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Ū3 with ω1 = ω2 = 0.5, δ = 0.1, (e) Ū with ω1 = 0.3, ω2 = 0.5 and
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ABSTRACT

The goal of personalized medicine is to give the right treatment to the right pa-

tient at the right dose using all we know about the patient. With the increasing

availability of biomarkers and prediction models, there is the potential for individual-

ized treatment based on patient specific factors. There are many statistical challenges

associated with achieving this goal. One is how to develop and assess good predictions

models. Another is how to define a criteria for an optimal treatment when there are

multiple outcomes and then how to analyze available data to determine the optimal

treatment for each future patient.

In Chapter II, we consider the assessment of prediction models using data with

missing biomarker values. We propose inverse probability weighted (IPW) and aug-

mented inverse probability weighted (AIPW) estimates of the area under the ROC

curve (AUC) and Brier Score to handle the missing data. AIPW is a double-robust

method that is robust to the misspecification of either a model for the missingness

mechanism or a model for the distribution of the missing variable. We evaluated

the performance of IPW and AIPW in comparison with multiple imputation (MI) in

simulation studies under missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) scenarios. We illustrate these methods

using an example from prostate cancer.

In Chapters III and IV we consider the setting where there is an existing dataset of

patients treated with heterogeneous doses and including binary efficacy and toxicity

outcomes and patient factors such as clinical features and biomarkers. The goal is to

xii



analyze the data to estimate an optimal dose for each (future) patient based on their

clinical features and biomarkers.

In Chapter III, we propose an optimal individualized dose finding rule by maxi-

mizing utility functions for individual patients while limiting the rate of toxicity. The

utility is defined as a weighted combination of efficacy and toxicity probabilities. We

model the binary efficacy and toxicity outcomes using logistic regression with dose,

biomarkers and dose-biomarker interactions. To incorporate the large number of po-

tential parameters, we use the LASSO method. We additionally constrain the dose

effect to be non-negative for both efficacy and toxicity for all patients. The proposed

methods are illustrated using a dataset of patients with lung cancer treated with

radiation therapy.

In Chapter IV, we extend the approach of Chapter III and propose to use flexible

machine learning methods such as random forests and Gaussian processes to build

models for efficacy and toxicity depending on the dose and biomarkers. In addition,

we allow for dependence between efficacy and toxicity. A copula is used to model

the joint distribution of the two outcomes and the estimates are constrained to have

non-decreasing dose-efficacy and dose-toxicity relationships. Numerical utilities are

assigned to each potential outcome pair, which allow the improvement in the utility

due to a change in efficacy to depend on the level of toxicity. For each patient,

the optimal dose is chosen to maximize the utility function or the posterior mean of

the utility function. We further adjust the utility function with more constraints to

incorporate clinical requirements, and consider the uncertainty in the estimation of

the utility function in the optimal dose selection. The various models and methods

are evaluated in a simulation study and illustrated using data from a lung cancer

study.
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CHAPTER I

Introduction

Traditionally, standards of care have been built based on knowledge from clin-

ical studies and evidence-based medicine and given in medical practice. With the

progress in basic science, scientists are developing and using diagnostic tests based

on genetics or other molecular mechanisms to better predict patients’ responses to

targeted therapy. The use of biomarkers provides the potential to drive therapeutic

decision making and tailor medical care. Personalized medicine has been focusing on

optimizing the assignment of therapy by treating patients with the right drug at the

right dose at the right time.

The personalized medicine approach can replace the traditional “one size fits all”

medicine and move from a reactive to a proactive discipline that is predictive, person-

alized, preventive and participatory [17]. However, the field of personalized medicine

raises many challenges that need to be overcome, such as integration of diverse data

from the various hierarchical levels of biological information, difficulties identifying

and validating molecular markers, and ultimately create effective predictive and ac-

tionable models. Besides technical challenges, there are also societal challenges in-

cluding education and communication with patients, physicians, and the health-care

community about the power of personalized medicine to accelerate the application of

it.

1



The statistical challenges associated with personalized medicine are to provide

effective tools for construction and evaluation of evidence-based personalized inter-

vention strategies. Multiple regression has been widely used for model building to

identify predictive biomarkers with data from randomized clinical trials (RCT). In

the absence of randomization, the propensity score can be used to reweight the ob-

servational data to attenuate selection bias. With a large set of biomarkers, variable

selection methods are needed to detect predictive biomarkers from high-dimensional

sources. More advanced methods are proposed to improve the robustness against

misspecification of regression models, and well established classification methods and

other popular machine learning techniques can alternatively be customized to avoid

pre-specification of parametric models [30].

Because models are estimated conditionally given the observed data, they neglect

to quantify the extent of uncertainty for future patients. Thus external validation and

internal validation are needed, and cross-validation (CV) and bootstrap resampling

techniques are commonly used for the later. To assess the model performance, the

Brier score (BS) and receiver operating characteristic (ROC) curves are two common

metrics used to evaluate existing prediction models of a binary outcome. The assess-

ment of prediction models using data with missing covariate values is challenging.

There are general methods for handling missing data of multiple imputation (MI)

and inverse probability weighting [27, 41]. These methods make use of specific statis-

tical models, which have to be selected. How to select these models is an important

question. When using MI to develop a prediction model, Moons et. al. [33] showed

that it is important to include the outcome variable within the selected imputation

models. How to construct the statistical models in either MI or IPW methods to give

valid results when assessing an exisiting prediction model is not known.

In Chapter II, we propose inverse probability weighted (IPW) and augmented

inverse probability weighted (AIPW) estimates of the area under the ROC curve

2



(AUC) and BS to handle the missing data. AIPW is a double-robust method that is

robust to the misspecification of either a model for the missingness mechanism or a

model for the distribution of the missing variable [1]. An alternative approach uses

multiple imputation (MI), which requires a model for the distribution of the missing

variable. We evaluated the performance of IPW and AIPW in comparison with MI in

simulation studies under missing complete at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) scenarios. When there are missing

observations in the data, MI and IPW can be used to obtain unbiased estimates of

BS and AUC if the imputation model for the missing variable or the model for the

missingness is correctly specified. MI is more efficient than IPW. AIPW can improve

the efficiency of IPW, and also achieves double robustness from misspecification of

either the missingness model or the imputation model. The outcome variable should

be included in the model for the missing variable under all scenarios, while it only

needs to be included in missingness model if the missingness depends on the outcome.

We illustrate these methods using an example from prostate cancer.

In early phase clinical trials of oncology, efficacy such as disease progression and

toxicity such as side effects are used to evaluate the performance of a treatment. Dif-

ferent approaches can be used to measure the trade-off between potentially beneficial

and potentially harmful outcomes for a patient, such as utility function [40], utility

matrix [19] or utility contours [46]. There has been much work on how to choose

the individualized optimal treatment when there is a choice between two treatments

and there is a single outcome measure [12, 54, 53, 55]. There has been much less

research on methods to find individualized treatment rule in the setting with more

than two treatments and more than one outcome. We consider the setting where

there is an existing dataset of patients treated with heterogeneous doses and includ-

ing binary efficacy and toxicity outcomes and patient factors such as clinical features

and biomarkers. The goal is to analyze the data to estimate an optimal dose for each

3



(future) patient based on their clinical features and biomarkers. With the increasing

availability of validated biomarkers, there is the need to identify the patient specific

factors that is related to the individualized dosing rule. In many settings, including

oncology, increasing the dose of treatment usually results in both increased efficacy

and toxicity, and how to incorporate this is challenging. The efficacy and toxicity out-

comes could be correlated or independent given the dose, and both of them should

be used to decide the optimal dose.

In Chapter III, we propose an optimal individualized dose finding rule by maxi-

mizing utility functions for individual patients while limiting the rate of toxicity [49].

The utility is defined as a weighted combination of efficacy and toxicity probabili-

ties. This approach maximizes overall efficacy at a prespecified constraint on overall

toxicity. We model the binary efficacy and toxicity outcomes using logistic regres-

sion with dose, biomarkers and dose-biomarker interactions. To incorporate the large

number of potential biomarkers, we use the LASSO method [47]. We additionally

constrain the dose effect to be non-negative for both efficacy and toxicity for all pa-

tients. Simulation studies show that the utility approach combined with any of the

modeling methods can improve efficacy without increasing toxicity relative to fixed

dosing. The proposed methods are illustrated using a dataset of patients with lung

cancer treated with radiation therapy.

In Chapter IV, we extend the approaches in Chapter III by relaxing the assumption

of independence of efficacy and toxicity in modeling. We propose to use flexible

machine learning methods such as random forest [24] and Gaussian process [51] to

build models for efficacy and toxicity depending on the dose and biomarkers. Copula

[43] is used to model the joint distribution of the two outcomes and the estimates

are constrained to have non-decreasing dose-efficacy and dose-toxicity relationships.

Numerical utilities are assigned to each potential outcome pair, and these allow the

improvement in the utility due to a change in efficacy to depend on the level of toxicity.

4



For each patient, the optimal dose is chosen to maximize the utility function or the

posterior mean of the utility function. We further adjust the utility function with

more constraints to incorporate clinical requirements, and consider the uncertainty in

the estimation of the utility function in optimal dose selection. The various models

and methods are evaluated in a simulation study, where we find that using Gaussian

processes to model the probability of efficacy and toxicity and using the posterior

mean of the utility function has good properties. We also compare the proposed

random forest and Gaussian process methods with the parametric models in Chapter

III to illustrate their pros and cons.

To conclude, the goal is to construct and evaluate models, which can accurately

predict either the clinical outcome or the treatment effect for individual patients, and

then optimize the outcome or treatment effect for new patients. This dissertation

makes a contribution towards the model estimation and evaluation in oncology and

proposes novel methodologies in optimal individualized dose finding.
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CHAPTER II

Evaluation of Predictive Model Performance of an

Existing Model in the Presence of Missing Data

2.1 Introduction

In clinical research, patient information such as clinical features, diagnostic tests

and biomarkers are often used to help with diagnosis or to provide prognosis of a

future outcome for a patient with disease. When the outcome of interest is binary, a

typical prediction model will numerically combine the covariates, for example using a

linear combination, to estimate the predicted probability of the binary outcome. The

evaluation of an existing prediction model in a different populations is of consider-

able interest. If a model is to be transportable to other populations, it needs to be

validated, which is usually thought of as meaning that it has similar and good perfor-

mance in other populations. The performance of existing prediction models can be

assessed using a variety of metrics, such as the Brier score to indicate accuracy of the

probabilistic predictions, and area under the receiver operating characteristic (ROC)

curve (or the concordance statistic) for discriminative ability [44]. Very often, covari-

ate values will be missing for some patients. The assessment of prediction models in

data with missing covariate values is a challenge. The context we are considering is

that the existing model or models were developed on other datasets, which we call
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the external data, and are already completely specified. We do not have access to the

data used to develop these models. Rather, our goal is to assess the performance of

the existing model in an available dataset, which we call the internal data, that has

missing values for some covariates and we want to get valid and efficient estimates of

the BS and the AUC.

In general there are two types of methods for estimation in the presence of missing

data, one is based on multiple imputation (MI) and the other is based on inverse prob-

ability weighting (IPW). For MI, a model for the distribution of the missing variable,

or variables, needs to be specified. For IPW method, a model for the probability of

missingness needs to be specified, which is also called the weight model. For multiple

imputation, M completed datasets are created and M model performance measures

can be estimated from each of the completed dataset and then averaged [27]. Al-

ternatively, an overall measure of model performance can be estimated directly from

a simple completed dataset that includes the average of the M predictions for each

missing value. As previously recommended [52], the former is preferred. The analysis

of only the observations with complete data is frequently biased, and inverse proba-

bility weighting is a commonly used approach to correct their bias [41]. It is also used

to adjust for unequal sampling fractions in sample surveys and causal inference [31].

Augmented inverse probability weighting (AIPW) has been proposed as an extension

of IPW. It is a double-robust method that is robust to the misspecification of either a

model for the missingness mechanism or a model for the distribution of the variables

with missing values (but not both) [1]. AIPW generally results in improved efficiency

compared to IPW, although this is not guaranteed to be the case..

When analyzing data with missing values an important consideration is the miss-

ingness mechanism, and the mechanism will impact the properties and merits of

different methods. Missing complete at random (MCAR) is when the probability of

any variable being missing for a subject does not depend on the value of any of the the
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variables. Generally all methods will work under MCAR. Analysis of the complete

cases will be unbiased, but are frequently quite inefficient compared to other meth-

ods, depending on the amount of missingness. Missing at random (MAR) is when the

probability of being missing can depend on other covariates, but only those that are

observed. In general MI, IPW and AIPW are vaild under MAR, if models are appro-

priately specified. Complete case analysis is frequently biased under MAR. Missing

Not at Random (MNAR) is when the probability of missing depends on the value of

variables that are fully observed, including the unobserved value of the variable itself.

Generally all methods are biased under MNAR.

A basic question for all the above MI, IPW and AIPW methods is whether the

observed data for the outcome variable should be included in the required imputation

models or weight models. This is also related to how the covariate is missing, whether

the missingness is completely at random, or depend on other covariates and/or the

outcome, or the covariate itself. The argument in favor of including the outcome

variable in these models is from the theoretical developments associated with missing

data and multiple imputation. In general, it is well known that for inference about

a quantity of interest it is necessary to include the outcome variable as one of the

variables in the imputation model when developing a new prediction model. Omitting

the outcome variable can lead to biased estimates [33]. In general notation, if Q is the

quantity of interest, and D = (Dobs, Dmis) is the data where Dobs and Dmis denote the

observed and missing data, then from a Bayesian perspective, inference about Q is

based on its posterior distribution P (Q|Dobs). This posterior distribution can be writ-

ten as P (Q|Dobs) =
∫
P (Q|Dobs, Dmis)P (Dmis|Dobs)pDmis, and this applies whether

Q is a simple parameter in a model or a more complex function i.e. such as the Brier

Score or the AUC. This formula is the recipe for multiple imputation and motivates

imputation of the missing data using P (Dmis|Dobs), followed by inference for Q using

the complete data (Dobs, Dmis), and repeating these steps many times and averaging
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them. Since in our setting the outcome variable is part of Dobs, it is clear that the

outcome variable should be used as part of the imputation scheme. In practice, the

general recommendation for MI is that the imputation model should include every

variable that predicts the incomplete variable, and sometimes the imputation model

can contain more variables than will be used in the final analysis [50].

The intuitive argument against including the outcome variable in the models used

for imputation is the belief that there is some circularity. Since we are trying to

evaluate how good a model is at predicting outcome, the thinking is that we don’t

want to use the outcome to help impute the missing covariates, because then we will

make the model look better than it really is. However, Moons et al argued that

imputation of missing values using all other information will not create information.

It only makes use of the strength of associations between predictors and outcomes

present in the complete cases, to enable valid analyses [33]. The additional intuitive

argument against using the outcome variable is that the intended use of these models

is in the situation where we want to make a prediction for a single patient and we only

have covariates available and the outcome is not known. It is certainly a challenge of

how to make a prediction if some of the covariates are missing, but this is a different

situation than ours of evaluating a existing prediction model using a new dataset.

In this paper, we propose IPW and AIPW estimates of AUC and Brier score

to handle the missing data and evaluate their prediction performance in comparison

with MI by simulation. We focus on including the outcome or not in the weight

models or imputation models. The missing mechanisms could be MCAR, MAR and

MNAR. We consider a variety of existing prediction models including ones that are

both consistent with and not consistent with the internal data distribution, and ones

that depend on a subset of the covariates. An example from prostate cancer is used

as an illustration of the proposed methods.
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2.2 Methods

We consider the setting in which we have available an internal dataset of size N ,

consisting of binary outcome Y and p-dimensional vector of covariates X. Let Ri = 1

if there are no missing X values for subject i, else Ri = 0 if there are missing values.

Assume there is an existing external model, that requires as input the variables X or

a subset of the variables, and produces as output an estimate of the probability that

Y = 1, denoted by p̂(Y = 1|X). We use notation I to denote distributions associated

with the available or internal data, and E to denote the distributions associated with

the external data that was used to build the existing model. Let FI(X) and FI(Y |X)

denote the true probability distribution functions for the internal data. Thus FI(X)

is the density of X if X is continuous and FI(Y = y|X = x) = PI(Y = y|X = x). Let

FE(X) and FE(Y |X) denote the true distributions for the external data. We would

expect some of the X’s to be correlated with each other.

The existing model p̂(Y = 1|X) is an approximation to FE(Y = 1|X), and it

is usually a monotonic function of a weighted combination of covariates, denoted as

g(βX). The estimates of β could be good estimates if for example the external dataset

is large and good methods were used, or they could be poor estimates if the external

dataset is small or poor methods were used. From the internal dataset with sample

size N that are sampled from FI(X) and FI(Y |X), we can calculate the Brier score

and AUC. The BS is given by

BS =
1

N

N∑
i=1

(Yi − p̂i)2 (2.1)

where p̂i =P(Y = 1|Xi) is obtained from the existing model.

The Area Under the Curve (AUC), which is equivalent to the Concordance-index
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(C-index) for a binary outcome, is estimated using

AUC/C − index =

N∑
i=1

N∑
j=1

I(βXi > βXj)I(Yi > Yj)

N∑
i=1

N∑
j=1

I(Yi > Yj)

(2.2)

An alternative way to estimate the AUC is to first estimate the ROC curve and

then calculate the area under it. Let n1 denote the number of cases, n0 denote the

number of controls, and n1 + n0 = N . Let X1 denote the covariates in cases and X0

denote the covariates in controls. The ROC curve depicts relative trade-offs between

true positive rate (TPR) and false positive rate(FPR),

TPR(c) = Pr(βX1 ≥ c) =
1

n1

n1∑
i=1

I(βXi ≥ c)

FPR(c) = Pr(βX0 ≥ c) =
1

n0

N∑
j=n1+1

I(βXj ≥ c)

ROC(c) = TPR(FPR−1(c))

AUC =

1∫
0

ROC(c)dc

(2.3)

The integration of ROC to calculate the AUC is performed numerically. The

quantities called BS and AUC given above are estimates of population quantities,

which we call TrueBrierI(p̂) and TrueAUCI(p̂). Given the distribution FI(X) and

FI(Y |X), for any existing formula p̂ that provides a probability that Y=1 given X,

the true Brier Score (BS) is defined as

TrueBrierI(p̂) =
1∑

Y=0

∫
X

(Y − p̂)2FI(Y |X)FI(X)dX (2.4)
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For covariates in cases X1 and controls X0, denote their distributions as FI(X1) =

FI(X|Y = 1) and FI(X0) = FI(X|Y = 0), respectively. Then the true AUC is

TrueAUCI(p̂) = Pr(βX1 > βX0) =

∫
X1

∫
X0

I(βX1 > βX0)FI(X1)FI(X0)dX1dX0

(2.5)

Equation 2.4 and 2.5 give the true values of BS and AUC for a fixed β. The goal is

to get good estimates of these population quantities TrueAUCI(p̂) and TrueBrierI(p̂),

using the available data in the internal dataset of size N . A good estimate is one that

has small bias, low variability and is robust to model misspecification.

Also note from equation 2.4 that the true value depends on both FI(Y |X) and

FI(X), and similarly for equation 2.5. This makes it clear that even if the existing

prediction model for Y given X is correct for the internal distribution, it will not

usually lead to the same AUC and BS because these depend on the X distribution

as well. In practice it would seem likely that the internal and external distributions

of the X’s do differ.

In real data analysis with large sample size, missing data are a common occurrence.

