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ABSTRACT 

 

The Intergovernmental Panel on Climate Change states that in order to reduce the most 

extreme consequences of climate change we must reduce global greenhouse gas (GHG) emissions 

by 41-72% by 2050 from 2010 levels.1 For this to happen, all sectors must be included in the effort 

to decarbonize. Two major sources of anthropogenic emissions are the electricity and industrial 

sectors, combined accounting for 49% of 2018 U.S. anthropogenic GHG emission.2 This 

dissertation addresses challenges with decarbonization in the electricity sector and outlines 

potential decarbonization pathways in the U.S. steel sector. The steel industry accounts for 25% 

of industrial sector CO2 emissions globaly.3  

This dissertation addresses two electricity sector challenges, which stem from the inherent 

variability and uncertainty of wind and solar generation, which we specify as variable renewable 

energy (VRE). The first is the need for sustainable frequency regulation resources, which increase 

with the addition of VRE. Energy storage, specifically lithium ion batteries, are an attractive 

option. However, their systems environmental impacts were unknown. In order to quantify 

potential environmental impacts Chapter 2 employs a life cycle assessment (LCA) framework, 

which couples cradle-to-gate and end-of-life LCA data on lithium ion batteries with a unit 

commitment and dispatch model run on a 9-bus power system with lithium ion batteries used for 

frequency regulation.  Chapter 2 finds that the sustainability of lithium ion batteries in this 

application depends on the grid mix and that the constant charging and discharging required for 

frequency regulation does not increase the upstream and end-of-life impacts beyond the use-phase. 

The second challenge with the addition of VRE this dissertation addresses is the need to 

improve day-ahead generator scheduling to prevent unplanned startups and shutdowns (i.e., 

commitment error) caused by the increased variability in net load. Chapter 3 uses a regression 



 

xiv 

 

model to quantify the relationship between net load shape, VRE generation, and commitment error 

with the goal of predicting commitment error in order to improve the day-ahead schedules and 

reduce system inefficiency. Chapter 3 finds statistically significant relationships between net load, 

ramp rate, portion VRE generation, and commitment error. Using these relationships, the 

regression models were able to explain 21-57% of the variability in commitment error. 

This dissertation also analyzes options for U.S. steel sector decarbonization. Steel use spans 

almost all sectors and its use is correlated to economic growth. However, its production is carbon 

intensive. Through examination of available and developing production technologies in 

combination with steel flow modeling Chapter 4 outlines potential pathways for U.S. to cut 

emissions allocated to its steel consumption 70% by 2050 from 2010 levels. There are a number 

of steps the U.S. steel sector could take to reduce CO2 emissions, however, Chapter 4’s results 

indicate that, given available technologies, steel stocks per capita, in turn demand, must be reduced 

in the near term to have a chance of cutting CO2 emissions 70%. 

The challenges in decarbonizing the electricity sector are focused on supply side measures, 

while this dissertation recommends demand side changes for the steel sector. This is a result of the 

stark difference in availability of low carbon technologies. Although there remain outstanding 

challenges with electricity decarbonization they are technological or market based both being 

easier to address than the demand changes required in the steel sector, which will likely require 

top down regulation and incentives to achieve.  
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CHAPTER 1 

 

Introduction 

 

 

To prevent the most extreme consequences of climate change, all processes within the 

economy will need to significantly reduce their carbon output (i.e., decarbonize).4 Based on the 

Intergovernmental Panel on Climate Change’s (IPCC) representative emissions pathways, the 

world may even need to reach negative carbon emissions, meaning carbon will need to be 

sequestered at a greater rate than it is emitted.5 Therefore, society must decarbonize in every sector. 

In 2017, carbon dioxide accounted for 82% of global greenhouse gas (GHG) emissions.6 

Electricity production and materials production are two major contributors.  

Globally, 28% of GHG emissions are from the electricity sector.2 However, technologies 

exist today that produce virtually zero carbon electricity (e.g., wind and solar) and there has been 

extensive research assessing the feasibility of a 100% renewable electricity grid.7–12 Therefore, a 

number of sectors are turning to electrification to decarbonize. However, there are still some 

outstanding technical challenges related to the transition to, and operation of, an electricity grid 

composed of variable renewable energy (VRE) sources like wind and solar.13 Challenges stem 

from a greater need for grid flexibility with the increased uncertainty and variability from VRE 

generation.14 Wind and solar generation are dependent on local weather conditions,13 resulting in 

variability and uncertainty of their output on short time scales (i.e., minute & seconds), large 

anticipated variations throughout the day (e.g., the sun does not shine at night), and seasonal 

variations throughout the year. For the electricity supply to remain reliable (i.e., meeting demand 

in real time), the grid must be flexible enough to accommodate these rapid and/or significant 

changes in electricity output from VRE. Davis et al. (2018) calls out that even a well-integrated 

grid will still need dispatchable electricity sources to remain reliable either from dispatchable 
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generators, energy storage, or demand response.15 Chapters 2 and 3 examine two challenges that 

arise with VRE dominated electricity grids. Chapter 2 addresses the need for more sustainable 

frequency regulation and Chapter 3 addressed the difficulty in scheduling dispatchable generation. 

Unlike the electricity sector, there are other polluting sectors where zero carbon technology 

options are not yet commercially available. Globally, 22% of GHG emissions are from the 

industrial sector and, of those, cement and steel are two of the largest emitting and most 

challenging to decarbonize. Chapter 4 will focus on steel production, which accounts for 25% of 

the global industrial sector CO2 emissions3 and nearly one-fifth of the CO2 emitted by the most 

challenging to decarbonize sectors.15 Steel use is central to all product sectors. It is in construction, 

transportation, and machinery, as well as smaller scale products like kitchen appliances. 

Historically its usage has been an indicator of economic growth and its demand is anticipated 

double by 2050,16 making research on its decarbonization imperative to overall economic 

decarbonization. 

 Background Chapter 2:  

Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for 

Frequency Regulation 

Reliable grid operation requires supply and demand to be equal in real time. Electricity 

systems have created a number of services (e.g., electricity reserves) that operate across a range of 

time scales (e.g., hours to seconds) to ensure this matching. With the addition of a greater 

percentage of VRE generation, including solar and wind power, these services can become strained 

as the grid is required to become more flexible.  This means that the delivery or method of financial 

compensation, or lack thereof, for these services may need to be revisited to ensure they are 

supplied in adequate quantities. One such service is frequency regulation, the focus of Chapter 2. 

Frequency regulation reserves ensure supply and demand match on the basis of seconds, the 

shortest time scale of any reserve product. Frequency regulation is the first reserve service to 

respond to an imbalance. Prior to significant shares of VRE on our power systems, this service 

was supplied in adequate quantities, with minimal intervention, by conventional power plants that 

use large scale synchronous generators (e.g., steam turbine, coal, gas and nuclear). The small 

divergences between demand and supply on the second to second basis was made up by extracting 

or adding energy to the mechanical inertia of the electricity grid’s rotating machines (i.e., it 
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synchronous generators). This extraction or addition causes the generators’ speed to change, in 

turn, changing their frequency. Therefore, the greater the capacity of rotating machines on the 

electricity grid, i.e., conventional power plants, the greater the grid’s ability to absorb the 

differences between demand and supply,13 increasing its flexibility. However, there is a limit to 

the variation in frequency each generator can handle. Errors are usually only in the range of 0.01% 

of the stable system frequency.17 In the U.S. the stable system frequency is 60 Hz. 

With the additional VRE, the capacity of frequency regulation suppliers on the grid 

decreases and the quantity required increases. In an effort to address this from a market 

perspective, PJM and other regional transmission organizations (RTOs) have developed a 

regulation market to monetize frequency regulation as an ancillary service to incentive its 

production. PJM’s market has two regulation signals; Regulation D, which requires an almost 

instantaneous response by a provider, and Regulation A, which is slower and is intended to handle 

longer fluctuations in system conditions.   

This new market design and the increased need for frequency regulation reserves has 

motivated the development of alternative methods of supplying frequency regulation reserves. 

Wind can provide synthetic inertia with specific controls by extracting energy from the rotating 

blades and photovoltaic inverters can provide synthetic inertia when curtailed if installed with 

appropriate controls.13 However, these are not currently used in the PJM regulation market.18 Other 

alternative technologies include demand response and energy storage,18 both of which are 

deployed in PJM’s regulation market. Chapter 2 models energy storage, specifically lithium ion 

batteries as a source of Regulation D frequency regulation.  

Energy storage is an attractive option for suppling frequency regulation,19–21 specifically 

lithium ion batteries given their fast response time, high energy and power densities, high cycle 

efficiency, long cycle life, scale flexibility and decreasing cost.21–24 Additionally they have already 

been widely applied for frequency regulation in PJM25 and past studies have found them as a best 

fit for frequency regulation.26 

Although energy storage is technologically capable of supplying frequency regulation, the 

environmental implications of lithium ion batteries use in this application has not been thoroughly 

analyzed. Operating a battery to provide Regulation D services requires rapid and frequent battery 

cycling, more quickly degrading the battery and reducing its lifetime. This would potentially 
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increase the upstream environmental burdens of the device and raise questions about the overall 

environmental impact of using batteries in this manner.  

 Research Aims/Questions 

  Chapter 2 aims to address this gap in the literature by quantifying the life cycle 

environmental impacts of using lithium ion batteries for frequency regulation. This is achieved by 

modeling lithium ion batteries in a test grid system (i.e., IEEE 9-bus test case) using a unit 

commitment and optimal power flow (UCED) model. The UCED determines the changes in the 

operation of the test system’s generators from the addition of batteries for frequency regulation, 

from which the use-phase environmental impacts are calculated. The degradation of the battery is 

modeled based on its use profile, from PJM’s Regulation D signal. The resulting lifetime is 

combined with the environmental impacts from battery manufacturing, material production, and 

disposal to calculate the battery’s upstream and end-of-life environmental impacts. The life cycle 

environmental impacts are the sum of the use-phase and these upstream and end-of-life impacts. 

The paper presented in Chapter 2 offers the first comprehensive life cycle assessment of lithium 

ion batteries for frequency regulation. Our use of a simple test system in this chapter allows us to 

model extremes and examine individual generator reactions to the addition of the lithium ion 

battery system. 

 

 Background Chapter 3:  

The Impact of Forecasted Net Load on Real-Time Generator Operation 

A change in infrastructure is not always required to address grid flexibility limitations. In 

certain cases, supply-side resources (i.e., generators) are technologically capable of meeting 

demand but an electricity market’s financial incentives may not be aligned to motivate it or market 

structures may prevent it. For example, without the flexible ramp product in California 

Independent System Operator (CAISO), electricity generators with the capacity to change output 

rapidly did not have an incentive to hold generation for when rapid changes in net load occurred, 

limiting the system’s ability to match supply and demand.  

Day-ahead and real-time markets are used to schedule least cost operation of dispatchable 

electricity generators to ensure that supply meets demand. The day-ahead market uses security 
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constrained unit commitment to determine which units will be on during each hour of the next day 

(commitments) and their prices and schedules, which are based on forecasted load, physical grid 

constraints, generator bid information, and ancillary service requirements.27  The real-time market 

determines the optimal output of committed generators in real time. Currently, day-ahead markets 

operate on an hourly time scale, i.e., generator on/off decisions are made hourly. However, with 

increasing penetrations of VRE, there is increasing variability and uncertainty within hours and 

across hours; simply planning for the average generation level of an hour may not result in the 

most efficient operation of generators. Over-scheduling or under-scheduling can occur, which can 

cause curtailment of VRE, unplanned imports or exports, and unplanned startups and shutdowns 

in the real-time market, reducing the overall efficiency of the market and potentially increasing 

costs and emissions.  

Dispatchable generation needs to be able to increase or decrease generation rapidly during 

hours with large net load changes to ensure that supply and demand are equal in real-time. 

However, traditional generators have a minimum number of hours for start-up and shutdown, as 

well as, a specific operating ranges, and ramp rates, inhibiting their flexibility to respond to net 

load. These constraints make scheduling generators that much more important and difficult. 

Chapter 3 focuses on improving generator scheduling to more efficiently match supply and 

demand. 

 It is hypothesized that hours with large ramp rates and higher levels of VRE generation 

cause these system inefficiencies, however, research has not been completed to determine the 

significance of these relationships. If these inefficiencies can be identified, there is the potential 

that market corrections can be designed in the day-ahead market. 

 Research Aims/Questions 

Chapter 3 investigates the impacts of both net load characteristics and VRE generation on 

real-time system inefficiencies, specifically unplanned generator startups and shutdowns. If such 

impacts can be identified, can the unplanned startups and shutdowns be predicted? A production 

cost model (PCM) of the Western Interconnection is used to model the day-ahead and real-time 

markets and a regression model is used to relate the net load characteristics and VRE generation 

to the unplanned startups and shutdowns that occurred in the real-time market of the PCM. The 

use of a PCM allows for VRE penetrations that are not yet realized in existing U.S. grid systems, 
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which provides greater insights into the system response with a grid mix that more aggressively 

challenges the system. Chapter 3 is the first analysis to quantify the statistical relationship between 

commitment error and VRE generation, and net load in an effort to develop a predictive model. 

The results have the potential to improve day-ahead generator scheduling to reduce system costs 

and improve efficiency. 

 Background Chapter 4:  

Reducing CO2 emissions from U.S. steel consumption by 70% by 2050 

The majority of global decarbonization pathways provide limited details on how to reduce 

emissions in the industrial sector and even less on steel specifically, despite its large carbon 

footprint.4,28 Steel accounts for 25% of global industrial sector CO2 emissions3  and he 

International Energy Agency predicts global steel demand to double by 2050 from 2012 levels,16 

making steel production an important industry to address in order to reduce global CO2 emissions. 

Wesseling et al. (2017) asserts that energy-intensive processing industries will need to have zero 

emissions before 2070 to meet the “well below 2C” goal.28 

Decarbonization pathways likely include limited information on the steel industry because 

there are few technological options for reducing GHG emissions from production. The bulk of 

GHG emissions in the production of steel products occurs in the conversion of iron ore to steel 

(primary production).16 Currently, this is almost exclusively done in a blast furnace (BF). The 

primary GHG from this process is CO2. Therefore, BF emissions must be significantly reduced or 

the process replaced in order to make any significant strides in reducing steel production emissions. 

However, given the financial advantage of reducing energy consumption, steel producers have 

already identified most of the efficiency improvements that can be made to the BF processes. Some 

alternative technologies are operating at commercial scale (e.g., natural gas direct reduction). 

However, these technologies do not provide the drastic emissions reductions required to meet the 

IPCC goal.  Steel electrolysis and hydrogen direct reduction, operated with zero carbon electricity, 

have the potential to reduce emissions compared to the BF by almost 100%, but they are believed 

to be 2029 to 3030 years away from reaching commercialization.  

The other alternative to reduce steel sector emissions is to produce less steel from iron ore. 

This means either reducing overall steel demand or using recycled steel. Steel is primarily recycled 

in the electric arc furnace (EAF), which produces one quarter of the CO2 emissions as the BF 31,32 
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and if operated with zero carbon electricity, would produce about 10% of BF emissions. However, 

there are limits to recycling including the availability and quality of the scrap. The other option is 

simply to reduce demand. Extending product lifetimes, increasing material efficiency, and 

reducing per capita stocks can all contribute to demand reduction. 

Extensive literature exists on novel steel production technologies33,34 and select studies 

model future steel flows.35–37  However, few model future steel sector emissions3,38,37 and none 

model future steel sector emissions in the United States. The CO2 emissions attributed to U.S. steel 

consumption represent as significant portion of global steel sector CO2 emissions. The U.S. was 

the world’s largest steel importer, importing 14.4 Mt39 and the second-largest steel consumer 

behind China, consuming 122 Mt in 2017,40 making the U.S. an important market to consider when 

striving to reduce steel sector emissions. 

 

 Research Aims/Questions 

Chapter 4 determines pathways for reducing CO2 emissions attributed to U.S. consumption 

70% by 2050 to remain in line with the IPCC’s recommended emissions reductions.1 This work 

seeks to fill the gap in existing literature by modeling mechanisms with the potential to reduce 

steel sector CO2 emissions and assessing their realized impacts on emissions and industry in the 

U.S. Each pathway defined in this analysis is a unique combination of scenarios and parameter 

values that, together, represent a comprehensive review of the potential levers that could be 

adjusted to reduce future steel sector emissions, including both technology options and demand 

reduction options. Chapter 4 is the first U.S. specific analysis that quantifies potential future U.S. 

steel sector CO2 emissions and outlines the requirements of reaching an emissions reduction target. 

If the U.S. decides to take action on steel sector decarbonization Chapter 4’s pathways could 

provide valuable guidance.   
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CHAPTER 2 

 

Use-phase Drives Lithium Ion Battery Life Cycle Environmental Impacts when 

Used for Frequency Regulation 

This chapter was published in its entirety in Environmental Science and Technology.  
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Environmental Science & Technology 2018 52 (17), 10163-10174 

DOI: 10.1021/acs.est.8b02171 

 

Abstract 

 

Battery storage systems are attractive alternatives to conventional generators for frequency 

regulation, due to their fast response time, high cycle efficiency, flexible scale, and decreasing 

cost. However, their implementation does not consistently reduce environmental impacts. In order 

to assess these impacts, we employ a life cycle assessment (LCA) framework.  Our framework 

couples cradle-to-gate and end-of-life LCA data on lithium ion batteries with a unit commitment 

and dispatch model. The model is run on a 9-bus power system with energy storage used for 

frequency regulation.  The addition of energy storage changes generator commitment and dispatch 

causing changes in the quantities of each fuel type consumed. This results in increased 

environmental impacts in most scenarios. The impacts caused by the changes in the power system 

operation (i.e., use-phase impacts), outweigh upstream and end-of-life impacts in the majority of 

scenarios analyzed with the magnitude most influenced by electricity mix and fuel price. Of 

parameters specific to the battery, round trip efficiency has the greatest effect. 

 

 



9 

 

 Introduction 

Safe and reliable operation of the power system requires generation to match demand in 

real time.  When they do not, the system frequency deviates from its nominal value (60 Hz in the 

U.S.). To correct the frequency, conventional generators (e.g., coal, gas, and nuclear) provide 

frequency response (also referred to as droop control or primary frequency control) and frequency 

regulation (also referred to as secondary frequency control) via automatic generation control. 

While the former is required of all conventional power plants in the U.S., the latter is a service 

procured through the balancing reserve market. Generators contracted to provide frequency 

regulation receive commands from the system operator every four seconds to increase/decrease 

their consumption continuously, helping the system balance supply and demand. With the addition 

of variable renewable energy (e.g., wind and solar), the need for frequency regulation increases,41 

as the frequency and magnitude of supply and demand differentials increase. Generator use for 

frequency regulation can reduce generator efficiency, and increase associated emissions.42,43 Wind 

turbines can provide frequency regulation but it is often uneconomical since wind power 

production must be curtailed.44  

An attractive option to managing the increasing need for frequency regulation is energy 

storage.19–21 Energy storage devices, such as lithium ion (Li-ion) batteries, are promising 

alternatives because such technologies respond quickly19 and are available at increasingly 

competitive costs.45  The first use of grid battery storage systems was for frequency regulation and 

spinning reserves.24 We focus on Li-ion batteries in this work as they have become the predominant 

battery type for frequency regulation.25 They have high energy and power densities, fast response 

time, high cycle efficiency, long cycle life, scale, flexibility, and decreasing cost.21–24  Li-ion 

batteries have already been widely applied for frequency regulation in PJM25 and past studies have 

found them as a best fit for frequency regulation.26 PJM’s pay-for-performance regulation market, 

designed to reward a resource’s accuracy and quality, has incentivized an increase in battery 

energy storage capacity. Battery energy storage capacity in PJM has increased from 0 MW in 2005 

to 280 MW (41% of regulation procurement capacity) in 2017.46 Additionally, second-use 

applications of Li-ion batteries, previously used in electric vehicles (EVs), are increasingly 

appealing.47 Studies have demonstrated the potential economic benefits of re-use,48 environmental 
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trade-offs,47 use to support rural electrification,49 and the potential to facilitate the integration of 

variable renewables.50   

With low or no direct emissions during operation, it is a commonly held conception that 

the implementation of energy storage will have an environmentally positive outcome.  The 

California Energy Storage Mandate states that “Use of energy storage systems to provide the 

ancillary services otherwise provided by fossil-fueled generating facilities will reduce emissions 

of carbon dioxide and criteria pollutants.”51  However, recent research has shown that the 

introduction of energy storage may not always benefit the environment.52–55 In current U.S. 

electricity markets, only the energy and reserve costs of the system are minimized, while the 

emissions impacts are not explicitly considered (though in some parts of the country some 

emissions are priced; for example, SOx is limited through a cap and trade program and CO2 can be 

priced through carbon markets).  A number of dispatch algorithms that consider environmental 

impacts have been proposed56,57 including algorithms that incorporate emissions cost or 

constraints. Arbabzadeh et al.58 also developed principles for using energy storage sustainably. 

However, these algorithms and principles are not widely adopted in electricity markets.  As a 

result, although adding energy storage to the system could reduce the cost of operating the system, 

the environmental outcome may not necessarily improve. 

A significant body of research exists on the environmental impacts of Li-ion batteries.  

Many studies focus on vehicular applications and cradle-to-gate system boundaries,59–64 providing 

detailed examinations of the environmental impacts from Li-ion materials, manufacturing, and 

end-of-life (EOL) for automotive applications. However, there are far fewer studies that examine 

the same for stationary power system applications and many use inventory data from automotive 

vehicles.65–69 Stroe et al.,21 Swiersczynski et al.44 and Xu et al.46 all model Li-ion batteries for 

frequency regulation, but the focus of these papers is not environmental impacts.  In one such 

study, Hiremath et al.22 evaluated Li-ion, lead-acid, sodium-sulfur, and vanadium redox flow 

batteries used for six stationary applications, including “Area and Frequency Regulation.”  The 

study found that the use-phase dominates the environmental impacts and that cradle-to-gate 

analyses are misleading when comparing environmental performance.22  However, it assumed that 

the batteries were charged by the average German electricity mix from the Ecoinvent database.22  

Koj et al.70 performed a comparative life cycle assessment (LCA) of providing primary frequency 
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control using either Li-ion batteries or coal power plants, Oliveira et al.71 tested different electricity 

mixes on environmental outcomes, and Arbabzadeh et al.72 examined the use of vanadium redox 

flow batteries to reduce wind curtailment on a microgrid.  While these studies demonstrate the 

importance of the electricity mix, assuming a certain mix or a single plant type obscures the true 

environmental impacts due to the complex nature of power systems and their operation. Ryan et 

al.73 emphasizes the need to incorporate temporal variability in electricity mix when estimating 

emissions from temporally varying changes to electricity load, as is the case with energy storage.  

Changes in generator commitment and dispatch are also important factors that affect how energy 

storage is used and its associated environmental impacts.74  

 

Figure 2 - 1, System boundary from upstream to end-of-life stages. Green boxes indicated battery phases and 

components 

In this work we investigate the life cycle environmental impact of using energy storage, 

namely Li-ion battery systems, for frequency regulation. We solve a unit commitment and dispatch 

problem on a 9-bus power system for eight different electricity mixes and couple the results with 

a cradle-to-grave LCA of Li-ion batteries. Figure 2-1 presents the system boundary. The study 

presented here differs from past work by investigating the impact of energy storage on the 

operation of a power system and its resources rather than making assumptions about electricity 

mixes. Our methods, like Lund et al.,75 combine the use of LCA with a detailed energy system 

modeling; however, Lund et al.75 used these methods to determine the environmental impacts of 

changes in demand by identifying the marginal generation technologies. Our results offer new 

insights into the direction and magnitude of environmental impacts, as well as the relative 

importance of battery materials and manufacturing.   
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 Methods 

 System Boundary and Scenarios 

To analyze the environmental impacts of deploying Li-ion battery systems for frequency 

regulation, we adopt an LCA framework. We compare the life cycle environmental impacts of a 

Li-ion battery system to the use of coal and natural gas power plants, for frequency regulation in 

a test grid system. For simplicity, we model one large battery system to represent the aggregation 

of a number of smaller battery systems.  Figure 2-2 summarizes our study’s modeling approach. It 

includes the key processes that we investigate for the energy storage system and the power system, 

data inputs and outputs and required models (i.e., energy storage degradation and power system 

models). The scope of this study includes the impacts of battery materials, 

manufacturing/assembly, use (which includes changes in power plant dispatch and battery 

degradation), and battery EOL.  

 

Figure 2 - 2, Methodology outline and system interactions. Energy storage and power system parameters (row one), 

models (row two), connections, and model outputs. 

The functional unit for this study is the provision of 1 MW of symmetrical reserve capacity 

for one year (i.e., +/-1 MW-yr of frequency regulation). This functional unit is not a function of 

the energy that goes through the battery, but a measure of the capacity of regulation provided (i.e., 

the power bid into the market) over a defined period. Bids are placed into the regulation market 

based on capacity (i.e., power) rather than available energy. The grid frequency changes based on 

the increase or decrease in power output of generators (i.e., +/- MWs) meaning that conventional 

units of energy (e.g., MWhs) used in previous LCAs of energy storage are inappropriate to apply 

in this context. The functional unit incorporates a time component (i.e., 1 year of service) so that 
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the upstream and EOL impacts can be allocated appropriately based on the battery system’s 

lifetime. 

The battery use-phase impacts are dependent on the capacity and efficiency of the battery, 

both of which are impacted by the battery’s degradation. The degradation is calculated monthly 

for the life of the battery and incorporated into the power system model. The energy storage 

degradation model also determines the lifetime of the battery, which also affects the upstream and 

EOL material impacts of providing 1 MW-yr of service since the upstream and EOL material 

impacts are distributed over the lifetime of the battery. The upstream impacts of thermal and 

renewable power plants are not included, due to the insignificance of emissions from natural gas 

or coal power plant construction and decommissioning.76 Additionally, the upstream impacts of 

this infrastructure will not change with the addition of energy storage. 

The overall impacts are calculated using LCA inventory outputs as well as three 

environmental impact categories: Global Warming Potential (GWP), Cumulative Energy Demand 

(CED), and Acidification. GWP, CED, and Acidification are commonly assessed impact 

categories in previous LCAs of energy storage and are dominate power system impacts. We 

recognize the selection of these impact categories limits our ability to make conclusions about 

water or land impacts such as eutrophication and land use, but lack of data availability prevented 

their inclusion. 

To understand the role of key parameters on life cycle impacts, we conduct a series of 

parametric studies, which vary the assumptions for the Li-ion battery system characteristics and 

power grid characteristics. Section 3.3 summarizes the base case parameters and parametric 

studies. 

 Energy storage system material inventory, production and manufacturing 

The main components of the battery are the anode and cathode, which account for the majority 

of the mass of the battery. Other components of the battery are the electrolyte, binder, battery 

housing, and the battery management system. The base case battery cathode material is LiMn2O4 

(LMO). Kim et al.24 describes it as stable, safe, abundant, easy to synthesis and environmentally 

friendly. Its drawbacks are a lower capacity and higher temperature sensitivity.24 The parametric 

studies use LiFePO4 (LFP), LiNiMnCoO2 (NMC) and LiNiCoAlO2 (NCA) batteries. LFP and 

NMC were selected due to their common use in grid applications. LFP is stable and low cost.24 
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NCA batteries are used in Telsa Model S vehicles,77 the EV with the highest sales in 2016,78 and 

therefore this cathode was modeled for the first-use and second-use EV batteries for grid energy 

storage. The battery anodes are graphite, as it is considered the most practical;24 however, LTO is 

also becoming an attractive alternative.20  Battery data and associated upstream and EOL 

environmental impacts are from Argonne National Laboratory’s Battery Performance and Cost 

(BatPaC) model and “Greenhouse gases, Regulated Emissions, and Energy use in Transportation” 

(GREET) Vehicle-Cycle Model, as well as other existing literature on Li-ion LCA.61,79–81 Figure 

A-7 in the Supporting Information (SI) contains a material flow diagram. 

Argonne National Laboratory’s Vehicle-Cycle Model contains detailed process level 

emissions data on components of conventional and advanced vehicle technologies, which includes 

cathode specific EV battery components.82 The BatPaC model analyzes Li-ion battery packs, 

providing battery designs and associated costs based on user-defined parameters.81  In this study, 

we use BatPaC to create a materials inventory for the Li-ion batteries. We convert our energy and 

power specifications into masses of the active materials. Masses and emissions for the production 

of each battery component were derived using GREET. Assumptions in Dunn et al.79 for energy 

consumption in battery assembly were used along with GREET’s assumptions for shares of 

process fuels to calculate impacts of battery assembly.82 It is important to note the assumptions in 

Dunn et al. 79 are for LMO and these values can vary across literature and cathode types. The 

recycled content approach was used for this study.83  Recycled components include Li2CO3 (for 

the LMO cathode) via hydrometallurgical recycling, and a percentage of steel and aluminum for 

all cathode types (Table A-8). The impacts of the battery management system (BMS) were 

calculated using GREET’s inventory and impact assumptions on a per mass of BMS basis.82 The 

mass of the BMS was calculated by using Dunn et al.’s60 BEV battery assumption that 1.1% of 

battery mass is attributed to electronics. Additionally, we do not include the impacts of 

transportation of materials to/from site, installation, or decommissioning. 

Using an inverter materials inventory from Mason et al.,84 a study on photovoltaic LCA, we 

derive a Life Cycle Inventory (LCI) for an appropriately sized battery inverter using linear scaling. 

We input the mass of the materials in the LCI into the GREET model to determine the 

environmental impacts of the inverter. 
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Battery lifetime is a function of degradation, which depends on how the battery is cycled and 

utilized during the use-phase.22 We assume EOL occurs when a battery reaches 50% capacity 

degradation, based on the assumption that stationary applications can tolerate more degradation 

before retirement than automotive applications. Upstream and EOL impacts are allocated over the 

life of the battery. 

 Power System Unit Commitment and Dispatch 

 Problem formulation 

Results from the unit commitment and dispatch are important factors in determining the 

environmental impacts of Li-ion energy storage system in the use-phase.74 Adding energy storage 

into the power system provides more options for the system operators to balance supply and 

demand on the grid, which can lead to changes in the operation of generators.  

In this study, we use the IEEE 9-bus test system,85 modified to include renewables (wind 

and/or solar), and a Li-ion battery system solely for frequency regulation. The unit commitment 

and dispatch problem determines the most cost-efficient commitment (i.e., which generating units 

will be turned on during which hours) in addition to the production levels and reserve capacities 

across the committed units, while ensuring that all power flow and engineering constraints are 

satisfied. We run simulations for each case with and without energy storage, attributing the change 

in each generator’s output to the introduction of the energy storage. Based on the commitments 

and production levels, the quantity and type of fuel consumed is calculated. In bidirectional 

frequency regulation markets conventional generators must be able to increase or decrease their 

output based on the control signal.  The partial load heat rates for the generators are reflected in 

the cost curves, meaning that generators that hold back capacity to provide reserves experience a 

loss of efficiency that is reflected in their costs. We formulate the problem as a mixed integer 

programing problem, detailed in Section 2.1 of the SI. The dispatch results also provide the 

committed reserve capacity of the battery system, which affects its degradation over time.   

Battery capacity and efficiency degradation affect the optimal system dispatch. Capacity 

degradation, which represents the reduction in the energy the battery can store, is a function of 

both usage (charging/discharging cycle) and time. How quickly a battery degrades in response to 

the use-phase operations will affect upstream, downstream, and use-phase impacts. There are a 

number of models to estimate the capacity degradation of Li-ion batteries.86–90 In this study, our 
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primary capacity degradation model is from Xu et al.91 Xu et al.91 models the degradation of a 

LMO battery in response to frequency regulation in the PJM system, which is consistent with our 

base case battery cathode and battery system application. In order to understand the impact of rapid 

degradation we perform parametric studies using the Wang et al.86 and Fortenbacher et al.89 

models. Fortenbacher et al.89 used synthetic data from an electrochemical battery model called 

DUALFOIL,92 while Wang et al.86 developed their model through experimental testing based on 

batteries for E-bikes and robotics. Wang et al.’s 86 model is consistent with the base case cathode, 

while Fortenbacher et al.’s89 model is consistent with the battery system application. It is important 

to note that degradation is tied to battery chemistry; however, in order to maintain consistency 

across parametric studies the degradation models were not varied by cathode type. We apply the 

models to one year of PJM’s dynamic regulation signal (RegD) from August 2015 to July 2016,93 

as detailed in Section 2.2 of the SI. Using the model from Xu et al.,91 the batteries take 70 months 

to degrade to 50% capacity (our assumed EOL for stationary grid applications), while using the 

model from Fortenbacher et al.89 and Wang et al.86 the batteries take 23 months and 21 months, 

respectively, to degrade to 50% capacity. This value can vary significantly with different E/P ratios 

and slightly with allowable state of charge (SOC) range. Section 2.2 of the SI contains the 

calculations to reach these results. 

The use-phase emissions are strongly tied to the battery efficiency, which determines the 

quantity of energy lost through storage. In this study, efficiency degradation, which represents the 

rate of increase in energy losses incurred from charging/discharging the battery, is based on the 

model developed in Cordoba-Arenas et al.90  detailed in section 2.3 of the SI. 

In this paper, we model the unit commitment and dispatch problem over a 24-hour period, 

with dispatch occurring in one-hour increments.  Battery degradation is assessed on a monthly 

basis and the problem is re-solved each month with the degraded battery.  We sized the energy 

storage system to ensure that the SOC does not limit the ability of the battery to meet the reference 

signal for reserves more than 5% of the time over the year, as detailed in section 2.2 of the SI. 

 Test system 

Our modified IEEE 9-bus test system consists of four fossil fuel generators, totaling 800 MW 

of generation capacity, one 3.04 MWh / 8 MW energy storage device (E/P=0.38) at Bus 8, and a 

renewable generator (wind, solar or wind and solar) at Bus 8. Although, the energy storage and 
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renewable generator are located at the same bus, they are operated independently. The line 

constraints and system configuration align with those used in Lin et al.;52 however, the size and 

primary fuel source at each bus are different. We modeled eight base case scenarios with different 

electricity mixes, summarized in Table 2-1. The scenarios consider two fossil fuel cases: ‘Coal’ 

(80% coal, 20% gas, based on capacity), ‘Gas’ (20% coal, 80% gas, based on capacity), and four 

renewable electricity mixes. In each scenario with renewable energy, it makes up 15% of the day’s 

electricity demand, resulting in different installed capacities depending upon renewable generation 

type. The size and fuel consumed by the generators varies between the Coal and Gas case in order 

to maintain realistic generator sizing based on fuel type. All assumptions are listed in Section 1 of 

the SI and Tables A-2 and A-3.  

Table 2 - 1, Summary of Base Case Scenarios 

Base Case Scenarios 

Non-Renewable Generation Renewable Generation 

Coal 

No Renewable Energy (R.E.) 

Wind 

Solar 

Wind & Solar 

Gas 

No Renewable Energy (R.E.) 

Wind 

Solar 

Wind & Solar 

 

 Electricity generation environmental impacts 

For the use-phase, we compute environmental impacts associated with changes in power 

system operation caused by the introduction of 1 MW-yr of frequency regulation capacity. First 

we computed changes in fuel consumption by the conventional generators, as determined by the 

unit commitment and dispatch problem. Then, we calculated the environmental impacts of the 

change in fuel consumption using the impact factors found in the Table A-9. The changes in fuel 

consumption during the use-phase are also used to calculate upstream fuel impacts of the system. 

The impact factors for gas and coal production come from the GREET model and are listed in 

Table A-9.94 
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 Results and Discussion 

 Base Case Impacts 

Figure 2-3 shows changes in environmental impacts in three categories: Use-Phase, 

Upstream: Fuel, and Upstream/End-of-Life: Battery System. The use-phase accounts for the 

majority of environmental impacts from implementing the energy storage system. These impacts 

are the sum of net changes in individual generators’ combustion emissions, caused by changes in 

generator electricity output, when energy storage was integrated into the system. Changes that 

were driven by three phenomena: changes in type of generators committed (i.e., coal or natural 

gas), changes in generator output (and subsequently, heat rates), and increases in generation 

requirements due to battery round-trip losses. These three phenomena also caused changes in the 

quantity and type of fuel consumed in the system, which in turn changed upstream fuel impacts. 

Under the base case assumptions presented in this section, all scenarios resulted in net increases 

in aggregate environmental impacts, as shown in Figure 2-3. This is due to the increase in net 

generation for all electricity mixes, resulting from the battery round-trip losses, and, in the Coal 

cases, an increase in coal and decrease in natural gas generation.  

