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Abstract 
 

Genome-wide association studies (GWAS) have successfully identified 

thousands of genetic loci associated with a wide variety of human phenotypic traits. In 

this thesis, we evaluate the bias, precision and power of three statistical techniques 

employed in GWAS. 

In Chapter 2, we assess bias and power for adjusted-trait regression (ATR). ATR 

is a modification to the traditional ordinary least-squares estimation and F-test 

hypothesis testing techniques for quantitative trait multiple linear regression models. 

ATR involves performing bivariate correlation analysis between a genetic variant (or set 

of genetic variants) and a covariate-adjusted trait, obtained by regressing the trait on 

covariates. We show that ATR effect size estimates for single variant analysis are 

biased towards the null by a factor equal to coefficient of determination obtained from 

the regression of genetic variant onto covariates. We derive the exact distributions of 

ATR test statistics and show that ATR is less powerful than traditional methods when 

the genetic variant are correlated with covariates. The loss of power increases as 

stringency of Type 1 error control increases. The maximum possible power loss for the 

ATR multi-variant test is completely characterized by the canonical correlation between 

genetic variants and covariates. We show that, for typical covariates like genetic 

principal components, the loss of power will likely be low in practice. 

In Chapter 3, we assess three genetic imputation quality scores (allelic-RSQ, 

MACH-RSQ and INFO) as predictors for realized imputation quality (squared correlation 



 x 

between true genotypes and imputed dosages) for low-frequency and rare variants. We 

assess the impact of using different imputation algorithms (Beagle 4.2, minimac3 and 

IMPUTE 2) and reference panels (1000 Genomes [1KG] and Haplotype Reference 

Consortium [HRC]) on the relationship between imputation quality scores and realized 

quality. 

We imputed genotypes into 8,378 participants using each imputation algorithm 

with the 1KG panel and minimac3 with the HRC panel. We show that MACH-RSQ and 

INFO are identical when calculated on the same data. We observe that allelic-RSQ 

predicts realized quality less well than MACH-RSQ/INFO for low-frequency and rare 

variants. Realized quality decreases as minor allele frequency (MAF) decreases. The 

mean absolute difference (MAD) between quality scores and realized quality increases 

as MAF decreases. Imputation with HRC resulted in better realized quality for low-

frequency and rare variants compared to imputation with 1KG. However, the MAD 

between quality scores and realized quality for low-frequency and rare variants was 

similar for both panels. 

In chapter 4, we assess the efficiency gained or lost by adding an external 

sample with missing case-control status to an (internal) case-control study sample. We 

propose a method for estimation and testing that accounts for the known (or presumed) 

proportion of cases in the external sample. Misspecification of the external sample case 

proportion leads to biased estimation; in particular, treating the external sample as a 

control sample leads to underestimation of the effect size. However, the proposed test 

controls Type 1 error regardless of the particular value chosen for the presumptive 

external sample case proportion. When treating the external participants as controls, 
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addition of external participants improves power if the proportion of cases in the internal 

sample is at least twice that in the external sample.  
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Chapter 1 Introduction 
 
The publishing of the draft sequence of the human genome (Lander et al., 2001) and 

availability of a large catalog of human genetic variation (International HapMap 

Consortium, 2005) set the stage for two decades of unprecedented discovery in human 

genetics. Since the (arguably) first genome-wide association study (GWAS) identified a 

single locus associated with myocardial infarction (Ozaki et al., 2002; Ikegawa, 2012), 

more than 4500 GWAS have identified nearly two hundred thousand associations 

between genetic variants and thousands of phenotypic traits (GWAS catalog: 

https://www.ebi.ac.uk/gwas/). 

In contrast to Mendelian or monogenic traits, most common diseases and 

phenotypic traits are complex (Timpson et al., 2018; Watanabe et al., 2019) with 

numerous genetic and environmental causative factors, each typically having modest 

influence. GWAS assess association (correlation) between a phenotypic trait and large 

numbers (currently, up to millions) of genetic variants sampled approximately uniformly 

across the genome. This design and analysis strategy was proposed as an alternative 

to linkage analysis, an approach that works well for Mendelian traits but not complex 

traits (Risch and Merikangas, 1996; Hirschhorn and Daly, 2005) and candidate gene 

studies that showed poor replication in practice (Hirschhorn et al., 2002). 

