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ABSTRACT 

 

 

In recent years, a small diatomic free radical gas molecule known as nitric oxide (NO) has gained 

much attention by the biomedical community due to its potential use as a therapeutic agent.  In 

this dissertation, a NO donor (S-Nitrosoglutathione (GSNO)) is incorporated into newly devised 

NO releasing topical creams to potentially treat wound or skin infections, and within novel NO 

releasing insert devices for disinfecting the hub region of tunnel dialysis catheters (TDCs).  GSNO 

is used throughout this research because it is an endogenous carrier of NO in the human body and 

is therefore likely to be non-toxic for potential biomedical applications. 

In Chapter 2, GSNO is shown to be stabilized when mixed in Vaseline and stored under dry 

conditions for 300+ days.  Also, it is demonstrated that a commercial ZnO-containing cream, when 

combined with the GSNO in Vaseline mixture, enhances the NO release rate from GSNO.  In 

Chapter 3, the antimicrobial effects of the NO releasing creams are shown to exhibit significant 

antimicrobial activity versus S. aureus, S. epidermidis, and P. aeruginosa.  A NO releasing cream 

modified by the addition of NaHCO3 to achieve a neutral pH cream also exhibits similar 

antimicrobial effects. 

In Chapter 4, solution phase studies reveal that ZnO is the primary component responsible in the 

commercial ZnO cream for the enhanced NO release rate from GSNO.  Further studies show that 

30 nm size ZnO nanoparticles increase NO release rate by a factor of 2.78 compared to no ZnO 

present.  Surface analysis of ZnO suggests no evidence of Zn-S bond formation or thiol attachment 

after interaction with GSNO. 
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In Chapter 5, a NO releasing insert device is introduced as an innovative method to disinfect the 

hub region of TDCs.  A short-term shelf-life stability study shows minimal GSNO degradation 

within the insert device after 56 d of dry/dark storage after H2O2 sterilization.  Once wetted up by 

soaking in saline solution, the NO releasing insert device exhibits significant antimicrobial effects 

against S. aureus and P. aeruginosa present in the liquid of catheter hubs.  Two 14 d long sheep 

studies demonstrate that the NO releasing insert device is exceptionally potent at preventing 

bacteria/biofilm growth on the inner lumen walls of the catheters compared normal caps and a 

chlorhexidine cap. 

Significant achievements showcased in this thesis include creation of potent antimicrobial NO 

releasing creams, discovery of increased NO release from GSNO using ZnO nanoparticles, and 

creation of NO releasing insert devices capable of preventing bacteria and biofilm growth in 

catheters.  The NO releasing creams provide an attractive alternative method to antibiotic creams 

to treat dermal infections.  The NO releasing insert devices have the potential to significantly lower 

the number of infections caused by TDCs and other intravascular catheters. 
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Chapter 1 Introduction 

 

 

1.1 Antiseptic Agents 

1.1.1 Purpose and function of antiseptics 

Throughout history, dermal wound infections have been quite prevalent.  Primitive treatments 

include substances from animals, plants, and minerals.1  Some of these earliest primitive treatments 

would now be classified as antiseptic agents.  The first recorded use of an antiseptic agent was by 

Dr. Joseph Lister in 1867.2  Using carbolic acid to sterilize his surgery tools, instruments, and 

wound bandages, significantly lowered the number of deaths after surgery due to infection.  Since 

that time, several other antiseptic agents have been utilized for their antimicrobial properties.  

Some antiseptics that have been widely utilized include chlorhexidine, silver compounds (silver 

nitrate or silver nanoparticles), iodine compounds (cadexomer or povidone-iodine), and honey to 

name a few.  Their antimicrobial functions vary immensely. For instance, chlorhexidine decreases 

cell wall integrity by binding to the negatively charged groups located on the outside of bacteria 

cells.3, 4  Silver ions can also bind to the negatively charged groups present on the cell membrane 

causing denaturation of the cell membrane.5  Silver nanoparticles can readily penetrate cell walls 

and produce intracellular reactive oxygen species (ROSs). These ROSs can damage DNA, RNA, 

lipids, and proteins leading to apoptosis.6  Iodine-containing compounds such as cadexomer and 

povidone-iodine function by delivering iodine to the cell surface.  Iodine can easily penetrate cell 

walls and bind to proteins, nucleotides, and fatty acids present in the cell wall or cytoplasm.7  Lastly 
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honey, arguably one of the oldest traditional medicines, inhibits bacteria growth by its inherent 

low pH, high osmolarity (high sugar content), and production of hydrogen peroxide.8  Hence, as 

described by the selected examples above, antiseptics can demonstrate various 

functions/mechanisms by which killing or inhibition of bacteria growth is carried out. 

 

1.1.2 Antiseptics used for topical treatments 

An antiseptic that has remained the dominant biocide in the prevention of infections is 

chlorhexidine.7  The most common form of chlorhexidine used in clinical settings is chlorhexidine 

gluconate (water-soluble).4, 9 Chlorhexidine has been incorporated into many products such as 

shampoos, eye creams, hand creams, and sunblocks.9  Chlorhexidine is a broad-spectrum 

antimicrobial agent, but it is most effective against gram-positive bacteria.10-13  As  stated above, 

chlorhexidine’s mechanism of action against bacteria involves binding to negatively charged 

moieties present on bacteria cell walls/membranes, which leads to instability and cell death.3, 4  

Kramer et al. demonstrated the antimicrobial effects of a commercially available cream containing 

chlorhexidine against Enterococcus hirae and Candida albicans.14  After 10 min of exposure to 

the chlorhexidine cream during a standard quantitative suspension test with simulated wound bio-

burden, >3 log unit reduction was observed in the number of live E. hirae and C. albicans cell 

counts.14  To date numerous reports have been published on the impressive, fast killing capabilities 

of chlorhexidine in preventing and fighting infections. 

Another antiseptic agent that is commonly used is iodine.  The antiseptic properties of iodine were 

discovered in the early 1800s and have been utilized ever since.15  The most common form of 

iodine is called povidone-iodine, which consists of complexed iodine and poly(vinylpyrrolidone).7, 

15  Povidone-iodine arguably has the broadest spectrum of activity of any antiseptic, with reports 
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of activity against a vast range of fungi and bacteria, including Pseudomonas, Staphylococcus, 

Mycobacterium, Candida, and Trichophyton species.3, 16  Hill et al. showed the antimicrobial 

capabilities of a 5% povidone-iodine cream at killing methicillin-resistant Staphylococcus aureus 

(MRSA).17  Upon direct inoculation of the 5% povidone-iodine cream with various strains 

including three MRSA types (separately), all strains were killed after 30 s of exposure, leading to 

a killing rate of ~104 CFU/s.17  This report clearly demonstrated the potent antimicrobial nature of 

povidone-iodine. 

 

1.1.3 Limitations and downfalls of antiseptics  

In general, antiseptics are effective at killing both gram-positive and gram-negative bacteria 

strains.  The degree to which the antiseptic is effective is typically concentration dependent.  

However, increasing the concentration of an antiseptic can have cytotoxic effects.  For example, 

there have been cases of chlorhexidine causing anaphylaxis to occur.18, 19  Additionally, 

chlorhexidine has trouble dispersing and killing bacteria within biofilms, and this is a concern for 

treating tissues/areas that are already infected.20  One mechanism of resistance that has been 

reported for chlorhexidine is the presence of efflux pumps.  Efflux pumps are protein complexes 

capable of removing chlorhexidine from the cell.21  Efflux pumps are usually found in gram-

positive Staphylococci bacteria.22  Prag et al. observed a chlorhexidine tolerance of 37.5% towards 

143 Staphylococcus epidermidis isolates, collected from a hospital.23  Overall, however, 

chlorhexidine has many positive benefits with only minor/few downfalls or limitations. 

Povidone-iodine has been used for a wide variety of clinical applications, with no reports of fungi 

or bacteria resistance or increased tolerance to this agent.7, 24  However, in several clinical 

applications, povidone-iodine has been replaced with chlorhexidine because of chlorhexidine’s 
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more prolonged/lingering activity.25  There are some reports of contact dermatitis and skin 

irritation after prolonged contact with povidone-iodine but these are considered to be rare.26-28  

Overall, povidone-iodine has withstood the test of time and has proven itself as an effective broad-

spectrum antimicrobial agent with few downfalls or limitations. 

 

1.2 Antibiotics 

1.2.1 Purpose and function of antibiotics 

When it became generally accepted that micro-organisms were the cause of infection, the door for 

scientists to develop chemicals/medicine with specific targeting capabilities was opened.  This led 

to the rapid development of a class of antimicrobials known as antibiotics.  During the 19 th and 

20th centuries, hundreds of antibiotics were developed with the purpose to destroy or inhibit the 

growth of vulnerable bacteria by various means.29  In general, antibiotics are nontoxic, making 

them ideal for human use.30  Most antibiotics can be classified into 6 groups: penicillins, 

cephalosporins, aminoglycosides, tetracyclines, macrolides, and fluoroquinolones. The function 

by which these types of antibiotics kill or inhibit bacteria growth varies depending the antibiotic 

itself and upon bacteria type (gram-positive or negative, aerobic or anaerobic).  For example, 

penicillin-based antibiotics function by affecting the structural integrity of the bacteria’s cell wall.  

Specifically, they block protein struts that cross-link peptidoglycans, which are essential for 

building a protective layer around the plasma membrane of bacteria cells.31  Inhibition of 

peptidoglycans indirectly causes the rupture of the cell wall by allowing foreign material/fluid to 

enter the cell through tiny holes causing the cell to burst from the excess pressure.32  Gram-positive 

bacteria contain higher levels of peptidoglycan compared to gram-negative organisms.31, 32  

Therefore, penicillin-based antibiotics are most effective against gram-positive bacteria strains.   
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Another general antibiotic group called the aminoglycosides function in a different manner to kill 

and inhibit bacterial growth.  Aminoglycoside-based antibiotics are known to inhibit bacteria 

protein synthesis by binding to specific ribosomal subunits present in the intercellular fluid.31  This 

causes misreading of mRNA and synthesis of atypical peptides, which leads to errors in protein 

synthesis and cause cell death.33  Reports demonstrate that aminoglycosides are mostly effective 

against aerobic, gram-negative bacteria because their crossing of the bacteria cell membrane 

depends on the aerobic metabolism.31, 33  The above examples demonstrate how certain antibiotics 

function.  In general, antibiotics are highly selective towards specific strains and types of bacteria 

due to their inherent bactericidal function. 

 

1.2.2 Antibiotics in ointments, creams, and hydrogels 

One use of antibiotics is within ointments, creams, and hydrogels for topical antimicrobial 

applications due to their efficacy and low toxicity.  Utilized since 1956 and approved by the U.S. 

Food and Drug Administration (FDA) in 1971, the most common nonprescription triple-antibiotic 

ointment (TAO) (<20% water content) contains a combination of neomycin, polymyxin B, and 

bacitracin.34-36  The triple antibiotic combination is utilized because of the limited spectrum each 

has individually.  Neomycin is an aminoglycoside antibiotic effective mainly against aerobic gram-

negative organisms while excluding most Pseudomonas species.31, 34  Polymycin B is effective 

against some gram-negative strains, including Pseudomonas species.31, 34  Bacitracin is most 

effective against gram-positive strains.31, 34  This TAO has been evaluated and studied extensively 

over many decades and has become the standard antimicrobial topical ointment.  A clinical study 

performed from 1989-1990 demonstrated how effective TAO can be at preventing infections of 

soft-tissue wounds repaired in a hospital emergency department.37  This study compared TAO, 
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bacitracin zinc ointment (BAC), silver sulfadiazine cream (SIL), and petrolatum (PTR) (control) 

applied three times a day to the wound site.  Upon study completion, use of TAO resulted in 

significantly lower infection rates compared to the PTR control: 4.5% and 17.6%, respectively 

(BAC=5.5%, SIL=12.1%) (n=106.5 patients each treatment).  TAO had the lowest infection 

percentage of all evaluated treatments, labeling it as a safe way to prevent infection of wounds that 

require closure.  This is just one of many studies involving the antimicrobial efficacy of TAO. 

For a topical treatment to be considered a cream, the amount of water must be >50%.  One example 

of  a commonly used antibiotic-containing cream is 0.1% gentamicin cream.30  Gentamicin is a 

broad spectrum antibiotic, effective against a number of gram-positive and gram-negative 

strains.30, 38  Several studies report using 0.1% gentamicin cream to treat/prevent exit-site 

infections (ESIs) from peritoneal dialysis catheters.38-42  In these reports, the treatment of ESIs 

using the gentamicin cream was mainly compared to a mupirocin cream/ointment (another 

common topical treatment for ESIs).  Mupirocin is an antibiotic mainly effective against gram-

positive bacteria strains and therefore highly effective at reducing ESIs caused by S. aureus.43, 44  

Reports that compared these two topical treatments, collectively showed that the gentamicin cream 

was able to match or exceed the reduction of ESIs compared to the mupirocin cream/ointment.  In 

particular, Bernardini et al. showed that ESI rates were 0.23/yr using a gentamicin cream and 

0.54/yr using a mupirocin cream.40  Interestingly, there were no P. aeruginosa (gram-negative 

bacteria strain) ESIs when using the gentamicin cream compared to a 0.11/yr ESI rate using the 

mupirocin cream because mupirocin is not a broad-spectrum antibiotic. 

Hydrogels have also been used in combination with antibiotics for various topical applications.  

Hydrogels are 3D porous materials synthesized using water-soluble polymers that can turn into a 

gel under defined conditions (temperature, pH, ultraviolet exposure, enzyme catalyst, etc.).45-47  
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Some advantages to using a hydrogel include protection of the antibiotic(s), controlled release, 

high surface area to volume ratio, and controlled porosity to increase biocompatibility with natural 

tissues.45, 46  Ciprofloxacin is a popular antibiotic incorporated into a hydrogel because of its broad-

spectrum antimicrobial activity against gram-positive and gram-negative bacteria strains.48-55  

Zhou et al. demonstrated that ciprofloxacin incorporated into a poly(vinyl alcohol) 

(PVA)/poly(ethylene glycol) (PEG) porous scaffold hydrogel was able to completely inhibit the 

growth of E. coli in solution compared to a PVA/PEG control.55  Marchesan et al. reported the 

antimicrobial capabilities of a ciprofloxacin self-assembled with a tripeptide (DLeu–Phe–Phe) to 

yield a hydrogel after a pH trigger.49  A qualitative micro gel well diffusion assay was performed 

against S. aureus (gram-positive), E. coli (gram-negative), and K. pneumoniae (gram-negative) 

(Fig. 1.1).  An inhibition zone was seen for all ciprofloxacin-loaded hydrogels, demonstrating the 

broad-spectrum antimicrobial effects of ciprofloxacin. 

 
Figure 1.1. Antibacterial efficacy of 0.2% w/v ciprofloxacin (CIP) tripeptide gel and controls of 

only tripeptide gel against S. aureus, E. coli, and K. pneumoniae agar layer cultures.  Images taken 

after 20 h of incubation at 37°C.49 
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1.2.3 Limitations and downfalls of antibiotics for topical treatments 

One user-convenience that the triple-antibiotic ointment (TAO) lacks is spreadability, especially 

over large areas of skin, because it is inherently an ointment (<20% water).  To increase 

spreadability, manufacturers increased the water percentage to >50%, classifying it as a cream.  

Unfortunately, bacitracin is not stable over long periods of time in an aqueous environment.36  

Therefore, bacitracin was removed from the cream formulation, leaving only neomycin and 

polymyxin B.  Removal of bacitracin lowers the effectiveness of the new cream with only 

neomycin and polymyxin B against gram-positive strains.  This is an example that demonstrates 

how a major limitation of using antibiotics is their specificity towards specific bacteria 

types/strains. 

As mentioned previously, gentamicin- or mupirocin-containing creams are commonly used for 

treating/preventing exit-site infections (ESI) from peritoneal dialysis catheters.38-44  However, a 

limitation of using the mupirocin cream/ointment is its lack of broad-spectrum activity, especially 

towards gram-negative bacteria such as P. aeruginosa.40  Even though gentamicin is a broad-

spectrum antibiotic, occurrence of ESIs when using a gentamicin cream have been linked to its 

lengthy broad-spectrum suppression of indigenous skin flora, causing atypical organisms to 

grow.39  Another study aimed to avoid this prolonged broad-spectrum suppression by 

interchanging applications of gentamicin cream and mupirocin cream.  However, there was no 

change in ESI rate compared to just using the gentamicin cream.38  Instead, the alternating 

application regimen caused a higher incidence of antibiotic-related fungal peritonitis.38  These 

examples demonstrate how even broad-spectrum antibiotics have downfalls. 

In general, antibiotics are nontoxic to humans.  However, some antibiotics display toxic behavior 

depending upon their concentration.  For example, ciprofloxacin-loaded hydrogels (mentioned 
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earlier) have a history of toxicity related to dosage/concentration of ciprofloxacin.46  Du et al. 

demonstrated the cytotoxicity of ciprofloxacin-loaded nano-in-micro hydrogel particles on RAW 

macrophage cells.56  Versus a control of ciprofloxacin-free hydrogel particles, the viability of the 

RAW macrophage cells was reduced by 38.4% after 24 h of exposure at 37°C for the lowest 

concentration of ciprofloxacin tested (320 µg/mL).56  This example demonstrates how some 

antimicrobials have cytotoxic effects even though the vast majority of antibiotics are deemed 

nontoxic. 

 

1.3 Nitric Oxide 

1.3.1 Purpose, function, and properties of nitric oxide 

Over the past three decades, a small gaseous molecule, nitric oxide (NO), has gained much 

attention due to its potential as a therapeutic agent.  In the 1980s, NO was discovered to be the 

endothelium-derived relaxing factor (EDRF) that causes relaxation of smooth muscle cells located 

in blood vessel walls.57  This effect causes vasodilation, increasing blood flow to body tissues, and 

lowers blood pressure.  NO is synthesized from L-arginine in vivo via three nitric oxide synthase 

(NOS) enzymes.57  In the presence of molecular oxygen, L-arginine is oxidized to NO and L-

citrulline.  Two of these NOS enzymes, neuronal NOS (nNOS) and endothelial NOS (eNOS), are 

permanently active and play key roles in biological functions such as neurotransmission and 

prevention of platelet activation and aggregation.57, 58  However, induced NOS (iNOS) is active 

only when the body undergoes an immune response to foreign species (proteins, bacteria, viruses, 

etc.).57, 59  The half-life of NO in blood is short, 0.5-1.0 s, because it is highly reactive and is 

quickly scavenged by oxyhemoglobin (to form methemoglobin).57, 58  NO also reacts with thiols 



 10 

(RSHs) to form S-nitrosothiols (RSNOs), and can thereby be stored and transported to target 

locations within the body.60 

Nitric oxide is highly reactive because it is a diatomic free radical molecule.  Therefore, NO is a 

potent broad-spectrum antimicrobial agent because it can cause multiple reactions that lead to 

bacteria cell death.58, 61  The two main mechanisms by which NO can cause cell death are via 

nitrosative and oxidative stress (Fig 1.2).61  Nitrosative stress occurs by NO reacting with 

molecular oxygen to yield NO2 radical.  This species reacts with another NO to yield the reactive 

product N2O3.  N2O3 then reacts with thiol groups (RSH) present on the surface proteins of bacteria, 

causing the cell wall to denature and break apart, killing the bacteria cell.  Oxidative stress occurs 

when NO is present in the intracellular fluid of the bacteria cell.  NO is highly lipophilic and 

therefore can readily pass through bacteria cell walls/membranes.62  Once inside, NO reacts with 

superoxide (derived from cellular respiration) to form peroxynitrite (ONOO-).  Peroxynitrite 

triggers lipid peroxidation reactions to occur, which causes cell membrane destruction. 

 
Figure 1.2. Mechanisms by which NO acts as an antibacterial agent.61 
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NO not only displays antimicrobial effects against a broad range of bacteria, it is also effective 

against viruses, fungi, and yeast.63, 64  NO also displays great dispersal/displacing activity against 

microbial biofilms.65-68  One example of NO’s anti-biofilm effects was demonstrated by Wo et al., 

where the authors achieved a 5 log unit reduction in S. aureus cell counts between a NO releasing 

catheters versus a control catheters when placed within a 7 d drip-flow bioreactor under 

physiological conditions.68  Overall, NO’s many unique properties make it an attractive and potent 

antimicrobial/anti-biofilm agent.  

 

1.3.2 NO releasing agents for topical treatments 

NO is synthesized in skin tissue by fibroblasts, keratinocytes, melanocytes, and Langerhans 

cells.57, 69  On the skin surface, NO is produced via chemical and bacterial reduction of sweat 

nitrate.69  In recent years, the application of NO for the treatment of dermal conditions has been 

explored as it has several attractive properties, such as being a potent antimicrobial and anti-

inflammatory agent, as well as increasing angiogenesis, i.e. proliferation of new blood vessels (for 

potential wound healing applications).  Various NO donor platforms and methods have been 

investigated with the goal to develop systems capable of delivering/releasing NO in a controlled 

and efficient manner.   

S-Nitrosothiols (RSNOs) are a class of NO donor molecules that have immense therapeutic 

potential because of their inherent low toxicity and ability to store and release NO (Fig. 1.3).70  

However, RSNOs are fairly reactive and can release NO in the presence of reducing agents, metal 

ions (e.g. Cu(I/II)), as well as by thermal degradation and photolysis.71-78  Therefore, incorporating 

RSNOs into various topical matrices may increase their stability. 
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Figure 1.3. Structures of various RSNOs. 

 

Oliviera et al. studied the effect of incorporating GSNO and SNAC into a hydrogel comprised of 

Pluronic F127, a triblock copolymer of poly(ethylene oxide)—poly(propylene oxide)—

poly(ethylene oxide).79  Thermal and photochemical NO-release rates from S-nitrosoglutathione 

(GSNO) and S-nitroso-N-acetylcysteine (SNAC) in water and the hydrogel were determined.  

Comparing GSNO incorporated within the hydrogel to GSNO incorporated within water, the NO-

release rate decreased 2.0-fold at 37°C and 1.5-fold when irradiated at >480 nm (Fig. 1.4).79  The 

Pluronic F127 hydrogel has the unique property of reverse thermal gelation, and this stabilizes the 

RSNO by a cage recombination effect.  The geminate radical pair that forms from the hemolytic 

cleavage of the S—N bond is more likely to undergo radical pair recombination in the solvent 

cage, thus reducing the decomposition of RSNOs and prolonging the NO-release to approximately 

2 h.79   
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Figure 1.4. Real-time NO release from GSNO incorporated into (a) hydrogel-dark, (b) H2O-dark, 

(c) hydrogel-irradiated, (d) H2O-irradiated; irradiated with λ > 480 nm.79 

 

Other literature reports have demonstrated how incorporating GSNO into a hydrogel increased 

blood flow when applied to human skin and improved and accelerated the wound healing process 

of rat models.80-85  For example, Georgii et al. showed that application of a hydrogel containing 

GSNO to an ischemic wound versus a control hydrogel, increased the wound closure rate.  The 

faster wound closure was attributed to NO’s antimicrobial, anti-inflammatory, and pro-

angiogenesis properties. 

Another class of NO-donor molecules that have been extensively studied are diazeniumdiolates.  

