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ABSTRACT

Deep neural networks have shown a superior performance in many learning problems
by learning hierarchical latent representations from a large amount of labeled data. How-
ever, the success of deep learning methods is under the closed-world assumption: no in-
stances of new classes appear at test time. On the contrary, our world is open and dynamic,
such that the closed-world assumption may not hold in many real applications. In other
words, deep learning-based agents are not guaranteed to work in the open world, where
instances of unknown and unseen classes are pervasive.

In this dissertation, we explore lifelong learning and representation learning to gen-
eralize deep learning methods to the open world. Lifelong learning involves identifying
novel classes and incrementally learning them without training from scratch, and represen-
tation learning involves being robust to data distribution shifts. Specifically, we propose
1) hierarchical novelty detection for detecting and identifying novel classes, 2) continual
learning with unlabeled data to overcome catastrophic forgetting when learning the novel
classes, 3) network randomization for learning robust representations across visual domain
shifts, and 4) domain-agnostic contrastive representation learning, which is robust to data
distribution shifts.

The first part of this dissertation studies a cycle of lifelong learning. We divide it into
two steps and present how we can achieve each step: first, we propose a new novelty
detection and classification framework termed hierarchical novelty detection for detecting
and identifying novel classes. Then, we show that unlabeled data easily obtainable in
the open world are useful to avoid forgetting about the previously learned classes when
learning novel classes. We propose a new knowledge distillation method and confidence-
based sampling method to effectively leverage the unlabeled data.

The second part of this dissertation studies robust representation learning: first, we
present a network randomization method to learn an invariant representation across visual
changes, particularly effective in deep reinforcement learning. Then, we propose a domain-
agnostic robust representation learning method by introducing vicinal risk minimization in
contrastive representation learning, which consistently improves the quality of representa-

tion and transferability across data distribution shifts.

Xvi



CHAPTER1

Introduction

1.1 Motivation

Deep learning is a class of machine learning algorithms that aims to learn hierarchical
latent representations from high-dimensional raw data (Hinton and Salakhutdinov, 2006;
LeCun et al., 2015). The power of deep learning lies not only in eliminating the need for
hand-crafted features, but also in boosting the performance of machine learning algorithms.
Deep learning has been considered a core method to make progress toward artificial intel-
ligence. Specifically, deep learning approaches have been successfully applied in many
learning problems, such as visual recognition (Girshick et al., 2014; Simonyan and Zisser-
man, 2015; He et al., 2016), speech recognition (Hinton et al., 2012; Graves et al., 2013),
natural language processing (Mikolov et al., 2013; Pennington et al., 2014), and reinforce-
ment learning (Mnih et al., 2015; Silver et al., 2017).

However, the success of deep learning methods is mostly under the closed-world as-
sumption: training and test data are drawn from the same distribution, such that no in-
stances of unknown or unseen classes appear at test time. On the contrary, many real-world
problems do not satisty this assumption as they lie in the open world. Therefore, the robust-
ness of deep learning has been a serious concern regarding its practical applicability. To
generalize deep learning methods to real-world applications, several research topics have
been explored, including representation learning (Bengio et al., 2013; Chen et al., 2020a;
He et al., 2020), domain adaptation (Ganin and Lempitsky, 2015; Ganin et al., 2016; Tobin
et al., 2017), transfer learning (Donahue et al., 2014; Razavian et al., 2014; Yosinski et al.,
2014), out-of-distribution detection (Hendrycks and Gimpel, 2016; Lee et al., 2018b,c),
adversarial robustness (Szegedy et al., 2014; Goodfellow et al., 2015; Nguyen et al., 2015),
lifelong learning (Li and Hoiem, 2016; Kirkpatrick et al., 2017; Parisi et al., 2019), zero-
shot learning (Rohrbach et al., 2011; Xian et al., 2017), and few-shot learning (Koch et al.,



2015; Santoro et al., 2016; Vinyals et al., 2016). In this dissertation, we study lifelong
learning and representation learning in the open-world setting for successful deployment

of deep learning methods to real-world applications.

Lifelong learning aims to continually learn over time by acquiring new knowledge from
a continuous stream of data while retaining previously learned knowledge (Thrun and
Mitchell, 1995; Silver et al., 2013; Hassabis et al., 2017; Chen and Liu, 2018; Parisi et al.,
2019). Humans are innately motivated to continually learn to improve their knowledge
and develop their skills throughout their lives. Similarly, in real-world applications, in-
telligent agents are exposed to ever-changing environments, such that they are required to
continually learn from their experiences to operate in new environments in their lifetime.
For example, autonomous driving agents should interact with environments, such that they
arrive at the destination without accident in any conditions. Lifelong learning enables the
agents to deal with unexpected cases occurring in the real world. While most of the life-
long learning works have focused on classification tasks (Li and Hoiem, 2016; Kirkpatrick
et al., 2017), lifelong learning has become successful with deep architectures in many dif-
ferent machine learning tasks, including representation learning (Rao et al., 2019), object
detection (Liu et al., 2020), natural language processing (Sun et al., 2020), reinforcement
learning (Tessler et al., 2017; Schwarz et al., 2018), and robotics (Lesort et al., 2020).

Lifelong learning can be divided into two steps: first, the agents should detect and iden-
tify “what to learn.” To achieve this, novelty or out-of-distribution detection (Manevitz
and Yousef, 2001; Pimentel et al., 2014; Hendrycks and Gimpel, 2016; Lee et al., 2018b,c)
can be considered, as it is a task to detect objects never seen before. Novelty detection
has several interchangeable terms with subtle differences: anomaly detection, outlier de-
tection, and out-of-distribution detection. Anomaly or outlier detection implicitly assumes
that detected novelties should be rejected as they are abnormal (Pimentel et al., 2014).
However, novelty or out-of-distribution detection aims to distinguish known and novel ob-
jects, which could be from either unknown classes or unknown distribution. In lifelong
learning, the goal of detection is to learn them, so novelty or out-of-distribution would
be more appropriate. In particular, out-of-distribution (Hendrycks and Gimpel, 2016; Lee
et al., 2018b,c) has recently gained increasing attention, as deep learning models are over-
confident in their predictions, which are highly biased to in-distribution observed during
training. However, novelty detection results are only the novelty of inputs, such that hu-
man annotation is required before learning them. In other words, the conventional novelty
detection is not directly applicable to lifelong learning.

Our first contribution in Chapter II is proposing a new novelty detection and classifi-



cation framework termed hierarchical novelty detection to provide better identification of
the novel objects to the agents. More specifically, in hierarchical novelty detection, novel
classes are expected to be classified as semantically the most relevant label, i.e., the clos-
est class in the hierarchical taxonomy built with known classes. For example, if an agent
knows dogs, cats, and birds, it infers the general characteristics of dogs and cats, which are
categorized as mammals. Then, when the agent observes a bear, hierarchical novelty de-
tection enables the agent to predict its label as novel mammal. In this way, the knowledge
of the agent is more organized based on the similarity of objects, such that the agent is able
to efficiently learn on top of its simplified representation.

Next, the agents should continually update their knowledge without forgetting previ-
ously learned knowledge. Continual lifelong learning has been studied with different as-
sumptions. Broadly speaking, there are three types of problems (van de Ven and Tolias,
2018): first, the goal of task-incremental learning (Li and Hoiem, 2016; Hou et al., 2018)
is a kind of multitask learning, but tasks are sequentially given. In this problem, task
boundaries are assumed to be clear and the agent receives information about the task at
test time. Another is data- or domain-incremental learning (Kirkpatrick et al., 2017; Rusu
et al., 2016b; Schwarz et al., 2018), where task identities are not available at test time.
Instead, the output space is also fixed, such that the agent learns to generalize previously
observed classes. Many robotics and reinforcement learning problems follow this assump-
tion: for example, agents in video games (Bellemare et al., 2013; Cobbe et al., 2019) or
3D simulated environments (Beattie et al., 2016; Fan et al., 2018) have a predefined set
of actions, but they can perform multiple tasks with the actions. Lastly, class-incremental
learning (Rebuffi et al., 2017; Castro et al., 2018; Wu et al., 2018a; Lee et al., 2019a) does
not assume explicit task boundaries, nor is the output space fixed.

In continual learning, deep learning agents easily forget about previously learned knowl-
edge while acquiring new knowledge, which is often referred to as catastrophic forget-
ting (McCloskey and Cohen, 1989; French, 1999). There are two main streams of con-
tinual learning methods to overcome catastrophic forgetting: model-based and data-based.
Model-based approaches (Rusu et al., 2016b; Kirkpatrick et al., 2017; Lee et al., 2017;
Lopez-Paz et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Chaudhry et al., 2018;
Jung et al., 2018; Mallya et al., 2018; Nguyen et al., 2018; Ritter et al., 2018; Schwarz
et al., 2018; Serra et al., 2018; Yoon et al., 2018) keep the knowledge of previous tasks
by penalizing the change of parameters crucial for previous tasks, such that measuring the
importance of parameters on previous tasks is important in these approaches. Data-based
approaches (Li and Hoiem, 2016; Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2018;
Javed and Shafait, 2018; Wu et al., 2018a; Lee et al., 2019a) keep the knowledge of pre-



vious tasks by knowledge distillation (Hinton et al., 2015), which minimizes the distance
between the manifold of the latent space in the previous and new models. In contrast to
model-based approaches, they require data to be fed to get features on the latent space. As
the similarity between the previously and newly learned tasks is important to prevent catas-
trophic forgetting, a small amount of memory is reserved to keep a coreset of data from
previous tasks (Rebuffi et al., 2017; Castro et al., 2018; Nguyen et al., 2018; Lee et al.,
2019a), or a generative model is trained to replay data of previous tasks (Rannen et al.,
2017; Shin et al., 2017; Lesort et al., 2018; van de Ven and Tolias, 2018; Wu et al., 2018a)
when training a new model.

Our second contribution in Chapter III is motivated by the fact that intelligent agents
are exposed to streams of unlabeled data in the real world. To alleviate catastrophic forget-
ting, we propose to leverage unlabeled data easily obtainable in the open world. However,
learning with infinite amounts of unlabeled data is inefficient, and the learning objectives
proposed in prior works are not capable of fully leveraging unlabeled data, as they are
studied under the closed-world assumption. To this end, we propose a confidence-based
sampling method and a new learning objective for continual learning, termed global dis-
tillation. With hierarchical novelty detection and continual learning in the open world,

intelligent agents grow closer to being successfully applied in real-world applications.

Representation learning is a fundamental problem of machine learning (Lee et al., 2007;
Bengio et al., 2013): it aims to extract useful information from data for deployment to
other machine learning applications. Indeed, the performance of machine learning meth-
ods heavily depends on the data representations. The success of deep learning is from
the better quality of deeply learned features (Girshick et al., 2014; Razavian et al., 2014)
compared with handcrafted ones, e.g., SIFT (Lowe, 1999) and HOG (Dalal and Triggs,
2005) in computer vision, and MFCC (Davis and Mermelstein, 1980) in speech process-
ing. Deep representation learning has been studied in both supervised and unsupervised
ways: a simple but effective way of supervised representation learning is to extract latent
features from convolutional neural networks (Krizhevsky et al., 2012; He et al., 2015; Si-
monyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016; Szegedy et al., 2016)
trained on large-scale datasets (Deng et al., 2009) in classification tasks. In particular, deep
metric learning (Yi et al., 2014; Hoffer and Ailon, 2015; Sohn, 2016; Song et al., 2016)
focuses more on learning distance metrics in a supervised way. Unsupervised representa-
tion learning aims for learning representations from unlabeled data by solving pretext tasks
that are different from downstream tasks. It is often referred to as self-supervised learn-

ing, as the learning problem of pretext tasks is based on self-supervision. Among many



self-supervised pretext tasks designed for representation learning, data reconstruction by
autoencoding (Bengio et al., 2007; Vincent et al., 2010; Kingma and Welling, 2014), clas-
sifying individual instances (Dosovitskiy et al., 2014; Wu et al., 2018b; Chen et al., 2020a;
He et al., 2020), and clustering (Xie et al., 2016; Caron et al., 2018, 2019; Ji et al., 2019;
Asano et al., 2020; Yan et al., 2020) have been popular in recent literature.

However, deeply learned representations tend to overfit to training data distributions,
such that the application of deep learning to the real world is challenging (Szegedy et al.,
2014; Goodfellow et al., 2015; Hendrycks and Gimpel, 2016; Lee et al., 2018b). Specifi-
cally, domain generalization (Ganin and Lempitsky, 2015; Ganin et al., 2016; Tobin et al.,
2017) and transfer learning (Donahue et al., 2014; Razavian et al., 2014; Yosinski et al.,
2014) aim to generalize learned representations to different domains and tasks, and out-of-
distribution detection (Hendrycks and Gimpel, 2016; Lee et al., 2018b,c) and adversarial
robustness (Szegedy et al., 2014; Goodfellow et al., 2015; Nguyen et al., 2015) aim to
avoid failures incurred by data from out-of-distribution or adversarially generated. The
robustness and generalization ability of deep representation learning are a step towards its
real-world application, directly related to the reliability of its operation and its wide appli-
cability in the open world.

Our contributions are to improve the robustness and generalization ability of deep rep-
resentation learning. First, we consider the problem of domain generalization in deep re-
inforcement learning. Although deep reinforcement learning has been applied to various
applications, it has recently been evidenced that deep reinforcement learning agents often
struggle to generalize to new environments, even when the new environments are seman-
tically similar to the previously observed environments (Farebrother et al., 2018; Zhang
et al., 2018b; Cobbe et al., 2019; Gamrian and Goldberg, 2019). To overcome this, domain
randomization (Tobin et al., 2017) has been proposed to learn robust representations across
certain characteristics randomized in a simulator, e.g., colors and textures of objects. How-
ever, while domain randomization successfully extrapolates the simulated characteristics to
the real world, it requires a simulator, which may not always be available. Our first contri-
bution to robust representation learning in Chapter IV is to propose network randomization,
which has the effect of domain randomization without a simulator. When the domain of
input observation is an image, by randomizing the parameters of certain layers of the policy
network, the agents learn robust representations across visual pattern changes.

Next, we study domain-agnostic self-supervised representation learning. While con-
trastive learning has recently shown state-of-the-art performances (Chen et al., 2020a,b),
it relies heavily on data augmentation techniques, which are carefully designed based on

domain knowledge, e.g., in computer vision. This limits the applicability of contrastive



representation learning, as domain-specific knowledge is required to improve the quality of
learned representations. Our second contribution to robust representation learning in Chap-
ter V is to propose :-MixUp, which is a domain-agnostic contrastive learning method. We
observe that :-MixUp improves the quality of learned representations in various cases, in-
cluding when data distribution is shifted, when domain knowledge is not enough to design
data augmentation techniques, and when the domain is not an image.

In summary, the goal of this dissertation is to improve the robustness of deep learn-
ing for a successful deployment of deep learning methods in real-world applications. To
achieve this, we propose methods for lifelong learning and robust representation learning

by answering the following research questions:
* How can novel classes be detected and identified for lifelong learning?
* How can models update continually without forgetting in the open-world setting?
* How can representations invariant across visual changes be learned?

* How can robust representations be learned in a domain-agnostic way?

1.2 Organization

In the first part, we study a cycle of lifelong learning: namely, a deep learning model first
detects and identifies novel classes, and then extends its knowledge by learning to rec-
ognize novel classes without forgetting known classes. More specifically, in Chapter II,
we propose a new novelty detection and classification framework termed hierarchical nov-
elty detection. The intuition of hierarchical novelty detection comes from an empirical
observation that hierarchical semantic relationships and the visual appearance of objects
are highly correlated (Deng et al., 2010). Motivated by this, we build a taxonomy with
the hypernym-hyponym relationships between known classes extracted from the natural
language information (Miller, 1995). In this way, novel classes are expected to be classi-
fied as semantically the most relevant label, i.e., the closest class in the taxonomy. Next,
in Chapter III, we address the problem of catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999) in continual learning: deep learning models forget about the previ-
ously learned classes while learning to recognize new classes. To alleviate this, we propose
to leverage unlabeled data, which are easily obtainable in the open world. To effectively
leverage unlabeled data, we propose a global distillation learning objective and confidence-

based sampling strategy.



In the second part, we study the problem of robust representation learning. More specif-
ically, in Chapter IV, we consider generalization in deep reinforcement learning across vi-
sual changes. We observe that reinforcement learning agents fail to perform well in unseen
environments even if there is only a small visual change from seen environments (Fare-
brother et al., 2018; Zhang et al., 2018b; Cobbe et al., 2019; Gamrian and Goldberg, 2019).
To overcome this, we introduce random neural networks to generate randomized inputs. By
re-initializing the parameters of random neural networks at every iteration, the agents learn
robust and generalizable representations across tasks with various unseen visual patterns.
Finally, in Chapter V, we focus on contrastive representation learning. While contrastive
representation learning has recently shown state-of-the-art performances in many tasks in
computer vision (Chen et al., 2020a,b), the majority of the improvement is from data aug-
mentation techniques carefully designed based on the domain knowledge. To generalize
the applicability of contrastive representation learning and improve its transferability to
other domains, we propose domain-agnostic contrastive representation learning, motivated
by the success of vicinal risk minimization in supervised learning (Zhang et al., 2018c).
To achieve this, we first cast contrastive learning as learning a non-parametric classifier by
assigning a unique virtual class to each data in a batch. Then, we linearly interpolate the

inputs and virtual class labels in the data and label spaces, respectively.
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CHAPTER 11

Hierarchical Novelty Detection for Visual Object
Recognition

Deep neural networks have achieved impressive success in large-scale visual object recog-
nition tasks with a predefined set of classes. However, recognizing objects of novel classes
unseen during training still remains challenging. The problem of detecting such novel
classes has been addressed in the literature, but most prior works have focused on pro-
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viding simple binary or regressive decisions, e.g., the output would be “known,” “novel,”
or corresponding confidence intervals. In this chapter, we study more informative nov-
elty detection schemes based on a hierarchical classification framework. For an object
of a novel class, we aim for finding its closest super class in the hierarchical taxonomy of
known classes. To this end, we propose two different approaches termed top-down and flat-
ten methods, and their combination as well. The essential ingredients of our methods are
confidence-calibrated classifiers, data relabeling, and the leave-one-out strategy for model-
ing novel classes under the hierarchical taxonomy. Furthermore, our method can generate a
hierarchical embedding that leads to improved generalized zero-shot learning performance

in combination with other commonly-used semantic embeddings.

2.1 Introduction

Object recognition in large-scale image datasets has achieved impressive performance with
deep convolutional neural networks (CNNs) (He et al., 2015, 2016; Simonyan and Zisser-
man, 2015; Szegedy et al., 2015). The standard CNN architectures are learned to recognize
a predefined set of classes seen during training. However, in practice, a new type of objects
could emerge (e.g., a new kind of consumer product). Hence, it is desirable to extend the

CNN architectures for detecting the novelty of an object (i.e., deciding if the object does
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Figure 2.1: An illustration of our proposed hierarchical novelty detection task. In contrast
to prior novelty detection works, we aim to find the most specific class label of a novel data
on the taxonomy built with known classes.

not match any previously trained object classes). There have been recent efforts toward
developing efficient novelty detection methods (Pimentel et al., 2014; Bendale and Boult,
2016; Hendrycks and Gimpel, 2016; Lakshminarayanan et al., 2017; Li and Gal, 2017), but
most of the existing methods measure only the model uncertainty, i.e., confidence score,
which is often too ambiguous for practical use. For example, suppose one trains a classifier
on an animal image dataset as in Figure 2.1. A standard novelty detection method can be
applied to a cat-like image to evaluate its novelty, but such a method would not tell whether
the novel object is a new species of cat unseen in the training set or a new animal species.
To address this issue, we design a new classification framework for more informative
novelty detection by utilizing a hierarchical taxonomy, where the taxonomy can be ex-
tracted from the natural language information, e.g., WordNet hierarchy (Miller, 1995). Our
approach is also motivated by a strong empirical correlation between hierarchical semantic
relationships and the visual appearance of objects (Deng et al., 2010). Under our scheme, a
taxonomy is built with the hypernym-hyponym relationships between known classes such
that objects from novel classes are expected to be classified into the most relevant label,
i.e., the closest class in the taxonomy. For example, as illustrated in Figure 2.1, our goal
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is to distinguish “new cat,” “new dog,” and “new animal,” which cannot be achieved in the
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standard novelty detection tasks. We call this problem hierarchical novelty detection task.

In contrast to standard object recognition tasks with a closed set of classes, our pro-
posed framework can be useful for extending the domain of classes to an open set with
taxonomy information (i.e., dealing with any objects unseen in training). In practical appli-
cation scenarios, our framework can be potentially useful for automatically or interactively
organizing a customized taxonomy (e.g., company’s product catalog, wildlife monitoring,
personal photo library) by suggesting closest categories for an image from novel categories
(e.g., new consumer products, unregistered animal species, untagged scenes or places).

We propose two different approaches for hierarchical novelty detection: top-down and
flatten methods. In the top-down method, each super class has a confidence-calibrated
classifier which detects a novel class if the posterior categorical distribution is close to a
uniform distribution. Such a classifier was recently studied for a standard novelty detection
task (Lee et al., 2018b), and we extend it for detecting novel classes under our hierarchical
novelty detection framework. On the other hand, the flatten method computes a softmax
probability distribution of all disjoint classes. Then, it predicts the most likely fine-grained
label, either a known class or a novel class. Although the flatten method simplifies the full
hierarchical structure, it outperforms the top-down method for datasets of a large hierarchi-
cal depth.

Furthermore, we combine two methods for utilizing their complementary benefits: top-
down methods naturally leverage the hierarchical structure information, but the classifica-
tion performance might be degraded due to the error aggregation. On the contrary, flatten
methods have a single classification rule that avoids the error aggregation, but the clas-
sifier’s flat structure does not utilize the full information of hierarchical taxonomy. We
empirically show that combining the top-down and flatten models further improves hierar-
chical novelty detection performance.

Our method can also be useful for generalized zero-shot learning (GZSL) (Chao et al.,
2016; Xian et al., 2017) tasks. GZSL is a classification task with classes both seen and
unseen during training, given that semantic side information for all test classes is provided.
We show that our method can generate a hierarchical embedding that leads to improved

GZSL performance in combination with other commonly used semantic embeddings.

2.2 Related Work

Novelty detection. For robust prediction, it is desirable to detect a test sample if it looks
unusual or significantly differs from the representative training data. Novelty detection is

a task recognizing such abnormality of data (see Hodge and Austin (2004) and Pimentel
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etal. (2014) for a survey). Recent novelty detection approaches leverage the output of deep
neural network classification models. A confidence score about novelty can be measured
by taking the maximum predicted probability (Hendrycks and Gimpel, 2016), ensembling
such outputs from multiple models (Lakshminarayanan et al., 2017), or synthesizing a score
based on the predicted categorical distribution (Bendale and Boult, 2016). There have also
been recent efforts toward confidence-calibrated novelty detection, i.e., calibrating how
much the model is certain with its novelty detection, by postprocessing (Liang et al., 2018)

or learning with joint objective (Lee et al., 2018b).

Object recognition with taxonomy. Incorporating the hierarchical taxonomy for object
classification has been investigated in the literature, either to improve classification perfor-
mance (Deng et al., 2014; Yan et al., 2015), or to extend the classification tasks to obtain
more informative results (Deng et al., 2012; Zhao et al., 2017). Specifically for the lat-
ter purpose, Deng et al. (2012) gave some reward to super class labels in a taxonomy and
maximized the expected reward. Zhao et al. (2017) proposed an open set scene parsing
framework, where the hierarchy of labels is used to estimate the similarity between the pre-
dicted label and the ground truth. In contemporary work, Simeone et al. (2017) proposed
a hierarchical classification and novelty detection task for the music genre classification,
but their settings are different from ours: in their task, novel classes do not belong to any
node in the taxonomy. Thus, their method cannot distinguish the difference between novel
classes similar to some known classes. To the best of our knowledge, our work is the
first to propose a unified framework for hierarchical novelty detection and visual object

recognition.

Generalized zero-shot learning (GZSL). We remark that GZSL (Chao et al., 2016; Xian
et al., 2017) can be thought as addressing a similar task as ours. While the standard ZSL
tasks test classes unseen during training only, GZSL tasks test both seen and unseen classes
such that the novelty is automatically detected if the predicted label is not a seen class.
However, ZSL and GZSL tasks are valid only under the assumption that specific semantic
information of all test classes is given, e.g., attributes (Rohrbach et al., 2013; Lampert
et al., 2014; Akata et al., 2015) or text description (Frome et al., 2013; Socher et al., 2013;
Norouzi et al., 2014; Changpinyo et al., 2016; Fu and Sigal, 2016; Reed et al., 2016) of
the objects. Therefore, GZSL cannot recognize a novel class if prior knowledge about
the specific novel class is not provided, i.e., it is limited to classifying objects with prior
knowledge, regardless of their novelty. Compared to GZSL, the advantages of the proposed
hierarchical novelty detection are that 1) it does not require any prior knowledge on novel

classes but only utilizes the taxonomy of known classes, 2) a reliable super class label
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Figure 2.2: Illustration of two proposed approaches. In the top-down method, classification
starts from the root class, and propagates to one of its children until the prediction arrives
at a known leaf class (blue) or stops if the prediction is not confident, which means that the
prediction is a novel class whose closest super class is the predicted class. In the flatten
method, we add a virtual novel class (red) under each super class as a representative of all
novel classes, and then flatten the structure for classification.

can be more useful and human-friendly than an error-prone prediction over excessively
subdivided classes, and 3) high-quality taxonomies are available off-the-shelf and they are
better interpretable than latent semantic embeddings. In Section 2.5, we also show that our
models for hierarchical novelty detection can also generate a hierarchical embedding such

that combination with other semantic embeddings improves the GZSL performance.

2.3 Approach

In this section, we define terminologies to describe hierarchical taxonomy and then propose

models for our proposed hierarchical novelty detection task.

