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Photoelectrochemical systems are a promising method for the conversion of solar energy 

to storable chemical fuels or charge carriers. Limitations on these systems include high 

overpotentials for driving redox reactions, which reduce the efficiency of energy conversion, and 

difficulties in long-term storage of charge carriers. The work described in this thesis addresses 

both issues. First, high overpotentials can be mitigated by the addition of an electrocatalyst. 

Heterogeneous molecular electrocatalysis is promising but reports in photoelectrochemical 

systems are limited. This thesis describes the use of reduced graphene oxide (RGO) thin films to 

immobilize molecular electrocatalysts on electrodes. Second, charge carriers used to store 

electrochemical energy are subject to poisoning by oxygen. This thesis presents the use of host-

guest chemistry to stabilize a radical species in the presence of oxygen. 

First, a novel method for the fabrication of RGO thin films is demonstrated. This method 

is the first report using dissolved outer-sphere reductants to reduce graphene oxide to RGO. As a 

result, these RGO films are reduced without heteroatom doping or over-reduction, common 

problems with previously reported inner-sphere reductions. Furthermore, this method is 

exceedingly gentle and can be performed with a variety of underlying substrates including soft 

organic, non-conducting, and chemically sensitive materials. 

RGO thin films deposited on electrode surfaces are shown to adsorb the proton reduction 

electrocatalyst cobalt(III) bis(dichlorobenzenedithiolate), presumably through π-stacking 

interactions. The retention of the electrocatalyst under turnover conditions is poor on smooth films 

but excellent on rough films. It is therefore hypothesized that the π-stacking interactions are weak 

and may become disrupted during turnover, leading to fast loss of the catalyst from smooth 

surfaces. However, on rough RGO films, catalyst intercalation is possible, leading to mechanical 

trapping that prevents it from diffusing away during electrocatalysis. This work has implications 

for the field of small molecule surface modifications that employ π- π interactions. Specifically, 

these interactions may be weak, but intercalation within a graphitic material can lead to enhanced 

retention of adsorbed species. 

Abstract 
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Taking advantage of these findings, I then devised a new approach where catalyst and GO 

are co-deposited, and I studied the kinetics of electrocatalytic proton reduction in the resulting 

RGO films that are embedded with the electrocatalyst. This is the first time that fundamental 

kinetics of an electrocatalytic RGO thin film have been investigated. It is shown that different 

processes are limiting depending on the thickness of the film. For films thinner than 200-500 nm, 

diffusion processes limit the current, whereas for thicker films, electrical conductivity of the film 

likely plays a role. These conclusions are relevant for maximizing current in electrochemical 

energy conversion systems, especially since RGO is commonly used as a catalyst support in such 

systems. 

The second part of this thesis describes interactions of two bis-viologen species with the 

cage molecule cucurbit[8]uril (CB[8]). A unique viologen oxidation state is identified in the 

presence of CB[8], identifiable by its absorption spectrum. This species possesses extended 

stability in the presence of oxygen. Computations suggest that the presence of a buried SOMO is 

the origin of this enhanced stability. This work has relevance in energy storage systems such as 

redox flow batteries and solar redox batteries, where trace oxygen can poison solutions of reduced 

viologens. Extending the stability of viologens by entrapment within cage complexes is a 

promising method for improving the shelf-life of these species. 
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1.1 A societal need for clean energy 

For the last 1 million years or more, humans and our recent ancestors have been burning 

organic materials to produce energy.1 For most of that million years, we have used materials like 

wood, peat, and coal, but since the industrial revolution, humanity has become more dependent on 

fossil fuels like oil and gas. In every case, however, the burning of organic materials generates 

pollutants like ash and gaseous species such as carbon dioxide and NOx. Since the global 

population has seen many periods of exponential growth over the last century,2 these emissions 

have recently resulted in the onset of an environmental crisis. Today energy usage is at an all-time 

high. In 2015, global energy consumption was 575 quadrillion Btu, and the US Energy Information 

Administration predicted energy consumption in 2040 to be more than 25% higher, around 739 

quadrillion Btu.3 As a result, carbon emissions will increase proportionately. In 2011, the OECD 

reported a projected increase in CO2 emissions of 70% by 2050.4 And in turn, as a result of this 

increase in greenhouse gas emissions, global temperatures have increased by 1.8⁰F (1⁰C) since 

1900 and are expected to rise 2.5⁰F (1.4⁰C) by 2050.5 This warming will likely result in 

catastrophic changes to our world and climate, such as sea levels rising as much as 8 feet by 2100 

and an increase in severe weather events.5 Furthermore, studies have shown that climate change 

disproportionately affects lower-income countries and communities, which also happen to be the 

groups of people least responsible for greenhouse gas emissions.6-8 Therefore, it is imperative that 

communities that are able to implement change do so whenever possible. 

One important direction in which we are moving is the complete switch to renewable and 

emission-free energy sources. One of the most extensively discussed and well-known sources of 

clean, renewable energy is solar radiation, and for good reason: one hour of irradiance from the 

sun delivers more energy than the total energy consumed by humans in one year.9 This suggests 

that even with fractionally efficient solar cells covering a fraction of the earth’s surface, we could 

potentially power the planet on solar energy alone. In reality, of course, there are other obstacles 
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that limit the feasibility of a totally solar powered society. One major obstacle is the intermittency 

and non-uniformity of solar irradiance on the Earth’s surface. For example, the sun does not shine 

at night, and in regions with high cloud cover there is much lower solar irradiance than in drier 

regions. In order to mitigate this disparity, research has been directed towards methods of 

converting solar energy into a form of energy that can be stored for use at times when the sun is 

not shining.  

A promising method for solar energy storage is the conversion of sunlight to chemical 

fuels. The most common non-biological fuel generated by solar energy conversion is hydrogen gas 

through the water splitting reaction: 

4 H+ + 4 e- → 2 H2 

2 H2O → O2 + 4 H+ + 4 e- 

______________________________________________ 

2 H2O → 2 H2 + O2 

This is an exceptionally non-polluting reaction as the only reactant is water and the only two 

products are hydrogen and oxygen gasses. 

The conversion of sunlight to fuel through an electrochemical reaction like the water 

splitting reaction can be conducted in a number of ways. The three most common methods are 

described here. First, sunlight can be converted directly to a chemical fuel through a photochemical 

process like photosynthesis. In this process, light absorbers, usually semiconductor nanoparticles10 

or, less often, molecular absorbers,11 capture solar energy and drive a chemical transformation. 

This process is shown for a nanoparticle light absorber in Figure 1.1c. When the light absorber 

absorbs photons of the appropriate energy, it enters an excited state where the excited electron can 

be transferred to an electron acceptor in solution (for the water-splitting reaction this is H+ ions). 

In the case of the nanoparticle in Figure 1.1c, a positively charged hole (h+) is also formed, which 

transfers to an electron donor in solution (in this case H2O). The equivalent of h+ in an excited 

molecular light absorber is the newly emptied SOMO that can accept an electron. In this way, a 

single light absorber drives both the proton reduction half-reaction (2H+ → H2) and the water 

oxidation half-reaction (2H2O → O2). In some cases, a co-catalyst is also added to improve the 

kinetics of the reaction. These are often solid state clusters (such as MOx or MSx materials) on the 

surface of the light absorbing nanoparticle or solution state coordination complexes.12 
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Alternatively, the formation of chemical fuels can be acheived using an electrochemical 

cell. In Figure 1.1a, a water splitting reaction is driven in an electrochemical cell by an external 

photovoltaic (PV). This system can be termed a PV-electrolyzer. In this setup, solar energy is 

capture by the PV device. A p-type and an n-type semiconductor are sandwiched together, creating 

a p-n junction. When these semiconductors absorb sunlight, electrons are excited into the 

conduction bands, and a potential difference is generated across the junction driving electron flow 

through an external circuit, which in this case is an electrochemical cell. The physics of 

photovoltaic operation is described in detail in Reference 13. Fuel generation is then accomplished 

in the electrolyzer by using the current supplied by the PV to drive the proton reduction and water 

oxidation half-reactions at a cathode and an anode, respectively, immersed in an electrolyte 

solution (Figure 1.1a). Several examples of PV-electrolyzer devices are reported in the references 

cited here.14-17 

 

Figure 1.1 Three methods for solar water splitting: (a) electrolysis of water driven by an external 

photovoltaic, (b) photoelectrochemical water splitting, (c) photochemical water splitting. 

 

Lastly, photoelectrochemical (PEC) cells can be understood as a hybrid of a PV-

electrolyzer and a photochemical system. In this type of system (shown in Figure 1.1b), sunlight 

is converted to electricity (as in a regenerative PEC), a chemical fuel (e.g. a water splitting PEC), 

or both.18-20 The example shown in Figure 1.1b represents a water splitting PEC. In a PEC, the 

electrodes themselves are semiconductors that absorb sunlight and drive a current in an external 

circuit, as in a PV device. The electron flow from this current then drives the redox reaction in 

solution, as in an electrolyzer. The cathode of a water-splitting PEC is a p-type semiconductor that 

can drive proton reduction; the anode is an n-type semiconductor that can drive water oxidation.21-
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22 The major difference between a PV-electrolyzer and a PEC cell lies in the use of semiconductor 

materials both as electrodes and as light absorbers in the case of a PEC, whereas in a PV-

electrolyzer, the light absorbing component is separate from the water splitting component.  

 

Beyond direct water splitting 

While the water splitting reaction is a popular source of chemical fuel because of the global 

abundance of water and the low environmental impact of burning H2, difficulties arise in the ability 

to store H2 long-term and to transport it. H2 is gaseous at ambient conditions so in order to store it 

with a high energy density, it must be compressed, which requires an energy input and introduces 

safety risks. Because of its low molecular weight, hydrogen molecules easily diffuse through 

containment walls leading to significant loss of H2 when stored for long periods of time. 

Additionally, H2 is combustible and can form explosive mixtures with O2, which is of particular 

risk when dealing with a leaky container of hydrogen.23 

 Non-gaseous fuels are easier and safer to store. These can include dissolved, liquid, and 

solid-state chemical fuels. For example, in redox flow batteries, molecules like organic radical 

polymers, vanadium oxide species, and organometallic complexes are used to store 

electrochemical energy.24-25 Alternatively, these redox species can be used as mediators in the 

water splitting reaction. In other words, the solar conversion methods described above (i.e. PEC, 

photochemistry, or PV) drive conversion of a redox species that can be stored as an energy source. 

When it is necessary to release the stored energy, these redox mediators can be combined with a 

proton reduction catalyst to facilitate spontaneous H2 generation by transfer of electrons from the 

redox species to H+ ions. This is most often done using platinum nanoparticles as the catalyst.26-28 

An example of this process is shown in Figure 1.2. In Figure 1.2a, species A is 

photoelectrochemically converted to A- (here B is a sacrificial reductant necessary to complete the 

electron transfer). Solutions of A- can be stored and transported without the safety risks associated 

with storing and transporting hydrogen gas; in this way, A- is a more practical energy storage 

material. In Figure 1.2b, A- is converted to a combustible fuel (H2) by addition of a proton source 

and a proton reduction catalyst. In this scheme, the reduction potential of A- is sufficiently negative 

to drive reduction of protons, but the process is kinetically unfavorable unless a proton reduction 

catalyst is also present to facilitate the electron transfer. This means A- can be indefinitely stable 

in water solutions until platinum nanoparticles are added to the solution, in which case H2 is 
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evolved. A further benefit of a system like this is that the energy conversion and storage aspects 

of PEC can be separately optimized. 

 

 

Figure 1.2 Example scheme of solar energy converted first (a) through the redox reaction A → A- 

followed by (b) conversion to H2 by electron transfer through a proton reduction catalyst. 

 

1.2 Photoelectrochemical cells for solar energy conversion. 

Photoelectrochemical solar energy conversion has advantages over both photochemical 

and PV-electrolysis conversion of solar energy. First, there are two major advantages of a PEC 

over photochemical conversion. One of these is the ease of separation of the products. During the 

water splitting reaction, gaseous H2 and O2 are evolved simultaneously. In photochemistry these 

two species are created essentially at the same reaction site (in Figure 1.1c, both reactions happen 

simultaneously at the same nanoparticle); hence a subsequent separation step is required to obtain 

pure H2. In a PEC, H2 and O2 are formed at physically separate electrodes. The separate collection 

of these two products is achieved readily by use of a membrane separator in the cell. A second 

advantage of PEC conversion over photochemical conversion lies in the ease of understanding and 

controlling fundamental aspects of the process. Advances in surface analysis methods make it 

easier to understand the chemistry of a macroscopic electrode compared to a discrete light-

absorbing particle. Furthermore, traditional electroanalytical techniques allow for an additional 

level of characterization of photoelectrode operation. 
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The main advantage of a PEC over a PV-electrolyzer lies in its simpler design. Pristine 

semiconductors are expensive materials, as are the high surface area electrodes necessary to 

produce H2 efficiently. The cost of the conducting connective elements of a PV-electrolyzer device 

is also non-negligble. In a PEC, the semiconductors act simultaneously as the light absorbers and 

the electrodes, thereby simplifying the system and eliminating the costs of connective elements 

required in a PV-electrolyzer. 

 

Limitations on PEC efficiency 

Several limitations on water splitting PEC efficiency for solar energy conversion and 

storage currently exist. In the following, the limitations that are addressed by the research in this 

thesis are described. 

First, large overpotentials can be detrimental in water-splitting electrochemical cell 

designs. Overpotential is any energy input beyond the thermodynamic energy of the reaction 

needed to drive the reaction. Three types of overpotential can occur in an electrochemical cell.29-

30 The first is activation overpotential, which generally arises from an activation energy barrier for 

the reaction. This is due to reaction kinetics and is specific to the electrode material and redox 

reaction. For example, proton reduction has an extremely low activation overpotential on platinum 

electrodes but a much higher activation overpotential on silver electrodes.31 The second is 

concentration overpotential, which arises from slow or limited diffusion of species to and from the 

electrode surface. This often observed when bubble formation blocks areas on the electrode 

surface, a common problem in the water splitting reaction. Lastly, resistance overpotential occurs 

because of cell design. This is common when junctions are formed in a cell, for example across a 

membrane separator. Specifically, an electrical resistance within the cell leads to a potential drop 

across that area.  

This thesis focuses largely on mitigating the activation overpotential of the cathodic side 

of the water-splitting reaction. Activation overpotential of a particular reaction can be lessened by 

the addition of an electrocatalyst. Homogeneous (or solution phase) electrocatalysts are usually 

molecular species, most often coordination complexes.32 Many molecular catalysts mimic proton 

reduction and water oxidation catalysts in nature (e.g. hydrogenase).11, 33 Heterogeneous catalysts 

can either be the same molecular catalysts immobilized on the electrode surface34-35 or solid state 
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materials, such as metal nanoparticles,36 binary material films like MoSx,
37 or metal-organic 

frameworks.38  

A second limitation of PEC devices is the stability of photoelectrodes in solution and under 

bias. Many semiconductor materials that have been investigated for water splitting exhibit low 

stability in water and under illumination and bias. For example, n-type silicon, a common 

photoanode material, is prone to oxidative attack by the solvent under positive applied bias in 

water. Many p-type III-V and II-VI semiconductors (i.e. those comprised of elements from the 

third and fifth rows or the second and sixth rows of the periodic table) are also prone to self-

reduction under negative bias. For example, the Ga atoms in GaP can reduce to metallic Ga0 

clusters under a mild negative bias, resulting in a disruption of the crystal lattice and allowing for 

chemical attack. To prevent oxidative and reductive poisoning of semiconductor photoelectrodes, 

research in surface passivation techniques has been pursued. These techniques can be divided into 

two categories: chemical passivation and physical passivation (with some systems operating by 

both methods). In the former, dangling bonds at the surface are saturated by covalent grafting of a 

functional group to the surface. The latter operates by deposition of an organic or inorganic layer 

on the semiconductor surface that physically blocks reactive species (like water or O2). Covalent 

grafting is surface specific. For example, Grignard type reactions work well on silicon surfaces39 

whereas indium phosphide can be passivated by thiol self-assembled monolayers.40 Physical 

passivation is generally surface independent and a variety of materials have been investigated for 

this purpose, including metal oxides41, organic polymers42, and graphene43. 

1.3 Heterogeneous molecular electrocatalysis. 

The setup of a water-splitting electrolysis cell is shown in Figure 1.3. The anode and 

cathode are immersed in electrolyte solutions and separated by a membrane that allows for ion 

diffusion between the two compartments but limits transport of dissolved H2 and O2. The two 

gaseous products can then be collected separately as they are evolved into the headspace of their 

respective half-cells. 

This thesis discusses electrocatalysis in electrochemical and photoelectrochemical cells, in 

particular, the use of molecular heterogeneous electrocatalysts. In heterogeneous electrocatalysis, 

the catalyst is immobilized on the electrode surface. In contrast, in homogeneous electrocatalysis, 

the catalyst is dissolved in the electrolyte solution (the electrolyte reservoir in Figure 1.3). 
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Heterogeneous electrocatalysis has several benefits over its homogeneous counterpart. For one, it 

significantly limits the amount of catalyst required. At a given moment in time, only the catalyst 

at the electrode surface is active. In other words, only catalyst at the electrode surface can undergo 

electron transfer with the electrode and participate in electrocatalysis. This means that catalyst 

dissolved in the electrolyte reservoir is largely inactive. Second, heterogeneous catalysis limits 

catalyst transport across ion exchange membranes in electrolysis cells, a source of contamination 

during long-term electrolysis. And lastly, heterogeneous electrocatalysis allows the scope of usable 

catalysts to expand beyond only water-soluble catalysts. This thesis specifically investigates 

heterogeneous molecular electrocatalysts. The advantage of molecular electrocatalysts over solid 

state electrocatalysts lies in well-defined active sites and a greater degree of tunability of molecular 

species.  

  

Figure 1.3 Example setup of a water-splitting electrolysis cell. 

 

While much research has been devoted toward developing new bulk heterogeneous37-38, 44-

45 and homogeneous molecular water splitting electrocatalysts,46-48 heterogenization of molecular 

electrocatalysts is less well-developed.47, 49-51 Various strategies for immobilizing electrocatalysts 

on electrode surfaces have been explored, and Table 1.1 lists several examples of immobilized 

proton reduction electrocatalysts and their kinetic parameters. In this table, TOF and TON are the 
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turnover frequency and turnover number, respectively, of each system. TOF is the average number 

of hydrogen molecules generated per catalyst site. It is usually calculated from an electrolysis 

experiment in which the electrode is held at a specific potential for a certain amount of time. The 

total charge passed during the electrolysis is then converted to moles of H2. If the Faradaic 

efficiency is 100% (i.e. percentage of electrons that are used to produce H2), for example, then all 

of the current goes towards H2 production, so moles of H2 produced = ½ (moles of electrons passed 

during electrolysis). An equation for calculating TOF when Faradaic efficiency is 100% is shown 

in Equation 1.1, where q is the charge passed in Coulombs, F is the Faraday constant in Coulombs 

per mole, t is the time of the electrolysis experiment, and n is the number of moles of catalyst. If 

the Faradaic efficiency is less than 100%, then the moles of H2 may be quantified using gas 

chromatography and can replace 
𝑞

2𝐹
 in equation 1.1. 

 

𝑇𝑂𝐹 =  
𝑞

2𝐹𝑡𝑛
     1.1 

 

It should be noted that TOF is highly dependent on applied potential and solution conditions (e.g. 

pH) because it is related to current. This makes it difficult to directly compare different 

electrocatalytic systems.  

TON is the total number of turnovers achieved during an electrolysis. This number is 

usually used as a measure of the stability of a system. For example, an electrocatalytic system may 

have a high turnover frequency for the first few minutes of electrolysis, but if the catalyst 

decomposes quickly, then the TON after an electrolysis experiment of several hours will be low. 

It should be noted that in Table 1.1, the time over which TON was calculated for each system 

varies greatly. TON is also, like TOF, dependent on applied potential and solution conditions, 

leading to further difficulties in comparing electrocatalytic systems. 

 Another difficult aspect in the comparison of electrocatalytic systems is the measure of 

overpotential. Overpotential is usually defined as the potential required to obtain a specific current 

density in an electrocatalytic system as compared to the potential required to obtain the same 

current density using a platinum electrode under the same conditions. However, because of 

differences in the choice of current density, catalyst surface loading, and actual electrode surface 
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area (as opposed to geometric surface area), among other things, overpotential is difficult to 

compare among different systems. 

 In summary, TOF, TON, and overpotential are all parameters that can be used to compare 

the efficiency and stability of electocatalytic systems; however, because of differences in how 

these parameters are measured, calculated, and reported, it can be difficult to directly compare 

systems. Methods for obtaining these parameters should always be clearly reported and taken into 

account when comparing systems. 

The electrocatalytic systems listed in Table 1.1 are all comprised of molecular 

electrocatalysts immobilized on inert electrode surfaces. The strategies for immobilization listed 

here can be divided into two subgroups: covalent attachment and noncovalent attachment, i.e. 

physical adsorption (termed “physisorption”). The former involves a chemical bond between the 

catalyst and the surface, and the latter involves the use of attractive van der Waals forces or 

entropic forces between the catalyst and the surface, for example charge-charge attractive forces 

or π-stacking interactions. 

Covalently grafted catalysts are often more robust than physisorbed systems because of the 

strength of a chemical bond compared with a physical interaction. Covalent attachment, however, 

is inherently surface-specific. Certain electrode surfaces have received more attention than others 

for covalent attachment of molecular species. For example, metal oxides have been studied 

extensively for their ability to bind molecules containing phosphonate, carboxylate, and siloxane 

moieties.52-53 Silicon can easily be functionalized by Grignard reagents.39 And carbon-based 

electrodes can be functionalized with small molecules by targeting the variety of functional groups 

inherent to carbon surfaces, e.g. C=C double bonds, carboxylates, and epoxides, among others.54-

55 Some work on covalent attachment to electrode surfaces is discussed in Chapter 6 of this thesis. 

Physisorption, on the other hand, utilizes attractive van der Waals forces or entropic forces 

to immobilize small molecules on surfaces. These forces are most often charge-charge 

interactions56-58 and π- π interactions.54-55 These attachment methods are often less robust 

compared to covalent attachment methods, resulting in loss of catalyst from the surface over time. 

Physisorption, however, often has the advantage of requiring fewer synthetic steps than covalent 

attachment. For example, the physisorbed systems described in Chapters 3 and 4 of this thesis 

require no synthesis for the surface attachment. 
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Catalyst Electrodea linkage type 

overpotential 

(mV) 

surface 

coverage (mol 

cm-2) TOF (s-1) TON (time) pH Reference 

Nickel 

bis(diphosphine) 
MWCNT covalent 300 b 1.5x10−9 5.6 c 1x105 (10 hr) - 59 

Nickel 

bis(diphosphine) 
MWCNT noncovalent ~ 0 2x10-9 3.9 d 8.5x104 (6 hr) 0.3 60 

Rhodium complex carbon black noncovalent 350 2.6x10-9 0.95 e 206 (1.25 hr) 1.9 61 

1D Cobalt dithiolene glassy carbon noncovalent ~ 500 5x10-7 - f 1.3 62 

Cobaloxime MWCNT covalent 350 4.5x10-9 2.2 g 5.5x104 (7 hr) 4.5 63 

Cobaloxime 
Mesoporous 

ITO 
covalent 300 1.5x10-7 - - 7 64 

Hydrogenase HOPG covalent 800 - - h 1 65 

Cobalt clathrochelate glassy carbon covalent 800 - - - 1 66 

Cobalt corrole CNT covalent 800 j - 99 k (10 hr) 14 67 

W2O2(µ-S)2(S2) 

(S4)]
2– 

glassy carbon noncovalent 227 l - 93 m 0 68 

Cobalt bis(dichloro-

benzenedithiolate) 
HOPG noncovalent 590 2.6x10-10 320 i 9.1x106 (8hr) 0.3 69 

 

a  MWCNT = multi-walled carbon nanotubes; ITO = indium tin oxide; HOPG = highly ordered pyrolytic graphite; CNT = carbon nanotubes.  b potential required 

to produce 4 mA cm-2.  c at -0.5 V.  d at -0.3 V. e at 2 mA cm-2.  f low stability due to delamination.  g at -0.59 V.  h very low stability.  i averaged over 8 hr electrolysis.  
j at a current of 12.1 mA μg-1.  k no change in current over 10 hrs.  l at a current of 10 mA cm-2.  m stability tested by cycling, no change after 1000 cycles. 

 

Table 1.1 Reported molecular proton reduction catalysts immobilized on inert electrodes.   
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Catalyst semiconductor linkage type 

onset potential 

(mV) 

surface coverage 

(mol cm-2) Stability pH 

Illumination 

(mW cm-2) Reference 

nickel 

phosphine 
Si (111) covalent -60 a 2.5x10-10 - 1 33 d 70 

Mo3S4 Si pillars noncovalent 150 b - 
> 60 min 

electrolysis 
0 28.3 e 71 

Fe2S2(CO)6 InP nanocrystals noncovalent > 250 b - - 7 f 72 

Cobaloxime GaP covalent 240 c 11x10-9 > 60 min 

electrolysis 
7 100 73 

1D Cobalt 

dithiolene 
Si noncovalent ~200 5x10-7 > 20 min 

electrolysis 
1.3 1 sun 62 

a vs NHE. b vs SHE. c vs RHE. d LED white light. e red light, λ > 620 nm. f 395 nm diode (no intensity given). 

Table 1.2 Reported molecular proton reduction catalysts immobilized on semiconductor photocathodes under illumination. 
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It is important to note that for both covalent and noncovalent immobilization methods listed 

in Table 1.1, carbon materials comprise the majority of electrode surfaces used. This is 

representative of literature reports of small molecule immobilization on electrode surfaces, 

suggesting that immobilization on carbon materials is more well-understood than immobilization 

on any other electrode material. 

The complex in the last row of Table 1.1 (cobalt bis[dichlorobenzenedithiolate], complex 

1 shown in Figure 1.4) is the catalyst that will be discussed in several chapters of this thesis in 

terms of immobilization on electrode surfaces. This 

catalyst was chosen for four reasons: (1) its 

previously demonstrated adsorption on graphitic 

carbon electrodes (Table 1.1), (2) its high catalytic 

activity when immobilized on an electrode (highest 

TOF and TON of all systems listed in Table 1.1), (3) 

ease of synthesis, and (4) the potential to modify the ligands for covalent attachment to surfaces. 

Further considerations are necessary when envisioning a heterogenized molecular 

electrocatalytic system for solar water splitting. Specifically, immobilization on light-absorbing 

semiconductor materials is necessary. As already mentioned, a vast majority of reported 

techniques for immobilizing molecular catalysts on electrode surfaces use carbon materials as the 

electrode (as evidenced by Table 1.1). Unfortunately, however, carbon materials are not light-

absorbing. Therefore, these techniques are not useful for immobilizing molecular catalysts directly 

on photoelectrode surfaces. Immobilization of molecular proton reduction electrocatalysts on light 

absorbing materials is comparatively less well researched than that on inert carbon materials. Table 

1.2 lists a few examples of such systems. As with electrocatalysis, these photoelectrocatalytic 

systems are difficult to compare directly with each other. This is exacerbated in 

photoelectrocatalytic systems by the addition of variable parameters such as light intensity and 

wavelength, dopant density in the semiconductor, and stability of the semiconductor itself. These 

parameters will not be discussed at length here. An in-depth description of electron transfer using 

semiconductor electrodes can be found in the following references 74-75. 

The surface chemistry of an electrode can be altered by addition of an ultrathin layer of 

some material. The surface chemistry of the electrode is then defined by this material rather than 

the electrode itself. Therefore, a material that can be deposited in an ultrathin layer on any electrode 

Figure 1.4 Structure of 1. 
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regardless of the identity of the electrode allows for universal immobilization chemistry on 

electrode surfaces. Because there is such a large pool of research that has already been devoted to 

immobilization methods on graphitic carbon, thin films of graphitic carbon on photoelectrode 

surfaces are highly desirable. The requirements for such a material are threefold: (1) high optical 

transparency to allow light absorption by the underlying semiconductor, (2) electrical conductivity 

to allow transfer of electrons between the semiconductor and the catalyst at the surface, and (3) a 

well-defined and consistent surface chemistry allowing for immobilization of small molecules. 

The development of graphene-like films on electrode surfaces for the immobilization of small 

molecules is a major focus of this thesis. An additional benefit of graphene modification of 

semiconductors surfaces lies in its ability to passivate the surface (i.e. protect against corrosion).43, 

76-77 

1.4 Reduced graphene oxide. 

Graphene is a 2D material (1 atom thick), consisting of an extended aromatic network of 

carbon. Because of the aromaticity, it is electronically conductive, and because of its thinness it is 

highly optically transparent. Graphene is generally fabricated by CVD methods78 or by exfoliation 

from graphite, as in the “scotch tape method”.79 These methods, however, are not amenable to 

fabricating large area sheets of graphene. CVD is energy intensive and graphite exfoliation results 

in flakes of graphene up to only millimeters in diameter. 

Reduced graphene oxide (RGO, sometimes called rGO) is a graphene-like material that 

will be discussed in depth here. RGO has three major advantages over pristine graphene: (1) it is 

easily and cheaply synthesized from graphite through solution methods; (2) films can be cast from 

a solution-processable precursor, allowing for facile, controllable, and low-cost deposition of thin 

films; and (3) RGO has a large variety of surface oxygen functional groups, allowing for a range 

of methods for grafting small molecules to the surface. The structures of graphene and RGO are 

shown in Figure 1.5. Graphene is a single, large-area sheet of aromatic carbon, whereas RGO is 

made up of smaller sheets of partially oxidized aromatic carbon. 
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Figure 1.5 Structures of graphene (left) and RGO (right). 

 

RGO is fabricated in four steps. This process is shown in Figure 1.6. The first step consists 

of oxidizing graphite flakes using strong oxidants, such as sulfuric acid combined with KMnO4.
80 

This creates a material known as graphite oxide, which retains the honeycomb molecular structure 

of graphite but not the aromaticity. Graphite oxide, therefore, is not electrically conductive. 

However, because of the oxygen groups created during the oxidation process, it is a hydrophilic 

material and can be exfoliated and suspended in water and some other polar protic solvents. This 

exfoliated, oxidized material is termed graphene oxide (GO). Suspensions of GO can be cast as 

thin films on a variety of surfaces by methods including dropcasting, spincasting, spray pyrolysis, 

Langmuir-Blodgett, and others.81-84 Once these films are cast, they can be reduced to RGO and in 

doing so, the aromatic network, and thereby the electrical conductivity, is restored. 

RGO is useful for surface modification both through covalent grafting and physisorption. 

The former is achievable because of the variety of oxygen functional groups that remain even after 

reduction of GO. These groups consist largely of epoxides and hydroxides with smaller amounts 

of carbonyls and esters. This variety of functional groups allows for many different routes of 

grafting small molecules to RGO materials. For example, there are several reports on grafting to 

RGO through amide linkages85-87 and amine attack at epoxide groups.88-90 Additionally, RGO is 

useful for physisorption of small molecules because it can participate in π-stacking interactions. 

Small molecules containing a π-system that can lay flat on the RGO surface will spontaneously 

adsorb to that surface. Some molecular electrocatalysts like porphyrin complexes inherently 
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contain these flat π-systems, and some must be modified with something like a pyrene “foot” that 

can dangle off the catalyst and adsorb to the RGO surface.60, 91-92 

 

 

Figure 1.6 Scheme showing the synthetic steps to obtain RGO from graphite powder. Double 

bonds are omitted for the sake of clarity. 

 

Several different oxidation methods have been used to produce GO from graphite powder, 

the most common being the named Hummers, Hofmann, and Staudenmaier methods.80, 93-95 Each 

of these oxidation methods produce graphene oxide with slightly different chemical and structural 

properties. Even more varied, however, are the reduction methods published to date, which in turn 

produce chemically, structurally, and electronically varied RGO.96-98 For this reason, it is 

extremely important to have well-understood methods for the characterization of RGO. Chapter 2 

of this thesis describes a new method for the fabrication of thin films of RGO and the 

characterization of that RGO. Here I discuss the methods commonly used to characterize RGO 

and other graphitic materials. 