Despite the success of GWAS at identifying previously unknown associations, 

currently identified associations typically account for only a modest fraction of the total 

genetic influence (heritability) of most complex traits (Boyle et al., 2017; Watanabe et 
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al., 2019). Large sample sizes are required to identify common variants with low effect 

sizes and low-frequency and rare variants with moderate to large effect sizes with 

appropriate correction for the number of hypothesis tests conducted in a GWAS. 

Current study sizes for large GWAS range from hundreds of thousands of participants 

up to a million participants; large samples sizes are primarily obtained via meta-analysis 

of multiple studies and less often, through joint-analysis of participants pooled across 

studies. 

Conducting large genetic studies presents multiple challenges in addition to the 

primary challenge of recruiting a large number of participants in a systematic and 

principled manner. The storage and analysis of large datasets is computationally 

challenging. Large studies are expensive with one of the major expenses for GWAS 

being the cost of assaying genotypes for large numbers of genetic variants. Differences 

in sampling protocols and measurement techniques across different batches of data (or 

studies) need to be addressed with statistical rigor. 

Regression models are the most commonly used framework for conceptualizing 

the relationship between genetic variants and phenotypes, testing for association and 

estimating variant effect sizes. Regression models accommodate both quantitative and 

disease phenotypes (and retrospective designs like case-control studies), and single 

and multiple variant tests, while allowing adjustment for confounding factors including 

age, sex, and population stratification. Mixed-effects regression models accommodate 

presence of related individuals (Kang et al., 2010; Loh et al., 2015). The score (or 

Lagrange-multiplier) test (Cox & Hinckley, 1979) is commonly employed to test for 
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association in GWAS and other genome-wide analyses like expression quantitative 

traits locus (eQTL) studies. 

GWAS analysis involves performing a large number of tests with the same 

phenotype but different variants (or sets of variants). The score test requires maximum 

likelihood estimates only under the null; since the null model doesn’t include the genetic 

variant being tested, the computationally expensive maximization procedure needs to 

be performed only once for a given sample. In this setting, the score test is 

computationally more efficient than the Wald and likelihood ratio tests which require 

maximization of the likelihood for every variant. Thus, in chapters 2 and 4, we focus 

attention to the score test for linear (chapter 2) and logistic (chapter 4) regression 

models. 

Next-generation sequencing platforms have the capacity to assay nearly the 

complete spectrum of human genetic variation and can detect rare and previously 

unknown variants. Despite a substantial reduction in cost over the last decade, 

sequencing large numbers of study participants remains prohibitively expensive. Most 

GWAS assay genetic variants through microarray genotyping technology. Microarrays 

typically assay a few hundred thousand to a few million genetic variants. Although this 

represents a small fraction the total number of known genetic variants, microarrays are 

designed to include variants that optimally tag (or predict) nearby unmeasured variation. 

To extend the array-assayed information, GWAS routinely employ the strategy of 

imputing unmeasured variants (Li et al., 2010; Marchini & Howie, 2010; Das et al., 

2018) with the aid of external (and often freely available), comprehensively sequenced 

genotype imputation reference panels (McCarthy et al., 2016). Genotype imputation 
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improves power for GWAS based on microarray genotyping by facilitating meta-analysis 

of studies utilizing different microarrays and leveraging information from multiple nearby 

variants to predict unmeasured variants with greater accuracy than single tagging 

variants (Marchini & Howie, 2010; Das et al., 2018). Given current sequencing costs, 

microarray genotyping followed by imputation is a cost-effective and powerful strategy 

for GWAS (Quick et al., 2019). 

Recently, large databases like the UK Biobank (Bycroft et al., 2018), Genome 

Aggregation Database (gnomAD), and Exome Aggregation Consortium (ExAC) (Lek et 

al., 2016) have emerged. These databases contain comprehensive genetic information 

on tens to hundreds of thousands of participants and were created as a resource for the 

scientific community. It is likely that the number and size of such databases will increase 

over the next decade. Such datasets present an inexpensive resource for both 

aggregated, and in some cases, participant level genetic information. For disease 

GWAS with relatively rare diseases, genetic and phenotypic measurements for 

participants from these databases could be added to existing or new GWAS (as 

external controls, in case disease information is unavailable in the database) enabling 

larger sample sizes at relatively lower cost. Challenges to this approach include bias 

due to differential sample ascertainment/selection and differential measurement error 

(for genetic and other variables) between the GWAS sample and database sample. 