2.3.1 Taxonomy

A taxonomy represents a hierarchical relationship between classes, where each node in the
taxonomy corresponds to a class or a set of indistinguishable classes.! We define three

types of classes as follows: 1) known leaf classes are nodes with no child, which are known

'For example, if a class has only one known child class, these two classes are indistinguishable as they
are trained with exactly the same data.
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and seen during training, 2) super classes are ancestors of the leaf classes, which are also
known, and 3) novel classes are unseen during training, so they do not explicitly appear in
the taxonomy.” We note that all known leaf and novel classes have no child and are disjoint,
i.e., they are neither ancestor nor descendant of each other. In the example in Figure 2.1,
four species of cats and dogs are leaf classes, “cat,” “dog,” and “animal’ are super classes,
and any other classes unseen during training, e.g., “Angora cat,” “Dachshund,” and “Pika”
are novel classes.

In the proposed hierarchical novelty detection framework, we first build a taxonomy
with known leaf classes and their super classes. At test time, we aim to predict the most
fine-grained label in the taxonomy. For instance, if an image is predicted as novel, we try
to assign one of the super classes, implying that the input is in a novel class whose closest
known class in the taxonomy is that super class.

To represent the hierarchical relationship, let 7 be the taxonomy of known classes, and
for a class y, P(y) be the set of parents, C(y) be the set of children, A(y) be the set of
ancestors including itself, and NV (y) be the set of novel classes whose closest known class
is y. Let £(7) be the set of all descendant known leaves under 7, such that 7\ L(7) is the
set of all super classes in 7.

As no prior knowledge of AN (y) is provided during training and testing, all classes in
N (y) are indistinguishable in our hierarchical novelty detection framework. Thus, we treat

N (y) as a single class in our analysis.

2.3.2 Top-Down Method

A natural way to perform classification using a hierarchical taxonomy is following top-
down classification decisions starting from the root class, as shown in the top of Figure 2.2.
Let D(s) be a subset of the training dataset D under a super class s, such that (z,y) € D(s)
is a pair of an image and its label sampled from D(s) satisfying y € C(s) U N (s). Then,

the classification rule is defined as

arg max p(y'|z, s;0) if confident,
g={ v
N(s) otherwise,

where 6, is the model parameters of C(s) and p( - |x, s; 05) is the posterior categorical dis-

tribution given an image z at a super class s. The top-down classification stops at s if the

2We note that “novel” in our task is similar but different from “unseen” commonly referred in ZSL works;
while class-specific semantic information for unseen classes must be provided in ZSL, such information for
novel classes is not required in our task.
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prediction is a known leaf class or the classifier is not confident with the prediction (i.e.,
the predicted class is in N(s)). We measure the prediction confidence using the KL diver-
gence with respect to the uniform distribution: intuitively, a confidence-calibrated classifier
generates near-uniform posterior probability vector if the classifier is not confident about
its prediction. Hence, we interpret that the prediction is confident at a super class s if

KLQUCI) | ol 5:0) = oo 3 > [~ logplyle, ;0] ~ 1oglc()

mG'D (s) yeC(s

= As,

where )\ is a threshold, KL denotes the KL divergence, and ¢(+|s) is the uniform dis-
tribution when the classification is made under a super class s, |D(s)| is the number of
training data under s, and |C(s)| is the number of children of s. To train such confidence-
calibrated classifiers, we leverage classes disjoint from the class s. Let O(s) be such a set
of all known classes except for s and its descendents. Then, the objective function of our

top-down classification model at a super class s is

Lrp(0s; D) = > [logp(ylz, s:6,)]

(z,y)€D(s)

1
" DOGE)CEH) >, D [Fleeplylesi6)l, @D

z€D(O(s)) yeC(s)

D(s)|

where D(O(s)) denotes a subset of training data under O(s).

However, under the above top-down scheme, the classification error might aggregate
as the hierarchy goes deeper. For example, if one of the classifiers has poor performance,
then the overall classification performance of all descendent classes should be low. In
addition, the taxonomy is not necessarily a tree but a directed-acyclic graph (DAG), i.e.,
a class could belong to multiple parents, which could lead to incorrect classification.’ In
the next section, we propose flatten approaches, which overcome the error aggregation
issue. Nevertheless, the top-down method can be used for extracting good visual features

for boosting the performance of the flatten method, as we show in Section 2.4.

3For example, if there are multiple paths to a class in a taxonomy, then the class may belong to (i.e., be
a descendant of) multiple children at some super class s, which may lead to low KL divergence from the
uniform distribution and the image could be incorrectly classified as N/ (s).
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2.3.3 Flatten Method

We now propose to represent all probabilities of known leaf and novel classes in a sin-
gle probability vector, i.e., we flatten the hierarchy, as described on the bottom of Fig-
ure 2.2. The key idea is that a probability of a super class s can be represented as p(s|z) =
> _yec(s) Pylr) + p(N(s)|x), such that from the root node, we have ;. p(l|z) +
ZSQT\ £(T) p(N(s)|z) = 1, where | and s are summed over all known leaf classes and
super classes, respectively. Note that A/ (s) is considered as a single novel class under the
super class s, as discussed in Section 2.3.1. Thus, as described in Figure 2.2, one can vir-
tually add an extra child for each super class to denote all novel classes under it. Let (x, y)

be a pair of an image and its most fine-grained label. Then, the classification rule is

7 = arg max p(y'|z; 0),
yl
where ¢’ is either a known leaf or novel class. Here, a problem is that we have no training
data from novel classes. To address this, we propose two approaches to model the score

(i.e., posterior probability) of novel classes.

Data relabeling. A naive strategy is to relabel some training samples to its ancestors in
hierarchy. Then, the images relabeled to a super class are considered as novel class images
under the super class. This can be viewed as a supervised learning with both fine-grained
and coarse-grained classes where they are considered to be disjoint, and one can optimize
an objective function of a simple cross entropy function over all known leaf classes and

novel classes:

1
Lreaba (0:D) = — > [~ logp(y|z; 67)] (2.2)

|D’ (z,y)€D

In our experiments, each training image is randomly relabeled recursively in a bottom-up
manner with a probability of r, where 0 < r < 1 is termed a relabeling rate. An example

of relabeling is illustrated in Figure 2.3 (b).

Leave-one-out strategy. A more sophisticated way to model novel classes is to temporar-
ily remove a portion of taxonomy during training: specifically, for a training label y, we
recursively remove one of its ancestor a € A(y) from the taxonomy 7 in a hierarchical
manner. To represent a deficient taxonomy, we define 7 \a as a taxonomy where a and

its descendants are removed from the original taxonomy 7. At each stage of removal,
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animal
I |

’ 3
novel cat

Figure 2.3: Illustration of strategies to train novel class scores in flatten methods. (a) shows
the training images in the taxonomy. (b) shows relabeling strategy. Some training images
are relabeled to super classes in a bottom-up manner. (c—d) shows leave-one-out (LOO)
strategy. To learn a novel class score under a super class, one of its children is temporarily
removed such that its descendant known leaf classes are treated as novel during training.

the training label y becomes a novel class of the parent of a in T \a, i.e., N(P(a)). Fig-
ure 2.3 (a, c—d) illustrates this idea with an example: in Figure 2.3 (a), when y is “Persian
cat,” the set of its ancestor is A(y) ={ “Persian cat,” “cat,” “animal” }. In Figure 2.3 (c),
images under a =“Persian cat” belong to N (P(a)) =“novel cat” in T \a. Similarly, in
Figure 2.3 (d), images under a =“cat” belong to N'(P(a)) =“novel animal” in 7 \a. As
we leave a class out to learn a novel class, we call this leave-one-out (LOO) method. With

some notation abuse for simplicity, the objective function of the LOO model is then

1
Cuool#iD) = g X |~ lompluleiter) + 3 ~logpN(P@)fastr,)|
acA(y)

(2.3)

where the first term is the standard cross entropy loss with the known leaf classes, and
the second term is the summation of losses with N'(P(a)) and the leaves under 7 \a. We
provide further implementation details in Appendix A.1.1.

As we mentioned earlier, the flatten methods can be combined with the top-down
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method in sequence: the top-down method first extracts multiple softmax probability vec-
tors from visual features, and then the concatenation of all probabilities can be used as an

input of the LOO model. We name the combined method TD+LOO for conciseness.

2.4 Evaluation: Hierarchical Novelty Detection

We present the hierarchical novelty detection performance of our proposed methods com-
bined with CNNs on ImageNet (Deng et al., 2009), Animals with Attributes 2 (AwA?2) (Lam-
pertet al., 2014; Xian et al., 2017), and Caltech-UCSD Birds (CUB) (Welinder et al., 2010),
where they represent visual object datasets with deep, coarse-grained, and fine-grained tax-
onomy, respectively. Experimental results on CIFAR-100 (Krizhevsky and Hinton, 2009)

can be found in Appendix A.1.3, where the overall trends of results are similar to others.

2.4.1 Evaluation Setups

Compared algorithms. As a baseline, we modify the dual accuracy reward trade-off
search (DARTS) algorithm (Deng et al., 2012) for our purpose. Note that DARTS gives
some rewards to labels in hierarchy, where fine-grained prediction gets higher reward. Un-
der this algorithm, for a novel class, its closest super class in the taxonomy would give
the maximum reward. At test time, the modified DARTS generates expected rewards for
all known leaf and novel classes, so prediction can be done in the same way as the flatten
methods.

As our proposed methods, Relabel, LOO, and TD+LOO are compared. For a fair com-
parison in terms of the model capacity, deep Relabel and LOO models are also exper-
imented, where a deep model is a stack of fully connected layers followed by rectified
linear units (ReLU). We do not report the performance of the pure top-down method since
1) one can combine it with the LOO method for better performance as mentioned in Sec-
tion 2.3.2, and 2) fair comparisons between the pure top-down method and others are not
easy. Intuitively, the confidence threshold ) in Section 2.3.2 can be tuned: for example,
the novel class score bias in the flatten method would improve the novel class detection
accuracy, but large )\, does not guarantee the best novel class performance in the top-down

method because hierarchical classification results would tend to stop at the root class.

Datasets. ImageNet (Deng et al., 2009) consists of 22k object classes where the taxonomy
of the classes is built with the hypernym-hyponym relationships in WordNet (Miller, 1995).

We take 1k mutually exclusive classes in ILSVRC 2012 as known leaf classes, which are
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a subset of the ImageNet.* Based on the hypernym-hyponym relationships in WordNet,
we initially obtained 860 super classes of 1k known leaf classes, and then merged indistin-
guishable super classes. Specifically, if a super class has only one child or shares exactly
the same descendant leaf classes, it is merged with classes connected to the class. After
merging, the resultant taxonomy is a DAG and has 396 super classes where all super classes
have at least two children and have different set of descendant leaf classes. On the other
hand, the rest of 21k classes can be used as novel classes for testing. Among them, we
discarded super classes, classes under 1k known leaf classes, and classes with less than
50 images for reliable performance measure. After filtering classes, we obtain about 16k
novel classes. ILSVRC 2012 has about 1.3M training images and another 50k images in
1k known leaf classes. We put the 50k images aside from training and used for test, and we
sampled another 50k images from 1.3M training images for validation. For novel classes,
we sampled 50 images from each class. In summary, we have about 1.2M training images,
50k validation images, and 50k test images from known leaf classes, and 800k test images
from novel classes.

AwA?2 (Lampert et al., 2014; Xian et al., 2017) consists of 40 known leaf classes and
10 novel classes with 37k images, and CUB (Welinder et al., 2010) consists of 150 known
leaf classes and 50 novel classes with 12k images. Similar to ImageNet, the taxonomy of
each dataset is built with the hypernym-hyponym relationships in WordNet. The resultant

taxonomy is a tree and has 21 and 43 super classes for AwA2 and CUB, respectively.

Training. We take ResNet-101 (He et al., 2016) as a visual feature extractor (i.e., the
penultimate layer of the CNNs before the classification layer) for all compared methods.
The CNNs are pretrained with ILSVRC 2012 1k classes, where they do not contain any
novel classes of datasets experimented. Then, the final classification layer of the CNNs
is replaced with our proposed models. Note that CNNs and our proposed models can be
trained in an end-to-end manner, but we take and freeze the pretrained parameters in all
layers except for the final layer for the sake of faster training.

For ImageNet, we use mini-batch SGD with 5k center-cropped data per batch. As a
regularization, L2 norm weight decay with parameter 1072 is applied. The initial learn-
ing rate is 1072 and it decays at most two times when loss improvement is less than 2%
compared to the last epoch. For AwA2 and CUB, the experiments are done in the same
environment with the above except that the models are trained with the full-batch GD and

Adam optimizer (Kingma and Ba, 2014).

“Except “teddy bear,” all classes in ILSVRC 2012 are in ImageNet.
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Table 2.1: Hierarchical novelty detection results on ImageNet, AwA?2, and CUB. For a fair
comparison, 50% of known class accuracy is guaranteed by adding a bias to all novel class
scores (logits). The AUC is obtained by varying the bias. Known-novel class accuracy
curve is shown in Figure 2.5. Values in bold indicate the best performance.

ImageNet AwA2 CUB
Novel | AUC | Novel | AUC | Novel | AUC

DARTS 10.89 8.83 36.75 | 35.14 4042 | 30.07
Relabel 1529 | 11.51 4571 | 40.28 38.23 | 28.75
LOO 15.72 | 12.00 50.00 | 43.63 40.78 | 31.92
TD+LOO || 18.78 | 13.98 53.57 | 46.77 43.29 | 33.16

Method

Metrics. We first consider the top-1 accuracy by counting the number of predicted labels
exactly matching the ground truth. Note that we have two types of classes in test datasets,
i.e., known and novel classes. Performances on two types of classes are in trade-off rela-
tion, i.e., if one tunes model parameters for favoring novel classes, the accuracy of known
classes would be decreased. Specifically, by adding some positive bias to the novel class
scores (e.g., logits in the softmax), one can increase novel class accuracy while decreasing
known class accuracy, or vice versa. Hence, for a fair comparison, we measure the novel
class accuracy with respect to some fixed known class accuracy, e.g., 50%. As a more
informative evaluation metric, we also measure the area under known-novel class accuracy
curve (AUC). Varying the novel class score bias, a curve of known class accuracy versus
novel class accuracy can be drawn, which depicts the relationship between the known class
accuracy and the novel class accuracy. The AUC is the area under this curve, which is

independent of the novel class score bias.

2.4.2 Experimental Results

We first compare the hierarchical novelty detection results of the baseline method and our
proposed methods qualitatively with test images on ImageNet in Figure 2.4. We remark that
our proposed methods can provide informative prediction results by utilizing the taxonomy
of the dataset. In Figure 2.4 (a), LOO and TD+LOO find the ground truth label (the most
fine-grained label in the taxonomy), while DARTS classifies it as “beagle,” which is in fact
visually similar to “American foxhound.” In Figure 2.4 (b), none of the methods find the
ground truth, but the prediction of TD+LOO is the most informative, as it is the closest
label in the hierarchy. In Figure 2.4 (c—d), only the prediction of TD+LOO is correct, but
the rest of the methods also give a reasonable amount of information. More qualitative
results can be found in Appendix A.2 and A.3.
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Novel class: American foxhound Novel class: serval Novel class: song thrush Novel class: ice-cream sundae

Method ¢ A Word Method ¢ A Word Method € A Word Method ¢ A Word
GT foxhound GT wildcat GT thrush GT frozen dessert
DARTS 2 N beagle DARTS 3 N Egyptian cat DARTS 3 N hummingbird DARTS 4 Y food, nutrient
Relabel 1 Y hound dog Relabel 2 N domestic cat Relabel 2 Y bird Relabel 1 N ice cream
LOO 0 Y foxhound LOO 2 Y feline LOO 1 Y oscine bird LOO 1 Y dessert
TD+LOO 0 Y foxhound TD+LOO 1 Y cat TD+LOO 0 Y thrush TD+LOO 0 Y frozen dessert
hound dog*
l

L};ﬂ:—‘ (foxhound*j /
[(LOO_|[TD+LO0]| lomestic cat*
Figure 2.4: Qualitative results of hierarchical novelty detection on ImageNet. “GT” is
the closest known ancestor of the novel class, which is the expected prediction, “DARTS”
is the baseline method proposed in Deng et al. (2012) where we modify the method for
our purpose, and the others are our proposed methods. “c” is the distance between the
prediction and GT, “A” indicates whether the prediction is an ancestor of GT, and “Word”
is the English word of the predicted label. Dashed edges represent multi-hop connection,
where the number indicates the number of edges between classes. If the prediction is on a

super class (marked with * and rounded), then the test image is classified as a novel class
whose closest class in the taxonomy is the super class.

Table 2.1 shows the hierarchical novelty detection performance on ImageNet, AwWA2,
and CUB. One can note that the proposed methods significantly outperform the baseline
method in most cases, except the case of Relabel on CUB, because validation could not
find the best relabeling rate for test. Also, we remark that LOO outperforms Relabel. The
main difference between two methods is that Relabel gives a penalty to the original la-
bel if it is relabeled during training, which turns out to be harmful for the performance.
Finally, TD+LOO exhibits the best performance, which implies that the multiple softmax
probability vectors extracted from the top-down method are more useful than the vanilla vi-
sual features extracted from the state-of-the-art CNNs in the hierarchical novelty detection
tasks. Figure 2.5 shows the known-novel class accuracy curves by varying the bias added
to the novel class scores. Our proposed methods have higher novel class accuracy than the

baseline in most regions.
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Figure 2.5: Known-novel class accuracy curves obtained by varying the novel class score
bias on ImageNet, AwA?2, and CUB. In most regions, our proposed methods outperform
the baseline method.

2.5 Evaluation: Generalized Zero-Shot Learning

We present the GZSL performance of the combination of the hierarchical embedding ob-
tained by the top-down method and other semantic embeddings on Animals with Attributes
(AwA1 and AwA2)’ (Lampert et al., 2014; Xian et al., 2017) and Caltech-UCSD Birds
(CUB) (Welinder et al., 2010). In addition, experimental results on AwA1 can be found in

Appendix A.4.2, where the overall trends of results are similar.

2.5.1 Evaluation Setups

Hierarchical embeddings for GZSL. GZSL requires an output semantic embedding built
with side information, e.g., attributes labeled by human, or word embedding trained with
a large text corpus. In addition to those two commonly used semantic embeddings, Akata
etal. (2015) proposed to use hierarchical relationships between all classes, including classes
unseen during training. Specifically, they measured the shortest path distance between
classes in the taxonomy built with both known and novel classes, and took the vector of
distance values as an output embedding. We refer to this embedding as Path.

On the other hand, motivated by the effectiveness of the features extracted from the top-
down method shown in Section 2.4.2, we set the enumeration of the ideal multiple softmax
probability vectors as the semantic embedding: let C(s)][:] be the i-th child of a super class

s. Then, for a label y and a super class s, the i-th element of an ideal output probability

SAwA1 is similar to AwA2, but images in AwA1 are no longer available due to the public copyright
license issue. We used precomputed CNN features for AwA1, which is available at http://datasets.
d2.mpi-inf.mpg.de/xian/x1lsal’7.zip.

22


http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip
http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip

vector t@*) € [0, 1]I€G)] s

1 if y belongs to C(s)][i],
(5 [i]=1<0 if y belongs to C(s)[j] where i # j,

—|C(15)| if y is novel or does not belong to s,

where |C(s)| is the number of known child classes under s. The resultant output embed-
ding is the concatenation of them with respect to the super classes, i.e., the ground truth
semantic vector of a class yis t¥ = [...,t®%*) .. ], and we call this embedding TD. See
Appendix A.4.1 for an example of the ideal output probability vector ¢Y.

Since classes sharing the same closest super class have exactly the same desired output
probability vector, we made random guess for fine-grained classification in the experiments
only with TD.

Datasets. AwA1l and AwA2 (Lampert et al., 2014; Xian et al., 2017) consists of 40 seen
classes and 10 unseen classes with 37k images, and CUB (Welinder et al., 2010) consists
of 150 seen classes and 50 unseen classes with 12k images,® where the taxonomy can be
built in the same way with Section 2.4.

Training. We note that the performance of combined models is reported in Akata et al.
(2015), but the numbers are outdated, due to the old CNNs and ZSL models. Thus, in-
stead of making direct comparison with theirs, we construct the environment following the
state-of-the-art setting and compare the performance gain obtained by combining differ-
ent hierarchical embedding models with other semantic embeddings. We take ResNet-101
as a pretrained visual feature extractor, and we apply deep embedding model proposed in
Zhang et al. (2016a) for training attribute and word embedding models, where it learns to
map semantic embeddings to the visual feature embedding with two fully connected lay-
ers and ReL.U between them. As a combination strategy, we calculate prediction scores
of each model and then use their weighted sum for final decision, where the weights are

cross-validated. See Akata et al. (2015) for more details about the combination strategy.

Metrics. The ZSL performance is measured by testing unseen classes only, and the GZSL
performance is measured by the area under seen-unseen curve (AUC) following the idea
in Chao et al. (2016). We measure the class-wise accuracy rather than the sample-wise

accuracy to avoid the effect of imbalanced test dataset, as suggested in Xian et al. (2017).

%In GZSL, we have semantic information of unseen classes. In this sense, although unseen classes are not
used for training, they are known as such a class-specific semantic information is required.
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Table 2.2: ZSL and GZSL performance of semantic embedding models and their com-
binations on AwA1, AwA2, and CUB. “Att” stands for continuous attributes labeled by
human, “Word” stands for word embedding trained with the GloVe objective (Pennington
et al., 2014), and “Hier” stands for the hierarchical embedding, where “Path” is proposed
in Akata et al. (2015), and “TD” is output of the proposed top-down method. “Unseen” is
the accuracy when only unseen classes are tested, and “AUC” is the area under the seen-
unseen curve where the unseen class score bias is varied for computation. The curve used
to obtain AUC is shown in Figure 2.6. Values in bold indicate the best performance among
the combined models.

Embedding AwAl AwA2 CUB
Att | Word | Hier || Unseen | AUC || Unseen | AUC || Unseen | AUC

v - - 65.29 50.02 63.87 51.27 50.05 23.60
- v - 51.87 39.67 54.717 42.21 27.28 11.47
v v - 67.80 52.84 65.76 53.18 49.83 24.13
- - Path 42.57 30.58 44.34 33.44 24.22 8.38
v - Path 67.09 51.45 66.58 53.50 50.25 23.70
- v Path 52.89 40.66 55.28 42.86 27.72 11.65
v v Path 68.04 53.21 67.28 54.31 50.87 24.20

- - TD 33.86 25.56 31.84 24.97 13.09 7.20
v - TD 66.13 54.66 66.86 57.49 50.17 30.31
TD 56.14 46.28 59.67 49.39 29.05 16.73
TD 69.23 57.67 68.80 59.24 50.17 30.31

<
NN

2.5.2 Experimental Results

Table 2.2 shows the performance of the attribute and word embedding models, and two dif-
ferent hierarchical embedding models, i.e., Path and TD, and their combinations on AwWAI,
AwA?2, and CUB. In Table 2.2, one can note that the standalone performance of TD is
not better than Path, as it does not distinguish unseen classes sharing the same closest su-
per class. In the same reason, the improvement on ZSL performance with the combined
models is fairly small in the combination with TD. However, in the GZSL task, TD shows
significantly better performance in the combined models, which means that our proposed
top-down embedding is better when distinguishing both seen classes and unseen classes
together. Compared to the best single semantic embedding model (with attributes), the
combination with TD leads to absolute improvement of AUC by 7.65%, 7.97%, and 6.71%
on AwA1l, AwA?2 and CUB, respectively, which is significantly better than that of Path.
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Figure 2.6: Seen-unseen class accuracy curves of the best combined models obtained by
varying the unseen class score bias on AwA1, AwA2, and CUB. “Path” is the hierarchical
embedding proposed in Akata et al. (2015), and “TD” is the embedding of the multiple
softmax probability vector obtained from the proposed top-down method. In most regions,
TD outperforms Path.

2.6 Summary

We propose a new hierarchical novelty detection framework, which performs object classi-
fication and hierarchical novelty detection by predicting the closest super class in a taxon-
omy. We propose several methods for the hierarchical novelty detection task and evaluate
their performance. In addition, the hierarchical embedding learned with our model can be
combined with other semantic embeddings such as attributes and words to improve gen-
eralized zero-shot learning performance. As future work, augmenting textual information
about labels for hierarchical novelty detection would be an interesting extension of this

work.
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CHAPTER III

Overcoming Catastrophic Forgetting with
Unlabeled Data in the Wild

Lifelong learning with deep neural networks is well-known to suffer from catastrophic
forgetting: the performance on previous tasks drastically degrades when learning a new
task. To alleviate this effect, we propose to leverage a large stream of unlabeled data
easily obtainable in the wild. In particular, we design a novel class-incremental learning
scheme with (a) a new distillation loss, termed global distillation, (b) a learning strategy to
avoid overfitting to the most recent task, and (c) a confidence-based sampling method to
effectively leverage unlabeled external data. Our experimental results on various datasets,
including CIFAR and ImageNet, demonstrate the superiority of the proposed methods over
prior methods, particularly when a stream of unlabeled data is accessible: our method
shows up to 15.8% higher accuracy and 46.5% less forgetting compared to the state-of-the-
art method.

3.1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in many machine learning
applications, e.g., classification (He et al., 2016), generation (Miyato et al., 2018a), object
detection (He et al., 2017), and reinforcement learning (Silver et al., 2017). However, in the
real world where the number of tasks continues to grow, the entire tasks cannot be given at
once; rather, it may be given as a sequence of tasks. The goal of class-incremental learning
(Rebuffi et al., 2017) is to enrich the ability of a model dealing with such a case, by aiming
to perform both previous and new tasks well.! In particular, it has gained much attention

'In class-incremental learning, a set of classes is given in each task. In evaluation, it aims to classify data
in any class learned so far without task boundaries.
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Figure 3.1: We propose to leverage a large stream of unlabeled data in the wild for class-
incremental learning. At each stage, a confidence-based sampling strategy is applied to
build an external dataset. Specifically, some of unlabeled data are sampled based on the
prediction of the model learned in the previous stage P for alleviating catastrophic for-
getting, and some of them are randomly sampled for confidence calibration. Under the
combination of the labeled training dataset and the unlabeled external dataset, a teacher
model C first learns the current task, and then the new model M learns both the previous
and current tasks by distilling the knowledge of P, C, and their ensemble Q.

recently as DNNs tend to forget previous tasks easily when learning new tasks, which is a
phenomenon called catastrophic forgetting (McCloskey and Cohen, 1989; French, 1999).
The primary reason of catastrophic forgetting is the limited resources for scalability: all
training data of previous tasks cannot be stored in a limited size of memory as the number
of tasks increases. Prior works in class-incremental learning focused on learning in a closed
environment, i.e., a model can only see the given labeled training dataset during training (L1
and Hoiem, 2016; Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2018; Li et al., 2018).
However, in the real world, we live with a continuous and large stream of unlabeled data
easily obtainable on the fly or transiently, e.g., by data mining on social media (Mahajan

et al., 2018) and web data (Krause et al., 2016). Motivated by this, we propose to leverage
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such a large stream of unlabeled external data for overcoming catastrophic forgetting. We
remark that our setup on unlabeled data is similar to self-taught learning (Raina et al., 2007)
rather than semi-supervised learning, because we do not assume any correlation between

unlabeled data and the labeled training dataset.