Suppose our dataset has missing values for some covariates of X, and the missingness

may be MCAR, MAR or MNAR. The practical question we are trying to address

is how to get a good estimate of TrueAUCI(p̂) and TrueBrierI(p̂) from the available

dataset with missing covariates. The best conceivable estimates are the ones that

would have been obtained using equations 2.1,2.2 and 2.3 if there had been no missing

data.

2.2.1 Complete case analysis

Using only complete case (i.e Ri = 1) the simplest estimates are
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BSCC =

N∑
i=1

(Yi − p̂i)2Ri∑N
i=1Ri

(2.6)

C − indexCC =

N∑
i=1

N∑
j=1

I(βXi > βXj)I(Yi > Yj)RiRj

N∑
i=1

N∑
j=1

I(Yi > Yj)RiRj

(2.7)

For AUC,

TPRCC(c) =

n1∑
i=1

I(βXi ≥ c)Ri

n1∑
i=1

Ri

FPRCC(c) =

n0∑
j=1

I(βXj ≥ c)Rj

n0∑
j=1

Rj

(2.8)

However, these estimates may be biased in MAR and MNAR settings and may lack

efficiency in MCAR situations.

2.2.2 Multiple Imputation

When there is partially missing in X, we can do Multiple Imputation (MI) to

impute the missing values based on the available data, then average the predicted

BS and AUC from the multiple imputed datasets using Rubin’s rule. The first step

is to impute the missing values by drawing a value of Xmis from a model either

for F (Xmis|Xobs, Y ) or for F (Xmis|Xobs), and then apply the external model on the

imputed complete data to get the predictions of Y and calculate BS and AUC. The

models used for imputation are typically linear regression for continuous Xmis, logistic
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regression for binary Xmis, polytomous regression for unordered categorical Xmis, and

proportional odds model for ordered categorical Xmis, although more complicated

models could be used. After repeating the first step for M times (we use M=5), the

average of the estimates of BS and AUC from the multiple imputed datasets gives

the final single point estimate. When there is more than one covariate with missing

values, a chained equation approach is used to impute the missing values sequentially

[50]. The program mice() in R is used to implement the multiple imputations and

the different models mentioned above can be built with options.

2.2.3 Inverse Probability Weighting

Inverse Probability Weighting (IPW) weights the complete cases in the calculation

of the quantity of interest. The weight (Wi) is the inverse probability of the observa-

tion being complete (Ri = 1), i.e. Wi = 1/Pr(Ri = 1). We use logistic regression to

build the model of either Pr(Ri = 1|Xi, Yi) or Pr(Ri = 1|Xi) conditional on the fully

observed covariates and outcome to get the estimates of the weight. Then

BSIPW =

N∑
i=1

(Yi − p̂i)2RiWi

N∑
i=1

RiWi

(2.9)

C − indexIPW =

N∑
i=1

N∑
j=1

I(βXi > βXj)I(Yi > Yj)RiWiRjWj

N∑
i=1

N∑
j=1

I(Yi > Yj)RiWiRjWj

(2.10)
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For AUC,

TPRIPW (c) =

n1∑
i=1

I(βXi ≥ c)RiWi

n1∑
i=1

RiWi

FPRIPW (c) =

n0∑
j=1

I(βXj ≥ c)RjWj

n0∑
j=1

RjWj

(2.11)

With the TPRIPW and FPRIPW , ROCIPW and AUCIPW can be calculated fol-

lowing (2.3).

2.2.4 Augmented Inverse Probability Weighting

The IPW method only uses the complete cases, and ignores the subjects with

missing data. One way to improve it is to include information from subjects with

missing data, which is called Augmented Inverse Probability Weighting (AIPW). For

ease of notation we describe the method in the situation of only one covariate having

missing values. In the Appendix we describe how to apply it when multiple covariates

have missing values. First we build a model for the covariate with missing values on

all the other covariates, i.e. F (Xmis|Xobs, Y ) or F (Xmis|Xobs), to get the predicted

mean X∗mis, which is E(Xmis|Xobs, Y ) or E(Xmis|Xobs). This is a single imputation

of the mean and is different from multiple imputation which incorporates random

variation. The X∗mis is created for that variable for all subjects and is different from

MI which only imputes missing values. Then applying the external model to the

dataset with X replaced by X∗ = (X∗mis, Xobs) gives p̂i
∗. Combining this model with

a model for the weight, the AIPW estimator of the BS is
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BSAIPW =
1

N

N∑
i=1

(Yi − p̂i)2RiWi + (Yi − p̂i∗)2(1−RiWi), (2.12)

A subject with complete data has Ri = 1, and contributes (Yi−p̂i)2Wi+(Yi−p̂i∗)2(1−

Wi). A subject with missing values has Ri = 0 and contributes (Yi − p̂i∗)2. Because

all the subjects with complete data or missing values are evaluated, the denominator

is N .

For the C-index,

C−indexAIPW =

N∑
i=1

N∑
j=1

I(Yi > Yj)
{
I(βXi > βXj)RiWiRjWj + I(βX∗i > βX∗j )(1−RiWiRjWj)

}
N∑
i=1

N∑
j=1

I(Yi > Yj)

(2.13)

A pair of cases and controls Xi, Xj that are both complete has Ri = 1, Rj = 1,

and contributes I(βXi > βXj)WiWj + I(βX∗i > βX∗j )(1−WiWj). Otherwise, a pair

of cases and controls that has missing value i.e Ri = 0 and/or Rj = 0 contributes

I(βX∗i > βX∗j ).

For the area under the ROC curve method of calculating the AUC,

TPRAIPW (c) =
1

n1

n1∑
i=1

I(βXi ≥ c)RiWi + I(βX∗i ≥ c)(1−RiWi)

FPRAIPW (c) =
1

n0

n0∑
j=1

I(βXj ≥ c)RjWj + I(βX∗j ≥ c)(1−RjWj)

(2.14)

A subject with complete data has Ri = 1, and contributes I(βXi ≥ c)Wi + I(βX∗i ≥

c)(1 −Wi). A subject with missing value has Ri = 0 and contributes I(βX∗i ≥ c).

With the TPRAIPW and FPRAIPW , ROCAIPW and AUCAIPW can be calculated

following (2.3).
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2.2.5 Consistency of IPW and AIPW estimators

Considering the C-index using the IPW method. Let

Uij(θ, γ1) = θI(Yi > Yj)RiWiRjWj − I(Yi > Yj)I(βXi > βXj)RiWiRjWj,

where Wi depend on weight model with parameters γ1.

Let UN(θ, γ1) = 0.5N−2
N∑
i=1

N∑
j=1

[
Uij(θ, γ1) +Uji(θ, γ1)

]
, then it is straight forward

to show that C − indexIPW is the solution of UN(θ, γ1) = 0. Let UE = E(UN) =

0.5E
[
Uij(θ, γ1) + Uji(θ, γ1)

]
.

Let γ∗1 be the large sample limit of γ̂1 using the weight model Pr(R = 1|Xobs, Y ; γ1).

When the weight model is correctly specified, i.e. Pr(R = 1|Xobs, Y ; γ∗1) = Pr(R =

1|Xobs, Y ), then E(RiWiRjWj) = 1, and it is clear that UE(θ, γ∗1) = 0. Because

UN(θ, γ1) converges uniformly to UE(θ, γ1), C − indexIPW is a consistent estimator.

The proof for AIPW estimators is similar. Here we mimic the proof in Long et.

al. [29], and first demonstrate double robustness for a slightly different estimator,

which we label C − indexAIPW∗ with

C−indexAIPW∗ =

N∑
i=1

N∑
j=1

I(Yi > Yj)
{
I(βXi > βXj)RiWiRjWj + E[I(βXi > βXj)](1−RiWiRjWj)

}
N∑
i=1

N∑
j=1

I(Yi > Yj)

Let

Vij(θ, γ1, γ2) = θI(Yi > Yj)−I(Yi > Yj)
{
I(βXi > βXj)RiWiRjWj+E[I(βXi > βXj)](1−RiWiRjWj)

}

where Wi depend on weight model (Pr(R = 1|Xobs, Y ; γ1) ) with parameters γ1 and

in E[I(βXi > βXj)] the expectation is with respect to the distribution of the missing

covariates and depend on the model (F (Xmis|Xobs, Y ; γ2)) with parameters γ2.
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Let VN(θ, γ1, γ2) = 0.5N−2
N∑
i=1

N∑
j=1

[
Vij(θ, γ1, γ2)+Vji(θ, γ1, γ2)

]
, then it is straight-

forward to see that C − indexAIPW∗ is the solution of VN(θ, γ1, γ2) = 0. Let VE =

E(VN) = 0.5E
[
Vij(θ, γ1, γ2) + Vji(θ, γ1, γ2)

]
. It is easy to see that VN(θ, γ1, γ2) con-

verges uniformly to VE(θ, γ1, γ2), thus the solution to VN(θ, γ1, γ2) = 0 converges to

the solution of VE(θ, γ1, γ2) = 0.

Let γ∗1 be the probability limits of γ1 using the weight model Pr(R = 1|Xobs, Y ; γ1).

When the weight model is correctly specified, i.e. Pr(R = 1|Xobs, Y ; γ∗1) = Pr(R =

1|Xobs, Y ), then E(RiWiRjWj) = 1.

Let γ∗2 be the probability limits of γ2 using the model for the missing covariates

F (Xmis|Xobs, Y ; γ2). When the model is correctly specified, i.e., E(Xmis|Xobs, Y ; γ∗2) =

E(Xmis|Xobs, Y ), then E
{
I(Yi > Yj){E[I(βXi > βXj)]− I(βXi > βXj)}

}
= 0.

When either working model is correctly specified, it is clear that VE(θ, γ1, γ2) = 0,

and that the θ that solves VE(θ, γ1, γ2) = 0 is the true AUC. Because VN converges

uniformly to VE, C − indexAIPW∗ is a consistent estimator.

The estimator we describe in section 2.4, C − indexAIPW is an approximation to

C − indexAIPW∗, in which instead of calculating E[I(βXi > βXj)] over the distribu-

tion, we propose to use I(βX∗i > βX∗j ).

The proof of consistency is similar for Brier score and is shown in the Appendix.

2.3 Simulation Studies

In this section, we present results of numerical studies to investigate the perfor-

mance of the proposed method under different settings. We consider three covariates

and denote them as X1, X2, X3. We consider situations where the given external

model is based on all of X1, X2 and X3, and situations where it is only based on X1

and X2. The true distribution for the internal data, FI(Y |X), is defined as
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logit(Pr(Y = 1)) = 0.25 + 0.7X1 + 0.6X2 − 0.5X3

The internal data are sampled from above model. X1, X2, X3 are sampled from

N(0, 1) and about 40% of X1 is missing. The covariates can be independent, or

correlated with cor(X1, X3) = −0.5. Four different external models are evaluated

using the ”internal” data; (M1) the true model with X1, X2 and X3; (M2) the best

model based on just X1 and X2; (M3) a poor model based on X1, X2 and X3 with

wrong coefficients; and (M4) an incorrect intercept model.

The simulation is conducted as follows:

(a) For M1, we use the true coefficients, M1 = (0.25, 0.70, 0.60,−0.50). For M2,

we obtain the coefficients for the external model by generating a data set of 100000

observations from the true model, and fitting a logistic model based on X1 and X2.

For independent covariates, M2 = (0.25, 0.67, 0.58, 0). For cor(X1, X3) = −0.5,M2 =

(0.25, 0.91, 0.58, 0). It is noted that with independent covariates, the estimated coef-

ficients are biased toward the null compared to the true model [35]. With correlated

X1, X3 and X3 is omitted, the estimates of the coefficients for X1, X2 are biased in

opposite directions in the reduced model. For M3, we obtain the coefficients by gen-

erating an external dataset with sample size 50. For independent covariates, M3 =

(0.26, 0.66, 0.90, 0.39), and for correlated covariates, M3 = (0.53,−0.40, 0.88,−0.75).

With such small sample size, the estimated coefficients are not close to the true val-

ues. For M4, we set different prevalence’s for the external data and internal data, and

M4 = (1.00, 0.70, 0.60,−0.50).

(b) Based on the distributions FI(X), FI(Y |X), get the true AUC and BS for each

of M1,M2,M3 and M4 using their coefficients and equations 2.4 and 2.5. We label

these as the true target values.

(c) Sample internal data with N = 1000, and evaluate the external models

M1,M2,M3,M4 on the internal data. Use different methods to handle the miss-
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Table 2.1: List of methods for comparison. * indicates methods for which the weight
model is misspecified under MAR(X,Y). † indicates methods for which the imputation
model is misspecified.

True target true value based on internal data distribution

Full data without missing

CC complete cases analysis

IPW1* weight model uses X

IPW2 weight model uses X & Y

MI1† imputation model uses X

MI2 imputation model uses X & Y

AIPW1*† weight model uses X, imputation model uses X

AIPW2† weight model uses X & Y, imputation model uses X

AIPW3* weight model uses X, imputation model uses X & Y

AIPW4 weight model uses X & Y, imputation model uses X & Y

ing covariates in the internal data to estimate AUC and BS, repeat 1000 times to get

the mean and standard deviation, and compare with each other and with the true

target value calculated in (b).

We consider four different missingness mechanisms. For MCAR, the missing of X1

is random with probability 0.4, i.e., Pr(X1 is missing)=0.4. For MAR(X2, X3), the

missing of X1 depends on other covariates X2, X3, Pr(X1 is missing)= expit(−0.5 +

2X2 − 2X3). For MAR(X2, Y ), the missing of X1 depends on both covariate X2 and

outcome Y , Pr(X1 is missing)= expit(−0.5 + 2X2 + Y ). For MNAR, the missing of

X1 depends on the value of X1, Pr(X1 is missing)= expit(−0.5 + 3X1).

As listed in Table 2.1, we compared the validation of external models on full

internal data without missing (Full), on complete cases only (CC), IPW with the

weight model excluding outcome Y (IPW1) or including outcome Y (IPW2), MI with

the imputation model excluding outcome Y (MI1) or including outcome Y (MI2).

When calculating AUC by AIPW, the two methods, which are based on the C-

index and the area under the ROC curve respectively, gave almost identical results in

terms of bias and efficiency, thus we show the results for the C-index using a weight
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model that excludes the outcome Y (AIPW1, AIPW3) or includes the outcome Y

(AIPW2, AIPW4) and using an imputation model that excludes the outcome Y

(AIPW1, AIPW2) or includes the outcome Y (AIPW3, AIPW4). For the IPW and

AIPW methods the weight models are regarded as mis-specified in the MAR(X2, Y )

situation if they don’t include Y , i.e. IPW1, AIPW1 and AIPW3, and all IPW and

AIPW weight models are mis-specified in the MNAR situation.

In this simulation, mice() in R with linear regression using bootstrap is used to

implement MI for the missing continuous covariates. glm() with logistic link was

used to build weight models and lm() was used to calculate the predicted X∗1 in the

AIPW method.

2.3.1 Simulation results
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Figure 2.1: Simulation results of mean and relative SD of AUC for existing model
M1: correct model. Column A denotes mean AUC. Column B denotes
SD relative to full data analysis. The four rows are different missingness
mechanisms.
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Figure 2.2: Simulation results of mean and relative SD of Brier score for existing
model M1: correct model. Column A denotes mean BS. Column B de-
notes SD relative to full data analysis. The four rows are different miss-
ingness mechanisms.

Fig.2.1 and Fig.2.2 show the simulation results of AUC and BS for existing model

M1 with independent covariates under MCAR, MAR(X2, X3), MAR(X2, Y ), and

MNAR(X1). Column A shows the bias of the various methods. As expected the

full data analysis does achieve the true target AUC and BS. However, the complete

case analysis is unbiased only in the MCAR setting. MI with Y (MI2) is unbiased

under MCAR and MAR, but without Y (MI1) the bias is more than 10% for both

AUC and Brier score. All the IPW and AIPW methods are unbiased under MCAR

and MAR(X2, X3), regardless of whether Y is included or not. Under MAR(X2, Y )

when Y is related to the missingness, the only unbiased IPW method (IPW2) is the

one including Y , which indicates the importance of correct specification of the weight

model. For AIPW2 and AIPW4, when the weight model includes Y , the results are

unbiased. Without Y in the weight model, AIPW3 includes Y in the imputing model,
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and the results are unbiased too. However, when both weight model and imputing

model exclude Y , as in AIPW1, the results are biased, especially for AUC. For the

double robustness of AIPW, as least one of the weight model and imputing model

need to be correctly specified. Under MNAR for which the missingness depend on

X1, all the methods are biased.

Column B shows the relative SD of the methods comparing with full data esti-

mation. As expected all values are equal to 1.0 or larger. The variance of IPW is

always the largest, since it only weights the complete cases. The variance of AIPW

is between IPW and MI, and is much smaller than IPW under MAR.
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Figure 2.3: Simulation results of mean and relative SD of AUC for existing model
M2: best model based on just X1, X2. Column A denotes mean AUC.
Column B denotes SD relative to full data analysis. The four rows are
different missingness mechanisms.

For the model M2 with omitted covariate X3, under all scenarios, the reduced

model M2 has lower AUC and higher Brier score compared with true target values

for model M1. This is to be expected since omitting an important covariate will
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Figure 2.4: Simulation results of mean and relative SD of BS for existing model M2:
best model based on just X1, X2. Column A denotes mean BS. Column
B denotes SD relative to full data analysis. The four rows are different
missingness mechanisms.

generally lead to an inferior model. As shown in Fig.2.3 and Fig.2.4 the full model

results do achieve the target true value for M2, and they represent the best that could

be achieved for M2. The relative performance of the various MI, IPW and AIPW

methods for the handling the missing data compared to the full model results are

quite similar to those shown in Fig.2.1 and Fig.2.2, both for bias and SD.

We also considered using a poor external model M3 with wrong coefficients. The

results are shown in Fig.2.5 and Fig.2.6. Again in comparison with full data analysis,

the MI2, IPW2, AIPW2 and AIPW4 appear to give no bias, except in the MNAR

case. The variability of the MI2 method is the smallest.

For the scenario when external data and internal data have different prevalence,

we consider an existing model with the intercept=1 while the other coefficients are

the same as the true model. The changed intercept in M4 has no influence on the
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Figure 2.5: Simulation results of mean and relative SD of AUC for existing model
M3: poor model based on X1, X2, X3. Column A denotes mean AUC.
Column B denotes SD relative to full data analysis. The four rows are
different missingness mechanisms.

AUC compared to the true value, since changing the intercept does not change the

discrimination ability. The results are identical to those shown in Fig.2.1. The values

of BS increased compared to situation M1. As shown in Fig.2.7 the relative merits of

the MI, IPW and AIPW methods are similar to the other scenarios.

Overall, for the situations considered in this study, considering both bias and

variability the best methods are MI2 and AIPW4. For correlated covariates, the con-

clusions are the same (see Appendix). With multiple missing covariates, the findings

are broadly similar, but with some differences depending on the missingness pattern.

The simulation results shown in the Appendix, suggest that here MI2 is the best

method.

We note that the model used to impute the missing X in MI2 and create X∗

in AIPW3 and AIPW4 is slightly misspecified. Although it does regress X1 on
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Figure 2.6: Simulation results of mean and relative SD of BS for existing model M3:
poor model based on X1, X2, X3. Column A denotes mean BS. Column
B denotes SD relative to full data analysis. The four rows are different
missingness mechanisms.

