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ABSTRACT

Rapid advances in wireless communication, embedded systems, and high-

performance computing are promising the fusion of physical and digital water.

The next generation of stormwater systems — equipped with wireless sensors

and actuators — will autonomously reconfigure themselves to prevent flooding

and achieve system scale objectives. This vision of “smart” stormwater systems is

not limited by technology, which has matured to the point where it can be ubiq-

uitously deployed. Instead, the challenge ismuchmore fundamental and rooted

in a system-level understanding of stormwater networks: once stormwater sys-

tems become highly instrumented, how should they be controlled to achieve

the desired watershed outcomes? This dissertation leverages statistical learn-

ing methods to begin closing fundamental knowledge gaps in the emerging

field of smart water systems. The second chapter of this dissertation addresses

the lack of simulation tools for modeling pollutant interactions by introducing a

new toolchain for coupling the existing hydraulic, hydrologic, and water quality

models. Using this toolchain, we demonstrate real-time control’s potential for

enhancing nutrient removal in a watershed. In the third chapter, to characterize

a watershed’s controllability, a real-world case study is carried out using a wire-

less sensor-actuator network. Through this study, the ability to precisely shape

the hydrograph is quantified, illustrating the high level of granularity that can

be achieved using real-time control. Given that most state-of-the-art stormwa-

ter control algorithms require surrogate models or assume simplified dynamics,

the fourth chapter introduces a Reinforcement Learning-based model-free al-

gorithm for synthesizing stormwater controllers. The efficacy of the algorithm

is demonstrated via simulation, highlighting strong performance. More impor-

tantly, a discussion is provided on the limitations of the approach, and a set of

xvii



guidelines is presented for those seeking to apply Reinforcement Learning to

stormwater control. The fifth chapter in this dissertation introduces a Bayesian

Optimization-basedmethodology for addressing the lack of knowledge relating

to the uncertainty in stormwater control approaches anddemonstrates its use for

identifying robust control strategies. In the final chapter, an open-source Python

library to facilitate the systematic quantitative evaluation of control algorithms

is introduced. This library provides a curated collection of stormwater control

scenarios, coupled with an accessible programming interface and a stormwater

simulator, to provide a standalone package for developing stormwater control

algorithms. The discoveries made in this dissertation, along with the algorithms

and tools developed, seek to support the development of a new generation of

autonomous stormwater infrastructure.
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CHAPTER 1

Introduction

Stormwater infrastructure is designed to mitigate the adverse effects of ur-

banization, including flooding and deterioration of watershed ecosystems [1, 2].

Stormwater systems reduce or eliminate these challenges by treating and trans-

porting the accumulated stormwater runoff away from the urban environment

and into a downstream water body [1]. Existing stormwater systems are increas-

ingly being stressed beyond their intended design [1, 3]. The resulting symp-

toms manifest themselves in frequent flash floods[4] and poor water quality in

downstream water bodies[5]. While these infrastructure systems can be rebuilt

with larger storage capacity to keep pace with the evolving demands, such an

undertaking might not be financially viable for most communities[3]. Further-

more, stormwater systems are often designed and constructed in a piecemeal

fashion. Emerson et al. have demonstrated that such a localized approach is not

guaranteed to improve the stormwater system’s performance [6]. When small-

scale solutions cannot be guaranteed to result in system-scale benefits, new so-

lutions are warranted.

In lieu of new construction, one alternativewould be to retrofit existing storm-

water systems with sensors and controllers, so that these systems can be dy-

namically controlled in real-time to achieve the desired response[3, 7]. Such a

vision is not limited by technology, which has matured to the point where it can
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be ubiquitously deployed[8]. Rather, the challenge is much more fundamen-

tal and rooted in a system-level understanding of environmental science. Once

stormwater systems become highly instrumented and controlled, how should

they be operated to achieve desired watershed outcomes?

TheWater Resource Engineering community has extensively studied the con-

trol of water networks, and there is a significant volume of work focused on de-

veloping algorithms for the control of big reservoir systems [9–12]. However,

much of these efforts have focused on large river basins, which change slowly

and exhibit variable dynamics compared to urban stormwater networks [13, 14].

Direct adoption of these existingmethods for the control of stormwater systems

is hindered by the fundamental scaling properties of water systems:

• Spatial properties: Classical reservoir control methodologies formulate

the control of water in the network of large storage nodes — often sepa-

rated by hundreds of miles — as a linear (or convex nonlinear) optimization

problem [9]. As the water moves between these storage nodes, the im-

pact of nonlinear wave dynamics becomes negligible and can be safely

ignored. However, given that the stormwater storage nodes are consider-

ably smaller and are closer to each other, the impact of wave dynamics is

significant and has to be incorporated into the decision process.

• Temporal properties: Given the long decision time horizons1 [15], the in-

fluence of nonlinearities in hydrological and hydraulic phenomena, such

as runoff generation and flow of water through outlet structures, is often

ignored or approximated as linear systems in reservoir control. Stormwa-

ter systems operate on a much smaller time horizon (in the order of min-

utes) [16]. At such smaller time scales, the nonlinearities in hydrological

and hydraulic phenomena are significant and have to be accounted into

control decisions.

1In the order of months.
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Relatively recently, there have been works investigating the use of evolutionary

algorithms [12, 17, 18] for reservoir control, and these algorithms are increas-

ingly being used for the control of stormwater systems [16, 19].

The state-of-the-art in stormwater control can be broadly classified under two

categories: (1) Control algorithms reliant on parametrized models (e.g. model

predictive control) for identifying control actions [20–24]. (2) Search-based al-

gorithms (e.g. evolutionary optimization algorithms) that exhaustively simulate

physical models for identifying control actions [16, 19, 25–28]. Though these

control algorithms have been applied for localized control in stormwater sys-

tems2, their investigation in the context of coordinated control and targeted re-

moval of pollutants hasbeen limited. To fully realize thepotential of the stormwa-

ter infrastructure and to safeguard our water bodies, we need to synthesize con-

trol algorithms that are able to coordinate the response of many distributed con-

trol assets in the network, while simultaneously achieving a diverse set of water

quality and flow objectives. Technologically, we are at a point where we can

monitor and control these assets in real-time, but the development of control

algorithms is hampered by a number of fundamental knowledge gaps:

• We do not know how to design control algorithms that can target pollu-

tants in stormwater runoff, nor do we have the simulation tools necessary

for such studies.

• We do not know to how to characterize the controllability of an urban wa-

tershed, especially in the context of water quality.

• We do not yet know how to synthesize reliable control algorithms for dis-

tributed stormwater assets withoutmaking explicit dynamical assumptions

(e.g. linearity).

• We do not know how to quantify the uncertainty of rainfall in algorithms

used in the control of stormwater systems.

2e.g. maintaining constant water levels and flows in individual basins.
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• We do not have open platforms for the systematic quantitative evaluation

and comparison of different control algorithms.

My dissertation, leveraging statistical approaches, addresses these knowl-

edge gaps to support algorithms that control stormwater systems. This work is

divided into the following five chapters:

• Chapter-2: This chapter introduces a modular framework for simulating

real-time control in stormwater systems and demonstrates control’s effec-

tiveness in enhancing nutrient removal.

• Chapter-3: This chapter demonstrates the use of a real-world wireless

sensor-actuator network for precisely shaping streamflows in a stormwa-

ter network.

• Chapter-4: This chapter introduces a Reinforcement Learning-based algo-

rithm for the control of stormwater systems and evaluates its applicability

across a diverse set of stormwater scenarios.

• Chapter-5: This chapter introduces a Bayesian Optimization-based algo-

rithm for the automated control of stormwater networks and demonstrates

this algorithm’s ability to quantify rainfall uncertainties associated with the

control decisions.

• Chapter-6: This chapter introduces an open-source Python library to fa-

cilitate the systematic quantitative evaluation of stormwater control algo-

rithms.

1.1 Chapter 2: Building a theory for smart stormwater sys-

tems

Retrofitting existing stormwater systemswithwireless sensors and controllers

will enable real-time control of flooding, stream erosion, and pollutant treat-

ment. The adoption of these smart systems is not limited by the technology,
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which has matured to a point where it can be deployed ubiquitously, but rather

by our understanding of system-scale environmental science. This demands the

development of a theoretical framework for smart stormwater systems. How-

ever, given the limitations in the existing stormwater simulation tools, we cannot

adequately model pollutant transformations on a watershed scale. This funda-

mentally limits our ability to synthesize and evaluate system-scale control algo-

rithms. In the second chapter of this dissertation, we present a modeling frame-

work for simulating the real-time control of stormwater systems and pose the

requirements for developing a theory of smart stormwater systems.

A comprehensive literature review is offered in the chapter, highlighting pri-

marily that existing stormwater simulation tools can bebroadly grouped into two

categories: those that focus on hydrology (on a watershed scale)[29] and those

that focus on water quality (at individual sites)[30]. This often forces a trade-off

between comprehensivelymodeling system-level hydrology andpollutant treat-

ment. We propose a modular approach that integrates these existing models

under a common simulation framework, rather than incorporating the desired

functionality in a single unified model. This choice was motivated by the desire

to ensure compatibility with the existing tools and to provide the researchers

with the flexibility of incorporating their custommodels into the framework. We

demonstrate the use of this framework on two simulated case studies, which fo-

cus on nutrient treatment in an urban watershed.

This chapter’smain contribution is demonstrating the use of real-time control

for enhancing nutrient removal in stormwater systems. The modular simulation

framework developed in this chapter has been the foundation for the control

algorithms and the simulation tools developed in this dissertation.
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1.2 Chapter 3: Shaping streamflow in real-time using a sen-

sor-actuator network

The primary objective of this chapter is to illustrate how data from a stormwa-

ter sensor network can be leveraged to precisely shape the hydrographs at the

outlet of an urban watershed. Leveraging a wireless sensor-actuator network in

Ann Arbor [8], we characterize the travel-times and magnitudes of flows result-

ing from a control system’s actions. Based on this characterization, we formulate

a series of experiments to illustrate how such an approach achieves flow control

objectives. We create a flat hydrograph using a single control asset to illustrate

the use of water level data in maintaining system-level flows below a desired

stream erosion threshold. We also demonstrate the coordinated control of two

controllable stormwater assets for shaping streamflow at the outlet of the water-

shed.

The third chapter demonstrates the characterization and control of an urban

watershed using wireless sensor-actuator networks. To the best of our knowl-

edge, the study presented in this chapter is the first-ever study to demonstrate

the use of coordinated control strategies for achieving system-scale objectives

in a real watershed.

1.3 Chapter 4: Deep Reinforcement Learning for the control

of stormwater networks

Presently, state-of-the-art control of stormwater falls under classic linearmodel

predictive control (MPC)[20]. While this enables us to analytically evaluate the

stability, robustness, and ensure performance guarantees, the approach deman-

ds a number of approximations, assumptions, and a high level of user exper-

tise[20–22]. Furthermore, real-world urban watersheds are prone to experienc-

ingpipesblockages, sensor breakdowns, andother adverse conditions[1]. Adapt-
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ing and re-formulating linear control models to such non-linear conditions is dif-

ficult. The constraints of linear approximations and the need for adaptive con-

trol algorithms open the door to exploring other control methodologies, such

as Reinforcement Learning (RL) [31]. In this chapter, we introduce the first ever

evaluation of RL for the control of stormwater systems.

We analyze the feasibility of RL-based control of stormwater systems by for-

mulating a series of simulation-based experiments. The controller’s sensitivity

to reward function formulation is evaluated by training the controller on a single

basin using five different reward functions and analyzing final performance. The

scalability of the approach is analyzed by training the controller on a network of

three interconnected basins. The robustness of the controller formulation to the

choice of neural network architecture is also evaluated.

The chapter’s main contribution is the formulation and implementation of an

RL-based algorithm for the control of urban stormwater systems. We evaluate

the RL-based control approach’s performance across a range of storm inputs

and network complexities to demonstrate its effectiveness and limitations. We

also provide a fully open-sourced implementation of the control algorithm to

promote transparency and permit the method’s direct application to other sys-

tems.

1.4 Chapter 5: Bayesian Optimization for shaping stormwa-

ter flows

Early evaluations of Reinforcement Learning-based control have suggested

that controllers often maintain nearly constant control actions (valve positions)

throughout a storm event [32]. This may mitigate the need for real-time con-

trol, as one could preset the control action ahead of a storm without needing

to change it in real-time. While such an approach considerably simplifies the
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control problem, the solution space is still large enough for conventional search

approaches to be efficient. Furthermore, unlike feedback control, in this pro-

posed planning based control approach, the controller cannot alter its course if

its actions result in an unintended response. Hence, planning for the possible

uncertainties and choosing a risk-averse control strategy becomes essential. To

address these challenges, in this chapter, we introduce a BayesianOptimization-

based methodology for identifying the optimal control actions and quantifying

their associated uncertainties.

We investigate the feasibility of the proposed approach by analyzing its abil-

ity to identify optimal control decisions that realize the desired response across

stormwater networks. We evaluate its computational efficiency by comparing

its performance to a Genetic Algorithm, a widely used search-based stormwater

control approach. Finally, we propose a methodology for extending Bayesian

Optimization’s ability to quantify rainfall uncertainty associated with the control

decisions.

This chapter’smain contributions include amethodology for shaping stormwa-

ter flows and an algorithm that establishes bounds on the controller’s perfor-

mance by quantifying impacts of rainfall uncertainty. We also provide an open-

source implementationof the controller that canbeapplied to virtually any stormwa-

ter network for which a physical model exists.

1.5 Chapter 6: A simulation sandbox for the development

and evaluation of stormwater control algorithms

Over the past decade, there has been a significant amount of work in the de-

velopment of real-time control algorithms for stormwater systems [16, 19, 21].

Most, if not all, of the proposed algorithms were evaluated on specific stormwa-

ter networks and perturbed by a particular set of storm events [16]. Many of
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the underlying models and parameterizations have not been made accessible

to the broader research community [16, 33]. This limits the reproducibility of the

work and creates a barrier for comparing the performance of these algorithms

across networks under various storm conditions. While there have been stud-

ies qualitatively comparing the performance of various control approaches [19],

Borsányi et al.[34] and others[35] recognized the need for a more quantitative

evaluation for understanding the limitations and strengths of the proposed con-

trol strategies.

This chapter addresses these challenges by creating an open-source Python

library that provides a collection of anonymized stormwater networks and event

drivers, curated as scenarios for facilitating the quantitative evaluation of con-

trol algorithms. These scenarios represent a diverse set of flooding, water qual-

ity, and flow control objectives that might be encountered in a real watershed.

These scenarios are coupled with an accessible programming interface and a

stormwater simulator to provide a stand-alone library for developing stormwa-

ter control algorithms. Furthermore, a web-page3 with tutorials is created to act

as a resource for helping researchers get started with the real-time control of

stormwater systems.

3pystorms.org
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CHAPTER 2

Building a Theory for Smart Stormwater Systems

2.1 Introduction

Rapid advances in sensing, computation, and wireless communications are

promising to merge the physical with the virtual. Calls to build the “smart” city

of the future are being embraced by decision makers. While the onset of self-

driving cars provides a good example that this vision is becoming a reality, the

role of information technology in the water sector has yet to be fleshed out.

These technologies stand to enable a leap in innovation in the distributed treat-

ment of urban runoff, one of ourlargest environmental challenges.

Retrofitting stormwater systemswith sensors and controllerswill allow the city

to be controlled in real-time as a distributed treatment plant. Unlike static infras-

tructure, which cannot adapt its operation to individual storms or changing land

uses, “smart” stormwater systems will use system-level coordination to reduce

flooding and maximize watershed pollutant removal. Given the sheer number

of storm water control measures in United States, even a small improvement to

their performance could lead to a substantial reduction in pollutant loads. In-

triguingly, such a vision is not limited by technology, which has matured to the

point at which it can be ubiquitously deployed. Rather, the challenge is much

more fundamental and rooted in a system-level understanding of environmental
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science. Once stormwater systems become highly instrumented and controlled,

how should they actually be operated to achieve desired watershed outcomes?

The answer to this question demands the development of a theoretical frame-

work for smart stormwater systems. In this chapter we lay out the requirements

for such a theory. Acknowledging that the broad adoption these systems may

still be years away, we also present and evaluate a modeling framework to al-

low for the simulation of smart stormwater systems before they become com-

mon place. Recent urban floods [36], many of which are driven by flashy events

and inadequately sized infrastructure, are all too common example that aging

stormwater infrastructure is struggling to keep pace with a dynamic and chang-

ing climate. While flood control often emerges as one of themost promising ap-

plication areas, to illustrate the flexibility of smart stormwater systems this chap-

ter will focus on the impacts to urban water quality.

2.2 Dobest local practices achieve thebestglobal outcomes?

Pollutants in runoff are threatening the health of downstream ecosystems,

as evinced by harmful algal blooms, such as those on Lake Erie [37] and the

Chesapeake Bay [38, 39]. Simultaneously, “dry” regions of the country are strug-

gling to find new and clean sources of water. By some estimates, the capture

of stormwater in Los Angeles [40] and San Francisco [41] could offset the wa-

ter used by these cities. This, however, requires at least some level of treatment

to ensure that captured stormwater is safe for direct use or aquifer injection. In

the face of these challenges, novel solutions for stormwater management are

needed.

Reductions in hydraulic or pollutant loads are commonly achieved via a set

of distributed stormwater solutions [42, 43], such as ponds or treatment wet-

lands. Our body of knowledge on the treatment potential of these systems is

extensive, showing that significant water quality and hydraulic benefits can be

achieved at the level of individual sites [44, 45]. Most recently, an exciting and
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growing research area has formed around smaller-scale and more distributed

Green Infrastructure (GI) solutions, such as green roofs or bioswales[46]. Most

of these solutions are groupedunder the broader umbrella of BestManagement

Practices[47] (BMPs) or StormWater Control Measures (SCMs)[48].

Given the aggressive adoption of these stormwater practices, rarely is the

question asked: Does doing the “best” at a local scale translate to doing the

best at the watershed scale? Research on this question is limited[49–51], but

paints a cautionary picture. Unless designed as part of a coordinated, city-scale

solution, a system of SCMs may actually worsen watershed-scale outcomes. For

example, unless coordinated at design-time, hydrographs from individual SCMs

may add up to cause larger downstream flows compared to the samewatershed

without these SCMs[6]. This, in turn, can lead to increased stream erosion and

re-suspension of sediment-bound pollutants. More examples can be given, but

there is an urgent need to investigate the scalability of SCMs and to ensure that

their functionality is tuned in the context of the broader stormwater system.

Even if system-level optimization is used todetermine theplacement of SCMs[52,

53], it is difficult to guarantee that the overall system will perform as designed.

The sheer variability in rainfall[54], seasonal pollutant loadings[55], and broader

landuse changes[56]will always push stormwater systemsbeyond their intended

design or the “average” storm[57]. As such, it becomes imperative to find a way

to adapt to these uncertain disturbances. One solution relies on real-time sens-

ing and control. By equipping stormwater elements with control valves, which

can be operated in real-time based on sensor readings, the overall performance

of the entire system can be adapted to achieve watershed-scale benefits (Fig-

ure.2.1a).
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2.2.1 Existing studies on real-time control

The bulk of existing literature on real-time control of stormwater SCMs fo-

cuses onwater quality andhydraulic impacts at individual sites, particularly ponds

and basins. These studies assume that the outlet of a BMP has been retrofitted

with a remotely controllable gate or valve. By strategically controlling outflows

before or during storm events, internal volumes can be modified and hydraulic

retention time (HRT) can be increased. Jacopin et al.[58] demonstrated that de-

tention basins, designed for flood control, can reduce sediment-based pollu-

tant loading (57% decrease) in downstream water bodies by simply opening

and closing a valve. Middleton et al.[59] analyzed the water quality response of

a controlled detention basin, observing up to a 90% improvement in TSS and

ammonia-nitrate removal. Recent studies[60–62] in Quebec, Canada, proposed

a rule-based control logic for a pond, based on rainfall forecasts, to maximize

retention time and reduce hydraulic shocks to the downstream water bodies.

The authors observed a 90% improvement in TSS retention. A comprehensive

review of these and other studies is summarized in Kerkez et al.[3], along with

additional information on how these solutions are deployed in the field. While

these studies demonstrate significant potential to improve water quality at the

scale of individual sites, the mechanisms behind the removal of pollutants in

controlled SCMs remain a research challenge. This is particularly true in the re-

moval of dissolved pollutants, such as ammonia and nitrate. Furthermore, the

scalability of real-time control must be evaluated to ensure that local benefits

do not overshadow watershed-scale benefits.

Since the 2000 European Union’s Water Framework Directive [63] there has

been an increasing emphasis on integrated, system-level control of sewer water

distribution systems. The resulting control strategies vary in complexity[64–66]

andhave sincebeen implemented in a number of urbanwater networks[67]. Ap-

plying these methods to distributed stormwater solutions introduces a new set

of challenges, however. Unlike in well-maintained sewer networks, the exposed
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Figure 2.1: Application of control and optimization methods to the real-time
operation of stormwater systems will be made possible by abstracting physical
models to system-theoretic representations.
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and distributed nature of stormwater systems introduces complexities associ-

ated with the urban hydrologic cycle, such as infiltration, evaporation, soil mois-

ture and groundwater dynamics. Furthermore, one major function of stormwa-

ter systems relates to the distributed control of a large variety of solid, dissolved

and emerging pollutants. Control of sewer networks is often targeted at volume

control to mitigate sewer overflows or overloading treatment plants. As such,

much work remains to be conducted on investigating how these methods can

be applied to the distributed control of SCMs.

2.3 Toward a framework for smart stormwater systems

Many methods have been developed by the operational research and con-

trol theory communities to optimize the operation of networked systems[68, 69].

Given their inherent non-linearity and complexity, existing stormwater models

are not compatible with these tools. To that end, our knowledge of treatment

processes and the physical nature of stormwater systems must first be embed-

ded in a system-theoretic framework (Figure.2.1b). Such a formal and mathe-

matical approach will be crucial toward developing a system-level understand-

ing of stormwater. Not only will this framework help to control future stormwa-

ter systems, but it will also create a foundation upon which to answer critical

questions, such as: How many controllers are needed and where should they

be placed to achieve best system-level benefits? Consequently, how many sen-

sors are needed and where should they be placed to help the control system

achieve these objectives?

Until sensors and controllers becomeubiquitously deployedacross stormwa-

ter systems, whichmay take years to accomplish, there is enough domain knowl-

edgeembedded in existingmodels tobegin answering thesequestions through

simulation.
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2.3.1 Limitations of existing simulations approaches

Existing stormwater models can be broadly grouped into two categories:

those that focus on hydrology (including hydraulics) and those that focus on wa-

ter quality. The former range across simple routines, such as Muskingum rout-

ing[70] and the Rational Method[71], to more complex hydrodynamic models

that solve the St.Venant’s equation, such as popular packages like SWMM[29]

andHEC-RAS[72]. The latter, which includemodels such as HYDRUS[73, 74] and

FITOVERT[75], are used to simulate treatment processes within individual sites,

such as wetlands and green infrastructure. While some packages support ex-

tended features that model both hydrology and storm water quality, much work

needs to be conducted to improve their accuracy. This often forces a trade-off

between comprehensively modeling system-level hydrology or local-level treat-

ment.

Pollutant removal in stormwater is a highly complex and dynamic process.

The rate at which pollutants undergo transformation is dependent upon the

pollutant-type and its interaction with a given stormwater element (oxygen con-

centrations, soil types, biomass, settling times, water temperature, etc). Given

the complexity of these interactions, popular hydraulic models, such as SWMM,

MUSIC[76] and SUSTAIN[77] often approximate pollutant treatment using first

order decay models[78]:
dC

dt
= −kC (2.1)

where the concentration C of a pollutant is assumed to decrease exponentially

following a decay coefficient k. While this may be sufficient for approximating

the settling dynamics of sediment-bound pollutants, it does not capture the nu-

anced and complex transformation of dissolved compounds. This often leads to

treating the hydraulic retention time (HRT) as the main proxy for water quality.

To that end, a number of approaches have been developed to extend first
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order decay models to account for variations in background concentration[79],

temperature[78], loading rates[80] or mixing conditions[81, 82]. A number of

processmodels have also beendeveloped, applying knowledge from treatment

plant operations to stormwater[83]. Langergraber et al.[30, 84] used finite ele-

ment analysis to model pollutant transformations in subsurface flow wetlands.

While these more comprehensive water quality models are highly promising,

their ability to simulate system-level treatment remains to be explored.

Given the need to develop a better understanding of the system-level trans-

port and treatment of stormwater, there is a need to couple existing hydraulic

and water quality models.

2.4 Simulating controlled systems

The real-time operation of gates and valves introduces dynamics that im-

pact hydraulics and water quality. To that end, the biggest limitation of exist-

ing models is their ability to simulate the system-wide impacts of real-time con-

trol. This includes the ability to dynamically route flows based on a variety of

desired control actions, as well as the capacity to simulate a variety of pollu-

tant buildup, washoff, and non-steady state treatment dynamics. While mod-

els such as SWMM do have some rudimentary control capabilities, the built-in

control logic is limited to site-level control (e.g. maintaining levels or flow in a

pond)[29]. Advanced features, such as system-level control, optimization, or the

ability to control around external factors (such as weather forecasts) are not yet

implemented[85].

While it would be possible to extend an existing model to capture all this

functionality, the effort would be significant. To that end, we contend that a cou-

pledmodeling approach[86] will be themost flexible way to accomplish this. By

couplingmodels, rather than translating their features in into one largemodel, it

becomes possible to construct amodeling chainwhose complexity varies based
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Figure 2.2: Each element in the broader stormwater system can be modeled in
a step-wise fashion that simulates hydraulic, water quality and control dynamics.

on the scientific or management question that needs to be answered. More im-

portantly, if individual models undergo updates by their respective domain ex-

perts, these new features would become available to the coupled model as well

without much implementation overhead.

