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Abstract

77 GHz Millimeter-wave (mmWave) radar serves as an essential component among many
sensors required for autonomous navigation. High-fidelity simulation is indispensable for
nowadays’ development of advanced automotive radar systems because radar simulation can
accelerate the design and testing process and help people to better understand and process the radar
data. The main challenge in automotive radar simulation is to simulate the complex scattering
behavior of various targets in real time, which is required for sensor fusion with other sensory
simulation, e.g. optical image simulation.

In this thesis, an asymptotic method based on a fast-wideband physical optics (PO)
calculation is developed and applied to get high fidelity radar response of traffic scenes and
generate the corresponding radar images from traffic targets. The targets include pedestrians,
vehicles, and other stationary targets. To further accelerate the simulation into real time, a physics-
based statistical approach is developed. The RCS of targets are fit into statistical distributions, and
then the statistical parameters are summarized as functions of range and aspect angles, and other
attributes of the targets. For advanced radar with multiple transmitters and receivers, pixelated-
scatterer statistical RCS models are developed to represent objects as extend targets and relax the
requirement for far-field condition. A real-time radar scene simulation software, which will be
referred to as Michigan Automotive Radar Scene Simulator (MARSS), based on the statistical

models are developed and integrated with a physical 3D scene generation software (Unreal Engine
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4). One of the major challenges in radar signal processing is to detect the angle of arrival (AOA)
of multiple targets. A new analytic multiple-sources AOA estimation algorithm that outperforms
many well-known AOA estimation algorithms is developed and verified by experiments.
Moreover, the statistical parameters of RCS from targets and radar images are used in target
classification approaches based on machine learning methods.

In realistic road traffic environment, foliage is commonly encountered that can potentially
block the line-of-sight link. In the second part of the thesis, a non-line-of-sight (NLoS) vehicular
propagation channel model for tree trunks at two vehicular communication bands (5.9 GHz and
60 GHz) is proposed. Both near-field and far-field scattering models from tree trunk are developed
based on modal expansion and surface current integral method. To make the results fast accessible
and retractable, a macro model based on artificial neural network (ANN) is proposed to fit the path
loss calculated from the complex electromagnetics (EM) based methods.

In the third part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna
designs are discussed to enable polarization diversity for next generation communication system.
The first design is a compact horizontally polarized (HP) antenna, which contains four folded
dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The second one is
a circularly polarized (CP) antenna. It is composed of one ultra-wide-band (UWB) monopole, the
compact HP antenna and a dedicatedly designed asymmetric power divider based feeding network.
It has about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain

of 0.9 dBi.
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Chapter 1  Introduction

1.1 Motivation

Autonomous vehicle, a concept often seen in Sci-Fi films is coming to reality brought by
the integration of many advanced technologies including sensors, control, communication and
artificial intelligence. This topic of research is of importance to automotive industry, academia and
policy makers as it is believed to benefit the society in many aspects including improving the road
safety, relieving traffic congestion and parking problem, reducing the transportation cost and
providing more mobility for young, old and disabled people [1]. Unlike many other technological
innovations in this information era including computer, internet, cell phone and smart home
devices, the failure or malfunction for autonomous vehicle is unacceptable since the mistake or
failure of autonomous car may lead to injury or even death. Thus, before an autonomous car can
be offered to the market, the autonomous vehicle’s performance is required to be tested for almost
all traffic scenarios. In fact, millions of miles of road test is required for the autonomous car as an
established standard by many well-known companies including Google/Waymo, Tesla,
GM/Cruise, Ford, and etc. [2]. Sensors including radar, camera and Lidar must satisfy the
requirements of performance and reliability in the road test as well.

Sensors of the autonomous vehicle detect the environment and generate data to represent
the surroundings. Among the three commonly seen sensors, camera and Lidar can provide higher
resolution images than radar, but radar has the advantages of low cost and target range and speed

measurement capability [3]. Radar has been installed on vehicles for decades. In the middle 1970s,



many automobile manufacturers like AEG-Telefumkenl/Bosch, Daimler-Benz/SEL and Lucas
start to put radars on their products [4], and their main purpose was for collision warning/avoidance
[5]. Advanced radars with beam-steering capabilities by either mechanical or digital beam-forming
technique are also developed to produce radar images [6]-[9]. The radar images can be used in
target recognition by itself or fused with the data obtained from other sensors for autonomous

vehicle.
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Figure 1.1. Sensors distribution for a typical autonomous car [12]

Automotive radars nowadays are regulated to mainly operate on two different bands: 24
GHz and 77 GHz [7]. Among them, 77 GHz is more popular due to its potential higher resolution
and smaller antenna dimensions. The 77 GHz millimeter wave (mmWave) band can be further
divided into two bands: one from 76 GHz to 77 GHz is mainly used for long-range or medium-
range radar, and the other from 77 GHz to 81 GHz is usually applied by short-range radar [10].
The long-range mmWave radar is usually placed on the front of the car and the short-range radar
could be on front, side or the back of the vehicle as is shown in Figure 1.1. The long-range radar
has narrow beamwidth and is preferred beam-steering capabilities. The short-range radars have

wide beamwidth for broad coverage, and wide bandwidth for accurate range resolution. They are



mainly used for collision detection/avoidance. The worldwide market size for automotive radar is
4.7 billion dollars in 2018 and is expected to grow to 7.9 billion dollars in 2021 [11]. The growth
of market demanding accelerate the emergence of advanced radar system with better performance.
During the continuous measurements in road test, it is difficult to compare the ground truth
with measured data to evaluate the performance especially for the radar. The traffic scenes are
usually complex and dynamic systems, and the ground truth information can hardly be monitored
accurately and thoroughly. On the other hand, high-fidelity simulations are not only costing much
less money and time, but also can provide all ground truths of the surroundings of the car. Besides,
it can easily repeat scenes for more careful examinations about some important scenarios that rare
occur in real life, e.g. traffic accidents. Moreover, radar simulation is more demanding than camera
and Lidar since the data acquired by camera and Lidar are purely images and easier to be
recognized by human, the corresponding targets can be more clearly identified and labeled
manually for supervised learning. By contrast, the physical behaviors of radar signals are more
complicated, counterintuitive and need more effort to be compared with ground truth. Therefore,
simulations for radar response are more challenging and very valuable for autonomous car research.
Besides the automotive radar, another emerging application of mmWave technology in
autonomous vehicle is the mmWave vehicular communication. The vehicular communication
includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X)
communication systems [13]. In vehicular communication, one vehicle is linked to other vehicles
or infrastructure, the shared information may be for the safety or entertainment / working purpose.
Information like accidents, road and weather condition, speed-warning message or sensory data
from other vehicles are useful in improving the safety and comfort of passengers in the vehicle

[14]. A wireless network in vehicles and infrastructures can also be applied in the intelligent



transportation system. The system is designed to provide higher level of security and convenience
for vehicles and pedestrians, for example, it may coordinate the vehicles in changing lanes or
choosing routes [14] [15]. A standard IEEE 802.11p has been assigned for vehicular
communication with frequency band at 5.9 GHz and 75MHz bandwidth [15]. For autonomous
vehicles’ communication, the demand in data rate could be hundreds of Mb/s to several Gb/s in
sensory sharing system or video streaming [13], which drive the spectrum selection to mmWave
range to achieve wider bandwidth. The potential mmWave (30-300 GHz) bands could be used in
vehicular communication are unlicensed 60 GHz band, 5G band at 28 GHz and 38 GHz, and
automotive radar bands (24 GHz and 77 GHz) [16]. The 60 GHz band is most promising in
vehicular communication since it has the least interference with other communication / radar
systems, and its 7 GHz bandwidth from 57 to 64 GHz is largest among all the bands [16][17]. The
drawback of 60 GHz is the high signal attenuation in air due to the oxygen absorption with
attenuation rate ranges from 7 to 15.5 dB/km [16], thus it is only suitable for short range
communication system. Nevertheless most links in vehicular communication is in short range so
it is still a good candidate band.

1.2 MMW automotive radar response simulation and signal processing
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Figure 1.2. Simplified block diagram of FMCW radar signals in (a) time domain and (b)

frequency domain



Radar can detect the range, speed, angle of arrival and radar cross section (RCS) of the
targets. The simulation or signal processing for detecting range and speed has been well studied
[18]-[22]. Depending on the type of radar, different mechanisms are utilized to detect range and
speed. Frequency modulated continuous wave (FMCW) radar is the most popular type in
automotive radar application due to its fast response time, low cost and low power consumption.
The simplified block diagram of FMCW radar is shown in Figure 1.2 (a). Transmitter will generate
frequency modulated signals and send EM wave signals out by antennas, then the signals get
reflected by targets and captured by receivers. For FMCW radar, the received signals are mixed
with transmitted signals by a frequency mixer, and by examining the spectrum domain of the IF
signal, one can extract the range and speed information of targets. The same process in frequency
domain is depicted in Figure 1.2 (b). The procedure that wave propagating in air and scattered
back to receiver can be treated as a system G (f), and the received signal S,.(f) = S:(f) - G(f).
The mixed signal in IF band is the convolution of the two signals in frequency domain.

Simulation for the RCS of targets, i.e. the frequency response of the system G (f) is more
complicated than signal processing simulation as RCS simulation relies on deep understanding of
the electromagnetic (EM) scattering phenomenon from all types of targets. Typical traffic targets
are electrically large, for example, a 1.8 m tall pedestrian is more than 400 wavelengths at 77 GHz,
which makes it almost computationally impossible to be simulated by full-wave simulation
methods like method of moment (MoM) [23], finite element method (FEM) [24] and finite-
difference time-domain method (FDTD) [25]. There are many high-frequency asymptotic methods
for electrically large problems, including physical optics method (PO) [26]-[28], geometric optics
(GO) or ray-tracing based shooting and bouncing rays method (SBR) [29] [30], and uniform

geometric theory of diffraction (UTD) [31] [32]. Each of them has its own advantages and best



applicable scenarios. PO calculates scattered field from integral of equivalent surface current, and
it is accurate for convex surface whose radii of curvature is much larger than the wavelength, but
it is inefficient in calculating multi-scattering or higher order solutions. SBR treats EM wave
propagation as light, and on boundary the wave gets reflected and/or refracted with GO rule. It can
solve the multi-scattering problem so usually it is applied for concave geometry like cavities. UTD
includes the diffraction field that neglected in GO solution and make it more accurate for edge or
vertices scattering problem.

Another type of targets for automotive radar is distributed targets, i.e., the road surface.
The road surface condition includes material, roughness, debris or pothole, weather related
conditions like wet, icy or snowy. Correct recognition of road surface condition is important for
driving safety especially in severe weather such as heavy rain, snow. Some researches use the
speed sensor, GPS and/or accelerometer to detect the slip or friction coefficient between tire and
road to identify the road conditions [33]-[35]. The drawback of such detection is that it could only
detect the road condition under the vehicle with ignorance of the condition of front road, which
cause potential danger to the autonomous vehicle as it may be too late to react for terrible or
slippery road condition. The usage of optical sensors and cameras in recognition of the front road
condition are reported in literatures as well [36] [37]. Compared to radar, optical sensor or camera
has higher resolution and more sensitive to the change of roughness, but they are also more
severely affected by weather conditions. Some radar measurements are reported for various road
conditions at 24 GHz [38] and 94 GHz [39]. They show promising results in using radar to identify
different road conditions. For mmWave radar, the backscattering from road surface are contributed
by two parts: the surface scattering and volumetric scattering as described in Figure 1.3. The

volumetric scattering from road surface is very difficult to evaluate numerically. Because first the



distribution of permittivity of the ingredients in the road is unknown and varies from different
types of road. Second, the dimensions the ingredients could be smaller or larger than wavelength
in mmWave range so asymptotic methods may fail for this problem, besides full-wave methods
requires too many computational resources that normal computers can acquire to accurately

evaluate such problem.
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Figure 1.3. mmWave Backscattering from road can be divided into two parts: from rough surface
and inhomogeneous medium of road

In standard FMCW radar signal processing, during one chirp period of the FMCW radar,
the frequency of the signal sent by FMCW radar is monotonic with time. For stationary targets, by
taking Fourier transform (FT) of the mixed signal in time domain, one can obtain the frequency
difference between received signal and transmitted signal, which is corresponding to the time
difference between the two signals and the range information of targets [18]. If the target is moving
relative to radar, the phase of the mixed signal contains a Doppler shifting term varying from chirp
to chirp, by applying second FT, the speed information can be revealed [19][20]. To obtain the
angle of arrival (AOA) or direction of arrival (DOA) information from targets, a straight forward
solution is to scan its main beam either by mechanical scanning or digital beamforming through
antenna array or MIMO array [21][22]. If the targets with the same range and Doppler bin are

sparse, super-resolution AOA estimation algorithms for multiple sources can be applied to identify



the AOA with resolution much smaller than the beam width. There are many known AOA
estimation algorithms such as subspace methods MUSIC [40][41], ESPRIT [42] and optimization
approach maximum likelihood method [43]. In subspace methods, the essential idea is to obtain
the correlation matrix of the signals, which requires at least M snapshot to have good performance,
where M is the number of channels. However, in automotive radar application, a single snapshot
AOA estimation is desired as vehicles could move very fast and different snapshots may be
corresponding to different AOA. Maximum likelihood method is applicable but the computational
complexity increases dramatically with the number of targets. Therefore, to support the real-time
signal processing for highly dynamic systems like autonomous vehicles, a more efficient AOA
estimation algorithm based on small number of or even single snapshot is needed.

The RCS information of target are useful not only in high-fidelity radar simulations, but
also in target identification and classification. Radar has the ability of detecting target in further
range than camera or Lidar, and target in far range can be considered as point target. Because of
the complex geometry of traffic targets, the RCS usually fluctuates a lot as a function of frequency
or aspect angles, however, statistically the RCS of different types of targets are distinct and the
RCS of same types could be similar. For example, the RCS difference between an adult and a kid
should be much smaller than that between an adult and a car. Some studies on target identification
by Radar are based on the range or Doppler information [44] [45]. This thesis is focusing on
classifying targets based on their RCS information.

1.3 MMW propagation model for vehicular communication

Wireless communication in real life often suffers from non-line-of-sight (NLoS)

propagation issues like multipath or signal blockage. In mmWave band, such problem is more

significant as obstacles are electrically larger for shorter wavelength and therefore can scatter and



block signals more severely. The obstacles in typical traffic scene include vehicles, buildings,
pedestrians and cylindrical shape objects like tree trunk, lamp post, traffic light post, and etc. The
complexity of traffic scene makes it very difficult to simulate the mmWave wave propagation in
such environment, and many researchers are trying to characterize the mmWave propagation
channel model by measurements [46]-[48]. Those linear or exponential models for the pathloss
given in those literatures are simple and easy to use, but the variation of the measured data is
significantly high among different locations with the same range, which indicates limited accuracy
when applied to other scenarios. Compare to modeling the pathloss for the entire traffic scene, it
will be easier and more accurate to model the pathloss for specific types of obstacles. The path
loss due to NLoS propagation through vehicles and pedestrians in mmWave range are
characterized by measurements in literatures [49]-[51]. They show rapidly changing in pathloss
with small disturbance to the system, e.g. movement of vehicles or pedestrians. Because of the
complexity of the wave scattering phenomenon, the pathloss is fitted into linear or exponential

function of distance.




Figure 1.4. lllustration of NLoS propagation in V2V scenario
1.4 Broadband Omnidirectional antenna design

Omnidirectional antenna is favorable in many wireless communication applications since
it can have largest signal coverage. With MIMO or synthetic aperture radar (SAR) techniques,
high gain antenna pattern with beam-steering ability can be achieved by combining many
omnidirectional antennas. Besides, broadband feature can enhance the data rate in communication
and improve the resolution in radar system. Therefore, it is also desired in the vehicular
communication and 5G communications, and in advanced radar system [54].

Dipole and monopole antennas are the most commonly seen omnidirectional antennas and
have been widely used in many types of communication systems like cellular base station, Wi-Fi
router, and radios. The usage of such antennas has a long history and can be traced back to 1887
by Heinrich Hertz [55]. Those antennas usually have simple structure and easily achieve small
gain variance in azimuth direction, and high radiation efficiency. Since more than a decade ago,
several wideband or ultra-wideband (UWB) monopole or dipole antennas have been reported
[56][57][58]. Compared to traditional linear wire antennas, these antennas have large dimension
in azimuth directions, therefore can form multipole resonances for the current. They can reach
more than 100% impedance bandwidth.

A dipole or monopole antenna is vertically polarized (VP) and has an omnidirectional
radiational pattern. For better communication systems and polarimetric radar where polarization
diversity is considered, horizontally polarized (HP) omnidirectional antenna is required. Ideally
small loop antenna can be treated as magnetic dipole and thus provide HP omnidirectional
radiation pattern [55], but because of its small impedance, small loop antenna has poor radiation

efficiency and extreme narrow bandwidth. One way to overcome those issues is to increase the
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size of loop antenna. Some modified large loop antennas are reported to generate HP
omnidirectional patterns [59]-[63], but still they all have limited bandwidth (<30%). To achieve
wider bandwidth, many designs utilize square array geometry with four wideband horizontally
polarized elements [64]-[66]. These antennas are reported to have bandwidth of 30%~41%. To
further increase the bandwidth, one design employs 8-element array with octagonal shape [67]. It
has about 62.5% bandwidth, however, its dimension is quite large (~0.79Ax0.79A, A is the
wavelength for lowest operating frequency) and the gain variation is more than 3 dB in azimuth
direction.

In addition to linear polarization like VP and HP, another popular polarization in use is
circular polarization (CP). CP wave has the property that the polarization of E field keeps rotating
with time and distance from the antenna, therefore CP wave is insensitive to the orientation of
transmitter’s or receiver’s antenna and has been widely used in satellite communication where
ionosphere may alter the polarization of EM wave. Besides, the first reflection of CP wave from
surfaces generates cross-polarization CP wave, i.e., if original CP wave is right-handed CP
(RHCP), the reflected wave is left-handed CP (LHCP). This feature will benefit the
communication system with less multipath impact as in many cases the strongest multipath effect
is from the first order [68]. For radar system, CP antenna can largely reduce the crosstalk between
transmitter and receiver and enhance the performance of radar imaging [54]. Hence, CP antennas
have the potential to be applied in more advanced communication and radar systems.

Several omnidirectional CP antennas have been reported in the literature [69]-[79]. In
some omnidirectional CP dielectric resonator antenna (DRA) design [69] [70], CP is created by
adding parasitic slots [69] or dielectric wave polarizer [70] around an omnidirectional vertically

polarized (VP) DRA. In such way the radiated VP fields are converted into CP fields. The DRA
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using parasitic slots has usable bandwidth (overlapping of both axial ratio (AR) and impedance
bandwidth) of 22% and the other design produces a conical radiation pattern with usable
bandwidth of 41%. Another omnidirectional CP antenna based on circular TE,; modes is reported
in [71]. The antenna combines two orthogonal TE,; modes and forms a 16-element circular array
to create omnidirectional CP. Besides, it utilizes low-pass/high-pass phase shifter to create
wideband phase shifting for enhancing the bandwidth. This antenna has an effective bandwidth of
58%, but due to the return loss and resistive loss in feeding network, the lowest efficiency is only
about 63%.

Circular polarized EM field can be implemented by the superposition of two perpendicular
linear polarized fields with same magnitude and 90 “phase difference. The 90 “phase difference is
often achieved by the electrical length difference between the vertically polarized (VP) and
horizontally polarized (HP) fields either in feeding or radiating stage. This setup has been
successfully implemented in many omnidirectional CP antennas [72]-[79]. When a circular patch
antenna or DRA is feed at the center of the circle, TM modes can be excited to radiate VP fields,
and the HP fields are generated by several rotationally symmetric monopole or dipole like radiators
around the antenna [72]-[77]. Besides this type of CP antennas, a CP Antenna composed of four
inverted L-shape monopoles is reported in [78], and the VP and HP fields are generated by the
horizontal and vertical part of the bended monopoles. For another compact omnidirectional CP
antenna in [79], a slot antenna with fourfold parallel plate waveguide is designed to produce
omnidirectional HP field, and VP field is excited by two PIFA antennas on the sides of the slot
antenna. The antennas reported above have good omnidirectional CP property, but most have
limited bandwidth (<10%). One idea to increase the bandwidth is to create multipole resonances

with different exciting modes. The usable bandwidth is increased to 14.4% [74] and 51.7% [75],
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however, these two antennas have a conical radiation pattern and doesn’t generate CP field in
horizontal plane. Recently, a wideband central-feed CP patch antenna is proposed [77]. Due to the
symmetry of ground plane and antenna, this antenna’s main beam is on azimuth plane, and it
utilizes capacitive feed instead of direct feed to increase the bandwidth to about 30%.

1.5 Dissertation Overview

Autonomous Vehicles: MMW Radar Backscattering Modeling of
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Figure 1.5. Overview of Thesis

Chapter 2: Fast wideband PO method, and GO-PO method

Most targets in traffic scene like pedestrians, vehicles, tree trunks have convex geometry
with large radii of curvature of the surface compared to the wavelength (~ 4 mm), therefore
physical optics (PO) method is suitable to be applied here. In Chapter 11, a novel fast wideband PO
method will be discussed. Traditional PO method is only for single frequency, and to get the

response for a wide band, all calculations are needed to repeat for different frequencies. In this
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modified PO method, the phase term of far-field scattering E field, which is the only part changing
rapidly with frequency, is separated from the total expression to be evaluated for all frequencies.
Other calculation and the rest parts of the expression remain almost constant within the band and
thus they only need to be computed once.

For concave geometry that higher order solutions cannot be neglected, the PO method is
combined with GO ray tracing technique to compute the higher order solutions more efficiently.
The GO-PO method employs KD-tree data structure and adaptive rays’ refinement for fast
computation. The developed numerical methods are then applied for simulating RCS for different
traffic targets with a typical antenna pattern for automotive radar.

Chapter 3: Near grazing incidence radar modeling of road surfaces at 77 GHz

The backscattering from roads in mmWave range can be divided into two parts: surface
scattering and volumetric scattering. Compared to volumetric scattering, surface scattering
problem has less unknowns and can be solved by full-wave methods thanks to the recently
emerging high-performance computing (HPC) technology. In this chapter, simulation for surface
backscattering coefficients from random rough surfaces are presented. The simulation is conducted
in commercial simulation software AnsysEM (HFSS) with FEM method. In the simulation, the
random rough surface is generated with exponential correlation function and about 5AX5\
dimensions, and then simulated with periodic boundary conditions on the four sides and impedance
boundary in the bottom. After many Monte Carlo simulations, the polarimetric backscattering
coefficients (RCS per unit area) are modeled as functions of incident angles, permittivity of road
and surface roughness. In order to find the volumetric scattering component for road surfaces,
measurements are taken, and the volumetric scattering is analyzed based on radiative transfer (RT)

method [39].
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Chapter 4: Statistical models and real-time radar response simulation

RCS of complex traffic targets is highly fluctuating with frequency, aspect angle and range.
The traffic targets include but are not limited to pedestrians with different genders, heights and
weights, various types of vehicles, stationary targets and animals. To characterize the pattern of
RCS behind its random nature, we utilize statistical approach. The RCS data for a small range of
aspect angles (25 and all frequency points are treated as independent samples and then fitted into
given distribution. The parameters of the probability density function (PDF) of certain distribution
then are modeled as functions of range and aspect angle, for pedestrians those parameters are
further modeled as functions of action, gender, weight and height. For radar with small angular
resolution and able to scan its main beam, 2D range-angle image can be generated for different
targets. The neighboring pixels may not be independent random variables, and they can be
considered as correlated random variables with multivariate distribution. With these statistical
models for various targets, we can generate traffic scene RCS simulation in almost real time. In
this thesis, such real-time simulation is implemented in a 3D simulation software Unreal Engine 4
with C++, the simulation can achieve more than 10 fps just in an ordinary PC.
Chapter 5: A Fast Analytic Multiple-Sources Radar Targets AOA estimation Algorithm

Traditionally, the angle of arrival (AOA) estimation problem for multiple sources is
considered as a nonlinear problem with no analytic solutions. In this chapter, an analytic iterative
multiple-source AOA algorithm (AIMA) is presented for fast and accurate estimation of the AOA.
The approach is most useful for automotive MIMO radars where there can be a large number of
scatterers in the scene. The AOA estimation problem is divided into two main tasks: (1) estimate
one AOA with the prior knowledge of all other AOA,; (2) estimate all AOA by iteratively solving

Task 1. It can be shown that for a uniform linear array (ULA) Task 1 has analytic solutions and
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Task 2 converges very fast, which makes this method effective, efficient and practical for real-
time processing. Unlike many other AOA estimation methods, this approach doesn’t need the
information about the number of sources and can be applied for coherent signals and single
snapshot as well.
Chapter 6: Machine Learning-Based Target Classification for MMW Radar in Autonomous
Driving

As a result of recent development of artificial intelligence technology, many excellent
machine learning software/libraries include Caffe [80], TensorFlow [81], and Matlab are available
for researchers and publics. Those frameworks have good performance and efficiency and are easy
to use for non-expert in machine learning. In this chapter, a machine learning based radar target
classification is presented. Different forms of radar data are considered for target classification
based on the type of radar and applicable scenario: when targets are in middle or far range (>50m),
the targets may be treated as point targets, the statistical features of the RCS and the range-
distributed RCS are used in classification. If the targets are in near range and the radar has the
beam-steering ability, radar images in range-azimuth angle domain or in 3D (Xx-y-z) domain are
considered in target classification. Statistical features of RCS and time domain RCS are classified
by supervised learning approach artificial neural network (ANN) and the radar images are
classified by deep learning approach convolutional neural network (CNN). The traffic targets are
divided into three major categories: pedestrians, vehicles and stationary targets. In particular, the
targets include but are not limited to pedestrians with different poses, genders, heights and weight,
vehicles like bike, motorcycle, sedan, SUV, trucks, buses, and stationary objects like signs, lamp

posts, tree, bus stops etc., and animals like dog, deer, horse, etc. It is shown that good performance
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(~90% accuracy) can be achieved for this classification approach in both scenarios with the
gigantic dataset we generated for such targets.
Chapter 7: Communication Channel Modeling for Foliage

Foliage is commonly encountered in traffic scene and is possible to block the LoS wave
propagation as well, and for V2V scenario, the main component of foliage blocking signals is the
tree trunk. The tree trunk can be approximated as dielectric cylinders, and the far-field scattering
from circular cylinder has been well studied [52][53]. For mmWave vehicular communication, the
vehicles are most likely to be in near-field range of tree trunk, and discussion on such case is hardly
found in literature. In Chapter V11, a thorough analysis on the mmWave scattering from tree trunk
in both near field and far field is performed. To make the model accessible for people not familiar
with EM theory and convenient usage, the path loss model is further fitted by artificial neural
network (ANN) as function of distance from transmitter to trunk, distance from receiver to trunk,
azimuth angle, trunk’s radius and height. Besides, a multiple scattering model for tree trunks based
on the infinite-long cylinders approximation is developed for the V2V communication channel
model in the forest environment. Massive Monte-Carlo simulations have been conducted and

generalized into a reduced path loss model for easy usage.

Chapter 8: A Compact Broadband Horizontally Polarized Omnidirectional Antenna using
Planar Folded Dipole Elements

In this chapter, two broadband omnidirectional antenna designs are developed. First one is
a broadband omnidirectional HP antenna. It is composed of four modified folded dipole antennas
arranged around the perimeter of a small square box. The antenna presents a smaller form factor

compared to other wideband HP omnidirectional antennas (size of 0.34A x 0.34)), while maintain
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a relatively low gain variation as a function of azimuth angle in the band of operation. The folded
dipole antenna is chosen since it is reported to have a fractional bandwidth that can exceed 50%.
One of the main issues of such array geometry is the mutual coupling between different dipole
elements will degrade the performance of antenna, to compensate for the mutual coupling of
different dipole elements and increase the bandwidth, the geometry of the antenna is carefully
Optimized. Four modified folded dipole elements are fed with microstrip baluns and connected by
an appropriate matching network to a coaxial feed. The matching network, the baluns, and the
geometrical modification of the elements are codesigned to mitigate the mutual coupling effects
and achieve the required bandwidth while minimizing the antenna array dimension. Their distances
are carefully chosen to achieve best omnidirectional property.
Chapter 9: Broadband Omnidirectional Circularly Polarized Antenna with Asymmetric
Power Divider

Another design is broadband CP antenna. For an omnidirectional CP antenna based on VP
and HP radiators, the challenges of broad bandwidth (>50%) include broad impedance bandwidth
for both VP and HP radiators, maintaining omnidirectional pattern within the band, and
maintaining small magnitude difference and 90“phase difference between VP and HP fields for
all operating frequencies. In this design, divide-and-conquer strategy is used in achieving a
broadband omnidirectional CP antenna. We first design an ultra-wide band (UWB) monopole
antenna and broadband HP antenna which can meet the requirement for impedance bandwidth and
almost constant radiation pattern. Since their gain difference are not constant but a function of
frequency, then a dedicated optimized asymmetric power divider with wideband phase shifter is
proposed to compensate the irregular gain difference between VP and HP as a function of

frequency and maintain almost 90<phase difference over the entire band. A systematic analysis
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for asymmetric power divider is performed as well. The main beam for the proposed antenna is on

azimuth plane and the usable bandwidth reaches 53.4%.
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Chapter 2 Fast Wideband PO Method, and GO-PO Method

2.1 Introduction

Automotive radar is of the critical sensors for the autonomous cars nowadays and is
expected to be in the future. However, because of the complex nature of electromagnetic scattering
from traffic targets, the full potential of automotive radar has not been fully investigated yet. To
understand the radar signals comprehensively, one should first understand the EM scattering
phenomenon. Compare to measurements, simulation is far more convenient, lower cost and more
flexible.

One of the major challenges in radar simulation is to the complexity and heterogeneity
involved complicated targets. Theoretically, the electromagnetic wave scattering, and propagation
can be accurately described by numerical methods based on Maxwell’s equations. Depending on
the form of Maxwell’s equations (e.g. integral or differential equations), different numerical
methods such as method of moment (MoM), finite element method (FEM) and finite-difference
time-domain method (FDTD) are developed. However, these so called full-wave methods are
prohibitively inefficient for electrically large objects. With proper approximations for the wave
propagation and boundary conditions at high frequencies where the typical dimensions of the
objects are large compared to the wavelength, there exist many asymptotic methods. These
methods include physical optics method (PO), geometric optics method (GO) and uniform

geometric theory of diffraction (UTD) which can provide excellent computational efficiency and
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reasonable accuracy to many scattering problems. In this thesis, we focus on PO, GO and hybrid
of GO-PO for higher order solutions.
2.2 Wideband Physical Optics method
2.2.1 EM scattering formulation using PO method
Scattered fields calculated based on PO method are obtained from approximate surface
electric (for metallic objects) or electric and magnetic (for dielectric objects) currents using far

field approximation of Huygens principle [83]. The scattered electric field can be computed from:

R ikoeiﬁs'f _ R N . R == 2 1
E, = (T — ksks) ﬂ[zojs(r') — kg x Mg(r)]e~ts"ds’, (2.1)

4mtr

where k, is the wavenumber, k; is the direction of scattering, 7 is the position of observation point,

I'is the dyadic idemfactor, Z, is the characteristic impedance of free space, and fs IWS are the
equivalent electric and magnetic surface currents. Because the scattered fields from PO method
are derived from Huygens principle, diffraction of EM waves are naturally included in this method.
In the full-wave method MoM, the scattered far fields are also calculated by (2.1) and the
difference between PO and MoM is in computing the equivalent surface currents. In MoM, the
surface currents are obtained by solving integral equations, which is very accurate but
computationally inefficient. If the radii of curvature of the target’s surface is much larger than the
wavelength, the reflected fields (locally) are similar to that of infinitely large plane tangent to the
surface. These fields are given by [28],
E, = [~ZoH; - tRyy(ky x £) + E; - fRTEf]e"Ei'f, (2.2)
Hy = 1/Z,[E; - tRog (Ry X ) + ZoH; - tRyyt]e T, (2.3)
where F?l- and ﬁi are the incident electric and magnetic fields, £ is the tangential vector on the

surface, defined as £ = (Ei X ﬁ)/|Ei X 1, Ei is the incident direction unit vector, 7 is the normal
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vector of the surface, Ry, and Ry are the Fresnel reflection coefficient of the surface for TM and

TE cases. Then the equivalent surface currents can be simply expressed as:

N

Js = A x (Hy + Hy) = —[ZoH; - #(1 + Rp) (@ X £) + E; - (A - k) Ry — D™, (2.4)
0

—

Mg = = x (Ey + By) = [ZoH; - 0(A - k) (Ryy — 1DE — E; - 81 + Ryg) (A x D)™, (2.5)
The Fresnel reflection coefficients Ry, and Ry are given by,
Rrp = (n2c0561 — n1c0503)/(n2c0501 + n1cosby) , (2.6)
Rry = (n1c0s61 — n2c0503) /(n1c0s641 + n2c0505). (2.7)
Where n, and 7, are the characteristic impedance of air and target, 8, and 6, are the incident and
refraction angle with respect to the surface of targets.
The continuous surface of target can be discretized into many small triangular meshes with
a CAD software. Each small triangular facet can be assumed to be illuminated by plane wave
locally if the radar is in the far field of the facet, and then the equivalent surface currents on a facet
can be expressed as:
Js(n, ) = Jom(m)e =7, (2.8)
M, (n,7") = M, (n)etki@' =D, (2.9)
Where 7' is a point on the facet n, and fsm (n) and Msm (n) are constant vectors for all points on

facet n, which are given by:
Jom(m) = Zio[zoﬁi 81+ Ryp) A X D) + By - £ - k) Ry — DE], (2.10)
Myn(n) = ZoH; - £( - k) (Rypg — 1) — E; - £ + Rypg) (2 x D). (2.11)
Therefore, for each facet, the equivalent surface currents and scattered E field can be
calculated based on (2.1):

ikoei(ﬁsn_ﬁin)? - R R N . PR _ —
S (I - ksnksn)[Zolsm(n) — kon X Msm(n)] ff et (kin=ksn)T ds’, (212)

s amr,,
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Automotive radars are licensed to operate at a wide bandwidth from 76 GHz to 81 GHz.
Hence scattering simulations is required over a wide frequency range. Traditionally PO method is
used in evaluating scattered field at a single frequency and therefore calculation for wideband is
rather time consuming. This is done by applying PO method to a discrete set of frequency points

within the band. To expedite this calculation, we notice the scattered field for facet n in (2.12) can

be divided into multiplication of two parts, the first part # (T = ksnksn)[ZoJsm(m) —
ks, x Msm(n)] has almost no dependence on frequency (if the medium of target is dispersive, then

this term will change with frequency), and second part kqei(sn=km) 7 [ ei(Kin—ksn)™’ 45/ can be
highly fluctuating when frequency changes. To more efficiently calculate the wideband scattered
field from targets, the first part that has no frequency dependence is evaluated once for all

frequency points and the second part is calculated at all frequencies.

The phase integral term in (2.12) integrates the phase eikin=Ksn)™" for ]| points on one
polygon facet (usually is triangle), and such integral can be converted into a summation based on
the formulation introduced by Gordon [84]. Consider a triangular facet S,, shown in Figure 2.1,

with three vertices of it located at v;, ¥, and 5 respectively. The unit normal vector to the triangle

is denoted by 71, and the incident wave vector is k;,, and the scattered wave vector is k. 0'is

point on the center of the facet, and T’ is an arbitrary point on the facet.

— ksn kin
Vq I.\

Figure 2.1. Demonstration of phase integral of a triangular facet
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Letk = Kin — Esn = En + Ea, where En is the component in 7 direction, En = (E ‘)N,
and Ea is the component on the surface of the facet. £ is a tangential unit vector on the surface

perpendicular to k. The integral can be rearranged as:

ﬂ- ei(Ein—Esn)-r—'dS, _ k0’ ffei@“;ﬂ)'(?’_a)ds’ — k0 ff eiﬁa-(F'—G’)dsr
=ei§6 ff iky @ x’,

where ¥’ = ¥/ — 0". Note that k, - £ = 0, we can define & such that k, = k,@& + k£, where k, =

(2.13)

0,and X’ = x,@ + x,t. Then the phase integral becomes,

ﬂ otk G gg! — j f eika¥adyx dx,. (2.14)

ikgx, .
Since % xa : = ik e'*a*a then we have
. 1 (d(ea*a
ok = L (477D (2.15)
ik, dx,

, 1 d(etka*a) (2.16)
ikgxg = — _—
ﬂe dx,dx, k. H( ax. >dxadxt.

Recall the Green’s theorem,

jE (f doxg + fdx)) = ff afz—afl)d Jdx,. 2.17)

dx, Xt

Let f, = etka¥a and f, = 0, then

1 d(etkaxa) 1 e
R —_— = —_— arta 2.18
. U( . )dxadxt i ﬁ, etkaXady,. (2.18)

For each triangular facet, the edge vector is defined as:
Ei = 6i+1 - Ei' (l = 1,2,3,64 = 'l_jl) (219)
x(D=v;+le. (0<I<1) (2.20)

Therefore,
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di() = édl, dx, =& -tdl, x,=%(0) & (2.21)

1
1§ oikeregy, = iz?’f o ke BN TG . 1] (2.22)
ikg J,s kg Ly ),
R A G
ika 1 : lkaal ) &
1 23“ fei/‘foc(ﬁi‘l'fi+1)'ﬁ/2 sin(% k,e; - &)
=— e;:
lka 1 %kagi - &
Then the phase integral is in summation form:
ik (DT )8 1, - .
. . = -1 3 Aelka(vi‘l'vi-i-l) /2 5in(5 kye; - @)
ff el(kin—ksn)-r ds' = elk-O Wzlei .t 27amt : (223)
a

Tke8a
As is discussed in Section 1.2 the goal of the numerical simulation is to find the radar
response of targets G (f), which isdefined as G(f) = S, (f)/S:(f), where S,.(f) and S;(f) are the
complex signal or voltage at the transmitter and receiver. The relation between G(f) and the

scattered E field for one facet in (2.12) is given by,

A O E2FonFy

G(f) = —
N =2 E'RyRym
n

eik(Ren+Rrn) (224)

where EZ'/E] is the scattering coefficient from facet n, Fy,,, F., are the transmitter and receiver’s antenna’s
far field at facet n, where |E,|? is the corresponding antenna’s gain, R;,, R,,, are the distance between
transmitter, receiver and facet n.
2.2.2 Visibility algorithm

Since PO method assumes the current only exists on lit region of the surface of targets, another
challenge for PO method is to decide which part of the surface is lit and which part is shadowed. This is a
classical visibility problem in computer graphics or computer geometry, and one of the most efficient
algorithm is called z-buffering or depth-buffering algorithm [85][86]. The z-buffering algorithm can be

simply described as following:
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Table 2 - 1. Z-buffering Algorithm

Algorithm: Z-buffering

1. Rotate the coordinate such that the direction of radar view is along z axis

2. Inx-y plane of new coordinate, divide the entire region occupied by the targets into n by m
equal size rectangular sub-regions R,,,, and initialize all R,,,, = @
3. For each facet of target f;
If f;overlap with R,,,, then

Rmn - {Rmn' i}
4. Initialize all facets as lit facets, i.e. L; - true
5. For each facet of target f;, find the sub-region R,,,, contains the center of f;, denotes as 0;
For each f; overlapped with R, but j # i
If a ray from radar to O; is blocked by f;, then
L; — false

Notice in the algorithm the way to determine whether a ray from radar to the center of one facet 0;
is blocked by a second facet is to first exam whether the projection of the point in x-y plane is within the
triangular projection of the second facet, and if so, then compare the z value of the intersect point on the
second facet with 0;,. If 0;, is larger, then the first facet is shaded by the second facet.

