
 

 

The Effects of Disruption of Synaptic Signaling on Neuronal 

Networks 

by 

 
Maral Budak 

A dissertation submitted in partial fulfillment 
 of the requirements for the degree of  

Doctor of Philosophy 
(Biophysics) 

in the University of Michigan 
2020 

Doctoral Committee: 
 
Professor Victoria Booth, Co-Chair  
Professor Michal Zochowski, Co-Chair  
Professor Gabriel Corfas 
Professor Karl Grosh 
Assistant Professor Kevin Wood 
Assistant Professor Qiong Yang 

 

  



 

  
  
  
  
  
   
  
  
  
  
  
  
  
  

Maral Budak 
  

mbudak@umich.edu  
  

ORCID iD:  0000-0001-7565-1332  
  
  
  

© Maral Budak 2020 
 
 



 ii 

 

 

 

 

 

 

 

 

 

To Gary, for his endless support and love



 iii 

 
Since my childhood, I have always been dreaming about being a scientist and contributing 

to human knowledge, as I was always fascinated by science and curious to learn more. However, 

my main motivation for pursuing science was the urge to help hopeless people, whose problems 

cannot be solved by current knowledge in medicine. Seeing those people suffer has always been 

mentally overwhelming to me, especially if they are beloved ones. I noticed how important 

scientific advancements would be after witnessing that my grandpa couldn’t help himself as a 

medical doctor, and this experience boosted my passion for science. And this passion drove me to 

take this big step in my life without any hesitation. Even though I needed to leave my family, my 

friends and my whole life behind, I feel like doing a PhD at the University of Michigan was the 

best decision I have ever made in my life. I am thankful to all of the people who played a role in 

fulfilling my dream. 

 First of all, I couldn’t have accomplished this without my co-advisors, Michal Zochowski 

and Victoria Booth, whom I have learned everything from. I started working with them with no 

prior knowledge in this field, which scared me many times. Thanks to their courage and support, 

I overcame my fears and became more self-confident over time. Feeling less and less stupid at our 

weekly meetings was great evidence to me that I was on the right track. I am grateful to them for 

teaching me how to be a good scientist, and also for creating a fun and friendly working 

atmosphere, which is actually almost as important as the research. I am also thankful to our 

collaborators Gabriel Corfas and Karl Grosh for all the input they provided for the studies on 

Acknowledgements 



 iv 

auditory system, as their extensive knowledge in hearing was very helpful for our projects. Lastly, 

I would like to thank my committee members Kevin Wood and Qiong Yang for being in my 

committee and for encouraging me in my research. I am also grateful to all of my labmates, Jiaxing 

Wu, Quinton Skilling, James Roach, Bolaji Eniwaye, Yihao Yang and Jack Lin, for providing a 

peaceful and fun office atmosphere. I am glad I got the chance to travel with some of them for 

conferences, which gave us an opportunity to become closer friends. 

 I feel so lucky for having a great family who supported me at every stage in my life and 

encouraged me to show my potential. Even though it was hard as a kid to have perfectionist parents 

who always expected the best from me, I notice now that I couldn’t accomplish a PhD without 

being raised as a perfectionist. I would like to thank all my family for believing in my potential, 

for their emotional support from the other side of the world, for being my “alarm clocks” and 

making sure I didn’t sleep in before the early morning meetings. Leaving my family behind in 

Turkey was challenging, however, I met a wonderful family here, by coincidence, that made me 

feel like my own family. Many thanks to the Sagherian family for adopting me, especially to my 

‘Michigan mom’ Silva, for all the grocery trips and for being ready to help me any time I needed 

it. 

 My life as a graduate student would be tough without friends to spend some free time with. 

I knew nobody in Ann Arbor when I first started graduate school, but I am very happy to have met 

great friends over the past 5 years. I would like to thank them all for making graduate school life 

more bearable and fun as well as for letting me share all my thoughts, emotions and concerns. 

Also, many thanks to my childhood friends in Turkey for always being on the other end of the line 

whenever I needed. When I decided to move to the US, I was concerned that our friendship would 

be affected by the distance. After 5 years of being apart, I have noticed that nothing has changed 



 v 

and the oceans between us couldn’t impair our 25-year-old friendship. I would also like to 

acknowledge the most recent friend I have had, our cat Mosaic, who is the best cat I have ever 

met. Thank you for being patient with me and still loving me even though I’ve been treating you 

as my stress ball for the past few months. Thank you for accompanying me over the sleepless 

nights and keeping me awake with your meows. 

 Apart from the academic advantages, moving to Michigan gave me the opportunity to meet 

my fiancé Gary, and I don’t know how to express my gratefulness to him. Thank you for listening 

to the same talk a thousand times until I was ready, for sometimes taking the problems related to 

my research even more seriously than I did, for calming me down and encouraging me whenever 

I felt hopeless. Thank you for being my best friend and the biggest supporter in my life. 

  



 vi 

Dedication ...................................................................................................................................... ii 

Acknowledgements ...................................................................................................................... iii 

List of Tables ................................................................................................................................. x 

List of Figures ............................................................................................................................... xi 

Abstract ........................................................................................................................................ xv 

Chapter I Introduction ................................................................................................................. 1 

1.1 Neurons: main signaling units in the nervous system .........................................................................................2 

1.1.1 Basic physical mechanisms underlying function of individual neurons ...........................................................2 

1.1.2 Generation of action potentials .........................................................................................................................3 

1.1.3 Propagation of action potential down the axon .................................................................................................4 

1.1.4 Strategies to optimize the conduction velocity .................................................................................................6 

1.2 Synaptic transmission .............................................................................................................................................8 

1.2.1 Electrical synapses ............................................................................................................................................8 

 

Table of Contents 

 



 vii 

1.2.2 Chemical synapses ............................................................................................................................................8 

1.3 Neuronal networks ................................................................................................................................................10 

1.4 Failure in synaptic transmission ..........................................................................................................................12 

1.5 Auditory system ....................................................................................................................................................14 

1.5.1 Sound waves ...................................................................................................................................................14 

1.5.2 The propagation of the sound waves in the ear ...............................................................................................15 

1.5.3 Mechanoelectrical transduction in the cochlea ...............................................................................................17 

1.5.4 Tonotopic organization in the auditory system ...............................................................................................17 

1.5.5 SGN fiber types ...............................................................................................................................................19 

1.5.6 SGN fiber activity generates the temporal and intensity cues for sound localization ....................................20 

1.6 From synaptic and transmission disruption of SGNs to hidden hearing loss .................................................22 

1.7 Outline ....................................................................................................................................................................24 

Chapter II Synaptic Failure Differentially Affects Pattern Formation in Heterogeneous 

Networks ...................................................................................................................................... 26 

2.1 Introduction ...........................................................................................................................................................26 

2.2 Materials and Methods .........................................................................................................................................27 

2.2.1 Network structure and connectivity ................................................................................................................27 

2.2.2 Implementation of synaptic transmission failure ............................................................................................30 

2.2.3 Measures and statistics ....................................................................................................................................31 

2.3 Results ....................................................................................................................................................................31 

2.3.1 Activity – independent synaptic failure ..........................................................................................................34 

2.3.2 Activity – dependent case ...............................................................................................................................40 



 viii 

2.4 Discussion ..............................................................................................................................................................46 

Chapter III Contrasting Mechanisms for Hidden Hearing Loss: Synaptopathy vs Myelin 

Defects .......................................................................................................................................... 49 

3.1 Introduction ...........................................................................................................................................................49 

3.2 Methods ..................................................................................................................................................................52 

3.2.1 SGN fiber model .............................................................................................................................................52 

3.2.2 Sound representation .......................................................................................................................................53 

3.2.3 Defining different fiber types ..........................................................................................................................58 

3.2.4 Analyzing spike trains obtained from simulations ..........................................................................................59 

3.3 Results ....................................................................................................................................................................62 

3.3.1 Effects of myelinopathy on SGN population activation patterns ....................................................................62 

3.3.2 Effects of synaptopathy on SGN population activation patterns ....................................................................68 

3.3.3 Combined effects of myelinopathy and synaptopathy of hidden hearing loss ................................................70 

3.4 Discussion ..............................................................................................................................................................72 

Chapter IV Binaural Processing Deficits Due to Myelin Defects ........................................... 78 

4.1 Introduction ...........................................................................................................................................................78 

4.2 Methods ..................................................................................................................................................................80 

4.2.1 SGN fibers .......................................................................................................................................................80 

4.2.2 Network structure ............................................................................................................................................80 

4.2.3 Node dynamics of SBCs, GBCs and MSOs ...................................................................................................81 

4.2.4 Vector strength and relative vector strength measurements ...........................................................................85 

4.2.5 Simulations ......................................................................................................................................................86 



 ix 

4.3 Results ....................................................................................................................................................................86 

4.4 Discussion ..............................................................................................................................................................90 

Chapter V Conclusion ................................................................................................................ 92 

5.1 Summary ................................................................................................................................................................92 

5.2 Future directions ...................................................................................................................................................93 

Appendix ...................................................................................................................................... 95 

Bibliography .............................................................................................................................. 103 



 x 

Table III-1   Morphological, electrical and ion channel parameters of the different parts of a 

normal SGN fiber.. ................................................................................................................ 53 

Table III-2 Parameters for the model of middle ear-IHC synapse, changed from [88, 89] .......... 56 

Table IV-1 Parameters for SBC, GBC and MSO cells ................................................................. 83 

 

List of Tables 



 xi 

 

Figure I.1 The equivalent circuit of the membrane of a neuron. .................................................... 3 

Figure I.2 The equivalent circuit of a neuronal process. ................................................................. 5 

Figure I.3 The structure of the human ear.. ................................................................................... 15 

Figure I.4 The propagation of the sound vibration through the cochlea. ...................................... 17 

Figure I.5 Tuning curves for inner hair cells (IHCs) with best frequencies at ~1kHz (blue), ~3kHz 

(red) and ~15kHz (green).. .................................................................................................... 19 

Figure I.6 The rate-intensity functions for low-threshold (LT), medium-threshold (MT) and high-

threshold (HT) SGN fibers .................................................................................................... 20 

Figure I.7 ITD function of an MSO cell. ...................................................................................... 22 

Figure II.1   Modeling different scale-free network structures depending on the directionality at 

the hubs. ................................................................................................................................ 28 

Figure II.2  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of 

its degree for incoming and outgoing networks for different connectivities and direction ratios 

at the hubs. ............................................................................................................................ 33 

Figure II.3  Pattern formation in the networks with activity-independent synaptic failure. ......... 35 

Figure II.4  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of 

its degree for incoming networks. ......................................................................................... 38 

List of Figures 



 xii 

Figure II.5  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of 

its degree for outgoing networks. .......................................................................................... 40 

Figure II.6   Pattern formation in the incoming and outgoing networks with activity-dependent 

synaptic failure.. .................................................................................................................... 41 

Figure II.7   Pattern formation in the incoming networks with activity-dependent synaptic failure 

as a function of failure recovery time constant T. ................................................................ 42 

Figure II.8   Pattern formation in the outgoing networks with activity-dependent synaptic failure 

as a function of failure recovery time constant T. ................................................................ 43 

Figure II.9   Histograms of MPC as a function of degree of neurons of incoming and outgoing  

networks for varying failure recovery time constants T. ...................................................... 44 

Figure II.10 Average input magnitude to a neuron as a function of nodal degree for activity-

dependent synaptic failure. ................................................................................................... 45 

Figure II.11 Participation in pattern formation as a function of nodal degree for activity-dependent 

transmission failure for mixed excitatory-inhibitory networks. ........................................... 46 

Figure II.12  Emergence of coherence patterns in scale-free networks. ....................................... 47 

Figure III.1 Mechanisms of hidden hearing loss. ......................................................................... 51 

Figure III.2  Sound-evoked activity of low, medium and high threshold SGN fibers results from 

increased vesicle release probabilities from corresponding IHC-SGN synapses. ................ 57 

Figure III.3  Methods used to evaluate cumulative activity of SGN fiber populations: pairwise 

spike time differences and simulated CAP. .......................................................................... 60 

Figure III.4  The synchronous activity of SGN fiber populations is disrupted and their response to 

sound is decreased with increasing levels of Lu heterogeneity.. ........................................... 64 



 xiii 

Figure III.5  Longer Lu significantly decreases and delays the peak of the sound-evoked CAPs of 

SGN fibers. ........................................................................................................................... 66 

Figure III.6 Longer Lh significantly decreases and delays the peak of the sound-evoked CAPs of 

SGN fibers. ........................................................................................................................... 67 

Figure III.7  Synaptopathy at IHC-SGN synapses decreases the peak of the CAP significantly, 

without changes to peak latency and width. ......................................................................... 69 

Figure III.8   Different scenarios of hidden hearing loss have additive effects on SGN activity.. 71 

Figure IV.1 Vector strength of phase-locking to the sound wave and relative vector strength 

measurements for different cell types and degrees of myelinopathy in response to 200Hz, 

50dB sound stimulus.. ........................................................................................................... 88 

Figure IV.2 The spike rates of SGNs, SBCs, GBCs and MSO cells for increasing Lu variations 

show that activities of all cell types are decreased for higher variations. ............................. 89 

Figure IV.3  The spike rates of MSO cells at their best ITDs drop significantly for increasing Lu 

variation. ............................................................................................................................... 90 

 

Supplementary Figure 2. 1  Network Spike frequency and mean phase coherence for various 

frequencies of random input (Irand), for incoming and outgoing networks. .......................... 95 

Supplementary Figure 2. 2 Nodal contribution to network-wide Mean Phase Coherence (MPC) as 

a function of its degree for incoming networks for different connectivities and failure recovery 

time constant T.. .................................................................................................................... 96 

Supplementary Figure 2. 3 Nodal contribution to network-wide Mean Phase Coherence (MPC) as 

a function of its degree for incoming networks for different direction ratios and failure 

recovery time constant T. ...................................................................................................... 96 



 xiv 

Supplementary Figure 2. 4 Nodal contribution to network-wide Mean Phase Coherence (MPC) as 

a function of its degree for outgoing networks for different connectivities and failure recovery 

time constant. ........................................................................................................................ 97 

Supplementary Figure 2. 5 Nodal contribution to network-wide Mean Phase Coherence (MPC) as 

a function of its degree for outgoing networks for different direction ratios and failure 

recovery time constant T. ...................................................................................................... 97 

 

Supplementary Figure 3. 1  Keeping constant channel number as length of unmyelinated segment, 

Lu, is increased leads to larger effects on cumulative CAP of increased Lu.. ...................... 98 

Supplementary Figure 3. 2 Maintaining channel density at the heminode as its length, Lh, is varied 

reduces effects on cumulative CAP of increased Lh.. ........................................................... 99 

Supplementary Figure 3. 3 The characteristics of Iapp and the Lu value of SGN fibers determine the 

time difference between a spike and a release preceding the spike (delay).. ...................... 100 

Supplementary Figure 3. 4 Myelinopathy results in a significantly reduced spike probability and 

increased latency after a release event.. .............................................................................. 100 



 xv 

 
The brain is an organ that acts as the conductor of an orchestra – it governs all vital body 

functions and assures that all organs operate in harmony. Moreover, it plays a crucial role in 

various tasks such as memory formation, sensory processing and movement control. The 

performance of the brain in these tasks requires spatiotemporal patterns formed by the activity of 

different parts of the brain. The formation of the spatiotemporal patterns in the brain is facilitated 

by the connections between neurons, also known as synapses. Therefore, transmission failure in 

synapses may lead to disruption in these patterns and may impair the proper functioning of the 

brain. The aim of this dissertation is to explore the outcomes when synaptic transmission is 

disrupted. First, we investigated the universal effect of synaptic failure in neuronal networks 

having heterogeneous connectivity. Even though human studies on anesthetics claimed that failure 

in signal transmission in the brain results in loss of coherence in brain activity, we provided 

evidence that this may not always be true. On the contrary, synaptic failure may facilitate the 

emergence of coherent neuronal network activity due to more balanced input levels across the 

neuronal network.  

The second part of this dissertation focuses on a specific case which arises from disruption 

in synaptic signaling in the peripheral auditory system, namely hidden hearing loss (HHL). We 

built a computational model to simulate two mechanisms that give rise to HHL: 1) loss of synapses 

between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) and 2) myelin defects at the 

peripheral SGN axons. We concluded that both mechanisms decrease the cumulative SGN activity, 
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whereas only myelin defects desynchronize it, confirming the experimental observations. Finally, 

we investigated the effect of SGN myelin defects on sound localization, as patients with HHL were 

shown to have binaural processing deficits. We provided evidence that the activity of the neurons 

in the downstream cochlear nucleus circuit that is responsible for sound localization is severely 

impaired as a result of myelin defects in SGN fibers. This result possibly elucidates the mechanism 

that gives rise to sound localization deficiencies in HHL patients.   
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The brain is one of the most important organs of the human body where vital life functions 

are controlled and all emotions, senses, thoughts and memories are formed. It performs a diverse 

set of tasks owing to its ability to execute extensive computations, which is crucial for processing 

and transmitting sensory information. How these tasks are performed by the brain still needs to be 

largely discovered, and many studies focus on understanding the brain’s mechanisms from various 

perspectives. So far, the interplay between experimental studies, computational modeling and data 

analysis methods has been very powerful in shedding light on the events underlying the brain’s 

function. 

 The basic unit of the brain is the neuron. The neuron itself is a rather simple 

computational unit as it, in simplest terms, receives inputs from other cells, and based on its (often 

complex and nonlinear) processing emits a binary signal itself – an action potential.  Neurons are 

connected by synapses, forming a complex neuronal network structure within the brain. The 

communication between neurons is primarily maintained by synapses, which play a crucial role in 

the functioning of the brain. Due to the complex connectivity in the brain, the neurons from its 

separate modalities are able to cross-talk, and various spatiotemporal patterns of neuronal activity 

emerge. Therefore, proper synaptic transmission is necessary to maintain the formation of these 

patterns, which are required to maintain the performance of the brain. Humans, in particular, with 
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the highest number of synapses (~1014) across all animals, owe their higher intelligence and ability 

to perform many complex tasks to these spatiotemporal patterns. Thus, the disruption of synaptic 

transmission critically impairs information processing in the brain and may underlie many 

neurodegenerative diseases. This work is aimed at understanding, in a universal case, effects of 

disruption of synaptic signaling on neuronal network activity, and, in a specific case, how this 

disruption contributes to hidden hearing loss. 

1.1 Neurons: main signaling units in the nervous system 

Neurons are the basic units of the nervous system, where information processing occurs via 

extensive computations. Even though there are morphologically distinct types of neurons, they 

typically consist of a cell body, an axon, dendrites and presynaptic terminals. Incoming signals 

from other neurons are received by the dendritic branches that are connected to the cell body, 

where all signals integrate. The integrated signal is then conveyed via the axon to the presynaptic 

terminals and is transmitted to other neurons via synapses. 

1.1.1 Basic physical mechanisms underlying function of individual neurons 

A potential difference is maintained between the inside and outside of neurons due to 

properties of their lipid bilayer membrane which restricts the flow of ions into and out of the cell. 

The capacitance property of the membrane stems from this ability to separate charges, where the 

lipid bilayer acts as an insulator that enables the storage of charge on its opposite sides. However, 

the membrane includes voltage-gated ion channels selectively permeable to different types of ions. 

These ion channels can switch between open and closed states, and the rate of transition between 

these states depends on the membrane potential due to the voltage sensitivity of ion channels. The 

ability of neural membrane to regulate the flow of ions via these channels represents its 
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conductance property. Additionally, due to the separation of ionic charges, there is a concentration 

gradient for each ion across the membrane. The standard way to model a neuron represents a patch 

of neural membrane as an equivalent electrical circuit consisting of a capacitor, conductors for 

each type of ion channel and batteries for each type of ion gradient (Figure I.1). 