In our coupled modeling approach (Figure2.2), each element in the broader

stormwater system can be represented as a storage node, which receives in-

flows q1, q2, . . . , qn from upstream nodes, each of which has a corresponding

concentration c1, c2, . . . , cn for a pollutant of interest. The node has an outflow

qout which, unlike in static hydraulic infrastructure, is governed by a real-time

control action u. A treatment potential k governs the removal or transformation

of the pollutant based on a number of hydraulic and water quality states.

Given that control actions change the hydraulic behavior,which in turn affects

the treatment of the pollutants, it becomes necessary to implement a modeling

cycle that couples these processes in an interconnected, step-wise fashion. In
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our implementation, the hydraulic simulation can be carried out by any number

of hydraulic models, ranging from simple hydraulic routing schemes, to more

complex models such as SWMM or MUSIC. Outputs from the hydraulic model

are fed to the water quality model, which, depending on the pollutant of inter-

est, can range from simple first-order process-based methods to more complex

finite-element models. Finally, the control module processes the outputs from

the hydraulic and water quality models. Based on the objective, which can de-

pend on the states of multiples elements in the overall systems, it sets the dis-

charge rate qout by closing or opening the outlet. The benefits of the coupled

approach relate to its flexibility since individual elements can be connected to-

gether to represent highly complex stormwater networks.

2.5 Simulated Studies

To illustrate the potential benefits that can be achieved through real-time

stormwater control, we applied the proposed simulation framework to two sim-

ulated case studies, which were inspired by our current research efforts in the

Midwestern United States. Multiple sites are currently being retrofitted for con-

trol and will be compared to these simulations in the coming years. The analysis

was targeted on nitrate removal since most of the existing literature focuses on

hydraulic control or sediment-bound pollutants.

1. Local scale: The first study investigated the impacts of real-time control to

nitrate removal in a single stormwater pond.

2. System scale: The second study evaluated how nitrate removal can be co-

ordinated between a system of controlled stormwater elements.

2.5.1 Model Implementation

Given the scopeof the use cases, a simple flowbalancemodulewas sufficient

to simulate the hydraulic behavior of each element. The change in water volume
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was modeled as the difference between inflows and outflows, which could be

used to calculate the water height h in each element based on its area A. Out-

flows from each element were proportional to the instantaneous pressure head,

unless the element was controlled, in which case it was assumed that outflow

can be set such that:

0 ≤ qout ≤
√
2gh (2.2)

Inflow into upstream elements was based on a hydrograph that was directly

measured at one of our study sites in Ann Arbor, Michigan (Figure.2.4). Over-

flows were simulated in the case that the storage volume was exceeded. For

simplicity, infiltration was assumed to be negligible in the study sites.

A water quality model was developed to simulate nitrogen removal in each

stormwater element. While nitrogen removal processes are complex, we can

simplify their function for this example by assuming that the removal of nitro-

gen in stormwater ponds and wetlands occurs through two primary pathways:

nitrification (conversion of ammonia to nitrate) and de-nitrification (conversion

of nitrate to nitrogen gas)[78, 87]. Nitrification is an aerobic process (oxygen

acts an electron acceptor), while denitrification is anoxic (nitrate as electron ac-

ceptor). While denitrification requires sufficient biomass, it is often not limited

by this requirement since plants, grass and other sources of carbon are readily

present in stormwater ponds and wetlands[88]. As such, oxygen availability be-

comes a critical factor in nitrogen removal. This can readily be tuned through

hydraulic control since retention can be used create anaerobic conditions.

We constrained our case studies by focusing only on denitrification, assum-

ing that the majority of nitrogen entering our system was in the form of nitrate.

While ammonia is present in some stormwater systems, prior measurement of

our study sites, as well other literature[78], indicated a nitrate-dominated runoff.

Future studies will investigate the more complex dual-pathway conversion. A
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synthetic time series for Nitrate inflow concentrations was generated to simulate

loads to upstream elements. This was achieved by assuming a rough correlation

between flow and nitrate (2mgL−1/m3s−1), which was based on prior measure-

ments[3].

The water treatment for each element was simulated using a continuously

stirred tank reactor (CSTR) representation, which is commonly used to simu-

late similar processes in wastewater treatment plants[89]. Given the dynamic

flow conditions that result from real-time control, a closed-form solution that is

based on hydraulic residence time does not adequately capture the change in

concentration of the pollutant. As such, it becomes necessary to expand into a

complete CSTR mass-balance relation[90–92] to model the concentration C of

the dissolved pollutant:

dc

dt
V +

dv

dt
C = qinCin − qoutC− kCV (2.3)

At each time step, the CSTR module communicates with the hydraulic mod-

ule to update the hydraulic states (dV
dt
, V, qout and qout). The transformation rate k

is computed at each time stepbasedon the hydraulic conditions of the stormwa-

ter element. Specifically, denitrification can begin once the oxygen concentra-

tion at the soil-water interface drops below a minimum threshold (following a

first-order decay assumption). Once this occurs, a constant removal rate k is

activated. After the element drains, soil is exposed to the air and must be sub-

merged before denitrification can begin again. As such, the model assumes

that cumulative denitrification is maximized when the water is in contact with

the most anaerobic soil area.

All simulations were implemented inMATLAB Simulink[93] using a fixed time

step solver (ode8 Dormand-Prince[94]) at 5 minute intervals. The step-wise cou-

pled modeling approach was implemented by representing each each mod-

ule (hydraulic, water quality, and control) as an individual Simulink object (Fig-
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Figure 2.3: MATLAB Simulink implementation of the first case study. The overall
model executed in a step-wise fashion and couples stand-alone hydraulic, water
quality, and control models.

ure.2.3). All of the source code, inputs and implementation details are attached

to this chapter as supplementary material.

2.5.2 Case Study 1: Local Control

Thefirst case study ismotivatedby theobjective of controlling a single stormwa-

ter basin, which was originally designed for flood remediation as a detention

pond (flow-through). The model parameters and physical attributes are pro-

vided in the appendix of this chapter. In its original configuration the pond

merely serves to attenuate peak flows, with little emphasis on water quality. By

equipping this pond with a control valve, its original functionality can remain
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Figure 2.4: Impact of real-time control to hydraulic behavior and nitrate treat-
ment, showing inflow concentrations (top panel), pond water height and out-
flows (second panel), nitrate concentrations inside the pond (third panel), and
cumulative nitrate loads exiting the pond (bottom panel).
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unaffected during large storms by simply keeping the valve open. Major water

quality benefits can arise, however, by controlling this pond during smaller and

more frequent events.

When enabled, the control algorithm keeps the valve closed and only opens

it if the water height exceeds 1.0 m to prevent the pond from overflowing. As a

further constraint, when the height exceeds 1.0 m the valve is modulated to en-

sure that outflows do not exceed 2m3s−1, which is the threshold at which down-

stream sediments are assumed tobe re-suspended. Two variations of the control

algorithm are also evaluated. The first strategy completely drains the pond be-

fore a rain event, thus maximizing captured volumes. Based on the magnitude

of the rain event (assumed to be known through a weather forecast), the second

strategy only partially drains the pond, maximizing the anaerobic conditions at

the soil-water interface and thus speeding up denitrification of the inflows. In

this case study, the height of the partially drained configuration was set to 0.15

m, assuming that this height would be sufficient to maintain the saturated con-

ditions and prevent the diffusion of oxygen into soil [87].

Compared to the uncontrolled scenario,which only attenuated thepeak flow,

both controlled scenarios retained a water height of 1.0 m after the storm (Fig-

ure.2.4). Since the pond can be drained at a later time, this volume of water

was effectively removed fromdownstream infrastructure during the storm event.

In static stormwater systems, volume reductions strategies are typically only as-

sumed tobepossible throughupstream infiltration and capture. As such, control

may effectively serve as a volume reduction strategy by shifting flows outside of

the storm window. Furthermore, outflows for the controlled scenarios resem-

bled a “step”, which kept flows below a predetermined erosion threshold. This

reduces downstream sediment loads, compared to the uncontrolled scenario,

whose outflows spent over 50%of the time exceeding the 2m3/s erosion thresh-

old.
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Nitrate inside the pond and the effluent revealed distinct dynamics between

each control configuration. In the uncontrolled scenario, very limited treatment

was present due to short hydraulic retention time. The effluent concentrations

peaked before dropping to zero since the pond drained completely following

the storm. The controlled scenarios did not see this drop-off in internal nitrate

because the flows were retained for treatment. The partially-drained scenario

showed lower nitrate concentrations at the beginning of the storm due higher

anaerobic soil area and denitrification potential.

While internal concentrations are an indicator of treatment dynamics inside

the pond, perhaps the best measure of treatment capacity is given by the cumu-

lative nitrate load exiting the pond (bottom panel, figure.2.4). The uncontrolled

scenario exhibited the largest cumulative nitrate loads since the runoff effec-

tively just flowed through pond with limited treatment. The controlled pond

showed a nearly 43% mass reduction (from 8.6 kg to 4.9 kg) in nitrate due to

increased volume capture, HRT and denitrification. The partially-drained control

strategy did indicate an improved load reduction compared to the fully-drained

controlled (14% improvement). This suggests that, rather than simply drain-

ing the pond before storm even, improved load reductions may be achieved

throughmore complex control approaches. More complex control comes at the

cost uncertainty however. The partially-drained controller assumed prior knowl-

edge about inflows to decide how much water to drain before a storm. If these

decisions are made around weather forecasts, the uncertainty embedded in the

inputs may cause adverse impacts, such as overflows. The anticipated benefits

of any control strategy should thus always be weighted against the uncertainty

of any inputs.

2.5.3 Case Study 2: System-level Control

The second case study evaluated how control strategies may change when

a system of multiple stormwater assets is controlled. A system of four elements
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Not Controlled
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321

Figure 2.5: System-level control case study: three ponds, two of which are con-
trolled, draining into a treatment wetland.

was considered, consisting of three parallel ponds draining into a constructed

wetland. (Figure.2.5). Two of the upstream ponds were controlled while the

treatment wetland and the other pond remained uncontrolled. The objective

was to control the upstream ponds to boost the nitrate treatment and reduce

the effluent concentrations at the outlet of the wetland. The configuration was

based on a real-world site currently being retrofitted for control in southeastern

Michigan.

Due to their large biomass area, wetlands have a higher nitrate treatment

capacity than ponds[95]. As such, the control objective was to keep the down-

stream wetland “active”, by maximizing its water height and thus the biomass

treatment area. While a prolonged inundation may damage the emergent veg-

etation in the wetland, the proposed control algorithmmaximizes the treatment

area of wetland only during the duration of the storm event, which should im-
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a system of stromwater elements: inflow concentrations (top row), pond water
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prove the treatment while only briefly inundating the wetland. In the uncon-

trolled scenario the flows from the upstream ponds actually added up to cause

the wetland to overflow (Figure. 2.6, fourth column), which also impaired treat-

ment.

The controlled scenario (see appendix for implementation details) balanced

the outflows from the two ponds to ensure that the wetland remained filled (2

m — just below its overflow height) as long as the uncontrolled third pond was

discharging. Once the third pond was entirely drained, the upstream ponds re-

tained any additional inflows, as long as it would not cause them to overflow.

This strategy eliminated downstream overflows while simultaneously increasing

the wetland’s anaerobic treatment area. As such, flows from the third pond were

exposed to a larger denitrification than in the uncontrolled case. Overall, the

controlled system achieved a 46.48% (from 17.9 kg to 9.6 kg) reduction in cu-

mulative nitrate loads. While some of this overall reduction was driven by the

fact that the two controlled ponds remained filled after the storm, thus retaining

some nitrate mass upstream, two major benefits arose compared to the uncon-

trolled scenario. Firstly, the wetland effluent concentrations were reduced over

time, showing a 15.25% reduction in concentration. Secondly, the case study

showed that a subset upstream elements may be controlled to reduce down-

stream hydraulic loads, which, similar to the first case study, has the potential to

reduce erosion.

A natural extension of this control strategy would be the direct control of

the wetland. In many real-world situations, however, not all elements of the sys-

tem will be controllable. In these instances, system-level benefits may still be

achieved via control of other elements. The purpose of this case study was to

illustrate one possible example focused on system-level nutrient control. While

simple, this control strategywas nonetheless effective at improving the hydraulic

and water quality behavior of the overall system. More complex control strate-

gies will be evaluated in the future, especially in the context of larger and more
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Figure 2.7: The stormwater feedback control loop. A desired watershed out-
come is compared, in real-time, to actual watershed state based on sensor mea-
surements. The control logic then adjusts the states of valves, gates and pumps
to drive the system toward the desired state. Disturbances, such as precipitation,
may drive the system away from the desired outcome and must be controlled
against when the feedback loop repeats.

heterogeneous stormwater systems.

2.6 Discussion

Sensor-driven, real-time control of stormwater presents an exciting newpara-

digm and research area. It is presently unclear, however, how results generated

by existing research, as well as the case studies presented in this chapter, can

be scaled to large watersheds. Many existing studies focus solely on the control

of individual elements and, specifically, on sediment reduction or flood reme-

diation. While the case studies in this chapter took a step toward simulating

the removal of more complex dissolved pollutants in a multi-element system, it

is important to note that the control logic was uniquely tailored to one specific

storm and study area. The efficacy of the controls in our case studies was re-

liant on the ability to hold water after a storm to allow for extended treatment.

This strategy may be impacted by limits on hydraulic retention time. Modifying

the water levels and residence times, may introduce issues related to aesthetics,

plant survival and mosquito breeding[96]. Thus, the potential benefits to water

flow and quality must studied as part of a mutli-objective optimization problem.
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Much of the real word is underpinned by significant uncertainty, especially

related to weather forecasts. Since these forecasts determine when and how

muchwater needs to be released, the stochastic nature of weathermust be taken

into consideration when controlling such systems.

Control strategies may also change entirely if the removal of different pol-

lutants is required. A simple example can be given by watersheds in which

runoff is dominated by ammonia rather than nitrate, thus requiring stages of

both nitrification and denitrification. The intricacy of control strategies will likely

increase with the number of objectives[97] and the complexity of runoff dynam-

ics. This introduces the exciting paradigm of controlling the overall system to

create treatment chains in which individual elements are tuned to achieve spe-

cific objectives. By tuning the hydraulic behavior of each element, there will

be an unprecedented opportunity to begin applying process-based knowledge

from wastewater treatment to distributed stormwater modeling. The model-

ing of such complete control approaches will be made easier by the simulation

approach proposed in Figure.2.2, which will permit for coupling of knowledge

spanning hydrology, hydraulics, and water quality.

2.7 Knowledge gaps

While research is needed to improve our fundamental understanding and

modeling of system-level stormwater, two major knowledge gaps become evi-

dent whenwe view stormwater control in a system-theoretic framework. This can

be accomplished by visualizing it as a feedback loop (Figure 2.7), a technique

common in the control communities and dynamical systems theory[98]. This

loop estimates the difference between a desired watershed outcome (down-

stream nitrate concentrations, for example) and the actual watershed outcome

and feeds it into control logic to drive the system toward the desired outcome.

The physical requirements of this feedback loop, which include sensors, con-
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trollers and the physical infrastructure already exist or havematured to the point

at which they do not present a major research challenges. Rather, our biggest

knowledge gaps span the virtual components of the feedback loop and include

the (1) assimilation of noisy, sparse, and heterogeneous sensor data into real-

time models (state estimation), and (2) the automated synthesis of control logic

in response to these estimates.

2.7.1 Toward a new generation of real-time models

Unlike in static infrastructure systems, where adaptation strategies take place

on monthly or yearly times scales, real-time control reduces adaptation to min-

utes or seconds. Existing stormwater models have not been designed to inter-

face with real-time data. Rather, sensor data is often used merely as a conve-

nience to parameterize the model. It is not uncommon for these predictions to

drift away from real-world conditions over themodeling horizon. Given the need

to base control actions on the best sources of information, a new generation of

data-driven and real-time models must be developed. Rather than executing

unchecked into the future, they will “learn” from the data and update their states

to reflect changing field conditions. Suchmodels will need to be self-calibrating,

robust to uncertainty, and computationally efficient to execute in the amount of

time required to make control decisions. This raises the question: how com-

plex does a system model need to be to enable an effective and robust control

loop? While the answer to this question remains to be investigated, many other

control applications (aircraft autopilots, for example) suggest that it is very likely

that stormwater control models will not need to be as complex as the models

currently used for simulation. This does not mean that existing physically-driven

models or our proposed simulation framework (figure 2.2) will not be needed. In

fact, existing simulations approaches will be critical in the planning and design

of control systems, while real-time models will be used for the actual control.

In our case studies an assumption was made that control actions were in-

31



formed by known in-situ conditions, such as water flows, pond levels, and nitrate

concentrations. This will be far from true in many real-world control systems,

where sensors will be sparsely placed and noisy. New models will thus have

to be developed to make predictions at locations that are uninstrumented and

for parameters that are unmeasured. By quantifying the uncertainty inherent in

such models, it will also be possible to develop sensor placement algorithms to

determine how many sensors are required and where they should be placed to

improve real-timemodel performance. Many of the methods required for these

tasks already exist in other communities (system identification, data assimilation,

machine learning, etc), but their application to stormwater systems remains to

be investigated.

2.7.2 Control Algorithms

Presently, it is unclear which real-time control and optimization techniques

will be the most robust and suitable for distributed stormwater systems. Most

current studies, as well as the case studies presented in this chapter, have been

built around simple rule-based control (e.g. drain a pond before a storm). While

such control approaches preserve intuition and incorporate operator expertise,

the approach does not scale for systems of arbitrary sizes. This impedes the

ability to transfer lessons from one watershed to another. The complexity of

operational rules will increase drastically with the size of a watersheds or ex-

tended control objectives. The logic associated with operating a network of dis-

tributed stormwater assets, comprised of hundreds or thousands of controllers,

will become overwhelming unless formal mathematical methods are developed

to abstract the physical stormwater dynamics into a system-theoretic framework.

These mathematical underpinnings will finally allow for performance or safety

guarantees to be provided. This, in turn, will enable new methods to determine

how many controllers are needed and where they should be placed to ensure

that desired watershed outcomes are met.
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2.8 Conclusions

The goal of this chapter was to illustrate the need for a “smart” stormwater

systems theoretical framework. Before such systems become adopted, much

work remains to be conducted on simulating their performance, which can be

accomplishedby coupling existing hydrologic, hydraulic andwater qualitymod-

els. As demonstrated by our case studies, real-time control of stormwater has

the potential to significantly improve the performance of existing infrastructure,

introducing new alternatives to tightlymanage nutrients,metals and other pollu-

tants in urbanwatersheds. Considering current fundingmechanisms for stormwa-

ter, especially in the United States, the cost of retrofitting will provide a more

budget-conscious alternative to new construction while achieving similar or bet-

ter water quality outcomes. Aside from technical or research gaps, which must

be addressed before these systems become reality, it will be imperative to en-

courage a broad community of researchers, engineers, and cities to adopt these

technologies as part of their existing toolboxes. To that end, our team has been

spearheading the open-storm.org portal, a collaborative and open-source ini-

tiative aimed at sharing end-to-end blueprints and tutorials on software, hard-

ware and sensors required to instrument and control urban watersheds. As the

community grows around this exciting new area of research, open-storm.orgwill

track and disseminate its future work.
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CHAPTER 3

Shaping Streamflow in Real-time Using a

Sensor-actuator Network

3.1 Introduction

Burdened by aging infrastructure, growing populations and changing hydro-

logic conditions, many municipalities struggle to adequately manage stormwa-

ter [3]. Flash flooding can occur when stormwater infrastructure is unable to

convey runoff away from developed areas [99]. At the same time, pollutants

from urban runoff—such as nutrients, heavy metals and microbes—can contami-

nate downstreamwaterbodies, damaging aquatic habitats and resulting in toxic

algal blooms [3]. Traditionally, civil engineers have addressed these challenges

by building larger storage and conveyance infrastructure (e.g.basins andpipes).

However, this approach suffers froma number of important disadvantages. First,

new construction is expensive, and is often unfeasible for chronically under-

funded stormwater departments [100]. Second, static designs are inflexible to

future changes inweather, population growth, and regulatory requirements [99].

Third, overdesigned conveyance systems can cause flooding, erosion and dam-

age to downstream property and ecosystems, which ultimately necessitates fur-

ther remediation and construction [3]. In the face of increasing urbanization and

more frequent extreme weather events [101, 102], new strategies are needed to

ensure effective management of stormwater.
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In contrast to traditional steel-and-concrete solutions, real-time control has

emergedas a novelmeans to improve theperformanceof stormwater systems at

minimal expense. Drawing on wireless communications, low-power microcon-

trollers, and modern advances in control theory, these systems achieve perfor-

mance benefits by reconfiguringwater infrastructure in real time [3, 8]. Real-time

control of stormwater basins, for instance, can improve water quality following

a storm event by enhancing removal of contaminants [3]. Similarly, active reg-

ulation of discharges through constructed wetlands can improve water quality

and rehabilitate aquatic habitats [7, 8]. More broadly, by controlling flows over a

large network, operators can harness the latent treatment capacity of many dis-

tributed stormwater assets, effectively turning urbanwatersheds into distributed

wastewater treatment plants [3, 8].

A small number of studies have evaluated the benefits of real-time stormwa-

ter control. Most of these studies describe retrofits of isolated sites for rainwa-

ter capture and on-site pollutant treatment. Middleton and Barrett (2008) show

that equipping existing retention basins with real-time controllers can reduce

stormwater pollutant loads downstream by increasing the retention time of cap-

tured stormwater [59]. Roman et al. (2017) describe an adaptively-controlled

rainwater harvesting system in New York City that captures 35–60% more rain-

water than conventional systems [103]. Similarly, Klenzendorf et al. (2015) de-

scribe a rainwater harvesting pilot project and a retention basin retrofitted for

real-time control in Austin, Texas [104]. The authors show that the controlled re-

tention basin reduces deposition of nitrogen and total suspended solids (TSS)

into the downstream system. These studies demonstrate that active control can

significantly improve the performance of existing sites at a lower cost than new

construction. However, benefits are only examined at a local scale. This dis-

tinction is important, given that localized practices do not necessarily achieve

the best system-scale outcomes. Indeed, some research indicates that when lo-

cal best management practices are implemented without accounting for global
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outcomes, they can produce adverse flow conditions at the watershed scale [6].

Currently, the benefits of coordinated stormwater control are poorly under-

stood. Inspiration for the benefits of system-level control can be taken from

sewer operations. While most sewer systems still only rely on local control logic,

such as water level setpoints [105], recent work has demonstrated how wider

benefits can be achieved through the cooperative action of multiple controllers

working in tandem. The cities of Copenhagen and Barcelona, for instance, im-

plement a combination of local rule-based control, and some higher-level opti-

mization that jointly coordinates actions between groups of actuators [67]. Mon-

testruque and Lemmon (2015) describe CSOnet, a sewer control network con-

sisting of 120 sensors and 12 actuators in the city of South Bend, Indiana [100].

This network uses dynamic control algorithms to adaptively balance hydraulic

loads throughout the sewer’s interceptor lines, ultimately reducing combined

sewer overflows (CSOs) by as much as 25%. While these systems achieve im-

pressive system-scale control of a large sewer networks, it is still unclear how

lessons learned from these proprietary sewer control approaches may translate

to the broader control of urban watersheds and separated stormwater systems.

In this study, we describe an approach for managing stormwater discharges

across an urban watershed using internet-connected valves and sensors. We

show that by actively coordinating releases from two parallel retention basins,

we can produce desirable flow regimes at a target location downstream, which

would not be possible with passive infrastructure alone. This study takes place

in four phases. In the first phase, we describe the development of a real-time

stormwater control system in the city of Ann Arbor, Michigan. Building on an ex-

isting wireless sensing and control network described in Bartos et al. (2018) [8],

wedemonstrate how static retentionbasins canbe retrofittedwith internet-controlled

valves, and present a newmethod for controlling these basins using a controller

scheduling application. In the second phase, we characterize the ability of the

control network to shape the downstream hydrograph by releasing impulses of
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different sizes from two retention basins and determining the magnitude, travel

time, and decay envelope of the resulting waves. In the third phase, we use

the data gathered from this exploratory analysis to determine the control in-

put needed to produce a flat hydrograph at the outlet of the watershed. We

discuss how this control strategy can be used to prevent erosion and reduce

phosphorus loads into downstream waterbodies. Finally, in the fourth phase,

we show how control inputs can be timed to produce synchronized and de-

synchronized pulses at a downstream target location. In addition to demonstrat-

ing the precision of the control system, this experiment shows how interleaving

pulses can be used to free up capacity in upstream retention basins without in-

ducing synchronized flashy flows downstream. We discuss how these simple

control “building blocks” can be used by system operators to achieve more so-

phisticated stormwater management targets. Unlike most existing systems, our

control network uses an open-source hardware and software stack, making it

freely available to municipalities that are interested in implementing their own

smart stormwater control systems. Thus, when combined with supplementary

how-to documentation on open-storm.org, this study provides the foundation
for an “operator’s manual” for real-time control of urban watersheds.

3.2 Study area and technologies

3.2.1 Study area

This study focuses on awireless control network in theMallets creekwatershed—an

urbanized creekshed located in the city of Ann Arbor, Michigan. This creekshed

has been the focus of ongoing efforts to reduce peak flows and improve water

quality [106]. The creekshed has an area of about 26.7 km2 and contains streams

that altogether exceed 16 km in length. These streams drain into theHuron River

and ultimately the Great Lakes. With high areas of development and over 33%

imperviousness, little natural land is available for infiltration and uptake, result-

ing in flashy flows that erode stream banks and result in unstable habitats. These
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Figure 3.1: Overview of the study area. The map (left) shows the location of
relevant control and sensor sites, additional sensor sites (light grey), flow paths
between each site (dark grey), and the contributing area of the watershed (light
blue). Site images (right) show the two control sites (A& B) alongwith two down-
stream sensor locations (C & D).

rapid flows drive stream erosion and increased transport of sediments and nu-

trients out of the watershed [106]. While there are no lakes in the creekshed,

there are several natural and manmade stormwater basins that that have been

constructed to help stabilize flows throughout the creekshed and mitigate the

impacts of non-point source runoff.