One advantageous property of diazeniumdiolates is that they release two moles of NO per mole of 

NO donor via acid catalyzed spontaneous decomposition.86  A potential issue with using 

diazeniumdiolates as a NO-donor is the possibility of N-nitrosamine formation, and most 

nitrosamines are carcinogenic.87, 88  Nonetheless, various NO releasing diazeniumdiolate scaffolds 

have been studied for their potential therapeutic purposes because they can store and release large 

payloads of NO.  For example, N-diazeniumdiolate-functionalized dendrimers have been 

examined thoroughly and the NO release rates can be tuned based on the number of terminated 
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primary amines.  Stasko et al. determined that the NO release half-lives under physiological 

conditions of dendrimer polypropylenimine with 16 or 64 terminated primary amines were 12 and 

29 min, respectively.89  The slowed decomposition rate of the larger dendrimer was attributed to 

the abundance of neighboring amine sites.  The neighboring amines sites provide alternative sites 

of protonation, which slows the proton driven dissociation of diazeniumdiolates.90  Similar 

diazeniumdiolate-modified dendrimers were tested on Streptococcus mutans for biofilm 

disruption.91  The bactericidal and anti-biofilm activity was increased for the NO-releasing 

dendrimers with greater exterior hydrophobicity.  Also, the faster NO-release kinetics yielded 

greater bactericidal activity compared to slow NO-release dendrimers.  However, higher 

concentrations of diazeniumdiolate-modified dendrimer lead to greater toxicity to mammalian 

cells, reducing cell viability by up to 70%.  The authors attributed the inherent toxicity to the large 

dose of NO.91   

NO-releasing silica nanoparticles modified with diazeniumdiolate NO donors have also been 

investigated.  Instead of functionalizing just the outside of the silica nanoparticles like for the 

modified dendrimers, Hetrick et al. developed a synthetic scheme that allowed NO moieties to be 

present on the surface as well as within the pores of the silica nanoparticles.61  This new method 

involves forming the diazeniumdiolate on the silane’s secondary amine before performing a 

condensation reaction with tetraalkoxysilane to synthesize the NO-releasing silica nanoparticle.  

This unique structure allowed for the storage of larger NO payloads.  When tested against P. 

aeruginosa, the NO releasing silica nanoparticle provide a 3 log unit reduction in cell counts with 

within 90 mins of exposure under physiological conditions. 

A company called Novan Therapeutics Inc. is using a version of these NO releasing silica 

nanoparticles within a type of hydrogel for topical treatments.  The company’s product at various 
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concentrations has shown promising antimicrobial effects against methicillin-resistant 

Staphylococcus aureus (MRSA) (Fig. 1.5). 

 
Figure 1.5. MRSA bacteria counts after being untreated, being treated with just the vehicle 

hydrogel, and being treated with 2, 6, or 12% concentration of Novan’s product on various days 

(graph taken from novan.com). 

 

1.4 Summary 

Antiseptic agents have long been utilized by the biomedical field for their broad-spectrum 

antimicrobial effects.  Unfortunately, given antiseptics are not always suitable/safe for all 

applications.  The discovery and development of antibiotics brought the medical community an 

effective/nontoxic way to target specific bacteria strains/infections.  However, the evolution of 

antibiotic resistant bacteria strains has severely reduced the effectiveness of antibiotics.  This 

phenomenon has made development of new antimicrobial agents/techniques a hot topic in the 

biomedical field.  Overall, NO’s potential to be used for various biomedical applications is quite 
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high.  NO’s many advantageous properties has driven researchers to utilize NO for several 

antimicrobial applications including topical treatments. 

 

1.5 Statement of Thesis Research 

The purpose of this dissertation is to examine the characteristics and antimicrobial capabilities of 

newly devised NO releasing creams and devices.  Moreover, this research introduces a novel 

method for releasing NO from S-nitrosoglutathione (GSNO) using zinc oxide (ZnO) nanoparticles.  

There is a heavy focus on using GSNO as the NO donor because it is endogenously produced and 

therefore relatively non-toxic.  Furthermore, the stability of GSNO is a primary topic addressed in 

several chapters.  Each NO releasing project has considerable practical application, with the goal 

of preventing/treating infections in the biomedical field. 

 

Chapter 2 analyzes the characteristics and capabilities of various NO releasing two-part cream 

formulations.  This includes evaluating the long-term storage capabilities of GSNO within a 

hydrophobic matrix, namely Vaseline.  Also, the NO release kinetics from GSNO stored in 

Vaseline when combined with a commercial ZnO-containing cream are reported.  The NO release 

properties of this mixture are shown to be promising for potential antimicrobial applications.  

 

Chapter 3 evaluates the antimicrobial effects of the NO releasing two-part creams developed in 

Chapter 2.  Indirect and direct application studies of the NO releasing creams onto different 

bacteria strains cultured on agar plates and also on pig skins were performed.  Very significant 

antimicrobial activities for all bacteria tested are reported.  Experiments to assess the antimicrobial 

activity of the NO releasing creams with various pH’s were also conducted. 
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Chapter 4 investigates the NO release from GSNO in the presence of ZnO nanoparticles.  ZnO was 

proved to be substance responsible within the commercial ZnO cream that enhances NO release 

from GSNO.  Solution phase studies were performed with GSNO and ZnO nanoparticles of 

different diameters to gain insight into how enhanced NO release from GSNO occurs in the 

presence of such particles. 

 

Chapter 5 introduces a NO releasing insert device to disinfect the hub region of tunnel dialysis 

catheters (TDC).  The NO release characteristics of various GSNO/ZnO-containing inserts were 

evaluated, along with their antimicrobial capabilities.  Sheep studies evaluated the performance of 

the NO releasing insert device against normal TDC caps and a commercially available 

antimicrobial cap. 

 

Finally, Chapter 6 provides a summary of the major conclusions drawn from the research described 

in Chapters 2-5. In addition, this chapter details suggestions for future experiments that can expand 

on the existing knowledge for the new GSNO-ZnO based NO release chemistry discovered via the 

research described in this dissertation. 

 

The research reported herein consists of studying novel NO releasing creams/devices for various 

biomedical applications.  The NO releasing creams utilizing GSNO, Vaseline, and ZnO cream 

display significant antimicrobial effects on three bacteria strains associated with dermal or wound 

infections.  These NO releasing creams have the potential to be a better alternative to using existing 

antibiotic-containing creams for dermal or wound infections.  It was discovered that ZnO 

nanoparticles can enhance the NO release rate from GSNO.  This discovery can potentially impact 
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future research studies to incorporate ZnO nanoparticles to increase NO release from GSNO or 

other RSNO species.  The NO releasing insert device is shown to exhibit significant 

antimicrobial/anti-biofilm effects when used with tunneled dialysis catheters.  This NO releasing 

insert device could significantly lower the number of catheter related infections for hemodialysis 

patients. 
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Chapter 2 Development and Characterization of Nitric Oxide Releasing Two-Part Creams 

 

Reprinted from Nitric Oxide, Vol. 90, Nitric oxide releasing two-part creams containing S-

nitrosoglutathione and zinc oxide for potential topical antimicrobial applications, Doverspike, J. 

C.; Zhou, Y.; Wu, J.; Tan, X.; Xi, C.; Meyerhoff, M. E. Copyright 2019, with permission from 

Elsevier. 

 

2.1 Introduction 

Infected wounds can lead to serious issues such as delayed wound healing, necrosis, limb or life-

threatening situations, and spread of infection not only in the patient’s body but to others in a 

hospital setting.1-3  The most common topical treatments to prevent or treat infections often utilize 

antibiotics.4 Consequently, the effects of these treatments over time diminish as multi-drug 

resistant bacterial strains continue to evolve.5-7 Over the past decade, the rate of antibiotic 

resistance has increased rapidly, caused by the misuse of antibacterial agents.6, 8, 9 Organizations 

such as the World Health Organization (WHO) and Centers for Disease Control and Prevention 

(CDC) have declared antibiotic resistance as a global health concern.8, 9 

When considering topical antimicrobial treatments, either prescription or non-prescription type, 

the treatment must display several characteristics to be an effective agent.  First, active ingredients 

must be safe and stable.  According to U.S. Food and Drug Administration (FDA) standards, new 

cosmetics with drugs must report an extensive amount of safety data that also demonstrate stability 

of the ingredients.10, 11 Topical antimicrobial treatments fall within this category.  Second, the 

active components (e.g., antibacterial agent(s)) should exhibit activity towards a wide range of 

microbes (non-selective).6 This will ensure broad application potential of the antimicrobial 
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treatment. Third, the treatment must be practical and effective over a designated application period.  

For example, treatments that would require application every 30 minutes would be considered 

impractical; however topical application once or twice daily would be much more acceptable.   

An example of an antimicrobial treatment that is capable of meeting all of the above criteria is one 

that incorporates nitric oxide (NO) as an active ingredient.3, 12-18  Nitric oxide (NO) is a simple 

diatomic free radical that has drawn much attention in the biomedical field due to its potential as 

a therapeutic agent.14, 19, 20  NO is naturally synthesized in vivo by the enzyme nitric oxide synthase 

(NOS) and plays a key role in several biological functions such as neurotransmission, prevention 

of platelet activation and adhesion, and serving as a potent antimicrobial/antiviral agent produced 

by immune system macrophages to fight infection.21-24 As a free radical, NO can facilitate a 

multitude of reactions leading to microbial cell death, making it ideal for therapeutic 

applications.14, 19, 25  To date, NO has displayed broad activity, killing many different types of 

bacteria.14, 25 

Free radical molecules like NO are highly reactive and therefore NO donor molecules are often 

utilized to stabilize NO, and then release NO locally upon demand.  Some NO donors that have 

been used for antimicrobial/wound healing applications include nitrite (converted to NO by 

reduction reaction), N-diazeniumdiolates (NONOate), and S-nitrosothiols (RSNO).3, 12-17 A major 

concern for NO donors is the toxicity of byproducts that are generated upon NO proliferation.  

NONOates have been shown to form N-nitrosamines by back-reaction of some fraction of the NO 

released, and most nitrosamines are carcinogenic.26, 27 RSNOs, on the other hand, are NO releasing 

agents that have the least toxicity-related issues. Most concerns arise from the use of synthetically 

derived RSNOs and the concentration that humans can be exposed to, which is also an issue with 

other types of NO donors.21 
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To circumvent any toxicity-related issues, this work utilizes an endogenous RSNO, S-

nitrosoglutathione (GSNO), that is present in human blood at a concentration between 0.02-0.20 

µM, serving as a carrier of NO.20, 28, 29  Upon liberation of NO, the two most common products are 

glutathione (GSH) and glutathione disulfide (GSSG), which are also found in human blood at 

approximately 17 µM and 3 µM, respectively.29 GSNO is a primary RSNO that can decompose 

and liberate NO in the presence of certain reducing agents, including trace metal ions (e.g., 

Cu(I/II)), as well as by thermal degradation and photolysis.28, 30-38  Hence, maintaining stability of 

GSNO as well as other RSNOs over long periods of time can be challenging. 

Herein, the potential long-term stability issues of GSNO are solved by storage within a highly 

viscous and hydrophobic matrix, Vaseline.  Further, initiating and accelerating the release of NO 

from GSNO stored within the Vaseline matrix is studied when mixed with various secondary 

creams containing different NO releasing accelerants/catalysts.  The secondary cream that 

provided the most NO release over a 6 h period contains zinc oxide particles.  Zinc oxide (ZnO) 

particles are widely utilized in pharmaceuticals, cosmetics, textiles, and electronics.39 For example, 

ZnO is used in most topical sunscreens because it can absorb UVB (290-320 nm) and UVA (320-

400 nm) sunlight radiation.40  It is also employed within diaper rash creams as a stringent and 

antimicrobial agent.41, 42 A method was developed to study the NO release characteristics and 

kinetics from the GSNO/Vaseline/ZnO cream formulations over a 6 h period in both dark and light 

settings.  Observed first-order rate constants and half-lives are reported for each formulation and 

scenario studied. 
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2.2 Materials and Methods 

2.2.1 Materials 

L-Glutathione reduced (GSH), hydrochloric acid (HCl), and sodium nitrite were purchased from 

Sigma-Aldrich (St. Louis, MO).  Acetone and xylenes were purchased from Fisher Scientific Inc. 

(Pittsburgh, PA).  Vaseline® Jelly, Unilever, Lot 08226JB00 (Vaseline); Neosporin® + Pain 

Relief Cream, Johnson & Johnson Consumer Inc, Lot 0058LZ  (Neosporin cream); Avalon 

Organics® Intense Defense with Vitamin C Oil-Free Moisturizer, The Hain Celestial Group Inc, 

Lot 618747 (vitamin C cream); and Desitin® Rapid Relief Cream: Zinc Oxide Diaper Rash Cream, 

Johnson & Johnson Consumer Inc, Lot 1577LZ/2 (zinc oxide cream) were purchased from a local 

CVS Pharmacy.  Osmotics Cosmeceuticals Blue Copper 5®, Osmotics LLC, Lot 4248D7 (copper 

cream) were purchased from Amazon.com.  All aqueous solutions were prepared with 18.2 M Ω 

deionized water using a Milli-Q filter (Milli-q purified water) from EMD Millipore (Billerica, 

MA).  Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and 

Pseudomonas aeruginosa ATCC 27853 were obtained from the American Type Culture Collection 

(Manassas, VA). 

 

2.2.2 S-Nitrosoglutathione (GSNO) synthesis 

An adapted method of the procedure reported initially by Hart et al. was used to synthesize 

GSNO.43  Synthesis was completed in the absence of light.  Reduced glutathione (GSH) (4.59 g) 

was dissolved in aqueous HCl (0.5 M, 31.5 mL), cooled to 0°C using an ice bath, and continuously 

purged under nitrogen.  An equal molar amount of sodium nitrite (1.035 g) was added directly to 
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the GSH solution.  After stirring for 40 min at 0°C, ice-cold acetone (10 mL) was added into the 

reaction mixture to precipitate the GSNO.  After stirring for another 10 min, the pink precipitate 

was separated by vacuum filtration.  The resulting pink powder was washed by ice-cold water (3 

× 10 mL) and acetone (3 × 10 mL), respectively.  Finally, the desired GSNO product (3.85 g, 77% 

yield) was obtained after drying under vacuum at room temperature (24°C) for 24 h. GSNO was 

stored at freezer temperature (-20°C) in the dark for any further use. The synthesized GSNO was 

characterized in D2O at room temperature (24°C) by 1H NMR spectroscopy (Varian 400 MHz 

spectrometer) (Fig 2.1). 1H NMR (400 MHz, D2O): δ 4.63 (app. t, J = 6.2 Hz, 1 H) , 4.02 (dd, J = 

51.2, 12.8 Hz, 2 H), 3.91 (s, 2 H), 3.76 (t, J = 6.4 Hz, 1 H), 2.41 (t, J = 7.6 Hz, 2 H), 2.08 (app. 

nonet, J = 7.6 Hz, 2 H). The purity of prepared GSNO was > 98% based on the characterization of 

the 1H NMR results (Fig. 2.1). 

 
Figure 2.1. 1H NMR Spectrum of synthesized GSNO in D2O.44 
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2.2.3 Preparation of various wt% GSNO in Vaseline 

The entire preparation of each formulation was completed in the absence of direct light.  A mortar 

and pestle were used to grind GSNO crystals into a fine powder.  The desired mass of fine GSNO 

powder was then weighed out into a mixing vessel.  In the same vessel, the desired mass of 

Vaseline was added.  The fine GSNO powder was then mixed thoroughly with the Vaseline using 

a wooden stirrer for 2.5 min.  The resulting mixture was designated as a primary matrix. 

 

2.2.4 Preparation of various wt% of GSNO in Vaseline for long-term stability studies 

The desired wt% of the primary GSNO/Vaseline matrix was prepared.  The sample was placed 

into a 20 mL amber glass vial with septum cap and wrapped in aluminum foil.  The vial was purged 

with nitrogen gas via the septum top for 5 h.  Samples were then stored in the dark at 24°C for 

extended time periods. 

 

2.2.5 Evaluating stability of GSNO in Vaseline using UV-Vis spectroscopy 

The entire procedure was completed in the absence of direct light.  An aliquot of the 

GSNO/Vaseline primary matrix from the stability study samples was weighed out into a separate 

20 mL amber glass vial.  Five mL of xylenes was added to the vial.  A mixture of xylenes was 

used to dissolve the Vaseline while not dissolving the GSNO.  The vial was shaken on a horizontal 

shaker (Shaker 30, National Labnet Company, Woodbridge, NJ) at 400 RPM for 10 min.  After 

that time, the contents were transferred into a 60 mL separation funnel.  The original sample vial 

was further washed twice with 1.5 - 2.5 mL of Milli-q purified water and the contents were added 
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to the separation funnel.  The total volume of Milli-q purified water used was noted. The contents 

in the separation funnel were gently mixed for 1 min.  Shaking or agitating the solution too much 

caused the Vaseline to crash out of the xylenes/organic layer.  The bottom aqueous layer that 

contained dissolved GSNO was then collected.  The appropriate volume of aqueous sample was 

pipetted into a quartz cuvette such that the absorbance measured would be < 1 at 334 nm.  Beer’s 

Law (A = εbc) and an extinction coefficient of ε334 nm = 922 M-1cm-1  for the GSNO was used to 

calculate the theoretical absorbance for each sample.43  The sample was diluted further if necessary 

to achieve an absorbance of < 1.  UV-Vis spectra were collected using a UV-Vis 

Spectrophotometer (Lambda 35, Perkin-Elmer, MA).  The spectra were obtained by scanning from 

300-500 nm at a scanning speed of 240 nm/min.  Milli-q purified water was used as the blank to 

standardize the baseline absorbance.  The absorbance at 334 nm was used to calculate the 

%recovery of GSNO from the stored GSNO/Vaseline primary matrix.34, 43  

 

2.2.6 Preparation of matrices for NO release measurements 

The entire procedure was completed in the absence of direct light.  The GSNO/Vaseline primary 

matrix was prepared as described above.  In the same mixing vessel, the desired mass of a 

secondary matrix was weighed out such that the ratio of primary to secondary matrix (e.g., 

commercial ZnO cream, Neosporin cream, copper cream, or vitamin C cream) was 27/73.  Both 

matrices were mixed together using a wooden stirrer for 2.5 min.  A small aliquot of the resulting 

matrix was placed inside of a plastic (polystyrene), circular stencil (diameter 5.85 mm, height 0.33 

mm), on top of a glass slide.  The excess matrix was scraped away from the top and the stencil was 
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removed, leaving the matrix at a defined sample size.  A schematic of the matrix sample on the 

glass slide is depicted in Figure 2.2. 

 
Figure 2.2. Schematic of side and top view for a matrix with a defined sample size on a glass slide. 

 

2.2.7 Measuring NO release from matrices 

Nitric oxide release from various mixed matrices was measured using a Sievers 

Chemiluminescence Nitric Oxide Analyzer (NOA) 280i (Boulder, CO).  The NOA was calibrated 

before via a two-point calibration of N2 gas passed through a NOA zero air filter and a standard of 

44.3 ppm NO in N2 gas.  The test matrix mixture was prepared and put onto a small glass slide as 

described above.  The glass slide was then place into an amber NOA sample cell.  The bottom of 

the amber NOA sample cell was filled with Milli-q purified water and the glass slide was placed 

on top of a stage above the water line such that the matrix mixture did not come in contact with 

the water.  The water reservoir was bubbled with N2 gas at a rate of 50 mL/min to humidify the 

NOA sample cell to prevent the matrix from drying out.  The NO generated from the GSNO within 

the Vaseline/cream mixture was swept into the NOA by N2 sweep gas.  For measuring NO release 

of samples at 34°C, the amber NOA sample cell was placed in a 34°C water bath.  All amber NOA 
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sample cells were wrapped in aluminum foil to shield the samples from light exposure.  A 

schematic of measuring NO release is depicted in Figure 2.3. 

 
Figure 2.3. Schematic of the set-up for measuring NO release from matrices.  The reaction cell is 

amber glass, submerged in a 34°C water bath, and wrapped in aluminum foil. 

 

2.3 Results and Discussion 

2.3.1 Preliminary stability study of 10 wt% and 33 wt% GSNO in Vaseline 

Vaseline was chosen as the primary matrix to store and stabilize GSNO.  Vaseline is a 

commercially available matrix consisting of 100% petroleum jelly/petrolatum (white).  Petrolatum 

(white) is insoluble in water because of its extremely hydrophobic nature consisting of saturated 

hydrocarbons.45 Having zero water content is a key factor when considering the storage and 

stability of GSNO.  In the presence of water, GSNO can decompose in several manners.  A 

transnitrosation reaction can occur between GSNO and other thiols to yield GSH and the 

corresponding nitrosated thiol (Fig. 2.4).46, 47 Singh et al. reported that GSNO will decompose in 

the presence of its parent thiol GSH (and there is always a tiny amount of this species present in 

the GSNO preparation) and that the decomposition rate is dependent on the concentration of GSH 

(Fig. 2.4).34 In aqueous solution, GSNO can also react with other reducing agents such as ascorbate 

(ascorbic acid) or catalysts such as iron and copper ions (Fig. 2.4).30-32, 35, 37 
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Figure 2.4. GSNO decomposition reactions that can occur in the presence of water, where (1) is a 
transnitrosation reaction, (2) is a decomposition reaction with GSH, and (3) is a reaction between 

copper ions and GSNO.34, 46-48 

 

Two different concentrations of GSNO in Vaseline, 10 wt% and 33 wt% GSNO, were prepared to 

evaluate the long-term stability of GSNO in the Vaseline matrix at 24°C, in the dark, and in dry 

storage.  UV-Vis spectroscopy was used to determine the stability of GSNO in Vaseline because 

GSNO has a strong absorption peak in the UV region at 334 nm.34, 43  Absorbance (ABS) versus 

wavelength was measured for both 10 wt% and 33 wt% GSNO in Vaseline stability samples on 

day 583 and day 313, respectively (Fig. 2.5a,b).  The % recovery for the 10 wt% GSNO in Vaseline 

on day 583 was 89.8 ± 3.4%.  The % recovery for the 33 wt% GSNO in Vaseline on day 313 was 

87.6 ± 3.5%.  The samples were stored in the dark to avoid any photochemical decomposition of 

GSNO.36 Traditionally, RSNOs are most stable at colder temperatures.  Shishido et al. reported 

increased thermal stability of CysNO in a PEG 400 matrix because a higher viscosity imposes a 

cage effect on the thiyl and NO radical pair such that geminate recombination occurs more often.33, 

49 Hence, the longevity of GSNO stability at 24°C suggests that the dry GSNO being sequestered 

within the viscous Vaseline matrix may increase GSNO’s thermal stability due to favorable 

geminate recombination of the thiyl and NO radical pair. 
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Figure 2.5. Absorbance (ABS) vs. wavelength plots for (a) 10 wt% GSNO and (b) 33 wt% GSNO 

mixed in Vaseline on day 583 and day 313, respectively.  The crossed circle represents the 

theoretical ABS value at 334 nm for 100% recovery of GSNO.  The percent recovery of GSNO 

was calculated to be (a) 89.8 ± 3.4% and (b) 87.6 ± 3.5 based on ABS at 334 nm. Samples were 

stored in a dark, dry environment under N2 gas at 24°C. Data represents the mean ± SD (n = 3). 

 

2.3.2 Initiating NO release using various secondary matrices 

Four different commercially available secondary matrices were chosen for testing because they 

have ingredients that have the potential to assist with NO proliferation from GSNO when mixed 

with the GSNO/Vaseline primary matrix.  The non-prescription matrices selected were 

Neosporin® + Pain Relief Cream (Neosporin cream), Avalon Organics® Intense Defense with 

Vitamin C Oil-Free Moisturizer (vitamin C cream), Osmotics Cosmeceuticals Blue Copper 5® 

(copper cream), and Desitin® Rapid Relief Cream: Zinc Oxide Diaper Rash Cream (zinc oxide 

cream).  The primary matrix (33 wt% GSNO in Vaseline) was mixed with each secondary matrix 

at a 27/73 ratio.  This ratio was chosen primarily based on consistency of the final mixture.  NO 

release for these mixtures at two temperatures was investigated, room temperature (24°C) and a 

temperature closer to the surface of human skin (34°C).50 After mixing the primary and secondary 

matrices, NO release was monitored over a 6 h period using a NOA.  Only the first 6 h of NO 
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release were monitored to simulate a theoretical application period.  Figure 2.6 shows the total 

%NO released from the known amount of GSNO present during the 6 h period for each secondary 

matrix at 24°C and 34°C.  It is clear from the data shown in Figure 2.6 that the zinc oxide cream 

provides a significantly enhanced rate of NO release when mixed with the GSNO/Vaseline mixture 

compared to the other three commercial creams tested. 