This thesis focuses on bias, precision and power for three statistical techniques 

used in GWAS. Chapter 2 focuses on a variant of standard estimation and testing 

techniques for linear regression for quantitative trait association. Chapter 3 focuses on 
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predicted quality of genotype imputation. Chapter 4 focuses on misclassified or missing 

case-control status in a logistic regression model of case-control data.  

In Chapter 2, we assess bias and power for adjusted-trait regression (ATR), an 

often-used variant of the traditional ordinary least-squares and F-test techniques for 

linear regression (Randall et al., 2013; UK10K Consortium, 2015; Tachmazidou et al., 

2017; Kanai et al., 2018; Styrkarsdottir et al., 2019; Niarchou et al., 2020). ATR 

proceeds by first creating a covariate adjusted trait by regressing the trait onto 

covariates. In the second step, bivariate correlation analysis (simple regression) is 

performed between each variant (or each set of variants for gene-based tests) and the 

adjusted trait. Although this strategy looks superficially similar to the score test, previous 

work (Demissie & Cupples, 2011; Xing et al., 2011; Che et al., 2012) has shown that 

ATR estimates are biased towards the null (in case of single variant tests, by a factor 

equal to the coefficient of determination, 𝑅!, for the regression of variant onto 

covariates) and used simulations and approximations to show that ATR based single 

variant tests are less powerful than traditional tests like the F-test. We show that this 

approach is less powerful than traditional techniques by deriving the exact relationships 

between ATR and traditional test statistics for the single variant test and inequalities for 

the omnibus gene-based test. We show that the loss of power increases as the 

canonical correlation between variants and covariates increases but power loss is 

unlikely to be large in typical situations. 

In Chapter 3, we assess three imputation quality scores (allelic-RSQ, MACH-

RSQ and INFO) as predictors of realized imputation quality (squared correlation 

between imputed dosages and observed genotypes) for low-frequency and rare variants 
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by imputing genotypes in 8,378 Finnish participants in the METSIM study for which 

“gold-standard” genotypes for a subset of imputed variants were assayed with the 

Illumina ExomeArray. We also assess the impact of reference panel size (1000 

Genomes [1KG] Phase 3 versus Haplotype Reference Consortium [HRC] reference 

panels) and choice of imputation algorithm (Beagle 4.2, minimac3 and IMPUTE 2 with 

1000 Genomes reference panel). 

We show that MACH-RSQ and INFO yield the same value when calculated on 

the same data. Allelic-RSQ is a poor predictor of observed quality for rare and low-

frequency variants; hence we recommend using MACH-RSQ/INFO as a quality score. It 

is well known that realized quality decreases with decreasing minor allele frequency 

(MAF). We observe that imputation quality score predictions (of the realized quality) 

also become worse as minor allele frequency decreases. When imputation quality 

scores are used as a classifier high-vs-low realized quality, more stringent thresholds 

are required for rare and low-frequency variants as compared to common variants. 

Imputation based on the HRC reference panel yields higher realized qualities for low-

frequency and rare variants compared to imputation based on the 1KG panel. With rare 

variant imputation based on HRC, less stringent thresholds (e.g. MACH-

RSQ/INFO=0.3) yield the same classification operating characteristics as substantially 

more stringent thresholds (MACH-RSQ/INFO=0.6) with 1KG imputation. 

In chapter 4, we assess the efficiency gained or lost by adding an external 

sample with missing case-control status to an (internal) case-control study sample. For 

simplicity, we assume that other potential sources of bias, like selection bias and 

differential measurement error of genotypes between internal and external samples, are 
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absent or can be controlled prior to association analysis (for example, by stringent 

quality control). We propose a likelihood based method that models the external sample 

as a mixture of cases and controls based on a known (or presumed) external sample 

case proportion. This method is a generalization of the naïve strategy of treating 

external participants as controls (achieved by assuming that external sample case 

proportion is zero). We derive a closed form non-centrality parameter for the score test 

and asymptotic approximations for bias when the external sample case proportion is 

incorrectly specified. 

We show that estimates of effect size are unbiased under the null but biased 

under the alternative. In particular, setting the external sample case proportion to a 

value less than its true value (for example, treating all external participants as controls) 

results in underestimation under the alternative; setting it to values larger than the true 

value may result in either under or overestimation under the alternative. We show that 

the score test controls Type 1 error regardless of the particular value assumed for the 

external sample case proportion. For analysis that treats external participants as 

controls, including the external sample is more powerful than avoiding it when the 

internal sample case proportion is at least twice as large as the external sample case 

proportion. In situations where the external sample case proportion is large relative to 

the internal sample case proportion, power can be gained upon inclusion of the external 

sample if the external sample case proportion is known accurately. 