Contribution. Under the new class-incremental setup, our contribution is three-fold (see

Figure 3.1 for an overview):

A. We propose a new learning objective, termed global distillation, which utilizes data

to distill the knowledge of reference models effectively.

B. We design a 3-step learning scheme to improve the effectiveness of global distilla-
tion: (i) training a teacher specialized for the current task, (ii) training a model by
distilling the knowledge of the previous model, the teacher learned in (i), and their

ensemble, and (iii) fine-tuning to avoid overfitting to the current task.

C. We propose a confidence-based sampling method to effectively leverage a large stream
of unlabeled data.

In the contribution 4, global distillation encourages the model to learn knowledge over
all previous tasks, while prior works only applied a task-wise local distillation (Li and
Hoiem, 2016; Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2018). In particular,
the proposed global distillation distills the knowledge of how to distinguish classes across
different tasks, while local distillation does not. We show that the performance gain due to
global distillation is particularly significant if some unlabeled external data are available.

In the contribution B, the first two steps (i), (ii) of the proposed learning scheme are
designed to keep the knowledge of the previous tasks, as well as to learn the current task.
On the other hand, the purpose of the last step (ii1) is to avoid overfitting to the current
task: due to the scalability issue, only a small portion of data in the previous tasks are kept
and replayed during training (Castro et al., 2018; Rebulffi et al., 2017; Nguyen et al., 2018).
This inevitably incurs bias in the prediction of the learned model, being favorable for the
current task. To mitigate the issue of imbalanced training, we fine-tune the model based on
the statistics of data in the previous and current tasks.

Finally, the contribution C is motivated from the intuition that as the data distribution
of unlabeled data is more similar to that of the previous tasks, it prevents the model from
catastrophic forgetting more. Since unlabeled data in the wild is not necessarily related to
the previous tasks, it is far from being clear whether they contain an useful information

for alleviating catastrophic forgetting. Therefore, we propose to sample an external dataset
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by a principled sampling strategy. To sample an effective external dataset from a large
stream of unlabeled data, we propose to train a confidence-calibrated model (Lee et al.,
2018a,b) by utilizing irrelevant data as out-of-distribution (OOD)> samples. We show that
unlabeled data from OOD should also be sampled for maintaining the model to be more
confidence-calibrated.

Our experimental results demonstrate the superiority of the proposed methods over
prior methods. In particular, we show that the performance gain in the proposed methods
is more significant when unlabeled external data are available. For example, under our
experiment setup on ImageNet (Deng et al., 2009), our method with an external dataset
achieves 15.8% higher accuracy and 46.5% less forgetting compared to the state-of-the-art
method (E2E) (Castro et al., 2018) (4.8% higher accuracy and 6.0% less forgetting without

an external dataset).

3.2 Approach

In this section, we propose a new learning method for class-incremental learning. In Sec-
tion 3.2.1, we further describe the scenario and learning objectives. In Section 3.2.2, we
propose a novel learning objective, termed global distillation. In Section 3.2.3, we propose
a confidence-based sampling strategy to build an external dataset from a large stream of
unlabeled data.

3.2.1 Preliminaries: Class-Incremental Learning

Formally, let (z,y) € D be a data = and its label y in a dataset D, and let 7 be a supervised
task mapping x to y. We denote y € T if y is in the range of 7 such that |T| is the
number of class labels in 7. For the ¢-th task 7;, let D; be the corresponding training
dataset, and D5 C D;_; U D§°% be a coreset’ containing representative data of previous
tasks T1.4—1) = {7T1,..., Ti—1}, such that D™ = D, U D5} is the entire labeled training
dataset available at the ¢-th stage. Let M; = {6, ¢1.} be the set of learnable parameters
of a model, where 0 and ¢1.;, = {¢1, ..., d;} indicate shared and task-specific parameters,

respectively.”

2Qut-of-distribution refers to the data distribution being far from those of the tasks learned so far.

3Coreset is a small dataset kept in a limited amount of memory used to replay previous tasks. Initially,
Dgor — (Z)

4If multiple task-specific parameters are given, then logits of all classes are concatenated for prediction
without task boundaries. Note that tasks do not have to be disjoint, such that a class can appear in multiple
tasks.
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The goal at the ¢-th stage is to train a model M, to perform the current task 7; as
well as the previous tasks 7.,y without task boundaries, i.e., all class labels in 7y, are
candidates at test time. To this end, a small coreset D;°] and the previous model M,_; are
transferred from the previous stage. We also assume that a large stream of unlabeled data is
accessible, and an essential external dataset Df** is sampled, where the sampling method is
described in Section 3.2.3. Note that we do not assume any correlation between the stream
of unlabeled data and the tasks. The outcome at the ¢-th stage is the model M, that can

perform all observed tasks 77.;, and the coreset D;°* for learning in subsequent stages.

Learning objectives. When a dataset D is labeled, the standard way of training a classifi-

cation model M = {0, ¢} is to optimize the cross-entropy loss:

1

cls D

> [—logp(yla: 6, ¢)].

(z,y)€D

On the other hand, if we have a reference model R = {GR, gzﬁR}, the dataset D does not
require any label because the target label is given by R:

Lss:(0,0; R, D) ZZ p(ylz; 6%, ¢%) log p(y|z; 0, ¢)],

mED yeT

where the probabilities can be smoothed for better distillation: let z = {z,|ly € T} =
M(x; 6, ¢) be the set of outputs (or logits). Then, with a temperature -, the probabilities
are computed as follows:

exp(2x/7)
Dyer exp(zy /7)

ply = klx;0,0) =

Previous approaches. At the ¢-th stage, the standard approach to train a model M, is to

minimize the following classification loss:

cls( ¢1 hptrn) (31)

However, in class-incremental learning, the limited size of the coreset makes the learned
model suffer from catastrophic forgetting. To overcome this, the previous model P; =
{QP, gzﬁﬁ(t_l)} £ M,_, has been utilized to generate soft labels, which is the knowledge of
‘P; about the given data (Li and Hoiem, 2016; Rebulffi et al., 2017; Castro et al., 2018; Hou
et al., 2018):
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t—1
> Lace(0, 65 Pi, DF™), (32)
s=1

where this objective is jointly optimized with Eq. (3.1). We call this task-wise knowledge
distillation as local distillation (LD), which transfers the knowledge within each of the
tasks. However, because they are defined in a task-wise manner, this objective misses the

knowledge about discrimination between classes in different tasks.

3.2.2 Global Distillation

Motivated by the limitation of LD, we propose to distill the knowledge of reference models
globally. With the reference model P;, the knowledge can be globally distilled by mini-

mizing the following loss:
Edst(97¢1:(t—1);7)t7p:rn U DteXt)' (33)

However, learning by minimizing Eq. (3.3) would cause a bias: since P; did not learn to
perform the current task 7;, the knowledge about the current task would not be properly
learned when only Eq. (3.1)+(3.3) are minimized, i.e., the performance on the current task
would be unnecessarily sacrificed. To compensate for this, we introduce another teacher
model C; = {6, ¢¢} specialized for the current task 7;:

Last (0, ¢1: Cp, D™ U D). (3.4
This model can be trained by minimizing the standard cross-entropy loss:
‘Ccls(eca tC>Dt) (35)

Note that only the dataset of the current task D, is used, because C; is specialized for the
current task only. We revise this loss in Section 3.2.3 for better external data sampling.

However, as P; and C; learned to perform only 7;.;—1) and 7T;, respectively, discrimi-
nation between 7’1:@_1) and 7; is not possible with the knowledge distilled from these two
reference models. To complete the missing knowledge, we define Q, as an ensemble of P;
and C;: let

Pmax = max p(y|w; 67, 61 1)), Ymax = argmaxp(yle; 07, 67 y)).
Y
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Then, the output of Q; can be defined as:

Pmax if Y = Ymax,
p(ylz; 6%, (blgt) - lifr;—:;jp(yu? 0%, Qﬂpz(tfl)) elseif y € Tr.;—1), (3.6)
ep(ylz; 6°, 6F) elseify € T;,

such that 3 p(y|z; 02, $2,) = 1. Here, ¢ adjusts the confidence about whether the given
data is in 7y.;—1) or 7;. This information is basically missing, however, can be computed

with an assumption that the expected predicted probability is the same over all negative
classes Vy # Ymax, i.€., E,, [ -(y|z; 07, gbf:(t_l))] =Ey sy [Pe(ylz; 6°, 67)]:

_ (1 _pmax)‘ﬁ|
€= —\ﬂ:t\ 1 (3.7)

Since the ensemble model Q; is able to perform all tasks, all parameters can be updated:

ﬁdst(ea ¢1:t; Qt, DteXt)- (3.8)

Note that the labeled dataset Df*™ is not used, because it is already used in Eq. (3.1) for the

same range of classes.
Finally, our global distillation (GD) loss is Eq. (3.1)+(3.3)+(3.4)+(3.8):

Ecls(ea le:t; D:rn) + Edst(ea Qsl:(t—l); Pt7 D:rn U D:Xt)
+ Edst(ea ¢ta Ct7 D;rn U Dth)
+ Lase (0, d1:¢; Qi DFFY). (3.9)

We study the contribution of each term in Table 3.2.

Balanced fine-tuning. The statistics of class labels in the training dataset is also an infor-
mation learned during training. Since the number of data from the previous tasks is much
smaller than that of the current task, the prediction of the model is biased to the current task.
To remove the bias, we further fine-tune the model after training with the same learning ob-
jectives. When fine-tuning, for each loss with D and T, we scale the gradient computed
from a data with label k£ € T by the following:

(k) 1
" X ) € Dy =Rl -
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Since scaling a gradient is equivalent to feeding the same data multiple times, we call this
method data weighting. We also normalize the weights by multiplying them with [D|/|T],
such that they are all one if D is balanced.

We only fine-tune the task-specific parameters ¢,., with data weighting, because all
training data would be equally useful for representation learning, i.e., shared parameters
, while the bias in the data distribution of the training dataset should be removed when

training a classifier, i.e., ¢1.;. The effect of balanced fine-tuning can be found in Table 3.4.

Loss weight. We balance the contribution of each loss by the relative size of each task

learned in the loss: for each loss for learning 7, the loss weight at the ¢-th stage is

L T
’71:1‘/’

, (3.11)

We note that the loss weight can be tuned as a hyperparameter, but we find that this loss
weight performs better than other values in general, as it follows the statistics of the test

dataset: all classes are equally likely to be appeared.

3-step learning algorithm. In summary, our learning strategy has three steps: training C;
specialized for the current task 7y, training M, by distilling the knowledge of the reference
models Py, Cy, and Q;, and fine-tuning the task-specific parameters ¢;., with data weighting.
Algorithm 3.1 describes the 3-step learning scheme.

For coreset management, we build a balanced coreset by randomly selecting data for
each class. We note that other more sophisticated selection algorithms like herding (Re-
buffi et al., 2017) do not perform significantly better than random selection, which is also

reported in prior works (Castro et al., 2018; Wu et al., 2018a).

3.2.3 Sampling External Dataset

Although a large amount of unlabeled data would be easily obtainable, there are two
issues when using them for knowledge distillation: (a) training on a large-scale external
dataset is expensive, and (b) most of the data would not be helpful, because they would be
irrelevant to the tasks the model learns. To overcome these issues, we propose to sample
an external dataset useful for knowledge distillation from a large stream of unlabeled data.
Note that the sampled external dataset does not require an additional permanent memory;

it is discarded after learning.
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Algorithm 3.1 3-step learning with GD.
1. t=1
2: while true do
3:  Input: previous model P; = M,_;, coreset D%,
training dataset D;, unlabeled data stream Dj**9

4:  Output: new coreset Df°", model M, = {0, ¢1.,}
5. Dy =D, UDs

6 Ne=[Dg5]. Np = [Dp

7:  Sample Df** from Dy using Algorithm 3.2

8:  Train C; by minimizing Eq. (3.12)

9: if £ > 1 then
10: Train M, by minimizing Eq. (3.9)
11: Fine-tune ¢;.; by minimizing Eq. (3.9), with data weighting in Eq. (3.10)
12:  else
13: Mt — Ct
14:  endif

15:  Randomly sample Df°* C D™ such that
‘{(1‘73/) € D§0r|y = k}| - NC/‘,Y-l:t’ fork € Tiy

16: t=1t+1

17: end while

Sampling for confidence calibration. In order to alleviate catastrophic forgetting caused
by the imbalanced training dataset, sampling external data that are expected to be in the
previous tasks is desirable. Since the previous model P is expected to produce an output
with high confidence if the data is likely to be in the previous tasks, the output of P can be
used for sampling. However, modern DNNs are highly overconfident (Guo et al., 2017; Lee
et al., 2018b), thus a model learned with a discriminative loss would produce a prediction
with high confidence even if the data is not from any of the previous tasks. Since most of the
unlabeled data would not be relevant to any of the previous tasks, i.e., they are considered
to be from out-of-distribution (OOD), it is important to avoid overconfident prediction on
such irrelevant data. To achieve this, the model should learn to be confidence-calibrated
by learning with a certain amount of OOD data as well as data of the previous tasks (Lee
et al., 2018a,b). When sampling OOD data, we propose to randomly sample data rather
than relying on the confidence of the previous model, as OOD is widely distributed over
the data space. The effect of this sampling strategy can be found in Table 3.5. Algorithm 3.2
describes our sampling strategy. The ratio of OOD data (Npey : Noop) 1s determined by
validation; for more details, see Appendix B.2. This algorithm can take a long time, but we

limit the number of retrieved unlabeled data in our experiment by 1M, i.e., Ny, = 1M.
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Algorithm 3.2 Sampling external dataset.

1: Input: previous model P; = {67, 47, ,}, unlabeled data stream Dy ',
sample size Np, number of unlabeled data to be retrieved Ny, .«

2: Output: sampled external dataset D;**
3. Pprev — (D’ DOOD _ (Z)
4. Nprev == 0.3ND, NOOD = 07ND
5: N(k) = [{(z,y,p) € D]y = k}|
6: while |D°P| < Noop do
7. Getx € Dy and update DOOP = DOP y {z}
8: end while
9: Nret = Noop
while N;; < Npax do

—_—
- O

Get z € Dy*'? and compute the prediction of P:

p = max, p <y|x; o7, ¢?:(t71)>’ Y = argmax, p <y|x; o7, ¢i(t71)>
12: if N(@) < Nprev/|7—1:(t—1)| then

13 Drev =Dy {(z,9,p) }

14:  else

15: Replace the least probable data in class §: (2/,9,p') = argming, , yepmevjy—g) P
16: if p’ < p then

17 D = (Dr\{(«', §,p)}) U {(z, 9,D)}

18: end if

19:  end if

20: NI’CI = NI‘Ct + 1
21: end while
22: Return Dg** = DOP U {z|(x,y,p) € D"}

Confidence calibration for sampling. For confidence calibration, we consider the follow-
ing confidence loss L.,; to make the model produce confidence-calibrated outputs for data

which are not relevant to the tasks the model learns:

1
Lene(0,0;D) = DIT] ;y;r[—logp(ylw;&cb)]'

During the 3-step learning, only the first step for training C; has no reference model, so it
should learn with the confidence loss. For C;, (z,y) is from OOD if y ¢ 7;. Namely, by
optimizing the confidence loss under the coreset of the previous tasks D;°] and the external
dataset Dg**, the model learns to produce a prediction with low confidence for OOD data,
i.e., uniformly distributed probabilities over class labels. Thus, C; learns by optimizing the

following:

Le1s(6°, 05 Dy) + L (0°, 65 D U DES). (3.12)
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Note that the model M; does not require an additional confidence calibration, because the
previous model P, is expected to be confidence-calibrated in the previous stage. Therefore,
the confidence-calibrated outputs of the reference models are distilled to the model M.

The effect of confidence loss can be found in Table 3.3.

3.3 Related Work

Continual lifelong learning. Many recent works have addressed catastrophic forgetting
with different assumptions. Broadly speaking, there are three different types of works
(van de Ven and Tolias, 2018): one is class-incremental learning (Rebuffi et al., 2017;
Castro et al., 2018; Wu et al., 2018a), where the number of class labels keeps growing.
Another is task-incremental learning (Li and Hoiem, 2016; Hou et al., 2018), where the
boundaries among tasks are assumed to be clear and the information about the task under
test is given.” The last can be seen as data-incremental learning, which is the case when
the set of class labels or actions are the same for all tasks (Rusu et al., 2016b; Kirkpatrick
et al., 2017; Schwarz et al., 2018).

These works can be summarized as continual learning, and recent works on continual
learning have studied two types of approaches to overcome catastrophic forgetting: model-
based and data-based. Model-based approaches (Rusu et al., 2016b; Kirkpatrick et al.,
2017; Lee et al., 2017; Lopez-Paz et al., 2017; Zenke et al., 2017; Aljundi et al., 2018;
Chaudhry et al., 2018; Jung et al., 2018; Mallya et al., 2018; Nguyen et al., 2018; Ritter
et al., 2018; Schwarz et al., 2018; Serra et al., 2018; Yoon et al., 2018) keep the knowledge
of previous tasks by penalizing the change of parameters crucial for previous tasks, i.e.,
the updated parameters are constrained to be around the original values, and the update is
scaled down by the importance of parameters on previous tasks. However, since DNNs
have many local optima, there would be better local optima for both the previous and new
tasks, which cannot be found by model-based approaches. Data-based approaches (Li and
Hoiem, 2016; Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2018; Javed and Shafait,
2018) keep the knowledge of previous tasks by knowledge distillation (Hinton et al., 2015),
which minimizes the distance between the manifold of the latent space in the previous
and new models. In contrast to model-based approaches, they require data to be fed to
get features on the latent space. Therefore, the amount of knowledge kept by knowledge
distillation depends on the degree of similarity between the data distribution used to learn

the previous tasks in the previous stages and the one used to distill the knowledge in the

>The main difference between class- and task-incremental learning is that the model has single- and multi-
head output layer, respectively.
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later stages. To guarantee to have a certain amount of similar data, some prior works
(Castro et al., 2018; Rebuffi et al., 2017; Nguyen et al., 2018) reserved a small amount of
memory to keep a coreset, and others (Rannen et al., 2017; Shin et al., 2017; Lesort et al.,
2018; van de Ven and Tolias, 2018; Wu et al., 2018a) trained a generative model and replay
the generated data when training a new model. Note that the model-based and data-based
approaches are orthogonal in most cases, thus they can be combined for better performance
(Kim et al., 2018b).

Knowledge distillation in prior works. Our proposed method is a data-based approach,
but it is different from prior works (Li and Hoiem, 2016; Rebuffi et al., 2017; Castro et al.,
2018; Hou et al., 2018), because their model commonly learns with the task-wise local
distillation loss in Eq. (3.2). We emphasize that local distillation only preserves the knowl-
edge within each of the previous tasks, while global distillation does the knowledge over
all tasks.

Similar to our 3-step learning, Schwarz et al. (2018) and Hou et al. (2018) utilized the
idea of learning with two teachers. However, their strategy to keep the knowledge of the
previous tasks is different: Schwarz et al. (2018) applied a model-based approach, and Hou
et al. (2018) distilled the task-wise knowledge for task-incremental learning.

On the other hand, Castro et al. (2018) had a similar fine-tuning, but they built a bal-
anced dataset by discarding most of the data of the current task and updated the whole net-
works. However, such undersampling sacrifices the diversity of the frequent classes, which
decreases the performance. Oversampling may solve the issue, but it makes the training
not scalable: the size of the oversampled dataset increases proportional to the number of

tasks learned so far. Instead, we propose to apply data weighting.

Scalability. Early works on continual learning were not scalable since they kept all pre-
vious models (Li and Hoiem, 2016; Rusu et al., 2016b; Aljundi et al., 2017; Kirkpatrick
et al., 2017; Yoon et al., 2018). However, recent works considered the scalability by mini-
mizing the amount of task-specific parameters (Rebuffi et al., 2017; Schwarz et al., 2018).
In addition, data-based methods require to keep either a coreset or a generative model to
replay previous tasks. Our method is a data-based approach, but it does not suffer from the
scalability issue since we utilize an external dataset sampled from a large stream of unla-
beled data. We note that unlike coreset, our external dataset does not require a permanent

memory; it is discarded after learning.
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3.4 Experiments

3.4.1 Experimental Setup

Compared algorithms. To provide an upper bound of the performance, we compare an
oracle method, which learns by optimizing Eq. (3.1) while storing all training data of pre-
vious tasks and replaying them during training. Also, as a baseline, we provide the per-
formance of a model learned without knowledge distillation. Among prior works, three
state-of-the-art methods are compared: learning without forgetting (LwF) (Li and Hoiem,
2016), distillation and retrospection (DR) (Hou et al., 2018), and end-to-end incremental
learning (E2E) (Castro et al., 2018). For fair comparison, we adapt LwWF and DR for class-
incremental setting, which are originally evaluated in task-incremental learning setting:
specifically, we extend the range of the classification loss, i.e., we optimize Eq. (3.1)+(3.2)
and Eq. (3.1)+(3.2)+(3.4) for replication of them.

We do not compare model-based methods, because data-based methods are known to
outperform them in class-incremental learning (Lesort et al., 2018; van de Ven and Tolias,
2018), and they are orthogonal to data-based methods, such that they can potentially be

combined with our approaches for better performance (Kim et al., 2018b).

Datasets. We evaluate the compared methods on CIFAR-100 (Krizhevsky and Hinton,
2009) and ImageNet ILSVRC 2012 (Deng et al., 2009), where all images are downsampled
to 32 x 32 (Chrabaszcz et al., 2017). For CIFAR-100, similar to prior works (Rebuffi et al.,
2017; Castro et al., 2018), we shuffle the classes uniformly at random and split the classes
to build a sequence of tasks. For ImageNet, we first sample 500 images per 100 randomly
chosen classes for each trial, and then split the classes. To evaluate the compared methods
under the environment with a large stream of unlabeled data, we take two large datasets:
the Tinylmages dataset (Torralba et al., 2008) with 80M images and the entire ImageNet
2011 dataset with 14M images. The classes appeared in CIFAR-100 and ILSVRC 2012
are excluded to avoid any potential advantage from them. At each stage, our sampling
algorithm gets unlabeled data from them uniformly at random to form an external dataset,
until the number of retrieved samples is 1M.

Following the prior works, we divide the classes into splits of 5, 10, and 20 classes,
such that there are 20, 10, and 5 tasks, respectively. For each task size, we evaluate the
compared methods ten times with different class orders (different set of classes in the case

of ImageNet) and report the mean and standard deviation of the performance.
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Evaluation metric. We report the performance of the compared methods in two metrics:
the average incremental accuracy (ACC) and the average forgetting (FGT). For simplicity,
we assume that the number of test data is the same over all classes. For a test data from the
r-th task (x,y) € Drest, let y(z; M) be the label predicted by the s-th model, such that

1 X
Ars = |Dtest‘ Z (y(l‘, Ms) = y)
m y eDtest
measures the accuracy of the s-th model at the r-th task, where s > r. Note that prediction

is done without task boundaries: for example, at the ¢-th stage, the expected accuracy of
random guess is 1/|7;.¢|, not 1/|7,|. At the ¢-th stage, ACC is defined as:

| 7|
ace= Iy LY

s=2 r=1

Note that the performance of the first stage is not considered, as it is not class-incremental
learning. While ACC measures the overall performance directly, FGT measures the amount

of catastrophic forgetting, by averaging the performance decay:

ITI
FGT—t_—lzz‘,Tl - rs)a

s=2 r=1

which is essentially the negative of the backward transfer (Lopez-Paz et al., 2017). Note
that smaller FGT is better, which implies that the model less-forgets about the previous
tasks.

Hyperparameters. The backbone architecture of all compared models is wide residual
networks (Zagoruyko and Komodakis, 2016) with 16 layers, a widen factor of 2 (WRN-16-
2), and a dropout rate of 0.3. Note that this has a comparable performance with ResNet-
32 (He et al., 2016). The last fully connected layer is considered to be a task-specific
layer, and whenever a task with new classes comes in, the layer is extended to produce
a prediction for the new classes. The number of parameters in the task-specific layer is
small compared to those in shared layers (about 2% in maximum in WRN-16-2). All
methods use the same size of coreset, which is 2000. For scalability, the size of the sampled
external dataset is set to the size of the labeled dataset, i.e., Np = |D;™| in Algorithm 3.2.
For validation, one split of ImageNet is used, which is exclusive to the other nine trials.
The temperature for smoothing softmax probabilities (Hinton et al., 2015) is set to 2 for

distillation from P and C, and 1 for Q. For more details, see Appendix B.2.
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Table 3.1: Comparison of methods on CIFAR-100 and ImageNet. We report the mean and
standard deviation of ten trials for CIFAR-100 and nine trials for ImageNet with different
random seeds in %. 1 () indicates that the higher (lower) number is the better.

