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ABSTRACT

Distributed audio sensing is promising to bring full bloom of a variety of applica-

tions to improve human life. However, despite of the continued efforts, the state-of-

the-art audio sensor node systems still remain at centimeter-scales in size, preventing

true ubiquitous and unobtrusive deployment of them. Meanwhile, the silicon technol-

ogy has been remarkably advanced, dictated by Moore’s Law, and this enables a new

opportunity to realize millimeter-scale of computing. In this dissertation, we explore

a way to develop a millimeter-scale wireless audio sensor node system, by combining

the integrated silicon technology, machine learning, and low-power circuit techniques.

This dissertation first presents an audio processing IC that performs audio acqui-

sition and compression, consuming 4.7µW. A new low-power compression algorithm

and its accelerator consume only 1.5µW to provide 4-32× real-time audio compres-

sion. Newly designed custom 8Mb embedded NOR Flash enables seamless audio

streaming by a ping-pong buffering scheme.

Second, a picowatt-level standby power neural network processor is introduced

for sensor applications. By combining custom instruction set architecture, compact

SIMD microarchitecture, and ultra-low leakage SRAM memory, the processor con-

sumes only 440pW of power at standby mode while achieves 400-GOPS/W of energy

efficiency at active mode, which is suitable for modest neural network workloads on

miniaturized sensor platforms. The proposed neural network processor is integrated

in an acoustic object detection sensor system, and successfully demonstrates >90%

of positive detection and <3% of false alarm for 5 acoustic targets detection.

ix



Next part of this dissertation is a voice and acoustic activity detector that uses

a mixer-based architecture and ultra-low power neural network based classifier. By

sequentially scanning 4 kHz of frequency bands and down-converting to below 500 Hz,

feature extraction power consumption is reduced by 4×. The neural network processor

employs computational sprinting, enabling 12× power reduction. The system also

features inaudible acoustic signature detection for intentional remote silent wakeup of

the system while re-using a subset of the same system components. The measurement

results achieve 91.5%/90% speech/non-speech hit rates at 10 dB SNR with babble

noise and 142 nW power consumption. Acoustic signature detection consumes 66

nW, successfully detecting a signature 10 dB below the noise level.

Finally, two generations of complete, fully functional energy-autonomous audio

sensor nodes with millimeter-scale form factor are demonstrated. The systems use

the proposed audio processing ICs and neural network processor integrated with a

MEMS microphone, general-purpose microprocessor, 8Mb Flashes, RF transceiver

with custom antenna, PV cells for energy harvesting and optical communication, and

millimeter size batteries. The complete stand-alone systems achieve 1 hour (1st gen.)

and 3.2 hours (2nd gen.) of continuous speech recording and energy-autonomous

operation in room light.

The research in this dissertation is believed to pave a way towards distributed,

intelligent audio sensing and computing.
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CHAPTER I

Introduction

Recent advance of distributed sensing systems has made devices feasible that

can sense their environment and perform actions based on the collected data. This

new technology has attracted a lot of attention from both industry and research

community, and has also opened up a myriad of civilian and military applications.

Especially, the distributed systems that are wirelessly interconnected compose the

wireless sensor network (WSN), which enables remote retrieving of video and audio

streams, images, and scalar sensor data such as temperature, pressure or humidity.

Moreover, the long-term collection of big data based on these networked sensors

has gaining huge popularity for Internet of Things (IoT) applications, in accordance

with the recent success of machine learning (ML) and artificial intelligence (AI). In

this paradigm, every objects surrounding our daily lives will be wirelessly connected,

gather information, and will identify, classify, infer, correlate, and fuse the information

from heterogeneous sources, which is expected to bring benefits for the improved

quality of our daily life.

To be benefited by massively distributed sensor networks, the size reduction of

each sensor device is paramount. Minuscule size makes the sensors as easy-to-deploy

and unobtrusive as possible, minimizing the disturbance to human activity. In ad-

dition, small form factor enables the placement of sensor devices in completely new
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locations where computing was absent before. In that vein, the ‘smart dust’ concept

was proposed in [1, 2], envisioning the applications and usage scenario of a sensor

node with the size of grain of salt, with primary focus on wireless communication and

networking architecture. Since then, miniaturized wireless sensor nodes have been a

popular topic of research in the cyber-physical systems community. More recently, M3

(Michigan Micro-Mote) sensing platform was introduced in [3], with more focus on

hardware design perspective. The platform features millimeter-scale modular archi-

tecture and various system-level techniques. With staircase stacking method of four

bare-die ICs and one battery, the overall system only consumes 1.0 mm3 of volume.

However, prior achievements of size shrinking have been only limited to sensor

nodes with low dimensional sensing modalities, such as temperature [4], pressure [5,6],

pH [7], and simple still cut images [8]. On the other hand, acoustic sensing is gain-

ing more attention as it offers several advantages over other sensing modalities. The

information carried by sound is comparable to that of video, yet requires much lower

computational cost to be processed for the realization of highly resource constrained

platforms. Sound is captured omni-directionally and intrinsically tolerant to light or

obstacles, thus enables simultaneous multi-targets and/or events detection without

careful positioning or adjustment. In addition, human voice is one of the most nat-

ural way to communicate with machines, avoiding the use of one’s hands. Due to a

variety of these merits, audio sensing and processing are widely adopted in extensive

applications such as smart grid and home automation [9], ambient assisted living

(e.q. patients support) [10], structural monitoring [11], biodiversity assessment [12],

environmental monitoring for urban [13] and nature [14], surveillance [15, 16], lo-

calization [17], and voice user interfaces [18, 19]. Realizing audio sensing capability

on miniaturized wireless sensor node will further provide enriched opportunities to

broaden its applications, as the massively distributed audio sensor network will facili-

tate innovative information acquisition and processing to reshape interactions between
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Figure 1.1: The µAMPS sensor node (2000).

people, environment, and devices.

1.1 Prior Art: Wireless Audio Sensor Motes

The journey for the development of miniaturized wireless audio sensor node be-

gan in the late 1990’s. In 1999, Rockwell Science Center and UCLA were engaged in

a joint research program for DARPA/TTO, and developed a prototype microsensor

node called AWAIRS 1 (Adaptive, Wireless Arrays for Interactive RSTA in SUO) [20].

This device consists of modular architecture, in that the modular boards can be freely

stacked up on top of the existing system to support additional sensor interfaces. The

system features Intel SA1100 microprocessor based on 32-bit ARM RISC architec-

ture, 128KB of SRAM and 1MB of Flash storage, >100m of wireless connectivity at

100Kbps, and 2kHz bandwidth of audio interface. Two 40-pin mini-connectors are

used as a system bus, connecting all module boards. The system consumes 1W and

the size of a node is 7 × 6.7 × 8.0 cm3. In 2000, µAMPS mote was developed by

MIT [21] for the acoustic sensing applications, as shown in Figure 1.1. The work

improves the power consumption through the power-aware operation methodology
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(a) (b)

Figure 1.2: (a) Audio sensor mote for acoustic scenes monitoring (2009) (b)
TinyEARS (2013).

such as dynamic voltage scaling, energy-quality trade-off, and fine-grained control

over power states of radio module depending on the transmission range.

Afterward, lots of miniaturized wireless sensor platform have been surged for

both academic and commercial purposes, such as BTnode (2001) [22], Medusa MK2

(2002) [23], IMOTE (2003) [24], MICA/MICA2/MICAz (2004) [25], Telos/TelosB

(2005) [26], Waspmote (2008) [27], LOTUS (2011) [28], and .NOW eMote (2012)

[29]. Although these motes have been improved in terms of their size, performance

and power consumption as the Moore’s Law continued, their architectural solution

remain same as AWAIRS 1, using pluggable modules to create an acoustic sensing

interface. None of these works have exploited the opportunity of benefits from built-in

integration and optimization for the audio sensing and processing tasks. Instead, they

provide suitable ports to allow a variety of sensors to be attached for more versatility.

There yet exists several works to devise miniaturized wireless sensor node dedi-

cated to audio applications. In [30, 31], the authors proposed a sensor mote based

on the commercial MICAz [32] platform. The mote shown in Figure 1.2a was devel-

oped for voice activity detection (VAD), gender classification, and acoustic feature

extraction for further processing in base-station. To process audio signal more ef-
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Figure 1.3: InfiniTime (2016).

ficiently, they attached digital signal processing (DSP) module, which includes TI

TMS320C6713 DSP chip operating at 225MHz, to the mote. Although it provides

profound capability to process various audio tasks in real-time, it draws >500mA

of current, and its size is 21 cm × 11.5 cm, limiting its practical usage. A cus-

tom sensor node with self-designed analog front end (AFE) interfacing microphone

to fine-grained control over parameters and power consumption was proposed in [33]

for acoustic event detection. This system consumes 200mA at active mode, but the

1.5µA of sleep mode current and highly duty-cycled operation enable the power sup-

ply from a super capacitor and solar harvesting, achieving unattended operation of

a sensor node. However, since this node system aimed for infrequent event detec-

tion whose sampling rate is similar to that of scalar sensors, its operation under the

harvesting is not scalable to general-purpose real-time audio streaming applications,

considering its active power level. Moreover, the system size of a few hundreds of

cm2 reduces its efficacy of broad deployment. The authors of [34] developed a wire-

less audio sensor mote based on IMOTE2 [35] as shown in Figure 1.2b for household

appliances power monitoring network based on acoustic signature. The IMOTE2 has

a built-in DSP coprocessor with wireless MMX instruction set enabling low power
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signal processing acceleration. By the benefit from it, the system efficiently imple-

ments audio signal processing pipeline such as FFT, MFCC, and feature extraction at

30mA of active current consumption within 3.6 × 4.8 × 1.5 cm3 of volume, realizing

a centimeter-scale audio sensing. The power consumption of an audio sensor node is

further improved in [36] by the holistically customized system design, avoiding the

use of any existing platforms. This flexibility of system design allows extreme power

management to keep the quiescent and operative energy consumption low. The real-

time audio acquisition consumes only 1.2mA, and the system size is approximately 4

× 6 cm2 as shown in Figure 1.3.

Although a lot of efforts have pursued to reduce the form factor of audio sensor

node, they still remain at centimeter-scales. In addition, mA-level of power consump-

tion prevents to further shrink the size of system due to the constraint from battery

size. Thus, this dissertation focuses on the realizing of millimeter-scale audio sensor

node to enable pervasive audio computing.

1.2 Challenges of Achieving Millimeter-Scale Audio Sensing

For many applications of wireless audio sensor network, frequent battery recharg-

ing or replacement is unlikely feasible, especially in large scale deployments with

thousands of densely distributed nodes, or for nodes placed in where hard to access.

Thus, long enough life time under the battery and/or autonomous operation by en-

ergy scavengers are indispensable. Meanwhile, the advance in battery technology is

lagging [37], as the amount of energy stored in the micro battery is decreased pro-

portionally to its size. This battery size limitation imposes critical constraint on the

miniaturization of audio sensor node. Therefore, the energy efficiency and low power

operation of every components in the system are critical to guarantee the unattended

operation of a sensor node for a long time, and as a corollary, to achieve ultra-small

form factor.
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(a) (b)

Figure 1.4: Energy consumption vs. compression ratio on (a) IMOTE2 platform and
(b) TELOS platform.

Typically, wireless transmission of sensed data over the network dissipates the

most of power in a sensor system [38]. Consequently, in addition to the low power

wireless protocols and transceivers, the data compression also plays as a key enabler

for miniaturized audio sensor node, by reduction of the required network bandwidth.

Furthermore, the compression saves more space of system storage, allowing longer

audio logging and more complex on-edge post processing. For example, in [35], the

authors implemented audio compression algorithm based on linear prediction to prove

the benefit of on-sensor compression over the raw data transmission. Depending on

the compression ratio, the compression reduced overall energy consumption by 9× at

the most when 15× compression is applied as shown in Figure 1.4a. For this purpose,

many researchers have attempted to implement built-in compression on the audio sen-

sor node, such as 4× compression by G.726 at 26mA [39], 16× compression by Speex

at 260mA [40], and 1.6× compression by linear prediction at ∼3mA [38]. However, all

these prior works used off-the-shelf algorithms based on software implementation, and

thus the compression itself easily consumes >mA of current even with the very simple

algorithm, which provides minimal compression ratio. As shown in Figure 1.4b, even

the same compression algorithm and implementation on different hardware platform

7



Figure 1.5: Sensor system lifetime vs. event activity: When the event of interest
occurs infrequently, the always-on detector would determine the lifetime.

give worse results due to the hardware inefficiency. Therefore, both more efficient

compression algorithm and its hardware acceleration should be devised to make the

energy and power consumption below the budget of millimeter-scale batteries and

harvesters.

Another important challenge is to minimize standby power of overall system since

a sensor node stays at standby or sleep mode a vast majority of time. Such low

energy resource systems rely heavily on the duty-cycled operation to ensure long

lifetime especially for audio sensing applications where the event of interest occurs

infrequently. As the standby power dominates over time, the leakage current of each

system component should be minimized. In addition, deliberated system wakeup

method should be considered to use limited resources more efficiently. Conventionally,

the audio sensor motes include low power wakeup timer to wake system up with a

predefined period [33, 34]. However, this periodic wakeup may miss the events or

waste resources at out-of-events. Instead of predetermined wakeup, the host can

send a query to a node by network, and then the low power wireless wakeup receiver

could trig the system up to start the tasks [38]. Although this method delivers
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high flexibility to the host or user when to wake the system up, it charges a burden

of careful managing strategy of whole network to the host, resulting in high system

complexity and costs. Moreover, this method also fails to avoid the event hit and miss

problem without prior knowledge about the event rate and instances. Therefore, the

development of more efficient yet low power wakeup method for audio applications is

highly required. The wakeup method should intelligently detects the event of interest

so that the sensor system knows by itself the event rate and instances. However, at

the same time, the wakeup method should also consume minimal power since the

always-on wakeup detector would dominate overall average system power when the

event of interest occurs infrequently as shown in Figure 1.5.