 
Figure 2.6. %NO released from 33 wt% GSNO/Vaseline primary matrix mixed with several 

secondary matrices: (a) Neosporin cream; (b) vitamin C cream; (c) copper cream; and (d) zinc 

oxide cream at a 27/73 ratio to yield a final 9 wt% GSNO matrix.  NO release was measured in 

the dark over a 6 h period at both 24°C and 34°C. Data represents the mean ± SD (n = 3). 
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In general, for each final matrix mixture there is a minimum of two known mechanisms by which 

NO is proliferated from GSNO, thermal and via reaction with its parent thiol GSH (a trace amount 

of GSH is always present in the GSNO preparation).34, 51 Only these two reactions take place to 

generate NO in the case where Neosporin is involved.  Based on the ingredients present in the 

Neosporin cream, there are no additional reactions that could likely take place to proliferate NO 

from GSNO.  When Neosporin was mixed with the GSNO/Vaseline mixture, only as small 

percentage of NO was released after 6 h for both temperatures (Fig. 2.6a).  This data shows that 

Neosporin is not capable of releasing an appreciable amount of NO from GSNO because the NO 

generation pathways are limited to the two mentioned above. 

In the case involving the vitamin C cream, there is an additional reaction that could take place to 

increase NO release.  The active ingredient ascorbic acid/ascorbate (serving as a reducing agent) 

is known to enhance NO release from GSNO.30, 32  However, an extremely low %NO release was 

observed (Fig. 2.6b).  The concentration of ascorbic acid in this commercial cream is proprietary 

and unknown.  Therefore, there may not be enough ascorbic acid in the vitamin C cream to release 

an appreciable amount of NO from GSNO because ascorbic acid is a reactant, not a catalyst for 

the NO release reaction.30, 32, 52 Further, the reaction rate between GSNO and ascorbic acid may be 

hindered by other species  present in the Vitamin C cream.  It is known that ascorbic acid can be 

readily oxidized by moisture, light, heat, and metal ions.53, 54 For this reason, cosmetic formulations 

use different chemicals or additives to stabilize ascorbic acid such as tocopheryl acetate, citric 

acid, boric acid, tartic acid, and glycerine.54 

The %NO released by the copper cream was much lower than expected because copper ions are 

well-known to be a very good catalyst for NO proliferation from RSNOs (Fig. 2.6c).31, 35, 55  Similar 

to the vitamin C cream, there may be a component in the commercial copper cream that inhibits 
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the reaction between the copper ions and GSNO.  One ingredient present in the copper cream is 

protocatechuic acid (PCA).  PCA is known to be a metal ion chelator as well as free radical 

scavenger.56, 57 Therefore, the NO produced may be scavenged or the copper ions are likely 

strongly bound to PCA, not enabling them to serve as a catalyst for NO generation from GSNO. 

The zinc oxide cream released significantly more NO from the GSNO/Vaseline mixture than any 

other secondary matrix tested, at both 24°C and 34°C (Fig. 2.6d).  The zinc oxide cream was 

chosen because McCarthy et al. showed that Zn2+ ions have the capability of releasing NO from 

another RSNO (S-nitroso-N-acetylpenicillamine (SNAP)).58 However, with no reports on Zn2+ 

ions significantly enhancing the proliferation of NO from GSNO, further experimentation was 

needed to determine the true source of NO proliferation from GSNO. 

 

2.3.3 NO release characteristics and kinetics from GSNO using zinc oxide cream 

The first step to better understand the exact agent in the ZnO cream that accelerates the NO release 

from GSNO was to investigate the NO release kinetics using three different starting concentrations 

of GSNO.  An aliquot of the appropriate wt% of GSNO in Vaseline was mixed with the zinc oxide 

cream at a 27/73 ratio such that the final wt% of GSNO in the combined matrix was 3, 6, or 9 wt%.  

NO release was measured at 34°C for 6 h revealing that the NO release profile for each 

concentration was fairly similar (Fig. 2.7a).  Cumulative NO release plotted versus time reveals a 

similar NO release trend for all three concentrations of GSNO tested, exhibiting apparent first-

order kinetics (Fig. 2.7b).  Integration of Figure 2.7a showed that 77.9 ± 3.8%, 75.4 ± 3.8%, and 

74.6 ± 2.2% of the total theoretical NO available was released when employing the 3, 6, and 9 

wt% GSNO final mixtures over a 6 h test period, respectively (Table 2.1).  The observed first order 
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rate constant for the overall NO release kinetics was determined by the cumulative moles of NO 

release for 3, 6, and 9 wt% GSNO in the final mixtures versus time, giving kobs = 0.58 ± 0.01 h-1 

(t1/2 ~ 1.18 h), kobs = 0.63 ± 0.01 h-1 (t1/2 ~ 1.10 h), and kobs = 0.64 ± 0.01 h-1 (t1/2 ~ 1.08 h), 

respectively (Fig. 2.8a-c, Table 2.1). 

 
Figure 2.7. (a) Real-time NO release of 3, 6, and 9 wt% GSNO matrices in the dark at 34°C. (b) 

Cumulative NO release vs. time for 3, 6, and 9 wt% GSNO matrices in the dark at 34°C. 

GSNO/Vaseline primary matrices were mixed with commercial Desitin zinc oxide cream at a 

27/73 ratio to achieve 3, 6, and 9 wt% GSNO final matrices. Data represents mean (n = 3). 

 

Table 2.1. Summary of %NO release in 6 h, first order rate constant (kobs), and half-life (t1/2) for 

3, 6, and 9 wt% GSNO final matrices measured in the dark at 34°C.  GSNO/Vaseline primary 

matrices were mixed with commercial Desitin zinc oxide cream at a 27/73 ratio. (n = 3 separate 

preparations). 

Matrix % NO release in 6 h kobs (h
-1) t1/2 (h) 

3 wt% GSNO 77.9 ± 3.8 0.58 ± 0.01 1.18 

6 wt% GSNO 75.4 ± 3.8 0.63 ± 0.01 1.10 

9 wt% GSNO 74.6 ± 2.2 0.64 ± 0.01 1.08 
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Figure 2.8. Fit of the cumulative NO release versus time of (a) 3 wt% (b) 6 wt%, and (c) 9 wt% 

GSNO matrices to a first-order rate equation, giving (a) kobs = 0.58 ± 0.01 h-1 (t1/2 ~ 1.18 h), (b) 

kobs = 0.63 ± 0.01 h-1 (t1/2 ~ 1.10 h), (c) kobs = 0.64 ± 0.01 h-1 (t1/2 ~ 1.08 h). Data represents mean 

(n = 3). 

 

While it is possible that there could be several different reactions taking place to proliferate NO 

from GSNO, overall the total %NO release, half-life, and rate constant values are very similar for 

all three concentrations of GSNO in the final mixtures (Table 2.1).  Indeed, the measured rate 

constants for each concentration of GSNO are very similar, leading to the conclusion that the rate 

constant is independent of GSNO concentration.  However, the actual rate of reaction is time and 

concentration dependent according to the first-order rate law. 

All of the studies described above were completed in the absence of direct light.  However, for 

practical topical application, the creams have a high chance of being exposed to light.  Therefore, 

the NO release kinetics of the highest GSNO concentration in Vaseline/ZnO cream (9 wt% GSNO 

final cream) were measured in the presence of ambient laboratory light.  More specifically, the 

light source was from fluorescent ceiling lights approximately 2 meters away from the samples 

tested.  In general, the same procedure outlined in Section 2.2.7 was followed.  The only changes 

were that the laboratory light was on during the 6 h NO release measurements, the NOA sample 

cell was clear glass not amber, and no aluminum foil was used to cover the cell.  A direct 
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comparison of the real-time NO release in the dark versus in ambient room light shows a negligible 

difference in the rate of NO generation (Fig. 2.9a-b).  The %NO released over the first 6 h in the 

presence of light was 75.1 ± 3.2%, which is very similar to that observed under dark conditions 

(Table 2.1).  The observed first order rate constant in the presence of light was determined in the 

same manner as described previously, giving kobs = 0.63 ± 0.01 h-1 (t1/2 ~ 1.10 h), which again is 

very similar to the in dark scenario (Fig. 2.9c, Table 2.1).  One plausible reason why these different 

scenarios yield similar results could be because only the surface of the opaque cream is exposed 

to light and not the bulk of the cream.  This data concludes that the NO release kinetics are not 

significantly impacted by the presence of ambient laboratory lighting. 

 

Figure 2.9. Real-time NO release of 9 wt% GSNO matrices in the dark and in ambient room light 

at 34°C over (a) 6 h and (b) 60 min.  (c) Fit of the cumulative NO release versus time of 9 wt% 

GSNO matrices in ambient room light to a first-order rate equation, giving kobs = 0.63 ± 0.01 h-1 

(t1/2 ~ 1.10 h). GSNO/Vaseline primary matrices were mixed with commercial Desitin zinc oxide 

cream at a 27/73 ratio to achieve 9 wt% GSNO final matrices. Data represents mean (n = 3). 

 

2.4 Conclusion 

The characteristics and capabilities of preparing different NO releasing topical matrices based on 

storing GSNO as the NO donor in Vaseline have been evaluated.  Long-term storage stability was 

observed for 10 wt% and 33 wt% GSNO mixed in commercial Vaseline at 24°C.  The enhanced 
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stability of GSNO in Vaseline was attributed to the extremely dry storage conditions and the high 

viscosity of the matrix leading to geminate recombination of the radical pair.  Out of four 

secondary matrices tested to promote NO release when mixed with the GSNO/Vaseline primary 

matrix, the commercial Desitin zinc oxide-based cream released the highest percentage of NO at 

both 24°C and 34°C over a 6 h period.  The unexpected low rates of NO release from GSNO in 

the presence of commercial ascorbic acid and copper-containing creams under the same 

experimental conditions were attributed to interferences in the NO release reaction from other 

ingredients present in these matrices.  First-order NO release kinetics were reported for 3, 6, and 

9 wt% GSNO final matrices using the zinc oxide cream as the NO release promoter.  Based on the 

first order rate constants, it was determined that the observed rate constant was independent of 

GSNO concentration.  Comparing the first order rate constants from NO released in the dark versus 

light revealed that the NO release kinetics are not significantly impacted by ambient light. 
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Chapter 3 Antimicrobial Effects of NO Releasing Cream Formulations 

 

Certain sections and figures of this chapter are reprinted from Nitric Oxide, Vol. 90, Nitric oxide 

releasing two-part creams containing S-nitrosoglutathione and zinc oxide for potential topical 

antimicrobial applications, Doverspike, J. C.; Zhou, Y.; Wu, J.; Tan, X.; Xi, C.; Meyerhoff, M. E. 

Copyright 2019, with permission from Elsevier. 

 

3.1 Introduction 

In 1941, Selman Waksman was the first to define the term “antibiotic” as any small molecule made 

by microorganisms that antagonizes the growth of other microbes via a specific Mode-Of-Action.1, 

2 The “golden era” of antibiotic discovery and development occurred from the 1930s to 1960s.3, 4 

Unfortunately, the rise of antibiotic resistant strains caused antibiotic development to rapidly 

decrease during the following decades mainly due to the abuse and misuse of antibiotics.3-5 

According to organizations such as the World Health Organization (WHO) and Centers for Disease 

Control (CDC), antimicrobial resistance has evolved into a global crisis.4-7 

Over the last few decades, several methods have been developed to combat multidrug resistant 

organisms (MDR).  In general, antibiotics are hindered by their specificity toward certain 

strains/types of bacteria.  Therefore, methods such as combination antibiotic therapy have been 

developed.  Combination antibiotic therapy is generalized as using two or more antibiotics to 

broaden the antibacterial spectrum, treat polymicrobial infections, and provide potential 

synergistic effects.3, 8 For topical applications, combination antibiotic therapy is commonly used 

due to the multitude of bacteria strains/types associated with dermal infections.9 

Creams/ointments are often the obvious form of treatment/prevention of topical infections. For 

instance, Neosporin is a commercially available antibiotic cream that utilizes combination 
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antibiotic therapy. Neosporin cream/ointments contain the antibiotics neomycin, polymyxin B, 

and/or bacitracin.10, 11 These are considered as the active ingredients targeting specific bacteria 

expanding the range of bacteria to kill.9  Yet, Neosporin and many other creams/ointments still 

lack the desired broad spectrum antimicrobial killing effects.12 Therefore, treatments exhibiting 

non-selective activity are needed. Specifically, an active agent capable of targeting multiple 

bacteria strains is required. 

An agent capable of meeting the above criteria is nitric oxide (NO).13-20 NO is a free radical 

molecule, naturally synthesized in vivo by the enzyme nitric oxide synthase (NOS).16, 21, 22  When 

fighting an infection, the body’s immune system macrophages produce NO as a host defense 

response to serve as an antimicrobial/antiviral agent.21-23 As a free radical molecule, NO is potent 

against a broad spectrum of bacteria including antibiotic-resistant strains as it can trigger multiple 

reactions leading to bacteria cell death.16, 21, 22  Therefore, assessing the antimicrobial activity of 

NO releasing creams/ointments is necessary due to their potential impact on society. 

This chapter assess the antimicrobial efficacy of previously developed NO releasing cream 

formulations (see Chapter 2) against Staphylococcus aureus, Staphylococcus epidermidis, and 

Pseudomonas aeruginosa, which are commonly associated with wound or burn-wound 

infections.24-26 First, an indirect application method was used to evaluate the antimicrobial effects 

of just the NO generated from the GSNO-containing creams.  This method eliminated any potential 

matrix killing effects from the GSNO-containing creams, to focus on the killing effects from only 

the NO generated.  Second, to investigate the antimicrobial effects from both NO and matrix, a 

direct application study involving pig skin as the model system was conducted.  Third, the synergy 

of combining NO- and antibiotic-containing creams against biofilms was evaluated.  Fourth, to 

further characterize the developed NO releasing formulations, a method was developed to estimate 
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the pH of the NO releasing cream formulations.  Further, the kinetics of NO released from creams 

with varying pH were reported.  Lastly, the antimicrobial efficacy of creams with varying pH were 

assessed. 

 

3.2 Materials and Methods 

3.2.1 Materials 

L-Glutathione reduced (GSH), hydrochloric acid (HCl), sodium nitrite, and sodium bicarbonate 

(NaHCO3) were purchased from Sigma-Aldrich (St. Louis, MO).  Acetone was purchased from 

Fisher Scientific Inc. (Pittsburgh, PA).  LB agar and 10 mM phosphate buffered saline (PBS) (pH 

7.2) were purchased from ThermoFisher Scientific (Grand Island, NY).  Medical grade silicone 

sheeting (non-reinforced, gloss, 0.0127 cm thick) was purchased from BioPlexus Corp. (Ventura, 

CA).  Vaseline® Jelly, Unilever, Lot 08226JB00  (Vaseline); Neosporin® + Pain Relief Cream, 

Johnson & Johnson Consumer Inc, Lot 0058LZ; Avalon Organics® Intense Defense with Vitamin 

C Oil-Free Moisturizer, The Hain Celestial Group Inc, Lot 618747; Desitin® Rapid Relief Cream: 

Zinc Oxide Diaper Rash Cream, Johnson & Johnson Consumer Inc, Lot 1577LZ/2; Lubriderm 

Daily Moisture Lotion, Normal to Dry Skin, Fragrance Free, Johnson & Johnson Consumer Inc; 

and Pond’s Dry Skin Cream, Facial Moisturizer, Unilever were products purchased from a local 

CVS Pharmacy.  Osmotics Cosmeceuticals Blue Copper 5®, Osmotics LLC, Lot 4248D7 and 

Loctite (UK U-05FL) were purchased from Amazon.com.  All aqueous solutions were prepared 

with 18.2 M Ω deionized water using a Milli-Q filter (Milli-q purified water) from EMD Millipore 

(Billerica, MA).  Pork with skin was purchased from a local Chinese supermarket.  Staphylococcus 

aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Pseudomonas aeruginosa 

ATCC 27853 were obtained from the American Type Culture Collection (Manassas, VA). 
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3.2.2 S-Nitrosoglutathione (GSNO) synthesis 

The method used to prepare GSNO was the same as that described in Chapter 2. 

 

3.2.3 Preparation of various wt% GSNO in Vaseline 

The entire preparation of each formulation was completed in the absence of direct light.  A mortar 

and pestle were used to grind GSNO crystals into a fine powder.  The desired mass of fine GSNO 

powder was then weighed out into a mixing vessel.  In the same vessel, the desired mass of 

Vaseline was added.  The fine GSNO powder was then mixed thoroughly with the Vaseline using 

a wooden stirrer for 2.5 min.  The resulting mixture was designated as a primary matrix. 

 

3.2.4 Preparation of NO releasing and other matrices 

The entire procedure was completed in the absence of direct light.  All matrices were mixed 

together using a wooden stirrer for 2.5 min.  The GSNO/Vaseline primary matrix was prepared as 

described above. For indirect application and direct application antimicrobial studies (3.2.5 and 

3.2.7, respectively), the desired mass of a secondary matrix was weighed out into the same mixing 

vessel such that the ratio of primary to secondary matrix (e.g., commercial 13% ZnO cream) was 

27/73.  For direct application anti-biofilm studies (3.2.8), the GSNO/Vaseline primary matrix was 

also mixed with a secondary matrix for a final ratio of 27/73, where the secondary matrix consisted 

of a 67.5/32.5 ratio of Neosporin/40% ZnO cream (final 13% ZnO after mixing with Neosporin).  

For the direct application antimicrobial studies of various formulations with varying pH, several 

additional formulations were prepared.  NaHCO3 was added to the GSNO/Vaseline primary matrix 

such that the final matrix contains 33 wt% GSNO, 16.5 wt% NaHCO3, and 50.5 wt% Vaseline.  

For this new primary matrix, the amount of NaHCO3 was two molar equivalents of GSNO present.  
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The GSNO/NaHCO3/Vaseline primary matrix was mixed with the secondary matrix (e.g., 

commercial 13% ZnO cream) at a 27/73 ratio, yielding 9 wt% GSNO + 4.5 wt% NaHCO3 final 

concentrations.  Another formulation consisted of an equimolar amount of GSH compared to the 

amount of GSNO described in the previous formulation.  GSH was mixed with Vaseline to yield 

a 30.7 wt% GSH in Vaseline primary matrix.  This new primary matrix was mixed with the 

secondary matrix (e.g., commercial 13% ZnO cream) at a 27/73 ratio, yielding a final concentration 

of 8.3 wt% GSH.  Another formulation was created where NaHCO3 was added to the 

GSH/Vaseline primary matrix such that the final yields were 30.7 wt% GSH, 16.5 wt% NaHCO3, 

and 52.8 wt% Vaseline.  The GSH/NaHCO3/Vaseline primary matrix was mixed with the 

secondary matrix (e.g., commercial 13% ZnO cream) at a 27/73 ratio, yielding 8.3 wt% GSH + 

4.5 wt% NaHCO3 final concentrations.  An additional formulation was created with a primary 

matrix consisting of 16.5 wt% NaHCO3, and 83.5 wt% Vaseline.  This primary matrix was mixed 

with the secondary matrix (e.g., commercial 13% ZnO cream) at a 27/73 ratio, yielding 4.5 wt% 

NaHCO3. 

 

3.2.5 Indirect application antimicrobial studies 

Overnight grown bacteria cultures were diluted with 1 × PBS buffer (10 mM, pH 7.2) to 1 × 

105 CFU/mL.  Fifty μL of the diluted culture was spread on to a 6 cm diameter LB agar plate and 

allowed to air dry for 10 min.  Squares, 1.5 cm × 1.5 cm, were cut from the inoculated LB agar 

and place in an empty petri dish.  Separately, medical grade silicone sheeting (0.0127 cm thick) 

was cut into 2.5 cm × 2.5 cm squares.  Using a plastic (polystyrene) stencil to define the matrices 

area (2 cm × 2 cm × 0.033 cm), different mixtures (e.g., GSNO at different wt% in Vaseline mixed 

with commercial zinc oxide cream (with 13 wt% ZnO)) were spread onto the square silicone sheets 
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and the excess was scraped away.  The average mass of matrix on each silicone sheet was 84.9 ± 

3.0 mg (n=6).  The square silicone sheets with the given matrix mixture were placed on top of the 

inoculated LB agar squares and the cover was lightly place on the petri dish.  Samples were 

incubated at 34°C, absent from light, for 6 h.  After incubation, the silicone sheets were removed 

from the top of the LB agar squares.  A circle (diameter 0.8 cm) was punched out using a biopsy 

punch (Tru-punch, Fisher Scientific, Hampton, NH) from the center of the LB agar squares. This 

punched out circle was homogenized in 2 mL of 1 × PBS (10 mM, pH 7.2) in a 15-mL tube using 

a homogenizer (OMNI TH, OMNI International, Kennesaw, GA) at full speed, and 10-fold serially 

diluted.  Five μL of the dilutions were spread on fresh LB agar plate for overnight culturing and 

single colonies were numerated.  A schematic of the antimicrobial study set-up is shown in Figure 

3.1. 

 
Figure 3.1. Side view schematic of the indirect application antimicrobial study configuration 

where (1) represents a matrix (NO releasing cream or other), (2) represents a thin silicone 

membrane/sheet, and (3) represents a LB agar square with bacterial growth cut from a petri dish. 

 

3.2.6 Pig skin treatment 

Pork with skin was purchased in a Chinese supermarket.  The skin requirements were as follows: 

hairless, smooth surface, not burned, and not damaged.  The flesh attached to the skin was removed 

using a scalpel.  The pig skin was stored at 20°C.  Before use in antimicrobial studies, the pig skin 
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was brought to room temperature (24°C) and cut into pieces (approximately 4 cm × 3 cm). The pig 

skin surface was sterilized twice using alcohol wipes in a biosafety hood.  The sterile pig skin was 

allowed to dry for 5 min under the biosafety hood ventilation to remove alcohol residue from the 

pig skin surface.  The sterile pig skin pieces were placed in separate Petri dishes. 

 

3.2.7 Direct application antimicrobial studies on pig skin model 

Overnight grown bacteria cultures were diluted with 1 × PBS buffer (10 mM, pH 7.2) to 

1 × 108 CFU/mL. Fifty μL of the diluted culture was spread on to the surface of each sterile pig 

skin piece and allowed to air dry for 10 min.  Using a plastic (polystyrene) circular stencil to define 

the matrices area (diameter 1.5 cm, height 0.033 cm), different mixtures (e.g., GSNO at different 

wt% in Vaseline mixed with commercial zinc oxide cream (with 13% ZnO)) were spread on to the 

pig skin pieces and the excess was scraped away.  The average mass of matrix on each pig skin 

piece was 68.7 ± 2.7 mg (n = 6).  The cover was lightly placed on the Petri dish.  Samples were 

incubated at 34°C, absent from light, for 6 h total.  After incubation the matrices were removed 

from the pig skin surface using a razor blade.  A circle (diameter 0.8 cm) was punched out using a 

biopsy punch (Tru-punch, Fisher Scientific, Hampton, NH) from the center of where the matrix 

was removed from the pig skin piece. This punched out circle was homogenized in 2 mL of 

1 × PBS (10 mM, pH 7.2) in a 15-mL tube using a homogenizer (OMNI TH, OMNI International, 

Kennesaw, GA) at full speed, and 10-fold serially diluted.  Fifty μL of the dilutions were spread 

on fresh LB agar plates for overnight culturing and single colonies were numerated. 
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3.2.8 Direct application anti-biofilm studies on pig skin model 

The biofilm on pig skin model was adapted from Wang et al..27  Briefly, after the pig skin was cut, 

separated, and sterilized (as described above), a sterile 1.5 mL Eppendorf tube was cut to a height 

of 1.5 cm and the top side was glued to the pig skin surface using Loctite (UK U-05FL).  1% of 

overnight grown bacterial culture (Staphylococcus aureus, Staphylococcus epidermidis, or 

Pseudomonas aeruginosa) was inoculated into fresh LB broth and 0.5 mL of this suspension was 

transferred to the tube glued on to the pig skin surface.  The samples were incubated at 37°C for 

24 h.  After 24 h, the liquid and tubing were carefully removed from the pig skin surface.  The 

biofilm developed on the pig skin surface was now ready for testing.  Cream application and 

bacteria enumeration were performed using the same procedure described above (2.2.7). 

