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ABSTRACT

Active (i.e. deliberate) electron emission in space is a powerful scientific technique

that often proves problematic due to the spacecraft charging it induces. Indeed, ef-

fective spacecraft neutralization during active electron emission in low density space

plasmas continues to be a challenge. A charge control technique was recently identi-

fied through particle-in-cell (PIC) simulations which promises to deliver this critical

capability. The technique is termed the ion emission model and uses ion emission

from the surface of a dense, quasi-neutral contactor plasma across a plasma sheath

(double layer). This ion emission is shown to balance the electron emission current

from the spacecraft without inducing significant spacecraft charging. Before conduct-

ing in-space demonstration experiments to validate PIC results, ground-based plasma

chamber experiments were needed to help with early validation.

This dissertation focuses on Earth-based plasma experiments conducted in a vac-

uum chamber to validate the ion emission model. These experiments are divided into

four experimental campaigns which addressed distinct aspects of the “spacecraft”-

plasma system. The campaigns examined: 1) the initial, transient “spacecraft” po-

tential and plasma response to simulated electron beam emission, 2) the steady state

plasma response to simulated electron beam emission, 3) the spatial ion emission cur-

rent (and nearby plasma parameters which define it), and 4) how the peak spacecraft

potential during simulated electron emission scales with electron emission current,

emitted plasma current, and ion mass. The results from these experiments support

the ion emission model and add to the physical understanding of ion emission as it

may occur in tenuous space plasmas.

Contributions of this work include:

1. Demonstration of “spacecraft” neutralization during simulated electron emis-

sion. The “spacecraft” potential and bulk plasma potential were found to react

xxiv



in unison. The “spacecraft” potential was found to reach equilibrium tens of

seconds into electron “beam” emission.

2. A measured plasma response to changes in hollow cathode source potential

relative to chamber ground. Langmuir probe measurements of the bulk plasma

potential, floating potential, electron temperature, electron density, and ion

density are presented for two plasma source potentials. The plasma potential

was found to stay within a few electron temperatures of the source potential.

The electron temperature was found to increase for higher source potentials.

Charged particles were found to concentrate near the plasma source for higher

source potentials, while the bulk plasma remained quasi-neutral outside of the

chamber wall’s plasma sheath.

3. Direct experimental validation of the semi-analytical ion emission model. Plasma

measurements of the ion emission region near the chamber wall are presented

via Langmuir probe, retarding potential analyzer (RPA), and emissive probe

measurements of the bulk electron temperature, ion energy distribution func-

tion (IEDF), and spatial plasma potential. These measurements were used as

inputs to the ion emission model and an analytical space-charge limit (SCL)

expression. The ion emission model and SCL emission current predictions were

compared to the measured emission currents and both were found to agree

within 50%.

4. A parametric analysis of physical properties that affect ion emission from a

quasi-neutral plasma. The “spacecraft” potential scaling with simulated elec-

tron emission current was found to follow an exponential function which is likely

defined by the electron temperature. The peak “spacecraft” potential during

electron emission was found to decrease for both lower simulated electron emis-

sion current and ion mass.

xxv



CHAPTER I

Introduction

1.1 Problem Statement

The active, or deliberate, emission of electrons from spacecraft surfaces is a pow-

erful scientific technique that has been used since the late 1960s [1, 2]. Electron

beams have been used during space environment studies in order to produce artificial

aurora, measure ambient magnetic field gradients over large distances, and neutralize

the spacecraft charge (allowing unperturbed measurements of ambient charged par-

ticles) [3–5]. They have also been used for answering fundamental plasma physics

questions, such as the nature of wave-particle interactions or how kinetic beam en-

ergy feeds into plasma waves and instabilities [6]. Most electron beam missions have

taken place in relatively dense plasmas where emitted electron current can be bal-

anced by electron current collection from a dense plasma with only minor changes to

the spacecraft potential. Electron emission attempts in more tenuous plasmas have

been known to encounter serious difficulties associated with spacecraft charging. For

example, when a 6 mA electron beam was last emitted in the low plasma density

environment of the Earth’s magnetosphere, the spacecraft charged so positive that

the beam returned and caused three distinct payload failures [7].

There have been no successful, published electron emission demonstrations exceed-

ing 1 mA in tenuous space plasmas (with densities below 10 cm3) to date, despite
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attempts made by the SCATHA experiment in 1979 [7]. However, that does not mean

that the capability is not required. Even prior to the SCATHA experiment, a mission

concept featuring the emission of a high power (> 1 kW) electron beam from the

magnetosphere was already considered to understand what magnetospheric processes

drive the aurora [8]. This mission concept calls for connecting the spacecraft’s posi-

tion in the magnetosphere to its magnetic footpoint in the ionosphere by firing a high

power electron beam along the local magnetic field and detecting its impact in the

Earth’s upper atmosphere [8]. This mission concept sat idle for decades after the se-

vere spacecraft charging issues encountered on SCATHA. However, renewed research

in electron-emitting spacecraft neutralization (including the work presented in this

dissertation) has resurrected this mission concept in the form of the Magnetosphere-

Ionosphere Connections Explorer (CONNEX) mission [8–10]. There has also been

increased interest in using electron beams to flush the Earth’s radiation belts of ener-

getic, man-made charged particles using beam-induced plasma waves should the need

arise [10, 11]. The demand for spacecraft charging mitigation of high-power electron

beams led to its inclusion in the latest decadal survey for space physics [12, 13].

Numerical and theoretical research has been ongoing at Los Alamos National

Laboratory (LANL) in response to this demand [14–17]. This research has revealed

a promising neutralization technique that relies on ion emission from the surface of a

quasi-neutral plasma. Experimental validation is required to apply the results of this

research to real space missions. In response to this, LANL has partnered with the

University of Michigan to complete a series of experimental plasma campaigns. The

results of these experimental plasma campaigns are the topic of this dissertation.

1.2 Objectives and Contribution

The first objective of this work is to validate the numerical and theoretical space-

craft neutralization research performed at LANL. The second objective is to determine
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and characterize what physical processes may be missing from the developed models.

The third objective is to demonstrate ion emission and “spacecraft” neutralization in

a laboratory setting. Finally, the experiments described have scientific merit in their

own right: they reveal and expand upon fundamental plasma concepts in ways that

are applicable across disciplines.

Contributions of this work include:

1. (Chapter 4) A laboratory demonstration of an isolated plasma-emitter (or “space-

craft”) achieving potential equilibrium while removing a constant electron cur-

rent using a power supply (to mimic “electron beam” emission). Additionally,

“spacecraft” potential and bulk plasma potential measurements when an “elec-

tron beam” is first emitted show that the “spacecraft” potential reaches equi-

librium in a few tens of seconds. Further, electron and ion saturation current

measurements dispersed throughout the vacuum chamber provide insight into

plasma density and current transients during the “spacecraft” neutralization

process.

2. (Chapter 5) A measured plasma response to changes in source potential. Plasma

potential, floating potential, electron temperature, electron density, and ion

density contours are presented for two plasma source potentials. These contours

illustrate how the bulk, quasi-neutral plasma responds to steady state electron

emission for comparison with numerical predictions. This result is applicable

for general plasma science purposes.

3. (Chapter 6) Direct experimental validation of a semi-analytical ion emission

model based on space-charge limited (SCL) ion emission from a positively biased

quasi-neutral plasma [16]. Detailed measurements of the ion emission region are

presented. These measurements were used as inputs to the ion emission model.

Model predictions were compared to measured emission currents and found to
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be in good agreement, paving the way for future model use.

4. (Chapter 7) A parametric analysis of physical properties that affect ion emission

from a quasi-neutral plasma. An array of ion masses, neutral gas flow rates,

and keeper currents were tested to assess their impact on “spacecraft” potential

during electron emission. A statistical analysis reveals scaling laws and cor-

related parameters that must be considered when designing in-space systems.

These scaling laws are also compared to numerical predictions.

1.3 Organization

Chapter 2 introduces the basic concepts used in the remainder of this work.

Plasma science and spacecraft charging fundamentals are presented in a descriptive

and intuitive manner with references to more rigorous source material. A brief his-

tory of spacecraft charging and electron-emitting space experiments is provided to

motivate and contextualize the work presented. Chapter 3 summarizes the numerical

and analytical research relevant to the ion emission model. Chapter 4 presents tran-

sient experiments that characterize the spacecraft potential and plasma response to

“electron beam” emission. Chapter 5 describes the steady state plasma response to

“spacecraft” potential changes (such as those induced by electron emission). Chapter

6 presents detailed measurements in the ion emission region near the chamber wall.

This chapter also inputs these measurements into the ion emission model and space-

charge limit for validation purposes. Chapter 7 presents the results of a parametric

trade study. This experimental study identifies parameters and scaling laws related

to ion emission. Chapter 8 draws conclusions and outlines future work.
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CHAPTER II

Background and Motivation

2.1 Plasma Fundamentals

2.1.1 Motivation

Excess electrical charge accumulation and distribution on a spacecraft often varies

in response to a variety of physical processes. The accumulation of this excess charge

is known as spacecraft charging (as is the field which studies it). To understand which

physical processes dominate spacecraft charging behavior, we must first understand

some aspects of its physical configuration. Aspects that contribute to spacecraft

charging can be categorized as internal (spacecraft) sources and external (environ-

mental) sources. The interplay of these two sources determines a spacecraft’s charge

distribution. Internal sources of spacecraft charging are driven by decisions made by

the spacecraft design team. Some concepts relevant to internal charging sources are

described in this chapter, but it is not meant to be an exhaustive list. As the chap-

ter will also show, many considerations arise when accounting for external sources

of spacecraft charging. Two major sources from the ambient environment are ambi-

ent particles and electromagnetic fields acting upon the spacecraft body. These two

sources can be subdivided into numerous subfields. One such subfield relates to the

subject of charged particles which strike the spacecraft surface. Because these parti-
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cles often deposit charge on the surface they strike, this is a particularly important

spacecraft charging subfield. The ubiquitous presence of charged particles in space

thus necessitates an examination of their properties and behavior in order to under-

stand spacecraft charging at a fundamental level. In the work which follows, we will

discuss critical aspects of these charged particles, or “plasma.”

2.1.2 Plasma Definition

In general terms, a plasma is a collection of unbound charged particles. There are

three requirements for this collection to be defined as a plasma. These requirements

are summarized below in plain English and mathematically.

1. Quasi-neutrality: A plasma is approximately neutral in terms of overall charge

density. A plasma may be non-neutral over very small scale lengths or in per-

turbed regions, but must have approximately zero charge throughout most of

its volume. For plasmas dominated by singly charged ions and electrons, this

requirement simplifies to equal ion and electron densities (ni and ne respec-

tively) in unperturbed regions. This approximate equality is given explicitly

in Equation (2.1). Quasi-neutrality differentiates plasmas from collections of

charges of a single polarity and allows the second requirement to be satisfied.

ni ≈ ne m−3 (2.1)

2. Collective or group behavior: There must be a sufficient number of charged

particles present for plasma behavior to be dominated by inter-particle electro-

magnetic forces. Two example requirements to ensure collective behavior are

provided in Equations (2.2) and (2.3). In these equations, ND is the Debye

number (or plasma parameter) and represents the number of charged particles
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present in a sphere with a radius of one Debye length (λD). Equation (2.2)

ensures there are enough plasma particles to have a strong effect on each other

and act as a group. D of Equation (2.3) is the characteristic length of a plasma-

confining volume. If the requirement defined in Equation (2.3) is not met, the

plasma is confined to such a small space that it can be non-neutral throughout

its volume. The Debye length will be discussed in more detail later in this

chapter.

ND =
4π

3
neλD

3 >> 1 (2.2)

λD << D m (2.3)

3. Dominated by electric and magnetic forces: Electric and magnetic forces must

play a major role in plasma behavior for the first two requirements to be met.

Collisions are one of the main ways that electric and magnetic plasma phenom-

ena are disrupted, as they can redirect and redistribute particle velocity vectors

probabilistically. Equation (2.4) defines one important condition for this re-

quirement to be met, namely that the plasma frequency (fp) is much greater

than any plasma collision frequency (fc). Collisional processes will be treated

in more detail later in this chapter.

fp >> fc Hz (2.4)
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2.1.3 Plasma Composition

Plasma is often referred to as the fourth state of matter and the most common

form of visible matter in the universe. Indeed, plasma fills both the immense “void”

of space and the stars that light it. A wide array of plasma compositions have been

observed in space and laboratory experiments, but they can be grouped according

to the three common properties defined in the preceding section. This broad plasma

definition leaves room for a huge range of other physical properties. Other impor-

tant physical properties for the purposes of this dissertation are listed in Table 2.1.

Representative values from three relevant plasma environments are also provided in

Table 2.1. Specifically, plasma properties typical of the laboratory experiments in

this dissertation, low earth orbit (LEO), and geostationary orbit (GEO) are listed.

For completeness, we will also state that the ion energy distribution functions of

LEO and GEO are typically Maxwellian, but appear to be drifting Maxwellian be-

fore correcting for the satellite’s orbital velocity. Orbital velocities typical of LEO

and GEO are ≈7.7 km/s and ≈3.1 km/s respectively. Relevant plasma properties

are listed where used for the remainder of this dissertation. It is worth noting that

a Maxwellian or drifting Maxwellian energy distribution function is assumed for ion

and electrons consistently throughout this work. This a commonly observed plasma

energy distribution function that develops when a gas reaches collisional equilibrium

via repetitious elastic collisions [18].

2.1.4 Collisional Processes

Particle collisions often play an integral role in defining plasma behavior and ex-

traordinary progress has been made in identifying, measuring, and modeling particle

collision types [22, 23]. One particularly useful tool that utilizes this research is the

global plasma model. Global plasma models approximate an entire plasma discharge

by neglecting spatial derivatives in order to enhance computational efficiency [24].
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Plasma Property Laboratory LEO GEO
Ion density [m-3] 1013 1011 106

Ion mass [kg] 2.2x10-25 2.7x10-26 1.7x10-27

Ion charge [C] 1.6x10-19 1.6x10-19 1.6x10-19

Ion energy distribution
function

Drifting Max. Maxwellian Maxwellian

Ion temperature [eV] 0.15 0.1 3,000
Ion drift velocity [km/s] 4 0 0
Electron density [m-3] 1013 1011 107

Electron mass [kg] 9.11x10-31 9.11x10-31 9.11x10-31

Electron charge [C] -1.6x10-19 -1.6x10-19 -1.6x10-19

Electron energy
distribution function

Maxwellian Maxwellian Maxwellian

Electron temperature [eV] 2 0.2 3,000

Table 2.1: A summary of relevant plasma properties along with values typical of the
laboratory experiments in this dissertation, low earth orbit (LEO), and
geostationary orbit (GEO) [19–21].

These models predict energy distribution and species evolution by accounting for col-

lisions using their respective rate coefficients and the state of the plasma discharge

[24, 25]. Despite their importance, particle collisions increased plasma complexity

significantly by disrupting phenomena defined by electric and magnetic forces. It is

common to label plasmas in which these phenomena occur uninhibited by collisions

as “collisionless”. The collisionless plasma assumption is common for space applica-

tions, as the ambient neutral gas density (and/or plasma density) in space is quite

low compared to Earth-based plasmas.

2.1.5 Plasma Frequency

The electron plasma frequency is often considered the fundamental time scale of

collective plasma behavior. More concretely, it is the electron oscillation frequency

in response to charge separation within a plasma volume. The plasma frequency can

be derived by assuming two “slabs” of opposite charge separated by some distance.

Using the electric field between the two slabs and allowing them to move in response
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to this field yields an oscillatory solution. The corresponding plasma frequency (in

Hz) is defined in Equation (2.5), where e is the elementary charge, me is the electron

mass, and ε0 is the permittivity of free space. The plasma frequency tends to be quite

high such that plasmas respond rapidly to changing environments. For example, the

laboratory plasma defined in Table 2.1 has a plasma frequency of 28 MHz, whereas

the LEO plasma has a plasma frequency of 2.8 MHz. The plasma frequency also has

important implications for electromagnetic radiation propagation. Incident electro-

magnetic (EM) waves with frequencies lower than the plasma frequency are reflected

and those with higher frequencies are transmitted.

fp =
1

2π

√
nee2

meε0
Hz (2.5)

2.1.6 Ambipolar Diffusion

Plasma thermal velocities scale inversely with the square root of particle mass.

Because of this, electron thermal velocities are at least 43 times that of ions with the

same temperature. This thermal velocity difference favors electrons rapidly diffusing

from a plasma volume before the slower ions have had a chance to react. However,

we also know that plasmas are dominated by electric forces, magnetic forces, and

collective behavior. In this case, charge separation rapidly establishes an electric field

which slows electron expansion and accelerates ion expansion such that the two diffuse

at the same rate. This phenomenon is known as ambipolar diffusion. Simplified

expressions for the ambipolar diffusion coefficient and ambipolar electric field are

provided in Equations (2.6) and (2.7), respectively by neglecting the ion contribution

in favor of the (typically) much larger electron contribution. Da is the ambipolar

diffusion coefficient, Te is the electron temperature, Ti is the ion temperature, and Di

is the ion diffusion coefficient in Equation (2.6). Ea is the ambipolar electric field, De
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is the electron diffusion coefficient, µe is the electron mobility, and ne is the electron

density in Equation (2.7). A complete derivation of the ambipolar diffusion coefficient

and electric field may be found in [26].

Da ≈
(

1 +
Te
Ti

)
Di m2/s (2.6)

Ea ≈ −
De

µe

∇ne
ne

V/m (2.7)

2.1.7 Debye Screening and Sheath Formation

A plasma’s collective behavior acts to shield potential disturbances in a process

known as Debye screening. This process can be understood via the example of a neg-

atively biased conductor placed in a quasi-neutral Maxwellian plasma. Electrostatic

electric fields will quickly repel plasma electrons in the vicinity of the conductor and,

conversely, positive ions will be attracted to its surface. This process reaches equilib-

rium when the charge disturbance introduced by the negative conductor is completely

canceled out by the ion-dominated space charge surrounding it. The characteristic

distance over which plasma quasi-neutrality is disturbed in order to shield out this

disturbance is known as the Debye length (λD). The most commonly used approx-

imation for the Debye length is provided in Equation (2.8) using standard notation

by neglecting the ion contribution in favor of the (typically) much larger electron

contribution. A complete derivation of this expression can be found in [27].

λD ≈
√
ε0kBTe
nee2

m (2.8)
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The region of perturbed space charge surrounding a potential disturbance (such

as a biased conductor) is known as the plasma sheath. Different sheath types form

based on the potential of the disturbing object and the plasma composition. Two of

the most common types of DC, collisionless sheaths are known as the Debye sheath

and Child-Langmuir sheath. The Debye sheath forms for low sheath potentials and

the Child-Langmuir sheath forms for high sheath potentials. For the purposes of

this dissertation, the Debye sheath forms for sheath potentials less than about 5

electron or ion temperatures (depending on the sheath potential polarity) such that

particles of the opposite charge are still able to reach the conducting surface. These

charged particles help neutralize the space charge surrounding the conductor and

establish a radial electrostatic potential profile defined by Equation (2.9). Equation

(2.9) uses φ(r) for the local electrostatic potential, q for the test particle charge, r for

the position (radius) relative to the conducting surface, and standard definitions for

all other variables. Example density and potential profiles for the Debye sheath are

shown in Figure 2.1 [28, 29].

A classical Child-Langmuir sheath forms when the sheath potential is high enough

that very few repelled particles can reach the screened object. When this occurs, a

net space-charge (and associated potential barrier) in the vicinity of the charged

conductor is established, which prevents further particles of the same charge from

entering. This type of sheath is space-charge limited, meaning that the current to the

screened conductor is limited by a space-charge layer as defined in Equation (2.10)

for planar geometries. Equation (2.10) uses JSCL for the space-charge limited current

density, mα for the relevant particle mass, V for the voltage across the space-charge

layer, and d for the sheath thickness. A complete derivation of Equations (2.9) and

(2.10) can be found in [27].
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φ =
q

4πε0r
exp

(
− r

λD

)
V (2.9)

JSCL =
4ε0
9

√
2q

mα

(
V

3
2

d2

)
A/m2 (2.10)

Figure 2.1: Example Debye sheath density and potential profiles showing the sheath,
presheath, and plasma regions [28, 29].

Figure 2.1 pictures a large region between the sheath and quasi-neutral plasma

known as the presheath. This quasi-neutral region is required to form a stable plasma

sheath. The presheath accelerates cold ions to what’s known as the Bohm velocity in

order to produce a monotonic sheath potential profile with ni > ne at all locations.

The Bohm velocity is given by equation (2.11), in which vB is the Bohm velocity,

kB is Boltzmann’s constant and mi is the ion mass. A full treatment of the Bohm

velocity may be found in [27].
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vB =
√
kBTe/mi m/s (2.11)

2.1.8 Magnetic Field Effects

Magnetic forces play a defining role in many different plasmas. As a starting point

in the treatment of magnetic field effects, one can envision a single charged particle

in a background magnetic field of constant magnitude and direction. The motion of

such a particle is subject to the Lorentz force (FLorentz in Equation (2.12)) according

to the particle charge (q), velocity vector (v), and background magnetic field (B).

Equation (2.12) states that the Lorentz force will always be perpendicular to both the

particle velocity and background magnetic field, meaning the initial particle velocity

along the magnetic field will not change. In addition, this constant force will result in

an orbit circling the ambient B-field vector. By setting the centripetal force equal to

the Lorentz force, we can solve for the radius of this orbit. This gyroradius (or Larmor

radius) can be calculated using Equation (2.13) for nonrelativistic cases, for which rg

is the gyroradius, vperp is the velocity component perpendicular to the magnetic field,

andmα is the particle mass. From here, it is straightforward to calculate the frequency

at which the charged particle orbits the magnetic field vector. This gyrofrequency

(fg) can be calculated according to Equation (2.14).

FLorentz = q (v ×B) N (2.12)

rg =
mαvperp
qB

m (2.13)
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fg =
qB

2πmα

Hz (2.14)

Charged particle gyromotion effectively traps plasma particles along magnetic field

lines, but the gyroradius dependence on mass leads to it impacting electron and ion

populations differently. There are also a host of other plasma magnetic field effects

which have been discovered and characterized over the years. These effects will not be

treated by plasma diagnostic analysis techniques and most numerical models used in

this dissertation as the experimental plasma was “non-magnetized.” We say that the

plasma is non-magnetized when the electron and ion gyroradii are both larger than

the plasma Debye length in this context. An electron gyroradius representative of the

experimental plasmas in this dissertation can be calculated using Equation (2.13).

We do so by assuming an electron energy equal to the average experimental electron

temperature (2 eV) entirely perpendicular to the local magnetic field (vperp = 8.4x105

m/s) and a field strength at the Earth’s surface of 0.5 G (50 µT). The resulting

electron gyroradius of 9.5 cm is both larger than experimental Debye lengths and

much smaller than the corresponding ion gyroradius. In reality, electron velocities

typically followed an isotropic, Maxwellian (or Druyvestyn) distribution relative to

the ambient magnetic field (see Chapter 5), leading to a continuum of vperp over small

values. The local magnetic field strength was also reduced significantly in comparison

to its general surface magnitude of ∼0.5 G (∼50 µT) by the stainless steel vacuum

chamber walls. For example, the ambient magnetic field in the Large Vacuum Test

Facility used in Chapters 4 and 5 actually has a magnitude of ∼9 µT [30]. There are

other requirements used to define a plasma as non-magnetized, but the definition used

here is considered conservative. Anticipating magnetic field effects in the unbounded

domain of space is done elsewhere using numerical modeling and upcoming scaled
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magnetic field chamber experiments (see Chapter 8).

2.2 Spacecraft Charging Fundamentals

2.2.1 Surface Charging

2.2.1.1 Current Balance Formulation

Surface charging, also known as frame or absolute charging, treats the spacecraft

common potential with respect to the ambient plasma potential. Because space-

craft surfaces vary considerably, the entire surface is not necessarily at the spacecraft

common potential. Nevertheless, the current balance formulation presented below is

applicable to any isolated conductor and can be used to treat individual structures

on the spacecraft surface. In addition, it is best practice to make the entire space-

craft surface conductive (often via coatings such as Indium Tin Oxide (ITO)). This is

essentially why surface, frame, and absolute charging are used interchangeably. The

metallic spacecraft frame and spacecraft common are typically defined by currents to

the spacecraft surface and so we will treat the entire spacecraft surface as conducting.

A summary of all the major currents to a spacecraft surface are provided in Equa-

tion (2.15) [31]. ITotal is the total current, IE is the electron current incident on

the spacecraft surface, II is the ion current incident on the spacecraft surface, ISE is

the secondary electron current due to IE, ISI is the secondary electron current due

to II , IBSE is the backscattered electron current due to IE, IPH is the photoelec-

tron current, IActive is the current contribution of any active sources such as particle

beams and plasma contactors, and VSC is the spacecraft potential in Equation (2.15).

A simple extension of Kirchhoff’s Current Law (KCL) allows us to set Equation

(2.15) to zero for equilibrium (constant potential) charging conditions. Equilibrium

charging conditions are typically assumed, as the small capacitances associated with

isolated spacecraft and short plasma current time scales often cause spacecraft po-
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tential changes to occur more rapidly than environmental changes. A more complete

treatment using numerical tools or circuit modeling is typically required if dV/dt is

the metric of interest.

ITotal = IE(VSC)− [II(VSC) + ISE(VSC) + ISI(VSC)+

IBSE(VSC) + IPH(VSC) + IActive(VSC)] (2.15)

Solving Equation (2.15) by setting it equal to zero yields an equilibrium spacecraft

potential but also requires all listed current values as a function of spacecraft potential.

Most current terms are based on different physical phenomena and so draw from

different physical disciplines. In the sections that follow, we provide a brief summary

of how current terms are estimated and references to additional information. Before

doing so, we would like to reiterate that the current balance formulation is most

applicable for conducting spacecraft in cold, equilibrium plasmas (such as those found

in LEO) and is by no means comprehensive. Modern spacecraft charging simulation

tools such as NASCAP, MUSKAT, and SPIS are often required for missions with

more stringent charging requirements.

2.2.1.2 Current Collection Theories

The foundational theory in current collection was originally laid out in the con-

text of a conducting probe by Langmuir and Mott-Smith in 1926 [32]. The geometric

shapes that were solved analytically include an infinite plane, an infinite cylinder, and

a sphere - each in a non-magnetized, Maxwellian plasma. These results have since

been generalized to also include Kappa, Cairns, and Kappa-Cairns distributions [33].

The validity of assuming infinite probe geometries, a non-magnetized plasma, or a

Maxwellian plasma varies considerably with the spacecraft design and space plasma
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in which it is immersed, but these assumptions are typically acceptable when develop-

ing first order approximations for LEO. Assumptions about the electrostatic potential

near the conducting body are also necessary, as calculating the potential structure ab

initio requires solving Vlasov’s equation and Poisson’s equation [34]. One required

assumption is that the sheath potential structure must be monotonic to use these

theories. Equation (2.16) gives the collected current of repelled particles for spheri-

cal, cylindrical, and planar geometries. Equation (2.17) gives the collected current of

attracted particles to a sphere. Equivalent expressions for cylindrical and planar ge-

ometries are also available, but omitted here for the sake of brevity. These expressions

were first developed by Langmuir and Mott-smith, while a more modern derivation

is performed by Conde [32, 35]. A summary of the variables and nomenclature used

in these expressions is provided in Table 2.2 and α is used to differentiate between

ion and electron species.

Symbol Definition
q Particle charge
n Ambient plasma density
A Spacecraft surface area
kB Boltzmann’s constant
T Particle temperature
m Particle mass
VSC Spacecraft potential
VP Ambient plasma potential

RSheath Spacecraft sheath radius
RSC Spherical spacecraft radius

Table 2.2: Collected current nomenclature summary.

IRepelled =
qαnα,0ASC

4

√
8kBTα
πmα

exp

(
qα(VSC − VP )

kBTα

)
(2.16)
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IAttracted,Sphere =
qαnα,0ASC

4

√
8kBTα
πmα

RSheath
2

RSC
2[

1−
(

1− RSC
2

RSheath
2

)
exp

(
− RSC

2

RSheath
2 −RSC

2

|qα(VSC − VP )|
kBTα

)]
(2.17)

The repelled particle current in Equation (2.16) is straightforward to calculate

and requires no further simplification. However, the attracted current in Equation

(2.17) relies on the unknown parameter of RSheath. One assumption that is often

used to eliminate RSheath is that the sheath is either very thick or very thin compared

to the spacecraft dimensions. The validity of these assumptions depends entirely

on the spacecraft size (RSC) compared to the ambient plasma Debye length (λD),

as the sheath thickness is approximately a few Debye lengths. For the thin sheath

approximation, RSC >> λD. In this case, the sheath is so thin that no escape is

possible (except via reflection) and we say that any particle that enters the spacecraft

sheath with sufficient energy will be collected. For the thick sheath approximation

(RSC << λD), we can imagine that particles may enter and exit the sheath without

striking the spacecraft surface due to their initial angular momentum. Equation (2.17)

is approximately equal to Equation (2.18) using the thin sheath approximation and

approximately equal to Equation (2.19) using the thick sheath approximation [35].

IAttracted,ThinSheath,Sphere ≈ Isat,α =
qαnα,0ASC

4

√
8kBTα
πmα

(2.18)
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IAttracted,ThickSheath,Sphere ≈ Isat,α

(
1 +
|qα(VSC − VP )|

kBTα

)
=
qαnα,0ASC

4

√
8kBTα
πmα

(
1 +
|qα(VSC − VP )|

kBTα

)
(2.19)

Equations (2.16), (2.18), and (2.19) can typically be used as first order approxima-

tions for IE(VSC) and II(VSC). Figure 2.2 shows a I-V curve reporting the sum of ion

and electron currents to spherical and cylindrical conducting probes in a Maxwellian

plasma using these approximations [35]. The current to a planar (or flat) probe over-

laps with those shown in Figure 2.2 between the floating and plasma potentials and

is constant (flat) outside of this region [35]. Equation (2.16) is fairly simple and gen-

erally accepted for repelled particles in a Maxwellian plasma. However, Equations

(2.18) and (2.19) are subject to a number of qualifications and are often found inad-

equate. Equation (2.18) is problematic as it does not account for sheath expansion

when the spacecraft potential deviates from the plasma potential. In addition, most

space plasmas studied thus far have Debye lengths too large (> 1 cm) to reliably

use the thin sheath approximation. Equation (2.19) is derived using Orbit-Motion-

Limited theory and does not solve Poisson’s equation, account for the space-charge of

each particle, or include trapped particle trajectories [32, 36]. These limitations have

led to a multitude of corrections, extensions, and more complete theories [36–38]. The

thin- and thick-sheath approximations also leave an analytical gap for conditions in

which RSC ≈ λD. Numerical tools are often the best solution for spacecraft operating

under such conditions.

2.2.1.3 Secondary and Backscattered Particles

Secondary and backscattered currents are both caused by incident charged parti-

cles striking the spacecraft surface. Secondaries are emitted when a charged particle
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Figure 2.2: An example, normalized I-V curve showing the total current collection to
a cylinder and sphere using the thick sheath approximation. The plasma
and floating potentials are marked at the intersection of green dashed
lines. The current grows roughly exponentially between these two poten-
tials, as the collection current is dominated by repelled electrons [35].

approaches a surface with sufficient energy (typically > 10 eV) and interacts with

subatomic charged particles composing the surface lattice atoms [39]. These pro-

cesses sometimes give neighboring charges the energy required to escape from the

material surface. At high incident charged particle energies, the secondary emission

process is limited by the particle embedding itself deep within the material. At low

incident charged particle energies, secondary emission is rare as there is insufficient

energy to knock out neighboring charges and particle reflection is more common. It

is also worth noting the possibility for an incident particle to trigger the emission of

multiple secondaries such that the secondary yield is greater than one. In contrast,

the backscattering process deals with the fraction of particles that strike the surface

and are backscattered rather than depositing their charge. This process typically oc-
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curs when an electron is incident near a surface ion site such that it is attracted and

redirected away by the nearby positive nucleus [39]. Backscattering increases with

incident particle energy, as this also increases the particle’s angular momentum.

Secondary and backscattered currents can be thought of as multipliers to the

collected current term and represented using the coefficients δ and η, respectively

in Equation (2.15). The coefficients represent the average number of secondary or

backscattered particles that leave the surface for each incident (primary) particle.

This coefficient representation allows the ISE(VSC), ISI(VSC), and IBSE(VSC) terms

of Equation (2.15) to be replaced using IE(VSC), II(VSC), δ, and η. Equation (2.20)

demonstrates one such current term replacement using the coefficient representation,

where δE,E and δE,I are the average number of secondary electrons emitted per inci-

dent electron and ion respectively, Ki is the incident particle kinetic energy, and θi is

the incident particle angle. An example of how these coefficients vary with incident

energy is provided in Figure 2.3.

ISE(VSC) = δE,E(Ki, θi)IE(VSC) + δE,I(Ki, θi)II(VSC) (2.20)

The secondary particle emission and backscattering processes are also heavily de-

pendent on surface material properties. Unfortunately, this is an area of spacecraft

charging that is notoriously incomplete and time consuming to advance. To illustrate

this point, consider the basic physical parameters that affect secondary particle emis-

sion and backscattering. The angle of incidence, particle energy (which itself depends

on the spacecraft potential), and a secondary or backscattering coefficient that ac-

counts for both of these effects are all required for each individual particle type and

surface prior to constructing a model that properly assigns an average coefficient to an

assembly of collected particles [39]. To complicate matters, material properties that
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Figure 2.3: Example secondary and backscattering electron coefficients over incident
electron energy [39].

have been studied in Earth-based vacuum chambers are found to change significantly

in space due to radiation exposure, surface sputtering, and surface deposition [40, 41].

Simplifying assumptions are necessary due to these complications. One frequent as-

sumption is that the contribution of secondary and backscattered ions is negligible

[31]. This assumption allows us to eliminate ISI(VSC) from Equation (2.15), leaving

ISE(VSC) and IBSE(VSC). These two currents may be estimated using the procedures

and practices outlined by Sternglass and others [42–45].

2.2.1.4 Photoelectron Emission

The photoelectric effect in space also contributes to the net electron current leav-

ing the spacecraft surface due to solar irradiance. In fact, the average photoemission

current for normally incident sunlight in Earth orbit (∼2 nA/cm2) often dominates

the other environmental current sources in Equation (2.15) [46, 47]. This large elec-

tron emission current forces most sunlit spacecraft to a potential positive with respect

to the ambient plasma. Emitted photoelectron energy distributions may be approxi-

mated using a directed Maxwellian modified using Lambert’s cosine law with a char-
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acteristic energy in the range of 1 - 2 eV [48–50]. Thus, if the spacecraft potential is

higher than a few volts positive with respect to the ambient plasma, photoelectrons

will have insufficient energy to escape the spacecraft sheath and be recollected to

the surface. This sharp gradient in IPH(VSC) just above the plasma potential limits

spacecraft charging due to photoelectron emission to just a few volts positive. It is

worth remembering that photoemission only occurs on sunlit surfaces and there is a

strong angular dependence. Because of this, there may be large potential differences

between sunlit and shaded spacecraft surfaces if they are not in electrical contact.

This scenario is one example of what is known as differential charging.

2.2.1.5 Surface Charging Concerns

Surface charging in and of itself is typically not dangerous to spacecraft sys-

tems. Using proper practices to limit differential and internal charging allows geosyn-

chronous spacecraft to safely operate with a spacecraft common potential thousands

of volts below that of the ambient plasma [51]. One of the concerns introduced by

surface charging is surface degradation via sputtering and material deposition [31].

Other concerns include potential arcs to the ambient environment and interference

with space plasma measurements [31]. Surface charging can interfere with space

plasma measurements by altering the energy and velocity vector of charged plasma

particles. While the energy shift can be removed if contemporaneous spacecraft po-

tential data are available, velocity vector correction requires an accurate model of the

sheath potential structure surrounding the spacecraft (which is typically not possi-

ble). Ambient plasma measurements can also be contaminated by the presence of

secondaries, backscattered electrons, and photoelectrons coming off the spacecraft

surface.
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2.2.2 Differential Charging

We previously described how one can determine a conductor’s equilibrium poten-

tial using the current balance formulation. We specifically considered a spacecraft

whose surface is entirely conductive; however, real world systems do not necessarily

have all internal conductors and surfaces in electrical contact. Instead, each isolated

component has its own respective current balance and charges to a different potential.

This process is known as differential charging, a fairly straightforward concept which

can be very difficult to control in practice.

Differential charging can lead to unanticipated electric fields and dangerous dis-

charges or arcs between spacecraft components. Electrostatic discharges (ESDs), arcs,

flashovers, etc. occur when a non-conductive medium breaks down under the influ-

ence of a strong electric field and suddenly becomes conductive [31]. The resulting

current surge and its associated electromagnetic interference (EMI) has been shown

to couple into nearby spacecraft systems. The end result is a wide array of system

anomalies, from switch and logic latch ups, to telemetry interruption, to complete

spacecraft loss [52, 53]. Formal guidelines were established in the 1980s to prevent

differential charging. These guidelines recommend directly grounding systems to the

spacecraft frame, using proper cable shielding, making the spacecraft surfaces con-

ducting, and electrically isolating sensitive systems whenever possible [52, 54]. These

measures have been largely successful in reducing the number of spacecraft anomalies

induced by differential charging.

2.2.3 Internal Charging

Internal charging (also known as deep dielectric charging) is not altogether dif-

ferent from differential charging. Both forms of charging cause the breakdown of a

nonconductive medium using an electric field. The defining characteristic of internal

charging is that it takes place inside of an insulating material (which is often a di-

25



electric). High energy charged particles (> 1 MeV) are known to penetrate materials

and stop at a depth determined by their initial kinetic energy and angle of incidence

[55, 56]. Both protons and electrons penetrate aluminum at least 10 µm when their

energy exceeds 1 MeV, as seen on the plot of penetration depth in Figure 2.4 [57].

Space plasma environments such as those at geosynchronous orbit feature particles

exceeding this energy during geomagnetic substorms [56]. One can calculate the to-

tal fluence of energetic particles deposited in a dielectric layer during a substorm by

multiplying the high energy flux by the substorm’s duration. By accounting for the

charge leak rate introduced by dielectric conductance, one can calculate the dielec-

tric’s internal electric field strength due to deposited charge separation. If the internal

field exceeds the dielectric breakdown strength (typically 106 – 108 V/m), an ESD will

occur [56]. These ESDs have effects similar to those caused by differential charging,

with the additional complication of being near critical internal components such as

logic processors. Recent years have seen the recognition that internal ESDs occur

far more frequently than originally thought (as will be discussed in Section 2.3) [58].

These revelations prompted the development of a comprehensive NASA handbook

addressing internal charging which was originally released in 1999 [55, 59]. Numerical

internal charging tools have also been developed in the form of the Fluence Model for

Internal Charging (FLUMIC), Space Environment Information System (SPENVIS),

the Dielectric Internal Charging Threat Assessment Tool (DICTAT), and others [60].

2.2.4 Charging Induced Anomalies

The spacecraft charging categories summarized in the preceding sections represent

some of the gravest dangers to spacecraft during their operational lifetime. To un-

derstand the magnitude of this danger, we turn to publicly available data on satellite

anomalies (a catch-all term used for unanticipated problems encountered in orbit).

The dataset presented here was assembled using multiple anomaly databases and a
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Figure 2.4: Proton and electron penetration depth in aluminum for a range of incident
energies [57].

direct survey of relevant professionals across the space industry in the late 1990s [61].

326 “Space Environment Impact Forms” were completed and 299 (92%) of these iden-

tified anomalies were attributed to the space environment [61]. Table 2.3 summarizes

the 299 environmental anomalies by diagnosis type (or cause) and indicates that a

full 54% were caused by ESDs tied to spacecraft charging [61]. In addition, this study

identified 5 specific missions lost or terminated entirely due to electrostatic discharges

prior to 1998 [61].

This particular dataset of 326 anomalies represented one of the more complete

references on spacecraft anomalies. In reality, the vast majority of anomalies remain

unknown to the public. There are many reasons for this secrecy, and they are often

tied to protecting technical designs or spacecraft insurance claims [61, 62]. A 2014

report sponsored by the Defense Advanced Research Projects Agency (DARPA) ad-

vocates strongly for a central database to help bring the private world of spacecraft

anomalies to light [62]. This report suggests that anomalies tied to spacecraft charg-

ing remain an important issue to this day. Further evidence of the ongoing dangers

presented by spacecraft charging can be found in the anomaly studies of the last 10
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years [63–66].

Diagnosis Number of Forms
ESD - Internal Charging 74
ESD - Surface Charging 59

ESD - Uncategorized 28
Surface Charging 1

Total ESD and Charging 162
SEU - Cosmic Ray 15

SEU - Solar Particle Event 9
SEU - South Atlantic Anomaly 20

SEU - Uncategorized 41
Total SEU 85

Total Radiation Damage 16
Total Miscellaneous 36

Table 2.3: A survey of spacecraft anomalies caused by the space environment com-
pleted in 1998 [61].

2.3 A Brief History of Spacecraft Charging

The history of spacecraft charging research is as old as spaceflight itself. Indeed,

much of the fundamental theory supporting the spacecraft charging field was de-

veloped prior to spaceflight for plasma probes [32]. A seminal review of spacecraft

charging research published by Hank Garrett breaks its history prior to 1981 into four

periods [31]. The first period was prior to 1957 when very little in-situ data were

available. These early studies were focused on predicting the potential of interstellar

dust grains and sub-orbital rockets [67, 68].

The second period began around the launch of Sputnik 3 in 1958, which made

the first satellite potential measurements. Much of the foundational spacecraft charg-

ing work began during this period. Spacecraft sheaths, photoemission, the impact

of satellite velocity, induced electric fields, and charged particle emission were first

treated during this period and some success was found in predicting early satellite po-

tential measurements [31, 69, 70]. The second period of spacecraft charging concludes
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with the Chopra review paper of 1961 [71].

The third period occurred approximately between 1961 and 1965. It is during this

period that the first accurate spacecraft potential measurements were obtained be-

tween 425 km and 2300 km above Earth [72]. Self-consistent solutions to Vlasov’s and

Poisson’s equations were first used during this period, introducing particle trajectory

tracking in the vicinity of the spacecraft [73, 74]. Realistic estimates of secondary

electron emission, photoelectron currents, and drifting ion currents were also realized

during this period. The third period of spacecraft charging ended in 1965 with the

publication of the first book and thesis directly concerned with spacecraft charging

[75, 76].

The fourth period began around 1965. It is defined by increasingly sophisticated

surface charging models and a wealth of new in-situ spacecraft potential and plasma

environment measurements, particularly in low Earth orbit (LEO) [77]. It is during

this period that kilovolt potentials were first observed at geosynchronous orbit [78–

80]. The Applied Technology Technology Satellites 5 and 6 (ATS-5 and ATS-6) were

launched into geosynchronous orbit in 1969 and 1974 respectively [80]. Both satellites

featured plasma detectors, ion thrusters, and normally observed spacecraft potentials

of -1 to -10 kV in eclipse [80]. One major difference between these sequential missions

is that ATS-5 used a hot filament electron emitter to neutralize the ion thruster beam

while ATS-6 used a hollow cathode (plasma emitter) [80]. Plasma emission was found

to be a much more effective neutralizer, as it forced the spacecraft potential closer to

zero and resolved the differential charging issues encountered during active electron

emission on ATS-5 [80]. The Spacecraft Charging at High Altitudes (SCATHA or

P78-2) spacecraft was also hugely influential during this period. SCATHA featured

instrumentation similar to ATS-6 with the notable addition of a dedicated electron

beam [80]. The effects of varying electron emission current and electron beam return

were both observed on SCATHA [80, 81]. The end of the fourth period of spacecraft
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charging research coincides roughly with Garrett’s review paper in 1981 [31]. These

developments culminated in spacecraft design guideline and requirement documents

that are still in use to this day [52, 54].

