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ABSTRACT

This dissertation comprises three essays on latent variable models and Bayesian statis-

tical methods for the study of American legislative institutions and the more general

problems of measurement and model comparison. In the first paper, I explore the di-

mensionality of latent variables in the context of roll call scaling. The dimensionality

of ideal points is an aspect of roll call scaling which has received significant atten-

tion due to its impact on both substantive and spatial interpretations of estimates. I

find that previous evidence for unidimensional ideal points is a product of the Scree

procedure. I propose a new varying dimensions model of legislative voting and a cor-

responding Bayesian nonparametric estimation procedure (BPIRT) that allows for

probabilistic inference on the number of dimensions. Using this approach, I show

that there is strong evidence for multidimensional ideal points in the U.S. Congress

and that using only a single dimension misses much of the disagreement that occurs

within parties. I reexamine theories of U.S. legislative voting and find that empirical

evidence for these models is conditional on unidimensionality.

In the second paper, I expand on the varying dimensions model of legislative voting

and explore the role of group dependencies in legislative voting. Assumptions about

independence of observations in the scaling model ignore the possibility that members

of the voting body have shared incentives to vote as a group and lead to problems in

estimating ideal points and corresponding latent dimensions. I propose a new ideal

point model, clustered beta process IRT (C-BPIRT), that explicitly allows for group

contributions in the underlying spatial model of voting. I derive a corresponding

empirical model that uses flexible Bayesian nonparametric priors to estimate group

xii



effects in ideal points and the corresponding dimensionality of the ideal points. I

apply this model to the 107th U.S. House (2001 - 2003) and the 88th U.S. House

(1963 - 1965) and show how modeling group dynamics improves the estimation and

interpretation of ideal points. Similarly, I show that existing methods of ideal point

estimation produce results that are substantively misaligned with historical studies

of the U.S. Congress.

In the third and final paper, I dive into the more general problem of Bayesian model

comparison and marginal likelihood computation. Various methods of computing the

marginal likelihood exist, such as importance sampling or variational methods, but

they frequently provide inaccurate results. I demonstrate that point estimates for the

marginal likelihood achieved using importance sampling are inaccurate in settings

where the joint posterior is skewed. I propose a light extension to the variational

method that treats the marginal likelihood as a random variable and create a set

of intervals on the marginal likelihood which do not share the same inaccuracies. I

show that these new intervals, called kappa bounds, provide a computationally effi-

cient and accurate way to estimate the marginal likelihood under arbitrarily complex

Bayesian model specifications. I show the superiority of kappa bounds estimates of

the marginal likelihood through a series of simulated and real-world data examples,

including comparing measurement models that estimate latent variables from ordered

discrete survey data.
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CHAPTER I

Introduction

1.1 Overview

Measurement models and latent variables models, more generally, are tools that are

now common in political science research. While interest in measuring unobserv-

able concepts and understanding relationships between these concepts and real-world

outcomes has always existed in political science, recent methodological and compu-

tational advancements have led to new and exciting applications of these models

to study social phenomena. These new tools provide researchers with a means of

measuring difficult to observe concepts based on events, ratings, or other pieces of

observable information that are assumed to be a result of the underlying unobservable

latent trait (Fariss et al., 2020).1

Latent variable models are built on the idea that a set of observable outcomes are

manifestations of the underlying latent trait - the latent variable model uses a set of

probabilistic assumptions to model the unobservable latent trait as a function of the

observed outcomes. These empirical models have been applied across a number of

areas within political science: political ideology (Barbera, 2015; Bond and Messing,

1A few of the many new innovations in this rich area are presented in Imai et al. (2016); Jackman
(2000, 2001); Martin and Quinn (2002); Carpenter et al. (2016)
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2015; Martin and Quinn, 2002; Caughey and Warshaw, 2015; Konig et al., 2013; Pan

and Xu., 2018; Treier and Jackman, 2008; Windett et al., 2015), political attitudes,

knowledge, and preferences (Blaydes and Linzer, 2008; Jesse, 2017; Stegmueller, 2013),

human rights abuses (Fariss, 2014; Schnakenberg and Fariss, 2014).

In the study of American political institutions, the most famous application of latent

variable models is roll call scaling. Roll call scaling is an attempt to measure the

ideology and preferences of members of a voting body via observable outcomes on

votes (Poole and Rosenthal, 1984, 1987, 1997; Clinton et al., 2004). In the U.S.

legislature, the matrix of binary ”Yea” and ”Nay” votes across a number of roll calls

are scaled according to a latent variable model where different legislators are assumed

to share a common latent variable that dictates their voting behavior. While there

are many instances where researchers treat this uncovered latent variable as ideology,

a more correct and nuanced interpretation of the estimated latent variable is as an

ideal point which encompass a legislator’s most preferred legislative outcome within

the uncovered policy space. With light changes, this procedure can be used to estimate

ideal points in any setting where a set of voters cast a number of distinct votes.

Ideal points estimated by the NOMINATE methodology (Poole and Rosenthal, 1987),

the most common strategy for estimating ideal points, have been used extensively in

the political science literature - a list attempting to cite every instance of usage would

likely be as long as this entire dissertation. The prevalence of this methodology is both

a testament to its ease of use and the relatively simple interpretation of the resulting

ideal points: legislators with similar voting records have similar ideal points while

dissimilar legislators have dissimilar ideal points. The NOMINATE methodology is

also brilliant in its construction that links the empirical scaling model to an underlying

formal model of utility maximizing voters. This clear formal theoretic underpinning

has made NOMINATE a tool that has been useful for decades and has led to many

of the important theories and findings related to the U.S. legislative body.

2



Ideal points estimated by NOMINATE paint a pessimistic picture of U.S. legislative

voting: members vote along party lines on a single dimension. Under these scores,

members of Congress are not complex voters that consider a variety of pressures when

making decisions; legislators do not consider their “concentric circles of constituency”

(Fenno, 1978); legislators do not have pet issues (Sulkin, 2005) - legislators are simply

agenda-setting party loyalists that have few individual preferences and desires when

taking office. When NOMINATE scores are subsequently used to capture legislative

ideology in other models, empirical models inherently bake this simplistic view of

legislative voting into the resulting findings.2 NOMINATE scores have been used to

show that Congress is completely party driven and has led to much of the polarization

that is seen in U.S. politics today (McCarty et al., 2016).

Yet, scholars of the U.S. Congress continue to find that legislators are complex voters

that are responding to many pressures when casting legislative votes (Roberts et al.,

2016). This begs the question - why do in-depth studies of U.S. legislative voting

find complexity when NOMINATE scores do not? In this dissertation, I contend that

this theoretical mismatch is due to a number of simplifying assumptions and estima-

tion problems in the NOMINATE procedure which distort inferences made from the

roll call scaling model and induce the party-driven legislator findings; when roll call

scaling models are allowed to discover complexity, empirical estimates consistently

discover complexity. By correcting for the statistical and formal theoretic problems

present in the NOMINATE methodology, ideal points can be estimated that match

the complexity of the findings from decades of scholarship on the U.S. Congress.

In turn, new scores can be used to provide a better understanding of the political

structures that have led the U.S. political system to where it is today.

While the focus of much of this dissertation is on roll call scaling, the problems out-

2See Cox and McCubbins (2005) and Krehbiel (1992) for two of the most highly cited examples
of this empirical work.
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lined and proposed solutions are applicable to a wide class of latent variable models

in political science and beyond. Dimensionality is a concern in many different ar-

eas of latent variable estimation (i.e. survey research, human rights measurement,

and interest group behavior just to name a few) and unidimensional assumptions are

prevalent even when there is little empirical evidence in support. Similarly, depen-

dence across observations and group-based incentive structures are prevalent in many

areas where latent variable models are used, such as educational testing assessment,

online behavior and prediction, and modeling of genetic and genomic phenomena.

Lastly, model comparison for latent variable models is a well-known problem that has

generally led scholars to either use fit approximations or forgo the model comparison

step, all together. This dissertation presents solutions for a number of these problems

and provides simple empirical models that can be adapted to any situation where

latent variable models are used.

1.2 Summary of Contributions and Impact

1.2.1 Chapter 2

In Chapter 2, I address the dimensionality of latent variables and the application of

the unidimensional model to the roll call scaling problem. NOMINATE scores have

been used to claim that roll call voting in the U.S. Congress is best described by

a one dimensional policy space (Poole and Rosenthal, 1997; McCarty et al., 2016).

The so-called “unidimensional conjecture” is a key result in the study of the U.S.

Congress and provides support for a number of theories related to party power and

issue voting (Aldrich, 1995; Rohde, 2010; Krehbiel, 1992; Cox and McCubbins, 2005;

Sulkin, 2005). Scholars note, however, that when votes are examined by issue area

rather than as an aggregated unit, there is evidence for different liberal-conservative

orderings of legislators conditional on the type of policy being considered (Roberts

4



et al., 2016).

While this point may seem purely methodological, the dimensionality of the policy

space has significant substantive implications - a one dimensional policy space guar-

antees predictable outcomes near the median of the legislature (Krehbiel, 1992) while

a multidimensional policy space grants no such guarantee (Schofield, 1978). A similar

conclusion regards the role of party loyalty. Lee (2009) shows that the first dimension

of NOMINATE ideal points corresponds more closely to the party loyalty of a legisla-

tor rather than any notion of ideology, so a unidimensional policy space implies that

a legislator’s allegiance to her party is the only thing that matters when making vote

decisions; a multidimensional policy space implies a more complex calculation when

making vote choices. Given the substantive implications of the dimensionality, it is

important to rigorously nail down the structure of the latent space. However, current

roll call scaling techniques are unequipped to rigorously address this concern.

I address this problem by proposing a formal model of legislative voting that allows

voters to select from a bundle of dimensions on each vote. Where the standard spatial

model that underlies NOMINATE requires that all voters use the same dimensions of

the policy space on all votes, I allow voters to select a vote-specific set of dimensions

from an overall set of dimensions that then influence the calculus of voting. As

pointed out by Lee (2009), Aldrich et al. (2014), and Roberts et al. (2016), policy

issues that create divisions within parties are frequent but fleeting; rarely do the same

sets of divisions arise across all votes in a session of the U.S. Congress. I derive a new

empirical model for roll call votes, beta process IRT (BPIRT), which is an empirical

analogue to the varying-dimensions model of legislative voting. Through the usage

of an Indian Buffet Process prior on the vote dimensions, I am able to both estimate

the total number of dimensions in the policy space and identify which dimensions

each vote requires to best model the observed roll call data. Simulations show that
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this procedure yields the correct answer when enough data is present and successfully

defaults to the unidimensional model of voting when the algorithm is not provided

with enough information, ruling out the possibility that BPIRT is simply discovering

spurious dimensions.

Using the BPIRT model on the roll call voting records for all members of the U.S.

Congress over the entire history of the U.S. legislature reveals a number of important

findings that should alter how scholars use ideal point estimates in future work. First,

I find no evidence that the unidimensional model of voting is an appropriate model

for U.S. legislative voting behavior throughout U.S. history. Across sessions that

have enough voters and votes, I find that there is strong evidence of multifaceted and

complex voting patterns that transcend simple party allegiance. While a legislator’s

party is the biggest determinant of their vote on any single issue, BPIRT finds many

votes, even in modern sessions of the U.S. Congress, that require dimensions beyond

the first to explain voting behavior.

Building upon this result, I reexamine two theories of U.S. legislative voting behav-

ior, the pivotal voter model (Krehbiel, 1992) and the party catel model (Cox and

McCubbins, 2005), and explore their robustness to multidimensional ideal points us-

ing the scores estimated by BPIRT. For votes that were classified as unidimensional

by BPIRT, both results hold and the original outcomes were replicated. However,

for multidimensional votes, these models performed no better than a simple coin

flip. This implies that nearly 70% of all votes by the U.S. Congress do not fit these

highly-cited and generally revered theories of U.S. legislative voting behavior.

The implications of these findings are wide-reaching and generally damning for the

unidimensional model of legislative voting. The results from BPIRT show that using

unidimensional ideal point estimates will frequently yield incorrect inferences about

the way that the U.S. Congress makes decisions. This same incorrectness applies to
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models that have made conclusions about other aspects of the U.S. political system

using these results; conclusions about how parties work, how the legislative agenda is

set, etc. must be readdressed to account for potential multidimensionality in legisla-

tive voting. While the simple unidimensional model of voting may lead to convenient

results, this does not mean that they are correct. More generally, the BPIRT model

demonstrates that current methods of determining dimensionality are often insuffi-

cient for truly uncovering the conplexity of a latent variable. Across disciplines, it is

important to test the dimensionality of the latent space against other possible models.

1.2.2 Chapter 3

In Chapter 3, I address the problem of heterogeneous correlation among observations

in latent variable models. The NOMINATE methodology (and latent variable model-

ing techniques, more broadly) assumes that a legislator only uses her ideal point and

a bill specific weight to calculate the utility that she would get for casting a “Yea”

or “Nay” vote. This particular assumption is puzzling since there is a large body

of work that demonstrates that legislators make decisions in groups (Shepsle, 1978).

In particular, parties are well known to distort the relationship between legislative

preferences and vote outcomes (Aldrich, 1995; Rohde, 2010). Aldrich et al. (2014)

show that scaling each party separately in modern sessions of the U.S. Congress re-

veals multidimensionality in legislative voting. This outcome is expected since party

loyalty is the first dimension extracted from NOMINATE (Lee, 2009). If party pref-

erence is important, then it should be included in the underlying model and, if it is

not, then it will lead to dependence among errors and, in turn, biased estimates of

the ideal points. Thus, groups must be included in the underlying calculus of voting

if there is any hope to accurately model legislative voting behavior. Again, current

roll call scaling models are unequipped to handle correlation in errors due to group

voting incentives.
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To address this problem, I propose an extension of the varying dimensions model of

legislative voting that allows for voters to make decisions in groups - a legislator’s

choice utility is a combination of both group preferences and individual preferences.

This construction of utility is more in line with the work on party structures presented

by Aldrich (1995) and Rohde (2010). Under this formal model of voting, I derive

a clustered version of the beta process IRT model, C-BPIRT, that estimates ideal

points, dimensions of legislative voting, the bundle of dimensions for each vote, and a

group label for each legislator. Unlike hierarchical latent variable models, this model

requires no a priori assumptions about each legislator’s group (i.e. the model groups

members by party if the data shows that there is correlation in errors among members

of the same party). The model uses a novel Dirichlet process prior to assign members

to groups where errors are independent conditional on group label. Much like the

regression solution presented by Ferrari (2020), C-BPIRT uncovers meaningful groups

under the latent variable framework.

I use the C-BPIRT model to explore ideal points in two sessions of the U.S. House:

the 107th U.S. House (2001 - 2003) and the 88th session of the U.S. House (1963 -

1965). C-BPIRT ideal points demonstrate that there is a direct relationship between

dimensions and groups in the roll call scaling model: dimensions uncovered by C-

BPIRT tend to model group conflict. This fits with the findings of Lee (2009) that

the first dimension of NOMINATE scores corresponds most closely to party loyalty;

since interparty competition is the most prevalent division in the U.S. Congress, it

makes sense that this would be the first conflict dimension extracted via roll call

scaling. However, I show that the first dimension misses much of the interesting

intraparty conflict. For example, in the 107th U.S. House, I find that NOMINATE

poorly explains votes on the McCain-Feingold Bipartisan Campign Finance Reform

Act because it does not allow the New England Republicans to appear as their own

distinct voting group. C-BPIRT uncovers this group and allows their ideal points to be
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closer to Democrats on issues of finance reform. C-BPIRT also estimates ideal points

that are more historically consistent - in the 88th U.S. House, the first dimension

of NOMINATE says that New England Republicans and Southern Democrats are

essentially the same on all but civil rights issues while C-BPIRT reflects the reality

that they coalesced on very few votes and, in fact, could not be more different.

The implications of these findings are again wide-reaching. C-BPIRT ideal points

improve upon the scores produced by NOMINATE and BPIRT by more accurately

reflecting the calculus of voting in the U.S. Congress. The underlying formal model

fits the many decades of theory about the role of parties in legislative voting and

should be preferred to the simple individual utility maximization model underlying

current roll call scaling procedures. C-BPIRT also improves on other approaches

that attempt to address these correlations by either clustering based on party alone

or simply forgoing the continuous scale latent variable by combining the continuous

scale latent variable with a discrete scale latent variable that prevents projection of

the group membership to its own dimension. Third, C-BPIRT provides a new tool

for quantitative explorations of the development of the U.S. legislature and its group

voting structure - the goal of the model is to estimate groups and their locations

rather than individual ideal points which are later grouped according to researcher

preference.

More generally, the C-BPIRT model is the first latent variable model that jointly mod-

els groups and individual latent variable locations without user assumptions about

group structure. This model has applications across fields in any situation where

correlation among observations may occur due to an omitted variable - educational

research where test outcomes depend on state funding, survey research where re-

sponses are conditional on a hierarchical latent construct, etc. This broad and flexi-

ble model represents a state-of-the-art approach to estimating latent variables under

heterogeneous dependence structures in data.
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1.2.3 Chapter 4

In Chapter 4, I address the broader problem of latent variable model selection.

Though the NOMINATE model is a statistical model, there is no clear way to com-

pare different specifications of the roll call scaling model to determine which model

best fits the data. While the general usage of the NOMINATE model sees researchers

simply assume a one dimensional policy space in which all voters and votes occur,

there are numerous constraints and choices that influence the outcome. More obvious

in the Bayesian implementation of the NOMINATE procedure (Clinton et al., 2004),

researchers can choose to allow different votes to correspond to different dimensions,

allow different voters to use different dimensions, change the prior distribution over

the latent variable, etc.

Yet, there exists no statistical approach to compare these choices. Researchers are

left with two choices: post-hoc predictive fit metrics or cross-validation. Post-hoc

predictive fit metrics like the proportion of votes correctly classified and the geometric

mean of correct classification are commonly used to determine how well the model fits

the data, but they incorrectly account for uncertainty and frequently lead to model

selections that underestimate the complexity of voting. Computing the proportion

of correctly classified votes using held out votes through cross-validation is another

possible fitting strategy. This approach requires that votes are truly independent and

identically distributed conditional on the ideal points, but there is significant evidence

that they are not (Aldrich et al., 2014; Roberts et al., 2016). Without meaningful

measurements of model evidence, there is no way for scholars to accurately compare

models and test various theories of legislative voting using NOMINATE ideal points.

The more general problem of model selection with latent variable models is a well-

known and long-studied problem. While software allows for users to compute various

fit statistics and information criteria that go along with common factor analysis or
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IRT models, these values are rarely reported. This is due to a number of reasons: 1)

model fit metrics do not provide a consistent answer, 2) when the values do agree,

they often point to the incorrect model, and 3) the fit statistics cannot distinguish

between finely tuned differences in models like altered constraints. Bayesian methods

of model selection, particularly marginal likelihood computation, are one area where

scholars have found a consistent metric for comparing models (Lopes and West, 2004)

- the marginal likelihood for each candidate model is computed and the models are

either averaged or the model with the highest marginal likelihood is selected. While

this approach shows good results in some cases, the marginal likelihood for latent

variable models is difficult to compute and approximations to the marginal likelihood

come with no measure of accuracy.

To address this problem, I propose a new interval estimator of the marginal likeli-

hood. While various methods of computing the marginal likelihood exist, such as

importance sampling or variational methods, they frequently provide inaccurate re-

sults. I demonstrate that point estimates for the marginal likelihood achieved using

importance sampling are inaccurate in settings where the joint posterior is skewed,

like many latent variable models. I propose a light extension to the variational method

that treats the marginal likelihood as a random variable and create a set of intervals

on the marginal likelihood which do not share the same inaccuracies. I show that these

new intervals, called kappa bounds, provide a computationally efficient and accurate

way to estimate the marginal likelihood under arbitrarily complex Bayesian model

specifications. I show the superiority of kappa bounds estimates of the marginal likeli-

hood through a series of simulated and real-world data examples, including comparing

measurement models that estimate latent variables from ordered discrete survey data.

The method of model selection presented in this section provides a meaningful way

for scholars to compare different latent variable model specifications when assessing
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multiple theories. Too often in the political science, scholars present results from

a factor analysis or IRT model that aligns with their theories without providing

any comparison to competing theories. This is, in part, due to a lack of available

and easily implementable model comparison metrics for these models. The methods

outlined in this chapter have applications across disciplines and can be used in many

settings where other model comparison metrics are not considered feasible due to

its relatively low computational cost. This chapter should serve as a starting point

for discussions in the social sciences about model comparison and applying the same

level of statistical rigor that is desired of regression models and other standard applied

statistical models to latent variable models.

1.3 Extensions and Future Work

This dissertation presents a number of improvements to methods of roll call scaling

and latent variable estimation. This work serves as the starting point for a larger

exploration of how latent variable models can be used more effectively for modeling

social phenomena. In particular, I seek to improve these methods to better model and

understand the structure of U.S. legislative voting in the past, present, and future.

The BPIRT model uncovers the dimensions that dictate U.S. Congressional roll call

voting. Currently, these dimensions are given names by looking at the content of

the bills that are associated with each vote. Though the relationship between bill

topic and dimension is not perfect, bills that consider similar topics tend to require

similar dimensions in the BPIRT policy space. This implies that joint modeling of bill

topics and legislative vote outcomes will provide more information about the meaning

of dimensions and provide more information for the scaling procedure to estimate

legislators’ ideal points. Beyond bill topics, there are other pieces of “metadata” that

can give more information about the vote and, in turn, improve estimation of the ideal
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points. These pieces include committee path through the legislature, sponsorship

information, and legislative bill episodes that contain many subsequent votes on the

same bill. This information can be introduced into the roll call scaling model through

a hierarchical version of the Indian Buffet Process to include information about which

bills should cluster; just as errors across legislators are correlated due to party, errors

across votes should also be correlated due to common vote topics. Future work will

see this relationship included in the model of roll call voting.

A further extension in this vein involves more general estimation of multiple related

latent spaces. Like ideal points, bill topics are a latent variable. The ideal point

space and the bill topic space contain shared information - knowing which voters

were close to the indecision point on a specific vote provides information about which

topics the bill contained and where on each issue dimension each bill existed. Just

as simultaneous regression models can be run to model shared information about

each outcome, simultaneous latent variable models can model the joint information

between latent spaces. This model, which is based on joining BPIRT to a text-based

topic model, would jointly scale these two pieces of information in hopes of creating a

link that would allow translation from one space to another. This model would then

be capable of credibly estimating status quo and alternative positions. The nuts and

bolts of this model are similar to those presented in this dissertation, so the methods

used to address questions of dimensionality and correlation would directly apply to

this future model and should serve as a starting point for the work on simultaneous

latent variable models.

A final extension to these models involves dynamic modeling of ideal points, policy

dimensions, and legislative voting groups. C-BPIRT currently operates under the

assumption that each session of the U.S. Congress is a distinct entity; new information

about a legislator’s preferences starts at the beginning of each sessions and ends at the
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session’s conclusion. Just like DW-NOMINATE, a dynamic variant of the C-BPIRT

model would see estimation of groups and dimensions over time. Modeling dimensions

over time can be achieved by finding votes that are similar across sessions of the

U.S. Congress and inducing a common dimension using the Indian Buffet Process

prior. With greater computational power, all sessions of the U.S. Congress can be

jointly scaled to see which issue dimensions exist in a given time period and how those

dimensions have changed over time. On the other end, allowing groups to dynamically

“walk” through the latent space over time would provide information about different

legislative coalitions have evolved. Beyond an examination of how the groups have

changed, linkages between groups can be established to show how cleavages form and

disappear, over time. This model would have significant implications for the study of

American political development and assist in understanding how legislative coalitions

operate in the complex and ever-evolving U.S. legislature. This analysis would also

provide valuable new information on how legislative compromise occurs. All in all,

the C-BPIRT model presents a powerful new tool for understanding how U.S. political

institutions work and evolve.
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CHAPTER II

Disagreement and Dimensionality: A Varying

Dimensions Approach to Roll Call Scaling in the

U.S. Congress

2.1 Introduction

Studies of legislative behavior focus on the relationships between legislative prefer-

ences, institutional structure, and legislative outcomes. A common method used to

understand these relationships uses scaling models that uncover the ideal points of

legislators. While there are many approaches to uncovering the ideal points of leg-

islators, by far the most common approach uses the outcomes from the various roll

call votes that are cast by members of Congress. Roll call scaling techniques such as

NOMINATE (Poole and Rosenthal, 1997) and its Bayesian analogue (Clinton et al.,

2004) seek to project roll call data into a low-dimensional policy space that captures

the complexities of how members of Congress make vote decisions. The ideal points

can then be used to make inferences about the behavior of legislative actors, such as

the role of parties (Aldrich and Rohde, 2000; Cox and Poole, 2002; Cox and McCub-

bins, 2005), influences within and between branches of the U.S. government (Binder,
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1999; Krehbiel, 1998), and other features of the legislative institution.1

Ideal point models require assumptions that have implications for the interpretation

of the estimated quantities. One assumption is the dimensionality of the latent space.

Assuming a unidimensional ideal point, legislators behave predictably and rational

choice models can provide simple explanations of how legislators make policy pro-

posals and vote choices under the rules of the institution (Krehbiel, 1998; Cox and

McCubbins, 2005). On the other hand, multidimensional ideal points create an en-

vironment where legislators behave in a more nuanced manner - legislative behavior

is conditional on the context of the vote and there are few guarantees of predictable

outcomes (McKelvey, 1976; Schofield, 1978; Shepsle, 1978). The choice of dimension-

ality also has strong substantive implications (Shepsle, 1978; Shepsle and Weingast,

1981; Harbridge, 2015; Lee, 2009).

In most recent studies that leverage unidimensional estimates of ideal points, em-

pirical justification for this assumption is given by referencing the “Unidimensional

Congress” arguments of Poole and Rosenthal (2011) - across issue areas within an an-

alyzed period of the U.S. Congress, little improvement to the overall fit of the roll call

scaling model can be made by including more than one dimension. However, many

works show evidence for multidimensionality in U.S. Congressional roll call voting;

there is strong evidence that certain bundles of votes map to different dimensions

and less aggregated analysis of roll call votes reveals this heterogeneity (Heckman

and Snyder Jr, 1996; Roberts et al., 2016; Smith, 2007; Hurwitz, 2001; Crespin and

Rohde, 2010; Norton, 1999; Bateman et al., 2017).

I argue that while some roll call votes in the U.S. Congress are unidimensional, many

more are not. I introduce technology that not only demonstrates this but allows

1There has been significant work in the area of roll call scaling and ideal point estimation for the
U.S. Congress beyond these two models. Lauderdale and Herzog (2016), Tausanovitch and Warshaw
(2017), Bonica (2014), Ramey (2016), Jessee and Malhotra (2010), and Tahk (2018) are just a few
of the models proposed in recent literature.
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the variability in dimensions to be studied. I present a method of roll call scaling

that allows for aggregate-level summaries of legislative decision making while also

allowing for examinations of multidimensionality at the bill-episode level. Leveraging

work from Aldrich et al. (2014) and Roberts et al. (2016), I contend that evidence for

the low-dimensional conjecture is due to the statistical tests used to assess inclusion

of new dimensions. To address this problem, I present a new spatial model in which a

voter makes vote decisions using both the positions of alternatives within the policy

space and a vote-specific bundle of dimensions in which those policy positions exist.

The corresponding empirical model allows for rigorous statistical inference related to

the overall dimensionality of the ideal points and identification of the dimensions of

the policy space associated with each vote. Unlike previous approaches, this method

accurately estimates the dimensionality of the ideal point space even under high

levels of party bloc voting. Similarly, the ideal points and vote-level estimates of

dimensionality allow for new tests related to theories of legislative behavior that

properly take vote-level dimensionality into account. Given that the vast majority of

empirical tests related to legislative decision making use unidimensional NOMINATE

scores, the estimates achieved from this new model allow for a finer examination of

the role of dimensionality in many important theories of U.S. legislative behavior.

Overall, I make several important contributions to the literature in this article.

Methodologically, I present a new spatial model of voting that has an explicit em-

pirical analogue under assumptions about utility structures. This model uses novel

advancements in the field of Bayesian nonparametrics related to estimating the infi-

nite latent feature model (Paisley and Carin, 2009; Knowles and Ghahramani, 2011)

to address the question of dimensionality in aggregate sets of roll call votes by simul-

taneously estimating ideal points and dimensionality. Substantively, I analyze the

entire history of the U.S. House and U.S. Senate (1st− 115th sessions) and show that

there is strong evidence of multidimensional voting through the history of the U.S.
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Congress. In line with many of the conclusions by Heckman and Snyder Jr (1996), I

find that votes tend to bundle based on topic and these votes share similar multidi-

mensional vote patterns. In turn, this allows for identification of key issues that split

members of Congress, both within and across parties. This work produces a new set of

ideal points across U.S. Congressional history that should provide a starting point for

further work related to topic-level voting in the U.S. legislative body. Finally, I apply

the estimates from the new roll call scaling method to two specific theories related

to U.S. Congressional voting: the pivotal voter model (Krehbiel, 1998) and the party

cartel model (Cox and McCubbins, 2005). I show that much of the empirical evidence

that exists for these models changes when dimensionality is properly accounted for in

empirical tests of these theories. This analysis is just the starting point for potentially

reassessing many other predictions made by models of U.S. legislative voting under

conditions of multidimensionality.

2.2 A Spatial Model of Roll Call Voting

For a legislature, assume there are N voting members that cast P votes over the

course of time analyzed. For any given vote j ∈ (1, P ), legislator i ∈ (1, N) must

choose between two alternatives: to cast a “Yea” vote for the proposed alternative

(ϑj ∈ RK) or to cast a “Nay” vote for the proposed alternative (ϕj ∈ RK).

Behavior in this legislature is assumed to be describable in a K-dimensional policy

space - all votes that are made by legislator i can be described by the K-dimensional

point locations of ϑj and ϕj within the space and a K-dimensional ideal point, ωi,

which encapsulates the policy preferences of legislator i.

A legislator must choose whether to vote for ϑj or ϕj. Using a utility maximization

model that assumes quadratic loss in distance from her ideal point, assume that she

21



chooses the alternative which grants the highest utility:

Ui(ϑj) = −‖ωi − ϑj‖2 + ηij

Ui(ϕj) = −‖ωi −ϕj‖2 + νij

(2.1)

where ηij and νij are stochastic elements of the utility functions. This model is

completely specified if a known structure is placed on ηij and νi,j (Heckman and

Snyder Jr, 1996; Poole and Rosenthal, 1997; Clinton et al., 2004).

Let Y be a matrix of roll call votes and yi,j be the vote choice that legislator i makes

on proposal j : yij = 1 if legislator i votes “Yea” on vote j and yij = 0 if she casts a

“Nay” vote. Given the model construction, the probability that legislator i votes for

ϑj can represented as:

P (yij = 1) = F (λ′jωi − αj) (2.2)

where F (·) is the CDF associated with the chosen error structure, αj =
ϑ′jϑj−ϕ′jϕj

σ2
j

,

and λj =
2(ϑj−ϕj)

σ2
j

.

This construction admits a corresponding statistical model that allows for estimation

of the structural parameters α and Λ and the latent variables, Ω. Assuming the errors

are independent and identically distributed, a likelihood function can be derived:

L(α,Λ,Ω|Y ) =
N∏
i=1

P∏
j=1

F (λ′jωi − αj)yij ×
(
1− F (λ′jωi − αj)

)1−yij (2.3)

Bayesian implementations of this model place priors on all of the structural param-

eters and estimation proceeds using Markov Chain Monte Carlo methods (Clinton

et al., 2004). With minor changes, this model is equivalent to the NOMINATE pro-

cedure (Poole and Rosenthal, 1997).

Under this specification, a choice of the number of dimensions, K, leads to fully

tractable model that can be estimated. Currently, this choice is made by examining
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a Scree plot (Cattell, 1966). The spirit of the Scree procedure revolves around es-

timating the latent variable model under a number of different assumptions for the

number of dimensions and plotting the fit metric to find the “elbow” in the plot.

Once adding a new dimension no longer adds “enough” value to the fit metric, then

no new dimensions are added. Typically, the choice of fit metric revolves around the

proportion of votes correctly classified under a model: aggregate proportion reduc-

tion in error (Poole and Rosenthal, 2011) or marginal proportion reduction in error

(Roberts et al., 2016).

Regardless of the choice of metric, I contend that the Scree test presents many prob-

lems for inference. By its very nature, the Scree test is inherently subjective; the

choice of how much reduction in error is enough to include a new dimension is sub-

jective and can lead to biases in the number of dimensions chosen. For example,

the Scree test cannot detect small improvements in model fit that are due to adding

dimensions that only contribute to a few votes. Rather, the Scree test says that the

model improvement over the aggregated set of roll call votes is small and the dimen-

sion should not be included. This feature of the Scree test is not ideal as there is an

entire body of the literature which shows that dimensions in roll call voting appear

at the vote-topic level and important dimensions can appear infrequently (Roberts

et al., 2016).

Aldrich et al. (2014) and Roberts et al. (2016) point to the high frequency of votes

that occur along party lines as a problem for current dimensionality testing proce-

dures. When many votes are explained by party lines, the perceived influence of party

can be much higher than what is actually present within the data. Given that there

is often correlation between vote choices in specific policy domains and party mem-

bership, party bloc voting can appear to account for all of the explainable variation

within roll call voting data sets when many dimensions are truly influencing decisions.
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This result is corroborated by the finding that scaling within parties reveals many di-

mensions even when using Scree tests as the decision making criterion (Aldrich et al.,

2014). Similarly, multidimensionality is highly apparent when dimensionality is tested

within and across topically similar bill-episodes (Roberts et al., 2016). Aldrich et al.

(2014) points to the inclusion of zeroes in the matrix of discrimination parameters

as a method for properly modeling the covariance between dimensions and, in turn,

accurately estimating the dimensionality of the ideal points.

These findings point to a couple of features that a roll call scaling method that

accurately uncovers dimensionality should have:

1. Dimensionality should be tested under distributional assumptions. In turn,

probabilistic tests of whether or not a dimension provides a non-zero improve-

ment to the model under an assumption about what constitutes random noise

can be performed. This ensures the inclusion of dimensions which have a strong

influence on a small set of votes.

2. Dimensionality should be tested at the vote level. Each vote should be al-

lowed to draw on a different set of dimensions, if necessary. The aggregated

set of vote-level dimensionalities then dictates the dimensionality of the ideal

point. However, each set of vote-level dimensions should be subject to overfit-

ting penalties in order to estimate substantively useful parameters that account

for both vote-level and aggregate behavior of legislators over the course of time

analyzed. This leads to a proper encoding of conditional independence between

dimensions at the vote-level and, in turn, an accurate count of the number of

dimensions that make up the ideal point space.

A roll call scaling method that meets these conditions should provide an accurate

representation of the dimensionality of the data while also reducing the dimensionality
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of the data to something useful for further examination of aggregate legislative voting

behavior.

2.3 A Roll Call Scaling Model with Varying Dimensions

2.3.1 A Spatial Model of Voting with Varying Dimensions

To address the above conditions for accurately estimating dimensionality, I propose

a new roll call scaling model with varying dimensions. As before, legislator i must

choose to vote for ϑj or ϕj. She votes for the alternative that maximizes her utility

under a quadratic loss function such that:

Ui(ϑj) = −‖rj(ωi − ϑj)‖2 + ηij

Ui(ϕj) = −‖rj(ωi −ϕj)‖2 + νij

(2.4)

Under this specification, the new addition is the binary vector rj. rj is a vector of

length K where rjk = 1 if she considers dimension k ∈ (1, ..., K) in vote j. On the

other hand, rjk = 0 if she does not use her ideal point on dimension k when making

a decision for vote j. Note that rj is assumed to be globally known to all legislators.

The length of rj does not need to be set before specifying the model. For example,

if only dimensions one and three are needed to dictate the utility function associated

with a vote (i.e. rj1 = 1, rj2 = 0, rj3 = 1), then this vector is equivalent to one where

rj4 = 0, rj5 = 0, and all subsequent elements of the vector are set to zero. Thus, the

vector of length three and the corresponding vector of infinite length are equivalent.

This characteristic of the binary vector is key to addressing the shortcomings of the

standard roll call scaling model.

Placing all of the vote level binary vectors, rj, into a matrix with the number of

rows equal to the number of votes and the number of columns equal to the number
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of possible dimensions creates a binary matrix, R, that dictates the mapping of

individual votes to ideal point dimensions. R captures the dimensionality of the

underlying ideal point space across all votes analyzed. Recall that each rj can be

of infinite size, but only the elements equal to one matter for the underlying utility

model. Thus, the dimensionality of the overall space can be modeled as the number

of columns in R which have at least one non-zero element. Similarly, the structure of

rj is allowed to vary across votes - each vote can call on a different set of dimensions

to construct the parameters of the assumed utility calculations that lead to vote

decisions.

As with the standard model, the construction admits a corresponding statistical

model. With similar rearrangement, a likelihood function is determined:

L(α,Λ,Ω,R|Y ) =
N∏
i=1

P∏
j=1

F ((rj � λj)′ωi)− αj)yij×(1− F ((rj � λj)′ωi − αj))1−yij

(2.5)

where � is the Hadamard product of two vectors.2 As with the likelihood function

for the standard roll call scaling model, the likelihood is comprised of the structural

parameters Λ and α and the ideal points, Ω. R is assumed to modify the loadings, Λ.

Like the standard model, the parameters of the estimated statistical model explicitly

link back to the formal theoretic foundation where αj =
rj(ϑ′jϑj−ϕ′jϕj)

σ2
j

and λj =

2rj(ϑj−ϕj)

σ2
j

.3

The varying dimensions model of voting explicitly adds the two conditions listed

previously. First, R constitutes a new quantity that can be estimated. With distri-

butional assumptions, R can be estimated with the other structural parameters of

2The standard roll call scaling models is a special case of the varying dimensions version - setting
all elements of R equal to one and fixing K to a known finite value replicates the model of Clinton
et al. (2004).

3Like the Bayesian IRT approach of Clinton et al. (2004) and the NOMINATE model, this model
assumes that all voters vote sincerely based on their underlying ideal point. Using a model that ties
abstention to strategic behavior, this assumption could be changed.
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the ideal point model to determine the number of dimensions needed to effectively

model the ideal point space. If this choice penalizes against adding many dimensions,

R can dictate a sparse set of dimensions that directly model the aggregate set of roll

call votes. Second, each binary vector, rj, contains a mapping of each vote to some

subset of the ideal point space. This allows each vote to be modeled in a potentially

different set of dimensions. Again, under proper distributional assumptions about R,

this allows each vote to be modeled as a subset of aggregate dimensions. However, if

only one dimension is needed for the collection of votes, R can be reduced to estimate

only one dimension. All in all, this model of voting allows for the dimensionality of

the latent space to be estimated simultaneous to the structural parameters of the

ideal point model.