X2, X3 and Y , the assumed linear model is not the same as the true distribution

for X1|X2, X3, Y based on how the data was generated from the true model. Fur-

thermore, we use I(βX∗i > βX∗j ) to approximate E[I(βXi > βXj)] as in the proof

which is an approximation to a doubly robust method. This, together with the fact

that the AIPW method is an approximation to the doubly robust estimator, may ex-

plain the small bias in the AIPW3 method for the MAR(X2, Y ) case, because in fact

neither the weight model nor the imputing model is correctly specified. However the

misspecified imputing model does not give any noticeable bias for the MI2 method.

2.4 Application

In this section, we applied the proposed methods to evaluate the performance of an

existing model for the risk of recurrence in men with Prostate Cancer. The Cancer
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Figure 2.7: Simulation results of mean and relative SD of BS for existing model M4:
different intercept model. Column A denotes mean BS. Column B denotes
SD relative to full data analysis. The four rows are different missingness
mechanisms.

of the Prostate Risk Assessment (CAPRA) score was published in 2005 and was

based on an initial cohort consisting of >1400 men from the University of California,

San Francisco (UCSF) [9]. A Cox proportional hazards regression model identified

age, pretreatment PSA, Gleason score, percentage of biopsy cores positive for cancer

(PPC), and clinical stage as significant factors associated with biochemical recurrence

(BCR) or secondary treatment. Based on the results of the Cox analysis, points were

assigned as in Table 2.2 to indicate relative risk. For each patient the points would be

added to give an overall CAPRA score. The CAPRA score ranges from 0 to 10, and

every 2-point increase in the score represents an approximate doubling of the risk.

The distribution of the score and the 3 year recurrence-free survival (RFS) rate were

reported in the publication, and are shown in Table 2.3. The AUC can be calculated

from the CAPRA score itself, but the BS requires the predicted probabilities from

27



Table 2.3.

Table 2.2: CAPRA score
Variable Level Points

PSA

2.0-6 0

6.1-10 1

10.1-20 2

20.1-30 3

>30 4

Gleason Score

(Primary/Secondary)

1-3/1-3 0

1-3/4-5 1

4-5/1-5 3

T stage
T1/T2 0

T3a 1

Percent positive biopsy
<34% 0

≥ 34% 1

Age
<50 0

≥50 1

Table 2.3: CAPRA score distribution and predicted probabilities derived from the
CAPRA score.

CAPRA Score CAPRA score distribution 3-Yr RFS rate

0-1 27.9% 0.91

2 30.0% 0.89

3 20.6% 0.81

4 10.8% 0.81

5 5.8% 0.69

6 3.0% 0.54

7 or Greater 2.0% 0.24

We sought to estimate the performance of CAPRA using a separate dataset from

the Mayo Clinic. The 1268 patients were treated with surgery between 2008 and 2012

and all patients before 2010 and half patients later were missing PPC values. So in

total 90% of the patients were missing PPC. We considered 3-year RFS as a binary

outcome. We included in our analysis all men who were followed more than 3 years or

developed progression in 3 years. In total, 314 of the 1268 patients had a recurrence
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in 3 years. To validate the prediction of CAPRA score, we compared the CAPRA

score with the outcome to get the AUC, and compared the observed RFS rate for

each CAPRA score as in Table 2.3 with the outcome to get Brier score. Because 90%

patients have missingness in PPC, we used PSA, Gleason Score, T-stage, Age and/or

the outcome to build the weight model for missingness and the imputation model of

PPC in the IPW, AIPW, and MI methods. In the data analysis, mice() in R with

logistic regression is used to implement MI for the missing binary PPC. glm() with

logistic link was used to build weight models and glm() with logistic link was used to

calculate the predicted PPC in AIPW. A bootstrap was used to give 95% confidence

intervals for AUC and BS.

Fig.2.8 shows the analysis results of different methods. The AUC ranged from

0.73 to 0.79, which is similar to other external validation studies of the CAPRA score

for which the c-index for BCR ranged from 0.66 to 0.81 [2]. On the other hand,

the BS values were around 0.16 except for complete case analysis and IPW with the

weight model excluding the outcome variable, which were above 0.4. The complete

case analysis and IPW methods have much wider confidence intervals, while the MI

and AIPW methods have comparable confidence intervals. Little’s test was used and

indicated the missingness is not MCAR (p<0.001) [26], thus complete case analysis

is not an optimal choice. The Odds Ratio of PPC not missing and RFS observed

was 24.1, indicating the missingness was strongly related to the outcome. Thus the

methods in which the weight model includes the outcome should be more reliable.

The imputing model of PPC was built only on the 10% of patients with non-missing

data and was used to impute the other 90% later on, and there could be a large

variation in the model, which could explain the ignorable difference between the two

MI methods with or without outcome. The results for AUC and BS are different,

probably because some CAPRA scores have the same RFS rate.

These results indicate the approaches to handle missing data can result in fairly

29



large variation in model performance estimates. Based on the theoretical consider-

ations and the simulation results, we believe the results from MI2 and AIPW4 are

the best to use, and they give very similar estimates for both BS and AUC in this

example.
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Figure 2.8: Varying estimates of mean and 95% confidence interval of AUC and Brier
Scores for prostate cancer example, based on how missing data are han-
dled

2.5 Discussion

We developed new AIPW estimators for predictive model performance metrics in

the setting of missing data. This AIPW approach is shown to have good properties.

We note that an AIPW estimator of the AUC has been previously proposed [29], but

for a different setting with auxiliary variables. Adapting this published approach to

our setting does not lead to equation (2.13), but rather an estimator with weights

in the denominator as in equation (2.10). When the weight model is correctly spec-

ified and with assumed independence of cases and controls, the expectation of the

denominator in equation (2.10) is equivalent to the denominator in equation (2.13) .

When there are missing observations in the internal data, MI and IPW can both

be used to obtain unbiased estimates of BS and AUC if the imputation model or

weight model is correctly specified. When the missingness doesn’t depend on Y , IPW

doesn’t need to include Y in the weight model, while MI does need to include Y in the
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imputation model. When the missingness depends on Y , both IPW and MI need to

include Y . The outcome variable should be included in the imputation model under

all scenarios, because it provides information of the missing covariates. For IPW,

the outcome only need to be included in weight model if the missingness depends on

outcome in order to get the correctly specified weight model. The findings in this

paper clearly support inclusion of the outcome variable Y in models that handle the

missing covariates when evaluating an existing prediction model. Thus overall, even

though in some situations for the IPW and AIPW methods it is not necessary, very

little harm arose from including Y and there is the potential for considerable gain.

Our simulation results suggest that AIPW can be more efficient than IPW, and

also obtain approximate double robustness to mis-specification of the weight model

or the imputing model. Even when both models are mis-specified, resulting estimates

are still less biased than IPW or MI with the wrong weight model or imputing model.

Under all scenarios, MI has the best efficiency comparing to full data analysis. Under

MCAR, AIPW has the same efficiency as MI, while under MAR, AIPW is less efficient

than MI.

One limitation of the IPW and AIPW methods is when there are multiple covari-

ates missing. In this situation there are different possible ways in which the weight

model and the imputation model can be constructed. In he specil cases of blocked

missingness or monotone missingness there are natural ways to construct these mod-

els, and in the simulation study we found similar performance to that of the situation

with a single missing covariate. When the missingness is scattered there are more

choice of how to implement the imputation model, and our simulation results suggest

that AIPW can in fact be a less desirable method than IPW. With multiple missing

covariates the MI methods are still relatively easy to apply by using the chained equa-

tion approach to impute the missing values sequentially, and the simulation results

suggest it is clearly more efficient.
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The problem we consider in this paper is how to estimate the correct AUC and

BS for a different population than the one that was used to develop the prediction

model, when (i) we do not have access to the data that was used to develop the model

and (ii) the dataset we have from the different population has some missing covariate

values. There are a broad set of problems associated with missing covariates and risk

prediction models. One is how to develop a model, for which a much cited reference is

Moons et al [33]. Another set of problems is how to implement an existing risk predic-

tion model for an individual subject when that subject has some missing covariates,

and also will not have the outcome known. Different situations and possibilities exist

here. The model developer may have set up methods to use in the case of missing

data, such as 2k different models, one for each pattern of missingness. The user of

the model may simply try a range of values for the missing variables, to give a range

of predicted probabilities, analogous to sensitivity analysis. If the user of the model

has access to the training data, then the question becomes how to make use of these

data. Alternatively, the user of the model may have access to their own dataset,

with information on both the covariates and outcomes for people in this dataset, and

the individual subject can be considered as coming from the same population as this

dataset, then the question again is how to make use of these data. These challenges

have received limited attention in the statistical literature [32, 20], but have been

expounded upon in a recent publication [18].

Another situation worthy of study, is how to evaluate an existing prediction model,

in a different population, when that different population does not have measured one

of the needed input variables for the prediction model. This would seem to be an

impossible task, unless extra information is available, either in the form of additional

data or knowledge of the joint distribution of the missing variable with the other

variables.
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CHAPTER III

A Utility Approach to Individualized Optimal

Dose Selection Using Biomarkers

3.1 Introduction

The goal of personalized medicine is to give the right treatment to the right patient

at the right dose using all we know about the patient. Available knowledge about

individual patients is increasingly including biomarkers which allow personalizing

treatment decisions. One approach to personalized medicine is to identify the right

patient for a given treatment. For example, in the setting of a single binary outcome

and two potential treatments, Foster et. al [12] proposed a “Virtual Twins” method

involving predicting response probabilities for treatment and control “twins” for each

subject by random forest, and then using regression or classification trees to identify

subgroups of patients with large positive treatment effect estimates. A related but

different approach is to identify the right treatment for a patient, often referred to

as optimal treatment regimes (OTR). A treatment regime is defined as the function

that maps a patient’s covariate vector to one of the treatment choices. One approach

to identify an OTR is a 2-step method that involves building a model for conditional

expectation of the outcome given treatment as the first step, then maximizing the

mean expected reward to get the optimal treatment for each subject. In an alternative
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approach, rather than modeling the marginal outcome, outcome weighted learning

(OWL) methods maximize the reward from following a treatment regime directly,

which is equal to the expected outcome in a subset of patients who actually followed

that regime, inversely weighted by the probability of being assigned to the regime

[55]. Maximizing the reward with respect to the treatment regime is equivalent to

minimizing the expectation for patients who did not follow the regime, and can be

interpreted as minimizing the weighted classification error in a classification problem

[53]. Zhang et. al [54] also proposed the doubly robust augmented inverse probability

weighted estimator (AIPWE) in which an outcome model is combined with a model

for the probability of a treatment which is important when analyzing observational

data. The OWL method has been extended to continuous treatment dose settings

such as optimal dose finding [5].

In many settings, it is not possible to describe a patient’s outcome using a single

variable. For example, in oncology, it is typical to describe patient outcomes in

terms of toxicity and efficacy variables. Several strategies have been proposed for

identifying an optimal treatment or dose based on the trade-off between efficacy and

toxicity. Thall and Cook [46] proposed using efficacy-toxicity trade-off contours that

partition the two-dimensional outcome probability domain such that efficacy-toxicity

pairs on the same contour are equally desirable. Dose could then be selected to

maximize desirability. More commonly, a utility matrix is elicited from clinicians by

assigning numerical utilities to each possible bivariate outcome. The optimal dose is

then defined as the value maximizing the posterior mean utility [15].

Guo and Yuan [15] proposed a Phase I/II trial design incorporating biomarkers

in which the optimal dose for an individual patient is selected to maximize utility. A

joint model of ordinal toxicity and efficacy outcomes is specified and canonical partial

least squares are used to extract a small number of components from the covariate

matrix containing dose, biomarkers, and dose-by-biomarker interactions. Wang et. al
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[49] proposed two approaches to identify a personalized optimal treatment strategy

that maximizes clinical benefit under a constraint on the average risk in the situation

of a binary treatment option and continuous outcomes.

In this paper we propose a utility based method to estimate optimal doses for

individual patients in the setting of binary efficacy and toxicity outcomes. To allow

for potentially large numbers of biomarkers and patient factors we utilize l1-penalty

via LASSO [47]. At the individual level, we find the optimal dose by maximizing

utility functions defined as the probability of efficacy minus the weighted probability

of toxicity, which is equivalent to a utility matrix [40]. The weight term in the

utility equation could be elicited from clinicians to quantify the relative undesirability

of toxicity relative to lack of efficacy. Alternatively it can be viewed as a tuning

parameter selected to achieve a desired overall (at the population level) rate of toxicity.

In the vast majority of oncology treatments and many other disease settings, both

efficacy and toxicity outcomes are monotonically linked to increasing dose. While

“flat” curves are common [38], it is uncommon for increasing dose to lead to decreased

toxicity or efficacy. We note that monotonicity may not hold for outcomes such as

progression free survival which include death as an event, since they are potentially

a consequence of either toxicity or lack of efficacy. When estimating outcomes as a

function of dose only it is often not necessary to impose this constraint. However,

when including many potential dose*biomarker interactions, it is likely that some

patients will be estimated to have decreasing toxicity or efficacy with increasing dose

due to statistical noise. To prevent this and to improve efficiency we propose a method

that constrains the estimated dose-efficacy and dose-toxicity relationships to be non-

decreasing for all patients. We call this constrained LASSO, which can be solved by

decomposition and quadratic programming [16] and alternating direction method of

multipliers (ADMM) [13]. In section 3, we report results of a simulation study and

in section 4 we illustrate the proposed methods using a dataset of patients with lung

35



cancer treated with radiation therapy.

3.2 Method

3.2.1 Binary Outcome Setting

We assume the available data, (xi, di, Ei, Ti), i = 1, ..., n, comprises n independent

and identically distributed copies of (x, d, E, T ), where x, a p-dimensional centered

vector of subject-specific features, d ∈ [−1, 1] denotes continuous dose of treatment,

E is the binary efficacy outcome, and T is the binary toxicity outcome. A large

probability of E and small probability of T is preferable.

An individualized dose rule is the map from x to the dose domain: F : Rp →

[−1, 1]. Under F , a patient with covariate x is recommended to dose d = F(x).

For any treatment rule F , the population expected efficacy and toxicity are EF(E)

and EF(T ). Our goal is to estimate an individualized dose rule that maximizes the

population expected efficacy while controlling the overall expected toxicity under

some tolerance level, that is

maxF EF(E) , subject to EF(T ) ≤ τ, (3.1)

where τ is the pre-specified maximal tolerance level of average toxicity.

Define δE(xi, di) =P(E = 1|di, xi)−P(E = 1|di = −1, xi), δT (xi, di) =P(T =

1|di, xi)−P(T = 1|di = −1, xi). δE(xi, di) and δT (xi, di) can be interpreted as the

difference in expected efficacy and toxicity outcomes for a patient if treated at the

lowest dose (di = −1) or some higher dose (di). Let Ex to denote the population

average of the function across the distribution of x. After introducing the Lagrange

multiplier, solving equation (3.1) is equivalent to

maxF Ex[δE{xi,F(xi)} − θδT{xi,F(xi)}], (3.2)

36



where θ > 0 is chosen such that Ex[δT{xi,F(xi)}] ≤ τ − Ex[P(T = 1|di = −1, xi)].

The expression in equation (3.2) is a utility function quantifying the trade-off between

efficacy and toxicity. By fitting separate models for E and T using methods such as

logistic regression via maximum likelihood or constrained LASSO as described below,

we can calculate the utility values for individual patients over the range of possible

dose values, and calculate the dose rule that maximizes equation (3.2).

Consider the model logit{P(Y = 1)} = f(x, d, β) = β0 +Wβ between outcome Y ,

i.e. E or T , and covariates including biomarkers x, dose d, and dose-biomarker inter-

actions dx, i.e. W = (x, d, dx). To fit the model we use the generalized LASSO with

l1-penalty on the log-likelihood and no penalty on β0. To enforce a non-decreasing

relationship of efficacy and toxicity with dose, we add constraints on derivatives with

respect to d to be non-negative, i.e., ∂
∂d
f(xi, d, β) ≥ 0 for all xi. We call this method

constrained LASSO (cLASSO), for which the constraint can be written as Cβ ≥ 0,

where C is a n× (2p+ 1) matrix of [0n∗p, 1n∗1,xn∗p]. Then the cLASSO method is to

minimize −logL(β,W, Y )+λ‖β‖1 = −
n∑
i=1

[Yi(β0+Wiβ)−log{1+exp(β0+Wiβ)}]+λ‖β‖1

(3.3)

subject to Cβ ≥ 0.

To solve (3.3) we decompose β into its positive and negative part, β = β+ − β−,

as the relation |β| = β+ + β− handles the l1 penalty term. Let W ∗ = (W,−W ),

and β∗ = (β+T ,−β−T )T . By plugging these into (3.3) and adding the additional

non-negativity constraints on β+ and β−, the constrained LASSO is formulated and

can be solved, for example, by spg() in R, which uses the spectral projected gradient

method for large-scale optimization with simple constraints. That is,

minimize −
n∑
i=1

[Yi(β0 +W ∗
i β
∗)− log{1 + exp(β0 +W ∗

i β
∗)}] + λ14p+2

Tβ∗ (3.4)
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subject to (C,−C)β∗ ≥ 0, β+ ≥ 0, β− ≥ 0.

The derivative of (3.4) with respect to (β0, β
∗) is

−
n∑
i=1

{
Yi(1,W

∗
i )− exp(β0 +W ∗

i β
∗)

1 + exp(β0 +W ∗
i β
∗)

(1,W ∗
i )
}

+ λ(0, 14p+2
T ) (3.5)

The minimizer to (3.4) always satisfies β+
j β
−
j = 0 for j = 1, ..., 2p + 1, as shown in

the Appendix. We use 10-fold cross-validation(CV) to choose λ to minimize the CV

deviance.

For any fixed value of theta, and using the above estimated models of efficacy and

toxicity, we can find the optimal dose for each patient that maximize (3.2), then we

use grid search to find the smallest θ achieving the constraint on toxicity. Specifically

the algorithm is as follows:

1. Set a grid 0 = θ1 < θ2 < ... < θK

2. For each m = 1, ..., K:

(a) set θ = θm

(b) For each subject i = 1, ..., n with covariate xi:

calculate dopti = argmax(δE(xi, d)− θδT (xi, d)), estimate P(E = 1|dopti , xi) and P(T =

1|dopti , xi)

3. Select the smallest θ̂ such that Ex[P(T = 1|dopti (θ), xi)] ≤ τ . Then dopti (θ̂) is the

estimated optimal dose for patient i.

For binary outcomes under the logistic link function, both δE(x, d) and δT (x, d) are

functions involving the intercept, main effect of x, as well as dose related covariates

d and dx. Estimation of dopt at given θ for each subject is solved by one-dimensional

optimization using optimize() in R, which uses a combination of golden section

search and successive parabolic interpolation. Because of the non-decreasing dose-

efficacy and dose-toxicity relationship, a larger θ will recommend a smaller dopt, and
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the corresponding population average efficacy and toxicity will be smaller. So the

smallest θ achieving the constraint on average toxicity will achieve the largest average

efficacy. The range and size of the grid can be pre-specified and should include a range

of feasible values. In our simulation and data example, we used a range of 0.01 to 4,

in steps of 0.001. We note that for the determination of dopti , we consider the subject

level E−T trade-off, while for the determination of θ, we look at the population level

E − T trade-off.

3.2.2 Multiple Outcome Setting

In some applications there are multiple toxicity outcomes which must be consid-

ered and balanced against efficacy when selecting treatment dose. Without loss of

generality, we consider two different toxicity outcomes T1, T2 and the goal is to

maxF EF(E) , subject to EF(T1) ≤ τ1,EF(T2) ≤ τ2 (3.6)

where τ1, τ2 are the pre-specified maximal tolerance levels of average toxicity for each

toxicity outcome.

