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ABSTRACT

This dissertation studies a general framework using spike-and-slab prior distri-

butions to facilitate the development of high-dimensional Bayesian inference. Our

framework allows inference with a general quasi-likelihood function to address sce-

narios where likelihood based inference are infeasible or the underlying optimization

problems are not the same as the data generating mechanisms. We show that highly

efficient and scalable Markov Chain Monte Carlo (MCMC) algorithms can be easily

constructed to sample from the resulting quasi-posterior distributions. We study

the large scale behavior of the resulting quasi-posterior distributions as the dimen-

sion of the parameter space grows, and we establish several convergence results. In

large-scale applications where computational speed is important, variational approx-

imation methods are often used to approximate posterior distributions. We show

that the contraction behaviors of the quasi-posterior distributions can be exploited

to provide theoretical guarantees for their variational approximations. We illustrate

the theory with several examples. Finally we develop a quasi-likelihood based al-

gorithm for estimation of Ising/Potts models that incorporates inbuilt mechanism

for parallel computation. We illustrate the usability of the method by analyzing

16 Personality Factors data under the setup of Five-level Potts Model. The data

analysis recovers known clusters of personality traits and also indicates plausible

novel clusters.
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CHAPTER I

Introduction

The current age of big data has ushered in unprecedented opportunities with

regards to the topics that might come under the purview of data-driven decision

making. Despite that, we are still faced with scenarios where the number of avail-

able observations are relatively limited in comparison to the number of variables

under consideration, i.e. the dimensionality of the problem. These problems com-

monly arise in experimental setups where each response to be recorded comes at

a certain price. For example, in clinical trials, sociological studies or psychometric

studies, data on a large number of variables is collected for a relatively small number

of subjects enrolled in the study. In such scenarios, incorporation of field knowledge

or knowledge based on past studies can bolster the accuracy of the results of these

studies especially when the sample size is relatively small. In Bayesian Statistics,

the past knowledge is easily incorporated in the form of prior distributions. The

prior, coupled with the likelihood of the data, gives us a posterior distribution on

the parameters of interest. Bayesian inference has two built-in features that are in

growing demand in the applications: a) the ability to incorporate existing knowledge

in the form of a prior distribution (Greenfield et al. [2013], Studham et al. [2014],

Peng et al. [2013]), and b) a simple mechanism for uncertainty quantification in the
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inference through the posterior distribution. The theoretical analysis of these pos-

terior distributions in the high-dimensional setting has only recently begun (Martin

et al. [2017], Castillo et al. [2015], Bhattacharya et al. [2015], Moreno et al. [2015],

Rockova and George [2014], Narisetty and He [2014], Polson and Scott [2010]). This

dissertation contributes to that literature.

However, with increasing complexity of problems at hand, we often face situa-

tions where inference is not based on the likelihood but some other non-likelihood (or

quasi-likelihood) functions. This may be because the optimization criterion of inter-

est is different from the data-generating likelihood function or simply because likeli-

hood based inference is computationally intractable. Non-likelihood functions (also

known as quasi-likelihood, pseudo-likelihood or composite likelihood functions) are

routine in frequentist statistics, particularly to deal with large scale problems (Mein-

shausen and Buhlmann [2006], Zou et al. [2006], Shen and Huang [2008], Ravikumar

et al. [2010], Varin et al. [2011], Lei and Vu [2015]). In semi/non-parametric statis-

tics and econometrics, the idea is closely related to moments restrictions inference

(Ichimura [1993], Chernozhukov et al. [2007]).

A Bayesian analog involves defining a quasi-likelihood function that replaces the

likelihood in an otherwise standard Bayesian inference procedure. There is indeed

an increasing Bayesian literature where non-likelihood functions are combined with

prior distributions (Chernozhukov and Hong [2003], Jiang and Tanner [2008], Liao

and Jiang [2011], Yang and He [2012], Kato [2013], Li and Jiang [2014], Atchade

[2017], Atchadé [2019]).

A suitable example where the quasi-likelihood approach may be used, would be

inference on model based Pairwise Markov Random Fields (PMRFs), such as Gaus-

sian graphical models or in case of binary or finite ordinal data, Ising models and
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Potts Models respectively (Atchade [2017], Atchadé [2019]). Most existing Bayesian

methods for fitting graphical models do not scale well as the number of nodes in the

graph grows, despite the recent progress with Gaussian graphical models (Dobra

et al. [2011], Khondker et al. [2013], Peterson et al. [2015], Banerjee and Ghosal

[2013]). The computational challenge only intensifies when dealing with discrete

graphical models (Ising and Potts models). Indeed, a full Bayesian treatment of

most discrete graphical models leads to the so-called doubly-intractable posterior

distributions for which specialized MCMC algorithms are needed (Zhou and Schmi-

dler [2009], Murray et al. [2006], Lyne et al. [2015]). However, these algorithms

also do not scale well when dealing with large graphs. In the frequentist litera-

ture, there is a long history of fitting discrete graphical models using quasi/pseudo-

likelihood methods instead of the full likelihood (the idea dates back at least to Besag

[1974]; see also Guyon [1995]). In fact, quasi-likelihood methods have become the de

facto approach in the frequentist literature when dealing with large graphical mod-

els (Meinshausen and Buhlmann [2006], Höfling and Tibshirani [2009], Ravikumar

et al. [2010], Guo et al. [2015], Roy et al. [2017]). As shown for instance in (Atchadé

[2019]) these quasi-likelihood functions can be used to fit Gaussian graphical mod-

els in the Bayesian framework at a scale unmatched by fully Bayesian alternatives.

The crux of the method is the use of a product-form pseudo-likelihood function

(as used in the frequentist literature) that makes it possible to split the resulting

quasi-posterior distribution into a product of linear regression Bayesian posterior

distributions. Significant reduction in computational costs can then be achieved by

deploying this approach on a multi-core computer system.

Motivated by the increasingly widespread use of quasi-likelihood function in

Bayesian literature, in this dissertation, we aim to develop a general Bayesian frame-
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work for inference based on quasi-likelihood function in high dimension under a spike

and slab prior distribution. We focus on settings where the parameter of interest

θ ∈ Rp is sparse and the problem of variable selection is addressed by introducing an

auxiliary selection parameter δ ∈ {0, 1}p that acts as the support of θ. Here δj = 1

implies θj is active or included in the model. We then follow a well-established

practice in the Bayesian literature that imposes a spike-and-slab prior distribution

jointly on (θ, δ) with a Gaussian spike and Gaussian slab distribution (Mitchell and

Beauchamp [1988], George and McCulloch [1997], Narisetty and He [2014]). More

precisely, we actually follow here a computationally efficient version of the standard

spike and slab prior of (George and McCulloch [1997]). We use an atypical sparsifi-

cation trick on the quasi-likelihood which ensures that the resulting quasi-posterior

distribution can be used to construct standard efficient MCMC algorithms that are

scalable with increasing dimensionality. Without getting into details, we would like

to note here briefly that by virtue of sparsification, the spike prior on the inactive

components does not influence the marginal quasi-likelihood of the active compo-

nents but it does affect the mixing time of the MCMC chains constructed and in

that sense works similar to the pseudo-priors of (Carlin and Chib [1995]).

In the first chapter, we explore the theoretical properties of a general quasi-

posterior distribution under growing dimensionality. To this end, we consider a

general log-quasi-likelihood function ` and a random sample Z such that `(·;Z) is

(locally) strongly concave with maximizer located near some parameter value of

interest θ? ∈ Rp. The parameter value θ? is typically (but not necessarily) defined

as the maximizer of the population version of the log-quasi-likelihood function:

θ? = Argmax
θ∈Rp

E? [`(θ;Z)] .
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We proceed to study the contraction properties of the quasi-posterior for p→∞

and sample size n, growing with p. Under certain regularity conditions on the

quasi-likelihood, we can show that with optimally chosen prior parameters, the

quasi-posterior distribution is sparse in δ [Theorem 1]. We also show that the quasi-

posterior puts most of its probability mass around (δ?, θ?), where δ? is the support

of θ? [Theorem 2]. We can also show model selection consistency where we show

that given sufficient signal strength, the true model is always selected [Theorem 3].

For sufficiently strong signal θ?, we also show that the quasi-posterior actually

behaves like a product of a point mass at δ? and the Gaussian approximation of

the conditional quasi-posterior distribution of θ given δ = δ? (Bernstein-von Mises

approximation [Theorem 4]). The results have implications for variational approxi-

mation methods, and as an application of the main results, we derive some sufficient

conditions under which variational approximations of the quasi-posterior are con-

sistent [Theorem 5]. We illustrate the theory with examples from linear regression

(Section 2.5.1), Gaussian graphical models (Section 2.5.2), logistic regression (Sec-

tion 2.5.3) and sparse principal component analysis(PCA) (Section 2.5.4).

In case of linear regression and Gaussian graphical models, we establish sparsity

in the quasi-posterior distributions and derive contraction rates of the same. We

have also established the Bernstein-Von-Mises phenomenon and bounds on varia-

tional approximation for the linear models and consequently on the Gaussian graph-

ical models. We further studied the logistic regression as they form the building

blocks of estimation of Ising models under a quasi-likelihood approach. For the

logistic regression, the construction of the proofs poses difficulty in establishing

posterior sparsity even though simulation results exhibit sparsity in the posterior.

We have again established contraction rates, model selection consistency and the
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Bernstein-Von-Mises phenomenon under certain assumptions that rely on the re-

stricted eigenvalue conditions of the double derivative of the quasi-likelihood. It is

worthwhile to note here that while the eigenvalue conditions are easy to verify for

Gaussian graphical models, they are not as easily verifiable for logistic regression

or sparse PCA problems, thus posing some limitations in checking the applicability

of these results. We have also shown that by virtue of the results obtained for a

general quasi-likelihood approach, we can provide a contraction rate for the quasi-

posterior distribution obtained in the context of a sparse PCA example. However,

any other results such as model selection consistency would require a better under-

standing about the distribution of singular vectors than we currently have. It should

be noted that the the interpretation of the resulting quasi-posterior distribution is

debatable particularly in the context of frequentist testing and coverage. However,

by virtue of the established results, we can claim that the estimates will be close to

the truth and any prediction or clustering based on these estimates will have good

accuracy. The variance of the asymptotic distribution of the quasi-posterior distri-

bution established in the dissertation, can be adjusted to provide valid frequentist

coverage under specific models. This has been previously addressed in literature,

specially in low dimension (Chernozhukov and Hong [2003], Yang and He [2012])

and our results indicate that similar techniques can be utilized to provide frequen-

tist validity in high dimension as well. In the second chapter of this dissertation we

have developed a scalable Bayesian algorithm for estimating Ising and Potts Mod-

els using a quasi-likelihood based approach. As mentioned before, Ising and Potts

models are special cases of parametric Pairwise Markov Random Fields (PMRFs).

PMRFs are characterized by an undirected graph G = (V,E) where V is the set of

nodes and E is the set of edges. The nodes are denoted by a set of random variables
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and the absence of edge between a pair of nodes implies conditional independence

between the corresponding pair of variables given all other variables (Guyon [1995],

Murphy [2012]). Using the quasi-likelihood approach, we divide the estimation of a

graph composed of p nodes into p separate sub-problems involving the conditional

distributions. The method is scalable as it immediately gets rid of the intractable

normalizing constant in these graphical models and incorporates in-built parallel

computing mechanism that significantly reduces computational time on a multi-

core system. The method simultaneously estimates the model parameters and the

underlying structure of the graph. The MCMC algorithms constructed for sampling

from the quasi-posterior distributions, are shown to be computationally scalable

using simulations and we establish the applicability of the method by using it to

estimate the underlying graph for the Sixteen Primary Factors Personality Data.

We analyzed a dataset comprising of approximately 4000 observations to model a

network of 163 questions on the 16 Personality Traits using a five colored Potts

Model. Analysis of the estimated network revealed well known clusters consistent

with existing literature and also shed light on other plausibly novel associations

between personality traits.

7



CHAPTER II

A large scale quasi-bayesian inference with spike

and slab priors

2.1 Introduction

We consider the problem of estimating a p-dimensional parameter using a dataset

z ∈ Z, and a likelihood or quasi-likelihood function ` : Rp×Z → R, where Z denote

a sample space equipped with a reference sigma-finite measure dz. We assume that

the quasi-likelihood function (θ, z) 7→ `(θ, z) is a jointly measurable function on Rp×

Z, and thrice differentiable in the parameter θ for any z ∈ Z. We take a Bayesian

approach with a spike-and-slab prior for θ. The prior requires the introduction of

a new parameter δ ∈ ∆
def
= {0, 1}p with prior distribution {ω(δ), δ ∈ ∆} which

can be used for variable selection. The components of θ are then assumed to be

conditionally independent given δ, and θj|δ has a mean zero Gaussian distribution

with precision parameter ρ1 > 0 if δj = 1 (slab prior), or a mean zero Gaussian

distribution with precision parameter ρ0 > 0 if δj = 0 (spike prior). Spike-and-slab

priors have been popularized by the seminal works Mitchell and Beauchamp [1988],

George and McCulloch [1997] among others. Versions with a point-mass at the
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origin are known to have several optimality properties in high-dimensional problems

(Johnstone and Silverman [2004], Castillo and van der Vaart [2012], Castillo et al.

[2015], Atchade [2017]), but are computationally difficult to work with. In this work

we follow George and McCulloch [1997], Narisetty and He [2014] and others, and

replace the point-mass at the origin by a small-variance Gaussian distribution. The

precision parameters ρ1 and ρ0 are constants that are chosen based on the size and

dimensionality (n and p) of the problem, keeping the optimality conditions in mind.

We then propose to study the following quasi-posterior distribution on ∆× Rp,

Π(δ, dθ|z) ∝ e`(θδ;z)ω(δ)
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

e−
ρ1
2
‖θδ‖22e−

ρ0
2
‖θ−θδ‖22dθ, (2.1.1)

assuming that it is well-defined, where for θ ∈ Rp, and δ ∈ ∆, θδ denote their

component-wise product and ‖δ‖0
def
=
∑p

j=1 1{|δj |>0}. A distinctive feature of (2.1.1)

is that we have also replaced the quasi-likelihood `(θ; z) by a sparsified version

`(θδ; z). In other words, even if ` is a standard log-likelihood, (2.1.1) would still be

different from the Gaussian-Gaussian spike-and-slab posterior distribution of George

and McCulloch [1997], Narisetty and He [2014]. Due to the sparsification trick, θ−θδ

does not contribute to the quasi-likelihood and the marginal quasi-posterior of (θδ, δ)

is invariant to the choice of the spike prior on θδc . In this sense the spike prior is

similar to the pseudo-prior of Carlin and Chib [1995]. It has the effect of bringing

(2.1.1) closer to the point-mass spike-and-slab posterior distribution in terms of

statistical performance, while at the same time providing tremendous computational

speed as we will see in Theorem 1. The choice of ρ0 controls the mixing of the quasi-

posterior distribution. A low value of ρ0 shall ensure faster mixing of the MCMC

chains but the recovery and contraction rate of the parameters also depend on the

fact that the ratio ρ0

ρ1
is large enough.
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In this chapter, we study the sparsity and contraction properties of Π in Section

2.2 and 2.3 respectively. The Bernstein-von Mises theorem and the behavior of

their variational approximations are considered in Section 2.4. We illustrate these

results by considering examples such as inferring Gaussian graphical models, logistic

regression and sparse principal component estimation in Section 2.5. All the proofs

are collected in the appendix.

2.1.1 Notation

Throughout we equip the Euclidean space Rp (p ≥ 1 integer) with its usual Eu-

clidean inner product 〈·, ·〉 and norm ‖·‖2, its Borel sigma-algebra, and its Lebesgue

measure. All vectors u ∈ Rp are column-vectors unless stated otherwise. We also

use the following norms on Rp: ‖θ‖1
def
=
∑p

j=1 |θj|, ‖θ‖0
def
=
∑p

j=1 1{|θj |>0}, and

‖θ‖∞
def
= max1≤j≤p |θj|.

We set ∆
def
= {0, 1}p. For θ, θ′ ∈ Rp, θ · θ′ ∈ Rp denotes the component-wise

product of θ and θ′. For δ ∈ ∆, we set Rp
δ

def
= {θ · δ : θ ∈ Rp}, and we write θδ as a

short for θ · δ. For δ, δ′ ∈ ∆, we write δ ⊇ δ′ to mean that for any j ∈ {1, . . . , p},

whenever δ′j = 1, we have δj = 1. Given θ ∈ Rp, and δ ∈ ∆ \ {0}, we write

[θ]δ to denote the δ-selected components of θ listed in their order of appearance:

[θ]δ = (θj, j ∈ {1 ≤ k ≤ p : δk = 1}) ∈ R‖δ‖0 . Conversely, if u ∈ R‖δ‖0 , we write

(u, 0)δ to denote the element of Rp
δ such that [(u, 0)δ]δ = u.

If f(θ, x) is a real-valued function that depends on the parameter θ and some

other argument x, the notation ∇(k)f(θ, x), where k is an integer, denotes the k-th

partial derivative with respect to θ of the map (θ, x) 7→ f(θ, x), evaluated at (θ, x).

For k = 1, we write ∇f(θ, x) instead of ∇(1)f(θ, x).

A continuous function r : [0,+∞)→ [0,+∞) is called a rate function if r(0) = 0,
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r is increasing and limx↓0 r(x)/x = 0.

All constructs and other constants in the dissertation (including the sample size

n) depend a priori on the dimension p. And we carry the asymptotics by letting

p grow to infinity. We say that a term x ∈ R is an absolute constant if x does

not depend on p. Throughout the dissertation C0 denotes some generic absolute

constant whose actual value may change from one appearance to the next.

2.2 Main assumptions and Posterior sparsity

We introduce here our two main assumptions. We set

Lθ1(θ; z)
def
= `(θ; z)− `(θ1; z)− 〈∇`(θ1; z), θ − θ1〉 , θ ∈ Rp,

and we assume that the following holds.

H1. We observe a Z-valued random variable Z ∼ f?, for some probability density f?

on Z. Furthermore there exists δ? ∈ ∆, θ? ∈ Rp
δ?

, θ? 6= 0p, finite positive constants

ρ̄, κ̄, such that P?(Z ∈ E0) > 0, where

E0
def
=
{
z ∈ Z : Π(·|z) is well-defined, ‖∇`(θ?; z)‖∞ ≤

ρ̄

2
, and

Lθ?(θ; z) ≥ − κ̄
2
‖θ − θ?‖2

2, for all θ ∈ Rp
δ?

}
.

Furthermore, we assume that the prior parameter ρ1 satisfies 32ρ1‖θ?‖∞ ≤ ρ̄, and

we write P? and E? to denote probability and expectation operator under f?.

Remark II.1. H1 is very mild. Its main purpose is to introduce the data generat-

ing process, the true value of the parameter, and their relationship to the quasi-

likelihood function. Specifically, since ∇`(·; z) is null at the maximizer of `(·; z),
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having z ∈ E0 implies that the maximizer of `(·; z) is close to θ? in some sense,

and the largest restricted (restricted to Rp
δ?

) eigenvalue of the second derivative of

−`(·; z) is bounded from above by κ̄. The assumption that θ? 6= 0p is made only out

of mathematical convenience. All the results below continue to hold when θ? = 0p

albeit with minor adjustments. The condition 32ρ1‖θ?‖∞ ≤ ρ̄ is a loose condition

as long as ρ1 is chosen to grow at a lower rate than ρ̄ but it is not exactly verifiable

as θ? is unknown.

�

For convenience we will write s?
def
= ‖θ?‖0 to denote the number of non-zero

components of the elements of θ?. We assume next that the prior on δ is a product

of independent Bernoulli distribution with small probability of success.

H2. We assume that

ω(δ) = q‖δ‖0(1− q)p−‖δ‖0 , δ ∈ ∆,

where q ∈ (0, 1) is such that q
1−q = 1

pu+1 , for some absolute constant u > 0. Further-

more we will assume that p ≥ 9, pu/2 ≥ 2e2ρ1.

Discrete priors as in H2 and generalizations were introduced by Castillo and

van der Vaart [2012]. This is a very strong prior distribution that is well-suited for

high-dimensional problems with limited sample where the signal is believed to be

very sparse. It should be noted that this prior can perform poorly if these conditions

are not met. We show next that the resulting posterior distribution is also typically

sparse.
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Theorem 1. Assume H1-H2. Suppose that there exists a constant r0 such that for

all δ ∈ ∆,

logE?
[
1E(Z)eLθ? (u;Z)+(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]

≤

 −
r0
2
‖δ? · (u− θ?)‖2

2 if ‖δc? · (u− θ?)‖1 ≤ 7‖δ? · (u− θ?)‖1

0 otherwise
, (2.2.1)

for some measurable subset E ⊆ E0. If for some absolute constant c0 we have

s?

(
1

2
+ 2ρ1

)
+
s?
2

log

(
1 +

κ̄

ρ1

)
+

2ρ2
1s?
r0

+ 2ρ1‖θ?‖2
2 ≤ c0s? log(p), (2.2.2)

then it holds that for all j ≥ 1

E?
[
1E(Z)Π

(
‖δ‖0 ≥ s?

(
1 +

2(1 + c0)

u

)
+ j |Z

)]
≤ 2

p
uj
2

.

Proof. See Appendix A.2.

Theorem 1 is analogous to Theorem 1 of (Castillo et al. [2015]), and Theorem 3 of

(Atchade [2017]), and says that the quasi-posterior distribution Π is automatically

sparse in δ (of course θ is never sparse). The main contribution here is the fact that

this behavior holds with Gaussian slab priors. The condition in (2.2.2) implies that

the precision parameter of the slab density (that is ρ1) should be of order log(p)

or smaller. Simulation results (not reported here) show indeed that the method

performs poorly if ρ1 is taken too large.

Roughly speaking, the condition (2.2.1) is expected to hold if

1E0(Z)Lθ?(u;Z) ≤ − logE?
[
e(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]
,

13



for all u in the cone C = {u ∈ Rp : ‖δc? · (u − θ?)‖1 ≤ 7‖δ? · (u − θ?)‖1}. If the

quasi-score ∇`(θ?;Z) is sub-Gaussian, then the right-hand side of the last display

is lower bounded by −c0(1− ρ1/ρ̄)2‖u− θ?‖2
2, for some positive constant c0. In this

case (2.2.1) will hold if

1E0(Z)Lθ?(u;Z) ≤ −c0(1− ρ1/ρ̄)2‖u− θ?‖2
2,

for all u ∈ C. Hence (2.2.1) is a form restricted strong concavity of ` over C. We

refer the reader to (Negahban et al. [2012]) for more details on restricted strong

concavity.

2.2.1 Implications for Markov Chain Monte Carlo sampling

Theorem 1 has implications for Markov Chain Monte Carlo (MCMC) sampling.

To show this we consider a Metropolized-Gibbs strategy to sample from Π whereby

we update θ keeping δ fixed, and then update δ keeping θ fixed – we refer the

reader to (Robert and Casella [2004b]) for an introduction to basic MCMC al-

gorithms. Note that given δ, [θ]δ and [θ]δc are conditionally independent, and

[θ]δc
i.i.d.∼ N(0, ρ−1

0 ), whereas [θ]δ can be updated using either its full conditional

distribution when available, or using an extra MCMC update. For each j, given θ

and δ−j, the variable δj has a closed-form Bernoulli distribution. However, we choose

to update δj using an Independent Metropolis-Hastings kernel with a Ber(0.5) pro-

posal. Putting these steps together yields the following algorithm.

Algorithm 1. Draw (δ(0), θ(0)) ∈ ∆ × Rp from some initial distribution. For k =

0, . . . , repeat the following. Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:

(STEP 1) For all j such that δj = 0, draw θ
(k+1)
j ∼ N(0, ρ−1

0 ). Using [θ]δ, draw
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jointly [θ(k+1)]δ from some appropriate MCMC kernel on R‖δ‖0 with invariant

distribution proportional to

u 7→ e`((u,0)δ;z)−
ρ1
2
‖u‖22 .

(STEP 2) Given θ(k+1) = θ̄, set δ(k+1) = δ(k) and do the following for j = 1, . . . , p.

Draw ι ∼ Ber(0.5). If δ
(k+1)
j = 0, and ι = 1, with probability min(1, Aj)/2

change δ
(k+1)
j to ι. If δ

(k+1)
j = 1, and ι = 0, with probability min(1, A−1

j )/2,

change δ
(k+1)
j to ι; where

Aj
def
=

q

1− q

√
ρ1

ρ0

e−(ρ1−ρ0)
θ̄2j
2 e`(θ̄

(j,1)
δ ;z)−`(θ̄(j,0)

δ ;z), (2.2.3)

where θ̄
(j,1)
δ , θ̄

(j,0)
δ ∈ Rp are defined as (θ̄

(j,1)
δ )k = (θ̄

(j,0)
δ )k = (θ̄δ)k, for all k 6= j,

and (θ̄
(j,1)
δ )j = θ̄j, (θ̄

(j,0)
δ )j = 0.

