
Multivariate Functional Regression and Selection

by

Joseph Naiman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2020

Doctoral Committee:

Professor Peter Song, Chair
Assistant Professor Walter Dempsey
Assistant Professor Peisong Han
Professor Kerby Shedden



Joseph Naiman

jnaiman@umich.edu

ORCID id: 0000-0002-9027-7569

c© Joseph Naiman 2020



This thesis is dedicated to my wife, Jessica, who has stood by me throughout the

PhD program with love and support, and to my children, Dovi, Shira, Sari, Talya

and Meir.

ii



ACKNOWLEDGEMENTS

First and foremost I would like to thank God for providing me with the insight,

strength and guidance to complete this dissertation.

I am grateful to the Department of Biostatistics for providing me with the essential

tools to complete this dissertation. The outstanding faculty and diversity in research

helped guide me throughout my PhD studies.

My deepest gratitude goes out to my advisor, Professor Peter Song, who patiently

guided me through my thesis work. Professor Song always made himself available

despite his busy schedule and the multiple PhD students he is currently mentoring.

Many thanks to the members of Song Lab who provided me with the data used in

this dissertation. I am grateful for the insightful weekly discussions presented at Song

Lab, and feel fortunate to have been part of the innovation and growth that happens

there on a regular basis.

Thank you to my other committee members- Professor Walter Dempsey, Professor

Peisong Han, and Professor Kerby Shedden- for their many contributions. Their

feedback of my proposal helped shape the direction of my thesis, and for that I am

grateful.

Thank you Professor Shedden and Professor Brenda Gillespie for allowing me

to work at the Consulting for Statistics and Analytics Research (CSCAR) through-

out the duration of my PhD program. At CSCAR I learned invaluable skills about

applying statistics to real life studies being conducted both within and outside the

University. At weekly CSCAR meetings we tackled difficult statistical problems and

iii



became better statisticians through the collaborative efforts of the staff and graduate

students.

My endless gratitude to the many family members who helped make this disser-

tation possible. I thank my parents, Mr. Amiel and Dr. Channah Naiman for their

support. My mother has provided me with the motivation to pursue a PhD by serv-

ing as a role model of teaching excellence, and her invaluable advice and guidance

has helped me throughout the program. My in-laws, Dr. Ephraim and Mrs. Rose

Zinberg, I thank for their ongoing support and availability to help with the kids. My

father-in-law Mr. Jared Cohen, I thank for providing me with a job that allowed our

family to manage financially as I pursued this PhD over many years and for being a

role model of professional success.

As a father of four when I started this program, I was able to complete it only

with the support of my wife and children. To my wife, Jessica, I thank for lovingly

and patiently standing by me throughout the program. I am extremely grateful for

the help of my wife and my mother in editing this dissertation.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.2 Accelerometer Data . . . . . . . . . . . . . . . . . . 1

1.0.3 Functional Regression . . . . . . . . . . . . . . . . . 4

II. Multivariate Functional Regression and Selection (MFRS)
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Least Squares Kernel Machine (LSKM) . . . . . . . 8

2.1.2 Feature Selection . . . . . . . . . . . . . . . . . . . 10

2.2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



III. Accelerometer Modeling Application . . . . . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 ELEMENT Dataset . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Accelerometer Preprocessing . . . . . . . . . . . . . . . . . . 42

3.4 Review of Statistical Methods . . . . . . . . . . . . . . . . . . 45

3.4.1 FPCA . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Least Squares Kernel Machine . . . . . . . . . . . . 45

3.4.3 MFRS for additive LSKM . . . . . . . . . . . . . . 50

3.5 Proposed Statistical Models . . . . . . . . . . . . . . . . . . . 51

3.5.1 Results from ELEMENT dataset . . . . . . . . . . . 54

3.5.2 7-day vs 1-day averaged . . . . . . . . . . . . . . . . 57

3.5.3 Tri-axis AC vs VM vs AI . . . . . . . . . . . . . . . 57

3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV. Accelerometer Modeling with Multilevel Functional Principal
Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Functional Anova Model . . . . . . . . . . . . . . . . . . . . . 67

4.3 MFRS Framework For Decomposed Functional . . . . . . . . 70

4.4 Results using the X(t) process . . . . . . . . . . . . . . . . . 71

4.5 Joint Modeling with both the X(t) and U(t) processes . . . . 74

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Results from the joint modeling . . . . . . . . . . . 75

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V. Functional Logistic Regression . . . . . . . . . . . . . . . . . . . 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Background for selection of Import points for KLR . . . . . . 80

5.2.1 KLR . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Tikhonov regularization . . . . . . . . . . . . . . . . 82

5.2.3 Logistic regression with lasso (L1) penalty . . . . . 83

5.2.4 Elastic Net . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 KLR with Import Selection . . . . . . . . . . . . . . . . . . . 85

5.4 MFRS Logistic Regression . . . . . . . . . . . . . . . . . . . . 88

VI. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . 92

vi



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 Technical assumptions and proofs . . . . . . . . . . . . . . . . 95

A.1.1 Proof of Theorem ?? . . . . . . . . . . . . . . . . . 95

A.1.2 Proof of Corollary ?? . . . . . . . . . . . . . . . . . 99

A.2 Gauss-Newton Algorithm . . . . . . . . . . . . . . . . . . . . 103

A.3 Additional Simulation Results in Scenario 2 . . . . . . . . . . 104

B.1 Additional Graphs from ELEMENT dataset from Chapter 3 . 106

C.1 Additional Graphs from ELEMENT dataset from Chapter 4 . 109

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vii



LIST OF FIGURES

Figure

2.1 Estimated marginal functions with 95 percent shaded confidence bands
of the function h evaluated at 100 grid points for each component
while holding all other components equal to 0.5 in Scenario 2 . . . . 35

3.1 TriAxis Activity Count for the 7 Days of accelerometer wear . . . . 40

3.2 VM Activity Count for the 7 Days of accelerometer wear . . . . . . 41

3.3 TriAxis Activity Count averaged minute-by-minute for the 7 Days of
accelerometer wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 VM Activity Count averaged minute-by-minute for the 7 Days of
accelerometer wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 AI for the 7 Days of accelerometer wear . . . . . . . . . . . . . . . . 43

3.6 AI averaged minute-by-minute for the 7 Days of accelerometer wear 44

3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.1 Leading Eigenfunction extracted for Tri-axis 7-day functional data . 106

B.2 Leading Eigenfunction extracted for VM 7-day functional data . . . 107

B.3 Leading Eigenfunction extracted for Tri-axis 1-day averaged func-
tional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.4 Leading Eigenfunction extracted for VM 1-day averaged functional
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 Leading Eigenfunction extracted from X(t) process for Tri-axis data 109

viii



C.2 Leading Eigenfunction extracted from U(t) process for Tri-axis data 110

C.3 Leading Eigenfunction extracted from X(t) and U(t) process for VM 110

C.4 Leading Eigenfunction extracted from X(t) and U(t) process for AI 111

ix



LIST OF TABLES

Table

2.1 Goodness of Fit for Scenario 1 . . . . . . . . . . . . . . . . . . . . . 29

2.2 Model Size for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 FPC Selection for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Goodness of Fit via the concordance regression for Scenario 2 . . . . 33

2.5 Sensitivity and Specificity of Functional Selection for Scenario 2 . . 33

2.6 FPC Selection for Scenario 2 Functional Z1 . . . . . . . . . . . . . . 34

2.7 FPC Selection for Scenario 2 Functional Z2 . . . . . . . . . . . . . . 34

3.1 #FPC Scores that explain ≥ 50% . . . . . . . . . . . . . . . . . . . 55

3.2 FPCA Functional selection of 3-D Activity Count for X,Y and Z axis
for the 7 day functional . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 FPCA Functional selection of 3-D Activity Count for X,Y and Z axis
for the 1 day averaged functional . . . . . . . . . . . . . . . . . . . 55

3.4 R2
AQ using the 7-day functional of 3-D Activity Count . . . . . . . 56

3.5 R2
AQ using the 7-day functional of VM Activity Count . . . . . . . 56

3.6 R2
AQ using the 7-day functional of AI . . . . . . . . . . . . . . . . . 56

3.7 R2
AQ using 1-day averaged functional of 3-D Activity Count . . . . 56

3.8 R2
AQ using 1-day averaged functional of VM Activity Count . . . . 57

x



3.9 R2
AQ using 1-day averaged functional of AI . . . . . . . . . . . . . . 57

3.10 R2
AQ for Simulated acceleromter data Scenarios 1 and 2 . . . . . . . 62

3.11 Sensitivity and Specificity of Functional Selection . . . . . . . . . . 62

3.12 Feature Selection for Scenario 1 . . . . . . . . . . . . . . . . . . . . 63

3.13 FPC Selection for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . 63

4.1 SFPCA R2
AQ using the 7-day functional of 3-D Activity Count . . . 72

4.2 SFPCA R2
AQ using the 7-day functional of VM Activity Count . . . 73

4.3 SFPCA R2
AQ using the 7-day functional of AI . . . . . . . . . . . . 73

4.4 #FPC Scores that explain ≥ 50% . . . . . . . . . . . . . . . . . . . 73

4.5 % of variance explained from the decomposition Z(t) = X(t) + U(t) 73

4.6 SFPCA Functional selection of 3-D Activity Count for X,Y and Z axis 74

4.7 SFPCA R2
AQ using the 7-day functional of 3-D Activity Count using

X(t) and U(t) process. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 SFPCA R2
AQ using the 7-day functional of VM Activity Count. . . . 75

4.9 SFPCA R2
AQ using the 7-day functional of AI using U(t) and X(t), 76

4.10 SFPCA Functional selection of 3-D Activity Count for X,Y and Z
axis for U(t) process. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1 Model Size for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



LIST OF APPENDICES

Appendix

A. Proofs and additional Tables from Chapters 2 . . . . . . . . . . . . . . 95

B. Additional Graphs for Chapters 3 . . . . . . . . . . . . . . . . . . . . 106

C. Additional Graphs for Chapters 4 . . . . . . . . . . . . . . . . . . . . 109

xii



ABSTRACT

With the pervasiveness of sensor data, real-time physiological signals and behav-

ioral data are often collected in many biomedical studies. This thesis is motivated by

data collected from a tri-axis accelerometer ActiGraph GT3X, a device that measures

acceleration in the 3-D directions with a sampling frequency of 30-100 Hz. The cen-

tral task is to relate this multivariate functional quantity with various scalar health

outcomes of interest in the presence of other scalar covariates.

In the first project, we propose a new methodological framework of semi-parametric

regression models that allow the study of a non-linear relationship between a scalar

response and multiple functional predictors in the presence of scalar covariates. The

proposed methodology is termed as MFRS (Multivariate Functional Regression and

Selection). Utilizing functional principal components analysis (FPCA) and least-

squares kernel machine methods (LSKM), we substantially extend the classical semi-

parametric regression model of scalar responses on scalar predictors, in which multiple

functional predictors are included in the non-linear model. Regularization is estab-

lished for feature selection in the setting of reproducing kernel Hilbert spaces. The

proposed method enables us to perform simultaneous model fitting and variable selec-

tion on functional features. For implementation, we propose an effective algorithm to

solve related optimization problems, in that iterations take place between both linear

mixed models and a variable selection procedure (e.g. sparse group lasso). We show

algorithmic convergence results and theoretical guarantees for the proposed method-

ology. We illustrate its performance through extensive simulation experiments.

In the second project we apply our MFRS framework developed in project I to

perform a comprehensive mobile health application. This is a study conducted in

xiii



Mexico City where participants wore an ActiGraph (a tri-axis accelerometer) for

seven days with no interruption. We investigated various ways of preprocessing the

raw accelerometer data and focused on an important comparative analysis. This

comparison concerns methods that treat either the full accelerometer data of seven

days as one functional or average the seven days of data into a one day functional.

We extend the LSKM framework developed in project I to handle an additive model

for multiple functional covariates and compare the extension with our MFRS method

given in project I.

In the third project we adopt structural principal component analysis (SFPCA)

for an alternative analysis of the accelerometer data to that done in project II. SF-

PCA allows us to treat the functional data of seven days into seven repeats of one day

functional. Utilizing the MFRS framework, we demonstrate the benefits of allowing a

non-linear and non-additive relationship between health outcomes and repeated func-

tional predictors. Taken together, the second and third projects collectively provide

some useful approaches to preprocessing functional data from a mobile device and

performing non-linear and non-additive regression with functional covariates.

In the fourth project we briefly describe how to extend the MFRS framework to the

case where the outcome of interest is binary. In addition, we present a method on how

to select import points in the context of kernel logistic regression (KLR) by extending

the elastic net via Tikhonov regularization. This project should demonstrate the

general approach on how to extend the MFRS framework to other outcomes in the

GLM family as well.
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CHAPTER I

Introduction

1.0.1 Motivation

With the pervasiveness of sensor data, real-time physiological signals and be-

havioral data are often collected in many biomedical studies [49]. Data are often

collected at a high frequency through these mobile devices. Trying to relate these

high frequency data with health outcomes poses a challenge and standard regression

techniques is often inadequate to handle such a relationship. With the advent of new

technologies that create devices that can bring critical care levels of monitoring to the

population at large [24], the need to extract useful information and avoid data over-

load is crucial. The high frequency data must be summarized in a way that does not

throw out important signals, while at the same time avoids the “noise” that is sure

to come about through this type of data. While the motivation for this dissertation

is using data collected from a tri-axis accelerometer, the framework that is presented

in this dissertation can apply to any type of sensor data sampled at high frequency.

1.0.2 Accelerometer Data

There are several different devices of accelerometers available such as the Acti-

Graph GT3X+ (ActiGraph, Pensacola, FL) and Actical (Phillips Respironics, Bend,

OR), among others. Raw accelerometer data is often collected in high-resolution via
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high-frequency signals sampling over the range of 30-100 Hz. Placing the accelerom-

eter on the hip or wrist as a means of monitoring physical activity is becoming in-

creasingly common; see for example, [10, 11, 2, 27]. The existing commercial software

on these devices provides activity counts (AC), or steps, which are calculated from

the raw tri-axis accelerometer measurements using proprietary algorithms. A known

caveat with such data is that the exact meaning of the AC is not always clear. Dif-

ferent devices provide various types of AC measures making it difficult to compare

across devices [2, 11]. There are general approaches to calculating the AC. One way

is with a counter that is used to add up the number of times a signal crosses a preset

threshold. Since the range of the raw accelerometer data is between -2g to 2g, the

value of 0 could be used (which is known as the zero-crossing method). See below

Figure1; ActiGraph, LLC c©)

Bai et al. (2016) [2] provides a measure called the Activity Index (AI), which

is calculated based on user-defined epochs from the raw tri-axis accelerometer data.

The AI is calculated with the focus on the variability of raw acceleration signals

that is then converted to a single time-domain functional. Let σ2
im(t;H) denote the

variability of the raw accelerometer signal for individual i at time t for the epoch

of length H along axis m. Typically, H will be a minute in length. The Activity

2



Index for a specified epoch, H for individual i at time t is denoted by AIi(t : H) =√
max(1

3
{
∑3

m=1 σ
2
im(t;H)− σ̄2

i}, 0) where σ̄2
i is the systematic noise variance when

the device is at rest. This is calculated by taking the sums of the variances of three

axis during the time points that the device is at rest. This new functional measure

has been shown to correctly classify certain physical activity levels better than the

AC and to allow a comparison of the AI across different devices [2, 1]. A tri-axis

accelerometer generates AC on three axes. When the device is worn at the hip, often

just the vertical axis/ axis 1, which is the dominant plane of movement, is used [10].

Another common summary done with tri-axis AC data is the calculation of vector

magnitude (VM). VM is calculated as the Euclidean norm involving the three axes

of AC [10, 12]. As there is no dominant plane of movement when the device is worn

at the wrist a single axis alone would not provide sufficient information of physical

activity [10].

Typical goals of using accelerometer data is to categorize the physical activity

into various categories such as heavy or light physical activity [2, 10], or to measure

metabolic equivalents (METS) which is typically calculated by converting VO2 by

dividing the oxygen intake by 3.5 ml / (kg.min). These studies focus on identifying

specific cut-points for the physical activities and using classification methods such as

receiver operating characteristic curve, (ROC) curves to identify the sensitivity and

specificity of specific cut-points. Often, only a summary of the total daily AC count

is used for the above analysis instead of using the entire functional curve [37]. These

summaries include extracted time-domain features or frequency domain features [13,

46] from the AC. Those features are used for prediction in a regression equation or

to classify physical activity types [41].

More recently, to relax the excessive data compression researchers consider using

the entire functional AC curve through functional data analysis techniques [18, 3,

29, 46]. The accelerometer data can be viewed as a functional data analysis (FDA)

3



problem treating a person’s captured acceleration (or AC) over time as a function

of physical activities. Further details on current methods being used to retrieve and

interpret accelerometer data can be found in [56]. One of the main questions of

interest that we have is whether various health outcomes such as blood pressure and

obesity are related to a person’s movement throughout the day which we will explore

in detail in Chapters (III) and (IV).

1.0.3 Functional Regression

There has been much attention in recent years to functional data analysis (FDA)

where either predictors or covariates, response, or both, are functional as opposed to

scalar in nature [39, 9, 8, 57, 16, 34]. In this dissertation, we focus on the methodology

that allows us to relate multiple functional covariates to a scalar outcome in a non-

linear way in the presence of other scalar covariates.

To proceed, let us introduce some notation. Let L2(T ) be the class of square-

integrable functions on a compact set T . This is a separable Hilbert space with inner

product < f , g >:=
∫
T fg for f, g ∈ L2(T ). Consider a probability space (Ω,F , P ),

where Z denotes a functional random variable that maps into L2(T ), namely Z :

Ω 7→ L2(T ). Define L2(Ω) := {Z : (
∫

Ω
‖Z‖2 dP )

1
2 <∞}, the L2-norm ‖Z‖2 = < Z ,

Z > and assume Z ∈ L2(Ω) in the rest of this paper.

For convenience, we also assume that Z is mean centered, namely E(Z) = 0. His-

torically, Functional Linear Models (FLM) (e.g. [8, 9, 57]) are proposed to relate a

functional covariate Z with a mean-centered scalar outcome y, in which the optimal

solution of the unknown functional parameter b ∈ L2(T ) is typically obtained by

minimizing the following goodness-of-fit criterion: infb∈L2(T ) E(y− < b, Z >)2. Con-

sequently, such solution satisfies functional model y = < b, Z > + ε. Here the error

term ε is a mean zero random variable uncorrelated with Z.

Equivalently, we may write E(y|Z) =
∫
T Z(t)b(t)dt for the mean centered scalar

4



y. As suggested in the literature, we may solve the above least-squared optimization

by expanding Z in terms of certain basis functions. In this paper, we focus on the

utility of functional principal component analysis (FPCA) to perform decomposition

of the functional Z. By the Karhunen-Loève expansion (e.g. [5, 22, 21]) we can write

Z(t) =
∑∞

k=1

√
ςkξkφk(t), where ςk > 0 are the eigenvalues, and loadings ξk := 1√

ςk
<

Z, φk > satisfy (i) mean zero, E(ξk) = 0; (ii) variance one, E(ξkξj) = 1 for k = j; and

(ii) uncorrelated, E(ξkξj) = 0 for k 6= j. Then, the mean model may be rewritten as

follows,

E(y|Z) =
∞∑
k=1

βkξk, (1.0.1)

where coefficients βk =< b,
√
ςkφk >, k = 1, · · ·, which are unknown due to the

unknown b. Equation (1.0.1) presents a linear dynamic system between the stan-

dardized principal components (PCs) ξk of functional predictor Z and scalar outcome

y. On these lines of research, Müller and Yao (2008) proposed the seminal Functional

Additive Model (FAM) that extends (1.0.1) by allowing a nonparametric form of the

conditional mean model with respect to FPCA coefficients (or features), which takes

the following form:

E(y|Z) =
∞∑
k=1

fk(ξk), (1.0.2)

where fk is a fully unspecified non-linear function. It is obvious that in Müller and

Yao’s FAM (1.0.2), the relationship between Z and y is assured to be additive in the

individual coefficient (or feature) components ξk’s. Regularization is often needed for

both (1.0.1) and (1.0.2) in order to deal with these infinite-dimensional unknowns.

One of the challenges concerning regularization for (1.0.2) lies in the technical treat-

ment on the function space. Müller and Yao (2008) [36] proposed truncation (or

hard-threshold) of the eigenspace to retain only the leading components that explain

5



the majority of the total variation in Z. Zhu, Yao and Zhang (2012) [57] proposed

a regularization of the functions fk using the powerful COSSO method [32]. One

advantage for this kind of regularization method is that sums of higher order func-

tional principal components are allowed to be potentially included in the fitted model,

if they make stronger contributions to the functional relationship than the leading

functional principal components. Zhu et al.’s method [57] begins with an additive

model E(y|Z) =
∑s

k=1 fk(ξk), where s represents some initial degrees of truncation

to specify the total number of additive components to be considered. Then the use of

COSSO helps simultaneously regularize and select important functional components

among the s functions fk. Although the above discussion was based on a single func-

tional predictor Z in mind, it is appealing to extend such framework with multiple

functional predictors. However, when multiple functional predictors are considered,

it is not clear if the above additive model specification remains suitable to handle the

complexity, especially a non-additive relationship may be of interest to understand

the association between a scalar outcome and multiple functional predictors. In ef-

fect, from both perspectives of theoretical advances and application needs, relaxing

the additive relationship is an important task in the functional data analysis.