Define δE(xi, di) =P(E = 1|di, xi)−P(E = 1|di = −1, x), δT1(xi, di) =P(T1 =

1|di, xi)−P(T1 = 1|di = −1, xi), δT2(xi, di) =P(T2 = 1|di, xi)−P(T2 = 1|di = −1, xi).

Then equation (3.6) is equivalent to

maxF Ex[δE{xi,F(xi)} − θ1δT1{xi,F(xi)} − θ2δT2{xi,F(xi)}], (3.7)

where θ1 > 0, θ2 > 0 are chosen such that Ex[δT1{xi,F(xi)}] ≤ τ1 −Ex[P(T1 = 1|di =

−1, xi)], and Ex[δT2{xi,F(xi)}] ≤ τ2 − Ex[P(T2 = 1|di = −1, xi)].

We specify parametric logistic models for E, T1, T2 as functions of biomarkers,

dose, and dose-biomarker interactions. Denote the parameter estimates from those
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logistic models as β̂E, β̂T1 , β̂T2 . We propose a random walk and Metropolis algorithm

to select θ1, θ2 to achieve the constraints on toxicity. The algorithm is as follows:

1. Set a chain length, B, fix σ2 > 0 and initialize θ0 = (θ01, θ
0
2) to a starting value

that makes Ex[P(T1 = 1|dopti (θ0), xi)] ≤ τ1,Ex[P(T2 = 1|dopti (θ0), xi)] ≤ τ2.

2. For b = 0, ..., B:

(a) Generate θ̃b+1 ∼ N(θb, σ2I) and θ̃b+1 > 0

(b) For each subject i = 1, ..., n with covariate xi:

compute dopti = argmax{δE(xi, d) − θ̃b+1
1 δT1(xi, d) − θ̃b+1

2 δT2(xi, d)}, estimate P(E =

1|dopti (θ̃b+1), xi), P(T1 = 1|dopti (θ̃b+1), xi), and P(T2 = 1|dopti (θ̃b+1), xi)

(c) Compute q = min[1,Ex{P(E = 1|dopti (θ̃b+1), xi)}/Ex{Pr(E = 1|dopti (θb), xi)}]

(d) Generate U ∼ U(0, 1);

if Ex[P(T1 = 1|dopti (θ̃b+1), xi)] ≤ τ1,Ex[P(T2 = 1|dopti (θ̃b+1), xi)] ≤ τ2, and U ≤ q, set

θb+1 = θ̃b+1; otherwise, set θb+1 = θb

3. After generating a chain (θ0, ..., θB), we select the θk that leads to the largest value

of Ex[P(E = 1|dopti (θk), xi)] as the optimal solution, and the dopti (θk) is the optimal

dose for patient i.

In stage 2(b) in the above algorithm, dopt at given θ for each subject is solved by

one-dimensional optimization using optimize() in R. The variance of the proposal

distribution σ2 in stage 2(a) is chosen to make the acceptance proportion between

0.25 and 0.5. When there are multiple constraints we found that the random walk

and Metropolis algorithm is more efficient than using a finite grid search over the

multiple dimensions of θ. In our experience, as long as the chain is long enough, the

maxima of the population average efficacy will be achieved. This can be checked by

running the algorithm in parallel for different initial choices of θ0. It is noted that

there is no guarantee that both toxicity constraints will be met at the boundary.
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3.3 Simulation Studies

In this section, we performed numerical studies to investigate the performance

of the proposed method under different settings. We simulated five i.i.d covariates,

x1, ..., x5 from a standard normal distribution, d from Uniform(-1,1), and then gener-

ated N=200 binary outcomes E and T from the regression models

logit(P(E = 1)) = β0,E +WEβE,

logit(P(T = 1)) = β0,T +WTβT ,

where WE = WT = (x, d, dx). A range of scenarios for β were considered, but we

first describe scenario 0, as given in Table 4.1. For scenario 0 (β0,E, βE) =(0, 1,

0, 0, 0, 0, 1, .4, .4, .4, -.8, 0), and (β0,T , βT ) =(-1.386, -1, 0, 0, 0, 0, 1, -.4, -.4,

-.4, .8, 0). In generating x’s, we also applied the constraints that x must satisfy

1 + 0.4x1 + 0.4x2 + 0.4x3 − 0.8x4 > 0 and 1 − 0.4x1 − 0.4x2 − 0.4x3 + 0.8x4 > 0 to

reflect the non-decreasing dose-efficacy and dose-toxicity curves for all subjects. This

excludes up to 35% of the originally simulated observations.

To illustrate the utility approach to dose selection, we plotted individual level

E-T trade-off for three different subjects in Fig.3.1 and population level E-T trade-off

in Fig.3.2. Different dose-efficacy and dose-toxicity curves among subjects result in

selection of different optimal dose values across θ.

For variable selection, we forced the main effect for dose to be selected by removing

its associated parameter from the penalty term and only consider the selection of

covariates and dose*covariate interactions. The methods we compared are forward

selection (FS), regular LASSO, cLASSO and fixed dosing (FD) in which dose only

logistic models were fit. FS was implemented by step() in R using AIC as criteria.

Regular LASSO was implemented by glmnet() in R with 10-fold CV.

The boxplots in Fig.3.3 shows the average efficacy from the above methods with

the same toxicity constraint, from which we see that cLASSO has higher average
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Figure 3.1: Top: Individual level E-T plot with choice of dose with theoretical βE, βT
for three subjects. The utility curve uses θ = 1. Bottom: Individual level
optimal dose as a function of θ for the same three subjects.

efficacy compared to the other methods, especially fixed-dose. We also calculate the

theoretical improvement from using the true models which would only be known

in a simulation study setting. The improvement, defined as proportion of possible

gain compared to the gain from FD to theory, {EF(E) − EFFD(E)}/{EFTheory(E) −

EFFD(E)}, for FS, regular LASSO, and cLASSO is 0.513, 0.518, 0.589, respectively.

cLASSO has higher efficacy than LASSO for 69.0% of the simulated datasets.

We also considered a null case in which there are no covariates or dose*covariates

interactions with result shown in Fig.3.4, so that the dose effects are the same across

all subjects. The average efficacy with toxicity constrained at 0.2 for theory, FS,

regular LASSO, cLASSO and FD are 0.503, 0.470, 0.490, 0.491, 0.499, respectively.

With no effect of covariates, the dose-only model (FD) is as good as the theory, and

the models with covariates included have slightly worse performance than the dose-

only model. Among the modeling approaches, cLASSO has better performance than
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Figure 3.2: Left: Population level E-T plot with choice of θ with theoretical βE, βT ,
Right: Population level E-T trade-off at different toxicity tolerance levels.

FS.

A few other scenarios were considered: In scenario 1 there are only main effects of

covariate and no dose-covariate interactions, and the main effects of the same x are in

opposite directions in efficacy and toxicity models. In scenario 2, the dose-covariate

interaction effects are the same in efficacy and toxicity models, but the main effects

of covariates are different. In scenario 3 and 4, there are 15 and 45 additional noise

covariates added to increase p from 5 to 20 and 50, to examine the performance with

high dimensional data. In scenario 5 and 6, with the same coefficients as in scenario

0 and 3, the sample size increased to 400. In practice, the covariates may be highly

correlated resulting in multicollinearity. In scenario 7, x’s are not independent and

correlation among x1, x2, x3 are 0.6. We also considered several situations in which

the logistic regression model with linear effects is mis-specified. In scenario 8, the

true effect of covariate x4 is stepwise at 0, i.e., the effect only exits for x4 > 0. But

when fitting models, it is mis-specified as linear. In scenario 9, the true models have

exp(x4) as the covariate, but in the fitted models x4 is used, which is mis-specified. In

scenario 10, an interaction of x2 and x3 is included as main effect in both true models
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Figure 3.3: Simulation results for scenario 0. Boxplot of average efficacy with same
toxicity for 1000 simulation trials. The compared methods are theory with
true coefficients; FS: Forward Selection; LASSO; cLASSO: constrained
LASSO; FD: Fixed Dosing. All methods are constrainted at P(T)=0.20.
Means are 0.599, 0.528, 0.528, 0.539, 0.452, respectively.

for efficacy and toxicity, but in the fitted models this interaction is not included.

Table 3.1 showed the simulation results with the above setting. We also considered

another setting with more covariate main effects and fewer dose-covariate interactions,

and with the non-decreasing constraints, 12% of the simulated observations were

excluded. In scenario 1 and 2, when the dose related coefficients for efficacy and

toxicity models are the same or 0, the main effects of covariates still played a role in the

optimal dose finding with the logistic link, and cLASSO still has better performance

than the other methods. In scenario 3 and 4, with the increased number of noise

covariates, the magnitude of improvement decreased, but the cLASSO still performs

better than the other methods. In scenario 5 and 6, with the larger sample sizes, the

magnitude of improvement increased, and cLASSO outperforms the other methods.

In scenario 7, with correlated covariates where the performance of LASSO is known

to be suboptimal, cLASSO still performs better than LASSO and FS. In scenario
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Figure 3.4: Simulation results for the null scenario. Boxplot of average efficacy with
same toxicity for 1000 simulation trials. The compared methods are the-
ory with true coefficients; FS: Forward Selection; LASSO; cLASSO: con-
strained LASSO; FD: Fixed Dosing. All methods are constrainted at
P(T)=0.20. Means are 0.503, 0.470, 0.490, 0.491, 0.499,, respectively.

8, 9, and 10, when the logistic regression model with linear effects is mis-specified,

all the methods have smaller magnitude of improvement, but cLASSO still performs

better than LASSO and FS, showing the robustness of cLASSO.

In Table B1 in the Supplementary materials we present the results from simula-

tions that considered two toxicity outcomes, T1 and T2. The scenarios were con-

structed using a subset of the previous efficacy and toxicity models as in Table 1 with

toxicity outcome T2 added and constrained at 0.23. The situations considered in-

cluded a variety of biomarker main effects, dose-biomarker interactions, correlations

between the biomarkers and additional noise biomarkers. The results in Table A1

provide similar conclusions regarding the relative merit of cLASSO compared to the

other methods as in the single toxicity outcome case.
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Table 3.1: Simulation results. Summary of average Efficacy improvement compared with fixed dose with P(Toxicity) constrained

to be ≤ 0.2. Results from 1000 simulated trials. Each scenario true logistic models for E and T include main effect for the

biomarkers, dose and biomarker-dose interactions, with coefficients as shown below.

Scenarios
Efficacy and Toxicity model coefficients

FS LASSO cLASSO
Possible cLASSO >

Biomarker Dose Interactions Improvement LASSO

0
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.513 0.518 0.589 0.147 69.0%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

1
E 1 0 0 0 0 1 0 0 0 0 0

0.393 0.659 0.694 0.052 53.3%
T -1 0 0 0 0 1 0 0 0 0 0

2
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.344 0.340 0.375 0.070 56.7%
T -1 0 0 0 0 1 .4 .4 .4 -.8 0

3
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.216 0.332 0.354 0.146 60.4%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

4
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

NA 0.246 0.272 0.146 60.0%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

5
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.692 0.691 0.762 0.148 71.7%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

6
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.433 0.431 0.461 0.148 66.3%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

7
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.561 0.561 0.628 0.147 66.2%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

8
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.378 0.399 0.450 0.200 58.2%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0
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Table 3.1 Continued:

Scenarios
Efficacy and Toxicity model coefficients

FS LASSO cLASSO
Possible cLASSO >

Biomarker Dose Interactions Improvement LASSO

9
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.360 0.402 0.481 0.206 64.6%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

10
E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.455 0.466 0.551 0.146 69.3%
T -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

0?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.618 0.648 0.694 0.132 62.9%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

1?
E 1 .2 .3 .1 0 1 0 0 0 0 0

0.410 0.590 0.641 0.055 56.4%
T -1 -.2 -.3 -.1 0 1 0 0 0 0 0

2?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.373 0.497 0.647 0.053 77.5%
T -1 -.2 -.3 -.1 0 1 0 .2 -.1 .6 0

3?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.280 0.429 0.460 0.131 62.1%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

4?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

NA 0.307 0.342 0.133 61.7%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

5?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.788 0.802 0.833 0.134 64.0%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

6?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.512 0.613 0.640 0.133 62.0%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

7?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.671 0.716 0.756 0.134 65.0%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

8?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.391 0.435 0.457 0.153 54.8%
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Table 3.1 Continued:

Scenarios
Efficacy and Toxicity model coefficients

FS LASSO cLASSO
Possible cLASSO >

Biomarker Dose Interactions Improvement LASSO

T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

9?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.317 0.372 0.435 0.081 65.6%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

10?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.519 0.559 0.624 0.132 68.4%
T -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

a. The intercept for Efficacy models is 0, for Toxicity models is -1.386.

b. Possible Improvement=EFTheory (E)− EFFD (E), the percentage of improvement={EF (E)− EFFD (E)}/{EFTheory (E)− EFFD (E)}.

c. Scenarios 3, 6, 3?, 6? have 15 noise covariates with coefficients 0 added; scenarios 4, 4? have 45 noise covariates with coefficients 0 added.

d. Scenarios 5, 6, 5?, 6? have doubled sample size of 400.

e. Scenario 7, 7? have cor(x1, x2, x3) = 0.6.

f. Scenarios 8, 9, 10, 8?, 9?, 10? have mis-specified models.

In scenario 8, 8?, the true effect of covariate x4 is stepwise at 0, e.g.,logit(P(E = 1)) = x1 + d+ (0.4x1 + 0.4x2 + 0.4x3 − 0.8I(x4 > 0))d.

In scenario 9, 9?, the true models have exp(x4) as the covariate,e.g.,logit(P(E = 1)) = x1 + d+ (0.4x1 + 0.4x2 + 0.4x3 − 0.8exp(x4))d.

In scenario 10, 10?, an interaction of x2 and x3 is included as main effect in both true models for efficacy and toxicity,

e.g.,logit(P(E = 1)) = x1 + x2x3 + d+ (0.4x1 + 0.4x2 + 0.4x3 − 0.8x4)d.

48



3.4 Application

In this section, we applied the proposed method to real data collected from patients

with non-small cell lung cancer who received radiation treatment. Patients treated

with stereotactic body radiation therapy or with follow-up less than one year were

excluded from the analysis, leaving 105 patients in the dataset to be analyzed. Of

the 105 patients, 46 had no local, regional or distant progression in two years. Two

toxicity outcomes were considered: grade 3+ heart toxicity and grade 3+ lung toxicity.

In total, 8 patients had grade 3+ heart toxicity, and 11 patients had grade 3+ lung

toxicity that required hospitalization. The clinical features we consider for possible

inclusion in models include sex, age, current smoker, Karnofsky Performance Status

(KPS), concurrent chemotherapy, simple stage, T-stage, N-stage of the cancer, as

shown in Table.3.2. We also include pre-treatment cytokines level such as interferon

γ (IFN-γ), interleukin-1 β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor

necrosis factor α (TNF-α) as prognostic factors. Patients in this study received

different doses ranging from 45 Gy to 96 Gy, partially due to the preference of different

clinicians as well as the stage of the disease, location of the tumor and the patients

performance status. The dose to the tumor site (efficacy dose) is different from the

dose received by the lung and heart, but we assume the ratio of them is fixed for each

patient. When the optimal efficacy dose is chosen within the observed dose range (45

- 96 Gy), it is multiplied by this known fixed (for each patient) ratio to obtain the

lung and heart dose corresponding to the selected tumor dose. There are 14 patients

with no cytokine data collected, and multiple imputation with all the covariates and

outcomes included is applied to fill in the missing values.

For the given set of doses in the study, the average probability of no progression

in two years (efficacy) is 0.438, the average probability of heart toxicity is 0.076, the

average probability of lung toxicity is 0.105, and average tumor dose across patients

is 71.20 Gy. The goal of this analysis is to estimate an optimal dosing rule that
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Table 3.2: Descriptive statistics of patients (n=105)

Variable Mean Range

Age (Years) 65.43 39.60 - 85.20

KPS 85.52 60 -100

IFN-γ 113.31 0.52 - 6547.50

IL-1β 10.26 0.04 - 92.61

IL-2 23.50 0.04 - 312.22

IL-6 41.93 0.07 - 730.84

TNF-α 18.48 0.54 - 149.37

Tumor dose (Gy) 71.20 45.66 - 96.08

Lung dose (Gy) 14.47 3.17 - 26.11

Heart dose (Gy) 12.22 0.02 - 46.13

Variable Category Percentage

Gender Female 24

Male 76

Smoking Current 42

Never or former 58

chemotherapy Yes 85

No 15

Simple stage 1 10

2 10

3 79

4 1

T stage 1 18

2 23

3 27

4 32

N stage 0 23

1 12

2 45

3 20
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Table 3.3: Variable selections in each model
Method cLASSO

Model Efficacy Heart toxicity Lung toxicity

Main effect

Dose ? ? ?

Age ?

Sex

Smoking

KPS ? ?

Chemotherapy ?

S stage

T stage ?

N stage ?

IFN-γ — —

IL-1β — —

IL-2 — —

IL-6 — —

TNF-α — — ?

Interactions with dose

Age ? ?

Sex ?

Smoking

KPS

Chemotherapy

S stage

T stage

N stage ?

IFN-γ — —

IL-1β — — ?

IL-2 — —

IL-6 — —

TNF-α — —

Estimated outcomes if these patients were

treated at optimal doses
0.485 0.077 0.108

− represents a covariate which is not considered for inclusion in the model.
? represents a covariate selected by cLASSO for the corresponding model.
Empty cell represent covariates considered for inclusion but not selected by cLASSO.
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maximize the probability of no progression in 2 years, with heart and lung toxicity

level no greater than observed overall toxicity for this population of patients. The

efficacy model for the probability of no progression in two years including as covari-

ates the 8 clinical features with their interactions with tumor dose as well as tumor

dose has in total 17 possible covariates. The heart toxicity model is built similarly,

and the lung toxicity model also includes the 5 most important cytokines and their

interaction with lung dose. Table 3.3 showed the covariates selection by cLASSO in

each model. The random walk method of selecting θ ran for 5000 iterations to ensure

convergence. With the models built by cLASSO, using the selected optimal dose for

each patient gave an expected efficacy of 0.485, an expected heart toxicity at 0.077,

an expected lung toxicity at 0.108, and the average tumor dose across patients was

80.21 Gy. With similar expected lung toxicity and heart toxicity rates, the average

efficacy increased by 0.047 from 0.438 to 0.485, which is a clinically significant im-

provement. Fig 3.5 showed the selected optimal dose for each patient. Some patients

were recommended lower doses comparing to their actual doses received, while more

patients were recommended higher doses. Mean optimal tumor dose is 80.2 Gy, which

is higher than mean actual tumor dose 71.2 Gy.

3.5 Discussion

In this paper, we propose an optimal individualized dose finding rule by maximiz-

ing utility functions for individual patients. This approach maximizes overall efficacy

at a prespecified constraint on overall toxicity. We model the binary efficacy and

toxicity outcomes using logistic regression with dose, biomarkers and dose-biomarker

interactions. To incorporate the larger number of biomarkers and their interaction

with doses, we employed the LASSO with linear constraints on the dose related co-

efficients to constrain the dose effect to be non-negative. Simulation studies show

that this approach can improve efficacy without increasing toxicity relative to fixed
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Figure 3.5: Comparison of selected optimal dose and actual dose received for all the
patients.

dosing. Constraining each patient’s estimated dose-efficacy and dose-toxicity curves

to be non-decreasing improved performance relative to standard LASSO. This utility

method was extended to multiple toxicities.