2.3.2 Estimating the Roll Call Scaling Model with Varying Dimensions

Using equation (2.5) as a starting point, a Bayesian scaling procedure for binary roll

call votes with varying dimensions can be defined.4 Let X be a continuous latent

mapping of the observed roll call votes Y such that:

xij ∼


T N−∞,0((rj � λj)ωi − αj, 1) if yij = 0

T N 0,∞((rj � λj)ωi − αj, 1) if yij = 1

N ((rj � λj)ωi − αj, 1) if yij is missing

(2.6)

where T N l,u(µ, σ
2) is the truncated normal distribution truncated between l and u.

Assuming a probit structure on the errors and, without loss, an infinite dimension

ideal point space, equation (2.6) defines the varying dimension roll call scaling model.

This voting model shares many parameters with the two-parameter item response

4The benefits of approaching the roll call scaling problem under the Bayesian paradigm are well
documented. A thorough discussion of these benefits are presented by Clinton et al. (2004).
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model used in educational testing where λj is a vector of item discrimination param-

eters, αj is the item difficulty parameter, and ωi is a vector of ideal points associated

with the vote decisions made by a legislator (Poole and Rosenthal, 1997; Londregan,

1999).

2.3.3 Estimating the Binary Matrix

A number of approaches for selecting the appropriate number of dimensions in latent

variable models have appeared in the statistics and social sciences literatures (Kim

et al., 2018). However, these approaches often are developed for the purpose of finding

a reduced dimensionality representation of the covariance matrix and estimation of the

structural parameters and item-level differences in dimensionality are not addressed.

I use nonparametric priors on the number of dimensions and allow the dimensions

to vary stochastically. These priors have strict probabilistic properties that make

identification and estimation of structural parameters plausible (Bhattacharya and

Dunson, 2011).

One Bayesian nonparametric approach which allows probabilistic modeling of both

the overall and vote-level dimensionalities uses the beta process (Paisley and Carin,

2009). For rjk ∈ R, let the prior be:

P (rjk|πjk) ∼ Bern(rjk; πjk)

P (πjk|ajk, bjk) ∼ Beta(πjk; ajk, bjk)

(2.7)

Letting K → ∞ allows all possible dimensions to be potentially present in R and

constitutes a beta process.

Without further constraint, the model will always find that the optimal number of

features is equal to the number of items - each item is modeled by its own dimension.

This outcome is akin to over-fitting in regression and provides a solution that is not
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useful for summarizing high-dimensional data; the roll call scaling model needs a

sparse estimate of R. Along with other challenges related to fitting an infinite set of

dimensions to a finite set of data, estimation under the beta process prior has proven

a difficult task in the statistics literature.

A marginalized approach exists that allows for a relatively simple sampling scheme in

the infinite limit that prevents against over-fitting by allowing the number of effective

dimensions to scale with the number of observations and items (Paisley and Carin,

2009). Here, the beta-Bernoulli process dictating the values of the infinite matrix, R,

has a prior such that:

P (πk) ∼ Beta

(
πk;

a

K
,
b(K − 1)

K

)
P (rjk|πk) ∼ Bern(rjk; πk)

(2.8)

where a and b are hyperparameters and K is arbitrarily large such that:

E[πk|K] ≈ 0 (2.9)

which induces a sparse estimate of the binary matrix.

The beta process prior of this form constitutes a simple stochastic process. Marginal-

izing over π, this process is the two parameter Indian Buffet Process (IBP) (Ghahra-

mani and Griffiths, 2006). IBP has two notable properties for modeling sparse matri-

ces. First, over the entire set of P votes, the number of dimensions sampled follows:

P (K+ = h) = Pois

(
h;

P∑
j=1

ab

b+ j − 1

)

E[K+] ≈ O(ln(P ))

(2.10)

where K+ is the number of columns of R with at least one element equal to one. This
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shows that as P increases, the number of dimensions that can potentially appear in

the latent space increases. However, the expected number of dimensions is small

relative to P and a sparse solution is ensured. On the other hand, if P is small,

then the number of dimensions that can potentially appear in the latent space is also

small. This property ensures that the number of dimensions estimated is supported

by the amount of data present during estimation.

Second, IBP exhibits a “rich get richer” property:

P (rjk = 1) ∝
−rjk +

P∑
h=1

rhk

P + 1 + rjk −
P∑
h=1

rhk

(2.11)

As a dimension becomes more popular, the probability that it is sampled in other

votes increases. In turn, features that are not popular are rarely sampled and have a

small chance of being included in the final model specification. Thus, IBP explores the

feature space in accordance with P , but still promotes sparsity by allowing popular

dimensions to dominate the feature space. This allows the IBP prior to prevent

against overfitting. However, in the face of strong statistical evidence, IBP still allows

an unpopular feature to emerge.

2.3.4 A Beta Process IRT Model

Under the specification in equation (2.6), rj induces a spike and slab prior on the

vector of discrimination parameters, λj . Placing an Indian Buffet Process prior on

R, the induced prior on λj,k is:

P (λjk|rjk) ∼ rjk P (λjk) + (1− rjk)δ0 (2.12)
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where δ0 is a point mass PDF at zero and P (λjk) is the marginal prior on λjk. Thus,

if rjk = 1, λjk is allowed to take a non-zero value. On the other hand, if rjk = 0, it is

restricted to be equal to zero. This aspect of the model bridges the infinite number

of dimensions implied by IBP and the finite number of dimensions that are actually

observed - the first K+ columns of R contain non-zero elements while the countably

infinite set of columns after K+ include only zeroes. In turn, the corresponding ideal

points are simply nuisance parameters. In the context of roll call scaling, the rows

of R tell whether or not a vote draws on a specific dimension when estimating the

parameters of the underlying utility model.

Using the IBP prior on R allows for a full model definition, which is outlined in

Section A.2 of the Appendix. The full model, a beta process item-response theory

model (BPIRT), is a close analogue to the infinite latent feature model developed by

Knowles and Ghahramani (2011). BPIRT has many of the same properties as the

standard Bayesian IRT model (Clinton et al., 2004).

Under this specification, estimation of the model using Markov Chain Monte Carlo

methods proceeds in a relatively straightforward manner. Technical details related

to estimation of the BPIRT model are included in the appendix. The full conditional

distributions and sampling methods are outlined in Section A.3. The BPIRT model

uniquely identifies estimates for the structural parameters; this property is discussed

in Section A.4. Methods for determining good starting values and assessing conver-

gence of the Markov chains are outlined in Section A.5 and Section A.6. Finally,

simulations which show how accurately BPIRT uncovers the binary matrix under a

known model are shown in Section A.7.

31



FIGURE 2.1. Dimensionality and Corresponding 95% HPD Intervals Estimated
by BPIRT for the 1st - 115th Sessions of the U.S. House and the U.S. Senate.
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2.4 Multidimensionality in the U.S. Congress Over Time

The varying dimensions model of voting is well suited to examining the question

of multidimensionality in voting and BPIRT provides a rigorous statistical tool for

creating estimates of dimensionality in roll call voting. The results related to multi-

dimensionality from BPIRT promise to provide insight into this problem.5 I begin by

assessing how many dimensions are estimated in the 1st−115th (1789−2017) sessions

for each chamber of the U.S. Congress. Figure 2.1 shows the estimated number of

dimensions and corresponding 95% highest posterior density intervals for each session

within each chamber of Congress. This plot shows a generally multidimensional legis-

lature. In the case of the U.S. House, sessions near the beginning of U.S. history and

some sessions in the late 1800s and early 1900s have credible intervals that include a

5Additional figures and discussion for this section can be found in Section B of the appendix.
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single dimension. However, the vast majority of sessions are estimated to need more

than one dimension to best model roll call behavior.

A similar story is seen in the U.S. Senate. While there are more sessions which are

estimated to require only one dimension, the majority require at least two dimensions

to best model the roll call voting variation. One important caveat for these unidi-

mensional sessions is that the IBP prior which drives BPIRT is limited in its ability

to estimate multidimensionality when there are a small number of votes and/or vot-

ers. In early sessions of the U.S. House, there were less voting members and there

were typically less votes than in more recent sessions of the U.S. House. As shown

in simulations, BPIRT underestimates dimensionality in these settings, so there is

reason to believe that this is the case for the U.S. House. Similarly, there are always

around 100 voting U.S. Senators in a given session which inherently places a cap on

the number of dimensions which can be modeled for a session of this chamber. This

is not to say that these results should be discarded - rather, it is important to point

this aspect of BPIRT out as a weakness for estimating dimensionality in smaller sets

of roll call data.

In order to examine multidimensionality at the vote level, a measure of multidimen-

sionality must be established (Roberts et al., 2016; Bateman et al., 2017; Smith,

2007). One method of summarizing the dimensionality of a single vote is to simply

use the posterior probability that the vote took on more than one dimension in the

binary matrix (MD). However, this metric suffers from minor theoretical deficiencies;

it does not explain how much a vote needs each dimension. Thus, I use a second

supplementary measure of multidimensionality - the proportion of variance explained

(PVE) by each dimension on a specific vote:

PVEjk =
rjkλ

2
jk

K∑
h=1

rjhλ2
jh

(2.13)
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FIGURE 2.2. Proportion of Multidimensional Votes and Proportion of Variance
Explained by the 1st Dimension Estimated by BPIRT in the 1st - 115th Sessions
of the U.S. House
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Using PVE to examine the influence of the first dimension on a vote, PVE takes a

value of one when only the first dimensions is needed. As the influence of other di-

mensions increase, PVE for the first dimensions decreases. Therefore, PVE measures

the overall influence of a given dimensions on vote outcomes. MD and PVE are highly

correlated, but provide different views of each dimension’s necessity in the individual

case.

Using the proposed measures of multidimensionality, I examine the role of the first

dimension and the set of dimensions beyond the first estimated by BPIRT in explain-

ing variation within U.S. House roll call data sets.6 One of the many advantages of

6For this and the proceeding examinations of multidimensionality in roll call voting, I choose to
only present results for the U.S. House. The trends and inferences made from U.S. House data are
similar to those that are made from U.S. Senate data. For the sake of brevity, I withhold figures
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the BPIRT approach is that these metrics can be examined for any subset of votes

within the analyzed sets. An application of the property is examining the difference

between the aggregate set of all roll calls and more important “key votes” (Smith,

2007; Roberts et al., 2016).

I examine MD and PVE for both the full aggregate sets of roll call votes for the 1st−

115th sessions of the U.S. House as well as the set of votes classified as “key votes” by

Congressional Quarterly for the 80th−115th sessions. Figure 2.2 shows these quantities

over time for the U.S. House. Examining the proportion of multidimensional votes in

each session shows highly multidimensional voting within the U.S. House, especially

in the 20th and 21st centuries. Even in recent sessions of the U.S. House, which are

considered to be extremely party driven and one-dimensional, a significant number of

votes require more than one dimension to best explain variation in the roll call votes.

On the other hand, the PVE for the first dimension is relatively high throughout

time. While voting in recent sessions is certainly explained more heavily by the

first dimension than in the mid and late 1900s, the reliance on the first dimension

is equal to many non-unidimensional sessions during Reconstruction and the Great

Depression.

Looking only at key votes provides support for the theory that important votes are

multidimensional and require more than simply using the first dimension of ideal

points.7 While MD shows a modest difference between the aggregate roll call sets

and the set of key votes, PVE shows that a significantly lower amount of variance can

be explained by the first dimension in key votes. On average, approximately 25% less

variance is explained using the first dimension. This finding along with conflicting

and other summaries of the U.S. Senate data in this paper. Results from my analysis of the U.S.
Senate can be seen in the replication files included with this paper.

7For each session where CQ key votes were examined, there were between 80 and 300 votes that
were classified as important votes by Congressional Quarterly.
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FIGURE 2.3. Geometric Mean Probability of Correct Classification for Unidi-
mensional and Multidimensional Votes in the 1st - 115th Sessions of the U.S.
House
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Note: Values reported are posterior means.

results for the aggregate roll call sets provides evidence for the aggregation hypotheses

presented by Roberts et al. (2016) and should serve as a starting point for more fine-

grained examinations of dimensionality in landmark legislation over time.

Examining vote level dimensionality is not the only way to demonstrate the neces-

sity of dimensions past the first - BPIRT shows marked improvements over other

roll call scaling techniques in terms of overall model fit. One method of comparison

that rewards correct classification of model outcomes given the ideal points while also

penalizing inefficient estimates is the geometric mean probability of correct classifi-

cation (Carroll et al., 2009). For a given set of votes, the geometric mean probability
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of correct classification (GMP) is:

GMP =

(
N∏
i=1

P∏
j=1

P (ŷij = yij)

) 1
N∗P

(2.14)

where ŷij is the predicted vote for a legislator and yij is the observed vote.

Figure 2.3 shows the GMP for each session of the U.S. House broken out by the

dimensionality of the vote implied by BPIRT.8 Unsurprisingly, there are significant

gains made in model fit when examining multidimensional votes. The difference in

model fit between WNOMINATE-1D and BPIRT on these votes is quite large. Com-

bined with the knowledge that many votes within each session are multidimensional,

this provides strong evidence that unidimensional models are missing out on a large

portion of the variation which drives voting in the U.S. House. BPIRT also shows

large gains over WNOMINATE-1D when analyzing unidimensional votes. This result

is somewhat unintuitive as the underlying formal model for a unidimensional vote is

essentially the same for BPIRT and WNOMINATE. However, this result can be at-

tributed to proper placement of zeros in the binary matrix and, in turn, ensuring that

each vote corresponds only to the correct subset of potential dimensions of the policy

space.

2.4.1 Interpretation of Ideal Points

BPIRT paints a picture of a legislature that behaves in a multidimensional manner;

while not all votes require multiple dimensions to explain voting patterns, many votes

need something beyond a single dimensional ideal point to best explain voting. A

natural question that follows pertains to the meaning of the dimensions - what is

represented by the first dimension and what concepts are represented by dimensions

8Gaps in the multidimensional plot occur when BPIRT estimates that a session has only one
dimension or less than 10 votes required more than one dimension to best model its vote outcomes.
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FIGURE 2.4. Correlation between the 1st Dimension of Ideal Points Estimated
by BPIRT, the Ideal Points from WNOMINATE-1D, and the Proportion of
Majority Party Voting
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beyond the first?

First, I examine the meaning of the first dimension, over time. In particular, I examine

whether the first dimension is simply providing a measure of the individual frequency

of party bloc voting (Aldrich et al., 2014; Lee, 2009; Harbridge, 2015). In order to

test this hypothesis, I measure how frequently a voting member of the legislature

votes with that session’s majority party.9 Given that more than 99% of votes have a

non-zero contribution from the first dimension, over time, understanding the meaning

of this dimension is key.

Figure 2.4 shows the correlation between the ideal points from the first dimension

9Specifically, I determine the majority party vote on a given roll call vote to be the most frequently
made choice by the members of the majority party in a given session.
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FIGURE 2.5. Ideal Points and Dimensions Estimated by BPIRT for the 107th
Session of the U.S. House (2001 - 2003)
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Note: The reported ideal points are from the iteration of the MCMC procedure with
the highest complete-data likelihood.

for each voting member compared to the proportion of votes for which they cast the

same vote as the majority party preference. The relationship between majority party

voting and the uncovered ideal points strongly supports the theory that the first

dimension of BPIRT ideal points is simply modeling party teamsmanship. Figure 2.4

also shows that BPIRT and WNOMINATE are highly correlated over time. This,

in turn, implies that the first dimension of WNOMINATE is largely estimating the

same construct with the first dimension.

In order to demonstrate the importance of dimensions beyond the first in explaining

legislative behavior that exists outside of party loyalty, I examine one particular

session.10 The 107th session of the U.S. House took place between 2001 and 2003

10Roberts et al. (2016) and Bateman et al. (2017) show that dimensions beyond the first are
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and contained the September 11th attacks and the ensuing scramble from the U.S.

government attempting to respond to domestic and foreign security concerns. These

issues created strong divisions within parties and led to a number of outcomes that

appeared to favor the pro-war members of the U.S. Congress. It is reasonable to

expect that a significant portion of roll call votes in this session require dimensions

beyond party loyalty when explaining variation and estimating ideal points.

Figure 2.5 shows the seven dimensions of ideal points uncovered by BPIRT for the

107th session of the U.S. House.11 First, and foremost, the party loyalty dimension is

highly apparent and shows a split between Republican and Democratic voting (PVE

= .77). Other dimensions are important and explain the other 23% of explainable

variance. Some of the dimensions relate closely to specific policy topic areas such

as rural/infrastructure issues (PVE = .03) and the government budget (PVE = .05).

Another dimension that emerges relates to purely procedural votes, such as ceremonial

motions and approving the chamber’s journal (PVE = .02). However, the set of

dimensions that are most important to this session, beyond party loyalty, relate to

the September 11th attacks and the relating security measures. These dimensions

include national security (PVE = .07), foreign policy (PVE = .04), and a dimension

that relates to funding the war in Afghanistan (PVE = .02). Given the sets of issues

that were salient in the 107th session of the U.S. House, this set of dimensions beyond

party voting makes sense.

Though all votes do require party loyalty to explain some of the variance, most votes

require additional explanations from other sources. One example that is particularly

relevant to the 107th U.S. House relates to funding the war in Afghanistan. Votes

colored by the salient issues of their time and the preferences of the agenda setters. This make a
general analysis of dimensions beyond the first difficult.

11Additional material about how I used vote classifications and bill summaries to determine names
for each dimension and about how I determined the structure of dimensions beyond the first are
included in Section B.3 of the appendix.
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FIGURE 2.6. Votes and Cutlines for Department of Defense Authorization Act
for Fiscal Year 2003 Vote in the 107th Session of the U.S. House (Roll Call
No. 655)
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related to funding military action arose after the September 11th attacks. While the

Republican party unanimously agreed to motions to increase funding to the Depart-

ment of Defense for these actions, Democrats were split in these votes. Though the

Republicans held the House majority, many Democrats used these votes to signify

support for or against the war to their constituents and this created splits in the

voting.

The BPIRT estimation procedure selects 14 of these votes and estimates that these

votes require a common dimension in addition to the party loyalty dimension. While

this dimension only accounts for around 2% of the total variance explained in this

session, it models an important heterogeneity in Democrat voting. Figure 2.6 shows

the vote outcome by party for one of these votes, which pertained to an amendment to
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the Department of Defense Authorization Act for 2003 proposed by Loretta Sanchez

(D-CA). This figure shows the BPIRT ideal points of the voters in two dimensions:

the party loyalty dimension and the DOD dimension. Additionally, I illustrate three

separate cutlines which show the line on which a voter would be undecided between

a “Yea” or “Nay” vote. When this vote is scaled using WNOMINATE with only

one dimension, the cutline indicates perfect within party agreement. This is not the

case and is indicative of a second dimension at play. However, WNOMINATE in two-

dimensions misses the important cut needed for this vote. On the other hand, BPIRT

creates a cutline that splits the Democrats into those that support higher funding and

those that oppose spending increases. This example perhaps best demonstrates the

differences between BPIRT and other roll call scaling procedures; BPIRT estimates

dimensions as a function of clusters of votes that share similar voting patterns and

finds dimensions that are necessary for modeling their outcomes. This consistency

in topic is a feature unique to BPIRT and provides a tool that can create in-depth

inference of the topics that drive legislative voting throughout U.S. history.

2.5 U.S. Legislative Voting and Multidimensionality

BPIRT provides a tool for analyzing roll call votes and understanding the dimension-

ality of votes as well as the issue sets that drive variation in voting within the U.S.

legislative chambers. While BPIRT shows marked improvements over previous ap-

proaches to roll call scaling, its benefit can be seen as bridging the aggregate roll call

scaling approaches of Poole and Rosenthal (1997) and the issue-specific approaches of

Roberts et al. (2016) and Bateman et al. (2017). This gives rise to measures of multi-

dimensionality that are comparable within and across sessions and provides a unique

measure that can assess the impacts of multidimensionality on theories of legislative

behavior.
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I leverage the ideal points estimated by BPIRT and the corresponding measures of

dimensionality to explore the relationship between the dimensionality of a vote and

the outcomes that are predicted by models of U.S. legislative voting. While there

are numerous examples of models that appeal to unidimensionality and test theories

leveraging unidimensional NOMINATE scores, I turn my attention to two specific

models: the pivotal voter model presented by Krehbiel (1998) and the party cartel

model presented by Cox and McCubbins (2005). These two models are widely cited

in studies of U.S. legislative behavior and seek to explain the ways in which the

organization of legislative voting and parties influence voting outcomes. These two

models differ in their explanations of how voting decisions are made, but strongly

leverage a unidimensional policy space in the theoretical and empirical examinations

of their theories.

Specifically, I seek to understand how robust these theories are to the assumption of

unidimensionality. Theoretical outcomes under multidimensionality are well estab-

lished (Shepsle, 1978; Shepsle and Weingast, 1981), but there are few empirical studies

of the impact of multidimensionality on voting in the literature. Unidimensionality

can be best described as a stabilizing assumption - when the underlying policy space

is unidimensional, the outcome is predictable given assumptions about how legisla-

tors behave. In contrast, multidimensional votes are theoretically characterized by

outcomes that can take any form. Thus, the goal is to measure the stability of out-

comes implied by the pivotal voter and party cartel models when properly taking

dimensionality into account.

As discussed previously, multidimensionality comes in many different shapes and sizes.

For example, a vote can be multidimensional, but rely very heavily on one single di-

mension while there is only a small amount of variance explained by another set of

dimensions. For this reason, I explore three separate ways in which multidimension-

ality may relate to vote instability:
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1. No Effect: As the multidimensionality of a vote increases, there is no dis-

cernible change in the stability of voting outcomes.

2. Continuous Effect: Vote outcomes become more and more unstable as the

multidimensionality of the vote increases; low levels of multidimensionality show

more stable outcomes than votes with higher levels of multidimensionality.

3. Threshold Effect: Vote outcomes are stable and predictable up to a small

amount of multidimensionality. Once this threshold is crossed, vote outcomes

fundamentally change (McKelvey, 1976; Schofield, 1978). Even when the amount

of multidimensionality is small, there is a marked difference between unidimen-

sional and multidimensional outcomes.

Each of these mechanisms provide a different view of how theories of U.S. legislative

voting might be influenced by the assumption of unidimensionality.

Evidence that multidimensionality influences vote outcomes has significant impli-

cations for the study of U.S. legislative voting. First, existing theories related to

legislative voting must be examined for conditional relationships - if the vote is multi-

dimensional, does the prediction from the theory change? Multidimensionality points

to different factors that are necessary for contextualizing the conditions under which

a vote are made. Second, the usage of unidimensional ideal points under evidence for

multidimensionality leads to potential biases in further results. Given the interpreta-

tion of the first dimension examined previously, usage of unidimensional ideal points

when multiple dimensions are needed essentially summarizes the level of majority

party voting of a member while treating other sources of predictable roll call behav-

ior as noise. Particularly when being used as proxies of preferences to test theories of

party control, this can lead to acceptance of theories as a product of an endogenous

measure. Finally, under the common assumption of rational voters, evidence that

44



multidimensionality leads to more unpredictable outcomes points to ways in which

rational proposers can skew proposals to their advantage (Riker, 1980; Shepsle, 1978;

Shepsle and Weingast, 1981; Baron and Ferejohn, 1989). If multidimensional models

are appropriate models of legislative voting, then the idea that strategic proposers

can use multidimensionality to achieve better outcomes must be accounted for within

theories related to the legislative process.

2.5.1 A Theory of Pivotal Voters

Perhaps one of the most well known theories of U.S. legislative behavior, Krehbiel

(1998) outlines a theory of pivotal voters in legislative voting. Under this model,

a proposal, the status quo, and voters are mapped to a unidimensional, commonly-

known policy space. Under the rules of the legislative body, Krehbiel (1998) contends

that policies must be proposed outside of the gridlock zone in order to pass the

chamber. The gridlock zone is defined by the median voter, the presidential veto pivot,

and (when appropriate) a Senate filibuster pivot. These members of the legislature

effectively control the proposals which pass and, in turn, rational proposers craft

legislation with these constraints in mind. This model of legislative voting is simple

and effective, leading to many insights about periods of low and high gridlock within

the U.S. legislature.

To examine how multidimensionality influences empirical support for the theory of

pivotal politics, I recreate the empirical analysis from Krehbiel (1998, Chapter 5)

that examines the behavior of filibuster pivots in successive cloture votes in the U.S.

Senate. When a vote to invoke cloture goes before the U.S. Senate, Krehbiel (1998)

contends that the filibuster pivot controls whether or not debate on a vote is stopped.

An interesting test of this theory arises when a cloture vote occurs multiple times in

the same bill-episode. The theory of pivotal voters claims that changes in individual

votes from vote to vote are most likely to occur for members close to the filibuster
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pivot location. Using unidimensional NOMINATE scores to find voters close to the

theoretical filibuster pivot, Krehbiel (1998) finds evidence for the pivotal voter model.

I contend that the empirical evidence shown by Krehbiel (1998) is driven by the

unidimensional assumption made when using unidimensional NOMINATE scores; I

expect that evidence for the pivotal voter model disappears in pairs of votes which

are multidimensional. This conditional view of the pivotal politics model fits well

within the original construction - if voters are able to collapse the preference space

to a single dimension, then rational proposers can target changes in bills. However,

under the multidimensional model, no such targeting can be made.

To examine these competing theories, I recreate this analysis on new data.12 Using the

set of all cloture votes that took place in the 89th− 115th sessions of the U.S. Senate,

I examine all instances of votes to invoke cloture that occurred at least twice within

the same bill-episode. I then grouped these into sequential vote pairs, mimicking

the data set of Krehbiel (1998). This led to 477 cloture vote pairs over the course

of time analyzed. For each vote pair, I then recorded whether each U.S. Senator

switched their vote. This led to 44, 710 vote observations and 3, 363 vote switches.

For each individual U.S. Senator, the ideal point associated with the first dimension

of BPIRT scores was coded into quartiles: the f -quartile which contains the filibuster

pivot, the f -adjacent moderates quartile, the f -adjacent extremists quartile, and the

non-adjacent extremists quartile. Similarly, the controls outlined by Krehbiel (1998,

Chapter 5) were recorded: President-side vetoes, voting under a unified government,

and whether or not the voter was a Democrat.13

12Additional discussions about how I collected and processed the set of cloture votes and how I
estimated the logistic regression model can be seen in Section C.1 of the appendix.

13Corresponding switches to the quartile coding were made when the vote met the conditions of
a “president-side veto”. For a further explanation of this control and the corresponding recoding,
see Krehbiel (1998, Chapter 5, p. 106).
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FIGURE 2.7. Probability of Cloture Vote Switch by Ideal Point Quartile

Unidimensional Multidimensional

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

Non−Adj. 
 Extremists

f−Adj. 
 Extremists

f−Adj. 
 Moderates

f−Quartile

Probability of Cloture Vote Switch

Note: Probabilities were calculated setting President Side, Unified Government, and
Democrat to zero. Error bars show 95% HPD intervals.

To measure the dimensionality of a pair of cloture votes, I used the PVE for dimen-

sions beyond the party-loyalty dimension in both votes. If both votes were estimated

by BPIRT to be unidimensional, then dimensionality was coded as zero. Otherwise,

dimensionality was set to be equal to the posterior mean value of PVE. The effect

of multidimensionality is measured by testing three models with different underlying

mechanisms. The theory of no effect was tested by not including a control for the di-

mensionality of the vote. Under the theory of continuous effect, multidimensionality

was coded as the PVE attributed to dimensions beyond party loyalty. Finally, the

threshold effect was tested by including a dichotomous variable for dimensionality

coded to be multidimensional if the PVE for other dimensions in the vote pair was

greater than .001. 43% of vote pairs were classified as multidimensional under the

threshold model.
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TABLE 2.1. Logistic Regression Results for Krehbiel’s Cloture Vote Switching
Example

Dependent variable:

Senator Vote Switch in Cloture Vote Pair

No Effect Continuous Threshold

f -Quartile 0.40 0.63 0.96
(0.31,0.50) (0.52,0.74) (0.80,1.13)

f -Adj. Moderates 0.03 0.17 0.22
(-0.06,0.14) (0.04,0.28) (0.03,0.40)

f -Adj. Extremists 0.06 0.25 0.52
(-0.04,0.16) (0.13,0.36) (0.36,0.69)

President Side -1.04 -1.03 -1.01
(-1.14,-0.95) (-1.13,-0.92) (-1.12,-0.92)

Unified Government -0.46 -0.45 -0.42
(-0.55,-0.38) (-0.54,-0.36) (-0.51,-0.33)

Democrat -0.40 -0.39 -0.36
(-0.47,-0.33) (-0.46,-0.31) (-0.43,-0.28)

Multidimensional 1.34 1.10
(1.07,1.63) (0.94,1.26)

f -Quartile × -2.10 -0.94
Multidimensional (-2.64,-1.72) (-1.15,-0.73)

f -Adj. Moderates × -1.03 -0.28
Multidimensional (-1.47,-0.60) (-0.50,-0.05)

f -Adj. Extremists × -1.61 -0.74
Multidimensional (-2.08,-1.14) (-0.97,-0.52)

Intercept -2.11 -2.29 -2.78
(-2.19,-2.02) (-2.39,-2.19) (-2.92,-2.63)

Observations 44,710 44,710 44,710
Log Marginal Likelihood -11,609.54 -11,577.67 -11,464.47

1 The comparison group is non-adjacent extremists.
2 Coefficient values are posterior medians and values in parentheses are 95% HPD

intervals.

Following the empirical exercise by Krehbiel (1998), I estimated the probability of

a vote switch given the ideal point quartiles, dimensionality of the vote, and the
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controls.14 Table 2.1 shows the results of this regression under the three different

theories of how dimensionality might influence vote outcomes. Similarly, Figure 2.7

shows the probabilities of vote switching as a function of ideal point quartile and

the dimensionality of the vote as defined by the threshold model. The results from

the regressions show a number of interesting relationships. First, under the model

of no effect, the results from Krehbiel (1998, Chapter 5) are largely replicated in the

new data set - assuming that dimensionality has no effect on vote switching, voters

in the f -quartile are most likely to switch votes between cloture vote pairs. This

relationship is also seen in the other two models when the vote pair is unidimensional,

providing strong support that the pivotal voter findings are supported in the strict

unidimensional case. However, this relationship disappears in the multidimensional

case. When the vote pair is multidimensional, there is no statistical difference between

any quartile in the 95% HPD intervals.

Comparing the marginal likelihood across the models provides an assessment of the

degree to which controlling for multidimensionality improves model fit. First and

foremost, it is clear that the marginal likelihood for both the continuous and thresh-

old models is lower than the model with no effect. Given that the marginal likelihood

inherently penalizes against overfitting, this is strong evidence that multidimensional-

ity explains a significant amount of variation within the data. Between these models,

the threshold effect has the lowest marginal likelihood indicating that even a small

amount of multidimensionality leads to a fundamentally different role of the pivotal

voter. This result points to a chaotic result for almost 50% of the votes analyzed;

the pivotal voter model provides no information about where vote switches will occur

when the vote is multidimensional. This is one example of how properly accounting

for multidimensionality in U.S. legislative voting can fundamentally change long held

14While a case could be made that session-level random effects are needed, I appeal to the response
of Krehbiel (1998) that such controls would be “utterly atheoretic” as there are no session specific
elements of the pivotal voter theory.
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beliefs about legislative decision making.

2.5.2 A Theory on Party Control

In response to the work of Krehbiel (1998), scholars pointed to parties as another

source that influences both the proposals that are made and the decisions made by

their respective members. One example of this work is the party cartel theory of

agenda control (Cox and McCubbins, 2005). Under this model, rational voters in a

unidimensional preference space want to select proposals that are close to their ideal

points. However, their desire to be reelected also influences their vote choices and

they frequently delegate to the central authority of the party to make vote decisions.

This leads to strong party control in vote choice which can lead to votes that are

against their individual best actions conditional on their ideal points.

Party cartel theory leads to a number of empirically testable predictions about agenda

control in the U.S. Congress. One specific example relates to final passage votes in the

U.S. House (Cox and McCubbins, 2005, Chapter 5). For each final passage vote, the

result can be classified by the proportion of members from the majority and minority

parties voting in support of passage: if less than 50% of the minority party votes

in support of passage, the vote is considered a minority roll with similar conditions

defining a majority party roll. Under the theory of party cartels, these rolls occur

in predictable ways. First, majority rolls should be rare and uniformly distributed

conditional on the distance between the ideal point of the chamber median and the

ideal point of the median member of the majority party. On the other hand, minority

rolls should occur often with the frequency increasing as the distance between the floor

median and the minority party median increases. Using unidimensional NOMINATE

scores as estimates for the ideal points, Cox and McCubbins (2005, Chapter 5) find

empirical evidence for both predictions.

As with Krehbiel (1998), I expect that this empirical evidence is colored by the usage
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of unidimensional ideal point estimates and the result is again conditional on the

dimensionality of a vote. It is reasonable to believe that close alignment between the

majority party median and the floor median indicates high levels of party loyalty and,

in turn, produces strong agreements within the majority party on votes that can be

thoroughly explained by party bloc voting. On the other hand, multidimensionality

in a vote points to sources other than party voting and it is reasonable to expect that

these votes have less predictable outcomes.15

To assess the role of multidimensionality, I examined the set of all final passage

votes for the 83rd − 115th sessions of the U.S. House.16 This data was retrieved from

the Political Institutions and Public Choice Roll-Call Database (Crespin and Rohde,

2012). I determined if each final passage vote was a majority party roll, minority

party roll, or if no roll had occurred. This led to 4, 429 observations of final passage

votes with 127 majority party rolls and 1, 743 minority party rolls.17 I used ideal

point estimates from the first dimension of BPIRT for each session and recorded

the location of the floor median and the respective party medians for each vote.

The absolute difference between these two metrics constitutes the distance between

medians.18

As before, the three theories of multidimensionality are tested. Under the theory of

no effect, the probability of a roll is tested only as a function of distance between the

respective medians. The continuous effect was tested by using the PVE for dimensions

beyond the first on a given vote, the distance between medians, and a multiplicative

15It is worth noting that multidimensionality is mentioned by Cox and McCubbins (2005) and
this possibility is explicitly considered, but not examined in depth.

16In line with Cox and McCubbins (2005), I restrict this set to votes which required a simple
majority for passage.

17The rate of passage for final passage votes is around 98%.

18Additional discussions about how I collected and processed the set of final passage votes and
how I estimated the regression model can be seen in Section C.2 of the appendix.
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FIGURE 2.8. Results of Final Passage Votes in the 83rd - 115th Sessions of
the U.S. House

++

+

+++++
+

+

++++

+

+
+
+

+

+

+

+

+
++

+

+++++
+

++

+

++

+

++

+

+++++++

+

+

+

+

+

+
+

+

++
++
++

+

+
+

+

+

+

++
+
+

+

+

+

+

+

+

+

+

+

+

++

+

+++

+

+++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

++++

+

++++

+
+
+
+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

++++

++

+

+

++

+

+

+

++

+

+++
+

+

+++
+
+
+++
+++++++++++
+
+
+

+

+

+

++

+

+

+

+++++++

+

+++

+

++

+

+

++++
++
+++++++++++

+

++++++

+

+

+
++

+ ++++++++

+

++

+

+

+
+++++++++

+

++
+

+
+

+

++++

+
+
+

+

++

+

+
+

+

++++++++++++

+

+++
+++
+

++++++
++

+++ +
++
++

+

+
+++++++++++
+
++
+

+

++
+++
++++++

+

+

+

+

+

++

+
++ +
+

+
+

+

+
+
++
+++

+
++
+

+
++
++
+
++++++
+
++
++++

+
++

+

+

+

+

+

+
+++

+

+

+

+
+

+
+
++++
++++
+

++
+
++

+
+
+

+

+

++
+

+
+
+
+
+++

+

++

+

++
+++
++

+

+

+

++
+++++

+

+++++

+

+
+

+

+++
+++
+++
++
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+++

+

+

+

+

+

+++++

+

+

+

+

+

+

+

+

++
+

++
+

+

+++

+

+

+

+

+

+

+

+

+
+

+

+

++
+

+

+++

+

+

+

++

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+++

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+ +

+++
+
++

+

+

+

+
+

++

+

+

++

+

++

+

+++

+

+

+

+

++
++

+

+

+++

+

++

+ + +

+ +

+

++ +

++

+
+

+

+

++

+
+
++++
+
+++

+

+

++

+

+

+

+

+

+++

+

+

+
+

++
++

+

+

+

+

+

+

+

++

+++
+

+

+

+
+

+

+

+

+

+

+

+++
+
++++

+

+

+

+

+

+

++++

+

+

++++++++

+

++

++

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

++

+

+

+
+

+++

+

+

++

+

+

+

++

+
+
+

+

+

+
+

+

+

+
++

+

+

+

+

+

+
+
+

+ ++

+
+ +

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+
+

+

+

+

+

+

+ +
+

+

+

+
+

+

+

+
+ +
+

+

+
+

+

+

+ +

+

+

+

+

+

+

+

++ +
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

++

++ ++
+

++

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+++

+

+

+
+++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+
++

+
++

+

+

+

+

+

+
+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+
+

+

+

+
+

++

++

+

+
+

+

+

+
++
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+
+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+++
+
+

+

++

+

+
+

+

+
+

+

+

+
++

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+++

+

+

+

++
+

+

+

++
+

+

+

+

+
++
+

+

+

+
+

+

+

++

+
+

+

+

++
+
+

+
+

+

+
++ +
+

+ +

+

+

+

++
++
+

+

+
+

+

+ +
+

+
+

+

+

+

+
++

+
+

+

+

+

+

+

+

++

+
+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+
+

+

+

+++

+
+

+
+

No Roll

Majority Roll

Minority Roll

No Roll

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+ +

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+ +

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+ +

+ +

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++
+

+ +

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

++

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

++

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+ +

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +
+

+

+

+

+
+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
++

+

+

+

+

+

+

+

++

+

+

+

+ +

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

++

+

+++
++
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
++

++

+

+

+
+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+
+

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

No Roll

Majority Roll

Minority Roll

No Roll

Unidimensional Multidimensional

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Proportion of Majority Party Voting for Passage

P
ro

p
o

rt
io

n
 o

f 
M

in
o

ri
ty

 P
a
rt

y
 V

o
ti

n
g

 f
o

r 
P

a
s
s
a
g

e

interaction between the two. Finally, similar to the continuous model, the threshold

effect was tested by classifying any vote where the PVE for dimensions beyond the

first was greater than .001 as multidimensional. Under the threshold model, 68.8%

of final passage votes were classified as multidimensional.