 

3.2.9 Measuring relative pH of various cream formulations 

Five hundred mg of all cream formulations were created in triplicate and prepared in separate 15 

mL conical sterile polypropylene centrifuge tubes.  Each sample was mix thoroughly with a 

wooden applicator for 2.5 min.  Milli-q purified water (4.5 mL) was added to each vessel and hand 

shaken for 3 min.  Each sample was centrifuged at 14,000 rpm for 3 min.  Four mL of the 

supernatant fluid was put into separate glass dram vials.  The pH of each solution was measured 

using a pH electrode InLab Routine Pro from Mettler Toledo. 

 

3.2.10 Measuring wt% water within the creams 

Creams were weighed out into glass sample vials.  The entire mass of the matrix plus the sample 

vial was measured.  The samples were dried under vacuum for 7 days.  On the 7th day, samples 
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were re-weighed and the masses subtracted from the original masses on day 0. Results  are shown 

in Table 3.3 (see Results and Discussion section). 

 

3.2.11 Preparation of matrices for NO release measurements 

The entire procedure was completed in the absence of direct light.  After the desired matrix was 

created as described in Section 2.2.4, a small aliquot of the resulting matrix was placed inside of a 

plastic (polystyrene), circular stencil (diameter 5.85 mm, height 0.33 mm), on top of a glass slide.  

The excess matrix was scraped away from the top and the stencil was removed, leaving the matrix 

at a defined sample size. 

 

3.2.12 Measuring NO release from matrices 

Nitric oxide release from various mixed matrices was measured using a Sievers 

Chemiluminescence Nitric Oxide Analyzer (NOA) 280i (Boulder, CO).  The NOA was calibrated 

before via a two-point calibration of N2 gas passed through a NOA zero air filter and a standard of 

44.3 ppm NO in N2 gas.  The test matrix mixture was prepared and put onto a small glass slide as 

described above (2.2.11).  The glass slide was then placed into an amber NOA sample cell.  The 

bottom of the amber NOA sample cell was filled with Milli-q purified water, and the glass slide 

was placed on top of a stage above the water line such that the matrix mixture did not come in 

contact with the water.  The water reservoir was bubbled with N2 gas at a rate of 50 mL/min to 

humidify the NOA sample cell to prevent the matrix from drying out.  The amber NOA sample 

cell was placed in a 34°C water bath. The NO generated from the GSNO within the Vaseline/cream 

mixture was swept into the NOA by N2 sweep gas.  All amber NOA sample cells were wrapped in 

aluminum foil to shield the samples from light exposure. 
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3.3 Results and Discussion 

3.3.1 Indirect application antimicrobial studies 

Indirect application antimicrobial studies were conducted to demonstrate the killing effect of only 

NO released from the 3, 6 and 9 wt% GSNO test mixtures with the Desitin cream containing 13% 

ZnO against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa.  

These three bacteria strains were chosen because they have been shown to be common bacteria 

associated with wound or burn-wound infections.25, 26 The initial concentration of bacteria 

(1×105 CFU/mL) was chosen because it is often associated with infection for open wounds and 

hindering wound closure.28  Figure 3.1 shows a schematic of how the antimicrobial studies were 

performed.  A silicone sheet was employed to keep the matrices from coming into direct contact 

with the bacteria on agar plates such that no additional killing effects from the matrix itself (e.g., 

ZnO particles) would be observed.29 Silicone films were chosen because Ren et al. reported that 

silicone rubber polymers have the highest rate of NO diffusion compared to several other 

biomedical grade polymers.30  The antimicrobial studies were completed in the dark at 34°C with 

an incubation/application period of 6 h. 
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Figure 3.2. (a-c) Antimicrobial study results for Control and 0, 3, 6, and 9 wt% GSNO final 
matrices indirectly applied (with silicone sheet between) to (b) S. aureus, (c) S. epidermidis, and 

(d) P. aeruginosa inoculated LB agar plates in the dark at 34°C for 6 h.  Control means nothing 

was applied to the surface of the inoculated LB agar.  GSNO/Vaseline primary matrices were 

mixed with Desitin zinc oxide cream at a 27/73 ratio to achieve 0, 3, 6, and 9 wt% GSNO final 

matrices. Viable cells were determined via plate counting.  Horizontal dashed line represents the 

LOD (7.96×102 CFU/cm2).  No error bar means the LOD was reached for each trial.  Data 

represents the mean ± SD (n = 3). * p < 0.05, ** p < 0.025, *** p < 0.01, 0 wt% GSNO vs. 3, 6, 

and 9 wt% GSNO. 

 

“Control” in Fig. 3.2 means nothing was applied to the surface of the inoculated LB agar.  The 0 

wt% GSNO sample used in this study served as a second control to determine how much bacteria 

were lost when removing the silicone sheeting from the surface of the LB agar plate (Fig. 3.2a-c).  

All log reduction values of bacterial counts are reported in the order S. aureus, S. epidermidis, P. 

aeruginosa.  Comparing the “Control” columns versus the “0 wt% GSNO” columns in Fig. 3.2a-

c, the average log reduction after removing the silicone sheeting was calculated to be 0.36, 0.37, 

and 0.57, respectively.  Therefore, when no NO is present and the bacteria are only in contact with 

the silicone sheet, very little killing effects are observed.  In Figure 3.2a-c, the columns that do not 

display an error bar indicate that all of the bacteria of that strain were killed for each trial (n = 3), 

hence reaching the limit of detection for this study (7.96×102 CFU/cm2).  The average log 

reduction between the 0 wt% GSNO and 3 wt% GSNO matrices were 1.55, 1.41, and 1.44; 

between 0 wt% GSNO and 6 wt% GSNO matrices the log reductions were 2.56, 2.31, and 2.44; 
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and between the 0 wt% GSNO and 9 wt% GSNO matrices the log reductions were 2.68, 2.53, and 

2.44, for each of the bacteria examined, respectively. 

In general, the amount of NO released from the 3, 6, and 9 wt% GSNO samples were able to kill 

each bacterial strain (more NO yields greater log reduction).  However, the amount of NO released 

from the 9 wt% GSNO matrix always killed all of the bacteria, therefore reaching the limit of 

detection for this antimicrobial assay.  The true killing potential of the 9 wt% GSNO matrix is, 

therefore, likely greater than that illustrated in Figure 3.2a-c.  Nonetheless, the current study 

demonstrates that NO produced from the ZnO particle enhanced reaction with GSNO is capable 

of killing both gram-positive (S. aureus and S. epidermidis) and gram-negative (P. aeruginosa) 

bacteria to a significant degree.  This phenomenon is not surprising and has been reported several 

times in prior publications because there are multiple mechanisms by which NO can be toxic to 

bacteria.31-36   

 

3.3.2 Direct application antimicrobial studies on pig skin model 

Direct application antimicrobial studies were performed to determine the killing effect of the 

matrices and NO released from the 3, 6, and 9 wt% GSNO mixtures with the Desitin cream 

containing 13% ZnO against Staphylococcus aureus, Staphylococcus epidermidis, and 

Pseudomonas aeruginosa.  The killing effect of a commonly used antibiotic cream (Neosporin) 

was also determined against each bacteria strain as a comparison.  Neosporin cream contains the 

active antibiotics neomycin and polymyxin B which are mainly effective against gram-negative 

bacteria strains.9 The indirect application antimicrobial studies did not allow the matrices to come 

in to direct contact with the bacteria.  Therefore, any killing effect observed was only from the NO 

and not from the matrices.  For the current study, the matrices were spread directly on the surface 



 58 

of inoculated pig skin.  Thus, any killing effects from the matrices (e.g., ZnO particles, antibiotics) 

would be observed in addition to NO (if present).  The direct application antimicrobial studies 

were completed in the absence of light at 34 °C with an incubation/application period of 6 h.  The 

same matrices studied in the indirect application antimicrobial studies were used for the current 

study in addition to Neosporin.   

 
Figure 3.3. (a-c) Antimicrobial study results for No Cream, Neosporin, and 0, 3, 6, and 9 wt% 

GSNO final matrices directly applied to (a) S. aureus, (b) S. epidermidis, and (c) P. aeruginosa 

inoculated pig skin pieces in the dark at 34°C for 6 h.  No Cream means nothing was applied to 

the surface of the inoculated pig skin.  GSNO/Vaseline primary matrices were mixed with Desitin 

zinc oxide cream at a 27/73 ratio to achieve 0, 3, 6, and 9 wt% GSNO final matrices. Viable cells 

were determined via plate counting.  Data represents the mean ± SD (n = 3). * p < 0.05, ** p < 

0.025, *** p < 0.01, 0 wt% GSNO vs. 3, 6, and 9 wt% GSNO. 

 

“No Cream” in Figure 3.3 means nothing was applied to the surface of the inoculated pig skin.  

The 0 wt% GSNO sample used in this study served as a control to determine how much bacteria 

were killed when in direct contact with just the ZnO-containing cream and no NO or antibiotics 

present (Fig. 3.3a-c).  All log reduction values of bacterial counts are reported in the order S. 

aureus, S. epidermidis, P. aeruginosa.  Comparing the “No Cream” columns versus the “0 wt% 

GSNO” columns in Fig. 3.3a-c, the average log reduction was calculated to be 1.07, 1.58, and 

1.36, respectively.  Therefore, ZnO present in the commercial Desitin cream does induce a >1 log 

unit reduction for all bacteria strains.  These observations are not surprising, the killing effect that 

ZnO has on several different bacteria strains has been previously reported.29, 37  The average log 
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reduction between the 0 wt% GSNO and Neosporin matrices were 0.23, N/A, and 1.02; between 

0 wt% GSNO and 3 wt% GSNO matrices the log reduction values were 1.35, 1.12, and 0.76; 

between 0 wt% GSNO and 6 wt% GSNO matrices they were 2.34, 1.45, and 1.06; and between 

the 0 wt% GSNO and 9 wt% GSNO matrices the log reduction values were were 2.47, 1.83, and 

1.34, for each of the bacteria examined, respectively. 

The data presented in Fig. 3.3 shows that the NO releasing creams can match or exceed the killing 

effect of a commonly used antibiotic cream (Neosporin), especially for S. aureus and S. 

epidermidis (both are gram-positive strains).  As mentioned previously, the active antibiotics 

present in Neosporin are mainly effective against gram-negative bacteria strains such as P. 

aeruginosa.9  This phenomenon is confirmed by the data shown in Fig. 3.3.  Overall, NO releasing 

creams directly applied to inoculated pig skin exhibit greater killing effects on S. aureus, S. 

epidermidis, and P. aeruginosa compared to Neosporin. 

 

3.3.3 Evaluate synergy of combining NO and antibiotics to kill biofilm 

Ren et al. showed that using NO and antibiotics together was able to kill much more bacteria than 

just NO alone.38  This prior report demonstrated significant synergy when combining NO release 

with various antibiotics.  Therefore, the goal for the current study was to evaluate the synergy of 

combining NO- and antibiotic-containing creams.  Direct application anti-biofilm studies were 

performed to determine the synergy of combining NO- and antibiotic-containing creams against 

24 h Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms 

on a pig skin model.  A moisturizer cream was used as a control to evaluate how much biofilm 

was removed/killed during the removal of any cream from the pig skin surface because it contains 

no anti-biofilm agents.  Neosporin containing the active antibiotics neomycin and polymyxin B 
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was evaluated against each biofilm.  The NO releasing cream utilized for the current study was the 

9 wt% GSNO final matrix used in both the indirect and direct application antimicrobial studies 

(Sections 3.3.1 and 3.3.2) and designated as formulation (a) in Fig. 3.4.  The NO- and antibiotic-

containing cream formulation used for this study was described in detail in Section 3.2.4.  This 

formulation contains GSNO, ZnO, and Neosporin in the final matrix and is designated as 

formulation (b) in Fig. 3.4.  Note that both formulation (a) and (b) contain the same wt% of GSNO 

and ZnO. The direct application anti-biofilm studies were completed in the absence of light at 

34 °C with an incubation/application period of 6 h. 

 
Figure 3.4. (a-c) Anti-biofilm study results for No Cream, Moisturizer, Neosporin, formulation 

(a), and formulation (b) matrices directly applied to 24 h (a) S. aureus, (b) S. epidermidis, and (c) 

P. aeruginosa biofilms on pig skin pieces in the dark at 34°C for 6 h.  No Cream means nothing 

was applied to the surface of biofilms.  Formulations (a) = 9 wt% GSNO + ZnO Cream: GSNO-

Vaseline/13% ZnO cream mixed at 27/73 ratio.  Formulation (b) = 9 wt% GSNO + ZnO Cream + 

Neosporin: Neosporin cream/40% ZnO cream, 67.5/32.5; GSNO-Vaseline/Neosporin-ZnO cream 

mixed at 27/73 ratio.  Viable cells were determined via plate counting.  Data represents the mean 

± SD (n = 3). * p < 0.05, ** p < 0.025, *** p < 0.01, 0 wt% GSNO vs. 3, 6, and 9 wt% GSNO. 

 

“NO Cream” in Fig. 3.4 means nothing was applied to the surface of the biofilm on the pig skin 

piece.  The “Moisturizer” sample was used to determine how much biofilm was removed/killed 

during the removal of any cream from the pig skin surface (Fig. 3.4a-c).  All log reduction values 

of bacterial counts are reported in the order S. aureus, S. epidermidis, P. aeruginosa.  Comparing 

the “No Cream” columns versus the “Moisturizer” columns in Fig. 3.4a-c, the average log 

reduction was calculated to be 2.13, 3.28, and 3.14, respectively.  Therefore, a significant amount 
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of bacteria is removed/killed during removal of a cream from the surface of the pigskin/biofilm.  

However, greater log reductions are observed for all other formulations utilized during this study 

(Fig. 3.4).  Comparing the Moisturizer control versus the Neosporin sample demonstrates the 

killing effect of only antibiotics neomycin and polymyxin B have against the biofilms.  The 

average log reduction was calculated to be 0.27, 0.81, and 0.17, respectively.  These relatively low 

log reduction values are to be expected, because biofilms inherently resist antibiotics.39 Comparing 

the Moisturizer control versus formulation (a) demonstrates the killing effect of only NO and ZnO 

against the biofilms.  The average log reduction was calculated to be 1.98, 1.55, and 1.16, 

respectively.  These results show that NO and ZnO have a greater anti-biofilm killing effect 

compared to only the antibiotics neomycin and polymyxin B present in Neosporin.  Comparing 

the Moisturizer control versus formulation (b) demonstrates the killing effect of combining NO, 

ZnO, and antibiotics (neomycin and polymyxin B) have against biofilms.  The average log 

reduction was calculated to be 2.00, 1.89, and 3.34, respectively.  The log reduction values that 

formulation (a) achieved compared to formulation (b) indicates that only the killing effect against 

the P. aeruginosa biofilm was significant.  This phenomenon make sense because P. aeruginosa 

is a gram-negative bacteria and the antibiotics neomycin and polymyxin B are mainly effective 

against gram-negative bacteria.9  Therefore, the significantly greater synergistic killing effect of 

combining NO plus the antibiotics neomycin and polymyxin B against P. aeruginosa was to be 

expected because S. aureus and S. epidermidis are both gram-positive bacteria strains. 

 

3.3.4 Evaluate pH of NO releasing creams 

Traditionally, GSNO is synthesized from its parent thiol glutathione (GSH) under acidic conditions 

to yield a fully protonated product (Section 3.2.2).  The most acidic carboxylic acid on GSH has a 
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predicted pKa of 1.94 according to ChemAxon.  After conversion to GSNO, the predicted pKa 

lowers to 1.60.  The pH of 1 mM solutions of GSNO and GSH are <4 (Table 3.1).  This knowledge 

draws concern to the relative pH of the NO releasing creams containing GSNO when potentially 

used for direct application to the skin. The final 9 wt% GSNO formulation created from 33 wt% 

GSNO in Vaseline mixed with 13% ZnO Desitin cream at a 27/73 ratio, is 20.0 ± 1.5 wt% water 

(Table 3.3).  Based on the solubility of GSNO in water (20 mg/mL), the aqueous phase is super 

saturated with GSNO.  Therefore, the relative pH of the final 9 wt% GSNO matrix is potential 

highly acidic. 

Table 3.1. Average pH of 1 mM GSNO, GSH, and SNAP 

solutions. Data represents the mean ± SD (n = 3). 

Solution (1 mM) pH 

GSNO 3.36 ± 0.01 

GSH 3.61 ± 0.03 

 

This formulation is considered a water-in-oil emulsion (w/o) because the dominate phase is oil-

based.  For w/o emulsions, the pH cannot be accurately determined by submerging a traditional 

pH probe in an aliquot of the w/o emulsion because the dominant phase is not aqueous-based.  As 

consequence, to assess the relative pH of the w/o emulsion NO releasing cream, the most extreme 

condition in which all of the GSNO saturates the aqueous phase of the cream was considered and 

the pH was measured.  Refer to Section 3.2.9 for the specific procedure.  Briefly, each formulation 

was diluted at a 1:10 ratio in purified water, hand shaken for 3 min, centrifuged for 5 min, and then 

the pH of the supernatant (aqueous phase) was measured using a calibrated pH electrode/meter 

(Table 3.2).  The pH of several moisturizers and other commercially available creams/emulsions 

were measured as controls using this method. 



 63 

It was determined that the relative pH of the final 9 wt% GSNO matrix was 2.92 ± 0.02.  This pH 

was considered too acidic and therefore needed to be increased to a more neutral pH for potential 

topical skin applications.  To increase the relative pH, sodium bicarbonate (NaHCO3) was added 

because it is a weak base and is commonly used to control the acid-base balance in cosmetic 

formulations.  To achieve a neutral pH, the amount of NaHCO3 added to the existing formulation 

was 2 molar equivalents of the amount of GSNO (Table 3.2).  More specifically, NaHCO3 was 

added to the 33 wt% GSNO in Vaseline primary matrix to achieve a new primary matrix of 33 

wt% GSNO and 16.5 wt% NaHCO3 in Vaseline.  Then, this new primary matrix was mixed at a 

27/73 ratio with the 13% ZnO Desitin cream to yield the final neutral pH NO releasing cream 

formulation of 9 wt% GSNO + 4.5 wt% NaHCO3. 
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Table 3.2. Average pH of formulations diluted 1:10 in purified water. Data represents the mean ± 

SD (n = 3). 

Formulation pH 

9 wt% GNSO: 27/73 ratio of 33 wt% GSNO in Vaseline/13% ZnO Desitin cream 2.92 ± 0.02 

Avalon Organics® Intense Defense with Vitamin C Oil-Free Moisturizer 4.87 ± 0.02 

Osmotics Cosmeceuticals Blue Copper 5® 4.96 ± 0.02 

Neosporin® Dual Action Cream + Pain Relief 5.30 ± 0.04 

9 wt% GNSO + 4.5 wt% NaHCO3: 27/73 ratio of 33 wt% GSNO and 16.5 wt% 

NaHCO3 in Vaseline/13% ZnO Desitin cream 
6.98 ± 0.01 

Milli-q purified water 6.98 ± 0.04 

Desitin® Rapid Relief Cream: Zinc Oxide Diaper Rash Cream 7.44 ± 0.06 

Lubriderm® Daily Moisture Lotion 7.56 ± 0.06 

Pond’s® Dry Skin Cream 7.70 ± 0.08 
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Table 3.3. Summary of wt% water content for various creams/emulsions and their corresponding 

classifications of water-in-oil (w/o) or oil-in-water (o/w) emulsions.  Data represents the mean ± 

SD (n = 3). 

Matrix wt% water Classification 

9 wt% GNSO: 27/73 ratio of 33 wt% GSNO in Vaseline/13% ZnO 

Desitin cream 
20.0 ± 1.5 w/o 

Avalon Organics® Intense Defense with Vitamin C Oil-Free 

Moisturizer 
71.1 ± 0.3 o/w 

Osmotics Cosmeceuticals Blue Copper 5® 72.9 ± 2.5 o/w 

Neosporin® Dual Action Cream + Pain Relief 73.8 ± 0.1 o/w 

9 wt% GNSO + 4.5 wt% NaHCO3: 27/73 ratio of 33 wt% GSNO 

and 16.5 wt% NaHCO3 in Vaseline/13% ZnO Desitin cream 
20.5 ± 1.9 w/o 

Desitin® Rapid Relief Cream: Zinc Oxide Diaper Rash Cream 27.7 ± 2.2 w/o 

Lubriderm® Daily Moisture Lotion 85.2 ± 0.5 o/w 

Pond’s® Dry Skin Cream 66.3 ± 0.3 o/w 

 

3.3.5 NO release kinetics from neutral pH cream containing GSNO and ZnO 

The NO release kinetics were investigated for the neutral pH NO releasing cream formulation to 

determine if the addition of NaHCO3 had any significant effect.  The NO release kinetics of the 

acidic 9 wt% GSNO containing cream was previously report and will be used here for 

comparison.24  An aliquot of the appropriate wt% of GSNO and NaHCO3 in Vaseline was mixed 

with the 13% Zinc Oxide Desitin cream at a 27/73 ratio.  NO release was measured at 34°C for 6 

h revealing that the NO release profile for the neutral pH NO releasing cream was similar to that 

of the acidic NO releasing cream (Fig. 3.5a,b). 
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Figure 3.5. Real-time NO release of 9 wt% GSNO (acidic pH) and 9 wt% GSNO + 4.5 wt% 

NaHCO3 (neutral pH) matrices in the dark at 34°C over (a) 6 h and (b) 60 min.24  (c) Fit of the 

cumulative NO release versus time for the 9 wt% GSNO + 4.5 wt% NaHCO3 matrix to a first-

order rate equation, giving kobs = 0.66 ± 0.01 h-1 (t1/2 ~ 1.05 h). Data represents mean (n = 3). 

 

Table 3.4. Comparison summary of %NO release in 6 h, first order rate constant (kobs), and half-

life (t1/2) for 9 wt% GSNO and 9 wt% GSNO + 4.5 wt% NaHCO3 matrices measured in the dark 

at 34°C.24  Data represents the mean ± SD (n = 3 separate preparations). 

Matrix % NO release in 6 h kobs (h
-1) t1/2 (h) 

9 wt% GSNO 74.6 ± 2.2 0.64 ± 0.01 1.08 

9 wt% GSNO + 4.5 

wt% NaHCO3 
79.5 ± 2.3 0.66 ± 0.01 1.05 

 

Cumulative NO release of the neutral pH cream plotted versus time reveal apparent first-order 

kinetics (Fig. 3.5c).  Integration of the neutral pH NO releasing cream plot in Fig. 3.5a showed 

that 79.5 ± 2.3% of the total theoretical NO available was released over the 6 h test period, which 

is similar to that of the acidic NO releasing cream (Table 3.4).  The observed first order rate 

constant of kobs = 0.66 ± 0.01 h-1 (t1/2 ~ 1.05 h) for the overall NO release kinetics of the neutral 

pH NO releasing cream was determined by the cumulative moles of NO release versus time (Fig. 

3.5c, Table 3.4).  The observed first order rate constants for the acidic and neutral pH NO releasing 

cream are very similar, leading to the conclusion that NO release kinetics are not significantly 

impacted by the addition of NaHCO3. 
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3.3.6 Direct application bacteria studies of neutral pH NO releasing cream on pig skin 

To determine if the antimicrobial effects observed from the previous direct application 

antimicrobial studies were from the relative acidity of the matrices or the NO released, further 

direct application antimicrobial studies with the neutral pH NO releasing matrices were conducted.  

These new direct application antimicrobial studies were performed using the same protocol as the 

first direct application antimicrobial studies (Section 3.3.2).  The bacteria strains tested against 

were Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa.   

The trials labeled no cream, Neosporin, 0 and 9 wt% GSNO are the same matrices utilized in the 

first direct application antimicrobial studies (Fig. 3.6).  The new matrices tested were 9 wt% GSNO 

+ 4.5 wt% NaHCO3, 8.3 wt% GSH, 8.3 wt% GSH + 4.5 wt% NaHCO3, and 4.5 wt% NaHCO3 

(Fig. 3.6).  The latter three matrices were tested as controls.  The 8.3 wt% GSH matrix contains 

GSH at an equimolar amount of GSNO in the 9 wt% GSNO-containing matrices.  Therefore, the 

acidity of the GSH-containing matrix should be similar because GSH and GSNO only differ in 

molecular structure by the NO moiety.  The 8.3 wt% GSH + 4.5 wt% NaHCO3 matrix again 

contains GSH at an equimolar amount of GSNO in the 9 wt% GSNO-containing matrices and also 

two molar equivalents of NaHCO3.  This control matrix was neutral in pH and without NO release.  