2.3 GO-PO method for multi-scattering problem

For target with convex geometry where multiple scattering is insignificant, and the
scattered field calculated by the first order PO solution dominates. If the target has concave
component, then the multi-scattering effects cannot be ignored. In this case higher order PO
calculations must be carried out to account for multi-scattering phenomena. Typically, there are
two methods for higher order PO, one is called iterative PO and the other is called geometric optics
PO (GO-PO). In the iterative PO approach, the higher order incident fields are calculated based on
Huygens principle with the currents from lower order solutions, and then the higher order currents
are derived from the new incident fields by following a similar process used for first order PO. It

is noted that in iterative PO, the multi-scattering is assumed to be established between any two
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facets that have direct light-of-sight (LoS), and it means the computational time complexity will
be 0(n?), where n is the number of facets or points on the surface. This requires extremely heavy
computation for electrically very large objects like vehicles and human bodies in our application.

Note that if the surface has a much larger radii of curvature compared to the wavelength,
the main direction of wave scattering will be very similar to that for light, and that phenomenon
can be described by GO. Since only the facet/point in the specular direction is considered for higher
order PO calculation, ideally the time complexity is reduced to O(n). However, in practical
algorithm the time complexity is not simply O(n) but rather O(nlog(n)). This is due to the fact
that the most challenging part of this method is not in calculating currents or fields in PO, but in
ray tracing with GO. With tree-type data structure like KD-tree or BSP, the ray tracing time
complexity can be as low as O(log(n)). This algorithm will be discussed later.

To illustrate higher order GO-PO, we can first take a look at the second order GO-PO. As
is shown in Figure 2.2, 7 is the location of the radar, and ' and 7'’ are the hitting point of ray on

first order and second order facets. dr’ and dr'’ are two small vectors along the tangential direction

of first order and second order facets. El, EZ and Eg are the three wavenumber vectors of the ray’s

propagation.

=
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Figure 2.2. lllustration of second order GO-PO multi-scattering link

In GO approximation, the incident field at 7' is given by spherical wave function:
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E(7)= E(’r;—_(?l_) (2.25)
. kR xE (7 (2.26)
ﬁi(?)=—lxz(r),

where k; is the unit vector indicating the direction of incidence. The reflected fields are given by (2.2) :

E, (?) = [~ky X Ey - tRyp (Ry X £) + Eq - fRTEf]eikr(? ~7) /[P -7, (2.27)
ﬁr (F) == 1/20 * [EO " fRTE(ET' X f) + El X EO . fRTMf]eikll(? _F)/|?I — ?l (228)
Let E\Tl = [_I’(\l X EO - fRTM(ET‘ X f) + EO ) fRTEE], ﬁrl = 1/ZO * [EO ) ERTE(IGT X f) +
ky x Eq - tRypt), then the incident field at 7' can be expressed as:
o Btk (F) gk () B pi(ki—Ro) iRy F ik
Ei (r ) = rl_\/ — N7 — = Tl 7 N N7; — ) (229)
|7 =7+ |r -7 ¥ =7+ |F -7
—_ . ﬁrlei(ﬁl_ﬁz)'?le_iﬁl'Feiﬁz'?” (230)
Hi(r”) = — = I
¥ =7+ | -7
Similar to equation (2.4) and (2.5), the equivalent surface current on 7" is:
= i [ZoHry B+ Rp) XD+ By £ (k) (R —1)E]e i1k T g=iky T g ikp 7! 531
S = Zo(IF' =7 +[7"'—F1)) ! (23D
ZoHyy E(Aky) (Rppg—1)E—Epy -E(14Rpg ) (AxE)|ei(k1-k2) T o=iky T iler 7! (2.32)
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where R7,, and R7 are the reflection coefficients in TM and TE case on the second order facet.
Again, we can denote Js, = [ZoHyq « £(1 + Ry ) (A X £) + Epq - E(A - k) (Rpp — 1)E]/Z,, and

Moz = ZoHyy - (R k) (Rippy — 1) — Epq - £(1 + Rp) (7 x £), such that:

Jompel®1=k2) 7' o=iky 7 otk 7!

(7" = (2.33)

(7' =7 |+|7!" =71)) ’
Zei(il—iz)-?’e—iil-?eiiz-?” (2.34)
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The scattered E field of second order solution given by (2.1) is rearranged as:

- k l 37 i(El_EZ)'?l —iEl-? iEz'?” —iE3'?” "
B = —|( kaa) I [20] gy = s X Mgy | ———————ds"" =

471:|r - |? —?|+|? —?’|

(2.35)

Lkoel(k3 kT kl kz) eilkp—k3)T "

(T = ksks) | Zo] gy = s X Moma | [T ©

41r|r —r| |r —?|+|?”—?’|
Note that when the intersected point of ray and second order facet changes from 7 to 7 + dr |
the intersected point of the ray and the first facet will change from 7' to 7' + d7 , and (k; — k) -

(7' + di'") = (Jy — k) - 7" as the vector (J; — k) is normal to the first facet. Because | d7'| «

ot 44

|7" —7|,and | a7"| « |7 = 7'|, |7" — 7| + |¥"" — 7’| is approximated as a constant. Therefore, the
second order scattered E field for the second facet can be written as:

dE(Z) lk ei(E3 El)r (kl k2
S

(T- k) [20] gy — s X W] [ eF27507 a5 (2.36)

4-7T|T' —r|(| —r|+|r -7

)

The higher order scattered E field with order m can be expressed in similar manner,

(Fra e 7 (g =g ) 704 (G )7 Pt (g =) 7]

p(m) _ ikoge _
dE an[f—7|(FO 7|+ O O |4 D)) (7

(2.37)
i) [Zo] g = s x M| [ s 7 gm,

where k,, is the k vector of the ray at m‘™ bounce, fs(m) and Mg,’? are the induced surface

electrical and magnetic current on the facet with m** bounce of the ray.

One of the major challenges in GO-PO method is to efficiently locate the positions where
the rays hit. This is a classical ray tracing problem in computer graphic [87], and is known as
shooting and bouncing ray (SBR) in asymptotic computational electromagnetics [29][30]. The
surface of target can be divided into many triangular facets, and hence the problem of finding
intersected point of ray and target can be divided into two steps: first to find the facet intersecting

with the ray, and second to find the intersected point on the facet. To search the targeting facet,
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first all facets should be rearranged into a certain order or in certain data structure that can be
located easily. The most efficient way for searching is to store all facets in a hierarchy manner, or
tree-type data structure, which has a searching time complexity of O(log(n)) for one ray, where n
denotes the number of facets. There are two popular data structures for storing the facets, one is
called K-D tree and the other is known as binary space partitioning (BSP) [88].

In K-D tree data structure, the 3D space that is occupied by the target is divided into two
equal-size boxes for each level, and in different levels, the division happens in different dimensions.
For example, at level 1, the space is divided in x direction into two boxes, and at level 2, the
resulting two boxes are divided in y direction, and etc. as shown in Figure 2.3 (a). Those boxes
with certain dimensions are nodes in K-D tree data structure, and the facets are leaves. The
relationship between nodes and leaves are shown in Figure 2.3 (b). The iteration stops when a
specific requirement is meet. For instance, we can set a maximum level or a minimum dimension
of the box, and when the iteration reaches the maximum level or the dimension of space at one
level is smaller than the minimum dimension then it stops. When the iteration stops, the facet is
put into that node. This data structure is relatively easy to implement compared to BSP, with the
drawback that K-D tree can be an unbalanced tree because the target may not be symmetric. Since
the focus of the study is not to develop an algorithm to maximize the computational efficiency, K-

D tree data structure is applied here.

Level 0 Level 1 Level 2

(a)
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Level0 Levell Level2 Level N Leaves

O
< O

Figure 2.3. Example of putting one facet into K-D tree data structure

(b)

As mentioned, the main task is to search where the ray hits on the target, or equivalently,
to find which facet of the surface of target intersects with the ray. In the K-D tree data structure,
the search process is also in a hierarchical manner as illustrated in Figure 2.4. The simplified ray

tracing algorithm is described in Table 2 - 2.

Level 0 Level 1 Level 2

L—

Figure 2.4. Example of searching intersected facet in K-D tree data structure

Table 2 - 2. Ray tracing algorithm with K-D tree

Algorithm: Ray tracing

1. Generating rays regarding the dimensions, orientation of target(s)

2. For each ray R; set the current order y — 0, intersected facets set @, - @

If ¥ < ¥max then set the current node as root node
3. If the ray intersects with current node then
If the ray intersects with any leaf f; of the node then
Put f; into @,
If the ray intersects with any child node of current node then
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Repeat the process in step 3 for the child node(s)

4. For each intersected facet in @,
Find the most front facet and find the hitting point on the facet P,
5. For each order y
For each triangle with vertices of P;, by neighboring rays

If the three vertices are on the same plane on the target, then
Perform the EM calculation to find the scattered field

2.4 Numerical results and validation of PO method

In this section, the accuracy of the proposed GO-PO method is examined by simulating the
backscattering RCS of some targets with known RCS values. Then it shows the numerical results
for some real targets and the comparison of measurements. In the end, the contributions of different
order of PO solutions are discussed for commonly seen traffic targets like pedestrian and vehicles.

For electrically very large sphere, circular cylinder, and trihedral (corner reflector), there
are theoretical solutions for their backscattering RCSs [89]. The backscattering RCS of an
electrically large metallic sphere is:

o =nmr?, (2.38)

where r is the radius of sphere. The backscattering RCS of circular cylinder is:

o= Zﬂ;hﬂ (2.39)

where r is the radius of cylinder, and h is the height of the cylinder and A is the wavelength. The

backscattering RCS of trihedral is given by:

P 43’;@4, (2.40)

where L is the length of edge connecting a vertex to the corner as shown in Figure 2.5 (c).
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() (b) (©)
Figure 2.5. Geometry of known backscattering RCS targets: (a) sphere, (b) circular cylinder, and
(c) trihedral.

The RCS for a metallic sphere with 0.1 m radius, a circular cylinder with r =0.05m and h
= 0.2m, and a trihedral with L = 0.1 m are simulated at 77 GHz and compared with theoretical
solutions as demonstrated in Table 2 - 3. The difference between theoretical solutions and
simulations are within 0.3 dB for all three targets, therefore, excellent accuracy of the proposed
GO-PO method is shown for targets whose radii of surface is much larger than wavelength.

Table 2 - 3. Comparison between simulated and theoretical backscattering RCS

Backscattering RCS (dBsm) sphere Circular cylinder trihedral
Theoretical solution -15.03 5.08 8.16
Simulation -15.29 5.09 7.99

In addition, the GO-PO method is tested against measurements for some targets commonly
seen in traffic scene. Metallic square posts are widely used as post for traffic signs or parking signs
as shown in Figure 2.6 (a). The radar’s view usually has narrow beam width in elevation direction,
thus the main backscattering for a traffic sign is from the post. The RCS of a square post with 2.5

in by 2.5 in is measured in the anechoic chamber in the University of Michigan (by my colleague
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Michael Giallorenzo) shown in Figure 2.6 (b). Figure 2.6 (c) depicts the CAD model of a metallic square

post with the same dimension as the measured one.

(a) (b) (c)
Figure 2.6. (a) Picture of a stop sign with square post, (b) the measurement setup of a square post
inside anechoic chamber, and (c) A CAD model for the same square post in measurement.

In the measurement, the square post is put on a turn table and a radar with 3 degree antenna
beam width in both the elevation and azimuth direction is used to perform the measurement. The
RCS of the target is measured at a distance of 18 m. Due to the rotational symmetry, the square
post is measured for azimuth direction from -45 degree to 45 degree, and O degree represents one
face of the square post is perpendicular to the direction of incidence. In the numerical simulation,
the same setups are applied to find the RCS of square post. The comparison of measurement and
simulation for all angles from -45 degree to 45 degree are shown in Figure 2.7 and the comparison
of #5%averaged RCS is given in Figure 2.8. Both figures show good agreements between the
measured and simulated results. Notice that #35averaged RCS has excellent agreement, which

means the statistical data from simulation can be more accurate and may be more meaningful.
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Figure 2.7. Comparison between measured and simulated RCS as a function of incident angle for
a metallic square post

the + 5 deg average RCS

from measurement
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Figure 2.8. Comparison between measured and simulated #5<average RCS as a function of

incident angle for a metallic square post

Besides the square post measurement inside an anechoic chamber, an outdoor measurement
for a vehicle is performed and the RCS results are compared with simulation as well. In the

measurement, a sedan is driven into a large turn table, and several wave absorbers with height
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about 0.3 m are placed in front of car to block the response from turn table as shown in Figure 2.9.
The turn table can only operate manually, so we cannot measure the data with an accurate azimuth
angle. In this situation, we roughly labeled angles from -90 to 90 degree for each 10 degrees on
the ground, and at each angle, the car was slightly rotated for several angles and the averaged RCS
of them are collected. The distance between the radar and the target changes from 10 m to 20 m.
The antenna beam width for the radar is 3 degree in both elevation and azimuth direction, and the

bandwidth of radar is from 76 to 79 GHz.

(@) (b)

Figure 2.9. (a) Picture of the outdoor measurement for the RCS of a sedan and (b) a CAD model

of a sedan

The comparison between the measurements and simulated RCS results for a sedan at 10 m
and 20 m is shown in Figure 2.10. In the figure, each data point represents the #3 degrees and
frequency averaged RCS. As can be seen, at both ranges, the averaged RCS values as a function
of incident angle from simulation and measurement are similar. Because the CAD model is not
exactly the same as the car under measurement, it is understood that the simulation and
measurement results will not be the same. The good agreement between the simulated and
measured averaged RCS indicates that the statistical features obtained from simulation and

measurement behave similarly.
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Figure 2.10. Measured and simulated averaged RCS as a function of incident angle for (a) range

of 10 mand (b) 20 m
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Higher order solutions of the GO-PO methods are corresponding to multiple reflection of
EM waves. It will be interesting to exam how large the higher order responses are for typical traffic

targets like pedestrian and vehicles.

2.5 Conclusion

Radar simulation can help to better understand the radar signals from different targets,
guide and test the radar design to meet the requirement of autonomous driving. Meanwhile, the
simulation for mmWave radar is quite challenging as most traffic targets are complex and
electrically very large. In this chapter, asymptotic methods based PO and GO-PO approaches are
introduced to obtain high-fidelity radar response simulation results. To accelerate traditional PO
method in a wideband problem, separation of variables is applied to largely reduce redundant
calculation for different frequency points. In GO-PO method, the most challenging part ray-tracing
technique with KD-tree data structure is described in detail. The accuracy of the proposed PO and
GO-PO methods are validated through comparison with theoretical solution of simple geometry

targets and measurements.
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Chapter 3 Near Grazing Incidence Radar Modeling of Road Surfaces at 77
GHz

3.1 Introduction

Road surfaces are usually rough, inhomogeneous and can be considered as random rough
surfaces. The roughness of road will cause MMW scattering in backward direction and can
detected by an MMW radar. The commonly seen types of road include asphalt, concrete and soil
as shown in Figure 3.1. Depending on the weather, the road may also have different conditions
like dry, wet, ice- or snow-covered. Different types of road surfaces and road with different
conditions may result in different level of backscattering power. This phenomenon indicates that
radars can also function for identifying road conditions, which is a very important function for
enabling autonomous navigation. Because radar is usually mounted on the front or side of a vehicle
and the fact that road surface assessment is needed at a distant point away from the vehicle, such

EM scattering problem is for near grazing incident angle (> 80 on the road surface.

39



Figure 3.1. Different road types: asphalt, concrete and soil road

The radar backscattering from road surface is more complicated than that from regular
targets such as vehicles and pedestrians because the roughness feature of road surface is smaller
than or comparable to the wavelength at millimeter wave range and the extent of the illuminated
area is much larger than the wavelength. As a result, high-frequency asymptotic methods including
PO and GO are not suitable for calculation of scattering from such targets. In low frequency regime
where both the RMS height and the correlation length are much smaller than the wavelength,
analytical approaches such as small perturbation method [94], [95] can be used to find the radar
backscattering from random rough surfaces. For scattering problems at very high frequency regime,
where the roughness of the surface can locally be considered flat (the radii of curvature of the
surface is much larger than the wavelength), then Kirchhoff approximation [96] can be applied to
the scattering problems. In the mmWave radar application, the wavelength is about 4 mm, and

both RMS height and correlation length of typical road surfaces are comparable to the wavelength,
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which results in both small perturbation method or Kirchhoff approximation not applicable in this
problem.

Generally, the radar backscattering from ground can be divided into two parts: surface
scattering and volumetric scattering. Road surfaces are usually made up of heterogeneous materials
having different permittivity values and different particle size distributions. This causes the volume
scattering that is difficult to model electromagnetically and hence the scattering per unit volume
of such materials is usually obtained through measurement or using semi-empirical methods [39],
[90]. Since both low-frequency and high-frequency approximation fails in the surface scattering
problem, full-wave numerical approach is used to study the surface scattering component in this
chapter.

3.2 Road surface statistics and profile measurement

The ground surface is considered as a random rough surface with certain statistical features.
The statistical features include root-mean-square (RMS) height, autocorrelation function and the
correlation length related to the autocorrelation function [91], [92], [93]. RMS height of a rough

surface is defined as:

s = \/%ffA (z(x,y) — 2)2dxdy, (3.1)

where z(x, y) is the height on the surface at position (X, y), A is the area of integration, and Z is
the average height of the surface.
Correlation function is used to describe how rapidly the height of surface changes with

position (X, y), and is defined as following [93]:

Clx—x,y—y)= Siz (z(x,y),z(x", ")), (3.2)
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Exponential autocorrelation function and Gaussian autocorrelation function are the most
commonly used autocorrelation functions to describe rough surface. The exponential

autocorrelation function is given by [93]:

Cx—x",y =y = exp(=/[(x —xD2+ (y —y)2/1?), 3.3)
where [ is the correlation length. The Gaussian correlation function is:
Clx—x",y—y") =exp(—[(x —x)? + (y — y)?1/D), (3.4)

In general, the rough surface with exponential correlation function is much rougher than
that with Gaussian correlation function, and the rough surface generated from different correlation
function may have quite different radar backscattering response. Therefore, it is important to find
out the autocorrelation function of real road surfaces before further analysis. We use a laser
profilometer on a linear stage to detect the height of ground surface as is shown in Figure 3.2. The
laser profilometer can very accurately estimate the profile of ground surface in one dimension. The
RMS height, autocorrelation function and correlation length can be calculated based on the
measurement data, and by repeating the measurement for the same type of ground for many times,

the averaged RMS height and correlation length can be obtained.

Figure 3.2. Laser profilometer used to measure the roughness of ground surface
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Some examples of the correlation function obtained from measurements for asphalt are

depicted in Figure 3.3. It can be seen that the correlation function created by measured data is

closer to exponential function than Gaussian function, and therefore in future analysis exponential

correlation function is assumed. Another interesting observation is that the correlation length

varies largely for different samples. This indicates that the roughness of road surface is not

homogenous even for measurements are taken in a local area.
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Figure 3.3. Two examples of correlation function comparison between measurement, Gaussian

and exponential.

The measurements are taken with the help from another graduate student (Michael

Giallorenzo). The profile of concrete, new asphalt and weathered asphalt ground surfaces are



measured and each of them has more than 50 samples. Their averaged RMS height and correlation
lengths are shown below:

Table 3 - 1. RMS height and correlation length for measured samples

Ground Type § (mm) a(s) (mm) [ (mm) a(l) (mm)
Weathered asphalt 1.24 1.17 2.71 2.48
New asphalt 0.81 0.49 1.80 1.66
Concrete 0.20 0.08 13.2 451

In the table above, 5 denotes the average RMS height, and o(s) refers the standard
deviation of RMS heights from all samples. It is shown that concrete surface has much smaller
RMS height and larger correlation length than asphalt surface, which indicates that concrete
surface is smoother than asphalt surface. Similarly, the weathered asphalt is rougher than new
asphalt. The standard deviation on the correlation length is large for both asphalt and concrete

surfaces, which is also a proof that the ground surface is not homogenous in roughness.

3.3 Full-wave numerical method for surface scattering from near grazing incidence

In reality the extent of road surfaces is much larger than the radar antenna footprint. Thus,
in numerical simulations, we have to truncate the dimensions of the road surface to have feasible
simulation. To eliminate the edge effect of the finite rough surface in simulation, one approach is
called tapered incident wave [97], [98]. Instead of using planar incident wave, this approach creates
an artificial wave front such that there would be little incident field on the edge of the rough surface.
However, in order to have good convergence, the dimensions of the rough surface must be
increased with incident angle, and this will lead to requiring hundreds of wavelengths for incident

angle more than 80 “for accurate results [97]. Alternatively, periodic boundary conditions can be
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applied to eliminate edge effect as well [99], [100]. With periodic boundary condition, the incident
wave can be plane wave and the dimensions of rough surface don’t depend on the incident angle.

In this thesis, FEM based commercial software AnsysEM (HFSS) is chosen to perform
simulations because first, FEM method is an accurate single frequency solver and AnsysEM has
industrial standard adaptively meshing techniques for reducing the number of unknowns. Second,
it provides periodic boundary condition to eliminate edge effect of rough surface. Figure 3.4 gives
an example of the simulation setup for a dielectric random rough surface. The random rough
surface in the example is generated with exponential correlation function with s = 0.8mm and
[ = 1.8 mm. On the top of the rough surface is the air layer, and above the air layer is a perfect-
match layer (PML) to prevent wave reflection from to top boundary of air layer. Below the rough
surface is the road layer, in this example, the road layer is considered as homogeneous dielectric.
Below the road layer is an impedance boundary whose impedance is calculated such that almost
no reflection from the bottom of the road layer. On the four sides of the entire model, the periodic
boundary conditions are enforced. The total dimensions of the example model are about 20 mm

by 20 mm by 10 mm (~5A x5\ %2.54), and mesh size is about 0.1 A.

PML layer

Air lay

(@)
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Impedance

Road layer

boundary
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Figure 3.4. Simulated setup of a rough surface in AnsysEM

After perform simulation in AnsysEM for the rough surface model in Figure 3.4, the
scattered tangential electric field on the top surface of air layer can be collected and drawn in
Figure 3.5. Because the model has periodic boundary condition, the scattered E field outside the
boundary will be the field inside the boundary times some phase term related to the incident phase
difference. Hence, the scattered tangential E field everywhere with the same height can be obtained.
According to equivalence theorem, the scattered electric far field can be calculated by near-field

and far-field transformation [101].
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Figure 3.5. Simulated scattered tangential E field on the top of air layer from one rough surface
example
The detail of near-field and far-field transformation is given below. The cell shown in
Figure 3.5 has periodicity in both x and y directions. Let the period in x direction is L, and in y

direction is L, . Any point with coordinate values of (x’,y’,z) can be represented as

(x+nLy,y +mLy,z), with0 <x <Ly, 0<y<Ly, n,meZ. Due to the periodic boundary

yl
condition, the E field at (x’, y’, z) is given by:
E(x +nL,,y+ mLy, Z) = E(x,y, Z)ejko(ansinOicos¢i+mLysin9icos¢'i), (3.5)
where 6; and ¢; are the incident elevation and azimuth angle with respected to the surface. The E
field inside the cell E(x, y, z) can be expressed as Fourier transform of its spectral domain value:
E(x,y,z) = #ﬂfowA(kx, ky,z)e TkZe Tk ikyY qk. dk,, (3.6)
A(kx, ky, z) is the inverse Fourier transform of E(x,y, z):

A(kex ky,z) = e/ [[7 E(x,y,20)e/* /" dxdy, (3.7)

In far field approximation, the electrical far field can be expressed as [101]:
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o (Axcosps + Aysings), (3.8)

e
2nr

Eg(6,¢,7) = jko

e Jk

. cosOs(Aycosps — Aysings), (3.9)

Ep(0,¢,7) = jko -
where 6, and ¢ are the elevation and azimuth direction of observation point. Thus, the task is to
find the value of A, and A,, for a given incident wave. Let the tangential A be A = A, X + A, ¥.
We also have:

At(kx' ky, Zo) = elk%o ff_oooo E.(x,y,20)e/ /Y dxdy =

eszzo Zﬁ:—N ejko(ansinHicos¢i) ejkanx Z%:—M ejko(mLysinBisin(pi) ejkymLy % (3.10)

foLy fOLx Et (xF y) ZO)ejkxx+jkyydxdy.
Note that the summation term is a sinc function, which becomes a delta function if N and

M goes to infinite:

1+ 2N, k, =—kysinb;cos¢; + 2

N jko(nLysinB;cose; jkynL, Ly
YN__y e/ko(nlxsindicosi) gjkxnly — r o (3.11)

negligible, k, # —k,sinf;cos¢; + .
It indicates that it only has solutions for the discretized angles or called Bragg angles [102]
with k, and k,, satisfied the following conditions:
k, = —kysin6;cos ¢; + 2nn/L,, n € Z, (3.12)
ky, = —kq sin6; sin ¢; + 2mtm/L,, m € Z. (3.13)
Since our interested scattering direction is in the back, the value of L, and L,, are carefully

chosen such that k; = —k;. The equation (3.10) can be rewritten as:

Ly Ly

Ay(ky, ky, 29) = /%% (1 + 2N) (1 + 2M) f f E,(x,y,25)e %1%y dxdy
i (3.14)

= e/*z%0 (1 + 2N)(1 + 2M)A,,.
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Where A,, represents the integration of simulated tangential E fields, and can be numerically
evaluated.

The main contribution of the backscattering field from a random rough surface is
incoherent field, therefore, a term called scattering coefficient is used to characterize the radar

response of the rough surface. Scattering coefficient is defined by the RCS per unit area, or:

00y = i 2RI EL
pal T R TA, 13 BT

(3.15)
where p and g are polarizations, usually is specified as horizontal or vertical polarization. In this
application, A, is the area of one unit cell, and E® is obtained by substituting A, into equation
(3.8) and (3.9).
3.4 Surface backscattering simulation results

To examine the accuracy of FEM method with AnsysEM (HFSS) for this surface scattering
problem, we first perform the simulation to find the scattered field from a flat dielectric surface in
specular direction. The reflection coefficients for flat surface in specular direction is given by
Fresnel’s equations [89]. The simulated reflection coefficients are simply the ratio between the

magnitude of scattered E field and incident E field:

_ |Esl

|R|sim - H: (316)

An example of the simulation for flat dielectric surface in both TM and TE cases are shown
in Figure 3.6. It has dimensions of about 4mm by 4mm (A x ), dielectric constant of 3.18+0.11i,
and is illuminated by a planewave with 8; = 80°. The real part of the scattered E fields is depicted
in the figure, and it appears to be a sine function as expected. The reflection coefficients are 0.458
for TM case and 0.791 for TE case according to Fresnel equations in this problem. It can be

observed from Figure 3.6 that the simulated reflection coefficients are 0.442 for TM case and 0.794
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for TE case. Therefore, the error between simulated and theoretical results are very small (<0.016)

which validate the accuracy of this simulation approach.
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Figure 3.6. The simulated scattered tangential E field on the top of air layer from a flat surface
for (a) TM case and (b) TE case

The rough surfaces are random, therefore, their backscattering responses are random
variables as well. In order to characterize the randomized behavior of the backscattering response,
Monte Carlo simulations are performed. First question to ask is how many realizations are needed
to achieve reliable results. In one example, Figure 3.7 depicts the simulated average backscattering
coefficients as a function of number of realizations of the rough surfaces with the same statistical
features (RMS height, autocorrelation function and correlation length). In the figure, VV, HH,
VH/HV stand for different polarizations, in particular, V is for vertical polarization or TM
polarization, and H is for horizontally polarization or TE polarization. VH means the transmitter
is in V polarization and the receiver is in H polarization, etc. Due to the reciprocity of EM wave,
the backscattering coefficients of VH coincides with that of HV, therefore only one curve is used

to represent the two polarization states. It can be seen that after 30 realizations, the backscattering
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coefficients for all polarizations converge. Therefore, 30 realizations are sufficient to achieve a

relatively accurate result. In the following discussion, data are collected for about 40 realizations.

Ave2rgged Backscattering Coefficients for different numbers of ‘svamples
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Figure 3.7. The backscattering coefficients averaged from many realizations of random rough
surfaces with the same statistical features

The time complexity and memory increase dramatically with the dimensions of rough
surface in FEM simulation, meanwhile, the rough surface may not exhibit the correct statistical
information if the dimensions are too small. Therefore, it is desired to find the smallest dimensions
of the rough surface model that has good convergence to save the time and memory. Table 3 - 2
gives the comparison of simulated backscattering coefficients and the computational costs between
the rough surfaces with different dimensions. All randomly generated rough surfaces have the
same statistical parameters (s = 0.5mm and h = 1.2 mm) and same incident angle (6 = 70 °). a{,’q
denotes the backscattering coefficients with incident field of p polarization and scattered field of
q polarization, and CPU time and memory are the averaged values for all 40 realizations. It is
shown from the table that when the dimensions increase from 21mm (~5 A) to 31 mm (~ 8X), the

variation in backscattering coefficients are lower than 1.5 dB for all polarizations but the CPU time
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is increased by more than 3 times and memory is increased by 1.5 times. Hence, considering the
tradeoff between accuracy and computational cost, 5 A by 5 A is used as the dimensions of rough
surfaces in following simulations.

Table 3 - 2. Comparison of the backscattering coefficients and computational resources for the

rough surfaces with different dimensions and same statistics

Dimensions (mm) | ¢, (dB) | o2, (dB) | o7, (dB) CPU time (hrs) | Memory (GB)

~21x21 -22.0 -37.9 -25.1 7.99 105
~25%25 -22.6 -38.6 -27.1 14.37 156
~31x31 -23.0 -394 -26.5 32.47 250

The backscattering coefficients are treated as random variables. Characterizing the
statistical features of the backscattering coefficients can help us better understand the scattering
mechanism from random rough surfaces. In one example, the rough surface has RMS height equal
to 0.8mm, correlation length of 1.8mm, and is illuminated by a plane wave with 8; = 70°. Its
backscattering coefficients are found to follow exponential distribution as is shown in Figure 3.8.
In the figure the results for HV polarization are not shown because they are the same as those for
VH polarization. The exponential distribution can be described with one parameter u, and its

probability density function (PDF) is given by [103]:

_fe™H /iy x>0
fx) = {0 x20 (3.17)
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Figure 3.8. The comparison of empirical and fitted cumulative density function of backscattering
coefficients with (a) VV polarization, (b) HH polarization and (c) VH polarization for the rough
surfaces with the same statistical features

The mean value of the exponential distribution is y, and in the example of Figure 3.8, the
parameter u for the backscattering coefficients with different polarizations are: p,,, = 6.23e — 3,
Unn = 2.96e — 3, u,, = 1.65e — 4. Notice that since the backscattering coefficients are defined
as RCS per unit area, they have unit of m?/m? or are unitless. One interesting property of

exponential distribution is memoryless, which can be described as:
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P(X >x+x01X>x0) =PX >x), Vx,x0 =0 (3.18)

In this rough surface radar backscattering problem, the backscattering power is dominated
by incoherent summation, which means the total backscattering power can be treated as the sum
of the backscattering power from all scatterers on the rough surface. The memoryless equation can
be interpreted as: the probability of the occurrence of one strong scatterer on the rough surface is
independent of the existing backscattering power of the rough surface. This is naturally true since
the points on the rough surface are quickly uncorrelated, and thus the scatterers should be
independent as well. It is shown that only one parameter u is needed to describe the statistical
features of backscattering coefficients. In the following discussion, parameter u of the
backscattering coefficients for different polarizations is studied, and the relation between u and
other parameters are discussed.

3.5 Reduced surface backscattering models

The Monte Carlo simulations for polarimetric radar backscattering coefficients are
performed for the random rough surfaces with many different profile features and incident
directions. In particular, the profile features are characterized as RMS height, correlation length,
and dielectric constant. The simulated instances have RMS height from 0.4 mm to 1 mm, and
correlation length from 1 mm to 3mm. The dielectric constant for road varies from 2 to 10, and the

incidence angle ranges from 650 85<
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Figure 3.9. The backscattering coefficients with different polarizations as functions of incident
angle for the rough surfaces with (a) ks = 1.29,kl = 3.23,¢, = 3.18 + 0.1i, (b) ks =

1.29,kl = 2.41,&, = 3.18 + 0.1i and (c) ks = 0.81, kl = 1.93,¢, = 3.18 + 0.1i.

To quantitatively examine the relations between polarimetric backscattering coefficients

and road surface properties and incident angles, method of control variable is applied. To obtain a

more general relations in the MMW band where automotive radar operates (76~81 GHz), though
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the simulations are only performed for 77 GHz, we use unitless variables ks and k! instead of
RMS height s and correlation length [. k is the wavenumber defined as 27“

The relation between backscattering coefficients and incident angles are depicted in Figure
3.9. In the three figures, variables ks, kl and &, maintain the same values and the mean value u of
backscattering coefficients vary with incident angle only. They show that the backscattering
coefficients can be modeled as functions of incident angle in the following form:
Opg = agCos™ 6;, p,g=nhorv, (3.19)
where a, and b, are functions of other variables ks, kl and ¢,.

5. The average backscattering coefficients for different rms height The average backscattering coefficients for different rms height
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Figure 3.10. The backscattering coefficients with different polarizations as functions of ks for
the rough surfaces with (a) kl = 1.93,¢, = 3.18 + 0.1i,0;, = 70°, and (b) 6; = 80°,kl =

3.23,e, = 3.18 + 0.1i

Figure 3.10 depicts how the backscattering coefficients change with RMS height while

other variables remain constant. Figure 3.10 (a) and (b) have different kIl and incident angle values.
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In both situations the backscattering coefficients a;5, are proportional to ksP1, b, can be a function

of incident angle.
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The mean values of backscattering coefficients as functions of kl are given in Figure 3.11.
Similar to the previous analysis, gy, is found to be proportional to k1=b2_ In Figure 3.12, the mean
values of backscattering coefficients are modeled as functions of normal incidence reflection
coefficient p,. The normal incidence reflection coefficient is defined as:

_ Va5

where &, is the permittivity of the road, equal to ¢,.&,, and ¢, is the permittivity of air. From Figure
3.12, it is observed that the mean backscattering coefficient g, is proportional to pé’3, which in
fact is a function of the dielectric constant of the road.

Synthesize all the observations shown above, the mean values of backscattering

coefficients are modeled as the following function:

o cos®t @ |p0|a2 (ks)a3cose+a4 m? B (3.21)
Opq = (kl)a5c059+a6 F ’ p,q=horv

In the function, the coefficients A, a, to a, are obtained by curve fitting from the simulated
data, and are different for different polarizations. The values of those coefficients are shown in

Table 3 - 3.

Table 3 - 3. Coefficients of the reduced backscattering model for different polarizations

Coefficient al, orn Oy OF O,
A 10.77 2.73 0.927
a; 2.67 3.15 2.96
o, 1.86 1.24 2.61
as 5.40 1.38 -2.27
ay 0.47 1.94 342
as 0.78 1.16 0.83
Qg 2.38 1.86 2.43
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Figure 3.13. The regression performance of the proposed reduced backscattering model for (a)
VV polarization, (b) HH polarization and (c) VH/HV polarization
The linear regression performance of the reduced backscattering model described in (3.21)
is shown in Figure 3.13. The x axis represents the original data and the y axis represents the data
calculated from the reduced model. Very good agreements between original data and the results
generated by reduced model can be observed from the figures. The root-mean-square error for VV
polarization is 0.76 dB, that for HH polarization is 0.69 dB and that for VH/HV polarization is

1.05 dB. Therefore, the accuracy of the proposed reduced empirical model is validated.
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3.6 Semi-empirical volumetric backscattering models

The reduced backscattering models derived in previous section can only be applied to
surface backscattering problem with homogeneous random rough surface. In the homogeneous
rough surface assumption, the permittivity of the rough surface is constant in different locations,
and the RMS height and correlation length are statistically identical in different locations. However,
in real road like asphalt road, the homogeneous assumption is invalid and the volumetric
backscattering due to the inhomogeneity of the material contributes largely to the entire
backscattering power. To characterize the volumetric backscattering coefficients, the radiative
transfer equation methods [89] [104] are applied. The radiative transfer equation is given by [90]

[105],

(3.22)

dl(r,s
Ez d o )+ f P(3,8)1(r,3)d0Y,
S 4T

where I(r,$) is specific intensity at location r and radiating to direction §, s denotes the path
length in the direction 3, k. is extinction coefficient contributed by both absorption and scattering,
P(8,8") denotes phase matrix from incident direction 8’ to scattering direction 3.

Because the random property of the permittivity, density and geometry of scatterers inside
different roads are unknown, it is difficult to obtain the extinction coefficient and phase matrix by
theoretical analysis or numerical simulation. Therefore, a semi-empirical model is proposed in [90]
to find the backscattering coefficients, and the backscattering coefficients for different

polarizations are given by:

P1
Oy = 41 cos |t31|2|t170|2
e
2 P1
oy, = 41 cos 6, |t01| |t10|
e
Pz
o, = 4m cos B, |t01| |t10|2
e
2 Pz (3.23)

Oy = 41 C0s By |3, | |t10|
e
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where 8, denotes the incident angle, t§; denotes the transmission coefficient from air to the road
with vertical polarization or TM wave, and t?, denotes the transmission coefficients from the road
to air with horizontal polarization or TE wave, p, and p, are the terms in phase matrix related to

co-polarization and cross-polarization, respectively.

P2

The values o S are obtained from measurement data, and therefore the equation (3.23)

Ke
is called semi-empirical model. Three different types of road, weather asphalt, new asphalt and
concrete, are measured with 77 GHz continuous wave radar. The pictures of the roads are shown

below:

(@) (b) (©)

Figure 3.14. Radar measurements for (a) weathered asphalt, (b) fresh asphalt and (c) concrete

road
Figure 3.14 shows the pictures of measurement for different types of ground. The radar is
scanning its main beam in elevation direction manually, and at each elevation angle, the radar can
scan its beam in azimuth direction mechanically, resulting in more than 30 samples of radar
backscattering measurement, and the backscattering coefficients are obtained from the RCS values

divided by the beam’s footprint area as is shown in Figure 3.14 (a). From the measured

backscattering coefficients, the values for ’2’1—'2 can be found and are given in Table 3 - 4.