Finally, since the wireless audio sensor node consists of many COTS components

such as microphone, quartz crystal, antenna, and solar-cells for autonomous oper-

ation, achieving millimeter-scale form factor is extremely challenging. Thus, the

physical integration process of a system must be carefully devised to reduce the size

dramatically.

1.3 Dissertation Overview

This dissertation seeks to develop a millimeter-scale wireless audio sensor node

enabled by various low-power integrated circuit architectures and designs, addressing

the aforementioned challenges.

In Chapter II, the design of low-power audio processing chip is studied. Along

with analog front-end circuits to interface with a MEMS microphone, a novel audio

compression algorithm is proposed and the hardware architecture for the acceleration

of it is discussed, resulting in 4–32× real-time audio compression while consuming

1.5µW.

Chapter III introduces an ultra-low standby power neural (NN) network processor.

As the ML and AI show rapid progress, there is a surging need for built-in processing
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capability of ML workloads on sensor node. The proposed on-sensor NN processor

meets the need while consumes only 440pW of standby power, enabling long lifetime

of duty-cycled, miniaturized sensor systems. The proposed processor is integrated

in acoustic sensor system and demonstrates >90% of detection accuracy for multiple

acoustic objects in real-time.

Chapter VI discusses acoustic wakeup methods for the audio sensor nodes. A low-

power voice activity detection (VAD) technique is proposed to make a human speech

activity as a target wakeup event. The design of VAD chip is detailed and validated in

180nm CMOS technology. Moreover, a wakeup method based on acoustic signature

is also studied in this Chapter. The proposed VAD consumes 140nW of power with

>80% of accuracy at 50 dBA SPL of sound, and the acoustic signature detection

consumes only 66nW.

Finally, two generations of millimeter-scale wireless audio sensor nodes are demon-

strated in Chapter V, with the system design and integration strategy.
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CHAPTER II

A Microwatt Power Audio Processing IC and 8Mb

Streaming Flash Memory

2.1 Introduction

Realizing a millimeter-scale audio processing platform enables a number of new

IoT applications such as distributed audio recording, event logging, and security mon-

itoring. While several efforts [39, 40] have sought to miniaturize audio sensors, their

centimeter-scale volume and >20mW power severely limit use as an unobtrusive, self-

powered sensing node. The key challenge to reduce the form factor of audio sensor

node is low power operation due to the small battery size as shown in Figure 2.1. For

example, the audio mote consuming 330mW [39] can only last 0.7s with millimeter-

scale thin-film Li battery (16µAh, 4V). In addition, small physical size severely limits

the capacity of data storage. As shown in Figure 2.1, a 1×0.85 mm2 NOR Flash

has less than 2Mb density [41]. Consequently, power efficient data compression is a

key enabler in that it not only mitigates the size requirement of on-site storage, but

also reduces wireless transmission energy. However, 22mA of current consumption

in [40] implies that compression itself requires high computation burden. One an-

other enabler for small form factor of audio sensor node is a power efficient compact

non-volatile storage to save audio footage. Since a sensor node is typically highly
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Figure 2.1: Miniaturized audio sensor challenges.

duty cylced, it spends only a fraction of their time in active mode. Therefore, em-

bedded Flash memory is a good candidate to store measured audio data, allowing the

other system components to be power-gated in standby mode. This chapter demon-

strates an audio processing IC that consumes only 4.7µW for signal acquisition and

compression. The proposed compression engine operates in real-time at 1.44µW. In

addition, this chapter also introduces an 8Mb custom NOR Flash for continuous audio

streaming and retention.

2.2 Audio Processing IC

Figure 2.2 shows the architecture of the proposed audio processing IC that inte-

grates AFE, ADC and compression engine. First, we use capacitive MEMS micro-

phone, and it requires 10V bias voltage for the optimal sensitivity [42]. The charge

pump generates bias voltage directly from battery voltage, VBAT (3.6 – 4.2V). The

AFE and ADC operate at 1.4V and 0.9V respectively, regulated by on-chip LDOs from

the battery to decouple them from the noisy digital supply. To optimize the power

consumption, we employ multi-voltage, multi-threshold design strategy for the digital

circuits. The compression engine operates at 0.6V with standard threshold transistors
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Figure 2.2: Overall architecture of audio processing IC.

to meet the real-time throughput constraint. These logic blocks are power-gated in

sleep mode. The 1.2V bus controller and configuration register file are always-on and

thus use thick oxide I/O devices to reduce leakage current.

Table 2.1: Measurement Summary of Analog Front-End
This Work

Supply 1.4V

Gain 20–48dB

Bandwidth 4kHz

Input referred noise (IRN) 13.2µVrms (A-weighted)

Current
LNA 1.1µA

VGA 0.8µA

Total 1.9µA

NEF 11.1
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Figure 2.3: Analog front-end (AFE) and ADC circuits.

2.2.1 Analog Front-End Design

The analog front-end (AFE) shown in Figure 2.3 consists of low noise amplifier

(LNA), variable gain amplifier (VGA) and charge pump. The charge pump biases the

MEMS transducer at 10V. It is based on 3-stage voltage doubler circuits and generates

bias voltage with 32kHz of clock. Note that to realize differential structure, dummy

capacitors and resistors (pseudo) are added on the other side of microphone, matching

the input impedance. The LNA gain (29dB) is set by the MEMS capacitance over

the feedback capacitance (CM/CF1), and the gain and bandwidth of VGA are tuned

by capacitor arrays CI2 and CL2, respectively. RF1,2 sets input common-mode voltage

and removes offset. To maximize noise efficiency, OTA1 and OTA2 use inverter-based

cascode amplifier and their input-pair transistors operate in subthreshold region. The

bandwidth of this analog gain stages was set to 4kHz. Figure 2.4 shows measured

input referred noise (IRN) spectrum of the AFE. The LNA and VGA consume 1.54µW

and 1.11µW, respectively, to achieve 20.1µVrms (non-weighted) and 13.2µVrms (A-
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Figure 2.4: Measured input referred noise spectrum of AFE.

weighted) IRN with 4kHz of bandwidth. The measurement results of the AFE is

summarized in Table 2.1. After gain stages, the 8-bit synchronous SAR ADC (Figure

2.3) digitizes the incoming amplified and filtered audio signal. The ADC operates

on two separate clocks: an 8kHz clock (CLK S) for sample and hold, and a 150kHz

clock (CLK F) for the internal SAR control logic. Since the audio signal is processed

in the frequency domain at compression engine, the frequency stability and phase

noise of CLK S can directly affect the audio compression quality while CLK F has

significantly relaxed constraints. The 32kHz external crystal clock is divided to 8kHz

(CLK S) and merged with internal 150kHz clock (CLK F) obtained from a power-

efficient ring oscillator at 0.6V by the ADC clock controller as shown in Figure 2.5.

With this controller scheme, the need of high frequency crystal oscillator for the

synchronous SAR ADC clocking can be vanished. The measured SNDR of ADC is

46.1dB which corresponds to 7.4-bit ENOB, and the FoM is 100fJ/Conv as shown

in Figure 2.6. The ADC consumes only 135nW of power. Table 2.2 summarizes the

measurement results of ADC.
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Figure 2.5: Synchronous SAR ADC clock controller circuits and its operational timing
diagram.
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Table 2.2: Measurement Summary of ADC
This Work

Supply 0.9V

Fs 8kHz

INL +0.26/-0.34 LSB

DNL +0.27/-0.17 LSB

SNDR 46.1dB

ENOB 7.4bits

Power 135nW

FoM 100fJ/Conv

Figure 2.6: Measured DNL, INL, and frequency spectrum of ADC.
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Figure 2.7: Proposed compression algorithm.

2.2.2 Compression Algorithm

Compression of the audio stream is critical to minimize storage size, access en-

ergy, and wireless transmission energy. However, real-time audio compression is a

computationally intensive task. Thus compression power itself should be minimized

for the proposed ultra-small audio sensor node.

The proposed power efficient compression algorithm is shown in Figure 2.7. The

incoming samples are first converted to the frequency domain using polyphase sub-

band filtering (PSF). This filtering technique critically samples the incoming signal

by modulating and decimation, meeting Nyquist criteria for each center frequency of

band-pass filter in filter bank. By nature, this filter technique reduces the amount of

data by eliminating overly sampled portions. However, due to the non-ideal band-pass

filter characteristic, signal aliasing always occurs, and therefore it results in a lossy

compression. In contrast to the block transform such as FFT, this filter bank overlaps

in time domain and avoids block edge artifacts. Once the signal is filtered by equally

spaced 32 filter bank, the power of each subband is accumulated during 1 frame

which consists of 6 samples. And then, each accumulated power is compared with

a programmable power threshold. The subbands having lower power than a thresh-
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Figure 2.8: Polyphase Quadrature Filtering (PQF) process.

old are eliminated, and we only select subbands whose power exceed the threshold.

Then, the number of selected subbands is compared with a pre-determined (but, pro-

grammable) number N . If the number of remaining subbands exceeds the number

N , the highest power of N subbands are selected by sorting. This processes guar-

antees a constant worst-case compression rate but, in general, the final compressed

bit rate can vary depending on the frequency domain sparsity of the signal. Finally,

logarithmic-compressed quantization is applied to further reduce data rate.

In this algorithm, the complexity of the PSF dominates others. To have linear

phase shift to prevent any phase distortion for audio quality, 512-tap FIR filter is

used to realize band-pass filters. The filtered signal can be represented as follows:

st[i] =
511∑
n=0

x[t− n]×Hi[n] (2.1)

where Hi is an impulse response of the i-th band-pass filter, x[t] is an audio sample

at time t, and st[i] is the filter output sample for subband i at time t, where t is an

integer multiple of 32 audio sample intervals. In the PSF, the band-pass filter can be

regarded as a modulated version of a prototype low-pass filter as follows:

Hi[n] = h[n]× cos[ (2i+ 1)(n− 16)π

64
] (2.2)
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where h[n] is a prototype low-pass filter. This plain implementation of PSF re-

quires 1023 OP/sample of complexity. To reduce power, we apply a mathematically-

equivalent but more computationally efficient polyphase quadrature filtering (PQF)

[43]. Since the sinusoid in Equation 2.2 contains an odd number of half cycles in 64

coefficients, blocks of 64 products of the multiplications are accumulated with the

sign of alternate blocks negated. These 64 points are then multiplied by 32 sinu-

soids to generate 32 output samples. This process is depicted in Figure 2.8. From

the explained PQF process, we can derive the following equation for the filter bank

outputs:

st[i] =
63∑
k=0

7∑
j=0

M [i][k]× (C[k + 64j]× x[k + 64j]) (2.3)

where

C[n] =

 −h[n] n/64 = odd

h[n] otherwise
(2.4)

M [i][k] = cos[
(2i+ 1)(k − 16)π

64
] (2.5)

This implementation requires 157 OP/sample, which is 84% reduction in the com-

plexity. Then, this filtering is further optimized by inverse discrete cosine transform

(IDCT) conversion [44]. Equation 2.3 can be re-written as follows:

st[i] =
63∑
k=0

y[k]× cos[ (2i+ 1)(k − 16)π

64
] (2.6)
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Figure 2.9: Compelxity reduction from the algorithm optimization.

By re-arranging the y[k] sequence, the above equation is re-formulated as follows:

st[i] =
63∑
k=0

y
′
[k]× cos[ (2i+ 1)kπ

64
] (2.7)

where

y
′
[k] =


y[16] k = 0

y[k + 16] + y[16− k] k = 1, 2, ..., 16

y[k + 16]− y[80− k] k = 17, 18, ..., 31

(2.8)

Equation 2.7 is well-known IDCT fomula. This optimization reduces the complexity

to 93 OP/sample. Finally, IDCT computation is performed using a mathematically

equivalent inverse FFT (IFFT) operation as follows:

let X[k] = y
′
[k]× ejkπ/2N k = 0, 1, 2, ..., 31 (2.9)

x[m] = Re[FFT−1(X[k])] m = 0, 1, 2, ..., 31 (2.10)
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Table 2.3: Compression Algorithm Comparison
MPEG Layer III CELP ADPCM1 This Work

Raw Data Rate2 64kbps

Compressed Data Rate 32kbps 9.6kbps 16kbps 4.07kbps

Compression Ratio3 2 6.7 4 15.7

Latency >100ms 30ms <2ms 32ms
Variable Bit Rate Yes Yes No Yes(2-16kbps)

Complexity 3000 op/sample 45000 op/sample 4 op/sample 61 op/sample

ODG4 0.2 -3.873 -3.885 -3.879

1Linear ADPCM with 1’st order prediction
2Male voice in English

3Raw data rate/compressed data rat
4Objective Difference Grade; -4(very annoying) - 0(imperceptible)

then st[i] =

 st[2i] = x[i] i = 0, 1, 2, ..., 15

st[2i+ 1] = x[31− i] i = 0, 2, ..., 15
(2.11)

By the efficiency of FFT computation, the complexity is reduced to 57 OP/sample.

Overall, the complexity is reduced by 94% in total from aforementioned algorithm

optimizations as shown in Figure 2.9. A comparison between the proposed and other

off-the-shelf algorithms is shown in Table 2.3. Maintaining similar sound quality,

the proposed algorithm has 1000× lower complexity than CELP and 3.9× better

compression than ADPCM.

2.2.3 Compression Engine Architecture

The fixed-point pipelined architecture is proposed to implement the algorithm

efficiently as shown in Figure 2.10 and Figure 2.11. Multiple word widths with differ-

ent fixed-point positions are applied to balance between the power consumption and

truncation error.

The proposed polyphase quadrature filter implementation is shown in Figure 2.10.

To realize polyphase quadrature filter, previous 512 samples must be latched to be

processed while new samples are continuously streamed in at sampling rate, which
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Figure 2.10: Polyphase quadrature filter architecture.

requires 512-entry FIFO shifted at 8kHz consuming 62% of total compression power.