 

Figure I.1 The equivalent circuit of the membrane of a neuron. 

In the neuron’s resting state, Na+ and Cl- ions are more concentrated in the extracellular space 

outside of the membrane, whereas K+ and organic anions are more concentrated inside the cell. 

The maintenance of the concentration gradients of these ions is facilitated by Na+-K+ pumps, which 

balance out the passive movement of these ions by transporting them against their concentration 

gradients, i.e. they pump Na+ outside of the cell and K+ inside of the cell with the usage of ATP. 

In an equilibrium state, the potential difference between the inside and the outside of the 

membrane, also known as the resting potential, is around -65mV.  

1.1.2 Generation of action potentials 

Action potentials are fast and transient electrical signals generated by neurons in response 

to input signals received from their presynaptic connections. They are sources of information 

conveyed to and processed by the brain. The generation of action potentials requires the input 

signal to cause membrane voltage to exceed a certain threshold value. Once the membrane 

gNagK
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+
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potential of a neuron reaches the threshold, the amplitude and the duration of the resulting action 

potential is the same independent from the strength of the received signal. This phenomenon of 

the neurons is called the ‘all-or-none law’, and it stems from the nonlinear, voltage dependent 

dynamics of the ion channels. The rate of the transition between open and closed states of these 

channels depends on the membrane potential. At the resting state, voltage-gated Na+ and K+ 

channels are in a closed state. The transient increase in the membrane potential, also called 

depolarization, due to the received signals opens Na+ channels, which results in the influx of the 

Na+ ions down their concentration gradients. If the membrane potential reaches the threshold 

voltage, a large Na+ influx depolarizes the neuron rapidly, generating an action potential. Due to 

the high membrane potential as a result of this influx, Na+ channels close and consecutively K+ 

channels open, resulting in the outflow of the K+ ions and a sharp decrease of the membrane 

potential. The rapid increase followed by a sharp decrease in the membrane potential is called an 

action potential or spike. 

1.1.3 Propagation of action potential down the axon 

Neuronal processes, like axons or dendrites, transmit voltage signals received from 

presynaptic connections for significant distances through the interior of their membranes. The 

processes underlying this propagation, especially in case of myelinated axons can be quite 

complex. To be able to model how signals propagate along the axon and dendrites, it’s been 

assumed that axons or dendrites are cylindrical membranes, or ‘cables’ in which electrical 

conduction takes place [1]. To calculate how the voltage changes along the cable, it is commonly 

discretized into sub-cylinders with infinitesimal lengths. The voltage needs to be calculated at each 

discrete region, which can be considered as a point neuron with a capacitance (cm) and a resistance 

(rm) connected in parallel, as described in Section 1.1.1. Each compartment is connected through 
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the cytoplasm and the extracellular fluid. Due to the intrinsic resistive properties of the cytoplasm, 

the current flowing between compartments through the cytoplasm encounters a resistance, called 

an axial resistance (ra). However, the distinct regions are also connected with a short circuit 

representing the extracellular fluid, since the potential difference outside of the membrane is 

assumed to be the same everywhere (Figure I.2). By using Ohm’s Law and Kirchhoff’s Law, the 

following equation can be derived to represent the membrane potential as a function of space x 

and time t: 

                       − "

#$

%&'( ),+

%)&
+ c.

%'( ),+

%+
+ '( ),+ /01234

#(
= I788 x, t .                                         (1.1) 

Here, Erest is the resting membrane potential and Iapp is the current generated by the received signal.  

 

Figure I.2 The equivalent circuit of a neuronal process. 

The ability of the membrane to resist the flow of the ions is determined by the membrane 

resistance, which can be expressed as 

                                                            r. = R. 2πa,                                                               (1.2) 

where Rm stands for the specific resistance of a unit area of the membrane and a is the radius. Here, 

2πa is the circumference of an axon, which is related to the membrane surface area of unit length, 

and thus the total number of ion channels per unit length. Since more ion channels mean lower 

resistance, the radius a is inversely proportional to the membrane resistance.  

The axial resistance depends on the cross-sectional area of the axon, i.e. its radius a, and 

the specific resistance of a 1cm3 volume of the cytoplasm (ρ). Thus, it can be expressed as 
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                                                            r7 = ρ πAB.                                                                   (1.3) 

Here, the cross-sectional area is inversely proportional to the axial resistance, since bigger cross-

sectional area allows more charge (ions) to flow per unit length. 

Equation 1.1 governs the change in the membrane potential along the axon in response to 

the received signals. If the input signal is applied to the axon at a point (i.e. at x = 0), the resulting 

membrane voltage depends on the distance from the site of application. Specifically, the amplitude 

of membrane voltage decreases with increasing distance from the application site, and the signal 

eventually dies out. This decrease is exponential with distance, and given by 

                                                         	∆V x = ∆VFe/) H,                                                               (1.4) 

where ∆V(x) is the membrane potential difference with a distance x away from the application 

site, ∆V0 is the membrane potential difference at application site x=0 and λ is the membrane length 

constant, defined as the distance where the membrane potential is decreased to 1/e of its original 

value and expressed by 

                                                            λ = r. r7 = J(7

BK
.                                                       (1.5) 

This parameter indicates that how efficient a voltage change propagates along an axon is 

proportional to the radius a and specific membrane resistance of the axon Rm and is inversely 

proportional to the specific resistance of the cytoplasm ρ.  

1.1.4 Strategies to optimize the conduction velocity 

An action potential needs to propagate with a certain velocity, so that the nervous system 

can function properly. The conduction velocity of an action potential depends on the length 

constant λ: For higher length constants, the spike propagates more rapidly, and vice versa.  
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Several strategies have evolved to increase the length constant in order to optimize the 

conduction velocity of action potentials. One of these mechanisms is increasing the diameter of 

axons, which decreases the axial resistance and consequently increases the conduction velocity. 

This might be the reason why many invertebrates like squids have giant axons and why axons with 

higher conduction velocities generally tend to have larger diameters. 

Another strategy to increase the conduction velocity is insulating the axonal membrane, 

which reduces the current leaking out. The axonal membranes are wrapped with a lipid-rich 

substance called myelin, generated by oligodendrocytes in the central nervous system and 

Schwann cells in the peripheral nervous system. As a result, insulation of the membrane increases 

the membrane resistance rm as well as the length constant λ, allowing the spike to propagate 

passively along the axon for longer distances. Moreover, the thickness of the axonal membrane is 

increased if wrapped by myelin, leading to lower capacitance values, which means that the charge 

needed to change the potential across the membrane is decreased, making the generation of a spike 

easier. Thus, lower capacitance contributes to higher conduction velocities as well.  

However, insulating the whole axon does not generate the highest conduction velocities, 

since the action potential would die out eventually. To prevent this, in many axons ~2 µm long 

unmyelinated axonal membrane segments which are densely populated with voltage-gated ion 

channels (nodes of Ranvier) appear between segments that are wrapped in a myelin sheath. In such 

a myelinated axon, an action potential is generated at each unmyelinated part followed by a passive 

propagation along the myelin sheathed segment. This is a very effective mechanism to speed up 

the propagation of a spike. The conduction velocity of a spike along an unmyelinated axon is 0.5-

10m/s, while a myelinated axon can conduct a spike with up to 150 m/s of speed[2].  
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Since myelination is crucial to increase the conduction velocity, neurodegenerative 

diseases causing demyelination, such as multiple sclerosis, Guillain-Barre syndrome and Charcot-

Marie-Tooth disease have devastating outcomes, including motor weakness, paralysis or abnormal 

somatic sensations [3-5].  

1.2 Synaptic transmission 

Once the action potential propagates along the axon to the presynaptic terminal of a neuron, 

signals are transmitted through specialized structures, called synapses, to the other neurons they 

are connected to. In human brain, each neuron branches out and synapses with ~1000 postsynaptic 

neurons, and receives signals from even more neurons, ~10000 on average via synapses. Synaptic 

transmission is essential for the brain’s activity, since the communication of different parts of the 

brain is required for complex processes, such as learning, memory and perception. 

1.2.1 Electrical synapses 

One of the main types of synapses are electrical synapses, which connect pre- and 

postsynaptic neurons via gap junctions, specialized channels providing direct cytoplasmic 

connection between two neurons. The electrical current can flow easily bi-directionally through 

these channels between neurons, maintaining a low ionic resistance. Therefore, the transmission 

is highly rapid, resulting in the synchronous firing of connected cells.  

1.2.2 Chemical synapses 

Unlike electrical synapses, chemical synapses are slower, since the neurons are not 

physically connected via structures like gap junctions. Instead, there is a 20-40nm gap between 

pre- and postsynaptic neuron, called the synaptic cleft. The transmission of the signal depends on 

the diffusion of signaling molecules, called neurotransmitters, through the synaptic cleft to relay 
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the signal from pre- to postsynaptic neuron. These neurotransmitters are confined in synaptic 

vesicles, which are concentrated in the presynaptic terminals. Once the action potential reaches the 

presynaptic terminal, the potential change leads to the opening of Ca2+ channels, resulting in the 

increase of Ca2+ concentration at the terminal. These ions facilitate the exocytosis of the synaptic 

vesicles into the synaptic cleft, allowing the neurotransmitters to be released in the cleft. The 

neurotransmitters then diffuse through the synaptic cleft and bind to postsynaptic membrane 

receptors, causing the opening or closing of membrane channels and changing the postsynaptic 

membrane potential. All of these steps decrease the speed of signal transmission in chemical 

synapses, resulting in delays of approximately 0.3ms to several milliseconds. However, chemical 

synapses are advantageous in that they can amplify pre-synaptic signals, since each synaptic 

vesicle contains thousands of neurotransmitters leading to the activation of thousands of ion 

channels in the postsynaptic neuron.  

Many different molecules can act as neurotransmitters, such as small molecules and 

peptides. However, the response of the postsynaptic neuron does not depend directly on the 

chemical structure of the neurotransmitters. Instead, the properties of the postsynaptic receptors 

that neurotransmitters bind to determine the voltage changes in the postsynaptic neuron. Based on 

the type of the ion channels and the action caused by the binding neurotransmitter, the postsynaptic 

neuron can be either depolarized (increase in voltage) or hyperpolarized (decrease in voltage). For 

instance, the opening of Cl- channels would cause rapid inflow of Cl- and subsequently lead to the 

hyperpolarization of the postsynaptic neuron, but the opening of Na+ channels would lead to inflow 

of sodium causing neuronal depolarization. 
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1.3 Neuronal networks 

The human brain consists of 1011 neurons connected by 1014 synapses giving rise to a 

network organization in the brain [6]. This network structure is essential for the communication 

among different brain regions and for the integration of neural information. As a result, coherent 

mental and cognitive states emerge, such as visual recognition, language, emotion and social 

cognition.  

 Connectivity in the brain can be analyzed from different perspectives. The structural 

(neuroanatomical) connectivity refers to the physical connections in the brain [7]. On the 

macroscopic level, they can be characterized by imaging techniques like diffusion tensor imaging 

(DTI), which is based on tracing water diffusion through the neurons [8], or other direct labeling 

techniques [9]. The functional connectivity, on the other hand, is defined as the temporal 

correlation between the activities of distinct brain regions, provided by synaptic transmission [7]. 

To determine this temporal correlation, functional connectivity at a macroscopic level can be 

studied by using several types of brain data, such as electroencephalogram (EEG) and 

magnetoencephalogram (MEG) [10], local field potentials (LFP) [11], functional magnetic 

resonance imaging (fMRI) [12] or positron emission tomography (PET) recordings [13]. 

Up keep of neural processes through which action potentials are transmitted, as well as that 

of synapses themselves is energetically costly. Therefore, the network structure in the brain is 

organized in a way to minimize the energy cost of synapses without compromising on its 

functioning [7]. This is facilitated by the modular structure of the brain. Namely, the brain has 

highly connected, specialized modules consisting of spatially close neurons [14]. However, 

distinct modules are sparsely connected, enabling integration of information between modules. 
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This gives rise to neurons with high degree of connectivity, also known as hubs, in the brain 

networks [7, 15].  

Due to the complex network organization of the brain, graph theory analysis has been 

applied to neuronal networks, where neurons represent the nodes of the networks and synapses 

represent the connections between the nodes. Graph measures on human fMRI and DTI data 

enabled the identification of many potential structural and functional hub regions, respectively. 

For instance, functional hubs are found in precuneus, cingulate gyrus, ventromedial frontal cortex 

and inferior parietal brain regions [7, 16, 17], whereas high-degree regions in the parietal, frontal 

and insular cortices are shown to contain many structural hubs [18-21]. Since chemical synapses 

are unidirectional, it is reasonable to claim that structural connectivity has a directionality, which 

is studied with tract tracing and other invasive methods in non-human species [14, 22, 23]. These 

studies suggest that hub regions can be characterized as ‘sources’, if they have predominantly 

outgoing connections, including hubs in the cingulate, entorhinal and insular cortices. On the other 

hand, hubs with predominantly incoming connections are defined as ‘sinks’, such as portions of 

frontal and paracingulate cortices [14, 22, 23]. In addition, many studies with fMRI coupled with 

graph theoretical analyses suggest that functional networks of humans exhibit scale-free 

organization, described as networks with power-law degree distribution, having a lot of neurons 

with a few connections and a few ‘hubs’ with a lot of connections [24-26].  

Many studies provided evidence that abnormalities of structural connectivity or 

functioning of hub regions correlate with behavioral and cognitive impairments, which lead to 

many neurological and psychiatric diseases [27-31]. For instance, disrupted structural and 

functional connectivity at frontal hub regions and at multimodal association cortex are shown to 

result in schizophrenia [28, 29]. Moreover, studies with children with autism indicated that 
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intramodular and intermodular connections were impaired at densely connected limbic, temporal 

and frontal regions [32]. In addition, medial parietal and frontal regions, where network hubs are 

densely located, have disturbed connectivity in Alzheimer’s disease (AD) [33] and frontotemporal 

dementia [34], respectively. Such evidence proves the significance of proper organization of hub 

regions, which relies on proper synaptic transmission. 

1.4 Failure in synaptic transmission 

As described above, synaptic transmission is a multi-step process, and a problem at any 

one of these steps may lead to its failure. The chemical synapses may fail to transmit signals due 

to the depletion of neurotransmitters or external changes in membrane/ion channel activity. 

Examples of the latter that occur in AD include interaction of oligomeric Aß or misfolded tau with 

cell surface receptors, intracellular signaling molecules or scaffold proteins, which leads to the 

deterioration of synaptic structure and function [35]. Another example is an interaction of 

anesthetics with GABAA or NMDA receptors, or K+ channels, causing hyperpolarization, 

glutamate desensitization or increase in K+ conductance at the postsynaptic neuron, respectively 

[36].  

Subsequently it is no surprise that synaptic failure can change functional network 

connectivity and, consequently information processing leading to potentially devastating 

outcomes. For instance, synaptic failure is suggested to be part of the cause of most 

neurodegenerative diseases including AD, Huntington, ALS, and ischemic cerebral damage. In 

fact, it may be the first pathologic event to occur in these diseases, even before the loss of neurons 

[37]. However, synaptic transmission failure may target different components of the network and 

lead to different consequences in terms of changes of spatio-temporal patterning in the network. 

Buckner et al. (2009) provided evidence that cortical hubs (i.e., regions that integrate and transmit 
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information from/to many other parts of the brain) in humans are the most vulnerable areas to 

amyloid deposition, which results in atrophy and eventually AD [30]. Moreover, another study on 

mice showed that amyloid deposition is caused by excessive neuronal and synaptic activity in vivo 

[38]. In another study, de Haan et al. (2012) hypothesized that hubs are the most active regions in 

the brain, which can result in “activity dependent degeneration” [39]. Their results verified this 

hypothesis and identified that activity dependent degeneration results in hub vulnerability as well 

as macro-scale disruption of brain connectivity, as observed in AD.  

Anesthetics represent another scenario where synaptic failure, in this case more of a 

controlled synaptic suppression, causes a significant disruption of brain functioning, i.e. loss of 

consciousness. Anesthetics are thought to act through ion channel blockage and/or changes in 

cellular membrane dynamics which lead to synaptic failure [40]. One of the observed outcomes of 

anesthetics on a macro-network scale is a decrease in the large-scale functional connectivity 

between different parts of the brain. In particular, it was postulated that the hub regions of the brain 

are primarily affected by anesthetics and lead to the loss of global functional connectivity which 

is followed by loss of consciousness [41]. In a similar spirit, another study investigated 

directionality of information flow across brain networks by simulating simple oscillatory models 

at the nodes of a human anatomical brain network. They found the directionality of a network is 

determined by its topology [42]. Based on their finding that hub nodes phase lag while peripheral 

nodes phase lead, they concluded that connections are directed from lower to higher degree nodes. 

Further, they perturbed the hub structure to simulate an unconscious state, leading to the 

elimination of the directionality in the neuroanatomical network, which is consistent with data 

from anesthetic administered in humans, where anterior (less hubs)- to-posterior (more hubs) 

directionality was lost. In the first project of this thesis, I will show, however, that targeted 
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elimination of connectivity in scale-free networks may lead to more complex and unexpected 

changes in spatiotemporal patterns of their activity (Chapter II). 

1.5 Auditory system 

In the second part of my thesis, I investigated the role of specific experimentally measured 

pathologies in myelination patterns of auditory axons on spike propagation and their possible 

cognitive consequences.   

Hearing and distinguishing a wide range of sounds are facilitated by the auditory system, 

where mechanical sound waves are transduced into electrical signals in the ear. These electrical 

signals are transmitted to the brain, which processes the auditory information and enables the 

recognition of the sound. Many studies suggested that disruption in the signal transmission in the 

auditory system due to damaged synapses results in many types of hearing deficits [43-45]. 

Therefore, an undisturbed flow of information through auditory pathways is necessary for a proper 

hearing. 

1.5.1 Sound waves 

Sound can be defined as vibrations propagating in a medium (e.g. air, water) and causing 

pressure differences in the medium they propagate. The perception of sound requires the 

propagation of the sound into the ear. The pressure differences that a pure tone sound generates 

can be represented by a sinusoidal wave. The frequency of this wave indicates the pitch of the 

sound. Humans can perceive frequencies between 20Hz-20kHz, although some animals can 

distinguish frequencies out of this range [46]. 

The amplitude of the sound wave P relates to the sound intensity L, which can be defined 

as: 
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                                                             L = 20 log"F
Q

Q12R
,                                                             (1.6) 

where the sound intensity L is in decibels sound pressure level (dB SPL), P is the magnitude of 

the stimulus described as the root mean square of the sound pressure in pascals, and Pref is 20µPa 

corresponding to the pressure generated by 0 dB SPL [47]. This implies that doubling the loudness 

requires ten times more sound pressure.  

1.5.2 The propagation of the sound waves in the ear 

The ear, as the primary auditory sensory organ, contains the auditory receptor called the 

organ of Corti, where mechanoelectrical transduction of sound waves takes place. The ear consists 

of three functional parts: external ear, middle ear and inner ear (Figure I.3). 

 

Figure I.3     The structure of the human ear. The ear consists of auricle and the external auditory meatus in 
the external ear, tympanium and the ossicles in the middle ear, and cochlea in the inner ear. 

The external ear is composed of the auricle and the ear canal (external auditory meatus). 

The auricle, the cartilage-based, folded structure, is the visible part of the ear and plays a role in 

collecting the sound from the surroundings like an antenna and transferring it to the ear canal. 

