulation problem (Equation (6.8)). The provider first identifies its linearity break-

points commitments C and evaluates them for its MDP and each of the recipient’s

possible MDPs. Due to the concavity and convexity properties, commitments C can

be identified and evaluated efficiently with the binary search procedure outlined in

Algorithm 2. Finally, a size k query is formulated from commitments C that solves the

EUS maximization problem either exactly with exhaustive search or approximately

with greedy search:

Exhaustive query search. The finite EUS maximization problem can be ex-

actly solved by exhaustively forming and evaluating each k-subset of breakpoint

commitments, and selecting the best one.

Greedy query search. The finite EUS maximization problem can be approxi-

mately solved by a greedy procedure [VB10, CSD14] that iteratively grows the

query by adding the breakpoint commitment that contributes maximum EUS.

Formally, beginning with Q0 as an empty set, the algorithm iteratively performs

Qi ← Qi−1 ∪ {ci} for i = 1, ..., k, where

ci = arg max
c∈C\Qi−1

EUS(Qi−1 ∪ {c};µ).

Since EUS is a submodular function of the query (Theorem VI.4), the greedily

formed size k query Qk is within a factor of 1− (k−1
k

)k of the EUS of the optimal

query of size k [NWF78].

The overall procedure of formulating the greedy query is given in Algorithm 3.

6.5.1 Empirical Evaluation

Our empirical evaluations aim to answer the following questions regarding the de-

centralized commitment query formulation procedure, with the evaluations conducted

on the same domain as in Section 6.3:

• For commitment query formulation, how effective and computationally more ef-

ficient is the breakpoints discretization compared with alternative discretization

methods?
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Algorithm 3: Greedy query formulation from the provider’s linearity break-
points commitments

Input: The provider’s MDP Mp with horizon H
The provider’s uncertainty µ over the recipient’s MDP
The query size k.

Output: The greedy query of size k.
1 The provider’s linearity breakpoints commitments C ← {}
2 for commitment time Tc = 1, 2, ..., H do
3 Use Algorithm 2 to compute P(Tc), i.e. the provider’s linearity

breakpoints for Tc
4 C ← C ∪ {(Tc, pc) : pc ∈ P(Tc)}
5 end
// Formulate the greedy query from C

6 Q0 ← {}
7 for i = 1, 2, ..., k do
8 EUSmax ← −∞
9 for c ∈ C \ Qi−1 do

10 EUStemp ← EUS(Qi−1 ∪ {c};µ)
11 if EUStemp > EUSmax then
12 EUSmax ← EUStemp

13 cmax ← c

14 end

15 end
16 Qi ← Qi−1 ∪ {cmax}
17 end
18 Return Qk

• How effective and computationally more efficient is greedy query search com-

pared with exhaustive query search?

6.5.1.1 Evaluating the Breakpoints Discretization

The results in Figure 6.7 give the EUS for the seven discretizations, for N = 10, 50

as the number of the recipient’s candidate MDPs and k = 2, 5 as the query size, along

with the runtimes for forming the discretizations and evaluating the commitments in

the discretizations for the provider’s MDP and all the recipient’s candidate MDPs. We

report the mean and standard error over 50 randomly generated problem instances,

each of which is generated by randomly sampling an MDP for the provider, and 10

candidate MDPs for the recipient, setting the provider’s prior uncertainty µ over the

recipient’s MDP to be the uniform distribution over the 10 candidates. Since the

problem instances have different reward scales (rleft), for each instance we normalize
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the EUS with the upper bound EUS defined in Equation (6.9) and the EUS of the

optimal and greedy query of the even discretization for k = 1, n = 10, which we denote

as EUS. That is, a value for EUS is normalized as (EUS−EUS)/(EUS−EUS), such

that the EUS of the query consisting of the optimal commitments for the recipient’s

candidate MDPs normalizes to 1, and the EUS consisting of the optimal commitment

with respect to µ in the n = 10 even discretization normalizes to 0.

The results in Figure 6.7 show that, coupled with the greedy query algorithm

(evaluated next in Section 6.5.1.2), our breakpoints commitments discretization yields

the highest EUS in a computationally efficient manner. Figures 6.7a–6.7d compare the

EUS for the seven discretizations. The EUS for the even and the DP discretizations

increases with the probability resolution n as expected, and only once we reach n = 50

is the EUS comparable to our breakpoints discretization. In the comparison between

the even and the DP discretizations, we see that, for the same n, the EUS of the

DP discretization is consistently higher than that of the even discretization. This

indicates that the inductive bias of using the provider’s deterministic policies improves

the greedy query’s EUS. Recall that we use the same normalization constant for the

EUS results for k = 2 and 5, and thus the results in Figures 6.7a–6.7d show that

including more commitments in the query significantly improves the query’s EUS.