X-ray photoelectron spectroscopy (XPS) is an important surface characterization method 

used to determine the chemical composition of graphitic materials. The C 1s and the O 1s peaks 

can be deconvoluted to give information on the types and relative quantities of different carbon 

and oxygen functional groups within the material. Using the O 1s peak to obtain this information, 
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Figure 1.7 Sample set of XP C1s spectra of GO (top), RGO (middle), and graphite (bottom) that 

have been fitted with a series of Gaussian-Lorentzian peaks. 

 

however, can be complicated by the presence of water within the material. Since RGO is fabricated 

through oxidation of graphite in an aqueous mixture and GO is hydrophilic and often suspended 

in water prior to reduction to RGO, residual water trapped in the RGO matrix can make up a large 

portion of the O 1s signal. The C 1s signal, however, is less ambiguous. A sample set of XP C1s 

spectra are shown in Figure 1.7. These spectra have been fitted with a series of peaks. The peaks 

correspond to the functional groups labeled in the figure. As can be seen, graphite is almost entirely 

sp2 carbon, as expected, while GO has large quantities of C-O functional groups. RGO contains 

an intermediate level of C-O functionalities. The graphitic C=C peak is fitted with an asymmetric 

function. The asymmetry of this peak is due low energy π* → π transitions, known as shake-up 

satellites, that occur when an electron is ejected and a hole is left behind within the π-system of 

the graphitic structure.99-100 Each other type of carbon functionality can be fitted with a symmetric 
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Gaussian-Lorentzian product. Because these functionalities are not part of the π-system their 

excitations do not produce shake-up satellites. 

Importantly, fitted C1s XP not only give information on the total C-O content of graphitic 

materials but also the relative amounts of each type of C-O functionality. For example, from the 

data shown in Figure 1.7, it is apparent that the reduction method used here (that is the CoCp2/TFA 

solution described in Chapter 2) greatly reduces the amount of C-OH and C-O-C groups while 

having limited effect on the O-C=O (carboxylate) groups. Having this kind of information can 

help understand the mechanism of GO reduction, allowing for better control of that reduction. It 

can also help better understand the wetting of RGO in different solvents, the acidity of RGO, and 

the ability of RGO to undergo different types of covalent grafting procedures, among other things. 

 Raman spectroscopy is another useful tool for probing the structure of graphitic materials. 

Dresselhaus et al. give an in-depth description of the origin of Raman bands for single- and multi-

layer graphene and graphite.101-102 The four most distinctive Raman bands produced by graphitic 

carbon are termed the D, G, D’, and G’ (also called 2D or D*) bands and show up around 1300, 

1580, 1620, and 2600 cm-1, respectively. In Figure 1.8, sample spectra of GO, RGO, and graphite 

are shown and the D, G, and G’ peaks are labeled. In this case, the G and D’ peaks overlap forming 

a single broad band identified simply as the G peak. The pure G band is so named because it is the 

only first-order Raman mode of graphitic carbon. It arises from the E2g stretching of the graphitic 

matrix (i.e. sp2 carbon stretches). In graphene and highly ordered graphite, this is by far the most 

intense band. The D and D’ bands are considered defect bands. They arise from sp3 carbon 

stretching. The D band has sometimes been explained as the symmetric A1g stretching mode, which 

becomes Raman-active as the symmetry of the graphitic network is broken.103 The G’ band is an 

overtone of the D band (for this reason, some researchers call it the 2D or D* band). It should be 

noted that both the D and G’ bands exhibit frequencies that are dependent on the laser excitation 

frequency because they arise from a double resonant process. Specifically, resonance selectively 

intensifies different modes from a set of modes depending on the wavelength of excitation.104 

Because the G peak arises from perfect graphitic carbon and the D peak arises from 

defective graphitic carbon, the relative intensities of these two peaks can give information on the 

level of defects within the graphitic material. Specifically, the ID/IG ratio is inversely proportional 

to crystallite size and can be used to calculate the average crystallite size (that is, the average radius 

of defect-free graphitic regions).103, 105 However, this relationship is only valid when the 
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crystallites are > 3 nm. For materials with smaller crystallites, the relationship has a more complex 

dependence on crystallite size.106-107 Furthermore, because the G and D’ bands are so close in 

frequency, they often overlap (as is the case in Figure 1.8) and present as a single broadened peak, 

usually still called the G peak. Therefore, the position and FWHM of this G peak can also give 

information on the relative defect density of graphitic materials. For example, the G peak in Figure 

1.8 occurs at slightly different wavenumbers in GO (~1606 cm-1) and RGO (1597 cm-1) and with 

a slightly narrower FWHM in RGO compared to GO. 

 

Figure 1.8 Sample Raman spectra of GO (top), RGO (middle), and graphite (bottom). The D, G, 

and G’ bands are indicated. A 785 nm Raman laser excitation was used to collect these spectra. 

 

Attempts to deconvolute the G, D, and G’ peaks have been presented in the literature. 

Deconvolution of the G peak is fairly straightforward as it is comprised mainly of the pure G peak 

and the D’ peak. These can be fitted with Lorentzian functions.108 Some reports have also 

attempted to deconvolute the D band using a set of Lorentzian functions;106, 108-112 however, the 

physical origins of the peaks that comprise the D band are poorly understood, so these fittings vary 
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considerably. Lastly, the G’ band can give information on stacking defects in highly ordered 

materials such as few-layer graphene or HOPG (highly ordered pyrolytic graphite). Dresselhaus 

et al. have shown fittings of the G’ peak for few-layer graphene and highly ordered graphite.101 In 

low order materials like graphite and RGO, the G’ band appears as a broad peak, and in extremely 

low order materials, like GO, the G’ band disappears altogether.113-114 The effect of G’ peak 

broadening and disappearance can be seen in the spectra in Figure 1.8. 

Other commonly used methods to characterize graphitic materials include atomic force 

microscopy (AFM) and electrical resistance measurements. The former is an imaging technique 

that generally has resolution down to 1 nm, and in some cases atomic resolution115. Single RGO 

sheets can be imaged using this technique (Figure 1.9a) or for thicker RGO films, surface 

morphology, roughness, and thickness can be obtained (Figure 1.9b). Conductive AFM can be 

used to determine the sheet resistance of RGO,116-117 but when this technique is not available, four-

point probe measurements are commonly used to measure sheet resistance.118-121  

 

 

Figure 1.9 Sample AFM images of (a) individual sheets of GO and (b) a thicker film of RGO on 

silicon wafer surfaces. 

 Many other methods are available for the characterization of RGO materials. These 

methods include but are not limited to transmission and scanning transmission electron microscopy 

(TEM and STEM),122-126 scanning tunneling microscopy (STM),127-129 infrared absorbance (IR) 

spectroscopy,123, 130-132 x-ray diffraction (XRD),121-123, 125-126, 133 thermogravimetric analysis 

(TGA),122, 126, 134-135 UV-visible absorbance spectroscopy,122, 124-125, 134 and NMR spectroscopy.120, 

126 Because these methods were not used extensively in this thesis, they are not discussed in depth 

here; however, examples of their usage for the characterization of RGO and related materials can 

be found in the listed references. 
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1.6 Other redox species for electrochemical energy storage 

As mentioned previously in Section 1.1, a major hurdle in the implementation of hydrogen 

as a fuel is the difficulty of storage and transportation. Gaseous fuels have low energy density 

unless compressed, but compression requires an energy cost. Furthermore, H2 leakage from sealed 

containers is rapid compared with larger molecules, and hydrogen is explosive when mixed with 

oxygen. For these reasons, research into alternative redox species for energy storage is important. 

Organic redox species have the benefit of being relatively cheap and non-toxic with a high energy 

density compared to metal-based species. In particular, viologens (bipyridine derivatives) have 

received significant attention, especially in the redox flow battery community. These compounds 

have extremely fast charge transfer rate constants, high reversibility, and long charge-discharge 

cycling lifetimes. Furthermore, they are highly water soluble and easy to derivatize. A 

disadvantage of viologens is the reactivity of the reduced radical forms with oxygen, which is a 

major factor in the shelf-life of these species. 

 

Figure 1.10 Encapsulation of methyl viologen radicals by cucurbit[7]uril (left) and cucurbit[8]uril 

(right). 

 

Little research has been published on slowing the kinetics of viologen radical reaction with 

O2; however, some reports have manipulated the thermodynamics of viologen radicals. Most of 

these involve encapsulation inside cage molecules or structures, i.e. host-guest complexation. 

Molecular encapsulation, or host-guest chemistry, occurs when a large molecule (the host 

molecule) contains a cavity into which a smaller molecule (the guest molecule) can insert. The 

insertion is non-covalent, driven by van der Waals forces or entropy. Viologen molecules have 

been studied primarily as guest molecules using cucurbiturils, cyclodextrins, and 
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sulfonatocalixarenes.136-142 For example, Figure 1.10 shows encapsulation of methyl viologen 

radicals inside two different cucurbituril cage molecules: cucurbit[7]uril and cucurbit[8]uril (the 

numbers 7 and 8 indicate the number of monomers that make up the cucurbituril ring). A single 

viologen radical molecule can be encapsulated inside cucurbit[7]uril in water. This encapsulation 

destabilizes the radical by preventing it from pairing with other radicals in solution. The 

destabilization effect was shown by a negative shift in the reversible electrochemical reduction 

potential of methyl viologen.143 On the other hand, encapsulation of two viologen radical 

molecules is possible inside the larger cucurbit[8]uril and this leads to stabilization of the radicals 

by facilitating pairing.142-143 

1.7 Scope of thesis 

This thesis can be divided into two separate objectives. The first is the development of 

RGO thin films and their use for immobilizing a molecular hydrogen evolution electrocatalyst on 

electrodes for heterogeneous electrocatalysis. The second is the investigation of host-guest 

complexation between viologen derivatives and cucurbiturils, its effects on viologen reaction with 

dissolved oxygen, and its implications for long-term storage of reduced viologen solutions. 

Chapter 2 discusses a method for fabricating RGO thin films on a variety of surfaces. This 

method is exceedingly gentle and results in highly reduced, smooth RGO films of controllable 

thickness. The reduction method is the first published method that uses outer-sphere reductants 

(cobaltocene derivatives). The films produced by this method are used to adsorb a molecular, 

redox-active dye to electrodes and are shown to facilitate charge transfer to this molecule. 

Chapter 3 investigates the immobilization of the molecular proton reduction catalyst 1 

(Figure 1.2) to graphitic thin films on electrode surfaces. Data are presented on three types of 

graphitic materials: the RGO developed in Chapter 2, commercial single layer graphene, and 

multiwalled carbon nanotubes (MWCNT). The data show initial adsorption of the catalyst to all 

three graphitic surfaces, but retention of the physisorbed catalyst was low under turnover 

conditions except when using an ultra-rough surface. The reason for this was hypothesized to be 

catalyst intercalation on rough surfaces.  

Chapter 4 presents kinetic considerations of proton reduction in an electrocatalytic thin 

film. The film is composed of RGO with 1 embedded among the graphitic layers. The films were 

prepared by dropcasting mixtures of GO and 1 followed by electrochemical reduction. By 
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controlling the thickness of the film and the quantity of 1, kinetic limitations were determined from 

cyclic voltammetric data. 

Chapter 5 describes the interactions of two bis-viologen derivatives with cucurbit[7]uril 

(CB[7]) and cucurbit[8]uril (CB[8]) in solution. Both cucurbiturils have high binding constants 

with both viologens. However, it is shown that CB[7] thermodynamically destabilizes the 

reduction of both viologens, whereas CB[8] stabilizes them. Furthermore, the first 2-electron 

reduction of each viologen is split into two 1-electron reductions in the presence of CB[8]. The 

singly reduced viologen was isolated and is shown to be a unique mono-radical bis-viologen 

species that has not been observed in solution except in the case of the “blue box molecule” (a 

cyclic bis-viologen derivative). This mono-radical viologen complexed with CB[8] is shown here 

to be significantly stabilized against reaction with dissolved oxygen. 

Finally, Chapter 6 discusses preliminary data on five separate fronts and lists future 

experiments that should be conducted on these projects. These include (1) three methods for 

covalently grafting small molecules to RGO thin films. These methods can be used to graft a 

derivative of 1 to electrode surfaces, further improving retention time; (2) in situ XANES data on 

1 physisorbed to carbon paper electrodes in neutral and acidic solutions under applied potential; 

(3) the use of RGO thin films on gallium phosphide photocathodes to immobilize 1 for 

heterogeneous photoelectrocatalytic proton reduction; (4) passivation of silicon photoanodes 

against oxidative corrosion using RGO thin films; and (5) the formation of self-assembled 

graphene oxide monolayers on silicon oxide surfaces.  
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Adapted from ACS Applied Materials and Interfaces, Vol. 10, “Reduction of Graphene Oxide 

Thin Films by Cobaltocene and Decamethylcobaltocene,” MacInnes, M. M.; Hlynchuk, S.; 

Acharya, S.; Lehnert, N.; Maldonado, S. 2004-2015, Copyright 2018. 

 

2.1 Introduction 

 Thin films of reduced graphene oxide (RGO) are attractive for chemically stable and 

optically transparent coatings with low electrical resistance.144-146 Preparation of thin films of RGO 

typically involves first the chemical oxidation of graphite to form graphene oxide (GO) 

suspensions, followed by the casting of GO as a thin film, and finally reductive treatment of the 

thin film to form RGO.96-97, 126  

 To date three main methods for the reduction of GO thin films to RGO have been 

investigated.97 Electrochemical reduction of GO thin films or electrodeposition of suspended GO 

particles can be used to form RGO films on electrode surfaces.147-153 Applied potentials more 

negative than E = -0.6 V vs. the standard hydrogen electrode (SHE) are generally required to obtain 

RGO films by this method. The probability that these films incorporate species from the electrolyte 

is high.154-155 In addition, this method is limited only to conductive materials that can serve as 

electrodes under extreme cathodic potentials. A second method to prepare RGO films is thermal 

annealing of cast GO films in either a vacuum, inert atmosphere, or reducing atmosphere.97, 156-163 

The extent of reductive conversion depends strongly on the atmosphere, time, and temperature. 

Typically, temperatures in excess of 700°C are required, with some researchers recommending 

temperatures upwards of 1000°C.157, 162-163 This methodology necessarily eliminates the possibility 

of substrates that cannot withstand such temperatures. A third route is the chemical conversion of 

GO films to RGO films by reaction with a molecular reductant. A variety of molecular reducing 

reagents (Table 2.1), including hydrazine, hydroiodic acid, carbohydrates and metal hydrides, have 

been described.96, 120-121, 123-126, 130, 134-135, 157, 164-178 However, these reagents can unintentionally 

load the RGO films with heteroatoms (e.g. nitrogen, boron, or iodine)96, 121, 168 generate gaseous 

Chapter 2. Reduction of Graphene Oxide Thin Films by Cobaltocene and 

Decamethylcobaltocene 
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byproducts (e.g. N2 and H2) which can perturb the film structure, can be destructive/corrosive to 

certain substrate materials, and reduce graphene oxide to varying degrees. Other possible methods 

of reduction include irradiation179 and plasma treatment180, which each have the potential to 

damage the substrate material. 

 

Reduction method Sheet Conductivity (S m-1 x104) Reference 

Chemical reductions   

Hydrazine monohydrate 0.02 169 

Hydrazine monohydrate 1.6 170 

Phenylhydrazine 0.47 134 

Hydrazine vapor/annealing at 400°C 1.0 157 

NaBH4 0.082 120 

NaBH4/H2SO4/annealing at 1100°C 2.02 120 

LiAlH <0.01 172 

HI 2.98 121 

HI/AcOH 3.04 126 

HI/AcOH vapor 0.785 126 

Malonic acid 0.044 125 

Lawesson’s Reagent 0.476 173 

Lawesson’s Reagent/300°C anneal under H2 3.09 173 

NH3BH3 2.03 135 

Thiourea dioxide/NaOH/cholate 0.3205 123 

Hydroxylamine/NH3 0.1122 174 

p-phenylene diamine 1.5 175 

Isopropyl alcohol 0.1019 130 

Benzyl alcohol 0.46 130 

L-ascorbic acid 0.08 124 

L-ascorbic acid/NH3 0.77 176 

NaHSO3 0.65 177 

Na2S2O4/NaOH 0.1377 178 

   

Electrochemical Reductions   

Electrochemical (-1.3 V vs SCE) 9.0 152 

Electrochemical (-0.9 V vs Ag/AgCl) 0.85 147 

   

Other Methods of Reduction   

Methane plasma 15.9 180 

Annealing at 1100°C in vacuum 10 157 

Annealing at 1000°C under Ar 8.71 162 

UV-irradiation under high vacuum 0.000075 179 

   

Table 2.1 Reported methods for the preparation of reduced graphene oxide and the resulting 

conductivities 
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Although isolated reports have demonstrated the interaction between graphene oxide and 

an electrochemically generated reductant (e.g. methyl viologen radical),181 a simple and 

surprisingly unexplored strategy for producing RGO films is the immersion of GO films in a 

solution of outer-sphere reductant. Metallocenes are a useful class of outer-sphere reductants. 

Although metallocene adsorption on nanostructured graphitic carbons has been pursued 

previously,182-184 metallocenes have not yet been explored for the reduction of graphene oxide. 

Cobaltocene (CoCp2) is one possible reductant which has a very negative standard potential (E0 = 

-0.93 V vs NHE) that ought to facilitate spontaneous injection of e- into GO and has long been 

used as a 'clean', one-electron chemical reductant in the synthesis of various inorganic and organic 

compounds.185 The permethylated form, decamethylcobaltocene (CoCp*2), is an even stronger 

reducing agent (E0 = -1.54 V vs NHE). Both metallocenes have large self-exchange reaction rates 

and small reorganization energies for oxidation to the respective metallocenium states,186-187 

further underscoring their ability to rapidly transfer electrons without substantial bond 

lengthening/shortening or bond breaking/forming.  

 Cobaltocene is also interesting since it forms adducts with weak acids when dissolved in 

aprotic organic solvents. The identity of this adduct is debated, however, and has not received 

much attention in recent literature.188-190 Thus, the reaction of GO with cobaltocene both in the 

presence and absence of a weak acid like trifluoroacetic acid (pKa = 12.65 in acetonitrile)191 

presents a separate test of whether the reducing strength of the reagent and the availability of 

protons during reduction imparts a perceptible difference in the resultant RGO films, as suggested 

by other groups.96 

 Accordingly, in this work, we present data describing the separate reactions of cobaltocene 

and decamethylcobaltocene with thin GO films, both in the presence and absence of organic acids. 

This report is the first study to utilize outer-sphere reductants, affording a simpler route to reduce 

graphitic oxides. We present data that show conclusively that these reactions produce high quality 

RGO films at room temperature without concomitant mechanical damage to the films or the 

underlying substrate. Further, we present data that suggests the resultant electrical and chemical 

properties of the films reduced by the different metallocenes are not equivalent, suggesting it may 

be possible to produce intentionally RGO films with specific electrical and physicochemical 

properties.  
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2.2 Experimental. 

 Chemicals and Materials. Decamethylcobaltocene (Sigma Aldrich), cobaltocenium 

hexafluorophosphate (98%, Sigma Aldrich), trifluoroacetic acid (TFA, 99%, Sigma Aldrich), 

methanol (99.9%, Fisher Scientific) hydrogen peroxide (30% in H2O, Sigma Aldrich), 

hydrochloric acid (37%, Sigma Aldrich), sulfuric acid (ACS grade, Fisher Scientific Education), 

tetrabutylammonium perchlorate (G. Frederick Smith Chemical Company), ferrocene (98%, Acros 

Organics), aminotriethyoxysilane (98%, Sigma Aldrich), toluene (anhydrous, 99.8%, Sigma 

Aldrich), crystal violet (Sigma Aldrich), hydriodic acid (47-51%, J.T. Baker Chemical Co.), 

indium foil (99.99%, Aldrich), and potassium permanganate (98%, Acros) were used as received. 

Cobaltocene (Sigma Aldrich) was purified by sublimation at T = 80°C. Acetonitrile (99.9%, Fisher 

Scientific) and dichloromethane (99.9%, Fisher Scientific) were distilled and subjected to three 

freeze-pump-thaw cycles before glovebox use; otherwise solvents were used as received. Graphite 

flakes (-20+84 mesh, Johnson Matthey) was used as the carbon source for graphene oxide 

suspensions and for the XPS graphite standard. Water with a resistivity >18.2 MΩ (Nanopure 

Barnstead Water Purification) was used throughout. 

 Polished Si(111) wafers from Wafer Works doped with As (≤0.006 Ω cm-1) were used as 

substrates for Raman and XPS measurements. Glass microscope slides from Fischer Scientific 

were used as substrates for UV/vis and conductivity measurements. Fluorine-doped tin oxide 

(FTO) coated glass from MTI Corporation (2 mm thick, 12-14 Ω sq-1) was used for electrochemical 

measurements. Si wafers, glass slides, and FTO substrates were degreased using a sequence of 

water, methanol, and acetone, sonicating for ten minutes in each solvent. Glass and FTO were also 

etched with oxygen plasma (Plasma Etch, PE-50) for 5 minutes. Glassy carbon substrates were 

prepared by first polishing with alumina (1 μm, 0.3 μm, and 0.05 μm alumina suspensions) on felt 

and then soaking in isopropanol for 30 minutes. Indium thin film substrates were prepared by 

evaporating 600 nm of indium foil onto degreased glass microscope slides. 

 Preparation of graphene oxide suspensions. A modified Hummers method was used.192 A 

4-mL aliquot of water was mixed with 46 mL of concentrated H2SO4 and cooled to T = 0°C in an 

acetone bath. After cooling, 1 g of graphite flakes was added and then 3 g KMnO4 was added 

slowly over 1 hour. This suspension was stirred slowly for 48 hours at T = 0°C. Following, the 

resultant mixture was a dark green, thick slurry. This suspension was then poured into 300 mL of 

chilled water and stirred for another 10 minutes. An 8 mL aliquot of 30 % v/v H2O2(aq) was then 
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added to quench the reaction. The suspension was filtered with P5 filter paper from Fisher 

Scientific and the collected materials were re-suspended in 1:9 v/v concentrated HCl:H2O. This 

suspension was then filtered again and re-suspended a total of three times. The wet filtered product 

was then suspended in pristine water and subjected to dialysis (10,000 g mol-1 weight limit) for 2 

days. The resultant suspension was then stored in a flask on the benchtop for up to several months. 

 Preparation of reduced graphene oxide films. A small volume of the graphene oxide 

suspension was removed and sonicated for 20 minutes to exfoliate and disperse fully individual 

graphene oxide sheets. This volume was then centrifuged at 9000 rpm for 30 minutes. The yellow 

supernatant was removed and diluted to approximately 1 mg mL-1. The diluted suspension was 

then dropcast onto the substrate of choice and allowed to air dry. To obtain uniform films for 

transmittance measurements, GO suspensions were cast on functionalized glass microscope slides. 

The glass was first functionalized with aminotriethoxysilane (APTES) by immersion in a 1% 

APTES solution in dry toluene for 24 hours followed by thorough rinsing with toluene. The GO 

suspension was first diluted with ethanol (3:1 ethanol:water) and was then spin casted on the 

functionalized glass surfaces at 300 rpm for 1 minute followed by 3000 rpm for 3 minutes. This 

procedure tended to yield films with thicknesses ~ 1 x 10-8 m. Both drop cast and spin cast GO 

films were then reduced by immersion in solutions containing either 15 mM CoCp2 in acetonitrile 

or 15 mM CoCp*
2 in dichloromethane under a dry N2 atmosphere inside a glove box for 30 min at 

room temperature. In some experiments, a molar equivalent (with respect to CoCp2) of TFA was 

added to the cobaltocene solution before immersion of the graphene oxide film. Longer times and 

higher temperatures did not demonstrate change to any reported observable. Following immersion, 

the films were removed from the glovebox and rinsed with solvent. These films were allowed to 

air dry under ambient conditions for at least one day before conducting four-point probe 

measurements. GO thin films on paper and indium metal substrates were also reduced by 

immersion in HI acid to compare with the reduction methods described here. These samples were 

immersed in a 50% v/v solution of HI acid, then removed, and finally rinsed thoroughly with water. 

 Conductivity measurements Two-point probe measurements were performed by painting 

two ~1 mm diameter spots of silver print (Sliver Print II from GC Electronics) separated by 2 mm 

on the surface of the films deposited on glass slides. Resistance measurements were performed 

with a TP4000ZC TekPower multimeter (input impedance = > 40 MΩ). Separate samples for four-

point probe measurements were prepared by sputtering gold contacts onto the surface of the films 
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using a poly(methyl methacrylate) shadow mask with a grid of 500 μm holes spaced by 950 μm. 

The sheet resistances were measured using a Keithley 4200 semiconductor parameter analyzer and 

an Alessi probe station, with the current sourced through the outer two terminals and the voltage 

drop measured across the inner two terminals. Conductivity values were calculated using 

thicknesses measured by atomic force microscopy (Figure 2.1). All films for electrical 

measurements had thickness ~ 3 x 10-8 m. For more precise measurements, a four-point probe 

apparatus (Miller FPP-5000) was also used to measure the sheet resistances for these thin films. 

 

Figure 2.1 Atomic force microscopy (AFM) images and height profiles of representative GO and 

RGO films used for four-point probe resistivity measurements. AFM image of (a) a GO film on 

glass, (c) a GO film treated with cobaltocene & TFA on glass, (e) a GO film treated with 

decamethylcobaltocene on glass, and (g) a GO film treated with just TFA on glass. Height profiles 

along the lines denoted as 1 are shown in (b), (d), (f), and (h), respectively. Scale bars: 2 μm. 

 

 X-ray photoelectron spectroscopy. X-ray photoelectron (XP) spectra were acquired with a 

PHI 5400 analyzer using an unmonochromated Al Kα (1486.6 eV) source. Spectra were recorded 

without charge neutralization at a base pressure of <2.5×10-9 Torr. A 6 mA emission current and 

10 kV anode HT was used. Survey scans were acquired at a pass energy of 117.40 eV. High-

resolution XP spectra were recorded at a pass energy of 23.5 eV. Each collected C1s spectra was 

an average of 100 high resolution scans.  
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 The C1s spectra were analyzed and fit with the following approach. A C1s spectrum for a 

pristine graphite flake (Johnson Matthey) was collected. This spectrum was fit with a total of five 

peaks. The lowest binding energy peak was assumed to correspond to the emitted electrons from 

carbon atoms involved in the aromatic network of graphite. The peak width and asymmetric tail 

of this peak were assessed through least-squares fitting and determined to be an asymmetric 

Gaussian-Lorentzian product function described by the text string “A(0.4,0.38,20)GL(80)” (fit in 

CasaXPS software) with a peak width of 1.216 eV. The other four peaks at higher binding energies 

were assumed to have symmetric shapes (i.e. these emitted electrons came from carbon atoms not 

participating in the graphitic  electron network) described by a 1:1 convolution of Gaussian and 

Lorentzian functions and peak widths of 1.5-1.6 eV. The relative positions of all five peaks were 

based on literature assignments for graphitic carbons and oxidized carbon-containing surface 

groups193 followed by iterative fits of the spectra for the graphitic flake. The specific peak positions 

used here yielded fits for the spectrum of the graphite flake sample with the lowest fitting residuals 

and were not allowed to float in the fitting of the data for the thin films. A Shirley background 

correction was then used for all collected spectra and the lowest energy peak (the asymmetric peak) 

was calibrated to 284.6 eV in each spectrum. 

 Raman spectroscopy. Unpolarized Raman spectra were obtained using a Renishaw RM 

series Raman microscope equipped with a Leica 50x (NA = 0.75) objective, with edge filters for 

the 785 nm excitation line, in a backscattering geometry. A 785 nm diode laser was used as the 

incident excitation source with a total radiant power of 1.12 mW over a 20 μm2 spot which was 

collected for 30 seconds and averaged over 5 scans. 

 Energy dispersive x-ray spectroscopy. Energy dispersive x-ray spectroscopy (EDS) 

mapping was performed at 5 kV with a PentaFET Precision x-act detector in a LEO 1455VP 

scanning electron microscope. Films were deposited and treated on clean silicon wafer substrates. 

 UV-visible absorption spectroscopy. Solution UV-visible absorption experiments were 

performed in 1 cm quartz cuvettes using an Analytik Jena Specord S600 spectrophotometer. Solid 

state UV-visible absorption experiments were performed with a Varian Carey 5000 UV-vis-NIR 

spectrophotometer. Adsorption of crystal violet was performed by immersion of the RGO films on 

glass in a 50 mM solution of crystal violet in methanol and then rinsing with neat methanol. Spectra 

represent the absorption of light through dye-loaded films relative to the respective RGO films on 

glass before adsorption. 
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 Electrochemical measurements. Electrochemical measurements were taken using a CH 

Instruments 760C potentiostat. A three-electrode cell was used with a supporting electrolyte of 

deaerated 0.1 M tetrabutylammonium perchlorate and 4 mM trifluoroacetic acid in acetonitrile. A 

platinum mesh was used as the counter electrode and a Ag wire immersed in a AgNO3 solution in 

a fritted compartment was used as a quasi-reference electrode. Absolute potentials were 

determined by spiking the electrolyte with ferrocene and referencing potentials to the 

ferrocene/ferricenium couple. Working electrodes were prepared by casting films on FTO-coated 

glass electrodes.   

2.3 Results. 

 Electrical Conductivity of Films. The reaction between metallocenes and graphene oxide 

films all uniformly resulted in a perceptible color change in the films, as demonstrated in Figure 

2.2a. On glass slides, the GO films generally showed a faint, pale yellow color before reduction. 

The films darkened noticeably within the first 30 s of immersion, achieving a grey tint. Treatment 

with just cobaltocene produced films with a very slight grey tint, whereas treatments with 

cobaltocene & TFA and with decamethylcobaltocene produced films that were significantly 

darker. The corresponding transmittance spectra of GO films before and after each treatment are 

shown in Figure 2.2b. 

 
Figure 2.2 a) Photograph of (1) a clean glass microscope slide; (2) a GO film deposited on a glass 

slide; (3) a GO film on glass treated with cobaltocene; (4) a GO film on glass treated with 

cobaltocene & TFA; and (5) a GO film on glass treated with decamethylcobaltocene. b) 

Corresponding transmittance spectra of the films 2-5 in (a). Scale bar: 1 cm. 

Treatment with cobaltocene alone minimally lowered the overall transmittance of the film from 

that of untreated GO. Treatment with cobaltocene & TFA further lowered the transmittance, and 
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treatment with decamethylcobaltocene produced the darkest films with the lowest transmittance. 

These films were then measured by a two point probe method for determination of approximate 

resistance. These values are listed in Table 2.2.  

 

 Resistance /Ω Conductivity /S m-1 a 

Treatment 
Two-point probe 

measurement  
Four-point probe 

measurement  

as-prepared GO 1010-1011 b 10.2 ± 0.4 

after reaction with acid  ≥1013 b,c --  

after reaction with CoCp2
 (3 ± 2) x 105 d -- 

after reaction with CoCp2 + acid (4 ± 2) x 103 d (1.2 ± 0.6) x 104 e 

after reaction with CoCp*
2

 (3 ± 1) x 103 d (1.3 ± 0.3) x 104 e 

after reaction with CoCp*
2 + acid (1.8 ± 0.8) x 103 d -- 

a Calculated from sheet resistance using average thicknesses measured by AFM of 31 nm (GO films), 24 nm (films 

treated with CoCp2 + acid), and 24 nm (films treated with CoCp*
2). b 0.8 mm probe spacing was used for these 

measurements. c Films were immersed in 15 mM TFA in acetonitrile in a glovebox for 30 min. d Two point-probe 

measurements were performed with N = 20. e Four-point probe measurements were performed with N = 3. 