The 4.5 wt% NaHCO3 matrix contained NaHCO3 at two molar equivalents compared to the 

amount of GSNO in the 9 wt% GSNO-containing matrices.  This control matrix was slightly basic 

in pH and without NO release.  The 9 wt% GSNO + 4.5 wt% NaHCO3 contained NaHCO3 at two 

molar equivalents compared to the amount of GSNO.  This matrix was the neutral pH NO releasing 

cream. 
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Figure 3.6. (a) Legend for bar graphs b-d. (b-d) Antimicrobial study results for various matrices 
(see below for detailed matrix list) directly applied to (b) S. aureus, (c) S. epidermidis, and (d) P. 

aeruginosa inoculated pig skin pieces at 34°C, absent from light, for 6 h. Values above bars 

represent log reduction between that sample bar and No Cream sample bar.  Data represents the 

means ± SD (n = 3). 

Detailed Matrix List: 

 No Cream = no cream applied to pig skin 

 Neosporin = antibiotic cream containing the active antibiotics neomycin and polymyxin B 

 0 wt% GSNO = Vaseline/13% ZnO Desitin cream mixed at a 27/73 ratio 

 9 wt% GSNO = GSNO-Vaseline/13% ZnO Desitin cream mixed at a 27/73 ratio 

 9 wt% GSNO + 4.5 wt% NaHCO3 = GSNO-NaHCO3-Vaseline/13% ZnO Desitin cream 
mixed at a 27/73 ratio (amount of NaHCO3 is two molar equivalents of the amount GSNO) 

 8.3 wt% GSH = GSH-Vaseline/13% ZnO Desitin cream mixed at a 27/73 ratio (amount of 
GSH is equimolar to the amount of GSNO in the 9 wt% GSNO matrices) 

 8.3 wt% GSH + 4.5 wt% NaHCO3 = GSH-NaHCO3-Vaseline/13% ZnO Desitin cream 

mixed at a 27/73 ratio (amount of NaHCO3 is two molar equivalents of the amount GSH) 

 4.5 wt% NaHCO3 = NaHCO3-Vaseline/13% ZnO Desitin cream mixed at a 27/73 ratio 
(amount of NaHCO3 is two molar equivalents of the amount GSNO in the 9 wt% GSNO 

matrices) 
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For S. aureus, the addition of NaHCO3 to the 9 wt% GSNO matrix increased the killing effect.  

Sodium bicarbonate has inherent antimicrobial properties, leading to the increased killing effect 

observed.40 For S. epidermidis, the neutral pH NO releasing cream does not reduce the killing 

effect compared to the acidic NO releasing cream.  The same effect was observed for P. 

aeruginosa.  Overall, the neutral pH NO releasing cream (9 wt% GSNO + 4.5 wt% NaHCO3) met 

or exceeded the killing effect of the acidic NO releasing cream (9 wt% GSNO) for all three bacteria 

strains.  Therefore, this data justifies that the first direct application antimicrobial studies using 

only the acidic NO releasing matrices are valid because the relative acidity has no major killing 

effect. 

 

3.4 Conclusion 

The indirect application antimicrobial studies demonstrated the killing effect of only NO released 

from 3, 6, and 9 wt% GSNO final matrices prepared by mixing Desitin zinc oxide cream with the 

GSNO/Vaseline mixture in the dark at 34°C with an application period of 6 h.  S. aureus, S. 

epidermidis, and P. aeruginosa were all affected by the NO released from each NO releasing 

matrix. In general, the more GSNO present (larger amount of NO released) lead to a greater killing 

effect.  The direct application antimicrobial studies on a pig skin model demonstrated the killing 

effect of the matrices and NO released from the 3, 6, and 9 wt% GSNO final matrices.  The 

performance of the NO releasing matrices were compared to a common commercially available 

antibiotic-containing cream, Neosporin.  At minimum, one NO releasing cream formulation was 

able to exceed the killing effect obtained by Neosporin for S. aureus, S. epidermidis, and P. 

aeruginosa.  Combining NO- and antibiotic-containing creams together showed the most 

synergistic killing effect against P. aeruginosa because the antibiotics utilized are mainly effective 
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at killing gram-negative bacteria strains.  Evaluating the relative pH of the final 9 wt% GSNO 

matrix revealed that the cream was acidic because of the acidic nature of GSNO.  However, a 

neutral pH NO releasing formulation was created by adding an appropriate amount of NaHCO3.  

First-order NO release kinetics were examined for the neutral pH NO releasing cream and 

compared to the acidic NO releasing cream, revealing very similar characteristics and kinetics.  

The addition of NaHCO3 to the acidic 9 wt% GSNO cream did not significantly impact the NO 

release kinetics.  A repeat of the first direct application antimicrobial studies on pig skin with the 

addition of the neutral pH NO releasing cream also revealed that the neutral pH NO releasing 

cream was able to match or exceed the killing effect of the acidic pH NO releasing cream for S. 

aureus, S. epidermidis, and P. aeruginosa.  Thus, the relative acidity has no major killing effect. 
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Chapter 4 Investigation of Enhanced NO Release from GSNO in the Presence of ZnO 

 

Certain sections and figures are reprinted from Nitric Oxide, Vol. 90, Nitric oxide releasing two-

part creams containing S-nitrosoglutathione and zinc oxide for potential topical antimicrobial 

applications, Doverspike, J. C.; Zhou, Y.; Wu, J.; Tan, X.; Xi, C.; Meyerhoff, M. E. Copyright 

2019, with permission from Elsevier. 

 

X-ray photoelectron spectroscopy (XPS) experiments were conducted by Dr. Molly MacInnes 

whose name will appear on any future publication of the research described in this chapter. 

 

4.1 Introduction 

Over the past few decades, several ways have been discovered to enhance the rate of NO release 

from S-nitrosoglutathione (GSNO) and other S-nitrosothiols (RSNOs).  Some of these methods 

include photolysis, thermal cleavage, the use of metal ions, and the use of reducing agents.1-11  In 

Chapter 2, a commercial zinc oxide (ZnO)-containing cream demonstrated the ability to 

significantly enhance NO generation from GSNO.  Therefore, further actions/experiments are 

needed to determine the specie(s) responsible for the enhanced NO generation. 

As mentioned above, prior literature has reported the capabilities of various metal ions to enhance 

or suppress NO release from GSNO.  There is a strong likelihood that trace Zn2+ ions are present 

within the commercial ZnO-containing cream used in the studies reported in Chapter 2.  There are 

conflicting reports in the literature whether or not Zn2+ ions are capable of enhancing NO release 

from GSNO or other RSNOs.12-15  A portion of this chapter addresses this discrepancy. 
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Another component studied in detail within this chapter is zinc oxide.  ZnO nanoparticles are the 

key component present in the commercial ZnO cream.  ZnO has many unique physical and 

chemical properties that make it a useful substance for several applications.  Specifically, ZnO is 

a piezo- and pyroelectric metal oxide with high thermal and mechanical stability.16, 17 Its wide band 

gap (3.37 eV) makes ZnO an ideal semiconductor to be used for different sensor and electronic 

applications.16, 17 ZnO particles are also used in cosmetics, sunscreens, and diaper rash creams 

because of its inherent antimicrobial properties, its ability to absorb UVA and UVB sunlight 

radiation, and its relatively low toxicity towards humans and the environment.18, 19 

This chapter is a more detailed follow-up to Chapter 2, focusing on identifying the component in 

commercial zinc oxide cream responsible for the observed enhanced NO proliferation from GSNO.  

The following topics were studied in detail.  First, NO release from GSNO in the presence of Zn2+ 

ions was monitored for their potential enhancement or suppression of NO release.  Second, each 

other component present in the commercial zinc oxide cream was tested for their individual 

potential to enhance NO release from GSNO.  Third, NO release kinetics of 30, 50, and 200 nm 

size ZnO nanoparticles were evaluated under simplistic reaction conditions (dark, 24°C, 7.4 pH).  

Fourth, experimental conditions were simulated to purposely inhibit/block the surface of ZnO to 

gain insight into the manner in which GNSO and ZnO interact.  Lastly, surface analysis of the ZnO 

nanoparticles after interaction with GSNO were completed via X-ray photoelectron spectroscopy 

(XPS) to assess whether any GSH or other product species remained adhered to the surface of the 

particles. 
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4.2 Materials and Methods 

4.2.1 Materials 

L-Glutathione reduced (GSH), hydrochloric acid (HCl), phosphoric acid (H3PO4), sodium nitrite, 

zinc chloride, copper chloride, glycerol, poly(ethylene glycol) (avg. MW=300) (PEG-300), 

magnesium sulfate, alpha tocopheryl acetate, 1,2-octanediol, 1,2-hexanediol, tropolone, Trizma 

base, and potassium hydroxide were purchased from Sigma-Aldrich (St. Louis, MO).  Acetone 

was purchased from Fisher Scientific Inc. (Pittsburgh, PA).  Zinc oxide nanoparticles with an APS 

of 30, 50 and 200 nm were purchased from EPRUI Biotech Co. Ltd. (ShangHai, China).  All 

aqueous solutions were prepared with 18.2 M Ω deionized water using a Milli-Q filter (Milli-q 

purified water) from EMD Millipore (Billerica, MA). 

 

4.2.2 S-Nitrosoglutathione (GSNO) synthesis 

The method used to prepare GSNO was the same as that described in Chapter 2. 

 

4.2.3 Measuring NO release from GSNO in the presence of Zn2+ ions 

All solutions were made with 10 mM Tris-HCl buffer, pH 7.4.  NO release was measured using a 

Sievers Chemiluminescence Nitric Oxide Analyzer (NOA) 280i (Boulder, CO).  The NOA was 

calibrated before via a two-point calibration of N2 gas passed through a NOA zero air filter and a 

standard of 44.3 ppm NO in N2 gas.  The reaction mixtures were analyzed for NO release in the 

absence of light at 24°C.  Two mL of a 1 mM GSNO solution in buffer was added to an amber 
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NOA sample cell (bulk).  After a 1 min equilibration period, 100 μL of 1 mM ZnCl2 was added to 

the bulk.  For the control, 100 μL of the buffer (10 mM Tris-HCl, pH 7.4) was added into the test 

solution.  After 9.5 min, 100 μL of 1 mM CuCl2 was added to the bulk as a positive control.  Each 

solution was bubbled with N2 gas at a rate of 50 mL/min.  NO generated was carried into the NOA 

by a N2 sweep gas. 

 

4.2.4 Measuring NO release from GSNO for component studies 

All solutions were made with 10 mM Tris-HCl buffer, pH 7.4.  NO release was quantitated using 

a NOA in the absence of light at 34°C.  The components studied were the same or similar to those 

known to be present in the commercial zinc oxide cream (Desitin® Rapid Relief Cream: Zinc 

Oxide Diaper Rash Cream).  These included 30 nm ZnO nanoparticles, glycerol, magnesium 

sulfate, tocopheryl acetate, PEG-300, 1,2-octanediol, 1,2-hexanediol, tropolone, and potassium 

hydroxide.  The experimental scheme employed was as follows: 2 mL of a solution containing one 

component was first placed inside of an amber NOA sample cell (bulk solution) at 34°C.  Then, 

100 μL of a GSNO solution was added to the same sample cell.  The bulk solutions contained 10 

μmol of the given test component and the GSNO solution contained 1 μmol of GSNO.  The final 

mole ratio of test component to GSNO was 10:1 µmol.  For each of the aqueous-soluble 

components, 5 mM bulk solutions were made in advance in buffer (e.g., glycerol, magnesium 

sulfate, PEG-300, 1,2-octanediol, 1,2-hexanediol, tropolone, and potassium hydroxide).  The 30 

nm ZnO nanoparticles and tocopheryl acetate are not soluble in aqueous buffer and therefore 

prepared in a different manner to make the bulk solutions. For the ZnO nanoparticles, 0.82 mg 

were added to 2 mL of the buffer (0.41 mg ZnO/mL buffer) inside the amber NOA sample cell 
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and sonicated for 20 s.  For testing tocopheryl acetate, 4.92 μL was added to 2 mL of the buffer 

(2.36 mg tocopheryl acetate/mL buffer) inside the NOA sample cell and sonicated for 20 s.  The 

amber NOA sample cell containing the bulk solution(s) was submerged in a 34°C water bath and 

allowed to equilibrate for 1 min.  After 1 min, 100 μL of a 10 mM GSNO solution was added into 

this bulk solution.  As previously described, the solutions inside the sample cells were bubbled 

with N2 gas at a rate of 50 mL/min and the NO generated was carried into the NOA by a N2 sweep 

gas. 

 

4.2.5 NO release kinetics from GSNO using 30, 50, and 200 nm ZnO nanoparticles 

All solutions were made with 100 mM Tris-HCl buffer, pH 7.4.  NO release was quantitated using 

the NOA in the absence of light at 24°C for 10 h.  ZnO nanoparticles (4.1 mg) with diameters of 

30, 50, or 200 nm were added to 2 mL of buffer inside an amber NOA sample cell (bulk solution).  

After achieving a stable baseline, 100 μL of 50 mM GSNO in buffer was added to the reaction cell 

(2.38 mM final concentration of GSNO after addition to bulk solution).  Each solution was bubbled 

with N2 gas at a rate of 50 mL/min and the NO generated was carried into the NO by a N2 sweep 

gas. 

4.2.6 NO release from GSNO in the presence 30 nm ZnO in Tris–HCL or –H3PO4 buffer 

Nitric oxide release was quantitated using a NOA in the absence of light at 24°C for 25 min.  Thirty 

nm size ZnO nanoparticles (4.1.mg) were added to 2 mL of either 100 mM Tris-HCL or 100 mM 

Tris-H3PO4 buffer, pH 7.4, inside an amber NOA sample cell (bulk solution).  Upon attaining a 

stable baseline, 100 μL of 50 mM GSNO in either 100 mM Tris-HCL or 100 mM Tris-H3PO4 
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buffer, pH 7.4, was added to the respective reaction cells (2.38 mM GSNO final concentration).  

Each solution was bubbled with N2 gas at a rate of 50 mL/min and the NO generated was carried 

into the NOA by a N2 sweep gas. 

 

4.2.7 ZnO nanoparticle preparation for surface analysis via XPS 

All solutions were prepared using 100 mM Tris-HCl buffer, pH 7.4.  The entire procedure and 

reaction was completed in the dark at room temperature (24°C).   ZnO nanoparticles (16.4 mg of 

30 nm particles) were added to 8 mL of buffer inside a 15 mL glass test tube.  Then, 400 μL of 50 

mM GSNO was added to the test tube that was then capped with a rubber septa.  The solution was 

stirred using a stir bar and continuously bubbled with N2 gas at a rate of 50 mL/min via a glass 

pipet.  For a control sample, the same steps were followed as described above, except 400 μL of 

buffer was added to the test tube and not 400 μL of 50 mM GSNO.  The control sample was not 

exposed to GSNO at any point.  Both control and GSNO-containing samples were stopped after 5 

h.  Contents from each test tube were transferred to 15 mL polypropylene conical centrifuge tubes 

separately.  Each glass test tube was washed 3 times with 1 mL of purified water and the contents 

were added to their respective centrifuge tube.  Each tube was centrifuged at 4000 rpm for 1 min.  

The supernatant was decanted off from each tube.  Five mL of purified water was added to each 

centrifuge tube, hand shaken for 10 s, and then centrifuged again.  This washing process was 

completed three times total for both samples.  After washing was completed, both samples were 

dried under vacuum at 24°C for 24 h.  After drying was completed, both samples were ready for 

XPS analysis. 
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4.2.8 X-ray photoelectron spectroscopy (XPS) 

Using a monochromatic Al K alpha source, X-ray photoelectron spectra were collected with a 

Kratos AXIS system with base pressure below 10-9 torr.  To obtain survey and high-resolution 

spectra, pass energies of 160 and 20 eV were used, respectively. All collected data were referenced 

to the binding energy of adventitious carbon (284.6 eV).20 

 

4.3 Results and Discussion 

4.3.1 Investigation of NO release from GSNO in the presence of Zn2+ ions 

An aqueous phase study was undertaken to determine if Zn2+ ions can increase NO proliferation 

from GSNO in the dark at 24°C.  McCarthy et al. reported the NO generation potential of several 

different metal ions from SNAP under physiological pH conditions.12 They discovered that three 

transition metal ions including Co2+, Ni2+, and Zn2+ increased NO release rates, while Fe3+, Mg2+, 

Mn2+, and Pt2+ displayed significantly less NO release enhancement.12 In contrast, Krȩżel et al. 

reported that the stability of GSNO in HEPES buffer (pH 7.4) actually increases in the presence 

of Zn2+ due to the formation of simple coordination complexes.13  Askew et al. observed no 

catalysis capability of Zn2+ on SNAP to proliferate NO, although no data was shown to assess 

whether a non-catalytic reaction can occur.14  More recently, Lutzke et al. reported the NO 

releasing capabilities of over twenty different metal ion species when mixed with GSNO, and Zn2+ 

ions was shown to exhibit no activity.15  In light of these conflicting reports, further investigation 

was needed to better understand the substantial increase in the rate of NO release when the ZnO 

cream is mixed with the GSNO/Vaseline mixture reported in Chapter 2. 
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Figure 4.1. Real-time NO release from 2 mL of 1 mM GSNO after addition of either 100 μL of 1 

mM ZnCl2 or 100 μL of the buffer.  Completed in the dark at 24°C.  All solutions made with the 

buffer 10 mM Tris-HCl (pH 7.4). At t=10.5 min, 100 uL of 1 mM CuCl2 was added as a positive 

control (The ZnCl2 black plot is hidden behind the red plot at t=10.5 min). Data represents the 

mean ± SD (n = 3). 

 

For the current study, ZnCl2 was chosen as the source of Zn2+ ions.  Figure 4.1 shows NO release 

from GSNO in solution as a function of time with and without Zn2+ ions present in solution.  At 

t=1 min, 100 μL of 1 mM ZnCl2 was added to the bulk solution containing 2 mL of 1 mM GSNO 

resulting in a very small, insignificant burst of NO.  The same insignificant burst was observed 

when the buffer (10 mM Tris-HCl, pH 7.4) was added to the bulk solution.  As a positive control, 

100 μL of 1 mM CuCl2 was added to each scenario at t=10.5 min and a very large burst in NO 

release was observed. A comparison of these two scenarios reveals that Zn2+ ions do not 

appreciably increase NO proliferation from GSNO.  This data supports the findings of Krȩżel et 

al. and Lutzke et al.13, 15 
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4.3.2 Component study of Desitin® Rapid Relief Cream: Zinc Oxide Diaper Rash Cream 

An aqueous phase study was undertaken to determine which agent or agents within the Desitin 

cream were responsible for the accelerated NO release from GSNO discovered in Chapter 2.  A 

simplified system was employed to monitor and measure NO release when GSNO is mixed with 

various components/ingredients present in the commercial zinc oxide cream.  Some ingredients 

present in the Desitin cream were omitted due to their low water solubility (mineral oil, petrolatum, 

beeswax, microcrystalline wax).  The experiments were performed in the presence of 10 mM Tris-

HCl buffer, pH 7.4, at 34°C.  Nine components were studied at a 10:1 μmol ratio with GSNO in 

aqueous solution.  Figure 4.2 shows NO release versus time when 100 μL of 10 mM GSNO was 

added into different bulk solutions containing a given component.  Only the first 10 min of each 

reaction was monitored to determine which component is responsible for the enhanced NO release 

from GSNO.  As shown clearly in Figure 4.2, which compares the NO release profiles of each of 

the components, only the 30 nm ZnO nanoparticles yield a significantly enhanced and prolonged 

NO release from GSNO.  The NO release profiles of the other eight components demonstrate a 

similar profile to the buffer control, where no added components are present.  Moreover, this study 

demonstrates that the other eight components present in the Desitin cream are not significantly 

involved in the enhanced NO release from GSNO. 
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Figure 4.2. Real-time NO release after addition of 100 μL of 10 mM GSNO into 2 mL bulk 
solutions containing a given component.  Experiments were completed in the dark at 34°C.  All 

solutions were made with a 10 mM Tris-HCl buffer (pH 7.4).  The final ratio of component to 

GSNO was 10:1 µmol.  Data represents the mean ± SD (n = 3). 

 

Promoting NO release from GSNO using ZnO nanoparticles has not been reported previously.  

However, very recently Singha et al. demonstrated enhanced and prolonged NO release from 

SNAP-doped CarboSil films with an additional top coating consisting of CarboSil and ZnO 

nanoparticles.21  This demonstrates that ZnO nanoparticles could be capable of promoting NO 

release from other RSNOs.  The data shown here (Fig. 4.2) clearly demonstrates that ZnO 

nanoparticles enhance the NO release from GSNO. 
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4.3.3 NO release kinetics from GSNO using 30, 50, and 200 nm ZnO nanoparticles 

To study the NO release kinetics from GSNO in the presence of different sized ZnO nanoparticles, 

a simplistic reaction model was developed to limit external GSNO decomposition.  Traditionally, 

S-nitrosothiols decompose in the presence of light, at higher temperatures, and in acidic or basic 

solutions.1, 5, 9-11 Thus, the reaction kinetics between GSNO and ZnO nanoparticles were studied 

in the dark, at room temperature (~24°C), and in 100 mM Tris-HCl buffer solution, pH 7.4.  

Plotting cumulative NO release versus time (10 h) when adding 100 μL of 50 mM GSNO to 2.0 

mL of buffer containing 4.1 mg of 30, 50, or 200 nm size ZnO nanoparticles reveals zero order 

reaction kinetics, meaning that the reaction rate is equal to the rate constant (kobs) (Fig. 4.3).  The 

relative ZnO surface area available during each reaction is not directly proportional to the reaction 

rate (Table 4.1).  The presence of the 30 nm size ZnO nanoparticles increases the reaction rate by 

a factor of 2.78 compared to having no ZnO present.  Overall, the reaction rate does increase as 

ZnO nanoparticle size decreases.  
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Figure 4.3. Cumulative NO release vs. time for no ZnO, 30, 50, and 200 nm size ZnO 

nanoparticles in the dark, at 24°C, in 100 mM Tris-HCL, pH 7.4 (buffer).  At t=0 min, 100 μL of 

50 mM GSNO was introduced to 2.0 mL of buffer containing 4.1 mg of 30, 50, or 200 nm size 

ZnO nanoparticles. No ZnO means no ZnO was present and NO release was caused by natural 

GSNO decomposition in the dark, at 24°C, in 100 mM Tris-HCL buffer, pH 7.4.  The first hour of 

NO release was removed due to inconsistent initial NO release rates.  Error bars were omitted for 

clarity.  Data represents mean (n = 3). 

 

Table 4.1. Summary of rate constant (kobs) measured and the available surface area of ZnO present 

for trials containing no ZnO, 30, 50, and 200 nm size ZnO nanoparticles; where at t=0 min, 100 

μL of 50 mM GSNO was introduced to 2.0 mL of 100 mM Tris-HCL buffer, pH 7.4, containing 

4.1 mg of 30, 50, or 200 nm size ZnO nanoparticles.  Trials were completed in the dark at 24°C.  

No ZnO means no ZnO was present.  Data represents the mean ± SD (n = 3). 

ZnO size (nm) kobs (nmol h-1) Surface area of ZnO (cm2) 

no ZnO 5.07 ± 0.09 N/A 

30 15.86 ± 0.18 1461.68 

50 14.65 ± 0.04 877.01 

200 6.10 ± 0.10 219.25 
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4.3.4 Comparing NO release from GSNO using ZnO under Tris–HCl and –H3PO4 

A study was completed to determine if GSNO needs to have unblocked access to the surface of 

ZnO in order to promote NO release.  Literature has shown that phosphoric acid (H3PO4) or like 

groups (HPO4
2-) readily adsorb and interact with the surface of ZnO at neutral pH.17, 22 Hence, 

utilizing a Tris-based buffer where the acid component can be interchanged between –HCl and –

H3PO4, will reveal if GSNO needs unblocked access to the ZnO surface to enhance NO release.  