To force the dose-toxicity or dose-efficacy curve to be non-decreasing with dose,

the constraints for linear combination of dose related coefficients only ensure that the

patients in the current data satisfy this monotonicity criteria, but monotonicity is not

guaranteed for all future patients whose x is not in the observed data. An alternative

approach that would ensure monotonicity with respect to dose for all patients would

be to force all relevant dose and dose-covariate coefficients to be non-negative. But

with the dose-biomarker interactions, it is unnecessary to force all the dose related

coefficients to be non-negative, because some of them could be negative but the linear

combination of them is non-negative for a selected range of dose and covariate values.

Thus, simply constraining all the dose related coefficients to be non-negative is too
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conservative. It is noted that our method is not appropriate in cases where the toxicity

or efficacy endpoint may first increase and then decrease with increasing dose, but is

still applicable when there is an increasing effect followed by a plateau.

While we implemented a constrained version of LASSO, other penalized regression

approaches such as Elastic Net could also be considered [56], or Bayesian methods

using Bayesian LASSO [36], or other Bayesian variable selection methods such as

“spike-and-slab” [22].

Our method constrains the population averaged toxicity level to be below a given

tolerance level. This does not explicitly put any upper bound on the expected toxicity

probability for an individual patient. Our method could be modified by including

an upper bound on the probability of toxicity for each patient. Thus, in addition

to constraints on average toxicity, we also consider adding constraints to individual

toxicity, i.e., adding large penalty for extremely high toxicity, which will make the

utility function more complex. An indirect way of achieving this would be to use a

non-linear function of the probability of toxicity, rather than just the toxicity rate in

equation (3.1).

In this paper we have considered binary outcomes and logistic models that in-

cluded main effect and dose-biomarker interactions. The method could be generalized

to other type of outcomes, such as censored survival times for the efficacy outcome.

An ordinal outcome for toxicity could also be accommodated by requiring a different

tolerance threshold for each level of toxicity. More flexible forms for the effect of dose

and biomarkers could also be considered (e.g., regression splines), and provided the

dose monotonicity constraint can be algebraically formulated, the cLASSO would still

be applicable.
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CHAPTER IV

Utility Based Approach in Individualized Optimal

Dose Selection Using Machine Learning Methods

4.1 Introduction

Precision medicine is an approach for the treatment of a disease that takes into

account individual variability. In many situations, the clinical decision is whether to

give a particular treatment or a standard treatment to the patient, and the statistical

goal is to identify the subgroup of patients likely to derive benefit from the treatment

compared to standard treatment. In other settings, the treatment choice is not binary

and in particular consists of choosing the value of a continuous variable, which we

call dose. The goal in this setting is to find the optimal dose for each patient to

maximize the benefit of treatment. With the development of biomarkers, the goal

can be achieved by evaluating how the biomarkers moderate the treatment effect on

the outcome or outcomes. In statistical terms moderation of the treatment effect can

be formulated as the interaction between the biomarkers and dose in a model.

In this paper we consider the setting where there is an existing dataset from pre-

viously treated patients that contains treatment dose, observed efficacy and toxicity

outcomes and covariates possibly including biomarkers. We further assume there is

heterogeneity in the treatment dose given in this dataset. The statistical goal is to
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analyze the data to learn an individualized dosing rule giving an optimal dose as a

function of patient level covariates.

Supervised learning in the form of regression (for continuous outputs) and classi-

fication (for discrete outputs) is an important constituent of statistics and machine

learning. Widely used parametric models such as linear regression and logistic re-

gression are simple, but can suffer from model mis-specification. Concerns about

mis-specification can be reduced by including extra features, such as interactions and

splines, or there are many nonparametric methods that can be used instead. Because

of their greater flexibility, there is less concern about model mis-specification, but

also increased potential for overfitting. Decision Trees such as Classification And

Regression Trees (CART) and random forest, built upon CART, are easy to under-

stand and interpret and have been used in determining the optimal treatment [12].

Their tree structure handles the interaction well but also increases the potential of

overfitting. Methods based on kernel machines are also flexible and have good perfor-

mance with high-dimensional data. Examples of these are Support Vector Machines

as used in the outcome weighted learning(OWL) [55] method, and Gaussian process

[51]. Modern Bayesian semiparametric and nonparametric models also provide pos-

terior uncertainty quantification which can be used to provide uncertainty estimates

of patient specific treatment decisions. An example of this is using Bayesian Additive

Regression Trees (BART) to provide individual treatment rules (ITR). This approach

provides the uncertainty of the outcome associated with the optimal ITR [28].

In early phase studies in oncology, it is typical to describe the patient outcome

in terms of both toxicity (T) and efficacy (E). The benefit for each patient can be

defined based on combining these two outcomes. By maximizing the potential benefit

for each patient, the individualized optimal treatment or dose will be selected. Several

strategies have been proposed for identifying an optimal treatment or dose based on

the trade-off between efficacy and toxicity. To achieve maximum efficacy with tolera-
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ble toxicity, a utility function can be used as a weighted difference of probabilities of

efficacy and toxicity [23]. More generally, a utility matrix is elicited from clinicians

by assigning numerical utilities to each possible efficacy and toxicity outcome pair,

which allows different preferences for different outcomes and then the utility function,

defined as the expected value of the utility, at different dose levels are compared [19].

Contours characterizing the trade-off between E and T is an alternative and flexible

approach. For this, the set of pairs for the probability of E and the probability of T on

the same contour are equally desirable and the dose that maximizes the desirability

is selected [46].

In oncology and other disease settings, it is frequently reasonable to assume that

increasing dose leads to increased toxicity and efficacy. However, the increase may

not be strictly monotone over the whole range of possible doses. For example, FDA

guidance on cellular and gene therapy products mentions that indicators of potential

benefit appear to plateau above a certain dose [11]. Thus, we will consider constrain-

ing the estimated dose-efficacy and dose-toxicity relationship to be non-decreasing

for all patients. The effect of this should be to reduce the estimation noise, improve

efficiency and hence yield more reliable results.

In previous work we built separate models for E and T and did not explicitly

consider correlation between E and T [23]. In this paper we relax the assumption

of independence and use flexible machine learning methods to build the models for

E and T using dose and biomarkers. In section 3, we propose the use of random

forest and Gaussian process models to build marginal models and link them with a

Gaussian copula. We also build models on joint probabilities and use PAVA isotonic

transformation to give a non-decreasing dose-efficacy and dose-toxicity relationship.

In section 4, we consider alternative uses of the utility function to select an optimal

dose, including the addition of constraints with clinical motivation as well as the

uncertainty of the utility function. A simulation study to compare different model
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building and optimal dose finding methods under several scenarios is summarized in

Section 5. In section 6, we illustrate the proposed methods in a dataset of patients

with non-small lung cancer treated with radiation therapy. We close with discussion

in section 7.

4.2 Utility function and matrix

We assume the available data, Di = (xi, di, Ei, Ti), i = 1, ...N , comprises N inde-

pendent and identically distributed copies of (x, d, E, T ), where x is a Q-dimensional

vector of subject-specific features, d ∈ [−1, 1] denotes continuous dose of treatment,

E is the binary efficacy outcome, and T is the binary toxicity outcome. Denote

pE(d, x) = Pr(E = 1|d, x) and pT (d, x) = Pr(T = 1|d, x) as the marginal probabilities

for the efficacy and toxicity outcomes. One way to combine the efficacy and toxicity

outcomes is through a utility function such as U(p(d, x), θ) = pE(d, x) − θpT (d, x)

with θ > 0. θ can be pre-specified by physicians or calculated as a tuning parameter

to meet a pre-specified level of toxicity in the population [23]. Alternatively, a unique

utility value can also be specified for each possible bi-variate patient outcome (E, T )

in a utility matrix, as shown in Table 4.1. We assign U10 the highest value to the best

possible outcome (efficacy and no toxicity), and U01 the lowest value to the worse

possible outcome (toxicity and no efficacy). U00 and U11 have values in between and

can be larger or smaller or equal to each other. Denote the joint probability of E

and T given d and x as in Table 4.2. We define a utility function as the expectation

of this utility matrix with respect to the joint probability of E and T at dose d and

covariates x. The goal is then to maximize the utility function, or the expectation of

the utility matrix across dose for a fixed x.

The utility function above, U(p(d, x), θ) = pE(d, x)−θpT (d, x), corresponds to one

with (U00, U10, U01, U11) = (0, 1,−θ, 1− θ). More generally, without loss of generality,

we can assign the highest utility as 1 and lowest utility as 0. Then we consider the
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Table 4.1: Utility matrix
E=0 E=1

T=0 U00 U10

T=1 U01 U11

Table 4.2: Table of probabilities
E=0 E=1 Row Sum

T=0 p00 p10 1− pT
T=1 p01 p11 pT

Column Sum 1− pE pE 1

utility matrix with 0 < ω1 < 1, 0 < ω2 < 1 that are pre-specified, as shown in Table

4.3.

Table 4.3: utility matrix with two parameters
E=0 E=1

T=0 ω1 1

T=1 0 ω2

We define the Utility function Ū(p(d, x),ω) as the expectation of the utility matrix

in Table 4.3,

Ū(p(d, x),ω) = ω1p00(d, x) + p10(d, x) + ω2p11(d, x)

= ω1 + (1− ω1)pE(d, x)− ω1pT (d, x) + (ω1 + ω2 − 1)p11(d, x)

(4.1)

When ω1 + ω2 = 1, Ū(p(d, x),ω) = ω1 + (1 − ω1)pE(d, x) − ω1pT (d, x), which

yields equivalent solution to U(p(d, x), θ) = pE(d, x)− θpT (d, x). The gain in utility

when moving from E = 0 to E = 1 is the same for both levels of T (1 − ω1 = ω2).

For this special case the models for E & T can be built separately [23], and no

assumption concerning independence or dependence of E and T is needed. However,

when ω1 + ω2 6= 1, this is not the case and the utility function does depend on the

correlation between efficacy and toxicity.

There are various approaches to modeling the joint distribution of E and T of
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which we consider three: model the marginal distributions for E and T and then

assume independence, or use a copula to link them as the joint distribution, or directly

model the 4 level categorical outcome (E, T ) on d and x.

4.3 Model building

Instead of using parametric models, we will consider using non-parametric ap-

proaches (e.g. random forest) and kernel machines (e.g. Gaussian process) to model

the joint distribution of E and T .

4.3.1 Random forest

First, we use random forest (RF) to build models for E and T separately to obtain

estimates of p̂E(d, x) and p̂T (d, x) for each subject. Here we use Out Of Bag (OOB)

predictions to avoid the overfitting. After obtaining estimated marginal probabilities,

we can assume independence of efficacy and toxicity so that the joint distribution of

(E, T ) is given by the product of the marginals. Alternatively, we can use a copula

to link the marginals as described in the appendix C.1. We can plug the p̂E(d, x)

and p̂T (d, x) for each subject into the copula function and maximize the loglikelihood

across the dataset DN to estimate α̂, the correlation parameter in the copula. Rborist

by Seligman was used to implement the random forest due to its computational

efficiency [42].

In random forest, the predicted probabilities of E or T may decrease over some

range of dose for some patients. To prevent this, we can apply constraints during the

estimation of the random forest. Specifically, whenever a split on dose is selected, we

require the left node (lower dose) to be associated with lower probabilities of E or T

than the right node (larger dose) [42].

Instead of modeling marginals and linking them to obtain the joint distribution,

we can model the joint probabilities directly. When doing this using methods such
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as random forests, we can’t add monotonicity directly in the model since the desired

monotonicity is in terms of each marginal and not in the four joint probabilities

p00, p10, p01, p11. Thus in this setting we use a post estimation procedure in which

we adjust p̂00, p̂10, p̂01, p̂11 to obtain p̂∗00, p̂
∗
10, p̂

∗
01, p̂

∗
11 so that the corresponding pE and

pT are monotone in d for all x. Specifically, we use the Pool-Adjacent-Violators

Algorithm (PAVA) isotonic transformation for the marginal distribution, then we

will find a set (p̂∗00, p̂
∗
10, p̂

∗
01, p̂

∗
11 ) which is close to (p̂00, p̂10, p̂01, p̂11) and also satisfies

the monotonicity constraint.

For every patient, using the model of categorical outcomes built on the dataset,

we have predictions of (p̂00, p̂10, p̂01, p̂11) for all the dose levels and thus p̂E and p̂T .

Then we apply PAVA on p̂E and p̂T to get p̂∗E and p̂∗T which is non-decreasing in

dose across the feasible dose range. At each dose, the joint probability p̂∗11 has a

range of [max(0, p̂∗E + p̂∗T − 1),min(p̂∗E, p̂
∗
T )]. One way to perform the adjustment

is to minimize |p̂∗11 − p̂11| within the allowed range to get p̂∗11, then p̂∗10, p̂
∗
01, p̂

∗
00 can

be calculated sequentially from the known p̂∗11, p̂
∗
E, p̂

∗
T . Another way is to minimize

|p̂∗11− p̂11|+|p̂∗10− p̂10|+|p̂∗01− p̂01|+|p̂∗00− p̂00|, which involves all the joint probabilities.

4.3.2 Gaussian process

As a second approach to estimating the marginal distributions, we use a Gaussian

process (GP) approach. Specifically, we model the outcome y as a distorted version

of the process f , where f is a non-linear latent function and is assigned a Gaussian

process prior. For example, a continuous outcome might use a normal distribution

around f , while a binary outcome would use a logistic link or probit link with f .

With the Gaussian prior

f ∼ GP (0,K) = p(f),
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and likelihood

y ∼
n∏
i=1

p(yi|fi),

the Gaussian posterior of p(f |y) is given by

p(f |y) ∼
n∏
i=1

p(yi|fi)N(f |0,K).

where K is a kernel function that represents the distance between subjects in the

covariate space. Multiple kernel functions could be used and we use a Gaussian

kernel with each element in K defined by

k(xi, xj) = η2exp(−1

2

Q∑
q=1

ρ2q(x
(q)
i − x

(q)
j )2)

for subjects i and j = 1, ..., N and dimension q = 1, ..., Q. η2 is called the signal vari-

ance or the magnitude, and ρq’s are the characteristic length-scales of the input-space

for each dimension of x. This covariance function implements automatic relevance

determination (ARD) [34], since the length-scale ρq determines how relevant an input

is: if the length-scale is small, the covariance will become almost independent of that

input, effectively removing it from the inference. The ARD can be used in selection

of the dimension x related to the outcome, especially with high dimension data or

sparse data. We assign priors to η, ρq and estimate the posterior distribution of them

from the data.

In our setting, we assume fE ∼ N(0,KE),fT ∼ N(0,KT ) where KE,KT are

different kernel functions for E, T . For each subject, the marginal probabilities are,

Pr(E = 0) = 1− pE = Φ(fE + a),Pr(T = 0) = 1− pT = Φ(fT + b),

here we use a probit link to connect f to the outcome. Because f are centered around
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0, intercepts a, b are used for the unbalanced outcomes. Then the joint probability

can be obtained by the Gaussian copula

p00(d, x) = Φ2[Φ
−1(1− pE),Φ−1(1− pT )|α] = Φ2[fE + a, fT + b|α]

Alternatively, when assume independence of efficacy and toxicity,

p00(d, x) = Φ(fE + a)Φ(fT + b)

The outcome (E, T ) for each subject follows Multinomial(p00, p10, p01, p11) and we

can use a Bayesian approach to estimate (ηE, ρqE, ηT , ρqT , a, b, α) jointly with some

prior distribution. rstan was used to implement the Bayesian analysis of Gaussian

process since it is more efficient and explores complicated posterior distributions bet-

ter compared to rjags [45].

For Gaussian process, there are no methods to ensure monotonicity of predictions

with respect to dose across the entire covariate space. Rather, virtual data points

can be included and the derivative of the Gaussian process (with respect to dose) at

those points can be forced to be non-negative during estimation [39].

4.4 Optimal dose finding

For a subject with covariates x, we can directly calculate the optimal dose when

the true probabilities p(d, x) are known, by maximizing the utility function across

possible dose values. That is

dopt(x) = argmax Ū(p(d, x),ω) (4.2)
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4.4.1 Modified utility functions

In oncology clinical studies, efficacy and toxicity usually increase with dose simul-

taneously, thus high toxicity could be observed with high efficacy. So when maximiz-

ing efficacy, it is usual to have a pre-specified toxicity limit that needs to be satisfied.

We can achieve this by modifying the utility function by increasing the penalty on

higher values of pT (d, x). As an illustration we will modify the utility function such

that if pT (d, x) ≥ 0.3, the weight for toxicity will be tripled, giving a utility function

of

Ū1(p(d, x),ω) = Ū(p(d, x),ω)− 2ω1pT (d, x)I
[
pT (d, x) ≥ 0.3

]
. (4.3)

The individual optimal dose is obtained by maximizing the utility function, and

this optimal dose differs across patients. It is possible that the optimal dose is at

the boundary of the feasible dose region and far from a population fixed dose dfix,

that is the same for everyone. The dfix can be pre-specified as a standard value,

or estimated by fitting a dose-only model without covariates x in it. It might be

clinically desirable to avoid extreme doses. This can be achieved by shrinking the

individual optimal dose towards the population fixed dose, by including a penalty in

the utility function.

Ū2(p(d, x),ω) = Ū(p(d, x),ω)− δ|d− dfix| (4.4)

Ū3(p(d, x),ω) = Ū(p(d, x),ω)− δ(d− dfix)2 (4.5)

where δ is the penalty parameter and dfix is the population fixed dose.
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Figure 4.1: Comparison of utility function contours. (a) Ū with ω1 = ω2 = 0.5, (b) Ū1 with ω1 = ω2 = 0.5, (c) Ū2 with
ω1 = ω2 = 0.5, δ = 0.1, (d) Ū3 with ω1 = ω2 = 0.5, δ = 0.1, (e) Ū with ω1 = 0.3, ω2 = 0.5 and independent E and
T, (f) Ū with ω1 = 0.5, ω2 = 0.3 and independent E and T, (g) Ū with ω1 = 0.5, ω2 = 0.3 and cor(E,T)=0.8, (h) Ū
with ω1 = 0.5, ω2 = 0.3 and cor(E,T)=-0.8.
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Figure 4.1 shows the trade-off contours over the two-dimensional space with dif-

ferent utility functions. The pairs of (pE, pT ) on each contour are considered to have

the same utility function, as denoted by the solid lines. For a given patient with

covariates x, the pE(d, x) and pE(d, x) among the possible dose range is shown as a

dashed line, and the dose that maximize the utility function is selected, as shown by

the points. When ω1 + ω2 = 1, the utility function is a weighted difference of pE

and pT and results in straight lines. All the other utility functions have curved or

broken lines. For Ū1, the utility function decreases rapidly when pT (d, x) is above the

pre-specified toxicity limit of 0.3. Ū2 and Ū3 have different penalties for dose with

the l2-penalty giving smoother contours. When ω1 + ω2 6= 1, the four plots (e) to

(h) indicate the influence of different ω1, ω2 values and the correlations of E and T.

The lines are curved with p11(d, x), and the joint distribution of E and T plays a role.

These plots shows different choices of optimal dose as the utility function changes.

For (f) to (h), the correlations are 0, 0.8 and -0.8 with the same set of ω1, ω2 and

marginal probabilities for a given patient, the utilities differs a lot, but the optimal

doses are similar.