The fifth period of spacecraft charging is summarized via a review paper in 2000

[77]. The broader community rightfully recognized surface charging as a serious oper-

ational threat and official guidelines began to bear fruit during this period [77]. One

major outcome of the Combined Release and Radiation Effects Satellite (CRRES)

mission in 1990-1991 was the discovery that internal (deep dielectric) charging is a

much more frequent and dangerous process than previously thought. Over 4,000 in-

ternal electrical discharges were recorded during the 14-month lifespan of that mission

[58]. The lessons learned from the CRRES mission contributed significantly to the

release of a NASA handbook specifically addressing internal charging in 1998 [55].

The fifth period also featured novel technology missions which made use of high-

voltage and complex space structures such as the electrodynamic tether [77]. Two

example electrodynamic tether shuttle missions from this period include the Tethered

Satellite System 1 Reflight (TSS-1R) and Plasma Motor Generator (PMG). The TSS-

1R mission deployed a large spherical conductor over 19 km from the space shuttle

in order to understand its current collection behavior and test the gravity-gradient

stabilization of a long, two-body system [82]. This ambitious mission demonstrated

electron collection 2-3 times larger than predicted despite a premature tether break

[82]. The PMG mission used a 500 m tether and had similar goals to TSS-1R, with

the notable addition that plasma emission (via plasma contactor) was successfully

used to enhance current to the tether end bodies [83, 84]. These complex structures

pushed the limits of existing analytical theories and a budding ecosystem of computer

simulations.

If one were to define a sixth period of spacecraft charging covering the last 20

years, it would be one marked by steady growth and practicality for large spacecraft
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and a new frontier for small spacecraft. Charging simulation software has gained

widespread traction internationally in the form of the NASA/Air Force Spacecraft

Charging Analyzer Program (NASCAP), the Multi-Utility Spacecraft Charging Anal-

ysis Tool (MUSCAT), the Spacecraft Plasma Interaction Software (SPIS), and others.

Several instructive documents have been compiled in this period to solidify and spread

knowledge on the spacecraft charging field [19, 57]. These advances have supported

some of the most rigorous spacecraft charging analyses to date for Juno and the Van

Allen Probes as they explore the extreme environments of the Jovian magnetosphere

and the Earth’s radiation belts respectively [85–87]. Studies into the cause of extreme

charging at GEO during this period also supported the JUNO and Van Allen Probe

missions [51, 63].

The ongoing operation of the International Space Station (ISS) is another major

achievement in the world of spacecraft charging over the past two decades. Under-

standing and accounting for the charging induced by 2,500 m2 of 160 V solar arrays on

the ISS led to new procedures which prevent high voltage solar array arcing [64, 88–

90]. The ISS solar arrays also represented a very real shock hazard to astronauts

during extravehicular activities (EVAs). The solar arrays were originally predicted to

drive the spacecraft potential below -140 V while spacesuit materials were found to

arc at voltages as small as +/- 70 V [88]. This discovery led to a spacecraft potential

diagnostic being quickly integrated on the station and the standard operation of two

neutralizing plasma contactor units (PCUs) during EVAs [88]. Thankfully the ISS

was equipped with these plasma-emitting spacecraft neutralizers since its inception

[91, 92]. Spacecraft neutralization using plasma emission will be discussed further in

Section 2.5.2.

Spacecraft have been miniaturized as never before in this sixth period of spacecraft

charging with the advent and growing popularity of the CubeSat standard [93]. The

small form factor of this new spacecraft class (composed of 10 cm cubes) exposes
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CubeSats to the space environment more than larger, traditional spacecraft. This

exposure makes CubeSats and other small spacecraft more susceptible to spacecraft

charging [94]. Their low cost and general accessibility often leads to less rigorous

spacecraft charging analyses as well [94]. Numerical tools such as the Probe Spacecraft

Interaction Code for Low Earth Orbit (PSIC-LEO) and dedicated testing facilities

such as those at NASA Marshall Space Flight Center are actively making spacecraft

charging tools more accessible to users of this new spacecraft class [95–97]. In the

present year of 2020, we look forward to a future of spacecraft charging developments

that will enable new missions benefitting mankind.

2.4 A Brief History of Electron Emitting Space Experiments

The history of electron beam experiments in space begins with the theory work of

Lee Parker and Brian Murphy. The Parker-Murphy model of 1967 predicts the po-

tential of electron-emitting satellites in a collisionless, magnetized plasma assuming

the conservation of angular momentum and is still used to this day [98]. This theo-

retical work paved the way for missions such as the ATS-5 and the Artificial Aurora

Experiment of 1969 [1, 80]. The ATS-5 and SCATHA technology demonstration mis-

sions both used active electron emission to advance the field of spacecraft charging as

described in the preceding section. POLAR-5 (1976), MAIMIK (1985), CHARGE-2

(1985), and CHARGE-2B (1992) were other technology demonstration missions which

also studied plasma wave generation by electron beam injection [99–104].

Many missions used electron accelerators to explore fundamental plasma problems

and critical aspects of the space plasma environment in brand new ways [104]. Topics

of particular interest were beam-plasma interactions (especially what is known as the

beam-plasma discharge), artificial aurora generation, geomagnetic particle mirroring,

and induced plasma waves [104]. The excitement and flurry of activity during this

experimental heyday are well captured in a 1985 review paper and summary book

32



released in 1982 [103, 104]. A few notable science missions include the ECHO experi-

ment series (1970-1988), the Artificial Radiation and Aurora between Kerguelen and

the Soviet Union (ARAKS, 1975), and Spacelab 2 (1985) [103–106]. ARAKS and the

ECHO experiments observed geomagnetic particle mirroring and conjugate magnetic

field points starting from the ionosphere/plasmasphere and validated contemporary

magnetic field models [103, 105]. The Spacelab 2 electron beam generated Whistler

waves detected 216 m away along the local magnetic field line using direct current

(DC) electron beam emission from the space shuttle bay [106].

The number of electron-emitting missions decreased markedly after the CHARGE-

2B suborbital rocket launch and TSS-1 shuttle mission of 1992 [107]. Recent, dedi-

cated scientific missions have largely focused on the same questions as before [108].

However, there have also been notable new applications for electron emitting technolo-

gies. For example, electron emission research supported the surge of tethered space

missions in the 1990s [107]. Active electron emission is somewhat uncommon today

and often done using specialized, niche hardware. The e-beam thermionic cathode

is designed for efficiency and low-power (∼0.1 W) operation. This cathode has been

included on small satellites with limited power budgets such as the SENSE satellites

and MiTEE-1 [109, 110]. The Electron Drift Instrument (EDI) fires two low-current

electron beams perpendicular to the background magnetic field and observes their re-

turn to the spacecraft via magnetic gyration. EDI is able to determine local electric

fields, magnetic field gradients, and magnetic field strength using this arrangement

[4]. A relativistic (∼1 MeV) electron beam is even under development for space ap-

plications [111]. Electron-emitting space experiments actively being pursued include

MiTEE-1, MiTEE-2, Beam-PIE, B-SPICE, and CONNEX [8, 10, 110, 112].
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2.5 Modern Spacecraft Charge Control

2.5.1 Introduction

In this section we focus on active charge control techniques used to modify the

spacecraft frame potential (or spacecraft common). Active charge control techniques,

as the name suggests, require specific spacecraft subsystems, power, and control.

These techniques can be used to directly alter the spacecraft current balance of Equa-

tion (2.15) in order to achieve the desired VSC . In contrast to active charge control,

there are numerous passive charge control techniques that limit spacecraft charging

effects without any power or control required. One such technique is coating the

spacecraft surface to alter material properties such as conductance, secondary elec-

tron yield, or photoelectric work function. One recent example of spacecraft using

this technique to limit differential charging in an extreme environment are the Radia-

tion Belt Storm Probes (RBSP, also known as the Van Allen Probes) [87]. Numerous

other passive control techniques have proven to be quite effective at limiting differen-

tial and internal charging. A detailed description of these techniques is not required

for the purposes of this dissertation, but recommended practices can be found in the

relevant NASA charging handbooks [52, 55, 59].

2.5.2 Active Charge Control Techniques

2.5.2.1 Ion Emission

Ion current emission is a straightforward and direct way to alter VSC by setting

IActive(VSC) of Equation 2.15 to a constant, negative value. In general, ion emission

drives the spacecraft potential down by removing positive charge from the spacecraft.

Emitted ion populations are characterized by their current, kinetic energy, charge,

and mass. These values are often constant for simplicity, but this is by no means a

requirement. Ion emission current and energy are two particularly important param-
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eters as the first drives changes in the spacecraft potential and the second defines the

potential at which emitted ions will be electrostatically pulled back to the spacecraft

surface. Indeed, one of the major practical considerations when using an ion emission

technique are ion trajectories relative to the spacecraft structure. Ions are often emit-

ted in a divergent cone and ion impingement on spacecraft surfaces can instigate a

host of negative side effects from surface sputtering to an increase in the spacecraft’s

angular momentum [113].

Two of the most common types of ion emitting device are plasma-based ion sources

and liquid metal ion sources (LMIS). Plasma-based ion sources include the Kaufman

source, multipole or magnetic cusp source, bucket source, and RF source. All of these

devices generate quasi-neutral plasmas in an enclosed volume by ionizing a neutral

gas expellant. The use of biased screen grids over part of the enclosing surface allows

for the selective emission of positive plasma particles and the retention of negative

particles. This class of ion source has a significant amount of spaceflight heritage as

they are often used for spacecraft propulsion purposes as ion thrusters [27]. In fact,

seminal spacecraft charging missions such as ATS-5, ATS-6, and SCATHA used their

ion thrusters as an ion beam by simply turning off the beam neutralizer [114, 115].

A graphical representation of a plasma ion source is shown in Figure 2.5 (a) [116].

(a) (b)

Figure 2.5: Ion sources used for spacecraft charging purposes include (a) plasma-
based ion sources and (b) liquid metal ion sources [116, 117].
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Liquid metal ion sources (LMIS) apply electric fields to sharp points coated in a

low volatility metallic liquid [118]. Under the influence of a sufficiently strong electric

field, field ion evaporation extracts ions directly from the metallic liquid at the tip of

a Taylor cone [118, 119]. Space-based LMIS are a fairly new technology in comparison

to plasma ion sources, with their own inherent advantages and disadvantages. LMIS

are small and low power in comparison to plasma ion sources. LMIS can also be

operated at low ion beam energies and do not require compressed gas storage and

management systems. However, LMIS are also low current (∼20 µA), must heat

the metal expellant in order to make it liquid, and have yet to address important

lifetime and surface contamination questions [120, 121]. One technique used to scale

up LMIS emission current and reduce the metal expellant heating restriction is using

an array of emitting points in one common liquid metal reservoir. An example of this

configuration is provided in Figure 2.5 (b) [117]. Two notable missions which made

use of LMIS for spacecraft charging purposes are the Geotail and Magnetospheric

Multiscale (MMS) missions [120, 121].

2.5.2.2 Electron Emission

Many of the considerations relevant to spacecraft charge control using ion emission

also apply to electron emission. The emission of a pure electron current is a direct

way to alter VSC by setting IActive(VSC) to a non-negligible, positive value. In general,

electron emission increases the spacecraft potential by removing negative charge from

the spacecraft and emitted electron populations are characterized by their current

and kinetic energy. Electron emission current and energy are often constants due

to the prevalence of DC electron sources, but radiofrequency (RF) or alternating

current (AC) electron sources are also used. Electron emission current and energy

are particularly important parameters with respect to spacecraft charging as the

current drives changes in VSC and the energy defines the spacecraft potential at

36



which electrons will return to the spacecraft. One other practical consideration when

actively emitting electrons is accounting for their trajectories in the vicinity of the

spacecraft. Electron impingement on spacecraft surfaces can cause side effects ranging

from differential charging to spacecraft sheath ionization.

By far the most common type of electron emitting device is the thermionic electron

source. Thermionic sources “boil” electrons off a material that has been heated to a

very high temperature. High temperatures are typically achieved via Joule heating

by passing an electrical current through the cathode. The thermionic current emitted

from a hot cathode is a function of the cathode temperature and work function as

defined by the Richardson-Dushman equation (Equation 2.21) [122]. JEmission is the

thermionic emission current density, A is Richardson’s constant, T is the cathode tem-

perature (in K), W is the cathode work function, and kB is Boltzmann’s constant in

Equation 2.21. Accelerating electric fields are often used in the vicinity of thermionic

cathodes to overcome space-charge current limitations, direct electron emission, and

increase electron energy. A simplified example of one such system is shown in Figure

2.6 (a) as configured for the MiTEE-1 spacecraft [110]. A thermionic electron source

was used on most historical missions featuring active electron emission for spacecraft

charging purposes. For example, hot filament sources were used on the ATS-5 and

SCATHA missions [114, 123].

JEmission = AT 2exp

(
− W

kBT

)
(2.21)

One alternative to thermionic sources are field effect electron sources, which make

use of electric fields in order to extract electrons from a solid via quantum tunneling

[125]. The current produced by this tunneling process depends upon a host of system

parameters and is summarized by the Fowler-Nordheim equation [125]. The design
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(a)

(b)

Figure 2.6: Electron sources used for spacecraft charging purposes include (a)
thermionic sources and (b) field effect sources [124].

most optimized for space applications consists of an array of cold, Spindt points

arranged so that the electron-emitting points are aligned with the center of acceler-

ating grid apertures [126]. This particular arrangement is known as a field emitter

array (FEA) and has been shown to increase electron emission current density and

reduce system power requirements [126]. An example FEA is shown graphically in

Figure 2.6 (b) [124]. Field effect emission is much more energy efficient than the

more traditional thermionic emission. However, field emission sources suffer from low

current densities and lifetime concerns associated with the degradation of its small

scale structures [126]. Because of these drawbacks, the FEA has seen relatively little

use for spacecraft charging purposes thus far.
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2.5.2.3 Plasma Emission

While pure ion or electron emission allows for direct modification of the current

balance in Equation 2.15, the emission of a cold, quasi-neutral plasma has proven to be

preferable for spacecraft charge neutralization in almost all cases. Essentially, this is

because of the flexibility provided by plasma emission compared to other active tech-

niques. Plasma emission allows IActive(VSC) to be either positive or negative. Plasma

emission can also be engineered to dominate the other current terms in Equation

2.15, solving the equation such that VSC is within a few volts of the ambient plasma

potential (∼0 V). The current contribution due to plasma emission is also not strictly

limited to charge emission. Plasma emission enables enhanced current collection from

the ambient plasma by expanding the spacecraft’s effective collection area, thereby

forming a conductive “bridge” or “contactor” to the ambient plasma [84, 127, 128].

Plasma emission also remedies differential surface charging, unlike ion and electron

emission which typically exacerbate it [123, 129]. The presence of a dense, low energy

plasma population allows for particles to flow to differentially charged spacecraft sur-

faces so that an approximately equipotential structure is achieved. For these reasons,

plasma emission is considered the gold standard in active spacecraft charge control

and has been used on hundreds of satellites and the ISS [27, 130].

Plasma sources, or plasma contactors, come in a variety of forms. While there is

a long list of different methods to generate and emit a plasma, the most commonly

used device for space applications is some variant of the hollow cathode. A graphical

representation of a space-based hollow cathode is provided in Figure 2.7 for reference.

Hollow cathodes produce plasma primarily through impact ionization as electrons are

accelerated between cathode and keeper electrodes in a volume filled with neutral gas.

These electrons can stem either from previous impact ionization events (as in a steady

state glow discharge) or from thermionic emission off a hot cathode insert. A low work

function, thermionic insert is used to produce primary electrons that initiate plasma
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emission. Therefore, insert heating is required to initiate plasma emission. Two

common heating mechanisms are Joule heating (using a “heater” wire close to the

insert) and sustained, high voltage arcing between the cathode and keeper electrodes

[27, 131]. Additional ionization stages and confining magnetic fields can also be added

to optimize the cathode’s ionization efficiency and expellant utilization.

Figure 2.7: A graphical representation of a space-based hollow cathode.

2.5.2.4 Alternate Active Techniques

There are a few less common active charge control techniques that deserve men-

tioning besides direct charged particle emission. Current collection to the spacecraft

can be altered by actively biasing an exposed surface relative to spacecraft common.

For example, consider a conducting sphere that can be actively biased in the ambient

plasma far from the spacecraft. Applying a positive bias to this sphere will cause it to

collect net electron current which ultimately is accumulated by spacecraft common.

Thus, biasing this sphere positive will cause spacecraft common potential to decrease.

The opposite relationship also holds true for ions (although the collected current mag-

nitude is significantly lower). The large number of active bias configurations make

it a flexible option when active charged particle emission is not possible, such as on

spacecraft measuring low energy ion populations. It has also been suggested that ul-
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traviolet LED light be directed at spacecraft surfaces in order to neutralize negative

charging via forced photoelectron emission. This technique could be easily controlled

and used to prevent charging in eclipse, but a mission demonstrating this technique

has yet to be flown.

2.6 Modern Charge Control Limitations

2.6.1 Size, Weight, and Power

The acronym SWaP is often used in the space engineering world. Component

size, weight, and power (SWaP) are of paramount importance during the design (and

costing) process and is often the reason why certain systems are selected over others.

Passive charge control techniques such as coating the spacecraft surface are fairly low

SwaP and low complexity. This is one major reason why they have been so widely

adopted in comparison to active charge control techniques. Active charge control

techniques are fairly high SwaP as they involve machined, metallic structures that

must be mounted on the exterior of the spacecraft. The acceleration of charged

particles and heating of thermionic materials also means these techniques demand

more power than many small satellites can afford to spare. Finally, any device that

emits ions requires some sort of expellant storage and feed system. The storage of

compressed gas on a spacecraft sometimes requires special launch approval to ensure

tank rupture is not a concern. Reducing charge control SWaP and complexity would

lead to higher adoption rates and/or increased capabilities.

2.6.2 Charge Monitoring

One of the largest limitations on effective spacecraft charge control is a distinct lack

of charge monitoring. In fact, most spacecraft do not feature any form of spacecraft

charge monitoring. The primary reason for this is that most missions meet their re-
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quirements without active charge control using modern practices. A charge monitor is

often not worth its innate cost/complexity if there is no active charge control in place

to make use of the information. Spacecraft potential monitors must be placed so that

they are exposed to the ambient plasma in order to estimate its potential. These mon-

itors typically require a custom design to suit the mission, precision machining and

assembly, and dedicated electrical hardware. The list of spacecraft potential monitors

includes Langmuir probes, electrostatic analyzers (ESAs), retarding potential analyz-

ers (RPAs), and surface potential monitors [19]. Differential and internal charging

monitors are similar in that they measure either local electric fields (sometimes via

local potential measurements) or electrostatic discharges. Both measurements are

fairly straightforward in comparison to spacecraft potential monitors, but their lo-

calized nature requires that monitors be distributed throughout the spacecraft (or at

least in locations where differential charging may occur). Example monitors which

fit this mold are internal discharge and surface potential monitors [58, 132, 133].

There are also charge monitoring requirements that cannot be achieved using ex-

isting technologies. Monitor data typically must be downlinked and analyzed using

the esoteric plasma theories relevant to spacecraft charging in order to produce an

actionable data product. This restriction precludes making critical decisions on-orbit

in order to prevent damage associated with rapid spacecraft charging. In addition,

the ability to measure rapid spacecraft charging (high dV/dt events) is limited by

current spacecraft potential monitors. For example, spacecraft potential monitors

rely on sampling the ambient plasma to calculate the spacecraft potential. A moni-

tor’s capacitance must be filled by current from the ambient plasma prior to making

reliable voltage and current measurements [134]. Thus, events that trigger rapid

spacecraft charging cannot be properly monitored in tenuous space plasmas. Parti-

cle beam emission (such as what is proposed for the CONNEX mission) and solar

array unshunts/disconnects (such as those performed on the ISS) are two examples
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that are not always resolved sufficiently using existing spacecraft potential monitors

[14, 135]. Clearly modern charge control options suffer thanks to the cost, complexity,

and limitations of the spacecraft charge monitoring that informs them.

2.6.3 Untested Configurations

New and postulated charge control techniques that would benefit from renewed

research are introduced in this chapter. Because spacecraft charge control is often

considered a support activity or engineering problem, innovation has slowed signifi-

cantly since the dedicated missions and handbooks of the previous century. In reality,

there remain critical capabilities beyond our reach due to spacecraft charging effects

and untested charge control schemes that promise to resolve the issue. One example

capability currently beyond our reach is the emission of a high current electron beam

in tenuous space plasmas. The last time this was attempted in the magnetosphere

(on the SCATHA mission in 1979), the spacecraft charged so positive that the beam

returned to the spacecraft and caused three distinct payload failures [7]. The work

presented in this dissertation aims to enable high current electron beam emission in

tenuous space plasmas by experimentally validating a novel charge control scheme on

the ground. It is our hope that other untested configurations be validated such that

spacecraft charging does not impede the advance of space science.
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CHAPTER III

A Novel Spacecraft Charge Neutralization

Method: The Ion Emission Technique

3.1 Motivation

Dangerously high spacecraft potentials have been experienced by active missions

emitting electron beams without a charge mitigation scheme [129, 136]. Previous

missions falling into this category sometimes report induced spacecraft potentials ex-

ceeding hundreds, or even thousands of volts depending on their respective beam

current and energy [129, 136]. When the positive spacecraft potential reaches the

electron beam energy during active emission, the beam must return to the spacecraft

as the electrons are pulled back electrostatically [7, 81]. Beam return is highly unde-

sirable in most scenarios as it prevents beam escape and the returning electrons have

been shown to damage spacecraft systems [7, 81]. For example, emission of a 6 mA, 3

keV electron beam on the P78-2 (SCATHA) satellite at an altitude exceeding 28,000

km (where the electron density was estimated to be less than 10 cm-3) caused three

distinct payload failures and created a transient problem in the satellite telemetry

system [7]. Applying Gauss’s law shows that a 1-meter radius spacecraft emitting

the SCATHA electron beam would experience beam return in just 56 µs when ignor-

ing current collection from the ambient plasma (which for SCATHA was quite small
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compared to the electron beam current). A spacecraft charge mitigation scheme has

proven critical for scenarios in which the electron beam current exceeds the thermal

electron current from the ambient plasma. We will refer to electron beams capable

of exceeding the local plasma thermal electron current as “high-current”.

One proposed mission concept, known as the Magnetosphere-Ionosphere Connec-

tions Explorer (CONNEX), uses high-current electron beams to trace magnetic field

lines from the magnetosphere down into Earth’s upper atmosphere/lower ionosphere

[8, 9, 12]. In doing so, CONNEX promises to connect distant regions of near-Earth

space via the electron beam and establish causality between magnetospheric and iono-

spheric phenonmena [8, 9, 12]. This connection would allow space scientists to answer

important, fundamental questions on magnetosphere-ionosphere coupling for the first

time [8, 9, 12]. The potential impact of such a mission is significant enough that

spacecraft charging mitigation of high-power electron beams is listed as an outstand-

ing technology problem in the National Research Council’s 2012 decadal survey for

space physics [12, 13].

While the simultaneous emission of a high-current ion beam may seem the most

straightforward mitigation strategy, the need to precisely balance independent ion and

electron beam currents and all their induced effects make implementing this strategy

challenging at best [14, 129, 137, 138]. As a simple example, consider balancing the

SCATHA electron beam with an equivalent ion beam current whose current differs

by just 1% (60 µA). Applying Gauss’s law shows that a 1-meter radius spacecraft

emitting these beams would still experience beam return in just 5.6 ms when ignoring

current collection from the ambient plasma.

Another potential spacecraft charging mitigation scheme involves the emission

of a quasi-neutral plasma. Plasma emitting devices (such as the hollow cathode or

more generally, a plasma contactor) have been shown to mitigate positive spacecraft

charging during electron beam emission exceeding 0.8 A in LEO [139]. As a result of
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the higher plasma density in LEO (which typically exceeds 104 cm-3), it is possible

for a plasma contactor to balance the electron beam current by acting primarily as

an ion emitter, an electron collector, or both [140]. The two most extreme cases, in

which the contactor (emitted) plasma acts exclusively as an ion emitter or exclusively

as an electron collector, are shown graphically in Figure 3.1. Ground-based studies

suggest that both processes occur in LEO as positive and negative charges counter

flow through a double layer separating the dense contactor plasma from the less

dense ambient plasma [127]. Space and ground based studies of this system indicate

that the electron collection process in LEO likely benefits from plasma turbulence or

some other form of anomalous resistivity to enhance electron current collection across

the Earth’s magnetic field [84, 128]. These studies are critical to understanding the

plasma contactor neutralization process in the high-density plasma environment of

LEO.

Figure 3.1: Fundamental contactor plasma current flow configurations for positively
charged spacecraft.

The regime (electron collection or ion emission) in which the plasma contactor op-

erates most effectively and to what extent spacecraft charging neutralization can be

achieved remains an important open question. The plasma contactor regime depen-
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dence on electron beam current, spacecraft size, and ambient plasma conditions are

of particular interest. For example, the ion emission regime is the only viable charge

mitigation scheme in tenuous space plasmas. There is experimental evidence that

plasma emission can mitigate positive spacecraft charging in more tenuous plasma

environments. Two early missions which first reported this capability were the ATS-

5 and ATS-6 missions operating in geosynchronous orbit [80]. Recent work has also

reported on the neutralizing effect of plasmas generated during hypervelocity dust

impact in tenuous plasmas [141, 142]. However, contactor plasma physics from an

electron beam emitting spacecraft in a tenuous space plasma has never been studied

with space experiments. Whether the contactor would operate successfully in this

regime has remained an open question that demanded further study.

In this chapter, we summarize extensive numerical modeling efforts led by Los

Alamos National Laboratory which attempt to answer the open questions posed

above. These efforts were initially undertaken to identify an effective and reliable

neutralization scheme for the CONNEX mission and henceforth enable high-current

electron beam emission in tenuous space plasmas. The Curvilinear Particle-in-Cell

(CPIC) tool is described first and the predicted results using various charge control

methods reviewed. A physical understanding known as the ion emission model came

from this work and was later formalized into a semi-analytical numerical model with

notable advantages in run time, accessibility, and applicable regimes. The spherical

form of this model is derived, and its results are compared to what was found us-

ing CPIC. Successful comparisons between these two tools motivate the experimental

validation campaigns treated subsequently in this work.
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3.2 Curvilinear Particle-in-Cell (CPIC) Ion Emission Simu-

lations

3.2.1 CPIC Description

The CPIC code is based on the kinetic Particle-In-Cell (PIC) method which is

frequently used for plasma simulation and was originally developed in the mid-1950s

[143–146]. The PIC method tracks individual particles in Langrangian coordinates by

storing each individual particle’s position, velocity, mass, and charge. These simulated

particles are typically used to represent an ensemble of many real-world particles

(portions of phase-space) in the physical plasma system in order to make simulation

run times manageable. Super-particles (or macroparticles) such as these must have

the same charge to mass ratio as the physical particles they represent. To determine

how particle position and velocities evolve in time, plasma moments such as the local

particle and current densities are calculated at each physical location (in Eulerian

coordinates) by summing up individual particle contributions in each cell. These

plasma moments are then converted to force fields using Maxwell’s equations. The

resulting force fields are used to modify the particle position and velocity according

to the Vlasov equation [147, 148]. The Vlasov equation (Equation (3.1)) describes

how particle distribution functions change in time (the first term) according to their

motion (the second term) and the forces acting on them (the third term). f is the

particle distribution function, α is the particle species, v is the velocity vector, q is the

particle charge, m is the particle mass, E is the electric field, and B is the magnetic

field in Equation (3.1). A summary of the general PIC procedure for each individual

time step is provided in Figure 3.2 for reference.

∂fα
∂t

+ v · ∇fα +
qα
mα

(E + v ×B) · ∇vfα = 0 (3.1)
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Figure 3.2: The basic procedural cycle completed during each time step of the PIC
method.

The CPIC tool was developed around 2013 for the purpose of plasma-material

interaction studies at Los Alamos National Laboratory [147]. This electrostatic code

was designed to improve upon standard PIC codes in order to properly treat multiscale

plasma problems such as the interaction of complex objects that are very large or

small compared to local plasma scale lengths. In order to accomplish this, CPIC uses

non-uniform, adaptive, curvilinear grids in the physical space and maps them onto

a uniform, Cartesian logic space using a coordinate transform. This allows small,

curved objects to be treated directly rather than approximated by small cubes which

conform to the uniform, Cartesian grids used by traditional PIC codes [143]. Multi-

block structured meshes and grid adaptability also increase the code’s performance

by reducing its run time. Plasma-material interaction problems typically feature

dramatically different physical scale lengths in different parts on the simulated domain

which must be properly resolved by the local grid spacing. Uniform grid spacing

requires that the minimum local grid spacing be used throughout the entire domain,

often leading to a massive number of simulated cells (and a proportionately long

run-time) or a restricted domain. The adaptive grids used in CPIC improve code

performance significantly by reducing the number of cells, however this is far from

the only feature which makes CPIC robust, efficient, and scalable. These additional
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features and various supporting benchmark work can be found in [147]. An example

CPIC simulation featuring the electrostatic potential near a meshed object resembling

a Van Allen Probe spacecraft is provided in Figure 3.3. This figure clearly shows

curved cells geometries with better spatial resolution in areas of interest and/or rapid

change.

(a) (b)

Figure 3.3: The electrostatic potential around the Van Allen Probe spacecraft arising
from a 5 eV Maxwellian plasma distribution (a). The curvilinear multi-
block mesh conforming to the surface of the Van Allen Probe spacecraft
is also shown (b).

3.2.2 Simulated Electron Beam Emission in the Magnetosphere

CPIC simulations were performed to determine whether electron beam emission

is possible in tenuous space plasmas in spite of the expected spacecraft charging.

A 2.35 meter radius spherical spacecraft was placed at the center of a 118 meter

simulation. A constant current, 11 mA beam of electrons with an energy of 2 keV

was emitted from a 1 m2 injection area on the spacecraft surface. The charge of

this beam was accumulated on the spacecraft. The spacecraft potential was found

to increase linearly until surpassing the electron beam energy, when beam return

was observed. In a system such as this, the spacecraft essentially acts as an isolated
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capacitor charged by a constant current and its potential increases linearly in time.

This simple relation is shown in Equation (3.2) below, in which VSC , QSC , and CSC

are the spacecraft voltage, net charge, and capacitance respectively and Ibeam is the

electron beam current. The potential levels off when the positive spacecraft potential

surpasses the electron beam energy as the beam is electrostatically pulled back to the

spacecraft rather than leaving the system entirely. For the parameters studied using

CPIC, beam return occurred in under 60 µs after the electron beam had traveled

only 1.4 km [15]. The beam return process is observed in CPIC using beam density

contours at different points in time after beam ignition in Figure 3.4. The simulation

input parameters used to produce Figure 3.4 are summarized in Table 3.1.

VSC =
QSC

CSC
=⇒ ∂VSC

∂t
=

∂QSC

∂t× CSC
≈ Ibeam

CSC
(3.2)

Simulation Parameter Value
Spacecraft Radius 2.35 m

Simulation Domain Radius 118 m
Ambient Magnetic Field 100 nT
Electron Beam Current 11 mA
Electron Beam Energy 2 keV

Electron Beam Injection Area 1 m2

Table 3.1: CPIC simulation parameters used in Figure 3.4.

3.2.3 Simulated Spacecraft Charging Control Methods

The emission of an ion beam and a plasma contactor were both explored with

CPIC as promising charge neutralization techniques to prevent electron beam return.

However, space charge limitations were immediately an issue when attempting to emit

large currents with an ion beam. As discussed in Chapter 2, a flux of charged particles

can accumulate in a finite volume such that they enhance the local potential (accord-
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Figure 3.4: CPIC electron beam densities at different points in time after beam igni-
tion in which total beam return is ultimately achieved and clearly visible
[15].

ing to Poisson’s equation). This local potential barrier can prevent further particles

from entering the volume, effectively limiting the particle flux to what’s known as

the space-charge-limit. These effects can be summarized for cold, isotropic particles

in planar geometries using the Child-Langmuir law summarized below in Equation

(3.3) [149]. In Equation (3.3), JSCL is the space-charge-limited current density, ε0 is

the permittivity of free space, qα is the particle charge, mα is the particle mass, Va is

the voltage applied between planar surfaces, and d is the physical separation between

the two planes. Examination of Equation (3.3) reveals that the space-charge-limited

(SCL) current scales inversely with the square root of the particle mass. Because the

lightest ion (H+) is 1836 times more massive than an electron, the SCL current for

ions is at most 2.3% that of electrons for a comparable system. While an ion beam

system with enough energy (Va) and surface area could be designed to match the

associated electron beam current. The practical difficulties of precisely balancing and
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syncing these two beams over the lifetime of a mission creates a substantial risk not

tolerable for many mission classes.

JSCL =
4ε0
9

√
2qα
mα

V
3/2
a

d2
A/m2 (3.3)

Plasma contactor operation during electron beam emission was another charge

control method tested using CPIC [14]. Two main configurations were tested. In the

“electron collection” configuration, the contactor current (plasma current generated

by the plasma contactor) was lower than the electron beam current. In such a config-

uration, the electron beam current must be balanced by significant electron collection

from the ambient plasma. This is essentially a test of whether the configuration on

the left side of Figure 3.1 is sufficient to neutralize a magnetospheric spacecraft with

significant electron emission (such as for the proposed CONNEX mission). If the

contactor plasma fails to direct enough ambient electrons to the spacecraft surface,

then beam return will occur in short order. To summarize the CPIC results: beam

return does occur for this configuration as insufficient electron current is drawn from

the ambient plasma [14].

The “ion emission” configuration was also tested directly via CPIC simulation

[14, 15]. In this configuration, ions are emitted from the surface of the contactor

plasma across a double layer in order to balance the electron beam current (see

the right side of Figure 3.1). This configuration was tested numerically by setting

the contactor current to greater than the electron beam current. In theory, this

inequality should enable neutralization when solely emitting ions produced by the

plasma contactor such that no return current (electron collection) is required from

the ambient plasma. The CPIC results indicate that this is indeed the case. The

simulated spacecraft potential is shown to peak well before reaching the electron
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beam energy in this configuration, enabling electron beam escape in perpetuity with

minimal electron energy loss.

3.2.4 Ion Emission Concept of Operation

CPIC studies of the ion emission configuration ultimately led to an improved

understanding of the dominant physical processes at play. The contactor plasma

potential was observed to remain relatively close to the spacecraft potential [15]. This

makes sense as the plasma is conductive and most of the contactor plasma is observed

to be quasi-neutral. The potential drop from the spacecraft surface to the edge of the

contactor plasma is on the order of a few electron temperatures [15]. This is not all

that surprising given how rapidly a Maxwellian electron energy distribution function

drops off for energies above a few electron temperatures. The distribution is such that

almost no electrons could reach the edge of the quasi-neutral plasma if the potential

drop was 10 times the electron temperature, for example. As mentioned previously,

the contactor plasma is mostly quasi-neutral. However, the plasma potential and local

electron density is shown to drop dramatically at the contactor plasma edge [14, 15].

The ion density is observed to drop less dramatically in this region, producing a

non-neutral, ion-rich region (see Figure 3.5 and its respective simulation parameters

in Table 3.2) [14]. The dramatic potential change and presence of just one charge

species in this region closely resembles the assumptions used to derive the SCL (Child-

Langmuir) law in Equation (3.3). Based on these observations, it was understood that

ion emission from the quasi-neutral contactor plasma is space-charge limited. This

basic understanding would ultimately be used to develop a semi-analytical model

which approximates CPIC results.
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Simulation Parameter Value
Spacecraft Radius 2.35 m

Simulation Domain Radius 118 m
Ambient Magnetic Field 100 nT

Ambient Plasma Ion Mass 1.7 × 10-27 kg
Ambient Plasma Density 106 m-3

Ambient Plasma Ion Temperature 1 keV
Ambient Plasma Electron Temperature 1 keV

Electron Beam Current 11 mA

Electron Beam Energy
Beam Trajectories

Not Simulated
Electron Beam Injection Area 1 m2

Contactor Plasma Ion Mass 1.7 × 10-27 kg
Contactor Current 22 mA

Contactor Plasma Density 1012 m-3

Contactor Ion Temperature 10 eV
Contactor Electron Temperature 10 eV

Contactor Ion Drift Velocity 130 km/s
Contactor Expansion Time 36 µs

Table 3.2: CPIC simulation parameters used in Figure 3.5.

3.3 The Semi-Analytical Ion Emission Model

3.3.1 Motivation

A variety of semi-analytical, physics-based models were developed for three pri-

mary purposes. The first purpose was to corroborate CPIC simulation results and

the physical processes underlying ion emission (at least for simple geometries). The

second was to validate a tool that could produce results similar to CPIC on a personal

laptop without the need for expensive super computer access. The final purpose was

to generate predictions for regimes normally not accessible to PIC simulations. Of

the models developed, the most complete one-dimensional (1D), spherical model pro-

duced the best agreement with CPIC simulations (as will be discussed later). This

specific model (and its planar counterpart introduced in Chapter 6) will henceforth

be termed the ion emission model.

A good physical understanding is required to develop an efficient, representative
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Figure 3.5: CPIC contactor plasma electron and ion densities 120 µs after electron
beam ignition in the ion emission configuration. Density contours are
roughly co-located (signifying equal charged particle densities and quasi-
neutrality) except for the low density (dark blue) contour at the plasma
edge [14].

model. Going through the process of improving agreement between the CPIC code

and semi-analytical ion emission model aided our physical understanding immensely.

Improved understanding allows for more assumptions to be used while maintaining

accuracy, thereby improving code efficiency and run times for CPIC and the ion

emission model. The practical consideration of run time is a major advantage that

the semi-analytical model has when compared to CPIC. In addition, the already

restrictive run time scales up significantly with the simulation domain dimensions

using CPIC. One other notable limitation associated with CPIC is that it requires a

finite simulation domain, whereas in space the assumption of no definite boundary

which limits the contactor plasma’s expansion is a good one. A semi-analytical model,

on the other hand, allows the outer model boundary to be placed at infinity in a

configuration more representative of space. The final assumptions going into the
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most accurate spherical representation of what we call the ion emission model and a

comparison with CPIC are treated below.

3.3.2 Model Assumptions and Inputs

The CPIC simulation domain was split into five well-defined regions which com-

pose the semi-analytical model. These regions include the spacecraft, quasi-neutral

plasma, ion-rich plasma, and vacuum when moving out from the simulation center.

It is also possible to include a grounded outer domain boundary beyond the vac-

uum region when comparing laboratory experiments with CPIC simulations. The

boundaries of these regions are defined by the radii r1, rqn, ri, and r2 when moving

out from the simulation center. These plasma regions and bounding radii are shown

graphically in Figure 3.6. Additional assumptions used in the development of the 1D,

spherical ion emission model are enumerated below. These assumptions are treated

in more detail in [16].

1. The system is spherically symmetric. This is one notable deviation from a “real

world” system as it means plasma is emitted evenly from the entire spacecraft

surface.

2. The electron beam energy is large enough that it (and its associated charge)

leaves the system instantaneously.

3. The contactor current equals the electron beam current (Icontactor = Ibeam), a

minimum Icontactor value for the plasma contactor to neutralize electron beam-

induced spacecraft charging.

4. The model is electrostatic.

5. The system evolves on slow, ion time scales.

6. The contactor emits a constant ion current for positive spacecraft potentials.
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7. The contactor ions are cold with finite drift velocity at injection.

8. There is no potential drop across the quasi-neutral region. This assumption

implies the spacecraft potential is equal to the potential at rqn.

9. There is vacuum beyond the ion front.

10. The outer model boundary at r2 is grounded (0 V).

11. The plasma is quasi-neutral (ne = ni) for r ≤ rqn.

Figure 3.6: A graphical representation of the plasma regions and radii used in the
spherical ion emission model [16].

Many of the spherical ion emission model inputs are the same as those required

by CPIC. The beam current, spacecraft radius, and outer domain radius are three

required system inputs. The required plasma parameters include the injected ion

contactor current, electron contactor current, ion temperature, ion drift energy, and

electron temperature. The quasi-neutral contactor plasma geometry is also required

as it defines the surface area from which ions are emitted. The primary model treated

here uses a static, quasi-neutral plasma boundary which must be input from some
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other source (such as a previous CPIC simulation). Using these inputs and the

assumptions above, we may derive a spherical, semi-analytical model to predict in-

space system behavior.

Simpler models were developed in addition to the full semi-analytical model treated

specifically in this chapter [16]. These simplified models are not as accurate as the

full model, but may be sufficient for some applications and require fewer inputs. A

full derivation of the simplest analytical model (with the fewest required inputs) is

provided in Appendix A. This very simple model tracks the spacecraft potential and

contactor plasma radius in time by treating the contactor plasma as part of an ex-

panding spherical capacitor. This capacitor model does not require a model boundary

or initial contactor plasma conditions like the 1D, spherical ion emission model.

3.3.3 Spherical Ion Emission Model Derivation

We begin our derivation by defining the unspecified system radii/boundaries. rqn

does not change after a short transient period triggered by beam turn on in the CPIC

simulations when the beam current equals the contactor current. Because of this we

can set rqn to a constant value. The evolution of the ion front position, ri, can be

estimated starting from the simple equation of motion (Equation (3.4)). The variables

used in Equation (3.4) and all subsequent ones related to the ion emission model

are normalized according to Tables 3.3 and 3.4 [16]. Nomenclature and parameter

definition for the ion emission model are also summarized in Table 3.5 for simplicity.

For a more complete treatment of the spherical model derivation, see [16]. To calculate

the electric field at the ion front in Equation (3.4), we turn to Gauss’s law in Equation

(3.5). For the critical estimation of the charge enclosed by ri, we simply add the

initial system charge (which is typically input using results from a comparable CPIC

simulation) to the charge removed by the electron beam in Equation (3.6). Combining

Equations (3.4), (3.5), and (3.6) directly leads to Equation (3.7). Equation (3.7)
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defines the evolution of the ion front in time according to known model parameters.

Symbol Definition Value Unit
e Elementary charge 1.6× 10−19 As
kB Boltzmann constant 1.38× 10−23 m2kg/Ks2

me Electron mass 9.11× 10−31 kg
ε0 Vacuum permittivity 8.85× 10−12 A2s4/kgm3

Tref Reference temperature User Input K
nref Reference density User Input m-3

vth,ref Reference thermal velocity
√
kBTref/me m/s

λref Reference Debye length
√
ε0kBTref/e2nref m

ωp,ref Reference plasma frequency
√
e2nref/meε0 rad/s

Table 3.3: A summary of normalizing values used by the ion emission model.

General Symbol Definition Normalization
T Temperature T/Tref
n Density n/nref
x/r Length/radius x/λref
v Velocity v/vth,ref
τ Time τωp,ref
ψ Electrostatic potential eφ/kBTref
I Current I/enrefvth,refλ

2
ref

Q Charge Q/enrefλ
3
ref

Table 3.4: Ion emission model normalization summary.

∂2ri
∂τ 2

=
me

mi

E(ri) (3.4)

E(ri) =
Q

4πr2i
(3.5)

Q = Q0 + Ibeamτ (3.6)

60



Symbol Definition
rqn Normalized quasi-neutral radius
ri Normalized ion front radius
τ Normalized time
me Normalized electron mass
mi Normalized ion mass
E Normalized electric field
Q Normalized charge enclosed by r = ri
Q0 Initial normalized charge enclosed by r = ri
Ibeam Normalized electron beam current

Icontactor Normalized contactor (plasma) current
r2 Normalized model domain radius
ψ Normalized electrostatic potential
ne Normalized electron density
ni Normalized ion density
vd Normalized ion drift velocity
Ki Normalized ion drift energy
Je Normalized electron current density
vth,e Normalized electron thermal velocity
Te Normalized electron temperature
z Current radius as normalized by the radius of the quasi-neutral boundary
Ii Normalized ion current (contactor current)

Table 3.5: Ion emission model nomenclature summary.
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∂2ri
∂τ 2

=
me

mi

Q0 + Ibeamτ

4πr2i
(3.7)

The ion emission model also calculates the electrostatic potential in the simulation

domain. Assumption 9 allows the potential at the ion front, ri, to be calculated using

vacuum capacitance as shown in Equations (3.8) and (3.9). The potential beyond

this ion front is the solved problem of a vacuum potential distribution between two

concentric spherical conductors. However, this potential distribution is not required

for the model as it is located in the region ions expand/accelerate into after being

emitted. Assumption 8 allows the quasi-neutral plasma potential to be neglected for

simplicity such that only the potential at the quasi-neutral boundary, rqn, is required.