Alternatively, there are some methods (e.g. [34, 16]) in the literature that do not

use the strategy of decomposing Z into its functional components. Ferraty, Mas and

Vieu [16] took a different approach. Instead they modeled y = r(Z) + ε where the

model only assumed smoothness of the operator r. They called this a doubly infinite

dimensional problem [15] where the functional data and unknown function r are both

infinitely dimensional. Instead of using a basis expansion on Z, they used kernel

methods and estimated r with the classical Nadaray-Watson estimate where

r̂(Z) =

∑n
k=1 ykK(h−1||Zk − Z||)∑n
k=1K(h−1||Zk − Z||)

. (1.0.3)

The norm ‖·‖ can be defined on L(Ω)2 as discussed above, and K is some posi-
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tive semi-definite Kernel. The advantage to this approach is that there is no need

to decompose the functional Z into its functional principal components. All of the

above models were made for a single functional predictor. However, there is not

much literature on functional regression in the presence of multiple functional pre-

dictors. Fan, James and Radchenko (2015) [14] proposed functional additive regres-

sion for multiple functional predictors using a model E(y|Z1, · · · , Zp) =
∑p

j=1 fj(Z
j)

for p functional predictors Zj’s with p unknown functions fj’s. In addition, spar-

sity is allowed in the functional predictors by minimizing the penalized L2-norm:

1
2

∥∥∥Y −∑p
j=1 fj

∥∥∥2

2
+
∑p

j=1 ρλn( 1√
n
‖fj‖2) where Y is the n× 1 vector of outcomes, fj

is the n× 1 vector with entry’s consisting of the jth functional covariate evaluated at

fj for each subject, ρλn(·) is a penalty function and λn > 0 being a regularization tun-

ing parameter. In [23], they proposed a Karhunen-Loève for multivariate functional

data. Letting the p multivariate functional data, Z(t) = (Z1(t1), · · · , Zp(tp)) ∈ Rp,

they proposed decomposing Z(t) as Z(t) =
∑∞

k=1 ρkφk(t) where the mean zero ran-

dom variable ρk is the projection or inner product of Z onto the function φk using a

specially defined inner product (see [23] for details).

This dissertation extends the methodologies presented above under a more useful

yet challenging modeling framework with non-additive relationships between multiple

functional predictors and the scalar outcome.
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CHAPTER II

Multivariate Functional Regression and Selection

(MFRS) Framework

2.1 Introduction

2.1.1 Least Squares Kernel Machine (LSKM)

Liu, Lin and Ghosh (2007) [33] proposed a semi-parametric regression model

yi = x>i β + h(zi) + εi, in that we use least-squares kernel machine to analyze multi-

dimensional genetic pathways denoted by zi. In their model, parameter β needs to

be estimated for x, some vector of clinical covariates, with z being a vector of gene

expressions within a pathway that is potentially related to the outcome via a non-

parametric function h. Function h is assumed to lie in a reproducing kernel Hilbert

space (RKHS), HK, generated by a positive definite kernel function K(·, ·). For ease

of exposition, we suppress the bandwidth for the kernel K in the following discussion.

One can estimate β and h by maximizing the scaled penalized likelihood function:

J(h,β) = −1

2

n∑
i=1

{yi − x>i β − h(zi)}2 − 1

2
λ1 ‖h‖2

HK , (2.1.1)

where λ1 > 0 is the tuning parameter and ‖·‖HK is the norm of the RKHS.

Solving (2.1.1) turns out to be mathematically equivalent to solving the normal
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equations [53, 33] from the following linear mixed-effects model (LMM):

Y = Xβ + h + ε, (2.1.2)

where h is an n × 1 vector of random effects with distribution N(0, τK), and n-

dimensional vector error term ε ∼ N(0, σ2I), with τ = λ−1
1 σ2 > 0, and K being an n×

n matrix whose (i, j)th element is K(zi, zj). Although there is a closed form solution

for a fixed λ1 in maximizing (2.1.1), one remarkable advantage of solving (2.1.1)

through the numerical procedure of LMM is most advocated in the literature [30]

where we can estimate λ1 easily as part of the estimation of the variance components

of the LMM. So, instead of using cross-validation or other information-based tuning

methods, we can solve simultaneously for all the parameters in (2.1.1) as pointed

out in [33]. This kernel machine regression model allows us to consider a non-linear

relationship for multiple covariates in a non-additive way in a similar fashion. We

will extend this framework by incorporating FPCA to handle multiple functional

covariates. Assuming that function h belongs to an RKHS, we can use existing

software packages for solving LMMs to estimate h and β and λ1 simultaneously.

In addition, Liu, Lin and Ghosh [33] develops variable selection procedures on

the feature vector z by defining kernel machine types of AIC and BIC. Furthermore,

testing the variance component τ = 0 is useful to test the global effect of the feature

vector z. It is worth noticing that for high dimensional features associated with Z,

feature selection based on AIC and BIC (i.e. L0 penalty approach) can be time

consuming or even computationally prohibited. Thus, a computationally effective

feature selection procedure is appealing in real-world application. We adopt the

sparse regularization approach to this analytic purpose.
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2.1.2 Feature Selection

For motivation of our proposed model, we now present a brief review on the group

lasso [55], sparse group lasso [47] and non-negative garrote [6]. Note that for both

mean models (1.0.1) and (1.0.2) one needs to truncate the series from the Karhunen-

Loève expansion. Regularization helps reduce from an infinite number of terms to a

sum of finite terms. Yuan and Lin (2007) [55] proposed the group lasso which solves

the convex optimization problem:

min
β∈Rp

∥∥∥∥∥Y −
L∑
`=1

X`β`

∥∥∥∥∥
2

2

+ λ
L∑
`=1

∥∥β`∥∥
2
, (2.1.3)

where L is the total number of groups of covariates and X` refers to a subset of

covariates associated with group `. Friedman, Hastie and Tibshirani (2013) [47]

extended the group lasso to allow within-group sparsity, the so-called sparse group

lasso (SGL), given as

min
β∈Rp

∥∥∥∥∥Y −
L∑
`=1

X`β`

∥∥∥∥∥
2

2

+ λ(1− δ)
L∑
`=1

∥∥β`∥∥
2

+ λδ ‖β‖1 , (2.1.4)

where δ ∈ [0, 1] and the additional `1-norm penalty term on β encourages individual

sparsity, while the first penalty targets sparsity at the group level. It is easy to see

that group lasso is a special case of the SGL when δ = 0.

The non-negative garrote proposed by Breiman (1995) [6] is useful for variable

selection, which invokes a scaled version of least squares estimation given by:

arg min
d

1

2

∥∥∥Y − X̃d
∥∥∥2

+ λ

p∑
j=1

dj, subject to dj ≥ 0,∀j, (2.1.5)

where X̃ = (x̃1, . . . , x̃p) is a matrix of size n×p with columns x̃j = xjβ̂
OLS
j , where β̂OLSj

is the least squares estimate from the unconstrained optimization argminβ
1
2
‖Y −Xβ‖2.
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For covariates unrelated to y the corresponding scaling factor dj helps shrink estimates

β̂OLSj towards 0.

In the presence of multiple functional covariates considered in this dissertation,

if we turn each functional into its principal feature components as done by FPCA,

then we would end up with a similar setting where each functional, Z, forms natu-

rally its own group consisting of functional principal components, and within such a

group sparsity may be enforced. Thus, for FLM models, we can use SGL with the

FPC features to perform model selection on functional covariates. Any group that is

knocked out in SGL would correspond to a functional that is not needed in the model.

However, for a nonlinear relationship between an outcome and a functional covariate,

more work is needed. That is precisely where LSKM comes in. We propose a model

that uses functional data in the LSKM framework while simultaneously performing

feature selection in a manner similar to the non-negative garrote.

2.2 Proposed Model

Let z`i = (ξ`1, . . . , ξ
`
s`

)>i be the vector of FPC features from the ith observation of

the functional covariate Z` and let #»z i = [(z1
i )
>, . . . , (zpi )

>]> be the grand vector of

all FPC features from all p functional covariates. In total there are p groups with

s =
∑p

`=1 s
` many FPC features, and #»z i ∈ Rs. We consider the following functional

kernel regression model:

yi = x>i β + h( #»z i) + εi, i = 1, · · ·, n, (2.2.1)

where β ∈ Rq, h ∈ HK, with HK being the functional space generated by a Mercer

kernel K, and εi
iid∼ N(0, σ2). Model (2.2.1) allows for not only non-linear but also

non-additive relationships with multiple functional covariates Z`, ` = 1, . . . , p, and a

scalar response, y. We aim to estimate and select important functional covariates that
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are related to the outcome of interest, while regularize the FPC features within each

functional covariate, simultaneously. To proceed, we introduce a new s-dimensional

scaling vector γ ∈ Rs, γ = (γ1, . . . , γs1 , . . . , γs)
>; similar to Beiman’s [6] non-negative

garrote method, we set γ◦ #»z i = (γ1ξ
1
1 , . . . , γs1ξ

1
s1
, . . . , γsξ

p
sp)
>
i a new vector of weighted

FPC features by γ via the Hadamard product (i.e. elementwise product). Obviously,

when element, say γj, is equal to zero, the corresponding FPC feature ξj will not be

selected into the set of important FPCs.

We estimate the unknowns in (2.2.1) as well as γ by minimizing the following

penalized likelihood function:

min
h,β,γ

J1(h,β,γ) = min
h,β,γ

1

2n

n∑
i=1

{yi − x>i β − h(γ ◦ zi)}2

+
1

2
λ1 ‖h‖2

HK + λ2ρ(γ; δ),

(2.2.2)

where λ1 > 0, and λ2 > 0 are tuning parameters, γ = ((γ1)>, . . . , (γp)>)> with γ`

being an s` × 1 vector associated with the `th functional covariate FPC features z`,

and penalty ρ(γ; δ) may be specified according to a certain regularized method. For

example, in the case of sparse group lasso we take p(γ; δ) = (1 − δ)
∑p

`=1

∥∥γ`∥∥
2

+

δ ‖γ‖1, δ ∈ [0, 1]. Typically, δ is predetermined and set to 0.95 or 0.05 depending

on the trade off between group and within group sparsity. Here the factor (1 − δ)

controls relative group sparsity to individual sparsity of each functional predictor Z`.

In the meanwhile, a large tuning parameter for λ2 would set certain groups of FPC

features γ` entirely equal to zero with by the corresponding γ` = 0. An equivalent

formulation of (2.2.2) results in minimizing the following objective function:

min
α,β,γ

J2(α,β,γ) = min
α,β,γ

1

2n

n∑
i=1

{
yi − x>i β −

n∑
k=1

αkK(γ ◦ #»z i,γ ◦ #»z k)

}2

+
1

2
λ1α

>K(γ; Z)α+ λ2ρ(γ; δ),

(2.2.3)
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where K(γ; Z) is an n×n matrix whose (i, k)th element is [K(γ; Z)]ik = K(γ ◦ #»z i,γ ◦
#»z k). Lemma 1 below establishes the equivalence between (2.2.2) and (2.2.3), which

is crucial in our estimation procedure.

.

Lemma 1. A solution (ĥ, β̂, γ̂) is a minimizer of (2.2.2) if and only if (α̂, β̂, γ̂)

is a minimizer of (2.2.3), where ĥ(γ̂ ◦ #»z ) =
∑n

k=1 α̂kK(γ̂ ◦ #»z , γ̂ ◦ #»z k).

Proof. It suffices to show that for any J1(h,β,γ) in (2.2.2) we can always find α ∈ Rn

such that J1(h̃ =
∑n

i=1 αiK(·,γ ◦ #»z i),γ,β) ≤ J1(h,β,γ) where h̃ is the projection of

h onto the linear spanned space given by span{K(·,γ ◦ #»z i), · · · ,K(·,γ ◦ #»z n)}. For

any h we can write h = h⊥ + h̃ where h⊥ ∈ span{K(·,γ ◦ #»z 1), · · ·,K(·,γ ◦ #»z n)}⊥.

Since Hk is a reproducing kernel Hilbert space we can rewrite (2.2.2) as follows:

J1(h,γ,β) =
1

2n

n∑
i=1

{yi − x>i β− < h,K(·,γ ◦ #»z i) >}2

+
1

2
λ1 ‖h‖2

Hk + λ2ρ(γ; δ).

Since < h⊥,K(·,γ ◦ #»z i) > = 0 for every i, we get

J1(h,γ,β) =
1

2n

n∑
i=1

{
yi − x>i β −

n∑
k=1

αkK(γ ◦ #»z i,γ ◦ #»z k))

}2

+
1

2
λ1

∥∥∥h⊥ + h̃
∥∥∥2

Hk
+ λ2ρ(γ; δ)

≥ 1

2n

n∑
i=1

{
yi − x>i β −

n∑
k=1

αkK(γ ◦ #»z i,γ ◦ #»z k))

}2

+
1

2
λ1

∥∥∥h̃∥∥∥2

Hk
+ λ2ρ(γ; δ)

= J1(h̃,γ,β).
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Theorem 2. (Existence of optimizers) If the kernel K(·,γ ◦ #»z ) is continuous with

respect to γ ∈ Rs, then there exists a global minimizer (ĥ, β̂, γ̂) for the optimization

problem (2.2.2).

Proof. We will assume we are using the penalty function for sparse group lasso but

this proof can easily be modified for other convex penalty functions. We will fix

λ1 = λ2 = δ = 1. We will assume β ∈ R and that the design matrix X (or

vector in this case) is scaled to have norm 1. The case of β ∈ Rq will follow along

similar lines. Let γ ∈ D3 where D3 = {γ : ‖γ‖1 ≤
1

2n
‖Y‖2

2} . Define f(γ) =

‖K(γ;Z)‖ = ηmax(K(γ;Z)) ≥ 0 where ηmax(K(γ;Z)) is the largest eigenvalue of

K(γ;Z) with the operator norm (the norm of K(γ;Z)) defined in its usual way

‖K(γ;Z)‖ = sup{‖K(γ;Z)x‖2
2 : ‖x‖2

2 = 1}. Since D3 is compact and K(γ;Z)

is continuous with respect to γ it achieves its maximum over D3 so we can define

η? = supγ∈D3f(γ) ≥ 0. Define D2 as

D2 = {β :| β |≤ (1 + η?) ‖Y‖2}.

Let

b? = (1 + η?) ‖Y‖2 ≥ 0

Define D1 as

D1 = {α : ‖α‖2 ≤
√
n(‖Y‖2 + b?)}

Since D1, D2 and D3 are compact there exists a (α?, β?,γ?) such that J2(α?, β?,γ?) ≤

J2(α, β,γ) for all (α, β,γ) ∈ D1 ×D2 ×D3. Remark: we have J2(0, 0,0) = 1
2n
‖Y‖2

2

and (0, 0,0) ∈ D1 ×D2 ×D3. We claim that (α?, β?,γ?) is a global minimizer. This

is a proof by contradiction. Suppose that there exists (α̃, β̃, γ̃) /∈ D1×D2×D3 where
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J2(α̃, β̃, γ̃) < J2(α?, β?,γ?). We must have that γ̃ ∈ D3 for if not, J2(α̃, β̃, γ̃) ≥

‖γ̃‖1 ≥ J2(0, 0,0) ≥ J2(α?, β?,γ?). Let q1, · · ·, qn be the orthonormal vectors of

K(γ̃;Z) with its associated eigenvalues η1 ≥ · · · , ηn ≥ 0. We can write out α̃,X,Y

in terms of these basis functions where α̃ =
∑n

i=1 < α̃, qi > qi, Y =
∑n

i=1 <

Y, qi > qi and X =
∑n

i=1 < X, qi > qi. Let Cα̃i =< α̃, qi >, CY
i =< Y, qi > and

CX
i =< X, qi >. We have that

J2(α̃, β̃, γ̃) ≥ 1

2n

∥∥∥∥∥
n∑
i=1

CY
i qi −

n∑
i=1

CX
i β̃qi −

n∑
i=1

Cα̃i ηiqi

∥∥∥∥∥
2

2

+
1

2

n∑
i=1

(Cα̃i )2ηi,

which is equal to 1
2n

∑n
i=1(CY

i − CX
i β̃ − Cα̃i ηi)2 + 1

2

∑n
i=1(Cα̃i )2ηi. We can minimize

the above with respect to Cα̃i and β̃. First, note that for any ηi = 0 we can let

Cα̃i = 0 and it will not effect the expression above. We will then only consider ηi > 0.

Taking the first derivative and setting it equal to zero we get the score equations the

minimizer must satisfy (for our minimum β̃ and Cα̃i ) as

β =
n∑
i=1

CX
i (CY

i − Cα̃i ηi) (2.2.4)

Cα̃i =
1

n+ ηi
(CY

i − CX
i β̃). (2.2.5)

Remark: for the above derivation we used the fact that 1 = ‖X‖2
2 =

∑n
i=1(CX

i )2.

Plugging (2.2.5) into (2.2.4) we get that

β =

∑n
i=1C

X
i C

Y
i (1− ηi

n+ηi
)

1−
∑n

i=1(CX
i )2 ηi

n+ηi

(2.2.6)

From (2.2.6) we see that

β ≤
∑n

i=1 | CX
i C

Y
i |

1−
∑n

i=1(CX
i )2 η?

n+η?

≤ ‖X‖2 ‖Y‖2

‖X‖2
2 (1− η?

n+η?
)
≤ ‖Y‖2

(1− η?

1+η?
)

= b?
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This shows that the β that minimizes J2 for a given γ ∈ D3 is in D2. By (2.2.5)

we see that | Cα̃i |≤ (‖Y‖2 + ‖X‖2 ‖β‖2) which implies that the optimal α for the

given γ̃ ∈ D3 and β ∈ D2 that minimizes J2 satisfies ‖α‖2 ≤
√
n(‖Y‖2 + b?) which

implies that α ∈ D2. This shows that for any (α̃, β̃, γ̃) /∈ D1 ×D2 ×D3 we can find

an (α, β,γ) ∈ D1 ×D2 ×D3 such that J2(α̃, β̃, γ̃) ≥ J2(α, β,γ).

Note that there may exist multiple optimal global minimizers for (2.2.2); Theorem

2 ensures only the existence of optimal solutions but no guarantees for uniqueness due

to the fact that (2.2.2) or (2.2.3) is a non-linear and non-convex optimization problem.

Remarks: Previously we suppressed the bandwidth parameter of the kernel for the

ease of exposition. In both (2.2.2) and (2.2.3) we fix the bandwidth parameter for the

kernel to a constant due to identifiability issues with respect to the γ parameters. We

will provide more details concerning the parameter identifiability later in this chapter.

2.3 Algorithm

To implement our proposed estimation procedure, we require differentiability of

the kernel with respect to the scaling factor γ, and some additional assumptions

presented below in order to ensure algorithmic convergence. The first step to solv-

ing (2.2.2) is to notice that with fixed γ, this minimization problem reduces to the

equivalent maximization problem in the least squares kernel machine (2.1.1) where

the FPC features, #»z i, are replaced by γ ◦ #»z i. As pointed out in Section 1.2, the nu-

merical solution can be obtained in the same fashion as the solution from the linear

mixed model (2.1.2). The solution to (2.1.2) includes the optimal tuning parameter

λ1 directly from the REML estimation part of the variance components. In this way

there is no need to tune λ1. Alternatively, you can use cross validation to tune λ1.

In turn with α, β and λ1 being given, we then solve the non-linear and non-convex

optimization problem to determine the optimal γ. Lemma 3 below helps us solve for
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γ.

Lemma 3. For fixed (α, β, λ1), minimizing (2.2.3) over γ is equivalent to minimiz-

ing over γ the following objective function:

1

2n

∥∥∥F(γ)− Ỹ
∥∥∥2

2
+ λ2ρ(γ; δ), for each λ2 > 0, (2.3.1)

where F(γ) = K(γ; Z)α and Ỹ = Y −Xβ − n
2
λ1α.

Proof. The equivalence of forms become clear once we rewrite (2.2.3) in matrix no-

tation. Equation (2.2.3) can be written as:

min
α,β,γ

J2(α,β,γ) = min
α,β,γ

1

2n
‖Y −Xβ −K(γ; Z)α‖2

2 +
1

2
λ1α

>K(γ;Z)α+ λ2ρ(γ; δ).

(2.3.2)

For fixed α , β and λ1, minimizing the function in (2.3.2) with respect to γ is

equivalent to:

min
γ

{
1

2n

∥∥∥(Y −Xβ − n

2
λ1α

)
−K(γ;Z)α

∥∥∥2

2
+ λ2ρ(γ; δ)

}
. (2.3.3)

Linearizing the function F(γ) in (2.3.1) leads to minimizing the following:

min
γ

1

2n

∥∥∥∥∥Ỹ −
p∑
`=1

∇γF(`)(γ̃)γ`

∥∥∥∥∥
2

2

+ λ2ρ(γ; δ), (2.3.4)

where Ỹ =
(
Y −Xβ − n

2
λ1α

)
− F(γ̃) + ∇γF(γ̃)γ̃, ∇γF(γ̃) is the gradient of the

function F with respect to γ evaluated at γ̃ for some γ̃, and ∇γF(`)(γ̃) are the

columns of ∇γF(γ̃) associated with the `th group of γ`. This is precisely the form of
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the standard sparse group regularization problem

min
β∈Rp

1

2n

∥∥∥∥∥Y −
p∑
`=1

X`β`

∥∥∥∥∥
2

2

+ λ2ρ(γ; δ).