�

We have left unspecified the MCMC kernel on R‖δ‖0 used in STEP 1, since it can

be set up in many ways. Step 2 can also be replaced by adaptive procedures that

have better mixing and for this purpose we refer the readers to (Ji and Schmidler

[2013], Nott and Kohn [2005]) and references therein. Here we aim to show the

efficiency gained in sampling from a sparsified quasi-posterior distribution. Let us

call C1(δ(k)) the computational cost of that part of STEP 1, and let C2(δ) denote

the cost of computing the quasi-likelihood `(θδ; z) which is the dominant term in

(2.2.3). Then as p grows, the total per-iteration cost of Algorithm 1 is of order

O
(
C1(δ(k)) + pC2(δ(k))

)
.
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Since Theorem 1 implies that a typical draw δ(k) from the quasi-posterior distribu-

tion is sparse and satisfies ‖δ(k)‖0 = O(s?), we can conclude that the per-iteration

cost of the algorithm is accordingly reduced in problems where the sparsity of δ

reduces the cost of the MCMC update in STEP 1, and the cost of computing the

sparsified pseudo-likelihood `(θδ; z). For instance, in a linear regression model (see

Algorithm 2 in Appendix 2.6 for a detailed presentation), if the Gram matrix X ′X

is pre-computed then C1(δ(k)) = O(‖δ(k)‖3
0) = O(s3

?) (the cost of Cholesky decom-

position), and C2(δ(k)) = O(‖δ(k)‖0) = O(s?). As a result the per-iteration cost of

Algorithm 2 grows with p as O(s3
? + s?p) = O(s?p), which is substantially faster

than O(min(n, p)p2) as needed by most MCMC algorithms for high-dimensional lin-

ear regression (Bhattacharya et al. [2016]). We refer the reader to Section 2.5.1 for

a numerical illustration.

2.3 Contraction rate and model selection consistency

If in addition to the assumptions above, the restrictions of ` to the sparse subsets

Rp
δ are strongly concave then one can show that a draw θ from Π is typically close

to θ?. To elaborate on this, let s̄ ≥ s? be some arbitrary integer and set ∆s̄
def
= {δ ∈

∆ : ‖δ‖0 ≤ s̄}, and

E1(s̄)
def
= E0 ∩

{
z ∈ Z : Lθ?(θ; z) ≤ −1

2
r(‖θ − θ?‖2), for all δ ∈ ∆s̄, θ ∈ Rp

δ

}
,

for some rate function r. Hence z ∈ E1(s̄) implies that the function u 7→ `(u; z)

behaves like a strongly concave function when restricted to Rp
δ , for all δ ∈ ∆s̄,

but with a general rate function r. Here also, checking that Z ∈ E1(s̄) boils down

to checking a strong restricted concavity of `, which can be done using similar
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methods as in Negahban et al. [2012]. The use of a general rate function r allows

to handle problems that are not strongly convex in the usual sense (as for instance

with logistic regression). Our main result in this section states that when z ∈ E1(s̄),

we are automatically guaranteed a minimum rate of contraction for Π given by

ε
def
= inf

{
z > 0 : r(x)− 2(s? + s̄)1/2ρ̄x ≥ 0, for all x ≥ z

}
. (2.3.1)

To gain some intuition on ε, consider a linear regression model where `(θ; z) =

−‖z −Xθ‖2
2/(2σ

2). Then we have

Lθ?(θ; z) = − n

2σ2
(θ − θ?)′

(
X ′X

n

)
(θ − θ?).

If θ ∈ Rp
δ for some δ ∈ ∆s̄, then Lθ?(θ; z) ≤ −nv(s̄ + s?)‖θ − θ?‖2

2/(2σ
2), where

v(s̄+ s?) is the restricted smallest eigenvalue of X ′X/n over (s̄+ s?)-sparse vectors.

Hence, we can take the rate function r(x) = nv(s̄ + s?)x
2/σ2, In that case the

contraction rate in (2.3.1) gives ε = 2σ2(s̄ + s?)
1/2ρ̄/(nv(s̄ + s?)). The final form

of the rate depends on ρ̄ (in H1) which is determined by the tail behavior of the

quasi-score ∇`(θ?;Z). In the sub-Gaussian case ρ̄ ∝
√
n log(p), and this gives

ε ∝
√

(s̄+ s?) log(p)/n. We refer the reader to the proof of Corollary 6 for more

details.

We set

B
def
=
⋃
δ∈∆s̄

{δ} × B(δ), (2.3.2)

where

B(δ) def
=

{
θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, ‖θ − θδ‖2 ≤

√
(1 + C1)ρ−1

0 p,

}
, (2.3.3)
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for some absolute constants C,C1 ≥ 3, where ε is as defined in (2.3.1). Our next

result says that if (δ, θ) ∼ Π(·|Z) and Z ∈ E1(s̄), then with high probability we have

θ ∈ B(δ) for some δ ∈ ∆s̄: θδ is close to θ?, and θ − θδ is small.

Theorem 2. Assume H1-H2. Let s̄ ≥ s? be some arbitrary integer, and take E ⊆

E1(s̄). If

Cρ̄(s? + s̄)1/2ε ≥ 32 max

[
s̄ log(p), (1 + u)s? log

(
p+

pκ̄

ρ1

)]
, (2.3.4)

then for all p large enough,

E? [1E(Z)Π (Bc|Z)] ≤ E? [1E(Z)Π (‖δ‖0 > s̄ |Z)] + 8e−
C
32
ρ̄(s?+s̄)1/2ε + 2e−p (2.3.5)

where Bc
def
= (∆× Rp) \ B.

Proof. See Appendix A.3.

Remark II.2. The result implies that for j such that δj = 0, |θj| = O(
√
ρ−1

0 ) under

Π. As a result we recommend scaling ρ−1
0 in practice as

ρ−1
0 =

C0

n
, or ρ−1

0 =
C0

p
.

When the posterior distribution is known to be sparse one can choose s̄ appro-

priately to make the first term on the right hand side of (2.3.5) small. For instance

under the assumptions of Theorem 1, we can take

s̄ = s?

(
1 +

2(1 + c0)

u

)
+ k.
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If in addition P?(Z /∈ E1(s̄)) → 0 as p → ∞, we can deduce from (2.3.5) that

E?[Π(Bc|Z)] → 0, as p → ∞. If Theorem 1 does not apply, one can modify H2 to

impose the sparsity constraint ‖δ‖0 ≤ s̄ directly in the prior distribution. In this

case the first term on the right hand side of (2.3.5) automatically vanishes. The

main drawback in this approach is that an a priori knowledge of s̄ ≥ s? is needed in

order to use the quasi-posterior distribution with a possible risk of misspecification.

�

We now show that when the non-zero components of θ? are sufficiently large,

Π achieves perfect model selection. Given δ ∈ ∆s̄ we define the function `[δ](·; z) :

R‖δ‖0 → R by `[δ](u; z)
def
= `((u, 0)δ; z). We then introduce the estimators

θ̂δ(z)
def
= Argmax

u∈R‖δ‖0
`[δ](u; z), z ∈ Z. (2.3.6)

When δ = δ? we write θ̂?(z). At times, to shorten the notation we will omit the

data z and write θ̂δ instead of θ̂δ(z). Recall for z ∈ E1(s̄) the functions `[δ](·; z) are

strongly concave. Therefore for z ∈ E1(s̄), the estimators θ̂δ are well-defined for all

δ ∈ ∆s̄. Omitting the data z, we will write Iδ ∈ R‖δ‖0×‖δ‖0 to denote the negative

of the matrix of second derivatives of u 7→ `[δ](u; z) evaluated at θ̂δ(z). That is

Iδ
def
= −∇(2)`[δ](θ̂δ; z) ∈ R‖δ‖0×‖δ‖0 .

Note that Iδ is simply the sub-matrix of ∇(2)`((θ̂δ, 0)δ; z) obtained by taking the

rows and columns for which δj = 1. When δ = δ?, we will write I instead of Iδ? .
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For a > 0, and δ ∈ ∆ \ {0}, we define

$(δ, a; z)
def
= sup

u∈R‖δ‖0 : ‖u−θ̂δ‖2≤a
max

1≤i,j,k≤‖δ‖0

∣∣∣∣∂3`[δ](u; z)

∂ui∂uj∂uk

∣∣∣∣ .
$(δ, a; z) measures the deviation of the log-quasi-likelihood from its quadratic ap-

proximation around θ̂δ. With the rate ε as in (2.3.1), we will make the assumption

that

min
j: δ?j=1

|θ?j| > Cε. (2.3.7)

Clearly this assumption is unverifiable in practice since θ? is typically not known.

However a strong signal assumption such as (2.3.7) is needed in one form or the

other for exact model selection (Narisetty and He [2014], Castillo et al. [2015], Yang

et al. [2016]). Furthermore as we show in Section 2.5.1, in specific models (2.3.7)

translates into a condition on the sample size n, which in some cases can help the user

evaluates in practice whether (2.3.7) seems reasonable or not. An understanding of

the behavior of Π when (2.3.7) does not hold remains an interesting problem for

future research.

One can readily observe that when (2.3.7) holds, then the set B(δ) introduced

above is necessarily empty when δ does not contain the true model δ?. In other

words, when (2.3.7) holds, the set B defined in (2.3.2) can be written as

B =
⋃
δ∈As̄

{δ} × B(δ),

where

As̄
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s̄, and δ ⊇ δ?},

and we recall that the notation δ ⊇ δ′ means that δj = 1 whenever δ′j = 1 for all j.
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More generally, for j ≥ 0, we set

As?+j
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s? + j, δ ⊇ δ?}, and Bj =

⋃
δ∈As?+j

{δ} × B(δ).

In particular B0 = {δ?} × B(δ?), and (δ, θ) ∈ Bj implies that δ has at most j false-

positive (and no false-negative). We set

E2(s̄)
def
= E1(s̄)∩

s̄−s?⋂
j=1

{
z ∈ Z : max

δ∈As̄: ‖δ‖0=s?+j
`[δ](θ̂δ; z)− `[δ?](θ̂?; z) ≤ ju

2
log(p)

}
,

which imposes a growth condition on the log-quasi-likelihood ratios of sparse sub-

models.

Theorem 3. Assume H1-H2, and (2.3.7). Let s̄ ≥ s? be some arbitrary integer,

and take E ⊆ E2(s̄). For some constant κ > 0, suppose that for all z ∈ E,

min
δ∈As̄

inf
u∈R‖δ‖0 : ‖u−θ̂δ‖2≤2ε

inf

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖2
2

, v ∈ R‖δ‖0 , v 6= 0

}
≥ κ, (2.3.8)

and

max
δ∈As̄

sup
u∈R‖δ‖0

sup

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖2
2

, v ∈ R‖δ‖0 , v 6= 0

}
≤ κ̄, (2.3.9)

where κ̄ is as in H1. Then it holds that for any j ≥ 1

1E(z) (1− Π (Bj|z))

≤ 8eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3)e
2a2s̄

3ε
κ

(√
ρ1

κ

1

p
u
2

)j+1

+ 1E(z)Π(Bc|z), (2.3.10)

provided that κpu ≥ 4ρ1, and (C−1)εκ1/2 ≥ 2(s
1/2
? +1), where a2

def
= maxδ∈As̄ $(δ, (C+

21



1)ε; z), and C0 some absolute constant.

Proof. See Appendix A.4.

We note that B0 = {δ?} × B(δ?) ⊂ {δ?} × Rp. Hence by choosing j = 0, (2.3.10)

provides a lower bound on the probability of perfect model selection Π(δ?|z).

Remark II.3. The left hand sides of (2.3.8) and (2.3.9) are restricted eigenvalues.

We note that the infimum on u in (2.3.8) is taken over a small neighborhood of

θ̂δ, which is an important detail that facilitates the application of the result. The

main challenge in using this result is bounding the probability of the event E2(s̄)

(which deals with the behavior of the quasi-likelihood ratio statistics). For linear

regression problems, this boils down to deviation bounds for projected Gaussian

distributions as we show in Section 2.5.1. An extension to generalized linear models

via the Hanson-Wright inequality seems plausible although not pursed here.

�

2.4 Posterior approximations

We show here that a Bernstein-von Mises approximation holds in the KL-divergence

sense. We consider the distribution

Π(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

([θ]δ?−θ̂?)′I([θ]δ?−θ̂?)− ρ0
2
‖θ−θδ?‖22dθ, (2.4.1)

which puts probability one on δ?, and draws independently [θ]δ? ∼ N(θ̂?, I−1), and

[θ]δc?
i.i.d.∼ N(0, ρ−1

0 ). Our version of the Bernstein-von Mises theorem says that Π

behaves like Π
(∞)
? . If µ, ν are two probability measures on some measurable space
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we define the Kulback-Leibler divergence (KL-divergence) of µ respect to ν as

KL (µ|ν)
def
=


∫

log
(

dµ
dν

)
dµ, if µ� ν

+∞ otherwise.

A Bernstein-von Mises approximation in the KL-divergence sense – unlike the anal-

ogous result in the total variation metric – requires a control of the tails of the

log-quasi-likelihood. To limit the technical details we will focus on the case where

those tails are quadratic.

Theorem 4. Assume H1-H2. For some integer s̄ ≥ s?, and some constant κ > 0,

let E be some measurable subset of Z such that for all z ∈ E, Π(δ?|z) ≥ 1/2, (2.3.9)

holds with κ̄ as in H1, and

min
δ∈As̄

inf
u∈R‖δ‖0

inf

{
v′
(
−∇(2)`[δ](u; z)

)
v

‖v‖2
2

, v ∈ R‖δ‖0 , v 6= 0

}
≥ κ. (2.4.2)

Then there exists an absolute constants C0 such that

1E(z)KL
(
Π(∞)
? |Π

)
≤ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2
1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ C0(ρ1 + κ̄)ε2
(
κ̄

κ

) s?
2

e−
(C−1)2ε2κ

32 + C0(ρ1 + κ̄)e−p + 21E(z)(1− Π(δ?|z)), (2.4.3)

provided that κ(C−1)ε ≥ 4 max(
√
s?κ, ρ1(ε+s

1/2
? ‖θ?‖∞)), where C is as in Theorem

2.

Proof. See Appendix A.5.

Remark II.4. The upper bound in (2.4.3) implies an upper bound on the total varia-

tion distance between Π and Π
(∞)
? via Pinsker’s inequality (see e.g. Boucheron et al.
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[2013] Theorem 4.19). The leading term in (2.4.3) is typically C0(ρs̄1/2ε+ a2s̄
3/2ε3)

which gives a non-trivial convergence rate in the Bernstein-von Mises approxima-

tion. The fact that we define the approximating distribution Π
(∞)
? as restricted on

{δ?} × B(δ?) is not restrictive. Indeed, in most examples one can easily show (by

standard Gaussian deviation) that the total variation distance between Π
(∞)
? and

its unrestricted version converges to zero as p → ∞. And this can be combined

with Theorem 4 and the Pinsker’s inequality to guarantee that the total variation

distance between Π and the unrestricted version of Π
(∞)
? converges to zero as well,

as p → ∞. In fact we could have worked directly with the unrestricted version of

Π
(∞)
? to obtain the bound on the KL-divergence in Theorem 4. We have chosen not

to proceed that way because the resulting bound is much more involved.

�

2.4.1 Implications for variational approximations

When dealing with very large scale problems, practitioners often turn to varia-

tional approximation methods to obtain fast approximations of Π. We explore some

implications of Theorem 4 on the behavior of variational approximation methods

in the high-dimensional setting. Let S ∈ {0, 1}p×p be a symmetric matrix, and

let M+
p (S) be the set of all p × p symmetric positive definite (spd) matrices with

sparsity pattern S (that is M ∈M+
p (S) means that S ·M = M , where A ·B is the

component-wise product of A,B). We assume in addition that S is such that if M

is spd then S ·M is also spd. We consider the family Q def
= {QΨ, Ψ} of probability

measures on ∆× Rp, indexed by Ψ = (q, µ, C) ∈ (0, 1)p × Rp ×M+
p (S), where

QΨ(dδ, dθ) =

p∏
j=1

Ber(qj)(dδj)Np(µ,C)(θ)dθ, (2.4.4)
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In these definitions Ber(α)(dx) is the probability measure on {0, 1} that assigns

probability α to 1, and Np(m,V )(·) is the density of p-dimensional Gaussian distri-

bution Np(m,V ). Let Q be the minimizer of the KL-divergence KL (Q|Π) over the

family Q:

Q
def
= Argmin

Q∈Q
KL (Q|Π) . (2.4.5)

We call Q the variational approximation of Π over the family Q. Although not

shown in the notation, Q depends on the data z. We will consider the following

examples.

Example 1 (Skinny variational approximation). If S = Ip, then Q corresponds to

a mean-field variational approximation of Π. We will refer to this approximation

below as the skinny variational approximation (skinny-VA) of Π.

Example 2 (full and midsize variational approximations). If S is taken as the full

matrix with all entries equal to 1, we will refer to Q as the full variational approx-

imation (full-VA) of Π. More generally let δ(i) be some element of {0, 1}p that we

call a template. Ideally we want δ(i) to be sparse and to contain the true model,

but this needs not be assumed. We then define S as follows: Sij = 1 if i = j, and

Sij = δ
(i)
i δ

(i)
j if i 6= j. If δ(i) is sparse, matrices M ∈ M+

p (S) are also sparse. In that

case we call Q a midsize variational approximation (midsize-VA) of Π. We note that

we also recover the skinny-VA by taking δ(i) = 0p, and we recover the full-VA by

taking δ(i) as the vector with components equal to 1.

The appeal of variational approximation methods is that Q can be approximated

using algorithms that are order of magnitude faster than MCMC. We note however

that the optimization problem in (2.4.5) is non-convex in general. Hence, conver-

gence guarantees for these algorithms are difficult to establish. We do not address

these issues here. Instead we would like to explore the behavior of Q in view of
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Theorem 4. Let us rewrite the distribution Π
(∞)
? in (2.4.1) as

Π(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

(θ−θ̂?)′Īγ(θ−θ̂?)dθ,

where we abuse notation to write (θ̂?, 0)δ? as θ̂?, and Īγ ∈ Rp×p is such that [Īγ]δ?,δ? =

I, [Īγ]δ?,δc? = [Īγ]′δc?,δ? = 0, and [Īγ]δc?,δc? = (1/γ)Ip−s? . Then we set

Π̃(∞)
? (δ, dθ|z) ∝ 1δ?(δ)e

− 1
2

(θ−θ̂?)′(S·Īγ)(θ−θ̂?)dθ. (2.4.6)

The total variation metric between two probability measure is defined as

‖µ− ν‖tv
def
= sup

A meas.
(µ(A)− ν(A)) .

Theorem 5. Assume H1-H2. For all z ∈ Z such that Π(·|z) and Π
(∞)
? (·|z) are

well-defined we have

‖Q− Π̃(∞)
? ‖2

tv ≤ 8ζ + 16

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃(∞)

? , (2.4.7)

where

ζ = log

(
det(Īγ)

det(S · Īγ)

)
+ Tr

(
Ī−1
γ (S · Īγ)

)
− p. (2.4.8)

Proof. See Appendix A.6.

Remark II.5. As we show below in the proof of Theorem 4, the integral on the right

size of (2.4.7) behaves like KL
(

Π
(∞)
? |Π

)
, which can be shown to vanish using the

Bernstein-von Mises theorem (Theorem 4) under appropriate regularity conditions.

In this case, whether Q behaves like Π̃
(∞)
? can be deduced from the behavior of ζ, a

term that is easier to analyze. For instance for the full-VA ζ = 0. More generally
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for any midsize-VA such that δ(i) ⊇ δ?, we have ζ = 0. In the case of the skinny-VA

(mean field variational approximation), ζ > 0 in general, but ζ = o(1) when the

off-diagonal elements of the information matrix I are o(1).

�

Remark II.6. Theorem 5 gives an approximation (in total variation sense) of the

variational approximation. To the exception of (Wang and Blei [2018]) most of the

theoretical work on variational approximation methods have focused on concentra-

tion: whether the variational approximation put most of its probability mass around

the true value (see e.g. Alquier and Ridgway [2017], Ray and Szabo [2019] for some

recent results, and Wang and Blei [2018] for an overview of the literature), without

addressing whether other aspects of the distribution are recovered well. One impor-

tant limitation of Wang and Blei [2018] which makes the extension of their approach

to high-dimension problematic is their reliance on a) local asymptotic normality as-

sumptions, and b) the assumption that the variational family can be viewed as a

re-scaled version of some sample-size independent family.

�

2.5 Examples

The theory developed in this thesis while applicable to a general quasi-likelihood

setting, also holds when we proceed with the true likelihood. In our effort to illus-

trate the implications of the results, we first show the application in the settings

of simple linear regression followed by logistic regression, gaussian graphical models

and finally end with possible applications to sparse principal component analysis.
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2.5.1 Linear Regression

In case of linear regression, posterior contraction results with spike and slab

priors have been studied extensively by Castillo et al. [2015],Narisetty and He

[2014],Rockova and George [2014] and others. In this example we merely aim to

illustrate how our theory behaves in the linear regression settings without getting

into comparison with the aforementioned works. The theory for linear regression

can be extended to a quasi-likelihood setting in case of Gaussian Graphical Models

discussed later.

A 1. For some parameter θ? ∈ Rp \ {0}, Y = Xθ? + V , where V n×1 ∼ N(0, σ2),

σ2 > 0 and X ∈ Rn×p is the covariate matrix with columns Xj, j = 1, · · · , p such

that maxj=1,···p ‖Xj‖∞ ≤ τ .

For ρ0 > 0, ρ1 > 0, the posterior distribution on ∆× Rp is given by

Π(δ, dθ|Z) ∝

e−
1

2σ2 ‖Y−Xθδ‖22ω(δ)
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

e−
ρ1
2
‖θδ‖22e−

ρ0
2
‖θ−θδ‖22dθ, (2.5.1)

We further define

ν = inf{u
′X ′Xu

n‖u‖2

; u ∈ Rp; u 6= 0 ‖δc? · (u− θ?)‖1 ≤ 7‖δ? · (u− θ?)‖1};

and ν(s) = inf{u
′X ′Xu

n‖u‖2

; u ∈ Rp u 6= 0 ‖u‖0 ≤ s} (2.5.2)

We use the theory of Section 2.2-2.4 to describe the behavior of this approach to

infer θ?. We focus on the case where n = o(p), and we recall that C0 is an absolute

constant whose value may be different from one expression to the other. Let Π
(∞)
?
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be the corresponding limiting distribution of Π as defined in (2.4.1), and let Π̃
(∞)
? be

the corresponding approximation given in (2.4.6). In this particular case, Π
(∞)
? is the

probability measure on ∆×Rp that puts probability one on δ? (the support of θ?),

draws [θ]δ? ∼ N
(
θ̂?, σ

2(X ′δ?Xδ?)
−1
)

, and draws independently all other components

i.i.d. from N(0, ρ−1
0 ), where θ̂? is the OLS estimator (Xδ?Xδ?)

−1X ′δ?Y . We set

s?
def
= ‖θ?‖0. Let Q denote the variational approximation of Π based on the family

(2.4.4) with sparsity pattern S, and let ζ denote the corresponding term in (2.4.8).

Corollary 6. Assume H2, A1, and suppose that s? > 0, ‖θ?‖∞ = O(1), and s? =

O(log(p)) as p→∞.Suppose also that u > 2 and choose the prior parameter ρ1 as

ρ1 =
1

σ

√
log(p)

n
.

Set

s̄
def
= s?

(
1 +

6

u

)
+
u

4
, ε

def
= C0σ

√
(s̄+ s?) log(p)

n
,

Assume

1

ν
+

1

ν(s)
∼ O(1) (2.5.3)

Further suppose that the sample size n satisfies n = o(p), as p→∞,

n ≥ C0s̄ log(p),

and the strong signal assumption

min
k: |θ?,k|>0

|θ?,k| > C0ε (2.5.4)

holds. Then there exists a measurable set G with P?(Z /∈ G) → 0 as p → ∞ such
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that

E?
[
1G(Z)KL

(
Π(∞)
? |Π

)]
≤ C0(s̄+ s?)

log(p)

n
+

C0

p1∧(u2−1)
. (2.5.5)

Furthermore the variational approximation Q satisfies

E?
[
1G(Z)‖Q− Π̃(∞)

? ‖2
tv

]
≤ 8E? [1G(Z)ζ] + C0(s̄ + s?)

log(p)

n
+

C0

p1∧(u2−1)
. (2.5.6)

Proof. See Appendix A.7.

Remark II.7. The assumption (2.5.3) on the growth of the restricted eigenvalues

ensures that we restrict ourselves to problems that do not become intrinsically harder

as p increases.

�

2.5.1.1 Numerical illustration
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Figure 2.1: Computational cost for MCMC and
VA

Costs of: p iterations of Metropolized Gibbs sampler

(red solid line); 50 iterations of full-VA (blue+ line);

and 50 iterations of midsize-VA with ‖δ(i)‖0 = 100

(blue-dashed line), as functions of the dimension p.

We perform a simulation

study to assess the behavior of

the posterior distribution and

its variational approximations

as described in Corollary 6. We

set p = 1000, n ∈ {100, 500},

and we generate Z = [Y,X] ∈

Rn×(p+1) as follows. We first

generate the matrix X by sim-

ulating the rows of X indepen-

dently from a Gaussian distri-

bution with correlation ψ|j−i|
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between components i and j,

where ψ ∈ {0, 0.8}. When ψ = 0, the resulting matrix X has a low coherence,

but the coherence increases when ψ = 0.8. Using X, we general Y = Xθ? + ε, with

ε ∼ N(0, 1). that we assume known. We build θ? with s? = 10 non-zeros com-

ponents that we fill with draws from the uniform distribution ±U(a, a + 1), where

a = 4
√
s? log(p)/n.

We build Π with σ2 = 1, u = 2, ρ1 =
√

log(p)/n, and ρ−1
0 = 1/(4n). We

sample from Π using Algorithm 2. We consider two variational approximation.