In Chapter 5, we present a brief summary of our results and discuss possible 

extensions and future directions. 
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Chapter 2  Power loss due to testing association between covariate adjusted 
traits and genetic variants 

 

INTRODUCTION 

Multiple linear regression and the associated ordinary least-squares and F-test 

methodologies are effective and widely used approaches to test for association between 

genetic variants and quantitative traits and to estimate genetic effect sizes while 

controlling for the effects of other variables (covariates). Covariates may be included to 

account for confounding (e.g. due to population structure or assay batch effects), to 

reduce trait variability and consequently increase power, or to exclude associations that 

are driven primarily through the action of the variants on an intermediate trait. 

Current genome-wide association studies (GWAS) typically assay hundreds of 

thousands to millions of genetic variants. Single-variant association tests are performed 

separately on each variant to test whether the variant is associated with the trait. Multi-

variant, gene-, or region-based tests are performed to address the omnibus hypothesis 

that one or more in a set of variants are associated with the trait. Since the dependent 

variable and covariates are typically the same across all tests, some analysts use a two-

stage approach for quantitative trait GWAS (Randall et al., 2013; UK10K Consortium, 

2015; Tachmazidou et al., 2017; Kanai et al., 2018; Styrkarsdottir et al., 2019; Niarchou 

et al., 2020 are some examples of studies employing this methodology). In the first 

stage, an ‘adjusted’ trait is obtained as the residuals from the regression of the trait on 

covariates. In the second stage, association analyses are performed to test for 
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association between the adjusted trait and each variant (or set of variants) without 

inclusion of other covariates. We term this strategy “adjusted-trait regression (without 

covariates)” (ATR). 

Although ATR can be conceptualized as a two-stage method, we note that it 

bears no relation to the “two-stage least-squares” method used in structural equations 

modeling and estimation of causal effects using instrumental variables. We assume that 

the target of inference is the conditional association between the unadjusted trait and 

variants given the covariates rather than the association between the adjusted trait and 

variants unconditional on the covariates. Thus, we view ATR as a numerical technique 

to conveniently approximate the results that would have been obtained from analysis of 

the unadjusted trait (with covariates included). The strategy of analyzing a covariate-

adjusted trait may be used for any statistical method that deals with linear models, 

including gene/region based tests like burden or SKAT (Lee et al., 2014) or methods for 

linear mixed-models. 

We have not found any methods papers that recommend the use of ATR. 

Indeed, the research articles cited above make use of ATR without comment or 

justification. ATR results are not identical to results obtained from modeling the 

unadjusted trait along with covariates. Previous investigations of single-variant models 

showed that the ordinary least-squares ATR estimator of genetic effect is biased 

towards zero by a factor of 1− 𝑅! (Demissie & Cupples, 2011; Xing et al., 2011; Che et 

al., 2012), where 𝑅! is the sample coefficient of determination obtained by regressing 

the genetic variant onto the covariates. These investigations used approximations and 

simulations to assess power and Type 1 error of the ATR-based tests assuming a Type 
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1 error rate of α=0.05 and showed that ATR is typically less powerful than multiple linear 

regression when the sample correlation between a genetic variant and covariates is 

non-zero. More recently, Sofer et al. (2019) showed that the ATR-based single-variant 

score and multi-variant SKAT test statistics are numerically (deterministically) 

dominated by the corresponding test statistics obtained from analyzing the unadjusted 

trait with covariates leading to deflated p-values and loss of power.   

We extend these previous results by deriving the exact relationship between ATR 

and multiple linear regression score, likelihood ratio, Wald, and F test-statistics for 

single-variant analysis. We use these relationships to derive (1) the exact finite sample 

distributions of the ATR test-statistics (hence, exact power and Type 1 error) under the 

assumption of independent and identically normally distributed errors and (2) the 

asymptotic relationship between the test-statistics for situations where the assumption is 

suspect. In addition, we derive the asymptotic distributions of ATR based analogs of two 

gene/region-based tests: the burden test and the (omnibus) score test, and show that 

these tests applied in the ATR framework may also suffer from loss of power compared 

to their multiple linear regression analogs. In particular, we show that the maximum 

possible power loss for gene-based ATR score tests depends on the maximum 

canonical correlation between the set of variants and the set of covariates, so that we 

expect power loss to be modest in typical GWAS with low to moderate population 

structure.  