Ke
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Table 3 - 4. Values of 2172 for different types of road

Roads
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0.00083

0.0000167

O Volumetric ¢°
w

Predicted aev from radiative transfer theory

-20 1

22 -

24

-26

., (@B)

-28

-30

-32

34

70

75 80
incident angle (deg)

(@)

-36

ic 40
F Volumetric 0%,

Predicted uﬁh from radiative transfer theory

85 70

75
incident angle (deg)

(b)

-22

Predicted ”Sn from radiative transfer theory

361 % Volumetric ash

-38

-40 3 :
70 75 80

incident angle (deg)

(©)

62

85

80

85



Figure 3.15. Comparison of backscattering coefficients between measurements and semi-

empirical model for weathered asphalt with (a) V'V polarization, (b) HH polarization and (c) VH
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Figure 3.16. Comparison of backscattering coefficients between measurements and semi-
empirical model for concrete with (a) VV polarization, (b) HH polarization and (¢) VH
polarization
The comparison of measured data and the data from radiative transfer models are shown

in Figure 3.15 and Figure 3.16. Good agreement is found between measurement data and the data
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generated by semi-empirical model. It should be noted that the values of ’2’17'2 may only be applied

to the road conditions of the samples under test and could be different for the same type of road
but with different conditions.
3.7 Conclusion

In this chapter, millimeter wave backscattering coefficients with different polarizations for
various road surfaces are studied. The backscattering power from road is divided into two parts:
surface scattering and volumetric scattering. For surface scattering, the road surface profiles are
measured, and their statistical features are obtained. Then the random rough surfaces with different
statistical features are generated and simulated by full-wave numerical simulation software. By
applying the near field and far field transformation, the backscattering coefficients can be derived
from the full-wave simulation and the average backscattering coefficients are obtained through
Monte-Carlo simulations. Finally, the backscattering coefficients with different polarizations are
modeled as reduced analytical functions of the road surfaces’ statistical features, dielectric constant
and incident angle.

Volumetric scattering usually dominates the backscattering power from road. The study of
volumetric scattering is based on radiative transfer theory. The backscattering models utilizing
measurement data are presented in this chapter. The measured roads including fresh asphalt, new
asphalt and concrete roads. Good agreements are observed between the measured data and the

semi-empirical models.
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Chapter 4 Radar Statistical Models and Real-time Radar Response

Simulation

4.1 Introduction

The traffic targets are usually complex and electrically very large in MMW band. As a
result, their radar cross-section (RCS) often fluctuate rapidly as a function of incident angle and
frequency. This phenomenon can be addressed with PO simulations. For example, the RCS of a
1.8 m tall walking man is simulated at the range of 50 m for all incident azimuth directions at 77
GHz is shown in Figure 4.1 (a). It is shown that the simulated backscattering RCS may change
more than 20 dB if the incident angle alters slightly. The RCS of targets could fluctuate with
frequency as well. In another example, the RCS as a function of frequency for a sedan is shown in
Figure 4.1 (b). More than 15 dB RCS variation is observed with frequency. Therefore, statistical
approach should be applied to reveal the intrinsic property of the apparently randomized data.

The study on the statistical behavior of RCS for complex target can be traced back to 1950s
by Peter Swerling, and the proposed statistical models are also called Swerling target models [109].
The Swerling models can be generalized as Chi-square distribution models, which are actually
special cases of gamma distribution [110]. For example, Swerling | model, which has been widely
used in aviation targets, is gamma distribution with shape parameter k=1, or exponential
distribution. Besides gamma distribution, other statistical distributions like Lognormal distribution
[111], [112] and Weibull Distribution [113], [114], [115] have been used to characterize the

fluctuation of RCS for different types of targets including aircrafts, ships, vehicles and sea clusters
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in different frequency band. However, the statistical models for traffic targets like pedestrians and

vehicles in MMW band hasn’t been reported in literature yet.
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Figure 4.1. Simulated RCS as a function of (a) incident angle for a 1.8m pedestrian, and (b)
frequency for a sedan

Accurately characterize the RCS statistical features for pedestrians and vehicles can enable
fast radar simulation and assist the autonomous car to identify targets as well. In this chapter,
numerous RCS data are generated first for various targets including pedestrians, vehicles and other
stationary targets. Pedestrians are examined with different weights, heights, ages, genders and
poses, vehicles include sedans, SUVs, hatchbacks, buses, trucks, bike and motorcycles, other
stationary targets include traffic lights, traffic signs, lamp posts, trash bins, tree trunks, animals etc.
Then the RCS data of one target with similar ranges, frequencies and incident angles are fit to
several known statistical distributions, and the statistical parameters are summarized and recorded.
In the end, the statistical RCS models are utilized to perform real-time Radar response simulation
from traffic scene in Unreal Engine 4.

4.2 RCS statistical models of pedestrians for real-aperture radar

For real-aperture or beam-steering radar that has one transmitter and one receiver, a traffic
target can be represented by one RCS value. The RCS value is treated as a random variable whose
features could be a function of incidence angle, range and other parameters of targets. Regarding
the driving safety, pedestrians are the most important targets and therefore, the first priority is to

study the RCS behavior of pedestrians.

67



(@)

(b) (c)
Figure 4.2. CAD models of male pedestrians for (a) different poses during one period of walking,
(b) different heights with walking motion and (c) different weights with jogging motion (same
height)

One of the major challenges in simulation for the RCS of pedestrians is the dynamic
behaviors of pedestrians. In traffic scene, pedestrians usually exhibit various poses during walking
or jogging motion. To capture the features of RCS response from different behaviors, we first
generate the computer-aid-design (CAD) models for human with multiple poses of one motion
(walking or jogging). Some examples of human CAD models with different poses, heights and
weights are depicted in Figure 4.2. The CAD model for a human with arbitrary height and body
shape is created by an open-source software MakeHuman [106], and the poses during walking and
jogging are obtained from CMU’s motion capture database [107]. Finally, the poses are integrated
into a given pedestrian CAD model in another open source 3D computer graphic software Blender
[108]. The CAD models are generated for different genders as well. For each gender, CAD models
are created for more than five different heights, and for each height, there are five different body
shapes. For pedestrian with specific gender, height and weight, CAD models are further created
for two motions: walking and jogging. For each motion, more than 10 poses are generated for each

person. The hierarchy structure of CAD models for pedestrians are illustrated in Figure 4.3.
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Figure 4.3. Hierarchy of CAD models generated for pedestrians

In the numerical simulation, the antenna’s beamwidth of the radar is assumed to be 39and
the first side-lobe level is compressed to -26 dB lower than the main lobe. The radiation pattern of
the antenna is given in Figure 4.4. The radiation pattern is corresponding to a 2D antenna array

with triangular tapered current distribution among antenna array elements.
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Figure 4.4. Radiation pattern of the antenna employed in simulation
CAD models of 10+ continuous poses of one period of walking or jogging motion for one
pedestrian are used in the simulation, and their RCS values may differ for the same range and
incident angle. Because it is difficult to track the exact incident angle and pose of one pedestrian,
the simulated RCS data of one pedestrian with different poses at one range and #5<ncident angles
are considered as independent samples in statistical analysis. For example, Figure 4.5 shows the
averaged RCS and standard deviation of RCS from different incident angles at range of 100 m for
a 1.7m tall walking woman. The averaged RCS has peak values at 092909 180%and 270 which
are corresponding to the two sides, front and back of the person. Due to the rotational symmetry
of pedestrians, it is found that the mean values can be fit by a Fourier series up to fourth order of
incident angle ¢, which is given by:
< Oy (P) >= 24 1ancos(nqb) + bysin(ng) + co(m?), (4.1)
n=

where ¢, denotes the average RCS value of all azimuth angles, and a,,, b,, are coefficients of

Fourier series, which determine the variation of mean RCS at different azimuth angles. The values
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of a,,, b,, can be obtained from curve fitting for the 10“averaged RCS as a function of azimuth

angle.
10 -
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Figure 4.5. Mean values and mean *standard deviation values of RCS as a function of incident
angles for a 1.7m tall walking woman in the range of 100 m

Notably, the concept of RCS is for point target, and point-target approximation requires
the radar to be in the far-field range of the target. The far-field range equation is given in (4.2),
where D is the largest dimension of target and A is the wavelength. In one example, the far-field
range for a 1.8m tall pedestrian is more than 1600 m at 77 GHz. Hence, the radar usually operates
in the near-field range of traffic targets. Besides, depending on the range and beamwidth, the
pedestrian may be partially illuminated, which results in the RCS value to be a function of range.

Therefore, the Fourier coefficients a,,, b,, and c, should be functions of range as well.

2D? (4.2)
l = T
To find how those values change with range, first massive simulations are performed for

pedestrians at different ranges from 5 m to 100 m. The averaged RCS values of all azimuth angles
and all poses can be displayed as a function of range as depicted in Figure 4.6. It shows that at near

range where the pedestrian is partially illuminated, the averaged RCS is almost a linear function
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with range, and after the range where the pedestrian is fully illuminated, the RCS gradually
increases with the distance to the radar. Therefore, we can define a reference range R,r denotes
the range that the target is fully illuminated. In this example of a 1.8 m tall pedestrian and 3°

beamwidth radar, r..s = 42 m.

0 Average backscattering RCS for human with all azimuth angles
- T T T T T |

Averaged RCS
-34.5+18.5"log10(r)

|IIIII

o0 !iinear function with distance ]

Average Backscattering RCS (dBsm)

-25

0 210 4l0 6I0 SID 10IO 12IO
distance r(m)
Figure 4.6. Backscattering RCS for a 1.8m tall walking man averaged for all azimuth angles and
poses as a function range

While 20<averaged RCS can be properly fit by an analytic function shown in Figure 4.5,
the corresponding standard deviation cannot. To best describe the statistical property of RCS from
pedestrians, the RCS data are fitted by known statistical distributions to obtain the corresponding
statistical parameters instead of just mean values and standard deviations. In the example shown

in Figure 4.7, the RCS data are fitted into Weibull, lognormal and gamma distribution.

The probability density function (PDF) for Weibull distribution is given by:

f(x|A,B) = 1 (Z) exp {— (Z) }
where A and B are two parameters of Weibull distribution. That for lognormal distribution is:
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f&xlp, o) =

exp {_ (Inx — u)z}’ (4.4)

202

xoV 2T

where u and o are two parameters of lognormal distribution. The PDF for gamma distribution is:

f(xla,b) = porsa®lexp {- %}, (4.5)

where a is a shape parameter and b is a scale parameter of gamma distribution, and I'(a) is Gamma

function.

Figure 4.7 depicts the fitting performance of the three distributions described above for the
RCS of a 1.8 m tall walking man with range of 15 m and incident angle of 45< It shows that both
Weibull distribution and gamma distribution have excellent fitting performance in this example.

To quantitatively evaluate the fitting performance, a fitting error in CDF is defined as:

2

\/211\1 (Ffit(x) - Femp(x)) (46)
N )

where Fy;¢(x) is the CDF fitted to a known distribution, F,, (x) is the empirical CDF.
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Figure 4.7. (a) Probability density functions and (b) cumulative density functions comparisons

between empirical data and several statistical distributions
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The fitting error is evaluated for all ranges and incident angles, and the performance for
different distributions are given in Table 4 - 1. It shows that Weibull distribution has the best fit to
the RCS of 1.8 m tall pedestrian. Similarly, the simulated RCS data for other pedestrians can be
best fitted by Weibull distribution as well. Therefore, Weibull distribution is chosen as the
statistical distribution of RCS in the following discussion.

Table 4 - 1. Fitting errors s of different statistical distributions for the RCS of a 1.8 m tall

walking man

Distribution Lognormal Weibull Gamma

Fitting error 0.0368 0.0159 0.0256

In Weibull distribution, A is scale parameter and B is shape parameter. When B = 1,
Weibull distribution is reduced to exponential distribution (Swerling I model), which has been
successfully applied to represent the fluctuation of RCS for many aircrafts in the far field. As
mentioned, the radar is operating in the near field range of pedestrians, and the RCS is a function
of range as shown in Figure 4.6. To find proper analytic expressions for the Weibull parameters
as functions of incident angle and range, control variable method is applied. The parameters A and
B are first fitted as functions of incident angle in fixed range by Fourier series and then the Fourier
coefficients are modelled as functions of range. For example, Figure 4.8 depicts the Weibull
parameters A and B as functions of incident angle for different ranges for a 1.8 m tall walking man.

The functions of incident angle are fitted by the following Fourier series:

A(p, 1) = Bra(r)sin(@) + azq(r)cos(2¢) + B34 (r)sin(3¢) + asq(r)cos(4¢) (4.7)
+ Yoa (1) (mM?),

B(¢, 1) = B1p(r)sin(@) + azp(r)cos(2¢) + B3, (1)sin(3¢) + ayp(r)cos(4¢) (4.8)
+ Bsp (1M)sin(5¢) + agp (r)cos(6¢) + yop ().
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The Fourier coefficients a; and g; for Weibull parameters A and B as functions of range
are shown in Figure 4.9. Those coefficients then are fitted by polynomial functions of range. Notice

that the range shown in the Figure is the normalized range, which is defined as r/rref'

Aforr=2.00m
= = +Aforr=11.50m
= 4= +Aforr=21.50m
soo@ o Aforr=46.50m

0.6 o = @ 'Bforr=11.50m be
B forr=21.50 m X
051 = 4= :Bforr=4650m| o \ 1
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Figure 4.8. Values of Weibull parameters (a) A and (b) B as functions of incident angle in

different ranges and their fitted curves by Fourier series (solid lines)
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Figure 4.9. Fourier coefficients for Weibull parameters (a) A and (b) B as functions of range and
are fitted by polynomial functions (solid lines)

In one example of 1.8 m tall walking man, the coefficients a; and g;, which are shown in

Figure 4.9, are expressed in the following functions. For parameter A:
r
Yoq = —0.029 — 0.0184

r\ r\
+ 0.542 ( > —0.256 < )
Tref Tref Tref

r 2 r 3
+ 0.082 < ) - 0.027( )
ref rref
> —0.123 ( )
ref rref

r r
B3, = —0.0011 + 0.031 — 0.06< ) + 0.01 <
Tref Tref ref

r\ (4.9)
+O.151< ) —0.048< )
rref Tref

Yoo = 0.288 + 2. 127/ . —2.58(" [y, )* + 1.04("/r,., )°

r
Biq = 0.006 — 0.041
rref

T
ayq = —0.016 + 0.104 — + 0.14(

Tre f

= 0.0039 — 0.042

Tre f

For parameter B:

Bip = —0.073 +0.177 /. —0.099("/r, )’
a, = —0.296 + 2.01 r/rref — 2'98(r/rref)2 n 1'29(r/rref)3
Pap = —3.05e =4 = 0.0727 /. .+ 0.071(" [y, )?
a4, = —0.0013 + 0.117 r/rref — 0'046(T/Tref)2
Bsp = 0.0369 — 0.139r/rref + 0_072(r/rref)22
gy = —=0.0162 +0.0387/y, . — 0.025(" /r,., )? (4.10)

Notice that for different pedestrians the coefficients of the functions can be different.

Particularly, people with different weight and height may have different coefficients on the
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Weibull parameters. It is understood that the weight and height are highly correlated, that a tall
person usually has more weight than a shorter person given the same body shape. In order to isolate
the impact of height on weight, two concepts are introduced. The first one is called standard weight
(wy), which is the weight for a given height normal shape person. We used the standard of normal
shape defined by the human CAD generation software MakeHuman. It is noted that the standard
weight is different for man and woman, and the standard weight as a function of height is given
by:
wo(h) = 64.38h% — 112.1h + 65.78 (kg), for man (4.11)

wo(h) = —0.714h? + 91.73h — 95.02(kg),  for woman (4.12)
where h is the height of the person, with unit in m, and ranging from 1.4 m to 2 m.

The second quantity is called shape factor (sf) and is defined as w/w,. Shape factor is used
to represent how a person’s weight deviated from its standard weight. For example, the standard
weight for a 1.7 m tall woman is 57.4 kg according to (4.12), and a woman with 1.7 m height and
50 kg weight then has shape factor of 0.871. Figure 4.10 illustrates the CAD models of 1.7 m tall
woman with different body shapes. The demonstrated body shapes include skinny shape (#1) to
overweighted shape (#7), and their weights and body factors are given in Table 4 - 2. The weight
is measured by multiplying the volume of the CAD model and density of human body (0.985 g/ml).
Many software including autoCAD can evaluate the volume of a CAD model, and one of the
algorithm is to divide the entire CAD model into many small tetrahedrons, and for each tetrahedron,
there is analytical solution to calculate the volume [116].

The statistical analysis and curve fitting process mentioned before are repeated for the

pedestrians with different genders (man and woman), actions (walking and jogging), heights (1.4m

to 2m) and shape factors (0.65 to 2.2). The coefficients a;, B; and y, as functions of range are
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recorded and tabulated for all different pedestrians. The tabulated statistical data can be applied to
quickly generate RCS values of a pedestrian given the information of range and aspect angle in a
real-time radar simulation application. For a pedestrian with arbitrary weight and height, his/her
shape factor will be calculated first, and his/her corresponding statistical parameters will be

calculated based on linear interpolation from the lookup table generated from massive simulations.

Figure 4.10. CAD models for 1.7 m tall walking woman with different shape factors

Table 4 - 2. Weights and shape factors for different samples of 1.7 m tall woman

Sample # 1 2 3 4 5 6 7
Weight (kg) 38.4 48.6 57.4 59.2 72.9 88.8 104.0
Shape factor 0.67 0.85 1 1.03 1.27 1.55 181

This semi-lookup table semi-analytic model can be efficiently used to find the RCS value
of a given pedestrian. Here gives an example to fast generate RCS value of a 1.75 m tall walking
man with weight of 70 kg, and he faces the radar at the range of 30 m. The first task is to evaluate
the corresponding Weibull parameters A and B of the RCS, and then we can generate the RCS
value through Weibull distribution random number generator. The standard weight for a 1.75 m

tall man is 66.77 kg according to (4.11). Thus, his shape factor is 1.05. Because in the tabulated
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library, there is no male model with 1.75 m tall and shape factor of 1.05, but instead there are
models for 1.7 m tall man and 1.8 m tall man, and shape factor of 1 and 1.25. To calculate the
Weibull parameters A and B in this example, first the values of Weibull parameters A and B for
four different cases are evaluated: (1) 1.7 m tall walking man with shape factor of 1, (2) 1.7 m tall
walking man with shape factor of 1.25, (3) 1.8 m tall walking man with shape factor of 1, and (4)
1.8 m tall walking man with shape factor of 1.25. The Weibull parameters A and B for those
models can be evaluated from analytical fitted curve with the methods described previously. The
parameters for those four models at range of 30m and azimuth angle of 90(front view) are given
in Table 4 - 3, and the estimated Weibull parameters for a 1.75 m tall waking man with weight of
70 kg is: A = 0.127 and B = 0.853. Notice that the Weibull parameters for the pedestrians with
small difference in weight and height are quite similar and the differences are smaller than the
differences between Weibull parameters from different aspect angles for one pedestrian. Therefore,
the statistical RCS information cannot be used to identify a person’s weight and height.
Table 4 - 3. Weibull parameters for the four pedestrians with different height and weight in the

range of 30 m and azimuth angle of 90°

Weibull Parameters: A B
1.7 m tall man with shape factor of 1 0.137 0.863
1.7 m tall man with shape factor of 1.25 0.112 0.851
1.8 m tall man with shape factor of 1 0.120 0.840
1.8 m tall man with shape factor of 1.25 0.117 0.868

4.3 RCS statistical models of vehicles and other targets for real-aperture radar
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Other than pedestrians, there are many other important targets can be detected by MMW
radar in a traffic scene. Those targets include but are not limited to vehicles like bikes, motorcycles,
sedans, SUVs, trucks, buses and etc., other targets like lamp posts, traffic lights, traffic signs, tree
trunks, dogs, and etc. The failure of detecting those targets may also result in serious accidents.
Similar to pedestrians, those targets are usually electrically very large, and the RCS values are
fluctuating with both frequency and aspect angle. In this situation, the statistical approach is
applied as well. Compared to the pedestrians, vehicles are larger in size and thereby when a beam-
steering radar is scanning in azimuth directions, it might just illuminate different portion of the
vehicle, and the RCS values different portions may be correlated rather than independently
distributed.

In the following discussion, we take a sedan (Mazda 6) as an example to demonstrate the
statistical analysis for large targets such as vehicles. The CAD model of the sedan is shown in
Figure 4.11. The radar used in simulation has 3°beam width in both azimuth and elevation
direction. Notice that in near range, the radar may only illuminate a portion of the vehicle, and in
the initial study, the RCS values are collected when the radar is focusing on the center of the
vehicle. Itis illustrated in Figure 4.1 (b) that its RCS value is a function of frequency with a given

aspect angle and range.
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Figure 4.12. RCS of a Mazda 6 sedan as a function of azimuth angle for (a) range of 10 m and
(b) range of 30 m

The frequency averaged RCS values as a function of aspect angle is given in Figure 4.12.
In the figures, aspect angle of 0“refers to the right side of the car and 90 “refers the front of the
car. It is shown that the frequency averaged RCS values still vary more than 30 dB with the aspect
angle of the car.

The RCS data in one range, aspect angle ¢ £2.5< and different frequencies are considered
have the same statistical distribution, and those values are fitted to known distributions such as
Weibull distribution and Lognormal distribution as described in section 4.2. Some examples of the
fitting performance of different statistical distributions are shown in Figure 4.13. It is shown that
for some aspect angle and range, Weibull distribution has better fit, while for some other aspect

angle and range, Lognormal fitting has better performance.
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Figure 4.13. The comparison between empirical CDF and fitted Lognormal and Weibull CDF for

(a) range of 30 m, aspect angle of 20<and (b) range of 15 m, aspect angle of 300

To best characterize the statistical features of the RCS for a vehicle, the following strategy

is applied: first, fit the RCS data in one range, at one aspect angle = 2.5< and at different

frequencies into both Weibull (W, z(r,¢)) and Lognormal distribution (L, (7, ¢)), and this

process is repeated for all ranges and angles, and all data are recorded into a library. In this example,
the Weibull parameters A and B as functions of range and aspect angle are shown in Figure 4.14
and the Lognormal parameters i and o as functions of range and aspect angle are shown in Figure

4.15. Because the radar is in the near field range of the sedan, the statistical parameters will be

functions of range, and those values change rapidly with aspect angles as well.
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Figure 4.14. The fitted Weibull parameters (a) A and (c) B as a function of range for different

azimuth angles, and (b) A and (d) B as a function of angle for different ranges

Second, find the RMS error between the fitted CDF and empirical CDF for the data of each

range and each angle set and record the distribution with the smallest RME error. This is referred

as the hybrid statistical distribution, and can be expressed as:

D(r,¢) =

Was(r, @),  if RMSE (Was(r,8)) < RMSE (Lip(r¢))  (4.13)

)

Lyos(r, ), otherwise
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Figure 4.15. The fitted Lognormal parameters (a) u and (c) o as a function of range for different
azimuth angles, and (b) u and (d) o as a function of angle for different ranges
Finally, the statistical features can be calculated for any range and aspect angle of the
vehicle with the following steps. Step 1: navigate the specific range and angle set in the library;
step 2: use the statistical distribution with the smallest RMS error; step 3: obtain the statistical
parameters from linear interpretation method.
Figure 4.16 depicts the RMS error of the CDF for different statistical distributions. It shows

that in the range of 50 m, Weibull distribution has the better performance in some angles, and
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Lognormal distribution has the better fit in the rest angles. Figure 4.16 (b) shows the error
performance of the hybrid distribution D(r, ¢), and the overall averaged RMS error for L,, 5, Wy g

and D at 50 m are 0.054, 0.038 and 0.033 respectively.
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Figure 4.16. The RMS error in CDF for (a) Weibull (W, 5 (7, ¢)) and Lognormal distribution
(L, (7, @)) and (b) the best of the two distributions D (r, ¢) for the sedan at 50 m and different
azimuth angles

When a vehicle is in the near range of a radar, the radar may see different parts of the
vehicle if it can scan its narrow main beam as illustrated in Figure 4.17. In the Figure, the
coordinate is defined in the same way as shown in Figure 4.11, and the radar scanning angle is
denoted as Y. = 0° means the radar is looking at the center of the vehicle. For each value of y,
the corresponding detected RCS value can be treated as a random variable. Because the shapes of
different parts of a vehicle are usually well-defined, the radar response from different parts of the
vehicle may be correlated. Therefore, the random variables representing RCS with different values
of Y should be correlated and treated as multivariant random variables with a given correlation

matrix/covariance matrix. For example, suppose the radar locates at r = 20 m and ¢ = 45°, and
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the scanning angle s is between —6° and 6° with 1.5<step. There are in total 9 random variables
for different value of  in this case: [-6°, —4.5°, —3°, —1.5°, 0°, 1.5°, 3°, 4.5°, 6°]. The mean
values of the RCSs for different { are illustrated in Figure 4.18 (a). Notice that ¢ = 0° only means
the radar is focusing on the center of the car, and the detected RCS at ¢y = 0° may not be the
highest value. In the example shown in Figure 4.18, the beam with { = —3° has the highest mean

RCS value.

Figure 4.17. Coordinate system used in the scenario when radar is scanning main beam
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Figure 4.18. (a) Mean RCS values as a function of scanning angle for a sedan and (b) the
correlation matrix of the RCS random variables with different scanning angles

The correlation coefficient of two random variables X and Y is defined by:

E[(X — ux)(Y — py)] (4.14)

Pxy =
' Ox Oy '

where E[x] is the expected value, and uy and oy are the mean value and standard deviation of

variable X, respectively.
It is known that correlation coefficient with value of 1 means linearly dependent and 0

means independent. The correlation coefficients between each pair of the nine RCS random
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variables define the correlation matrix, and the correlation matrix for the example described above
is shown in Figure 4.18 (b). It shows that the highly correlated region is between the angle ¥
between —4.5° and —1.5°, which are the angles with the highest mean RCS values.

Use the correlation matrix to generate multivariant random variables of radar response can
provide better fidelity for large and/or near target. The multivariant random variables for normal
distribution have been well studied [117]. The generation of multivariant normal distribution
variables is available in MATLAB with function name of “mvnrnd”, and in C++, the generation
of multivariant random variables with normal distribution can be implemented with “Eigen”
library [118] as well. The multivariant random variables for other distributions, like Weibull and
Lognormal distribution in this case, can be obtained from the transformation of multivariant

normal distribution random variables [119].

The task is to generate multivariant random variables X = (%, %, ..., %,)T, and each
variable follows a given statistical distribution. The mean value, variance of each variable, and the
covariance matrix C is given as well. The covariance matrix is defined as:

Co= E[(-m)(E - )] @19)

To start with, we first generate multivariant normal distribution random variables 7=
(21,25 ..., Zy) T with zero mean, variance of 1 and the same covariance matrix C as Cx. This can be
done by applying the library in C++ or MATLAB, or a method called Cholesky decomposition

[120]. In Cholesky decomposition approach, n independent normal distribution random variables

with 0 mean and variance of 1 Z" = (z'1,Z', ...Z',)) are generated first. Because variables in 7' are
independent, the covariance matrix of Z' is C,» = E [7 ’T] = I, and I is identity matrix. Notice

that the covariance matrix is symmetric, and always positive semi-definite. The covariance matrix
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is positive definite if there are no two variables are linearly dependent to each other [121]. Then,
the covariance matrix Cx can be decomposed by [120]:
¢ = LI, (4.16)

where L is a lower triangular matrix. Then,
Cx= LU =C=LLT = LE[ZZT| T = E 127217 | (4.17)
Meanwhile, recall that Cx = E[ZZT], thus the multivariant normal distribution random

variables Z can be generated from n independent normal distribution random variables Z"
i=17 (4.18)
Next step is to convert the multivariant normal distribution random variables to the
multivariant random variables with given distributions. This can be done by utilizing the property
of CDF function. For a random variable V, if V has continuous and strictly increasing CDF F,
then y = F, has uniform distribution on 0 < y < 1 [122]. With this property, a random variable
with a given distribution whose CDF is continuous and strictly increasing can be related to a
normal random variable by:
X = Fg' ) = F (R, (2)), (419
where X is the targeting random variable, Fy 1(y) is the inverse cumulative distribution function
of distribution for X, Z is the normal random variable, and F; is the cumulative distribution

function of normal distribution.

The cumulative distribution function of normal distribution is given by [123]:

1 (¢ —tw? 1 X = (4.20)
F(x|u, o) = J e 202 dt=—[1+er ( )], '
(x|p, 0) - > f o~
where erf () is the error function.
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The targeting distributions are Weibull or Lognormal distribution, and both distributions
have continuous and strictly increasing CDF, therefore, their random variables can be generated
from the method described above. The inverse CDF for Lognormal distribution is:

x=F 1(plu,o) = exp[a(—\/zerfcinv(Zp) + ,u)], (4.21)
where p is the CDF random variable and erfcinv() is the inverse error function. The inverse CDF
for Weibull distribution is:

x = FL(p|4, B) = A(~In(1 — p))*/®. (422)

Table 4 - 4. Comparison between targeting Lognormal parameters and the measured parameters

from randomly generated data

Parameters Variable 1 Variable 2 Variable 3
Utarget 1 2 3
Hdata 0.968 1.977 2.973
Utarget 1 1.2 1.5
Odata 0.973 1.167 1.460
Targeting Correlation [ 1 096 0.86
Matrix 096 1 094
10.86 0.94 1 |
Measured Correlation 1 094 074
Matrix 094 1 088
10.74 0.88 1 |

To validate the approach described above, about 1000 set data samples for multivariate
random variables with given distributions are generated and analyzed. The comparison between
targeting statistical parameters and measured statistical parameters of generated data for one
example of Lognormal multivariate random variables are shown in Table 4 - 4, and that for Weibull
multivariate random variables are displayed in Table 4 - 5. In both cases, there are good agreements
between statistical parameters for single variable (u, o or A, B), and the strong correlation between

random variables are observed from the data as desired. There are some errors in correlation matrix,
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which are due to the non-linearity of the CDF and inverse CDF operation, but after all the strong
correlation are simulated, which can improve the fidelity of real-time radar simulation.
Table 4 - 5. Comparison between targeting Weibull parameters and the measured parameters

from randomly generated data

Parameters Variable 1 Variable 2 Variable 3
Atarget 1 2 3

Adata 0.93 1.94 296

Btarget 0.5 1 15

Baata 0.48 0.96 1.43
Targeting Correlation [ 1 096 0.86]
Matrix 096 1 094
:0.86 0.94 1 |
Measured Correlation 1 086 0.69
10.69 0.92 1 |

The multivariate statistical analysis is performed for many different types of vehicles and
other stationary targets. The types of vehicles include but are not limited to sedan, SUV, pickup
truck, heavy truck, RV, bus, motorcycle and bicycle, the other targets include bus station, trees,
lamp post, traffic sign, traffic light, trash bins and animals like dog, deer and horse. All data are
stored in one library and can be used to simulate the radar response in real-time traffic scene
simulation for autonomous driving.

4.4 Real-time radar image simulation for real-aperture beam steering radar

A typical radar signal processing is first do 2D FFT to obtain the range-Doppler image and
then find the angle-of-arrival (AOA) of each target. For a narrow-beamwidth beam-steering radar,
the AOA of target can be simply obtained by the scanned angle. Beam-steering ability can be done
either by digital/analog beamforming, MIMO techniques or mechanically scanning. Practically,

the automotive radar only scans on azimuth direction due to the limitation of cost. In many
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scenarios, the 2D range-azimuth angle images are sufficient for separation of targets, given that
the radar has narrow beam in elevation direction. In some cases, Doppler information may not be
needed in targets separation, for example, If the Doppler information is used to isolate the response
of targets involving a pedestrian, the pedestrian might be falsely considered as multiple targets due
to multiple Doppler bins exhibited by a pedestrian. Notably, there are some cases the Doppler
information is required for separation of targets, for example, in a scenario where a car is moving
under a bridge. If Doppler information is not used to separate signals, the car might be miss-
detected. In our preliminary research, the scenarios where two objects overlapping in elevation
direction are not studied and the 2D range-azimuth angle images of dynamic traffic scenes are
presented.

The objective of the radar simulation is to generate radar data as close to those in the
physical world as possible. To demonstrate the similarity, some radar images from measured data
and simulation are presented and compared. One example of the 2D radar image from
measurement is shown in Figure 4.19. Figure 4.19 (a) depicts the photograph of a parking lot under
measurement. The MMW radar in use has 3-degree antenna beam width, and its beam is scanned
manually with 1.5-degree step from -30 degree to 30 degree in azimuth plane. Many cars in the
measuring scene can be identified from the radar images shown in Figure 4.19 (b). Figure 4.24
shows another 2D radar image example generated by simulation. In Figure 4.24 (a), a traffic scene
with cars, trees and pedestrians are shown. Figure 4.24 (b), (c) and (d) depicts the 2D radar images
with 2 3<and 1.5°antenna beamwidth and -13 dB, -26 dB and -26 dB side-lobe levels,
respectively. In general, the image generated by narrower beam width, and lower side-lobe level

radar has better image quality that can reduce the false detection rate. Notably, in PO numerical
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simulation, the simulation time for one frame is around 30 minutes for a single core CPU in an
ordinary PC.

Crowded Parking Lot

(@) (b)

Figure 4.19. (a) Radar measurement in a parking lot (b) The corresponding 2D radar images

time is 0.00 s

Vehicle 2 &
Vehicle 3
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Radar’s
initial

x(m)

(@) (b)
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time is 0.00 s time is 0.00 s

(© (d)

Figure 4.20. (a) A crossroad traffic scene for numerical simulation with PO. The corresponding
2D radar images for (a) 2 °beamwidth and -13 dB sidelobe radar, (b) 3<beamwidth and -26 dB
sidelobe radar and (c) 1.5°beamwidth and -26 dB sidelobe radar

To accelerate the simulation into real time, statistical models are applied. The real-time
radar simulation is performed in Unreal Engine 4 [124], which is best known as a game engine for
many popular 3D video games. It can generate 3D scene and run video animation efficiently, which
makes it a good candidate for autonomous driving simulation software. In this real-time simulation,
the radar response from ground surface is simulated as well. One example of a traffic scene created
in Unreal Engine 4 is displayed in Figure 4.21. There are many vehicles including sedans, SUVSs,
bus and motorcycles, trees, bus station, and pedestrians in the traffic scene. Among the two asphalt
roads displayed, one road is covered by fresh snow. The statistical model for snow is derived from

semi-empirical scattering models.
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Figure 4.21. A dynamic crossroad traffic scene built in Unreal Engine 4 for real-time radar
images simulation

In the simulation setup, each target is initialized with its own radar statistical models,
depending on the aspect angle and range to the radar during simulation, a set of statistical
parameters for RCS are calculated and the RCS values are generated by random number generators.
Then the received power level at each radar scanning angle is derived from the radar equation with
RCS values and corresponding antenna’s gains. The simulation is performed for a dynamic
environment, where the objects can move in their pre-programed traces.

The dynamic traffic simulation with setup shown in Figure 4.21 is displayed in Figure 4.22.
It shows three frames from a continuous simulation. The large sector shows the 2D radar image
generated for a forward-looking radar, and the radar used in this example has 1.5<beam width, -
26 dB side-lobe level, 0.5 m range resolution and 1.5<angular resolution. The two small sectors
below are corresponding to a near-grazing looking radar. The two images are corresponding to VV
and HH polarizations. The results for cross-polarization is not shown because the power level for

it is much lower than VV and HH, and usually below the noise floor.
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Figure 4.22. A dynamic traffic scene simulation in Unreal Engine 4 of (a) starting frame, (b)
middle frame 1, and (c) middle frame 2.

In Figure 4.22 (a), the major targets including vehicles, trees and bus station can be clearly
observed from the radar images. Figure 4.22 (b) shows that near targets has stronger radar response.
The snow backscattering is detected in Figure 4.22 (c), where in the lower radar images, a
boundary showing the different backscattering level between ordinary asphalt and snow covered
asphalt can be identified.

The radar images simulation in Unreal Engine 4 has more than 20 frame-per-second (FPS)
(or <50 ms per frame) on an ordinary PC with Intel i7-7700 CPU for the traffic example described
above. Depending on the complexity of traffic scene and simulation platform, the simulation speed
can be faster or slower. The program can export the radar image data out for future signal

processing as well.
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4.5 Multi-scatterer RCS statistical models for MIMO radar

For MIMO radar system where more than one transmitter/receiver are considered, the RCS
statistical models should be further extended to multi-scatterers for better fidelity. In MIMO radar
system, the signal processing for angle-of-arrival (AOA) is different from that for beam-steering
radar and is derived from the phase and amplitude distribution among different communication
channels (transmitters/receivers). Therefore, it is crucial to have accurate simulation of the relative
phase and amplitude of different channels. In the aforementioned statistical models for traffic
targets, one target is considered as one scatterer, which will result in uniform magnitude
distribution for different channels. This is unlikely to happen in real radar measurement especially
for large traffic targets like vehicles as the targets are not far enough to be considered as point
targets. For example, for a car with largest dimension of 2.5 m on the cross section, its far-field
range is 3125 m according to equation (4.2), and the typical radar operation range is within 300 m.
Therefore, to capture the correct magnitude and phase distribution for different channels, multiple-
scatterer model is developed. In multiple-scatterer model, the targets are represented by more than
one scatterers. One challenge of multiple-scatterer model is to identify the position of each
scatterer. Besides, similar to the single-scatterer statistical model, the RCS values of each scatterer
may also be fluctuating with incident angle, which requires further statistical analysis.

A scatterer is defined as a point target, which means it has a position and an RCS value but
no volume. Any point on the surface of a target can be considered as a scatterer. As a result, there
could be infinite number of scatters. On the other hand, it is known that if the radar is locating in
the far field of target, the response from different scatterers on the target can be approximated by

the response from one scatterer. Therefore, the problem can be simplified by dividing the entire
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target into many small portions such that for each portion, the radar is in the far field range.
Thereby the scatterers on one portion can be considered as one scatterer.

In this model, the entire space occupied by the target is divided into small pixels with
dimensions of 0.1m by 0.1m by 0.1m. This value is chosen because the far-field range for target
with dimension of 0.1 m is about 5 m at 77 GHz. In the other words, if the radar is more than 5 m
away from the target, this approximation is valid. The RCS of each scatterer is considered as a
random variable, and the statistical features of each random variable are summarized from massive
numerical simulations from small variation of incidence angles in both elevation and azimuth
direction. Notably, since each scatterer is a point target, its RCS value should be constant for
different frequencies and ranges greater than 5 m.

The RCS statistical features for each scatterer are summarized in £2.5<in both azimuth
and elevation direction with 100 samples. The data are fitted into Gamma distribution, and some
examples of the fitting results for the RCS of one scatterer on a sedan from one angle are shown
in Figure 4.23. It shows Gamma distribution has a good fit to the empirical data. In the pixelated
model, every (0.1m)3 volume may be considered as one scatterer, however, many volumes are
empty or have very small RCS values, and to reduce the complexity of the problem, the scatterers
with RCS value less than -40 dBsm are ignored. The positions and randomly generated RCS values
of the significant scatterers for some typical targets in traffic scenes including a sedan, a man riding
a bike and a pedestrian are displayed in Figure 4.24. In Figure 4.24 (a), a sedan is illuminated from
the back, and it shows the strongest scatterers locate on the back of the car. Figure 4.24 (b) depicts
the scatterers distribution for a man riding a bike when radar is on the side. It shows the major
scattering happens on the bike, while the human body also has some contribution. Figure 4.24 (c)

and (d) depict the scatterer distribution for a jogging man illuminated by the radar from the side
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and the back, respectively. The scatters form the shape of human body, and the strong scatters

locate on the surface of human body whose normal vector is almost parallel to the radar direction.
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Figure 4.23. Comparison of empirical and fitted CDF for the RCS of two scatterer on a sedan
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Figure 4.24. The positions and randomly generated RCS values of scatters for (a) a sedan
illuminated from the back, (b) a man on a bike illuminated from 45 “off to the front, and a

jogging man (c) illuminated from the side and (d) illuminated from the back.