To investigate the effects of real-time control on the creekshed, we deploy

a control network that measures and regulates flows from two large stormwater

basins. The control network consists of four sites centered around themain stem

of the creek. Figure 3.1 shows the locations of each of these four sites in the con-

trol network. Water first flows into a large retention basin with a storage capacity

of 19M liters (site A), located at the most upstream point in the control network.

From this retention basin, water travels 1.4 kmdownstream to a constructedwet-

land (site C), designed to slow the flow of water and remove contaminants. After

passing through thewetland,water travels another 3 km until it is joined by flows

arriving from a smaller retention basin with a storage capacity of 7.5M liters (site
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B). The combined flows exit the creek at the outlet of Mallet’s creek (site D), af-

ter which they enter the Huron River. Internet-controlled valves are deployed at

the two stormwater basins at sites A and B. These valves are used in subsequent

experiments to regulate flows at the outlet of the creek.

3.2.2 Technologies and Architecture

Flows throughout the creekshed are measured and controlled using a cus-

tom wireless sensing and control network. This network is built using the open
storm hardware and software stack, which has been described and documented
in Bartos et al. (2018) [8]. The hardware layer uses an ultra-low power ARM

Cortex-M3 microcontroller (Cypress PSoC), which implements the sensing and

control logic in its firmware. Internet connectivity is achieved using a CDMA

cellular modem (Telit DE910), which facilitates wireless bi-directional communi-

cation between the field device and a remote server. The full unit is powered us-

ing a solar-rechargeable 3.7V lithium-ion battery. To measure the hydrologic re-

sponse of the system, wireless sensor nodes are deployed along the main stem

of the creek. Each sensor node is equipped with an ultrasonic depth sensor

(Maxbotix MB7384) to measure water levels (shown in Figure 3.1, Site C). At the

time of writing, sensor nodes can be constructed using less than $500 USD of

parts.

To control discharges throughout the creekshed, stormwater basins are retrofitted

with one of two valves: (i) a 0.3mdiameter butterfly valve (DynaquipMA44) (Fig-

ure 3.1, Site B) or (ii) a 0.3 m gate valve (Valterra 6912) mated to a linear actuator

(AEI 6112CH) (Figure 3.1, Site A). Each control valve is connected to a sensor

node. The valves are actuated by themicrocontroller and powered by recharge-

able 12V sealed lead-acid batteries. Solar panels allow the control sites to op-

erate without line power. Assuming that the valve can be attached to a basin’s

outlet without structuralmodification, each control site can be constructed using

less than $3500 USD of parts at the time of writing.
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Remote control of valves and sensors is implementedusing apolling scheme,

in which field-deployed nodes request commands from a remote server (Fig-

ure 3.2). To conserve power, nodes spend most of their time in a deep sleep

state, consuming only 1–10µAof current. Uponwaking up, each node takes sen-

sor readings and transmits the readings to a cloud-hosted time series database

(InfluxDB) via authenticated (and optionally encrypted) HTTP requests. Before

going back to sleep, the node polls a set of commands from a dedicated feed in

the same database. The commands may include, but are not limited to, chang-

ing the sampling frequency, triggering additional sensor readings, or opening

a valve. Operations can be cancelled and rescheduled either by the applica-

tion or by an operator. This is useful if, for example, the application detects

that a control action was not successfully executed and that pending operations

need to be rescheduled. Most importantly, the database supports modern web

service standards and application programming interfaces (APIs), which allow

the control logic to be quickly implemented via simple web applications. These

applications can be written in any number of popular programming languages

(Python, Matlab, etc). This feature improves flexibility, reduces reliance on low-

level firmware updates, and allows for the seamless integration of external data

sources, such as public weather forecasts [8, 107].

For the experiments described in this study, field devices in the creekshed

are controlled using a simple Python web application. This application can be

executed in either automatic or manual mode. In automatic mode, the applica-

tion queries water level sensor feeds, rainfall forecasts, and external flow mea-

surements from a publicly-listed measurement station at the outlet of the creek-

shed (USGS 04174518). Based on these sensor readings, new commands are

then written to the database to open and close valves. In manual operation, a

predefined set of commands is written to the database, then subsequently ex-

ecuted by the field device. For this study, the manual operation mode is used.

The application toolchain is implemented on an Amazon Web Services (AWS)
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Figure 3.2: Control system architecture. Field-deployed nodes use a polling sys-
tem to download and execute commands issued from a remote server. Control
actions can be specified manually, or through automated web applications and
scripts.

medium-sized linux Elastic Compute Cloud (EC2) instance.

3.3 Characterizing control actions

Before evaluating potential control strategies, we first characterize the abil-

ity of each control site to shape downstream flows. Specifically, we quantify the

travel time P and decay time D, of various waves as they move between the

originating control site and the outlet of the watershed. The characterization is

accomplished by releasing pulses of different durations from each stormwater

basin and then observing the resulting waves that these pulses generate down-

stream. To limit confounding effects caused by rainfall, these experiments are

carried out during dry conditions (at least 4 days following a storm). Figure 3.3

shows a 1-hour release, 4-hour release, and 48-hour release from retention basin

A (shown left to right, respectively). The 48-hour release empties the reten-
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Figure 3.3: Characterization of control actions from site A. In the first two exper-
iments, the valve at site A is opened for 1-hour and 4-hour durations. For the
third experiment, the valve is held open indefinitely. The resulting waves travel
through a constructed wetland (site C) before arriving at the outlet of the water-
shed. Wave depth (black line) is measured at the wetland, while flow rate (red
line) is measured at the outlet.

tion basin,meaning that this release characterizes themaximumpossible output

from site A.The travel times for each wave from site A to site C are approximately

3.5 hours (time to start of rise) and 6–8 hours (time to peak), with faster rise times

for the larger releases due to nonlinearities in the speed of wave propagation.

The decay times for each release are 6 hours, 18 hours and 44 hours, respec-

tively. From this experiment, it can be seen that the maximum change in flow

that site A can generate at the outlet is roughly 0.17 m3/s. Similar experiments

are used to characterize site B. From these experiments, we estimate average

travel times from site B to the outlet of 1.5 hours (time to start of rise) and 1.8

hours (time to peak), with an average decay time of 3 hours, and a maximum

change in flow of approximately 0.2 m3/s.

In addition to release duration, sites are also characterizedwith respect to the
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hydraulic head (water level) of the originating retention basin. Figure 3.4 shows

the result of releasing three 1-hour pulses from site B, without allowing the basin

to refill between releases. While the same duration is used for each release, the

hydraulic head (stored volume) of the retention basin decreaseswith each pulse.

Thus, the resulting wave becomes smaller with each successive opening of the

valve, even though the same input signal is used. In spite of this difference, the

travel time and decay time of the wave remain consistent between each release.

The magnitude of the resulting wave varies from roughly 0.2 m3/s to 0.13 m3/s,

depending on the water level in the basin.

Although retention basin B is significantly smaller than retention basin A,

it can produce a comparable change in flow at the watershed outlet (approxi-

mately 0.2 m3/s). This effect can be attributed to two main factors. First, site B is

located closer to the outlet (3.0 kmas opposed to 5.9 km for siteA),meaning that

the wave is subject to less hydraulic dispersion. Second, the retention basin at

site B is elevated higher above the receiving stream,meaning that flows exit the
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control structure more rapidly than flows released from site A. Thus, compared

to site A, site B produces short pulses with a rapid onset and large peak. Despite

its relatively smaller volume, control actions from site B must thus be tailored to

avoid generating flashy flows at the outlet.

One crucial result of these experiments is that for the purposes of control,

nonlinearities in wave propagation can be safely ignored. Shallow-water waves

exhibit a nonlinear relationship between wave height and wave speed,meaning

that larger waves propagate faster [108]. If these nonlinearities were significant,

then control strategies would need to account for changes in travel time due to

(i) variations in release durations, (ii) variations in basin head, and (iii) superpo-

sition of waves originating from different locations. For the system examined in

this study, the effect of these nonlinearities is small. Namely, while nonlinearities

in wave propagation affect the shape of the resulting hydrograph (skewing the

peak toward the left), they do not significantly affect the bulk travel time of an iso-

lated wave. Specifically, the travel times for Site A and Site B remain consistent

(3.5 hours and 1.5 hours, respectively) despite scheduling releases of different

durations and magnitudes. This result is consistent with findings from previous

studies that use linear dynamics for stormwater system control [21, 109, 110].

Thus, for the scale of our creekshed the travel time of a wave originating at an

upstream stormwater basin can be considered independent of both the amount

of water released and the water level of the originating basin. Moreover, super-

position of two waves from two parallel sources does not effect a noticeable

change in bulk wave speed. This result suggests that for the purposes of con-

trol, the channel networkmaybe approximated as a linear system inwhichwaves

originating from each retention basin can be superimposed in order to produce

a desired output hydrograph downstream.

By characterizing thedownstream response to various impulsive inputs, these

initial experiments yield a set of “building blocks” that are subsequently used

to achieve more complex control objectives at the watershed outlet. While the
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propagation of waves within a channel network is described by nonlinear equa-

tions, we find that a linear system approximation adequately describes the dy-

namics needed to generate control strategies. Thus, the characterization exper-

iments described in this section are conceptually analogous to quantifying the

unit impulse response of a linear system. This framework suggests that desired

waveforms can be generated via simple linear combinations of known input sig-

nals. With this conceptual model in hand, we carry out a number of control ex-

periments to showcase the utility of the stormwater control network. First, we

show how pulse-width modulation of a valve can be used to produce a flat hy-

drograph that meets but does not exceed a given flow threshold. Next, we show

how valve releases can be timed to generate synchronized and desynchronized

waves at the outlet. These experiments provide recipes for managing releases

from upstream retention basins while simultaneously fostering desirable flow

conditions downstream.

3.4 Set-point hydrographs

Real-time control can be used to flatten downstreamhydrographs, helping to

reduce erosion andmaintain healthy aquatic ecosystems. In passive stormwater

systems, hydrographs often exhibit a distinct peak, preceded by a rapid rise and

followed by a slower decay. While typically associated with rain events, this phe-

nomenon can also be observed when water is released from a retention basin

(see Figures 3.3 and 3.4). Peak flows that exceed downstream capacity will often

lead to flooding. Furthermore, urban streams can become unstable if a criti-

cal flow velocity or flow rate is reached [111]. Exceedance of these thresholds

may lead to ecological damage and stream erosion, as well the mobilization of

sediments. These sediments in turn may carry nutrients, metals and other pol-

lutants downstream, impairing water quality and promoting the growth of algal

blooms [37]. This particular impairment underpins the major challenge of “ur-

ban stream syndrome”, forcingmany cities to spendmillions of dollars to reduce

downstream flow rates [112, 113]. While active control has been proposed as a
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means to condition stormwater flows, the specific control strategies needed to

achieve stable flow conditions within an urban watershed are currently not well

understood.

To address this challenge, a sequenceof control actions is designed to yield a

constant set-point condition at the outlet of the watershed. Specifically, we aim

to create a flat hydrograph, for which the flow rate remains close to (but does

not exceed) a specified value. While the set-point used in this experiment is

chosen arbitrarily, this threshold may be chosen to control for objectives related

to downstream flooding andwater quality—for instance, ensuring that the critical

flow threshold for sediment transport is not surpassed. To achieve a constant

set-point flow rate,wederive inspiration frompulse-widthmodulation—amethod

used in electrical systems to generate analog signals fromdiscrete digital pulses.

Isolated pulses of water are emitted from the control site, spaced apart such that

the arrival time of each wave overlaps with the receding limb of the prior wave.

As the pulses travel through the channel network, they disperse, causing the

individual waves to overlap and combine. The resulting superposition of partly-

dispersed waves results in an approximately constant flow rate.

As seen in the hydrograph response (Figure 3.5), the “flat hydrograph” objec-

tive is achievedbymodulating the valve position in successive 30-minute pulses.

The flows at the outlet remain approximately flat, without significantly exceeding

a setpoint of 0.04 m3/s. Of course, the shape is not perfectly flat, given the large

distance between the two sites and nonlinearities inherent in wave propagation.

However, these experimental results show that active modulation of a valve can

produce highly stable flow conditions downstream that would not be possible

using passive infrastructure alone. In a real-world scenario, this control strat-

egy could be used to drain a watershed as fast as possible without exceeding

a critical flood conditions downstream. Minimizing the change in flows down-

stream also reduces the likelihood of stream erosion. From our prior studies in

this creekshed that were not affected by real-time control [114], it can be esti-
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they travel through the 6 km-long stream, leading to a relatively flat response at
the outlet of the watershed.

mated that pollutant concentrations during this flat stage were no greater than

127 mg/L for sediment and 0.209 mg/L for total phosphorus. For comparison,

keeping the valve open would have resulted in concentrations of at least 390

mg/L for sediment and 0.618 mg/L for total phosphorus. By modulating the

valve position to achieve a relatively flat and steady outflow, the control actions

likely reduced the total mass of solids and phosphorus that would otherwise

contribute to ecological damage and harmful algal blooms. Future studies will

confirmand refine these estimates bymeasuring real-timewater quality changes

that result from control.

3.5 Coordinated releases between multiple control sites

Motivated by the larger goal of watershed-scale control, a final experiment

is devised to evaluate the level of precision that can be achieved when coordi-

nating releases from multiple sites. Namely, we schedule releases from the two

controlled basins in order to produce synchronized and interleaved pulses at

the outlet. Before running the experiment, we first determine the control sig-
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nals needed to generate the combined and interleaved waves, respectively, by

assessing the travel time and decay time of waves released from each retention

basin. Figure 3.6 shows the hydrographs resulting from 1-hour pulses released

simultaneously from site A and site B. Based on the travel times of each wave, it

can be seen that in order to achieve a synchronized wave at the outlet, a 1-hour

release from site B must be scheduled approximately six hours after a 1-hour

release from site A. Conversely, to achieve an interleaved pattern at the outlet,

the following pulse train can be used: (i) release a 1-hour pulse from site A, (ii)

release a pulse from site B approximately 12 hours later, (iii) release a pulse from

site A after waiting an additional four hours, and (iv) repeat the pattern starting

at step (ii).
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Once the input signals required to produce each desired shape are known,

we schedule a series of commands to be executed by each valve. The exper-

iment is divided into two stages. During the first stage, flows from the control

sites are released such that the peaks of the hydrographs overlap. In the second

stage of the experiment, the flows are released off-phase, such that the flows

arriving from one site begin exactly when the flows from the other site recede.

Figure 3.7 shows the result of this experiment, with the overlapping waves oc-

curring fromhours 6 to 15, and the interleavedwaves occurring fromhours 15 to

44. As hypothesized earlier, the superposition of waves is approximately linear.

In other words, the maximum change in flow is approximately equal to the sum

of the maximum flow of each component wave. Moreover, the superposition of

the two waves does not appear to appreciably change the bulk travel time.

This experiment shows that real-time control of stormwater systems can achieve

precise control over downstream flow conditions, and also suggests a strategy

for coordinating releases in order to remove stormwater from retention basins
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while simultaneously achieving target flow conditions downstream. Like the set-

point experiment, an interleaving control pattern can be used to de-water up-

stream retention basins without exceeding a particular flow threshold down-

stream. When waves generated by several upstream retention basins combine,

they can generate large, flashy flows at a downstream location. This in turn can

contribute to erosion of the surrounding channel. For this reason, it is desirable

to avoid the collision of waves from two different upstream sources. By inter-

leaving flows from upstream retention basins, one can free up capacity in the

system without generating adverse flow conditions downstream. More broadly,

the results of this experiment demonstrate the fine level of flow control that can

be achieved across urban watersheds using a low-cost sensor and control net-

work. While the underlying control logic only uses rudimentary time-of-travel

metrics it nonetheless produces desirable flow regimes that would be difficult

to achieve with passive infrastructure alone. As such, this experiment builds a

foundation for more complex control strategies by verifying that the watershed

responds consistently and predictably to individual control actions. This result

suggests that future studies may one day demonstrate more complex, possi-

bly near-arbitrary, hydrograph shapes. Time of travel may not be sufficient for

such approaches, however, andmore complex and analytical control techniques

should be considered.

3.6 Conclusions

This study shows how internet-connected stormwater control valves can be

used to shape streamflows within a large urban watershed. To our knowledge,

this study is the first to document how coordinated releases between multi-

ple stormwater control sites can satisfy system-scale watershed performance

goals—such as maintaining downstream flow at a constant rate or preventing

sediment transport. Building on an existing wireless sensor network, we demon-

strate how static stormwater retention basins can be retrofitted with internet-

controlled valves to enable active control at a low cost. Characterizing the sys-
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tem in a series of exploratory experiments, we find that a linear approximation

is sufficient to describe the downstream response associated with a given input.

Next, we use the system to generate two flow conditions downstream: (i) a set-

point hydrograph in which flow is maintained at a roughly constant rate, and (ii)

a series of overlapping and interleaved waves. We find that pulse-width modu-

lation of upstream valves generates a flat downstream response. Similarly, inter-

leaving of discharges provides an effective tool for emptying upstream retention

basins without inducing flashy flows downstream. In addition to demonstrating

the precision of the control system, these experiments suggest strategies for

managing stormwater transfers across a watershed while maintaining desired

flow conditions. To make the smart stormwater system described in this chapter

accessible to water managers worldwide, all hardware, software and documen-

tation for this project are made available at open-storm.org.
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CHAPTER 4

Deep Reinforcement Learning for the Control of

Stormwater Networks

4.1 Introduction

Urban stormwater and sewer systems are being stressed beyond their in-

tended design. The resulting symptoms manifest themselves in frequent flash

floods[4] and poor receiving water quality[5]. Presently, the primary solution to

these challenges is the construction of new infrastructure, such as bigger pipes,

basins, wetlands, and other distributed storage assets. Redesigning and re-

building the existing stormwater infrastructure to keep in pace with the evolving

inputs is cost prohibitive for most communities[3]. Furthermore, infrastructure

is often upgraded on a site-by-site basis and rarely optimized for system-scale

performance. Present approaches rely heavily on the assumption that these in-

dividual upgrades will add up to cumulative benefits, while the contrary has

actually been illustrated by studies evaluating system-level outcomes[6]. The

changing and highly variable nature of weather and urban environments de-

mands stormwater solutions that can more rapidly adapt to changing commu-

nity needs.

Insteadof relying on new construction, a newgeneration of smart stormwater

systemspromises todynamically re-purposeexisting stormwater systems. These
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systems will use streaming sensor data to infer real-time state of a watershed

and respond via real-time control of distributed control assets, such as valves,

gates, and pumps[3]. By achieving system-level coordination between many

distributed control points, the size of infrastructure needed to reduce flooding

and improve water quality will become smaller. This presents a non-trivial con-

trol challenge, however, as any automateddecisionsmust be carriedwith regard

to public safety and must account for the physical complexity inherent to urban

watersheds[7, 105].

In this chapter, we investigateDeep Reinforcement Learning for the real-time

control of stormwater systems. This approach builds on very recent advances in

the artificial intelligence community, which have primarily focused on the control

of complex autonomous systems, such as robots and autonomous vehicles[115,

116]. In this novel formulation, our algorithm will learn the best real-time control

strategy for a distributed stormwater system by efficiently quantifying the space

of all possible control actions. In simple terms, the algorithm attempts various

control actions until discovering those that have the desired outcomes. While

such an approach has shown promise across many other domains, it is presently

unclear how it will perform and scalewhen used for the real-time control of water

systems, specifically urban drainage networks.

The fundamental contribution of this chapter is a formulation of a control al-

gorithm for urban drainage systems based on Reinforcement Learning. Given

the risk to property and public safety, it is imprudent to hand over the control

of a real-world watershed to a computer that learns by mistake. As such, a sec-

ondary contribution is the evaluation of the Reinforcement Learning algorithm

across a series of simulations, which span various drainage system complexities

and storms. The results will illustrate the benefits, limitations, and requirement

of Reinforcement Learning when applied to urban stormwater systems. To our

knowledge, this is the first formulation of Deep Reinforcement Learning for the

control of stormwater systems. The results of this study stand to support a foun-
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dation for future studies on the role of Artificial Intelligence in the control of ur-

ban water systems.

4.1.1 Real time control of urban drainage systems

Since the European Union’s Directive on water policy [63], there has been a

significant push towards the adoption of real-time control for improvingwastew-

ater and sewer systems [67, 105]. Many of these control approaches fall broadly

under the categories of real-time control (RTC, control decisions made solely on

the real-time state of the system), and Model Predictive Control (MPC, decisions

that account for predicted future conditions). During the past decade, MPC

has emerged as a state-of-the-art methodology for developing control strate-

gies and analyzing their potential for controlling urban drainage and sewer net-

works in simulated setting. MPC has been used to regulate dissolved oxygen

in the flows to aquatic bodies [117], control inflows to wastewater treatment

plants [118], and enhance the system-level performance and coordination of

sewer network assets [27, 67]. These and many other simulation-based studies

[119] have illustrated the benefits of control, the biggest of which is the ability to

cost-effectively re-purpose existing assets in real-time without the need to build

more passive infrastructure.

The performance of MPC depends on the extent to which the underlying

process can be approximated using a linearmodel [120]. A benefit of this linear-

ity assumption is the ability to analytically evaluate the stability, robustness and

convergence properties of the controller [98], which is valuable when provid-

ing safety and performance guarantees. Network dynamics of storm and sewer

systems and transformations of the pollutants in runoff are known to be heavily

non-linear. This demands a number of approximations and a high level of ex-

pertise when applying Model Predictive Control. Furthermore, real-world urban

watersheds are prone to experiencing pipes blockages, sensor breakdowns,

valve failures, or other adverse conditions. Adapting and re-formulating linear
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control models to such non-linear conditions is difficult, but is being addressed

by promising research [119]. The constraints of linear approximations and the

need for adaptive control algorithms open the door to exploring other control

methodologies, such as the one presented in this chapter.

4.2 Reinforcement Learning

Across the Artificial Intelligence and Behavioral research communities, Re-

inforcement Learning (RL) has emerged as a state-of-the-art methodology for

autonomous control and planning systems. Unlike in classical feedback control,

where the controller carries out a pre-tuned and analytical control action, an RL

controller (i.e. an RL agent) learns a control strategy by interacting with the sys-

tem - effectively trying various control strategies until learning those that work

well. Rather than just learning one particular control strategy, an RL agent contin-

uously attempts to improve its control strategy by assimilating new information

and evaluating new control strategies [31]. RL can be used in a model free con-

text since the system’s dynamics are implicitly learned by evaluating various con-

trol actions. Leveraging the recent advancements in Deep Neural Networks and

the computational power afforded by the high performance clusters (HPCs), RL

agents have been able to plan complex tasks, such as observing pixels to play

video games at a human level [115], defeating world champions in the game

of GO [121], achieving “superhuman” performance in chess [122], controlling

high speed robots [123], andnavigating autonomous vehicles [124]. Despite the

wide adoption of Deep Neural Network-based Reinforcement Learning (Deep

RL) in various disciplines of engineering, its adoption in civil engineering disci-

plines has been limited [125–127]. Deep RL control has yet to be applied to the

real-time control of urban drainage systems.

Deep RL agents approximate underlying system dynamics implicitly, hence

not requiring a simplified or linearized control model [31]. An Deep RL agent

instantaneously identifies a control action by observing the network dynamic,
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actions of the distributed control assets in real-time to achieve watershed-scale
benefits.
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thus reducing delay in the decision process [115, 122]. The explorative nature of

theDeepRLagents also enables themethodology to adapt its control strategy to

changing conditions of the system [31]. Hence, Reinforcement Learning shows

promise as a potential alternative or supplement to existing control methods for

water systems. To that end, the goal of this chapter is to formulate and evaluate

of Reinforcement Learning for the real-time control of urban drainage systems.

The specific contributions of the chapter are:

1. The formulation and implementation of a Reinforcement Learning algo-

rithm for the real-time (non-predictive) control of urban stormwater sys-

tems.

2. An evaluation of the control algorithm under a range of storm inputs and

network complexities (single stormwater basins and an entire network), as

well as an equivalence analysis that compares the approach to passive in-

frastructure solutions.

3. A fully open-sourced implementation of the control algorithm to promote

transparency and permit for the direct application of the methods to other

systems, shared on open-storm.org.

4.3 Methods

4.3.1 Reinforcement learning for stormwater systems

When formulated as a Reinforcement Learning (RL) problem, the control of

stormwater systems can be fully described by an agent and environment (fig-

ure 4.1). The environment represents an urban stormwater system and the agent

represents the entity controlling the system. At any given time t, the agent takes

a control action at (e.g. opening a valve or turning on a pump) by observing

any number of states st (e.g. water levels or flows) in the environment. Based on

the outcomes of its action, the agent receives a reward rt from the environment.

The reward is formulated to reflect the specific control objectives. For example,
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an agent could receive positive reward for preventing flooding or a negative re-

ward for causing flooding. By quantifying these rewards in response to various

actions over time, the agent learns the control strategy that will achieve its de-

sired objective [31]. The agent’s control actions in any given state are governed

by its policy π. Formally, the policy is a mapping from a given state to the agent’s

actions:

π : st(Rn)→ at(R) (4.1)

The primary objective of the RL control problem is to learn a policy that max-

imizes the total reward earned by the agent.

While the reward rt at the end of each control action teaches the agent the

immediate desirability of taking a particular action for a given state, it does not

necessarily covey any information about the long-termdesirability of that action.

Formany water systems,maximizing short-term rewards will not necessarily lead

to the best long-term outcomes. An agent controlling a watershed or stormwa-

ter system should have the ability to take individual actions in the context of the

entire storm duration. For example, holding water in a detention basin may ini-

tially provide high rewards since it reduces downstream flooding, but may lead

to upstreamflooding if a stormbecomes too large. Insteadof choosing an action

that maximizes the reward rt at time t, the agent seeks tomaximize the expected

long-term reward described by state-value v or action-value q.

v(st) = E

[ ∞∑
k=0

[
γkrt+k+1

∣∣∣st]] (4.2)

q(st, at) = E

[ ∞∑
k=0

[
γkrt+k+1

∣∣∣st, at

]]
(4.3)

The state-value provides an estimate for an instantaneous action, as well as
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potential future rewards that may arise after state st, discounted with a factor

γ (0 ≤ γ ≤ 1). The action-value provides a similar estimate conditioned on tak-

ing an action at in state st. The discount factor γ governs the temporal context of

the reward. For example, a γ of 0 forces the agent tomaximize the instantaneous

reward, while a γ of 1 forces it to equally weigh all the rewards it might receive

for present and future outcomes. γ is specific to the system being controlled

and can vary based on the control objective [31].