 

 

Figure 2 - 3, Changes in environmental impacts from using Li-ion battery systems for frequency regulation for each 

base case scenario normalized with the annual U.S. per-capita impacts in 2016, a) GWP (Global Warming Potential) 

b) CED (Cumulative Energy Demand) c) Acidification. Yellow bars are use-phase impacts resulting from changes 

in the quantity/efficiency of coal/gas, grey bars are upstream impacts resulting from changes in the quantity of 

coal/gas, and green bars are upstream/end-of-life impacts of the battery system. R.E. = Renewable Energy 

The addition of energy storage reduces the need for generators to hold back capacity for 

reserves, changing the commitment and dispatch. Different electricity mixes produce different 

changes because the commitment/dispatch decisions are a function of energy costs, reserve costs, 

and generator parameters such as size and minimum production level, all of which differ across 

technologies. For example, different electricity mixes result in different “lumpiness” in 
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commitment decisions, i.e., we can achieve a better optimization result committing a large number 

of small generators than a small number of large generators. 

There are confounding factors that cause the changes in generator commitment in the base 

case. In the base case, coal is less expensive than natural gas per MWh of generation (Figure A-

2), so optimal operation will utilize minimal natural gas, all else equal. However, natural gas is 

less expensive than coal for frequency regulation and so, generally, a mix of coal and natural gas 

plants will be committed. Note that a generator cannot provide frequency regulation if it is not 

committed.  With the addition of energy storage, conventional generators no longer need to provide 

as much frequency regulation and so some natural gas plants may not be committed, as their lower 

cost frequency regulation no longer compensates for their higher cost generation. This results in 

higher utilization of coal. For example, in the ‘coal no renewable energy’ base case, all generators 

are committed during the peak in order to provide sufficient frequency regulation (see Section 

3.3.4), but with the addition of energy storage not all generators are required. More specifically, a 

coal unit that was providing frequency regulation can lower its supply of frequency regulation and 

increase its generation, and a natural gas unit no longer needs to be committed. This reduces the 

total natural gas output and increases the total coal output. The impacts from the increased coal 

consumption outweigh the reduction in impacts from reduced natural gas consumption. We 

explore the impact of dispatch in more depth in Section 3.3.4. It is important to note these specific 

commitment changes are particular to the Coal cases. 

The only life cycle category in which we observed any decreases in environmental impacts 

in the base cases was ‘Upstream: Fuel’. The cases with decreases are ‘Coal; no renewable energy’ 

and ‘Coal; wind’, in which there were decreases in cumulative energy demand and NOx. Upstream 

fuel impact factors are higher for the production of natural gas than coal, and this difference was 

large enough to cause reductions in overall impacts even with a net increase in fuel consumption 

caused by battery round-trip losses.  

Overall, the magnitude of the upstream and EOL impacts of the battery system were 

insignificant in comparison to those caused by the battery system’s effect on power system 

operation, except for Acidification impacts in the ‘Gas; no renewables’ and the ‘Gas; Wind & 

Solar’ cases. The upstream impacts for the base case cathode LMO were 2,172 kg CO2eq/MW-year 

or 33.1 kg CO2eq/kWh. This value is the same across all base case scenarios and not far from the 
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range in the existing literature. Ellingsen et al.95 found 38-145 kg CO2eq/kWh, Kim et al.64 found 

39-63 kg CO2eq/kWh, and Notter et al.61 found 50 kg CO2eq/kWh for LMO. Differences in results 

stem from differences in study assumptions and data sources.  

 Curtailment Impacts 

Although six of the base cases scenarios have 15% renewable generation, there was less 

than 1% renewable curtailment in each scenario. In order to assess the effects of renewable 

curtailment on the overall results, the share of generation from renewables was increased until the 

system reached 10% curtailment without energy storage. The required increases in renewable 

generation capacity varied for each scenario due to differences in system flexibility and renewable 

generation profiles as shown in Table A-15. Congestion was the primary driver of curtailment at 

these high penetrations; the reserve requirement also led to curtailment. It is important to note that 

since energy storage is only used for frequency regulation it does not directly mitigate curtailment 

caused by congestion. It simply provides more options for the dispatch. Across all cases it only 

mitigated 1.5% of the total curtailment on average. The emissions impacts in the curtailment 

scenarios showed the opposite trends as the base case for almost all scenarios (Figure 2 - 4, 

Changes in environmental impacts from using Li-ion battery systems for frequency regulation for 

each curtailment scenario normalized with the annual U.S. per-capita impacts in 2016, a) GWP 

(Global Warming Potential) b) CED (Cumulative Energy Demand) c) Acidification. Yellow bars 

are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas, grey bars are 

upstream impacts resulting from changes in the quantity of coal/gas, and green bars are 

upstream/end-of-life impacts of the battery system. R.E. = Renewable Energy 

2-4), i.e., the addition of energy storage decreased emissions. Moreover, the decreases are, 

in general, significantly larger than the increases in the base case. In all curtailment cases, there 

was a reduction in overall fuel required because there was more realized renewable generation 

(i.e., less curtailment). The percent penetration of renewables and their generation profiles had a 

larger effect on overall environmental impacts than any factor investigated in our parametric 

studies. 

 

 



 

21 

 

 

 

Figure 2 - 4, Changes in environmental impacts from using Li-ion battery systems for frequency regulation for each 

curtailment scenario normalized with the annual U.S. per-capita impacts in 2016, a) GWP (Global Warming 

Potential) b) CED (Cumulative Energy Demand) c) Acidification. Yellow bars are use-phase impacts resulting from 

changes in the quantity/efficiency of coal/gas, grey bars are upstream impacts resulting from changes in the quantity 

of coal/gas, and green bars are upstream/end-of-life impacts of the battery system. R.E. = Renewable Energy 

The addition of energy storage to the ‘Gas; wind and solar’ case caused the most changes 

in unit commitment out of all curtailment cases, and subsequently the greatest reduction in 

environmental impacts. The combination of wind and solar in the ‘Gas; wind and solar’ case 

creates a smoother renewable generation profile than when the wind and solar are operated 

independently. Additionally, in the Gas cases the generators are all of similar size, so it is easier 

to effect the unit commitment than in the Coal case. Additionally, in this scenario, energy storage 

helped mitigate 4.7% of curtailment.  

 Parametric Studies 

In order to better understand the drivers for overall environmental performance we tested 

key parameters relating to the battery composition and the power system. The parameters tested 

include fuel costs for conventional generation (i.e., coal and gas), alternative battery degradation 

models, alternative battery efficiency, induced congestion, different cathode materials, and use of 

EV batteries, both new and second-use. Table 2-2 outlines these parameters.   
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Table 2 - 2, Base case parameters and parametric studies 

Parameter Base Case 
Parametric Studies 

Name Description 

Cathode material LiMn2O4 
Cathode (LFP) LiFePO4 (LFP) cathode 

Cathode (NMC) LiNiMnCoO2 (NMC) cathode 

Battery Type 

Commercial 

stationary 

battery 

New Car Battery  LiNiCoAlO2 (NCA) cathode 

2nd Use Car Battery LiNiCoAlO2 (NCA) cathode with 80% starting capacity 

Capacity 

Degradation  
Xu et al.91  

Capacity Degradation 

(Fortenbacher et al.) 
Alternative battery capacity degradation model with faster degradation (Fortenbacher et al.89) 

Capacity Degradation 

(Wang et al.) 
Alternative battery capacity degradation model with faster degradation (Wang et al.86) 

Starting 

Efficiency  
90%22 Eff 100% Modeling a 100% efficient battery with no efficiency degradation 

Fuel Costs 
2014 

Average96 

Price Swap Switching 2014 gas price to coal and vice versa: natural gas $2.37/MMBtu and coal $5.00/MMBtu 

Fuel Prices 2017 Fuel Prices: coal $2.22/MMBtu and natural gas $3.67/MMBtu 

Congestion 
1000 MW 

line limits 
Congestion 

200 MW line limit (coal) 

170 MW line limit (gas) 

 

Of the parameters tested, those related to fuel price, battery efficiency, and transmission 

congestion yielded the largest changes in environmental impact, though the electricity mix had a 

larger impact on overall environmental outcomes than any of these parameters. As seen in Figure 

2-5, the trends for GWP emissions are similar across parameters for each electricity mix. It is 

important to note that the Coal cases use the left axis and Gas cases the right. The difference in 

magnitude of these axes is significant. In nearly all of the Coal cases, the addition of energy storage 

caused coal consumption to increase, due mainly to changes in unit commitment and, in part, to 

battery round-trip efficiency losses. However, in the Gas cases the increase in coal consumption 

was smaller and less consistent, leading to the lower impacts. This is because, in the Gas cases, 

coal operates near its maximum output except during a few hours when wind and solar are 

operating at full capacity.  Figure A-14 shows other impact categories.  
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Figure 2 - 5, Changes in global warming potential (GWP) emissions for each parametric study under each scenario 

listed in Table 2-1 due to the addition of 1 MW-yr of reserve capacity provided by Li-ion battery systems 

normalized based on per-capita impacts in the U.S. in 2016. The red dots represent the average value across 

parametric studies for each scenario. Coal cases correspond to the left axes and Gas cases correspond to the right 

axis. Note the difference in scale between the two axes. Reference Table 2-2 for details on parametric studies. 

Yellow bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas generation, grey 

bars are upstream fuel impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-

of-life impacts of the battery system. R.E. = Renewable Energy 

 

 Cathode type impacts 

We tested four battery configurations different from the base case (which used a grid scale 

battery system with a LMO cathode): a grid scale battery system with different cathodes (NMC & 

LFP), a system with new EV batteries (NCA), and a system with second-use EV batteries starting 

at 80% capacity (NCA). Although the battery types have different round trip efficiencies, they 

were all modeled at 90% efficiency so that the parametric study could focus on the impacts solely 

related to battery materials and capacity changes. Impacts of efficiency were addressed in a 

separate parametric study. As the battery configuration does not affect the grid model, the reasons 

for differences in commitment/dispatch resulting from different electricity mixes are the same as 

for the base case.  
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We assume an allocation of the upstream and EOL impacts proportionally based on 

capacity degradation. The battery is modeled to reach end of life after 50% capacity degradation, 

where vehicle use degrades 20% of the battery’s capacity and the grid use degrades 30%. This 

means that the vehicle use was responsible for 40% of the degradation (i.e., 0.2/0.5=0.4) and the 

grid use was responsible for 60% of the degradation (i.e., 0.3/0.5=0.6). Therefore, 60% of upstream 

and EOL battery impacts were allocated to the grid application. Note that we did not consider the 

impacts from additional material requirements to aggregate EV batteries. 

There were not significant differences in GWP and CED between the four cathodes, as 

seen in Figure A-18. However, the differences were a result of differences between cathodes in 

production impacts and the quantity of aluminum required in the battery. NMC production 

produces the most CO2 and LFP the least; however, the amount of aluminum required in LFP 

production increases its overall impacts. The drastic differences in cathode production-related SOx 

emissions causes the large differences in acidification. The total GWP impacts were 33.5 

CO2eq/kWh for LFP, 35.9 kg CO2eq/kWh for NCA, and 40.1 kg CO2eq/kWh for NMC. These values 

are lower than ranges reported in existing literature,64,95 driven in part by assembly values. 

However, even if our results mirrored the high end of ranges in existing literature our conclusions 

would remain the same in regard to the overall upstream battery impacts in comparison to use-

phase impacts. Additionally, metals recycling rates do not strongly influence these results. 

Assuming no recycling increased emissions by 1.1% or less for each battery type. 

 Capacity degradation impacts 

The rate of capacity degradation affects the upstream and EOL emissions. The shorter the 

battery life the larger the percent of impacts allocated to the one-year timeframe of the functional 

unit. However, because upstream and EOL impacts are small, the difference in battery life had 

little effect on overall system environmental impacts. On average, Fortenbacher et al.’s89 model 

results for total impacts only varied 9% from the base case and Wang et al.’s86 model results only 

varied 10% from the base case. Faster capacity degradation does affect generator dispatch but the 

differences were small and scenario specific, yielding results similar to the base case.  

As discussed previously, degradation rates will vary for different cathodes.  For 

example, Xu et al.91 estimate that LFP batteries with E/P of 0.25 will degrade 0.75% in the first 

month while similarly sized NCM batteries will degrade 1.56%. In order to maintain consistency 
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across parametric studies, we have not varied the degradation models by cathode type, which 

would be required to obtain precise estimates of the impacts of different battery/cathode types. 

However, we have shown that differences of this magnitude would not change our paper’s central 

finding, specifically, the limited significance of battery upstream impacts. 

 Efficiency and efficiency degradation impacts 

To determine the share of environmental impacts attributable to battery round-trip losses , 

we compared our results to using a ‘perfect’ battery (100% round trip efficiency and no efficiency 

degradation).  Our base case system utilizes a battery with 90% initial round trip efficiency, and 

0.4% efficiency degradation annually, and 0.76% efficiency degradation over the battery’s 

lifetime. In reality, LMO can reach efficiencies close to 100% while NMC’s efficiency is 90% or 

less.24 Therefore, this study also presents the impacts of efficiency differences between cathodes. 

 

 

Figure 2 - 6, Percent of change in impacts caused by battery efficiency and efficiency degradation  a) CO2, b) SOx, c) 

NOx, d) natural gas consumption, e) coal consumption, f) net fuel consumption. R.E. = Renewable Energy 

Use of the perfect battery reduced fuel consumption and, subsequently, environmental 

impacts. However, the percent of changes in impacts caused by battery efficiency and efficiency 

degradation was heavily dependent on the magnitude of the change in the dispatch caused by the 

energy storage system (Figure 2-4). In the ‘Coal; no renewable energy’ base case, the fuel 

consumption changes from adding energy storage were significantly larger than any other scenario, 

with the ‘Coal; wind’ case having the second largest changes, resulting in the lowest percentage 

change in impacts due to battery efficiency (Figure 2-6). We see the opposite for the ‘Gas; no 
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renewable energy’ case where the addition of energy storage had no effect on the dispatch and all 

impacts in the use-phase were a result of the additional electricity required due to battery 

inefficiency and efficiency degradation (Figure 2-6). These are the two extremes, but in many of 

the cases, environmental impacts from efficiency and efficiency degradation represent a significant 

proportion of overall impacts. However, although the percentage of impacts from efficiency is 

greatly dependent on the magnitude of impacts caused by changes in dispatch in the base case, it 

is also depended on system electricity mix, as seen in Figure A-17. 

 Fuel costs impacts 

Fuel price was the most influential driver of generator commitment and dispatch, in turn, 

having drastic impacts on the battery system’s environmental impacts (Figure 2-5). The first fuel 

cost parametric study uses fuel prices from U.S. Energy Information Administration’s (EIA) Short 

Term Energy Outlook for 2017 ($2.22/MMBtu coal and $3.67/MMBtu natural gas), which is a 

slight decrease from 2014 coal prices ($2.37/MMBtu) and a considerable decrease from 2014 

natural gas prices ($5.00/MMBtu) as used in the base case analysis. Impacts increased in each 

scenario, except the ‘Gas; wind’ scenario (Figure 2-5). 

Figure 2-7 gives intuition for this result. In both price cases all generators are committed 

during the peak when energy storage is unavailable, but with energy storage, Generator 4 (G4, 

natural gas) is not committed and coal consumption increases. The difference between 2017 coal 

and natural gas fuel prices is smaller than in 2014 (see Figures A-3 and A-4), and small enough 

that the cost reductions from providing frequency regulation from natural gas generators is greater 

than the increased cost of natural gas generation at certain load levels. This causes natural gas 

generation to be committed for a greater number of hours in comparison to the base case. 

Therefore, with 2017 prices, the impact of not committing Generator 4 is larger. Note that, at equal 

loading during different hours of the day, unit commitment and dispatch schedules are not always 

equal. This is a result of the time coupling constraints (e.g., minimum startup and shutdown times) 

used in the 24-hour unit commitment and dispatch problem. 
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                         Base Case: Coal; No Renewable Energy               2017 Fuel Prices: Coal; No Renewable Energy 
           Generation                Generation 

           

         Frequency Regulation Capacity                      Frequency Regulation Capacity 

         

Figure 2 - 7, Dispatch and reserve results for the ‘Coal; no renewable energy’ base case (left) and parametric study 

with Energy Outlook 2017 fuel prices (right). The top eight figures are the generation from each generator over a 

24-hour period. The horizontal dashed lines in the top eight figures are the minimum and maximum limits of the 

generators when they are committed. The bottom ten figures are the frequency regulation capacity provided by each 

of the generators and the battery over the same 24-hour period. ES = Energy Storage 

To test the impacts of more extreme changes in fuel price, the second fuel cost parameter 

study swaps 2014 natural gas and coal prices. This had a significant change in the 

commitment/dispatch in each case. In this parametric study, natural gas is less expensive than coal 

for both frequency regulation and generation, shifting the dispatch priority from coal to natural 

gas. This, in turn, changed the way the energy storage system affected generator dispatch. When 

energy storage was introduced, natural gas generators, rather than coal, increased their generation 

in each scenario other than ‘Coal; no renewable energy’ and ‘Gas; wind’. However, the impact of 

the decrease in coal was not always large enough to offset the impacts from increasing natural gas 

consumption (Figure 2-5).  
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The addition of energy storage does not change the dispatch in the ‘Coal; no renewable 

energy’ or the ‘Gas; wind’ case. In the ‘Coal; no renewable energy’ case, natural gas plants are at 

maximum generation in each hour and both coal plants are dispatched. The savings from reduced 

cost natural gas generation are greater than the increased cost from frequency regulation provided 

by coal, meaning, the coal plants provide frequency regulation. Therefore, with the addition of 

energy storage, the dispatch does not change; the coal units just reduce the amount of frequency 

regulation they provide. In these cases, the increased fuel consumption (i.e., increase impacts) in 

these cases is from battery round-trip losses. 

 Congestion impacts 

Transmission congestion was added to the Coal cases by reducing the line limits from 1000 

MW to 200 MW and to the Gas cases by reducing the line limits to 170 MW, in all lines other than 

those connecting generators to the system (i.e., 1-4, 3-6, and 8-2). The difference in limits is a 

function of the generator sizes. The addition of congestion caused changes in environmental 

impacts from the base case in all six scenarios. However, we cannot make generalizations about 

the effects of congestion because, in practice, results would be strongly dependent on grid topology 

and parameters, generator sizing and location, and so on.  Overall, we can say the impacts of adding 

energy storage are affected by congestion, but to determine exactly how on a particular system 

would require detailed information on and analysis relating to the grid parameters and topology. 

 General Impacts 

Changes in generator commitment and dispatch caused by the addition of energy storage 

were the most significant contributors to the energy storage system’s environmental impact, 

meaning that the use-phase denominated. These changes resulted in changes in combustion 

emissions and upstream fuel impacts. The magnitude of the upstream and EOL impacts of the 

battery system were small in comparison. In the base case, net increases in environmental impacts 

were observed for each electricity mix. In the Coal cases, the impacts were much larger than those 

in the Gas cases as there was a significant switch from natural gas generation to coal generation 

since coal generators no longer needed to provide frequency regulation.  

The parameters most affecting the impacts of the energy storage system were grid 

characteristics. The electricity mix had the largest impact on the magnitude of the environmental 

impacts of the addition of energy storage. Specifically, as seen in the curtailment case, the percent 
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penetration of renewables and their generation profiles changed the commitment and dispatch of 

generators significantly reducing emissions. Fuel price, congestion and battery round trip 

efficiency had the next largest effects on net environmental impacts.   
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CHAPTER 3 

 

The Impact of Forecasted Net Load on Real-Time Power Generator Operation 

 

 

Abstract 

Wind and solar electricity generation is anticipated to be a key contributor to mitigating 

electricity sector emissions. However, wind and solar are inherently variable and uncertain, 

resulting in increased intra-hourly variability in net load (i.e., load minus wind and solar 

generation), making it more challenging for dispatchable generators to match supply and demand. 

If scheduled generators cannot adjust their output to match net load changes in the real-time market 

it could result in system inefficiencies like wind and solar curtailment, reducing the overall carbon-

free electricity supplied to the grid, or unplanned generator start-ups and shut-downs. 

Although literature assumes these inefficiencies occur in hours with large changes in net 

load and high levels of wind and solar generation, there has been limited statistical analysis. This 

chapter quantifies these relationships with a regression model whose independent variables are  

day-ahead net load characteristics (e.g., ramp rate, percent wind and solar generation) and whose 

dependent variables are unplanned shut-downs and start-ups. The day-ahead and real-time markets 

are modeled for the U.S. western interconnection in a production cost model. 

As illustrated with a test case, the regression model results show that a substantial share of 

the variability in unplanned generator start-ups and shut-downs can be explained by net load 

characteristics. Net load, fraction wind and solar, ramp rate, and hour had the greatest impact on 

the predictability of the model. These results indicate that there is potential to use day-ahead net 

load characteristics to predict real-time system inefficiencies. Day-ahead generator scheduling 

could be adjusted based on these predictions, to improve system efficiency and reliability. 
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 Introduction 

Electricity generation from wind and solar power is anticipated to be, and in some regions 

already is, a key contributor to mitigating emissions in the electricity sector. It offers the potential 

to supply a significant share of U.S. electricity demand while producing zero direct emissions and 

causing minimal environmental impacts. Currently, wind and solar represent a modest percentage 

of total electricity generation in the U.S, providing a combined 8.3% in 2018.97 However, with 

decreasing installation costs, minimal operational costs, and zero direct emissions, their installed 

capacities are anticipated to grow rapidly.98 However, challenges remain with integrating high 

percentages of variable renewable energy (VRE) into the electricity grid while maintaining 

reliability. The purpose of this study is to present an operation strategy, informed by statistical 

analysis, which has the potential to improve generator scheduling; mitigating certain challenges 

with operating a high percent VRE grid. 

A high VRE penetration grid is challenging to manage because  of the rapid changes in 

available generation from VRE and the limited predictability of VRE generation, which requires 

additional efforts to balance supply and demand in real-time.99 With increasing penetrations of 

these resources, electricity supply uncertainty and variability increase considerably.14 Therefore, 

for the system to remain reliable, it must be able to react quickly to changes in both demand and 

supply,100,101 requiring increasing flexibility 102,103. Despite this need, many existing power systems 

are not currently operated in a way that allows for the degree of flexibility required for high VRE 

penetration and operation; planning practices are beginning to be viewed as inadequate.104 

Insufficient ramp rates, minimum generation levels, congestion, limited storage, and limited 

demand response can all constrain the flexibility of grid operations.14,105,106 

This study investigates the implications of the inflexibility caused by existing dispatchable 

generators’ limited ramping capabilities (i.e., their feasible rate of change of generation) and 

operating ranges (i.e., minimum generating levels). These limitations can inhibit the system’s 

ability to meet large ramp events, which will likely increase under higher VRE penetrations.107 In 

this study, we calculate the ramp rate based on a region’s net load, defined as the total load minus 

non-dispatchable generation (narrowed to include only wind and solar generation). VRE increases 

system ramp rates needed from dispatchable generators when the change in load and the change 

in VRE generation are trending in opposite directions, which is a common occurrence.  For 
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example, solar’s peak generation typically occurs in the middle of the day (i.e., near solar noon), 

while peak electricity demand in many regions occurs in the evening. Therefore, when solar 

generation is subtracted from load, the rate of change for net load often increases, resulting in the 

need for additional ramping from flexible generators. When existing dispatchable generators 

cannot adjust rapidly enough to these changes in net load and neighboring regions cannot shift 

imports or exports to balance the system, the renewable energy  must be curtailed.108  Such 

curtailment potentially reduces the overall carbon-free electricity supplied to the grid and adds to 

system costs. The inability to meet ramping requirements is an important cause of power balance 

violations and high scarcity prices.109 

Large ramp rates can pose a challenge to operators when their magnitudes are known in 

advance, but they can be an even greater challenge when their magnitudes are unknown in advance. 

Uncertainty exists due to day-ahead VRE forecasts, which can cause inefficient scheduling of 

generators in the day-ahead market resulting in under-scheduling or over-scheduling.110,111 When 

insufficient power capacity is scheduled, flexible dispatchable resources with shorter startup times 

and higher ramping capability are prioritized in the real-time market to make up the shortfall.108,112  

These are typically less efficient units, so their use can increase overall system costs and emissions. 

Over-scheduling generators can also introduce power system inefficiencies by requiring less 

efficient low load operation or renewable curtailment in the real-time market.108,110 This 

uncertainty is compounded by the fact that most day-ahead scheduling is done on the hourly time 

scale so even if there is no forecast error, the inter-hour variability in the real time could case 

inefficient commitments. 

These new challenges are unlikely to be mitigated by adjustments in the real time market 

alone, meaning that some of the burden will fall on ancillary services 99 or grid-scale storage.  In 

the case of a large unexpected up ramp event, potentially caused by a sudden drop in VRE 

generation, reserves may be required.113 Some large unexpected down or up ramp events can cause 

power balance violations,109 in which case real-time energy price is no longer a function of 

economic bids but of penalty prices, impacting market efficiency.114 Therefore, to ensure 

reliability, more reserves are held for VRE,115 increasing VRE’s associated costs and potentially 

hampering the adoption of VRE power sources or reducing their environmental and economic 

benefits. Moreover, calculating the optimal capacity to hold in reserve is not straightforward and 
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a standard method is not universally accepted. Different regions calculate and classify reserves 

differently.115  This is in part due to the diversity of generating resources and grid configurations 

across the country.115 Studies have used a number of methods, mostly based on statistical 

approaches.111 Simple approaches calculate a constant reserve requirement, which results in 

overly-conservative standards, holding more reserves than needed and further increasing 

costs.111,115 It is more challenging to dynamically calculate reserves such that they respond to 

improved forecasts and changes in renewable energy penetration.111 or are responsive to not just 

the level of demand and VRE supply but also the resulting net load’s rate of change (i.e., ramp 

rate). 

One approach to this challenge is to improve the day-ahead predictions of the ramp events 

caused by rapid wind and solar generation changes, enabling operators to improve scheduling (see, 

for example, Kamath 2010; Cui et al. 2017; Sevlian and Rajagopal 2012; Cui and Zhang 2018).  

However, these studies, that look to improve ramp event predictions, have not investigated the 

system impacts or cost impacts of these events. A number of studies attempt to quantify additional 

system costs incurred from integrating cost of VRE, but they assess costs related to the system 

with and without VRE,99,108,118,119 and costs are often a result of increased ramp, but there are a 

larger number of factors impacting costs with addition of VRE. Additionally, such studies are 

commonly motivated by the assumption that hours with high ramp rates require additional system 

flexibility and that higher percentages of VRE generation require increased reserves, but there has 

been limited statistical analysis of these assumptions. A second approach to mitigate the impacts 

from large ramp events is to more effectively schedule units in the day ahead market by improving 

how the unit commitment problem is solved. The literature on novel optimization methods to 

improve the unit commitment problem is extensive (for example, Abujarad, Mustafa, and Jamian 

2017). However, the disadvantage of many novel methods is their increased computational 

complexity and execution time.104  

Driven by these known research gaps, in this study we investigate the significance of the 

relationships between forecasted net load characteristics across time (e.g., ramp rate, percent of 

capacity) and realized system operations on an hourly basis (e.g., generation costs, generator 

commitment errors) through detailed power system and statistical modeling. Specifically, we 

investigate if, given forecasted net load and VRE generation, we can determine when the system 
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inefficiently committed generators. Inefficiencies are evident when generators are forced to startup 

or shutdown unexpectedly, which we define in our methods as commitment error.  By focusing on 

the net load changes over time and controlling for other system characteristics (e.g., forecast error), 

we isolate relationships between forecasted net load shapes and real-time system impacts.  These 

relationships are broadly applicable to other power systems given they are based on variables 

which can be calculated in any power system with a real-time and day-ahead market.   

If the relationships between net-load characteristics and real-time system impacts are 

significant, they could be used to predict real-time system reactions to the day-ahead net-load. This 

would enable operators to prevent system inefficiencies by adjusting the optimized generator 

commitments from the day-ahead market, and improve reserve requirement calculations by 

enabling them to be responsive to conditions in a given system. These improvements have the 

potential to reduce system-wide emissions and cost by reducing curtailment and improving 

generator efficiencies, as well as improving system reliability under higher shares of VRE 

generation. 

The organization of this chapter is as follows: the methods section first describes the power 

system model, followed by the statistical analysis of the power system model outputs. The results 

section present trends between the weeks modeled and the relationships found between net load 

shape and commitment error. In the discussion, we explore the robustness of the results, why the 

relationships exist, and their potential applications. 

 Methods 

 Power system representation 

We simulated electricity grid operation with a highly detailed production cost model 

(PCM) which minimizes system operational cost subject to system constraints (e.g., transmission 

limits, generator ramp rates). Appendix B contains the mathematical formulation. This approach 

effectively captures grid operations and enabled us to explore the implications of changing 

electricity markets and infrastructure by modify grid characteristics (such as the minimum 

generation levels by generator type).  By analyzing levels of flexibility and VRE penetrations that 

are yet to be realized in any existing U.S. grid system, our results have broad applicability and 

offer insights beyond the region that we investigated.   
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The focus of our study is the balancing regions operated by California Independent System 

Operator (CAISO), which includes much of the California’s power system.  California’s facilities 

generate the largest amount of VRE of any state in the U.S., as of 2017, and they are seventh in 

terms of annual share of generation served by wind and solar, with a greater percent solar than any 

other state.120 This high penetration of variable renewables offers an ideal case to build upon and 

explore the potential impacts of variability and uncertainty in their regional net load. Because 

California’s electricity grid is not isolated and its generators and utilities participate in the Energy 

Imbalance Market, which spans multiple western states, we modeled the entire Western 

Interconnection (WI) to capture the impacts associated with changing imports and exports from 

the CAISO system. WI is one of three interconnections in the United States, which spans the 

western region of the country. There is limited trade between the interconnections but significant 

trade within them.  

Our WI model is modified from NREL’s Low Carbon Grid Study, which was built on the 

Transmission Expansion Planning Policy Committee (TEPPC) 2024 Common Case.121,122 Details 

on the WI model and modifications from previous studies is included in Appendix B.  Western 

Electricity Cooperation Council (WECC)’s Transmission Expansion Planning department, with 

input from TEPPC stakeholders, develops the Common Cases.122 The cases represent the ten-year 

trajectory of WECC transmission based on planning information at the time of development.  

The Common Cases themselves are PCMs developed as a foundation for TEPPC’s ten-

year studies.122 The Common Case separates WI is into 40 subregions, which are representative of 

balancing authorities or load serving regions, Figure 3-1.122 We modeled the transmission 

constraints between each of these subregions, as well as the transmission limits within the 

California subregions (i.e., using a nodal representation of CIPV, CIPB, CISC, and CISO).  In 

order to more accurately model the impacts of load shape and VRE generation it is important to 

consider the region’s transmission constraints. Modeling all of the WI with a nodal representation 

would not provide significant additional insight into CAISO’s modeling results but would be much 

more computationally intensive.  



 

36 

 

 

Figure 3 - 1, Transmission Expansion Planning Policy Committee 2024 Common Case regions used in Western 

Electricity Cooperation Council production cost model 122 

 

The results from the original 2024 model had 13% VRE generation across the WI. To 

improve our understanding of the impact of deep decarbonization in the power sector, we modified 

the power system representation, greatly expanding (by a factor of four) the system VRE capacity 

in all of the WI.   This allows us to determine the commitment and dispatch response with a grid 

mix that is more challenging for power system operations.  Our method of increasing VRE 

penetration is similar to Martinez-Anido et al. (2016)’s when examining the impacts of forecast 

error in the Independent System Operator New England123 and similar in approach with other 

studies examining the impacts of deep decarbonization (e.g., Arbabzadeh et al. 2019). Figure B-1 

contains the final grid mix.  

 

We modeled WECC using the commercial PCM software PLEXOS, which solves the unit 

commitment and economic dispatch problem using a mixed integer linear optimization. PLEXOS 

has been used in a number of grid studies.121,125–127 Details of how each scenario was built and 

executed in PLEXOS are included in the Appendix B-1.  
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For each scenario, we simulated the day-ahead market on an hourly time scale and the real-

time market on a five-minute time scale, both consistent with current CAISO operation. CAISO 

also changes commitments in the Residual Unit Commitment, which occurs after the day-ahead 

market is complete, in the Short-Term Unit Commitment, with is part of the real-time process and 

extends three hours beyond the trading hour, and in the Real-Time Unit Commitment, which is 

run every 15 minutes.128 However, rather than explicitly modeling CAISO’s additional markets 

(which would increase the complexity of the model), we simulated improved or degraded VRE 

forecasts, ranging from  -25% (i.e., forecast error is increased 25%) to +100% error (i.e., forecast 

error is decreased 100%). Improved forecasts offer insights similar to these nearer term 

commitment changes as well as potential futures where VRE forecasting capabilities have 

improved.  

Similar to CAISO’s operation, we only allow certain units with short cycle times to have 

unscheduled changes in commitment status in the real-time market. Minimum up and down times 

are defined by unit type and size (details in Table B-1), with combustion turbines having the 

shortest times. Given the operational constraints associated with other types of the fossil units, 

only combustion turbines are sufficiently responsive to have unscheduled shutdowns and startups 

in the real-time market. In addition, batteries and pumped hydro storage are also not constrained 

to their day-ahead schedules. 

Daily net load shapes vary significantly across the year. In order to understand important 

relationships without modeling the entire year, which would be highly computationally intensive, 

we modeled the weeks in which we expected to observe the largest and smallest system impacts 

from the net load shapes.  As such, we considered four weeks: the weeks with the greatest and 

least ramping, as well as the weeks with the greatest and least inter-hour variability. We calculated 

the ramp for a week as the sum of the absolute value of the difference in net load and the beginning 

and end of each hour. We calculated the variability for a week as the sum of the difference between 

the maximum and minimum values in each hour of the real-time net load. Appendix B-1.2 contains 

the calculations used to select these weeks.  
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 Statistical methods to evaluate commitment changes 

A key PCM result that we analyzed is the generator commitments for the day-ahead 

simulation and the real-time operational decisions. When a generator’s commitment status changes 

between the day-ahead and the real-time results, we categorize this as a commitment error (i.e., an 

unscheduled generator shutdown or startup). In this section, we use day-ahead grid system model 

inputs (e.g., forecasted load and VRE generation) to create a regression model with the goal of 

predicting the commitment error. We hypothesize that the net load shape in a given hour and the 

four hours leading up to a given hour will impact the commitment error within that hour. This four-

hour window corresponds to the four hour recommitment window used in CAISO’s short-term 

unit commitment. However, our regression model could be applied to the output of the day-ahead 

unit commitment schedule or the four-hour ahead commitment schedule to modify generator 

commitments. We selected a linear regression model, to better understand the drivers for 

commitment error. Given that the regression is an additional modeling step that would need to be 

deployed during day-ahead market decisions, we selected a method with minimal computation 

time.  

The commitment error is calculated as follows for each hour, t, and generator, 𝑖, 

𝐶𝐸𝑡 = ∑ 𝛼𝑖
𝑛
𝑖=0 (

1

12
(∑ 𝐶𝑅𝑇,𝑖,𝑘,𝑡

12
𝑘=1 ) − 𝐶𝐷𝐴,𝑖,𝑡),   (1) 

where t, is the hour for which the commitment error is being calculated, k is the five minute interval 

within hour t used in the real-time market, n is the number of generators available to change 

commitment status, 𝛼𝑖 is the maximum capacity for generator 𝑖, and  𝐶𝑅𝑇,𝑖  and 𝐶𝐷𝐴,𝑖 are the on/off 

binary commitment operators for generator 𝑖, in each time increment in the real-time (RT) and day-

ahead (DA) markets.  The day-ahead market operates on an hourly basis and the real time operates 

on a five-minute basis, thus requiring twelve time increments to determine the real-time 

commitment status over an hour.  

Model Variables 

We characterize the net load shape using five variables and VRE generation as a fraction 

of generation. See Table 3-1 for each variable’s description and associated equation.  We 

calculated each variable for CAISO and WECC. The dataset contains 4,032 observations for each 

variable, given we ran four weeks under six levels of forecast error. Each variable is modeled 
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across a span of hours leading up to a given hour, t, (Value across hours, Table 3-1) and/or for 

each individual hour leading up to a given hour, t, (Values in each hour, Table 3-1). 