The full-VA, and a mid-size VA with template δ(i) that contains the support of

θ?, and such that ‖δ(i)‖0 = 100. We approximate the variational approximations

by coordinate ascent variational inference (see e.g. Blei et al. [2017]). The details

of these algorithms are given in Appendix 2.6. We initialize all three algorithms

from the lasso solution. In Figure 2.1 we plot the computational cost of the three

algorithms as p increases. It shows that the full-VA is actually more expensive than

the MCMC sampler. This is due to the need to form the Cholesky decomposition

of a large p×p matrix at each iteration of the full-VA. In contrast, and as explained

in Section 2.2.1 the per-iteration cost of Algorithm 2 is of order O(s?p). On the

other hand, for p = 5, 000 the midsize VA is more than 10 times faster than the

MCMC sampler. Figure 2.2 shows the (estimated) posterior distributions for the

parameters θ1, θ2 and θ3 from one MCMC run of 5, 000 iterations and single CAVI-

runs of 50 iterations. Here we are comparing the skinny-VA, and the midsize-VA

with ‖δ(i)‖0 = 100, for a template δ(i) that contains the support of θ?. Since we are

working in a high signal-to-noise ratio setting the results are fairly consistent across

replications. The true signal θ? is such that θ?,1 6= 0 and θ?,2 6= 0 while θ?,3 = 0.

Figure 2.2 shows that as n increases both VA approximations approximate well
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the quasi-posterior distribution in the low coherence regime. However in presence

of correlation, the skinny-VA systematically underestimates the marginal posterior

variances when there is correlation between the relevant variables. However, as

suggested by Corollary 6, the midsize-VA approximates the whole distribution well.
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Linear regression with low coherent design matrix. p = 1000, n = 100.

Linear regression with low coherent design matrix. p = 1000, n = 500.

Linear regression with high coherent design matrix . p = 1000, n = 100.

Linear regression with high coherent design matrix. p = 1000, n = 500.

Figure 2.2: Posterior inference: Linear regression

Posterior inference for β1 (first column), β2 (second column) and β3 in the linear

regression example based on one MCMC run (histogram), one skinny-VA run

(continuous red line), and one midesize-VA run (+ blue line). Vertical lines locate the

true values of the parameters.
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2.5.2 Gaussian graphical models via Linear regressions

Fitting large sparse graphical models in the Bayesian framework is computation-

ally challenging (Dobra et al. [2011], Lenkoski and Dobra [2011], Khondker et al.

[2013], Peterson et al. [2015], Banerjee and Ghosal [2013]). A quasi-Bayesian ap-

proach based on the neighborhood selection of Meinshausen and Buhlmann [2006]

offers a simple, yet effective alternative. The idea was explored in Atchadé [2019]

using point-mass spike and slab priors. The approach proposed in this dissertation

yields a highly scalable quasi-posterior distribution with equally strong theoretical

backing. We make the following data generating assumption.

B1. Z ∈ Rn×(p+1) is a random matrix with i.i.d. rows from Np+1(0, ϑ−1
? ) for some

positive definite matrix ϑ?. We set Σ
def
= ϑ−1

? and also assume that as p→∞,

1

λmin(Σ)
+ λmax(Σ) = O(1). (2.5.7)

Remark II.8. The assumption in (2.5.7) restricts our focus to problems that in some

sense do not become intrinsically harder as p increases. It can be relaxed by tracking

more carefully the constants in the proofs.

�

Given the data matrix Z ∈ Rn×(p+1), we wish to estimate the precision matrix

ϑ?. Instead of a full likelihood approach (explored in the references cited above), we

consider a pseudo-likelihood approach that estimates each column of ϑ? separately.

Given 1 ≤ j ≤ p + 1, we partition the data matrix Z as Z = [Y (j), X(j)], where

Y (j) ∈ Rn denotes the j-th column of Z, and X(j) ∈ Rn×p collects the remaining
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columns. In that case the conditional distribution of Y (j) given X(j) is

Nn

(
X(j)θ(j)

? ,
1

[ϑ?]jj
In

)
,

where θ
(j)
?

def
= (−1/[ϑ?]jj)[ϑ?]−j,j ∈ Rp. Therefore, for some user-defined parameters

σj > 0, ρ0,j > 0, and ρ1,j the quasi-posterior distribution on ∆× Rp given by

Π(j)(δ, dθ|Z) ∝

e
− 1

2σ2
j

‖Y (j)−X(j)θδ‖22
ω(δ)

(ρ1,j

2π

) ‖δ‖0
2
(ρ0,j

2π

) p−‖δ‖0
2

e−
ρ1,j

2
‖θδ‖22e−

ρ0,j
2
‖θ−θδ‖22dθ, (2.5.8)

can be used to estimate θ
(j)
? , and hence the j-th column of ϑ?, if an estimate of

[ϑ?]jj is available1. This is basically the quasi-Bayesian analog of the neighborhood

selection of Meinshausen and Buhlmann [2006]. The same procedure can be repeated

– possibly in parallel – to recover the entire matrix ϑ?. We use the theory of Section

2.2-2.4 to describe the behavior of this approach to infer ϑ?. We focus on the

case where n = o(p), and we recall that C0 is an absolute constant whose value

may be different from one expression to the other. Let Π
(j,∞)
? be the corresponding

limiting distribution of Π(j) as defined in (2.4.1), and let Π̃
(j,∞)
? be the corresponding

approximation given in (2.4.6). In this particular case, Π
(j,∞)
? is the probability

measure on ∆ × Rp that puts probability one on δ
(j)
? (the support of θ

(j)
? ), draws

[θ]
δ
(j)
?
∼ N

(
θ̂

(j)
? , σ2

j (X
′
δ
(j)
?

X
δ
(j)
?

)−1
)

, and draws independently all other components

i.i.d. from N(0, ρ−1
0 ), where θ̂

(j)
? is the OLS estimator (X

δ
(j)
?
X
δ
(j)
?

)−1X ′
δ
(j)
?

Y (j). We

set s
(j)
?

def
= ‖θ(j)

? ‖0. Let Q(j) denote the variational approximation of Π(j) based on

the family (2.4.4) with sparsity pattern S(j), and let ζj denote the corresponding

1A full Bayesian approach can be adopted to estimate both θ
(j)
? and [ϑ?]jj . But for simplicity’s

sake we will not pursue this here
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term in (2.4.8).

Corollary 7. Assume H2, B1, and suppose that s
(j)
? > 0, maxj ‖θ(j)

? ‖∞ = O(1),

and maxj s
(j)
? = O(log(p)) as p→∞. Suppose also that u > 2, and uσ2

j [ϑ?]jj ≥ 16.

Choose the prior parameter ρ1,j as

ρ1,j =

√
log(p)

n
.

Set

s̄(j) def
= s(j)

?

(
1 +

6

u

)
+
u

4
, ε(j)

def
= C0

√
(s̄(j) + s

(j)
? ) log(p)

[ϑ?]jj n
, and s̄ = max

j
s̄(j).

Suppose that the sample size n satisfies n = o(p), as p→∞, and

n ≥ C0s̄ log(p),

and the strong signal assumption

min
k: |θ(j)

?,k|>0

|θ(j)
?,k| > C0ε

(j) (2.5.9)

holds. Then there exists a measurable set G with P?(Z /∈ G) → 0 as p → ∞ such

that

E?
[
1G(Z) max

1≤j≤p+1
KL
(
Π(j,∞)
? |Π(j)

)]
≤ C0 maxj(s̄

(j) + s
(j)
? )

minj[ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
.

(2.5.10)
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Furthermore the variational approximation Q(j) satisfies

E?
[
1G(Z) max

1≤j≤p+1
‖Q(j) − Π̃(j,∞)

? ‖2
tv

]
≤ 8E?

[
1G(Z) max

1≤j≤p+1
ζ(j)

]
+
C0 maxj(s̄

(j) + s
(j)
? )

minj[ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
. (2.5.11)

Proof. See Appendix A.7.

Remark II.9. 1. We have focused in the Corollary on the Bernstein-von Mises

approximation and the behavior of the VA approximation. Other results, and

generally more precise results are given in the proof. In particular we show

that the rate of contraction of Π(j) is ε(j), and that Π(j) achieves perfect model

selection.

2. One cannot easily remove the indicator 1G from (2.5.10). However by Pinsker’s

inequality we get

2E?
[

max
1≤j≤p+1

‖Π(j,∞)
? − Π(j)‖2

tv

]
≤ 2P?[Z /∈ G]

+
C0 maxj(s̄

(j) + s
(j)
? )

minj[ϑ?]jj

log(p)

n
+

C0

p1∧(u2−1)
.

3. If the variational approximation Q(j) is constructed from some template δ(i,j),

then the remainder ζ(j) is zero if δ(i,j) ⊇ δ
(j)
? . When this is the case we also

have Π̃
(j,∞)
? = Π

(j,∞)
? . This holds for instance if δ(i,j) is the vector with all

components equal to 1 (full-VA). However the full-VA is expensive to compute.

In fact, as we illustrate below the full-VA is more expensive to compute than

direct MCMC sampling from Π(j). However if δ(i,j) is sparse, for instance

if δ(i,j) is the support of the lasso solution – or some equally well-behaved

37



frequentist estimate – then the scaling of the computational cost of Q(j) can be

extremely favorable. Hence Corollary implies that extremely fast variational

approximation of Π(j) with strong theoretical guarantees can be computed in

large scale Gaussian graphical models.

�
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2.5.3 Logistic Regression

In this example we shall study the behavior of the posterior distribution in case of

logistic regression. In frequentist high dimensional setup, the behavior of the logistic

regression has been previously studied in (Abramovich and Grinshtein [2019], Sur

and Candés [2019]). The interest stems from the fact that for discrete Pairwise

Markov Random Fields (PMRFs) such as the Ising model (Ising [1925]), using a

pseudo-likelihood approach results in performing logistic regression on each node

given the other nodes in the graph. In this example we will specifically study the

bounds obtained from Theorems 2, 3 and 4 for logistic regression.

C1. Let Y ∈ {0, 1}n be a vector of independent observations with

P(Yi = 1|xi) =
exp (〈xi, θ?〉)

1 + exp (〈xi, θ?〉)
. (2.5.12)

θ? ∈ Rp is the true generating parameter with ‖θ?‖0 = s?. X ∈ Rn×p is the covariate

matrix with columns Xj, j = 1, · · · , p such that max
j=1,··· ,p

‖Xj‖∞ ≤ b, where b > 0 is

some absolute constant.

The likelihood and score functions are defined as

`(θ; z) = exp

(
n∑
i=1

yi〈xi, θ〉 − g(〈xi, θ〉)

)

and ∇`(θ?; z) = X ′y −
n∑
i=1

x′ig
(1)(〈xi, θ?〉)

respectively where g(〈xi, θ〉) = log(1 + exp(〈xi, θ〉)). The information matrix at θ?

can then be defined as

∇(2)`(θ?; z)
def
= X ′W (θ?)X,
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where W n×n(θ?) = diag
(
g(2)(〈x1, θ?〉), · · · g(2)(〈xn, θ?〉)

)
. We also define the follow-

ing restricted eigenvalues

1.

v̄(s)
def
= sup

{
u′X ′Xu

n‖u‖2
2

, u 6= 0, u ∈ Rp, ‖u‖0 ≤ s

}
.

2.

v(s)
def
= inf

{
u′X ′W (θ?)Xu

n‖u‖2
2

, u 6= 0, u ∈ Rp, ‖u‖0 ≤ s

}
.

3.

v1(s̄)
def
= min

δ∈As̄
inf

θ∈R‖δ‖0 : ‖θ−θ̂δ‖2≤2ε
inf

{
u′X ′W (θ)Xu

n‖u‖2
2

, u ∈ R‖δ‖0 , u 6= 0

}
.

4.

v2(s̄)
def
= min

δ∈As̄
inf

θ∈R‖δ‖0
inf

{
u′X ′W (θ)Xu

n‖u‖2
2

, u ∈ R‖δ‖0 , u 6= 0

}
.

The nature of the likelihood in logistic regression does not make the application

of Theorem 1 on posterior sparsity obvious when (1 − ρ1

ρ̄
) ∼ O(1). This may be a

construction of the proof and as a result we cannot assume sparsity in the posterior

automatically. To circumvent this, we modify the Bernoulli prior on the δ from H(2)

to encode strict sparsity.

C2. We assume that

ω̄δ ∝ q‖δ‖0(1− q)p−‖δ‖0 ; δ ∈ ∆(s̄),

where q
1−q = 1

pu+1 . Here u > 0 is an absolute constant and ∆(s̄) = {δ ∈ ∆; ‖δ‖0 ≤

s̄}. We further assume that 2s? ≥ s̄ ≥ s?.
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Remark II.10. 1. The prior in Assumption C2 restricts the probability mass func-

tion to sparse subsets of ∆ where the sparsity is encoded by the pre-specified

quantity s̄ and ideally s̄ ≥ s?. The drawback of such a prior is that if we do

not have information on the true sparsity s̄ is difficult to choose and is left up

to the judgment of the researcher.

2. Simulation results for logistic regression show posterior sparsity even under

prior H2. This further indicates that the lack of posterior sparsity results is

due to the construction of the proof.

The resultant posterior distribution for (θ, δ) given Z = (Y,X) can then be

expressed as

Π(δ, dθ|z) ∝ exp

(
n∑
i=1

yi〈xi, θ〉 − g(〈xi, θ〉)

)

× ω̄δ
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

 ∏
j: δj=1

e−
ρ1θ

2
j

2

 ∏
j: δj=0

e−
ρ0θ

2
j

2

 dθ. (2.5.13)

We make the final following assumption related to the coherence of the design ma-

trix.

C3. Define

R =
maxj∈δ?,k∈δc?〈Xj,W (θ?)Xk〉

n
.

Assume

s̄R

v(s̄)
≤ 1/2 and

v̄(s̄)

v(s̄)
+

v̄(s̄)

v2(s̄)
∼ O(1).

Remark II.11. Note that the quantity R is bounded above by 1
n
‖Xj·‖2‖Xk·‖2. Hence

by Assumption C1, R is bounded above by b2. Thus assumption C3 prevents the
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problem from becoming intrinsically harder with growing dimensions by imposing

bounds on the restricted eigenvalues and is usually difficult to verify.

Corollary 8. Under assumptions C1-C3, suppose that s? > 0 and ‖θ?‖∞ = O(1).

Choose

u > 2, ρ1 ∼
√

log(p)/n and ρ̄ = 4b
√
n log(p).

We require n > max

(
1

v1(s̄)2 (s̄2 log(p))
3
,
(

(16/3)b2 (s?+s̄)
v(s?+s̄)

√
log(p)

)2
)

.

We define

ε
def
=

16b

v(s? + s̄)

√
(s? + s̄) log(p)

n

and assume strong signal given by

min
k: |θ?k|>0

|θ?k| > C0ε.

Then we can find a set G with P (Y ∈ G|X)→ 0 as p→∞ for which the following

bounds hold.

1. For C > 3 and

B
def
=
⋃
δ∈∆s̄

{δ} ×
{
θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, ‖θ − θδ‖2 ≤ 3

√
ρ−1

0 p,

}

we can have , such that

E?[1GΠ(Bc|Z)|X] ≤ 8 exp[−C s? + s̄

2v(s? + s̄)
b2 log(p)] + 2e−p.

2.

E?[1GΠ(Bck|Z)|X] ≤ C0

(√
ρ1

nv1(s̄)

1

pu/2

)k+1

+ E?[1GΠ(Bc|Z)|X].
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3.

E?(1G2KL ((|Π)(∞)
? |Π)|X) ≤ C0

(s? + s̄) log(p)

nv(s? + s̄)
+C1nb3(s̄+s?)

3

(
log(p)

n

)(3/2)

+ 2E?[1G(z)(1− Π(δ?|z))].

Proof. See Appendix A.9

The corollary covers contraction, model selection consistency and Bernstein phe-

nomenon respectively. The restricted eigenvalue conditions (specifically conditions

on v2(s̄)) are hard to verify in practice. The conditions have been imposed to sim-

plify the bounds obtained and further research is required to show whether they can

be relaxed.

2.5.3.1 Numerical illustration

We perform a simulation study to assess the behavior of the posterior distribution

as described in Corollary 8. We set p = 1000, n ∈ {300, 600}, and we generate Z =

[Y,X] ∈ {0, 1}n × Rn×(p) as follows. We first generate the matrix X by simulating

the rows of X independently from a Gaussian distribution with correlation ψ|j−i|

between components i and j, where ψ ∈ {0, 0.5}. When ψ = 0, the resulting matrix

X has a low coherence, but the coherence increases when ψ = 0.5. Using X, we

generate Yi = Ber
(

exp(〈θ?,xi〉)
1+exp(〈θ?,xi〉)

)
. We build θ? with s? = 10 non-zeros components

that we fill with draws from the uniform distribution ±U(a, a + 1), where a =

4
√
s? log(p)/n.

We build Π with u = 2, ρ1 =
√

log(p)/n, and ρ−1
0 = 1/p. We sample from Π

using Algorithm 5. We initialize the algorithm from the lasso solution. Figure 2.3

shows the (estimated) posterior distributions for the parameters θ1, θ2 and θ3 from
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one MCMC run of 5, 000 iterations. Since we are working in a high signal-to-noise

ratio setting the results are fairly consistent across replications. The true signal θ? is

such that θ?,1 6= 0 and θ?,2 6= 0 while θ?,3 = 0. Figure 2.3 shows that the distribution

covers the true value. The MCMC samples show lower variability when the design

matrix has a high coherence.
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Logistic regression with low coherent design matrix. p = 1000, n = 300.

Logistic regression with low coherent design matrix. p = 1000, n = 600.

Logistic regression with high coherent design matrix . p = 1000, n = 300.

Logistic regression with high coherent design matrix. p = 1000, n = 600.

Figure 2.3: Posterior inference: Logistic Regression

Posterior inference for θ1 (first column), θ2 (second column) and θ3 in the logistic

regression example based on one MCMC run (histogram). Vertical blue lines locate the

true values of the parameters. Vertical red lines locate the lasso solution.
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A further comparison is performed to study the convergence rate (using the

relative error and sparsified relative error) and the recovery measured in terms of

F1 score for increasing p in figure 2.4. For this particular comparison we have a low

coherence design matrix and set n ∼ O(log(p)3) and number of non-zero components

to the order of
√

log(p). We fix ρ−1
0 ∼ 1

p
and the results verify the fact that the

mixing is slower for lower value of ρ−1
0 . It also illustrates the fact that the relative

error rates are comparable after MCMC has converged and for strong signal settings

we can achieve perfect recovery starting from the lasso solution.

Figure 2.4: Error rates and recovery: Logistic Regression

The top panel shows the relative error defined as ‖θ−θ?‖2‖θ?‖2 . The second panel shows sparsified

relative error defined as ‖θδ−θ?‖2‖θ?‖2 . The bottom panel shows the F1 score defined as harmonic mean

of precision and recall

2.5.4 Sparse principal component estimation

We give another illustration of the quasi-Bayesian framework with a non-standard

example from sparse PCA. Principal component analysis is a widely used technique
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for data exploration and data reduction (Jolliffe [1986]). In order to deal with

high-dimensional datasets, several works have introduced recently various versions

of PCA that estimate sparse principal components (Jolliffe et al. [2003], Zou et al.

[2006], Shen and Huang [2008], Lei and Vu [2015]). Extension of these ideas to

a full Bayesian setting has been considered in the literature but is computation-

ally challenging (Pati et al. [2014], Gao and Zhou [2015], Xie et al. [2018]). Using

the quasi-Bayesian framework we explore here a fast regression-based approach to

sparse PCA that we show works well when the sample size n is close to p and/or the

spectral gap is sufficiently large. We consider the following data generating process.

D1. The matrix X ∈ Rn×p is such that the rows of X are i.i.d. from the Gaussian

distribution Np(0,Σ) on Rp, with a covariance matrix Σ of the form

Σ = ϑθ?θ
′
? + Ip,

for some sparse unit-vector θ? ∈ Rp, and some absolute constant ϑ > 0. We set

s?
def
= ‖θ?‖0.

Let X = UΛV ′ be the singular value decomposition (SVD) of X. Let V1 be the

first column of V . It was noted by Zou et al. [2006] that setting y = Λ11U1, it holds

for all λ > 0 that

V1 =
b̂

‖b̂‖2

, where b̂
def
= Argmin

β∈Rp
‖y −Xβ‖2

2 + λ‖β‖2
2.

This result suggests that one can recover the first principal component V1 by sparse

regression of y = Λ11U1 on X. To implement this idea in a Bayesian framework we
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are naturally led to the quasi-likelihood function

`(θ;X) = − 1

2σ2
‖y −Xθ‖2

2, θ ∈ Rp,

for some constant σ2 > 0. The resulting quasi-posterior distribution on ∆ × Rp is

the same as in (2.5.1):

Π(δ, dθ|Z) ∝ e−
1

2σ2 ‖y−Xθδ‖22ω(δ)
( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

e−
ρ1
2
‖θδ‖22e−

ρ0
2
‖θ−θδ‖22dθ.

We analyze this quasi-posterior distribution. One challenge here is that we do

not possess a good understanding of the distribution of the quasi-score function

X ′(Λ11U1 −Xθ?)/σ2 due to the intricate nature of the SVD decomposition. Hence

Theorem 1 cannot be applied, and thus we do not know whether the quasi-posterior

distribution is automatically sparse under the prior H2. We work around this issue

by hard-coding sparsity directly in the prior as follows.

C4. We assume that

ω(δ) ∝ q‖δ‖0(1− q)p−‖δ‖01∆s̄(δ), δ ∈ ∆,

for some integer s̄ ≥ s?, where q ∈ (0, 1) is such that q
1−q = 1

pu+1 , for some absolute

constant u > 0. Furthermore we will assume that p ≥ 9, pu/2 ≥ 2e2ρ.

Since s? is not known, how to find s̄ in practice that satisfies s̄ ≥ s? is not

obvious, and would require some judgment from the researcher. However in terms

of computations, using D4 instead of H2 implies only a minor change to the MCMC

sampler in Algorithm 22. For a ∈ R, sign(a) = 1 if a ≥ 0, and −1 otherwise.

2in STEP 2, if δ
(k)
j = 0 and ι = 1, we propose to do the change only if ‖δ(k)‖0 ≤ s̄.
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Corollary 9. Assume D1, D4, and choose σ2 = ϑ, ρ =
√

log(p)/n. Suppose that

‖θ?‖∞ = O(1), as p → ∞. There exist absolute constants C0, C such that for

n ≥ C0( p
ϑ

+ s̄ log(p)), we have

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=1}Π (Bθ?|X) + 1{sign(〈V1,θ?〉)=−1}Π (B−θ? |X)

]
= 1,

where for θ0 ∈ {θ?,−θ?},

Bθ0
def
=
⋃
δ∈∆s̄

{δ} ×

{
θ ∈ Rp : ‖θδ − θ0‖2 ≤ Cϑ

√(
p
ϑ

+ log(p)
)

(s̄+ s?)

n
,

‖θ − θδ‖2 ≤ 3

√
ρ−1

0 p

}
.

Proof. See Appendix A.10.

It is well-known that the principal component is identified only up to a sign,

which is reflected in Corollary 9. The assumption σ2 = ϑ is made for simplicity,

since ϑ is typically unknown. To a certain extent the procedure is robust to a

misspecification of σ2.

The contraction rate suggests that the method would perform poorly if the sam-

ple size and the spectral gap are both small, which is confirmed in the simulations.

One important limitation of Corollary 9 is that the convergence rate does not have

the correct dependence on the spectral gap. This is most certainly an artifact of our

method of proof.

Corollary 9 does not cover model selection nor the approximation results. These

results require a good control of the probability of the event E2(s̄), which itself

requires a better understanding of the distribution of singular vectors than we cur-

rently possess. We leave these issues for possible future research.
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2.5.4.1 Numerical illustration

We generate a random matrix X ∈ Rn×p according D1 with p = 1000, and

n ∈ {100, 1000}, where β? = (0.5, 0.5, 0, 0.5, 0.5, 0, . . . , 0)′. We consider two levels of

the spectral gap ϑ ∈ {5, 20}. As above we set up the prior distribution with u = 2,

ρ1 =
√
log(p)/n, and ρ−1

0 = 1/(4n). We use the same MCMC sampler as in the

Gaussian graphical model of Section 2.5.1, that we initialize from the lasso solution,

and run the 2000 iterations. We normalize the MCMC output to have unit-norm

(at each iteration). We repeat all computations 100 times and use the replications

to approximate the distribution of the posterior means and posterior variances of

the first three components of θ (θ1, θ2 and θ3). Using the 100 replications we also

approximate the distribution of the error

∫ ∥∥∥∥ θθ′

‖θ‖2
2

− θ?θ′?
∥∥∥∥

2

Π(dθ|X),

that we call projection approximation error. To assess the quasi-likelihood method

advocated here we compare its performance to that of the frequentist estimator of

(Zou et al. [2006]) as implemented in the Matlab package SpaSM (Sjöstrand et al.

[2018]). We present the results on Figure 2.5 and 2.6. The results supports very

well the conclusions of Corollary 9.
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Sparse PCA with ϑ = 5, p = 1000, n = 100.
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Sparse PCA with ϑ = 5, p = 1000, n = 1000.
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Figure 2.5: Posterior inference: SParse PCA (ϑ = 5)

Distributions of posterior means and variances for β1, β2, β3, and distribution of the projection

approx. error. Estimated from 100 replications. S-VA is skinny-VA, F-VA is full-VA. We also

report similar distributions for the frequentist estimator computed by SpaSM.
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Sparse PCA with ϑ = 20, p = 1000, n = 100.
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Sparse PCA with ϑ = 20, p = 1000, n = 1000.
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Figure 2.6: Posterior inference: SParse PCA (ϑ = 20)

Distributions of posterior means and variances for β1, β2, β3, and distribution of the projection

approx. error. Estimated from 100 replications. S-VA is skinny-VA, F-VA is full-VA. We also

report similar distributions for the frequentist estimator computed by SpaSM.
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2.6 Algorithms for linear regression models

Both algorithms are initialized from the lasso solution and its support. The VA

also needs an initial value of the matrix C which we take as (c/n)Ip, with c = 0.001.