To address this predominance, new samples are streamed into 32-entry FIFO instead,

and shift operation of whole samples is performed block-by-block only when 32-entry

FIFO becomes full. Consequently, 512-entry FIFO is clock gated until the next

block shift, resulting in 32× power reduction. In addition, we observe that 25% of

filter coefficients are zero, allowing us to inactivate unused samples and to eliminate

corresponding registers and datapath. The 512 samples are re-arranged and R2SDF

based 32-point FFT is performed to realize the optimized subband filtering.

Filtered data are then stored in a sub-frame buffer as shown in Figure 2.11a. Since

compression is performed in a frame (i.e., 6 sub-frames) basis, the two additional

buffers are added (i.e., total 8 sub-frame buffers) as ping-pong buffers to store next

frame data while processing the current frame. The sub-frame buffers and power

accumulators are clock gated with frame based operation, and this clock gating shows

34% of total engine power reduction (simulated). Moreover, along with clock gating,

the data gating is used to avoid unnecessary data switching on shared data bus of

sub-frame buffers. This data gating further reduces the power consumption by 25%

(simulated).

For frequency-rich signals, sorting operation is necessary. The proposed sorting
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(a) (b)

Figure 2.11: Compression engine architecture.

unit uses a tree structure as shown in Figure 2.11b), where all processing elements

(PEs) compare and forward their inputs in the 1st cycle to obtain the top result.

Hence, every PEs are active in the 1st cycle. Then, in each subsequent cycle the

winning PE zeros its value and only its related path is updated to produce the next

highest values. So for the remaining cycles until finding the top N out of 32, only a

fraction of PEs are in active. Compared with a conventional parallel sorter, such as

bitonic sorting, this implementation shows 42% less dynamic energy for sorting top

16 out of 32. The complexity of the proposed sorting when finding the top N/2 out

of N is described as follows:

(N − 1) +
N

2
× log2N (2.12)

After pruning, selected subband samples are log-domain quantized with leading-one

detector, implemented with round approximation.
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Figure 2.12: Operation principle of ping-pong streaming Flash.

2.3 8Mb Embedded Streaming NOR Flash

One key requirement to realize a miniature audio sensor node is embedded non-

volatile memory for compact and retentive storage of sensed audio data. Non-volatile

storage retains the data even during power source outage. Also, it allows near-zero

retentive power during the standby mode, and thus lengthens the lifetime of a sensor

node. In general, however, typical NOR Flash memory consumes mW-level of power

for program and erase, preventing its usage as an embedded storage for sensor appli-

cations. To address this issue, [41] proposed ultra-low power 1Mb NOR Flash design.

They increased the efficiency of high voltage generation, which is often a power bot-

tleneck during program, by using a combined Dickson and Cockcroft-Walton charge

pump with MIM capacitors. In addition, they employed separate power gating for

each bank so that the peripheral circuits of the banks that are not used can be power-

gated. With other low power circuit techniques, their Flash design consumes µW-level

power consumption for program, read, and erase operations.

In this work, we design a custom 8Mb NOR Flash chip following all the strategies

in [41]. As the capacity and size of Flash macro increase, one distinctive feature
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is proposed and designed in this work, since the instantaneous power for program

exceeds the allowed budget of sensor system. Although the compressed audio data

rate in Section 2.2 is <7kbps in average (measured results are shown in Section 2.4),

the streaming format requires 32kbps burst data rate since the compression algorithm

operates over multiple sub-frames. To meet this program speed, the 8Mb Flash chip

should consume more than twice of power compared with 1Mb macro in [41]. To solve

this issue, we design a streaming Flash with ping-pong SRAM buffers as shown in

Figure 2.12. Since the SRAM write power is much less than the Flash, we buffer the

incoming stream into the SRAM first with higher write speed. Two SRAM macros

act as ping-pong buffers: one macro filled with audio streaming; the other being

transferred to Flash. In this way, we can keep the Flash program cycle time longer

than requirement to reduce instantaneous power consumption. The Flash controller

automatically handles seamless ping-pong streaming.
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(a) (b)

Figure 2.13: Chip die photo of (a) audio processing chip and (b) 8Mb NOR Flash
chip.

2.4 Measurement Results

The proposed audio processing chip is fabricated in 180nm CMOS with an active

area of 7.125mm2, and the die photo of it is shown in 2.13a. Measured A-weighted

input referred noise of amplifiers is 13.2µVrms (Figure 2.4), translates to 61dBA of

SNR at 94dBSPL (1kHz) input sound. We also performed acoustic testing as shown

in Figure 2.14a. The audio chip is integrated with a MEMS microphone on the chip-

on-board (COB) setting, and placed inside anechoic chamber to measure acoustic

performance accurately without ambient sound noise. Playing a tone sound using a

speaker and measure its sound pressure level (SPL) by a reference microphone. In this

acoustic testing, the analog front-end consists of MEMS microphone, charge pump,

LNA and PGA. The overall analog chain achieves 32µVrms A-weighted input referred

noise while consuming 3.15µW of power. The SNR and sensitivity are 54.6dBA and

-14∼13.6dBV, respectively, with 94dBA SPL input sound at 1kHz. Figure 2.14b

shows the power spectral density (PSD) of this analog front-end.

Measured compression rate depends on the signal sparsity. Figure 2.15 shows the
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(a) (b)

Figure 2.14: (a) Acoustic measurement setup (b) power spectral density (PSD) of
AFE.

Table 2.4: Measurement Results of Compression Ratio
Compressed Data Rate Compression Ratio

Tone 2.69kbps 23.8×
Slow speech 3.56kbps 17.9×

Normal speech 4.37kbps 14.6×
Music 6.71kbps 9.5×

time domain plots of compressed and original audio clips. Figure 2.15a represents

normal speed of speech case, and Figure 2.15b shows slow speech case for same sen-

tence. We can observe that the compressed signal samples are highly suppressed in

quiet region since they are below the power threshold. For a normal speech, mea-

sured average compression ratio is 14.6×. On the other hand the compression ratio

is 18× for a slow speech, as expected. Table 2.4 summarizes the compression ratio

for various sound types, and it varies automatically depending on the signal sparsity.

For the normal human speech, the audio processing chip provides ∼15× compression,

enabling >30 mins of recording with 8Mb custom Flash.

Compression rate and quality trade-off can be tuned by the number N and the

power threshold. In Figure 2.16, the x-axis is the power threshold, the value below

which subbands are pruned for compression. A higher threshold means more aggres-
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(a)

(b)

Figure 2.15: Time domain signals for compressed and origial audio clip at (a) normal
speed speech and (b) slow speed speech.

29



Figure 2.16: Measured compression ratio vs. sound quality trade-off.

sive compression. The y-axis on the left is the compression ratio, and the y-axis on

the right is sound quality: A higher value indicates the better quality. The number

N is the maximum number of remaining subbands after pruning, and we are using

N=16 case for this measurement. As the power threshold is decreased, audio quality

improves, but compression rate also decreases as expected. However, when the power

threshold goes too low, noise gets to be included in compression, and degrades the

audio quality.

The audio processing IC consumes 4.73µW of power, dictated by continuous run

for ∼14 hours under 64µWh millimeter-scale battery. Figure 2.17a shows the power

breakdown of the audio processing IC. The compression engine dissipates 1.44µW of

power, and its power breakdown is shown in Figure 2.17b. As shown in the Figure,

polyphase subband filtering (pre-processing + FFT) consumes 74% of total compres-

sion engine power even after all of optimizations from both algorithm and architecture

due to the high amount of data to process and the required throughput. Table 2.5

summarizes the proposed audio processing IC.

The proposed custom 8Mb embedded Flash is fabricated in 90nm ESF3 NOR

Flash technology. Due to its increased capacity, program power becomes double
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(a) (b)

Figure 2.17: Measured power breakdown of (a) audio IC and (b) compression engine.

Table 2.5: Summary of Audio Processing IC
This Work

Technology 180nm

Die area 2.5×2.85mm2

Supply voltage 0.6/1.2/3.6V

Amplifiers gain 20-48dB

AFE bandwidth 4kHz

AFE input referred noise 32µVrms (A-weighted)

AFE SNR 54.6dBA @ 1Pa

Clock frequency 8/16/150kHz

Compression ratio 4-32× (auto-variable)

Power 4.73µW
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Table 2.6: Comparison of Embedded Flash ICs
This Work [41] [45] [46]

Technology 90nm ESF3 90nm ESF3 90nm MONOS 130nm SONOS

Capacity 8Mb 1Mb 1Mb 1024×260b

Area (mm2) 7.5 0.73 2.26 0.85

Prog. throughput 730kbps 7.2kbps 800kbps 341kbps 1Mbps

Prog. power 80µW 38µW 39µW 323µW 125µW

Prog. energy 110pJ/bit 656pJ/bit 49pJ/bit 946pJ/bit 122pJ/bit

Read power 28µW 25µW N/A 176µW

Read energy 3.5pJ/bit 3.1pJ/bit N/A 1.2pJ/bit

Erase power 13µW 15µW N/A N/A

Erase energy 3.3pJ/bit 9.4pJ/bit 1.07nJ/bit 29pJ/bit

Standby power 7.8µW 5.4µW N/A N/A

than [41] when it uses similar program throughput. However, thanks to the ping-

pong streaming technique, we can tune down the program speed to 7.2kbps, reducing

the program power by 2.1×. We achieve 38µW of program power which is the lowest,

compared with prior works for custom embedded Flash as shown in Table 2.6. More-

over, 8Mb of large capacity enables >30 mins of continuous audio streaming when

combined with the proposed compression engine. Read and erase consumes 28µW and

13µW of power, respectively, also meeting the peak power budget of millimeter-scale

energy sources.
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CHAPTER III

A Picowatt Standby Power Neural Network

Processor With Custom ISA and 7T SRAM for

Sensor Applications

3.1 Introduction

Wireless sensor node enables remote retrieving of video and audio streams, images,

and scalar sensor data such as temperature, pressure or humidity. To be benefit

from massively distributed sensor nodes, the size reduction of each sensor device

is paramount. Minuscule size makes the sensors as easy-to-deploy and unobtrusive

as possible, minimizing the disturbance to human activity. Continued advance of

integrated circuits and technologies have enabled millimeter-scale sensing nodes [1,3,

7, 47], paving the way to ubiquitous wireless sensor applications.

As machine learning (ML) techniques such as neural network (NN) have been

rapidly proliferated, having built-in NN processing capability on sensor becomes a

highly desirable feature to implement efficient large-scale sensor network, alleviating

bandwidth, latency, security and communication energy limitations [48, 49]. While

the NN workloads require intensive computation and large memory footprint, the

sensor node design is heavily constrained by its small form factor, energy, and stor-

age. The software implementation of NN processing on the general-purpose micro-
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processor typically equipped with sensor nodes lacks energy and memory efficiency,

failing to meet the stringent constraints of millimeter-scale node. As a complement,

many of prior works have sought to realize dedicated NN accelerators for embedded

platforms [50–53]. However, they mainly aimed at convolutional neural networks

(CNNs) or large, deep-layered neural networks (DNNs) that can be regard as too

excessive capacity for sensing applications [54], and thus their designs rather cause

inefficiencies such as low utilization of resources and leakage dominance in the cases

where moderately-sized network model is sufficient. Moreover, since prior accelerator

designs trade flexibility for efficiency, they can not support not only arbitrary NN

topology, but also arbitrary algorithms (e.q., moving average, normalization, sorting,

etc.).

In this Chapter, we explore a compact and programmable NN processor to sup-

port small-to-medium size models under highly resource-constrained sensor plat-

form. Several prior works optimized for modest NN workloads have been reported

in [55–57, 61, 73]. Unlike these works, we consider standby power as the primary

design metric since this is of particular importance in a typical wireless sensor node

that stays at standby mode a vast majority of time as the event of interest occurs

infrequently. As shown in the Figure 3.1a, when the sensor node spends an extended

period of time at standby mode, the average power consumption of a sensor node

is governed by the processor’s standby power. Once the processor is initially pro-

grammed using on-chip memory, it is necessary to retain the instructions and data

(i.e. NN parameters) during the standby mode to avoid off-chip memory access at

every wakeup. The low standby power is also beneficial in always-on sensor, which is

the case in Figure 3.1b. Since a typical sensor collects data stream for a long interval

to make an input vector to NN (i.e. a frame), the processor computes NN workloads

at minimum energy point (MEP) quickly, and then returns to standby mode wait-

ing for next input vector. If the frame length is long enough and the required NN
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(b)

Figure 3.1: The power profile and average power consumption of NN processor in (a)
duty-cycled operation and (b) always-on operation.
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workload is low-to-moderate, then again the standby mode might contribute more

energy [58].

We have developed a programmable NN processor with 440pW of standby power

to support small-to-medium NN workloads in the sensor nodes. To reduce the standby

power consumption, we exploit a custom instruction set architecture (ISA) for high

code density and sufficient flexibility, a lightweight SIMD microarchitecture, and an

ultra-low leakage SRAM bitcell. Finally, we have embedded the processor into a single

chip integrated sensor system for acoustic object detection to validate the efficacy of

the on-sensor NN processor.

The remainder of this Chapter is organized as follows. Section 3.2 introduces the

on-sensor NN processor with custom ISA, microarchitecture, and memory cell. Sec-

tion 3.3 describes the integrated sensor system on chip for acoustic object detection.

Section 3.4 discusses the measurement results.