An RLagent can learn to control a systemby learning the policy directly [128].

Alternatively, the agent can learn the state-value or action-value estimates and

follow a policy that guides it towards the states with high estimates [31]. Sev-

eral methods based on dynamic programming [129, 130] andMonte Carlo sam-

pling [31] have been developed to learn the functions that estimate the policy

and value functions. While these algorithms were computationally efficient and

provided guarantees on the convergence, their application was limited to sim-

ple systems whose state action space can be approximated using lookup tables

and linear functions [31, 131].

Given the scale and the complexity of urban watersheds and stormwater

networks, a simple lookup table or a linear function cannot effectively approxi-

mate the policy or value functions for each state the agent may encounter while

controlling the system. As a simple example, considering just ten valves in a

stormwater systemandassuming that each valve has tenpossible control actions

(closed, 10% open, 20% open,…) this gives 1010 (10 billion) possible actions that

can be taken at any given state,making it computationally impossible to build an

explicit lookup table for all possible states. This, however, is where very recent

advances in Deep Learning, become important. It has been shown that, for sys-

tems with large state-action spaces, such as stormwater systems, these functions

can be approximated by a Deep Neural Network [31, 115].

Deep Neural Networks are a class of feed-forward artificial neural networks
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with large layers of interconnected neurons. This Deeply layered structure per-

mits the network to approximate highly complex functions [132], such as those

needed for RL-based control. Each layer in the network generates its output

by processing the weighted outputs from the previous layer. This means that

each layer’s output is more complex and abstract than its previous layer. Given

the emergence of cheap and powerful computational hardware over the past

decade — in particular graphical processing units (GPUs) and high performance

clusters (HPCs) — Deep Neural Networks and their variants have emerged as the

state of the art in the approximation of complex functions in large state spaces

[133]. This makes them a good candidate for approximating the complex dy-

namics across stormwater systems. For purposes of this chapter, a brief mathe-

matical summary of Deep Neural Networks is provided in Appendix-B.1.

4.3.2 Deep Q Learning

Deep Reinforcement Learning agents (Deep RL) use Deep Neural Networks

as approximators for value or policy functions to control complex environments.

In their relatively recent and seminal Deep Q Network (DQN) chapter Mnih et

al. (2015) [115] demonstrated the first such algorithm, which used Deep Neural

Networks to train an Deep RL agent to play Atari video games at a human level.

This algorithm identifies the optimal control strategy for achieving an objective

by learning a function that estimates the action values or q-values. This func-

tion (i.e. q-function) maps a given state-action pair (st, at) to the action value

estimate.

At the beginning of the control problem, the agent does not know its envi-

ronment. This is reflected by assigning random q-values for all state-action pairs.

Over time, as the agent takes actions, new information obtained from the envi-

ronment is used to update these initial random estimates. After each action, the

reward obtained from the environment is used to incorporate the new knowl-

edge:
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q(st, at)← q(st, at) + α
[
rt+1 + γmax

a
q(st+1, a) − q(st, at)

]
(4.4)

The more actions an agent takes at any given state, the closer it gets to con-

verging to the true action value function [31]. The α (step-size) parameter gov-

erns how much weight is placed on the new knowledge [31].

An agent will choose an action that maximizes its long-term reward. This

process is known as exploitation since it greedily seeks to maximize a known

long-term reward. This may not always be the best choice, however, since taking

another action may lead the agent to discover a potentially better action, which

it has not yet tried. As such, the agent also needs to explore its environment. This

is accomplished by taking a random action periodically, just in case this action

leads to better outcomes. In such a formulation, the exploration vs. exploitation

is addressed via a ε-greedy policy, where the agent explores for ε percent of

time and chooses an action associated with the highest action value for the rest.

This gives the final policy for the RL agent:

π(st) =

random a, ε

argmax
a

q(st, a), else
(4.5)

ε is often set at a high value (e.g. 50%) at the start of the learning process

and gradually reduced to a lower value (e.g. 1%) as the agent identifies a viable

control strategy.

While there have been prior attempts to approximate the action value func-

tion using Deep Neural Networks, they were met with minimal success since the

learning is highly unstable [115]. Mnih et al. (2015) [115] addressed this by in-

troducing a replay buffer and an additional target Neural Network. The replay

buffer acts as the RL agent’s memory, which records only its most recent expe-

rience (e.g. the past 103 states transitions and rewards). During the training the
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RL agent randomly samples data from the replay buffer, computes the neural

network’s loss and updates its weights using stochastic gradient descent:

Loss = ||
(
rt + γmax

a ′
q∗(st+1, a

′)
)
− q(st, at)||

2 (4.6)

This random sampling enables the training data to be uncorrelated and has

been found to improve the training process. The target neural network q∗ has

the same network architecture as themain network q, but acts as amoving target

to help stabilize the training process by reducing the variance [115]. Unlike the

neural network approximating q, whose weights are constantly updated using

gradient decent, q∗ weights are updated sporadically (e.g. every 104 timesteps).

For more background information, Mnih et al. (2015) [115] and Lillicrap et al.

(2016)[116] provide an in-depth discussion on the importance of replaymemory

and target neural networks in training Deep RL agents.

4.3.3 Evaluation

Here, we investigate the real-time control of urban stormwater infrastructure

using Deep Reinforcement Learning. To begin, we formulate and evaluate re-

ward functions for the control of an individual stormwater basin. We then ex-

tend these lessons to the control of a larger, interconnected stormwater net-

work. Given the relatively nascent nature of Deep RL, the need to account for

public safety, and the desire to evaluate multiple control scenarios, a real-world

evaluation is outside of the scope of this chapter. As such, our analysis will be

carried out in simulation as a stepping-stone toward real-world deployment in

the future. To promote transparency and broader adoption, the entire source

code, examples, and implementation details of our implementation are shared

freely as an open source package1.

1https://github.com/kLabUM/rl-storm-control
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4.3.4 Study Area

Motivatedby a real-world system,we apply RL control to a stormwater system

inspired by an urban watershed in Ann Arbor, Michigan, USA (4.2). Our choice

to use this watershed is motivated by the fact that it has been retrofitted by our

group with wireless sensors and control valves already [8] and will, in the future,

serve as a real-world testbed for the ideas proposed in this chapter. This head-

water catchment features 11 interconnected stormwater basins that handle the

runoff generated across 4km2 of predominantly urbanized and impervious sub-

catchment areas. A Stormwater Management Model (SWMM) of the watershed

has been developed and calibrated in prior, peer-reviewed studies [119]. It is as-

sumed that each controlled basin in the system is equipped with a 1m2 square

gate valve. The valves can be partially opened or closed during the simulation,

which represents the action taken by an RL agent. The states of the control prob-

lem are given by thewater levels and outflows at each controlled location. Given

the small size of the study area, as well as the need to constrain this initial study,

uniform rainfall across the study area is assumed. Groundwater base flow is as-

sumed to be negligible, which has also been confirmed in prior studies [119].

4.3.5 Analysis

Prior Deep RL studies have revealed that performance is dependent on the

formulation of reward function, quality of neural networks approximating action

value function, as well as the size of state space [31, 134]. This creates a number

of “knobs”, whose sensitivity must be evaluated before any conclusion can be

reached regarding the ability to apply Deep RL to control real stormwater sys-

tems. As such, in this chapter, we formulate a series of experiments across two

scenarios to characterize Deep RL’s ability to control stormwater systems. In the

first scenario, we control a single valve at the outlet of the watershed, compar-

ing its particular performanceunder various reward function formulations. Given

that Deep RL has not been used to control water systems, this will constrain the

size of the state space to establish a baseline assessment of themethodology. In
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Figure 4.2: Stormwater systembeing controlled in this chapter. The urbanwater-
shed includes a number of sub-catchments which drain to 11 stormwater basins
of varying storage volumes. The first control scenario applies RL to the con-
trol of a single basin, while the second scenario evaluates control of multiple
basins. The colors correspond with the catchment that contributes local runoff
into each basin. Average volumes experienced by the ponds during a 25 year 6
hour storm event are presented.
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the second scenario, we scale these findings to simultaneously control multiple

valves across the broader watershed and to analyze sensitivity to function ap-

proximation (neural networks). Finally, the system-scale scenario is subjected to

storm inputs of varying intensities and durations to provide broader comparison

of the benefits of the controlled system in relation to the uncontrolled system.

4.3.6 Scenario 1: Control of a single basin

In this scenario, we train a Deep RL agent to control the most downstream

detention basin in the network (basin 1 in figure 4.2). This basin was chosen

because it experiences the total runoff generated in thewatershed, andbecause

its actions have direct impact on downstream water bodies. At any given point

in time, the RL agent is permitted to set the basin’s valve to a position between

fully closed or open, in 1% increments (i.e. 0%, 1%, 2%, . . ., 100% open) based

on the water height in the basin. All other upstream basins remain uncontrolled.

The overall control objective is to keep the water height (state:{ht}) in the

basin below a flooding threshold Hmax and the outflows from the basin (state

:{ft}) below a desired downstream flooding or stream erosion threshold F:

ht ≤ Hmax (4.7)

ft ≤ F (4.8)

Three reward functions are formulated to reach this objective, each incorpo-

rating more explicit guidance (in the form of constraints) to guide the RL agent.

In the first reward function the RL agent receives a positive reward for main-

taining the basin’s outflow below the specified threshold, a negative reward for

exceeding the threshold, as well as a larger but less likely negative reward if the

basin overflows:
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r1(st) =


+1, ft ≤ F

−1, ft > F

−10, ht > Hmax

(4.9)

The reward function is represented visually in the first row of figure 4.3. This

reward function formulation is inspired from the classic invertedpendulumprob-

lem [129] where the agent receives +1 for success and -1 for failure.

The second reward function is formulated to exhibit a more complex and

gradual reward structure. In lieu of a jagged or discontinuous “plus/minus” re-

ward structure, the agent is rewarded for reaching flows that are close to the

desired flow threshold. It has been shown that more smooth and continuous re-

wards such as this, may help the agent converge onto a solution faster [31, 135].

Visually, the reward function looks like a parabola (figure 4.3), where the maxi-

mum reward is achieved when the flow threshold is met exactly:

r2(st) = c1(ft − c2)(ft − c3) (4.10)

c1, c2, and c3 are constants representing the scaling and inflection points of

the parabola. Here we choose c1=-400 e, c2=0.05, and c3=0.15 to maintain the

general scale of the first reward function. Note that this formulation does not

explicitly include the local constraint on the basin’s water level since the agent

gets implicitly penalized by receiving a negative reward for low outflows.

The third reward function seeks to provide the most explicit guidance to the

RL agent by embedding the most relative amount of information (third column,

figure 4.3). In this heuristic formulation, the agent receives the highest reward

for keeping the basin empty (water levels and flows equal to zero). Intuitively,

this reward formulation seeks to drain all of the water from the basin as fast as

possible without exceeding the flow and height thresholds. If water level in the
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pond rises, the agent gets penalized, thus forcing it to release water. If flows

remain below the flow threshold F, the agent is penalized linearly proportional to

the water level in the basin, with a more severe factor applied if the height of the

basin exceeds the height threshold H. If the outflow exceeds the flow threshold

F an even more severe penalty is incurred:

r3(st) =



c1 − c2ht, ht < Hft ≤ F

c1 − c3ht, ht ≥ Hft ≤ F

−c4ft − c2ht + c5, ht < Hft > F

−c4ft − c3ht + c5, ht ≥ Hft > F

(4.11)

The penalty rates are governed by a set of five parameters c={c1, c2, c3, c4, c5},

which were parametrized {2.0, 0.25, 1.5, 10, 3} tomatch the scales of the other two

reward functions.

To illustrate the transferability of the control approach to variable inflows,

storage volumes, and the location of a basin in the network, control by an agent

trained on the third reward function is evaluated on four basins (basins 1, 4, 6,

and 9 in figure 4.2). These basins are chosen to represent distinct components

in the network. Basin 1 is located at the outlet of the watershed. Basin 4 is the

largest in the network and receives flows from the two major branches in the

system. Basin 6 is the largest of the upstream basins, while basin 9 is a smaller

basin in series with larger basins.

Additionally, to analyze the performance and sensitivity of the agent to the

reward function formulation, two variants of the third reward are evaluated in the

supplementary information (please see Appendix- B.4) section of this chapter.

Thegoal of this analysis is to determine the sensitivity of the agent’s performance

to the choice of mathematical equations in the reward function.
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4.3.7 Scenario 2: Controlling multiple basins

This scenario evaluates the ability of an agent to control multiple distributed

stormwater basins. Specifically, basins 1, 3, and 4 (figure 4.2) are selected for

control because they experience the largest average volume during a storm

event, which often corresponds with the larger control potential [136]. It is as-

sumed that at any time step the agent has knowledge of the water levels and

valve positions for each of these basins, as well as the basin between them (basin

2 in figure 4.2), thus quadrupling the number of observed states compared to

the control of a single basin. The action space must also be reduced to make

the problem computationally tractable. For the control of the single basin, there

are 101 possible actions at any given time step (valve opening with 1% granu-

larity). For three controlled basins, this increases to 1013 possible control actions

at any given time step. This is not only intractable given our own computational

resources, but is well beyond the size of any action space covered in other RL lit-

erature. Here, to reduce the action space the agent is allowed to only throttle the

valves. Specifically, at any time step, agent can only open or close the valve in 5%

increments or leave its position unchanged. This results in only three possible

actions for each site and thus 27 (or 33) possible actions for the entire network.

The agent receives an individual reward for controlling each basin. These

rewards are weighted equally and added together to provide a total reward for

controlling the larger system. The reward for controlling each basin is given by:

r4(st) =



−c1ht + c4, ht ≤ H, ft ≤ F

−c2h
2
t + c3 + c4, ht > H, ft ≤ F

−c1ht + (F− ft)c5, ht ≤ H, ft > F

−c2h
2
t + c3 + (F− ft)c5, ht > H, ft > F

(4.12)

where reward parameters c={c1, c2, c3, c4, c5} are chosen as {0.5, 1, 3, 1, 10} to

retain the relative scale of the single-basin reward formulations. This reward
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seeks to accomplish practically identical objectives as the third reward function

used in the single-basin control scenario. The difference is the quadratic penalty

term that is applied to the height constraint. This modification is made to pro-

vide the agent with a more explicit guidance in response to the relatively larger

state space compared to the single-basin control scenario. In the rare instance

that flooding should occur at one of the basins, agent also receives an additional

penalty.

4.3.8 Simulation, Implementation, and Evaluation

Beyond the formulation of the reward function, the use of RL for the control of

stormwater systems faces a number of non-trivial implementational challenges.

The first relates to the hydrologic and hydraulic simulation framework, which

needs to support the integration of a simulation engine that is compatible with

modern RL toolchains. The second challenge relates to the implementation of

the actual RL toolchain, which must include the Deep Neural Network training

algorithms.

Most popular stormwater modeling packages, such as the Stormwater Man-

agement Model (SWMM) [29] and MIKE Urban [137] are designed for event

based or long-term simulation. Namely, the model is initialized, inputs are se-

lected, and the model run continues until the rainfall terminates or simulation

times out. While these packages support some rudimentary controls, the control

logic is pre-configured and limited to simple site-scale action, such as opening

a valve when level exceed a certain value. The ability to support system-level

control logic is limited, let alone the ability to interface with external control al-

gorithms, such as the one proposed in this chapter. To that end, we implement a

step-wise co-simulation approach that was described in one of our prior studies

[7].
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Our co-simulation framework separates the hydraulic solver from the con-

trol logic by halting the hydraulic model at every time step. The states from the

model (water levels, flows, etc.) are then transferred to the external control algo-

rithm, which makes recommendation on which actions to take (valves settings,

pump speeds, etc.). Here, we adopt a Python-based SWMM package for sim-

ulating the stormwater network [85]. This allows the entire toolchain to be im-

plemented using a high-level programming environment, without requiring any

major modifications to hydraulic solvers that are often implemented in low-level

programming languages and difficult to fuse with modern libraries and open

source packages. While other or more complex stormwater or hydrologic mod-

els could be substituted, model choice is not necessarily the main contribution

of this chapter. Rather, we content that SWMM adequately captures runoff and

flow dynamics for the purposes of this chapter. SWMMmodels the flow of water

in the network using an implicit dynamic wave equation solver[29]. This allows it

to effectively model the nuanced conditions (e.g. back channel flows, flooding)

that might develop in the network though real-time control. Furthermore, the

authors have access to a calibrated version of the model for this particular study

area, which has been documented in a prior study [119, 138].

One major task is the implementation of the Deep Neural Network that is

used to approximate theRLagent’s action value function. DeepNeuralNetworks

are computationally expensive to train [133]. Efficient implementation address

this by leveraging a computer’s graphical processing unit (GPU) to carry out this

training, which is a non-trivial task. To that end, a number of open source and

community libraries have emerged, the most popular of which is TensorFlow

[139]. This state-of-the-art library has been used in some of the most well-cited

RL chapters and benchmark problems, which is the reason we choose to adopt

it for this study. TensorFlow is a Python library and can be seamlessly interfaced

with our Python-based stormwater model implementation.

Multiple agents are trained and evaluated across the two scenarios: eight
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for the control of individual basins (across multiple reward function variants and

basins), and two agents for the multi-basin control. A Deep Neural Network is

designedand implemented to learn the action-value functionof each agent. The

network contains 2 layers with 50 neurons per layer. This network is set up with

a ReLu activation function [140] in the internal layers and a linear activation func-

tion in the final layer. The full parameters used in the study, including those for

gradient descent and theDQN,are provided in theAppendix-B.2 of this chapter.

A Root Mean Square Propagation (RMSprop) [140] form of stochastic gradient

descent is used for updating the neural network as this variant of gradient de-

scent has been observed to improve convergence.

One storm event is used to train these agents. The SWMM model is forced

with a 25-year storm event of 6 hour duration and 63.5 mm intensity (figure 4.3).

This event generates a total runoff of 3670.639m3 with a peak flow of 0.35m3/s at

the outlet of watershed. The agents are providedwith an operational water level

goal H of 2 m, flooding level Hmax of 3.5 m and outflow exceedance threshold

of F of 0.10 m3s−1. It is important to note that the outflow threshold, in particular,

serves more as an approximate guide rather than exact requirement, since the

discrete valve settings used by the RL agents may not allow the exact setpoint to

be physically realizable (e.g. throttling a valve by 5% will limit outflow precision

correspondingly). These setpoints are chosen to reflect realistic flooding and

stream erosion goals in the study watershed. Agents are trained on a Tesla K20

GPUs on University of Michigan’s advanced research computing’s high perfor-

mance cluster.

The secondmulti-basin control agent uses the same neural network architec-

ture of the other multi-basin RL control agent, trained this time, however, using

batch normalization [141]. Batch normalization is the process of normalizing the

signals between the internal layers of the neural network to minimize the inter-

nal covariance shift and has been observed to improve the performance of the

Deep RL agents [116]. Ioffe et al. (2015) [141] provides a detailed discussion on
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batch normalization.

The performance of each agent is evaluated by comparing the RL controlled

hydrographs and water levels to those that are specified in the reward functions.

For the agents controlling the individual basins, this is used to determine the

importance of the reward formulation on performance, reward convergence,

and training period duration. For the multi-basin control scenario, the same ap-

proach is used to quantify overall performance, comparing this time the agent

that uses the batch normalized neural network to the agent that uses the non-

normalized network.

To evaluate the ability of an RL-agent to control storms that it is not trained

on, a final analysis is carried out. Since the agent controlling multiple basins

presents the most complex of the scenarios, it is first trained on one of storms

and evaluated on a spectrum of storm events with varying return periods (1 to

100 years) and durations (5 min to 24 hours). These storm events are generated

based on the SCS type II curve and historical rainfall intensities for the study re-

gion [142]. The performance of the agent across these 70 storms is compared

to the uncontrolled system to evaluate the boarder benefits of real-time control.

For comparison with an other control algorithm, we also implement and com-

pare the performance of RL to an Equal Filling Degree controller, which seeks to

control the volume in each basin to achieve equal relative filling [35]. Implemen-

tation details of the equal filling algorithm can be found in theAppendix-B.3. We

also evaluate the performance of the RLcontroller on a back-to-back stormevent

(3 hour 5 year event, followed by a 2 hour 2 year event). To allow for a compar-

ison between the controlled and uncontrolled system, a non-negative perfor-

mance metric is introduced to capture the magnitude and time that the system

deviates from desired water level and flows thresholds. Specifically, across a du-

ration T the final performance P adds together the deviation of all N controlled

sites from their desired water level (Ph) and flow thresholds (Pf), where:
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Ph(h) =


h−H, h > H

h−H+ 100h, h > Hmax

0, otherwise

(4.13)

Pf(f) =

10(f− F), f > F

0, otherwise
(4.14)

P =

N∑
n=1

T∑
i=0

Ph(h
n
i ) + Pf(f

n
i ) (4.15)

A relatively lower performance value is more desirable, since it implies that the

system is not flooding, nor exceeding desired flow thresholds.

4.4 Results

4.4.1 Scenario 1: Control of single basin

The ability of an RL agent to control a stormwater basin is highly sensitive to

the reward function formulation. Generally, a more complex reward function –

one that embeds more information and explicit guidance – performs better, as

illustrated in figure 4.3. Each columnof the figure correspondswith an individual

RLagent, each of which is trained using adifferent reward function (r1, r2, r3). The

reward functions are plotted in the first row, while the reward received during

training is plotted in the second row. The training period is quantified in terms

of episodes, each of which corresponds to one full SWMM simulation across an

entire storm. The third and fourth rows in the figure compare the uncontrolled

flows and water levels, respectively, for the episode that resulted in the highest

reward.

The RL agent that uses the simplest reward function has the relatively worst
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Figure 4.3: RL control of a single basin, trained using three reward formations
(grouped by column). The first row plots each reward function used during train-
ing. The second row plots the average reward received during training (please
note that the scale of Y-axis differers for each reward function). The third and
fourth rows compare the controlled flows andwater levels with the uncontrolled,
for the episode that resulted in the highest reward. Generally, reward function
formulations with more explicit guidance lead to relatively better control per-
formance and improved convergence during raining. Agents trained using rel-
atively simple reward also exhibit a rapidly-changing and unstable control be-
havior, shown as a close up in the bottom left plot.
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performance (figure 4.3, first column). Even after 5000 training episodes (a week

of real-world simulation time), the mean reward does not converge to a stable

value. Playing back the episode that resulted in the highest reward (figure 4.3,

rows 3-4, column 1), reveals that the RL agent does retainmorewater thanwould

have been held in the uncontrolled basin. While this lowers the peak flows rel-

ative to the uncontrolled basin, the RL agent is generally not able to keep flows

below the desired threshold. More importantly, the RL agent’s control actions

begin oscillating and become unstable toward the middle of the simulation. In

this episode, the agent keeps the water level in the basin relatively constant by

opening the valve very briefly to release just a small amount of water. This “chat-

tering” behavior (shown as a close up in the figure) results in an unstable outflow

pattern that oscillates in a step-wise fashion between 0 m3/s and 0.18 m3/s. For

various practical reasons, such rapid control actions are not desirable. Since the

RL agent never once receives a positive reward, it may have converged onto an

undesirable local minimum during the training. Providing more time for train-

ing does not appear to resolve this issue, which may also suggest that a stable

solution cannot be derived using this particular reward formulation.

Embedding more explicit guidance (harder constraints) into the reward for-

mulation improves the control performance of the RL agent (figure 4.3, second

column). When the second andmore continuous reward function is used by the

agent, the highest reward episode reveals that the RL agent is relatively more

effective at maintaining flows at a constant value. Unlike the RL agent using the

simple step-wise reward function, the RL agent using the parabolic reward func-

tion has more opportunities to receive smaller, more gradual rewards. During

most of the episode, this increased flexibility allows the second RL agent to re-

ceive positive rewards and keep the outflow below a flow threshold of 0.14m3/s.

While relatively improved, the RL agent using the parabolic reward also does not

converge to a stable reward value. However, toward the end of the episode, this

RL agent also carries out irregular and sudden control actions by opening and

closing the valve in short bursts. In this case, the RL agent is oscillating between
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a maximum (valve open) and minimum (valve closed) reward rather than taking

advantage of variable rewards in other configurations. This suggests that the

agent has either not yet learned a better strategy or, again, that a stable solution

cannot be converged upon using this particular reward formulation. This speaks

to the need for more explicit constraints as well, since a real-world stormwater

system could not be throttled in this fashion. Simply put, the reward formulations

used in this case was too simple to achieve realistically desirable outcomes.

The RL agent using the third and most constrained formulation exhibits the

relatively best control performance. This agent regulates flow and water levels

in a relatively gradual and smoothmanner. Unlike in the case of the other two RL

agents, after 3500 training episodes, the third agent does converge to a steady

reward. Evaluating the episode resulting in the highest reward (figure 4.3, rows

3-4, column 3), the desired “flat” outflow hydrograph is achieved. No unstable

or oscillatory control actions are evident, as in the case of the other two reward

functions. The agent is able to maintain flows below a constant threshold of

0.15 m3/s. While this is not the exact threshold that was specified (0.1 m3/s), it

is close considering that the achievable threshold is dependent on water lev-

els and the ability to only throttle the valve in 1% increments. As stated in the

methods section, matching the exact threshold may not be physically realizable

in any given situation due to constraints enforced by discretized throttling. Fur-

thermore, the RL agent must balance the desired outflow against the possibility

of flooding and is thus more likely to release a greater amount of water than is

specified by the threshold. Interestingly, this agent does not change its valve

configuration at all. Rather, it keeps its valve 54% open the entire time of the

simulation, which allows it to meet a mostly constant outflow given the specific

inflows. Overall, the general shape of the outflows is improved compared to

the uncontrolled scenario. Furthermore, an added benefit of real-time control is

that the overall volume of water leaving the basin is also reduced by 50% due to

infiltration.
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Similar to the third reward function, agents trained on the 3a and 3b reward

functions are successfully able to maintain the outflows close to the threshold

during the stormevent (figure B.3 in Appendix- B.4). While these reward func-

tions may appear similar, the solution identified by their respective agents dif-

fers. This is a result of the difference between the decay rates in the exponential

and squared terms. Performance of the agent trained on the 3a and 3b reward

functions (Appendix- B.4) indicates that the ability of the agent to identify a vi-

able control strategy is not dependent on the choice of equations used for the

creating the reward functions, but rather on the general shape of the reward

function in the domain.