Table 3 - 1, Regression model variable definitions 

Name Value in each hour (n=0…4) Value across hours (n=0…4) Model Equation Type 

Net Load 𝜌𝑡 (2) N/A  𝛽1𝜌𝑡 + 𝛽2𝜌𝑡
2 

Relative 

Net Load 
𝑅𝜌𝑡 =  

𝜌𝑡

𝜌𝑚𝑎𝑥,𝑑𝑎𝑖𝑙𝑦 
 (3) N/A 

 
𝛽1𝜌𝑡 + 𝛽2𝜌𝑡

2 

Ramp Rate 𝜀𝑡−𝑛 =  𝜌𝑡−𝑛 − 𝜌𝑡−𝑛−1 (4) 𝜀𝑡0−𝑛 =  𝜌𝑡 − 𝜌𝑡−𝑛−1 (5) 𝛽1𝜀𝑡 

Relative 

Ramp Rate 
𝑅𝜀𝑡−𝑛 =

 𝜌𝑡−𝑛 − 𝜌𝑡−𝑛−1

𝜌𝑡−𝑛−1

 (6) 𝑅𝜀𝑡0−𝑛 =
 𝜌𝑡 − 𝜌𝑡−𝑛−1

𝜌𝑡−𝑛−1

 (7) 𝛽1𝑅𝜀𝑡 

Variability N/A 
 

𝜇𝑡0−𝑛 = ∑|𝜌𝑡−𝑛 − 𝜌𝑡−𝑛−1|

𝑛

0

 (8) 𝛽1𝜇𝑡 

Fraction 

VRE 

Generation 

N/A 

 𝑔𝑡0−𝑛 =
𝜔𝑡−𝑛

𝜃𝑡−𝑛

 

𝜔 = 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑉𝑅𝐸 

𝜃 = 𝐿𝑜𝑎𝑑 

(9) 𝛽1𝑔𝑡 

Note: t represents the hour of interest, n represents the number of hours prior to the hour of interest 

 

Net Load, 𝜌𝑡, is defined as the total system demand minus solar and wind generation. We 

hypothesize that increased commitment error occurs during times of high ramp rates and high 

variability, which often correspond to median load levels. Meaning, we would expect median load 

levels to have higher commitment error. Therefore, we model the relationship between net load 

and commitment error as non-linear and more specifically as a second order quadratic. (eq. 2).  

Additionally, the magnitude of the net load does not tell the whole story. The size of a 

power system region and the number of generators present may influence the magnitude of 

commitment errors. Therefore, it is important to evaluate the impact of where on the net load curve 

the hour falls. If it is near the peak or trough, there is likely less change than if the net load is in 

the middle where ramping occurs. To address this, we considered net load as a percentage of a 

region’s peak net load (𝑅𝜌), modeled as a second order quadratic (eq. 3). 

We assume a linear relationship for each of the four remaining variables; VRE Forecasted, 

𝑔𝑡, Ramp Rate, 𝜀𝑡, Relative Ramp Rate, 𝑅𝜀𝑡, and Variability, 𝜇𝑡. We hypothesize that the fraction 

of load supplied by VRE Forecasted, 𝑔𝑡, will have a positive linear relationship with commitment 
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error (eq. 9). The greater the fraction of VRE, the greater the unplanned generator shutdowns and 

vice versa. We also consider that a high rate of change (i.e., ramp rate) will cause more 

commitment error (eq. 4 & 5). However, the errors are also related to how many generators are 

already committed. There is inherently greater down flexibility on the system when there are a 

larger number of generators committed and greater up flexibility when fewer generators are 

committed but the system is restricted in the opposite directions so we also modeled the relative 

ramp rate (eq. 6 & 7). The Relative Ramp Rate was calculated as the change in net load across a 

time interval relative to the load at the beginning of the time interval. Another potential predictor 

is the net load variability across and within hours. Given in the day-ahead we are using hourly data 

and, thus, we have no inter hour variability, we therefore calculate intra hour variability, μt, by 

taking the absolute value of the change in net load across an hour (i.e., absolute value of the net 

load ramp) (eq. 8).  

Along with the net load shape, we hypothesize that the hour of the day will be a predictor 

of the commitment error. However, given that hours at the beginning and the end of the day (i.e, 

night) have the least variable net load and the morning and evening hours have the largest changes 

in net load, we modeled the hour variable with a third order quadratic relationship. This captures 

our hypothesis that in the morning there will be greater unplanned generator shutdowns and in the 

evening, there will be greater unplanned generator startups. 

Additionally we model the week as a confounding variable, as it could influence the 

commitment error.  

We ran a separate model for each level of forecast error to determine the impact forecast 

error would have on the predictability of our input variables. 

Selecting Model Variables 

In order to test the model’s predictability, prevent overfitting, and determine the 

importance of each variable, we used the k-fold cross validation method, with five folds.129 The k-

fold validation method randomly splits the data into k sets or folds. We specified five folds given 

the number of variables and observations. The method runs the model five times, each time with 

a different fold acting as the test set and the remaining acting as the training set. We completed the 

k-fold cross validation method three times to remove impacts of data partitioning. All R2 values 
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discussed in the paper represent the average of the k-fold method test set R2 values. The average 

R2 of the k-fold tests represents the predictability of the model. This process is repeated three times 

to average across different data partitioning. The k-fold test was also repeated with each variable 

removed (n-1). The average R2 value of the test sets with a variable removed offers insights into 

its importance as a predictor. After running the model with each variable removed any results with 

an average test set R2 equal to or greater than the test set R2 with all variables included was removed 

from the model, as this indicates the variable does not contribute to the model’s predictability.  

The above process is conducted for each forecast error scenario and region (CAISO and 

WECC) separately. This results in 12 models, each potentially having different variables and 

coefficients, with each model having 672 observations of each variable 

 

 Results and Discussion 

We begin analyzing the results of the twelve regression models, one for each level of forecast 

error and regional boundary, by comparing the predictive power of each model.  

 Model Predictive Power 

We find that 21-57% of the variability in commitment error can be explained by the 

forecasted load and VRE generation variables, Table 3-1, based on the average R2 values (Figure 

3-2). All references to R2 values in the results and discussion reference the average R2 values 

calculated using the k-fold method on the final regression models after the removal of the variables 

that did not increase the R2 value. On average, the predictability of the regression model increases 

with a reduction in forecast error. We also see that the model’s predictability improves with the 

broader geographical area; its performance is better for WECC than for CAISO. We examine how 

the commitment error varies between regions and levels of forecast error to better understand 

differences in the predictive power of the models 
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Figure 3 - 2, Strength of model predictions. Average R2 values are the average values from preforming the k-fold 

method on the individual regression models developed for the forecast scenarios and regions.  

 

 Influence of Region Size 

Overall, the model’s predictive power is consistently better in WECC than CAISO. Figure 

3-3 shows the distribution of commitment error for WECC and CAISO. Both are normally 

distributed, however, CAISO’s median is negative, meaning there were more unplanned startups, 

and WECC’s is positive, meaning there were more unplanned shutdowns. There is also greater 

variation in WECC’s commitment error compared to CAISO’s. The skewed nature of the data in 

WECC is a result of how the hydro generation (non-pumped storage) was modeled. A limit was 

placed on the hydro generation in the day-head to ensure that units did not exceed a monthly 

maximum generation. However, this constraint was removed in the real-time. Without the 

constraint, hydro units operated at full capacity in each hour reducing the generation required from 

combustion turbines causing them to de-commit. There is a greater amount of hydro in WECC 

than CAISO, causing WECC commitment error to be skewed positively toward de-commitment. 

Investigation of the modeling results showed this to be a limitation to the test case, as the hydro 

generation would not be unconstrained in a realistic real time market. While this deviation from 

realistic hydropower operation adversely impacts the magnitude of the PCM results in this study, 

we are still able to demonstrate the novelty of the method on this test case. 
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Figure 3 - 3, Histogram of hourly commitment error for WECC and CAISO for all forecast errors, and weeks 

histogram of hourly commitment error for WECC and CAISO 

The skew in commitment error in WECC is likely not the primary reason for the WECC 

models to be more predictive as this error operates in a similar manner to the forecast error, which 

does not have a major impact on the model’s ability to predict commitment error.  In a larger region 

(WECC), the step function nature of commitment changes are averaged over a larger number of 

generators, in turn, better fitting a linear model. Additionally, because WECC (outside of CAISO) 

is modeled with less transmission detail, commitment changes are less likely to be driven by 

congestion, which may be challenging to predict from net load shape alone. Given the 

interconnectedness of the system, we can infer that generators outside of CAISO are also 

responding to VRE integration, with shifting imports and exports, further complicating the ability 

to predict commitment changes on CAISO. On average, net imports meet 6% of CAISO’s load 

across the four weeks with a standard deviation of 9%. We do know that the difference in 

commitment predictability does not relate to a difference in the capacity that is able to change 

commitment in the real-time, given this capacity, relative to peak load across the four weeks, is 

similar in CAISO and WECC  26% and 22%  respectively.  

Even though the regression model is less predictive on a smaller region, if the regression 

model were to be used to inform and change commitment decisions, it should be utilized at the 

same regional scale at which the day-ahead market is operated. This would enable the operators to 

more accurately select the units to commit or de-commit in response to the model results, which 

are likely to be the marginal generator/s. Selecting the marginal generators would mean that energy 

price was still a function of economic bids. 
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 Influence of Forecast Error 

Figure 3-4 shows the impact of forecast error on the average commitment error as a 

percentage of average load (termed “relative commitment error”). The relative commitment error 

does decrease with improved forecast, decreasing 3.3% for WECC and 5.2% for CAISO when 

comparing a -25% and 100% reduction in renewable forecast error. Although modest in 

magnitude, these reductions illustrate that improved forecasts can reduce commitment error. When 

the regression model is run on the commitment error after subtracting out the error in the perfect 

forecast error case, the R2 value never exceeds 0.1. This implies that the model performs well in 

predicting the relationship between net load characteristics and commitment error, but it is not 

successful at predicting the additional commitment error caused by forecast error, reducing the 

model’s predictive power with greater forecast error. It is important to note that even with a perfect 

renewable forecast, there are still commitment errors in the real-time market given the intra-hour 

variability not captured in the hourly day-ahead market.  

 

 
Figure 3 - 4, Impact of week and forecast error on the average commitment relative to the average load for WECC and CAISO. Error bars 

represent the standard deviation of each value across forecast error scenarios when the x-axis is weeks and across weeks when the x-axis is 

forecast error (V=Variability, R=Ramp) 

 

 

 Predictive Potential of Independent Variables 

The initial regression model contained 34 variables, which describe the forecast load and 

VRE generation, with 672 observations each.  After selecting for predictive variables for each level 

of forecast error and region, the models contained between 15 and 24 variables. Table 3-3 shows 
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the relative importance of each variable to the model’s predictability in reference to their impact 

on the R2 value of the model. The more the removal of the variable reduces the R2 of the model, 

the greater its importance. If the boxes in Table 3-3 are patterned, the corresponding variable had 

no impact on the results.  

Based on the results in Table 3-3, Fraction VRE (𝑔𝑡), Ramp Rate (𝜀𝑡), and Week (h) 

contribute most to predicting commitment error in WECC and Net Load (ρt), Relative Net Load 

(Rρt), and Hour (ℎ) contribute most to predicting commitment error in CAISO. Order of 

importance of these variables varies by level of forecast error. In general, removing variables in 

the CAISO models had a greater impact of the R2 value. This could be a function of the, the level 

of constraint in the system, or the overall predictability of the model. 
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Table 3 - 2, Percent decrease in R2 value of removing each variable from the regression model and running the k-

fold test. All values with zero had no impact of the R2 or their removal increased the predictability of the model 

   
% 0       14   

                      

              
    WECC CAISO 

Variable 
Hour  

(t or t-n) 

Improvement in Forecast Error (%) 

-25 0 25 50 75 100 -25 0 25 50 75 100 

Net Load (𝜌𝑡), B1   0                         

Net Load (𝜌𝑡), B2 0                         

Relative Net Load (𝑅𝜌𝑡), B1 0                         

Relative Net Load (R𝜌𝑡), B2 0                         

Fraction VRE (𝑔𝑡) 

0                         

1                         

2                         

3                         

4                         

Ramp Rate (𝜀𝑡) 

0                         

0-1                         

0-2                         

0-3                         

0-4                         

Relative Ramp Rate (𝑅𝜀𝑡) 

0                         

1                         

2                         

3                         

4                         

0-1                         

0-2                         

0-3                         

0-4                         

Variability (𝜇𝑡) 

0-1                         

0-2                         

0-3                         

0-4                         

Hour (h), B1 0                         

Hour (h), B2 0                         

Hour (h), B3 0                         

Controls 

Week 0                         

 

Just as CAISO and WECC have different variables that contribute most to the prediction 

of commitment error, it is likely that other regions will as well. Therefore, after modeling only one 

region of the country we cannot assume the variables we found most predictive would be most 

predictive in other grid regions. However, it would be useful for grid operators to understand the 

grid characteristics that are most likely to lead to greater errors in commitment in their own region 

making it important to run the regression on a regional basis.  

Additionally, it is important to know the directionality of the relationships between 

variables and commitment error. The values in Table 3-2 provide information on each variable’s 
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contribution to the predictability of the model, but does not provide information on the 

directionality of the relationships between variables and commitment error. Table 3-3 shows the 

value of each variables’ regression model coefficient (i.e., the directionality of each relationship). 

The coefficients in Table 3-3 are for the final model after the k-fold test was used to subset the 

predictive variables.   

Table 3 - 3, Correlation coefficients for each level of forecast error and region’s final regression model. All values 

are on a log scale. 

   
Log(B) 7.5   0    -10   

                      
              

    WECC CAISO 

Variable 
 Hour  

(t or t-n) 

Improvement in Forecast Error (%) 

-25 0 25 50 75 100 -25 0 25 50 75 100 

Net Load (𝜌𝑡), B1   0                         

Net Load (𝜌𝑡), B2 0                         

Relative Net Load (𝑅𝜌𝑡), B1 0                         

Relative Net Load (R𝜌𝑡), B2 0                         

Fraction VRE (𝑔𝑡) 

0                         

1                         

2                         

3                         

4                         

Ramp Rate (𝜀𝑡) 

0                         

0-1                         

0-2                         

0-3                         

0-4                         

Relative Ramp Rate (𝑅𝜀𝑡) 

0                         

1                         

2                         

3                         

4                         

0-1                         

0-2                         

0-3                         

0-4                         

Variability (𝜇𝑡) 

0-1                         

0-2                         

0-3                         

0-4                         

Hour (h), B1 0                         

Hour (h), B2 0                         

Hour (h), B3 0                         

Controls 

Week (HighVar) 0                         

Week (LowRamp) 0                         

Week (LowV) 0                         
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We discuss a few illustrative examples of the relationships found in WECC and CAISO 

for the most predictive variables. Again, the results in Table 3-3 are specific to modeling 

assumptions used in the PCM and should not be assumed to hold outside of this analysis. 

The average coefficients across levels of forecast error for Net Load (ρt), and Relative Net 

Load’s (Rρt), both important variables in predicting commitment error in CAISO, result in 

functions that are concave down with vertexes when the Net Load or Relative Net Load (Rρt) are 

very close to zero.  This means that larger values for Net Load and Relative Net Load (Rρt) yield 

greater unplanned startups in the real-time. In a smaller region, the load is likely a stronger 

indicator of generator activity given that changes in load are distributed over a smaller number of 

generators. The Relative Net Load (Rρt) coefficients are more consistent across the two regions 

than actual Net Load (ρt).  The Relative Net Load (Rρt), which is based on the net load relative to 

the day’s peak load, could be an indicator of time of day, which has a strong influence on model 

predictability or ramp rate. For example, if the Relative Net Load is close to one, there is likely 

going to be a decrease in load in the future, which is more likely associated with unplanned 

shutdowns. The Net Load (ρt) variable does not capture this information as well, given the 

magnitude of the peak load is different between days.  

The hour (h), a strong predictor of commitment error in CAISO, has coefficients that result 

in a function with peak in the morning hours and a trough in the evening hours. This is consistent 

with our hypothesis that the morning hours will have more unplanned shutdowns, due to rapid net 

load reductions, and evening hours will have more unplanned startups, due to rapid net load 

increases.   Figure 3-5 illustrates this trend for CAISO but not for WECC. If an hourly trend exists 

in WECC the unplanned shutdowns caused by the hydro modeling are likely overshadowing it. In 

general, the significance of the hour variables could indicate a predictable trend in commitment 

error in certain hours of the day. If a consistent hourly trend exists this would be extremely helpful 

to improve generator scheduling. It would be relatively simple to overcommit the same hours each 

day if hours the model predicts unplanned startups. 

When significant, Fraction VRE (gt) and Ramp Rate (εt), both important predictors in 

WECC, have (near) consistent directional trends across levels of forecast error and region with the 

sign of the relationship alternating between hours. Fraction VRE (gt), was the best predictor in 

hour four with a positive relationship, meaning the greater the percent VRE the more shutdowns.  
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For Ramp Rate (εt), the time between zero and three had the largest relative importance, with a 

negative relationship, indicating when ramp is large and positive there are more unplanned 

startups. This is the logical relationship; however, when examining the ramp across different time 

spans leading up to a given hour, the directionality of the correlation alternates. We believe that 

this result is driven by the minimum cycle times of the combustion turbine units. If a combustion 

turbine is committed, it must operate for at least two hours and if it is de-committed, it must remain 

off for at least two hours. In our model, the day-ahead and real-time commitments are optimized 

across the entire day.  Therefore, commitment changes will happen with anticipation of future load 

levels resulting in the delayed correlations. Knowing the time increments that have the strongest 

impact of commitment error are extremely important to understanding how to improve generator 

schedules. It is important to note that the Fraction VRE (gt) values are only within the hour (t-n) 

while the Ramp Rate (εt) spans hours (t to (t-n)).  

 

 
Figure 3 - 5, Average commitment-error in each hour for WECC and CAISO for all forecast errors and weeks. Error 

bars represent the standard deviation. 

 

The week is also a significant predictor of commitment error, especially in WECC. The 

quantity of commitment error itself varies between the weeks, as seen in Figure 3-6.  
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Figure 3 - 6, Impact of week on the average commitment relative to the average load for WECC and CAISO. Error 

bars represent the standard deviation of each value across forecast error scenarios when the x-axis is weeks and 

across weeks when the x-axis is forecast error (V=Variability, R=Ramp) 

Given the Low Ramp (Low-R) and Low Variability (Low-V) weeks have greater 

commitment errors as a percent of load other factors are likely contributing to the weekly 

difference in commitment error, for example the percent of load supplied by VRE. As shown in 

Figure 3-7, High Ramp (High-R) and High Variability (High-V) weeks have larger loads and 

higher percentages VRE generation than the Low Ramp and Low Variability weeks. The relative 

differences between weeks illustrated are similar in CAISO and WECC; however, CAISO’s 

percent of generation from VRE ranges from 39 to 56% where WECC’s ranges from 26% to 36%. 

The week could also be representative of an underlying seasonal trend. If there is a seasonal skew 

in commitment error this could be additional knowledge to further improve scheduling. 
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Figure 3 - 7, a) WECC and CAISO non-VRE generation and VRE generation post-curtailment and b) percent of 

load served by VRE. Generation is averaged over the forecast error cases. (VRE=variable renewable energy, 

V=variability, R=ramp) 

We address these intra-hour ranges with the Variability (𝜇𝑡) variable, which had a 

constantly positive coefficient in the hour of interest, indicating that increased Variability (𝜇𝑡) 

correlates to an increase in unplanned shutdowns and a decrease in unplanned startups.  The 

Variability (𝜇𝑡) coefficients in other time increments did not have consistent signs and were often 

insignificant. This is not surprising considering the logical relationship would be a correlation 

between the absolute value of commitment error and Variability (𝜇𝑡).  

We did not find significant consistent relationships between Relative Ramp Rate (𝑅𝜀𝑡) and 

commitment error. Although certain Relative Ramp Rate (𝜀𝑅𝑡) variables improved predictions, the 

direction of their relationship was not consistent across regions and levels of forecast error nor was 

their significance. 

 Model System Impacts 

Given the results in this paper are specific to not only the regions modeled but how they 

were modeled, we cannot use the correlations found between specific variables and commitment 

error to make generalizations. However, we can say that the regression models were able to predict 

between 21-57% of commitment error in our test case, which suggests that this approach could be 

deployed in a manner that improves generator scheduling. However, in order to understand how 

successful the regression models are at reducing commitment error and improving operational 
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efficiency the PCM would need to be re-run with a modified commitment schedule based on the 

regression model output. This is an ideal area for future work. Given the incremental nature of 

commitment, small improvements in day-ahead commitment decisions will not mean equivalent 

improvements in real time dispatch. Additionally, there is much more complexity that could be 

added to this model. We could employ time series forecasting methods, like time series 

decomposition, exponential smoothing, or ARIMA models but we cannot say whether this added 

complexity would be worth the computational time without first testing the simple case in an 

updated PCM model. 
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CHAPTER 4 

 

Reducing CO2 emissions from U.S. steel consumption by 70% by 2050 

 

 

Abstract 

The steel sector emits 25% of global industrial greenhouse gases and the U.S. is the world’s 

second-largest steel consumer. In this article, we determine how CO2 emissions attributable to U.S. 

steel consumption can be cut by 70% by 2050. We vary four key steel flow parameters (U.S. steel 

stocks per capita, recycling rate, product lifespan, and manufacturing yield) in a dynamic material 

flow analysis to determine annual steel demand and the scrap available for recycling. We combine 

these data with steelmaking technology and trade scenarios to calculate potential U.S. steel sector 

emissions in each year to 2050. Only 20% of the pathways we modeled for the U.S. steel sector 

achieved the emissions target. Emissions in 2050 are most sensitive to the CO2 released per 

kilogram of steel produced and the steel stocks per capita. Deployment of emerging low carbon 

steelmaking technology alone is insufficient to achieve the emissions cut; conversely, reducing 

stocks per capita from the current ~11 tons/capita toward levels in the U.K. and France, ~8 

tons/capita,  would enable the emissions cut to be achieved under a range of foreseeable 

steelmaking technology scenarios and steel flow parameters. If action to reduce per capita steel 

stocks is delayed by more than five years then it is  likely infeasible for the U.S. steel sector to stay 

within its 2050 CO2 budget because of the increased demand for emissions-intensive steel made 

from iron ore. 
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 Introduction 

All sectors of the economy will need to decarbonize significantly in order to stabilize the 

global temperature and prevent the most extreme consequences of climate change.4 The 

Intergovernmental Panel on Climate Change (IPCC) recommends a cut in greenhouse gas (GHG) 

emissions of 41-72% by 2050 from 2010 levels in order to ‘likely’ stay below a 2°C temperature 

increase.1 In 2017, the industrial sector, which produces materials, products, fuels and chemicals, 

accounted for 21% of the world’s anthropogenic GHG emissions.5 This percentage has likely 

shifted slightly since 2017 and has the potential to shift with changing economies. The production 

of a few key materials makeup the majority of industry emissions. Steel production alone 

accounted for 25% of global industry emissions in 2017,3 and global steel demand is projected to 

double by 2050.16 Wesseling et al. (2017) assert that energy-intensive processing industries, like 

steel, will need to have zero emissions before 2070 to meet the “well below 2°C” target.28 

However, despite industry’s significant contribution to global GHG emissions, most 

decarbonization roadmaps (e.g., Rockström et al. (2017)) present little guidance for the industrial 

sector, and even less for the steel sector specifically, on how to achieve the necessary emissions 

cut.4,28,130,131 Supekar and Skerlos (2017) outline how the U.S. could meet IPCC goals in the 

automotive and energy sectors,132 but no analysis has been completed for the U.S. steel sector. 

This work seeks to fill that gap by determining pathways that reduce U.S. steel sector emissions 

by combining options to deploy emerging steelmaking technology with options for reducing steel 

demand. The U.S. is the world’s second-largest consumer of steel behind China.133 Therefore, the 

emissions attributable to the U.S. steel sector account for a significant portion of global steel sector 

emissions.  

Steel sector emissions predominantly depend on the mass of steel consumed and the 

emissions released per kilogram of steel produced, which we term the emissions intensity (EI) of 

production. Several studies have sought to predict the mass of future steel flows. Yin and Chen 

(2013) use a stock-based dynamic material flow analysis model with stock forecasts based on 

relationships such as floor space per capita versus GDP.35 Toi and Sato (1998), Hatayama et al. 

(2010), and Pauliuk (2012, 2013a) also predict future flows using stock-driven dynamic material 

flow analysis models. They model stock saturation by extrapolating logistic curves fitted to 

historical data of stocks per capita against time or GDP for select sectors.36,37,134,135  Pauliuk et al. 
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(2013a)’s global steel demand prediction (2008-2018) had only a 6% error in annual demand and 

a 1% error in cumulative demand when compared to recorded World Steel Association values.37,40 

These papers make strides in predicting steel demand and highlight the use of stock-driven 

predictions of future steel flows. However, none of the above articles focus on the U.S. nor do they 

discuss the emissions implications of the predicted flows, which requires knowing what the 

production EIs are now and what they could be in the future. 

The energy intensities of widely used steelmaking technologies are well documented in 

seminal works such as Cairns et al. (1998) and Worrell et al. (2007). Both include detailed data on 

the current process energy consumption of commercialized steelmaking technologies as well as 

potential reductions through best available technologies.33,34 These energy intensities have been 

converted to EIs that can be found in academic publications136–139 and grey literature.33,140,141 

Currently, there are no economically competitive low carbon primary steelmaking technologies. 

The technologies that show the greatest potential to reduce CO2 emissions (e.g., electrolysis and 

hydrogen direct reduction) rely on expensive electrical energy and are currently 4 to 6 times more  

electricity intensive than the electric arc furnaces used to recycle scrap steel (Appendix C Section 

4). 

A few researchers have combined estimates of future steel flows (e.g., demand) and 

steelmaking EIs to predict future steel sector emissions; however, none have conducted a 

parametric study that reveals the options for how the sector needs to evolve over time in order to 

meet an emissions goal. Most studies do not consider potential changes to the demand 

trajectory,138,142–147 and only a small subset consider changes to steelmaking technology.3,38 

Milford et al. (2013)’s global analysis is the most comprehensive found in the literature. Their 

analysis includes both supply (e.g., electrolysis deployment) and demand (e.g., more intense 

material use) emission reduction options. Globally, the effect on emissions of improving supply-

side technology is negated by increasing demand for emissions-intensive primary steel to build-up 

societal stocks in the developing world. Subsequently, Milford et al. find that even aggressive 

deployment of supply-side efficiency measures can only reduce global steel sector emissions by 

20% by 2050.137   In contrast, U.S. steel consumption per capita has plateaued since the 1980s.148 

Without a U.S. focused study, it is unclear whether supply-side measures alone are sufficient for 

the U.S. steel sector to meet the emissions target.  
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 Scope of this Work 

The goal of this study is to define pathways that cut CO2 emissions attributable to U.S. 

steel consumption by 70% from a 2010 baseline by 2050, which is close to the maximum reduction 

recommended by the IPCC.1 We focus on CO2 emissions because it accounts for 93% of the GHG 

emissions from primary and secondary steel production.149 

Each pathway defined in this analysis is a unique combination of steelmaking technology 

scenarios, trade scenarios, and steel flow parameters, together representing a comprehensive suite 

of options for reducing emissions. Therefore, this analysis informs an evaluation of the efficacies 

and trade-offs between a supply-side technology driven and/or demand driven emissions reduction 

strategy for the steel sector. The steelmaking technology scenarios determine the EI of primary 

and secondary steelmaking in the U.S. and the rest of the world (ROW). The trade scenarios 

determine the percentage of U.S. steel consumption that is produced overseas. This analysis 

focuses on emissions attributable to U.S. steel consumption and therefore includes emissions 

released outside of the U.S. in order to make steel for U.S. consumption. The four steel flow 

parameters (U.S. steel stocks per capita, recycling rate, steel lifespan, and manufacturing yield) 

determine future steel demand and the availability of scrap for recycling. Policy interventions (e.g., 

to increase recycling rates) could be made, or societal or commercial shifts (e.g., towards longer  

product lifespans) could be realized that reduce future steel demand. Therefore, a range of values 

is modeled for each steel flow parameter in 2050. A business as usual (BAU) pathway is defined 

as equal to the base case steelmaking technology and trade scenario and base case set of steel flow 

parameters (see Methodology). 

This article is intended to be useful to a broad audience, including industry, policymakers, 

and researchers. Each of these stakeholders has the potential to take action that could shift the steel 

sector towards a lower emissions pathway.   
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 Methods 

The methods section explains how the annual and cumulative CO2 emissions were 

calculated for each simulated pathway of the future U.S. steel sector (4.2.1), and how the 

steelmaking technology scenarios (4.2.2), trade scenarios (4.2.3), and steel flow parameters 

(4.2.3) were defined and combined.  

 Calculating U.S. steel sector emissions and targets 

The annual CO2 emissions attributable to U.S steel consumption, 𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡,𝑖 in 

year t (2020-2050) under simulated pathway i, were calculated using eqn. 1:  

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡,𝑖 =  ∑(𝑝𝑟𝑜𝑑𝑡,𝑖,𝑡𝑒𝑐ℎ
𝑈.𝑆.  ×  𝐸𝐼𝑡,𝑖,𝑡𝑒𝑐ℎ

𝑈.𝑆. )

𝑡𝑒𝑐ℎ

+ ∑(𝑝𝑟𝑜𝑑𝑡,𝑖,𝑡𝑒𝑐ℎ
𝑅𝑂𝑊  ×  𝐸𝐼𝑡,𝑖,𝑡𝑒𝑐ℎ

𝑅𝑂𝑊 )

𝑡𝑒𝑐ℎ

, (1) 

where 𝑝𝑟𝑜𝑑𝑡,𝑖,𝑡𝑒𝑐ℎ
𝑈.𝑆.  and 𝑝𝑟𝑜𝑑𝑡,𝑖,𝑡𝑒𝑐ℎ

𝑅𝑂𝑊  are the masses of steel produced for U.S. consumption by each 

steelmaking technology in the U.S and the ROW respectively; and, 𝐸𝐼𝑡,𝑖,𝑡𝑒𝑐ℎ
𝑈.𝑆. , and 𝐸𝐼𝑡,𝑖,𝑡𝑒𝑐ℎ

𝑅𝑂𝑊  are the 

EIs of those steelmaking technologies in the U.S. and the ROW respectively. This research focused 

on emissions released from steelmaking (i.e., the conversion of iron ore to steel or the melting of 

scrap), which accounts for 70-77% of the CO2 emissions released during the production of a steel 

part.149 The majority of the remaining emissions are indirect emissions from the generation of 

electricity used to power manufacturing processes.150  

The IPCC emissions targets are in reference to 2010. As with pathway emissions (eqn. 1), 

2010 emissions are dependent on steel flows (collected from World Steel Statistical Yearbook)40 

and production EIs (Appendix C Section 6).  

 The emissions intensity of production: Steelmaking technology scenarios 

Four steelmaking technology scenarios determine the EIs used in eqn. 1. Each scenario 

defines the mix of primary and secondary steelmaking technologies and the EI of the electricity 

grid for each year (2020-2050) in the U.S. and the ROW. The scenarios were defined by identifying 

emerging steelmaking technologies (section 2.2.1); calculating the EI of the steelmaking 

technologies (section 2.2.2); and, then determining their feasible market share by 2050 (section 

2.2.3). All the steelmaking technology scenarios are equal in 2020. After 2020, they begin to 
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diverge as the market share of emerging technologies increases at a constant rate ultimately 

matching the unique scenario values in 2050. 

 Identifying emerging steelmaking technologies 

Most primary steelmaking facilities in the U.S. and the ROW currently include a Blast 

Furnace (BF) that converts iron ore, coke and sinter to pig iron, and a Basic Oxygen Furnace 

(BOF) that converts pig iron to raw steel. The BF is the most emissions intensive step in 

conventional primary steelmaking, driven by indirect emissions from the coking process and direct 

emissions from fuel burning and reduction of the iron ore. Therefore, for the EI of primary 

steelmaking to reduce significantly the conventional BF must be improved or superseded. 

Alternative commercial and emerging steelmaking technologies were identified through a 

literature review29,151–154 and interviews with industry experts.155–157  

An adaptation of the conventional BF that lowers the EI is BF top-gas recycling where 

the CO from the BF off gases is fed back into the furnace. The returned CO acts as a reductant and 

displaces the use of coke. Direct reduction (DR) can decrease emissions further by reducing iron 

ore to direct reduced iron (DRI) without the emissions intensive coking process. DRI is a sponge 

iron that must go through an EAF or a BOF to produce steel. DR can use a variety of fuels. Coal-

DR and NG-DR (natural gas-DR) are commercialized steelmaking technologies, but globally 

produce less than 5% of all primary steel. H-DR (hydrogen-DR) is an emerging steelmaking 

technology and could release near to zero emissions if the hydrogen were produced using 

electrolysis powered by a renewable electricity source. Smelt reduction (SR) and steel 

electrolysis are both emerging primary steelmaking technologies that also eliminate the coking 

process. SR reduces pelletized iron ore or fines in a two-step process with coal gasification. Steel 

electrolysis is electricity intensive (2,692 kWh/t steel) but could greatly reduce the EI of 

steelmaking if powered by decarbonized electricity (Appendix C Section 4).  

Recycling steel scrap in the U.S. and the ROW currently occurs either in an EAF 

(secondary steelmaking) or in the BOF, where it cools the molten pig iron. For secondary 

steelmaking, we identified no rival technologies to the EAF. Approximately 73% of EAF 

emissions are from electricity generation (Appendix C Section 4); however, some direct emissions 
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are released from burning natural gas within the furnace, which provides up to 30% of the 

energy.158 

Other steelmaking processes considered in this study but excluded from the steelmaking 

technology scenarios include the paired straight hearth furnace (PSH), hydrogen flash ironmaking 

technology (FIT), and carbon capture and storage (CCS) (Appendix C Section 4). PSH is an 

emerging technology that uses coal to produce DRI but is more emissions intensive than 

commercially available NG-DR. FIT is an emerging steelmaking technology similar to DR but 

requires almost twice as much hydrogen as H-DR.136,159 CCS could remove CO2 from the BF 

exhaust gas but has a limited potential to reduce emissions: a European Steel Association analysis 

found that equipping all BFs in the E.U. with CCS by 2050 would lower annual emissions by only 

60% compared to 1990.160 CCS is also expensive (200 to 500 USD/tCO2),3 and it is unproven at 

an industrial scale.160 

 Calculating the emissions intensity of steelmaking technology 

Figure 4-1 shows the EIs of the steelmaking technologies included in the steelmaking 

technology scenarios at different electricity EIs. The EI of each steelmaking technology includes 

the direct emissions from burning fuels (e.g., coke in the BF), and indirect emissions from 

electricity generation and the production of feedstocks (e.g., sinter in smelt reduction). For most 

commercial steelmaking technologies, direct emissions, feedstock and electricity requirements 

were found in academic publications136–139 and grey literature.33,143,160 However, the EIs of 

emerging steelmaking technologies, which have yet to see commercial use (e.g., electrolysis), are 

less well reported. They were derived from data sources that publish anticipated reductions in 

emissions compared to existing technologies; e.g., the European Steel Associations Low Carbon 

Roadmap (2013) reported that making steel using electrolysis can reduce CO2 emissions by 98% 

compared to using a BF (Appendix C Section 4).160,161 
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Figure 4 - 1, Steelmaking technology CO2 emissions intensity (EI) at different levels of electricity decarbonization. 

Pig Iron and direct reduced iron (DRI) must also go through either the BOF or the EAF to become steel. 2010 U.S. 

electricity EI = 531 gCO2/kWh. BF = blast furnace, TG = top gas recycling, SR = smelt reduction, C = coal, H = 

hydrogen, NG = natural gas, EAF = electric arc furnace 

 

 Market share of low carbon technology by 2050 

Table 4-1 defines the four steelmaking technology scenarios used in this analysis. In the 

base case scenario (highest emissions), the market share of each steelmaking technology and the 

EI of the electricity grid is the same in 2050 as it was in 2020 (421 g CO2/kWh). The three other 

scenarios represent increasingly aggressive steelmaking decarbonization (decreasing EIs).  