Algorithm 2 (Gibbs sampler for (2.5.1)). At the k-th iteration, given (δ(k), θ(k)):

1. For all j such that δ
(k)
j = 0, draw θ

(k+1)
j ∼ N(0, ρ−1

0 ). Then draw jointly

[θ(k+1)]δ ∼ N(m(k),Σ(k)), where

m(k) =
(
X ′δ(k)Xδ(k) + σ2ρ1I‖δ(k)‖0

)−1
X ′δ(k)z, Σ(k) = σ2

(
X ′δ(k)Xδ(k) + σ2ρ1I‖δ(k)‖0

)−1
.

2. (a) Given θ(k+1) = θ, set δ(k+1) = δ(k), and repeat for j = 1, . . . , p. Draw

ι ∼ Ber(0.5). If δ
(k)
j = 0, and ι = 1, with probability min(1, Aj)/2

change δ
(k+1)
j to ι. If δ

(k)
j = 1, and ι = 0, with probability min(1, A−1

j )/2,

change δ
(k+1)
j to ι; where

Aj =
q

1− q

√
ρ1

ρ0

e−(ρ1−ρ0)
θ2j
2 e
−

θ2j

2σ2 ‖Xj‖22+
θj

σ2

(
〈Xj ,Y 〉−

∑
i: δ

(k+1)
i

=1, i 6=j
θi〈Xj ,Xi〉

)
.

Algorithm 3 (Midsize VA approximation for (2.5.1) using template δ(i)). Given

α(k), µ(k), and C(k)

1. (a) Set ᾱ = α(k). For j = 1, . . . , p update ᾱj as ᾱj = 1
1+Rj

, where

Rj =
1− q

q

√
ρ0

ρ1

e(ρ1−ρ0)
θ̂2
j
2 e

1
2σ2

[
θ̂2
j ‖Xj‖

2
2−2µ

(k)
j

〈
Xj ,y−

∑
i6=j µ

(k)
i ᾱiXi

〉
+Sj

]
,

where θ̂2
j = (µ

(k)
j )2 + C

(k)
jj , and Sj = 2

∑
i 6=j ᾱiCij 〈Xj, Xi〉.

(b) Set α(k+1) = ᾱ.
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2. (a) For each j such that δ
(i)
j = 0, set

C
(k+1)
jj =

1(
ρ1 +

‖Xj‖22
σ2

)
α

(k+1)
j + ρ0(1− α(k+1)

j )
,

and

µj =
C

(k+1)
jj

σ2
α

(k+1)
j

〈
Xj, y −

∑
i 6=j

α
(k+1)
i µ̄iXi

〉
.

(b) If ‖δ(i)‖0 > 0 do the following. Set ỹ = y −
∑

j:δ
(i)
j =0

α
(k+1)
j µ

(k+1)
j Xj.

Form the matrix M ∈ Rp×p such that Mij = α
(k+1)
i ‖Xi‖2

2, if i = j, and

Mij = α
(k+1)
i α

(k+1)
j 〈Xi, Xj〉 if i 6= j. Let Λ ∈ Rp×p be the diagonal matrix

such that Λjj = α
(k+1)
j ρ1 + ρ0(1− α(k+1)

j ). Then we update C(k) to

[C(k+1)]δ(i),δ(i) =

([
Λ +

1

σ2
M

]
δ(i),δ(i)

)−1

,

and we update µ(k) to

[µ(k+1)]δ(i) =
(
[C(k+1)]δ(i),δ(i)

) [
diag(α(k+1))

]
δ(i),δ(i) X

′
δ(i) ỹ,

where diag(α(k+1)) is the diagonal matrix with diagonal given by α(k+1).

Remark II.12. Setting δ(i) = 0p in the algorithm above yields the mean field varia-

tional approximation (skinny-VA). And taking δ(i) as the vector will all components

equal to 1 yields the full variational approximation (full-VA).
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CHAPTER III

A quasi-bayesian method for fitting Potts Model

3.1 Introduction

The second part of this dissertation is focused on implementing a tractable

Bayesian quasi-likelihood based approach for fitting high-dimensional Potts or Ising

models. We consider particularly the setting where the data can take only finitely

many values. This is motivated by the widespread availability of this type of data

in areas of psychology, image processing, computer science, social sciences, bio-

informatics, to name a few. For instance, Banerjee et al. [2008] used an Ising model

to find association between US senators from their binary voting records. Ekeberg

et al. [2013] used a Potts model to predict contact between amino acids in protein

chains. In Epskamp et al. [2017, 2018], the authors worked the reader through

statistical procedures for estimating psychological networks in personality research.

The Ising model Ising [1925] was originally formulated in the Physics literature as

a simple model for interacting magnetic spins on a lattice. The Potts model is a

generalization of the Ising model in which spins can take more than two values with

more complex dependencies. These models are widely used in the applications for

teasing out direct and undirected dependencies between large collections of nodes in
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a graph. The purpose of this work is to construct robust and scalable bayesian pro-

cedures for fitting these models. We focus on settings where the underlying network

is sparse and we address the problem by introducing an auxiliary selection variable

that represents the structure of the network. We use a form of quasi-likelihood that

takes product of the conditional distribution of each node of the graph, conditioning

on the other nodes and a spike and slab prior distribution that is separable across

the nodes. In case of Ising models specifically, the resulting quasi-posterior distri-

bution can then be written as a product of logistic regression posterior distributions

that we sample independently. Using this approach on a multi-core system yields a

significant reducing in computing time. Our method is roughly based on the theo-

retical findings in Chapter II. It simultaneously estimates the model parameters and

the underlying structure of the graph. We develop scalable Markov Chain Monte

Carlo (MCMC) algorithms that can be implemented in parallel thus significantly

reducing the computational cost of the method. At the end our methodology pro-

vides the user with both point estimates and quasi-credible intervals for the model

parameters. We run extensive simulations to check the accuracy of the method, and

we illustrate its practical applicability using an example from personality research.

The rest of the chapter is organized as follows: Section 3.2 introduces the method-

ology. In Section 3.3, we propose two scalable MCMC algorithms to deal with the

resulting quasi-posterior distribution. Section 3.4 illustrates the performance of our

method through simulation results. Finally, in Section 3.5, we present an applica-

tion of our method in the context of psychological data through the analysis of the

16 Personality Factors (16PF) dataset.
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3.2 Quasi-posterior distribution of the Potts model under

spike and slab prior

An m-colored Potts model parametrized by a sparse symmetric matrix θ is a

probability mass function on Z = {0, 1, · · · ,m− 1}p given by

f(z1, · · · zp|θ) =
1

Ψ(θ)
exp

{ p∑
r=1

θrrC(zr) +

p∑
r=1

p∑
j<r

θrjC(zr, zj)
}
. (3.2.1)

Here Ψ(θ) =
∑

z∈Z exp
{∑p

r=1 θrrC(zr) +
∑p

r=1

∑p
j<r θrjC(zr, zj)

}
is the normal-

izing constant. The mean field function C(.) describes the marginal information

on zr while the coupling function C(., .) as suggested by the name describes the

interaction between zr and zj. A special case of 3.2.1 is the Ising Model where m

is 2, and hence Z = {0, 1}p. In case of the Ising model the mean field and the

coupling functions are typically taken as identity (C(zr) = zr) and multiplicative

(C(zr, zj) = zrzj) respectively.

The problem of interest in this work is the estimation and recovery of the sparse

matrix θ based on n sample observations {zi}ni=1, where zi = (zi1, · · · , zip) ∈ Z is the

ith observation. We use Z ∈ {0, . . . ,m−1}n×p to denote the matrix of observations,

where the i-th row of Z is zi. The likelihood of θ can then be expressed as

Ln(θ|Z) =
n∏
i=1

f(zi|θ) =
n∏
i=1

1

Ψ(θ)
exp

{ p∑
r=1

θrrC(zir) +

p∑
r=1

p∑
j<r

θrjC(zir, z
i
j)
}
.

In a high-dimensional setting (typically p > n, log(p)
n
→ 0), likelihood based inference

on θ is computationally intractable because of the normalization constant Ψ(θ).

Note that, the number of summands in the normalizing constant Ψ(θ) is exponential
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in p, and quickly blows up for even moderate values of p.

3.2.1 Quasi(Pseudo)-likelihood

Following an approach widely adopted in the high-dimensional frequentist liter-

ature, we explore the use of quasi(pseudo)-likelihoods in the Bayesian treatment of

discrete graphical models. The conditional distribution for the rth node (given all

other nodes) in a Potts model for the ith observation zi can be written as

f(zir|zi\r, θr) =
1

Ψi
r(θr)

exp
{
θrrC(zir) +

∑
j 6=r

θrjC(zir, z
i
j)
}
, (3.2.2)

where zi\r = (zi1, · · · , zir−1, z
i
r+1, · · · zip)′ and θr = (θr1, · · · , θrp)′ is the rth column of

θ. The normalizing constant of this conditional distribution is given by

Ψi
r(θr) =

m−1∑
s=0

exp
(
θrrC(s) +

∑
j 6=r

θrjC(s, zij)
)
.

Computing Ψi
r(θr) requires O(p×m) units of operations and hence is scalable when

m is small. We denote the rth conditional log-likelihood as

`nr (θr|Z) =
n∑
i=1

[
θrrC(zir) +

∑
j 6=r

θrjC(zir, z
i
j)− log

(
Ψi
r(θr)

)]
.

Following Meinshausen and Buhlmann [2006], Ravikumar et al. [2010], we consider

the log pseudo-likelihood of θ given by

`n(θ|Z) =

p∑
r=1

`nr (θr|Z). (3.2.3)
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Note that the ability to write the log pseudo-likelihood `n(θ|Z) as a sum of log

conditional likelihoods `nr (θr|Z) allows us to transform the inference on θ ∈ Rp×p

into p separable sub-problems on Rp. Parallel treatment of each of these regression

problems when deploying a multi-core computer increases computational efficiency

but comes at a cost of loss in symmetry in the estimated matrix θ. We get two

estimates for each component θij from the computations involving nodes i and j

respectively. Following Meinshausen and Buhlmann [2006] we resolve this issue at

the post-inference stage by taking an aggregate of the two estimates which shall be

discussed in details in the later sections.

3.2.2 Spike and slab prior

To take advantage of the factorized form of the pseudo-likelihood function from

(3.2.3) we will assume in our prior distribution that the columns of θ are indepen-

dent. We note that it is a common practice in Bayesian data analysis to ignore

unknown dependence structure among parameters in the prior distribution when

dealing with multivariate parameters. These dependences are then learned from the

data in the posterior distribution. As mentioned before, the lack of symmetry is

dealt with at the post-inference stage.

As a prior distribution for θr we propose to use a relaxed form of the spike and

slab prior (Mitchell and Beauchamp [1988],George and McCulloch [1997]). More

specifically, for each parameter θr ∈ Rp, r = 1, · · · , p, we introduce a selection pa-

rameter δr = (δr1, · · · , δrp) ∈ ∆, where ∆ = {0, 1}p. We assume that the component

of δr have independent Bernoulli prior distributions, so that the joint distribution

of δr writes

ωδr =

p∏
j=1

qδrj(1− q)δrj ; q = p−(u+1) ; u > 0 (3.2.4)
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where u is a hyper-parameter. The conditional distribution of θr given δr is given

by

θrj|{δrj = 1} ∼ N(0, ρ); ρ > 0

θrj|{δrj = 0} ∼ N(0, γ); γ > 0, (3.2.5)

We introduce the notations θrδr = (θrj s.t. δrj = 1) ∈ R‖δr‖1 , δcr = 1− δr, ‖z‖1 =∑p
j=1 |zj| and ‖z‖2 =

√∑p
j=1 z

2
j . Using this notation, and writing δ = (δ1, . . . , δp),

θ = (θ1, . . . , θp), the joint prior distribution of (δ, θ) ∈ ∆p × Rp×p is given by

π(δ, dθ) =

p∏
r=1

π(δr, dθr).

The prior distribution π(δr, dθr) on ∆× Rp can be written as

π(δr, dθr) ∝ ωδr (2πρ)−
||δr ||1

2 (2πγ)
||δr ||1

2 exp

− 1

2ρ

∑
j: δrj=1

θ2
rj −

1

2γ

∑
j: δrj=0

θ2
rj

 dθr.

(3.2.6)

3.2.3 Quasi-posterior distribution

Following Chapter II, we combine the prior distribution in (3.2.6) together with

the pseudo-likelihood `r(·|Z) and consider the quasi-posterior distribution for the

r-th column of θ on ∆× Rp given by

Πn(δr, dθr|Z) ∝ ωδr

(√
γ
√
ρ

)||δr||1
exp

`nr (θrδr |Z)− 1

2ρ

∑
j: δrj=1

θ2
rj −

1

2γ

∑
j: δrj=0

θ2
rj

 dθr.

(3.2.7)

60



Note the use of θrδr (the sparsified version of θr) in the quasi-likelihood. Although

we use the same standard Gaussian-Gaussian spike-and-slab prior (as in for instance

George and McCulloch [1997], Narisetty and He [2014]), the quasi-posterior in (3.2.7)

differs from those considered in the aforementioned paper due to the sparsification

of θrδr in the quasi-likelihood. The idea is borrowed from Chapter 2 to facilitate

computation and more closely approximate the quasi-posterior distribution obtained

from spike-and-slab with point-mass at the origin. We multiplicatively combine

these p quasi-posterior distributions to obtain the full quasi-posterior distribution

on (δ, θ) given by

Πn(δ, dθ|Z) =

p∏
r=1

Πn(δr, dθr|Z). (3.2.8)

3.2.4 Choice of hyper-parameters

The behavior of (3.2.7) depends by and large on the choice of the hyper-parameter

γ, ρ and u. We refer the readers to Chapter II for a detailed discussion. In our al-

gorithms we set q in (3.2.4) at q = 1
p1+u , for some constant u > 0. We have found

that the inference is typically very robust to any choice of u between 1 and 2.

The hyper-parameter γ is the prior variance of the inactive component, whereas

ρ is the prior variance of the active components. For positive constants c0, c1, choose

γ =
c0

max(n, p)
, and ρ = c1

√
n

log(p)
.

3.2.5 Post estimation symmetrization

As mentioned above our procedure can lead to two different set of estimates

θ̂ij and θ̂ji for the same parameter θij. For the sake of interpretation it is useful

to provide a single estimate and credible interval. We propose a post-estimation
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symmetrization resulting in a singular estimate

θ̃ij =
θ̂ij + θ̂ji

2
. (3.2.9)

Similarly, the credible region corresponding to the parameter θij is constructed

as union of the 95% credible intervals θij and θji. Taking the union is a conservative

approach as opposed to taking the intersection. However it always provides a con-

crete interval or set unlike the intersection in which case the credible intervals may

be too short or in some cases even result in null set. A more direct inference on the

presence of edge between nodes i and j can be made from the indicator variable δij.

In the same spirit as above we estimate δij using

p̃ij = P (edge between node i and j|Z) =
1

2

(
P̂ (δij = 1|Z) + P̂ (δji = 1|Z)

)
.

(3.2.10)

3.3 MCMC Sampling Algorithms

In this section we shall discuss in details the construction of Markov Chain

Monte Carlo (MCMC) algorithms to draw Monte Carlo samples from the posterior

distribution (3.2.8). By virtue of independence, it is enough to draw sample for each

of the joint variable (θr, δr). Large efficiency gain is possible by performing these

simulations in parallel. In general we adopt a Metropolis-Hastings within Gibbs

approach to create our samplers.

We describe in Section 3.3.1 a general Metropolis Adjusted Langevin Algorithm

(MALA) to sample from (3.2.8). In case of Ising model, one can also take advan-

tage of the fact that the conditional distributions are logistic regression models and
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employ the Polya-Gamma(PG) sampler of Polson et al. [2012] for sampling (Section

3.3.2). We compare the two schemes in Section 3.4.1.

3.3.1 A Metropolis Adjusted Langevin sampler

The algorithm updates the active components θrδr given (δr, θrδcr), then updates

the inactive components θrδcr given (δr, θrδr), and finally updates δr given (θr). Here

we have used the notations θr = [θrδr , θrδcr ], where θrδr regroups the components

of θr for which δrj = 1, and θrδcr regroups the remaining components. We refer the

reader to Robert and Casella [2004a], Liu [2001] for an introduction to basic MCMC

algorithms.

Update of active parameters

Suppose that δr is such that 0 < ||δr||1 < p. We update θrδr by a Metropolis

Adjusted Langevin Algorithm (Atchadé [2006]). Other algorithms including Hamil-

tonian Monte Carlo could be used as well. We define

h(δr, θr; z) =
[
`nr (θrδr |z)− 1

2ρ
||θrδr ||22 −

1

2γ
||θrδcr ||

2
2

]
. (3.3.1)

The function θr → h(δr, θr; z) has a gradient given by

∇θrhγ(δr, θr; z) = ∇θrδr
`nr (θrδr |z)− 1

ρ
θrδr −

1

γ
θrδcr .

Following (Atchadé [2006]), we further truncate the gradient by introducing

G(δr, θr; z)
def
=

c

c ∨ ‖∇θrh(δr, θr; z)‖2

∇θrh(δr, θr; z), (3.3.2)
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for some positive constant c, where a∨ b = max(a, b). We update (one at the time)

the selected components of θr as follows. Given j such that δrj = 1, we propose

θproprj |θr ∼ N
(
θrj +

σ

2
[G(δr, θr; z)]j, σ

2
)
, (3.3.3)

where σ is some constant step size and [G(δr, θr, ρr; z)]j represents the jth compo-

nent of G(δr, θr; z). Let g(θproprj |θr) denote the density of the proposal distribution

in (3.3.3). We also define θpropr = [θr1, · · · θr(j−1), θ
prop
rj , θr(j+1), · · · θrp] and the accep-

tance probability as

Accrj = min

(
1,
g(θrj|θpropr )

g(θproprj |θr)
× Πn(δr, θ

prop
r |Z)

Πn(δr, θr|Z)

)
. (3.3.4)

With probability Accrj we set θrj = θproprj , and with probability 1 − Accrj, we do

nothing. In our simulations the step size σ is kept constant. Alternatively, it can

also be updated for each θrj in the spirit of an adaptive MCMC scheme if so desired.

Finally we note that, under sparse prior the number of active parameters in each

node is small. Hence the active parameters at a node can be updated one by one

without loss in computational efficiency.

Independent update for inactive parameters

Note that for the stated posterior distribution 3.2.7, given δr, the inactive compo-

nents θrδcr can be updated from their full conditional distribution given by

θrδcr ∼ N(0, γIp−‖δr‖1). (3.3.5)

Bernoulli sampler for selection parameters

Equation (3.2.7) is used to derive the one by one Gibbs update of the δrj’s. For each
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j = 1, · · · p, we define δ̌r = (δr1, · · · , δr(j−1), δ
c
rj, δr(j+1), · · · , δrp) and set

τrj = min

1,
( q

1−q )
‖δ̌r‖0(γ

ρ
)
‖δ̌r‖0

2 eh(δ̌r,θr;z)

( q
1−q )

‖δr‖0(γ
ρ
)
‖δr‖0

2 eh(δr,θr;z)

 (3.3.6)

We change δrj to δcrj based on a flip of probability τrj

The overall MCMC algorithm, hereafter referred to as MALA can be summarized

as follows.

Algorithm 4. MALA sampler

For each node r ∈ {1, · · · , p} do the following.

1. Initialize with (θ
(0)
r , δ

(0)
r )

2. At the t-th iteration, given δ
(t−1)
r = δ̌ and θ

(t−1)
r = θ̌, do

(a) For each j such that δ̌j = 1, we update θ̌j using the MALA algorithm

described in (3.3.3) and (3.3.4).

(b) Update θ̌δ̌c ∼ N(0, γIp−‖δ̌‖0)

(c) Set θ
(t)
r = θ̌. For each j in {1, . . . , p}, we update δ̌j based on a binary flip

of probability τrj as defined in (3.3.6). Set δ
(t)
r = δ̌.

3.3.2 A Polya-Gamma sampler for Ising models

The Polya-Gamma sampler is a data-augmentation technique which introduces

latent Polya-gamma variables to obtain an efficient Gibbs sampler for Bayesian

logistic regression (Polson et al. [2012]). To see how this is used here, note that the
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conditional posterior of the active parameters for the rth node is

Πn(θrδr |δr, θrδcr ;Z) ∝ exp

`nr (θrδr |Z)− 1

2ρ

∑
j:δrj=1

θ2
rj

 , (3.3.7)

which is the same as the posterior distribution in a logistic regression of variable

zr over the variables zj for which δrj = 1, j 6= r, using all available data samples.

Given r, δr, we write x(r)
(i)
δr

= (z
(i)
1 , · · · , z(i)

r−1, 1, z
(i)
r+1, · · · , z

(i)
p )δr ∈ {0, 1}‖δr‖1 , Zr =

(z
(1)
r , · · · , z(n)

r )′ ∈ {0, 1}n and use X(r)δr ∈ {0, 1}n×‖δr‖1 to denote the matrix of n

observations {x(r)
(i)
δr
}ni=1.

Hence to sample from (3.3.7) we follow a Gibbs update of first drawing indepen-

dently Polya-Gamma random variables using

Wi|θrδr ∼ PG(1, |〈x(r)
(i)
δr
, θrδr〉|); i = 1, · · · , n (3.3.8)

Note that 〈a, b〉 denotes the inner product between two vectors a, b. The second

step is to update θrδr given these Polya-Gamma variables using

θrδr ∼ N(µ,Σ) (3.3.9)

µ = Σ

(
X(r)Tδr(Zr −

1

2
1n)

)
(3.3.10)

Σ =

(
X(r)TδrΩX(r)δr +

1

ρ
I‖δr‖0

)−1

(3.3.11)

Ω = diag(W1, · · · ,Wn) (3.3.12)

Independent update for inactive parameters

As in (3.3.5) given δr, the inactive components θrδcr can be updated independently

and simultaneously from N(0, γIp−‖δr‖1)
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Bernoulli sampler for selection parameters

As before, (3.2.7) is used to derive the one by one Gibbs update of the δrj’s. For

the Polya-Gamma (PG) sampler, the calculations of the Bernoulli probability of the

update can be simplified. For each j = 1, · · · p, we define

τrj = log

(
1− q
q

)
− 1

2
log

(
γ

ρ

)
+

1

2

(
1

ρ
− 1

γ

)
θ2
rj −

1

2

(
[X(r)]′·jΩ[X(r)]·j

)
θ2
rj

− θrj

〈
[X(r)]·j,

(
Zr −

1

2
1n

)〉
−
〈
θrδr , [X(r)]′·jΩX(r)δr

〉
(3.3.13)

where X(r) denotes the full matrix X(r)1p and [X(r)]·j denotes the jth column of

X(r).

When δrj = 1 we flip it to 0 with probability min(1, eτrj+θrj [X(r)]′·jΩ[X(r)]·j). On the

other hand if δrj = 0 we flip it to 1 with probability min(1, e−τrj). The Polya-Gamma

MCMC algorithm (hereafter PG sampler) can be summarized as follows.

Algorithm 5. PG sampler

For each node r ∈ {1, · · · , p} do the following.

1. Initialize with (θ
(0)
r , δ

(0)
r )

2. At the t-th iteration, given δ
(t−1)
r = δ̌ and θ

(t−1)
r = θ̌, do

(a) we update θ̌δ̌ using the Polya-Gamma algorithm described in (3.3.8 -

3.3.12).

(b) Update θ̌δ̌c ∼ N(0, γIp−‖δ̌‖0)

(c) Set θ
(t)
r = θ̌. For each j in {1, . . . , p}

IF δ̌j = 1

we flip it to 0 with probability min(1, eτrj+θrj [X(r)]T·jΩ[X(r)]·j)
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ELSE

flip it to 1 with probability min(1, e−τrj).

Here τrj is as defined in (3.3.13). Setδ
(t)
r = δ̌.

Before moving on to simulation studies it is worth mentioning a few recent works

on estimation of Potts Model like (Moores et al. [2020], Rosu et al. [2015]). Moores

et al. [2020] uses specific form of the Potts Model to develop sufficient statistics

that can be used to construct surrogate likelihoods. While a direct comparison is

not included in this dissertation, the idea is worth further investigation in terms

of computational speed and applicability to a more general Potts Model. Rosu

et al. [2015] on the other hand pre-computes the partition function on a fine grid.

The computations in this case though utilizing the true likelihood, relies on the the

granularity of the mesh and prior knowledge on the support of the parameter.

3.4 Simulation studies

We first present a comparison of the performance of Algorithms 4 and 5 in terms

of relative error and time complexity using a logistic regression with different sample

sizes (n) and dimension (p) of the parameter of interest. Secondly we generate data

from Ising model with two different structures of θ and compare the error rates and

recovery of the quasi-posterior samples for different data size (n). Lastly to show

scalability of the algorithm, we construct credible intervals based on the posterior

samples for a network parametrized by a large 300 × 300 matrix θ based on 2000

observations and check the percentage of active parameters that are covered by the

credible intervals.
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3.4.1 Comparison of PG and MALA for logistic regression

We first present results comparing the two algorithms based on logistic regres-

sion in Figure 3.1. The data was generated based on a parameter θ? ∈ Rp which

had 10 active signals of absolute strength approximately 4
√

10 log(p)
n

with a positive

or negative sign randomly assigned to them. The regressors were drawn from inde-

pendent Gaussian distribution and adjusted to have ‖Xj‖2
2 = n, j = 1, · · · , p. We

used ρ =
√

n
log(p)

, γ = 1
n∨p and u = 2. We define the relative error and recovery as

follows

relative error at iteration t : e(t) def
=
||θ(t) − θ?||2
‖θ?‖2

(3.4.1)

F1 score at iteration t : F1(t) def
=

2 ∗ TA(t) ∗ PA(t)

TA(t) + PA(t)
(3.4.2)

Here,

TA(t) = proportion of true active out of predicted active elements of δ at iteration

t and

PA(t) = proportion of predicted active out of truly active elements of δ at iteration

t.