Dataset CIFAR-100
Task size 5 10 20
Metric ACC (1) | FGT () | ACC(1) | FGT () | ACC (1) | FGT ()
Oracle 78.6 +09 | 3.3+02 | 77.6 £08 | 3.1 02 | 75.7+07 | 2.8 +02
Baseline | 574 +12 | 21.0+05 | 56.8 £1.1 | 19.7 04 | 56.0 10 | 18.0 03
LwF 584 +13 | 193 +05 | 59.5+12] 169 04 | 60.0 +10 | 14.5 +04
DR 591 +14 | 19.6 05 | 60.8 £12 | 17.1 o4 | 61.8 09 | 14.3 104
E2E 60.2 +13 | 16.5+05 | 62.6 +1.1 | 12.8 £04 | 65.1 08 | 8.9 +02
GD (Ours) | 62.1 +12 | 154 +04 | 65.0 1.1 | 12.1 03 | 67.1 +09 | 8.5 +03
+ ext 663 +12| 98+03 | 681 +11| 7.7+03 | 689 10| 55 +04
Dataset ImageNet
Task size 5 10
Metric ACC (1) | FGT (l) | ACC (1) | FGT () | ACC (1) | FGT ()
Oracle 680+17] 33+02 | 669+16| 3.1+03 | 65.1+12| 2.7 +02
Baseline | 442 +17 | 23.6 £04 | 44.1 16 | 21.5 +05 | 44.7 +12 | 18.4 +05
LwF 456 £19 | 21.5+04 | 473 +15 | 185 +05 | 48.6 £12 | 15.3 o6
DR 465 +16 | 22.0+05 | 48.7 +16 | 18.8 £05 | 50.7 +12 | 15.1 +05
E2E 477 19 | 179 +04 | 50.8 +15 | 13.4 104 | 539 £12 | 8.8 +03
GD (Ours) | 500 +1.7 | 16.8 £04 | 53.7+15 | 12.8 +05 | 565 +12 | 8.4 +04
+ ext 552 +18 | 9.6 +04 | 577 +16| T4 +03 | 587 +12| 54 +03

3.4.2 Evaluation

Comparison of methods. Table 3.1 and Figure 3.2 compare our proposed methods with
the state-of-the-art methods. First, even when unlabeled data are not accessible, our method
outperforms the state-of-the-art methods, which shows the effectiveness of the proposed 3-
step learning scheme. Specifically, in addition to the difference in the loss function, DR
does not have balanced fine-tuning, E2E lacks the teacher for the current task C; and fine-
tunes the whole networks with a small dataset, and LwF has neither C; nor fine-tuning.
Compared to E2E, which is the best state-of-the-art method, our method improves ACC by
4.8% and FGT by 6.0% on ImageNet with a task size of 5.

On the other hand, as shown in Figure 3.2(a)-3.2(b), learning with an unlabeled external
dataset improves the performance of compared methods consistently, but the improvement
is more significant in GD. For example, in the case of ImageNet with a task size of 5, by
learning with the external dataset, E2E improves ACC by 3.2%, while GD does by 10.5%.

Also, the relative performance gain in terms of FGT is more significant: E2E forgets 1.1%
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Figure 3.2: Experimental results on CIFAR-100. (a,b) Arrows show the performance gain
in the average incremental accuracy (ACC) and average forgetting (FGT) by learning with
unlabeled data, respectively. (c,d) Curves show ACC and FGT with respect to the number
of trained classes when the task size is 10. We report the average performance of ten trials.

Table 3.2: Comparison of models learned with different reference models on CIFAR-100
when the task size is 10. “P,” “C,” and “Q” stand for the previous model, the teacher for
the current task, and their ensemble model, respectively.

PlC| Q| ACC) | FGT ()
V|- -1629+12| 147 £o4
V| Vv | - 167.0x09 | 10.7 03
- v | 657 09 | 11.2 £o02
v v | 681 x11]| 7.7 £o3

less while GD does 43.1%. Overall, with our proposed learning scheme and the external
dataset, GD improves its ACC by 15.8% and FGT by 46.5% over E2E.

Effect of the reference models. Table 3.2 shows an ablation study with different set of
reference models. As discussed in Section 3.2.2, because the previous model P does not
know about the current task, the compensation by introducing C improves the overall per-
formance. On the other hand, O does not show better ACC than the combination of P
and C. This would be because, when building the output of Q, the ensemble of the output
of P and C is made with an assumption, which would not always be true. However, the
knowledge from Q is useful, such that the combination of all three reference models shows

the best performance.
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Table 3.3: Comparison of models learned with a different teacher for the current task C on
CIFAR-100 when the task size is 10. For “c1s,” C is not trained but the model learns by
optimizing the learning objective of C directly. The model learns with the proposed 3-step
learning for “dst.” The confidence loss is added to the learning objective for C for “cnf.”
We do not utilize Q for this experiment, because “c1s” has no explicit C.

C Confidence | ACC (1) | FGT ()
- - 629 +12 | 14.7 +04

cls - 629 +13 | 145 +05
cls cnf 653 +10 | 11.7 £03
dst - 66.2 +10 | 11.2 £o03
dst cnf 67.0 09 | 10.7 +o3

Table 3.4: Comparison of different balanced learning strategies on CIFAR-100 when the
task size is 10. “DW,” “FT-DSet,” and “FT-DW” stand for training with data weighting in
Eq. (3.10) for the entire training, fine-tuning with a training dataset balanced by removing
data of the current task, and fine-tuning with data weighting, respectively.

Balancing | ACC (1) | FGT ()
- 67.1 oo | 11.5+03
DW 679 +09 | 9.6 02
FT-DSet | 67.2 +1.1 | 84 +o02
FI-DW | 681 +11| 7.7 +03

Effect of the teacher for the current task C. Table 3.3 compares the models learned
with a different teacher for the current task C;. In addition to the baseline without C;,
we also compare the model directly optimizes the learning objective of C; in Eq. (3.5)
or (3.12), i.e., the model learns with hard labels rather than soft labels when optimizing
that loss. Note that introducing a separate model C for distillation is beneficial, because C
learns better knowledge about the current task without interference from other classification
tasks. Learning by optimizing the confidence loss improves the performance, because the

confidence-calibrated model samples better external data as discussed in Section 3.2.3.

Effect of balanced fine-tuning. Table 3.4 shows the effect of balanced learning. First,
balanced learning strategies improve FGT in general. If fine-tuning in 3-step learning is
skipped but data weighting in Eq. (3.10) is applied in the main training (DW), the model
shows higher FGT than having balanced fine-tuning on task-specific parameters (FI-DW),
as discussed in Section 3.2.2. Note that data weighting (FT-DW) is better than removing
the data of the current task to construct a small balanced dataset (FT-DSet) proposed in

Castro et al. (2018), because all training data are useful.

42



Table 3.5: Comparison of different external data sampling strategies on CIFAR-100 when
the task size is 10. “Prev” and “OOD” columns describe the sampling method for data of
previous tasks and out-of-distribution data, where “Pred” and “Random” stand for sampling
based on the prediction of the previous model P and random sampling, respectively. In
particular, for when sampling OOD by “Pred,” we sample data minimizing the confidence
loss L.n:. When only Prev or OOD is sampled, the number of sampled data is doubled for
fair comparison.

Prev O0OD ACC (1) | FGT ()
- - 65011 | 12.1 £o3
- Random | 67.6 +09 | 9.0 +03
Pred - 66.0 12| 7.8 +03
Pred Pred 65.7 +1.1 | 10.2 +o02
Pred | Random | 68.1 +11 | 7.7 +03

Effect of external data sampling. Table 3.5 compares different external data sampling
strategies. Unlabeled data are beneficial in all cases, but the performance gain is different
over sampling strategies. First, observe that randomly sampled data are useful, because
their predictive distribution would be diverse such that it helps to learn the diverse knowl-
edge of the reference models, which makes the model confidence-calibrated. However,
while the random sampling strategy has higher ACC than sampling based on the prediction
of the previous model P, it also shows high FGT. This implies that the unlabeled data sam-
pled based on the prediction of P prevents the model from catastrophic forgetting more. As
discussed in Section 3.2.3, our proposed sampling strategy, the combination of the above
two strategies shows the best performance. Finally, sampling OOD data based on the pre-
diction of P is not beneficial, because “data most likely to be from OOD” would not be
useful. OOD data sampled based on the prediction of P have almost uniform predictive
distribution, which would be locally distributed. However, the concept of OOD is a kind
of complement set of the data distribution the model learns. Thus, to learn to discriminate
OOD well in our case, the model should learn with data widely distributed outside of the

data distribution of the previous tasks.

3.5 Summary

We propose to leverage a large stream of unlabeled data in the wild for class-incremental
learning. The proposed global distillation aims to keep the knowledge of the reference
models without task boundaries, leading better knowledge distillation. Our 3-step learning
scheme effectively leverages the external dataset sampled by the confidence-based sam-

pling strategy from the stream of unlabeled data.
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CHAPTER 1V

Network Randomization: A Simple Technique
for Generalization in Deep Reinforcement

Learning

Deep reinforcement learning (RL) agents often fail to generalize to unseen environments
(yet semantically similar to trained agents), particularly when they are trained on high-
dimensional state spaces, such as images. In this chapter, we propose a simple technique to
improve a generalization ability of deep RL agents by introducing a randomized (convolu-
tional) neural network that randomly perturbs input observations. It enables trained agents
to adapt to new domains by learning robust features invariant across varied and random-
ized environments. Furthermore, we consider an inference method based on the Monte
Carlo approximation to reduce the variance induced by this randomization. We demon-
strate the superiority of our method across 2D CoinRun, 3D DeepMind Lab exploration
and 3D robotics control tasks: it significantly outperforms various regularization and data

augmentation methods for the same purpose.

4.1 Introduction

Deep reinforcement learning (RL) has been applied to various applications, including board
games (e.g., Go (Silver et al., 2017) and Chess (Silver et al., 2018)), video games (e.g.,
Atari games (Mnih et al., 2015) and StarCraft (Vinyals et al., 2017)), and complex robotics
control tasks (Tobin et al., 2017; Ren et al., 2019). However, it has been evidenced in
recent years that deep RL agents often struggle to generalize to new environments, even
when semantically similar to trained agents (Farebrother et al., 2018; Zhang et al., 2018b;
Cobbe et al., 2019; Gamrian and Goldberg, 2019). For example, RL agents that learned a

near-optimal policy for training levels in a video game fail to perform accurately in unseen
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Figure 4.1: (a) Examples of randomized inputs (color values in each channel are normalized
for visualization) generated by re-initializing the parameters of a random layer. Examples
of seen and unseen environments on (b) CoinRun, (c) DeepMind Lab, and (d) Surreal
robotics control.

levels (Cobbe et al., 2019), while a human can seamlessly generalize across similar tasks.
Namely, RL agents often overfit to training environments, thus the lack of generalization
ability makes them unreliable in several applications, such as health care (Chakraborty and
Murphy, 2014) and finance (Deng et al., 2016).

Generalization in RL can be characterized by visual changes (Cobbe et al., 2019; Gam-
rian and Goldberg, 2019), different dynamics (Packer et al., 2018), and various structures
(Beattie et al., 2016; Wang et al., 2016). In this chapter, we focus on the generalization
across tasks where the trained agents take various unseen visual patterns at test time, e.g.,
different styles of backgrounds, floors, and other objects (see Figure 4.1). We also found
that RL agents completely fail due to small visual changes because it is challenging to learn
generalizable representations from high-dimensional input observations, such as images.

To improve generalization, several strategies, such as regularization (Farebrother et al.,
2018; Zhang et al., 2018b; Cobbe et al., 2019) and data augmentation (Tobin et al., 2017;
Ren et al., 2019), have been proposed in the literature. In particular, Tobin et al. (2017)
showed that training RL agents in various environments generated by randomizing render-
ing in a simulator improves the generalization performance, leading to a better performance
in real environments. This implies that RL agents can learn invariant and robust represen-
tations if diverse input observations are provided during training. However, their method
is limited by requiring a physics simulator, which may not always be available. This moti-
vates our approach of developing a simple and plausible method for training RL agents.

The main contribution of this chapter is to develop a simple randomization technique
for improving the generalization ability across tasks with various unseen visual patterns.

Our main idea is to utilize random (convolutional) networks to generate randomized inputs
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(see Figure 4.1(a)), and train RL agents by feeding them into the networks. Specifically,
by re-initializing the parameters of random networks at every iteration, the agents are en-
couraged to be trained under a broad range of perturbed low-level features, e.g., various
textures, colors, or shapes. We discover that the proposed idea guides RL agents to learn
generalizable features that are more invariant in unseen environments (see Figure 4.3) than
conventional regularization (Srivastava et al., 2014; loffe and Szegedy, 2015) and data aug-
mentation (Cobbe et al., 2019; Cubuk et al., 2019a) techniques. Here, we also provide an
inference technique based on the Monte Carlo approximation, which stabilizes the perfor-
mance by reducing the variance incurred from our randomization method at test time.

We demonstrate the effectiveness of the proposed method on the 2D CoinRun (Cobbe
et al., 2019) game, the 3D DeepMind Lab exploration task (Beattie et al., 2016), and the
3D robotics control task (Fan et al., 2018). For evaluation, the performance of the trained
agents is measured in unseen environments with various visual and geometrical patterns
(e.g., different styles of backgrounds, objects, and floors), guaranteeing that the trained
agents encounter unseen inputs at test time. Note that learning invariant and robust repre-
sentations against such changes is essential to generalize to unseen environments. In our
experiments, the proposed method significantly reduces the generalization gap in unseen
environments unlike conventional regularization and data augmentation techniques. For
example, compared to the agents learned with the cutout (DeVries and Taylor, 2017b) data
augmentation methods proposed by Cobbe et al. (2019), our method improves the success
rates from 39.8% to 58.7% under 2D CoinRun, the total score from 55.4 to 358.2 for 3D
DeepMind Lab, and the total score from 31.3 to 356.8 for the Surreal robotics control task.
Our results can be influential to study other generalization domains, such as tasks with
different dynamics (Packer et al., 2018), as well as solving real-world problems, such as

sim-to-real transfer (Tobin et al., 2017).

4.2 Related Work

Generalization in deep RL. Recently, the generalization performance of RL agents has
been investigated by splitting training and test environments using random seeds (Zhang
et al., 2018a) and distinct sets of levels in video games (Machado et al., 2018; Cobbe et al.,
2019). Regularization is one of the major directions to improve the generalization abil-
ity of deep RL algorithms. Farebrother et al. (2018) and Cobbe et al. (2019) showed that
regularization methods can improve the generalization performance of RL agents using
various game modes of Atari (Machado et al., 2018) and procedurally generated arcade en-

vironments called CoinRun, respectively. On the other hand, data augmentation techniques

46



have also been shown to improve generalization. Tobin et al. (2017) proposed a domain
randomization method to generate simulated inputs by randomizing rendering in the sim-
ulator. Motivated by this, Cobbe et al. (2019) proposed a data augmentation method by
modifying the cutout method (DeVries and Taylor, 2017b). Our method can be combined

with the prior methods to further improve the generalization performance.

Random networks for deep RL. Random networks have been utilized in several ap-
proaches for different purposes in deep RL. Burda et al. (2019) utilized a randomly initial-
ized neural network to define an intrinsic reward for visiting unexplored states in challeng-
ing exploration problems. By learning to predict the reward from the random network, the
agent can recognize unexplored states. Osband et al. (2018) studied a method to improve
ensemble-based approaches by adding a randomized network to each ensemble member
to improve the uncertainty estimation and efficient exploration in deep RL. Our method
is different from those prior works in that we introduce a random network to improve the

generalization ability of RL agents.

Transfer learning. Generalization is also closely related to transfer learning (Parisotto
etal.,2016; Rusu et al., 2016a,b), which is used to improve the performance on a target task
by transferring the knowledge from a source task. However, unlike supervised learning, it
has been observed that fine-tuning a model pre-trained on the source task for adapting to the
target task is not beneficial in deep RL. Therefore, Gamrian and Goldberg (2019) proposed
a domain transfer method using generative adversarial networks (Goodfellow et al., 2014)
and Farebrother et al. (2018) utilized regularization techniques to improve the performance
of fine-tuning methods. Higgins et al. (2017) proposed a multi-stage RL, which learns to
extract disentangled representations from the input observation and then trains the agents
on the representations. Alternatively, we focus on the zero-shot performance of each agent

at test time without further fine-tuning of the agent’s parameters.

4.3 Network Randomization Technique for Generalization

We consider a standard reinforcement learning (RL) framework where an agent interacts
with an environment in discrete time. Formally, at each timestep ¢, the agent receives
a state s; from the environment' and chooses an action a; based on its policy 7. The
environment returns a reward 7; and the agent transitions to the next state s;, ;. The return
Ri=3%"10, 7741, is the total accumulated rewards from timestep ¢ with a discount factor

v € [0,1). RL then maximizes the expected return from each state s;.

'Throughout this chapter, we focus on high-dimensional state spaces, e.g., images.
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4.3.1 Training Agents Using Randomized Input Observations

We introduce a random network f with its parameters ¢ initialized with a prior distribution,
e.g., Xavier normal distribution (Glorot and Bengio, 2010). Instead of the original input s,
we train an agent using a randomized input 5 = f(s; ¢). For example, in the case of policy-
based methods,” the parameters 6 of the policy network 7 are optimized by minimizing the

following policy gradient objective function:

L399 = Bsyap,men | — log T (ad] f (s15¢) :0) Re], (4.1)

where D = {(st,as, Rt)} is a set of past transitions with cumulative rewards. By re-
initializing the parameters ¢ of the random network per iteration, the agents are trained
using varied and randomized input observations (see Figure 4.1(a)). Namely, environments
are generated with various visual patterns, but with the same semantics by randomizing
the networks. Our agents are expected to adapt to new environments by learning invariant
representation (see Figure 4.3 for supporting experiments).

To learn more invariant features, the following feature matching (FM) loss between

hidden features from clean and randomized observations is also considered:

L5 = Egen [||h (f(550);0) = h (s 0) |P], (4.2)

where h(-) denotes the output of the penultimate layer of policy 7. The hidden features
from clean and randomized inputs are combined to learn more invariant features against
the changes in the input observations.’ Namely, the total loss is:

l:random _ l:random _% K3l:random (433)

policy

where 8 > 0 is a hyper-parameter. The full procedure is summarized in Algorithm 4.1.

Details of the random networks. We propose to utilize a single-layer convolutional neu-
ral network (CNN) as a random network, where its output has the same dimension with the
input (see Appendix C.4 for additional experimental results on the various types of random
networks). To re-initialize the parameters of the random network, we utilize the following
mixture of distributions: P(¢) = ol(¢ = I) + (1 — )N (0; \ /ﬁ) , where T is an

identity kernel, « € [0, 1] is a positive constant, A/ denotes the normal distribution, and

20ur method is applicable to the value-based methods as well.
3FM loss has also been investigated for various purposes: semi-supervised learning (Miyato et al., 2018b)
and unsupervised learning (Salimans et al., 2016; Xie et al., 2019).
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Algorithm 4.1 PPO + random networks, Actor-Critic Style

for iteration=1,2,--- do
Sample the parameter ¢ of random networks from prior distribution P(¢)
for actor=1,2,--- , N do
Run policy 7 (a|f (s; ¢) ; 0) in the given environment for 7" timesteps
Compute advantage estimates
end for
Optimize £r*°" in Eq. (4.3) with respect to 6
end for

Method Classification Accuracy (%) ‘ w
v "
Train (seen) Test (unseen) Wi

ResNet-18 95.0 £24 403 +12

ResNet-18 + GR | 96.4 +138 709 +1.7

ResNet-18 +CO | 959423 412417 R R
ResNet-18 +1V | 91.0 20  47.1 +151 » W—c‘ F
ResNet-18 + CJ | 95.2 +o0s6 43.5 +03 ; | § g -
ResNet-18 +ours| 959 +16  84.4 +45 Training Data Test Data

Table 4.1: Classification accuracy (%) on dogs Figure 4.2: Samples of dogs vs. cats
vs. cats dataset. The results show the mean dataset. The training set consists of bright
and standard deviation averaged over three dogs and dark cats, whereas the test set
runs and the best result is indicated in bold. consists of dark dogs and bright cats.

Nin, Nowt are the number of input and output channels, respectively. Here, clean inputs are
used with the probability « because training only randomized inputs can complicate train-
ing. The Xavier normal distribution (Glorot and Bengio, 2010) is used for randomization
because it maintains the variance of the input s and the randomized input 5. We empirically

observe that this distribution stabilizes training.

Removing visual bias. To confirm the desired effects of our method, we conduct an image
classification experiment on the dogs and cats database from Kaggle.* Following the same
setup as Kim et al. (2019), we construct datasets with an undesirable bias as follows: the
training set consists of bright dogs and dark cats while the test set consists of dark dogs
and bright cats (see Appendix C.8 for further details). A classifier is expected to make a
decision based on the undesirable bias, (e.g., brightness and color) since CNNs are biased
towards texture or color, rather than shape (Geirhos et al., 2019). Table 4.1 shows that
ResNet-18 (He et al., 2016) does not generalize effectively due to overfitting to an unde-
sirable bias in the training data. To address this issue, several image processing methods

*https://www.kaggle.com/c/dogs—-vs—cats
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(Cubuk et al., 2019a), such as grayout (GR), cutout (CO; DeVries and Taylor, 2017b), in-
version (IV), and color jitter (CJ), can be applied (see Appendix C.3 for further details).
However, they are not effective in improving the generalization ability, compared to our
method. This confirms that our approach makes DNNs capture more desired and mean-
ingful information such as the shape by changing the visual appearance of attributes and
entities in images while effectively keeping the semantic information. Prior sophisticated
methods (Ganin et al., 2016; Kim et al., 2019) require additional information to eliminate
such an undesired bias, while our method does not.” Although we mainly focus on RL

applications, our idea can also be explorable in this direction.

4.3.2 Inference Methods for Small Variance

Since the parameter of random networks is drawn from a prior distribution P(¢), our policy
is modeled by a stochastic neural network: 7(a|s;0) = Ey|[m (a|f (s;¢);0)]. Based on
this interpretation, our training procedure (i.e., randomizing the parameters) consists of
training stochastic models using the Monte Carlo (MC) approximation (with one sample
per iteration). Therefore, at the inference or test time, an action « is taken by approximating
the expectations as follows:  (als;0) ~ an‘il T (a’f (s;0™);6), where ¢(™ ~
P (¢) and M is the number of MC samples. In other words, we generate M random inputs
for each observation and then aggregate their decisions. The results show that this estimator
improves the performance of the trained agents by approximating the posterior distribution

more accurately (see Figure 4.3(d)).

4.4 Experiments

In this section, we demonstrate the effectiveness of the proposed method on 2D Coin-
Run (Cobbe et al., 2019), 3D DeepMind Lab exploration (Beattie et al., 2016), and 3D
robotics control task (Fan et al., 2018). To evaluate the generalization ability, we measure
the performance of trained agents in unseen environments which consist of different styles
of backgrounds, objects, and floors. We provide more detailed experimental setups and

results in Appendix.

>Using the known bias information (i.e., {dark, bright}) and ImageNet pre-trained model, Kim et al.
(2019) achieve 90.3%, while our method achieves 84.4% without using both inputs.
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4.4.1 Baselines and Implementation Details

For CoinRun and DeepMind Lab experiments, similar to Cobbe et al. (2019), we take the
CNN architecture used in IMPALA (Espeholt et al., 2018) as the policy network, and the
Proximal Policy Optimization (PPO) (Schulman et al., 2017) method to train the agents.®
At each timestep, agents are given an observation frame of size 64 x 64 as input (resized
from the raw observation of size 320 x 240 as in the DeepMind Lab), and the trajectories are
collected with the 256-step rollout for training. For Surreal robotics experiments, similar
to Fan et al. (2018), the hybrid of CNN and long short-term memory (LSTM) architecture
is taken as the policy network, and a distributed version of PPO (i.e., actors collect a mas-
sive amount of trajectories, and the centralized learner updates the model parameters using
PPO) is used to train the agents.” We measure the performance in the unseen environment
for every 10M timesteps and report the mean and standard deviation across three runs.
Our proposed method, which augments PPO with random networks and feature match-
ing (FM) loss (denoted PPO + ours), is compared with several regularization and data aug-
mentation methods. As regularization methods, we compare dropout (DO; Srivastava et al.,
2014), L2 regularization (L2), and batch normalization (BN; loffe and Szegedy, 2015). For
those methods, we use the hyperparameters suggested in Cobbe et al. (2019), which are
empirically shown to be effective: a dropout probability of 0.1 and a coefficient of 10~4
for L2 regularization. We also consider various data augmentation methods: a variant of
cutout (CO; DeVries and Taylor, 2017b) proposed in Cobbe et al. (2019), grayout (GR),
inversion (IV), and color jitter (CJ) by adjusting brightness, contrast, and saturation (see
Appendix C.3 for more details). As an upper bound, we report the performance of agents
trained directly on unseen environments, denoted PPO (oracle). For our method, we use
£ = 0.002 for the weight of the FM loss, o = 0.1 for the probability of skipping the ran-
dom network, M = 10 for MC approximation, and a single-layer CNN with the kernel size

of 3 as a random network.

4.4.2 Experiments on CoinRun

Task description. In this task, an agent is located at the leftmost side of the map and the
goal is to collect the coin located at the rightmost side of the map within 1,000 timesteps.
The agent observes its surrounding environment in the third-person point of view, where
the agent is always located at the center of the observation. CoinRun contains an arbitrarily

large number of levels which are generated deterministically from a given seed. In each

SWe referred to https://github.com/openai/coinrun.
"We referred to the two actors setting in ht tps://github.com/Surreal Al/surreal.
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PPO PPO PPO PPO PPO PPO PPO PPO + ours

PPO +DO +1L2 +BN +CO +IV +GR +CJ|Rand Rand+FM
Seen 100 100 983 933 100  95.0 100 100 | 95.0 100
Success +£00  £00 £29 £115 £00 £86 £00 £00 | +£7.1 +0.0
rate 346 253 341 315 419 375 269 43.1 | 76.7 78.1

Unseen

+45 £120 4£54 £131 £55 +£08 L£131 14 | +£13 +35
2-way 189 133 244 255 278 178 17.7 322 | 64.7 67.8
Cycle- +109 £22  £11  +66 £106 £156 £1.1  £31 | +44 +62
consistency 3-way 44 44 8.9 7.4 96 56 22 156 393 43.3
+22 4+22 4£38  +12 +56 +47  £38  +£31 | +85 +47

Table 4.2: Success rate (%) and cycle-consistency (%) after 100M timesteps in small-scale
CoinRun. The results show the mean and standard deviation averaged over three runs and
the best results are indicated in bold.

level, the style of background, floor, and obstacles is randomly selected from the available
themes (34 backgrounds, 6 grounds, 5 agents, and 9 moving obstacles). Some obstacles
and pitfalls are distributed between the agent and the coin, where a collision with them
results in the agent’s immediate death. We measure the success rates, which correspond to

the number of collected coins divided by the number of played levels.