Figure 4.4 shows the real-time NO release when 100 μL of GSNO is added to a 100 mM Tris-HCl 

or –H3PO4 buffer solution (pH 7.4) containing 30 nM ZnO nanoparticles or when no ZnO is 

present.  When using 100 mM Tris-HCl buffer (pH 7.4), there is a clear difference in the NO 

release profiles when ZnO is present versus when ZnO is not present (Fig. 4.4a).  However, when 

using 100 mM Tris-H3PO4 the NO release profiles are very similar for both scenarios (Fig. 4.4b).  

By changing one chemical of the buffer solution from HCl to H3PO4, the NO release profile 

changes drastically.  Since H3PO4/HPO4
2- favorably interact/adsorb to the ZnO surface at pH 7.4, 

the promoted NO release reaction between GSNO and ZnO does not occur.  This data suggests 

that GSNO needs uninhibited access to the surface of ZnO to promote NO release. 
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Figure 4.4. Real-time NO release after addition of 100 μL of 50 mM GSNO (t=1 min) into 2 mL 

of (a) 100 mM Tris-HCL or (b) 100 mM Tris-H3PO4 buffer (pH 7.4) containing no ZnO or 4.1 mg 

of 30 nm size ZnO nanoparticles.  Completed in the dark at 24°C.  Data represents the mean ± SD 

(n = 3). 

 

4.3.5 Surface analysis of ZnO nanoparticles via X-ray photoelectron spectroscopy 

To characterize the surface of ZnO after NO release from GSNO, X-ray photoelectron 

spectroscopy (XPS) was employed.  There are literature reports of gold and platinum nanoparticles 

catalyzing NO generation from RSNOs.23-25  Jia et al. reported the enhanced rate of NO release 

from GSNO via reaction of gold nanoparticles in a dose-dependent manner.23 Later, Taladriz-

Blanco et al. showed that due to the affinity between gold and thiols, the RS-NO bond breaks when 

in the presence of gold nanoparticles, and subsequently the gold surface is functionalized with the 

corresponding thiol species (as a sub-monolayer).24  More recently, Cao et al. reported enhanced 

NO generation from SNAP and GSNO using 3 nm platinum nanoparticles, and suggested evidence 

of Pt-S bond formation during the reaction.25  Therefore, surface analysis of ZnO after reaction 

with GSNO to promote NO release is necessary to reveal potential evidence of glutathione (thiol) 

attachment to the ZnO surface or Zn-S bond formation. 
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ZnO nanoparticles exposed and not exposed to GSNO were analyzed by XPS.  The specific 

procedure of how each were prepared can be found in Section 4.2.7, above.  Briefly, 400 μL of 50 

mM GSNO was added to 16.4 mg of 30 nm ZnO nanoparticles in 8 mL of 100 mM Tris-HCl 

buffer, pH 7.4, in the dark at 24°C.  The reaction was stopped after 5 h and the ZnO nanoparticles 

were thoroughly washed and dried under vacuum for XPS analysis.  Control ZnO nanoparticles 

were prepared in the same manner except, 400 μL of buffer was added and not 400 μL of 50 mM 

GSNO.  The control ZnO nanoparticles were not exposed to GSNO. 

 
Figure 4.5. High-resolution (a) S 2p, (b) Zn 2p, (c) O1s, and (d) N 1s XP spectra of 30 nm size 

ZnO nanoparticles exposed and not exposed to GSNO in 100 mM Tris-HCl buffer (pH 7.4) in the 

dark at 24°C for 5 h. 
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The S 2p spectra for both ZnO nanoparticles exposed and not exposed to GSNO detect no signal 

(Fig 4.5a).  No detection means that glutathione (thiol) is not adsorbed or bonded to the surface of 

ZnO.  If there was evidence of Zn-S bond, there would be an S 2p3/2 and S 2p1/2 doublet between 

162-167 eV.26-29  The Zn 2p3/2 and Zn 2p1/2 signals at ~1021 and 1044 eV are consistent with ZnO 

(Fig. 4.5b).27 The O 1s spectra are consistent with a signal at ~530 eV from lattice oxygen (O2-) in 

ZnO and the signal at ~532.7 is from hydroxyl groups or chemisorbed oxygen (Fig. 4.5c).27  There 

is a difference in the N 1s spectra between the ZnO exposed and not exposed to GSNO (Fig 4.5d).  

For the ZnO exposed to GSNO, the N 1s signal spans from 397-401 eV and corresponds to the 

combination of two peaks assigned to N-H and N-C bonds (Fig. 4.5d).30  Since there is no S 2p 

signal from the ZnO that was exposed to GSNO, the N 1s signal must originate from the primary 

amine in the Tris buffer.  Therefore, because there is no N 1s signal from the ZnO not exposed to 

GSNO and only exposed to the buffer, means that when ZnO and GSNO react to promote NO 

release, it allows the buffer to more favorably adsorb to the surface of ZnO.  The lack of any S 2p 

signal from the ZnO exposed to GSNO suggests no thiol attachment post-NO proliferation as seen 

previously when using gold or platinum nanoparticles. 

 

4.4 Conclusion 

It was determined that Zn2+ ions have little or no effect on NO proliferation from GSNO in pH 7.4 

buffer at 24°C.  Further, a thorough component study of the Desitin zinc oxide cream suggests that 

the ZnO nanoparticles present are primarily responsible for increased NO proliferation from 

GSNO.  A study of the NO release kinetics from GSNO in the presence of 30, 50, and 200 nm size 

ZnO nanoparticles in the dark, at 24°C, and in neutral pH conditions revealed zero order kinetics 
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during the first 10 h of reaction.  Also, the available ZnO surface area is not directly proportional 

to the reaction rate, but the reaction rate does increase as ZnO nanoparticle size decreases.  A study 

comparing the NO release profiles of using Tris-HCl buffer versus Tris-H3PO4 buffer revealed that 

GSNO needs uninhibited access to the surface of ZnO to promote NO release because 

H3PO4/HPO4
2- adsorb to the ZnO surface and cause NO release to significantly decrease.  Lastly, 

surface analysis of ZnO using XPS after exposure to GSNO showed no evidence of thiol 

attachment or Zn-S bond formation. 
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Chapter 5 Hub Region Disinfecting NO Releasing Insert for Tunnel Dialysis Catheters 

 

The content of this chapter includes experiments conducted by Shale Mack, Amy Lou, and Blake 

Stringer.  These individuals were undergraduate researchers in the Meyerhoff laboratory working 

under the direction of this Ph.D. candidate, and their names will appear on any future publication 

of the research described in this chapter. 

 

5.1 Introduction 

Tunneled dialysis catheters (TDCs) are commonly utilized for patients with End Stage Renal 

Disease (ESRD) that require hemodialysis (HD) treatments.  Even though it is generally accepted 

that TDCs are the least desirable form of dialysis vascular access, in 2010 approximately 80% of 

patients started HD treatment using a TDC and it has remained relatively unchanged since then.1  

One of the major complications associated with TDCs is blood stream infections (BSIs).  BSIs 

caused by TDCs has continued to be an important clinical issue that leaves patients with substantial 

morbidity, mortality, expense, and a decrease in their quality of life.2 

For long-term TDCs, BSIs predominately occur from bacteria/biofilm growth via the intraluminal 

route because of hub contamination.3  The most favored treatment of foreign body-related infection 

is removal of the foreign body (TDC), however this may not be practical for the patient.  Thus, 

methods and devices have been developed that treat/prevent BSIs related to TDCs.  A few notable 

treatment/prevention methods include antimicrobial lock therapy, Tego Needlefree Hemodialysis 

Connector plus Curos Disinfecting Cap for Tego, and a ClearGuard HD Antimicrobial Barrier 

Cap. 
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Antimicrobial lock therapy (ALT) involves infusing a highly concentrated antibiotic solution into 

the catheter lumen for a minimum of 2-4 h.2, 4 Although there is no Food and Drug Administration 

(FDA) approved ALT, ALT practice has exhibited significant benefit to those with TDC.2  

Difficulty arises for ALT when microbial biofilm is already present in the catheter lumen due to 

the inability of antibiotics to penetrate and kill a biofilm.  Certain chemicals like citrate and 

ethylenediaminetetraacetic acid (EDTA) have been added to help disrupt the biofilm, but high 

rates of ALT failure still occur with Staphylococcus aureus, Pseudomonas aeruginosa, and 

Candida bacteria.2, 5, 6 

A recent study compared the performance of two FDA approved devices in relation to the rate of 

BSIs.  These devices included the combination of Tego Needlefree Hemodialysis Connector 

(Tego) plus Curos Disinfecting Cap for Tego (Curos) and ClearGuard HD Antimicrobial Barrier 

Cap (ClearGuard).7  Tego is a device that attaches to the hub and aims to prevent infection by 

using a “closed” system by reducing catheter hub manipulation.7, 8  Curos is a port protector that 

utilizes 70% isopropanol to kill bacteria on the surface of Tego.7, 9 ClearGuard is a device with a 

protruding rod and threads that are coated with chlorhexidine.7, 10  Chlorohexidine is a well-known, 

broad spectrum antimicrobial agent with minimal risk of developing resistant bacteria strains.7, 10  

After a 13 month long study, the ClearGuard had a significantly lower BSI rate of 0.28 positive 

blood cultures (PBC) per 1000 TDC-days versus 0.75 PBC per 1000 TDC-days for Tego + Curos.7  

The potential downfall of the Tego + Curos device is that only the outer surface of the catheter 

hub is targeted.  A potential downfall of the ClearGuard product is that chlorhexidine has trouble 

dispersing and killing biofilms.11 

A device that retains the positive characteristics (effective broad spectrum antimicrobial agent, 

minimal risk of developing resistant bacteria strains) to prevent BSIs but also solves prior device 
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short-comings (effectiveness against biofilms) is one that involves the use of nitric oxide. Nitric 

oxide (NO) is an endogenously produced, free radical gas molecule that is synthesized by the 

enzyme nitric oxide synthase (NOS).12-15  The body naturally produces NO when fighting an 

infection via immune system macrophages.13, 14  NO is highly effective against a broad spectrum 

of bacteria including antibiotic-resistant strains because there are several mechanisms/reactions 

that can lead to cell death.12, 13, 16 

Nitric oxide is also effective at dispersing/displacing biofilms.17-20  One example involves NO 

released from intravascular catheters fabricated with S-nitroso-N-acetyl-D-penicillamine (SNAP) 

doped CarboSil polymer against S. aureus biofilms.20  The amount of bacteria were evaluated after 

catheter segments were subjected to 7 d in a drip-flow bioreactor.  A 5 log unit reduction was 

achieved compared to control catheters with no NO release.20  Therefore, a NO releasing insert 

device that could disinfect the inner lumen of TDCs has great potential for preventing BSIs because 

of its inherent antimicrobial non-specificity, as well as biofilm dispersal and killing capabilities. 

Herein, the NO releasing characteristics of various NO releasing insert devices are evaluated as 

well as their antimicrobial efficacy against S. aureus in a simulated catheter hub model.  The most 

promising NO releasing insert was also evaluated for stability of the NO-donor molecule after 

subjection to different sterilization methods.  The antimicrobial efficacy of the most promising NO 

releasing insert formulation was tested in real hemodialysis catheter hubs against both gram-

negative (P. aeruginosa) and gram-positive (S. aureus) bacteria strains.  Further, two 14-d long 

sheep studies compared the antimicrobial/anti-biofilm capabilities of the chosen NO releasing 

insert versus a control of a normal hemodialysis catheter cap and versus a commercially available 

antimicrobial cap that utilizes the antimicrobial agent chlorhexidine. 
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5.2 Materials and Methods 

5.2.1 Materials 

L-Glutathione reduced (GSH), hydrochloric acid (HCl), sodium nitrite, and polyethylene glycol 

(MW = 3,350) were purchased from Sigma-Aldrich (St. Louis, MO).  Acetone; DOWSIL 3140, 

MIL-A-46146 RTV Silicone Coating; Dow Corning Silastic Laboratory Tubing (ID 0.058" × OD 

0.077", 2415542); and Helix Medical Inc. Silicone Tubing (0.125" × 0.250", 6001121) were 

purchased from Fisher Scientific Inc. (Pittsburgh, PA).  Male Luer Lock Injection Site caps 

(80149) were purchased from Qosina (Ronkonkoma, NY).  LB agar and 10 mM phosphate 

buffered saline (PBS) (pH 7.2) were purchased from ThermoFisher Scientific (Grand Island, NY).  

Zinc oxide nanoparticles (APS 30 nm in diameter) were purchased from EPRUI Biotech Co. Ltd. 

(ShangHai, China).  All aqueous solutions were prepared with 18.2 M Ω deionized water using a 

Milli-Q filter (Milli-q purified water) from EMD Millipore (Billerica, MA).  Staphylococcus 

aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 were obtained from the American 

Type Culture Collection (Manassas, VA). 

 

5.2.2 S-Nitrosoglutathione (GSNO) synthesis 

The method used to prepare GSNO was the same as that described in Chapter 2. 

5.2.3 Fabrication of NO releasing inserts 

The entire procedure involving GSNO was completed in the absence of direct light.  Silicone 

tubing (ID 0.058″, OD 0.077″) was cut to ~3 cm and sealed at one end using an adhesive glue 

(DOWSIL 3140, MIL-A-46146 RTV Coating) and allowed to dry for 24 h.  Then, 12 ± 0.2 mg of 

a desired dry powder formulation was dispensed into the tubing using a glass funnel pipet.  The 
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dry powder formulations used included (a) 75% GSNO : 25% 30 nm size ZnO nanoparticles; (b) 

25% GSNO : 75% 30 nm size ZnO nanoparticles;  (c) 60% GSNO : 20% 30 nm size ZnO 

nanoparticles : 20% solid polyethylene glycol (MW = 3,350) (PEG); (d) 75% GSNO : 25% fumed 

silica.  Before use, the GSNO was crushed into a fine powder using a mortar and pestle and mixed 

with the other components by vortexing for 1 min to achieve a homogeneous dry powder mixture.  

After filling the tubing with the desired powdered formulation (~12 mg = ~1.8 cm fill length), the 

end that was employed to fill the tubing was cut to achieve ~0.2 cm head space above the fill 

powder.  Lastly, adhesive glue was used to seal the open end and allowed to dry for 24 h.  The 

final length of the inserts are ~ 2.0 cm. 

 

5.2.4 Measuring real-time NO release from inserts 

Nitric oxide release from the NO releasing inserts was measured using a Sievers 

Chemiluminescence Nitric Oxide Analyzer (NOA) 280i (Boulder, CO). The NOA was calibrated 

before via a two-point calibration of N2 gas passed through a NOA zero air filter and a standard of 

44.3 ppm NO in N2 gas. Saline solution (0.9% sodium chloride) was made using 18.2 M Ω 

deionized water using a Milli-Q filter (Milli-q purified water) from EMD Millipore (Billerica, 

MA).  The NOA sample cell was filled with 11 mL of saline solution and the NO releasing insert 

was placed below a floating polypropylene barrier to keep the insert fully submerged at all times.  

The saline solution reservoir was bubbled with N2 gas at a rate of 50 mL/min to allow the NO 

generated from GSNO to escape from the solution and be carried into the NOA by the N2 sweep 

gas. All NOA sample cells were wrapped in aluminum foil to shield the samples from light 

exposure. NO release was continuously monitored for 72 h at room temperature (24°C). 
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5.2.5 In vitro simulated catheter hub antimicrobial assay 

To simulate the hub region of a catheter, 3 cm of silicone tubing (ID 0.125″, OD 0.250″) was 

employed.  A volume of 0.3 mL of overnight grown bacteria cultures (1 × 108 CFU/mL) in 10% 

LB broth was transferred into the simulated hub clamped at one end.  Then, a NO releasing insert 

was placed inside of the simulated hub and the other end clamped shut.  For control samples, no 

NO releasing insert was added.  Each sample was incubated at room temperature (24°C) in the 

dark, for 72 h, on a shaker at low speed.  After 72 h of incubation, 20 µL of bacteria culture liquid 

was retrieved from each simulated hub and 10-fold serially diluted.  Fifty µL of each dilution was 

spread on LB agar plates and incubated at 37°C overnight for colony-forming unit (CFU) counting.  

The simulated hub was also sliced into small pieces and the inside was stained with BacLight 

Live/Dead staining kit in the dark for 15 min to assess the degree of biofilm.  Microscopic images 

were obtained by using a fluorescent microscope with appropriate filter sets (488/520 nm for 

SYTO-9 and 493/636 nm for propidium iodide. 

 

5.2.6 Sterilization studies: Ethylene oxide (EO) vs. hydrogen peroxide (H2O2) 

Nitric oxide releasing inserts (formulation (a)) were prepared as described in Section 5.2.3, 

individually packaged into separate pouches, and sent to the University of Michigan hospital 

sterilization facility for ethylene oxide (EO) or hydrogen peroxide (H2O2) treatment.  For EO 

treatment, the NO releasing inserts undergo a 1 h preconditioning and humidification process 

(54°C, 40-80% humidity), followed by 3 h of exposure to ethylene oxide gas under the same 

temperature and humidity.  Then, a 2 h ethylene oxide gas evacuation process occurs, followed by 

12 h of air washes.  For H2O2 treatment or STERRAD®, the process takes approximately 45 min 

total.  Under vacuum, 59% (nominal) aqueous H2O2 is vaporized to cover the NO releasing inserts.  
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Diffusion of the gaseous H2O2 occurs while the pressure is reduced, forming low-temperature 

H2O2 gas plasma after radio frequency (RF) energy is applied.  The H2O2 gas plasma generated 

sterilizes the NO releasing inserts.  Control NO releasing inserts were prepared as described in 

Section 5.2.3, but not sterilized.  The amount/stability of GSNO within each insert was measured 

by releasing all of the NO from GSNO via shining UV light on them and detecting/quantitating 

the total amount of NO released using a NOA.  Specifically, 2 mL of Milli-q purified water was 

added to an NOA sample cell. After a steady baseline was achieved, a NO releasing insert was cut 

open and the powder filling was transferred into the sample cell using another 2 mL of Milli-q 

purified water.  An additional 1 mL of Milli-q purified water was used to rinse all remaining 

powder on the NOA sample cell walls, down into the bulk solution (total 5 mL of Milli-q purified 

water). The GSNO/ZnO containing solution was bubbled with N2 gas at a rate of 50 mL/min to 

escape from the solution and be carried into the NOA by the N2 sweep gas.  UV light was used to 

irradiate the sample until NO release from GSNO was exhausted, marked by a return to the original 

baseline.  The amount of NO released from each NO releasing insert was directly converted to 

GSNO because the mole ratio is 1:1.  The highest amount of GSNO measured from the three NO 

releasing control inserts (not sterilized) was assumed to be 100% recovery of GSNO; therefore. all 

other samples (sterile and non-sterile) were normalized to this value.  Thus, >100% GSNO 

recovery was possible. 

5.2.7 Stability Study 

Nitric oxide releasing inserts using formulation (a) (75% GSNO : 25% 30 nm size ZnO 

nanoparticles) were prepared.  Three NO releasing inserts were measure for their amount of GSNO 

on Day 0 without any sterilization processes.  On Day 0 the remaining NO releasing inserts were 

sterilized using the H2O2 sterilization method described above.  After sterilization was completed 
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on Day 0, each sterile insert remained in their individual sterilization pouches and were stored in 

a sealed glass jar with desiccant, in the dark, at room temperature (24°C) until further use.  The 

%GSNO recovery from an NO releasing insert on any given day was achieved using the method 

outlined in Section 5.2.6.  Briefly, the NO releasing inserts were cut open and the powder washed 

into a NOA sample cell.  All the NO was exhausted from GSNO using UV light.  The NO was 

quantitated and measured by a NOA.  All recovery values obtained were normalized to the highest 

amount of GSNO obtained from one of the three control NO releasing inserts (not sterilized). 

 

5.2.8 In vitro catheter hub antimicrobial assay 

The catheters utilized for this assay were 28 cm long Permcath™ Pediatric Silicone Chronic Dual 

Lumen Oval Catheters, Covidien/Medtronic (Ref 8815543001, Lot 1611800146).  The clamp on 

the catheter’s hub region was clamped shut and 0.3 mL of overnight grown bacteria cultures (1 × 

108 CFU/mL) in 10% LB broth was added.  A NO releasing insert (pre-sterilized by the H2O2 

sterilization method mentioned above) was inserted inside of the catheter hub and sealed by a cap.  

For control samples, no NO releasing insert was added.  Each catheter was incubated at room 

temperature (24°C) in the dark, for 72 h, on a shaker at low speed.  After 72 h of incubation, 20 

µL of bacteria culture liquid was retrieved from each hub region and 10-fold serially diluted.  Fifty 

µL of each dilution was spread on LB agar plates and incubated at 37°C overnight for colony-

forming unit (CFU) counting. 

 

5.2.9 Sheep studies - general procedure 

This study including animal handling and surgical procedures that were approved by the University 

of Michigan Committee on Use and Care of Animals (24 h fasting and pre-surgical analgesia with 
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Fentanyl transdermal patch 100 µg/h) in accordance with university and federal regulations.  Adult 

sheep weighing 45-50 kg were utilized.  Under general anesthesia, 28 cm long (13 cm cuff to 

proximal tip) Permcath™ Pediatric Silicone Chronic Dual Lumen Oval Catheters, 

Covidien/Medtronic (8815543001) were placed using the Seldinger wire technique in the right and 

left jugular veins (3-5 cm above the subclavian), aiming to place the proximal tip in the RA-SVC 

junction.  Caution was taken not to expose or manipulate the vessels.  Catheters were secured to 

the skin and covered with a sterile dressing.  After catheter placements, the sheep were recovered 

from anesthesia and housed in a barn (non-sterile conditions) for the remainder of the experiment. 

All catheters were capped and filled with 2,000 U heparinized saline solution (2 mL) injected via 

the distal end of the lumen.  The NO releasing inserts used for both sheep studies were made using 

formulation (a) 75% GSNO : 25% 30 nm size ZnO nanoparticles.  The NO releasing inserts were 

attached to male luer lock injection site caps, Qosina (80149), using the same adhesive glue used 

in Section 5.2.3, and allowed to dry for 24 h (Fig. 5.1a).  Each NO releasing insert cap was 

individually packaged and sterilized using the H2O2 sterilization method described previously.  

The sterile NO releasing insert caps were stored at room temperature (24°C) and shielded from 

light until further use. 

Prior to necropsy (day 14), 10,000 U bolus of heparin was given via a cephalic vein angiocath, 

followed by FatalPlus IV injection.  Each catheter was procured using sterile techniques.  The 

external surface of each catheter was sterilized by wiping with a 70% ethanol solution.  One cm 

length sections were cut from each section of catheter as shown in Figure 5.1b.  Each section was 

homogenized in 2 mL of 1 × PBS (10 mM, pH 7.2) in a 15-mL tube using a homogenizer (OMNI 

TH, OMNI International, Kennesaw, GA) at full speed to remove all bacteria/biofilm adhered to 

the inner lumen walls, and the resulting solution was 10-fold serially diluted.  Fifty µL of each 
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dilution was spread on LB agar plates and incubated at 37°C overnight for CFU counting.  

Additionally, >0.5 cm length sections were cut from each section of catheter described in Figure 

5.1b, and the inner lumen surfaces were stained with BacLight Live/Dead staining kit in the dark 

for 15 min.  Microscopic images were obtained by using a fluorescent microscope with appropriate 

filter sets (488/520 nm for SYTO-9 and 493/636 nm for propidium iodide. 

 
Figure 5.1. (a) (top) NO releasing insert cap used in Sheep Study #1 and #2 and (bottom) the 

silicone tubing filled partially with adhesive glue prior to gluing it to cap (pre-glued section is 

inside of cap). (b) Regions of catheter studied in Sheep Study #1 and #2. 

 

5.2.10 Sheep Study #1 

Two adult sheep were studied during Sheep Study #1.  One sheep was designated as control (n = 

4 catheter hubs total, no NO releasing inserts) and the other sheep was designated as experimental 

(n = 4 catheter hubs total, using NO releasing insert caps).  On postoperative days 0, 2, 4, 7, 9, 11, 

and 14, 50 µL of liquid from the hub region of each catheter lumen was taken for CFU counting.  