Specifically, for both N = 10 and N = 50, the normalized EUS for the breakpoints

discretization is nearly one when including k = 5, a relatively small number compared

with N , commitments in the greedy query. This demonstrates the effectiveness of the

greedy query for EUS maximization, and we will evaluate the greedy query more

thoroughly in Section 6.5.1.2.

Figures 6.7e and 6.7f compare the runtimes of forming the discretization and eval-

uating the commitments in the discretization for the downstream query formulation

procedure, showing that using breakpoints is significantly faster. The runtime for

the downstream greedy query formulation is not included in Figure 6.7, but in Fig-

ure 6.8b for the breakpoints discretization. We observe from Figure 6.8b that the

runtime for greedy query formulation is only a tiny fraction of that for forming and

evaluating the discretization (shown in Figures 6.7e and 6.7f). This implies that, to

efficiently perform the EUS maximization with the greedy query, it is crucial to first

efficiently form and evaluate the discretization, which is exactly what is achieved by

our breakpoints discretization.
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Figure 6.7: Decentralized commitment formulation comparing the even, the DP, and
the breakpoints discretizations. We report means and standard errors of the EUS of
the greedy query (Figures 6.7a–6.7d) and the runtime (Figures 6.7e and 6.7f) over 50
problem instances, each consisting of one provider MDP with a uniform prior over
N recipient MDPs randomly generated as described in Section 5.4.2. The runtime is
for forming the discretization and evaluating the commitments in the discretization.
Figure 6.8b shows the runtime for forming the greedy query, which is only a tiny
fraction of the runtimes shown in Figures 6.7e and 6.7f. The results are for N = 10
(left) and N = 50 (right).
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6.5.1.2 Evaluating the Greedy Query

Next, we empirically confirm that greedy query search is effective for the com-

mitment query EUS maximization. Given the results from Section 6.5.1.1, the query

searches here are over the breakpoint commitments. Specifically, we show that, given

the breakpoint commitments, formulating the commitment query greedily yields EUS

that is comparable to the optimal, and is computationally much more efficient than

exhaustively searching for the optimal query.

Figure 6.8c compares the EUS of the greedy query with the optimal (exhaustive

search) query, and with a query comprised of randomly-chosen breakpoints. For the

optimal query, we only show query size k = 1, 2, and 3, because we find that the

exhaustive search is extremely time-consuming for k > 3. The EUS is normalized with

EUS and the optimal EU prior to querying given uncertainty µ as defined in Equation

(6.7). That is, a value for EUS is normalized as (EUS −EU∗(µ))/(EUS −EU∗(µ)).

(Note that EU∗(µ) is also the EUS of the optimal and greedy query when k = 1,

since the recipient is only given one choice, which is the one optimizing the provider’s

model.) We vary the query size k, and report means and standard errors over the same

50 coordination problems as in Section 6.5.1.1. We see that, notably, the EUS of the

greedy query is very close to that of the optimal query. Besides, unsurprisingly, for all

three query formulation methods the EUS increases with the query size k; the random

query’s EUS after normalization is largely negative up to query size k = 20 as the

EUS is normalized to 0 for optimal and greedy with k = 1, and therefore both optimal

and greedy have significantly higher EUS than random. Figure 6.8b compares the

runtimes of the three query formulation methods (excluding the runtime they all share

for identifying the breakpoint commitments). Optimal relies on enumeration of the

exponential space, so its runtime scales poorly with the query size k. In comparison,

greedy scales much better and incurs moderate computational cost. These results

confirm our hypothesis that greedy query search is a computationally effective method

for formulating commitment queries that very nearly maximize EUS.