Figure 4-1 shows that the greatest potential to reduce steelmaking emissions is rapid 

deployment of H-DR and steel electrolysis coupled with a decarbonizing electricity grid. However, 

Fischedick et al. (2014) and Wyns et al. (2016), in comprehensive reviews of the potential for deep 

decarbonization in primary steelmaking, predict that H-DR and steel electrolysis will not be fully 

commercialized until 2030 and 2040 respectively because they are uneconomical at current 

electricity prices without subsidies.29,30  Therefore, even in the low emissions steelmaking 
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technology scenario, H-DR and steel electrolysis were limited to a 20% and 15% market share by 

2050 respectively (Appendix C Section 4).  

SR is also not anticipated to be fully commercialized until 2030 or later152,160 and has a 

limited potential to reduce emissions compared to the BF (Figure 4-1) and was therefore kept at a 

5% market share by 2050 in each scenario.  

NG-DR is already used at a commercial scale; therefore, it is expected that its market share 

could grow significantly by 2050. However, because the EI of NG-DR is still greater than 50% of 

the BF/BOF route, NG-DR was limited in the scenarios to a 40% market share to leave a share for 

cleaner technologies (e.g., steel electrolysis).  

The BF remains a significant source of primary steel in all the scenarios. BF top gas 

recycling and fuel substitution only offers a small reduction in the BF EI. However, BF top gas 

recycling and fuel substitution is assumed to be widely deployed by 2050 in the high, medium, 

and low steelmaking technology scenarios because it is a (relatively simple) retrofit to existing BF 

facilities (Table 4-1).  

The EI of the electricity grid was varied across the steelmaking technology scenarios, 

because it has a significant effect on the overall steelmaking EI (Figure 4-1). In 2018, electricity 

generation from low carbon resources accounted for only 17% of the supply in the U.S.162 and 

26% globally.163 Many studies have shown that 80-100% renewable grids are feasible.8–10,12 

Therefore, in the low emissions steelmaking technology scenario, a 100% reduction in electricity 

emissions is assumed by 2050 (Table 4-1).  
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Table 4 - 1, Parameter values for each technology scenario 

 Technology Scenarios 

 
Base Case (highest) 

 Emissions (2020-2050) 

High 

Emissions 

(2050) 

Medium 

Emissions 

(2050) 

Low 

Emissions 

(2050) 

Primary EI     

U.S. (t CO2/t steel) 2.25 1.77 1.40 0.970 

ROW (t CO2/t steel) 2.31 1.81 1.42 0.970 

Secondary EI     

U.S. (t CO2/t steel) 0.313 0.260 0.180 0.100 

ROW (t CO2/t steel) 0.346 0.285 0.192 0.100 

Electricity Grid Emissions     

% Electricity Emissions Reduction  0% 25% 62.5% 100% 

U.S. Electricity EI (g CO2/kWh) 421164  316 158 0.00 

ROW Electricity EI (g CO2/kWh) 485164 364 182 0.00 

Primary Steelmaking Market Share 2050 U.S.40,165,166 ROW40,166 U.S. & ROW 

Electrolysis  0% 0% 10% 12.5% 15% 

Coal-DR  0% 1% 0% 0% 0% 

NG-DR  10% 6% 20% 30% 40% 

H-DR  0% 0% 5% 12.5% 20% 

Smelt Reduction  0% <1% 5% 5% 5% 

Blast Furnace 90% 93% 60% 40% 20% 

Top Gas Recycling as fuel substitution % of BFs in 2050 0%167 0%167 80% 90% 100% 

Secondary Steelmaking Market Share     

EAF 100% 100% 100% 100% 

 

 Mass of steel produced by each steelmaking technology 

The mass of steel produced each year by each steelmaking technology in the U.S. and the 

ROW (needed in eqn. 1) was calculated by:  

● First, using the steel flow parameters to determine the annual steel demand and scrap 

available for secondary steelmaking (section 2.3.1); 

● Second, using the trade scenario to determine the amount of that steel demand that will be 

produced in the ROW and the amount of scrap that will be exported (section 2.3.2); 

● Third, using an annual mass flow analysis to combine the steel demand, available scrap, 

imports/exports, and steelmaking technology mix to calculate the annual mass of steel 

produced by each steelmaking technology (section 2.3.3). 
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 Calculating U.S. steel demand and scrap availability 

Annual steel demand and scrap availability depend on the steel flow parameters: the 

quantity of steel stocks per capita needed to provide material services (e.g., infrastructure); the 

lifespan of steel that determines how often it needs to be replaced; the recycling rate that 

determines the percentage of available scrap from discarded products collected for U.S. recycling 

or export; and, the manufacturing process yield that determines the steel required per kilogram of 

finished steel product. This analysis simulated changes to the steel flow parameters at a constant 

rate from their values in 2020 to a range of feasible values in 2050 (Table C-1).  

A dynamic material flow analysis (DMFA) was used to calculate the annual scrap 

availability and steel consumption. Based on when a material enters use (i.e., stock), a DMFA uses 

a lifespan distribution to predict when it leaves use as scrap. Not all steel products have the same 

lifespan; therefore, steel flows were disaggregated into four demand sectors (construction, 

transport, machinery, and products) and assigned unique lifespan distributions taken from the 

literature (Table C-6).164–167 The annual scrap availability, 𝑆𝑐𝑟𝑎𝑝𝑡,𝑠,𝑖, in demand sector s under 

simulated pathway i, was calculated using eqn. 2 for t = 2020, 2021, ..., 2050:  

𝑆𝑐𝑟𝑎𝑝𝑡,𝑠,𝑖 = ∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡𝑜,𝑠,𝑖

𝑡

𝑡𝑜=1880
𝐿𝑡−𝑡𝑜

(𝜇𝑡𝑜,𝑠,𝑖 , 𝜎𝑡𝑜,𝑠,𝑖), 
(2) 

where 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡𝑜,𝑠,𝑖 is the annual consumption of steel products in demand sector s 

in year to (dating back to 1880) under pathway i, and 𝐿𝑡−𝑡𝑜
 is the discrete lifespan normal 

distribution of steel with a mean lifespan of µ years and a standard deviation of σ years. 

𝐿𝑡−𝑡𝑜
determines the probability that steel entering use in year t0 will leave use as scrap in year t. 

Increasing the product lifespan delays when a product will be scrapped, reducing annual scrap 

availability (eqn. 2), replacement rate, and consumption (eqn. 3). Steel sector pathways were 

simulated for steel lifespans (µ and σ) that in 2050 are +/- 30% of the 2020 values (Table C-6). 

Base case lifespans are kept at 2020 values. One set of analyses simulated the effect of changing 

the lifespan of only new products (non retrofit case; eqn. 2), and another set of analyses simulated 
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the effect of changing the lifespan of both new and existing products (retrofit case; Appendix C 

Section 2.3). The base case simulated unchanged product lifespans between 2020 and 2050. 

The annual steel consumption (𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑠,𝑖) in demand sector s in future year t was 

calculated using eqn. 3 (a stock-driven DMFA).  

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑠,𝑖 =  (𝑆𝑇𝐶𝑡,𝑠,𝑖𝑃𝑜𝑝𝑡,𝑖 − 𝑆𝑇𝐶𝑡−1,𝑠,𝑖𝑃𝑜𝑝𝑡−1,𝑖) + 𝑆𝑐𝑟𝑎𝑝𝑡,𝑠,𝑖, (3) 

where 𝑆𝑇𝐶𝑡,𝑠,𝑖 is the stocks per capita in demand sector s in year t under pathway i, and 

𝑃𝑜𝑝𝑡,𝑖 is the U.S. population in year t. Consumption is modeled as a function of stocks because it 

is the demand for material services (e.g., commercial real estate) provided by the in-use stock that 

drives the material cycle for materials with long product lifespans (e.g., steel).168,169 By connecting 

stocks and consumption, we can begin to understand how the design and use of steel products will 

have to change in order to reduce consumption.  

The U.S. steel stock per capita in 2020 was estimated to be 10.7 tons/capita using methods 

from Cooper et al. (2020) (Appendix C Section 2.1).148 The range of simulated stocks per capita 

values in 2050 was based on the range of stocks per capita saturation values found in the literature 

for developed countries (8-14 tons/capita).170 In the BAU pathway, the stocks per capita followed 

a logistic saturation curve as a function of time (Appendix C Section 2.3.1), rising from 10.7 

tons/capita in 2020 to 11.4 tons/capita in 2050. Otherwise, the stocks per capita was simulated at 

a constant rate of change between 2020 and 2050. The base case U.S. population is modeled at 

331 million in 2020 and 389 million in 2050, as predicted by the U.S. Census Bureau.171  In order 

to account for the uncertainty in this population projection (eqn. 3), we modeled steel emissions 

for a range of population growth rates (Table C-1); from no population growth to a population of 

452 million by 2050 (similar to the U.S. Census Bureau’s high migration scenario).172 

The DMFA calculated the future annual U.S. steel consumption of finished goods. 

However, this is not equal to the quantity of steel that must be produced (the steel demand) because 

scrap is generated in manufacturing between the production of intermediate steel goods (e.g., 

slabs) and finished steel components (e.g., car doors). The ratio by mass of finished to intermediate 

goods is called the manufacturing process yield and was used to calculate the annual steel demand. 
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Globally, the mean manufacturing process yield is 78%.16 Many researchers have advocated 

improving this yield,16 which could reduce manufacturers’ material costs.16 Therefore, alongside 

a base case process yield value of 78% (unchanged between 2020-2050), we also simulated the 

case of manufacturing process yields increasing at a constant rate from 78% in 2020 to 88% in 

2050. 

The DMFA calculated the future annual generation of scrap from discarded products but 

not all of the scrap produced is recycled (secondary production). The percentage of this scrap 

collected for domestic recycling or export is equal to the recycling rate. The aggregate recycling 

rate in 2020 was 79% (Table C-7).147,173,174 In the base case, recycling rates remained unchanged 

between 2020 and 2050. There is scope for recycling rates to increase but there are also pressures 

that could reduce recycling rates (e.g., due to a decrease in demand for low quality recycled steel 

products (Cooper et al. 2020)); therefore, we modeled a range of recycling rates in 2050 that are 

+/-10% compared to the 2020 values. 

 Calculating steel imports and scrap exports: Trade Scenarios 

International trade of steel and steel scrap must be tracked because the U.S. and the ROW 

currently use different steelmaking technology, have a different ratio of primary to secondary 

steelmaking, and have different electricity EIs. Three trade scenarios (high, medium, zero; Table 

C-8) were simulated in this analysis to encompass the range of possible foreign policy effects on 

iron ore, steel, and scrap trade. The scenarios define the percentage of U.S. steel consumption 

provided by imports and the percentage of collected U.S. scrap that is exported. All the trade 

scenarios model a constant rate of change over time from 2020 to 2050. The highest trade scenario 

reflects an extension of the free trade seen before the imposition of the 2018 U.S. steel import 

tariffs.175 The base case is the medium trade scenario. 

This study used the recycled content method176 to account for emissions attributable to 

trade. No credit (i.e., negative emissions) was assigned to U.S. scrap exports but the recycled 

content of imports was included in the EI of the ROW steelmaking.  

 Annual mass flow analysis: calculating production routes 

An annual mass flow analysis was used to calculate the mass of steel produced by each 

steelmaking technology in the U.S. and ROW in each year of the simulated steel sector pathways. 
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The annual mass flow analysis combined the simulated steel demand, scrap collection, steel 

imports, and scrap exports with the steelmaking technology mix. The mass flow (Figure C-30) was 

made determinant by using a linear optimization, with the masses of steel produced by domestic 

steelmaking technologies as decision variables. The optimization minimized domestic primary 

steelmaking subject to scrap supply and steel demand constraints. In turn, this maximized the use 

of scrap in secondary steelmaking. The optimization objective function is reflective of real-world 

practice because secondary steelmaking is cheaper than primary steelmaking.  

The mass of steel produced using each steelmaking technology in the ROW was 

determined by the U.S. steel consumption, the trade scenario, the predicted ratio of primary to 

secondary steelmaking in the ROW 2020-2050 from Pauliuk et al. (2013),37 and the technology 

mix in each simulated steelmaking technology scenario (Table 4-1). 

 

 Results and Discussion 

In this analysis, we simulated 329,284 distinct pathways for the future of the U.S. steel 

sector (Table C-1). The BAU pathway results in annual emissions of 129 Mt CO2 in 2050 and 3.4 

Gt of cumulative CO2 emissions (2020-2050): 278% and 58% above the annual, 34 Mt, and 

cumulative, 1.7 Gt, emissions target respectively. Only 1 in 5 of the pathways successfully meet 

the requirement that CO2 emissions attributable to U.S. steel consumption are reduced by 70% by 

2050. Figure 4-2 illustrates the sensitivity of meeting the CO2 emissions targets to the steelmaking 

technology scenario, trade scenario, and steel flow parameters. Figure 4-2 shows how the 

percentage of pathways that meet the targets changes when switching between extreme scenarios 

and 2050 steel flow parameter values.  
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Figure 4 - 2, The percentage of pathways that meet the 2050 annual and cumulative CO2 emissions targets (i.e., a 

successful pathway) for extreme trade scenarios (top), steelmaking technology scenarios (top), steel flow parameters 

in 2050 (bottom), and values for the U.S. population in 2050 (bottom-right). The Base Case steelmaking technology 

scenario (Table 4-1) is the highest emissions steelmaking scenario. The percentage changes in recycling rate and 

lifespan represent changes from the base case values listed in Table C-7 and Table C-4. ROW = Rest of World 

Figure 4-2 shows that U.S. emissions are most sensitive to the steelmaking technology 

scenario, stocks per capita, product lifespan, and population. Figure 4-3 shows how these 

steelmaking technology scenarios and steel flow parameters combine to determine the annual 

emissions in 2050, and which combinations stay within the emissions limits. Appendix C Section 

8 includes results figures for all 329,284 simulated pathways. 
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Figure 4 - 3, Annual emissions attributable to U.S. steel consumption in 2050. The gray lines mark the divisions 

between pathways that do (green) and do not (blue) achieve the emission targets. Results generated for the base case 

trade scenario, recycling rate, manufacturing process yield, and product lifespan under the retrofit case. The 

expected U.S. population in 2050 is 389 million people (middle row in each facet) 

All of the pathways that meet the emissions targets represent a significant departure from 

BAU steelmaking and steel demand; extraordinary action is likely required by industry and 

government to sufficiently reduce emissions. Figure 4-3 shows that reducing the EIs of steel 

production and the steel stocks per capita will have the greatest impact on emissions, and are 

discussed in sections 3.1 and 3.2 respectively. Section 3.3 discusses the effect on emissions of 

varying product lifespans, recycling rates, and the manufacturing process yield. Section 3.4 

addresses the effect of delaying action on the feasibility of meeting the cumulative CO2 emissions 

target. 

 Changes Needed in Steelmaking Technology 

If the steel sector continues to use its current technology, then it is highly unlikely that the 

emissions targets will be met. Figure 4-3 shows that only 4% of pathways with the base case 

steelmaking technology scenario stay within the CO2 emissions limits. This 4% of pathways 

represented an average reduction in domestic primary production of 94% between 2019 and 2050. 

Additionally, Figure 4-3 shows that even under the lowest emissions steelmaking technology 

scenario, the emissions targets can only be met if there has also been a reduction in stocks per 
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capita, a reduction in expected population growth, or an increase in product lifespans by 2050. 

Meaning, less carbon intensive steelmaking does not guarantee that the emissions targets will be 

met.  

Decarbonization will likely require a reduction in stocks per capita (Figure 4-3). Figure 4-

4 shows the relationship between reductions in stocks per capita and the deployment of low carbon 

steelmaking technologies. For any level of stocks per capita in 2050, there exists a theoretical 

range (shaded in green) of primary and secondary steelmaking EIs that would allow the U.S. to 

succeed in meeting the 2050 annual emissions cut. However, even under the low emissions 

steelmaking technology scenario, the stocks per capita must be reduced to at least 10 tons/capita 

by 2050 for the emissions targets to be achieved.  

 

 
Figure 4 - 4, Primary and secondary steelmaking EIs needed by 2050 to achieve a 70% cut in annual emissions from 

2010 levels under varying stocks per capita (STC) values in 2050 (green regions) compared to technology scenario 

emissions intensities (EIs). The data plotted is for the base case trade scenario, recycling rate, and manufacturing 

process yield 

The primary steelmaking EI is the main barrier to the emissions targets being met (Figure 

4-4). Unfortunately, low carbon primary steelmaking technologies (H-DRI and electrolysis) are 

not expected to be fully commercialized for another 10 to 20 years. Furthermore, Figure 4-4 shows 

the importance of a decarbonized grid in the development of low carbon steelmaking: the 

emissions target is unachievable with today’s electricity EI irrespective of the steelmaking 

technology if not accompanied by a reduction in stocks per capita to at least 9 tons/capita.  

Hazardous Air Pollutant standards,177 which exclude GHGs, are currently the only air 

emissions regulations on U.S. steelmaking plants. The U.S. government could attempt to motivate 

the development of H-DRI and electrolysis by introducing GHG regulations; however, given low 
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carbon technologies are currently uneconomical the increased costs could cause a shift to greater 

international production. The U.S. government could also provide research and development 

grants aimed at reducing the operation costs of H-DRI and electrolysis, and production and 

investment tax credits to motivate the construction of low emissions steelmaking plants in the U.S. 

However, given the short time frame for action, these actions would likely be insufficient to meet 

the emissions target. Additionally, Figure 4-2 shows that high levels of trade limit the ability to 

decarbonize U.S. consumption through domestic action alone. This is because imported steel has 

a lower recycled content than domestically sourced steel. The U.S. could try to use the 

advancement of low emissions technologies and foreign policy to help motivate a shift to using 

low emissions steelmaking technology in the ROW. 

 Options to reduce U.S. steel stocks per capita 

Of the steel flow parameters, changing the stocks per capita has the greatest effect on 

emissions. Figure 4-2 shows that a reduction to 8 tons/capita by 2050 increases the percentage of 

pathways that stay within the emissions limits to above 83%. Figure 4-4  shows that at 8 tons/capita 

the emissions targets are likely to be achieved even without a change in steelmaking technology. 

8 tons/capita is equal to the saturated stocks per capita in the U.K. and France,168 illustrating that 

a high standard of living can be maintained at a lower stocks per capita value. 

U.S. stocks per capita can be reduced by either decreasing steel consumption (i.e., any 

additions to stock) or prematurely discarding, recycling, and not replacing existing steel products 

(e.g., demolishing a functioning building). Given 64% of the steel stocks that will exist in 2050 

have yet to be built (Figure C-39), there is significant scope for reducing stocks per capita by 

reducing additions to stock and there is no need to discard steel prematurely in order to reduce in-

use stocks. If all new U.S. steel consumption 2020-2050 is used at an intensity of 8 tons/capita 

then aggregate U.S. stocks by 2050 will have reduced to 9.7 tons/capita; thus, enabling the 

emissions targets to be met without extreme steelmaking decarbonization (Figure C-39).   

Reducing additions to stock can be achieved by making products that contain less steel 

(i.e., lightweighting) or by making fewer products. The first option (lightweighting) is perhaps the 

most attractive politically as its effects are largely invisible to the final user. Carruth et al. (2011) 

found that most new steel products could be 30% lighter178 without a loss in performance. If all 

steel products made between 2020 and 2050 are 30% lighter than equivalent products today then 
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aggregate U.S. stocks will be 9.9 tons/capita by 2050. The second option, making fewer steel 

products, could occur without government intervention if the U.S. economy continues to shift 

toward online shopping and remote working. If the expected steel demand (2020-2050) for new 

office buildings, commercial real estate, and transport is halved then aggregate U.S. stocks will be 

9.3 tons/capita by 2050. 

This transition to lower stocks per capita could be supported by incorporating steel 

utilization targets179 into green building rating systems (e.g., LEED)180, mandating that new 

infrastructure be bikeable and walkable, and increased funding for public transportation. 

Government could also act as an exemplar in the construction of new lightweight government 

buildings and remote working practices. Examining the connection between societal 

characteristics (e.g., population density, transportation infrastructure, location of commercial areas 

etc.) and steel stocks (particularly in the U.K. and France versus U.S.) could reveal other methods 

of reducing U.S. steel stocks per capita.  

Reducing stocks per capita decreases the annual steel consumption. For the pathways 

simulated in this study that successfully meet the emissions requirement, the average quantity of 

steel produced domestically in 2050 by primary and secondary steelmaking is 3.2 Mt and 58 Mt 

respectively. Compared to 2019, this represents an 86% cut in primary steelmaking but only a 

6.4% cut secondary steelmaking. This means that most of the eight BF facilities currently operating 

in the U.S. would likely need to close by 2050.181,182 The consequent job losses could have 

significant impacts due to the concentration of BFs in the Midwest.  

 Product lifespans, Recycling rates, and Process yields 

Of the other steel flow parameters, changing the lifespan (retrofit case) has the greatest 

impact on emissions. However, increasing the lifespan of only new products (Figure 4-2: product 

lifespan non-retrofit), potentially through more durable or modular designs, will result in a 

negligible decrease in emissions across 2020-2050 because the mean steel product lifespan is 

already 44 years (Figure 4-2). On the other hand, increasing the lifespan of both new and existing 

products by 30% (Figure 4-3: product lifespans, retrofit case) increases the number of pathways 

that meet the emissions requirement by 25%. Lifespan extension could be promoted by reducing 

value added taxes on repairs and remanufacturing, as implemented by Sweden in 2016.183 
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Figure 4-2 shows that increasing the recycling rate or the manufacturing process yield 

causes a minimal increase to the percentage of pathways that achieve the emissions targets. 

Increasing the recycling rate changes the ratio of primary to secondary steelmaking but does not 

affect the aggregate steel demand. The effect of generating manufacturing process scrap is only to 

add an industry recycling loop, which generates minimal emissions. Additionally, improving 

process yields can reduce a manufacturer’s material costs, meaning that the profit motive alone 

should increase yields.  

 Time frame for action 

Immediate and significant action is required to meet the emissions targets. These actions, 

shifting towards low carbon steelmaking and reducing stocks per capita, will take time to 

implement. However, the U.S. does not have long before the cumulative target is no longer 

feasible. Figure 4-5 shows that if no action is taken (BAU) then the cumulative U.S. steel sector 

CO2 budget 2020-2050 will run out in 2031. If action to reduce stocks per capita and steelmaking 

emissions is delayed by more than 5 years then it is likely infeasible for the U.S. steel sector to 

stay within the budget. However, immediate action towards low carbon steelmaking and a 

reduction in stocks per capita towards 8 tons/capita by 2050 will achieve the emissions target with 

over one-fifth of the emissions budget remaining in 2050.  

 

Figure 4 - 5, The remaining U.S. steel sector cumulative CO2 budget 2020-2050 under different pathways. Modeled 

for the base case trade scenario, steel lifespans, manufacturing yield, recycling rate, and expected population.  

Action on STC: a constant decrease in STC at -0.11 t/cap/year. If not delayed, would reach 8 t/cap in 2050. Action 

on steelmaking EI: a constant decrease in primary (-46 kgCO2/t steel/year) and secondary steelmaking EI (9 kgCO2/t 

steel/year). If not delayed, would reach the values for the low emissions technology scenario (Table 4-1) by 2050.
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CHAPTER 5 

 

Conclusion 

 

 

Each chapter of this dissertation addresses decarbonization challenges in different sectors 

and at different levels of specificity, with the goal of producing guidance or implementable 

methods to address the challenges presented. To achieve the emissions reductions necessary to 

reach IPCC targets all sectors and all challenges, small or large, must be addressed and rapidly. 

The research topics within this dissertation were selected because they are challenges that needed 

to be addressed to achieve successful decarbonization and there was a lack of focus or sufficient 

analysis in the space. In the electricity sector, economic zero carbon technologies exist and are 

being deployed, therefore, the challenges addressed in Chapter 2 and 3 are more specific. They 

focus on the increases in flexibility needed to continue VRE deployment. However, Chapter 4 

encompasses a larger systems perspective because there is a much less defined path forward to 

achieve decarbonization in the steel sector. There will be more specific challenges, as new 

technologies develop, but they are currently decades away.  

 

 Summary Chapter 2:  

Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for 

Frequency Regulation 

Chapter 2 addresses a very specific challenge associated with grid decarbonization. The 

need for a sustainable alternative sources of frequency regulation. By modeling, a simplified grid 

system Chapter 2 was able to quantify a range of potential life cycle environmental impacts of 

lithium ion batteries for frequency regulation and show that grid system characteristics, 

specifically fuel mix, had the largest influence on environmental impacts. Even with the shortened 
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battery lifetime from increased cycling for frequency regulation use-phase impacts significantly 

outweighed upstream and end-of-life environmental impacts. Although, the environmental 

impacts increased for many of the grid system configurations analyzed in Chapter 2 from the 

addition of a lithium ion battery system for frequency regulation, the battery system’s use does not 

inherently mean environmental impacts will increase. Utilities will need to examine their existing 

and projected fuel mix, dispatch order, and level of congestion to make this determination.  

 Future Work 

Since the publication of Chapter 2 there have been a number of studies analyzing the 

emissions impacts of grid scale energy storage for frequency regulation and energy arbitrage184 

and the costs they need to reach for various applications to be economical.124,185,186 However, there 

is limited work on the life cycle environmental impacts for applications beyond frequency 

regulation and energy arbitrage.184 It is important to continue to assess grid-scale battery storage 

using a life cycle approach, especially as storage technologies and grid infrastructure evolve. 

However, the research should focus beyond the energy storage systems themselves.  

Battery costs are continuing to decrease. In 2018 battery energy storage systems ranged 

from 700-260 $/kWh and are anticipated to reach 482-189 $/kWh by 2025, reducing cost 

barriers.187 Regulation and market mechanisms are also changing. FERC order 841 removes 

regulatory barriers to energy storage participating in the capacity, energy, and ancillary service 

markets.188 All motivating and allowing for the continued increase in the installed capacity of 

battery energy storage from 850 MW in 2018 to a projected 2,500 MW by 2023.189  Given battery 

energy storage is already being integrated into the grid and research has been completed on the 

environmental impacts of battery production future research’s scope should be focused beyond the 

battery. Researchers should ask how the environmental impacts from an existing grid system as a 

whole could be reduced, with the use of battery energy storage technology as just one tool of many 

that could be implemented. 

 Summary Chapter 3:  

The Impact of Forecasted Net Load on Real-Time Generator Operation  

Chapter 3 examines a more general challenge with VRE generation by working to improve 

market operation, day-ahead commitment, by using statistical regression, which can be applied, to 
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most markets to try and predict inefficiencies. The regression was able to predict 21-57% of the 

variance in commitment error and its results indicated significant relationships between net load, 

fraction VRE, ramp rate and commitment error confirming some of existing literature’s 

assumptions. However, it was not able to confirm definitively the relationship between variability 

and commitment error across all scenarios. Chapter 3 represents a positive first step in a developing 

a simple method of reducing commitment error and improving grid system efficiency. 

 Future Work 

Chapter 3 addresses an intermittent challenge with integrating VRE generation into the 

electricity grid. At a certain point even with perfect scheduling, net load changes will be too great 

for traditional generators (e.g., coal and gas) to ensure supply and demand match in real time. 

However, there are a number of other technologies and operating strategies that are able to increase 

grid flexibility and enable reliable electricity supply with a majority VRE grid. These include but 

are not limited to demand response, energy storage, small scale nuclear, pumped storage, thermal 

storage, hydrogen, EV storage, expanded transmission, micogrids, etc. Which technologies 

minimize costs and emissions depends on market rules, generation resources, load profiles, and 

transmission restrictions. Therefore, research that examines options for a specific region to 

transition to a low carbon grid is required to develop a clear path forward. 

Although, there are still challenges to be addressed before a high VRE generation grid can 

be implemented. The research is leaps ahead of the current VRE capacity, i.e., we do not need to 

wait for additional research before pushing for the development of significantly more VRE 

generation. Additionally, there is not a major gap in the technologies needed. There are 

technologies in development that could be useful tools in grid decarbonization (e.g., long duration 

storage, small scale nuclear), but again there is significant capacity to expand VRE generation 

beyond existing levels without these technologies. Therefore, understanding what mechanisms are 

most effective at incentivizing economic VRE development also crucial to a rapid transition to a 

low carbon grid. 
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 Summary Chapter 4:  

Reducing CO2 emissions from U.S. steel consumption by 70% by 2050 

Chapter 4 asks the broadest question. How can the U.S. reach a CO2 reduction goal in the 

steel sector? Its results provide guidance on actions the U.S. could take to reach that goal. 

Although, there are still outstanding questions in regards to how to operationalize some of Chapter 

4’s recommendations they are clear. Near term, reductions in U.S. stocks per capita are required 

to cut U.S. steel sector emission 70% by 2050. 

 Future Work 

The results of Chapter 4 illustrate what the steel industry needs to look like in order to 

reach the emissions reduction goal. However, this is only part of the story; determining the most 

effective actions to change the industry is predicated on knowing their cost and being able to 

minimizing it. Therefore, an expansion of the research in Chapter 4 would be to model the 

economic impacts of the pathways defined in Chapter 4 that meet the emissions reduction target. 

Using less steel does not always equal an economic benefit and depending on the means of 

reduction, the economic impacts will be borne by different groups. For example, increasing beam 

loading could increase construction costs, due to the added complexity of design. Who would bear 

these increased costs will depend on a number of factors, including whether tenants are willing to 

pay a premium for the change. In contrast, increasing work from home, reducing office space 

requirements and commute costs will likely reduce costs for individuals and companies. 

Understanding cost implications can help educate more efficient policies and regulations to 

incentivize the use of less steel. 

There is also an economic impact of producing less steel. Almost all of the scenarios that 

meet the emissions reduction goal required a significant reduction in primary steel production. 

This will likely result in communities losing a major employer and steel producers losing a major 

revenue source. A firm understanding of the economic impacts of these losses is required to 

mitigate them. 

Along with reducing steel consumption, it is important to reduce the EI of steelmaking. 

Reducing secondary steelmaking EI only requires a reduction in electricity EI; however, reducing 

primary steelmaking EI requires the development and deployment of new steelmaking 

technologies. An understanding of the costs associated with this development and deployment is 
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required to create policies that will economically incentivize the transition to low carbon steel 

production.  

 General Conclusions 

The decarbonization of the electricity sector is paramount to economic decarbonization 

given the number of sectors that will depend on it to decarbonize themselves, steel included. 

Decarbonization of the electricity sector, on its surface, seems simple given the availability of 

economic zero carbon resources, wind and solar. However, this dissertation illuminates just two 

of the imbedded challenges associated generating electricity from VRE. One is addressed in 

chapter 2 through a technological advancement, lithium ion batteries, and the other in chapter 3 

through improved modeling. Continued advancement in technology will be required to managing 

the increasing variability and uncertainty driven by increased generation from VRE, however, 

electricity markets will also have to advance to incentivize their use, and modeling will need to 

improve to assess their impacts on system costs and reliability. 

The challenges related to decarbonization discussed for the electricity sector are focused 

on the supply side, while this dissertation recommends demand side changes for the steel sector. 

This is a result of the stark difference in availability of technologies for decarbonization. Although 

outstanding challenges remain with electricity decarbonization they are technological or market 

based, both being easier to address than required demand changes. The only currently available 

low carbon option to produced steel is by recycling scrap, which is limited by scrap availability 

and quality. Additionally, this process along with those in development (H-DRI and electrolysis) 

are all dependent on decarbonization of the electricity sector to significantly reduce emissions. The 

lack of alternative technology options resulted in the need to reduce near term steel demand.  In 

this case, decarbonization would require a change of behavior, given technological options to 

reduce primary steel demand, improved recycling rate, and improved material efficiency were 

alone not sufficient to reduce sector emissions. Steel use per-capita needs to be reduced and 

product lifetime extended to make a significant impact on decarbonization.  Further research is 

required on how to effectively achieve these goals without hindering economic growth, but 

regulation and financial incentives will likely be required. Although there is still space for further 

research and outstanding challenges on the topics explored in each chapter of this dissertation, 

their results could aid in the ability of the electricity and steel sectors to decarbonize reliably. 
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APPENDCIES 

 

Appendix A:  

Use-phase Drives Lithium Ion Battery Life Cycle Environmental Impacts when Used 

for Frequency Regulation 

1. System Assumptions and Parameters 

This power system model is based on an IEEE 9-bus test system.85 It consists of four 

conventional generators, totaling 800 MW, a Li-ion battery storage system totaling 3.04 MWh, 

and renewable generation totaling 15% of the day’s electricity demand. The renewable generation 

type and capacity vary by case, as does the fossil fuel mix. The test system uses the same 

parameters as Lin et al.2 unless otherwise noted in the body of the paper or supporting 

information.52 

 
Figure A - 1 Aggregated system load curve 

Figure A-1 illustrates the aggregated system load, which is distributed to buses 5, 7 and 9. 

The daily load profile is modeled as a sinusoidal curve with a minimum load at 500 MW and a 

maximum load at 700 MW. The load shape remains constant across the year and across the three 

load buses but the magnitude at each bus is scaled based on minimum and maximum loads found 

in Table A-1. The frequency regulation requirements for the system vary hourly depending on the 
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load and renewable forecast. The total frequency regulation requirement is the sum of 3% of the 

load and 5% of the renewable energy production. 

Table A - 1. Bus Base Loads 

Bus Number Min Load Max Load 

5 143 200 

7 159 223 

9 198 277 

Total 500 700 

 

1.1. Fossil Generators 

Table A-2 contains the sizes and locations of the fossil units for the Coal and Gas scenarios. The generator 

sizes were selected with the goal of supplying the appropriate percentage of coal or natural gas, as defined 

by the scenario, while maintaining realistic generator sizes and not causing congestion in the base case. 

Table A-3 contains the list of detailed assumptions about each generator type and Figure A-2 to A-4 show 

each generator’s cost curve for the base case and the two fuel price parametric studies. Coal unit cost curves, 

Figure A-2, were derived from Hunters Point 3 and gas unit cost curves were derived from Moss Landing 

3 as in Lin et al.52 The curves were scaled by the generator maximum capacity for the units in the test case 

based on equations 12-15 in Lin et al.52 

Table A - 2, Fossil generator sizing by scenario 

  Coal (20% Gas, 80% Coal) Gas (80% Gas, 20% Coal) 

 Bus Fuel Type 𝑷𝒎𝒂𝒙
𝒈

 𝑷𝒎𝒊𝒏
𝒈

 Fuel Type 𝑷𝒎𝒂𝒙
𝒈

 𝑷𝒎𝒊𝒏
𝒈

 

G1 1 Coal 340 136 Gas 250 100 

G2 2 Coal 300 120 Coal 160 64 

G3 3 Gas 80 32 Gas 240 96 

G4 6 Gas 80 32 Gas 150 60 

Note: G1 refers to Generator 1, G2 refers to Generator 2, G3 refers to Generator 3, and G4 refers to Generator 4 

Table A - 3, Fossil generator assumptions by fuel type 

 Coal Natural Gas 

2014 Fuel Cost ($/MMBtu) 2.3796 5.0096 

2017 Fuel Cost ($/MMBtu) 2.22190 3.67190 

Minimum Up Time (hours) 12 (4 for <300 MW) 191 4191 

Minimum Down Time (hours) 12 (4 for <300 MW) 191 4191 

Startup Cost ($/MW)a 5.61 (4.58 for <300 MW) 191 3.99191 

Startup Fuel (MMBtu/MW)a 7.50 (5.00 for <300 MW) 191 3.67191 

Shutdown Cost ($/MW)a 5.61 (4.58 for <300 MW) 191 3.99191 

Frequency Regulation Cost ($/MW-h) 10/9192 4/5192 
a Corresponding values are for a hot start 
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Hummon et al.192 assume a reserve cost of $10/MWh for subcritical coal and $4 /MWh for 

gas steam. These values were used as a basis for the coal and gas test cases, though we vary them 

slightly to simulate a real system in which generators of the same type have unequal reserve costs. 