4.4.2 Use uncertainty of the estimation

The random forest will give the point estimate of the probabilities for the possible

doses, which is p̂(d, x) and can be plugged into equation (4.2). Then the individual

optimal dose for subject with covariates x is the dose that maximizes the weighted

sum of the utility values using the joint probability estimates. When using Bayesian

estimation, we will get the posterior distribution of the joint probabilities p(d, x) for

the possible doses, and thus the posterior distribution of Ū(p(d, x),ω). The optimal

dose for subject with covariates x is selected as the dose that maximize the posterior

mean of Ū(p(d, x),ω) given the data DN .
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dopt(x) = argmax E(Ū(p(d, x),ω)|DN) (4.6)

To assess the uncertainty of the estimation, we can consider the posterior distri-

bution of the utility function. Then an alternative way to define the optimal dose for

subject with covariates x is as the dose that maximizes the posterior probability that

the utility function is higher than the utility function at some fixed dose which is the

same for everyone.

dopt = argmax P (Ū(p(d, x),ω) > Ū(p(dfix, x),ω)|DN) (4.7)

4.5 Simulation studies

4.5.1 Settings and scenarios

To evaluate the performance of the different methods, we conducted a simulation

study. We consider 11 scenarios by varying the true parameter coefficients, the func-

tional form (e.g. exponential or binary or linear), the number of biomarkers, and the

sample size. For each scenario and each method of analysis and definition of optimal

dose, we fit the models using the training dataset, and evaluated their performance

under the true models which are known only in this simulation setting.

In scenario 1, we generated N=200 observations in a training dataset by simulating

5 i.i.d covariates, x1, ...x5 from a standard normal distribution, d from Uniform(-1,1),

and binary outcomes E and T from the regression model described below with a

copula to link them. The marginal probabilities are defined by models

pE(d, x) = Φ(β0,E + (x, d, dx)βE), pT (d, x) = Φ(β0,T + (x, d, dx)βT )

and α = 0.8 was used in the Gaussian copula to link the two marginal distribu-
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tions. In scenario 1, (β0,E, βE) = (0, 0.49,−1.11, 0.77, 1.51, 0, 1, 0.23, 0.61, 0, 1.69, 0.5),

(β0,T , βT ) = (−1.386, 0, 1.14,−0.33, 0, 0, 1, 0.03, 0.6, 0,−0.42, 1.04). In generating x’s,

we also applied the constraints that x must satisfy 1+0.23x1+0.61x2+1.69x4+0.5x5 >

0 and 1+0.03x1+0.6x2−0.42x4+1.04x5 > 0 to reflect the non-decreasing dose-efficacy

and dose-toxicity curves. This excludes up to 40% of simulated observations.

The other scenarios considered are shown below in Table 4.4 . In all scenarios the

true model coefficients were chosen so that the proportion of observations with E = 1

was about 50− 70% and with T = 1 was about 10− 30%.

Table 4.4: List of scenarios
S0 The true E & T model has only d without covariates x

S1 The true E & T models have x, d, dx

S2 The true E & T models have x, d, no dose-covariate interactions

S3 S1 with x1, x2, x3 correlated with coefficient 0.6

S4 S1 with 15 noise covariates x6, ..., x20 added to the data

S5 S1 with 195 noise covariates x6, ..., x200 added to the data

S6 S1 with sample size = 400

S7 S1 with binary covariates x

S8 The true E & T model has x, d, dx, as well as covariate interactions xx

S9 The true models have exp(x4) as the covariate

S10 The true models have I(x4 > 0) as the covariate

The simulation consist of the following steps iterated 1000 times. 1) Generate a

training dataset of the specified size (N=200 or 400). 2) Fit models for efficacy and

toxicity on the training data. 3) Generate a validation dataset following the same

approach as for the training data. 4) Calculate the estimated optimal dose for each

patient in the validation data using the models estimated from the training data and

a particular method for selecting optimal dose based on the models. Also calculate

the true efficacy and toxicity probabilities for each patient, conditional on the esti-

mated optimal dose, using the true models. 5) Calculate the average and standard

deviation of the estimated optimal dose values, average probability of efficacy, average

probability of toxicity, average value of the true utility function, and average improve-
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ment in utility defined as the fraction of the difference between the expectation of

the utility from the true model and the expectation of the utility from using a fixed

dose. The metrics in step (5) are then averaged over the 1000 simulations to provide

a comparison of the various methods for model building and optimal dose selection

across various scenarios.

We consider several variations of random forest modeling. To allow for correlated

efficacy and toxicity outcomes we take three approaches consisting of using a copula

method to link the marginal models, assuming conditional independence and also

directly modeling the 4 level bi-variate outcome. We also implement a version of

random forest in which the dose effects on efficacy and toxicity are constrained to be

non-negative for all patients and compare these results to unconstrained estimation.

When using random forest to model the 4 level categorical outcome, we also assess

the impact of a post-estimation use of a PAVA algorithm to enforce monotonicity.

For the Gaussian process, we compared different priors for ρq including inverse

gamma prior, Laplace prior and horseshoe prior. They have similar performance with

low dimension of covariates, but the horseshoe prior is better with high dimension as

it allows variable selection. Specifically, ρq ∼ N(0, λ2qτ
2) for q = 1, ..., Q, where λq ∼

cauchy(0, 1), τ ∼ cauchy(0, 1). The global parameter τ pulls all the weights globally

towards zero, while the thick half-Cauchy tails for the local scale λq allow some of the

weights to escape the shrinkage. With large τ , all ρ’s have diffuse priors with very little

shrinkage toward 0, but small τ will shrink all the ρ’s to 0. All the other parameters

have a standard normal distribution as priors. For Gaussian process, we tried both

using copula and assuming independence to link the two marginals. The results were

very similar so we only include those corresponding to the independence assumption.

Although we did investigate imposing monotonicity constraints in Gaussian process

modeling through the use of virtual data points, we did not include these methods in

our simulation because they are time consuming and in limited simulations appeared
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to have little effect on the results. All the methods considered are summarized in

Table 4.5.

The utility matrix plays an important role in optimal dose selection so for each

scenario, we consider three utility matrices. The first places higher utility on the

outcome of both efficacy and toxicity compared to neither efficacy nor toxicity (ω1 =

0.3, ω2 = 0.5). The corresponding utility function is Ū(p(d, x),ω) = 0.3+0.7pE(d, x)−

0.3pT (d, x) − 0.2p11(d, x). The second utility matrix we consider, weights these two

possible outcomes equally (ω1 = ω2 = 0.5). In this setting the correlation plays no

role as it cancels out of the utility function, as Ū(p(d, x),ω) = 0.5 + 0.5pE(d, x) −

0.5pT (d, x). In the third utility matrix we consider, the outcome of no efficacy and no

toxicity is preferred to the outcome of both (ω1 = 0.5, ω2 = 0.3). The utility function

is Ū(p(d, x),ω) = 0.5 + 0.5pE(d, x)− 0.5pT (d, x)− 0.2p11(d, x).
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Table 4.5: List of methods. RF denotes random forest, GP denotes Gaussian process
Model building Optimal dose selection

M1 True model Ū(p(d, x),ω)

M2 RF on marginals with copula Ū(p̂(d, x),ω)

M3 RF on marginals with independence Ū(p̂(d, x),ω)

M4 RF on marginals monotone on d with copula Ū(p̂(d, x),ω)

M5 RF on marginals monotone on d with independence Ū(p̂(d, x),ω)

M6 RF on marginals monotone on d with copula Ū(p̂(d, x),ω)− 2ω1p̂T (d, x)I
[
p̂T (d, x) ≥ 0.3

]
M7 RF on marginals monotone on d with copula Ū(p̂(d, x),ω)− δ(d− dfix)2

M8 RF on categorical outcome Ū(p̂(d, x),ω)

M9
RF on categorical outcome and PAVA to minimize

|p̂∗11 − p̂11|
Ū(p̂∗(d, x),ω)

M10 GP with independence assumption P (Ū(p(d, x),ω) > Ū(p(dfix, x),ω)|DN)

M11 GP with independence assumption E(Ū(p(d, x),ω)|DN)

M12 Fixed dosing: multinomial logistic regression on dose Ū(p̂(d),ω)
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4.5.2 Results

Figure 4.2 shows the scatter plot of the estimated optimal doses for one represen-

tative dataset with n = 200 under scenario 1 with ω1 = 0.3, ω2 = 0.5. Under the true

model (M1), the optimal dose would be the minimum or maximum possible value for

many patients. The optimal doses selected by different methods are compared with

the true optimal dose. For the random forest models on the marginals (M2, M3, M4,

M5), the optimal doses for many patients are near the optimal fixed dose, which is

0.63 for this dataset. There is little difference between methods using copula and as-

suming independence (M2 vs M3, M4 vs M5), suggesting that use of the copula does

not have a large impact on the distribution of selected doses. As expected, method

M6 tends to avoid maximum dose and select lower doses than method M4 due to

the individual toxicity limit in the utility function. For method M7, the majority of

the patients have optimal doses around the fixed dose because of the dose penalty

in the utility function. For the random forest with categorical outcomes (M8, M9),

adding PAVA to the predicted probabilities affects the selection of optimal dose. For

method M10 which uses Gaussian process and maximizes the probability of utility

higher than the fixed dose, the majority of the patients have optimal doses around

the fixed dose. For method M11 which uses Gaussian process and maximizes the

posterior mean of the utility function, the distribution of the optimal dose is most

similar to the distribution from the true model.
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Figure 4.2: Distribution of optimal dose of n=200 patients for different methods under scenario 1 with utility 1
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Table 4.6: Comparison of all methods under scenario 1 with utility 1,2,3
True RF monotone RF RF & PAVA GP FD

Method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

U1

mean dose 0.221 0.206 0.219 0.233 0.245 -0.017 0.379 0.266 0.28 0.337 0.303 0.464

sd dose 0.664 0.479 0.473 0.446 0.439 0.478 0.246 0.522 0.513 0.499 0.63 0

mean E 0.703 0.623 0.625 0.628 0.629 0.532 0.646 0.649 0.651 0.674 0.687 0.658

mean T 0.275 0.294 0.299 0.299 0.304 0.193 0.361 0.322 0.328 0.327 0.325 0.415

mean Ū 66.1 60.8 60.8 61 60.9 59.2 60 61.1 61 62.3 63.1 58.7

% IP Ū 1 0.278 0.27 0.3 0.286 0.053 0.17 0.32 0.308 0.484 0.595 0

U2

mean dose 0.017 0.027 0.027 0.03 0.029 -0.117 0.097 -0.009 -0.021 0.033 -0.001 0.142

sd dose 0.667 0.495 0.495 0.469 0.469 0.483 0.255 0.561 0.539 0.476 0.662 0

mean E 0.632 0.571 0.571 0.571 0.57 0.505 0.571 0.568 0.564 0.587 0.6 0.567

mean T 0.191 0.223 0.222 0.218 0.218 0.161 0.253 0.213 0.211 0.222 0.208 0.301

mean Ū 72.1 67.4 67.4 67.6 67.6 67.2 65.9 67.7 67.6 68.3 69.6 63.3

% IP Ū 1 0.463 0.463 0.484 0.484 0.433 0.294 0.497 0.486 0.562 0.707 0

U3

mean dose -0.162 -0.095 -0.084 -0.1 -0.086 -0.176 -0.072 -0.178 -0.174 -0.167 -0.215 -0.067

sd dose 0.646 0.478 0.476 0.455 0.451 0.468 0.253 0.532 0.521 0.389 0.601 0

mean E 0.556 0.526 0.529 0.524 0.526 0.489 0.516 0.499 0.499 0.508 0.516 0.5

mean T 0.124 0.179 0.184 0.173 0.178 0.146 0.194 0.155 0.157 0.162 0.136 0.229

mean Ū 69.6 65.1 65 65.4 65.3 65.5 64.1 65.2 65.2 65.3 67 61.6

% IP Ū 1 0.432 0.419 0.469 0.452 0.484 0.313 0.445 0.441 0.459 0.668 0
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Table 4.6 shows the summary statistics of the optimal dose, Efficacy, Toxicity and

expectation of utility under scenario 1 with different utility functions. To compare

the various methods on a common scale, we calculate the percent of possible increase

in expected utility relative to fixed dose, denoted by % IP Ū . Thus by definition the

fixed dose approach has 0 percent improvement and the true models have 100 percent

improvement with other methods generally falling in between these values. When

using utility 1, ω1 < ω2, so on average the optimal dose is higher and as a result,

average efficacy and average toxicity are both higher. Under utility 3, ω1 > ω2, the

average optimal dose is lower, and average Efficacy and average Toxicity are lower.

Under this scenario, within each utility function, use of the true models results in the

highest average expected utility, and the fixed dose results in the lowest average of

expectation of utility. The Gaussian process methods (M10, M11) have the highest

mean utility values with the other methods having generally similar performance

varying somewhat across utility matrices.

In practice, all covariates (e.g. biomarker panel) may have no true association

with the patient outcomes so we also consider a null scenario (S0) in which the E

and T models have only d without covariates x in them. Thus the dose effects are

the same across all patients. As shown in Figure 4.3, the dose-only model has nearly

as high of utility values as are possible using the true model. All other modeling

approaches which consider other covariates, generally have poorer utility values than

fixed dosing in this setting.

The comparison of expectation of utility under all scenarios is shown in Figure

4.3 and figures in the appendix, Fig C1, Fig C2. Table 4.7 shows the comparison of

percentage of expectation of utility improvement under all scenarios with utility 1. In

scenario 2, when there are only dose main effects and no dose-covariate interactions,

the main effects of the covariates still play a role in optimal dose selection, and the

Gaussian process which maximizes the posterior mean of utility function (M11) is
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Figure 4.3: Simulation results for scenario 0, 1, 2, 3 under utility 1. Boxplot of
population average of expectation of Utility for 1,000 simulation trials.
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better than other methods. In scenario 3, when covariates are correlated, the Gaus-

sian process methods (M11, M10) outperform the other methods. In scenario 4 and 5,

with the increased number of noise covariates, the ARD feature of the Gaussian pro-

cess and the horse-shoe priors help in model building and methods M12 and M13 have

better performance than others, especially in scenario 5 when random forest (M2-M9)

shows no improvement of utility function. In scenario 6, with the larger sample size,

the magnitude of the improvement increases, and Gaussian process methods (M10,

M11) still perform better than others. In scenario 7 when the covariates are all bi-

nary, to our surprise, the random forest methods (M2-M9) all have poor performance,

while Gaussian process methods (M10, M11) still improve the utility function rela-

tive to fixed dosing (M12). In scenario 8, 9, 10, when the marginal models have

covariate interactions or are mis-specified, all the methods have smaller magnitude

of improvement, but the Gaussian process methods (M11, M10) still perform better

than random forest methods (M2-M9), showing their robustness. Across all those

scenarios, the copula makes no difference compared to assuming independence (M2

vs M3, M4 vs M5). Including the monotonicity in random forest leads to a small

improvement in the mean utility function (M4 vs M2). However, adding monotonic-

ity in categorical random forest afterwards does not help, as seen by comparing M9

vs M10. As shown in Figure 4.2, the optimal dose distribution of Gaussian process

which maximizes posterior mean of utility function (M11) is most similar to the true

model (M1), and also has the highest percent improvement in utility. Using Gaussian

process modeling and selecting dose to maximize the posterior probability of higher

utility than associated with fixed dosing (M10), tends to put a lot of patients near

the fixed dose, but still improves the mean utility function compared to fixed dose.
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Table 4.7: Comparison of percentage of utility function improvement under all scenarios with utility 1
True RF monotone RF RF & PAVA GP FD

Scenarios M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

S1 1 0.278 0.27 0.3 0.286 0.053 0.17 0.32 0.308 0.484 0.595 0

S2 1 0.155 0.162 0.247 0.251 0.324 0.123 0.163 0.151 0.247 0.471 0

S3 1 0.144 0.142 0.169 0.164 -0.003 0.152 0.175 0.161 0.35 0.464 0

S4 1 0.177 0.172 0.178 0.172 -0.019 0.097 0.22 0.213 0.451 0.536 0

S5 1 0.014 0.014 0.017 0.016 -0.114 0.008 -0.001 -0.004 0.308 0.29 0

S6 1 0.385 0.376 0.417 0.4 0.105 0.255 0.42 0.412 0.55 0.654 0

S7 1 -0.284 -0.28 -0.017 -0.028 -0.685 0.064 -0.405 -0.259 0.171 0.165 0

S8 1 0.215 0.212 0.242 0.235 0.101 0.155 0.223 0.212 0.411 0.525 0

S9 1 0.062 0.057 0.067 0.058 -0.547 0.103 0.185 0.194 0.268 0.437 0

S10 1 0.04 0.038 0.083 0.079 -0.429 0.134 0.102 0.107 0.259 0.384 0

78



4.5.3 Parametric vs non-parametric models

In the above simulation, we compare different non-parametric methods and their

performance in optimal dose selection. In this section, we compare some of them with

parametric models such as logistic regression (M13), LASSO (M14) and constrained

LASSO (CLASSO, M15) proposed by Li.et al. All the parametric models are built on

dose d, covariates x, and dose-covariate interactions dx for the marginals and we use

copula to link them. The results are shown in Table 4.8. When the parametric models

are correctly specified, they are more efficient and do better than the non-parametric

models, as shown by S1, S4 and S7.

Furthermore, we evaluated more mis-specified scenarios when the complexity of

the true model increases. The true efficacy and toxicity models can have more in-

teractions such as covariate interactions xx and dose-covariate-covariate interactions

dxx. The dose effect is g(d) where g(.) is a non-linear function. The efficacy model

has log(d+ 1) instead of d, so the efficacy increases faster at lower doses and tends to

level off. Similarly, the toxicity model has exp(d) instead of d, so the toxicity increases

faster at high doses. In the limited mis-specified scenarios with detailed description

in Table C1, the non-parametric models are comparable to and even outperform the

parametric models as shown by S8, MS1-4.

The parametric models assume a finite set of parameters to estimate, the com-

plexity of the model is bounded even if the amount of data is unbounded. On the

contrary, the non-parametric models can be viewed as having an infinite dimension

of parameters, and the amount of information that the parameters can capture about

the data can grow as the amount of data grows, which is more flexible.
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Table 4.8: Comparison of percentage of utility function improvement under selected scenarios with utility 1 for selected non-
parametric and parametric methods

True RF GP FD Parametric

Scenarios M1 M2 M4 M8 M10 M11 M12 M13 M14 M15

S1 1 0.278 0.3 0.32 0.484 0.595 0 0.759 0.804 0.846

S4: 15 noise x added to data 1 0.177 0.178 0.22 0.451 0.536 0 -0.140 0.679 0.705

S7: binary covariates x 1 -0.284 -0.017 -0.405 0.171 0.165 0 0.49 0.663 0.657

S8: The true models have x, xx, d, dx 1 0.215 0.242 0.223 0.411 0.525 0 0.627 0.642 0.689

MS1: The true models have x, xx, d, dx, dxx 1 0.063 0.110 0.078 0.071 0.241 0 0.210 0.253 0.281

MS2: The true models have x, g(d), g(d)x 1 0.302 0.327 0.282 0.227 0.532 0 0.279 0.331 0.417

MS3: The true models have x, g(d), g(d)x, g(d)xx 1 0.198 0.225 0.198 0.095 0.325 0 0.219 0.285 0.303

MS4: The true models have x, xx, g(d), g(d)x, g(d)xx 1 0.084 0.152 0.095 0.086 0.257 0 0.016 0.107 0.114
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4.6 Application

In this section, we applied the proposed methods to a dataset of patients diagnosed

with non-small cell lung cancer and were treated with radiation treatment. Patients

with follow-up less than 1 year were excluded, leaving 109 patients in the dataset to

be analyzed. Our primary measure of efficacy is lack of disease progression (including

local, regional and distant progression). Of the 109 patients, 50 patients were free

from progression at 2 years, and were considered as E = 1. Our binary toxicity

measure is the occurrence of grade 2 or greater lung toxicity (pneumonitis). Of the

109 patients, 32 experienced this toxicity. There were 20 patients who had both

efficacy and toxicity observed. The baseline clinical features we considered were age,

current smoker status, Karnofsky Performance Status(KPS), T stage and N stage of

the cancer, as shown in the Table 4.9. Patients in this study received tumor doses

ranging from 45 to 96 Gy, partially due to the clinical trial on which they were enrolled

and varying preferences of clinicians, as well as patient factors such as cancer stage,

tumor location and performance status. In Radiation Oncology, the dose to the tumor

site (most relevant dose for predicting efficacy) is different from the dose received by

the normal lung tissue (most relevant for predicting lung toxicity). The ratio of these

two dose values can be assumed to be constant for each patient but varies between

patients due to tumor volume and location within the lung. We apply our methods

to estimate the optimal tumor dose and calculate the implied normal lung dose for

each patient using this fixed ratio.