We run both algorithm for 5000 iterations. Figure 3.1 shows the relative error

(averaged over the number of iterations), as well as the total computation time. The

comparison of the computational complexity is valid since both the samplers started

from the same initializations and ran for the same number of iterations. Moreover,

the mixing of the chains are similar and this is further substantiated by the fact that

the average relative errors from the two samplers remain close in 3.1. Since (δ, θ)

arise from the same quasi-posterior distribution in both algorithms, the closeness

in relative errors is indicative of comparable mixing of the two samplers. Hence
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the only point of comparison between the samplers is their performance in terms

of computational complexity. The notable conclusion is that the time complexity

for the Polya-Gamma sampler degrades compared to the MaLa sampler when the

sample size n is much larger than the dimension. This is due to the fact that

sampling n Polya-Gamma variables at each iteration increases the computation cost

of the algorithm significantly.

Figure 3.1: Comparison of MALA 4 and PG 5 for Logistic Regression based on 5000
iterations

3.4.2 Numerical experiments using the Ising model

The next set of results are based on the whole Ising Model. Here we present

results based on two networks, one where the structure is completely random (Figure
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3.2) and the other where it consists of clusters along the diagonals (Figure 3.3).

Figure 3.2: Heatmap of θ? [network 1] Figure 3.3: Heatmap of θ? [network 2]

Figure 3.3: The red and green dots indicate positive and negative values of θij re-
spectively

We introduce the norm ‖θ‖0 as a measure of sparsity where

‖θ‖0 =

p∑
r=1

p∑
j=1

1[θrj 6= 0].

For each of the two networks, the generating matrix θ? is symmetric in R100×100.

Both the networks have 100 non-zero values along the diagonal of θ? and 50 active

edges out of 4950 edges, resulting in ‖θ?‖0 = 200.

The Ising model is well known to exhibit a phase transition phenomenon Georgii

[1988]. The phase transition properties of the Ising model may lead to nodes on

graph with low or no variability for certain choices of parameter θ? Li and Zhang

[2010]. We carefully chose θ?ij to avoid these scenarios. The diagonal elements of θ?

were chosen to be −2 and the non-zero off-diagonal θ?ij’s to be 4. We generate the

data from the Ising model using a Gibbs sampler.

The initialization of the MCMC values can be done randomly but the mixing will be
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much slower in this case. We choose to use the frequentist estimate as initial value

at each node r obtained through a proximal gradient descent on the corresponding

conditional likelihood Parikh and Boyd [2013]. This ensures that the MCMC sam-

pler converges almost immediately. As we noted in Figure 3.1 the PG and MALA

sampler produce similar error rates for logistic regression. Hence we present the

results of the PG sampler only in case of the Ising Model for the sake of brevity.

To measure convergence of the MCMC we use the relative error (3.4.1) for each

node r referring to then as e
(t)
r for the tth iteration and define

relative error at iteration t averaged across nodes : e(t) def
=

∑p
r=1 e

(t)
r

p
,

Similarly, using (3.4.2)

F1 score at iteration t averaged across nodes : F1(t) def
=

∑p
r=1 F1

(t)
r

p
.

F1 score is the combined measure of the power of a method and it’s control over

false discoveries. A high F1 score indicates low type 1 error and high power.

3.4.3 Behavior of the quasi-posterior distribution with increasing sam-

ple size

We study here the behavior of the quasi-posterior distribution as the sample size

increases. We generate n independent samples from the Ising model with parameter

θ? ∈ R100×100, for n ∈ {200, 500, 1000}, where θ? is as described above. Using the

simulated data, we ran the PG sampler for 5,000 iterations with γ = 0.1
p

, ρ =
√

n
log(p)
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and u = 2. We initialize the PG sampler using the frequentist lasso estimate. The

relative errors and F1 scores averaged both over the nodes and the last 1,000 itera-

tions are presented in Table 3.1. We can see a substantial increase in performance

when the sample size grows from 200 to 500 and there is not much gain in terms of

precision of estimate as sample size is increased further to 1,000. The quasi-Bayesian

approach appears to perform equally well for the two types of network.

Average Relative Error Average F1 score

Network 1

p = 100

n = 200 0.2187 0.9336

n = 500 0.0992 0.9960

n = 1, 000 0.0704 0.9955

Network 2

p = 100

n = 200 0.1698 0.9689

n = 500 0.0846 1.0000

n = 1, 000 0.0690 0.9960

Table 3.1: Table showing average relative errors and average F1 scores (recovery)
for the two networks and different sample sizes.

3.4.4 Behavior of credible intervals for a network with 300 nodes

We generate a larger network with 300 nodes and 2,000 observations. The net-

work structure is similar to network 2 with block structure along the diagonals but

also some sparse active edges along the anti-diagonal resulting in maxr=1,··· ,p ‖δ?r‖0 =

3. Here θ? is symmetric in R300×300 with ||θ?||0 = 660. The non-zero off-diagonal

values of θ? are set at 4 and the diagonals of θ? are either −2 or −4. The settings

were changed slightly again keeping in mind the phase transition properties of the

Ising Model. In this setup, we specifically look at the credible intervals estimated

through the MCMC samples using the PG sampler with γ = 0.1
p

, ρ =
√

n
log(p)

and
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u = 2. We run the PG sampler for 30,000 iterations and take the initial 10,000

iterations as burn-in. After the burn-in, the estimates of each θij are obtained by

taking the mean of 500 samples, keeping the sample from every 40th iteration. The

relative error for these 500 samples averaged across the 300 nodes is 0.0078 while

the recovery(F1 score) is calculated to be 1.0000. We obtain the final estimate of

θ̃ after symmetrization of the estimates as mentioned in (3.2.9). For the credible

interval of θ?ij we use the union of the 95% credible intervals of θij and that of

θji. Figures 3.4 and 3.5 show the credible intervals of the active and inactive θij

separately. We also include the estimates and the true value of the parameter to

show the accuracy of the estimates. In 97% cases the active parameters are covered

by the union credible intervals while in 3% cases they fall just outside. The inac-

tive parameters have credible intervals symmetric around 0. The average credible

intervals for each of the 4 distinct true parameter values are given in table 3.2 .

True parameter value Average Credible Interval

0 (-0.037,0.037)

-4 (-4.43,-3.62)

-2 (-2.21,-1.82)

4 (3.66,4.40)

Table 3.2: Table showing Credible Intervals average for each of the four unique
parameter values in the matrix θ?

The total computing time of our method for this network with 300 nodes and

2000 observations was approximately 600 CPU-hours where each node ran for 30000

iterations. We parallelized the MCMC into 80 parallel processes and the simulation

was completed in approximately 8 hours. Given this, we can say that our method

is computationally scalable in these data dimensions.
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Figure 3.4: Credible intervals of active θij in order of
strength of estimates

Figure 3.5: Credible intervals of inactive θij in order of
strength of estimates
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3.5 Real data analysis

According to British psychologist Raymond Cattell, variations in human per-

sonality is best explained by a model containing sixteen variables (personality fac-

tors/traits) Cattell and Mead [2008]. The data that we have analyzed (source:

https://openpsychometrics.org/_rawdata/), comes from an interactive ques-

tionnaire of 163 questions designed to measure Cattell’s 16 Personality Factors

(16PF). For each question, a self-assigned score indicates how accurate it is on

a scale of (1) disagree (2) slightly disagree (3) neither agree nor disagree (4) slightly

agree (5) agree. Additionally, some other information is collected which includes

the test taker’s home country, the source from which (s)he got information about

the test, her/his perceived accuracy about the answers (s)he provided, age, gender

and time elapsed to complete the test. In our analysis, we focused on women in the

age group of 30 to 50, who had a self-reported accuracy ≥ 75% and finished the test

within half an hour.

The selected data had 4,162 individuals answering 163 questions. Some of the

observations had missing values which are represented as 0. The proportion of

missing values varied from 0.4% to 1% across different questions. The missing

values were treated as missing at random and each of them were substituted by a

value between 1 to 5. This value was sampled from the marginal distribution of

scores for that particular question (covariate).

Table 3.3 describes the 16 primary factors. Each factor has 10 questions associ-

ated with it except trait B (Reasoning) which has 13 questions leading to a total of

163 questions.
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Trait Name Trait Code

Warmth A

Reasoning B

Emotional Stability C

Dominance E

Liveliness F

Rule-Consciousness G

Social Boldness H

Sensitivity I

Vigilance L

Abstractedness M

Privateness N

Apprehension O

Openness to change Q1

Self-reliance Q2

Perfectionism Q3

Tension Q4

Table 3.3: 16 PF Primary Factors

We aim to model the network of 163 questions through a Potts model with

163 nodes. Each of the questions are evaluated on a scale of 1 to 5, resulting in

a 5-colored Potts model. Our objective is to understand the associations between

the questions by estimating the parameter matrix θ in the Potts model (3.2.1).We

set the coupling function C(zr, zj) =
zrzj
(4)2 and marginal term C(zr) = ( zr

4
)2, where

zr ∈ (0, 1, · · · , 4) after shifting the origin to 0. The denominators in these terms
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help stabilize the computation of the log-likelihoods and the derivatives required

in our MCMC computations. We run the MALA sampler (Algorithm 4) using

ρ =
√
n/ log(p), γ = 1

n
and u = 2, with a burn-in of 10, 000 iterations. The MCMC

runs for 50, 000 more iterations and we keep every 50th iteration to obtain a 1, 000

MCMC samples.

We define

θ̂ij =
1

1000

1000∑
t=1

θ
(t)
ij (3.5.1)

P̂ (δij) =
1

1000

1000∑
t=1

I(δ(t)
ij = 0) (3.5.2)

The final strength of association between node (i, j) based on 1, 000 samples is then

measured through a single value θ̃ij evaluated as in (3.2.9) which has values in

the range of (−21, 21). The heatmap of the strength of association (θ̃) is given in

Figure 3.6. The cluster of strong signals around the diagonal represents association

between questions relating to the same personality trait while the sparse off-diagonal

strong signals represent association between question that are related to two different

personality traits. The percentage of estimates with P̂ (δij) = 0 is around (94%).
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Figure 3.6: Heatmap of symmetrized θ̂ ((3.2.9)).

The credible region for the estimate of θij are evaluated as union of the 95%

credible intervals of θij and θji, obtained from the respective set of MCMC samples.

Figure 3.7 shows the estimated credible intervals for all the parameters (θij). It

demonstrates the fact that for most inactive parameters the credible set is a very

small interval around 0 which given the scale of the image appears as a straight line.

Figure 3.8 is a zoomed in version of Figure 3.7 corresponding to parameters whose

credible intervals do not contain 0.
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Figure 3.7: Credible intervals in order of strength for 16PF
data

θ̃ij (red) with credible intervals (blue) in order of strength of

estimates

Figure 3.8: Fig 3.7 zoomed in for credible intervals not con-
taining 0

We introduce Figure 3.9 to show the concordance between the estimates θ̂ij and

θ̂ji for those estimates whose union credible intervals do not contain 0. The figure

shows a high level of concordance.
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Figure 3.9: Concordance plot for estimates (16PF data) with credible intervals not
containing 0. Fitted line in red has intercept: -0.08 and slope: 0.9995

Cattell and Mead [2008] used several techniques including factor analysis to

establish that personality structure is hierarchical, with primary and secondary level

traits. The primary level consists of the 16 personality traits (used in our analysis).

The secondary level consists of a version of the Big Five Traits corresponding to

broader human qualities. They are obtained by factor-analyzing the correlation

matrix of the 16 primary-level personality traits.

The grouping of the 16 primary factors into the Big Five Traits are shown in

Table 3.4. Reasoning (trait B) stands alone without any association to the Big Five

Traits.
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Big Five Traits Associated 16PF Traits

Introversion/Extroversion A, F, H, N, Q2

Low anxiety/High Anxiety C, L, O, Q4

Receptivity/Tough-Mindedness A, I, M, Q1

Accommodation/Independence E, H, L , Q1

Lack of Restraint/Self Control F, G, M, Q3

– B

Table 3.4: Grouping of the 16 primary factors into the Big Five Traits

With the results of the analysis we now wish to see if the 16 primary factors

show similar associations as the ones established in Table 3.4, thus providing a

validation to the inference. In order to do so, we start the probability of edge

between the questions (i, j) given by p̃ij (3.2.10) and (3.5.2). We summarize the

estimates of probability of edge between 163 questions into a smaller 16×16 matrix

φ corresponding to the 16 traits. We define the set Si = {questions under trait i}

and nij to be the total number of possible edges between trait i and trait j. We

define the matrix φ as

φij =
1

nij

∑
k∈Si,l∈Sj

p̃kl .

The off-diagonal elements of the matrix φ measure the average probability of

association between each pair of traits. The element-wise reciprocal of this matrix

gives us a pseudo-distance measure between the 16 traits which is used to form a

hierarchical clustering using Ward’s method (ward.D2 in stats:hclust in R). Since

we did not use model based clustering, it is not possible to present probabilities

of the the traits belonging to a cluster. However the dendogram in 3.10 showing
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the structure of the hierarchical clustering offers some insight on how the traits are

connected. As for example, the self control cluster and receptivity cluster share

the trait M, and are closely connected through that trait. Similarly the closeness

of the introversion cluster to the receptivity and self control cluster is due to the

shared traits A and F. However a hard clustering on our traits results in a loss of

this trait overlapping information, and we are left with separate non-overlapping

clusters marked by the red blocks in the dendogram 3.10.

Figure 3.10 shows the results of the clustering. We see that our method per-

fectly recovers the low-anxiety/high-anxiety (C,L,O,Q4) cluster [Table 3.4 ]. It

also nearly recovers Introversion/Extroversion (A, H, N, Q2)[Table 3.4 ]. The trait

F(liveliness) [Table 3.3 ] which is common to both Introversion/Extroversion and

Lack of Restraint/Self-Control in Table 3.4 is shown to be clustered more strongly

with the later group and we also recover most of the Lack of Restraint/Self Control

Cluster (F,G,M). In our clustering (I,Q1) are also placed together which is sub-

stantiated by the fact that they are common to the Receptivity/Tough-Mindedness

cluster [Table3.4 ]. Additionally we find that given the data and the demographics

with which we chose to work our method identifies a new cluster (E,Q3,B) which

may lead to possible novel insights for this particular demographic warranting fur-

ther investigations. Thus we see that several groupings in Table 3.4 corresponding

to the Big Five Traits are reflected in our method.
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Figure 3.10: Dendogram identifying clusters of the 16 traits
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CHAPTER IV

Conclusion

This dissertation explores the scope of using quasi-likelihood based methods in

high dimensional Bayesian inference and opens up further avenues of research in this

context. We have provided various results on the general quasi-posterior distribu-

tion. We illustrated the applicability of these results using specific examples includ-

ing linear regression, logistic regression, Gaussian graphical models and sparse PCA

models. These results cover several properties of the quasi-posterior distribution,

including posterior sparsity, contraction rates, selection consistency, Bernstein Von

Mises phenomenon. We also provide a quantification of variational approximation

accuracy, since variational approximations are relevant in terms of the improvement

in computational speed.

The dissertation also shows that the use of a pseudo (quasi)-likelihood and a

prior distribution that factorizes across the columns of the parameter matrix can

enable us to side-step the intractable normalization constant of the Potts model

and perform computations in parallel for each node of the graph. We have shown

in our simulations that for appropriate choices of the hyper-parameters, the method

recovers the true data-generating parameters and achieves high recovery even for

moderate sample size. The proposed MCMC algorithms can easily handle graphs
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with thousand nodes, and possibly more if access to a computer with a large number

of cores is available.

However, there is still scope of further research to understand these results and

improve them. As mentioned before, several assumptions are difficult to verify

for non-Gaussian models. Though we have presented several results on logistic

regression, they can be further improved by relaxing the assumptions required. One

of the immediate focus in this stage might be to see how far the results are applicable

to generalized linear models and models with sub-gaussian tails. Another direction

will be to study the applicability of the results obtained for logistic regression in case

of Ising Models. Though we have seen through simulations that a quasi-likelihood

method provides valid estimates and intervals for Ising models, the exact rates and

proofs would only further the validity of the method.

I appreciate your patience and interest and hope this doctoral research would be

helpful to further the statistical understanding of the entire community.
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APPENDIX A

Proofs of the main results

A.1 Some preliminary lemmas

Let µδ(dθ) denote the product measure on Rp given by

µδ(dθ)
def
=

p∏
j=1

µδj(dθj),

where µ0(dx) is the Dirac mass at 0, and µ1(dx) is the Lebesgue measure on R. We

start with a useful lower bound on the normalizing constant.

Lemma 10. Assume H1-H2. For z ∈ Z, let C(z) denote the normalizing constant

of Π(·|z). For z ∈ E0, we have

C(z) ≥ ω(δ?)e
`(θ?;z)e−

ρ1
2
‖θ?‖22

(
ρ1

κ̄+ ρ1

) ‖θ?‖0
2

. (A.1)

Proof. The proof is very similar to the proof of Lemma 11 of Atchade [2017]. We
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set

ω̄(δ)
def
= ω(δ)

( ρ1

2π

) ‖δ‖0
2
( ρ0

2π

) p−‖δ‖0
2

.

Fix z ∈ E0. Then Π is well-defined, and we have

C(z) =
∑
δ∈∆

ω̄(δ)

∫
Rp
e−`(θδ;z)−

ρ1
2
‖θδ‖22−

ρ0
2
‖θ−θδ‖22dθ

≥ ω̄(δ?)

∫
Rp
e−`(θδ? ;z)− ρ1

2
‖θδ?‖22−

ρ0
2
‖θ−θδ?‖22dθ

= ω̄(δ?)(2πρ
−1
0 )

p−‖δ?‖0
2

∫
Rp
e`(u;z)− ρ1

2
‖u‖22µδ?(du).

Setting G
def
= ∇`(θ?; z), we have for all u ∈ Rp

δ?
and z ∈ E0,

`(u; z)− `(θ?; z)− 〈G, u− θ?〉 ≥ −
κ̄

2
‖u− θ?‖2

2,

which implies that

C(z) ≥ ω(δ?)
( ρ1

2π

)s?/2
e`(θ?;z)− ρ

2
‖θ?‖22

∫
Rp
e〈G,u−θ?〉−

κ̄
2
‖u−θ?‖22+

ρ1
2
‖θ?‖22−

ρ1
2
‖u‖22µδ?(du).

For all u ∈ Rp
δ?

, (1/2)(‖θ?‖2
2 − ‖u‖2

2) = −1
2
‖u− θ?‖2

2 − 〈θ?, u− θ?〉. Therefore,

∫
Rp
e〈G,u−θ?〉−

κ̄
2
‖u−θ?‖22+

ρ1
2
‖θ?‖22−

ρ1
2
‖u‖22µδ?(du)

=

∫
Rp
e〈G−ρ1θ?,u−θ?〉− κ̄+ρ1

2
‖u−θ?‖22µδ?(du) =

(
2π

κ̄+ ρ1

) s?
2

e
κ̄+ρ1

2
‖G−ρ1θ?‖22 ,

and (A.1) follows easily.

Our proofs rely on the existence of some generalized testing procedures that we
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develop next, following ideas from Atchade [2017]. More specifically we will make

use of the following result which follows by combining Lemma 6.1 and Equation

(6.1) of Kleijn and van der Vaart [2006].

Lemma 11 (Kleijn-Van der Vaart (2006)). Let (X ,B, λ) be a measure space with

a sigma-finite measure λ. Let p be a density on X , and Q a family of integrable

real-valued functions on X . There exists a measurable φ : X → [0, 1] such that

sup
q∈Q

[∫
φpdλ+

∫
(1− φ)qdλ

]
≤ sup

q∈conv(Q)

H(p, q),

where conv(Q) is the convex hull of Q, and H(q1, q2)
def
=
∫ √

q1q2dλ.

We introduce the quasi-likelihood

fθ(z)
def
= e`(θ;z), θ ∈ Rp, z ∈ Z.

For θ1 ∈ Rp, we recall that

Lθ1(θ; z)
def
= `(θ; z)− `(θ1; z)− 〈∇`(θ1; z), θ − θ1〉 , θ ∈ Rp.

We develop the test in a slightly more general setting. More specifically , in

order to handle the PCA example we will allow the mode of `(·; z) to depend on z.

Let δ? be some sparse element ∆. Let Θ? be a finite nonempty subset of Rp
δ?

(the set of possible contraction points). Let ρ̄ > 0 be a constant, s̄ ≥ 1 an integer,
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and r a rate function. For each θ? ∈ Θ?, we define

Et,θ?
def
=
{
z ∈ Z : ‖∇ log fθ?(z)‖∞ ≤

ρ̄

2
,

and for all δ ∈ ∆s̄, θ ∈ Rp
δ , Lθ?(θ; z) ≤ −1

2
r(‖θ − θ?‖2)

}
,

which roughly represents the set of data points for which Π(·|z) could contract

towards θ?.

Lemma 12. Set s?
def
= ‖δ?‖0, and

ε
def
= inf

{
z > 0 : r(x)− 2ρ̄(s? + s̄)1/2x ≥ 0, for all x ≥ z

}
.

Let f? be a density on Z, and M > 2 a constant. There exists a measurable function

φ : Z → [0, 1] such that

∫
Z
φ(z)f?(z)dz ≤ 2|Θ?|(9p)s̄e−

M
8
ρ̄(s?+s̄)1/2ε

1− e−M8 ρ̄(s?+s̄)1/2ε
,

where |Θ?| denotes the cardinality of Θ?. Furthermore, for any δ ∈ ∆s̄, any θ ∈ Rp
δ

such that ‖θ − θ?‖2 > jMε for some j ≥ 1, and some θ? ∈ Θ?, we have

∫
Et,θ?

(1− φ(z))
fθ(z)

fθ?(z)
f?(z)dz ≤ e−

1
8
r( jMε

2 ).

Proof. Define

q̄θ?,u(z)
def
=

fu(z)

fθ?(z)
f?(z)1Et,θ? (z), θ? ∈ Θ?, u ∈ Rp, z ∈ Z.
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Using the properties of the event Et,θ? , we note that for δ ∈ ∆s̄, and u ∈ Rp
δ we have

∫
Z
q̄θ?,u(z)dz =

∫
Et,θ?

e〈∇`(θ?;z),u−θ?〉+Lθ? (u;z)f?(z)dz ≤ e
ρ̄
2
‖u−θ?‖1 <∞. (A.2)

Fix η ≥ 2ε arbitrary. Fix θ? ∈ Θ?, δ ∈ ∆s̄, and fix θ ∈ Rp
δ such that ‖θ − θ?‖2 > η.

Let

P = Pθ?,δ,θ
def
=
{
q̄θ?,u : u ∈ Rp

δ , ‖u− θ‖2 ≤
η

2

}
.

According to Lemma 11, applied with p = f?, and Q = P , there exists a test

function φθ?,δ,θ (that we will write simply as φ for convenience) such that

sup
q∈P

[∫
φf? +

∫
(1− φ)q

]
≤ sup

q∈conv(P)

∫
Z

√
f?(z)q(z)dz. (A.3)

Any q ∈ conv(P) can be written as q =
∑

j αj q̄θ?,uj , where
∑

j αj = 1, uj ∈ Rp
δ ,

‖uj − θ‖2 ≤ η/2. Notice that this implies that ‖uj − θ?‖2 > η/2 ≥ ε. Therefore, by

Jensen’s inequality, the first inequality of (A.2), and the properties of the set Et,θ? ,

we get

∫
Z

√
f?(z)q(z)dz ≤

√√√√∑
j

αj

∫
Et,θ?

fuj(z)

fθ?(z)
f?(z)dz

≤
√∑

j

αje
ρ̄
2
‖uj−θ?‖1− 1

2
r(‖uj−θ?‖2),

≤
√∑

j

αje
− 1

4
r(‖uj−θ?‖2)

≤ e−
1
8
r( η2 ).
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Consequently, (A.3) yields

sup
q∈P

[∫
φf? +

∫
(1− φ)q

]
≤ e−

1
8
r( η2 ). (A.4)

For M > 2, write ∪θ? ∪δ {θ ∈ Rp
δ : ‖θ − θ?‖2 > Mε} as ∪θ? ∪δ ∪j≥1Aε(θ?, δ, j),

where the unions in δ are taken over all δ such that ‖δ‖0 ≤ s̄, and

Aε(θ?, δ, j)
def
= {θ ∈ Rp

δ : jMε < ‖θ − θ?‖2 ≤ (j + 1)Mε} .

For Aε(θ?, δ, j) 6= ∅, let S(θ?, δ, j) be a maximally (jMε/2)-separated point in

Aε(θ?, δ, j). It is easily checked that the cardinality of S(θ?, δ, j) is upper bounded

by 9‖δ‖0 ≤ 9s̄ (see for instance Ghosal et al. [2000] Example 7.1 for the arguments).

For θ ∈ S(θ?, δ, j), let φ denote the test function obtained above with η = jMε.

From (A.4), this test satisfies

sup
u∈Rpδ , ‖u−θ‖2≤

jMε
2

[∫
Z
φ(z)f?(z)dz +

∫
Z

(1− φ(z))q̄θ?,u(z)dz

]
≤ e−

1
8
r( jMε

2 ). (A.5)

We then set

φ̄ = max
θ?∈Θ?

max
δ: ‖δ‖0≤s̄

sup
j≥1

max
θ∈S(θ?,δ,j)

φ.