The Coal case consisted of G1 = $9/MWh, G2 = $10/MWh, G3 = $4MWh, G4 = $4/MWh. The 

Gas case consisted of G1 = $5/MWh, G2 = $10/MWh, G3 = $4MWh, G4 = $4/MWh.192 

 

 

Figure A - 2, Fossil generator cost curves (a) Coal case and (b) Gas case 

  

Figure A - 3, Fossil generator cost curves for fuel price parametric study (coal = 2.22 $/MMBtu & natural gas = 3.67 

$/MMBtu) (a) Coal case and (b) Gas case 
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Figure A - 4, Fossil generator cost curves with price swap parametric study (coal = 5.00 $/MMBtu & natural gas = 

2.37 $/MMBtu) (a) Coal case and (b) Gas case 

 

1.2. Renewable Generators 

The renewable generation assumptions are listed in Table A-4 and the generation profiles 

are in Figure A-5. The same data is used for each month of the year. The renewable generation is 

located at bus 8. The wind and solar profiles, Figure A-5, are based on real meteorological data 

from the National Renewable Energy Laboratory’s (NREL) National Solar Radiation Database 

(NSRDB)193 and Wind Integration National Dataset (WIND) Toolkit,194 analyzed using the 

System Advisor Model (SAM) to calculate hourly generation.195 Using power data from a whole 

year, we selected data from the days with median generation, for wind and solar independently 

(i.e., the data is taken from different days). The same data is used for each month of the year.  

Table A - 4, Renewable generator assumptions 

 Wind Solar 

Capacity 263 MW a 567 MW a 

Technology Type Vestas V90-1.8, 80m hub height 
Fixed open rack fixed tilt at latitude, 

14.08% losses 

Representative Date March 26 January 12 

Representative Location Wind Toolkit 41.04 N, -83.65 E NSRDB 41.017 N, -83.667 E 

Year 2011 TMY 
a Capacity selected so that total renewable generation in a 24-hour period would equal 15% of the load 
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Figure A - 5, Wind and solar generation profiles193,194 

1.3. Energy Storage System 

The energy storage system characteristics are listed in Table A-5. We assume charging and 

discharging efficiencies are equal, end of life occurs when battery capacity degrades to 50%, and 

the allowable battery range is between 0.2 and 0.8 state of charge (SOC). The values for c-rate, 

energy-to-power ratio (E/P) and energy storage power are calculated in Section 2.2 and the 

remaining values are derived from the literature.  

We determined the battery capacity based on the system frequency regulation requirement 

range throughout the day (15-40 MW). A size of 8 MW ensures that the battery size never exceeds 

the frequency regulation requirements, but that the battery will have an effect on the unit 

commitment and dispatch.  

Table A - 5, Li-ion energy storage system assumptions 

End of Life Capacity 50% 

Starting Capacity 100% 

Energy Storage Capacity 3.04 MWh 

Energy Storage Power 8 MW 

Energy SOC range 0.2-0.8 

Initial Round Trip Efficiency 90%22 

Initial Charging Efficiency 95%46 

Initial Discharging Efficiency 95%46 

C-rate (1/(E/P)) 2.63 

Energy-to-Power Ratio (E/P) 0.38 

Temperature 25°C26 

 

1.4. Emissions and Impact Assumptions 

As discussed in the body of the paper the material inventory for the batteries was developed 

through BatPac, which represent the masses in Table A-6.196 The emissions in Table A-6 were 

calculated from GREET.82 
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Table A - 6, Battery system life cycle inventory data82,196 

 

 
Figure A - 6, Battery system life cycle inventory comparison by battery type 

 

Table A - 7, Inverter life cycle inventory data for 1 MW Battery Power Rating84 

Component Steel Al Au 

Mass (kg) 3040 894 625 

CO2 (kg) 4270 1490 1870 

NOx (kg) 3.47 1.49 4.26 

SOx (kg) 7.64 2.84 91.1 

CH4 (kg) 10.74 4.76 4.52 

N2O (kg) 0.078 0.036 0.034 

Coal (mmBTU) 24.0 3.97 8.79 

NG Gas (mmBTU) 29.7 15.6 10.4 

 

Component Cathode Anode Al Steel Au BMS Cathode Anode Al Steel Au BMS

Mass (kg) 2.5E+03 9.8E+02 3.3E+02 4.8E+02 3.6E+01 2.8E+02 2.8E+01 3.0E+03 7.9E+02 4.0E+02 5.6E+02 4.3E+01 3.2E+02 3.3E+01

CO2 (kg) 9.8E+03 3.2E+03 1.6E+03 3.3E+03 1.3E+02 8.3E+02 7.3E+02 9.6E+03 1.9E+03 1.9E+03 3.9E+03 1.5E+02 9.7E+02 8.6E+02

NOx (kg) 1.6E+01 5.9E+00 4.5E+00 2.7E+00 1.3E-01 1.9E+00 5.9E-01 1.7E+01 5.5E+00 5.4E+00 3.2E+00 1.5E-01 2.2E+00 6.9E-01

SOx (kg) 8.5E+01 3.1E+00 2.6E+01 1.3E+01 4.6E-01 4.0E+01 1.1E+00 1.3E+02 3.2E+01 3.2E+01 1.6E+01 5.4E-01 4.7E+01 1.2E+00

CH4 (kg) 2.4E+01 7.9E+00 4.2E+00 7.2E+00 2.6E-01 2.0E+00 2.0E+00 2.3E+01 4.6E+00 5.1E+00 8.5E+00 3.0E-01 2.3E+00 2.3E+00

N2O (kg) 1.5E-01 4.0E-02 2.5E-02 5.3E-02 1.5E-03 1.5E-02 1.4E-02 1.6E-01 2.8E-02 3.0E-02 6.2E-02 1.7E-03 1.8E-02 1.7E-02

Total Energy 

(MMBtu)
1.5E+02 3.8E+01 2.9E+01 5.9E+01 1.5E+00 1.2E+01 1.1E+01 1.6E+02 2.5E+01 3.5E+01 6.9E+01 1.8E+00 1.4E+01 1.3E+01

Component Cathode Anode Al Steel Au BMS Cathode Anode Al Steel Au BMS

Mass (kg) 1.9E+03 5.3E+02 3.7E+02 3.6E+02 2.7E+01 2.1E+02 2.1E+01 2.2E+03 6.9E+02 3.7E+02 4.1E+02 3.2E+01 2.4E+02 2.4E+01

CO2 (kg) 1.1E+04 5.7E+03 1.8E+03 2.5E+03 9.6E+01 6.2E+02 5.4E+02 1.2E+04 6.1E+03 1.8E+03 2.9E+03 1.1E+02 7.2E+02 6.4E+02

NOx (kg) 2.6E+01 1.7E+01 5.1E+00 2.0E+00 9.3E-02 1.4E+00 4.4E-01 2.4E+01 1.4E+01 5.1E+00 2.4E+00 1.1E-01 1.6E+00 5.1E-01

SOx (kg) 5.2E+02 4.5E+02 3.0E+01 1.0E+01 3.4E-01 3.0E+01 7.9E-01 4.3E+02 3.5E+02 3.0E+01 1.2E+01 4.0E-01 3.5E+01 9.2E-01

CH4 (kg) 2.9E+01 1.6E+01 4.7E+00 5.4E+00 1.9E-01 1.5E+00 1.5E+00 3.1E+01 1.7E+01 4.7E+00 6.3E+00 2.3E-01 1.7E+00 1.7E+00

N2O (kg) 2.1E-01 1.2E-01 2.8E-02 3.9E-02 1.1E-03 1.1E-02 1.1E-02 2.3E-01 1.3E-01 2.8E-02 4.6E-02 1.3E-03 1.3E-02 1.2E-02

Total Energy 

(MMBtu)
1.8E+02 8.4E+01 3.2E+01 4.4E+01 1.1E+00 8.9E+00 8.2E+00 1.9E+02 8.8E+01 3.2E+01 5.1E+01 1.3E+00 1.0E+01 9.5E+00
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Figure A - 7, Materials and energy flow for the Li-ion battery in the power system, starting with raw materials and 

ending in battery end of life. This chart is a reduced version of the materials flow diagram in Dunn et al.60 The 

dashed line denotes the system boundary line for upstream and downstream impacts, where recycling processes and 

impacts are incorporated into upstream results in our final impact calculations. 

The energy of battery assembly is calculated from Dunn et al.’s 60 assumption of 2.7 MJ/kg 

battery for a LMO battery. The total battery masses for each battery type are given in Table A-6. 

Then GREET’s assumptions for shares of process fuels for battery assembly (49% natural gas and 

51% electricity) were used to calculate the emissions from battery assembly.82 

Recycled content assumptions for steel and aluminum given in Table A-8 are GREET’s 

default values. The recycling value for Li2CO3 is used in the base case only. No active materials 

are recycled in the parametric studies, which used different cathode types. Dunn et al.80 notes that 

hydrometallurgical recycling processes are still under development, UNEP197 estimated less than 

1% recycling of lithium in 2011. The 2016 USGS Mineral Commodity Summary198 does not have 

a specific recycling rate for lithium, but they discuss a facility in Canada and note funds have been 

allocated for a facility in the U.S. so lithium recycling is anticipated to grow. However, for this 

study we selected only 1% to remain in line with current values. 
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Table A - 8, Recycled Content Assumptions 

 % Recycled Li2CO3 % Recycled Steel % Recycled Aluminum 

Base Case 1% 26.4% 11% 

     
 

CO2, NOx, and SOx emissions factors for coal were calculated from 2015 Air Markets 

Continuous Emissions Monitoring (CEM) unit level heat input and tons of emissions from 

scrubbed units.199 NOx and SOx emission factors for natural gas were calculated from 2015 CEMs 

unit level heat input and tons of emissions for gas steam plants.199 The CEMs data contains only 

SO2, which we equated to SOx, as only 0.7% of fuel sulfur is emitted as SO3..200 The CO2 emissions 

factor for natural gas is from the EIA.201 GWP was calculated using the CO2, CH4, and N2O 

emissions factors with 100-year global warming potentials from the Environmental Protection 

Agency (EPA).202 Acidification values were calculated using TRACI 2.1 impact factors for NOx, 

and SOx.203 

Table A - 9, Fossil fuel inventory data 

 Coal Natural Gas 

CO2 Emissions Factor (kg/MMBtu) 93.6199a 53.2201 

SOx Emissions Factor (g/MMBtu) 71.4199a 0.45199b 

NOx Emissions Factor (g/MMBtu) 103199c 52.7199c 

CH4 Emissions Factor (g/MMBtu) 11202 1.6202 

N2O Emissions Factor (g/MMBtu) 1202 0.1202 

CO2 Upstream (g/MMBtu) 1,69194 5,96894 

NOx Upstream (g/MMBtu) 13.76494 29.75894 

SOx Upstream (g/MMBtu) 7.00294 11.46494 

CH4 Upstream (g/MMBtu) 148.9294 245.9494 

N2O Upstream (g/MMBtu) 0.03394 0.80194 

Energy Upstream (Btu/MMBtu) 22,33994 96,19594 
a Values calculated from 2015 CEMS unit level heat input and tons of emissions for scrubbed units 
b Values calculated from 2015 CEMS unit level heat input and tons of emissions 
c Values based on average 2015 unit level Average NOx rate  

 

Table A - 10, Life cycle impact category assumptions 

Global Warming (kg CO2eq / kg Substance) 

CH4 100-yr GWP 25204 

N2O 100-yr GWP 298204 

Acidification Air (kg SO2eq / kg substance) 

NOx 0.7203 

SOx 1203 
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Table A - 11, Per-Capita nominal U.S. impacts from 2016 used to normalize results 

Impact Category Per-capita (impact per person year) 

Global Warming (kg CO2eq) 1.78E+04205,206 

Acidification (kg SO2eq) 4.80E+01205,207 

Fossil Fuel Depletion (MMBtu surplus)* 2.98E+07205,208 

* Fossil Fuel Depletion value was used in equivalent to cumulative energy demand 

2. Mathematical Formulations 

2.1. Unit Commitment and Dispatch 

The unit commitment and dispatch problem is formulated as a mixed integer programing 

problem. Suppose we have 𝑛𝑔 conventional generators, 𝑛𝑔𝑟 renewable generation plants, 𝑛𝑒𝑠 

energy storage devices, 𝑛𝑏 buses, and 𝑛𝑙 transmission lines in the system. Let 𝑃𝑡
𝑔

∈ ℝ𝑛𝑔 be the 

power output of the conventional generators at time 𝑡, 𝑃𝑡
𝑔𝑟

∈  ℝ𝑛𝑔𝑟 be the power output of the 

renewable generators at time 𝑡, Θ𝑡 ∈ ℝ𝑛𝑏 be the bus voltage angle at time 𝑡, 𝑅𝑡
𝑔

∈ ℝ𝑛𝑔 be the 

frequency regulation capacity of the conventional generators at time 𝑡, and 𝑅𝑡
𝑒𝑠 ∈ ℝ𝑛𝑒𝑠 be the 

frequency regulation capacity of the energy storage at time 𝑡. Also, let 𝑈𝑡, 𝑉𝑡, and 𝑊𝑡 be binary 

variables, where 𝑈𝑡 ∈  ℝ𝑛𝑔 represents whether the conventional generators are committed at time 

𝑡, 𝑉𝑡 ∈  ℝ𝑛𝑔 represents whether the conventional generators are committed (turned on) at time 𝑡, 

and 𝑊𝑡 ∈  ℝ𝑛𝑔 represents whether the conventional generators are uncommitted (turned off) at 

time 𝑡.  

Let 𝑁 be the number of time periods, the decision variables are: 

𝑋 =  [𝑋1
𝑇 , … , 𝑋𝑁

𝑇]𝑇,       (1) 

where the subscript is the time index and  

𝑋𝑡 = [(𝑃𝑡
𝑔

)
𝑇

, ( 𝑃𝑡
𝑔𝑟

)
𝑇

, (Θ𝑡
𝑙 )

𝑇
, ( 𝑅𝑡

𝑔
)

𝑇
, (𝑅𝑡

𝑒𝑠𝑙)
𝑇

, (𝑈𝑡
𝑙)

𝑇
, (𝑉𝑡

𝑙)
𝑇

, (𝑊𝑡
𝑙)

𝑇
]

𝑇

.            (1) 

The objective function is: 

 

𝐹𝑐𝑜𝑠𝑡 = ∑ [𝑓𝑔(𝑃𝑡
𝑔

) + 𝑓𝑔𝑟(𝑃𝑡
𝑔𝑟

) + 𝑓𝑟(𝑅𝑡
𝑔

) + 𝑓𝑒𝑠(𝑅𝑡
𝑒𝑠) + 𝑓𝑜𝑛(𝑉𝑡) + 𝑓𝑜𝑓𝑓(𝑊𝑡)]𝑁

𝑡=1 ,  

 (2) 
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where 𝑓𝑔 is the generation cost for conventional generators, which is modeled as a quadratic 

function: 

𝑓𝑔(𝑃𝑡
𝑔

) = (𝑃𝑡
𝑔

)
𝑇

𝐴𝑔𝑃𝑡
𝑔

+ (𝐵𝑔
𝑙 )

𝑇
𝑃𝑡

𝑔
, 

where 𝐴𝑔 is a diagonal matrix of quadratic cost coefficients and 𝐵𝑔 is a column vector of linear 

cost coefficients. The other costs are modeled as linear functions. Let 𝐵∗ be the corresponding 

column vector of cost coefficients, then cost of renewable generation is: 

𝑓𝑔𝑟(𝑃𝑡
𝑔𝑟

) =  (𝐵𝑔𝑟)
𝑇

𝑃𝑡
𝑔𝑟

, 

the cost of frequency regulation from conventional generators is: 

𝑓𝑟(𝑅𝑡
𝑔

) =  (𝐵𝑟
𝑙)𝑇𝑅𝑡

𝑔
, 

the cost of frequency regulation from energy storage is: 

𝑓𝑒𝑠(𝑅𝑡
𝑒𝑠) =  (𝐵𝑒𝑠)

𝑇
𝑅𝑡

𝑒𝑠, 

and the commitment costs are: 

𝑓𝑜𝑛(𝑉𝑡) =  (𝐵𝑜𝑛)
𝑇

𝑉𝑡, 

𝑓𝑜𝑓𝑓(𝑊𝑡) =  (𝐵𝑜𝑓𝑓)
𝑇

𝑊𝑡. 

The constraints include the standard optimal power flow (OPF) constraints and the unit 

commitment constraints. We first present the OPF constraints. At the beginning of the optimization 

horizon, we assume the SOC of the energy storage device is 50%.  For the OPF, we assume the 

frequency regulation reference signal is zero mean and the SOC of the energy storage device 

returns to 50% at the start of each hour. The round trip loss is modeled as additional load at the 

bus where the energy storage is located: 

𝑃𝑡
𝑑,𝑒𝑠 = 𝛽𝑅𝑡

𝑒𝑠,        (3) 
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where 𝛽 is a parameter determined by the reference signal. The power balance equation can be 

written as: for 𝑡 = 1, 2, … , 𝑁, 

𝑃𝑏,𝑡 = 𝐷𝑏Θ𝑡,            (4) 

𝑃𝑏,𝑡 = 𝐶𝑔𝑃𝑡
𝑔

+ 𝐶𝑔𝑟𝑃𝑡
𝑔𝑟

− 𝐶𝑑𝑃𝑡
𝑑 − 𝐶𝑒𝑠𝑃𝑡

𝑑,𝑒𝑠
,     (5) 

where 𝑃𝑏,𝑡 ∈ ℝ𝑛𝑏 is the power injection at each bus; 𝑃𝑡
𝑑 ∈ ℝ𝑛𝑏 is the load at each bus; matrix 𝐷𝑏 

(the imaginary part of the bus admittance matrix) describes the relationship between the bus 

voltage angle and the bus power injection; and 𝐶𝑔, 𝐶𝑔𝑟, 𝐶𝑑, and 𝐶𝑒𝑠 are grid topology matrices 

mapping conventional generators, renewable generators, loads, and energy storage to buses (the 

entry 𝐶𝑖,𝑗 is one if unit 𝑗 is connected to bus 𝑖 and zero otherwise). 

The transmission line power flow constraints can be written as: for 𝑡 = 1, 2, … , 𝑁, 

𝑃𝑓,𝑡 = 𝐷𝑓Θ𝑡,       (6) 

𝑃𝑓,𝑚𝑖𝑛 ≼ 𝑃𝑓,𝑡 ≼ 𝑃𝑓,𝑚𝑎𝑥 ,           (7) 

where ≽ and ≼ denote element-wise inequalities, 𝑃𝑓,𝑡 ∈ ℝ𝑛𝑙 is the power flow through each 

transmission line, matrix 𝐷𝑓 describes the relationship between bus voltage angle and the line 

power flow (𝑃𝑓,𝑖,𝑡 = (Θ𝑗,𝑡 − Θ𝑘,𝑡)/𝑋𝑗𝑘 where 𝑃𝑓,𝑖,𝑡 is the power flow on the 𝑖th line from bus 𝑗 to 

bus 𝑘 and 𝑋𝑗𝑘 is the susceptance of the line from bus 𝑗 to bus 𝑘), and 𝑃𝑓,𝑚𝑖𝑛 ∈ ℝ𝑛𝑙 and 𝑃𝑓,𝑚𝑎𝑥 ∈ 

ℝ𝑛𝑙 are the lower and upper limits for the line power flow.  

The generator limits can be written as: for 𝑡 = 1, 2, … , 𝑁, 

𝑃𝑡
𝑔

− 𝑅𝑡
𝑔

≽ 𝑃𝑚𝑖𝑛
𝑔

⨂𝑈𝑡,          (8) 

𝑃𝑡
𝑔

+ 𝑅𝑡
𝑔

≼ 𝑃𝑚𝑎𝑥
𝑔

⨂𝑈𝑡,      (9) 

𝑅𝑡
𝑔

≽ 𝟎,     (10) 

where ⨂ denotes element-wise multiplication, 𝑃𝑚𝑖𝑛
𝑔

∈ ℝ𝑛𝑔 and 𝑃𝑚𝑎𝑥
𝑔

∈ ℝ𝑛𝑔 are the lower and 

upper power limits of the conventional generators, and 𝟎 is a column vector of zeros with 

appropriate dimension.  



 

89 

 

The limits for the renewable generation can be written as: for 𝑡 = 1, 2, … , 𝑁, 

 𝟎 ≼ 𝑃𝑡
𝑔𝑟

≼ 𝑃𝑓,𝑡
𝑔𝑟

,      (11) 

where 𝑃𝑓,𝑡
𝑔𝑟

 is the forecast capacity of renewable generation. 

The regulation requirement can be written as: for 𝑡 = 1, 2, … , 𝑁, 

1𝑇𝑅𝑡
𝑔

+ 1𝑇𝑅𝑡
𝑒𝑠 ≥ 𝑟𝑟𝑒𝑞,        (12) 

𝑅𝑚𝑖𝑛
𝑒𝑠 ≼ 𝑅𝑡

𝑒𝑠 ≼ 𝑅𝑚𝑎𝑥
𝑒𝑠 ,      (13) 

where 1𝑇is a vector of ones of appropriate dimension, 𝑟𝑟𝑒𝑞 is the frequency regulation capacity 

required by the power system, and 𝑅𝑚𝑖𝑛
𝑒𝑠 ∈ ℝ𝑛𝑒𝑠 and 𝑅𝑚𝑎𝑥

𝑒𝑠 ∈ ℝ𝑛𝑒𝑠 are the lower and upper limits 

for the energy storage frequency regulation capacity.  

Next, we present the unit commitment constraints. Recall that 𝑈𝑡, 𝑉𝑡, and 𝑊𝑡 are binary 

variables that take values of 0 or 1. The minimum up/down time constraints can be written as: for 

𝑡 = 1, 2, … , 𝑁 − 1 and 𝑗 = 1, 2, … , 𝑛𝑔, 

−𝑈𝑡−1
𝑗

+ 𝑈𝑡
𝑗

− 𝑈𝑡+𝑖
𝑗

≤ 0, ∀𝑖 ∈ {1, … , 𝑡𝑜𝑛
𝑗

− 1} ∩ {𝑖|𝑡 + 𝑖 ≤ 𝑁},       (14) 

𝑈𝑡−1
𝑗

− 𝑈𝑡
𝑗

+ 𝑈𝑡+𝑖
𝑗

≤ 1, ∀𝑖 ∈ {1, … , 𝑡𝑜𝑓𝑓
𝑗

− 1} ∩ {𝑖|𝑡 + 𝑖 ≤ 𝑁},    (15) 

where 𝑈∗
𝑗
 is the 𝑗th element of 𝑈∗ and 𝑡𝑜𝑛

𝑗
 and 𝑡𝑜𝑓𝑓

𝑗
 are the minimum up and down time for the 𝑗th 

generator, respectively. Equation (15) ensures that, if the unit is turned on at time 𝑡, it stays on for 

the next 𝑡𝑜𝑛 steps; while equation (16) ensures that, if the unit is shut down at time t, it stays off 

for the next 𝑡𝑜𝑓𝑓 steps. 

The start-up and shut-down constraints are: for 𝑡 = 1, 2, … , 𝑁, 

−𝑈𝑡−1 + 𝑈𝑡 − 𝑉𝑡 ≼ 0𝑇 ,      (16) 

𝑈𝑡−1 − 𝑈𝑡 + 𝑊𝑡 ≼ 0𝑇.      (17) 

Note that these constraints only ensures that 𝑉𝑡 = 1 when the unit is turned on at time 𝑡 and 𝑊𝑡 =

1 when the unit is shut down at time 𝑡. The values of 𝑉𝑡 and 𝑊𝑡 are free otherwise. Since there are 
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costs associated with start-up and shut-down, the optimal 𝑉𝑡 and 𝑊𝑡 take value of zero when the 

unit is not started up or shut down. 

The full optimization problem can be formulated as: find the variable X in equation (1), 

which minimizes the objective function, equation (3), while subject to the constraints, equations 

(4) to (18). 

2.2. Capacity Degradation 

2.2.1.  Base Case 

The base case capacity degradation model is based on Xu et al.’s32 calendar aging and cycle 

aging model for LMO batteries.91 The cycle aging is calculated using the average SOC in each 

cycle, depth of discharge (DOD) in each cycle, and temperature in each cycle.91 The calendar 

aging is calculated using time, average SOC over all time, and average temperature over all time.91 

To obtain the average SOC and DOD we first compute the SOC time series based on the PJM 

RegD signal. Let 𝑃𝑡 be the power injection/extraction of the energy storage at time 𝑡 (we use 

positive 𝑃𝑡 to denote discharging and negative 𝑃𝑡 to denote charging). Let 𝜎𝑡 be the SOC at time 

𝑡. The SOC time series can be calculated by: 

𝜎𝑡+1 = {
𝜎𝑡 − 𝜂𝑐ℎ𝑃𝑡Δ𝑡, 𝑃𝑡 < 0

𝜎𝑡 −
1

𝜂𝑑𝑖𝑠
𝑃𝑡Δ𝑡, 𝑃𝑡 ≥ 0      (18) 

where Δ𝑡 is the time interval in seconds, and 𝜂𝑐ℎ and 𝜂𝑑𝑖𝑠 are charging and discharging 

efficiencies. Recall that we assume the SOC returns to 0.5 at the start of each hour. In practice, 

this is usually achieved through other types of services. For example, the California Independent 

System Operator (CAISO) uses Regulation Energy Management to manage the SOC of non-

generating resources through the real-time market.209 In this paper, we used a year (August 2015 

to July 2016) of PJM’s dynamic regulation signal (RegD) from August 2015 to July 2016.93 In 

reality, this signal may not be zero mean over the hour, causing the SOC to deviate from 0.5 at the 

end of the hour. To correct the SOC, we add an offset to the reference signal so that it becomes 

zero mean in each hour, emulating SOC management. To calculate the offset, we first calculate 

the SOC time series with the original reference signal 𝑃𝑜,𝑡. Let 𝜎𝑜,𝑒𝑛𝑑 be the SOC at the end of the 

hour resulting from 𝑃𝑜,𝑡. We define the offset as: 
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𝛿𝑃𝑡 = {

1

𝜂𝑐ℎ
(𝜎𝑜,𝑒𝑛𝑑 − 0.5)/ (

1

Δ𝑡
) , 𝑃𝑡 < 0

𝜂𝑑𝑖𝑠(𝜎𝑜,𝑒𝑛𝑑 − 0.5)/ (
1

Δ𝑡
) , 𝑃𝑡 ≥ 0

     (19) 

We calculate this offset for each hour in the year. Note that the offset does not change 

within an hour but varies across hours. The modified reference signal is: 

𝑃𝑡 = 𝑃𝑜,𝑡 + 𝛿𝑃.      (20) 

The charging and discharging of the battery at time 𝑡 are: 

𝑃𝑐ℎ,𝑡 = −min(𝑃𝑡 , 0),           (21) 

𝑃𝑑𝑖𝑠,𝑡 = max(𝑃𝑡 , 0).                      (22) 

The SOC with and without the offset are shown in Figure A-8 for three hours (the reference 

signal used in the figure is discussed in the following sections).  

 
Figure A - 8, Three hours of the base state of charge (SOC), and the adjusted SOC (i.e., the SOC after it was 

adjusted to return to 0.5 at the end of each hour by the regulation signal offset). Time is in units of seconds and the 

signal changes every two seconds. 

The PJM signal is normalized to [-1, 1]. The actual reference signal the participant needs 

to follow is scaled by its frequency regulation capacity. We use the signal to determine a 

reasonable energy to power ratio for the energy storage device. Denote the normalized PJM signal 

as 𝑃𝑃𝐽𝑀, the actual reference signal is 𝑃𝑜,𝑡 = 𝑘𝑒𝑝𝑃𝑃𝐽𝑀, where 𝑘𝑒𝑝 is the frequency regulation 

capacity. Suppose we have an energy storage device with energy capacity of one. Since the initial 

SOC in each hour is 0.5, the SOC will always remain within the storage energy limits when 𝑘𝑒𝑝 

is less than 1. However, the magnitude of the signal 𝑃𝑃𝐽𝑀 is usually much smaller than one and it 
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switches polarity often. Therefore, it is conservative to set 𝑘𝑒𝑝 to 1, and since frequency regulation 

providers do not need to perfectly track their reference signals, it makes more sense for the energy 

storage operator to bid 𝑘𝑒𝑝 > 1 into the market in order to earn higher profits. Note that 𝑘𝑒𝑝 is 

also the minimum power capacity for the energy storage, so the E/P is 1/𝑘𝑒𝑝. 

 

In this paper, we assume that the SOC needs to stay within [0.2, 0.8] for more than 95% of 

the time during the year. Through simulations, we determined that an E/P of 0.38 would achieve 

this, making 𝑘𝑒𝑝 2.63. This estimate is within the range of previous literature. Swierczynski et 

al.44 used a 0.25 E/P ratio for frequency regulation and Xu et al.46 uses an E/P of 0.3. The effect 

of the energy to power ratio on the SOC can be seen in Figure A-9. The DOD is computed as 1-

SOC. 

   
Figure A - 9, Histograms representing the frequency of state of charges (SOC) from 0 to 1 throughout the year for a) 

a battery with an E/P of 1 and b) a battery with an E/P of 0.38. 

Xu et al.32 calculates battery life (L) using: 

𝐿 = 1 −  𝛼𝑠𝑒𝑖𝑒−𝛽𝑠𝑒𝑖𝑓𝑑 − (1 − 𝛼𝑠𝑒𝑖)𝑒−𝑓d ,   eq. 12 ref. 32 

where 𝛼𝑠𝑒𝑖 and 𝛽𝑠𝑒𝑖 are constants found in Table A-12, 𝑓d is a function of the calendar and cycle 

aging:  

𝑓d(𝑡, 𝛿, 𝜎, 𝑇𝑐) =  𝑓𝑡(𝑡, 𝜎,̅ 𝑇̅𝑐) +  ∑ 𝑛𝑖𝑓𝑐(𝛿𝑖 , 𝜎𝑖 , 𝑇𝑐,𝑖)𝑁
𝑖 ,   eq. 3 ref. 32 

where 𝑓𝑡 is the calendar aging, 𝑓𝑐 is the cycle aging, 𝑛𝑖 indicates whether cycle i is a full or half 

cycle, 𝑡 is the period of time, 𝛿i is the maximum DOD in cycle i, 𝜎i is the mean SOC in cycle i, 
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𝑇𝑐,𝑖 is the mean temperature in cycle i, N is the number of cycles, and a line over a variable indicates 

the mean over all time.91 Xu et al.32 define 𝑓𝑐 as:  

𝑓c(𝛿𝑖 , 𝜎𝑖 , 𝑇𝑐,𝑖) =  𝑆𝛿(𝛿𝑖)𝑆𝜎(𝜎𝑖)𝑆𝑇(𝑇𝑐,𝑖),     eq. 18 ref 32 

where 𝑆𝛿 is the DOD stress, 𝑆𝜎 is the SOC stress, and 𝑆𝑇 is the temperature stress, and each are 

defined for individual cycles. Xu et al.32 define 𝑓𝑡 as: 

𝑓𝑡(𝑡, 𝜎,̅ 𝑇̅𝑐) =  𝑆𝑡(𝑡)𝑆𝜎(𝜎̅)𝑆𝑇(𝑇̅𝑐) ,    eq. 19 ref 32 

where 𝑆𝑡 is the time stress. We assume the temperature stress 𝑆𝑇 is one because we assume 

isothermal operation at the reference temperature. The remaining stresses are defined as: 

𝑆𝜎(𝜎) =  𝑒𝑘𝜎(𝜎−𝜎𝑟𝑒𝑓) ,     eq. 25 ref. 32 

𝑆𝑡(𝑡) =  𝑘𝑡𝑡 ,      eq. 27 ref. 32 

𝑆𝛿(𝛿) =  (𝑘𝛿1𝛿𝑘𝛿2 + 𝑘𝛿3)−1 ,    eq. 32 ref. 32 

where 𝑘𝜎, 𝜎𝑟𝑒𝑓,  𝑘𝛿1, 𝑘𝛿2, 𝑘𝛿3, and 𝑘𝑡 are constants found in Table A-12. When calculating the 

calendar aging, 𝑓𝑡, the SOC in equation (25 ref. 32) is the average over the battery life, 𝜎̅. When 

calculating the cycle aging the SOC in equation (25 ref. 32) is the average across an individual 

cycle, 𝜎𝑖, and the DOD in equation (32 ref. 32) is the maximum across an individual cycle, 𝛿𝑖.  

Xu et al.32 suggest applying the rainflow cycle-counting algorithm when the cycles are 

irregular.  To do this we use the MATLAB functions SIG2EXT36 and RAINFLOW.36 SIG2EXT 

preprocesses the SOC time series and its output is the input to RAINFLOW, which outputs each 

cycle’s amplitude (which is half of 𝛿𝑖) , mean 𝜎𝑖, and whether it is a full or a half cycle 𝑛𝑖.
210 
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Table A - 12, Degradation parameters used in Xu et al.91 

𝛼𝑠𝑒𝑖 5.75e-2 

𝛽
𝑠𝑒𝑖

 121 

𝑘𝜎 1.04 

𝜎𝑟𝑒𝑓 0.50 

𝑘𝛿1 1.40e5 

𝑘𝛿2 -5.01e-1 

𝑘𝛿3 -1.23e5 

𝑘𝑡 4.14e-10/s 

 

 

2.2.2.  Capacity Degradation Parametric Studies 

There is still a great deal of uncertainty surrounding capacity degradation. Therefore, we 

completed a parametric study using a two additional models Fortenbacher et al.89 and Wang et al.86 

Fortenbacher et al.’s37 degradation model is identified using synthetic data from an electrochemical 

battery mode called DUALFOIL. Equation (23 ref. 37) determines degradation using the SOC and 

the power injection/extraction.89 Variables 𝐸𝑡, 𝑃𝑐ℎ,𝑡, and 𝑃𝑑𝑖𝑠,𝑡 are used in equation (23 ref. 37) to 

calculate the cost for the entire year, 𝐽𝑏𝑎𝑡, which we then divided by an investment cost of 400 

€/kwh used in Fortenbacher et al.37 to determine the percent capacity degradation. 

𝐽𝑏𝑎𝑡 = 𝑏(𝐸𝑡 − 𝑎)2 + 𝑐𝑃𝑐ℎ,𝑡 + 𝑑𝑃𝑑𝑖𝑠,𝑡 + 𝑒𝑃𝑑𝑖𝑠,𝑡
2    eq. 23 ref. 37 

Table A - 13, Degradation parameters used in Fortenbacher et al.37 equation (23 ref. 37) 

𝑎 9.25e-4 𝐶𝑏𝑎𝑡 h-1 (kWh)-1 

𝑏 1.05e-3 (kWh)-1 

𝑐 0 (kWh)-1 

𝑑 1.25e-6 (kWh)-1 

𝑒 1.5e-5 kWh (kW)-2 h-1 𝐶𝑏𝑎𝑡
-1 

 

The second model tested, Wang et al.38 is dependent on temperature, which stems from its 

design for vehicle batteries, but for this analysis, we assumed the batteries will be in a temperature-

controlled setting at 25°C. Modeling temperature fluctuations is an important area of future study. 

In equation (5 ref. 38) of their paper, Qloss,%, the percent capacity degradation based on the age of 

the battery in days, t, is: 

𝑄𝑙𝑜𝑠𝑠,% =  (𝑎𝑇2 + 𝑏𝑇 + 𝑐)𝑒𝑥𝑝[(𝑑𝑇 + 𝑒)𝐼𝑟𝑎𝑡𝑒]𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 + 𝑓𝑡0.5𝑒𝑥𝑝[−𝐸𝑎/𝑅𝑇]        eq. 5 ref. 

38 
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Table A - 14, Degradation parameters used in Wang et al.38 equation (5 ref. 38) 

𝑎 8.61e-6 1/Ah-K2 

𝑏 -5.13e-3 1/Ah-K 

𝑐 7.63e-1 1/Ah 

𝑑 -6.7e-3 1/K-(C-rate) 

𝑒 2.35 1/(C-rate) 

𝑓 14,876 1/day1/2 

Irate 2.63 C-rate 

t  Days 

Ea 24.5 kJ mol-1 

R 8.314 kJ mol-1 K-1 

T 298 K 

 

In this model, degradation includes two components. One is due to cycling, which is 

determined by the total amount of charge delivered by the battery during cycling, denoted 

𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡; the other is standing degradation, which is determined by time. The model was 

developed through laboratory experiments. The  𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 is calculated by: 

𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑁𝑐𝑦𝑐 ∗ Irate,                     (23) 

where 𝑁𝑐𝑦𝑐 is the average number of cycles per day. Again, the PJM data with offsets are used to 

evaluate the degradation. Figure A-10 shows the battery degradation due to providing frequency 

regulation (PJM signal with offsets) calculated from Xu et al.’s32, Fortenbacher et al.’s37, and 

Wang et al.’s38 models.  