For the utility matrix, we chose ω1 = 0.4 and ω2 = 0.7, considering an outcome

of both efficacy and toxicity (E = 1, T = 1) as more favorable than an outcome of

neither toxicity nor efficacy (E = 0, T = 0). For the random forest on the marginal

distributions, we include tumor dose and clinical features in the efficacy model, and

lung dose and clinical features in the toxicity model. For the random forest on cate-

gorical outcomes and Gaussian process, we include tumor dose and the ratio of lung

81



Table 4.9: Descriptive statistics of patients (n=109)

Variable Mean Range

Age (Years) 65.6 39.6 - 85.2

KPS 86 60 -100

Tumor dose (Gy) 71.6 45.7 - 96.1

Lung dose (Gy) 14.6 3.2 - 26.1

Variable Category Percentage

Smoking Current 47

Never or former 53

T stage 1 18

2 23

3 29

4 30

N stage 0 22

1 13

2 44

3 21

dose to tumor dose as well as clinical features. For the fixed dosing method, we build

a multinomial logistic regression model on tumor dose and the ratio of lung dose to

tumor dose.

The dose only model (M12) selects the highest dose as the best fixed dose (for

all the patients), while other methods select individualized optimal dose for each

patient, as shown in Fig 4.4. There is not much difference between the independence

assumption or using the copula to link the two marginals, as shown by M2 vs M3 and

M4 vs M5. Adding the individual level toxicity penalty (M6) lowers the recommended

doses. Methods M7 with dose penalty tend to favor the estimated best fixed dose

(M12) and recommend the highest dose for the majority of the patients. Use of

the PAVA monotonicity algorithm on predictions from the random forest on the 4-

category outcomes has some impact on the selected optimal dose (e.g. see medians

for M8 vs M9). The Gaussian process methods recommend a wide range of doses to

different patients, as shown by M10 and M11.
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Figure 4.4: Boxplot of optimal doses by different methods for the 109 patients

To illustrate how the proposed utility calculations work we plot in Fig 4.5 the

estimated probabilities of efficacy and toxicity and the corresponding utility functions

versus dose for 3 selected patients. In the top row (a) we show the predictions from

random forest models for efficacy and toxicity with copula to link them (M2), and the

bottom plots (b) show the random forest models for efficacy and toxicity constrained

to be monotone in dose and linked with copula (M4). Without forcing monotonicity,

each of these 3 patients have regions of dose where as dose increases, the estimated

probability of efficacy decreases, which is not plausible. Imposing monotonicity results

in believable estimates and also smooths the dose-efficacy curves somewhat. The

bottom panel (b) of the figure shows optimal doses for methods M4, M6, M7 which

all utilize the same random forest models but differ in how they define optimal dose

from these models. For patients 1 and 2, imposing monotonicity on the dose efficacy

curve, results in a larger optimal dose. Patient 3 represents a patient with high

baseline risk of toxicity exceeding what would typically be expected from dose only

toxicity models. Because the probability of toxicity is higher than 0.3 even at the
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lowest dose, method M6 with the individual toxicity penalty recommends the minimal

dose. A higher dose is recommended from methods M4 and M7 however, as efficacy

increases while toxicity plateaus. Plots showing other methods including M8, M9,

M10, M11 on those three patients are included in the Appendix Fig. C3. The

random forest for the categorical outcome results in non-monotone dose-efficacy and

dose-toxicity relationship, and the PAVA which adjust the curves results in a plateau.

The Gaussian process have smoother curves for dose-efficacy and dose-toxicity, with

the limited sample size, the credible interval of the estimates is wide, as shown by the

shadow around the posterior mean of utility.

The random forest method discretizes continuous variables and the curves are not

as smooth as standard regression models, however in contrast to a parametric model,

they can approximate any arbitrary shaped smooth function with sufficient data and

number of splits.
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Figure 4.5: Optimal dose selected by different methods for three patients. Dose-efficacy and dose-toxicity curves are denoted
by solid lines, expectation of utility values by different methods are denoted by dashed lines, optimal dose selected
by different methods are denoted by points.
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4.7 Discussion

In this paper, we propose to use flexible machine learning methods such as ran-

dom forest and Gaussian process to build models for efficacy and toxicity depending

on the dose and biomarkers. Copula is used to model the joint distribution of the

two outcomes and the non-decreasing dose-efficacy and dose-toxicity relationship is

constrained in the model building. A utility matrix with numerical utilities assigned

to all patient outcome pairs allows the improvement in the utility due to a change

in efficacy to depend on the level of toxicity. For each patient, the optimal dose is

chosen to maximize the utility function or the posterior mean of the utility function.

We further adjust the utility function with more constraints to incorporate clinical

requirements, and consider the uncertainty in the estimation of the utility function

by maximizing the posterior probability of utility function improvement.

In practice, the utility matrix can be pre-specified by clinicians, and evaluated

by using simulations. The simulation may motivate the modification of utility values

ω1 and ω2 in discussion with clinicians. Methods to obtain consensus utilities by

summarizing questionnaires from a group of clinicians can also be used, such as the

Delphi method [3]. Patient’s preference and tolerance of the efficacy and toxicity

outcomes can also be considered, which could help to build an individualized utility

matrix. It is also possible to add more penalties to the utility function to take into

consideration the financial cost of the treatment, which could depend on dose.

The expectation of the utility matrix Ū(p(d, x),ω) has been used to select the

optimal dose for each patient. Given the observed data DN , frequentist estimation

of p̂(d, x) can be plugged into the utility function for optimization. Alternatively,

Bayesian estimation will give the posterior distribution of p(d, x). The posterior mean

of Ū(p(d, x),ω), which is the average of utility function over the posterior distribution,

is used as the common Bayesian approach for optimal dose selection. However, the

posterior mean of the utility function ignores the variance of the posterior distribution,
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which reflects the uncertainty of the estimation. In this paper, we also propose to

maximize the posterior probability that the utility function is higher than the utility

function at a fixed dose. It is possible that the posterior mean of the utility function

increases slightly with dose, but also has a larger variance, so there is not much

improvement of the posterior probability of an improvement in the utility function.

The posterior probability represents how confident we are about the improvement of

the utility function, which can help clinicians in decision making. In the simulations,

it is shown that using the posterior probability can help to avoid assigning extreme

doses to patients, and shrink the individual optimal dose towards the population fixed

dose.

Non-parametric methods such as random forest and Gaussian process provide

flexible ways to model the outcome with all types of covariates. Some other tree

based methods could also considered, such as BART [7] and gradient boosting trees

[6]. Using Bayesian estimation, Gaussian process and BART are smoother and more

accurate in prediction in terms of AUC and RMSE [25] compared to random forest

and gradient boosting. In addition with the posterior distribution, they can provide

uncertainty of the prediction and 95% credible intervals of estimation. The nature of

the tree structure in random forest, BART and gradient boosting trees means these

methods should be well suited to handle the interaction of dose and covariates. On

the other hand, Gaussian process uses a Kernel function to describe the relationship

across dose and covariates and should work better with continuous variables such as

dose. To accommodate the non-decreasing dose-efficacy and dose-toxicity relation-

ship, monotonicity is needed with respect to dose for all the values of x, that is for

all patients, in the model. Monotonicity on a single covariate can be imposed by

using virtual points in the Gaussian process approach [39], or as a splitting criteria

in random forest and gradient boosting trees. But for BART, in current versions

of the method, the monotonicity will be applied on all covariates [8], which is not
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appropriate for this situation.

In general how to choose prior distributions is a big issue in Bayesian estimation.

For the Gaussian process method, especially with a large number of covariates, we

need to select an appropriate prior for ρ, the weight for each covariate in the kernel

function. A Laplace prior, which is a Bayesian version of robust Lasso regression, did

not perform well in our simulation study when we had a large number of covariates

and sparsity. The spike-and-slab prior is appealing as it puts a substantial point-mass

on zero, but can be computationally intensive with a large number of covariates. The

horseshoe prior has been shown to have comparable performance to the spike-and-

slab prior and is more computationally efficient because of its global parameter and

local scales [4]. We adopted the horseshoe prior in our simulations and found it had

good performance, even with a low number of covariates.

Nonparametric machine learning methods are flexible and they only make weak

assumptions about the underlying functional form. But they generally require a large

sample size to estimate the functions and may suffer from overfitting. Thus the sample

size as well as the number of covariates and the expected complexity of the function

should play a role in determining which method is appropriate in any setting. With

smaller sample size, parametric machine learning methods such as neural networks

can be considered as a powerful tool, or classical methods such as logistic regression

could be appropriate.

The outcomes for defining the utility may be more complex than the binary ones

for E and T considered in this paper. Utility values can be assigned to ordinal

categorical efficacy and toxicity outcomes and the 2x2 utility matrix can be expanded.

Survival outcomes can also be broken down into time intervals and these used to assess

the trade-offs between quality and quantity of life, as in quality adjusted survival

analysis [14].
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CHAPTER V

Discussion

The goal in personalized medicine is to select individualized optimal treatment to

improve the health outcome for each patient based on their characteristics such as

biomarkers. In this dissertation, we consider the statistical challenges in personalized

medicine and propose new methods to build and evaluate models for individualized

treatment in oncology. The questions we are trying to answer include what is the

structure of the model and which input feature or biomarker to include in the model.

When the model is built, we need to evaluate how good the model is and whether it

gives good predictions. How these predictions can be used to decide a treatment is

the final step for individualized optimal dose finding.

In Chapter II, we demonstrate how to evaluate an existing model on a dataset

with missing covariates. MI and IPW can be used to get unbiased BS and AUC if

the imputation model or weight model is correctly specified. AIPW can improve the

efficiency of IPW, and is double robust from mis-specification of the weight model or

the imputing model. In the argument whether to include the outcome variable Y in

models that handle the missing covariate, we find out Y should be included in the

multiple imputation even if missingness does not depend on Y . On the other hand, if

IPW or AIPW methods are used and missingness does not depend on Y , then it does

not appear to be necessary to include Y in either the weight model or the missing
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variable model. The approaches to handle missing data can result in fairly large

variation in model performance estimates, as demonstrated by the prostate cancer

data.

For the individualized treatment, we consider the setting with binary efficacy and

toxicity outcomes, and the treatment consists of giving the dose of a therapy, where

the dose can be any continuous value within a pre-specified range. The next two

chapters focus on how to find the optimal dose for each patient using clinical features

and biomarkers.

In Chapter III, we propose the constrained LASSO method to model the bi-

nary efficacy and toxicity outcomes using logistic link with dose, biomarkers and

dose-biomarker interactions. The l1 penalty of LASSO can help to select important

biomarkers from the large number of potential clinical features. The constraint of the

derivative of the model with respect to dose to be non-negative is used to maintain

the non-decreasing dose-efficacy and dose-toxicity relationship. To maximize the rate

of efficacy while limiting the rate of toxicity, we propose an optimal individualized

dose finding rule by maximizing utility functions for individual patients, which is de-

fined as a weighted combination of efficacy and toxicity probabilities. This approach

can improve efficacy without increasing toxicity compared to the one dose for all

approach.

In Chapter IV, we relax the assumption of independence of efficacy and toxicity

in model building and use copula to model their joint distribution. The correlation

of efficacy and toxicity might change the expectation of the utility, but has not much

impact on the individualized optimal dose selection. Instead of parametric models as

in Chapter III, we use flexible machine learning methods, which is becoming a trend

in statistical analysis. The non-parametric approaches such as random forest and

kernel machines such as Gaussian process can avoid model misspecification and be

more robust. Monotonicity features can also be implemented in random forest and
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Gaussian process to constrain the dose effect to be non-decreasing. The comparison of

these methods to parametric models in this study reveals the pros and cons of them.

In the optimal dose selection, we adjust the utility function with more constraints

to meet the clinical requirement. The individual toxicity penalty helps to avoid

unfavorable toxicity outcomes, and the dose penalty helps to avoid extreme doses

assigned to patients. With the Bayesian estimation of Gaussian process, we also

incorporate the uncertainty of estimation in the dose selection, which help to improve

the utility function and also avoid extreme doses.

In Chapter III and IV, the outcomes we consider are binary efficacy and tox-

icity outcomes. In the lung data analysis, no progression in 2 years is treated as

efficacy E = 1. Some patients with short follow-up and no progression observed

were excluded from analysis because of this transformation of survival outcome to

binary outcome. One point of future consideration is to extend the current meth-

ods to survival outcome. Parametric models such as Weibull model, semi-parametric

models such as Cox proportional hazards model and non-parametric models such as

survival random forest can be used to build models for progression conditional on

dose and covariates. Copula can be used to link the survival model to other models

to implement the joint distribution of efficacy and toxicity. To combine efficacy and

toxicity in individualized optimal dose selection, the predicted progression free sur-

vival probability at a pre-specified time point can be plugged into the utility function.

Alternatively, quality-adjusted survival can be used as a measure that captures the

trade-offs between length and quality of life [14].

The current study focus on the dose assignment at the beginning of the study using

the patient’s baseline information. In a lot of medical practice, multiple treatments

will be given sequentially rather than a single treatment. Whether to repeat a treat-

ment that has obtained a favorable response or to modify it if the current response

is unfavorable is a decision that has to be made. The choice of the next treatment is
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often guided by updated data on the patients disease status and covariates, which are

highly related to the previous treatment. Dynamic Treatment Regimes (DTR) have

been proposed in the sequentially multiple assignment randomized trials (SMARTs)

[48]. How to extend the proposed methods to the multiple-stage DTR is worth further

investigation.
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APPENDIX A

Appendices for Chapter II

A.1 Differences between optimizing the likelihood, the AUC

and the Brier Score

Brier score measures the mean squared difference between the predicted proba-

bility and the actual outcome of an event across all subjects. The lower the Brier

score is for a set of predictions, the better the predictions are calibrated. When we

evaluate an existing model such as a logistic model on the internal dataset, the Brier

score will be minimized when the external model is the same as internal model, i.e,

FE(Y |X) = FI(Y |X).

Proof. Assume the FI(Y |X) as expit(αX) and FE(Y |X) as expit(βX).

Brier score

=
∑

Y

∫
x
(Y − p̂)2FI(Y |X)FI(X)dX

=
∑

Y

∫
X

(Y − 1
1+exp(−βX)

)2( 1
1+exp(−αX)

)Y ( exp(−αX)
1+exp(−αX)

)(1−Y )FI(X)dX

=
∫
X

[
( exp(−βX)
1+exp(−βX)

)2 1
1+exp(−αX)

+ ( 1
1+exp(−βX)

)2 exp(−αX)
1+exp(−αX)

]
FI(X)dX
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=
∫
X

exp(−αX)+exp(−βX)2

(1+exp(−βX))2(1+exp(−αX))
FI(X)dX

If for any X, exp(−αX)+exp(−βX)2

(1+exp(−βX))2(1+exp(−αX))
is minimized, then the integral over X will

be minimized.

let A = exp(−αX), B = exp(−βX), then the function can be written as

A+B2

(1 +B)2(1 + A)

Take derivative w.r.t B, we get:

2B(1 +B)2(1 + A)− (A+B2)2(1 +B)(1 + A)

(1 +B)4(1 + A)2
=

2(B − A)

(1 +B)3(1 + A)

When B < A, the function will decrease, When B > A, the function will increase.

Thus it will be minimized at B = A, i.e, when FE(Y |X) = FI(Y |X).

AUC, which measures the area under the ROC Curve, indicates how well the

predicted probabilities for the cases are separated from the controls. The question is

under logistic models will the AUC be maximized when the external model is same

as the internal model, i.e. FE(Y |X) = FI(Y |X)? The answer is it depends. The co-

efficients in the logistic regression model are not chosen to maximize the AUC, rather

the coefficients are chosen to maximize the likelihood. In practice, these two sets of

coefficients will frequently, but not always, be quite similar. However, if complete

discrimination is possible, the maximum likelihood logistic regression coefficients will

estimate the coefficients which separate the population [10, 37].
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A.2 Consistency of IPW and AIPW estimators for Brier

score

Considering the Brier score using the IPW method. Let

Ui(θ, γ1) = θRiWi − (Yi − p̂i)2RiWi,

where Wi depend on weight model with parameters γ1.

Let UN(θ, γ1) = N−1
N∑
i=1

Ui(θ, γ1), and it is straight forward that BSIPW is the

solution of UN(θ, γ1) = 0. Let UE = E(UN) = E(Ui(θ, γ1)).

Let γ∗1 be the probability limits of γ1 using the weight model Pr(R = 1|Xobs, Y ; γ1)

. When the weight model is correctly specified, Pr(R = 1|Xobs, Y ; γ∗1) = Pr(R =

1|Xobs, Y ), then E(RiWi) = 1, and it is clear that UE(θ, γ1) = 0. Because UN(θ, γ1)

converges uniformly to UE(θ, γ1), BSIPW is a consistent estimator.

The proof is similar for AIPW estimator. We first demonstrate consistency for a

slightly modified estimator, which we call BSAIPW∗ with

BSAIPW∗ =
1

N

N∑
i=1

(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1−RiWi)

Let

Vi(θ, γ1, γ2) = θ −
{

(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1−RiWi)
}
,

where Wi depend on weight model with parameters γ1 and E[(Yi − p̂i)2] depend on

the model for missing covariates with parameters γ2.

Let VN(θ, γ1, γ2) = N−1
N∑
i=1

Vi(θ, γ1, γ2), then it is straightforward to see that

BSAIPW∗ is the solution of VN(θ, γ1, γ2) = 0. Let VE = E(VN) = E(Vi(θ, γ1, γ2)). It

is easy to see that VN(θ, γ1, γ2) converges uniformly to VE(θ, γ1, γ2), thus the solution
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to VN(θ, γ1, γ2) = 0 converges to the solution of VE(θ, γ1, γ2) = 0.

Let γ∗1 be the probability limits of γ1 using the weight model Pr(R = 1|Xobs, Y ; γ1)

. When the weight model is correctly specified, Pr(R = 1|Xobs, Y ; γ∗1) = Pr(R =

1|Xobs, Y ), then E(RiWi) = 1.

Let γ∗2 be the probability limits of γ2 using the model for the missing covariates

F (Xmis|Xobs, Y ; γ2). When the model is correctly specified, i.e., F (Xmis|Xobs, Y ; γ∗2) =

F (Xmis|Xobs, Y ), then E{E[(Yi − p̂i)2]− (Yi − p̂i)2} = 0.