Then, 3.5 mL of blood was drawn from each lumen, the lumens were then locked with 2,000 U 

heparinized saline solution (2 mL), and both NO releasing insert caps and control caps were 

replaced with new caps, respectively. 
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5.2.11 Sheep Study #2 

Two adult sheep were studied during Sheep Study #2.  Use of a commercially available 

antimicrobial cap with chlorhexidine as the antimicrobial agent was studied and compared to use 

of the new NO releasing insert device.  For one sheep, the catheter implanted in the right jugular 

vein was designated for the commercial chlorhexidine caps and the catheter implanted in the left 

jugular vein was designated for the NO release insert caps.  For the second sheep, the designations 

were reversed such that right jugular vein was designated for the NO release insert caps and the 

catheter implanted in the left jugular vein was designated for the chlorhexidine caps.  In total, for 

chlorhexidine caps there were n = 4 catheter hubs and for the NO releasing insert caps there were 

also n = 4 catheter hubs.  On postoperative days 0, 2, 3, 6, 8, 10, 12, and 14, 50 µL of liquid from 

the hub region of each catheter lumen was taken for CFU counting.  Then, 3.5 mL of blood were 

drawn from each lumen, locked with 2,000 U heparinized saline solution (2 mL), and both NO 

releasing insert caps and chlorhexidine caps were replaced with new caps, respectively. 

 

5.3 Results and Discussion 

5.3.1 Design of NO releasing inserts 

The dimensions of the NO releasing insert were designed based on the hub dimensions of 

commonly used hemodialysis catheters (Fig. 5.2).  S-nitrosoglutathione (GSNO) was chosen as 

the NO donor molecule because it is endogenously produced and fairly stable when stored as a 

powder in the absence of moisture.21, 22  ZnO nanoparticles (30 nm diameter) were chosen to 

enhance the NO release from GSNO.23  Silicone rubber tubing was chosen because the high 

diffusivity of NO through silicone rubber compared to other biomedical grade polymers and its 
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relatively low hardness allows moisture to pass through its walls to initiate NO release from 

GSNO.24 

 
Figure 5.2. Design of NO releasing insert. 

 

5.3.2 Characterizing real-time NO release of NO releasing insert formulations 

The real-time NO release of four different NO releasing insert formulations was evaluated to 

determine each formulation’s NO release characteristics.  Nitric oxide release was measured from 

each NO releasing insert over a 72 h period while submerged in saline solution in the dark at room 

temperature (24°C).  The measurement conditions were as close to “real-world” conditions of 

hemodialysis catheter hubs as possible.  Measuring over a 72 h period was chosen because 

hemodialysis treatments normally occur every 2-3 days, enabling the NO release insert to be 

changed at each dialysis session.  The other conditions were chosen because catheter hubs are 

located outside of the body, opaque, and locked with a saline lock solution. 
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Figure 5.3. Real-time NO flux of inserts prepared with different formulations a-d in the dark at 

24°C over a 72 h period. Data represents the mean ± SD (n = 3). 

 

Four different NO releasing insert formulations were tested for their NO release characteristics 

under real world conditions (Fig. 5.3).  The dry powder NO releasing formulations studied include 

(a) 75% GSNO : 25% 30 nm size ZnO nanoparticles; (b) 25% GSNO : 75% 30 nm size ZnO 

nanoparticles; (c) 60% GSNO : 20% 30 nm size ZnO nanoparticles : 20% solid polyethylene glycol 

(MW = 3,350) (PEG); and (d) 75% GSNO : 25% fumed silica.  Formulation (a) yielded a large 

burst of NO over the first 24 h and tapered off until the 72 h mark was reached (Fig. 5.3).  For 

formulation (b), the percentages of GSNO and ZnO were reversed compared to formulation (a).  

Formulation (b) demonstrated a similar NO release profile compared to formulation (a), however 

the initial burst lasted only 12 h and tapered off significantly afterwards due to the lower amount 
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of GSNO initially present (Fig. 5.3).  In attempt to level/smooth out the NO release profile of 

formulation (a), polyethylene glycol (MW=3,350) (PEG) was added to increase the viscosity of 

the insert’s internal components (GSNO and ZnO).  The addition of PEG should increase the 

internal viscosity upon moisture absorption, imposing a cage effect on the thiyl and NO radical 

pair such that they recombine to form GSNO and slow the rate of NO release.25, 26  The addition 

of PEG led to formulation (c) and still includes GSNO and ZnO.  The expected leveling/smoothing 

effect was achieved, leading to a more consistent NO release rate over 72 h (Fig. 5.3).  To prove 

that ZnO was necessary to enhance NO release in each formulation, fumed silica particles were 

substituted in place of ZnO as an inert agent that does not react with GSNO.  The NO release 

profile of formulation (d) shows minimal NO release over 72 h (Fig. 5.3).  This data definitively 

proves that ZnO is needed to achieve significant NO release from GSNO contained within the 

silicone tubing. 

 

5.3.3 Antimicrobial effects of NO releasing formulations (a-c) inserts in simulated catheter hubs 

Formulations (a-c) displayed unique NO releasing profiles over 72 h.  Therefore, each was tested 

for their bactericidal effects using a “Simulated Hub” antimicrobial experiment.  This experiment 

was designed to mimic the conditions of a real hemodialysis catheter hub.  Silicone tubing with a 

similar inner diameter to that of an actual hemodialysis catheter hub was utilized as the “Simulate 

Hub”.  A detailed description of this study can be found in Section 5.2.5.  Briefly, a given 

concentration of Staphylococcus aureus (S. aureus) in 10% LB broth was put inside of the silicone 

tubing that was sealed at one end.  The NO releasing inserts were place inside of the simulated hub 

and the opposite end closed.  The controls contained no NO releasing insert.  The prepared 

simulated hubs were subjected to real world ambient conditions as stated previously (24°C, dark, 
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72 h, and on a shaker).  After 72 h, the amount of bacteria in the liquid broth was enumerated for 

each sample and the inner lumen wall of the simulated hub was imaged for bacteria/biofilm 

adhered to its surface. 

 
Figure 5.4. Viable cell counts of S. aureus from the liquid broth of simulated catheter hubs after 

72 h of exposure to control (no insert) and NO release inserts with formulations (a), (b), and (c), 

in the dark at 24°C.  The horizontal dashed line represents the LOD (100 CFU/mL) for the assay.  

Data represents the mean ± SD (n = 3). 
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Figure 5.5. Fluorescent microscopic images of S. aureus bacteria/biofilm adhered to the inner 

lumen wall of the simulated hub after exposure to no insert (control) or NO releasing inserts with 

formulations (a-c) for 72 h in the dark at 24°C.  Live/Dead dye stain was used where green = alive 

cells and red = dead cells. 

 

Each NO releasing insert formulation (a-c) killed all of the bacteria present in the liquid broth of 

each simulated hub, leading to a 6.4 log reduction of bacteria compared to control (no NO releasing 

insert) (Fig. 5.4).  This data indicates that formulations (a-c) are capable of killing S. aureus 

bacteria cells in the liquid broth of a simulated catheter hub region.  Fluorescent microscopic 

images were taken of the inner lumen wall of each simulated hub and representative images are 

pictured in Figure 5.5.  The control as well as formulations (b) and (c) displayed evidence of S 

aureus bacteria/biofilm adhered to the inner lumen wall of the simulated hubs (Fig. 5.5).  However, 

formulation (a) showed no evidence of significant S aureus bacteria/biofilm adhesion (Fig. 5.5).  

The data from formulation (a) suggests that having a large burst of NO over the first 24 h is needed 

to prevent biofilm formation.  Therefore, formulation (a), 75% GSNO : 25% 30 nm ZnO 
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nanoparticles, was chosen as the formulation to continue testing because of its excellent 

antimicrobial/anti-biofilm characteristics. 

 

5.3.4 Sterilization and Stability Testing 

Sterilization of the NO releasing inserts would be needed for animal testing.  GSNO naturally 

reacts to release NO in the presence of light, heat, metal ions, and water.21, 22, 25, 27-31 Thus, different 

sterilization methods were tested to see if they had any negative effects on GSNO stability.  Again, 

the NO releasing formulation (a) insert was utilized in these studies.  Two common sterilization 

methods were tested as described in Section 5.2.6 (above), ethylene oxide (EO) gas and hydrogen 

peroxide (H2O2) plasma.  EO sterilization is a traditional sterilization method that takes place at a 

temperature of 54°C and requires several hours to complete.  H2O2 sterilization is a relatively new 

method of sterilization that occurs at a temperature of 40°C and takes ~45 min to complete. 

To test if the sterilization methods effected the stability of GSNO inside of the silicone insert 

tubing, the amount of GSNO (%recovery of GSNO) was measured for NO releasing formulation 

(a) inserts subjected to no sterilization (control), H2O2 sterilization, and EO sterilization.  Since 

each NO releasing insert was made by hand and the amount of GSNO inevitably varies somewhat.  

Thus, the highest amount of GSNO measured from the three NO releasing control inserts (not 

sterilized) was assumed to be 100% recovery of GSNO (Table 5.1).  All other NO releasing inserts 

tested were normalized to this value, and hence >100% recovery values were possible.  The results 

of this study are shown in Table 5.1.  Ultimately, H2O2 sterilization was chosen as the best method 

compared to EO sterilization because of lower standard deviation and quicker turn-around period. 
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Table 5.1. %Recovery of GSNO after no sterilization (control), hydrogen peroxide (H2O2) 

sterilization, or ethylene oxide (EO) sterilization processes.  Values are normalized to the highest 

amount of GSNO recovered from the control (no sterilization) trials.  Data represents the mean ± 

SD (n = 3). 

Control (no sterilization) H2O2 Sterilization EO Sterilization 

98.4 ± 1.6% 100.2 ± 2.4% 95.3 ± 10.1% 

 

After the sterilization method was selected, it was important to test the long-term stability of the 

GSNO inside of the NO releasing inserts.  For this study, NO releasing formulation (a) inserts 

were fabricated and sterilized via H2O2.  However, three NO releasing inserts were not sterilized 

(control) and the amount of GSNO in each insert was determined on Day 0 using the method 

described in Section 5.2.7.  After H2O2 sterilization was completed on Day 0 for the remaining 

inserts, they remained in their individual sterilization pouches and stored in a sealed glass jar with 

desiccant, in the dark, at room temperature (24°C) until further use.  After nearly 2 months of 

storage, the GSNO inside of the NO releasing formulation (a) inserts was found to degrade by an 

average of 4.3% (Fig. 5.6).  Therefore, GSNO is relatively stable when stored dry with ZnO 

nanoparticles inside of the silicone insert devices at room temperature. 
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Figure 5.6. %Recovery of GSNO measured on Day 1, 7, and 56 from NO releasing inserts using 

formulation (a), stored in the dark at 24°C after hydrogen peroxide (H2O2) sterilization.  Control 

(no sterilization) NO releasing inserts using formulation (a) were measure for %recovery of GSNO 

on Day 0.  Data represents the mean ± SD (n = 3). 

 

5.3.5 Antimicrobial effects of NO releasing formulation (a) inserts in hemodialysis catheter hubs 

The antimicrobial efficacy of NO releasing formulation (a) inserts in real hemodialysis catheter 

hubs were tested against gram-positive and gram-negative strains, S. aureus, and P. aeruginosa, 

respectively.  A detailed procedure can be found in Section 5.2.8, above.  Briefly, a given 

concentration of bacteria in 10% LB broth was added to a real hemodialysis catheter hub region 

and the hub region was closed at the proximal end of the hub region using the pre-existing clamp.  

H2O2 sterilized NO releasing inserts were then placed inside of the catheter hubs and closed via 

the attached cap.  The control trials contained no NO releasing inserts, just a normal hub cap.  The 

hemodialysis catheter hubs were then subjected to real world conditions as stated previously 

(24°C, dark, 72 h, and on a shaker).  Upon completions of the 72 h study, bacteria counts were 

obtained from the liquid broth inside of the catheter hubs containing the NO releasing formulation 
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(a) inserts versus the controls with no inserts.  This led to a log reduction of 6.6 and 6.7 (compared 

to controls) against S. aureus and P. aeruginosa, respectively.  This data suggests that the NO 

releasing inserts containing formulation (a) are extremely effective at killing both gram-positive 

and gram-negative strains. 

 

5.3.6 Sheep Study #1 

The purpose of Sheep Study #1 was to evaluate the antimicrobial/anti-biofilm performance of the 

NO releasing formulation (a) insert caps versus normal hemodialysis catheter caps by replacing 

each cap every 2-3 d over a 14 d long period.  Detailed procedures for Sheep Study #1 can be 

found in Sections 5.2.9 and 5.2.10.  Briefly, two sheep were studied during Sheep Study #1 with 

one sheep designated as a control (no NO release inserts) and the other sheep experimental (NO 

releasing inserts).  Each sheep had two surgically implanted dual-lumen TDC catheters for a total 

of four catheter hubs each.  The NO releasing formulation (a) inserts were glued to catheter caps 

for convenience (Fig. 5.1a).  During the 14 d study the sheep were housed in a barn at the U of M 

farm.  Control and experimental caps were changed every 2-3 d and blood was drawn through each 

lumen to simulate the average time between dialysis treatments and blood exposure.  Bacteria 

cultures from the liquid in each hub region were taken prior to replacing the caps.  After 14 d, the 

study was terminated and each hemodialysis catheter was evaluated for the amount of 

bacteria/biofilm present on the inside wall of four separate regions of the catheter (Fig. 5.1b). 

The results of the bacteria counts taken from the liquid within the hub region every 2-3 days are 

summarized in Figure 5.7.  On particular days, some unforeseen circumstances prevented 

obtaining a proper liquid sample from each hub region (Day 7, and 11) (Fig. 5.7).  However, the 
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data remains consistent where the control sheep displayed significant bacteria counts after Day 4 

and the experimental sheep (NO releasing insert caps) showed no bacteria on any day, therefore 

reaching the limit of detection (220 CFU/mL) after each day of testing (Fig. 5.7).  A log reduction 

of 3.88 was already observed by Day 4 and increased to 5.42 by Day 14 for experimental sheep 

versus control (Fig 5.7).  This data suggests that the NO releasing formulation (a) insert caps have 

a significant antimicrobial effect against bacteria present in the liquid of the hub region under real 

world conditions.  

 
Figure 5.7. Sheep Study #1 bacteria counts from the hub solution on days 2, 4, 7, 9, 11, and 14 

using normal catheter caps (Control) and NO releasing insert caps (Experimental).  Dashed line is 

the limit of detection (200 CFU/mL).  Log reduction values are given for Experimental vs. Control.  

The number of samples (n = X) is specified for each day.  Data with an error bar represents the 

mean ± SD. 

 

Upon completion of the 14 d study, four regions of each catheter were tested for bacteria/biofilm 

adhered to the inner lumen walls (Fig. 5.1b).  This test was conducted by first sterilizing the outside 

of the catheter, cutting out the specific sections, and using a homogenizer to remove all of the 
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adhered bacteria/biofilm from the inner lumen wall for bacteria enumeration.  The results of this 

study are summarized in Figure 5.8.  For the control catheters, all four regions of the catheters had 

a significant amount of bacteria/biofilm present.  For catheters with the experimental NO releasing 

insert caps, no bacteria were detected in any of the four regions (Fig. 5.8).  Interestingly, 

bacteria/biofilm prevention was observed in all regions of the catheter and not just the hub region 

(where the NO is locally released).  This data quantitatively suggests that bacteria can migrate to 

the proximal regions of the catheter from the hub region and that the NO releasing formulation (a) 

insert caps have significant antibacterial/anti-biofilm potential throughout all regions of a catheter 

during a real world situation. 

 
Figure 5.8. Sheep Study #1 bacteria/biofilm adhered to the inner lumen wall of the hub region, 

tunneled region, distal intravascular region, and proximal tip of catheters using normal catheter 

caps (Control) and NO releasing insert caps (Experimental).  Dashed line is the limit of detection 

(400 CFU/segment).  Log reduction values are given for Experimental vs. Control.  The number 

of samples (n = X) are specified for each section of catheter.  Data with an error bar represents the 

mean ± SD. 
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Fluorescent microscopic images were taken of the inner lumen walls of each region of the catheters 

using Live/Dead dye stain upon termination of the study (Fig. 5.9).  Experimental catheters (NO 

releasing insert caps) displayed minimal to no bacteria adhered to the inner lumen walls in all 

regions (Fig. 5.9).  The control catheters displayed significant bacteria/biofilm adhesion in all four 

regions (Fig. 5.9).  This data qualitatively suggests that the NO releasing formulation (a) insert cap 

prevents bacteria/biofilm formation in each catheter region during a real world study. 

 
Figure 5.9. Sheep Study #1 fluorescent microscopic images of bacteria/biofilm adhered to the 

inner lumen wall of the (1) hub region, (2) tunneled region, (3) distal intravascular region, and (4) 

proximal tip of catheters using normal catheter caps (Control) and NO releasing insert caps 

(Experimental).  Live/Dead dye stain was used where green = alive cells and red = dead cells. 

 

5.3.7 Sheep Study #2 

The purpose of Sheep Study #2 was to compare the antimicrobial/anti-biofilm performance the 

NO releasing formulation (a) insert cap versus a commercially available antimicrobial cap that 

utilizes chlorhexidine as the antimicrobial agent.  For both type of inserts, each cap was replaced 

every 2-3 d over a 14 d long period.  Detailed procedures for Sheep Study #2 can be found in 

sections 5.2.9 and 5.2.11.  Briefly, two sheep were studied and for one sheep the dual-lumen 

catheter was surgically implanted in the right jugular vein and it was designated for use with the 
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chlorhexidine caps, while the dual-lumen catheter implanted in the left jugular vein was designated 

for the NO release insert caps.  For the second sheep, the cap designations were reversed to the 

opposite jugular veins.  Both sheep were housed in a barn during the 14 d study. The same 

procedures were performed in Sheep Study #1 as were performed in Sheep Study #2.  

Chlorhexidine and experimental NO release caps were changed every 2-3 d and blood was drawn 

through each lumen to simulate the average time between dialysis treatments and blood exposure.  

Bacteria cultures were taken from the liquid in each hub region prior to replacing the caps.  After 

the study was terminated on Day 14, each hemodialysis catheter was evaluated for the amount of 

bacteria/biofilm present in four different regions of the catheter (Fig. 5.1b). 

The bacteria counts taken from the liquid of the hub region every 2-3 days yielded no bacteria 

detected on any day for both chlorhexidine and experimental catheters.  This data suggests that 

chlorhexidine caps display significant antimicrobial effects against bacteria present in the liquid 

phase of the hub region.  This data also confirms the results obtained in Sheep Study #1 for the 

NO releasing formulation (a) insert cap because the same results (no bacteria detected on any day) 

were obtained in Sheep Study #2. 

After the 14 d study was completed, four regions of each catheter were tested for bacteria/biofilm 

adhered to the inner lumen walls (Fig. 5.1b).  The outside of each catheter was sterilized, then the 

specific sections of the catheter were cut out and bacteria/biofilm adhered to the inner lumen walls 

were removed using a homogenizer for bacteria enumeration.  The results of this study are 

summarized in Figure 5.10.  For the experimental catheters, minimal bacteria were detected in the 

hub and tunneled regions and no bacteria were detected in the distal intravascular region and 

proximal tip (Fig. 5.10).  For the chlorhexidine catheters, bacteria/biofilm was detected in all four 

regions (Fig. 5.10).  The tunneled region of the catheter had the largest log reduction of bacteria 
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(3.82) for the experimental versus chlorhexidine catheters (Fig. 5.10).  Overall, this data suggests 

that the NO releasing formulation (a) insert caps are much more capable at preventing 

bacteria/biofilm formation in all four regions of a hemodialysis catheter compared to commercially 

available chlorhexidine caps. 

 
Figure 5.10. Sheep Study #2 bacteria/biofilm adhered to the inner lumen wall of the hub region, 

tunneled region, distal intravascular region, and proximal tip of catheters using normal catheter 

caps (Control) and NO releasing insert caps (Experimental).  Dashed line is the limit of detection 

(400 CFU/segment).  Log reduction values are given for Experimental vs. Control.  The number 

of samples (n = X) are specified for each section of catheter.  Data with an error bar represents the 

mean ± SD. 

 

Fluorescent microscopic images were taken of the inner lumen walls of each region of the catheters 

using Live/Dead dye stain after study termination (Fig. 5.11).  The chlorhexidine catheters 

displayed significant bacteria/biofilm adhered to the inner lumen wall of the tunneled region, 

which corresponds to the elevated bacteria/biofilm counts obtained from the tunneled region (Fig. 

5.10, Fig. 5.11).  The experimental catheters (NO releasing insert caps) displayed minimal to no 

bacteria adhered to the inner lumen walls of all four regions (Fig. 5.11).  This data indicates that 
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the NO releasing formulation (a) insert cap prevents more bacteria/biofilm formation in each 

catheter region compared to the commercially available chlorhexidine cap. 

 
Figure 5.11. Sheep Study #2 fluorescent microscopic images of bacteria/biofilm adhered to the 

inner lumen wall of the (1) hub region, (2) tunneled region, (3) distal intravascular region, and (4) 

proximal tip of catheters using chlorhexidine caps (Chlorhexidine) and NO releasing insert caps 

(Experimental).  Live/Dead dye stain was used where green = alive cells and red = dead cells. 

 

5.4 Conclusion 

The real-time NO releasing characteristics of four different NO releasing insert formulations were 

determined under real world conditions (24°C, dark, 72 h, submerged in saline).  Formulation (a) 

demonstrated high initial NO flux levels compared to the other formulations.  Formulation (b) 

demonstrated similar characteristics to formulation (a), however the NO fluxes were significantly 

lower.  Formulation (c) contained PEG to smooth/level out the NO flux over the 72 h period.  

Formulation (d) contained no ZnO and displayed minimal NO release, therefore further proving 

that ZnO is needed in the formulation to display significant NO release capability.  Testing the 

antimicrobial/anti-biofilm efficacy of formulations (a-c) using an simulated catheter hub assay 

against S. aureus revealed that formulation (a) was the best at preventing biofilm formation 

because of the large initial burst of NO that formulation (a) provides.  Testing the %recovery of 
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GSNO from inside of the NO releasing formulation (a) inserts after different sterilization 

techniques revealed that minimal to no GSNO decomposition occurs during the H2O2 sterilization 

process.  Thus, due to minimal GSNO decomposition and faster sample turn-around time, H2O2 

sterilization was chosen as the main sterilization procedure.  A preliminary shelf-life stability study 

of H2O2 sterilized NO releasing formulation (a) inserts showed minimal degradation of GSNO 

(4.3%) after 56 d of being stored at 24°C, in the dark, and in the presence of desiccant.  It was also 

discovered that H2O2 sterilized NO releasing formulation (a) inserts are highly effective at killing 

both gram-negative (P. aeruginosa) and gram-positive (S. aureus) strains (6.7 and 6.6 log 

reduction, respectively) from the liquid present in actual catheter hubs under real world conditions 

(24°C, dark, 72 h).  Sheep Study #1 revealed that the NO releasing formulation (a) insert caps are 

highly effective at killing/preventing bacteria and biofilm formation at all regions of a 

hemodialysis catheter compared to the control that had a normal catheter cap.  Sheep Study #2 

confirmed the results of Sheep Study #1 for the NO releasing formulation (a) insert cap.  Sheep 

Study #2 also revealed that the NO releasing formulation (a) insert cap prevents bacteria growth 

and biofilm formation better than a commercially available antimicrobial cap that utilizes 

chlorhexidine.  Overall, this research has clearly demonstrated that the NO releasing formulation 

(a) insert cap demonstrates significant antimicrobial/anti-biofilm effects and should be useful in 

significantly decreasing the risk of infection for dialysis patients that have TDCs in place. 

 

 

 



 120 

5.5 References 

(1) Lok, C. E.; Foley, R. Clinical Journal of the American Society of Nephrology 2013, 8 (7), 1213-

1219. 

(2) Rupp, M. E.; Karnatak, R. Infectious Disease Clinics of North America 2018, 32 (4), 765-787. 