 

Table 2.2 Resistance and conductivities of GO and RGO films prepared under different conditions, 

measured by four-point probe. 

 

Several points were clear from these data. First, in addition to a color change, all putative RGO 

films showed a statistically relevant decrease in resistance relative to GO films. Second, the 

resistance of the putative RGO films was decreased further when a proton source was used in 

conjunction with cobaltocene to perform the reduction by almost a factor of 10-2. Although 

addition of a molar equivalent of TFA to cobaltocene in acetonitrile turned the solution from dark 

burgundy to dark orange, the absorption spectra indicated that the reaction between cobaltocene 

and the acid was not stoichiometric, i.e. a large amount of cobaltocene remained unreacted (Figure 

2.3). Control measurements where GO films were reacted with TFA solutions in acetonitrile did 

not result in higher conductivities. Rather, exposure to only this TFA solution consistently 

increased the measured resistance to a value that exceeded the input impedance of the measuring 

apparatus, implying acid alone significantly lowered the film conductivity. Third, the presence of 

a proton donor was not required to render even lower resistance, as immersion in solutions with  
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Figure 2.3 (Top) Absorption spectra of cobaltocene in acetonitrile before (black line) and after 

(red line) addition of one molar equivalent of trifluoroacetic acid. (Bottom) Absorption spectra of 

cobaltocenium in acetonitrile. 

 

just decamethylcobaltocene showed the lowest resistance. Addition of TFA to these solutions did 

not produced RGO films with any further decrease in resistance. 

 Since the reaction of GO films with solutions of either cobaltocene with TFA or just 

decamethylcobaltocene yielded comparable resistance values, additional four point probe 

resistance measurements were performed with these putative RGO films to obtain more precise 

values. Conductivity values were extracted using thicknesses measured by AFM (Figure 2.1). 

These data are also reported in Table 2.1. 

 X-Ray Photoelectron Spectroscopy. Figure 2.4 shows representative C1s X-ray 

photoelectron spectra for a GO film, an RGO film prepared with a solution of cobaltocene, an 

RGO film prepared with a solution of cobaltocene with TFA, and an RGO film prepared with a 

solution of decamethylcobaltocene. A conservative fitting approach was adopted, where each 

spectrum was fit as a linear combination of 5 different peaks (vide supra). The assignments for the 

five peaks, from lowest to highest binding energy, followed the general conventions historically 

employed in the XP analysis of graphitic carbons.193 These five peaks were ascribed to sp2 carbon 

200 300 400 500 600 700

0.0

0.4

0.8

1.2

A
b
so

rb
an

ce

CoCp2PF6

200 300 400 500 600 700

0.0

0.4

0.8

1.2

A
b
so

rb
an

ce

CoCp2

CoCp2 + TFA (1:1)

Wavelength /nm

Wavelength /nm



 34 

participating in a large aromatic system (i.e. graphitic: 1), sp3 carbon bound only to other carbon 

or hydrogen (2), sp3 carbon singly bound to one oxygen (i.e. alcohols and epoxides: 3), sp2 carbon 

doubly bound to one oxygen (i.e. quinone, carbonyl: 4), and carbon bound to two oxygens (i.e. 

carboxylate, ester: 5), respectively.  The peak shapes, full widths at half maximum (fwhm), and 

relative spacings used for fitting these peaks were determined from best fits of the C 1s spectrum 

of a clean graphite flake sample. The asymmetric tailing for the graphitic peak (arising from 

interaction of emitted core electrons with the conduction band)194 for this sample was used for the 

peak shape of the first fitted peak.  

 

 
 

Figure 2.4 Representative high-resolution C 1s X-ray photoelectron spectra of an as-cast GO film 

and after 30 minute immersions in solutions of cobaltocene, cobaltocene & TFA, and 

decamethylcobaltocene, respectively. Thin vertical dashed lines are guides for the eye indicating 

the binding energies used for the five individual peaks (blue, purple, orange, green, and violet 

lines) used to generate the fit (solid red line). The backgrounds used to generate the fits are shown 

as thick dashed lines. 
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 The results for the fitting analyses of the C 1s XP spectra are contained in Table 2.3. For 

GO films, the C1s XP spectrum could be fit with all five peaks, with a sizable contribution from 

peak 3. RGO films prepared by reaction with cobaltocene yielded differences in the C1s XP 

spectrum. Peak 1 was still the most pronounced peak but the relative contributions from peaks 3 

and 4 were strongly attenuated. The relative intensity of peak 5 was nominally unchanged. The 

C1s spectrum for RGO films prepared with cobaltocene & TFA was also different from the data 

for GO films but in two distinct ways. First, the relative intensity of peak 1 now greatly exceeded 

the combined contributions from all other peaks. Second, the relative intensity of peak 2 was 

comparable to the relative intensity of peak 3. In contrast, the C1s spectrum for RGO films 

prepared with decamethylcobaltocene largely mirrored the spectrum for RGO films prepared with 

cobaltocene, with slightly smaller contributions from peaks 3, 4, and 5.  

 

Treatment 1 2 3  4  5  

as-prepared GO b 38 ± 7 17 ± 8 31 ± 5 9 ± 3 5 ± 3 

after reaction with CoCp2 
c 35 ± 8 40 ± 9 15 ± 3 5.1 ± 0.8 5 ± 0.9 

after reaction with CoCp2 + acid d 59 ± 6 21 ± 3 10 ± 2 5.1 ± 0.8 5 ± 1 

after reaction with CoCp*
2 

e 33 ± 6 44 ± 9 13 ± 7 5 ± 1 6 ± 2 
a Peaks labels: 1- sp3 C; 2- sp2 C; 3- C-O; 4- C=O; and 5- O-C=O.  bN =14, cN = 4, dN = 7, eN = 13 

 

Table 2.3 X-ray Photoelectron C 1s Spectra Fitting Results for As-prepared and Reduced 

Graphene Oxide Filmsa 

 

 Figure 2.5 shows the Co 2p XP spectrum of an RGO film prepared with a solution of 

cobaltocene and trifluoroacetic acid and of an RGO film prepared with a solution of 

decamethylcobaltocene (red traces).  It is apparent that a significant amount of cobalt remains 

adsorbed to the film surfaces after reduction. EDS analysis in Figure 2.6 also shows residual cobalt 

signal. After the films have been soaked in an acetonitrile solution of trifluoroacetic acid for two 

days, however, the cobalt signal is gone (Figure 2.5, red traces). This indicates that the cobalt is 

weakly adsorbed and can easily be removed. 
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Figure 2.5 Representative Co 2p XP spectra of RGO films treated with cobaltocene & TFA (top) 

and films treated with decamethylcobaltocene (bottom). The black lines correspond to freshly 

prepared RGO films and the red lines correspond to the same films after soaking in the respective 

solvents for several days. The solvents used for this removal of cobalt species was acidified 

acetonitrile in the case of films treated with cobaltocene & TFA and dichloromethane in the case 

of films treated with decamethylcobaltocene. 
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Figure 2.6 Representative energy dispersive x-ray spectra (EDS) of an as-cast GO film on silicon 

and after 30 minute immersions in solutions of cobaltocene, cobaltocene & TFA, and 

decamethylcobaltocene, respectively. 

 

 Raman Microscopy. Figure 2.7 summarizes the collected first- and second-order Raman 

spectra for the GO and RGO film types. Although the loss of symmetry in GO and RGO films can 

activate several distinct vibrational modes that are otherwise ‘silent’ in pristine graphite,108-109, 195 
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no attempt was made here to fit the as-collected spectra with individual modes/‘interbands’.109 

Instead, the primary spectral features are described here and summarized in Table 2.4. Each 

spectrum in Figure 2.7 showed a band near 1320 cm-1 (i.e. the D band) and a second less intense 

signal near 1610 cm-1 (i.e. the G band). For GO films, the D and G bands were resolvable but 

showed substantial overlap. Additionally, no G’ band (appearing near 2600 cm-1 in graphite) was 

apparent above the baseline noise. Raman spectra for RGO films prepared with just cobaltocene 

showed five principal differences. First, the peak positions of the D and G bands red-shifted 

slightly. Second, the fwhm values for both bands decreased. Third, the overlap between these bands 

(i.e. the intensity at ~ 1480-1500 cm-1) was less. Fourth, a peak at ~2600 cm-1 (the 2D band)101, 106 

was apparent. The RGO film prepared from a solution of cobaltocene and TFA showed these same 

changes in the corresponding Raman spectra with some subtle differences. The position of the D 

and G bands were more red-shifted, the fwhm values for these bands were smaller with lower 

overlap between the bands, but the relative intensity of the G band remained the same. However, 

the 2D band at 2600 cm-1 was perceptible over the baseline but with a lower signal to noise ratio. 

The RGO film prepared with decamethylcobaltocene showed all of these same trends, except G’ 

band was clearly visible as well as a secondary peak at 2880 cm-1.  

 The fifth principal difference in the Raman spectra for the GO and RGO films was the 

relative intensities of the G band. For graphitic materials, the ratio of the D and G peak intensities 

(i.e. ID and IG, respectively) is proportional to the average crystallite size of a graphitic material, 

La, but in a complex manner,106-107  

 

n

G

D
a

I

I
kL 








=       2.1 

 

where k is a proportionality constant that depends on the wavelength of excitation, the extent of 

resonance, the instrument response factor, and the scattering properties of the studied material107 

and n is the order of the dependence. For graphitic carbons with large (> 3 nm) domain sizes, n is  
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Figure 2.7 Representative Raman spectra of an as-cast GO film and after 30 minute immersions 

in solutions of cobaltocene, cobaltocene & TFA, and decamethylcobaltocene, respectively. All 

raw spectra were normalized to the intensity of the peak near 1320 cm-1. The intensity of the spectra 

between 2200 and 3200 cm-1 has been increased by an order of magnitude to better visualize the 

peaks in this region. The scale bar highlights the intensity above the baseline of the overlap region 

between the D and G peaks. 

 

 

Treatment 

D band 

position 

/cm-1 

D band 

fwhm 

/cm-1 

G band 

position 

/cm-1 

G band 

fwhm 

/cm-1 

ID/IG ratio 

as-prepared GO 1340 ± 20 130 ± 8 1604 ± 3 70 ± 20 1.2 ± 0.2 

after reaction with CoCp2 1310 ± 1 99 ± 5 1595 ± 1 71 ± 8 1.78 ± 0.07 

after reaction with CoCp2 + acid 1305 ± 1 86 ± 7 1593 ± 1 63 ± 6 2.0 ± 0.2 

after reaction with CoCp*
2 1306 ± 1 76 ± 4 1592 ± 1 64 ± 3 2.5 ± 0.1 

a N = 20 for each measurement; b λlaser = 785 nm 

 

Table 2.4 Raman Spectra for As-prepared and Reduced Graphene Oxide Filmsa,b 

 

-1, and eq 1 is the well-known Tuinstra-König relation.103 However, for graphitic materials with 

very small domains where the crystallite size defines the distance between defects, n > 0, and that 

for nanocarbons, n ranges from ~0.75-2.106-107 A wide range of crystallite sizes for RGO and GO 
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has been reported, likely largely as a function of the material preparation method.149, 196-197 The 

increase in the ID/IG ratio upon treatment with cobaltocenes shown here, which correlates with a 

decrease in resistivity, implies that the crystallite sizes of these GO and RGO films are < 3 nm.  

Accordingly, the increase in the ID/IG ratio measured in the RGO films after treatment with the 

reducing reagents implies a perceptible restoration of the graphitic network in the films. 

Unfortunately, the exact quantitation of the Raman spectra for graphitic nanocarbons cannot be 

performed without standards with matched scattering properties and without establishing n 

beforehand.107 Nevertheless, from the spectra in Figure 2.7, RGO films prepared with 

decamethylcobaltocene showed the largest ID/IG value (Table 2.4), implying that films prepared in 

this way have larger graphitic domains than films prepared either with just cobaltocene or 

cobaltocene & TFA. The proper analysis of Raman spectra from small domain graphitic carbons 

is an unsettled topic, including the relevant number of bands.106, 108-109, 195, 198-199 Some authors 

prefer to fit the Raman spectra of graphitic carbons with several bands and use the integrated areas 

of the D and G peaks for the Tuinstra-König analysis; however, because of the disagreement on 

the proper fitting parameters and number of bands, we limit our analyses here to the ratios of the 

apparent peak intensities for insight on graphitic character. 

 Atomic Force Microscopy. Atomic force micrographs were separately collected to 

ascertain the respective morphologies of the GO and RGO films. Figure 2.8 presents representative 

atomic force microscopy data showing the topography of each film type. The GO films appeared 

wrinkled (Figure 2.8a), with an observed root mean square surface roughness of 14 ± 6 nm (N = 

7). After immersion in a solution of just cobaltocene (Figure 2.8b), the films looked nominally 

unchanged. The roughness for these films was 10 ± 2 nm (N = 7). After immersion in solutions 

with equimolar amounts of cobaltocene & TFA (Figure 2.8c), the films appeared rougher, with 

more pronounced wrinkling and a root mean square roughness of 19 ± 8 nm (N = 8). Reaction of 

GO films with decamethylcobaltocene (Figure 2.8d) imparted to significant morphological 

change, but the surface roughness decreased slightly to 8 ± 3 nm (N = 7). 

Substrate/Reagent Compatibility. Figures 2.9 and 2.10 show photographs comparing the 

results of GO thin film reduction by the most common reductant (HI(aq)) and by cobaltocene &  
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Figure 2.8 Contact mode atomic force micrographs of (a) an as-cast GO film and after 30 minute 

immersions in solutions of (b) cobaltocene, (c) cobaltocene & TFA, and (d) 

decamethylcobaltocene, respectively. Scale bars: 2 μm. 

 

TFA on two sensitive substrate materials: paper and thin films of indium metal on glass. Figures 

2.9a and 2.9c show two GO films on indium metal. Figure 2.9b shows the sample after immersion 

in a ~50% HI acid solution for 30 seconds. Under these conditions, the GO and indium metal were 

completely removed from the glass. The inset to Figure 2.9b shows the rapid delamination upon 

immersion in the HI reductant solution. In Figure 2.9d shows the indium/reduced graphene oxide 

film stack after treatment with cobaltocene & TFA. The only noticeable change after this treatment 

was the expected darkening of the graphene oxide film. Otherwise, both the graphitic film and the 

underlying metal substrate were mechanically unperturbed.  

Figures 2.10 and 2.10 show patterned GO films prepared on paper substrates. Figure 2.10b 

shows the result after immersion in 50% HI(aq) solution for 30 seconds, where an intense 

darkening of both the graphitic film and the paper substrate. The paper was clearly stained by the 

formation of I2 following reaction with the paper. In contrast, Figure 2.10d shows the sample in 

Figure 2.10c after treatment with cobaltocene & TFA. The only noticeable change after this 

treatment is the darkening of the now-reduced graphene oxide film pattern. 
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Figure 2.9 a, c) GO films deposited on indium thin films evaporated onto glass. b) The film in (a) 

after immersion in 50% HI solution for 30 seconds. d) The film in (c) after treatment with cobaltocene 

& TFA. Scale bar: 1 cm. 

 

 
Figure 2.10 (a) and (c) GO films patterned on paper. (b) The film in (a) after immersion in 50% HI 

solution for 30 seconds. (d) The film in (c) after treatment with cobaltocene & TFA. Scale bar: 1 cm 

 

 

Adsorption on RGO Films as Electrode Coatings. All GO and RGO film types were probed 

in terms of their efficacies as thin electrode coatings. These film types were prepared on plain glass 

and FTO-coated glass and then exposed to solutions containing crystal violet for 15 min. Crystal 

violet is a strongly visible-light-absorbing and redox-active dye. The loading of crystal violet onto 

the films was monitored through light absorption. Figure 2.11a illustrates that after immersion for 

15 min, the GO films showed an order of magnitude higher absorption than any of the RGO films. 

The RGO film prepared with just cobaltocene had an intermediate absorbance while the other RGO 

films showed much less light absorbance, implying less extensive dye adsorption. These  
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Figure 2.11 Absorption spectra and cyclic voltammetric responses of GO and RGO films after 

immersion in 50 mM methanol solutions for 15 minutes followed by rinsing with neat methanol. a) 

Absorption spectrum for crystal violet adsorbed on a GO film and b) the corresponding voltammetric 

responses before and after crystal violet adsorption. c) Absorption spectrum for crystal violet adsorbed 

on an RGO film prepared by reduction with cobaltocene and d) the corresponding voltammetric 

responses for the RGO film before and after crystal violet adsorption. e) Absorption spectrum for 

crystal violet adsorbed on an RGO film prepared by reduction with cobaltocene and TFA and f) the 

corresponding voltammetric responses for the RGO film type before and after crystal violet adsorption. 

g) Absorption spectrum for crystal violet adsorbed on an RGO film prepared by reduction with 

decamethylcobaltocene and h) the corresponding voltammetric responses for the RGO film type before 

and after crystal violet adsorption. Voltammetric responses were recorded in acetonitrile containing 

0.1 M tetrabutylammonium perchlorate and 40 mM TFA. Scan rate: 10 mV s-1.  

 

observations are in accord with the expectation that the cationic dye will have a strong electrostatic 

affinity with a charged surface and that the GO films had the most anionic character, followed by 

the cobaltocene-treated RGO films, and then the higher conductivity RGO films had the least 

anionic character. To assess whether there were any differences in electroactive loadings, cyclic 
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voltammograms were recorded with the dye-loaded GO and RGO films, where the potential was 

biased sufficiently positive to effect the irreversible 2e- oxidation of crystal violet.200 Integration 

of the total charge passed (after correction from the background capacitance) indicated a 

comparable loading of crystal violet (10-9 mol cm-2) on the most conductive RGO films, but with 

a higher loading on the RGO film prepared with just cobaltocene. The shape of the voltammetry 

was comparable among the three RGO film types,  consisting of a double-wave oxidation response, 

similar to what is seen for solution phase oxidation of crystal violet.200 The voltammetric response 

on the GO film showed only a single wave at approximately the same potential as the first wave 

in the voltammetry of crystal violet on RGO. 

2.4 Discussion 

The cumulative data support the following contentions. First, graphene oxide can be 

reduced by 1e- outer-sphere reductants. Second, the standard potential of the reductants strongly 

influences the extent of reduction. Third, the inclusion of a proton source (acid) in a cobaltocene 

solution strongly affects the reduction of graphene oxide and the nature of the resultant film. 

Fourth, the differences in the apparent properties of RGO films prepared by 

decamethylcobaltocene and by cobaltocene with trifluoroacetic acid do not translate into obvious 

differences in their electrical or electrochemical properties. These points are discussed below. 

Reduction of Graphene Oxide by Outer-Sphere One-Electron Reductants. The substantial 

and rapid darkening of the as-cast films upon immersion in separate solutions of cobaltocene and 

decamethylcobaltocene indicate each metallocene readily reacts with graphene oxide. The XP data 

in Figure 2.4 separately and clearly show that these reactants lowered the overall oxygen content 

by primarily decreasing the number of alcohol/ether and quinone/carbonyl functionalities, as 

evidenced by the decrease in peaks 3 and 4, respectively. The Raman data in Figure 2.7 separately 

suggest a concomitant increase in the overall conjugation in the films, as denoted by the red-shifts 

of the D and G bands, narrowing of these peaks, and emergence of the G’ band. These facts 

collectively underscore a restoration of the graphitic sp2 network. The atomic force images 

separately indicate that the chemical reduction effected by reaction with either cobaltocene or 

decamethylcobaltocene did not substantially alter the physical structure of the graphene oxide 

films. The surface roughness of GO films decreases upon treatment with each of these reductants, 

possibly due to an increase in aromaticity that facilitates more layer stacking/ordering. Overall, 
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these data are convincing that cobaltocene and decamethylcobaltocene are active for the gentle 

reduction of GO to RGO, i.e. conversion does not involve elimination of a significant number of 

carbon atoms.  

However, the cumulative data also strongly indicate that the RGO films formed through 

reaction with these two metallocenes are not equivalent. The lower conductivity of the RGO films 

consistently produced with cobaltocene implied that this metallocene was less effective at reducing 

graphene oxide. Further analysis of the XP data argues against the difference in conductivity 

arising from a lesser ability of cobaltocene to remove oxygen-containing functionalities. Rather, 

the relative contributions in the C 1s spectrum from oxygen-containing functionalities in the RGO 

films made with cobaltocene and decamethylcobaltocene were comparable (Table 2.3). Instead, 

the Raman spectra argue that removal of oxygen-containing functionalities by cobaltocene did not 

also restore as much of the conjugated network. That is, reaction with cobaltocene reductively 

eliminated the same amount of oxygen-containing functionalities as did reaction with 

decamethylcobaltocene without increasing the conductivity as much. The less prominent band at 

~2700 cm-1, the greater overlap between the D and G bands, and the larger Raman shifts for these 

bands for the RGO films prepared with cobaltocene are all consistent with graphitic domains with 

less order and smaller sizes.101, 103, 105-106, 108-110, 113, 195, 199, 201-202 Accordingly, the data strongly 

indicate that the less negative standard potential of the cobaltocene/cobaltocenium couple relative 

to the decamethylcobaltocene/decamethylcobaltocenium couple significantly lessens its ability to 

effect a conversion of graphene oxide back towards graphene.  

The data presented here are the first to implicate an explicit dependence of the 

physicochemical properties of the resultant RGO films on the reducing power of a chemical 

reductant. The data clearly suggest that effective reductants do not just remove oxygen-

functionalities but they also must extend conjugation in the films. The presented work does not 

define what precise electrochemical potential is sufficient to do both, but the value appears to be 

somewhere between the standard potentials of cobaltocene and decamethylcobaltocene. Given the 

ability to tune the reducing power of outer-sphere reductants like metallocenes either through 

change in metal center and/or functionalization of the cyclopentadienyl rings,203-205 further 

experiments may more precisely identify if a single threshold potential exists.  

 Reduction of Graphene Oxide by Cobaltocene in the Presence of Acid. The reduction of 

GO films with cobaltocene in the presence of acid was also noticeably different. To be clear, there 
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was no evidence of reduction when GO films were exposed to just acid solutions. Rather, the 

resistance measurements implied the action of acid in the absence of an electron source was to 

lower the film conductivity. In contrast, the conductivity of RGO films reduced with cobaltocene 

in the presence of acid was substantially higher. In fact, the conductivity values extracted from 

four-point probe measurements showed values that were statistically indistinguishable from those 

of RGO films prepared with decamethylcobaltocene. The XP data clearly implicated that the 

presence of acid helped further lower the total oxygen-containing functionalities, most specifically 

the amount of alcohol groups. In addition, the XP data indicated that treatment of GO films with 

cobaltocene and acid also lowered the apparent amount of sp3 carbon (peak 2 in Figure 2.4), 

suggesting a possible change in the carbon lattice itself. The atomic force micrographs support this 

premise, with the most substantial roughening of the films occurring after reaction with 

cobaltocene and acid. The Raman data showed that the spectral features (i.e. peak positions, peak 

widths, relative intensities) of the films treated with cobaltocene & acid were different than those 

for RGO films prepared with just cobaltocene. The Raman spectra indicated that the graphitic 

domain size after treatment with cobaltocene & acid fell in between the values for GO films treated 

with just cobaltocene or just decamethylcobaltocene. However, the overall electrical conductivity 

of these films was equivalent to that of the films reduced with decamethylcobaltocene. This 

observation highlights that the sheet conductivity is likely a function of both the graphitic domain 

size and their interconnectivity. In principle, a material with larger graphitic domains that are 

electrically isolated from each other (e.g. due to selective functionalization at the periphery of the 

domains) could show lower macroscopic conductivity. Accordingly, because of the larger sp2 

carbon content and lower oxygen content in the RGO films produced with cobaltocene & TFA as 

seen in the XP spectra, we posit that the graphitic domains in these films are less ‘insulated’ by 

oxygen functionalities at their boundaries than the graphitic domains in films produced with 

decamethylcobaltocene are. This lower degree of electrical isolation may offset a change in the 

average graphitic domain size in the RGO films produced with cobaltocene & TFA, thereby giving 

these films comparable conductivities to those produced with decamethylcobaltocene. In total, the 

data indicated that the presence of acid increased the reducing power of cobaltocene for effecting 

a transformation of GO but with a mechanism different than reduction by decamethylcobaltocene. 

Control experiments performed in acetonitrile containing trifluoroacetic acid but without 

cobaltocene ruled out any specific action of the acid on graphene oxide alone. Rather, the data 
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support the contention that a distinct chemical species is involved in solutions containing acid and 

cobaltocene. The oxidative protonation of cobaltocene in the presence of acids is known (eq 2.2), 

though the site of protonation (metal center or Cp ligand) is somewhat under debate.188-190  

 

     2.2 

 

Recent electron paramagnetic resonance measurements of decamethylcobaltocene in the presence 

of triflic acid or lutidinium imply protonation of the Cp ligand,190 suggesting this as the source of 

activity as a proton-coupled electron transfer reagent. 

 The mechanism of reduction of GO by this species is not known and cannot be gleaned 

from the presented data. Nevertheless, the presented evidence is clear on several points. Reduction 

of GO by this species is more extensive (i.e. substantially lowers oxygen-containing 

functionalities) than by either metallocene alone while still selective (i.e. does not increase sp3
 

character that would lower conductivity). These features are not common to all metal hydrides. 

For example, LiAlH4, a strong metal hydride reductant, can reduce GO and almost entirely 

eliminate oxygen-containing groups.172 However, the resultant RGO film conductivities are 

substantially lower than other RGO film types,172 suggesting that LiAlH4 also compromises some 

of the aromatic network through reduction of C=C bonds. In contrast, NaBH4, a milder reductant, 

also yields RGO films with much lower conductivities (Table 2.1) but with higher residual oxygen 

content172 presumably because it does not reduce GO as extensively. Accordingly, a putative H-

CoCp2
+ species in aprotic solvents may be an intermediate hydride reductant. If so, it might prove 

useful for selective reductive transformations in organic synthetic chemistry.206 Separate work is 

needed to explore this topic.  

Substrate Material Tolerance. The data clearly illustrate the issues that arise when 

immersion in HI solutions is used to prepare RGO films on sensitive substrates. The corrosion and 

staining issues are clear with non-noble metals and porous substrates, respectively. These 

complication negate the high conductivities afforded by reaction with HI (Table 2.1).121, 158, 207-208 

However, the data presented here demonstrate that metallocene solutions yield comparably 

conductive RGO thin films without incurring any mechanical or chemical damage to the 

underlying substrate. In this way, such outer-sphere redox reagents are quite mild with respect to 

processing considerations while still remaining sufficiently potent reducing reagents.  

++ −→+ 22 CoCpHHCoCp



 48 

 RGO Film Coatings. The conductivities of the RGO films prepared by reduction with 

decamethylcobaltocene and cobaltocene in acid warrant further mention. As detailed in Table 2.1, 

the majority of RGO films produced by wet chemical reductants yield conductivities < 103 S m-1. 

The conductivities for the RGO films prepared here are slightly higher and are close to the highest 

conductivities reported for RGO prepared by any method (wet chemical, thermal, or 

combination).96-97 Chemical reductants that yield more conductive RGO films tend to be species 

that can deliver both electrons and protons. In this manner, the activity of acidic cobaltocene 

solutions shown here is in line with the potency of other metal hydrides for GO reduction.120, 172 

However, decamethylcobaltocene is unique, as it can only deliver electrons. Regarding reductants, 

its closest analog is not molecular but rather the approach to electrochemically reduce GO films 

cast on metallic electrodes.147-148, 150, 155 The data are also clear that the RGO films exhibit 

electrochemical responses for a probe cationic adsorbate that are sensitive to the extent of reduction 

in the films. We posit that the ionic character of GO films are not equally diminished upon 

reduction by all the investigated reducing solutions. More work is needed to determine whether 

the resultant electrical and electrochemical properties are not sensitive to just variations in surface 

chemistry/ordering. The use of other outer-sphere reductants and correlating the resultant 

properties/behaviors of the RGO films may inform on this topic.  

2.5 Conclusions. 

 This work demonstrates that it is possible to reduce graphene oxide thin films by simple 

immersion in non-aqueous solutions containing strongly reducing metallocenes. Cobaltocene and 

decamethylcobaltocene are specifically shown to be active in reducing the number of oxygen-

containing functionalities in and affecting the graphitic domain size of graphene oxide. The data 

also show that decamethylcobaltocene is more effective at reducing graphene oxide, suggesting a 

strong dependence on the standard potential of the reductant. This difference could be offset 

somewhat if cobaltocene was used in conjunction with a proton source during the reduction of GO 

films. These resultant RGO films show similarly high electrical conductivities, on par with films 

prepared by just decamethylcobaltocene. This work motivates further studies on two fronts. From 

a practical point of view, the results demonstrate a simple, effective, and very mild means to 

prepare highly conductive RGO films on any substrate type (insulator, semiconductor, conductor), 

even on substrates that are sensitive to corrosion or impregnation. This work importantly 
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demonstrates reduction of graphene oxide by outer-sphere reductants for the first time, thereby 

highlighting a new way to explore and understand the reduction of graphene oxide materials 

through the tunability of outer-sphere reductants. 
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3.1 Introduction 

In the face of an ever-increasing global energy demand and a looming environmental crisis 

due in part to emissions from carbon-based fuels, electrochemical water splitting is a promising 

method for generating a clean chemical fuel. In electrochemical water splitting, water is converted 

to hydrogen gas (at the cathode) and oxygen gas (at the anode). The hydrogen evolution half-

reaction can be driven at its thermodynamic potential using a platinum electrode, but because of 

platinum’s scarcity and costliness, it is preferable to use other, cheaper electrode materials. Most 

of these materials, however, require significant overpotentials due to unfavorable reaction kinetics 

at the electrode surface. The required overpotential can be lessened by addition of an 

electrocatalyst to the system. To this end, a wide range of proton reduction electrocatalysts have 

been developed. These include solid state materials, such as metal sulfides or oxides38, and 

molecular complexes, like the famous nickel diphosphine catalyst209 among others.32, 210-211 Solid 

state catalysts have the benefit of operating heterogeneously, i.e. immobilized on the electrode 

surface, whereas molecular catalysts are most often homogeneous, i.e. dissolved in the electrolyte 

solution. Heterogeneous catalysis results in far less material waste than homogeneous catalysis. 

Molecular catalysts, however, have the advantage of a well-defined and easily tunable active site. 

It is therefore advantageous to find ways of heterogenizing molecular electrocatalysts, thereby 

combining the benefits of both types of systems. 

Molecular catalysts can be immobilized on electrode surfaces in two ways: through 

physisorption by utilizing attractive van der Waals forces54, 60, 91, 212-213 or by covalent 

attachment.34, 214-216 Physisorption has the benefit of simplicity and ease of execution. One of the 

most common van der Waals forces used for physisorption on surfaces is π- π stacking interactions, 

which can occur between a molecule containing a π-system that can lie flat on a surface and a 

Chapter 3.  Physisorption of a Molecular Proton Reduction Electrocatalyst on Thin 

Graphitic Films 
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surface that also contains a π-system, e.g. graphitic carbon surfaces. The system discussed in this 

chapter utilizes these attractive forces. 