Sound waves travel through the ear canal which ends at the eardrum (tympanum), a thin membrane 

with 9mm diameter separating the external ear from the middle ear [48].  
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The middle ear is responsible for transmitting sound waves to the inner ear, where the organ 

of Corti resides. The arrival of sound waves to the eardrum results in its vibration. There are three 

ossicles (bones) in the middle ear: malleus, incus and stapes. The eardrum is connected to the 

malleus, which is attached to the incus, and the incus connects with stapes. The vibration of the 

eardrum is transferred through these bones to the oval window, the starting point of the inner ear. 

Since the surface area of the eardrum is larger than the surface area of the stapes, where it connects 

with the oval window, the pressure of the vibration is amplified when it is transferred into the inner 

ear.  

The cochlea, a conical structure shaped like a snail’s shell, resides in the inner ear. It 

consists of three tubes filled with fluid: the scala vestibuli, the scala tympani and the scala media. 

The scala vestibuli is the tube at the top, which has the oval window at its base. It is connected to 

the scala tympani at the helicotrema at the most apex part of the cochlea. The scala tympani opens 

to the middle ear via the round window at its base, which is covered by a thin membrane. The scala 

media is between the scala tympani and the scala vestibule, where the organ of Corti is embedded. 

Due to sound vibration, the stapes pushes inward through the oval window. This movement creates 

pressure changes in the scala vestibule that displaces the fluid in it. The motion of the fluid due to 

the movement of the stapes leads to a deflection of the basilar membrane, a membrane between 

the scala tympani and scala media [47]. This movement activates the organ of Corti and the sound 

wave is transduced to an electrical signal (Figure I.4). 
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Figure I.4      The propagation of the sound vibration through the cochlea. For a better intuition, the cochlea 
is drawn as unfolded. 

1.5.3 Mechanoelectrical transduction in the cochlea 

The organ of Corti is the auditory receptor organ responsible for translating mechanical 

sound waves into electrical signals. It consists of hair cells and a variety of supporting cells. Hair 

cells are aligned along the basilar membrane and their cilia face towards the tectorial membrane, 

which lies over the hair cells. The movement of the basilar membrane as a result of sound waves 

traveling through the cochlea tilts the cilia of the hair cells, opening the mechanosensitive K+ 

channels and depolarizing the hair cell. There are two types of hair cells: inner hair cells (IHC) 

and outer hair cells (OHC). The OHCs are mainly responsible for the amplification of low-intensity 

sounds, whereas IHCs play a role in signal transduction. Each IHC forms synapses with the 

peripheral axons of the bipolar spiral ganglion neurons (SGNs), also known as auditory nerves, 

which send the signals coming from hair cells to the cochlear nucleus in the brain. Changes in the 

membrane potential of the IHC trigger the opening of Ca2+ channels in the vicinity of IHC-SGN 

synapses, facilitating the exocytosis of the neurotransmitters [47, 49]. 

1.5.4 Tonotopic organization in the auditory system 

The frequency information of sounds is encoded in the cochlea by the activation of distinct 

IHCs for different frequencies. This mechanism is facilitated by the non-uniform structure of the 
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basilar membrane. From the base to the apex, the basilar membrane becomes continuously wider, 

thinner and floppier. This structure gives rise to the tonotopic organization of the basilar 

membrane, meaning that each position along the membrane vibrates with the biggest amplitude in 

response to a specific sound frequency. For lower sound frequencies, more apical parts of the 

membrane are excited the most, due to the floppiness, and for higher sound frequencies, basal parts 

of the membrane are activated. Since the IHCs are located along the basilar membrane in the 

cochlea, excitation of each part depolarizes a different population of IHCs. This means that 

different IHCs are active for distinct sound frequencies, and the frequency that an IHC is most 

sensitive to is called the “best frequency” of that IHC. This tonotopic organization in the peripheral 

auditory system is also projected to the more downstream parts of the auditory circuits [50]. 

 Even though each IHC is the most sensitive to sound at its best frequency, this does not 

mean that they do not respond to other frequencies. Increasing sound intensity broadens the area 

of vibration along the basilar membrane, thus activating IHCs with best frequencies near the sound 

frequency. The tuning curves for IHCs with different best frequencies demonstrate this effect, 

where the frequency that minimizes the threshold represents the best frequency (Figure I.5). The 

farther the sound frequency is from the best frequency of that IHC, the less sensitive the IHC is to 

that sound [47]. 
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Figure I.5     Tuning curves for inner hair cells (IHCs) with best frequencies at ~1kHz (blue), ~3kHz (red) 
and ~15kHz (green). This figure shows the threshold sound levels needed to activate each IHC 
corresponding to the frequency of the sound stimulus (Data taken from [47]). 

1.5.5 SGN fiber types 

Experimental studies suggest that presynaptic Ca2+ currents may determine the transmitter-

evoked postsynaptic currents [51, 52]. Therefore, it has been hypothesized that the response of the 

postsynaptic SGN fiber to different sound levels depends on the density of the Ca2+ channels near 

the presynaptic terminal of IHCs [52]. The SGN fiber receiving signals from synapses with dense 

Ca2+ channels at the presynaptic terminals may possibly fire with lower sound pressure levels, or 

even spontaneously. However, if the Ca2+ channel concentration near the presynaptic terminal is 

low, then the IHC may need a higher potential increase for a synaptic release event, which would 

arise from a higher sound pressure level. Based on their spontaneous firing rates and saturation 

profiles, SGN fibers can be classified into three groups: low- (LT), medium- (MT) and high 

threshold (HT) SGN fibers. The spontaneous rate of LT fibers is the highest with 18-100 spikes/s 

and their dynamic range is the lowest among all types, reaching their maximum discharge rate 

within approximately 30 dB sound pressure level (SPL). The spontaneous rate of MT fibers is 

lower (between 0.5 and 18 spikes/s) and their dynamic range is higher than LT fibers. HT fibers 

have the lowest spontaneous rates (<0.5 spikes/s) among all, and respond to sound pressure levels 
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higher than 20 dB SPL. Their spike rate increases linearly with increasing sound levels (Figure 

I.6) [53].  

 

Figure I.6   The rate-intensity functions for low-threshold (LT), medium-threshold (MT) and high-
threshold (HT) SGN fibers (Data taken from [53]) 

1.5.6 SGN fiber activity generates the temporal and intensity cues for sound localization 

The SGN fibers project to higher order auditory structures in the central auditory system, 

where sound recognition and localization takes place. First, they form synapses with different types 

of cells in the cochlear nucleus. One of the cell types in the cochlear nucleus is the bushy cell, 

which integrates inputs from multiple SGN fibers and acts as a coincidence detector, meaning that 

it only fires when multiple inputs are received within a short time window. As a result, bushy cells 

are more phase-locked to sound than SGN fibers [54]. This precise temporal information is then 

transmitted to the superior olivary complex (SOC), the first binaural convergence point in the 

brainstem responsible for azimuthal sound localization. 

There are two main nuclei which play crucial roles in localizing the sound in the horizontal 

plane: the lateral superior olive (LSO) and the medial superior olive (MSO). There are LSO and 

MSO nuclei on each side of the brain, and each nucleus receives synaptic inputs from cochlear 

nuclei emanating from each side of the head. LSO cells are sensitive to the difference in intensities 
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perceived by the two ears, also known as the interaural level difference (ILD). ILDs can be detected 

for high frequency sounds (>2kHz), since the head can create an acoustic shadow for sounds with 

wavelengths shorter than the head diameter, creating an intensity difference between two ears. 

This shadowing depends on the location of the sound source, meaning that the intensity of the 

sound is perceived lower at the ear farthest from the sound source. As a result, LSO cells ipsilateral 

to the ear that is closest to the sound source fire more, as they get excitatory input from the 

ipsilateral bushy cells and inhibitory input from contralateral bushy cells [55]. 

MSO cells, on the other hand, are sensitive to interaural time differences (ITDs), the 

difference in arrival time of a sound between the two ears, for mainly low frequency sounds 

(<2kHz) [56]. ITDs arise from the location of the sound source. That is, if a sound originates from 

the mid-sagittal plane, the path it needs to travel to both ears is the same, i.e., ITD equals zero. 

However, the more the sound source is deviated from the mid-sagittal plane, the bigger is the 

absolute ITD.    

MSO cells get excitatory inputs from both ipsi- and contralateral spherical bushy cells [55]. 

Moreover, they act as binaural coincidence detectors facilitated by their intrinsic properties, low 

membrane time constants (<2ms) and input resistances (<10MΩ), allowing them to fire only if the 

inputs from both ears arrive within a very short time span [57]. If the sound source is localized 

closer to one ear (the ipsilateral ear), the inputs from each ear coincide more closely at the MSO 

on the other side of the brain (the contralateral MSO) since the signal from the contralateral ear 

needs to travel farther to the other side of the brain. Hence, MSO cells contralateral to the ear that 

is closest to the sound source fire with the highest frequency, and the ITD resulting in the highest 

MSO activity is called the best ITD. A typical ITD function for an MSO cell is a bell-shaped curve 
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having a peak at the contralateral site (Fig. I.7), and this shift from zero ITD gives rise to the ITD 

sensitivity [58]. 

 

Figure I.7     ITD function of an MSO cell. Spike rate of an MSO cell is highest for slightly contralateral 
sound sources that gives rise to binaural coincidence. 

1.6 From synaptic and transmission disruption of SGNs to hidden hearing loss 

Hidden hearing loss (HHL) is defined as an auditory neuropathy characterized by changes 

in sound-evoked neural output of the SGN without hearing threshold elevation [59]. HHL has been 

detected in animal models by measuring the neural responses to suprathreshold sound via tests, 

such as the auditory brainstem response (ABR), a far-field response measured by head-mounted 

electrodes, or the compound action potential (CAP), a near-field response measured from the round 

window. The first peak of ABR (ABR peak 1) represent the activity of type I SGNs in response to 

sounds, and CAP reflects the synchronous response of the SGN fibers at the sound onset [59]. In 

humans, it has been hypothesized that difficulties in hearing, especially in noisy environments, 

with normal hearing thresholds may indicate HHL [59]. However, it is still controversial, as 

perceptual deficits have not been linked to SGN activity in humans. 

In animal studies, there is mounting evidence that HHL can be caused by noise exposure, 

aging or peripheral myelin neuropathy [45, 60-62]. After exposure to moderate noise, animals have 

temporary shifts in auditory thresholds but permanent decreases in amplitude of ABR peak 1 [45, 
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60-62]. Kujawa and Liberman (2009) showed that animals with this type of auditory pathology 

have a normal complement of hair cells and SGNs, but present with loss of a subset of synaptic 

connections between IHCs and SGNs. They also found that the degree of synapse loss correlates 

with the magnitude of the decrease in suprathreshold responses, supporting the idea that cochlear 

synaptopathy is the mechanism for noise-induced HHL [60]. Similar observations were made 

regarding aging, i.e. HHL and synapse loss are the first signs of age-related hearing loss and have 

the same time-course [45]. Importantly, it has been suggested that moderate noise and aging 

primarily affect synapses associated with high threshold/low spontaneous rate SGN fibers [43]. 

Since these fibers can respond to sound in high background noise even when the others have been 

saturated, their loss could lead to difficulties in processing speech in noisy environments [43]. 

Proper myelination of SGNs plays  a significant role in auditory processing [63]. Therefore, 

it has been hypothesized that peripheral neuropathy resulting from myelin disorders may be 

another cause of HHL. Individuals with peripheral neuropathies, such as Guillain-Barré Syndrome 

(GBS) [64] and Charcot-Marie-Tooth (CMT) disease [65] have been reported to have perceptual 

difficulties even when having normal auditory thresholds, that may indicate HHL. A recent study 

by Wan and Corfas (2017) showed that transient demyelination also causes HHL in mice, i.e. 

reduced ABR peak 1 amplitude with normal ABR thresholds [61]. In that study, acute 

demyelination was induced using genetically modified mice. This demyelination resulted in 

decreased ABR peak 1 amplitudes and increased ABR peak 1 latency without auditory threshold 

elevation or IHC-SGN synapse loss. Remarkably, these changes persisted even after remyelination 

of SGN fibers. Further investigation with immunostaining demonstrated that the organization of 

the heminodes, the nodal structures closest to the IHCs where action potentials are generated, were 

disrupted. These results suggested that the location of SGN heminodes is critical for normal 
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auditory responses and that their disruption causes HHL. In Chapters III and IV, we model synaptic 

and transmission failure in SGNs to better understand how these mechanisms can lead to HHL and 

how subsequent disruptions in the sound localization circuit may contribute to perceptual deficits 

associated with HHL.  

1.7 Outline 

The aim of the work in this dissertation is understanding the effect of disruptions of 

synaptic transmission on neuronal network activity with computational modeling methods. The 

study in Chapter II is a theoretical study to investigate the universal, system-wide effects of 

synaptic failure on large network dynamics. Chapters III and IV focus on a more specific case of 

disrupted synaptic transmission in the auditory system, hidden hearing loss (HHL). 

 The work in Chapter II is motivated by previous studies on humans suggesting that the 

application of anesthetics causes desynchronization of activity in different parts of the brain as a 

result of the disconnection of the hub regions of the brain. To test this hypothesis, we built large, 

scale-free neural network models consisting of leaky integrate-and-fire model neurons, which is a 

simplified model capturing basic features of neuronal firing. Using these models, we analyzed 

spatiotemporal pattern formation across large network structures with different levels of synaptic 

failure. As a result, this study demonstrated that disconnecting hubs might facilitate the emergence 

of more coherent and synchronized network states due to more balanced input levels within the 

network. This finding may contradict the hypothesis that disconnecting hubs decreases global 

coherence of brain networks and may also explain why some patients have seizures after the 

application of anesthetics [66, 67]. 

 The work in Chapters III and IV is motivated by another consequence of disruption of 

synaptic signaling, namely HHL, an auditory neuropathy caused by noise, aging or myelin defects 
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resulting in hearing deficits, particularly in noisy environments. There are two main hypotheses 

for the mechanisms of hidden hearing loss: loss of synapses between inner hair cells and SGNs or 

myelin defects at the heminode of peripheral SGN axons. In Chapter III, we modeled these two 

scenarios to understand how they contribute to HHL mechanistically. Specifically, we constructed 

a computational model of sound-evoked SGN fiber activity and auditory nerve compound action 

potential to understand how each one of these mechanisms affects nerve transmission. We show 

that disruption of auditory-nerve myelin desynchronizes sound-evoked auditory neuron spiking, 

decreasing the amplitude and increasing the latency of the compound action potential. In addition, 

elongation of the initial axon segment may cause spike generation failure leading to decreased 

spiking probability. In contrast, the effect of synapse loss is only to decrease the probability of 

firing, thus reducing the compound action potential amplitude without disturbing its latency.  

Many studies suggest that humans with HHL or demyelinating diseases have binaural 

processing deficits, which is essential for localizing sound. In Chapter IV, we used the model 

described in Chapter III to make further predictions on the consequences of HHL due to 

myelinopathy. Specifically, we explored the impact of myelinopathy on sound localization by 

simulating the activity of SGN fibers, bushy cells and MSO cells evoked by low frequency sounds. 

Since bushy cells and MSO cells act as coincidence detectors, decreased and desynchronized SGN 

activity in myelinopathy reduce the firing rates of bushy cells and MSO cells, providing evidence 

for sound localization deficits in HHL. 

 

 



 
 

26 

2.1 Introduction 

The communication of neurons is primarily maintained by synapses, which play a crucial 

role in the functioning of the nervous system. Therefore, synaptic failure may critically impair 

information processing in the brain and may underlie many neurodegenerative diseases [35-37]. 

A number of studies have suggested that synaptic failure may preferentially target neurons with 

high connectivity (i.e., network hubs) [30, 41]. As a result, the activity of these highly connected 

neurons can be significantly affected. It has been speculated that anesthetics regulate the conscious 

state by affecting synaptic transmission at these network hubs and subsequently reducing overall 

coherence in the network activity [41]. In addition, hubs in cortical networks are shown to be more 

vulnerable to amyloid deposition because of their higher activity within the network, causing 

decrease in coherence patterns and eventually Alzheimer’s disease (AD)[30]. In this chapter, we 

investigated how synaptic failure can affect spatiotemporal dynamics of scale free networks, which 

have a power law scaling of the number of connections per neuron. In these networks, relatively 

few neurons (hubs) have a lot of emanating or incoming connections while the majority of cells 

have low connectivity. We studied two types of synaptic failure: activity-independent and targeted, 

activity dependent synaptic failure. We defined scale-free network structures based on the 

Chapter II  

Synaptic Failure Differentially Affects Pattern Formation in 

Heterogeneous Networks 
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dominating direction of the connections at the hub neurons: incoming and outgoing. We found that 

the two structures have significantly different dynamical properties. We showed that synaptic 

failure may not only lead to the loss of coherence but unintuitively can also facilitate its emergence. 

We showed that this is because activity-dependent synaptic failure homogenizes the activity levels 

in the network creating a dynamical substrate for the observed coherence increase. Obtained results 

may lead to better understanding of changes in large-scale pattern formation during progression of 

neuro-degenerative diseases targeting synaptic transmission. These results have been published in 

Frontiers in Neural Circuits [68]. 

2.2 Materials and Methods 

2.2.1 Network structure and connectivity 

We used the Barabasi – Albert algorithm [69] on a population of 1000 neurons to create a 

scale-free connectivity. We started with an all-to-all connected network of n neurons, and then 

expanded the network continuously by connecting new neurons to the n pre-existing ones using a 

preferential attachment principle: neurons with more connections have a higher chance to receive 

new connections. This results in a bidirectionally connected network with S
"F
% connectivity. 

Unless otherwise stated, we used n=16 (1.6% connectivity) in our simulations. Then, we proceeded 

to make the connections unidirectional and defined two network transmission directions: incoming 

and outgoing. For that purpose, we first enumerated the neurons 1 to 1000 based on the time step 

they were added to the network. The earlier the neurons were added to the network, the higher 

chance they had to get new connections. Therefore, the neurons being assigned smaller numbers 

would eventually be more likely to have more connections. Then, we defined two different 

network structures according to the predominant directions of the connections at the hubs, i.e. 
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nodes having a lot of connections with many other nodes [6]. We defined incoming networks as 

networks with hubs having majority of incoming connections. Therefore, we changed all 

bidirectional connections of the network into unidirectional connections from bigger to smaller-

numbered neurons. Conversely, in outgoing networks, hubs are dominated by outgoing 

connections. Therefore, the connections were directed from the neurons with smaller numbers to 

the ones with bigger numbers. Below, we will refer to these connectivity structures as ‘incoming’ 

and ‘outgoing’ networks, respectively [Fig.II.1(A)]. 

 

Figure II.1   Modeling different scale-free network structures depending on the directionality at the hubs. 
(A) Scale- free networks are defined as ‘outgoing’, if the hubs have predominantly outgoing 
connections, and ‘incoming’, if the hubs have predominantly incoming connections. Total, 
incoming and outgoing degrees in both (B) incoming and (C) outgoing networks exhibit power-
law distributions. Degree distributions are averaged over 5 different network realizations. 



 
 

29 

Finally, to obtain feedback connectivity, we randomly chose m% of all connections to 

change their directions. We defined this proportion (m%) as ‘direction ratio’ in the chapter. As a 

result, each neuron has "FF
U
− 1 times more incoming than outgoing connections on average in 

incoming networks, and vice versa in outgoing networks. Unless otherwise stated, we used 17% 

direction ratio in both network structures in our simulations. Consequently, the resulting networks 

have a power-law degree distribution for their total, incoming and outgoing connections 

[Fig.II.1(B) and (C)].  