It then follows that

∫
Z
φ̄(z)f?(z)dz ≤

∑
θ?

s̄∑
k=0

∑
δ: ‖δ‖0=k

∑
j≥1

∑
θ∈S(θ?,δ,j)

∫
Z
φ(z)f?(z)dz

≤ |Θ?|
s̄∑

k=0

(
p

k

)
9k
∑
j≥1

e−
1
8
r( jMε

2 ) ≤ 2|Θ?|(9p)s̄
∑
j≥1

e−
1
8
r( jMε

2 ).
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Since jMε/2 ≥ ε, we can say that r(jMε/2) ≥ 2ρ̄(s? + s̄)1/2(jMε/2). Hence

∑
j≥1

e−
1
8
r( jMε

2 ) ≤ e−
M
8
ρ̄(s?+s̄)1/2ε

1− e−M8 ρ̄(s?+s̄)1/2ε
.

And if for some δ, such that ‖δ‖0 ≤ s̄, some θ? ∈ Θ?, and some θ ∈ Rp
δ we have

‖θ − θ?‖2 > jMε, then θ resides within (iMε)/2 of some point θ0 ∈ S(θ?, δ, i) for

some i ≥ j. Hence, by (A.5),

∫
Z

(1− φ̄(z))q̄θ?,θ(z)dz ≤
∫
Z

(1− φ(z))q̄θ?,θ(z)dz ≤ e−
1
8
r( iMε

2 ) ≤ e−
1
8
r( jMε

2 ).

This ends the proof.

A.2 Proof of Posterior Sparsity (Theorem 1)

Let f : ∆× Rp → [0,∞) be some arbitrary measurable function. Take E ⊆ E0.

By the control on the normalizing constant obtained in Lemma 10, we have

1E(z)

∫
fdΠ(·|z) ≤

(
1 +

κ̄

ρ1

) s?
2

×
∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

1E(z)

∫
Rp
f(δ, u)

e`(u;z)− ρ1
2
‖u‖22

e`(θ?;z)− ρ1
2
‖θ?‖22

µδ(du).

We write

`(u; z)− `(θ?; z) = Lθ?(u; z) + 〈∇`(θ?; z), u− θ?〉 .
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Therefore, since for z ∈ E ⊆ E0, ‖∇`(θ?; z)‖∞ ≤ ρ̄/2, it follows that for z ∈ E

`(u; z)− `(θ?; z) ≤ Lθ?(u; z) +

(
1− ρ1

ρ̄

)
〈∇`(θ?; z), u− θ?〉+

ρ1

2
‖u− θ?‖1.

We deduce from the above and Fubini’s theorem that

E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2 ∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

×
∫
Rp
f(δ, u)e

ρ1
2 (‖θ?‖22−‖u‖22)+

ρ1
2
‖u−θ?‖1E?

[
1E(Z)eL(u;Z)+(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]
µδ(du).

(A.1)

Set d(u)
def
= −ρ1‖u‖1 +ρ1‖θ?‖1 +(ρ1/2)‖u−θ?‖1, u ∈ Rp. Given (2.2.1), we claim

that

ed(u)E?
[
1E(Z)eL(u;Z)+(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]
≤ e

a0
2 e−

ρ1
4
‖u−θ?‖1 , u ∈ Rp, (A.2)

where a0 = −minx>0[r0x
2 − 4ρ1s

1/2
? ]. The proof of this statement is essentially the

same as in Castillo et al. [2015] Theorem 1. We give the details for completeness.

Indeed,

d(u) =
ρ1

2
‖δ? · (u− θ?)‖1 +

ρ1

2
‖δc? · u‖1 − ρ1‖δ? · u‖1 − ρ1‖δc? · u‖1 + ρ1‖θ?‖1

≤ −ρ1

2
‖δc? · (u− θ?)‖1 +

3ρ1

2
‖δ? · (u− θ?)‖1.

If ‖δc? ·(u−θ?)‖1 > 7‖δ? ·(u−θ?)‖1, we easily deduce that d(u) ≤ −ρ1

4
‖u−θ?‖1. This

bound together with (2.2.1) shows that the claim holds true when ‖δc? · (u− θ?)‖1 >

7‖δ? · (u− θ?)‖1. If ‖δc? · (u− θ?)‖1 ≤ 7‖δ? · (u− θ?)‖1, then again by (2.2.1), and the

bound on d(u) obtained above, we deduce that the logarithm of the left-hand side
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of (A.2) is upper bounded by

− ρ1

2
‖δc? · (u− θ?)‖1 +

3ρ1

2
‖δ? · (u− θ?)‖1 −

r0
2
‖δ? · (u− θ?)‖2

2

≤ −ρ1

2
‖u− θ?‖1 + 2ρ1s

1/2
? ‖δ? · (u− θ?)‖2 −

r0
2
‖δ? · (u− θ?)‖2

2

≤ −ρ1

2
‖u− θ?‖1 −

1

2

[
r0‖δ? · (u− θ?)‖2

2 − 4ρ1s
1/2
? ‖δ? · (u− θ?)‖2

]
≤ −ρ1

2
‖u− θ?‖1 +

a0
2
≤ −ρ1

2
‖u− θ?‖1 +

2ρ2
1s?
r0

which also gives the stated claim. Hence (A.1) becomes

E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

∑
δ∈∆

ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0
2

×
∫
Rp
f(δ, u)e

ρ1
2 (‖θ?‖22−‖u‖22)−ρ1(‖θ?‖1−‖u‖1)e−

ρ1
4
‖u−θ?‖1µδ(du). (A.3)

The integral in the last display is bounded from above by

∫
Rp
f(δ, u)e−

ρ1
2
‖u−θ?‖22+ρ1‖θ?‖2‖u−θ?‖2+

3ρ1
4
‖u−θ?‖1µδ(du)

≤ e2ρ1‖θ?‖22e2ρ1‖δ‖0
∫
Rp
f(δ, u)e−

ρ1
4
‖u−θ?‖22µδ(du),

using some simple algebraic majoration. Then (A.3) becomes

E?
[
1E(Z)

∫
fdΠ(·|Z)

]
≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

+2ρ1‖θ?‖22

×
∑
δ∈∆

ω(δ)

ω(δ?)
(
√

2e2ρ1)‖δ‖0
( ρ1

4π

) ‖δ‖0
2

∫
Rp
f(δ, u)e−

ρ1
4
‖u−θ?‖22µδ(du). (A.4)
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In the special case where f(δ, u) = 1{‖δ‖0≥s?+k} for some k ≥ 0, we have

E? [1E(Z)Π(‖δ‖0 ≥ s? + k|Z)] ≤
(

1 +
κ̄

ρ1

) s?
2

e
a0
2

+2ρ1‖θ?‖22
∑

δ: ‖δ‖0≥s?+k

ω(δ)

ωδ?

(√
2e2ρ1

)‖δ‖0
.

By H2, we have

∑
δ: ‖δ‖0≥s?+k

ω(δ)

ω(δ?)

(√
2e2ρ1

)‖δ‖0
=

p∑
j=s?+k

(
p

j

)(
q

1− q

)j−s? (√
2e2ρ1

)j
≤
(
p

s?

)(√
2e2ρ1

)s? p∑
j=s?+k

(√
2e2ρ1

pu

)j−s?

,

using the fact that q
1−q = 1

pu+1 , and
(
p
j

)
≤ pj−s?

(
p
s?

)
. Hence for pu/2 ≥ 2e2ρ1 we get

∑
δ: ‖δ‖0≥s?+k

ω(δ)

ω(δ?)

(√
2e2ρ1

)‖δ‖0
≤ 2

(
p

s?

)(√
2e2ρ1

)s? 1

p
uk
2

≤ 2es?( 1
2

+2ρ1)+s? log(p)−uk
2

log(p).

Hence we conclude that

E? [1E(Z)Π(‖δ‖0 ≥ s? + k|Z)]

≤ 2e
s?( 1

2
+2ρ1+log(p))+ s?

2
log
(

1+ κ̄
ρ1

)
e

a0
2

+2ρ1‖θ?‖22e−
uk
2

log(p)

≤ 2e(1+c0)s? log(p)e−
uk
2

log(p),

using (2.2.2). Setting k = (2/u)(1+ c0)s?+ j for some j ≥ 1 yields the stated result.

This completes the proof.

�
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A.3 Proof of Posterior Contraction

(Theorem 2)

We write E1 instead of E1(s̄), and take E ⊆ E1. We note that Bc = {δ ∈ ∆ :

‖δ‖0 > s̄} ∪ F1 ∪ F2, where

F1
def
=
⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ?‖2 > Cε} ,

and

F2
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1} ,

where ε1 =
√

(1 + C1)ρ−1
0 p. Therefore we have

1E(Z)Π(Bc|Z) = 1E(Z)Π(‖δ‖0 > s̄|Z) + 1E(Z)Π(F1|Z) + 1E(Z)Π(F2|Z). (A.1)

Let φ denote the test function asserted by Lemma 12 with M ← C, Θ? = {θ?}.

We can then write

E? [1E(Z)Π(F1|Z)] ≤ E? (φ(Z)) + E? [1E(Z) (1− φ(Z)) Π(F1|Z)] . (A.2)

Lemma 12 gives

E? (φ(Z)) ≤ 2(9p)s̄e−
C
8
ρ̄1(s?+s̄)1/2ε

1− e−C8 ρ̄1(s?+s̄)1/2ε
≤ 4e−

C
32
ρ̄1(s?+s̄)1/2ε, (A.3)
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for (C/16)ρ̄(s̄+ s?)
1/2ε ≥ 2s̄ log(p). By Lemma 10, we have

1E(Z)Π(F1|Z) ≤ 1E(Z)

(
1 +

κ̄

ρ1

)s?/2
×
∑
δ∈∆s̄

ω(δ)

ω(δ?)

( ρ1

2π

)‖δ‖0/2 ∫
F(δ)
ε

e`(θ;Z)− ρ1
2
‖θ‖22

e`(θ?;Z)− ρ1
2
‖θ?‖22

µδ(dθ),

where F (δ)
ε

def
= {θ ∈ Rp : ‖θδ − θ?‖2 > Cε}. We use this last display together with

Fubini’s theorem, to conclude that

E? [1E(Z) (1− φ(Z)) Π(F1|Z)](
1 +

κ̄

ρ1

)s?/2 ∑
δ∈∆s̄

ω(δ)

ω(δ?)

( ρ1

2π

)‖δ‖0/2
×
∫
F(δ)
ε

E?
[
(1− φ(Z))

e`(θ;Z)

e`(θ?;Z)
1E(Z)

]
e−

ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ). (A.4)

We write F (δ)
ε = ∪j≥1F (δ)

j,ε , where F (δ)
j,ε

def
= {θ ∈ Rp : jCε < ‖θδ − θ?‖2 ≤ (j + 1)Cε}.

Using this and Lemma 12, we have

∫
F(δ)
j,ε

E?
[
(1− φ(Z))

e`(θ;Z)

e`(θ?;Z)
1E(Z)

]
e−

ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ)

≤ e−
1
8
r( jCε2 )

∫
F(δ)
j,ε

e−
ρ1
2
‖θ‖22

e−
ρ1
2
‖θ?‖22

µδ(dθ). (A.5)

We note that ρ1‖θ?‖2
2 − ρ1‖θ‖2

2 = −ρ1‖θ − θ?‖2
2 − 2ρ1 〈θ?, θ − θ?〉 ≤ −ρ1‖θ − θ?‖2

2 +

2ρ1‖θ?‖∞‖θ − θ?‖1. Therefore, for θ ∈ Rp
δ ∩ F

(δ)
j,ε , ρ1‖θ?‖2

2 − ρ1‖θ‖2
2 ≤ −ρ1‖θ −

θ?‖2
2 + 2ρ1‖θ?‖∞(s̄+ s?)

1/2(j + 1)Cε. We deduce that the right-hand size of (A.5) is

upper-bounded by

e−
1
8
r( jCε2 )e4ρ1‖θ?‖∞(s̄+s?)1/2( jCε2 )

(
2π

ρ1

)‖δ‖0/2
≤ e−

1
16

r( jCε2 )
(

2π

ρ1

)‖δ‖0/2
,
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using the condition ρ̄ ≥ 32ρ‖θ?‖∞. Combined with (A.5) and (A.4) the last inequal-

ity implies that

E? [1E(Z) (1− φ(Z)) Π(F1|Z)] ≤
(

1 +
κ̄

ρ1

)s?/2(∑
δ∈∆s̄

ω(δ)

ω(δ?)

)∑
j≥1

e−
1
16

r( jCε2 )

≤
(

1 +
κ̄

ρ1

)s?/2(∑
δ∈∆s̄

ω(δ)

ω(δ?)

)
e−

C
16
ρ̄1(s?+s̄)1/2ε

1− e− C
16
ρ̄1(s?+s̄)1/2ε

. (A.6)

We note
(
p
s

)
≤ ps, so that

∑
δ∈∆s̄

ω(δ)

ω(δ?)
=

(
1− q

q

)s? ∑
δ∈∆s̄

(
q

1− q

)‖δ‖0
= ps?(1+u)

s̄∑
s=0

(
p

s

)(
1

p1+u

)s
≤ 2ps?(1+u),

provided that pu ≥ 2. It follows that

E? [1E(Z)(1− φ(Z))Π(F1|Z)]

≤ 2ps?(1+u)e
s?
2

log
(

1+ κ̄
ρ1

)
e−

C
16
ρ̄1(s?+s̄)1/2ε

1− e− C
16
ρ̄1(s?+s̄)1/2ε

≤ 4e−
C
32
ρ̄1(s?+s̄)1/2ε, (A.7)

provided that (C/32)ρ̄(s? + s̄)1/2ε ≥ s?(1 + u) log
(
p+ pκ̄

ρ1

)
.

Let F (δ)
2

def
= {θ ∈ Rp : ‖θδ − θ?‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1}, so that

1E(Z)Π(F2|Z) = 1E(Z)
∑
δ∈∆s̄

Π(δ|Z)Π(F (δ)
2 |δ, Z),

and Π(F (δ)
2 |δ, Z) ≤ P[‖Vδ‖2 > ε1], where Vδ = (V1, . . . , Vp−‖δ‖0)

i.i.d.∼ N(0, ρ−1
0 ). By

Gaussian tails bounds we get Π(F (δ)
2 |δ, Z) ≤ 2e−p, for any constant C1 ≥ 3. We

conclude that

1E(Z)Π(F2|Z) ≤ 1

ps̄
, (A.8)
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for all p large enough. The theorem follows by collecting the bounds (A.8), (A.7),

(A.3), (A.2), and (A.1).

�

A.4 Proof of Selection consistency

(Theorem 3)

We write E1 (resp. E2) instead of E1(s̄) (resp. E2(s̄)), and we fix E ⊆ E2. First

we derive a contraction rate for the frequentist estimator θ̂δ. To that end we note

that for δ ∈ As̄, and z ∈ E0, ‖∇`[δ]([θ?]δ; z)‖∞ ≤ ρ̄/2. Furthermore, the curvature

assumption on ` in E1 implies that

0 ≥ −`([δ](θ̂δ; z) + `([δ]([θ?]δ; z) ≥
〈
−∇`[δ]([θ?]δ; z), θ̂δ − [θ?]δ

〉
+

1

2
r(‖θ̂δ − [θ?]δ‖2).

Using this and the definition of ε, it follows that for δ ∈ As̄,

1E1(z)‖θ̂δ − [θ?]δ‖2 ≤ ε. (A.1)

Set A+
def
= As̄ \ As?+j, and recall that Bj = ∪δ∈As?+j

{δ} × B(δ). Therefore we have

Π(Bj|z) + Π
(
∪δ∈A+{δ} × B(δ)|z

)
+ Π(Bc|z) = 1,

so that

1E(z) (1− Π(Bj|z)) = 1E(z)Π(Bc|z) + 1E(z)Π
(
∪δ∈A+{δ} × B(δ)|z

)
. (A.2)
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Hence it remains only to upper bound the last term on the right-hand side of the

last display. By definition we have

Π
(
∪δ∈A+{δ} × B(δ)|z

)
= Π(δ? × B(δ?)|z)

∑
δ∈A+

Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
,

and

Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
=

ω(δ)

ω(δ?)

(
ρ1

ρ0

) ‖δ‖0−s?
2

∫
B(δ) e

`(θδ;z)−
ρ1
2
‖θδ‖22−

ρ0
2
‖θ−θδ‖22dθ∫

B(δ?) e
`(θδ? ;z)− ρ1

2
‖θδ?‖22−

ρ0
2
‖θ−θδ?‖22dθ

. (A.3)

By integrating out the non-selected components (θ − θδ), we note that the integral

in the numerator of the last display is bounded from above by

(2πρ−1
0 )(p−‖δ‖0)/2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ(dθ),

whereas the integral in the denominator is lower bounded by

(2πρ−1
0 )(p−s?)/2P

(√
ρ−1

0 ‖V ‖2 ≤ C1ε1

)∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ?(dθ)

≥ 1

2
(2πρ−1

0 )(p−s?)/2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε}

e`(θ;z)−
ρ1
2
‖θ‖22µδ?(dθ),

where V = (V1, . . . , Vp−s?) is a random vector with i.i.d. standard normal compo-

nents. These observations together with (A.3) lead to

Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 2ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0−s?
2

∫
{θ∈Rp: ‖θ−θ?‖2≤Cε} e

`(θ;z)− ρ1
2
‖θ‖22µδ(dθ)∫

{θ∈Rp: ‖θ−θ?‖2≤Cε} e
`(θ;z)− ρ1

2
‖θ‖22µδ?(dθ)

.
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For θ ∈ Rp
δ , δ ∈ As̄, and ‖θ − θ?‖2 ≤ Cε, it is easily checked that

−C‖θ?‖∞ρ1s̄
1/2ε ≤ ρ1

2

(
‖θ?‖2

2 − ‖θ‖2
2

)
≤ C‖θ?‖∞ρ1s̄

1/2ε,

and by the definition of $, and noting from (A.1) that ‖[θ]δ− θ̂δ‖2 ≤ ‖[θ]δ− [θ?]δ‖2 +

‖θ̂δ − [θ?]δ‖2 ≤ (C + 1)ε, we have

∣∣∣∣∣∣∣`[δ](θ; z)− `[δ](θ̂δ; z)−
〈
∇`[δ](θ̂δ; z), [θ]δ − θ̂δ

〉
︸ ︷︷ ︸

=0

+
1

2
([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ)

∣∣∣∣∣∣∣
≤ $(δ, (C + 1)ε; z)

6
s̄3/2‖[θ]δ − θ̂δ‖3

2 ≤ s̄3/2 a2

6
((C + 1)ε)3.

We conclude that

Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 2eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3)

× ω(δ)

ω(δ?)

( ρ1

2π

) ‖δ‖0−s?
2 e`

[δ](θ̂δ;z)

e`
[δ?](θ̂δ? ;z)

√
det
(
2πI−1

δ

)√
det
(
2πI−1

δ?

)
N(θ̂δ? ; I−1

δ?
)(Bδ?)

,

for some absolute constant C0, where Bδ = {u ∈ R‖δ‖ : ‖u − [θ?]δ‖2 ≤ Cε},

and N(θ̂δ; I−1
δ )(A) denotes the probability of A under the Gaussian distribution

N(θ̂δ; I−1
δ ). For z ∈ E1, using the assumption (C − 1)εκ1/2 ≥ 2(s

1/2
? + 1), and for

z ∈ E1, we have N(θ̂δ? ; I−1
δ?

)(Bδ?) ≥ 1/2. We conclude that

1E1(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 4eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2ε3) ω(δ)

ω(δ?)
(ρ1)

‖δ‖0−s?
2

e`(θ̂δ;z)

e`(θ̂δ? ;z)

√
det(Iδ?)
det(Iδ)

.

(A.4)
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For z ∈ E2, and ‖δ‖0 = s? + j, we have

`(θ̂δ; z)− `(θ̂δ? ; z) ≤ ju

2
log(p).

Recall that Iδ = −∇(2)`[δ](θ̂δ; z). Hence we can write

det(Iδ?)
det(Iδ)

=
det
(
−∇(2)`[δ?](θ̂δ? ; z)

)
det
(
−∇(2)`[δ](θ̂δ? ; z)

) × det
(
−∇(2)`[δ](θ̂δ? ; z)

)
det
(
−∇(2)`[δ](θ̂δ; z)

) .
The Cauchy interlacing property (Lemma 18) implies that the first term on the right

hand side of the last display is upper bounded by (1/κ)j. To bound the second term,

we first note that by convexity of the function − log det, for any pair of symmetric

positive definite matrices A,B of same size, it holds | log det(A) − log det(B)| ≤

max(‖A−1‖F, ‖B−1‖F)‖A − B‖F, where ‖M‖F denotes the Frobenius norm of M .

Hence, if a symmetric positive definite matrixA(θ) depends smoothly on a parameter

θ, then we have | log det(A(θ))− log det(A(θ0))| ≤ supu∈Θ ‖A(u)−1‖F ‖∇A(θ̄) · (θ −

θ0)‖F, for some θ̄ on the segment between θ and θ0. We use this together with

the definition of a2, to conclude that the second term on the right hand of the last

equation is upper bounded by e
2a2s̄

3ε
κ . Hence

det(Iδ?)
det(Iδ)

≤
(

1

κ

)j
e

2a2s̄
3ε

κ .

Using these bounds, we obtain from (A.4),

1E(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≤ 4eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε

κ
))

(√
ρ1

κ

1

p1+u
2

)j
. (A.5)
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Using (A.5) and summing over δ ∈ A+, it follows that

1E(z)Π
(
∪δ∈A+{δ} × B(δ)|z

)
≤ 4eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε

κ
))

s̄−s?∑
j=k+1

∑
δ⊇δ?, ‖δ‖0=s?+j

(√
ρ1

κ

1

p1+u
2

)j
,

≤ 8eC0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε
κ

))

(√
ρ1

κ

1

p
u
2

)k+1

,

provided that pu/2
√
κ/ρ1 ≥ 2. This bound and (A.2) yields the stated bound.

Remark A.1. By tracing the steps in the proof of (A.5), it can be checked that the

following lower bound also holds.

1E1(z)
Π(δ × B(δ)|z)

Π(δ? × B(δ?)|z)
≥ 1

4
e−C0(ρ1‖θ?‖∞s̄1/2ε+a2s̄3/2(ε3+ s̄1/2ε

κ
))

(√
ρ1

κ̄

1

pu+1

)j
. (A.6)

�

A.5 Proof of Bernstein Von Mises phenomenon (Theorem

4)

We start with the following general observation. Let π, q, and µ be three proba-

bility measures on some measurable space such that µ(dx) = ef(x)π(dx)1A(x)∫
A e

f(u)π(du)
for some

measurable R-valued function f , and a measurable set A such that π(A) ≥ 1/2.

Furthermore, suppose that the support of q is A. Then

∫
log

(
dµ

dπ

)
dq =

∫
A

fdq − log

(∫
A

efdπ

)
.
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By Jensen’s inequality we have

− log

(∫
A

efdπ

)
≤ − log(π(A))−

∫
A

f
dπ

π(A)
.

Since − log(1 − x) ≤ 2x for x ∈ [0, 1/2], we have − log(π(A)) ≤ 2π(Ac), and we

conclude that

∫
log

(
dµ

dπ

)
dq ≤

∣∣∣∣∫
A

fdq −
∫
A

fdπ

∣∣∣∣+ 2π(Ac)

(
1 +

∫
A

|f |dπ
)

≤
∫
A

|f |dq + 2

∫
A

|f |dπ + 2π(Ac). (A.1)

When q = µ, (A.1) writes

KL (µ|π) ≤
∫
A

|f |dµ+ 2

∫
A

|f |dπ + 2π(Ac). (A.2)

Let us now apply (A.1) and (A.2). Fix z ∈ E . In order to use these bounds, we first

note that the density of Π
(∞)
? with respect to Π that can be written as

dΠ
(∞)
?

dΠ
(δ, θ|z) =

e−R(δ,θ;z)1{δ?}×Rp(δ, θ)∫
{δ?}×Rp e

−R(δ,θ;z)Π(dδ, dθ|z)
, (A.3)

where

R(δ, θ; z)
def
= `(θδ; z)− ρ1

2
‖θδ‖2

2 − `(θ̂δ; z) +
ρ1

2
‖θ̂δ‖2

2 +
1

2
([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ),

= −ρ1

2
‖θδ‖2

2 +
ρ1

2
‖θ̂δ‖2

2 +
1

6
∇(3)`[δ](θ̄δ; z) ·

(
[θ]δ − θ̂δ, [θ]δ − θ̂δ, [θ]δ − θ̂δ

)
,

for some element θ̄δ on the segment between [θ]δ and θ̂δ. The second equality follows

from Taylor expansion and ∇`[δ](θ̂δ; z) = 0. That second expression of R shows that
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for z ∈ E , δ ∈ As̄, and θ ∈ B(δ),

|R(δ, θ)| ≤ C0ρ1s̄
1/2ε+ C0a2s̄

3/2ε3, (A.4)

for some absolute constant C0. However, in general when θ /∈ B(δ), R(δ, θ) is

quadratic in θ under the assumptions of the theorem. Indeed, using ∇`[δ](θ̂δ; z) = 0,

we can write that `(θδ; z)− `[δ](θ̂δ; z) = −(1/2)([θ]δ − θ̂δ)′[−∇(2)`[δ](θ̄δ; z)]([θ]δ − θ̂δ),

for some element θ̄δ on the segment between [θ]δ and θ̂δ. Hence, for θ ∈ Rp

|R(δ, θ)| ≤ ρ1

2

∣∣∣‖θδ‖2
2 − ‖θ̂δ‖2

2

∣∣∣
+

1

2

∣∣∣([θ]δ − θ̂δ)′[−∇(2)`[δ](θ̄δ; z)([θ]δ − θ̂δ)− ([θ]δ − θ̂δ)′Iδ([θ]δ − θ̂δ)
∣∣∣

≤ ρ1 + κ̄

2
‖[θ]δ − θ̂δ‖2

2 + ρ1‖θ̂δ‖2‖[θ]δ − θ̂δ‖2

≤ (ρ1 + κ̄)‖[θ]δ − θ̂δ‖2
2 +

ρ2
1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)
, (A.5)

where the second inequality uses (2.3.9), and the third inequality follows from some

basic algebra, and (A.1).