3.2 On-Sensor Neural Network Processor

3.2.1 Custom Instruction Set Architecture

The design of a NN processor ISA must consider a few characteristics particularly

for modest workloads in highly resource-constrained sensor environment. Since the

data retention of on-chip storage dominates overall power consumption at standby

mode, the program code size should be compact enough to enable minimal sized

memory, and thus minimum data retention power in the processor. At the same time,

the ISA must also maintain sufficient flexibility to realize a variety of network model

structures/sizes, and additional general-purpose programs as needed. The CISC-

type ISA generally provides high code density, resulting in succinct programs to be

stored. However, it requires more complex hardware implementations and prevents

fine-grained management of hardware resources by programmer, often failing to meet
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Table 3.1: Instruction Set of On-Sensor NN Processor
Instruction Assembly Format Description

Load LD regID,$dst,len,$src load data from memory to register
Store ST regID,$src,len,$dst store data from register to memory
Vector Add VADD srcID,len,$src or #imm (vector) + (vector/scalar/immediate)
Vector Subtract VSUB srcID,len,$src or #imm (vector) - (vector/scalar/immediate)
Vector Multiply VMLT srcID,len,$src or #imm (vector) × (vector/scalar/immediate)
Scalar Add SADD srcID,$src or #imm (scalar) + (scalar/immediate)
Scalar Subtract SSUB srcID,$src or #imm (scalar) - (scalar/immediate)
Scalar Multiply SMLT srcID,$src or #imm (scalar) × (scalar/immediate)
Matrix-Vector Multiply MMLT iLen,oLen,shb,shl or shr,$src,$dst (matrix) × (vector) with shifting
PWL Approximate PL regID,$src1,len,$src2,plshb non-linear functions on register
Element-wise Compute EC funcID,len,$dst element-wise functions on vector register
Conditional Branch CBR $src,#imm,jumpAddr jump when (reg[$src]==#imm)
Direct Jump JMP jumpAddr direct PC jump to jumpAddr

No Operation NOP cycles pipeline stall for cycles of clock cycles

stringent power budget. On the other hand, while the RISC-style ISA allows simpler

microarchitectures, it consumes more on-chip storage for the same program than CISC

approach. Moreover, atomic primitive instructions put more burden on fetch, decode,

and rename stages than the computation itself, causing energy inefficiency [59], and

this is exacerbated in the case where small footprint of network models are deployed.

Therefore, the ISA design should try to keep a balance between both approaches

by enabling small number of code lines and low power hardware implementations,

simultaneously. Finally, some degree of SIMD data-level parallelism should also be

exploited to make the NN computation more efficient.

Taking account of aforementioned characteristics, we define a set of instructions

for a programmable NN processor for various sensor applications, and provide the list

and assembly format along with their description in Table 3.1. The symbol $ denotes

register and memory addressing, and the symbol # denotes the immediate constant.

The instructions consist of fixed 32-bit width: 6 bits for opcode (redundant bits are

reserved for instruction extension) and the remaining 26 bits for different fields per

instruction. The ISA supports separate scalar and vector register files (RF) which can

be shared as either general-purpose registers or NN buffers within the same program,

saving the total number of registers. The ISA design also includes on-chip scratchpad

memory to store all the data used by NN models. Since NN techniques often require
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variable-length, contiguous vector or matrix data, the exposure of scratchpad memory

to the programmer allows high flexibility for efficient data management. Although

the idea of scratchpad memory is similar to [60], their ISA design doesn’t support

vector RF at the same time and thus, cannot exploit any data reuse opportunities.

The vector RF combined with scratchpad memory provides stationary input vector

reuse and flexible-width of matrix data access, simultaneously. The ISA is based on

a load-store architecture in which the on-chip scratchpad memory access occurs with

load (LD) and store (ST) instructions. Since the ISA supports both scalar and vector

registers, regID specifies the type of register. The variable-length of data access for

vector or matrix can be controlled by len field.

The arithmetic instructions can be used for program control flow, simple algorithm

realization, and vector-wise processing. The scalar instructions (SADD, SSUB, SMLT)

operate on scalar registers or immediate value in the instructions. The first operand

and destination are implicitly fixed to a same register (sreg[$0]) to reduce hardware

complexity and to shorten the length of instructions. Whether to use a value in

scalar register or immediate constant as the second operand is determined by the

srcID field. The vector arithmetic instructions (VADD, VSUB, VMLT) perform vector

addition, vector subtraction, and element-wise vector product when the memory is

specified as an source operand. The instructions take the first vector operand always

from the vector RF, and take the second vector operand from the memory. When

the second operand is specified as scalar register or immediate, then the instructions

perform vector-scalar arithmetic.

Many of ML and NN techniques are composed mainly of matrix-vector multi-

plication. However, as more complex and computationally demanding algorithms

have been emerged, most prior works implemented high dimensional operation prim-

itives such as matrix-matrix multiplication, convolutional kernels, etc. Involving

such complex primitives yet gives poor utilization efficiency especially when un-
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Program 1. RNN

LD vreg,$0,16,$in %load input

MMLT 16,16,2,shl,$w1.ff,$out %feed-forward path

LD vreg,$0,16,$prev.hidden %load previous hidden layer

VMLT mem,16,$w1.fb %feed-back path

VADD mem,16,$out %sum ff and fb

VADD mem,16,$b1 %add bias

PL vreg,$0,16,$tanh,11 %tanh activation

ST vreg,$0,16,$prev.hidden %save current hidden layer

MMLT 16,16,2,shl,$w2.ff,$out %output path

LD vreg,$0,16,$out %load output

VADD mem,16,$b2 %add bias

PL vreg,$0,16,$tanh,11 %tanh activation

ST vreg,$0,16,$out %save current output

batched real-time processing and small sized models are required. We instead define

a matrix-vector multiplication as a primitive operation to efficiently support com-

pact fully-connected neural networks (FCNNs) or recurrent neural networks (RNNs)

as they are suitable for a wide range of general sensor data classification/regression

tasks [56,61–63]. The higher dimensional models such as CNNs can be linearized onto

matrix-vector operation if needed. The matrix-vector multiply instruction (MMLT)

performs multi-cycles of multiply-and-accumulation (MAC) using parallel SIMD dat-

apath. It takes input vector from vector RF, and weight matrix from on-chip memory

with variable sizes determined by input vector length (iLen) and output vector length

(oLen). In the matrix-vector multiplication, the input vector is reused oLen times

after once loaded into vector RF to minimize memory access energy. On the other

hand, there is no data locality for the weight matrix and thus it is directly read from

memory addressed by $src. This direct access of weight matrix from scratchpad

memory provides more flexibility on the matrix size, avoiding any constraints from

the limited number of registers. To maximize the input vector reuse opportunity

under the limited registers, the output of multiplication is directly stored back to

the memory at $dst. In contrast to prior works on custom ISA [55, 56, 60, 64], we

include shifting capability for every output of matrix-vector multiplication so that the
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models can have dynamic fixed-point layer-by-layer. The shl/shr field determines

the shifting direction, and the shb field specifies the amount of bits shifting.

The non-linearity have been typically used in the most of NN algorithms (acti-

vation functions) such as sigmoid, hyperbolic tangent, and rectified linear (ReLU)

functions. To realize the non-linear functions, [60] defined vector-exponential and

vector-div-vector instructions. However, the plain computation of exponential and di-

vision requires complex hardware and high energy cost. For the resource constrained

applications, [57] implemented hard-wired ReLU function unit while scarifying the

flexibility on the function types. By leveraging the error tolerant nature of NN mod-

els, the authors in [55] exploited piece-wise linear (PWL) approximation to reduce

complexity and latency. Even though their LUT based implementation provides flexi-

bility on the choice of function types, fixed and small size of LUT limits the number of

function types and PWL segments. Moreover, their datapath is specifically designed

to compute the activation function of NN layers. In the general sensor applications,

however, there is a need for other non-linear processing tasks such as taking logarithm

on the acquired audio stream. We instead define a dedicated PWL instruction (PL) for

general usage. It takes either scalar or vector as operand specified by regID, $src1,

and len. In contrast to the LUT, we store the PWL parameters in the scratchpad

memory. The compiler manages the memory space for PWL parameters and NN

parameters to be separated. This allows more flexibility on the selection of non-linear

functions to be used not only for the NN algorithms, but also for pre/post-processing

of data. Multiple non-linear functions can be stored in different locations and ad-

dressed by $src2 in the instruction. The plshb is a shift amount of input operand

to determine the segment to which it belongs, and thus depends on the total number

of segments for a specific non-linear function approximation.

The element-wise compute instruction (EC) implements special functions that are

useful to various vector processing. The hardware FSM performs finding min/max
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Program 2. Moving Average

store.output:

ST vreg,$0,2,$out %save NN output

addr.increment:

LD sreg,$0,1,$store.output %load ST inst.

SADD imm,#1 %increment ST addr.

CBR $0,#out+5,addr.reset %branch to addr.reset

ST sreg,$0,1,$store.output %save back ST inst.

JMP mvavg.compute %jump to mvavg

addr.reset:

SSUB imm,#5 %decrement ST addr.

ST sreg,$0,1,$store.output %save back ST inst.

mvavg.compute:

LD vreg,$0,2,$out %load 1st sample

VADD mem,2,$out+1 %add 2nd sample

VADD mem,2,$out+2 %add 3rd sample

VADD mem,2,$out+3 %add 4th sample

VADD mem,2,$out+4 %add 5th sample

VMLT imm,2,#0.2 %divide by 5

ST vreg,$0,2,$mvavg.out %save mvavg output

value or index of min/max in a vector, and summing up over vector elements. The

output is stored into a scalar register at $dst. The conditional branch (CBR), direct

jump (JMP), and no operation (NOP) instructions are used for program control flow.

The Program 1 shows an example assembly code for RNN computation. Input

layer, hidden layer, and output layer all consist of 16 neurons. Note that since the

RNN has a feedback path, additional processing steps (VMLT and VADD) are needed.

Also, the hidden layer results are saved to memory at $prev.hidden to be used

at the next time step. Compared with [55], in which total 123-Byte of instruction

memory is consumed for even smaller sized RNN, this work takes only 52-Byte of

memory. Although the ISA in [60] also consumes 64-Byte of instructions, it only

implements FCNN which typically requires smaller number of instructions. Moreover,

while >130 instruction fetches occur during one iteration of RNN computation in [55]

, the proposed ISA needs only 13 instruction fetches, mitigating the fetch/decode

energy burden. Besides NN-specific operations, the proposed ISA can be used to
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Figure 3.2: The microarchitecture of on-sensor NN processor.

realize basic data processing tasks. The Program 2 implements 5-sample moving

average on the NN output. By using branch, jump and scalar operations, the NN

output is stored to different locations in memory for each time step, and retrieved to

compute moving average. Supporting simple algorithms beyond NN allows deploying

the processor in more wide range of sensor applications.

3.2.2 Microarchitecture and Implementation

The microarchitecture of the proposed on-sensor NN processor is shown in Fig-

ure 3.2. It is a five-stage 16-bit processor with additional SIMD datapath to pro-

cess arbitrary NNs and general-purpose programs. It consists of program counter

(PC), instruction memory (IMEM), instruction decoder, control logic, data memory

(DMEM), scalar and vector RF, ALU, and 8-way SIMD datapath. The IMEM and

DMEM are implemented by the low-leakage 7T SRAM cell, which is introduced in

Section 3.2.3. In the standby mode, both IMEM and DMEM retain the loaded pro-

gram and data while all other circuits including the memory peripherals are reset

and power-gated to minimize leakage current. The DMEM is used as a scratchpad

memory which requires programmer to take control of all data movement to and from
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it by using the instructions set. All arithmetic operations are performed in the ALU

except matrix-vector multiplication.

To exploit the parallel, independent computational characteristic of matrix-vector

multiplication, we employ separate multi-way SIMD datapath beside the general-

purpose ALU. Each lane consists of MAC circuits followed by a shifter. To reduce

both active and standby energy, the SIMD datapath has reduced-bit precision while

the ALU supports full 16-bit computation. This small fixed-point data type is one

of key differentiator from a software-based implementation on microprocessor. In

particular, we use 4-bit per weight and 8-bit per neuron activation since the 4-bit

quantization is proved to energy optimal in many cases [65, 66]. This quantization

greatly reduces not only active/standby energy of computation circuits, but also on-

chip storage requirement. Hence, both memory access energy and retentive standby

energy are minimized. The MAC circuits consist of a 4b×8b multiplier and a 24-bit

accumulator. In contrast to prior works [55, 56, 64], a dedicated shifter dynamically

moves decimal point of MAC output layer-by-layer to compensate the accuracy loss

from the reduced precision. Since our primary design concern is energy efficiency,

not the throughput, the number of SIMD lanes is determined by the bandwidth of

memory. The 8-way datapath requires 8 weights per cycle (32 bits per cycle) of

memory bandwidth, which is reasonable design choice for our 32-bit-word low power

SRAM macro in Section 3.2.3.

We implement 4KB IMEM, 12KB DMEM, and 32-element vector RF. Except the

retentive SRAM memory cells, all circuits have header transistors for power-gating

at standby mode. The header transistors are carefully sized to trade-off between

the leakage current and enter/exit time of standby mode. The simulated charge

and discharge time of virtual supply rails is <1.6ms, which enables sufficiently fast

transition between modes especially when considering the relaxed latency requirement

of most sensor applications.
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Figure 3.3: 7T HVT SRAM bitcell and layout.

3.2.3 Ultra-Low Leakage 7T SRAM Memory

The NN algorithms demand large amount of data to compute. Especially, FCNNs

and RNNs suffer from parameter dominance in contrast to that CNNs are typically

facing computation bottleneck [67]. Since the off-chip memory access is avoided due

to its energy and latency costs, realizing dense yet energy efficient on-chip memory is

crucial for on-sensor NN capability. Moreover, the on-chip memory should retain all

programs and parameters during standby mode, the leakage power of on-chip memory

would dominate overall average power of sensor system throughout its lifetime. SRAM

memory has been widely used as an on-chip storage of embedded NN accelerators and

processors because of its density, speed, and cost. However, conventional 6T SRAM

suffers from reduced robustness particularly for low voltage designs. As a result, 8T
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and even larger bitcells have been proposed for low-power applications, but came with

the expense of density. 8T SRAM usually incurs ∼30% of area overhead [68–70]. And

these issues are further complicated by the need for ultra-low leakage requirement.

To achieve fW/bit of standby power, 10T HVT bitcell is proposed in [71], but the

bitcell size is almost 4× larger than 6T SVT bitcell, which therefore limits the size of

NN models under the area constraint of miniaturized sensor platforms. Hence, low

leakage, low voltage tolerant SRAM design that also achieves reasonable area density

should be exploited.