Robustness to diverse priors. Figure 6.8 has demonstrated the effectiveness of

the greedy query for a particular type of the provider’s prior µ, which is the uniform

distribution over the recipient’s N = 10 candidate MDP. Here, we further show that

the greedy query’s effectiveness is robust to diverse prior types. Besides the uniform

prior, we consider two other prior types. For the random prior, the probability for

each candidate recipient’s MDP is proportional to a number that is randomly sam-

pled from interval [0, 1]. For the Gaussian prior, the probability for each candidate
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Figure 6.8: Comparison of the optimal, the greedy, and the random commitment
queries. The commitment queries formed from the breakpoints discretization. The
results are means and standard errors of the normalized EUS and the runtime over
the same 50 problem instances with N = 10 candidate recipient’s MDPs as in Figure
6.7. Figure 6.8b is a zoom-in version of Figure 6.8a comparing the the optimal and
the greedy, also showing the theoretical lower bound of the greedy query’s EUS.

recipient’s MDP is proportional to the standard Gaussian distribution’s probability

density function evaluated at a number randomly sampled from the three-sigma in-

terval [−3, 3]. Figure 6.9 shows the EUS, normalized in the same manner as Figure

6.8c, of the greedy query for the three prior types, with the number of candidate

recipient’s MDPs N = 10, and 50. For comparison, Figure 6.9 shows, for query size

k = 1, 2, 3, the EUS of the optimal query and the greedy query’s theoretical lower

bound (1− (k−1
k

)k of the EUS of the optimal query of size k).

109



1 2 3 5 10 20
log query size k

0.0

0.2

0.4

0.6

0.8

1.0
EU

S 
(n

or
m

al
ize

d)

theoretical lower bound
EUS
EU * ( )
greedy
optimal

(a) Uniform Prior, N = 10

1 2 3 5 10 20
log query size k

0.0

0.2

0.4

0.6

0.8

1.0

EU
S 

(n
or

m
al

ize
d)

(b) Uniform Prior, N = 50
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(d) Random Prior, N = 50
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(e) Gaussian Prior, N = 10
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Figure 6.9: EUS of the greedy query for the uniform (top), random (middle), and
Gaussian (bottom) priors. The queries are formed from the breakpoints discretization.
The results are means and standard errors of the EUS over 50 problem instances,
each consisting of one provider MDP and N recipient MDPs randomly generated as
described in Section 5.4.2. The results are for N = 10 (left) and N = 50 (right).
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We see that, as query size k increases, the greedy query’s EUS also increases and

quickly surpasses its theoretical lower bound. Moreover, besides the trivial case of

k = 1, the discrepancy between the greedy query’s EUS and the optimal query’s EUS

decreases as k increases. The greedy query’s EUS reaches the upper bound EUS

with query size k smaller than N , at k = 5 for N = 10 and k = 10 for N = 50,

respectively. For comparison, the optimal query’s EUS does not reach EUS at k = 3,

indicating that the greedy method is an effective procedure for EUS maximization.

Notably, these qualitative claims hold for both N = 10 and N = 50, and for all three

types of priors. The results verify that the greedy query is effective for diverse prior

types and is able to scale to a large number of candidates in the prior.

Robustness to multi-round querying. Besides priors that are synthetically gen-

erated, we here also explore priors that naturally emerge in a two-round querying pro-

cess. Specifically, the provider’s initial prior µ0 is a random prior over N candidate

recipient’s MDPs generated as described above. The provider forms the first greedy

query of size k0, updates its prior to µ1 based on the recipient’s response, and then

forms the second greedy query of size k for prior µ1. We are interested in the quality

of the second greedy query for the updated prior µ1, which emerges from the first

round of querying. Figure 6.10 shows the results for N = 50, k0 = 2 and 5, comparing

the greedy query with its theoretical lower bound and the optimal query. Consistent

with the results in Figure 6.9, the results in Figure 6.10 show that the greedy query

is effective for the priors that emerge from the first round of querying.

6.6 Summary

In this chapter, we focused on the problem of formulating cooperative probabilis-

tic commitments, formally defined in Section 6.1. In Section 6.2, we proved several

structural properties of the commitment value functions, which can be exploited to

efficiently compute a discretization of the continuous commitment space that is guar-

anteed to contain the joint value maximizer. In Section 6.3, we studied the setting

where there exists a centralized coordinator that has precise knowledge about both

agents’ MDPs and thus can directly exploit the discretization to efficiently search for

the optimal commitment. Our empirical evaluations in Section 6.3.1 demonstrated

such efficiency. In Section 6.4, we studied the decentralized setting where the coor-

dinator does not exist and neither agent has precise knowledge about the other. We

formulated the agents’ partial knowledge using a Bayesian prior, for which we designed
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Figure 6.10: EUS of the greedy query in the second round of querying. For the first
round, the prior is the random prior over N = 50 candidate recipient’s MDPs, and
the provider forms the first greedy query of size k0 and updates its prior based on
the recipient’s response. For the second round, the provider constructs the second
query of size k (X-axis) for the updated prior, and the corresponding normalized
EUS is shown along the Y-axis. The results are means and standard errors of the
EUS over 50 problem instances, each consisting of this two-round querying process,
for N = 50 and k0 = 2, 5. The provider’s MDP and N = 50 recipient MDPs are
randomly generated as described in Section 5.4.2.