4.6 Real-time radar response simulation for MIMO radar
In FMCW MIMO radar system, the voltage at the ith receiver’s antenna can be calculated

by the radar equation:

Vi = V PtJZlAZ \/FIF”FU eikO(Rli+le) (423)
Tt (4m)3/2 Luy RyRy; ’
where P,; is the transmitted power from the jth transmitter, Z; denotes the impedance of ith

receiver’s antenna, A is the wavelength, k, is the wave number, and both 1 and k, are functions

of freugncy, g, is the RCS for scatterer [, Fy;, F}; are the antenna far field for scatterer [ with respect
to jth transmitter and ith receiver, and Ry;, R;; are the distance from [th scatterer to jth transmitter

and ith receiver, respectively.

103



Notice that FMCW radar transmits and receives wideband and multipole-chirp signals
during one frame of operation as depicted in Figure 4.25. In (4.23), the parameter A and k, are

functions of frequency and Ry;, Ry; are functions of chirp (time). As a result, the received signals

of one frame requires the calculation of (4.23) for all frequencies and chirps.

f
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fot Bl T iy

fo >

Figure 4.25. The transmitted signal’s frequency as a function of time during one frame for a
typical FMCW radar

A single frame of FMCW radar signals usually contain tremendous data. For example, a
MIMO radar with range resolution of 0.3m, maximum unambiguity range of 150 m, speed
resolution of 0.3 m/s, and maximum unambiguity speed of 80 m/s has 256 chirps in one frame,
and 512 frequency points for each chirp. Assume the MIMO radar has three transmitters and four
receivers, or equivalently 12 communication channels for the radar, and then the number of total
data samples in one frame is 1,572,864 (512*256*12). In order to generate such amount of data in
real time (< 100 ms), parallel computing with both CPU and GPU should be applied. The parallel
computing with CPU is implemented by OpenMP library [125], and NVIDIA parallel programing
tool CUDA [126] is utilized for GPU parallel computing. To test the performance of parallel
computing, the radar simulation of one frame is performed for different hardware with the scene
containing 100 scatterers. The radar setup has 12 channels, 512 frequency samples and 256 chirps.
The computer that runs the simulation utilizing the CPU of Intel Core i7-7700 (4 cores, 3.6 GHz)

and the GPU of Nvidia GeForce GTX 1060 (1280 cores, 1.7 GHz). The comparison of simulation
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time for the one frame simulation between different hardware is shown in Table 4 - 6. It is shown
that compared to single core CPU, parallel computing with GPU is about 60 times faster and able
to be run in real time (< 100 ms) with an ordinary GPU for a PC.

Table 4 - 6. Comparison of the simulation time for different hardware

GPU (double GPU (single
precision) precision)
Simulation time 585 15s 270 ms 94 ms

Single core, CPU | Four cores, CPU

The GPU-based radar response simulation module has been developed and referred as
Michigan Automotive Radar Scene Simulator (MARSS). It can be run as a standalone program
with given traffic scene information or it can be integrated into Unreal Engine 4 (UE4) as part of
the real-time autonomous driving simulation as well. In both simulation environment it will
generate the same results, so in this dissertation we just show the results in UE4 as examples. One
example of the simulation process is depicted in Figure 4.26. In this example, the simulation is set
to operate every 100 ms. When the unreal Engine starts, it will load the MARSS dynamic link
library (DLL) and other libraries and initialize the solver. During the radar simulation, it will first
read ground truth data from the traffic scene in UE, and then convert the traffic scene into a
plurality of scatterers, and afterwards calculate the radar response for all the scatterers. It provides
options to export the radar response data for external signal processing as well. In the next step,
the simulated data will be put into the signal processing module, which will output the positions,
speeds and angles of all detected targets. The signal processing module will be our future work.

Figure 4.27 shows an example of traffic scene for radar signal simulation in UE4. The radar
has the same setup as described before (512 frequency points, 256 chirps, 12 channels), and there
are 4 vehicles in the traffic scene. The shadowing effect is considered in the simulation, which

means the scatterers of one target blocked by others will be excluded in the simulation.
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Figure 4.26. The flow chart of radar response simulation for multiple radars with Unreal
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[——

LIGHTING NEEDS TO BE REBUILT (33 unbuilt objects)
‘DisableAllScreenMessages' to suppress

5278 FPS
808 (e

Figure 4.27. The example of a static traffic scene built in Unreal Engine 4
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received power as a function of range (time domain response after Fourier transform), (c) the

range-Doppler image (2D Fourier transform to the 256 chirps, 512 frequencies per chirp data)

and (d) 2D radar image for the traffic scene (after angle of arrival estimation)

The simulated radar response and radar images after signal processing are displayed in

Figure 4.28. The received power of one channel and one chirp as a function of frequency is shown

Figure 4.28 (a). The received power is defined as |Vﬁ|2/Zi, and Vj; is calculated by (4.23), Z; by
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default is 50 Q. Figure 4.28 (b) shows the received power of one channel as a function of range.
It is derived from the FFT of the radar response in frequency domain. It is shown that some targets
can be detected in the scene. Combining the response of many chirps, the range-Doppler image is
given in Figure 4.28 (c). The last task is to find the angle of arrival of targets. The range-Doppler
images are generated for all 12 channels, and for each cluster of the range-Doppler image, a single
target AOA estimation algorithm is applied. The range-azimuth angle radar images then can be
constructed and is shown in Figure 4.28 (d).

The MARSS simulator for UE4 can also simulate the radar response for more than one
radar and display the radar detections on the screen. Because the signal processing module is not
covered in this thesis, the displayed detections are just the true positions of targets shown in Figure
4.29. It shows the positions of each scatterer detected by each radar, and to have better visibility,
the z position of scatterers are moved above the targets. It also provides the option to display the
radial speed of detected scatterers. In this six-target and two-radar simulation example, the

simulation time is about 130 ms per frame (with ~6 million data).
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Figure 4.29. The display of radar detection module of MARSS in the UE4 editor, the green and

yellow dots represent the scatterers detected by different radars.

4.7 Conclusion
In the first part of this chapter, the RCS statistical models for traffic targets including
pedestrians, vehicles and other targets are presented, and then a real-time radar image simulation
for real-aperture radar with Unreal Engine 4 is demonstrated. The radar statistical models are based
on a massive databases of RCS values generated by fast wideband PO method from Chapter 2, and
the RCS values are modeled as Weibull, Lognormal or Gamma distributions. The statistical
features of one target is further modeled as functions of range and aspect angle and other property

of targets, for example, the weight and height of a pedestrian.
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In the second part, near and large traffic targets are represented by multi-scatterer RCS
statistical models. In this model, targets are discretized into small scatterers with separation of 0.1
m. The RCS of each scatterer is found to be best fitted by Gamma distribution. The multi-scatterer
RCS statistical model enables high-fidelity real-time radar response simulation, which is referred
as MARSS, and examples of real-time FMCW radar response simulation performing in Unreal

engine 4 (>30 FPS) is demonstrated.
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Chapter 5 A Fast Analytic Multiple-Sources AOA Estimation Algorithm for
Automotive MIMO Radars

5.1 Introduction

Direction finding (DF) of wireless signals is a classical problem with a long history. The
angle (direction) of arrival (AOA/DOA) estimation has a wide range of applications in the wireless
communication and radar systems. For example, it can be used to improve channel quality, reduce
jamming impact, and find the positions of signal sources or radar targets [127]. Particularly, high-
resolution multiple-signal AOA estimation with single snapshot can enhance the performance of
multiple-input multiple-output (MIMO) automotive radars [128].

Traditionally, many high-resolution multiple-signal AOA estimation algorithms can be
divided into two categories: subspace based methods like MUSIC [40][41] or ESPRIT [42][130],
and optimization based method maximum likelihood estimation (ML) [43][131][132][133]. The
subspace methods require many snapshots to construct correlation matrix and the number of
sources needs to be known in advance. ML performs N-dimensional optimization (N is the number
of signals) and becomes computationally inefficient for large N. Recently, many new AOA
estimation methods are proposed, including nulls-synthesis signal segregation method ASSIA
[134][135] and machine learning [136]-[138] or compressed sensing [139] based approaches.
Signal segregation method requires signal’s angular spacing is larger than the array beamwidth,
and it also relays complicated nulls-synthesis and beam-steering process in each iteration of
subtraction of signals, which is computationally expensive. Machine learning based methods are

only applicable to a specific band and array arrangement, and requires large amount of data for
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sources in different directions and with different power and noise levels for training. Because
machine learning approach cannot be applied to the data outside the range of training data, the
training data size increases dramatically with the number of sources, which makes it difficult to
detect more than three sources.

To support the real-time signal processing for highly dynamic systems like autonomous
vehicles, a more efficient AOA estimation algorithm based on small number of or even single
snapshot is required. In this thesis, a novel analytic iterative multiple-source AOA algorithm
(AIMA) is proposed to meet the requirement. In this method, the AOA estimation problem is
divided into two main tasks: (1) estimate one AOA with the prior knowledge of all other AOA; (2)
estimate all AOA by iteratively solving Task 1. It can be shown that for a uniform linear array
(ULA) Task 1 has analytic solutions and Task 2 converges very fast, which makes this method
effective, efficient and practical for real-time processing.

5.2 Signal model

In the classical AOA estimation signal model for a uniform linear array (ULA) as shown
in Figure 5.1 (a), the measured signals on an M-element antenna array from N signal sources are
given by:

F= A0 +17 (1)

where X is @ M x 1 vector, A(9) is the M x N steering matrix with A;; = e™*%5"%  k is the

wavenumber, d; denotes the position of i*" element and d; = di in uniform linear array (ULA)

with array spacing d. 6; is defined as angle deviated from the boresight of the antenna array for

jt" source, s isa N x 1 vector denoting the amplitude of signals from N sources, and nisa M X 1

zero-mean Gaussian random vector and denotes the noise.
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Figure 5.1. The coordinate system for (a) the classic signal model and (b) the MIMO radar signal
model

Similar model can be derived for radar signals. The transmitters (TXs) and receivers (RXs)

coordinate for the signal model is depicted in Figure 5.1 (b). Assuming there are M ULA channels

from N major targets/scatterers, then the received signal at mt" channel by radar equation can be

represented by:

A ZN S,FEL FEL.

= E eik(ann+Rrrln)Vm + N, (52)

Xm
t r
n=1 Rmann

Where A is the wavelength at center frequency, S,, is the scattering coefficient of nth target,
FEL,, FEr. are the transmitter and receiver antenna far field, and |FEL, |? = G, G, denotes
the gain of the transmitted antenna for m** channel in the direction of the n'" target. R}, Ry
denote the distance between transmitter and receiver to the nt" target, respectively. 1, is the
voltage for the transmitted signal, and n,,, denotes the noise term for mt"* channel. For simplicity,
we can assume the targets locate in the far field of the radar, and the transmitter and receiver has

the same gain. Then (5.2) can be rewritten as:
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A N SnGn ik(2Rp+sin O, d
Xy & Ezn=1 R% et (2Rp+sin by, m)Vm + Ny, (53)

where G, is the antenna’s gain in the direction of the n'" target, and R,, denotes the distance
between the first transmitter (TX) of radar and the n" scatterer. Also d,,, = dpm, + dm,, Where

d, is the distance between the first TX the TX for mt" channel and d,n, is the distance between

the first TX and the RX for the mt" channel.

In matrix form, the signal model is the same as (5.1), with

eiksin91d1 eiksinGNdl
— o — T
A(0) = ,and s = [sy, ..., sy] (5.4)
eiksineldM eiksinHNdM

AVe SpG i
where s, = =0 etk2Rn,
n

5.3 Analytic solution of Nth AOA for ULA
If there is only one source, its AOA can be easily estimated from the phase difference of
signals between antenna elements of the ULA array.

arg (7-)

kd

sind™M = E (5.5)

where E[*] is the expected value, arg(xx—m) returns the phase different of mth element and (m-1)th

element. The next question to ask is if there are two sources, can the AOA of the second source be
evaluated analytically if the AOA of the first source is known? To simplify the problem, the noise-
free situation is examined first. The noise-free signal x’ can be defined as:
x'=x—n=A(0)s (5.6)
In the two-source problem,
X = pikdmsin 9151 + gikdmsin 9252_ (5.7)

Assume 6, is known, and multiply the both sides of (5.7) by e~d4msinb1 e have
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g~ ikdmsin elxrln =5, + elkdm(sin 8, —sin 91)52 (5.8)

We can eliminate s; by subtracting the (m — 1) equation from m" equation:

e—lkdmsmelx;n _ e—lkd(m—1)51n91x;n_1

(5.9)
— (eikdm(sin 6,—sin6q) __ eikd(m—l)(sin 6,—sin 91))52
we can eliminate s, and end up with
—ikdsin@q ../ __ ../
ikd(sin 8,—sin6,) _ e Xm — Xm-1 (5.10)
€ = ikd sin 6; ./ :
Xm-1—€ Xm-2
Then sin 6, can be found by
—ikd sin 6
arg( A < Mk )
- Xy, _q — etkasinbryr (5.11)
Sin 2 =

d + sin 6,4,

where3 <m < M.

Moreover, in a ULA for any N € [2,M — 1], there exists an analytic solution such that
sin 8y can be expressed as a function of 6, to 6,_,. Let sin 6,, be T,,, and with some mathematic

manipulation, the following relations can be shown:

(1,2,..,N=1)
- _ N—1
eikd(TN=TN-1) — m N+1<m<M, (5.12)
m—-1,N-1

2,3,... . .
where F,Ell:n‘g‘ ™" can be obtained recursively:

F(l,z,...,n—l)/ F(l,Z,...,n—l)'

€23,.n) _ "mn-1 _ _m-1n-1
an - F(n,2,...,n—1)r F(n,Z,...,n—l)" (5'13)
mn—1 m—-1n-1
The initial conditions for F,(,f:,i'3“"'")'are:
Frgz1)1’ = gikdmTiy! _ o=ikd(m=-DTiyr (5.14)
[ = gikdm(Tn=T:) _ pikd(m-1)Ta=T1) p 2 1, (5.15)
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The proof of (5.12) can be given by mathematic induction. The proof can be divided into
three steps:

1, prove that if there are [ signals, the follow equation is true:

Lozt =1 Vs, 2<l<M—1, I<sm<M (5.16)

m,l—1 m,l—-1
2, prove that

l-‘(n,Z,...,n—l),

n-1 j -
Tnz,...,n—1), = lkD)(Tn-To)) D <n<M—1 n+l<m<M (5.17)
l—‘m—l,n—l

3, Final step, show that

F(l,Z,...,n—l)l

T, = e, oy l<m<M (5.18)
F 1y !

m-1,n-1
To start with, assume there are two sources with magnitude of s, and s, and AOA of 6,
and 6,. From (5.5), we have:
x,, = ekdmlig 4 gtkdmTag, 1 <m< M (5.19)
By eliminating s; from the equations, the following relations can be obtained:

e—lkmelxz _ e_ikdm_1T1X1 — (elkdm(TZ_Tl) _ eikdm_l(Tz_Tl))Sz,z S m S M (520)

(5.14) shows the initial condition of step 1 is true, which is [ = 2 case, and

!
1 —i —i
F(,i =e lkdm71x2 e lkdm—lllxl,

(5.21)
[ = (eikdm(T-Ty) _ gikdm-1(T;-T0))
Suppose when [ = p, step 1 is true, which is,
e St s, 2spsM-lpsmsM  622)

Then if (5.10) is also true for L = p + 1, it is true for all [ > 2 by mathematic indcution.
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When [ = p + 1, a new signal with magnitude of s,,,; and AOA of 6, is added to the

system. Because of the linearity of the system, the following condition holds:

! ! !
Dot =Tl sy + T 2P spas, pSm<M (5.23)

One can validate the (5.17) by considering s, = 0, then there are still p sources in the

system, and (5.17) is reduced to (5.16) by replacing [,727~'s, with [Pa 2P Ys, 1 I

(5.17), both sides are divided by T®2-?~".

m,p—1
l-.(1,2,...,10—1)’ F(p+1,2,...,p—1)’
mp-1 mp—1
oz Pt oz S <m<M 594
l"(p'z*--vp—l)' P I-(p.Z.....p—1)’ p+Ls p ( )
m;p_l m.p—l

(5.18) is the m*" equation, and subtract the m*" equation by (m — 1)** equation forp + 1 <

m < M. It leads to:

r@2.r-0"  pQ2..p-1)' r®+12..0-0"  p@+12,..0-1)
m,p—1 m—-1,p-1 m,p—1 m—-1,p—1
T T = T 7 Sp+1s (525)
l-‘(p,z,...,p—l) l-‘(p,z,...,p—l) l—.(p,z,...,p—l) l-‘(p,z,...,p—l)
m,p—1 m—-1,p—1 m,p—1 m—1,p—1
Recall the recursive relation given in (5.7), and (5.19) becomes:
Fg‘bz,...,p) — Frglz,;;m,...,p) Spp, PFLI<mM<M (5.26)

Thenthestep listrueforall 2 <1 <M —1.

In step 2, the initial condition is n = 2, and the left hand side can be expressed as:

]"1;21’ elkdm(T2—T1) _ pikdm—1(T2—T1) eik(dm—dm-1)(T2—T1) _ 1
F(Z)’ - eikdm_1(T2—T1) — pikdm—2(T2—T1) - 1 — eik(=dm-1+dm—2)(T2—T1) (5.27)
m-1,1
InULA, d,, —d;-1 = djpy—1 — djyu—2 = d, therefore,
r@r  pik@T-T) _q
U = tkd(T:~T1) (5.28)

@ T 1 k(BT
m-1,1

Thus it shows that for n = 2, the equation in step 2 is true.
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Suppose when n = p (5.11) is true:

l-.(p,Z,...,p—l),

%%%szeﬂﬂ%4%ngng—Lp+1SmSM' (5.29)
l—‘m;l‘,p‘—l

When n = p + 1, we have

F(p+1,2,...,p—1)r F(p+1,2,...,p—1)’

m,p—1 _ _m-1p-1 eikd(Tp+1—Tp_1)
(»+1,2,...0)/ (®.2,..0-1) (»,2,..0—1)’ :
[‘m,p B Fm,p_l l"m_m_1 _eikd(Tp-Tp1)
l..(1r)+1,2,...,p), - l..(1r)+1,2,...,p—1)l l-‘(p+1,2,...,p—1)’ - etkd(=Tp+1+Tp-1)
m-1,p m-1,p—1 m-2,p—1 1————
F(p,z,_,_,p—l)l - F(P,Z,---,p—l)’ elkd( Tp+Tp—1) (530)
m-1,p—1 m—-2,p—1

ikd(Tp+1_Tp) —
_¢ 1_ o ikd(Ty41-Tp)
1 — oka(Tp—Tpin)

This is the same form as (5.11) in step 2, therefore, the statement of step 2 is proved.
The proof of statement in step 3 is relatively easy: use the equation (5.10) in step 1, and divide the
mt" equation by (m — 1) equation of (5.10):

F(1,2 ..... -1) F(Z,Z,...,l—l)

il Tl pkd(MeTie) j 41 <m< M (5.31)
F(1,2 ..... 1-1) F(l,Z,...,l—l)
m-1,1-1 m—1,1-1

It will be interesting to check the equations in the three steps when the array is a nonuniform
linear array. It can be observed that equations in step 1 and 3 can be applied to the nonuniform

linear array, but (5.11) in step 2, the left hand side cannot be simplified into the right hand side.Let

n,2,...,n—1)

mn-1 »and from the recursive relation (5.7), we have:

the left hand side of (5.11) to be A

F(n,z,...,n—z)l F(n,z,...,n—zy A(n,Z,...,n—Z)

mmn—2 _ m—1n-2 mn—2 -1
l.,(n,z,...,n—l), I‘(n—1,2,...,n—2)l I‘(n—1,2,...,n—2)l A(n—1,2,...,n—2)
A(n,z,...,n—l) __ "mn-1 __ “mn-2 m-—1n-2 __"mn-2 (5 32)
mn—1 T a(m2,..n-1); n,2,..,n=2)1 n2,.n=2) n-1,2,..,n-2) '
l—‘m—l,n—l I‘m—l,n—z _ I‘m—Z,n—Z 1— Am—l,n—z
l-‘(n—1,2,...,n—2)l l-‘(n—1,2,...,n—2)l A(n,Z,...,n—Z)
m-—1n-2 m-—2n-2 m-1,n-2
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m,1’

A(l,z,...,n—l)

m,n—1

The initial condition of is when n = 2, which is A and it is with the same

form as (5.21):

o eik(dm_dm—l)(Tl_Tl) — 1 5 33
A = . (5.33)
m,1 1-— elk(_dm—l‘l'dm—z)(Tl_Tl)

Thereby, for nonuniform linear array, A2 ean e represented as a function of

mn—1
(T4, ..., Ty), and T, is the only unknown. Notes in (5.25), we have:

F(l,Z,...,n—l)' r.(n,2,...,n—1),

mn—1 mn—1 n,2,..,n—-1)
= =A 5.34
F(1,2,...,n—1)’ rm2..n=1) mn—-1 ( )
m-1,n-1 m-1n-1

The left hand side can be derived from 6, ... 8y_; and x. Hence, the only unknown T,, can
be calculated from this sophisticated equation (5.28). Because it is a complicated nonlinear
equation, an analytic solution is hard to find while it can always be solved numerically. Therefore,
for nonuniform linear array, the proposed method can still find the AOA of last source but not
efficiently.

Notice that the analytic solutions are for ULA with noise-free case, and they are derived

from the noise-free signal x’, not the measured signal x. To deal with the noise, we can start from

the initial condition of F(l'z’""l_l), in (5.8) and (5.9). (5.8) can be rewritten as:

m,l—-1
ngl = e-ikdmTiy _ g-tkd(m-DTiy 4 ng), (5.35)
where nﬁ,? Is a zero mean Gaussian noise,
ng) = —g ikdmTipy 4 o=ikd(m-DTip (5.36)

In (5.9), 12" has no noise term. It can be shown that Iy>™" doesn’t contain the noise

termif [ # 1,and T2 ™" = To ™ + n{? ™ Where T2 ™ is the same form of I}\2 ™"

- H 1,2,.., . . .
except substituting x,, by x,,, and n,(n ™ denotes a zero mean Gaussian noise. This can also be
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proved by mathematic induction from the recursive relations (5.7). The initial condition of the

statement is true as given in (5.29) and (5.30). Suppose at n = p, it is true, which is:

(12,...p) 1,2,..0) 7 _

l—.(l,2,...,p)’ . l—‘m,p +n, , =1 5 27

mp ) =(@2,...p) (5.37)
Fm,p ) l i 1

Whenn =p+1,and [ = 1, we have:

.20 r2--p)
l—.(1,2,...,p+1)' __mp _ _m-1p
mp+1 F(p+1,2,...,p)’ I-(p+1,2,---,p)'
mp m-1,p

l—.T(nl’,pZ,...,p) + n%,z,...,p) 1—.(1,2,...,p) + nf‘i'—z;.’p)

m-1,p
F(p+1.2.---.p) F(p+1.2,...,p)
mp m-1,p (5.38)
(1,2,...p) (1,2,...p) (1,2,...p) (1,2,...p)
_ Dnp _ ImZip m _ M
o r®+12..p)  p@+12..p) © p(+12..0)  p@+12..p)
m,p m-—1,p m,p m-1,p

(1,2,...,p+1) (1,2,...,p+1)
Fm,p+1 + 1y, ’

where n,(;’z""’p“) follows the recursive relation and is a zero mean Gaussian noise,

n(1,2,...,p) n(1,2,...,p)
n(1,2,...,p+1) __m __'m—1 (5.39)
m 1-‘(;o+1,2,...,p) 1-‘(10+1,2,...,10) :
m,p m-—1,p
If l # 1,the n = p + 1 case is simple to derive:
€2,...p)! L2,...0)’ 2,...p) 12,..0)
F(l,Z,...,p+1)’ _ I‘m,p _ Fm—l,p _ Fm,p _ Fm—l,p _
mp+1 l-‘(p+1,2,...,p)’ 1-‘(p+1,2,...,p)’ r‘(p+1,2,...,p) l-,(p+1,2,...,p)
m,p m—1,p m,p m-1,p (5.40)
_ r2,..p+1)
- Fm,p+1 '
Therefore, the statement (5.31) is proved. Next, (5.6) can be rewritten as:
(1,2,..,N-1) (1,2,...N)
elkd(TN-TN-1) — L v=1 * Mm (5.41)
r,(1,2,...,1\/—1) N (1,2,...N) :
m—-1,N-1 nm—l
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In (5.35), the term [\2-:" ™" can be analytically obtained from the recursive relation

given by (5.7) with the known variable 6,, ... 8y_; and x. Moreover, (5.35) can be rearranged as a

linear equation:

FTE},}\?:IN_:D — eikd(TN—TN_l)FT(nl;Zl,:XIIXID + ngf,l...,N)l’N rl<m<M (5.42)

where n{%M)" = gikd(Tn=Tn-1)p (12N _ (12N s 4150 3 zero mean Gaussian noise. There
are K(M — N) equations of (5.36) for K snapshot angle of arrival. Then the slope term can be
estimated by linear regression:

[by, eF4TN=TN-D)] = (X'X)"1X'Y (5.43)

where b, is the offset term in this linear regression problem, and X and Y are given by,

1 1 1 T
X = [F(1,2,...,1v—1) r(12.N=1) F(1,2,...,N—1)] (5.44)
N,N—1 N+1,N—-1 e Iy N—1
_ [~(12,.,N=1) (1,2,...N—1) 1,2,..N-1)17 5.45
Y = [FN+1,N—1 INy2N-1 R v vt ( )

After solving (5.37), Ty can be obtained from e*@(Tn=Tn-1) gs well, and finally, 8y can
be derived from Ty .

Another way to interpret (5.35) is
p2eN=1) 4 g W2N) _ g oikmd(TN=TN-D) N +1<m <M (5.46)

m,N—1

where a is some constant. We can take logarithm to both sides of (5.40):

(1,2,...N)
log F,S}}?,:‘IN_D + log (1 + m—) =loga + ikmd(Ty — Ty_4) + 2inm,n

(1,2,...N—1)
Crn_1 (5.47)
€ Z
n(1.2,..N) n(12.N) n(12.N) .
If m &1, log(1+ F(l’f;‘___‘,v_l) ~ F(l’f;‘___‘N_l), and then (5.38) can be rewritten as:
mN-—1 m,N—-1 m,N—-1
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1,2,..,N)
L
T 1,2,..,N—1)

mN-—1

F(1,2,...,N—1)

log Iy v =loga + ikmd(Ty — Ty-1) — + i2lm, L € Z (5.48)

To evaluate Ty — Ty_4, We just need the imaginary part of (5.42):

(1,2,..,N)
— n
arg Frsllﬁ'_l'N D _ arga + kmd(TN — TN—1) — imag (m) +2in,l € Z (549)
mN-1

Then Ty — Ty_; can be found through linear regression as described in (5.37).
Notice that (5.42) contains the phase ambiguity term i2lm, which may be a problem in

claculation. To solve this issue, we can first examine the phase difference between adjacent

element (e.g. m and m — 1 term) of [}y e;" " . For a ULA with element spacing 4/2, the phase

difference of [\2s" ™" and Tuw D is kd(Ty — Ty_1) = m(Ty — Ty_1) . In the ULA
assumption, the targets can be detected only on one side of the linear array, which means —90° <
Oy < 90°. Therefore, the phase difference is between m(—1—Ty_;) and w(1 —Ty_4). In
practical situation, due to the limitation of antenna’s beamwidth, the angular range of the detectable
target is smaller than 180°, and thus can further limit the potential phase difference. This can help
in resolving the phase ambiguity if the phase noise is not too large. (5.50) is preferable compared
to (5.36) because it is less sensitive to the noise.
5.4 Iterative AOA estimation of all sources

The ultimate AOA estimation task to find the AOA of all sources without piror knowlege
of any of them in a single snapshot. In this section, an algorithm that iteratively solving the task
described in Sec. 5.3 is proposed to solve this problem effectively and efficiently. The detail of the
algorithm is described in Algorithm 5.1. In the beginning of the algorithm, assume there is only

one source. Its AOA can be simply estimated based on the antennas elements’ phase differences.

The sources’s magnitude 51(1) can be estimated by:
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1 1 *
s© = (A(Hl( ))) i (5.51)
where (A)™ is the pseudo inverse of A. Then the estimated received signals denotes as '@ can

be obtained by @ = A(Hl(l))sl(l). Its corresponding root-mean-square error is given by:

rms (J? - J?’(l)) = \/Zi: (xi - X'gl))z (5.52)

Next step, assume there are two sources. The AOA of the second source is estimated from
the analytic approach described by 5.3 with the AOA estimated from step 1. Then the AOA of the

first source is evaluated from the same approach with the previously estimated AOA of the second

. . . . . . ~,(2
source. This process will continue until convergence. Then the second order estimated signal @

f,(Z) /(1)

can be evaluated and so is the rms (9? - 9?’(2)). Comparing the RMSE of and x", if they

are very close, then there might be just one sources and the algorithm will stop. Otherwise the

algorithm will continue until the close RMSE criterion is met.

Algorithm 5.1 Iterative AOA estimation

Input: x, d, M Output: 8, §

Initial condition: N=1 (1 source)
1: estimate 91(1), sl(l) from the antennas’ phase differences
2: while true

3 N=N+L; 6™ = §00; 9™ = 0, ™ = 4(9™) (a(6™))

4. while not converge or not reach maximum iteration
5. &g =2 800 =M
5: fori=Nto1ldo
6: estimate Hl.(N) from the rest Hj(N), J#I
7 end for
+
8 #™ = a(6™)(a(6™)) z
9: if (rIns(J? —Qa?’(N)) > rms(x — 9?’01;2)-6) then
10: 6™ =o%; break
11: end if

12: end while
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_+_
13: 5™ =(a(eW)) x #™ = 4(6™)s
14:  if (rms(x — f’(N)) > rms(x — f’(N_l)) -6) then

15: 6 =W-1; 5 = sN-D: preak
16: end if
17: end while

5.5 Simulation Results

To demonstrate how the proposed algorithm works and its effectiveness, a three-source
AOA estimation example is shown. The basic idea of the iterative approach is to find the AOA of
the strongest source first, then find that of the second strongest one and so on. Therefore, the most
challenge scenario is when all sources have the same amplitude. In one example, we examine a
three-source AOA estimation with a 10-element half-wavelength spacing ULA. The three sources
have the same amplitude and different AOA: s; = s, =s3; =1,and 6; = 5.1°, 6, = 10.4°, 05 =
—4.2°. The signal to noise ratio (SNR) is 30 dB and the analysis are based on just one snapshot.
The iteration steps of the algorithm are shown in Figure 5.2. In the beginning, the algorithm
assumes there is only one source, and it detects one AOA of 5.4< Then it assumes there are two
sources and in the second iteration, it estimates the two AOA are -4.4and 11.6< It converges in
two iterations and then it adds one more source to the problem. After four iterations, the
convergence condition is met and it gives the estimation of three AOA: -4.31< 4.90°and 10.34<
Next, it further adds one source to the estimation problem, but the RMSE of (x — x") doesn’t drop
significantly, therefore, the algorithm concludes there are only three sources and their estimated
AOA are given previously. It shows that the proposed algorithm can quickly estimate the number
of sources and the corresponding AOA. The RMS error of the AOA estimation is 0.14< which

shows very good performance with high SNR.
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Figure 5.2. The estimated AOA and RMS error as a function of iterations of AIMA for a three-
source problem

In some case that there existing two close sources with identical magnitude, the algorithm
will converges to one sources with AOA to be in the center of the two sources. To solve this
problem, a very small coefficient can be added to all the preknown AOAs. For example, if there
are two identical sources with AOA of 5°and 6< and the SNR is 40 dB. For a 10-element ULA,
the first estimation of AOA will be about 5.5< if there is no perturbation, it is likely the second
estimation angle is also 5.5and then the algorithm will conclude that there is only one source
locates at 5.5< In this example, 0.01<is added to the preknown angle every time performing the

analytic method for AOA estimation, and the estimated AOA and the corresponding RMSE of

Wi depicted in Figure 5.3. It is shown that in 4 iterations the angles converge to 4.97 and

5.96 < respectively.
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Figure 5.3. The estimated AOA and RMS error as a function of iterations of AIMA for two close
targets
The proposed method is compared with some classical AOA estimation algorithms
including MUSIC-SS [41], maximum liklihood method with alternating projection (ML-AP) [133],
and ASSIA [134]. In the first example, assume there are three equal-amplitude sources with
angular spacing larger than the array beamwidth. A 10-element ULA with half wavelength spacing

is used to estimate AOA. The half power beam width (HPBW) of this array can be approximately
given by%L = 14°. The AOA and source amplitudes are given as: 6; = 5.5°, 8, = 30.5°, 65 =

50° s, = s, = s3 = 1. Because MUSIC-SS requires at least M snapshot to evaluate covariance
matrix, in this example, 10 snapshots are used for each algorithm. MUSIC-SS, ML-AP and ASSIA
estimate the AOA on grid, and in this example, each of them has angular step of 0.5°, and the
number of sources are given in MUSIC-SS and ML-AP algorithm. To evaluate the performance
of AOA estimation, the average RMS-error of the three AOA as a function of SNR is shown in
Figure 5.4. Figure 5.5 shows the normalized time performance of the four different algorithms.

The average RMS-error of AOA for one SNR value is generated by 200 Monte Carlo simulations.

126



It shows that AIMA has the second-best accuracy to estimate the AOA for SNR < 20 dB, and its
average RMSE of all three AOA is less than 0.3<for SNR > 10 dB in this three-source AOA
estimation problem. Compared to ML-AP algorithm, AIMA has slightly larger RMSE of AOA but

is about 100 times faster. It is also twice faster than MUSIC-SS algorithm in this problem.

0.5
Y AIMA
2 " ) ML-AP
5 N - ASSIA
S 03[ M
>
©
w 0.2
n
=
X 9.1
0

SNR (dB)

Figure 5.4. The average RMSE of the three estimated AOA (6, = 5.5°, 6, = 30.5°, 6; = 50°)

as a function of SNR for different algorithms with 10 snapshots

-10

X ASSIA

Y -17.02 X MUSIC-SS
Y -18.59

-15

normalized simulation time (dB)

-20

-25

ML ASSIA MUSIC-SS AIMA

Figure 5.5. The time performance comparison of different algorithms for the three AOA

estimation problem (6; = 5.5°, 8, = 30.5°, 65 = 50°)
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In another example, a two-source problem with close angular spacing is used to compare
the performances of different AOA estimation algorithms mentioned previously. In this problem,
the angular spacing is smaller than the antenna beamwidth: 6, = 5.2°, 8, = 10.3°. It is noted that
these two angles are off-grid for MUSIC-SS, ML-AP and ASSIA. The two sources are assumed
to be equal amplitude. A 10-element ULA with half wavelength spacing is used in this example as
well. The average RMSE of the two estimated AOA as a function of SNR for different algorithms
is depicted in Figure 5.6, and the simulation time comparison for different algorithm is shown in
Figure 5.7. It is found that in this close-source AOA problem, AIMA has the second best angular
RMSE performance when SNR < 27 dB and has the smallest RMSE when SNR > 35 dB. It is still
about 100 time faster than the ML-AP algorithm and about 10 times faster than ASSIA and 3 times
faster than MUSIC-SS.

Besides the preferable AOA estimation performance and efficiency, AIMA possesses other
advantages like no requirement of prior knowledge of the number of sources, and can be applied

in single snapshot problem compared to many classic AOA estimation algorithm.

T
1 AIMA
1 = = =MUSIC-SS
2. .
5 1 ML-AP
— I = ASSIA
o 1
L 2r
(o)) \
(0]
Z
>
©
L
%)
=
4

10 1 I5 2IO 2‘5 3‘0 3I5 40
SNR (dB)
Figure 5.6. The average RMSE of the two close AOA (6, = 5.2°, 8, = 10.3°) as a function of

SNR for different algorithms with 10 snapshots
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Figure 5.7. The time performance comparison of different algorithms for the two AOA
estimation problem (68; = 5.2°, 6, = 10.3°)

Among the four AOA estimation algorithms, AIMA and ASSIA has the advantage of no
need to know the number of sources, and the lack of the prior knowledge of number of sources is
very common in radar and communication applications. MUSIC algorithm will fail if it predicts a
wrong number of sources especially for coherent signals. Regarding ML-AP, if the number of
source is not known, it can estimate the number successively. For example, assume the number of
source is N (start from N=1), and it can test the RMSE performance of order N and order N+1, if
they are close, then it may conclude there are N sources, otherwise it will continue the process to
N+2. Because the computational complexity increase dramatically with the number of sources,
this process is even more time-consuming than the ordinary ML-AP with number of sources
known. Figure 5.8 (a) demonstrates the normalized simulation time for the three algorithms (ML-
AP, ASSIA and AIMA) with no prior knowledge of number of sources with 1000 Monte Carlo
simulations for a three source problem. It shows that in this condition AIMA is about 200 times

faster than ML-AP.
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In addition, ASSIA and ML-AP are grid-based algorithm, which means they estimate the
AOA with discretized angles. For off-grid AOA estimation, both algorithms could estimate wrong
number of sources as additional weak sources may be included to the estimation to compensate
the error from off-grid estimation. The over estimation of source number will lead to more
processing time as well. Such issue doesn’t exist for AIMA as AIMA can estimates the AOA
arbitrarily off grid. The time performance comparison of the three algorithms in an off-grid AOA
estimation problem is shown in Figure 5.8(b). The simulation time is summarized from 1000
Monte Carlo simulations and normalized. It shows that in this off-grid problem, AIMA is about

400 times faster than ML-AP and more than 20 times faster than ASSIA.
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Figure 5.8. The normalized time performance comparison for different algorithms without
knowing the number of sources in (a) a three AOA (6, = 5.5°, 6, = 30.5°, 85 = 50°) problem
and (b) atwo AOA (8, = 5.2°, 8, = 10.3°) estimation problem.

Besides the SNR and the angular space between signals, the performance of AOA
estimation is limited by the number of array elements and the array spacing as well. Theoretically,

for an array with M elements, the proposed algorithm can be applied to find (M - 1) sources because
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each iteration of estimation N** angle only requires (N + 1) equations. However, only using N +
1 elements may not get the AOA correctly as there are in total 2N unknowns (each source has two
unknowns: amplitude and AOA), and requires at least 2N equations to solve it. More elements
will lead to more accurate results particularly in the single snapshot problem because adding
equations can provide better estimation under noise condition.

To demonstrate how the AOA estimation performance is impacted by the number of array
elements for the proposed algorithm, the RMSE of the AOA estimated with AIMA is studied for
different numbers of array elements with the same array spacing (A/2). The AOA estimation
performance for a two-source estimation problem (6; = —15°, 8, = 0°, SNR; = 30dB, SNR, =
20dB) with a single snapshot is shown in Figure 5.9 (a), and that for a three-source estimation
problem (6; = —15°, 8, = 0°, 8; = 10°,SNR; = 30dB, SNR, = 25dB, SNR; = 20dB) with a
single snapshot is depicted in Figure 5.9. (b). Each RMSE of AOA is obtained from more than 500
Monte Carlo simulations. It shows that for the two-source problem the RMSE in estimated angle
is less than 1 dB when there are more than 6 elements, and for the three-source problem, the RMSE
is less than 1 dB when there are more than 8 elements. Therefore, it is recommended to have 2N +
2 or more array elements in this half wavelength spacing ULA to apply the AIMA for estimation

of AOA.
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Figure 5.9. The RMSE of AOA estimated with AIMA as a function of the number of array
elements of a half-wavelength spacing ULA for (a) a two AOA (8, = —15°, 6, = 0°) problem
and (b) a three AOA (6; = —15°, 8, = 0°, 6; = 10°) estimation problem.