Figure 3.3 shows the proposed 7T bitcell [72], which includes 6 HVTs and a

single SVT read device. The HVT devices have less leakage current by orders of

magnitude than SVT devices. Moreover, a dedicated read transistor allows separate

optimization on read and write path, enabling low voltage operation. However, read

access to a 7T topology causes substantial short-circuit current from unselected cells.

Since the typical NN workloads require large number of read accesses, this issue

incurs high energy penalty to the NN processor. The proposed 7T SRAM introduces

an Auto-Shut-Off mechanism in which the selected read wordline is automatically

disabled during read, thereby maintaining the unselected read device as off-state.

This mechanism reduces 7T read energy by 6.8×. The 7T SRAM cell is 2.3× smaller

than the 10T bitcell in [71] while enables 3.35fW/bit standby power. When compared

with conventional 6T SVT SRAM, this 7T cell achieves >3500× reduction in standby

power.

3.3 Acoustic Object Detection Sensor System

To prove the efficacy of the proposed on-sensor NN processor, we developed an

acoustic sensor system for object detection. The system aims to detect different types

of machines by their sounds. Figure 3.4 shows the overall system block diagram. The

proposed sensor system integrates multi-stage active amplifiers, 8-bit SAR ADC, dig-
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Figure 3.4: Overall block diagram of acoustic sensor system for object detection.

ital feature extractor, and the NN processor described in Secion 3.2. A charge pump

generates 12V of bias voltage for the passive off-chip MEMS microphone. Since tar-

get machinery sounds in the frequency domain show that acoustic features are mainly

concentrated within a relatively narrow bandwidth of <500 Hz, and concentrated in

a few narrow sparse tones with high-power levels, we employ the same approach

introduced in [42] for the amplifiers, ADC, and feature extractor to reduce overall

power consumption of the sensor system. The signal characteristic allows the system

operates with a relatively low SNR and bandwidth, which reduces the burden on

the amplifier noise performance, and thus current consumption. In contrast to [42],

we inserted an ADC driver between the variable gain amplifier and ADC to help

signal settling at ADC sampling capacitor. The ADC driver also reduces current con-

sumption of variable gain amplifier further by the relaxed settling requirement. The

tone-of-interest (ToI) DFT feature extractor proposed by [42] extracts frequency fea-

tures tone-by-tone from stationary machine sounds, minimizing instantaneous power

consumption. We implement the feature extractor with more programmability on

the parameters than [42]. The supported DFT sizes are 192-, 256-, 384-, 512-, and

1024-point, and total 4, 8, 16, 20, or 32 of features can be extracted during a frame.
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Figure 3.5: Die photograph of acoustic sensor system with on-sensor NN processor.

Extracted feature data is transferred to the DMEM of NN processor by a system bus.

An on-chip oscillator produces 1 kHz of clock for analog front-end, ADC, and feature

extractor, while the NN processor operates with separate own clock. A low power

on-chip timer is also integrated for the duty-cycled operation of sensor system.

3.4 Measurement Results

The proposed on-sensor NN processor and integrated sensor system is fabricated

in 180nm CMOS process as shown in Figure 3.5. The area of acoustic sensor is 10.2

mm2, and the NN processor occupies 2.6 mm2. The proposed on-sensor NN processor
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Table 3.2: Comparison of Neural Network Processor
This Work [55] [56] [57] [73] [61]

Process 180nm 32nm 130nm 28nm 65nm 40nm

Area(mm2) 2.6 2.23 0.38 5.76 1.04 7.1

NN types FCNN/RNN FCNN/RNN FCNN FCNN RNN FCNN

Memory 16KB N/A 2.1KB 1MB 32KB 270KB

Voltage 0.6V/0.95V1 1.6V N/A 0.715V 0.575V 0.65V

Clock 1MHz 74MHz 4MHz 667MHz 250kHz 3.9MHz

Energy efficiency 400GOPS/W 59GOPS/W 37GOPS/W 264GOPS/W 270GOPS/W 187GOPS/W2

Active power 20µW 1.25mW 153µW 20.3mW 5µW 288µW

Standby power 440pW N/A N/A 3mW 614nW >20µW

Architecture Processor Processor Processor Hard-wired Hard-wired Processor

Custom ISA Yes Yes Yes No No No

1Supply voltage for SRAM memory.
2Re-calculate the number as OPs=MACs.

consumes 20µW at 1MHz with 0.6V of supply for core and 0.6V/0.95V dual supply

for SRAM. The 8-MOPS of peak throughput is achieved, which is suitable for small-

to-medium sized FCNN or RNN of sensor applications. We compare our processor

with prior state-of-the-arts in Table 3.2. Although there exist NN accelerators having

>TOPS/W of energy efficiency, their target applications are large, deep networks that

can benefit from higher parallelism. Here, we compare with more compact implemen-

tations of modest sized NN models for on- or near-sensor applications. The [57] shows

∼5.3-TOPS of peak performance, but >20mW of power consumption is not suitable

for millimeter-scale power source. The RNN accelerator in [73] consumes only 5µW

of power which is lower than our processor. However, their standby leakage power is

>600nW, translated to only several days of lifetime on millimeter-scale 16µAh bat-

tery [47]. Moreover, both designs have hard-wired accelerators that can not be used

beyond fixed NN topology. The [55] and [56] support custom ISA with processor-type

architecture, allowing more flexibility to end-users. However, their energy efficiency

is below <100-GOPS/W due to the absence of data reuse and parallelism. Moreover,

none of the prior works consider the standby power, resulting in high leakage current

at idle state. The proposed on-sensor NN processor shows 400-GOPS/W of energy

efficiency and 440pW of standby power with custom ISA support, enabling built-in
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Figure 3.6: Algorithm parameter sensitivity analysis.

NN capability on sensor node.

The implemented acoustic sensor system is also measured as follows: The am-

plifiers operates with 1.2V supply voltage and the gain varies from 31- to 60-dB

with 430Hz of 3-dB bandwidth. The integrated input referred noise is measured as

17µVrms, consuming 4.9nW. Measured signal-to-noise and distortion ratio (SNDR)

of the ADC is 47.02dB, which corresponds to 7.5bit effective number of bits (ENOB).

The ADC operates with 0.6V supply at a sampling rate of 1kS/s. The charge pump

consumes 4.7nW operating at 1kHz to generate 12V bias voltage for microphone. The

ToI DFT feature extractor is implemented with HVT devices and always-on with 0.6V

supply, consuming 3.6nW.

To evaluate acoustic object detection performance, we use DARPA-provided dataset

and perform a task that distinguish between generator, car, truck, wind, and quiet