Herein we report on the physisorption of the molecular proton reduction electrocatalyst 

cobalt (III) bis(dichlorobenzenedithiolate) (1) (Figure 1.2) to graphitic thin films on electrode 

surfaces. A set of cobalt bis(benzenedithiolate) proton reduction catalysts has previously been 

studied for their physisorption to graphite-based electrodes69, 217 and electrodeposited reduced 

graphene oxide (RGO) on FTO electrodes.218 Long-term stability during electrolysis in acidic 

conditions was demonstrated on graphite electrodes. Graphite is a low-cost, stable material 

commonly used for inert electrodes. However, to implement this system in photoelectrochemical 

cells for solar driven water-splitting, transparent graphitic thin films are required. To this end we 

report on the adsorption of 1 to three different transparent graphitic thin films: RGO, single layer 

graphene, and multiwalled carbon nanotubes (MWCNT). While it has previously been shown that 

adsorption to an electrodeposited film of RGO on an FTO surface leads to stable attachment,218 

the data presented here suggest that adsorption to dropcast RGO films, graphene, and MWCNT 

films is extremely weak and desorption occurs quickly under turnover conditions. Furthermore, 

casting a film of a proton-conductive polymer on top of the adsorbed catalyst layer does not 

improve retention of the catalyst. The reason for the weak adsorption of catalyst on these surfaces 

is hypothesized to be the ultra-low roughness of the surfaces, preventing any intercalation within 

the film. To support this hypothesis, voltammetry data are presented, which show that increasing 

the roughness of the RGO film does indeed improve catalyst retention. 

3.2 Experimental 

Materials. Trifluoroacetic acid (TFA, 99%, Sigma Aldrich), hydrogen peroxide (30% in H2O, 

Sigma Aldrich), hydrochloric acid (37%, Sigma Aldrich), sulfuric acid (ACS grade, Fisher 

Scientific Education), dimethylformamide (99.8%, Sigma Aldrich), multi-walled carbon 

nanotubes (>98% carbon basis, O.D. × L 6-13 nm × 2.5-20 μm, Sigma Aldrich), Nafion (5% wt. 

in lower aliphatic alcohols and water, Sigma Aldrich), graphite rods (Graphite Machining, Inc. - 

Grade NAC-500 purified, <5 ppm ash level), and potassium permanganate (98%, Acros) were 

used as received. Cobaltocene (Sigma Aldrich) was purified by sublimation at T = 80°C. 

Acetonitrile (99.9%, Fisher Scientific) was distilled and subjected to three freeze-pump-thaw 

cycles before glovebox use; otherwise solvents were used as received. Potassium 

hexafluorophosphate (95%, TCI) was recrystallized from aqueous 0.1 M KOH before use. 
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Graphite flakes (-20+84 mesh, Johnson Matthey) were used as the carbon source for graphene 

oxide suspensions. Single layer graphene on copper (Graphenea) was transferred to the desired 

substrate with thermal tape. Water with a resistivity >18.2 MΩ (Nanopure Barnstead Water 

Purification) was used throughout. 

 Polished Si(111) wafers from Wafer Works doped with As (≤0.006 Ω cm-1) were used as 

substrates for XPS measurements. Glassy carbon substrates were prepared by first polishing with 

alumina (1 μm, 0.3 μm, and 0.05 μm alumina suspensions) on felt and then soaking in isopropanol 

or methanol for 5 minutes. 

Preparation of graphene oxide suspensions. See Chapter 2.2 Experimental for preparation 

of graphene oxide. 

Preparation of RGO films. A small volume of the graphene oxide suspension was removed 

and sonicated for 20 minutes to exfoliate and disperse fully individual graphene oxide sheets. This 

volume was then centrifuged at 9000 rpm for 30 minutes. The brown supernatant was removed 

and diluted to approximately 1 mg mL-1. The diluted suspension was then dropcast onto the 

substrate of choice and allowed to air dry. These films were then reduced by immersion in solutions 

containing 15 mM CoCp2 and15 mM TFA in acetonitrile under a dry N2 atmosphere inside a glove 

box for 30 min at room temperature. Following immersion, the films were removed from the 

glovebox and rinsed with solvent. These films were allowed to air dry under ambient conditions. 

 Preparation of MWCNT films. About 1 mg MWCNTs were suspended in about 2 mL DMF 

and sonicated for ~15 minutes. The suspension was centrifuged briefly to remove large particles. 

The resulting gray colloid was stable for several weeks. This colloid was dropcast on a desired 

surface (about 50 μL per cm2 surface area) and allowed to air dry in ambient conditions. 

Preparation of freeze-dried RGO (fd-RGO) films. Graphene oxide (GO) suspension (about 

0.1 mL of 1 mg/mL suspension cast per 1 cm2 surface area) was dropcast on the desired surface 

and allowed to air dry. A similar sized droplet of GO was then cast on top of this film and the 

sample was immediately immersed in liquid nitrogen. Note that the underlying GO thin film was 

necessary when preparing samples on glassy carbon substrates because the wetting of GO on 

glassy carbon was so poor that the frozen GO droplet tended to easily slide off the substrate. If a 

thin film of GO was first prepared on the glassy carbon, then the frozen GO droplet adhered to the 

surface much more strongly. Immediately after freezing, the sample was then subjected to 

lyophilization. Once dried, the film was light brown and had a soft appearance. The GO was 
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reduced to RGO by cobaltocene following the same procedure as described above for smooth RGO 

films. 

Synthesis of 1. In an inert atmosphere box under N2 pressure (Innovative Technologies), a 

solution of 3,6-dichloro-1,2-benzenedithiol (0.5 g, 2.4 mmol) and sodium methoxide (0.128 g, 2.4 

mmol) was added dropwise to a suspension of cobalt(II) sulfate heptahydrate (0.320 g, 1.14 mmol) 

in 40 mL of dry methanol in a roundbottom flask. The addition caused a color change to deep blue. 

The resultant solution was stirred for 2 hours. A solution of tetrabutylammonium bromide (0.407 

g, 1.2 mmol) in 6 mL dry methanol was added at this time, and the solution was stirred for an 

additional 2 hours. The sealed flask was then removed from the glovebox and the solvent volume 

was reduced under vacuum to <10 mL, resulting in a thick, dark blue slurry. This was filtered and 

dried. The solid was then recrystallized from dichloromethane/ether to yield 1 as a dark blue 

crystalline solid (50% yield). The UV-visible absorption spectrum matched that in the literature.218 

Adsorption of 1 to carbon surfaces and Nafion capping layer. To adsorb 1, all films were 

immersed in a 5 mM solution of 1 in acetonitrile for at least 30 minutes, then removed and rinsed 

gently but thoroughly with acetone. They were then gently dried with a stream of nitrogen. 

To form a capping layer of Nafion, about 50 μL of a Nafion solution per cm2 of surface 

area was dropcast on top of the carbon thin films. The Nafion capping layer was cast after 

adsorbing 1 to the carbon surface. 

Preparation of graphite surface for AFM. Graphite rods were polished with coarse 

sandpaper to expose a fresh surface, then with fine sandpaper, and finally with alumina polish 

(0.05 μm), according to the procedure in Reference 217. The end was then sawed off with a 

diamond saw to make a puck that was placed face-up on the AFM stage. 

X-ray photoelectron spectroscopy. X-ray photoelectron (XP) spectra were acquired with a 

PHI 5400 analyzer using an unmonochromated Al Kα (1486.6 eV) source or a Kratos Axis Ultra 

analyzer using a monochromated Al Kα (1486.6 eV) source. Spectra recorded on the PHI 

instrument were taken without charge neutralization at a base pressure of <2.5×10-9 Torr. A 6 mA 

emission current and 10 kV anode HT was used. High-resolution XP spectra were recorded at a 

pass energy of 23.5 eV. Each C1s spectrum collected is an average of 20 high resolution scans and 

each other element spectrum collected is an average of 50 high resolution scans. 
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Spectra recorded on the Kratos instrument were taken with charge neutralization at a base 

pressure of <2.5 x 10-9 Torr. An 8 mA emission current and 14 kV anode HT were used. Each 

high-resolution spectrum taken was an average of 10 scans at a pass energy of 20 eV. 

All spectra were calibrated to the C1s peak at 284.6 eV. 

 Electrochemical measurements. Electrochemical measurements were taken using a CH 

Instruments 760C potentiostat. A three-electrode cell was used with a supporting electrolyte of 

deaerated 0.1 M potassium hexafluorophosphate and various concentrations of trifluoroacetic acid 

in water. Platinum mesh was used as the counter electrode and Ag|AgCl (sat’d KCl) (in a 

compartment separated by a glass frit) was used as the reference electrode. RGO, MWCNT, and 

single layer graphene films were cast or transferred, respectively, on glassy carbon disk electrodes 

with a diameter of 3 mm. The fd-RGO films were cast on square plates of glassy carbon which 

were then compressed in an o-ring cell for electrochemical analysis. The region of exposed 

electrode in this cell was 4.47 mm in diameter. 

 Atomic force microscopy. AFM was conducted on an Anasys Instruments NanoIR2. 

Images were taken with 300 pt resolution in both x and y directions. Images of RGO thin films 

and polymer coated films were taken at 1 Hz in contact mode. Images of fd-RGO films were taken 

at 0.5 Hz in tapping mode. 

 Fourier transform infrared spectroscopy. FTIR spectroscopy was performed on a Thermo 

Scientific Nicolet iS50 instrument with an ATR diamond crystal attachment. Graphene oxide 

suspensions were dropcast on the ATR crystal and allowed to air dry for several minutes before 

obtaining a spectrum. 

 Scanning electron microscopy. SEM images were taken on a Zeiss LEO 1455VP 

microscope under 5 kV accelerating voltage and 10 pA beam current. 

 

3.3 Results 

Adsorption to surfaces. Figure 3.1 shows the Co 2p XP spectra of the three types of carbon 

thin films (excluding freeze-dried (fd)-RGO) after soaking in a 5 mM solution of 1. The strong Co 

2p signal indicates adsorption of 1 to all surfaces. It should be noted that the spectrum of RGO/1 

was taken on an instrument lacking a monochromator whereas the spectra of graphene/1 and 

MWCNT/1 were taken on an instrument with a monochromated x-ray source. This is the reason 

for the difference in peak widths and signal-to-noise ratio among the three spectra. There is a 



 55 

distinct shift in the binding energy of the cobalt signal among the three materials. The Co 2p3/2 

peaks of graphene/1 and MWCNT/1 occur at a binding energy of approximately 779.4 eV and 

780.0 eV, respectively, whereas the same peak occurs at significantly higher energy, 781.8 eV, for 

RGO/1. Furthermore, a second peak appears in the RGO/1 spectrum at around 787 eV. 

 

Figure 3.1 Co 2p XP spectra of RGO (blue), MWCNT (red), and graphene (black) after soaking 

in a 5 mM solution of 1.  

 

Voltammetry with acid titrations. Figure 3.2 shows the voltammetry of each type of carbon 

surface with 1 adsorbed, with and without a Nafion film, and with varied trifluoroacetic acid 

concentrations (up to at least 4 mM). Two observations from this voltammetry can be made. The 

first is that for RGO/1, graphene/1, and MWCNT/1 by at least 8 mM acid the catalytic peak begins 

to disappear and shift to more negative values. This trend is not observed for fd-RGO/1. In this 

case, the catalytic peak is stable up to 8 mM acid concentrations. Further experiments with fd-

RGO/1 in 10 mM and 50 mM acid concentrations showed stability over many cycles (Figure 3.3). 

Secondly, for each carbon thin film material (RGO, graphene, and MWCNT), the onset of catalytic 

current occurs at a more positive potential with a Nafion capping layer than without Nafion. The 

dashed gray lines are guides for the eye to show the shift in onset potential between films with 

Nafion and films without Nafion. Notably, the current densities at 2 mM acid (before catalysis 

starts to drop off) are approximately the same for all materials. 
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Figure 3.2 Cyclic voltammetry of various graphitic thin films after soaking in a 5 mM solution of 

1 in acetonitrile for >1 hr with (top) and without (bottom) a Nafion capping layer. Supporting 

electrolyte was deaerated 0.1 M KPF6 (black), with 2 mM TFA (red), 4 mM TFA (blue), 6 mM 

TFA (green), or 8 mM TFA (orange). The dashed black curves are graphitic surfaces with no 1 

adsorbed in 8 mM TFA. The vertical dashed lines are guides for the eye to show shift in onset of 

current with a Nafion capping layer. The scan rate was 50 mV/s. 

 

 

Figure 3.3 Repeated voltammetric cycling of an fd-RGO film that had been soaked in a 5 mM 

solution of 1 in acetonitrile for > 1hr. Supporting electrolyte was deaerated 0.1 M KPF6 with 10 

mM TFA (left) and 50 mM TFA (right). The scan rate was 50 mV/s. 

 

Atomic Force Microscopy. To help explain the poor retention of 1 on RGO, graphene, and 

MWCNT in comparison to strong adsorption on fd-RGO and on graphite electrodes as reported 

earlier,217 AFM images of RGO, graphite, and fd-RGO were taken. These images as well as 
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macroscopic photographs are shown in Figure 3.4. The images show no distinct differences in 

features between RGO and graphite; however, the calculated roughness of graphite (104 nm) is an 

order of magnitude larger than that of RGO (12 nm). The image of fd-RGO suggests a different 

morphology than either graphite or RGO. The surface appears to be a network or web of graphitic 

carbon. This can be seen more clearly by SEM (Figure 3.5). The roughness of fd-RGO (262 nm) 

is even higher than that of graphite. 

 

Figure 3.4 Atomic force micrographs (left) and optical photographs (right) of a dropcasted GO 

thin film (top), a polished graphite rod (middle), and a freeze-dried GO film (bottom). The RMS 

roughness values calculated for each of these materials are 12 nm for GO, 104 nm for graphite, 

and 262 nm for fd-RGO. 

 

 

Figure 3.5 Scanning electron micrographs of a freeze-dried GO film on a silicon wafer. Cross 

section view is on the left. The middle and right images are top down views at different 

magnifications.  



 58 

 

AFM images were also taken of Nafion thin films in the hopes of elucidating why catalytic 

current decays so quickly even with a Nafion capping layer. These images can be seen in Figure 

3.6. Nafion films on a degreased silicon wafer were smooth with very few features. There are 

occasional small circular indents in the film, a few hundreds of nanometers in diameter and less 

than 10 nm in depth. These could be attributed to holes in the film from nanoscopic bubbles formed 

in the solution as it dried. However, this changed dramatically when Nafion films were cast on 

carbon surfaces. On all three surface types, the Nafion film appear to have holes larger than 1 μm 

in diameter and over 100 nm deep. These are the most pronounced on MWCNT and the least 

pronounced on graphene. 

 

 

Figure 3.6 AFM images of Nafion thin films cast on a silicon wafer, an RGO film, single layer 

graphene, and a MWCNT film. The insets are the height profiles along the red line in each 

image. 
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3.4 Discussion 

It has previously been demonstrated by our laboratory that the proton reduction catalyst 1 

adsorbs to graphite electrodes and remains adsorbed and catalytically active for several hours of 

electrolysis in solutions with a pH as low as 0.3.69, 217 The data in this chapter suggest that 1 can 

also be adsorbed to a variety of carbon thin films, namely reduced graphene oxide, single-layer 

graphene, and multi-walled carbon nanotubes. However, desorption from these surfaces under 

turnover conditions in acidic media is rapid. Correlation between surface roughness of these 

materials and stability of the catalytic current suggests that intercalation within the graphitic 

material plays a crucial role in retaining 1 during turnover. 

 

Adsorption of 1 to carbon surfaces. XPS data in Figure 3.1 demonstrate that adsorption of 

1 occurs on all three thin film materials, but the binding energy of the Co 2p orbitals is not identical 

for each type of surface. The Co 2p signal of 1 on RGO appears at about 2.4 eV higher in energy 

than on graphene and about 1.8 eV higher than on MWCNT. In previously reported systems of 

coordination complexes adsorbed to graphene, a shift in binding energy of the metal center has 

been observed, but the shifts were to lower binding energy (compared to the free complexes).219-

220  The large oxygen content of RGO compared to graphene and MWCNT may cause the shift to 

higher binding energy of the Co center in 1. The large oxygen content of RGO makes it more 

electron-withdrawing, effectively raising the binding energy of all orbitals on 1. This hypothesis 

should be confirmed with further experiments, however, such as XAS measurements. 

Additionally, the second peak at about 787 eV in the Co 2p spectrum of RGO/1 suggests the 

presence of two different cobalt environments on RGO. To compare this spectrum with that in the 

literature, in reports by Eady et al., the spectrum of 1 on electrodeposited RGO also contains two 

cobalt peaks in the 2p region whereas the spectrum of 1 on graphite powder has only a single 

peak.217-218 It is unclear at this point what the additional cobalt peak on RGO substrates represents 

and additional experiments are required to determine its origin. However, one possible explanation 

is that the cobalt center of 1 can coordinate to one of the oxygen groups on RGO. This may also 

explain the large shift in binding energy of the main Co 2p peak. Further XPS experiments should 

be conducted using RGO at various stages of reduction to determine whether the oxygen functional 

groups on RGO influence either of the Co 2p peaks (at 787 eV and at 781.8 eV). These spectra 

can also be compared with the spectra of cobalt species in the literature and deconvoluted by fitting 
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with multiple peaks to help determine what types of bonding environments or oxidation states of 

cobalt are present. Finally, it should be determined whether the presence of the additional cobalt 

environment on RGO influences the electrochemistry and electrocatalysis of 1. 

Adherence of adsorbed 1 to surfaces under catalytic turnover. All four carbon thin films 

with 1 adsorbed show catalysis in acidic conditions (Figure 3.2). Unfortunately, however, in three 

of the cases the catalysis is not long-lived. Upon repeated cycling and addition of acid, the catalytic 

peak becomes less prominent and shifts to more negative potentials for RGO/1, graphene/1, and 

MWCNT/1. This is indicative of loss of catalyst from the surface. It is apparent from these data, 

then, that while 1 readily adsorbs to all of these surfaces initially, it becomes weakly adsorbed on 

RGO, graphene, and MWCNT during catalytic turnover or in acidic conditions. In the case of fd-

RGO/1, on the other hand, the catalytic current is stable over the course of the acid titration 

experiment. Furthermore, repeated cycling of fd-RGO/1 in 10 mM TFA and 50 mM TFA showed 

little change in the shape of the voltammograms, suggesting 1 does not readily desorb from this 

surface. 

In the previously published graphite system, XPS coupled with sputtering experiments 

suggested that 1 was not only physisorbed to the surface of the graphite but also intercalated up to 

about 40 nm deep into the material.217 We therefore hypothesize that though initial adsorption of 

1 to carbon surfaces occurs because of π- π interactions, these interactions alone are not strong 

enough to retain 1 during catalytic turnover. One possible explanation for this is that upon 

reduction, 1 becomes more negatively charged and this causes a repulsive force with the surface 

that competes with the π- π attractive forces. Another possibility is that a contortion about the Co 

center may occur during catalysis and this would cause a weakening of the π- π interactions. This 

could be tested using EXAFS experiments. In any case, we hypothesize that intercalation within 

the graphite electrode dramatically improves retention of 1 under turnover conditions, and that 

intercalation is not possible on smooth RGO, graphene, and MWCNT thin films.  

To support this hypothesis, AFM images were taken of a polished graphite rod (prepared 

in the same way as Reference 217), an RGO thin film, and a fd-RGO film. Chemically and 

structurally, graphite and RGO are nearly identical. Both are made up of overlapping sheets of 

partially oxidized aromatic carbon. However, from the AFM images in Figure 3.4, it is apparent 

that the microscopic morphologies of the surfaces are very different. The average roughness of the 

graphite surface is about an order of magnitude larger than that of RGO and the roughness of fd-
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RGO is about twice that of graphite. These data support the hypothesis described above because it 

suggests that the rougher graphite and fd-RGO surfaces are more porous and likely expose more 

edges of the graphitic sheets, allowing access for 1 to diffuse into the material. RGO thin films, on 

the other hand, display an extremely smooth surface, suggesting that the majority of the graphitic 

sheets lie flat on the surface, limiting the number of exposed edges and access sites for intercalation 

of 1. An exception may be the RGO published in Reference 218, on which catalyst adsorption was 

stable under turnover conditions in up to 2 mM acid. This is a lower acid concentration than that 

used here, but this RGO was also likely rougher than the RGO used here as a result of the 

deposition method. The RGO in this thesis was dropcast from a colloidal suspension of GO onto 

smooth glassy carbon surfaces, whereas the RGO in Reference 218 was electrodeposited on an 

FTO electrode from a slurry of GO. Both the rougher FTO surface and the electrodeposition 

method are likely to produce rougher RGO films that are capable of intercalating 1. 

This effect can also explain why retention of 1 on graphene and MWCNT was minimal. 

Graphene is an atomically smooth surface and has no layers that could allow intercalation. 

MWCNT films are rougher than graphene; however, these films do not have the stacked sheets 

structure that graphite and RGO have. Instead a MWCNT film is made up of a web of smooth 

tubes, which may not facilitate trapping of 1. 

Further experiments to confirm the hypothesis that intercalation plays a role in catalyst 

retention should be conducted. XPS experiments coupled with ion sputtering can identify whether 

1 intercalates within RGO films. These experiments have previously been conducted on graphite 

electrodes and have shown that 1 does intercalate several tens of nanometers into the material.217 

As an attempt to improve retention of 1 on the smooth carbon films where intercalation 

may not be possible, Nafion films were cast onto the surfaces after 1 had been adsorbed. Nafion is 

a proton-conducting polymer and should allow protons from the bulk solution access to 1 at the 

electrode surface while preventing 1 from diffusing away from the electrode into solution. 

Unfortunately, however, the retention of 1 on all carbon surfaces with the addition of Nafion is not 

significantly different than without Nafion. In all cases catalytic current begins to drop off around 

8 mM acid concentration (Figure 3.2). In the case of graphene/1, however, the Nafion appears to 

keep the catalyst on the surface for longer than without Nafion. On a bare graphene/1 surface, the 

current in 4 mM acid is only marginally higher than in 2 mM acid, whereas with Nafion, catalytic 

current appears to increase with addition of acid until the acid concentration is 8 mM. It is worth 
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noting that when a Nafion film is present on any of the three electrode surface types, the onset of 

current occurs at more positive potentials compared to electrodes without Nafion. The reason for 

this is still unknown but hypothesized to be due to a different local pH at catalytic sites in a Nafion 

matrix because of the acidic nature of Nafion itself. A poly-2-vinylpyridine (an electron 

conducting polymer) thin film cast on each of these surfaces demonstrated a similarly poor ability 

to prevent 1 from desorbing. 

In order to understand the weak retention of 1 with a Nafion capping layer, AFM images 

of Nafion films are shown in Figure 3.6. On all three carbon thin films, the Nafion layer contains 

large, circular holes, up to 2 μm in diameter and 150 nm deep. Because of the highly symmetric 

shape of the holes, they are attributed to air bubble formation in the Nafion solution as it dries into 

a film. Because graphitic surfaces are generally more hydrophobic than silicon surfaces that have 

been etched with O2 plasma, we predict that the alcohol/water solution of Nafion wets graphitic 

materials more poorly and therefore is more likely to trap large air bubbles than when dropcast 

onto a plasma-etched silicon surface. 

3.5 Conclusions 

In this work a molecular proton reduction electrocatalyst (1) was immobilized on graphitic 

carbon electrodes through π- π interactions. The graphitic surfaces studied here are reduced 

graphene oxide (RGO) thin films, single-layer graphene, and multiwalled carbon nanotube 

(MWCNT) thin films. This work complements previous reports on the adsorption of 1 on graphite 

rod electrodes and RGO thin films on FTO-coated glass electrodes.69, 217-218 X-ray photoelectron 

spectroscopy demonstrates that 1 spontaneously adsorbs to the three types of graphitic surfaces, 

but with a difference in binding energy. In particular, two different cobalt binding energies are 

observed on RGO, which is consistent with previous reports.218 Further experiments are necessary 

to understand this phenomenon. Electrochemical data show fast desorption from the surfaces under 

turnover conditions, but retention of the catalyst under turnover is dramatically improved when a 

rough RGO film is used (freeze-dried RGO) instead of a smooth dropcasted film. Based on these 

data and the previous reports of long-term retention on graphite electrodes, we hypothesize that 

intercalation within the graphitic structure plays a crucial role in immobilizing 1 on these carbon 

materials.  

Physisorption on carbon surfaces is a facile, cost-effective method for immobilizing 

molecular catalysts on electrode surfaces. In particular, the catalyst in this report requires no 
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synthetic modifications in order to physisorb through π-stacking on a graphitic surface; and 

graphitic thin films, particularly RGO, are easily and cheaply fabricated. This system demonstrates 

a cost-effective approach toward heterogenizing molecular electrocatalysts. Future work should 

be directed toward fabricating transparent RGO thin films with sufficient roughness to retain 

adsorbed 1 during electrolysis. This might be achieved, for example, by dropcasting GO on a pre-

roughened surface or by roughening the GO film after dropcasting (e.g. with a laser-cutter). 

 Future experiments. First, as mentioned above, the nature of the catalyst adsorbed to each 

graphitic surface should be identified. The chemical state of the catalyst can be determined using 

x-ray photoelectron and x-ray absorption spectroscopies. One hypothesis described in the previous 

section states that 1 may coordinate to oxygen functional groups on partially oxidized graphitic 

surfaces (i.e. RGO and polished graphite) in addition to π-stacking with the graphitic network. 

This hypothesis can be supported by adsorbing 1 to RGO containing varying quantities of oxygen 

functional groups and monitoring the binding energy in XPS and the coordination number and 

structure by XANES and EXAFS. Furthermore, it can be shown whether 1 intercalates within 

these graphitic materials by using XPS coupled with sputtering experiments. 

Next, the stabilities of the systems described in this chapter should be quantified. 

Specifically, the rate of desorption of the catalyst from each type of surface should be quantified 

in different pH levels. This can be done by performing bulk electrolysis coupled with XPS 

measurements. For example, electrodes with adsorbed 1 should be held at a specific potential in a 

solution with a defined pH for various lengths of time. XPS before and after the electrolysis 

experiment can determine how much catalyst has been lost from the surface. In XP spectra of these 

surfaces, the total amount of catalyst cannot be quantified, but by taking the ratio of Co 2p to C 1s 

intensity, the relative amount of catalyst can be determined.  
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Paper in preparation. 

 

4.1 Introduction 

Previous studies have investigated kinetic parameters of electrocatalytic thin films that 

undergo simple outer-sphere, one-electron transfers.221-224 Most of these studies include 

electrocatalytic polymers, such as the polyvinylpyridine electrode coatings that incorporate IrCl6
2- 

and RuII(edta) complexes described by Oyama and Anson225 or the poly[Ru(vbpy)3]
2+ films 

described by Ikeda, et al.226 among others.227-230 These systems undergo one-electron transfers 

with metal complexes in solution. Through this work, methods have been developed for 

determining rate limiting factors in electrocatalytic thin films, and numerical values for parameters 

such as substrate diffusion and electron diffusion within a film were derived. 

In addition to these, many reports have described the kinetics of more complex 

electrocatalytic reactions. These include the oxidation of formaldehyde at a porphyrin-based 

polymer on graphite,231 reduction of CO2 using a surface-bound Re polymer,232 reduction of O2 at 

Pt nanoparticles dispersed in a polyaniline film,233 reduction of CO2 using cobalt sites coordinated 

in a polymer on graphite electrodes,234-235 and others.236-238 Fewer reports, however, have 

investigated the kinetics of electrocatalytic proton reduction in electrocatalytic films.239-242 This 

area warrants further study as the proton reduction half reaction is relevant in electrochemical 

energy conversion and storage. Understanding electrocatalytic generation of hydrogen in thin films 

on electrode surfaces is crucial in developing efficient water splitting systems. 

Reduced graphene oxide (RGO) thin films, as described in Chapter 2, are an ideal platform 

in which to load electrocatalysts. RGO is made up of small sheets (nanometer to microns in 

diameter) of partially oxidized graphene. Because RGO is fabricated from a solution-processable 

precursor (graphene oxide), it can be cast as a thin film with controllable thickness. Furthermore, 

RGO thin films can easily be loaded with an electrocatalyst by simple adsorption, as shown in 

Chapter 4. Reduced Graphene Oxide Thin Films Embedded with a Molecular Catalyst: 

Kinetic Considerations 
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Chapter 3. While RGO has been commonly used as a support for electrocatalysts,217-218, 243-246 

studies on the fundamental kinetics of electrocatalyst-embedded RGO films are extremely rare. 

One relevant example, by Huang and coworkers, determined kinetic parameters through cyclic 

voltammetry and electrochemical impedance spectroscopy of a film formed by alternating RGO 

sheets and layers of a cobalt porphyrin proton reduction electrocatalyst.247 This study, however, 

assumed the electrocatalytic reaction itself was rate-limiting. This chapter takes an alternative 

viewpoint: limitations on electrocatalytic current by diffusion and/or electron transport within the 

film cannot be ruled out a priori. Because the structure of RGO films is significantly different than 

that of polymer or metal oxide films, rates of electron transport and substrate diffusion within the 

film are likely also different. It is therefore necessary to identify and understand rate limiting 

behaviors in electrocatalytic RGO films. 

Herein we report kinetic details of proton reduction by the molecular catalyst 1 (highlighted 

in Chapter 3) when embedded within an RGO thin film. Catalyst 1 was chosen because of its high 

catalytic activity for proton reduction, and because its ability to π-stack on graphitic surfaces 

should decrease the likelihood of diffusing out of the RGO film.69, 217-218, 248 Graphene oxide films 

embedded with 1 were dropcasted on glassy carbon electrodes and reduced electrochemically to 

RGO. Thickness of the films and catalyst density within the films were controlled by manipulating 

the volume and concentration of the GO-catalyst casting solution. 

Figure 4.1 describes the processes that occur within these thin films during electrocatalysis. 

In these RGO films, cobalt catalyst is distributed throughout the film and is symbolized as Co(III) 

in Figure 4.1, as this is the cobalt oxidation state of 1 under ambient conditions. To initiate 

catalysis, the cobalt center is reduced by two electrons to Co(I). This form of the catalyst then 

converts protons within the film to hydrogen molecules. The rate constant of this reaction (k), the 

diffusion of protons into the film from the bulk solution (DH+), and the diffusion of hydrogen 

molecules out of the film to the bulk solution (DH2) each may be a kinetic limit on the obtainable 

current. Additionally, the movement of electrons, here defined as the diffusion of electrons through 

the film (De), may also limit the current. 

 The intent of the study was to identify operating conditions that maximize the 

electrocatalytic current and turnover frequency by identifying which of the processes in Figure 4.1 

primarily limit the current. Based on cyclic voltammetry measurements, it was determined that 

below a certain thickness, current is primarily limited by slow diffusion of hydrogen out of the 
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film. Above this thickness, the current is limited by a convolution of hydrogen diffusion and 

electronic resistivity of the RGO. An optimal film thickness was determined to be between 200 

and 500 nm. Future experiments are delineated that will identify the optimal catalyst density. 

 

 

Figure 4.1 Diagram showing the processes that occur within a thin film on an electrode surface 

during electrocatalysis. The symbols are as follows: k is the rate constant for the catalytic reaction; 

DH+ is the diffusion coefficient of protons within the film; DH2 is the diffusion coefficient of 

hydrogen within the film; De is the diffusion coefficient of electrons within the film; Co(III) is 

oxidized form of the catalyst; Co(II) is the reduced form of the catalyst after one electron transfer. 

 

4.2 Experimental 

Materials. Sodium phosphate dibasic, phosphoric acid, trifluoroacetic acid (TFA, 99%, 

Sigma Aldrich), potassium permanganate (98%, Acros), sulfuric acid (ACS grade, Fisher 

Scientific Education), and hydrogen peroxide (30% in H2O, Sigma Aldrich) were used as received. 

Potassium hexafluorophosphate (95%, TCI) was recrystallized from aqueous 0.1 M KOH before 

use. Graphite flakes (-20+84 mesh, Johnson Matthey) were used as the carbon source for graphene 

oxide suspensions. Water with a resistivity >18.2 MΩ (Nanopure Barnstead Water Purification) 

was used throughout. Glassy carbon electrodes (3 mm diameter disk electrodes, CH Instruments) 

were prepared by polishing with alumina (1 μm, 0.3 μm, and 0.05 μm alumina suspensions) on felt 
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and rinsing with water. Polished Si(111) wafers from Wafer Works doped with As (≤0.006 Ω cm-

1) were used as substrates for AFM imaging. 

Preparation of graphene oxide suspensions. See Chapter 2.2 Experimental for details on 

preparing graphene oxide. 