We used an integrate-and-fire excitatory neuron model to describe dynamics of each node. 

The current-balance equation of this neuron model for the ith neuron is   

 WXY Z

WZ
= −[\] ^ + _ ]̀aba ^, ^c + defgSha ,                                                     (2.1) 

where \] ^  is the membrane potential of the i-th neuron, J denotes the adjacency matrix, 

γ=0.25V/s is the synaptic strength, α=0.3ms-1 is the inverse of the passive membrane time constant. 

The Irand is a random term, which is a 0.1ms-wide rectangular current with an amplitude of 1, 

perturbing the neuronal dynamics with 100Hz frequency; β=6V/s is a term to modify the 

amplitude. 

A neuron spikes when its membrane potential reaches  \] ^ = 1. At the time of the spike, 

the voltage of the spiking neuron is reset to 0, and the neuron enters the refractory period of 5ms 

(tref). During this period, the neuron cannot receive any signals from its presynaptic connections 

[70].  

There are no delays in the synaptic transmission. The postsynaptic signal arriving at each 

neuron is described by a double-exponential 

 b] ^, ^c = i
j kjklY
mnopqr − i

j kjklY
msYlo ,                                                                             (2.2) 
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where ts is the last spike time of the i-th presynaptic excitatory neuron, Trise=0.3ms and Tdecay=3ms 

are rise and decay time constants, respectively.  

 For one set of our simulations (Fig.II.11), we added a population of inhibitory neurons 

consisting of 1000 neurons to the network. This population is randomly and unidirectionally wired 

with the same mean connectivity as excitatory population (1.6%). Moreover, inhibitory population 

sends connections to the excitatory one with 1.6% random connectivity, and vice versa. All 

parameters governing dynamics of inhibitory neurons are the same, except the sign in signal Si: 

 b] ^, ^c = − i
j kjklY
mnopqr − i

j kjklY
msYlo ,                                                                             (2.3) 

2.2.2 Implementation of synaptic transmission failure 

We defined a parameter, transmission probability ptrans that provides a probability of a 

synapse passing (or failing to transmit) the signal, i.e., each synapse independently can pass (or 

fail) a presynaptic spike to a postsynaptic neuron. Here, we studied two realizations of this process: 

1) activity-independent one, where transmission probability is constant (and the same for every 

synapse), and 2) activity-dependent one, where the probability of the synapse to succeed or fail 

depends on the time elapsed from the last spike of the postsynaptic neuron: 

 tZfgSc ^ = 1 − tcuS×i
j kjkwqlkjksox

m ,                                                                        (2.4) 

where psyn is the base failure probability, T is the failure recovery time constant and tlast is the last 

spike time of that neuron. Therefore, the term t-tlast-tref denotes for the time passed after the last 

spike time and its corresponding refractory period.  
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2.2.3 Measures and statistics 

For all realizations of the network and its dynamics, we measured the MPC (Mean Phase 

Coherence) between the neurons and the degree of the synchrony. The first measure allows us to 

assess the stability of the spatio-temporal pattern irrespective whether it is synchronous or 

asynchronous. Briefly, the instantaneous phase between two neurons is defined as 

 yz = 2{
Z&,|/Z},|
Z},|~}/Z},|

,                                                                                                     (2.5) 

where t1,k is the time of the last spike of the neuron 1 before that of the neuron 2 (t2,k) and t1,k+1 is 

the time of the first spike of the neuron 1 after t2,k. Then the MPC between two neurons (σ1,2) is 

 �",B =
"

Ä
i]Å|Ä

zÇ" ,                                                                                                     (2.6) 

where N is the number of spike combinations at the two cells. The network measure of MPC, 〈σ〉, 

is the average of all pairs [71]. 

The second measure indicates to what extent the neurons form synchronized pattern of activity. 

Here, the measure we used depends on the time-averaged fluctuations of the global voltage (σV) 

over an extended period of time, normalized to the average of N individual neurons’ time-averaged 

fluctuations: 

 É = ÑÖ&
}
Ü

ÑÖY
&Ü

Yá}
.                                                                                                     (2.7) 

It is in the range of (0,1), increasing with synchronous activity [72]. The simulations were repeated 

5 times, we calculated mean and its standard error to establish significance of the obtained results. 

2.3 Results 

We used scale-free network connectivity structures, which are thought to represent 

functional network connectivity in the brain [24]. Scale-free connectivity provides a power-law 
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distribution of nodal degrees resulting in a heterogeneous population of interconnected cells [69]. 

We further differentiated network types by establishing hub directionality, in the sense that the 

highly interconnected cells (the hubs) may predominantly receive inputs from other parts of the 

network, or send outputs to other cells (Fig. II.1[A]). The example statistics of the connectivity for 

both of these cases are provided on Fig. II.1 (B) and (C), where the direction ratio is being 

established at 17%.  

First, to establish a baseline, we investigated pattern formation in the networks without 

failure, as a function of the mean connectivity [Fig. II.2 (A) and (B)] and direction ratio [Fig. II.2 

(C) and (D)] in both incoming [Fig. II.2 (A) and (C)] and outgoing [Fig. II.2 (B) and (D)] networks. 

In incoming networks, the histograms of average MPC (〈σ〉) as a function of neuron degrees, 

suggest that low degree neurons always have relatively lower MPC than the rest of the network, 

regardless of the connectivity and direction ratio of the network, because of the lack of common 

input they get. However, this difference is more pronounced for higher connectivities [Fig. 

II.2(A)]. Generally, we observe that for low connectivity the network has relatively few 

connections and thus it remains less heterogenous in terms of nodal degree. As the connectivity is 

increased, two competing mechanisms emerge – the networks become more heterogenous, but at 

the same time stronger connectivity leads to more synchronous dynamics, as is commonly 

observed.  However, even though nodal contributions exhibit different patterns for different 

connectivities, these differences are only minimal in incoming networks.  
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Figure II.2  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of its 
degree for incoming [(A) and (C)] and outgoing [(B) and (D)] networks for different 
connectivities [(A) and (B)] and direction ratios at the hubs [(C) and (D)]. In incoming 
networks, (A) increasing connectivity causes a bigger gap between coherences of high- and 
moderate-degree neurons, whereas (C) increasing direction ratio decreases MPC of all degrees. 
In outgoing networks, MPC of all degrees increases with (B) increasing connectivity and (D) 
decreasing direction ratio. MPCs are averaged over 5 degrees and results are averaged over 5 
randomized network realizations. 

Connectivity has a bigger impact on outgoing networks [Fig. II.2(B)]. Higher 

connectivities result in more significant increases in MPC for all degrees. That is not surprising as 

hubs are the synchronizing agent to the rest of the network when they drive network activity.  

Unlike incoming networks, outgoing ones have the highest MPC for the neurons with lowest 

degrees, for 0.8% and 1.6% connectivities. The reason is that in these type of networks, neurons 

with lowest degrees receive signals from hubs and form synchronized clusters. This trend 

disappears for 3.2% connectivity though, since the network is saturated and neurons with all 

degrees are coherent. The bigger fluctuations for highest degrees at 3.2% connectivity might be 

due to the lower input they get from the network. 
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We then investigated how direction ratio (as defined in methods) affects network 

coherence. In incoming networks, MPC for all degrees is increased overall for lower direction 

ratios (more incoming connections at the hubs), although the change is not very significant [Fig. 

II.2(C)]. However; there is a more substantial rise in the case of outgoing networks, when hubs 

send more outgoing connections [Fig. II.2(D)].  These results point in the direction that the overall 

synchrony of the network is strongly dependent on the number of outgoing connections emanating 

from the hubs, rather than incoming ones. For the rest of our simulations, unless stated otherwise, 

we decided to use incoming and outgoing network structures with 1.6% connectivity,17% 

direction ratio. 

Finally, we varied the frequency of random external kick Irand. In case all neurons are 

disconnected (ptrans=0.0), spike frequency increases with increasing Irand frequency, as expected. 

At the same time, as expected, the MPC decreases with more frequent Irand. When all the 

connections are present (ptrans=1.0), both spike frequencies and MPCs are only minimally increased 

for higher frequencies of Irand, since network connections dominate pattern formation. For the rest 

of our simulations, we chose the frequency of Irand as 100 Hz. This value results in a spike 

frequency lower than 200Hz, the maximum frequency the network can fire due to the 5ms 

refractory period, when ptrans=1.0. Also, it introduces enough randomness to the network to make 

them spike less coherently when ptrans=0.0. These results are briefly summarized in Supplementary 

Figure II.1. 

2.3.1 Activity – independent synaptic failure 

We first investigated the history-independent transmission probability, where ptrans is 

constant. We compared the pattern formation (i.e., the MPC and synchrony) for the outgoing and 

incoming networks as we gradually varied ptrans between 0 and 1 for both network types. We 
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observed that outgoing networks are more sensitive to synaptic failure than incoming ones, as they 

become more coherent and synchronous with increasing synaptic transmission [Fig. II.3(A) and 

(B)].  

 

Figure II.3  Pattern formation in the networks with activity-independent synaptic failure. This figure 
shows that outgoing networks become more coherent and synchronous due to a more uniform 
spike frequency distribution throughout the network. Signals are transmitted through synapses of 
a neuronal network with a constant probability ptrans. (A) Mean Phase Coherence (MPC) and (B) 
Synchrony measure for incoming (black line) and outgoing (gray line) networks. [(C) and (D)] 
Participation in pattern formation as a function of nodal degree for activity-independent 
transmission failure. Histograms of Mean Phase Coherence (MPC) as a function of degree of 
neurons for incoming (C) and outgoing (D) networks, averaged over 5 degrees. [(E) and (F)] 
Spike frequencies of different degrees in incoming (E) and outgoing (F) networks, averaged over 
5 degrees. Raster plots for incoming [(G) and (I)] and outgoing [(H) and (J)] networks for 
parameter values indicated on panels (A) and (B) [Points G-J correspond to panels (G)-(J)]. 
Lower neuron ID means higher degrees and vice versa [see Fig. II.12 (A) and (E) for degrees 
corresponding to neuron IDs]. Results are averaged over 5 simulations. 

We then investigated how the MPC and synchrony forms within the network as a function 

of degree number of constituent neurons. The histogram of the average MPC constructed as a 

function of connection number for varying degrees of incoming networks [Fig. II.3(C)] suggests 

that, for full transmission (ptrans=1.0), moderate-degree neurons of incoming networks have higher 
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average MPC values than low-degree or high-degree neurons. This seems intuitive as the neurons 

with very few connections do not get enough input to form stable patterns, whereas a few cells 

with a large number of inputs cannot synchronize with the rest of the population, as their frequency 

is significantly different due to widely varying number of excitatory inputs [Fig. II.3(E)]. This 

trend is reversed for higher failure rate (ptrans=0.2), with hubs being more coherent than the rest of 

the network.  

Moreover, for ptrans=0.6, neurons fire more coherently than when ptrans=1.0 for all degrees. 

This provides evidence that failure can promote more coherent behavior, as the input received by 

different degrees becomes more uniform with failure.  

The same histogram for outgoing networks [Fig. II.2(D)] shows that, for the same ptrans, the 

average MPC values are higher than the incoming case. This is due to a more balanced input levels 

across the neurons in the network, i.e., a more balanced frequency distribution throughout different 

degrees [Fig.II.2(F)]. In general, higher-degree neurons have lower average MPC in the outgoing 

case, and this effect is the most pronounced for higher values of ptrans. The example rasterplots of 

the observed dynamics are presented on figures Fig. II.3(G)-Fig. II.3(J), with the corresponding 

values of ptrans marked on Fig. II.3(A) and (B). 

To better assess the specific role of neurons having different degree numbers (i.e. number 

of connections) on pattern formation, we divided the neurons in each network into 3 groups 

depending on their total degree (i.e., the sum of their incoming and outgoing connections). The 

groups were formed so that the total number of the connections in each group is equal. Thus, the 

number of neurons in each group is inversely proportional to the average degree of individual 

neurons in the groups, resulting in equal number of connections per group; neurons with degrees 

less than 24 are in ‘Group 1’, between 24 and 48 degrees are in ‘Group 2’ and with more than 48 



 
 

37 

degrees are in ‘Group 3’. In terms of number of neurons, the groups consist on average of 533, 

342, 125 neurons, respectively.  The signals coming through the incoming connections to a given 

group are tested against different transmission probabilities ptrans, while the rest of the connections 

do not fail at all (ptrans=1.0), to see the individual effects of the failure of signals coming to different 

degrees on overall pattern formation. 

In incoming networks, the response of MPC to the network manipulations is generally 

small. Interestingly we observe that the failing signals coming to Group 1 [Fig. II.4 (A)] and 

Group2 [Fig. II.4 (B)] result in an overall increase in MPC values of the unaffected groups, with 

Group 1 having a bigger effect than Group 2. The reason is that preventing lower degree groups 

from receiving signals make them fire only as a result of Irand, decreasing their overall firing 

frequency as the synapses fail. Lowering the frequency in these two groups reduced the frequency 

in all other groups leading to observable increase of coherence. 
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Figure II.4  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of its 
degree for incoming networks. This figure shows an increased coherence of hubs, when they 
fail to receive signals.  Neurons in the network are grouped according to their degrees. Groups 
are assigned such that neurons in each group has equal total number of connections. Neurons 
with degrees 1- 23 constitute group 1 [left of the first dashed line in panels (A), (B) and (C)], 
neurons with degrees 24 -47 constitute group 2 (between dashed lines) and neurons with degrees 
> 48 constitute group 3 (right of the second dashed line). Signals are transmitted to group 1 (A), 
group 2 (B) and group 3 (C) with the probability ptrans, while the rest of the network receives 
signals without failure. Raster plots for the cases in (A), (B) and (C) are shown in (D)-(G), (E)-
(H) and (F)-(I), respectively, for two values of ptrans. Lower neuron ID means higher degrees 
and vice versa [see Fig. II.12 (A) and (E) for degrees corresponding to neuron IDs]. 

 

The progressive failure of incoming connections to Group 3 has a more complicated effect. 

We observe a higher coherence of that group than the rest of the network for 0.0 < tZfgSc < 1.0 

[Fig.II.4 (C)]. This increase as a function reduction of the transmission probability in the hub group 

brings the magnitude of the incoming signal to the hub cells to be similar to that of the intermediate 

group, increasing effectively the coherent backbone of the network. For ptrans=0.1, we observe that 
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the MPC of hubs are equal and higher than no failure case (ptrans=1.0), and this equalizing effect 

disappears with increasing ptrans. This effect is further confirmed through observation which 

neurons from Group 3 show increased synchronization as a function of increased failure – for 

lower transmission rates the neurons within that group with higher degrees exhibit increased 

coherence, whereas for higher transmission the cells with lower degrees show increase of 

coherence.   

In outgoing networks, even moderate increase in failure of Group 1 decreases Group 1 and 

Group 2’s MPC significantly, but hubs (Group 3) are not affected. When ptrans=0.0, we observe 

overall decrease in frequency which leads to increase in reported coherence [Fig. II.5 (A)]. The 

same holds for the case when Group 2 fails to receive signals [Fig. II.5 (B)]. However, when Group 

3 is disconnected, the same reversal effect is observed as in incoming case [Fig. II.5 (C)], but with 

significantly higher observed changes in MPC. This is again due to the homogenization of the 

received signals by neurons having different degree. As before, Fig. II.5 (D) - (H) show example 

raster plots for two transmission values:  ptrans=0.2 and ptrans=1.0 . 
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Figure II.5  Nodal contribution to network-wide Mean Phase Coherence (MPC) as a function of its 
degree for outgoing networks. This figure shows an increased coherence of hubs for ptrans≥0.4 
than when there’s no failure.  Neurons in the network are grouped according to their degree. 
Groups are assigned such that neurons in each group has equal total number of connections. 
Neurons with degrees 1- 23 constitute group 1 (left of first dashed line in panels (A), (B) and 
(C)), neurons with degrees 24 -47 constitute group 2 (between dashed lines) and neurons with 
degrees > 48 constitute group 3 (right of second dashed line). Signals are transmitted to group 1 
(A), group 2 (B) and group 3 (C) with the probability ptrans, while the rest of the network receive 
signals without failure. Raster plots for the cases in (A), (B) and (C) are shown in (D)-(G), (E)-
(H) and (F)-(I), respectively, for two values of ptrans. Lower neuron ID corresponds to cells with 
higher degrees [see Fig. II.12 (A) and (E) for degrees corresponding to neuron IDs]. 

2.3.2 Activity – dependent case 

The second case we studied is when the transmission probability depends on the spiking 

history of the postsynaptic neurons, i.e., the signal coming to the postsynaptic neuron, which more 

recently fired, has a higher chance to fail due to the postsynaptic receptor sensitivity. This case 

may be biologically more relevant, since it is known that neurodegenerative diseases, such as AD 
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and Parkinson’s, have lower levels of postsynaptic ionotropic receptors [73, 74]. As a result, this 

may cause a more effective desensitization of the neurotransmitter-gated ion channels in case of 

higher frequency stimulation via spiking presynaptic neurons [75, 76]. Moreover, higher activity 

is shown to result in regional vulnerability to amyloid-β deposition in AD, which causes synaptic 

failure [38].  

In this case, we vary two parameters; the base failure probability psyn and failure recovery 

time constant T. Here, psyn=1 indicates the possibility of complete failure of the synapse. We vary 

T between 0ms and 5000ms, with psyn=1 and T=5000ms being a disconnected network.  As before, 

we first assessed the overall degree of pattern formation in both types of networks. In incoming 

networks, we did not see any significant changes in MPC and synchrony for various T and psyn 

values. However; for outgoing networks, we observed an overall decrease in the network 

coherence for increasing psyn. For fast synaptic recovery, this decrease is significantly smaller [Fig. 

II.6 (B) and (D)]. Interestingly, however, for T=0.5ms, we observed a dramatic increase of both 

MPC and synchrony as psyn tends to unity.  

 

Figure II.6   Pattern formation in the incoming and outgoing networks with activity-dependent synaptic 
failure. [(A), (B)] MPC and [(C), (D)] synchrony for incoming [(A), (C)] and outgoing [(B), (D)] 
networks as a function of psyn for three different values of failure recovery time constants T. 
There is a dramatic increase in MPC and synchrony with increasing synaptic failure (psyn) for a 
moderate T in outgoing networks. 
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A more systematic scan of time constants reveals that for incoming networks, the network 

starts getting disconnected for T>5ms. When T=5000ms, the MPC and synchrony values are the 

same as activity-independent case, meaning that T is large enough that ptrans≈1-psyn [Fig. II.7(A), 

(B); the corresponding raster plots are displayed on panels (C) and (D)]. 

 

Figure II.7   Pattern formation in the incoming networks with activity-dependent synaptic failure as a 
function of failure recovery time constant T. (A) MPC and (B) synchrony as a function of time 
constant T for different values of psyn. [(C) and (D)] Raster plots depicting network activity for 
parameter values marked on [(A) and (B)] [Points C and D correspond to panels (C) and (D)]. 
The specific parameter values of T and psyn are listed on top of each raster plot. Lower neuron ID 
corresponds to cells with higher degrees [see Fig. II.12 (A) and (E) for degrees corresponding to 
neuron IDs]. 

The behavior of outgoing networks is similar to the one described above except for 

T=0.5ms, where we observed a large peak in both MPC and synchrony, as psyn tends to one [Fig. 

II.8(A), (B); raster plots of the observed dynamics are displayed as marked on panels (C)-(F)].  We 

then have investigated how synaptic failure interacts with neurons with specific nodal degree to 

form activity pattern within the network (Fig. II.9). For incoming networks and for large T [Fig. 