by sounds under quiet, rural, and urban background noise. The NN is trained with

MATLAB software. We use mutually exclusive dataset for training and testing. The

algorithm parameters such as ToI DFT size, number of features, NN configuration

affect both accuracy and power. Since the ToI DFT is serialized feature extraction
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Table 3.3: Measured Acoustic Object Detection Accuracy
`````````````̀Target

Showed data
Generator Car Truck Quiet Wind

Generator 100.00% 0.07% 0.00% 1.60% 0.00%

Car 0.00% 98.26% 0.17% 2.79% 0.20%

Truck 0.00% 0.11% 98.41% 3.05% 0.07%

Quiet 0.00% 1.40% 1.37% 91.49% 0.10%

Wind 0.00% 0.16% 0.05% 1.07% 99.63%

method, the DFT size and the number of features determine a frame length. Larger

DFT size and number of features give higher frequency resolution and more spectral

information to the NN, respectively, but not necessarily always helpful. For example,

if we select larger number of features or DFT sizes, a frame length becomes longer

and thus, the NN only sees fewer frames to make a decision at fixed inference/s rate

requirement. Therefore, we first analyze parameter dependency on the performance

to get the best accuracy results. We define a performance score as following:

performance score =
√
PDworst · (1− FAworst) (3.1)

where PD is positive detection rate and FA is false alarm. First, we evaluate the

score depending on the DFT sizes and the number of features at a same fixed NN

topology, as shown in Figure 3.6. The best accuracy is achieved when DFT size =

192 and # of features = 32. By using these parameters, we next evaluate the score

for different NN configurations. Figure 3.7 shows the final NN topology we use for

the acoustic object detection task. Total 5 of 6s-frame (192ms × 32) are tied as one

feature vector, realizing 160 neurons of input layer. Features are normalized for each

inference. The NN has 2 hidden layers with 80 and 32 neurons, and 5 output neurons

for 5 acoustic objects, consuming 7.65KB of DMEM for weights. The sigmoid function

is used as non-linear activation function within the layers, and the final probability

for each object is calculated by softmax function. The 5-sample moving average is
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Figure 3.7: Neural network topology for acoustic object detection.

performed as post-processing at the last to further smooth the results. All these

processes after feature extraction are programmed by the proposed custom ISA, and

the program is loaded into the IMEM of NN processor (total 476-Byte). Table 3.3

shows the measured accuracy. For all targets under three types of ambient noise, the

sensor achieves >90% of positive detection rate, and <3% of false alarm rate.

Since the decision interval is 30s (5-frame × 6s/frame) and the throughput require-

ment is∼520-OPS, the on-sensor NN processor is duty-cycled as shown in Figure 3.1b,

benefited from ultra-low standby power. The average power consumption of the NN

processor is 33nW when executing the aforementioned algorithm. Figure 3.8 shows

the overall power breakdown of acoustic object detection sensor system.
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Figure 3.8: Power breakdown of the proposed acoustic sensor system.
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CHAPTER IV

An Acoustic Signal Processing Chip With

Nanowatt Power Voice Activity Detection

4.1 Introduction

Voice user interfaces are widely adopted in various devices as the human voice

is one of the most natural and information-rich interfaces between humans and ma-

chines. Minimizing the power consumption of voice processing is particularly crucial

to meet power budgets when the system becomes smaller as the battery size imposes

severe power and energy constraints on system design [47]. In many practical applica-

tions, acoustic events-of-interest occur infrequently. Constant listening and detection

of keywords are very powerhungry. Instead, the use of an always-on voice activity

detector (VAD) as a system wakeup mechanism is a popular alternative [62, 74–78],

and subsequent power-hungry processing is enabled by the VAD to save overall sys-

tem power, as shown in Figure 4.1. The acoustic wakeup detector consumes much

less power than constant listening for keywords since it only detects whether an in-

coming signal contains a human voice. However, since the events occur infrequently,

the always-on acoustic wakeup detector typically dominates the system power con-

sumption, and therefore, minimizing the VAD power consumption itself is a critical

design challenge.
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Figure 4.1: Always-on voice activity detection as a wakeup mechanism. Advanced
processing is enabled upon voice activity detection to save the overall
power.

A previous acoustic wakeup detector [42] consumes just 12 nW but it is specifi-

cally designed to detect “stationary” events whose signal features are invariant over a

relatively long time (a few seconds) and very narrow in frequency (2-Hz bandwidth or

0.5-s extraction time for each feature). The approach in [42] is not applicable to a non-

stationary target, such as voice activity containing time-varying features that need

to be extracted with a short (tens of ms) interval. Prior VAD chips [62, 74] demon-

strated reliable performance but consumed significant power (>20 µW) and lacked an

analog front end (AFE), which would further increase the power. More recent analog-

domain feature extraction-based VAD chips [75, 76] also reported µW-level power

consumption, and their simple decision tree [75] or fixed neural network (NN)-based

approach [76] limited broader use for various acoustic event targets. Moreover, the

VAD chips [62,74–76] were tested using only electric analog audio signals, rather than

actual audio signals. Therefore, additional components and their power consumption

overhead need to be added for real audio to electric analog signal conversion.

Typical VADs consist of two parts [79–81]. A feature extractor which converts

the incoming signal into low-dimensional but dense acoustic features, and a classifier

that takes a feature set input and produces a binary decision: Speech or non-speech.

54



Both design of feature extractor and classifier significantly affect overall system power,

accuracy, latency, and scalability.

The main challenge in reducing the overall VAD power is to reduce the power

required for feature extraction since it is typically computation-intensive and operates

continuously without duty cycling. Conventional approaches [62, 74, 81] used digital

fast Fourier transform (FFT)-based feature extraction, yet FFT itself consumes >2

µW even with extensively relaxed throughput/latency constraints [74]. To reduce

power consumption, [75, 76] exploited analog-domain feature extraction techniques.

However, the parallel filter bank at the voice-band is still the most power-hungry

block, preventing sub-µW operation. Instead of using parallel feature extraction,

such as an analog filter bank or digital FFT, a serialized discrete Fourier transform

(DFT) on tones-of-interest approach was introduced in our previous work [42] for

low-frequency (<500 Hz) signal targets. However, applying the same technique to the

voice-band (up to 4 kHz) frequency significantly increases the power consumption of

both the AFE and the digital feature extractor proportionally with signal bandwidth,

limiting the usefulness of this technique.

To improve the accuracy and scalability of the VAD system, the NN-based clas-

sifiers have been recently proposed [82–86]. Compared to other machine learning

classifiers, such as decision tree [75] or support vector machine (SVM) [42], NN-based

classifier have shown the improved performance [87], immunity to difficult noise sce-

narios [88], and strong scalability to multiple acoustic targets [89] and large-scale

corpora [90], becoming a strong candidate for real-world applications.

This chapter presents a programmable acoustic signal processing system for both

VAD and non-voice acoustic event detection based on NN classifier. We use a mixer-

based architecture that sequentially scans and down-converts the 4-kHz bandwidth

signal to a ≤500-Hz passband, reducing amplifier, analog-to-digital converter (ADC),

and digital signal processor (DSP) power by 4×. The NN processor employs compu-
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tational sprinting, which minimizes static energy dominance in low frequency/voltage

regimes, providing 12× power reduction in the digital domain. In addition to a VAD,

the system features an inaudible acoustic signature detection mode to enable remote

silent system wakeup. The proposed always-on VAD consumes 142 nW, which is 8×

lower than that reported in the literature for state-of-the-art works. In this chapter,

Section 4.2 describes the overview of the VAD system. Sections 4.3 and 4.4 show

its circuit implementation, Section 4.5 introduces acoustic signature detection, and

Section 4.6 discusses the measurement results. Finally, Section 4.7 concludes this

chapter.

4.2 VAD System Overview

Figure 4.2a shows the overall system architecture with two signal chains: an

always-on ultra-low power (ULP) chain and a high performance (HP) chain that

wakes upon event detection by the ULP chain. The system has two modes based on

the two chains: a 142-nW ULP mode and an 18-µW HP mode. The HP chain is

power-gated in the ULP mode, while the ULP chain is always on. When a target

event is detected in ULP mode, an off-chip microprocessor (µP) activates the HP

mode, which enables more powerful feature extraction and classification to complete

additional complex tasks at the cost of power consumption. The HP mode also sup-

ports real-time audio compressing and streaming to off-chip eFlash for general purpose

post-processing [47]. The HP chain consists of 4-kHz bandwidth and 8-kS/s sampling

rate with a conventional AFE architecture consisting of a low-noise amplifier (LNA),

programmable amplifier (PGA), ADC driver (DRV), and ADC. In contrast, the ULP

chain employs a digitally controlled mixer between the LNA and PGA to shift the

desired signal frequency down to 500-Hz bandwidth to lower the Nyquist rate to 1

kS/s after the PGA. Both the ULP and HP chains share the same NN processor,

but it operates with a different power scale and network model for each mode. An
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(a)

(b)

Figure 4.2: (a) VAD system architecture. (b) Operating principle of mixer-based
sequential frequency scanning.

external clock from a 32-kHz crystal oscillator is divided into 8 and 1 kHz for the HP

and ULP chain, respectively.

Figure 4.2b shows the mixer-based sequential frequency scanning operation that

reduces AFE and DSP power consumption in the ULP mode by lowering their band-

width and sampling rate to 500 Hz and 1 kHz, respectively. The incoming signal

from the microphone is amplified by an LNA with the full 4-kHz bandwidth. At this

point, the mixer, switched by a binary discrete cosine transform (DCT) sequence,

immediately down-converts the frequency of the desired feature to a programmable

intermediate frequency (IF) of <500 Hz. The digital binary sequence generator sup-

ports an arbitrary DCT frequency for the mixer switch control; for example, the
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4-kHz band can be divided into 31.25-Hz frequency bins using a 128-pt DCT, and the

energy content of 32 bands out of 128 is sequentially extracted by sweeping the DCT

frequencies (F1, F2,..., F32). The 32 bands are chosen during NN training for each

target event. The IF down-converted signal is further amplified and low-pass filtered

with 500-Hz bandwidth (via a PGA) and digitized at 1 kS/s. Finally, the digital

IF quadrature mixer down-converts the signal to dc, and feature power is measured.

With a DCT length of 16 ms per feature (128-pt DCT with 8 kHz binary mixing),

32-feature extraction requires a 512-ms frame. The mixer-based structure reduces the

bandwidth, sampling rate, and clock frequency of the AFE and DSP after the mixer;

thus, the feature extraction power consumption is decreased from 225 nW (simula-

tion; based on LNA and PGA at 4 kHz of bandwidth, DRV and ADC at 8 kS/s of

sampling rate, and digital FFT at 8 kHz of clock) to 60 nW (measured; including

LNA, PGA, DRV, ADC, IF mixer/extractor, and binary-DCT sequence generator).

The programmable IF is set to ≈250 Hz to reduce the PGA 1/f noise effect while the

image aliasing issue of non-quadrature mixing and imperfection of first-order filter-

ing is mitigated (without noticeable event detection accuracy degradation) by an NN

trained with the image-aliased and attenuated signals.

4.3 Analog Front-End Implementation

4.3.1 Overall Architecture

Figure 4.3 shows the AFE circuit diagram with ULP and HP chains. Both chains

share a single MEMS capacitive microphone and a charge pump. Depending on the

operation mode, the chain selection switches select one chain. The HP chain consists

of a 31.3-dB gain LNA, 4.6–31.3-dB gain PGA, 8-bit ADC, and an ADC DRV. The

ULP chain also includes all the blocks of the HP chain but operates with lower power

consumption as it targets relaxed noise performance and ULP operation. Moreover,
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Figure 4.3: AFE block diagram with ULP and HP chains.

the ULP chain has a mixer between the LNA and PGA. The mixer is a passive mixer

similar to a typical chopper and is controlled by the binary DCT sequence generator.

4.3.2 Charge Pump and 10-V Level Shifter

Microphone sensitivity is proportional to the microphone bias voltage, and there-

fore, we use a three-stage Dickson charge pump to generate 10-V bias [47]. Because

the MEMS microphone is capacitive, the charge pump only needs to drive negligible

loads. The charge pump uses the 8-kHz clock to minimize possible clock signal cou-

pling to the signal chain (4-kHz BW) and consumes only 13 nW (measured). The

diode connected PMOS sets the corner frequency of the voltage bias to be well below

the microphone response range (<75 Hz) to avoid altering the acoustic response in

the system. CB is an external capacitor to match the input impedance.

To switch the modes between ULP and HP, level shifters shift the control signal

voltage level from nominal VDD to 10 V, since the LNA inputs see signals in the

10-V domain. Figure 4.4 shows the proposed level shifter. Because 10 V is much

higher than the transistor oxide breakdown, coupling capacitors implemented with

a metal–oxide–metal (MOM) structure are used to bridge to the high voltage in the
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Figure 4.4: 10-V level shifter shifts up nominal VDD level to 10 V with periodic
refresh. Its waveforms are shown at right.

level shifter. However, the coupling capacitors may suffer from transistor leakage

due to infrequent mode switches. To avoid leakage, the capacitors are periodically

refreshed with the clock. It is complementarily switched for continuous operation.

4.3.3 Low-Noise Amplifier and Programmable-Gain Amplifier

The first stage amplifier determines the overall noise performance of the analog

signal chain as it is the most noise-sensitive block in the system. Figure 4.5a shows

the block diagram of the proposed LNA. It uses capacitive feedback and pseudo-

resistor dc-servo loops for low-power and small area implementation, respectively.

LNA gain is set by the ratios of CI1 to CF1. The ULP LNA gain is 18 dB, while the

HP LNA gain is set to 31.3 dB to detect smaller acoustic signals. Figure 4.5b shows

the main operational transconductance amplifier (OTA) with common-mode feedback

(CMFB). A conventional differential difference amplifier (DDA)-based common-mode

feedback shows poor linearity when the signal is large, as shown in Figure 4.6 (red

line) [91,92]. To enhance the output range and linearity, we use two different loops for
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the CMFB. One employs coupling capacitors for high bandwidth and good linearity

across the signal amplitude. The other loop uses a DDA with a pseudo-resistor and

is only responsible for setting the dc level.

The main OTA adopts an inverter-based cascode amplifier for better noise effi-

ciency [42, 91]. PMOS and NMOS input transistor pairs are separately biased, and

hence they have two pairs of CI1 and CF1 and also have two dc-servo loops. The sizes

of the input transistor pairs are determined for balanced 1/f noise and thermal noise.

The auxiliary amplifiers (auxamp) in the dc-servo loops shift the output common-

mode voltage of the main OTA to an optimal bias point for each PMOS/NMOS

input pair to maximize the LNA output range. The implementation of the aux-amp

is shown in Figure 4.5c. Very high resistance (>TΩ) can be readily achieved with a

pseudo resistor in a small area, but its resistance varies substantially and is nonlinear

when the voltage difference between the two terminals is large. In particular, mis-

match among parasitic diodes and intrinsic gate diodes causes amplitude-dependent

drift that may cause amplifier saturation. The aux-amps attenuate the maximum

amplitude seen by the pseudo-resistors and hence, improve the operation range and

linearity.

Figure 4.7 shows the PGA implementation. Since PGA is less sensitive to noise

than LNA, the PGAs main OTA (OTAMAIN2) uses only a PMOS input pair for the

maximum output range. The gain is adjustable between 4.6 and 31.3 dB by changing

CI2 for both the ULP and HP chains. CL2 sets 500-Hz BW and 4-kHz BW for the

ULP and HP chains, respectively.

Typical audio systems activated by a VAD could experience front end clipping

(FEC), which may result in losing the first portion of each audio segment in passing

from noise to voice activity due to the transition time between modes [93]. This

effect is exacerbated especially in low power systems with pseudo-resistors since their

extremely high resistance makes the settling time exceedingly long. In this design,

61



(a)

(b)

(c)

Figure 4.5: (a) LNA circuit diagram. (b) OTAMAIN1. (c) OTAAUXN1 and their bias
implementation. OTAAUXP 1 are implemented similarly with the opposite
type of transistors.
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(a) (b)

Figure 4.6: (a) ULP LNA output waveform with conventional DDA CMFB (red)
versus with proposed CMFB consisting of coupling capacitors and DDA
(black). (b) Its spectrum (simulated).

we minimize the ULP-HP transition time by temporarily turning on fast settling

switches [see Figure 4.5a] during the transition. Figure 4.8 shows the measured results.

The common-mode voltage settling time is reduced from 6 s to 100 ms, proving the

effectiveness of this method.

Figure 4.7: PGA circuit diagram.

63



Figure 4.8: Measured HP PGA output showing ULP-HP mode transition time. By