Synthesis of 1. In an inert atmosphere box under N2 pressure (Innovative Technologies), a 

solution of 3,6-dichloro-1,2-benzenedithiol (0.5 g, 2.4 mmol) and sodium methoxide (0.128 g, 2.4 

mmol) was added dropwise to a suspension of cobalt(II) sulfate heptahydrate (0.320 g, 1.14 mmol) 

in 40 mL of dry methanol in a roundbottom flask. The addition caused a color change to deep blue. 

The resultant solution was stirred for 2 hours. A solution of tetrabutylammonium bromide (0.407 

g, 1.2 mmol) in 6 mL dry methanol was added at this time, and the solution was stirred for an 

additional 2 hours. The sealed flask was then removed from the glovebox and the solvent volume 

was reduced under vacuum to <10 mL, resulting in a thick, dark blue slurry. This was filtered and 

dried. The solid was then recrystallized from dichloromethane/ether to yield 1 as a dark blue 

crystalline solid (50% yield). The UV-visible absorption spectrum matched that in the literature.218 

Preparation of RGO and catalyst-embedded RGO thin films. A small volume of the 

graphene oxide suspension was removed and sonicated for 20 minutes to exfoliate and disperse 

fully individual graphene oxide sheets. This volume was then centrifuged at 9000 rpm for 30 

minutes. The brown supernatant was removed. Its concentration was approximately 2 mg mL-1. 

This suspension was combined with a defined volume of a solution of 1 in acetonitrile or with the 

same volume of clean acetonitrile and then dropcasted on a glassy carbon surface and allowed to 

air dry. The thickness of the film was controlled by controlling both the volume and the 

concentration of the dropcasted suspension. The films were reduced to RGO electrochemically by 

cycling between open circuit potential and -1 V ten times in the same pH 2 electrolyte solution 

used for electrochemical measurements. 

Electrochemical measurements. Electrochemical measurements were taken using a CH 

Instruments 760C potentiostat. A three-electrode cell was used with a graphite rod as the counter 

electrode and Ag|AgCl (sat’d KCl) (in a compartment separated by a glass frit) as the reference 

electrode. All potentials are referenced to Ag|AgCl (sat’d KCl). For measurements taken in a non-

buffered solution, the electrolyte was deaerated 0.1 M KPF6 with trifluoroacetic acid (pH 2). For 

measurements taken in a buffered solution a deaerated pH 2 phosphate buffer of approximately 

0.2 M concentration (prepared from sodium phosphate dibasic and phosphoric acid) was used. All 
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voltammetry presented in this chapter was background subtracted by averaging four 

voltammograms of RGO films containing no catalyst and subtracting this averaged data from the 

voltammetry of the RGO film with catalyst of the same thickness. The data points in the current 

and TOF versus thickness plots are averages of four background-subtracted voltammograms. 

Atomic Force Microscopy. Film thickness was measured by dropcasting a 3-mm diameter 

droplet of the appropriate volume and concentration of graphene oxide on a degreased polished 

silicon wafer. After drying, a clean syringe needle was used to gently score the film in several 

places to create a step edge. A Veemco Dimension Icon Atomic Force Microscope in contact mode 

was used to collect images. A sample image is shown in Figure 4.2. The thickness was estimated 

by measuring the height along the dotted blue line and averaging vertically between the two dotted 

white lines. At least three regions on between one and three different samples for each film 

thickness were measured and averaged. The error bars for these thicknesses are the standard 

deviation of these averages. 

Optical Profilometry. An Olympus LEXT OLS4100 laser scanning digital microscope was 

used to measure the thickness of the thickest film. One region on a single film was measured and 

averaged over 50 μm. The error bar for this data point is based on the precision of the instrument 

(10 nm) rather than the average of discrete samples (in contrast to the data points based on AFM 

measurements). 

 

Figure 4.2 (Left) Representative AFM image of an edge site on a 200 ± 100 nm film. The film 

thickness was measured in this region by taking a profile across the blue dashed line and 

averaging vertically between the two horizontal white dashed lines. This averaged profile is 

shown on the right. 
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4.3 Results 

 

Figure 4.3 Background subtracted linear sweep voltammetry of a series of film thicknesses with 

a catalyst density of 2x10-4 mol catalyst per cm3 of RGO. The supporting electrolyte was a 

deaerated ~0.2 M phosphate buffer at pH 2. Scan rate was 10 mV s-1.  

 

Figure 4.3 shows background-subtracted linear sweep voltammograms of a series of 

RGO/1 films of various thicknesses in a pH 2 buffer. The volumetric density of 1 within these 

films was kept constant (about 2x10-4 mol catalyst per cm3 of RGO), meaning thicker films contain 

more catalyst than thinner films. The voltammogram for each film begins to rise just negative of -

0.6 V. For the thinner films, the current appears to reach a plateau at negative potentials, around -

0.9 V. The thicker films do not reach a plateau within this potential window. At a given potential 

within this window, the current for each film increases with increasing film thickness (i.e. 

increasing total loading of 1). The current and turnover frequencies from these voltammograms 

are plotted versus film thickness in Figure 4.4. Figure 4.4a plots the current at the relatively low 

potential of -0.95 V, where current is high. Unfortunately, because of the low quantities of catalyst 

within the films, the E1/2 of 1 was not determined. Previous studies on this catalyst in solution248 

and adsorbed to graphite electrodes217 report the E1/2 as -0.46 and -0.65 V, respectively, vs 

Ag|AgCl at pH 7. The data in Figures 4.4a and 4.4b were taken at -300 mV overpotential with 

respect to the E1/2 of the catalyst on a graphite electrode. At this potential, the current continually 

rises as thickness increases. If a point at the origin is considered in addition to the data shown (at 

0 nm film thickness, the current should be 0 mA) then the current appears to steeply increase at 
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lower film thicknesses and begins to reach a plateau with thicker films. This trend is consistent 

with what has been seen in the literature. For example, simulated cyclic voltammograms by C. 

Costentin and J.-M. Saveant under conditions where the solvent is the substrate for electrocatalysis 

showed plateaued currents as film thickness increased.222 It should be noted that the data point 

corresponding to a 600 nm film does not follow a clear trend with the other data points and should 

probably be re-measured. In Figure 4.4b, the turnover frequency (TOF) calculated from the 

voltammograms at -0.95 V is plotted. TOF values at this potential decrease as film thickness 

increases, leveling off around 7 s-1.  

Figure 4.4c plots the current at a potential closer to the onset of catalysis, -0.67 V, 

approximately 20 mV negative of the reported E1/2 for 1 on graphite electrodes at pH 7. At this 

potential current is very low, so the effects of product (H2) buildup within the film should be 

minimal. The shape of the current versus thickness curve is similar to that at -0.95 V. Interestingly, 

however, the shape of the TOF versus thickness curve (Figure 4.3d) is quite different. TOF 

increases with increasing film thickness, reaching a maximum around 200 ± 100 nm and then 

decreasing. 

To further determine limiting factors on current, a series of films of varied thickness with 

a constant amount of catalyst (1.7 ± 0.2 x10-10 moles) were prepared. Figure 4.5 shows a set of 

 
Figure 4.4 Plotted current and TOF versus film thickness from background-subtracted 

voltammetry in Figure 4.3. (a) Current at -0.95 V. (b) TOF at -0.95 V. (c) Current at -0.67 V. (d) 

TOF at -0.67 V. The data point corresponding to a 600 nm film does not follow a clear trend 

with the other data points and should probably be re-measured. 



 71 

 

  

Figure 4.5 Background subtracted linear sweep voltammetry of a series of film thicknesses with 

1.7 ± 0.2 x10-10 mole catalyst in each film. The supporting electrolyte was a deaerated ~0.2 M 

phosphate buffer at pH 2. Scan rate was 10 mV s-1. 

 
Figure 4.6 Plotted current (a) and TOF (b) versus film thickness from the background-subtracted 

voltammetry in Figure 4.5. 

 

voltammograms from this series of films. It is obvious that the same trend as Figure 4.3 is not seen 

here – the current does not trend upward with film thickness. Figure 4.6 plots the current at -0.95 

V versus film thickness and Figure 4.6b plots the TOF at this potential. Current and TOF increase 
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with increasing film thickness up to between 200 and 600 nm where it then begins to drop off. 

Interestingly, this is a similar trend that is seen with TOF in Figure 4.4d. 

 Figure 4.7 shows cyclic voltammograms of two electrodes containing layered films. One 

electrode was prepared by dropcasting a 600 ± 300 nm film containing 1.7 ± 0.2 x10-10 moles of 

catalyst, and after drying, a second 600 ± 300 nm film with no catalyst was cast on top. The 

voltammogram for this electrode is in black. The other electrode was prepared in a reverse order: 

a 600 ± 300 nm film with no catalyst was first cast and dried and then a 600 ± 300 nm film 

containing 1.7 ± 0.2 x10-10 moles of catalyst was cast on top. The voltammogram for this electrode 

is in red. Both voltammograms reach similar currents. In comparison, in blue is the voltammogram 

of the 600 ± 300 nm film with 1.7x10-10 moles of catalyst taken from Figure 4.5. This film reaches 

a much higher current than either of the layered films. 

 

Figure 4.7 Background subtracted linear sweep voltammetry of three catalyst containing films. In 

blue is the voltammogram from Figure 4.5 (the 600 ± 300 nm film containing 1.7 ± 0.2 x10-10 mol 

catalyst). In black and red are voltammograms from similar films but with an additional 600 ± 300 

nm RGO film cast on top of and below, respectively, the catalyst-containing film. Supporting 

electrolyte was a deaerated ~0.2 M phosphate buffer at pH 2. Scan rate was 10 mV s-1. 

 

4.4 Discussion 

From the data described above we conclude that electrocatalytic proton reduction in RGO 

films embedded with the catalyst 1 is limited by both product buildup within the film (i.e. H2 
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diffusion) and electronic conductivity of the films. For thinner films (below about 500 nm), 

hydrogen diffusion out of the film is the limiting factor, and for films thicker than about 500 nm, 

current is limited by a convolution of both hydrogen diffusion and electronic conductivity of the 

films. 

The data in Figures 4.4a and 4.4b demonstrate two things. First, both substrate and 

electrons can penetrate the film (i.e. more than just the surface layer of catalyst is active). This is 

evidenced by the increase in current with thicker films. Second, film thickness plays a role in 

limiting the rate of catalysis. This is apparent because of the plateau that the current reaches with 

thicker films and because of the decrease in TOF as film thickness increases. Therefore, current is 

likely not limited by the electrocatalytic rate constant and is instead limited by one of three things 

related to film thickness: proton diffusion into the film, electronic conductivity of the film, or 

hydrogen diffusion out of the film. 

C. Costentin and J.-M. Savéant published three papers on the use of cyclic voltammetry to 

analyze kinetics of electrocatalytic thin films.222-224 In these reports voltammetry is simulated 

under several assumptions. One, the catalytic reaction is an outer-sphere, one-electron transfer 

between a catalytic site within the film and a dissolved species than can penetrate the film. Two, 

the catalyst is homogeneous throughout the film, meaning every catalyst site operates by the same 

mechanism and at the same electrochemical potential and there is a uniform distribution of catalyst 

throughout the film. Three, the electrode surface is not active for electrocatalysis in the reported 

potential range (in other words, the only redox chemistry that occurs is electrocatalysis at catalytic 

sites and self-exchange between adjacent catalyst sites). Four, electron conduction within the film 

operates by a hopping mechanism and can therefore be described by Fick’s laws of diffusion. The 

authors also assume that only three factors can affect electrocatalytic current: substrate diffusion, 

electron diffusion, and reaction rate. In each paper, one of these factors is presumed to be fast, 

thereby reducing the number of possible limiting factors. In the following paragraphs I compare 

the data in Figure 4.4 to the models in these three papers and show that the predictions from the 

models do not match the data. 

In each of these reports, current is plotted versus film thickness and the trend in Figure 4.4 

can be observed, namely an increase in current with film thickness eventually reaching a plateau. 

This trend is shown in Figure 4.8, and the similarity between this figure and Figures 4.4a and c are 

apparent. According to these reports, the intersection of the linear portion of the current vs 
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thickness curve with the plateau current is defined as the optimum film thickness, 𝑑𝑓
𝑜𝑝𝑡

. In the case 

where the catalytic reaction is fast (k is large), 𝑑𝑓
𝑜𝑝𝑡

 is defined by equations 4.1 and 4.2.224 Equation 

4.1 applies when electron diffusion is far smaller than substrate diffusion. Equation 4.2 applies 

when substrate diffusion is far smaller than electron diffusion. The parameters in these equations 

are as follows: 𝑑𝑓
𝑜𝑝𝑡

 is the optimum film thickness; De is the diffusion coefficient of electrons in 

the film; DS is diffusion coefficient of substrate (H+ ions in this case) within the film; k is the rate 

constant for the catalytic reaction; κA is the partition coefficient of H+ ions between solution and 

film (unitless); 𝐶𝐴
0 is the initial concentration of substrate in the bulk solution. Equation 4.1 also 

applies when the solvent is the substrate, i.e. where substrate diffusion within the film is not 

limiting.222 

𝑑𝑓
𝑜𝑝𝑡 = √

𝐷𝑒

𝑘κ𝐴𝐶𝐴
0     4.1 

     𝑑𝑓
𝑜𝑝𝑡 = √

𝐷𝑆

𝑘𝐶𝐴
0      4.2 

 

 

 

Figure 4.8 Illustration of a current versus thickness trend for an electrocatalytic film that follows 

the assumptions in the reports by Savéant and Costentin.222-224 The green circles are the current at 

a defined potential from cyclic voltammetry measurements. The dashed lines show the intersection 

between the linear portion at the beginning of the curve and the plateau region. The thickness at 

this intersection is the optimum film thickness. 
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Figure 4.9 Replotted data from Figure 4.4c with gray dashed lines corresponding to the linear 

portion at the lower end of the curve and the plateau current. The intersection of these dashed lines 

is at the optimum thickness 𝒅𝒇
𝒐𝒑𝒕

. 

To determine whether the RGO/1 system obeys this model, the value for 𝑑𝑓
𝑜𝑝𝑡

 was first 

determined from the data in Figure 4.4c. These data are replotted in Figure 4.9 with a linear fit for 

the data points for the thinnest films. From this figure, it is seen that 𝑑𝑓
𝑜𝑝𝑡

 is approximately 300 

nm. Subsequently, 𝑑𝑓
𝑜𝑝𝑡

 was calculated using Equations 4.1 and 4.2, with the parameters estimated 

in the following manner. DS was approximated based on literature values. The upper limit was set 

at 10-6 cm2/s based on a published diffusion coefficient of protons along the surface of a graphene 

sheet249 and the lower limit was set at 10-12 cm2/s based on published diffusion coefficients of Li+ 

ions in graphite.250 κA was estimated by using the reported value of 0.93 for a GO film.251 Assuming 

the value of κA for RGO does not differ by more than an order of magnitude, this value is a good 

approximation. The value of 𝑘𝐶𝐴
0 was calculated using the foot-of-the-wave (FOWA) method from 

a cyclic voltammogram of surface-adsorbed 1 on RGO in 2 mM trifluoroacetic acid solution 

(Figure 4.10). The value obtained was 1.5x10-5 cm/s. Lastly, the value of De was calculated from 

the conductivity of RGO (reported in Chapter 2 of this thesis as 104 S/m) as follows. Conductivity 

is related to mobility of electrons: 

𝜎 = 𝑒𝑛𝜇𝑒     4.3 

where σ is conductivity; e is the charge of an electron (1.602x10-19 C); n is the density of mobile 

electrons, estimated to be 1020 cm-3 based on literature;252 and μe is the mobility of electrons. Using 

Equation 4.3 and the values listed for each parameter, the mobility of electrons in these RGO films 

is about 6.2 cm2 V-1 s-1. Following this, the diffusion coefficient of electrons can be calculated 

using the Einstein Relation: 
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𝐷𝑒 =
𝜇𝑒𝑘𝐵𝑇

𝑒
     4.4 

where kB is the Boltzmann constant; T is temperature; and e and μe are the same as listed as above. 

Using Equation 4.4, De is calculated to be 0.16 cm2/s. 

 

Figure 4.10 Left, cyclic voltammogram of surface adsorbed 1 on an RGO thin film on a glassy 

carbon electrode in deaerated 0.1 M KPF6 and 2 mM trifluoroacetic acid at a scan rate of 50 mV 

s-1. Right, FOWA fitting using the data from the voltammogram on the left. The black dotted line 

is the data and the red line is the linear fit. The value for Ecat/2 was taken as -0.82 V (the potential 

at half the current of the peak current). The slope of the line is 6.6x10-5 A, which is equal to 

𝟐. 𝟐𝟒 (
𝑹𝑻

𝑭𝒗
)

𝟏 𝟐⁄

(𝟐𝒌𝑪𝑨
𝟎)

𝟏 𝟐⁄
. 

 

 Finally, 𝑑𝑓
𝑜𝑝𝑡

 can be calculated using the relationships in Equations 4.1 and 4.2. Using the 

former, 𝑑𝑓
𝑜𝑝𝑡

 is 108 cm, and using the latter, 𝑑𝑓
𝑜𝑝𝑡

 is between 2.5 μm and 2.5 mm (depending on 

the value used for DS). The values for  𝑑𝑓
𝑜𝑝𝑡

 calculated in both cases are orders of magnitude 

different from the real value of 300 nm, demonstrating that these equations are not good models 

for the system described here. Most likely, product inhibition is not accounted for in the Costentin 

& Savéant model.  

 In the case where the film conductivity is assumed to be fast, instead of using 𝑑𝑓
𝑜𝑝𝑡

, the 

peak current, Ip, can be determined from film thickness (within the linear region of the current vs 

film thickness plot) based on the parameters described above.223 The relationship is shown in 

Equation 4.5. 

𝐼𝑝 = 𝐹𝑘𝐶𝑝
0κ𝐴𝐶𝐴

0𝑑𝑓     4.5 

 



 77 

The parameter 𝐶𝑝
0 is the concentration of catalyst sites within the film. For films used in 

Figure 4.4, that value is 2x10-4 mol/cm3. Estimated values for the other parameters are listed above 

in the description for use of Equations 4.1 and 4.2. Using df = 200 nm as an example, the value of 

Ip calculated using Equation 4.5 is 5.3x10-9 A, far smaller than the approximately 3.8x10-5 A in 

Figure 4.4. 

 In summary, assuming the values used for DS, De, and κ are good estimates, the data in 

Figure 4.4 do not agree with the models in any of these three reports. Therefore, it can be concluded 

that the electrocatalytic current in the system described here is not limited purely by substrate 

diffusion, catalytic rate, or electron diffusion. One possibility is that a combination of these factors 

limits the current. Another possibility is that there is a fourth factor that contributes to limiting 

current. This may be by product inhibition because of slow product (H2) diffusion out of the film, 

bubble formation, or poisoning of the catalyst with H2 molecules. It may be possible to model 

product inhibition by addition of an expression or term in Equations 4.1, 4.2, and 4.5. Further work 

on this front should be pursued. 

The data shown in Figure 4.6 help to further understand this system. These data were taken 

without varying the total amount of catalyst in the films. Because of the initial increase in TOF 

with film thickness in Figure 4.6, it is apparent that at least for thinner films, conductivity is not a 

limiting factor. Instead, we hypothesize that the increase in current and TOF (with no increase in 

the total amount of catalyst present) is due to a decrease in the concentration of catalyst within the 

film, which limits overlap of the diffusion radii of the catalyst sites.  

For films thicker than about 500 nm, the current and TOF start to decrease with increasing 

film thickness. Currently, there is more than one possible explanation for this phenomenon. First, 

conductivity of the films may start to play a role in limiting current in films thicker than about 500 

nm. Second, the structure or morphology of the film may be different with thicker dropcasted films 

compared to thinner ones. For example, thinner films may have a higher relative roughness, allow 

for easier penetration of substrate or escape of product. More characterization is necessary to 

determine the reason for this decrease in TOF with thicker films, but the data in Figure 4.7 helps 

to speak to this point. 

 In Figure 4.7, each of the three voltammograms are from films of equivalent thicknesses 

(600 ± 300 nm) containing equivalent amounts of catalyst (1.7 ± 0.2 x10-10 moles). The black and 

red voltammograms are from films that also contain a 600 ± 300 nm RGO film on top of and below 
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the catalyst-containing film, respectively. Because the current in each of these voltammograms is 

equivalent and much lower than the blue curve, it suggests that at this film thickness, both 

substrate/product diffusion in the film and electron conduction within the film play essentially 

equivalent roles in limiting the total current. In other words, with an RGO film on top of the 

catalyst-embedded film, diffusion of species to and from the bulk solution is hindered; and with 

an RGO film below the catalyst-embedded film, conduction of electrons to catalyst sites within 

the film is hindered to an equal extent. Thereby the current from both electrodes in Figure 4.7 is 

similarly inhibited.   

 Future work. First, to definitively confirm that the data presented here do not follow the 

models in the reports by Savéant and Costentin, the estimated parameters should be measured. The 

value of De for these RGO films can be determined by measuring the mobility with Hall or field-

effect measurements on RGO thin films. Then the real value of DS can be measured by a variety 

of methods including electrochemical impedance spectroscopy,250 potential step 

chronoamperometry,250 or water permeability measurements.251 De and DS can then be compared 

directly to each other. The partition coefficient κ can be measured by determining water uptake in 

an RGO film (by mass change). These three parameters should then be used to calculate the value 

of 𝑑𝑓
𝑜𝑝𝑡

 using Equations 4.1 and 4.2 and the value of Ip using Equation 4.5. 

Additionally, it should be determined whether morphological changes of the film may 

cause variations in limiting current for different film thicknesses. This can be analyzed by using 

statistical AFM imaging (i.e. many images over a large area of each film) or with mapping Raman 

spectroscopy. The distribution of catalyst within the film can be identified using mapping XPS 

with sputtering. 

Since the data consistently suggests that a diffusional process controls the current in thinner 

films, experiments should be performed to determine whether H+ diffusion or H2 diffusion is the 

limiting factor. This can be done in several ways. First, the ability of H2 to slow down the catalytic 

reaction should be determined. This can be done by performing electrocatalysis using 1 under an 

atmosphere of H2. The obtained currents can be compared to currents under an atmosphere of N2. 

If currents under H2 are lower than currents under N2, this is good evidence that buildup of product 

within the films can limit the electrocatalytic current. If the reaction is reversible under an 

atmosphere of H2, then this is evidence that product buildup specifically limits current by Le 

Chatelier’s Principle. Second, H+ diffusion may be limited by counterion (phosphate) diffusion 
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within the RGO films. This can be evaluated by using different buffers with different sized anions. 

If buffers with smaller anions produce larger electrocatalytic currents, then this is evidence that H+ 

diffusion within the film primarily limits the current. 

The data in Figures 4.4 and 4.6 suggest that the optimal film thickness is between 200 and 

500 nm thick (the thickest film before TOF starts to decrease). Further experiments should keep 

film thickness constant within this range and vary the amount of catalyst within the film to find 

the optimum catalyst density. Factors affecting current may change depending on catalyst density; 

for example, in films with a high catalyst density, self-exchange of protons or electrons may occur, 

which may impact catalytic rate or transfer of electrons through the film. 

 Lastly, to be sure that catalytic rate is a not a limiting factor, kinetic isotope effect (KIE) 

experiments can be carried out on surface-adsorbed 1 and embedded 1 to determine whether the 

rate limiting step changes when 1 is embedded. 

4.5 Conclusions 

This chapter describes the kinetic factors that limit catalytic current in RGO thin films 

embedded with a molecular proton reduction electrocatalyst. Based on linear sweep voltammetry 

data, it was determined that film thickness plays a role in limiting catalytic current. Comparison 

of the data obtained here with previously published simulated voltammetry demonstrates that the 

electrocatalytic current in this system is not limited by a single process. Instead, multiple processes 

can affect the current simultaneously. Specifically, for films thinner than between 200 and 500 

nm, current is limited by diffusion of substrate or product into or out of the film, whereas for 

thicker films, RGO conductivity also plays a role in limiting catalytic current. For films that are 

600 ± 300 nm thick, electrical conductivity of RGO and diffusion of species within the film play 

essentially equal roles in limiting the catalytic current. The conclusions drawn from the data in this 

chapter apply to the conditions described here, i.e. in deaerated 0.2 M phosphate buffer at pH 2 

and at -0.67 V and -0.95 V versus Ag|AgCl. Varying pH, electrolyte identity and concentration, 

and applied potential may change the behavior of the electrocatalytic films. This is the first study 

on fundamental kinetics of proton reduction electrocatalysis in RGO thin films, and the results 

obtained here highlight several further directions that should be pursued. For example, increasing 

the porosity of the films to allow faster H+ and H2 diffusion may allow for larger catalytic currents. 

Also, the counterion dependence of the current should be investigated, as this can be a critical 

factor.  
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Adapted from Journal of Electrochemical Society, Vol. 166, “Discovery of Unusually Stable 

Reduced Viologen via Synergistic Folding and Encapsulation,” MacInnes, M. M.; Cousineau, B. 

R.; Youngs, S. M.; Sinniah, K.; Reczek, J. J.; and Maldonado, S. H825-H834, Copyright 2019. 

 

5.1 Introduction 

Viologens (1,1’-disubstituted-4,4’-bipyridinium ions) are an important class of redox 

species. They have received attention for use as electron acceptors in fundamental studies of 

chemical and electrochemical charge transfer,253-254 as the charge storage medium in redox flow 

batteries,255-260 as the active material in electrochromic devices,261-262 and as the redox-active 

component in molecular machines.263-266  Their appeal in these applications derives from their 

stability, highly reversible redox character, and relative ease of sythesis.255-262 Viologen dications 

reversibly undergo one-electron reductions to form highly stable radical cations.253-254 This 

transition is fast because it involves minimal bond length and angle change (i.e. the reorganization 

energy is low).254 A second one-electron reduction forms the neutral species, but this transition is 

not considered fully  reversible in polar and protic solvents because of its low solubility in these 

solvents.254 

A disadvantage of viologens in energy and electronic applications is the reactivity of the 

reduced viologen radicals with O2.
253, 267-268 For species like methyl viologen radicals (MV•+), the 

rate constant for oxidation by O2 is large (8 x 108 M-1 s-1),269 effectively at the diffusion limit. 

Strategies to inhibit parasitic oxidation of reduced viologens by O2 are therefore of significant 

importance. 

One potential approach to stabilize reduced viologens is by embedding them inside 

protective structures.137, 143, 264, 270-277 In this vein, viologens have been inserted in polymers,138, 278-

288 micelles,270-271, 273-275 and macromolecules.137, 140, 289-290 In particular, inclusion complexes 

between viologens and cucurbit[n]urils (CB[n]), a class of rigid and water-soluble macrocyclic 

Chapter 5. Discovery of an Unusually Stable Reduced Viologen via Synergistic Folding and 

Encapsulation 
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host molecules, have been shown to tune the redox potentials of viologens.143, 264, 272, 276, 291-293 

However, enhanced stability of the reduced forms in the presence of O2 has yet to be shown. 

In this work, we explore the concept that a hierarchical supramolecular assembly can form 

structures that inhibit parasitic reaction with O2. Herein, we report the design, assembly, and 

electrochemical behaviors of covalently-linked viologen dimers complexed with cucurbit[7]uril 

(CB[7]) and cucurbit[8]uril (CB[8]) in aqueous solution. The internal diameters of CB[7] and 

CB[8] are 11.33 Å and 12.95 Å, respectively.294 To avoid confusion, in this report the term “dimer” 

refers strictly to two viologens covalently bound through a defined linker. Two specific linkers are 

explored: an ortho-benzyl group (2) and a propyl group (3) (Figure 5.1). These linkers space two 

methyl viologen units by the similar short N-N’ distance of approximately 5 Å but differ in 

equilibrium geometry and linker rigidity. The electrochemical and spectroscopic data presented 

here indicate that when these viologen dimers are reduced in the presence of cucurbit[8]uril 

(CB[8]), a unique and unusually stable monoradical species is formed. We show that specifically 

the combination of the structure of the viologen dimer with subsequent encapsulation by CB[8] is 

required to form a stabilized, reduced radical. Further, data are presented that distinguish these 

stabilized species from viologen “pimers” which have been extensively studied previously.254, 295-

299 This is the first time that a monoradical viologen dimer has been isolated through use of 

supramolecular assemblies, and it is the first report of a solubilized viologen radical species that 

is significantly stabilized in the presence of oxygen. 

 

Figure 5.1 Depictions of 24+, 34+, CB[8], and CB[7].  
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5.2 Experimental. 

Chemicals and materials. Anhydrous dibasic sodium phosphate (Sigma Chemical 

Company), monobasic potassium phosphate (99.6%, J.T. Baker, Inc.), sodium dithionite (≥82%, 

Sigma Aldrich), cucurbit[7]uril hydrate (CB[7], Sigma Aldrich), cucurbit[8]uril hydrate (Sigma 

Aldrich), iodomethane (99%, Sigma Aldrich), 4,4’-bipyridine (98%, Sigma Aldrich), DMF 

(≥99.8%, Sigma Aldrich), ,’-dibromo-o-xylene (97%, Sigma Aldrich), and deuterated water 

(99.8 atom %, Acros Organics) were used as received. Water with a resistivity >18.2 MΩ 

(Nanopure Barnstead Water Purification) was used throughout. Glassy carbon electrodes were 

prepared by first polishing with alumina (1 μm, 0.3 μm, and 0.05 μm alumina suspensions) on felt 

and then sonicating in methanol for 30 minutes. A carbon cloth electrode was used for bulk 

electrolysis and was prepared by thoroughly rinsing with clean water. Platinum mesh was used as 

a counter electrode. For bulk electrolysis experiments, the platinum mesh was isolated from the 

working electrode by a frit. 

Synthesis of N-Methyl-4,4’-bipyridinium iodide.  Iodomethane (1.20 mL, 19.2 mmol, 1.0 

eq.) was added to 4,4’-bipyridine (2.9994 g, 19.2 mmol, 1.0 eq.) in CH2Cl2 (50 mL). The solution 

was stirred at room temperature for 24 hours. A bright yellow solid precipitated out. The solid was 

filtered and any residual 4,4’-bipyridine washed away with diethyl ether (3 x 10 ml), yielding N-

Methyl-4,4’-bipyridinium iodide (86.5 %, 4.9497 g). 1H NMR of the solid showed > 99% with no 

trace of starting material, and the collected solid was used directly in the synthesis of 2 and 3.  

Synthesis of 2.  N-Methyl-4,4’-bipyridinium iodide (0.6035 g, 2.0 mmol, 2.2 eq.) was 

reacted with ,’-dibromo-o-xylene (0.2432 g, 0.92 mmol, 1.0 eq.) in DMF (30 mL). The solution 

was stirred at 60C for 3 days with a rubber septum and vent needle. An orange product 

precipitated out. The product was filtered and washed with DMF (2 x 10 mL) to completely remove 

any residual N-Methyl-4,4’-bipyridinium iodide, yielding 1 (87.0 %, 0.6893 g). 1H NMR (400 

MHz, D2O)  9.194(d, J = 6.8 Hz, 4H), 9.112(d, J = 6.4 Hz, 4H), 8.669(d, J = 6.8 Hz, 4H), 8.598(d, 

J = 6.8 Hz, 4H), 7.695(d, J = 9.2 Hz, 2H), 7.423(d, J = 9.2 Hz, 2H), 6.229(s, 4H), 4.554(s, 6H) 

ppm; 13C NMR (400 MHz, D2O)  151.066, 149.571, 146.438, 145.901, 131.451, 130.981, 

130.837, 127.579, 126.908, 61.362, 48.531 ppm. Analysis by analytical HPLC showed > 99% 

purity of 1 in the recovered solid. A schematic depiction of the synthetic protocol and the 1H NMR, 

13C NMR spectra are shown in Figures 5.2-5.4 respectively.   
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Synthesis of 3. N-Methyl-4,4’-bipyridinium iodide (0.6163 g, 2.1 mmol, 2.2 eq.) was added 

to 1,3-dibromopropane (0.094 mL, 0.93 mol, 1.0 eq.) in DMF (30 mL). The solution was stirred 

at 60C for 3 days with a rubber septum and vent needle. A yellow product precipitated out. The 

product was filtered and washed with DMF (3 x 10 mL) to completely remove any residual N-

Methyl-4,4’-bipyridinium iodide, yielding 3 (35 %, 0.258 g). 1H NMR (400 MHz, D2O)  9.098(d, 

J = 6.8 Hz, 4H), 8.936(d, J = 6.8 Hz, 4H), 8.484(d, J = 6.8 Hz, 4H), 8.408(d, J = 6.8 Hz, 4H), 

4.873(t, J = 8.0 Hz, 4H), 4.368(s, 6H), 2.859(m, J = 7.9 Hz, 2H) ppm; 13C NMR (400 MHz, D2O) 

 150.817, 149.677, 146.409, 145.805, 127.522, 126.841, 58.306, 48.483, 31.905, 30.324 ppm. 