This implies that (2.3.4) presents a standard sparse group regularization problem with

a specific choice of penalty function ρ(γ; δ). The convergence of the above iterative

search algorithm for updating γ̃ for fixed (α, β, λ1) can be justified by the proximal

Gauss-Newton method [40]. In the Appendix we provide some details on the proximal

Gauss-Newton method. One of the key assumptions of the proximal Gauss-Newton

method is the existence of a local minimizer. This condition is satisfied in the above

(2.3.4). This is because according to Theorem 2 there exists a global minimizer. It

is easy to show that given (α, β, λ1), a global minimizer exists for (2.3.4) when

minimizing with respect to γ. If we start our algorithm with a value γ̃ within a ball

of a certain radius of the global minimizer, we are guaranteed to stay within that ball

and converge monotonically to the minimizer under suitable Lipschitz condition of

∇γF . See [40] for more details on the technical conditions on ∇γF and the radius of

the ball.

In summary, we propose the following descent algorithm to search for the optimal

solution to the problem given in (2.2.3).

Algorithm 1:

(i) Step 1.1: Perform FPCA (e.g. R package fdapace) to extract the functional

component scores for the p functional predictors and store them in a grand

vector for each individual subject #»z i = [(z1
i )
>, . . . , (zpi )

>)]>, i = 1, · · ·, n;

(ii) Step 1.2: Initialize γ to be a vector of 1’s which translates to mapping the

original component scores to itself. Set up a grid of possible tuning parameters

for λ1 and λ2, respectively. Set the kernel bandwidth parameter which may

depend on λ1. For each pair of (λ1, λ2) from our grid perform steps Steps 2-4
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below.

(iii) Step 2.1: At the (r+ 1)-th step in the algorithm, first solve the LSKM problem

with fixed (γ(r), λ1) (based on a closed-form solution) to update β(r+1) and

α(r+1).

(iv) Step 2.2: Solve the group regularity problem (2.3.4) with fixed γ̃ = γ(r) and

fixed (α(r+1), β(r+1), λ1, λ2) using the r+1 updates from the previous iteration.

At this step the proximal Gauss-Newton algorithm produces an update γ(r+1)

at convergence.

(v) Step 2.3: Repeat steps 2.1-2.2 until convergence.

(vi) Step 3: Perform cross-validation over all pairs of (λ1, λ2) to determine the final

(α,β,γ)

It is easy to show that we get a descent method where

J2(α(r+1),β(r+1),γ(r+1)) ≤ J2(α(r),β(r),γ(r)). This assumes the convergence of the

proximal Gauss-Newton algorithm for Step 2.2. It should be noted that although

we proposed a possible starting value for γ as a vector of 1’s, when there is sparsity

within a large number of FPC features, you may consider trying out different starting

values that downplay the effect of the many features at hand. To speed up the above

algorithm, we propose the following operartional schemes that eliminate setting up

the pairs of (λ1,λ2) and performing Step 3:

Algorithm 2:

(i) Step 2.1 is done by running the linear mixed model with our initial fixed γ from

step 1.2 to get λ1, β and α.

(ii) Step 2.2 is done with solving the group regularity problem (2.3.4) with λ1, β and

α from the previous step using cross-validation (e.g. R package oem). At this

step the Gauss-Newton algorithm produces an update for γ at convergence. We
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are running the group regularity problem multiple times. The main difference in

the ideal algorithm and the proposed implementation of the algorithm for step

2.3 is that λ2 is fixed in the descent algorithm, while λ2 is changing through cross-

validation in our proposed implementation algorithm. We see similar algorithms

with changing tuning parameters using single index model demonstrated in [38].

(iii) Rerun Step (ii) using the updated γ from Step (iii) to get the final estimates

for β and α.

Remark: There is no guarantee that the above algorithm will converge to a global

minimizer, and the proximal Gauss-Newton method in step 2.2 can only find station-

ary point. This requires good starting values to begin the search. This indeed is an

open problem in the field of nonlinear and nonconvex optimization.

2.4 Theoretical Analysis

Our theoretical analysis focuses on the finite-sample L2 error bounds for the es-

timators (ĥ, γ̂) obtained by (2.2.2) or (2.2.3). Consequently, we are able to establish

the estimation consistency. We will consider random vectors z1, . . . , zn for the pur-

pose of this section which may or may not correspond to the FPC features #»z1, . . . ,
#»zn.

This work follows along similar lines as those of [57] and [17]. Specifically, we choose

the sparse-group-lasso penalty function to establish the estimation consistency. These

theoretical analysis may hold for other penalties by slight modifications. For the ease

of exposition, we set β = 0 in this section. For the issue of identifiability, readers

refer to the next section for more discussion, including some additional intuition on

the behavior of the proposed estimator. For a measurable function f : L2(T ) 7→ R,

its empirical norm is defined as ‖f‖n :=
√

1
n

∑n
i=1 f(Zi)2. This is a random quantity

as being sample dependent. Let Γ be a map from Rs 7→ Rs such that Γ(z) = γ ◦ z,

where operator ”◦” denotes the elementwise product between vector γ ∈ Rs and
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z ∈ Rs. Sometimes operation ◦ may be regarded as the Hadamard product while at

other times this notation may be referred to as the composition of two functions. It

should be clear from the context which one we are referring to. Each map Γ is clearly

defined with a unique γ ∈ Rs. Consider a collection of all scaling map functions

A = {Γ : Rs 7→ Rs | Γ(z) = γ ◦ z, z ∈ R for a fixed γ ∈ Rs}. Since Γ is a linear (and

bounded) operator, A is a real vector space where (c1Γ1+c2Γ2)(z) = c1Γ1(z)+c2Γ2(z)

with any c1, c2 ∈ R and Γ1,Γ2 ∈ A. To perform a group regularity estimation, we

define a Sparse Group Lasso penalty which can also be viewed as a norm on A for a

fixed δ ∈ [0, 1] as follows:

‖Γ‖SGL = δ

p∑
`=1

∥∥γ`∥∥
2

+ (1− δ) ‖γ‖1 . (2.4.1)

Then, we need to perform the following constrained optimization:

min
Γ∈A,h∈HK

‖Y − h ◦ Γ‖2
n + λ1 ‖h‖2

HK
+ λ2 ‖Γ‖SGL (2.4.2)

where ‖Y − h ◦ Γ‖2
n = 1

n

∑n
i=1 (yi − (h ◦ Γ)(zi))

2. Let ĥ◦Γ̂ be the minimizer of (2.4.2).

Let h0 ◦ Γ0 be the true function for the model below,

yi = (h0 ◦ Γ0)(zi) + εi, i = 1, . . . , n. (2.4.3)

Above we have abused notation slightly by considering h ◦ Γ as an n× 1 vector with

ith entry h(Γ(zi)) in (2.4.2) as well as considering it as a function composition from

Rs 7→ R in (2.4.3). It should be clear from the context which notation we are referring

to in the following presentation. Lemma 3 below provides the essential finite-sample

inequalities that lead us to the estimation consistency.
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Lemma 4. (Basic Inequality)

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ1

∥∥∥ĥ∥∥∥2

HK
+ λ2

∥∥∥Γ̂
∥∥∥
SGL
≤

2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n + λ1 ‖h0‖2
HK + λ2 ‖Γ0‖SGL ,

(2.4.4)

where 2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n = 2
n

∑n
i=1 εi

(
(ĥ ◦ Γ̂)(zi)− (h0 ◦ Γ0)(zi)

)
.

Proof. This is made obvious by noticing that∥∥∥Y − ĥ ◦ Γ̂
∥∥∥2

n
+ λ1

∥∥∥ĥ∥∥∥2

HK
+ λ2

∥∥∥Γ̂
∥∥∥
SGL
≤

‖Y − h0 ◦ Γ0‖2
n + λ1 ‖h0‖2

HK + λ2 ‖Γ0‖SGL.

Substitute (2.4.3) in for Y and we have the inequality.

We need the following notation before presenting our theoretical guarantees. We

letN (δ,M, Pn) denote the minimal δ covering number of the function setM under the

empirical metric Pn based on the random vectors z1, · · · , zn. Let N = N (δ,M, Pn).

This means that there exist functions m1, · · · ,mN (not necessarily in the set M)

such that for every function m ∈ M there exists a j ∈ {1, · · · , N} such that

‖m−mj‖Pn ≤ δ where ‖m−mj‖Pn =
√

1
n

∑n
i=1{m(zi)−mj(zi)}2. We define the

δ-entropy of M for the empirical metric, Pn, as H(δ,M, Pn) := log(N (δ,M, Pn)).

Let B =

{
b := b(h,Γ) = h◦Γ−h0◦Γ0

‖h‖2HK+‖h0‖2HK+‖Γ‖2SGL+‖Γ0‖2SGL
|h ∈ HK,Γ ∈ A

}
. We need the

following assumptions:

Assumption 1. The error term ε is uniformly sub-Gaussian; that is for constants

C1, and C2

sup
n

max
i=1,··· ,n

C2
1

{
E

(
exp

εi
2

C2
1

)
− 1

}
≤ C2.

Assumption 2. ‖Γ0‖2
SGL + ‖h0‖2

HK > 0, and the entropy of B with respect to the
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empirical metric Pn is bounded as follows:

H(δ,B, Pn) ≤ C3δ
−2ψ,

where C3 is some constant and ψ ∈ (0, 1). See the Appendix for more details about

this constant ψ.

Assumption 3. supb∈B ‖b‖Pn ≤ C4 for some constant C4.

Theorem 5. (Consistency) Under Assumptions 1-3 above, if the tuning parameters

λ1 and λ2 satisfy

λ−1
2 = n

1
1+ψ
(
‖h0‖2

HK + ‖Γ0‖SGL
) 1−ψ

1+ψ and λ1 = Op(1)λ2,

then we have

(i)
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(n
− 1

2+2ψ )
(
‖h‖2

HK + ‖Γ‖SGL
) ψ

1+ψ , and

(ii)
∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥
SGL

= Op(1)
(
‖h0‖2

HK + ‖Γ0‖SGL
)
.

Theorem 5 suggests that for the right λ1 and λ2 we can establish estimation

consistency. Due to the potential identifiability issues we will explain in the next

section, although the estimator (ĥ, Γ̂) may not be unique, the sum of ĥ and Γ̂ is not

too far away from the sum of the original h0 and Γ0 in terms of the norms or distances

we defined above.

Corollary 6. If the RKHS, HK, contains functions that are differentiable, and <

∇h(z),∇h(z) > is uniformly bounded for all functions h ∈ HK and z ∈ Rs, then As-

sumption 2 holds when Theorem 5 is replaced by H(δ,HK, Pn) ≤ C1δ
−2ψ, for all δ ≥

0.

The proof of Theorem 5 and Corollary 6 are given in the Appendix. Often, when

we are only interested in a subset of functions in the RKHS (e.g. functions less than
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norm 1) we can substitute the full space HK in Corollary 6 with the subset of interest.

Refer to [57] or [17] where both consider an RKHS (i.e. Sobolev space) with functions

less than or equal to norm 1.

2.5 Identifiability

We introduce γ as a way of performing variable selection on our vector of FPC

features. We wanted to illustrate this with some concrete examples and discuss iden-

tifiability issues with the estimator. There are two ways of looking at the estimation

of the unknown functions h0 and Γ0. The first way is to view our feature vector, z

as being related to the dependent variable y through the composite function h ◦ Γ

as explained in Section 4. The second and equivalent way is to view our features

as unknown. The true features are γ ◦ z, where in this case the ◦ is used as the

Hadamard product. We are given z and need to estimate the ”true” features γ ◦ z.

In addition, we need to estimate the relationship between γ ◦ z and y, which is done

through the function h ∈ HK.

The first way of looking at the problem is to try and estimate the function h0 ◦Γ0.

The function will belong to the RKHS HK◦Γ where K is the kernel generating the

RKHS that h belongs to. We are essentially looking at many different function

spaces to find our estimator. The intersection between the function spaces do not

have to be empty, which means our estimator does not have to be unique. We will

now proceed to build this concept more formally. Let K : Rs×Rs 7→ R be a positive

definite function. Let Γ : Rs 7→ Rs. We define K ◦ Γ : Rs × Rs 7→ R as the

function given by K ◦ Γ(s, t) = K(Γ(s),Γ(t)). This new function, K ◦ Γ is positive

definite. There is a relationship between the original RKHS, HK and the new RKHS,

HK◦Γ. The result is that HK◦Γ = {h ◦ Γ : h ∈ HK} and for any vector u ∈ HK◦Γ

we have that ‖u‖HK◦Γ = inf{‖h‖HK : u = h ◦ Γ}. In general, HK◦Γ 6⊂ HK. In

(2.2.2) we are taking the norm with respect to the original space HK. Our iterative
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procedure essentially allows us to view our problem the second way which is that

the true features are unknown while our theoretical arguments view the problem the

first way. Given the knowledge of the features (which translates to fixing a γ), we

are confined to just one RKHS, HK. Lets take the linear kernel, K(x1,x2) = x>1 x2

as an example. Suppose the truth is that y is related to a one dimensional feature

z0 through the following formulation: y = h0(z0) + error where h0 ∈ HK1 , where

K1 is the kernel that maps from R × R 7→ R. So, if we knew the feature z1, we

would proceed to optimize (2.2.3) using the standard LSKM. However, suppose we

have associated with each y a two dimensional vector z = (z1, z2). z2 is just a

”noisy” feature and unrelated to y. However, apriori we don’t know that. So we

assume the formulation is y = h((z1, z2)) + error where h ∈ HK, where now, K is

the kernel that maps from R2 × R2 7→ R. We introduce our γ vector (γ1, γ2) and

look at y = h((γ1z1, γ2z2)) + error. All functions, h in the space HK is of the form

h(z) = x>z for some two dimensional vector x = (x1, x2). There is a one-to-one

relationship between h and x. The true function, h0 has an associated real number c

where h1(z1) = cz1. We can recover h1 ∈ HK1 from our estimation of h and γ if we set

γ = (1, 0) and x = (c, ?) where ”?” is any real number. Equivalently, we can recover

h1 by looking at γ = (1, 1) where x = (c, 0). There are many functions that will

recover the original function in the RKHS corresponding to the linear space kernel.

Looking at our problem the first way, through function composition, we can estimate

Γ0 with the associated γ as the vector (1, 0) or (1, 1).

We can then see that in the intersection between HK◦Γ1 and HK◦Γ2 where Γ1 has

associated γ1 = (1, 0) and Γ2 has associated γ2 = (1, 1) lies our estimate of h1. In

truth, for the linear space RKHS, there is no need to apply our method since h0 ∈ HK1

can be estimated directly from the larger space HK where we set h(z) = x>z where

x = (c, 0). We can never hope to have variable selection consistency nor can we hope

to have identifiability of our estimator for these types of spaces. However, from a
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goodness of fit standpoint, we are able to do just as good a job with many types

of function compositions. Our hope is that we can glean some variable selection by

penalizing the γ vector with the ρ(γ; δ) term which, going back to the above scenario,

should give preference to γ = (1, 0) over γ = (1, 1). For the RKHS associated with

the Gaussian Kernel, the ”larger dimensional space”, a Gaussian Kernel mapping

from higher dimensions, does not necessarily contain the functions from a ”lower

dimensional space”, a Gaussian Kernel mapping from lower dimensions. However

through the introduction of the γ transformation of the features, we can recover the

equivalent functions of the ”lower dimensional space”.

2.6 Simulations

In this chapter we performed three simulation experiments to investigate the per-

formance of our proposed procedure, including the performance of variable selection

and its overall accuracy. For performance accuracy, we used both quasi-R2 and ad-

justed quasi-R2 defined as follows:

R2
Q := 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

,

R2
AQ := 1−

(
1−R2

Q

)( n− 1

n− (k + 1)

)
.

The latter is a similar criterion used in the FAM paper [57], which was appealing for

the comparison on the estimation sparsity. There is another performance of interest

in addition to model accuracy. Performance in variable selection is summarized in

terms of the stability measured by sensitivity and specificity for both functional and

variable selections under these three simulation experiments. Specifically, we designed

the following two simulation settings:

Scenario 1: A single functional predictor with sparsity in the FPC features;
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Scenario 2: Multiple functional predictors with sparsity in the functional pre-

dictors and with sparsity in the FPC features.

Each of these scenarios would be handled using certain suitable penalty functions

to address the designed sparsity; for example, in Scenario 3 we will use a two-level

variable selection penalty (e.g sparse group lasso) to deal with two types of sparsity

in the true model.

In all analyses, we used the Gaussian Kernel K(u, v) = exp−
1
p
‖u−v‖2 in our esti-

mation where p was set as the number of features, which is equivalent to dividing

the γ vector by
√
p. Typically, in LSKM this scaling parameter is either estimated

or set to the number of features due to the consideration of the identifiability issue.

See [20] for a theoretical argument to use the number of features for the bandwidth

parameter, p, when using the Gaussian Kernel.

To run Steps 2-3 in our algorithm we used existing R packages; they are, the

EMMREML,KSPM and OEM packages respectively available at:

https://cran.r-project.org/web/packages/oem/index.html,

https://cran.r-project.org/web/packages/KSPM/index.html, and

https://cran.r-project.org/web/packages/EMMREML/index.html.

Following the LSKM paper [33], due to the difficulty to graphically display the

fitted value of the estimated function h(·) as a function of z, we summarized the

goodness of fit by regressing the true h on the estimated ĥ, with both being evaluated

at the design points. From this concordance regression analysis, we may measure

the goodness of fit on ĥ through the average intercepts, slopes and R2’s obtained

over the number of replications. Clearly, a high-quality fit is reflected by (i) the

intercept is close to zero, (ii) the slope is close to one, and (iii) the R2 is also close

to one. In the meanwhile, we also graphically display the estimated function ĥ by

setting all variables equal to 0.5 except the one of interest, which is graphed over

a grid of 100 equally spaced points form the interval [0, 1]. Such graphs provide
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supplementary visualization of the estimation in addition to the table results derived

from the concordance regression analyses.

In all three scenarios we generated 1000 IID functional paths of which 750 paths

were assigned to the training set and 250 paths were assigned to the test set. It is

the test set that we used to display the performance accuracy for. We used a one-

dimensional fixed effect xi to show the flexibility of our model in a semi-parametric

setting, with xi ∼ N(0, 1). Following the LSKM paper [33], we chose similar true

coefficients in the model with relatively strong signals.

Setting of Scenario 1: In this simple scenario, we simulated data from a model with

a single functional predictor with sparsity in its FPC features. To do so, we generated

a single functional predictor Zi for each individual i by using the first 15 eigenbasis

of the Fourier basis functions over the interval [0, 1]: Z(t) =
∑15

j=1 ςjξjφj(t). In other

words, each functional predictor was created as a linear combination of the 15 basis

functions, where φj(·) is the jth Fourier basis function, ςj is the jth eigenvalue of Z,

and ξj is the jth FPC feature.

There were 100 sampled points, t, equally spaced in the interval [0, 1] with very

small deviations governed by the corresponding independent measurement errors

drawn from ν ∼ N(0, 0.001). Set ςj = 45 × 0.64j, and ξj ∼ N(0, 1). As was done

in [34], instead of directly using ξj, we used ζj = Φ(ξj), where Φ is the CDF of the

standard normal. This resulted in #»z = (ζ1, . . . , ζ15)>. We chose the second, ζ2, and

ninth, ζ9, features as important features in the following true nonlinear non-additive

model:

yi = 2xi + 20 cos(2πζi2)− 10 sin(2πζi9) + ζi2ζi9 + εi,

with εi
iid∼ N(0, 1). FPCA was performed by the R package PACE available at https://cran.r-

project.org/web/packages/fdapace/index.html [54]. This allowed us to extract the

estimated FPC scores, ξ̂j, as well as the estimated eigenvalues, ς̂j, which in turn

enabled us to compute ζ̂j.
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In the first scenario, we used both LASSO and MCP penalty functions in our im-

plementation, termed as MFRSLasso and MFRSMCP , respectively. We compared

the results of our method with the standard linear approach with both LASSO

and MCP under the assumption of linear functional relationships as well as the

COSSO method for functional additive regression [57]. Functional additive regres-

sion via COSSO was performed by the R package COSSO available at https://cran.r-

project.org/web/packages/cosso/index.html [54, 57]. Since the COSSO package is

built for nonparametric regression (and not partial linear models) we regressed the

residuals from the linear model with our fixed effect xi on the extracted FPC scores.