II.9(A)-(C)] the degree dependence is largely similar to that of constant ptrans, described in the 
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previous section. The group with the largest coherence is the group having intermediate degree 

values. For small T, as expected, psyn does not influence the overall coherence levels as the 

transmission probability rapidly recovers and ptrans≈1.0. For larger time constants, the overall level 

of coherence depends on the psyn, as in the case of activity-independent case [Fig. II.3 (C)]. For a 

moderate time constant (T=5ms), however, we observe that hubs have higher coherence when 

psyn≠0.0 than when psyn=0.0, which means that failure of spikes results in a more coherent behavior 

of hubs, even though globally there’s no significant change in the network’s MPC. This as driven 

by synaptic failure capacity to equalize input to the cells across the network.   

 

Figure II.8   Pattern formation in the outgoing networks with activity-dependent synaptic failure as a 
function of failure recovery time constant T. (A) MPC and (B) synchrony as a function of time 
constant T for different values of psyn. [(C)-(F)] Raster plots depicting network activity for 
parameter values marked on [(A) and (B)] [Points C-F correspond to panels (C)-(F)]. The specific 
parameter values of T and psyn are listed on top of each raster plot. Lower neuron ID corresponds 
to cells with higher degrees. 
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Figure II.9   Histograms of MPC as a function of degree of neurons of incoming [(A)-(C)] and outgoing 
[(D)-(F)] networks for varying failure recovery time constants T (denoted on top of each 
panel). Participation in pattern formation as a function of nodal degree for activity-dependent 
transmission failure shows an increased coherence with increased failure for moderate T in both 
networks. 

For outgoing networks, generally the same is true for low and high values of T [Fig. II.9(D), 

(F)] as in incoming case. However, for the value T=0.5ms [Fig. II.9(E)], we observe a complete 

reversal of the overall network coherence, with the largest coherence happening for the largest psyn 

and approaching to one. The MPC is then largely independent of the neuronal degrees, except the 

highest ones, where MPC starts dropping. To understand the reason behind this sudden increase, 

we measured the average number of signals transmitted to each neuron as a function of its 

incoming degree. The histograms (Fig. II.10) suggest, that for low T, for both incoming and 

outgoing networks, there is a linear proportionality between the input and the incoming degree 

number [Fig. II.10(A), (D)]. For larger values of T, the signal curves depend directly on the value 

of psyn and for large psyn they saturate for large degree values [Fig. II.10(B), (C), (E), (F)], making 

the amount of signal received by neurons largely independent of degree. However, only for 

outgoing networks and T=0.5ms, all neurons, independent from their incoming degrees, receive 
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the same number of the signals, which is significantly different from zero [Fig. II.10(E)]. This 

suggest that at this specific T range, all cells in the network receive about the same input magnitude 

allowing them to synchronize across the entire system. 

 

Figure II.10 Average input magnitude to a neuron as a function of nodal degree for activity-dependent 
synaptic failure. Histograms of average number of signals transmitted as a function of incoming 
degree of neurons of incoming [(A)-(C)] and outgoing [(D)-(F)] networks for varying failure 
recovery time constants T (denoted on top of each panel) show that for T=0.5ms and psyn=1.0, 
outgoing networks receive the same amount of signals, independent from their degrees. 

To see if similar results would be observed with different connectivities and direction 

ratios, we simulated various connectivity fractions and direction ratios for different time constants 

(T=0.05,5,500ms for incoming networks and T=0.05,0.5,500ms for outgoing networks). In 

incoming case, the reversal effect of MPC increase of hubs for higher psyn at a moderate time 

constant (T=5ms) is not observed for lower or higher connectivities (Supplementary Figure 2.2). 

However, increasing direction ratio makes this effect more pronounced, since increasing outgoing 

connections at hubs makes the network more balanced overall (Supplementary Figure 2.3). In 

outgoing networks, this dramatic increase of overall coherence is still observed, and it is more 

pronounced for higher connectivities (Supplementary Figure 2.4) and lower direction ratios 



 
 

46 

(Supplementary Figure 2.5), since the amount of outgoing connections from hubs is increased in 

both cases, resulting in a more coherent network overall.  

Lastly, we included inhibitory neurons to the network, since they are known to have 

significant effects on pattern formation in cortical networks [77]. We simulated outgoing networks 

with an inhibitory population for T=0.5ms and various psyn. Our results (Fig.II.11) suggest that 

there’s still that reversal effect as we’ve seen in [Fig. II.9(E)], i.e. increasing psyn eventually 

increases the overall network coherence, when psyn approaches to 1.  

 

Figure II.11 Participation in pattern formation as a function of nodal degree for activity-dependent 
transmission failure for mixed excitatory-inhibitory networks. Histograms of MPC as a 
function of degree of neurons for T=0.5ms and varying psyn levels show emergence of highly 
synchronous state for high psyn values. The network is composed of 1000 excitatory and 1000 
inhibitory neurons. Excitatory neurons are wired as outgoing scale-free networks, while 
inhibitory neurons have random connections to both inhibitory and excitatory population with 
the same connectivity as the one within excitatory population (1.6%). 

2.4 Discussion 

. In this chapter, we systematically analyzed how synaptic failure affects two 

complementary scale-free network structures, namely incoming and outgoing. We studied the 

cases when synaptic transmission probability was activity-independent and when it was activity-

dependent. In the first case, we have found that targeted synaptic failure to a neuronal population 

having different nodal degrees has differential effects on pattern formation in the network. When 

synaptic failure was activity dependent, we observed that structural features of networks do not 
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map onto functional connectivity (Fig.II.12), but rather, synaptic failure may result in differential 

spatio-temporal patterning dependent on the failure recovery time constant T and the base failure 

probability psyn. Moreover, the two network structures, incoming and outgoing, behave differently, 

with outgoing networks displaying overall a larger degree of coherence/synchrony and a higher 

dependence on transmission probability. This is especially evident for the activity-dependent 

transmission probability, where the outgoing networks exhibit an increased level of coherence for 

a large base failure probability (psyn) for a specific value of the failure recovery time constant 

(T=0.5ms).  

 

Figure II.12  Emergence of coherence patterns in scale-free networks. Heatmaps of degrees [(A) and (E)] 
and MPC [(B)-(D) and (F)-(H)] for incoming [(A)-(D)] and outgoing [(E)-(H)] networks show 
dependence of network-wide pattern formation on parameters of activity-dependent synaptic 
failure (T and psyn). Each color is an average of the values for 100 neurons. 

This abrupt increase in synchrony and coherence as a result of synaptic failure is 

unexpected and paints a more complex picture of possible network interactions in the brain. It was 

hypothesized that anesthetics act predominantly on the network hubs and overall decrease the level 
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of coherence across brain networks, leading to the loss of consciousness[41]. Similarly, hubs are 

shown to be more vulnerable to amyloid deposition due to their high activity rate, causing the 

disruption of large-scale coherence in the brain and eventually AD [30]. In addition, numerical 

studies on scale-free networks suggest that they are robust against the random removal of nodes 

and the change in their synchronization process is insignificant in cases when 5% of their total 

nodes are randomly removed. However, when hubs are targeted, only the removal of 1% of the 

total nodes is enough to divide the network into subnetworks and to disrupt network 

synchronization [6, 78-80]. We show, however, that depending on the network type, preferential 

deactivation of hubs and activity-dependent degeneration might lead to increased phase coherence 

and synchrony. Further investigation on human brain networks may be necessary to determine 

whether a phase of overall increased coherence occurs before the decrease of large-scale coherence 

in such cases as application of anesthetics or AD. That may be a useful biomarker for AD as well 

as a significant contribution to explain the impact on anesthetics on the human brain. 
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3.1 Introduction 

Hidden hearing loss (HHL) is an auditory neuropathy characterized by normal hearing 

thresholds but reduced amplitude of the sound-evoked auditory nerve compound action potential 

(CAP) [59]. It has been proposed that in humans HHL leads to speech discrimination and 

intelligibility deficits, particularly in noisy environments [59]. Animal models originally indicated 

that HHL can be caused by moderate noise exposures [62] or aging [45], and that loss of inner hair 

cell (IHC) synapses could be its cause [43]. A recent study provided evidence that transient loss 

of cochlear Schwann cells, that provide myelination of auditory nerve fibers, also causes 

permanent auditory deficits in mice which have characteristics of HHL [63]. Histological analysis 

of the cochlea after auditory nerve remyelination showed a permanent disruption of the 

myelination patterns at the heminode of type I spiral ganglion neuron (SGN) peripheral terminals, 

suggesting that this defect could be contributing to HHL. To shed light on the mechanisms of 

different HHL scenarios observed in animals and to test their impact on type I SGN activity, we 

constructed a reduced biophysical model for a population of SGN peripheral axons. We found that, 

similar to experimental results (Fig III.1A-C), the amplitudes of simulated sound-evoked SGN 

Chapter III  

Contrasting Mechanisms for Hidden Hearing Loss: Synaptopathy 

vs Myelin Defects 
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CAPs are lower and have greater latencies when the heminodes are disorganized, i.e. they are 

placed at different distances from the hair cell rather than at the same distance as seen in the normal  

cochlea. Thus, our model confirms that disruption of the position of the heminode causes 

desynchronization of SGN spikes leading to a loss of temporal resolution and reduction of the 

sound-evoked SGN CAP. We also simulated synaptopathy by removing high threshold IHC-SGN 

synapses and found that the amplitude of simulated sound-evoked SGN CAPs decreases while 

latencies remain unchanged, corresponding to what has been observed in noise exposed animals 

(Fig III.1A). This model can be used to further study the effects of synaptopathy or demyelination 

on auditory function. Work presented here is currently submitted to PLOS Computational Biology. 
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Figure III.1 Mechanisms of hidden hearing loss. (A) Experimental results suggests that different 
mechanisms of HHL, myelinopathy and noise exposure resulting in synaptopathy, affects ABR 
P1 in distinct ways: Myelinopathy increases ABR P1 latency and decreases ABR P1 amplitude, 
while synaptopathy decreases ABR P1 amplitude only, without any change in latency (data taken 
from [63]; *p<0.05, **p<0.01, #p<0.001). Figures in panels (B) and (C) taken from [63] shows 
ABR P1 measures evoked by 11.3kHz sound stimuli with various sound levels for control and 
myelinopathy cases. The decrease in ABR P1 amplitude (B) in case of myelinopathy is more 
pronounced for higher sound levels, whereas ABR P1 latencies (C) are increased for all sound 
levels. (D) Schematic illustration of type I SGNs, bipolar neurons innervating IHCs via 
myelinated peripheral projections. (E, F) Model peripheral fibers of type I SGNs (SGN fiber) 
consist of an unmyelinated segment at the peripheral end adjacent to the site of IHC synapses, 
followed by a heminode and 5 myelin sheaths with 4 nodes between them. Two mechanisms of 
hidden hearing loss are simulated: (E) synaptopathy, modeled by removing IHC-AN synapses, 
and (F) myelinopathy, modeled by varying the lengths of the unmyelinated segment (Lu) or the 
heminode (Lh).  
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3.2 Methods 

3.2.1 SGN fiber model 

Type I SGNs are bipolar neurons with peripheral axon segments innervating IHCs and 

central axon segments projecting into the cochlear nucleus (Fig III.1D) [81]. In this study, a 

compartmental model of peripheral axons of type I SGNs was constructed using the NEURON 

simulator (version 7.6.2, [82]) as schematized in Figs III.1E and F. For simplicity, we refer to 

peripheral axons of type I SGNs as SGN fibers, throughout the chapter. Each fiber consists of an 

unmyelinated segment (length Lu), a heminode (length Lh) and 5 myelin sheaths following the 

heminode, separated by 4 nodes [83, 84]. Each compartment has passive membrane properties 

described by specific capacitance (Cm) and specific membrane resistance (Rm). Specific 

cytoplasmic resistance (Ra) between each consecutive compartment was modified to obtain the 

speed of the action potential as 12-14m/s [85], based on the neural conduction velocity 

measurements of human auditory nerve [86]. Sodium and potassium channels were inserted along 

the SGN fibers, except the myelin sheaths, which only had passive membrane properties. The 

nominal conductances of both channel types at the unmyelinated segment was 15 times less than 

the nodes and the heminode [84], therefore action potential was initiated first at the heminode. The 

parameters for channel dynamics were taken from [85] (see Section 3.5), the stochastic channels 

in [85] were converted into deterministic ones for simplicity. This was done by multiplying 

channel density with the single ion channel conductance to obtain deterministic conductance 

values (see Table 3.1 for all parameters). The Nernst potentials for the ions Na+ (ENa) and K+ (EK) 

were set to 66 and -88 mV, respectively, and the resting potential (ERest) was -78 mV [87]. 

Simulations were done at 37�. The differential equations were solved by fully implicit backward 
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Euler method with time step 5µs implemented in the NEURON simulation environment (see 

Section 3.5).  

Table III-1   Morphological, electrical and ion channel parameters of the different parts of a normal 
SGN fiber. Values as in [84] except for Ra and myelinated segment length which were 
modified for human SGN fibers. 

gNa, maximal sodium conductance; gK, maximal potassium conductance; Rm, specific membrane resistance; C, specific 
capacitance; Ra, specific cytoplasmic resistance. 
 

3.2.2 Sound representation 

We used a previously developed, well-accepted computational model [52, 88, 89] of the 

auditory periphery to simulate IHC-SGN synaptic release probabilities. This model takes a sound 

wave as an input and simulates the response of various parts of the ear (from the middle ear to 

SGNs) to this sound wave.  The model as described in [52] is summarized next.  A second-order 

linear bandpass Butterworth filter with cutoffs 22kHz and 12.5kHz was used to model the response 

of the middle ear to sound and output stapes velocity. To simulate basilar membrane (BM) velocity 

in response to stapes movement, a dual-resonance-nonlinear filter bank model was used [52]. BM 

motion results in the displacement of the IHC cilia, which was approximated as  

äã
hå(Z)

hZ
+ è ^ = äãêë]í]gì(^),                                                                                                       (3.1) 

Parameters Unmyelinated segment Heminode Myelin Node 

Length (µm) 10 1 40 [modified] 1 

Diameter (µm) 1.2 1.2 2.2 1.2 

gNa (S/cm2) 0.01208 0.1812 0 0.1812 

gK (S/cm2) 0.015 0.225 0 0.225 

Rm (ohm-cm2) 1662 1662 1300000 1662 

C (µF/cm2) 0.05125 0.05125 0.0012 0.05125 

Ra (ohm-cm) 8291.4 [modified] 
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where u(t) is the displacement of the IHC cilia, v(t) is the BM velocity, Ccilia and τC represent the 

gain factor and the time constant for the cilia displacement, respectively. The IHC cilia 

displacement changes the fraction of open ion channels at the IHC apical membrane, resulting in 

apical conductance change, which was modelled as a three-state Boltzmann distribution as  

î è = îë]í]g
Ugï 1 + exp	(− å Z /åó

có
)× 1 + exp(− å Z /å}

c}
)

/"

+ îg,                                         (3.2) 

where G(u) is the apical conductance, îë]í]gUgï is the maximum apical conductance and Ga is the 

passive conductance of the apical membrane. u0, s0, u1 and s1 are constants to model the 

nonlinearity of the proportion of open channels [52]. The voltage of an IHC depends on its apical 

conductance, which was modeled as 

êU
hX(Z)

hZ
+ î è \ ^ − òZ + îz \ ^ − òz

ô = 0,                                                                      (3.3) 

where V(t) is the IHC potential, Cm is the IHC membrane capacitance, Gk is the passive basolateral 

membrane conductance and Et is the endocochlear potential. òzô  is the reversal potential of the 

basal current Ek, which can be described as òzô = òz + òZöõ (öõ + öZ), where Rp and Rt are the 

resistances of the supporting cells. 

IHC depolarization opens the calcium channels near the synapse, resulting in the change 

of calcium current (ICa), which was described as 

eãg ^ = −îãg
Ugïúùûq

ü ^ \ ^ − òãg ,                                                                                              (3.4) 

where îãgUgï is the maximum calcium conductance near the synapse and ECa is the reversal 

potential of calcium. úùûq is the fraction of the open calcium channels, which depend on the IHC 

potential, given by 

äùûq
hU†ûq Z

hZ
+ úùûq ^ = úùûq,°,                                                                                                    (3.5) 

 where 
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úùûq,° = 1 + dãg/"exp	(−_ãg\(^)) /".                                                                                        (3.6) 

Here,  äùûq is calcium current time constant, úùûq,° is the steady state fraction of the open calcium 

channels, ßCa and γCa are constants to model experimental calcium current properties. 

Calcium current (ICa) changes the concentration of the calcium ion ([Ca2+]) near the 

synapse of the IHCs, which was modeled as 

h ãg&~ (Z)

hZ
= eãg ^ − êAB¢ ^ ä ãg ,                                                                                            (3.7) 

where τ[Ca] is calcium concentration time constant. Since calcium ions near the synapse trigger 

neurotransmitter release from IHCs, calcium concentration ([Ca2+]) affects the transmitter release 

rate, k(t) , such that: 

£ ^ = max êAB¢ ü ^ − êAB¢ Z•f
ü ¶, 0 ,                                                                                 (3.8) 

where [Ca2+]thr is the minimum calcium concentration required for a release and z is a constant to 

obtain release rates from calcium concentration.  

The model for the IHC synapse consists of three pools of neurotransmitter vesicles, a cleft 

(c), an immediate store (q) and a reprocessing store (w) . The number of vesicles at each pool was 

described as 

hß(Z)

hZ
= ® © ^ , ™ + ® ´ − ¨ ^ , ≠ − ® ¨ ^ , £ ^ ,                                               (3.9) 

hë(Z)

hZ
= ® ¨ ^ , £ ^ − ÆØ ^ − ∞Ø(^),                                                                            (3.10) 

 h±(Z)
hZ

= ∞Ø ^ − ® © ^ , ™ .                                                                                            (3.11) 

These equations dictate that vesicle release occurs from the immediate store (q) to the cleft (c) at 

a rate k(t). The vesicles in the cleft are either lost from the synapse at a rate l, or IHCs can take 

them back to the reprocessing (w) store at a rate r, where the neurotransmitters are repackaged into 

vesicles to be released. Then, the repackaged vesicles are transferred to the immediate store at a 
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rate x. M in Eq. 3.9 represents the maximum number of vesicles that can be contained at the 

immediate store, which receives new vesicles at a rate y[M-q(t)]. Here, the rate of the transfer of 

vesicles from the reprocessing store to the immediate store (x) and the rate immediate store 

receives new vesicles (y) are constants taken from [88, 89]. 

In this IHC synapse model, vesicles in the cleft and the reprocessing store are continuous 

quantities, whereas the immediate store has quantal vesicles, whose release is a stochastic process. 

This process is described by the function N(n, ρ), which means that there are n vesicles, each of 

which have a release probability of ρdt at a single time step dt. As a result, we take the term N(q(t), 

k(t)) as an output of this model, which gives us the release rate, i.e. the release probability from 

IHCs. In our model, we used the excitation protocol from [61] and applied 10kHz 5 ms long sound 

stimuli. As a result, we simulated the stimulus mediated release probabilities expected from that 

excitation (Fig. III.2A). We used the same parameters as in [88, 89], except for those listed in 

Table 2, in order to obtain release rates similar to the experimental results as in Fig III.3 in [52]. 