Figure 2.8 shows the set of final passage votes analyzed. Votes are compared based on

the proportion of “Yea” votes cast by each party in each case. Votes are then classified

as unidimensional or multidimensional using the threshold model. The difference in

vote proportions between the two classes of votes is stark. On unidimensional votes,

there are two general outcomes: near unanimous support by the entire set of voters

or minority rolls with nearly unanimous support from the majority party. Majority

party rolls on unidimensional votes are incredibly rare - only 4 out of 1,382 (.002%)
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FIGURE 2.9. Probability of Party Rolls as a Function of Distance between the
Party Median and the Floor Median

Majority Party Minority Party
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Note: Probabilities were calculated only within the range of observed outcomes for
majority and minority party distances. Dotted lines show 95% HPD intervals.

unidimensional final passage votes result in majority party rolls. On the other hand,

the results for multidimensional votes are more varied; the rate of minority rolls

appears to be equivalent to the rate of votes where the minority party is not rolled

and the rate of majority rolls (4%) is much higher than in the unidimensional case.

I used a logistic regression to examine the relationship between party median distance,

multidimensionality, and party rolls. In order to best replicate the test from Cox

and McCubbins (2005), I chose to include zero-mean session-level random intercepts

estimated via a normal random effect. I report the variance of these parameters with

the results from these regressions. Diffuse normal spike-and-slab priors with a spike

at zero were placed on the regression coefficients.

Table 2.2 shows the results from these regressions. First, examining the model of no
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effect, the results from Cox and McCubbins (2005) are replicated. When all votes are

assumed to be unidimensional, the probability that a final passage vote results in a

majority party roll shows no evidence that it is influenced by the distance between

medians. Similarly, there is a large positive correlation between the probability of

a minority party roll and the distance between the minority party median and the

floor median. However, there is strong evidence that controlling for the dimension-

ality of a vote explains more variation in both sets of party rolls. First, the DIC, a

proxy for the marginal likelihood in hierarchical models that penalizes the addition of

new parameters, is lower for the models that control for multidimensionality in both

majority and minotiry party rolls. While this decrease is moderate in the majority

rolls case, the minority rolls case shows a massive decrease in DIC. In each regression,

the threshold model shows the smallest DIC, implying that a model that treats votes

with even a small amount of variation that can be explained by dimensions beyond

the first differently than unidimensional votes provides the best fit to the data.

Figure 2.9 shows the predicted probabilities of majority and minority party rolls as

a function of distance between the respective medians and the dimensionality of a

vote under the threshold model. These results point to a characterization of negative

agenda control that is conditional on the dimensionality of the vote. First, the prob-

ability of a majority party roll is low in both unidimensional and multidimensional

votes. While certainly lower in the unidimensional case, multidimensional votes show

a predicted probability of around .06 in the case of the maximum observed distance

between the floor and majority party medians. However, there is a statistically mean-

ingful increase in the probability of majority rolls in the multidimensional case - while

negative agenda control from the majority party is apparent, it seems that there are

potentially other factors at play (Aldrich and Rohde, 2000).

On the other side, minority party voters benefit from multidimensionality. Under

strict unidimensional votes, the minority party roll rate is positively correlated with
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the distance between medians. However, in multidimensional votes, knowing the

distance between the minority party median and the floor median provides no infor-

mation about the probability of a minority party roll. In other words, the predictions

from party cartel theory relating to the minority party only apply to around 30% of

final passage votes. This finding does not invalidate the party cartel theory. Rather,

it points to multidimensionality creating cross-party support for bills that are not

necessarily correlated with the number of times that a member votes with the ma-

jority party. Along with theory that strategic proposers use multidimensionality to

create passing votes that cater to their own preferences, this opens a new door for

research into the role of agenda control in the U.S. Congress under potentially highly

multidimensional bills.

2.6 Conclusion

Roll call scaling and the operationalization of the spatial model is critical to the

scientific examination and development of theories about how members of the U.S.

Congress cast votes. While existing methods produce scores that appear to be best

represented in a single dimension, I show that this finding is due to the tests used

to determine dimensionality. In turn, I develop a varying dimensional representation

of the spatial model and show a corresponding estimation technique that allows for

estimation of both the aggregate-level dimensionality of the ideal point space as well as

vote-specific sets of dimensions. Using this model, I show that there is little evidence

for unidimensional ideal points in the U.S. House and U.S. Senate and that historical

voting demonstrates multidimensional patterns. I present a set of ideal points that

bridge the gap between the common aggregate methods and the more subject-specific

examinations that are present in the roll call scaling literature. Under this new model,

I then show that multidimensionality is an important aspect to be considered for

further models of U.S. legislative voting that rely on ideal points as summaries of
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the preferences of voters. All in all, I show that BPIRT is a powerful procedure for

determining the dimensionality of latent variables used in social science applications.

While the work in this article is catered to the study of roll call scaling, the models

presented here are widely applicable to any study where latent variables are estimated

via an item-response theory model. With light changes, Indian Buffet Process priors

can be used to test dimensionality in a variety of settings and can be used as vali-

dation for claims related to the dimensionality of a latent space. Similarly, there are

numerous extensions which can be made to the model presented in this paper. Un-

der the Bayesian nonparametric framework, it is possible to examine how dimensions

change over time by providing sufficient changes to the underlying priors. Similarly,

different methods of clustering can be used to find interesting similarities in voting

between both voters and the topics of the votes, themselves. This model serves a

starting point into more complex examinations of what all can be learned from the

spatial model of voting and scaling techniques.
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TABLE 2.2. Logistic Regression Results for Cox and McCubbins’ Final Passage
Vote Example

Dependent variable:

Majority Party Roll on Final Passage Vote

No Effect Continuous Threshold

Distance 0 0 0
(0,2.31) (-2.63,0) (-3.5,0)

Multidimensional 0 0
(0,0) (0,0)

Distance × 10.08 9.75
Multidimensional (6.68,13.80) (6.51,13.27)

Intercept -3.79 -5.55 -5.48
(-4.32,-3.38) (-6.35,-4.72) (-6.28,-4.66)

Variance of 0.72 0.68 0.66
Random Effects (0.43,1.05) (0.4,.99) (0.38,0.97)

Observations 4,429 4,429 4,429
DIC 1131 1096 1077

Dependent variable:

Minority Party Roll on Final Passage Vote

No Effect Continuous Threshold

Distance 7.78 10.04 9.44
(4.82,10.45) (7.17,12.91) (6.52,12.48)

Multidimensional 3.60 2.00
(2.16,4.88) (1.22,2.83)

Distance × -15.22 -8.88
Multidimensional (-18.26,-12.46) (-10.71,-7.23)

Intercept -4.15 -4.38 -4.26
(-5.48,-2.74) (-5.75,-2.95) (-5.72,-2.82)

Variance of 0.29 0.24 0.25
Random Effects (0.2,0.41) (0.15,0.35) (0.15,0.37)

Observations 4,429 4,429 4,429
DIC 4994 4264 4158

1 Coefficient values are posterior medians and values in parentheses are 95% HPD
intervals.

2 Models were estimated with spike-and-slab priors on the coefficients. The spike
was placed at zero. Posterior values equal to zero arise when the coefficient is not
statistically distinguishable from zero.

3 Congress-level random effects were estimated for the intercept terms only.
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A The BPIRT Model and Estimation

A.1 Beta Processes

A beta process is a random discrete measure that is completely described by a count-

ably infinite set of atoms, where each atom has a finite mass determined from a

stick-breaking process (Hjort, 1990). Unlike the well-known Dirichlet process (Fer-

guson, 1973), the probabilities that an individual unit belongs to a set of potential

groups do not have to sum to one. Rather, the masses must only be between zero

and one. The beta process is then used as a base measure for a Bernoulli process. In

other words, a beta process yields a stochastic process for binary random variables

or feature selection.

Definition 1. Let Ω be a measurable space and B be its σ-algebra. Let H0 be be a

continuous probability measure on (Ω,B) and α a positive scalar. Assume that Υ can

be divided into K disjoint partitions, (B1, B2, ..., BK). The corresponding beta process

is generated as:

H(Bk) ∼ Beta(αH0(Bk), α(1−H0(Bk))) (2.15)

where Beta(·, ·) corresponds to the standard two-parameter beta distribution. Allow

K →∞ and H0(Bk)→ 0, then H ∼ BP (αH0).

The beta process can be written in set-function form:

H(ν) =
∞∑
k=1

πkδν,k(ν) (2.16)

where H(νi) = πi and δν,k(ν) is an arbitrary measure on ν. In the case of the beta

process, π does not serve as a PMF. Rather, π serves as part of a new measure that

parameterizes a Bernoulli process:

Definition 2. Let the column vector, rj, be infinite and binary with the kth value,
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rj,k:

ri,k ∼ Bern(πk) (2.17)

The new measure on the measurable space, Υ, is drawn from a Bernoulli process.

By arranging the samples for a set of infinite vectors as a matrix, we can see that a

beta process is a prior over an infinite binary matrix with each row corresponding to

a location in the measurable space.

A.2 BPIRT Full Model Specification

Beginning with the likelihood of the data, a full model specification for the BPIRT

model can be defined. First, recall that the binary random variable is projected to

a latent continuous space through data augmentation (Albert and Chib, 1993) such

that:

xi,j ∼


T N−∞,0(λjωi − αj, 1) if yi,j = 0

T N 0,∞(λjωi − αj, 1) if yi,j = 1

N (λjωi − αj, 1) if yi,j is missing

(2.18)

Then, the BPIRT model can be defined as:

P (xi,j|−) ∼ N ((rj � λj)ωi − αj, 1)

P (ωi) ∼ NK(0, IK)

P (λj,k|rj,k) ∼ rj,kNp(λj,k; 0, γ−1
k ) + (1− rj,k)δ0

P (rj,k) ∼ Bern(πk)

P (πk) ∼ Beta(a/K, b(K − 1)/K)

P (γk) ∼ Gamma(c, d)

(2.19)

In all cases, intentionally vague or improper uniform priors are used on the structural

parameters. Similarly, conjugate priors are used for convenience in estimation. While
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there is debate as to the impact of these choices (Murray et al., 2013), simulation

shows that these choices are relatively innocuous given the size of the standard roll

call data set.

Under a large, but finite K that approximates an infinite dimensional representation

ofR, the model can be estimated with an explicit beta-Bernoulli prior on the elements

of the binary matrix (Paisley and Carin, 2009; Doshi et al., 2009). If K = ∞, then

we use the Indian Buffet Process prior (Ghahramani and Griffiths, 2006). I choose to

use the explicit infinite approach in this article.

A.3 MCMC For BPIRT

Estimation of the BPIRT model uses the following sampling routine (Knowles and

Ghahramani, 2011):

1. Sample Continuous Mappings for the Binary Random Variables, X.

For each i ∈ (1, ..., N) and j ∈ (1, ..., P ), sample xi,j from a truncated normal

distribution according to:

xi,j ∼


T N−∞,0(λjωi − αj, 1) if yi,j = 0

T N 0,∞(λjωi − αj, 1) if yi,j = 1

N (λjωi − αj, 1) if yi,j is missing

(2.20)

2. Sample R and Λ jointly.

Sampling Currently Observed Features

Define K+ as the current number of active features. For each j ∈ (1, ..., p)
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and k ∈ (1, ..., K+) define:

tj,k =
P (rj,k = 1|X,−)

P (rj,k = 0|X,−)

=
P (X|rj,k = 1,−)

P (X|rj,k = 0,−)

P (rj,k = 1)

P (rj,k = 0)

(2.21)

P (X|rj,k = 1,−)

P (X|rj,k = 0,−)
=

√
γk
γ

exp

(
1

2
γµ2

)
(2.22)

P (rj,k = 1)

P (rj,k = 0)
=

m−j,k
P −m−j,k + 1

(2.23)

where γ = ω′kωk + γk, µ = 1
γ
ω′kÊj, Êj = xj − λjΩ + αj setting λj,k = 0, and

m−j,k = −rj,k +
p∑

h=1

rh,k. Let

pr=1 =
tj,k

1 + tj,k

then sample P (rj,k|−) ∼ Bern(rj,k; pr=1). If rj,k = 1, then sample P (λj,k|−) ∼

N (λj,k;µ, γ
−1). Otherwise, set λj,k = 0.

Sampling New Features

Begin by sampling the two Indian Buffet Process hyperparameters, a and b.

Sample a from the full conditional:

P (a|−) ∼ Gamma
(
a;K+, HP (b)

)
(2.24)

where HP (b) =
P∑
h=1

b
b+h−1

. b must be drawn via a Metropolis-Hastings step.

Draw a new proposal:

P (b∗) ∼ Gamma(b∗, 1, 1) (2.25)
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Accept b∗ with probability min(1, rb→b∗):

rb→b∗ =

(ab∗)K
+

exp[−aHP (b∗)]
K+∏
k=1

B(mk, P −mk + b∗)

(ab)K+ exp[−aHP (b)]
K+∏
k=1

B(mk, P −mk + b)

(2.26)

where B(·, ·) is the Beta function and mk =
P∑
j=1

rj,k.

For each j ∈ (1, ..., P ), sample the new number of dimensions to try:

P (κj) ∼ Pois

(
κj;

ab

b+ P − 1

)
(2.27)

Knowles and Ghahramani (2011) discuss ways to make this proposal explore

the feature space in a faster way.

Draw values for each of the new potential dimensions. For q ∈ (1, ..., κj):

P (λj,q) ∼ N (λj,q; 0, 1) (2.28)

which will be referred to collectively as λj,κj .

Using this as the proposal for a Metropolis-Hastings draw, accept the new di-

mensions with probability min(1, rη→η∗):

rη→η∗ = (2π)(Nκj)/2|M |−N/2 exp

[
.5

N∑
i=1

m′iMmi

]
(2.29)

where M = λ′j,κjλj,κj + Iκj , mi = M−1λj,κj Êi,j, and Ê = X −ΛΩ +α.

If the new proposal is accepted, set λj,(K++1:K++κj) to the proposed values.

Scheduling this part of the algorithm after updating values of Λ improves mix-

ing. Set K+ to the new number of columns represented in Λ.
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3. Remove Inactive Features and Normalize Λ. For each k ∈ (1, ..., K+), if

rj,k = 0 ∀ 1 ≤ j ≤ p, remove k from the analysis. Recalculate K+. Post-process

Λ to normalize the variance. For each j ∈ (1, ..., p) and k ∈ (1, ..., K+) set

λj,k:

λj,k =
λj,k√

1 +
K+∑
h=1

λ2
j,h

(2.30)

4. Sample Ω. For each i ∈ (1, ..., n), sample ωi ∈ RK+
from:

P (ωi|−) ∼ NK+(ωi; (Λ′Λ + IK+)−1Λ′yi, (Λ
′Λ + IK+)−1) (2.31)

5. Sample Item Level Intercepts, α. For each j ∈ (1, ...p), sample the item

level intercept from:

P (αj|−) ∼ N

(
µ̄j,

1

N2

N∑
i=1

(µi,j − µ̄j)2

)
(2.32)

where µi,j = λ′jωi − xi,j and µ̄j = 1
N

N∑
i=1

µi,j.

6. Sample Factor Precisions, γk. For each k ∈ (1, ..., K+), sample γk from:

P (γk|−) ∼ Gamma

(
mk

2
,

p∑
j=1

λ2
j,k

)
(2.33)

where mk is the number of sources for which feature k ∈ (1, ..., K) is active.

A.4 Identification of Structural Parameters in BPIRT

One model consideration which requires further examination relates to identification

of the structural parameters. It is well known that ideal points estimated using

latent variable models are unidentified without further constraints (Rivers, 2003).
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Identification can be induced by placing constraints K(K+1) ideal points or requiring

that the matrix of discrimination parameters have a lower-block triangular structure

with positive elements on the main diagonal (Geweke and Zhou, 1996).

Using BPIRT, neither of these approaches are viable - since the number of columns in

the matrix of discrimination parameters is technically infinite, placing a priori con-

straints is not possible. Fortunately, the sparsity inducing beta process prior on the

discrimination parameters ensures identification. First, the number of votes which

take on a feature necessarily decreases as the cardinality of the feature increases

(Bhattacharya and Dunson, 2011). For example, if rj,1 = 1 ∀ j ∈ (1, ..., P ) and
P∑
j=1

rj,1 = P , then
P∑
j=1

rj,1 < P . This ensures that
P∑
j=1

(1 − rj,k) ≥ k ∀ k ∈ (1, ...,∞).

Second, the spike-and-slab priors on the matrix of discrimination parameters en-

sures that each element of this matrix has a posterior distribution completely con-

tained on one side of zero (Knowles and Ghahramani, 2011). Together, these two

features effectively mimic the requirements for identification presented by Geweke

and Zhou (1996) and ensure that all structural parameters estimated using BPIRT

are uniquely identified. This is echoed by examining the posterior distributions for

the ideal points, which never exhibit bimodality, evidence that the sign-switching

problem is not present in MCMC estimation.

A.5 Assessing Convergence for the BPIRT Algorithm

Convergence of the vote level difficulty parameters can be assessed using routine con-

vergence diagnostics included in the R package superdiag (Tsai et al., 2012). The

number of dimensions retrieved from the BPIRT procedure can also be monitored

using standard convergence diagnostics. However, due to the discrete nature of this

value, it is often more beneficial to assess convergence using visual inspections. As-

sessing the convergence of the difficulty parameters, ideal points, and elements of the

binary matrix proves more challenging due to the varying dimension nature of the
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set of estimates that make up each set of structural parameters. Convergence for

these parameters is not directly assessed. Rather, convergence diagnostics are per-

formed on the mean of the latent distribution passed to the data augmentation step -

(rj �λj)ωi−αj. Similarly, I monitor the log-likelihood of the data given the implied

model at each step and use this to assess convergence of the posterior distribution

of the log-likelihood of the data. Under a converged model, the log-likelihood should

be 1) unimodal and approximately symmetric and 2) show behavior that appears

as a random walk over iterations. Both of these conditions are generally met when

allowing the procedure to have a long burn-in. There is relatively low autocorrelation

between draws when the stationary distribution is reached, so the parameter space

is explored relatively quickly. Similarly, the posterior distributions of interest are

normally distributed due to the conjugacy of the model. Thus, the number of draws

needed to truthfully represent the posterior distributions are relatively low.

A.6 Methods for Achieving Faster Convergence

As with many MCMC procedures, setting good starting values is a key aspect to

achieving fast convergence to the stationary posterior distribution. Using the matrix

of binary random variables, I used principal components to put together a reasonable

set of starting values. For any values that were missing, I used multiple imputation

to quickly fill-in the missing values. I then ran PCA on this full matrix and kept

Pois(1) of the scores and loadings as the latent variables and discrimination parame-

ters, respectively. I always started the difficulty parameters at 0 and set 50% of the

elements of each column of R to 1. The variance parameters are always started at 1.

One potential problem arises at the beginning of a MCMC chain - if the starting

values are particularly bad and the RNG is not giving favorable initial draws from

the infinite part of the feature sampler, it is possible for the number of features at

the end on an MCMC iteration to move to zero. This is problematic. In order to
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prevent this behavior, I chose to begin each chain of the MCMC procedure with 100

iterations where the IBP prior 1) did not look at the number of other votes which

took on a feature when determining if it would take the feature (i.e. setting Equation

2.23 equal to 1 for all votes) and 2) did not use the infinite search over the feature

space. This creates a period where the model simply learns the ideal points over a

fixed number of dimensions. Once the ideal points begin to sort, the rest of the model

runs smoothly and there is never less than 1 dimension in the analysis.

A.7 Simulation Exercises

In order to understand how BPIRT estimates the binary matrix that encodes each

vote’s dimensionality and, in turn, the dimensionality of the underlying policy space,

I ran simulations on data sets with known parameters and examined how BPIRT

uncovers the true underlying latent structure of the data.

The purpose of these simulations is two-fold. First, it is necessary to examine how

accurately BPIRT recovers the binary matrix associated with the matrix of discrimi-

nation parameters from a known data generating process as a function of the number

of voters, number of votes, and the true underlying dimensionality of the latent policy

space. Given that the goal of BPIRT is to recover the vectors that dictate which votes

correspond to which dimensions of the underlying policy space, it is important to un-

derstand when the procedure succeeds in providing an accurate representation of this

data. Second, and closely related to the first goal, it is important to understand the

properties of the Indian Buffet Process prior across varying numbers of votes, voters,

and true underlying dimensionalities. In particular, it is important to examine the

ability of the IBP prior to recover the true number of dimensions and to ensure that

BPIRT does not uncover spurious sets of features that do not correlate with the true

underlying feature set. While theory dictates that the IBP will uncover the exact

solution when the number of votes and voters is large, roll call data sets are inher-
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TABLE 2.3. Number of Dimensions Estimated From Simulated Data With
Various Numbers of Voters, Votes, and Known Dimensionalities Using BPIRT

Voters
Votes

100 450 900
100 1 1 1
250 1 1 1
400 1 1 1

(a) True Dimensionality = 1

Voters
Votes

100 450 900
100 1 1 1
250 1 3 3
400 1 3 3

(b) True Dimensionality = 3

Voters
Votes

100 450 900
100 1 1 1
250 1 4 4
400 1 4 5

(c) True Dimensionality = 5

Voters
Votes

100 450 900
100 1 2 3
250 2 5 6
400 2 5 6

(d) True Dimensionality = 7

Note: Values reported are posterior modes. In almost every case, the posterior for number of
dimensions converged to a single value.

ently limited in the number of voters and the number of votes made within a session.

Thus, understanding the small and medium sample properties of this nonparametric

prior is of interest.

In order to simulate data that has a similar structure to actual roll call data, I used

PCA on a set of 928 votes made by 428 members of the 105th session of the U.S. House

to estimate a seven-dimensional covariance matrix. This covariance matrix was used

to generate simulated roll call data sets with 100/250/400 voters, 100/450/900 votes,

and 1/3/5/7 true underlying dimensions in the latent policy space. These simulated

data sets were then passed to an implementation of BPIRT and the structural pa-

rameters were estimated. Each Markov Chain Monte Carlo routine was run with a

burnin of 5000 iterations and 1000 unthinned draws were taken from the stationary

posterior distribution over 2 chains. There were no indications of convergence issues

in these simulations.

I first examine the relationship between number of voters, number of votes, the true
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dimensionality of the vote set, and the dimensionality uncovered by BPIRT using the

Indian Buffet Process prior. The number of dimensions uncovered by BPIRT for each

simulation set can be seen in Table 2.3. On first glance, it is easy to see that the

behavior of the IBP prior to uncover the correct number of dimensions expectedly

depends on the number of votes. As shown by Ghahramani and Griffiths (2006), the

number of features represented by the prior increases in O(log(P )). This property

is apparent in the simulation sets as the ability to estimate the true dimensionality

is contingent on having a large number of votes. This relationship is also seen in

the number of voters, though not as strongly. This property makes sense, as one

would expect that more observations would lead to more accurate estimation of model

parameters. However, the number of dimensions estimated appears to be capped in

the number of votes.

A second important observation is that the model is conservative in its estimation

of new dimensions when the number of votes or voters is low. In all cases, the number

of estimated dimensions is lower than the truth with small roll call voting data sets

resulting in a one dimensional posterior. On the other hand, when presented with

a data set that is truly one-dimensional, BPIRT accurately estimates that only one

dimension is needed. This finding should assuage concerns that BPIRT uncovers

spurious dimensions. All in all, BPIRT provides a useful tool for estimating the

dimensionality of the underlying policy space. In particular, it is well suited to

examine whether or not a roll call data set requires only one dimension to explain

variance within the data set.

I also examine BPIRT’s ability to correctly uncover structural zeros in the binary

matrix. Recall that zeros in this matrix imply that a specific vote does not rely

on variance explained by a given dimension when explaining the underlying utility

functions that lead to certain vote outcomes. The proportion of correctly classified
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TABLE 2.4. Proportion of Elements in R Correctly Classified From Simulated
Data With Various Numbers of Voters, Votes, and Known Dimensionalities
Using BPIRT

Voters
Votes

100 450 900
100 0.93 0.99 1.00
250 0.97 1.00 1.00
400 0.97 1.00 1.00

(a) True Dimensionality = 1

Voters
Votes

100 450 900
100 0.77 0.73 0.73
250 0.80 0.81 0.84
400 0.80 0.87 0.89

(b) True Dimensionality = 3

Voters
Votes

100 450 900
100 0.81 0.77 0.77
250 0.82 0.84 0.86
400 0.83 0.89 0.91

(c) True Dimensionality = 5

Voters
Votes

100 450 900
100 0.84 0.82 0.84
250 0.86 0.87 0.89
400 0.87 0.91 0.93

(d) True Dimensionality = 7

Note: Values reported are posterior medians.

elements of R for each simulation set is shown in Table 2.4.19 The relationship between

the number of votes, number of voters, and accuracy in recovering elements of the

binary matrix is similar to the one seen in Table 2.3 - more votes and more voters

results in more accurate estimation of the structural parameters in R. However,

unlike in the previous case, the accuracy of estimation seems to be driven by the

number of voters. This finding makes sense, however, as each estimate within R is

related to a specific vote/dimension combination. Thus, more voters means more

information about which sources of variation best describe the vote. Even in smaller

samples, BPIRT provides an accurate representation of the binary matrix. This is

especially apparent in estimations with a true one-dimensional model. All in all, these

19When constructing this data, I attempted to recreate the number and structure of dimensions
that are typically seen in roll call voting. This led to seven dimensions with a decreasing number of
votes which took on each dimension. Every vote took on the first dimension while other dimensions
were only required for a proportion of votes. This leads to the high hit rate when the true number
of dimensions is one and the decrease in hit rate between one and three.
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simulations show that BPIRT can accurately recover the underlying structures which

drive voting under the varying dimensions model of vote choice.

B Multidimensionality in the U.S. Congress Over Time

For analysis in this section, I examine the roll call voting data sets for the 1st− 115th

(1789−2017) sessions of both chambers of the U.S. Congress, separately. Over the set

of roll call votes in each session, I analyzed votes that had at least 5 votes in the mi-

nority and voters that registered roll call votes for at least 50% of the votes analyzed.

I chose to run the BPIRT procedure on each roll call data set for a burnin of 20,000

iterations and capture 1000 draws of the parameters from the stationary posterior

distribution over two independently initialized chains. Assessments of convergence

both within and across chains showed no evidence of lack of convergence.

The proportion of variance explained by a dimension for a vote can be derived using

the properties of the BPIRT model. Recall that the marginal probability of the

augmented data under BPIRT is:

P (xi) ∼ NP (α, (R�Λ)(R�Λ)′ + IP ) (2.34)

Note that under the marginal posterior, each voter has the same probability density

function. This implies that the variance of the augmented data for a vote is:

V [xj] =
K∑
k=1

rj,kλ
2
j,k + 1 (2.35)

Then, the proportion of variance explained (PVE) by a dimension on a vote can be

defined as:

PVEj,k =
rj,kλ

2
j,k

K∑
h=1

rj,kλ2
j,h

(2.36)
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FIGURE 2.10. Relationship Between Number of Votes, Estimated Number of
Dimensions, and Prior Number of Dimensions Implied by IBP for each Session
of the U.S. House
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Since each of these quantities presented in this section are, themselves, uncertain

measures, the posterior means are also associated with a 95% highest posterior density

interval. In practice, these ranges are very tightly bunched around the posterior

means. As these quantities do not plot well, I have chosen not to include the error

bars in many of the figures. These quantities can be found in the replication materials.

The inclusion of 95% HPD intervals do not change the overall conclusions made from

any of the graphs included in this section.

B.1 IBP and Dimensions Observed in the U.S. House

For many sessions of the U.S. House and U.S. Senate, the posterior distribution

for the number of dimensions converged strongly on a single value. These sessions

are indicated in Figure 2.1 by points with no error bars. Exploring the infinite set
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of features using the beta process prior is contingent on tuning parameters, which

are outlined in the estimation procedure presented in the Appendix. Similarly, the

discrete nature of the posterior distribution for number of dimensions can lead to

results that appear to not have reached stationarity. Given the performance of BPIRT

in simulation exercises, there is strong evidence that these values are equal to or below

the truth and assuage any concerns related to not fully exploring the posterior. Other

choices for these hyperparameters lead to results that share the same mode but have

higher values included in the 95% HPDs.

The relationship between the number of voters, number of votes, and estimated di-

mensionality is well established in the simulation section. However, it is important

to see how these relationships manifest in the actual roll call data used in these ap-

plied examples. Similarly, one might question whether or not these results are unduly

driven by the choice of priors for the hyperparameters of the IBP prior. To address

these concerns, I checked the relationship between the number of votes, the expected

number of dimensions drawn from the IBP prior, and the estimated dimensionality.

Figure 2.10 shows the logarithm of the number of votes analyzed, the posterior mean

number of dimensions estimated, and the number of dimensions implied by the IBP

prior using posterior means values for the IBP hyperparameters for each session of the

U.S. House. First, it is easy to see that there is s strong dependence in the number

of votes and the prior number of dimensions implied by BPIRT - the prior number of

dimensions scales almost perfectly with the logarithm of the number of votes with an

additive constant implied by the IBP hyperparameters. On the other hand, there is

not a strong correlation between the posterior mean number of dimensions estimated

by BPIRT and the prior expected number of dimensions. This implies that the choice

of prior is not unduly influencing the number of dimensions estimated by BPIRT.

However, the choice of prior does seem to place a cap on the number of dimensions
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FIGURE 2.11. Number of Unidimensional and Multidimensional Votes Ana-
lyzed in Each Session of the U.S. House
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which can be estimated; the number of dimensions estimated rarely goes above the

number of dimensions implied by the prior. This behavior is expected due to the

properties of the IBP prior discussed in the simulations.

B.2 More Summaries of Multidimensional Voting in the U.S. House

Figure 2.11 shows the number of votes that were analyzed for each session of the

U.S. House. These votes are then classified as unidimensional or multidimensional

by the posterior mean probability that a vote requires more than the first dimension

to best explain individual vote variation. This figure demonstrates two key concepts.

First, the sheer number of votes that occur within each session dramatically increase

after 1950. This allows BPIRT to better estimate the number of dimensions needed

to model the roll call data set and, in turn, allows for more multidimensionality in

votes to appear. Second, this plot makes it clear that the proportion of votes that
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FIGURE 2.12. Aggregate GMP and Proportion Correctly Classified Votes for
the 1st - 115th Sessions of the U.S. House
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were classified as multidimensional by BPIRT also dramatically increases after 1950.

While there is a downturn in this proportion in recent times, these proportions are

generally on par with the proportion of votes that were classified as unidimensional

in the mid-1800s. This is another way of showing that the unidimensional, party bloc

voting of recent times is not a unique occurrence.

GMP is only one way in which the quality of ideal point models is assessed. The most

common way in which models are compared is through correct classifications metrics.

Using the ideal points and other structural parameters, the proportion of votes that

are correctly classified can be used to demonstrate the ability of the model to partition

“Yea” and “Nay” votes appropriately in different situations. This metric is a natural

fit for predictive models like NOMINATE, but does not necessarily account for the

uncertainty associated with each of the model parameter estimates (Carroll et al.,
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2009). The proportion of votes correctly classified using optimal cutpoints for BPIRT

was estimated using the mean of the augmented posterior - µi,j = (rj � λj)ωi − αj.

If µi,j < 0, then the vote was a predicted “Nay” and “Yea” otherwise. A similar

calculation is used for NOMINATE.

Figure 2.12 shows the aggregate GMP and proportion correct classification under the

optimal cutpoint for both BPIRT and one-dimensional WNOMINATE model. Be-

ginning with correct classification, it is easy to see that BPIRT and a unidimensional

WNOMINATE model yield similar results throughout much of U.S. history, especially

in recent sessions. While this could certainly be taken as evidence that the unidi-

mensional model is sufficient, correct classification done in this sense is theoretically

deficient and ignores the inherent uncertainty associated with ideal point measures

while encouraging heavily overfit models (Aldrich et al., 2014; Roberts et al., 2016).

Ideal points are rarely used to predict new votes; in fact, ideal points are almost

always used to explain the voting behavior given the entirety of votes for an analyzed

period. It is imperative that ideal point fits are treated with the same probabilistic

rigor that any other inferential technique requires when attempting to explain be-

havior and, thus, important to consider more statistically rigorous approaches when

making choices about the underlying parameters of ideal point models.

Proportion reduction in error metrics are similar to correct classification metrics (Car-

roll et al., 2009; Aldrich et al., 2014; Roberts et al., 2016). These approaches are

central to previous discussions of how many dimensions are needed to model a roll

call voting set. While these approaches provide some information of this topic, they

are post-hoc statistics that require a priori assumptions about the structure of the

underlying latent space. BPIRT estimates the dimensionality and necessity of dimen-

sions at a vote-level within its statistical procedure and, therefore, is incompatible

with the notion of adding or subtracting whole dimensions from the latent space. For
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TABLE 2.5. Correlation between Dimensions Estimated for the 107th U.S.
House

Party Procedural Security Budget Rural Foreign DOD
Party 1.00 0.30 0.28 0.33 -0.07 -0.09 0.17

Procedural 0.30 1.00 0.35 0.05 -0.03 -0.07 0.25
Security 0.28 0.35 1.00 0.10 0.09 -0.04 0.16
Budget 0.33 0.05 0.10 1.00 0.13 -0.01 0.05

Rural -0.07 -0.03 0.09 0.13 1.00 0.04 -0.06
Foreign -0.09 -0.07 -0.04 -0.01 0.04 1.00 0.01

DOD 0.17 0.25 0.16 0.05 -0.06 0.01 1.00

Note: Values reported are posterior means for the Pearson correlation coefficient
between estimated ideal points.

this reason, I choose to avoid inappropriate attempts to compare APRE and MPRE

achieved from BPIRT.

B.3 More Summaries for the 107th U.S. House

I used a suite of tools to provide names for each of the dimensions estimated by

BPIRT for the 107th session of the U.S. House. First, I used vote classifications

from voteview.com to analyze the set of votes which had non-zero contributions to a

dimension and saw general trends in the content of votes that loaded in each dimension

(Poole and Rosenthal, 2012). Second, I used non-negative matrix factorization and

regularized logistic regression to extract important words from the bill summaries

associated with each vote on each set of votes. These tools created a general picture

of what each dimension was modeling. While still somewhat ad-hoc, this approach

defines a general method that will be useful for future research attempting to find

trends in what each dimension means, over time.

BPIRT tends to extract dimensions which run relatively orthogonal to one another.

One of the advantages of the IBP prior is that it generally prevents against dimensions

that are highly correlated with one another from arising during estimation. This can

be attributed to the IBP draws, which check to see if there is any new information
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FIGURE 2.13. Highest PVE Dimensions and Number of Dimensions For Each
Vote in the 107th U.S. House
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Note: Values reported are estimates of the binary matrix from the iteration of the
MCMC procedure with the highest complete-data likelihood. Points on the main
diagonal of the PVE graph required only one dimension to best model variation within
the vote.

added by a new dimension while conditioning on previously existing dimensions. Ta-

ble 2.5 shows the pairwise correlations between dimensions estimated for the 107th

session of the U.S. House. Correlations for this session range from .01 to .35. While

this indicates that there are dimensions which are not orthogonal to one another, the

correlation is still relatively low.

One advantage that comes from using an IBP prior is that votes are allowed to take

on a collection of dimensions rather than one, and only one, dimension. Given the

complexity of the topics that are being considered when votes are cast, this is a

desirable property. BPIRT models this complexity and presents the set of dimensions

which each vote requires to best model its variance in voting. To this end, it is
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interesting to examine the number of dimensions, and which dimensions, are chosen

for votes within the analyzed set. Figure 2.13 illustrates this dynamic by showing the

dimensions with the highest and second highest PVE for each vote analyzed. While

around 35% of votes only require the party loyalty dimension to model the roll call

votes, the other 65% of votes require at least one other dimension. However, all votes

require a non-zero contribution from the party loyalty dimension. This dynamic is

partially due to the “rich get richer” property of the IBP prior, the fact that most votes

require the party loyalty dimension as the highest or second highest PVE dimension

fits well with theories of party control in U.S. legislative voting.

C U.S. Legislative Voting and Multidimensionality

C.1 A Theory of Pivotal Voters

I constructed a data set of all cloture votes that took place between the 89th and 115th

sessions of the U.S. Senate. I began by collecting all cloture votes recorded in the

U.S. Senate records, which can be found at https://www.senate.gov/legislative/

cloture/clotureCounts.htm. Using this set of votes, I attempted to create matches

to roll call votes retrieved from https://www.voteview.com (Poole and Rosenthal,

2012). For each cloture vote, I attempted to match the roll call records via the session

number and the rollcall number. However, this proved challenging in cases where the

clerk roll number was not recorded. Thus, I pulled in supplementary information

about each vote from the Propublica API to attempt to join cloture votes to roll call

records using date and bill name (Leeper, 2015). This approach was used to give each

cloture vote a date, roll call number, and relevant bill number.

Once each record was joined to a roll call vote, I created a series of cloture vote

episodes for each set of motions to invoke cloture that involved the same bill in the

same session of the U.S. Senate. I defined a cloture vote episode as any group of
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cloture votes that occurred within the same session for the same bill number that

had at least 2 members. This led to 777 cloture votes and 257 cloture vote episodes.

In each episode, I analyzed pairs of votes in sequence, meaning that I compared the

votes from the first and second votes, second and third votes, etc. This led to 517

direct comparisons.

For each comparison, I defined a vote switch as a pair of votes from a U.S. Senator that

were different (i.e. “yea” to “nay” or “nay” to “yea” on whether to invoke cloture).

Another key component of this design is placing U.S. Senators in ideal point quartiles.

Using the set of ideal points for a specific session (which are defined at the session

level), I divided the ideal points into quartiles and assigned each member a quartile

based on this measure. For this division, I used the ideal points retrieved from the

iteration of the stationary posterior that had the highest complete data likelihood.20

Corresponding switches to the ideal point quartiles were made when the vote was

classified as a “President-Side Veto”.

More recent sessions of the U.S. Senate introduced a new problem that was seemingly

not present in the data set from Krehbiel (1998). In some votes pairs, there appeared

to be an unusually large number of switches that occurred across both parties. Upon

further examination, these cases corresponded to complicated cloture votes that were

associated with various amendments to bills proposed by both parties. Given that

these votes were occurring on the same bill, but had completely different underlying

contexts, I removed these 40 vote pairs from the data set. I identified votes pairs

to remove by finding all votes in which 50% of the votes from each party switched.