Analysis by analytical HPLC showed > 99% purity of 1 in the recovered solid. A schematic 

depiction of the synthetic protocol and the 1H NMR, 13C NMR spectra are shown in Figures 5.2-

5.4 respectively.     

 

Figure 5.2 Syntheses of 24+ and 34+. Details for these syntheses are described below. 
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Figure 5.3 1H NMR spectra of a) an aqueous D2O solution of 24+ and b) an aqueous D2O solution 

of 34+. The peaks are labeled corresponding to the protons in the structures above. 

 

 

 

Figure 5.4 13CNMR spectra of 24+ (left) and 34+ (right). The peaks are labeled corresponding to the 

carbon atoms in the structures above. 
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Preparation of viologen-cucurbituril mixtures. All viologen-cucurbituril solutions were 

prepared by first dissolving the appropriate amount of viologen in water (or D2O) or buffer 

solution. Cucurbituril was then added in excess and the solution was stirred for at least 2 hours. 

The undissolved cucurbituril was filtered out using a 0.2 μm nylon syringe filter. Based on NMR 

integrations, this resulted in a 1:1 ratio of 24+:CB[8]; a 1:1 ratio of 34+:CB[8]; a 1:3 ratio of 

24+:CB[7]; and a 1:3 ratio of 34+:CB[7].  

Isothermal titration calorimetry (ITC). ITC data was obtained on a Nano ITC Standard 

Volume instrument from TA Instruments. Experiments were performed in 10 mmol sodium 

phosphate buffer and all solutions were degassed for 25 min at room temperature prior to running 

ITC experiments. The reference cell in the ITC was filled with degassed ultrapure water (18.2 MΩ 

cm-1 resistivity). Experiments were run in multiple-injection mode with 20 injections (12 μL each) 

with 1000 s injection intervals. The stir rate was 250 rpm. Once the cell had been filled and the 

syringe loaded, stirring was turned on and the apparatus was allowed to autoequilibrate. All data 

were recorded with the TA Instruments software provided, ITCRun version 2.2.3. The area under 

each peak was integrated, and the resulting data were further analyzed using TA NanoAnalyze 

version 2.4.1, fitting to a 1:1 binding model of dimer to cucurbituril.  

Absorbance Measurements. UV-visible-NIR absorbance spectra were obtained using a 

Varian Carey 5000 UV-vis-NIR spectrophotometer. Solutions of 0.25 mM viologen with and 

without approximately 1 equivalent of cucurbituril were electrolyzed and immediately syringed 

into a 1-cm quartz cuvette sealed with a septum that had been flushed with N2. The supporting 

electrolyte was deaerated 0.075 M phosphate buffer (pH ~7) using sodium monohydrogen 

phosphate and potassium dihydrogen phosphate. Backgrounds were taken using plain electrolyte 

solutions. Absorbance changes upon exposure to O2 was monitored using an Analytik Jena 

SPECORD S600 spectrophotometer. Solutions used for these experiments were 30 μM viologen 

in 0.075 M phosphate buffer (pH 7). Solutions containing cucurbituril were prepared by dissolving 

excess cucurbituril in the buffered viologen solution, stirring for at least two hours and then 

filtering through a 0.2 μm nylon syringe filter to remove undissolved cucurbituril. These solutions 

were electrolyzed to 100% under a stream of nitrogen and then the electrodes and nitrogen stream 

were removed and an immersion probe (Hellma Analytics) was quickly inserted. Spectra were 

recorded using the immersion probe while stirring the solution at a constant speed. 
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 Electrochemical measurements. Electrochemical measurements were taken using a CH 

Instruments 760C potentiostat. A three-electrode cell was used with a supporting electrolyte of 

deaerated 0.075 M phosphate buffer (pH ~7) as described above. A platinum mesh was used as 

the counter electrode and Ag|AgCl was used as the reference electrode. The working electrode for 

cyclic voltammetry experiments was glassy carbon (geometric surface area 0.071 cm2) and for 

electrolysis of bulk solutions was a carbon cloth electrode.  

1H NMR spectroscopy. Measurements were conducted on a Varian MR 400 instrument at 

room temperature and were referenced against the solvent peak. Measurements were performed 

on 1 mM viologen solutions in D2O with and without approximately 1 equivalent of cucurbituril. 

Sodium dithionite was used to reduce the solutions. 

Molecular Orbital Calculations Molecular modeling was carried out using Spartan ’16 for 

Macintosh. All structures were constructed in Spartan and equilibrium geometries were calculated 

for each redox state independently (4+, no unpaired elections; 3+, one unpaired electron; 2+, two 

unpaired electrons) for dimers 2 and 3 and the corresponding complexes of the dimers and CB[8].  

All geometry calculations were initiated from a randomized starting point and carried out using 

density functional theory in water solvent with a B3LYP functional at the 6-31G* level. The 

calculated equilibrium structures were then used in energy calculations to obtain orbital and spin-

state information using density functional theory in water solvent with a B97D functional at the 6-

311+G** level. The B97D functional was used to achieve energy calculations that more 

adequately include dispersion stabilization of the delocalized radicals.55    

 

5.3 Results. 

Dimer Conformers. Molecular modeling was performed to determine the relevant 

conformers of 2 and 3. The results indicated that dimers 24+ and 34+ prefer to adopt extended 

conformations in water due to charge-repulsion (Figure 5.5). In contrast, the reduced dimers 22+ 

and 32+ assemble into folded structures that balance charge-repulsion with π-stacked stabilization 

of the radical species (so-called pimers). While 22+ and 32+ adopt conformations with similar 

distances between the viologen groups, the equilibrium geometry structure calculated for the rigid 

o-xylene-linked 22+ had near-perfect alignment of overlapping viologen surfaces, while propyl-

linked 32+ displayed a significantly skewed relative orientation of the viologen groups (Figure 5.6). 
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Figure 5.5 Equilibrium geometries modeled for free reduced dimers 24+ and 34+.  Note the clear 

difference in the number of bond rotations needed to access the π-stacked geometries from these 

conformations: 24+ < 34+ 

 

 

 

    
Figure 5.6 Equilibrium geometries modeled for free reduced dimers 22+ and 32+.  Side view shows 

similar spacing of viologen groups, while end and top view illustrate the better π-π stacking 

preorganization of 22+. 

14+

24+

side top

12+

22+

side end top



 88 

 
Figure 5.7 ITC determination of binding constant between 24+ and CB[8] (left) and 34+ (right). All 

solutions for titration were made in phosphate buffer (10 mmol) and degassed in vacuum. Solutions 

of 24+ (0.3mM) or 34+ (0.4mM) were titrated into a solution of CB[8] (0.026 mM), and the resulting 

exotherm curve was fit to obtain binding constants of 1.2 x 106 M-1 for 24+with CB[8] and 1.1 x 

106 M-1 for 34+ with CB[8], respectively. 

 

Isothermal Calorimetry. ITC measurements (Figure 5.7) were performed on both viologen dimers 

in the 4+ oxidation state in the presence of CB[8] in a phosphate buffer. Binding constants between 

24+ and CB[8] and between 34+ and CB[8] calculated from this data were 1.18x106 M-1 and 

1.11x106 M-1, respectively, indicating a strong affinity of CB[8] for both viologens. 

Cyclic Voltammetry. The cyclic voltammograms of 24+, 34+, and MV2+ in the presence and absence 

of CB[7] and CB[8] are shown in Figure 5.8. Scanning cathodically from open circuit potential, 

MV and compound 2 showed single reversible redox waves in the absence of cucurbituril. The 

voltammogram of compound 3 produced a second reversible wave at a lower current density 

slightly negative of the main redox wave. The E1/2 values and peak potential separations (ΔEp) of 

each of these redox waves are listed in Table 5.1. The wave for MV was consistent with the 1-



 89 

electron MV2+/1+ transition.253 The E1/2 for the redox wave of 2 and the major wave of 3 were much 

more positive than MV with lower current densities and smaller peak separations. The lower 

current densities were attributed to smaller diffusion coefficients due to the bulkier nature of the 

molecules (5.6 x 10-6 and 8.6 x 10-6 cm2 V-1 s-1, for 24+
 and MV2+, respectively). The more positive 

reduction potentials are consistent with favored pimer formation due to the forced proximity of 

two viologen units on each molecule.270, 300-302 Lastly, the small peak separations for compounds 

2 and 3 are consistent with 2-electron redox processes, and therefore these waves were ascribed to 

the 24+/2+ and the 34+/2+ transitions.30, 303 The second redox wave in the voltammogram of 3 at about 

-0.61 V is likely due to effects from a higher degree of freedom for rotation around the propyl 

linker as compared to the benzyl linker in 2. In other words, a fraction of 34+ exists in a 

conformation that disfavors pimer formation, resulting in a more negative reduction potential. 

 Addition of CB[7] to 2, 3, and MV lowered the peak currents and shifted the E1/2 values 

negative while significantly increasing the peak separations in 2 and 3. The lower peak currents 

were because of reduced diffusivity of the viologens when encapsulated in the large CB[7] 

scaffold. The negative shift in reduction potentials has previously been ascribed to the inability of 

the CB[7] cavity to accommodate two viologen units.272, 276, 291 Complexation with CB[7] therefore 

inhibits dimer formation. This is also the reason for the increased ΔEp values. Inhibited pimer 

formation suggests that the second reductions of 2 and 3 are more difficult that the first reductions, 

i.e. 24+/3+ occurs at a more positive potential than 23+/2+. Because the redox wave still appeared as 

a single wave, the separation between E1/2 for 24+/3+ and E1/2 for 23+/2+ was small, less than about 

120 mV.303 The same was true for 3 in CB[7]. Furthermore, encapsulation in CB[7] is the reason 

for the absence of the secondary redox wave in the voltammogram of 3/CB[7]. The two redox 

waves in the voltammogram of 3 were due to the existence of two conformers in solution: one 

being the preferred orientation for pimer formation and the other being a non-preferred orientation 

for pimer formation. Since pimer formation is precluded in the presence of CB[7], these two 

conformations have the same reduction potential and only one redox wave was observed in the 

voltammogram of 3/CB[7]. 

 Addition of CB[8] to each of the three compounds shifted the potentials of each redox wave 

positive. This positive shift can be ascribed to the facilitation of pimer formation within the CB[8] 

cavity.143, 276 Interestingly, the voltammograms of 2/CB[8] and 3/CB[8] no longer showed single  
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Figure 5.8 Cyclic voltammetry of viologen/cucurbituril pairs. From top to bottom: MV; 2; 3; MV 

+ CB[7]; 2 + CB[7]; 3 + CB[7]; MV + CB[8]; 2 + CB[8]; 3 + CB[8]. Concentrations of MV, 2, 

and 3¸were 0.4, 0.2, and 0.2 mM, respectively. Concentrations of CB[7] and CB[8] were equivalent 

to the respective viologen in each panel. All voltammetry was performed in dearated 0.075 M 

phosphate buffer at pH = 7 at a glassy carbon electrode and a scan rate of 0.05 V s-1. 

 

 

reversible redox waves. The voltammogram of 2/CB[8] contained two apparently reversible redox 

waves with ΔEp values larger than that of 2 but smaller than that of 2/CB[7]. The current densities 

of these waves were much lower than in any of the previous voltammograms. Integration of these 

waves showed that the sum of the charge passed during both processes was approximately 

equivalent to the charge passed during the single redox process in either 2 or 2/CB[7]. These data 
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then suggest that the two redox waves in 2/CB[8] correspond to the 1-electron 24+/3+ and 23+/2+ 

transitions. The voltammogram of 3/CB[8] did not have two well-defined reversible waves like 

that of 2/CB[8]; however it is apparent that more than one redox process occurred and that these 

processes were generally shifted positive of the redox process for 3. Because the redox waves were 

not well-defined and reversible they are not listed in Table 5.1. The quasi-reversibility of the waves 

in 3/CB[8] can be attributed, as described above, to the higher degrees of rotational freedom 

afforded by the propyl linker.  

 

Compound E1/2 
a,c

 / V 
 ΔEp

a / V 
 E1/2

b,c / V 
 ΔEp

b / V 

MV -0.638 ± 0.002 0.058 ± 0.002 -- -- 

2 -0.424 ± 0.002 0.036 ± .002 -- -- 

3 -0.462 ± 0.002 0.032 ± 0.002 -0.61 ± 0.01 0.050 ± 0.010 

MV + CB[7] -0.663 ± 0.002 0.065 ± 0.003 -- -- 

2 + CB[7] -0.540 ± 0.002 0.107 ± 0.002 -- -- 

3 + CB[7] -0.603 ± 0.003 0.100 ± 0.003 -- -- 

MV + CB[8] -0.484 ± 0.004 0.061 ± 0.004 -- -- 

2 + CB[8] -0.192 ± 0.009 0.062 ± 0.009 -0.348 ± 0.006 0.062 ± 0.006 

     
a First most positive redox wave. b Second most positive redox wave. c Midpoint between reduction and oxidation peak potentials 

with respect to E(Ag/AgCl) at 0.05V s-1 in a deaerated 0.075 M phosphate buffer (pH 7). 
 

Table 5.1 Voltammetric features for 2, 3, and MV alone and in the presence of cucurbiturils as 

shown in Figure 5.1. 

 

Figure 5.9 shows the voltammetric scan rate dependence of 2/CB[8]. At a scan rate of 10 

mV/s, the two reversible redox waves described above were distinctly visible. At 100 mV/s, the 

first reduction wave was at a slightly lower current compared to the baseline, though the 

corresponding oxidation wave was unchanged. At 1 V/s, the first reduction wave was essentially 

nonexistent, and the corresponding oxidation wave was still unchanged. These data suggest that a 

slow chemical step precedes the reduction of 24+/CB[8] to 23+/CB[8]. At faster scan rates the 

chemical step is outpaced and reduction directly to 22+/CB[8] occurs. Compound 3 in CB[8] 

demonstrated a similar scan rate dependence (Figure 5.9).  
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Figure 5.9 Voltammetry of 2 + CB[8] (left) and 3 + CB[8] (right) at various scan rates collected 

at 0.25 mM viologen with approximately one equivalent of CB [8]. The electrolyte was deaerated 

0.075 M phosphate buffer (pH 7). A glassy carbon electrode was used as the working electrode. 

Pt mesh was used as the counter electrode and a Ag wire coated with AgCl immersed in a fritted 

compartment containing saturated KCl was used as the reference electrode. 

 

 

NMR spectroscopy. 1H NMR spectra were collected to gain further insight on the 

complexation of 2 and 3 with CB[7] and CB[8]. Figure 4 shows the 1H NMR spectra of 2 and 3 in 

various oxidation states in the presence and absence of CB[7] and CB[8] in D2O. Upon 

complexation by CB[7], all proton signals for 24+ moved to higher chemical shift values (Figure 

5.10). The aromatic protons of the viologen units and the bridging methylene peaks were shifted 

most extensively whereas the peak corresponding to the methyl protons was affected only 

minimally. The presence of CB[8] in solution caused qualitatively similar changes in the 1HNMR 

spectrum of 24+. These changes were consistent with the premise that in the 4+ oxidation state, the 

viologen rings are spread apart in a “linear” dimer conformation due to charge repulsion and the 

benzyl linker of 24+ spends significant time inside of the cucurbituril cavity. Conversely, the 

terminal methyl groups on the viologen units are predominantly outside the cavities of the 

cucurbiturils since there is no possibility of hydrogen bonding by those hydrogens with the C=O 

groups.304 The paramagnetic character of 22+ after reduction convoluted the proton signals of the 

viologens in the corresponding 1H NMR spectra, precluding definitive assignment of viologen 

orientation upon reduction. However, the significant broadening of the 1H NMR signals from 

CB[8] in the presence of reduced dimer was consistent with tight association, and therefore close  
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Figure 5.10 1H NMR spectra of a) aqueous D2O solutions of 2 in various oxidation states and in 

the presence of cucurbiturils and b) aqueous D2O solutions of 3 in various oxidation states and in 

the presence of cucurbiturils. Peaks labeled j, k, and l correspond to cucurbituril protons. 

 

proximity, of folded 3+ and 2+ paramagnetic radical dimers within CB[8]. The 2+ dimer species 

showed a more significant effect on the CB[8] protons, implying an average closer proximity of 

radical character to the CB[8] protons. In Figure 4b, the spectra for 34+ with and without either 

CB[7] or CB[8] are shown. The changes in the 1H NMR spectral features were generally similar 

to those in Figure 4a. The signals for the aromatic peaks of the viologen units and the methylene 

peaks of the propyl linker were more strongly affected by the presence of cucurbituril than the 

corresponding signatures of the methyl protons. These data suggest that similar to 24+, the viologen 

units and propyl linker of 34+ in the oxidation state are primarily inside the cucurbituril cavities 

upon complexation. 
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Figure 5.11 Color variation in solutions of 2 with and without CB[8] after addition of reducing 

equivalents, defined as one reducing equivalent would reduce each viologen unity by 1e-. Top row: 

24+ (left); 2 after reduction with approximately half of the electrons necessary to fully reduce the 

solution to 22+ (middle); 2 after the solution has been fully reduced to 22+ (right). Bottom row: 24+ 

with CB[8] (left); 2 with CB[8] after reduction with approximately half of the electrons necessary 

to fully reduce the solution to 22+ with CB[8] (middle); 2 with CB[8] after the solution has been 

fully reduced to 22+/CB[8] (right). The solutions were 0.1 mM 2 in water. CB[8] was added in 

approximately 1 equivalent. 

 

UV-visible-NIR spectroscopy. Figure 5.11 displays photographs of 2 at various stages of 

reduction with and without CB[8]. In the top left and bottom left are solutions of 0.1 mM 24+ and 

0.1 mM 24+/CB[8]. Both are colorless. The solutions in the top middle and bottom middle photos 

were obtained by adding slightly less than half an equivalent of sodium dithionite to the respective 

solutions. Based on the voltammetry data described above, this addition reduced half of the top 

solution to 22+, whereas all of the solution in the bottom photo was 23+/CB[8]. The color of the 

solution in the top middle was pale purple. The color of the solution in the bottom photo was 

distinctly blue. The top left and bottom left solutions were obtained by addition of an excess of 

dithionite to the respective solutions. Both solutions were the same purple color. The top left 

solution was 22+ and the bottom left solution was 22+/CB[8]. The purple color seen in these photos 

was attributed to the 22+ oxidation state, and the blue color that was only observed in the presence 

of CB[8] was attributed to the 23+ oxidation state. It should be noted that these colors were also 

observed during electrochemical reduction of these solutions. When a solution of 24+ was 

electrochemically reduced, the color purple was observed to slowly grow in and get steadily darker 

until the solution was fully reduced to 22+. In contrast, when a solution of 24+/CB[8] was 
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electrochemically reduced, a blue color was observed, which grew stronger until about half of the 

charge needed to fully reduce the solution to 22+/CB[8] had been passed. At this point the color 

began to change to purple and by the time the solution had been fully reduced, it was the same 

color as a solution of 22+. These same results were observed with 34+ and CB[8]. 

Figure 5.12 shows the UV-vis-NIR spectra of each set of compounds. The NIR spectral 

region was cut off at 1400 nm due to strong absorption by water at longer wavelengths. Both 22+ 

and 32+ had broad asymmetric absorbances between 500 and 600 nm and a second broad band 

around 850 nm, characteristic of viologen pimers in water.296, 302, 305-306 Addition of CB[7] caused 

little change to the spectrum of either compound. Addition of CB[8] also produced little change to 

the spectra when the viologens were fully reduced to the 2+ states. However, when the viologens 

were partially reduced to the 3+ states in CB[8], dramatic changes to the spectra were observed. 

In this case, the visible band was shifted from 536 to 623 nm for 2 and from 534 to 622 nm for 3. 

The NIR band disappeared completely from the spectrum of 2, and in the spectrum of 3 it shifted 

from about 841 nm into the cut-off region, i.e. >1400 nm. These features are characteristic of 

viologen dimers in the 3+ oxidation state.298, 301 

 

 
Figure 5.12 Absorbance spectra of 2 and 3 with and without cucurbiturils in solution after 

reduction to the 2+ or 3+ states. (left) 22+ (black), 22+ in the presence of an equivalent of CB[7] 

(blue), 22+ in the presence of an equivalent of CB[8] (green), and 23+ in the presence of an 

equivalent of CB[8] (red). (right) 32+ (black), 32+ in the presence of an equivalent of CB[7] (blue), 

32+ in the presence of an equivalent of CB[8] (green), and 33+ in the presence of an equivalent of 

CB[8] (red). 
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Lifetime in air. Figure 5.13 demonstrates the relative rates of decay of the reduced 

viologens upon exposure to oxygen with and without CB[8] present. In Figure 5.13a, a 30 μM 

solution of 24+ was fully electrolyzed to 22+ under a stream of nitrogen. Upon fully reducing the 

solution, the nitrogen stream and electrodes were removed from the cell and immediately the UV-

vis absorbance of the solution was monitored by taking a spectrum every 15 seconds. Figure 5.13b 

shows the same experiment done using a 30 μM solution of 24+ in the presence of one equivalent 

of CB[8]. In Figure 5.13a, the absorbance at the λmax (536 nm) decayed over time, resulting finally 

in a featureless spectrum. In Figure 5.13b, the peak at 536 nm decayed and the peak at 623 nm 

grew in with an isosbestic point, until the peak at 623 nm began to decay as well. The final 

spectrum in this case was also featureless. 

In Figure 5.13c, the black squares indicate the absorbance at 536 nm of the spectrum in 

Figure 5.13a, which was assigned to the species 22+, and in red is the absorbance at 623 nm in 

Figure 5.13b, which was assigned to the species 23+/CB[8]. The absorbance at 536 nm reached 

zero within 90 s, but the absorbance at 623 nm decayed much more slowly, reaching zero after 

around 15 minutes. Each of these decay plots in Figure 5.13c were fitted with an exponential decay 

function. The time constant for decay of 22+ without CB[8] was 41 ± 2 s, and the half-life was 28 

± 1s. The time constant for decay of 23+ in the presence of CB[8] (taking the maximum absorbance 

value in the plot in Figure 5.13c as the starting value) was 206 ± 1 s and the half-life was 143 ± 1s. 

Figures 5.13d-f demonstrate a similar effect with compound 3. In the absence of CB[8], 

the decay time constant was 16 ± 1 s and the half-life was 11 ± 1 s. In the presence of CB[8], the 

decay time constant was 126 ± 5 s and the half-life was 87 ± 3 s. 

Figures 5.14g-i show the same experiment for MV. In the absence of CB[8], the decay time 

constant was 21 ± 1 s and the half-life was 15 ± 1 s. In the presence of CB[8], the decay time 

constant was 45 ± 2 s and the half-life was 31 ± 1 s. 

R2 values for the exponential decay fits were 0.951 for 22+; 0.999 for 23+/CB[8]; 0.950 for 

32+; 0.968 for 33+/CB[8]; 0.942 for MV1+; and 0.953 for MV1+/CB[8]. 
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Figure 5.13 a) Time-dependent absorbance spectra for 22+ in aqueous solution recorded at 15 s 

intervals over 25 min. b) Time-dependent absorbance spectra for 22+ in same solution but with one 

equivalent of CB[8]. c) Time-dependence of the absorbance maxima in Figure 5.13a at λ = 536 

nm and in Figure 5.13b at λ = 623nm. d) Time-dependent absorbance spectra for 32+ in aqueous 

solution. e) Time-dependent absorbance spectra for 32+ in the same solution but with one 

equivalent of CB[8]. f) Time-dependence of the absorbance maxima in Figure 5.13d at λ = 534 nm 

and in Figure 5.13e at λ = 622 nm.  

 

 

 
Figure 5.14 a.) Time-dependent absorption spectra for MV•+ in phosphate buffer (pH7) recorded 

at 15 s intervals over 25 min. b) Time-dependent absorption spectra for MV•+ in same solution but 

with one equivalent of CB[8]. c) Time-dependence of the absorption maxima in Figure 5.14a at λ 

= 603 nm and in Figure 5.14b at λ = 538 nm. 
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5.4 Discussion. 

The data presented here demonstrate the formation of an unusually stable radical viologen 

species through supramolecular complexation in solution that is disctinct from previously explored 

viologen radical pimers. This species, a monoradical bis-viologen, has never previously been 

observed, but similar species have been observed in the case of the “blue-box molecule”296, 301, 307-

309 (Figure 5.18) and in non-aqueous solvents.298 This is the first time that a simple bis-viologen 

monoradical species has been isolated through supramolecular assembly. It is also the first time 

that a viologen radical species has been shown to be stabilized toward reaction with dissolved 

oxygen. This is further discussed below for the case of compound 2. Compound 3 demonstrated 

similar results as compound 2. 

Intra- and Intermolecular Factors Necessary to Form Stabilized, Reduced Viologen Dimer. 

Singly reduced viologens can form pairs, often called pimers, in solution with strong overlap of 

the π orbitals between the two units.296, 298, 302, 310 The formation of these pimers can have large 

association constants (~102 M-1)253 since the π-π stacking allows for stabilization of the individual 

viologen radicals.299, 311 Studies have shown that this stabilization is mostly attributable to 

dispersion and delocalization of the two SOMO orbitals across all surfaces of the stacked viologen 

moieties.299, 312-314 Generally, such interactions have been described as pancake bonding.299, 311-314 

These delocalized bis-radical species form readily when viologens are reduced in sufficiently high 

concentrations305, 315 or when reduced viologen units are in forced close proximity.296 The latter 

scenario is clearly evidenced in the voltammetry of free 24+ and 34+ by the notable positive shift of 

the voltammetric response for the reduction from the 4+ to 2+ states compared to the reduction of 

MV2+ to MV•+. The greater positive shift in redox potential as well as the clearer voltammetry 

observed with 2 as compared to 3 suggest that the preorganization of direct π-π overlap observed 

in modeling the rigid ortho-benzyl linkage increases the likelihood of stabilized π-π stacking 

between radical viologen units of 22+. The equilibrium geometry and flexibility of the propyl linker 

provides comparatively less probability that the two reduced viologen units of 32+ are well 

positioned for delocalization of the bis-radical. The voltammetry, NMR, and absorbance data for 

22+ and 32+ are in line with the previous literature on π-stacked bis-radical pimers.253, 296, 305, 315  

In the presence of cucurbituril complexing agents, the reductions of 2 and 3 show evidence 

for reduced viologen radicals unlike the previously described π-stacked bis-radical pimers. 

Observations in the presence of CB[7] show behavior similar to that in previous reports of viologen 
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complexation with CB[7]; that is, a negative shift in the reduction potential and little change in the 

absorbance spectrum.272, 293 This is attributed to the small size of the CB[7] cavity, which is not 

able to accommodate two stacked aromatic moieties.272, 291, 293 CB[8], on the other hand, is 

uniquely suited to host two reduced, tethered, and stacked viologen units simultaneously because 

of its large cavity size. CB[8] thereby promotes the formation of a new type of stabilized radical 

pimer. The existence of this new radical pimer is seen in the splitting of the voltammetric wave of 

2 in the presence of CB[8] and in the blue color and unique absorbance spectrum of partially 

reduced 2 in the presence of CB[8]. This effect is also seen the voltammetry and absorbance 

spectrum of 3. In contrast, the inclusion of two reduced MV+ equivalents in CB[8] show no 

evidence of a stable 3+ radical pimer or otherwise remarkable properties. Previously reported 

reduction of a viologen dimer connected with a longer flexible linker (hexyl) in the presence of 

CB[8] also showed no evidence of a stable 3+ radical state.263 Accordingly, the data here are clear 

that both dimer pre-organization and complexation within a sufficiently large cavity are necessary 

to make the blue viologen dimer in the 3+ oxidation state. 

A scheme showing the elementary electrochemical and chemical steps describing the 

formation of the monoradical for 2 in the presence of CB[8] is proposed in Figure 5.15. 

Presumably, the formation of the corresponding monoradical of 33+ is similar, albeit with 

additional competing equilibria for conformations that are not productive towards the 3+ state. In 

this figure, vertical transitions denote chemical steps constituting either conformation or 

complexation changes while horizontal transitions represent 1e- electrochemical charge transfers. 

Based on the collected voltammetry and calculations of conformer stability (Figures 5.5, 5.6, and 

5.8), the equilibrium form of 24+ has the viologen units spread far apart, i.e. as a linear conformer 

with K2 << 1. This linear conformation of 24+ binds in a 1:1 ratio with CB[8] and the complex has 

a disassociation constant K1 = 8.3 x 10-7 M as measured by ITC (Figure 5.7). The reduction of both 

viologen units on unbound 2 are degenerate, i.e. the standard potentials are equivalent and the 

reduction processes are independent of each other, as evidenced by the narrow ΔEp in the 

voltammetry of 24+ alone.303 Based on the shift of the voltammetric wave of 24+ relative to the 

voltammetric wave of MV2+, the value of K3 >> 1, i.e. 22+ changes conformation to stabilize the 

viologen units by co-facial pairing. In the presence of CB[8], we infer the paired form of 22+ 

partitions readily into CB[8] with K4 > K1 since the voltammetric wave at relatively fast scan rates 

(> 1 V s-1) for the 4+/2+ condition is shifted towards an even more positive potential (Figure 5.8).  
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Figure 5.15 Proposed elementary chemical and electrochemical steps involved in the reduction of 

2 in the presence of CB[8]. 

 

Reduction of 24+ in the presence of CB[8] at slower scan rates (< 0.5 Vs-1) allows access to the 

significantly stabilized 4+/3+ transition, for which the folded 23+ is likely very tightly associated 

with CB[8], combining to a remarkable positive shit in the 1e- reduction wave. The large value of 

K4 is also responsible for the scan rate independence of oxidation observed for 22+ in the presence 

of CB[8]. The preorganized structure requires no conformational rearrangement to access the 

stable 23+ complex, and so sequential 2+/3+ and 3+/4+ oxidation waves are observed at all scan 

rates. 

Electronic Structure of Reduced, Viologen Monoradical The presented absorbance spectra 

clearly indicate that the electronic structure of the 3+ state is very different than that of the bis-

radical form or even of a singly reduced methyl viologen in organic solvents.296, 306 To gain insight 

into this empirical observation, molecular orbital calculations were performed on energy 

minimized structures of 23+ and 22+ encapsulated in CB[8]. Figure 5.16 shows computations of the 

energetics for the 3+ radical form of 2 relative to the 2+ bis-radical. In free solution both species 
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yield equilibrium geometries favoring a partially-folded state that balances charge-repulsion with 

radical dispersion forces. For 2, this geometry leads to minimal overlap and perturbation of the 23+ 

singlet highest occupied molecular orbital (sHOMO) and predicts electrochemical near-

degeneracy of the 2nd reduction to the 2+ state (Figure 5.16). In the presence of CB[8], both reduced 

species show strong complexation inside the host cavity. The resultant equilibrium geometry of 

the dimer is completely folded with a π-π stacking distance < 3.6 Å. In this conformation within 

CB[8], the sHOMO of 23+ shows a strong and stabilizing perturbation due to delocalization of the 

radical across both viologen moieties, with perfectly symmetric constructive overlap at the π-π 

interface (Figure 5.16). This constructive (bonding) symmetry suggests a significant stabilization 

of the complex between 23+ and CB[8], with a majority of the 23+ sHOMO orbital density existing 

between the aromatic groups, effectively burying the radical between the two viologen units. 