Ablation study on small-scale environments. First, we train agents on one level for
100M timesteps and measure the performance in unseen environments by only changing
the style of the background, as shown in Figure 4.3(a). Note that these visual changes are
not significant to the game’s dynamics, but the agent should achieve a high success rate
if it can generalize accurately. However, Table 4.2 shows that all baseline agents fail to
generalize to unseen environments, while they achieve a near-optimal performance in the
seen environment. This shows that regularization techniques have no significant impact on
improving the generalization ability. Even though data augmentation techniques, such as
cutout (CO) and color jitter (CJ), slightly improve the performance, our proposed method
is most effective because it can produce a diverse novelty in attributes and entities. Train-
ing with randomized inputs can degrade the training performance, but the high expressive
power of DNNs prevents from it. The performance in unseen environments can be further
improved by optimizing the FM loss. To verify the effectiveness of MC approximation at
test time, we measure the performance in unseen environments by varying the number of
MC samples. Figure 4.3(d) shows the mean and standard deviation across 50 evaluations.
The performance and its variance can be improved by increasing the number of MC sam-
ples, but the improvement is saturated around ten samples. Thus, we use ten samples for

the following experiments.

52



80

» ' 4 79
oot : ‘El ¢ ?E
bl o8 WLE . o iﬂ

a

DQ *oull
74

R
Unseen A m Er AR 1
_ '. ) ® e . °
Seo oy ° "\’ » 4 73
I.o o 34 < s 724
Unseen B % L 71
[T
. @ Seen ® Seen [ 70
£ . , © UnseenA ©® UnseenA 1 5 10
@® Unseen B @ Unseen B

Number of MC Samples

Seen

.
f--

76+
754

%
L 7Y ®
°
' y ¢
Average Success Rates (%

(a) Trajectories (b) PPO (c) PPO + ours (d) Effects of MC samples

Figure 4.3: (a) We collect multiple episodes from various environments by human demon-
strators and visualize the hidden representation of trained agents optimized by (b) PPO and
(c) PPO + ours constructed by t-SNE, where the colors of points indicate the environments
of the corresponding observations. (d) Average success rates for varying number of MC
samples.

Embedding analysis. We analyze whether the hidden representation of trained RL agents
exhibits meaningful abstraction in the unseen environments. The features on the penul-
timate layer of trained agents are visualized and reduced to two dimensions using t-SNE
(Maaten and Hinton, 2008). Figure 4.3 shows the projection of trajectories taken by human
demonstrators in seen and unseen environments (see Appendix C.13 for further results).
Here, trajectories from both seen and unseen environments are aligned on the hidden space
of our agents, while the baselines yield scattered and disjointed trajectories. This implies
that our method makes RL agents capable of learning invariant and robust representations.

To evaluate the quality of hidden representation quantitatively, the cycle-consistency
proposed in Aytar et al. (2018) is also measured. Given two trajectories V and U, v; € V
first locates its nearest neighbor in the other trajectory u; = arg min,ep ||k (v;) — h(u)]|,
where h(-) denotes the output of the penultimate layer of trained agents. Then, the nearest
neighbor of u; in V is located, i.e., v, = argmin,cy ||h(v) — h(u;)|?, and v; is defined
as cycle-consistent if |¢ — k| < 1, i.e., it can return to the original point. Note that this
cycle-consistency implies that two trajectories are accurately aligned in the hidden space.
Similar to Aytar et al. (2018), we also evaluate the three-way cycle-consistency by mea-
suring whether v; remains cycle-consistent along both paths, V. — U — J — V and
V.- J = U — V, where J is the third trajectory. Using the trajectories shown in
Figure 4.3(a), Table 4.2 reports the percentage of input observations in the seen environ-
ment (blue curve) that are cycle-consistent with unseen trajectories (red and green curves).
Similar to the results shown in Figure 4.3(c), our method significantly improves the cycle-

consistency compared to the vanilla PPO agent.
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PPO + ours

Figure 4.4: Visualization of activation maps via Grad-CAM in seen and unseen environ-

ments in the small-scale CoinRun. Images are aligned with similar states from various
episodes for comparison.

Unseen Seen

Visual interpretation. To verify whether the trained agents can focus on meaningful and
high-level information, the activation maps are visualized using Grad-CAM (Selvaraju
etal., 2017) by averaging activations channel-wise in the last convolutional layer, weighted
by their gradients. As shown in Figure 4.4, both vanilla PPO and our agents make a deci-
sion by focusing on essential objects, such as obstacles and coins in the seen environment.
However, in the unseen environment, the vanilla PPO agent displays a widely distributed
activation map in some cases, while our agent does not. As a quantitative metric, we mea-
sure the entropy of normalized activation maps. Specifically, we first normalize activations
genw € [0,1], such that it represents a 2D discrete probability distribution at timestep ¢,
ie., Zthl 23;1 orhw = 1. Then, we measure the entropy averaged over the timesteps
as follows: —& >°1 S SN 541,108 0 4. Note that the entropy of the activation
map quantitatively measures the frequency an agent focuses on salient components in its
observation. Results show that our agent produces a low entropy on both seen and unseen
environments (i.e., 2.28 and 2.44 for seen and unseen, respectively), whereas the vanilla
PPO agent produces a low entropy only in the seen environment (2.77 and 3.54 for seen

and unseen, respectively).

Results on large-scale experiments. Similar to Cobbe et al. (2019), the generalization
ability by training agents is evaluated on a fixed set of 500 levels of CoinRun. To explicitly
separate seen and unseen environments, half of the available themes are utilized (i.e., style
of backgrounds, floors, agents, and moving obstacles) for training, and the performances
on 1,000 different levels consisting of unseen themes are measured.® As shown in Fig-

ure 4.5(a), our method outperforms all baseline methods by a large margin. In particular,

80racle agents are trained on same map layouts with unseen themes to measure the optimal generalization
performances on unseen visual patterns.
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Figure 4.5: The performances of trained agents in unseen environments under (a) large-
scale CoinRun, (b) DeepMind Lab and (c) Surreal robotics control. The solid/dashed lines
and shaded regions represent the mean and standard deviation, respectively.

the success rates are improved from 39.8% to 58.7% compared to the PPO with cutout (CO)
augmentation proposed in Cobbe et al. (2019), showing that our agent learns generalizable

representations given a limited number of seen environments.

4.4.3 Experiments on DeepMind Lab and Surreal Robotics Control

Results on DeepMind Lab. We also demonstrate the effectiveness of our proposed method
on DeepMind Lab (Beattie et al., 2016), which is a 3D game environment in the first-person
point of view with rich visual inputs. The task is designed based on the standard exploration
task, where a goal object is placed in one of the rooms in a 3D maze. In this task, agents
aim to collect as many goal objects as possible within 90 seconds to maximize their re-
wards. Once the agent collects the goal object, it receives ten points and is relocated to a
random place. Similar to the small-scale CoinRun experiment, agents are trained to collect
the goal object in a fixed map layout and tested in unseen environments with only changing
the style of the walls and floors. We report the mean and standard deviation of the average
scores across ten different map layouts, which are randomly selected. Additional details
are provided in Appendix C.7.

Note that a simple strategy of exploring the map actively and recognizing the goal object

achieves high scores because the maze size is small in this experiment. Even though the
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PPO PPO + ours
# of Seen Total # of Seen Total # of Seen Total
Environments Rewards | Environments Rewards Environments  Rewards
DeepMind Lab 1 55.4 +332 16 218.3 + 992 1 358.2 +315
Surreal Robotics 1 59.2 +319 25 168.8 +155.8 1 356.8 + 154

Table 4.3: Comparison with domain randomization. The results show the mean and stan-
dard deviation averaged over three runs and the best results are indicated in bold.

baseline agents achieve high scores by learning this simple strategy in the seen environment
(see Figure C.1(c) in Appendix C.1 for learning curves), Figure 4.5(b) shows that they fail
to adapt to the unseen environments. However, the agent trained by our proposed method
achieves high scores in both seen and unseen environments. These results show that our
method can learn generalizable representations from high-dimensional and complex input

observations (i.e., 3D environment).

Results on Surreal robotics control. We evaluate our method in the Block Lifting task
using the Surreal distributed RL framework (Fan et al., 2018): the Sawyer robot receives a
reward if it succeeds to lift a block randomly placed on a table. We train agents on a single
environment and test on five unseen environments with various styles of tables and blocks
(see Appendix C.9 for further details). Figure 4.5(c) shows that our method achieves a sig-
nificant performance gain compared to all baselines in unseen environments while main-
taining its performance in the seen environment (see Figure C.8 in Appendix C.9), implying
that our method can maintain essential properties, such as structural spatial features of the

input observation.

Comparison with domain randomization. To further verify the effectiveness of our method,
the vanilla PPO agents are trained by increasing the number of seen environments generated
by randomizing rendering in a simulator, while our agent is still trained in a single envi-
ronment (see Appendix C.7 and C.9 for further details). Table 4.3 shows that the perfor-
mance of baseline agents can be improved with domain randomization (Tobin et al., 2017).
However, our method still outperforms the baseline methods trained with more diverse en-
vironments than ours, implying that our method is more effective in learning generalizable

representations than simply increasing the (finite) number of seen environments.

4.5 Summary

In this chapter, we explore generalization in RL where the agent is required to generalize

to new environments in unseen visual patterns, but semantically similar. To improve the
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generalization ability, we propose to randomize the first layer of CNN to perturb low-level
features, e.g., various textures, colors, or shapes. Our method encourages agents to learn
invariant and robust representations by producing diverse visual input observations. Such
invariant features could be useful for several other related topics, like an adversarial defense
in RL (see Appendix C.2 for further discussions), sim-to-real transfer (Tobin et al., 2017;
Ren et al., 2019), transfer learning (Parisotto et al., 2016; Rusu et al., 2016a,b), and online
adaptation (Nagabandi et al., 2019).
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CHAPTER V

1=-MixUp : Vicinal Risk Minimization for

Contrastive Representation Learning

Contrastive learning has demonstrated state-of-the-art performance in self-supervised rep-
resentation learning. However, a majority of the progress has been made by utilizing
domain-specific data augmentation techniques, e.g., in computer vision. In this work, we
propose ¢-MixUp, for domain-agnostic contrastive representation learning. First, we cast
contrastive learning as learning a non-parametric classifier by assigning a unique virtual
class to each data in a batch. Then, :-MixUp linearly interpolates the inputs in the data
space and virtual class labels in the label space. In the experiments, we show that -MixUp
consistently improves the quality of image representation, resulting in a performance gain
for downstream tasks. The learned representation also has better transferability under distri-
bution shifts. Then, we demonstrate the domain-agnostic representation learning capability
of -MixUp by learning with a limited number of data augmentations. Finally, we evaluate

1-MixUp on non-vision domains where data augmentation is not well established.

5.1 Introduction

Representation learning (Lee et al., 2007; Bengio et al., 2013; Razavian et al., 2014; Ser-
manet et al., 2014) is a fundamental task in machine learning since the success of machine
learning relies on the quality of representation. Unsupervised or self-supervised representa-
tion learning (Self-SL) (Lee et al., 2007; Bengio et al., 2013) has been successfully applied
in several domains, including image recognition (Wu et al., 2018b; Chen et al., 2020a; He
etal., 2020), natural language processing (Mikolov et al., 2013), robotics (Ebert et al., 2018;
Jang et al., 2018; Sermanet et al., 2018; Lee et al., 2019c¢), speech recognition (Ravanelli
et al., 2020), and and video understanding (Korbar et al., 2018; Owens and Efros, 2018;
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Wiles et al., 2018). Since no label is available in the unsupervised setting, pretext tasks
are proposed to provide self-supervision: for example, training an autoencoder (Vincent
et al., 2010; Kingma and Welling, 2014), clustering (Xie et al., 2016; Caron et al., 2018,
2019; Ji et al., 2019; Asano et al., 2020; Yan et al., 2020), solving jigsaw puzzles (Noroozi
and Favaro, 2016; Kim et al., 2018a), and contrastive learning (Wu et al., 2018b; Bachman
et al., 2019; Hjelm et al., 2019; Tian et al., 2019; Ye et al., 2019; Chen et al., 2020a,b; He
et al., 2020; Misra and van der Maaten, 2020). Self-SL has also been used as an auxiliary
task to improve the performance on the main task, such as generative model learning (Chen
et al., 2019), semi-supervised learning (Zhai et al., 2019), and improving robustness and
uncertainty (Hendrycks et al., 2019).

However, a majority of the pretext tasks rely on the domain-specific inductive bias. For
example, solving jigsaw puzzles implicitly assumes that the data domain is a 2D image and
the spatial consistency is predictable, e.g., the image is not a repeated pattern. In the case of
contrastive representation learning, which has recently shown state-of-the-art performance,
domain-specific data augmentation methods are the key of success: as anchors and positive
samples are obtained from the same instance, data augmentation introduces semantically
meaningful variance for better generalization. To achieve a strong, yet semantically mean-
ingful data augmentation, domain knowledge is required, e.g., color jittering in 2D images
or structural information in video understanding.

On the other hand, MixUp (Zhang et al., 2018c) has shown to be a successful domain-
agnostic data augmentation method for supervised learning in various domains, including
image classification (Zhang et al., 2018c), generative model learning (Lucas et al., 2018),
and natural language processing (Guo et al., 2019; Guo, 2020). Inspired by MixUp, we
propose -MixUp, a domain-agnostic data augmentation method for contrastive representa-
tion learning. The key idea of :-MixUp is to introduce virtual labels in a batch and linearly
interpolate instances and their corresponding virtual labels in the input and label spaces,
respectively. We first introduce the N-pair loss (Sohn, 2016) adapted to memory-free con-
trastive learning, as it is simple and efficient when :-MixUp is applied. Then, we show the
applicability of :-MixUp in the state-of-the-art memory-based contrastive learning method,
MoCo (Chen et al., 2020b; He et al., 2020).

Through the experiments, we demonstrate the efficacy of :-MixUp in the variety of
settings: first, we show the effectiveness of -MixUp by evaluating the discriminative per-
formance of learned representations on image classification tasks. Specifically, we adapt
1-MixUp to the state-of-the-art contrastive learning methods, advancing the state-of-the-
art performance on CIFAR-10 and 100 (Krizhevsky and Hinton, 2009). Also, we compare

contrastive learning methods and other unsupervised representation learning methods, such
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as autoencoding (Vincent et al., 2010) in a data-agnostic setting to simulate the case when
domain knowledge is not available. Finally, we evaluate i-MixUp on other domains, in-
cluding a speech dataset (Warden, 2018) and tabular datasets from the UCI machine learn-
ing repository (Asuncion and Newman, 2007), and demonstrate the improved contrastive

representation learning performance.
Contribution. In summary, our contribution is three-fold:

* We propose i-MixUp as an effective domain-agnostic data augmentation method for
contrastive representation learning, which extends MixUp (Zhang et al., 2018c) in
supervised learning. We show how to apply i-MixUp in the state-of-the-art memory-

free and memory-based contrastive representation learning methods.

* We show that representations learned with i-MixUp have better transferability under

distribution shifts, as well as a better quality in the trained data distribution.

* Our extensive experimental results show that -MixUp consistently improves the per-
formance of contrastive learning in different conditions, including when 1) the do-
main knowledge for data augmentation is not available, 2) the model or training

dataset size is small or large, and 3) even in non-vision domains.

5.2 Related Work

Self-supervised representation learning (Self-SL) aims at learning representations from
unlabeled data by solving a pretext task that is different from the downstream task. The
most studied pretext task may be data reconstruction by autoencoding (Bengio et al., 2007)
and their variants such as denoising (Vincent et al., 2010), context prediction (Doersch
et al., 2015), and inpainting (Pathak et al., 2016). Decoder-free Self-SL has made a huge
progress in recent years. Exemplar CNN (Dosovitskiy et al., 2014) learns by classifying
individual instances with data augmentation. Similarly, noise-as-target (Bojanowski and
Joulin, 2017) learns representations by spreading them out on the hypersphere uniformly.
Deep clustering (Xie et al., 2016; Caron et al., 2018, 2019; Ji et al., 2019; Asano et al., 2020
Yan et al., 2020) learns by enforcing a clustering assumption on representation space. Self-
SL of visual representation, including colorization (Zhang et al., 2016b), solving jigsaw
puzzles (Noroozi and Favaro, 2016), counting the number of objects (Noroozi et al., 2017),
rotation prediction (Gidaris et al., 2018), next pixel prediction (Oord et al., 2018; Hénaff
et al., 2019), and combinations of these (Doersch and Zisserman, 2017; Kim et al., 2018a;

Noroozi et al., 2018) often leverages image-specific properties to design pretext tasks.
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Contrastive representation learning has gained lots of attention for Self-SL (Wu et al.,
2018b; Bachman et al., 2019; Hjelm et al., 2019; Tian et al., 2019; Ye et al., 2019; Chen
etal., 2020a,b; He et al., 2020; Misra and van der Maaten, 2020). As opposed to early works
on exemplar CNN (Dosovitskiy et al., 2014, 2015), contrastive learning pulls positive pairs
and pushes negative pairs in the batch instead of training an instance classifier. Memory-
based approaches (Wu et al., 2018b; Bachman et al., 2019; Hjelm et al., 2019; Tian et al.,
2019; Misra and van der Maaten, 2020) maintain a memory bank of embedding vectors
of instances where the memory is updated by the exponential moving average of input
embedding vectors. Different from the prior works, MoCo (Chen et al., 2020b; He et al.,
2020) maintained a queue of previously processed embedding vectors as a memory bank.
They showed that differentiating the model for anchors and contrastive samples is effective,
where the model for contrastive samples is updated by the exponential moving average
of the model for anchors. On the other hand, recent works (Tian et al., 2019; Ye et al.,
2019; Chen et al., 2020a; Misra and van der Maaten, 2020) showed that learning invariance
to different views is important in contrastive representation learning. The views can be
generated through data augmentation carefully designed based on domain knowledge (Ye
etal., 2019; Chen et al., 2020a), splitting input channels (Tian et al., 2019), or borrowing the
idea of other pretext tasks, such as creating a jigsaw or rotating (Misra and van der Maaten,
2020). In particular, SimCLR (Chen et al., 2020a) showed that memory-free approaches
with a large batch size and strong data augmentation has a comparable performance to

memory-based approaches.

Data augmentation. The purpose of data augmentation is to increase the diversity of data,
especially when training data are not enough for generalization. Since the augmented data
must be understood as the original data, data augmentation methods are carefully designed
based on the domain knowledge on image (DeVries and Taylor, 2017b; Chen et al., 2019;
Cubuk et al., 2019a,b; Zhong et al., 2020), speech (Amodei et al., 2016; Park et al., 2019),
or natural language (Zhang et al., 2015; Wei and Zou, 2019).

On the other hand, some works have focused on domain-agnostic data augmentation
methods: DeVries and Taylor (2017a) proposed to first encode the dataset and then aug-
ment data in the feature space. MixUp (Zhang et al., 2018¢) is an effective domain-agnostic
data augmentation method in supervised learning. Instead of empirical risk minimization,
MixUp performs vicinal risk minimization by interpolating input data and their labels on
the data and label spaces, respectively. MixUp has also shown its effectiveness in other
applications, including generative adversarial networks (Lucas et al., 2018), natural lan-

guage processing (Guo et al., 2019; Guo, 2020), and improving robustness and uncer-
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tainty (Hendrycks et al., 2020). Other variations have also been investigated by interpo-
lating in the feature space (Verma et al., 2019) or leveraging the domain knowledge (Yun
etal., 2019).

5.3 Preliminary

5.3.1 Contrastive Representation Learning

Let X be the data space and R be the D-dimensional embedding space. Contrastive
representation learning first constructs a batch of data pairs B={(x;, Z;)}Y,, where N
is the batch size, x;, ; € X’ are two views (e.g., augmentations) of the same data. Then,
it learns a model f:X — RP by pulling instances in the pair while pushing the rest in
the embedding space. Cosine similarity s(z,Z) = (z')/||z||||Z]| is used for the similarity
score, which has shown to be effective (Wu et al., 2018a; Chen et al., 2020a; He et al.,

2020). We review various contrastive loss formulations below. For conciseness, f; = f(z;)

and f; = f(Z;).

N-pair (Sohn, 2016). In the context of metric learning, Sohn (2016) introduced the N-pair
loss. They formulated the negative log-likelihood loss by mining a pair of samples per
class: the first samples in the pairs are considered as anchors, and the second samples as
positive or negative samples. As we also have a pair of samples per instance, we adapt the
N-pair loss for contrastive representation learning. The N-pair contrastive loss function is

defined as:'

o0 (ULT)T)
21]::1 exp (S<fi7 fk)/T)

SimCLR (Chen et al., 2020a). This method has been proposed as a simple self-supervised

gN—pair(xi; B) = — 10 (51)

contrastive representation learning method without a memory bank. In this formulation,
each anchor has a positive sample and 2(N—1) negative samples. Let xy,; = ; for

conciseness. Then, the loss function is defined as:

og exp (S(fia f(N-i—i) mod 2N)/T) .
Zi]ll,k#i exp (s(fi, fu)/7)

€SimCLR($i; B) =1 (5.2)

Intuitively, Eq. (5.2) is similar to Eq. (5.1), but introduces more negative samples: while

Eq. (5.1) has N negative samples in the batch, Eq. (5.2) has 2(N—1) negative samples.

Prior works (Oord et al., 2018; Wu et al., 2018b) have proposed similar losses inspired by noise-
contrastive estimation (Gutmann and Hyvérinen, 2010).
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MoCo (Chen et al., 2020b; He et al., 2020). While it shares the same batch construction
methods for B, MoCo is different from previous methods since it retrieves negative em-
beddings from the memory bank. Specifically, MoCo maintains a queue of embeddings
M = {;, }1£ | as a memory bank that stores previously extracted embeddings, where K is
the size of the memory bank. Another difference is the use of the exponential moving aver-
age (EMA) model for positive and negative embedding representations, whose parameters
are updated as follows: 0ze <— mb=w + (1 — m)fy, where m € [0,1) is a momentum

coefficient and 6 is model parameters. The loss function is written as follows:

e (s(fi, ) /7)
exp (s(fi, fF)/7) + Xy exp (s(fi i) /7))

gMoCo(Ii; 87 M) = - lOg (53)

and the memory bank M is updated with { f?*} in the first-in first-out order.

5.3.2 MixUp in Supervised Learning

Suppose an one-hot label y; € [0, 1]¢ is assigned to a data x;, where C' is the number of
classes. Let a linear classifier predicting the labels consists of weight vectors {wy, ..., wc},

where w, € RP.? Then, the cross-entropy loss for supervised learning is defined as:

.
g 1 1 - ’LC eXp( fZ) . 5.4
ce (T, i) Zy S (5.4)

While the cross-entropy loss is widely used for supervised training of deep neural net-
works, there are several challenges of training with the cross-entropy loss, such as prevent-
ing overfitting or networks being overconfident. Several regularization techniques have
been proposed to alleviate these issues, including label smoothing (Szegedy et al., 2016),
confidence calibration (Lee et al., 2018b), and adversarial training (Miyato et al., 2018b).
MixUp (Zhang et al., 2018c¢) is another simple and effective regularization method with
a minimal computational overhead. It conducts a linear interpolation of two data instances
in both input and label spaces and trains a model by minimizing the cross-entropy loss
defined on the interpolated data and labels. Specifically, for two data instances (x;,y;),

(x;,y;), the MixUp loss is defined as follows:
Ontixop (@3, yi), (25, 97); A) = Le(Azi + (1= N)ag, Ay + (1= N)y;), (5.5)

where A~ ((a, «) is an interpolation coefficient. MixUp is a vicinal risk minimization

2We omit bias terms for presentation clarity.
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method (Chapelle et al., 2001) that augments data both at input and output spaces in a
data-driven manner. Not only improving the generalization on the supervised task, it is
also known to improve adversarial robustness (Zhang et al., 2018c; Pang et al., 2019),

confidence calibration or predictive uncertainty (Thulasidasan et al., 2019).

5.4 Vicinal Risk Minimization for Contrastive Represen-

tation Learning

As reviewed in Section 5.3, data augmentation is an essential part of contrastive learn-
ing (Chen et al., 2020a; He et al., 2020). In this section, we introduce instance MixUp
(i-MixUp), a data-driven data augmentation for contrastive representation learning that im-
proves the generalization of self-supervisedly learned representations. Due to its simplicity,
we first formulate :-MixUp in the N-pair contrastive loss (Sohn, 2016), which is a memory-
free method, and then extend to MoCo (Chen et al., 2020b; He et al., 2020), which is a

memory-based method.

5.4.1 i-MixUp for Memory-Free Contrastive Representation Learning

To apply MixUp to contrastive learning, we introduce a virfual label for each data instance
in a batch. Let v; € [0, 1]V be the virtual label of z; in a batch B, where v;; =1 and v; ; =0
if j #¢. With virtual labels, the N-pair contrastive loss in Eq. (5.1) can be written in the
form of the cross-entropy loss:

exp (s(fi7fn)/~7) ‘
25:1 exp (S(fi,fk)/T)

Eq. (5.4) and (5.6) are similar in that both are defined on an input and its label. Their
differences include 1) Eq. (5.4) takes a label y; given in the dataset, while Eq. (5.6) takes

N
gN—pair($ia Ui, B) = - Z Vin IOg (56)
n=1

a virtual label v; in the batch, 2) the weight vector w, in Eq. (5.4) becomes embedding
vectors of positive and negative samples fnin Eq. (5.6), and 3) the inner product between
two vectors is replaced with the temperature-scaled similarity. Note that the label space in
contrastive learning is [0, 1}N , where NN is the number of data pairs, or a batch size, instead
of C', which is the number of semantic classes in supervised learning. This reformulation
of contrastive loss provides an insight for manipulating the label space (as well as the input
space) to better regularize the network training. Similarly to MixUp, :-MixUp interpolates
two data instances, but in the input and virtual label spaces. Specifically, for two data

instances (x;,v;), (z;,v;) and a batch of data pairs B={(z;, %;)}Y ,, the i-MixUp loss is
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Algorithm 5.1 Loss for -MixUp on N-pair contrastive learning in PyTorch-like style.

a, b = aug(x), aug(x) # different augmentations of x

lam = Beta(alpha, alpha).sample() # interpolator

randidx = randperm(N) # N = Ilen(x)

a = lam * a + (l-lam) * al[randidx] # input

vlabels = lam * eye(N) + (l-lam) * eye (N) [randidx] # output
anchor, contrast = normalize (model(a)), normalize (model (b))

logits = matmul (anchor, contrast.T) / t # t: temperature
loss = KLDivLoss (log_softmax (logits), vlabels)

defined as follows:
gi—MixUp((xia UZ'), (.Tj, 'Uj); B, )\) = gN—pair<>\-ri + (1 — )\)ij, )\’Ui + (1 — )\)Uj; B) (57)

Algorithm 5.1 provides the pseudocode of :-MixUp on the N-pair contrastive loss for one

iteration. We present an application of :-MixUp to SimCLR in Appendix D.1.1.