Table III-2 Parameters for the model of middle ear-IHC synapse, changed from [88, 89] 

Parameters LT MT HT 

Order of the linear gammatone filters 3 3 1 

≤≥¥
µ¥∂(nS) 4 3 2 

îãg
Ugï, maximum calcium conductance near the IHC synapse; LT, low threshold fiber; MT, medium threshold fiber; HT, high 

threshold fiber. 
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Figure III.2  Sound-evoked activity of low, medium and high threshold SGN fibers results from increased 
vesicle release probabilities from corresponding IHC-SGN synapses. (A) Sound stimuli 
results in an increased vesicle release probability from IHCs (as computed using the coupled Eqs. 
(3.1-3.11)) and release times as determined by a Poisson process. (B) Cumulative release events 
of an IHC synapse population with best frequencies between 5.6kHz-32kHz in response to a 
10kHz sound stimuli. The dots, color coded based on the BFs of the synapses, represent release 
times of each IHC synapse in a population defined as different IHC synapse IDs. Since the 
thresholds of IHCs depend on their BFs, each population has different release patterns. For each 
release event, the corresponding SGN fiber is stimulated with a brief external current pulse, 
resulting in spiking activity. (C) Three groups of SGN fibers, low (LT), medium (MT) and high 
(HT) threshold, were simulated based on their spontaneous firing rates and saturation profiles in 
response to sound. (D) Based on the release probabilities, different fiber types exhibit different 
cumulative responses (red dots: low threshold, green dots: medium threshold, blue dots: high 
threshold). Panels A-D are example simulations for simulated 80dB SPL 10kHz sound stimuli. 
(E) The trend of spike rates of each fiber type for various sound levels in our model are 
comparable to Fig 3 of [52].  
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The output of the IHC synapse model is IHC-SGN synaptic release probabilities (Fig 

III.2A), which were used to determine a Poisson process of IHC release (Fig III.2B) that governed 

brief external stimuli to the corresponding nerve fiber to induce action potential generation. The 

external stimuli mimicking synaptic release from IHCs [90] were simulated in the form of external 

current pulses Iapp, expressed as 

egõõ = 0.19∏(i
/ k
π& − i

/ k
π})(\U − ò∫ïõ)                                                                                                (3.12) 

where A=0.1nS, τ1=0.3ms, τ2=0.5ms and Eexp=0mV, unless otherwise stated (Supplementary 

Figure 3.3 and Supplementary Figure 3.4A). Iapp is applied at the beginning of the unmyelinated 

segment (Fig III.1E and F) and the time of the action potential at the center of the heminode was 

taken as output (Fig III.2D). 

3.2.3 Defining different fiber types 

SGNs can be classified into 3 groups depending on their spontaneous firing properties, 

thresholds for sound-evoked activity and saturation profiles, namely low threshold (LT), medium 

threshold (MT) and high threshold (HT) fibers. Based on the measurements reported in [53], we 

modeled the properties of these three fiber groups as follows (Figs III.2C-E): LT fibers have high 

spontaneous rates (18-100 spikes/s), low dynamic ranges, and reach their maximum discharge rate 

within approximately 30 dB sound pressure level (SPL). MT fibers have lower spontaneous firing 

(between 0.5 and 18 spikes/s), higher dynamic ranges, and show slower increase and saturation of 

spike rates with increasing SPL compared to LT fibers. HT fibers have very low spontaneous firing 

rates (<0.5 spikes/s), and response thresholds higher than ~20 dB SPL. For higher SPL, their spike 

rate increases linearly with sound intensity, therefore their dynamic range is the highest [53]. To 

simulate these different fibers, we varied [Ca2+]thr and îãgUgï of the IHC synapses of each fiber 

type (see [88, 89] and Table 3.2). In our model, we had IHC synapses with 21 characteristic 
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frequencies varying logarithmically between 5.6kHz and 32kHz to simulate experimental data 

[61]. For each characteristic frequency, we used 100 LT, 100 MT and 100 HT fibers, 6300 fibers 

in total.  

3.2.4 Analyzing spike trains obtained from simulations 

In response to simulated sound stimulus, each model SGN fiber fires a sequence of spikes (Fig 

III.2D). We used three methods to analyze SGN fiber spike trains: 

3.2.4.1Measurement of time intervals between non-identical spike trains of SGN fiber 

populations 

This metric, modified from a shuffled autocorrelogram measure in [91], was used to 

quantify temporal properties of SGN fiber spiking within a population based on the time intervals 

of the spikes between each non-identical pair of spike trains within the population. From all 

possible non-identical pairs of spike trains within a population, forward time intervals were 

measured between each spike i of the first spike train and spikes of the second spike train falling 

between the i-th and (i+1)-st spikes (Fig III.3A). All time intervals from all pairs were tallied in a 

histogram and the histogram was reflected over y-axis, since each forward time interval of a pair 

(a,b) is a backward time interval of the pair (b,a). 
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Figure III.3  Methods used to evaluate cumulative activity of SGN fiber populations: pairwise spike time 
differences (A) and simulated CAP (B,C). (A) For each non-identical pair of spike trains from 
an SGN fiber population, forward time intervals are measured between each spike i of the spike 
train 1 and all spikes of the spike train 2 falling between i and i+1. Standard deviations of the 
distributions of these time intervals are calculated to evaluate synchronous spike timing in the 
SGN fiber population. (B) Each spike in Fig III.2D is convolved with the unitary response of 
CAP [the inset of (B)] and convolutions from each spike are summed up to obtain a simulated 
CAP of the SGN fiber population. (C) Amplitude, latency and width are measured from the first 
peak of the simulated CAP [dashed rectangle in (B) is zoomed in for (C)] (b: baseline, p: peak, 
A: amplitude of the peak, tp: peak time, l: latency, w: width, tw: half amplitude time before tp). 
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3.2.4.2Convolution into the unitary response of compound action potential (CAP) 

To yield a cumulative response of the activity of the population of SGN fibers and to be able to 

compare model results with in vivo ABR P1 results, we convolved each spike with the unitary 

response and summed them up to generate a population CAP (Fig III.3B). In this study, we 

considered this computed CAP as equivalent to ABR P1. The unitary response U(t) was described 

as in [92]: 

where A = 0.16µV, k = 1.44ms-1, f = 0.994ms-1 and t is the time (Fig III.3B inset). 

 Fifty population CAPs were averaged to measure the width (w), amplitude (a) and latency 

(w) of the initial CAP peak more accurately, which were computed as:  

 A	 = 	 t − ª  (3.14) 

 Æ = ^õ − ^cZgfZ (3.15) 

 © = 2(^± − ^õ) (3.16) 

where p is the peak voltage, b is the baseline voltage, tp is the time when the voltage equals p, and 

tw is the time when the voltage equals − ª + g

B
 (the half-peak) before tp (Fig III.3C).  

3.2.4.3Calculating spike probability and latency for each SGN fiber population. 

The probability that release events at IHC-SGN synapses resulted in spikes at the 

heminodes of an SGN fiber population was calculated by dividing the number of spikes at the 

heminode of each SGN fiber by the number of release events and averaging over all fibers within 

a population.  Spike latency of an SGN fiber population was calculated by the time difference 

between a spike and a release preceding that spike averaged over all spikes of that population. 

º ^ 	= 	 ∏	×	i
/z Z/F.BΩΩ ×sin 2{¡ ^ − 0.288 	

0																																																																						
 

 

for	 − 0.215 ≤ ^ ≤ 2.785        (3.13) 

otherwise 
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3.3 Results 

Using the model of the type I SGN fiber population, we investigated the effects of 

myelinopathy and synaptopathy on type I SGN spike generation and spike timing. We first 

simulated different myelinopathy scenarios by varying the length of the initial unmyelinated 

segment Lu (Fig III.1F, from a putative control value of 9 µm) and the first heminode length Lh 

(from a control value of 1 µm) for all (i.e. LT, MT and HT) fibers. Next, we simulated 

synaptopathy by removing IHC-SGN synapses (Fig III.1E) considering the cases where only 

synapses on HT fibers are affected or synapses on all fiber types are affected. Lastly, we 

investigated the combined effects of myelinopathy and synaptopathy. 

3.3.1 Effects of myelinopathy on SGN population activation patterns  

Mouse studies have shown that transient demyelination and the subsequent remyelination 

alters the position of SGN heminodes,  resulting in heminodes that are positioned farther from the 

IHC-SGN synapse and at variable positions, in contrast to healthy SGN fibers where heminodes 

on all fibers are aligned [61]. To identify the effect of this heterogeneity of heminode locations on 

SGN spike timing, we first considered a population of fibers with different ranges of Lu values 

stimulated with identical IHC release patterns (Fig III.4). Here, we denote 0% increase as the 

putative control fiber length (Lu=9 µm), while 100% increase means Lu was varied between 9 and 

18 µm uniformly across the population. We assessed the level of synchronization of spikes across 

the SGN fiber population by stimulating all fibers with an identical randomly determined IHC 

release pattern. As heterogeneity of Lu values was increased (Fig III.4A), the population spike rate 

decreased reflecting spike generation failure on fibers with large Lu. At the same time, variability 

in spike timing increased as illustrated in spike raster plots (Figs III.4B, D, F, H show a portion of 

the generated spike trains, insets show timing of first spikes) and computed pairwise spike time 
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intervals (Figs III.4C, E, G, I, see Methods). These disruptions in spike generation and timing 

resulted in increased standard deviation of the distribution of pairwise spike time differences across 

the population (Fig III.4A). These initial observations suggest that myelinopathy not only disrupts 

spike timing of SGNs within a population, but also leads to the loss of spikes. 

 

 



 
 

64 

 

Figure III.4  The synchronous activity of SGN fiber populations is disrupted and their response to sound 
is decreased with increasing levels of Lu heterogeneity. SGN fiber populations with different 
heterogeneity levels of Lu were stimulated with a randomly determined release pattern. We 
assumed release events from all IHCs for the population occurred simultaneously. Raster plots 
[(B), (D), (F) and (H), insets: the first bursts of the raster plots] and corresponding histograms of 
time intervals between non-identical pairs of spike trains within a population [(C), (E), (G) and 
(I)] are shown for populations of SGN fibers with Lu=9µm (0% increase in Lu) [(B) and (C)], 
9µm≤Lu≤11.5µm (~28% increase in Lu) [(D) and (E)], 9µm≤Lu≤14µm (~56% increase in Lu) 
[(F) and (G)] and 9µm≤ Lu≤18µm (100% increase in Lu) [(H) and (I)]. The ordinates of the 
histograms are normalized over the number of spike pairs with 0ms delay for the population 
where all fibers have Lu=9µm (C). Simulations were done 5 times. Firing rate and standard 
deviations of time intervals are averaged for all populations in (A), shaded area represents the 
standard error of the mean.   
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To investigate effects of this disruption of spike generation and timing in the full model, 

CAPs were computed from spike responses of populations of LT, MT and HT SGN fibers subject 

to simulated myelinopathy. Responses of fiber populations with homogeneous initial 

unmyelinated segments (Lu) or first heminode length (Lh) values were investigated to see the 

gradual effect of variable myelination patterns on cumulative activity of SGN fibers. Additionally, 

populations with heterogeneous, random Lu or Lh values were simulated to represent a population 

heterogeneity induced by myelinopathy. We note that when increasing first heminode length (Lh) 

the number of expressed channels (Na+ and K+) was kept constant, consequently decreasing their 

density.  However, when increasing initial unmyelinated segment length (Lu), the density of 

expressed channels was kept constant, consequently increasing their number. Results were not 

qualitatively different when these assumptions were reversed (see Discussion in Section 3.4). 

Model results show that, in response to a simulated 70 dB SPL stimulus, CAPs computed from 

SGN fiber populations with homogeneous myelination patterns had decreased peak amplitude and 

increased latency to the peak when Lu was longer than the putative normal length of 9 µm (Fig 

III.5A) and Lh was longer than the putative normal length of 1 µm (Fig III.6A). The latency of the 

simulated CAP for a normal SGN population (Lu = 9 µm and Lh = 1 µm) was ~1.2ms, which is 

within the range of experimental CAP latencies [92]. The amplitude decrease was highly 

significant for Lu > 11 µm and Lh > 3 µm with ~60% of a drop from normal (Figs III.5B and 

III.6B). This was due to the fact that at those values failure of spike generation occurred because 

of the increased lengths, Lu and Lh. CAP peak latencies were significantly longer than normal for 

all homogeneous populations, with Lu > 12 µm and Lh > 3 µm having ~15% of an increase. The 

changes in CAP widths were minimal for all cases. For populations with heterogeneous 
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myelination patterns, however, CAP peaks were significantly (~45%) lower, and latencies and 

widths were significantly higher than normal populations (Figs III.5C and III.6C). 

 

Figure III.5  Longer Lu significantly decreases and delays the peak of the sound-evoked CAPs of SGN 
fibers. (A) Sound-evoked CAPs of SGN fiber populations with varying Lu at 70dB SPL, 
averaged over 50 simulations. Shaded regions correspond to the standard error of the mean and 
dashed lines correspond to the peaks of each CAP, labeled with the same colors as the CAPs. 
The decrease and delay of peak CAPs are more obvious for populations with Lu > 11 µm. (B) 
Comparison of CAP measures of each population relative to normal Lu (Lu = 9 µm) at 70 dB 
SPL. Latencies are significantly higher for all populations and peaks are significantly lower for 
populations with Lu>11 µm. The increases in widths are only minimal (*p<0.05, **p<0.01, 
#p<0.001). (C) Normalized CAP amplitudes for various sound levels exhibit an exponential 
increase and the decreases in CAP amplitudes for populations with Lu>11 µm are more 
pronounced for higher sound levels. (D) The latencies of CAP peaks increase with higher Lu for 
all sound levels decreasing along the sound levels.  
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Figure III.6 Longer Lh significantly decreases and delays the peak of the sound-evoked CAPs of SGN 
fibers. (A) Sound-evoked CAPs of SGN fiber populations of varying Lh at 70dB SPL, averaged 
over 50 simulations. Shaded regions correspond to the standard error of the mean and dashed 
lines correspond to the peaks of each CAP, labeled with the same colors as the CAPs. The 
decreased peak amplitude and increased latency of CAP peak are more obvious for populations 
with Lh > 3 µm. (B) Comparison of CAP measures of each population relative to the normal Lh 
(Lh = 1 µm) at 70 dB SPL. CAP latencies are significantly higher for populations with Lh>2 µm 
and peak amplitudes are significantly lower for populations with Lh>3 µm. The increases in 
widths are only minimal (*p<0.05, **p<0.01, #p<0.001). (C) Normalized CAP amplitudes 
exhibits an exponential increase and the decreases in CAP amplitudes of populations with Lh>3 
µm are more pronounced for higher sound levels. (D) The latencies of CAP peaks increase with 
higher Lh for all sound levels decreasing along the sound levels.  
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In addition, to assess the dependencies of CAP properties on sound intensities, we 

measured responses to simulated sound stimuli between 0-80 dB. For Lu ≤ 11 µm  and Lh ≤ 3 µm, 

CAP peak amplitudes increased with sound intensity (Figs III.5C and III.6C, respectively) and the 

profile of increase was more similar to experimental measurements of ABR (Fig III.1B, also see 

Supplementary Fig 3.4 in [61]) and CAP [92]. However, for Lu > 11 µm and Lh > 3 µm, CAP 

amplitudes remained small for all sound intensities due to reduced spike generation. For 

populations with heterogeneous myelination patterns, CAP amplitudes were between the Lu=11 

µm and Lu=12 µm cases, and the Lh=3 µm and Lh=4 µm cases for all sound levels, reflecting 

reduced spike generation in some fibers of the population with higher Lu and Lh values. CAP 

latencies were longer for higher values of Lu and Lh  (Figs III.5D and III.6D) and they decreased 

with increasing sound levels for all cases, consistent with experimental observations (Fig III.1C, 

also see Supplementary Fig 4 in [61]). In the heterogeneous populations, CAP latencies showed 

values similar to the Lu=11 µm and the Lh=3 µm cases. 

3.3.2 Effects of synaptopathy on SGN population activation patterns  

There is strong evidence indicating that noise-induced synaptopathy, primarily at HT 

fibers, could be one of the mechanisms of hidden hearing loss [43, 44, 93]. To simulate it, we 

considered responses of a population of control SGN fibers (Lu = 9 µm, Lh = 1 µm) with all HT 

IHC-SGN synapses removed. To investigate the specific effect of loss of synapses on HT fibers, 

we compared responses to the case where the same number of synapses (1/3th of whole population) 

were removed randomly from the whole population of three fiber types. The CAPs computed from 

populations with and without synaptopathy (Fig III.7A) in response to a 70 dB SPL suggest that 

HT-targeted synaptopathy produces only a small effect on CAP peak amplitude while random 

synaptopathy has a more significant effect on the amplitude (~30% vs ~10% decrease from normal 
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at 70dB SPL) (Fig III.7B). Moreover, there was no latency and width changes for both HT and 

random synaptopathies.  

 

Figure III.7  Synaptopathy at IHC-SGN synapses decreases the peak of the CAP significantly, without 
changes to peak latency and width. (A) Sound-evoked CAPs of SGN fiber populations with 
different synaptopathy scenarios at 70dB SPL, averaged over 50 simulations. Shaded regions 
correspond to the standard error of the mean and dashed lines correspond to the peaks of each 
CAP, labeled with the same colors as the CAPs. Synaptopathy has smaller effects on CAP peak 
amplitude and latency when it affects only HT fiber synapses compared to affecting all fiber 
types randomly. (B) Comparison of CAP measures of synaptopathy cases relative to normal (no 
synaptopathy) at 70 dB SPL (*p<0.05, **p<0.01, #p<0.001). (C) Normalized CAP amplitudes 
exhibit an exponential increase and the decreases in CAP amplitudes of populations with both 
synaptopathy scenarios are more pronounced for higher sound levels. The latencies of the CAP 
peaks do not exhibit any significant difference between different populations for all sound levels.  
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We simulated sound intensities between 0-80 dB SPL to assess how CAP peak amplitude 

and latency depend on sound intensities in the synaptopathic cochlear model. For HT 

synaptopathy, a decrease of CAP peaks was observed for only higher sound intensities (>70dB 

SPL), while CAP peaks of random synaptopathy were lower than the normal case for sound 

intensities higher than 40dB SPL (Fig III.7C). CAP latencies did not show any significant 

differences for any sound level in any synaptopathy case (Fig III.7D). 

3.3.3 Combined effects of myelinopathy and synaptopathy of hidden hearing loss 

To investigate how different HHL mechanisms interact and affect cumulative SGN fiber 

activity, we combined them in our model (Fig III.8). When HT synaptopathy (Fig III.8A and B) 

was combined with myelinopathy affecting the length of the initial unmyelinated segment Lu, CAP 

peak amplitude showed significant additive decrease but latency and width showed no change 

beyond that produced by the myelin defects alone (compare Case 3 with Cases 1 and 2). When 

both myelinopathy mechanisms were combined by varying Lu and Lh across the population, both 

CAP peak amplitude and latency showed significant additive changes (compare Case 4 with Case 

2). In response to varied sound intensities between 0-80 dB SPL, the additive effects of 

synaptopathy and myelinopathy on CAP peak amplitude and latency changes were prominent for 

higher SPL (Figs III.8C and D, respectively).   
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Figure III.8   Different scenarios of hidden hearing loss have additive effects on SGN activity. (A) Sound-
evoked CAPs of SGN fiber populations with different myelinopathy and synaptopathy scenarios 
at 70dB SPL, averaged over 50 simulations (dashed lines correspond to the peaks of each CAP, 
labeled with the same colors as the CAPs). Combined synaptopathy and myelinopathy (Case 3) 
shows additive effects on the decrease in CAP peak amplitude, but not on the increase in CAP 
peak latency (compare to Cases 1 and 2). Combined different myelinopathies show additive 
effects on both CAP peak amplitude and latency (compare Cases 2 and 4). (B) Comparison of 
average CAP measures for different myelinopathy and synaptopathy cases relative to normal, 
and between cases at 70 dB SPL (*p<0.05, **p<0.01, #p<0.001). Normalized CAP amplitudes 
(C) and CAP latencies (D) for different myelinopathy and synaptopathy cases for various sound 
levels, averaged over 50 simulations. Shaded areas correspond to the standard error of the mean.  