The potential at the quasi-neutral boundary (and spacecraft potential) is obtained

implicitly from the solution of a nonlinear Poisson equation in the ion-rich region

according to Equation (3.10). Equation (3.10) requires both electron and ion densities

in addition to two boundary conditions. The boundary conditions used correspond

to assumptions 6 and 9, which effectively set the electric field at the quasi-neutral

boundary to zero and define the potential at the ion front.

C =
4πr2ri
r2 − ri

(3.8)

ψi =
Q

C
=

(Q0 + Ibeamτ)(r2 − ri)
4πr2ri

(3.9)
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1

r2
∂

∂r

(
r2
∂ψ

∂r

)
= ne − ni (3.10)

The electrostatic potential profile in the ion-rich region depends on local particle

densities. The ion density can be calculated by assuming cold, drifting ions according

to assumption 7. Combining the ion continuity and momentum equations using this

assumption results in Equation (3.11). The electron density is calculated assuming

a Maxwellian distribution and applying the kinetic theory derived by Delzanno and

Tang in the OML approximation [37]. Equations (3.12) and (3.13) summarize the

local electron density for two potential regimes. We note that Je is one remaining

unknown found in Equations (3.12) and (3.13). To calculate Je, we impose quasi-

neutrality (ne = ni) at rqn in order to arrive at Equation (3.14) for the electron

current density. The dimensions and potentials within each defined region shown

in Figure 3.6 are determined using the assumptions described above in conjunction

with Equations (3.7), (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14). This model

also computes the electron and ion density profiles in the ion-rich region where ion

emission occurs as a byproduct of solving Poisson’s equation.

ni =
Ibeam

4πvdr2

[
1 +

ψSC − ψ
Ki

]− 1
2

(3.11)

ne =

√
π

2

Je
vth,e

exp(
ψ − ψSC

Te
)×[

1 + erf

√
ψ

Te
− 2√

π

√
ψ

Te
exp

(
− ψ
Te

)
−
√
z2 − 1

z
exp

(
ψ − ψSC
Te(z2 − 1)

)]
if ψ(z) ≤ ψSC

z2

(3.12)
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ne =

√
π

2

Je
vth,e

exp(
ψ − ψSC

Te
)×[

1 + erf

√
ψ

Te
− 2√

π

(√
1

Te

(
ψ − ψSC

z2

)
−
√
ψ

Te

)
exp

(
− ψ
Te

)

−
√
z2 − 1

z
exp

(
ψ − ψSC
Te(z2 − 1)

)(
1 + erf

√
1

Te

z2ψ − ψSC
z2 − 1

)]
if ψ(z) ≥ ψSC

z2

(3.13)

Je =
Ii

4πr2qn

vth,e
vd

√
2

π

[
1 + erf

√
ψSC
Te
− 2√

π

√
ψSC
Te

exp

(
ψSC
Te

)]−1

(3.14)

3.4 A Comparison of Model and CPIC Results

A direct comparison of ion emission model and CPIC predictions was performed

using the inputs listed in Table 3.6 and the results for this test case will be summarized

here [16] . Figure 3.7 presents the time evolution of the ion front potential, ψi, and

the ion front position, ri, over time. In this figure (and the two to follow) the “Base

Model” is the same spherical, semi-analytical ion emission model which we have

treated in this chapter. Figure 3.7 shows that the ion front is well characterized using

the ion emission model (its potential and position are within a few percent of what is

observed using CPIC). Figure 3.8 presents the equilibrium (long term) potential and

charged particle density profiles in space. These profiles were taken at the end of the

simulation, after the ion front had reached the grounded simulation boundary. The

agreement here is very strong once again (within a few percent) with the exception

of some statistical noise introduced by the finite number of CPIC macroparticles.

It is worth noting that spatial density and potential profile agreement is degraded

for times immediately following beam ignition, however this discrepancy appears to
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have little impact on the agreement in Figure 3.7 or the spacecraft potential shown

in Figure 3.9 [16]. The spacecraft potential agreement is also very good, and the two

predictions fall within a narrow range throughout the simulation duration.

Simulation Parameter Value
Spacecraft Radius 1 m

Simulation Domain Radius 100 m
Ambient Magnetic Field 0 nT
Electron Beam Current 1 mA

Electron Beam Energy
Beam Trajectories

Not Simulated
Contactor Plasma Ion Mass 6.7 × 10-27 kg
Contactor Electron Current 7.2 mA

Contactor Ion Current 1 mA
Contactor Ion Temperature 0.5 eV

Contactor Electron Temperature 2.3 eV
Contactor Ion Drift Velocity 35 km/s

Initial Contactor Expansion Time 0.3 ms
Initial Quasi-neutral Radius 8.7 m

Initial Ion Front Radius 17 m
Initial Ion Front Velocity 64 km/s
Initial Spacecraft Charge 1.8 × 10-8 C

Table 3.6: Input parameters used for a direct comparison between the ion emission
model and CPIC simulation in Figures 3.7 - 3.9.

3.5 The Need for Experimental Validation

The simulated results discussed here suggest that charge mitigation using a con-

tactor plasma is possible even in the absence of an ambient plasma at charging levels

well below those expected without spacecraft-charging mitigation [14, 15]. Specifi-

cally, CPIC simulations demonstrate space-charge limited ion emission from the sur-

face of a quasi-neutral contactor plasma that can balance electron beam emission so

long as the contactor current equals or exceeds the electron beam current [14, 15].

The semi-analytical ion emission model matched CPIC simulation results within a

few percent and even predicted effective spacecraft neutralization in an unbounded

65



(a) (b)

Figure 3.7: The simulated ion front potential (a) and position (b) after electron beam
ignition according to CPIC and the ion emission model (denoted the Base
Model) [16]. Beam emission begins at Time = 0.

(a) (b)

Figure 3.8: The simulated equilibrium (long term) ion and electron densities (a) and
electrostatic potential (b) when emitting an electron beam according to
CPIC and the ion emission model (denoted the Base Model) [16]. The
vertical dashed lines denote the edge of the quasi-neutral plasma and the
ion front. These profiles are taken 1.8 ms after beam ignition.
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Figure 3.9: The simulated spacecraft potential after electron beam ignition according
to CPIC and the ion emission model (denoted the Base Model) [16]. Beam
emission begins at Time = 0.

domain (as one would expect in space) [16]. In total, CPIC simulation and ion emis-

sion model results suggest that using a hollow cathode plasma contactor is a viable

strategy to achieve spacecraft charging neutralization during high-current electron

beam experiments in tenuous plasmas.

While encouraging, these results should not be trusted blindly when proposing

to use the ion emission technique in space. Instead, the necessary assumptions and

model inputs which go into novel numerical simulations such as these should be

vetted using repeatable physical experiments. By carefully scaling and designing

experiments in an Earth-based vacuum chamber, we can capture many of the key

scaling parameters and physical processes which are expected of a realistic space

experiment. Numerical tools may then be applied directly to these experimental

results. Discrepancies between numerical prediction and experimental results may

be analyzed to identify opportunities for numerical tool improvement. Agreement

between the two data sets indicates that the numerical tools accurately capture the

real-world system and can subsequently be used for in-space prediction more reliably.
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In the remainder of this work, we focus on experimental campaigns which validate

the discussed numerical models and unravel the physical processes underlying net ion

current emission from a quasi-neutral plasma.
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CHAPTER IV

Ion Emission Validation I: Transient Response to

Electron Beam Emission

4.1 Motivation

Validating the predictive capability of CPIC simulations and the ion emission

model using ground based plasma chamber experiments is a critical step in identifying

a spacecraft charge neutralization method during electron beam emission in space.

The first step in this process is a qualitative validation of the predicted spacecraft

potential response to electron beam ignition. This step indicates whether spacecraft

neutralization is even possible in an earth-based vacuum chamber using a plasma

contactor with contactor current roughly equal to the electron beam current. In this

chapter, we will quickly summarize the predicted spacecraft and plasma potential

responses relevant to sudden electron beam ignition while operating a hollow cathode

plasma contactor. Next, we will describe experiments designed to observe these same

transient responses in an earth-based vacuum chamber. Finally, we will compare

the results of these experiments to the predicted response in space and discuss any

discrepancies.

The spacecraft potential response to electron beam ignition as predicted by CPIC

and the ion emission (base) model is shown in Figure 3.9 using the input parameters
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listed in Table 3.6. These simulations correspond to the standard case where Ibeam =

Icontactor as described in Chapter 3. The spacecraft potential is shown to increase

approximately linearly when the beam is first fired and eventually asymptotes to a

constant value due to the effects of a finite boundary. Example plasma potential

profiles for an expanding contactor plasma are shown in Figure 4.1 both before and

during electron beam emission using the input parameters in Table 3.6. The CPIC

and model predictions show that the entire contactor plasma potential increases in

unison with the spacecraft potential when an electron beam is emitted. Ion and

electron density profiles are presented in Figure 4.2 (again, using the parameters

listed in Table 3.6). In this plot we can see that the ion density profile continues to

expand when the electron beam is fired without significant changes. In comparison,

the electron density suddenly decreases much more rapidly than the ion density in

regions far from the simulated spacecraft (which is situated at r = 0) when the beam

is fired.

(a) (b)

Figure 4.1: Plasma potential surrounding a simulated spacecraft according to CPIC
and the ion emission model (denoted the Base Model) using the same
conditions 0 µs (a) and 89 µs (b) after beam ignition [16].

The results described above are precisely the focus of the experimental campaign
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(a) (b)

Figure 4.2: Ion and electron densities surrounding a simulated spacecraft according
to CPIC and the ion emission model (denoted the Base Model) using the
same conditions 0 µs (a) and 89 µs (b) after beam ignition [16].

described below. Experimental “spacecraft” (S/C) and plasma potentials are tracked

simultaneously during the ignition of a constant current power supply (which effec-

tively acts as a constant current electron beam). Langmuir probes (LPs) biased in

the ion and electron saturation regimes are also used to get an idea of changes to

ion and electron densities in various locations surrounding the hollow cathode. The

general trends observed during these experiments are compared to predicted trends

in a qualitative manner (as the two system parameters are somewhat different) and

any additional observations of note are addressed.

4.2 Experimental Setup

4.2.1 Simulating a Plasma Contactor and Electron Beam Emitting “Space-

craft”

In order to mimic simulations and in-space conditions for a representative “space-

craft” (S/C), we must electrically isolate it from conducting surfaces in contact with

71



Earth ground. This was accomplished by placing all hollow cathode components on

top of a conducting steel platform. The platform was separated from the steel cham-

ber via four 6” ceramic standoff insulators (see Figure 4.3). High voltage ceramic

feedthroughs, coaxial and twisted pair cable arrangements, and woven metal shield-

ing sleeves were used when possible. The hollow cathode was biased positive with

respect to the grounded, conductive chamber walls to mimic the equivalent space sys-

tem’s response to electron beam emission according to the circuit diagram in Figure

4.4. A high voltage (20 kV) power supply was used to simulate the electron beam

for this set of experiments. It is used in both constant current and constant voltage

mode to control the S/C potential. The potential established using this power supply

can also be thought of as the equivalent of a spacecraft potential with respect to the

ambient space plasma, as hollow cathodes are typically tied to spacecraft common

(the spacecraft frame potential). For transient testing in which the “beam” is fired,

the power supply is simply switched on and off in constant current mode. The power

supply’s voltage and current are independently verified and recorded using an oscillo-

scope. The “electron beam” current is converted to a voltage using a simple, in-series,

1 Ohm resistor voltage drop. The assembled system was designed and tested with

the capability to bias the S/C in excess of 1 kV with respect to the chamber ground

without breakdown in air. See Figure 4.4 for the complete isolation circuit.

An open keeper, LaB6 hollow cathode with a 1/8” orifice diameter was used to

produce a steady state plasma representative of a space-based contactor plasma.

The design is a variant of the cathodes used in electric propulsion devices and is

shown operating in Figure 4.3. The cathode was operated using a 7 sccm flow of

neutral Xenon expellant and a keeper (discharge) current of 5 A, which resulted in

a keeper (discharge) voltage of 26.6 – 28.1V. The hollow cathode was operated in

the “diode mode” configuration. In the diode mode, a steady state plasma discharge

is maintained by forcing a constant, ionizing current to flow between the cathode
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Figure 4.3: Simulated “spacecraft” during hollow cathode operation.

Figure 4.4: “Spacecraft” isolation and hollow cathode plasma contactor power circuit.

and keeper electrodes. The diode mode was used as it best represents the expected

in-space use case during electron beam emission (when the spacecraft is positive and

the hollow cathode acts as a net ion source).

73



4.2.2 Vacuum Chamber Description

Experiments were performed at the University of Michigan’s Plasmadynamics &

Electric Propulsion Laboratory (PEPL) in the Large Vacuum Test Facility (LVTF)

vacuum chamber. LVTF is a roughly cylindrical chamber with rounded endcaps as

shown in Figure 4.5. It is composed of stainless steel, its largest diameter is 6 m, and

it spans 9 m in length. LVTF achieved a base pressure of approximately 5x10-7 Torr

with an operating pressure of approximately 1x10-6 Torr using seven CVI TM-1200

re-entrant cryopumps during the experiments presented. The background operating

pressure of 1x10-6 Torr can be converted to a mean free path using a Xenon charge

exchange cross section of 2x10-18 m2 and assuming a neutral temperature of 300 K

[150]. The resulting mean free path of 15.5 m is considered conservative with regards

to plasma collisionality (charge exchange mean free paths are the shortest for Xenon)

and is larger than any chamber dimension.

4.2.3 Plasma Diagnostics

Three cylindrical, Tungsten Langmuir probes, two thoriated Tungsten emissive

probes, and a retarding potential analyzer (RPA) were used over the course of these

experiments. These diagnostics were located on a diagnostic stand shown in Figure

4.6, with the exception of two Langmuir probes. These two Langmuir probes were

placed 96 cm directly behind the hollow cathode and 6 cm from the chamber wall

(this probe was 280 cm off the hollow cathode axis and 210 cm downstream). The

length of the stand, posterior, and wall Langmuir probes was 5.2 cm, 4.9 cm, and 5.2

cm respectively. The diameter of these probes was 0.0635 cm, 0.08 cm, and 0.0254

cm respectively. The exposed emissive probe tips were 4 cm in length and 0.0254 cm

in diameter with a slight bend according to the recommended practice for tenuous

plasmas [151]. Probes were electrically and physically isolated and extended (at least

24 cm) from the rotation stage to prevent wake effects and possible arcing to the
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(a) (b)

(c)

Figure 4.5: The LVTF interior (a), exterior (b), and an aerial view of the LVTF
configuration used during the described experiments (c).
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chamber. The diagnostic stand was mounted atop 2 large, linear Velmex motion

stages and a rotation stage. This created a large effective testing area and placed

probes at approximately the same height as the hollow cathode orifice (174 cm +/- 2

cm above the chamber grates). The testing area and orientation of relevant hardware

is presented via aerial view in Figure 4.5 (c).

Figure 4.6: Various photos of the 80/20 diagnostic stand, the three motion stages
used to position it, and its diagnostic suite consisting of a RPA, Langmuir
probe, and two emissive probes.

The primary plasma measurements used in this analysis are those made by an

emissive probe 206 cm downstream of the hollow cathode orifice. These plasma

potential measurements were made using the floating probe technique in the limit

of high emission [151]. In this method, a current is passed through the thin probe

filament to heat it to thermionic electron emission temperatures. These thermionic

electrons effectively neutralize the sheath around the filament so that the probe floats

very close to the plasma potential [151, 152]. Calibration curves were used to ensure

the probe was sufficiently hot by increasing the heating current through the filament

until the probe floating potential plateaued [151, 152]. An example calibration curve
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and the emissive probe measurement circuit can be found in Appendix B.

The other plasma measurements treated in this section are those of the Langmuir

probes. However, the typical Langmuir probe I-V sweep was not performed as the

long duration of each sweep (on the order of seconds) would invalidate any such

measurement taking place during a fast transient. Instead, the Langmuir probe data

presented below was obtained by simply biasing the Langmuir probes highly positive

or highly negative in order to measure the electron and ion saturation currents in real

time. Specifically, the probes were biased at +200 V with respect to the chamber walls

to collect electron saturation current and -200 V with respect to the chamber walls

to collect ion saturation current. Without any additional information, the saturation

currents to a cylindrical Langmuir probe cannot be used to directly calculate electron

and ion densities. However, the measurements still provide an indication of density,

drift velocity, and plasma potential changes occurring in various regions near the S/C

when the “beam” is first emitted.

More plasma measurements were completed and analyzed during this experimental

campaign, however these other measurements focused primarily on the steady state

contactor plasma properties. The results from these measurements report the same

trends examined in more detail during Chapters 5 and 6. Along the same lines,

different cathode configurations and simulated electron beam currents were studied

during this experimental campaign. The results from these measurements report the

same trends addressed specifically in Chapter 7. These additional measurements are

not presented for the sake of brevity, but they consistently support the more detailed

results and conclusions presented elsewhere (both in this document and in previous

publications) [153, 154].
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4.3 Experimental Results

4.3.1 Potential Transient Response

A high voltage power supply was used to simulate electron beam ignition once the

hollow cathode had reached equilibrium at a Xenon gas flow rate of 7 sccm, keeper

current of 5 A, and keeper potential of 26.6 V. Figure 4.7 shows the measured elec-

tron “beam” current supplied by the high voltage power supply in order to mimic

DC electron beam ignition. The waveform indicates that the power supply reaches

its steady state current value in approximately 255 ms. However, this rise time is

insignificant in comparison to the time it takes for the S/C and plasma potentials to

reach equilibrium. The current was set to 33 mA, but an analysis of Figure 4.7 reveals

an average current of 30.6 mA while the “beam” was firing. It is likely that the high

voltage power supply was unable to set the current to 33 mA with a high degree

of accuracy as it is well below its maximum current setting. Thus this 2.4 mA dis-

crepancy is likely within the uncertainty of the power supply. Before “electron beam”

ignition, “beam current” was non-zero as the S/C was partially grounded through the

unpowered cathode bias power supply. However, the steady state S/C potential was

still negative of the chamber walls when the supply was first powered, mimicking a

spacecraft floating negative in a space plasma. There was also a brief “beam” current

drop which bottomed out at -4 mA when the cathode bias power supply was turned

off. This feature is not particularly relevant to the ability to neutralize active electron

beam emission, but likely impacted measurements when the power supply/”electron

beam” was turned off. Finally, the current measurement is rather noisy. This is likely

because of the current measurement technique used. The cables and current sense

resistor were partially unshielded and located in a control room with significant elec-

tromagnetic interference (EMI). This EMI could easily couple to the current sensing

circuit and induce voltage noise on the order of a few mV (which translates to current
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noise on the order of a few mA). Such noise should not alter the current’s average (or

DC) value.

Figure 4.7: “Beam” current from the high voltage power supply during a 33 mA
transient testing after being filtered with a 50 point moving average.

Figure 4.8 proves that “spacecraft” neutralization is achievable by operating a

plasma contactor in a vacuum chamber. Rather than increasing linearly until the

maximum power supply voltage setting is reached, the S/C potential is observed to

peak at a manageable 51.7 V and then slowly decrease to an equilibrium value of

34.5 V. To highlight the significance and magnitude of the observed neutralization,

an example scenario without neutralization is provided here using Equation (3.2).

The capacitance between the S/C and chamber wall (CSC) may be approximated by

treating the isolated conducting plates of the S/C and its supporting platform as a

parallel plate capacitor whose separation is the isolation ceramic height. This results

in a capacitance of 68.1 pF. Solving Equation (3.2) using the measured “beam” current

of 30.6 mA and a CSC of 68.1 pF results in a ∂VSC

∂t
of 4.5x108 V/s. This predicted

∂VSC

∂t
would lead to the maximum power supply voltage of 20,000 V being exceeded in

just 45 µs. For comparison, the highest measured ∂VSC

∂t
was only 1,060 V/s (although
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this is likely a gross underestimation of the peak ∂VSC

∂t
given the 5 ms oscilloscope

measurement period).

It is also clear from the contemporaneous oscilloscope data presented in Figure

4.8 that it takes the spacecraft and plasma potentials in the system over 15 seconds

to reach equilibrium. The S/C potential and plasma potential of Figure 4.8 (as mea-

sured using an active emissive probe 206 cm downstream of the hollow cathode orifice)

appear to react with no detectable delay between their signals. The rapid initial rise

time and lack of delay between potential signatures suggest that the plasma responds

quickly to the “beam” current, as one would expect using typical diffusion and plasma

frequency time constants [155]. This also makes the long potential equilibrium time

exceeding 15 seconds rather mysterious. A likely cause of this phenomenon is pre-

sented in Section 4.4.

Figure 4.8: “Spacecraft” and plasma potential transients during 33 mA “beam” firing.

4.3.2 Local Saturation Current Transients

Langmuir probe saturation currents during a 33 mA “beam” firing are presented

in Figures 4.9, 4.10, 4.11, 4.12. Without any additional information, the saturation
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currents to a cylindrical Langmuir probe cannot be used to directly calculate electron

and ion densities as previously stated. However, the measurements still provide an

indication of density, drift velocity, and plasma potential changes occurring in various

regions near the S/C when the “beam” is first emitted. For example, the saturation

current is roughly proportional to the local charged density for both ions and electrons.

Figures 4.9 - 4.12 are all taken from an independent “beam” firing with the same

“beam” current of 33 mA. On the left plot of these figures, we observe that the elec-

tron saturation current consistently dropped as soon as the “beam” was fired. This

drop was almost certainly caused by some combination of three dependencies. First,

the increase in local plasma potential (see Figure 4.8) and corresponding decrease in

the probe bias relative to this local potential acted to decrease the electron saturation

current. This is because the electron saturation current scales almost linearly with

Langmuir probe bias in our experiments (see Chapter 5, Figure 5.7). Second, the

electron saturation current scales linearly with electron density. Finally, the electron

saturation current scales as the square root of electron temperature. It is also worth

noting that the electron temperature actually increases with S/C potential (as ex-

plored in Chapter 5), reducing the impact of a decrease in electron density and/or

relative probe bias. The general shape of this drop was typically the inverse of the

potential increase observed in Figure 4.8. One exception to this trend is that there

appear to be oscillations in the electron saturation current presented in Figure 4.9

when the “beam” is first fired. The exact cause of this low frequency (∼0.25 Hz)

behavior near the hollow cathode orifice is unknown. It is possible there is local

turbulence near the hollow cathode when the “beam” is fired.

There are also discrepancies in the electron saturation current response when the

“beam” is turned off. The current is shown to return to its unbiased, steady state

value with different time scales, approximating underdamped, critically damped, and

over damped responses. The largest drop in electron saturation current occurred
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(a) (b)

Figure 4.9: Langmuir probe electron (a) and ion (b) saturation currents 56 cm down-
stream of the hollow cathode during 33 mA “beam” firings.

(a) (b)

Figure 4.10: Langmuir probe electron (a) and ion (b) saturation currents 206 cm
downstream of the hollow cathode during 33 mA “beam” firings.

near the wall (a 65% drop seen in Figure 4.12) and the smallest drop occurred behind

the hollow cathode (a 23% drop seen in Figure 4.11). These are the two lowest

plasma density areas so it is interesting that they reacted so differently. The current

theory is that relative differences in electron saturation current at different locations is

primarily due to electron density changes as the contactor plasma potential increases

with the S/C potential (S/C bias). This theory is supported and expanded upon in

Chapter 5.

The ion saturation current spikes when the “beam” is first fired as ions are forced
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(a) (b)

Figure 4.11: Langmuir probe electron (a) and ion (b) saturation currents 96 cm be-
hind the hollow cathode during 33 mA “beam” firings.

(a) (b)

Figure 4.12: Langmuir probe electron (a) and ion (b) saturation currents 6 from the
chamber wall during 33 mA “beam” firings.

out of the plasma to compensate for the electron “beam” current leaving the system.

The magnitude of these spikes is highly variable and likely determined by chance

as the plasma response and time scales are much faster than could be faithfully

recreated given the current measurement frequency (∼2 Hz). The steady state ion

saturation current observed while the “beam” is firing generally does not change as

much as the electron saturation current. In fact, at three of the Langmuir probe

positions these two values varied by less than 13%. This is not all that surprising

given that ion saturation current scales as the square root of probe bias relative to the
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plasma (whereas this relationship is almost linear for the electron saturation current)

[36]. Accounting for this relative change in probe bias adds less than 10% to the

ion saturation current in our system. Thus, if there are no ion density changes the

ion saturation current will not change much. The exception to this trend of only

minor ion saturation current changes is the Langmuir probe near the wall shown in

Figure 4.12, which saw a 45% decrease in ion saturation current while the beam was

firing. This is likely due to a decrease in ion density, which nominally agrees with our

previously proposed theory that the electron density dropped near the chamber wall.

The results of Chapter 5 further explore and support this theory.

The ion saturation current reacts rather unpredictably when the “beam” is turned

off. The ion saturation current is actually shown to go positive (net electron collection)

for the two transient measurements of Figures 4.11 and 4.12 at the moment the

“beam” is shut off. It is possible that this occurs in all cases but it was not properly

captured due to the current measurement frequency. Either way, it is likely caused

by the negative electron “beam” current induced when the high voltage cathode bias

power supply is shut down (see Figure 4.7). The ion saturation currents are observed

to return to a steady state condition via a damped response.

4.4 A Circuit Model Approach to Potential Transients

The equilibrium times observed in the results above are much longer than one

would expect based on plasma time scales (such as the plasma period or particle

chamber transit times). To better understand and explain this disconnect, we look to

the literature and find similarly long response times have been observed in space for

comparable systems. Potential transients of a similar shape and time scale were ob-

served on the geosynchronous ATS-5 and ATS-6 satellites when turning on a plasma

contactor in order to neutralize negative spacecraft charging [80]. Replication of

the ATS-5 mission in NASCAP (a dedicated spacecraft charging code) revealed that
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spacecraft system capacitances and resistances drove long equilibrium times in a sur-

prisingly simple fashion [80]. Here we will use a similar approach to determine if this

could be the cause of long equilibrium times in our vacuum chamber experiments.

We can approximate our physical system in Keysight’s Advanced Design System

(ADS) circuit simulation software by using a simple RC circuit model. The high

voltage cathode bias power supply (or “electron beam”) is approximated using a 30.6

mA current source with a 255 ms rise time to mimic the current waveform in Fig-

ure 4.7. The capacitance between the S/C and chamber wall was approximated by

treating the isolated conducting plates of the S/C and its supporting platform as a

parallel plate capacitor whose separation is the isolation ceramic height as before.

The resulting capacitance of 68.1 pF is actually within a factor of two of the 104 pF

ATS-5 spacecraft capacitance found using NASCAP [80]. We can estimate a plasma

resistance using Ohm’s Law as the “beam” current magnitude is essentially equal to

the current flowing from the S/C to the chamber wall. A plasma resistance of roughly

1450 Ω is found by linearizing the relationship between the “beam” current and S/C

potential shown in Figure 4.13. These measurements were taken using the same cath-

ode configuration as Figure 4.8. Figure 4.14 summarizes the S/C potential transient

simulation results using Keysight’s ADS software and shows the representative RC

circuit used.

The magnitude and time scale of the predicted S/C potential transient are very

similar to those observed in Figure 4.8. The S/C potential first peaks and then drops

∼15 V in 25 seconds. The value of the S/C potential peak was ∼50 V during exper-

iments and ∼45 V as predicted via ADS circuit simulation. One notable difference

between the two potential plots of Figure 4.8 and Figure 4.14 is that Figure 4.8 is

significantly more rounded. This is likely because the effective plasma resistance is

non-linear over S/C potential. For instance, estimating the plasma resistance from

Figure 4.13 using the lowest two S/C potentials (rather than the highest four S/C
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potentials) produces a much lower resistance of ∼230 Ω. A variable plasma resistance

which starts small and increases as the peak potential is approached could explain

the S/C potential peak rounding which occurs during electron beam ignition.

Figure 4.13: “Beam” current versus steady state S/C potential for a keeper current
of 5 A and Xenon flowrate of 7 sccm.

(a) (b)

Figure 4.14: Capacitive charging transient simulation using a basic RC circuit model.
The circuit model (a) and resulting S/C potential transient (b) are
shown.

86



4.5 Chamber Microdischarges

The maximum “beam” current and its corresponding equilibrium S/C potential

were effectively limited by the onset of microdischarges in the chamber when the

S/C potential exceeded 60 V. These microdischarges presented themselves as a small

flash of light on a grounded chamber surface (see Figure 4.15) and an immediate

reduction of the S/C potential relative to Earth ground. A current burst was also

detected by the high voltage cathode bias power supply during microdischarges. Mi-

crodischarges occurred sporadically under high S/C potential (> 60 V) conditions,

with their frequency increasing for higher S/C potentials. The discharges took place

throughout the chamber, but were concentrated near the simulated S/C and on the

diagnostic suite when it was brought close to the hollow cathode plasma source. Mi-

crodischarge frequency could be reduced by “conditioning”, which consisted of raising

the S/C potential for extended periods of time to “blast off” impurities and likely

discharge points. While conditioning increased the maximum discharge-free S/C po-

tential slightly, this was ultimately the limiting factor on maximum S/C potential

during testing.

Microdischarges were observed throughout experiments exploring the ion emis-

sion model. The working theory to explain their occurrence is that microdischarges

represent a dielectric breakdown in the insulating metal oxide layer coating metal

objects in the vacuum chamber. Pure metals are passivated when exposed to air, as

oxygen bonds to exposed metal atoms and rapidly forms a metal oxide layer [156].

The thickness, resistivity, and dielectric strength of this layer varies depending on the

metal and surface conditions being considered. In addition, many components used

in vacuum chambers are purposely anodized to thicken their metal oxide layer for

increased durability. One example of an anodized component is the aluminum 80/20

structural support. These 80/20 supports have an Al2O3 (aluminum oxide) thickness

of roughly 10 µm. Naturally occurring aluminum oxide layers are typically closer to
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(a) (b)

Figure 4.15: Photos of an active microdischarge site (a) and microdischarge damage
incurred by a rough aluminum plate during transient testing (b).

4 nm thick [156]. By assuming perfectly flat layers and an Al2O3 dielectric strength

of 16.9 V/µm, the estimated dielectric breakdown voltage is then in the range of

0.07 - 170 V [157]. 0.07 V is unrealistically low, so we can state that values in this

range were almost certainly experienced by metal oxide layers during the experiments

presented here. However, it is difficult to definitively attribute dielectric breakdowns

without dedicated experiments. Luckily, emissive probe measurements presented in

Chapter 6 demonstrate voltage drops exceeding 10 V just 0.1 mm from the surface

of copper planar probes. In addition, these voltage drops increased substantially af-

ter the probes were heated by a nearby emissive probe. This observation suggests a

metal oxide layer is causing the observed voltage drop, as copper oxide layer thickness

increases dramatically at higher temperatures [158, 159]. Indeed, a similar process

to the one theorized here is used to grow metal oxide coatings. Plasma electrolytic

oxidation (or microarc oxidation) uses large potential differences to exceed the local

dielectric breakdown potential of metal oxide layers [160]. The ensuing high temper-

ature plasma discharge grows a thicker oxide coating than more standard anodizing

techniques. This process likely occurs during our microdischarges as the discharge
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plasma releases a burst of charged particles which quickly reduces the S/C potential,

exhausts the ionized material, and extinguishes itself. An example plot of the S/C

potential during a microdischarge is shown in Figure 4.16. During this event, the S/C

potential drops from 200 V to just 10 V in just 1.1 ms.

Figure 4.16: Example S/C potential microdischarge response.

4.6 Summary

The results presented above demonstrate that ion emission using a hollow cathode

is a viable neutralization technique in an Earth-based vacuum chamber. It success-

fully prevented the S/C potential from increasing without bound and equilibrium

was achieved at relatively small positive potentials. The chamber plasma potential

was found to react in unison with the S/C potential, indicating the plasma responds

rapidly to any change in S/C potential. Saturation current transients indicated den-

sity changes near the chamber wall and the possible presence of turbulence near the

hollow cathode orifice. Long potential transient times can be explained using simple

RC circuit simulations of the experimental system. Disruptive microdischarges dic-

tated the upper limit on S/C potentials, however it is possible to reduce their severity
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by adjusting the experimental setup. The maximum “beam” current and correspond-

ing S/C potential are primarily limited by the onset of these microdischarges in the

subsequent steady state experiments.
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CHAPTER V

Ion Emission Validation II: Equilibrium Response

to Electron Beam Emission

5.1 Motivation

Validating the numerical tools presented in Chapter 3 is a critical step in enabling

electron beam emission in tenuous space plasmas. One major step in this validation

process is ensuring that the contactor plasma reacts as expected when an electron

beam is emitted in space. Observing the same features using numerical tools as those

observed in an instrumented vacuum chamber allows one to perform a direct, quanti-

tative validation of the numerical tools and lends credence to the tools’ assumptions

in the regimes under study. Conversely, unexpected or novel results may expose phys-

ical processes which are not yet accounted for in the predictive tools and open new

opportunities for model improvement. In this chapter, we first summarize the pre-

dicted contactor plasma response to positive spacecraft charging induced by electron

beam emission in space. Next, we describe experiments designed to observe these

same responses in an earth-based vacuum chamber. Finally, we compare the results

of these experiments to the predicted space response and discuss some discrepancies.

Here we detail the predicted sequence of events when firing a constant current elec-

tron beam during the steady state operation of a hollow cathode plasma contactor in
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space. Predictions were made using the CPIC simulation tool and the semi-analytical

ion emission model developed in collaboration with Gian Luca Delzanno and Federico

Lucco Castello [14–16]. Prior to electron beam ignition, we expect the hollow cath-

ode contactor plasma to expand in a manner consistent with plasma particle energies,

ambipolar diffusion effects, and the local (ambient) magnetic field [17]. Ion density

profiles at three distinct points in time after hollow cathode ignition are shown in Fig-

ure 5.1 as predicted by CPIC simulation. The input parameters for this simulation

are listed in Table 3.2. In this simulation, the hollow cathode contactor plasma was

emitted from a small surface area on one side of a spherical spacecraft. It is evident

that the contactor plasma expands from the spherical spacecraft in the direction it

was emitted.

Figure 5.1: Ion density contours at three distinct times after hollow cathode ignition
as predicted using the CPIC tool [15].

When a constant current electron beam with beam current equal to the contactor

current (the net ion current produced by the plasma contactor) was fired in CPIC

simulations, the plasma generally continued to expand away from the spacecraft.

However, it was observed that the ion and electron populations no longer expanded

at the same rate. Instead, a quasi-neutral region close to the spacecraft could be
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discerned from an ion-rich region further from the spacecraft. These regions were

formalized when developing the quasi-neutral ion emission model described in Chapter

3. This spherically symmetric model uses the quasi-neutral plasma radius (the quasi-

neutral location furthest from the spacecraft), rqn, and ion front radius (the location

of the ion furthest from the spacecraft), ri. The model also uses the spacecraft radius,

r1, and the radius of the grounded boundary, r2, as shown in Figure 5.2. The observed

position of the quasi-neutral boundary, rqn, since igniting the electron beam during a

CPIC simulation can be seen in Figure 5.2. The CPIC and ion emission (base) model

inputs used in Figure 5.2 are as listed in Table 3.6. While some noise is present, the

location of rqn largely remains unchanged once the electron beam is fired. For this

reason, the semi-analytical ion emission model (labeled the “Base Model” in Figure

5.2) uses a constant rqn.

(a) (b)

Figure 5.2: The plasma boundaries defined by the semi-analytical ion emission (a)
and the predicted position of the quasi-neutral radius, rqn, during beam
emission (b) [16]. Beam emission begins at Time = 0.

The plasma was also allowed to expand until it reached the grounded simulation

boundary, which is the configuration which best represents a steady state vacuum

chamber experiment. The ion density, electron density, and potential profiles found
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using a spherically symmetric CPIC simulation and the ion emission model are shown

in Figure 3.8 once the contactor has reached equilibrium with the grounded simulation

profiles. Here the boundary between quasi-neutral and ion-rich plasma regions is

clearly visible and denoted with a vertical dashed line. Similarly, the position of ri

(the furthest plasma ion) is also denoted with a vertical dashed line. It is evident

when examining the potential profile that contactor plasma potentials have increased

significantly since the beam was first fired (when the plasma and spacecraft potentials

were approximately 0). The quasi-neutral region was found to be at roughly the

spacecraft potential, with a small potential drop across it on the order of a few

electron temperature [16]. This small dip is pictured in Figure 4.1 to the left of the

left-most dashed line. The remaining potential difference between the quasi-neutral

plasma and the grounded simulation boundary is then made up for in the ion-rich

region (again, see Figure 4.1).

The results detailed above are precisely the focus of the experimental campaign

described below. Plasma properties including ion density, electron density, plasma

potential, and electron temperature were measured and are reported in locations

ranging from the hollow cathode plasma source to the conducting vacuum chamber

walls. These results are used to locate the boundary between the quasi-neutral and

ion-rich experimental plasma regions. Finally, the observed trends are compared to

predicted trends and discrepancies are discussed.

5.2 Experimental Setup

5.2.1 General Experimental Description

Experiments were performed in LVTF using a configuration similar to the one de-

scribed in Sections 4.2.1 and 4.2.2. Notable differences during these experiments were

that the isolated “spacecraft” was limited to just the isolated hollow cathode body

94



and the high voltage cathode power supply (powered by an isolation transformer)

was exchanged for a low voltage power supply powered through a standard outlet. A

photo of the exact hollow cathode setup is provided in Figure 5.3. The cathode was

operated using an 8 sccm flow of neutral Argon expellant and a keeper (discharge)

current of 10 A, which resulted in a keeper (discharge) voltage of 37.0 – 37.9 V. The

background operating pressure of 1x10-6 Torr can be converted to a mean free path

using an Argon charge exchange cross section of 4x10-19 m2 and assuming a neutral

temperature of 300 K [161]. The resulting mean free path of 78 m is considered con-

servative with regards to plasma collisionality (charge exchange mean free paths are

the shortest for Argon) and is larger than any chamber dimension.

The steady state plasma in LVTF was examined using two identical, cylindrical

Langmuir probes. The conducting, Tungsten probe tip was supported using an insu-

lating alumina ceramic tube and secured in place using a ceramic paste. The probe

tips were 5.1 cm (2 in) in length and 0.51 mm (0.02 in) in diameter and cleaned using

electron bombardment prior to beginning a measurement series. One of these probes

can be seen in Figure 5.4 (c).

(a) (b)

Figure 5.3: The hollow cathode used during the described experiments.

The Langmuir probes were positioned at the same height as the hollow cathode

orifice in LVTF (152 cm above the chamber grates). Two Velmex Linear motion
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(a) (b) (c)

Figure 5.4: The Langmuir probe support structure mounted on two linear Velmex
motion stages (a) and a Langmuir probe approaching the wall-mounted
steel plate (b,c) are shown.

stages were used to move these probes in the x-y plane (see Figure 5.4 (a). Two

identical Langmuir probes were used to expand the effective testing area along the

x-axis (transverse to the plasma flow), as one probe could effectively be used for

each half of the testing area. Using this setup, an accessible testing area of 110 cm

by 255 cm was achieved. Bulk Langmuir probe sweeps in this area generally had

a linear spacing of 20 cm starting 8 cm downstream of the hollow cathode orifice.

The measurement locations were at axial distances of 8, 28, 48, 68, 88, and 108 cm

downstream of the hollow cathode and transverse distances of 0, 20, 40, 60, 80, 100,

122, 142, 162, 182, 202, and 222 cm left of the hollow cathode orifice for a grand

total of 72 positions per set of bulk plasma measurements. These Langmuir probe

measurement locations are presented visually in Figure 5.5.

Langmuir probe measurements were made by biasing the probe and measuring

the collected current through a Keithley 2400 sourcemeter controlled via LabView.

In order to obtain plasma measurements up to the vacuum chamber wall, a steel

plate was mounted to the chamber wall in a location bordering the testing area. This

conducting plate served to make the “chamber wall” more accessible by bringing it
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Figure 5.5: Langmuir probe measurement locations used during the described exper-
iments.

within the testing area and simplifying its geometry by flattening the plasma sheath.

The conducting plate can be viewed in Figure 5.4 (b) and a graphical representation

of the entire vacuum chamber interior is given in Figure 5.6. Sheath measurements

were made in several locations between the plate surface and a position 10 cm away

from the surface. The spacing in this interval was at most 1 cm and specific positions

can be seen on each respective graph in Section 5.3.2.

5.2.2 Langmuir Probe Analysis Techniques

5.2.2.1 Langmuir Probe Analysis Approach

Here we describe the Langmuir probe analysis algorithm developed to reliably

compute the ion density, electron density, electron temperature, plasma potential,

and floating potential at each measurement location. In order to streamline the anal-

ysis process and limit the impact of human error, the same automated procedure is

applied to each I-V sweep. The wide range of plasma conditions measured throughout

the testing area led to several iterations of the analysis procedure. While many analy-

sis techniques were considered and tested during this iterative process, ultimately the
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Figure 5.6: An aerial view of the bulk plasma experiment configuration in LVTF.

decision was made to employ the simplest and most widely used techniques appro-

priate for our plasma conditions with some minor modifications as described below

[35, 36, 162–164]. The standard assumption that the cylindrical probe is a finite length

section of an infinite cylinder is used with this approach in mind. The length-to-radius

ratio of the Langmuir probe used here is 200, which limits the error induced using

this assumption substantially when compared to a shorter/wider cylinders [165, 166].

However, the length is not sufficient to be treated as infinite for Debye lengths over

∼0.5 cm and more current density is incident on the cylinder ends than predicted by
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the most widely used Langmuir probe theories [165, 166]. The empirical and analyt-

ical correction procedures developed to account for “end effects” are certainly useful.

However, using them for this application would substantially increase analysis com-

plexity and be of questionable accuracy, as they do not represent our physical probe

configuration [165, 166]. The final Langmuir probe analysis procedure is very similar

to the one recommended by Lobbia and Beal for use with electric propulsion devices

[167]. A complete copy of this MATLAB analysis code is provided in Appendix C for

reference.

The first step in the analysis procedure is removing the lowest voltage point and

the 3 highest voltage points from the total 401 points taken in each sweep. This

is simply done to remove any capacitive currents which may be induced by rapidly

changing the Langmuir probe potential during initial bias application. The next step

in the analysis procedure is smoothing the current data points using a filter to reduce

measurement noise. Applying a smoothing algorithm or filter is typical for Langmuir

probe measurements [168]. It is especially critical for our measurements, as I-V sweeps

in the lowest plasma density locations require current measurement accuracy on the

order of nanoamps. The Savitsky-Golay filter was selected as a standard Langmuir

probe filter [168]. The Savitsky-Golay filter fits a specified window (number of points)

surrounding the point under consideration with a specified order of polynomial using

a linear least square fit and changes the point under consideration to the value of the

polynomial function at the same location [169]. The filter window is kept small (15

points out of the 397 total points, or about 3.8% of the range) and the polynomial

order kept large when possible to reduce any changes to the underlying shape of the

I-V curve. Specifically, the polynomial order selected for bulk plasma measurements

(where measurement noise was lowest) is 7, the order for grounded (0 V) sheath

measurements is 5, and the order for 30 V sheath measurements (where measurement

noise was highest) is 1. Examples of some of the noisiest raw and filtered I-V curves
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from measurements in the plasma sheath can be seen in Figure 5.7 (a).

5.2.2.2 Floating Potential and Ion Density

Once the current is properly filtered, the desired plasma properties are calculated

as follows. The floating potential is found by simply averaging the applied voltages

when the smallest positive and negative currents were collected. Voltage steps of

roughly 0.1 V ensured that this step does not induce significant error. The ion density

is found using Orbit-Motion-Limited (OML) theory [32]. OML theory is the most

commonly used analysis technique for plasma conditions in which the Debye length,

λD, is larger than the Langmuir probe radius, rp, [36]. For reference, the range of

λD/rp presented below is 1.4 – 570. OML uses the conservation of energy and angular

momentum to calculate an impact parameter which determines whether an attracted

particle (in this case, ions) will strike the probe surface [32, 36]. The development of

this theory sets the plasma potential at an infinite distance to a potential value of zero

Volts and assumes that the sheath is large and its local potential varies gently [32, 36].