In addition, we compared our method with an oracle LSKM estimator, called

LSKM oracle, that assumed the full knowledge of the true ζ’s and two true signals,

namely, ζ2 and ζ9. We also considered two oracle versions of our proposed algorithm,

MFRSoracleLasso and MFRSoracleMCP , both of which used the true ζ’s. This allows us to

evaluate the performance of the FPCA procedure. This evaluation is important as

our proposed procedure can be in principle used in simpler cases that do not involve

functional covariates. This is because once we use FPCA to obtain our ζ̂i features

we are in a standard regression setting with sparsity of covariates. In Scenario 1,

due to the highly nonlinear relationships between the FPC features and the outcome,

as expected the linear model performed poorly in terms of both model selection and

model consistency. The results for Scenario 1 can be found in the second section

of the supplemental materials. It is easy to see that our proposed method worked

well. COSSO also did well in this Scenario in terms of model fit. COSSO tended to

select noisy features more frequently then our proposed method. Simulation results

for Scenario 1 based on the average of 100 simulations.
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Table 2.1: Goodness of Fit for Scenario 1

Reg of h on ĥ
Model R2

AQ β Intercept Slope R2

MFRSLasso 0.948 2.00 0.006 1.00 0.953
MFRSMCP 0.948 2.00 0.006 1.00 0.953
MFRSoracleLasso 0.996 2.00 0.005 1.00 1.00
MFRSoracleMCP 0.996 2.00 0.005 1.00 1.00
LSKM oracle 0.996 2.00 0.005 1.00 1.00
COSSO 0.946
Lasso 0.101
MCP 0.109

Table 2.2: Model Size for Scenario 1

Model Size
Model 1 2 3 4 5 >5

MFRSLasso 0 92 8 0 0 0
MFRSMCP 0 95 4 1 0 0
MFRSoracleLasso 0 99 1 0 0 0
MFRSoracleMCP 0 99 1 0 0 0
COSSO 0 63 23 11 2 1
Lasso 20 17 18 2 12 31
MCP 74 9 5 2 3 7

Table 2.3: FPC Selection for Scenario 1

Selection Frequency

Model ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7 ζ̂8 ζ̂9 ζ̂10 ζ̂11 ζ̂12 ζ̂13 ζ̂14 ζ̂15

MFRSLasso 2 100 1 0 0 1 0 0 100 2 0 0 0 2 0
MFRSMCP 2 100 1 1 0 1 0 0 100 2 0 0 0 2 0
MFRSoracleLasso 1 100 0 0 0 0 0 0 100 0 0 0 0 0 0
MFRSoracleMCP 1 100 0 0 0 0 0 0 100 0 0 0 0 0 0
COSSO 6 100 6 3 1 2 9 15 100 8 2 2 0 1 0
Lasso 23 31 21 17 28 19 18 32 100 23 21 20 23 25 21
MCP 10 11 5 3 5 6 4 6 100 7 6 3 3 3 5

Estimated marginal plot with 95 percent shaded confidence bands of the function

h evaluated at 100 grid points for each component while holding all other components

equal to 0.5 in Scenario 1.
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Setting of Scenario 2: In this scenario, the objective was to assess the performance

of our method on both functional sparsity and within functional sparsity. Because of

this complexity, we reported detailed numerical results in the main text of this paper.

Here for each subject i, we generated 4 functional predictors {Z1
i , · · · , Z4

i } of the

form: Z`(t) =
∑9

j=1

√
ςjξjφj(t), ` = 1, . . . , 4, where φj, ςj, and ξj are set at the same

values as those given in Scenario 1. It follows that #»z = (ζ1
1 , . . . , ζ

1
9 , . . . , ζ

4
1 , . . . , ζ

4
9 )>

where ζ`j is the jth transformed feature for the `’th functional covariates. To specify

sparsity, we chose the first and second functional covariates, Z1 and Z2, by relating

the transformed FPC features, {ζ1
1 , ζ

1
3 , ζ

1
4 , ζ

2
2 , ζ

2
7}; they are the first, third and fourth

features from the first functional and the second and seventh from the second func-

tional covariate, which will be related to the outcome in a non-linear and non-additive

way:
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yi = 2xi + ζ1
i1 + ζ1

i3 + ζ1
i4 + ζ2

i2 + ζ2
i7+

10 cos(2πζ1
i1)− 10

(
ζ2
i2

)2
+ 10

(
ζ2
i7

)2 − 10
(
ζ1
i3

)2
+

10 exp(−ζ1
i3)ζ1

i4 − 8 sin(2πζ2
i7) cos(2πζ1

i3) + 20ζ1
i1ζ

2
i7 + εi

where εi
iid∼ N(0, 1) and ζ`ij is the jth transformed score for the `th functional pre-

dictor for subject i. In this scenario, we set up both group sparsity (with only 2 of

the 4 functional predictors being used) and within-group sparsity (with less then 9

of FPC features being used). In addition, we designed a non-additive structure in

the true model across multiple functional covariates. We considered linear models,

COSSO method for functional additive regression and oracle methods in the com-

parison. From Table 2.4 regarding the goodness of fit, we see that all of our MFRS

estimators outperformed the standard linear estimators in terms of R2
AQ among all

of our penalty functions and it outperformed COSSO for penalties that account for

group sparsity. COSSO tended to perform on par for penalties that do not account for

group sparsity (LASSO and MCP). It is evident that using a group sparsity penalty

function (SGL, GLasso, and GMCP) clearly outperformed the methods that did not

regularize grouping of covariates (Lasso and MCP). In addition, our estimators per-

formed as well as the oracle LSKM estimator both in terms of R2
AQ and in terms of

our estimate of h. The results also indicate that there were little differences between

using a concave (MCP or GMCP) penalty function or using a convex (Lasso, GLasso

or SGL) penalty function. In regard to the group sparsity, Table 2.5 indicates that the

all methods had high sensitivity of detecting functional signals, while the proposed

MFRS methods had better specificity than the linear models and the COSSO. Con-

cerning the within group sparsity, it is interesting to note that a bigger difference is

seen in terms of what type of penalty function is being used in model selection. Using
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a general penalty (e.g. Lasso and MCP) that does not take the grouping structure

into account tends to under-select specific members within a group as shown in tables

2.6 and 2.7. COSSO tended to perform well within group sparsity. Figure 2.1 shows

that the MFRS method estimated the signal functions (Z1 and Z2) well.

Table 2.4: Goodness of Fit via the concordance regression for Scenario 2

Reg of h on ĥ

Model R2
AQ β Intercept Slope R2

MFRSLasso 0.830 2.00 -0.062 1.01 0.848
MFRSGLasso 0.937 1.99 -0.055 1.01 0.972
MFRSSGL 0.928 2.00 -0.051 1.01 0.955
MFRSMCP 0.835 2.01 -0.062 1.01 0.856
MFRSGMCP 0.935 1.99 -0.056 1.01 0.970
LSKM oracle 0.911 1.99 -0.049 1.01 0.937
COSSO 0.832
Lasso 0.453
GLasso 0.324
SGL 0.450
MCP 0.513
GMCP 0.307

Table 2.5: Sensitivity and Specificity of Functional Selection for Scenario 2

Selection Frequency

Model Ẑ1 Ẑ2 Ẑ3 Ẑ4

MFRSLasso 100 100 0 0
MFRSGLasso 100 100 4 4
MFRSSGL 100 100 0 0
MFRSMCP 100 100 0 0
MFRSGMCP 100 100 3 4
COSSO 100 100 5 6
Lasso 100 100 19 21
GLasso 94 99 7 8
SGL 100 100 19 18
MCP 100 100 20 19
GMCP 93 99 7 8
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Table 2.6: FPC Selection for Scenario 2 Functional Z1

Selection Frequency

Model ζ̂1
1 ζ̂1

2 ζ̂1
3 ζ̂1

4 ζ̂1
5 ζ̂1

6 ζ̂1
7 ζ̂1

8 ζ̂1
9

MFRSLasso 100 1 97 0 0 0 0 0 0
MFRSGLasso 100 100 100 100 100 100 100 100 100
MFRSSGL 100 21 100 71 26 20 17 16 15
MFRSMCP 100 1 99 1 0 0 0 0 0
COSSO 100 2 100 93 1 0 0 1 0
MFRSGMCP 100 100 100 100 100 100 100 100 100
Lasso 100 10 100 100 10 8 7 10 5
GLasso 94 94 94 94 94 94 94 94 94
SGL 100 12 100 100 10 8 8 11 5
MCP 100 10 100 100 9 8 9 7 5
GMCP 93 93 93 93 93 93 93 93 93

Table 2.7: FPC Selection for Scenario 2 Functional Z2

Selection Frequency

Model ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

MFRSLasso 0 3 0 0 0 0 100 0 0
MFRSGLasso 100 100 100 100 100 100 100 100 100
MFRSSGL 16 100 14 7 16 23 100 15 7
MFRSMCP 0 11 0 0 0 1 100 0 0
MFRSGMCP 100 100 100 100 100 100 100 100 100
COSSO 8 97 5 5 5 15 100 3 3
Lasso 17 100 14 7 16 23 100 15 6
GLasso 99 99 99 99 99 99 99 99 99
SGL 17 100 14 7 16 23 100 15 7
MCP 17 100 13 6 16 23 100 15 8
GMCP 99 99 99 99 99 99 99 99 99
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Figure 2.1: Estimated marginal functions with 95 percent shaded confidence bands
of the function h evaluated at 100 grid points for each component while
holding all other components equal to 0.5 in Scenario 2

2.7 Discussion

In this chapter we proposed a method to model the non-linear relationship be-

tween multiple functional predictors and a scalar outcome in the presence of other

scalar confounders. We used the FPCA to decompose the functional predictors for

feature extraction, and used the LSKM framework to model the functional relation-

ship between the outcome and components. We developed a simultaneous procedure

to select the important functional predictors and important features within selected

functionals. We proposed a computationally efficient algorithm to implement the pro-
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posed regularization method, which has been easily programmed in R with the utility

of multiple existing R packages. It should be noted that although we focused on func-

tional regression in this paper, the method proposed can be applied to non functional

predictors that are related non-linearly and non-additively with an scalar outcome. In

effect, by using functional principal components we essentially bypassed the infinite-

dimensional problem and worked effectively in a non-functional framework with the

FPC features. Through simulation and using data from the ELEMENT dataset, we

demonstrated how the MFRS estimator outperformed existing methods both in terms

of variable selection and model fit. It should be noted that the existing non-linear

additive model, COSSO, did perform well in terms of variable selection as shown in

the simulation.

As noted in the paper, there were identifiability limitations with regard to the

bandwidth parameter and to the RKHS estimator. To overcome this issue, we have

suggested fixing the bandwidth parameter; see the detailed discussion in the Identi-

fiability section of this Chapter. We established key theoretical guarantees for our

proposed estimator. In the case where there are multiple proposed estimators (and

thus the identifiability issues arise), the established theoretical properties we estab-

lished apply to any of those estimators.

Variable section on functional predictors presents many technical challenges, and

there are many methodological problems remain unsolved. This Chapter demon-

strated a possible framework to regularize estimation with bi-level sparsity of func-

tional group sparsity and within-group sparsity. In the LSKM paper [33], it is briefly

mentioned that if the relationship between the scalar outcome and p genetic pathways

are additive, we can tweak the model to look like yi = x>i β+h1(z1
i )+ · · ·+hp(z

p
i )+ εi

where each hj belongs to its own RKHS. It is conceptually straightforward to ex-

tend our method and algorithm to handle this case, however, it is computation-

ally expensive. We will explore this further in the next Chapter. For future re-
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search, an extension to our framework would be to look at correlated data and model

yij = x>i β + h(zij) + u>ijvi + εij where u>ijvi are the random effects for subject i. Fu-

ture research can extend the proposed paradigm to discrete outcome variables (e.g.

binary) in the frameworks of generalized linear models and Cox regression models.

We will detail how to extend the MFRS framework in the case where the outcome of

interest is binary in Chapter 5.
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CHAPTER III

Accelerometer Modeling Application

3.1 Introduction

In the introduction chapter to this dissertation, we discuss historical methods

that have been used with tri-axis accelerometer data and review the terminology

that we will use in this chapter. This chapter will focus on Functional Data Anal-

ysis modeling techniques for all three axes of accelerometer data and relate it to

three health outcomes: BMI, weight and pulse pressure. The scientific goal was

to assess see if there is a association between the physical activity data and these

three health outcomes. The Centers for Disease Control and Prevention (CDC)

https://www.cdc.gov/obesity/childhood/defining.html defines Body mass index (BMI)

as a measure used to determine childhood obesity (≥ 95th percentile for children and

teens of the same age and sex). Subsequently, we control for age and sex in our

models. To better define the amount of physical activity (PA) necessary to prevent

overweight and obesity in children, studies try to find associations with physical ac-

tivity (PA) and obesity [45, 35]. Elevated blood pressure (BP) during childhood and

adolescence increases the risk of hypertension and cardiovascular disease in adulthood

[50]. Physical activity is recommended for preventing and treating elevated BP and

hypertension in children and adults [19, 50].

The aims of this chapter are as follows:

38



1. Demonstrate the benefits of using FDA; specifically, how utilizing the complete

functional curves of the AC have higher explained variability of the outcomes

when utilizing the fucnitonal predictors.

2. Provide methods on how we can use all three dimensions of the accelerome-

ter data (which has not been done previously), and demonstrate its superior

performance over the one-dimensional VM.

3. Analyze different ways to model 7 days of accelerometer data and show that

viewing the entire curve which we will denote as a ”7-day functional” can at

times outperform averaging the 7 days of data into a 1-day function over 7 days

we will denote as a ”1-day averaged functional”. These terms will be defined

more clearly in the chapter.

4. Compare using the Activity Index (AI) vs the AC for the above aims.

3.2 ELEMENT Dataset

The study population includes adolescent participants from two enrolled cohorts

of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENTS)

study. A subset of 550 adolescent were recruited from the ELEMENTS study [28]

beginning in 2015 to participate in a follow-up study. Among them, 539 adolescents

aged 9-17 consented to wear an actigraph (ActiGraph GT3X+; ActiGraph LLC.

Pensacola, FL), which was placed on their non-dominant wrist for five to seven days.

The actigraph measured tri-axis accelerometer data sampled at 30Hz capturing three

different directions of a person’s movement. In addition to the accelerometer data,

BMI, weight, blood pressure, sociodemographic, socioeconomic and nutritional vari-

ables were collected on the adolescents as well.

The actigraph did not register all of the adolescents for the full seven days and

the software provides missing timestamps for the duration of wear. Our analysis only
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included those cases where the actigraph recorded 85 percent or more of the full seven

days. Other studies [44] have excluded days of accelerometer data with more than

five percent missing. For the purpose of our study, we will focus on a 395-participant

subset of participants who wore the actigraph for 85 percent of the seven days and

had the three outcomes of interest (BMI, weight and pulse pressure) as well as the

confounders of interest (age and sex). See the methods section in [26] for more details

about this study and how the outcomes of interest were calculated.

Figure 3.1: TriAxis Activity Count for the 7 Days of accelerometer wear
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Figure 3.2: VM Activity Count for the 7 Days of accelerometer wear

Figure 3.3: TriAxis Activity Count averaged minute-by-minute for the 7 Days of ac-
celerometer wear
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Figure 3.4: VM Activity Count averaged minute-by-minute for the 7 Days of ac-
celerometer wear

3.3 Accelerometer Preprocessing

The 30 Hz raw accelerometer tri-axis data was summarized by the ActiGraph

GT3X+ software to minute-by-minute activity counts for each axis over the 7 days of

wear. In the literature there are multiple ways to handle multiple days of accelerom-

eter data. For example, [44], used minute-by-minute medians across several days,

while [3] included only the most active day (in terms of daily average AC) in the

analysis. We can also treat the entire seven days as one long functional. In all three

of the above ways, VM can be calculated from the three axes. Figure 3.1 shows an

example of the curves from one subject when using all seven days. Figure 3.3 shows

the curves when averaged across all seven days of data. The ActiGraph GT3X+

software provides a .GT3X file of raw data that can be read in R studio using the

read.gt3x function which can be found at https://github.com/THLfi/read.gt3x.

The AI, was calculated from the raw acceleromter data file (.GT3X) using the
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computeActivityIndex function found at

https://rdrr.io/cran/ActivityIndex/man/computeActivityIndex.html. Part of the AI

calculation requires the systematic noise variance σ̄2
i , which is supposed to be esti-

mated from when the device is not moving (at rest). However, we did not have values

from when the device was at rest (not moving) so we used the missing time points

that were displayed in the .GT3X file which essentially puts the systematic noise

variance at 0. These time points for the missingness were fed into the computeAc-

tivityIndex function. See the Introduction chapter for a more detailed description of

the AI formula.

Figure 3.5: AI for the 7 Days of accelerometer wear
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Figure 3.6: AI averaged minute-by-minute for the 7 Days of accelerometer wear

We preprocessed the accelerometer data to create six versions of functional vari-

ables which will be used in our subsequent analyses:

1. Time domain (as opposed to using the frequency domain) for the AC of the

three axes were used covering the entire seven days of wear.

2. VM was calculated from the above which was the square root of the sum of

squares of the three axes activity counts minute-by-minute.

3. Time domain for the AC that was averaged minute-by-minute was covering the

entire seven days of wear. For example, since all the participants started wearing

the actigraph at 3pm, the first data point for each individual is an average of 7

days of AC at 3pm.

4. VM was calculated from the above.

5. AI was calculated for the 7-day functional.

6. AI was calculated for the 1-day averaged functional
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3.4 Review of Statistical Methods

3.4.1 FPCA

In this section, we focus on the utility of functional principal component analysis

(FPCA) to perform decomposition of the three functionals from the tri-axis data de-

scribed in the previous section. Let Z(t) denote the functional we wish to decompose.

For example, this might be the first axis activity counts. As explained in the previ-

ous chapter, by the Karhunen-Loève expansion we can write Z(t) =
∑∞

k=1

√
ςkξkφk(t),

where ςk > 0 are the eigenvalues, and loadings ξk := 1√
ςk
< Z, φk > satisfies mean zero,

E(ξk) = 0, and variance one, E(ξkξj) = 1 for k = j, and uncorrelated, E(ξkξj) = 0

for k 6= j. We will use the set of estimates {ξ̂j} as features for the accelerometer

functional, Z(t). In the cases of all three axes being used we obtain three sets of

features, one from each axis respectively.

3.4.2 Least Squares Kernel Machine

We extended the LSKM proposed by Liu, Lin and Ghosh (2007) [33]. To review,

the model they proposed was yi = x>i β+h(zi)+εi, where they used LSKM to analyze

a multidimensional predictor zi. In their model, parameter β needs to be estimated

for some x vector of clinical covariates and z is a p-element vector of gene expressions

that is potentially related to the outcome y via a non-parametric function h. The p-

variate function h(·) is assumed to lie in a reproducing kernel Hilbert space (RKHS),

HK, generated by a positive definite kernel function K(·, ·). They briefly mention an

extension of that model to modeling multiple genetic pathway effects where one could

consider a semiparametric additive model

y = X>β + h1(z1) + · · ·+ h1(zm) + ε, (3.4.1)
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where z` (` = 1, . . . ,m) denotes a p` × 1 vector of genes in the `th pathway for m

number of pathways and h`(·) ∈ HK` denotes a non-parametric function.

We apply the numerical recipe from the linear mixed-effects model (LMM) to solve

(3.4.1). In our case, m = 3 corresponds to the three axes from the accelerometer,

with, z` corresponds to the FPC scores extracted for the `th axes.

Note that β and h` may be estimated by maximizing the scaled penalized likeli-

hood function:

J(h1, h2, h3,β) =− 1

2

n∑
i=1

{yi − x>i β − h1(z1
i )− h2(z2

i )− h3(z3
i )}2

− 1

2
λ1 ‖h1‖ 2

HK1
− 1

2
λ2 ‖h2‖ 2

HK2
− 1

2
λ3 ‖h3‖ 2

HK3
,

(3.4.2)

where for each ` = 1, 2, 3, λ` > 0 is the tuning parameter and ‖·‖HK` is the norm of

the RKHS generated by the kernel K`. Following a similar procedure described in

paper for a single genetic pathway, we can show by the representer theorem (Kimel-

dorf and Wahba 1970) that the solution to (3.4.2) for the nonparametric function

h` can be expressed as h`(·) =
∑n

i=1 α
`
iK`(·, z`i) where α`i ∈ R. Then an equivalent

optimization problem is to maximize the following objective function with respect to

(α1,α2,α3,β):

J(α1,α2,α3,β) =

−1

2

n∑
i=1

{yi − x>i β−
n∑
j=1

α1
jK1(z1

i , z
1
j)−

n∑
j=1

α2
jK2(z2

i , z
2
j)−

n∑
j=1

α3
jK3(z3

i , z
3
j)}2

− 1

2
λ1α

>
1 K1α1 −

1

2
λ2α

>
2 K2α2 −

1

2
λ3α

>
3 K3α3,

(3.4.3)

where K` is an n × n matrix with ijth entry equal to K`(z`j, z`i). The resulting
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equations for estimating (3.4.3) are:

∂J(α1,α2,α3,β)

∂β
= 0

=⇒ X>Y −X>Xβ̂ −X>ĥ1 −X>ĥ2 −X>ĥ3 = 0

(3.4.4)

∂J(α1,α2,α3,β)

∂αj
= 0

=⇒ K>j Y −K>j Xβ̂ −K>j ĥ1 −K>j ĥ2 −K>j ĥ3 − λjK>` αj = 0

=⇒ Y −Xβ̂ − ĥ1 − ĥ2 − ĥ3 − λjK−1
` ĥ` = 0

(3.4.5)

where ĥ` is a vector with the ith element corresponding to the estimated function

ĥj(z
j
i ). In other words, ĥj = Kjα̂j. Let R = Iσ2 for some constant σ2 ≥ 0 (so its a

diagonal matrix with σ2 on its diagonals). Rewriting the above estimating equations

in matrix notation, we obtain



X>R−1X X>R−1 X>R−1 X>R−1

R−1X R−1 + (τ1K)−1 R−1 R−1

R−1X R−1 R−1 + (τ2K)−1 R−1

R−1X R−1 R−1 R−1 + (τ3K)−1





β̂

ĥ1

ĥ2

ĥ3


=



R−1X>y

R−1y

R−1y

R−1y


.