a querying approach for the agents to improve their knowledge about each other to

agree on a better commitment. Our empirical evaluations in Section 6.5.1 demon-

strated that, paired with the discretization identified using the properties proved in

Section 6.2, high-quality queries can be formed efficiently to induce commitments

that nearly optimize the joint value.

The efficiency of the algorithms, in both centralized and decentralized settings, is

obtained from the properties of the commitment value functions. These properties

capture regularity in how the agents’ values change with the commitment specifi-

cation, implying that there are usually a small number of commitments (i.e. the

breakpoints discretization) that preserve the information of the entire commitment

space. This suggests that these commitments are worth more attention than others,

not only when formulating cooperative commitments considered in this thesis, but

also when two non-cooperative agents are negotiating a commitment, or when agents

are coordinating with a more detailed commitment specification involving more than

one time step.
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CHAPTER VII

Conclusion

Probabilistic commitments provide a general framework for coordinating agents

that are coupled by shared state features. This thesis formulates and solves problems

that arise from the two-phase procedure of commitment-based coordination between

the provider and the recipient. In the commitment formulation phase, the agents

agree on a probabilistic commitment regarding the provider’s influence on the recipi-

ent via the shared state features. For this phase, this thesis focuses on the cooperative

scenario in which the agents aim to agree on the commitment that maximizes their

joint value. In the commitment execution phase when the commitment is already

determined, the planning of the two agents is decoupled because the provider’s in-

fluence to the recipient on the shared state features is abstracted in the probabilistic

commitment. For this phase, this thesis formulates and solves the provider’s and the

recipient’s decoupled planning problems. The contributions to these problems, as pre-

sented in Chapters IV, V, and VI, lay the foundation of the probabilistic commitment

framework for multiagent coordination. We review these contributions below.

1. Chapter IV presents the commitment semantics for the provider that prescribes

its policy selection under Bayesian uncertainty about the environment model,

including the transition and reward functions. Results on an illustrative domain

show how such prescriptive semantics outperforms several alternatives because

it achieves better cooperative behavior between the provider and the recipient.

The chapter presents the method, Commitment Constrained Full Lookahead

(CCFL), for exactly optimizing the provider’s policy, often at a huge computa-

tional cost, while respecting the commitment semantics. Further, the chapter

develops Commitment Constrained Lookahead (CCL) and its online iterative

version (CCIL), that construct policies for the provider that provably respect

the commitment semantics. The empirical evaluations show that, compared
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with CCFL, CCL and CCIL can make better tradeoffs between computation

cost and policy quality. The novel prescriptive semantics and the new methods

together offer practical solutions for the provider to maximize its autonomy by

responding to its evolving model uncertainty without detriment to its trustwor-

thiness to the recipient, and thus solve the provider’s planning problem in the

commitment execution phase.

Besides the setting formalized in Section 4.1, one can apply the techniques de-

veloped in the methods, such as CCL’s parametrized posterior lookahead and

CCIL’s commitment-constrained online iteration, to other settings where an

agent is learning about the environment while its behavior is required to meet

spatial-temporal constraints. For example, such techniques can be straightfor-

wardly applied to 1) more detailed specifications of the provider’s influence that

involve multiple time steps, as we have discussed in Section 2.3, 2) and settings

where the agent’s model uncertainty is formalized in a non-Bayesian manner.

For example, we have considered the scenario where the provider’s model un-

certainty is non-Bayesian and applied the techniques developed in this thesis

to such a setting that involves minimax regret policy optimization objectives

[ZSD17].

2. Chapter V formulates the recipient’s planning problem in the commitment ex-

ecution phase as its robust interpretation of the commitment and focuses on

two commonly-studied types of commitment, achievement and maintenance.

The notion of robustness hinges on the suboptimality of the influence that the

recipient creates from the commitment specification, which the recipient uses

to approximate the provider’s true influence for its subsequent planning. This

chapter develops several strategies for creating the approximate influence, and

presents theoretical and empirical results showing that, despite strong similar-

ities in the provider’s modeling of the two types of commitment, there is a

strategy that induces low suboptimality for achievement, while no identifiable

strategy can robustly reduce the suboptimality for maintenance.