Pair relations in contrastive loss. To make a sense of contrastive loss as a representation
learning objective, one needs to properly define a pair relation {(x;,7;)}~,. For Self-
SL (Chen et al., 2020a,b; He et al., 2020), where semantic class labels are not provided,
the pair relation would be defined in that 1) a positive pair, x; and Z;, are two augmented
versions of the same data and 2) a negative pair, z; and 7;;, are simply different data
instances. For supervised representation learning (Sohn, 2016; Khosla et al., 2020), z;
and 7; are two data instances from the same class, while x; and Z;4; are from different
classes. Note that two augmented versions of the same data also belong to the same class,
so they can also be considered as a positive pair. :-MixUp is not limited to self-supervised
contrastive learning, but it can also be used as a regularization method for supervised con-
trastive learning (Khosla et al., 2020) or deep metric learning (Sohn, 2016; Movshovitz-
Attias et al., 2017; Teh et al., 2020).

5.4.2 -MixUp for Memory-Based Contrastive Representation Learning

Unlike N-pair or SImCLR, MoCo is a memory-based contrastive learning method, such
that negative samples are from the memory bank M = {u;}5 . Because embedding
vectors from the memory bank are not paired with the anchors in the current batch, they
are ignored in the virtual label. Instead, similarly to N-pair, for each anchor, we include
the positive samples of other anchors as negatives. Let 9; € [0, 1] X be a virtual label

indicating the positive sample of each anchor, where v; ; = 1 and 0; ; = 0 for j # . Then,
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the extension of Eq. (5.3) is written in the form of the cross-entropy loss:

exp (s(fi fEue) /1) |
Lexp (s(fi, fE) /1) + Sy exp (s(fispu)/T)
(5.8)

N
Oyoco (i, U3 B, M) = — Z Vi log —
- pI

n=1

The application of i-MixUp to MoCo is straightforward: for two data (z;, 9;), (z;,7;) and a
batch of data pairs B = {(z;,Z;)}, and the memory bank M, the i-MixUp loss is defined
as follows:

eMOCO()\:L‘Z‘ + (]_ — /\)l’j, )\IN)Z + (1 - )\)?7], B,M) (59)

Compared to the original MoCo in Eq. (5.3), Eq. (5.8) and Eq. (5.9) require clean samples
to be fed to f*"*. However, the additional computational cost is not significant, as they do

not require gradient.

5.4.3 InputMix

Though -MixUp is effective in contrastive representation learning, the contribution of
other data augmentation methods to the quality of learned representations is also crucial.
For the case when the domain knowledge about effective data augmentation methods is
limited, we propose to apply InputMix together with :-MixUp, which mixes input data but
not their labels. This method can be viewed as introducing structured noises driven by
auxiliary data to the principal data with the largest ), and the label of the principal data is

assigned to the mixed data.

5.5 Experiments

In this section, we demonstrate the effectiveness of :-MixUp. In all experiments, we con-
duct self-supervised contrastive learning on the pretext dataset and evaluate the quality
of learned representation via supervised classification on the downstream dataset. Specifi-
cally, in the first stage, a convolutional neural network followed by the two-layer multilayer
perceptron (MLP) projection head is trained (Chen et al., 2020a). Then, the projection head
is replaced with a linear classifier and only the linear classifier is trained with the labeled
dataset. Unless otherwise stated, datasets for the pretext and downstream tasks are the
same. For i-MixUp, we sample a single linear interpolator A ~ 3(1, 1) for each training

batch. Additional details for the experimental settings can be found in Appendix D.2.1.
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Table 5.1: Comparison of memory-free and memory-based contrastive learning methods
and -MixUp on them with ResNet-50 on CIFAR-10 and 100. We report the mean and
standard deviation of five trials with different random seeds in %. Equation number indi-
cates the loss function of each method. :-MixUp improves the accuracy on the downstream
task regardless of the data distribution shift between the pretext and downstream tasks.

Memory-Free Contrastive Learning

Pretext | Downstream || o~ o (52) | N-pair (5.1) | i-MixUp (5.7)
CIFAR-10 92.5 +0.1 92.4 +0.1 94.8 02
CIFAR-10 CIFAR-100 60.0 £ 02 60.2 £03 63.3 +02
CIFAR-10 84.4 o2 84.4 +02 86.2 +02
CIFAR-100 CIFAR-100 68.7 +02 68.7 +02 72.3 +02

Memory-Based Contrastive Learning

Pretext | Downstream [ y,06(53) | MoCo (5.8) | i-MixUp (5.9)
CIFAR-10 90.7 £ 03 90.5 £o02 92.7 +02
CIFAR-10 CIFAR-100 60.8 £02 60.7 <05 64.7 £ 04
CIFAR-10 83.1 +o02 83.0 +02 85.5 +03
CIFAR-100 CIFAR-100 65.7 +0.1 66.0 +03 70.0 +04

5.5.1 -MixUp with Contrastive Learning Methods and Transferability

In this experiment, we show the applicability of :-MixUp to the state-of-the-art contrastive

learning methods, and the transferability of the learned representations.

Setup. We experiment the following methods on CIFAR-10 and 100 (Krizhevsky and Hin-
ton, 2009): 1) SImCLR (Chen et al., 2020a) and 2) N-pair (Sohn, 2016) contrastive loss
in Eq. (5.1) as the memory-free method, 3) ¢-MixUp on N-pair contrastive learning in
Eq. (5.7), 4) MoCo (Chen et al., 2020b; He et al., 2020)* and 5) our variant of MoCo
in Eq. (5.8) for the memory-based method, and 6) :-MixUp on our variant of MoCo in
Eq. (5.9). We apply a set of data augmentations randomly in sequence including resized
crop (Szegedy et al., 2015), horizontal flip, color jittering, and gray scaling, as data aug-
mentation plays an extremely crucial role in achieving high-quality self-supervised visual
representations via contrastive learning (Chen et al., 2020a,b). We use ResNet-50 (He
et al., 2016) as a backbone network and two-layer MLP (2048-128) as a projection head.
The models are trained with a batch size of 512 (i.e., 256 pairs) for 1000 epochs.

Evaluation. The results are provided in Table 5.1. We test the classification accuracy using

learned representations not only on the dataset for the pretext task, but also on the unseen

3We follow an improved version of MoCo in Chen et al. (2020b).
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Figure 5.1: Comparison of performance gains by applying :-MixUp to N-pair contrastive
learning with different model sizes and number of training epochs. The pretext and down-
stream tasks share the same dataset. While training more than 1000 epochs does not im-
prove the performance of contrastive learning, :-MixUp benefits from longer training.

dataset at the pretext task (e.g., CIFAR-10 as pretext and CIFAR-100 as downstream tasks),
to evaluate the transferability of the representation. We first verify that the N-pair formu-
lation in Eq. (5.1) results in no worse performance than that of SImCLR in Eq. (5.2). This
justifies to conduct subsequent experiments using the N-pair formulation instead of that of
SimCLR, which is simpler and more efficient, especially when applying :-MixUp, while
not losing the performance. When applying :-MixUp to the state-of-the-art contrastive
learning methods, we observe consistent gains in the classification accuracy, e.g., 2.4%,
3.6% in N-pair, and 2.0%, 4.3% in MoCo, on CIFAR-10 and 100, respectively. Moreover,
Similar performance gains are observed when learned representations from one dataset are

evaluated for classification on another dataset.

5.5.2 Scaliability of i-MixUp

A better regularization method often benefits from longer training of deeper models, and
may as well improve the performance when trained on a smaller dataset. To investigate
the regularization effect of -MixUp, we make a comparison between two models, N-pair
contrastive loss and with -MixUp, by training for different max epochs, model size, and
training dataset sizes for the pretext task.

First, we test the efficacy of :-MixUp with respect to different model sizes and training
epochs. We train ResNet-18, ResNet-50 and ResNet-101 models with the varying num-
ber of training epochs from 200 to 4000.* Figure 5.1 shows the performance of N-pair
contrastive learning (solid box) and -MixUp (dashed box). When models are trained for
200 epochs, :-MixUp underperforms the baseline. However, :-MixUp starts to outperform
since training for 500 epochs, and improves by significant margins when trained longer. In
addition, it also benefits from deeper models, achieving 95.8% on CIFAR-10 and 75.2% on

“Note that models with different number of epochs are trained independently, as we use the cosine learning
rate schedule, such that the epoch number determines the learning rate.
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Figure 5.2: Comparison of contrastive learning and :-MixUp with ResNet-50 on CIFAR-
10 and 100 with the different training dataset size. The pretext and downstream shares
training dataset. The absolute performance gain by -MixUp in contrastive learning does
not decrease when the training dataset size increases.

CIFAR-100 using ResNet-101 after 4000 epochs of training, achieving state of the art. On
the other hand, the models trained without :-MixUp starts to show overfitting to the pretext
task when trained longer than 1000 epochs. The trend clearly shows that :-MixUp results
in better representations via improved regularization.

In our second experiment, we evaluate the performance with varying dataset sizes from
20% (10k images) to 100% (50k images) of the entire pretext data. As in Figure 5.2, we
observe consistent gain with -MixUp using more data. One interesting finding is that the
performance gain is larger when trained on the larger data. This may be due to the fact
that, like MixUp (Zhang et al., 2018c¢), :-MixUp is a data-driven data augmentation whose
augmentation complexity is determined by the amount of data. This is promising since
unlabeled data is relatively cheap to obtain in practice. However, the effectiveness of i-

MixUp over the baseline might be limited for applications where acquiring data is truly
difficult.

5.5.3 Embedding Analysis

Figure 5.3 visualizes embedding spaces learned by N-pair contrastive learning and :-MixUp
on CIFAR-10. When the downstream dataset is the same with the pretext task, both con-
trastive learning and ¢-MixUp cluster classes well, as shown in Figure 5.3(a) and 5.3(b).
However, when the downstream task is transferred to CIFAR-100, -MixUp in Figure 5.3(d)
clusters classes better than contrastive learning in Figure 5.3(c). Specifically, clusters of
“apple,” “chair,” and “dolphin,” can be found in Figure 5.3(d) while they spread out in Fig-
ure 5.3(c). Also, “rose” and “squirrel” are more separated in Figure 5.3(d) than 5.3(c). This
shows that the representation learned with 7-MixUp is more generalizable than contrastive

learning.
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Figure 5.3: t-SNE visualization of embeddings trained by contrastive learning and :-MixUp
with ResNet-50 on CIFAR-10. (a,b): Classes are well-clustered in both cases when applied
to CIFAR-10. (c,d): When models are transferred to CIFAR-100, classes are more clustered
for .-MixUp than contrastive learning, as highlighted in dashed boxes. We show 10 classes
for a better visualization.

5.5.4 Contrastive Learning without Domain-Specific Data Augmentation

Data augmentation plays a key role in self-supervised contrastive learning, and therefore
it raises a question when applying it to domains with a limited or no knowledge of such
augmentations. In this section, we study the effectiveness of :-MixUp as a data-driven data

augmentation for self-supervised contrastive learning.

Setup. As a domain-agnostic augmentation, we applied InputMix.> Specifically, for each
data, we randomly choose two other auxiliary data in the batch, regardless of whether they
are anchors or positive samples.® The linear interpolator is sampled from the Dirichlet dis-
tribution: \j, Ao, A\3 ~ Dir(q, o, ), where we choose o = 1. For i-MixUp, we scale the
sampled interpolators by half and add 0.5 to the principal data: i.e., \] = 0.5+ 0.5\, A}, =
0.5Ag, A5 = 0.5\3. However, when i-MixUp is not applied, simply assigning the largest in-
terpolator to the principal data performs best. We also compare the denoising autoencoder
(DAE) (Vincent et al., 2010) as a baseline. The autoencoder has ResNet-50 as its encoder
and a three-layer transposed CNN followed by the sigmoid activation as its decoder. Simi-
larly to models with contrastive learning, the encoder and decoder of DAE are first trained

to denoise additive Gaussian noise with the standard deviation of 0.4. Then, we replace the

3 Additive Gaussian noise and masking noise can be considered, but we found that applying InputMix
performs best, and combinations of InputMix and other noises perform worse.
®Incorporating more or less auxiliary data does not improve the performance.
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Table 5.2: Comparison of contrastive learning and +-MixUp with ResNet-50 on CIFAR-
10 and 100 under different data augmentation methods: when 1) no data augmentation
is available, 2) domain-agnostic data augmentation methods are applied, and 3) domain-
specific data augmentation methods are applied. :-MixUp improves the performance of
contrastive learning in all cases.

Pretext Downstream No Augmentation Domain-Agnostic Domain-Specific
Contrastive | :-MixUp | Contrastive | -MixUp | Contrastive | :-MixUp

CIFAR-10 17.0 49.7 76.0 79.7 924 94.8

CIFAR-L0 1 c1paR-100 2.8 23.9 41.8 49.1 60.2 63.3

CIFAR-10 18.4 49.1 69.6 75.3 84.4 86.2

CIFAR-100 CIFAR-100 3.0 23.8 43.7 50.7 68.7 72.3

decoder with a linear classifier to evaluate the classification accuracy.

Evaluation. Table 5.2 shows the performance of compared methods with different set of
data augmentation methods. First, compared to the accuracy of 92.4% when domain-
specific data augmentations are applied, contrastive learning achieves only 17.0% when
trained without any data augmentation. This suggests that data augmentation is an es-
sential part for the success of self-supervised contrastive learning (e.g., SImMCLR (Chen
et al., 2020a)). However, +-MixUp is able to learn meaningful representations without any
augmentation and achieves close to 50% accuracy on CIFAR-10. Next, InputMix is an
effective domain-agnostic data augmentation method, such that contrastive learning out-
performs DAE, where the best performance of DAE is 59.4% on CIFAR-10, and 31.7%
on CIFAR-100. Also, :-MixUp further improves the performance of contrastive learning,
achieving close to 80% on CIFAR-10.

5.5.5 -MixUp on Other Domains

Finally, we apply +-MixUp on other domains beyond image, such as speech or tabular
datasets, where data augmentation methods are less studied. For speech domain, we use
the Speech Commands dataset (Warden, 2018), which contains 51k training, 7k validation,
and 7k test data in 12 classes.  We apply a set of data augmentations randomly in sequence
including changing amplitude, speed, and pitch in time domain, stretching, time shifting,
and adding background noise in frequency domain. Data is then transformed to the mel
spectogram in the size of 32 x 32. As a backbone network, we take VGGNet-19 (Simonyan
and Zisserman, 2015) with batch normalization (Ioffe and Szegedy, 2015) and use 7 = 0.2.
The details of experimental setting is in Appendix D.2.1.

"https://github.com/tugstugi/pytorch-speech-commands
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Table 5.3: Comparison of contrastive learning and +-MixUp on Speech Commands (War-
den, 2018) and tabular datasets from UCI machine learning repository (Asuncion and New-
man, 2007). :-MixUp improves the performance of contrastive learning on those non-image
domains.

Au Speech Commands CovType Higgs (100k) Higgs (10M)
€| Contrastive 1-MixUp |Contrastive |:-MixUp |Contrastive | --MixUp | Contrastive | :--MixUp
- 62.7 68.1 34.4 69.1 58.8 72.6 56.0 74.6
v 77.8 86.2 65.2 69.7 73.3 73.5 76.3 75.4

Table 5.4: Comparison of MoCo v2 (Chen et al., 2020b) and :-MixUp with ResNet-50 on
ImageNet.

Method | MoCo (5.3) | MoCo (5.8) | i-MixUp (5.9)
Accuracy | 675 | 675 | 68.6

For tabular data, we use two datasets from UCI repository (Asuncion and Newman,
2007): Forest Cover Type (CovType) and Higgs Boson (Higgs). CovType contains 581k
data instances for 7 forest cover type classification, where 15k are used for training and
validation and the rest is used for test. Higgs contains 10M data instances for binary clas-
sification. We experiment with two protocols, where we used 100k or 10M data instances
for training. 500k data instances are used for test. We train a 5-layer MLP with batch
normalization. Since the prior knowledge on tabular data is very limited, only the masking
noise with the probability 0.2 is considered as a data augmentation.

Table 5.3 summarizes the results. When no data augmentation is used, -MixUp sig-
nificantly improves the performance of contrastive learning. When data augmentations
are used, :-MixUp shows further improvement, implying that -MixUp has a potential as a
domain-agnostic Self-SL method. However, when the number of data is too large, :-MixUp

may over-regularize the network training.

5.5.6 -MixUp on ImageNet

In this experiment, we aims to show that our proposed method can improve the state-
of-the-art contrastive learning method in the large-scale setting as well. We follow the
experimental settings on ImageNet (Deng et al., 2009) in MoCo v2 (Chen et al., 2020b).
For the best performance, we apply the idea of CutMix (Yun et al., 2019) to -MixUp,
which is a variation of MixUp applicable in the image domain. As shown in Table 5.4,
our method improves the performance of MoCo by 1.1%, which implies that our method

is effective in the large-scale setting.
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5.6 Summary

We propose i-MixUp, a data-driven data augmentation method for contrastive representa-
tion learning. The key idea of ¢-MixUp is to introduce a virtual label to each data instance,
and interpolate both input and their corresponding output labels. We show that -MixUp
is applicable to the state-of-the-art memory-free and memory-based contrastive learning

methods, which consistently improves the performance in variety of settings.

73



CHAPTER VI

Conclusion and Future Directions

Deep learning has become dominant in machine learning due to its superior performance.
However, the success of deep learning methods is limited to the closed-world assumption,
such that they might not be generalized to the open world. In this dissertation, we study
lifelong learning and robust representation learning for a successful deployment of deep

learning methods to real-world applications.

Lifelong learning. In the first part, we focus on a cycle of lifelong learning, which consists
of novelty detection and continual learning. To provide a more information about novel
objects, Chapter II introduces an informative novelty detection framework to detect and
identify novel classes, termed hierarchical novelty detection, which essentially predicts
the semantically closest class based on the hierarchy of known labels. Then, to alleviate
catastrophic forgetting in the open-world setting, Chapter I1I proposes to leverage unlabeled
data easily obtainable in the open world. To effectively leverage unlabeled data, we propose
a global distillation learning objective and confidence-based sampling strategy.

Lifelong learning can be further improved in several directions. First, to provide more
semantic details about novel classes, hierarchical novelty detection requires hierarchical
taxonomy. In Chapter II, the hierarchical taxonomy is built based on the natural lan-
guage information: specifically, the hypernym-hyponym relationships in WordNet. How-
ever, such information might not always be available in real-world applications. There-
fore, an automatic and human-recognizable taxonomy construction and management would
broaden the applicability of hierarchical novelty detection. Also, the performance of hierar-
chical novelty detection could be improved by more sophisticated methods. Next, although
class-incremental learning in Chapter III has no task boundaries at test time, it assumes that
tasks are sequentially given, with boundaries between them. This training strategy can be
considered offline learning, as intelligent agents do not instantly update their knowledge

based on their experiences, but wait until a sufficient amount of training data is collected.
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However, as new tasks could emerge in the open world, seamless continual learning with-
out task boundaries at training time is desirable. In a more challenging online learning
scenario, training datasets are a stream of data, such that task boundaries are vague. Few-
shot continual learning is desirable for quick adaptation to ever-changing environments.
However, continual lifelong learning will fail when the model capacity is insufficient to
memorize a new task together with all previously learned tasks. In that sense, an efficient

continual learning model expansion over time is a promising topic.

Representation learning. In the second part, we propose methods to improve the ro-
bustness and generalization ability of deep representation learning. Focusing on domain
generalization in deep reinforcement learning, Chapter IV proposes network randomiza-
tion, which introduces random neural networks to make agents learn robust representations
across visual changes. Also, to generalize the success of contrastive representation learning
to any domain, Chapter V proposes :-MixUp, which is a domain-agnostic contrastive rep-
resentation learning method. Specifically, we assign a unique virtual class to each data in
a batch, and then interpolate the inputs and virtual class labels in the data and label spaces,
respectively.

Our ideas can be extended to further improve the robustness of deep representation
learning. First, Chapter IV focuses on learning representations robust across visual pat-
terns, such as different styles of backgrounds, floors, and other objects. However, our
preliminary results of dynamics generalization in Appendix C.10 implies that network ran-
domization can be extended beyond visual changes. To apply network randomization to
generalization problems in other domains, a clear problem statement (what to generalize)
and the domain knowledge (what to randomize) are required. Next, in Chapter V, the
results in Table 5.2 imply that using the same interpolator in both data and label spaces
would not be optimal. Furthermore, the vicinal distribution estimated by interpolation may
not follow the true manifold, such that the optimal interpolator would vary over different
architectures, methods, and datasets. Therefore, learning to find the optimal interpolator
would be an important step towards better contrastive representation learning.
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APPENDIX A

Supplementary Material of Chapter 11

A.1 More on Hierarchical Novelty Detection

A.1.1 Details about Objectives

We present the exact objective functions and softmax probabilities we propose in the paper.
Let p(k) = p(y = k|x) be an unnormalized softmax score of the k-th class (which can
be either known or novel), e.g., p(k) = exp (wj, f(z) + by), where f is a visual feature

extractor.

Top-down. The objective function of the top-down method is

1
»CTD(O& D) :m (Ly)%;)(s) [_ 10gp(y|l', S5 08)]
1
FPOEIO 25,2, 70kl A

z€D(0O(s)) yeC(s)

The softmax probability used in this objective is

oy by
plulz 5:6:) = > yecis DY)

Relabel. Since super classes in taxonomy have training data by data relabeling, the objec-
tive is a standard cross entropy loss over all super and leaf classes:
1
ACRelabel(e D) ’D’ Z [_ logp(y\x; HT)] : (A2)

(z,y)€D
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The softmax probability used in this objective is

ply) p(y)

plyl; b7) = >yerPW)  Yierer D) + Xseroen PN (5)

Here, T\ L(T) represents all super classes in 7.

LOO. We note that there is a notation abuse in the second term of the objective function

of LOO for simplicity. Without notation abuse, the exact objective is

»CLOO(&D):FH > [—logp(ylfr;Oc(T>)+ > —logp(N(P(a))|z; On(papucira) |-

(z,y)€D acA(y)
(A.3)

The softmax probabilities are defined as:

_ ply)
(y‘x 95(7-) 2166 ( )

PN (P(a)))
PN (P(a)) + Xiecimay P

PN (P(a))|z; Onpapucima) =

A.1.2 Hyperparameter Search

A difficulty in hierarchical novelty detection is that there are no validation data from novel
classes for hyperparameter search. Similar to the training strategy, we leverage known
class data for validation: specifically, for the top-down method, the novelty detection per-
formance of each classifier is measured with O(s), i.e., for each classifier in a super class

s, known leaf classes that do not belong to s are considered as novel classes.

argmax p(y'|z,s;0,) i KLUC(|s) || p(-|z,s;05)) = As,
Y= v
N(s) otherwise,

where )\, is chosen to maximize the harmonic mean of the known class accuracy and the
novelty detection accuracy. Note that A\, can be tuned for each classifier.

For validating flatten methods, we discard logits of ancestors of the label of training data
in a hierarchical manner. Mathematically, at the stage of removal of an ancestor a € A(y),

we do classification on 07\
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§ = arg maxp(y/|z; 0,
y/
where the ground truth is A/ (P(a)) at the stage. The hyperparameters with the best valida-
tion AUC are chosen.

Model-specific description. DARTS has an accuracy guarantee as a hyperparameter. We
took the same candidates in the original paper, {0%, 10%, ..., 80%, 85%, 90%, 95%,
99% 3}, and found the best accuracy guarantee, which turned out to be 90% for ImageNet
and CUB, and 99% for AwA2. Similarly, for Relabel, we evaluated relabeling rate from 5%
to 95%, and found that 30%, 25%, and 15% are the best for ImageNet, AwA2, and CUB,
respectively. For the top-down method and LOO, the ratio of two loss terms can be tuned,
but the performance was less sensitive to the ratio, so we kept 1:1 ratio. For TD+LOO,
we extracted the multiple softmax probability vectors from the top-down model and then
trained the LOO.

There are some more strategies to improve the performance: the proposed losses can
be computed in a class-wise manner, i.e., weighted by the number of descendant classes,
which is helpful when the taxonomy is highly imbalanced, e.g., ImageNet. Also, the log
of softmax and/or ReLLU can be applied to the output of the top-down model. We note that
stacking layers to increase model capacity improves the performance of Relabel, while it
does not for LOO.

A.1.3 Experimental Results on CIFAR-100

We provide experimental results on CIFAR-100 (Krizhevsky and Hinton, 2009). The com-
pared algorithms are the same with the other experiments, and we tune the hyperparameters

following the same procedure used for the other datasets described in Section A.1.2.

Dataset. The CIFAR-100 dataset (Krizhevsky and Hinton, 2009) consists of 50k training
and 10k test images. It has 20 super classes containing 5 leaf classes each, so one can
naturally define the taxonomy of CIFAR-100 as the rooted tree of height two. We randomly
split the classes into two known leaf classes and three novel classes at each super class, such
that we have 40 known leaf classes and 60 novel classes. To build a validation set, we pick

50 images per known leaf class from the training set.