The agent using the third reward function (trained on basin 1), is able to

control basins 4,6 and 9 without any further modifications (Appendix- B.5, fig-

ure B.4). The agent in this formulation makes its control decisions only based

on the depth at the current time step and does not incorporate any predictions.

Hence, the ability of the controller to shape of outflows should not dependent

on the location of the basin in the network, magnitude of inflows or the stor-

age curves. Our simulation results indicate the same. Though the degree to

which the agent is able to achieve the objective is governed by these physical

constraints, its ability to discover a solution is not influenced by them.

This scenario, which focuses on the control of a single site, emphasizes the

importance of the reward function formulation in RL-based control of stormwa-

ter systems. The complexity of the reward formulation plays an important role

in allowing the RL agent to learn a control policy to meet the desired hydrologic

outcomes. The importance of reward formulations has been acknowledged in

prior studies[31, 143]. Generally, reward functions with more explicit guidance

lead to amore rapid convergence of a control policy, while avoiding unintended

control actions, such as the chattering behavior seen in figure 4.3. In fact, prior

studies have attributed such erratic control actions to the use of oversimplified

reward functions [143], but have offered little specificity or concrete design rec-
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ommendations that could be used to avoid such actions. As such, our approach

heuristically evaluates reward formulations of increasing complexity until arriv-

ing at one that mostly meets desired outcomes. This introduces an element of

design into the use of RL for the real-time control of stormwater, as one cannot

simply rely on the implicit black box nature of neural networks to solve a control

problemunder complex systemdynamics. The reward function needs to embed

enough information to help guide the RL agent to a stable solution. This intro-

duces only a limited amount of overhead, as reward functions can be intuitively

formulated by someone with knowledge of basic hydrology.

For control of individual basins, the reward function presented here should

be directly transferable. If more complex outcomes are desired, modifications

to the reward functionmay need to be carried out. Objectively, the convergence

of the reward will serve as one quality measure of control performance. The ul-

timate performance of RL for the control of individual sites will, however, need

to be assessed on a case-by-case basis by a designer familiar with the applica-

tion. Taking the baseline lessons learned during the control of a single basin, the

second scenario can now evaluate the simultaneous control of multiple basins.

4.4.2 Scenario 2: Control of multiple basins

When trained using the generic feed forward neural network configuration

that was used for the control of a single basin, the RL agent controlling multiple

assets was unable to converge to a stable reward, even after 25000 episodes of

training (figure 4.4). This totaled to ≈52 days of computation time on our GPU
cluster, after which the training procedure was halted due to lack of improved

reward. Overall, learning performance was low in this configuration. Not only

did the learning procedure not converge to a stable reward, but the vast ma-

jority of rewards were negative. Given this observation, this ineffective neural

network was then replaced with one that was batch normalized. The agent us-

ing the batch normalized neural network achieved a higher average reward than
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Figure 4.4: Average reward earned by the RL agent when learning to control
multiple basins. The use of neural network batch normalization (blue) leads to
consistently higher rewards when compared to the use of a generic neural net-
work (orange). The batch normalized network also leads to higher rewards ear-
lier in the training process.

the agent with a generic feed forward neural network (figure 4.4). Furthermore,

the agent using the batch normalized neural network achieved a relatively high

rewards early on in the training process, thus making it more computationally

favorable. While beyond the scope of this study, this suggests that the choice

of neural network architecture is likely a major design factor in the successful

implementation of RL-based stormwater control.

Even with batch normalization, the RL agent did not consistently return to the

same reward or improve its performance when perturbed. The exploration in its

policy caused the RL agent to oscillate between local reward maxima. Similar

outcomes have been observed in a number of RL benchmark problems[115,

134], which exhibited a high degree of sensitivity to their exploration policy.

Prior studies have noted that the exploration-exploitation balance is difficult to

parameterize because neural networks tend to latch onto a local optimum [144].

As such, it is likely that the lack of convergence observed in this scenario was

caused by the use of a neural network as a function approximator. Forcing neu-

ral networks to escape localminima is still an ongoingproblemof research [145].
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Nonetheless, evenwithout a consistent optimum, themaximumrewardobtained

during this scenario can still be used as part of an effective control approach.

Selecting the episode with the highest reward revealed the actions taken by

the RL agent during the training storm (figure 4.5). The figure compares the con-

trolled and uncontrolled states of the four basins during a 25-year 6-hour storm

event, showing the depth in each basin, inflows, outflows, and control actions

taken by the RL agent. Though basin 2 is not explicitly controlled by the con-

troller, given that the water level and outflows in this basin are impacted by the

actions taken in the upstream basin, we have chosen to present its response. No

flooding occurred during this simulation, which means that the reward received

by the RL agent was entirely obtained bymeeting outflow objectives. The valves

on basins 1 and 3 throttled between 100% and 95% open, which for all practical

considerations could be considered uncontrolled. As such, the RL agent in this

scenario earned its reward by only controlling the most upstream basin in this

network.

While the outcome of control was somewhat favorable compared to the un-

controlled systems, the playback of the highest reward in figure 4.5 does not

show drastically different outcomes. Control of the 4th basin shifted the timing

of the outflows from the basin but did not reduce its outflows. This resulted in

improvements at the 1st, 2nd and 3rd basins. By delaying flows from the 4th basin,

the RL agent allowed the downstreambasins to drain first and to spend less time

exceeding the flow threshold. Interestingly, the RL agent did not control basin 1,

even while the single-basin control scenario makes it is clear that a more favor-

able outcome can be achieved with control (figure 4.3). As such, a better control

solution may exist, but converging to such a solution using a neural network ap-

proximator is difficult. This likely has to do with the larger state action space.

While the site-scale RL agent was only observing water level at one basin, the

system level RL agent had to track levels and flows across more basins, which

increases the complexity of the learning problem. The rewards received by the
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Figure 4.5: RL agent controlling multiple stormwater basins during a 6-hour, 25-
year storm event. Control actions at each of the controlled basins are shown as
valve settings in the fourth row of the plot. In this scenario, the agent achieves
a high reward by just controlling the most upstream control asset (4) and shift-
ing the peak of the hydrograph. Difference in the scale of Y-axis in second row
demonstrates the wide range of inflows in the network.
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RL agent in the scenario are cumulative, which means that improvement at just

a few sites can lead to better rewards, without the need to control all of them.

Increasing the opportunity to obtain rewards thus increases the occurrence of

local minima during the learning phase.

In the single basin control scenario, the RL agent can immediately observe

the impact of its control actions. In the systemscale scenariomore time is needed

to observewater flows through the broader system,whichmeans that the impact

of a control action may not be observed until later timesteps. This introduces a

challenge, as the RL agent has to learn the temporal dynamics of the system.

This challenge has been observed in other RL studies, which have shown bet-

ter performance for reactive RL problems, as opposed to those that are based

on the need to plan for future outcomes [135]. The need to include planning is

still an active area of RL research. Potential emerging solutions include adversar-

ial play[121, 122], model-based RL[146], and policy-based learning [147]. The

benefits of these approaches have recently been demonstrated for other appli-

cation domains and should be considered in the future for the control of water

systems.

It is important to note that figure 4.5 represents an evaluation of the RL agent

for one storm only – namely, the training storm. Realistically, the control sys-

tem will need to respond to storms of varying durations and magnitudes. As

an example, the RL agent’s response to a 24-hour, 10-year storm is shown in

figure 4.6. Performance of the controller in controlling a back-to-back event is

presented in Appendix-B.6. Here, the RL agent outperformed the uncontrolled

systemmuch more notably compared to the training storm. The controlled out-

flows were much closer to the desired threshold, even when only one basin was

controlled. This broader performance is captured in figure 4.7, which quantifies

performance (eq. 4.15) across a spectrum of storm inputs. Figure 4.7 compares

the uncontrolled system to the RL-controlled system. Both the controlled and

uncontrolled systems perform equally well during small-magnitude and short
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Figure 4.6: RL agent controlling multiple stormwater basins during a 24-hour,
10-year storm event. Control actions at each of the controlled basins are shown
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controlled system (left) and RL-controlled system (right). The use of control en-
hances the performance stormwater network by allowing the system to achieve
desired outcomes across larger and longer storms. The lighter color (closer to
zero) corresponds with a relatively better performance.

events (e.g. the training storm in figure 4.5). The benefits of control become

more pronounced for larger events, starting at 10-year storms and those that

last over 2 hours. This visualization holistically captures the benefits of real-time

control by highlighting new regions of performance and showing how control

can push existing infrastructure to perform beyond its original design.

4.5 Discussion

Given the recent emergence andpopularity of Reinforcement Learning,much

research still remains to be conducted to evaluate its potential to serve as a vi-

able methodology for the RTC of water systems. Our study brings to light a

number of benefits and challenges associated with this task. Arguably, it seems

that the major benefit of using RL to control water systems is the ability to simply
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hand the learning problem to a computer without needing to worry about the

many complexities, non-linearities and formulations that often complicate other

control approaches. However, as this study showed, this comeswith a number of

considerable caveats. These include the challenges associated with formulating

rewards, choosing function approximators, deciding on the complexity of the

control problem, as well as contending with practical implementation details.

Our study confirms that the performance of RL-based stormwater control is

sensitive to the formulation of the reward function, which has also been ob-

served in other application domains [143]. The formulation of the reward func-

tion requires domain expertise and an element of subjectivity, since the RL agent

has to be given guidance on what constitutes appropriate actions. In the first

scenario, it was shown that a reward function that is too simple may lead to ad-

verse behavior, such as the chattering or sudden actions. The reward may also

not converge to a stable solution since the neural network can take advantage

of the simple objective tomaximize rewards using sudden or unintuitive actions.

The formulation of the problem,which depends heavily on neural networks, also

makes it difficult to determine why one specific reward functionmay work better

than another. Increasing the complexity of the reward function, by incorporating

more explicit guidance, was shown to help guide the RL agent to a more desir-

able outcome. In other control approaches, such as genetic algorithms ormodel

predictive control, the design of reward is an iterative process, and sometimes

involves anticipating fringe cases to improve the robustness of the controller.

Similar to these approaches, we can however begin using this early study to for-

mulate a number of practical considerations when formulating reward functions:

• Define the reward function for entire domain of the state-action space, en-

suring that it distinguishes the desirable actions from the undesirable ones.

• Ensure that the reward function represents a specific hydrologic response

that the controller is to achieve, while anticipating, as much as possible, al-

ternate and adverse hydrologic responses that the controller may discover
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to maximize the reward function.

• Relax themathematical formulation of the reward function and focus rather

on the two above points (e.g. the shape of a reward surface rather than its

specific mathematical form).

Reward formulations are an ongoing research area in the RL community and

some formal methods have recently been proposed to provide a more rigor-

ous framework for reward synthesis [148]. These formulations should be inves-

tigated in the future.

Evenwhen the choice of reward function is appropriate or justifiable, the con-

trol performance can become sensitive to the approximation function, which in

our case took the formof aDeepNeuralNetwork. Choosing the architecture and

structure of the underlying network becomes an applicationdependent task and

can often only be derived through trial and error [31, 134]. Secondly, for chal-

lenging control problems, such as the one studied here, learning the mapping

between rewards and all possible control decisions becomes a complex task.

The neural network must be exposed to as many inputs and outputs as possi-

ble, which is computationally demanding. In our study we ran simulations for

many real-world months on a high performance cluster, but it appears that the

learning phase could have continued even longer. This, in fact, has been the

approach of many successful studies in the RL community, where the number

of computers and graphical processing units can be in the hundreds [149, 150].

This was not feasible given our own resources, but could be evaluated in the

future.

Aside from the formulation of the learning functions and framework, the ac-

tual complexity and objectives of the control problemmay pose a barrier to im-

plementation. We showed that an RL agent can learn how to control a single

stormwater basin effectively, but that controlling many sites at the same time

is difficult. A major reason is the increase in the number of states and actions
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that must be represented using the neural network. While computational time

may remedy this concern, the structure of the neural network may also need

to be altered. In a system-scale stormwater scenario, actions at one location

may influence another location at a later time. As such, the agent would ben-

efit from a planning-based approach which considered not only current states,

but future forecasts as well. Such planning-based approaches have been pro-

posed in the RL literature and should be investigated to determine if they lead

to an improvement in performance [146, 151]. Furthermore, model-based ap-

proaches have also recently been introduced and could allow some elements of

the neural network to be replaced with an actual physical or numerical stormwa-

ter model [152]. Such approaches should be evaluated in the future since they

may permit more domain knowledge from water resources to be embedded

into training the controller.

It is important to note that the Equal-filling algorithm outperforms the RL

agent in this study (Appendix-B.3). It achieves the objective of maintaining the

outflow below the desired threshold without causing flooding. Since Equal-

filling outperforms RL, it could very well be considered a superior choice in this

study. That said, developing and deploying Equal-filling often requires an intu-

itive understanding of the system and require a highly manual tuning of param-

eters. While it may be relatively straightforward to design control approaches

in smaller systems and simple outcomes —such as the one in this study — de-

veloping coordinated control strategies for large scale systems with multiple-

objective might not be as easy. As such, we see RL-based control as a long-term

goal, which should be investigated in future studies across bigger scales and

complex outcomes. Our study presents an initial goal toward the broader study

of RL-based stormwater control, after which an comprehensive apples-to-apples

comparison may be possible with current state-of-the-art approaches.

Finally, the use of RL for the control of stormwater systems is underpinned

by a number of practical challenges. Computational demands are very high, es-
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pecially compared to competing approaches, such as dynamical systems con-

trol, model predictive control, or market-based controls. While computational

resources are becoming cheaper, the resources require to carry out this study

were quite significant and time demanding. Since actions taken by neural net-

works cannot easily be explained and explicit guarantees cannot be provided,

this may limit adoption by decision makers who may consider the approach a

“black box”. It is also unlikely that the control of real-world stormwater systems

will simply be handed over to a computer that learns through mistakes. Rather,

simulation-based scenarios will be required first. It has recently been shown as

long as a realistic simulator is used — in our case SWMM — then the agent can be

effectively trained in a virtual environment before refining its strategy in the real

world [150].

4.6 Conclusion

This chapter introduced an algorithm for the real-time control of urban drain-

age systems based on Reinforcement Learning (RL).While RLhas been used suc-

cessfully in the computer science communities, to our knowledge this is the first

instance for which it has been explicitly adopted for the real-time control of ur-

banwater systems. Themethodology andour implementation showpromise for

using RL as an automated tool-chain to learn control rules for simple storage as-

sets, such as individual storage basin. However, the use of RL for more complex

system topologies faces a number of challenges, as laid out in the discussion.

Simultaneously controlling multiple distributed stormwater assets across large

urban areas is a non-trivial problem, regardless of the control methodology. To

that end, the concepts, initial results and formulations provided by this chapter

should help build a foundation to support RL as a viable option for stormwater

control. The source code accompanying this chapter should also allow others

to evaluate many other possible architectures and parameterizations that could

be used to improve the results presented in the chapter.
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CHAPTER 5

Bayesian Optimization for Shaping Stormwater

Flows

5.1 Introduction

The next generation of stormwater systems — equipped with sensors and ac-

tuators — will monitor the state of water to autonomously prevent flooding and

improve water quality [3]. Over the past few years, a substantial effort has been

focused on discovering algorithms for the control of stormwater systems [16, 19,

21]. While promising, many of these algorithms are highly parametrized, and

study results relied on finely-tuned objectives on specific study areas. As such,

the generalizability of the control methods poses an open area of research. Fur-

thermore, the adoption of many existing control methods requires significant

human and computational resources, as well as expertise in control theory, ma-

chine learning, and urban hydrology.

To that end, this chapter proposes an automated approach for controlling

stormwater systems, usingBayesianOptimization. The approach is “off-the-shelf”,

in that it can be evaluated for the control of a stormwater system as long as there

exists a numerical model (e.g. SWMM, Mike-Urban) for simulating its hydraulic

conditions. It does not require any formal mathematical abstractions (e.g. as-

sumptions on the linearity of dynamics) or surrogate models, making it possible
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to be applied without tuning or parametrization.

The main contributions of this chapter include:

• An automated and generalizable approach for identifying control strate-

gies in stormwater networks, with the ability to realize objectives at the wa-

tershed scale.

• A methodology for quantifying the uncertainty associated with precipita-

tion forecasts in the context of control decisions.

• Anopen-source implementation that canbeadopteddirectly “off-the-shelf”

to control stormwater networks.

5.2 Background: Control of Stormwater Systems

Stormwater systems are designed to act as conveyance networks for trans-

porting rainfall runoff from the urban environments into downstreamwater bod-

ies [1, 153]. These networks often form an amalgam of interconnected storage

assets, such as basins,which buffer stormwater runoff to reduce flooding and im-

provewater quality. While thedynamics of stormevents are inherently stochastic

and highly variable, stormwater networks functions as static systems [3]. Stor-

age and conveyance are sized for an “average” storm scenario, or simply gov-

erned by the availability of construction area or cost. Once constructed, these

systems are not upgraded for decades, leading to flooding and water quality

impairments due to changing storm patterns and land uses. Simply put, many

systems are unable to keep pace with rapid urbanization and evolving weather

patterns [3].

Rather than rebuilding stormwater infrastructure tomeet the rising demands,

retrofitting existing systems with sensors and actuators poses one effective and

economical alternative[3]. Over the past decade, several simulated[16, 20, 21,
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28, 32, 154] and real-world case studies[155] have demonstrated the effective-

ness of control in mitigating flooding, reducing erosion, and improving water

quality. Akin to self-driving cars, control in stormwater systems enables us to tai-

lor the behavior of the network to individual storm events, so that one can fully

utilize the existing storage and coordinate releases to achieve watershed scale

objectives [3].

5.2.1 State of Autonomous Stormwater Control

Thepast decade has seen a significant rise in research related to autonomous

stormwater control algorithms [19]. These studies have proposed and analyzed

the applicability of a wide variety of control methodologies — ranging from static

rule-based approaches to deep-learning methods like reinforcement learning.

Wong et al. [20] and others [21–24] have developed control approaches based

on classical control (LQR) and linear optimization methodologies. These ap-

proaches rely on a surrogate linear model that approximates the dynamics of

stormwater network. On the other end of the spectrum, though deep-learning

based control approaches [32, 156] do not require a surrogate model, train-

ing and tuning a controller using these methods is computationally expensive.

Static rule based[157] and reactive control approaches [154] can be used with-

out a surrogate model or a pre-trained controller, but designing the rules and

appropriate parametrizations in these approaches requires an intimate knowl-

edge of the stormwater network being controlled. Though these approaches

are very promising, adapting them for the control of new stormwater systems is

a non-trivial task. This explains, perhaps, why Genetic Algorithm have risen in

popularity, due to their black-box, off-the-shelf nature.

A significant amount of research in stormwater control has relied on Genetic

Algorithms (GA) [16, 25–28]. GA iteratively search through the set of possible so-

lutions until converging onto a viable solution. The biggest strength of GA is its

applicability for optimizing any objective function, irrespective of its underlying
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mathematical structure, as long it can be numerically evaluated. In the context

of stormwater control, GAexhaustively simulate the responses of various control

decisions in a stormwater network — using a simulator (e.g. EPA-SWMM) — until

identifying a viable solution. Though GA are intuitive and flexible for identifying

control strategies that achieve a wide variety of stormwater control objectives

(as long as an objective function can accurately represent them), their funda-

mental properties hinder its application: (i) Quality of solutions identified by GA

— especially for problems with large solution spaces like stormwater control — is

highly sensitive to the choice of hyper-parameters (e.g. population size, gener-

ations); (ii) Irrespective of the problem, many GAs randomly permutate through

the solution space to identify a solution, thus not leveraging the system’s inher-

ent structure to explore the solutions efficiently; and (iii) GAs are entirely opaque,

and offer us no path to interpret the identified solution nor asses its optimality1.

Readers are directed to Maier et.al for an in-depth analysis on the use GA in the

water systems [17].

Furthermore, recent works in the control of stormwater systems have also ac-

knowledged the limitation of the existing approaches in quantifying the rainfall

uncertainty associated with control decisions[25]. Hence, there is a need for an

easy to use and generalizable control approach, that addresses the limitations

of GA and also can quantify uncertainty; such an approach would be instrumen-

tal in transitioning autonomous stormwater control algorithms from the realm

of simulation into adoption on a physical system. The Bayesian Optimization

approach presented in this work is one such approach.

92



Figure 5.1: Bayesian Optimization converges onto an optimal control decision
that realizes the stormwater network’s desired response by learning a surrogate
objective function and identifying the control decision that minimizes it. Surro-
gate objective functions, in Bayesian Optimization, maps the control decisions
(x) to their corresponding performance (z). It is learned by evaluating the perfor-
mance of the various control decisions in the solution space. A control decision’s
performance is evaluated by simulating its response using a stormwater simula-
tor and quantifying the simulated response (e.g. hydrographs, water levels, and
pollutographs) using a performance metric.
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5.3 Control of stormwater systems using Bayesian Optimiza-

tion

In this chapter, we introduce a Bayesian Optimization (BO) based approach

for controlling stormwater systems. BO can be applied to optimize systems that

are computationally expensive to simulate and whose dynamics restrict them

from being easily formulated in the classical optimization framework [158]. BO

optimizes systems by learning a surrogate objective function. It relies on this

function to quantify the uncertainty associated with the identified optimum and

reduce the computational resource required for the optimization process [158].

BO is extensively used in the AI community to optimize hyper-parameters in the

deep learningmodels [158–160]. In the water domain, Candelieri et al. used BO

for pump scheduling optimization in water distribution networks [161]. To the

best of our knowledge, BO has not yet been applied for the control of stormwa-

ter systems.

Stormwater systems have traditionally relied on reactive and horizon-based

control approaches, which control the network’s assets throughout the storm

event [25, 28, 154]. This chapter uses a control strategy that requires manipu-

lating the controllable assets in the stormwater network only once before the

storm event to achieve the desired flow control objectives. Using BO, based

on the existing numerical model (e.g. EPA-SWMM) and anticipated storm event,

we identify the control decisions that should be implemented in the stormwater

network to realize the desired response. Unlike feedback control, in this pro-

posed planning based control approach, the controller does not alter its course

if its actions result in an unintended response. Hence, planning for the possible

uncertainties and choosing a control decision that minimizes the risk becomes

essential. BO’s ability to quantify uncertainties associated with control decisions

makes it ideal for such a control strategy.

1Optimality in GA is evaluated through exhaustive numerical simulations
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Stormwater dynamics aregovernedbynon-linear phenomena, such as runoff,

infiltration, andgravity-driven flow through complex networks of basins and chan-

nels [7, 33, 153]. Prior studies [24] that formulated the control of stormwater

systems as an optimization problem were constrained to approximating these

phenomena as a linear system. This is a non-trivial task, not to mention one that

limits the analysis of important higher-order non-linear terms. Our BO formula-

tion can optimize systems by merely relying on a numerical model without re-

quiring a surrogatemodel or simplifieddynamics. BOcanbe adopted as long as

there is a way (e.g. numerical simulation, empirical methodology, or a real-world

study) to evaluate the impacts of a control decision [158]. Many popular models

for stormwater exist and are used by communities andmunicipalities worldwide

(e.g. SWMM, MIKE) [153]. Our approach also builds upon what many city man-

agers already use — thus providing, asmuch as possible, “off-the-shelf” approach

for control of stormwater systems.

We formulate the control of stormwater systems as an optimization problem,

in which the objective function (Z), subject to constraints, captures the desired
response of a stormwater system to control actions. The objective function in

BO is evaluated by simulating the control decision’s response in a stormwater

simulator and then distilling the simulated hydrographs and water levels into a

performancemetric that quantifies the degree of success of the control decision.

Consider the scenario where we want to identify the valve position at an outlet

structure to maintain the outflows from the basin below a threshold. This control

objective’s performance metric is formulated in Eq. 5.1, as the cumulative flows

exceeding the threshold (λ) during the storm event for an outlet valve position,
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constrained between completely closed (0.0) to completely open (1.0).

argmin
x

Z(x) =
T∑

t=0

g(qt) (5.1a)

subject to 0.0 ≤ x ≤ 1.0 (5.1b)

g(qt) =

(qt − λ) if qt > λ

0.0 else
(5.1c)

T and qt in Eq. 5.1 represent the storm event duration and the outflows from the

basin. The valve position that achieves the desired flow control objective is de-

termined by identifying the control decision (x) that minimizes the performance
metric in Eq. 5.1.

BO learns the surrogate objective function that maps the control decisions to

their corresponding performance metrics (F : x → z) and then uses it to identify

the optimal control decision [158]. This surrogate objective function is learned

by evaluating the given objective function’s value across various possible con-

trol decisions. Gaussian Processes (GP) are the most widely used regressors in

BO for learning this mapping as they, for a given set of data-points, learn to pre-

dict the performance metric associated with a control decision and estimate the

uncertainty associated with the prediction [158, 162]. The most distinguishing

characteristic of BO is its ability to prioritize the most promising solutions when

searching through the solution space, using an acquisition function (A), to min-
imize the number of data-points — and subsequently the number stormwater

simulations — required for identifying the optimum [162].

Algorithm. 1 summarizes the BO-based control of stormwater systems. Ini-

tially, BO evaluates a pre-defined number (no) of random control decisions, in

the solution space, to create an initial set of data points (D0:no : {x0:no , z0:no}). These

are used to learn an initial estimate of the surrogate objective function (F ), which
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Algorithm 1 Bayesian Optimization approach for controlling stormwater sys-
tems. Let no be the number of initial random evaluations in the solution space
and N be the total number of evaluations.