In summary, model results suggest that decreases in CAP peak amplitudes show additive 

effects for combined synaptopathy and myelinopathy. Also, there were significant increases in 

CAP peak latencies only for myelinopathy-based mechanisms, with latencies showing additive 

effects in combined myelinopathies, while synaptopathies do not affect this CAP features.  
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3.4 Discussion 

We built a reduced biophysical model simulating sound-evoked activity of type I SGN 

populations to analyze two hypotheses of the cause of HHL, synaptopathy and myelinopathy.  

Model SGN spike times were convolved with the unitary response of the CAP, a near-field 

response of SGNs, to convert spike times into cumulative activity for comparison with 

experimental results. The cumulative CAP for the normal case (Lu=9 µm and Lh=1 µm) in our 

model has similar characteristics as experimental CAP [92]: The peak latency at 80dB SPL is 

~1.2ms and the peak amplitude increases exponentially with increasing sound levels, with a value 

of ~70µV at 70dB SPL. Moreover, the model shows that synaptopathy reduces the amplitude of 

the cumulative CAP response without affecting its latency due to a reduction in the number of 

nerve fibers responding without disruption of spike timing. In contrast, myelinopathy, when 

modeled as disorganization of either the initial unmyelinated nerve segment length or the 

heminodal spacing, causes disruption of spike timing in addition to loss of firing response, 

affecting both the peak amplitude and latency of the cumulative CAP.  

Previously, it has been shown that noise exposure and aging cause HHL due to synapse 

loss at SGN-IHC synapses, which results in a decrease of ABR P1 without increases in latency or 

thresholds (Fig III.1A) [45, 60, 61, 94]. Moreover, it has been hypothesized that synapse loss 

occurs preferentially at HT SGN-IHC synapses [43]. Consistent with experimental results, our 

simulations for both HT synaptopathy and random synaptopathy show that CAP latencies are 

unchanged for either scenario, but the amplitude of the CAP peak is significantly decreased. 

However, the decrease in CAP amplitude was larger for random synaptopathy, in contrast to HT 

synaptopathy case, where differences in SGN fiber activity appeared only with higher SPL stimuli. 

These results suggest that synaptopathy at HT synapses is a more likely scenario for HHL than 
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random loss of synapses, since experimental results show that thresholds remain unchanged (Fig 

III.7) [43].  

A computational study from Bourien et al. (2014) has previously investigated the effects 

of different auditory fiber degeneration scenarios on cumulative CAP characteristics [92]. They 

provided evidence that removing 1/3rd of the auditory fibers randomly from an auditory fiber 

population linearly decreased the cumulative CAP amplitude with minimal threshold elevation and 

no change in CAP peak latency, which is consistent with our results for random synaptopathy (Fig 

III.7). They also removed preferentially HT fibers from the population and showed that there is no 

threshold elevation and no change in CAP peak latency and amplitude, when all HT fibers are 

removed. This is slightly different than our results for HT synaptopathy, since we saw a decrease 

in CAP peak amplitude, when we removed all HT synapses (Fig III.7). This might be due to the 

difference in HT fiber proportions in both studies; in our case 1/3rd of the synapses are HT, whereas 

in their study it is only 10%. 

As shown by Wan and Corfas (2017), myelinopathy affects the distance from the IHC-

SGN synapse to the heminode and introduces heterogeneity in heminode locations across a SGN 

fiber population, which is likely to result in their desynchronized activity [61]. Here, we provided 

evidence that increasing heterogeneity of heminode locations decreases the synchronization of 

spike timing of SGN fiber populations. Moreover, spike rates of more heterogeneous SGN fiber 

populations dropped, suggesting a loss of spike generation in SGN fibers with heminodes further 

from IHCs (Fig III.4). Our simulations of cumulative CAP signals show that myelinopathy 

increases the latency and the width of the peak of CAP, similar to experimental observations of 

ABR P1 (Fig III.1C), providing support for the disruption of spike timing in SGN activity (Figs 
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III.5 and III.6). In addition, the amplitude of the simulated CAP decreased with myelinopathy, 

reflecting the reduction of SGN spike activity.  

Combining synaptopathy and myelinopathy HHL mechanisms led to additive effects in our 

model. Decreases in CAP peak amplitude were additive for combined synaptopathy and 

myelinopathy, but synaptopathy did not contribute to changes in CAP latency even in the 

combined scenario. Combining myelinopathy mechanisms led to additive increases in both peak 

CAP amplitude and latency (Fig III.8). These results match with the experimental results 

qualitatively (Fig III.1A), further supporting the accuracy of our model. 

In the myelinopathy simulations, we varied the length of the initial unmyelinated segment 

Lu keeping a constant channel density (Fig III.5) and varied the length of the heminode Lh keeping 

constant channel numbers (Fig III.6). Results show similar effects on SGN fiber activity, i.e. the 

populations with the same combined lengths Lu+Lh exhibit the same behavior. As evidence on how 

channels might be affected by the disruption of myelination patterns is lacking, we also simulated 

cases where Lu increases with constant channel number (Supplementary Figure 3.1) and Lh 

increases with constant channel density (Supplementary Figure 3.2). Results show that spreading 

the same number of channels over an increased Lu (Supplementary Figure 3.1), rather than 

increasing the number by keeping the channel density constant (Fig III.5), decreases the Lu value 

at which the abrupt decrease in CAP peak occurs due to loss of spike generation. With constant 

channel number, CAP peaks for homogeneous populations with Lu>11 µm decreased ~70% from 

normal (Lu=9 µm) (Supplementary Figure III.1B). In contrast, varying Lh while keeping the 

heminode channel density constant, i.e., increasing the number of channels for larger Lh, increased 

the Lh value associated with the loss of spike generation up to 6 µm, compared to 3 µm when 

channel number was kept constant (Fig III.6). To conclude, any of these scenarios results in 
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qualitatively similar SGN fiber activity patterns, only affecting the Lu and Lh lengths at which loss 

of spike generation leads to an abrupt drop in the CAP peak.  

To better understand the effects of myelinopathy on SGN spike generation, we additionally 

analyzed the outcome of one vesicle release event to a single SGN fiber. As described in the 

Methods section, SGN response to vesicle release was simulated by applying a brief external 

current pulse to the peripheral end of the SGN fibers. We calculated the time difference between 

a spike of one SGN fiber and the preceding release event, which we define as delay, for various 

amplitudes (A in Equation 3.12) of the external current pulse Iapp, by keeping τ1 and τ2 constant 

(Supplementary Figure 3.3). Here, we provided evidence that increasing Lu delays the spike more, 

up to a critical value of Lu for all Iapp characteristics. For Lu values higher than the critical value, 

single release event does not result in a spike at an SGN fiber. We showed that this critical value 

is higher for stronger external current pulses (Iapp) and the increase in the delay with increasing Lu 

is faster for weaker Iapp. However, different Iapp characteristics exhibit qualitatively similar trends, 

meaning that synaptic efficacy would not affect our results qualitatively.   Then, we investigated 

the population outcome of vesicle release events to the SGN fibers. We thus calculated the 

probability that release events result in corresponding spikes for various amplitudes Iapp of the 

external current pulse for increasing values of Lu (Supplementary Figure 3.4A). For simulated 

70dB SPL stimuli, higher Iapp amplitudes increased spike probability for larger Lu values, leading 

to increases in the Lu values at which spike generation was affected. If Lu exceeded a critical value, 

the probability of spike generation decreased significantly, due to the fact that one release event is 

not enough to generate a spike in an SGN fiber with an Lu higher than this critical value, as shown 

in Supplementary Figure 3.3. These results show that this Lu critical value required for spike 

generation depends on IHC-SGN synaptic efficacy. 
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To analyze the effect of sound level on SGN fiber spike probability, we ran simulations for 

all sound levels keeping the amplitude (A) of Iapp fixed at the default value (A = 0.1nS, solid black 

rectangle in Supplementary Figure 3.4A). As described in the Methods section, increasing sound 

level was simulated by increasing the probability of a vesicle release event, thus leading to higher 

rate of release from IHCs, i.e. higher frequencies of external current pulse applications to SGN 

fibers. For this Iapp value, spike generation was affected for Lu>11 µm as evident in the results 

shown in Fig III.5. For SGN fibers with Lu ≤ 11.7 µm, spike probabilities were higher than 40% 

for all sound levels (Supplementary Figure 3.4B). However, spike probabilities decreased 

gradually with higher sound levels due to the inability of the fibers to respond to high frequency 

stimulation. This means, despite more frequent release events from IHC-SGN synapses with 

higher sound levels, SGN fibers cannot fire with a higher frequency due to the saturation of their 

spike rate, resulting in decreased spike probabilities. For SGN fibers with Lu>11.7 µm, spike 

probability was very low reflecting loss of spike generation but it increased slightly with increasing 

sound level, as high frequency stimulation facilitated spike generation due to temporal summation. 

Results for heterogeneous Lu values between 9 and 14 µm showed intermediate spike probabilities 

(~40%) as compared to homogeneous Lu values of 9 µm, for all sound levels. 

Lastly, to analyze effects of myelinopathy on SGN spike latency, we averaged the time 

differences between each spike and the preceding release event causing the spike for populations 

of SGN fibers with varied homogeneous Lu values and varied sound levels (Supplementary Figure 

3.4C). The populations with Lu>11 µm were not included since spikes were not reliably generated 

and for the heterogeneous population, the fibers with Lu>11 µm were ignored. The homogeneous 

populations showed increased latencies with increasing Lu and the heterogeneous population’s 

latencies were between those for Lu = 10 µm and Lu = 11 µm for low sound intensities. Latencies 
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were generally decreased with increasing sound levels. However, standard deviations of spike 

latencies increased with sound level, presumably reflecting higher variability in spike response to 

higher frequency stimulation (Supplementary Figure 3.4D). Additionally, the population with 

heterogeneous Lu values showed higher standard deviations for lower sound levels than the 

homogeneous populations with Lu ≤ 11 µm. This increase in spike timing variability is responsible 

for increases in the width of the cumulative CAP for the heterogeneous population shown in Fig 

III.5.  

In conclusion, our model results show that HHL deficits due to myelinopathy could be 

caused by not only loss of SGN spike activity, as in synaptopathy, but also disruption of spike 

timing and synchronization across a population of SGN fibers. Furthermore, these results can be 

revealed with simpler models of inner hair cell release, without taking the nonlinear dynamics of 

cochlear excitation into account, illustrating the significance of the SGN fiber organization of our 

model (data not shown). Illumination of the underlying differences in these mechanisms for HHL 

based on the model may be useful for the development and testing of treatments for HHL. 

Moreover, the model framework may be extended to investigate mechanisms behind other 

peripheral auditory system disorders. 
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4.1 Introduction 

The ability to determine the location of the source of a sound is critical for all animals. 

They can easily find prey, escape from predators and survive other dangers in nature thanks to 

their sound localization skills. Humans, as well, benefit from this ability to assess their safety and 

to distinguish speech when competing sounds are present. Unlike visual and somatosensory 

systems, the auditory system does not use location cues to detect where the stimulus comes from. 

Instead, temporal, spectral and intensity cues are needed to determine the location of the source in 

three-dimensional space [55]. Locating the sound in the horizontal plane requires precise temporal 

and intensity information coming from both ears. Integration of the binaural information in humans 

takes place in the superior olivary complex (SOC) located in the midbrain, which has a nucleus 

called the medial superior olive (MSO), where temporal cues are analyzed. MSO cells receive 

binaural excitatory and inhibitory inputs from spherical (SBC) and globular bushy cells (GBC), 

respectively [57]. SBCs and GBCs are located in the cochlear nucleus, the first relay point for 

signals from the periphery to the central auditory system. Multiple spiral ganglion neurons (SGNs) 

project to SBCs and GBCs, which respond more phase-locked to sound than the SGN fibers, 

therefore transmitting more precise timing information to MSO cells [54].  

Chapter IV  

Binaural Processing Deficits Due to Myelin Defects 
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MSO cells are sensitive to interaural time differences (ITDs), the difference in the arrival 

time of the sound to both ears, thanks to their coincidence detection properties [56]. This means, 

MSO cells do not fire unless they are excited by contra- and ipsilateral SBCs within a short time 

window. Consequently, humans can resolve ITDs as short as 10µs and can locate the sound as 

precisely as a few degrees [47]. For the binaural excitatory inputs to coincide at the MSO on one 

side of the brain, the sound should arrive to the contralateral ear first, to compensate for the internal 

delay caused by the path the signal needs to travel in the brain from one hemisphere to the other. 

As a result, the ITDs with the highest MSO activity, also called the best ITDs, correspond to 

slightly contralateral leading sound sources. This gives rise to different MSO activity patterns in 

each hemisphere, and the horizontal location of the sound is encoded in the brain by the difference 

in firing rates between the MSOs in both hemispheres [58]. 

The precise timing of binaural signals is essential to detect the horizontal direction of the 

sound source. Therefore, the disruption of the synaptic signaling along the peripheral auditory 

circuits would significantly impair sound localization skills in humans.  Many behavioral and 

electrophysiological studies suggest that humans with normal audiometric thresholds have 

problems with encoding and processing binaural cues, giving rise to speech intelligibility and ITD 

sensitivity deficits, as a result of noise exposure [95-97], aging [98] or demyelinating diseases [65, 

99, 100], a condition known as hidden hearing loss (HHL). In this study, we hypothesize that these 

perceptual deficits stem from the lack of coincidence of inputs from SBCs to MSO cells, leading 

to decreased activity levels of MSO cells and ITD discrimination deficits. To test this hypothesis, 

we employ the computational model from Chapter III to simulate the activity of SGN fibers with 

myelin defects at SGN heminodes, since animal studies suggested that myelinopathy in the SGN 

heminodes results in HHL. Then, we simulate the activity of SBCs and GBCs, which then project 
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to MSO cells. Model results show decreased firing rates of MSO cells for varying ITDs with 

increasing degrees of myelinopathy indicating decreased MSO activity and ITD sensitivity. Thus, 

we provided evidence that myelin defects might lead to lower MSO activity levels, which 

potentially causes sound localization problems and speech intelligibility deficits in HHL patients. 

4.2 Methods 

4.2.1 SGN fibers 

A compartmental model for peripheral axons of SGN fibers are modeled as described in 

Section 3.2.1. Each SGN fiber has an initial unmyelinated segment Lu and a heminode length Lh. 

The putative control is identified as an SGN population with all fibers having Lu  of 9µm and Lh of 

1µm. We modeled myelinopathy by forming populations of SGNs with heterogeneous Lu values 

where we increased Lu variation up to a range of 9-18 µm. We denote a homogeneous population 

with our putative control (Lu=9 µm) as 0% variation of Lu, and the heterogeneous population with 

Lu values distributed uniformly between 9-18 µm as 100% variation of Lu.  

 To represent the sound stimulus, we used the model described in Section 3.2.2 in our 

simulations. Spike trains of SGNs were generated by the model explained in Section 3.2.2. 

4.2.2 Network structure 

Arrival of sound to the ear triggers neurotransmitter release from inner hair cells, which then 

activates SGNs. SGNs transmit this input to the ipsilateral and contralateral cochlear nuclei. SBCs 

and GBCs in the cochlear nucleus receive inputs from multiple SGNs (2-3 to SBCs and 5-40 to 

GBCs [101]), leading to higher phase-locking with the sound signal. MSO cells receive binaural 

excitatory inputs directly from SBCs and binaural inhibitory inputs from GBCs via a relay point, 

trapezoid body (TB). 
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 In our cochlear nucleus circuit model, we implement previously developed neuron models 

for SBC, GBC and MSO cell populations in both hemispheres, with each population containing 

300 neurons. For simplicity, we assumed GBCs send signals directly to MSO cells. SGN 

populations consist of 100 low-threshold (LT), 100 medium-threshold (MT) and 100 high-

threshold (HT) neurons, each having characteristic frequencies at 200Hz (see Section 3.2.3 for the 

definition of SGN types and how they are implemented). Each SBC receives 4 and each GBC 

receives 40 excitatory inputs from ipsilateral SGNs. MSO is the first region of binaural integration 

in the auditory circuit, and each cell in the MSO gets 6 excitatory inputs from SBCs of each 

hemisphere and 3 inhibitory inputs from GBCs of each hemisphere.  

4.2.3 Node dynamics of SBCs, GBCs and MSOs 

Implementing a previously developed model of the cochlear nucleus circuit, SBC, GBC 

and MSO cells are modeled as single compartment Hodgkin-Huxley type models, with parameters 

and ion channels adjusted to experimental observations [102].  

 The membrane potentials of SBCs and GBCs are modeled as 

êU
hX∆
hZ
= −(«í(\U − òf∫cZ) + «Ägúüℎ(\U − òÄg) + «… ÀÃBt(\U − ò…) + «…ÕÀ©Œ¶(\U −

ò…) + «•∞(\U − ò•) + ecuS),                                                                                                          (4.1) 

where Cm is the membrane capacitance, gl is the leak conductance, gNa is the Na+ conductance, 

gKHT and gKLT are high and low threshold K+ conductances, respectively, and gh is the 

hyperpolarization-activated cation conductance. Erest stands for the resting membrane potential and 

Ex represents the Nernst potentials of each ion x (for x=Na+, K+ and H+) (Table 4.1). The variables 

m, h, n, p, w, z and r are the voltage dependent conductance gating variables expressed as 

h]

hZ
= [] \U 1 − œ − d] \U œ		¡–∞	œ = ú, ℎ                                                                                 (4.2) 
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and 

ha

hZ
= a—/a
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Isyn is the excitatory synaptic current generated by SGN activity expressed as  

ecuS(^, \U) = ∏i
j(kjklY)

ó.& (\U − ò∫ï)Ä
]Ç"                                                                                                  (4.18) 

where N is the number of presynaptic spikes, ^cY is the time of the presynaptic SGN spike i and 

Eex=0 mV is the reversal potential for excitatory current. A is the synaptic strength and equals 

13nS for SBCs and 4.76nS for GBCs. These values of A are adjusted to obtain experimentally 

observed responses for the activity of SBC and GBC populations. The refractory period for both 

populations is 0.5ms and no signals can be received during this period. 

   Table IV-1 Parameters for SBC, GBC and MSO cells 

 

The current balance equation for MSO cells is expressed as 

êU
hX∆
hZ
= −(«í(\U − òf∫cZ) + «Ägúüℎ(\U − òÄg) + «…ÕÀ©Œ¶(\U − ò…) + «•∞(\U − ò•) +

ecuS,∫ + ecuS,]),                                                                                                                              (4.19) 

 SBC-GBC MSO 

Cm (pF) 12 70 

Erest (mV) -65 -55.8 

gl (nS) 37 13 

ENa (mV) 50 56.2 

gNa (nS) 4592.8 3900 

EK (mV) -77 -90 

gKHT (nS) 35.1 650 

gKLT (nS) 367.4 N/A 

Eh (mV) -43 -35 

gh (nS) 36.7 520 
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where Cm is the membrane capacitance, gl is the leak conductance, gNa is the Na+ conductance, 

gKLT is the low threshold K+ conductance and gh is the hyperpolarization-activated cation 

conductance. Erest stands for the resting membrane potential and Ex represents the Nernst potentials 

of each ion x (for x=Na+, K+ and H+) (Table 4.1). The variables m, h, w, z and r are the voltage 

dependent conductance gating variables that are governed by Equation (4.3) with steady state 

activation and time constant functions given by 
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Isyn,e and Isyn,i are excitatory and inhibitory synaptic currents received from the SBC and GBC cells, 

respectively. Isyn,e is described as 

ecuS,∫(^, \U) = (54.37Ãb)
Z/ZlY/Znowqr

F."”
i
/
kjkljknowqr

ó.}› (\U − ò∫ï),Ä
]Ç"                                                (4.30) 



 
 

85 

where N is the number of presynaptic SBC spikes, ^cY is is the time of the presynaptic SBC spike 

i and Eex=0 mV is the reversal potential for excitatory current. tdelay is the time required for the 

signal from SBCs to reach MSO cells, which is 1.5ms for ipsilateral input and 1.6ms for 

contralateral input. 