 
Figure A - 10, The rate battery capacity degradation for Xu et al.’s32, Fortenbacher et al.’s37, and Wang et al.’s38 

models. 
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2.3.  Efficiency Degradation 

 Internal resistance, which can increase over time, has a significant impact on a battery’s 

efficiency. Therefore, in order to model our battery system’s rate of efficiency degradation, we 

first calculated its yearly increase in internal resistance, using data from Cordoba-Arenas et al.90 

Then, we computed the efficiency degradation from the resistance increase.  

 The main factors affecting resistive increase are 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, the rate at which the battery 

is charged and discharged denoted, crate, temperature, and the minimum SOC, denoted SOCmin. 

Again, using the PJM data with offsets and the parameter values in Section 2.2, the 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 

per year is 7 kAh and the SOCmin is 0.2. Also, the crate of our battery system is 2.63, which is 

calculated from the E/P of 0.38. Based on these parameters, we estimate the percentage resistance 

increase per year, 𝑅𝑖𝑛𝑐, to be 4% using the data in Figure 12 of Cordoba-Arenas et al. (2015).  

 Next we use 𝑅𝑖𝑛𝑐 to characterize the battery system’s efficiency degradation. Let 𝑃 be the 

battery system power assuming 100% efficiency, let 𝑃𝑅𝑜
 be the battery system power at the start 

of the year, and let 𝑃𝑅 be the battery system power at the end of the year. Also, let 𝑛𝑜 be the 

battery’s initial efficiency at the start of the year and 𝑛𝑅 be the battery system’s efficiency at the 

end of one year. We have: 

𝑛𝑜 =
𝑃−𝑃𝑅𝑜

𝑃
=

𝑃−𝐼2𝑅0

𝑃
,                                                        (24) 

𝑛𝑅 =
𝑃−𝑃𝑅

𝑃
=

𝑃−𝐼2𝑅

𝑃
.                                                           (25) 

Note that the percentage resistance increase per year, 𝑅𝑖𝑛𝑐, can be expressed as: 

𝑅𝑖𝑛𝑐 =  
𝑅−𝑅𝑜

𝑅𝑜
.                                                                (26) 

After some algebraic manipulation of Equations (24)-(26), we get: 

𝑛𝑅 = 1 − (1 − 𝑛𝑜)(𝑅𝑖𝑛𝑐 + 1),                                                (27) 

which is used to calculate efficiency degradation. 
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3. Supplemental Results 

3.1. Base Case Scenario 

Figure A-11 shows the life cycle inventory data for NOx, SOx and CO2 corresponding to the base 

case. 

 

 

Figure A - 11, Changes in emissions from using Li-ion battery systems for frequency regulation for each base case 

scenario, a) NOx b) SOx and c) CO2. Yellow bars are use-phase impacts resulting from changes in the 

quantity/efficiency of coal/gas, grey bars are upstream impacts resulting from changes in the quantity of coal/gas, 

and green bars are upstream/end-of-life impacts of the battery system. R.E. = Renewable Energy 

3.2. Curtailment Scenario 

We determined the percent renewable capacity required to reach 10% curtailment (Table 

A-14) in each scenario using a brute force method. We used the renewable generation profile and 

the actual renewable energy generated after the first 24-hour time interval to calculate the percent 

curtailment of renewable generation for each scenario without energy storage. We increased the 

renewable energy generation by multiplying the load profile by a steadily increasing factor until 

the curtailment, after the first time interval, reached 10%.  

 

Table A - 15, Percent wind and/or solar generation pre-curtailment to achieve 10% curtailment 

Fuel Renewable Resources Percent Renewable Generation 

Coal Wind & Solar 40.5% 

Coal Solar 21.4% 

Coal Wind 43.5% 

Gas Wind & Solar 54.0% 

Gas Solar 29.4% 

Gas Wind 55.5% 

   

 

Figure A-12 shows the life cycle inventory data for NOx, SOx and CO2 corresponding to the 

curtailment case. 
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Figure A - 12, Change in environmental impacts from using Li-ion battery systems for power system frequency 

regulation for each curtailment scenario, a) NOx, b) SOx and c) CO2. The blue lines are the net base case impacts. 

Yellow bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas, grey bars are 

upstream impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-of-life impacts 

of the battery system. R.E. = Renewable Energy 

3.3. Complete Parametric Study Results 

Figure A-13 shows the emissions and Figure A-14 shows the environmental impacts that were 

not included in the body of the paper for each parametric study. 
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Figure A - 13,  (a) NOx, (b) SOx for each parametric study under each scenario listed in Table 1 due to the addition 

of 1 MW-yr of frequency regulation capacity provided by Li-ion battery systems. The red dots represent the average 

value across parametric studies for each scenario. Coal cases correspond to the left axes and Gas cases correspond to 

the right axis. Note the difference in scale between the two axes. See Table 2 for details on parametric studies. 

Yellow bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas generation, grey 

bars are upstream fuel impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-

of-life impacts of the battery system. R.E. = Renewable Energy 
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Figure A - 14, (a) Cumulative energy demand (CED) and (b) acidification impacts for each parametric study under 

each scenario listed in Table 1 due to the addition of 1 MW-yr of frequency regulation capacity provided by Li-ion 

battery systems normalized by average U.S. per-capita annual impacts. The red dots represent the average value 

across parametric studies for each scenario. Coal cases correspond to the left axes and Gas cases correspond to the 

right axis. Note the difference in scale between the two axes. See Table 2 for details on parametric studies.  Yellow 

bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas generation, grey bars are 

upstream fuel impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-of-life 

impacts of the battery system. R.E. = Renewable Energy 
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3.3.1. Congestion Study 

Transmission congestion was added to the Coal cases by reducing the line limits from 1000 

MW to 200 MW and to the Gas cases by reducing the line limits to 170 MW in all lines other than 

those connecting generators to the system (i.e., 1-4, 3-6, and 8-2). Table A-15 details which lines 

were congested in each scenario with these line limits in place. Lines 7-8 and 8-9 connect the 

renewable generation and the energy storage bus to loads and lines 9-4 and 6-7 connect generator 

buses to loads 

Table A - 16, Number of hours in the first day of the energy storage’s life that a line is operating at its limit 

Scenario 
Line 

6-7 7-8 8-9 9-4 

Coal No R.E.  0 1 0 0 

 Coal Solar 0 9 1 0 

Coal Wind 0 15 0 0 

NG No R.E. 5 0 0 1 

NG Solar 1 8 8 0 

NG Wind 0 1 0 0 

 

 

3.3.2. Capacity Degradation Study (Wang) 

Figure A-15 shows emissions and Figure A-16 shows the environmental impacts of the 

Wang et al. capacity degradation model in comparison to the base case normalized based on 

average per-capita impacts for the U.S. in 2016. 

 

     

Figure A - 15, Change in emissions from using Li-ion energy storage for power system frequency regulation for 

each Wang capacity degradation scenario, a) NOx, b) SOx and c) CO2 The blue lines are the net base case impacts. 

Yellow bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas, grey bars are 

upstream impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-of-life impacts 

of the battery system. R.E. = Renewable Energy 
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Figure A - 16, Change in environmental impacts from using Li-ion energy storage for power system frequency 

regulation for each Wang capacity degradation scenario, a) global warming potential (GWP), b) cumulative energy 

demand (CED) and c) acidification. The blue lines are the net base case impacts. Yellow bars are use-phase impacts 

resulting from changes in the quantity/efficiency of coal/gas, grey bars are upstream impacts resulting from changes 

in the quantity of coal/gas, and green bars are upstream/end-of-life impacts of the battery system. R.E. = Renewable 

Energy 

 

3.3.3. Capacity Degradation Study (Fortenbacher) 

Figure A-17 shows emissions and Figure A-18 shows the environmental impacts of the 

Wang et al. capacity degradation model in comparison to the base case normalized based on 

average per-capita impacts for the U.S. in 2016. 

 

 

Figure A - 17, Change in emissions from using Li-ion energy storage for power system frequency regulation for 

each Fortenbacher capacity degradation scenario, a) NOx, b) SOx and c) CO2 The blue lines are the net base case 

impacts. Yellow bars are use-phase impacts resulting from changes in the quantity/efficiency of coal/gas, grey bars 

are upstream impacts resulting from changes in the quantity of coal/gas, and green bars are upstream/end-of-life 

impacts of the battery system. R.E. = Renewable Energy 
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Figure A - 18, Change in environmental impacts from using Li-ion energy storage for power system frequency 

regulation for each Fortenbacher capacity degradation scenario, a) global warming potential (GWP), b) cumulative 

energy demand (CED) and c) acidification. The blue lines are the net base case impacts. Yellow bars are use-phase 

impacts resulting from changes in the quantity/efficiency of coal/gas, grey bars are upstream impacts resulting from 

changes in the quantity of coal/gas, and green bars are upstream/end-of-life impacts of the battery system. R.E. = 

Renewable Energy 

 

3.3.4. Efficiency and Efficiency Degradation Study 

Figure A-18 shows the environmental impacts of efficiency and efficiency degradation 

by showing the difference between net use-phase impacts in the base case and with a 100% 

efficient battery with no degradation.  

 

 

Figure A - 19, Difference in impacts between the base case and 100% efficient battery system a) CO2, b) SOx, c) 

NOx, d) natural gas consumption, e) coal consumption, f) net fuel consumption. R.E. = Renewable Energy 
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3.3.5. Battery Type Study 

 
Figure A - 20, Relative environmental impacts from battery production (this figure does not include assembly). 

LiMn2O4 (LMO), LiFePO4 (LFP), LiNiMnCoO2 (NMC) and LiNiCoAlO2 (NCA). 
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Symbol Description 

Unit Commitment and Dispatch 

𝐴𝑔 Diagonal matrix of quadratic cost coefficients for conventional generators 

𝐵𝑔 Column vector of linear cost coefficients for conventional generators 

𝐵𝑔𝑟 Column vector of cost coefficients for renewable generation plants 

𝐵𝑟  Column vector of cost coefficients for frequency regulation 

𝐵𝑒𝑠  Column vector of cost coefficients for energy storage 

𝐵𝑜𝑛 Column vector of cost coefficients for start-up 

𝐵𝑜𝑓𝑓 Column vector of cost coefficients for shut-down 

𝛽 Parameter for additional load from energy storage-based frequency regulation 

𝐶𝑔 Grid topology matrix mapping conventional generators 

𝐶𝑔𝑟 Grid topology matrix mapping renewable generators 

𝐶𝑑 Grid topology matrix of load 

𝐶𝑒𝑠 Grid topology matrix mapping energy storage 

𝐷𝑏 Matrix describes the relationship between bus voltage angle and bus power injection 

𝐷𝑓 Matrix describes the relationship between bus voltage angle and line power flow 

𝜂𝑐ℎ Energy storage charging efficiency 
𝜂𝑑𝑖𝑠 Energy storage discharging efficiency 

𝑛𝑔 Number of conventional generators 

𝑛𝑔𝑟 Number of renewable generation plants 

𝑛𝑒𝑠 Number of energy storage devices 

𝑛𝑏 Number of buses 

𝑛𝑙 Number of transmission lines 

Θ𝑡 Bus voltage angle 

𝑃𝑡
𝑔

 Power output of the conventional generators 

𝑃𝑡
𝑔𝑟

 Power output of renewable generation 

𝑃𝑏,𝑡 Power injected at each bus 

𝑃𝑡
𝑑 Load at each bus 

𝑃𝑡
𝑑,𝑒𝑠

 Additional load at each bus due to round trip losses from energy storage  

𝑃𝑓,𝑡 Power flow through each transmission line 

𝑃𝑓,𝑡
𝑔𝑟

 Forecast capacity of renewable generation 
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𝑃𝑓,𝑚𝑖𝑛 Lower limit for line flow 

𝑃𝑓,𝑚𝑎𝑥 Upper limit for line flow 

𝑃𝑚𝑖𝑛
𝑔

 Lower bound of generator output 

𝑃𝑚𝑎𝑥
𝑔

 Upper bound of generator output 

𝑅𝑡
𝑔

 Frequency regulation capacity of the conventional generators 

𝑅𝑡
𝑒𝑠 Frequency regulation capacity of energy storage  

𝑅𝑚𝑖𝑛
𝑒𝑠  Lower limit for energy storage frequency regulation capacity 

𝑅𝑚𝑎𝑥
𝑒𝑠  Upper limit for energy storage frequency regulation capacity 

𝑟𝑟𝑒𝑞 Frequency regulation capacity required by the power system 

𝑡𝑜𝑛
𝑗

 Minimum up time for the 𝑗𝑡ℎ conventional generator 

𝑡𝑜𝑓𝑓
𝑗

 Minimum down time for the 𝑗𝑡ℎ conventional generator 

𝑈𝑡 Binary decision variable for generator commitment 

𝑉𝑡 Binary variable for generator start-up 

𝑊𝑡 Binary variable for generator shut-down  

Capacity Degradation 

𝐴ℎ𝑟𝑎𝑡𝑒𝑑 Rated battery current 

𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  The total current delivered by the battery during cycling 
𝐸𝑜,𝑒𝑛𝑑 The SOC at the end of an hour resulting from 𝑃𝑜,𝑡 

𝐸/𝑃 Energy to power ratio 
𝐸𝑡 The SOC at time t 

𝑘𝑒𝑝 Describes how aggressively the energy storage is bidding into the market, 1/(E/P) 
𝑁𝑐𝑦𝑐 Number of cycles 
𝑃𝑐ℎ,𝑡 Power injected into the battery 
𝑃𝑑𝑖𝑠,𝑡 Power extracted from the battery 
𝑃𝑜,𝑡 The initial power injected/extracted prior to the addition of the offset 

𝑃𝑃𝐽𝑀 Actual reference signal from PJM 
𝑃𝑡 Power injected/extraction of the energy storage at time t 
𝛿𝑃 Power offset 
Δ𝑡 Time interval in hours 

Efficiency Degradation 

I Battery current 

𝑛𝑜 Initial battery efficiency 

𝑛 Battery efficiency after resistance increase 

𝑃 Battery power assuming 100% efficiency 

𝑃𝑅𝑜
 Initial battery power with initial efficiency 

𝑃𝑅 Battery power after resistance increase 

𝑅𝑖𝑛𝑐 Percent resistance increase 

𝑅𝑜 Initial battery resistance 

𝑅 Resistance after degradation  
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Appendix B:  

The Impact of Forecasted Net Load on Real-Time Power Generator Operation 

 

1. Power System Model 

1.1. Input Data 

1.1.1. Generators 

The generator database is originally derived from the Transmission Expansion Planning 

Policy Committee (TEPPC) 2024 Common Case, and was modified for use in the National 

Renewable Energy Laboratory’s Low Carbon Grid Study.121,122 The primary modification for this 

chapter is the increase in variable renewable energy (VRE) discussed in section 1.1.3. 

Additionally, all local generation constraints were removed. 

Given the focus of this study is generator scheduling it is important to understand each 

generator types’ constraints, listed in Table B-1. Each unit type’s flexibility varies significantly, 

with combustion turbines being the most flexible. They have the shortest minimum up and down 

times, as well as, the fastest ramp rate, which allows to be re-committed in the real-time. Nuclear 

is the least flexible, with a very low ramp rate. Its minimum up and down types are not applicable 

because these units are modeled such that they are not allowed to cycle, as this is how they are 

generally run.  
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Table B - 1, Generator constraints 

Category 
Combustion 

Turbine 

Combined 

Cycle 
Coal 

Gas 

Boiler 
Nuclear 

Minimum Generation Level (% of Maximum Capacity) 45 55 40 15 50 

Minimum Up Time (Hours) 2 8 24 12 NA 

Minimum Down Time (Hours) 2 4 48 8 NA 

Ramp Rate (% of Max Capacity per Min) 5.4 0.8 0.9 1.7 0.3 

Each region of the U.S. has its own unique distribution of different generator types, making 

some more flexible than others. One of the major limits to a system’s flexibility is generator 

minimum generation level. In an effort to examine the impact of a small change in flexibility of 

the system we decreased coal units’ minimum generation level by 20%. This change is similar to 

the change Palchak and Denholm (2014) made to minimum generation levels when examining the 

impact of generator flexibility on cost. However, they reduced coal’s minimum generation level 

from 60% of max capacity to 40% a more extreme change than the one we made, give coal’s 

minimum generation level is already at 40% in this model. 211 

1.1.2. Day-ahead VRE Forecasts 

The day-ahead wind and solar forecasts were originally developed for NREL’s 

Interconnection SEAMs study.212 The solar data used to develop the forecasts is from 1209 

National Solar Radiation Database (NSRDB) sites.213 The NSRDB irradiance data was converted 

to power data using the System Advisor Model (SAM).214 The NSRDB data is only available on 

the half-hour time scale. The wind data used to develop the wind forecasts is from 223 of sites 

from the Wind Integration National Dataset (WIND) Toolkit, which as 5-min data.215 Both sets of 

data are from 2012, as it is considered the most average power year of those avaliable.212 

A range of forecast error scenarios was modeled to test the predictability of the regression 

as forecast error changes, providing insight into whether the model is better predictor of 

commitment error due to uncertainty or variability. It is also likely that forecasts will improve as 

technology advances. Additionally, we only model the day-ahead market, when additional markets 

exist that allow certain generators to be re-committed closer to the real-time when forecasts are 

likely better, for example CAISO’s short-term unit commitment. 
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We modeled six levels of forecast error from an increase of 25% to a decrease of 100% 

i.e., no forecast error. It is unlikely that the forecasts will become less accurate therefore we only 

modeled one scenario with an increase in forecast error. 

Each subregion and VRE generator has its own forecast. Prior to modifying the forecasts 

from the base case, they were multiplied by four to increase the VRE generation four times. This 

simple method was also employed by Martinez-Anido et al. when examining the impacts of 

forecast error in the Independent System Operator New England.123 

The percent changes in forecast error are based on the error between the day-ahead forecast 

and the real-time generation. The day-ahead is hourly and the real-time is on a five minute basis 

however, error was calculated by only using the values in the real-time forecast that fall on the 

beginning of each hour. The initial error in each hour, t, is calculated as follows,  

𝜖𝑊𝑡,𝑟 = 𝑊𝐷𝐴,𝑡,𝑟 − 𝑊𝑅𝑇,𝑡,𝑟 ,     (1) 

𝜖𝑆𝑈𝑃𝑉,𝑡,𝑟 = 𝑆𝑈𝑃𝑉.𝐷𝐴,𝑡,𝑟 − 𝑆𝑈𝑃𝑉,𝑅𝑇,𝑡,𝑟 ,     (2) 

𝜖𝑆𝐷𝑃𝑉,𝑡,𝑟 = 𝑆𝐷𝑃𝑉.𝐷𝐴,𝑡,𝑟 − 𝑆𝐷𝑃𝑉,𝑅𝑇,𝑡,𝑟 ,     (3) 

where, r, is the subregion, and W, is wind, S is solar, D, is distributed photovoltaics, and U is utility 

scale photovoltaics. 

In order to create the new forecasts the error is multiplied by a factor, ∆, from 0.25 to -1, 

in increments of 0.25, depending on the scenario, and added to the original forecast to develop the 

new forecasts for each scenario, i. 

𝑊𝐷𝐴,𝑡,𝑟,𝑖 = 𝑊𝐷𝐴,𝑡,𝑟,𝑖 + (∆𝑖)𝜖𝑊𝑡,𝑟     (4) 

𝑆𝑈,𝐷𝐴,𝑡,𝑟,𝑖 = 𝑆𝑈,𝐷𝐴,𝑡,𝑟,𝑖 + (∆𝑖)𝜖𝑆𝑈,𝑡,𝑟     (5) 

𝑆𝐷,𝐷𝐴,𝑡,𝑟,𝑖 = 𝑆𝐷,𝐷𝐴,𝑡,𝑟,𝑖 + (∆𝑖)𝜖𝑆𝐷,𝑡,𝑟     (6) 

The new forecasts are verified by calculating their RMSE, table B-2. These values are 

calculated for the regional level forecasts. 
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Table B - 2, Root mean squared error for each forecast error scenario and variable renewable energy type. UPV = 

utility scale photovoltaics, DPV = distributed solar photovoltaics 

Change in 

Error 
Wind UPV DPV 

+25% 134.7 29.9 14.3 

Base Case 107.7 24.0 11.5 

-25% 80.8 18.0 8.6 

-50% 53.9 12.0 5.7 

-75% 26.9 6.0 2.9 

-100% 0.0 0.0 0.0 

 

1.1.3. Reserves 

This model contains one reserve product, which is combination of contingency and 

regulation reserves. The methods used to calculate these reserve products are outlined in Ibanez et 

al. (2012).216 These methods have been used in a number of large grid studies executed in 

PLEXOS.212 The reserve product calculations used the base case wind and solar forecasts and the 

real-time load, wind, and solar data, as well as, solar clear sky data. 

1.2. Week Selection 

Given the computational time required to run the real-time market for all of WECC and 

the number of forecast error scenarios, we only ran the weeks we anticipated having the most and 

least amount of commitment error i.e., the weeks with the most and least variability and ramping, 

Table B-3. We separated the two types of weeks to gain further insight into the impact the 

parameters had on commitment error. The base case net load, prior to any adjustments in forecast 

error or wind and solar generation is representative of the day-ahead net load, 𝜌𝑡 , and the real-time 

net load, 𝑃𝑡, in the following calculations. 

Table B - 3, Weeks selected based on analysis of variability and ramp rate 

Week Type Start Date Week # 

High Ramp August 5, 2024 32 

Low Ramp Nov 18, 2024 47 

High Variability July 14, 2024 29 

Low Variability Nov 11, 2024 46 

 

 



 

110 

 

1.2.1. Calculating weekly ramp 

The absolute value of the ramp rate, 𝐴𝜖𝑡,𝑟 in each hour, t, and each subregion, r, is 

calculated as follows across the year, 

𝐴𝜀𝑡,𝑟 =  |𝜌𝑡,𝑟 − 𝜌𝑡−1,𝑟|.     (7) 

The absolute value of the ramp was used so that the positive and negative values in different 

regions did not cancel each other out. This maintains the regional granularity of the ramp rate.  

The weeks are compared based on the average of the sum of the ramp rate in each region, 

across each week, 𝑇𝜀𝑤,  

𝑇𝜀𝑤 =
∑ ∑ 𝐴𝜀𝑡,𝑟

𝑟
0

𝑤𝑒𝑒𝑘
0

(7)∗(24)
.              (8) 

1.2.2. Calculating weekly variability 

In order to calculate the intra-hour variability, 𝜇𝑡,𝑟, the real-time net load, 𝑃𝑡,𝑟,𝑛, has to be 

used, given the day-ahead is on an hourly time scale, where n is the intra-hourly time increment 

and t is the hour.  

𝜇𝑡,𝑟 = max
0 𝑡𝑜 𝑛

𝑃𝑡,𝑟,𝑛 − min
0 𝑡𝑜 𝑛

𝑃𝑡,𝑟,𝑛.    (9) 

The variability is calculated for each week in the same way as the ramp, in eq. (9). 

𝑇𝜇𝑤 =
∑ ∑ 𝜇𝑡,𝑟

𝑟
0

𝑤𝑒𝑒𝑘
0

(7)∗(24)
.         (10) 

1.3. PLEXOS Modeling 

1.3.1. Commitment Changes 

We designed the production cost model to only allow certain generators change 

commitment in the real-time. The only fossil generation allowed is combustion turbines all other 

units are types of energy storage (pumped storage, batteries, and demand response) or VRE with 

the addition of hydro and concentrating solar power, whose commitments are uncontrollable unless 

they are curtailed. In order to model this behavior in PLEXOS we needed to pass the commitment 

data from the output of the day-ahead runs into the real-time runs. Therefore, we set the day-ahead 

runs to create a report, i.e., a csv file, for each generator’s ‘units generating’ property. For the units 
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who are not allowed to change commitment in the real-time, the value for their ‘commit’ property 

is pointed to the ‘units generating’ property from the day-ahead and it is left free for those that can 

change commitment. This is similar to how the generator outage schedules are passed from the 

PASA to the day-ahead to the real-time.  

1.3.2. Model Settings 

PLEXOS has an array of model attributes that will change how the system is optimized. 

Table B - 4 includes some of the key attributes of the day-ahead runs and the real-time runs.  

Table B - 5, Important PLEXOS model attributes for the day-ahead and real-time runs 

Category Day-ahead Real-time 

Horizon Settings 

Time Interval Hourly 5-min 

Look ahead none none 

Production Settings 

Max Heat Rate Tranches 6 6 

Performance Settings 

Solver 2 2 

MIP Relative Gap 0.01 0.001 

Improve Start Gap 0 0 

MIP Max Time 65000 65000 

MIP Maximum Threads 4 4 

Transmission Settings 

OPF Method 1 1 

Constraint Voltage Threshold 600 600 

Max Loss Tranches 10 10 
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2. Power System Results 

2.1. Generation 

 
Figure B - 1, Total generation by type for each week for the base case level of forecast error 
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3. Statistical Results 

Table B - 6, Variable P-values for each final model 

0.001 *** 0.01 ** 0.05 *  not significant  not in model 
 

Variables 
Hour  

(t or t-n) 

WECC CAISO 

Improvement in Forecast Error (%) 

-25 0 25 50 75 100 -25 0 25 50 75 100 

Net Load (𝜌𝑡), B1   0             
Net Load (𝜌𝑡), B2 0             
Relative Net Load 
(𝑅𝜌𝑡), B1 0             
Relative Net Load 
(R𝜌𝑡), B2 0             

Fraction VRE (𝑔𝑡) 

0             
1             
2             
3             
4             

Ramp Rate (𝜀𝑡) 

0             
0-1             
0-2             
0-3             
0-4             

Relative Ramp 
Rate (𝑅𝜀𝑡) 

0             
1             
2             
3             
4             

0-1             
0-2             
0-3             
0-4             

Variability (𝜇𝑡) 

0-1             
0-2             
0-3             
0-4             

Hour (h), B1 0             
Hour (h), B2 0             
Hour (h), B3 0             
Controls 
Week (HighVar) 0             
Week (LowRamp) 0             
Week (LowV) 0             
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Appendix C:  

Reducing CO2 emissions from U.S. steel consumption by 70% by 2050 

 

1. Methods Outline 

This work combines steelmaking technology scenarios, trade scenarios, and steel flow 

parameters resulting in 329,284 potential pathways the U.S. could take to reduce CO2 emissions 

from steel consumption. The values for each parameter and scenario are outlined in Table C-1 and 

discussed in more detail in the proceeding sections of Appendix C. 
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Table C - 1, Different 2050 scenarios and steel flow parameter and population values simulated in the model.  16 x 3 

x 7 x 14 x 5 x 2 x 7 = 329,280 U.S. steel industry pathways simulated in total 

Steelmaking Technology 

scenarios 

Trade 

scenarios 

Steel flow parameters 
 

Population 

(million) 

Stocks per 

capita 

(tons/cap) 

Product 

lifespan 

Recycling 

rate 

Manufacturing 

process yield 

Basecase emissions (U.S.) & 

Basecase emissions  (ROW) 
Zero 8 

Bascase -

30%* 

Basecase -

10% 
Basecase 328 

Basecase emissions (U.S.) & 

High emissions  (ROW) 
Medium 9 

Bascase -

20%* 

Basecase -

5% 
Basecase +10% 347 

Basecase emissions (U.S.) & 

Mid emissions  (ROW) 
High 10 

Bascase -

10%* 
Basecase  368 

Basecase emissions (U.S.) & 

Low emissions  (ROW) 
 11 Bascase* 

Basecase 

+5% 
 389 

High emissions (U.S.) & 

Basecase emissions  (ROW) 
 12 

Bascase 

+10%* 

Basecase 

+10% 
 410 

High emissions (U.S.) & High 

emissions  (ROW) 
 13 

Bascase 

+20%* 
  431 

High emissions (U.S.) & Mid 

emissions  (ROW) 
 14 

Bascase 

+30%* 
  452 

High emissions (U.S.) & Low 

emissions  (ROW) 
  

Bascase -

30%** 
   

Mid emissions (U.S.) & 

Basecase emissions  (ROW) 
  

Bascase -

20%** 
   

Mid emissions (U.S.) & High 

emissions  (ROW) 
  

Bascase -

10%** 
   

Mid emissions (U.S.) & Mid 

emissions  (ROW) 
  Bascase**    

Mid  emissions (U.S.) & Low 

emissions  (ROW) 
  

Bascase 

+10%** 
   

Low emissions (U.S.) & 

Basecase emissions  (ROW) 
  

Bascase 

+20%** 
   

Low emissions (U.S.) & High 

emissions  (ROW) 
  

Bascase 

+30%** 
   

Low emissions (U.S.) & Mid 

emissions  (ROW) 
      

Low emissions (U.S.) & Low 

emissions  (ROW) 
      

Totals       

16 3 7 14 5 2 7 

*Applied to both new and existing products 

**Applied only to new products 

 

Modeling each pathway required the use of existing data on steel production and consumption 

in the U.S. and globally, two dynamic material flow analysis (DFMA), and mass flow 

optimization. Figure C-1 depicts how each pathway is modeled and CO2 emissions calculated. The 

SI complements the paper by providing more details on each step depicted in Figure C-1. The SI 

includes references for all input data, justification and references for each trade and technology 
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scenario, detailed calculations for all modeling steps, and results figures for each combination of 

scenarios and parameters not represented in the body of the paper. 

 

Figure C - 1, Schematic of methodology 

2. Available Scrap & Demand 

2.1. Historical Demand & Sector Division 

Available data for historical steel demand in the U.S. have evolved and improved over the 

years. The American Iron and Steel Institute (AISI) published their first book of annual statistics 

in 1912 with data going back to 1810.217 However, in order to estimate the quantity of in-use stocks 

and scrap produced in the U.S. the amount of final steel going into use, or consumption, is required. 

World Steel Yearbook estimated ‘True Consumption’ is currently the best estimate of 

consumption, however, this data only dates back to 2002 and has not been calculated for more 

recent years yet. Therefore, for all other years of data we used a combination of data on apparent 

consumption, production, yields, and indirect net imports in order to estimate true consumption 

dating back to 1880. ‘True Consumption’, as defined by the World Steel Yearbook as apparent 

steel use minus net indirect exports (i.e., apparent consumption does not include net indirect 

imports).133 Apparent consumption is defined by USGS as steel shipments plus imports minus 

exports plus adjustments for industry stock changes minus semi-finished steel product imports.218 

Indirect net imports are the steel that is imbedded in final products like cars, washing machines, 

etc. As discussed earlier a large percentage of demand is supplied by imports, a value that has not 

been historically constant. These imports are a combination of net steel product imports and net 

indirect imports. Therefore, when ‘True Consumption’ values are not available but ‘Apparent 
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Consumption’ is available we use the United Nations Commodity Trade (Comtrade) database to 

estimate indirect imports (2017 & 2001-1962). From 1900 to 2015 United States Geological 

Survey (USGS) calculated the U.S. apparent.219 These values were used for apparent consumption 

until 2002 when True consumption values are available from World Steel Yearbook. When 

imports and exports are no longer available production and process yield values are used to 

estimate consumption (1961-1880), table C-2. Muller et al. (2006) also ignored trade prior to 1950 

as they assumed them to be negligible.220 However, we are only excluding trade prior to 1940. 

Figure C-2 shows the resulting consumption for 1880-2017. 

Table C - 2, Data sources and assumptions for historical demand 

Years Type Source 

2017 Apparent Consumption * + Indirect trade United States Geological Survey 

2016-2002 True Consumption World Steel Yearbook 

2001-1962 Apparent Consumption * + Indirect trade  United States Geological Survey 

1961-1900** Apparent Consumption * United States Geological Survey 

1899-1880** (Production Steel Ingots & Casting) x Yield *** American Iron and Steel Institute 

*The apparent consumption was converted into the quantity of steel imbedded in products by multiplying by 0.84, based on Cullen 

et al.’s (2012) fabrication losses 16 

**Indirect trade is not included in true consumption estimates for these years as the net contribution is assumed to be negligible 

*** Yield value of 0.78 used, based on Cullen et al.'s (2012) rolling/forming losses and fabrication losses 16 

 

Indirect trade is calculated from the Comtrade database by mapping the trade of 29 

commodities which contain the highest cumulative global imports, totally over 1,000 Gg Fe/a 

globally.221,222 These categories are a subset of the 220 categories Wang et al. (2007) used when 

characterizing iron cycles.222 Table C-3 lists the commodity codes, part descriptions, percent iron 

and mass to value ratios. For 15 of the categories, the quantity (in kilograms) of the import and 

export category is reported and all other commodities listed are reported in U.S. dollar values. The 

quantity per U.S. dollar conversion factors, listed in table C-3, are from (Cooper 2019). 
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Table C - 3, Commodities mapped for indirect imports and exports222 

SITC STITC.1_Code Parts or Final Product Descriptions % Fe 
Imports 

kg/$ 

Exports 

kg/$ 

S1 7321 Passenger motor cars, other than buses 0.65 0.05 0.04 

S1 719 Machinery and appliances non electrical parts 0.75 0.11 0.13 

S1 7328 Bodies & parts motor vehicles ex motorcycles 0.7 0.06 0.07 

S1 698 Manufactures of metal 0.9 0.14 0.27 

S1 729 Other electrical machinery and apparatus 0.55 0.03 0.03 

S1 718 Machines for special industries 0.75 0.08 0.10 

S1 7323 Lorries and trucks, including ambulances, etc. 0.8 0.10 0.11 

S1 735 Ships and boats 0.9 0.12 0.15 

S1 722 Electric power machinery and switchgear 0.55 0.03 0.02 

S1 7250 Domestic electrical equipment 0.65 0.06 0.08 

S1 69421 Nuts, bolts, screws, rivets, washers of iron/steel 0.98 0.20 0.32 

S1 7115 Internal combustion engines, not for aircraft 0.5 0.03 0.03 

S1 693 Wire products ex electric & fencing grills 0.9 0.19 0.30 

S1 7333 Trailers & other vehicles not motorized, & parts 0.5 0.12 0.11 

S1 861 Scientific, medical, & optical instruments 0.55 0.03 0.03 

S3 8213 Metal furniture 0.7 0.16 0.15 

S1 7316 Rail. &tram. cars ,not mechanically propelled 0.85 0.18 0.22 

S1 69221 Casks, drums, etc. used for transport of iron/steel 0.96 0.25 0.28 

S1 715 Metalworking machinery 0.65 0.06 0.06 

S1 714 Office machines 0.22 0.02 0.02 

S1 724 Telecommunications apparatus 0.25 0.02 0.02 

S1 712 Agricultural machinery and implements 0.7 0.07 0.08 

S1 894 Perambulators, toys, games and sporting goods 0.2 0.07 0.02 

S1 695 Tools for use in the hand or in machines 0.85 0.23 0.05 

S1 6291 Rubber tires & tubes for vehicles and aircraft 0.15 0.04 0.04 

S1 717 Textile and leather machinery 0.65 0.06 0.06 

S1 7325 Road tractors for tractor trailer combinations 0.8 0.13 0.17 

S1 69721 Domestic utensils of iron or steel 0.95 0.24 0.16 

S1 69411 Nails, tacks, staples, spikes, etc. of iron or steel 0.98 0.46 0.60 
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Figure C - 2, Historical United States Steel Consumption Estimate 

We divided total consumption into four product sectors (construction, transportation, 

machinery and other/products), each having a different average lifespan and lifespan distributions. 

Meaning they are each modeled separately when estimating their in-use stock, end-of-life (EOL) 

scrap and future demand. A number of studies modeling the flow of steel use these four 

sectors.37,173,220,223  

The percent of consumption attributed to each sector can potentially have a significant 

impact on the Dynamic Material Flow Analysis (DMFA) results (e.g., scrap) as it impacts stock 

and demand estimates. Pauliuk et al. (2013) found that the percent of demanded attributed to each 

sector has a similar impact on stock results as lifespan (i.e., it is one of the most influential 

parameters). However, calculating there percentages using primary data sources is challenging 

because a large percent of demand is classified as ‘service centers’ or ‘other’ in historic data.173 

Additionally, data sources are focused on domestic supply.  Only the more recent data from AISI 

does not include the ‘service center’ classification. Therefore, we average AISI’s estimated 

percentages from their yearly profiles for 2014 to 2017, found in table C-3. These values are kept 

constant across the modeling time frame, as done in Pauliuk et al. (2013), who also used AISI data 

sources for their sector splits.173 We also assuming the sector split applies to domestic steel 

products, as well as, imports and exports as done in Muller et al. (2006).220 

Table C - 4, Sector split used to estimate historical stock and future scrap and demand values224–227 

Product Type AISI (avg. 2014-2017) 

Construction 42% 

Transport 27% 

Machinery 17% 

Other 14% 
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2.2. Historical DMFA: to calculate in-use stocks 

The input stocks are determined using a historical flow-driven DMFA. A flow-driven DMFA 

is used because the historical demand is known but historical stocks are unknown. We are not 

using values from existing literature for current in-use stocks due to the inconsistency in estimates, 

which range from 8 t/capita to 14.3 t/capita.36,173,220,228  

A product’s lifespan and its lifespan distribution determine the probability of a product 

leaving stock in a given year (i.e., becoming scrap). Different lifespan distributions have been used 

in previous DMFAs (e.g., beta, log-normal, normal, Weibull, Gaussian). Muller et al. (2014) 

discusses a number of existing literature studies that compare lifespan distribution functions and 

they either find no significant difference between lifespan distributions tested and their findings 

are most sensitive to mean lifespans themselves and not the distributions.169 Muller et al. (2011) 

and Muller et al. (2006) also complete a sensitivity with normal, log-normal and Weibull finding 

little difference in results.220,228 Our model, like Pauliuk et al. (2012), Muller et al. (2011), Muller 

et al. (2006) and Yin & Chen (2013), uses a normal lifespan distribution.35,173,220,228 These are also 

the references used for the mean product lifespans and standard deviations used in our model 

(Table C-5). 