Another assumption required by OML theory is that the background pressure is low

enough for the plasma to be considered collisionless (such that energy and momentum

are conserved) [32, 36]. The estimated charge exchange mean free path for the plasma

presented below is 78 m based on ionization gauge measurements near the chamber

walls. This mean free path is much greater than the largest chamber dimension of 9

m, so we consider the plasma conditions appropriate for applying OML theory. For

a more complete treatment of competing cylindrical Langmuir probe ion collection

theories and their respective assumptions, see the informative summary compiled by

Francis Chen [36]. For more information on modern OML modifications, see the

recent work by Tang and Delzanno [37].

A least squares linear fit of the ion saturation current squared is performed to

calculate the ion density. OML theory dictates that ion density scales with the square
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root of this line’s slope according to Equation (5.1) [32, 170]. ni is the ion density, α

is the linear fit slope, mi is the ion mass, A is the Langmuir probe surface area, and q

is the elementary charge in Equation (5.1). Examples of this linear fit can be seen in

Figure 5.7 (b). The specific fit range is the first 75% of points between the minimum

sweep voltage and the floating potential. The last 25% was excluded from the linear

fit as the electron current begins to pick up near the floating potential (again, see

Figure 5.7 (b)).

ni =

√
απ2mi

2A2q3
m−3 (5.1)

The ion current collected to the Langmuir probe is estimated for each applied

voltage using fits and OML theory. By subtracting this calculated ion current from

the measured current, an estimate of the collected electron current is produced. The

accuracy of this estimate depends on how well ion collection is predicted using OML

theory. However, electron current is already much greater than ion current for probe

potentials close to the plasma potential. These are the only electron currents used

directly in this analysis procedure, so the electron current error induced by OML ion

current fitting can be treated as negligible. The estimated electron current is then

used to calculate plasma potential, electron density, and electron temperature.

5.2.2.3 Plasma Potential

The plasma potential is found using the peak in the first derivative of the elec-

tron current [35, 36, 167]. While this is a standard technique, its implementation

proved challenging across large sets of Langmuir probe I-V curves in plasma environ-

ments with differing densities. For example, in many low-density cases the derivative

plateaued rather than peaking (see Figure 5.7 (c)). To assist the peak finding process,
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the first derivative was filtered using the same parameters as described above for the

raw current measurement. That way, the filter parameters could be adjusted until

a subset of detected peaks aligned with peak locations selected by inspection. Once

these universal filter parameters were chosen and applied to the entire dataset, an

inspection of the automated plasma potential selections yielded a maximum differ-

ence (or error) of +/- 2 V. However, the vast majority of calculated plasma potentials

fell within 0.2 V of those selected by hand. The first (lowest voltage) peak in the

derivative was found using the MATLAB findpeaks function and a minimum peak

height of 0.5.

5.2.2.4 Electron Temperature

The electron temperature is found by taking the natural log of the current between

the floating and plasma potentials and fitting it with a line using a least squares fit

[35, 36, 167]. Only the center of this range is fit to limit the effect of ion current

collection error (at lower voltages) and plasma potential measurement error (at higher

voltages). Many different spans in the center of this range were tested to find the

best balance between the number of points fit and end effect errors. Ultimately the

middle 25% was selected as the most consistent fit range. Example fits of this region

are shown in Figure 5.7 (d). Fitting the natural log of the electron retardation regime

is a standard technique which only requires that the ambient electron population

have a Maxwellian electron energy distribution function (EEDF) [35, 36]. While not

all hollow cathode EEDFs match an ideal Maxwellian function, many are quite close

[161, 171, 172]. An example EEDF from this set of experiments is given in Figure

5.8 as determined using the Druyvesteyn technique on a Langmuir probe sweep 8

cm from the hollow cathode orifice [161, 173]. It is clear from this example that a

Maxwellian function captures the general trends well enough to be used as a simple

representation of electron thermal velocities.
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(a) (b)

(c) (d)

Figure 5.7: Example analyses of challenging I-V sweeps at positions 1, 2, 3, 4, and 5
cm from the grounded steel plate for a cathode bias of 0 V. Shown are
the raw and filtered I-V sweeps (a), OML fit of the ion saturation current
squared as used for ion density (b), first derivative of the current as used
for plasma potential (c), and electron retardation regime fit as used for
electron temperature (d). Legends are provided only for the 1 cm position
for simplicity.

5.2.2.5 Electron Density

The electron density was found using the electron current at the plasma potential

via the electron saturation current technique [35, 36, 167]. This technique exploits

the fact that when the Langmuir probe is at the plasma potential, it will simply

collect the thermal electron current over its surface. The explicit expression used to

calculate electron density is given in Equation (5.2). ne is electron density, Ie,sat is

the electron saturation current (electron current at the plasma potential), Te is the
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Figure 5.8: Normalized EEDF from a cylindrical Langmuir probe sweep 8 cm down-
stream of a hollow cathode orifice with a 40 V cathode bias. Maxwellian
and Druyvesteyn distribution function fits are shown.

electron temperature, and me is the electron mass in Equation (5.2). While there

is some minor error in this estimate thanks to the inherent noise of a single current

measurement, the dominant error term comes from inaccuracies in the estimate of

plasma potential. Personal inspection of plasma potential error yields a resultant

maximum error of a factor of 2 in electron density measurements, although the vast

majority fell within 20% of what was measured. The maximum errors found when

using the analysis procedure developed here align with typical values for a cylindrical

Langmuir probe [174].

ne =
Ie,sat

qA
√

qTe
2πme

m−3 (5.2)
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5.3 Experimental Results

5.3.1 Bulk Plasma Results

The bulk plasma properties of two contactor plasma plumes are presented be-

low via contour plot. The only meaningful difference in the experimental conditions

between the two plasmas is that the hollow cathode was biased to 0 V relative to

the vacuum chamber walls (grounded) for one set of measurements and 40 V for the

other set of measurements. The hollow cathode was injected up in the figure refer-

ence frame. Its orifice (injection location) was 8 cm below the horizontal axis in the

bottom right-hand corner. The floating potential, plasma potential, electron tem-

perature, electron density, ion density, and density ratio (the local ratio of electron

density to ion density) are presented in Figures 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14

respectively. Preliminary examination of this data yields results one might expect

from a hollow cathode in diode mode, or more generally from a small plasma source

with a given flow vector. There are some small features and imperfections which point

to measurement error. This is to be expected considering Langmuir probe measure-

ments generally have an error of 10% up to a factor of 2 [170, 174, 175]. A complete

treatment of Langmuir probe error estimation can be found in the work of Omar

Leon [96]. Trends can still be clearly discerned in most contours despite the presence

of these errors due to even larger plasma parameter ranges and the high number of

measurements presented. Some of these trends are discussed below and a contrast is

drawn between the two plasmas during discussions in Section 5.4.

Floating potential measurements (Figure 5.9) reveal minimal deviations from 0 V

for the 0 V bias case. Interestingly, there is a floating potential decrease of roughly 11

Volts as one moves from the hollow cathode to the wall for the 40 V bias case. While

interesting, these observations are not particularly revealing about the plasma on

their own. More importantly, there is a significant decrease in the plasma potential
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when moving away from the plasma source for both the 0 V and 40 V case (see

Figure 5.10). The total plasma potential drop was 7.8 V for the 0 V bias case and

14.5 V for the 40 V bias case. These potential drops align with previous numerical

predictions, as they are on the order of the electron temperature [16]. For example,

the maximum electron temperature of the 0 V bias case was 2.0 eV, meaning that the

potential dropped by 3.9 Te over the bulk plasma. Similarly, the maximum electron

temperature of the 40 V bias case was 2.3 eV and the potential dropped by 6.3 Te.

The maximum electron temperature was found close to the cathode orifice and the

local temperature dropped off in a manner similar to the plasma potential (see Figure

5.11). The electron temperature dropped over the testing area by a factor of 7.7 for

the 0 V bias case (2.0 eV to 0.26 eV) and a factor of 2.4 for the 40 V bias case (2.3

eV to 0.98 eV). This discrepancy is discussed in Section 5.4.

(a) (b)

Figure 5.9: Contour plots of the bulk floating potential for a hollow cathode biased
to 0 V (a) and 40 V (b) relative to the chamber walls.

The electron and ion densities presented in Figures 5.12 and 5.13 generally have

the same shape and look as one would expect for a hollow cathode plasma source.

However, a direct comparison using the ratio of electron density to ion density at each

location (as shown in Figure 5.14) reveals a strange region near the cathode orifice of

the 0 V bias case with no immediately obvious explanation based on plasma theory.

106



(a) (b)

Figure 5.10: Contour plots of the bulk plasma potential for a hollow cathode biased
to 0 V (a) and 40 V (b) relative to the chamber walls.

(a) (b)

Figure 5.11: Contour plots of the bulk electron temperature for a hollow cathode
biased to 0 V (a) and 40 V (b) relative to the chamber walls.

In addition, ion and electron density measurements differ by up to a factor of 8 in

this region, which represents the largest deviation observed. This noteworthy region

is examined further in Section 5.5 and found to be unphysical. When ignoring this

region, we found that the largest discrepancy between ion and electron densities is a

factor of 5.2 in the 0 V bias case. The largest density discrepancy in the 40 V bias

case was found to be 3. It is clear from Figure 5.14 that ion density measurements are

generally higher than electron density measurements. On average, the measured ion

density at a given location was 2.5 times higher than the electron density measured
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at the same location. This phenomenon is examined further in Section 5.6. There

are also no clearly defined regions which denote the transition from a quasi-neutral

plasma to an ion-rich plasma for the 40 V bias case [16]. The search for a transition

from a quasi-neutral region to an ion-rich region continues in the next section with

the examination of the plasma sheath near the chamber wall.

(a) (b)

Figure 5.12: Contour plots of the bulk electron density for a hollow cathode biased
to 0 V (a) and 40 V (b) relative to the chamber walls.

(a) (b)

Figure 5.13: Contour plots of the bulk ion density for a hollow cathode biased to 0
V (a) and 40 V (b) relative to the chamber walls.
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(a) (b)

Figure 5.14: Contour plots of the bulk density ratio (the local ratio of electron density
to ion density) for a hollow cathode biased to 0 V (a) and 40 V (b)
relative to the chamber walls.

(a) (b)

Figure 5.15: Contour plots of the bulk Debye length for a hollow cathode biased to 0
V (a) and 40 V (b) relative to the chamber walls.

5.3.2 Sheath Plasma Results

The sheath plasma properties of two hollow cathode contactor plasmas are pre-

sented below. The only meaningful difference in the experimental conditions between

the two plasmas is that the hollow cathode was biased to 0 V relative to the vacuum

chamber walls (grounded) for one set of measurements and 30 V for the other set of

measurements. The hollow cathode plasma plume was injected parallel to the steel

plate’s surface (orthogonal to the probe movement) in a location 108 cm upstream
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and 249 cm transverse of the plate’s surface (see Figure 5.6). The sheath plasma

potential, electron temperature, ion density, electron density, and density ratio (the

local ratio of electron density to ion density) are shown in Figures 5.16, 5.17, 5.18,

5.19, and 5.20 respectively.

The sheath measurements in this section appear to be rather noisy in comparison

to the bulk plasma measurements presented above. This is to be expected as the

plasma densities and collected currents in these locations are quite low (see Figure

5.7). In addition, standard Langmuir probe theory is derived assuming the probe

is immersed in a fairly quasi-neutral, equi-potential plasma with no significant drift

velocity [32, 36, 162, 176]. These assumptions begin to break down in a plasma

sheath, making it quite challenging to accurately measure plasma properties in a

tenuous sheath such as this [177]. This difficulty is also shared by many other plasma

diagnostics, to the point that switching to an alternative diagnostic package may not

have aided measurement accuracy. Error bars are not included in the figures below,

as previous research failed to quantify the effects of operating a Langmuir probe in

a tenuous sheath [177]. A general error of 20 - 50 % is the current best estimate

for the plasma measurements in this section. Errors of this magnitude still leave

room for useful experimental interpretation with respect to the ion emission model.

Qualitative examination of this data also yields results one might expect from the

sheath of a plasma close to a grounded, conducting object.

The figures below present a picture consistent with the structure of an ion-rich

sheath. To illustrate this point, a least squares fit was performed on the sheath

plasma potential assuming the theoretical sheath potential expression of Equation

(2.9). Figure 5.16 is thus fit with an exponential function in red. The quality of this

fit indicates that plasma potential measurements align with the theoretical ion-rich

sheath structure. A rough prediction of the sheath electron density is also included in

Figure 5.19 using the Boltzmann relation (or Boltzmann factor) one would expect for
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Maxwellian electrons in a sheath [178]. The exact plasma potential fit of Figure 5.16,

the average electron temperature measurement, and the maximum measured electron

density were all used to produce this predictive electron density profile. The accuracy

of this prediction based on the Boltzmann relation suggests agreement between plasma

potential and electron density measurements.

Electron temperature and ion density do not appear to change appreciably in the

sheath region as all measured values are within a factor of 2. The roughly constant

electron temperature for the 30 V bias case was almost 3 times higher than for the 0

V bias case (∼1.4 eV versus ∼0.5 eV). Though extreme, this discrepancy is a logical

extension of the trend observed in the bulk electron temperature (see Figure 5.11).

One would typically expect the ion density to decrease noticeably when approaching

the chamber wall/steel plate in order to maintain a constant ion flux in the sheath,

however this is only required if the ions pass through an accelerating plasma potential

barrier [178]. Examination of Figure 5.16 reveals the sheath potential barrier to be

rather small in this case. The sheath potential drops by ∼1.4 V for the 0 V bias

case and ∼2.8 V for the 30 V bias case. Neither of these potential drops represent

more than a 10% increase in the ion drift velocity acquired when transiting the bulk

plasma (assuming the ions are generated at the plasma potential measured closest to

the hollow cathode). This minor drop in the ion drift velocity appears to be mostly

obscured by measurement error.

The electron density profile (see Figure 5.19) is found to drop significantly when

approaching the chamber wall/steel plate, leading to a corresponding drop in the

density ratio. The density drop is spread out over a longer distance for the 30 V bias

case, which is perhaps to be expected given this case’s larger Debye length (∼2.8 cm

versus ∼1.6 cm). The electron density drop is more severe for the 30 V bias case

as well. While both densities start at ∼1.1x105 cm-3 for positions 10 cm from the

chamber wall/steel plate, the electron density is 4.9x104 cm-3 and 5.5x103 cm-3 at
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(a) (b)

Figure 5.16: The sheath plasma potential for a hollow cathode biased to 0 V (a)
and 30 V (b) relative to the chamber walls. A least squares, theoretical
exponential fit is also shown.

(a) (b)

Figure 5.17: The sheath electron temperature for a hollow cathode biased to 0 V (a)
and 30 V (b) relative to the chamber walls.

1 cm for the 0 V and 30 V bias case respectively. Inspection of the density ratios

in Figure 5.20 reveals that the plasma is transitioning from a quasi-neutral region

to an ion-rich region over a very short distance near the chamber wall, marking it

as the location where ion emission occurs for a steady state chamber experiment.

This transition is especially clear for the 30 V bias case which represents high-current

electron beam emission. For the 30 V bias case, ne/ni = 0.024 just 1 cm from the

chamber wall/steel plate.
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(a) (b)

Figure 5.18: The sheath ion density for a hollow cathode biased to 0 V (a) and 30 V
(b) relative to the chamber walls.

(a) (b)

Figure 5.19: The sheath electron density for a hollow cathode biased to 0 V (a) and
30 V (b) relative to the chamber walls. An electron density profile pre-
diction based on plasma potential measurements and the Boltzmann
relation is also shown.

5.4 Bulk Plasma Charging Response

In this analysis, we directly examine changes to the bulk plasma when biasing

the hollow cathode (which approximates spacecraft charging during electron beam

emission). In Figure 5.21 we see that the floating and plasma potentials both in-

crease significantly when the cathode bias is increased by 40 V. The plasma potential

increases by 30 - 37 V throughout the testing area and the floating potential similarly
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(a) (b)

Figure 5.20: The sheath density ratio (the local ratio of electron density to ion den-
sity) for a hollow cathode biased to 0 V (a) and 30 V (b) relative to the
chamber walls.

increases by 26 - 37 V. This result is expected based on previous CPIC simulations

and semi-analytical modeling, which predicted the quasi-neutral region plasma poten-

tial would remain within a few Te of the spacecraft potential (see Figure 3.8) [14–16].

It is evident from Figure 5.21 that the floating and plasma potentials increase the

most for locations on-axis with the hollow cathode plasma injection. This is likely

caused by the two other bulk plasma changes discussed in this section. The electron

temperature and on-axis charged particle densities are both found to increase for the

higher bias case.

One unexpected result from the bulk plasma experiments is the universal increase

in electron temperature with cathode bias. Figure 5.22 shows changes in electron

temperature (and the associated Debye length) by dividing the local value for a

cathode bias of 40 V by the value for a lower cathode bias of 0 V. It was found that

increasing the cathode bias by 40 V produced electron temperatures that are greater

by a factor of 1.1 – 6.6. This discrepancy is even greater when ignoring the most

similar measurement (the point closest to the hollow cathode orifice). The electron

temperature increased by at least 70% when ignoring this point, signifying that the

bulk/distant electron temperature is most effected by cathode potential changes. The
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(a) (b)

Figure 5.21: Absolute change to the floating potential (a) and plasma potential (b)
when increasing the cathode bias from 0 V to 40 V.

exact cause of this phenonmenon was not studied via simulation or modeling, however

a likely explanation is outlined here. Current saturation measurements indicate that

very few electrons (< 10%) are emitted to the chamber walls in the 40 V bias case.

This is the result of an enlarged potential barrier between the plasma potential where

electrons are created (near the hollow cathode orifice) and the grounded chamber

walls, as indicated by Figure 5.21 (b). The enlarged potential barrier increases the

minimum energy required to reach distant regions of the contactor plasma, with low

energy electrons traveling only a short distance before the potential barrier forces

them back to the hollow cathode keeper (the highest potential object in the vacuum

chamber) where they are collected and measured. Thus only the most energetic

electrons making up the high energy tail of the EEDF (see Figure 5.8) are present to

be measured in the bulk contactor plasma. This high energy tail of the EEDF presents

as a higher electron temperature in our Langmuir probe analysis. This explanation

is consistent with Figure 5.22 (a), where the largest increases in electron temperature

are furthest from the hollow cathode. The plasma potential is at its lowest in distant

plasma regions such as the corner directly perpendicular to the cathode orifice (see

Figure 5.10) and thus only the most energetic electrons are present.
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(a) (b)

Figure 5.22: Relative change to the electron temperature (a) and Debye length (b)
when increasing the cathode bias from 0 V to 40 V.

Figure 5.23 shows changes in electron and ion densities by dividing the local value

for a cathode bias of 40 V by the value for a cathode bias of 0 V. It is clear from this

figure that the charged particle densities generally increase on-axis and decrease for

positions further afield. This phenomenon was not observed directly during numerical

modelling, however a possible explanation is given here. The plasma potential drop

increases throughout the contactor plasma for higher cathode biases. For proof of

this, observe Figure 5.21 (b) and consider that at no location does the plasma poten-

tial increase by the full 40 V that is applied to the cathode. This implies that ion

drift velocity increases with cathode bias within the bulk plasma, something that is

explored in the subsequent section and confirmed during the experiments presented

in Chapter 6. An increased ion drift velocity stemming from a potential drop at

the cathode orifice would act to effectively collimate and direct the ion population

axially, as the cathode orifice has a divergence half-angle of just 45o. The local ion

space-charge is then expected to pull the mobile electrons into this region, similar to

the phenomenon observed during ambipolar diffusion [155].

116



(a) (b)

Figure 5.23: Relative change to the electron density (a) and ion density (b) when
increasing the cathode bias from 0 V to 40 V.

5.5 An Estimate of Bulk Ion Drift Velocity

Single, cylindrical Langmuir probes are not known for their ability to measure

ion drift velocity. We nonetheless attempt to use established Langmuir probe theory

to test our theory on changing ion drift velocities. Hoegy and Wharton laid out an

ion collection theory based on OML which individually accounts for the effect of ion

drift, ion temperature, and OML ion orbits as shown in Equation (5.3) [170]. Ii is

the collected ion current, A is the Langmuir probe surface area, ni is the ion density,

qi is the ion charge, vd is the ion drift velocity, kB is Boltzmann’s constant, Ti is the

ion temperature, mi is the ion mass, q is the elementary charge, and V is the probe

bias with respect to the plasma in Equation (5.3) [170]. We can estimate the ion

current at the plasma potential using the same OML fits described above to remove

any functional dependence on probe potential or orbital motion (the third term in

parenthesis). By further assuming cold ions (setting term two in the parenthesis to

zero) and using the local value of ion density, we are able to estimate vd without any

additional information. The cold ion assumption acts to enhance the estimated ion

drift velocity, however Ti < 0.5 eV as a general rule (as seen in Chapter 6). This

indicates that the cold ion assumption generally contributes less error to the ion drift
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velocity estimate than the errors incurred in calculating plasma potential and ion

density. The resulting plots of ion drift velocity are shown in Figure 5.24.

Ii = Aniqivdπ
−1

(
1 +

kBTi
miv2d

+
2qV

miv2d

) 1
2

A (5.3)

(a) (b)

Figure 5.24: Contour plots of the bulk ion drift velocity for a hollow cathode biased
to 0 V (a) and 40 V (b) relative to the chamber walls.

It is difficult to decipher any clear changes in the ion drift velocity between the two

sides of Figure 5.24. Instead, we see two clear trends emerge based on the bias. For the

40 V bias case, we see surprisingly clearly that the ion drift velocity decreases when

moving away from the hollow cathode axis. This observation lends support to the

theory that ions are accelerated roughly in a cone centered on the hollow cathode axis,

causing collimation and a corresponding increase in their density when the cathode

bias is increased. The ion drift velocity peaks just off-axis are interesting to note and

believed to be physical. They are observed again during the experimental campaign

presented in Chapter 6. For the 0 V bias case, the ion drift velocity shows the same

unexpected feature that was seen for the density ratio (Figure 5.14 (a)). Specifically,

Figure 5.24 (a) appears to report zero ion drift velocity for a strangely square section

of the test area. An ion drift velocity of zero indicates that the estimated ion current
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reaches zero at potentials below the plasma potential, which is an unphysical result

in this scenario.

This unphysical result prompted further investigation and revealed a likely cause.

The left side of this square section coincides with the dividing line between where

measurements were made by the inner Langmuir probe versus the outer Langmuir

probe. Timestamps of the bulk Langmuir probe measurements reveal that the inner

Langmuir probe started at the testing area’s maximum axial position and moved

towards the cathode over time. As a result, the measurement closest to the hollow

cathode took place right before it moved left for a final 5 I-V sweeps. It is at these last

few locations that we observe the density ratio and ion drift velocity measurements

suddenly change significantly. Based on this evidence, we can conclude that I-V

sweeps in close proximity to the hollow cathode appear to have altered the Langmuir

probe’s current collection properties, likely by cleaning the biased probe surface via

electron or ion bombardment [179]. This theory is in line with previous measurements

which indicate a “dirty” probe artificially increases ion density measurements but have

a negligible effect on electron temperature [179]. We can thus conclude that the inner

Langmuir probe was not cleaned sufficiently prior to the start of the 0 V bias case,

resulting in somewhat off density measurements and unphysical estimates of ion drift

velocity for a defined plasma region. The density ratios in this defined plasma region

are some of the lowest observed in either bulk plasma. However, the trend of ion

densities being higher than electron densities persists even when ignoring this region.

5.6 A Discussion of the Bulk Plasma Density Ratio

The range of density ratios (local electron density divided by the local ion density)

outside of the region discussed in the preceding section (see Figure 5.14 (a)) is 0.19 -

0.75 for the 0 V bias case. The range of bulk density ratios for the 40 V bias case is

0.33 - 1.15. The density ratio spread can easily be explained by measurement error,
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however the range not being centered around one demands further discussion. Taking

this trend at face value suggests that the electron density is lower than the ion density

in both bias cases. However, it is far more likely that the electron density measurement

using the electron saturation current is correct and the OML theory used to estimate

ion density is to blame for this discrepancy. OML analyses have been shown to

overpredict ion density by a factor of 2-10 when compared to a quorum of alternate

density measurement methods including microwave interferometry, hairpin resonance

probes, and various other Langmuir probe techniques [162, 176]. An overestimation

of the ion density by 2.5 times (as one would expect based on previous experimental

measurements) exactly matches the deviation from quasi-neutrality observed here

[162, 176]. Different theories exist to explain this discrepancy, with some listing ion

collisions in the probe sheath and others listing the dependence on the unknown

value of plasma potential [162, 176]. Ion collisions in the probe sheath are highly

unlikely to be the culprit in this case as the background pressure is just 1x10-6 Torr

(with a corresponding charge exchange mean free path of 78 m). The dependence

on the plasma potential is related to the ion drift velocity and likely played a role

here. Consideration of Equation (5.3) reveals that non-zero ion drift velocity and

temperature both act to increase the collected ion current and, thus, the calculated

ion density. In Chapter 6 we study the ion drift velocity and temperature of a similar

contactor plasma and find the ion drift velocity to be non-negligible.

5.7 Summary

The primary experimental goals were achieved during this experimental campaign

by observing the plasma response predicted by previous numerical modeling efforts.

The bulk plasma potential increases with hollow cathode bias (i.e. when the “beam”

is fired). There is a gradual drop in the plasma potential when moving away from

the plasma source on the order of a few electron temperature. The bulk, quasi-
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neutral region transitions to an ion-rich region at the chamber wall, where the plasma

potential and electron density drop off rapidly. This configuration is as expected based

on previous modeling efforts. It is also representative of a space-based system in which

the electron beam current equals the contactor current (ion current generated by the

hollow cathode), with the exception that the transition between quasi-neutral and

ion-rich regions is defined by the chamber walls rather than the plasma size prior to

electron beam ignition.

Additional, unpredicted phenonmena were observed which promise to aid our

understanding of similar physical systems and further increase the fidelity of our

modeling efforts. The plasma electron temperature increases significantly when in-

creasing the hollow cathode bias. This observation is explained as a byproduct of

the low energy electron population being reabsorbed by a higher potential cathode

rather than traversing the quasi-neutral plasma to be measured at large distances.

The charged particle populations appear to concentrate on the hollow cathode axis

when the cathode potential is increased. This appears to be the result of an increase

in the axial ion drift velocity brought about by larger potential drops near the hollow

cathode orifice. Plasma ion energetics in similar systems is the topic of research in

the subsequent chapter (Chapter 6).
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CHAPTER VI

Ion Emission Validation III: Ion Emission Region

Characterization

6.1 Motivation

Validating the CPIC simulation and ion emission model results discussed in Chap-

ter 3 is a critical step in enabling spacecraft charge neutralization during high-current

electron beam emission in space. The CPIC simulations demonstrate space-charge

limited (SCL) ion emission from the surface of a quasi-neutral contactor plasma that

can balance electron beam emission. A semi-analytical model was developed to cor-

roborate these CPIC simulation results and the physical processes underlying ion

emission. The work presented in previous chapters focuses on how the spacecraft po-

tential and hollow cathode contactor plasma react to firing a simulated electron beam.

In contrast, this chapter focuses on a quantitative comparison between the actual ion

emission current and those predicted using the space-charge limit and semi-analytical

ion emission model. In order to generate current emission predictions, various aspects

of the chamber plasma must be measured and provided as model inputs. The semi-

analytical model’s physical inputs and outputs are summarized graphically in Figure

6.1.

A campaign of ground-based experiments is described below which seeks to val-
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Figure 6.1: A summary of the inputs and output of the ion emission model.

idate the ion emission model using a hollow cathode plasma contactor in an instru-

mented vacuum chamber. While these experiments are in conditions that are notably

different than those of a space experiment, our goal is to validate the physics of

ion emission and its respective model in a controlled setting so that we can build

confidence for model predictions in other regimes. The experiments in this chapter

are broken down into “emitted ion” and “sheath region” experiments. The emitted

ion experiments focus solely on the ion energetics at the chamber wall for different

hollow cathode potential biases (a laboratory proxy for a changing spacecraft poten-

tial during electron beam emission in space). The sheath region experiments focus

on characterizing the plasma regions near the chamber wall where the quasi-neutral

contactor plasma transitions to an ion-rich sheath region (see Figure 6.2) in order to

validate the ion emission model quantitatively. Using plasma potential profile and

ion energy distribution function measurements, we can provide the contactor plasma

potential, contactor plasma geometry, and ion drift velocity (inputs 1-3) to the semi-

analytical ion emission model summarized in Figure 6.1. The final model input of

electron temperature (input 4) is approximated for all positions in the chamber using

a measurement near the plasma source. A complete set of model inputs is obtained

and analyzed in multiple locations near the vacuum chamber wall as part of the sheath

region experiments. This process is also completed for two discrete chamber sizes.

All measurements using the large chamber size will be input into the semi-analytical
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ion emission model and all measurements using the small chamber size will be input

into a simple expression for the space-charge limited current. Finally, the ion emis-

sion current predicted using these measurements will be compared to the actual ion

emission current measured at the chamber wall.

Figure 6.2: Basic experimental plasma regions according to the spherical ion emission
model.

6.2 Experimental Setup

6.2.1 Hollow Cathode Plasma Contactor Overview

The hollow cathode used in the described experiments is shown in Figure 6.3 (a).

It was selected for its appropriate size, ease of use, and lack of a magnetic field.

This heaterless hollow cathode features an enclosed keeper electrode, a 1/4” orifice

diameter, and is operated on Xenon gas. A quasi-neutral plasma is produced as keeper

current flows between the cathode and keeper electrodes, ionizing neutral Xenon gas in

the process [27]. The keeper current was set to 1.0 A for the emitted ion experiments

and 1.3 A for the sheath region experiments. The typical neutral Xenon flow rate

was 1 standard cubic centimeter per minute (sccm) and about 1% of neutral Xenon

propellant was ionized (predominately singly ionized). The resulting plasma had a
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density on the order of 108 cm-3, an electron temperature of about 2.2 eV, and an ion

temperature on the order of 0.1 eV when measured 10 cm directly downsteam from

the hollow cathode orifice. Langmuir probe measurements were made at this location

to be as close to the plasma source as possible without altering the hollow cathode’s

performance. The hollow cathode was designed by Plasma Controls, LLC using a

proprietary low work function insert. During steady state operation this heaterless

cathode produced a plasma representative of space-based plasma contactors.

(a) (b)

Figure 6.3: The heaterless hollow cathode with graphite enclosed keeper (a) and Ju-
nior Test Facility vacuum chamber (b) used in the described experiments.

6.2.2 General Experimental Description

Experiments were performed at the University of Michigan’s Plasmadynamics &

Electric Propulsion Laboratory (PEPL) in the Junior Test Facility vacuum chamber.

Junior is a roughly cylindrical chamber with rounded endcaps as shown in Figure 6.3

(b). It is composed of stainless steel, its largest diameter is 120 cm, and its center

spans 120 cm in length. Large conducting plates were installed in the chamber to

simplify its geometry and better approximate a cylinder. These plates were grounded

to the chamber walls to more closely mimic previous simulation and model configu-
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rations. This simplified cylindrical geometry had a diameter of 120 cm and a length

of 38 cm for the emitted ion experiments, 52 cm for the SCL sheath region experi-

ments (small chamber configuration), and 64 cm for the ion emission model sheath

region experiments (large chamber configuration). The hollow cathode was inserted

into a 3” circular cutout in the center of one plate such that the two were electri-

cally isolated. The hollow cathode was biased positive with respect to the grounded,

conductive chamber walls/plates to mimic the equivalent space system’s response to

electron beam emission according to the circuit diagram in Figure 6.4. The hollow

cathode potential can also be thought of as the spacecraft potential with respect to the

ambient space plasma, as hollow cathodes are typically tied to spacecraft common.

Junior achieved an operating pressure of 3x10-6 Torr using a Leybold MAG2000

turbopump. This pressure can be converted to a mean free path using a Xenon charge

exchange cross section of 2x10-18 m2 and assuming a neutral temperature of 300 K

[150]. The resulting mean free path of 5.2 m is considered conservative with regards

to plasma collisionality (charge exchange mean free paths are the shortest for Xenon)

and is larger than any chamber dimension.

The net current emitted from the plasma to the chamber walls was determined

by measuring the net current collected by the hollow cathode as the two values are

equal in magnitude. This was done for practical reasons as Junior’s chamber walls are

grounded via conducting rods driven into the Earth. These rods could not feasibly

be removed to measure net current to the chamber walls directly. However, charge

conservation in this system dictates that the current collected by the hollow cathode

is equal and opposite the current emitted to the chamber walls. This assumption was

validated experimentally by simultaneously measuring currents to the hollow cathode

and chamber walls in a smaller chamber which could be isolated from Earth ground.

The experiments presented in this paper focus on a steady state Xenon plasma with

background neutral pressures on the order of 10-6 Torr.
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Figure 6.4: Basic testing circuit diagram.

6.2.3 Probe Analysis Techniques

Measurements from the four probe types shown in Figure 6.5 are presented in

Sections 6.3 and 6.4 below. Ion energy distribution functions (IEDFs) were obtained

from the Retarding Potential Analyzer (RPA) using the first derivative technique

described in [180]. A Savitsky-Golay filter was used to remove the noise introduced

when taking the derivative and the local plasma potential was determined using a

nearby emissive probe [169]. Care was taken to ensure filtering did not significantly

alter the nature of the IEDF. This was accomplished using a small (21 point) filter

window, third order polynomial fit, and comparing the filtered IEDF to the unfiltered

IEDF. A drifting Maxwellian distribution was then fit to the measured IEDFs to

obtain their approximate ion temperature and drift velocity. The first step of the

fit was to use the peak of the IEDF to set the ion drift energy as this is the most

important parameter obtained from the IEDF with regard to the ion emission model.

Next, the ion temperature was obtained when the drifting Maxwellian distribution

best matched the filtered IEDF according to a least squares fit [181]. Using this

modified fit, the ion drift velocity is captured more consistently and accurately than

when using a least squares fit without matching the IEDF peak first.
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(a) (b) (c)

Figure 6.5: Plasma probes included a retarding potential analyzer (a), thoriated
Tungsten emissive probe (a), Copper planar probe (b), and cylindrical,
Tungsten Langmuir probe (c).

A thoriated, Tungsten emissive probe was used to measure plasma potential using

the floating probe technique in the limit of high emission [151]. A calibration curve is

required to determine the optimal emissive probe heating current [151]. An example

calibration curve and the emissive probe circuit are included in Appendix B. A least

squares fit was used to match the measured plasma potential profile in the sheath

with the theoretical exponential potential profile (provided in Equation (2.9)) [34]. A

cylindrical, Tungsten Langmuir probe was used to obtain the electron temperature

10 cm downstream from the cathode orifice. The probe measured 0.051 cm (0.02 in)

in diameter and 5.1 cm (2 in) in length and Langmuir probe sweeps were analyzed

using the same general procedure outlined in Chapter 5 (Section 5.2.2). A Savitsky-

Golay filter was used to reduce noise in the Langmuir probe data [169]. This is a

standard filter often used for Langmuir probe data [168]. The electron temperature

was determined using the standard Langmuir probe technique of an exponential fit of

the electron retardation current [36]. The electron density was determined using the

electron thermal current when the probe is biased to the plasma potential [36]. Planar

probes were constructed from square copper plates and guarded using copper tape to
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expose an area of 10 cm2 with the lowest profile possible. These probes were mounted

on the chamber wall and electrically grounded, with their current collection measured

via Keithley 6485 picoammeter. These copper planar probes measure the net emission

current density without distinguishing between ion and electron contributions.

6.2.4 Emitted Ion Experiments

The first experimental campaign focused on ions emitted from the quasi-neutral

contactor plasma. A RPA was embedded in a conducting plate grounded to the

chamber wall directly downstream of the hollow cathode as seen in Figure 6.6. A

fine, grounded steel mesh was placed in front of the RPA aperture and the first grid

of the RPA was also grounded to the chamber wall. This setup measured IEDFs

at the chamber walls. The cathode potential was varied parametrically from 0 V to

30 V in steps of 10 Volts and its effect on downstream IEDFs observed. Because

the potential of the chamber walls are defined as the ambient space plasma potential

in these experiments, these IEDFs approximate the energies of ions emitted from a

quasi-neutral plasma in space.

6.2.5 Sheath Region Experiments

The second experimental campaign focused on validating the ion emission model

by directly applying it to a fully characterized sheath region near the chamber wall.

Specific measurements were made using the techniques described in Section 6.2.3.

The spatial plasma potential profile was measured starting 10 cm from the wall and

continuing up to the wall surface to characterize the contactor plasma geometry and

potential. In our experiments, the system quickly reaches a steady-state in which

the geometry of the contactor plasma is characterized by this sheath region. This

is unlike a true experiment in space (which is essentially unbounded), but provides

a great opportunity to validate the ion emission model in a simpler setting. IEDFs
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(a) (b)

Figure 6.6: Emitted ion experiment configuration. A RPA was embedded in a
grounded, conducting plate directly opposite the hollow cathode to mea-
sure ion energies at the wall surface.

near the edge of the sheath region were used to characterize the ion drift velocity

out of the quasi-neutral contactor plasma. Electron temperature was measured using

a Langmuir probe 10 cm downstream of the hollow cathode and the local emission

current density at the chamber wall was measured using planar probes. These local

emission current density measurements will be compared with the theoretical cur-

rent emission predictions made using the ion emission model and an analytical SCL

expression. Measurements were taken in the independent positions shown in Figure

6.7 to provide a more complete picture of any geometric effects which may alter the

contactor plasma ion emission process. These positions were all located along the

vertical centerline of the chamber (at the same height as the hollow cathode). Photos

of the two motion stage diagnostic loadouts (Langmuir probe with emissive probe

and RPA with emissive probe) are provided in Figure 6.8. Large and small chamber

configurations were used for comparison with ion emission model and SCL expression

predictions respectively.
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(a) (b)

Figure 6.7: Sheath region experimental configurations. Positions spread throughout
the chamber were tested to understand the ion-rich region between the
quasi-neutral plasma and chamber wall. The small configuration (a) used
for simple SCL comparison featured 7 positions and the large configura-
tion (b) used for ion emission model comparison featured 8 positions.

(a) (b)

Figure 6.8: The Junior vacuum chamber interior as instrumented for sheath region
experiments. Pictured features include the wall-mounted Copper planar
probes at positions 1-6 of the large configuration (a), the Langmuir probe
with emissive probe loadout (a), and the RPA with emissive probe loadout
(b).

6.3 Experimental Results

6.3.1 Emitted Ion Experiments: Emitted Ion Response to Charging

Two representative IEDFs for the axially emitted ions (see Figure 6.6) at dif-

ferent Xenon flow rates are shown in Figure 6.9. Deviations from an ideal drifting

Maxwellian IEDF are evident, but these is fairly common and can be explained by

plasma formation occurring in a finite volume with non-uniform potential, as well
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as various plasma waves and instabilities [182, 183]. The small, low energy peak in

the 5 sccm flow rate IEDF is characteristic of charge exchange ions [182]. Charge ex-

change ions are produced when “fast” ions exchange their charge with “cold” neutrals

[27, 182]. The mean free path of this process is inversely proportional to the back-

ground neutral gas density, which in turn scales approximately linearly with the gas

flow rate [27, 182]. The notion that this small peak corresponds to charge exchange

ions is supported by the lack of an equivalent peak in the IEDF shown in Figure

6.9 (a), where the flow rate was just 1 sccm. These IEDFs feature a significant drift

energy of ∼25 eV (∼6 km/s drift velocity), which greatly exceeds their temperature

of ∼0.15 eV. This inequality is what produces a wide IEDF peak despite a compar-

atively low ion temperature. Minor thermal velocity modifications to the ion drift

velocity translate to much larger changes in units of energy.

Figure 6.10 examines the effect of positive cathode potential on emitted IEDFs.

The left plot of the figure shows a one-to-one, linear relationship between cathode po-

tential and emitted ion drift energy. In other words, for every volt that the spacecraft

charges positive, ions are emitted with one eV more drift energy. There is also a ∼14

- 18 eV offset between ion drift energy and cathode potential, which suggests a sig-

nificant emission velocity even without positive charging. Figure 6.10 (b) shows that

the emitted ion temperature decreases by about 40 - 45% with increasing cathode

potential and varies with neutral gas flow rate. Although accounting for this effect is

not required to validate the ion emission model (which assumes cold, drifting ions),

one likely explanation for the temperature decrease is outlined here. It is possible the

hollow cathode operated at cooler temperatures when biased more positively. The

primary heating mechanism for our cathode is ion bombardment of the insert located

in the cathode’s interior [27]. This process is likely inhibited by positive cathode

biases, as the reabsorbed electron population and changing electric field act to reduce

the ion-accelerating sheath voltage near the insert [27].
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(a)

(b)

Figure 6.9: Emitted IEDFs at a cathode potential of 10 V. Flow rates of 1 sccm (a)
and 5 sccm (b) were tested. Raw data, filtered data, and the drifting
Maxwellian fits are shown.

6.3.2 Sheath Region Experiments: Large Chamber Configuration Mea-

surements for Validating the Ion Emission Model

Sheath region experiments focused on validating the ion emission model, which is

simplest when only ions are emitted. This condition occurs when the contactor cur-

rent (ion generation) equals the electron beam current [16]. Under these conditions,

contactor plasma electrons exist only in the quasi-neutral contactor plasma region
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(a) (b)

Figure 6.10: Emitted ion drift energy (a) and temperature (b) versus cathode poten-
tial using two different flow rates and test days.

and the wall sheath is free of electrons. This regime is also the target of the experi-

ments discussed in this paper. To mimic this condition, the hollow cathode potential

was increased until the ion emission current saturated. An arbitrarily high cathode

potential is desired to ensure strictly ion emission, however in practice small varia-

tions in plasma production and microdischarges (oxide layer breakdown) on chamber

surfaces limit the maximum cathode potential. A 30 V cathode potential was ulti-

mately selected for all sheath region experiments presented below. Exponential fitting

of emission current measurements according to the procedure discussed in Chapter 7

(Section 7.4) indicates that less than 9% of the total electron population is emitted

using this potential. The bulk plasma electron temperature was measured 10 cm from

the cathode orifice using a Langmuir probe and found to be 2.2 eV +/- 0.2 eV, so

it is not surprising that most electrons were collected by the positive cathode rather

than the chamber wall. This 2.2 eV electron temperature was used for each position

when applying the ion emission model, the accuracy of which will be addressed in

Section 6.4.8.

IEDFs similar to the example shown in Figure 6.11 were used to determine the

ion drift velocity into the sheath from the quasi-neutral plasma at each of the posi-

tions shown in Figure 6.7. Measurements were made in each position with the RPA
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aperture pointed normal to (away from) the chamber wall, parallel to the chamber

wall, and at the hollow cathode orifice. Only a tenuous, background ion population

was detected when the RPA aperture was not aimed at the hollow cathode orifice.

This indicates that ions streamed directly from the hollow cathode orifice, as ex-

pected considering the initial potential drop near the cathode’s keeper (referred to

as a source sheath in the work of Schwager and Birdsall) [184]. The RPA measure-

ments pointed at the cathode orifice thus were used to obtain the drift velocity of the

primary ion population. A simple cosine law was then used to determine the drift

velocity component into the sheath at the chamber wall.

Figure 6.11: Example IEDF with raw data, filtered data, and the drifting Maxwellian
fits shown. This example is from position 1 with the cathode potential
at 30 V.

In this section, we present results from the large chamber configuration in order

to apply the semi-analytical ion emission model directly. Drift velocities from the

large configuration are summarized in Table 6.1 below. Table 6.1 and Figure 6.11

confirm that the ion emission model assumption of cold, drifting ions is valid for

our experiments. Negative drift velocity values at positions 7 and 8 indicate that

ions were primarily flowing out of the sheath rather than into the sheath from the

perspective of the quasi-neutral plasma. This is a result of the ions streaming from

135



hollow cathode orifice and the unique sheath orientation at positions 7 and 8 (see

Table 6.1 and Figure 6.7).