turning on fast settling switches for 30 ms, the settling time reduces from
6 s (black) to 100 ms (red).

4.4 Digital Back-End Implementation

4.4.1 Overall Architecture

Figure 4.9 shows the digital back-end architecture. In the ULP mode, while the

binary DCT mixer sequence generator produces a square wave for the mixer at the

AFE, the IF mixer and extractor receive the ADC output to down-convert an IF

signal into dc and to extract signal power as features for NN classification. Once a

set of features is collected at the feature buffer during a frame, it is transferred to the

NN processor as an input via a bus shared among digital blocks. A linear feedback

shift register (LFSR) replaces the binary DCT mixer sequence generator in acous-

tic signature detection mode, as explained in detail in Section V. In HP mode, the

first-in first-out (FIFO) buffer performs the windowing of the ADC samples for both

compressions [47] and FFT. The NN processor in HP mode computes the FFT and

classification. The always-on ULP modules are implemented with thick oxide I/O

devices to suppress leakage, while power-gated HP modules including the NN proces-

sor are designed with standard devices. Due to the mixer-based architecture, digital
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Figure 4.9: Digital backend architecture.

processing after the ADC in ULP mode runs at 1 kHz rather than the 8-kHz Nyquist

rate, yielding 41% reduction in digital feature extraction power consumption.While

the binary DCT mixer sequence generator runs at 8 kHz, it only consumes 4 nW.

4.4.2 Binary DCT Mixer Sequence Generator

In ULP mode, the binary DCT mixer sequence generator shown in Figure 4.10

controls the feature frequency band selection by creating a DCT basis waveform to be

correlated with the incoming signal. The circuit accumulates a programmable phase,

which is expressed as follows:

∆θ =
π

2N
k, 0 ≤ k ≤ N − 1 (4.1)

where N is the DCT size and k is the index of selected scanning frequency bands

(i.e., Fk ), either as is or doubled by shifting to generate a DCT basis function by the

following equation:

cos(θ) = cos(∆θ(2n+ 1)), n = 0, 1, ..., N − 1 (4.2)
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Figure 4.10: Binary DCT mixer sequence generator circuits.

where n is the accumulation step. By simply using 2 MSBs of the accumulated phase

instead of the exact cosine calculation, the binarized DCT basis waveform can be

obtained by the following equation:

B(f(k, n)) = B(cos(
π

2N
k(2n+ 1)))

B(x) =

 1, x > 0

−1, x ≤ 0
(4.3)

The DCT sizeN determines the resolution of the frequency bins and frame length, and

the number of selected feature frequencies, m, is specified by the number of different

accumulation phase values (i.e., the number of different k values). The k values

are arbitrarily programmable to set particular scanning frequencies and determined

during the NN training process. This design supports N = 32, 64, ..., 1024, and m

= 16, 20, 32, 48.
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Figure 4.11: IF mixer and extractor circuits.

4.4.3 IF Mixer and Extractor

Figure 4.11 shows the IF mixer and extractor that perform quadrature mixing of

the IF signal from the ADC and calculates the power as a scanned frequency feature.

The extracted feature can be expressed as follows:

feature = log((|X[k]|)2),

X[k] =
1√
N/8

N/8−1∑
n=0

(
1

8

8n+7∑
i=8n

B(f(k, i))x[i]) · e−j
2π
N/4

kIFn (4.4)

where x is the input signal, n is the ADC sample index, and kIF is the index of the IF

frequency. Note that the computation inside the parentheses in Equation 4.4 is done

in the AFE by the mixer and the low-pass filter of the PGA. The 4-bit quantized

cosine and sine functions are generated by the phase accumulator and lookup table.

The phase value can be programmed by the index kIF to set the proper IF frequency,

avoiding interference such as 60-Hz noise or other possible ambient acoustic noise.
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Figure 4.12: NN processor core architecture.

This circuit also computes the average input power per frame to be used for automatic

gain control. Last, the ADC output is accumulated for a fixed amount of time with

a separate data path that is only turned on during the acoustic signature detection

mode, as explained in Section 4.5.

4.4.4 Neural Network Processor

The ULP NN processor shown in Figure 4.12 employs a custom-built instruction

set including matrix-vector multiplication, FFT, conditional branch, element-wise

vector operation, non-linear activation, and min/max/averaging to support arbitrary

network models and various pre/post-processing, as detailed in Chapter III.

The processor has 16 kB of on-chip SRAM storage (see Figure 4.9) for model

parameters (4 bit per weight) and instructions. By leveraging the custom-designed

high-Vth SRAM cells, the power-gated sleep retention power of the processor is only

440 pW. However, the active state leakage power is >800 nW because the processor

core and SRAM peripherals consist of standard-Vth devices to meet the performance

requirement of the HP mode, and this active leakage power is much higher than the
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Figure 4.13: Measured power reduction from computational sprinting.

power consumed by ULP feature extraction. Hence, if the processor runs at a slow

clock frequency of 1 kHz with the rest of the ULP digital processing modules to min-

imize dynamic power, then system power consumption would be dominated by NN

processor leakage. To suppress this active leakage power, the concept of computa-

tional sprinting is adopted, minimizing the active time of the NN processor. Since

ULP feature extraction operates sequentially, there is a long interval between classifi-

cations of a frame. The NN processor sprints at 700 kHz once the sequential feature

extraction is complete and then is power-gated for the remainder of the next feature

extraction. When 128-pt DCT, 32-feature, and a 32-32-16-2 NN model configura-

tion are used, a duty cycle of 0.8% (sprint/sleep ratio) is achieved with 512 ms of

frame interval, resulting in a 12× power reduction in the NN processor compared

with running it at 10 kHz without sprinting, as shown in Figure 4.13.

On the other hand, in HP mode, a 128-80-20-2 NN model configuration is used.

The mixer-based sequential frequency scanning feature extraction is replaced by a

parallel FFT based approach that extracts the full 128 features by performing the

256-pt FFT on a 32 ms of the frame. The HP mode operation reduces the latency

of feature extraction by a factor of 16× at the cost of 2.47-µW power consumption
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(measured; for AFE and digital FFT feature extraction) compared to the ULP mixer-

based sequential frequency scanning approach. The NN processor stays active running

at 700 kHz without duty cycling or clock gating for the HP mode to maintain the

124× increased throughput of 371 kmacs/s, compared with 3 kmacs/s in the ULP

mode. Unlike the ULP mode, the active leakage does not dominate the overall power

consumption in HP mode.

4.5 Acoustic Signature Wakeup Detection

The system also features inaudible acoustic signature detection as an alternate

wakeup mechanism. This feature enables user-command silent remote wakeup of the

sensor node without disturbing other sensors or people around them, as shown in Fig-

ure 4.14a. The mixer-based architecture is reused to realize the signature detection,

as depicted in Figure 4.14b. An incoming signal is mixed with a local pseudo-random

sequence through the mixer in the ULP AFE, and then the (digitally) accumulated

value for a full sequence is compared with a threshold to determine the existence of

a signature with the circuit shown in Figure 4.11, as explained in Section 4.4.3. In

this mode, a programmable LFSR running at 1 kHz replaces the binary DCT mixer

sequence generator, producing a maximal length sequence (MLS) to be mixed with

the input signal. The length of MLS (NMLS) is determined as 2stage – 1, where the

stage is the number of LFSR stages. The LFSR tabs are arbitrarily programmed to

allow a dedicated MLS for each sensor node, and to configure bit-stages of LFSR,

exploiting the tradeoff between the minimum required SNR and detection latency.

The proposed sequence correlation with simple mixing requires exact phase align-

ment between the sequence from the transmitter and receiver. However, this phase

alignment cannot be guaranteed because each sensor operates on unsynchronized in-

dependent clock sources. Running a full correlation at every sample to test all possible

phases is computationally expensive. To mitigate this issue, we propose a time-drift
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synchronization scheme to realize correlation with simple mixing at low power. As

shown in Figure 4.14c, the transmitter and receiver use intentionally mismatched

sequence lengths of NMLS + xMLS and NMLS, respectively. Due to the length mis-

match by xMLS, relative phases of two sequences drift over time and periodically align

with each other at the beginning of the sequence, and the accumulated mixed-signal

produces periodic peaks to trigger wakeup. The period of the peaks, or the worst

detection latency, is determined by NMLS(NMLS + xMLS) fLFSR.

4.6 Measurement Results

The chip was fabricated in 180-nm CMOS and integrated with a MEMS micro-

phone, as shown in Figure 4.15. The ULP and HP chain amplifiers consumed 31 and

370 nW, respectively. The ULP chain amplifiers have 16 and 62 µVrms measured

input-referred noises with the maximum and minimum gain settings, respectively, as

shown in Figure 4.16a. The maximum PGA output range that satisfies 8-bit accuracy

[<0.4% total harmonic distortion (THD)] is 1.45 Vpp. The HP chain amplifiers have

8.7-µVrms input-referred noise across all PGA gain settings [see Figure 4.16b].

Figure 4.17 shows the measured mixer-based frequency scanning operation and

input referred noise spectrum for the 64-pt DCT case. Two different applied tones, 1

and 2 kHz, were mixed down to 250 Hz in the IF, and power was extracted by DSP

at two mixing frequencies each: 1) 0.75 and 1.25 kHz for 1-kHz input tone and 2)

1.75 and 2.25 kHz for 2-kHz input tone.

Figure 4.18 shows the measured ULP and HP mode power breakdown. The total

ULP power was measured as 142 nW, and every block power was very balanced, which

indicates a well-optimized design. The measured HP power was 18 µW dominated

by the digital circuits.

For VAD performance evaluation, 40 min of speech segments were concatenated

from the LibriSpeech data set and mixed with babble noise from the NOISEX-92 data
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(a)

(b)

(c)

Figure 4.14: (a) Inaudible acoustic signature wakeup detection. (b) Local MLS signa-
ture generator using programmable LFSR. (c) Time-drift synchroniza-
tion scheme.
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Figure 4.15: Die micrograph and system integration with MEMS microphone.

(a) (b)

Figure 4.16: (a) ULP PGA. (b) HP PGA input referred noise spectrum density with
different PGA gain settings (min, mid, and max gain).
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Figure 4.17: Power spectral density referred to input (PSD RTI) for LNA, PGA, and
DSP. Two different applied tones (1 and 2 kHz) are mixed down to 250
Hz in IF and extracted by DSP at two mixing frequencies each (0.75 and
1.25 kHz for 1 kHz and 1.75 and 2.25 kHz for 2-kHz tone).
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Figure 4.18: Measured power distribution of ULP mode (left) and HP mode (right).

set for training. For testing, 10 min of concatenated speech and noise segments were

used. Exclusive data sets were used for NN training and evaluation to guarantee no

over-fitting occurred.

We first performed electrical testing by inputting signal feeds to the LNA via an

electrical connection. Figure 4.19 shows the measured receiver operating character-

istic (ROC) curve with varying SNRs in the ULP mode. The detection threshold

is set by the point on the ROC curve that maximizes the rectangular area formed

by its coordinates. The system achieves 91.5%/90% speech/non-speech hit rates at

10-dB SNR with babble noise in the ULP mode when programmed with an NN of

size 32-32-16-2 neurons with two hidden-layers, exhibiting ∼7.5% better hit rate with

7× less power consumption than prior state-of-the-art works.

Unlike prior-art, we also performed an acoustic VAD test with the setup shown

in Figure 4.20. The proposed chip was integrated with a MEMS microphone in the

daughterboard, which includes a sound hole, and is then covered by a 3D-printed

custom lid to provide an acoustic cavity for the microphone and protect electronics

at the same time. Then, the daughterboard was connected to the motherboard and
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Figure 4.19: ROC curves for ULP VAD mode with varying SNRs in the electrical test
(electrical connection to LNA, left) and SPLs in the acoustic test (using
speaker/integrated microphone in the sound chamber, right).

Figure 4.20: Acoustic testing setup. Proposed chip was integrated into the system-
on-board with a MEMS microphone and 3-D-printed lid and tested in a
sound chamber.
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Figure 4.21: Measurement results of acoustic signature wakeup detection with MLS
sequence of six stages, NMLS = 63, and xMLS = 1 at various SNRs,
showing detection down to -10-dB SNR.

placed within the sound chamber to achieve very low ambient noise, around 35-dBA

sound pressure level (SPL). For acoustic testing, we concatenated speech segments

without mixing any background contextual noise to measure the effect of circuit noise

only. The measurement results show >83%/85% speech/non-speech hit rates with a

signal level down to 50-dBA SPL, as shown in Figure 4.19. The measured AFE

equivalent input noise (EIN) is 45- and 44-dB SPL (no weighting) for ULP (500-Hz

BW) and HP (4-kHz BW) chains, respectively.

The measurement of acoustic signature wakeup detection was also performed. As

shown in Figure 4.21, the system wakes up under exposure to as little as -10-dB SNR

of white-noise-like sound when MLS signature of 6-stages, NMLS = 63, and xMLS =

1 is used, consuming 66 nW. The detection threshold of the decision metric is set to

10 dB to measure minimum SNR. These results prove that the system can be awoken

by a signature buried in ambient noise that is inaudible to humans near the receiver.

Moreover, Figure 4.22 shows that the increased stages of LFSR allow more relaxed

SNR requirement at the cost of increased detection latency. Note that every added

stage achieves around 3 dB of SNR gain, but pays ∼4× increased latency.

Figure 4.23 shows measured logic analyzer output of overall system operation.

The acoustic system stayed in the ULP mode when there was no voice. The system
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Figure 4.22: Measurement results of acoustic signature wakeup detection with various
LFSR stages, showing the tradeoff between the minimum required SNR
versus worst case detection latency.

clock ran at 1 kHz, and NN output data was observed every 512 ms. Once a voice

activity was detected, the proposed acoustic chip sent an interrupt request to an

external microcontroller via an inter-chip serial interface [94]. Then, the microcon-

troller sequentially waked up HP AFE chain and HP digital back-end via the serial

interface. The 100-ms delay was given for AFE signal settlement before the digital

back-end operation. The system clock was switched to 8 kHz, and frame length of

HP NN was 16 ms (measured in 128-pt FFT and 64 features case). The acoustic

system also compressed audio with a frame length of 24 ms in the HP mode. The HP

detection threshold was set to achieve a high non-speech hit rate and accurate false

alarm removal (97%/25% non-speech/speech hit rates, measured with a 128-80-20-2

NN model and 256-pt FFT). When there was no voice for long enough time, the

acoustic system returned to the ULP mode.

4.7 Summary

This chapter demonstrated the design of a sub-µW voice and non-voice acoustic ac-

tivity detection chip. By using mixer-based sequential frequency scanning operation,
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Figure 4.23: Measured waveform of the acoustic system that switches between ULP
and HP modes.

the feature extraction power is reduced by 4×. Table 4.1 compares the proposed fea-

ture extractor with prior works. Although [42] shows the lowest power consumption,

the signal bandwidth is limited to under 500 Hz. This work achieves the lowest nor-

malized power consumption, calculated in the same manner as in [76], which reflects

the power normalized to the number of channels and signal bandwidth. Moreover,

this work achieves the best front end dynamic range, thanks to the proposed amplifier

design.

Table 4.2 shows the comparison of this work with prior state-of-the-art VAD sys-

tems. While this design consumes the lowest power, it is worthwhile to also consider

the latency or throughput. For example, [76] has better energy efficiency in terms

of classification/W/s than this work. However, it is not always possible to scale the

power consumption of feature extraction to a lower power level with relaxed latency

since it is an always-on block. In addition, there are still useful applications (e.g.,
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Table 4.1: Comparison of Feature Extractor
This Work [76] [42] [75]

Technology (nm) 180 180 180 90

Feature Extraction Type Mixed-signal Analog to events Digital Analog

Channel Number 16-48 16 4-16 16

Frequency Range (Hz) 75-4k 100-5k 0.2-470 75-5k

Power (nW) 60 380 10 6000

Normalized Power (nW)1 5 71 34 1186

Dynamic Range (dB) 47 40 N/A 40

Building Blocks LNA, Mixer, LPF, DSP LNA, BPF, FWR, IAF DSP LNA, BPF, FWR, LPF

1Nomarlized power is calculated according to the equation in [5], normalized to 4kHz.

Table 4.2: Comparison of Voice Activity Detector (VAD)
This Work [76] [62] [75] [74]

Technology (nm) 180 180 65 90 32

Acoustic Input
Analog mic. Analog mic.

Assumed digitized
Analog mic.

Assumed digitized
w/ gain stage w/ gain stage w/ gain stage

Classifier Neural network Neural network Neural network Decision tree Energy-based

Classifier Topology
Yes No Yes No No

Programmability

Dataset1
LibriSpeech + AURORA4 +

AURORA2 NOISEUS N/A
NOISEX-92 DEMAND

Latency (ms) 512 10 10 <100 10

Power (µW) 0.142 1 22.3 6 300

SP/Non-SP 91.5%/90%3@ 84%/85%@ 90%/90%4@ 89%/85%@ 97%@
hit rate2 10dB SNR 10dB SNR 7dB SNR 10dB SNR N/A

Acoustic Testing
Yes No No No No

Performed

1All datasets are similar in speech quality.
2Tested electrically.

3Measured at ULP mode with 128pt-DCT, 32 feature channels, and 250Hz IF.
4Converted from EER in [3].

compressed speech recording after VAD) that can tolerate this latency, given the