When the number of elements is fixed, the spacing between array elements determines the
aperture size of the antenna array. Generally, the larger the aperture size is, the better the antenna
array can recognize the sources. In this example, this idea is examined for AIMA algorithm. Figure
5.10 (a) shows the simulated RMSE of the estimated AOA as a function of array spacing of a 6-
element ULA in a two-source problem and that of a 8-element ULA for a three-source problem is
depicted in Figure 5.10 (b). Each RMSE of the angular spacing is summarized from 500 Monte
Carlo simulations. It shows that wide antenna spacing can largely improve the performance of
AOA estimation. However, if the spacing is too large, for example, larger than one wavelength, it

may introduce grating lobes and causing false detection on some directions.
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Figure 5.10. The RMSE of AOA estimated with AIMA as a function of array spacing of (a) a 6-
elment ULA for a two AOA (6_1=-15°, 0 _2=0°) problem and (b) a 8-element ULA for a three
AOA (6_1=-15°0 _2=0°,0 3=10°) estimation problem.

In the last simulation example, the proposed AOA estimation algorithm AIMA is applied
to a radar simulation scenario. The radar system has 12 channels forming a ULA with separation
of half wavelength. It operates at 77 GHz as center frequency with bandwidth of 500 MHz. It is a
FMCW radar, and there are 512 frequency samples in each chirp, and one frame contains 256
chirps. There are 3 pairs of point targets with similar RCS, range and velocity in the scene, and
their positions and velocities are given in Figure 5.11 (a). Because each pair of the targets has the
same range and velocity, the six targets turn out to be three points shown in a range-Doppler map
of each channel as depicted in Figure 5.11 (b). Some traditional AOA estimation algorithms may
fail at this point as they may conclude there are only three targets. In Figure 5.11 (b), the power is
normalized with the maximum value as 0 dB, and the SNR is about 30 dB. There are 12 range-
Doppler maps for all 12 channels, and therefore for each peak in the range-Doppler maps, there

are 12 signals corresponding to each channel. These signals are processed with AIMA algorithm,
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and the estimated position is plotted in Figure 5.11 (c). It shows a very good agreement between

the true position and estimated position of the six targets.
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Figure 5.11. (a) The positions and velocities for the six targets for the radar simulation problem,
(b) the normalized range-Doppler map of one channel for the six targets and (c) the comparison
between the retrieved positions by AIMA and the true positions of targets.

5.6 Measurement Results

To validate the effectiveness of the proposed algorithm, multiple-source AOA
measurements are performed. A six-element antenna array with spacing of half wavelength is used
for the measurement. The antenna is an inset-fed rectangular microstrip patch antenna [140] with
center frequency of 10 GHz and bandwidth of about 1 GHz, and the 3 dB beamwidth is more than
60 < The photo of the antenna array is shown in Figure 5.12 (a). The six elements are connected to
an electrically controlled switch by equal-length transmission lines. Three horn antennas that
represent signal sources are demonstrated in Figure 5.12 (b). The three sources are almost in the

same range of the antenna array, and because their heights and gains are different, the signal’s
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amplitude can be quite different. shows that a six-element array is capable to find the AOA of two
sources but not good for finding the AOA of three or more sources. Therefore, in this measurement,
we only examine the two-source problem.

In the measurement, one port of a vector network analyzer (VNA) is connected to the
switch connected to the antenna array, and the other port is connected to the sources. In the first

measurement, only Source Il in Figure 5.12 (b) is connected, and the S, is measured for each of

an

5150 L denotes i" element of the array. These data

the array elements, and they can be denoted as S

are used for calibration. The SNR for each element is greater than 20 dB. Next, each pair of the

three sources are connected to one port of the VNA through an equally power dividing power

divider. Similarly, we measured the S, for each element and denote them as 53", 7%/ and

(I1,111)
21,i

S . In one example, both source 11 and source Il are transmitting signals, and Figure 5.13 (a)

shows the measured S5, as a function of frequency for different array elements. By taking fast

Fourier transform (FFT), the possible multipath from the wall or ground of the chamber can be

filtered out and only left the signal directly propagating from sources. Then the signal x can be

(LI

obtained by calibrating the peak value of S;, ;" after FFT:
max (FFT(SZ(’I{",,{’)))
UL ,1<m<M (5.53)
max (FFT(SZEQ{ 3,1))

The amplitude and phase of the received signals for different array elements are given in
Figure 5.13 (b). Those data are put into AIMA algorithm to find the AOA of each source. The
comparisons between the estimated AOA and the true AOA are given in Table I. It shows that the
proposed algorithm can accurately estimate the AOA with less than 1 <error with SNR more than

20 dB. The RMSE in estimated AOA is about 0.6<
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Figure 5.12. (a) The picture of the six-element antenna array, the six elements are connected to an
electrically controlled switch; (b) the picture of the three sources, they are in the same range to the
receivers and two of them will be fed the same power in each measurement.
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the amplitude and phase of the received signals x\'"""? after calibration for each antenna element.
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Table 5 - 1. Performance of the AOA estimation of AIMA with measurement data

Source | Source Il Source 111
True AOA (9 -10.7 0 115
1&I11 only, estimated AOA (9 -9.78 0.71 NA
I&111 only, estimated AOA (9 -10.75 NA 11.38
11&I111 only, estimated AOA (9 NA -0.04 12.41

5.7 Conclusion

In this paper, a novel analytic iterative algorithm for multiple-source AOA estimation is
presented. The algorithm involves two major tasks: 1, analytically evaluate the AOA of the last
source from the AOA of all other sources without knowing their amplitude. 2, iteratively solving
task 1 to have the smallest RMSE in measured signals and moreover to obtain the number of
sources and their AOA and amplitude. This approach doesn’t require the knowledge of number of
sources, and can be applied in single-snapshot condition. This iterative method converges quickly
and outperforms many known algorithms in terms of time efficiency. This method has a wide

range of applications particularly in dynamic systems such as automotive radars for autonomous

vehicles.
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Chapter 6 Machine Learning-Based Target Classification for MMW Radar
in Autonomous Driving

6.1 Introduction

The technology for autonomous vehicles with radar was first envisioned in the late 90’s
[39][90][142][143], but only recently has tremendous progress been made towards the
development of these revolutionary vehicles[141]. In autonomous driving, one of the main
challenges is to reliably detect and identify all targets in a complex environment. Targets are
detected by a multitude of sensors and are represented by different types of data. The most
commonly used sensors include optical cameras, lidars and radars. Cameras present targets as 2D
colored images , lidars generate 3D point cloud representation of targets[144], and radars measure
the range, velocity and the radar cross-section (RCS) of the targets. Each type of sensor has its
ownstrengths and wakness, for example, cameras have the highest angular resolution for short
distances but are not accurate for range detection and perform poorly at night or in inclement
weather conditions (rain, fog, and snow); lidar can measure the distance of targets and has excellent
spatial resolution, however it suffers from low sensitivity and it has difficulty detecting highly
reflective objects (objects with specular surfaces), in addition to having poor performance in bad
weather conditions. On the other hand, radar can detect targets at longest range, it is able to directly
measure a target’s range and velocity, and its performance is unaffected by poor weather
conditions. The drawbacks of radar sensors include poor angular resolution and possible false

alarms due to multipath issues [146][146].
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For the traffic target classification problem, many studies have been carried out for cameras
and lidars [147]-[149] due to their high resolutions and the intuitive nature of data interpretation.
However, the performance of cameras or lidars will be largely degraded by poor visibility
conditions whereas radar data is, for the most part, unaffected by the atmospheric conditions and
the time of day [146]. Hence it is important to develop solutions for target classification using
radar data.

Radar based target classification has been studied in the field of remote sensing for decades.
Radar classification methods have been applied to aircrafts, military vehicles, and terrestrial
targets for various remote sensing applications. Since aircrafts must be detected at long range, they
are usually modeled as point targets, and the frequency or time (range) response of the radar signals
are used to classify the targets [150][151]. Terrestrial [152] [153] and military vehicles [154][155]
can be detected by airbone or satellite synthetic aperture radar (SAR), and therefore the target
classification is based on processing the SAR images of targets. For the application at hand, MMW
automotive radar can encounter traffic targets at different ranges that may only be partially
illuminated and thus cannot always be considered as classical point targets. Synthetic aperture
radar methods are obviously not applicable either.

Pedestrians and bicyclists are often encountered in both urban and rural environments, and
are considered to be the most important targets to be correctly identified. Because a moving
pedestrian will frequenty have different positions on the arms and legs when a pedestrian is moving,
it is observed that moving pedestrians exhibit quite different Doppler radar response patterns from
those for vehicles. This feature is described and utilized to distinguish pedestrians from vehicles

in many studies [156]-[158]. However, when there is no observable Doppler signature, i.e. targets
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are stationary or they have zero down range velocity with respect to the radar, these methods are
not applicable.

Recent advances in machine learning techniques including convolutional neural network
(CNN) [159][160] and convolutional recurrent neural network (RNN) [161] enable new methods
for radar target classifications. In [162], multiple frames for the range-Doppler images of a
continous movement of a target is put into target classifications models based on RNN. Similar to
other Doppler based target classification methods, this approach can only be applied to moving
targets. In [163], the phase and magnitude of each antenna element is inputted into a deep neural
network to distinguish a pedestrian and a vehicle. While greater than 90% accuracy is achieved,
the data samples in the paper are very limited (only based on one vehicle and one pedestrian),
which limits the scope and applicability of the model. For some advanced radars that are capable
of imaging, the targets then can be represented by radar images in target classification [165][166].
In [165], the proposed algorithm applies CNN to classify static targets as parked vehicles or non-
vehicles. In [166], targets are visualized as radar point clouds, where RCS information is discarded,
and zero-Doppler data are excluded, which means only dynamic targets are used in classification.

A convincing target classification model based on machine learning requires a
comprehensive dataset including an exhaustive list of targets. Measurements can provide reliable
data; however, gathering them can be very expensive, time consuming and sometimes impractical
for some targets. For example, it is difficult to take the radar measurement from all azimuth
directions and any range for a heavy truck or bus as it is almost impossible to put a large vehicle
on a turn table for accurate angular variation. By contrast, simulation can be performed for any
kind of target from any angle and range with much lower cost. Furthermore, pedestrian models

with all ages, weights and heights can easily be generated and examined in simulation, whereas
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such measurements usually have very limited samples and can be time consuming and
uncomfortable for the test subject.

In this chapter, four traffic target classification approaches for different types of radars
regardless of target motion are proposed, and a comparative study of these approaches is performed.
The proposed models utilize the statistics of RCS data for different target categories generated by
a high-fidelity RCS simulation program. In addition, some measurements are also taken to verify
the accuracy of the simulations. In this classification problem, the targets are categorized into three
major groups: pedestrians, vehicles, and other objects. For traditional radars, depending on the
radar range resolution and the size of the targets, the RCS of targets are examined as point or
distributed targets. A novel statistical analysis is proposed that makes use of a large dataset for
different targets and an artificial neural network (ANN). This approach is applied to both point
and distributed targets. For a radar capable of imaging, 2D or 3D radar images are generated from
simulation as well and used in target classifications with CNN. This paper is an extension of our
preliminary work in [167], with more data samples, target classification methods, discussions and
experimental validations.

This paper is organized as follows: in Section 6.2, the forward scattering model and
simulation used for calculation of RCS of targets (both as point or distributed target), and the radar
images in 2D and 3D forms are presented. In Section 6.3, the radar target classification models
based on machine learning for different types of radar data are implemented and discussed. In
Section 6.4, radar measurements for some targets are performed and the radar data are examined
with the off-line target classification models for verification. Finally, concluding remarks are
provided in Section 6.5.

6.2 High-fidelity radar response simulation for different types of radar
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At W band frequencies, traffic targets like vehicles and pedestrians have dimensions on the
order of hundreds to thousands of wavelengths. The full-wave methods including method of
moment (MoM), finite element method (FEM) and finite-difference time-domain method (FDTD)
can generate accurate results but may require exorbitant amounts of time to run the simulations for
these electrically very large targets. Asymptotic methods like physical optics method (PO) and
physical theory of diffraction (PTD) have been successfully used to evaluate the backscattering
RCS of traffic targets at MMW frequency. In this thesis, the PO method is used since most
common traffic targets do not often present any sharp edges and are for the most parts convex. The
detailed information and validation of PO approach is described in Chapter 2.

6.2.1 RCS simulation results

The RCS of pedestrians, vehicles and other static targets are simulated at different
frequencies, aspect angles and ranges. In these simulations, the vehicles are considered as metallic
objects and pedestrians and trees are treated as dielectric materials. The complex dielectric
constant for human skin is reported in the literature [168]-[170] to be within the ranges of 6.5 <
& < 11.6and 3.9 < &’ < 11.2. In this research, the dielectric constant model created by Gabriel
[169] is used (e, = 6.57 + 8.92i at 77 GHz). Regarding the permittivity of canopies, the dielectric
model developed by Matzler [171] is applied, and for a palm tree, the dielectric constant is given
as e, = 4.01 4+ 3.35i at 77 GHz.

The RCS of complex traffic targets fluctuates rapidly with both frequency and aspect angle.
For example, Figure 6.1 (b) shows the RCS as a function of frequency for three different targets,
a pedestrian, a sedan, and a dwarf palm tree, whose geometries are shown in Figure 6.1 (a). In the
simulations, targets are 50 m away from the radar. It is shown that the RCS can fluctuate up to 20

dB over 1 GHz bandwidth, which is less than 1.3% fractional bandwidth. This is mainly due to the
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multiple scattering centers on large complex traffic targets that can add constructively or
destructively. This argument also holds for the variation of RCS as a function of incidence angle.
Note that the average RCS value of a pedestrian and that of a dwarf palm tree from some angles
are similar, but the variances are different. This feature may be used in target classification. The
RCS statistics is also a function of azimuth incident angle. The frequency averaged RCS as a
function of azimuth angle for a 1.8 m tall pedestrian, a sedan and a dwarf palm tree are depicted
in Figure 6.1 (). It shows a significant variation of the RCS over different incident angles for these
targets. If the entire target is within the antenna illumination, its statistical information is range

independent as shown in Figure 6.1 (d).
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Figure 6.1. (a) The CAD model of a 1.8 m tall pedestrian, a sedan, and a dwarf palm tree; (b) the
simulated RCS as a function of frequency for the three targets from ¢ = 0°,35°,and 105°,
respectively in the range of 50 m; (c) the frequency averaged RCS as a function of azimuth angle
in the range of 50 m; (d) the average RCS over all azimuth angles as a function of range for the
three targets.

The time domain radar response can be obtained by taking fast Fourier transform (FFT) of
the frequency domain data. This will reveal the extent and intensity of scattering centers of the
target as a function of range. In the example shown in Figure 6.1 (b), the radar has 1 GHz
bandwidth and 512 frequency samples, which corresponds to 0.15 m range resolution and 76.8 m
maximum unambiguous range. The time domain responses of the three target in Figure 6.1 (b) is
illustrated in Figure 6.2 (a). It is shown that though the RCS level of the pedestrian and that of the
dwarf palm are similar, their widths/shapes in the time domain are different and this feature can
be used for target classification. Figure 6.2 (b) shows the time domain response of a sedan at
different incident angles. The three angles ¢ = 0°,45° and 90° correspond to the back, back-right,
and the right-side directions. When the car is illuminated from behind, the main scattering points

are on the very back of the car while some other illuminated surfaces can contribute some
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considerable backscatter. If the car is illuminated at 45°, several scatterers at different ranges from
the radar have similar backscatter power level. When the side of the car is perpendicular to the
radar, the backscattered power from the door panels dominates and constitutes a single peak in the

backscatter direction.
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Figure 6.2. The simulated RCS as a function of range for (a) the three targets in Fig. 6.1 (a) with

¢ = 0°,35° and 105°, respectively at the range of 50 m, and (b) a sedan with ¢ =

0°,45° and 90° in the range of 50 m.

6.2.2 Radar images simulation results

When the radar has beam-steering capability, radar images can be generated, and more
features of the target can be obtained. One of the most effective beam steering techniques is digital
beamforming with a fixed antenna array. The beamforming is equivalent to synthesizing a narrow
beamwidth antenna pattern by properly changing the phase of each element.

It is critical to have low sidelobe levels for radar imaging applications. The low sidelobe

level can be created by proper weighting the received signals of the array elements. In this
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simulation, a triangular weighting function is applied to a uniform linear array (ULA) to generate

lower than -26 dB sidelobe levels. The triangular weighting function is given by:
9
W, = ———1’,1<iSN 6.1)

where N is the number of antenna elements. In one example, the triangular weighting function is
applied to a 50-element ULA with A/2 spacing, and the radiation pattern for the antenna array
with main beam at 0<(boresight) or 30<are shown in Figure 6.3. The half-power beamwidth
(HPBW) is about 3°when the main beam is at 0°and 3.5°when the main beam is at 30< The

sidelobe levels are less than -26 dB for both cases.
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Figure 6.3. The radiation pattern of a 50-element ULA with A/2 spacing and triangular weighting
function.

Different portions of a short-range target can be viewed by the radar with the main beam
scanning over the target. For a radar that can scan the beam in azimuth direction, a range-azimuth
angle (r — ¢) image can be created since the range information is obtained by the time domain
response. Consider a radar with a 50-element ULA having inter-element spacing of 0.7 wavelength.
This beam-steering radar is capable of providing 2 “beamwidth in the boresight direction. Suppose

the radar is operating from 76 GHz to 77 GHz and collects 512 frequency samples. Each antenna

146



element is assumed to have uniform pattern in the azimuthal plane, and to increase the antenna’s
gain, each element is given about 6<beamwidth in the elevation plane. Figure 6.4 shows the
processed radar images for some commonly seen traffic targets. To generate one radar image, the
target is simulated for 512 frequency points and 50 transceivers. The radar beam is processed in
steps of 1< and the resulting range-angle images are threshold to maintain a dynamic range of
about 30 dB. These images are shown in Figure 6.4 in dB scale and are normalized to their
maximum RCS values. It is shown that the shape of large targets like vehicles can be identified to
some extent, but the small targets like pedestrians and traffic signpost are hard to be distinguished

with the r — ¢ radar images.
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Figure 6.4. The simulated range-azimuth angle (r¢) images for (a) an SUV, (b) a motorcycle, (c)
a bus, (d) a truck, (e) a walking pedestrian, (f) a squatting man, (g) a deer and (h) a stop sign in

the range of 10 m with a 2beamwidth radar in azimuth direction.

For more advanced radar with beam steering capability in both azimuth and elevation
directions, azimuth-elevation angle (¢ — ) radar images and 3D (x-y-z) radar images can be
obtained. In one simulation example, a MIMO radar has 50 transmitters (TX) in the z direction
and 50 receivers (RX) in the x direction, and each have 0.7 wavelength spacing, resulting in about
2 °beamwidth in azimuth and elevation at boresight. The radar uses 0.5 GHz bandwidth and 512
frequency samples are recorded. The beam is scanned from -15<to 15<for ¢ and -10°to 10 for
6 in steps of 1< In the signal processing stage, first an FFT to the frequency domain data of all
2500 channels is taken, then for each scanned angle, the triangular weighting function is applied
to all channels.

Some examples of the ¢ — 6 radar images and 3D radar images are shown in Figure 6.5.
The value of one pixel represents the RCS detected for one scan angle, and they are normalized to
the maximum value in the image. Because the sidelobe level of the ULA with proposed weighting
function is lower than -26 dB, every pixel that has an RCS value 26 dB less than the maximum
value is discarded. Figure 6.5 demonstrates the radar images for a pedestrian, a sedan, and a man
riding a bike. It is shown that the profile of each target is recognizable from the radar images, and
therefore the ¢ — 8 radar images or 3D radar images exhibit the best potential for target

classification.
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(c) aman riding a bike, and their corresponding 3D images (d) (e) and (f) in the range of 10 m

with a 2 <beamwidth radar.

6.3 MMW Radar Target Classification

In this section, target classification algorithms based on different forms of radar data are

developed and compared. Depending on the radar mode of operation, four different forms of radar

data are utilized for target classification: statistical RCS information, distributed (time domain)

radar response, 2D range-azimuth angle radar images and 3D radar images. If the targets are at

long range or the radar doesn’t have imaging capabilities, the methods based on statistical RCS
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and time domain radar response data are used, and due to the complexity of the problem, the
artificial neural network (ANN) approach is used for target classification. If targets are at close
range and radar is capable of beam steering, the convolutional neural network (CNN) classification
approaches with radar images can be used to provide more accurate classification results.

The forward scattering model is used to generate radar data for many types of traffic targets.
Based on the importance of targets, commonly seen traffic targets are divided into three categories:
pedestrians, vehicles and all other objects. Simulations are run for a variety of pedestrians ranging
from 1.2 m tall children to 70 year olds, including different genders, poses (squat, standing,
walking, and jogging), and body types (skinny, average, and overweight). The simulated vehicles
include, but are not limited to bikes, motorcycles, sedans, supercars, SUVs, buses, vans,
hatchbacks, pickup trucks, and heavy trucks. Other objects include traffic targets other than
pedestrians and vehicles, including animals (dogs, deer, horses, etc.), and stationary objects like
traffic signs, traffic light posts, traffic drums, lamp posts, trees, trash bins, roadblock, road fence,
bus stops, mailboxes, etc. In all approaches described below, more than 6,000 samples of data are
created from different incident angles of about 90 different targets for classification, and to avoid
bias issues in classification, the number of samples for different categories are kept almost the
same.
6.3.1 Target classification based on statistical RCS

For traditional radar without imaging ability, or the target is far enough such that a traffic
target can be isolated from range-Doppler map and represented by one or more RCS values. The
RCS values are highly fluctuating with aspect angle, frequency and range. To demonstrate the
random behavior of the radar response, an example of radar measurement of a sedan on a turn table

IS given. Figure 6.6 shows the picture of the measurement and the convention used for aspect angle.

150



Figure 6.7 shows the measured radar response of the sedan in the range of 11 m and aspect angle
of 10=and 20< The radar utilizes a vector network analyzer (VNA) to measure the frequency
response of the target, and it operates from 76.5 GHz to 79.5 GHz. It has one transmitter and one
receiver with 3 “antenna beam width in both elevation and azimuth directions. The response of the
sedan can be gated out in time domain, as is shown in Figure 6.7 (a) and (c), where the red dash
line refers to the radar response of the sedan. It shows that at different aspect angle, the peak value
of the radar response can have more than 10 dB difference. Then the radar response of the sedan
in frequency domain can be obtained by taking FFT to the gated time domain response, which is
depicted in Figure 6.7 (b) and (d). It shows that the radar response, which is proportional to the

RCS, can have up to 20 dB variation at different frequencies.

Figure 6.6. The 77 GHz radar measurement scene for a sedan and the coordinate system.
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Figure 6.7. The measured S, in time domain as a function of range and the gated response of the

sedan in the range of 11 m with (a) ¢, = 10° and (c) ¢, = 20°; the corresponding frequency
domain response of the gated S,, of the sedan after FFT for (b) ¢, = 10° and (d) ¢, = 20°.

The mean RCS of all azimuth angles is a good indicator in radar target classification,

however, it is not praticle to measure the RCS of all azimuth angles of targets during road driving.

During road mesurement, it is required that the radar can classify targets in real time.Therefore,

the RCS data used in classification are limited, which could be just for slightly changes in aspect
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angle and frequency. The RCS values for large targets, e.g. a vehicle, may varies dramatically with
azimith aspect angles as is shown in Figure 4.12 in Chapter 4. It is observed that the frequency
averaged RCS of a sedan with some aspect angle will not be too different from that for a pedestian
(~-10 to -5 dBsm), and therefore, it is hard to distinguish a vehicle from a pedestrian based on the
raw RCS data.

The most commonly used statistical information is the mean value and standard deviation.
The pairs of mean values and standard deviations for different targets are depicted in Figure 6.8.
It is shown that the standard deviation is close to the mean values for all different types of targets,
which indicates that the statistical distribution of RCS is close to the exponential distribution.
These results agree with the famous Swerling models [109][111] for the RCS of complex targets.
Because the mean value and standard deviation are highly correlated, it is difficult to distinguish

different types of targets based only on these two features.
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Figure 6.8. The simulated mean value and standard deviation for different targets with categories

in (a) pedestrians and vehicles and (b) pedestrians and other objects.
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To achieve a better contrast of the data for different types of targets, it is desirable to have
more distinguishable features. It is better to find the statistical distribution of the simulated RCS
data. Examining the data carefully, it is found that the Weibull distribution is the best fit for the
RCS values of traffic targets in the MMW or sub-MMW band [172][173]. The probability density

function (PDF) of the Weibull distribution is given by,

exp {— (%)B} 6.2)

where A is the scale parameter and B is the shape parameter. If B = 1, the Weibull distribution

Fedam =25

becomes the exponential distribution. Different B parameters can be used to represent how the
statistical distribution deviates from the exponential distribution, and therefore the Weibull
distribution is used to provide more distinct statistical features.

All groups of RCS data are fitted into the Weibull distribution, and the pairs of A and B
parameters are obtained for each dataset. Since the data for different targets may have different
fitting performance to Weibull distribution, the fitting error is considered as an additional feature
in this classification problem as well. The fitting error is measured by the Kolmogorov-Smirnov
(KS) test defined as the RMS error between the empirical cumulative density function of the raw
data and the fitted cumulative density function of Weibull distribution with best fitting parameters
[173]. The A and B parameters and the fitting errors for different types of targets are displayed in
Figure 6.9. Though many parameters still overlap for different target types, compared to Figure

6.8, this approach provides greatly improved distinction for different target types.
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Figure 6.9. The parameters A and B and the fitting error of Weibull distribution for different

targets with categories in (a) pedestrians and vehicles and (b) pedestrians and other objects.

Acrtifical neural network (ANN) approach is applied to classify the traffic targets based on
the statistical features described above. The structure of the ANN used in this classification
problem is illustrated in Figure 6.10. In the figure, each black circle represents one value and is
called “neuron”, and the line with arrow represents a functional relationship. The variables
by, ..., by, are constant 1, and the variables %, , are normalized input values from the training
dataset such that the range of X, , are between -1 and 1. %, is normalized from parameter A, %, is
normalized from parameter B. The neurons a;; is a function of variables in previous layer. The
output values 9, , 3 have the range between 0 and 1, and they are the probability of being classified

as pedestrians, vehicles and other objects, respectively. More specifically, the relations are:

_ 2(A—min (4)) _1q (6.3)
1= max(A4) — min (A4)
2(B — min (B)) (6.4)

2~ max(B) —min (B)
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Figure 6.10. Structure of the ANN used for target classification with statistical features

When use the ANN model, it will take the statistical features A and B of the RCS data of

one target as inputs and generate output values for ¥, , 3. The target is classified into the category

with the highest probability. More than 6000 pairs of parameters A and B for different targets are

used to obtain the ANN model. In the training process, 70% data are randomly selected as training

set, and 15% of data are used for validation and the rest are test data. The ANN model is trained

by Matlab with Levenberg-Marquardt backpropagation algorithm. In this example, an ANN model
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with three hidden layers is generated to perform the target classifications. Each layer has 10
neurons.

Table 6 - 1 shows the performance of the target classification model based on the mean
values and standard deviations, and the model in Table 6 - 2 is based on the Weibull parameters.
It shows that when the data of all three categories are used, the pedestrians and vehicles can be
correctly identified with more than 90% accuracy for both models, but the predictions for other
objects are very poor. The reason is that the extent of other objects are diverse and as indicated in
Figure 6.8, some statistical parameters of the RCS of some objects are similar to those of
pedestrians, and those of the others are more close to those of vehicles.

Table 6 - 1. Performance of target classification based on mean RCS values and standard

deviations

Pred. Target

Pred. Target (Veh. excluded)
Other Other

Ped. Veh. Obj. Ped. Obj.
True Ped. 95.3% 0.3% 4.4% 95.8% 4.2%

Target Veh. 1.3% 92.9% 5.8% - -
gbtjher 197% | 5120 | 29% | 264% | 73.6%

Table 6 - 2. Performance of target classification based on mean RCS values and standard

deviations

Pred. Target

Pred. Target (Veh. excluded)
Other Other

Ped. Veh. Obj. Ped. Obj.
True Ped. 95.4% 0.2% 4.4% 96.2% 3.8%

Target Veh. 0.8% 93.3% 5.8% - -
(g)btjher 163% | 47.0% | 367% | 17.0% | 83.0%
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If vehicles are static and only pedestrians are needed to be identified, then in both models
more than 95% of pedestrians will be correctly identified and less than 10% of non-pedestrians
will be wrongly classified since the number of samples of vehicles and other objects are similar.
If the vehicles are moving or we only consider the targets near the sidewalk, then we only need to
identify the pedestrians from the other static objects. In this case, the model based on mean values
and standard deviations of RCS has 95.8% accuracy for pedestrians and 73.6% accuracy for other
objects, and the model based on Weibull parameters give even better results of 96.2% accuracy
for pedestrian and 83% accuracy for other objects. This shows that the models based on Weibull
parameters can provide better classification results.

6.3.2 Target classification based on distributed RCS response (time domain)

The time domain radar response reflects the scattering strength of scatterers distributed
over a target. This response can be used in target classification as the target response span in range
for different targets can be different. For example, a pedestrian has much smaller extent in azimuth
direction than a vehicle, and therefore, the shape of the time domain radar response of a pedestrian
is different from that of a vehicle. The time domain response depends on the radar parameters as
well. In this paper, a radar is chosen to have a bandwidth of 1 GHz which can provide a range
resolution of about 0.15 m. In order to isolate the response of the target for classification, the time
domain data samples are truncated into 61 points (9 m in range). Because usually the maximum
RCS value occurs at points on the target nearest to the radar, the time domain signal truncation is
made such that one third of the points (20 points or 3 m) are before the maximum RCS and two
thirds of the points (40 points or 6 m) are after the maximum RCS value.

Compared to the point target data, the distributed (time domain) response is more impacted

by the presence of noise since the small scattered power in time domain may not be detected if the
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noise level is high. For the example considered next, it is assumed that the signal to noise ratio
(SNR) is high enough such that scatterers with -30 dBsm are detectable, and any RCS data in time
domain below -30 dBsm is discarded. Some examples of the time domain RCS for different targets
with an arbitrary incident angle is shown in Figure 6.11. In the figures, 0 on the x-axis in a relative
range representing the location of the RCS peak of the target in time domain. The time domain

RCS in Figure 6.11 are distinguishable for different types of targets.
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Figure 6.11. The time domain RCS comparison among (a) a pedestrian, heavy truck and a sedan
and (b) a pedestrian, a horse and a streetlight from a randomly selected incident angle.

ANN is applied in the target classification based on time domain RCS. This ANN structure

has 61 inputs representing the time domain response, 3 hidden layers with 60, 30 and 20 neurons
in each layer and three outputs with values between 0 and 1 referring to the probability of the target
being classified as of the three categories. The hidden layers are chosen based on best performance
while minimizing the number of layers and neurons and avoiding the overfitting issue. Like the
ANN for statistical RCS, 70% of the dataset is randomly picked as training data, and the rest is

used as testing and validation data. The ANN is trained in MATLAB as well.
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The performance of the classification is provided in Table I11. It shows that when all targets
are classified, more than 90% of pedestrians and vehicles can be correctly identified, and about
65% of the other objects can be correctly classified. This result outperforms the classification
model based on statistical RCS. However, the classification performance when excluding vehicles
is not as good as that for the model based on statistical RCS. The advantage of using the time
domain response is that it can detect the extent in range of a target, and many targets like traffic
signs, traffic lights, tree trunks, etc. have similar azimuth dimensions as pedestrians in terms of the
radar’s range resolution. Furthermore, the RCS values in classification here are not statistical RCS,
therefore the radar response of pedestrians and some other objects may not be differentiable in the
time domain.

Table 6 - 3. Performance of target classification based on time domain RCS

Pred. Target
Pred. Target (Veh. excluded)
Other Other
Ped. Veh. Obj. Ped. Obj.
True Ped. 91.3% 0.0% 8.7% 91.6% 8.4%
Target Veh. 0.0% 94.0% 6.0% - -
(?btjher 265% | 80% | 655% | 258% | 74.2%

6.3.3 Target classification based on Radar images
One of the major factors that limits the performance of target classification with traditional
radar is the number of features. To achieve better accuracy of classification, a radar with imaging
capability is desired. Radar images can be created in many different ways and in this simulation,
they are generated using digital beamforming. Compared to the frequency domain or time domain
RCS classification methods, radar images provide additional dimensions (azimuth and/or elevation)

of data and therefore can capture the shape or size of the targets.
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The range-azimuth angle (r — ¢) images can be generated if the radar can scan its beam in
azimuth direction. It is noted that the significant angular features of a target depend on the range,
the radar’s beamwidth and the angular resolution of scanning angles. To study the effect of range,
and radar’s beamwidth on the target classification performance, the r — ¢p image simulations are
performed for targets in different ranges and by varying the number of elements or antenna
spacings (resulting in different antenna beamwidths). More than 6000  — ¢ images are generated
for different targets from all azimuth angles in each range and radar configuration. Each r — ¢
image is truncated into 9m by 30 <in azimuth direction, with 61x31 pixels (rangesxangles) and is
generated by simulating 25,600 or 51,200 RCS data (512 frequency samples and 50 or 100 antenna
elements) for one target. 50 antenna elements generate 3<beamwidth using A/2 inter-element
spacing or 2<beamwidth using 0.7A inter-element spacing. 100 elements create 1<beamwidth
using 0.7X\ inter-element spacing at boresight. Some examples of the » — ¢ radar images are shown

in Figure 6.4.
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Figure 6.12. The Structure of the CNN used for target classification with r¢ radar images.
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The radar image classification algorithm is implemented using CNN. The proposed CNN
has five convolutional layers, five rectified linear unit (ReLU) layers, five pooling layers and one
fully connected layer as shown in Figure 6.12. The detailed description of each layer can be found
in [174]. The CNN is trained using the MATLAB Deep Learning toolbox [177]. 70% of the data
is randomly selected as training data and the rest is used as validation data. In the training step, 80
epochs are employed, and each epoch goes through 23 iterations of training process. After training
the models, the validation data have similar accuracy as that for training data, which implies the
models do not have an overfitting issue. The classification performance of the models for different
ranges and beamwidths are given in Table 6-4. For comparison, all models have the same number
of layers, and the radar scanning angle step is 1°for all beamwidths. It shows that short range
targets have better classification accuracy than long range targets, and the radar with narrow
beamwidth can provide better classification performance. This result is intuitive because in the
case with nearer targets or narrower radar beamwidth, more useful features of targets can be
detected by the radar. Compared to the classification models based on frequency domain or time
domain radar response data, the radar images-based models can provide better accuracy for
classification at short range.

Table 6 - 4. Performance of target classification based on range-azimuth angle radar images

True Positive rate with 3°beamwidth
Range Pedestrians Vehicles Other Ob;j.
10 m 91.9% 99.5% 91.6%
20 m 93.3% 98.5% 87.0%
30 m 90.8% 98.8% 81.5%
True Positive rate with 2 °beamwidth
10 m 97.4% 99.6% 91.7%
20 m 93.8% 98.1% 81.4%
30 m 96.4% 97.8% 80.1%
True Positive rate with 1°beamwidth
10 m 94.9% 99.1% 93.2%
20m 94.0% 99.7% 88.4%
30 m 87.0% 96.7% 93.5%
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The 3D radar images have the added dimension of elevation compared to r — ¢ images.
Similarly, more than 6,000 3D radar images are generated for different targets for a given range
and radar beamwidth. In this classification example, a 3D radar image has 61x31x31 pixels
(9Mmx31%319 and is created by simulation for 1.3 million data with a MIMO radar with 512
frequency samples and 50x50 channels. The equivalent antenna beamwidth is 3 (/2 spacing) or
2°(0.7A spacing). Some examples of 3D radar images with 2<antenna beamwidth are given in
Figure 6.5.

CNN is used for target classification with 3D radar images as well. The layers and the
convolution operation in the new CNN have three dimensions, unlike the CNN for 2D images.
The CNN is trained using the MATLAB Deep Learning toolbox as well. The proposed structure

has five convolution layers as shown in Figure 6.13.
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Figure 6.13. The Structure of the CNN used for target classification with 3D radar images.
The classification results for 3D radar images are given in Table V. It shows excellent
performance (>98% accuracy for pedestrians and vehicles and >94.5% accuracy for other objects)

for both 3“beamwidth and 2 “beamwidth for the range from 10 m to 30 m. It is also observed that
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the classification accuracy is better if targets are closers and the radar has narrower beamwidth.
Because more features can be detected by 3D radar images, it is not surprising that the radar target
classification based on 3D radar images outperforms the other models in terms of accuracy. The
drawback of the 3D radar images-based target classification is that it requires a more advanced
radar and more effort to process the data than other approaches, and the quality of radar images
will be degraded for targets at longer ranges.

Table 6 - 5. Performance of target classification based on 3D radar images

True Positive rate with 3°beamwidth
10 m 99.5% 99.5% 99.4%
20m 99.3% 99.2% 97.8%
30 m 98.0% 98.6% 96.5%

True Positive rate with 2°beamwidth
10 m 100% 99.9% 99.7%
20 m 100% 99.7% 94.5%
30m 98.9% 99.0% 97.8%

6.4 Experimental validation of the classification models

In order to validate the proposed radar target classification models, several targets are
measured by a 77 GHz instrumental radar. The radar has one transmitter and one receiver with 3°
antenna beamwidth in both azimuth and elevation directions. The radar is connected to a vector
network analyser (VNA) to sweep over the operating frequency band of 76 GHz to 79 GHz. Due
to limitations on the available hardware, this radar cannot generate radar images, and only the
model based on statistical RCS with Weibull parameters is examined.

The measured targets include a mannequin covered in a reflective coating in three different
poses, two traffic sign posts (one square shape and one U shape) and three vehicles (two sedans
and one SUV). Pictures of these measurements are included in Figure 6.14. The targets are on a
turntable and measured from all azimuth directions. The mannequin and the traffic sign posts are

measured in an anechoic chamber at a range of 18 m, and the vehicles are measured in an open
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parking lot with a range of 30 m. The measured data are gated and calibrated to obtain the RCS
from which the Weibull parameters are extracted. The parameters A, B, and the fitting errors are

depicted in Figure 6.15.

(b)
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(©)
Figure 6.14. The 77 GHz radar measurement for (a) a mannequin with three different poses, (b)

two different traffic sign posts and (c) two sedans and one SUV.
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Figure 6.15. The Weibull parameters summarized from the RCS of the measured targets.
The Weibull parameters are put into the off-line models trained in Sec. 6.3.1, and the
classification performance is given in Table 6-6. It shows that more than 80% statistical RCS data
of the mannequin and vehicles can be correctly classified and the classification for traffic sign

posts is poor as expected. If the data for the mannequin and the traffic sign posts are put into the
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off-line model without vehicle training data, the mannequin can be identified with more than 95%
accuracy while the true positive rate for the traffic signposts increases to 57%. The difference
between the performance for measured data and for simulated data is due to the lack of samples in
the measurement. The simulated other objects include many targets that have RCS values very
different from pedestrians, while the RCS of the traffic sign posts have a large overlap with that
of pedestrians. It can be observed from Figure 6.15 that many data of traffic sign posts overlap
those of the mannequin.