 

METHODS AND RESULTS 

Definition of the ATR approach 
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We assume a model of the form: 

                                                  𝑌! = 𝛼 + 𝛽!𝑔!"!
!!! + 𝛾!𝑐!"!

!!! + 𝜖!  

(M1) 

Here  𝑌! , 1 ≤ 𝑖 ≤ 𝑛 is the trait value for the 𝑖!! study participant, 𝑔!" the genotype (or 

genotype-imputation-based dosage) for the 𝑗!! variant for this study participant, 𝛽! the 

effect of the variant on the trait (conditional on the other 𝑚 − 1 variants and covariates), 

𝑐!" the value of the 𝑙!! covariate, 𝛾! the (conditional) effect of the covariate, and 𝜖! a 

random error. We assume the errors are independent and identically distributed across 

observations with 𝔼 𝜖! = 0 and 𝑉𝑎𝑟 𝜖! = 𝜎!. For single-variant models, 𝑚 = 1 and 𝛽 is 

the conditional effect of the variant on the trait given the covariates, but unconditional on 

any other variant.  

The above model can be represented as 𝑌 = 𝐺𝛽 + 𝐶𝛾 + 𝜖 where 𝑌 and 𝜖 are 𝑛×1 

vectors, 𝐺 is an 𝑛×𝑚 matrix, 𝛽 is a 𝑚×1 vector, 𝐶 is an 𝑛×(𝑘 + 1) matrix (including a 

column of ones for the intercept), and 𝛾 = 𝛼, 𝛾!,… , 𝛾! ! is a 𝑘 + 1 ×1 vector. We have 

𝑉𝑎𝑟 𝑌 𝐺,𝐶 = 𝑉𝑎𝑟 𝜖 = 𝜎!𝐼! where 𝐼! is the n-dimensional identity matrix. We wish to 

test 𝐻!:𝛽 = 0. Further, we assume that the test statistic 𝑇 has the form 𝑇 = 𝑓(𝑌,𝐺,𝐶). 

We note that the distribution of 𝑇 under the null may depend on 𝐺 and 𝐶 and on 

parameters that need to be estimated from the data. We assume that the (possibly 

estimated) parameter value 𝜃 required to define the distribution of 𝑇 under the null (for 

example, degrees of freedom for the F-statistic) also has the form 𝜃 = 𝑔 𝑌,𝐺,𝐶 . 

Let 𝐻! = 𝐶 𝐶!𝐶 !!𝐶!. Then  𝑌! = 𝑌 − 𝐶𝛾 = 𝐼! − 𝐻! 𝑌 is the vector of residuals 

obtained by regressing 𝑌 onto 𝐶 using ordinary least squares (with  𝛾 = 𝐶!� !!𝐶!𝑌). 

We define the ATR analog of 𝑇 to be 𝑇!"# = 𝑓(𝑌! ,𝐺, 𝐽!) where 𝐽! = (1,… ,1) is the 𝑛×1 
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vector of ones denoting the intercept. Further, we assume that the parameter 𝜃 for ATR 

is calculated as 𝜃!"# = 𝑔(𝑌! ,𝐺, 𝐽!). This definition of the ATR analog implies that 

inference based on 𝑇!"# can be performed by using existing software designed for 

inference with 𝑇 simply by replacing 𝑌 and 𝐶 with 𝑌! and 𝐽!. We note that if the 

parameter of the null distribution for a method depends on 𝑌 and/or 𝐶, we may 

have  𝜃 ≠ 𝜃!"#, and the ATR analog may reference a null distribution that differs from 

the one used by the unadjusted method to calculate p-values. 