1: Evaluate the performance of no randomly sampled control decisions; D0:no :
{x0:no , z0:no}

2: Learn an initial estimate of the surrogate objective function using a GP;Fno ∼

GP(D0:no)
3: Set n = no

4: while n ≤ N do
5: Identify a new control decision to evaluate; xn+1 = argmaxA(x|Fn)
6: Evaluate performance (zn+1) of xn+1 using a stormwater simulator.
7: Augment Dn with {xn+1, zn+1}

8: Update Fn+1 ∼ GP(D0:n+1)
9: n = n+1
10: end while
11: Return argminFN(x)

then is used by the acquisition function (A) for identifying the next control de-
cision (xn+1) to evaluate. Using the performance metric, we evaluate this control

decision’s ability to achieve the desired response and update the set of data

points with these observations ({xn+1, zn+1}). These new set of data-points are

then used to update the surrogate objective function. This updated function will

be used by the acquisition function in the next iteration to identify a new con-

trol decision to evaluate. This process is repeated until convergence onto an

optimum or for a pre-defined number of iterations.

Every iteration in BO improves the estimate of the surrogate objective func-

tion. Fig.5.2 illustrates the surrogate objective function across various iterations

(5, 10, 100) learned by the BO approach identifying the control action that main-

tains the outflows from the basin below a threshold (Eq. 5.1). In Fig.5.2, red dots

are the evaluated control decisions, and the red line and shaded area represent

the GP estimate of the surrogate objective function and its associated uncer-

tainty. As the number of the iterations increase, the uncertainty associated with
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the surrogate objective predictions decreases. Based on the initial evaluations,

the acquisition function identifies that there is a high probability that the opti-

mum might lie between 0.3 and 0.5 and focuses its search in this region (indi-

cated by the high density of red dots in Fig.5.2).
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Figure 5.2: With every iteration of BO, the uncertainty (shaded area) in the sur-
rogate objective function reduces. This figure illustrates the surrogate objective
function being approximatedby theGP at various iterations. Initially (N=5), there
is a high degree of uncertainty in the GP’s estimate of control decision’s perfor-
mance. As the number iterations increase, the uncertainty reduces. Also, notice
that the BO focuses its initial evaluations (N=5 and 10) in the most promising
regions of the solution space.

In the following sections, we present an overview of GP and acquisition func-

tions and introduce an algorithm for updating the GP in BO to provide more

accurate uncertainty estimates.

5.3.1 Gaussian Processes

BO relies on GP to learn the surrogate objective function that maps the con-

trol decision (x) to the performance metric (z) that represents the control deci-
sion’s ability to achieve the desired objective successfully [158]. GP assumes

the standard regression model (Eq. 5.2), where the estimate of the performance

metric is a function of the control decision and uniform Gaussian noise (ε ∼

N (µn, σ
2
n)) [162].

z = f(x) + ε (5.2)
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Apart from the Gaussian assumption on the noise, GP does not require any fur-

ther assumptions on the structure of the mapping or the data’s nature. When

trained, GP not only learn to predict a value but also estimate the uncertainty as-

sociated with the prediction [162]. GP’s ability to quantify uncertainties and their

flexibility to be applied to any data without requiring any explicit assumptions

makes GP one of the most efficient and generalizable approach for regression,

especially for hydrological systems. GP have been used by Fries et al. to im-

prove the accuracy of hydrological models [163], and Troutman et al. have used

GP for identifying the contribution of wastewater flows in combined sewer sys-

tems [164].

AGP is defined as a collection of random variables, any finite subset of which

are jointly Gaussian [162]. In this context, the control decision’s performance

(f(x)) is the random variable, and they are assumed to be jointly Gaussian (i.e.

P(f(xn+1)|f(x1)f(x2) . . . f(xN)) ∼ N (µ,K)). For example, let say we evaluated the

performance of N control decisions, and we wish to know the performance of

an unevaluated control decision (xN+1). GP relying on the jointly Gaussian prop-

erty, predict the performance value at the unevaluated control decision (zN+1)

by identifying the mean (µ1:N) and covariance (K1:N) that characterizes the un-

derlying distribution in the observed data [162].

A GP is fully characterized by a mean function and a covariance function

(Eq. 5.3). Themean function, given a set of observeddata points (DN : {x0:N, z0:N}),
predicts the most likely value (z) at the data point and covariance function esti-

mates the uncertainty associated with this prediction.

f(x|DN) ∼ GP(µ(x|DN), K(x|DN)) (5.3)

Fig. 5.2 summarizes the mean function’s predictions (indicated by the red line)

and the covariance function’s uncertainty estimates (95% confidence interval in-

dicated by the shaded area) in the solution space ([0, 1]), as the set of observed
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data points (indicated by the red dots) increases. In Fig. 5.2, the mean function’s

predictions at observed data points (x0:N) align perfectly with the observed val-
ues (i.e. µ(x0:N) = z0:N), and the estimated uncertainty at these points is almost 0.

Uncertainty estimates for the unobserved data points in Fig. 5.2 increase as they

get further from the observed data, indicating that the values predicted by the

mean function at these points are inaccurate.

The predictions of GP for a set of data points are determined by their simi-

larity (or dissimilarity) to the collection of observed data points. This similarity in

GP — specifically in the mean and covariance functions — is quantified using ker-

nels. The governing physical relationships between control decisions and their

impacts in stormwater systems2 are non-linear, and kernels enable us to embed

these non-linear relationships. Squared Exponential Kernel (Eq. 5.4) is widely

used in the GP literature for capturing such non-linear relationships [165].

k(x, x′) = σ2 exp
(
−
(x − x′)2

2l2

)
(5.4)

Please refer to Rasmussen et al. for more information on kernels [162]. Consider

the control of an outlet valve in a basin, where evaluated the performance (z) of

the valve opening at 50% (x = 0.50), and we wish to know the performance (z′)

at 60% opening (x′ = 0.60). Using GP, it can be analytically estimated using the

following equations:

µ(x′) = k(x′, x)[k(x, x) + σ2
n]

−1
z (5.5a)

K(x′) = k(x′, x′) − k(x′, x)[k(x, x) + σ2
n]

−1
k(x, x′) (5.5b)

z′ ∼ N (µ(x′), K(x′)) (5.5c)

Afinal decisionof theGPchain involves finding the choiceof hyper-parameters

2e.g. Outflow from a valve in a basin is Cd × valve opening×
√
2× g× h
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(θ : {σ2, l, σ2
n}) that best represent the observed data points. In this chapter, these

parameters are determined by maximizing the log marginal likelihood [162].

log p(z|X, θ) = −
1

2
z>K−1

z z−
1

2
log |Kz|−

n

2
log 2π (5.6a)

Kz = KN×N + σ2
nIN×N (5.6b)

Log marginal likelihood (Eq.5.6) is a metric that quantifies the accuracy with

which a given set of model parameters represent the data. KN×N and IN×N in

Eq. 5.6 represent the kernel matrix and the identity matrix.

5.3.2 Acquisition Function

The acquisition function, based on the surrogate objective function learned

by the GP, identifies the most promising control decisions to evaluate in the so-

lution space. BO relies on the acquisition function to efficiently explore the so-

lution space and minimize the number of evaluations required for converging

onto an optimum [158]. Expected Improvement (EI), one such widely used ac-

quisition function in BO [158, 166], is defined as follows:

EIn(x) = E
[
[fn(x) − f∗n]

+] (5.7)

Where x and fN(x) are the control decision and its corresponding value esti-

mated using the surrogate objective function learned from N data points. f∗N =

max f(x) is the current best performing solution. [fN(x) − f∗N]
+ indicates the pos-

itive part (i.e. z+ = max(z, 0)).

xN+1 = argmaxEIN(x) (5.8)

By identifying the control decision that maximizes the EI, BO identifies the next

control decision xN+1 to evaluate [158].

The analytical nature of the GP enables us to derive a closed-form solution
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(Eq.5.9) for EI [166]. This closed-form equation is then used as the objective

function in Eq.5.8 to identify the next control decision to evaluate.

EIN(x) = [∆N(x)]
+ + σN(x)ϕ(

∆N(x)

σN(x)
) − |∆N(x)|Φ(

∆N(x)

σN(x)
) (5.9)

µN(x) and σN(x) in Eq.5.9 are the mean and covariance function of the GP. ϕ

andΦ are the PDF and CDF of standard normal distribution. ∆N(x) = µN(x)− f∗N

is the difference between the performance of a suggested control decision x

and the best performing solution in the surrogate objective function. Previous

studies [158] have indicated that the use of numerical optimizationmethods like

quasi-Newton method have worked well in optimizing Eq.5.9. Please refer to A

Tutorial on Bayesian Optimization by Peter I. Frazier for a detailed discussion on

EI and other “exotic” acquisition functions that are being used in BO [158].

5.3.3 Uncertainty Quantification

GP described in Section-5.3.1, when learning the surrogate objective func-

tion, assume a uniform noise (σ2
n) on control decision’s performance. Under this

assumption, GP optimizing for the best set of parameters identify a σ2
n that en-

capsulates the entire set of observed data [162, 167]. Consider the instance

where a controlled stormwater basin can experience a storm event in an ensem-

ble of probable events. Under these uncertain conditions, using BO, we want to

identify the best control decision that we can implement in the basin and quan-

tify the uncertainty that this control decision would achieve the desired objec-

tive. GP trained with the assumption of uniform noise tends to over or under-

estimate the risks associated with individual decisions when the variance in the

performance depends on the decision [167], which is the case for the stormwa-

ter systems. For example, if the outlet valve in the stormwater basin is opened

by 0.10% and the basin experiences two different storm events — one small and

one large — the variance in the outflows leaving the basin is low, rather thanwhen

the valve is opened by 0.90%.
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Algorithm 2 Uncertainty Quantification using MLH-GP

1: Let GP1 be the GP representing the surrogate objective function (F ) learned
by the Bayesian Optimizer in Algorithm. 1

2: Given GP1, estimate the empirical noise (ẑ) from the training data ẑi =
log(var[zi,GP1(xi|D)]) and create a new data set ^D′:N = {x0:N, ẑ0:N}

3: Using D̂, learn GP2 to estimate noise (ẑ) from x; GP2 : x → ẑ

4: Using GP2 to estimate logarithmic noise, train a combined GP3 : x → z using
Eq. 5.12 and Eq. 5.13

5: If not converged, set GP2=GP3 and go to step 2

Unlike the generic GP regression model, which assumes uniform Gaussian

noise (Eq.5.2), Most Likely Heteroscedastic Gaussian Process (MLH-GP) builds

on the assumption that theGaussian noise in the regressionmodel is dependent

on its inputs [167].

zi = f(xi) + εi (5.10a)

εi ∼ N (0, r(xi)) (5.10b)

This regression model (Eq.5.10) enables us to account for the variance in the

performance stemming from each control decision. We can directly use MLH-

GP to update the GP (GP1) used for learning the surrogate objective function in

BO to account for these variances.

ẑi = var[zi,GP1(xi|D)] = s−1 ×
s∑

j=1

0.5× (zi − zji)
2

(5.11a)

zji ∼ N (µGP1
(xi), KGP1

(xi)) (5.11b)

MLH-GP, using Eq.5.11, estimate the variance in the performance (zi) observed

by simulating the control decision (xi) and performance predicted (zji) by the

learned surrogate objective function (GP1). A new GP (GP2) is then trained to

learn the mapping between the simulated control decisions and log of esti-
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mated variance. s in Eq.5.11 is the number of samples used for estimating vari-

ance [167].

r(x) = eµGP2
(x) (5.12a)

R(x) = diag(r(x)) (5.12b)

Using the estimates of GP2, we populate the Rmatrix (Eq. 5.12) and then use this

matrix to train a new GP (GP3) that accounts for the input dependent variances

(Eq. 5.13). In this chapter, we use this GP to quantify the uncertainty associated

with control decisions.

µGP3
= K∗(K+ R)−1z (5.13a)

KGP3
= K∗∗ + R∗ − K∗(K+ R)−1

K∗T (5.13b)

GP3 ∼ N (µGP3
, KGP3

) (5.13c)

As described in the Algorithm. 2, we repeat this process until the estimates of

GP3 converge.

5.4 EvaluatingBayesianOptimization for the control of stormwa-

ter systems

Stormwater networks are complex and often designed uniquely to meet the

requirements of a particular watershed. During their operation, these systems

experience a wide spectrum of storm events,many of which theymight not have

been explicitly designed for. These systems are required to achieve a multitude

of localized and system scale objectives. Hence, for a stormwater control ap-

proach to be applicable, it has to achieve a diverse set of control objectives

across various network topologies and storm events. Furthermore, control al-

gorithms should have the ability to account for the uncertainties — especially

those stemming from the stochastic nature of storm events — that are inherent in

these systems. Though a real-world evaluation is essential for validating a con-
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trol approach’s applicability, we focus on a simulation-based evaluation, as it will

allow us to exhaustively simulate a number of scenarios.

In this chapter, we analyze the BO’s ability to control stormwater systems

across two criteria:

1. Generalizability: We analyze the applicability of BO for achieving diverse

control objectives across stormwater systems and rain-events.

2. Uncertainty Quantification: We evaluate BO’s ability to quantify rainfall

uncertainty associated with a particular control decision.

We assess these criteria using the stormwater control scenarios from pystorms,
an open-source python package developed for the quantitative evaluation of

stormwater control algorithms. pystormsprovides a curated collectionof stormwa-
ter networks, stormevents, and control objectives delineated as scenarios, named

after the Greek alphabet, for evaluating stormwater control algorithms [33]. In

the following Sections- 5.4.1 and 5.4.2, we specify the specific scenarios and

metrics used for quantifying the ability of BO in each of the above-described

criteria. In Section– 5.4.3, we summarize the computational implementation of

these evaluations.

5.4.1 Generalizability

We quantify the Generalizability of BO by analyzing its ability to identify the

control decisions that achieve the desired objective in both separated and com-

bined stormwater systems. Specifically, scenariogammaandepsilon in pystorms.
In this control approach, we implement only a control decision for the entire du-

ration of the stormevent. Hence,we limit our evaluation to event-specific control

objectives, with the specific goals of minimizing flooding and maintaining flows

and loading below a threshold. This evaluation assumes that we have perfect in-

formation about the storm event (inputs) used to drive the stormwater network’s

response.
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Z =

Storage penality︷ ︸︸ ︷
N∑
i

c1 × di
T +

T∑
t

N∑
i

{ Flooding penality︷ ︸︸ ︷
c2

T
× fit +

Flow penalty︷ ︸︸ ︷
g(qi

t)
}

(5.14a)

g(qi
t) =

(qi
t − 0.11) if qi

t > 0.11

0.0 else
(5.14b)

Scenariogamma represents a separated stormwater network in a semi-urbanized

watershed, and this network comprises 11 interconnected basins that are drain-

ing into a downstream water body. Equipped with a controllable valve, these

basin’s outlet size can be adjusted to any value between 100% open to com-

pletely closed. The control objective in this scenario is to maintain the flows

in the network below 0.11m3 s−1 during a 25 year 6-hour SCS-II design storm

and is quantified based on the performancemetric presented in Eq. 5.14, where

c1 = 103, c2 = 104 represent the penalty factors. These penalties are determined

such that they penalize floodingmore than storingwater in the basins. dT , ft, and

qt in Eq. 5.14 represent depth, flooding and outflows during the simulation. The

storage component penalizes the controller for storing water in the basins at the

end of the storm event. This penalty is incorporated in the performance metric

to prevent the controller from converging onto a trivial solution that stores all

the runoff in the basins to maintain flows below the desired threshold. The flow

and flooding penalty penalize the controller based on the cumulative flooding

and flows that exceed the desired threshold of 0.11m3 s−1. Hence, by attempt-

ing to identify a control decision that minimizes this performance metric, the

controller is compelled to identify the set of valve positions (i.e. the percent of

outlet opening) that maintain the network’s flows below the desired threshold,

while avoiding flooding. In this analysis, we control the four most downstream

basins, chosen based on their control potential, in the network [32, 136].
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Z =

T∑
t

{ Loading penalty︷︸︸︷
g(lt) +

N∑
i

Flooding penality︷ ︸︸ ︷
h(fit)

}
(5.15a)

g(lt) =

(li − 1.075) if lt > 1.075

0.0 else
(5.15b)

h(fit) =

109 if fit > 0.0

0.0 else
(5.15c)

Scenario epsilon represents a combined stormwater system in an urban wa-

tershed of 67km2, comprising a network of pipes draining, both wet and dry

weather flows, into a downstream water treatment plant. This network has 11

inflatable dams that can hold back (or release) runoff in the pipes. This effec-

tively seeks to create interim storage for the runoff in the pipe network, before

those flows reach a downstream treatment plant. The control objective in the

scenario is to maintain the loading at the network’s outlet below 1.075 kg s−1

while preventing flooding. This scenario is driven by three (two of which are

back-to-back) real-world storm events and daily diurnal flows. The control deci-

sion’s ability to realize this control objective is quantified using the performance

metric presented in Eq. 5.15. Loading penalty in the performance metric pe-

nalizes the control actions resulting in exceedance of loads (i.e. > 1.075 kg s−1)

leaving the network, and the flooding penalty ensures that these control actions

avoid flooding. In this analysis, we control all the 11 inflatable dams.

In this analysis, we also evaluate theGA’s ability to identify the optimal control

decisions for the above described two scenarios and compare its performance

to the BO approach to analyze their ability to identify a better performing solu-

tion3 for the same number of stormwater simulations. Specifically, we compare

3(i.e. identify the set of control decisions that minimize the metrics defined in Eq. 5.15 and
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the optimal solutions identified by the BO and GA approach for 30 stormwa-

ter simulations. Given the stochastic nature of these approaches, we repeat this

evaluation for 30 different random seeds and compare the mean and variance

of the performance of identified solutions.

5.4.2 Uncertainty Quantification

We evaluate BO’s ability to quantify the rainfall uncertainty by comparing its

uncertainty estimates to empirically computed values. For this evaluation, we

consider the scenario where the stormwater system can experience any one

storm event, with uniform probability, from the ensemble of possible events.

Uncertainty in this evaluation is empirically computed by evaluating each pos-

sible action’s performance (Eq. 5.16) across all the possible storm events and

computing its mean and variance so that they can be compared to the values

estimated by the GP in BO.

Z = − exp{
T∑

t=0

ft

it
+

g(qt)

it
} (5.16a)

g(qt) =

qt − 1.0 if qt > 1.0

0.0 else
(5.16b)

ft, it, and qt in the performance metric represent flooding, inflow, and outflows

during the simulation. Unlike the other two scenarios, the performance metric

for uncertainty quantification is defined as an exponential function as it creates

a smoother terrain for the MLH-GP to approximate. Krauth et al. have argued

that a well-defined objective function is essential for the GP to approximate a

function accurately [168].

We focus our evaluation on a stormwater system with a stormwater basin

(scenario theta in pystorms), equipped with a controllable valve at its outlet,

Eq. 5.14)
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experiencing a set of 20 synthetically generated storm events. This scenario’s

control objective is to maintain the outflows from the basin below 1.0 m3s−1 for

any/all of the possible storm events. We limit our evaluation to the control of a

single basin. As its solution space is small enough that an empirical evaluation

of all possible solutions is computationally tractable4. We embed the notion of

uncertainty in rainfall by randomizing the storm event in the stormwater simula-

tor when evaluating the performance of a control decision. For every iteration

of the BO, we uniformly sample a storm event from the possible set of storm

events and simulate its response for the control decision. Then the surrogate

objective function (i.e., GP) is updated using Algorithm. 2. We then compare

these updated estimates to the empirically computed values to evaluate their

accuracy. Furthermore, to analyze the effectiveness of MLH-GP in quantifying

uncertainty estimates, over GP, we evaluate the performance of control actions

sampled uniformly across the solution space and train these GPs to estimate the

uncertainties in these performance estimates.

5.4.3 Implementation

The scenarios in pystorms are equipped with a stormwater simulator, which
can be accessed using a Python-based programming interface. This Pythonic in-

terface enables us to integrate the Python-based scientific computing libraries

with the stormwater simulator anddevelop advanced control algorithms, such as

the one presented in this chapter. pystorms uses US EPA’s Stormwater Manage-
ment Model (SWMM), an extensively used open-source stormwater modeling

software [153], as its stormwater simulator. SWMM is built in C language and

interfaces with pystorms via PySWMM, a python wrapper that enables us to use
the functionality of SWMM from Python [169]. SWMM uses a dynamical wave

equation for routing runoff through the stormwater network, which accounts for

backchannel flows and other such dynamics that can arise in the network from

41% discretization of solution space from 0 to 100% for 20 storm event would require 2000
simulations.
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control, thusmaking SWMMan ideal choice for simulating control of stormwater

systems [7]. Please refer to Rimer et al. for more information on pystorms and an
overview of modeling control in stormwater systems [33].

BO implementation has two primary components, GP and Acquisition func-

tions. As alluded in Section- 5.3.1, there are a lot of moving parts in imple-

menting GP [158]. Over the years, a suite of accessible open-source libraries

has been developed that, right out of the box, provide implementations of var-

ious kernels and automate the process of identifying parameters to prototype

the GP with minimal overhead [170–172]. GPy developed by Sheffield machine
learning group is one such Python library. In this chapter, we have used GPy for
modeling GP and MLH-GP [170]. We use GPyOpt, another Python library devel-
oped Sheffield machine learning group, for implementing Bayesian Optimiza-

tion [173]. GPyOpt provides an implementation of the Acquisition functions that
build on the GP implemented using GPy and a modular programming interface,
used in this chapter to interface with pystorms. In this work, GA evaluation is im-
plemented using DEAP, one of themost widely used Python-based evolutionary

computation framework[174]. Specifically, we adopt the implementation of One

Max Problem provided in the library [175]. Simulations presented in this chap-

ter were run in the University of Michigan’s Great Lakes Custer on a 3.0 GHz Intel

Xeon Gold 6154 processor with 1GB of RAM and the source code used for this

evaluations can be accessed at github.com/kLabUM/BaeOpt.

5.5 Results

5.5.1 Generalizability

The performance in scenario gamma, a separated stormwater network, is

presented in Fig. 5.3. By changing the valve’s position at the outlet of the basins

to a pre-computed value and maintaining it throughout the storm event, the

controller maintains the flows (second row in Fig. 5.3) in the network below the
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Table 5.1: Solutions identified by BO, for the evaluated scenarios, consistently
outperform the solutions identified by GA for a set of 30 iterations across 30
random seeds. The mean and standard deviation of the identified optimal con-
trol decision’s performance is summarized in the table; lower the values indicate
better the ability of the control decision to achieve the desired control objective.

Scenario BO GA
µ σ µ σ

gamma 1875.89 961.12 3070.28 2063.03

epsilon 1008.35 573.83 2619.65 1351.98

exceedance threshold. In this particular scenario, BO identifies 0.34, 1.00, 0.21,

0.20 as the valve positions for the four basins for maintaining the outflows below

0.11m3 sec−1. These actions reduce the exceeding flows by 99.87%. The appli-

cation of BO control increases the utilization of the storage in the stormwater

network (first row in Fig. 5.3) and reduces the intensity with which runoff leaves

the basin.

Fig. 5.4 illustrates the controlled and uncontrolled response of scenario ep-

silon. BO identifies the percent opening of inflatable storage dams, in the un-

derground pipes of the combined stormwater network, to maintain the load-

ing from the network to the water treatment plant below the desired thresh-

old. These setpoints5 are maintained for a simulated duration of 15 days, during

which the network experiences both dry and wet weather flows. These actions

reduce the total loads (above 1.075 kg s−1) at the treatment plant by 99.11%

(from 7721.27 kg to 68.26 kg). By reducing the outlet pipe dimensions, we in-

crease the time spent by runoff in the pipe network, which directly corresponds

to an increased pollutant capture, thus effectively reducing the load leaving the

network [154].

5{6%, 84%, 92%, 66%, 69%, 73%, 7%, 49%, 1%, 35%, 4% }

111



Table.5.1 summarizes the BO and GA-based controller’s performance for

scenarios gamma and epsilon for 30 iterations across 30 random seeds. Perfor-

mance of the solutions for scenario gamma and scenario epsilon are quantified

using Eq. 5.14 and Eq. 5.15, respectively. BO consistently outperforms the GA

in terms of computational efficiency. BO’s average performance for scenarios

gamma and epsilon is 63.67% and 159.79% better than GA. Furthermore, BO’s

performance variance (columns 4 and 6 in Table.5.1) is considerably lower than

GA (by 114.6% and 135.6%).

In this Generalizability evaluation, the proposed BO approach identifies the

control decisions that realize thedesired control response,directly “off-the-shelf”

without any scenario-specific customizations for the stormwater network’s topol-

ogy or the control objective. This ability to be applied out of the box to control

diverse stormwater networks illustrates the Generalizability of the BO approach.

While GA is also generalizable in similar terms, BOhas demonstrably beenmore

computationally efficient for the evaluated scenarios.

5.5.2 Uncertainty Quantification

Fig. 5.5 illustrates the uncertainty quantified by the BO (blue shaded area)

and compares it to the empirically computed uncertainty (orange shaded area)

for a single basin in scenario theta. Though the uncertainties quantified by the

BO does not precisely correspond to the empirically estimated values, they do

closely align with them. BO uses ten times fewer samples than used for em-

pirical estimation and assumes a specific kernel6 to represent the relationship

between the control decisions and their corresponding uncertainties. Thus, it is

intractable for the estimateduncertainty to exactly convergeonto the empirically

computed values. Having said that, MLH-GPmuchmore accurately captures the

underlying uncertainty than the GP (gray shaded area), which overestimates the

uncertainty (first row second column in Fig. 5.5). While GPs better estimate the

6Squared Exponential Kernel
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uncertainty when the entire solution space is sampled uniformly, they still over-

estimate (gray area in the first row first column in Fig. 5.5) the uncertainty when

compared toMLH-GP. Uncertainty quantified byMLH-GP almost perfectly aligns

with the empirical estimates ( 0.3 to 1.0 in second row first column in Fig. 5.5) for

the same set of uniformly sampled data-points. These results demonstrate the

effectiveness of MLH-GP in quantifying the input-dependent uncertainties.