The above formulation is mathematically equivalent to solving the normal equa-

tions from the linear mixed-effects model (LMM) of the form:

Y = Xβ + h1 + h2 + h3 + ε, (3.4.6)

where hj is an n × 1 vector of random effects with distribution N(0, τ`K`), n-

dimensional vector error terms ε ∼ N(0, σ2I),and τ` = λ−1
` σ2 > 0. To see the

connection, calculating the best linear unbiased estimators (BLUPS) for the random

effects (ĥ1, ĥ2, ĥ3) is accomplished through the log likelihood function:
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`(β,h1,h2,h3) = `(Y | h1,h2,h3) + `(h1) + `(h2) + `(h3) (3.4.7)

since we are assuming that h1 ⊥ h2 ⊥ h3. We have

`(Y | h1,h2,h3) ∝ − 1
2σ2 ‖Y −Xβ − h1 − h2 − h3‖2

2 and `(hj) ∝
−h>j K−1

j hj

2τj
the score

equations for (3.4.7) are:

`(β,h1,h2,h3)

∂β
= 0

=⇒ 1

σ2
(X>Y −X>Xβ̂ −X>ĥ1 −X>ĥ2 −X>ĥ3) = 0

(3.4.8)

`(β,h1,h2,h3)

∂hj
= 0

=⇒ 1

σ2
(Y −Xβ̂ − ĥ1 − ĥ2 − ĥ3)− K−1ĥj

τj
= 0

(3.4.9)

which is the same equations as (3.4.5) (setting λj = σ2

τj
).

As we discussed previously in Chapter 2, although there is a closed form solution

for fixed λ1, λ2, λ3 in maximizing (3.4.2), through the numerical procedure of LMM

we can get estimate λj easily as part of the estimation of the variance components

with the REML equations. In this case, the LSKM regression model allows us to

consider a non-linear relationship for each axis of the accelerometer by considering

a non-linear and non-additive relationship with the FPC corresponding to that axis.

Furthermore, the above framework allows us to simultaneously model the multiple

axes from the accelerometer data in an additive way. If we don’t want to assume

an additive relationship between the health outcome and the 3 axes, we can always

stack the vectors from the three FPC axes into one vector and use the standard LSKM

framework with one function, h. The above extension may not make sense for the

accelerometer data, since movement in one direction will logically be correlated with

movement in another directions. However, we will compare the two ways of modeling

the FPC features from the axes’s with our dataset. Specifically, we will compare using
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the additive LSKM (3.4.1) for modeling the three axis of the accelerometer data with

the original LSKM model (2.1.2).

The score test developed by Liu, Lin and Ghosh [33] on the feature vector z can

be extended to the additive LSKM model as well to test the overall effect of zj.

Thus, you can use the score tests for functional variable selection. This is similar to

using the group lasso as a penalty in the MFRS framework. However, in the non-

additive model where the vectors of FPC scores for all the functionals are stacked,

they would resort to the AIC or BIC method they proposed to perform functional

variable selection. Furthermore, since there are many FPC scores associated with

each functional, in both the original LSKM or additive LSKM you would have to

resort to using AIC or BIC method to determine within a functional which scores to

select. It is important to stress that the LSKM framework was not designed with the

intention of handling functional (and certainty multiple functional) predictors. The

MFRS framework will be used to compare with the additive model. To implement the

additive LSKM framework we used an R package called KSPM found: https://cran.r-

project.org/web/packages/KSPM/index.html that performs the model fit as well as

the score tests. However, this package uses cross validation for the three λj’s (for the

three axis) and does not use the solution to the REML equations. Computationally,

this takes several hours to run. If in addition you estimate the bandwidth param-

eter on each kernel running the model takes several days. We fixed the bandwidth

parameter to the number of FPC scores to save time. As in the previous Chapter,

this approach is justified in [20]. Furthermore, in that paper, they argue that unlike

in the standard kernel regression of kernel density estimation, only the smoothing

parameter is the kernel bandwidth; however, in the case where there is a smooth-

ing term, λ, the role of the kernel bandwidth is fundamentally different. It acts as

a way of determining how vectors that are different need to be in the standardized

before calculating how ”close” or similar those vectors are. They further show that a
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range of values for the kernel bandwidth tends to perform in a similar fashion after

optimizing over λ.

3.4.3 MFRS for additive LSKM

We will provide the details as to how one could extend the MFRS framework to

the additive LSKM. However, as we will explain below, we do not implement this

in the analysis for the acceleromter data. The importance of this subsection will be

discussed further in the concluding chapter of this dissertation. Following the same

notation as in the previous subsections and chapters we wish to model

yi = x>i β+(h01 ◦Γ01)(z1
i )+(h02 ◦Γ02)(z2

i )+(h03 ◦Γ03)(z3
i )+ εi, i = 1, . . . , n. (3.4.10)

and estimate the unknown functions h01 ◦Γ01, h02 ◦Γ02, h03 ◦Γ03, and unknown vector,

β. We accomplish this by minimizing:

min
α1,α2,α3,β,γ

J3(α1,α2,α3,β,γ) =
1

2n

n∑
i=1

{
yi − x>i β −

3∑
j=1

n∑
k=1

αjkKj(γj ◦ zji ,γj ◦ zjk)

}2

+
1

2
λ1α

>
1 K(γ1;Z1)1α1 +

1

2
λ2α

>
2 K(γ2;Z2)2α2 +

1

2
λ3α

>
3 K(γ1;Z3)3α3 + λ4ρ(γ; δ),

(3.4.11)

where there is an association between functions Γ0j and γj as explained in chapter 2.

We proceed in a similar fashion as described in chapter 2 (Algorithm 1 and Al-

gorithm 2). Given γ̂, we estimate (α̂1, α̂2, α̂3, β̂, λ1, λ2, λ3) by solving the additive

LSKM problem given in (3.4.1). Given, (α̂1, α̂2, α̂3, β̂, γ̂2, γ̂3) we can estimate γ̂1

using the proximal Gauss-Newton algorithm (Step 2.2) of the algorithm mentioned

in chapter 2. We can then use the updated γ̂1 and the old γ̂3 to find γ̂2. In essence

we are just using Step 2.2 in the algorithm but instead of solving for the updated

γ̂ directly we cycle through each groups. Unlike in the previous chapter where we

we used the proximal Gauss-Newton method in (2.3.4) to estimate (2.3.1), we do not
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have such an equivalent form for (3.4.11) to minimize over the entire γ for a fixed

(α̂1, α̂2, α̂3, β̂, λ1, λ2, λ3). Another possible approach for solving for γ for a fixed

(α̂1, α̂2, α̂3, β̂, λ1, λ2, λ3) is described in chapter 5 using an inexact linear search with

backtracking. For the following three reasons we do not implement the MFRS in the

additive setting for the accelerometer data:

1. It makes more sense that movement in one direction is informative about move-

ment in another direction and therefore, a non-linear additive model for the

three axis would not be as accurate as a non-linear non-additive model.

2. The main objective of the MFRS framework is to perform functional variable

selection in the LSKM setting since no other method besides AIC/ BIC existed.

However, as pointed out for the additive LSKM setting, the score tests provide a

way of performing functional variable selection (although it can not differentiate

the FPC scores within groups).

3. Performing the additional cycling through groups for Step 2.2 in the algorithm

can be computationally challenging.

There are settings where the MFRS algorithm can make sense in the LSKM framework

as will be pointed out in the concluding chapter where the first two points above will

not ne an issue. However, the third issue raised regarding the computational costs

remains an issue.

3.5 Proposed Statistical Models

In this section we list the models that we use to analyze accelerometer data based

on the previous sections. We use these models for each of the 6 settings we listed

in the ELEMENT dataset section. Let z`i = (ξ`1, · · ·, ξ`s`)
>
i be the vector of FPC

features from the ith observation of the functional covariate Z`. In total we will
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have ` ∈ {1, 2, 3} where 1, 2, 3 correspond to the first, second and third axis of the

accelerometer functional. Let zi = [(z1
i )
>, (z2

i )
>, (z3

i )
>]> be the grand vector of FPC

features from all 3 functional covariates and s =
∑3

`=1 s` number of FPC features,

and zi ∈ Rs. Let zVMi be the vector of FPC features form the ith observation of the

vector magnitude curve.

First, consider the following models we will reference as M0-M5:

1. M0: Linear model with only baseline covariates and with no predictors of phys-

ical activities:

E(BMIi|Agei, Sexi) = β0 + β1Agei + β2Sexi

2. M1: Linear model with fixed and functional features

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi +
3∑
j=1

sk∑
k=1

βkj ξ
k
ij.

3. M2: LSKM non-additive

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi + h(zi).

4. M3: LSKM additive

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi + h1(z1
i ) + h2(z2

i ) + h3(z3
i ).

5. M4: FAM+COSSO

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi +
s∑

k=1

fk((zi)k).
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6. M5: the MFRS+SGL

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi + h(γ ◦ zi).

Where ξkij is the ith persons kth FPC score for functional j and (zi)k is the kth index

of the vector zi. When modeling with the VM we used the following models:

1. VM1: Linear model with fixed and functional features

E(BMIi|Agei, Sexi, zVMi ) = β0 + β1Agei + β2Sexi +
s∑

k=1

βkξVM,k
i .

2. VM2: LSKM non-additive

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi + h(zVMi ).

3. VM4: FAM+COSSO estimator

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi +
s∑

k=1

fk((z
VM
i )k).

4. VM5: the MFRS+Lasso estimator

E(BMIi|Agei, Sexi, zi) = β0 + β1Agei + β2Sexi + h(γ ◦ zVMi ).

Where ξVM,k
i is the kth FPC feature extracted for the VM curve for person i. For the

AI, we simply substitute AI for VM in the above models to get the AI1-AI4 models.

In addition to model accuracy, R2
AQ, we also compared different variable selection

techniques as well. As mentioned in Section 4, in the LSKM method there is a

proposed score test which we can use to test whether the h or hj is needed. However,

within a functional it does not select important features. The MFRS framework
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allows for both the functional and within functional selection for the SGL penalty

function. We report both the results of the score tests and the MFRS framework for

variable selections. In addition, we applied the sparse group lasso to the model M1

and the lasso to the models VM1 and AI1 for additional comparison. Models M1-

M4, VM1-VM5 and AI1-AI5 were repeated with Weight and Pulse Pressure in place

of BMI as well. We include M0 without the accelerometer covariate, to assess the

importance of using the accelerometer data in terms of model accuracy. In addition,

since we took the Z-scores of our outcome variable (mean centered and scaled to

variance 1), β0 = 0 in the above models. Statistical analysis was conducted in R. For

part of our analysis we used the existing R packages EMMREML and OEM respectively

available at:

https://cran.r-project.org/web/packages/oem/index.html, and

https://cran.r-project.org/web/packages/KSPM/index.html.

3.5.1 Results from ELEMENT dataset

The mean ± SD weight of the study was 54.7 ± 13.2 kg. The mean age of the

study was 14.3 ± 2.1 years. The mean BMI was 21.5 ± 4.1 where BMI was calculated

as weight(kg)
height(m2)

. The mean Pulse Pressure was 73.9 ± 12.1.

From Table 3.1, we see a large difference in the number of FPC scores (17-18)

extracted from using the 7-day functional data, as opposed to the 1-day averaged

functional data to produce our FPC scores (4-5). Due to the small number of com-

ponents extracted from VM and AI in the case of 1-day averaged functional data, we

did not employ methods that perform variable selection (MFRS, COSSO or Lasso).

However, we still used the sparse group lasso as the penalty function for the 1-day

averaged functional data when using the Tri-Axis AC data. From the tables below

we see a clear need to regularize the many FPC scores extracted, as the MFRS model

in general did better than the other models. We can also note two interesting points,
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detailed below. We will go through this in detail below.

Table 3.1: #FPC Scores that explain ≥ 50%

Functional 7-day functional 1-day averaged functional

ACX 20 6
ACY 19 5
ACZ 18 4
VM 19 5
AI 18 4

Table 3.2: FPCA Functional selection of 3-D Activity Count for X,Y and Z axis for
the 7 day functional

BMI WEIGHT BPP
Model X Y Z X Y Z X Y Z
Linear Model+SGL (M1)
LSKM non-additive (M2)
LSKM additive (M3)
FAM+COSSO (M4)
MFRS+SGL (M5)

Table 3.3: FPCA Functional selection of 3-D Activity Count for X,Y and Z axis for
the 1 day averaged functional

BMI WEIGHT BPP
Model X Y Z X Y Z X Y Z
Linear Model+SGL (M1)
LSKM non-additive (M2)
LSKM additive (M3)
FAM+COSSO (M4)
MFRS+SGL (M5)

55



Table 3.4: R2
AQ using the 7-day functional of 3-D Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13
Linear Model (M1) 0.11 0.25 0.13
LSKM non-additive (M2) 0.1 0.25 0.13
LSKM additive (M3) 0.25 0.25 0.14
FAM+COSSO (M4) 0.11 0.26 0.16
MFRS (M5) 0.55 0.28 0.17

Table 3.5: R2
AQ using the 7-day functional of VM Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13
Linear Model (VM1) 0.10 0.25 0.11
LSKM non-additive (VM2) 0.10 0.25 0.13
FAM+COSSO (VM4) 0.12 0.26 0.15
MFRS+LASSO (VM5) 0.21 0.31 0.14

Table 3.6: R2
AQ using the 7-day functional of AI

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13
Linear Model (AI1) 0.09 0.25 0.12
LSKM non-additive (AI2) 0.10 0.25 0.13
FAM+COSSO (AI4) 0.10 0.26 0.14
MFRS+LASSO (AI5) 0.11 0.27 0.15

Table 3.7: R2
AQ using 1-day averaged functional of 3-D Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13
Linear Model (M1) 0.12 0.27 0.14
LSKM non-additive (M2) 0.18 0.31 0.13
LSKM additive (M3) 0.19 0.31 0.14
FAM+COSSO (M4) 0.13 0.27 0.14
MFRS+SGL (M5) 0.26 0.35 0.21
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Table 3.8: R2
AQ using 1-day averaged functional of VM Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.14
Linear Model (VM1) 0.11 0.26 0.13
LSKM non-additive (VM2) 0.12 0.27 0.14

Table 3.9: R2
AQ using 1-day averaged functional of AI

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.14
Linear Model (AI1) 0.10 0.25 0.13
LSKM non-additive (AI2) 0.11 0.25 0.13

3.5.2 7-day vs 1-day averaged

From Tables 3.4 and 3.7, we see that when using all three axes of functional data,

7 days of accelerometer data tended to do better for BMI while for Weight, the 1-

day averaged functional did better. Without the MFRS framework, treating the 7

days of data as one long functional does not seem to be justified as we can see by

comparing the 7-day functional tables to the 1-day averaged functional tables for all

other models. This is due to the increase in noise that is accompanied when using

the full 7 days. This could be due to the high number of FPC scores extracted when

treating the 7 days as one long functional. We saw that the MFRS+SGL (M5) model

had the highest R2
AQ of 0.55. Comparing Tables 3.9 with 3.8 and Tables 3.6 with 3.5

we do not see a significant difference between using the VM or AI.

3.5.3 Tri-axis AC vs VM vs AI

Comparing Tables 3.4 and 3.5 shows that using all three axes of the accelerometer

data tend to perform in similarly to the VM summary with the exception to the

MFRS estimator.

The results illustrate that, using the acceleromter data as a functional covariate
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seemed to help explain the variance in the three outcomes, particularly with BMI.

However, with the exception of the MFRS+SGL estimator, a functional linear model

(FLM) seemed to suffice. There were some notable differences in terms of functional

selection between the COSSO and the MFRS estimator as show in table 3.2 partic-

ularly with using the Weight as a potential health outcome in the 7 day functional

setting. The AI did not perform well across all models and health outcomes.

3.6 Simulation

We performed a simulation experiment mimicking acceleromter data to investigate

the performance of our proposed MFRS procedure, including the performance of

variable selection and its overall accuracy for accelerometer type of data. Specifically,

we wanted to investigate the ability of the models listed in the above section to

correctly specify and model which axes are associated with a potential health outcome.

Performance in variable selection is summarized in terms of the stability measured by

sensitivity and specificity for both functional and variable selections under these this

simulation as well. In all analyses, we used the Gaussian Kernel K(u, v) = exp−
1
s
‖u−v‖2

in our estimation where s was set as the number of features, which is equivalent to

dividing the γ vector by
√
s. See [20] for a theoretical justification to using the

number of features for the bandwidth parameter, s, for the Gaussian Kernel.

To simulate acceleromter data, we first generated 9 eigenfunctions using FPCA on

400 curves each representing a functional of one day. We drew the 400 curves from a

multivariate normal distribution with mean 0 and Σ1400×1400 matrix according to the

following scheme:

1. From 8:00AM-12:00PM we assumed the variance at each minute was 1 (light

variability)

2. From 12:01PM-6:00PM we assumed the variance at each minute was 2 (moder-
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ate variability)

3. From 6:01PM-10:00PM we assumed the variance at each minute was 5 (heavy

variability)

4. From 10:01PM-7:59AM we assumed the variance at each minute was .01 (sleep-

ing)

Let Vk denote the variance at time k ∈ {1, · · · , 1440}.

We set Σij =
√
VjVi exp(−(i− j)2) to corrolate our time points. We then performed

FPCA and extracted 9 eigenfunctions, φp, p ∈ {1 · · · 9}. Figure 3.7 below is what the

leading eigenfunction looked like. Here for each subject i, we generated 3 functional

predictors {Z1
i , · · · , Z3

i } of the form: Z`(t) =
∑9

j=1

√
ςjξjφj(t), ` = 1, . . . , 3, where

ςj = 45 × 0.64j and ξj ∼ N(0, 1) which is comparable to what was done in the

[34]. There were 1440 sampled points, t, equally spaced in the interval [1, 1440]

corresponding to the minutes of the day. As was done in [34], instead of directly

using ξj, we used ζj = Φ(ξj), where Φ is the CDF of the standard normal. It follows

that #»z = (ζ1
1 , . . . , ζ

1
9 , . . . , ζ

4
1 , . . . , ζ

3
9 )> where ζ`j is the jth transformed feature for the

`th functional covariates.
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Figure 3.7:

To specify sparsity, we chose the first and second functional covariates, Z1(t) and

Z2(t), by relating the following transformed features, {ζ1
1 , ζ

1
3 , ζ

2
4 , ζ

2
7}; {ζ1

1 , ζ
1
3} are the

first and third features from the first functional, Z1(t), and {ζ2
4 , ζ

2
7} are the fourth

and seventh feature from the second functional Z2(t). We related the above FPC

scores to the outcome in the following two models:

1. Scenario 1: Non-Linear and Non-additive model:

yi = 0.5xi + 3 log ζ1
i3 log ζ2

i7 + 10ζ2
i4 cos(2πζ1

i1) + εi, i = 1, · · · , n
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2. Scenario 2: Non-Linear and additive:

yi = 0.5xi + 3 log ζ1
i3 + log ζ2

i7 + 10ζ2
i4 + cos(2πζ1

i1) + εi, i = 1, · · · , n

where εi
iid∼ N(0, 1), xi

iid∼ N(0, 1), and ζ`ij is the jth transformed feature for the `th

functional predictor Z`(t) for subject i. In both scenarios we set up both group spar-

sity (with only 2 of the 3 functional predictors being used) and within-group sparsity

(with less then 9 of FPC features being used). We generated 400 IID functional paths

of which 300 paths were assigned to the training set and 100 paths were assigned to

the test set. It is the test set that we used to demonstrate the performance. The

purpose of presenting both the additive and non-additive scenarios is twofold. The

first objective is to demonstrate the power of using the MFRS framework over other

additive methods like the COSSO in Scenario 1. The second objective is to illustrate

the difference in performance between an additive and non-additive assumption. It

is this second objective that could explain why the MFRS estimator outperformed

COSSO using the ELEMNENT dataset.

We used SGL as the penalty function in our implementation, termed asMFRSSGL.

It should be noted that the penalty function for the sparse group lasso was defined

by taking p(γ; δ) = (1 − δ)
∑p

`=1 ‖γ`‖2 + δ ‖γ‖1, δ ∈ [0, 1] and in our simulation, δ

was set to 0.95. This was similar to what was done in the original paper for the

sparse group lasso [47], where they mentioned that for the simulated data, δ was set

to 0.95. If strong group sparsity in anticipated but only mild within group sparistiy

they recommended setting δ to 0.05. We compared the results of our method with

using a linear model with SGL, and with the COSSO method for functional additive

regression [57]. In addition, we compared our method with LSKM and an oracle

LSKM estimator, called LSKM oracle, that assumed the full knowledge of the true ζ’s

and the true signals, namely, {ζ1
1 , ζ

1
3 , ζ

2
4 , ζ

2
7}.
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From Tables 3.4 we see that the MFRSSGL outperformed all of the non-oracle

estimators by a large margin in terms of model consistency in Scenario 1. We believe

this is owing to the fact that only the MFRSSGL has the ability to model non-additive

(and non-linear) models and select important features. Only the LSKM oracle model

outperformed the MFRSSGL estimator which assumed full knowledge of which signals

were important and the true values of those signals.

In terms of functional selection, COSSO did well for both scenarios as shown in

Tables 3.11 and 3.12. As we can see from Table 3.12, COSSO is not able to pick up the

signal of ζ̂2
4 , in Scenario 1, however, we see COSSO improve dramatically in Scenario 2

where the true model is additive. COSSO was designed specifically for this framework

and is now able to pick up the correct FPC signals as shown in 3.13. In Scenario

2, MFRSSGL performed comparably to COSSO in terms of model consistency but

COSSO overall did better in terms of variable selection specifically for Z1.