 

Ordinary least-squares estimation with ATR 

The ordinary least-squares estimator of 𝛽 is given by  𝛽 = 𝐺!!𝐺! !!𝐺!!𝑌! where 

𝐺! = (𝐼! − 𝐻!)𝐺 is the matrix of residuals of variants regressed onto 𝐶. This result is 

often referred to as the Frisch-Waugh-Lovell theorem (Frisch & Waugh, 1933; Lovell, 

2008). In the appendix, we show that 

𝛽!"# = (𝐼! − 𝑅!"! )𝛽 

where 𝑅!"! = 𝐺! 𝐼! − 𝐻! 𝐺 !!𝐺!(𝐻! − 𝐻!)𝐺 and 𝐻! = 𝐽!𝐽!! /𝑛. Note that the eigenvalues 

of 𝑅!"!  are the sample canonical correlations between the set of genetic variants and the 

set of covariates. In particular, 𝑅!"! = 0 (the zero matrix) if and only if every genetic 

variant is uncorrelated with all covariates. Further, we have 𝔼 𝛽!"# = 𝐼! − 𝑅!"! 𝛽 and, 

consequently, 𝔼 𝛽!"# = 0 if and only if none of the genetic variants are associated with 

the trait (conditional on covariates). Thus, any test that is valid for testing the omnibus 

hypothesis 𝐻!:𝔼 𝛽!"# = 0 is also valid for testing 𝐻!:𝛽 = 0. 

In the case of single-variant analysis (𝑚 = 1), the above relationship simplifies to 

𝛽!"# = (1− 𝑅!)𝛽 and we recover the result obtained previously (Demissie & Cupples, 
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2011; Xing et al., 2011; Che et al., 2012; Sofer et al., 2019). Thus, for single-variant 

analysis, the ATR ordinary least-squares estimator can only be biased towards the null. 

This is not true for individual elements of  𝛽!"# when 𝑚 > 1. Indeed, 𝔼 𝛽!"# !
 is a linear 

combination of all the elements of the vector 𝛽. In particular, 𝛽! = 0 does not necessarily 

imply that 𝔼 𝛽!"# !
= 0. Thus, a test that is valid for 𝐻!:𝔼 𝛽!"# !

= 0 is not necessarily 

valid for 𝐻!:𝛽! = 0 (unless all remaining elements of 𝛽 are also 0). 

 

Single-variant association testing with ATR 

Xing et al. (2011) showed that 𝑊!"# ≤𝑊 where 𝑊 is the Wald test statistic. Che 

et al. (2012) refined an approximation proposed by Demissie and Cupples (2011) for the 

F test statistic (𝐹) to 𝐹!"# =
!!!

!!!!!
1− !!

!!!!!! !!,!! !!!(!!,!!)
𝐹 where 𝑟!(𝑌! ,𝐺!) is the 

sample squared correlation between 𝑌! and 𝐺! and 𝐹 is the F statistic. Xing et al. (2011) 

and Che at al. (2012) used simulations to estimate power and Type 1 error rate for 

𝛼 = 0.05. 

We show that 𝑆!"# = 1− 𝑅! 𝑆, where 𝑆 is the score test statistic for the above 

linear model when 𝑚 = 1. For linear models, the test statistics for the score, Wald, 

likelihood ratio, and F tests bear simple, deterministic relationships to each other 

(Vandaele 1981). Combining 𝑆!"# = 1− 𝑅! 𝑆 with these known relationships yields the 

following set of equalities:  

𝐹!"# =
𝑛 − 2

𝑛 −�− 2×
(1− 𝑅!)𝐹

1+ 𝑅!𝐹/(𝑛 − 𝑘 − 2) 

𝑊!"# =
(1− 𝑅!)𝑊
1+ 𝑅!𝑊/𝑛 
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𝐿𝑅!"# = 𝐿𝑅 − 𝑛 log(1+ 𝑅![𝑒!"/! − 1]) 

where 𝐿𝑅 denotes the likelihood ratio test statistic. We see that 𝑆,𝑊, and 𝐿𝑅 are always 

strictly greater than their ATR anologs if 𝑅! > 0 and equal to them if 𝑅! = 0. P-values 

for the score, Wald, and likelihood ratio tests are standardly computed assuming the 

test statistics follow a chi-square distribution with 𝜃 = 𝑠 = 1 degree of freedom (𝜒!! 

distribution). The ATR analogs of these methods also assume this same distribution and 

are less powerful than their counterparts if 𝑅! > 0.  