Let R be some arbitrary probability measure on ∆×Rp with support {δ?}×Rp.

We make use of (A.1) with q = R, µ = Π
(∞)
? , π = Π, and A = {δ?} × Rp. We then

split the integrals over {δ?} × Rp into {δ?} × B(δ?) and {δ?} × (Rp \ B(δ?)), together
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with (A.4) and (A.5) to get

1E(z)

∫
log

(
dΠ

(∞)
?

dΠ

)
dR ≤ 21E(z) (1− Π(δ?|z))

+ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2
1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ (ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖2
2R(dδ, dθ)

+ 2(ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖2
2Π(dδ, dθ|Z). (A.6)

By (2.4.2), (2.3.9) and Lemma 15, the last integral in the last display is bounded

from above by

(C − 1)2ε2
(
ρ1 + κ̄

ρ1 + κ

) s?
2

e−
(C−1)2ε2κ

32 + 2e−p,

provided that κ(C − 1)ε ≥ 4 max(
√
s?κ, ρ1(ε+ s

1/2
? ‖θ?‖∞)). We conclude that

1E(z)

∫
log

(
dΠ

(∞)
?

dΠ

)
dR ≤ C0

(
ρ1s̄

1/2ε+ a2s̄
3/2ε3

)
+

3ρ2(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ C0(ρ1 + κ̄)ε2
(
ρ1 + κ̄

ρ1 + κ

) s?
2

e−
(C−1)2ε2κ

32 + 2(ρ1 + κ̄)e−p + 21E(z)(1− Π(δ?|z))

+ (ρ1 + κ̄)1E(z)

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖2
2R(dδ, dθ). (A.7)

In the particular case where R = Π
(∞)
? , Lemma 15 gives

∫
{δ?}×Rp\B(δ?)

‖[θ]δ − θ̂δ‖2
2R(dδ, dθ) ≤ (C − 1)2ε2

(
κ̄

κ

) s?
2

e−
(C−1)2ε2κ

32 . (A.8)

The result follows by plugging the last inequality in (A.7). We note that the last

display also holds true if R = Π̃
(∞)
? .

�
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A.6 Proof of Variational Approximation

(Theorem 5)

We introduce

Q̃(δ, dθ) ∝ Q̃(δ)e−
1
2

(θ−θ̂?)′(S·Ī)(θ−θ̂?)dθ,

for some arbitrary distribution Q̃ on ∆ of the form Q̃(δ) =
∏p

j=1 α
δj
j (1 − αj)

1−δj ,

where αj = α if δ?j = 1, and αj = 1 − α otherwise, for some α ∈ (0, 1). Note that

Q̃ ∈ Q, and ‖Q̃− Π̃
(∞)
? ‖tv → 0, as α→ 1.

The strong convexity of the KL-divergence (Lemma 16) allows us to write, for

any t ∈ (0, 1),

tKL (Q|Π) + (1− t)KL
(
Q̃|Π

)
≥ KL

(
tQ+ (1− t)Q̃|Π

)
+
t(1− t)

2
‖Q̃−Q‖2

tv.

This implies that

t(1− t)
2
‖Q̃−Q‖2

tv ≤ KL
(
Q̃|Π

)
+ t
(
KL (Q|Π)− KL

(
Q̃|Π

))
≤ KL

(
Q̃|Π

)
,

where the second inequality uses the fact that Q̃ ∈ Q, and Q is the minimizer of

the KL-divergence over that family. Hence with t = 1/2 we have

‖Q− Π̃(∞)
? ‖2

tv ≤ 2‖Q− Q̃‖2
tv + 2‖Q̃− Π̃(∞)

? ‖2
tv

≤ 16KL
(
Q̃|Π

)
+ 2‖Q̃− Π̃(∞)

? ‖2
tv,
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where the second inequality uses the bound on ‖Q̃−Q‖2
tv obtained above.

KL
(
Q̃|Π

)
=

∫
log

(
dQ̃

dΠ

)
dQ̃

=

∫
(δ?×Rp)c

log

(
dQ̃

dΠ

)
dQ̃+

∫
δ?×Rp

log

(
dQ̃

dΠ

)
dQ̃.

We note that Π̃
(∞)
? is precisely the restriction of Q̃ on {δ?} × Rp. Therefore, on

{δ?} × Rp, the density dQ̃
dΠ

can be written as

dQ̃

dΠ
= Q̃({δ?} × Rp)

dΠ̃
(∞)
?

dΠ
(∞)
?

dΠ
(∞)
?

dΠ
.

Hence

∫
δ?×Rp

log

(
dQ̃

dΠ

)
dQ̃ ≤ KL

(
Π̃(∞)
? |Π(∞)

?

)
+ Q̃(δ?)

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃(∞)

? .

On the other hand,

∫
(δ?×Rp)c

log

(
dQ̃

dΠ

)
dQ̃

=
∑
δ 6=δ?

Q̃(δ)

[
log

(
Q̃(δ)

Π(δ|z)

)
+

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]

≤
(

1− Q̃(δ?)
)

max
δ∈∆

[
− log(Π(δ|z)) +

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]
. (A.1)
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Collecting all the terms we obtain

‖Q− Π̃(∞)
? ‖2

tv ≤ 16KL
(

Π̃(∞)
? |Π(∞)

?

)
+ 2‖Q̃− Π̃(∞)

? ‖2
tv

+ 16Q̃(δ?)

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃(∞)

?

+ 16
(

1− Q̃(δ?)
)

max
δ∈∆

[
− log(Π(δ|z)) +

∫
log

(
Q̃(θ)

Π(θ|δ, z)

)
Q̃(θ)dθ

]
.

Letting α→ 1 on both sides yields

‖Q− Π(∞)
? ‖2

tv ≤ 16KL
(

Π̃(∞)
? |Π(∞)

?

)
+ 16

∫
δ?×Rp

log

(
dΠ

(∞)
?

dΠ

)
dΠ̃(∞)

? .

Using Lemma 14, we have

KL
(

Π̃(∞)
? |Π(∞)

?

)
=
ζ

2
,

where ζ = log
(

det(Ī)

det(S·Ī)

)
+ Tr

(
Ī−1(S · Ī)

)
− p. Hence the theorem.

�

A.7 Proof of Corollary 6

We will assume that n satisfies

n ≥
[
2s?

(
1 +

6

u

)
+

4

u

]
log(p). (A.1)

Problem set up and posterior sparsity We set Z as Z = [Y,X], and under

A1, the likelihood is given by `(u; z) = (1/2σ2)‖Y −Xu‖2
2. The resulting posterior

distribution Π(·|Z) on ∆×Rp fits squarely in the framework developed in the disser-

tation, and we will successively apply to it the different general theorems obtained
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above. From the expression of the likelihood, we have

∇`(θ?;Z) =
1

σ2
X ′(Y −Xθ?),

and

Lθ?(u;Z) = − n

2σ2
(u− θ?)′

(
X ′X

n

)
(u− θ?), u ∈ Rp,

which does not depend on Y . Let us first apply Theorem 1. We set

G def
=

{
Z ∈ Rn×(p+1) : max

1≤k≤p, k 6=j
|〈Xk, Y −Xθ?〉| ≤ στ

√
4n log(p)

}
.

We set

ρ̄ = 4
τ

σ

√
n log(p), κ̄ = (n/σ2)s?τ

2.

From the expressions of ∇`(θ?; z), and Lθ?(θ; z), it is straightforward to check that

G ⊆ E0 if we define E0 in H1 by taking ρ̄ and κ̄ as above. We also note that by the

choice of ρ1 and the conditions ‖θ?‖∞ = O(1), we have 32‖θ?‖∞ρ1 ≤ ρ̄ for all p large

enough. To apply Theorem 1, it only remains to check (2.2.1). With G1 and Lθ? as

defined above, we have

E?
[
1G1(Z)eLθ? (u;Z)+(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]

≤ e
− n

2σ2 (u−θ?)′
(
X′X
n

)
(u−θ?)E?

(
e

1
σ2 (1− ρ1

ρ̄ )(Y−Xθ?)′X(u−θ?)|X
)

= e
− n

2σ2

(
1−(1− ρ1

ρ̄ )
2
)

(u−θ?)′
(
X′X
n

)
(u−θ?)

, (A.2)

where the equality uses the moment generating function of the conditionally Gaus-

sian random variable V . For u ∈ Rp such that ‖δc? · (u − θ?)‖1 ≤ 7‖δ? · (u − θ?)‖1,
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we have

(u− θ?)′
(
X ′X

n

)
(u− θ?) ≥ ν‖δ? · (u− θ?)‖2

2,

Therefore, we conclude from (A.2) that (2.2.1) holds with

r0(x) =
nν

σ2

(
1−

(
1− ρ1

ρ̄

)2
)
x2 ≥ nν

σ2

ρ1

ρ̄
x2,

and hence

a0 =
4s?σ

2ρ1ρ̄

nν
≤ C0,

for some absolute constant C0, as p → ∞, given the choice of n, ρ1 and ρ̄. The

condition (2.2.2) is easily seen to hold for c0 = 2. Theorem 1 then gives

E?
[
1G1(Z)Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 2

p2
. (A.3)

By a standard union bound argument, and Gaussian tail bounds we can also show

P(Z /∈ G|X) = P
(

max
1≤k≤p+1, k 6=j

| 〈Xk, V 〉 | > 2στ
√
n log(p) |X

)
≤ 2

p2
.

Therefore, (A.3) becomes

E?
[
Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 4

p2
. (A.4)

Contraction and rate Set s̄ = s?
(
1 + 6

u

)
+ 4

u
. We now apply Theorem 2 to Π.

With similar calculations as above, for ‖δ‖0 ≤ s̄, and u ∈ Rp
δ ,

Lθ?(u; z) ≤ −nν(s? + s̄)

2σ2
‖u− θ?‖2

2,
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provided that the sample size n satisfies (A.1) which shows that G ⊆ E1(s̄) with the

rate function r(x) = x2nν(s? + s̄)/(σ2). The contraction rate ε then becomes

ε =
σ2ρ̄(s̄+ s?)

1/2

nν(s? + s̄)
=

4τσ

ν(s? + s̄)

√
(s̄+ s?) log(p)

n
.

The condition (2.3.4) holds by choosing the absolute constant C ≥ 3 large enough

so that Cτ 2 ≥ 2(1 + u)ν(s? + s̄). Theorem 2 then gives

E? [Π (Bc|Z)] ≤ E? [1G(Z)Π (Bc|Z)] + P(Z /∈ G1|X) ≤ C0

p2
. (A.5)

Model selection consistency We now apply Theorem 3 to Π. We set

G1
def
= G

s̄−s?⋂
k=1

{
Z = [Y,X] ∈ Rn×(p+1) :

max
δ⊇δ?, ‖δ‖0=s?+k

(Y −Xθ?)′Pδ\δ?(Y −Xθ?) ≤ σ2ku log(p)

}
,

where for δ ⊇ δ?, Pδ\δ? is the orthogonal projector on the sub-space of span(Xδ)

that is orthogonal to span(Xδ?), where the notation span(Xδ) denotes the linear

space spanned by the columns of Xδ. Indeed, for δ ∈ As̄, the matrix Xδ is full-rank

column. Hence if Xδ = Q(δ)R(δ) is the QR decomposition of Xδ, then

`[δ](θ̂δ;Z)− `[δ?](θ̂?;Z) =
1

2σ2
‖Q′(δ\δ?)(Y −Xθ?)‖2

2 =
1

2σ2
(Y −Xθ?)′Pδ\δ?(Y −Xθ?).

It then follows that G2 ⊆ E2(s̄). Furthermore, since ` is quadratic, (2.3.8) holds

with κ = nν(s̄)/(σ2), and (2.3.9) holds with κ̄ = (n/σ2)s?τ
2. Theorem 3 (applied
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a2 = 0), and (A.5) give for all k ≥ 0,

E? [1G1(Z)Π (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+ E? [1G(Z)Π(Bc|Z)]

≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
. (A.6)

Hence we write

E? [Π (Bck|Z)] ≤ E? [1G1(Z)Π (Bck|Z)] + P? [Z /∈ G1|X] .

Given δ ∈ As?+k, by the Hanson-Wright inequality (Lemma 17),

P
(
(Y −Xθ?)′Pδ\δ?(Y −Xθ?) > σ2ku log(p)|X

)
= P

(
V ′Pδ\δ?V > ku log(p)|X

)
≤ 1

p
uk
4

,

for all p large enough. Hence by union bound, for u ≥ 8,

P(Z /∈ G2|X) ≤ P(Z /∈ G1|X) +
∑
k≥1

1

p
uk
4

≤ 4

p2
.

We conclude that for all k ≥ 0,

E? [Pi (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
. (A.7)

Bernstein-von Mises approximation and variational approximations Tak-

ing k = 0 in (A.7) together with Theorem 4 gives

E?
[
1G(Z)KL

(
Π(∞)
? |Π

)]
≤ C0(s̄+ s?)

log(p)

n
+

C0

p
u
2
−1

+
C0

p
,
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for some absolute constant C0, assuming that u > 2. Finally we apply (2.4.7)

and (A.8) applied with R = Π̃
(∞)
? to get the stated controls on the variational

approximations. This ends the proof. �

A.8 Proof of Corollary 7

On the event G We first constructed the event G. Let τΣ
def
= maxj Σjj. For c1 = 5,

c2 = 1/4, and c3 = 9, for j = 1, . . . , p+ 1, we set G def
=
⋂p+1
j=1H(j), where

H(j) def
=

{
Z ∈ Rn×(p+1) : max

1≤k≤p, k 6=j

∣∣∣∣‖Zk‖2
2

n
− Σjj

∣∣∣∣ ≤ c1τΣ

for all v ∈ Rp :
‖X(j)v‖2√

n
≥ c2‖Σ1/2v‖2 − c3τΣ

√
log(p)

n
‖v‖1

}
.

When B1 holds, by Theorem 1 of Raskutti et al. [2010] and Lemma 1 of Ravikumar

et al. [2011] there exist absolute positive constant c4, c5 such that

P(Z /∈ G) ≤ 4(p+ 1)e−n/128 + c4(p+ 1)e−c5n → 0,

as p → ∞, provided that n ≥ (256/min(1, 128c5)) log(p). In what follows we will

assume that n satisfies

n ≥ 256

min(1, 128c5)
log(p), and n ≥

(
16c3τΣ

c2λ
1/2
min(Σ)

)2 [
max
j

2s(j)
?

(
1 +

6

u

)
+

4

u

]
log(p).

(A.1)
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Problem set up and posterior sparsity For any j we can partition Z as Z =

[Y (j), X(j)], and under B1,

Y (j) = X(j)θ(j)
? +

1√
[ϑ?]jj

V (j), where V (j)|X(j) ∼ Nn(0, In). (A.2)

The quasi-likelihood of the j-th regression is `(j)(u; z) = (1/2σ2
j )‖Y (j) − X(j)u‖2

2.

Again, the resulting quasi-posterior distribution Π(j)(·|Z) on ∆×Rp fits squarely in

the framework developed in the dissertation , and we proceed to successively apply

to it the different general theorems obtained above. However to keep the notation

simple, and when there is no risk of confusion, we shall omit the index j from the

various quantities. For instance we will Y instead of Y (j), X instead of X(j), etc.

From the expression of the quasi-likelihood, we have

∇`(θ?;Z) =
1

σ2
X ′(Y −Xθ?),

and

Lθ?(u;Z) = − n

2σ2
(u− θ?)′

(
X ′X

n

)
(u− θ?), u ∈ Rp,

which does not depend on Y . Let us first apply Theorem 1. We set

G1
def
= G

⋂{
Z = [Y (j), X(j)] ∈ Rn×(p+1) :

max
1≤k≤p, k 6=j

∣∣〈Xk, Y
(j) −X(j)θ(j)

?

〉∣∣ ≤√ 6τΣ

[ϑ?]jj
(1 + c1)n log(p)

}
.

We set

ρ̄ =
2

σ2
j

√
6τΣ

[ϑ?]jj
(1 + c1)n log(p), κ̄ = (n/σ2)(1 + c1)s(j)

? τΣ.
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We stress again that these quantities and events are specific to the j-th regression.

From the expressions of ∇`(θ?; z), and Lθ?(θ; z), it is straightforward to check that

G1 ⊆ E0 if we define E0 in H1 by taking ρ̄ and κ̄ as above. We also note that by

the choice of ρ1 and the conditions ‖θ?‖∞ = O(1), we have 32‖θ?‖∞ρ1 ≤ ρ̄ for all p

large enough. To apply Theorem 1, it only remains to check (2.2.1). With G1 and

Lθ? as defined above, we have

E?
[
1G1(Z)eLθ? (u;Z)+(1− ρ1

ρ̄ )〈∇`(θ?;Z),u−θ?〉
]

≤ E?
[
1G(X)e

− n
2σ2 (u−θ?)′

(
X′X
n

)
(u−θ?)E?

(
e

1
σ2 (1− ρ1

ρ̄ )(Y−Xθ?)′X(u−θ?)|X
)]

= E?

1G(X)e
− n

2σ2

1−
(1− ρ1ρ̄ )

2

σ2ϑ?,11

(u−θ?)′
(
X′X
n

)
(u−θ?)

 , (A.3)

where the equality uses the moment generating function of the conditionally Gaus-

sian random variable V . For u ∈ Rp such that ‖δc? · (u − θ?)‖1 ≤ 7‖δ? · (u − θ?)‖1,

and for Z ∈ G, we have

1√
n
‖X(u− θ?)‖2 ≥ c2λmin(Σ)1/2‖u− θ?‖2 − 8c3s

1/2
? τΣ

√
log(p)

n
‖(δ? · (u− θ?)‖2.

It follows that

(u− θ?)′
(
X ′X

n

)
(u− θ?) ≥

c2
2

4
λmin(Σ)‖δ? · (u− θ?)‖2

2,

if the sample size n satisfies

n ≥

(
16c3τΣ

c2λ
1/2
min(Σ)

)2

s? log(p).
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Therefore, Since σ2[ϑ?]jj ≥ 1, we conclude from (A.3) that (2.2.1) holds with

r0(x) =
nc2

2λmin(Σ)

4σ2

(
1−

(
1− ρ1

ρ̄

)2
)
x2 ≥ nc2

2λmin(Σ)

4σ2

ρ1

ρ̄
x2,

and hence

a0 =
16s?σ

2ρ1ρ̄

nc2
2λmin(Σ)

≤ C0,

for some absolute constant C0, as p → ∞, given the choice of n, ρ1 and ρ̄. The

condition (2.2.2) is easily seen to hold for c0 = 2. Theorem 1 then gives

E?
[
1G1(Z)Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 2

p2
. (A.4)

Since Y = Xθ? + 1√
[ϑ?]jj

V , where V |X ∼ N(0, In), by a standard union bound

argument, and Gaussian tail bounds

1G(X)P(Z /∈ G1|X)

= 1G(X)P
(

max
1≤k≤p+1, k 6=j

| 〈Xk, V 〉 | >
√

6τΣ(1 + c1)n log(p) |X
)
≤ 2

p2
.

Therefore, (A.4) becomes

E?
[
1H(X)Π

(
‖δ‖0 > s?

(
1 +

6

u

)
+

4

u
|Z
)]
≤ 4

p2
. (A.5)

Contraction and rate Set s̄ = s?
(
1 + 6

u

)
+ 4

u
. We now apply Theorem 2 to Π(j).

With similar calculations as above, for ‖δ‖0 ≤ s̄, and u ∈ Rp
δ ,

Lθ?(u; z) ≤ −nc
2
2λmin(Σ)

8σ2
‖u− θ?‖2

2,
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provided that the sample size n satisfies (A.1) which shows that G1 ⊆ E1(s̄) with

the rate function r(x) = x2nc2
2λmin(Σ)/(4σ2). The contraction rate ε then becomes

ε =
4σ2ρ̄(s̄+ s?)

1/2

nc2
2λmin(Σ)

=
8
√

2(1 + c1)

c2
2

τ
1/2
Σ

λmin(Σ)[ϑ?]
1/2
jj

√
(s̄+ s?) log(p)

n
.

The condition (2.3.4) holds by choosing the absolute constant C ≥ 3 large enough

so that C(1 + c1)τΣ ≥ (1 + u)c2
2λmin(Σ)σ2[ϑ?]jj. Theorem 2 then gives

E? [1G(X)Π (Bc|Z)] ≤ E? [1G1(Z)Π (Bc|Z)] + E? [1G(X)P(Z /∈ G1|X)] ≤ C0

p2
. (A.6)

Model selection consistency We now apply Theorem 3 to Π(j) With s̄ = s̄(j)

as above, set

G2
def
= G1

s̄−s?⋂
k=1

{
Z = [Y,X] ∈ Rn×(p+1) :

max
δ⊇δ?, ‖δ‖0=s?+k

(Y −Xθ?)′Pδ\δ?(Y −Xθ?) ≤ σ2ku log(p)

}
,

where for δ ⊇ δ?, Pδ\δ? is the orthogonal projector on the sub-space of span(Xδ) that

is orthogonal to span(Xδ?), where the notation span(Xδ) denotes the linear space

spanned by the columns of Xδ. We note that G2 ⊆ E2(s̄). Indeed, for δ ∈ As̄,

and X ∈ G, the matrix Xδ is full-rank column. Hence if Xδ = Q(δ)R(δ) is the QR

decomposition of Xδ, then

`[δ](θ̂δ;Z)− `[δ?](θ̂?;Z) =
1

2σ2
‖Q′(δ\δ?)(Y −Xθ?)‖2

2 =
1

2σ2
(Y −Xθ?)′Pδ\δ?(Y −Xθ?).

It then follows that G2 ⊆ E2(s̄). Furthermore, since ` is quadratic, (2.3.8) holds with

κ = nc2
2λmin(Σ)/(4σ2), and (2.3.9) holds with κ̄ = (n/σ2)(1 + c1)s

(j)
? τΣ, provided
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that the sample size condition (A.1) holds. Theorem 3 (applied a2 = 0), and (A.5)

give for all k ≥ 0,

E? [1G2(Z)Π (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+ E? [1G1(Z)Π(Bc|Z)]

≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
. (A.7)

To replace G2 by G, we write

E? [1G(X)Π (Bck|Z)] ≤ E? [1G2(Z)Π (Bck|Z)] + P? [X ∈ G, Z /∈ G2] .

Given δ ∈ As?+k, by the Hanson-Wright inequality (Lemma 17),

1G(X)P
(
(Y −Xθ?)′Pδ\δ?(Y −Xθ?) > σ2ku log(p)|X

)
= 1G(X)P

(
V ′Pδ\δ?V > σ2[ϑ?]jjku log(p)|X

)
≤ 1

p
σ2[ϑ?]jjuk

4

,

for all p large enough. Hence by union bound, for σ2[ϑ?]jju ≥ 8,

1G(X)P(Z /∈ G2|X) ≤ 1G(X)P(Z /∈ G1|X) +
∑
k≥1

1

p
σ2[ϑ?]jjuk

4

≤ 4

p2
.

We conclude that for all k ≥ 0,

E? [1G(X)Π (Bck|Z)] ≤ C0

(√
ρ1

κ

1

pu/2

)k+1

+
C0

p2
. (A.8)
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Bernstein-von Mises approximation and variational approximations Tak-

ing k = 0 in (A.8) together with Theorem 4 gives

E?
[
1G(Z) max

1≤j≤p+1
KL
(
Π(j,∞)
? |Π(j)

)]
≤ C0 maxj(s̄

(j) + s
(j)
? )

minj[ϑ?]jj

log(p)

n
+

C0

p
u
2
−1

+
C0

p
,

for some absolute constant C0, assuming that σ2[ϑ?]jju ≥ 16, and u > 2. Finally

we apply (2.4.7) and (A.8) applied with R = Π̃
(∞)
? to get the stated controls on the

variational approximations. This ends the proof.

�

A.9 Proof of Corollary 8

The theoretical properties discussed in Chapter 2 are based on nice curvature of

the Bregmann divergence which is given as

Lθ?(u; z) = −
n∑
i=1

[
g(〈xi, u〉)− g(〈xi, θ?〉)− g(1)(〈xi, θ?〉)〈xi, u− θ?〉

]

We start by verifying Assumption H1. Using Taylor’s expansion, g(2)(x) ≤ 1/4, ∀x ∈

R, and u ∈ Rp
δ?

we have,

Lθ?(u; z) ≥ −n
8

(u− θ?)′
X ′X

n
(u− θ?) ≥ −

nv̄(s?)

8
‖u− θ?‖2

2

Contraction rate We introduce the set

G0
def
= {Y ∈ {0, 1}n : max

1≤j≤p
|

n∑
i=1

(
xjiyi − x′ig(1)(〈xi, θ?〉)

)
| ≤ ρ̄

2
}. (A.1)
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For ‖X‖∞ ≤ b, κ̄ = nv̄(s?)
8

and ρ̄ = 4b
√
n log(p), we can show using sub-gaussian

tail bounds that

P?(Y /∈ G0|X) ≤ 2 exp

[
log(p)− ρ̄2

8n‖X‖2
∞

]
≤ 2

p

We use the proof of Theorem 4 in supplementary of Atchade [2017] to show that

for all δ ∈ ∆(s̄), u ∈ Rp
δ

E?
[
1G0(Z)eLθ? (u;Z)|X

]
≤ exp[− nv(s? + s̄)‖u− θ?‖2

2

2 +
√
s? + s̄b‖u− θ?‖2

]

≤ e−
1
2
r(|u−θ?‖2),

where r(x) = nv(s?+s̄)x2

1+
√
s?+bs̄x/2

.