20I explored the idea that the results may change if the uncertainty of the ideal points was included
in further empirical models using these measures. To do this, I ran the models in proceeding parts of
this section using the full first-dimension ideal point posteriors and taking a random draw for each
observation that is then used to create the quartiles. This bootstrap design essentially incorporates
the uncertainty of the ideal points into the estimation procedure. The coefficients retrieved from
the logistic regression models then represent a distribution of the full-error model. For a 1000-draw
bootstrap design, I found no discernable difference between the full-error and single point estimate
models.
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Analysis of the full data set including these 40 vote pairs could not directly replicate

the findings of Krehbiel (1998). Upon removal, I was left with 477 cloture vote pairs.

Table 2.6 shows some summary statistics for this data.

The logistic regression models in this section were estimated using MCMClogit from

MCMCpack (Martin et al., 2011). Priors on the coefficients were conjugate normal

with zero mean and variance of 1000. Each model was estimated twice using diffuse

starting values and convergence was checked using the suite of tools provided by the

superdiag package (Tsai et al., 2012). After a generous burn-in of 100,000 iterations,

there was no evidence of a lack of convergence to the stationary distributions. One

consideration when estimating the models for cloture vote switching is choosing the

threshold for multidimensionality in the threshold model. While a small value for this

threshold makes sense, there is empirical justification for the decision. The threshold

of .001 was chosen after using a grid search of all values between .001 and .999 as the

cutpoint and estimating the logistic regression for vote switching for all values. Using

.001 as the cutpoint yielded the model with the highest log-marginal likelihood. Code

for the models in this section can be found in the replication materials.

C.2 A Theory on Party Control

Data on the set of all final passage votes in the U.S. House was retrieved from the

political institutions and public choice roll-call database, which includes each roll

call vote that occurred in the U.S. Congress and classifications relating to they type

of vote that occurred (Crespin and Rohde, 2012). To match the analysis from Cox

and McCubbins (2005), I only analyzed final passage votes which required a simple

majority for passage. Table 2.2 shows some summary statistics for this data.

One modeling consideration which arose was what to do with final passage votes

that were nearly unanimous. When estimating ideal points, I chose not to estimate
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vote-level dimensionalities for votes that had less than a 5 vote split in order to

prevent singularity issues when inverting matrices. In order to best replicate the

methods of Cox and McCubbins (2005), I chose to code these votes as unidimensional.

Theoretically, this is justified - on a unanimous or nearly unanimous vote, the vote

can be modeled using a single dimension with a cutpoint that exists outside of the

range implied by the ideal points. This was done to attempt to faithfully recreate the

data set and estimation strategy from Cox and McCubbins (2005).

Models for this section were estimated using JAGS (Plummer, 2003). runjags was

used to run the models within R (Denwood, 2016). Diffuse normal priors were placed

on the coefficients. Special care needed to be taken to appropriately model the in-

tercept in these logistic regressions. Since the underlying model predicts that the

probability of a roll is zero when the distance between the floor median and party

median is zero, it is expected that the intercept will be highly negative and only

partially locally identified. For this reason, the mean of the prior for the intercept is

set to be -10 while other means are set to 0. This helped model convergence greatly.

Spike-and-slab priors on the regression coefficients were computed using a beta-

Bernoulli specification. Specifics can be seen in the replication materials. I chose

to use this prior specification given the nature of the test presented by Cox and Mc-

Cubbins (2005) - under party cartel theory, the distance between the majority party

median and the floor median should have zero effect on the probability of a majority

party roll. While this specification is not a test of zero effect, directly, it forces the

model to be fit under conditions where the value of a coefficient that is not statis-

tically distinguishable from zero is forced to be represented as zero. This allows for

easier interpretation of the expected null result.

As with the previous set of models, the value of .001 is both theoretically and em-

pirically justified. For each of the models run in this section, I first ran a version of
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the threshold model which places a uniform prior, bounded between 0 and 1, on the

cutline for the threshold model. Under the convergence guarantees of MCMC meth-

ods, this value should converge to a stationary distribution which dictates values of

the cutline that maximize the posterior likelihood conditional on the priors. In each

case, the posterior distribution had a single mode close to a small number around

zero. This provides empirical justification for this choice. All models and JAGS code

can be found in the replication materials for this paper.
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TABLE 2.6. Summary statistics for cloture vote switches in the 89th - 115th

Sessions of the U.S. Senate

Number of Number of Proportion Switches by:
Congress Vote Episodes Switches Adj. Adj. Mods f-Quart. Non-Adj.

89 3 7 0.14 0.29 0.14 0.43
90 3 12 0.50 0.25 0.00 0.25
91 1 2 0.00 0.00 0.50 0.50
92 9 49 0.20 0.16 0.33 0.31
93 13 59 0.15 0.22 0.37 0.25
94 12 46 0.09 0.15 0.20 0.57
95 7 16 0.06 0.38 0.38 0.19
96 8 68 0.25 0.26 0.44 0.04
97 14 65 0.17 0.38 0.32 0.12
98 5 28 0.46 0.18 0.18 0.18
99 8 43 0.37 0.23 0.40 0.00

100 20 60 0.08 0.42 0.25 0.25
101 6 42 0.24 0.24 0.36 0.17
102 17 129 0.06 0.41 0.20 0.33
103 19 40 0.23 0.10 0.65 0.03
104 24 52 0.25 0.21 0.48 0.06
105 22 83 0.27 0.20 0.39 0.14
106 18 126 0.03 0.44 0.06 0.47
107 27 237 0.22 0.30 0.19 0.29
108 17 216 0.29 0.20 0.25 0.26
109 11 89 0.30 0.19 0.29 0.21
110 44 508 0.15 0.32 0.25 0.28
111 32 154 0.29 0.18 0.45 0.08
112 20 327 0.41 0.05 0.47 0.07
113 28 293 0.40 0.04 0.54 0.02
114 68 501 0.17 0.25 0.22 0.36
115 13 111 0.30 0.12 0.43 0.15
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TABLE 2.7. Summary statistics for final passage votes in the 83rd - 115th

Sessions of the U.S. House

Number of: Distance between Floor Median and:
Congress Votes Maj. Rolls Min. Rolls Maj. Median Min. Median

83 48 0 9 0.21 0.33
84 46 3 7 0.31 0.26
85 58 5 8 0.31 0.26
86 72 2 24 0.18 0.39
87 95 1 30 0.21 0.33
88 92 3 36 0.25 0.33
89 169 0 45 0.11 0.46
90 214 2 27 0.27 0.31
91 168 8 19 0.28 0.31
92 173 8 15 0.26 0.33
93 245 5 34 0.26 0.34
94 255 8 62 0.12 0.47
95 209 4 56 0.13 0.46
96 169 1 52 0.15 0.45
97 126 4 30 0.26 0.36
98 121 10 55 0.16 0.49
99 116 6 48 0.20 0.47

100 116 1 47 0.19 0.48
101 117 2 42 0.19 0.48
102 117 8 50 0.17 0.50
103 107 3 63 0.17 0.54
104 130 3 72 0.21 0.56
105 124 8 62 0.23 0.54
106 166 10 61 0.26 0.52
107 111 4 41 0.24 0.54
108 129 1 48 0.19 0.59
109 119 5 59 0.18 0.62
110 149 5 98 0.23 0.58
111 104 1 81 0.16 0.62
112 126 1 104 0.20 0.67
113 139 3 112 0.23 0.65
114 159 2 136 0.20 0.69
115 140 0 110 0.23 0.67
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CHAPTER III

A Bayesian Nonparametric Approach to

Estimating Group Dynamics in Roll Call Scaling

3.1 Introduction

Studies of legislative behavior focus upon the relationship between legislative pref-

erences, institutional structure, and legislative outcomes. Spatial models are a fre-

quently used tool for studying these relationships. In a spatial model of voting bodies,

policies are represented geometrically and votes occur as a function of individual leg-

islators’ ideal points. An ideal point represents a legislator’s most preferred policy

outcome and competing policies are judged based upon their distances from her most

preferred policy. Under the assumption of utility-maximizing, rational legislators, the

spatial model provides a consistent method for researchers to understand how ideal

points and policy lead to specific legislative outcomes.

A common task in the legislative behavior literature is to estimate the set of ideal

points for matrix of roll call data. In this data, the votes for each legislator on a variety

of different proposals are recorded. Then, a scaling procedure is used to determine

the ideal points for each legislator (Poole and Rosenthal, 1997; Clinton et al., 2004).

Scaling procedures typically seek to represent each policy votes on in the roll call set

in a low-dimensional Euclidian space. In turn, this allows estimation of ideal points
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in the same Euclidian space. Thus, the scaling procedure admits a consistent space

in which all votes within the roll call set can be represented. Scaling roll call votes

in this way implies that there exists a single policy space in which represents all roll

call votes within the analyzed roll call set.

The policy space uncovered by scaling methods encompasses the various complexities

of the legislator voting behaviors. While the ideal points, themselves, are generally

of interest, the uncovered policy space is also substantively interesting. For example,

McCarty et al. (2016) utilize ideal points estimated using NOMINATE methodology

(Poole and Rosenthal, 1984) and the corresponding policy space to show increased

polarization in elite voting over time. This result (and many others like it) relies on

the assumption that meaningful parts of the policy space exist only in one dimension.

This low-dimensionality conjecture is a key part of numerous theories relating to

changes in Congress over time and is key to many other theories which utilize ideal

point estimates.

McCarty et al. (2016) argue that there are between one and two dimensions in most

session of Congress. The first dimension projects legislators’ votes to a “liberal-

conservative” dimension which corresponds mostly to economic issues. The second

dimension, if needed, corresponds to social issues of the time, typically questions

related to race. Over time, NOMINATE shows that the need for a second dimension

has disappeared and most roll call voting behavior can be described by the liberal-

conservative dimension. The single dimension argument has been the basis for many

formal models and empirical findings about Congress (Aldrich and Battista, 2002;

Bafumi and Herron, 2010; Binder, 1999; Cameron, 2000; Cox and McCubbins, 2005;

Jessee, 2009, 2010; Krehbiel, 1992). However, many of these results are incredibly

sensitive to changes in this assumption; if the dimensionality of the congressional

vote choice model is any value greater than one, then median voter theorem no longer
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holds and the results no longer hold (Kramer, 1973). Thus, strong evidence for the

one-dimensional model should be in place.

Along with concerns about the dimensionality of the policy space, there has been

recent research that examines the notion of independence that is required for roll

call scaling models to make estimates. In particular, there are questions about the

role of groups within the data. A base assumption that must be made for proce-

dures like NOMINATE is that the errors associated with each individual vote are

independent and identically distributed conditional on the ideal point. While roll call

scaling techniques are attempting to decompose dependence among the votes to find

ideal points, dependence among errors is still a potential problem. This problem is

discussed in depth by Spirling and Quinn (2010), showing that there is cause to be

concerned about correlated errors in parliamentary voting in the U.K. This problem

is mostly due to party incentives and can cause dependence among the votes that is

not accounted for in the standard spatial model. Spirling and Quinn (2010) utilize

an infinite mixture model approach which models the policy space as a number of

latent clusters, but forgo the standard ideal point interpretation which is often used

in studies of U.S. legislatures.

Continuous measurements of ideal points are key to numerous studies of the U.S.

Congress, particularly those related to party control and party effects in the legislative

chambers. Following Krehbiel (1992) and Krehbiel (2010), understanding the effects

of party membership and the role that parties play in voting became an important

endeavor in legislative studies. Through careful qualitative accounts and empirical

studies, theories of party control emerged and posited that members of Congress

have incentives to vote with their party and the groups assess situations where strong

control over members is needed (Aldrich and Rohde, 2000; Aldrich, 1995; Cox and

McCubbins, 2007). These studies and many that followed used NOMINATE scores to
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empirically test these points. NOMINATE scores were also used to show that parties

do not have much influence over the voters of their members (Cox and Poole, 2002).

These opposite findings raise causes for concern when using NOMINATE scores to

test theories of party effects.

The main problem that arises when using NOMINATE scores and other roll call scal-

ing techniques to test theories of party control is that, a priori, groups are assumed

to be orthogonal noise. These stimation procedure require that errors are assumed

to be independent and identically distributed across both individuals and bills, con-

ditional on the uncovered latent variables. Given that there appears to be grouping

that arises according to party membership in these latent scores, the possibility that

group effects exist should, at least, be considered a possibility when estimating the

model. Thus, flexible models that allow for less restrictive assumptions are needed in

order to better test theories of voting in Congress.

Using the clustering approach proposed by Spirling and Quinn (2010) as a starting

point, I propose a new model which allows for both individual ideal points and group

ideal points and membership to be measured. This model, Clustered Beta Process

IRT (C-BPIRT) utilizes a combination of beta process priors on the number of di-

mensions for the uncovered ideal point space (Knowles and Ghahramani, 2011) and

Dirichlet process priors (Ferguson, 1973) on group membership within the set of roll

call votes. This model flexibly estimates continuous level ideal points for each in-

dividual voter with unknown dimensionality while also uncovering a set of discrete

groupings within the data and estimating the group effect on voting. This model uses

Bayesian nonparametric approaches to let the data dictate which groups and dimen-

sions are needed to best model the voting behavior of members of Congress. By not

constraining the model to fit a rigid set of assumptions, the data dictates which po-

tential mechanisms of vote behavior are important and estimates the corresponding

measures.
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3.2 A Model for Roll Call Analysis

For a legislature, assume there are N voting members that cast P votes over the course

of time analyzed. For any given vote j ∈ (1, P ), legislator i ∈ (1, N) must choose

between two alternatives: cast a “Yea” vote for the proposed motion (ϑj ∈ RK) or

cast a “Nay” vote for the proposed motion (ϕj ∈ RK). Behavior in this legislature

is assumed to be describable in a K-dimensional policy space - all votes that are made

by legislator i can be described by the K-dimensional point locations of ϑj and ϕj

within the space and a K-dimensional ideal point, ωi, which encapsulates the policy

preferences of legislator i.

A legislator must choose whether to vote for ϑj or ϕj. Using a utility maximization

model that assumes quadratic loss in distance from her ideal point, assume that she

chooses the alternative which grants the highest utility:

Ui(ϑj) = −‖ωi − ϑj‖2 + ηij

Ui(ϕj) = −‖ωi −ϕj‖2 + νij

(3.1)

where ηij and νij are stochastic elements of the utility functions. This model is

completely specified if a known structure is placed on ηij and νi,j (Heckman and

Snyder Jr, 1996; Poole and Rosenthal, 1997; Clinton et al., 2004).

Let Y be a matrix of roll call votes and yi,j be the vote choice that legislator i makes

on proposal j : yij = 1 if legislator i votes “Yea” on vote j and yij = 0 if she casts a

“Nay” vote. Given the model construction, the probability that legislator i votes for

ϑj can represented as:

P (yij = 1) = F (λ′jωi − αj) (3.2)

where F (·) is the CDF associated with the chosen error structure, αj =
ϑ′jϑj−ϕ′jϕj

σ2
j

,

and λj =
2(ϑj−ϕj)

σ2
j

.

93



This construction admits a corresponding statistical model that allows for estimation

of the structural parameters α and Λ and the ideal points, Ω. Assuming the errors

are independent and identically distributed, a likelihood function can be derived:

L(α,Λ,Ω|Y ) =
N∏
i=1

P∏
j=1

F (λ′jωi − αj)yij ×
(
1− F (λ′jωi − αj)

)1−yij (3.3)

Bayesian implementations of this model place priors on all of the structural param-

eters and estimation proceeds using Markov Chain Monte Carlo methods (Clinton

et al., 2004). With minor changes, this model is equivalent to the NOMINATE pro-

cedure (Poole and Rosenthal, 1997).

McAlister (2018) derives a similar model that allows for appropriate estimation of

the dimensionality of the resulting ideal point space. Unlike previous approaches

that require post-hoc Scree tests of the number of dimensions (Cattell, 1966), often

erroneously leading to conclusions that one dimension is appropriate for describing

the policy preferences of members of the U.S. Congress, a Bayesian nonparametric

approach is used that places a prior on the number of dimensions in the model. Using

the Indian Buffet Process prior for the number of dimensions needed to represent the

ideal point space, a slightly altered formulation is proposed:

P (yi,j = 1) = F ((rj � λj)′ωi −αj) (3.4)

where rj is a binary vector that takes a value of zero if bill j does not influence a

dimension and a one otherwise. This specification induces a spike-and-slab prior on

the bill loadings and the infinite nature of the priors allows for estimation of a sparse

set of dimensions. Figure 3.1 shows a graphical representation of the beta process

IRT model.

The main workhorse of the BPIRT model is the Indian Buffet Process, which places
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FIGURE 3.1. Graphical Representation of Beta Process IRT Model
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a prior on the number of dimensions needed to best explain the latent ideal point

space (Ghahramani and Griffiths, 2006; Paisley and Carin, 2009). The Indian Buf-

fet Process is a version of a stochastic Beta process that places a prior on binary

matrices. This approach allows for each bill-dimension pair to be explicitly tested

against the hypothesis of no effect; a test that tells whether the collection of votes on

bill j provides any information about the location of the ideal point on dimension k.

The dimensionality of the set of ideal points is a substantively meaningful variable

(McCarty et al., 2016) and proper estimation is a meaningful task (Aldrich et al.,

2014). For these reasons, this specification of the ideal point model will serve as a

starting point for the model derived in this paper.

3.3 A Model for Roll Call Analysis with Group Influences

Under a model with group influence, legislator i must choose between ϑj and ϕj,

as before. She uses a utility maximization model that assumes quadratic loss in

distance from her ideal point to choose the best alternative. However, unlike the

previous model, assume that she belongs to a group, g ∈ (1, ...G) that influences

her vote choice.1 Members of g share common policy goals, policy preferences, and

1Throughout this paper, let gi refer to the group with which voter i is associated. Each voter is
associated with one, an only one, group. This is a strict assumption, but one that generally holds
in U.S. legislatures (Aldrich, 1995).
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leadership that rewards loyalty to the group as well as individual policy and career

goals. As such, g can be viewed as a set of legislative actors that have multiple

influences driving vote choice. Like individual actors, it is assumed that groups have

an ideal point, τg, that encapsulates its policy preferences in a K-dimensional policy

space. Each actor also has an individual ideal point, ξi. Some convex combination

of these two ideal points makes up the observed ideal point, ωi = βiτgi + (1− βi)ξi,

where βi is a mixing component between zero and one that dictates how heavily i’s

ideal point leverages the group ideal point. Formally, this implies that the new utility

functions are:

Ui(ϑj) = −‖βiτgi + (1− βi)ξi − ϑj‖2 + ηij

Ui(ϕj) = −‖βiτgi + (1− βi)ξi −ϕj‖2 + νij

(3.5)

where ηi,j and νi,j are stochastic elements of the utility functions.

As before, these equations can be rearranged to give the standard IRT formulation:

P (yi,j = 1) = Φ−1((rj � λj)′(βiτgi + (1− βi)ξi)−αj) (3.6)

where Φ−1 is the inverse normal CDF.2 This formulation can also be expressed in a

more familiar regression-like form:3

P (yi,j = 1) =

∞∫
0

N (xi,j ; (rj � λj)′(βiτgi + (1− βi)ξi)−αj, 1)dxi,j

= P ((rj � λj)′(βiτgi + (1− βi)ξi)−αj + εi,j > 0) ; εi,j ∼ N (0, 1)

(3.7)

where the loadings, Λ and α, can be seen as the regression coefficients and the K-

dimensional ideal points, ωi = βiτgi + (1− βi)ξi, as the observed data.

2Throughout this paper, probit link functions are used to link the binary outcomes to the data
generating function. The formal model and following empirical procedures can be altered to use the
logistic link function. This leads to a generally similar formal model and empirical procedure. For
more information, see Carroll et al. (2009); Goplerud (2019).

3N (x ; µ, σ2) is the normal density of x given mean µ and variance σ2.
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Assuming εi,j is independent across all observations and items, a joint likelihood over

the data can be specified:

L(Y ) =
N∏
i=1

P∏
j=1

P ((rj � λj)′(βiτgi + (1− βi)ξi)−αj + εi,j > 0)yi,j

+P ((rj � λj)′(βiτgi + (1− βi)ξi)−αj + εi,j < 0)1−yi,j

(3.8)

The standard roll call scaling model can be seen as a special case of this model;

specifically, assuming that ωi = ξi:

L(Y ) =
N∏
i=1

P∏
j=1

P ((rj � λj)′ξi −αj + εi,j > 0)yi,j

+P ((rj � λj)′ξi −αj + εi,j < 0)1−yi,j

(3.9)

meaning that each ideal point is only made up of an individual component.

This points to a key question - what happens if only individual components are

estimated when a group component to the ideal point truly exists? The answer

depends wholly on the relationship of τgi and ξi. Omitted variable bias is a well-

known phenomenon in regression analysis and establishes that a variable that is left

out of the regression specification that is correlated with one of the included regressors

leads to biased estimates of the coefficients. This identity is a key result that has led to

an entire body of work on detecting and correcting for missing correlates in regression

analyses.4

In the roll call scaling setting, similar results are expected. Significant work has shown

that parties and other legislative groups influence roll call vote outcomes (Krehbiel,

1992; Krehbiel et al., 2005; Cox and Poole, 2002; Aldrich, 1995; Aldrich et al., 2014).

Under the grouped model of roll call scaling, this work expresses doubt that τgi is

4See Ferrari (2020) for a very thorough discussion of this problem and solutions in the regression
context.
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independent of ξi. This can manifest in the estimates of the structural parameters

in several ways. Formally, assume that there is a meaningful effect from a common

group, but βi = 0 ∀ i ∈ (1, ..., N). For any legislator where βi 6= 0:

P (yi,j = 1) = P ((rj�λj)′ξi)−αj + εi,j > 0) ; εi,j ∼ N (0, 1)− (rj�λj)′βiτgi (3.10)

If εi,j is treated as standard normal idiosyncratic noise, the residual left by τgi must

go somewhere.

A first problem with this misspecification is that errors can be pushed to the ideal

point estimates, themselves. Since the model assumes that ideal points are condi-

tionally independent given all other parameters, these estimates will take on some of

the residuals. In the theoretically most likely scenario that τgi and ξi are positively

correlated, uncertainty will be underestimated and the ideal points will be biased

away from zero. This result is important since a large body of work relies on ideal

point estimates for the U.S. Congress to study polarization (McCarty et al., 2016;

Tausanovitch and Warshaw, 2017; Fiorina et al., 2006). If the ideal points estimated

in this way are biased away from zero, then estimates of polarization are overstated.

There is also evidence that misspecification of group effects in the ideal point model

can lead to poor inference about the number of dimensions needed to model the ideal

point space. Aldrich et al. (2014) show that in simulations of ideal point spaces with

a known number of policy dimensions, the standard roll call scaling model tends to

underestimate the dimensionality of the space when there are strong group effects.

This problem can be mitigated by scaling any known groups separately. While the

American legislative context may appear to lend itself to prior specification of voting

groups, this assumption might be too strong. In order to appropriately estimate di-

mensionality, systematic correlations among votes due to groups should be estimated,

then taken into account.
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Beyond problems of dependence in errors, roll call scaling using the standard model

also suffers from attempting to place a discrete latent variable on a continuous scale.

Theories of the role of groups in the U.S. Congress posit that there is a tiered approach

to vote decision making - first members of the party consult with the party desire

then decide whether or not they should depart from the party wishes (Aldrich and

Rohde, 2000; Rohde, 2010; Cox and McCubbins, 2007). While there are certainly

cases where this model is not appropriate, there is evidence that party plays a role

in the vote decision. The first dimension of the NOMINATE model is correctly

interpreted as party loyalty (Lee, 2009), and is often made up of distinctive clusters

of ideal points. These clusters are interpreted as parties and the distances are used

to make statements related to the behavior of parties in Congress (McCarty et al.,

2016). However, this usage of ideal points is not supported by the theory of the

model - if party is a cause of votes, then party should be accounted for in the ideal

point estimates. However, party is a discrete covariate. Thus, the continuous model

is unequipped to properly estimate these effects. The effect of mapping a discrete

latent variable to a continuous manifold is explored by Aldrich et al. (2014) and is

shown t0 lead to an understatement of the dimensionality of the ideal point space.

The party effect model derived above provides an approach to properly estimating

the underlying group latent variables.

This theoretical exercise demonstrates the importance of ensuring that potential

group effects are taken into account when modeling roll call outcomes. However,

there are two significant challenges in estimating and interpreting the group model.

First, it is too strong of an assumption to explicitly specify the number of groups and

their internal structure in a roll call model. While there are theories of voting in leg-

islative chambers that posit that various groupings matter, there are corresponding

theories which say the opposite. For this reason, it is important that any estimation

procedure that attempts to model group effects is flexible and allows for the possibil-
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ity that group effects may not exist - specifying group effects when group effects do

not exist leads to inefficient estimations of the ideal points, which lead to inefficient

estimates of the other structural parameters in the roll call model. Similarly, relying

on party labels alone does not sufficiently or flexibly explore group effects.

Second, given the problems of rotational invariance present in estimates of the struc-

tural parameters of the IRT model, the estimates for ξi, τgi , and βi are not uniquely

identifiable - ξi has infinite solutions, even if ωi would be uniquely identified. At-

tempting to estimate two components of an additive effect leads to more problems

and requires more stringent constraints in order to identify a unique solution. For

these reasons, it is worthwhile to derive an estimation strategy for the group effects

model that allows for an infinitely exchangeable prior specification; rather than es-

timating ξi and τgi separately, the sum of the two is estimated, ωi = ξi + τgi , such

that εi,j|ωi, gi ⊥ εi′,j|ω′i, gi′ ∀ j ∈ (1, ..., P ) , i 6= i′.

3.4 Clustered Beta Process IRT

A key assumption for the latent variable models previously discussed is that each of

the N observations are independently and identically distributed. Each of the i random

vectors associated with the observed data are modeled separately and assumed to

constitute a joint likelihood:

P (Y |−) =
N∏
i=1

P (yi|−) (3.11)

Put another way, each observation is assumed to be exchangeable conditional on the

structural parameters. In the context of ideal point estimation, the exchangeability

assumption arises in the estimation of the latent variables, Ω. A priori, ωi is assumed

to follow:

ωi ∼ NK(0, IK) ∀ i ∈ (1, ..., N) (3.12)
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where IK is a K × K identity matrix. This implies that each observation has the

same prior on the ideal point regardless of group and directly leads to the i.i.d. result

on the errors.

As pointed out previously, there is reason to doubt this assumption. Previous work

on roll call scaling in a variety of legislatures has sought to address this problem.

Ramey (2016), Aldrich et al. (2014), and Bernhard and Sulkin (2018), just to name a

few pieces, have sought to perform a combination of within and between party scaling

to account for the group incentives present in roll call voting. In each of these cases,

however, scaling was done as an iterative procedure: ideal points were uncovered for

each party and then mapped back to the latent space using ex-post assumptions.

This approach is not ideal for a number of reasons - 1) strong prior theory is used to

say that parties are the only groups that matter, 2) the link back to a common space

assumes that strict separation exists between the parties on all issue dimensions, 3)

the dimensionality of the policy space was assumed to be known, a priori, or was

tested using ad-hoc post-processing approaches. Similar, but distinct, a hierarchical

IRT formulation has been explored in recent years (Rai and Daumé, 2009; Gruhl

et al., 2013), but the applied literature has given very little attention to this class of

models. While hierarchical IRT addresses the issue of combining the groups into a

common latent space, it still ignores that many applied situations have data where

groups are unknown.

An alternative scaling approach is presented by Spirling and Quinn (2010). Rather

than seeking to extract continuous manifolds, Spirling and Quinn (2010) seek to find

latent clusters within binary roll call votes from the U.K. parliament. This approach

addresses many of the issues presented by avoiding explicit scaling and assuming

that members are wholly loyal to a single group. This allows for the estimation of

beta-Bernoulli clusters from the binary data. However, this comes at the cost of con-

tinuous ideal points in a reduced dimensional setting - clusters are still associated with
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a P -dimensional mean and covariance. Since one of the goals of ideal point scaling

is to project high dimensional roll call data into a lower-dimensional substantively

meaningful space, Similarly, this model sacrifices specification of individual depar-

tures from the overall group. While this is certainly appropriate for the strong party

systems present in the U.K. parliament, there has been significant work in the U.S.

legislature that shows that individual legislators mix individual and party incentives

when making vote choices (Sulkin, 2005; Lee, 2009).

3.4.1 Uncovering Unknown Latent Groups

I seek to derive an approach to estimating groups in the ideal point model that places

each of the i legislators in one of G groups:

P (yi) =

∞∫
0

∫
Θ

∫
ωi

∫
G

Np(xi ; (Λ�R)ωi−α,IP )P (ωi|gi)P (gi|g∗i )dGdωidΘdxi (3.13)

where gi is a categorical variable with probability densities corresponding to the

probability that observation i is part of cluster g ∈ (1, ..., G), g∗i and Θ is the collection

of all other parameters not explicitly written above.

In the case where gi is unknown, but the number of clusters, |G|, is known, then a

prior can be placed on gi such that:

P (gi) ∼ Cat(ζ) (3.14)

where Cat(ζ) corresponds to a |G|-dimensional categorical distribution. ζ is a set of

|G| probabilities that sums to 1.

However, the case of interest in this context is one where the number of clusters

within the data is unknown. Thus, a standard categorical distribution is inappro-

priate. For this situation, a Bayesian nonparametric approach will be used and gi
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assumed to follow a Dirichlet process (Ferguson, 1973). The Dirichlet process can be

seen as a prior over distributions. Each g ∈ (1, ..., G) constitutes a cluster with an

associated distribution. The Dirichlet process prior admits a probability density over

the membership for observation i. In other words:

P (gi) ∼ DP (β,H)

where β is a mixing parameter and H is a base measure. Given this choice of prior, the

posterior distribution, P (G|Θ) can be defined. Due to the conjugacy of the Dirichlet

prior to the categorical distribution P (Θ|G), the resulting posterior follows a Dirichlet

distribution.

Given the form of the posterior distribution, we know the joint probability that G =

G∗ for some permutation of group labels. However, this is not the quantity of interest.

Rather, the inferential task asks to find P (gi|Θ). Given that the Dirichlet process is

infinitely exchangeable, a predictive distribution can be defined and used to examine

the individual probability distributions:

P (gi) =
1

β +N

(
βH +

∑
j 6=i

δgj

)
(3.15)

where H is the base measure, β is the DP hyperparameter, and δgj = 1 if observation

j is in group g. In words, this says that the probability that i ∈ g is proportional

to the number of other observations that are already in group g. There is also some

probability that i belongs in its own cluster, which is quantified by the base measure

H and the DP hyperparameter, only.

Using this structure, a process can be defined for the case of interest- a case where

the number of groups is unknown a priori. By driving G→∞, a process can defined

where gi is modeled as an infinite mixture. In words, this means that there are infinite
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possible cluster components within the data. In order for the model to be tractable,

a finite number of these components should be used within the data. Thus, of the

G = ∞ possible clusters that gi can join, only G+ have a positive probability of

occurrence. This process constitutes the Chinese Restaurant Process (Rasmussen,

2000; Pitman et al., 2002; Blackwell and MacQueen, 1973; Escobar and West, 1995).

Under this prior, each observation is assumed to take on a currently defined cluster

with probability proportional to the number of other observations that are currently

in that cluster and take a new cluster assignment with probability proportional to β.

This prior is sparsity inducing as the expected number of clusters grows with N :

E[G+] ≈ O(log(N)) (3.16)

This implies that the complexity of the inferred mixture can only be as complex as

the sample size allows. This is desirable as it prevents against overfitting.

As with all mixture models, the cluster assignments achieved using the CRP are

unique up to a permutation of labels; the model is identified, but the individual

cluster assignments are not. However, the groupings are identifiable. For this reason,

inference performs not on the individual cluster labels, themselves, but the probability

that gi = gj∀i 6= j.

3.4.2 Latent Groups within Ideal Point Estimation

The key quantity of interest in this model is P (gi|g−i). Using Bayes rule, this quantity

can be defined as:

P (gi = g|g−i) ∝
∫
ωi

∫
g

Np(xi ; (Λ�R)ωi −α,IP )P (ωi|gi = g)dωidg (3.17)
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Note that finding gi amounts to evaluating the probability of legislator i’s roll call

record given the model for each of the groups currently active under the CRP and

integrating over the ideal point. Without further specification of the distributional

structure of ωi|gi, this model is intractable.

For the purposes of ideal point analysis, multivariate normal clusters are assumed.

For each g ∈ G, the corresponding cluster is assumed to follow a K+ dimensional

multivariate normal cluster with mean vector µg and diagonal covariance matrix Σg,

where K+ is dictated by the beta process prior on the loadings matrix (McAlister,

2018). Standard conjugate priors are assumed on these parameters. Plugging this

into (3.17), we can redefine the model as:

P (gi = g|g−i) ∝
∫
ωi

∫
µg

∫
Σg

Np(xi ; (Λ�R)ωi −α,IP )

NK+(ωi;µg,Σg)NK+(µg;µ0, (κ0Σg)
−1)

K+∏
k=1

IG(σg,k;α0, β0)dΣgdµgdωi

(3.18)

This quantity encapsulates the probability that i belongs in cluster g given all other

observations that are currently in g.

This integral can be simplified by recognizing that the latter part of the integral

is the posterior predictive distribution for the conjugate multivariate normal model.

Simplifying gives:

P (gi = g|g−i) ∝
∫
ωi

∫
µg

∫
Σg

Np(xi ; (Λ�R)ωi −α,IP )TK+;2αg

(
µg,

βg(κg + 1)

αgκg

)
dωi

(3.19)

where TK;d(µ,Σ) is the K dimensional multivariate t-distribution with location µ,

scale matrix Σ, and d degrees of freedom. Let ω−i,g be the values of the latent
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variable for all observations in cluster g not including observation i and ng be the

number of observations currently in g excluding observation i. Define:

ω̄−i,g =

∑
ω−i,g
ng

µg =
κ0µ0 + ngω̄−i,g

κ0 + ng

κg = κ0 + ng

αg = α0 +
ng
2

βg = β0 +
1

2

ng∑
j=1

(ω−i,g,j − ω̄−i,g)2 +
κ0ng(ω̄−i,g − µ0)2

2(κ0 + ng)

Unfortunately, this integral has no analytical solution; numerical methods must be

used. An accurate approach utilizes a Laplace approximation to the multivariate

t-distribution. Using the quadrature approach, define the approximate normal distri-

bution as:

TK+,2αg

(
ωi ; µg,

βg(κg + 1)

αgκg

)
≈ NK+

(
ωi;µg,

βg(κg + 1)(
αg + 1

2

)
κg

)
(3.20)

This allows the integral to be solved analytically:

P (gi = g|g−i) ∝
∫
ωi

∫
µg

∫
Σg

Np(xi ; (Λ�R)ωi−α,IP )TK+;2αg

(
µg,

βg(κg + 1)

αgκg

)
dωi ≈ exp(q∗−q)

(3.21)

where

Ξg =
βg(κg + 1)(
αg + 1

2

)
κg

A = −1

2
(Λ′Λ + Ξ−1

g )

b = (yi + α)′Λ + µ′gΞ
−1
g
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q∗ = −1

2
((yi + α)′(yi + α) + p log(2π) + µ′gΞ

−1
g µg +K+ log(2π) + log(det(Ξg)))

q =
1

4
bA−1b′ − K+

2
log(2π)− 1

2
log

(
det(−1

2
A−1)

)

Given the choice to use a CRP prior on gi, a base distribution must also be specified

from which new clusters are proposed. In the context of factor analysis, it makes

sense to define the base distribution:

H ∼ NK+(0,IK+) (3.22)

which is equivalent to the standard prior used in factor analysis procedures. This

allows the probability that gi belongs in a new cluster, gnew, to be defined as:

P (gi = gnew) ∝
∞∫

−∞

Np(xi ; (Λ�R)ωi −α,IP )Nk(ωi; 0,IK+)dωi = exp(q̇∗ − q̇)

(3.23)

where

Ȧ = −1

2
(Λ′Λ + Ik)

ḃ = (yi + α)′Λ

q̇∗ = −1

2
((yi + α)′(yi + α) + p log(2π) +K+ log(2π))

q̇ =
1

4
ḃȦ−1ḃ′ − K+

2
log(2π)− 1

2
log(det(−1

2
Ȧ−1))

Given these quantities, we can define the conditional posterior distribution for gi.

Due to the conjugacy of the DP prior and the categorical likelihood, the posterior
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will follow a Dirichlet distribution:

P (gi|−) ∼ Dirichlet(g∗i )

g∗g,i = nqP (gi = g|g−i) ∀ g ∈ (1, ..., G+)

g∗g+1,i = βP (gi = gnew)

(3.24)

The probability that gi belongs to group g is a weighted average of the number of

other observations in g and the probability that gi is in the same cluster as the other

like observations. To assign legislator i to a single group, a standard Dirichlet draw

is taken from g∗i .

The differences between this approach and the standard continuous latent variable

model arise in how each latent variable is taken into account. In the standard proce-

dure, each ωi is assumed to be independent of the other observations. In the clustered

case, each ωi is assumed to belong to a cluster and information about the location

of the latent variable is shared between observations in the same cluster. In other

words, latent variables are essentially estimated in groups rather than individually.

Using the exchangeability properties of the Dirichlet process, this addresses the ini-

tial exchangeability problem by partitioning the set of observations into conditionally

exchangeable groups - observations are assumed to be exchangeable within the same

cluster. This allows group properties to propagate through the latent variable rather

than emerging as its own set of orthogonal latent manifolds.

This property can be expressed in another way - the latent variable associated with

each individual is a function of both group and individual dynamics. Given the con-

struction of the latent variable, there are two influences on the posterior distribution

of each idea point: a group effect and an individual effect. Here, the group effect can

be seen as a shared prior on the latent variable that is common across members of

the same group. Then, the individual effect can be seen as a noise component that
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is separate from the group effect. Using the Dirichlet process approach allows the

individual effect to be modeled as conditionally independent from the group effect,

given the specification of the model. While it is not possible to directly estimate these

two effects due to the rotational invariance that is inherent in latent variable models,

post-processing procedures can be used to estimate the two effects given a specific

rotation of the latent structural parameters.

A final consideration for the latent variable generating process is to examine the CRP

hyperparameter, β. This parameter controls how likely it is for each observation to

dictate a new cluster. When β is small, the a priori likelihood that an observation in

cluster g finds a new unique cluster decreases. On the other hand, when β is large,

clusters will have lower overall membership and be less “stable” when estimated.

Finding the appropriate value for β is key for estimation. Escobar and West (1995)

shows that β follows a gamma distribution and a conditional posterior can be defined

as:

P (β|−) ∼ Gamma(1 + C+, 1 + γclog(N)) (3.25)

where C+ is the number of active clusters and γc is Euler’s constant.