normal speech rate are 120–160 words per minute. Moreover, the digital backend

design of this work offers greater flexibility to use various model topologies compared

to [76], making this design a better approach for applications that are extremely

power constrained yet require mapping to various target events, such as miniaturized

battery-operated IoT sensor nodes.
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CHAPTER V

Millimeter-Scale Wireless Audio Sensor Node

Bulky components of audio sensor node such as microphone, battery and antenna

often impede compact system integration. This chapter demonstrates a fully func-

tional and self-contained audio sensor node in millimeter-scale size including voice

activity and acoustic object detection, continuous audio streaming with compression,

non-volatile system storage, and transmission of the audio data over a 20m wireless

link all when operating on millimeter-scale thin-film batteries with solar harvesting.

The complete audio sensor is enabled by stacked-die 3D integration of multi-chip

system with other system components.

5.1 The First Generation

The complete system consists of 6 heterogeneous stacked ICs as shown in Fig-

ure 5.1: 1) The proposed audio processing IC described in Chapter II acquires and

compresses audio signal, and streams out through a dedicated audio bus. 2) An

8Mb of custom embedded Flash introduced in Chapter II stores compressed audio at

656pJ/bit. 3) An RF transceiver co-designed with a 3D Roger-substrate antenna [95]

communicates with a gateway up to 20m away. 4) The energy harvester charges the

battery using stacked photovoltaic (PV) cells [96] and also protects it from reverse

current. 5) The power management unit (PMU) [97] converts battery voltage to 1.2V
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Figure 5.1: Overall block diagram of the first generation audio sensor node.
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and 0.6V to provide multiple voltage domains to the ICs. 6) An ARM Cortex M0

processor coordinates system operation and enables additional signal processing such

as event detection. The stacked ICs communicate via ultra-low power Mbus [98].

The system integration strategy is carefully devised to achieve minimal volume

as shown in Figure 5.2. On the bottom side of a custom 6×5 mm2 PCB substrate,

we stack 2 rechargeable thin-film Li batteries together with ICs. We place a MEMS

transducer directly adjacent to the stacked ICs to minimize the system volume and

improve SNR by limiting the parasitic capacitance between the transducer and au-

dio processing IC. A 3D-printed custom lid covers all electronics, including a 32kHz

crystal and 3 capacitors for the RF transceiver to generate an acoustic back chamber.

By combining the cavity for the sound chamber with the location of all electronics,

system volume is aggressively reduced and also protects the electronics from light.

At the same time, air volume is also increased compared to a commercial package

which improves the microphone’s sensitivity and low frequency response. The top

side contains a sound hole for air passage, and a 3D magnetic dipole antenna. The

magnetic dipole does not require physical separation from the electronics, further en-

abling compact integration. PV cells are mounted on top of the antenna and covered

with clear epoxy to provide protection while allowing light to reach the PV cells.

Fully functional operation, including audio acquisition, compression, storage and

RF transmission, of a millimeter-scale unit identical to that pictured in Figure 5.2

was demonstrated when operating stand-alone powered only by its internal battery

and energy harvesting. Measured power profile of the stand-alone operation is shown

in Figure 5.3. Initially, the system is in deep sleep mode and consumes 7nW. After

booting up, the processor initiates relevant chip settings and manages whole system

operation by a loaded C program. After the settling time of analog circuits within

a system, Flash is erased first, and then audio processing/streaming and Flash pro-

gramming are performed simultaneously. When streaming is finished, whole system
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(a) Cross sectional diagram

(b) Top-facing view

(c) Bottom-facing view

Figure 5.2: The complete 6×5×4 mm3 audio sensor node.
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Figure 5.3: Measured power profile of audio sensor node.

goes sleep power gating mode, and the Flash retains streamed audio data during the

sleep mode. When system wakes up again, the stored audio data is read by processor

and delivered to transceiver chip. Finally, the audio footage is successfully trans-

mitted to a gateway wirelessly. With harvesting from 2.6×3 mm2 PV cell at 3klux,

0.45µW of power is attained at 4V. The measured RF transmission power is 79µW,

and the system sleep power is 7.2nW. Real-time audio acquisition, compression, and

streaming to Flash consumes 68µW of power. The system storage supports ∼40 mins

of compressed audio streaming when 15× compression is performed (normal human

speech), while the system battery supports ∼1 hour of continuous audio streaming.

After maximum battery usage, 6 days of charge recovery time is needed. Overall

system parameters are summarized in Table 5.1.

5.2 The Second Generation

Although the first generation audio sensor is successfully developed to demonstrate

millimeter-scale distributed audio sensing, it doesn’t support low power ML capability

that monitors acoustic scenes and intelligently wakes up the system. Therefore, the

sensor node should be duty-cycled by using a system timer or by end-users, may
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Figure 5.4: Overall block diagram of the second generation audio sensor node.

missing some events. As new techniques are proposed and developed in Chapter III

and Chapter VI, we devise the second generation of millimeter-scale wireless audio

sensor node in this Section.

Figure 5.4 shows a block diagram of the complete system. The acoustic signal

processing chip in Chapter VI integrated with a MEMS microphone performs acoustic

event/object detection by using a built-in NN processor at nW-level power. Upon

an event detection, it wakes up the whole system. Depending on applications, it also

acquires, compresses, and streams out audio signals. In the second generation, we

increase the battery size from 16µAh to 36µAh to allow longer lifetime. Also, four
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Figure 5.5: Self booting circuits using COTS components.

8Mb Flash chips (Chapter II) are stacked to provide more storage to the system (i.e.

1MB in the first generation; 4MB in the second generation). In this generation, we use

8-series-stacked PV cells [99] for solar harvesting to avoid efficiency loss from voltage

up-conversion in harvester chip of the first generation, and thus to increase harvesting

efficiency. In addition, we include a temperature sensor layer in the sensor node so

that the system has temperature immunity. Based on the sensed temperatures, all

settings (ex. analog front-end circuits, clock frequencies, and PMU current drive

strength) are automatically adjusted by a processor to ensure proper operations over

wide temperature range. In this system, the processor, PMU, temperature sensor,

and RF transceiver are integrated in one-chip solution (CIS chip) to reduce overall

sensor node volume.

In this system, the acoustic wakeup detector is always-on during the system sleep

mode. In the sleep mode, the PMU output current strength is adjusted to supply

a few hundreds of nA, minimizing overall system current consumption. However,

although the average current consumption is nA-level, the NN processor sprints and
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thus instantaneously draws µA-level current, as explained in Chapter VI. The PMU

output strength in sleep mode can not hold this surge current. Therefore, we place

10µF of power capacitor on the board to store enough charges to maintain voltage

level during the sprint operation. However, this causes another problem when the

system boot-up. Initial PMU strength for booting is fixed and not enough to drive

10µF capacitance, resulting in voltage collapse. To resolve this issue, we configure self-

boot circuits shown in Figure 5.5 by using COTS power switch. Initially, the supply

voltage came from PMU is weakly connected to the 10µF power capacitor through

a large resistor (2MΩ). After system boot and the supply voltage stabilization, the

processor connects the supply rail to the power capacitor using a GPIO port and a

COTS transistor before the sprinting operation starts.

The system integration strategy is illustrated in Figure 5.6. On a custom φ11 mm

round shape Roger PCB substrate, we place 2 separate stacks: 1) main processing

stack, and 2) storage stack as shown in Figure 5.7. The main processing stack consists

of acoustic signal processing chip (Chapter VI), CIS chip, and 3 rechargeable thin-film

Li batteries. The storage stack consists of four 8Mb embedded Flash chips (Chapter

II), decoupling capacitor array chip, and PV cells. As same as in the first generation,

we place a MEMS microphone directly adjacent to the audio chip to minimize the

parasitic capacitance and system size. To reduce volume of sensor node, 3D-shaped

antenna in the first generation is replaced with a round-shaped planar antenna. A

same approach that combines the cavity for sound chamber with the location of all

electronics is used in the second generation. A 3D-printed custom cylindrical wall and

transparent top cover protect all electronics, including a quartz crystal and off-chip

passive devices, generating acoustic back chamber at the same time. The bottom side

of the board contains a sound hole for microphone air passage. All stacked dies are

encapsulated by black epoxy to block the light. The PV cells are covered with clear

epoxy to allow light exposure for solar harvesting and optical communication [3].
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Figure 5.6: Planar and side view diagram of system integration.
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(a)

(b)

Figure 5.7: Vertical view of (a) main processing stack and (b) storage stack.

Figure 5.9 shows the measured full operation cycle of the second generation au-

dio sensor node. After self-booting sequence and initial settings by the PMU and

processor, whole sensor system goes to sleep mode. At this point, the acoustic event

detector such as VAD with NN processing runs continuously as a background task.

Once it detects an event of interest, the sensor node is awaken by the interrupt. The

processor re-configures all the settings for the audio streaming and starts. When

the HP mode NN classifier (Chapter VI) detects no-event, the processor stops audio

recording and the system goes back to sleep mode. Either by end-users or timer,

the system wakes up and reads the stored audio footage from Flash. Finally, the

audio data is retrieved by wireless communication. The always-on acoustic detec-

tion mode consumes ∼800nW including the PMU power conversion efficiency. The

continuous compressed audio streaming to Flash consumes 45µW, and wireless TX

consumes 160µW. For the acoustic event monitoring, the system sustains 7.5 days

without recharge. For the continuous audio recording, the system operates 3.2 hours,
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Figure 5.8: Audio sensor system operation cycle.

Table 5.1: Comparison of Developed Audio Sensor Node
1st generation 2nd generation

Dimension 6mm × 5mm × 4mm φ11mm × 3mm

Storage 1MB Flash / 24kB SRAM 4MB Flash / 64kB SRAM

Processor ARM Cortex M0 ARM Cortex M0

Battery 16µAh thin-film 36µAh thin-film

Energy harvesting Solar, 0.45µW@3klux Solar, 2.87µW@3klux

Audio feature Audio streaming only Audio streaming w/ event detection

Sleep power 7nW 800nW1

Streaming power 68µW 45µW

1Sleep with acoustic event detection

which is 3.2× longer than the first generation. Assuming the 1% of event activity, the

system streams audio data for 4.8 days without recharge if it streams only when the

event occurs. In terms of system storage, ∼125 mins of compressed audio recording is

achieved, which is 3.1× improvement over the first generation. The PV cells provide

2.87µW at 4V, charging the battery within 2 days. The system parameters of the

second generation are summarized in Table 5.1.
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Figure 5.9: The complete φ11mm × 3mm audio sensor node.
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CHAPTER VI

Conclusion

Acoustic sensing modality is highly desired in extensive applications as it offers

several advantages over any other sensing methods. The information carried by sound

is comparable to that of image, yet requires much lower computational cost to be

processed. In addition, acoustic signal can be captured omni-directionally, and also

regardless of light or obstacle condition. Although it has been extensive research on

millimeter-scale sensor nodes, they are often limited to simple sensing modality such

as pressure or temperature. Realizing ultra-small audio sensing/processing platform

that can be embedded virtually anywhere will dramatically broaden its applications

such as event logging, emergency identification or object detection. The key challenge

to reduce the form factor of audio sensor node is low-power operation due to the small

battery size. Also, small storage size imposes a constraint on data size to be stored

or processed. In this dissertation, a wide range of low-power techniques were covered

starting from algorithms to a complete system level integration. Main focus has been

made on reducing overall power consumption of audio sensor node, and thus making

its lifetime longer while avoiding critical performance degradation. To achieve this

demanding goal, all system components including algorithms, circuits, architectures,

and system level designs were carefully studied and crafted.

This dissertation first presented an audio processing IC that performs audio acqui-
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sition and compression, consuming 4.7µW. A new low-power compression algorithm

exploited frequency domain signal sparsity to compress raw audio samples. The

proposed algorithm guaranteed constant worst-case compression ratio, but showed

variable rate depending on signal sparsity. The algorithm achieved 1000× lower com-

plexity than CELP algorithm and 3.9× better compression than ADPCM algorithm,

maintaining similar sound quality. In this work, an efficient hardware architecture for

accelerating the algorithm was also studied. Along with clock/data gating and zero

skipping, the proposed architecture reduced the power consumption by 92%. The

proposed compression engine showed only 1.5µW of power consumption to provide

4-32× real-time audio compression. Additionally, newly designed custom 8Mb em-

bedded NOR Flash was proposed to enable seamless audio streaming by a ping-pong

buffering scheme. With the ping-pong streaming, the Flash programming power was

reduced by 2.1×, achieving 38µW power. Overall, this work proved microwatt-level

audio streaming is possible, realizing real-time audio acquisition on millimeter-scale

energy sources.

A picowatt-level standby power neural network processor was introduced for sensor

applications. In accordance with the recent success of machine learning techniques,

having on-sensor inference capability is highly demanding. Due to the large compu-

tation amount of machine learning algorithms, the computing hardware often leaks

high current even during the standby from tons of transistors inside. By combining

custom instruction set architecture, compact SIMD microarchitecture, and ultra-low

leakage SRAM memory, this dissertation work proposed a compact programmable

neural network processor that can be embedded on resource-constrained sensor node.

The proposed custom instruction set provided dense program to minimize required

storage amount, yet showed sufficient flexibility to realize general sensor node tasks.

The microarchitecture of the processor exploited parallelism for efficient processing of

machine learning workloads, while still had minimal hardware complexity to reduce
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power consumption. Newly designed ultra-low leakage 7T SRAM memory showed

3.35fW/bit of standby power. The proposed processor consumed only 440pW standby

power, and achieved 400-GOPS/W of active energy efficiency. Among the prior works

of on- or near-sensor neural network processor, this work showed the highest energy

efficiency and the lowest standby power at the same time. The proposed neural

network processor is integrated in an acoustic object detection sensor system, and

successfully demonstrated >90% of positive detection and <3% of false alarm for 5

acoustic targets detection.

As a wakeup method for the sensor nodes, a voice and acoustic activity detec-

tor that uses a mixer-based architecture and ultra-low power neural network based

classifier was proposed. By sequentially scanning 4 kHz of frequency bands and down-

converting to below 500 Hz, feature extraction power consumption was reduced by 4×.

The neural network processor realized computational sprinting to achieve 12× power

reduction. The system also demonstrated inaudible acoustic signature detection for

intentional remote silent wakeup by users while re-using a subset of the same circuit

components. The measurement results of voice activity detection showed 91.5%/90%

of speech/non-speech hit rates at 10 dB SNR with babble noise and 142 nW power

consumption. Acoustic signature detection consumed 66 nW, successfully detecting

a signature 10 dB below the noise level.

Finally, this work developed two generations of complete wireless audio sensor

node with millimeter-scale form factor. This was enabled by the proposed audio

processing ICs and neural network processor, integrated with a MEMS microphone,

general-purpose microprocessor, 8Mb Flashes, RF transceiver with custom antenna,

PV cells for energy harvesting and optical communication, and millimeter size batter-

ies. The complete stand-alone systems achieved 1 hour (1st gen.) and 3.2 hours (2nd

gen.) of speech recording and energy-autonomous operation in bright room light.

Demand on lower power, smaller form factor and longer life time for wireless
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audio sensing devices will continue to increase as time passes. All of the works

presented in this dissertation give subtle guidance for designing ultra-small audio

devices in somewhat extreme design space. Such design techniques and approaches

could possibly expedite the development of future seamless audio sensing all around.
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