Position 1 2 3 4 5 6 7 8
Ion Drift Velocity Pointed at

Cathode (km/s)
4.3 4.8 5.2 4.3 3.9 4.6 4.6 3.6

Calculated Ion Drift Velocity
into the Sheath (km/s)

4.3 4.6 4.5 2.4 2.7 4.0 -1.9 -2.5

Table 6.1: Measured ion drift velocity when cathode pointed and calculated com-
ponent into the sheath for the large chamber configuration at a cathode
potential of 30 V.

Emissive probe measurements of the sheath plasma potential profile were taken

to study the non-neutral sheath thickness and potential drop. Figure 6.12 features

a representative potential profile from the large chamber configuration, as well as

a fit to the theoretical sheath profile. The theoretical sheath potential profile for

planar geometries is defined by an exponential change in potential with position

[34]. The exponential constant C2 from this fit can also be used to estimate the

Debye length. The Debye length is roughly the inverse of C2 in our (high ion Mach

number) experimental regime [34]. Debye length estimates using this approximation

fall between 2.2 and 5 cm for positions 1 - 6. It is interesting to note that the measured

plasma potential was ∼6 V above the chamber reference potential just 0.1 cm from

the grounded planar probe mounted to the chamber wall. This was a ubiquitous

phenomenon which is discussed further in Section 6.6.2.

Planar probe measurements of the net positive emission current from the large

chamber configuration (shown in Figure 6.7 (b)) are summarized in Table 6.2 below

(again noting that the probe does not distinguish between electron and ion currents

and a small fraction of electrons below 9% are still emitted). One interesting feature

of these measurements is that the minimum ion emission current occurred directly

downstream of the hollow cathode orifice at position 1. The same phenomena was

observed in the small chamber configuration and during a previous experimental cam-
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Figure 6.12: Emissive probe plasma potential measurements approaching the cham-
ber wall. This example is from position 1 of the large chamber configu-
ration with the cathode potential at 30 V.

paign in a different vacuum chamber [185]. Thus, the fact that position 1 recorded

the lowest ion emission current is consistent with other experimental measurements.

Reduced axial ion emission can be attributed to the highest contactor plasma po-

tentials being on-axis (see Chapter 5) and the presence of a tenuous, high speed

electron population (as will be discussed for the small chamber configuration in Sec-

tion 6.5.2). These observations both suggest that electron emission primarily occurs

axially, reducing the net ion emission current measured at position 1. Adding a ten-

uous, drifting electron population to the ion emission model was considered beyond

the scope of this work due its negligible impact on an in-space system. Nonetheless,

a test of this electron emission theory is performed in Section 6.5.2 using a simple

electron emission approximation which produces good agreement for the small cham-

ber configuration. In addition to increased axial electron emission, ion drift velocities

were actually measured at their highest slightly off-axis, which should lead directly

to increased ion emission currents. This ion drift velocity trend was first observed in

Chapter 5 (see Figure 5.24). It is confirmed both in Table 6.1 and Section 6.3.3.
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Position 1 2 3 4 5 6 7 8
Emission Current (nA) 90 560 330 310 200 140 270 390

Table 6.2: Net emission current from the large chamber configuration at a cathode
potential of 30 V.

6.3.3 Sheath Region Experiments: Small Chamber Configuration Mea-

surements for Comparison with the Space-Charge Limit

The results and insights discussed in the preceding section also apply to this

section, in which we present some of the results from the small chamber configuration.

The bulk plasma electron temperature was again measured using a Langmuir probe

10 cm from the cathode orifice and found to be 2.4 eV +/- 0.2 eV in this configuration.

Exponential fitting of emission current measurements again indicates that less than

9% of the total electron population is emitted using a 30 V cathode potential. This

indicates the small chamber configuration experiments also feature an ion emission

current (or “beam” current) roughly equal to the contactor current.

An example potential profile from the small chamber configuration is shown in

Figure 6.13. It is interesting to note that the potential drop near the chamber wall

is even more exaggerated for this example than the one shown for the large configu-

ration (Figure 6.12). This discrepancy between chamber configurations is addressed

in Section 6.6.2. Measured ion drift velocities for the small chamber configuration

are given in Table 6.3. Cathode stability was highly suspect in the small chamber

configuration for the measurements at positions 5 - 7 and so no ion drift velocity es-

timates are listed for these positions. The net ion emission currents at each position

are summarized in Table 6.4.
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Figure 6.13: Emissive probe plasma potential measurements approaching the cham-
ber wall. This example is from position 1 of the small chamber configu-
ration with the cathode potential at 30 V.

Position 1 2 3 4 5 6 7
Ion Drift Velocity Pointed at

Cathode (km/s)
3.9 4.4 4.1 4.3 N/A N/A N/A

Calculated Ion Drift Velocity
into the Sheath (km/s)

3.9 4.1 3.4 2.8 N/A N/A N/A

Table 6.3: Measured ion drift velocity when cathode pointed and calculated com-
ponent into the sheath for the small chamber configuration at a cathode
potential of 30 V.

6.4 Comparison of Experimental Results with the Ion Emis-

sion Model

6.4.1 Interpreting Probe Measurements via Modeling

In this section we briefly review the semi-analytical ion emission model and use two

unique techniques (potential point selection and current density iteration) to apply

Position 1 2 3 4 5 6 7
Emission Current (nA) 50 210 270 430 290 240 320

Table 6.4: Net emission current from the small chamber configuration at a cathode
potential of 30 V.
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it to the large chamber configuration sheath region results described above. A planar

approximation using the Cartesian coordinate system is selected for this application

rather than the previously reported spherical coordinate system of Chapter 3 for

simplicity. The use of a planar, one-dimensional model is valid for this application as

the planar probe and sheath dimensions (a few cm) are much smaller than the chamber

diameter (120 cm) in this system. The planar, one-dimensional ion emission model

consists of the solution to Poisson’s equation (Equation (6.1)). φ is the electrostatic

(plasma) potential, x is the distance measured from the “sheath edge”, e is the

elementary charge, ε0 is the permittivity of free space, ne is the electron density,

and ni is the ion density in Equation (6.1). Note that the term sheath edge is defined

as a plane 10 cm from the chamber wall in this context. This definition is required

to standardize comparisons between model and measurement by providing a domain

in which the model can be applied without violating any of its assumptions.

∂2φ

∂x2
=

e

ε0
(ne − ni) V/m2 (6.1)

By assuming cold, drifting ions (i.e. ion temperature Ti = 0) and combining

the steady-state continuity and momentum equations, the ion density is obtained

according to Equation (6.2). v0d is the ion drift velocity at the sheath edge, J0i is the

ion current density at the sheath edge, mi is the ion mass, and φS is the potential at

the sheath edge (φS = φ(0)) in Equation (6.2).

ni =
J0i

e
√
v20d + 2e

mi
[φS − φ(x)]

m−3 (6.2)

The electron density is obtained using steady-state kinetic theory assuming a non-

drifting Maxwellian electron distribution at the sheath edge. By assuming that the
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potential is positive and monotonically decreasing from the sheath edge to the wall

we obtain Equation (6.3). vth,e is the thermal electron velocity (vth,e =
√

Te
me

), J0e is

the electron current density at the sheath edge, and Te is the electron temperature in

the electron density expression (Equation (6.3)) below.

ne =
J0e

2evth,e
exp

(
−e (φS − φ(x))

Te

)1 + erf

√
eφ(x)

Te

 m−3 (6.3)

Using the equations listed above, the emitted current densities at the wall are as

described in Equation (6.4). These current densities are then converted to emitted

currents using the probe surface area (Aprobe = 10-3 m2).

Je = J0eexp

(
−e (φS − φ(L))

Te

)
Ji = J0i A/m2 (6.4)

Solving this set of equations requires specifying ion mass (mi), ion drift velocity

(v0d), ion current density at the sheath edge (J0i), electron temperature (Te), and

electron current density at the sheath edge (J0e). In addition, two boundary condi-

tions are required by Equation 6.1 as it is a second order differential equation. Of

these seven required unknowns, three (ion mass, ion drift velocity, and electron tem-

perature) were measured during the experimental campaign. Two of the remaining

four unknowns are obtained using the potential data at the sheath edge (φdata(0))

and at the wall (φdata(L) where L = 10 cm). The final two unknowns are specified

differently in the two techniques described in the proceeding sections. Using these

parameters as input, the ion emission model yields an electrostatic potential profile,

the local ion and electron densities, and the emitted ion and electron currents. The

potential profile produced by the model can be compared to the data quantitatively

using the L2-norm of the error provided in Equation (6.5) [186].
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L2 Error =

√√√√∫ L0 [φ(x)− φdata(x)]2 dx∫ L
0

[φdata(x)]2 dx
(6.5)

The model described can return solutions where the potential is in good agreement

with the data. However there are two additional constraints that must be applied

to ensure that model solutions are physically meaningful. First, we note that the

electron density at the sheath edge may be sizably larger than the ion density for

some model solutions. Such solutions contrast with Particle-In-Cell simulations and

the experimental campaign discussed in Chapter 5, which featured a quasi-neutral

region (where ne ∼ ni) surrounded by an ion-rich region when the contactor current

equaled the electron beam current [14, 15]. Thus, we expect solutions in which ni ≥ ne

are the only physically meaningful solutions and apply it as a model constraint.

The second constraint is that the potential profile must be monotonic, as expected

from Particle-In-Cell simulations, previous experiments, and relevant sheath theory

[14, 15, 34, 184]. These constraints ensure that only physically meaningful solutions

to the ion emission model are considered.

6.4.2 Potential Profile Fitting for Model Application

At some positions, the model can be applied directly to the measured potential

profile. At other positions the hollow cathode was less stable during the measurement

period, making the potential profile noisier (as seen in Figure 6.14). At these positions

the measured potential profile was not necessarily monotonic (which is a constraint

of the model) and a numerical fit is used when applying the ion emission model. A

simple least-squares exponential fitting like the one shown in Figure 6.14 is used for

probe positions 4 - 6 of the large chamber configuration.
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Figure 6.14: Emissive probe plasma potential measurements approaching the cham-
ber wall. This example is from position 6 of the large chamber configu-
ration with the cathode potential at 30 V.

6.4.3 Description of the Potential Point Selection Technique

When using the potential point selection technique, we select two internal poten-

tial points from φdata(x) as the final two model inputs. This technique produces a large

set of possible solutions by iteratively selecting the two unique potential points from a

region of the measured potential profile. By performing many numerical experiments,

we determined selecting points further from the sheath edge yielded primarily solu-

tions with ne > ni in part of the domain. Instead, acceptable solutions are typically

obtained for points within 5 cm of the sheath edge. Unfortunately, there are only a

few raw measurement points to select from in this region (where measurement spac-

ing was 1 cm). A shape-preserving, piecewise, cubic interpolation was added between

raw measurements to reduce potential spacing to 0.1 cm. This addition enhances the

number of possible solutions available for analysis.

More explicitly, when using this technique we select points by iterating through

Nj (typically Nj = 21) potential points (xj and xk) between xin and xout from the

sheath edge. We then loop over these points as j = 1, ..., Nj − 1, and k = j+ 1, ..., Nj
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and choose φdata(xj) and φdata(xk) as the last two inputs for Poisson’s equation. We

solve the non-linear system for every combination of xj and xk points and retain

only solutions with monotonic potential profiles that satisfy ni ≥ ne. This provides a

distribution of predicted emission currents whose mean is compared against the data.

6.4.4 Example Analysis Using Potential Point Selection

In order to illustrate the potential point selection technique, we turn to the analysis

of position 2. For position 2, we analyze 210 configurations generated using points

spaced 0.1 cm apart in the region of xin = 1 cm and xout = 5 cm. Of these 210 tested

configurations, Figure 6.15 shows the electron and ion densities for all 39 solutions

that satisfy the two model constraints. Each solution uses a unique set of internal

potential points as inputs. Figure 6.16 shows the corresponding potential profiles.

All configurations produce potential profiles very similar to the data, indicating that

potential is not a good indicator for which solutions are meaningful and which are

not when using the potential point selection technique.

Figure 6.15: Electron and ion densities approaching the chamber wall as produced
by the potential point selection technique and ion emission model at
position 2. All 39 viable solutions are shown.

At position 2, solutions meeting both model constraints corresponded to potential
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Figure 6.16: Potential profile approaching the chamber wall as produced by the po-
tential point selection technique and ion emission model at position 2.
All 39 viable solutions are shown.

points sampled within xjε [1.8, 2.8] cm and xkε [2.4, 4.0] cm. One can see the

discrepancy between the model and potential measurements are more pronounced for

x > 4 cm in Figure 6.16 as a result. Figure 6.17 (a) shows a histogram of the net

emission current predicted at the wall (Inet = Ii + Ie) for all 39 viable configurations.

In this case the electron current is practically zero and so Figure 6.17 essentially

shows the ion current. The maximum emitted current is 602 nA, while the minimum

is 550 nA. The mean current is 582 nA, agreeing within 4% of the 560 nA measured

at position 2. The L2-norm of the error associated with the potential profile is also

shown in Figure 6.17 and varies modestly between 2.7% and 3.6%.

6.4.5 Description of the Current Density Iteration Technique

When using the current density iteration technique, we select values for J0e and

J0i as the final two model inputs and define the L2-norm of the error (see (6.5)) as a

cost function to minimize the difference between the model and measured potential

profiles. Because the true values of J0e and J0i are unknown, we iterate over an

appropriate range of values using the SCL current density (JSCL) as a starting point
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(a) (b)

Figure 6.17: Histogram of emitted currents predicted by the potential point selection
technique and ion emission model at position 2 (a). L2-norm of the
potential profile error using the potential point selection technique and
ion emission model at position 2 (b). All 39 viable solutions are shown.

for the ion current density. Only those model solutions that satisfy ni ≥ ne and have

monotonic potential profiles are retained as physically meaningful. Model potential

profiles corresponding to each remaining pair of J0e and J0i are then compared to the

measured potential profile using the L2-norm of the error as a cost function. The pair

of J0e and J0i values which produces the lowest L2-norm of the error is selected as

the optimal input to the model.

6.4.6 Example Analysis Using Current Density Iteration

In order to illustrate the current density iteration technique, we again turn to

the analysis of position 2. Figure 6.18 (a) shows the potential profiles for each pair

of J0e and J0i considered. It is evident that the potential at the wall and sheath

edge are constant (as discussed previously) and some non-monotonic profiles are vis-

ible. Special attention is paid to the potential profile that best matches the chamber
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measurements on Figure 6.18 (b). It indicates that the current density iteration tech-

nique slightly overpredicts the potential near the sheath edge and underpredicts the

potential near the wall. This was a common result and primarily stems from treating

all potential points equally rather than paying special attention to critical potentials

near the sheath edge.

(a) (b)

Figure 6.18: Potential profile output for each set of J0e and J0i using the current
density iteration technique at position 2 (a). Potential profile output
corresponding to the cost function minimum at position 2 (b).

Figure 6.19 shows the L2-norm of error over the entire range of physically meaning-

ful J0e and J0i values. The range of J0e/JSCL was 10 - 100 and the range of J0i/JSCL

was 0.5 - 1.5. The minimum L2-norm of 3% corresponded to J0e/JSCL = 57.4 and

J0i/JSCL = 1.08. The ion emission model predicts a net emission current of 679 nA

at this minimum, in good agreement with the 560 nA measured at position 2. The

white/empty cells in Figure 6.19 indicate current densities that do not meet all ion

emission model constraints. Specifically, the upper band is a region in which ne < ni

and the lower band is a region in which the potential profile is non-monotonic.
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Figure 6.19: Electron and ion current densities input into the current density iteration
technique as normalized by the SCL current density at position 2. The
potential profile L2-norm of error cost function is shown for each set of
J0e and J0i and the cost function minimum is indicated with a red dot.

6.4.7 Ion Emission Model Results

The ion emission model was applied to positions 1 - 6 of the large chamber con-

figuration in order to test its validity using a range of plasma conditions. The model

is not applied to positions 7 and 8, as one of its assumptions is not valid in these

locations. Specifically, the model assumes that drifting Maxwellian ions are flowing

from the sheath edge to the wall. However, because ions stream directly from the

hollow cathode in these experiments, the main ion population at positions 7 and 8

is flowing away from the wall rather than towards it (see Figure 6.7 and Table 6.1).

While there is still net ion emission at these locations, developing a new physics model

to approximate it is considered beyond the scope of this work.

The results of applying the ion emission model are given in the tables below.

Table 6.5 summarizes the many viable solutions obtained when using the potential

point selection technique. Table 6.6 summarizes the solutions obtained when using

the current density iteration technique. Table 6.7 summarizes emission current pre-

dictions made using the potential point selection technique. Table 6.8 summarizes
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emission current predictions made using the current density iteration technique. The

ion emission model predictions are compared to the measured emission current and

the associated error between the two values is listed.

Position Fit Used

First
Potential

Point
Range,
xj(cm)

Second
Potential

Point
Range,
xk(cm)

Viable
ni ≥ ne

Solutions

Potential
Profile L2

Error
Range (%)

1 None 1.8-3.6 2.4-4.6 70 3.7-5.1
2 None 1.8-2.8 2.4-4.0 39 2.7-3.6
3 None 1.0-1.8 1.2-2.4 16 4.3-4.9
4 Exponential 1.0-1.3 1.2-1.4 9 6.0-6.8
5 Exponential 1.0-2.2 1.2-3.8 53 1.5-2.1
6 Exponential 1.0-2.2 1.2-3.8 57 1.6-2.1

Table 6.5: Summary of model solutions for each position using the potential point
selection technique.

Position Fit Used
Je/JSCL
Range

Ji/JSCL
Range

Optimal
Je/JSCL &
Ji/JSCL

Potential
Profile L2

Error (%)
1 None 10-100 0.5-1.5 72 & 1.3 2.9%
2 None 10-100 0.5-1.5 57 & 1.1 2.1%
3 None 10-100 0.5-1.5 38 & 0.71 3.3%
4 Exponential 100-200 1-1.8 170 & 1.6 3.2%
5 Exponential 80-200 1-2.3 190 & 1.6 0.9%
6 Exponential 10-100 0.5-1.5 76 & 1.2 1.0%

Table 6.6: Summary of model solutions for each position using the current density
iteration technique.

6.4.8 Ion Emission Model Result Discussion

Figures 6.15, 6.16, 6.17, 6.18, and 6.19 show the differences between the potential

point selection and the current density iteration techniques when applying the semi-

analytical ion emission model to the large chamber configuration results. The current

density iteration technique tends to overestimate the potential profile near the sheath

edge and underestimate it at the wall such that the model solution and data agree in
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Position

Measured
Emission
Current

(nA)

Fit Used

Emission
Current

Prediction
Range
(nA)

Average
Emission
Current

Prediction
(nA)

% Error

1 90 None 534-617 572 540%
2 560 None 550-602 582 3.9%
3 330 None 326-353 342 3.6%
4 310 Exponential 267-289 282 9.0%
5 200 Exponential 177-201 189 5.8%
6 140 Exponential 243-271 256 83%

Table 6.7: Comparison of measured emission current and ion emission model predic-
tion using the potential point selection technique at a cathode potential of
30 V.

Position

Measured
Emission
Current

(nA)

Fit Used

Emission
Current

Prediction
(nA)

% Error

1 90 None 718 700%
2 560 None 679 21%
3 330 None 410 24%
4 310 Exponential 400 29%
5 200 Exponential 248 24%
6 140 Exponential 320 130%

Table 6.8: Comparison of measured emission current and ion emission model predic-
tion using the current density iteration technique at a cathode potential
of 30 V.
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three points (one interior point in addition to the sheath edge and wall potentials) as

seen in the right plot of Figure 6.18. For the potential point selection technique, the

modeled potential profile agrees with the data at two interior points by design and

the two model constraints (that the potential be monotonic and that ne < ni) tend

to place these interior points near the sheath edge. As a result, the potential point

selection technique represents the potential near the sheath edge more accurately than

the current density iteration technique and features a larger error near the wall. This

is a likely explanation for why the potential point selection technique produces a more

accurate prediction, suggesting the importance of accurately capturing the electric

field near the sheath edge. Regardless, both techniques produce good agreement in

terms of the emitted current at the wall for probes 2 - 5 of the large configuration

(see Tables 6.7 and 6.8).

The good agreement at positions 2 - 5 of the large configuration offers strong

experimental support for the ion emission model. Indeed, the agreement is within 10%

using potential point selection and within 30% using current density iteration for these

4 positions. Given that each individual plasma measurement has a respective error

term on the order of 20% (which can be amplified by the model), 30% agreement is

very good. For example, the error associated with measuring the electron temperature

with a Langmuir probe is at least 10% [170, 174]. In addition, the bulk electron

temperature was only measured 10 cm from the hollow cathode orifice and used for

all positions. The experiments presented in Chapter 5 indicate that the electron

temperature can vary fairly substantially (over 50%) in a chamber contactor plasma

of this size. Another notable error term comes from the floating probe technique

used to measure plasma potential. This technique tends to create a space-charge

barrier and underestimate the plasma potential by 1.5 - 2 times Te [151]. This error

propagates directly to the measured IEDFs, resulting in higher ion drift velocities. It

is likely that a combination of these errors, a noisier potential profile, and a highly
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radial position led position 6 predictions to have an error of 83% and 130%. To

test this hypothesis, more realistic values of electron temperature (1.5 eV) and ion

drift velocity (3.6 km/s) were used to reanalyze position 6 by accounting for electron

temperature drop in the contactor plasma and an emissive probe space-charge barrier.

This new analysis predicted 210 nA of ion emission, decreasing the potential point

selection prediction error from 83% to 50%. The remaining 50% error at position 6

is likely due to a relatively noisy potential profile (compare Figure 6.12 and Figure

6.14) and highly radial position (see Figure 6.7).

We would also like to emphasize that the model is very sensitive to the electric field

at the sheath edge (edge of the quasi-neutral plasma). Experiences using the potential

point selection technique indicate that potentials near the sheath edge determine

whether the ne < ni condition is met and have the biggest impact on the ion emission

current prediction. It should be noted that multiple fit techniques were explored to

best represent noisy potential profiles and agreement between different fits was quite

good as long as the ne < ni condition was met. This again suggests that the electric

field at the sheath edge is critical and the model is fairly insensitive to other aspects

of the potential profile (including the fit technique). This sensitivity is likely why the

current density iteration technique tended to overpredict ion emission current, as the

potential near the sheath edge was consistently underestimated.

Interestingly, the emission current measured at position 1 is significantly below the

ion emission model’s prediction. The likeliest explanation for the discrepancy between

prediction and measurement in the axial position of the large chamber configuration

is that probe obscuration altered measurements near position 1. Streaming plasmas

are known to produce an extended wake region with altered plasma properties in

regions where the flow is obstructed [187, 188]. Probe-supporting hardware partially

obstructed the plasma flow during potential measurements at position 1 (as seen in

Figure 6.20) and may have produced a significant wake. This effect could explain
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why emission at probe 1 of the large configuration was not as predicted, although the

prediction was still within an order of magnitude of what was measured.

Figure 6.20: Chamber configuration when measuring the plasma potential profile at
position 1.

6.5 Comparison of Experimental Results with the Space-

Charge Limit

6.5.1 Defining the Space-Charge Limited Region

For the purposes of this analysis, the theoretical space-charge limited current is

calculated according to Equation (6.6) below [189].

JSCL =
4ε0
9d2

√
2e

mi

V
3
2

(√
1 +

Edrift
V

+

√
Edrift
V

)3

A/m2 (6.6)

Here JSCL is the SCL emission current density, ε0 is the permittivity of free space,

d is the distance between equipotential surfaces, e is the elementary charge, mi is

the ion mass, V is the voltage difference, and Edrift is the ion drift energy. Equation
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(6.6) is derived assuming a planar geometry and a cold, drifting ion population in

the absence of electrons. These assumptions are the same as those used by the ion

emission model described above in Section 6.4.1, which is to be expected as the

ion emission model is based on space-charge limited physics. With that being said,

there are many benefits to the full ion emission model when compared to the simple

analytical expression found in Equation (6.6). For example, the ion emission model is

able to produce plasma potential, ion density, and electron density profiles at different

points in time (after either plasma emission or electron “beam” ignition) as shown in

Chapter 3. One other benefit of the full ion emission model is that it does not require

a defined boundary between the quasi-neutral and ion-rich plasma as is required for

Equation (6.6). This requirement is discussed further below.

We can solve Equation (6.6) for JSCL using the measured plasma potential pro-

file and ion drift energy in each position. The final requirement is a criterion which

defines the boundary between the quasi-neutral and ion-rich plasma to compute the

variable d. Defining the boundary between the quasi-neutral plasma and ion-rich

sheath has historically been a contentious and/or subjective process [36, 178]. Clas-

sical sheath formation theory assumes a non-drifting Maxwellian plasma and defines

the boundary between quasi-neutral pre-sheath and ion-rich sheath using the Bohm

criterion [178]. We make these same assumptions at positions 5 - 7, where we invoke

the Bohm criterion by assuming ne = ni when the Bohm speed is reached. However,

a substantial ion drift velocity was observed at positions 1 - 4. Thus we select the ra-

tio of electron density to ion density as a simple quasi-neutrality criterion and equate

these two densities at the start of the potential profile (10 cm from the chamber wall).

Normalized sheath electron density (ne) is calculated from that point according to

the Boltzmann relation (or Boltzmann factor) and ion density (ni) is calculated ac-

cording to flux conservation as described in Riemann [178]. The parameter d then

corresponds to the location at which the ratio of electron density to ion density equals
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a specific value. Previous analytical modeling suggests that ne/ni = 0.85 is the ideal

quasi-neutrality criterion for the ion emission model [190]. However, multiple simi-

lar values of ne/ni were used to define the quasi-neutral boundary for completeness.

Table 6.9 summarizes how the calculated space-charge limited ion emission current

using these criteria compares to the measured ion emission current.

Quasi-neutrality defined as ne/ni ratio:

Position
0.8 0.85 0.9 0.95

Theoretical Emission Current / Measured Emission Current
1 32 24 17 11
2 6.8 5.3 3.9 2.6
3 3.1 2.5 2.0 1.4
4 1.2 1.0 0.93 0.82
5 2.0 1.8 1.5 1.3
6 1.2 1.1 1.0 0.90
7 1.6 1.4 1.2 1.0

Table 6.9: Comparison of measured emission current and theoretical space-charge
limited current at a cathode potential of 30 V.

Ion emission current measurements at positions 4-7 show surprisingly good agree-

ment with the theoretical space-charge-limit expression considering its simplicity.

However, positions 1 - 3 are significantly below this theoretical limit. One expla-

nation for this discrepancy is that significant electron emission occurred in these

locations. Deviation from the space-charge limit is consistently higher for positions

directly downstream of the cathode orifice, suggesting a substantial electron flow

straight from the cathode itself. This theory is supported by the Langmuir probe

sweep shown in Figure 6.21, which suggests a tenuous population of drifting electrons

was present directly downstream of the hollow cathode orifice.

6.5.2 Accounting for Drifting Electron Populations

A simple analysis was completed to determine whether electron emission can ac-

count for the discrepancies at positions 1 - 3. The drifting electron population’s den-

sity, temperature, and drift energy were obtained using the same general Langmuir
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Figure 6.21: Langmuir probe sweep 10 cm downstream of the hollow cathode orifice
showing a “bump” before the start of the electron retardation regime.
This “bump” represents a drifting electron population.

probe analysis as was discussed in Chapter 5 (note that the appropriate adjustments

were made to remove the collected ion current and isolate the electron “bump”). The

calculated electron density was 6.1x105 cm-3, the electron temperature was 2.8 eV,

and the electron drift energy was 20 eV. For comparison, the main electron population

had an electron density of 3.4x108 cm-3, electron temperature of 2.4 eV, and electron

drift energy of 0 eV. The exact origin of this tenuous, drifting electron population

is not required for the purposes of this analysis; however it is likely that these are

“primary” electrons which were thermionically emitted from the hollow cathode in-

terior and never underwent a collision before leaving the high density region near the

cathode orifice [27]. Indeed, a population of fast, drifting electrons has been observed

in various Langmuir probe applications [36, 174]. The drifting electron population

was propagated to each planar probe location assuming spherical expansion from the

hollow cathode orifice (1/r2 expansion). The effective probe surface area was also ad-

justed to be the relative area of each probe from the perspective of the hollow cathode

156



orifice. The classic planar probe current collection theory derived by Mott-Smith and

Langmuir was used to predict the electron emission current at each position, which

was then used to adjust the ratios shown in Table 6.9 [32]. The results of this analy-

sis are shown in Table 6.10. This simple analysis removes most of the discrepancies

at positions 1-3. In fact, for the most effective quasi-neutrality definition (a ne/ni

ratio of 0.9), the agreement between prediction and measurement is within 50% for

all positions. This is well within experimental error, suggesting that the space-charge

limited emission is occurring at all measured positions in accordance with the ion

emission model.

Quasi-neutrality defined as ne/ni ratio:

Position
0.8 0.85 0.9 0.95

Theoretical Emission Current / Measured Emission Current
1 2.7 2.0 1.4 0.93
2 2.0 1.6 1.2 0.79
3 1.3 1.1 0.85 0.61
4 1.2 1.0 0.92 0.81
5 1.9 1.7 1.5 1.2
6 1.2 1.1 1.0 0.90
7 1.6 1.4 1.2 1.0

Table 6.10: Comparison of measured emission current and theoretical space-charge
limited current when accounting for electron emission at a cathode po-
tential of 30 V.

6.6 Additional Insights

6.6.1 The Effect of Cathode Bias on Contactor Plasma Ion Drift Velocity

The experiments described above were performed for floating and 0 V bias cases

in addition to the 30 V bias case reported. These other bias cases do not directly

validate the ion emission model (as they still allow for significant electron emission)

and so have not been addressed until now. However, these bias cases are still useful for

complementing the experiments in Chapter 5 which focused on the contactor plasma
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charging response. For example, potential profiles for the 0 V and 30 V bias cases

at position 1 are shown in Figure 6.22. It is evident that increasing the cathode

bias has the same effect on bulk plasma potential and Debye length (as indicated by

the reduction in C2, which is inversely proportional to Debye length) in this set of

experiments that it had in Chapter 5.

(a)

(b)

Figure 6.22: Emissive probe plasma potential measurements approaching the cham-
ber wall. This example is from position 1 of the large chamber configu-
ration with the cathode potential at 0 V (a) and 30 V (b).

Of particular interest is the ability to see changes in the bulk ion drift velocity
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using RPA measurements, which are much more accurate than the Langmuir probe

estimates utilized in Chapter 5. Table 6.11 summarizes the RPA ion drift velocity

measurements for each bias case in the large chamber configuration. It is interesting

to note that the contactor plasma ion drift velocity did not necessarily increase sub-

stantially with cathode bias. For example, the largest drift velocity increase was only

21%. The highest velocities and velocity increases with bias were measured slightly

off-axis for half angles of about 10◦ - 50◦. This interesting feature was also observed

in both the small chamber configuration and the Langmuir probe ion drift velocity

estimates of Chapter 5 (see Figure 5.24). The precise cause of this novel phenomenon

is unknown and not required for this work. However, it is possible that local ion

acceleration due to the recently uncovered hollow cathode ion acoustic wave activity

is to blame [191, 192].

Position
Floating

Potential (V)
Ion Drift Velocity (km/s)

⇓ ⇓ Floating Bias 0 V Bias 30 V Bias
1 -11.5 4.0 4.1 4.3
2 -9.4 3.9 4.0 4.8
3 -9.6 4.3 4.4 5.2
4 -9.0 3.8 3.7 4.3
5 -7.5 3.8 3.5 3.9
6 -7.7 3.9 3.9 4.6
7 -8.0 3.9 3.8 4.6
8 -6.8 3.6 3.5 3.6

Table 6.11: Cathode-pointed ion drift velocities as measured using a RPA in the large
chamber configuration for various cathode biases.

6.6.2 Potential Drops Near the Planar Probe Surface

The cause of large plasma potentials close to the chamber wall is still unknown.

It is possible that an ultra-thin region of space-charge resembling a Child-Langmuir

sheath was pressed up against the chamber wall [27]. This type of sheath often forms

for large potential differences between a conductor and the bulk plasma, but there is
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no other direct evidence to suggest this or guarantee of its presence in such a thin

layer. It is also possible that the emissive probe circuit was not able to accurately

measure the plasma potential in such a low density and space-charge limited region.

The floating point with large emission technique is argued to be viable for densities

between 105 and 1012 cm-3 [152, 193]. The lower density limit is defined by the onset

of significant space charge effects [152, 193]. Fujita and Yagura have also shown that

an emissive probe ceases to float near the plasma potential if the ion density and/or

the potential measurement resistance is too low [193, 194]. While this scenario is

theoretically possible, it must be said that the measured potential profiles do not

support this claim. The plasma potentials measured by Fujita and Yagura became

non-monotonic when approaching a negatively charged grid in a low density sheath

similar to the configuration under consideration [194]. More information on the spe-

cific emissive probe measurement circuit and calibration procedure are provided in

Appendix B.

There is one other likely explanation which has been identified: the presence of a

thin, oxide layer on the planar probe’s copper surface which induces a significant volt-

age drop according to Ohm’s law. An extremely resistive copper oxide layer quickly

forms on the surface of copper when it is exposed to air (such as during instrument

installation) [195]. Current passing through this resistive layer could induce a voltage

drop such as those observed. This theory is supported by the fact that the potential

drop near the chamber wall increased significantly between the large and small ex-

perimental configurations. The large configuration experiments were completed first,

allowing the copper oxide layer to thicken before the small configuration was used.

Furthermore, the high temperature emissive probe (> 2,000K) was moved into con-

tact with the planar probe’s copper surface during testing for calibration purposes

as the filament expands during operation. Copper oxide thickness, composition, and

grain structure is known to be highly dependent on temperature [196]. The oxida-
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tion caused by emissive probe heating was visible after testing completed and could

explain the increase in potential drops near the planar probe surface.

6.7 Summary

Much insight has been gained on ion emission from a positively biased hollow

cathode plasma contactor through carefully planned experiment and complementary

predictive modeling. Experiments confirmed that ion drift energy after emission varies

linearly with positive cathode potential as expected. Ion temperature after emission

is found to be small when compared to the ion drift and less sensitive to cathode

potential. Measured ion emission characteristics for a highly positive hollow cath-

ode match the ion emission model and space-charge limited current predictions quite

well. This is especially true for four out of six measurements using the large cham-

ber configuration, i.e. positions 2 - 5. The large discrepancy at position 1 of the

large configuration has been attributed to probe obscuration, while accounting for

some of the measurement errors at position 6 brings the agreement between model-

ing and data to within 50%. Ion emission predictions using a simple space-charge

limit expression were found to be accurate (within 50%) at positions 4 - 7 of the

small chamber configuration. Positions 1 - 3 of the small configuration also agreed

with SCL predictions within 50% when accounting for an observed drifting electron

population using simple spherical expansion. These results represent the first direct

experimental validation of the ion emission model and reveal new insights to improve

experimental and modeling efforts moving forward. In doing so, this work adds to

the understanding of ion emission as it may occur in tenuous space plasmas (such as

those in the Earth’s magnetosphere).
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CHAPTER VII

Ion Emission Validation IV: Scaling Law

Experiments to Guide Future Mission Design

7.1 Motivation

Even when accepting the validity of the ion emission model, there remain questions

which must be answered before completing a set of space mission requirements. For

example, Chapters 3 - 6 all indicate that the spacecraft potential will increase when

emitting an electron “beam” during plasma contactor operation. This increase in

spacecraft potential slows the escaping electrons as they are electrostatically pulled

back by the positive potential. This process can lead to the spacecraft charging safety

concerns discussed in Chapter 3. In a real-world system which prevents beam return

using a sufficiently high electron beam energy, this slowing still represents an energy

loss and loss of power efficiency on the system. If the escaping electrons are slowed

significantly, then the electron beam hardware may have to be modified or redesigned

to achieve the required electron beam energy and current if feasible. Because of these

effects, electron-emitting space missions must include a requirement that spacecraft

potential not exceed a certain value during electron beam operation. Understanding

and predicting how spacecraft design and plasma contactor operation will impact this

peak spacecraft potential is critical when designing space missions.
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In this chapter, we show how specifications of the electron beam and plasma con-

tactor subsystems impact spacecraft charging during beam operation. The design

specifications under consideration here are the electron beam current, contactor cur-

rent (the plasma current generated), and contactor ion mass. All of these parameters

have been studied using CPIC simulation and/or the semi-analytical ion emission

model. Additional scaling parameters such as the contactor plasma expansion time,

beam emission time, and plasma contactor injection surface area were also studied

using these numerical methods. However, the effect of these parameters could not be

evaluated reliably in a steady state vacuum chamber experiment. Instead, we have

proposed the B-SPICE mission to directly study the spacecraft potential scaling with

plasma expansion and beam emission times in space [112]. Vacuum chamber exper-

iments which directly study the spacecraft potential scaling with ambient magnetic

field strength are also under development. These ongoing efforts are discussed further

in the Chapter 8. Other design considerations, such as the spacecraft geometry and

ambient plasma conditions, are not addressed here as they are typically less flexible

than specifications on the electron beam and plasma contactor subsystems for a given

mission.

A base case CPIC configuration was selected to isolate the effects of just the

respective input (scaling) parameter being studied during previous numerical research.

These base case parameters were used except for the scaling parameter being studied,

which was varied in deliberate steps. A slightly different, but self-consistent base case

was used during ion emission model studies. Again, only the scaling parameter being

studied was varied during predictive ion emission model studies. To limit run time,

two to three values of each scaling parameter were evaluated and the peak spacecraft

potential during beam emission was recorded. To understand how the peak spacecraft

potential scales with these parameters using only 2 - 3 operating points, a simple

power law fit was performed which defines how the spacecraft potential scales when
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changing a specific scaling parameter. A summary of the results of these studies is

given in Table 7.1 below.

Scaling Parameter
Beam

Current
Contactor
Current

Ion Mass Ion Mass

Prediction Source CPIC [14]
Ion Emission
Model [16]

CPIC [14]
Ion Emission
Model [16]

Ibeam Values
(Normalized by

Icontactor)
0.25, 0.5, 1 1 0.5 1

mi (Ion Mass)
Values [amu]

1 4, 40 0.5, 1, 2 4, 40

Icontactor Values
[uA]

22,000 100, 5000 22,000
100, 1,000,

5,000
Power Law
Exponent

1.17 - 1.21 0.76 - 0.77 0.40 - 0.57 0.34 - 0.37

Table 7.1: CPIC and ion emission model predictions summary.

The positive power law exponents listed in Table 7.1 signify that the peak space-

craft potential is predicted to increase with increasing beam current, contactor cur-

rent, and ion mass. The result that increasing the electron beam current increases

the spacecraft potential is not altogether surprising. Removing more negative charge

from the conductive spacecraft in a set amount of time should result in more positive

charge accumulation. It is interesting to note that the predicted power law exponent

is greater than one when varying the electron beam current, implying that doubling

the electron beam current will more than double the peak spacecraft potential.

The predication that spacecraft potential will increase with increasing contactor

current is slightly more nuanced. Numerical predictions were made by normalizing

the electron beam current to the contactor current and during these studies the two

values were equal. Based on this information, we can infer that the peak spacecraft

potential will decrease when increasing the contactor current and holding beam cur-

rent constant, as the contactor current exponent (∼0.76) is less than the beam current

exponent (∼1.2). This makes sense physically, as increasing the plasma available will
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make spacecraft neutralization occur at lower spacecraft potentials. However, in-

creasing both beam current and contactor current proportionally increases charged

particle fluxes and system space charges which must be overcome. A simplistic ap-

plication of the Child-Langmuir law suggests that the spacecraft potential will scale

as the contactor current to the 0.67 if currents in this configuration are space-charge

limited, which is fairly close to the predicted exponent of ∼0.76 [149].

Spacecraft potential is also shown to increase slightly with ion mass, as a power

law fit exponent in the range of 0.34 - 0.57 is predicted. The ion drift energy is

kept constant while ion mass is changed in these predictive studies, meaning that

the contactor plasma ion drift velocity decreases for increasing ion mass, resulting in

smaller contactor plasmas. Smaller contactor plasmas and lower ion drift velocities

both increase the peak spacecraft potential during beam emission. These independent

effects can be isolated by comparing the CPIC and ion emission model predictions.

CPIC simulations allowed the plasma to expand for the same amount of time before

electron beam emission, leading to significantly different contactor plasma volumes.

In contrast, the ion emission model set the ion radius at electron beam ignition to be

approximately the same. This is why the ion mass scaling in CPIC (with an exponent

range of 0.40 – 0.57) is greater than in the ion emission model (with an exponent range

of 0.34 – 0.37). The range of exponents predicted by the ion emission model also has

physical significance assuming space-charge limited ion emission. Another simplistic

application of the Child-Langmuir law suggests that the spacecraft potential will scale

as the ion mass to the 0.33, which is quite close to the predicted exponent range of 0.34

– 0.37 [149]. These predictions are discussed further and compared to experimental

measurements throughout the present chapter.

In this chapter, we describe the experimental setup, summarize the raw mea-

surements, refine the analysis to maximize the information gained and reduce the

impact of covarying parameters, and compare the revealed trends to the predicted
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scaling laws. Particular attention is paid to any discrepancies between numerical pre-

diction and experimental results, as they may reveal shortcomings in the numerical

simulations and model or their respective inputs. These potential shortcomings are

important to uncover, as they prevent the accurate completion of substantive contac-

tor and electron beam subsystem trade studies when designing future electron beam

missions.

7.2 Experimental Setup

7.2.1 General Experimental Description

Experiments were performed in the ElectroDynamic Applications (EDA) Inc. vac-

uum chamber. The EDA chamber is a roughly cylindrical with a hinged endcap as

shown in Figure 7.1 (a). It is composed of stainless steel and achieved a base pressure

of 5x10-7 – 2x10-6 Torr with an operating pressure in the range of 4.7x10-6 – 5.4x10-4

Torr using a CTI Cryo-Torr cryopump during the experiments presented. The corre-

sponding range of mean free paths for these pressures is treated explicitly in Section

7.6.2. The EDA chamber’s largest diameter is 0.91 m and it spans 1.42 m in length.

An electrically isolated hollow cathode plasma contactor was placed in the center of

this chamber to represent a conducting “spacecraft”.

A heaterless hollow cathode with an enclosed keeper electrode was used to pro-

duce a steady state plasma representative of a space-based contactor plasma. The

hollow cathode was provided by Plasma Controls, LLC. It uses a low work function

insert fabricated from tungsten and barium-calcium aluminate powders, a 1/8” ori-

fice diameter, and is shown in Figure 7.1 (b). The hollow cathode was operated in

the “diode mode” configuration. In the diode mode, a steady state plasma discharge

is maintained by forcing a constant discharge current to flow between the cathode

and keeper electrodes. The diode mode was used as it best represents the expected
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(a) (b)

Figure 7.1: The EDA chamber exterior (a) and hollow cathode (b) used during the
described experiments.

in-space use case during electron beam emission (when the spacecraft is positive and

the hollow cathode acts as a net ion source). The hollow cathode was biased posi-

tive with respect to the grounded, conductive chamber walls to mimic the equivalent

space system’s response to electron beam emission according to the circuit diagram in

Figure 6.4. This positive, constant bias applied by the cathode bias power supply is

maintained by removing a constant electron current from the hollow cathode, estab-

lishing a steady state plasma under conditions similar to those which produced the

predictions summarized in Table 7.1. The hollow cathode potential established using

this power supply can also be thought of as the equivalent of a spacecraft potential

with respect to the ambient space plasma, as hollow cathodes are typically tied to

spacecraft common (the spacecraft frame potential).

7.2.2 Varying Key Scaling Parameters

The scaling parameters examined in this chapter are beam current, ion mass, and

contactor current. Two of these values are varied directly during the experiments.

The electron beam current was varied directly by using a Keithley 2400 Sourcemeter

to change the cathode (spacecraft) potential while simultaneously measuring the net
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current to the biased hollow cathode. The atomic mass of the neutral expellant gas

(and corresponding ion mass) could be varied directly by changing the neutral gas

species flowing to the hollow cathode. The contactor current (or plasma current

produced by the hollow cathode plasma contactor) could not be varied directly, nor

could it be varied without changing other physical properties of the experimental

system. To vary the contactor current, the keeper (discharge) current and neutral

gas flow rate were both varied over as large a range as possible. These two physical

inputs control the neutral gas density and ionizing discharge current flowing between

the cathode and keeper electrodes and were expected to alter contactor current over

a large range.