Preprocessing. CIFAR-100 images have smaller size than natural images in other datasets,

so we first train a shallower network, ResNet-18 with 40 known leaf classes. Pretraining
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Table A.1: Hierarchical novelty detection results on CIFAR-100. For a fair comparison,
50% of known class accuracy is guaranteed by adding a bias to all novel class scores (log-
its). The AUC is obtained by varying the bias.

Method H Novel AUC

DARTS 22.38 | 17.84
Relabel 22.58 | 18.31
LOO 23.68 | 18.93
TD+LOO || 22.79 | 18.54

is done with only training images, without any information about novel classes. And then,
the last fully connected layer of the CNNs is replaced with our proposed methods. We use
100 training data per batch. As a regularization, L2 norm weight decay with parameter
1072 is applied. The initial learning rate is 10~2 and it decays at most two times when loss

improvement is less than 2% compared to the last epoch.

Experimental results. Table A.1 compares the baseline and our proposed methods. One
can note that the proposed methods outperform the baseline in both novel class accuracy
and AUC. However, unlike the results on the other datasets, TD+LOO does not outperform
the vanilla LOO method, as one can expect that the vectors extracted from the top-down
method might not be useful in the case of CIFAR-100 since its taxonomy is too simple and

thus not informative.
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A.2 Sample-Wise Qualitative Results

In this section, we show sample-wise qualitative results on ImageNet. We compared four
different methods: DARTS (Deng et al., 2012) is the baseline method where we modify
the method for our purpose, and the others, Relabel, LOO, and TD+LOO, are our proposed
methods. In Figure A.1-A.8, we put each test image at the top, a table of the classifica-
tion results in the middle, and a sub-taxonomy representing the hierarchical relationship
between classes appeared in the classification results at the bottom. In tables, we provide
the true label of the test image at the first row, which is either a novel class or a known leaf
class. In the “Method” column in tables, “GT” is the ground truth label for hierarchical
novelty detection: if the true label of the test image is a novel class, “GT” is the closest
known ancestor of the novel class, which is the expected prediction; otherwise, “GT” is
the true label of the test image. Each method has its own background color in both tables
and sub-taxonomies. In sub-taxonomies, the novel class is shown in ellipse shape if exists,
GT is double-lined, and the name of the methods is displayed below its prediction. Dashed
edges represent multi-hop connection, where the number indicates the number of edges
between classes: for example, a dashed edge labeled with 3 implies that two classes exist
in the middle of the connection. Note that some novel classes have multiple ground truth
labels if they have multiple paths to the taxonomy.

Figure A.1-A.2 show the hierarchical novelty detection results of known leaf classes,
and Figure A.3—A.8 show that of novel classes. In general, while DARTS tends to produce
a coarse-grained label, our proposed models try to find a fine-grained label. In most cases,

our prediction is not too far from the ground truth.
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Figure A.1: Qualitative results of hierarchical novelty detection on ImageNet
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Figure A.2: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.3: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.4: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.5: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.6: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.7: Qualitative results of hierarchical novelty detection on ImageNet.
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Figure A.8: Qualitative results of hierarchical novelty detection on ImageNet.
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A.3 Class-Wise Qualitative Results

In this section, we show class-wise qualitative results on ImageNet. We compared four
different methods: DARTS (Deng et al., 2012) is the baseline method where we modify
the method for our purpose, and the others, Relabel, LOO, and TD+LOO, are our proposed
methods. In a sub-taxonomy, for each test class and method, we show the statistics of the
hierarchical novelty detection results of known leaf classes in Figure A.9—A.10, and that
of novel classes in Figure A.11-A.14. Each sub-taxonomy is simplified by only showing
test classes predicted with a probability greater than 0.03 in at least one method and their
common ancestors. The probability is represented in colored nodes as well as the number
below the English word of the class, where the color scale is displayed below. Note that
the summation of the probabilities shown in each sub-taxonomy may be less than 1, since
some classes with a probability less than 0.03 are omitted. In the graphs, known leaf classes
are in rectangle, and super classes are rounded and starred. If the prediction is on a super
class, then the test image is classified as a novel class whose closest class in the taxonomy
is the super class. We remark that most of the incorrect prediction is in fact not very far
from the ground truth, which means that the prediction still provides useful information.
While our proposed methods tend to find fine-grained classes, DARTS gives more coarse-

grained classes, where one can find the trend clearly in deep sub-taxonomies. Also, Relabel

sometimes fails to predict the correct label but closer ones with a high probability which

can be seen as the effect of relabeling.
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Figure A.9: Sub-taxonomies of the hierarchical novelty detection results of a known leaf
class “Cardigan Welsh corgi.” (Best viewed when zoomed in on a screen.)
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Figure A.10: Sub-taxonomies of the hierarchical novelty detection results of a known leaf
class “digital clock.” (Best viewed when zoomed in on a screen.)
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Figure A.11: Sub-taxonomies of the hierarchical novelty detection results of novel classes
whose closest class in the taxonomy is “foxhound.” (Best viewed when zoomed in on a
screen.)
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Figure A.12: Sub-taxonomies of the hierarchical novelty detection results of novel classes
whose closest class in the taxonomy is “wildcat.” (Best viewed when zoomed in on a
screen.)
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Figure A.13: Sub-taxonomies of the hierarchical novelty detection results of novel classes
whose closest class in the taxonomy is “shark.” (Best viewed when zoomed in on a screen.)
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Figure A.14: Sub-taxonomies of the hierarchical novelty detection results of novel classes
whose closest class in the taxonomy is “frozen dessert.” (Best viewed when zoomed in on
a screen.)
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A.4 More on Generalized Zero-Shot Learning

A.4.1 Example of Top-Down Embedding

Figure A.15 illustrates an example of the ideal output probability vector t¥ in a simple
taxonomy, where t¥ corresponds to the concatenation of the ideal output of the top-down

method when the input label is y.
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Figure A.15: An example of taxonomy and the corresponding ¢¥ values.

A.4.2 Evaluation: Generalized Zero-Shot Learning on Different Data Splits

Figure A.16: Taxonomy of AwA built with the split proposed in (Xian et al., 2017) (top)
and the split we propose for balanced taxonomy (bottom). Taxonomy is built with known
leaf classes (blue) by finding their super classes (white), and then novel classes (red) are
attached for visualization.
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Table A.2: ZSL and GZSL performance of semantic embedding models and their com-
binations on AwA1 and AwA?2 in the split of imbalanced taxonomy and that of balanced
taxonomy. “Att” stands for continuous attributes labeled by human, “Word” stands for
word embedding trained with the GloVe objective (Pennington et al., 2014), and “Hier”
stands for the hierarchical embedding, where “Path” is proposed in (Akata et al., 2015),
and “TD” is output of the proposed top-down method. “Unseen” is the accuracy when only
unseen classes are tested, and “AUC” is the area under the seen-unseen curve where the
unseen class score bias is varied for computation. The curve used to obtain AUC is shown
in Figure A.17. Values in bold indicate the best performance among the combined models.

Embedding AwAl AwA2
Imbalanced Balanced Imbalanced Balanced
Att ‘Word‘ Hier || Unseen| AUC |Unseen| AUC || Unseen| AUC |Unseen| AUC
v - - 65.29 | 50.02 | 65.86 | 54.18 || 63.87 | 51.27 | 71.21 | 59.51
- v - 51.87 | 39.67 | 54.29 | 42.40 || 54.77 | 42.21 | 59.60 | 46.83
v v - 67.80 | 52.84 | 67.32 | 55.40 || 65.76 | 53.18 | 72.89 | 60.60
- - | Path || 42.57 | 30.58 | 5340 | 41.63 || 4434 | 33.44 | 60.45 | 48.13
v - | Path || 67.09 | 51.45 | 65.86 | 54.18 || 66.58 | 53.50 | 71.87 | 60.08
- v’ | Path || 52.89 | 40.66 | 58.49 | 45.62 || 55.28 | 42.86 | 66.83 | 53.05
v v' | Path || 68.04 | 53.21 | 67.32 | 5540 || 67.28 | 54.31 | 73.04 | 60.89
- - TD || 33.86 | 25.56 | 40.38 | 31.39 || 31.84 | 2497 | 45.33 | 36.76
v - TD || 66.13 | 54.66 | 65.86 | 54.18 || 66.86 | 57.49 | 72.75 | 62.79
- v | TD || 56.14 | 46.28 | 57.88 | 47.63 || 59.67 | 49.39 | 65.29 | 53.40
v v | TD || 69.23 | 57.67 | 66.41 | 55.84 || 68.80 | 59.24 | 75.09 | 64.36

We present the quantitative results on a different split of AwA1 and AwA?2 in this sec-
tion. We note that the seen-unseen split of AwWA proposed in (Xian et al., 2017) has an
imbalanced taxonomy as shown in the top of Figure A.16. Specifically, three classes be-
long to the root class, and another two classes belong to the same super class. To show
the importance of balanced taxonomy, we make another seen-unseen split for balancing
taxonomy, while unseen classes are ensured not to be used for training the CNN feature
extractor. The taxonomy of new split is shown in the bottom of Figure A.16.

Table A.2 shows the performance of the attribute and word embedding models, and
two different hierarchical embedding models, i.e., Path and TD, and their combinations
on AwA1 and AwA?2 with the split of the imbalanced taxonomy and that of the balanced
taxonomy. Compared to the imbalanced taxonomy case, in the balanced taxonomy, the
standalone performance of hierarchical embeddings has similar tendency, but the overall
performance is better in all cases. However, in the combined model, while Path does not
improve the performance much, TD still shows improvement on both ZSL. and GZSL tasks.

Note that the combination with TD has lower ZSL performance than the combination with-
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Figure A.17: Seen-unseen class accuracy curves of the best combined models obtained
by varying the unseen class score bias on AwWA1 and AwA?2, with the split of imbalanced
taxonomy and that of balanced taxonomy. ‘“Path” is the hierarchical embedding proposed
in (Akata et al., 2015), and “TD” is the embedding of the multiple softmax probability
vector obtained from the proposed top-down method. We remark that if the dataset has a
balanced taxonomy, the overall performance can be improved.

out TD in some cases, because only AUC is the criterion for optimization. Compared to the
best single semantic embedding model (with attributes), the combination with TD leads to
absolute improvement of AUC by 1.66% and 4.85% in the split we propose for balanced
taxonomy on AwA1 and AwA?2, respectively.

These results imply that with more balanced taxonomy, the hierarchy of labels can be
implicitly learned without a hierarchical embedding such that the performance is generally
better, but yet the combination of an explicit hierarchical embedding improves the perfor-

mance.
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APPENDIX B

Supplementary Material of Chapter 111

B.1 Illustration of Global Distillation

Dog
Goose
Cat 7)
Eagle
Previous model
Dog Dog
AGoose Goose
M Cat Cat
( _‘Eagle Eagle Q
_Fox Fox
‘Hen Hen
New model Unified model

Fox
Hen 8- C
Teacher for

the current task

Figure B.1: An illustration of how a model M learns with global distillation (GD). For GD,
three reference models are used: P is the previous model, C is the teacher for the current
task, and Q is an ensemble of them.
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B.2 Details on Experimental Setup

Hyperparameters. We use mini-batch training with a batch size of 128 over 200 epochs
for each training to ensure convergence. The initial learning rate is 0.1 and decays by
0.1 after 120, 160, 180 epochs when there is no fine-tuning. When fine-tuning is applied,
the model is first trained over 180 epochs where the learning rate decays after 120, 160,
170 epochs, and then fine-tuned over 20 epochs, where the learning rate starts at 0.01 and
decays by 0.1 after 10, 15 epochs. We note that 20 epochs are enough for convergence even
when fine-tuning the whole networks for some methods. We update the model parameters
by stochastic gradient decent with a momentum 0.9 and an L2 weight decay of 0.0005.
The size of the coreset is set to 2000. Due to the scalability issue, the size of the sampled
external dataset is set to the size of the labeled dataset. The ratio of OOD data in sampling
is determined by validation on a split of ImageNet, which is 0.7. For all experiments, the
temperature for smoothing softmax probabilities 7 is set to 2 for distillation from P and C,

and 1 for distillation from Q.

Scalability of methods. We note that all compared methods are scalable and they are
compared in a fair condition. We do not compare generative replay methods with ours,
because the coreset approach is known to outperform them in class-incremental learning in
a scalable setting: in particular, it has been reported that continual learning for a generative
model is a challenging problem on datasets of natural images like CIFAR-100 (Lesort et al.,
2018; Wu et al., 2018a).

B.3 More Experimental Results

B.3.1 More Ablation Studies

Effect of the OOD ratio. We investigate the effect of the ratio between the sampled data
likely to be in the previous tasks and OOD data. As shown in Figure B.2, the optimal OOD
ratio varies over datasets, but it is higher than 0.5: specifically, the best ACC is achieved
when the OOD ratio is 0.8 on CIFAR-100, and 0.7 on ImageNet. On the other hand, the
optimal OOD ratio for FGT is different: specifically, the best FGT is achieved when the
OOD ratio is 0.2 on CIFAR-100, and 0.5 on ImageNet.

Effect of the correlation between the training data and unlabeled external data. So
far, we do not assume any correlation between training data and external data. However, in

this experiment, we control the correlation between them based on the hypernym-hyponym
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Figure B.2: Experimental results on CIFAR-100 and ImageNet when the task size is 10. We
report ACC and FGT with respect to the OOD ratio averaged over ten trials for CIFAR-100
and nine trials for ImageNet.
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Figure B.3: Experimental results on ImageNet when the task size is 10. We report ACC and
FGT with respect to the hierarchical distance between the training dataset and unlabeled
data stream averaged over nine trials.

relationship between ImageNet class labels. Specifically, we first compute the hierarchical
distance (the length of the shortest path between classes in hierarchy) between 1k classes in
ImageNet ILSVRC 2012 training dataset and the other 21k classes in the entire ImageNet
2011 dataset. Note that the hierarchical distance can be thought as the semantic difference
between classes. Then, we divide the 21k classes based on the hierarchical distance, such
that each split has at least 1M images for simulating an unlabeled data stream. As shown in
Figure B.3, the performance is proportional to the semantic similarity, which is inversely
proportional the hierarchical distance. However, even in the worst case, unlabeled data are
beneficial.
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B.3.2 More Results

Table B.1: Comparison of methods on CIFAR-100 and ImageNet. We report the mean and
standard deviation of ten trials for CIFAR-100 and nine trials for ImageNet with different
random seeds in %. 1 () indicates that the higher (lower) number is the better.

Dataset CIFAR-100
Task size 5 10 20
Metric ACC () | FGT (}) | ACC(T) | FGT (}) | ACC (1) | FGT ()
Oracle 78.6 09 | 3.3+02 | 77.6 08 | 3.1 o2 | 757 07| 2.8 +02
Without an external dataset
Baseline | 574 +12 | 21.0+05 | 56.8 +1.1 | 19.7 04 | 56.0 £10 | 18.0 +03
LwF 584 +13| 193 +05|595+12| 169 +04 | 60.0+10 | 14.5 +04
DR 591 +14 | 19.6+05 | 60.8 £12 | 17.1 o4 | 61.8 £09 | 14.3 04
E2E 60.2+13 | 16.5+05 | 62.6 +1.1 | 12.8 +04 | 65.1 £08 | 8.9 +02
GD (Ours) | 62.1 +12 | 154 +04 | 65.0 £1.1 | 12.1 03 | 67.1 +09 | 8.5 +03
With an external dataset
LwF 597 12| 194 +05 | 61.2 +1.1 | 17.0 £04 | 60.8 £09 | 14.8 +04
DR 598 +10 | 19.5+05 | 62.0 +09 | 16.8 +04 | 63.0+10 | 13.9 +04
E2E 61.5+12| 164 05 | 643 £10 | 12.7 04 | 66.1 £09 | 9.2 04
GD (Ours) | 66.3 +12 | 98 +t03 | 68.1 11| 7.7 +03 | 68.9 £10 | 5.5 +04
Dataset ImageNet
Task size 5 10 20
Metric ACC () | FGT () | ACC (1) | FGT (}) | ACC (1) | FGT ()
Oracle 68.0+17| 3.3+02 | 669 +16| 3.1 +03 | 651x12]| 2.7+02
Without an external dataset
Baseline | 442 +17 | 23.6+04 | 44.1 16 | 21.5 +05 | 447 £12 | 184 105
LwF 456 +19 | 21.5+04 | 473 +15 | 185+05 | 48.6 +12 | 15.3 +o6
DR 46.5 +16 | 22.0 o5 | 48.7 £16 | 18.8 £05 | 50.7 £12 | 15.1 o5
E2E 477 +19 | 17.9 04 | 50.8 £15 | 13.4 +04 | 539 +12 | 8.8 +03
GD (Ours) | 50.0 +1.7 | 16.8 04 | 53.7 +15 | 12.8 +05 | 56.5 +12 | 8.4 +04
With an external dataset
LwF 472 +17 | 21.7 05 | 492 £13 | 18.6 £04 | 494 +08 | 15.8 £04
DR 473 +17 | 21.8 o6 | 50.2 +15 | 18.5+05 | 51.8 +09 | 14.9 +05
E2E 492 +17 | 17.7 06 | 52.8 £14 | 13.2 +02 | 55.2+09 | 9.0 +04
GD (Ours) | 55.2+18 | 9.6 04 | 577 t16 | 742103 | 58.7 +12 | 5.4 +o3
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Figure B.4: Experimental results on ImageNet. Arrows show the performance gain in ACC
and FGT by learning with unlabeled data, respectively. We report the average performance

of nine trials.
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Figure B.5: Experimental results on CIFAR-100 when the task size is 5. We report ACC
and FGT with respect to the number of trained classes averaged over ten trials.
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Figure B.6: Experimental results on CIFAR-100 when the task size is 20. We report ACC
and FGT with respect to the number of trained classes averaged over ten trials.
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Figure B.8: Experimental results on ImageNet when the task size is 10. We report ACC
and FGT with respect to the number of trained classes averaged over nine trials.
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Figure B.9: Experimental results on ImageNet when the task size is 20. We report ACC
and FGT with respect to the number of trained classes averaged over nine trials.
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APPENDIX C

Supplementary Material of Chapter IV
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Figure C.1: Learning curves on (a) small-scale, (b) large-scale CoinRun and (c) Deep-
Mind Lab. The solid line and shaded regions represent the mean and standard deviation,
respectively, across three runs.
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Figure C.2: The performance in unseen environments in small-scale CoinRun. The
solid/dashed line and shaded regions represent the mean and standard deviation, respec-
tively, across three runs.

C.2 Robustness Against Adversarial Attacks

The adversarial (visually imperceptible) perturbation (Szegedy et al., 2014) to clean input
observations can induce the DNN-based policies to generate an incorrect decision at test
time (Huang et al., 2017; Lin et al., 2017). This undesirable property of DNNs has raised
major security concerns. In this section, we evaluate if the proposed method can improve
the robustness on adversarial attacks. Our method is expected to improve the robustness
against such adversarial attacks because the agents are trained with randomly perturbed in-
puts. To verify that the proposed method can improve the robustness to adversarial attacks,
the adversarial samples are generated using FGSM (Goodfellow et al., 2015) by perturbing
inputs to the opposite direction to the most probable action initially predicted by the policy:

Saav = § — esign (Vg log m(a™|s; 0)),

where ¢ is the magnitude of noise and a* = argmax, 7(als;#) is the action from the
policy. Table C.1 shows that our proposed method can improve the robustness against
FGSM attacks with ¢ = 0.01, which implies that hidden representations of trained agents

are more robust.

C.3 Details for Training Agents Using PPO

Policy optimization. For all baselines and our methods, PPO is utilized to train the poli-
cies. Specifically, we use a discount factor v = 0.999, a generalized advantage estimator
(GAE) (Schulman et al., 2016) parameter A = 0.95, and an entropy bonus (Williams and
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Small-Scale CoinRun | Large-Scale CoinRun | DeepMind Lab
Clean FGSM Clean FGSM Clean FGSM
61.5 77.4 163.5
PPO 100 (38.5) 96.2 (-19.5) 352.5 (-53.6)
88.0 84.4 184.0
PPO + ours | 100 (-12.0) 99.6 (-15.3) 368.0 (-50.0)

Table C.1: Robustness against FGSM attacks on training environments. The values in
parentheses represent the relative reductions from the clean samples.

Peng, 1991) of 0.01 to ensure sufficient exploration. We extract 256 timesteps per rollout,
and then train the agent for 3 epochs with 8 mini-batches. The Adam optimizer (Kingma
and Ba, 2015) is used with the starting learning rate 0.0005. We run 32 environments si-
multaneously during training. As suggested in Cobbe et al. (2019), two boxes are painted
in the upper-left corner, where their color represents the - and y-axis velocity to help the
agents quickly learn to act optimally. In this way, the agent does not need to memorize
previous states, so a simple CNN-based policy without LSTM can effectively perform in

our experimental settings.

Data augmentation methods. In this chapter, we compare a variant of cutout (DeVries
and Taylor, 2017b) proposed in Cobbe et al. (2019), grayout, inversion, and color jitter
(Cubuk et al., 2019a). Specifically, the cutout augmentation applies a random number of
boxes in random size and color to the input, the grayout method averages all three channels
of the input, the inversion method inverts pixel values by a 50% chance, and the color jitter
changes the characteristics of images commonly used for data augmentation in computer
vision tasks: brightness, contrast, and saturation. For every timestep in the cutout aug-
mentation, we first randomly choose the number of boxes from zero to five, assign them
a random color and size, and place them in the observation. For the color jitter, the pa-
rameters for brightness, contrast, and saturation are randomly chosen in [0.5,1.5]." For
each episode, the parameters of these methods are randomized and fixed such that the same

image pre-processing is applied within an episode.

C.4 Different Types of Random Networks

In this section, we apply random networks to various locations in the network architecture

as illustrated in Figure C.3, and measure the performance in large-scale CoinRun without

"For additional details, see https://pytorch.org/docs/stable/_modules/
torchvision/transforms/transforms.html#ColorJitter.
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Figure C.3: Network architectures with random networks in various locations. Only con-
volutional layers and the last fully connected layer are displayed for conciseness.

the feature matching loss. For all methods, a single-layer CNN is used with a kernel size
of 3, and its output tensor is padded in order to be in the same dimension as the input
tensor. As shown in Figure C.4, the performance of unseen environments decreases as
the random network is placed in higher layers. On the other hand, the random network in
residual connections improves the generalization performance, but it does not outperform
the case when a random network is placed at the beginning of the network, meaning that
randomizing only the local features of inputs can be effective for a better generalization

performance.
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Figure C.4: The performance of random networks in various locations in the network ar-
chitecture on (a) seen and (b) unseen environments in large-scale CoinRun. We show the
mean performances averaged over three different runs, and shaded regions represent the
standard deviation.

C.5 Environments in Small-Scale CoinRun

For small-scale CoinRun environments, we consider a fixed map layout with two moving

obstacles and measure the performance of the trained agents by changing the style of the

Wﬂ

backgrounds.

(a) Seen environment (b) Unseen environment (c) Unseen environment

Figure C.5: Examples of seen and unseen environments in small-scale CoinRun.

C.6 Environments in Large-Scale CoinRun

In CoinRun, there are 34 themes for backgrounds, 6 for grounds, 5 for agents, and 9 for
obstacles. For the large-scale CoinRun experiment, we train agents on a fixed set of 500
levels of CoinRun using half of the available themes and measure the performances on

1,000 different levels consisting of unseen themes.
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(a) Seen environment (b) Seen environment

o TN

(c) Unseen environment (d) Unseen environment

Figure C.6: Examples of seen and unseen environments in large-scale CoinRun.

C.7 Environments on DeepMind Lab

Dataset. Among the styles (textures and colors) provided for the 3D maze in the Deep-
Mind Lab, we take ten different styles of floors and walls, respectively (see the list below).
We construct a training dataset by randomly choosing a map layout and assigning a theme
among ten floors and walls, respectively. The domain randomization method compared in
Table 4.3 uses four floors and four wall themes (16 combinations in total). Trained themes
are randomly chosen before training and their combinations are considered to be seen en-
vironments. To evaluate the generalization ability, we measure the performance of trained
agents on unseen environments by changing the styles of walls and floors. Domain ran-
domization has more seen themes than the other methods, so all methods are compared
with six floors and six walls (36 combinations in total), which are unseen for all methods.
The mean and standard deviation of the average scores across ten different map layouts are

reported in Figure C.7.

Action space. Similar to IMPALA (Espeholt et al., 2018), the agent can take eight actions
from the DeepMind Lab native action samples: {Forward, Backward, Move Left, Move
Right, Look Left, Look Right, Forward + Look Left, and Forward + Look Right}. Table C.2
describes the detailed mapping.
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Figure C.7: The top-down view of the trained map layouts.

Action DeepMind Lab Native Action
Forward [ o, 0o, 0, 1, 0, 0, 0]
Backward ([ o, o, o0, -1, 0, 0, 0]
Move Left [ o0, 0o, -1, 0, 0, 0, 07
Move Right [ o, 0, 1, 0, 0, 0, 0]
Look Left [-20, O, 0, 0, 0, 0, 0]
Look Right [ 20, O, 0, 0, 0, 0, 0]
Forward + Look Left [-20, O, ©0, 1, 0, 0, 0]
Forward + Look Right [ 20, 0, O, 1, 0, 0, O]

Table C.2: Action set used in the DeepMind Lab experiment. The DeepMind Lab na-
tive action set consists of seven discrete actions encoded in integers ([L,U] indicates the
lower/upper bound of the possible values): 1) yaw (left/right) rotation by pixel [-512,512],
2) pitch (up/down) rotation by pixel [-512,512], 3) horizontal move [-1,1], 4) vertical move
[-1,1], 5) fire [0,1], 6) jump [0,1], and 7) crouch [0,1].