Although the idea of approximate influence has been explored in prior work,

this thesis is the first to develop principled strategies and evaluation metrics

for the recipient to interpret a probabilistic commitment. The results assure us

that the recipient can robustly interpret achievement commitments, and thus

successful coordination with the provider can be secured. On the other hand,

the results suggest that successful coordination with maintenance commitments
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is harder, encouraging us to explore specifications more detailed than the single

time step abstraction, so as to reduce the recipient’s uncertainty when creating

the approximate influence, but at the same time also reduce the flexibility the

provider has. This points out an important future direction to better understand

the pros and cons of more detailed specifications for maintenance. Section 7.1

presents concrete ideas in this direction.

3. Chapter VI solves the cooperative commitment formulation problem in an com-

putationally efficient manner. Specifically, for the centralized setting, the chap-

ter formulates and solves the problem of searching for the commitment that

exactly maximizes the joint commitment value. For the decentralized set-

ting, the chapter develops a querying approach for the agents to agree on an

approximately-optimal commitment. As the core contribution that leads to

the computational efficiency, the chapter proves several structural properties of

the commitment value functions, which can be exploited in both settings for

efficiently searching for the optimal cooperative commitment or constructing

valuable queries. The empirical evaluations show that exploiting the properties

significantly improves the computational efficiency.

The properties of the commitment value functions reveal the structure of com-

mitments: although the commitment space is infinitely large, there are usually

a small number of commitments that preserve all the information in the com-

mitment space. Thus, we expect that our identification of these properties will

be valuable to the broader community of multiagent research, especially on

commitment-based multiagent coordination and optimization.

7.1 Discussion of Future Work

We briefly discuss a few possible directions for future work.

Measuring trustworthiness of the provider. In this thesis, we have presented

semantics and algorithms for the provider to adhere to its probabilistic commitment.

A follow on and related problem is how the recipient can measure the provider’s trust-

worthiness, in order to decide whether it should trust the provider and agree on the

commitment. In the decentralized setting, as we have discussed in the problem of com-

mitment formulation, the recipient does not have full knowledge about the provider’s

environment and/or policy, thus making it a challenging problem to precisely assess

115



the probability of the commitment being realized. As a feasible approach, either

communicating directly about the provider’s environment and/or policy, or about

the provider’s historical interactions with its environment, or both, will facilitate the

recipient’s assessment. If the recipient can effectively measure the provider’s trust-

worthiness, we can ask how the provider can earn trust with minimum communication

with the recipient and/or interactions with the environment.

Improving the recipient’s interpretation of maintenance commitments. In

Chapter V, we have supported the claim that the recipient’s interpretation of mainte-

nance commitments is harder by studying several strategies for creating the approxi-

mate influence. A natural question to ask is whether there exists such an approximate

influence for maintenance, other than the ones we have studied, that we can prove has

a lower bound on its suboptimality (similar to the one in Theorem V.1 for achieve-

ment), and/or we can empirically show induces low suboptimality. If the answer is

negative or it is expensive for the recipient to create such an approximate influence,

then we might need to rethink how we represent maintenance commitments for multi-

agent coordination. For achievement, the customarily terse commitment abstraction

gives the provider a lot of flexibility by only constraining it to meet the probability at

the commitment time and so it can unilaterally change its influences before then. In

many cases, the gain in flexibility for the provider can be worth the relatively small

value loss to the recipient. However, for maintenance, as it is difficult to find an ef-

fective approximate influence, the potential for the recipient to lose more value could

mean that the provider should commit to a more detailed specification—the loss of

flexibility for the provider in this case is warranted because the recipient makes much

better decisions. Potential future work can better understand such tradeoffs in us-

ing maintenance commitments, allowing the community to apply commitment-based

coordination to domains involving both achievement and maintenance.

Efficient formulation of cooperative maintenance commitments. In Chap-

ter VI, we have developed algorithms that efficiently formulate cooperative commit-

ments for achievement by exploiting the structural properties of the commitment

value functions. A natural question is whether these properties still apply to main-

tenance commitments, so that we can develop similar algorithms for efficient formu-

lation of cooperative maintenance commitments. The proofs for the properties of

the provider’s commitment value function are agnostic about the commitment type,

and thus can still apply to maintenance. For the recipient, its commitment value
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function for achievement hinges on the minimal enablement duration influence where

u− probabilistically toggles to u+ at the latest time step by the commitment time.