Table 6 - 6. Performance of target classification based on statistical RCS with measured data

Pred. Target
Pred. Target (Veh. excluded)
Other Other
Ped. Veh. Obj. Ped. Obj.
True Mann. 80.2% 0.9% 18.9% 95.6% 4.4%
Target Veh. 5.2% 86.0% 8.8% - -
oI | 410% | 201% | 38.9% | 430% | 57.0%

6.5 Conclusion

This paper presents four automotive radar target classification models with statistical RCS
(point target), time-domain RCS (distributed target in range), range-azimuth angle radar images,
and 3D radar images. The four models can be applied in different scenarios using different types
of radar: the statistical RCS and time-domain RCS-based models can be applied to traditional
radars at both short and long range, and the 2D/3D radar image-based models require a shorter
range targets and a radar with imaging capability, but can provide much better classification
accuracy. The models are trained with a large high-fidelity simulation dataset, and some models
are validated by measurement. The classification models with statistical RCS and time domain
RCS are based on ANN approach, and those with 2D and 3D radar images are based on CNN. The

performance of different models with targets at different ranges and radar configurations are
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compared as well. In the presented example, good classification accuracy has been achieved. This
research shows that MMW and sub-MMW radar has great potential to be used for target
classification, and that this can improve the situational awareness of an autonomous vehicle,
especially in inclement weather conditions when other sensors are compromised, ultimately

leading to improved safety for autonomous vehicles and the people around them.
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Chapter 7 Vehicular Communication Channel modeling for foliage

7.1 Introduction

Autonomous driving system and intelligent transportation systems (ITS) put strict
requirements on reliable and high-speed Vehicle-to-Vehicle (V2V) communications. The
upcoming 5G wireless system is expected to support these applications and in particular, 802.11p-
based dedicated short-range communications (DSRC) at 5.9 GHz has been specially regulated for
vehicular communications[178]. Furthermore, massive connections among vehicles and
infrastructure and broadband multimedia sensing and transmissions motivate the adoption of
millimeter-wave (mmWave) at 60 GHz for vehicular communications, owing to the multi-GHz
bandwidth [13],[179].

The vehicular communication antennas are usually mounted on the top of vehicles to avoid
signal blockage from other similar vehicles [180],[181]. In practical V2V wireless communication,
the LoS link can be blocked by many obstacles including large vehicles, buildings, foliage and
other commonly seen cylindrical shape objects like lamp post and traffic light post. If the V2V
LoS is blocked by buildings or a large vehicle like a bus or a truck, the signals are usually
totally blocked. On the other hand, when the LoS is blocked by foliage or a cylindrical shape
object, the signal is not completely blocked due to the diffraction nature of electromagnetic (EM)
waves. Since there are various species, shape and dimensions of foliage, it is challenging to
accurately capture the signal attenuation due to the foliage, and make the model efficiently

retractable in practical autonomous driving. In a typical V2V communication scenario, the vertical
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position of antenna is between 1.2m to 2m above the ground. The analysis of wave propagation
can be focused in a 2D plane, where the transmitter and receiver are almost in the same plane[182].
Moreover, due to the extremely narrow beamwidth enabled by the mmWave beamforming
technology and/or high gain antenna, the aligned beam from the transmitter is pointed directly to
the receiver. As a result, reflection from the ground and scattering from tree branches and leaves
can be neglected assuming the lowest branches are above the antenna’s height. In this case, the
tree trunks are the only scatters that interfere with the signal propagation in mmWave V2V
communications, as illustrated in Fig. 1. Such interference is critical in some scenarios, for
example, in T-junction or cross-road traffic scene, the LoS link between two vehicles with
right angle might be blocked by tree trunks and failure of communication may lead to dangerous
consequences.

Literature Review: The literature concerning electromagnetic scattering and propagation
through foliage is rather intensive. At a low frequency where the wavelength is greater than the
dimensions of trunk and branches, the tree is considered as a homogeneous dielectric cylinder with
the equivalent permittivity [52], [53]. At higher frequency where the diameters of branches and
trunk are much smaller than the wavelength while length is comparable or greater than the
wavelength, the branches and trunk are approximated as 1-D scatter and the corresponding
scattering amplitude tensors are derived to calculate the far-field scattering field [183], [184]. As
frequency grows, the diameter of cylinder becomes comparable to the wavelength and the
length of cylinder is much larger than wavelength. In such case the infinitely-long cylinder
approximation can be applied, and the scattered far fields are evaluated analytically [185],
[186], [187]. In a forest scenario that many trunks are parallel and closely placed, the

higher order scattered fields are computed and the total scattered coefficient from trunks
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are modeled as a function of incidence angle by Monte Carlo simulations [186]. In [186],
both transmitter and receiver are in the far field of trunks, and it shows the first order
scattering dominates for relatively sparse forest. In [187], a statistical approach with the analytical
solutions is presented to find the scattered field and path loss inside a forest with frequency from
L band to X band. In this model, the transmitter is placed in the far field of trunks as well.
For mmWave band, geometric-optics (GO) approximation is applied to find the
backscattering response from tree trunk [188], however, GO method is not appropriate for
forward propagation direction since it assumes fully blockage of signal in such direction.
In [189], the full-wave numerical method finite-difference time-domain method (FDTD) is used
to calculate the scattering field of foliage. Although good accuracy can be achieved, the simulation
process is prohibitively inefficient, time consuming and not available for the entire trunk
simulation. In addition, several empirical models for the path loss caused by foliage based on the
measurements have been reported [190]-[193]. In some models, path loss is a function of the
distance, tree types and vegetation density at 900 MHz and 2.4 GHz [190], [191]. Since the wave
front scattering behaves differently at lower frequencies compared to the mmWave band, these
empirical models cannot be directly applied to V2V communications, besides, those models only
consider the mean value of the foliage attenuation and the variation or statistical distribution is not
presented. Moreover, in V2V communication the scattering from tree trunks can be in the near-
field of transmitter and/or receiver while most models are for far-field scattering only. As a result,
the efficient near-field tree-trunk scattering model for V2V communications in the mmWave band
is still missing. Many methods mentioned in literature are either complex EM scattering analysis
or EM numerical methods. Though good accuracy can be achieved, it is difficult to fast extract

the solution and evaluate the communication link in real time. The straightforward solution will
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be lookup table models, where the results are required to be evaluated for all values of all
parameters. Though the lookup table models are simple to implement and apply, the required data
points increase dramatically with number of parameters. By contrast, artificial neural network
(ANN) model requires relatively much less number of data points in training and can achieve
excellent prediction performance [194]. Besides, in ANN models, users only need hundreds of
coefficients of neurons to reconstruct the model. On the other hand, to use the lookup table model
people need all data points, which could be millions of data. The idea of ANN is inspired by
the operation of human brain, and many important study of ANN like backpropagation
algorithm can be traced back to 1970s [195], [196],[197]. Recently due to the development of
computational ability of computers, ANN becomes one of the most popular tools in machine
learning and has been successfully applied to many areas in both science and engineering
for data classification, pattern recognition and curve-fitting [198]. There are many other
types of neural networks (NN) like convolutional neural network (CNN) [199] or recurrent neural
network (RNN) [200], and their typical ap-plications are in image, voice or video recognition.
Compared to other NN, ANN has simpler structure and therefore faster to use. In this reduced
channel modeling problem, ANN model is sufficient to achieve good performance without
making the neural network too complicated.

Our Contributions: In this paper, systematic analysis on the scattering phenomenon from
cylindrical trunk in both near-field and far-field regions is performed for V2V communication. To
allow for computational tractable simulation of wave scattering and propagation, the complicated
EM models are further reduced into a macro-model, by invoking an artificial neural network
(ANN). The signal loss through branches and leaves for mmWave V2l communication is studied

by Monte-Carlo simulation with commercial ray tracing (RT) software, and its statistical features
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are summarized. The main contributions are summarized as follows. First, for V2V
communication, we derive semi-exact semi-closed-form formulas for the far-field as well as near-
field scattering from a tree trunk for the mmWave V2V communications and then validate them
by the full-wave solver and reciprocity [201]. Second, we carry out extensive numerical
evaluations on the scattered fields, by varying the position of receiver and transmitter, the trunk
radius, the trunk height, the permittivity of the tree, and the frequency. The path loss caused by the
tree in the mmWave band varies in a non-linear fashion in terms of the aforementioned parameters.
Third, we further invoke the ANN model to provide curve fitting for pathloss. Fourth, in a forest
environment, we perform theoretical analysis to accurately estimate the multiple scattering
between tree trunks and then massive Monte-Carlo simulations are performed with randomly
distributed tree trunks. Finally, the statistical information of the path loss model for foliate and
defoliate trees are presented. The resulting macro-model is extracted to compute the overall link
analysis in the V2V foliage propagation. The developed macro-model can be integrated as a useful
tool to efficiently and accurately analyze real-time mmWave channel quality in vehicular
communications. This paper is an extension of our preliminary study in [182], with many
more details in near-field validation, path loss analysis and ANN-based macro-model for the

path loss caused by the tree scattering.

7.2 Semi-analytic Single Tree Trunk Scattering Model for Millimeter-wave Band
In V2V communications, the presence of a tree may result in attenuation or small

enhancement in signal depending on the receiver’s and transmitter’s locations. The strength of EM
signal is proportional to the total electric field, which is equal to the sum of incident field, Ei, and

the scattered field, F?S, given by:
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E(F) = E(P) + Es(P) (7.1)
where 7 denotes the position of the receiver. The attenuation of the foliage or the path loss in the

communication link can be defined as the received power without the foliage over that with the

foliage:
EG |
\r
Apol — TnoFol — ‘: _ — PLZ (72)
PrFol E(T)
. . Ei@) ] . . .
where PL is defined as |% | in this thesis.

V2V foliage propagation T

Figure 7.1. V2V foliage propagation and its equivalence to cylinder scattering.

Since any polarization state of electromagnetic wave can be represented by the linear
combination of vertical (transverse magnetic (TM) case) and horizontal polarization (transverse
electric (TE) case), thus only these two cases need to be considered. Without loss of generality, a
coordinate system can be defined as illustrated in Figure 7.1, where the cylinder is along the z axis,
and the incident direction is in x-z plane, with angle of ;. Later analyses are based on this
coordinate system. Because the length of the trunk is much larger than the wavelength at either 5.9
GHz or 60 GHz, the internal field or equivalent surface current can be approximated by those for

infinitely long cylinder with the same radius. These fields/currents can be derived from cylindrical
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wave expansions [52]. The scattered field of the foliage, ES(F), is obtained from the equivalent

surface current by Huygens Principle, given by,

~

}

E s(1) = fj la),u()]s(r ){(szz s]lg N 1) RR + (1 + ﬁ B kleZ) (7.3)

N . -
_ (ik _E> (R X [ () - I]—ds
where k is the wavenumber in free space, I is the dyadic idemfactor, fs and fm are the equivalent
surface electric and magnetic current, respectively, andR is the length of the vector from source

point 7' to observation point 7:

. =7 I
R=_\—_\,, R = |T'—T,|. (74)
|7 — 77|

Notice that under far-field approximation (kR > 1), the scattered field shown in (7.3)

reduces to,
ikR

d
4R "

(7.5)

Es(F) = ik(f—ﬁﬁ)-fL [ZoJs ) — (R X [ (F

where Z, denotes the characteristic impedance of free space.

The transmitter or receiver can be in either near field of far field of the tree trunk.
Depending on the positions of transmitter and receiver, different approximations can be made. For
practical applications, the following scenarios are considered: both transmitter and receiver are in
the far-field region of the trunk (subsection 7.2.1 and 7.2.2), transmitter is in the far field while the
receiver is in the near-field region of the trunk (subsection 7.2.1 and 7.2.3), and transmitter is in
the near-field region of the trunk regardless of the receiver's position (subsection 7.2.4).
7.2.1 Transmitter in the Far-field Region

When transmitter is in the far-field of tree trunk, plane wave incidence approximation can

be applied. The equivalent electric and magnetic currents on the surface of trunk are derived from
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cylindrical modal expansion of plane wave [52]. The electric and magnetic surface currents for

TM case in cylindrical coordinate system are given by:

M@, ,2) = iwere®? " Culespli(kr p@)e ™, (7.6)
N eikzzkz ) .
I (a, ¢,2) = - Z nColn (kypa)e™®2
n=-—oo
+ e”‘zzkfpz =_ooCn]n (kipa)e™ @, )

where C,, is the modal coefficient at n*® mode, a is the radius of cylinder, ¢ and z are the

cylindrical coordinate of one point on the cylinder, and J,, and J;, are the Bessel function of the

first kind and its derivative with order of n. Also k, = kg cos 6;,k, = kosind;, &, and ¢, are the

permittivity for free space and the dielectric cylinder, k;, = kp\/‘?—1 . The solutions for TE case

€
can be easily derived from those for TM case using duality relations, therefore they are not shown
in this paper.
By applying boundary condition regarding the continuity of the tangential E and H fields

at p = a, The unknown coefficient C,, can be obtained and is given by:

k HO (k. a))! (k,a) — HY (k k
C, = EO(—i)"sinH-—p n ( pa)]n( pa) n ( pa)]n( pa) (7.8)

ke HD (kpa) i (kypa) — ko HSY' (Kya)f (Kypa)’

where H" and H{Y are Hankel function and its first derivative with order of n, and E, is the
magnitude of incident E field at the origin.
7.2.2 Receiver in the Far-field Region

If the receiver is also in the far-field region of the cylinder, after lengthy mathematical
manipulations of (7.5) (details are described in Appendix), the electric field in the far-field region

can be calculated from:
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- ikgetkoR _ sinV
= ——— (T — ksky) - b=, (7.9)

where V = [k,k, cos 05]b/2, b is the length of the cylinder, k, denotes the scattering direction,
and Y is given in the Appendix.
7.2.3 Receiver in the Near-field Region

When the transmitter is in the far-field region, but receiver is in the near field of the tree
trunk, the analytical solution in (7.9) becomes inaccurate. However, as transmitter is in the far field,
plane wave incidence approximation can still be used to obtain the surface currents on the trunk
by (7.6), (7.7) and the scattered field can be calculated numerically by taking integral of surface
currents with equation (7.3). This approach is referred to as surface current integral method (SCIM).
7.2.4 Transmitter in the Near-field Region

If the transmitter is in the near-field region of the entire tree trunk, to avoid complex near-
field calculation, segmented-cylinder method (SCM) may be applied. In this method, the entire
trunk is divided into smaller segments but still large compared to the wavelength, and then the
transmitter can be in the far-field range of each small segment. As a consequence, the methods
based on plane-wave incidence approximation are still valid for each segment and the total

scattered field is the sum of that from all segments, as shown in Figure 7.2.

de

(&

Figure 7.2. The transmitter and receiver locate in the near-field of whole trunk but in the far-field

of small segment.

177



@) (b)

Figure 7.3. Transmitter is in near-field range of the cylinder, comparison between (a) spherical /
cylindrical wave incidence and (b) plane wave incidence approximation.

However, in scenarios where the transmitter is in the near-field with respect to the diameter

of trunk, the plane-wave incidence approximation is no longer valid. Intuitively this can be

explained in Figure 7.3. The far-field radiation of antenna can be approximated as Oth order
ikor
spherical Hankel wave, with the formof E; = A % where r is the propagation distance, and A

is a constant to ensure the incident E field to be E, at origin. A is denoted as A = E,r/e'*o” . The
wave propagation from transmitter to the trunk is depicted in Figure 7.3 (a), and plane wave
incidence approximation is demonstrated in (b).

Sommerfeld identity [202] can be used to transfer the spherical wave function into
cylindrical wave functions. With some efforts, the equivalent electric and magnetic surface
currents can be written as:

w& A
2

N oo ] k 1) '
J™(a,¢,z) = — f [dkze‘kzz—pz Crkspln(kypa)e™z], (7.10)
—00 n=-—oo

ko

., Ak kO .
i, ¢,2) =~ f dkzelkzzk—Z[fznz_mncUn (krpa)e™®z

£, Cin (kipa)e ™)) .10
The derivation and the expression for C,, are describe in the Appendix. Note that (7.10)

(7.11) require evaluating Sommerfeld integral at each point on the trunk's surface for all orders of
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Bessel functions, and practically it needs hundreds of orders to ensure convergence. For mmWave
band the trunk's surface can be discretized into hundreds of thousands of points, which makes the
computation extremely extensive.

Alternatively, due to the fact that the distance from the transmitter to trunk is usually much
larger than the wavelength, i.e. k,|p| > 1, the spherical wave front can be approximated as
cylindrical wave front for any observation point on the surface of the tree trunk:

o tk|7=7'| eikz(z—z’)Hél)(kplﬁ —5'D

=7 - -
| J2/<mkp|p — D

(7.12)
|r —7r

where 7' = p' + z'Z is the source position of the spherical wave and ¥ = p + zZ denotes the
observation point. The cylindrical wave with center at p’ can be expanded as cylindrical

eigenfunctions with center at p by:

[0e]

Hél)(kp|,5 —-p'l) = Z Hr(zl)(ka')]n(kpp)ei”(d’"""), (p<p) (7.13)

n= —oo

Because the observation point is on the surface of trunk, and the source is outside the trunk,
the condition p < p' is naturally satisfied. To simplify the calculation, the observation points with
same k, and k, values can be treated as illuminated by the same cylindrical wave, and these points
are on a conical surface with center at the source point. This conical surface intersecting with the
trunk creates an ellipse as shown in Figure 7.4 (a). Assume with a small thickness, the elliptical
small piece of trunk then is approximately illuminated by cylindrical wave with fixed k, together
with a propagating phase front in z direction with k,. Therefore, the whole cylinder can be divided
into small segments by conical surfaces with center at the source point as is shown in Fig. Figure
7.4 (b) and each segment is illuminated by different cylindrical wave. The angular step dé is

exaggerated in the figure and in simulation d@ = 0.2° is chosen for good accuracy.
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(a) (b)
Figure 7.4. (a) Spherical wave incidence on one cross-section can be approximated by cylindrical
wave incidence and (b) The trunk is divided by conical surfaces with center at the transmitter
After some algebra, the surface currents turn out to be the same form as (7.6), (7.7) with
C, replaced by C,/, which is given by:

_ AHél)(kpp’)e_inqb,kp HiY (kpa)Jn(kpa) — Hr(ll)’(kpa)]n(kpa)
n — ’ )
k2 \]2((2 —2z)2 +p'?) klPHr(ll)(kpa)]r'l(klpa) - kaﬁl) (kpa)]n(klpa) (7.14)
1p

intk,p’

Once the equivalent surface currents are computed, the scattering field at any position
regardless of far-field or near-field condition can be evaluated by (7.3) numerically. Remarkably,
the proposed cylindrical-wave incidence segmented-cylinder method (CISCM) can also be applied
in far-field incidence situation. Compared to the plane-wave approximation for far-field incidence
case, this approach will yield slightly more accurate results but need much more computations.
Regarding the trade-off of accuracy and efficiency, the approach based on plane-wave
approximation is chosen in numerical simulation for far-field incidence case.

7.3 Multiple Scattering Model of randomly distributed tree trunks
In some scenarios of vehicular communication, the communication channel can be

interfered by more than one tree trunk. For example, in a scenario where two cars drives on a
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curved road with many trees on the sides, the LOS link may be blocked by the trees as illustrated
in Figure 7.5. As many trees locates on or near the LOS link between vehicles, the scattered field
due to multiple scattering between trees cannot be ignored. Though the aforementioned current-
integral based semi-analytic solutions can accurately evaluate the multiple scattered fields in the
near-field range of tree trunks with free space Green’s function, the calculation will become
extremely expensive if applied to multiple scattering problem. With the assumption that the
distance between transmitters / receivers and the trees are in the near field range of trees and only
sacrifices small accuracy (will be discussed in the next section), the problem can be approximated
as 2D scattering problem where the tree trunks are approximated as infinite long dielectric

cylinders.

(a) (b)
Figure 7.5. (a) A photograph and (b) a 2D illustration of a curved road scenario where the
vehicular communication link may be blocked by randomly distributed trees.
Many literatures [203][204] have studied the higher order scattered fields between metallic
cylinders excited by a plane wave. In this thesis, a modal expansion-based approach for dielectric
cylinders illuminated by cylindrical wave is presented. Assume the source s, locates at (x, yo)

and there are [ cylinders locating at (x4, y1), ..., (x;, y;) with radius of a4,...,a;, respectively.
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Figure 7.6. The coordinate system of the multiple scattering problem for dielectric cylinders
For simplicity, only TM case (vertical polarization) is considered in this analysis. The
coordinate system for this problem is shown in Figure 7.6. The incident field at (x, y) from the

source s, Is given by:

ES (e y) = H (ko = pol) = HEY (ko G = 20)2 + 7 = ¥0)2), (7.15)
where k,, is the wavenumber in free space. For any cylinder j, the incident field can be expanded
as cylindrical eigen functions with center of (x;,y;) as given in (7.13). By applying boundary

conditions that enforce the continuity of both electric fields and magnetic fields on the surface of

cylinder, the first order scattered fields at (x, y) can be evaluated from:

oo

Egj = Z H (kppoj) AjnkZHy (Jeppy ) e ™ Pri= oD, (7.16)

n= —oo

where p,; denotes the distance between source s, and the center of cylinder j, po; =

\/(xo — x]-)2 + (yo — y]-)z, and ¢,; denotes the angle of source s, with respect to the center of

cylinder j, ¢o; = atan2(y, — y;, xo — x;). Similarly, p,; = \/(x - xj)z + (y - yj)z and ¢,; =
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atan2(y — y;, x — xj) . Ajn is the modal coefficient corresponding to the nt" order Hankel

function for plane wave incidence on cylinder j except the (—i)™ term [185]:

_ kp]ﬁ(kpaj)]n(klpaj) — klp]n(kpaj)]r’l(klpaj)
Kk o Hy P (o )i (kpay) — kS HYY () (s p 1)

(7.17)

jn
where kq, denotes the wavenumber for the dielectric cylinder, a; denotes the radius of cylinder j.

€Y .
Eg;" can be rearranged as:

(0]

1 1 1 : . - -
Eg; = z Fion iy (kopr)e™ i = Eyjo - Uy, (7.18)
n=—oo
where 1:5(]10)n = Hfll)(kppoj)Aj’nkge‘i""’oi , 1351-0 = [Fs(jlg’_N, ...,Fs(jlg’N], given that the infinite

summation is truncated into 2N + 1 terms. The different cylindrical eigenfunctions of scattered
fields from cylinder j to observation point r can form a vector I7r j» and I7r j 18 defined as:
Ty = [HDkryJe™%975, HY, (ko Yo~ V=000, P (ki )e¥o] . (7.09
For integer n, the Bessel functions have the following property:
L_p(x) = (=D"Lp(x), (7.20)
where L,, can be J,,, ', H,(ll) or H,(ll)' in this problem. After some algebra, the —n'" term and n

term of ﬁs jo and I7T ;i can be simply related by the following equations:

Fia-ne ™m0 = (=1)"EG) e, (7:21)
Vrj,—nein¢rj — (_1)nVT‘j,Tle_in¢Tj’ (7.22)

Therefore, we only need to evaluate Fs,(jlo),n and V., for0 <n < N, and the rest can be
readily obtained. In the second order scattering analysis of cylinder k with respect to cylinder j,

the incident fields on the surface of cylinder k is the same as the scattered field of cylinder j as

given in (7.18). To obtain the scattered fields of cylinder k, the Graf's Addition Theorem of Bessel
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functions [205] is applied to expressed the m*™ order wave function H,(,}) (kppr j)eim¢rf on the
surface of cylinder k as a summation of cylindrical eigenfunctions with center at (xy, y):

H,(,?(kpprj)eimd’ri = M+ Pji) Z Hr(ll—)m(kppjk)]n(kpprk)ein((prk_(pjk)' (7.23)

n= —oo

where pj; and ¢, denote the range and angle of the center of cylinder j with respect to the center
of cylinder k, and p, and ¢, are the range and angle of the observation point on the surface of
cylinder k with respect to the center of cylinder k.

By applying the boundary condition, the second order scattered field of cylinder k by the

m*" order cylindrical wave H,(,}) (kpprj)eim‘i’rf from cylinder j can be given by:
@ _ @ L indy
Eskjm = Z Fiimntin (kppric)e ™, (7.24)
n=-—o

where

F(z) — eim(n+¢jk)H151_)m(kppjk)Ak,nkge—imjk

skjmn

(7.25)
= (—D)™H, (kppji) Ay nk2e P

In real implementation, the number of orders of Bessel functions are truncated into the

ranges (—M <m < M,—N < n < N). We can define a vector v as:

skj
=2) _ [p@) @) ) @ 1
IG' _[Eskj,—M'Eskj,—M+1’""Eskj,M—l'Eskj,M’ (7.26)

Similarly, define a (2M+1) by (2N+1) matrix Fg,; with the element in m*"* row and n*

F@

“ijmn- 1hen the following expression can be obtained:

column equal to

‘_6\(2) == Fsijrk- (727)

The total second order scattered field of cylinder k from cylinder j is:
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E® = z FO D = Fyjo V. (7.28)

skj — sjo,m~skj,m
m= —oo

Notably, the coefficient vector F, jo and matrix Fy ; are reusable in higher order scattered
field calculation. Generally, in an L-cylinder problem, the v** order solutions can be derived from

the product of an adjacency matrix and the (v — 1)*"* order solutions:

[171(17)] [_O Ferq isu] [[71(17—1)]
70| = |Fsaz 0 Foa |7,V | (7.29)
[VL(V)J [Fle FSZL 0 VL(U_D
. ‘71(1;) (7.30)
” R R
E” =[Fo o Faol*| - |
V(V)
L

—_

where Izc(l) = V,x, which is given by (7.19).

The entry of the adjacency matrix Fyy ; denotes the EM coupling from cylinder j to cylinder
k. In practical simulation, if two cylinders far apart from the direct link between transmitter and
receiver, the contribution of multiple scattering can be very weak and therefore the corresponding

entry of the adjacency matrix can be set as 0 to reduce the computational expense.

7.4 Numerical Results and Validation of the Single-Scattering Models for Tree Trunk
Depending on whether transmitter and receiver are in the far field of the trunk, different
approaches are applied to obtain the scattered fields. In this section, validation of the accuracy of
EM theoretical methods are discussed. Then, analysis on the scattered fields and path loss is

presented.

7.4.1 Validation of Semi-exact Solution and SCIM
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The semi-exact analytic solution in (7.9) is applied in the scenario where both the
transmitter and receiver are in the far-field region of the trunk. To verify this method, the result is
compared with that from a full-wave simulator based on method of moment (MoM). Here we use
the commercial simulation software AnsysEM (HFSS). The full-wave simulation requires much
more computational resources and time but has no approximation and very good accuracy. In the
validation, the cylinder's dimension is set to be 44 x 10A(about 0.2 m x 0.5 m for 5.9 GHz) and
relative permittivity is 10+5i in both the HFSS and the semi-exact solution. The results are shown
in Figure 7.7. The root-mean-square error (RMSE) of the result from the two methods is 0.18 dB
for VV polarization and 0.51 dB for HH polarization, which indicates that the semi-exact solution
shows excellent agreement with that from MoM.

Similar to the semi-exact solution, SCIM method is also based on plane-wave incidence
approximation to obtain equivalent surface currents. In fact, semi-exact solution is a special case
of SCIM method when receiver is in far-field region of the trunk. Therefore, the results from these
two methods should be the same for far-field receiver. In addition, suppose the receiver is very
close to the trunk, then only a portion of trunk with height close to the observation point contributes
to the scattered field. As a result the length of trunk no longer matters in this situation, and scattered
E field will be similar to that for infinitely long cylinder. The scattered E field from infinitely-long

cylinder is an analytic solution [185], and the detail of this solution is given in Appendix.
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Figure 7.7. Comparison of RCS simulation for semi-exact solution and MoM, for the
cylinder with 4 A diameter and 10 A height, with scattering directions on (a) azimuth plane (6, =
90°) and (b). elevation plane (6; = 180°)

The comparison of the scattered E fields calculated by SCIM and two analytic solutions
for receiver in the far field and very near range are depicted in Figure 7.8. The scattered E fields
are normalized to the incident field |E,]|.

It is shown that E; calculated by SCIM coincides with that by far-field analytic semi-exact
solution in the far range and is very close to that derived from infinitely long cylinder solution for

very near range. As a result, the accuracy of the surface integral method is validated.
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Figure 7.8. Comparison of SCIM with analytic solutions for normalized |E| as a function of
distance between receiver and the trunk with plane wave incidence for 2 m long trunk with (a)

0.2 m radius at 5.9 GHz and (b) 0.1 m radius at 60 GHz.
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receiver’s position, while the other is located sufficiently far away for 2 m long and 0.2 diameter

trunk with at (a) 5.9 GHz and (b) 60 GHz.
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7.4.2 Validation of SCM and CISCM

For near-field incidence, the two methods SCM and CISCM mentioned in Sec. 7.2.4 are
used to compute the scattered field. Since we have the accurate solution of scattered field from
trunk with transmitter in the far-field and receiver in the near-field of trunk, the near-field incidence
method can be verified by reciprocal property of EM wave in time-invariant linear media. Suppose
two antennas are placed on the two sides of a tree trunk: one antenna denoted as antenna A locates
in the far-field of the trunk, and the other denoted as antenna B is in the near-field of the trunk.
Reciprocity states that the received signal at antenna A sent from antenna B should be the same as
that at antenna B transmitted from antenna A if transmitted signal is the same. Therefore, the path
loss should obey reciprocity as well.

Let antenna A be in the far field of trunk and antenna B be in the near field with distance
to the trunk as a variable. The path loss for signal transmitted from antenna A to B denotes as PL4Z,
and that from antenna B to A denotes as PLE4. PLAB can be accurately obtained by SCIM with
plane wave incidence, and PLB4 is calculated based on the two methods under validation. Figure
7.9 depicts the path loss of PLAE and PLB4 as a function of distance from antenna B to the trunk.
The results show that at both 5.9 GHz and 60 GHz, the path loss calculated by CISCM has an
excellent agreement with the far-field incidence solution for the range greater than 1 m. In addition,
the solution based on SCM fails when the transmitter is in the near field of the cross-section of tree
trunk (i.e., 1.6 m distance at 5.9 GHz and 16 m distance at 60 GHz for 0.2 m diameter). Reasonable
accuracy is presented for the method with cylindrical wave incidence approximation if source is
more than 1 m away from the trunk and the analysis shown in the following section are based on

CISCM.
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Figure 7.10. Scattered field for V2V foliage propagation at (a) 5.9 GHz, (b) 60 GHz, and the
total field at (c) 5.9 GHz and (d) 60 GHz.
7.4.3 Scattered Fields and Path Loss Analysis
In the following discussion, the scattered field/path loss of signal is investigated for different

receiver's locations, transmitter's locations, dimensions and dielectric properties of the trunk. To
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examine how the scattered field and total field change with receiver's location, examples of the E
fields normalized to the incident field at the center of the trunk are illustrated in Figure 7.10 at both
5.9 GHz and 60 GHz. In this example, the transmitter is located at 10 m away from the trunk (i.e.,
d, = 10 m), and the radius and height of the trunk is 0.1 m and 2 m, respectively. The heights of
the transmitter and the receiver are equal to 1 m. It shows that the scattered fields and total fields
are nonlinear and fluctuating as functions of the distance and the azimuth angle. The azimuth
directions of the fields are chosen to be from 150“to 210<for 5.9 GHz and 170“to 190 <for 60
GHz, this is due to the fact that the normalized scattered power outside the ranges are negligible

compared to LoS signal’s power(<-20 dB).

10 10 10 10
—e—|ESJ'E0| & \ @
o
5 - - [E/Eyl 15 = 5t 5 =
) \‘m/\ L —E/Eql . T /_Eif-l;_ '
z il ~|——Path loss|—— = ——IEJE | ~_
= 0f 10 wr 0
o[ «-|EJ/E |
E % )] -0 %
w 8 —IE Bl £
5 15 = o|—Path loss| ]2 &
o “’_'_“-“ o
10 . 1-10 10 ] <10
0 10 20 30 40 50 0 10 20 30 40 50
Distance to the cylinder dy (m) Distance to the cylinder dr (m)

(a) (b)
Figure 7.11. Incident, scattering and total E fields in forward scattering direction and path loss as
a function of distance to the cylinder at (a) 5.9 GHz and (b) 60 GHz.

The normalized incident, scattered, total fields and the corresponding path loss in the
forward scattering direction as a function of receiver's distance to the trunk are shown in Figure
7.11. It shows that for the same trunk the path loss at 60 GHz is much higher than that at 5.9 GHz.
This is due to the fact that the short wavelength at 60 GHz behaves like light wave, where the total
field is more substantially attenuated by the blockage, compared to that for the longer wavelength

signal.
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The relative permittivity of the tree trunk depends on the frequency and the water content
of the tree, and thus it changes over seasons. The permittivity of trunk has small impact on the
total field in the forward scattering direction as can be shown in Figure 7.12. This is because for
an electric large lossy object like the tree trunk, when LoS is blocked, the EM wave can hardly
penetrate through regardless of the permittivity. The total field is dominated by the diffraction,

which mainly depends on the shape and dimension of the object.
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Figure 7.12. Comparison of the path loss in forward scattering direction with different
permittivity at (a) 5.9 GHz and (b) 60 GHz.

The distance between transmitter and trunk affects the path loss as well. Figure 7.15 shows
that the path loss for nearer transmitter is usually greater than that for further transmitter, intuitively,
when the transmitter is placed closer to the trunk, wider angle of view will be blocked by the trunk,
and remarkably, the path loss is not a linear or other simple function to the transmitter's distance.
The same reason can be applied when considering larger radii of the trunk where higher path loss
values are observed, which is shown in Figure 7.13 and Figure 7.14. It is shown that the path loss

cannot be simply scaled with the dimensions of trunk. Notice the length of trunk doesn't affect the
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path loss too much because both the transmitter and receiver are in the near-field range and only a

portion of the trunk contributes to the attenuation of the communication link.

In summary, the path loss is a complex function of transmitter and receiver locations and

the trunk's dimensions. Also the path loss has little dependence on the permittivity of the trunk as

long as there is enough loss.
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Figure 7.13. Comparison of the path loss in forward scattering direction with different (a)

radii and (b) lengths of trunk at 5.9 GHz.
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Figure 7.14. Comparison of the path loss in forward scattering direction with different (a)

radii and (b) lengths of trunk at 60 GHz.
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7.5 Artificial neural network model for the path loss of single tree trunk

For the example of scattered and total fields shown in Figure 7.10 (d, = 10 m, radius = 0.1
m and length = 2 m), the path loss can be fitted by analytic functions with respect to receiver's
distance to the trunk and its corresponding azimuth angle, as described in [182]. However, when
generalized to arbitrary dimension of trunk and any position of the transmitter, the analytic curve-
fitting functions become prohibitively complicated with compromised performance. To generate
an accurate and easy-use model for the path loss, the artificial neural network (ANN) approach is
applied.

In the following, the path loss is modeled as a function of the distance between transmitter
and cylinder, distance between receiver and cylinder, azimuth angle, radius and length of the trunk
with ANN. Then, we extract a macro-model to describe the overall link gain of V2V foliage
propagation, which is promisingly useful for autonomous driving ITS.

ANNSs can be treated as complicated mathematical functions to map input space x to

output space Y. For this application, the input space x constructs as [ry, h, d;, d,, ¢,-], which
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denote the radius of trunk, height of trunk, distance between transmitter and trunk, that between
receiver and trunk and the azimuth angle of receiver, respectively. The output space Y is the path
loss PL in dB (10logq0|E_i/E:o¢|) Scale. The idea of ANN is to imitate the biological neural
network, in which some intermediate variables are created. The intermediate variables are non-
linear functions of inputs or other intermediate variables, and the final output is also a non-linear
function of the intermediate variables.

The structure for the ANN model is shown in Figure 7.16, which is mainly composed of
three parts: input layer, hidden layers and output layer. Each circle represents one variable, and the
line with arrow from one circle to the other indicates the latter variable is a function of the former
variable. Inputs x;, ..., xs are normalized as X; such that each variable has similar range from -1
to 1. The output of the neural network y is a normalized value as well, and can be mapped to the

scale of path loss values PL inversely.

Input layer Hidden layer Output layer
0
‘-\Wi i W m
\ Y \ j " 1
\ N ™
N \
.. .

Figure 7.16. Structure of an artificial neural network with 5 inputs, 1 output and m hidden

layers.
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More than one million different datasets have been generated from EM models for curve-
fitting. In training process, the datasets are randomly categorized into three parts: 70 % data are
used to train the ANN, and 15 % are used in validation and the rest 15 % are testing data. The
purpose of validation data is to ensure no over-fitting issue for a trained ANN, and that for testing
data is to find the ANN with the best performance with many validated ANNs. The number of
hidden layers and neurons is determined based on the performance of the ANN. The training
process is implemented in Matlab, and Levenberg-Marquardt backpropagation algorithm is chosen
as the training algorithm for its good performance and excellent time efficiency.

The correlation coefficient R and RMSE in dB are used to evaluate the performance of data
fitting. Figure 7.17 shows the linear regression and correlation coefficient between the fitted and
model path loss at 5.9 GHz with a neural network which contains two hidden layers and 10 neurons
on each layer. It shows extremely strong correlation between the fitted data and model data, and
very similar error performance for training, validation and test data indicates this neural network
model is free from over-fitting problem. The RMSE between the fitted and model path loss of all
dataset is 0.22 dB. Figure 7.18 depicts curve-fitting by this neural network for two examples with
randomly chosen parameters. Reasonable agreement between fitted and model data is observed.
Note that the range for ¢ is from 150 <to 180 <degree instead of 210 < this is due to the symmetry

of trunk that the path loss at 180°+ A¢ is the same as that at 180°- A¢.
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Figure 7.17. Data regression performance for curve-fitting of path loss of the ANN with

Path loss (dB)

two hidden layers at (a) 5.9 GHz and (b) 60 GHz.
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Figure 7.18. ANN Curve fitting of path loss at 5.9 GHz for examples of (a) radius =

0.1m, height = 3m, d; = 8m and d,- = 26.9m and (b) radius = 0.2m, height = 2.0m, d, = 28m and

d, =5m.
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Figure 7.19. ANN Curve fitting of path loss at 60 GHz for examples of (a) radius = 0.1m,

height=2.2 m, d; =8 m and d,- = 35.7 m and (b) radius = 0.2m, height = 2.8m, d, = 36 m and

d, =

5m.

Similarly, we can generate ANN to fit the path loss data for 60 GHz. Because the function

at 60 GHz is more irregular and unpredictable, structure with three hidden layers and 10 neurons

in each layer is selected. The linear regression of fitted data is shown in Figure 7.17 (b). Similar to
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5.9 GHz, excellent linearity between fitted data and model data is observed. The overall RMSE
for path loss at 60 GHz fitted by this three hidden layers neural network is about 0.36 dB. Figure
7.19 gives two curve-fitting examples with randomly chosen parameters. In both examples the
fitted and model data agree very well.

The average time for evaluating path loss through the proposed off-line ANN model is
about 50 us, which can enable the real-time assessment of communication channel. By contrast,
the time for obtaining the similar path loss results from semi-analytical numerical simulation
ranges from several seconds to several minutes, depending on the dimensions of tree trunk and
frequency.