An ideal experimental campaign would vary the scaling parameters under consid-

eration over an infinite range, however in reality there are physical limitations that

determine the parameter range achieved. The range of beam currents was effectively

limited by microdischarges in the chamber. High beam currents and their associated

large cathode bias voltages caused microdischarges (such as those treated in Chapter

4). Microdischarges were both dangerous to the measurement circuit and disrupted

measurements enough to make them unusable. The range of contactor currents was

limited by keeper current and gas flow rate settings which, if set outside of certain

ranges, resulted in unstable hollow cathode operation. The keeper current was limited

at the lower end by cathode stability. If the keeper current is too low, then the cath-

ode cannot maintain a high enough temperature for thermionic emission and stable

operation. The keeper current was limited at the higher end by the maximum current

setting on the keeper power supply (in this case 1.3 A). The neutral gas flow rate

was limited on the lower end by cathode stability in a manner similar to the keeper

current. If the neutral gas flow rate is too low then there is not sufficient neutral gas

present to be ionized and maintain a continuous plasma discharge (similar to the left

hand side of a Paschen curve) [197]. At high flow rates, the chamber neutral density
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causes plasma interactions to be dominated by particle collisions and a host of un-

modeled processes may occur. The contactor expellant was limited to noble gases to

make measurement comparisons as cleanly as possible (without molecular chemistry

and to help with cathode stability). Thus the ion mass upper limit was achieved using

Xenon, with an atomic mass of 131.29 amu (the next heaviest noble gas is the rather

rare and dangerous Radon) [198]. The ion mass lower limit was Argon (39.95 amu)

[199]. The next lightest noble gas, Neon, could not be pumped from the chamber as it

condenses at approximately 9 K and the cryosurface operates at approximately 19 K

[200]. A test matrix of cathode configurations was developed based on these physical

limitations and is presented in Table 7.2. Not all configurations in the test matrix

resulted in stable hollow cathode operation. A total of 170 acceptable operating con-

ditions were found, with the beam current range selected to strike a balance between

small voltage steps and the maximum current without inducing microdischarges.

Gas Flow Rate [sccm]
Keeper

Current [A]
⇓

0.2 0.5 1 2 5 10 20

0.3 K K AK
0.4 K K K A AK AK
0.5 KX KX AK A AK AK
0.6 KX KX AK AK A AK AK
0.7 KX KX AK AK AK AK AK
0.8 KX AKX AK AK AKX AKX AKX
0.9 KX AKX AKX AKX AKX AKX AKX
1.0 KX AKX AKX AKX AKX AKX AKX
1.1 KX AKX AKX AKX AKX AKX AKX
1.2 KX AKX AKX AKX AKX AKX AKX
1.3 KX AKX AKX AKX AKX AKX AKX

Table 7.2: The 170 stable plasma contactor flow configurations under study. The
letter A represents Argon expellant use, K represents Krypton, and X
represents Xenon.
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7.2.3 Data Collection and Analysis

The cathode (or “spacecraft”) potential was swept by the sourcemeter and the

cathode current collection recorded. Each sweep had 101 points and the cathode po-

tential range was adjusted to produce both net ion emission and net electron emission

from the hollow cathode. The keeper voltage, keeper current, neutral gas flow rate,

and chamber pressure were also recorded for each sweep. The floating potential is

determined by finding the point at which the “beam” current (which is equal to the

net ion emission current from the hollow cathode) is closest to zero. The cathode

potential is then defined relative to this floating potential and the “beam” current is

defined relative to the current at this point. This regime of positive cathode potential

with respect to the floating potential is termed the fit region. It is this fit region

data set that is analyzed during the majority of this chapter. The fit region plots

are presented in terms of the “beam” current versus cathode potential. An example

sweep is shown in Figure 7.2.

To make the most direct comparison between experimental sweeps and numerical

predictions, the cathode potential must be determined when the “beam” current is

some fraction of the contactor current. To do this, the contactor current must first

be determined. However, there was no accessible technique which could be used to

measure the contactor current precisely (as measuring it directly would perturb the

plasma generation process itself). In theory, the contactor current should equal the ion

emission current for an infinitely large cathode potential. In practice the maximum

cathode potential is limited by chamber microdischarges. Given these considerations,

the contactor current is set to the maximum ion emission/“beam” current in each

sweep’s fit region to start. In Section 7.4, functional fitting is introduced to calcu-

late a more accurate value for the contactor current. These practical difficulties with

measuring contactor current also make the cathode potential when “beam” current

equals the contactor current a nonsensical value as this value is simply equal to the
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maximum sweep voltage applied. Instead, the cases in which “beam” current is 0.25

and 0.5 times the contactor current are treated by selecting the closest experimental

points and assigning the corresponding cathode potential relative to the floating po-

tential. This process is visualized in Figure 7.2. The MATLAB code which automates

this process is included in the two scripts found in Appendices C and D.

Figure 7.2: An example potential sweep visualizing determination of the spacecraft
potential when the “beam” current is 0.25 and 0.5 times the contactor
current.

7.3 Initial Experimental Results

7.3.1 Spacecraft Potential Scaling with Electron Beam Current

Beam current scaling predictions were made by comparing the peak spacecraft

potential for discrete cases in which the beam current was 0.25 and 0.5 times the con-

tactor current. The sweep point closest to these theoretical “beam” current values is

selected during the initial analysis. The same simple power law fit used during numeri-

cal predictions was performed by taking the log of the ratio of scaling parameter values

and dividing it by the corresponding log of the ratio of peak cathode/”spacecraft”

potentials. This procedure was applied to each of the 170 individual experimental
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sweeps. A histogram of the resulting power law exponent for each sweep is given in

Figure 7.3.

Figure 7.3: An example potential sweep visualizing determination of the spacecraft
potential when the “beam” current is 0.25 and 0.5 times the contactor
current.

The histogram shown in Figure 7.3 is similar to what was predicted. The average

fit exponent of 1.38 is close to the range of 1.17 – 1.21 which was predicted during

CPIC simulations using monoatomic Hydrogen and 3 experimental configurations fell

into that exact range. With that being said, there is clear spread present and large

values (∼2 – 3) appear to skew the average upward. The noise in the histogram here

is indicative that there is fairly large variance amongst sweeps. For example, config-

uration 99 (shown in Figure 7.4 (a)) was the single configuration with an exponent of

zero. This is because the “beam” current = 0.25 contactor current point and “beam”

current = 0.5 contactor current point are actually the same for this sweep. Sweep

99 clearly represents a case in which the “beam” or ion emission current changed

significantly for small cathode potential changes near the floating potential, but there

also is a continuous increase in “beam” current at higher voltages. Configuration

159 represents the polar opposite case in terms of power law exponent at 3.12 and is

presented in Figure 7.4 (b). Interestingly, sweep 159 exhibits rapid changes near the
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floating potential and a clear change in concavity. In addition, the gas flow rate for

both configuration 99 and configuration 159 was 20 sccm. Irregular configurations

such as these are explored in more detail in Section 7.4. It is also worth noting that

the histogram only reports 169 configurations rather than 170. This is because the

cathode potential for “beam” current = 0.25 contactor current was actually zero for

configuration 143 (10 sccm Xenon with 0.8 A keeper current). This point led to an

infinite power law exponent which was excluded.

(a)

(b)

Figure 7.4: Example sweeps 99 (a) and 159 (b). These sweeps produced the most
extreme power law exponents using two points.
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7.3.2 Spacecraft Potential Scaling with Contactor Current

Each configuration has one contactor current value and requires a corresponding

value for the peak spacecraft potential. The peak spacecraft potential when “beam”

current = contactor current was used by the ion emission model. However, this

is not possible for experimental measurements as previously discussed. Instead the

spacecraft potential when “beam” current = 0.5 times the contactor current is used.

A scatter plot of these values for all 170 configurations is provided in Figure 7.5 with

a least squares power law fit.

Figure 7.5: Plot of contactor current versus cathode potential for each test configu-
ration including a least squares power law fit.

It is apparent from Figure 7.5 that either the contactor current has no effect on

the peak spacecraft potential or other factors are obscuring its effect. In fact, the

correlation coefficient between these data sets is a mere 0.0045 and the least squares

fit power law exponent is 0.13. This differs fairly substantially from the predicted

power law exponent of 0.76 - 0.77. To explore whether other physical factors may be

obscuring the effect of contactor current, an attempt is made to remove the impact

of changing ion mass and neutral gas flow rate by breaking up the 170 configurations

into groups which have both of these values in common. In effect this means the only
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physical parameter being purposely varied in a group is the keeper current. A least

squares power law fit is performed on each group as shown for two example groups

in Figure 7.6. A histogram of the power law exponent calculated for each group is

provided in Figure 7.7.

(a)

(b)

Figure 7.6: Power law fits of cathode potential (when “beam” current = 0.5 x con-
tactor current) versus contactor current. Configurations were limited to
Xenon ions with a 2 sccm (a) and 20 sccm (b) flow rate.

Breaking the data set up into 20 groups with consistent ion mass and neutral gas

flow rates indicates that ion mass and neutral gas flow rate are correlated with the
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Figure 7.7: A histogram of power law fit exponents for cathode potential (when
“beam” current = 0.5 x contactor current) versus contactor current. 20
groups with consistent ion species and gas flow rate are represented.

peak cathode potential. For example, the correlation coefficient between contactor

current scaling exponent and neutral gas flow rate is -0.48. The correlation coefficient

between contactor current scaling exponent and ion mass is -0.33. These trends

indicate that heavier ions and higher gas flow rates both cause spacecraft charging to

decrease with increasing contactor current rather than increase as predicted. In fact,

3 out of the 4 lowest power law exponents are found using the 3 highest Xenon flow

rates (5, 10, and 20 sccm correspond to exponents of -0.19, -1.4, and -2.7 respectively).

This phenomenon is explored in more detail in Section 7.6.2.

7.3.3 Spacecraft Potential Scaling with Ion Mass

Each configuration has one ion mass value and requires a corresponding value for

the peak spacecraft potential. As with the contactor current, the peak spacecraft

potential when “beam” current = contactor current was used by the ion emission

model. However, this is not possible for experimental data. Instead, we again use the

spacecraft potential when “beam” current = 0.5 times the contactor current as this

exact potential was studied directly via CPIC simulation. Also, where the contactor
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current value was unique for each of the 170 configurations, the ion mass falls into

just 3 discrete values. Because of this, we can simply present the average “spacecraft”

or cathode potential when “beam” current = 0.5 times the contactor current for each

ion mass and perform a power law fit. This is done in Figure 7.8.

Figure 7.8: Average cathode potential when “beam” current = 0.5 x contactor current
for each ion species considered with a least squares power law fit.

The experimental data summarized in Figure 7.8 strongly suggests that spacecraft

charging is reduced by increasing contactor ion mass. This qualitative trend and the

power law fit exponent of -1.1 differs significantly from the predicted trend, with

an exponent of 0.34 – 0.57. One tempting conjecture based on this result is that the

numerical models are missing some crucial physical process related to ion species. One

major difference between the numerical model used for ion mass scaling predictions

and the experiments presented here is that the contactor plasma is allowed to expand

into vacuum in the numerical models (plasma emission is initiated shortly before beam

emission). In the experiments, the system is in equilibrium when measurements are

made. Thus the contactor plasma size does not vary substantially when changing

experimental ion masses. This critical difference likely plays a role in arriving at such

a confounding result and could potentially explain an experimental result in which
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the ion mass had no effect, however system equilibrium conditions do not explain the

dramatic potential decrease for higher ion masses. One possible explanation for this

dramatic decrease is given in Section 7.7.3 below.

7.4 Functional Fitting of Electron Beam Current versus Cath-

ode Potential

Only three points derived from CPIC simulation were used to predict the beam

current scaling with spacecraft potential. As a result, there was very little information

to indicate what functional form this scaling would take and a power law was initially

assumed. This initial assumption was not based on any physical understanding, but

with the addition of experimental data in which the “beam” current is swept in small

increments, we are now able to determine the true functional form of this scaling law.

Exploratory work was completed to determine this function and it was found that an

exponential function was the optimal fit. To illustrate this point, a power law fit and

exponential fit of the same example sweep are provided in Figure 7.9. We find that

the average least squares R2 value using a power law is 0.509 whereas the average R2

value using an exponential function is 0.998.

Exponential fits are effective in recreating the relationship between “beam” current

and cathode potential. Their asymptotic limit agrees with our understanding that

the amount of ion current one can extract from the contactor plasma is finite and

limited to the contactor current and that an infinitely large cathode potential is

required to achieve this theoretical value. It also agrees with our understanding of

the ion emission process. For example, we assume that equal numbers of ion and

electrons are generated during the hollow cathode ionization process and ions are

emitted such that they do not return to the hollow cathode (or spacecraft) for positive

potentials. Instead some fraction of the plasma electrons are reabsorbed after failing
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(a)

(b)

Figure 7.9: An example sweep showing both power law (a) and exponential (b) least
squares fits.

to overcome the potential barrier required to escape the spacecraft-plasma system.

As the cathode potential is increased, fewer electrons have sufficient energy to escape

and are reabsorbed instead. This reduction in emitted electron current increases the

net ion emission current from the system.

Based on this understanding, the determining factor in whether an electron is

emitted or reabsorbed is its initial kinetic energy. The EEDF which defines the elec-

tron kinetic energy in our plasma is discussed in Section 5.2.2.4 and a Maxwellian

179



distribution is a fairly good approximation for the plasma as it expands from the col-

lisional volume of the cathode orifice. When a conductor is immersed in a Maxwellian

plasma, the collected current to it increases exponentially as its potential is initially

increased from the floating potential, as is seen with a Langmuir probe [32]. An expo-

nential fit of this region can be used to estimate the Maxwellian electron temperature

using a Langmuir probe, as was done in Chapter 5 [32]. Theoretically electron temper-

ature can be determined in this way regardless of the Langmuir probe (or conductor)

geometry [32, 36]. Given these facts, it is not altogether surprising that our isolated,

conducting spacecraft reabsorbs electrons according to an exponential function. In

fact, we can use the exponential fit of each experimental I-V sweep to approximate

its electron temperature using Te[eV ] = −1/β. A histogram of these electron tem-

peratures approximations (or pseudo electron temperatures) is provided in Figure

7.10.

Most pseudo electron temperatures seem reasonable and the most likely value

being in the 2 - 3 eV range matches with results previously treated in this dissertation.

However, there are also a few pseudo electron temperatures that are quite large. These

outliers above about 20 eV are probably not physical based on the distribution in

Figure 7.10 (a). To understand what conditions may be causing these outlier pseudo

electron temperatures, we break the values apart by ion species in Figure 7.11. We

can see in this figure that the main population of pseudo electron temperatures is

widest and highest for Argon and the opposite is true for Xenon. This result shows

that psuedo electron temperature decreases for increasing ion mass and suggests the

true electron temperature does the same. The outliers also appear to be mainly

found using Krypton and Xenon. Upon further investigation, it is clear that high gas

flow rates are the cause of these outliers. For example, all Krypton configurations

with a pseudo electron temperature above 15 eV used the maximum flow rate of 20

sccm. The same is true for Xenon and any values above 10 eV. An example using the
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(a)

(b)

Figure 7.10: A histogram of the pseudo electron temperatures derived via exponential
fitting for 170 configurations (a). A zoomed view is shown in (b).

configuration with the highest pseudo electron temperature is shown in Figure 7.12,

which we believe gives some insight into what is happening for these high flow rate

configurations.

Findings show that configuration 159 is the most extreme outlying value just as it

was for the spacecraft potential scaling with contactor current. Once again, it is the

sweep shape and concavity change which is the source of the problem. The exponential

region at low cathode potentials is not fit accurately as most sweep points actually
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(a) (b)

(c)

Figure 7.11: Histograms of the Pseudo electron temperatures derived via exponential
fitting for Argon (a), Krypton (b), and Xenon (c).

deviate from the trend in this region such that a least squares fit is almost linear

and not representative of the electron kinetic energies. While configuration 159 is an

extreme example, the deviation from an exponential fit at higher cathode potentials

is seen to increase steadily with ion mass and gas flow rate. The 0.2 sccm and 2 sccm

counterparts to configuration 159 are shown in Figure 7.13. They demonstrate that

deviation from an exponential function increases as the flow rate is increased. The

proposed reason for this trend is that there are increased ionizing collisions taking

place in the chamber plasma for higher gas flow rates. Higher gas flow rates increase

the chamber operating pressure, which decreases neutral collision mean free paths and

increases collision frequency. The fact that the concavity change in sweep 159 occurs
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Figure 7.12: An example configuration with an unusually high pseudo electron tem-
perature. An exponential fit is shown to be a poor fit overall as sweep
concavity changes at higher cathode potentials.

at approximately the ionization energy of Xenon (12.13 eV) supports this theory [198].

Ionizing collisions are also the most probable cause of increasing deviation with ion

mass. These theories will be explored in more detail in Section 7.6.2.

7.5 Covarying Parameters to Consider

There are many physical processes and associated, quantifiable parameters in com-

plex systems such as the one currently considered. The relationship and correlation

between each of these parameters could stand alone as its own study. However, do-

ing so is beyond the scope of this dissertation. Instead, all the measured physical

parameters deemed relevant to future mission design are outlined and the correlation

coefficients amongst them listed. This is done by listing and describing each physical

parameter in Table 7.3 and then listing the correlation coefficients in Table 7.4. Yellow

boxes are used in Table 7.4 to denote moderate correlations (in which the magnitude

of the correlation coefficient is between 0.5 and 0.7). Green boxes are used to denote

strong correlations (in which the magnitude of the correlation coefficient is greater

183



(a)

(b)

Figure 7.13: Two example sweeps with a least squares exponential fit. Deviation from
an exponential function is shown to increase with flow rate when going
from 0.2 sccm (a) to 2 sccm (b).

than 0.7). Negative correlation coefficients indicate an inverse relation between the

two parameters (one increases as the other decreases). The closer the magnitude of

the correlation coefficient is to one, the more the two parameters are correlated and

the relationship between them resembles a straight line. Physical parameters which

were not measured directly include the plasma properties of ion drift velocity, electron

temperature, electron density, ion density, and plasma potential.
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Parameter Description

Ion Mass (mi)
The mass of the expellant ionized by the hollow

cathode to form the contactor plasma

Gas Flow Rate
The standard volume of gas expelled through the

hollow cathode in a set amount of time

Keeper Current
The plasma-generating current flowing between

the cathode and keeper electrodes
Expellant
Utilization

The percentage of neutral expellant atoms
ionized by the hollow cathode

Contactor
Current

(Icontactor)

The total plasma current generated by the hollow
cathode

Floating
Potential

The potential at which the cathode/SC collects
zero net current

Keeper Voltage
The keeper voltage relative to the cathode

electrode required to maintain the keeper current

Keeper Power
The power consumed by the hollow cathode

(keeper current times keeper voltage)
Potential @

Ibeam =
0.25xIcontactor

The cathode potential at which the “beam”
current is one quarter the contactor current

Potential @
Ibeam =

0.5xIcontactor

The cathode potential at which the “beam”
current is half the contactor current

Chamber
Pressure

The background neutral pressure in the vacuum
chamber

Table 7.3: Physical parameters associated with each sweep.
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Ion Mass -0.17 0.02 -0.31 -0.31 -0.06 -0.57 -0.58 0.26
Gas Flow Rate -0.34 0.45 -0.30 -0.31 -0.35 -0.31 -0.23 0.76
Keeper Current 0.19 0.19 -0.01 -0.61 0.75 -0.10 -0.06 0.07

Expellant Utilization 0.24 -0.03 0.35 0.59 0.11 0.12 -0.28
Contactor Current -0.35 -0.12 0.13 -0.07 0.00 0.66
Floating Potential 0.21 0.22 0.59 0.53 -0.35

Keeper Voltage 0.03 0.32 0.29 -0.41
Keeper Power 0.16 0.19 -0.25

SC Potential @ Ibeam
= 0.25 Icontactor

0.95 -0.37

SC Potential @ Ibeam
= 0.5 Icontactor

-0.28

Table 7.4: Correlation coefficients between experimental parameters of interest.
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Of the moderate and strong correlations in Table 7.4, there are not many which

demand further analysis here. The decrease in spacecraft charging for heavier ions

is treated elsewhere in this chapter and likely due to electron temperature changes.

The strong positive correlation between gas flow rate and chamber pressure is to be

expected, as is the strong positive correlation between potential for a beam current of

one quarter and one half of the contactor current. The keeper power is the product

of keeper current and keeper voltage so the correlations amongst these parameters

are also to be expected. The moderate positive correlation between keeper power

and expellant utilization is interesting to see, but not unexpected. Keeper power is

required to ionize the neutral expellant gas and an increase in this power increases the

fraction of neutral gas ionized. The moderate correlation between chamber pressure

and contactor current suggests that increasing the gas flow rate increases the plasma

current generated by the hollow cathode and/or the chamber pressure is sufficiently

high for ionization in the bulk plasma to be non-negligible. Ionization in the bulk

plasma is treated in more detail in Section 7.6.2. Finally, the floating potential is

shown to be moderately correlated with spacecraft charging. This makes sense, as

significant ion emission current increases would be particularly difficult when starting

at a raised floating potential. Figure 7.14 below shows a scatter plot of floating

potential versus cathode potential when the beam current is half the contactor current

to give a sense of the floating potential distribution and how it impacts spacecraft

charging during these experiments.

7.6 Defining a Common Data Set

7.6.1 Comparable Experimental Configurations

While it is useful to have as much data as possible in a general analysis, isolat-

ing the effects of one parameter often requires constructing a common data set in
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Figure 7.14: Cathode potential when beam current is half the contactor current gen-
erally increases with increasing floating potential.

which no other parameters change. In this section, we construct one such common

data set to make more accurate assessments than was possible previously using the

raw experimental data alone. The first step in this process is limiting the number of

configurations to only those which were achieved using all three gas species (namely

Argon, Krypton, and Xenon). That way studies can be performed by isolating each

parameter and categorical results are not skewed by configurations using different

conditions. For example, Xenon has the fewest number of configurations and its aver-

age may be skewed because it does not have any configurations with a keeper current

below 0.5 A. Selecting a common data set in which configurations are consistent re-

sults in Table 7.5 and leaves 90 configurations for comparison. The keeper current

values for this common data set are [0.9, 1.0, 1.1, 1.2, 1.3] A. The gas flow rate values

for the common data set are [0.5 1 2 5 10 20] sccm.

7.6.2 Removing Collisional Effects

We have already theorized that collisions and, more specifically, ionization in the

bulk chamber plasma play a significant role in the measured I-V sweep for large gas
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Gas Flow Rate [sccm]
Keeper

Current [A]
⇓

0.2 0.5 1 2 5 10 20

0.3 K K AK
0.4 K K K A AK AK
0.5 KX KX AK A AK AK
0.6 KX KX AK AK A AK AK
0.7 KX KX AK AK AK AK AK
0.8 KX AKX AK AK AKX AKX AKX
0.9 KX AKX AKX AKX AKX AKX AKX
1.0 KX AKX AKX AKX AKX AKX AKX
1.1 KX AKX AKX AKX AKX AKX AKX
1.2 KX AKX AKX AKX AKX AKX AKX
1.3 KX AKX AKX AKX AKX AKX AKX

Table 7.5: The 90 plasma contactor flow configurations with common keeper current
and gas flow rates for each ion species. 80 configurations are greyed out as
they do not fall into this category and are henceforth ignored. The letter
A represents Argon expellant use, K represents Krypton, and X represents
Xenon.

flow rates and ion masses. To confidently remove these effects from our analysis, we

must first show numerically when the onset of collisions occurs in the bulk chamber

plasma. Charge exchange, impact ionization, and electron-neutral scattering colli-

sions will be considered as the most frequent collisions in our plasma system. We will

calculate the mean free path of these processes using Equation (7.1), in which λcollision

is the collision mean free path, nn is the neutral gas particle density, and σcollision is

the collisional cross section [27]. We assume that the relative particle velocity is equal

to that of the (much faster) charged particle and ignore the neutral gas velocity in

order to make use of Equation (7.1). This is a very safe assumption for electrons

(with temperatures in excess of 20,000 K) and the work in Chapter 6 shows that it

is also safe for ions.

λcollision =
1

nnσcollision
m (7.1)
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The collisional cross sections used will be a single value to start since we do not

have detailed particle energy measurements of this system. The peak collisional cross

section is used to consistently produce the shortest mean free paths as a conserva-

tive estimate in terms of collisionality. This approximation is accurate enough for

our purposes for the charge exchange cross section (it is within a factor of 3 for

all energies relevant to this system). However, the impact ionization and electron-

neutral scattering cross sections vary significantly over energy. The charge exchange

cross sections used for Argon, Krypton, and Xenon are 4x10-19 m2, 1x10-18 m2, and

2x10-18 m2 respectively [150, 161, 201]. The impact ionization cross sections used for

Argon, Krypton, and Xenon are 3x10-20 m2, 2x10-20 m2, and 4x10-20 m2 respectively

[27, 202, 203]. The electron-neutral scattering cross sections used for Argon, Krypton,

and Xenon are 1.2x10-19 m2, 1.6x10-19 m2, and 3.0x10-19 m2 respectively [204, 205].

The neutral particle density is calculated using the ideal gas law assuming a neutral

gas temperature of 300 K. The chamber operating pressure is measured by an ioniza-

tion gauge recessed in the chamber wall and so the local neutral gas density in the

bulk contactor plasma is likely somewhat higher. This analysis generates a mean free

path estimate for each of the three collision types considered for each configuration.

The minimum and maximum mean free paths of each collision are summarized in

Table 6.

It is clear from Table 7.6 that only a few collisions occur in the chamber. The

average distance from the hollow cathode orifice to the vacuum chamber wall (or some

other grounded surface) is on the order of 0.5 m. Mean free paths of that same order

represent a regime transition from collisions occurring rarely to typically occurring

before particles reach the chamber wall. The minimum mean free path for charge

exchange is below 1.0 m even at the lowest flow rate of 0.5 sccm, signifying that these

collisions are present for all common configurations. This is not all that surprising

given that Figure 6.9 of Chapter 6 contains a low energy peak representative of charge
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Charge Exchange
Mean Free Path [m]

Impact Ionization
Mean Free Path [m]

Elastic Electron-Neutral
Mean Free Path [m]

Gas Flow
Rate [sccm]

⇓
Minimum Maximum Minimum Maximum Minimum Maximum

0.5 0.91 14 46 180 6.1 45
1 0.46 7.8 23 100 3.0 10
2 0.24 4.1 12 55 1.6 14
5 0.16 3.9 7.8 52 1.0 13
10 0.054 0.91 2.7 12 0.36 3.0
20 0.029 0.52 1.4 10 0.19 1.7

Table 7.6: The minimum and maximum mean free path estimates for all common
configurations.

exchange ions for a 5 sccm flow rate. Given the relatively large cross section of this

process and the correspondingly short mean free paths, it seems it is not possible

to select common data such that this process is negligible. The same can be said

for elastic electron-neutral scattering collisions. The minimum mean free path for

this process ranges from 0.19 m to 6.1 m. This range essentially spans the transition

between this type of collision being ubiquitous and negligible. However, these elastic

scattering collisions do not alter the electron or neutral particle kinetic energies and

instead modify their propagation direction. Because the electron energy distribu-

tion function is already assumed to be isotropic and Maxwellian, these collisions are

expected to have little impact on the contactor plasma.

Impact ionization mean free paths are the largest under consideration, however

they are still small enough that ionization in the bulk plasma will play a notable role

at high flow rates by assuming the cross section maximum. Impact ionization should

have a much greater impact on the I-V sweep shape per collision, as it generates

additional plasma rather than effectively slowing ions or redirecting electrons. As

a result, it would be prudent to ignore flow rates which produce impact ionization

mean free paths close to 0.5 m. To demonstrate this, we provide an example using
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estimated values here. By assuming an electron travel distance of 0.5 m, uniform

neutral pressure equal to the value measured by the ionization gauge, electron kinetic

energy above the ionization threshold, and the minimum impact ionization mean free

path of 1.4 m at 20 sccm, we are able to estimate the fraction of plasma electrons

which trigger an ionizing collision using the Beer-Lambert law. The Beer-Lambert

law is summarized in Equation (7.2), where T is the transmission (or fraction of

particles which have not experienced a collision) and d is the distance traveled [48].

The resulting prediction is that 30% of electrons will trigger an ionizing collision. This

would cause the effective contactor current to increase 30% as the contactor potential

is increased and electrons are able to acquire the ionization energy.

T = exp (−d/λcollision) (7.2)

The above analysis is unrealistic when considering a Maxwellian EEDF with a

temperature of just a few eV such as the one expected for the bulk chamber plasma.

Indeed, the proper treatment of integrating the product of cross section and EEDF

over all possible energies will yield a negligible number of impact ionization collisions

in this case. Figure 7.15 features both the Xenon impact ionization cross section

according to energy and the bulk plasma EEDF presented in Chapter 5 in order to

visualize why this is the case. Very few electrons in the bulk plasma should have the

energy required to ionize Xenon (which has the lowest ionization energy at 12.13 eV)

[198]. However, there are also two chamber regions which feature strong electric fields.

One sheath region near the vacuum chamber wall was treated in Chapter 6. Electrons

originating from the chamber wall (such as secondary electrons kicked off by ion

impact) may enter the bulk plasma region with kinetic energy exceeding the ionization

energy due to the presence of this electric field [206]. The other region featuring a
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strong electric field is near the hollow cathode itself. Using the measurements of

Chapter 5, we can say that the potential of the exposed keeper electrode is ∼30 V

higher than the plasma potential 8 cm downstream. This potential difference acts

to accelerate bulk plasma electrons to high velocities as they approach the hollow

cathode keeper. The keeper region also features some of the highest neutral gas

densities in the vacuum chamber. Both of these regions have demonstrated an electric

field sufficient to ionize Argon, Krypton, and Xenon for cathode biases used during

the experiments treated in this chapter.

Impact ionization appears to be the cause of deviations from an exponential func-

tion for high flow rates, ion masses, and cathode potentials. For further evidence of

this conclusion, we turn to the exponential fit R2 values representing how well an

exponential function matches the sweep data. The R2 values are averaged according

to flow rate and the results summarized in Table 7.7. R2 values, also known as the

coefficient of determination, quantify how well a model or fit represents the variation

observed in a dataset by taking the difference between the fit and data (termed the

residual) and normalizing it [207]. An R2 value of one represents a perfect fit and

an R2 value of zero represents essentially no correlation (R2 can also be calculated

using the square of the correlation coefficient). The values in Table 7.7 match the

qualitative trend previously discussed, as an exponential fit is less representative of

configurations with higher flow rates.

Flow Rate [sccm] 0.5 1 2 5 10 20
Average R2 Value of

Exponential Fit
0.991 0.988 0.994 0.985 0.946 0.894

Table 7.7: Average R2 of a least squares exponential sweep fit versus neutral gas flow
rate.

Configurations with high gas flow rates should be removed from the common data

set based on the findings outlined in this section. Doing so ensures that particle

collisions in the bulk contactor plasma do not skew the experimental results. Deter-
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(a)

(b)

Figure 7.15: Xenon impact ionization cross sections (a) and an example EEDF for
the bulk contactor plasma (b) [27].

mining the optimal flow rate cutoff is less straightforward. For the purposes of this

dissertation, configurations with flow rates above 2 sccm are removed from the com-

mon data set. This value marks a transition in R2 values and allows the claim to be

made that < 5% of electrons undergo impact ionization per the earlier Beer-Lambert

analysis. This decision leaves a common data set with 45 configurations and a gas

flow rate which varies by a factor of 4 (the ion mass varies by a factor of 3.3). The

final common data set is shown in Table 7.8 below.
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Gas Flow Rate [sccm]
Keeper

Current [A]
⇓

0.2 0.5 1 2 5 10 20

0.3 K K AK
0.4 K K K A AK AK
0.5 KX KX AK A AK AK
0.6 KX KX AK AK A AK AK
0.7 KX KX AK AK AK AK AK
0.8 KX AKX AK AK AKX AKX AKX
0.9 KX AKX AKX AKX AKX AKX AKX
1.0 KX AKX AKX AKX AKX AKX AKX
1.1 KX AKX AKX AKX AKX AKX AKX
1.2 KX AKX AKX AKX AKX AKX AKX
1.3 KX AKX AKX AKX AKX AKX AKX

Table 7.8: The 45 plasma contactor flow configurations in the common data set. 125
configurations are greyed out because they do not fall into this category
and are henceforth ignored. The letter A represents Argon expellant use,
K represents Krypton, and X represents Xenon.

7.6.3 Exponential Fitting to Remove Sweep Range Effects

The last remaining concern with the raw data set is the noise introduced by

insufficient sampling in the exponential fit region. This concern is addressed here by

using values from the exponential fit rather than the raw data points. This is possible

only because the exponential fits are so good (their average R2 value is 0.996) and

eliminates any issues with rapid current changes near the floating potential. The

contactor current can now be approximated more accurately as the exponential fit’s

predicted current for a cathode potential of infinity. The floating potential, potential

at which the beam current is a quarter of the contactor current, and potential at

which the beam current is a half of the contactor current are also redefined according

to the fit function. Defining a common data set as described here provides a much

clearer picture of the scaling laws which are the subject of this investigation.
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7.7 Comparison of Refined Experimental Results with Nu-

merical Predictions

7.7.1 Refined Spacecraft Potential Scaling with Electron Beam Current

Using the same two potentials to represent spacecraft charging as before (cathode

potential when the beam current is one quarter and one half the contactor current)

results in a power law exponent of 1.27 for every configuration under consideration.

This is because representing an exponential function as a power law function using just

two points produces the same power law exponent regardless of the constants involved.

An exponent of 1.27 is within 9% of all values in the 1.17 – 1.21 range predicted via

CPIC simulation [14]. In addition to comparing favorably with previous predictions,

we now understand that cathode potential scales exponentially with “beam” current

when using a hollow cathode plasma contactor on Earth.

We have outlined how potentials scale when only changing the ratio of beam cur-

rent to contactor current. Based on this information, we suggest that plasma contac-

tor I-V sweeps such as the ones presented in this chapter be used when predicting the

peak spacecraft potential for electron emitting space missions using the ion emission

technique. Experiments are required to provide data such as the contactor current of

the relevant plasma contactor and initial potential scaling. Without this information,

accurate predictions derived from comparison with space-based numerical modeling

will not be possible.

7.7.2 Refined Spacecraft Potential Scaling with Contactor Current

The semi-analytical ion emission model predicts that cathode and spacecraft po-

tential will scale as the contactor current to the 0.76 – 0.77 power when the beam

current equals the contactor current [16]. The contactor current and corresponding

cathode potentials of each of the 45 common configurations are shown in Figure 7.16.
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A least squares power law fit is shown, as well as a least squares power law fit us-

ing a set power law exponent of 0.76. It is clear from Figure 7.16 that the cathode

(“spacecraft”) potential increases for higher beam and contactor currents. These two

parameters are moderately correlated with a correlation coefficient of 0.56.

The ideal power law exponent is less clear for these parameters. There is still a

fair amount of variability that may be due to covarying parameters in Figure 7.16.

These covarying parameters also have an effect on cathode potential, leading data

points to be spread vertically (over a larger cathode potential range). A vertical

spread forces the least squares fit to be more horizontal such that it is centered in the

spread and closer to more points overall. A least squares power law fit of this data set

produces an exponent of 0.40 and R2 value of 0.45. An exponent of 0.40 is not quite

the 0.76 that was predicted, however it is within a factor of 2 and clearly has the same

sign. The R2 value associated with the fit being rather low is not surprising given

the covarying parameters and spread discussed previously. These considerations leave

room for doubt in the calculated 0.4 power law fit constant such that a second power

law fit with a set exponent of 0.76 is also shown for comparison. This second fit has an

R2 value of 0.37 and is also shown in Figure 7.16. The vertical point spread brought

on by covarying parameters is again significant for this fit (note the large impact of

the 6 points over 150 uA contactor current). It is interesting to note that this fit

does not seem significantly worse than the least squares fit in which the exponent

was calculated. This conclusion suggests the predicted scaling law shows the correct

trend and may yet be accurate, but that in ground-based experiments this scaling

law may not be the most clear or important effect as it is tied to several covarying

parameters and other potential experimental effects which have yet to be determined.

Controlling for ion mass by evaluating each individually also gave no clearer power

law relationship than what is shown in Figure 7.16.
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Figure 7.16: Cathode potential versus contactor current for common configurations.
A least squares power law fit with variable exponent and 0.76 exponent
are shown. Cathode potential is measured relative to floating potential
at an ion emission (or beam) current equal to 0.5 times the contactor
current.

7.7.3 Refined Spacecraft Potential Scaling with Ion Mass

The semi-analytical ion emission model and CPIC tool predict that cathode and

spacecraft potential will scale as the ion mass to the 0.34 – 0.37 and 0.40 – 0.57

power, respectively. The average cathode potential when the beam current is half of

the contactor current is shown for each ion mass in Figure 7.17. A least squares power

law fit is performed on these three points for comparison with numerical prediction,

however it is readily apparent from the -0.88 exponent that the observed trend is not

as predicted. One factor which likely plays a role in this discrepancy is the constant

contactor plasma size as discussed in Section 7.3. In this section we argue that

the dramatic decrease in cathode/spacecraft potential is due to electron temperature

changes with ion mass.

The average pseudo electron temperature for each ion mass is also shown in Figure

7.17. We note that the cathode potential and pseudo electron temperature are simply

related by a constant value of 1.45 when using exponential fitting. Perhaps the most
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Figure 7.17: Average cathode potential for each ion species in the common data set
with a least squares power law fit. Cathode potential is measured relative
to floating potential at an ion emission (or beam) current equal to 0.5
times the contactor current.

interesting feature of Figure 7.17 is the significant decrease in cathode potential and

pseudo electron temperature with mass. A power law exponent of -0.88 is a far cry

from the predicted 0.34 – 0.57. One likely explanation for this discrepancy is that

changes in contactor plasma electron temperature were not properly accounted for

during predictive numerical studies. These studies kept electron temperature constant

in order to remove its effects on spacecraft charging. However, the results treated here

strongly suggest that electron temperature decreases with increasing ion mass. To

understand how this may impact the cathode potential required to emit half the

contactor current as a net ion current, we explore two possible explanations below.

One of these explanations is based on the electron kinetic energy while the other is

based on the ion-rich region thickness and its electron temperature dependence.

A zeroth order treatment of Maxwellian electrons expanding from the cathode

orifice indicates that those with the lowest kinetic energy will return to the cathode

for the smallest cathode potentials. Using this conceptual framework, we can imagine

that some fraction of electrons with low kinetic energies return to the cathode and
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the rest are emitted. This fraction is determined by the cathode potential and should

scale according to the electron temperature. Indeed, the 1.45 factor relating cathode

potential and pseudo electron temperatures in Figure 7.17 is also the value at which

half the electrons are reabsorbed and half are emitted according to the Beer-Lambert

law (0.5 = exp(-1/1.45)) [48]. The decreased electron temperature with increasing

ion mass should thus force the same fraction of electrons to be recollected at lower

cathode potentials as observed above.

Ignoring electron dynamics and solely considering the ion-rich sheath thickness

also supports the theory that electron temperature effects dominate ion mass effects

in the presented experiments. Assuming SCL ion emission suggests that the voltage

required to emit a given ion current from the plasma scales as the ion-rich region

thickness to the 4/3 power. As the electron temperature decreases with increasing

ion mass, the Debye length will also decrease as it proportional to the square root of

the electron temperature. The ion-rich region thickness is proportional to the Debye

length in turn. Thus the predicted 0.34 – 0.57 power law exponents may be obscured

solely considering these effects.

In a standard hollow cathode configuration, one does not have independent con-

trol of plasma electron temperature. Electron temperature decreasing with increasing

ion mass has been observed previously using Argon, Krypton, and Xenon [208]. A

full treatment of chamber plasma dynamics is required to produce an accurate model

of the bulk contactor plasma electron temperature. Developing such a model is con-

sidered beyond the scope of this work given the experimental measurements directly

reporting this trend. However, it is expected that the external plasma electron tem-

perature is positively correlated with internal electron temperature, allowing us to

leverage a basic internal hollow cathode model in support of these experimental re-

sults. To gain a basic theoretical understanding why electron temperature decreases

with ion mass, we utilize a steady state balance between plasma ion generation and
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diffusion inside the hollow cathode volume. Equation (7.3) sets the ion generation

rate via impact ionization inside the hollow cathode (Igeneration). This value equals

the ion loss rate via diffusion to the hollow cathode walls (Iloss of Equation (7.4)) in

general terms [27, 209]. q is the elementary ion charge, nn is the neutral gas density,

σionization is the impact ionization cross section, vth,e is the electron thermal velocity,

V is the hollow cathode interior volume, kB is Boltzmann’s constant, Te is the electron

temperature, me is the electron mass, Γi is the ion flux to the hollow cathode inte-

rior, A is the hollow cathode interior surface area, ni is the ion density, and vi is the

average ion velocity to the hollow cathode interior wall in Equations (7.3) and (7.4).

By combining Equations (7.3) and (7.4), assuming plasma quasi-neutrality (setting

ne = ni), and removing constant values, we recover Equation (7.5).

Igeneration = qnennσionizationvth,eV = qnennσionization(Te)

√
8kBTe
πme

V A (7.3)

Iloss = qΓiA = qniviA A (7.4)

Te ∝
(

vi
nnσionization(Te)

)2

K (7.5)

The right hand side of Equation (7.5) leaves little room for doubt that electron

temperature should decrease with increasing ion mass. Ion velocity, vi, should be lower

for higher ion masses as it is inversely proportional to the square root of ion mass for

a set ion energy. Higher masses also have larger cross sections and so accounting for

slowing collisional processes would only decrease vi further for heavier ions. Along the
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same lines, the ionization cross section, σionization, increases dramatically for higher

mass noble gases at a given electron temperature. Finally, the neutral gas density, nn,

isn’t expected to change much with ion mass. In fact, the common data set correlation

coefficient between ion mass and chamber neutral gas density is 0.62. This indicates

that in practice the neutral gas density does increase with ion mass. All of these

factors reduce the value of Equation (7.5) and point to the same conclusion: the

electron temperature decreases for higher ion mass.

7.8 Summary

The experiments presented in this chapter focus on how spacecraft design choices

affect spacecraft charging during electron beam emission when utilizing the ion emis-

sion technique. In doing so, these experiments generate practical knowledge for future

mission design. They also advance our understanding of ion emission and what phys-

ical processes are required to enable numerical modeling of the upmost accuracy.

The spacecraft (cathode) potential scaling with electron “beam” current was found

to follow an exponential function closely. Selecting points from these exponential fits

resulted in a power law exponent within 9% of what was initially predicted. The

contactor current scaling law was difficult to isolate as other covarying parameters

must change to physically produce more or less plasma. The spacecraft/cathode

charging was generally found to increase slightly with contactor current overall as

predicted. The ion mass scaling is actually the opposite of what was previously pre-

dicted. Increasing the ion mass in an earth-based vacuum chamber decreases the

cathode potential required to emit half the contactor current as a net ion current.

This appears to be tied to changes in contactor plasma electron temperature with ion

mass. It is advised that future mission designers perform I-V sweeps similar to those

shown here using their respective hollow cathode plasma contactor subsystem. Doing

so will allow for more accurate prediction and control of spacecraft charging during
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electron beam emission in space.
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CHAPTER VIII

Conclusion

8.1 Progress Made

Much progress has been made in enabling spacecraft charge neutralization during

active electron emission. CPIC simulations first replicated electron beam return in

the magnetosphere due to spacecraft charging and space-charged limited ion emission

as shown in Chapter 3. Effective spacecraft neutralization during electron beam

emission was observed when emitting a larger contactor (plasma) current. It was

theorized that ion emission from the quasi-neutral contactor plasma is space-charge

limited based on these results. The input parameters of electron beam current and

ion mass were varied to predict scaling laws for space applications.

Semi-analytical models were developed to supplement the CPIC tool. The most

complete and accurate model replicates important CPIC outputs within a few percent,

confirming our theoretical understanding of the ion emission process. These models

run on a personal laptop in a reasonable amount of time and are used to test new

configurations not accessible to CPIC. These models also predict increasing spacecraft

potentials for increased electron beam current, contactor current, simulation size, and

decreased plasma injection area. Notable progress was also made in predicting plasma

expansion in the absence of CPIC simulations.