Thus, the proofs of the structural properties of the recipient’s commitment value for

achievement cannot straightforwardly apply to maintenance. Moreover, as we have

discussed, it remains an open question what approximate influence is best to use to

compute the recipient’s commitment value for maintenance in the first place.

Beyond binary commitment features. For the recipient’s interpretation (Chap-

ter V) and cooperative commitment formulation (Chapter VI), this thesis has solved

these problems for the scenario where the commitment feature is binary, involving two

types of commitment that toggle the feature in opposite directions. The provider’s

modelling of a probabilistic commitment is nearly identical for the the two types

of commitment and can be easily extended beyond the binary commitment feature.

However, future work is needed to better understand how the recipient should in-

terpret and utilize a probabilistic commitment for which the commitment feature is

more complicated than binary and how the two agents can efficiently formulate such

a commitment for coordination.

Communication during commitment execution. We have focused on the sce-

nario in which the communication between the agents is only allowed during commit-

ment formulation, but not allowed during the commitment execution phase (including

the provider’s adherence and the recipient’s interpretation). We could relax this re-

striction by allowing (limited) communication during execution, and a number of

interesting questions could arise subsequently. Such a relaxation could lead to the

problem of how the agents can best exploit the limited communication. For example,

if the provider is allowed to inform the recipient, for a limited number of time steps

during execution, of the probability of realizing the commitment from the current

time step (e.g., the probability for the iterative lookahead in CCIL), how should the

provider wisely decide when to inform the recipient? Such a relaxation could also

lead to the problem of multi-commitment formulation. For example, if an achieve-

ment commitment ends up being unrealized by the commitment time, what if we

allow the agents to formulate a second commitment for the execution after the com-

mitment time? Moreover, once an achievement commitment is realized, the agents

can start formulating a maintenance commitment for the subsequent execution about

the precondition that was just enabled, and thus such a relaxation encourages us to

develop a unified framework for both achievement and maintenance.
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Scaling to more agents and commitments. Throughout this thesis, we are con-

cerned with a single commitment between two agents, with one agent fixed as the

provider and the other as the recipient. Much future work is needed for handling

scenarios where there can be more than two agents for coordination using multi-

ple commitments. The provider might make a commitment to multiple recipients.

Instead of a single commitment, agents might need to coordinate with a chain of

commitments that are temporally correlated. Mutual and cyclic commitments can

exist, where an agent can shift from being a provider to being a recipient over time,

or even can be both a provider and a recipient at the same time. These interesting

scenarios naturally exist in multiagent coordination, and extending the work accom-

plished in this thesis to these scenarios requires scaling the problem formulations and

solution methods to multiple agents and commitments.

7.2 Closing Remarks

With autonomous agents increasingly embedded in our daily lives, flexible and

trustworthy coordination is crucial for the agents to collectively make beneficial soci-

etal impact. Inspired by how people work together, the commitment-based framework

has emerged as one of the most promising ideas for achieving flexible and trustworthy

multiagent coordination. This thesis develops formal notions and new techniques for

the agents to represent, formulate, and plan with probabilistic commitments for coor-

dination under inherent uncertainty about their environments. With strong provable

guarantees and impressive empirical results in a range of classic multiagent planning

domains, the developed methods lay the foundation of multiagent coordination with

probabilistic commitments. We believe the contributions of this thesis are valuable

to other researchers and engineers who are dedicated to building effective multiagent

systems for complex, real-world settings.

118



BIBLIOGRAPHY

119



BIBLIOGRAPHY

[AGJ07] Thomas Agotnes, Valentin Goranko, and Wojciech Jamroga. Strategic
commitment and release in logics for multi-agent systems (extended
abstract). Technical Report IfI-08-01, Clausthal University, 2007.

[Alt99] Eitan Altman. Constrained Markov Decision Processes, volume 7. CRC
Press, 1999.

[ASBSEM14] Faisal Al-Saqqar, Jamal Bentahar, Khalid Sultan, and Mohamed El-
Menshawy. On the interaction between knowledge and social com-
mitments in multi-agent systems. Applied Intelligence, 41(1):235–259,
2014.

[BAHZ09] Daniel S. Bernstein, Christopher Amato, Eric A. Hansen, and Shlomo
Zilberstein. Policy iteration for decentralized control of Markov decision
processes. Journal of Artificial Intelligence Research, 34:89–132, 2009.
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