3.4.3 Estimation of the C-BPIRT Model for Binary Outcomes

Using the theory above, a roll call scaling procedure utilizing sparsity inducing beta

process priors for measuring the dimensionality of the space and Dirichlet process

priors on the latent variables is derived. Let X be a continuous latent mapping of

the observed roll call votes Y such that:

xij ∼


T N−∞,0((rj � λj)ωi − αj, 1) if yij = 0

T N 0,∞((rj � λj)ωi − αj, 1) if yij = 1

N ((rj � λj)ωi − αj, 1) if yij is missing

(3.26)
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FIGURE 3.2. Graphical Representation of C-BPIRT
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where T N l,u(µ, σ
2) is the truncated normal distribution truncated between l and u.

Placing the IBP prior on the loadings as in McAlister (2018), a Dirichlet process prior

on Ω, and standard conjugate priors on the other parameters completes the full model

specification. Figure 3.2 shows a graphical representation of the C-BPIRT model.5

Due to the conjugacy between the Dirichlet Process prior/ideal points and Indian

Buffet Process prior/factor loadings, Gibbs sampling can be used to estimate the

joint posterior of all parameters in the C-BPIRT model. Gibbs sampling steps are

given in Appendix A.

This model has many of the same features as the basic factor analysis model. The

manifest variables are decomposed into the loadings matrix, Λ, and the latent vari-

5In contrast to McAlister (2018), this paper uses a slightly modified finite variant of the Indian
Buffet Process. Details on this approach can be found in Paisley and Carin (2009). The major dif-
ference between these approaches regards the posterior over R. Rather than defining a full posterior
over R, a lower bound is found on K+ and the maximum a posteriori arrangement of zeros and ones
in R is found. This approach compares favorably to the full IBP specification and there is little
reason to believe that it produces substantively different results (Doshi et al., 2009).
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ables, Ω. The dimensions of the latent variables are assumed to be orthogonal.

Marginally, P (xi + α) ∼ NK+(0,Λ′Λ + IK). The new additions, however, pro-

vide interesting properties for the factor analysis procedure. First, the addition of

the infinite binary matrix, R, allows learning about the true number of latent dimen-

sions within the manifest data. R represents whether feature k ∈ (1, ...,∞) is a

meaningful summary of the data. Similarly, the CRP prior on Ω sorts the latent vari-

ables into meaningful groups, allowing simultaneous estimation of latent groupings

with corresponding location and spread information. In contrast to simply clustering

the data, this model grants the desirable properties of knowing latent groups while

also having the same continuous measure properties that make factor analysis an

attractive approach to estimating a latent space.

A problem that is common to all ideal point specification is that the estimates for

the structural parameters are not uniquely identified without further constraints -

identical estimates of Ω can be achieved by multiplying Λ by an orthonormal matrix,

M , such that MM ′ = IP . Following a common convention to ensure identifiability,

many implementations of Bayesian factor analysis assume that Λ has a full-rank lower

triangular structure with positive elements on the diagonal (Geweke and Zhou, 1996).

The spirit of this recommendation relies on the notion that structural zeroes can be

placed in the loadings matrix in accordance with theory. However, this is rarely

achievable as the theory behind a latent space, especially those with more than one

dimension, is difficult to put in terms of the loadings matrix. Similarly, the resulting

prior on Λ is no longer exchangeable. When these constraints are placed in an ad-hoc

manner, they can lead to significant multimodalities in the resulting posterior.

C-BPIRT places zero constraints by virtue of the Indian Buffet Process prior on the

loadings matrix. The properties of the IBP prior lead to a sparse solution for the

loadings matrix that requires that the number of non-zero elements for each dimen-

sion increases as each dimension is added. While this prior does not guarantee a
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uniquely identifiable rotation of the latent space, most applications of C-BPIRT re-

sult in unimodal posteriors for the loadings and ideal points, indicating that enough

zeros have been placed in the loadings matrix to uniquely identify a rotation. As

always, it is prudent to check the resulting posteriors for evidence of rotational re-

flections. Should these reflections arise, post-processing methods presented by Gruhl

et al. (2013) can be used.

A key quantity of interest using this model is the set of group assignments, gi ∈

(1, ..., G) ∀ (1, ..., N). As mentioned previously, inference on gi is difficult - when

estimated via MCMC, the model is only identifiable up to a permutation of the cluster

labels. From iteration to iteration in the Gibbs sampler, there is no guarantee that the

cluster labels are significant. However, the membership of the clusters is consistent.

Though there are numerous solutions to the label switching problem when the number

of clusters is known and fixed, the fact that the number of clusters is stochastic proves

problematic for these approaches. Thus, inference about group membership should

proceed examining the probability that two or more observations share the same

cluster. Using this information, many interesting techniques can be used to establish

cluster membership. An alternative method uses the cluster labels from the maximum

a posteriori iteration from the posterior Monte Carlo draws. While this approach loses

some of the information about posterior uncertainty around the cluster moments and

cluster membership, it allows for a simple sorting of observation into classes.

A final point is that the C-BPIRT model allows for estimation of a meaningful pos-

terior predictive interval on the ideal points given group membership. Specifically:

P (ωN+1|g∗N+1 = g ∈ G,Ω,G,µg,Σg) ∼ TK+,ng(ωN ; µ̂g; Σ̂g)P (ωN) (3.27)

Under the reasonable assumption that the prior on the new ideal point has an im-

proper uniform prior, the posterior predictive distribution on the new ideal point is
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simply a multivariate T distribution with location and scale equal to the mean of the

posterior distributions of the mean and variance of the group’s multivariate normal

cluster. Posterior predictive distributions are useful for examining new ideal points

and a common criticism of current roll call scaling methods is that new legislators

cannot be easily placed in the common space without strong prior assumptions about

their relative rankings compared to other legislators. Group membership, however, is

much easier to assign - new legislators are elected under a party label, so assigning

them to the group that is most commonly associated with that party would provide

reasonable predictions on their votes. Similarly, this approach can be used to think

of common group ideal points. Assuming that all members of a group share the same

underlying distribution over their ideal points, ideal points can be drawn from the

cluster distribution or all legislators in the group can be assumed to have a common

ideal point. Either choice can lead to interesting models that could not be achieved

using coll call scaling methods that assume independent and identically distributed

ideal points and errors.

3.5 Application to Roll Call Scaling in the U.S. Congress

I illustrate the benefits of C-BPIRT in two legislative voting settings. First, I explore

roll call voting in the 107th session (2001 - 2003) of the U.S. House. I use C-BPIRT

to uncover interesting group related voting, particularly regarding the Bipartisan

Campaign Reform Act of 2002. Second, I explore group dynamics in the 88th session

of the U.S. House (1963-1965). This session saw major civil rights and social welfare

reforms and is known, historically, as a session where parties splintered on these issues.

Each legislative setting explored features a situation where group dynamics beyond

party loyalty played a key role in dictating policy outcomes. Unlike standard roll call

scaling techniques that ignore these group dependencies, C-BPIRT allows for both

group and individual ideal point estimation and provides rich insight into the sets of

113



votes and individuals that shape legislation through non-party coalition behavior.

Roll call scaling using C-BPIRT uses the set of all roll call votes and U.S. Representa-

tives for each session. Votes that were unanimous or nearly unanimous were excluded

(i.e. less than five voters in the minority). Similarly, legislators that cast a “Yea” or

“Nay” vote in less than 75% of the total roll calls were excluded from the analysis.

For each session, two chains of the MCMC procedure were run with a healthy burnin

of 10,000 iterations and 10,000 Monte Carlo samples were taken from the posterior

distribution. Across all chains, there were no apparent issues of convergence.

3.5.1 107th U.S. Congress

I begin by exploring roll call voting behavior in the 107th session of the U.S. House.

This session began in 2001 and ended in 2003. During this time, members of the

U.S. Congress dealt with a variety of pressing issues regarding the September 11th

attacks and the resulting war on terror. These issues ranged from funding of the war

efforts, security on domestic soil, immigration reform, and budget reform to ensure

that the resulting economic depression did not interrupt vital government services.

Along with issues of national security, the U.S. Congress also addressed the numerous

financial scandals in previous years and sought to address the relatively unfettered

power large corporations had in donating money to political campaigns. These two

issue areas defined much of the within and between party conflict of this session.

Legislative actions taken in this session generally followed party lines. Democrats had

a slim majority of the seats in this session and Republicans often sought to draw a

number of more conservative Democrats across the aisle to pass more conservative

legislation. However, finance reform and issues related to counterterrorism and the

war effort created strong cleavages in both parties. Given their slim majority, however,

Democrats controlled much of the roll call agenda and most votes that went to the
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floor resulted in Democrats voting along the party line. Republicans, on the other

hand, were often split in roll call votes - regardless of them being needed to create

a winning coalition, Republicans showed splits in voting on issues of defense and

financial reform.

Even with these complications, current roll call scaling methods like NOMINATE and

Bayesian ideal point estimation show that the 107th U.S. House is mostly described

by a one-dimensional ideal point model with a second dimension needed only on

a few votes (Carroll et al., 2009; Clinton et al., 2004). Beyond the simple count

of dimensions, there does not appear to be a strong correlation between necessity

of the second dimension in NOMINATE and the topic of the roll call vote. While

this is supported through generic classification quality metrics, the interpretation of

the 107th U.S. House granted by NOMINATE ideal points does not align with the

multifaceted and group driven narrative which actually drove this session of Congress.

McAlister (2018) finds that one aspect of this misalignment comes from inappropriate

testing of dimensionality. While NOMINATE finds that the 107th U.S. House was

largely one dimensional, McAlister (2018) finds strong evidence that there are many

dimensions which lead to roll call outcomes. While the first dimension shown by

BPIRT correlates heavily with the first dimension of NOMINATE ideal points, six

other meaningful dimensions are uncovered by the beta process priors on the latent

space. These six dimensions show votes where intraparty disagreement in roll call

votes occurs and are largely related to the issue sets that are known to have created

variation in roll call voting within parties - budgetary issues and topics related to the

September 11th attacks.

The analysis using BPIRT still suffers from the assumption that all errors, even in

many dimensions, are independent and identically distributed after accounting for

the individual ideal points. While the new dimensions are certainly informative to
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FIGURE 3.3. Ideal point estimates from NOMINATE and C-BPIRT for the
107th U.S. House.
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complexity in the roll call votes, there is still evidence of correlated errors due to

shared party incentives. This can be seen most clearly in the estimates that make

up the first dimension of roll call voting as they appear to simply map a notion

of party loyalty (Lee, 2009) and shows a strong separation between parties. While

some literature argues that this is simply a feature of legislative preferences (Cox and

Poole, 2002; Krehbiel, 1992), modern literature on Congressional voting shows that

this feature of the first dimension is an artifact of group correlations (Aldrich et al.,

2014; Ramey, 2016). In an ideal scenario, groups would be mapped to a discrete

measure in the ideal point space and variations in voting beyond groups would be

mapped to the continuous latent space.
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C-BPIRT offers an alternative to NOMINATE and BPIRT that accounts for these

correlations and, theoretically, maps the party loyalty of a voter to a discrete measure.

In turn, this procedure creates conditionally exchangeable errors that are more in

line with the necessary independent and identically distributed assumption that is

baked into roll call scaling procedures. C-BPIRT also provides many useful pieces of

information about what group dynamics exist in the legislature and how they influence

roll call voting outcomes. Applying C-BPIRT to the 107th U.S. House and comparing

its results to those attained from NOMINATE and BPIRT should demonstrate how

accounting for group voting changes interpretations ideal point estimates and provides

new insights into legislative voting behavior.

Roll call scaling using C-BPIRT produces three substantively interesting sets of es-

timates: 1) multivariate T groupings in the ideal point space and the corresponding

means and covariances, 2) the number of dimensions and the votes that load on each

dimension, and 3) individual legislator ideal points. For the 107th U.S. House, this

information can be seen in Figure 3.3. C-BPIRT scaling on the 107th U.S. House re-

veals three distinct voting groups: Democrats, Republicans, and a set of 38 Moderate

Republicans. These voting groups strictly follow party lines with no crossover be-

tween parties. A map of U.S. House districts and the corresponding group uncovered

by C-BPIRT is shown in Figure 3.4. Figure 3.4 shows that the group of Moderate

Republicans is not a surprising finding; the members of the 107th U.S. house in this

group generally represent Republican districts in New England. Defined by more lib-

eral views on social issues and a commitment to social welfare programs, this group

of Republican representatives is well known in U.S. legislative history and has long

played the part of a pivotal group in determining landmark legislative outcomes (Lee,

2009; Poole and Rosenthal, 1984).

In contrast to NOMINATE’s 1-2 dimensional space and BPIRT’s 7 dimensional space,

C-BPIRT uncovers three dimensions. These dimensions generally correlate to three
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areas: an overall ideology dimension, similar to NOMINATE’s first dimension, a

dimension that includes votes on the budget and other financial issues, and a dimen-

sion related to votes on defense spending and counterterrorism in response to the 9/11

attacks. Figure 3.3 demonstrates the relationship between groups and uncovered di-

mensions and shows that dimensions emerge as a combination of two scenarios. First,

a dimension emerges when a distinct voting coalition needs to be modeled. The first

dimension corresponds to votes where the moderate Republican cluster votes with the

Republican cluster and against the Democrat cluster. On the other hand, the budget

dimension corresponds to votes where the Moderate Republicans coalesce with the

Democrats. The defense dimension shows the second scenario - dimensions emerge

when clustered voting does not seem to model voting outcomes. In other words,

the defense dimension includes a set of votes where assuming similar voting within

clusters provides a poor model of roll call voting outcomes.

In many ways, this behavior is in line with the party driven roll call scaling approaches

of Ramey (2016) and Aldrich et al. (2014) and the numerous theories of party orga-

nization in U.S. legislative voting (Aldrich, 1995; Aldrich and Rohde, 2000; Rohde,

2010). While NOMINATE and BPIRT scores assume that all individuals compute

the utility calculus for each vote independent of one another, C-BPIRT assumes that

there is some shared component to these utility computations. C-BPIRT leads to a

representation of the policy space uncovered by roll call scaling and ideal point esti-

mates that are more in line with modern conceptions of the many influences which

drive legislative voting.

A first important difference between the estimates of independent and identically

distributed ideal points and C-BPIRT is the structure of the first dimension. Unlike

NOMINATE and BPIRT, C-BPIRT estimate that not all votes load on the first

dimension; of the 645 roll call votes scaled in this session, only 438 load on the
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FIGURE 3.5. Comparison of first dimension ideal point estimates from NOM-
INATE, BPIRT, and C-BPIRT for the 107th U.S. House
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first dimension. This aspect of C-BPIRT’s ideal points can be attributed to the

grouped estimation. Since much of the party line voting is included in the estimates

of the discrete grouping measure, a vote only loads on a dimension when there is

additional variation that is unexplained solely by group voting. Put another way, the

first dimension attained from C-BPIRT models votes where the votes of Moderate

Republicans align with those from the Republican cluster and are opposite of those

in the Democrat cluster.

The effect of clustering can be seen in the shape and distribution of the first dimension

ideal points. Figure 3.5 shows the distribution of ideal points broken out by party
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label on the first dimension as estimated by NOMINATE, BPIRT, and C-BPIRT.

The first dimension of NOMINATE and BPIRT ideal points show a distinct division

between Republican and Democrat voting. C-BPIRT, on the other hand, shows more

crossover between the two parties. Looking at the bottom panel, it is clear that this

is due to C-BPIRT’s discovery that there exists a group of moderate Republicans.

This difference between the main Republican cluster and the Moderate Republicans

manifests in different ways across the models. The left panel of Figure 3.3 shows

NOMINATE scores colored by the group estimated by C-BPIRT and demonstrates

that the first dimension situates on votes that have party line voting while the second

dimension gets the disagreement within the Republican party. BPIRT behaves in a

similar way, but attributes these differences to multiple dimensions. C-BPIRT finds

that Moderate Republicans cluster votes similarly across many different votes and

ensures that their ideal points are close in all cases.

A key point is that breaking the ideal points into groups creates conditional exchange-

ability of errors and leads to better estimates of the structural parameters. While it

is difficult to show which scaling method produces the best estimates, the residuals

for each model can be examined to see if they better fit the independence of errors

assumption that underlies all of the scaling procedures. To accomplish this, I explore

239 roll call votes that C-BPIRT estimates are one-dimensional votes and use only

the first dimension of ideal points. I estimate the raw squared residuals for each indi-

vidual vote implied by the first dimension NOMINATE ideal points and the posterior

mean of the first dimension C-BPIRT ideal points.6

Figure 3.6 shows NOMINATE residuals compared to C-BPIRT residuals. Looking

at the average squared residual for all votes taken together, C-BPIRT and NOMI-

NATE perform similarly with C-BPIRT performing slightly better on votes where

6In this context, the raw squared residual is (yij−Φ−1((rj�λj)ωi−αj))
2. Results using deviance

residuals and studentized residuals yielded similar results.
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FIGURE 3.6. Comparison of squared residuals for 239 one dimensional votes
in the 107th U.S. House.
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NOMINATE struggles to accurately classify votes. A similar result is seen for the

Republican cluster. However, NOMINATE trades accuracy in the Moderate Repub-

lican cluster for better accuracy in the larger Democrat cluster; the residuals are not

independent of classification. C-BPIRT, however, corrects for this by allowing larger

residuals in the Democratic cluster and passing this accuracy to the Moderate Re-

publican cluster. In turn, this allows the residuals to uncorrelated with group labels

and lead to more reasonable ideal point arrangements.

A similar effect can be seen on the second dimension of the NOMINATE ideal points,

shown in Figure 3.3. The second dimension of NOMINATE correlates most heavily

with membership in the Moderate Republican cluster - lower scores on the second

dimension correlate with being a Moderate Republican. This implies that a vote that
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only used the second dimension would separate Democrats and Moderate Republicans

while splitting the main Republican cluster. However, this orientation is substantively

backwards. Members that are classified as Moderate Republicans in the 107th U.S.

House, such as Chris Shays (R,CT) and Judy Biggert (R,IL), were generally noted

for their more liberal positions on social policies and issues of financial reform. In

fact, much of the bipartisan legislation proposed in this session of the U.S. House

was sponsored by members within this cluster. Under a group interpretation of ideal

points, this would imply that there were some votes where a portion of Democrats

and Republicans cast the same vote while Moderate Republicans voted opposite the

Democrats and some portion of Republicans.

Examining the roll call record for this session reveals that this kind of voting never

happened. The closest that a specific roll call vote gets to this kind of coalition

occurs on a vote for an amendment to the Farm Bill and Rural Security Act of

2002 (Roll Call #364), where 35% of Democrats, 45% of Republicans, and 61%

of Moderate Republicans cast votes to approve the amendment. Aside from this

single vote, however, no other vote within this legislative session yielded a clear vote

where Republicans and Democrats coalesced against the preferences of the Moderate

Republicans. This sentiment is echoed by the dimensions uncovered by C-BPIRT - the

only meaningful coalitions were Republicans vs. Democrats and Democrats/Moderate

Republicans vs. Republicans. This result indicates that, on its own, the second

NOMINATE dimension has no meaningful interpretation and only serves as a pivot

to separate Moderate Republicans from Republicans on those votes which they voted

against the rest of the party.

C-BPIRT corrects for this result by ensuring that ideal points are meaningfully ar-

ranged in the ideal point space. One way to demonstrate this is to examine one

particularly important roll call vote in the 107th U.S. House. Following his 2000 Pres-

idential bid, John McCain led the U.S. Senate to pass a version of the Bipartisan
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TABLE 3.1. Votes on the Shays Amendment to the Bipartisan Campaign
Reform Act presented during the 107th session of the U.S. House

Yes No
Democrats 200 10
Republicans 38 177

(a) By Party

Yes No
Democrats 200 10
Republicans 10 171
Moderate Republicans 28 6

(b) By C-BPIRT Group

Campaign Finance Reform Act, frequently known as the McCain-Feingold act. This

bill, written as a way to limit the influence of corporations in political campaigns, was

designed by Chris Shays (R,CT) and Marty Meehan (D,MA) of the U.S. House and

John McCain (R,AZ) and Russ Feingold (D, WI). Since the legislation was crafted

by a bipartisan group, it was expected to have support from Moderate Republicans

in the U.S. House and U.S. Senate. This support was critical for passage in the U.S.

Senate as the Democrats did not have 60 votes to invoke cloture on debate. Ulti-

mately, the Bipartisan Campaign Reform Act of 2002 passed both chambers and was

signed into law.

A critical vote that occurred in the U.S. House regarded the Shays Amendment to the

Bipartisan Campaign Reform Act (RC #527). This amendment sought to set further

limitations on soft money given to political parties. Though the vote was championed

by Chris Shays (R,CT), Republicans were not supportive of the amendment or the

bill, as a whole. Table 3.1 shows the raw counts of Yes and No votes by party and by

C-BPIRT groups. While party alone does not explain certain Republican support for

the amendment, C-BPIRT explains this support as a function of members clustering

with other Moderate Republicans.

Figure 3.7 shows the votes on this amendment as a function of ideal points estimated

by NOMINATE, BPIRT, and C-BPIRT grouped by C-BPIRT groups. For BPIRT

and C-BPIRT, this vote used ideal points on two dimensions: the first party line

dimension and a budget dimension. Both NOMINATE and BPIRT generally explain
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FIGURE 3.7. Ideal point estimates and roll call votes associated with the
Shays Amendment to the Bipartisan Campaign Reform Act presented during
the 107th session of the U.S. House.
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the vote in the same way - the cutline between Yes and No is mostly controlled

by the first dimension and the point of indecision is within the set of Republican

representatives. In both cases, the members that are close to the cutline are Moderate

Republicans. Both methods, however, require some contribution from the second

dimension to fit the best cutline. For NOMINATE, this second dimension ranks

Moderate Republicans below Republicans and has Democrats spread across almost

all viable ideal point values. BPIRT ranks Democrats in the middle with Moderate

Republicans below Democrats and Republicans spread over the entire set of viable

values. Neither of these ideal point arrangements points to a particularly informative

ideal point space, especially for explaining votes on Shays amendment.
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C-BPIRT presents estimates that align with the theoretical arrangement of ideal

points that explain voting for campaign finance reform. On this vote, and other votes

that have similar voting patterns, there is a two dimensional ideal point space. The

first dimension accounts for party line voting while the second dimension accounts

for votes where Democrats and Moderate Republicans coalesce. Given knowledge

of how the series of votes regarding campaign finance reform played out in the U.S.

House, this arrangement fits the prior understanding of which legislators cast Yes and

No votes to shape the legislation. Unlike NOMINATE and BPIRT, C-BPIRT finds

an arrangement of ideal points and cutline that places Moderate Republicans with

Democrats while still explaining party line votes in a meaningful way.

The roll call vote on the Shays amendment can also be used to explore a model

where individual ideal points are irrelevant and only the group ideal points matter.

While C-BPIRT groups do not perfectly predict voting outcomes in this roll call

vote, Table 3.1 shows that groups alone do a pretty good job of explaining the vote

outcomes. This notion can be formalized by replacing the individual ideal points with

the distribution of ideal points implied by the cluster moments and assuming that all

members in that cluster vote in accordance with that ideal point distribution. Using

C-BPIRT estimated factor loadings for this roll call vote, I used a post-processing

procedure to simulate from the posterior predictive distribution of probabilities for

casting a Yes vote on the Shays amendment assuming only group label is known. This

simulation seeks to assess how well using only the group distribution of ideal points

explains the roll call vote outcome.

Figure 3.8 shows the resulting distribution of probabilities that a member from each

cluster casts a Yes vote in support of the the Shays amendment. Each density can

be interpreted as a distribution over probabilities that a single voter casts a Yes

vote given only their group label. Under this group model, the vote distributions
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FIGURE 3.8. Posterior predictive probability distribution that a new legislator
casts a “Yea” vote to approve the Shays amendment to the Bipartisan Cam-
paign Reform Act in the 107th session of the U.S. House given only a C-BPIRT
group label.
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Note: Posterior predictive probabilities were computed using 100,000 random samples
from the multivariate-T clusters using the maximum a posteriori cluster means and
variances. The true proportion of members in each cluster casting a “Yea” vote is also
reported.

TABLE 3.2. Expected number of Yes and No votes on Shays amendment to
the Bipartisan Campaign Reform Act in the 107th session of the U.S. House
given only a C-BPIRT group label.

Yes No
Democrats 195.27 14.73

[188,202] [8,22]
Republicans 20.38 161.62

[12,29] [153,170]
Moderate Republicans 23.01 11.00

[18,28] [6,16]
Note: Brackets under each value show 95% credible intervals.
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TABLE 3.3. Proportion of Votes Correctly Classified and Geometric Mean
Probability of Correct Classification for all roll call votes in the 107th U.S.
House.

Correct Class GMP
NOMINATE 0.92 0.80

BPIRT 0.92 0.81
C-BPIRT 0.92 0.84

C-BPIRT Groups 0.89 0.82
Note: Results are presented for two dimensional NOMINATE ideal points, BPIRT ideal
points, C-BPIRT ideal points, and C-BPIRT votes conditional on groups alone.

generally align with those actually observed in Table 3.1 - Democrats are almost

100% likely to cast a Yes vote while Republicans are almost 100% likely to cast a

No vote. Moderate Republicans show more uncertainty with a posterior mean of .65

and spread over the entire unit interval. This echoes the fact that the cutline for

this vote went through the Moderate Republican cluster. Using these distributions,

Table 3.2 shows expected Yes and No counts for the roll call vote using the groups

only model. While there are some departures from the observed counts, this model

performs admirably and estimates vote counts that are generally close to the truth.

This finding is encouraging for one of the core benefits of C-BPIRT - group voting

matters in U.S. legislative voting and can often yield results that are similar to those

from more complicated ideal point models.

As a final point of comparison, I examine the ability of each roll call scaling model to

correctly classify vote outcomes. I compare the two dimensional NOMINATE model,

BPIRT with seven dimensions and corresponding binary matrix, C-BPIRT with three

dimensions and individual ideal points, and C-BPIRT with three dimensions and

group ideal points only using the posterior predictive ideal point distribution. For each

model, I compute the proportion of votes correctly classified and the geometric mean

of correct classification over all 426 representatives and 645 roll call votes analyzed.7

7The proportion of votes correctly classified finds the probability that each legislators’ vote is a
Yes given each models’ structural parameters. A prediction is considered correct if yij = 1 & P (yij =
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Table 3.3 shows the results of these comparisons. In terms of correct classification,

BPIRT, NOMINATE, and C-BPIRT perform similarly. C-BPIRT using groups only

yields a correct classification rate that is slightly lower, but performs admirably given

that any individual deviations from assigned groups is assumed to be baked into

the cluster moments. The geometric mean probability of correct classification shows

similar results. However, a surprising result is that the groups only model outperforms

NOMINATE and BPIRT. This speaks to the importance that group dynamics played

in the legislative voting during the 107th session of the U.S. House.

3.5.2 88th U.S. Congress

The 88th U.S. Congress took place between 1963 and 1965. This session of Congress

is often noted as one of the most important sessions due to the amount of landmark

legislation that was considered and ultimately approved during this session. Over the

course of these two years, major reforms to the U.S. social welfare system were made,

including the Food Stamps Act of 1964, which crafted the modern social welfare

system that still exists in the U.S. today. Along with social welfare issues, the 88th

U.S. Congress saw passage of two important civil rights acts, the Civil Rights Act of

1964 and the Voting Rights Act of 1965, which established a number of important

laws that ensured equal rights and access to U.S. citizens, regardless of race. These

bills are often seen as an important turning point in the U.S. Civil Rights movement

of the 1950s and 1960s.

Beyond the importance of the legislation considered in this sessions, the 88th U.S.

Congress saw a significant splintering of parties. Historically, four groups are known to

have existed and created voting coalitions within the Congressional session: Democrats,

1) > .5 or yij = 0 & P (yij = 1) < .5. The geometric mean of correct classification for the entire ses-

sion exp

[
1

NP

N∑
i=1

P∑
j=1

yij log(P (yij = 1)) + (1− yij) log(1− P (yij = 1))

]
. This metric rewards mod-

els where incorrect classification is accompanied by probabilities closer to .5.
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Republicans, Southern Democrats, and New England Republicans. Like other ses-

sions in the 20th century, all members were elected under either Democrat or Re-

publican party membership. However, divides within each party existed. Southern

Democrats were Democrats elected from the the southern United States that held

strong views on racial equality and social welfare programs. While they did caucus

with the Democrats, there were a number of issues where Southern Democrats split

with the main Democratic party and cast votes that were against the party desires.

This cleavage was particularly important to civil rights legislation, as Democrats

supported sweeping reforms to the law which established equal rights regardless of

race. New England Republicans were also an important group. More liberal on many

issues than their Republican counterparts (and often the Democrats), New England

Republicans supported sweeping civil rights changes to ensure equality for all and pro-

grams that ensured that all Americans received government assistance, when needed.

However, they were largely anti-Socialist and wanted to design programs that ran

efficiently and supported large tax hikes to prioritize a balanced budget.

The 88th U.S. House is well-known among legislative scholars as a session where group

dynamics outweighed individual voting preferences. Poole and Rosenthal (1987)

demonstrates that the NOMINATE model performs better than a party/group driven

model in all U.S. House sessions other than the 88th U.S. House - there is strong

evidence that simply modeling parties as cohesive units performs better than the

standard two dimensional NOMINATE model. I argue that this finding is partially

true, but the failure of NOMINATE comes from assuming that all errors are indepen-

dent and identically distributed without taking group membership into account and

assuming only two groups. Using C-BPIRT, I show that there is substantial varia-

tion across parties and individuals and that continuous ideal point measures provide

information that would not be attainable simply from looking at party label.

As a starting point, Figure 3.9 shows the estimates of ideal points, groups, and dimen-
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FIGURE 3.9. Ideal Points and Dimensions estimated by C-BPIRT for the 88th

session of the U.S. House.
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Note: Individual ideal points are plotted with group labels and cluster densities
associated with the highest complete data likelihood iteration of the MCMC procedure.

sion uncovered by C-BPIRT for the 88th U.S. House. C-BPIRT uncovers four groups

that align with historical expectations: Democrats, Republicans, New England Re-

publicans, and Southern Democrats. As shown in Figure 3.10, these groups have a

strong correlation with geography in the U.S. As shown previously, C-BPIRT group

discovery requires finding groups and dimensions where there are unique overall ar-

rangements of votes. To this end, C-BPIRT discovers five dimensions of voting in the

88th U.S. House. As with the 107th U.S. House, C-BPIRT dimensions are more sparse

than their BPIRT counterparts - the first dimension, domestic spending, loads on 134

of the 190 roll call votes analyzed in contrast to 100% of votes loading on the first

dimension in BPIRT. C-BPIRT uncovers four other dimensions - Racial/Civil Rights,

Social Welfare, Foreign Spending, and Taxes. Each of the five dimensions uncovered
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FIGURE 3.11. Two Dimensional NOMINATE Ideal Points for the 88th U.S.
House.
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by C-BPIRT correspond to different legislative coalition combinations. For example,

the Racial/Civil Rights dimensions shows votes where New England Republicans and

Democrats opposed Southern Democrats and Republicans were split. In another case,

the tax dimension pits the low tax desires of the Democrats, Republicans, and South-

ern Democrats against the higher tax preferences by New England Republicans. The

domestic spending dimension corresponds more closely to a continuous dimensions,

having a loose notion of coalitional structure, but still showing significant variation

within clusters. These ideal points demonstrate a dimension where individual varia-

tion is important. The consistency of dimensions with coalitions aids in interpretation

of dimensions and ensures that ideal points align in meaningful ways.

Figure 3.9 demonstrates the importance of groups in determining roll call outcomes

in the 88th U.S. House. While the explicit clustering is unique to C-BPIRT, these
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groups are discussed and shown in roll call analysis using NOMINATE. Figure 3.11

shows two dimensional NOMINATE ideal points for the 88th U.S. House. The first

dimension of NOMINATE ideal point estimates is generally separated by party label

- all Democrats, regardless of membership in the Southern Democratic coalition,

are to the left of Republicans. The second dimension of NOMINATE ideal points

corresponds to roll call votes corresponding to Racial/Civil Rights and the parties

share similar structures; New England Republicans support civil rights legislation

more than the bulk of Democrats and Republicans while Southern Democrats oppose

civil rights legislation en masse. While the second dimension of NOMINATE closely

aligns with the Racial/Civil Rights dimension from C-BPIRT, the first dimension

seems to correspond most closely to the domestic spending dimension. However, the

interpretation of the first dimension from NOMINATE ideal point estimation differs

- the first dimension accounts for the largest portion of variation in roll call voting

across all votes.

This interpretation is problematic when considering that the first dimension of NOM-

INATE is often interpreted as member ideology not including preferences on civil

rights. In words, NOMINATE scores imply that Democrats are more liberal than

the roughly equivalent Southern Democrats and New England Republicans which are

more liberal than the Republicans. This orientation of ideal points implied by NOMI-

NATE has two problems: 1) Southern Democrats and New England Republicans have

roughly equivalent voting records outside of racial issues and 2) Southern Democrats

were moderate on some set of issues. Neither of these points fit with the historical

view of Southern Democrats.

To explore the idea implied by NOMINATE that Southern Democrats and New Eng-

land Republicans cast similar votes on a number of issues, I analyze the probability

that a representative from each C-BPIRT group casts the same roll call vote across
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TABLE 3.4. Probability of same vote cast on a roll call vote for each C-BPIRT
group.

Dems. NE Reps. Reps. South Dems.
Dems. .87 .53 .33 .55
NE Reps. .53 .76 .67 .33
Reps. .33 .67 .77 .55
South Dems. .55 .33 .55 .71

(a) All Votes

Dems. NE Reps. Reps. South Dems.
Dems. .80 .51 .45 .51
NE Reps. .53 .98 .88 .04
Reps. .45 .88 .82 .15
South Dems. .51 .04 .15 .93

(b) Votes on Civil Rights

Dems. NE Reps. Reps. South Dems.
Dems. .84 .52 .33 .58
NE Reps. .52 .77 .67 .35
Reps. .33 .67 .75 .55
South Dems. .58 .35 .55 .69

(c) All Votes, No Civil Rights

Note: Votes are broken out in three ways: 1) All 190 roll call votes, 2) 18 roll call
votes on civil rights, 3) 172 Votes on non-civil rights issues. Vote classifications were
retrieved from the Policy Agenda Project (Adler and Wilkerson, 2006).

votes as both those within the same group and those from other groups. Along with

aggregate probabilities, I also find the probability that they share common votes on

Civil Rights votes and non-Civil rights votes. Probabilities from this analysis can be

seen in Table 3.4. From this analysis, it is clear that there is very little evidence for

Southern Democrats and New England Republicans to share similar ideal points on

an aggregate ideology dimension. For all votes, New England Republicans and South-

ern Democrats cast the same vote the same proportion of times that Republicans and

Democrats cast the same vote. As the goal of roll call scaling to place like voting

patterns in similar locations of the latent space, placing Southern Democrats and New

England Republicans together is just as bad as placing Democrats and Republicans
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in the same location. Removing the 18 votes on civil rights from the analysis yields a

similar conclusion. This examination shows that there is no meaningful way that the

first dimension of ideal points can be twisted to make them align in a meaningful way.

This further shows the inappropriateness of using the first dimension of NOMINATE

scores as a substitute for legislator ideology.8

Beyond placing New England Republicans and Southern Democrats in the same

place on the first dimension, NOMINATE implies that Southern Democrats rep-

resent a moderate group, outside of racial issues. Aside from the domestic spending

dimension, which shows no clear group divides across all groups, Figure 3.9 shows

no evidence that Southern Democrats had ideal points that are in the middle on

any issue set. On foreign spending, Southern Democrats represent a policy position

that strongly opposes defense and foreign investment - more extreme than Democrats

and New England Republicans. On welfare issues, their position is similar to that of

Democrats. Finally, on taxation issues, they exhibit preferences similar to those seen

by Republicans and Democrats. Given that there is no clear place where the Southern

Democrats represent a moderate policy position, NOMINATE provides a misleading

characterization of Southern Democrat preferences. The implied moderate position

can be chalked up to overaggregation and Simpson’s paradox. Since the vast majority

of legislators are in the Democrat or Republican cluster (289 out of 395 legislators, to

be exact), NOMINATE weights its ideal point orientation around these major groups.

Since the Southern Democrat cluster mixes being more liberal and more conservative

than the Democrats on each distinct issue set, the average comes out towards the

middle when the truth is that Southern Democrats represented an extreme group in

the U.S. House session. C-BPIRT avoids this issue by modeling groups first, then

ideal points. This ensures that the orientation of ideal points is consistent with the

group model when groups are an important part of the voting calculus.

8See Lee (2009) and Aldrich et al. (2014) for further discussion of why this is a really bad practice.
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The 88th U.S. House shows a case where accounting for group similarities provides

ideal point estimates that are more consistent with the truth than the independent and

identically distributed counterparts. The group dynamics that dominate the voting

in this session come to the forefront and provide consistent ideal point estimates

that make sense in the historical context. Unlike NOMINATE, C-BPIRT requires

no postprocessing or stringent a priori assumptions that the legislators belong to

specific groups. This aspect of C-BPIRT demonstrates promise as an estimation

approach that provides a richer and more consistent view of historical roll call voting

for explorations of U.S. legislative voting behavior.

3.6 Conclusion

In this article, I derive and show how to implement an ideal point estimation proce-

dure that allows for Bayesian nonparametric estimation of both issue dimensions and

group-consistent ideal points from roll call voting records. I show the importance of

this model from both a formal perspective regarding lack of independence in errors

and from a historical perspective by analyzing the 107th and the 88th sessions of the

U.S. House. I show that C-BPIRT can uncover substantively meaningful group voting

behavior that is ignored by NOMINATE and BPIRT. I also show that NOMINATE

recovers ideal point orientations that do not align with historical or observational

evidence for how voting groups actually chose to vote in each of these sessions. The

results provided by C-BPIRT show that meaningful dimensions and groups can be

extracted from roll call vote data sets without trading off accuracy for interpretability.