Multiple experimental campaigns were completed to examine critical aspects of
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the prospective ion-emitting system. Transient experiments confirm that “space-

craft” neutralization is possible in the laboratory. The observed plasma transient is

mostly as expected except for long equilibrium times. These equilibrium times can

be explained by a simple capacitive circuit model. Steady state plasma experiments

also confirm CPIC results. These experiments produced new information on plasma

electron temperature changes with “spacecraft” potential and the ion emission lo-

cation in the chamber. Measured emission currents match the ion emission model

and space-charge limit within 50%. This result effectively validates CPIC and the

ion emission model for laboratory conditions. Scaling law experiments recreate the

predicted beam current scaling. The effects of contactor current are less clear due

to covarying parameters. Ion mass has an effect opposite of what was predicted,

which is likely due to unmodeled electron temperature changes. In total, the work

presented in this dissertation provides all the necessary tools to propose an in-space

demonstration.

8.2 Future Work

Many of the questions which can be answered on Earth have been addressed dur-

ing the course of the work presented in this dissertation. However, there remain a

few specific questions which have yet to be answered. One question is if the space-

craft potential scaling with beam current and ion mass is truly electron temperature

dependent as expected from Chapter 7. Probing the bulk chamber electron tem-

perature using different expellant gases and then comparing it with the results of

Chapter 7 could answer this question. A more difficult question to answer is the

effect of a magnetic field on ion emission. CPIC simulations with a magnetospheric

field were almost identical to those performed with zero magnetic field. However, a

larger magnetic field should play a significant role in shaping the plasma contactor

and ion emission process. Understanding the impact of a stronger magnetic field
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could extend previous research to more magnetized regions, including LEO and the

Jovian magnetosphere.

Numerous questions remain to be answered by in-space experiments. For one,

simultaneous electron beam and plasma emission has yet to be reported in tenuous

space plasmas. Whether this configuration will effectively neutralize the spacecraft

with certainty is the largest remaining question. It would also be beneficial to test

related configurations, such as pulsed plasma and RF electron beam emission. Other

questions address scaling laws which enable effective spacecraft system design. Many

of these remaining questions could be answered with a single in-space demonstration.

8.2.1 Magnetic Field Scaling Studies

8.2.1.1 Vacuum Chamber Experiments

Ion emission experiments with a varying magnetic field are currently underway. A

solenoid was constructed with the capability of producing a uniform 5 mT magnetic

field. Images of the final solenoid design are provided in Figure 8.1. A maximum 5

mT solenoid field strength was selected to be approximately 100 times stronger than

the ambient field on the Earth’s surface in order to reduce its effects. The magnetic

field strength can be controlled directly via the coil current. The solenoid field in

the active test volume was mapped in the absence of a plasma and the magnitude

was found to be uniform within 10%. This map can be found in Figure 8.2. The

hollow cathode I-V sweep procedure outlined in Chapter 7 can be repeated using

this solenoid and a variable magnetic field strength. The results should elucidate the

impact of a magnetic field on ion emission for Earth-based experiments.

8.2.1.2 Magnetic Model Development

An analytical model must be developed to explain magnetic field scaling experi-

ments and extend them to space. This model should account for the contactor plasma
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(a) (b) (c)

Figure 8.1: Experimental solenoid SOLIDWORKS model (a), standing upright (b),
and during magnetic field mapping (c).

Figure 8.2: Experimental solenoid magnetic field contour featuring the active test
volume in the absence of a plasma.

expansion due to magnetic field effects. For example, plasmas are typically locked

to magnetic fields if they are sufficiently strong in comparison with cross-field dif-

fusion due to turbulence and collisions (see Chapter 2). We can therefore imagine

the plasma expands as an elongated cylinder such that its long axis is aligned with

the ambient magnetic field. The length of the cylinder will primarily be defined by

non-magnetic conditions including the plasma expansion time, ion drift velocity, and
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electron temperature (through ambipolar diffusion). The cylinder radius should de-

pend strongly on the magnetic field strength. We anticipate here that this radius is

equal to a multiple of the electron (or possibly the ion) gyroradius as summarized

in Equation (8.1). α represents the particle species, rg is the particle gyroradius, m

is the particle mass, vperp is the particle velocity perpendicular to the ambient mag-

netic field, q is the particle charge, and B is the ambient magnetic field in Equation

(8.1). The ion-emitting surface area of an elongated cylinder scales linearly with the

radius according to Equation (8.2), as the ends may be ignored for a sufficiently long

cylinder. Aemission is the ion-emitting surface area, β is an unknown constant defining

the contactor plasma radius relative to the charged particle gyroradii, and L is the

length of the contactor plasma in Equation (8.2). The ion emission current density is

determined by the space-charge limit given in Equation 3, which in this case should

not feature a substantial ion drift. In Equation (8.3), JSCL is the space-charge-limited

current, ε0 is the permittivity of free space, VSC is the spacecraft potential (which

in this case is approximately equal to the plasma potential), and d is the physical

separation between the two potential regions. By combining the gyroradius, cylinder

surface area, and space-charge limit expressions and assuming a constant ion emission

current equal to the electron beam current (as is the case in equilibrium), we arrive

at Equation (8.4). Equation (8.4) defines how the peak spacecraft potential scales

with the magnetic field strength for a given electron beam current (Ibeam) using a

constant multiplier of C. Future work should include comparing this prediction with

experimental results and determining the appropriate constant term (which in this

case dictates if the plasma is confined according to the electron or ion gyroradius).

rg,α =
mαvperp
qαB

m (8.1)
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Aemission ≈ 2πβrg,αL+ 2πβrg,α
2 ≈ 2πβrg,αL m2 (8.2)

JSCL,α =
4ε0
9

√
2qα
mα

V
3/2
SC

d2
A/m2 (8.3)

VSC =

[√
mα

2qα

9d2Ibeam
4ε0Aemission

] 2
3

≈
[√

mα

2qα

9qαd
2BIbeam

8πε0βmαvperpL

] 2
3

α CB
2
3 V (8.4)

8.2.2 In-Space Demonstrations

Missions demonstrating the ion emission technique are in development. Signifi-

cant efforts have been made to advance the CONNEX mission concept. A suborbital

sounding rocket proposal was also submitted to the NASA Heliophysics Science Mis-

sion Directorate in 2019. This proposal was part of the H-FORT Low Cost Access to

Space program and is titled the Beam-Spacecraft Plasma Interaction and Charging

Experiment (B-SPICE). B-SPICE is expressly designed to validate the ion emission

model and explore critical scaling laws in space. B-SPICE explores the effect of con-

tactor expansion time, beam current, and expellant utilization (the percentage of

ionized neutral gas). It features a high current (150 mA) electron beam, 500 mA

plasma contactor, and spacecraft potential monitor in the form of a tethered child

payload. Additional diagnostics include a Langmuir probe to measure the ambient

plasma and photometers to observe emissions generated in the electron beam and

contactor plasma. A block diagram showing B-SPICE subsystems can be found in

Figure 8.3. A 2022 launch reaching an altitude of ∼260 km was proposed.
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Figure 8.3: A block diagram sketch of the B-SPICE rocket configuration.

8.3 A Look Forward

Much of our research on the ion emission model approaches completion as outlined

in this chapter. Our research collaborations have grown stronger and more efficient

over the course of this research. We now look forward to tackling spin-off projects

born from this close collaboration and supporting future missions which use the ion

emission technique. We believe these projects show great promise for furthering space

exploration and, more broadly, the scientific body of knowledge. While the ultimate

outcome of these efforts is still unknown, our work continues.
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APPENDIX A

Simple Capacitor Model

A simple, spherical capacitor model for spacecraft charging using a plasma con-

tactor during electron beam emission is developed below. To begin, the assumption

is made that all charge removed by the beam is stored in the conducting plasma-

spacecraft system. This system thus acts like a capacitor storing charge. However,

the system is also expanding and increasing its capacitance over time. In steady

state, an ideal, conducting spherical capacitor stores all of its charge on its surface.

This is similar to what is seen in CPIC simulations, with the subtle difference that

charge originates in the center of the sphere and must travel to the plasma front. This

interpretation seems to explain the simulation results qualitatively, but a numerical

model is needed to explore it further.

A spherical capacitor model was briefly discussed in Gian Luca Delzanno’s 2015

JGR paper and this will be the start of our development [14]. It used a perfect

spherical capacitor in space, but neglected the continued expansion of the plasma

plume while the electron beam was fired. We will define an effective system radius

which accounts for the spacecraft radius and plasma expansion as below:
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reffective = rSC + vexp(τ0 + τ) (A.1)

In Equation (A.1), reffective is an effective conducting (plasma) radius, rSC is the

spacecraft radius, vexp is the plasma expansion velocity, τ0 is the time the contactor

was operating before the beam was fired, and τ is the time since the beam began

firing continuously. Using this effective radius assumes spherical plasma expansion

and a constant plasma expansion velocity. Simulations predict a relatively constant

plasma expansion velocity. Perfect spherical plasma expansion is not expected in

practice or seen in simulations, but is a decent approximation for the purposes of

this model. All other geometries produce smaller capacitances, which should produce

slightly larger spacecraft potentials than those predicted by this model. A graphical

representation of this first model is provided in Figure A.1. To calculate the spacecraft

potential, VSC , of this configuration, we invoke the capacitance of an isolated sphere

and accumulate charge to this capacitor using the expressions below:

C = Q/VSC = 4πε0reffective (A.2)

Q = Ibeamτ +Q0 (A.3)

In (A.2), C is the total system capacitance, Q is the total system charge, and ε0 is

the permittivity of free space. Ibeam is the electron beam current and Q0 is the initial

system charge (at the time of electron beam ignition) in Equation (A.3). Combining

Equations (A.1), (A.2), and (A.3) yields Equation (A.4):
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Figure A.1: A graphical representation of the expanding spherical capacitor model.

VSC =
Q0 + Ibeamτ

4πε0 (rSC + vexp(τ0 + τ))
(A.4)

Setting τ0 = rSC = 0 yields the maximum potential the spacecraft can reach while

the contactor and beam fire simultaneously. We can also input previous simulation

parameters into this simple capacitive model for comparison. Figure A.2 (a) was

generated using the C1 parameter set (the ion drift speed, vd, was used for vexp) and

appears similar in magnitude to the corresponding simulation results in Figure A.2

(b) [14]. However, the capacitor model increases monotonically and does not account

for the grounded simulation boundaries. It is encouraging to note that the shape of

this transient is very similar to results obtained using the full ion emission model with

the simulation boundary placed infinitely far away (see Figure A.3) [16].

This model’s ability to predict simulation results can be improved by accounting

for walls with a concentric spherical capacitance. This configuration is more repre-

sentative of the simulations presented here and its capacitance is defined in Equation

(A.5) below:
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(a) (b)

Figure A.2: Normalized spacecraft potential over normalized time using the capaci-
tive model with no walls and C1 simulation parameters (a). CPIC sim-
ulation spacecraft potential over time when changing the time between
plasma release and beam firing (colors) and simulation domain size (solid
lines use rwall = 100 and dashed lines use rwall = 50) (b) [14].

Figure A.3: Normalized semi-analytical ion emission model spacecraft potential tran-
sients using various domain boundary radii and a different set of model
inputs than those used in Figure A.2 [16].

C =
4πε0

1
reffective

− 1
rwall

(A.5)
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rwall is the radius of the grounded wall (or 0 V simulation boundary) in the equa-

tion above. This concentric capacitance model’s physical configuration is shown in

Figure A.4. The same parameters used in previous CPIC simulations were input into

this model. The resulting predictions are plotted side-by-side in Figure A.5. It is clear

that the capacitance model does a remarkably good job of predicting the PIC results

and their dependence on chamber size. Indeed, it can be argued that the differences

between the two graphs are readily explained by previously discussed assumptions of

the capacitor model (such as deviations from spherical plasma expansion and constant

expansion velocity).

Figure A.4: A graphical representation of the spherical capacitor model with
grounded exterior boundaries.
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(a) (b)

Figure A.5: Normalized CPIC simulation spacecraft potential over normalized time
when changing the time between plasma release and beam firing (colors)
and simulation domain size (solid lines use rwall = 100 and dashed lines
use rwall = 50) (a) [14]. On the right is the concentric capacitor model
prediction using the same input parameters (b).
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APPENDIX B

Emissive Probe Calibration

The emissive probe measurement circuit and an example heating calibration curve

are presented below in Figures B.1 and B.2 respectively. Both are standard operating

procedure for emissive probes using the floating point with large emission technique as

described in [152, 193]. Joule heating is used to heat the probe to electron emitting

temperatures via a heating power supply. 10 kΩ resistors are used to account for

the resistive voltage drop across the probe itself. These resistors allow a voltmeter

to measure the voltage at the center of the emitting probe, which floats closest to

the actual plasma potential. The Fluke handheld voltmeter used to measure the

probe’s floating potential has an internal measurement resistance of 10 MΩ. This large

resistance allows the emissive probe to float unperturbed at the plasma potential for

plasma densities above 105 cm-3, below which space-charge effects become significant

[152, 193].

The emissive probe temperature is adjusted to an appropriate value using a cali-

bration curve. The floating potential begins to rise rapidly as the probe temperature is

increased via the heating current and significant thermionic electron emission begins.

Eventually the floating potential plateaus at the plasma potential as seen in Figure

B.2. At this point, the net electron current to the emissive probe surface should be
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Figure B.1: The emissive probe measurement circuit.

precisely balanced by thermionic emission current such that the emissive probe floats

at the plasma potential and there is no sheath. After this point, increasing the emis-

sion only slightly changes the floating potential due to space-charge effects [210]. It is

also worth noting that the heating current cannot increase indefinitely as the probe

itself will melt at some finite temperature. A historical calibration curve has been

included for comparison with the example calibration curve in Figure B.3 [152].
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Figure B.2: An example emissive probe heating calibration curve showing the “knee”,
where sufficient thermionic electron emission is emitted to balance plasma
electron collection.

Figure B.3: A historical emissive probe heating calibration curve showing the “knee”,
where sufficient thermionic electron emission is emitted to balance plasma
electron collection. The plasma potential as obtained using the Langmuir
probe “intersection” technique is also shown [152].
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APPENDIX C

MATLAB Langmuir Probe Analysis Procedure

function [Floating_Potential, Plasma_Potential, Ion_Density, Ion_Density_3,

Electron_Density, Electron_Temperature, Electron_Temperature_2,

Ion_Drift_Velocity]=...

↪→

↪→

LP_Analysis_Package_Cleaned_v5(file,Fast_analysis,filter_polynomial,filter_window c
,Max_Vfloat_to_Vplasma,Min_Peak_Height)↪→

% Grant Miars and Omar Leon

%% The general flow of this analysis is as follows:

% Define constants and parameters

% Enter Langmuir probe dimensions

% Read files

% Filter the current using a Savitzky-Golay filter

% Truncate the ends of the data to remove power supply transients

% Calculate floating potential by averaging the highest negative and

% lowest positive current values

% Fit the ion saturation regime and use this fit to estimate the ion

% current and isolate the electron current

% Calculate plasma potential using the peak in the electron current

% derivative

% Calculate electron temperature using a fit of the center of the

% electron retardation regime

% Calculate electron density using electron thermal current at the

% plasma potential

% Calculate ion density with a linear fit of the square of the current

% in the ion saturation region (OML)
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% Calculate the ion drift velocity using the intercept of a linear fit

% of the square of the current in the ion saturation region (Brace and

% Hoegy)

%% Define constants and parameters

u = 1.66e-27; % amu to kg

ion_mass = 40*u; % Mass of Argon in kg

electron_mass = 9.10938e-31; % Mass of electron in kg

ec = 1.6e-19; % Elementary charge

e0 = 8.85e-12; % Permittivity of free Space

% Enter Langmuir probe dimensions

LP_L = 2*2.54e-2; % Length in m

LP_D = 20e-3*2.54e-2; % Diameter in m

AreaLP = pi*LP_L*LP_D; % m^2

% Read text files

% data = read_file(file);

% tempvolt = values(data,{'Voltage'});

% voltage(:,1) = tempvolt{1,1}(:,1);

% tempcurrent = values(data,{'Current'});

% current(:,1) = tempcurrent{1,1}(:,1);

% Read xls files

pos_file = strsplit(file,'\');

disp(pos_file(end))

data = xlsread(file);

voltage(:,1) = data(:,1);

current(:,1) = data(:,2);

% Filter the current

current_filtered = sgolayfilt(current,filter_polynomial,filter_window);

%% Truncate the first few and final volts to remove power supply transients

low_volts_removed = 1;

high_volts_removed = 3;

current = mean(current((voltage(end)-high_volts_removed>=voltage) &

(voltage>=voltage(1)+low_volts_removed)),2);↪→

current_filtered =

mean(current_filtered((voltage(end)-high_volts_removed>=voltage) &

(voltage>=voltage(1)+low_volts_removed)),2);

↪→

↪→

voltage = mean(voltage((voltage(end)-high_volts_removed>=voltage) &

(voltage>=voltage(1)+low_volts_removed)),2);↪→

%% FLOATING POTENTIAL-------------------------------------------------------

% Calculate floating potential by averaging the highest negative and lowest

% positive current values

negative_current_voltages = voltage(current_filtered<0);

positive_current_voltages = voltage(current_filtered>0);

Floating_Potential =

mean([negative_current_voltages(end),positive_current_voltages(1)]);↪→
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%% Fit the ion saturation regime and substract it out if you so choose

% Truncate to just include the ion saturation region (first ?% of points)

min_index_for_fit = 1;

max_index_for_fit = 0.75*(Floating_Potential-min(voltage))*length(voltage)/(max(v c
oltage)-min(voltage));↪→

voltage_truncated = voltage((min_index_for_fit:max_index_for_fit),1);

% Square the current for fitting and truncate to fit region

current_filtered_squared = current_filtered.^(2);

current_filtered_squared_truncated =

current_filtered_squared((min_index_for_fit:max_index_for_fit),1);↪→

% Define a linear function for fitting

fit_parameters_ID = [1e-10 1e-10];

linear_function_ID = @(fit_parameters_ID,voltage)-fit_parameters_ID(1)*voltage +

fit_parameters_ID(2);↪→

% Linear fit of current squared

options = optimoptions('lsqcurvefit','TolFun',1e-30,'TolX',1e-30,'MaxFunEvals',10 c
000,'Display','off');↪→

fit_parameters_ID = lsqcurvefit(linear_function_ID,fit_parameters_ID,voltage_trun c
cated,-current_filtered_squared_truncated,[],[],options);↪→

% Raise the current to the 4/3 for fitting and truncate to fit region

current_filtered_43 = real(current_filtered.^(4/3));

current_filtered_43_truncated =

current_filtered_43((min_index_for_fit:max_index_for_fit),1);↪→

% Define a linear function for fitting

fit_parameters_ID_2 = [1e-10 1e-10];

linear_function_ID_2 =

@(fit_parameters_ID_2,voltage)-fit_parameters_ID_2(1)*voltage +

fit_parameters_ID_2(2);

↪→

↪→

% Linear fit of current to the 4/3

fit_parameters_ID_2 = lsqcurvefit(linear_function_ID_2,fit_parameters_ID_2,voltag c
e_truncated,-current_filtered_43_truncated,[],[],options);↪→

% Subtract out the ion current to just work with the electron current

Ion_current = -real((linear_function_ID(fit_parameters_ID,voltage).^(1/2)) -

(-linear_function_ID(fit_parameters_ID,voltage)).^(1/2));↪→

Ion_current(Ion_current < 0) = 0;

Electron_current = current_filtered + Ion_current;

%% PLASMA POTENTIAL---------------------------------------------------------

% Take derivatives of the current and filter them

dIdV = derivative(Electron_current,voltage);

dIdV_filtered = sgolayfilt(dIdV,filter_polynomial,filter_window);

dIdV2 = derivative(dIdV_filtered,voltage);

dIdV2_filtered = sgolayfilt(dIdV2,filter_polynomial,filter_window);
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% Produce a range of voltages from the floating potential to the maximum

% possible plasma potential.

Range = and((Floating_Potential<=voltage),(voltage<=Floating_Potential+Max_Vfloat c
_to_Vplasma));↪→

Zoomed_dIdV_filtered = dIdV_filtered(Range);

Zoomed_dIdV2_filtered = dIdV2_filtered(Range);

% Divide the derivative array values by the maximum value in this array.

% This makes it possible to determine a sensible minimum peak height.

Norm_Zoomed_dIdV_filtered = Zoomed_dIdV_filtered./max(abs(Zoomed_dIdV_filtered));

Norm_Zoomed_dIdV2_filtered =

Zoomed_dIdV2_filtered./max(abs(Zoomed_dIdV2_filtered));↪→

% Find the peak in the first derivative

[~,Loc] = findpeaks(Norm_Zoomed_dIdV_filtered,'MinPeakHeight',Min_Peak_Height);

% Set the plasma potential to the first peak in the first derivative

Plasma_Potential = voltage(dIdV_filtered==Zoomed_dIdV_filtered(Loc(1)));

%% ELECTRON TEMPERATURE-----------------------------------------------------

% Limit the bounds between the floating and plasma potential and ignore the

% extreme Percent_Ignored of this region

Percent_Ignored = 0.75;

bounds = and(((Floating_Potential+Percent_Ignored/2*(Plasma_Potential-Floating_Po c
tential))<=voltage),(voltage<=Plasma_Potential-Percent_Ignored/2*(Plasma_Pote c
ntial-Floating_Potential))

);

↪→

↪→

↪→

Retardation_current = Electron_current(bounds);

Retardation_voltage = voltage(bounds);

% Find the electron temperature current using a linear fit of the natural

% log of the electron retardation regime

% Define a linear function

fit_parameters_Te = [1e-10 1e-10];

linear_function_Te = @(fit_parameters_Te,Retardation_voltage)fit_parameters_Te(1) c
*Retardation_voltage +

fit_parameters_Te(2);

↪→

↪→

% Linear fit of the log of the electron retardation regime

options = optimoptions('lsqcurvefit','TolFun',1e-30,'TolX',1e-30,'MaxFunEvals',10 c
000,'Display','off');↪→

fit_parameters_Te = lsqcurvefit(linear_function_Te,fit_parameters_Te,Retardation_ c
voltage,log(Retardation_current),[],[],options);↪→

% Find the electron saturation current

Electron_sat_current = Electron_current(voltage==Plasma_Potential);

% Calculate electron temperature from a linear fit of the natural log of

% the electron retardation regime

Electron_Temperature = 1/real(fit_parameters_Te(1));
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% Calculate electron temperature from the difference between the floating and

plasma potentials↪→

Electron_Temperature_2 = (Plasma_Potential-Floating_Potential)/5.2;

% Tntegrate the EEDF for the electron temperature

% Electron_Temperature_3 =

trapz(Retardation_voltage,Retardation_current)./Electron_sat_current;↪→

%% ELECTRON DENSITY--------------------------------------------------------

% Use equation 3 of [Langmuir Probe Measurements in the Ionosphere] and the

% electron saturation current

C1 = AreaLP*ec;

C2 = sqrt(ec*Electron_Temperature/(2*pi*electron_mass));

Electron_Density = Electron_sat_current/(C1*C2)*1.e-6;

%% ION DENSITY-------------------------------------------------------------

% Calculate ion density using OML [equation 2 of Langmuir Probe Measurements in

the Ionosphere]↪→

% [A study of the accuracy of various Langmuir probe theories] and [Comparative

analyses of plasma probe diagnostic techniques]↪→

% point to ion densities being over estimated.

Ion_Density = (abs(fit_parameters_ID(1))*power(pi,2)*ion_mass/(2*power(AreaLP,2)* c
power(ec,3))).^0.5*1.e-6;↪→

% Calculate ion density according to [Evaluation of Langmuir probe ion

% density measurement in weakly ionized discharges using plasma oscillation

probes and microwave interferometry]↪→

% & [A floating potential method for measuring ion density]

% A = LP_D./2;

% nf = (Plasma_Potential-Floating_Potential)./(Electron_Temperature);

% B = nf.^(3/4).*sqrt(e0.*Electron_Temperature./ec);

% cs = sqrt(ec.*Electron_Temperature./ion_mass);

% IiVf =

real((linear_function_ID_2(fit_parameters_ID_2,Floating_Potential)).^(3/4));↪→

% C = IiVf./(2.*pi.*LP_L.*0.5.*cs);

% Ion_Density_2 = ((-B - sqrt(B.^2 - 4.*A.*C))./(2.*A)).^2*1.e-6;

% Grant's Equation derived using the Child-Langmuir Sheath Above

Ion_Density_3 = (abs(fit_parameters_ID_2(1))).^(3/4)./(1.12.*pi.*LP_L.*ec.*Electr c
on_Temperature.*sqrt(e0./(Electron_Density.*ion_mass)));↪→

% Ion Density from ABR

% IiVf =

real((linear_function_ID_2(fit_parameters_ID_2,Floating_Potential)).^(3/4));↪→

% cs = sqrt(ec.*Electron_Temperature./ion_mass);

% DBL = sqrt(e0.*Electron_Temperature./(Electron_Density.*ec));

% Ep = LP_D./(2.*DBL);

% a = 0.607 + 2432./exp(7.01.*Ep.^0.096);

% Ion_Density_4 = abs(real(IiVf./(2.*pi.*cs.*a)))*1.e-6;

%% ION DRIFT VELOCITY-----------------------------------------------------

% Calculated using equation 2 of [Langmuir Probe Measurements in the Ionosphere]

225



Ion_Current_at_Vp = Ion_current(dIdV_filtered==Zoomed_dIdV_filtered(Loc(1)));

Ion_Drift_Velocity = Ion_Current_at_Vp.*pi./(AreaLP.*Ion_Density.*ec.*10.^6);

%% Is fast analysis mode is off, compute the EEDF and plot relevant information

if (Fast_analysis == false)

%% EEDF----------------------------------------------------------------

% Use the second derivative of the electron retardation regime to

% create an EEDF using the Druyvesteyn technique

EEDF_voltage = flip(Plasma_Potential - voltage);

EEDF = flip(dIdV2_filtered);

EEDF = EEDF(EEDF_voltage >= 0);

EEDF_voltage = EEDF_voltage(EEDF_voltage >= 0);

EEDF = (electron_mass.*EEDF_voltage./(2.*ec)).^0.5.*EEDF;

EEDF = EEDF./max(EEDF);

% Fit the EEDF with a Maxwellian [Electron Energy Distribution

% Measurements in the Plume Region of a Low Current Hollow Cathode]

fit_parameters_Maxwellian_init = 1;

Maxwellian_Function = @(fit_parameters_Maxwellian,EEDF_voltage) sqrt(EEDF_vol c
tage)./(fit_parameters_Maxwellian(1)).^(-3./2).*exp(-EEDF_voltage./fit_pa c
rameters_Maxwellian(1))./max(sqrt(EEDF_voltage)./(fit_parameters_Maxwelli c
an(1)).^(-3./2).*exp(-EEDF_voltage./fit_parameters_Maxwellian(1)));

↪→

↪→

↪→

fit_parameters_Maxwellian = lsqcurvefit(Maxwellian_Function,fit_parameters_Ma c
xwellian_init,EEDF_voltage,EEDF,[],[],options);↪→

% Fit the EEDF with a Druyvesteyn [Electron Energy Distribution

% Measurements in the Plume Region of a Low Current Hollow Cathode]

fit_parameters_Druyvesteyn_init = 1;

Druyvesteyn_Function = @(fit_parameters_Druyvesteyn,EEDF_voltage)

sqrt(EEDF_voltage)./(fit_parameters_Druyvesteyn(1)).^(-3./2).*exp(-0.243. c
*(EEDF_voltage./fit_parameters_Druyvesteyn(1)).^2)./max(sqrt(EEDF_voltage c
)./(fit_parameters_Druyvesteyn(1)).^(-3./2).*exp(-0.243.*(EEDF_voltage./f c
it_parameters_Druyvesteyn(1)).^2));

↪→

↪→

↪→

↪→

fit_parameters_Druyvesteyn = lsqcurvefit(Druyvesteyn_Function,fit_parameters_ c
Druyvesteyn_init,EEDF_voltage,EEDF,[],[],options);↪→

%% Plot all figures

% Plot Raw and Filtered Data

figure(2)

hold on;

plot(voltage,current,voltage,current_filtered,'Linewidth',1.5);

current_temp = current_filtered(Range);

plot(Plasma_Potential,current_temp(Loc(1)),'Ok')

title('I-V Curve');

xlabel('Applied Voltage (V)');

ylabel('Collected Current (A)');

legend({'Example Raw Measurement','Example Filtered Measurement','Plasma

Potential'},'Location','best')↪→

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% Plot of I^2 vs V and fits

figure(3)
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hold on;

scatter(voltage,current_filtered.^(2),3);

plot(voltage,-linear_function_ID(fit_parameters_ID,voltage),'LineWidth',1.5);

title({'OML Ion Current Squared','Fit Check'});

xlabel('Applied Voltage (V)');

ylabel('Ion Current Squared (A^2)');

legend({'Raw Current Squared','Linear Fit'},'Location','best')

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% Plot of I^4/3 vs V and fits

figure(4)

hold on;

plot(voltage,-current_filtered.^(4/3),voltage,linear_function_ID_2(fit_parame c
ters_ID_2,voltage),'LineWidth',1.5);↪→

title({'SCL Sheath Linear','Fit Check'});

xlabel('Applied Voltage (V)');

ylabel('Ion Current to the 4/3 (A)');

legend({'Raw','Fit'},'Location','best')

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% Plot of Electron Current

figure(5)

hold on

plot(voltage,current_filtered,voltage,Electron_current,voltage,Ion_current,'L c
ineWidth',1.5);↪→

title('Electron Current')

xlabel('Applied Voltage (V)');

ylabel('Collected Current (A)');

legend({'Filtered Current','Calculated Electron Current','Calculated Ion

Current'},'Location','best')↪→

set(gca,'fontsize',14,'fontweight','bold');

hold off

%Plot Electron Temperature Fit Region

figure(6)

hold on;

scatter(Retardation_voltage,log(Retardation_current));

plot(Retardation_voltage,linear_function_Te(fit_parameters_Te,Retardation_vol c
tage),'LineWidth',2);↪→

title({'Retardation Regime Fit','for Electron Temperature'});

xlabel('Applied Voltage (V)');

ylabel('ln(Collected Current) (A)');

legend({'ln(Current Measurement)','Linear Fit'},'Location','best')

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% Plotting the plasma potential on dIdV

figure(7)

hold on;

plot(voltage(Range),Norm_Zoomed_dIdV_filtered,'LineWidth',1.5);

plot(Plasma_Potential,Norm_Zoomed_dIdV_filtered(Loc(1)),'Ok')

title({'Derivative of I-V Sweep','with Plasma Potential'});
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xlabel('Applied Voltage (V)');

ylabel('A.U.');

legend({'First Derivative (dI/dV)','Plasma Potential'},'Location','best')

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% Plot all EEDFs in one figure

figure(8)

hold on;

scatter(EEDF_voltage,EEDF,20,'filled');

plot(EEDF_voltage,real(Maxwellian_Function(fit_parameters_Maxwellian,EEDF_vol c
tage)),'LineWidth',2);↪→

plot(EEDF_voltage,real(Druyvesteyn_Function(fit_parameters_Druyvesteyn,EEDF_v c
oltage)),'LineWidth',2);↪→

title({'Normalized EEDF from I-V Sweep','with Maxwellian and Dreyvesteyn

Fits'});↪→

xlabel('Electron Energy (eV)');

ylabel('A. U.');

legend({'Normalized EEDF','Maxwellian Fit','Druyvesteyn

Fit'},'Location','best')↪→

set(gca,'fontsize',14,'fontweight','bold');

hold off;

end

end
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APPENDIX D

MATLAB Raw Scaling Law Analysis Procedure

% Grant Miars

clear all;

close all;

%% Define Constants

u = 1.66e-27; % amu to kg

me = 9.10938e-31; % Mass of electron in kg

ec = 1.6e-19; % Elementary charge

kb = 1.38e-23; % Boltzmann constant

%% Enter Parameters

% Define the initial number of points in the sweep

num_points = 101;

% Enter keeper currents and gas flow rates we are interested in comparing

keeper_current_array = [0.9 1 1.1 1.2 1.3];

flow_rate_array = [0.5 1 2];

mi_array = [39.95*u 83.8*u 131.29*u];

% Plots for specific sweep number

sweep_num = 100;

%% Choosing File and Figure Location

data_directory = 'C:\Users\Owner\Google Drive\CONNEX Experiments\Data\Fall 2018

EDA Testing\';↪→

file_name1 = 'Argon_*'; % The asterisk is very important!

file_name2 = 'Krypton_*'; % The asterisk is very important!

file_name3 = 'Xenon_*'; % The asterisk is very important!

files1 = dir(horzcat(data_directory,file_name1));

files2 = dir(horzcat(data_directory,file_name2));

files3 = dir(horzcat(data_directory,file_name3));

num_files1 = length(files1);

num_files2 = length(files2);

num_files3 = length(files3);
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total_num_files = num_files1 + num_files2 + num_files3;

%% Parse initial data

% Parse data from Argon files

for i=1:num_files1

% Reading the files

full_directory1 = horzcat(data_directory,files1(i).name);

data1 = read_file(full_directory1);

% Get universal data for each sweep

keeper_voltage(i,1) = data1('Discharge_voltage');

keeper_current(i,1) = data1('Discharge_current');

flow_rate(i,1) = data1('Flow_rate');

pressure(i,1) = data1('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data1,{'Voltage'});

voltage(:,i) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i) = voltage(:,i) + tempvolt{1,1}(:,1);

tempcurrent = values(data1,{'Current'});

current(:,i) = linspace(0,0,length(tempcurrent{1,1}(:,1)));

current(:,i) = current(:,i) + tempcurrent{1,1}(:,1);

% Mass of Argon in kg

mi(i,1) = 39.95*u;

end

% Parse data from Krypton files

for i=1:num_files2

% Reading the files

full_directory2 = horzcat(data_directory,files2(i).name);

data2 = read_file(full_directory2);

% Get universal data for each sweep

keeper_voltage(i+num_files1,1) = data2('Discharge_voltage');

keeper_current(i+num_files1,1) = data2('Discharge_current');

flow_rate(i+num_files1,1) = data2('Flow_rate');

pressure(i+num_files1,1) = data2('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data2,{'Voltage'});

voltage(:,i+num_files1) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i+num_files1) = voltage(:,i+num_files1) + tempvolt{1,1}(:,1);

tempcurrent = values(data2,{'Current'});

current(:,i+num_files1) = linspace(0,0,length(tempcurrent{1,1}(:,1)));

current(:,i+num_files1) = current(:,i+num_files1) + tempcurrent{1,1}(:,1);

% Mass of Krypton in kg

mi(i+num_files1,1) = 83.8*u;

end

% Parse data from Xenon files

for i=1:num_files3
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% Reading the files

full_directory3 = horzcat(data_directory,files3(i).name);

data3 = read_file(full_directory3);

% Get universal data for each sweep

keeper_voltage(i+num_files1+num_files2,1) = data3('Discharge_voltage');

keeper_current(i+num_files1+num_files2,1) = data3('Discharge_current');

flow_rate(i+num_files1+num_files2,1) = data3('Flow_rate');

pressure(i+num_files1+num_files2,1) = data3('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data3,{'Voltage'});

voltage(:,i+num_files1+num_files2) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i+num_files1+num_files2) = voltage(:,i+num_files1+num_files2) +

tempvolt{1,1}(:,1);↪→

tempcurrent = values(data3,{'Current'});

current(:,i+num_files1+num_files2) =

linspace(0,0,length(tempcurrent{1,1}(:,1)));↪→

current(:,i+num_files1+num_files2) = current(:,i+num_files1+num_files2) +

tempcurrent{1,1}(:,1);↪→

% Mass of Xenon in kg

mi(i+num_files1+num_files2,1) = 131.29*u;

end

% Find the discharge power of each sweep

keeper_power = keeper_current.*keeper_voltage;

%% Do data analysis common to all files

for i=1:total_num_files

%% Remove range finding points introduced by Keithley 2400

% Identify the points to ignore based on when the voltage is decreasing

for j=1:num_points

if(j<15)

valid_point_array(j,i) = voltage(j+1,i) > voltage(j,i);

else

valid_point_array(j,i) = 1;

end

end

% Delete low current points from both voltage and current arrays

current(:,i) = current(:,i).*valid_point_array(:,i);

voltage(:,i) = voltage(:,i).*valid_point_array(:,i);

current(current == 0) = NaN;

voltage(voltage == 0) = NaN;

%% Find specific points in the parsed data for each sweep in order to define

a power law fit region↪→

% Find the maximum Beam Current measured

max_current(i,1) = max(current(:,i));

% Find the expellant utilization using the maximum Beam Current

expellant_utilization(i,1) = 100*max_current(i,1)./(0.071745*flow_rate(i,1));
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% Find the approximate floating potential index

[~,floating_potential_index(i,1)] = min(abs(current(:,i)));

% Find the floating potential

floating_potential(i,1) = voltage(floating_potential_index(i,1),i);

%% Set the sweep fit voltage range minimum and maximums to go from the

floating potential to the maximum voltage↪→

fit_min(i,1) = floating_potential_index(i,1);%min(find(valid_point_array(:,i)

== 1));↪→

fit_max(i,1) = num_points;

% Truncate to just include this fit region

fit_voltage(1:fit_max(i,1) - fit_min(i,1) + 1,i) =

voltage((fit_min(i,1):fit_max(i,1)),i);↪→

fit_current(1:fit_max(i,1) - fit_min(i,1) + 1,i) =

current((fit_min(i,1):fit_max(i,1)),i);↪→

% Shift voltages and currents to start at zero

fit_voltage(1:fit_max(i,1) - fit_min(i,1) + 1,i) = fit_voltage(1:fit_max(i,1)

- fit_min(i,1) + 1,i) - min(fit_voltage(1:fit_max(i,1) - fit_min(i,1) +

1,i));

↪→

↪→

fit_current(1:fit_max(i,1) - fit_min(i,1) + 1,i) = fit_current(1:fit_max(i,1)

- fit_min(i,1) + 1,i) - min(fit_current(1:fit_max(i,1) - fit_min(i,1) +

1,i));

↪→

↪→

% Remove the NaN values

x = rmmissing(fit_current(1:fit_max(i,1) - fit_min(i,1) + 1,i));

y = rmmissing(fit_voltage(1:fit_max(i,1) - fit_min(i,1) + 1,i));

%% Find relevant points in the fit data set

% Define the contactor current as the maximum of these fit currents

contactor_current(i,1) = max(fit_current(:,i));

% Find the approximate voltage for Ibeam = 0.25*Icontactor

[~,quarter_current_index(i,1)] =

min(abs(fit_current(:,i)./contactor_current(i,1)-0.25));↪→

quarter_current_voltage(i,1) = fit_voltage(quarter_current_index(i,1),i);

% Find the approximate voltage for Ibeam = 0.5*Icontactor

[~,half_current_index(i,1)] =

min(abs(fit_current(:,i)./contactor_current(i,1)-0.5));↪→

half_current_voltage(i,1) = fit_voltage(half_current_index(i,1),i);

%% Define and perform an power law fit of the prepared sweep data

% Define the custom equation we are fitting to

power_eqn = fittype('a.*x.^b');

% Select boundaries for fitting parameters

warning off;

options = fitoptions(power_eqn);

options.Lower = [1000000 0];

options.Upper = [1000000000 3];
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options.TolFun = 1e-30;

% Use these options for even more accurate (and slow) fits

options.Robust = 'LAR';

options.TolX = 10^-30;

options.MaxFunEvals = 1000;

options.MaxIter = 1000;

% Perform the fit and save relevant values

[f,gof] = fit(x,y,power_eqn,options);

ion_emit_multiplier(i,1) = f.a;

ion_emit_power(i,1) = f.b;

corrcoef_array = corrcoef(rmmissing(fit_current(:,i)),rmmissing(ion_emit_mult c
iplier(i,1).*(fit_voltage(:,i).^ion_emit_exponent(i,1))));↪→

rsquared(i,1) = corrcoef_array(2,1).^2;

%% Generate an array of ion emit powers and R-squared values when using

different keeper current and gas flow rate values↪→

% Argon matrix

if((0 < i) && (i < 55))

Argon_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

Argon_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

Argon_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

Argon_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Krypton matrix

elseif((54 < i) && (i < 128))

Krypton_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

Krypton_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

Krypton_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

Krypton_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Xenon matrix

else

Xenon_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

Xenon_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→
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Xenon_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

Xenon_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

end

%% Generate vectors of data with only common configuration keeper current and

gas flow rate values↪→

if(ismember(keeper_current(i,1),keeper_current_array) &&

ismember(flow_rate(i,1),flow_rate_array))↪→

common_ion_emit_power(i,1) = ion_emit_power(i,1);

common_rsquared(i,1) = rsquared(i,1);

common_contactor_current(i,1) = contactor_current(i,1);

common_half_current_voltage(i,1) = half_current_voltage(i,1);

common_pressure(i,1) = pressure(i,1);

common_floating_potential(i,1) = floating_potential(i,1);

common_expellant_utilization(i,1) = expellant_utilization(i,1);

common_keeper_current(i,1) = keeper_current(i,1);

common_keeper_voltage(i,1) = keeper_voltage(i,1);

common_keeper_power(i,1) = keeper_power(i,1);

common_flow_rate(i,1) = flow_rate(i,1);

else

common_ion_emit_power(i,1) = NaN;

common_rsquared(i,1) = NaN;

common_contactor_current(i,1) = NaN;

common_half_current_voltage(i,1) = NaN;

common_pressure(i,1) = NaN;

common_floating_potential(i,1) = NaN;

common_expellant_utilization(i,1) = NaN;

common_keeper_current(i,1) = NaN;

common_keeper_voltage(i,1) = NaN;

common_keeper_power(i,1) = NaN;

common_flow_rate(i,1) = NaN;

end

%% Generate mass specific arrays of data with only common configuration

keeper current and gas flow rate values↪→

% Argon matrix

if((0 < i) && (i < num_files1 + 1))

common_Argon_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

common_Argon_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Argon_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Argon_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Krypton matrix
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elseif((num_files1 < i) && (i < num_files1 + num_files2 + 1))

common_Krypton_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

common_Krypton_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Krypton_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Krypton_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Xenon matrix

else

common_Xenon_ion_emit_power(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_power(i,1);

↪→

↪→

common_Xenon_rsquared(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Xenon_contactor_current(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Xenon_half_current_voltage(find(keeper_current(i,1) ==

keeper_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

end

end

%% Remove nonsensical values from the power law goodness of fit arrays

cleaned_rsquared = rsquared;

cleaned_rsquared(abs(rsquared) > 1) = NaN;

nanmean(cleaned_rsquared)

cleaned_Argon_rsquared = Argon_rsquared;

cleaned_Argon_rsquared(abs(cleaned_Argon_rsquared) > 1) = NaN;

cleaned_Krypton_rsquared = Krypton_rsquared;

cleaned_Krypton_rsquared(abs(cleaned_Krypton_rsquared) > 1) = NaN;

cleaned_Xenon_rsquared = Xenon_rsquared;

cleaned_Xenon_rsquared(abs(cleaned_Xenon_rsquared) > 1) = NaN;

%% Create an array of average ion emit powers and electron temperatures varying

just ion mass and flow rate↪→

for i=1:length(flow_rate_array)

avg_ion_emit_power(1,i) = nanmean(Argon_ion_emit_power(:,i));

avg_ion_emit_power(2,i) = nanmean(Krypton_ion_emit_power(:,i));

avg_ion_emit_power(3,i) = nanmean(Xenon_ion_emit_power(:,i));

avg_rsquared(1,i) = nanmean(cleaned_Argon_rsquared(:,i));

avg_rsquared(2,i) = nanmean(cleaned_Krypton_rsquared(:,i));
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avg_rsquared(3,i) = nanmean(cleaned_Xenon_rsquared(:,i));

avg_contactor_current(1,i) = nanmean(Argon_contactor_current(:,i));

avg_contactor_current(2,i) = nanmean(Krypton_contactor_current(:,i));

avg_contactor_current(3,i) = nanmean(Xenon_contactor_current(:,i));

avg_half_voltage_current(1,i) = nanmean(Argon_half_current_voltage(:,i));

avg_half_voltage_current(2,i) = nanmean(Krypton_half_current_voltage(:,i));

avg_half_voltage_current(3,i) = nanmean(Xenon_half_current_voltage(:,i));

end

%% Average parameters according to ion mass

% Average half current voltages for each unique mass type

avg_Argon_half_current_voltage = nanmean(half_current_voltage(1:num_files1,1));

avg_Krypton_half_current_voltage =

nanmean(half_current_voltage(num_files1+1:num_files1+num_files2,1));↪→

avg_Xenon_half_current_voltage = nanmean(half_current_voltage(num_files1+num_file c
s2+1:num_files1+num_files2+num_files3,1));↪→