Quantifying the uncertainty associated with control decisions enables us to

understand the corresponding risk associated with implementing these deci-

sions in a stormwater network. For instance, consider the uncertainty estimates

presented in Fig. 5.5. For the given set of synthetic rainevents, uncertainty es-

timates for the valve positions between ≈ 0.10 and ≈ 0.25 (10% and 25% valve

opening) are slightly larger than those for valve position greater than 0.25. From

these estimates, we can interpret that a control decision between 0.19 to 0.25

will realize the objective of maintaining the flows below 1.0m3s−1 and its ability

to do, no matter which storm event it experiences, can only deviate by at most

0.076 of the expected performance metric. Whereas any valve opening greater

than 0.25 will not be able to realize the control objective.

Understanding the risks associatedwith control actions enables us to identify

the set of actions that can be implemented with a high degree of certainty to

achieve the desired control objective, and BO, though the objective function

learned by the GP, can be adopted to quantify these risks. Furthermore, this

objective function also enables us to analytically interpret how the simulated

data influences the choice of optimal actions.

5.6 Discussion

BO identifies control solutions solely based on the specific performancemet-

rics, without the need for internal optimizer parameterization. Given the sole re-

lianceononemetric, designing aperformancemetric that accurately anduniquely
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represents the desired controlled response is paramount. Building on our pre-

vious work [32], this chapter’s performance metrics were designed to accurately

represent the desired control objective, to ensure that the BO will not be able

to game the performance metric and identify a solution that minimizes the per-

formance metric but results in an undesirable response in the stormwater net-

work. When adopting BO to control new stormwater systems, performancemet-

rics can be designed using any mathematical structure7 as long as it accurately

represents the desired response and there does not exist a trivial solution that

the BO can exploit. Performance metrics presented in this work can directly be

translated for controlling other stormwater networks for the specific set of con-

trol objectives discussed in the chapter: maintaining flows and loading below a

threshold.

Given the complexity and scale of stormwater systems, we cannot guaran-

tee global optimality without enforcing the assumption of linearity. Hence, we

have to contend with the sub-optimal solutions that achieve the objective. For

the scenarios evaluated in this chapter, BO was successfully able to identify the

control decision that achieves the desired response. However, the quality of the

identified solution has a strong dependence on the random seed used. Hence,

readers should consider evaluating BO across multiple random seeds.

Results presented in this chapter suggest that a sub-set of control objectives,

like the ones discussed in this chapter, can be realized without real-time control,

but rather solely by tuning valve openings ahead of a storm. However, it might

not often be the case that a high-fidelity model and a representative estimate

of incoming storm events would be available. In such instances, one could con-

sider a hybrid controller that configures the control elements before the storm

event and during the storm eventmonitors the network’s response. If it detects a

deviation from the planned response, it can then implement appropriate control

7Equations used in the performance metric can be exponential, polynomial, etc…
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actions in the network. Such a hybrid control approach would enable us to real-

ize desired control responses withminimal and risk-averse control interventions,

and it should be evaluated in future studies.

There is an active interest in theAI community in developingAcquisition func-

tions that are robust to the uncertainties inherent in the evaluations [176]. These

advances stand to improve the BO’s ability to quantify the underlying uncer-

tainty in the system. Furthermore, these new Acquisition functions improve on

the approach’s effectiveness by parallelizing the acquisition process [158]. Re-

cent advances in Deep-Gaussian processes have demonstrated their effective-

ness in working around GP’s parametric limitation and would be instrumental in

extending this approach for the control of larger systems [177]. Though promis-

ing, their applicability for the control of stormwater systems is yet to be evalu-

ated.

Understanding the impacts of uncertainties inherent in stormwater systems

would be essential in developing robust stormwater control algorithms. BO, as

illustrated in this chapter, is an efficient approach for quantifying these uncer-

tainties. Though the GP can quantify the uncertainties based on the observed

data points8, interpreting and translating them into actionable information for

stormwater control decision-making is still an open research question. Espe-

cially in the instances where multiple stormwater basins are being controlled

(e.g. 10, 20 basins), interpreting these high-dimensional uncertainty estimates is

a non-trivial task. To the best of our knowledge, there does yet exist an approach

for tackling this, and addressing this knowledge gap would be instrumental in

transitioning stormwater control algorithms into adoption.

8Though in this chapter, they are simulated, this approach can be adopted for real-world data.
Hence, to illustrate the flexibility of the approach, we refer to them as observed data points.
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5.7 Conclusion

This chapter introduces a BO-based automated control algorithm for iden-

tifying control decisions that realize the desired control objective. To the best

of our knowledge, this is the first application of BO for the control of stormwa-

ter systems. This algorithm also incorporates a methodology for quantifying the

rainfall uncertainties associated with a control decision’s performance. Though

this control approach can be used off-the-shelf for controlling stormwater sys-

tems, it is limited in the set of control objectives that it can achieve. Its ability to

identify the control decisions that realize the desired control objective depends

on the performance metric representing the objective and the random seed

used in the methodology. The source code accompanying this work should al-

low researchers to evaluate the BO-based control approach’s performance on

other stormwater systems and develop extensions for improving its effective-

ness.
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Figure 5.3: As should be expected, tuning the dimension of a basin’s outlet
(turning a valve until a desired outlet opening percentage is reached) ahead
of a storm event reduces the intensity of its outflows. BO identifies, given an in-
coming storm, the valve positions that can be set in the network to maintain the
outflows from the basins below the desired exceedance threshold. The network
topology illustrates the location of the four controlled basins in the stormwater
network.
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tainty (shaded areas) in the performance metric than the GP. For the same num-
ber of samples (200), uncertainty bounds quantified by MLH-GP closely aligns
with the empirically computed values. Though GP performs better when the en-
tire solution space is uniformly sampled, they still overestimate the uncertainty
compared to MLH-GP. Note that most of the 200 samples in BO are focused
around 0.23, as acquisition function prioritizes evaluating the most promising
regions in the solution space.
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CHAPTER 6

A Simulation Sandbox for the Development and

Evaluation of Stormwater Control Algorithms

This chapter is developed in collaboration with Sara P. Rimer (Argonne Na-

tional Laboratory) and Sara C. Troutman (University of Michigan).

6.1 Introduction

The advent of smart cities is poised to transform themanagement of our built

environment [178, 179]. Specific to stormwater, a new generation of smart and

connected stormwater systems promises to reduce flooding and improve water

quality management by autonomously sensing watershed parameters and sub-

sequently controlling correspondinghydraulic components across completewa-

tersheds, both adaptively and in real-time. These smart systems will provide an

alternative to costly concrete-and-steel construction by squeezing even more

performance out of existing stormwater and sewer infrastructure, and reimagin-

ing the design and operation of new infrastructure. While the idea of controlling

distributed stormwater systems in real-time dates back to the 1970s [180], the

concept has only recently gained widespread traction in large part due to the

affordability of internet-connected sensors, the increased capacity of data ser-

vices, and the broader acceptance and popularity of other autonomous systems

(e.g. self-driving cars and robots). Relative to other fields of autonomy, however,
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smart water systems are still early in their stage of adoption. Thus, developing

and implementing smart water systems presents an exciting opportunity for re-

searchers and practitioners alike to propose new visions, standards, and tech-

nologies.

The intelligenceof smart stormwater systemsbroadly refers to the acquisition

(i.e. “sensing”) and processing of data into decisions and actions (i.e. “control

strategies”) that are then used to guide the operation of gates, valves, pumps,

and other actuators within a water system. Ultimately, the logic embedded via

these control rules determines how water is moved around the collection sys-

tem to meet specific performance objectives or reduce adverse outcomes (e.g.

flooding, overflows, and/or water quality impairments). As such, the emerging

field of smart stormwater systems stands to benefit greatly from researchers and

stakeholders who can bring to bear new control strategies and techniques.

However, due to the complex, bureaucratic nature of watershed manage-

ment, it can be impenetrable for new groups working in this field to obtain the

necessary details of how real-world stormwater systems operate, as those de-

tails are unlikely to be opened up to just anyone who wants to try out new ideas

of controlling them. To that end, computational toolchains exist for simulating

stormwater systems and then evaluating various control rules implemented by

them. Yet, developing these simulations and adapting them to specific control

strategies often requires a significant amount of effort and expertise. Further-

more, while a number of promising control algorithms have been proposed,

they have all been evaluated on highly specific examples and simulators, mak-

ing it difficult to establish cross-comparisons of their performance. In an effort to

address these limitations, the contribution of this chapter is pystorms, an open-
source Python package comprised of:

1. A collection of real world-inspired smart stormwater control scenarios that

facilitate the quantitative evaluation of control strategies, coupled with
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2. A programming interface and a stormwater simulator to provide a stand

alone package for developing stormwater control strategies.

Our aspiration is for pystorms to emerge as a community-driven resource that
fosters accessibility and collaboration amongst smart stormwater control’s field

of researchers and practitioners, both novices and experts alike.

6.2 Background

Figure 6.1: pystorms abstracts the control of stormwater systems as scenarios,
which are characterized by a computational representation of a stormwater net-
work, a corresponding event driver, set of observable states, and controllable
assets that can be leveraged to manipulate the behavior of a stormwater net-
work in real-time to achieve control objectives. This is coupled with a stream-
lined programming interface and a stormwater simulator to provide the users
with a standalone package for the development and evaluation of control algo-
rithms.
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6.2.1 Control of Stormwater Systems

A stormwater control problem can be defined as the development of an

infrastructural strategy to manipulate the behavior of stormwater in order to

achieve a desired response. Traditionally, stormwater control has relied on pas-

sive solutions, in which control strategies are large-scale, construction-heavy,

andoften financially-burdensome. However, the emergenceofmicrocontrollers,

wireless communication technologies, and low-cost sensors has allowed for small-

scale, modular, and automated control components (e.g. hydraulic valve op-

erated by cellularly-connected actuator) to be installed at strategic locations

throughout a stormwater network for active control, with decisions that can be

automated, adjusted remotely, and made in real-time. Consequently, stormwa-

ter infrastructure can now be instantly redesigned to respond to its dynamic en-

vironment.

Although implemented smart stormwater control engineering solutionswere

documented at least a decade earlier, research-oriented discussion of these im-

plementations did not occur until 1989 [181]. Furthermore, while implementa-

tion of smart stormwater control began at the end of the 20th-century, the 21st-

century has seen far more extensive systematic successes, as seen beginning

with the foundational reviews of Schütze et al. [105] and Vanrolleghem et al.

[182]. Some notable adaptive real-time stormwater control implementations

that have been installed hand-in-hand with extensive research dissemination

include Mullapudi et al. [7], Sadler et al. [25], Vezzaro and Grum [28], Gaborit

et al. [61, 62], Ocampo-Martinez [183], Montestruque [184]. These references

we specifically emphasize as to us they represent diverse and well-documented

implementations of smart stormwater control fromsingle control assets towatershed-

scale implementations. For more comprehensive reviews of stormwater control

implementations, we direct the reader to some recently published survey arti-

cles on the topic [16, 19, 21, 185, 186].
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6.2.1.1 Simulating Stormwater Systems

Due to the variability of stormevents and the safety concerns of experimental

uncertainty, it is infeasible to test various control strategies on actual stormwater

networks. Thus, a more practical method to test the outcomes of different con-

trol decisions is to use a computational simulation of a stormwater network that

is able to give us a “good enough” estimate of what the actual in-situ physical re-

sults might be. Often, these simulations can be carried out using computational

stormwater models that have already been developed to inform the design and

operation of the stormwater system being studied.

As a stormwater system is designed to route rainfall and other runoff to a

wastewater treatment plant and/or discharge to a receiving body of water, the

computational components of stormwater models primarily include a (i) runoff

module and (ii) a routingmodule, and are driven by (iii) precipitation events (e.g.

rain, snow). The runoff module converts precipitation into overland runoff; the

overland runoff then undergoes hydrological processes (e.g. infiltration, evap-

oration) and is hydraulically transported to the stormwater collection system,

which is carried out computationally via the routing module.

Over the years, several different software applications have been developed

for modeling and simulating stormwater networks. The different software appli-

cations all function in a similar manner in which they computationally estimate

thedynamics of stormwater as itmoves throughpredefined temporal and spatial

bounds to varying degrees of mathematical accuracy and fidelity to the underly-

ing hydraulic and hydrological governing processes. The US-EPA’s Stormwater

Management Model (SWMM) [153], MIKE URBAN+ from the MIKE Powered by

DHI software suite1, and the Model for Urban Stormwater Improvement Con-

ceptualisation (MUSIC) by eWater2 are a few examples of widely-used stormwa-

1mikepoweredbydhi.com
2ewater.org.au
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ter software applications. Furthermore, in addition to modeling runoff and its

routing, some of these software applications have also been developed with

the capabilities of modeling urban flooding (e.g. MIKE FLOOD) as well as the

generation and transport of pollutants (e.g. SWMM). The computational details

underlying themodels produced by these software applications are not the pur-

pose of this chapter, and instead for clarity and further detail, the reader is di-

rected to Rossman and Huber [187], Rossman [188], and Rossman and Huber

[189]. Additionally, we provide further detail about the hydraulic simulator we

utilize in Section 6.3.3.

6.2.1.2 Implementing Control

For those unfamiliar with control theory and control systems engineering, the

field can be evasive. Here, we aim to maintain the idea of control in its broad-

est but most straightforward meaning: after receiving some sort of cue (for our

systems, this cue may be readings from sensors), an action is taken on the sys-

tem to alter it for a desired outcome (an action for stormwater systems may be

as simple as the opening and closing of a valve). When we implement control,

we are making decisions and taking actions that try to optimize our system in

order to meet some specified objective. Thus, a stormwater control strategy can

be simplified as the method of developing rules that determine actions to be

implemented by the stormwater system. The computational process of imple-

menting this method to find these actions is what we define as the stormwater

control algorithm.

It is easy to imagine how finding the “best” actions to implement is a complex

undertaking. Suppose a stormwater system with only one valve was installed,

and that valve could be either completely opened or closed every hour. Decid-

ing on a pattern for the complete opening and closing of the valve — even over

the period of a few days — in order to meet some sort of objective is actually

quite difficult, with no guarantee of a singularly “correct” solution. Now, imagine
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if the action could be to open the valve as a percentage between 0–100% — the

combination of actions that can be implemented becomes even more endless.

From an initial perspective, this process of finding the “best” and “correct” solu-

tion fromwhat is an inexhaustible set of possibilitiesmight seem futile. However,

for stormwater applications, finding such an absolute “best” solution is usually

not necessary, and most likely does not even exist. Instead, a solution that pro-

vides a “better” outcome than the current one is often sufficient and can still

drastically benefit the system. Additionally, such better solutions are actually

dependent on how a system’s underlying needs are even defined. That is, how

we define the objective determines what is considered optimal. Thus, research

on stormwater control focuses on both (i) the formulation of control objectives

and (ii) analyzing anddifferentiating themyriadpotential solutions basedon said

formulations. While the former research is essential in this field, it is not the fo-

cus of this chapter. Rather, our initiative here concentrates on the latter: via the

presented simulation sandbox pystorms, we aim to develop a systematic means

for analyzing and differentiating control solutions for stormwater systems with

pre-defined objectives.

Thus far, we have discussed “smart stormwater control” in its broadest sense,

which encompasses all layers that a smart stormwater control system would en-

tail — from the sensors chosen, the communication protocol implemented for

those sensors, the data management of what is sensed, the wireless actuators

controlling a control asset, even to the human operators who may interact or

intervene physically with the system. However, from here on out, we focus our

discussion of smart stormwater control strategies strictly on the computational

algorithm that is used to determine the discrete actions to be taken by the sys-

tem’s control assets based on information known regarding the system’s past,

current, and/or future state. This algorithm can allow for the control strategy

to be implemented and adjusted over any number of given time periods, and

can be coordinated amongst any number of control assets within the system.

By focusing strictly on the computational algorithm, we are able to isolate one
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component of smart stormwater systems that can allow for quantitative cross-

comparisons of strategies used across a multitude of stormwater systems. Ad-

ditionally, the focus on the computational algorithm also centers the component

of a smart stormwater system that can specifically benefit from experts outside

the discipline of water resources engineering.

6.2.2 The Need for a Simulation Sandbox

Even though smart stormwater control has been successfully implemented

for decades, there still does not exist a standard to systematically evaluate the

performance of different control strategies across diverse stormwater networks

and contexts. Consequently, this inability to systematically evaluate smart stormwa-

ter control directly impedes our field’s ability to bring new and necessary exper-

tise to solve some of our most essential and complex problems.

As demonstrated by the smart stormwater control survey papers referenced

in Section 6.2.1, this desire for direct and systematized comparisons of control

strategies is not an isolated realization. While there have been previous efforts to

introduce benchmarking stormwater networks for evaluating control strategies

[34, 35], we identify the need to make available a more extensive assortment of

example stormwater networks to the broader research community. This assort-

ment of networks must be both nonexclusive and nonrestrictive, and capture

the complexity and diversity of features unique to stormwater. Furthermore, we

recognize that there is a need for an unambiguous programming interface that

explicates the computational backend and aids researchers to easily utilize the

example networks for prototyping stormwater control solutions.

We developed pystorms as a Python-based simulation sandbox to acceler-

ate a researcher’s ability to computationally simulate and evaluate stormwater

control strategies. pystorms provides a collection of diverse stormwater con-
trol scenarios, which are drawn from real-world urban watersheds to encom-
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pass diverse features appertaining to stormwater systems. These scenarios are

coupled with a stormwater simulator and streamlined programming interface,

which together provide researchers with a standalone package that focuses its

usage on stormwater control algorithm development and testing. Our intention

is that pystorms reduces the programming learning curve that can be a barrier
to those aspiring to learn stormwater control, and also curates an open repos-

itory of smart stormwater control examples which foster the development and

evaluation of any number of new control strategies applied to them. In the fol-

lowing section, we present a detailed overview of the design and architecture of

pystorms, and how it facilitates the systematic evaluation of stormwater control

strategies.

6.3 pystorms

Developed in Python, pystorms is supported on all major operating systems
(OSX, Windows, and Linux) and can be installed using pip3. pystorms is dis-
tributed under the GNU General Public GPLv3 license4, which ensures that this

package and its derivatives remain open-source and can be used free of cost.

Additionally, source code for the package is available on Github5, alongside

comprehensivedocumentation and tutorials to utilize and contribute to its broader

development6.

6.3.1 Scenarios

pystorms abstracts smart stormwater systems as scenarios. Each scenario is
described by (i) an underlying stormwater network–which includes the network’s

topology (e.g. a sewer system draining into a water body) and its event driver

(e.g. storm event)–and its overlaying control system, which includes a set of ob-

3pypi.org/project/pystorms
4gnu.org/licenses/gpl-3.0.html
5github.com/kLabUM/pystorms
6open-storm.org/pystorms
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servable states (e.g. water levels), controllable assets (e.g. basins with control-

lable valves at outlet), and a specific control objective (e.g. preventing flooding).

The specific terminology for a scenario in pystorms is described in further detail
in Table 6.1, and the corresponding delineation between (i) and (ii) is illustrated

in Fig. 6.1.

By abstracting our stormwater systems as scenarios, we are able to create

new scenarios with relative ease by interchanging different scenario compo-

nents. For example, let us assume we have evaluated a control algorithm when

applied to an individual scenario. We can now broaden our inquiry and test the

algorithm’s scalability by interchanging components of our scenario’s overlay-

ing control system (e.g. sequentially increase its number of controllable assets),

and evaluating the algorithmon this newly derived set of scenarios. Similarly, we

can quantify the generalizability of a control algorithm as it is applied to a spe-

cific control objective (e.g. maintaining water level set points) by systematically

altering the underlying stormwater network (e.g. cycle through a set of design

storms as the event driver) while retaining the overall control system. We can

then calculate a performance metric of the algorithm when applied across this

new subsequent set of scenarios. Thus, not only can can now evaluate a control

algorithm applied to an individual stormwater scenario, but we can also evalu-

ate it more universally when applied across a spectrum of these interchanged

scenarios.

pystorms provides an collection of seven scenarios, drawn from real-world

smart stormwater systems across North America and Europe and named as a

letter from the Greek alphabet. The collection of scenarios span a multitude of

stormwater systems that address a diverse set of urban watershed needs with

various smart control objectives. The subcatchment areas range from 0.12 −

67 km2 in size, and include both combined and separated stormwater arrange-

ments. A brief summary of the collection’s scenarios are presented in Table 6.2.
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While our aim is for this collection of scenarios to be representative of a

myriad of smart stormwater control, we recognize that it is certainly not exhaus-

tive. As such, we aspire to grow the pystorms repository of stormwater scenarios
through community-driven contributions of new scenarios. Accordingly,we pro-

vide extensive documentation 7 for users to contribute their own scenarios, or

modify the existing ones.

To demonstrate what is a scenario in the context of pystorms, we present
here Scenario theta, an idealized stormwater network that can be used for rapid
prototyping of control strategies. Scenario theta’s network topology can be de-
scribedas two 1000m3 storagebasins connected inparallel anddraining through

a shared outlet into a downstream water body. The event driver is a synthetic

rain event lasting 9 hr with a peak intensity of 3.2 in. We stipulate the observable

states to be the water levels at the two basins at each 15min time-step of the

simulation, and the controllable assets are outlet valves of both storage basins

adjustable at each time-step between 0−100% open. The control objective is to

maintain the outflow into the downstream water body below a specified thresh-

old of 0.5m3s−1, while simultaneously preventing flooding at the basins. The

ability of a control strategy to meet theta’s control objective is quantified us-
ing a pre-defined performance metric that computes a penalty for violating the

control objective at each time-step, and sums these penalties across the whole

simulation. We provide the specific details on this performancemetric (eq. 6.1a)

in Section 6.4 where we evaluate the performance of two different example con-

trol strategies applied to theta.

6.3.2 Programming Interface

The pystorms programming interface is inspired by the principles of control
theory, where the control of a system is abstracted as an iterative process (also

known as a control loop) in which a controller monitors the underlying state(s)

7open-storm.org/pystorms/docs/build-scenarios
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of the system of interest, and makes calculated adjustments — via control ac-

tions — to the system for it to achieve a desired behavior. In the context of smart

stormwater control, our system of interest is our stormwater network, and the

states and control actions are represented by the set of observable states and

the specific control asset configurations (e.g. valve positions andpump settings).

Thus,we havediscretized the simulation of stormwater control in pystorms as the
following series of steps:

1. Query the set of observable states for specified locations in the stormwa-

ter network at the current time-step; then potentially use these queried

states to

2. Compute control actions to manipulate the system to achieve a desired

behavior; and finally,

3. Implement the control actions by adjusting the settings of the control-

lable assets that serve as inputs into the underlying system.

We initialize a pystorms scenario by creating an instance of it using the state-
ment: pystorms.scenarios.<scenario name>(). As seen in Fig. 6.2, theta is ini-
tialized with pystorms.scenarios.theta(). The initialization then configures the
stormwater simulator with the computational representations necessary to simu-

late the respective scenario, and returns it as a Python object. This Python object

(env in Fig. 6.2) can be used to progress and/or pause the stormwater simulator,
read and/or write parameters to the network, and utilize any additional pystorms
functionality. The current state of the underlying stormwater network in the sce-

nario can be queried using the <scenario object>.state() call (env.state()
in Fig. 6.2). <scenario object>.step(<actions>) implements the control ac-
tions in the stormwater network, progresses the simulation forward a time-step,

and returns the current status of simulation (Truewhen the simulation has termi-
nated and False otherwise). In Fig. 6.2, done = env.step(actions) implements
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actions in the stormwater network and progresses the simulation being han-
dled by the env Python object, which in this case is the Scenario theta. done is
assigned True when the simulation has terminated, and False otherwise.

During the each time-step of the simulation, the ability for the implemented

control actions to achieve the scenario’s control objective are evaluated by com-

puting the time-step’s corresponding performancemetric. This computed value

is then stored for each time-step, and canbe accessed at any timeduring the sim-

ulation using <scenario object>.performance() (env.performance() in Fig. 6.2).
Additional parameters are logged throughout the simulation. While an initial set

of these logged parameters is predefined, the user is able to customize this set

for any additional parameters of interest.

The series of steps for implementing a control loop into our stormwater sim-

ulation is seamlessly integrated throughout the pystorms programming inter-
face. Users carry out Step 1 using <scenario object>.state(), and Step 3 us-
ing <scenario object>.step(<actions>). Separated out to be defined by the
user is the controller (Step 2), whichmaps the observed states to control actions.

While implementing the controller into pystorms is ultimately left to the user, for
our example presented here, we implement it as a Python function block (see

Fig. 6.2).

6.3.3 Architecture

The pystorms architecture follows theobject orientedprogrammingparadigm
which relies on classes as its core building blocks. This style of software architec-

ture was chosen to allow pystorms to be modular such that users can customize
it tomeet their own specific requirements and/or workflows. While the pystorms
programming interface is designed with the intent to be intuitive for all poten-

tial users, it particularly caters to those who may only have a rudimentary un-

derstanding of stormwater dynamics and/or basic familiarity with programming
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in Python. However, it can also be easily customized to meet the requirements

of researchers who want to incorporate advanced functionality, such as custom

water quality or rainfall-runoff modules (for details on how to utilize pystorms
modularity and customization, we again direct the reader to its online documen-

tation).

The pystorms architecture is organized to accomplish two tasks: (1) the con-
figuration of the scenario metadata, and (2) the simulation of the stormwater

network. These two tasks are carried out using three core interacting modules:

environment, scenario, and config. These three modules interface with each
other to build and execute the various scenarios. Fig. 6.3 provides a schematic

of this architecture. The first two modules handle the stormwater simulation,

while the latter handles the computational representation of the stormwater net-

works and the metadata pertaining to the control problem (i.e. states, actions,

and objectives).