Table 3.10: R2
AQ for Simulated acceleromter data Scenarios 1 and 2

Model Scenario 1 Scenario 2

Linear Model + SGL 0.19 0.73
LSKM 0.21 0.76
LSKMoracle 0.87 0.89
COSSO 0.58 0.86
MFRSSGL 0.70 0.84

Table 3.11: Sensitivity and Specificity of Functional Selection

Selection Frequency

Scenario 1 Scenario 2

Model Ẑ1 Ẑ2 Ẑ3 Ẑ1 Ẑ2 Ẑ3

Linear Model + SGL 99 100 17 100 100 34
MFRSSGL 98 96 17 100 100 14
COSSO 100 100 12 100 100 11
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Table 3.12: Feature Selection for Scenario 1

Functional Z1

Model ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

Linear Model + SGL 11 15 99 7 5 5 12 8 5
MFRSSGL 96 30 98 14 24 29 28 23 36
COSSO 99 8 100 3 0 1 1 5 1

Functional Z2

ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

Linear Model + SGL 5 11 10 13 10 13 100 9 8
MFRSSGL 21 21 28 71 31 29 95 20 24
COSSO 2 1 4 2 2 12 100 4 2

Table 3.13: FPC Selection for Scenario 2

Functional Z1

Model ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

Linear Model + SGL 36 49 100 38 19 11 15 15 13
MFRSSGL 81 44 100 24 23 27 24 21 23
COSSO 92 43 100 27 6 3 2 1 1

Functional Z2

ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

Linear Model + SGL 30 47 58 100 41 25 98 16 10
MFRSSGL 20 28 37 100 33 28 91 33 27
COSSO 12 36 45 100 32 12 100 3 2

3.7 Discussion

In this chapter we applied at new techniques to both preprocess and model how

accelerometer data relates to different health outcomes. We investigated particularly

nonparametric modeling of the accelerometer data with a health outcome adjusting

for baseline confounders. We compared two different approaches to processing mul-

tiple days of accelerometer wear and found that depending on the health outcome

of interest, using the full 7 days of accelerometer data could achieve better results

in terms of R2
AQ when using the MFRS method. An explanation for this is that a
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person’s physical activity varies across days with strong heterogeneity, and therefore

averaging across multiple days in epochs of minute does not fully capture the physical

activity performed during the duration of the 7 days of wear. It is always important

to perform variable selection on FPC features to identify signals of physical activi-

ties. We also analyzed the VM and AI and found that in the MFRS, the tri-axis data

outperformed the VM and AI summary to predict the outcome. The MFRS frame-

work also outperformed the additive LSKM model which confirms that movement in

one directions is related to movement in another direction. As discussed, there is no

consensus on how to treat multiple days of accelerometer wear. In the next chapter

we will look at yet another way on how to decompose multiple days of accelerometer

data.
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CHAPTER IV

Accelerometer Modeling with Multilevel

Functional Principal Component Analysis

4.1 Introduction

This chapter of the dissertation proposes an alternative way to handle multiple

days of accelerometer functional data within the MFRS framework. In Chapter III,

we analyzed the 7 days of accelerometer data from the ELEMENT cohort study in

two ways:

1. Viewing the full 7 days of accelerometer data as one long functional;

2. Averaging minute-by-minute of the 7 days of data within a 24 hour time window,

and viewing the aggregated data as a one-day functional.

Both ways listed above do not fully capture the person’s inter-day variability.

When faced with many days of data, it becomes difficult to view the data as one

long functional as there naturally exist day-to-day heterogeneity of personal activi-

ties. Consequently, the extracted FPCA components becomes less informative as the

nature of a person’s physical activity is not entirely periodic. Averaging the minute-

by-minute throughout multiple days also poses a potential loss of inter-day variability

as mentioned in Chapter III; there is an underlying assumption that personal daily

65



patterns are repeated over a 24 hour time window across multiple days. To address

these issues, we take a different data preprocessing route in this chapter. We de-

compose the accelerometer functional data by the functional equivalent of analysis

of variance (ANOVA). The following idea for decomposing a functional into different

components is proposed in [46]. Let (Z1
ij(t), Z

2
ij(t), Z

3
ij(t)) denote the three-axes func-

tional for individual i at day j for time t where the random process Z`
ij is assumed to

have mean zero for ` ∈ {1, 2, 3}. Similarly consider ZVM
ij (t) and ZAI

ij (t) the VM and

AI functionals respectively, defined in Chapter I and Chapter III. We decompose each

axis of functional data (representing multiple days) into repeated daily measurements

of functional data:

Z`
ij(t) = X`

i (t) + U `
ij(t), ` = 1, 2, 3, (4.1.1)

where X`
i (t) is the subject variability, and U `

ij(t) is within subject variability. As

shown in [46], one may consider three-way factors, which nest hours within days

within subject. In this chapter, we will focus on the two-factor decomposition, namely

days and subject. The reason that we ignore hours as a factor is that the activity of

a person seems to be highly variable, so that it is difficult to yield a stable signal at

the hourly level. Equation (4.1.1) is referred to as the “noise-free” model. However

in reality, as suggested in [46] a decomposition model should take account “noise”.

That is,

Z`
ij(t) = X`

i (t) + U `
ij(t) + εij(t), (4.1.2)

where εij(t) is the white noise
iid∼ N(0, σ2) (for convenience we will assume it is nor-

mally distributed). In the next subsection we discuss the detail on the assumptions

and the algorithm for decomposing a functional in (4.1.1) and then proceed to model

the level-specific stochastic process X`
i (t) with the health outcomes from our ELE-

MENT dataset within the MFRS framework.
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4.2 Functional Anova Model

Define the covariance functions K`
Z , K`

X and K`
U as K`

Z(t, s) := Cov(Z`
i (t), Z

`
i (s)),

K`
X(t, s) := Cov(X`

i (t), X
`
i (s)) for all i and K`

U(t, s) := Cov(U `
ij(t), U

`
ij(s)) for all i, j.

For the purpose of identifiability, we assume that the random process X`
i (t) and U `

ij(t)

are mean zero and uncorrelated with each other.

Lemma 7. Under the assumption that X`
i (t) and U `

ij(t) are mean zero and uncorre-

lated, we have the following equality:

K`
Z = K`

X +K`
U . (4.2.1)

Proof.

K`
Z(t, s) = Cov(Z`

i (t), Z
`
i (s))

= Cov(X`
i (t) + U `

ij(t), X
`
i (s) + U `

ij(s)) for all i, j by (4.1.1)

= Cov(X`
i (t), X

`
i (s)) + Cov(U `

ij(t), U
`
ij(s)) + Cov(X`

i (t), U
`
ij(s)) + Cov(U `

ij(t), X
`
i (s))

= K`
X +K`

U (since X`
i and U `

ij are uncorrelated).

(4.2.2)

As in Chapter II, we use FPCA to decompose X`
i and U `

ij to yield their respective

FPC features. By the truncated Karhunen-Loève expansion we can rewrite (4.1.1) as

Z`
ij(t) =

N1∑
m=1

φ`Xm(t)ξ`Xim +

N2∑
n=1

φ`Un(t)ξ`Uijn (4.2.3)

where the eigenfunctions of X` and U ` are {φ`Xm ;m = 1, · · · , N1} and {φ`Un ;n =

1, · · · , N2}, respectively. Once again, we truncated the infinite sums of the Karhunen-

Loève expansion with finite numbers N1 and N2 as given in (4.2.3). We assume that

the variances are homogeneous in that var(ξ`Xim) = ςXm and var(ξ`Uijn) = ςUn . Notice
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that the above variances do not depend on the subject, i nor the day, j. This is an

important assumption that is used in structured functional principal component anal-

ysis (SFPCA). It is similar to the sphericity assumption in repeated measures Anova

and homogeneity of variance assumption in Anova. We will discuss the ramifications

of this assumption of homogeneity of variance in more detail later in this chapter.

In application to our accelerometer functional data, we truncated the expansion

based on the eigenvalues associated with the eigenfunctions that explain the majority

(greater than 50%) of the variance. Following the procedure in [46] we estimated

the FPC scores ξ`Xim and ξ`Uijn using the best linear unbiased predictor (BLUP) of the

mixed effects model, leading to the following sample counterpart of the decomposition

(4.2.3):

Z`
ij = Φ̂`

Xξ
`
Xi

+ Φ̂`
Uξ

`
Uij
, (4.2.4)

where Z`
ij := (Z`

ij(t1), · · · , Z`
ij(tw)) for w time points (in our case, w will be 1440

corroding to the minutes of the day), Φ̂`
X is the estimate of Φ`

X = (φ`X1
, · · · , φ`XN1

),

Φ̂`
U is the estimate of Φ`

U = (φ`U1
, · · · , φ`UN2

), ξ`Xi ∼ N(0, Λ̂`
X) and ε`Uij ∼ N(0, Λ̂`

U)

(normality is not necessary but assumed for convenience) for estimated eigenvalue

matrices associated with the first N1 and N2 eigenvalues for Φ̂`
X , Φ̂`

U . The steps

needed to obtain (4.2.4) are as follows:

1. Estimate the covariance matrices K̂`
X and K̂`

U .

2. Extract the eigenfunctions Φ̂`
X , Φ̂`

U , and eigenvalue matrices, Λ̂`
X and Λ̂`

U from

Step 1.

3. Solve for the FPC scores, ξ`Xi and ξ`Uij using the means of BLUP in (4.2.4).

Our goal is to use the estimated FPC scores, ξ`Xi , of the subject level process, X`
i (t)

to replace the scores used in Chapter III to perform the analysis. For Step 1, we use
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the method of moment estimators (MoM) in a similar way to what was proposed in

[46]. Specifically, in the case of our model, we have these MoM equations:

E{
(
Z`
ij(t)− Z`

mn(t)
) (
Z`
ij(s)− Z`

mn(s)
)
}

= E{Z`
ij(t)Z

`
ij(s)}+ E{Z`

mn(t)Z`
mn(s)} − E{Z`

ij(t)Z
`
mn(s)} − E{Z`

mn(t)Z`
ij(t)}

=

 2K`
U(t, s), when i = m, j 6= n;

2K`
X(t, s) + 2K`

U(t, s), when i 6= m.

(4.2.5)

Note that our dataset has 395 participants with accelerometer data for 7 days.

Let HU = 1
395∗7∗6

∑395
i=1

∑7
j=1

∑
n6=j(Z

`
ij − Z`

in)(Z`
ij − Z`

in)>, for the 1440 × 1 vec-

tor Z`
ij (representing the 1440 minutes in 24 hours). The denominator, 395 ∗ 7 ∗

6, corresponds to the sum with i = m, j 6= n, where each subject contributes

7 ∗ 6 times in the summation (each day with all other days within subject). Our

MoM estimator, K̂`
U(t, s) would then be obtained as HU

2
. Similarly, we let HX =

1
395∗72∗394

∑395
i=1

∑
m 6=i

∑7
j=1

∑7
n=1(Z`

ij − Z`
mn)(Z`

ij − Z`
mn)>. The denominator, 395 ∗

72 ∗ 394 corresponds to the fact we are summing up when i 6= m so each of the 395

subjects 7 days (395∗7) will be used against all other days for all subject (394∗7). By

MoM, then estimate K̂`
X(t, s) as HU−HX

2
. For Step 2, estimating the eigenfunctions

and eigenvalues from the above matrices is straightforward (e.g. SVD). Step 3 is a

special case of a three-way nested design provided in the appendix of [46]. Following

the same logic, the solution for the two-way nested design is:

ξ̂`Xi
ξ̂
`

Ui

 =

7 ∗ IN1×N1 1> ⊗ (Φ̂
`

X)>Φ̂
`

U

I7×7 ⊗ IN2×N2


 ˆ(Φ

`

X)>Z`
i17

vec((Φ̂
`

U)>Z`
i)

 ,

where Z`
i is a matrix of dimension 1440× 7 whose (m, j)th element is Z`

ij(tm), ξ̂
`

Xi
=

(ξ̂`Xi1 , · · · , ξ̂
`
XiN1

)>, ξ̂
`

Ui
= (ξ̂`Ui11

, · · · , ξ̂`Ui1N2
, · · · , ξ̂`Ui7N2

)>, Ic×c is a c×c identity matrix,

⊗ is the Kronecker product, and vec is an operation of vectorizing a matrix. In total,
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there are 395×N1 FPC estimated scores from the X` process and 395 ∗ 7 ∗N2 FPC

estimated scores from the U ` process. It should be noted that there is another way

proposed in [23] to estimate the FPC scores through Markov Chain Monte Carlo

(MCMC) methods. However, we focused on using the BLUP to estimate the FPC

scores in this dissertation

4.3 MFRS Framework For Decomposed Functional

In Chapter II and Chapter III we defined the vector z`i = (ξ`1, . . . , ξ
`
s`

)>i as the

vector of FPC features from the ith observation for the functional covariate Z` where

` ∈ {1, 2, 3} for our accelerometer data. We set #»z i = [(z1
i )
>, (z2

i )
>, (z3

i )
>]> as the

grand vector of all FPC features from all 3 functional covariates. We consider the

model

yi = x>i β + h( #»z i) + εi, i = 1, · · ·, n.

Modeling the functional data through the truncated FPC scores is a proxy for the

true underlying relationship which follows:

yi = x>i β + f(Z`
i ) + εi, i = 1, · · ·, n, (4.3.1)

where the unknown function f maps the functional, Z` into R. This formulation

applies in the cases of AI or VM. When considering the three axes, f is mapping

(Z1, Z2, Z3) into R. We approximate the function f(Z`
i ) = f(

∑∞
j=1 φ

`ξ`j), with

h(ξ`i1, · · · , ξ`is`) where h is mapping from Rs` into R. Decomposing the functional, Z`

by (4.1.1) we look at approximating the function f̃(Z`
i1, · · · , Z`

i7) = f̃(
∑∞

m=1 φ
`
Xm
ξ`Xim+∑∞

n=1 φ
`
Un
ξ`Ui1n , · · · ,

∑∞
m=1 φ

`
Xm
ξ`Xim +

∑∞
n=1 φ

`
Un
ξ`Ui7n) with

h̃1(ξ`Xi1 , · · · ξ
`
XiN1

) +h̃2(ξ`Ui11
, · · · ξ`Ui1N2

, · · · , ξ`Ui7N2
), where we assume an additive model

for the effects of between and within subject FPC scores through two functions, h̃1
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and h̃2. We primarily focus on modeling h̃1 as an approximation to the function

f̃(Z`
i1, · · · , Z`

i7). The downside of only using the FPC scores from the between in-

dividual process, X`, is that two individuals may have the same averaged physical

activity as evidenced by the X` process yet many vary greatly with the inter-day

variation. For example, an individual who is physically very active one day and phys-

ically very dormant the next day would possibly be treated the same as an individual

who is moderately active on all days. Due to the high number of components that

are extracted for the within subject variation, it becomes difficult to model all of the

FPC scores extracted both from the X` process and the U ` process. The results in the

next section will be of the same format as the results in Chapter III where instead of

using the standard FPCA on the entire functional, we use the FPC scores extracted

from the X` process. For obvious reasons we only decompose the 7-day functional

into the two processes X` and U ` and not the 1-day averaged functional.

4.4 Results using the X(t) process

Tables 4.4 and 4.5 provide the breakdown of the variance of the Z(t) process when

it is decomposed into the between individual process, X(t), and within individual

process, U(t). The contribution from the X(t) process is given by
∑N1
i=1 ς

X
i∑N1

i=1 ς
X
i +

∑N2
j=1 ς

U
j

and the contribution of the U(t) process is equal to
∑N2
j=1 ς

U
j∑N1

i=1 ς
X
i +

∑N2
j=1 ς

U
j

. In section 4.5

we will briefly look at a possible way of using the information contained in U(t).

When relating the accelerometer data to a health outcome, the h̃2 function does

not seem to provide additional information that is not already contained in the h̃1

function with respect to the model fit . When looking at the performance of using

the X(t) process in Tables 4.1 and 4.3 it is more appropriate to compare this with

the 1-day averaged functional tables from Chapter III. This is because both the FPC

scores extracted from the 1-day averaged functional and the FPC scores extracted

71



from the X(t) functional are trying to extract the general diurnal patterns of an

individual. The eigenfunctions extracted from the X(t) process are similar in pattern

to that of the 1-day averaged functionals. See Appendix C for graphs that display the

leading eigenfunctions. The FPC scores in the X(t) process not only outperformed

the FPC scores from the 1-day averaged functional for the MFRS estimator but

outperformed using the full 7-day functional using all three axis (which performed

the best in Chapter III) in the case of Weight and Blood Pulse Pressure (BPP). This

is an indication that decomposing the Z(t) with functional ANOVA might be a way

to proceed with modeling multiple days of wear from an accelerometer. What was

also interesting was that for the health outcome, Weight, the SFPCA procedure with

the VM curve tended to do better than using the tri-axes curves. However, in all

other instances, implementing SFPCA using all tri-axes curves outperformed AI and

the VM functionals when using the best estimator, MFRS. From Table 4.6 we see

that the functional associated with the Y-axis is consistently selected across all three

health outcomes. With an accelerometer worn at the wrist, this is difficult to explain

as there is no dominant plane of motion [10]. However, there is no distinct pattern for

which functionals are selected or discarded among for the COSSO. MFRS was able

to extract information from all three axes for all of the health outcomes. The results

and models are displayed in a similar format to Chapter III with figures in Appendix

C.

Table 4.1: SFPCA R2
AQ using the 7-day functional of 3-D Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+SGL (M1) 0.07 0.24 0.12
LSKM non-additive (M2) 0.10 0.24 0.13

LSKM additive (M3) 0.10 0.25 0.15
FAM+COSSO (M4) 0.10 0.25 0.15
MFRS+SGL (M5) 0.33 0.41 0.54
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Table 4.2: SFPCA R2
AQ using the 7-day functional of VM Activity Count

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+LASSO (VM1) 0.10 0.24 0.12
LSKM non-additive (VM2) 0.15 0.24 0.13

FAM+COSSO (VM4) 0.09 0.26 0.15
MFRS+LASSO (VM5) 0.28 0.44 0.13

Table 4.3: SFPCA R2
AQ using the 7-day functional of AI

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+LASSO (AI1) 0.09 0.24 0.13
LSKM non-additive (AI2) 0.10 0.24 0.13

FAM+COSSO (AI4) 0.10 0.25 0.15
MFRS+LASSO (AI5) 0.16 0.26 0.16

Table 4.4: #FPC Scores that explain ≥ 50%

Functional X process U process (multiply by 7)

ACX 30 50
ACY 31 57
ACZ 25 55
VM 25 49
AI 17 42

Table 4.5: % of variance explained from the decomposition Z(t) = X(t) + U(t)

X process U process

Model Sum of Eigenvalues % of Total Sum of Eigenvalues % of Total
ACX 811280553 18 % 3729411108 82 %
ACY 712722053 19 % 3119611012 81 %
ACZ 726101911 19 % 3092941823 81 %
VM 1081393401 19 % 4737383139 81 %
AI 4344.073 19 % 18629.79 81 %
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Table 4.6: SFPCA Functional selection of 3-D Activity Count for X,Y and Z axis

BMI WEIGHT BPP
Model X Y Z X Y Z X Y Z

Linear Model+SGL (M1)
LSKM non-additive (M2)

LSKM additive (M3)
FAM+COSSO (M4)
MFRS+SGL (M5)

4.5 Joint Modeling with both the X(t) and U(t) processes

4.5.1 Setup

In the previous section we modeled the diurnal physical activity through the FPC

scores extracted from the X(t) process. There were about 50 FPC scores extracted

from the U(t) process for each function as displayed in Table 4.4 for each day (so

7 times that amount was extracted for the 7 days). To distinguish between two in-

dividuals that have the same mean physical activity pattern as presented with the

X(t) process, we decided to take the variance of the FPC scores extracted from the

U(t) process. For example, there were 50 ∗ 7 scores extracted for each individual i for

the functional ACX, {ξ̂1
Uijk
}, j ∈ {1, · · · , 7}, k ∈ {1, · · · , 50}. We made new scores

for each individual, i, ξ̂1
Uik

where ξ̂1
Uik

is the sample variance from {ξ̂1
Ui1k

, · · · , ξ̂1
Ui7k
}.

As explained earlier in this chapter, the assumption SFPCA makes, similar to the

homogeneity of variance assumptions in the ANOVA context, is that the variance

var(ξ1
Uijk

) = ςUk for all i, j. In the context of physical activity, this may not be cor-

rect as peoples diurnal routines do not have to follow the same level of variability.

By looking at sample variance summaries, ξ̂1
Uik

we are allowing for such variability.

Unlike in the previous section where we were concerned with estimating f̃ with h̃1,

we estimate f̃(
∑∞

m=1 φ
`
Xm
ξ`Xim +

∑∞
n=1 φ

`
Un
ξ`Ui1n , · · · ,

∑∞
m=1 φ

`
Xm
ξ`Xim +

∑∞
n=1 φ

`
Un
ξ`Ui7n)
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jointly with

h̃( #»z i) where #»z i = (ξ̂`Xi1 , · · · , ξ̂
`
XiN1

, ξ̂`Ui1 , · · · , ξ̂
`
UiN2

). As before, when considering mul-

tiple functional predictors (unlike the AI or VM) you extend the #»z i vector to accom-

modate all the FPC scores from the three axis ` ∈ {1, 2, 3}.