(3) Buetti, N.; Timsit, J. F. Semin. Respir. Crit. Care. Med. 2019, 40 (4), 508-523. 

(4) Justo, J. A.; Bookstaver, P. B. Infect. Drug Resist. 2014, 7, 343-363. 

(5) Banin, E.; Brady, K. M.; Greenberg, E. P. Applied and Environmental Microbiology 2006, 72 

(3), 2064-2069. 

(6) Raad, I. I.; Fang, X.; Keutgen, X. M.; Jiang, Y.; Sherertz, R.; Hachem, R. Curr. Opin. Infect. 

Dis. 2008, 21 (4), 385-392. 

(7) Brunelli, S. M.; Van Wyck, D. B.; Njord, L.; Ziebol, R. J.; Lynch, L. E.; Killion, D. P. Journal 

of the American Society of Nephrology 2018, 29 (4), 1336-1343. 

(8) Brunelli, S. M.; Njord, L.; Hunt, A. E.; Sibbel, S. P. Int J Nephrol Renovasc Dis 2014, 7, 131-

139. 

(9) Sweet, M. A.; Cumpston, A.; Briggs, F.; Craig, M.; Hamadani, M. American Journal of 

Infection Control 2012, 40 (10), 931-934. 

(10) Hymes, J. L.; Mooney, A.; Van Zandt, C.; Lynch, L.; Ziebol, R.; Killion, D. American Journal 

of Kidney Diseases 2017, 69 (2), 220-227. 

(11) Bonez, P. C.; dos Santos Alves, C. F.; Dalmolin, T. V.; Agertt, V. A.; Mizdal, C. R.; Flores, 

V. d. C.; Marques, J. B.; Santos, R. C. V.; Anraku de Campos, M. M. American Journal of Infection 

Control 2013, 41 (12), e119-e122. 

(12) Hetrick, E. M.; Shin, J. H.; Stasko, N. A.; Johnson, C. B.; Wespe, D. A.; Holmuhamedov, E.; 

Schoenfisch, M. H. ACS Nano 2008, 2 (2), 235-246. 

(13) Wo, Y.; Brisbois, E. J.; Bartlett, R. H.; Meyerhoff, M. E. Biomater. Sci. 2016, 4 (8), 1161-

1183. 

(14) Ghaffari, A.; Miller, C. C.; McMullin, B.; Ghahary, A. Nitric Oxide 2006, 14 (1), 21-29. 

(15) Loscalzo, J.; Welch, G. Prog. Cardiovasc. Dis. 1995, 38 (2), 87-104. 

(16) Fang, F. C. J. Clin. Invest. 1997, 99 (12), 2818-2825. 

(17) Barraud, N.; Hassett, D. J.; Hwang, S.-H.; Rice, S. A.; Kjelleberg, S.; Webb, J. S. J Bacteriol 

2006, 188 (21), 7344-7353. 



 121 

(18) Barraud, N.; Storey, M. V.; Moore, Z. P.; Webb, J. S.; Rice, S. A.; Kjelleberg, S. Microb 

Biotechnol 2009, 2 (3), 370-378. 

(19) Xu, L.-C.; Wo, Y.; Meyerhoff, M. E.; Siedlecki, C. A. Acta Biomater. 2017, 51, 53-65. 

(20) Wo, Y.; Li, Z.; Brisbois, E. J.; Colletta, A.; Wu, J.; Major, T. C.; Xi, C.; Bartlett, R. H.; 

Matzger, A. J.; Meyerhoff, M. E. ACS Appl. Mater. Interfaces 2015, 7 (40), 22218-22227. 

(21) Broniowska, K. A.; Diers, A. R.; Hogg, N. Biochim. Biophys. Acta 2013, 1830 (5), 3173-

3181. 

(22) Lautner, G.; Stringer, B.; Brisbois, E. J.; Meyerhoff, M. E.; Schwendeman, S. P. Nitric Oxide 

2019, 86, 31-37. 

(23) Doverspike, J. C.; Zhou, Y.; Wu, J.; Tan, X.; Xi, C.; Meyerhoff, M. E. Nitric Oxide 2019, 90, 

1-9. 

(24) Ren, H.; Bull, J. L.; Meyerhoff, M. E. ACS Biomater. Sci. Eng. 2016, 2 (9), 1483-1492. 

(25) Shishido, S. M.; Oliveira, M. G. Photochem. Photobiol. 2000, 71 (3), 273-280. 

(26) Rabinowitch, E.; Wood, W. C. Trans. Faraday Soc. 1936, 32, 1381-1387. 

(27) Dicks, A. P.; Swift, H. R.; Williams, D. L. H.; Butler, A. R.; Al-Sa'doni, H. H.; Cox, B. G. J. 

Chem. Soc., Perkin Trans. 2 1996,  (4), 481-487. 

(28) Singh, S. P.; Wishnok, J. S.; Keshive, M.; Deen, W. M.; Tannenbaum, S. R. Proc. Natl. Acad. 

Sci. 1996, 93 (25), 14428-14433. 

(29) Williams, D. L. H. Acc. Chem. Res. 1999, 32 (10), 869-876. 

(30) Wood, P. D.; Mutus, B.; Redmond, R. W. Photochem. Photobiol. 1996, 64 (3), 518-524. 

(31) de Souza, G. F. P.; Denadai, J. P.; Picheth, G. F.; de Oliveira, M. G. Nitric Oxide 2019, 84, 

30-37. 

 



 122 

Chapter 6 Conclusions and Future Directions  

 

6.1 Conclusions 

This dissertation research has focused on examining the characteristics and antimicrobial 

properties of newly devised NO releasing creams and devices.  Furthermore, a novel method for 

enhancing NO release from GSNO using ZnO nanoparticles was introduced and investigated.  

Overall, each project had the goal of preventing/treating infections in the biomedical field.  

Therefore, practicality of each application led to the heavy utilization of a natural/endogenous NO 

donor, GSNO. 

In Chapter 2, enhanced, long-term stability of GSNO when stored in Vaseline was observed.  The 

enhanced stability was attributed to the dry storage conditions as well as the hydrophobicity, and 

high viscosity of Vaseline.  Four secondary creams were evaluated for their ability to proliferate 

NO from GSNO stored in Vaseline.  A commercially available ZnO-containing cream yielded the 

most NO released during the initial 6 h test period at both 24°C and 34°C.  The NO release kinetics 

using the commercial ZnO-containing cream to initiate NO release from GSNO in Vaseline 

displayed first-order NO release kinetics.  The observed rate constants for NO releasing 

formulations with 3, 6, and 9 wt% GSNO revealed that the rate of NO release was independent of 

GSNO concentration.  Lastly, measuring NO release from the GSNO-Vaseline-ZnO cream in the 

presence of ambient light versus dark, revealed no significant impact on the rate of NO release. 

Chapter 3 evaluated the antimicrobial effects of the NO releasing two-part creams introduced in 

Chapter 2.  The 3, 6, and 9 wt% GSNO in Vaseline/ZnO cream were tested against S. aureus, S. 
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epidermidis, and P. aeruginosa using an indirect application assay, where there was a thin silicone 

membrane between the NO releasing cream and the bacteria grown on LB agar plates.  Overall, 

the more NO produced yielded a greater killing effect for each bacteria strain.  The various NO 

releasing creams were also tested against the same bacteria using a direct application assay on pig 

skin.  The killing effect on both types of surface matrices (pig skin and agar gels) was similar.  

Compared to a commercially available antibiotic-containing cream (Neosporin), each NO 

releasing cream formulation was able to exceed or match the killing effect achieved by Neosporin 

for all three bacteria strains examined.  The NO releasing cream was combined with an antibiotic-

containing cream and tested using direct application on pig skin of pre-grown S. aureus, S. 

epidermidis, and P. aeruginosa biofilms.  The NO + antibiotic cream formulation proved most 

effective against the P. aeruginosa biofilm because the antibiotics present are known to be highly 

potent against gram-negative bacteria strains.  The relative pH of the NO releasing formulation 

was determined to be quite acidic.  Therefore, NaHCO3 was added to create a more neutral pH NO 

releasing cream to prevent any negative consequences (e.g., burning sensation on skin, etc.) of the 

acidic pH of the original formulation.  First-order NO release kinetics were observed for the new 

neutral pH NO releasing cream compared to the kinetics of the acidic pH NO releasing cream 

evaluated in Chapter 2.  The results indicated that the addition of NaHCO3 has no major influence 

on the observed NO release kinetics.  The neutral pH NO releasing cream was tested using the 

direct application assay on pig skin against S. aureus, S. epidermidis, and P. aeruginosa.  This test 

revealed that the relative acidity of the initial NO releasing creams tested had no major contribution 

to the killing effects observed. 

In Chapter 4, it was determined that Zn2+ ion, potentially formed from slight dissolution of ZnO or 

present as impurities in ZnO preparations, have little or no effect on enhancing NO release from 
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GSNO.  A component study was performed that tested all the compounds present in the 

commercial ZnO cream for their potential to enhance NO release from GSNO.  ZnO nanoparticles 

were found to be the primary component responsible for enhancing NO release from GSNO.  NO 

release kinetics from GSNO in the presence of different sized ZnO nanoparticles revealed zero-

order NO release kinetics during the first 10 h of reaction in the dark, at 24°C, and under neutral 

pH conditions.  Also, it was discovered that the NO release rate does increase with decreasing ZnO 

nanoparticle size, but not in a directly proportional manner.  The NO release profiles observed 

using Tris-HCl buffer versus Tris-H3PO4 buffer in the presence of GSNO and ZnO nanoparticles 

revealed that GSNO needs uninhibited access to the surface of ZnO to enhance NO release. Indeed, 

it appears that some equilibrium form of phosphate ions may interact with the surface and reduce 

access of the GSNO species from reaching the surface to react with the ZnO.  Lastly, XPS was 

used to analyze the surface of ZnO nanoparticles after exposure to GSNO.  This experiment 

detected no trace of thiol attachment or Zn-S bond formation. 

Chapter 6 introduced a NO releasing insert device that disinfects the hub region of tunnel dialysis 

catheters (TDCs).  The real-time NO release characteristics of four different NO releasing 

formulations (a-d) were evaluated using real world conditions for a TDC (24°C, dark, 72 h, and 

submerged in saline).  These tests revealed that ZnO must be present to enhance NO release from 

GSNO.  Testing the antimicrobial capabilities of formulations (a-c) using a simulated hub assay 

revealed that each formulation was capable of killing all of the S. aureus bacteria present in the 

liquid broth of a simulated hub after 72 h of exposure at 24°C.  S. aureus bacteria/biofilm adhered 

to the inner lumen wall of the simulated hub were evaluated using a Live/Dead dye stain and taking 

fluorescent microscopic images upon completion of the 72 h study.  The fluorescent microscopic 

images revealed that the characteristic of a large burst of NO during the first 24 h of incubation 
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displayed by formulation (a) was necessary to kill all bacteria, such that none adhered to the inner 

lumen wall as biofilm.  Two sterilization techniques were evaluated to see which method 

decomposed the most GSNO during the respective procedures.  It was determined that sterilization 

via H2O2 gas resulted in minimal GSNO decomposition.  A short term shelf-life stability study 

was completed for the NO releasing formulation (a) inserts after being H2O2 sterilized and stored 

in the dark at 24°C, and in the presence of desiccant.  After 56 d, the GSNO present in the NO 

releasing inserts only degraded by 4.3% on average.  The H2O2 sterilized NO releasing formulation 

(a) inserts were subjected to another antimicrobial test using real catheter hubs inoculated with a 

solution containing either S. aureus (gram-positive) or P. aeruginosa (gram-negative) bacteria.  

The test resulted in a 6.6 and 6.7 log unit reduction from the liquid present in actual catheter hubs 

under real world conditions (24°C, dark, 72 h) for S. aureus and P. aeruginosa, respectively.  The 

14 d long Sheep Study #1 tests revealed that the NO releasing formulation (a) insert caps are 

effective at killing a preventing bacteria and biofilm growth in all regions of a TDC versus the 

control of a normal catheter cap.  Sheep Study #2 tested the NO releasing formulation (a) insert 

caps against commercially available antimicrobial caps that utilize chlorhexidine as the 

antimicrobial agent.  Both NO release caps and commercial caps kill all bacteria present in the 

liquid phase within the hub region during the 14 d study.  However, the NO releasing insert caps 

were also able to prevent biofilm growth on the inner lumen of the entire catheter to a much greater 

extent than the commercial chlorhexidine coated cap. 
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6.2 Future Directions 

6.2.1 Goals for future directions 

To continue the research reported in this thesis, there are a few important goals.  The first goal is 

to assess if the NO releasing cream is safe/non-toxic to human skin.  Hence, the safety of the NO 

releasing cream needs to be evaluated using a living animal model.  The second goal is to 

understand the fundamentals of the mechanism of the reaction between GSNO and ZnO 

nanoparticles.  That is exactly how does the GSNO interact with the ZnO surface that leads to 

acceleration of the NO release from this S-nitrosothiol species.  The third goal is to ensure that 

none of the components present inside of the NO releasing insert, leach out of the insert while 

being used inside of a catheter hub.  Leaching studies will evaluate the relative safety of using the 

NO releasing inserts in humans.  Detailed suggestions for studies to examine these areas are 

described below. 

6.2.2 Cytotoxicity study of NO releasing two-part cream via live pig models 

It is necessary to understand whether the NO produced locally by the GSNO-based NO release 

creams developed in this thesis work exhibits any toxicity toward live skin cells and whether the 

creams have other biomedical applications (beyond treating dermal infections, etc.).  Therefore, a 

project is now being planned to collaborate with Dr. Raimon Duran-Struuck, Assistant Professor 

and Director of Laboratory Animal Medicine Residency Program at the University of 

Pennsylvania.  The overall goal of this project is to prevent/reduce the effects of graft-versus-host 

disease (GVHD) after hematopoietic cell transplantations (HCT).  GVHD is a common problem 

caused by HTC, leaving patients with high risk of infection and potential long term side effects.1, 

2  GVHD targets organs such as the liver, gastrointestinal tract, and skin, with the most common 

target being the skin.3  Acute GVHD is an immunologically mediated process where donor T cells 
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attack host tissue, commonly causing eczema, rosacea, and psoriasis.4, 5  Past preventions strategies 

include blocking inflammatory cascades that activate donor T cells, however these therapies are 

not fully effective because the immunosuppression drugs also non-selectively inhibit host 

regulatory T cells (Tregs) that are important for controlling GVHD.6 

It has been hypothesized that there are potential interactions between the skin microbiome and the 

immune system that likely influences the development of skin-GVHD post HCT.  Chronic 

inflammatory and autoimmune disorders such as atopic dermatitis (AD), rosacea and psoriasis 

have been linked to commensal microbiota in skin.5, 7, 8  Skin bacteria can act as endogenous 

adjuvants, and can shape T cell responses through their capacity to modulate the local milieu (i.e. 

IL-1 production) and by promoting the overgrowth of S. aureus, thereby inducing flares in AD.8, 9  

Recent studies have shown that ultraviolet (UV) therapy can modify the skin microflora to improve 

sclerotic skin conditions.10  The mechanism of the antimicrobial effects from UV irradiation is not 

clear, however the skin contains large stores of nitric oxide (NO) that release upon UV irradiation 

(likely, in part, from endogenous RSNO species).11  NO is a potent antimicrobial, anti-biofilm, and 

antifungal agent that is naturally produced endogenously by the enzyme nitric oxide synthase 

(NOS) and is responsible for several regulatory body functions.12-18  Therefore, a hypothesis is that 

applying the NO releasing two-part cream developed in Chapters 2 and 3 may decrease the 

bacterial burden fueling GVHD. 

Three pigs will receive an allogenic bone marrow transplant (BMT) for the induction of GVHD.  

One week prior to transplant, the NO releasing cream will be applied near the surgical area.  After 

transplant, the NO releasing cream will be applied daily for one month.  Three additional pigs will 

receive daily treatments of the NO releasing cream without receiving a BMT (GVHD-free control) 

for one month as well.  Blood immunophenotype, microbiome, and skin biopsy samples will be 
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analyzed weekly.  Histology samples will be taken weekly and will be assessed for any cytotoxic 

effects the NO releasing creams (seen on control/GVHD-free pigs). 

 

6.2.3 Determination of mechanism between GSNO and ZnO nanoparticles 

The experiments performed in Chapter 4 established that ZnO nanoparticles were the responsible 

component present in the ZnO commercial cream for the enhanced NO release observed from 

GSNO incorporated within Vaseline.  Further studies suggested that GSNO needs uninhibited 

access to the surface of the ZnO particles and that the ZnO surface is not modified with thiol 

moieties post reaction with GSNO.  The mechanism by which ZnO reacts with GSNO to enhance 

NO release is unknown.  However, a hypothesized mechanism involves oxygen vacancies present 

on the ZnO nanoparticle surface (Fig. 6.1). 

 
Figure 6.1. Proposed scheme for the mechanism by which ZnO nanoparticles react with GSNO to 

enhance NO release.  Blue dots represent electrons trapped in oxygen vacancies on the surface of 

ZnO.  The red positive sign represents a net positive area that remains in the oxygen vacancy after 

the trapped electron facilitates a reduction reaction with GSNO. 

 

The rationale behind this hypothesized mechanism is as follows.  ZnO nanoparticles can contain 

defects known as singly ionized oxygen vacancies (i.e. oxygen vacancy with one electron).19, 20  

Prasanna et al. demonstrated that a superoxide radical can form by atmospheric oxygen reacting 
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with an electron from the surface of ZnO while in the dark (Fig. 6.2).19  Therefore, the hypothesis 

that GSNO could react with an electron from the surface of ZnO while in the dark is possible.  

After the electron is removed from the ZnO surface, a hole is generated with a net positive charge.  

An oxidation reaction could then occur between the GS- and the hole, yielding GS radical and 

subsequently glutathione disulfide (GSSG). 

 
Figure 6.2. Image depicting the production of superoxide radicals via atmospheric oxygen reacting 

with an electron from the surface of ZnO (oxygen vacancy).19 

 

One method for detecting oxygen vacancies on the surface of ZnO involves using X-ray 

photoelectron spectroscopy (XPS).  This technique is described in detail by Zhang et al.20  Briefly, 

analyzing the O 1s spectra of ZnO nanoparticles normally yields a signal at ~530.1 eV relating to 

oxygen present in the ZnO crystal lattice (OL) and a signal at ~532.1 eV relating to surface 

hydroxyl groups bound to oxygen vacancies/defects (OH).19, 20  Then, the atomic ratio of OL to OH 

can be calculated and related to the concentration of oxygen vacancies present, where a higher 

atomic ratio corresponds to a higher concentration of oxygen vacancies.19, 20  Thus, analyzing the 

different sized ZnO nanoparticles used in Chapter 4 (30, 50, and 200 nm in diameter) via XPS and 

calculating their corresponding atomic ratios between OL and OH may determine if the relative 
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concentration of oxygen vacancies relates to the rate of NO release each size of ZnO nanoparticle 

causes. 

Another method for detecting oxygen vacancies on the surface of ZnO involves using electron 

paramagnetic resonance (EPR).  This technique is described in detailed by the same authors Zhang 

et al.20  Briefly, EPR has been used to observe the electron spin state and the structure on the 

surface of ZnO nanoparticles.20  Specifically, ZnO nanoparticles naturally produce an EPR signal 

at a g-factor of ~1.9568 (g-factor is a proportionality factor used to describe the electron spin 

state).20  However, an EPR signal at a g-factor of ~2.0035 corresponds to an unpaired electron 

trapped in an oxygen vacancy site.20-23  A stronger signal at g-factor 2.0035 will correspond to a 

higher concentration of oxygen vacancies present on the surface of ZnO.20  Analyzing the different 

sized ZnO nanoparticles used in Chapter 4 (30, 50, and 200 nm diameter) could indicate any 

difference in concentration of oxygen vacancies present and any correlations to the rate of NO 

release from GSNO cause by the different sized ZnO nanoparticles, may be determined. 

Another experiment that could help prove or disprove the mechanism proposed in Figure 6.1 is 

determination of the products of the reaction between GSNO and ZnO nanoparticles.  Currently, 

the proposed product is glutathione disulfide (GSSG).  Therefore, a long term experiment could 

be performed where the consumptions of GSNO and the formation of GSSG are monitored via 

nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography-

mass spectrometry (HPLC-MS).  Each reaction will have a known amount of GSNO and ZnO 

nanoparticles in a reaction vessel and be performed at room temperature (24°C), in the dark, under 

constant stirring via a stir bar and bubbling with N2 gas.  One reaction will be performed in the 

presence of D2O for NMR experiments and the other reaction performed in purified deionized 

water for HPLC-MS experiments.  Each reaction will be monitored for GSNO consumption and 
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GSSG formation daily via NMR and HPLC-MS until the full reaction is completed (no more 

detection of GSNO). 

 

6.2.4 Leaching study for NO releasing insert 

There is probable cause to determine if any component from inside of the NO releasing insert 

devices (GSNO/ZnO) described in Chapter 5 are able to leach out from the silicone tubing.  After 

construction of a NO releasing insert is complete (GSNO/ZnO dry powder inside of a silicone 

tube, securely sealed at both ends using a silicone adhesive glue) the components inside of the 

insert should not be able to leach out of the interior of the insert when soaked in solution.  A 

leaching study can be performed to determine if this hypothesis is true. 

Preliminary data was collected for the detection of zinc in the leaching solutions using inductively 

coupled plasma mass spectrometry (ICP-MS).  Two scenarios pictured in Figure 6.3b, were tested.  

The NO releasing formulation (a) inserts/caps were prepared as described in Chapter 5, Sections 

5.2.3 and 5.2.9.  The leaching study was performed by soaking the insert samples in a defined 

volume (10 mL) of purified deionized water.  Purified deionized water was used because the ICP-

MS could be damaged by the high salt concentration in saline solution.  Control insert samples 

were only the silicone tubing and the glue adhesive with no GSNO or ZnO present.  After 24 h of 

soaking, the insert samples were removed, thoroughly washed, dried using a Kimwipe, and 

submerged again in fresh purified deionized water (1st 24 h samples in Fig. 6.3a).  This process 

was repeated the following two days.  After collection of the solutions, the concentration of zinc 

content in each was measured using ICP-MS.  The results of this preliminary leaching study are 

found in Figure 6.3a.  
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Figure 6.3. Preliminary leaching study from the NO releasing inserts using ICP-MS. (a) 
Concentration of Zn (ppb) detected for Control (only silicone tubing and glue, no GSNO and no 

ZnO present), NO insert under the condition defined as “entire insert soaked”, and NO insert under 

the condition defined as “partial insert soaked” after 24 h soaking increments in purified deionized 

water for a total of 72 h.  Data represents the mean ± SD (n = 3). (b) Conditions defined for the 

leaching test, defined as entire insert soaked or partial insert soaked. 

 

The concentration of zinc detected for the two different soaking conditions of the NO releasing 

inserts and NO releasing insert caps after the first 24 h are extremely different (1394.3 ppb vs. 76.8 

ppb, respectively) (Fig. 6.3a).  The difference between the two soaking methods was that the end 

of the silicone tube that was sealed second (right after filling the silicone tube with the GSNO/ZnO 

powder), was directly exposed to solution when the entire NO releasing insert was soaked.  In 

contrast, the other scenario was where this end of the silicone tubing was inside of the cap and not 

exposed to solution.  Thus, a conclusion can be made that ZnO is able to creep out of the end of 

the silicone tubing that is sealed on the second end because that end of the tubing is directly 

exposed to the ZnO before sealing, whereas the other end of the silicone tubing is pre-sealed and 

dried before any exposure to ZnO (creating a more solid seal).  The large error bar for the NO 

releasing insert that was entirely soaked, indirectly demonstrates this phenomenon because the 

amount of ZnO that could be close to the edge of the second sealed end could vary immensely 
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because the inserts are made by hand (Fig 6.3a).  Overall, this data definitely proves that zinc is 

not leaching out from the walls of the silicone tubing of the NO releasing insert. 

Further studies need to be completed to determine if GSNO or related compounds (GSH, GSSG) 

leach out from the silicone tubing when soaked in solution.  For the detection/quantification of 

GSNO the same leaching study can be performed as described above and the liquid samples can 

be analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). 
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