Extensions to the C-BPIRT model exist that can provide even richer inference about

group voting in the U.S. Congress. First, C-BPIRT assumes that each session of the

U.S. Congress is independent of those that occur before and after. This assumption

is generally incorrect since there is, historically, relatively low turnover for members
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of Congress between sessions. Since voting behavior is unlikely to change session

to session, time-varying dynamic models of ideal points will certainly improve model

accuracy and provide more consistent insights about legislative voting behavior. Aside

from the ideal points, themselves, information can be shared about issue dimensions

and groups across Congresses to provide a picture of how Congressional issue sets

and voting coalitions evolve over time. Novel advances in tree-based priors in the

Bayesian nonparametric literature provide a route for this dynamic model. Second,

there are numerous covariates which correlate with group membership apart from raw

roll call voting records. Including these covariates in the group estimation procedure

would provide opportunities to model relationships between donor records, legislative

speech, etc. and voting while also assuming that these actions occur with group

incentives in mind. Finally, this model represents an empirical analogue to work in

social choice theory about group preference aggregation and outcomes. Given that

the U.S. Congress is unique in its combination of group incentives and individual

policy incentives due to varied constituent preferences, C-BPIRT can be extended to

uncover ideal points that include constituent preferences and estimate the impact of

these preferences of roll call voting outcomes.
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A Gibbs Sampling for C-BPIRT

Estimation using Gibbs sampling proceeds in the following way:

1. Sample the latent variable, X. For each i ∈ (1, ..., N) and j ∈ (1, ..., P ),

sample xi,j from a truncated normal distribution according to:

xi,j ∼


T N−∞,0((rj � λj)ωi − αj, 1) if yi,j = 0

T N 0,∞((rj � λj)ωi − αj, 1) if yi,j = 1

N ((rj � λj)ωi − αj, 1) if yi,j is missing

(3.28)

2. Sample R and Λ jointly.9 Define K+ as the current number of active features.

For each j ∈ (1, ..., P ) and k ∈ (1, ..., K+) define:

tj,k =
P (rj,k = 1|Y ,−)

P (rj,k = 0|Y ,−)

=
P (Y |rj,k = 1,−)

P (Y |rj,k = 0,−)

P (rj,k = 1)

P (rj,k = 0)

(3.29)

P (Y |rj,k = 1,−)

P (Y |rj,k = 0,−)
=

√
γk
γ

exp

(
1

2
γµ2

)
(3.30)

P (rj,k = 1)

P (rj,k = 0)
=

m−j,k
p−m−j,k + 1

(3.31)

where γ = ω′kωk + γk, µ = 1
γ
ω′kÊj, Êj = xj − (rj � λj)Ω + αj setting λj,k = 0,

and m−j,k = −rj,k +
p∑

h=1

rh,k. Let

pr=1 =
tj,k

1 + tj,k

9See Paisley and Carin (2009) for more info on the details of this step. For the purposes of roll
call scaling, the number of dimensions is expected to be low and much less than 100. As such, I
choose to set the initial number of dimensions to 100. This gets the correct number of dimensions
in simulations.
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then sample P (rj,k|−) ∼ Bern(pr=1). If rj,k = 1, then sample P (λj,k|−) ∼

N (µ, γ−1). Otherwise, set λj,k = 0.

3. Sample Ω. For each i ∈ (1, ..., N), let µi be a K+-column vector including

the cluster means for gi and Σi a K+ × K+ diagonal covariance matrix with

the variances for gi. Sample ωi from:

ωi|− ∼ NK+(mi, Vi) (3.32)

where:

Vi =
(
Λ′Λ + Σ−1

i

)−1

mi = Vi
(
Λ′(xi +α) + µ′iΣ

−1
i

)

4. Remove Inactive Features, Normalize Λ and Ω. For each k ∈ (1, ..., K+),

if rj,k = 0 ∀ (1, ..., P ), remove k from the analysis. Recalculate K+.

Post-process Λ to normalize the variance. For each j ∈ (1, ..., P ) and k ∈

(1, ..., K+) set λj,k:

λj,k =
λj,k√

1 +
K+∑
h=1

λ2
j,h

(3.33)

Post process Ω to normalize location and variance. For each k ∈ 1 ≤ k ≤ K+,

set ωi,k:

ωk =
ωk − ω̄k
sd(ωk)

(3.34)

5. Sample Latent Groups, G. At each iteration, let G+ be the current set of

active clusters. Shuffle the order of observations. For each i ∈ (1, ..., N), find

the probability that ωi ∈ g ∀ (1, ..., G+). For each existing cluster, calculate
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P (gi = g|ω−i,g) where:

P (gi = g|g−i) ∝
∫
ωi

∫
µg

∫
Σg

Np(xi ; (Λ�R)ωi−α,IP )TK+;2αg

(
µg,

βg(κg + 1)

αgκg

)
dωi

(3.35)

One method of solution is outlined in 3.4.2.

Determine the probability that observation i belongs in a new cluster:

P (gi = gnew) ∝
∞∫

−∞

Np(xi ; (Λ�R)ωi −α,IP )Nk(ωi; 0,IK+)dωi (3.36)

This method is also outlined in 3.4.2.

Draw gi from:

P (gi|−) ∼ Cat(nhP (gi = h|g−i) ∀ h ∈ (1, ..., G+) , βP (gi = gnew)) (3.37)

If gi = gnew, update G+ and include the new cluster in proceeding iterations.

If there are zero observations in an existing group, update G+ and remove that

cluster from the analysis.

6. Sample β. Sample β from:

β|− ∼ Gamma(G+, γc log(N)) (3.38)

where γc is Euler’s number.

7. Sample µg and Σg for all clusters. For each cluster g ∈ (1, ..., G+), sample

the mean, µg, and covariance, Σg, for each Gaussian cluster. Σg is assumed to
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be a diagonal covariance matrix. Let Ωg be the collection of latent variables

that are currently placed in cluster g. For each k ∈ (1, ..., K+), draw:

µg,k ∼ T2αg

(
ω̄g,k,

βg
αgκg

)
(3.39)

Σg,k ∼ IG(αg, βg) (3.40)

8. Sample Item Level Intercepts, α. For each j ∈ (1, ...p), sample the item

level intercept from:

P (αj|−) ∼ N

(
µ̄j,

1

N2

N∑
i=1

(µi,j − µ̄j)2

)
(3.41)

where µi,j = λ′jωi − xi,j and µ̄j = 1
N

N∑
i=1

µi,j.

9. Sample Factor Precisions, γk. For each k ∈ 1 ≤ k ≤ K+, sample γk from:

P (γk|−) ∼ Gamma

(
c+

mk

2
, d+

p∑
j=1

λ2
j,k

)
(3.42)

where mk is the number of sources for which feature k is active.

10. Sample d. Sample d from:

d|− ∼ Gamma

(
c0 + cK+, d0 +

K+∑
k=1

γk

)
(3.43)
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CHAPTER IV

Interval Estimation on the Marginal Likelihood

4.1 Introduction

Model selection is an important step for statistical modeling, particularly in the so-

cial sciences. Often, models are derived from theories that are developed leveraging

previous research and other information gathered in the scientific process (Raftery,

1995). The goal of the model selection step is to determine which of a number of

possible candidate models best fit the data. While many information criteria and fit

statistics exist for this task, they are rife with weaknesses and frequently lead to over-

fit or underfit models due to improper handling of uncertainty about the locations of

model parameters (Raftery, 1995; Gelman et al., 2014).

The Bayesian approach to model comparison presents a model selection criteria that

inherently accounts for model complexity due to the introduction of priors - inte-

grating the joint posterior distribution over the priors gives a measure of the model

evidence. This metric of model evidence, called the marginal likelihood, represents

the probability that the data was generated under the specified model taking into ac-

count the prior information. Under relatively accurate priors or with large amounts

of data, comparing marginal likelihoods across models accurately selects the cor-

rect model in many cases where other fit statistics do not (Zellner, 1971; Fong and
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Holmes, 2019). Since many models used in the social sciences have meaningful and

widely used Bayesian versions, model comparison via the marginal likelihood is a

routine that will accurately distinguish between and select the best models and their

corresponding underlying theories.1

A problem that arises is that an analytical expression for the marginal likelihood

can only be derived for a small number of restrictive examples. While methods ex-

ist for taking samples from an posterior distribution when analytic evaluation of the

marginal likelihood is intractable, explicit computation of the marginal likelihood is

often seen as a secondary task and other methods for assessing overall model fit are

used.2 In spite of the benefits that marginal likelihoods bring to model compari-

son, the desire to use other criteria stems from the computational burden required to

compute the marginal likelihood using Monte Carlo draws from the joint posterior dis-

tribution. When the chosen model has a simple sampling scheme, the gold-standard

Candidate’s estimator can be used to compute the marginal likelihood to an arbitrary

desired accuracy (Chib, 1995; Chib and Jeliazkov, 2001). However, the Candidate’s

estimator is not easily computed for most models of interest.

To overcome the computational problem, several Monte Carlo sampling methods have

been proposed to approximate the marginal likelihood (Hammersley and Handscomb,

1964; Raftery and Banfield, 1991; Gamerman and Lopes, 2006; Newton and Raftery,

1Bayesian model selection typically falls into two classes: model averaging and best model se-
lection (Zellner, 1971). The model averaging approach uses the marginal likelihood to derive a
probability distribution over all candidate models and averages the parameters values using these
posterior probabilities. On the other hand, best model selection seeks to find the best model over a
set of candidate models - the model with the highest marginal likelihood is selected. In this paper,
I present methods for assessing the marginal likelihood with the goal of choosing a single best fit
model. However, the marginal likelihood estimation approaches outlined are applicable to the model
averaging approach with minor changes.

2Samples from a joint posterior distribution can be taken in a variety of ways that have been
studied and discussed extensively. See Betancourt (2017) for an excellent overview of Markov Chain
Monte Carlo, sequential Monte Carlo, and Hamiltonian Monte Carlo methods. Information criteria
are often used as substitutes for the marginal likelihood and assess both within model and predictive
ability. See Gelman et al. (2014) for an overview of existing information criteria.
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1994; Meng and Wong, 1996; Gronau et al., 2017). Theoretically, Monte Carlo ap-

proaches seek to find a point estimate to the marginal likelihood where the asymptotic

variance of the estimator disappears as the number of samples taken from the pos-

terior distribution approaches infinity. The bridge sampling estimator of Meng and

Wong (1996) and Gronau et al. (2017) represents a state of the art application of this

approach. Monte carlo estimators have a general “one-size-fits-all” computational

recipe, but require specifying a distribution with known form that approximates the

observed joint posterior. While these approaches sometimes compare favorably to the

Candidate’s estimator, work has shown that point estimates of the marginal likelihood

from Monte Carlo approaches suffer when the posterior is not approximately normal

and the approximation does not match the high density points of the posterior. This

is of particular concern since the quality of the point estimates depend on assump-

tions of asymptotic consistency and negligible approximation error (Meng and Wong,

1996; Gelman and Meng, 1998). Algorithms have been proposed to normalize pos-

terior draws via warping, but these approaches are often even more computationally

expensive than estimation via the Candidate’s estimator (Wang and Meng, 2016).

Another approach that attempts to solve the marginal likelihood problem is varia-

tional Bayesian inference, which seeks to find an approximation of a convenient form

to the true joint posterior that maximizes the evidence lower bound on the marginal

likelihood (Jordan et al., 1999; Jordan, 2004). Typically, this approach is used to

estimate a posterior using a Bayesian expectation maximization approach, but ev-

idence lower bound is often used as a proxy for the marginal likelihood. However,

model comparison using this quantity alone unfairly favors models that have low

posterior variance (Chérief-Abdellatif, 2019). Ji et al. (2010) propose a correspond-

ing evidence upper bound that leverages Monte Carlo sampling and demonstrates

that the two quantities sandwich the true marginal likelihood. The interval implied

by this inequality shares many of the same theoretical underpinnings as the Monte
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Carlo approaches to estimating the marginal likelihood (Pradier et al., 2019; Dieng

et al., 2017). Unlike Monte Carlo approaches, variational bounds make no assump-

tions about approximation error, but no work has been done to show how the bounds

shrink as a function of approximation quality.

In this paper, I bridge the gap between variational methods of estimating the marginal

likelihood and Monte Carlo approaches. I show that the marginal likelihood can be

treated as a random variable and a posterior distribution with corresponding intervals

can be derived. These intervals share many of the same qualities as the Monte Carlo

estimators, but approximation error does not disappear as the number of posterior

samples approaches infinity. This allows the width of the intervals to adjust to the

quality of the approximation - good approximations have smaller intervals while bad

approximations result in less certainty about the location of the marginal likelihood.

The concepts of intervals on the marginal likelihood has been presented, but little

work has been done to compare the interval estimates to known marginal likelihoods

and have mostly been explored in the setting of variational minimization problems

(Grosse et al., 2015; Dieng et al., 2017; Pradier et al., 2019).

I derive two sets of intervals. The first set, called JSW bounds, directly leverage the

variational inequalities from Ji et al. (2010). In simulations where the true marginal

likelihood is known, I show that these inequalities consistently surround the true

marginal likelihood while the bridge sampling estimator is often incorrect. However,

JSW bounds are wide and cover the marginal likelihood 100% of the time. I show

that the interval implied by the evidence upper and lower bounds includes values that

cannot exist due to the relationship between forward and reverse Kullback-Leibler

divergences. I then propose a new inequality on the ratio of the forward and reverse

KL divergences that allows for a finer tuned interval on the marginal likelihood,

called kappa bounds. I derive a computationally efficient estimation procedure for
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these bounds and demonstrate that kappa bounds improve on JSW bounds and the

bridge sampling estimator. I show the flexibility and accuracy of kappa bounds in

both simulated and real-world data using both linear regression models and more

complicated ordered factor analysis models.

4.2 Computing the Marginal Likelihood

For a specified model with parameters θ = {θ1, θ2, ..., θK} ∈ Θ and prior density,

π(θ), a common goal in Bayesian inference is to learn a posterior distribution for

each of the parameters from observed data, X = {x1, x2, ..., xn}. By Bayes rule, the

posterior can be defined as:

P(θ|X ) =
P(X|θ)π(θ)

P(X )
(4.1)

where P(X|θ) is the likelihood of the data given the model’s parameters. For ease

of exposition, P(X|θ)π(θ) = P(X ,θ) is referred to as the complete data likelihood

which captures the combined likelihood of θ with respect to the data and the prior.

While P(θ|X ) can be difficult to estimate directly, various Monte Carlo methods can

be used to take a set of draws from the posterior.3

P(X ) is referred to as the marginal likelihood or model evidence and dictates the

probability that the data is observed conditional on the model parameters averaged

over the prior. The marginal likelihood is defined as:

P(X ) =

∫
Θ

P(X ,θ)dθ =

∫
Θ

P(X|θ)π(θ)dθ (4.2)

The marginal likelihood can be seen as a measure of model fit and is frequently

3Throughout this paper, let P() refer to the density associated with the true posterior, let Q()
refer to the density associated with an approximation to the posterior, let π() be a generic prior
density, and let P() refer to a generic probability function.
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used to choose a model that best fits the data across a variety of candidate models.

Recent research has also shown that marginal likelihood are a limiting case for leave-

p-out and k-fold cross validation, showing that marginal likelihoods can supplant

the need for computationally intensive validation checks (Fong and Holmes, 2019).

For a number of simple problems, this integral can be evaluated analytically. How-

ever, the vast majority of interesting models require integration that is analytically

intractable. As such, computational integration methods are used. The following

standard approaches are of interest.

4.2.1 Candidate’s Estimator

Often considered the gold standard for marginal likelihood computation, the Candi-

date’s estimator (Besag, 1989; Chib, 1995) leverages the fact that:

P(X ) =
P(X ,θ)

P(θ|X )
(4.3)

by Bayes’ Theorem. Choosing a meaningful set of plugin estimates, θ∗, the Candi-

date’s estimator is:

P̂(X ) =
P(X ,θ∗)
P(θ∗|X )

(4.4)

For models that are specified with a set of conjugate priors and known posterior

forms, this estimate can be evaluated analytically. For any steps that are not easily

solved, further Monte Carlo estimates can be drawn allowing for evaluation of any

intermediate parameter values as a function of the plugin estimates. For models

that are not fully conjugate and use Metropolis-Hastings steps, a similar method is

proposed by Chib and Jeliazkov (2001).

The Candidate’s estimator is known to produce estimates that are arbitrarily close

to the true marginal likelihood in the number of draws taken from the true posterior.

While the estimate is accurate, the method is computationally demanding - any
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quantities that cannot be analytically derived require more simulation following the

initial simulations that lead to draws from the true posterior. The amount of added

computation increases as a function of the complexity of the model making this

approach too costly in most applied situations. However, this method, when possible,

can provide an exact estimate of the marginal likelihood.

4.2.2 Naive Monte Carlo Estimator

A simple method for estimating the marginal likelihood that requires no additional

significant computation uses a simple Monte Carlo integral approximation (Hammer-

sley and Handscomb, 1964; Raftery and Banfield, 1991). Using the identity:

P(X ) =

∫
Θ

P(X ,θ)dθ = Eπ(θ)[P(θ|X )] (4.5)

Monte Carlo integration can be used to assess the marginal likelihood. A naive Monte

Carlo estimate of the marginal likelihood is given by:

P̂(X ) =
1

W

W∑
w=1

P(X|θ∗w) ; θ∗w ∼ π(θ) (4.6)

Note that no posterior draws are needed to assess the marginal likelihood with this

estimator. The naive Monte Carlo estimate works well if the prior and the poste-

rior have a similar shape and have significant overlap. However, the Monte Carlo

approach works poorly when the posterior is more concentrated than the initial prior

(Gamerman and Lopes, 2006). As the majority of the mass from the prior maps to

likelihoods close to zero, the naive Monte Carlo estimate oversamples unimportant

regions of the posterior and the estimate of the marginal likelihood is dominated by

values close to zero. As such, the naive Monte Carlo estimator works, but requires

so many posterior draws, especially with high dimensional posteriors, that getting an

accurate estimate is computationally infeasible.
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4.2.3 Importance Sampling Estimators

An improved Monte Carlo estimator is presented by Newton and Raftery (1994). The

harmonic mean estimator observes that importance sampling methods can improve on

the uniform search over the parameter space given by simple Monte Carlo methods.

Using a similar identity for the marginal likelihood:

P(X ) =

∫
Θ

P(X|θ)−1P(θ|X )dθ (4.7)

the harmonic mean estimator is:

P̂(X )−1 =
1

N

N∑
i=1

P(X|θ∗i )−1 ; θ∗i ∼ P(θ|X ) (4.8)

Newton and Raftery (1994) show that the harmonic mean estimator arises as a con-

sequence of using importance sampling defining the importance distribution as the

true posterior. The harmonic mean estimate of the marginal likelihood is widely

used as an approximation to the marginal likelihood, but has been shown to perform

poorly in many cases where the complete data likelihood is low - the harmonic mean

is known to be dominated by relatively low values. This leads to an estimator that

can have infinite variance and is, therefore, unsuitable for most applications.

Following the work in Newton and Raftery (1994), the harmonic mean estimator can

be improved by more accurately making assessments of the complete data likelihood

in the posterior parameter space while also using an importance sampling approach

to stabilize the variance of the estimator. In particular, by using an importance

sampling density that avoids likelihoods close to zero while also allowing for draws

that are not necessarily near the regions of highest mass in the posterior, the variance

of the resulting estimator becomes finite and allows for consistent estimation of the

marginal likelihood (Pajor, 2016; Neal, 2001).
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Let Q(θ|γ) be a distribution over θ parameterized by γ that closely approximates

the posterior density. The importance sampling estimator stems from the identity:

P(X ) =

∫
Θ

P(θ,X )

Q(θ|γ)
Q(θ|γ)dθ = EQ(θ|γ)

[
P(θ,X )

Q(θ|γ)

]
(4.9)

This yields the importance sampling estimator:

P̂(X ) =
M∑
j=1

P(θ∗j ,X )

Q(θ∗j |γ)
; θ∗j ∼ Q(θ|γ) (4.10)

where M draws are taken from the approximating importance density. Rather than

directly performing numerical integration on the posterior draws, the importance

density is used to stabilize the complete data likelihood assessments, ensuring that

the majority of draws come from regions of the posterior with high density while also

allowing assessments outside of the posterior regions of highest mass.

A suitable importance density should (1) be easy to evaluate; (2) have the same

domain as the posterior distribution; (3) closely resemble the posterior distribution;

and (4) have fatter tails than the posterior distribution (Neal, 2001; Vandekerckhove

et al., 2015). The final condition ensures that the estimator is not dominated by the

tails of the distribution like the naive Monte Carlo estimator and the harmonic mean

estimator (Neal, 2001).

Similar to the improvement on the Monte Carlo estimator by the harmonic mean

estimator, a harmonic mean importance density estimator has been proposed (Gelfand

and Dey, 1994):

P̂(X ) =

(
1

N

N∑
i=1

Q(θ∗i |γ)

P(θ∗i ,X )

)−1

; θ∗i ∼ P(θ|X ) (4.11)

Like the harmonic mean estimator, the proposal density is the true posterior. How-
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ever, the improvement comes from assessing the complete data likelihood under the

stabilization of an approximating importance density. Like the importance sampling

estimator, the harmonic mean importance density estimator performs better than its

non-stabilized counterpart. However, there is a requirement that the tails of the im-

portance density are thinner than the posterior distribution (Gelfand and Dey, 1994;

Newton and Raftery, 1994; DiCiccio et al., 1997).

4.2.4 Bridge Sampling Estimator

Both the importance sampling estimator and the generalized harmonic mean estima-

tor impose strong constraints on the tail behavior of the importance density relative

to the posterior distribution to guarantee a stable estimator. Such requirements

can make it difficult to find a suitable importance density, especially when a high-

dimensional posterior is considered. The bridge sampler, on the other hand, allevi-

ates such requirements (Fruhwirth-Schnatter, 2004). Originally, bridge sampling was

developed to directly estimate the Bayes factor, that is, the ratio of the marginal

likelihoods of two models (Kass and Raftery, 1995). However, the bridge sampling

estimator can be used to estimate the marginal likelihood of individual models (Over-

stall and Forster, 2010; Gronau et al., 2017).

The bridge sampling estimator presented by Meng and Wong (1996) leverages the

identity:

P(X ) =

∫
Θ

P(θ,X )Q(θ|γ)h(θ)dθ∫
Θ

P(θ|X )Q(θ|γ)h(θ)dθ
=

EQ(θ|γ) [P(θ,X )h(θ)]

EP(θ|X ) [Q(θ|γ)h(θ)]
(4.12)

where h(θ) is a bridge function that is used to induce desirable properties on the

corresponding estimator. This admits an estimator:

P̂(X ) =

1
M

M∑
j=1

P(θ∗j ,X )h(θ∗j )

1
N

N∑
i=1

Q(θ∗i |γ)h(θ∗i )

; θ∗i ∼ P(θ|X ) ; θ∗j ∼ Q(θ|γ) (4.13)
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The bridge sampling estimator can be seen as a middle point between the harmonic

mean estimator and the importance sampling estimator - as discussed previously,

taking taking the expectation with respect to the approximation requires thick tails

while the expectation with respect to the posterior requires thin tails. Combining

these two elements creates an estimator that minimizes the influence of approximation

choice on the resulting estimate.

Meng and Wong (1996) show that there exists an optimal choice for h(θ). Specifically:

h(θ) = C ·
[

N

N +M
P(θ,X ) +

M

N +M
P(X )Q(θ|γ)

]−1

(4.14)

where C is an arbitrary constant. This choice of bridge function is optimal in the

sense that it induces an estimator that minimizes the relative mean squared error of

all possible estimators with respect to the true marginal likelihood (Meng and Wong,

1996). Note that this proof requires the assumption that bridge sampling estimator

is asymptotically unbiased and is independent of the choice of approximation. The

optimal bridge function depends on the marginal likelihood which is the very entity

we want to approximate. This issue can be resolved by applying an iterative scheme

that updates an initial guess of the marginal likelihood until the estimate of the

marginal likelihood has converged according to a predefined tolerance level (Gronau

et al., 2017).

The bridge sampling estimator has been shown to perform well in a variety of complex

applied Bayesian models where the Candidate’s estimator cannot be easily computed

(Lopes et al., 2003; Gronau et al., 2017). A particular benefit of this approach is that

the same computational recipe can be used in many settings:

1. Samples are taken from the true posterior, P(θ|X ).
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2. Moments of the joint posterior are estimated and a corresponding multivariate

normal distribution is specified, Q(θ|γ).

3. Some large number of samples are taken from Q(θ|γ).

4. The iterative scheme outlined in (Gronau et al., 2017) is used to estimate the

marginal likelihood.

Recent work on the bridge sampling estimator has discussed the role of choice of

approximation. While the optimal bridge sampling estimator does not rely on choice

of approximation, better approximations lead to better estimates. In high dimensions,

multivariate normal approximations might produce unstable estimates in case of high-

dimensional posterior distributions that clearly do not follow a multivariate normal

distribution. In such a situation, it might be advisable to consider more sophisticated

versions of bridge sampling (Fruhwirth-Schnatter, 2004; Meng and Schilling, 2002;

Wang and Meng, 2016).

4.2.5 Laplace-Metropolis Estimator

Perhaps the most commonly used approach to estimating the marginal likelihood,

the Laplace-Metropolis estimator extends traditional Laplace asymptotics to usage

with posterior samples (Tierney and Kadane, 1986). Described in Lewis and Raftery

(1997), the Laplace-Metropolis estimator for the marginal likelihood is:

P̂(X ) = (2π)
K
2 |Σ|

1
2P(θ̃,X ) (4.15)

where K is the dimensionality of the posterior, Σ is an estimate of the inverse Hes-

sian, and θ̃ = argmax
θ
P(θ,X ) is the maximum a posteriori (MAP) value of θ. Lewis

and Raftery (1997) suggests estimating Σ as the covariance matrix of the poste-

rior samples and letting θ̃ be the value from the posterior Monte Carlo draws with
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the maximum complete data likelihood. More modern approaches to computing the

Laplace-Metropolis approximation feed the posterior samples to an iterative quadra-

ture approach that simultaneously estimates the MAP value of θ and the correspond-

ing Hessian.

The Laplace-Metropolis estimator is an application of the well-known Laplace approx-

imation to integrals of a specific form. However, this estimator is also an example of

approximating the marginal likelihood by specifying a known distributional form that

approximates the posterior. In this case, the posterior is assumed to be approximately

normally distributed with moments that match those displayed by the posterior sam-

ples. Frequently, the normal approximation is sufficient - under certain conditions

and low prior influence, the posterior converges to a normal distribution (Eberly and

Casella, 2003). However, in cases where the posterior is skewed or has fatter tails

than the normal distribution, the Laplace-Metropolis estimator will overestimate the

fit of the data given the model and reward specifications that induce sharp-peaked

posteriors.

4.2.6 Bounds on the Marginal Likelihood via Variational Approaches

Mean-field variational methods, initially developed in statistical physics and exten-

sively studied by machine learning and Bayesian learning communities for determin-

istic approximation of marginal distributions (MacKay, 1995; Jordan et al., 1999;

Jaakkola and Jordan, 2000; Humphreys and Titterington, 2000; Ueda and Ghahra-

mani, 2002; Jordan, 2004), have been implemented in the model selection context

(Corduneanu and Bishop, 2001; Beal, 2003). A core identity for variational methods

is the evidence lower bound (ELBO):

logP(X ) ≥
∫
Θ

Q(θ|γ) [logP (θ,X )− logQ(θ|γ)] dθ (4.16)
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or stated a different way:

logP(X ) =

∫
Θ

Q(θ|γ) [logP (θ,X )− logQ(θ|γ)] dθ+

∫
Θ

Q(θ|γ) [logP(θ|X )− logQ(θ|γ)] dθ

(4.17)

where
∫
Θ

Q(θ|γ) [logP(θ|X )− logQ(θ|γ)] dθ is the Kullback-Leibler divergence from

the true posterior, P(θ|X ), to an approximate posterior, Q(θ|γ), KL(Q||P). By

Gibbs’ inequality, KL(Q||P) ≥ 0, leading to the equivalence of these two statements.

While the ELBO is most frequently used in variational estimation strategies, Ji et al.

(2010) present a similar inequality that brackets the marginal likelihood from above.

Specifically:

logP(X ) ≤
∫
Θ

P(θ|X ) [logP (θ,X )− logQ(θ|γ)] dθ (4.18)

or stated a different way:

logP(X ) =

∫
Θ

P(θ|X ) [logP (θ,X )− logQ(θ|γ)] dθ−
∫
Θ

P(θ|X ) [logQ(θ|γ)− logP(θ|X )] dθ

(4.19)

where
∫
Θ

P(θ|X ) [logQ(θ|γ)− logP(θ|X )] dθ is the Kullback-Leibler divergence from

the approximate posterior, Q(θ|γ), to the true posterior, P(θ|X ), KL(P||Q). This

upper bound, often referred to as the EUBO, has received significant attention in

recent machine learning literature as an alternative approach to fitting variational

models on the ELBO (Dieng et al., 2017; Pradier et al., 2019).

Taken together with the ELBO, these two identities sandwich the true log marginal

likelihood. Previous work has used these bounds separately as fitting criteria - given

a choice of approximating distributions, typically in the exponential family, find the

parameters, γ, that minimize the Kullback-Leibler divergence between the posterior
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and the approximation. The resulting expectation-maximization fitting scheme is less

computationally costly than corresponding Monte Carlo approaches, but there have

been significant questions about the accuracy of variational approaches (Wang and

Blei, 2019). However, the identities that are key to variational estimation provide a

method for bounding the marginal likelihood and, when properly used in conjunction

with a method that is guaranteed to sample from the true posterior, can provide

powerful bounding equations for model comparison.

4.3 Estimators, Bounds, and Divergence

Aside from the variational bounding method, all of the commonly used methods for

estimating the marginal likelihood of a model present a single point estimate. Unlike

posterior summary statistics, which are point estimates that encompass the shape and

location of the full posterior distribution, the marginal likelihood is an integral that

has a single constant value. Hence, in the case where the posterior form is known, the

correct constant value of the marginal likelihood can be derived exactly. However,

as previously discussed, most interesting models do not admit a simple analytical

evaluation of the model evidence.

Posterior approximation is the most common method for achieving reliable estimates

of the marginal likelihood. Bridge sampling, in particular, is a cutting-edge approach

which has recently seen a resurgence as a one-size-fits-all approach to approximating

the marginal likelihood, particularly with a renewed interest in posterior warping

to create posterior approximations that better fit non-normal posterior distributions

(Gronau et al., 2017; Wang and Meng, 2016). Bridge sampling can be seen as a

general importance sampling approach that contains many other marginal likelihood

estimation methods as special cases, including the Candidate’s estimator (Mira and

Nicholls, 2004).
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While point estimates of the marginal likelihood can be close to the true marginal like-

lihood, methods that use a posterior approximation introduce approximation error.

In the case of bridge sampling, Meng and Wong (1996) demonstrate that under a set

of restrictive assumptions, the bridge sampling estimator is the mean-squared error

minimizing estimator of the marginal likelihood. More importantly, Meng and Wong

(1996) derive the asymptotic variance associated with the bridge sampling estimator

as a function of approximation error:

lim
N,M→∞

V[P̂(X )] =

(
1

N
+

1

M

)(
(1−HA(P ,Q))−1 − 1

)
+O

(
1

N +M

)
(4.20)

where HA(P ,Q) is the harmonic divergence between the true posterior and the ap-

proximation. This equation demonstrates that the approximation error disappears as

N and M get large. Similarly, assuming unbiasedness, the bridge sampling estimator

is a maximum likelihood estimate of the true marginal likelihood (Wang and Meng,

2016). However, the rate at which influence of divergence between the posterior and

approximation disappears as the number of posterior samples increases is ill-defined

and these problems are much more apparent in high dimensional posteriors. While

work has shown that these assumptions are met when the posterior approximation

is essentially the same as the true posterior, it is worthwhile to explore the realistic

scenario where the posterior and approximation are not perfectly aligned. Notions

of bias are mentioned and a solution is proposed in the form of posterior warping to

increase overlap between the approximation and true posterior (Meng and Schilling,

2002; Wang and Meng, 2016). However, these works provide no exploration of how

the standard bridge sampling estimator performs under less-than-ideal assumptions.

An asymptotically biased estimator of the marginal likelihood is of particular concern

since skewness in the posterior can lead to mismatched modes between the posterior
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and approximation. 4

In order to explore the accuracy of the bridge sampling estimator, I use a series of

simulated data sets for a Bayesian linear regression model with a fixed error variance

component. In particular, I seek to explore the performance of the bridge sampling

estimator as a function of two attributes - the dimensionality of the posterior and the

quality of the approximation to the posterior. Bayesian linear regression is an ideal

model for this kind of exploration since the resulting posterior is exactly multivari-

ate normal and the Candidate’s estimator exactly computes the marginal likelihood

with enough posterior samples. I simulated 500 data sets with 1000 observations and

25, 100, 250, or 500 covariates and produced 10,000 posterior draws from the cor-

responding linear regression posteriors. For each of these data sets, I computed the

Candidate’s estimator of the marginal likelihood and the bridge sampling estimator

for the corresponding linear regression model under the true posterior. To assess

performance with a somewhat inaccurate approximation, I induced positive skewness

without changing the area under the true posterior using the warping method pre-

sented by Meng and Schilling (2002). Following the work of Gronau et al. (2017), I

used multivariate normal approximations fit with moment matching for all posteriors

and take 10,000 draws from the approximation. In order to assess the estimator’s

variance, I replicated the MCMC procedure 100 times for a number of the simula-

tions to get a bootstrap estimate of the variance associated with the bridge sampling

estimator.5

4As a quick point of clarification, the variance for the point estimate of the marginal likelihood
is generally very small since the marginal likelihood is bounded between zero and one and generally
very close to zero. However, marginal likelihoods on this scale are rarely useful since the difference
between values that are close to zero are difficult to detect. For this reason, the logarithm of the
marginal likelihood is the preferred quantity. For the rest of this paper, any estimates of the marginal
likelihood will be presented and discussed on the natural logarithm scale.

5The initial intention was to bootstrap the estimator’s variance for all simulations. However,
after a few pilot runs, it became increasingly apparent that no more simulations were needed and
the results from Meng and Wong (1996) and Wang and Meng (2016) hold.
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FIGURE 4.1. Density plots of 500 simulated bridge sampling estimates com-
pared to the true marginal likelihood.

No Skew Low Skew High Skew

−30 −15 0 15 −30 −15 0 15 −30 −15 0 15

25 Covariates

No Skew Low Skew High Skew

−30 −15 0 15 −30 −15 0 15 −30 −15 0 15

100 Covariates

No Skew Low Skew High Skew

−30 −15 0 15 −30 −15 0 15 −30 −15 0 15

250 Covariates

No Skew Low Skew High Skew

−30 −15 0 15 −30 −15 0 15 −30 −15 0 15

500 Covariates

Density of Bridge Sampling Estimates under Varying Degrees of Posterior Warping

Percentage Difference between Bridge Sampling Estimate and Candidate’s Estimate

R
e

la
ti
ve

 D
e

n
s
it
y

Note: Dotted lines show the mean of the 500 estimates. Skewness is induced using
posterior warping techniques from Meng and Schilling (2002).

In line with the findings of Meng and Wong (1996), the simulations show that the

bootstrap variance quickly shrinks to zero when the number of draws taken from the

true posterior and the approximation is large. Asymptotically incorrect estimates, on

the other hand, appear to be a problem. Figure 4.1 shows the results of these sim-

ulations and assesses the incorrectness of the estimator across all simulated models.

In the case where the posterior and approximation are both essentially multivariate

normal, the bridge sampling estimator performs very well - the bridge sampling es-

timator is generally accurate and any errors are generally quite small. Things are

not quite as neat when the approximation to the posterior is further from the truth.

When the posterior has low amounts of skew, the modal bridge sampling estimator is

generally close to the true value. However, the distribution of values is not symmetric;
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the distribution is left-skewed and the bulk of estimates overestimate the true value

of the marginal likelihood. When the posterior exhibits high amounts of skew, the

same pattern is seen, but the modal estimate is no longer close to the true marginal

likelihood and the left tail is even more extreme. These effects become even more

pronounced when the dimensionality of the posterior increases. Interestingly, across

all simulations, the mean of the estimates is quite close to zero. This implies that over

a large number of models, the bridge sampling estimator is unbiased. Individual runs

of the bridge sampling procedure, though, lead to estimates that are asymptotically

incorrect due to approximation error.

These simulations show that the relative divergence between the approximation and

the true posterior has an influence on the quality of the bridge sampling estimate of

the marginal likelihood. In the typical high-dimensional case where the approximation

is chosen to be a multivariate elliptical distribution, moment matching is used to find

an approximation which matches the posterior draws. However, moment matching

leads to a mismatch of high density regions when the true posterior is skewed in a

non-elliptical way. By choosing an approximation that incorrectly assigns mass to

low-density regions of the posterior, the bridge sampling estimator can vary widely

and, potentially, lead to incorrect inference about the relative quality of multiple

models.

One approach which seeks to address these issues is to allow for more flexible methods

for choosing a posterior approximation. Choosing an approximation which matches

all of the quirks of the posterior will almost certainly lead to a bridge sampling es-

timate that is very close to the truth. To this end, posterior warping methods that

seek to augment the posterior without changing the normalizing constant provide

an approach to creating better approximations and, in turn, better estimates of the

marginal likelihood (Meng and Schilling, 2002; Wang and Meng, 2016). While this
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method corrects for skewness, multimodality, and other irregularities in the posterior,

it still has a few weaknesses. First, posterior warping relies on automatic differenti-

ation to get estimates of the Jacobian and Hessian associated with the posterior. In

high-dimensional posteriors, this leads to significant computational strain that makes

the numerical calculation prohibitively difficult for most standard workstations. Sec-

ond, posterior warping works best when the form of the posterior is close to elliptical.

For many models where skewness is expected (e.g. partial identification of parame-

ters, strong prior influence, parameter values close to bounds on the domain, small

sample size, etc.) or the sampling scheme does not guarantee draws that accurately

represent a smooth posterior (e.g. discrete posterior margins, Metropolis-Hastings

draws with poor mixing, etc.), there is no reason to expect that the posterior will

have a smooth, elliptical form. Finally, and perhaps most importantly, the method

still only produces a single point estimate that does not encode any sense of accuracy

or uncertainty.

4.4 An Interval Estimate for the Marginal Likelihood

Addressing distributional complexity in a point estimator is a difficult problem. While

a first instinct is to place confidence intervals on the bridge sampling estimator,

the previous simulations show that the variance of the estimator quickly shrinks to

zero, even when the estimate is incorrect. From the simulations, it seems that the

magnitude of the incorrectness grows as a function of the quality of the approximation.

Thus, it seems prudent to attempt to build an interval that takes this aspect of the

problem into account.

Variational methods for Bayesian inference seek to fit models by creating an approxi-

mation of a known form to a model’s posterior that minimizes the difference between

the true posterior and the approximation. At the core of this approach are identities
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that bound the marginal likelihood of the model and approximations can be chosen

that minimize the divergence between the posterior and approximation. For the pur-

poses of defining an interval estimate for the marginal likelihood, these variational

identities provide a framework for creating intervals where poor approximations result

in larger interval widths.