Essentially an identical sHOMO orbital was calculated for energy-minimized 33+
 in CB[8] (Figure 

5.16). 

 

 
Figure 5.16 a) The relative energies of molecular orbitals from DFT calculations (Spartan 

16,B97D, 6-311+G*) showing the 3+ and 2+ states of 2 both without and within CB[8]. b) 

Graphical depiction of the LUMO of 2 in the 3+ oxidation state and the sHOMO of 2 in the 2+ 

oxidation state. c) The spin densities of 2 inside CB[8] in the 3+ and 2+ oxidation states are shown, 

with CB[8] omitted for clarity. Side and top views of the 2 are shown, with the blue regions 

highlighting the regions where the radical density is highest. 

 

The spin density map of the complex between 23+and CB[8] further supports the point that 

the transferrable electron is not readily accessible. The density of unpaired spin is mostly located 

on the internal π-surface of the folded dimer (Figure 5.16). Conversely, the sHOMO of the 12+ 
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dimer in CB[8] has a node running between the two viologen units at the π-π interface (Figure 

5.16). This aspect can also be visualized in the corresponding spin density map of the complex 

between 22+ bis-radical and CB[8] which shows significant unpaired spin density on both the 

internal lower energy singlet HOMO-1 (sHOMO–1) and external (sHOMO) viologen surfaces. 

These characteristics are further consistent with the “pancake bonding” concept.316-319 We posit 

that the uniform distribution of electron density on both surfaces of the viologens for the sHOMO 

orbital of 22+ (and 32+) results in good electronic coupling with oxidants and corresponding fast 

electron transfer. 

 Stability in the Presence of O2 Based on the preceding discussion, we propose that the 

resultant stability of 23+ and 33+ complexed with CB[8] in air is largely a consequence of slower 

charge-transfer kinetics. The observed stability against oxidation of these species by O2 is in accord 

with their proposed electronic structures. Since the CB[8] cavities force the viologen units in close 

proximity to form a stable pocket where the radical electron resides between the two aromatic 

units, this structure inhibits electronic coupling with external oxidants. In effect, this transferrable 

electron becomes significantly less accessible to oxidants like O2 and hence the rate of oxidation 

of the viologen dimer back to the 4+ state is slowed. In effect, the viologen rings represent 

tunneling barriers that inhibit transfer of that specific electron. For oxidation of the 2+ state, the 

viologen rings do not act as tunneling barriers since the electron density is explicitly located on 

their exterior as well as interior. As a result, O2 can readily oxidize the 2+ state even when the 

dimer resides inside of CB[8]. A further contrast along these lines is clear when considering the 

spin density map for the energy-minimized conformation of two MV+ in CB[8]. In this case, the 

pimer adopts a twisted conformation (Figure 5.17). 

 

Figure 5.17 Energy minimized structure (hydrogens not shown) (a) and spin density map (b) of 

the 2(MV+) pimer showing the known twisted conformation of the viologen moieties. 
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 Relation to Other Viologen Materials Although this report is the first explicit use of pre-

organization and complexation principles to stabilize a reduced viologen, there are two examples 

that have some parallels. The first area is redox active polymers based on viologen moieties.257-259 

In the context of charge-storing catholytes, an organic polymer with pendant side chains consisting 

of the ortho-benzyl viologen dimers has been reported.259 Unlike other poly-viologens, this 

particular polymer featured a reduced form that was unusually stable in air. The origins of this 

stability were not explored since that particular material was not easy to oxidize back 

electrochemically and therefore not deemed readily useful for rapid charge/discharge cycling in 

redox flow batteries. The oxidation state of this unusually stable viologen was the fully reduced 

species, i.e. each viologen dimer in the polymer was a 2+ bis-radical species. Thus, the stabilization 

effects were not the same as the stabilization of the 3+ viologen monoradicals described here. 

Nevertheless, it is possible that the polymeric structure afforded an environment that forced the 

viologen dimers into a stabilized conformation, similar to the synergistic effects between 

preorganization and complexation seen here. 

 Similarly, dually tethered viologen dimers with the proper structure might also enable the 

3+ monoradical state. Specifically, cyclophane compounds can have similar structures as 23+ 

complexed with CB[8], but this is because both ends are linked by phenyl groups rather than 

because of complexation. The most famous cyclophane is cyclobis(paraquat-p-phenylene), i.e. 

"blue-box" (Figure 5.18), and is widely employed in catenanes and rotaxanes.307, 320-321 The space 

between viologen units in para-“blue-box” compounds is large enough to accommodate guest 

molecules but conversely precludes the possibility of forming a tight pocket to stabilize the 3+ 

monoradical. Accordingly, these compounds have never shown a stabilized reduced state. The 

ortho form of this cyclophane is less studied. The small space between viologen units precludes 

molecular guests and this molecule is exceedingly difficult to synthesize with high yields. Its 

synthesis requires inordinately long reaction times because of solubility incompatibilities of the 

precursors and low concentrations to prevent polymerization pathways.309, 322 The available data 

on the electrochemical properties of this compound are scarce, with only a few reports showing 

some optical data upon reduction or photoexcitation.310, 323-325 Still, these scant data are in accord 

with the data shown here and suggest the electrochemical properties (and stability in air) of ortho-

“blue-box” could be similar. Experimental verification of this hypothesis would prove insightful. 
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However, the larger take away of this work is that the combination of intramolecular pre-

organization and complexation of much simpler-to-synthesize viologens circumvents the need to 

prepare such cyclophanes. More work is needed to determine whether design improvements can 

be made to further enhance the stability of reduced viologens. 

 
Figure 5.18 Structures of (left) cyclobis(paraquat-p-phenylene) and (right) cyclobis(paraquat-o-

phenylene). 

 

5.5 Conclusions. 

This work demonstrates that it is possible to form a stable, reduced viologen radical in 

aqueous solution through a combination of intramolecular and supramolecular assemblies. The 

hierarchical reduction of pre-organized viologen moieties and encapsulation of this folded species 

inside the cavity of the rigid macrocyclic host CB[8] accesses a conformation that specifically 

stabilizes a monoradical, 3+ cation species. This reduced radical possesses a distinct visible light 

absorbance profile that is unlike any previously reported viologen pimer. Instead, its optical 

properties bear strong resemblance to bis-viologen cyclophanes with ortho-benzyl linkers. Unlike 

such cyclophanes which are difficult to synthesize, the compounds shown here can be synthesized in 

almost quantitative yields and the supramolecular assemblies form readily in water upon 

electrochemical reduction. These encapsulated monoradicals are significantly more stable in the 

presence of O2, highlighting a unique reactivity relative to other viologen species. Molecular 

modeling analyses suggest the stability of this monoradical species results from the central location 
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of the SOMO between the viologen rings. Due to the ease of preparation, these monoradical 

compounds are amenable to further spectroscopic studies that detail their electronic structure. 

More generally, these results suggest new design motifs for viologens in applications where storing 

reduced equivalents of charge such as electrochromic windows, redox flow batteries, and solar 

fuel storage systems is critical. 
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6.1 Covalent grafting small molecules to RGO thin films 

Molecular catalysts can be immobilized on electrode surfaces through covalent grafting to 

the surface.34, 214-216 Covalent grafting is advantageous over physisorption (discussed in Chapter 3) 

because it is inherently a more robust attachment method (see Introduction). Graphitic materials 

provide convenient surfaces for grafting small molecules as they provide many functional group 

handholds. Not only do graphitic carbons contain C=C and C-H functionalities, but native oxides 

at defect regions in the form of C-OH, C-O-C, and COOH groups also exist on carbon surfaces. 

This allows for a wide variety of grafting reactions on graphitic carbons. Several examples of 

covalent attachment of small molecules on graphitic surfaces are given in a review by Campisciano 

et al.54 

Described here is preliminary work on three methods for grafting small molecules to RGO 

thin films. Each of these methods has precedent in the literature, but this is the first time they have 

been reported for the particular molecules listed below. Each of these methods can be extended to 

grafting a derivative of the catalyst 1 to RGO films on electrode surfaces. As described below, 

each grafting method requires the molecule of interest to possess a specific functional group (these 

are amine, alkoxysilane, and alkyne). Current work is underway to synthesize derivatives of 1 that 

possess one of these functional groups. 

Bromoaniline grafting to GO films. The first method of covalent attachment involves amine 

attack at epoxide groups on the GO surface. This grafting method has been used extensively in 

published reports, mainly for grafting long alkyl chains to GO to alter its surface chemistry or 

electronic behavior.55, 88-90 Few reports exist on the grafting of functional molecules, such as 

catalysts, to GO surfaces using this method. As a proof-of-concept, in this report 4-bromoaniline 

was grafted to GO. This molecule was chosen because it was thought to exhibit similar steric 

preferences and electronics as the ligands of 1. The method for grafting via amine functionalities 

is extremely simple to carry out; however, it requires the GO to be in suspension during the 

Chapter 6. Future Work 
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reaction. Attempts were made on GO and RGO thin films, but none were successful. Likely steric 

hindrance becomes a limiting factor for reaction on a film surface. 

The reaction was successfully carried out by adding about 50 mg of 4-bromoaniline to 

about 5 mL of a suspension of GO in methanol under a nitrogen atmosphere. This mixture was 

stirred at about 70℃ and aliquots were removed after various periods of time, washed with clean 

methanol, and cast as films on degreased Si wafers. Analysis by XPS shows that the reaction 

reaches approximate completion after only 2 hours (Figure 6.1). Likely the surface coverage can 

be improved by increasing the number of epoxide groups on GO, which can be accomplished 

through epoxidation reactions.326 

Reduction of these bromoaniline-modified GO films to RGO using a solution of 

cobaltocene or cobaltocene in the presence of acid327 led to loss of the bromine XPS signal. 

Assumedly the reducing power of cobaltocene was strong enough to reduce the C-N bonds of the 

grafted molecules. To determine whether reduction of GO to RGO with retention of the 

bromoaniline moiety was possible, electrochemical reductions at varied potentials were attempted. 

This was carried out by casting films of bromoaniline-modified GO on FTO-coated glass 

electrodes, immersing these electrodes in a deaerated 1 M KCl electrolyte containing 1 mM HCl, 

and cycling three times between the open circuit potential and a potential more negative of that. 

Four different films were produced in this way, cycling to -0.75 V, -0.85 V, -0.95 V, and -1.05 V 

(vs. Ag|AgCl), respectively. Figure 6.2 shows the Br 3d and C 1s XP spectra of each film after 

voltammetric cycling. The Br 3d signal does not change in intensity at any of the reduction 

potentials. However, the C 1s peak shape changes dramatically, becoming narrower and with a 

less pronounced shoulder at higher binding energy with more negative reduction potentials during 

CV cycling. This data demonstrates that cycling to -1.05 V in a 1 mM HCl solution results in a 

reduced material with a C 1s peak that displays graphitic character, while retaining the Br 3d signal. 

This grafting method, then, is a viable route for covalently immobilizing a derivative of 1 to RGO 

thin films. 
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Figure 6.1 Br 3d XP spectra of films casted from a GO suspension removed from a reaction 

mixture with 4-bromoaniline after the listed times. 

 

 

Figure 6.2 Br 3d XP spectra (left) and C 1s XP spectra (right) of films casted on FTO from a 

suspension of GO after reaction with 4-bromoaniline. Each film was cycled in a 1 M KCl solution 

containing 1 mM HCl between open circuit potential and the potentials listed to the right in the 

figure three times. 

 

Alkoxysilane grafting to GO. The second grafting method investigated in this thesis 

involves the reaction of an alkoxysilane with the alcohol groups of GO. It is well known that 

alkoxysilanes react with surface alcohol groups. These types of molecules are often used to modify 
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glass and other oxide surfaces.328-330 It has also been shown previously that alkoxysilanes graft 

specifically to GO.54 Trimethoxyphenylsilane (TMPS) was chosen as a proof-of-concept because 

the phenyl group was thought to closely model the sterics and electronics of the ligands of 1. 

Reaction conditions using a slurry of GO and a thin film of GO were both investigated. Figure 6.3 

(top left) shows the Si 2p XP spectrum of a sample of GO taken from a slurry stirred with TMPS 

in methanol at 70℃ in a sealed vessel for 20 hours. Figure 6.3 (bottom left) shows the Si 2p 

spectrum of a thin film of GO that was immersed in a solution of TMPS at 70℃ for 20 hours in a 

sealed vessel. Both spectra show a distinct Si 2p signal approximately at the binding energy of 

SiOx. Reaction on a thin film of GO results in a lower Si 2p peak and a broader C 1s peak. This 

suggests the quantity of TMPS is lower under these conditions because the bulky TMPS molecule 

likely cannot penetrate within the GO film and therefore only reacts at the exposed surface. 

Furthermore, the C 1s signal for the GO that had been mixed as a slurry with TMPS is significantly 

narrowed, indicating a reduction in the overall oxide character of the material. On the other hand, 

the width of the C 1s signal of the GO thin film that had been immersed in a solution of TMPS is 

more similar to that of unreacted GO. (Both C 1s spectra are overlaid with an example C 1s 

spectrum of unreacted GO in Figure 6.3 (top and bottom right).) 

 

Figure 6.3 Si 2p (left) and C 1s (right) XP spectra of GO films after reaction with TMPS. The top 

spectra are from a slurry of GO stirred in a solution of TMPs, and the bottom spectra are from a 

thin film of GO immersed in a solution of TMPS. In red are representative C 1s spectra of an 

unreacted GO film. 
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Future research should investigate the ability of the TMPS-modified GO to undergo 

reduction to TMPS-modified RGO. Since the linkage requires an oxygen functional group on GO, 

it may be labile under reductive conditions; therefore, the reduction potential must be precisely 

controlled in order to retain the TMPS linkage but remove any other oxygen functional group on 

GO. 

Click reaction on GO. The third grafting method involves two sequential steps to modify 

GO. The first is attachment of an azide moiety, which was easily accomplished by following a 

well-cited procedure using sodium azide in water followed by freeze-drying and washing the 

resultant solid with water.331 FTIR spectroscopy was used to analyze the azide content. The spectra 

of GO before and after the azidification are shown in Figure 6.4. After reaction there is a distinct 

band at about 2121 cm-1, characteristic of the antisymmetric N=N=N stretch. For comparison, the 

stretching frequency of pure sodium azide is observed at about 2104 cm-1. XPS survey spectra of 

this material revealed a significant sodium signal. This sodium was removed by washing the 

material with hydrochloric acid (as described in the Methods section of this chapter). The azide IR 

stretch remained after washing with HCl. 

 

Figure 6.4 FTIR spectra of GO (black) and GO after reaction with sodium azide (red). The arrow 

points to the N-N-N stretching peak. 
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The second step in this method involves grafting an alkyne-containing molecule via a 

copper-catalyzed click reaction. This step was less straightforward. 6-Iodo-1-hexyne was used for 

a proof-of-concept, and several attempts using various reaction conditions were made. Every 

attempt at using a dissolved copper species as the catalyst (e.g. CuBr, CuSO4) resulted in a copper 

deposit on the surface of the film, detectable by XPS and sometimes even by eye. The copper wire 

catalyzed click reaction following a modification of the procedure in Reference 332 resulted in the 

cleanest and apparently most successful click reaction. Shown in Figure 6.5 are the XP spectra of 

the I 3d and Cu 2p regions. After 3 days of reaction there was a small but discernable iodine signal 

and a minimal copper signal, showing that the reaction was slow but successful. Future work 

should focus on improving the kinetics of this reaction. Addition of an appropriate ligand may 

facilitate Cu0 dissolution, or reaction with a slurry of GO-N3 may improve reaction kinetics by 

allowing direct contact of the azide with the copper surface. 

 

Figure 6.5 I 3d (left) and Cu 2p (right) spectra of a GO-N3 film after stirring in a solution of 6-

iodo-1-hexyne with a copper wire wrapped around the stir bar (red) and after stirring in a solution 

of 6-iodo-1-hexyne with a normal stir bar. 

 

Current and future work. Current efforts are focused on synthesizing a derivative of the 

benzenedithiolate ligand of 1 that contains one of the functional groups required to perform the 

grafting reactions above, i.e. an amine, an alkyne, or a trimethoxysilane. Future work should focus 

on improving the grafting reactions listed above. Specifically, the silane grafting reaction needs to 

be optimized to give a high surface coverage without saturating all surface oxide groups (which 

would likely influence the conductivity of the RGO). Furthermore, good reduction conditions for 

silane-grafted GO need to be identified. Likely electrochemical reduction will be the most effective 
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route as it is the most controlled process. Additionally, the click reaction needs optimization. 

Surface coverage is low and reaction kinetics are slow. Kinetics can likely be improved by reaction 

in a slurry of GO-N3 or by using an appropriate ligand to solvate Cu0. 

Once a modified catalyst is synthesized and the appropriate grafting method optimized, the 

catalyst can then be grafted to RGO thin films on electrode surfaces and electrocatalysis can be 

compared to electrocatalysis of the physisorbed systems with the expectation that retention of the 

catalyst on the surface will be dramatically improved by grafting.  

 

6.2 In situ x-ray absorption measurements on adsorbed cobalt bis(dichlorobenzenedithiolate) 

X-ray absorption near edge structure (XANES) and extended x-ray absorption fine 

structure (EXAFS) measurements at the cobalt K-edge were conducted of the catalyst 1 adsorbed 

to carbon paper electrodes using beamline 11-2 at SSRL at the Stanford Linear Accelerator Center. 

Carbon paper electrodes were cut from a larger sheet and immersed in a vial containing a 5 mM 

solution of 1 in acetonitrile. These electrodes were soaked for at least 2 hours but up to 2 days 

before measurements were conducted. Measurements were performed by immersing the electrode 

in a cell containing a 0.1 M KPF6 electrolyte solution with a graphite rod counter electrode and a 

Ag|AgCl (saturated KCl) reference electrode. A photograph of the cell is shown in Figure 6.6. A 

Kapton film is glued (with super glue) across the window in the center. The carbon paper electrode 

is positioned in front of that window. The solvent thickness at that point is 1 mm; however, this 

was found to be too thick to achieve a signal, so a stack of small squares of tape (electroplater’s 

tape) was placed on the back window of the cell to push the electrode forward against the front 

window to reduce the solvent layer in front of it. This method of sandwiching the electrode 

between the tape layer and the front window must inhibit diffusion of species in solution to the 

electrode surface; however, we deemed this to be insignificant considering the porosity of the 

electrode itself. 

XANES measurements were taken at four different pH values (acidified with trace metal 

grade sulfuric acid): neutral pH (unbuffered, this is around pH 6), pH 3, 2, and 1. At each pH, 

measurements were taken at a range of potentials between open circuit potential (usually around 

+0.3 V) and -0.9 V, vs Ag|AgCl. Under each set of conditions, three subsequent scans were taken, 

normalized, and averaged. One set of EXAFS measurements was also conducted on a sample in a 
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pH 1 solution at -0.8 V every 30 minutes over the course of 10 hours to determine whether 

degradation occurs under these conditions. 

 

 
Figure 6.6 Photograph of the electrochemical cell used for XAS experiments. Front view (left) 

and top view (right). Kapton film was glued (using super glue) across the window in the view on 

the left. The electrodes were inserted through the holes on the top of the cell in the view on the 

right and the solution was purged via an N2 line inserted through the smallest round hole. The cell 

is not air-tight, but a blanket of N2 was kept flowing over the top of the solution during 

experiments. 

 

 

Figure 6.7 Overlay of normalized Co K-edge XANES spectra for two different samples at neutral 

pH (no added acid). Sample 1 was taken after soaking the electrode in a solution of 1 for about 4 

hours on day 1, and Sample 8 was taking after soaking the electrode for about 2 days on day 5. 

The electrolyte was deaerated 0.1 M KPF6. 
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After plotting the XANES data it became apparent that some small sample to sample 

variations had occurred, as well as variations within a single sample after holding at negative 

potentials. For example, Figure 6.7 shows the data for two different samples, both at neutral pH 

and at open circuit potential. The spectrum for Sample 1 was taken first, and the spectrum for 

Sample 8 was taken about 4 days later. The broader feature at ~7715 eV and the increased 

amplitude at 7725 eV are consistent with coordination environment changes, from largely 4-

coordinate initially to more 5-coordinate after 4 days. There are two possible explanations for this 

finding. First, since the same solution of 1 was used to soak electrodes during the week at the beam 

line, it is possible that the complex underwent a change in solution over time. Some kind of 

aggregation or polymerization may have occurred. However, since the color of the solution 

appeared to remain unchanged, I believe this to be unlikely. On the other hand, since Sample 1 

and Sample 8 were soaked in the solution of 1 for different amounts of time (about 4 hours and 

about 2 days, respectively) it is possible that longer soaking times allow for a change to occur on 

the surface of the carbon electrode. For example, 1 may coordinate a native oxide species on the 

carbon electrode, becoming 5-coordinate. Interestingly, this change in 1 over time, either on the 

surface or in solution, does not appear to affect the electrochemistry. Electrochemical 

measurements obtained from these carbon electrodes were difficult to interpret due to their high 

surface areas and likely large potential gradients across the electrodes. However, in previous 

studies on smaller, planar carbon electrodes, no change in electrochemistry related to a variation 

in soaking times was observed. 

In comparing spectra for one sample at different potentials, it is also apparent that small, 

irreversible changes occur when moving to low potentials. Figure 6.8 shows spectra at a series of 

potentials at each pH point. These series of data were taken starting at open circuit potential (OCP) 

and then moving progressively more negative, then returning to more positive potentials, ending 

at OCP again. For example, for the sample at neutral pH, a spectrum was taken at OCP; then the 

potential was held at -0.4 V and a spectrum was taken; then it was held at -0.6 V and a spectrum 

was taken; then -0.8 V, -0.9 V, back to -0.4 V, and finally OCP again. Each spectrum was an 

average of three scans each of which took about 10 minutes to complete, totaling 30 minutes for a 

single spectrum. It is apparent from these data that some small changes have occurred at OCP after 

ramping to negative potentials. In most cases, upon return to OCP, the structure looks more 5- or 
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6- coordinate than initially (by the less prominent feature at about 7715 eV). This could be 

explained by the cobalt complex coordinating at the axial position to an oxide group on the carbon  

 

Figure 6.8 Overlay of Co K-edge XANES spectra with the electrode held at various potentials at 

each pH. Each electrode was first held at OCP, then brought to -0.4 V, then -0.8 V, then -0.9 V, 

and then it was brought back through the potentials in reverse order, ending at OCP. Hence, OCP 

(1st) was the first spectrum and OCP (2nd) the last spectrum taken in each case. (Note that at pH 

2, no data was taken at -0.4 V, hence the missing spectra.) The electrolyte was deaerated 0.1 M 

KPF6 acidified with sulfuric acid. Each spectrum was taken on the same spot on the same (i.e. the 

sample position was not moved between scans). 

 

paper electrode. It is also possible that further intercalation occurs when the electrode is held at 

negative potentials and that this intercalation sufficiently alters the structure to produce the spectral 

variations observed in Figure 6.8. Further EXAFS measurements and fittings can help determine 
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the precise structure of 1 before and after ramping to negative potentials. However, at this time it 

is not clear whether these small changes are purely electrochemical based (i.e. whether ramping to 

negative potentials is enough to change the spectrum of 1 irreversibly) or whether it is a 

combination of negative potentials and illumination by the x-ray beam that causes irreversible 

damage to the sample. If it is the former case, this is of scientific interest and merits further study. 

If it is the latter case, experiments may need to be performed on a less intense beamline to limit 

beam damage to the sample. Further experiments are needed to determine the exact origin of this 

observation. 

 

Figure 6.9 Overlays of Co K-edge XANES spectra for individual carbon paper electrodes with 

adsorbed 1 at the highest (OCP) and lowest (-0.9 or -0.8 V) potentials over the range of pH values. 

The electrolyte was deaerated 0.1 M KPF6 acidified with sulfuric acid. 

 

In Figure 6.9, the spectra for each pH point at OCP and at the lowest potential are overlaid. 

One important takeaway from these results is that the reduction of 1 can be seen at all pH points. 

That is, a Co(II) species can be identified even under low pH when catalysis is fast (although 

smaller amounts of Co(II) are present in this case). The reduction is very apparent by the shift of 

the edge to lower energy in neutral pH, pH 3, and pH 2. In the pH 1 solution, the edge shift is less 

dramatic but still occurs to a small extent. This is likely because catalysis in pH 1 solutions is fast, 

meaning the reduced cobalt species is transient. Because the XANES measurement is an average 

of all cobalt species over the timescale of the scans, the spectrum then shows more oxidized cobalt 

character than reduced cobalt character. This implies that electron transfer to the Co(III) catalyst 

is the rate-limiting step for proton reduction catalysis under these conditions. Based on this finding, 

further XAS experiments are merited. If inconsistencies in the data and data collection can be 

limited, we may be able to derive the structure of the reduced Co(II) species at low pH and 

determine whether this is a protonated intermediate in the catalytic cycle. 
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Lastly, Figure 6.10 shows a fit of a set of EXAFS data of a carbon electrode with adsorbed 

1 in a pH 1 solution held at -0.8 V. This electrode was soaked for about 2 days in the solution of 1 

before conducting the EXAFS measurements. The XANES spectra of this electrode, taken before 

the EXAFS spectrum, are shown in Figures 6.8 and 6.9 (at pH 1). Approximately 20 scans were 

taken and averaged to produce a single spectrum, which was fitted with a shell of four sulfur atoms 

at 2.19 Å. This bond distance matches the crystal structure for 1.248 The peak at about 3.8 Å is due 

to the near linearity of the Co---C---C interaction (164˚), which gives rise to a multiple-scattering 

process. This fit seems to suggest that the cobalt species is the original 4-coordinate square planar 

bis(benzenedithiolate) complex or something extremely similar. This electrode was soaked for a 

long time and held at a negative potential for a long time, which has been shown by XANES data 

to induce a change in the structure. One possible explanation for this phenomenon is that the cobalt 

species that initially adsorbs to the carbon electrode is coordinated axially to a native oxide species 

on the electrode and that this bond is broken at low potential.  In this case, the change that is seen 

in the XANES spectra after ramping to negative potentials at low pH could be due in part to a 

return to the four-coordinate, Co(III) state. The changes seen at neutral pH, involving a shift in 

edge energy in addition to a change in shape, are more consistent with reduction of Co.  This, of 

course, merits further study. EXAFS spectra at each potential and pH point should be collected 

and fitted to obtain structural information. 

 

Figure 6.10 Fitted EXAFS data of a carbon paper electrode with 1 adsorbed, held at -0.8 V vs 

Ag|AgCl. The electrolyte was deaerated in 0.1 M KPF6 and acidified to pH 1 with sulfuric acid. 

Approximately 20 scans were taken and averaged. 
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Future work. Further XANES and EXAFS data should be collected on this same system, 

but the soaking times for each electrode should be kept precisely the same. Additionally, the 

solution of 1 used for soaking should be either checked by UV-visible absorption spectroscopy 

daily to ensure it is not degrading, or the solution should be remade daily to prevent degradation. 

Experiments should be also conducted to determine whether an irreversible electrochemical 

change occurs on the adsorbed catalyst when ramping to negative potentials or if the x-ray beam 

itself damages the sample at negative potentials. This can be accomplished by (1) taking a spectrum 

at OCP, (2) ramping to a negative potential and taking a spectrum, (3) returning to OCP and taking 

a spectrum, and then (4) moving to a new spot on the sample and taking a spectrum. If the spectrum 

at the new spot is the same as spectrum 3, then the irreversible change is purely electrochemical 

in nature. If it is instead the same as spectrum 1, then the change is partially beam-induced. 

EXAFS spectra should then be collected at different pH values and different applied 

potentials to more precisely determine the structure of the catalyst before and after the irreversible 

change occurs. Additionally, XPS experiments may also help understand the changes we see in 

the cobalt species. For example, the additional peak at 787 eV seen in the XP spectrum of 1 on 

RGO in Chapter 3 (Figure 3.2) may be related to the change in the XANES data after long soaking 

times. Specifically, if longer soaking times result in a change in the way 1 binds to the surface, this 

may result in two different cobalt XPS binding energies. 

6.3 Heterogeneous photoelectrocatalysis using p-GaP photoelectrodes with an electrocatalyst 

adsorbed to an RGO thin film 

Photoelectrochemical water splitting is a promising clean source of hydrogen gas as the 

reaction can be driven partially or entirely by sunlight. The RGO films developed in Chapter 2 and 

modified with a proton reduction catalyst in Chapters 3 and 4 can be used on a semiconductor 

photoelectrode for photoelectrocatalytic proton reduction. Because RGO films are highly 

transparent, they allow an underlying semiconductor to absorb sunlight, and because of their 

electronic conductivity and ability to bind a molecular catalyst, they can facilitate electron transfer 

from the excited semiconductor electrode to the catalyst. Some preliminary work using p-type 

gallium phosphide as an electrode material is presented here. 
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Figure 6.11 Photocurrent response of a p-GaP(100) photoelectrode in deaerated 0.1 M 

tetrabutylammonium perchlorate in acetonitrile with 10 mM trifluoroacetic acid with various 

concentrations of 1. A platinum mesh counter electrode and platinum wire quasi-reference 

electrode were used. The scan rate was 50 mV/s and the light intensity was 100 mW/cm2 white 

light. 

 

Initially, the catalyst 1 (discussed in Chapters 3 and 4) was dissolved in electrolyte solution 

and bare planar p-GaP(100) wafers were used as electrodes. The electrolyte consisted of 0.1 M 

tetrabutylammonium perchlorate (TBAP) in acetonitrile with 10 mM trifluoroacetic acid (TFA). 

The photocurrent responses of this system under 100 mW/cm2 white light (halogen lamp) are 

shown in Figure 6.11 Upon addition of 0.1 mM 1 to the solution, the onset current shifted positive 

by about 400 mV. After raising the concentration of 1 to 0.2 mM, a pre-wave appeared as a 

shoulder at about -0.5 V. It is not clear what process caused this wave. 

After verifying the ability of p-GaP to facilitate charge transport to 1 under illumination 

thereby catalyzing proton reduction, GO films were dropcasted on methylated p-GaP(111A) 

electrodes (methylated following the Grignard procedure in Reference 333) and reduced using 

cobaltocene (as in Chapter 2). It should be noted that depositing RGO films on bare p-GaP 

electrodes caused severe degradation of the GaP surface, resulting in no photocurrent response; 

therefore, methylation of the GaP surface was performed to inhibit this degradation. The 

methylated GaP electrode modified with an RGO thin film was immersed in the same electrolyte 

solution as used in the paragraph above (0.1 M TBAP and 10 mM TFA in acetonitrile). The 

photocurrent responses (Figure 6.12 were not as pristine as with a bare GaP surface; however, it 

is apparent that current onset occurred at a slightly more positive potential with the addition of 1. 

This demonstrates that charge transport from p-GaP to 1 can occur through a thin RGO film. 
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Figure 6.12 Photocurrent response of a methylated p-GaP(111A) photoelectrode with an RGO 

film in deaerated 0.1 M tetrabutylammonium perchlorate in acetonitrile with 10 mM trifluoroacetic 

acid with various concentrations of 1. A platinum mesh counter electrode and platinum wire quasi-

reference electrode were used. The scan rate was 50 mV/s and the light intensity was 100 mW/cm2 

white light. The dashed lines are the current in the dark. 

 

 The next experiments attempted physisorption of 1 to RGO surfaces on p-GaP. The 

photocurrent response of RGO thin films on methylated p-GaP wafers were first obtained in 0.1 

M KPF6 solution with 10 mM TFA in water under 100 mW/cm2. These wafers were then immersed 

in a 5 mM solution of 1 in acetonitrile in an inert-atmosphere glovebox for 40 minutes. After 

rinsing and drying under a nitrogen stream the photocurrent response was again obtained. 