4.5.2 Results from the joint modeling

From Table 4.10 we see that only the COSSO chose some of the scores from

those of the U(t) process. None of the other estimators selected scores from the U(t)

process for any of the health outcomes. This may indicate that most of the signal

from Z(t) is contained in X(t). For the most part we did not see an improvement

over using the X(t) process alone. This confirms that U(t) may be a “noisy” part of

the decomposition.

Table 4.7: SFPCA R2
AQ using the 7-day functional of 3-D Activity Count using X(t)

and U(t) process.

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+SGL (M1) 0.06 0.24 0.15
LSKM non-additive (M2) 0.10 0.24 0.13

FAM+COSSO (M4) 0.06 0.27 0.13
MFRS+SGL (M5) 0.33 0.41 0.61

Table 4.8: SFPCA R2
AQ using the 7-day functional of VM Activity Count.

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+LASSO (VM1) 0.09 0.23 0.12
LSKM non-additive (VM2) 0.09 0.24 0.13

FAM+COSSO (VM4) 0.10 0.24 0.14
MFRS+LASSO (VM5) 0.28 0.48 0.18
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Table 4.9: SFPCA R2
AQ using the 7-day functional of AI using U(t) and X(t),

Model BMI WEIGHT BPP
Linear Model (M0) 0.07 0.24 0.13

Linear Model+LASSO (AI1) 0.09 0.24 0.12
LSKM+LASSO (AI2) 0.10 0.24 0.13
FAM+COSSO (AI4) 0.10 0.25 0.13
MFRS+LASSO (AI5) 0.21 0.23 0.12

Table 4.10: SFPCA Functional selection of 3-D Activity Count for X,Y and Z axis
for U(t) process.

BMI WEIGHT BPP
Model X Y Z X Y Z X Y Z

Linear Model+SGL (M1)
LSKM non-additive (M2)

FAM+COSSO (M4)
MFRS+SGL (M5)
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4.6 Discussion

In this chapter we presented another method that allows us to handle multiple days

of accelerometer wear through SFPCA. The results from decomposing the accelerom-

eter data into the between and within subjects processes, X(t) and U(t) outperformed

the previous two methods presented in Chapter III of viewing the functional as one

long 7 day functional or 1 day-averaged functional. This could be because we removed

the “noisy” process, U(t), from Z(t). We did not notice much of a difference when

using the U(t) process as well. It seems that using the scores from X(t) extracted by

SFPCA produces the best results overall. However, we did not fully use the informa-

tion in the scores from the U(t) process, just its sample variance. Furthermore, the

MFRS framework assumes a non-additive framework. It might make more sense to

model the sample variance from the U(t) in a separate function from that of the FPC

scores from X(t) as described in Chapter III which leads to an extension of MFRS to

the LSKM additive framework. A key assumption in the functional decomposition is

the homogeneous variance assumption. In reality, this assumption may be violated

as discussed and demonstrated in section 4.5. As mobile devices are worn for longer

periods on end, the ability to estimating separate variance parameters per individual

become more realistic and more appealing. With only 7 days of data, estimating

a separate eigenvalue, ςUik for each individual, i, is challenging, and worth further

exploration.

We can also consider change points in the individual time series of functional

data to allow multiple X`
i (t) processes for the same individual, i. This could happen

suddenly, for example, if someone breaks a limb and becomes immobile, or if someone

becomes more active. In both situations there is a break or a “change” from the

previous physical activity movements as modeled with X`
i (t).

Built on the methodology framework described in Chapter II, this chapter com-
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bined with the modeling framework of Chapter III demonstrates that the MFRS

framework seems to outperform other existing models when relating potential health

outcomes with accelerometer data. Through data analysis we have demonstrated the

superior performance of the MFRS framework over other existing models. Further-

more, using all three axes from the accelerometer is possible with this framework; in

general, the results from our MFRS indicate that this 3-D approach outperforms the

VM and AI summaries. As more people wear accelerometer data for longer periods

of time, the need to extract the signal from the noisy functional data becomes neces-

sary and the MFRS framework has the ability to handle the complex, non-linear and

non-additive potential relationship that other existing models to not have.
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CHAPTER V

Functional Logistic Regression

5.1 Introduction

In the first half of this chapter we will briefly discuss a novel approach to selecting

import points in the context of Kernel Logistic Regression (KLR). In the second

half, we will extend the MFRS framework for a binary outcome. By the representer

theorem presented in Chapter II, the estimate of h ∈ HK is of the form ˆh(·) =∑n
k=1 αkK(·, zk) for training data {z1, · · · , zn}. We will follow the notation described

in [58]. Let S ⊂ {z1, · · · , zn}. We call the elements of S import points. We wish

to estimate our function h as ˆh(·) =
∑

zk∈S αkK(·, zk) using only the subset S of

the training data. The goal is to retain the quality of our estimator (in the case

of a binary outcome our objective is classification) while simultaneously reduce the

computing cost that is associate with large datasets. In the past, the subset S was

chosen independently of the outcome of interest, y [31, 48, 51]. Zhu and Hastie

(2005) proposed a novel approach called Import Vector Machine (IVM) that selects

S and estimates ĥ while taking into account the outcome of interest through a greedy

algorithm approach. We propose an alternative method that transforms the problem

into a problem that iteratively solves the lasso for ordinary least squares.

In the second half of this chapter we will focus on techniques how to implement the

MFRS framework in the context of a binary outcome. The objective is to use the KLR
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method while simultaneously performing variable selection on the FPC scores with the

MFRS framework. For ease of exposition, we will not consider the kernel bandwidth

parameter in this chapter for reasons mentioned in earlier chapters. In addition we

will also not consider a partially linear model but rather a fully parametric model

for a single functional covariate that FPCA has been performed on. The extension

to multiple functional covariates will be immediate obvious by stacking our vector of

interest, z, with the FPC scores from all of the functional covariates and changing

our penalty function from the lasso (or mcp) to the sparse group lasso as described

in detail in Chapter II.

5.2 Background for selection of Import points for KLR

In this section we will provide the necessarily background before presenting the

proposed solution to the selection of import points that we described in the introduc-

tion to this chapter. The idea comes from four different existing statistical methods

that we will briefly review. In previous chapters, the outcome that we considered, y,

was continuous and our MFRS estimator simultaneously performed LSKM and vari-

able reduction on the FPC scores. In this chapter we will consider a binary outcome

y ∈ {0, 1}. Standard parametric logistic regression looks at the following relationship

between y and our FPC scores z:

E(yi|zi) = pi =
expz>i β

1 + expz>i β
. (5.2.1)

From 5.2.1 we see that the linear relationship holds: logit(pi) = z>i β.
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5.2.1 KLR

For non-parametric logistic regression, we are looking at the following equation:

logit(pi) = h(zi) (5.2.2)

where h : Rs 7→ R is an unknown function. Kernel logistic regression (KLR), assumes

(5.2.2) holds where h ∈ HK for some RKHS with kernel K. To solve the KLR for

unknown function h, we look to minimize the following penalized loss function:

min
h∈HK

n∑
i=1

(−yih(zi) + ln (1 + exp(h(zi)))) +
λ1

2
‖h‖2

HK . (5.2.3)

By the representer theorem described in Chapter II, 5.2.3 is equivalent to the follow-

ing:

min
α∈Rn

n∑
i=1

(−yiKiα+ ln (1 + exp(Kiα))) +
λ1

2
α>Kα (5.2.4)

where Ki is the ith row of the matrix K whose ijth entry is K(zi, zj). In matrix

notation, we can write (5.2.4) as

min
α∈Rn

L(α) = −y>Kα+ 1>ln (1 + exp(Kα)) +
λ1

2
α>Kα.

Using the Newton-Raphson algorithm (N-R) to solve (5.2.4) for α we iteratively get:

α(n) = αn−1 −H−1∇L
∣∣
α(n−1)

where ∇L = −K>(y−p)+λ1Kα and the hessian, H = K>PK+λ1K where the ith

entry of n×1 vector p is pi and n×n matrix P = diag{(p1(1− p1), · · · , pn(1− pn))}.

We can solve for α(n) as:

α(n) =
[
K>P(n−1)K + λ1K

]−1
K>P(n−1)m(n−1) (5.2.5)
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where m(n−1) = P(n−1)−1 (
y − p(n−1)

)
+Kα(n−1). The algorithm for solving functional

KLR would be as follows:

KLR Algorithm:

(i) Step1.1: Perform FPCA (e.g. R package fdapace) to extract the functional

component scores for the functional predictor and store it in a vector for each

individual subject zi;

(ii) Step 1.2: Set up a grid of possible tuning parameters for λ1 and initialize α(0)

to be a vector of ones. Perform steps Steps 2-3 below.

(iii) Step 2: At the n-th step in the algorithm, solve for α(n) from equation 5.2.5.

Stop at convergence.

(iv) Step 3: Perform cross-validation over the specified grid of λ1 to determine the

final α

5.2.2 Tikhonov regularization

Consider the standard ordinary least squares problem

β̂ = argmin
β∈Rp

‖y −Xβ‖2
2 . (5.2.6)

This problem may be ill-poised if β̂ is not unique for example, p > n. Tikhonov

regularization addresses this [7] by adding a regularization term to 5.2.6 as follows:

β̂ = argmin
β∈Rp

‖y −Xβ‖2
2 + ‖Tβ‖2

2 . (5.2.7)

Where T is known as the Tikhonov matrix. When T =
√
λIp×p where λ ∈ R we get

what is commonly called ridge regression [25].
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The solution to (5.2.7) is:

β̂ =
[
X>X + T>T

]−1
X>y. (5.2.8)

We see an equivalence between (5.2.5) and (5.2.8). If we let T =
√

λ
2
K

1
2 , X = P

1
2 K

and y = P
1
2 m(n−1) we get that (5.2.5) is the solution to the Tikhonov regularization

problem (5.2.7).

5.2.3 Logistic regression with lasso (L1) penalty

We formulate out loss function for the regularized parametric logistic regression

problem (not KLR) as follows:

min
β∈Rp

n∑
i=1

(
−yix>i β + ln

(
1 + exp(x>i β)

))
+ λ1 ‖β‖1 = min

β∈Rp
L(β) + λ1 ‖β‖1 (5.2.9)

Using the (N-R) algorithm to solve argminβ L(β) (similarly to what was done for KLR

in the previous subsections) we get the well known updated step as the iteratively

reweighted least squares (IRLS) solution:

[
X>PX

]−1
X>Pm(n−1) (5.2.10)

where m(n−1) = P−1 (y − p) + Xα(n−1). This is the solution to the unpenalized

parametric logistic regression and equivalent to:

argmin
β∈Rp

∥∥∥P 1
2 m(n−1) −P

1
2 Xβ

∥∥∥2

2
.
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Combining the lasso penalty at each stage of the (N-R) algorithm we get each stage

of the IRLS solution for the lasso penalized logistic regression as:

β(n) = argmin
β∈Rp

∥∥∥P 1
2 m(n−1) −P

1
2 Xβ

∥∥∥2

2
+ λ1 ‖β‖1 (5.2.11)

which is simply the lasso solution to the standard ordinary least squares problem with

design matrix P
1
2 X and outcome vector P

1
2 m(n−1).

5.2.4 Elastic Net

The elastic net [59] (or more precisely the naive elastic net) aims to regularize

ordinary least squares using the following regularization criteria:

β̂ = argmin
β∈Rp

‖y −Xβ‖2
2 + λ2 ‖β‖2

2 + λ1 ‖β‖1 (5.2.12)

⇐⇒

β̂ = argmin
β∈Rp

‖y −Xβ‖2
2 , subject to(1− α) ‖β‖1 + α ‖β‖2

2 ≤ t for some t, α ∈ R

In the elastic net paper, Lemma 1 provides a way to solve the elastic net problem

by turning it into a simple lasso problem. We will make use of the idea they present

in Lemma 1 which says that when you augment your design matrix X?
(n+p)×p =

(1 + λ2)
−1
2

 X
√
λ2I

 , and outcome vector y? =

y

0

 , then the naive elastic net can

be written as

argmin
β?∈Rp

‖y? −X?β?‖+
λ1√

1 + λ2

‖β?‖1

where the solution to the original elastic net problem (5.2.12) is β̂ = 1
1+λ2

β̂
?
.
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5.3 KLR with Import Selection

Combining the four ideas listed in the previous section we will propose a way

of reducing the dimensions of the columns of the matrix, K in the KLR problem.

First, some notation. We wish to find a subset S of the data {z1, · · · , zn} such

that h̃(z) =
∑

zi∈S α̃ik(z, zi) ≈
∑n

i=1 αik(z, zi) = ĥ(z). Zhu and Hastie (2005) [58]

proposed the Import Vector Machine (IVM) where they use a greedy algorithm to

choose which subset, S, should be used. A desirable goal, once S is determined, is

that h̃ satisfies

h̃ = argmin
h∈span({K(·,zi)};zi∈S)

n∑
i=1

(−yih(zi) + ln (1 + exp(h(zi)))) +
λ1

2
‖h‖2

HK .

We propose the following loss function (minimization of the loss function) with

lasso penalty to accomplish this goal:

min
α∈Rn

L(α) = −y>Kα+ 1>ln (1 + exp(Kα)) +
λ1

2
α>Kα+ λ2 ‖α‖1 . (5.3.1)

Before describing the algorithm to solve (5.3.1), lets discuss the objective of the

penalty term λ2 ‖α‖1. The goal of lasso penalty is to impose sparsity on the α vector.

Let α̂ =

α̃
0

 be the solution to (5.3.1) where we ordered the elements so that α̃ are

all of the non-zero elements first. We can similarity order the columns of the matrix

K. Let Ŝ ⊂ {z1, · · · , zn} where the indices of z that are in the set Ŝ correspond to

the indices of all non-zero α (the α̃ vector). We can order K to correspond to the

non-zero elements of α first and then the remaining columns correspond to the zero

elements of α̂ so K = [K̃ ?]. We have the following equality that we state as a lemma:
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Lemma 8.

L(α̂) =− y>K̃α̃+ 1>ln
(

1 + exp(K̃α̃)
)

+
λ1

2
α̃>K̃(card(S̃)×card(S̃))α̃+ λ2 ‖α̃‖1

= min
α∈Rcard(Ŝ)

L̃(α) = −y>K̃α+ 1>ln
(

1 + exp(K̃α)
)

+
λ1

2
α>K̃(card(S̃)×card(S̃))α+ λ2 ‖α‖1 .

Proof. minα∈Rcard(Ŝ) L̃(α) ≤ L̃(α̃) = L(α̂) since α̃ ∈ Rcard(Ŝ). It suffices to show

that α̃ = argminα∈Rcard(Ŝ) L̃(α). Let α? = argminα∈Rcard(Ŝ) L̃(α). Then we have the

following inequalities:

L(α̂) ≤ L


α?

0


 = L̃(α?) = min

α∈Rcard(Ŝ)

L̃(α).

We set h̃(z) =
∑

zi∈Ŝ α̃iK(z, zi) =⇒ h̃ ∈ span
(
{K(·, zi}; zi ∈ Ŝ

)
. From Lemma

8 and the representer theorem, it is easy to show that we have accomplished the goal

of:

h̃ = argmin
h∈span({k(·,zi};zi∈Ŝ)

n∑
i=1

(−yih(zi) + ln (1 + exp(h(zi))))+
λ1

2
‖h‖2

HK+λ2

∥∥K−1h
∥∥

1
,

where the n × 1 vector, h has ith entry as h(zi) (as a reminder, α = K−1h ). This

is not quite identical to the original goal of:

h̃ = argmin
h∈span({k(·,zi};zi∈Ŝ)

n∑
i=1

(−yih(zi) + ln (1 + exp(h(zi)))) +
λ1

2
‖h‖2

HK .

To accomplish the above goal we can first estimate the set Ŝ using the algorithm

we describe below to solve (5.3.1) and then subsequently use the (N-R) algorithm

in (5.2.5) to solve for α ∈ Rcard(Ŝ). This procedure would be similar in idea to

running OLS after running a Lasso regression using the features selected by the Lasso
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estimator which is, in fact, advocated in [4].

To solve (5.3.1) we notice that without the penalty, we have the (N-R) algorithm

(5.2.5) which corresponds to the Tikhonov regularization problem (5.2.7). Adding on

the L1 penalty we get the following Newton-Raphson like estimation procedure for

α:

αn = argmin
α∈Rn

‖y −Xα‖2
2 + λ1 ‖Tα‖2

2 + λ2 ‖α‖1 . (5.3.2)

where similar to before we have T = K
1
2 , X = P

1
2 K and y = P

1
2 m(n−1). Follow-

ing along the same lines as lemma 1 in the elastic net paper we define X?
2n×n = X

√
λ1T

 ,y? =

y

0

 then (5.3.2) is equivalent to

αn = argmin
α∈Rn

‖y? −X?α‖2
2 + λ2 ‖α‖1 (5.3.3)

which is the lasso estimator. Thus our proposed algorithm to solving (5.3.1) for a

functional covariate is as follows:

Algorithm Import Selection

(i) Step1.1: Perform FPCA (e.g. R package fdapace) to extract the functional

component scores for the functional predictor and store it in a vector for each

individual subject zi;

(ii) Step 1.2: Set up a grid of possible tuning parameters for (λ1, λ2) and initialize

α(0) to be a vector of ones. Perform steps Steps 2-3 below.

(iii) Step 2: At the n-th step in the algorithm, solve for α(n) equation (5.3.2) which

is equivalent to running the lasso solution (e.g. R package oem or glmnet). Stop

at convergence.

(iv) Step 3: Perform cross-validation over the specified grid of (λ1, λ2) to determine
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the final α

As described in the elastic net paper [59], you can pick a small grid of values for λ1,

(0.01, 0.1, 1, 10, 100) to help ease the computationally burden.

5.4 MFRS Logistic Regression

In this section we will outline how to apply the MFRS framework when the de-

pendent variable of interest is binary. The goal, is to fit the KLR problem while

simultaneously performing functional selection (via the FPC scores). We will use the

same notation as defined in Chapter II. For the purpose of this discussion we will

consider a fully non-parametric model (not a partially linear one) and assume that

λ1 and λ2 are fixed. We look to minimize the following objective function:

min
h∈HK,γ∈Rs

n∑
i=1

(−yih(γ ◦ zi) + ln (1 + exp(h(γ ◦ zi)))) +
λ1

2
‖h‖2

HK + λ2 ‖γ‖1 ⇐⇒

min
α∈Rn,γ∈Rs

−y>K(γ; Z)α+ 1>ln (1 + exp(K(γ; Z)α)) +
λ1

2
α>K(γ; Z)α+λ2 ‖γ‖1 .

(5.4.1)

Given γ, minimizing (5.4.1) with respect to α reduces to the KLR problem with FPC

scores, zi 7→ γ ◦ zi. Given α we aim to minimize (5.4.1) with respect to γ which is of

the form

min
γ
L(γ) + λ2 ‖γ‖1

a continuously differentiable (but non-convex) function plus a convex loss. In [43] the

authors review current algorithms that solve the above problem and propose two new

approaches as well. We will adopt a coordinate sub-gradient descent algorithm as de-

scribed in [42]. Adopting the same notation let γj be the estimate of γ in the jth itera-

tion and define γ(j,j−1,γk) :=
(
γ

(j)
1 , · · · , γ(j)

k−1, γk, γ
(j−1)
k+1 , · · · , γ(j−1)

s

)>
where γjq is the es-

timate of γq in the jth iteration and let γ(j,j−1;k) :=
(
γ

(j)
1 , · · · , γ(j)

k−1, γ
j−1
k , γ

(j−1)
k+1 , · · · , γ(j−1)

s

)>
.
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We use the following algorithm which is described in detail in [42] with slight modi-

fications.

Gamma Step Algorithm:

(i) Step 0: Repeat for j = 1, . . . , until convergence (which can be defined as∥∥γ(j) − γ(j−1)
∥∥2

2
≤ ε1 or |L(γ(j)) + λ2

∥∥γ(j)
∥∥

1
− L(γ(j−1)) + λ2

∥∥γ(j−1)
∥∥

1
|≤ ε2

for predefined ε1, ε2 ≥ 0) Steps 1-4

(ii) Step 1: For k = 1, . . . , s in the jth step of the algorithm perform steps 2-4

(iii) Step 2: Calculate g
(j)
k := ∂

∂γk
L(γ(j,j−1,γk))

∣∣
γk=γj−1

k

, L
(j)
k := L(γ(j,j−1;γk))

(iv) Step 3: Calculate the descent direction d
(j)
k where d

(j)
k = argmind∈R L

(j)
k +g

(j)
k d+

λ2

∥∥γ(j,j−1;k) + dek
∥∥

1
where ek is the standard unit vector.

(v) Step 4: Perform an inexact line search algorithm with backtracking that satisfies

the Armijo−Goldstein condition; to find α
(j)
k ≥ 0 where we then set γ(j,j−1;k+1) =

γ(j,j−1;k) + α
(j)
k djkek

To solve for d
(j)
k in step 3 we take the sub-gradient of L

(j)
k +g

(j)
k d+λ2

∥∥γ(j,j−1;k) + d
∥∥

1

(with respect to d).