When either working model is correctly specified, it is clear that VE(θ, γ1, γ2) = 0,

and that the θ that solves VE(θ, γ1, γ2) = 0 is the true BS. Because VN converges

uniformly to VE, BSAIPW∗ is a consistent estimator.

For the actual estimator BSAIPW described in section 2.4 instead of calculating

E[(Yi − p̂i)2] where the expectation is over the distribution F (Xmis|Xobs, Y ; γ∗2), we

propose to use (Yi − p̂i∗)2 as an approximation.

A.3 Additional simulation results for correlated covariates

A.4 Implementing AIPW and IPW estimators when more

than one variable has missing values

We propose the IPW and AIPW estimates of AUC and BS for single covariate

missing in the main text and extend it here to more than one variable with missing-

ness. We discuss how to build weight models and models for the missing covariates

under different missing patterns.

First, we consider the block missing of covariates. Without loss of generality,

consider the model with outcome Y and covariates X1, X2, X3, and both X2, X3 are

missing in some subjects. Let R2 indicate X2 is observed and R3 indicate X3 is

observed, then Pr(R = 1) = Pr(R2 = 1, R3 = 1). The weight model can be built

by Pr(R = 1|X1, Y ) or Pr(R = 1|X1), using the fully observed covariates with the
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Figure A1: Simulation results of mean and relative SD of AUC for existing model M1:
cor(X1, X3) = −0.5. Column A denotes mean AUC. Column B denotes
SD relative to full data analysis. The four rows are different missingness
mechanisms.

outcome or not. The models to impute X∗2 and X∗3 can be built separately, with

F (X2|X1, Y ), F (X3|X1, Y ) or F (X2|X1),F (X3|X1) from the data of subjects with

R = 1, and then obtain the predictions of X∗2 and X∗3 for all the subjects.

Next we look at a scattered pattern of missingness in the covariates. Use the

same notation above with X1 fully observed and X2, X3 are missing in some subjects.

The weight model can be built by Pr(R = 1|X1, Y ) which indicate the complete

cases without any missing, but may not capture the missingness for each covariate.

Alternatively we can assume that the missingness of X2 and X3 are independent, then

Pr(R = 1) = Pr(R2 = 1)Pr(R3 = 1). The weight models for R2 and R3 can be built

separately by Pr(R2 = 1|X1, Y ), Pr(R3 = 1|X1, Y ) or Pr(R2 = 1|X1), Pr(R3 = 1|X1),

using the fully observed covariates with the outcome or not. The models to impute

X∗2 and X∗3 can be built separately as in block missingness.
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Figure A2: Simulation results of mean and relative SD of BS for existing model M1:
cor(X1, X3) = −0.5. Column A denotes mean BS. Column B denotes
SD relative to full data analysis. The four rows are different missingness
mechanisms.

For the monotone missingness, X1 is fully observed and both X2, X3 are missing

in some subjects. For those with X2 observed, X3 is missing in some subjects too,

with the probability of missing X3 can depend on the value of X2 under the MAR

scenario. Now Pr(R = 1) = Pr(R3 = 1|R2 = 1)Pr(R2 = 1) and we can build the

model for R2 using all the subjects and the model for R3 using the subjects with

X2 observed. The models to impute X∗2 and X∗3 can be built separately as in block

missing using the fully observed covariate X1 with the outcome or not. Alternatively,

the model to impute X∗2 can be built with F (X2|X1, Y ) or F (X2|X1) from subjects

with R2 = 1 and get the predictions of X∗2 for all the subjects. Then the model to

impute X∗3 can be built with F (X3|X1, X2, Y ) or F (X2|X1, X2) from subjects with

R3 = 1 and get the predictions of X∗3 using X∗2 as the predictor covariate for all the

subjects.
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A.5 Simulation results when more than one variable has miss-

ing values

We consider the same model with true coefficients in M1 and the covariates are

independent. For block missing, similar as the single covariate missing, we consider

the MCAR: block missing of X2, X3 has probability of 0.4; MAR (X1): block missing

of X2, X3 depends on the value of fully observed covariate X1; MAR (X1, Y ): block

missing of X2, X3 depends on the value of X1, Y ; MNAR: block missing of X2, X3

depends on the value of X2, X3. Fig A3 shows the simulation results after 1000

iterations for AUC, and the results are similar to Fig 2.1 for the single covariate

missing situation.
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Figure A3: Simulation results of mean and relative SD of AUC for existing model
with block missing of more covariates. Column A denotes mean AUC.
Column B denotes SD relative to full data analysis. The four rows are
different missingness mechanisms.

For scattered missingness, we assume the missing of X2 and X3 are condition-

ally independent. For MCAR: missing of X2 has probability of 0.4 and missing of
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X3 has probability of 0.2; MAR (X1): missing of X2 depends on the value of fully

observed covariate X1 and missing of X3 depends on X1 too with a different prob-

ability; MAR (X1, Y ): missing of X2 and X3 depends on the value of X1, Y with

different probabilities; MNAR: missing of X2 depends on the value of X2 and missing

of X3 depends on the value of X3. As shown in Fig A4, under MCAR, MAR(X)

and MAR(X,Y), the IPW and AIPW methods can get unbiased estimates when the

models for Pr(R2 = 1),Pr(R3 = 1) or the model to calculate X∗2 , X
∗
3 are correctly

specified. But the variance are much higher in comparison to MI methods, especially

for AIPW under MAR(X,Y).
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Figure A4: Simulation results of mean and relative SD of AUC for existing model
with scatter missing of more covariates. Column A denotes mean AUC.
Column B denotes SD relative to full data analysis. The four rows are
different missingness mechanisms.

For monotone missing, we assume the subjects with missing in X2 have missing

in X3 and some subjects with X2 observed have missing in X3 too. For MCAR:

missing of X2 has probability of 0.4 and for those with X2 observed, missing of
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X3 has probability of 0.5; MAR (X1): missing of X2 depends on the value of fully

observed covariate X1, and for those with X2 observed, missing of X3 depends on X1

and X2; MAR (X1, Y ): missing of X2 depends on the value of X1 and Y , and for

those with X2 observed, missing of X3 depends on X1, X2 and Y ; MNAR: missing

of X2 depends on the value of X2, and for those with X2 observed, missing of X3

depends on the value of X3. We compared different choices for the models to obtain

X∗3 , either it includes X2 or independent of X2, and we saw no difference of the

simulation results. In further simulations we saw that using X∗2 to predict X∗3 does

not help when X2, X3 are correlated. As shown in Fig A5, under MCAR, MAR(X)

and MAR(X,Y), the IPW and AIPW methods can get unbiased estimates when the

weight model of Pr(R2 = 1),Pr(R3 = 1|R2 = 1) or the model to calculate X∗2 , X
∗
3 are

correctly specified. The AIPW methods are more efficient than IPW methods.

A

0.
6

0.
7

0.
8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
C

A
R

B

0
2

4
6

8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

0.
6

0.
7

0.
8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
A

R
(X

)

0
2

4
6

8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

0.
6

0.
7

0.
8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
A

R
(X

,Y
)

0
2

4
6

8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

0.
6

0.
7

0.
8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

M
N

A
R

0
2

4
6

8

True target Full CC IPW1 IPW2 MI1 MI2 AIPW1 AIPW2 AIPW3 AIPW4

Figure A5: Simulation results of mean and relative SD of AUC for existing model
with monotone missing of more covariates. Column A denotes mean AUC.
Column B denotes SD relative to full data analysis. The four rows are
different missingness mechanisms.
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In conclusion, the extension of the IPW and AIPW methods to multiple covariates

missing is feasible and have good performance under block missing and monotone

missing.
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APPENDIX B

Appendices for Chapter III

B.1 The minimizer to problem (3.4) always satisfies β+
j β
−
j = 0

for j = 1, ..., 2p+ 1

Proof. Proof by contradiction: Consider the minimizer of (3.4) β = β+−β−. Without

loss of generality, assume we have β+
1 > 0, β−1 > 0. Consider another representation

of the same β = β̃+ − β̃−.

β̃+
1 = β+

1 −min(β+
1 , β

−
1 ), β̃−1 = β−1 −min(β+

1 , β
−
1 )

β̃+
j = β+

j , β̃
−
j = β−j for j = 2, ..., 2p+ 1

Obviously, (β̃+, β̃−) satisfies the constraints of problem (3.4), and β̃+
1 + β̃−1 <

β+
1 + β−1 , β̃

+
1 − β̃−1 = β+

1 − β−1 .

Then the objective function (3.4) can be bounded as

L(β+, β−)

= −
∑n

i=1

{
yi(β0 +Xi(β

+ − β−))− log(1 + eβ0+Xi(β
+−β−))

}
+ λ

∑2p+1
j=1 (β+ + β−)

= −
∑n

i=1

{
yi(β0 +Xi(β̃+ − β̃−))− log(1 + eβ0+Xi(β̃+−β̃−))

}
+ λ

∑2p+1
j=1 (β+ + β−)

> −
∑n

i=1

{
yi(β0 +Xi(β̃+ − β̃−))− log(1 + eβ0+Xi(β̃+−β̃−))

}
+ λ

∑2p+1
j=1 (β̃+ + β̃−)

= L(β̃+, β̃−).
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This contradicts with the assumption that (β+, β−) is the minimizer of (3.4).
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B.2 Additional simulation results

Table B1: Simulation results for two toxicities. Summary of average Efficacy improvement compared with fixed dose with

P(Toxicity1) constrained to be ≤ 0.2 and P(Toxicity2) constrained to be ≤ 0.23. Results from 1000 simulated trials. Each

scenario true logistic models for E, T1 and T2 include main effect for the biomarkers, dose and biomarker-dose interactions,

with coefficients as shown below.

Scenarios
Efficacy and Toxicity model coefficients

FS LASSO cLASSO
Possible cLASSO >

Biomarker Dose Interactions Improvement LASSO

A0

E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.581 0.549 0.606 0.121 66.3%T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A1
E 1 0 0 0 0 1 0 0 0 0 0

0.682 0.781 0.800 0.036 50.2%
T1 -1 0 0 0 0 1 0 0 0 0 0

T2 -1 0 0 0 0 1 0 0 0 0 0

A2

E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.639 0.627 0.695 0.114 67.2%T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A3

E 1 0 0 0 0 1 .4 .4 .4 -.8 0

0.454 0.471 0.510 0.121 59.3%T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A0?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.659 0.661 0.705 0.111 62.3%
T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5
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Table B1 Continued:

Scenarios
Efficacy and Toxicity model coefficients

FS LASSO cLASSO
Possible cLASSO >

Biomarker Dose Interactions Improvement LASSO

A1?
E 1 .2 .3 .1 0 1 0 0 0 0 0

0.575 0.677 0.700 0.039 50.9%
T1 -1 -.2 -.3 -.1 0 1 0 0 0 0 0

T2 -1 0 0 0 0 1 0 0 0 0 0

A2?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.702 0.667 0.731 0.125 55.1%
T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A3?
E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0

0.622 0.593 0.658 0.115 60.3 %
T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

a. The intercept for Efficacy models is 0, for Toxicity1 models is -1.386, for Toxicity2 models is -1.2

b. Possible Improvement=EFTheory (E)− EFFD (E), the percentage of improvement={EF (E)− EFFD (E)}/{EFTheory (E)− EFFD (E)}.

c. The random walk method of selecting θ was run for 1000 iterations.

d. Scenario A2, A2? have cor(x1, x2, x3) = 0.6.

e. Scenarios A3, A3? have 15 noise covariates with coefficients 0 added.
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APPENDIX C

Appendices for Chapter IV

C.1 Using copulas to link two marginal distributions

The marginal cumulative distribution function for a binary outcome Y , which

could be E or T , is F (0) = Pr(Y ≤ 0|d, x) = 1− p, F (1) = Pr(Y ≤ 1|d, x) = 1, where

p is the probability of Y = 1 given d and x.

The copula approach makes use of the property that (VE, VT ) = (F (E), F (T ))

have uniformly distributed marginals. The copula is defined as

c(vE, vT ) = Pr(VE ≤ vE, VT ≤ vT ) = Pr(E ≤ F−1(vE), T ≤ F−1(vT ))

So for the joint probability given d and x, Pr(E = 0, T = 0|d, x) = Pr(F (E) ≤

F (0), F (T ) ≤ F (0)) = Pr(F (E) ≤ 1− pE, F (T ) ≤ 1− pT ), then

p00(d, x) = Pr(E ≤ F−1(1− pE), T ≤ F−1(1− pT )) = c(1− pE, 1− pT )

p10(d, x) = 1− pT − c(1− pE, 1− pT )

p01(d, x) = 1− pE − c(1− pE, 1− pT )
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and

p11(d, x) = c(1− pE, 1− pT )− pE − pT + 1.

Then for each subject, the outcome (E, T ) is from the multinomial distribution with

probabilities p00, p10, p01, p11 and the loglikelihood is

l = I(E = 0, T = 0)log(p00) + I(E = 1, T = 0)log(p10) + I(E = 0, T = 1)log(p01)

+I(E = 1, T = 1)log(p11).

Different copula functions can be used. For this paper a Gaussian copula is

adopted

c(vE, vT ) = Φ2[Φ
−1(vE),Φ−1(vT )|α],

where α is the correlation parameter of Φ−1(vE) and Φ−1(vT ) [43]. The marginal

probabilities pE, pT can be specified by parametric models and parameters can be

estimated jointly in the loglikelihood together with α. Two step estimation methods

can also be used [21], where in the first step estimates are obtained for the parameters

from the marginal models and are then held fixed in the second step, which consists

of maximizing the likelihood to estimate the association function parameter. Joe

and Xu (1996) showed that with the 2-step estimate for parameters is consistent and

asymptotically normally distributed.

C.2 Additional results
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Figure C1: Simulation results for scenario 4-7 under utility 1. Boxplot of population
average of expectation of Utility for 1,000 simulation trials.
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Figure C2: Simulation results for scenario 8-10 under utility 1. Boxplot of population
average of expectation of Utility for 1,000 simulation trials.
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Table C1: List of scenarios to compare parametric vs non-parametric models
S1 The true E & T models have x, d, dx

S4 S1 with 15 noise covariates x6, ..., x20 added to the data

S7 S1 with binary covariates x

S8
The true models have x, xx, d, dx

Of the 5 covariates, coefficients are non-zero for 4 x, 1 xx, 4 dx

MS1
The true models have x, xx, d, dx, dxx

Of the 5 covariates, coefficients are non-zero for 1 x, 1 xx, 1 dx, 2 dxx

MS2
The true models have x, g(d), g(d)x

Of the 10 covariates, coefficients are non-zero for 10 x, 1 g(d)x

MS3
The true models have x, g(d), g(d)x, g(d)xx

Of the 5 covariates, coefficients are non-zero for 1 x, 1 g(d)x, 2 g(d)xx

MS4
The true models have x, xx, g(d), g(d)x, g(d)xx

Of the 5 covariates, coefficients are non-zero for 1 x, 1 xx, 1 g(d)x, 2 g(d)xx
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Figure C3: Optimal dose selected by different methods for three patients. Dose-efficacy and dose-toxicity curves are denoted
by solid lines, expectation of utility values by different methods are denoted by dashed lines, optimal dose selected
by different methods are denoted by points.

113



BIBLIOGRAPHY

114



BIBLIOGRAPHY

[1] Heejung Bang and James M Robins. Doubly robust estimation in missing data
and causal inference models. Biometrics, 61(4):962–973, 2005.

[2] Jonathan S Brajtbord, Michael S Leapman, and Matthew R Cooperberg. The
capra score at 10 years: contemporary perspectives and analysis of supporting
studies. European urology, 71(5):705–709, 2017.

[3] Robert H Brook, Mark R Chassin, Arlene Fink, David H Solomon, Jacqueline
Kosecoff, and Rolla Edward Park. A method for the detailed assessment of
the appropriateness of medical technologies. International journal of technology
assessment in health care, 2(1):53–63, 1986.

[4] Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity
via the horseshoe. In Artificial Intelligence and Statistics, pages 73–80, 2009.

[5] Guanhua Chen, Donglin Zeng, and Michael R Kosorok. Personalized dose finding
using outcome weighted learning. Journal of the American Statistical Associa-
tion, 111(516):1509–1521, 2016.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016.

[7] Hugh A Chipman, Edward I George, Robert E McCulloch, et al. Bart: Bayesian
additive regression trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

[8] Hugh A Chipman, Edward I George, Robert E McCulloch, and Thomas S Shiv-
ely. High-dimensional nonparametric monotone function estimation using bart.
arXiv preprint arXiv:1612.01619, 2016.

[9] Matthew R Cooperberg, David J Pasta, Eric P Elkin, Mark S Litwin, David M
Latini, Janeen Du Chane, and Peter R Carroll. The university of california,
san francisco cancer of the prostate risk assessment score: a straightforward and
reliable preoperative predictor of disease recurrence after radical prostatectomy.
The Journal of urology, 173(6):1938–1942, 2005.

[10] Nicholas E Day and David F Kerridge. A general maximum likelihood discrimi-
nant. Biometrics, pages 313–323, 1967.

115



[11] FDA. Considerations for the design of early-phase clinical trials of cellular and
gene therapy products. Draft guidance for industry. Rockville, MD: Center for
Biologics Evaluation and Research, FDA, 2013.

[12] Jared C Foster, Jeremy MG Taylor, and Stephen J Ruberg. Subgroup identifica-
tion from randomized clinical trial data. Statistics in medicine, 30(24):2867–2880,
2011.

[13] Brian R Gaines and Hua Zhou. Algorithms for fitting the constrained lasso.
arXiv preprint arXiv:1611.01511, 2016.

[14] PP Glasziou, RJ Simes, and RD Gelber. Quality adjusted survival analysis.
Statistics in medicine, 9(11):1259–1276, 1990.

[15] Beibei Guo and Ying Yuan. Bayesian phase i/ii biomarker-based dose finding for
precision medicine with molecularly targeted agents. Journal of the American
Statistical Association, 112(518):508–520, 2017.

[16] Tianhong He. Lasso and general l1-regularized regression under linear equality
and inequality constraints. 2011.

[17] Leroy Hood and Stephen H Friend. Predictive, personalized, preventive, partic-
ipatory (p4) cancer medicine. Nature reviews Clinical oncology, 8(3):184, 2011.

[18] Jeroen Hoogland, Marit van Barreveld, Thomas PA Debray, Johannes B Re-
itsma, Tom E Verstraelen, Marcel GW Dijkgraaf, and Aeilko H Zwinderman.
Handling missing predictor values when validating and applying a prediction
model to new patients. Statistics in Medicine.

[19] Nadine Houede, Peter F Thall, Hoang Nguyen, Xavier Paoletti, and Andrew
Kramar. Utility-based optimization of combination therapy using ordinal toxicity
and efficacy in phase i/ii trials. Biometrics, 66(2):532–540, 2010.

[20] Kristel JM Janssen, Yvonne Vergouwe, A Rogier T Donders, Frank E Harrell Jr,
Qingxia Chen, Diederick E Grobbee, and Karel GM Moons. Dealing with missing
predictor values when applying clinical prediction models. Clinical chemistry,
55(5):994–1001, 2009.

[21] Harry Joe and James Jianmeng Xu. The estimation method of inference functions
for margins for multivariate models. 1996.

[22] Lynn Kuo and Bani Mallick. Variable selection for regression models. Sankhyā:
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