7.6 Simulation results and reduced multiple scattering model for multiple tree trunks

The permittivity of trunk is determined by the frequency f and gravimetric moisture
content M,. With the model given in [209], the permittivity of trunk is calculated as 33.2+9.75i at
5.9 GHz and 11.3+7.59i at 60 GHz, with the assumption that M, = 0.6. Higher order scattered
fields between cylinders can be evaluated by (7.29) and (7.30). The number of cylindrical
eigenfunctions 17“- of each cylinder directly determine the calculation expense of this approach. It
is known that the increase of number of eigenmodes 2N; + 1 will result in a more accurate solution.

The optimal number of eigenmodes depends on both frequency and the radius of the cylinder. Here
parametric study is used to find the optimal number of N as a function of ka, where N is the
maximum order of eigenmode, k is the wavenumber in free space, and a is the radius of the cylinder.
As the frequency band in our particular application is 5.9 GHz and 60 GHz, the study of number
of eigenmodes are presented on these two bands. Figure 7.20 shows the path loss as a function of
(N/(ka)), and (2N+1) is the number of eigenmodes. The path loss is obtained in a scenario where

source and observation point are on the two side of the trunk and both are 5 m away from the trunk.
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It shows that the path loss converges when N >1.2* ka in all scenarios, and in the following
simulations, N =round(1.4* ka) is chosen. For example, for a 0.1 m radius cylinder, 33 modes

(N=16) at 5.9 GHz and 327 modes (N = 163) at 60 GHz are selected for the cylinder in simulation.
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Figure 7.20. Path loss of one trunk with different radii as a function of N/(ka) at (a) 5.9
GHz and (b) 60 GHz.

To demonstrate the multiple scattering effect between tree trunks, a two-cylinder scattering
problem is examined first. In the first scenario, the source locates at (0,0), and the two tree trunks
locate at (-0.1, 3.6) and (0, 4), respectively. Both tree trunks have 0.1 m radius. The path loss of E
fields in dB scale at 5.9GHz and different locations with single and multiple scattering are shown
in Figure 7.21. It shows that when one tree trunk is shaded by the other, the result based on single
scattering method is not accurate and requires higher order scattering solutions. In this two-
cylinder problem, second order solution can provide excellent accuracy as shown in Figure 7.21
(d). In another example shown in Figure 7.22 where two cylinders are not shaded by each other,

even they are close the first order solution dominates in the scattered E fields as well as the path
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loss. This feature can be used to determine whether the higher order scattering is significant

between two given cylinders.
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Figure 7.21. path loss of two overlapping tree trunks at 5.9 GHz with (a) single scattering, (b)
double scattering and (c) five times scattering; (d) the path loss comparison between different

orders of scattering at a function of receiver’s x position, (y = 10m).
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Figure 7.22. path loss of two non-overlapping tree trunks at 5.9 GHz with (a) single scattering,
(b) double scattering and (c) five times scattering; (d) the path loss comparison between different
orders of scattering at a function of receiver’s x position, (y = 10m).

The accuracy of the analytic multiple scattering method is validated with full wave
simulation method of moment (MoM). In the example of simulation, the source locates at (0 m, 0
m) and two dielectric cylinders with relative permittivity of (33+10i) and radius of 0.1 m locates

at (0 m, 3 m) and (0 m, 4 m), respectively. The receiver’s y position is at 10 m, and its x position
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is sweeping as depicted in Figure 7.23 (a). The comparison of the pathloss between MoM and the
multiple scattering solution at 5.9 GHz is shown in Figure 7.23 (b). It shows that the analytic 5%

order solution has excellent agreement with the full-wave solution.
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Figure 7.23. The simulation setup (a) and (b) path loss as a function of receiver’s x position
comparison between analytic solution and method of moment solution for a two-cylinder
scattering problem at 5.9 GHz.

The forest environment demonstrated in Figure 7.5 can be modeled as a random medium
with randomly distributed dielectric cylinders. Intuitively, the path loss through this random
medium is mainly determined by three parameters: the number density of trees ps.. (number of
trees per m?), the mean radius of tree trunks a and the foliage depth d. Under this complex
environment, the path loss should be a random variable, and to analysis the statistical property of
the path loss, Monte Carlo simulation are performed. Some examples of randomly generated tree
distributions are shown in Figure 7.24. Figure 7.24 (a) depicts the sparse tree distribution with
Prree = 0.1/m? and @ = 0.1m, a more dense example is given in Figure 7.24 (b), Where p;ee =
0.7/m?, a = 0.07m. As a reference, a typical forest in Michigan’s Upper Peninsula has p;yee =

0.17/m?, @ = 0.07m [207]. The forest in both examples have 20 m by 10 m area, and the trees
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are generated with the constraint that any pair of two trees are not too close to each other. Assuming
both the transmitter and receiver are one the two side of the trees and are about 10 m away from
the trees, e.g. the transmitter locates at (0,0), the trees distributed for y from 10m to 20m and the
receivers’ y positions are at 30 m. The path loss as a function of receiver’s x position for the two
randomly generated scenarios in Figure 7.24 are displayed in Figure 7.25. It shows that in the
sparse tree environment, double-scattering solution is sufficient to provide an accurate result, but
in a dense tree environment, it needs fifth order scattering solution to converge. Therefore, in the
Monte-Carlo simulation, the scattered fields are evaluated based on fifth order scattering solutions.
It can also be seen that the path loss fluctuates rapidly for a very small change of receiver’s position,

therefore statistical analysis has to be performed to obtain significant channel model.
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Figure 7.24. The randomly generate dielectric cylinder distribution for (a) pgree = 0.1/m?, @ =

0.1m, d = 10m and (b) psree = 0.7/m?, @ = 0.07m, d = 10m.
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Figure 7.25. The simulated path loss as a function of receiver’s x position (receiver’s y position
at 30m,and transmitter at (0,0)) with different scattering orders for the trees with (2) ptree =

0.1/m?,a = 0.1m,d = 10m and (b) psree = 0.7/m?, @ = 0.07m, d = 10m.
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To determine how many realizations are required in the Monte-Carlo simulation, the

average received total E field with respect to the incident E field as a function of number of
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simulation realizations for different tree density with a = 0.07m, d = 10m. It shows that for all
scenarios, the averaged received relative E field or pathloss converges when the number of
realizations is greater than 50. Therefore, in the parametric study, 50 realizations are performed
for each scenario with different parameters.

The attenuation through the random medium can be considered as a random variable. It is
better to find the statistical distribution of the random variable than just mean value and variance
to describe the features of the random variable. For the scenario with each parameter, the path loss
(IE;/E:o¢|) is fitted into many known statistical distributions: Gaussian, Lognormal and Weibull
distribution. One example of the comparison of the fitting accuracy of different distribution for the
path loss is shown in Figure 7.27. Fifty randomly generated forests with ps.. = 0.3,and a =
0.07m, d = 12m are simulated at 5.9 GHz to obtain the path loss data. The data are fitted to
different distributions with linear scale and displayed in dB scale in Figure 7.27. It shows that the

Lognormal distribution provides the best fit for the path loss. The PDF of Lognormal distribution

is given by:
(Inx — p)?
fx|p,0) = expPy =5 (- (7.31)
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Figure 7.27. The comparison of the empirical CDF and the fitted CDF with Lognormal, Weibull
and Gaussian distribution of path loss at 5.9 GHz for the forest with p;... = 0.3,and a =
0.07m,d = 12m.

Three parameters are considered in this forest V2V communication channel modeling, the
tree density, mean tree radius and the foliage depth as mentioned above. To reveal the relation
between each parameter and the V2V communication path loss, the control variates method is
applied with the Monte-Carlo simulations. Figure 7.28 (a), (b) and (c) shows the Lognormal
parameters fitted by the path loss data at 5.9 GHz from Monte-Carlo simulations as functions of

foliage depth d, the mean tree radius a and the tree density p; .., respectively.
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Figure 7.28. The Lognormal parameters u and o of path loss at 5.9 GHz (a) as functions of

o
N

foliage depth d with pt... = 0.2, and @ = 0.07m, (b) as functions of mean radius a with p;.. =
0.2 d = 10m and (c) as functions of tree density p;re. With @ = 0.07m, d = 12m.
In this preliminary study, the Monte-Carlo simulations are performed for p;,., from 0.1
per m? to 0.7 per m?, a from 0.05 m to 0.11 m and d from 10 to 18 m. Both the lognormal

parameters u and o are fitted into the following expressions:

y = ByaP2dPspPs, y = poroao. (7.32)
The mean path loss of the lognormal variable is given by:
PL = exp (u+ a2 /2). (7.33)

After fitting to the simulated data, the values for 8, to B, are given in Table 7 - 1, and the
fitting performance is shown in Figure 7.29. It shows that the model has a reasonable accuracy to
predict the statistical parameters of the tree trunks’ path loss for vehicle communication.

Table 7 - 1. Fitted coefficient for the empirical model of 4 and ¢ at 5.9 GHz

Parameters b1 B B3 Ba

0.868 0.484 0.514 0.537

Lognormal u
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Figure 7.29. The fitting performance of the empirical models for the Lognormal parameters (a) u

In this paper, we provided an analytical free-space propagation model and semi-exact semi-
closed-form scattered field expressions are derived for the far-field as well as near-field range of

a single trunk and multiple scattering between trunks in V2V foliage propagation. The proposed
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and (b) o of path loss at 5.9 GHz.

7.7 Conclusion

path loss model is verified by full-wave solver and reciprocity.

Extensive numerical simulations on the scattered fields were carried out at 5.9 and 60 GHz.
Then, we developed ANN curve-fitting model for the path loss of single trunk or any other
cylindrical object, mainly as a function of the radius and length of trunk, distance of transmitter,
distance and azimuth angle of receiver. The ANN curve-fitting model shows high accuracy with
the numerical results. In a multiple-trunk scenario, the path loss is modeled as a Lognormal random

variable. Finally, we extracted a macro-model for the total field of V2V foliage propagation, which
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can be integrated as a useful tool to efficiently and accurately analyze real-time mmWave channel
quality in vehicular communications.
A multiple-scattering model for tree trunks is developed to obtain the path loss in forest

environment in the chapter as well. The

Appendix — A: Scattered E field of a cylinder in the far field region
Let the length of a cylinder to be b and the radius to a, the position of the current on the
cylinder’s surface is defined as,
7' = acos¢p'X + asing'y + z'2. (7.34)

The integral term Y in (7.9) is given by,
T . R . o,
Y= [ [Z0],(@ ") = s X (@, )] 7 adgy (7.35)
-7

where fp (a,¢") and fmp (a,¢") in TM case can be derived by,

o)

Jo@®) = > et + Jong ), (736)
) > ] (737)
]mp(a: @) = z en?® Umnz2 +]mn¢>¢)-

Each term of the current with order n, Js,z, Jsng» Jmnz aNd J;mng are given by,

Jsnz = iwelcnklpjrll(klpa)' (7.38)
Jsnp =0, (7.39)

nCpk 7.40

Jmnz = _%]n(klpa); ( )
]mnd) = anfp]n(klpa)' (7.41)
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where w = 27f, & is the permittivity of the dielectric cylinder, C, is given in (7.8) and k,,
denotes the wavenumber in azimuth direction inside the cylinder, J,, and J;, are the Bessel function
of the first kind and its derivative with order of n.
To solve the integral Y, we can first separate the X, y and z components:
Y =Y, 2+ Y, 9+ Y 2. (7.42)

After lengthy algebra, each component of Y is given by,

o)

Yx = 2ma Z ein¢sin(20]sn¢ (_Insin) - ksy]mnz]n(_kpsa) + ksz]mmplncos) (7-43)

n=-—oo
© (7.44)
Yy = 2ma Z em¢sin(Z0]sn¢ (Incos) + ksx]mnz]n(_kpsa) + ksz]mn¢1nsin)
n=-—oo
e ' (7.45)
Yz = 2ma Z eln¢sin(20]snz]n(_kpsa) _]mnz(ksxlncos + ksylnsin))
n=-—oo

where ks = k sin 6, and Lygin, Incos are given by,

nsin ¢

Incos = lCOS¢S]n( kpsa) ]n( kpsa) (7-46)
ps

busin = —lsingJi(~hps) ~ P (), (747
ps

Appendix — B: Surface current of a cylinder with spherical wave incidence
Spherical wave with center at 7' and observation point at 7 can be expanded as an integral

of cylindrical wave times a plane wave in z direction by Sommerfeld identity:

A e . ' -~ -
- f dk,eit =2 O (k15— 5)). (7.48)

—00

where k, = \/k? — kZ. Then the incident E field on the surface of trunk can be expressed as a

summation of different cylindrical eigen-modes:
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EM(p, ¢, 2) =

where A is some constant related to the transmitted power. By applying boundary conditions for
all eigen-modes and following the similar procedure for plane wave incidence, equivalent surface

currents can be derived:

N we A % . k o .
(e ¢,2) =~ f [dkze”‘zzk—pz Chler oJs(fey pa)e9 2], (7.50)
—00 0 n=-—oo

o iA (% ok, k © .
' (a, ¢, 2) = _Ef_ dkzelkzzk—l;[;zzn?wncrﬁ]n (kipa)e™®z

+ k3, ZF_OOCrlJn (kipa)e™®$)]. (7.51)

where Cy, is given by:

c = Hfll)(kpp’)e_imp’kp Hr(zl)(kpa)]r’l(kpa) ~ Hr(zl)’(kpa)]n(kpa)

- , (7.52)
’ ki klpval) (kpa)fi(krpa) — kaﬁl) (kpa)n(kspa)
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Chapter 8 A Compact Broadband Horizontally Polarized Omnidirectional
Antenna using Planar Folded Dipole Elements

8.1 Introduction

Omnidirectional antennas are widely used in mobile and wireless communication devices,
such as cellphone base stations, WLAN routers and many portable devices. Since the bandwidth
of antenna directly determines the data rate of communication, to satisfy the requirements for
higher data rate and multiple-band communication, the system’s antenna bandwidth also needs be
largely increased. For example, the 5G network in the near future (around 2020) is expected to
have peak data rate of 10 Gb/s for low mobility and 1Gb/s for high mobility nodes [215]. LTE in
the mobile communication has more than 20 different frequency bands for different regions and
carriers ranging from 698MHz to 960MHz (31.6%) and 1710MHz to 2690MHz (44.6%) [216]. In
both cases wider bandwidth antennas are required. Also to improve the data rate, different diversity
schemes, such as polarization and pattern diversity, broadband systems are being
considered[217][218][219][220]. Other emerging applications are multistatic all-direction
imaging radar systems that require omni-directional broadband antennas [221][222]. Usually,
vertically polarized antennas, such as broadband biconical and mono-conical antennas, are used
for these systems because of their simple structure and good omnidirectional radiation pattern.
However, for more advanced communication and radar applications where polarization diversity
is considered, a horizontally polarized (HP) omnidirectional antenna is also required to obtain
higher efficiency in communication system and improved isolation between transmit and receive

antennas in imaging radar systems.
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Theoretically, loop antennas can generate good omnidirectional horizontal polarization
since they are equivalent to magnetic dipoles (vertical magnetic current). However, small magnetic
loop antennas provide very limited bandwidth. One design of this kind is the Alfred loop antenna
[59][60], which provides less than 6% bandwidth. In [61], a MNG-TL loop antenna and its array
are introduced. This antenna can generate good omnidirectional horizontally polarized (HP)
radiation pattern, but its impedance bandwidth is less than 10% for a single element. A loop
antenna with loaded capacitors and inductors is presented in [62]. It has multiple resonant
frequencies with bandwidth less than 3% for each band. In [63], a segmented loop antenna is
proposed, which has a -10 dB return loss bandwidth of less than 10%. Recently, many wider
bandwidth omnidirectional HP antennas have been reported in the literature. A loop antenna with
periodically capacitive loading is shown in [223]. This antenna is reported to have 31.2%
bandwidth (2.17 to 2.97 GHz). Other than loop antennas, multipole broadband linearly polarized
elements arranged in different orientations are proposed to achieve wider bandwidth. In [64], an
antenna is proposed that contains four printed arc dipoles to form a circular shape, and provides a
bandwidth of 31% (1.66 to 2.27 GHz). This antenna has a good omnidirectional property with gain
variation less than 1.5 dB. A design using four printed pairs of flag-shaped dipoles with parasitic
strips as radiators is presented in [65]. This antenna targets 4G LTE band with bandwidth of 41%
(1.76 to 2.68 GHz). Parasitic strips are added to the antenna to obtain the reported bandwidth at
the expense of increasing the antenna dimension (0.59Ax0.59A, A is for the lowest frequency of
operation). Also azimuthal gain variation increases at high frequency portion of the operational
band. Another design using four pairs of wide arc dipole is shown in [66]. This antenna is reported
to have 34.1% bandwidth for one element, with peak gain of 1.7dBi. It is also shown that, by

stacking the four-element array vertical direction, the gain can be increase to 7.2 dBi. These
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antennas have significant bandwidth improvement compared to the traditional HP loop antenna,
but their bandwidth is limited to about 40% or less. In [67], an 8-element omnidirectional array
antenna is reported. It has 8 dipole elements printed on octagonal substrate. It has very wide
bandwidth (62.5%), with the drawback of having a larger dimension (0.79Ax0.79A, where A is the
wavelength at the lowest frequency of operation) and much higher gain variations of about 4.5 dB.

This paper reports on a compact HP omnidirectional antenna with an almost octave
bandwidth. It is composed of four modified folded dipole antennas arranged around the perimeter
of a small square box. The antenna presents a smaller form factor compared to other wideband HP
omnidirectional antennas (size of 0.34Ax0.34)), while maintain a relatively low gain variation as
a function of azimuth angle in the band of operation. The folded dipole antenna is chosen since it
is reported to have a fractional bandwidth that can exceed 50% [68]. To compensate for the mutual
coupling of different dipole elements and increase the bandwidth, some geometric modifications
are made and analyzed. Four identical dipole elements are fed with microstrip baluns and
connected by an appropriate matching network to a coaxial feed. The matching network, the baluns,
and the geometrical modification of the elements are co-designed to mitigate the mutual coupling
effects and achieve the required bandwidth while minimizing the antenna array dimension. Their
distances are carefully chosen to achieve best omnidirectional property. The antenna’s geometry,
its principle of operation and its parametric study are discussed in Section Il. The fabrication and

the measurement results for return loss and radiation pattern are presented in Section Il1.
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Figure 8.1. Structure of the proposed antenna (a) overview, (b) top view, and (c) side view.

8.2 Antenna Architecture and Design
8.2.1 Antenna configuration
The structure of the proposed wideband, omni-directional, and horizontally polarized
antenna is shown in Figure 8.1. The proposed antenna consists of an array of four modified folded
dipole antennas and one feeding network with incorporated baluns. The geometry of the antenna

is an open square box with four modified folded dipole elements on the side faces and baluns and
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matching network on the bottom face. Both the antenna elements and the baluns are printed on
Rogers RO4003C substrate (er = 3.55, tand = 0.0027).

The operation of the proposed antenna can be best explained by examining the performance
of the elements of the square array. The folded dipoles are placed in the horizontal plane along the
X- and y-axis to achieve horizontally polarized radiation. Each dipole is expected to have radiation
null along the dipole axis with an approximate radiation pattern proportional to sine-squared
function. The radiation patterns of the orthogonal elements, because of 90%otation, are hence
proportional to cosine-squared function and as a result an omnidirectional radiation pattern is
expected if the elements are fed equal in magnitude and phase or 180%ut of phase. The antenna
can be viewed as two two-element arrays that are perpendicular to each other. Considering a pair
of face-to-face antenna elements as one array, it becomes obvious that the two elements of this
array should be positioned with a separation of about A/2 and fed with the same power but 180°
out of phase. This way the lateral dimension of the antenna is kept small and the far fields of the
two elements at their respective boresights add up coherently. Another artifact of this arrangement
is the creation of a null surface at the perpendicular bisector plane of the two elements which
includes the z-axis. This is a desired feature as it allows the placement of the feed network on or
near the perpendicular bisector plane without the mutual effect between the antenna elements and

the feed network of the other pair.

8.2.2 Dipole elements’ separations study
The radiated far-field from two parallel elements add up coherently in the boresight
direction in case the separation between the two elements is 0.5A. However, at other azimuthal

angles, say at 45 degree offset from the boresight, there is no intuition about the azimuthal gain
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deviation from its value at the boresight directions. The gain variation should be a function of
elements’ separation distance. To study the effect antenna separation and finding an optimal
distance for best omnidirectional radiation pattern a simple analytical model for the square shape
arrangement of dipole array is constructed. For simplicity, the model uses simple half wave dipole
for each array element for which a sinusoidal current distribution is assumed. For this array the far
field radiation pattern is calculated analytically using superposition. Figure 8.2 depicts the
calculated radiation pattern for different separation between parallel dipole elements. In this
simulation the antenna size is chosen to be 0.4\ and the separation between parallel dipoles is
changed from 0.4A to 0.6A. It is shown that the smaller is the distance between the parallel antenna
elements, the lower is the pattern variation as a function of azimuthal angle. Therefore, in order to
achieve a better omnidirectional pattern from the square array, it is better to keep the separation as
small as possible while adjusting the phase between the elements. In practice, there are two factors
constraining the minimization of antenna separation. The first pertains to mutual coupling between
the elements which increases with decreasing the separation and the second factor is related to the
antenna size. Basically, making radiating elements small, the bandwidth becomes small [224][225].
After many simulations for minimizing the distance between elements while maintaining the
bandwidth, the distance is chosen to be 85 mm, which is about 0.45AA for the designed center
frequency 1.6GHz. Figure 8.3 shows the return loss comparison for different separation distances.
As we can see, if the distance is smaller than 85mm, it is very difficult to get the entire band below

-10dB for S11.
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Figure 8.2. The calculated radiation pattern comparison for different distance between opposite
antenna elements for idea half wavelength dipole.
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Figure 8.3. The simulated return loss for the antenna with different elements separation distances.
Matching networks for all cases are optimized separated.

8.2.3 Modified folded dipole design and parametric study

To achieve a broadband operation, array elements themselves must be broadband. Folded
dipole structure can provide higher bandwidth than ordinary dipoles, but such structure still does
not provide the required bandwidth. The planar folded dipole antenna (PFDA) is chosen as
radiation element because of its wide bandwidth (more than 50%), and its radiation pattern is very

similar to that of an ordinary dipole antenna. The antenna can be considered as the superposition
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of one wide-strip planar dipole and one folded dipole with different resonant frequencies which
produce wider bandwidth [82]. One drawback of this geometry for the application at hand is the
size of the elements. This prohibits designing the square array in a plane. To keep the spacing
between the elements as small as possible, the PFDA elements are arranged in vertical direction,

unlike the arrays used in [64]-[67], in such a way as to form a square box with each element on its

four sides (see Figure 8.1).
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Figure 8.4. S parameters for the four ordinary folded dipole antennas before matching network
with (a) source impedance of 50 Q, (b) source impedance equal to complex conjugate of input
impedance of one element; S11 is below -35dB and not shown in (b).
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Figure 8.5. The simulated impedance as a function of frequency for (a) a folded dipole in the array
when other elements are terminated by 50 Q@ (without returning power from other ports), and (b) a
folded dipole when all other dipoles are also fed with the same power.
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With the vertical architecture, the required spacing between parallel elements can be met;
however, the vertical arrangement leads to increased mutual coupling among the four elements of
the array. In arrays, high level of mutual coupling in turn results in performance degeneration of
the antenna array [226]. To examine the effects of mutual coupling for the proposed geometry, the
array is viewed as a four-port antenna where each port is connected to the input of the balun for
each planar folded dipole element (the matching network is not considered here). The simulation
is carried out using a commercial software (ANSYS HFSS). Figure 8.4 (a) shows the simulated S
parameters for the four folded dipole antennas with the shape proposed in [82] choosing a source
impedance of 50Q. The port numbering is as follows: dipole 1 is adjacent to dipole 2 and 4, and
opposite to dipole 3. Note that since the matching network is not part of the simulation, the
condition for broadband operation is sought for by finding a smooth impedance response with
frequency. As shown in Fig. 4, S21 and S41 are comparable to S11 at certain frequencies, which
indicates a high level of the mutual coupling between adjacent elements.

Moreover, to examine the mutual coupling effect more accurately, another simulation is
carried out in which the port impedance is chosen to be the complex conjugate of the antenna
element for all frequencies. Under this ideal condition, S11 disappears and the parameters S21,
S31 and S41 represent the coupling coefficients and are shown in Figure 8.4 (b). It can be seen
that the coupling between adjacent elements is much higher than those between opposite elements.
It should be noted that S21 and S41 are supposed to identical and the observed differences are due
to numerical errors caused by asymmetric meshing of the geometry. The power from dipole 1 to
dipole 2 and 4 is about -10 dB at 1.2GHz and decreases monotonically with frequency to a level

of -18dB at 2GHz. This coupling phenomenon has a considerable effect on the overall return loss.
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Before we solve this complex four ports coupling problem, let us simplify it first. The four
dipole-elements are treated equally, and their radiation patterns are supposed to be symmetrical,
so it means the four dipoles and their matching network should be identical. Thus, the matching
of the four ports problem is equivalent to the matching of one port problem assuming that all other
ports are fed identically (same source and same source impedance). The return loss for one port in
this case is the sum of S11, S21, S31 and S41, as it considers the returning power from all other
elements. To examine the effect of mutual coupling another simulation where one port is excited
and other ports are matched to 50 Q loads is also carried. The input impedance for this case will
be referred to as “without returning power from other ports”. Figure 8.5 shows the impedance
comparison for the antenna with and without considering the returning power from other ports.
When the coupling is included (all four ports excited) the impedance of the antenna shows sharp
variations with frequency, and this of course leads to strong mismatch at certain frequencies which
makes the task of broadband matching very difficult if not impossible. It is noted that the overall
return loss behavior is influenced by the impedance mismatch of the antenna element itself and
the mutual coupling among the elements. In the other words, the total return loss consists of the
power returning from each antenna element, and the power coupled from one element to all other
elements. In the four-port model mentioned above, those power are corresponding to the four S
parameters. Notices that S parameters are all complex numbers and the total return loss is the sum
of the phasors. So reducing all the four returning power is not the only way to reduce the total
return loss, if we can change the S parameters such that they cancel each other over the desired

band, then a low overall return-loss can be achieved.
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Figure 8.6. The simulated return loss for the antenna with different truncated corner’s sizes, is
the horizontal length of the corner.

Without increasing the distance between the elements, there is little that can be done to
reduce this coupling unless the element configuration itself can be changed. However, changes in
the element configuration can affect the input impedance as well. Therefore, to achieve a wideband
operation, a configuration must be considered such that the variation in the impedance of the dipole
elements as a function of frequency is compensated for by the frequency variations of the mutual
coupling. One way to reduce coupling is to increase the separation between the edges of the
adjacent elements. This can be done by tapering the edges of the ground planes, and by this
approach the length of the dipoles and the distance between the elements can be preserved. This
also to some extent allows for controlling the frequency response of the coupling simply by
changing the tapering angle. The simulated S11 for the entire antenna with different corner taper
angle is shown in Figure 8.6. Here /5, referring to Figure 8.1(c), is varied to control the taper angle.
/5=14mm is chosen since it can provide the widest bandwidth. Then other parameters of the folded
antenna are further tuned to achieve a wider bandwidth for the array. Figure 8.7 shows the
impedance of an optimized folded dipole with other elements terminated to match load (not

considering the returning power coupled from other ports) and the impedance for a dipole antenna
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when all ports are fed, which is of course four times of the entire antenna’s impedance before
matching. All tuning and optimizing process is done by trial and error. It is shown that although
the impedance of a single element still varies sharply with frequency, the overall impedance of the
four elements connected together has less variations with frequency. For more clear comparison,
Figure 8.8 shows the return loss of the antenna in Smith Chart after considering the matching
network for both the ordinary folded dipole elements and the modified dipole elements. We can
observe that the bandwidth for the ordinary folded dipole array is only about 130 MHz, by contrast,

the bandwidth for the modified dipoles is reached to about 800MHz.
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Figure 8.7. The simulated impedance as a function of frequency for (a) one modified folded
dipole antenna with other elements terminated to match load, and (b) one modified folded dipole
antenna when other elements are fed with equal power.
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Figure 8.8. The simulated S11 in Smith Chart of the HP antenna with (a) ordinary folded dipole,
(b) modified structure folded dipole.
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To keep the S11 below -10 dB for the entire band, other modifications are made to the
PFDA including open windows on the ground planes of each element and providing inductive
short circuits towards the end of the slot lines. To cut out windows in the ground plane with
minimal effect on the antenna performance, the current distribution on the ground plane should be
studied. The areas with lowest current density can be cut out to lower the multi-reflection of waves
within the square box. Figure 8.9 (a) shows the current distribution over an ordinary PDFA at the
center frequency. It is shown that the current density is high around the slot and near the edges.
This suggests that the metal in the middle of the ground plane on each side of the feed can be
removed with minimal effect on the input impedance and antenna radiation. Figure 8.9 (b) depicts
the current distribution over the modified PDFA. Figure 8.10 shows the two return loss results for
the antenna with and without windows. It is shown that the windows can help reducing the return-
loss at certain frequencies within the band. The location of the two short circuits in the slot
determines the frequencies of all the resonances. Figure 8.11 shows the return loss comparison for
different shorts’ locations. It is shown that when the distance between two shorts becomes smaller
the first and third resonant frequencies become higher while the second resonance shifts to lower
frequency. The current density distributions at different resonant frequencies are shown in Figure
8.12. It is noted that at the first and third resonant frequencies, the current is mainly concentrated
around the edge of the slot, thus when the slot becomes shorter, the resonances shift to higher
frequencies because of the shorter current path. For the second resonance the current leaks out
further due to the inductive nature of the short to produce the second resonance. After optimization,

¢, =52mm is selected as the distance between two shorts.
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Figure 8.9. The current distribution on the dipole elements at the center frequency of the
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Figure 8.10. The simulated return loss for the antenna with windows and without windows at the

center frequency (1.6GHz).
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Figure 8.11. The simulated return loss of the antenna for different distance between two shorts.
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Figure 8.12. The current density distribution at (a) first resonance (1.22GHz), (b) second

resonance (1.45GHz), and (c) third resonance (1.85GHz).
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8.2.4 Baluns and matching network

The baluns and matching network are shown in Figure 8.1 (b). The balun used here is a
classical broadband microstrip balun used for many applications [227][228]. The challenge here
is to design balun that can also match the input impedance of the antenna over the desired wide
band and can combine the four elements into a single port which is matched to a 50Q coaxial line.

This balun is also to achieve the desired 180° phase shift between the parallel elements. The 180
° phase shift is conveniently achieved by choosing opposite directions for the microstrip crossings

over the slots. The matching of microstrip to the antenna element is accomplished by choosing a
proper slot gap and width for the co-planar strips. The matching network and combiner is
constructed from four quarter-wavelength transformers as shown in Figure 8.1. In this design the
width and the length of the transmission line are adjusted through trial and error to achieve the
desired bandwidth. Usually the balun and the matching network result in reducing the bandwidth
of the antenna, however, in this design, the entire antenna structure including the four dipole
elements, the balun, the transmission line transformers are optimized together using full-wave
analyses to achieve the widest bandwidth.
8.2.5 Overall Geometry of the proposed antenna

The electrical and metric dimensions for the entire antenna are, respectively, given by 0.34A
X 0.34AX0.11x and 85mm X 85mm X 26.7mm, where A is the wavelength at the lowest frequency
of operation. The folded dipole antennas and the feeding network are fabricated using printed
circuit board technology. The substrate for the dipole antenna elements and the feeding network is
chosen to have . = 3.55,tand = 0.0027¢, = 3.55, tand = 0.0027 corresponding to commercial
substrate RO3002C by Rogers. Also the thickness of the substrate for the dipole elements is chosen

to be 0.813mm (32 mil) and that for the feeding network is chosen to be 1.525mm (60 mil). The
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thicker substrate for the feeding network provides the required rigidity for the antenna structure
and the thinner substrate for the modified dipoles ensure lower signal blockage from other array
elements. After all the optimization and parameters study, all the parameters of the antenna are
listed in Table 8-1.

Table 8 - 1. Geometric Parameters for the Proposed Antenna

sl 85mm gl 15mm
g2 1.5mm fwl 2.1mm
fw2 0.6mm Sly 20mm
SlIx 1mm fl1 26.1mm
fl2 3mm f13 17mm
fl4 6.25mm fI5 6.5mm
fl6 3.95mm 17 4.35mm
11 52mm 12 62mm
13 69.6mm 14 41.6mm
tl 0.808mm t2 1.52mm
hl 26.7mm h2 2.2mm
h3 4.7mm wl 3mm
w2 2mm al 14mm
bl 14mm a2 3.95mm
b2 5mm a3 2.1mm

Different shape of the structure will also impact the azimuthal variations of directivity.
Simulations imply that a circular or octagonal structure provide better omni-directionality for a
given dimension. However, considering the coupling issues, it is found that the smallest distance
between elements can best be achieved for square geometry which most affects the uniformity in
the array’s far-field radiation.

8.3 Experiment Results
The square array described in the previous section was fabricated for measurements and

comparison against the simulation results. Figure 8.13 shows the prototype of the proposed
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omnidirectional horizontally polarized antenna. All components of the antenna are fabricated with
low cost PCB materials and different parts were soldered together to form the box structure. Figure
8.14 depicts both the measured and simulated reflection coefficient (S11) of the proposed antenna.
The measured 10 dB return loss bandwidth is about 53.2% (from 1.19GHz to 2.05GHz). A very

good agreement between the simulated and measure results is shown.

(@) (b)
Figure 8.13. The top view (a) and back view (b) of the prototype of the antenna.
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Figure 8.14. Return loss comparison of the measured and simulated result of the HP antenna.
For pattern and absolute gain measurements two double-ridged waveguide horn antennas

operating in the band of 1-18GHz (model 3115 Double-Ridged guide antenna) are used. The
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absolute gain is measured by the three-antenna gain measurement method. In this approach a
calibrated vector network analyzer (VNA) is used to measure S21 in between pairs antennas inside
the anechoic chamber of the University of Michigan. Using the distance and the setup unchanged,
three measurements of S21’°s are obtained by permutation of the three antennas with unknown
gains. Radiation patterns in E-plane (x-y plane) and H-plane (x-z plane) are shown in Fig. 15 and
Fig 16. In azimuth plane, the RMS value for the gain is 0.30 dB, 0.32 dB, 0.52 dB and 0.73 dB for
the frequency of 1.2 GHz, 1.5 GHz, 1.8 GHz and 2 GHz, respectively. The gain variations for the
four frequencies are 1.1 dB, 1.15 dB, 1.85 dB and 2.8 dB, respectively. The isolation between the
co-pol (HP) and cross-pol (VP) in all direction of azimuth plane is better than 20 dB for frequencies
below 1.9 GHz, and it degrades to 15 dB for certain direction at 2 GHz but still better than 20 dB
for most directions. Fig. 17 shows the co-pol and cross-pol gain comparison along x-axis direction
as a function of frequency. It is shown that the gain is almost constant but with a slightly decreasing
trend with frequency but the isolation between HP and VP is more than 20 dB for the entire desired
frequency band from 1.2 GHz to 2GHz. The radiation efficiency and the total efficiency including
the return loss are depicted in Fig. 18. It is shown at the desired band the radiation efficiency is

more than 90% and the total efficiency is more than 80%.
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Figure 8.15. Measured radiation pattern in x-y plane for the HP antenna at (a) 1.2GHz, (b)

1.5GHz, (c) 1.8GHz, and (d) 2GHz.
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Figure 8.16. Measured radiation pattern in x-z plane for the HP antenna at (a) 1.2GHz, (b)

1.5GHz, (c) 1.8GHz, and (d) 2GHz.
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Table Il shows performance comparison for different broadband omnidirectional HP

antennas. This shows a favorable performance of the proposed antenna considering the bandwidth,

antenna dimensions, and gain variations in azimuth over the desired band. The proposed antenna

provides a wide elevation beam width at the cost of lowering the gain in azimuth plane.

Table 8 - 2. Comparison of other broadband omnidirectional HP antennas and this work

Dimension in
term of Antenna type, -10 dB . - Peak gain
Antenna wavelength of number of radiation S11 C;ross _pol Gain variation at at center
. . isolation center frequency
lowest operating elements bandwidth frequency
frequency
[12] 0.341.X0.34\ Loop 31.2% 20dB Not mentioned 2.5 dBi
. . A
[13] 0.57AX0.57A | Multiple radiators, 4 31% 20dB 1.5dB Z?:it 0
[14] 0.591X0.591 Multiple radiators, 4 41% 15dB Not mentioned 4 dBi
[15] 0.451X0.45\ Multiple radiators, 4 34.1% Not mentioned 3dB 1.7 dBi
[16] 0.790.X0.79A Multiple radiators, 8 62.5% Not mentioned ~3dB ~0 dBi
This work 0.341X0.341 Multiple radiators, 4 53.2% 20dB 1.6dB 1.2 dBi
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Figure 8.17. Measured and simulated realized co-pol (HP) and cross-pol (\VP) gain for the

proposed antenna in the x axis direction (¢ = 09 changing with frequency.
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Figure 8.18. Simulated radiation efficiency and the total power efficiency including the return
loss as a function of frequency.
8.4 Conclusion

This paper presents a compact broadband omnidirectional horizontally polarized antenna
for UWB communication and radar applications. The antenna is composed of four printed
broadband folded dipole antennas orientated perpendicular to each other and each covering a
quadrant in the horizontal plane and one feeding network to match the antenna to a single 50 Q
port. The 10 dB the return loss bandwidth is about 53.2% (1.192GHz to 2.056 GHz), and the
variation of the measured gain in all directions of horizontal plane is less than 2 dB for frequency
of 1.2 GHz to 1.9 GHz, and slightly increases to 2.8 dB at 2 GHz. This antenna shows highest
realized gain of 1.1 dBi at 1.2GHz and 1.2 dBi around 2 GHz. The isolation between HP and VP
is more than 20 dB in all directions in the antenna H-plane over the frequency band of operation.
Regarding the bandwidth performance, gain variations, and antenna dimensions, the proposed
antenna shows considerable improvements over other similar type of antennas. This antenna meets
the bandwidth requirement of the LTE system and probably is a good candidate for the 5G wireless

network of the future. The gain of the antenna in azimuth plane can be increased by stacking a
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number of these antennas to form a vertical array without compromising its bandwidth,

polarization purity, and azimuthal pattern variations.
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Chapter 9 Broadband Omnidirectional Circularly Polarized Antenna with
Asymmetric Power Divider

9.1 Introduction

Prosperity of technology witnesses the exploding growing of the number of wireless
connected devices and demand on high data rate. More than 20.4 billion Internet of Things (loT)
devices including smart personal devices, vehicles and industrial sensors will be installed by 2020
according to Gartner [229]. Examples like autonomous vehicles need extensive wireless
communications in both vehicle to vehicle (V2V) and vehicle to infrastructure (\V2I) scenarios to
ensure best safety for the vehicles, and in the coming fifth generation (5G) telecom technology,
more than 1Gb/s per device and 10 Gb/s data rate for base station are required. Wider bandwidth
is a naturally solution to implement higher data rate, and since the frequency allocations for many
communication purposes/standards are close to each other, wideband antennas are in favor for
supporting multiband communication as well. For radar application, wide bandwidth is always
desirable since the range resolution is directly proportional to the bandwidth of operation.