If nv(s? + s̄) > (s? + s̄)ρ̄b, then ε =
√
s?+s̄ρ̄

nv(s?+s̄)−(s?+s̄)ρ̄b

For nv(s? + s̄) ≥ (s? + s̄)ρ̄b, we can show

ε ≤ 16b

v(s? + s̄)

√
(s? + s̄) log(p)

n
≤ ∞

The sample size condition translates as

√
n ≥ (16/3)b2 (s? + s̄)

v(s? + s̄)

√
log(p)

Given choice of ρ̄, we have

ε ≥
√
s? + s̄ρ̄

nv(s? + s̄)
=

4b

v(s? + s̄)

√
(s? + s̄) log(p)

n

For C > 3 , ρ1 ∼
√

log(p)/n and ρ̄ = 4b
√
n log(p) , we satisfy condition 2.3.4
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and can proceed to apply Theorem 2 giving the bound

E?[Π(Bc|Z)] ≤ E?[1G0(Z)Π(Bc|Z)] + P?(Z /∈ G0)]

≤ 8 exp[−C s? + s̄

2v(s? + s̄)
b2 log(p)] +

2

p
+ 2e−p (A.2)

Remark A.2. Note that we can drop the term Π(‖δ‖0 ≥ s̄|Z) in the application of

Theorem 2 by virtue of the hard sparsity induced by the prior in C2.

Model Selection Consistency To show model selection consistency we need to

construct a set analogous to E2(s̄) defined for Theorem 3 in Chapter 2. For a fixed

s̄, we define

G1 = G0 ∩
s̄−s?⋂
k=k?

{
Z : max

δ∈A: ‖δ‖0=s?+k

(
n∑
i=1

yi〈xδi, θ̂δ − θ̂δ?〉

−
(
g(〈xδi, θ̂δ〉)− g(〈xδi, θ̂δ?〉)

))
≤ log(p)

uk

2

}
(A.3)

The growth condition of G1 is hard to verify in case of non-gaussian models.

However under certain assumptions we use Lemma 13 to show that G1 occurs with

high probability under the true model.

Under Assumption C1-3, a direct application of Lemma 13 yields, for some

absolute Constant C0 > 0,

P?(Z /∈ G1|G0, X) ≤
∑
k≥1

2 exp

[
− log(p)

ku

C0

]
≤ 4 exp

[
− log(p)

u

C0

]
≤ 4

pC1u
,

Hence P?(Z /∈ G1|G0, X)→ 0 as p→∞
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The operator norm a2 introduced in Theorem (3) can be computed as follows

$(δ, (C + 1)ε; z) = sup
u∈R‖δ‖0 :‖u−θ̂δ‖2≤(C+1)ε

max
1≤i,j,k≤‖δ‖0

∣∣∣∣∣−
n∑
t=1

xitxjtxktpt(u)(1− pt(u))(1− 2pt(u))

∣∣∣∣∣
where pt(u) = exp(〈xt,u〉)

1+exp(〈xt,u〉) . Therefore by Assumption C1

$(δ, (C + 1)ε; z) ≤ max
1≤i,j,k≤‖δ‖0

n∑
t=1

|xitxjtxkt|

≤ max
1≤i,j,k≤‖δ‖0

‖Xi‖2‖Xj‖4‖Xk‖4 ≤ nb3

From the above expression it can be deduced that a2 = supδ∈As̄ $(δ, (C+1)ε; z) ≤

nb3 Further it can be shown that in the context of Theorem 3 κ = nv1(s̄) and

κ̄ = nv̄(s?) Hence for k > 1

E?[1G1Π(Bc
k)|X] ≤ E?[1G0Π(Bc)|X] + C0e

1
v1(s̄)

√
(s̄ log(p))3

n

(√
ρ1

nv1(s̄)

1

pu/2

)k+1

Hence for nv1(s̄)2 > (s̄ log(p))3,

E?[Π(Bc
k|Z)|X] ≤ E?[1G0Π(Bc

k|Z)|X] + P?(Z /∈ G0|X)

≤ E?[1G1Π(Bc
k|Z)|X] + P?(Z /∈ G1|G0, X) + P?(Z /∈ G0|X)

≤ C0

(√
ρ1

nv1(s̄)

1

pu/2

)k+1

+ E?[1G0Π(Bc)|X] +
4

pC1u
+
C2

p

125



Bernstein Von Mises phenomenon In the context of logistic regression the appli-

cation of Theorem4 would give the following bound.

1G2(z)KL
(
Π(∞)
? |Π

)
≤ C0

(
ρ1s̄

1/2ε+ nb3s̄3/2ε3
)

+
3ρ2

1(ε+ ‖θ?‖2)2

2(ρ1 + κ̄)

+ C0(ρ1 + κ̄)ε2
(
κ̄

κ

) s?
2

e−
(C−1)2ε2κ

32 + C0(ρ1 + κ̄)e−p + 21E(z)(1− Π(δ?|z)), (A.4)

Note that κ̄ = nv̄(s?)/8 and κ = nv2(s̄). assuming v̄(s?)
v2(s̄)
∼ O(1), for given choice of

ε and ρ1, the dominating term in the bound appears from the first terms. Hence,

E?(1G2KL(Π(∞)
? |Π)) ≤ C0

(s? + s̄) log(p)

nv(s? + s̄)
+ nb3(s̄+ s?)

3

(
log(p)

n

)(3/2)

thus ending the proof of Corollary 8

A.10 Proof of Corollary 9

The proof follows the same steps as in the proof of Theorem 2. Let

ρ̄ =
8C0ϑ

σ2

√
n
(p
ϑ

+ log(p)
)
, κ̄ =

c1n

σ2
, r(x) =

c2n

σ2
x2,

and ε =
8C0ϑ

c2

√
p
ϑ

+ log(p)

n
(s̄+ s?),

for some absolute constants C0, c1, c2, that we specify later. For θ0 ∈ {θ?,−θ?}, let

Bθ0 be the set B defined in (2.3.2) but with θ? replaced by θ0, ε as above, and for

some absolute constant C,C1. Similarly let E0,θ0 (resp. E1,θ0(s̄)) be the set E0 (resp.

E1(s̄)) but with θ? replaced by θ0, and κ̄, ρ̄ as above and the rate function r as above.
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Also for absolute constant C ≥ 3, set

F1,θ0
def
=
⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ0‖2 > Cε} ,

F2,θ0
def
=
⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖θδ − θ0‖2 ≤ Cε, and ‖θ − θδ‖2 > ε1} .

From the definitions we can write ∆ × Rp = {δ : ‖δ‖0 > s̄} ∪ F1,θ0 ∪ F2,θ0 ∪ Bθ0 .

Using this and Π(‖δ‖0 > s̄|X) = 0, it follows that

Π (Bθ0|X) = 1− Π (F1,θ0|X)− Π (F2,θ0|X) .

Hence it suffices to show that for ε ∈ {−1, 1},

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ?|X) + Π (F2,εθ?|X))

]
= 0.

We have

E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ?|X) + Π (F2,εθ?|X))

]
≤ P? (X /∈ E1,εθ?(s̄), sign(〈V1, θ?〉) = ε)

+ E?
[
1E1,εθ? (s̄)(X) (Π (F1,εθ?|X) + Π (F2,εθ?|X))

]
. (A.1)

With the same argument as in the proof of Theorem 2, we have

E?
[
1E1,εθ? (s̄)(X)Π (F2,εθ?|X)

]
≤ 4e−p.
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We use the test constructed in Lemma 12 with Θ? = {θ?,−θ?}, and M = C to write

E?
[
1E1,εθ? (s̄)(X)Π (F1,εθ?|X)

]
≤ E?[φ(X)]

+ E?
[
1E1,εθ? (s̄)(X) (1− φ(X)) Π (F1,εθ?|X)

]
,

and

E?[φ(X)] ≤ 4(9p)s̄e−
C
8
ρ̄1(s̄+s?)1/2ε

1− e−C8 ρ̄1(s̄+s?)1/2ε
→ 0,

as p→∞, by appropriately choosing the absolute constant C. The same argument

leading to (A.7) applies to the second term on the right hand side of the last display,

and we deduce that

lim
p→∞

E?
[
1E1,εθ? (s̄)(X) (1− φ(X)) Π (F1,εθ?|X)

]
= 0.

Collecting these limiting behaviors we conclude from (A.1) that

lim
p→∞

E?
[
1{sign(〈V1,θ?〉)=ε} (Π (F1,εθ?|X) + Π (F2,εθ? |X))

]
≤ lim

p→∞
P? (X /∈ E1,εθ?(s̄), sign(〈V1, θ?〉) = ε) .

Hence it suffices to show that with κ̄, ρ̄, and the rate function r as above we have

P? (X /∈ E1,εθ?(s̄)|sign(〈V1, θ?〉) = ε)→ 0, as p→∞.

For θ0 ∈ {θ?,−θ?}, and θ ∈ Rp
δ , for any δ ∈ ∆s̄,

Lθ0(θ;X) = − n

σ2
(θ − θ0)′

(
X ′X

n

)
(θ − θ0).

Lemma 1 of Ravikumar et al. [2011], and Theorem 1 of Raskutti et al. [2010] then

show that the function θ 7→ Lθ0(θ;X) satisfies the requirements of E1,εθ?(s̄) with
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high probability, provided that the sample size n satisfies n ≥ C0(s̄+ s?) log(p), for

some absolute constant C0. Hence it remains only to show that

lim
p→∞

P?
(
‖∇`(εθ?;X)‖∞ >

ρ̄

2
, sign(〈V1, θ?〉) = ε

)
= 0, (A.2)

where ρ̄ is as defined at the beginning of the proof. The largest eigenvalue of Σ

is 1 + ϑ with corresponding eigenvector θ?. Hence, by the Davis-Kahan’s theorem

(Corollary 1 Yu et al. [2014]), on {sign(〈V1, θ?〉) = ε},

‖V1 − εθ?‖2 ≤
4

ϑ

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

. (A.3)

Noting that y = Λ11U1 = XV1, we have for θ0 ∈ {θ?,−θ?},

∇`(θ0;X) =
1

σ2
X ′(y −Xθ0) =

1

σ2
X ′X(V1 − θ0)

=
1

σ2
(X ′X − nΣ)(V1 − θ0) +

n

σ2
Σ(V1 − θ0).

Hence

‖∇`(θ0;X)‖∞ ≤
n

σ2

(∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

+ (1 + ‖θ?‖∞ϑ)

)
‖V1 − θ0‖2.

This bound together with the Davis-Kahan’s theorem (A.3) yields that on {sign(〈V1, θ?〉) =

ε}, we have

‖∇`(εθ?;X)‖∞ ≤
4n

σ2ϑ

[∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

+ (1 + ‖θ?‖∞ϑ)

] ∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

. (A.4)
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Note then that if the covariance X ′X/n satisfies

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

≤ C0

[√
p
ϑ

+ log(p)

n
+

p
ϑ

+ log(p)

n

]
(ϑ+ 1), (A.5)

for some absolute constant C0, then for n ≥ C0( p
ϑ

+log(p)), we get ‖(X ′X)/n−Σ‖2 ≤

C0ϑ, and in that case (A.4) gives

‖∇`(εθ?;X)‖∞ ≤
4nC0

σ2

∥∥∥∥X ′Xn − Σ

∥∥∥∥
2

≤ 4C0ϑ

σ2

√
n
(p
ϑ

+ log(p)
)

=
ρ̄1

2
,

for some absolute constant C0. This means that the probability on the right hand

side of (A.2) is upper bounded by the probability that (A.5) fails. The matrix

Σ has the property that Tr(Σ)/‖Σ‖2 = (p + ϑ)/(1 + ϑ) ≤ 1 + (p/ϑ). Using this

and by deviation bound for Gaussian distribution with covariance matrix with low

intrinsic dimension (see e.g. Vershynin [2018] Theorem 9.2.4), (A.5) holds that with

probability at least 1− 1/p. Hence the results.

�

A.11 Deviation bound for quasi-likelihood ratio

Lemma 13. Suppose that ∇`(θ?;Z) = X ′ε, and ∇(2)`(θ?;Z) = −X ′WX for some

random matrix X ∈ Rn×p, and a random diagonal matrix W ∈ Rn×n of the form

W = H(X) for some measurable function H : Rn×p → Rn×n. Furthermore assume

that E(ε|X) = 0, and there exists σ > 0 such that P(|〈u, ε〉| > t|X) ≤ 2 exp
(
− t2

2σ2

)
,
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for all unit-vector u ∈ Rn, and all t > 0. For integer s ≥ 1, we set

w(s) = inf

{
u′(X ′WX)u

n‖u‖2
2

, u 6= 0, ‖u‖0 ≤ s

}
,

and v̄(s)
def
= sup

{
u′(X ′X)u

n‖u‖2
2

, u 6= 0, ‖u‖0 ≤ s

}
.

We further define

C =
maxi 6=j〈Xi,WXj〉

n

and assume

s0C

w(s0)
≤ 1/2

We can find an absolute constant C0 such that

1{w(s?+j)>0}(X)P
[

max
δ∈A: ‖δ‖0=s?+j

`([δ](θ̂δ;Z)− `([δ?](θ̂δ? ;Z) > C0 log(p)
σ2jv̄(s? + j)

w(s? + j)
|X
]
≤ 2

pj
.

Remark A.3. The sub-Gaussian tail tail bound in the assumption implies that

E?(〈uV 〉2) ≤ 4σ2, and the Orlicz norm ‖〈uV 〉‖ψ2

def
= inf{t > 0 : E(e〈uV 〉

2/t2) ≤

2} ≤
√

6σ. See for instance Vershynin [2018] Section 2.5.1 for details.

Proof. Fix a model δ that contains the true model δ?, and ‖δ‖0 = s0 = s? + j. We

will abuse notations and identify θ? with the element [θ?]δ? ∈ Rs? , as well as with

[θ?]δ ∈ Rs?+j. By the optimality condition on θ̂δ, and Taylor expansion, we have

0 = ∇`[δ](θ̂δ;Z) = ∇`[δ](θ?;Z) +∇(2)`[δ](θ?;Z)(θ̂δ − θ?) + T1,

where using the quantity a2, we have

‖T1‖∞ ≤ C0a2s0ε
2,
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for some absolute constant C0. This implies that

(θ̂δ−θ?)′
[
∇(2)`[δ](θ?;Z)

]
(θ̂δ−θ?) = ∇`[δ](θ?;Z)′

[
∇(2)`[δ](θ?;Z)

]−1∇`[δ](θ?;Z)+T ′1,

where

|T ′1| = T1

[
−∇(2)`[δ](θ?;Z)

]−1
T1 + 2

∣∣∣T1

[
∇(2)`[δ](θ?;Z)

]−1∇`[δ](θ?;Z)
∣∣∣

≤ C0

nw(s0)
a2s

2
0ε

2(a2s0ε
2 + ρ̄).

On the other hand we also have

`([δ](θ?;Z) = `([δ](θ̂δ;Z) +
1

2
(θ̂δ − θ?)′

[
∇(2)`[δ](θ?;Z)

]
(θ̂δ − θ?) + T2,

where

|T2| ≤ C0a2s
3/2
0 ε3.

We conclude that

`[δ](θ̂δ;Z)− `[δ](θ?;Z) =
1

2
∇`[δ](θ?;Z)′

[
−∇(2)`[δ](θ?;Z)

]−1∇`[δ](θ?;Z) + T3,

where

|T3| ≤ C0

(
a2s

3/2
0 ε3 +

a2s
2
0ε

2(a2s0ε
2 + ρ̄)

nw(s0)

)
.
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The same development hold for δ = δ?. Put together both identities yield

2
[
`[δ](θ̂δ;Z)− `[δ?](θ̂δ? ;Z)

]
= ∇`[δ](θ?;Z)′

[
−∇(2)`[δ](θ?;Z)

]−1∇`[δ](θ?;Z)

−∇`[δ?](θ?;Z)′
[
−∇(2)`[δ?](θ?;Z)

]−1∇`[δ?](θ?;Z) + T4,

where

|T4| ≤ C0

(
a2s

3/2
0 ε3 +

a2s
2
0ε

2(a2s0ε
2 + ρ̄)

nw(s0)

)
.

. When ρ̄ ∼
√
n log(p)T4 → 0 for log(p)3

n
→ 0 We partition ∇(2)`[δ](θ?;Z) as A B

B′ C

, where A = ∇(2)`[δ?](θ?;Z). We make use of the following well-known

block-matrix inversion (see e.g. Horn and Johnson [2012] Section 0.7.3). If M = A B

B′ C

 is invertible and A is invertible, then with S = C −B′A−1B,

 u

v


′

M−1

 u

v

− u′A−1u = ‖S−1/2
(
B′A−1u− v

)
‖2

2.

Hence

2
[
`([δ](θ̂δ;Z)− `([δ?](θ̂δ? ;Z)

]
= V ′S−1V + T4,

where

S
def
= [−∇(2)`(θ?;Z)]δ−δ?,δ−δ?−[∇(2)`(θ?;Z)]δ−δ?,δ?

(
−[∇(2)`(θ?;Z)]δ?,δ?

)−1
[∇(2)`(θ?;Z)]δ?,δ−δ? ,
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and

V = [∇(2)`(θ?;Z)]δ−δ?,δ?
(
−[∇(2)`(θ?;Z)]δ?,δ?

)−1
[∇`(θ?;Z)]δ? − [∇`(θ?;Z)]δ−δ? .

Since [∇`(θ?;Z)]δ = X ′δε, the tail-bound assumption on ε implies that the conditional

Orlicz norm of V is upper-bounded by

√
6σv̄(s0)1/2

√
n

(
1 +

s?C

w(s?)

)
≤ σ
√

24nv̄(s0)1/2.

Furthermore the smallest eigenvalue of S is bounded from below by

nw(s0)− ns?jC
2

w(s?)
≥ nw(s0)

2
.

Under the assumption that v̄(s0)
w(s0)

∼ O(1), we then apply HW inequality (B.1) to

conclude that for some absolute constant C0

P
[
`[δ](θ̂δ;Z)− `[δ?](θ̂δ? ;Z) > C0 log(p)

σ2jv̄(s0)

w(s0)

]
≤ 2e−2j log(p),

and by union bound

P
[

max
δ∈A: ‖δ‖0=s?+j

`([δ](θ̂δ;Z)− `([δ?](θ̂δ? ;Z) > C0 log(p)
σ2jv̄(s? + j)

w(s? + j)

]
≤ 2

pj
.

�
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APPENDIX B

Some technical results

B.1 KL-divergence of Gaussian distributions

We make use of the following expression of the KL-divergence between two Gaus-

sian distributions.

Lemma 14. For i = 1, 2 let πi denote the probability distribution of the Gaussian

distribution N(µi,Σi). We have

KL (π1|π2) =
1

2
(µ2 − µ1)′Σ−1

2 (µ2 − µ1) +
1

2
log

(
det(Σ2)

det(Σ1)

)
+

1

2
Tr(Σ−1

2 Σ1)− p

2
.

B.2 Gaussian deviation bounds

The following lemma follows readily from standard Gaussian deviation bounds.

We omit the details.

Lemma 15. Suppose that a Rp-valued random variable X has density f(x) ∝

e−`(x)−ρ‖x‖22/2, for a twice differentiable function ` such that mIp � ∇(2)` � MIp,
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for some constants 0 < m ≤ M , and ρ > 0. Let µ denote the mode of `. For all

t ≥ 4 max
(

ρ
ρ+m
‖µ‖2,

√
p

ρ+m

)
we have

P (‖X − µ‖2 > t) ≤
(
M + ρ

m+ ρ

) p
2

e−
t2(m+ρ)

16 ,

and E
(
‖X − µ‖2

21{‖X−µ‖2>t}
)
≤ t2

(
M + ρ

m+ ρ

) p
2

e−
t2(m+ρ)

32 .

Proof. By Taylor expansion of ` around µ:

−M
2
‖x− µ‖2

2 −
ρ

2
‖x‖2

2 ≤ `(µ)− `(x)− ρ

2
‖x‖2

2 ≤ −
m

2
‖x− µ‖2

2 −
ρ

2
‖x‖2

2, x ∈ Rp.

This implies that

∫
Rp
e`(µ)−`(x)− ρ

2
‖x‖22dx ≥ e−

Mρ
2(M+ρ)

‖µ‖22
(

2π

ρ+M

)p/2
.

Therefore, for any t > 0,

P (‖X − µ‖2 > t) ≤ e
Mρ

2(M+ρ)
‖µ‖22

(
ρ+M

ρ+m

)p/2
P
(∥∥∥∥ Z√

ρ+m
− ρµ

ρ+m

∥∥∥∥
2

> t

)
,

≤ e
ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2
e
− 1

2

(
t
√
m+ρ− ρ‖µ‖2√

m+ρ
−√p

)2

.

where Z ∼ Np(0, Ip). For t ≥ 4 max(ρ‖µ‖2/(ρ+m),
√

p
m+ρ

), this yields

P (‖X − µ‖2 > t) ≤
(
ρ+M

ρ+m

)p/2
e−

t2(m+ρ)
16 .
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By Holder’s inequality

E
(
‖X − µ‖2

21{‖X−µ‖2>t}
)
≤ E1/2(‖X − µ‖4

2)P1/2 (‖X − µ‖2 > t) .

With the same calculations as above,

E(‖X − µ‖4
2) ≤ e

ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2
E

(∥∥∥∥ Z√
ρ+m

− ρµ

ρ+m

∥∥∥∥4

2

)
,

≤ 8e
ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2(
3p2

(m+ ρ)2
+

ρ4‖µ‖4
2

(m+ ρ)4

)
≤ e

ρ
2
‖µ‖22

(
ρ+M

ρ+m

)p/2
t4

8
,

using the assumption t ≥ 4 max( ρ
ρ+m
‖µ‖2,

√
p

m+ρ
), which implies the second inequal-

ity.

B.3 Strong convexity of KL-divergence

The next results establishes the strong convexity of the KL divergence. The

proof is due to I. Pinelis (Pinelis [2018]). We reproduce it here for completeness.

Lemma 16. Let P0, P1 be two probability measures that are absolutely continuous

with respect to a probability measure Q, on some measure space X . For any t ∈

(0, 1), we have

tKL (P1|Q) + (1− t)KL (P0|Q) ≥ KL (tP1 + (1− t)P0|Q) +
t(1− t)

2
‖P1 − P0‖2

tv.

Proof. For j = 0, 1, set fj = dPj/dQ. For t ∈ [0, 1], set ft = tf1 + (1 − t)f0, and

Pt(du) = ft(u)Q(du). Set h(x) = x log(x), x ≥ 0. By Taylor expansion with integral
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remainder, for j ∈ {0, 1}, t ∈ [0, 1], and x ∈ X , we have

h(fj(u)) = h(ft(u)) + (fj(u)− ft(u))h′(ft(u))

+ (fj(u)− ft(u))2

∫ 1

0

h
′′

((1− α)ft(u) + αfj(u)) (1− α)dα.

h′(x) = log(x)− 1, and h
′′
(x) = 1/x, so that

th(f1(u)) + (1− t)h(f0(u))− h(ft(u) = t(1− t) (f1(u)− f0(u))2

×
∫ 1

0

[
t

(1− α)ft(u) + αf0(u)
+

1− t
(1− α)ft(u) + αf1(u)

]
(1− α)dα. (B.1)

We can write (1−α)ft(u)+αf0(u) = fs0(α,t)(u), where s0(α, t) = (1−α)t. Similarly,

(1−α)ft(u)+αf1(u) = fs1(α,t), where s1(α, t) = α+t(1−α). Using these expressions,

and integrating both sides of (B.1) gives

tKL (P1|Q) + (1− t)KL (P0|Q)− KL (Pt|Q)

= t(1−t)
∫ 1

0

(1−α)

[
t

∫
(f1(u)− f0(u))2

fs0(α,t)(u)
Q(du) + (1− t)

∫
(f1(u)− f0(u))2

fs1(α,t)(u)
Q(du)

]
dα.

For any s ∈ (0, 1),

∫
(f1(u)− f0(u))2

fs(u)
Q(du) =

1

(1− s)2

∫
(f1(u)− fs(u))2

fs(u)
Q(du)

=
1

(1− s)2

∫ (
f1(u)

fs(u)
− 1

)2

fs(u)Q(du) ≥ 1

(1− s)2

[∫ ∣∣∣∣f1(u)

fs(u)
− 1

∣∣∣∣Qs(du)

]2

=
1

(1− s)2
‖Ps − P1‖2

tv = ‖P1 − P0‖2
tv.
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We conclude that

tKL (P1|Q) + (1− t)KL (P0|Q)− KL (Pt|Q)

≥ t(1− t)‖P1 − P0‖2
tv

∫ 1

0

α(1− α)dα =
t(1− t)

2
‖P1 − P0‖2

tv,

as claimed.

B.4 Hanson-Wright inequality

The following deviation bound is known as the Hanson-Wright inequality. This

version is taken from (Vershynin [2018]).

Lemma 17. Let X = (X1, . . . , Xn) be a random vector with independent mean zero

components. Suppose that there exists σ > 0 such that for all unit-vector u ∈ Rn,

and all t ≥ 0, P(| 〈u,X〉 | > t) ≤ 2e−t
2/(2σ2). Then for all t ≥ 6, it holds

P
[
X ′AX > (4 + t)σ2rλmax(A)

]
≤ e−

ctr
6 , (B.1)

for some absolute constant c where r = rank(A). In the particular case where

X ∼ Nn(0, In), σ = 1, and we can take c = 3.

B.5 Relation between determinants of sub-matrices

We will also need the following lemma on determinants of sub-matrices.

Lemma 18. If symmetric positive definite matrices A,M and D ∈ Rq×q are such
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that M =

 A B

B′ D

, then

det(A)λmin(M)q ≤ det(M) ≤ det(A)λmax(M)q.

Proof. This follows from Cauchy’s interlacing property for eigenvalues. See for in-

stance Horn and Johnson [2012] Theorem 4.3.17.
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