Isyn,i is expressed as 

ecuS,] ^, \U = − (5.8Ãb)(i
/
kjklYjknowqr

ó.}’ − i
/
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where N is the number of presynaptic GBC spikes, ^cY is the time of the presynaptic GBC spike i 

and Eex=-70 mV is the reversal potential for excitatory current. tdelay is the time required for the 

signal from GBCs to reach MSO cells, which is 1.5ms for ipsilateral input and 1.0ms for 

contralateral input. 

4.2.4 Vector strength and relative vector strength measurements 

A measure of vector strength (VS) is used to determine the degree of phase-locking of a 

neuron population to a sound wave. It is calculated as 
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where θi is the phase of each spike i within the periodic sound wave, and n is the total number of 

spikes within a neuron population [103]. This measure varies between 0 and 1, where 1 means 

perfect synchrony and 0 means no phase-locking to sound.  

 Relative VS is used to assess the degree of phase-locking relative to the putative control. 

It can be defined as 
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where θi is the phase of each spike i within the periodic sound wave, and N is the total number of 

spikes in the putative control. 

4.2.5 Simulations 

We simulated the sound-evoked activity of all cell types in response to a sound stimulus 

pulse of 200Hz and 50dB for 100ms. Our results below (Section 4.3) show the responses to one 

sound stimulus. 

4.3 Results 

Our model generates spike times of SGN, SBC, GBC and MSO populations in response to 

a sound stimulus. We analyzed the spike rates and vector strengths of phase-locking to sound for 

the different cell types while simulating varying degrees of myelinopathy on SGN axons. As in 

Chapter III, we investigate changes in firing patterns as a function of variation of Lu, the length of 

the initial unmyelinated segment of SGN axons. In our putative control case with 0% variation of 

Lu, in response to a sound pulse, the VS of SGN axons is approximately 0.84 while the VS of 

SBCs is approximately 0.93, which is higher than the SGNs. The GBC and MSO cell responses 

are highly phase-locked to the sound wave, with VS approaching to 1.0. (Fig. IV.1A). These results 

agree with experimental observations [54, 104] that locking to sound increases at SBCs and even 

more so at GBCs and MSO cells, as compared to SGNs. Even though increasing the degree of 

myelinopathy did not affect the VS significantly indicating that firing neurons remain locked to 

the sound independent of variation of Lu, the relative VS for all cell populations decreased for 

higher variations of Lu (Fig. IV.1B). Moreover, this drop was more significant for SBCs and MSOs, 

which act as monaural and binaural coincidence detectors, respectively. This shows that the 
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disruption of SGN activity due to myelinopathy has a high downstream impact on the level of 

phase-locking to sound in the SBC and MSO populations.  

 We measured this effect directly by comparing the relative change in firing frequency 

across the cell populations. Myelin defects in SGN fibers cause a drop in cumulative SGN activity 

[61], as shown in Chapter III. Here, as well, simulations with different degrees of myelinopathy 

suggest that the activity of an SGN population is significantly decreased with increasing degrees 

of myelinopathy (Figure IV.2A). This leads to smaller numbers of input spikes to the cochlear 

nucleus, significantly decreasing the firing rates of SBCs (Figure IV.2B), GBCs (Figure IV.2C) 

and finally MSO cells as well (Figure IV.2D). Moreover, the change of firing rates relative to the 

putative control (0% variation in Lu) suggests that the activity drop with Lu variation is more 

significant in SBCs than SGNs, with MSO cells showing the largest relative decreases (Figure 

IV.2E).  
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Figure IV.1 (A) Vector strength of phase-locking to the sound wave and (B) relative vector strength 
measurements for different cell types and degrees of myelinopathy in response to 200Hz, 
50dB sound stimulus. Here, 0% variation of Lu represents a circuit with a homogeneous 
population of SGNs with 9 µm long Lu and 100% variation of Lu represents a circuit with a 
heterogeneous SGN population with 9 µm ≤ Lu ≤ 18 µm. 

Since the horizontal location of sound sources are encoded by the difference in firing rates 

between MSO cells on the left and right sides of the brain [104], we simulated MSO activity in 

both hemispheres for different ITD values, representing the horizontal angle of the sound. Here, 

ITD>0 means that sound arrives first to the left ear and ITD<0 means that sound arrives first to the 

right ear. For our putative control case, model results showed that MSO activity on one side of the 

brain reaches a maximum for sounds coming from slightly contralateral positions (Figure IV.3A, 

blue curve), as the delayed arrival of sound to the ipsilateral ear compensates for the internal delay 

of the contralateral signal due to the path it travels between the hemispheres of the brain. This 

asymmetric bell-shaped curve of MSO activity relative to ITDs is critical, as the difference 

A

B



 
 

89 

between left and right MSO spike rates encodes the horizontal angle of the sound (Figure IV.3B, 

blue curve). Simulated increasing degrees of myelinopathy decreased the peak of this bell-shaped 

curve (Figure IV.3A), leading to lower rate differences between left and right MSO cells (Figure 

IV.3B).  

 

Figure IV.2 The spike rates of (A) SGNs, (B) SBCs, (C) GBCs and (D)MSO cells for increasing Lu 
variations show that activities of all cell types are decreased for higher variations. (E) Spike 
rates relative to the putative control (0% variation) show that MSO cells are affected the most by 
myelinopathy. Here, 0% variation of Lu means that all SGNs within the MSO circuit have Lu = 
9 µm and 100% variation of Lu stands for a circuit with a heterogeneous SGN population with 9 
µm ≤ Lu ≤ 18 µm. The spike rate of MSO populations are calculated at their best ITDs 
(ITD=0.2ms for the right MSO) 

A B

C D

E



 
 

90 

 

Figure IV.3  The spike rates of MSO cells at their best ITDs drop significantly for increasing Lu variation. 
(A) Spike rates of left (solid lines) and right (dashed lines) MSO cells as a function of ITD for 
circuits with SGN populations of varying ranges of Lu values. (B) The difference of MSO firing 
rates (MSOleft-MSOright) for varying degrees of myelinopathy in SGN fibers. 

4.4 Discussion 

In this study, we built a computational model of mammalian cochlear nucleus circuits to 

understand the impact of SGN myelin defects on binaural information processing. Specifically, we 

explored how the activity of SGNs, cochlear nucleus cells (SBCs and GBCs) and MSO cells are 

affected by varying degrees of demyelination. We modeled the degree of demyelination by 

increasing the range of Lu, the length of the initial unmyelinated segment in SGN axons, within a 

population of SGN fibers and showed that the activity of an SGN population and the level of phase-

locking to the sound stimulus drops for cases with larger Lu ranges. As a result, the cochlear 

nucleus is driven less by SGN fiber inputs, subsequently decreasing the firing rates of SBC and 
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GBC populations. Moreover, the drop in the activity levels relative to the putative control is bigger 

in SBCs than in SGNs. This confirms the hypothesis that disruption of SGN activity plays a role 

in the decrease in firing rates in SBCs. Since multiple SGN inputs need to arrive to SBCs within a 

short time window to generate SBC activity, desynchronized SGN activity reduces the probability 

of SBC firing. Same thing happens for MSO cells as well. Lower SBC activity decreases the 

chance of binaural excitatory coincidences at the MSO, leading to lower MSO firing rates. 

However, the relative decrease in MSO firing rates is bigger than the relative decrease in SBC 

activity. This is due to the desynchronization of SBC activity, leading to even lower chances of 

coincidences in MSO cells. 

Since the difference in MSO firing rates between both hemispheres is critical for the 

detection of the horizontal angle of sound sources, lower activity levels in both hemispheres 

decreases this difference, presumably causing binaural processing and sound localization deficits. 

These results are in line with behavioral human studies, which provided evidence that myelin 

defects generate problems in locating the sound due to the decrease in ITD sensitivity [65, 99, 

100]. This model can be useful to further study the effect of the loss of synapses between inner 

hair cells and SGNs, which is another mechanism for HHL and is also known to cause speech 

intelligibility deficits. Comparing the impact of these two mechanisms of HHL (synaptopathy and 

myelinopathy) on the activity patterns in cochlear nucleus circuits would give us insight into 

possible treatments for both HHL scenarios to overcome binaural processing deficits. 
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5.1 Summary 

In this dissertation, we investigated the impact of disruption of synaptic transmission on 

neuronal network structures with computational modeling methods from both a theoretical and an 

applied perspective. In the theoretical work (Chapter II), we explored spatiotemporal pattern 

formation on large neuronal networks when synapses are not reliable. In the applied study 

(Chapters III and IV), we analyzed a specific case which emerges from improper synaptic 

transmission in peripheral auditory system, called hidden hearing loss (HHL).  

 Previous studies on consciousness suggested that application of anesthetics leads to loss of 

coherence in the brain due to the disconnection of the hub structures in the brain networks. To test 

this hypothesis, we explored the effect of gradual, probabilistic synaptic failure on large, scale-

free networks with different directionalities. We provided evidence that disconnecting hubs may 

lead to the emergence of more coherent activity as a result of homogenized input levels within the 

networks. 

 Next, we investigated a particular instance resulting from disrupted signal transmission: 

HHL. Several in-vivo studies showed that HHL may arise from two distinct mechanisms; loss of 

inner hair cell-spiral ganglion neuron (IHC-SGN) synapses and disruption of myelination patterns 

at  the heminode of the peripheral SGN axon. In Chapter III, we built a computational model to 

Chapter V  

Conclusion 
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simulate the effect of both scenarios on cumulative SGN activity, i.e. compound action potential 

(CAP). We found that both scenarios decrease the amplitude of CAP, whereas only myelinopathy 

increases the latency to the CAP peak, due to the desynchronized activity patterns of SGN fibers. 

 Many behavioral studies on humans indicated that HHL leads to binaural processing and 

sound localization deficits. To explore the mechanism giving rise to this outcome, we modeled a 

mammalian MSO circuit, since firing rate of MSO cells play an essential role in sound localization 

(Chapter IV). MSO cells are driven by the activity of SGN fibers, therefore we used SGN spike 

times generated by the HHL model explained in Chapter III to activate MSO cells. We showed 

that increasing the degree of myelinopathy gradually decreases MSO activity. This potentially 

explains why people with HHL have speech intelligibility deficits. 

5.2 Future directions 

In this dissertation, we investigated the significance of proper synaptic transmission on the 

functioning of the brain, and specifically of the auditory system. However, more steps could be 

taken to elucidate the mechanisms underlying hearing deficits. In Chapter IV, we explored the 

impact of HHL due to myelinopathy on MSO activity. The possible next step would be studying 

the effect of synaptopathy on MSO firing rates. Shedding light on the different mechanisms of 

both scenarios would be helpful to figure out treatments for HHL. Moreover, ITD is not the only 

cue for binaural sound localization. The location of a high frequency sound can be detected by 

intensity cues, known as ILD, which means the intensity difference on both ears. Modeling LSO 

circuits which are sensitive to ILDs and simulating LSO activity for different HHL scenarios 

would give us more insight into the mechanisms of sound localization deficits of HHL patients. 

 Besides computational work, experimental studies would be helpful to test our hypothesis 

that hidden hearing loss due to synaptopathy and myelinopathy might lead to sound localization 
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deficits. So far, behavioral studies showed that myelin defects, aging or noise exposure may cause 

binaural processing deficits with no elevation in hearing thresholds in humans [62, 65, 95, 96, 99, 

100]. However, they did not test the SGN activity in these people, therefore there is lacking 

evidence that they have hidden hearing loss. Moreover, these studies cannot explain the source of 

these problems on sound localization. Thus, animal studies would be beneficial to provide 

evidence that different hidden hearing loss scenarios lead to sound localization deficits and to 

identify the underlying mechanisms causing binaural integration problems. Specifically, 

behavioral studies on gerbils with different hidden hearing loss scenarios could assess the effect 

of these hidden hearing loss scenarios on sound localization. Moreover, electrophysiological 

studies on these gerbils could be done to measure the activity of MSO and LSO cells, which would 

potentially shed light into the source of sound localization problems.  
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 This section contains some supplementary figures and text mentioned in Chapters II and 

III. Supplementary figures for Chapter II (Supp.fig.2.1-2.5) give insights into the network 

dynamics and pattern formation with varying noise and connectivities for incoming and outgoing 

networks. Supplementary figures for Chapter III (Supp.fig.3.1-3.4) show the effect of different 

myelinopathy scenarios or different Iapp values on the activity of SGN fibers. The details of the 

model to simulate SGN activity are described in the supplementary text. 

Supplementary Material 

 

Supplementary Figure 2. 1  Network Spike frequency [(A) and (C)] and mean phase coherence [(B) and 
(D)] for various frequencies of random input (Irand), for incoming [(A) and 
(B)] and outgoing [(C) and (D)] networks. Results are averaged over 5 
randomized network realizations. 

Appendix  
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Supplementary Figure 2. 2 Nodal contribution to network-wide Mean Phase Coherence (MPC) as a 
function of its degree for incoming networks for different connectivities and 
failure recovery time constant T. The increase in MPC of hubs with higher 
failure cannot be observed for lower or higher connectivities for T=5ms.  MPCs 
are averaged over 5 degrees and results are averaged over 5 randomized network 
realizations. 

 

 

Supplementary Figure 2. 3 Nodal contribution to network-wide Mean Phase Coherence (MPC) as a 
function of its degree for incoming networks for different direction ratios 
and failure recovery time constant T. Higher direction ratios result in a more 
obvious increase in MPC of hubs for T=5ms when there’s more failure. MPCs 
are averaged over 5 degrees and results are averaged over 5 randomized network 
realizations. 
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Supplementary Figure 2. 4 Nodal contribution to network-wide Mean Phase Coherence (MPC) as a 
function of its degree for outgoing networks for different connectivities and 
failure recovery time constant. Higher connectivities result in a bigger increase 
in MPC for T=0.5ms with higher failure psyn. MPCs are averaged over 5 degrees 
and results are averaged over 5 randomized network realizations. 

 

 

Supplementary Figure 2. 5 Nodal contribution to network-wide Mean Phase Coherence (MPC) as a 
function of its degree for outgoing networks for different direction ratios 
and failure recovery time constant T. For T=0.5ms, the increase in MPC 
values of psyn=1.0 is more pronounced for lower direction ratios. MPCs are 
averaged over 5 degrees and results are averaged over 5 randomized network 
realizations. 
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Supplementary Figure 3. 1  Keeping constant channel number as length of unmyelinated segment, Lu, is 
increased leads to larger effects on cumulative CAP of increased Lu. (A) 
Sound-evoked CAPs of SGN fiber populations with varied Lu at 70dB SPL, 
averaged over 50 simulations (dashed lines correspond to the peaks of each CAP, 
labeled with the same colors as the CAPs). The number of membrane ionic 
channels was kept fixed at the values for normal Lu (Lu =10 µm). Decreases in 
peak amplitude and increases in peak latency are larger for populations with Lu 
> 12 µm (compare to Fig III.5). (B) Comparison of CAP measures relative to 
normal Lu (Lu =9 µm) of each population at 70 dB SPL (*p<0.05, **p<0.01, 
#p<0.001). Normalized CAP amplitudes (C) and CAP latencies (D) for various 
sound levels, averaged over 50 simulations. Shaded areas correspond to the 
standard error of the mean.  
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Supplementary Figure 3. 2 Maintaining channel density at the heminode as its length, Lh, is varied 
reduces effects on cumulative CAP of increased Lh. (A) Sound-evoked CAPs 
of SGN fiber populations with varied Lh at 70dB SPL, averaged over 50 
simulations (dashed lines correspond to the peaks of each CAP, labeled with the 
same colors as the CAPs). Densities of membrane ionic channels were kept 
constant at the values for normal Lh (Lh =1 µm). Decreases in amplitude and 
increases in latency of CAP peaks are more obvious for populations with Lh > 6 
µm (compare to Fig III.6). (B) Comparison of CAP measures relative to normal 
Lh (Lh =1 µm) for each population at 70 dB SPL (*p<0.05, **p<0.01, #p<0.001). 
Normalized CAP amplitudes (C) and CAP latencies (D) for various sound levels, 
averaged over 50 simulations. Shaded areas correspond to the standard error of 
the mean.  

 

 

Lh
A

B

C D



 
 

100 

 

Supplementary Figure 3. 3 The characteristics of Iapp and the Lu value of SGN fibers determine the time 
difference between a spike and a release preceding the spike (delay). External 
current pulses (Iapp) with varying amplitudes are applied to the peripheral end of 
SGN fibers to simulate a vesicle release event, and the time difference between 
the release and the resulting spike is calculated for single SGN fibers with 
varying Lu. Red curve represents our default stimulation to simulate release 
events, unless otherwise stated. 

 

Supplementary Figure 3. 4 Myelinopathy results in a significantly reduced spike probability and 
increased latency after a release event. (A) The probability that simulated IHC-
SGN synaptic vesicle release events result in spike generation at the heminodes 
of postsynaptic SGN fibers was calculated for various SGN fiber populations at 
70dB SPL, averaged over 50 simulations. The amplitude of external current 
pulses (Iapp) applied at the beginning of Lu, representing IHC-SGN vesicle 
release, was varied between 0.08nS and 0.12nS. The threshold Lu, where abrupt 
drop of spike probability occurs, increases with increasing Iapp. Panels (B)-(D) 
and all other results in the chapter were obtained with Iapp=0.1nS. (B) Spike 
probabilities for SGN fiber populations with different homogeneous Lu values in 
response to different sound levels exhibit an abrupt drop when Lu ≥11.7 µm for 
all sound levels.  (C) The average latency after each release event of spikes across 
SGN fiber populations, averaged over 50 simulations, increases for longer Lu. 
(D) Standard deviations of spike latencies of SGN fiber populations, averaged 
over 50 simulations, increase with sound level. The heterogeneous population (9 
µm ≤ Lu ≤ 14 µm) has higher standard deviation than homogeneous populations 
for every sound level. Since fibers with Lu >11 µm do not fire in response to 
single release events, they are not shown in panels (C) and (D). 
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In Chapter III, for each SGN fiber, the transmembrane potential Vm is a function of space 

x and time t and is expressed as: 
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where Ra is the specific cytoplasmic resistance, Cm is the specific capacitance, Rm is the specific 

membrane resistance, Erest is the resting potential, Iion(x,t) and Iapp(x,t) are ionic and applied 

currents, respectively.  

Ionic current (Iion(x,t)) consists of sodium (INa(x,t)) and potassium (IK(x,t)) currents: 
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where, 
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Here, m(t), h(t) and n(t) are gating variables, gNa and gK are maximal sodium and potassium 

conductances, respectively, and ENa and EK are the Nernst potentials for sodium and potassium 

ions, respectively. The gating variables i (for i=m, n and h) are expressed in terms of rate functions 

αi(Vm)  and ßi(Vm), such that [85]:  
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