I begin with the core identities of variational Bayesian inference: the evidence lower

bound, L, and evidence upper bound, U (Ji et al., 2010; Jordan et al., 1999).

Definition 4.4.1. Let P(θ|X ) be the true posterior distribution conditional on some

data, X . Let P(θ,X ) be the complete data likelihood of X given some prior on

θ, π(θ). As with importance sampling methods, let Q(θ|γ) be any proper density

function that shares the same support as the true posterior parameterized by γ =

{γ1, γ2, ..., γk} ∈ Γ. Then:

L+KL(Q||P) = logP(X ) = U −KL(P||Q) (4.21)

where:

L =

∫
Θ

Q(θ|γ)[logP(θ,X )− logQ(θ|γ)]dθ

U =

∫
Θ

P(θ|X )[logP(θ,X )− logQ(θ|γ)]dθ

KL(Q||P) =

∫
Θ

Q(θ|γ)[logQ(θ|γ)− logP(θ|X )]dθ

KL(P||Q) =

∫
Θ

P(θ|X )[logP(θ|X )− logQ(θ|γ)]dθ

(4.22)

KL(P||Q) is the Kullback-Leibler divergence from the approximation Q(θ|γ) to

P(θ|X ), or the expected density ratio of P(θ|X ) to Q(θ|γ) taken with respect to

the true posterior. As the KL divergence is not a symmetric measure of distance,

the reverse divergence, KL(Q||P), is a separate and unequal measure of divergence.
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Directly applying Gibbs’ inequality, Definition 4.4.1 shows that L ≤ logP(X ) ≤ U .

This result is key for the usage of variational methods.

These identities are typically used to fit models with respect to one of the conditions.

Using the lower bounds, various mean field approximation can be used to derive

the approximation that minimizes KL(Q||P) from the true posterior without ever

needing to take draws from the true posterior (Jordan et al., 1999; Jordan, 2004).

While this procedure can be much quicker than standard Monte Carlo techniques,

there are questions about the inferential properties of variational posteriors and the

inherent model selection procedure which is central to variational methods (Zhang

et al., 2018).

Addressing some of these concerns, Ji et al. (2010) discuss model fitting using the

upper bound and a pseudo-lower bound. While standard variational methods seek

to sit an approximation that minimizes KL(Q||P), Ji et al. (2010) propose first run-

ning a Monte Carlo simulation to produce draws from the true posterior, then using

these draws to derive an approximation which allows for a sandwiching interval that

encompasses the true marginal likelihood. While Ji et al. (2010) use these identities

to create schemes for deriving approximate posterior distributions that minimize the

evidence upper bound, I use the identities derived in this paper as a starting point

for a set of intervals on the model evidence.

Definition 4.4.2. For a specified model with parameters θ = {θ1, θ2, ..., θk} ∈ Θ and

prior density, π(θ), assume that N iid draws from P(θ|X ), θ∗ = (θ∗1, θ
∗
2, ..., θ

∗
N) ∈ Θ

are taken. Given θ∗, an approximate posterior, Q(θ|γ) is fit and M independent and

identically distributed draws are taken, ω∗ = (ω∗1, ω
∗
1, ..., ω

∗
M) ∈ Θ. For all θ∗ and ω∗,

assume that P(θ∗i ,X ) and P(ω∗j ,X ) can be assessed. Similarly, assume that Q(θ∗|γ)

and Q(ω∗|γ) can be assessed.
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Define estimators of U and L as:

U0 =
1

N

N∑
i=1

[logP(θ∗i ,X )− logQ(θ∗i |γ)]

L0 =
1

M

M∑
j=1

[logP(ω∗j ,X )− logQ(ω∗j |γ)]

(4.23)

respectively. By the law of large numbers, these two estimators converge almost

surely to the evidence upper bound and evidence lower bound, respectively. Note

that these two estimators arise as solutions from Monte Carlo integration of U and

L - recognizing that U and L are expectations with respect to the posterior and

approximations, respectively, Monte Carlo integration can performed with θ∗ and

ω∗.

Appealing to central limit theorem:

U0
d→ N

(
U , σ

2
U
N

)
L0

d→ N
(
L, σ

2
L
M

)

Assuming flat priors on U and L:

P(U|θ∗) ∼ N
(
U0, σ

2
U
)

P(L|ω∗) ∼ N
(
L0, σ

2
L
) (4.24)

where σ2
U =

σ̂2
U
N

, σ2
L =

σ̂2
L
M

, and σ̂2
U and σ̂2

L are unbiased estimators of the sample

variance of logP(θ∗,X )− logQ(θ∗|γ) and logP(ω∗,X )− logQ(ω∗|γ), respectively.6

Definition 4.4.2 shows that evidence upper and lower bounds can be expressed as ran-

dom variables with moments that can be modeled from samples of the true posterior

6N (µ, σ2) is the normal density parameterized by mean µ and variance σ2.

169



and samples from the chosen approximation. With a light assumption, this can be

extended to treat the marginal likelihood as a random variable, itself.

Definition 4.4.3. Let ∆ = logP(X ). Given values for the evidence upper and lower

bounds and assuming that the marginal likelihood between the bounds follows a four-

parameter beta distribution, a conditional posterior for the marginal likelihood can

be derived:

P(∆|a, b,U ,L) =
(∆− L)a−1 (U −∆)b−1

B(a, b) (U − L)a+b−1
(4.25)

where a and b are shape parameters as in the standard beta distribution and B(a, b)

is the standard Beta function with inputs a and b.

Integrating over all possible values of U and L, the marginal posterior takes the form:

P(∆|a, b,θ∗,ω∗) =

∫ ∫
(∆− L)a−1 (U −∆)b−1

B(a, b) (U − L)a+b−1
P(U|θ∗)P(L|ω∗)dUdL (4.26)

Definition 4.4.3 establishes a random variable representation of the marginal likeli-

hood. Unlike point estimators which produce a single value for the marginal likeli-

hood, treating the marginal likelihood as a random variable allows for incorporation

of approximation error into the computed value and, in turn, credible intervals that

should surround the true marginal likelihood. While the posterior for the marginal

likelihood does not have a convenient, closed-form representation, asymptotic mo-

ments can be examined to give intuition about the role that approximation error

plays in the posterior.

Lemma 4.4.1. Let α ∼ Beta(a, b) be a beta distributed random variable that ranges

between zero and one. The asymptotic expectation and variance of P(∆|a, b,θ∗,ω∗)
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can be defined as:

E[∆|a, b,θ∗,ω∗] = E[(1− α)]U0 + E[α]L0

V[∆|a, b,θ∗,ω∗] = (U0 − L0)2V[α]

(4.27)

where E[α] = a
a+b

, E[1− α] = b
a+b

, and V[α] = ab
(a+b)2(a+b+1)

.

Proof. The proof for this statement can be found in Appendix A.

The posterior variance for the marginal likelihood random variable illuminates how

this approach differs from the bridge sampling approach. While the components of

the estimators are the same, beginning with Equation 4.22 and deriving bounds incor-

porates the divergence between the approximation and the posterior in the variance

of the resulting distribution. Similarly, this approach leads to a posterior variance

which can be easily computed from the sample, which is an important step when

deriving intervals. Equation 4.20 shows that the bridge sampling estimator has a

variance which shrinks to zero as the number of draws from the true posterior and

approximation get large, ignoring the divergence term included in the variance. Since

there is evidence that the bridge sampling estimator is asymptotically incorrect, this

induces poor behavior of the resulting estimator when the approximation does not

perfectly fit the true posterior. The bounds derived from the identities in Ji et al.

(2010) (JSW Bounds), move the divergence term outside such that the variance does

not approach zero asymptotically. This aspect of JSW bounds allows the interval to

hedge against uncertainty due to approximation error.

4.4.1 Estimation and Performance of JSW Bounds

Much like the bridge sampling scheme, estimation of JSW bounds follows a simple

computational scheme:
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1. Draw N posterior samples from the true posterior distribution, P(θ|X ), θ∗ =

(θ∗1, θ
∗
2, ..., θ

∗
N).

2. Fit an approximation to the posterior distribution.

3. Draws M samples from the approximation, Q(θ|γ), ω∗ = (ω∗1, ω
∗
1, ..., ω

∗
M).

4. Assess P(θ∗,X ), P(ω∗,X ), Q(θ∗|γ), and Q(ω∗|γ).

5. Compute U0, L0, σ2
U , and σ2

L.

6. Given choices for the prior hyperparameters, a and b, use a bootstrap scheme

to get B Monte Carlo draws from the posterior on the marginal likelihood:

ub ∼ N (U0, σ
2
U)

lb ∼ N (L0, σ
2
L)

αb ∼ Beta(a, b)

∆∗b = ub − αb(ub − lb)

7. Compute highest posterior density intervals for ∆∗ at the desired width.

While the posterior variance of the marginal likelihood is known, its form is not. Un-

der extremely restrictive assumptions, symmetry around the optimal point estimator

can be imposed. However, initial work shows that the resulting posterior is not gen-

erally symmetric. As such, JSW bounds use a Monte Carlo simulation framework to

simulate draws from the resulting posterior and compute credible intervals.

One point worth noting is that JSW bounds, like most marginal likelihood estimation

approaches, assume that N independent and identically distributed draws are taken

from the posterior. While some Monte Carlo approaches explicitly correct draws to
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ensure that draws are iid, the majority of simulation strategies suffer from autocor-

relation across draws, leading to a violation of the assumption. Without correction,

it should be expected that any empirical results will underestimate any variances of

interest. For this reason, I follow the suggestions of Gronau et al. (2017) and set

N equal to the effective sample size of the complete data likelihood of the posterior

draws (Geyer, 2011). This approach shrinks the sample size in accordance with the

level of autocorrelation among draws and provides a reasonable approximation to an

equivalent number of independent and identically distributed draws achieved by the

Monte Carlo procedure.

To assess the performance of JSW bounds, I use the same simulations done previ-

ously. As before, all approximations are multivariate normal with moments chosen

by matching the moments of the joint posterior. For each linear regression data set

with differing numbers of covariates and levels of posterior skewness, I compute the

true marginal likelihood using the Candidate’s estimator, the bridge sampling esti-

mator, and 95% JSW intervals with a Beta(0, 0) prior (to induce the maximum width

on the JSW interval estimates). Specifically, I explore the coverage of the JSW in-

tervals. Coverage explores two of the biggest concerns with JSW intervals. First,

coverage demonstrates how frequently JSW intervals include the true marginal like-

lihood value. Second, coverage demonstrates the specificity of JSW intervals. While

the true value may be included in the interval, short intervals are preferred to wide

ones and over-encompassing intervals make model comparison extremely difficult. It

is also worth exploring how the chosen level for the JSW interval influences the true

probability of including the true value.

Figure 4.2 compares the bridge sampling estimator and the corresponding JSW inter-

vals to the true marginal likelihood. A first observation is that the bridge sampling

estimator and JSW bounds are generally computing similar values. In fact, over all
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FIGURE 4.2. Bridge sampling estimator and JSW intervals for 500 randomly
generated linear regression data sets with varying numbers of covariates and
amounts of posterior skew.
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Note: Data are generated from a linear regression model with a known error variance.
Skewness is induced using posterior warping techniques from Meng and Schilling
(2002). 95% HDP intervals are shown for JSW intervals. Percentages are computed
with respect to the Candidate’s estimator to the marginal likelihood for each model.
Bayesian linear regression posterior samples and Candidate’s estimator were computed
using MCMCregress from MCMCpack in R (Martin et al., 2011).

simulations, the JSW bounds include the bridge sampling estimator approximately

90% of the time. In the case of low skew, the intervals almost always include the

bridge sampling estimator while high skew posteriors lead to fewer intervals including

the estimate. The most stark conclusion from these simulations is that the 95% JSW

bounds always include the true value of the marginal likelihood. While 100% coverage

is not always a bad thing, it comes at cost of specificity in JSW Bounds. When there

is no skew in the posterior, the width of the JSW bounds are generally small. On

the other hand, skewness in the posterior frequently leads JSW bounds to be quite
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wide, often on the order of 20% above and below the true value. This width leads

to problems when comparing models - if the goal is to use posterior intervals to say

that one model fits the data better than another, wide bounds make it more difficult

to distinguish between models.

4.5 Refinements to the JSW Interval

JSW bounds have widths that grow in accordance with the distance between the

approximation and the true posterior. Lemma 4.4.1 shows that the posterior variance

that dictates the interval length grows as the distance between the evidence upper

bound and evidence lower bound increases. Using the key variational identities, this

distance can be shown to be a direct consequence of the forward and reverse KL

divergence between the true posterior and approximation:

U − L = KL(P||Q) +KL(Q||P) ; L ≤ logP(X ) ≤ U (4.28)

While this identity defines the range of possible values, it gives no information about

where in the interval the true marginal likelihood exists. To address this concern,

JSW bounds treat the marginal likelihood as a random variable. With known U and

L, Definition 4.4.2 formalizes this random variable as:

logP(X ) = U − α(U − L)

α ∼ Beta(a, b)

α(U − L) = KL(P||Q) ; (1− α)(U − L) = KL(Q||P)

(4.29)

KL(P||Q) + KL(Q||P), often referred to as Jeffreys’ divergence, is a symmetric

measure of distance that encodes the KL divergence in both the forward and reverse

directions. As defined above, α encodes the proportion of the Jeffreys’ divergence

that can be attributed to KL(P||Q). This construction then admits a set of possible
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values ranging from L to U .

While the variational identities dictate that Equation 4.28 is the minimum width

bound on the marginal likelihood, the bound edges represent a a combination of

forward and reverse KL divergences that cannot, by definition, occur together. To

see this, assume that KL(Q||P) = U − L and KL(P||Q) = 0. If KL(P||Q) = 0,

then P(θ|X ) = Q(θ|γ) ∀ θ ∈ Θ and KL(Q||P) = 0, which contradicts the initial

conditions. Logically, this notion extends to values close to zero - KL(P||Q) = ε and

KL(Q||P) much larger than ε occurs occurs when P(θ|X ) is small for all θ ∈ Θ while

there are regions of high density in Q(θ|γ). If the goal of the approximation is to

best match the true posterior, then these cases should arise infrequently. As such, it

makes sense that there is a relationship between KL(P||Q) and KL(Q||P) - knowing

KL(P||Q) should reasonably bound KL(Q||P).

This notion can be formalized by exploring the ratio of the two KL divergences,

KL(P||Q)
KL(Q||P)

. Specifically, I show that this ratio is bounded due to the fact that it is a

ratio of two f -divergences:

Theorem 4.5.1. Let P(θ|X ) and Q(θ|γ) be two proper density functions that share

common support (i.e. P(θ = θ|X ) = 0 ⇐⇒ Q(θ = θ|γ) = 0). Further assume that

P(θ|X ) is absolutely continuous with respect to Q(θ|γ) and vice versa, P(θ|X )��

Q(θ|γ). Then the ratio of the forward and reverse KL divergences is bounded such

that:

κ(β2) ≤ KL(P||Q)

KL(Q||P)
≤ κ(β1) (4.30)

where β1 = sup
θ

P(θ|X )
Q(θ|γ)

, β2 = inf
θ

P(θ|X )
Q(θ|γ)

, and κ(t) = 1+t log t−t
t−log t−1

.

Proof. The proof for this theorem can be found in Appendix B.
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4.5.1 Kappa Bounds on the Marginal Likelihood

Using Theorem 4.5.1, I propose a refined set of bounds, called kappa bounds, on the

marginal likelihood:

Theorem 4.5.2. Let P(θ|X ) be a proper probability density function with marginal

likelihood P(X ). Let Q(θ|γ) be an approximation to P(θ|X ) that shares the same

domain. Then:

L+
(U − L)

1 + κ(β1)
≤ logP (X ) ≤ U − κ(β2)(U − L)

1 + κ(β2)
(4.31)

Proof. Given P(θ|X ) and Q(θ|γ), recall that:

U −KL(P||Q) = L+KL(Q||P) = logP(X )

This can be rearranged such that:

U − α(U − L) = logP(X ) = L+ (1− α)(U − L)

where:

α =
KL(P||Q)

KL(P||Q) +KL(Q||P)

Define ρ as:

ρ =
KL(P||Q)

KL(Q||P)

Then α can be rewritten as:

α =
ρ

1 + ρ

By Theorem B.1 and letting t = P(θ|X )
Q(θ|γ)

, ρ is bounded such that:

κ(β2) ≤ ρ ≤ κ(β1)
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Applying to α:

κ(β2)

1 + κ(β2)
≤ α ≤ κ(β1)

1 + κ(β1)

Which implies a maximum width bound on logP(X ):

L+
(U − L)

1 + κ(β1)
≤ logP(X ) ≤ U − κ(β2)(U − L)

1 + κ(β2)

since β2 < 1 and β1 > 1.

Theorem 4.5.2 demonstrates that JSW bounds often include values that are not pos-

sible given the relationship between KL(P||Q) and KL(Q||P). While JSW bounds

rely wholly on the expectation of the density ratio to create bounds, kappa bounds

leverage both the expectation and extrema conditions to further shrink the bounds on

the marginal likelihood. In words, kappa bounds leverage the fact that if the true pos-

terior and approximation are never that far apart, then the forward and reverse KL

divergences cannot be that far apart. In a case where the approximation is carefully

chosen to match moments and areas of high mass in the posterior, the approximation

should never have areas of mass that do not match areas of mass in the posterior.

Even when the choice of approximation is not perfect, there are significant portions

of JSW bounds that can be ruled out as inadmissible.

The improvement in bound width given by kappa bounds compared to JSW bounds

is:

1− κ(β2)

1 + κ(β2)
− 1

1 + κ(β1)
(4.32)

Improvement is guaranteed when the approximation and posterior share common

support - the width of kappa bounds is equal to JSW bounds only when the maxi-

mum density ratio is infinite and the minimum density ratio is zero. Because of the

logarithmic scale of κ(t), kappa bounds provide a significant improvement over JSW

bounds in all but the most extreme cases.
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FIGURE 4.3. Shrinkage provided by Kappa Bounds compared to JSW Bounds.
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Interval Shrinkage as a Function of Ratio Extremes

The marginal likelihood is scaled as (log P(X) − L)/(U − L).

Note: Interval shrinkage is a function of min
θ

P(θ|X )
Q(θ|γ)

and max
θ

P(θ|X )
Q(θ|γ)

. Values closer to 1

yield smaller intervals.

Figure 4.3 shows the proportional improvement over JSW bounds at a number of

minimum and maximum density ratios. A first observation is that even at the most

extreme density ratios plotted, inf
θ

log P(θ|X )
Q(θ|γ)

= 1
1000

and sup
θ

log P(θ|X )
Q(θ|γ)

= 1000, the

improvement over JSW bounds is roughly 15%. Taken together, this shows that even

if the magnitude of the minimum and maximum density ratios is in the thousands,

kappa bounds provide roughly a 30% improvement over JSW bounds. Decreasing the

order to the minimum and maximum increases the improvement. On the other side,

looking at an approximation where the maximum and minimum density ratios are 2

and 1
2

shows massive improvement, ruling out around 90% of the JSW interval.

This result directly addresses the large width and 100% coverage of JSW intervals.

Under a reasonably diffuse prior on the marginal likelihood, especially under the least

favorable prior, some portion of the JSW interval gives values that cannot exist. Since
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these values are at the end of the interval and are almost surely covered, JSW intervals

will always include all of the possible values that the marginal likelihood can viably

take. Kappa bounds correct for this problem and presents shorter intervals that only

include values that can possibly exist, leading to shorter intervals and more accurate

coverage.

4.5.2 Estimation of Kappa Bounds

The inequality in Theorem 4.5.2 implies a range on the log marginal likelihood, but

gives no information about where in the range it may be. As in Definition 4.4.3,

treating the log marginal likelihood as a random variable allows for specification of a

conditional posterior:

P(∆|a, b,U ,L, κ(β1), κ(β2),θ∗,ω∗) =

(
∆− L− (U−L)

1+κ(β1)

)a−1 (
U − κ(β2)(U−L)

1+κ(β2)
−∆

)b−1

B(a, b)
(

(U − L)
(

1− κ(β2)
1+κ(β2)

− 1
1+κ(β1)

))a+b−1

(4.33)

Given this prior construction, the distribution of interest is a posterior over the pos-

sible values of logP(X ):

P(∆|a, b,θ∗,ω∗) =

0∫
−∞

0∫
−∞

1∫
0

∞∫
1

P(∆|a, b,U ,L, κ(β1), κ(β2),θ∗,ω∗)

P(U ,L, κ(β1), κ(β2)|θ∗,ω∗)dκ(β1)dκ(β2)dLdU

(4.34)

where θ∗ and ω∗ are a set of N draws from the true posterior and M draws from the

approximation, respectively. Note that a and b are hyperparameters which influence

the shape of the final distribution. Further, assuming that U ⊥⊥ L ⊥⊥ β1 ⊥⊥ β2
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conditional on θ∗ and ω∗:

P(∆|a, b,θ∗,ω∗) =

0∫
−∞

0∫
−∞

1∫
0

∞∫
1

P(∆|a, b,U ,L, κ(β1), κ(β2),θ∗,ω∗)P(U|θ∗)P(L|ω∗)

P(κ(β1)|θ∗,ω∗)P(κ(β2)|θ∗,ω∗)dκ(β1)dκ(β2)dLdU

(4.35)

The posterior distribution for the log marginal likelihood has no convenient form.

Like Lemma 4.4.1, an asymptotic posterior expectation and variance can be defined.

Lemma 4.5.1. Let α ∼ Beta(a, b) be a beta distributed random variable that ranges

between zero and one. Also, let K1 = 1
1+κ(β1)

and K2 = κ(β2)
1+κ(β2)

. Assuming that V[K1]

and V[K2] go to zero as N and M get large, the asymptotic expectation and variance

of P(∆|a, b,θ∗,ω∗) can be defined as:

E[∆|a, b,θ∗,ω∗] = E[(1− α)] (U0 − (U0 − L0)E[K1]) + E[α] (L0 + (U0 − L0)E[K2])

V[∆|a, b,θ∗,ω∗] = (U0 − L0)2(1− E[K1]− E[K2])2V[α]

(4.36)

where E[α] = a
a+b

, E[1− α] = b
a+b

, and V[α] = ab
(a+b)2(a+b+1)

.

Proof. The proof follows Lemma 4.4.1 and leverages the assumption that κ(β1) ⊥⊥

κ(β2) ⊥⊥ U ⊥⊥ L. The result follows this assumption trivially.

Compared to Lemma 4.4.1, it is easy to see that the variance of the posterior shrinks

in accordance with the amount of information gained from the extrema of the density

ratio. As with JSW bounds, the variance is a function of the evidence upper and

lower bounds and a prior belief about the location of the log marginal likelihood.

Kappa bounds introduce the extrema conditions and show that the variance of the

posterior can shrink in accordance with how good the approximation performs - an
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approximation that fits well everywhere can reduce the variance to essentially zero

even if there is distance between the evidence upper and lower bounds.

Estimating kappa bounds first requires estimating the evidence lower and upper

bounds and their corresponding variances. Definition 4.4.2 can be leveraged to get

these values. Kappa bounds also require estimation of the relative extrema of the

density ratio of the posterior and the approximation. In order to estimate the full

posterior, it is necessary to estimate a random variable representation of these values.

Recall that:

κ(β1) = κ

(
sup
θ

P(θ|X )

Q(θ|γ)

)
κ(β2) = κ

(
inf
θ

P(θ|X )

Q(θ|γ)

)
where κ(t) = 1+t log t−t

t−log t−1
. Estimating these two quantities requires estimating the den-

sity ratio of P(θ|X ) to Q(θ|γ). Density ratio estimation can be done in a variety of

ways and one accurate and computationally viable approach leverages the duality of

classification and density ratios.

Definition 4.5.1. Assume that we have N samples from P(θ|X ) and M samples

from Q(θ|γ). Let Y be a vector of labels that encodes the distribution from which

each sample was drawn and let F be the collection of samples:

Y = {1, 1, 1, ...︸ ︷︷ ︸
N

, 0, 0, 0, ...︸ ︷︷ ︸
M

} = {y1, y2, ..., yN+M}

F = {θ∗1, θ∗2, ..., θN︸ ︷︷ ︸
P(θ|X )

, ω∗N+1, ω
∗
N+2, ..., ω

∗
N+M︸ ︷︷ ︸

Q(θ|γ)

} = {f1, f2, ..., fN+M}

Applying Bayes rule:

P(fi|X )

Q(fi|γ)
=

P(yi = 1|fi)P(fi)

P(yi = 1)

(
P(yi = 0|fi)P(fi)

P(yi = 0)

)−1

=
P(yi = 1|fi)
P(yi = 0|fi)

P(yi = 0)

P(yi = 1)

Assuming that the prior probability of classification is proportional to the sample
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sizes:

P(fi|X )

Q(fi|γ)
=

P(yi = 1|fi)
P(yi = 0|fi)

M

N

Finally, recognizing this as a two class problem:

P(fi|X )

Q(fi|γ)
=

P(yi = 1|fi)
1− P(yi = 1|fi)

M

N
(4.37)

This classification approach provides a viable way to estimate the density ratio for

any point fi ∈ Θ from samples. At its core, the classification method is estimating a

function with inputs from the set of all possible parameters that outputs the density

ratio at that point. A variety of classification approaches exist and provide varying

types of classifiers. Any classification method used for estimating density ratios should

exhibit a few properties and operate under a few assumptions:

1. The method should provide class probabilities. Further, the class probabilities

should be asymptotically consistent to the true class probabilities.

2. P(yi = 1|fi) should be smooth and nonlinear in f . For the vast majority of

distributions, there should be no expectation that the likelihood ratio monoton-

ically increases or decreases in the feature space. As such, the classifier should

uncover a smooth, but nonlinear, function of f for the probability that the value

comes from P(θ|X ).

3. Related to nonlinearity, the class probability for values outside of the observed

range should approach equality. Specifically, assume that P(θ|X ) and Q(θ|γ)

are probability distributions that share a common domain over all dimensions.

Let R ⊆ Θ be the convex hull dictated by F . For any η 6∈ R, P(η|X )
Q(η|γ)

= 1.

Using a classification approach that meets these requirements, the class probabilities

can be used to estimate posterior distributions for κ(β1) and κ(β2) that converge, in

expectation, to their true values:
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Lemma 4.5.2. Let φ(f) = P(y = 1|f ∈ R,F ) be the true probability that f comes

from P(θ|X ). Given T = N + M samples from the posterior and approximation,

fi ∈ (f1, f2, ..., fT ), let φ̂(fi) = P(y = 1|f = fi) be the individual class probability

estimates. Assuming that φ̂(fi)
p→ φ(f), the individual class probability estimates

can be used to derive an estimate for κ(β1) and κ(β2) such that:

g
(
{φ̂(f1), φ̂(f2), ..., φ̂(fT )}

)
p→ κ(β1)

h
(
{φ̂(f1), φ̂(f2), ..., φ̂(fT )}

)
p→ κ(β2)

(4.38)

where g() and h() are functions of estimated class probabilities of the samples. In

turn, there exist posterior distributions for κ(β1) and κ(β2) such that:

E[κ(β1)|F ] = g
(
{φ̂(f1), φ̂(f2), ..., φ̂(fT )}

)
E[κ(β2)|F ] = h

(
{φ̂(f1), φ̂(f2), ..., φ̂(fT )}

) (4.39)

Proof. A proof for this statement can be found in Appendix C.

Lemma 4.5.2 shows that tractably estimating a posterior distribution for κ(β1) and

κ(β2) only requires estimating the class probabilities given by a probabilistic clas-

sification approach and accepting a few asymptotic assumptions. As long as the

probabilistic classification method used gives consistent estimates of the class prob-

abilities for each of the samples in the training set, the distribution function for the

maximum and minimum density ratios can be estimated.

A nonlinear classification approach that meets the necessary conditions is the classi-

fication random forest and corresponding nonparametric probability machine (Mal-

ley et al., 2012; Wright and Ziegler, 2015). Using this approach for classification, a

method for estimating the posterior distributions for P(κ(β1)|θ∗,ω∗) and P(κ(β2)|θ∗,ω∗)

has the following structure:
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1. Consider a T × K matrix of training data, F , that includes N samples from

P(θ|X ) and M samples from Q(θ|γ).

2. A bootstrap sample with replacement of size T is taken from the training set.

The samples left out due to the bootstrap procedure are called the out-of-bag

(OOB) samples.

3. A classification tree is grown using the bootstrap data set. The tree is con-

structed by recursively splitting data into distinct subsets so that one parent

node leaves two child nodes. For splitting data, all splits of a random subset of

features are considered. The optimal split of a feature is the one minimizing the

value of some dichotomous purity measure, such as the Gini index or deviance.

4. The tree is grown to the greatest extent possible but requiring a minimum

nodesize of 10% of the sample. No pruning is performed. The final nodes in a

tree are called terminal nodes. Note that this step is somewhat different than

the standard random forest algorithm.

5. Class probabilities for each OOB sample are computed by dropping the observa-

tion down the tree to its terminal node and computing the proportion of in-bag

samples belonging to each class at that node.

6. Steps 2-5 are repeated B times to grow B classification trees.

7. Across the B trees, let φ̂(fi) be the set of Si class probabilities dictating P(y =

1|fi,F ) computed when observation i ∈ (1, ..., T ) is OOB. Given that the boot-

strap with replacement includes, on average, 63.2% of the data, E[Si] = .368B.

Define the sample means and variances as:

φ̄Si
(fi) =

1

Si

Si∑
s=1

φ̂(fsi)

σ̂2
φ(fsi)

=
1

Si − 1

Si∑
s=1

(φ̂(fsi)− φ̄Si
(fi))

2
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and define the sampling distribution for P(y = 1|fi,F ) as:

N

(
φ̄Si

(fi),
σ̂2
φ(fsi)

Si

)

8. Use empirical evaluation methods to construct the CDF of the minimum and

maximum class probabilities. For a large number of points g ∈ (0, 1):

P(maxφ(f) < g) =
T∏
i=1

g∫
0

N

(
x ; φ̄Si

(fi),
σ̂2
φ(fsi)

Si

)
dx

P(minφ(f) < g) =
T∏
i=1

1∫
g

N

(
x ; φ̄Si

(fi),
σ̂2
φ(fsi)

Si

)
dx

9. Transform g such that:

u(y) =
My

N(1− y)
; v(y) =

1 + y log y − y
y − log y − 1

; g∗ = v(u(g))

10. Given the distribution functions for the minimum and maximum, random draws

can be taken from each distribution by passing a uniform random variate to the

inverse distribution functions. Draws taken in this way are equivalent to draws

taken from P(κ(β1)|θ∗,ω∗) and P(κ(β2)|θ∗,ω∗).

JSW bounds represent a limiting case of kappa bounds; when samples from the pos-

terior and approximation are associated with class probabilities that are essentially

zero or one, kappa bounds are exactly the same as JSW bounds. In cases where the

approximation and posterior are truly far apart, this is the desired behavior. How-

ever, random forest classification algorithms seek to draw sharp boundaries between

classes and unbalanced gaps that exist between the posterior and approximations

samples can lead the algorithm to estimate class probabilities that are much closer to
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zero or one than they truthfully are. This can be prevented by drawing many samples

from both the posterior and approximation, so it is of utmost importance that a large

number of samples is taken from each distributions. This is even more important

for high dimensional posteriors due to the curse of dimensionality. Similarly, it is

important that the number of trees that are grown in the random forest algorithm

is large enough that each observation is OOB enough times such that the normality

assumption is not egregiously violated. A general rule of thumb that leads to good

performance is to set N and M equal to at least two times the number of dimensions

in the posterior. Similarly, growing at least 3680 trees for the random forest classifier

leads to each observation being OOB 1000 times, in expectation. These values show

good performance in tests and bootstrapping shows that these values allow the as-

sumptions made above to hold. New implementations of the random forest algorithm

allow for quick and efficient training of classifiers, even on large and high-dimensional

data sets, so computation time is of little concern.

Using this algorithm to estimate the distribution of κ(β1) and κ(β2), a full algorithm

for estimating kappa bounds has the following scheme:

1. Given a model with parameters θ = {θ1, θ2, ..., θk} ∈ Θ, prior density, π(θ),

and observed data, X , use simulation methods to get N draws from P(θ|X ),

θ∗ = (θ∗1, θ
∗
2, ..., θ

∗
N) ∈ Θ.

2. For each θ∗i ∈ θ∗, compute the complete data likelihood, P(θ∗i ,X ).

3. Given θ∗, choose an approximate posterior, Q(θ|γ).

4. Assess the density of each θ∗i ∈ θ∗ with respect to Q, Q(θ∗i |γ).

5. Take M independent and identically distributed draws from Q(θ|γ), ω∗ =

(ω∗1, ω
∗
2, ..., ω

∗
M) ∈ Θ.
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6. For each ω∗j ∈ ω∗, compute the complete data likelihood P(ω∗j ,X ) and assess

the density with respect to Q, Q(ω∗j |γ).

7. Compute the parameters for the posterior distributions of U and L in Defi-

nition 4.4.2. Similarly, compute the empirical approximation to the posterior

distributions of κ(β1) and κ(β2) in Definition 4.5.2 outlined above.

8. Given the set of posteriors, take a large number of draws from P(U|θ∗), P(L|ω∗),

P(κ(β1)|θ∗,ω∗), and P(κ(β2)|θ∗,ω∗). Given the prior parameters a and b, plug

these values into the four-parameter beta distribution and take draws from the

posterior. This creates a large number of draws from the posterior for the

marginal likelihood. Posterior intervals can be calculated using these Monte

Carlo samples.

4.5.3 Performance of Kappa Bounds

Like JSW bounds, empirical estimates of kappa bounds on the marginal likelihood

should surround the true marginal likelihood. As with the bridge sampling estimator

and JSW intervals, this can be assessed directly in a situation where the true marginal

likelihood is known. Unlike JSW intervals, however, kappa bounds should not always

include the true value of the marginal likelihood - since kappa bounds limit the width

of the interval to only include marginal likelihood values that are possible given the

ELBO and EUBO, Again, this is best explored by simulating the coverage of kappa

bounds and comparing their width to JSW intervals.

Using the running linear regression example, I compare the bridge sampling estimator,

JSW intervals, and kappa intervals to the true log marginal likelihood calculated by

the Candidate’s estimator. After the true model is estimated under varying numbers

of covariates, posterior warping is used to induce skewness. The posteriors are ap-

proximated by multivariate normal distributions that are fit using a moment-matching
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FIGURE 4.4. Bridge sampling estimator, JSW intervals, and Kappa intervals
for 500 randomly generated linear regression data sets with varying numbers
of covariates and amounts of posterior skew.

500 Covs. − No Skew 500 Covs. − High Skew
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Marginal Likelihood Estimates and Bounds

Take note of the extremely different scales on each x−axis!

Note: Data are generated from a linear regression model with a known error variance.
Skewness is induced using posterior warping techniques from Meng and Schilling
(2002). 95% HDP intervals are shown for JSW and Kappa intervals. Percentages are
computed with respect to the Candidate’s estimator to the marginal likelihood for each
model. Bayesian linear regression posterior samples and Candidate’s estimator were
computed using MCMCregress from MCMCpack in R (Martin et al., 2011).

technique. As with JSW intervals, kappa bounds are estimated using a maximum-

width Beta(0, 0) prior. The location of kappa intervals is compared to the location of

JSW intervals and the bridge sampling point estimator. Coverage of JSW intervals

and kappa bounds are computed and compared. Since 95% intervals are computed,

an ideal interval would show that roughly 95% of the 500 intervals estimated in this

simulation scheme cover the true log marginal likelihood value.

Figure 4.4 shows the results of these simulations. A first glance shows that the

location of kappa bounds and JSW bounds are generally similar and cover the true
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log marginal likelihood. Compared to the bridge sampling estimator, the interval

estimates perform favorably - true values are covered even when the bridge sampling

estimator is far away from the true value. There is a strong correlation between the

magnitude of the incorrectness of the bridge sampling estimator and the width of the

intervals. In many ways, this is a desirable result; since the underlying machinery of

the bridge sampling estimator and intervals are similar, it is expected that they share

similar locations. However, the fact that the intervals cover the true value make model

comparison under the interval estimators superior to the bridge sampling estimator.

JSW intervals are overly wide and have 100% coverage of the true log marginal likeli-

hood value. Figure 4.4 shows that the theoretical improvements of the kappa intervals

are carried to estimation and the expected shrinkage of the JSW interval occurs. For

the posteriors with no skew, the kappa interval is, on average, 63% smaller. This

corresponds to an average maximum log density ratio of the posterior to the ap-

proximation of approximately 3 and a minimum of -3. For posteriors with skew, the

improvement is roughly 51%, on average, corresponding to maximum and minimum

log density ratios of approximately 5 and -5. Under skewness in the posterior, mul-

tivariate normality is no longer approximately correct. However, these simulations

show that even a rough approximation demonstrates significant improvement.

A second consideration is the interval coverage. In the case of no skewness, across

different dimensionalities of the posterior, 95% kappa intervals have roughly 95%

coverage (95.2% for 25 covariates and 94.8% for 500 covariates). In the case of skew-

ness, the coverage is lower (91.4% for 25 covariates and 89.6% for 500 covariates),

but still reasonable. The decreased coverage is likely explained by violations of the

independence assumption, specifically U − L ⊥⊥ κ(β1), κ(β2). U − L encodes one

sense of closeness of the posterior and approximation, the average density ratio, while

κ(β1) and κ(β2) encode a notion of absolute closeness similar to the total variation
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distance. Pinsker’s inequality proves these two quantites are related and, for finite

sample spaces, the KL divergence is bounded by the total variation distance (Basu

and Ho, 2006). As such, it is reasonable to expect that there is some correlation

between U − L and κ(β1), κ(β2). While the extent of this effect is not explicitly ad-

dressed in this simulation, the coverage is not wildly off from the expected coverage

and further simulations show that this effect does not seem to have an impact in

realistic model evaluation settings. Thus, corrections for this correlation are left to

further work.

Taken as a whole, these simulations show that kappa bounds provide a superior

approach to estimating the log marginal likelihood over JSW bounds and the bridge

sampling estimator. Even accounting for the low additional computational overhead,

kappa bounds provide a fast and flexible approach to estimating the log marginal

likelihood that can be applied to a wide variety of Bayesian models.

4.6 Application of Kappa Bounds to Ordered Factor Analy-

sis Models

4.6.1 Kappa Bounds Applied to Simulated Data

The previous simulations demonstrate the accuracy and coverage of kappa bounds

in a situation where the log marginal likelihood is known. While this was important

for comparison and assessment of quality, kappa bounds are most useful in situa-

tions where the marginal likelihood is difficult to calculate and current methods of

approximation work poorly. One such model is the ordered factor analysis model.