Surprisingly, the onset of current was shifted to more negative potentials than before soaking in 

catalyst (Figure 6.13. This suggests that soaking in the catalyst solution somehow degraded the 

GaP-RGO interface. Possibly trace oxygen or water in the solution damaged the GaP surface. 

In a final experiment, solutions of GO and 1 were mixed before casting (following the 

procedure for forming embedded films in Chapter 4). This mixture was dropcasted on phenylated 

p-GaP wafers. The GO was reduced to RGO by holding the wafers at -0.4 V vs Ag|AgCl for 300 

s in 0.1 M KPF6 with 10 mM TFA in water under 100 mW/cm2 white light. The onset of 

photocurrent with these electrodes was not different between electrodes with 1 and electrodes 

without 1. As can be seen in Figure 6.14, the variation between two identical electrodes exceeds 

the difference between electrodes with 1 and electrodes without 1. 

In order to obtain more consistent results, GO films fabricated by spincasting were 

developed in the hopes that these would be more uniform and controllable than films fabricated 
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Figure 6.13 Photocurrent response of a phenylated p-GaP(111A) photoelectrode with an RGO 

film before (black) and after (red) soaking in a 5 mM solution of 1 in acetonitrile in a glovebox for 

30 minutes. The supporting electrolyte was 0.1 M KPF6 in water with 10 mM trifluoroacetic acid. 

A platinum mesh counter electrode and a Ag|AgCl reference electrode were used. The scan rate 

was 50 mV/s and the light intensity was 100 mW/cm2 white light. 

 

 

Figure 6.14 Photocurrent response of phenylated p-GaP(111A) photoelectrodes with an RGO film 

(black and blue) and with an RGO film embedded with 1 (red and pink). The supporting electrolyte 

was 0.1 M KPF6 in water with 10 mM trifluoroacetic acid. A platinum mesh counter electrode and 

a Ag|AgCl reference electrode were used. The scan rate was 50 mV/s and the light intensity was 

100 mW/cm2 white light. 

 

by dropcasting. Unfortunately, however, other issues arose when using the spincasting method. 

GO can be spincasted on hydrophilic surfaces when suspended in methanol. Gallium phosphide 

surfaces can be made hydrophilic by a Grignard type functionalization resulting in a terminal 
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benzyl alcohol group. However, the hydrophilic surface that was beneficial for spincasting GO 

was detrimental after the GO was reduced to RGO. Where GO is hydrophilic, RGO is hydrophobic 

and it was seen to delaminate quickly from benzyl alcohol terminated GaP surfaces under 

photoelectrochemical experiments in acidic water. 

Future work. One option for spincasting adherent RGO films is to functionalize the GaP 

surface with a group that can alternate between hydrophobic and hydrophilic character. For 

example, the functional group in Figure 6.15 can rotate about the methylene bond to direct either 

the vinyl group (which is hydrophobic) or the alcohol group (hydrophilic) upwards. On this type 

of surface, when exposed to a protic solvent, like methanol, the surface group should orient with 

the alcohol group upward, presenting a hydrophilic surface. When the GO film is reduced to RGO, 

the surface bound moiety should rotate so that the vinyl group faces upward, presenting a 

hydrophobic surface. Developing a GaP surface functionality with these characteristics is one 

option to move forward with this project. Another option is to use a different deposition method 

to obtain highly reproducible, uniform thin RGO films. Several methods exist in the literature, 

such as Langmuir-Blodgett, spray-casting, and Meyer rod coating.81-82, 334-336 If highly uniform, 

reproducible RGO thin films can be formed on p-GaP, then photoelectrochemical measurements 

should show better performance with 1-modified RGO films compared to plain RGO films. 

 

 
 

Figure 6.15 Possible functionalization of a gallium phosphide surface that can present both a 

hydrophobic (left) and hydrophilic (right) surface. 

 

However, even with the poor reproducibility of photoelectrochemical measurements on 

RGO-modified GaP photocathodes, it is possible that any potential gain with this system in the 

presence of 1 is minimal. Therefore, in addition to the experiments described above, experiments 

using other semiconductors such as p-Si should be conducted. Furthermore, wide-bandgap 

semiconductors, such as TiO2 or NiO, can be used with an adsorbed sensitizer in addition to 1. The 
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dye crystal violet (λmax ~590 nm) was shown in Chapter 2 to adsorb strongly and remain 

electrochemically active on RGO films. Adsorbing both crystal violet and 1 to an RGO film on a 

wide-bandgap semiconductor is worth investigating as a sensitized photoelectrocatalytic system. 

 

6.4 Passivation of n-Si photoelectrodes with RGO thin films 

Silicon is a common material for both photoanodes and photocathodes in 

photoelectrochemical energy conversion. When used as a photocathode, Si is highly stable, but 

when used as a photoanode the surface is susceptible to oxidation, especially in aqueous and 

oxygenated media.337-338 In order for silicon to be viable as a photoanode material for water 

oxidation, the surface must be passivated to prevent silicon oxidation. Chemical passivation 

techniques involve saturating “dangling bonds” at the surface, i.e. binding small molecules to 

surface defect sites. This lowers the Si surface energy and makes it less likely to react with species 

such as O2 or H2O.339-340 Physical passivation involves deposition of an organic or inorganic layer 

on the Si surface that acts simply as a physical barrier to reactive species.341 Graphene has been 

shown previously to passivate n-Si photoanode surfaces against oxidation in aqueous media.43, 76-

77 The combination of a physical passivation layer on top of a chemically passivated surface should 

doubly extend the lifetime of a silicon surface under oxidative conditions, by simultaneously 

lowering the energy of the surface atoms and physically blocking reactive species from 

approaching the surface. To demonstrate this effect, data are presented in this section detailing the 

use of RGO thin films as a physical passivation method on chemically passivated n-Si 

photoanodes. 

Ultra-thin RGO films were prepared on n-silicon substrates by spincasting a methanolic 

suspension of GO, followed by reduction to RGO in a 15 mM CoCp2/TFA solution in the glovebox 

(see Chapter 2 for details on the reduction method). Spincasted films were highly uniform when 

the silicon surface was hydrophilic. To this end, bare silicon surfaces were either etched with O2-

plasma directly before spincasting or chemically passivated with a benzyl alcohol group through 

a Grignard treatment. GO suspensions were spincasted at 500 rpm for 5 seconds, 1500 rpm for 35 

seconds, and 2000 rpm for 1 minute. GO was reduced to RGO by immersion in a 15 mM solution 

of cobaltocene with trifluoroacetic acid for 30 minutes, following the procedure in Chapter 2. 
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Figure 6.16 (left) Electrolysis of a silicon photoanode with (red) and without (black) an RGO thin 

film under 0.5 V and 100 mW/cm2 white light. (right) Photocurrent response of the Si/RGO 

photoanode after the electrolysis. The electrolyte was 0.5 M K4Fe(CN)6 in 0.2 M phosphate buffer 

(pH 7). Platinum mesh was used as the counter electrode and Ag|AgCl was used as the reference 

electrode. 

 

Figure 6.16 (a) shows electrolysis data of a bare n-Si electrode (black) and a bare n-Si 

electrode with an RGO film (red). The electrodes were held at 0.5 V (vs Ag|AgCl) under 50 

mW/cm2 white light (halogen lamp) in a solution of 0.5 M K4Fe(CN)6 in 0.2 M phosphate buffer 

(pH 7). Platinum mesh was used as the counter electrode. Current on both electrodes dropped off 

extremely quickly, reaching a plateau within seconds. The initial current and the final plateau 

current of Si/RGO were higher than those of bare Si. Cyclic voltammograms of the Si/RGO 

electrode after electrolysis are shown in Figure 6.16 (b). Current under illumination was not 

different than current in the dark at the electrolysis potential. From this data it can be concluded 

that the higher current from Si/RGO compared to bare Si was due to an exceptionally high dark 

current. This may be due to the formation of a large defect layer on Si during the RGO deposition 

process. 

Figure 6.17 shows data corresponding to silicon wafers functionalized with a benzyl 

alcohol group (termed Si-BnOH) with and without an RGO film. Passivation with the benzyl 

alcohol group helps to protect the silicon surface during RGO deposition. Figure 6.17a shows 

cyclic voltammetry of fresh Si-BnOH and Si-BnOH/RGO electrodes in 0.5 M K4Fe(CN)6 in a 0.2 

M phosphate buffer (pH 7) under 50 mW/cm2 white light (halogen lamp). Both show the typical 

square shape of light-limited current at a semiconductor. The Si-BnOH/RGO electrode 

photocurrent plateaued at a lower value than the Si-BnOH electrode and the plateau region was 
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Figure 6.17 (a) Photoresponse of a silicon (111) photoanode functionalized with a benzyl alcohol 

group with (red) and without (black) an RGO film. (b) Dark current of the same electrodes as in 

(a). (c) Electrolysis under illumination at 0.5 V using the same electrodes as in (a) and (b). (d) 

Photoresponse of the electrodes after conducting the electrolysis in (c). The electrolyte was 0.5 M 

K4Fe(CN)6 in 0.2 M phosphate buffer (pH 7) and illumination in all cases was 50 mW/cm2 white 

light. Platinum mesh was used as the counter electrode and Ag|AgCl was used as the reference 

electrode. 

 

less flat. The former can be explained by light absorbance from the RGO thin film (bulk RGO is 

black) and a less-than-ideal interface between RGO and Si, which would result in a non-ideal 

photocurrent response. This is further supported by the dark current responses shown in Figure 

6.17b. From this data the Si-BnOH/RGO electrode showed clear resistor-like behavior, suggesting 

that even with the chemical passivation, the Si-RGO interface is somewhat resistive. However, the 

electrolysis data (Figure 6.17c) were promising. After holding each electrode at 0.5 V under 50 

mW/cm2, current at the Si-BnOH electrode decayed sharply after about 250 s. While the initial 

current at the Si-BnOH/RGO electrode was lower than Si-BnOH, it did not sharply decay until 

after about 500 s. This points to the ability of RGO to stabilize silicon photoanodes under oxidative 

conditions. Figure 6.17d shows voltammograms under illumination after a 30-minute electrolysis 

at 0.5 V under illumination. Both voltammograms retained the ideal square shape, but the onset of 
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current and plateau of current occurred at more positive potentials for both electrodes, compared 

to the voltammetry before electrolysis, which is indicative of surface degradation. 

The final set of data shown here correspond to Si-BnOH and Si-BnOH/RGO electrodes 

after having been subjected to drying on a vacuum line (~200 mTorr) for two days as an attempt 

to fully dehydrate the RGO film. The ability of an RGO thin film to protect silicon wafers from 

oxidation can clearly be seen from this data. The electrolysis data in Figure 6.18c shows that the 

current from the Si-BnOH/RGO electrode was steady for longer than 20 minutes. At about 22 

minutes, it rapidly droped off. Current from the Si-BnOH electrode, on the other hand, rapidly 

droped off in under 5 minutes. Furthermore, the difference in the quality of photocurrent after a 

~30 minute electrolysis can be seen in Figure 6.18b. While both curves shifted positive compared 

to before electrolysis (Figure 6.18a), the curve for Si-BnOH shifted far more positive than Si-

BnOH/RGO. The electrolysis potential (0.5 V) was still in the plateau current region (i.e. 

maximum current) for Si-BnOH/RGO, whereas it was at the base of the wave (minimum current) 

for Si-BnOH. Furthermore, Figure 6.19 shows XPS data of these surfaces. The Si oxide peak of 

Si-BnOH clearly increased after electrolysis but for Si-BnOH/RGO there was little change. 

 

Figure 6.18 (a) Photoresponse of a silicon (111) photoanode functionalized with a benzyl alcohol 

group with (red) and without (black) an RGO film after drying under vacuum. (b) Photoresponse 

of the electrodes after conducting the electrolysis in (c). (c) Electrolysis under illumination and 0.5 

V using the same electrodes as in (a) and (b). The electrolyte was 0.5 M K4Fe(CN)6 in 0.2 M 
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phosphate buffer (pH 7) and illumination in all cases was 50 mW/cm2 white light. Platinum mesh 

was used as the counter electrode and Ag|AgCl was used as the reference electrode. 

 
Figure 6.19 Si 2p XP spectra of the silicon photoanodes before and after electrolysis under 

illumination. (a) Silicon (111) functionalized with a benzyl alcohol group. (b) Silicon (111) 

functionalized with a benzyl alcohol group and with an RGO film that had been dried under 

vacuum. 

 

 

Future work. Unfortunately, at this point the RGO thin films became irreproducible. 

Spincasting resulted in spotty, thick, or nonexistent films. The cause of this was attributed to a 

change in the chemical functionalities of GO that had been kept in suspension over time. Further 

work is needed to obtain reproducible, uniform thin films of GO again. Once these films can be 

obtained, additional experiments showing reproducible passivation of n-Si under oxidative 

conditions should be performed. The best results so far were obtained when the Si wafer was first 

covalently passivated (with a benzyl alcohol group) and when the RGO film was dried under 

vacuum before performing electrochemistry. The effect of the drying procedure should be 

investigated, i.e. effects of drying time and of vacuum strength. Separately, effects of film 

thickness can be investigated. Additional experiments should be conducted on other unstable 

semiconductor photoelectrodes (such as GaP and InGaP). 

Furthermore, it is worth investigating whether an RGO film can be casted on a bare 

semiconductor surface (i.e. with no initial chemical passivation) without damaging the surface, 

and whether this film alone can passivate the surface. This might be achievable, for example, by 

using a completely air-free and water-free suspension of GO under an inert atmosphere. Due to 

the hydrophilic nature of GO, it will be difficult to obtain a completely water-free suspension, 
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however, with proper use of drying agents and repeated washing with dry solvents, it should be 

possible. 

6.5 Graphene oxide self-assembled monolayers on silicon oxide surfaces 

As discussed in Chapter 3, graphene oxide (GO) can be functionalized with small 

molecules in a variety of ways. Using these functionalization methods, a variety of small 

molecules, proteins, and nanoparticles have been tethered to GO sheets54, 342-344 but little research 

has delved into tethering GO sheets to macroscopic surfaces.345 Tethering GO to surfaces can be 

beneficial in several ways, including inhibition of film delamination, allowing for formation of 

single-layer GO films, and pattering of single-layer GO films. 

Among the many reported GO functionalization methods, alkoxysilane and amino 

functionalities bind to GO through the hydroxyl and epoxide groups, respectively. These grafting 

methods are discussed further in Chapter 3. It is also known that alkoxysilane groups bind to glass 

(silicon oxide) surfaces through terminal hydroxyl groups.330 Using this information, two 

molecular tethers were investigated for the binding of GO monolayers to silicon oxide surfaces. 

They are (3-aminopropyl)-triethoxysilane (APTES) and tetraethylorthosilicate (TEOS) (Figure 

6.19). These species were first bound to silicon wafers containing a native oxide layer by soaking 

the slides in a 1% solution of the appropriate silane in toluene for 24 hours. The slides were then 

rinsed with clean toluene and acetone, dried, and then immersed in a homogeneous methanolic 

suspension of GO. In the case of APTES, the suspension was heated to about 70℃ for 2 hours, 

then cooled, and the slide was rinsed with methanol and then water and dried under a nitrogen 

stream. In the case of TEOS, the suspension was left at room temperature for varied amounts of 

time. 

 

Figure 6.20 Scheme for GO monolayer attachment on silicon oxide surfaces using APTES (left) 

and TEOS (right). 
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AFM images of the modified Si surfaces are shown in Figure 6.20. From these images it 

can be seen that in the case of APTES a full coverage or almost full coverage GO film was present. 

The film was thin enough that individual overlapping GO sheets could be distinguished, suggesting 

it was approximately one sheet thick. However, this should further be confirmed by examining the 

step height at an edge of the film. In the case of TEOS, the surface grafting reaction was much 

slower. After 20 hours soaking in a GO suspension, single GO sheets could be observed scattered 

across the surface. After 4 days in a GO suspension, a higher density of GO sheets could be 

observed. And after 1 week in a GO suspension even more sheets were observed. However, at this 

point it was apparent that the sheets had begun to aggregate in clumps leaving areas of bare glass 

exposed. It was hypothesized that deposition of a GO sheet on a surface leads to aggregation at 

that site over time, in the same way that a crystallite nucleates crystal growth in a solution. Reaction 

of GO with surface-bound TEOS at room temperature was too slow to out-compete aggregation. 

 
 

Figure 6.21 Atomic force micrographs of self-assembled GO films on silicon wafers. (Top) A 

silicon wafer that had been functionalized with APTES and then immersed in a methanolic 

suspension of GO at 70℃ for two hours. (Bottom) Silicon wafers that had been functionalized with 

TEOS and then immersed in a methanolic suspension of GO at room temperature for 20 hours, 4 

days, and 1 week. 
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Future work. From these data it is apparent that a full (or nearly full) coverage GO thin 

film can be obtained on an APTES-functionalized glass surface at elevated temperatures but not 

on a TEOS-functionalized surface at room temperature. Further experiments should be conducted 

to determine whether GO can be bound to APTES-functionalized surfaces at lower temperatures 

or whether a more uniform thin film can be formed on TEOS-functionalized surfaces at elevated 

temperatures. Once GO monolayers can be formed on glass surfaces, these films can be reduced 

to electronically conducting RGO. The pairing of electronically conductive, atomically thin films 

on insulating substrates makes these films viable options for the channel regions in field-effect 

transistors. Further FET experiments should be performed to extract and verify the film’s 

electronic characteristics. Additionally, patterned conductive thin films are useful in the electronics 

and sensing industries. By masking portions of the glass substrate during functionalization, 

patterned GO thin films should be achievable. 
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This thesis describes efforts toward improving electrochemical energy conversion systems, 

specifically in terms of heterogeneous electrocatalytic solar energy conversion and stabilization of 

redox mediators for use as long-term energy storage materials. Photoelectrochemistry is a 

promising method for the conversion of solar energy to storable chemical fuels. In 

photoelectrochemical cells, sunlight absorbed by semiconductor electrodes immersed in an 

electrolyte solution causes electrons to flow between the semiconductors, which drives redox 

reactions in the electrolyte solution, thereby generating chemical fuels. 

One major obstacle for implementing large scale photoelectrochemical energy conversion 

is high activation overpotentials for redox reactions occurring at electrode surfaces. Addition of 

an electrocatalyst can help mitigate these high overpotentials. Specifically, heterogeneous 

molecular electrocatalysis is a promising platform that has received comparatively little attention 

in photoelectrochemical systems. Molecular catalysts are advantageous over solid-state catalysts 

because they have well-defined active sites that can be more easily understood and controlled. 

Heterogenization of molecular electrocatalysts is desirable because it means less material waste 

than homogeneous systems, and it opens the door to catalysts that are insoluble in the electrolyte 

medium. Heterogenization of a molecular species can be achieved by physisorption to a surface 

using van der Waals forces or by covalent attachment through chemical bonds to the surface. 

Physisorption has the benefit of being cheap and facile but often has the disadvantage of low 

stability. Covalent attachment is generally more expensive and difficult to achieve but can have 

better stability.  

 Both physisorbed and covalent heterogeneous electrocatalytic systems have received 

considerable attention especially using carbon-based electrodes because carbon is amenable to 

modification by both methods. Heterogeneous photoelectrocatalytic systems, however, have 

received far less attention in part because of the high surface-specificity of surface attachment. The 

work in this thesis describes the use of reduced graphene oxide (RGO) thin films on electrode 

surfaces to immobilize a molecular electrocatalyst. These films can be used in 

Chapter 7.  Summary and Conclusions 
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photoelectrocatalytic systems because they are both transparent and conductive, allowing light to 

penetrate to the underlying semiconductor and electrons to penetrate to the electrolyte interface. 

RGO thin films can be deposited on essentially any electrode surface, thereby allowing previously 

studied methods for small molecule immobilization on carbon surfaces to be applied to 

semiconductor electrodes in photoelectrochemical cells. 

A novel method of fabricating thin RGO films is presented in Chapter 2 of this thesis. This 

method is novel in that it uses an outer-sphere chemical reductant to reduce GO films to high 

quality RGO films. Because of the gentleness of the method, these RGO films can be casted on a 

wide variety of substrates. The reducing solution (cobaltocene and an organic acid) are non-

corrosive to substrates like reactive metals (e.g. indium) and flexible substrates like paper, 

demonstrating the applicability of this method to a wide range of substrate materials. This is highly 

beneficial for use in photoelectrochemical systems, considering the low stability of many 

semiconductor surfaces. Furthermore, these RGO films are shown to adsorb the molecular proton 

reduction electrocatalyst cobalt(III) bis(dichlorobenzenedithiolate) (1). The adsorption is assumed 

to be due to π-stacking interactions with the aromatic network of RGO; however, some XPS and 

XAS data suggest that additional interactions with the surface may occur, such as coordination to 

oxide groups. Further characterization using XAS, XANES, and EXAFS is necessary. 

Retention of the adsorbed catalyst on these RGO films is shown to be highly dependent on 

the surface morphology of the RGO. Under turnover conditions, the catalyst is quickly lost from 

smooth RGO films, whereas it is retained for significantly longer times on roughened films. Based 

on these results and published reports on graphite electrodes and RGO electrodeposited on FTO-

coated glass electrodes,69, 217-218 it is hypothesized that the catalyst can intercalate within rougher 

films, thereby becoming mechanically trapped. These data are relevant for research on adsorption 

of small molecules to graphitic surfaces using π-stacking interactions. The work here shows that 

while a molecule may readily adsorb to a surface, the interactions holding it on that surface may 

not be strong enough to retain it during a chemical transformation, such as catalytic turnover. 

However, if intercalation within the graphitic material also occurs, this can help to retain the 

molecule for a much longer period of time. This phenomenon can help explain variations and 

irreproducibility in reports of molecular adsorption to graphitic surfaces where different deposition 

methods and different substrates can produce very different film morphologies. Furthermore, it 

points toward potential approaches for improving stability of physisorbed systems that utilize π-
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stacking interactions. For example, the strength of π-stacking interactions between a molecule and 

a surface may be improved by adding more π-systems or larger π-systems to the small molecule. 

For instance, the use of pyrene ligands rather than benzene ligands may enhance surface stability 

in the case of 1. Another option may be to fabricate reproducibly rough RGO films. If the 

roughness (and surface area) of these films can be defined and controlled and if they are thin 

enough to allow light transmittance, then they can be useful for studying heterogeneous molecular 

electrocatalysis in photoelectrochemical cells. 

Besides the use of rough RGO surfaces, another method to improve catalyst retention 

developed here is the direct embedding of the electrocatalyst 1 in RGO films by co-deposition. 

This is achieved by dropcasting a mixture of a solution of 1 with a suspension of GO followed by 

reduction. This thesis further presents work describing kinetic limiting factors on electrocatalytic 

proton reduction in these electrocatalytic “mixed” films. By varying the thickness of the films and 

the density of catalyst within the films, it is shown that the electrocatalytic current is limited by a 

convolution of factors, most likely diffusion of product and substrate within the film as well as 

electrical conductivity of the film. For thinner films, the current appears to be limited by diffusion 

of either substrate or product (or both), whereas for thicker films, another limiting factor comes 

into play, most likely electrical conductivity of the RGO films. This thesis demonstrates the first 

work on understanding the kinetics of electrocatalysis in embedded RGO films. To date, literature 

has been published on the kinetics of proton reduction in electrocatalytic polymer films239, 241-242 

and other reactions in electrocatalytic inorganic films (such as porous metal oxides).232, 236, 346 

Given the unique structure of RGO compared to conventional polymers and inorganic films, we 

expect the electrical conductivity and diffusion of material into and out of the film to be similarly 

unique.  Further experiments on this front are described in Chapter 4, which will help to identify 

whether product or substrate diffusion is limiting in thinner films and to determine whether 

changes in morphology influence the attainable current in thick films versus thin films. For 

example, determining catalytic reversibility or whether the catalyst can be poisoned by product 

can help determine whether product buildup can affect the system. Statistical imaging of the films 

can help demonstrate whether the surface morphology is consistent over a range of thicknesses. 

In addition to the experiments on physisorbed 1 on and within RGO thin films on electrode 

surfaces, some data on method development for covalent attachment of molecules to RGO films 

are also presented. The following three methods for attachment of small molecules on RGO are 
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demonstrated: attachment of amine-containing molecules via RGO epoxide groups; azidification 

of RGO followed by a copper-catalyzed click reaction with an alkyne-containing species; and 

attachment of an alkoxysilane molecule to RGO alcohol groups. Each of these methods 

successfully grafts a small molecule to the surface of graphene oxide thin films. Reaction with 

silanes appears to give the highest surface coverage and the click reaction appears to give the 

lowest surface coverage. Further experiments to optimize each of these grafting reactions are 

detailed in Chapter 6. Ultimately, these reactions will be used to graft a version of 1 to RGO thin 

films. Current work is focused on synthesizing derivatives of 1 containing amine, alkyne, and 

alkoxysilane functionalities. Once these derivatives are synthesized, RGO films containing the 

three types of grafted catalyst will be compared to each other and to the physisorbed systems. This 

work will demonstrate differences and similarities in the electrochemistry, catalytic activity, and 

stability of different methods of immobilizing 1 on graphitic carbon electrode surfaces. 

The ultimate goal of developing these RGO films with immobilized catalyst is to use them 

on semiconductor electrodes for photoelectrocatalytic proton reduction. Some preliminary results 

are shown in Chapter 6 of this thesis using these RGO films to modify gallium phosphide 

photocathodes. Both surface-adsorbed 1 on smooth RGO films and RGO films embedded with 1 

were deposited on p-GaP surfaces. The data from these experiments are not wholly conclusive but 

suggest that inconsistencies in RGO film deposition lead to large variations in photocurrent and 

onset potential. Further experiments are presented that suggest modifications of the GaP surface 

that will protect the native surface against chemical attack and allow for spincasting of highly 

uniform and reproducible RGO films. Additionally, other types of semiconductors should be tested 

with these RGO thin films, for example Si, which has a very large overpotential for proton 

reduction. 

Chapter 6 also presents some preliminary data that uses RGO thin films to address another 

shortcoming in photoelectrochemical energy conversion. Many semiconductor materials exhibit 

low stability in water and under illumination and applied potential. Silicon is one such material. 

Under illumination and positive bias in water, n-Si rapidly oxidizes to SiOx leading to loss in 

photocurrent and photovoltage. In basic conditions (commonly used in water oxidation) corrosion 

also occurs because SiOx is soluble in basic media. Methods for protecting semiconductor surfaces 

against degradation pathways like this involve chemical passivation by saturating dangling bonds 

at the surface, which lowers the energy of the surface, or physical passivation by depositing a layer 
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that can block reactive species from approaching the semiconductor surface. Many of these 

methods, however, are highly surface-specific and expensive to implement. 

Reported here are data demonstrating the ability of RGO thin films, which are cheap and 

not surface-specific, to passivate n-Si surfaces. Silicon (111) surfaces were first chemically 

passivated with a benzyl-alcohol group and then RGO thin films were spincasted on top. 

Photoelectrochemical and XPS data demonstrate longer-lived photocurrent and less silicon 

oxidation in pH 7 electrolyte on electrodes with the RGO film compared to electrodes without the 

RGO film, suggesting RGO can act as a barrier for reactive species such as OH- and H2O to 

approach the silicon surface. Further experiments should first demonstrate reproducibility of the 

data presented here. Then the ability of RGO to passivate other semiconductor surfaces (such as 

GaP) and in other conditions (such as acidic or basic media) should be investigated. An important 

benefit of using RGO to passivate semiconductor photoelectrodes is that RGO can simultaneously 

be used to immobilize electrocatalysts, thereby addressing two problems associated with 

photoelectrochemical cells. Future experiments should investigate the ability of RGO thin films to 

simultaneously protect photoelectrode surfaces and facilitate heterogeneous electrocatalysis by 

immobilizing a catalyst like 1. 

Chapter 5 of this thesis addresses a different area in photoelectrochemical energy storage. 

While the water-splitting reaction is the most common reaction in fuel-generating 

photoelectrochemical cells, hydrogen gas presents many safety concerns when it comes to storage 

and transportation because of its gaseous form and reactivity with oxygen. Solid-state, liquid, and 

dissolved redox couples do not present these safety concerns and are therefore more desirable than 

H2 as fuel sources in this respect. Viologens, for example, are a class of organic molecules that are 

redox active and are commonly used in solution state or as polymers in electrochemical energy 

storage. One problem that arises when using viologens to store electrochemical energy is their 

sensitivity to oxygen. Viologen radicals readily oxidize in trace amounts of oxygen, which limits 

their shelf-life. 

Chapter 5 addresses this issue by describing the use of cucurbituril cage molecules to trap 

and stabilize a unique oxidation state of bis-viologens. Free in solution, these viologens undergo a 

2-electron reduction, between the 4+ (stable in air) and the 2+ oxidation states. When encapsulated 

within CB[8], an intermediate oxidation state (3+) is accessible. Interestingly, these entrapped 3+ 

bis-viologens are exceptionally stable in the presence of oxygen. Oxidation of solutions of the 



 136 

encapsulated 3+ viologens exposed to air were about an order of magnitude slower than oxidation 

of solutions of the free 2+ viologens exposed to air. Molecular orbital calculations on these species 

suggest that the origin of this stability arises from a SOMO orbital that is embedded between the 

two aromatic moieties of the folded viologen within the cucurbituril. This phenomenon occurs 

because the viologen moieties are forced into a unique conformation by a combination of their 

covalent linkage and encapsulation within the cage molecule. 

This work demonstrates a method for stabilizing a reduced viologen in the presence of 

oxygen by using a combination of synthetic and supramolecular techniques. Understanding the 

basis of this stabilization opens the door for development of other stabilized systems. For example, 

the viologen moieties can be methylated to provide a larger tunneling barrier around the buried 

SOMO electron, potentially slowing reaction with O2 even further. Alternatively, a solid porous 

structure, like a MOF, could potentially be designed with cavities that can host bis-viologens in 

the same way that CB[8] does in solution. In this way, the viologens will be stabilized both by 

forced conformation (as in CB[8]) and by residing inside a solid support into which diffusion of 

O2 should be slow. Looking in another direction, solubility of CB[8] in water is quite poor. 

Development of an alternative cage molecule that has the same effect on bis-viologens but is also 

highly soluble in water would be extremely useful. And lastly, development of a method to 

crystallize 3+ bis-viologens entrapped in CB[8] may also be useful, as a way to store the charged 

material less densely. 

 In summary, this thesis presents important progress in two areas related to 

photoelectrochemical energy conversion and storage. The first is immobilization of a molecular 

electrocatalyst on both electrode and photoelectrode surfaces, which has previously proved 

difficult due in part to the surface-specificity of immobilization techniques. In this thesis, 

immobilization is achieved by use of transparent and conductive graphitic thin films that allow for 

both physisorption and covalent attachment of molecular species. Insights into the role of surface 

morphology of these films on the retention of a physisorbed molecular catalyst as well as limiting 

kinetic factors for electrocatalysis using these films are described. This work presents a cheap, 

facile, and generalizable method for immobilizing molecular electrocatalysts on electrode and 

semiconductor surfaces and describes the first efforts in understanding the fundamental kinetics of 

an electrocatalytic graphitic film. Second, stabilization of organic radicals for long-term storage of 

electrochemical energy is presented. Viologens possess many characteristics beneficial for use as 
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long-term energy storage materials but suffer from fast oxidation in the presence of trace oxygen. 

Synergistic effects from covalent linkage and supramolecular assembly are demonstrated in this 

thesis to thermodynamically and kinetically stabilize two reduced viologen radicals against 

reaction with oxygen. This work presents a facile method that allows for extending the shelf-life 

of reduced viologen radicals and points towards methods for improving this shelf-life by further 

slowing down the reaction rate with oxygen. 
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