C.8 Experiments on Dogs and Cats Database

Dataset. The original database is a set of 25,000 images of dogs and cats for training and
12,500 images for testing. Similar to Kim et al. (2019), the data is manually categorized
according to the color of the animal: bright or dark. Biased datasets are constructed such
that the training set consists of bright dogs and dark cats, while the test and validation sets
contain dark dogs and bright cats. Specifically, training, validation, and test sets consist of
10,047, 1,000, and 5,738 images, respectively.” ResNet-18 (He et al., 2016) is trained with
an initial learning rate chosen from {0.05, 0.1} and then dropped by 0.1 at 50 epochs with

nttps://github.com/feidfoe/learning-not-to-learn/tree/master/dataset/
dogs_and_cats.
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a total of 100 epochs. We use the Nesterov momentum of 0.9 for SGD, a mini-batch size
chosen from {32, 64}, and the weight decay set to 0.0001. We report the training and test
set accuracies with the hyperparameters chosen by validation. Unlike Kim et al. (2019),
we do not use ResNet-18 pre-trained with ImageNet (Russakovsky et al., 2015) in order to

avoid inductive bias from the pre-trained dataset.

C.9 Experimental Results on Surreal Robot Manipulation

Our method is evaluated in the Block Lifting task using the Surreal distributed RL frame-
work (Fan et al., 2018). In this task, the Sawyer robot receives a reward if it successfully
lifts a block randomly placed on a table. Following the experimental setups in Fan et al.
(2018), the hybrid CNN-LSTM architecture (see Figure C.8(a)) is chosen as the policy
network and a distributed version of PPO (i.e., actors collect massive amount of trajecto-
ries and the centralized learner updates the model parameters using PPO) is used to train
the agents.” Agents take 84 x 84 observation frames with proprioceptive features (e.g.,
robot joint positions and velocities) and output the mean and log of the standard deviation
for each action dimension. The actions are then sampled from the Gaussian distribution
parameterized by the output. Agents are trained on a single environment and tested on
five unseen environments with various styles of table, floor, and block, as shown in Fig-
ure C.9. For the Surreal robot manipulation experiment, the vanilla PPO agent is trained
on 25 environments generated by changing the styles of tables and boxes. Specifically, we
use {blue, gray, orange, white, purple} and {red, blue, green, yellow, cyan} for table and

box, respectively.
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Figure C.8: (a) An illustration of network architectures for the Surreal robotics control ex-
periment, and learning curves with (b) regularization and (c) data augmentation techniques.
The solid line and shaded regions represent the mean and standard deviation, respectively,
across three runs.

3We referred to the two actors setting in ht tps: //github.com/SurrealAl/surreal.
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(a) Seen environment (b) Unseen environment (c) Unseen environment

|

(d) Unseen environment (e) Unseen environment (f) Unseen environment

Figure C.9: Examples of seen and unseen environments in the Surreal robot manipulation.

C.10 Extension to Domains With Different Dynamics

In this section, we consider an extension to the generalization on domains with different
dynamics. Similar to dynamics randomization (Peng et al., 2018), one can expect that our
idea can be useful for improving the dynamics generalization. To verify this, we conduct
an experiment on CartPole and Hopper environments where an agent takes proprioceptive
features (e.g., positions and velocities). The goal of CartPole is to prevent the pole from
falling over, while that of Hopper is to make an one-legged robot hop forward as fast as
possible, respectively. Similar to the randomization method we applied to visual inputs,
we introduce a random layer between the input and the model. As a natural extension of
the proposed method, we consider performing the convolution operation by multiplying
a d x d diagonal matrix to d-dimensional input states. For every training iteration, the
elements of the matrix are sampled from the standard uniform distribution U(0.8,1.2). One
can note that this method can randomize the amplitude of input states while maintaining
the intrinsic information (e.g., sign of inputs). Following Packer et al. (2018) and Zhou
et al. (2019), we measure the performance of the trained agents on unseen environments

with a different set of dynamics parameters, such as mass, length, and force. Specifically,
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Figure C.10: Performances of trained agents in seen and unseen environments under (a/b)
CartPole and (c/d) Hopper. The solid/dashed lines and shaded regions represent the mean
and standard deviation, respectively.

for CartPole experiments, similar to Packer et al. (2018), the policy and value functions
are multi-layer perceptrons (MLPs) with two hidden layers of 64 units each and hyperbolic
tangent activation and the Proximal Policy Optimization (PPO) (Schulman et al., 2017)
method is used to train the agents. The parameters of the training environment are fixed
at the default values in the implementations from Gym, while force, length, and mass of
environments are sampled from [1, 5] U [15,20], [0.05,0.25] U [0.75,1.0], [0.01,0.05] U
(0.5, 1.0] that the policy has never seen in any stage of training.* For Hopper experiments,
similar to Zhou et al. (2019), the policy is a MLP with two hidden layers of 32 units
each and ReLU activation and value function is a linear model. The trust region policy
optimization (TRPO) (Schulman et al., 2015) method is used to train the agents. The mass
of the training environment is sampled from {1.0,2.0,3.0,4.0,5.0}, while it is sampled
from {6.0,7.0,8.0} during testing.” Figure C.10 reports the mean and standard deviation
across 3 runs. Our simple randomization improves the performance of the agents in unseen
environments, while achieving performance comparable to seen environments. We believe

that this evidences a wide applicability of our idea beyond visual changes.

C.11 Failure Case of Our Methods

In this section, we verify whether the proposed method can handle color (or texture)-
conditioned RL tasks. One might expect that such RL tasks can be difficult for our methods
to work because of the randomization. For example, our methods would fail if we consider
an extreme seek-avoid object gathering setup, where the agent must learn to collect good
objects and avoid bad objects which have the same shape but different color. However, we

remark that our method would not always fail for such tasks if other environmental fac-

*We referred to https://bair.berkeley.edu/blog/2019/03/18/rl-generalization.
SWe referred to the two actors setting in ht tps: //github.com/Wenxuan—Zhou/EPT.
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Figure C.11: (a) Modified CoinRun with good and bad coins. The performances on (b)
seen and (c) unseen environments. The solid line and shaded regions represent the mean
and standard deviation, respectively, across three runs. (d) Average success rates on large-
scale CoinRun for varying the fraction of clean samples during training. Noe that & = 1
corresponds to vanilla PPO agents.

tors (e.g., the shape of objects in Collect Good Objects in DeepMind Lab (Beattie et al.,
2016)) are available to distinguish them. To verify this, we consider a modified CoinRun
environment where the agent must learn to collect good objects (e.g., gold coin) and avoid
bad objects (e.g., silver coin). Similar to the small-scale CoinRun experiment, agents are
trained to collect the goal object in a fixed map layout (see Figure C.11(a)) and tested in un-
seen environments with only changing the style of the background. Figure C.11(b) shows
that our method can work well for such color-conditioned RL tasks because a trained agent
can capture the other factors such as a location to perform this task. Besides, our method
achieves a significant performance gain compared to vanilla PPO agent in unseen environ-
ments as shown in Figure C.11(c).

As another example, in color-matching tasks such as the keys doors puzzle in DeepMind
Lab (Beattie et al., 2016), the agent must collect colored keys to open matching doors. Even
though this task is color-conditioned, a policy trained with our method can perform well
because the same colored objects will have the same color value even after randomization,
i.e., our randomization method still maintains the structure of input observation. This evi-
dences the wide applicability of our idea. We also remark that our method can handle more
extreme corner cases by adjusting the fraction of clean samples during training. In sum-
mary, we believe that the proposed method covers a broad scope of generalization across

low-level transformations in the observation space features.

C.12 Ablation Study for Fraction of Clean Samples

We investigate the effect of the fraction of clean samples. Figure C.11(d) shows that the
best unseen performance is achieved when the fraction of clean samples is 0.1 on large-

scale CoinRun.
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C.13 Visualization of Hidden Features

' 4 P -
oo
! : o" o) £: .%.0
® ® o .‘ ([ ) #
BT v -
R AR " N
[

'o’ff. ..‘.. &b' ol. H ° o: ?...;:o. °
YA Tee’ & DS
Fante o, * %

()
.... o® ° “. ®
.::..o ® Seen ”-. .s
L een nseen een &
° ° : 3nseenA : aneeng : SnseenA .‘~.
® Unseen B ® Unseen B
(a) PPO (b) PPO + 1.2 (c) PPO + BN
‘ .. . o0 [ ]
() ()
’g ’ 0,‘:.“ o
3 ° () g
‘:-:q:o'\ " 0?0. .‘ ¢ "
8 gl , 25
< é e o ° *
\ » .‘tg.g..’:. o 0.:'0 °
.“% O'QV.:ﬂ. ooy %,
LY cand

% Whe

4 : 3i22enA : fﬁzgenA ..‘ .... : ﬁiZZenA
® UnseenB ® UnseenB ® UnseenB

(d) PPO + DO (e) PPO + CO (f) PPO + CJ
. . - 2 .

s ° °
¥ o % b
L/ e °° ...g e O . v J.. ...’“
:..o....g.“o.. N .% * og
' ) . ......‘0.3& o¢ ﬁ . .‘

0o o .o.° .‘ f.h e
* ‘:'o:s.. %, ﬁ- g’ °

. o.. .- °° $.. s

80 °¢
®e ® Seen ® Seen o : SizgenA .g
%o ©® UnseenA ©® UnseenA % ® UnseenB
® Unseen B ® Unseen B
(g) PPO + 1V (h) PPO + GR (i) PPO + ours

Figure C.12: Visualization of the hidden representation of trained agents optimized by (a)
PPO, (b) PPO + L2, (c) PPO + BN, (d) PPO + DO, (e) PPO + CO, (f) PPO + GR, (g)
PPO + 1V, (h) PPO + CJ, and (I) PPO + ours using t-SNE. The point colors indicate the
environments of the corresponding observations.
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APPENDIX D

Supplementary Material of Chapter V

D.1 More Applications of ;-MixUp

In this section, we introduce a few more variations of -MixUp. For conciseness, we use
v; to denote virtual labels for different methods. We make the definition of v; for each

application clear.

D.1.1 -MixUp for SimCLR

For each anchor, SImCLR takes other anchors as negative samples such that the virtual
labels must be extended. Let xy,;=2; for conciseness, and v; € [0, 1]2N be the virtual
label indicating the positive sample of each anchor, where v; ny; = 1 and v; ;=0 for
j # N + . Note that v; ; = 0 because the anchor itself is not counted as a positive sample.

Then, Eq. (5.2) can be represented in the form of the cross-entropy loss:

2N
lsimerr (T4, vi; B) = — Z Vi log exp (s(fi, fn)/7T)

. (D.1)
n—=1 Zzzm;ﬁ exp (S(fi, fk)/T)

The application of i-MixUp to SimCLR is straightforward: for two data instances (x;, v;),
(z;,v;) and a batch of data B = {z;} 2", the i-MixUp loss is defined as follows:!

gSimCLR(/\xi + (1 — )\).Z‘j, )\Ui + (1 — )\)Uj; B) (DZ)

IThe j-th data can be excluded from the negative samples, but it does not result in a significant difference.
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Note that only the input data of Eq. (D.2) is mixed, such that f; in Eq. (D.1) is an
embedding vector of the mixed data while the other f,,’s are the ones of clean data. Because
both clean data x;’s and their interpolations A\z;+(1—X\)x;’s need to be fed to the network f,
1-MixUp for SimCLR requires twice more memory and training time compared to SimCLR

when the same batch size is used.

D.1.2 i-MixUp for Supervised Contrastive Learning

Supervised contrastive learning has recently shown to be effective for supervised repre-
sentation learning and it often outperforms the standard end-to-end supervised classifier
learning (Khosla et al., 2020). Suppose an one-hot label y; € [0, 1] is assigned to a data
x;, where C' is the number of classes. Let xy.; =Z; and yy,; =y; for conciseness. For
a batch of data pairs and their labels B = {(z;,y;) }?Y,, let v; € [0, 1]?V be the virtual label
indicating the positive samples of each anchor, where v;; = 1 if y; =v; and j #1, and
otherwise v; ; = 0. Intuitively, Z?ZI v;; = 2N,, — 1 where N, is the number of data with
the label ;. Then, the supervised version of the SImCLR (Sup-SimCLR) loss function is

written as follows:
exp (s(fi, fn)/T)

2N
1
€Sup-SimCLR(33z‘, Vi, B) = T oxr 1 Vin log N .
2Nyi —1 nZ:; i:l,k#i exp (S(fia fk:)/T)

(D.3)

The application of :-MixUp to Sup-SimCLR is straightforward: for two data instances

(zi,v;), (z,v;) and a batch of data B = {x;}?%, the i-MixUp loss is defined as follows:
éSup—SimCLR<>\xi + (]_ — /\)l’j, /\Ui + (1 — )\)Uj; B) (D4)

D.1.3 i-MixUp for N-Pair Supervised Contrastive Learning

Note that -MixUp in Eq. (D.4) is not as efficient as Sup-SimCLR in Eq. (D.3) due to
the same reason in the case of SimCLR. To overcome this, we reformulate Sup-SimCLR
to the N-pair loss (Sohn, 2016). Suppose an one-hot label y; € [0,1]¢ is assigned to
a data z;, where C is the number of classes. For a batch of data pairs and their labels
B={(x;, Z;,y;)}}V,, let v; € [0, 1]" be the virtual label indicating the positive samples of
each anchor, where v; ; = 1if y; =y, and j # 4, and otherwise v; ; = 0. Then, the supervised

version of the N-pair (Sup-N-pair) contrastive loss function is written as follows:

N ~
ESHP-N-pair(xi, Vs, B) = —L Z in | exXp (S(f“ fn)/T)

N, &= O SN (s(for o))

(D.5)
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Then, the :-MixUp loss for Sup-N-pair is defined as follows:
gSup—N—pair<)\$i + (1 — )\)l’j, )\Ui + (1 — )\)’Uj; B) (D6)

D.1.4 -CutMix

Under an assumption that substituting a continuous region in data to another one is semanti-
cally valid, we propose i-CutMix, a variation of :-MixUp applying the idea of CutMix (Yun
et al., 2019) when mixing in the data space: instead of interpolating the entire input data,
1-CutMix introduces a small box in one data and substitutes the region in the box with

another data, where the ratio of area follows the interpolator .

D.2 More Experiments

D.2.1 Experimental Settings

CIFAR-10 and 100 (Krizhevsky and Hinton, 2009). The experiments are conducted in
two stages: following Chen et al. (2020a), the convolutional neural network (CNN) part of
ResNet-50 (He et al., 2016) followed by the two-layer multilayer perceptron (MLP) head
(output dimensions are 2048 and 128, respectively) is trained with a batch size of 512 (i.e.,
256 pairs) with the stochastic gradient descent (SGD) optimizer with a momentum of 0.9
over 1000 epochs. 10 epochs of warmup with a linear schedule to a initial learning rate of
0.125, followed by the cosine learning rate schedule (Loshchilov and Hutter, 2017) is used.
We use the weight decay of 0.0001 at the first stage.

Then, the head of the CNN is replaced with a linear classifier, and only the linear
classifier is trained with the labeled dataset. We use a batch size of 512 with the SGD
optimizer with a momentum of 0.9 and a initial learning rate of 1 over 100 epochs, where
the learning rate is decayed by 0.2 after 60, 75, 90 epochs. No weight decay is used at
the second stage. The quality of representation is evaluated by the top-1 accuracy on the
downstream task. We sample a single linear interpolator A ~ 3(1, 1) for each training batch.
We use the temperature 7 =0.5. Note that the optimal distribution of A and the optimal
value of 7 varies over different architectures, methods, and datasets, but the choices above
result in a reasonably good performance.

For MoCo, the memory bank size is 4096, and the momentum for the exponential
moving average (EMA) update is 0.999.

For data augmentation, we follow Chen et al. (2020a) on CIFAR-10: We apply a set

of data augmentations randomly in sequence including resized crop (Szegedy et al., 2015),
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horizontal flip with a probability of 0.5, color jittering,” and gray scaling with a probability
of 0.2.

For denoising autoencoder (DAE) (Vincent et al., 2010), the pretext task is to denoise
the Gaussian noise with the zero mean and standard deviation of 0.4. The model is trained
with the SGD optimizer with a momentum of 0.9 and a initial learning rate of 0.001 over
400 epochs, where the learning rate decays by 0.1 after 200 and 300 epochs with no weight
decay. The decoder is replaced with a learnable linear classifier at the second stage. The
classifier is computed by linear regression from the feature matrix obtained without data
augmentation to the label matrix using the pseudoinverse, which results in a better perfor-
mance than the SGD optimizer in this case.

Speech Commands (Warden, 2018). As a backbone network, we take VGGNet-19 (Si-
monyan and Zisserman, 2015) with batch normalization (Ioffe and Szegedy, 2015). We
sample a single linear interpolator A\ ~ 3(1, 1) for each training batch. We use the temper-
ature 7 =0.2. 10% of silence data (all zero) are added when training. At the first stage, the
model is trained with the SGD optimizer with a momentum of 0.9 and a initial learning rate
of 0.0001 over 500 epochs, where the learning rate decays by 0.1 after 300 and 400 epochs
and the weight decay of 0.0001. The other settings are the same with the experiments on
CIFAR-10 and 100. At the second stage, the MLP head is replaced with a linear classifier.
The classifier is computed by linear regression from the feature matrix obtained without
data augmentation to the label matrix using the pseudoinverse.

For data augmentation,’ we apply a set of data augmentations randomly in sequence
including changing amplitude, speed, and pitch in time domain, stretching, time shifting,
and adding background noise in frequency domain. Each data augmentation is applied with
a probability of 0.5. Augmented data are then transformed to the mel spectogram in the
size of 32 x 32.

Tabular datasets (Asuncion and Newman, 2007). As a backbone network, we take a
five-layer MLP with batch normalization. The output dimensions of layers are (2048-2048-
4096-4096-8192), where all layers have batch normalization folowed by ReLLU except for
the last layer. The last layer activation is maxout (Goodfellow et al., 2013) with 4 sets, such
that the output dimension is 2048. On top of this five-layer MLP, we attach two-layer MLP
(2048-128) as a projection head. We sample a single linear interpolator A ~ (2, 2) for each

training batch. We use the temperature 7 = 0.1. At the first stage, the model is trained with

2Specifically, brightness, contrast, and saturation are scaled by a factor uniformly sampled from [0.6, 1.4]
at random, and hue is rotated in the HSV space by a factor uniformly sampled from [—0.1, 0.1] at random.
3https://github.com/tugstugi/pytorch-speech-commands
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Table D.1: Comparison of N-pair contrastive learning, SimCLR, MoCo, and :-MixUp and
1-CutMix on them with ResNet-50 on CIFAR-10 and 100. We report the mean and standard
deviation of five trials with different random seeds in %. i-MixUp improves the accuracy
on the downstream task regardless of the data distribution shift between the pretext and
downstream tasks. ¢-CutMix shows a comparable performance with :-MixUp when the
pretext and downstream datasets are the same, but it does not when the data distribution
shift occurs.

Pretext ‘ Downstream H N-pair ‘ 1-MixUp ‘ 1-CutMix

CIFAR-10 924 +01 | 94.8 02 | 94.7 +0.1
CIFAR-100 || 60.2 +03 | 63.3 t02 | 61.5 £02

CIFAR-10 84.4 +02 | 86.2 +02 | 85.1 02
CIFAR-100 || 68.7 02 | 72.3 +02 | 72.3 04

CIFAR-10

CIFAR-100

Pretext | Downstream || SimCLR | i-MixUp | i-CutMix
CIFAR-10 || 925 +01 | 94.8 +02 | 94.8 +02

CIFAR-10 CIFAR-100 || 60.0 +02 | 61.4 +10 | 57.1 04
CIFAR-10 84.4 +02 | 85.2 +03 | 83.7 +0s6

CIFAR-100 CIFAR-100 || 68.7 02 | 723 +02 | 71.7 +02
Pretext ‘ Downstream H MoCo ‘ 1-MixUp ‘ 1-CutMix
CIFAR-10 90.7 £03 | 92.7 02 | 93.1 +0.1

CIFAR-10 CIFAR-100 || 60.8 +02 | 64.7 +04 | 64.3 +0.1
CIFAR-100 CIFAR-10 83.1+02 | 85.5+03 | 85.5 +02

CIFAR-100 || 65.7 01 | 70.0 £04 | 70.3 £ 0.1

a batch size of 1024 (i.e., 512 pairs) with the Adam optimizer with beta values of 0.9 and
0.999, a initial learning rate of 3 x 10~ and 5 x 1075 over 500 epochs for CovType and
Higgs, respectively, and the weight decay of 0.0001. The other settings are the same with
the experiments on CIFAR-10 and 100. At the second stage, the MLP head is replaced with
a linear classifier. The classifier is computed by linear regression from the feature matrix
obtained without data augmentation to the label matrix using the pseudoinverse. Since the
prior knowledge on tabular data is very limited, only the masking noise with a probability

of 0.2 is considered as a data augmentation.

D.2.2 Variations of i-MixUp

In this section, we additionally compare :-MixUp on SimCLR and ¢-CutMix on N-pair,
SimCLR, and MoCo. To be fair with the memory usage in the pretext task stage, we reduce
the batch size of :-MixUp and :-CutMix by half (256 to 128). Following the learning rate
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Table D.2: Comparison of the N-pair self-supervised and supervised contrastive learning
methods and ¢-MixUp on them with ResNet-50 on CIFAR-10 and 100. We also provide the
performance of formulations proposed in prior works: SimCLR (Chen et al., 2020a) and
supervised SImCLR (Khosla et al., 2020). -MixUp improves the accuracy on the down-
stream task regardless of the data distribution shift between the pretext and downstream
tasks, except the case that the pretest task has smaller number of classes than that of the
downstream task. The quality of representation depends on the pretext task in terms of the
performance of transfer learning: self-supervised learning is better on CIFAR-10, while
supervised learning is better on CIFAR-100.

Pretext | Downstream Self-Supervised Pretext Supervised Pretext
SimCLR | N-pair |i-MixUp || SimCLR | N-pair |i-MixUp
CIFAR-10 CIFAR-10 |(92.5 401|924 +0.1]94.8 £02(/95.6 £03(95.7 +0.1|97.0 £ 0.1
) CIFAR-100 || 60.0 +02]60.2 +03[63.3 +02(|58.6 +0.2|58.9 +05|57.8 + 056
CIFAR-100 CIFAR-10 ||84.4 +02(84.4 +02|86.2 +02(86.5 +04|86.7 +02|88.7 +02
CIFAR-100 || 68.7 £02|68.7 +02(72.3 £02||74.3 £02|74.6 +03|78.4 £02

adjustment strategy in Chen et al. (2020a), we also decrease the learning rate by half (0.125
to 0.0625) when the batch size is reduced. We note that -MixUp and :-CutMix on SimCLR
take approximately 2.5 times more training time to achieve the same number of training
epochs. The results are provided in Table D.1. First, the performance of :-MixUp on N-
pair is comparable to :-MixUp on SimCLR, while the N-pair version is computationally
more efficient. When pretext and downstream tasks share the training dataset, :-CutMix
often outperforms :-MixUp, though the margin is small. However, i-CutMix shows a worse
performance in transfer learning.

Table D.2 compares the performance of SimCLR, N-pair, and the N-pair version of i-
MixUp for both self-supervised and supervised contrastive learning. We confirm that the
N-pair formulation results in no worse performance than that of SImCLR in supervised
contrastive learning as well. :-MixUp improves the performance of supervised contrastive
learning from 95.7% to 97.0% on CIFAR-10, similarly to MixUp for supervised learning
where it improves the performance of supervised classifier learning from 95.3% to 96.4%.
On the other hand, when the pretext dataset is CIFAR-100, the performance of supervised
contrastive learning is not better than that of supervised learning: MixUp improves the
performance of supervised classifier learning from 78.9% to 80.3%, and :-MixUp improves
the performance of supervised contrastive learning from 74.6% to 78.4%.

While supervised ¢-MixUp improves the classification accuracy on CIFAR-10 when
trained on CIFAR-10, the representation does not transfer well to CIFAR-100, possibly
due to overfitting to 10 class classification. When pretext dataset is CIFAR-100, supervised
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Table D.3: Comparison of contrastive learning and ;-MixUp with ResNet-50 on CIFAR-10
and 100 in terms of the Fréchet embedding distance (FED) between training and test data
distribution on the embedding space, and training and test accuracy. 1 (|) indicates that the
higher (lower) number is the better. :-MixUp improves contrastive learning in all metrics,
which shows that +-MixUp is an effective regularization method for the pretext task, such
that the learned representation is more generalized.

74 o« e
Pretext | Downstream FED (x107%) (J) ||Training Acc (%) (1)|| Test Acc (%) (1)

Contrastive|i-MixUp||Contrastive |:-MixUp||Contrastive |:--MixUp
CIFAR-10 30.0 16.7 96.1 96.1 924 94.8
CIFAR-10 CIFAR-100 13.8 7.9 70.7 69.5 60.2 63.3
CIFAR-100

CIFAR-10 15.2 9.7 88.1 88.8 84.4 86.2

CIFAR-100 30.4 13.3 85.6 79.0 68.7 72.3

contrastive learning shows a better performance than self-supervised contrastive learning
regardless of the distribution shift, as it learns sufficiently general representation for linear
classifier to work well on CIFAR-10 as well.

D.2.3 Quantitative Embedding Analysis

To estimate the quality of representation by the similarity between training and test data
distribution, we measure the Fréchet embedding distance (FED): similarly to the Fréchet in-
ception distance (FID) introduced in Heusel et al. (2017), FED is the Fréchet distance (Fréchet,
1957; Vaserstein, 1969) between the set of training and test embedding vectors under the
Gaussian distribution assumption. For conciseness, let f; = f(x;)/||f(x;)|| be an ¢5 nor-
malized embedding vector; we normalize embedding vectors as we do when we measure
the cosine similarity. Then, with the estimated mean m = % Zi\il f; and the estimated
covariance S = & 3> (f; —m)(f; —m)T, the FED can be defined as

d2((mtr’str), (mte7 Ste)) — Hmtr . mte“2 4 Tr(str 4 Ste . 2(strste>%)' (D7)

As shown in Table D.3, ¢-MixUp improves FED over contrastive learning, regardless of
the distribution shift. Note that the distance is large when the training dataset of the down-
stream task is the same with that of the pretext task. This is because the model is overfit
to the training dataset, such that the distance from the test dataset, which is unseen during
training, has to be large.

Table D.3 shows that :-MixUp reduces the gap between the training and test accuracy.
This implies that -MixUp is an effective regularization method for pretext tasks, such that

the learned representation is more generalizable in downstream tasks.
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