% Average Keeper Voltage for each unique mass type

avg_Argon_keeper_voltage = nanmean(keeper_voltage(1:num_files1,1));

avg_Krypton_keeper_voltage =

nanmean(keeper_voltage(num_files1+1:num_files1+num_files2,1));↪→

avg_Xenon_keeper_voltage = nanmean(keeper_voltage(num_files1+num_files2+1:num_fil c
es1+num_files2+num_files3,1));↪→

% Average the floating potential for each unique mass type

avg_Argon_floating_potential = nanmean(floating_potential(1:num_files1,1));

avg_Krypton_floating_potential =

nanmean(floating_potential(num_files1+1:num_files1+num_files2,1));↪→

avg_Xenon_floating_potential = nanmean(floating_potential(num_files1+num_files2+1 c
:num_files1+num_files2+num_files3,1));↪→

% Average contactor currents for each unique mass type

avg_Argon_contactor_current = nanmean(contactor_current(1:num_files1,1));

avg_Krypton_contactor_current =

nanmean(contactor_current(num_files1+1:num_files1+num_files2,1));↪→

avg_Xenon_contactor_current = nanmean(contactor_current(num_files1+num_files2+1:n c
um_files1+num_files2+num_files3,1));↪→

% Average power law exponent for each unique mass type

avg_Argon_ion_emit_power = nanmean(ion_emit_power(1:num_files1,1));

avg_Krypton_ion_emit_power =

nanmean(ion_emit_power(num_files1+1:num_files1+num_files2,1));↪→

avg_Xenon_ion_emit_power = nanmean(ion_emit_power(num_files1+num_files2+1:num_fil c
es1+num_files2+num_files3,1));↪→

% Average the floating potential for each unique mass type using common

% configurations

avg_common_Argon_half_current_voltage =

nanmean(nanmean(Argon_half_current_voltage));↪→

avg_common_Krypton_half_current_voltage =

nanmean(nanmean(Krypton_half_current_voltage));↪→
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avg_common_Xenon_half_current_voltage =

nanmean(nanmean(Xenon_half_current_voltage));↪→

%% Perform a power fit of contactor current versus half current voltage and ion

mass versus half current voltage↪→

% Define the custom equation we are fitting to

power_eqn = fittype('a.*x.^b+c');

% Select boundaries for fitting parameters

warning off;

options = fitoptions(power_eqn);

options.Lower = [0 -10 0];

options.Upper = [1000 10 0];

options.TolFun = 1e-30;

% Fit the Cathode Potential scaling with contactor current

f = fit(contactor_current,half_current_voltage,power_eqn,options);

% Fit the Cathode Potential scaling with ion mass

g = fit((mi_array'./u),[avg_Argon_half_current_voltage;avg_Krypton_half_current_v c
oltage;avg_Xenon_half_current_voltage],power_eqn,options);↪→

%% Calculate the ion emit power array using values and division

ion_emit_power_2 = log(half_current_voltage./quarter_current_voltage)./log(2);

% Remove values from the ion emit power array if they don't have enough

% points in the fit region or create infinities

ion_emit_power_2((quarter_current_voltage == 0)) = NaN; % | (half_current_index -

floating_potential_index < min_fit_points)) = NaN;↪→

%% Create arrays for smooth plotting

continuous_mi_array = linspace(min(mi_array),max(mi_array),1000)./u;

continuous_contactor_current_array =

linspace(min(contactor_current),max(contactor_current),1000);↪→

%% Plot Data

close all;

figure();

hold on;

scatter([39.95 83.8 131.29],[avg_Argon_half_current_voltage

avg_Krypton_half_current_voltage

avg_Xenon_half_current_voltage],100,'filled');

↪→

↪→

plot(continuous_mi_array,g.a.*(continuous_mi_array).^g.b+g.c,'LineWidth',3);

str = strcat('Power Law Fit Exponent: ',num2str(round(g.b,2)));

title({'Average Cathode Potential Scaling w/ Ion Mass','Beam Current =

0.5*Contactor Current',str});↪→

xlabel('Ion Mass [amu]');

ylabel({'Average Cathode Potential','(Relative to Floating) [V]'});

set(gca,'fontsize',14,'fontweight','bold');
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h_legend = legend('Experimental Data','Power Law Fit: \psi_{SC} \alpha

m_{i}^{\beta}','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

hold off;

figure()

hold on;

scatter(contactor_current.*10^6,half_current_voltage,20,'filled');

plot(continuous_contactor_current_array.*10^6,f.a.*(continuous_contactor_current_ c
array).^f.b+f.c,'LineWidth',3);↪→

str = strcat('Power Law Fit Exponent: ',num2str(round(f.b,2)));

title({'Cathode Potential Scaling w/ Contactor Current','Beam Current =

0.5*Contactor Current',str});↪→

xlabel('Contactor Current [uA]');

ylabel({'Cathode Potential','(Relative to Floating) [V]'});

%axis([0 1 0 30]);

h_legend = legend('Experimental Data','Power Law Fit: \psi_{SC} \alpha

I_{contactor}^{\beta}','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

histogram(ion_emit_power,50);

str = strcat('Average Fit Exponent:',num2str(round(nanmean(ion_emit_power),2)));

title({'Cathode Potential Scaling','with Beam Current','Exponent Histogram using

Fits',str});↪→

xlabel('Power Law Fit Exponent');

ylabel('Number of Sweeps');

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

histogram(ion_emit_power_2,50);

str = strcat('Average Fit Exponent:',num2str(round(nanmean(ion_emit_power_2),2)));

title({'Cathode Potential Scaling with Beam Current','Power Law Exponent

Histogram using Two Points',str});↪→

xlabel('Power Law Exponent');

ylabel('Number of Configurations');

set(gca,'fontsize',14,'fontweight','bold');

hold off;

% sweep_num = 143;

%

% figure()

% hold on;

%

% scatter((fit_current(1:fit_max(sweep_num,1) - fit_min(sweep_num,1) + 1,sweep_nu c
m))./contactor_current(sweep_num,1),fit_voltage(1:fit_max(sweep_num,1) -

fit_min(sweep_num,1) + 1,sweep_num),20,'filled');

↪→

↪→

238



% title({'Determining Cathode Potential when','Beam Current = 0.5 Contactor

Current &','Beam Current = 0.25 Contactor Current'});↪→

% xlabel('Beam Current/Contactor Current');

% ylabel({'Cathode Potential','(Relative to Floating) [V]'});

% ax = gca;

% set(gca,'fontsize',14,'fontweight','bold');

% hold off;

% %% Plot all raw common configuration sweeps

% for k = 1:total_num_files %num_sweep_range_min:sweep_range_max

%

% if(~isnan(common_keeper_current(k,1)))

% %k = 159;

% figure

% hold on;

% scatter(10.^6.*(fit_current(1:fit_max(k,1) - fit_min(k,1) +

1,k)),fit_voltage(1:fit_max(k,1) - fit_min(k,1) + 1,k),20,'filled');↪→

% str = strcat('Sweep Number=',num2str(k));

% str2 = strcat('Ion Mass= ',num2str(round(mi(k,1)./u,0)),' Keeper

Current= ',num2str(round(keeper_current(k,1),1)),' Flow Rate=

',num2str(round(flow_rate(k,1),2)));

↪→

↪→

% str3 = strcat('Power Law Exponent using Two

Points=',num2str(round(ion_emit_power_2(k,1),2)));↪→

% title({'Fit Region Data',str,str2,str3});

% xlabel('Beam Current [uA]');

% ylabel({'Cathode Potential','(Relative to Floating) [V]'});

% set(gca,'fontsize',14,'fontweight','bold');

% hold off;

% end

% end

%% Plot all raw common configuration sweeps with power law fit

for k = 1:total_num_files %num_sweep_range_min:sweep_range_max

if(~isnan(common_keeper_current(k,1)))

% Compute the power law voltage for a specific sweep

voltage_fit = ion_emit_multiplier(k,1).*fit_current(1:fit_max(k,1) -

fit_min(k,1) + 1,k).^ion_emit_power(k,1);↪→

figure

hold on;

scatter(10.^6.*(fit_current(1:fit_max(k,1) - fit_min(k,1) +

1,k)),fit_voltage(1:fit_max(k,1) - fit_min(k,1) + 1,k),20,'filled');↪→

plot(10.^6.*(fit_current(1:fit_max(k,1) - fit_min(k,1) +

1,k)),voltage_fit,'LineWidth',3);↪→

str = strcat('Sweep Number=',num2str(k));

str2 = strcat('Ion Mass= ',num2str(round(mi(k,1)./u,0)),' Keeper Current=

',num2str(round(keeper_current(k,1),1)),' Flow Rate=

',num2str(round(flow_rate(k,1),2)));

↪→

↪→

str3 = strcat('Power Law Fit

Exponent=',num2str(round(ion_emit_power(k,1),2)));↪→

str4 = strcat('R-Squared Value=',num2str(round(rsquared(k,1),3)));

title({'Fit Region Data w/ Power Law Fit',str,str2,str3,str4});
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xlabel('Beam Current [uA]');

ylabel({'Cathode Potential','(Relative to Floating) [V]'});

%axis([0 1.1.*10.^6.*max(current_fit_shifted(:,1)) 0 20]);

h_legend = legend('Experimental Data','Power Law Fit: \psi_{SC} \alpha

I_{beam}^{\beta}','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

end

end

figure()

hold on;

scatter(voltage(:,sweep_num),current(:,sweep_num),20,'filled','r');

title({'Beam Current Measurement'});

xlabel('Cathode Bias w.r.t. Chamber Wall [V]');

ylabel({'Emitted Ion Current [mA]'});

%axis([0 700 3 18]);

ax = gca;

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure()

hold on;

scatter(pressure,half_current_voltage,20,'filled','r');

str = strcat('Correlation Coefficient =

',num2str(round(min(min(corrcoef(pressure,half_current_voltage))),2)));↪→

title({'Cathode Potential Scaling w/ Chamber Pressure','Beam Current = 0.5

Contactor Current',str});↪→

xlabel('Pressure [uTorr]');

ylabel({'Cathode Potential','(Relative to Floating) [V]'});

%axis([0 700 3 18]);

ax = gca;

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure()

hold on;

scatter(floating_potential,half_current_voltage,20,'filled','r');

str = strcat('Correlation Coefficient = ',num2str(round(min(min(corrcoef(floating c
_potential,half_current_voltage))),2)));↪→

title({'Cathode Potential Scaling w/ Floating Potential','Beam Current = 0.5

Contactor Current',str});↪→

xlabel('Floating Potential [V]');

ylabel({'Cathode Potential','(Relative to Floating) [V]'});

%axis([0 700 3 18]);

ax = gca;
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set(gca,'fontsize',14,'fontweight','bold');

hold off;

% figure()

% hold on;

%

% scatter(expellant_utilization,half_current_voltage,20,'filled','r');

%

% str = strcat('Correlation Coefficient = ',num2str(round(min(min(corrcoef(expell c
ant_utilization,half_current_voltage))),2)));↪→

% title({'Cathode Potential Scaling w/ Expellant Utilization','Beam Current = 0.5

Contactor Current',str});↪→

% xlabel('Expellant Utilization [%]');

% ylabel({'Cathode Potential','(Relative to Floating) [V]'});

% %axis([0 700 3 18]);

% ax = gca;

% set(gca,'fontsize',14,'fontweight','bold');

% hold off;

figure()

hold on;

scatter(flow_rate,pressure,20,'filled','r');

str = strcat('Correlation Coefficient =

',num2str(round(min(min(corrcoef(flow_rate,pressure))),2)));↪→

title({'Chamber Pressure Scaling w/ Flow Rate',str});

xlabel('Flow Rate [sccm]');

ylabel({'Chamber Pressure [uTorr]'});

%axis([0 700 3 18]);

ax = gca;

set(gca,'fontsize',14,'fontweight','bold');

hold off;
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APPENDIX E

MATLAB Scaling Law Analysis Procedure with

Exponential Fitting

% Grant Miars

clear all;

%% Enter Parameters

% Define the initial number of points in the sweep

num_points = 101;

% Enter keeper currents and gas flow rates we are interested in comparing

discharge_current_array = [0.9 1 1.1 1.2 1.3];

flow_rate_array = [0.5 1 2];

% Plots for specific sweep number

sweep_num = 1;

sweep_range_min = 1;

sweep_range_max = 0;

%% Define Constants

u = 1.66e-27; % amu to kg

me = 9.10938e-31; % Mass of electron in kg

ec = 1.6e-19; % Elementary charge

kb = 1.38e-23; % Boltzmann constant

mi_array = [39.95*u 83.8*u 131.29*u]; % Ion masses

Ei_array = [15.76 14.00 12.13]; % Ionization Energies

% Charge Exchange Cross Sections from:

% Electron Energy Distribution Measurements in the Plume Region of a Low Current

Hollow Cathode (Argon)↪→

% Krypton charge exchange cross sections for Hall effect thruster models (Krypton)

% Xenon charge exchange cross sections for electrostatic thruster models (Xenon)

CEX_cross_section_array = [4.*10^-19 10^-18 2.*10^-18];

% Impact Ionization Mean Free Paths

% Peak used for consistency
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% An update of argon inelastic cross sections for plasma discharges (Argon)

% Electron-impact ionization of all ionization stages of krypton (Krypton)

% Fundamentals of Electric Propulsion (Xenon)

Ionization_cross_section_array = [3.*10.^-20 2.*10.^-20 4.*10^-20];

% Electron-Neutral Mean Free Paths

% Peak used for consistency

% Comparisons of sets of electron-neutral scattering cross sections and swarm

parameters in noble gases Argon↪→

% Comparisons of sets of electron-neutral scattering cross sections and swarm

parameters in noble gases Krypton and Xenon↪→

EN_cross_section_array = [1.2.*10.^-19 1.6.*10.^-19 3.*10.^-19];

%% Choosing File and Figure Location

data_directory = 'C:\Users\Owner\Google Drive\CONNEX Experiments\Data\Fall 2018

EDA Testing\';↪→

file_name1 = 'Argon_*'; % The asterisk is very important!

file_name2 = 'Krypton_*'; % The asterisk is very important!

file_name3 = 'Xenon_*'; % The asterisk is very important!

files1 = dir(horzcat(data_directory,file_name1));

files2 = dir(horzcat(data_directory,file_name2));

files3 = dir(horzcat(data_directory,file_name3));

num_files1 = length(files1);

num_files2 = length(files2);

num_files3 = length(files3);

total_num_files = num_files1 + num_files2 + num_files3;

%% Initialize arrays to have the correct length (for speed)

rmse = zeros(1,total_num_files)';

CEX_mean_free_path = zeros(1,total_num_files)';

Ionization_mean_free_path = zeros(1,total_num_files)';

EN_mean_free_path = zeros(1,total_num_files)';

discharge_voltage = zeros(1,total_num_files)';

discharge_current = zeros(1,total_num_files)';

discharge_power = zeros(1,total_num_files)';

background_density = zeros(1,total_num_files)';

flow_rate = zeros(1,total_num_files)';

pressure = zeros(1,total_num_files)';

voltage = zeros(num_points,total_num_files);

current = zeros(num_points,total_num_files);

mi = zeros(1,total_num_files)';

valid_point_array = zeros(num_points,total_num_files);

max_current = zeros(1,total_num_files)';

floating_potential_index = zeros(1,total_num_files)';

floating_potential = zeros(1,total_num_files)';

fit_min = zeros(1,total_num_files)';

fit_max = zeros(1,total_num_files)';

fit_voltage = NaN(num_points,total_num_files);

fit_current = NaN(num_points,total_num_files);

%fit_voltage = zeros(min_fit_points + 1,total_num_files);

%fit_current = zeros(min_fit_points + 1,total_num_files);

ion_emit_multiplier = zeros(1,total_num_files)';

ion_emit_exponent = zeros(1,total_num_files)';
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ion_emit_constant = zeros(1,total_num_files)';

rsquared = zeros(1,total_num_files)';

contactor_current = zeros(1,total_num_files)';

expellant_utilization = zeros(1,total_num_files)';

floating_potential_fit = zeros(1,total_num_files)';

quarter_current_voltage = zeros(1,total_num_files)';

half_current_voltage = zeros(1,total_num_files)';

common_ion_emit_exponent = zeros(1,total_num_files)';

common_rsquared = zeros(1,total_num_files)';

common_contactor_current = zeros(1,total_num_files)';

common_half_current_voltage = zeros(1,total_num_files)';

common_pressure = zeros(1,total_num_files)';

common_floating_potential = zeros(1,total_num_files)';

common_expellant_utilization = zeros(1,total_num_files)';

common_discharge_current = zeros(1,total_num_files)';

common_discharge_voltage = zeros(1,total_num_files)';

common_discharge_power = zeros(1,total_num_files)';

common_flow_rate = zeros(1,total_num_files)';

common_mi = zeros(1,total_num_files)';

residuals = NaN(num_points,total_num_files);

%% Parse initial data

% Parse data from Argon files

for i=1:num_files1

% Reading the files

full_directory1 = horzcat(data_directory,files1(i).name);

data1 = read_file(full_directory1);

% Get universal data for each sweep

discharge_voltage(i,1) = data1('Discharge_voltage');

discharge_current(i,1) = data1('Discharge_current');

flow_rate(i,1) = data1('Flow_rate');

pressure(i,1) = data1('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data1,{'Voltage'});

voltage(:,i) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i) = voltage(:,i) + tempvolt{1,1}(:,1);

tempcurrent = values(data1,{'Current'});

current(:,i) = linspace(0,0,length(tempcurrent{1,1}(:,1)));

current(:,i) = current(:,i) + tempcurrent{1,1}(:,1);

% Mass of Argon in kg

mi(i,1) = 39.95*u;

% Find the discharge power

discharge_power(i,1) = discharge_current(i,1).*discharge_voltage(i,1);

% Find the background density

background_density(i,1) = 9.65.*10.^24.*pressure(i,1).*10^-6./300;

% Find the relevant mean free paths
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CEX_mean_free_path(i,1) =

1./(background_density(i,1).*CEX_cross_section_array(1,1));↪→

Ionization_mean_free_path(i,1) =

1./(background_density(i,1).*Ionization_cross_section_array(1,1));↪→

EN_mean_free_path(i,1) =

1./(background_density(i,1).*EN_cross_section_array(1,1));↪→

end

% Parse data from Krypton files

for i=1:num_files2

% Reading the files

full_directory2 = horzcat(data_directory,files2(i).name);

data2 = read_file(full_directory2);

% Get universal data for each sweep

discharge_voltage(i+num_files1,1) = data2('Discharge_voltage');

discharge_current(i+num_files1,1) = data2('Discharge_current');

flow_rate(i+num_files1,1) = data2('Flow_rate');

pressure(i+num_files1,1) = data2('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data2,{'Voltage'});

voltage(:,i+num_files1) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i+num_files1) = voltage(:,i+num_files1) + tempvolt{1,1}(:,1);

tempcurrent = values(data2,{'Current'});

current(:,i+num_files1) = linspace(0,0,length(tempcurrent{1,1}(:,1)));

current(:,i+num_files1) = current(:,i+num_files1) + tempcurrent{1,1}(:,1);

% Mass of Krypton in kg

mi(i+num_files1,1) = 83.8*u;

% Find the discharge power

discharge_power(i+num_files1,1) =

discharge_current(i+num_files1,1).*discharge_voltage(i+num_files1,1);↪→

% Find the background density

background_density(i+num_files1,1) =

9.65.*10.^24.*pressure(i+num_files1,1).*10^-6./300;↪→

% Find the relevant mean free paths

CEX_mean_free_path(i+num_files1,1) =

1./(background_density(i+num_files1,1).*CEX_cross_section_array(1,2));↪→

Ionization_mean_free_path(i+num_files1,1) = 1./(background_density(i+num_file c
s1,1).*Ionization_cross_section_array(1,2));↪→

EN_mean_free_path(i+num_files1,1) =

1./(background_density(i+num_files1,1).*EN_cross_section_array(1,2));↪→

end

% Parse data from Xenon files

for i=1:num_files3

% Reading the files

full_directory3 = horzcat(data_directory,files3(i).name);

data3 = read_file(full_directory3);
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% Get universal data for each sweep

discharge_voltage(i+num_files1+num_files2,1) = data3('Discharge_voltage');

discharge_current(i+num_files1+num_files2,1) = data3('Discharge_current');

flow_rate(i+num_files1+num_files2,1) = data3('Flow_rate');

pressure(i+num_files1+num_files2,1) = data3('Pressure');

% Get voltage and current data for each sweep

tempvolt = values(data3,{'Voltage'});

voltage(:,i+num_files1+num_files2) = linspace(0,0,length(tempvolt{1,1}(:,1)));

voltage(:,i+num_files1+num_files2) = voltage(:,i+num_files1+num_files2) +

tempvolt{1,1}(:,1);↪→

tempcurrent = values(data3,{'Current'});

current(:,i+num_files1+num_files2) =

linspace(0,0,length(tempcurrent{1,1}(:,1)));↪→

current(:,i+num_files1+num_files2) = current(:,i+num_files1+num_files2) +

tempcurrent{1,1}(:,1);↪→

% Mass of Xenon in kg

mi(i+num_files1+num_files2,1) = 131.29*u;

% Find the discharge power

discharge_power(i+num_files1+num_files2,1) = discharge_current(i+num_files1+n c
um_files2,1).*discharge_voltage(i+num_files1+num_files2,1);↪→

% Find the background density

background_density(i+num_files1+num_files2,1) =

9.65.*10.^24.*pressure(i+num_files1+num_files2,1).*10^-6./300;↪→

% Find the relevant mean free paths

CEX_mean_free_path(i+num_files1+num_files2,1) = 1./(background_density(i+num_ c
files1+num_files2,1).*CEX_cross_section_array(1,3));↪→

Ionization_mean_free_path(i+num_files1+num_files2,1) = 1./(background_density c
(i+num_files1+num_files2,1).*Ionization_cross_section_array(1,3));↪→

EN_mean_free_path(i+num_files1+num_files2,1) = 1./(background_density(i+num_f c
iles1+num_files2,1).*EN_cross_section_array(1,3));↪→

end

%% Do data analysis common to all files

for i=1:total_num_files

%% Remove range finding points introduced by Keithley 2400

% Identify the points to ignore based on when the voltage is decreasing

for j=1:num_points

if(j<15)

valid_point_array(j,i) = voltage(j+1,i) > voltage(j,i);

else

valid_point_array(j,i) = 1;

end

end

% Delete low current points from both voltage and current arrays

current(:,i) = current(:,i).*valid_point_array(:,i);

voltage(:,i) = voltage(:,i).*valid_point_array(:,i);

current(current == 0) = NaN;

voltage(voltage == 0) = NaN;
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%% Find specific points in the parsed data for each sweep in order to perform

an exponential fit↪→

% Find the maximum Beam Current measured

max_current(i,1) = max(current(:,i));

% Find the approximate floating potential index

[~,floating_potential_index(i,1)] = min(abs(current(:,i)));

% % If the current at the selected floating potential is negative, move

% % up until it is positive

% while(current(floating_potential_index(i,1),i) < 0)

% floating_potential_index(i,1) = floating_potential_index(i,1) + 1;

% end

% Find the floating potential value

floating_potential(i,1) = voltage(floating_potential_index(i,1),i);

%% Set the sweep fit voltage range minimum and maximums to go from the

floating potential up to the ionization energy↪→

fit_min(i,1) = floating_potential_index(i,1);%min(find(valid_point_array(:,i)

== 1));↪→

fit_max(i,1) = num_points; %floating_potential_index(i,1) + min_fit_points;%+

round(0.2 .*(length(current(:,i)) -

floating_potential_index(i,1)-20));%floating_potential_index(i,1) +

20;%length(current(:,i));

↪→

↪→

↪→

% Truncate to just include this fit region

fit_voltage(1:fit_max(i,1) - fit_min(i,1) + 1,i) =

voltage((fit_min(i,1):fit_max(i,1)),i);↪→

fit_current(1:fit_max(i,1) - fit_min(i,1) + 1,i) =

current((fit_min(i,1):fit_max(i,1)),i);↪→

% Shift fitted voltage range to start at zero

fit_voltage(1:fit_max(i,1) - fit_min(i,1) + 1,i) = fit_voltage(1:fit_max(i,1)

- fit_min(i,1) + 1,i) - min(fit_voltage(1:fit_max(i,1) - fit_min(i,1) +

1,i));

↪→

↪→

fit_current(1:fit_max(i,1) - fit_min(i,1) + 1,i) = fit_current(1:fit_max(i,1)

- fit_min(i,1) + 1,i) - min(fit_current(1:fit_max(i,1) - fit_min(i,1) +

1,i));

↪→

↪→

% Remove the NaN values

x = rmmissing(fit_voltage(:,i));

y = rmmissing(fit_current(:,i));

%% Define and perform an exponential fit of the prepared sweep data

% Define the custom equation we are fitting to

exp_eqn = fittype('a.*exp(b.*x)+c');

% Select boundaries for fitting parameters

warning off;

options = fitoptions(exp_eqn);

options.Lower = [-0.1 -10 -1];

options.Upper = [0 0 1];
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options.TolFun = 1e-30;

% Use these options for even more accurate (and slow) fits

options.Robust = 'LAR';

options.TolX = 10^-30;

options.MaxFunEvals = 1000;

options.MaxIter = 1000;

% Perform the fit

[f,gof,exp_output] = fit(x,y,exp_eqn,options);

% Save relevant fit values

ion_emit_multiplier(i,1) = f.a;

ion_emit_exponent(i,1) = f.b;

ion_emit_constant(i,1) = f.c;

rmse(i,1) = gof.rmse;

residuals((fit_min(i,1):fit_max(i,1)),i) = exp_output.residuals;

corrcoef_array =

corrcoef(rmmissing(fit_current(:,i)),rmmissing(ion_emit_multiplier(i,1).* c
exp(fit_voltage(:,i).*ion_emit_exponent(i,1))+ion_emit_constant(i,1)));

↪→

↪→

rsquared(i,1) = corrcoef_array(2,1).^2;

%% Calculate new values based on the exponential fit

% Calculate a final contactor current based on the fit

contactor_current(i,1) = f.c;

% Find the expellant utilization using the maximum Beam Current

expellant_utilization(i,1) =

100*contactor_current(i,1)./(0.071745*flow_rate(i,1));↪→

% Find the floating potential

syms x

floating_potential_equation = f.a.*exp(f.b.*x)+f.c == 0;

floating_potential_fit(i,1) =

double(vpasolve(floating_potential_equation,x,3));↪→

% Find the approximate voltage for Ibeam = 0.25*Icontactor

quarter_current_equation = f.a.*exp(f.b.*x)+f.c == contactor_current(i,1)./4;

quarter_current_voltage(i,1) = double(vpasolve(quarter_current_equation,x,3))

- floating_potential_fit(i,1);↪→

% Find the approximate voltage for Ibeam = 0.5*Icontactor

half_current_equation = f.a.*exp(f.b.*x)+f.c == contactor_current(i,1)./2;

half_current_voltage(i,1) = double(vpasolve(half_current_equation,x,3)) -

floating_potential_fit(i,1);↪→

%% Generate vectors of data with only common configuration keeper current and

gas flow rate values↪→

if(ismember(discharge_current(i,1),discharge_current_array) &&

ismember(flow_rate(i,1),flow_rate_array))↪→

common_ion_emit_exponent(i,1) = ion_emit_exponent(i,1);

common_rsquared(i,1) = rsquared(i,1);

common_contactor_current(i,1) = contactor_current(i,1);

common_half_current_voltage(i,1) = half_current_voltage(i,1);
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common_pressure(i,1) = pressure(i,1);

common_floating_potential(i,1) = floating_potential(i,1);

common_expellant_utilization(i,1) = expellant_utilization(i,1);

common_discharge_current(i,1) = discharge_current(i,1);

common_discharge_voltage(i,1) = discharge_voltage(i,1);

common_discharge_power(i,1) = discharge_power(i,1);

common_flow_rate(i,1) = flow_rate(i,1);

common_mi(i,1) = mi(i,1);

else

common_ion_emit_exponent(i,1) = NaN;

common_rsquared(i,1) = NaN;

common_contactor_current(i,1) = NaN;

common_half_current_voltage(i,1) = NaN;

common_pressure(i,1) = NaN;

common_floating_potential(i,1) = NaN;

common_expellant_utilization(i,1) = NaN;

common_discharge_current(i,1) = NaN;

common_discharge_voltage(i,1) = NaN;

common_discharge_power(i,1) = NaN;

common_flow_rate(i,1) = NaN;

common_mi(i,1) = NaN;

end

%% Generate mass specific arrays of data with only common configuration

keeper current and gas flow rate values↪→

% Argon matrix

if((0 < i) && (i < num_files1 + 1))

common_Argon_ion_emit_exponent(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_exponent(i,1);

↪→

↪→

common_Argon_rsquared(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Argon_contactor_current(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Argon_half_current_voltage(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Krypton matrix

elseif((num_files1 < i) && (i < num_files1 + num_files2 + 1))

common_Krypton_ion_emit_exponent(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_exponent(i,1);

↪→

↪→

common_Krypton_rsquared(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Krypton_contactor_current(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Krypton_half_current_voltage(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

% Xenon matrix
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else

common_Xenon_ion_emit_exponent(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

ion_emit_exponent(i,1);

↪→

↪→

common_Xenon_rsquared(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

rsquared(i,1);

↪→

↪→

common_Xenon_contactor_current(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

contactor_current(i,1);

↪→

↪→

common_Xenon_half_current_voltage(find(discharge_current(i,1) ==

discharge_current_array),find(flow_rate(i,1) == flow_rate_array)) =

half_current_voltage(i,1);

↪→

↪→

end

end

%% Calculate a pseudo electron temperatures based on the exponential fits

Te = -1./ion_emit_exponent;

common_Te = -1./common_ion_emit_exponent;

common_Argon_Te = -1./common_Argon_ion_emit_exponent;

common_Krypton_Te = -1./common_Krypton_ion_emit_exponent;

common_Xenon_Te = -1./common_Xenon_ion_emit_exponent;

%% Remove illogically large values from rsquared arrays

cleaned_rsquared = rsquared;

cleaned_rsquared(abs(rsquared) > 1) = NaN;

cleaned_common_Argon_rsquared = common_Argon_rsquared;

cleaned_common_Argon_rsquared(abs(cleaned_common_Argon_rsquared) > 1) = NaN;

cleaned_common_Krypton_rsquared = common_Krypton_rsquared;

cleaned_common_Krypton_rsquared(abs(cleaned_common_Krypton_rsquared) > 1) = NaN;

cleaned_common_Xenon_rsquared = common_Xenon_rsquared;

cleaned_common_Xenon_rsquared(abs(cleaned_common_Xenon_rsquared) > 1) = NaN;

%% Remove NaNs from common configuration arrays

cleaned_common_ion_emit_exponent = rmmissing(common_ion_emit_exponent);

cleaned_common_rsquared = rmmissing(common_rsquared);

cleaned_common_contactor_current = rmmissing(common_contactor_current);

cleaned_common_half_current_voltage = rmmissing(common_half_current_voltage);

cleaned_common_pressure = rmmissing(common_pressure);

cleaned_common_floating_potential = rmmissing(common_floating_potential);

cleaned_common_expellant_utilization = rmmissing(common_expellant_utilization);

cleaned_common_discharge_current = rmmissing(common_discharge_current);

cleaned_common_discharge_voltage = rmmissing(common_discharge_voltage);

cleaned_common_discharge_power = rmmissing(common_discharge_power);

cleaned_common_flow_rate = rmmissing(common_flow_rate);

cleaned_common_Te = rmmissing(common_Te);

cleaned_common_mi = rmmissing(common_mi);

%% Create an array of average values when varying just ion mass and flow rate
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for i=1:length(flow_rate_array)

avg_common_Te(1,i) = nanmean(-1./common_Argon_ion_emit_exponent(:,i));

avg_common_Te(2,i) = nanmean(-1./common_Krypton_ion_emit_exponent(:,i));

avg_common_Te(3,i) = nanmean(-1./common_Xenon_ion_emit_exponent(:,i));

avg_common_rsquared(1,i) = nanmean(cleaned_common_Argon_rsquared(:,i));

avg_common_rsquared(2,i) = nanmean(cleaned_common_Krypton_rsquared(:,i));

avg_common_rsquared(3,i) = nanmean(cleaned_common_Xenon_rsquared(:,i));

avg_common_contactor_current(1,i) =

nanmean(common_Argon_contactor_current(:,i));↪→

avg_common_contactor_current(2,i) =

nanmean(common_Krypton_contactor_current(:,i));↪→

avg_common_contactor_current(3,i) =

nanmean(common_Xenon_contactor_current(:,i));↪→

avg_common_half_current_voltage(1,i) =

nanmean(common_Argon_half_current_voltage(:,i));↪→

avg_common_half_current_voltage(2,i) =

nanmean(common_Krypton_half_current_voltage(:,i));↪→

avg_common_half_current_voltage(3,i) =

nanmean(common_Xenon_half_current_voltage(:,i));↪→

end

%% Average parameters for common configurations according to ion mass

% Average the half current potential for each unique mass type using common

% configurations

avg_common_Argon_half_current_voltage =

nanmean(avg_common_half_current_voltage(1,:));↪→

avg_common_Krypton_half_current_voltage =

nanmean(avg_common_half_current_voltage(2,:));↪→

avg_common_Xenon_half_current_voltage =

nanmean(avg_common_half_current_voltage(3,:));↪→

% Calculate a pseudo electron temperature using average ion emission

% exponents for each unique mass type

avg_common_Argon_Te = nanmean(nanmean(common_Argon_Te));

avg_common_Krypton_Te = nanmean(nanmean(common_Krypton_Te));

avg_common_Xenon_Te = nanmean(nanmean(common_Xenon_Te));

%% Calculate residual statistics

max_residuals = max(abs(residuals))';

normalized_residuals = (residuals'./max_current)';

average_normalized_residuals = mean(abs(rmmissing(normalized_residuals)))';

max_normalized_residuals = max(abs(rmmissing(normalized_residuals)))';

%% Perform a power fit of contactor current versus half current voltage

% Define the custom equation we are fitting to

pow_eqn = fittype('a.*x.^b + c');

% Select boundaries for fitting parameters

warning off;

options = fitoptions(pow_eqn);

options.Lower = [0 0 0];
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options.Upper = [1000 1 0];

options.TolFun = 1e-30;

% Fit the Cathode Potential scaling with contactor current using common

configurations↪→

f = fit(cleaned_common_contactor_current,cleaned_common_half_current_voltage,pow_ c
eqn,options);↪→

%% Perform a power fit of ion mass versus half current voltage

% Select boundaries for fitting parameters

options.Lower = [0 -10 0];

options.Upper = [10000 10 0];

% Fit the Cathode Potential scaling with ion mass

g = fit((mi_array'./u),[avg_common_Argon_half_current_voltage;avg_common_Krypton_ c
half_current_voltage;avg_common_Xenon_half_current_voltage],pow_eqn,options);↪→

% Fit the Cathode Potential scaling with contactor current using common

configurations with a power law exponent of 0.76↪→

options.Lower = [0 0.76 0];

options.Upper = [10000 0.76 0];

f2 = fit(cleaned_common_contactor_current,cleaned_common_half_current_voltage,pow c
_eqn,options);↪→

%% Create arrays for smooth plotting

continuous_mi_array = linspace(min(mi_array),max(mi_array),1000)./u;

continuous_contactor_current_array = linspace(min(cleaned_common_contactor_curren c
t),max(cleaned_common_contactor_current),1000);↪→

%% Plot analysis summary

close all;

figure();

hold on;

scatter([39.95 83.8 131.29],[avg_common_Argon_half_current_voltage

avg_common_Krypton_half_current_voltage

avg_common_Xenon_half_current_voltage],100,'filled');

↪→

↪→

scatter([39.95 83.8 131.29],[avg_common_Argon_Te avg_common_Krypton_Te

avg_common_Xenon_Te],100,'filled');↪→

plot(continuous_mi_array,g.a.*(continuous_mi_array).^g.b+g.c,'LineWidth',3);

str = strcat('Power Law Fit Exponent: ',num2str(round(g.b,2)));

title({'Average Cathode Potential vs Ion Mass','Exponential Fits using Common

Configurations',str});↪→

xlabel('Ion Mass [amu]');

ylabel({'Cathode Potential [V]'});

set(gca,'fontsize',14,'fontweight','bold');

h_legend = legend('Average Cathode Potential','Average Pseudo Te [eV]','Power Law

Fit','Location','best','Interpreter','none');↪→

set(h_legend,'fontweight','bold','fontsize',14);

hold off;

figure();

hold on;
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scatter(cleaned_common_contactor_current.*10^6,cleaned_common_half_current_voltag c
e,20,'filled');↪→

plot(continuous_contactor_current_array.*10^6,f.a.*(continuous_contactor_current_ c
array).^f.b,'LineWidth',3);↪→

plot(continuous_contactor_current_array.*10^6,f2.a.*(continuous_contactor_current c
_array).^f2.b,'LineWidth',3);↪→

str = strcat('Power Law Fit Found \beta = ',num2str(round(f.b,2)));

title({'Cathode Potential vs Contactor Current','Exponential Fits using Common

Configurations'});↪→

xlabel('Contactor Current [uA]');

ylabel({'Cathode Potential [V]'});

h_legend = legend('Experimental Data',str,'Power Law Fit Using \beta =

0.76','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(flow_rate_array,avg_common_Te(1,:),50,'filled')

scatter(flow_rate_array,avg_common_Te(2,:),50,'filled')

scatter(flow_rate_array,avg_common_Te(3,:),50,'filled')

title({'Pseudo Electron Temperature vs Gas Flow Rate','Exponential Fits using

Common Configurations'});↪→

xlabel('Neutral Gas Flow Rate [sccm]');

ylabel({'Pseudo Electron','Temperature [eV]'});

h_legend =

legend('Argon','Krypton','Xenon','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(flow_rate_array,avg_common_rsquared(1,:),50,'filled')

scatter(flow_rate_array,avg_common_rsquared(2,:),50,'filled')

scatter(flow_rate_array,avg_common_rsquared(3,:),50,'filled')

title({'R-Squared Values vs Gas Flow Rate','Exponential Fits using Common

Configurations'});↪→

xlabel('Neutral Gas Flow Rate [sccm]');

ylabel({'R-Squared Value'});

h_legend =

legend('Argon','Krypton','Xenon','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(flow_rate_array,mean(avg_common_rsquared),50,'filled')

title({'R-Squared Values vs Gas Flow Rate','Exponential Fits using Common

Configurations'});↪→

xlabel('Neutral Gas Flow Rate [sccm]');

ylabel({'R-Squared Value'});
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set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(flow_rate_array,avg_common_contactor_current(1,:).*10^6,50,'filled')

scatter(flow_rate_array,avg_common_contactor_current(2,:).*10^6,50,'filled')

scatter(flow_rate_array,avg_common_contactor_current(3,:).*10^6,50,'filled')

title({'Contactor Current vs Gas Flow Rate','Exponential Fits using Common

Configurations'});↪→

xlabel('Neutral Gas Flow Rate [sccm]');

ylabel({'Contactor Current [uA]'});

h_legend =

legend('Argon','Krypton','Xenon','Location','best','Interpreter','tex');↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(cleaned_common_floating_potential,cleaned_common_half_current_voltage,20, c
'filled','r');↪→

title({'Cathode Potential vs Floating Potential','using Common Configurations'});

xlabel('Floating Potential [V]');

ylabel({'Cathode Potential','when Iemission = 0.5*Icontactor','(Relative to

Floating) [V]'});↪→

%axis([0 700 3 18]);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

scatter(cleaned_common_expellant_utilization,cleaned_common_half_current_voltage, c
20,'filled','r');↪→

title({'Cathode Potential vs Expellant Utilization','Exponential Fits using

Common Configurations'});↪→

xlabel('Expellant Utilization [%]');

ylabel({'Cathode Potential','when Iemission = 0.5*Icontactor','(Relative to

Floating) [V]'});↪→

%axis([0 700 3 18]);

ax = gca;

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

histogram(Te,500);

str = strcat('Average Pseudo Te [eV]:',num2str(round(nanmean(Te),2)));

title({'Pseudo Electron Temperature using Exponential Fits',str});

xlabel('Pseudo Te [eV]');

ylabel({'Number of Configurations'});

axis([0 20 0 20]);

set(gca,'fontsize',14,'fontweight','bold');

hold off;
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figure();

hold on;

histogram(Te(1:num_files1,1),50);

str = strcat('Average Pseudo Te

[eV]:',num2str(round(nanmean(Te(1:num_files1,1)),2)));↪→

title({'Argon','Pseudo Electron Temperature using Exponential Fits',str});

xlabel('Pseudo Te [eV]');

ylabel({'Number of Configurations'});

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

histogram(Te(num_files1+1:num_files1+num_files2,1),50);

str = strcat('Average Pseudo Te

[eV]:',num2str(round(nanmean(Te(num_files1+1:num_files1+num_files2,1)),2)));↪→

title({'Krypton','Pseudo Electron Temperature using Exponential Fits',str});

xlabel('Pseudo Te [eV]');

ylabel({'Number of Configurations'});

set(gca,'fontsize',14,'fontweight','bold');

hold off;

figure();

hold on;

histogram(Te(num_files1+num_files2+1:num_files1+num_files2+num_files3,1),50);

str = strcat('Average Pseudo Te [eV]:',num2str(round(nanmean(Te(num_files1+num_fi c
les2+1:num_files1+num_files2+num_files3,1)),2)));↪→

title({'Xenon','Pseudo Electron Temperature using Exponential Fits',str});

xlabel('Pseudo Te [eV]');

ylabel({'Number of Configurations'});

set(gca,'fontsize',14,'fontweight','bold');

hold off;

%% Plot all common configuration sweeps with exponential fit

for k = 1:total_num_files %num_sweep_range_min:sweep_range_max

if(~isnan(common_discharge_current(k,1)))

% Compute the fit exponential current fit for a specific sweep

current_fit = ion_emit_multiplier(k,1).*exp(fit_voltage(:,k).*ion_emit_ex c
ponent(k,1))+ion_emit_constant(k,1);↪→

figure

hold on;

scatter(10.^6.*(fit_current(:,k)),fit_voltage(:,k),20,'filled');

plot(10.^6.*current_fit,fit_voltage(:,k),'LineWidth',3);

str = strcat('Sweep Number=',num2str(k));

str2 = strcat('Ion Mass= ',num2str(round(mi(k,1)./u,0)),' Discharge

Current= ',num2str(round(discharge_current(k,1),1)),' Flow Rate=

',num2str(round(flow_rate(k,1),2)));

↪→

↪→

str3 = strcat('Fit Exponent=',num2str(round(ion_emit_exponent(k,1),2)),'

Pseudo Te [eV]=',num2str(round(Te(k,1),2)));↪→

str4 = strcat('R-Squared Value=',num2str(round(rsquared(k,1),3)));
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title({'Raw Sweep w/ Exponential Fit',str,str2,str3,str4});

xlabel('Beam Current [uA]');

ylabel({'Cathode Potential','(Relative to Floating) [V]'});

%axis([0 1.1.*10.^6.*max(current_fit_shifted(:,1)) 0 20]);

h_legend = legend('Experimental Data',['Exponential Fit:' newline

'\psi_{SC} \alpha

exp(\beta*I_{beam})'],'Location','best','Interpreter','tex');

↪→

↪→

set(h_legend,'fontweight','bold','fontsize',14);

set(gca,'fontsize',14,'fontweight','bold');

hold off;

end

end
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