The scrap produced in each sector, 𝑆𝑐𝑟𝑎𝑝𝑡,𝑠, is calculated as follows: for t=1880, …,  2017, 

𝑆𝑐𝑟𝑎𝑝𝑡,𝑠 = ∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡𝑜,𝑠

𝑡

𝑡𝑜=1880
𝐿𝑡−𝑡𝑜

(𝜇𝑠, 𝜎𝑠), 
(1) 

where 𝐿𝑡−𝑡𝑜
 is the probability distribution function, 

𝐿𝑡−𝑡𝑜
=  

1

𝜎𝑠√2𝜋
𝑒

−
1

2
(

𝑇−(𝑡+𝜇𝑠)

𝜎𝑠
)

2

,     (2) 

where 𝜇𝑠 is the lifespan of products in sector s, 𝜎𝑠 is the standard deviation of the lifespan for 

products in sector s and 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡𝑜,𝑠 is the consumption for products in sector s in year t. 

These calculations were implemented in R using their cumulative distribution function. Table C-

5 lists the lifespans and standard deviations used. The product lifespan distributions are normal.  
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Table C - 5, Product lifespans and lifespan distribution standard deviations35,173,220,228 

Product Category Lifespan Standard Deviation 

Construction 75 25 

Transport 20 6.7 

Machinery 30 10 

Other 15 5 

 

 

The stocks per capita (STC) in each year for each sector, 𝑆𝑇𝐶𝑡,𝑠, is equivalent to the sum 

the consumption in each previous year minus the sum of the scrap produced in each previous year, 

which is calculated as follows: for t=1900, …,  2017, 

𝑆𝑇𝐶𝑡,𝑠 =
1

𝑝𝑜𝑝𝑡
[∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡𝑜,𝑠 − 

𝑡

𝑡𝑜=1880

∑ 𝑆𝑐𝑟𝑎𝑝𝑡𝑜,𝑠

𝑡

𝑡𝑜=1880

].   (3) 

In order to calculate the STC for each year t is the difference in consumption and scrap is 

divided by the population from the U.S. Census Bureau historical population data.229 

Table C - 6, Stock per-Capita values in 2017 calculated from the historical stock analysis for each product lifespan 

scenario 

Product Type Stocks per-Capita (t/capita) 

 Short Lifespan Average Lifespan Long Lifespan 

Construction 5.90 6.96 7.72 

Transport 1.15 1.62 2.03 

Machinery 1.06 1.44 1.79 

Other 0.45 0.64 0.83 

Total 8.27 10.7 12.4 

 

The variations between the literature estimates and the analysis presented here could result 

from the use of different sector divisions or different methods of accounting for the steel imbedded 

in imports and exports of finished products (e.g., imported stoves) in demand estimates. Another 

source of variation could be the assumed historical product lifespan distributions across the four 

categories. As a sensitivity analysis, short and long product lifespans (±30% of the medium 

scenario) were simulated in the historical DMFA, resulting in STC in 2017 of 8.3 and 12.4 t/cap 

respectively. These short and long historical product lifespan scenarios result in unacceptable 

discontinuities between the recorded steel demand in 2017 and the subsequent steel demand 
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needed in 2018 to maintain STC levels, showing that the average lifespan was the closest to the 

real world lifespan and is therefore, used in the analysis of the rest of the paper. 

 

 

Figure C - 3, Historical per-capita stocks by sector in the United States 

 

 

 

Figure C - 4, Historical scrap by sector in the United States 

2.3. Future DMFA: to calculate future demand and available scrap 

In order to estimate steel consumption and available scrap for 2018-2050, demand can be 

projected and in-use stock and scrap calculated through a flow-driven DMFA, or in-use stock can 

be projected and demand and scrap calculated though a stock-driven DMFA. Hatayama et al. 

(2010) and Pauliuk et al. (2013) use stock driven models to estimate future demand.36,37 Muller et 

al. (2011) notes that stocks reflects demand more adequately than flows and patterns of in-use 

stocks are more robust than flow patterns because they have a physical meaning through the 
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services they provide.228  This is particularly applicable when stocks are assumed to have saturated 

because there is less uncertainty in estimated stocks per-capita (STC) as they have remained 

constant over time wear as even after stocks saturate demand is still variable, as seen in the years 

since the U.S. stock plateaued in about 1980 (Figure C-2). Therefore, a stock-driven model was 

selected instead of a flow-driven model for estimating future scrap availability. 

2.3.1. Future DMFA: 2018-2020 

All interventions begin in 2020 therefore, the business as usual scrap values must be 

calculated for 2018-2020. A stock-driven DMFA estimates the steel flows from 2017 to 2020 as 

historical demand data was unavailable for these years.  The values for product lifespan equal those 

used in the historical DMFA and the  population values are calculated using a linear interpolation 

and the United States Census Bureau’s estimate for the U.S.’s 2050 population, 388.992 million.171 

The STC values are calculated with a logistic model, using historical STC values calculated in 

section C-1.2 with the average lifespan assumption, figure C-5. The logistic growth model is 

derived from Cooper et al. (2019).148 The resulting STC values are also used in the future DMFA 

for the business as usual scenario. 

 
Figure C - 5, Business as usual stocks per capita projection 

2.3.2. Future DMFA: 2021-2050 

The values for population, in-use STC, and product lifespan in each year from 2021 to 

2050 are calculated by linearly interpolating (eqn. 4-7) between the 2020 value and the 2050 value 

set in each scenario discussed below. 
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The population for each year is calculated as: for t=2021… 2050, 

𝑃𝑡,𝑖 = 𝑃2020 +  (
𝑃2050,𝑖−𝑃2020

2050−2020
) (𝑡 − 2020),    (4) 

where 𝑃𝑡,𝑖 is the U.S. population in year t for theoretical U.S. population value 𝑖, 𝑃2050,𝑖 in 

year 2050, 𝑃2020 is the U.S. population in year 2020 and N is the number of scenarios. The 2050 

population estimates range from 328 million, zero population growth, to 452 million, divided into 

seven scenarios, N. 

 

The stocks per-capita in each year for each sector, 𝑆𝑇𝐶𝑡,𝑖,𝑠 , is calculated as: for t=2021 …  

2050, 

𝑆𝑇𝐶𝑡,𝑖,𝑠 = 𝑆𝑇𝐶2020,𝑠 +  (
𝑆𝑇𝐶2050,𝑖,𝑠−𝑆𝑇𝐶2020,𝑠

2050−2020
) (𝑇 − 2020),   (5) 

where 𝑆𝑇𝐶2050,𝑖,𝑠 is the stocks per-capita in year 2050 for a given scenario 𝑖 and sector s, 

and 𝑆𝑇𝐶2020,𝑠 is the stocks per-capita in year 2020 for a given sector s calculated in section C-

2.3.1. The minimum and maximum realistic stock values are based on minimum and maximum 

values for stock saturation found in existing literature for developed countries. Pauliuk et al. (2013) 

predicts average stock level for mature steel stocks to be 13.4 ±2 tons per-capita.173 However, 

Muller et al. (2011) says that the average industrialized country stocks range from 8 to 12 tons per-

capita.228 Therefore, we set our minimum value at 8 tons per-capita, with a maximum value of 14 

tons per-capita. Although none of the existing stocks per-capita analyzed in literature have shown 

a decrease in per-capita stocks we still modeled these scenarios as they would indicate a decoupling 

of steel demand and economic growth,228 which could be necessary to ultimately reduce emissions 

to the required levels. 

The average lifespan in each year for each sector and scenario, 𝜇𝑡,𝑠,𝑖, is calculated as: for 

t=2021, …, 2050, 

𝜇𝑡,𝑠,𝑖 = 𝜇2020,𝑠 + (
𝜇2050,𝑖,𝑠−𝜇2020,𝑠

2050−2020
) (𝑡 − 2020),    (6) 

Where 𝜇2020,𝑠 is the lifespan in 2020 for a given sector, s, and 𝜇2050,𝑖,𝑠 is the lifespan in 

year 2050 for scenario 𝑖, and sector s. The minimum and maximum values are a +/- 30% of the 

average values in the base case. Pauliuk et al. (2013) completed their sensitivity analysis by 



 

125 

 

varying project lifespan by the same percentage.173 Muller et al. (2011) also varied product 

lifespans by +/-33% except in the case of their high transportation lifespan scenario.228 

The standard deviation in each year for each sector and each scenario, 𝜎𝑡,𝑠,𝑖, is calculated 

as: for t=2021, …, 2050, 

𝜎𝑡,𝑠,𝑖 = 𝜎2020,𝑠 + (
𝜎2050,𝑖,𝑠−𝜎2020,,𝑠

2050−2020
) (𝑡 − 2020),    (7) 

Where 𝜎2020,𝑠 is the standard deviation in 2020 for a given sector, s, and 𝜎2050,𝑖,𝑠 is the 

standard deviation in year 2050 for scenario 𝑖, and sector s. 

As with the historical DMFA, a normal distribution is used to calculate the scrap each year. 

However, the distribution is not constant overtime. The lifespan and standard deviation are based 

on the current year t, as calculated in eqn. 6-7. We model lifespan shifts in two ways.  

In one case we assume material that has not yet left use can be retrofitted (i.e., its lifespan 

can be extended or shorted based on the changing lifespan distributions between 2020 and 2050). 

In this case the lifespan and standard deviation calculated in eqn. 6-7, for a give year T, are applied 

to all remaining stock to calculate the scrap in leaving in T. However, in the case where there is no 

retrofitting the new lifespan and standard deviation calculated in eqn. 6-7 is only applied to the 

materials that went into stock after 2020.  

2.3.3. Shifted Start Date 

In order to investigate the impact of when interventions occur (i.e., deviations from the 

business as usual) in the lifespan, population, and STC we shift the starting value of T in five year 

increments in eqs. 4-7 for scenarios whose emissions remain below the cumulative and 2050 limit.  
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1.4. Future demand and available scrap 

1.4.1. No Retrofit: Future demand and scrap  

 

 

Figure C - 6, Total U.S. steel demand and scrap 1900 to 2050 for the business as usual scenario 
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Figure C - 7, Total U.S. steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 



 

128 

 

 

Figure C - 8, U.S. construction steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 9, U.S. transportation steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 10, U.S. machinery steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 11, U.S. products steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 12, Total U.S. steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 452 

million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 13, U.S. construction steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 14, U.S. transportation steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 15, U.S. machinery steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 16, U.S. products steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color)
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1.4.2. Retrofit: Future demand and scrap 

 

Figure C - 17, Total U.S. steel demand and scrap 1900 to 2050 for the business as usual scenario description 
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Figure C - 18, Total U.S. steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 19, U.S. construction steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 20, U.S. transportation steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 21, U.S. machinery steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 22, U.S. products steel demand 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 23, Total U.S. steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 452 

million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 24, U.S. construction steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 

to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 25, U.S. transportation steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 

325 to 452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 26, U.S. machinery steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 
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Figure C - 27, U.S. products steel scrap 1900 to 2050 for 2050: stocks per capita ranging from 8 tons/capita to 16 tons/capita (columns), population from 325 to 

452 million people (rows), lifespan scenarios ranging from a -30% decrease from average to a 30% increase from average (line color) 

 



148 

 

1.5. Calculating End-of-Life Scrap 

Estimates vary for the percent of available EOL scrap recycled. Therefore, we examine a 

range of potential values. The EOL recycling rates used here (Table C-6) are from Pauliuk et al.’s 

(2013) paper, also used by Elshkaki et al. (2018) and Morfeldt et al. (2015).147,173,174 Pauliuk et al. 

(2013) estimates the uncertainty of these values to be +5% and -10%.173 We used the uncertainty 

range of +/-10% to develop our range of allowable recycling rates for each sector. Additionally, 

we assume 100% of home and new scrap produced domestically is recycled. The aggregate 

recycling rate in 2050 ranges from 90%, as predicted by Ayres et al. (2006) and Allwood et al 

(2010), to 70%.3,230  

The recycling rate in each year for each sector and scenario, 𝑅𝑅(𝑇)𝑠,𝑖 , is calculated as: for 

T=2020 …  2050, and i=1 …  N, 

𝑅𝑅(𝑇)𝑠,𝑖 = 𝑅𝑅2020,𝑠 + (
𝑅𝑅2050,𝑠,𝑖−𝑅𝑅2020,𝑠

2050−2017
) (𝑇 − 2020),   (8) 

where 𝑅𝑅2050,𝑠,𝑖 is the recycling rate in year 2050 for theoretical value 𝑖 in sector s and 𝑅𝑅2020 is 

the recycling rate in year 2020 in sector s listed in table C-7.  

Table C - 7, Base case recycling rates by scenario173 

Product Sector Base Case Recycle Rate 

Construction 82% 

Transportation 82% 

Machinery 87% 

Products 58% 
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1.6. End-of-Life Scrap and Demand 

 

Figure C - 28, U.S. scrap versus demand in 2050. Lifespan scenarios ranging from a -30% decrease from average to 

a 30% increase from average (shape) and recycling scenarios range from a 10% increase from the base case to a 

10% decrease from base case 
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Figure C - 29, U.S. scrap versus demand in 2050 for the retrofit scenario. Lifespan scenarios ranging from a -30% 

decrease from average to a 30% increase from average (shape) and recycling scenarios range from a 10% increase 

from the base case to a 10% decrease from base case 

3. Trade Scenarios 

The U.S. has been a net new steel importer since about 1960231 and the scale of recent U.S. 

steel imports (47% of consumption in 2015232) has prompted a political response to increase 

domestic production and cut imports through levying 25% import tariffs.175 Given the continuing 

economic, security, and symbolic importance of the U.S. steel industry, it is assumed that policy 

interventions will prevent any further increase in the relative import reliance of U.S. steel 

consumption. Unlike the case of new steel, the U.S. has traditionally and continues to be a net 

exporter of product end of life (EOL) scrap. These exports are driven by demand in the developing 

world for construction products (e.g., rebar) that can be made from relatively low quality steel, 

such as EOL scrap with high concentrations of impurities like copper. Cooper et al. (2020) suggests 
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that domestic recycling of U.S. EOL steel scrap may already be limited by copper contamination 

and the relatively small demand for impurity tolerant construction products in the U.S. However, 

recycling limits due to compositional constraints are not included in this analysis. It is assumed 

that all manufacturing scrap generated within the U.S. is recycled domestically.  

Three trade scenarios (high, medium, zero; Table C-8) are simulated in this analysis to 

encompass the range of possible foreign policy and economic growth effects on new and scrap 

steel trade. For example, the high trade scenario is based on the percentage of steel consumption 

that was met by imports in 2015 and the percentage of collected scrap destined to exports in 2011. 

More new steel (as a percentage of consumption) was imported in 2015 than in any other year 

recorded by the World Steel Yearbook133 and more EOL scrap was exported (as a percentage of 

collected scrap) in 2011 than in any other year recorded since 2010.133 

Table C - 8, Trade scenario import and export percentages 

Scenario 
Net Steel/Iron Ore 

Imports 

Net Scrap 

Exports 

Zero 0% 0% 

Medium 25% 20% 

High 50% 40% 

 

The maximum value in Table C-9 and Table C-10 are rounded up to the nearest tens place to be 

used for the high trade new steel import and scrap export values respectively. 

Table C - 9, Consumption, imports of steel, and imports as percent of consumption in the United States133 

  

Exports 

Semi-

Finished 

& 

Finished 

(t) 

Imports 

Semi-

Finished 

& 

Finished  

(t) 

Net 

Semi-

Finished 

& 

Finished 

Import 

(t) 

Net 

Indirect 

Imports 

(t) 

Pig 

Iron 

Exports 

(t) 

Pig 

Iron 

Imports 

(t) 

Exports 

DRI (t) 

Imports 

DRI (t) 

Net Pig 

Iron/ 

DRI 

Imports 

(t) a 

True 

Consumption  

(t) 

% 

Consumption 

Imported b 

2010 11791 22510 10719 11322 81 3471 9 1643 4638 91219 29% 

2011 13288 26590 13302 12404 126 4190 14 1852 5448 101604 30% 

2012 13561 30886 17325 16283 122 4270 8 2762 6377 112483 35% 

2013 12508 29812 17304 17773 44 4118 5 2364 5942 113473 36% 

2014 11961 41369 29408 16734 52 4603 4 2392 6408 123691 42% 

2015 10000 36485 26485 22758 67 4534 21 1866 5825 118889 46% 

2016 9247 30913 21666 23528 62 3866 178 1598 4820 115388 43% 

2017 10211 35366 25155 24428 66 5127 640 1789 5725 122150 45% 
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Table C - 10, Percent scrap export 218 

 Purchased Home Import Export % Net Exported* 

2010 66 10 4 21 30% 

2011 72 10 4 24 32% 

2012 70 10 4 21 28% 

2013 77 8.5 3.9 18 21% 

2014 62 7.1 4.2 15 20% 

2015 54 6.3 3.5 13 20% 

2016 53 5.9 3.9 13 19% 

2017 55 5.5 4.6 15 21% 

2018 56 4.4 4.8 18 26% 

 

New steel imports fall into three categories. They can be in the form of iron (pig iron or DRI), 

semi-finished products (e.g., slabs), or indirect imports of finished goods (e.g., the steel contained 

within imported automobiles). Under each trade scenario, the quantity of steel imported belonging 

to each category is a fixed percentage of the overall import flow.  The percentages used, Table C-

10, are the average values across 2010-2018.  

Table C - 11, Percent of steel imports in each production stage 

 Percent of Net Imports 

Net Indirect Imports (𝑝𝑒𝑟𝑖𝑛𝑑) 41% 

Net Semi-Finished & Finished Import (𝑝𝑒𝑟𝑠𝑒𝑚𝑖) 45% 

Net Pig Iron/DRI Imports (𝑝𝑒𝑟𝑝𝑟𝑖𝑚) 14% 
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4. Technology Scenarios 

The introduction and methods in the main body of the paper briefly outlines the novel steel 

production technologies modeled in this paper. This section provides more details on their 

development status, emissions and electricity intensity, as well as, justification for their selection. 

4.4. Descriptions of Novel Production Technologies 

Direct Reduction (DR) 

DR is an existing technology, however, it is not wide spread. DR removes oxygen from 

iron ore while in its solid state, more specifically in pellets or lumps with hydrogen, natural gas or 

coal as the reducing agent.151 The solid-state reduced iron, DRI, is then melted, typically in the 

EAF or BOF for sweetening. Traditionally using coal as the reducing agent can be more emissions 

intensive than the BF/BOF route. A more novel technology underdevelopment, the Paired Straight 

Hearth Furnace (PSH) uses coal to produce DR but operates at higher production rates and lower 

energy utilization due to its tall bed design, reducing emissions one third from the BOF/BF 

route.153 However, it is still more emissions intensive than natural gas DR (NG-DR). In 2000 over 

90% of global DRI production used natural gas.151,154Although NG-DR is already commercialized 

and has significantly lower emissions than the BF/BOF route it is more energy intensive, which 

has limited its market penetration to date.150 Hydrogen direct reduction (H-DR) is not yet 

commercialized and is not expected to be deployed before 2030 and will likely be unprofitable 

until 2040,29 but if hydrogen is produced with clean electricity, although extremely electricity 

intensive, it could have close to zero direct emissions. Currently, the cost of hydrogen is a major 

barrier to this technology.30 Most hydrogen in the U.S. is currently produced by stream methane 

reforming (SMR), which produces hydrogen from natural gas, however, hydrogen can also be 

produced through electrolysis.233 Electrolysis uses electricity to split water into hydrogen and 

oxygen.233 Currently it is not economical and is only used when natural gas is unavailable,233 

however, electrolysis has the potential to act as a form of grid storage providing dispatchable 

demand capacity, and balancing services to the electricity grid (e.g., regulation up and down, and 

reserves).233  These are becoming increasingly important with the addition of variable renewable 

generation on the grid. As the grid decarbonizes and electricity prices decrease the hydrogen 

production becomes cleaner, less expensive, and provides more grid services. Therefore, when 

discussing long-term emissions reduction scenarios with high penetrations of VG it makes sense 
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to assume hydrogen production through electrolysis. Advancements in electrolysis and hydrogen 

storage are important to the competitiveness of H-DR.136 Another novel steel production 

technology is hydrogen flash smelting (FIT), which is similar to DR but does not need palletization 

or sintering,233,234 the process times are able to be significantly reduced234 and it only produces 

2.5% of the direct emissions as the BF.159 However, based on estimates from Sohn (2015) and 

Vogl et al. (2018) FIT requires almost twice as much hydrogen as H-DR,136,159 and is therefore not 

modeled.  

 

Smelt Reduction (DR) 

 

SR removes the need for the coking and sintering by using pure oxygen and or the use of 

two vessels to achieve coal gasification, which allows better process control enabling the use of 

ore fines, but two vessels increases capital cost. 33 Another disadvantage is the large oxygen 

requirements. However, a number of SR processes are being researched and not all require two 

vessels or the use of pure oxygen.33 HIsarna, although a two-vessel process, is cited as the preferred 

SR technology because it has been operated successfully at demonstration scale using blast 

air.33,160 Although this technology has been piloted its deployment estimates range from 10 to 20 

years.152,160 Additionally, a number of SR technologies have the potential to export electricity 

making them net exports, greatly increasing the process efficiency however, due to the production 

fuel the CO2 emissions from that electricity are greater than a natural gas.33 Therefore, net 

electricity exporters, although potentially cost effective and efficient would not reduce overall 

emissions as other SR technologies do.33 

Electrolysis 

A technology in even earlier stages of development, electrolysis, like H-DR is theoretically 

zero direct emissions, if a carbon neutral electricity grid can be achieved.154 There are two main 

types of electrolysis, electrowinning and pryroelectrolysis. Electrowinning uses iron ore as the 

cathode and electro-plated iron as the anode and operates at 110 °C in an alkaline solution 

electrolyte.29 Pryoelectolysis uses dissolved iron ore in a 1600 °C molten oxide mixture as the 

electrolyte, liquid iron as the cathode and a material inert in relation to the oxide mixture as the 

anode.150 Laboratory research is ongoing for electrolysis but it is not anticipated to reach 
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demonstration stage until 2030 and deployment after 2040.29,160 Although electricity is currently 

not economically competitive for iron production152 this is anticipated to change potentially 

making steel production another burden, along with transport we are expecting to place on a new 

carbon neutral grid. Finding a market for the oxygen that is produced in the electrolysis process 

could reduce the operating expenses.136 

 

4.5. Technology electricity consumption and emissions production 

Figure 4-2 compares each technology’s CO2 intensity for the different electricity emissions 

scenarios, using U.S. electricity intensity values. This figure clearly illustrates which technologies 

are able to meet the 70% emissions reduction goal, which educated the development of our 

technology scenarios. Table C-12 includes the material and electricity inputs for each technology 

as well as the direct emissions outputs. The references for each of these values are detailed in tables 

C-13 to C-41. 

Table C - 12, Summary table of process direct emissions and electricity intensity per one ton of product out 

Process 

Inputs Outputs 

Material 

(type) 

Material 

(t in /t out) 

Electricity 

(kWh/t out) 

Direct Emissions (t 

CO2/t out) 

Coking NA NA 35 0.43 

Sintering coke 0.32 32 0.17 

Pellet NA NA 40 0.057 

Blast Furnace (w/o top gas 

recycling) 
Sinter 1.7 

40 1.3 
coke 0.41 

Blast Furnace (w/ top gas 

recycling and fuel substitution) 
Sinter 1.7 

17 1.1 
coke 0.20* 

Basic Oxygen Furnace Pig Iron, Scrap 

and/or DRI 
1/0.92 235  23 0.11 

Open Hearth Furnace Pig Iron 1.19 143 105 0.59 

Electric Arc Furnace Scrap and/or 

DRI 
1/0.93 235 508 0.10 

Coal Direct Reduction Pellet 1.3 167  110 2.5 

Natural Gas Direct Reduction Pellet 1.3 167 117 0.84 

Hydrogen Direct Reduction Pellet 1.504 136 3,560 0.053 

Smelt Reduction NA NA 74 1.5 

Electrolysis NA NA 2,690 0.026 

Note: Values listed with NA mean they are not needed for the calculations in this work. All values without a direct 

reference were calculated in the following sections corresponding to the process type 

* 50% reduction in coke167 
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Coking 

Table C - 13, Coking electricity consumption 

Value Reference Notes 

31.5 kWh/t coke Milford (2013) SI Table 6, Calculated based on total energy and percent electricity 

39.2 kWh/t coke IISI (1998) 
Table 1, Section 3.1.8, average of each facility’s value (21-63 kWh/t 

dry coke) 

35.4 kWh/t coke Average 

 

Table C - 14, Coking direct CO2 emissions 

Value Reference Notes 

0.794 t CO2/t coke Pardo & Maya 

(2013) 

Table 1 

0.412 t CO2/t coke Milford (2013) SI Table 6, Calculated based on direct emissions from World Steel 

Association and process emissions from off-gas 

0.09 t CO2/t coke ECOFYS (2009) Table 16 Based on coke oven gas as fuel 

0.432 t CO2/t coke Average 

 

Sintering 

Table C - 15, Sintering electricity consumption 

Value Reference Notes 

35 kWh/t sinter Milford (2013) SI Table 5, Calculated based total energy and percent electricity 

28.5 kWh/ t sinter IISI (1998) 
Section 3.2, Table 2, average of each facility’s recent value (22.5-35 

kWh/t) 

32 kWh/t sinter Average 

 

Table C - 16, Sintering direct CO2 emissions 

Value Reference Notes 

0.2 t CO2/t sinter 
Pardo & Maya 

(2013) 
Table 1 

0.2 t CO2/t sinter Milford (2013) 
SI Table 5, Calculated based on direct emissions from World Steel 

Association 

0.119 t CO2/t 

sintered ore 
ECOFYS (2009) Table 17 

0.17 t CO2/t sinter Average 

 

Table C - 17, Sintering coke requirement 

Value Reference Notes 

0.42 t CO2/t sinter IISI (1998) Section 3.2, Table 2, Average 

0.59 t CO2/t sinter IISI (1998) Chapter 2, Table 8 

0.51 t CO2/t sinter Average 
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Pelleting 

Table C - 18, Pelleting electricity consumption 

Value Reference Notes 

40 kWh/t pellet IISI (1998) Section 3.2, Page 39 

40 kWh/t pellet Average 

 

Table C - 19, Pelleting direct CO2 emissions 

Value Reference Notes 

0.057 t CO2/t pellet 
Pardo & Maya 

(2013) 
Table 1 

0.057 t CO2/t pellet Average 

 

Blast Furnace 

Table C - 20, Blast Furnace electricity consumption 

Value Reference Notes 

53.3 kWh/t pig iron Milford (2013) SI Table 7, Calculated based total energy and percent electricity 

27.5 kWh/thm IISI (1998) 
Section, 2.3, Table 9, Average each facility’s recent electricity 

consumption (14-41 kWh/thm) 

40  kWh/t pig iron Average 

 

Table C - 21, Blast Furnace electricity consumption with top gas recovery 

Value Reference Notes 

17.1 kWh/thm IISI (1998) 
Section 3.3.8, Average of idealized facilities with top gas recovery 

(8.5-25.6 kWh/thm) 

17.1  kWh/t pig iron Average 

 

Table C - 22, Blast Furnace direct CO2 emissions 

Value Reference Notes 

1.46 t CO2/t pig iron 
Milford 

(2013) 

SI Table 7, Calculated based on direct emissions from World Steel 

Association and process emission from off-gas use 

1.15 t CO2/t pig iron 
ECOFYS 

(2009) 
Table 15 

1.219 t CO2/t pig iron 
Pardo & 

Maya (2013) 
Table 1 

1.28 t CO2/t pig iron Average 
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Table C - 23, Blast Furnace with top gas recycling direct CO2 emissions 

Value Reference Notes 

1.11 t CO2/t pig iron 
Eurofer 

(2009) 
Based on an abatement potential of 15% (Table 1)  

1.11 t CO2/t pig iron Average 

 

Table C - 24, Blast Furnace coke consumption 

Value Reference Notes 

0.4 t coke/t pig iron Milford (2013) Figure 4, BF-BOF reference route 

0.42 t coke/t pig iron IISI (1998) Section 3.1.1, the mean of the provided range (300-530 kg/thm) 

0.41  kWh/t pig iron Average 

 

Table C - 25, Blast Furnace sinter consumption 

Value Reference Notes 

1.7 t sinter/t pig iron Milford (2013) Figure C-4, BF-BOF reference route 

1.7  kWh/t pig iron Average 

 

Basic Oxygen Furnace 

Table C - 26, Basic Oxygen Furnace (BOF) electricity consumption 

Value Reference Notes 

20 kWh/t steel Milford (2013) SI Table 10, Calculated based total energy and percent electricity 

26 kWh/tls IISI (1998) 
Table 1, Section 3.4.6 average of plant’s recent electricity 

consumption (14-42 kWh/tls) 

23 kWh/t steel Average 

 

Table C - 27, Basic Oxygen Furnace (BOF) direct CO2 emissions 

Value Reference Notes 

 0.112 t CO2/t steel Milford (2013) SI Table 10, direct reduction plus emissions from utilization of off-

gas 

 0.112 t CO2/t steel Average 

 

Open Hearth Furnace 

Table C - 28, Open Hearth Furnace (OHF) electricity consumption 

Value Reference Notes 

105 kWh/t steel 
Milford (2013) & 

Neelis (2006) 

Neelis et al. (2006) energy requirements for OHF were 524% times 

larger than for BOF. This percentage was applied to our BOF direct 

electricity intensity estimate.  

105 kWh/t steel Average 
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Table C - 29, Open Hearth Furnace (OHR) direct CO2 emissions 

Value Reference Notes 

 0.586 t CO2/t steel Milford (2013) & 

Neelis (2006) 

Neelis et al. (2006) energy requirements for OHF were 524% times 

larger than for BOF. This percentage was applied to our BOF direct 

emissions intensity estimate. 

 0.586 t CO2/t steel Average 

 

Electric Arc Furnace 

The electrical energy and fuel requirements of an EAF vary depending on the type of 

charge and grade of scrap. Haupt et al. (2016) shows that lower grade scrap requires more electrical 

energy.31 Additionally, a higher ratio of DRI also requires more energy.167,236 If it has a lower iron 

content then it requires more fuel energy for oxidation.33 However, the range of potential EAF 

impacts are small in comparisons to the difference between EAF and primary production 

technologies. Therefore, for this report we use constant values for EAF electrical energy and 

emissions, although different scenarios vary in their percent DRI. 

Table C - 30, Electric arc furnace (EAF) electricity consumption 

Value Reference Notes 

594 kWh/t liquid 

steel 
Yellishetty (2011) 

Average of their required electricity range 1584-2693 MJ/t liquid 

steel. Natural gas varied from 50MJ/t to 1500 MJ/t. 

473 kWh/t liquid 

steel 
Haupt (2016) Average of provided range 386-559 kWh/ t liquid steel 

568 kWh/t liquid 

steel 
Oda (2009) 

Average of provided range 513-623 kWh/t liquid steel. Heavy oil 

varied from 2.4 GJ/t to 3.6 GJ/t. 

392 kWh/t liquid 

steel 

Pesamosca and 

Patrizio (2016) 

Average of electrical energy input values for twelve bucket charges 

from table 1. Scrap percentage varied from 87% to 100%. Chemical 

energy varied from 247 kWh/- 367 kWh/t. 

421 kWh/t liquid 

steel 

Kirschen et al. 

(2009) 

Average of electrical energy input from 65 different electrical energy 

estimates, ranging from 91 kWh/t-580 kWh/t. Gas burners varied 

from 12 kWh/t-182 kWh/t with certain sources not having values and 

Oxide reaction varied from 85 kWh/t-446 kWh/t. 

536 kWh/t liquid 

steel 
Milford (2013) 

Calculated based on electricity emissions factor from SI Table 2 and 

indirect emissions from SI Table 12 

555 kWh/t liquid 

steel 
Milford (2013) 

Calculated based on electricity emissions factor from SI Table 2 and 

indirect emissions from SI Table 11 

533 kWh/tls IISI (1998) 

Section 3.5.3.4, EAF average of range (335-578 kWh/tls), pollution 

control (12-69 kWh/tls), ladle arc furnace (20-68 kWh/tls) and others 

consume (12-67 kWh/tls) 

504 kWh/tls liquid 

steel 
IISI (1998) 

Table 7, Chapter 3, Average electricity consumption across sites (615-

392 kWh/tls) 

 508 kWh/t steel Average  
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Table C - 31, Electric arc furnace (EAF) direct CO2 emissions 

Value Reference Notes 

0.028 t CO2/t steel 
Yellishetty 

(2011) 

Calculated based emissions factors in Table 4 for NG and Oxygen and 

their 2007 values for NG and oxygen requirements (10.5 m3/t NG and 

35.6 m3/t respectively) 

0.054 t CO2/t steel Milford (2013) Table 12, 100% Scrap  

0.083 t CO2/t steel Milford (2013) Table 11, 50% Scrap/50% DRI 

0.24 t CO2/t steel 
Pardo & Mayo 

(2013) 
Table 1 

 0.10 t CO2/t steel Average 

 

Coal Direct Reduction (Coal-DR) 

Table C - 32, Coal direct reduction (DR) electricity consumption 

Value Reference Notes 

120 kWh/t DRI Milford (2013) 

Fraction of Energy from Electricity = 0.0176 = (100 kWh/t DRI * 3.6 

MJ/kWh) / (20.5 GJ/t DR* 1000 MJ/GJ) 

Total Energy = 24.6 GJ/t = [0.63 t coal/DRI * 29.7 MJ/kg coal + 

100kWh/t DRI * 3.6 MJ/kWh/1000 MJ/GJ]* 1.29 

Electrical Energy = 120 kWh/t DRI = 24.6 GJ/t*0.0176*1000 

MJ/GJ/3.6 MJ/kWh 

100 kWh/t DRI IISI (1998) Section 4.5, Table 2, SL/RN 

110 kWh/t DRI Average 

 

Table C - 33, Coal direct reduction (DR) direct CO2 emissions 

Value Reference Notes 

2.46 t CO2/t DRI Milford (2013) SI Table 8 EDRI-C - EEAF/DRI = DDRI-C (EEAF/DRI = 0.04) 

2.46 t CO2/t DRI Average 

 

Natural Gas Direct Reduction (NG-DR) 

Table C - 34, Natural gas direct reduction (DR) electricity consumption  

Value Reference Notes 

129 kWh/t DRI Milford (2013) 

Fraction of Energy from Electricity = 0.032 = (105 kWh/t DRI * 3.6 

MJ/kWh) / (11.8 GJ/t DR* 1000 MJ/GJ) 

Total Energy = 11.28 GJ/t = [10.9 GJ + 105kWh/t DRI * 3.6 

MJ/kWh/1000 MJ/GJ]* 1.29 

Electrical Energy = 129 kWh/t DRI = 11.28 GJ/t*0.032*1000 

MJ/GJ/3.6 MJ/kWh 

105 kWh/t DRI IISI (1998) Section 4.5, Midrex process (most widely commercialized) 

117 kWh/t DRI Average 
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Table C - 35, Natural gas direct reduction (DR) direct CO2 emissions  

Value Reference Notes 

1.06 t CO2/t DRI Milford (2013) SI Table 8 EDRI-NG - EEAF/DRI = DDRI-NG (EEAF/DRI = 0.04) 

0.61 t CO2/t DRI ECOFYS (2009) MIDREX process 

0.84 t CO2/t DRI Average 

 

Hydrogen Direct Reduction (H-DR) 

In all cases, hydrogen is assumed to be produced with electricity. Therefore, a significant 

percentage of the electricity intensity of H-DR is from hydrogen production. 