Let X be a data set of Q observations of P ordered discrete items. Ordered factor

analysis seeks to find sources of shared covariance among the items. Specifically, the
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P items associated with observation q ∈ (1, ..., Q) have the following model:

X ∗q = α+ Λωq + σq (4.40)

where X ∗q is a P -vector of continuous latent variable representations of the observed

discrete outcomes, α is a P -vector of intercepts, ωq is a K-vector of factor scores asso-

ciated with each observation, Λ is a P×K matrix of factor loadings, and σq is P -vector

of idiosyncratic noise that follows a P -dimensional multivariate standard normal dis-

tribution with diagonal covariance. In order to effectively model the discrete nature

of the outcomes, X ∗j ∀ j ∈ (1, ..., P ), define a set of Cj + 1 ordered cut points for each

item, γj,k ∈ (γj,1, ..., γj,Cj+1) where γj,1 = −∞ < γj,2 = 0 < ... < γj,C < γj,C+1 = ∞

where Cj is the number of possible values that an observations take on item j. As-

suming that X ∗ follows a normal distribution, each discrete value can be modeled

as:

P (Yq,j = c ∈ (1, ..., Cj)|−) =

γj,c+1∫
γj,c

N (x;X ∗qj, 1)dx (4.41)

Under a Bayesian specification, model estimation can be done using MCMC methods

(see Martin et al. (2011) for details on model fitting). Conjugate priors exist for all

parameters except for the cutpoints, which are modeled using a normal distribution.

Ordered factor analysis is often used as a tool for testing theories of relationships

between covariates and model comparison between competing models is a key step for

using this model. There are two related choices that the researcher must make in order

to specify and identify factor analysis models. First, the dimensionality of the latent

scores is undefined and must be chosen by the researcher. For identification purposes,

K must be less than P , but any other possible specification is a viable choice. Theory

may dictate how many dimensions should exist. However, the dimensionality of the

latent space is often related to the main question being answered by the ordered
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factor analysis model and testing is needed to choose between a number of competing

theories.

Second, ordered factor analysis is often used to test direct relationships between

items and this requires fitting models with a number of constraints in the loadings

matrix (see Joreskog (1969) for a more thorough discussion of confirmatory factor

analysis methods). While a few constraints in the loadings matrix are required for

model identification due to the factor analysis model’s inherent rotational invariance

(Geweke and Zhou, 1996), most constraints are placed to correspond with a specific

measurement construct that matches a theory. These constraints have wide-reaching

implications for research questions and can be used to empirically codify different

theories. Choosing between competing theories, then, requires comparing numerous

models that have different constraints.

As with any factor analysis model (and structural equation models, more generally),

model comparison is a key step for theory testing in ordered factor analysis models.

A number of approaches exist for comparing factor analysis models, but most of these

approaches are theoretically deficient and result in comparisons that are known to

unduly favor overly parsimonious models due to strong normality assumptions in the

observed data (Forero et al., 2009). This problem is even further exacerbated when

using discrete factor analysis models since the observed outcomes are, by definition,

not normally distributed.

Many of these problems are addressed for the continuous factor analysis by estimating

the model under a Bayesian specification and computing the marginal likelihood for

each competing model. Lopes and West (2004) explore a number of approaches for

estimating the marginal likelihood of continuous factor analysis models and show that

the bridge sampling estimator provides an accurate approximation to the value of in-

terest, performing better than approximations to the Candidate’s estimator, Laplace
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approximation, various factor analysis fitting criteria, and even their own reversible-

jump MCMC method when attempting to select the correct model. While this work

only seeks to determine dimensionality, the results show that marginal likelihood esti-

mation is an ideal approach to comparing factor analysis models due to its inherently

balanced overfitting and underfitting penalties.

Lopes and West (2004) only make comparisons for exploratory factor analysis mod-

els with continuous and approximately normal observed outcomes. From previous

simulations, it is reasonable to believe that the bridge sampling estimator suffers in

less ideal conditions; particularly those that are presented by the posterior from the

ordered factor analysis model. First, continuous factor analysis essentially guaran-

tees that the resulting posteriors will be approximately multivariate normal due to

its strong conjugate normal-normal structure and this structure can be further en-

sured by marginalizing over the factor scores. Ordered factor analysis, on the other

hand, is known to produce posteriors for the loadings that are skewed when the

number of observations associated with each possible outcome are unbalanced and

marginalization over the factor scores is computationally infeasible, leading to a high

dimensional posterior.7 Second, Lopes and West (2004) do not consider the ability of

various marginal likelihood approximation methods to discriminate between models

with various constraints. Dealing with constraints is often more tedious than adding

or subtracting whole dimensions from the latent space, and can lead to models where

factor loadings are only barely identified and present wide, skewed posteriors (Ghosh

and Dunson, 2009). Finally, from a computational standpoint, ordered factor analysis

often exhibits high autocorrelation and poor mixing in MCMC chains due to difficulty

identifying and estimating cutpoints, especially as the number of dimensions and con-

7PK−P +QK+
P∑

j=1

Cj dimensions in an ordered factor analysis posterior compared to PK+2P

in the reduced form continuous factor analysis posterior, to be exact, minus any fixed values within
the factor loadings matrix.
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straints increases. While this can be partially addressed by long burnin periods and

heavy thinning, the various quirks that exist in the posterior could lead to trouble

for the bridge sampling estimator.

Ordered factor analysis is an ideal application for interval estimates of the marginal

likelihood, specifically kappa bounds. While the posterior under a well-identified

model is expected to be approximately normal, there is little reason to believe that

posteriors are approximately symmetric in less well-behaved scenarios. Assuming

standard conjugate priors, uniform priors on the cutpoints, and treating α as a stan-

dard intercept, the complete data likelihood is easily computed for each posterior

draw from an ordered factor analysis model:

P(X ,θ) =

(
Q∏
q=1

P∏
j=1

P(Yq,j = Xq,j|−)

)(
P∏
j=1

K+1∏
k=1

N (λj,k;λ0, σ
2
λ0

)

)(
Q∏
q=1

K∏
k=1

N (ωq,k; 0, 1)

)
(4.42)

It is similarly easy to take a set of draws from an approximation to the posterior

and compute the associated complete data likelihood values. Thus, the algorithm

for kappa bounds is easily implemented on posterior draws from an ordered factor

analysis model.

To demonstrate the efficacy of kappa bounds on a more complicated model, I use

simulation to show the quality of kappa bounds in estimating reasonable interval

estimates of the marginal likelihood of ordered factor analysis models specifically for

the purpose of model selection. I compare kappa bounds to the bridge sampling

estimator and JSW bounds. Specifically, I generate 500 data sets of 500 observations

over 10 discrete, ordered items that have between 3 and 7 unique responses from a

known set of loadings, constraints, and factor scores. Using the ordered factor analysis

implementation from MCMCpack in R, MCMCordfactanal, I generate samples from the

resulting posterior distributions of 5 potential models shown in Table 4.1 (Martin
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TABLE 4.1. Factor loading constraints matrix for each model compared on
simulated data.

M1 M2 M3 M4 M5

+




+ 0
0
0
0
0

0 +
0
0
0
0





+ 0
0
0
0
0
+





+ 0

+





+ 0
0
0
0
0
+

0
0
+


Note: 0 indicates that the loading is fixed to zero. + indicates that the loading is
constrained to be positive. Note that M3 is the correct model for the simulated data.

et al., 2011). These models range from the minimally constrained one dimensional

model to a three dimensional model that is close to the true model. Constraints

associated with each model can be seen in Table 4.1 and the simulated data was

generated using M3. Diffuse N (0, 100) priors are used for the factor loadings in each

model. For each data set, I ran the MCMC algorithm for 20,000 burnin iterations and

kept 10,000 posterior draws that were thinned every 5 iterations. For the cutpoints

that are drawn via a Metropolis-Hastings step, the width of the normal proposal

distribution was tuned for all parameters such that the acceptance ratio was as close

to 25% as possible. Monte Carlo standard errors were used to monitor convergence

of each run and there were no indications of convergence issues for the structural

parameters. The effective sample size of the complete data likelihood was used as the

number of posterior samples.8

8Effective sample size was monitored for all parameters. However, it is difficult to use this much
information to make an informed choice on stopping the chain. As such, I monitored the ESS
on the complete data log likelihood for each iteration. Over all 500 replicated data sets, the ESS
ranged between roughly 3,500 and 7,200. In the worst case, the ESS was roughly two times the
number of parameters being monitored. In practice, this appears to be more than enough draws to
establish consistent estimates for the bridge sampling estimator, JSW bounds, and kappa bounds.
As a sanity check, I ran multiple chains for a number of the models and these estimates of the log
marginal likelihood remained relatively constant. This work leaves little reason to believe that the
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For each model, a multivariate normal distribution was used for the approximation to

the posterior and maximum likelihood estimates for the mean and covariance matrix

was used to parameterize the approximation. Note that the dimensionality of the

multivariate normal distribution varied widely depending on the model, ranging 530

dimensions in the smallest model to 1564 dimensions in the largest, with the bulk

of the parameters being the factor scores for the 500 observations across 1, 2, or 3

dimensions. For elements of the factor loadings matrix that were constrained to be

positive, the approximation was truncated at 0. Posteriors for the cutpoints were also

included in the approximation and were truncated at zero.9 For each model, I took

10,000 i.i.d. draws from the multivariate normal approximation.

When computing kappa bounds, I used the probability classification random forest

algorithm from the ranger package in R. For each model, I used 6 CPU cores at 3.7

GHz to compute 3,680 trees to learn the classification probabilities and correspond-

ing standard errors. This took 45 seconds per model, on average. For the interval

estimators, I used a Beta(0, 0) priors on the log marginal likelihood and took 100,000

Monte Carlo draws from the empirical posteriors of U , L, κ(β1), κ(β2) which resulted

in 100,000 draws from the posterior on the marginal likelihood. 95% highest poste-

rior density intervals were derived for the interval estimates using these draws. For

the bridge sampling estimator, the iterative scheme was run until the difference in

iterations was less than .0001 on the log scale.10

results are a function of having too few draws from the posterior.

9The strict ordering constraint of the cutpoints presents a challenge when defining an approx-
imation. Since there is no easy way to guarantee that the approximation draws follow the strict
ordering on their own, I ensured that draws taken from the approximation for the cutpoints obeyed
the necessary inequalities by ex-post truncating the draws in order from lowest to highest. I also
tried to ensure this ordering by only accepting draws from the approximation that had the correct
ordering, which proved to be computationally expensive. Both methods yielded similar results, so I
went with the less costly approach.

10A single run for each model including the MCMC, draws from approximation, computation of
the complete data log likelihood for both the posterior and approximation draws, computation of
density with respect to the approximation, random forest, and Monte Carlo draws from the various
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FIGURE 4.5. Comparison of marginal likelihood estimates for ordered factor
analysis models.
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Note: Bars denote the 95% HPD implied by 100,000 Monte Carlo samples for JSW
and Kappa bounds. Note that M3 is the model from which the data was generated..

TABLE 4.2. Probability each ordered factor analysis model best fits the data.

M1 M2 M3 M4 M5

Bridge.Est. 0.4472 0.5527 .0001 0 0

JSW Bounds 0.1833 0.0338 0.7364 0.0465 0
[0,1] [0,0.5128] [0,1] [0,0.9434] [0,0]

Kappa Bounds 0 .0004 0.9996 0 0
[0,.0006] [0,0.0019] [0.9978,1] [0,0] [0,0]

Note: 95% intervals are presented for JSW Bounds and Kappa Bounds. Probabilities
are calculated as the probability each marginal likelihood is greater than all other
models’ marginal likelihood. 10,000 Monte Carlo samples are used to compute this
probability.
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Figure 4.5 shows the results for each marginal likelihood estimation method for the

first data replicate. Table 4.3 shows the probability that each model is considered the

best model under each marginal likelihood estimation technique and presents 95%

intervals on this quantity for the interval estimates. Given that M3 is the correct

model, it is easy to see that the bridge sampling estimator unduly favors the lower

dimensional model (M1) and the overconstrained model (M2). Exploring the poste-

riors that result from this model demonstrate that the same effects seen in previous

simulations hold true: under skewness, the bridge sampling estimator is produces

precise but incorrect estimates. In all cases, even the one dimensional model, there

is significant skew in the factor loading posteriors and multimodality in the cutpoint

posteriors. Beyond favoring the incorrect models, the bridge sampling estimator does

a poor job of specifically choosing the best model; M1, M2, and M3 all have essen-

tially the same estimate for the marginal likelihood. In some sense, this is desirable

since it is selecting the wrong model, but incorrect is incorrect. JSW intervals fair

better as the midpoint of each interval is in an approximately correct order. However,

the wide bounds on each interval make choosing a best model impossible since they

all include log marginal likelihood estimates around -690. This is reflected in Table

4.3 since the 95% intervals for three separate models essentially cover the entire unit

interval.

Kappa bounds provide the correct answer in this specific example. While kappa

bounds cannot discriminate between certain models, it does select the correct model

under the 95% intervals. Perhaps just as interesting, kappa bounds significantly

improve on the JSW intervals in all cases, reducing the width by at least 50% across

all models. Even under a truly skewed posterior with incorrect assignment of high

posterior took 2 minutes, on average. All in, this entire simulation took roughly 4 days to complete.
This simulation, along with the many other computational strains that were given in pursuit of this
topic, also took the life of two sticks of RAM that had served me well for a little over a year. You
are gone but not forgotten.
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TABLE 4.3. Proportion of times over 500 data replicates that each ordered
factor analysis model best fits the data.

M1 M2 M3 M4 M5

Bridge Est. .384 .364 .252 0 0

JSW Bounds 0 0 .028 0 0

Kappa Bounds 0 .002 .976 0 0

Note: For interval estimates, 95% intervals are estimated and a winner is only declared
if the highest marginal likelihood interval does not cross any other interval. This leads
to less than 500 unique winners.

density areas in the posterior, the kappa bounds eliminate a large portion of the JSW

bounds that represent impossible combinations of KL(P||Q) and KL(Q||P). Looking

at Table 4.3, it is clear that kappa bounds pick the correct winner almost 100% of

the time. When compared to the other two approaches, kappa bounds provide the

only marginal likelihood estimates that confidently select the correct model.

To ensure that this result holds over many different data sets, I computed the number

of times that each estimation approach distinctly selected each model over the 500

data replicates. For the bridge sampling estimator, this simply requires selecting the

model for each data set that has the highest marginal likelihood estimate. For JSW

bounds and kappa bounds, this required determining if the lower bound on the highest

95% interval estimate is greater than all other models. This led to a situations where

there were not 500 unique winners for the intervals. Table 4.3 shows these results and

demonstrates that the single example is generally indicative of the behavior for each

method. Bridge sampling presents a tossup between M1, M2, and M3 while JSW

bounds almost never pick a winner. However, kappa bounds select the appropriate

model 97.6% of the time. This difference makes it clear that kappa bounds are a
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superior approach for estimating the marginal likelihood of ordered factor analysis

models. Generally, this simulation demonstrates the promise of this approach for

marginal likelihood estimation in high dimensional non-normal settings.

4.6.2 Kappa Bounds Applied to Racial Resentment in the U.S.

Comparison of ordered factor analysis models is a central task in the social sciences,

frequently used when analyzing political beliefs and behavior through survey data.

Common survey items ask respondents to agree of disagree, rating their opinion on

an ordered scale, with statements related to concepts of interest. Factor analysis

methods are then used to model common covariance sources and to map questions

to latent constructs of interest (Joreskog, 1967, 1969). While ordered factor analysis

implementations are widely available, many scholars still use the standard factor

analysis toolkit when analyzing ordered discrete survey data. A large reason that

this is the case is that there are few model comparison tools available for the ordered

factor analysis toolkit. Kappa bounds provide a reliable option for doing just this.

I choose to demonstrate the practical usage of kappa bounds by exploring the racial

resentment scale developed by Kinder et al. (1996). The racial resentment scale uses a

carefully designed battery of questions asked in the 1986 American National Election

study to explore attitudes of “symbolic racism” in the American public. Kinder et al.

(1996) argue that this racial resentment measure acts as a unique combination of

traditional racism and old-fashioned American individualism and explains much of the

resistance from white Americans to racial policies. Kinder et al. (1996) show evidence

for this theory through a series of confirmatory factor analyses that demonstrate

that the racial resentment battery explains much of the correlation to attitudes on

affirmative action and other racial policies where traditional racism and individualism

items do not.

This theory has received numerous criticisms in the political science and sociology
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literatures since its conception, specifically regarding attitudes towards black Amer-

icans. Most of this criticism stems from the fact that the racial resentment measure

is confounded with the outcome that it attempts to measure - racial policy atti-

tudes. This has led to numerous studies, Carmines et al. (2011), Feldman and Huddy

(2005), and Roos et al. (2019) just to name a few, which have shown that the racial

resentment measure explains little variation that standard survey items related to

traditional racism and individualism do not.

Since one aspect of this issue related to comparison of factor analysis models, kappa

bounds applied to ordered factor analysis provides a new and reliable approach to

comparing various models related to racial resentment measure. I use kappa bound

estimates for the marginal likelihood to explore the relationship between the racial

resentment, individualism, and traditional racism batteries in the 1986 ANES and

explore whether there is evidence that the racial resentment battery explains variation

in American attitudes that is unexplained by individualism and traditional racist

attitudes through simple model comparison.11

I used the 1986 ANES data used in Kinder et al. (1996) and Carmines et al. (2011) to

perform this exercise. I included three separate survey question batteries: 6 questions

related to racial resentment, 5 related to individualism, and 4 related to traditional

racist attitudes. Each of these questions asked respondents to rate their agreement or

disagreement with a statement on a scale of strongly disagree to strongly agree, coded

as a 5-point Likert scale. Of the 2,176 respondents included in the 1986 ANES, half

were assigned to the survey group that responded to these questions. I further chose

to only keep respondents that chose to respond to at least 12 of the 15 question (i.e.

11Note that this exercise is simply empirical. I do not purport that this work confirms or denies
any existing theories of how or why attitudes have changed towards racial policies in the U.S. For
a more thorough discussion on mechanisms and theories, see Carmines et al. (2011), Feldman and
Huddy (2005), Roos et al. (2019), and the many other great works that are cited by these authors.
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those that provided an explicit agreement rating to at least 12 out of 15 questions).

This led to a final sample size of 1,042 respondents over 15 items.

To explore the relationship between these three survey batteries, I specified a number

of confirmatory ordered factor analysis models having between 1 and 3 dimensions,

ensuring that each model had enough constraints on the factor loadings matrix to

ensure identifiability of the resulting structural estimates.12 These models tested

numerous viable theories related to the racial resentment measure ranging from a

simple one dimensional model to more complex factor patterns that imply a range of

conditional independence structures between the three survey batteries.

I present results showing model comparison metrics for 8 of these models. A summary

of the constraint specifications for each of these eight models can be seen in Table

4.4. Each ordered factor analysis model was run using the same choices for number

of draws, thinning intervals, etc. from the previous section. An important note

was that for some models, particularly those with poor choices of constraints, model

convergence for the structural parameters was more of a problem. This is generally

an indication of a poorly fitting model. For the purposes of providing meaningful

estimates for each model, any convergence problems were addressed by doubling the

number of burnins and the thinning interval.

Figure 4.6 shows kappa bounds and bridge sampling estimates to the marginal likeli-

hood for each of these eight models. The fit of these models varies widely and depends

12I followed the identification structure presented by Geweke and Zhou (1996). This amounts to
choosing one positivity constraint on each dimensions and ensuring that enough structural zeros are
added to the loadings matrix such that each matrix could be expressed in a lower block triangular
structure with positive elements on the diagonal and zeros above the main diagonal. Directional
constraints were chosen after an initial pilot run for each model without constraints to ensure that the
resulting posteriors were sufficiently far away from zero. Zero constraints where added in accordance
to numerous constructs being measured or to preserve battery structure in the case of models testing
theories with a minimal number of constraints.

203



TABLE 4.4. Loadings Matrix Constraint Specification for Models of Racial
Resentment (RR), Individualism (I), and Traditional Racism (TR) Survey Bat-
teries from 1986 ANES.

Battery
Dims.

D1 D2 D3
RR 3 7 7

I 3 7 7

TR 3 7 7

(a) M1

Battery
Dims.

D1 D2 D3
RR 3 7 7

I 7 3 7

TR 7 3 7

(b) M2

Battery
Dims.

D1 D2 D3
RR 3 7 7

I 7 3 7

TR 3 7 7

(c) M3

Battery
Dims.

D1 D2 D3
RR 3 7 7

I 3 7 7

TR 7 3 7

(d) M4

Battery
Dims.

D1 D2 D3
RR 3 7 7

I 7 3 7

TR 7 7 3

(e) M5

Battery
Dims.

D1 D2 D3
RR 3 3 7

I 3 3 7

TR 3 3 7

(f) M6

Battery
Dims.

D1 D2 D3
RR 3 3 3

I 3 3 3

TR 3 3 3

(g) M7

Battery
Dims.

D1 D2 D3
RR 3 3 3/7

I 3 3 7

TR 3 7 3

(h) M8

Note: 3indicates that the battery was included on a dimension while 7indicates it was not
included (i.e. the loading was restricted to be exactly equal to zero). 3/7indicates that the
questions were split according to information gained from previous models. Specific details
are given for M8 in the text. All specifications and code can be found in this paper’s
supplemental files and any clarification can be given by the author (i.e. me) on request.
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FIGURE 4.6. Comparison of marginal likelihood estimates given by kappa
bounds and bridge sampling for an ordered factor analysis model applied to
questions related to racial resentment in the 1986 ANES.
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Note: Bars denote the 95% HPD implied by 100,000 Monte Carlo samples. Specific
model specifications can be found in Table 4.4.

heavily on how constraints are applied to the data. Interestingly, the worst perform-

ing model in both bridge sampling and kappa bounds is M5, which assumes that

the racial resentment, individualism, and traditional racism batteries are condition-

ally independent of one another. While both estimates provide marginal likelihood

estimates on the same scale as the kappa bounds, using bridge sampling to select a

best model leads to a different conclusion that kappa bounds. Bridge sampling se-

lects M3 as the best model, which implies that the racial resentment and traditional

racism batteries belong on the same single dimension while the individualism battery

is conditionally independent of these concepts. On the other hand, kappa bounds

select M8, a more nuanced three dimensional model with specific zero constraints

on the racial resentment battery. As simulations show that kappa bounds perform
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better in the ordered factor analysis scenario, there is reason to trust that M8 is the

true best-fitting model. This situation shows how the choice of marginal likelihood

approximation technique can have large implications for model selection problems.

The two best performing models according to kappa bounds are the unconstrained

dimensional model and a three dimensional model with carefully selected constraints

informed by numerous exploratory factor analysis models. This points to a conclusion

that there is a statistical relationship between traditional racist attitudes, individual-

ism, and the racial resentment battery beyond a simple one or two dimensional model;

rather, the model evidence points to a complex three-way relationship between these

concepts that has been noted in numerous studies. However, kappa bounds are able

to distinguish between two models that only differ in a few constraints and is able to

distinguish that more constraints are needed to improve on the unconstrained three

dimensional model. Substantively, the improvement of M8 over M7 leads to two key

insights: 1) When controlling for common covariance across all three batteries, there

is little evidence that individualism and traditional racism include more shared co-

variance and 2) three questions from the racial resentment battery have additional

sources of covariance that are explained by traditional racist attitudes. These findings

echo those found by Carmines et al. (2011) and demonstrate that the survey batteries

frequently used to measure racial resentment should be subject to more scrutiny.

4.7 Conclusion

In this paper, I present a new approach for estimating intervals on the marginal

likelihood. Where previous methods of marginal likelihood estimation come with no

information about the quality of the estimate, the new interval estimation method ex-

plicitly bakes quality into the interval width - low quality estimates have larger widths

while high quality estimates provide narrow intervals and high certainty about the
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value of the marginal likelihood. Intervals derived from the key variational inequali-

ties show good behavior, but include a wide set of values that cannot possibly exist

because of the relationship between forward and reverse KL divergences. I derive a

new bounding inequality on the ratio of these two quantities and use this to derive

kappa bounds, a state-of-the-art interval on the marginal likelihood that is narrow and

has good coverage properties on the true marginal likelihood. Compared to Monte

Carlo estimation approaches, I demonstrate the ease of estimation and superiority

of estimates given by kappa bounds in a number of simulated and real-world data

settings.

Extensions to kappa bounds are numerous. A first extension uses kappa bounds to

handle situations where exact draws from the joint posterior require prohibitively ex-

pensive computation. While the derivations in this paper assume that P(θ|X ) can be

known exactly, Grosse et al. (2015) present a novel bidirectional Monte Carlo scheme

that combines the computational efficiency of variational approaches with a slightly

more expensive sequential Monte Carlo scheme to model departures from the initial

variational approximations. Where this approach seeks to sequentially maximize the

ELBO and then minimize the EUBO, kappa bounds provide an approach fitting cri-

teria can be conditioned on the sequence of kappa bounds across observations. With

light changes, the refined variational inequalities presented in this paper can be used

to estimate the marginal likelihood which can then be used as a fitting criteria - the

algorithm can find the minimum width set of kappa bounds over all possible joint

posteriors. This kappa criteria provides a novel fitting criteria that would seek to

improve variational Bayesian estimation procedures.

A second extension adds the advancements in choosing approximations presented by

Wang and Meng (2016). Throughout this paper, simple multivariate normal approx-

imations are used. While kappa bounds perform better than other approaches using
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this approximation, the width of kappa bounds can be further reduced by increasing

the quality of the approximation. More computationally efficient implementations

of the posterior warping algorithms from Wang and Meng (2016) are one way that

approximations can be improved. However, advancements in high dimensional ker-

nel density estimation have made estimation of nonparametric densities in otherwise

impossible settings more viable. Combined with advancements in estimation of high

dimensional copula to handle complex dependency patterns between parameters in

a model, the kernel density estimation approach can make approximation methods

more accurate and, in turn, return better estimates of the marginal likelihood. The

width of kappa bounds signifies the quality of the approximation, so kappa bounds

can be used to assess whether or not these approaches are providing meaningfully

better results than the parametric counterparts.
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A Proof for Lemma 4.4.1

By the law of iterated expectations and α ⊥⊥ U ⊥⊥ L:

E[∆|a, b,θ∗,ω∗] = Eα[(1− α)U + αL] = E[(1− α)]U + E[α]L

Leveraging the same independence:

E[∆|a, b,θ∗,ω∗] = E[(1− α)]U0 + E[α]L0

is an unbiased estimator for the posterior mean.

By the law of total variance:

V[∆|a, b,θ∗,ω∗] = Vα[(1− α)U + αL] + Eα[(1− α)2σ2
u + α2σ2

l ]

where:

Eα[((1− α)U + αL)2] = U2 + (2UL − 2U2)E[α] + (U2 − 2UL+ L2)E[α2]

Eα[(1− α)U + αL]2 = U2 + (2UL − 2U2)E[α] + (U2 − 2UL+ L2)E[α]2

Eα[(1− α)2σ2
U + α2σ2

L] = E[(1− α)2]σ2
U + E[α2]σ2

L

This gives a posterior variance of:

V[∆|a, b,θ∗,ω∗] = ((U − L)2 + σ2
U + σ2

L)V[α] + σ2
UE[(1− α)]2 + σ2

LE[α]2

In order to work with this value, we need a sample statistic for (U−L)2. A reasonable

option is the asymptotically unbiased and consistent estimator:

σ2
U + σ2

L + (U0 − L0)2 p→ (U − L)2
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Then, the posterior variance is:

V[∆|a, b,θ∗,ω∗] =
(
2σ2

U + 2σ2
L + (U0 − L0)2

)
V[α] + σ2

UE[(1− α)]2 + σ2
LE[α]2

Assuming that N and M are large, the variance on the expectation of U and L can

be dropped leading to:

V[∆|a, b,θ∗,ω∗] = (U0 − L0)2V[α]

B Proof for Theorem 4.5.1

I begin by formally defining an f -divergence:

Definition B.1. Let f(t) : t ∈ (0,∞)→ R+ be a convex function such that f(1) = 0.

Further assume that f(t) is twice differentiable and that f ′(1) = 0. Let P and Q be

two proper probability distribution functions defined over the measurable space, Ω.

Then, the f -divergence from P to Q as:

Df (P ||Q) =

∫
Ω

f

(
dP
dQ

)
dQ (4.43)

Forward and reverse KL divergence can be expressed as an f -divergence:

Definition B.2. Let ff (t) = 1 + t log t− t. Then:

∫
Ω

ff

(
dP
dQ

)
dQ = KL(P||Q) (4.44)

Let fr(t) = t− log t− 1. Then:

∫
Ω

fr

(
dP
dQ

)
dQ = KL(Q||P) (4.45)
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f -divergences represent a useful class of functions that formalize a notion of difference

between two distributions. Most importantly, f -divergences are convex transforma-

tions of the density ratio of two distributions and a number of inequalities can be

derived due to this convexity. One useful consequence of this convexity is a result of

function domination (Sason and Verdu, 2016):

Lemma B.1. Let f(t) and g(t) be two convex functions as in Definition B.1. Let P

and Q be two proper density functions that are absolutely continuous with respect to

a common measurable space. If there exists some ν > 0 such that f(t) ≤ νg(t)∀t > 0,

then:

Df (P ||Q) ≤ νDg(P ||Q) (4.46)

Similarly, if there exists some ν > 0 such that νf(t) ≤ g(t)∀t > 0, then:

νDf (P ||Q) ≤ Dg(P ||Q) (4.47)

Proof. Since f(t) is a strictly positive convex function, any integral of f(t) is also

convex. Therefore, the f -divergence is a convex function in t = dP
dQ . This also applies

to g(t). Since f(t) and g(t) are positive with only t = 1→ 0, Df (P ||Q) and Dg(P ||Q)

must also be positive.

Let ν > 0 be a value such that:

f

(
dP
dQ

)
≤ νg

(
dP
dQ

)

Because ν is independent of P and Q and by the convexity of f(t) and g(t):

∫
f

(
dP
dQ

)
dQ ≤ ν

∫
g

(
dP
dQ

)
dQ

The opposite condition is proven in the same way.
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This inequality gives rise to an important result:

Lemma B.2. Assume P is absolutely continuous with respect to Q and vice versa.

Further, to avoid the trivial case of equality, assume P 6= Q. Let f(t) and g(t) be

two convex functions as in Definition B.1. Further, assume that f(t), g(t) > 0 ∀ t ∈

(0, 1)∪ (1,∞) and f(1), g(1) = 1 by left and right limits. Let κ(t) : t ∈ (0,∞)→ R+:

κ(t) =
f(t)

g(t)

be a continuous function in t. Define κ̄:

κ̄ = sup
f
(
dP
dQ

)
g
(
dP
dQ

)
Then:

Df (P||Q) ≤ κ̄Dg(P||Q) (4.48)

Similarly, define κ:

κ = inf
f
(
dP
dQ

)
g
(
dP
dQ

)
Then:

κDg(P||Q) ≤ Df (P||Q) (4.49)

This leads to a sandwiching inequality:

κ ≤ Df (P||Q)

Dg(P||Q)
≤ κ̄ (4.50)

Proof. Let t = dP
dQ . By definition:

f
(
dP
dQ

)
g
(
dP
dQ

) ≤ κ̄
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By Lemma B.1:

Df (P||Q) ≤ κ̄Dg(P||Q)

κDg(P||Q) ≤ Df (P||Q) is shown in a similar way. Since P �� Q and by the

continuity of f(t) and g(t), the ratio is defined for all finite, positive values. Thus,

dividing each side of the inequality by Dg(P||Q) is admissible.

Definition B.3. Assume P(θ|X )�� Q(θ|γ) ∀ θ ∈ Θ. To avoid the trivial case of

equality, further assume that P(θ|X ) 6= Q(θ|γ). Define the relative extrema for the

likelihood ratio of P to Q as:

β1 = sup
θ

P(θ|X )

Q(θ|γ)
=

(
inf
θ

Q(θ|γ)

P(θ|X )

)−1

β2 = inf
θ

P(θ|X )

Q(θ|γ)
=

(
sup
θ

Q(θ|γ)

P(θ|X )

)−1
(4.51)

where the inversion holds due to absolute continuity between P and Q.

β1 and β2 are bounded. Specifically, 0 < β2 < 1 and 1 < β1 < ∞. By the shared

domain requirement and absolute continuity of P(θ|X ) and Q(θ|γ), β1, β2 > 0. If

P(θ|X ) and Q(θ|γ) are proper density functions, then inf
θ

P(θ|X )
Q(θ|γ)

must be less than 1

since P(θ|X ) 6= Q(θ|γ). The same logic holds to show that sup
θ

P(θ|X )
Q(θ|γ)

> 1.

This definition gives rise to a sandwiching inequality for the ratio of two f -divergences:

Lemma B.3. Assume P(θ|X ) �� Q(θ|γ) ∀ θ ∈ Θ. Assume that β1 and β2 are

defined. Then:

κ(β2) ≤ Df (P||Q)

Dg(P||Q)
≤ κ(β1) (4.52)

where κ(t) = f(t)
g(t)

is a continuous and monotonically increasing function in t.
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Proof. Define β1 and β2 as shown in Definition B.3:

β1 = ess sup
θ

P(θ|X )

Q(θ|γ)

β2 = ess inf
θ

P(θ|X )

Q(θ|γ)

By the strict monotonicity of κ(t):

κ(β1) = ess sup
θ

κ

(
P(θ|X )

Q(θ|γ)

)
κ(β2) = ess inf

θ
κ

(
P(θ|X )

Q(θ|γ)

)

which meets the extremum conditions outlined in Lemma B.2. Therefore, κ(β1) and

κ(β2) sandwich the ratio of corresponding f -divergences.

Finally, show Theorem 4.5.1:

Theorem B.1. Assume P(θ|X )�� Q(θ|γ) ∀ θ ∈ Θ. Let t = P(θ|X )
Q(θ|γ)

and define:

f (t) = t log t+ (1− t)

g(t) = − log t+ (t− 1)

(4.53)

where f(t) and g(t) are f -generators for forward and reverse KL divergence, respec-

tively.

Define κ(t) as:

κ(t) =
1 + t log t− t
t− log t− 1

(4.54)

Define the extrema on the ratio of P to Q as:

β1 = ess sup
θ

P(θ|X )

Q(θ|γ)

β2 = ess inf
θ

P(θ|X )

Q(θ|γ)

(4.55)
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Then:

κ(β2) ≤ KL(P||Q)

KL(Q||P)
≤ κ(β1) (4.56)

Proof. f(t) and g(t) are convex functions where f(1) = f ′(1) = 0.

The first derivative of κ(t) with respect to t is:

dκ(t)

dt
=

(t− 1)2 − t log2(t)

t(t− log t− 1)2

For t ∈ (0, 1)∪(1,∞), the derivative is always defined and finite since t−log t = 1 ⇐⇒

t = 1. The discontinuity at t = 1 can be ignored since lim
ε→0

κ(1−ε) = lim
ε→0

κ(1+ε) = 1,

implying that κ(1) is just a pointwise discontinuity that has no real bearing on the

overall behavior of the function. Thus, κ(t) is continuous for all t.

Second, it can be shown that κ(t) is monotonically increasing in t. Here, it is suf-

ficient to show that for all admissible values of t the derivative is always positive.

First, note that the derivative approaches zero as t approaches 1 since the numerator

equals zero when t = 1. Since the numerator and denominator of the derivative are

always positive, this sufficiently demonstrates the function is strictly monotonically

increasing in t.

Since κ(t) meets the conditions of Lemma B.3, the inequality holds and leads to

Equation (4.56).

Theorem B.1 is equivalent to the initial statement.
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C Proof for Lemma 4.5.2

Let T = N + M and let T → ∞ imply N → ∞ and M → ∞ at equal rates. Let

φ(f) = P(y = 1|f ∈ R,F ) be the true probability that f comes from P(θ|X ) given

a T observation feature set, F . Let φ̂(f) = {φ̂1(f), φ̂2(f), ..., φ̂S(f)} be a collection

of S estimates of the classification probability and let φ̄S(f) = 1
S

S∑
s=1

φ̂s(f). Assume

that this mean is consistent to its true value:

lim
T→∞,S→∞

φ̄S(f) = φ(f)

Appealing to central limit theorem and assuming T is large:

φ̄S(f)
d→ N

(
φ(f),

σ2
φ(f)

S

)

where σ2
φ(f) is the variance of the estimate. Plugging in optimal estimators and

rearranging:

P(φ(f)|F ) ∼ N

(
φ̄S(f),

σ̂2
φ(f)

S

)

where σ̂2
φ(f) is an unbiased estimator of the sample variance admitted by the S samples

from φ̂(f).

For any f ∈ R, let ΦS(f, g) be a distribution function in 0 < g < 1 such that:

ΦS(f, g) =

g∫
0

N

(
x ; φ̄S(f),

σ̂2
φ(f)

S

)
dx

By convention, assume that ΦS(f, 0) = 0 and ΦS(f, 1) = 1. Then:

P(maxφ(f) < g) =
∏
f∈R

ΦS(f, g)

P(minφ(f) < g) =
∏
f∈R

(1− ΦS(f, g))

221



By the well-established consistency of the extreme order statistics, with large S and

T :
∂

∂g
P(maxφ(f) < g)→

p
sup
f
φ(f)

∂

∂g
P(minφ(f) < g)→

p
inf
f
φ(f)

Define two functions:

u(x) =
x

1− x
; v(y) =

1 + y log y − y
y − log y − 1

where 0 ≤ x ≤ 1 and 0 ≤ y. Define the edge cases such that u(0) = 0, u(1) =

∞, v(0) = 0, v(1) = 1, v(∞) = ∞. Note that u(x) and v(y) are continuous,

monotonically increasing, one-to-one mappings of x and y, respectively. Let f ∗ =

v(u(φ(f))) and g∗ = v(u(g)). By continuous mapping theorem:

∂

∂g∗
P(max f ∗ < g∗)→

p
sup
f
v(u(φ(f))) = κ(β1)

∂

∂g∗
P(min f ∗ < g∗)→

p
inf
f
v(u(φ(f))) = κ(β2)

meaning that ΦS(f, g) = ΦS(f ∗, g∗) and, as a consequence, v

(
u

(
sup
f
φ(f)

))
=

sup
f
v (u (φ(f))).

Assuming flat priors on κ(β1) and κ(β2):

P(κ(β1)|θ∗,ω∗) ∼ ∂

∂g∗
P(max f ∗ < g∗)

P(κ(β2)|θ∗,ω∗) ∼ ∂

∂g∗
P(min f ∗ < g∗)

(4.57)
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