Circular polarization (CP) has been widely used in many communication systems include
satellite communication, global positioning system (GPS) and radio frequency identification
(RFID). In communication with circularly polarized EM wave, the signal strength is less affected
by the orientation of device/antenna and multipath effect can be largely reduced compared to linear
polarization [68]. Besides the mentioned advantages, in radar system, CP antenna can largely
reduce the crosstalk between transmitter and receiver and enhance the performance of radar

imaging [54].
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Many wireless devices or systems require omnidirectional antennas for maximum signal coverage
include the cellphone base station, WLAN router, vehicular communication, and in 2D all-
direction synthetic aperture imaging radar [54]. Recently, several omnidirectional CP antennas
have been reported [69]-[79]. In some omnidirectional CP dielectric resonator antenna (DRA)
design [69][70], CP is created by adding parasitic slots [69] or dielectric wave polarizer [70]
around an omnidirectional vertically polarized (VP) DRA. In such way the radiated VP fields are
converted into CP fields. The DRA using parasitic slots [69] has usable bandwidth (overlapping
of both axial ratio (AR) and impedance bandwidth) of 22% and the other design [70] produces a
conical radiation pattern with usable bandwidth of 41%. Another omnidirectional CP antenna
based on circular TE,,-type modes is reported in [71]. The antenna combines two orthogonal TE,
modes and forms a 16-element circular array to create omnidirectional CP. Besides, it utilizes low-
pass/high-pass phase shifter to create wideband phase shifting for enhancing the bandwidth. This
antenna has an effective bandwidth of 58%, but due to the return loss and resistive loss in feeding
network, its efficiency is only around 65% for more than half of the entire bandwidth.

Circular polarized EM field can be realized by superposition of two perpendicular linearly
polarized fields with same magnitude and 90 “phase difference. The 90 “phase difference is often
achieved by the electrical length difference between the vertically polarized (VP) and horizontally
polarized (HP) fields either in feeding or radiating stage. This setup has been successfully
implemented in many omnidirectional CP antennas [72]-[79], [230]. When a circular patch
antenna or DRA is feed at the center of the circle, TM modes can be excited to radiate VP fields,
and the HP fields are generated by several rotationally symmetric monopole or dipole like radiators
around the antenna [72]-[77]. Besides this type of CP antennas, a CP Antenna composed of four

inverted L-shape monopoles is reported in[78], and the VP and HP fields are generated by the
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horizontal and vertical part of the bended monopoles. For another compact omnidirectional CP
antenna in [79], a slot antenna with fourfold parallel plate waveguide is designed to produce
omnidirectional HP field, and VP field is excited by two PIFA antennas on the sides of the slot
antenna. The antennas reported above have good omnidirectional CP property, but most have
limited bandwidth (<10%).

One idea to increase the bandwidth is to create multipole resonances with different exciting modes
[75], [76]. The usable bandwidth is increased to 14.4% [75] and 51.7% [76], however, these two
antennas have a conical radiation pattern and do not generate CP field in horizontal plane. Recently,
a wideband central-feed CP patch antenna is proposed [77]. Due to the symmetry of ground plane
and antenna, this antenna’s main beam is on azimuth plane, and it utilizes capacitive feed instead
of direct feed to increase the bandwidth to about 30%.

For an omnidirectional CP antenna based on VP and HP radiators, the challenges of broad
bandwidth (>50%) include broad impedance bandwidth for both VP and HP radiators, maintaining
omnidirectional pattern within the band, and maintaining small magnitude difference and 90°
phase difference between VP and HP fields for all operating frequencies. For a directional antenna,
the VP and HP radiators can be the same antenna, but one is rotated by 902 In this case an equal
power divider can solve the problem. However, in omnidirectional antennas, VP and HP radiators
are usually very different elements, and their gains and impedance as functions of frequency may
have large discriminations as well. This increases the difficulty of designing the feeding network.
Wilkinson power divider and its modified versions are widely used for splitting power equally or
in arbitrary ratio [231]-[235]. The original Wilkinson power divider [232] has simple structure and
good performance but only for equal power division and narrow band application. The theoretical

analysis for multi-section Wilkinson power divider with arbitrary power split ratio is introduced
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in [233]. It manipulates impedance of each transmission line while keeping their length to be A/4
to obtain the optimal bandwidth performance. In [234], the dimensions of arbitrary ratio power
divider are reduced by adding novel loading transmission lines. An optimization process based on
method of least squares are applied to design a broadband multisection Wilkinson power divider
with arbitrary power split ratio [235], but the quasi-Newton method based optimization can only
guarantee to find the local optimal value. Many power divider designs in literatures can split power
with arbitrary ratio, nevertheless, all the reported arbitrary ratios are constant with frequency,
which cannot meet the requirement in this broadband CP antenna application.
In this paper, divide-and-conquer strategy is used in designing a broadband omnidirectional CP
antenna. We first design a ring-shape ultra-wide band (UWB) monopole antenna based on a
circular-shape UWB monopole antenna [238] and a broadband omnidirectional HP antenna [236]
that can meet the impedance bandwidth requirement. Those antennas are carefully designed to
achieve desired performances. Since the gain and impedance of VP and HP elements exhibit large
differences, and those differences are also functions of frequency, an asymmetric Wilkinson power
divider is studied and optimized by particle swarm optimization (PSO) to obtain the dedicated
power split ratio as a function of frequency. The feeding network also includes a wideband
Schiffman phase shifter to maintain almost 909phase difference for the VP and HP electrical far
fields over the entire band. The main beam for the proposed antenna is on azimuth plane and the
usable bandwidth reaches 53.4%.

The chapter is organized as following. In Sec. 9.2, the entire antenna structure and
geometric parameters are introduced, then the design and optimization process of each component
including a double-ring shape UWB monopole antenna, a broadband omnidirectional HP antenna

and a feeding network containing a dedicated optimized asymmetric power divider are presented
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in detail. The parametric study of an asymmetric power divider is discussed as well. In Sec. 9.3,
The simulation and measurement results of the proposed antenna are demonstrated and discussed.
Finally, the concluding remarks are included in Sec. 9.4.
9.2 Antenna design and optimization

The proposed Broadband Omnidirectional Circularly Polarized (CP) Antenna is shown in
Figure 9.1. It is designed to operate at L band from 1.2 GHz to 2 GHz. The dimensions for this
antenna are 100mmx100mmx125mm, or 0.41x0.4Ax0.5\, where A is the wavelength as the lowest
frequency of operation (1.2GHz). It is composed of an optimized broadband omnidirectional HP
radiation element (from our previous work [236]), a double-ring shape UWB monopole antenna
(VP element) and a very carefully designed feeding network that can divide the power properly
between HP and VP components and maintain the required phase difference over the desired
frequency band. Both the antenna elements and the feeding network are printed on Rogers
ROA4003C substrates (er = 3.55, tand = 0.0027). The thickness of the substrate for the feeding
network of HP radiators shown in Figure 9.1 (d) is 1.52 mm (60 mil) and the rest are printed on
substrates with 0.81 mm (32 mil) thick. The geometric parameters of each components of the

proposed antenna is given in Table 9 - 1.
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Figure 9.1. The geometry of (a) the proposed CP antenna, (b) the double-ring monopole antenna,
(c) the power divider-based feeding network, (d) feeding network for the four HP radiators and (e)
one element of the HP radiator.

Table 9 - 1. Geometric Parameters

Parameters for double-ring monopole and ground plane
T 19.8 mm Wso 1.81 mm
Tiy 22.0 mm |- 11.25 mm
To1 27.63 mm hgq 9.41 mm
T2 32.5mm hg, 43.45 mm
dm1 1.6 mm Wy1 45 mm

Parameters for power divider
W41 0.35 mm laq 34.67 mm
W1 0.47 mm L 24.16 mm
Wyo 0.79 mm Ly 22.69 mm
Wy 0.66 mm Lo 41.88 mm
Wso 1.81 mm lgz 27.72 mm
R, 300 Q L3 27.30 mm
R, 150 Q Lya 15.30 mm
Parameters for HP radiators’ feeding network

w 100 mm lr12 7mm
Wy 1 mm le13 17 mm

ls 18.5 mm Wy 3.5 mm
91 15 mm lg, 12.03 mm
92 1.5 mm W3 0.39 mm
Wy 2 mm les 32.72 mm
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le11 20.97 mm
Parameters for HP radiator

hpa 28 mm lng 45 mm
hyo 5 mm lps 3mm
hy3 2.4 mm lne 2mm
hpa 2.1 mm lps 4 mm
lpq 56 mm ap 14 mm
Iy 71 mm by, 14 mm
lps 79 mm

9.2.1 Vertically polarized (VP) component design

Ultra-wideband (UWB) circular monopole antenna has been studied for more than a decade
[237][238], and its broadband features in both impedance and omnidirectional property make it a
good candidate for our vertically polarized component. The design of VP radiation element starts
with a typical UWB monopole antenna as shown in Figure 9.2 (). It is a ring shape monopole
antenna feed by microstrip line and is printed on a double side PCB board, with antenna and ground
on different sides. The design is modified from traditional UWB circular monopole antenna: the
upper boundary of the ground plane is modified as elliptical shape to increase the symmetry of the
current on the antenna. This ensures that the highest gain is on azimuth plane. This VP antenna
can provide the required bandwidth and the isolation between VP and HP is more than 30 dB, but

the gain variance in azimuth direction is as large as 1.5 dB at the center frequency (1.6 GHz).

(@) (b) (©)
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Figure 9.2. The geometry of (a) Ring UWB monopole antenna, (b) Two-cross-rings UWB
monopole antenna and (c) the proposed monopole component for this CP antenna.

To improve its omnidirectional property, a geometry with two perpendicular ring radiators
intersecting with each other is proposed as shown in Figure 9.2 (b). This geometry is further
adjusted such that the feed structure for the HP antenna is also included as depicted in Figure 9.2
(c). The addition of ground traces on the horizontal plane assists further the monopole feature of
the VP antenna and can enhance the uniformity of the radiation pattern in the horizontal plane. The
three monopole antennas shown in Figure 9.2 are labeled as monopole-1, monopole-2 and
monopole-3 antennas. The radiation pattern in azimuth plane for monopole-1, 2, 3 are shown in
Figure 9.3. It shows that the double-ring geometry can reduce the gain variation significantly. All
geometric parameters of the monopole antennas are carefully designed to make sure the return loss
is greater than 10 dB for the entire required band. The normalized input impedance for monopole-
3 antenna at different frequencies on a Smith chart are illustrated in Figure 9.4 (a). It shows that
for this UWB antenna there is no obvious resonant frequency and the entire band has VSWR less
than 2 (10 dB return loss). Figure 9.4 (b) depicts the radiation pattern on azimuth plane for
monopole-3 antenna at three resonant frequencies (zero reactance): around 1.2 GHz, 1.4 GHz and
2 GHz. Excellent omnidirectional property is observed for the antenna at all frequencies, and the
directivity at 1.2 GHz and 1.4 GHz are almost the same. The gain drops for about 0.7 dB at 2 GHz

due to the fact that main beam moves up from the azimuth plane at high frequency.
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Figure 9.3. Radiation pattern in azimuth plane comparison at center frequency (1.6GHz) for the
three monopole antennas.
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Figure 9.4. (a) Return loss of monopole-3 antenna when terminated by 50 Q impedance. (b)
Radiation pattern on azimuth plane at different frequencies for monopole-3 antenna.

9.2.2 Horizontally polarized (HP) component design
The broadband HP omnidirectional antenna with planar folded dipole is selected as the HP
radiation element. It has the required bandwidth, good omnidirectional property, and

omnidirectional shape radiation pattern as we desired. In ordinary non-dispersive wave
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propagation the phase term Bd is linear with frequency, however, for the original proposed HP
antenna [236], the phase of the radiated electric far field at the low frequency band (typically from
1.2GHz to 1.3GHz) is not linear with frequency as is shown in Figure 9.5. This is due to different
resonant mechanism for the antenna at low frequency. The non-dispersive property is important
for maintaining the 90phase difference between VP and HP all over the band. In order to alleviate
this problem, the HP antenna is scaled up to shift the dispersive response outside the operating
band, and many parameters have been modified to keep the antenna’s impedance bandwidth. The
simulated results are provided in Figure 9.5. It shows that for w = 90mm, the phase deviated from
normal propagation is more than 50 degrees at 1.2 GHz while those for w = 100mm and w =

110mm are about 20 degrees, which are acceptable for circular polarization criteria.
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Figure 9.5. The phase of electrical far field at same distance and the phase deviation from normal
propagation (linear function of frequency) as a function of frequency.

9.2.3 Simulation for combining VP and HP components
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The geometry of the combined VP and HP components of the CP antenna is shown in
Figure 9.6. When terminated by 50Q2 impedance, the S parameters of the two components are given
in Figure 9.7 (a). The return loss for VP component is greater than 10 dB for the entire band and
that for HP antenna is greater than 10 dB for most part of the frequency band of interest. The
coupling between VP and HP is lower than -25 dB and therefore good isolation between VP and
HP is achieved with this geometry placement. The radiation pattern in H plane for both VP and
HP components are shown in Figure 9.7 (b). The gain variation for different azimuth directions is
about 0.6 dB for VP and 2 dB for HP. Their averaged gain has about 1.6 dB difference when both
antenna components are feed with the same power. The comparison of dimensions between CP
antenna and its linear polarized (LP) components are given in Table 9 - 2. The implementation of

circular polarization is at the cost of increase in size as well.

Feed to the VP component

————

Figure 9.6. Geometry of the combination of VP and HP components without feeding network.

Due to the rotational symmetry of both VP and HP components, the largest variation of
gain in azimuth plane is between $=0“and $=45< therefore analysis on these two directions is

enough for examination of the omnidirectional property in the azimuth plane for this antenna. The
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simulated realized gain of the VP and HP field for $=0<and $=45%as a function of frequency are
given in Figure 9.8 (a). The gain for VP is almost constant for the frequency band from 1.2GHz to
2 GHz, while that for HP has a minimum at around 1.5GHz. The gain difference between VP and
HP field are shown in Figure 9.8 (b). These results are used in designing the feeding network to
divide the input power to VP and HP component as a function of frequency such that the VP and
HP gain difference is as small as possible. Notice the gain differences change with different
azimuth directions, and those at $=0and $=45%have at most 2.5 dB difference within the band,
so the goal for the feeding network is to have the power dividing ratio matching the average gain
difference, which is the dot line shown in the figure.

Table 9 - 2. Dimensions of the CP antenna and its LP components

Figure 9.7. (a) S parameters of the VP and HP components when terminated by 50 Q ports, (b) the
radiation pattern in azimuth plane for H polarization and V polarization components at center

S parameter (dB)

CP antenna HP component VP component
100 mm 100 mm 100 mm
100 mm 100 mm 100 mm
125 mm 28 mm 75 mm
0 T
S”(VP) H-pol ga.in
S e S, ,(Coupling) V-pol gain
S,,(HP)

20}

-30

-35

251 ¢

1.4

1.6 1.8
Frequency (GHz)

(@)

(b)

frequency (1.6GHz) when feed with the same power.
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Figure 9.8. (a) The simulated gain in horizontal plane for VP and HP at $=0“and ¢=45as a
function of frequency. (b) The gain differences of VP and HP at $=09¢=45%and average over ¢
as a function of frequency.

Another important quantity for two orthogonal polarization waves to form circular
polarization is the phase difference. Ideal for a nondispersive medium, the phase difference (BAI)
between VP and HP is a linear function of frequency and by adding a nondispersive transmission
line in the VP’s or HP’s signal path for phase compensation, the phase difference will be constant
zero for the entire band. Figure 9.9 depicts the phase difference between VP and HP fields after
compensation at the center frequency. The phase differences are between -10¢0 10<for the entire

band, and it indicates that there is only small dispersion for both VP and HP component.

50 T T T T

40 Phase difference after compensation at ¢=45°

= = 'Phase difference after compensation at ¢=0°

30 -

20

10

Phase difference (degree)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
Frequency (GHz)

Figure 9.9. The phase difference for HP and VP after phase compensation by simple transmission
line at $=0<and $=45%as a function of frequency.
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9.2.4 Wideband phase shifter for feeding network

To achieve circular polarization, the feed network for this broadband circular polarized
antenna is required to create 90“phase difference between VP and HP fields and compensate their
gain difference such that both VP and HP fields have the same magnitude over the entire band.

A popular method to implement 90%phase difference is to utilize the propagation path
difference of VP and HP signals in transmission line, antenna itself or wave propagation in the air.
This solution is fine for narrow band design, but problem will arise for broadband application. It
is noted that the phase difference (54/) between VP and HP is a linear function of frequency if the
antenna and transmission line are nondispersive for EM signals propagating from feeding port to
far field. Therefore, the phase difference between VP and HP is no longer 90<for the frequency
other than the center frequency. For an ideal CP antenna with center frequency f, the axial ratio
as a function of frequency is depicted in Figure 9.10, given that the magnitudes of E fields for VP
and HP are identical over the entire band. It shows that the maximum axial ratio bandwidth for a
nondispersive CP antenna is 44% (0.78f to 1.22f ) if nondispersive method is applied to create
90°phase difference. Therefore, more sophisticated phase shifting technique is required for

broadband (>50% bandwidth) CP antenna.

0 1 1 1 1 1 1
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Normalized frequency (f/fo)

Figure 9.10. The phase difference for HP and VP after phase compensation by simple

transmission line at $=0<and ¢=45as a function of frequency.
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Schiffman phase shifter [24] is used to create broadband 90phase difference in this design.
The schematic in Advanced Design System (ADS) is shown in Figure 9.11 (a). It is composed of
a quarter wavelength couple line with one end shorted. It can create a broadband 90“phase
difference compared to the response of a % A long transmission line, where A is the wavelength for
the central frequency. The simulated results are illustrated in Figure 9.11 (b). For the frequency

from 1 to 2.2 GHz the phase difference between S_21 and S_43 is about 9045<
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(a) (b)

Figure 9.11. (a) The schematic of the Schiffman phase shifter and (b) the phase difference

between port 2 and 4, given that port 1 and 3 are in phase.

9.2.5 Analysis and optimization of an asymmetric power divider
As shown in Sec. 9.2.3, the gain difference between VP and HP changes with frequency. Thus
the feed network should be capable to divide the power with a prescribed ratio varying with

frequency.

It is found that when breaking the symmetry of the power divider (two splitting transmission
lines have different impedance and length), the power dividing ratio is no longer constant with
frequency. The drawbacks of this power divider are more loss in the resistors and there will be some

power leakage between port 2 and port 3 shown in the left part of Figure 9.12 (large |Ss,|, |S23])-
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The loss issue can be reduced by carefully optimizing the power divider and the power leakage is
not a serious problem for this antenna application. Because in transmitting mode, the radiated power
only depends on |S,;| and |S3;|, and large value of |S;,| or |S,3| won’t increase the return loss or
reduce the radiation efficiency. In receiving mode, if the incident wave is circularly polarized as
desired, the receiving efficiency should be the same as that in transmitting mode due to the
reciprocity. In such case, the leakage power from port 2 to port 3 is actually cancelling the return

loss from port 3 that to ensure maximum efficiency of power input from port 3 to port 1.

Since the power divider now is not symmetric, conventional “even-odd” mode analysis [231]
cannot be applied here. Instead, since the n-stage Wilkinson power divider can be treated as
cascaded 4-port network with transmission lines and shunt resistors, transmission matrix method
(also known as ABCD matrix) is used to analyze this network. The three-port network Wilkinson
power divider can be equivalent to a four-port network as is shown in Figure 9.12, with V;" =

Vv, =V, I, =I1+1, [235].

U1 llﬂ 1’ Zul lul Zun lun 9’

) )
< Zg1 lan ERi Zgy ldnE =y Za la1 ERl Zgp Lan }Eﬂ
3’

Figure 9.12. N-stage Wilkinson power divider and its equivalent 4-port network.

o Pl 1——2

Zgi Lai %Ri

f— il 3 413
@ ()

Figure 9.13. The four-port schematic for (a) two transmission lines and (b) a shunted load.
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The overall transmission matrix of the four-port network can be simply calculated by the
multiplication of the transmission matrix of each component. The transmission matrix relates the
voltages and currents in port 2 and 3 to those in port 1 and 4 in Figure 9.13, as described by:

V1, Vi, I, 14]T = [A][V,, V3, I, 13]T' (9.1)
where A is the transmission matrix. The transmission matrix for two transmission lines (shown in
Figure 9.13 (a)) A,,; and that for a shunted load with impedance R; (shown in Figure 9.13 (b))
Ap; are given by [231]. Then the overall transmission matrix is:

[A"] = [A2011)[AR1] - [A2an] [ARn]- 9.2)

The impedance matrix [Z’] of the four-port network shown in the right part of Figure 9.12
can be derived from its transmission matrix[A’] with some algebra. By applying the boundary
conditionVy" = V,’ =V,,1I; = I’ + I,/,which means directly connecting port 1 and 4, the four
port impedance matrix [Z'] can be reduced to three-port impedance matrix [Z]. Then the S matrix
can be calculated from the impedance matrix together with the knowledge of the impedance of the

three ports by:

(51 = [F1(12] = [2,]) (121 + [2,]) " [F1 %, (9.3)
where [Z,,] is a diagonal matrix with element in ith row and ith column is the impedance of port
i, Zp;, and [F] is also a diagonal matrix with element F;; = 1/(2\/Re(Zy:)).

This reciprocal three-port S matrix contains 12 independent quantities (magnitude and
phase of 6 S parameters S;;, S,1, S31, S22, S,3 and Ss3), and for our antenna application, four
quantities are important: the return loss at port 1 (|]S;4]), the power dividing ratio between port 2
and 3 (|S,11/1S311,), the phase difference between port 2 and 3 (Arg(S,,/S341)) and the power

dissipate in resistors (1 — [S;1]? — [S211% — 1S31]?).
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Before optimizing the parameters of the power divider, a parametric analysis is performed
to examine how the geometric parameters of asymmetric power divider impacts the performance.
For simplicity, single stage power divider is taken as an example. The parameters for power divider
include the impedance and length of the two transmission line arms and the resistance of the center
resistor. In the captions of Figure 9.14 to Figure 9.16, the wavenumber £ corresponds to the center
frequency 1.6 GHz. If we only change the impedance of the lower transmission line Z4 = 150Q
and keep the rest parameters unchanged, this will result in unequally power splitting and the
dividing ratio will be almost constant for the entire band as is shown in Figure 9.14.

Figure 9.15 depicts the simulated results for the single stage power divider with unequal
length of transmission line. The dividing ratio between port 2 and 3 of this power divider is
changing with frequency, with about 1dB at 1 GHz and -5 dB at 2 GHz. Notice it has drawback
that the loss in resistor is large and the phase difference is a non-linear function of frequency. One
way to reduce the loss in resistor is to increase its resistance, Figure 9.16 shows the results of the
same power divider in Figure 9.15 except the impedance of the load increases to 1000 Q. It can be
seen that the power loss in resistor is largely decreased but it reduces the power dividing ratio as a
function of frequency. In conclusion, the power dividing ratio depends on all the parameters of
power divider, and asymmetric length of the two transmission lines is the key to make the power

dividing ratio varying with frequency.
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Figure 9.14. Simulated results of (a) the S parameters and (b) phase difference between port 2 and

3 and power loss in resistive load for a single stage power divider with unequal Z,, and Z; (Z,, =

70.70, Z; = 1500, pl, = Bl; = 90°, Z;, = 10042 and all port impedances are 50 Q).
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Figure 9.15. Simulated results of (a) the S parameters and (b) phase difference between port 2
and 3 and power loss in resistive load for a single stage power divider with unequal [, and [,

(Z,=24=170.70, Bl, = 90°,Bl; = 150°, Z, = 10042 and all port impedances are 50 Q).
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Figure 9.16. Simulated results of (a) the S parameters and (b) phase difference between port 2

and 3 and power loss in resistive load for a single stage power divider with unequal [,, and [,

and large resistive load (Z,, = Z; = 70.70, B, = 90°,B1l; = 150°, Z, = 100042 and all port
impedances are 50 Q).

It is difficult to optimize both the power dividing ratio and phase difference simultaneously
for the power divider because both quantities highly depend on the length of upper and lower
transmission line of the divider. To circumvent this problem, first two 50 Q transmission lines are
added to the end of the power divider to compensate for the phase difference. Then, all parameters
of the power divider and the lengths of the transmission lines are optimized simultaneously. To
monitor the power that goes into VP and HP components for optimization purpose, two
hypothetical ideal directional couplers are used. For the convenience of cascading S parameters,
here the two directional couplers are put in one block diagram. In Figure 9.17, the black numbers
indicate the ports for the directional coupler block, and the red numbers refer to the ports for the
entire system. In the block diagram, the S parameters for VP & HP antenna components are

obtained from simulation shown in Sec.9.2.3.
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Figure 9.17. Block diagram of the feeding network with hypothetical ideal directional coupler.

The frequency independent S parameters for the hypothetical ideal directional couplers

with all port terminated by 50 Q impedance is given by:

0

) (9.4)

cCooRroOoOR OO
oRocoomRrooO
coRrocococoR
cocoocoococococo
cocoocoocococoo
cocoocoococococo
coocococooo

OO oo oK

S311

2
The power ratio for VP and HP antenna components is , and their phase difference

471

is given by Arg (M) for the entire system in Figure 9.17. Since the impedance of two

Sar1

411

components are not exact 50 Q but functions of frequency, 22—1 then is not equal to ‘;ﬂ Instead,
31

because of the linearity of this ideal directional coupler, those two quantities have the following
relation:

53/1 521
= -, 9.5
5= InNT (9.5)

where the coefficient g(f) is a function of frequency f.
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Moreover, the ratio between the electrical far fields with VP and that with HP is linear to
the ratio of feeding power for the VP and HP components for each frequency, and can be related

by a coefficient g,(f), as is described by:

E,

S3rq _ k
E_h = gz(f)m = gz(f)g(f)531-

(9.6)

It should be noted that the hypothetical directional couplers will not affect the performance
of the system, and it is only used in simulation to optimize the power divider.

Regarding the bandwidth, power dividing ratio, loss in resistors and complexity of the
network, a two-stage power divider is chosen to be optimized. The optimization goals for the
power divider are to divide the power with ratio as desired function of frequency, keep the return
loss and resistive loss minimum, and to maintain the phase difference to create circular polarization
for VP and HP components. Practically, it is difficult to achieve all goals simultaneously, and for
our application the most important property for the antenna is the omnidirectional circular
polarization property, for other features like return loss or resistive loss of the feeding network can
be tolerated within a certain range. More specifically, the return loss should be higher than 10 dB
and the resistive loss in the circuit should be lower than 20%. The overall optimization cost

function F is defined as the following equation:

F=a;R(IS111> = IS111%q) + @2R(L — [S111% — 1S211* — [S311> — 0.2)

S21 S21
Ar (—)—Ar (—)
IS~ ISy,

4
5212 k2 (9.7)

+az||==—| -
S31 531

+a,

)

req req

where |S1;|7eq is the required return loss and equals 0.1 (-10 dB), R(x) is the ramp function, which

Saa|?

is equal to x when x>0 and is equal to 0 when x<0.

and Arg (52_1) are the required

31 req 31 req
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power ratio and phase difference derived from simulated results for the combined VP and HP

components. They are functions of frequency. (zz—l) is given by:

317 req

(L) L 9

S31 req B 92N
where E, /E,, is the required average ratio between electric far field with V-pol and H-pol in all
azimuthal directions and is equal to 12 — 90° for circular polarization. Coefficients a, to a, in
(9.7) are weighting parameters for each optimization goals. Here we set a; = a, = 2,a; = a, =
1. The optimization process is to minimize the value of F.

The impedance and electrical length of each transmission line is optimized by a process
similar to particle swarm optimization (PSO) algorithm with random optimization (RO) algorithm
in Advanced Design System (ADS). The process is described in Figure 9.18. In this application,
the number of iterations m = 50 and when the optimization process finishes, the global optimal
result and its corresponding X, are obtained. The feeding network is implemented by microstrip
line and is printed on 0.81 mm thick PCB boards with substrate RO4003C (&r=3.55, tand = 0.0027).
The width and length of each microstrip line are calculated from its corresponding optimized
impedance and electrical length, and the resistance of resistors R;, R, is set to the value of 150 Q
and 300 Q due to their availabilities. The geometry of the feeding network is shown in Figure
9.1(c), and the parameters including the width and length of the microstrip line is described in
Table 9-1.

The magnitude and phase of the optimized and target S, /S5, as a function of frequency
are shown in Figure 9.19. The optimized feeding network has less than 0.7 dB deviation from the
goal in the ratio of dividing power for two polarization components for the entire band (1.2 to 2

GHz). The return loss and resistive loss of the optimized feeding network when connected with
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the VP and HP components is depicted in Figure 9.20 (a) and (b). Both return loss and resistive

loss satisfy the requirement of 10 dB and less than 20% for all operating frequencies.
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Figure 9.18. Optimization process for the feeding network.
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(a) (b)

Figure 9.19. The magnitude (a) and phase (b) for jz—l as functions of frequency comparison
31

between the simulated result after optimization and the desired one (optimal circular

polarization).
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Figure 9.20. The simulated (a) return loss |S;;|? and (b) resistive loss of the feeding network by
circuit model in ADS after optimization.
9.3 Antenna simulation and measurement results

The optimized feeding network together with the VP and HP radiating components are
simulated with full-wave simulation software AnsysEM (HFSS). It is fabricated and measured as
well. The antenna is printed on printed circuit board (PCB) with substrate RO4003C (er = 3.55,
tand = 0.0027) and is fed with an SMA connector. The pictures of the exterior and inner structure
are shown in Figure 9.21. The HP radiating components are on the inner side of the square box,
and the feeding network is inside the box. The simulated and measured return loss for the entire
antenna is depicted in Figure 9.22 (a). Good agreement is observed between simulation and
measurement and the 10 dB return loss bandwidth is about 66.7% (1.05 to 2.1 GHz) from

measurement result. Figure 9.22 (b) demonstrates the simulated radiation efficiency (only
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considering resistive loss) and total efficiency (including both resistive loss and return loss). The
resistive loss in full-wave simulation is higher than that from circuit simulation because the
resistive loss in radiating element is not included in the circuit simulation. It is shown that the

radiation efficiency is above 80 % and the total efficiency is above 70 % for the entire band from

1.2to 2 GHz.

HP radiating element

(@) (b)

Figure 9.21. Picture of (a) exterior and (b) inner structure of the proposed CP antenna.
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Figure 9.22. (a) The simulated and measured |S;,| and (b) the simulated radiation efficiency and

overall efficiency for the proposed CP antenna.
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The antenna’s gain and radiation pattern in azimuth plane are measured in the anechoic
chamber of the University of Michigan. To measure the circular polarized gain of this antenna, a
linear polarized (LP) antenna with known gain is used as the receiver. The received VP and HP E-
fields are measured in the same location, and the total E-field is the sum of both VP and HP E-
fields, then by decomposing the total field into RHCP and LHCP components, the corresponding
RHCP and LHCP gain can be obtained. The realized gain of this antenna for both RHCP and
LHCP in azimuth plane for different frequencies are shown in Figure 9.23. Good agreement can
be observed between simulated and measured results. The gain variations for RHCP are 1.3 dB
and 1.8 dB at 1.3 GHz and 1.9 GHz respectively.

In Figure 9.24 (a), the solid and dash line represent the RHCP and LHCP gain averaged
over all azimuth angles and the upper or lower bar denote the mean value plus or minus the
standard deviation of gains for all azimuth angles at that frequency (Wgqin £ 04qin). The average
realized RHCP gain for all azimuth angles and frequency within the operating band is about -0.99
dBi and the peak gain is 0.9 dBi at 1.3 GHz. The isolation between the RHCP and LHCP averaged
over all azimuth angles is more than 20 dB for frequencies larger than 1.25 GHz. The measured
and simulated axial ratio results are depicted in Figure 9.24 (b). The upper and lower bars for
measurement data denote the mean AR plus and minus the standard deviation of AR of all azimuth
angles of one frequency (u4 g * g4r). The measured axial ratio averaged over azimuth directions
is less than 2 dB for frequencies from 1.25 GHz to 2.15 GHz, and is less than 3 dB for frequencies
from 1.215 GHz to 2.2 GHz (~57.7 % bandwidth). The usable bandwidth that includes the 10 dB
return loss bandwidth and 3 dB axial ratio bandwidth on azimuth plane is 53.4% from 1.215 GHz

to 2.1 GHz. The simulated radiation pattern for elevation plane is shown in Figure 9.25. It shows
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the antenna pattern remains unchanged with frequency, and maximum RHCP gain occurs at 6=90°

as desired.
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Figure 9.23. The simulated and measured realized gain of RHCP and LHCP in azimuthal plane
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Figure 9.24. (a) The measured realized gain of RHCP and LHCP in azimuthal plane (x-y plane)

and (b) axial ratio as a function of frequency.
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simulated RHCP

(a) (b)
Figure 9.25. The simulated realized gain of RHCP and LHCP in elevational plane (x-z plane) for
(@) 1.3 GHz, and (b) 1.9 GHz.

Table 9 - 3. Comparison of different broadband omnidirectional CP antennas

Dimension in term Maximum Gain Minimum
Antenna of wavelength of Antenna type Usable and its efficiency
lowest operating P bandwidth corresponding within the
frequency elevation angle band
0.324X0.32A X . . .
[69] 0.26, DRA with wave polarizer 22% 1.48 dBi at 90° 84%
0.91AX0.91AX . . . N
[70] DRA with wave polarizer 41% 6.3 dBi at 30° .Ot
0.44)\ mentioned
Excitation of Two
0.921X0.92A X . .
[71] Orthogonal Circular TE2; 58% 2 dBi at 50° 63%
0.181
Modes
0.631X0.63AX inati f VP HP . N
[76] Combination of VP and 51.7% 1dBi at 125 ot
0.11A radiators mentioned
[77] | 0.5nx05ax0072 | Compinationof VEand HP o o0, 0.5 dBi at 90 85%
radiators
Thi inati f VP HP .
IS 1 garx0.4nx0.5, | Compination of VP and 53.4% 0.9 dBi at 90° 72%
work radiators

The comparison between the proposed antenna and other broadband omnidirectional CP
antennas is shown in Table I1l. Compared to other antenna designs in literature, the proposed
antenna has the largest usable bandwidth for antennas whose maximum gain is on horizontal plane

and has the most compact dimensions in azimuth plane for antennas with more than 30%
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bandwidth. Therefore, the proposed antenna is favorable in applications that require
omnidirectional CP on horizontal plane.
9.4 Conclusion

This chapter proposes a broadband omnidirectional circularly polarized antenna based on
two dissimilar wideband VP and HP radiating components and a feeding network with a dedicated
optimized asymmetric and frequency-dependent broadband power divider. Systematic analysis is
performed for the asymmetric power divider and its ability of manipulating power dividing ratio
as a function of frequency is investigated. An optimization process particle swarm optimization
(PSO) algorithm is presented to obtain the optimal power divider for this application. The final
design of antenna is simulated, fabricated and measured. The proposed antenna has an effective
bandwidth (overlapping of 10 dB return loss bandwidth and 3 dB AR bandwidth) of 53.4% and
average antenna gain of -1 dBi for all azimuthal angles and frequencies within the band. This
antenna has the potential for application in next generation wireless communication and advanced

bistatic radar systems that require omnidirectional CP antennas.
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Chapter 10 Conclusion

10.1 Summary

This thesis presents many applications of electromagnetics for autonomous vehicles and
demonstrates novel solutions to some existing problems related to electromagnetics for
autonomous vehicles. In particular, three EM related areas for autonomous vehicles are studied:
the automotive radar, the vehicular communication channel modeling, and antenna design.

In this thesis, the automotive radar related research includes the asymptotic numerical
simulation approaches fast wideband PO and GO-PO, the MMW radar backscattering models for
road surfaces from near grazing incidence, statistical models for the RCS of commonly seen traffic
targets to enable real-time radar signal simulation, a fast multiple-source angle-of-arrival
estimation algorithm and the radar target classification algorithms based on machine learning
approaches. The proposed fast wideband PO methods and GO-PO methods can efficiently and
accurately simulate the radar response for electrically very large targets, and provide the ability to
quantitively study the radar response from targets with different parameters (e.g. weight and height
for a pedestrian).

The radar backscattering from road surfaces are divided into two categories: surface
scattering and volumetric scattering. The surface scattering is studied by Monte-Carlo simulations
of many randomly generated dielectric rough surface with full-wave simulation software HFSS.

In each simulation, the periodic boundary condition is enforced, and the tangential near fields are
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collected. The scattered far field then is calculated from the tangential near fields by near-field far-
field transformation. Finally, the backscattering coefficients with different polarizations are
modeled as reduced functions of the rough surfaces’ statistical features (RMS height and
correlation length), dielectric constant and incident angle. The volumetric scattering is studied by
measurement data and semi-empirical model with radiative transfer function.

By applying the PO or GO-PO method, the RCS of many traffic targets including
pedestrians, vehicles and other targets are obtained. Because the RCS values fluctuate a lot with
incident angle and frequency, the statistical information of the RCS for different types of targets
are summarized. For advanced automotive radar like MIMO radar or imaging radar, the RCS of
different parts of the radar targets are simulated and generalized into the statistical models. The
entire radar target is modeled as a points cloud with the RCS of each point as a Gamma random
variable. The statistical models of the targets then are applied in the real-time radar simulations.
By using the parallel computing technique with GPU, one frame of MIMO radar simulation for all
channels with 1.5 million data from 100 scatterers takes less than 100 ms to run on an ordinary PC
(CPU: intel i7-7700, GPU: Nvidia GTX 1060).

Multiple-source AOA estimation is critical in MIMO radar signal processing when there
are more than one targets with the same radial speed and range with respect to the radar. This thesis
presents an analytic iterative multiple-source AOA estimation algorithm, which is much more
efficient compared to many classical AOA estimation algorithm including MUSIC and ML.
Besides, this approach doesn’t require the knowledge of number of sources and can be applied in
coherent signals and even single-snapshot condition.

Radar target classification can provide better reliability to autonomous driving compared

to the state-of-art target classification methods based on cameras or lidars since the radar is more
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robust than cameras or lidars under increment weather condition. Four radar target classification
models are developed to be applied in different scenarios using different types of radar: the
statistical RCS and time-domain RCS-based models can be applied to traditional radars at both
short and long range, and the 2D/3D radar image-based models require a shorter range targets and
a radar with imaging capability, but can provide much better classification accuracy.

The EM wave will not be totally blocked by cylindrical shape object even in MMW band
due to the refraction. While the field scattering for infinite-long cylinder and the far field scattering
for finite-length cylinder have been well-studied, the analysis of the near field scattering of a finite-
length cylinder with a near-field point source has not been reported yet. This thesis provides a
thorough analysis on the MMW channel model when the LoS is blocked by a cylindrical shape
object regardless the position of transmitter and receiver. The channel model is reduced into an
artificial neural network model for convenient usage. In the forest environment, the wave
scattering between tree trunks is approximated as a 2D scattering problem. The multiple scatterings
between cylinders have been studied analytically, and finally the path loss through a forest is
modeled as functions of tree density, foliage depth and the mean radius of tree trunk.

In the last part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna
designs are discussed. The first design is a compact horizontally polarized antenna, which contains
four folded dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The
second one is a circularly polarized antenna. It is composed of one ultra-wide-band monopole, the
compact HP antenna and a dedicatedly optimized asymmetric power divider-based feeding
network. The asymmetric power divider is optimized by swarm particle optimization, and it has
about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain of 0.9

dBi.
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