Table C - 36, Hydrogen direct reduction (DR) electricity consumption  

Value Reference Notes 

3,639 kWh/t steel Fischedick (2014) 

This estimate includes hydrogen production. It is the converted sum 

of their peak (10.6 GJ/t steel) and non-peak (2.5 GJ/t steel) 

electricity. 

3,480 kWh/t steel Vogl (2018) 
The majority of electricity is for the electrolyser hydrogen 

production 

3,560 kWh/t steel Average 

 

Table C - 37, Hydrogen direct reduction (DR) direct CO2 emissions 

Value Reference Notes 

 0.053 t CO2/t Vogl (2018) 
Emissions from carbon and lime use and consumption of graphite 

electrodes 

0.053 t CO2/t steel Average  

   

Smelt Reduction 

Table C - 38, Smelt reduction (SR) electricity consumption 

Value Reference Notes 

88 kWh/t steel Milford (2013) 2% of total energy, which is estimated as total BF energy 

60 kWh/t steel IISI (1998) Section 4.5, Table 1, HIsmelt 

74 kWh/t steel Average 

 

Table C - 39, Smelt reduction (SR) direct CO2 emissions 

Value Reference Notes 

1.59 t CO2/t steel Milford (2013) Based on a 20% improvement in energy efficiency 

1.48 t CO2/t steel Junjie (2018) 

Based on the HIsarna process which has a 20% reduction in primary 

energy and CO2 emissions from BF/BOF process of 1,850 kg CO2/ton 

steel 

1.54 t CO2/t steel Average 
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Electrolysis 

Table C - 40, Electrolysis electricity consumption 

Value Reference Notes 

2,800 kWh/t Junjie (2018) Average of their range (2,600-3,000 kWh/t) 

2,583 kWh/t Fischedick (2014) Listed 9.3 GJ/t for electrowining 

2,692 kWh/t Average 

 

Table C - 41, Electrolysis direct CO2 emissions 

Value Reference Notes 

0.026 t CO2/t steel 
The European 

Steel Association 

98% reduction with CO2 free electricity generation, therefore 

assumed 2% of original emissions 1.293 t CO2/t steel are direct 

emissions. 

0.026 t CO2/t steel Average 

 

 

5. Calculating primary and secondary steel flows  

 

Figure C - 30, Mass flow diagram for domestic steel production and international imports and exports 

The capacity of each production process domestically and internationally for each scenario is 

calculated using the EOL recycled scrap and consumption calculated in the DMFA in sections C-

2.2 and C-2.3. Figure C-30 illustrates the process flow used to develop the linear optimization in 

eqn. 8-34. The optimization prioritizes domestic recycling by minimizing domestic primary 

production, 𝑝𝑟𝑜𝑑𝑡,𝑖
𝑈.𝑆. eqn. 8. All variables have a lower bound of zero. Equations 8-34 are 

calculated for each year from 2020-2050, t, and each pathways, i. 
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The objective function is: 

min   𝑓(𝑝𝑟𝑜𝑑𝑡,𝑖
𝑈.𝑆.) =  𝑝𝑟𝑜𝑑𝑡,𝑖

𝑈.𝑆.        (8) 

subject to 𝑡𝑟𝑎𝑑𝑒𝑡,𝑖
𝑖𝑚𝑝

𝑝𝑒𝑟𝑖
𝑝𝑟𝑖𝑚

(𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑖) − 𝑖𝑚𝑝𝑡,𝑖
𝑝𝑟𝑖𝑚

= 0   (9) 

  𝑡𝑟𝑎𝑑𝑒𝑡,𝑖
𝑖𝑚𝑝

𝑝𝑒𝑟𝑖
𝑠𝑒𝑚𝑖(𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑖) − 𝑖𝑚𝑝𝑡,𝑖

𝑠𝑒𝑚𝑖 = 0   (10) 

𝑡𝑟𝑎𝑑𝑒𝑡,𝑖
𝑖𝑚𝑝

𝑝𝑒𝑟𝑖
𝑖𝑛𝑑(𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑖) − 𝑖𝑚𝑝𝑡,𝑖

𝑖𝑛𝑑 = 0    (11) 

𝑆𝑐𝑟𝑎𝑝𝑡,𝑖 −  𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑒𝑥𝑝

(1
𝑡𝑟𝑎𝑑𝑒𝑖

𝑒𝑥𝑝⁄ ) = 0     (12) 

  𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑡,𝑖 − 𝑖𝑚𝑝𝑡,𝑖
𝑖𝑛𝑑 − 𝑓𝑎𝑏𝑖,𝑡 = 0      (13) 

𝑝𝑟𝑜𝑚𝑝𝑡𝑖,𝑡 − 𝑓𝑎𝑏𝑖,𝑡 (1
𝑀𝐸𝑖

⁄ − 1) = 0     (14) 

𝑠𝑡𝑒𝑒𝑙𝑖,𝑡 +  𝑖𝑚𝑝𝑡,𝑖
𝑠𝑒𝑚𝑖 − 𝑝𝑟𝑜𝑚𝑝𝑡𝑖,𝑡 − 𝑓𝑎𝑏𝑖,𝑡 = 0    (15) 

𝑆𝑐𝑟𝑎𝑝𝑡,𝑖 −  𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑒𝑥𝑝

+  𝑝𝑟𝑜𝑚𝑝𝑡𝑖,𝑡 − 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑

− 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑢𝑛𝑢𝑠𝑒𝑑 = 0 (16) 

𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑

− 𝐸𝐴𝐹1𝑖,𝑡 − 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝐵𝑂𝐹 − 𝐿𝑜𝑠𝑠1𝑖,𝑡 = 0   (17) 

(𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑

− 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝐵𝑂𝐹)(1 −

1

𝐸𝐴𝐹𝑙𝑜𝑠𝑠
) − 𝐿𝑜𝑠𝑠1𝑖,𝑡 = 0   (18) 

𝐸𝐴𝐹1𝑖,𝑡 +  𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑛𝑜𝑛𝑠𝑐𝑟𝑎𝑝

− 𝑠𝑡𝑒𝑒𝑙𝑖,𝑡 = 0     (19) 

𝐸𝐴𝐹2𝑖,𝑡 + 𝐵𝑂𝐹𝑖,𝑡 +  𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑒𝑙𝑒𝑐 − 𝑠𝑡𝑒𝑒𝑙𝑡,𝑖

𝑛𝑜𝑛𝑠𝑐𝑟𝑎𝑝
= 0    (20) 

𝐸𝐴𝐹2𝑖,𝑡(𝐿𝑜𝑠𝑠𝐸𝐴𝐹 − 1) + 𝐵𝑂𝐹𝑖,𝑡(𝐿𝑜𝑠𝑠𝐵𝑂𝐹 − 1) − 𝐿𝑜𝑠𝑠2𝑖,𝑡 = 0  (21) 

𝑝𝑟𝑜𝑑𝑡,𝑖
𝑈.𝑆. + 𝑖𝑚𝑝𝑡,𝑖

𝑝𝑟𝑖𝑚
+ 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖

𝐵𝑂𝐹 − 𝐿𝑜𝑠𝑠2𝑖,𝑡 −  𝐵𝑂𝐹𝑖,𝑡 − 𝐸𝐴𝐹2𝑖,𝑡 − 𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑒𝑙𝑒𝑐 =

0          (22) 

𝑝𝑟𝑜𝑑𝑡,𝑖
𝑈.𝑆.𝑝𝑒𝑟𝑒𝑙𝑒𝑐,𝑖

𝑈.𝑆. + 𝑖𝑚𝑝𝑡,𝑖
𝑝𝑟𝑖𝑚

𝑝𝑒𝑟𝑒𝑙𝑒𝑐,𝑖
𝑅𝑂𝑊  − 𝑠𝑡𝑒𝑒𝑙𝑡,𝑖

𝑒𝑙𝑒𝑐 = 0   (23) 

1.2𝑝𝑟𝑜𝑑𝑡,𝑖
𝑈.𝑆.(𝑝𝑒𝑟𝐵𝐹,𝑖

𝑈.𝑆. + 𝑝𝑒𝑟𝑆𝑅,𝑖
𝑈.𝑆.) + 1.2𝑖𝑚𝑝𝑡,𝑖

𝑝𝑟𝑖𝑚
(𝑝𝑒𝑟𝐵𝐹,𝑖

𝑅𝑂𝑊 + 𝑝𝑒𝑟𝑆𝑅,𝑖
𝑅𝑂𝑊)  −

𝐵𝑂𝐹𝑖,𝑡𝑙𝑜𝑠𝑠𝐵𝑂𝐹 = 0        (34) 
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The percent imports and exports are fixed based on the trade scenarios. Eqn. 9-12 use these 

percentages to calculate the mass of steel imports at each stage of production and the mass of scrap 

exports. The remaining equations mass flow equalities. Eqn. 13 calculates fabricated steel, 𝑓𝑎𝑏, 

based on consumption, 𝐶, and net indirect imports, 𝑖𝑚𝑝𝑡,𝑖
𝑖𝑛𝑑. Eqn. 24-15 calculates prompt scrap 

from and the required steel inputs to fabrication, casting, rolling, and forming, based on the losses 

of these processes, 𝑀𝐸. 𝑀𝐸 is dependent on the material efficiency scenario. Eqn. 16-18 

determines if there is any excess scrap, 𝑠𝑐𝑟𝑎𝑝𝑡,𝑖
𝑢𝑛𝑢𝑠𝑒𝑑, which occurs when demand for steel is less 

than the available scrap, as well as, the output and losses from EAF1. Eqn. 19 determines the 

remaining demand after scrap is processed through EAF1, 𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑛𝑜𝑛𝑠𝑐𝑟𝑎𝑝

. Eqn. 20 relates EAF2, 

BOF and steel produced through electrolysis𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑒𝑙𝑒𝑐 to the demand remaining after EAF1, 

𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑛𝑜𝑛𝑠𝑐𝑟𝑎𝑝

. Eqn. 21 determines the losses from EAF2 and the BOF. Eqn. 22 relates sources of 

primary iron to the processes through which they can becomes steel. Eqn. 23 calculates the mass 

of steel produces through electrolysis, 𝑠𝑡𝑒𝑒𝑙𝑡,𝑖
𝑒𝑙𝑒𝑐,which is required because it is the only primary 

production technology that directly produces steel from iron ore and therefore, its outputs do not 

need to be processed through the EAF or BOF. The EAF can only process DRI or scrap, but the 

BOF requires around 20% DRI or scrap for cooling. Equality eqn. 24 fixes the size of the BOF to 

20% larger than all of the BF and SR iron produced in a given scenario. Eqn. 24 in combination 

with eqn. 22 ensure that each type of iron, as well as, the steel from scrap and electrolysis are 

processed correctly.   

The only differences between EAF1 and EAF2 is that EAF1 is all scrap and EAF2 can also 

process DRI. 

In certain scenarios, there is a greater amount of scrap available than consumption demanded. 

In these scenarios, there is unused scrap. It is assumed the U.S. will export this scrap and it will be 

recycled internationally. The emissions credits for this recycled scrap, however are not included 

in the emissions analysis, section C-6.  In these instances the scrap trade scenario is violated, 

however, it would be unrealistic to assume that the additional scrap is not exported given it has a 

monetary value. 
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6. CO2 Emissions Limits 

The baseline year for this analysis is 2010. Therefore, in order to determine allowable 

emissions in 2050, we must first calculate 2010 CO2 emissions attributable to U.S. steel 

consumption, 𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 2010. Additionally, in order to determine the remaining carbon budget we 

must also calculate the emission 2011-2017. These values requires calculating the flow through 

each production process domestically and internationally.  

Based on these calculations, 112 Mt CO2 were released in 2010 from steelmaking attributable 

to the 76 Mt of steel consumed in end-use products in the U.S. Subsequently, the 2050 target is 

annual emissions no greater than 33.6 Mt CO2. The 2020-2050 cumulative CO2 emissions budget 

for the U.S. steel sector was estimated by assuming the budget is equivalent to a linear decrease 

over time in steel sector emissions from 112 Mt CO2 in 2010 to 33.6 Mt CO2 in 2050. The 

emissions already released between 2010-2020 were subtracted from the 2010-2050 budget; thus, 

the 2020-2050 cumulative emissions budget is 1.73 Gt CO2. 

Equation 1 in the main text is a simplified representation of these calculations. This section 

shows the calculations in more detail. Table C-42 C-43 include the international and U.S. flows 

used in the equations in this section. 

Domestic Flows 

Domestic production, 𝑝𝑟𝑜𝑑 𝑑𝑜𝑚,𝑡, in crude steel equivalent is calculated as follows: for t = 

2010 … 2017, 

𝑝𝑟𝑜𝑑𝑡
𝑈.𝑆. =  𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑆𝑡𝑒𝑒𝑙𝑐𝑟𝑢𝑑𝑒,𝑡

𝑈.𝑆. − 𝑖𝑚𝑝𝑐𝑟𝑢𝑑𝑒,𝑡
𝑝𝑟𝑖𝑚

 −  
1

𝑙𝑜𝑠𝑠
(𝑛𝑒𝑡𝑖𝑚𝑝𝑐𝑟𝑢𝑑𝑒,𝑡

𝑠𝑒𝑚𝑖 − 𝑛𝑒𝑡𝑖𝑚𝑝𝑐𝑟𝑢𝑑𝑒,𝑡
𝑖𝑛𝑑 ),     

(35) 

where loss is the manufacturing and fabrication loss value of 0.78 from Cullen et al.’s 

(2012). Table C-42 includes all of the values in eqn. 32. The total domestic production is then used 

to calculate the production through each technology. 
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Domestic BF production is calculated as follows: for t = 2010, …, 2017, 

𝐵𝐹𝑡
𝑈.𝑆. = %𝑝𝑟𝑜𝑑𝐵𝐹,𝑡

𝑈.𝑆.
(𝑝𝑟𝑜𝑑𝑡

𝑈.𝑆.− 𝑛𝑒𝑡𝑖𝑚𝑝𝑐𝑟𝑢𝑑𝑒,𝑡
𝑝𝑟𝑖𝑚

)

𝐵𝑂𝐹𝑙𝑜𝑠𝑠
 .    (36) 

The primary imports are subtracted from the total domestic production as they are an output 

of an international BF or DR process. 

Domestic BOF production is calculated as follows: for t = 2010, …, 2017, 

𝐵𝑂𝐹𝑡
𝑈.𝑆. = %𝑝𝑟𝑜𝑑𝐵𝑂𝐹,𝑡

𝑈.𝑆. (𝑝𝑟𝑜𝑑𝑡
𝑈.𝑆.).    (37) 

Domestic EAF production is calculated as follows: for t = 2010, …, 2017, 

𝐸𝐴𝐹𝑡
𝑈.𝑆. = %𝑝𝑟𝑜𝑑𝐸𝐴𝐹,𝑡

𝑈.𝑆. (𝑝𝑟𝑜𝑑𝑡
𝑈.𝑆.).    (38) 

Domestic NG-DR production is calculated as follows: for t = 2010, …, 2017, 

𝑁𝐺𝐷𝑅𝐼𝑡
𝑈.𝑆. = %𝑝𝑟𝑜𝑑𝑁𝐺𝐷𝑅𝐼,𝑡

𝑈.𝑆. (𝑝𝑟𝑜𝑑𝑡
𝑈.𝑆.).   (39) 

In 2010 to 2017 only the BF, BOF, NG-DR and the EAF were used for steel production 

in the U.S. 

Imported Flows 

Total non-primary steel imports are calculated as follows: for t = 2010, …, 2017, 

𝑖𝑚𝑝𝑠𝑡𝑒𝑒𝑙,𝑡 =  𝑛𝑒𝑡𝑖𝑚𝑝𝑡
𝑠𝑒𝑚𝑖 +  

𝑛𝑒𝑡𝑖𝑚𝑝𝑡
𝑖𝑛𝑑

𝑙𝑜𝑠𝑠
.   (40) 

Primary imports are not included as they are not at the steel stage. 

The output of international OHFs for U.S. consumption is calculated as follows: for t = 

2010, …, 2017, 

 𝑂𝐻𝐹𝑡
𝑅𝑂𝑊 =  𝑖𝑚𝑝𝑡

𝑠𝑡𝑒𝑒𝑙(%𝑝𝑟𝑜𝑑𝑂𝐻𝐹,𝑡
𝑅𝑂𝑊 ).     (41) 

The output of international BOFs for U.S. consumption is calculated as follows: for t = 

2010, …, 2017, 

𝐵𝑂𝐹𝑡
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡

𝑠𝑡𝑒𝑒𝑙(%𝑝𝑟𝑜𝑑𝐵𝑂𝐹,𝑡
𝑅𝑂𝑊 ).     (42) 
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The output of international is calculated as follows: for t = 2010 … 2017, 

𝐸𝐴𝐹𝑡
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡

𝑠𝑡𝑒𝑒𝑙 (
%𝑝𝑟𝑜𝑑𝑁𝐺𝐷𝑅𝐼,𝑡

𝑅𝑂𝑊 +%𝑝𝑟𝑜𝑑𝐶𝐷𝑅,𝑡
𝑅𝑂𝑊

𝐸𝐴𝐹𝑙𝑜𝑠𝑠
+  %𝑝𝑟𝑜𝑑𝐸𝐴𝐹,𝑡

𝑅𝑂𝑊 ).   (43) 

We assume that all internationally produced DRI that is imported as a semi-finished or 

finished product is processed through an EAF.  

The DRI and pig iron flows are calculated by converting all imports to pig iron or DRI 

equivalent as follows: for t = 2010, …, 2017, 

𝑖𝑚𝑝𝑡
𝑝𝑟𝑖𝑚𝑒𝑞

=  𝑛𝑒𝑡𝑖𝑚𝑝𝑡
𝑝𝑟𝑖𝑚

+

 
𝑛𝑒𝑡𝑖𝑚𝑝𝑡

𝑠𝑒𝑚𝑖+ 𝑛𝑒𝑡𝑖𝑚𝑝𝑡
𝑖𝑛𝑑/𝑙𝑜𝑠𝑠

%𝑝𝑟𝑜𝑑𝐵𝑂𝐹,𝑡
𝑅𝑂𝑊 𝐵𝑂𝐹𝑙𝑜𝑠𝑠+%𝑝𝑟𝑜𝑑𝑂𝐻𝐹,𝑡

𝑅𝑂𝑊 𝑂𝐻𝐹𝑙𝑜𝑠𝑠+𝐸𝐴𝐹𝑙𝑜𝑠𝑠(%𝑝𝑟𝑜𝑑𝐶𝐷𝑅,𝑡
𝑅𝑂𝑊 +%𝑝𝑟𝑜𝑑𝑁𝐺𝐷𝑅,𝑡

𝑅𝑂𝑊 )
 .          (44) 

The denominator of eqn. 44 calculates the loss factor, as the loss factors for the processes 

the pig iron or DRI go through internationally varies. A percent of the pig iron is processed 

through the BOF and a percent through the OHF internationally, and we assume all DRI is 

processed through the EAF internationally. 

International DR-NG production for U.S. consumption is calculated as follows: for t = 

2010, …, 2017, 

𝑁𝐺𝐷𝑅𝐼𝑡
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡

𝑝𝑟𝑖𝑚𝑒𝑞
(%𝑝𝑟𝑜𝑑𝑁𝐺𝐷𝑅,𝑡

𝑅𝑂𝑊 ).    (45) 

International DR-C production for U.S. consumption is calculated as follows: for t = 

2010, …, 2017, 

𝐶𝐷𝑅𝐼𝑡
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡

𝑝𝑟𝑖𝑚𝑒𝑞
(%𝑝𝑟𝑜𝑑𝐶𝐷𝑅,𝑡

𝑅𝑂𝑊 ).     (46) 

International BF production for U.S. consumption is calculated as follows: for t = 2010, 

…, 2017, 

𝐵𝐹𝑡
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡

𝑝𝑟𝑖𝑚𝑒𝑞
(1 − %𝑝𝑟𝑜𝑑𝑁𝐺𝐷𝑅,𝑡

𝑅𝑂𝑊 − %𝑝𝑟𝑜𝑑𝐶𝐷𝑅,𝑡
𝑅𝑂𝑊 ).    (47) 
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Exported Flows 

The U.S. exports a portion of their available EOL scrap, which is assumed to be recycled 

internationally. The value for scrap exports, 𝑒𝑥𝑝𝑠𝑐𝑟𝑎𝑝𝑡,  is taken directly from World Steel 

Yearbook and is listed in Table C-42 to C-43 for 2010. 

 

Emissions 

The emissions from domestic production is calculated as follows: for each technology type, 

tech = (BF, BOF, EAF) and for t = 2010, …, 2017, 

𝐶𝑂2,𝑡
𝑈.𝑆 = ∑

𝑡𝑒𝑐ℎ𝑡
𝑈.𝑆.

106 (
𝐸𝐼𝑡𝑒𝑐ℎ𝐸𝐼𝑡

𝑈.𝑆.

1000
+ 𝐸𝐹𝑡𝑒𝑐ℎ1000)𝑡𝑒𝑐ℎ ,   (48) 

where 𝐸𝐼𝑑𝑜𝑚,𝑡 is the electricity intensity of the domestic grid in year T. The flows through 

each technology type were calculated in eqn. 36-47 and table C-12 lists the electricity and 

emissions intensity of each technology. All EI values represent the electricity intensity of a process 

(kWh/ton steel), while all EF values represent the direct CO2 emissions factor of the process (ton 

CO2/ton steel). 

The emissions from international production is calculated as follows: for each technology 

type, tech = (BF, BOF, OHF, DRI-C, DRI-NG, EAF) and for t = 2010, …, 2017, 

𝐶𝑂2,𝑡
𝑅𝑂𝑊 = ∑

𝑡𝑒𝑐ℎ𝑡
𝑅𝑂𝑊

106 (
𝐸𝐼𝑡𝑒𝑐ℎ𝐸𝐼𝑡

𝑅𝑂𝑊

1000
+ 𝐸𝐹𝑡𝑒𝑐ℎ1000)𝑡𝑒𝑐ℎ .   (46) 

Using the above values the total CO2 emissions attributed to U.S. steel consumption is 

calculated as follows: for t = 2010 … 2017, 

𝐶𝑂2,𝑡
𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑂2,𝑡

𝑈.𝑆 + 𝐶𝑂2,𝑡
𝑅𝑂𝑊 .    (47) 
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Table C - 42, Historic international (ROW) steel flows used to calculate 2010-2017 CO2 emissions and percent 

production from each technology in the 2020 base case technology scenario 

 DRI40 OBC40 
OHF4

0 

Other4

0 

Total Production 
b 

C-DRI as % DRI166,237–

239 

C-

DRI 

NG-

DRI 
BF 

SR
c 

Electricit

y EI 
164,240,241 

 (thousand metric tons) Percent 
 (kg CO2 

/kwh) 

2010 72,019 993,374 16,446 565 1,171,917 25.7% 2% 5% 
94

% 
0% 528 

2011 77,625 
1,065,07

9 
16,416 1,008 1,255,870 23.6% 1% 5% 

94

% 
0% 537 

2012 76,879 
1,099,07

9 
10,895 973 1,285,473 23.3% 1% 5% 

94

% 
0% 531 

2013 79,616 
1,209,79

9 
9,416 1,085 1,406,909 21.3% 1% 4% 

94

% 
0% 526 

2014 81,267 
1,226,83

8 
7,578 1,074 1,424,882 20.6% 1% 5% 

94

% 
0% 519 

2015 75,982 
1,205,39

5 
6,853 2,094 1,396,446 20.2% 1% 4% 

94

% 
0% 505 

2016 78,331 
1,202,39

5 
7,220 1,369 1,395,246 17.5% 1% 5% 

94

% 
0% 490 

2017 88,664 
1,206,96

3 
6,265 1,757 1,409,796 17.6% 1% 5% 

94

% 
0% 485 

2018 
104,04

5 

1,283,39

4 
6,526 1,887 1,508,695 20.2% 1% 6% 

93

% 
0% 485d 

2019
a 

104,04

5 

1,283,39

4 
6,526 1,887 1,508,695 20.2% 1% 6% 

93

% 
0% 485d 

2020
a 

104,04

5 

1,283,39

4 
6,526 1,887 1,508,695 20.2% 1% 6% 

93

% 
0% 485d 

a Data for 2019 and 2020 are not published yet do values from 2018 were substituted 
b Total Production = DRI + (OBC/0.84 + OHF/0.92 + Other), where losses represented the material lost in the BOF, Losses=0.92 
c Other is assumed to equal SR 
d Data for 2018-2020 are not published yet do values from 2017 were substituted 

DRI = Direct Reduction Iron; OBC = Oxygen Blown Converter; OHF = Oxygen Hearth Furnace; C = Coal; NG=Natural Gas; BF = Blast Furnace; 

SR = Smelt Reduction 

Table C - 43, Historic U.S. steel flows used to calculate 2010-2017 CO2 emissions and percent production from each 

technology in the 2020 base case technology scenario 

 
DRI165,166,237–239,242 Pig Iron40,165,242 NG-DRI BF Electricity EI164,240,241 

 (thousand metric tons) Percent (kg CO2 /kwh) 

2010 0 26,800 0% 100% 531 

2011 0 30,200 0% 100% 511 

2012 0 32,100 0% 100% 488 

2013 0 30,300 0% 100% 489 

2014 1,300 29,400 4% 96% 486 

2015 1,100 25,400 4% 96% 456 

2016 1,810 22,300 8% 92% 433 

2017 2,990 22,400 12% 88% 421 

2018 3,350a 30,113b 10% 90% 421a 

2019 3,350a 30,113c 10% 90% 421a 

2020 3,350a 30,113c 10% 90% 421a 

a Data for 2018-2020 are not published yet do values from 2017 were substituted 
b Value is based on data for oxygen blown furnace (OBF) production in 2018 from the World Steel Yearbook converted to Pig Iron using losses in 

the OBF equivalent to 0.92 
c Data for 2019-2020 are not published yet do values from 2018 were substituted 

DRI = Direct Reduction Iron; NG=Natural Gas; BF = Blast Furnace 
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7. Pathway CO2 Emissions 

The same methods are used to calculate CO2 attributed to U.S. steel consumption for 2018 to 

2050 as those used to calculate 2010 emissions. However, for 2021 to 2050, the calculations are 

done for each scenario and there are a larger number of primary production technologies to 

consider. As with the 2010 emissions calculations the first step is to calculate the steel produced 

by each production process domestically and internationally. The optimization, in section C-4, 

determines the quantity imported at each stage, the net scrap exported, the quantity of primary 

steel produced, as well as, the flow through the domestic EAFs and BOFs.  

Domestic Flows 

The international flows are less straightforward because they are imported at different 

stages of production therefore, they have undergone varying loss values. In order to account for 

these losses we shift each flow to the same stage of production. In this case, pig iron or DRI, the 

inputs to the BOF and EAF. Losses vary depending on if the steel has gone through the EAF or 

the BOF, therefore, it is calculated for both as follows: for t = 2018 … 2050, 

𝑖𝑚𝑝𝑡,𝑖
𝐵𝑂𝐹𝑒𝑞

= 𝑖𝑚𝑝𝑡,𝑖
𝑝𝑟𝑖𝑚

+
𝑖𝑚𝑝𝑡,𝑖

𝑠𝑒𝑚𝑖

𝐵𝑂𝐹𝑙𝑜𝑠𝑠
+

𝑖𝑚𝑝𝑡,𝑖
𝑖𝑛𝑑

𝐵𝑂𝐹𝑙𝑜𝑠𝑠/𝑙𝑜𝑠𝑠𝑖,𝑡
,     (48) 

𝑖𝑚𝑝𝑡,𝑖
𝐸𝐴𝐹𝑒𝑞

= 𝑖𝑚𝑝𝑡,𝑖
𝑝𝑟𝑖𝑚

+
𝑖𝑚𝑝𝑡,𝑖

𝑠𝑒𝑚𝑖

𝐸𝐴𝐹𝑙𝑜𝑠𝑠
+

𝑖𝑚𝑝𝑡,𝑖
𝑖𝑛𝑑

𝐸𝐴𝐹𝑙𝑜𝑠𝑠/𝑙𝑜𝑠𝑠𝑖,𝑡
.     (49) 

We assume all BF and SR iron goes through the BOF. The ratio of primary to secondary 

production is estimated based on Pauliuk et al. (2013)’s projections for global EAF, BOF, and 

foundry production to 2100.37 EAF is considered secondary, BOF primary, and foundry production 

50/50.   Therefore, the flows through these processes are calculated as follows: for tech = (BF, SR) 

and for t = 2018,…,2050 

𝐵𝐹𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐵𝑂𝐹𝑒𝑞
(%𝑝𝑟𝑖𝑚𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝐵𝐹)(1 − %𝑝𝑟𝑜𝑑𝑡,𝑖
𝐵𝐹−𝑇𝐺),   (50) 

𝐵𝐹 − 𝑇𝐺𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐵𝑂𝐹𝑒𝑞
(%𝑝𝑟𝑖𝑚𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝐵𝐹)(%𝑝𝑟𝑜𝑑𝑡,𝑖
𝐵𝐹−𝑇𝐺),   (51) 

𝑆𝑅𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐵𝑂𝐹𝑒𝑞
(%𝑝𝑟𝑖𝑚𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝑆𝑅).      (52) 
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We assume all DRI-C, DRI-NG, and DRI-H iron goes through the EAF. Therefore, the 

flows through these processes are calculated as follows: for tech = (DRI-C, DRI-NG, DRI-H) and 

for t = 2018,…,2050 

𝐶𝐷𝑅𝐼𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐸𝐴𝐹𝑒𝑞
(%𝑝𝑟𝑜𝑑𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝐶𝐷𝑅𝐼),    (53) 

𝑁𝐺𝐷𝑅𝐼𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐸𝐴𝐹𝑒𝑞
(%𝑝𝑟𝑜𝑑𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝑁𝐺𝐷𝑅𝐼),    (54) 

𝐻𝐷𝑅𝐼𝑡,𝑖
𝑅𝑂𝑊 = 𝑖𝑚𝑝𝑡,𝑖

𝐸𝐴𝐹𝑒𝑞
(%𝑝𝑟𝑜𝑑𝑡)(%𝑝𝑟𝑜𝑑𝑡,𝑖

𝐻𝐷𝑅𝐼).    (55) 

Electrolysis is calculated differently than the other production processes because it 

produces steel rather than pig iron or DRI; therefore, its process output is equivalent to the output 

of the BOF and EAF rather than the input. Therefore, electrolysis steel is calculated as follows, 

and for t = 2018,…,2050, 

𝐸𝐿𝐸𝐶𝑡,𝑖
𝑅𝑂𝑊 = (1 − %𝑝𝑟𝑖𝑚𝑡) (𝑖𝑚𝑝𝑡,𝑖

𝑝𝑟𝑖𝑚 𝐵𝑂𝐹𝑙𝑜𝑠𝑠+𝐸𝐴𝐹𝑙𝑜𝑠𝑠

2
+ 𝑖𝑚𝑝𝑡,𝑖

𝑠𝑒𝑚𝑖 +
𝑖𝑚𝑝𝑡,𝑖

𝑖𝑛𝑑

𝑙𝑜𝑠𝑠𝑖,𝑡
).   (56) 

The flow through the EAF and the BOF is dependent on the percentage through each 

production process, determined by the technology scenarios. The same assumptions are made as 

above, in regards to which primary processes will feed into the EAF vs the BOF. However, only 

imports from semi-finished, finished and indirect products will have gone through the BOF or the 

EAF internationally before imported by the U.S., therefore, only a portion of the total flows 

calculated through each corresponding process above eqn. 50-56 will go through the BOF or EAF: 

for t = 2018,…, 2050, 

𝐵𝑂𝐹𝑡,𝑖
𝑅𝑂𝑊 = (𝐵𝐹𝑡,𝑖

𝑅𝑂𝑊 + 𝐵𝐹 − 𝑇𝐺𝑡,𝑖
𝑅𝑂𝑊 + 𝑆𝑅𝑡,𝑖

𝑅𝑂𝑊) 𝐵𝑂𝐹𝑙𝑜𝑠𝑠,    (57) 

𝐸𝐴𝐹𝑡,𝑖
𝑅𝑂𝑊 = (𝐶𝐷𝑅𝐼𝑡,𝑖

𝑅𝑂𝑊 + 𝑁𝐺𝐷𝑅𝐼𝑡,𝑖
𝑅𝑂𝑊 +  𝐻𝐷𝑅𝐼𝑡,𝑖

𝑅𝑂𝑊)𝐸𝐴𝐹𝑙𝑜𝑠𝑠 + 𝑖𝑚𝑝𝑡,𝑖
𝐸𝐴𝐹𝑒𝑞

(1 − %𝑝𝑟𝑖𝑚𝑡).    (58) 

Exported Flows 

The U.S. exports portion of the available EOL scrap, which is assumed to be recycled 

internationally, and the U.S. is assumed to recycle the rest domestically. The portion exported in 

each scenario is the sum of the unused scrap value and the net export scrap value, which are outputs 

of the steel flow analysis discussed in section C-5.  
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Emissions 

The emissions for 2018 to 2050 are calculated using the same equations as the 2010-2017 

emissions (eqn. 46-47). 

8. Additional Results Figures 

 

8.1. Impact of Parameters and Scenarios on Final Emissions 

 

Figure C - 31, CO2 emissions in 2050 for the case with no retrofit separated by scenario for product lifespan, stock, 

manufacturing yield, population, recycling rate, and trade parameters. The grey dashed line represents 2010 CO2 

emissions allocated to the steel sector and the lower dashed red line represents a 70% reduction. 
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Figure C - 32, CO2 emissions in 2050 for the case with no retrofit separated by scenarios for technology. The grey 

dashed line represents 2010 CO2 emissions allocated to the steel sector and the lower dashed red line represents a 

70% reduction. 

 

 

Figure C - 33, CO2 emissions in 2050 for the case with retrofit separated by scenario for product lifespan, stock, 

manufacturing yield, population, recycling rate, and trade parameters The grey dashed line represents 2010 CO2 

emissions allocated to the steel sector and the lower dashed red line represents a 70% reduction. 
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Figure C - 34, CO2 emissions in 2050 for the case with retrofit separated by scenarios for technology. The grey 

dashed line represents 2010 CO2 emissions allocated to the steel sector and the lower dashed red line represents a 

70% reduction. 

8.2. Combined Scenario Parameter Impacts 

 

Figure C - 35, 2050 CO2 emissions for improved manufacturing yields, low trade, 10% improvement in recycling 

rates, product retrofits, and cases where the US and world have equivalent emissions reduction scenarios. The 

bottom horizontal axis is the percent change in lifespan from average and the right vertical axis is the stocks per 

capita (STC). The gray boxes indicate scenarios that meet the 2050 CO2 emissions reduction goals. 
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Figure C - 36, Cumulative CO2 emissions for improved manufacturing yields, low trade, 10% improvement in 

recycling rates, product retrofits, and cases where the US and world have equivalent emissions reduction scenarios. 

The bottom horizontal axis is the percent change in lifespan from average and the right vertical axis is the stocks per 

capita (STC). The gray boxes indicate scenarios that meet the cumulative emissions goal 

 
Figure C - 37, 2050 CO2 emissions for improved manufacturing yields, high trade, 10% improvement in recycling 

rates, product retrofits, and cases where the US and world have equivalent emissions reduction scenarios. The 

bottom horizontal axis is the percent change in lifespan from average and the right vertical axis is the stocks per 

capita (STC). The gray boxes indicate scenarios that meet the 2050 CO2 emissions reduction goals. 
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Figure C - 38, Cumulative CO2 emissions for improved manufacturing yields, high trade, 10% improvement in 

recycling rates, product retrofits, and cases where the US and world have equivalent emissions reduction scenarios. 

The bottom horizontal axis is the percent change in lifespan from average and the right vertical axis is the stocks per 

capita (STC). The gray boxes indicate scenarios that meet the cumulative emissions goal 

 

6.1. Changes to stocks per capita 

 

Figure C - 39, U.S. steel stocks (2020-2050) modeled for the base case steel flow parameters and split into stocks 

that already exist (in 2020) and have yet to be built
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