∂
(
L

(j)
k + g

(j)
k d+ λ2

∥∥γ(j,j−1;k) + dek
∥∥

1

)
=

g
(j)
k + λ2, if d > −γ(j,j−1;k)

g
(j)
k − λ2, if d < −γ(j,j−1;k)

g
(j)
k + λ2 [−1, 1] , if d = −γ(j,j−1;k).
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Since 0 ∈ ∂
(
L

(j)
k + g

(j)
k d+ λ2

∥∥γ(j,j−1;k) + dek
∥∥

1

)
for optimality to be satisfied we

get:

d
(j)
k =

−λ2 − g(j)
k , if − (λ2 + g

(j)
k ) > −γ(j,j−1;k)

λ2 − g(j)
k , if λ2 − g(j)

k < −γ(j,j−1;k)

−γ(j,j−1;k), if 0 ∈
[
−λ2 + g

(j)
k , λ2 + g

(j)
k

]
.

which is equivalent to setting d
(j)
k = median(−λ2 − g(j)

k , λ2 − g(j)
k ,−γ(j,j−1;k)).

To solve for α
(j)
k in Step 4, we can start with an initial αint = 1 and set α

(j)
k as

maxi=0,1...{0.5iαint} where the following criteria is satisfied (this is equivalent to the

Armijo−Goldstein conditions):

L(γ(j,j−1;k) + α
(j)
k d

(j)
k ek) + λ2

∥∥∥γ(j,j−1;k) + α
(j)
k d

(j)
k ek

∥∥∥
1
≤

L(γ(j,j−1;k)) + λ2

∥∥γ(j,j−1;k)
∥∥

1
+ 0.1αjk

(
gjkd

(j)
k + λ2

∥∥∥γ(j,j−1;k) + d
(j)
k ek

∥∥∥
1
− λ2

∥∥γ(j,j−1;k)
∥∥

1

)
.

where we used the same choice of constants (0.1, 0.5) as mentioned in [42]. There are

other options that can be used to solve the inexact line search. The Wolf conditions

[52] are an alternative to the Armijo−Goldstein condition. An exact line search might

also be possible, however, we wanted to keep this algorithm as conceptually simple

as possible.

We now arrive at the MFRS-Logistic algorithm to solve (5.4.1):

MFRS-Logistic Algorithm

(i) Step 1.1: Perform FPCA (e.g. R package fdapace) to extract the functional

component scores for the functional predictor and store it in a vector for each

individual subject zi;
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(ii) Step 1.2: Set up a grid of possible tuning parameters for (λ1, λ2) and initialize

γ̂ to be a vector of ones and α̂ to be a vector of ones. Perform steps Steps 2-4

below.

(iii) Step 2: Perform step 2 in the KLR algorithm with transformed scores γ̂ ◦ zi to

get an updated estimate of α̂.

(iv) Step 3: Perform the Gamma Step Algorithm with the current estimates of γ̂

and α̂ to get an updated estimate of γ̂.

(v) Step 4: Repeat steps 2-3 until convergence.

(vi) Step 5: Perform cross-validation over the specified grid of (λ1, λ2) to determine

the final estimate of (α̂, γ̂).
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CHAPTER VI

Summary and Future Work

In this dissertation we have proposed a novel framework, MFRS, to simultane-

ously perform functional variable selection and model fit in the presence of scalar

counfounders. The framework was tested both via simulation and using real-world

accelerometer data. Before applying the MFRS framework to the accelerometer data,

there were many issues that came up on how to properly pre-process the accelerometer

data and handle multiple days of accelerometer wear. We provided several techniques

on how to deal with both issues. While researching how to extend the MFRS to the

case of a binary outcome we discovered a possible solution to the import selection

problem.

The contribution of the MFRS framework in Chapter II is an important addition

to the literature on both non-linear and non-additive modeling and on functional

variable selection. Currently, the literature does not discuss this relationship. There

is still future work to be done with the MFRS algorithm. The main focus of the MFRS

algorithm was for a continuous outcome for a cross-sectional study. As mentioned at

the end of Chapter II, the MFRS can be extended to the generalized linear mixed

model (GLMM) setting. This is a very natural setting for mobile health devices.

Through constant wear of a mobile health device and subsequent visits to the doctor,

various health outcomes not accounted for in the mobile devices are repeated for
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the individual. It is precisely this setting that future work needs to be devoted too

and that this dissertation scratched the surface of work. As mentioned in Chapter

II and III, it is not clear how to handle multiple days of accelerometer wear. As

society moves toward individuals monitoring their health activity via mobile devices,

it becomes important to ascertain when to detect change points in the corresponding

time series and associate the important functional covariates with the correct health

outcome. For example, if someone wears an accelerometer constantly and visits the

doctor every 6 months for a checkup, it is important to identity which device data

or which functional should be associated with the visit? With non-functional data,

the timing of the measurements usually match between the repeated health outcomes

and covariates of interest. This is indeed a deep question. In a similar vein, while the

MFRS algorithm assumes that the functional is well defined for modeling, in practice,

as we found with the accelerometer data this is not the case. It is not clear how to

properly match up individuals who are wearing the accelerometer over multiple days.

This is because the activity of the individuals do not necessarily correspond with one

another. The days starts and ends for one individual at different times, so if we want

to start and end the activity functional when someone wakes up and goes to sleep,

we might find that one functional is defined on a different time domain (i.e. one

individual might be awake for more time then another).

We hope that this dissertation will inspire future work in the direction of mobile

health data and extend the contributions that we have made towards that goal
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APPENDIX A

Proofs and additional Tables from Chapters 2

A.1 Technical assumptions and proofs

A.1.1 Proof of Theorem 5

By Lemma 8.4 on page 129 in [17] assumptions 1,2 and 3 imply

P (sup
b∈B

1√
n
|
∑n

i=1 εib(zi)|

‖b‖1−ψ
Pn

≥ T ) ≤ c exp(−T
2

c2
), (A.1)

where the constant c is dependent on C1, C2, C3, C4, and ψ. (A.1) holds for all T ≥ c.

This implies that,

sup
b∈B

1√
n
|
∑n

i=1 εib(zi)|

‖b‖1−ψ
Pn

= Op(1). (A.2)

Therefore, for any h ∈ HK and Γ ∈ A we get

√
n(ε, h ◦ Γ− h0 ◦ Γ0)n

(
‖h‖2

HK + ‖h0‖2
HK + ‖Γ‖2

SGL + ‖Γ0‖2
SGL

)−ψ
‖h ◦ Γ− h0 ◦ Γ0‖1−ψ

Pn

= Op(1). (A.3)
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For our estimator, ĥ and Γ̂ we then have

(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n =

Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
.

(A.4)

From Lemma 3 and (A.4) we get the following inequality:

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ1

∥∥∥(ĥ)
∥∥∥2

HK
+ λ2

∥∥∥(Γ̂)
∥∥∥2

SGL
≤

Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
+ λ1 ‖h0‖2

HK + λ2 ‖Γ0‖2
SGL .

(A.5)

We need λ1 = Op(1)λ2 which implies that λ2 and λ1 go to zero at the same rate.

We will show at the end of the proof what happens if they are not of the same order.

Therefore, without loss of generality, assume λ1 = λ2. We will call it λ. We can

divide (A.5) into two cases.

Case 1: If

Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
≥ λ

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
we have

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL

)
≤

Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
.

(A.6)
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We have two subdivided cases to consider for (A.6):

Case 1a: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≤
∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
then

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL

)
≤

Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL

)ψ
.

(A.7)

Therefore,

(∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL

)ψ
≤ Op(n

− ψ
2(1−ψ) )

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥ψ
n
λ−

ψ
1−ψ (A.8)

and we get

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(n
− 1

2(1−ψ) )Op(λ
− ψ

1−ψ )∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
= Op(n

− 1
1−ψ )Op(λ

− 1+ψ
1−ψ )

(A.9)

Case 1b: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≥
∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
then∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
= Op(‖h0‖2

HK + ‖Γ0‖2
SGL)Op(1) .

Therefore,

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(n
− 1

2(1+ψ) )
(
‖h0‖2

HK + ‖Γ‖2
SGL]

) ψ
1+ψ ,

and we get

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(n
− 1

2(1−ψ) )Op(λ
− ψ

1−ψ ),∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
= Op(n

− 1
1−ψ )Op(λ

− 1+ψ
1−ψ ).

(A.10)

These are the same rates as (A.9).

Case 2: If
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Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
≤ λ(‖h0‖2

HK + ‖Γ0‖2
SGL),

then,

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL

)
≤ 2λ

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

This implies that

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(λ
1
2 )
(
‖h0‖2

HK + ‖Γ0‖2
SGL

) 1
2 ,∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
= Op(1)

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

(A.11)

To make (A.11) and (A.9) the same rates we want to equate the termsOp(λ
1
2 )
(
‖h‖2

HK + ‖Γ‖2
SGL

) 1
2

with Op(n
− 1

2(1−ψ) )Op(λ
− ψ

1−ψ ) and solve for a common λ. So for

λ−1 = n
1

1+ψ
(
‖h‖2

HK + ‖Γ‖2
SGL

) 1−ψ
1+ψ

we get that (A.9), (A.10), (A.11) are

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(n
− 1

2(1+ψ) )
(
‖h0‖2

HK + ‖Γ0‖2
SGL

) ψ
1+ψ , (A.12)∥∥∥ĥ∥∥∥2

HK
+
∥∥∥Γ̂
∥∥∥2

SGL
= Op(1)

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
(A.13)

which completes the proof.

If we try to separate out λ1 and λ2 we would run into the following issue. Taking

Case 2 as an example we see:

Case 2: If
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Op(n
− 1

2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

)ψ
≤ λ1 ‖h0‖2

HK + λ2 ‖Γ0‖2
SGL ,

we now need to subdivide this into two cases:

Case 2a: If λ1 ‖h0‖2
HK ≤ λ2 ‖Γ0‖2

SGL then, following the same logic as before:

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(λ
1
2
2 ) ‖Γ0‖SGL),∥∥∥ĥ∥∥∥2

HK
= Op(

λ2

λ1

) ‖Γ0‖2
SGL ,∥∥∥Γ̂

∥∥∥2

SGL
= Op(1) ‖Γ0‖2

SGL .

(A.14)

Case 2b: If λ1 ‖h0‖2
HK ≥ λ2 ‖Γ0‖2

SGL then following the same logic as before:

∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n

= Op(λ
1
2
1 ) ‖h0‖HK),∥∥∥Γ̂

∥∥∥2

SGL
= Op(

λ1

λ2

) ‖h0‖2
HK ,∥∥∥ĥ∥∥∥2

HK
= Op(1) ‖h0‖2

HK .

(A.15)

We see that we have terms Op(
λ1

λ2
) and Op(

λ2

λ1
). We therefore need λ1 and λ2 to

go to zero at the same rates.

We can think of our estimator ĥ ◦ Γ̂ as one object. See Appendix B for more

details on this, which can explain why we have one rate for the two penaltys.

A.1.2 Proof of Corollary 6

We will use the following lemma from page 20 in [17].

Lemma 9. A d dimensional ball of radius R, Bd(R), in Rd with Euclidean metric

can be covered by (4R+δ
δ

)d balls of radius δ.

We have shown in the proof for Theorem 1 that the optimal γ vector is restricted to

be within a ball of a radius that depends on the norm of Y. For the sake of simplicity
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let us confine our γ to be within a norm ball of radius 1, γ ∈ {‖γ‖2
2 ≤ 1}. We then

confine our set which we called A to be restricted to those γ, that is A = {Γ : Γ(z) =

γ◦z where γ ∈ {‖γ‖2
2 ≤ 1}. Since our γ ∈ Rs, we can use Lemma 4 and cover our set

A with N1 =
(

4+δ
δ

)s
number of functions in the following sense. The ball of radius 1 in

Rs can be covered (using the euclidean metric) by {γ1, · · ·γN1
}. Since there is a one to

one relationship between the functions Γ and γ, take the set {Γ1, ...ΓN1} and define the

metric between some Γj and Γk in the set A as d(Γj,Γk) =
∥∥γj − γk∥∥2

. Then, the set

of functions {Γ1, ...ΓN1} is a δ covering forA under this metric with entropy s log(4+δ
δ

).

For each Γj we have an induced RKHS, HK◦Γj = {h ◦ Γj : h ∈ HK} with entropy no

larger then that ofHK which we are assuming has entropy≤ Aδ−2ψ for some ψ ∈ (0, 1)

and A ∈ R. Therefore, the covering number N2 = N(δ,HK◦Γj , Pn) ≤ expAδ
−2ψ

which

implies that for every Γj there exists a set {hj1 ◦ Γj, · · · , hjN2
◦ Γj} where for every

h ◦ Γj ∈ HK◦Γj there exists an integer i ∈ {1, ...N2} where ‖h ◦ Γj − hji ◦ Γj‖Pn ≤ δ.

Our set B is essentially looking at the union of the different Hilbert spaces of the

form HK◦Γ. Based on our setup, a natural guess of the delta covering number of

this set would be roughly of size N1 × N2 where we consider functions of the form

{h11 ◦ Γ1, · · · , h1N2
◦ Γ1, · · · , hN11

◦ ΓN1 , · · · , hN1N2
◦ ΓN1}. In addition, we add N2

functions from the set {h1 ◦ Γ0, · · · , hN2 ◦ Γ0} where Γ0 is the true Γ0 (or one of

the true Γ0) we are trying to estimate. Since HK◦Γj is a Hilbert space for every

j, if h ◦ Γj ∈ HK◦Γj so is
h◦Γj

‖h‖2HK+‖h0‖2HK+‖Γj‖2SGL+‖Γ0‖2SGL
. We can simply ignore the

denominator and substitute
h◦Γj

‖h‖2HK+‖h0‖2HK+‖Γj‖2SGL+‖Γ0‖2SGL
with h̃ ◦ Γj ∈ HK◦Γj where

h̃ = h
‖h‖2HK+‖h0‖2HK+‖Γj‖2SGL+‖Γ0‖2SGL

.

We will now formally prove Corollary (??).

Proof. Set M = suph < ∇h(z),∇h(z) > where the inner product is the standard

euclidean inner product (this is for a fixed z, or we can take the suph∈Hk,z∈Rs <

∇h(z),∇h(z) > since we are assuming the gradient is uniformly bounded). Let
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N1 =
4+

(
δ

3M
1
2

)
(

δ

3M
1
2

)
s

which is the number of balls needed to provide a
(

δ

3M
1
2

)
covering for

a norm 1 ball in Rs. Let N2 = exp(A( δ
3

)−2ψ) which is the covering number needed to

provide a δ
3

cover of our space HK.

Let

˜̂
h ◦ Γ̂− h̃0 ◦ Γ0 =

ĥ ◦ Γ̂∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

− h0 ◦ Γ0∥∥∥ĥ∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥∥Γ̂
∥∥∥2

SGL
+ ‖Γ0‖2

SGL

be an arbitrary function in the set B. There exists an Γj where j ∈ {1, ...N1}

such that d(Γj, Γ̂) ≤ δ
3 max
i=1,··· ,n

‖zi‖2
√
M

, and there exists a i where i ∈ {1, ...N2} such

that
∥∥∥˜̂
h ◦ Γj − hji ◦ Γj

∥∥∥
Pn
≤ δ

3
. Similarly, there exists a t ∈ {1, ...N2} such that∥∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥∥
Pn
≤ δ

3
. We construct our approximating function of

˜̂
h◦ Γ̂− h̃0 ◦Γ0

as hji ◦ Γj − ht ◦ Γ0. We will show that this function is within δ of our arbitrary

function
˜̂
h ◦ Γ̂− h̃0 ◦ Γ0. We have:

∥∥∥(
˜̂
h ◦ Γ̂− h̃0 ◦ Γ0)− (hji ◦ Γj − ht ◦ Γ0)

∥∥∥
Pn
≤∥∥∥˜̂

h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
∥∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥∥
Pn
≤∥∥∥˜̂

h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
δ

3
=∥∥∥˜̂

h ◦ Γj − hji ◦ Γj +∇˜̂
h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3

where we used the mean value theorem for multivariate functions:

˜̂
h ◦ Γ̂(z) =

˜̂
h ◦Γj(z) +∇˜̂

h(C(z))( ˆΓ(z)−Γj(z)) for some vector z ∈ Rs that lies in the

segment from γj ◦ z and γ̂ ◦ z. C(·) is an unknown function that maps from Rs into
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Rs that allows for the formula to hold. Continuing our chain of inequalities we get

∥∥∥˜̂
h ◦ Γj − hji ◦ Γj +∇˜̂

h(C(·))(Γ̂− Γj)
∥∥∥
Pn

+
δ

3
≤∥∥∥∇˜̂

h(C(·))(Γ̂− Γj)
∥∥∥
Pn

+
δ

3
+
δ

3
=√√√√ 1

n

n∑
i=1

(
∇˜̂
h(C(zi))(Γ̂(zi)− Γj(zi))

)2

+
δ

3
+
δ

3
≤

√√√√ 1

n

n∑
i=1

M ‖γ̂ ◦ zi − γj ◦ zi‖2
2 +

δ

3
+
δ

3
≤

√√√√√M

 δ

3 max
i=1,··· ,n

‖zi‖2

√
M

2

max
i=1,··· ,n

‖zi‖2
2 +

δ

3
+
δ

3
=

δ

3
+
δ

3
+
δ

3
= δ.

So to provide a δ cover we need N1 ×N2 +N2 number of functions or

exp(A( δ
3

)−2ψ)

4 +
(

δ

3M
1
2

)
(

δ

3M
1
2

)
s

+ exp(A( δ
3

)−2ψ) =

expÃ(δ)−2ψ

(
C + δ

δ

)s
+ expÃ(δ)−2ψ

,

where Ã = A
3−2ψ and C = 12M

1
2 . Taking the log we see the entropy is ≤ Ãδ−2ψ +

log((C+δ
δ

)s+1 which is of the same order as ≤ Ãδ−2ψ (the log term is dominated by the

first term). Therefore a sufficient (but not necessary) condition for our set B to have

the same entropy as that of the original RKHS HK is for the suph < ∇h(z),∇h(z) >

to be bounded. Having bounded derivatives is reasonable for any RKHS since every

102



RKHS satisfies a ”sort of” Lipschitz condition where

|h(X)− h(Y )|= |< h,KX > − < h,KY > |≤

‖h‖HK < KX ,KY >
1
2 = ‖h‖HK d(X, Y )

Where the distance metric in Rs is defined as d(X, Y )2 = K(X,X) − 2K(X, Y ) +

K(Y, Y ) If we restrict our functions in the RKHS of norm ≤ C for some constant C

then we have a universal Lipschitz constant C which implies bounded derivatives.

A.2 Gauss-Newton Algorithm

The Gauss-Newton method for non linear optimization looks at the class of min-

imization problems of the form

min
υ

1

2
‖F (υ)− y‖2

H2
(A.1)

for a differentiable (Fréchet or Gateaux) operator F : H1 7→ H2 where H1 and H2 are

Hilbert spaces, and solves for υ by iterating

υn+1 = υn − [F
′
(υn)?F

′
(υn)]−1F

′
(υn)?(F (υn)− y) (A.2)

where F
′
(υn)? is the adjoint of F

′
(υn). For our purposes, we are mapping from

Rs 7→ Rn so the adjoint is just the transpose of the matrix associated with the linear

operator F
′
(υ). At each iteration of the Gauss-Newton method, this is equivalent

to linearizing the function F and solving for υn+1 where υn+1 is the solution to the

following minimization problem:

min
υ

1

2

∥∥∥F (υn) + F
′
(υn)(υ − υn)− y

∥∥∥2

H2

(A.3)
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Salzo and Villa (2012) [40] extend that method and proposed the proximal Gauss-

Newton method which looks at the class of minimization problems:

min
υ

1

2
‖F (υ)− y‖2

H2
+ J(υ), (A.4)

where F is smooth with respect to υ and J is a convex but possibly non-smooth

function with respect to υ. They proposed a proximal Gauss-Newton algorithm to

solve problems of the form in equation (A.4) by linearizing the functional in (A.4)

and solving for υn+1 by iterating

min
υ

1

2

∥∥∥F (υn) + F
′
(υn)(υ − υn)− y

∥∥∥2

+ J(υn) (A.5)

which is equivalent to setting

υn+1 = prox
H(x)
J (υn − [F

′
(υn)?F

′
(υn)]−1F

′
(υn)?(F (υn)− y)) (A.6)

where the proximal operator prox
H(x)
J (y) = arg minx∈χ(1

2
‖x− y‖2

H +J(x)) and where

H(x) := F
′
(x)?F

′
(x). This H induces a new inner product and norm denoted by

‖·‖H where < x, z >H = < x,Hz > . We see an equivalence between the proximal

Gauss-Newton algorithm and the algorithm we propose in Section 3 step (iii) of our

paper.

A.3 Additional Simulation Results in Scenario 2
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APPENDIX B

Additional Graphs for Chapters 3

B.1 Additional Graphs from ELEMENT dataset from Chap-

ter 3

Figure B.1: Leading Eigenfunction extracted for Tri-axis 7-day functional data
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Figure B.2: Leading Eigenfunction extracted for VM 7-day functional data

Figure B.3: Leading Eigenfunction extracted for Tri-axis 1-day averaged functional
data
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Figure B.4: Leading Eigenfunction extracted for VM 1-day averaged functional data
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APPENDIX C

Additional Graphs for Chapters 4

C.1 Additional Graphs from ELEMENT dataset from Chap-

ter 4

Figure C.1: Leading Eigenfunction extracted from X(t) process for Tri-axis data

109



Figure C.2: Leading Eigenfunction extracted from U(t) process for Tri-axis data

Figure C.3: Leading Eigenfunction extracted from X(t) and U(t) process for VM
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Figure C.4: Leading Eigenfunction extracted from X(t) and U(t) process for AI
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