6.3.3.1 Configuration

The config module is used to manage the configuration in the pystorms ar-
chitecture. config contains a configuration file for each scenario, which delin-
eates the stormwater network, its set of observable states and controllable as-

sets, and the set of parameters that are used to compute its control objective’s

corresponding performance metric. The configuration files are written using

YAML, a mark-up language commonly used for developing configuration files

in software applications. With YAML, the parameters of interest defined in the

configuration file are formatted as vertical lists rather than data structures. As a

result, the configuration file becomesmore human-readable, and creates a scal-

able and easy workflow for developing scenarios.
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6.3.3.2 Simulation

Scenarios in pystorms are implemented as Python classes. To ensure con-
sistent functionality across scenarios, each scenario is instantiated as its own

independent class with an inherited structure from a base scenario module.
The scenario classes interface their corresponding configuration files with the

stormwater simulator and implement any of the functions specific to that sce-

nario (e.g. functions used for computing performancemetrics of corresponding

control objectives).

The environment module is the interface between the stormwater simulator
(e.g. EPA-SWMM) and the scenarios. This module is specifically included to en-

sure pystorms is able to remain agnostic to whatever stormwater simulator is
used. For instance, if a user wants to utilize a customized hydrologic solver for

simulating stormwater, they can do so by modifying the environment module
to call their solver when the scenarios query it, thus ensuring compatibility to a

wide array of simulators with minimal overhead.

pystorms uses SWMM as its default stormwater simulator. SWMM, devel-

oped by the US-EPA, is an open-source stormwater simulation model that is

extensively used for the design and analysis of stormwater systems across the

world. SWMM is built with the C programming language, a low-level language

that results in significant computational efficiency. However, the trade off for

using C is SWMM’s difficulty to be interfaced with the latest scientific libraries.

As a result, there have been several efforts over the years to build wrappers for

SWMM such that its functionality can be exploited via high-level programming

languages, such as Python.

PySWMM is a Python implemented package that not only provides awrapper

to communicatewith SWMM,but also yields a high-level user interface for query-

ing the various stormwater parameters. pystorms —bymeans of the environment
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module — interfaces with SWMM using PySWMM, and as a result, all functional-

ity included in PySWMM can also be accessed using pystorms. Readers are di-
rected to the documentation for additional details and examples to customize

pystorms to meet their requirements.

6.4 Demo: Evaluating Control Strategies

Throughout this section, we demonstrate how pystorms facilitates develop-
ing smart stormwater control strategies by evaluating the performance of two

control algorithms applied to Scenario theta.

While there exist many control strategies that can be adopted to achieve

theta’s control objective, to simplify our illustration of pystorms, we implement
two basic control strategies here. The algorithms used to implement the control

strategies are described below and in Fig. 6.4. Both control strategies are simple

reactive control strategies, in which the valve settings of theta’s two basin out-
lets are adjusted to either retain or release storage depending on the observed

states compared some corresponding water level limits.

Rule-based Control Our basic rule-based control strategy adjusts our basin

outlets based on their respective water levels. Specifically, each basin’s outlet

setting is equal to its relative water level (i.e., the current water level of the basin

divided by its maximum depth). Therefore, our control algorithm will set a full

basin’s outlet to 100% open, and a basin that is half full will have its outlet set to

50% open, etc. While this strategy provides ameans tomitigate local flooding at

each basin, it notably does not consider the other control objective for the net-

work’s outflow into the downstreamwater body to stay below a given threshold.

Equal-filling Degree Control The equal-filling degree is a control strategy of-

ten applied to stormwater networks with distributed stormwater storage assets,

and has commonly been used as a starting point when comparing more than
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one control strategies [28, 34, 190–192]. For this strategy, we begin by defining

a storage asset’s “filling degree” — which is typically the ratio a storage asset is

full based on its volume or depth — and compute it for each asset in the collec-

tion system. The algorithm seeks to “balance” these filling degrees across the

systembased on its average. The exactmanner in which this balancing is carried

out is not necessarily consistent in literature. Our method for this balancing is

delineated in the algorithm in Fig. 6.4. If all assets have a filling degree equal to

the average (i.e., all assets are equally filled), then each should release an equal

fraction of the target outflow. Otherwise, the released flows across the assets

should be differentiated such that, when an asset has a filling degree less than

the average, it does not release any flow; but if an asset is greater than the aver-

age, it releases flows based on its deviation from the average.

The implementation of the equal-filling degree algorithmusing pystorms can
be seen in Figure 6.4. We carry out the simulation for each of the two algorithms,

as well as for the uncontrolled case, in which control actions are never imple-

mented and the basin outlets are always open. The resulting hydraulic behavior

at the two basins and the network’s outflow for each of these simulation runs can

be seen in Figure 6.5.

Our aim to find a control strategy that can meet theta’s control objective to
maintain the outflow into the downstream water body below a specified thresh-

old of 0.5m3s−1 and also minimize flooding at the basins. As discussed in Sec-

tion 6.3.1, we pre-define a performance metric to quantify our control algo-

rithm’s ability to meet the corresponding control objective. For Scenario theta,
this performance metric, P, is defined as:

P =

T∑
t=0

(
Ht +

2∑
i=1

Gi,t

)
(6.1a)
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Ht =

Qt − 0.5 , if Qt > 0.5

0.0 , otherwise
(6.1b)

Gi,t =

103 , if any flooding at basin i

0.0 , otherwise
(6.1c)

whereHt is a flow exceedance penalty of the stormwater network’s outflow,Qt,

over the 0.5m3s−1 threshold; and Gi,t is an arbitrary flooding penalty of 10
3 added

whenever there exists flooding at either of our two basins, both calculated and

summed across every time-step t in the simulation.

The performance metric calculated across the simulations for both imple-

mented control algorithms and the uncontrolled case can be seen in Table 6.3).

Additionally, the hydraulic behavior of our two basins and the network outlet

when these algorithms are applied versus the uncontrolled case can be seen in

Fig. 6.5.

As can be seen, the equal-filling degree strategy is able to achieve the con-

trol objective of the outflow threshold, as well as avoidance of flooding. Alterna-

tively, the rule-based control strategy only is able to avoid flooding at the basins.

The stormwater network behavior for both strategies follow their corresponding

implemented algorithm. For example, as the rule-based control strategy does

not directly consider the outflow threshold when determining the implemented

control actions, it follows that the outflow in the network’s outlet exceeds this

threshold (see the outlet plot in Fig. 6.5).

The results for each implemented control strategy versus the uncontrolled

case are also captured using theta’s performance metric seen in Equation 6.1.
As the performance metric is ultimately a sum of penalties for violating the con-

trol objective, a smaller calculated performance metric value indicates a bet-

ter performing control algorithm. The respective performance metric values for

each control strategy presented here can be seen in Table 6.3. With a calcu-
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lated performance metric of 0, the equal-filling degree strategy perfectly meets

theta’s control objective; comparatively, the rule-based and uncontrolled cases
have higher performance metric values, and thus, we can conclude perform

worse than the equal-filling degree.

6.5 Discussion

This ability for stormwater systems to be instantly modified is critical as com-

munities prepare for more frequent, uncertain, and destructive weather events

due to climate change. More so, often themost basic control strategies can have

large-scale impacts on the complex, dynamic systems they operate, potentially

leading to millions of dollars in savings for the communities they serve. Even

though sensor-actuator componentsmay be successfully deployed at individual

sites throughout a stormwater network, determining strategies for their coordi-

nation across the entire watershed may only add further complexity. As a result,

there is a great need — along with endless opportunities — to develop and im-

plement novel control strategies for transforming stormwater systems. While the

sandboxing efforts of pystorms serves as an initial effort to foster the develop-
ment of these strategies, we see specific opportunities to, first, methodically fa-

cilitate the development of new simulation frameworks and control algorithms,

and subsequently, to then validate and extend their efficacy. We expound on

these points here, and discuss next steps to put them into practice.

Asdiscussed in Section6.2.2, a critical limitation toprogressing smart stormwa-

ter control research forward is the inability to systematically develop and ana-

lyze smart stormwater simulation workflows and control algorithms. pystorms
can be customized and adapted for a multitude of other uses beyond its ini-

tially provided collection of scenarios and stormwater simulator provided. For

example, alternative stormwater simulation software be easily integrated into

pystorms. Furthermore, new scenarios can be assembled from the assortment

of components in the scenario collection such that additional research ques-
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tions can be studied. For instance, for each of the scenarios we provide at the

outset, pystorms specifies only a subset of a scenario’s total observable states
that are able to be queried throughout the simulation. However, this initial sub-

set of observable states is never claimed as the optimal; in fact, to the best of

our knowledge, there does not yet exist a methodology for identifying an op-

timal set of observable states. Thus, new scenarios can be made with different

subsets of observable states (e.g. flows, pollutant concentrations), and new re-

search questions can now be asked about which states may be most critical for

informing control actions to be taken.

Beyond the coordination and integration of smart stormwater control meth-

ods, we view a more expansive opportunity for pystorms to impel the research
community to extend its analysis of “control.” Specifically, we see a need for im-

proved validation of control methods, and an opportunity for new approaches

in defining a control method’s success. In the current iteration of pystorms dis-
cussed here, we present a means to assess the performance of a control algo-

rithm via its ability to achieve the pre-defined control objective (e.g. maintain

flow below a threshold, avoid flooding). However, there are many other assess-

ment metrics that can define a control algorithm’s “success,” including compu-

tational efficiency, applicability across real-world contexts, and the incorpora-

tion of social considerations for actual implementation. pystorms can serve as
a mechanism for assessing the performance of control algorithms across these

definitions. For example, by increasing the number of controllable assets avail-

able out of the eleven pond outlets presented in Scenario gamma, one can assess
the scalability of a control algorithm as the state-action space increases. Ad-

ditionally, control algorithm generalizability across storm characteristics can be

assessed with the multiple rain events provided in Scenario epsilon. These are
just a few illustrations of how pystorms provides a way to broaden and assess
the definition of control efficacy to include factors that are critical for the imple-

mentation of smart stormwater approaches in real-world systems.
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6.6 Conclusions and Next Steps

pystorms provides a curated collection of scenarios, coupled with an acces-
sible programming interface, to enable the development and quantitative eval-

uation of stormwater control algorithms. We have developed pystorms with the
intent to make research into smart stormwater control more accessible to the

broader research community. It is our hope that this package will emerge as

a community-driven resource that is able to address key knowledge gaps and

enable the advancement of smart stormwater systems. To this extent, we see

proximate opportunities for the broader research community to collaborate on

pystorms by contributing their own stormwater scenarios and/or control algo-
rithms to the package initiated here. Likewise, we encourage the broader re-

search community to further build upon pystorms by imparting their own smart
stormwater control instances using the pystorms architecture and integrating

their own stormwater control simulation workflows into it.
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Table 6.1: Terminology defined for the pystorms package and to delineate
stormwater scenarios.

Network Topology We distinguish a network to be the physical sys-
tem of conduits (e.g. pipes, culverts), storage el-
ements (e.g. retention and detention basins), and
any other subcatchment infrastructure (e.g. green
infrastructure,wetlands) that collect, convey, and/or
treat stormwater runoff.

Event Driver Any inputs or “disturbances” to the network that
govern the generation and flow of runoff are de-
fined as event drivers. Most often, an event driver
is the precipitation generating runoff in the water-
shed. It can also includewastewater flows, tidal fluc-
tuations of connected water bodies, or any other
such phenomenon that influence the flow of runoff
in the network.

Controllable Assets Any elements (e.g.basins,wetlands,CSOpump sta-
tions) that are equipped with valves, pumps, or any
other flow control infrastructure that can be actu-
ated to manipulate stormwater flow.

Observable States The collection of states in the network (e.g. water
levels, flows, pollutants) that can be accessed by the
users during a simulation.

Control Objectives The overall goal or set of goals (e.g. preventing
flooding, improving water quality, reducing ero-
sion) of manipulating the behavior of a stormwater
network using controllable assets during a simula-
tion. The ability of a controller to achieve a particu-
lar objective is quantified using a performancemet-
ric.
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Table 6.2: pystorms includes a curated collection of real world-inspired
stormwater scenarios for developing and quantitatively evaluating the perfor-
mance of stormwater control algorithms.

Sce-
nario

Network Control Objectives

theta 2 km2 idealized separated
stormwater network

Maintain the flows at the
outlet below a threshold
and avoid flooding (2
storage basin outlets)

alpha 0.12 km2 residential com-
bined sewer network

Minimize total combined
sewer overflow volume (5
weirs at interceptor con-
nections)

beta 1.3 km2 separated
stormwater network
with a tidally-influenced
receiving river

Minimize flooding (1 de-
tention pond outlet, 1
storage basin outlet, 1
pump)

gamma 4 km2 highly urban
separated stormwater
network

Maintain channel flows
below threshold and
avoid flooding (11 deten-
tion pond outlets)

delta 1.7 km2 combined sewer
network in which the
stormwater ponds also
serve as waterfront

Maintain water levels
within upper and lower
thresholds for water
quality and aesthetic ob-
jectives (5 storage basin
outlets)

epsilon 67 km2 highly urban com-
bined sewer network

Maintain sewer net-
work outlet TSS load
below threshold and
avoid flooding (11 in-line
storage dams)

zeta 1.8 km2 combined and
separated sewer network
(based on the Astlingen
benchmarking network
[23, 35])

Maximize flow to down-
stream wastewater
treatment plant and
minimize total combined
sewer overflow volume
(4 storage basin outlets)
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Figure 6.2: pystorms provides a high-level abstraction for simulating control in
stormwater networks for users to quantitatively evaluate theperformanceof con-
trol strategies with minimal overhead.
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pystorms

(*.yaml)

config

alpha

class  theta(scenario):(scenario):

self.env = environment(<config-theta>)

theta

scenario environment

PySWMM External

Modules

Figure 6.3: pystorms is built with three interacting core modules: (i) config rep-
resents the metadata and computational representations of the stormwater net-
work and event driver; (ii) environment acts as an interface for scenarios to in-
teract with the stormwater simulators; and (iii) scenario provides a consistent
structure for the scenarios in the package. A scenario object in pystorms inher-
its (represented by arrows) from the base scenario class, and interfaces (repre-
sented by line) with the stormwater simulator though the environment.
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Figure 6.4: Equal-filling controller maintains the flows at the outlet below a de-
sired threshold by coordinating its actions such that it equally utilizes the storage
in the controllable assets of the network. Algorithm 1 and the corresponding
code snippet illustrate the algorithm and its Python implementation.
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Figure 6.5: In Scenario theta, the equal-fillingdegree control strategy is success-
fully able to maintain the flows at the outlet of the watershed below the desired
threshold of 0.5m3s−1 by uniformly using the storage in the networks. Static rule-
based control and uncontrolled responses of the networks are also presented
for comparison. The maximum depth in each of the two basins is 2m.
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Table 6.3: Calculated performance metric values from Equation 6.1 for simu-
lations corresponding to the two implemented control algorithms and the un-
controlled simulation. As can be seen, the equal-filling degree control strategy
performs better than the rule-based control strategy, which then outperforms
the uncontrolled case.

Control Strategy Performance Metric

Uncontrolled 1630
Rule-based 1624
Equal-filling Degree 0
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CHAPTER 7

Conclusion

7.1 Summary of Discoveries

This dissertation, using statistical learningmethods, aims to address the knowl-

edge gaps to support the development of tools and algorithms for the safe and

reliable control of stormwater systems. To that end, the following discoveries

were made in each chapter:

• Chapter 2: I have discovered that the stormwater system’s nutrient re-

moval efficiency is enhanced by controlling the hydrological behavior of

stormwater basins in the network. I also introduce a modeling framework

for simulating control in stormwater systems.

• Chapter 3: I have discovered that a stormwater network’s response is ef-

fectively characterized and precisely controlled using a wireless sensor-

actuator network.

• Chapter 4: I have discovered that Reinforcement Learning-based algo-

rithms effectively derive controllers that donot require any explicit assump-

tions on the stormwater network’s dynamics.

• Chapter 5: I have discovered that the flow control objectives in a stormwa-

ter network are achieved by simply pre-configuring the network’s control-
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lable assets before a stormevent. I alsodiscovered that a BayesianOptimization-

basedmethodology effectively establishes bounds on the controller’s per-

formance by quantifying the impacts of rainfall uncertainty.

• Chapter 6: I have contributed an out-of-the-box and open-source frame-

work to allow others to compare and analyze stormwater control algo-

rithms.

7.2 Future Directions

Despite the discoveries made in this dissertation, much work remains to be

done to solidify smart stormwater systems as a research field. Given the nascent

nature of some of these ideas, this dissertation focused on early challenges,

which can now be expanded to include a number of engaging topics.

Computer vision for hydrological monitoring: Dynamics that govern wa-

ter flow in urban systems are highly complex and are simulated using highly

parameterized models [29]. These models require frequent calibration and vali-

dation to ensure that they accurately represent the physical system [1, 29]. Given

the steep financial investment and technical expertise required for maintaining

sensor networks, high-resolution data necessary for calibrating these models is

rarely available[3, 8]. In the past decade, computer-vision methods have ma-

tured to a point where they can be reliably used for detection, segmentation,

and tracking[133]. By adopting thesemethods formonitoring hydrological phe-

nomena, a camera can simultaneously measure flows, water level, and rainfall,

thus providing an affordable alternative for acquiring high-resolution data. In-

vestigating the role of computer vision for smart stormwater systems poses an

exciting research frontier.

Uncertainty quantification: As the urban water infrastructure models be-

come reliable, they can be leveraged to develop coordinated control strategies
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that enable infrastructure to reprogram itself to tackle dynamic weather condi-

tions[32]. A significant barrier to adopting such an approach is the uncertainty

associatedwith the underlyingmodel, sensorsmeasurements, andweather fore-

casts that dictate the control algorithm’s actions. Quantifying these uncertainties

will enable the decision-makers to weigh the risks and rewards associated with

control strategies and pick the one that benefits both the public and the envi-

ronment[25]. Recent studies have demonstrated the effectiveness of the Deep

Gaussian Process in estimating uncertainties in large solutions spaces[177]. In-

corporating the Deep Gaussian Processes as function approximators in the sta-

tistical learning-based stormwater controlmethodologies poses a promising ap-

proach for quantifying the various inherent uncertainties in the stormwater sys-

tems.

Barriers to adoption: One of the challenges in realizing the vision of au-

tonomous stormwater systems is adopting sensing and control in the day-to-

day operation of stormwater infrastructure. Though open-source and accessi-

ble tools, like the ones presented in this dissertation, can facilitate these tech-

nologies, their widespread adoption requires a more holistic approach. The

next generation of stormwater infrastructure development should incorporate

the interests of a diverse set of stakeholders to ensure an equitable share in the

risks and rewards. Furthermore, the financial constraints and the environmental

permits that underpin the decision-making in municipalities dictate these tech-

nologies’ adoption. Hence, a holistic approach that accounts for both techno-

logical and social perspectives is essential for transitioning these technologies

into adoption.

Many industries, such as those underpinning autonomous driving, have em-

braced wireless sensing and statistical learning approaches. However, its adop-

tion in water systems has been limited. Given the number of such systems glob-

ally, even a marginal performance enhancement can have a significant positive

impact on the environment. There is a vast disparity between the current state-
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of-art in urban water systems and the possibilities enabled by adopting these

technologies. This massive potential for improvement, at a margin of the price

of traditional solutions, has been the motivation for this dissertation. Though

there are significant knowledge gaps that have to addressed before the merger

of physical and digital water systems, the discoveries made in this dissertation,

along with the algorithms and tools developed, seek to support the develop-

ment of a new generation of autonomous stormwater infrastructure.
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APPENDIX A

Supplementary Information for Chapter-2

A.1 Case study 1: Local Control

• Area: 500m2

• Max height: 1.5m

• KNitrate = 42.048 year−1

• KOxygen = 31.536 year−1

A.2 Case study 2: System-level Control

• Pond 1

– Area: 1000m2

– Max height: 2.5m

– KNitrate = 21.024 year−1

– KOxygen = 525.60 year−1
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• Pond 2

– Area: 600m2

– Max height: 2.5m

– KNitrate = 21.024 year−1

– KOxygen = 1051.2 year−1

• Pond 3

– Area: 1000m2

– Max height: 2.5m

– KNitrate = 15.768 year−1

– KOxygen = 1051.2 year−1

• Wetland

– Area: 1000m2

– Max height: 2.4m

– Weir-height: 1.5m

– KNitrate = 25.228 year−1

– KOxygen = 1051.2 year−1
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Figure A.1: Rule-based algorithm used for controlling the system in the second
case study. 154



APPENDIX B

Supplementary Information for Chapter-4

B.1 Deep Neural Networks

Broadly, neurons are the fundamental processing elements of a neural net-

work. They receive their inputs (xij) as the weighted (wij) outputs from the neu-

rons in the previous layers and produce a single output signal (yj) dependent

upon a bias (bj) and activation function f(∗)

zj =

n∑
i

wijxij + bj (B.1)

yj = f(zj) (B.2)

More specifically, “Deep” neural networks are a collection of such neurons

organized as distinct layers. A neural network approximates a function by fine

tuning its weights and biases so that its output signal closely resembles the out-

put of the function it is approximating for the same inputs. The degree of resem-

blance between the signals is computed based on a loss function L(∗)

Loss = L(Qp, Qo) (B.3)
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wij = wij − α× dL(Qp, Qo)

(dwij)
(B.4)

bj = bj − α× dL(Qp, Qo)

(dbj)
(B.5)

The choice of the loss function is dictated by the nature of the function being

approximated. For example, a neural network approximating rainfall runoff may

use mean squared error[193]

Loss = |Qp −Qo|
2 (B.6)

The closer the correspondence between the signals, lower the loss.

Neural networks minimize the loss though stochastic gradient descent, start-

ing with a set of weights and biases (either random or values sampled from a

distribution). Based on the value of loss function, the values of weights and bi-

ases are adjusted, and the neural network attempts to approximate the function

with these updated values. This process of tuning the weights and biases is re-

peated until the neural network can approximate the function to satisfaction or

loss is minimized. While Deep Neural Networks show significant promise in ap-

proximating functions, their ability to do so is contingent upon several factors:

Stability of the learning process, the size and depth of the network, the under-

lying data distributions [140, 194]. Fundamental description of Deep Neural

Networks can be found in established textbooks [140].

B.2 Hyper parameters and architecture

Neural Network

Layers 2
Number of Neurons per layer 50

Gradient Descent
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Learning Rate 10−3

Rho 0.9
Epsilon 10−8

Decay 0.0

Batch Normalization

Momentum 0.99
Epsilon 0.001

Deep Q Network

Target Network Update 10000
Gamma 0.99
Replay Buffer 100000

B.3 Equal-filling degree algorithm
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Figure B.1: Performance comparison between uncontrolled and controlled sys-
tems (RL and equal-filling) across a spectrum of stormevents. Equal-filling ap-
proach is able to successfully control the system to achieve the objective of min-
imizing flows in all the stormevents.
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Equal filling degree algorithm is a rule based real-time control approach for

controlling stormwater networks. In this approach, control decisions of either

releasing or holding back water, are made based on the filling degree (fi) in the

controlled asset (i). In this context, filling degree is defined as the normalized

depth in an asset. By releasing water based on the difference between the av-

erage filling degree of the network (f̄) and the filling degree (fi) in each asset,

equal-filling approach ensures that the storage potential in the control assets is

utilized uniformly.

Algorithm 3 Equal-Filling Control Algorithm: Let i be a basin in the network of
N tanks. In this scenario,N = 4.

1: for all N tanks do
2: Compute the filling degree; fi = depthi

Max depthi

3: end for
4: Estimate the average filling degree; f̄ =

∑N
i fi

N

5: for all N tanks do
6: if fi > f̄ then
7: valvei = c× (fi − f̄)
8: else if f̄− fi ≤ θ then
9: valvei = f̄

10: else
11: valvei = 0.0

12: end if
13: end for

Hyper-parameter c can be used to regulate the valve opening and θ can be

used to control the flashiness of the outflow hydrograph. In this study, these

parameters were chosen to be 3.0 and 0.18 respectively. Performance of the

equal-filling algorithm across the 70 rainevents is presented in figure B.1. Per-

formance of the equal-filling control approach in controlling a 6 hour 25 year is

presented in figure B.2.

158



Figure B.2: Equal-filling approach successfully maintains the outflows from the
four basins below the desired threshold.

B.4 Scenario 1 — Reward function Formulation Sensitivity

Reward functions 3a and 3b are formulated as a variant of the third reward func-

tion (eq.11) to analyse the sensitivity of the agent’s performance to the choice of

equation used in the formulation reward functions. Reward function 3a (eq. B.7)

is formulatedusingexponential and the3b reward function is built using squared

terms (eq. B.8).

r3a(st) =


c1 − c2e

ht , ht < Hft ≤ F

c1 − c3e
ht , ht ≥ Hft ≤ F

−eft − c2e
ht + c4, ht < Hft > F

−eft − c3e
ht + c4, ht ≥ Hft > F

(B.7)
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r3b(st) =


c1 − c2h

2
t , ht < Hft ≤ F

c3 − c4h
2
t , ht ≥ Hft ≤ F

−c5(c6ft)
2 − c2h

2
t + c7, ht < Hft > F

−c5(c6ft)
2 − c4h

2
t + c7, ht ≥ Hft > F

(B.8)

3a and 3b reward function are parametrized by {c1 = 2.5, c2 = 0.5, c3 =

0.75, c4 = 3} and {c1 = 2.0, c2 = 0.5, c3 = 2.5, c4 = 0.9, c5 = 0.1, c6 = 10, c7 = 1.5}

respectively. These parameters are chosen to constrain the scale of these reward

functions to the third reward function.
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Figure B.3: Performance of the RL agent is independent of the choice of equa-
tions used for creating the reward functions.
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B.5 Scenario 1 — Location sensitivity
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Figure B.4: Performance of the RL agent controlling the basins across the net-
work. Controller is able to control the response of the basins irrespective of the
location, indicating the independenceof the control algorithm’s performanceon
the location of the basin. Results presented in this figure are independent simu-
lations; each column represents a simulation where only that particular basin is
controlled.
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B.6 Scenario 2 — Back-to-back event
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Figure B.5: Performance of the RL controller in a back-to-back event. Given that
the controller is trained to react based on the depth in the basins and not the
rainfall experienced in the watershed, controller treats this back-to-back event
as if it were a single event.
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