In contrast,  𝐹!"# > 𝐹 if 𝐹 < !
!!
− (𝑛 − 2) and the ATR analog of the F-test uses the F-

distribution with 1 and 𝑛 − 2 degrees of freedom while the F-test assumes a distribution 

with 1 and 𝑛 − 𝑘 − 2 degrees of freedom; in this case,  𝜃!"# ≠ 𝜃 since the denominator 

degrees of freedom depends on the number of covariates. Thus, the ATR analog of the 

F-test may be slightly anti-conservative if 𝑅! ≈ 0 and/or the number of covariates is 

large relative to the sample size. This is quite unlikely given the large sample sizes of 

current GWAS, the large values of the test statistic required to reject the null, and the 

fact that the expected value of the sample coefficient of determination increases with 

increasing number of predictors, even when the variant is independent of the predictors 

at the population level, in which case 𝔼 𝑅! ≈ 𝑘/𝑛 for large samples. 

For a fixed number of covariates, the score, Wald, likelihood ratio, and F test 

statistics asymptotically converge to the same random variable 𝑇 (almost surely) under 

the null and local alternatives (𝛽 = 𝑂 𝑛!/!  i.e. when the effect size tends to zero 

asymptotically). Similarly, their ATR analogs each converge to 1− 𝑅! 𝑇. 

Asymptotically, each of the ATR test statistics follows a scaled 𝜒!! distribution whose 

scaling factor is less than or equal to one and are, thus, conservative when 𝑅! > 0. The 
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exact finite sample distribution of the F statistic is known in the case where errors are 

normally distributed; the exact distributions of all the other test statistics can be derived 

easily given the above relationships. 

For simplicity, we illustrate the conservative nature of ATR for single-variant tests 

under asymptotic conditions. Here, we have 𝑃 𝑇!"# < 𝛼 = 𝑃(𝑇 < 𝛼/(1− 𝑅!)). The 

relationship between the p-values generated by the score test and its ATR analog is 

non-linear; the ATR test becomes more conservative as the p-value threshold for 

declaring significance (𝛼) becomes more stringent. Figure 2-1 shows power of the ATR 

test with 𝑅! = 0.05 for 𝛼 values ranging from 10!!  

 

Figure 2-1 Power of ATR analog of single-variant score test when 𝑅! = 0.05 with 
varying stringency of statistical significance 𝛼 displayed in the negative log ten scale. 
Effect sizes vary as a function of 𝛼 to yield 80% power for the score test. 

to 10!!" where the effect size for each 𝛼 value is chosen to yield 80% power for the 

score test. At the usual GWAS threshold of 𝛼 = 5×10!!, the power of the ATR test is 



 19 

about 76%. Figure 2-2 shows how, for fixed 𝛼 = 5×10!!, the ATR test becomes less 

powerful as 𝑅! increases (again, with effect size chosen to yield 80% power for the 

score test).  

 

Burden tests with ATR 

The relationships derived for the single-variant tests are directly applicable to 

burden tests. Burden tests typically assume the same multiple linear regression model 

presented in the previous section with 𝐺 replaced by 𝐵 = 𝑤!𝐺!!
!!! = 𝐺𝑊 where 

𝐺! ,… ,𝐺! are 𝑚 genetic variants (columns of 𝐺), 𝑤! are weights (and 𝑊 = 𝑤!,… ,𝑤! !), 

and 𝐵 is the (weighted) burden of alternate alleles (or genotype imputation-based 

dosages) from the 𝑚 variants. For burden tests, 𝑅! is the sample coefficient of 

determination obtained by regressing 𝐵 onto 𝐶. Given 𝐺 and 𝐶, the maximum possible 

value for 𝑅! is obtained when the weight vector 𝑊 is a scalar multiple of the  

eigenvector of 𝑅!"!  corresponding to the maximum eigenvalue and the maximum 𝑅! is 

equal to the maximum eigenvalue. 
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Figure 2-2 Power of ATR analog of single-variant score test with increasing 𝑅! for 
𝛼 = 5×10!!. The effect size was chosen to yield 80% power for the score test. 

Classical omnibus tests with ATR 

The omnibus null hypothesis that none of the 𝑚 variants are associated with trait 

(conditional on covariates) can be tested with the omnibus/multivariate score, Wald, 

likelihood ratio, and F tests. As before, these tests are asymptotically equivalent and we 

consider the score test as an exemplar. Unlike the single-variant case, no deterministic 

relationship exists between 𝑆!"# and 𝑆 when 𝑚 > 1 (that is, 𝑆!"# can take multiple 

values for any given value of 𝑆). However, we show that  

1− 𝑅!"#! 𝑆 ≤ 𝑆!"# ≤ (1− 𝑅!"#! )𝑆 

where 𝑅!"#!  and 𝑅!"#!  are the maximum and minimum canonical correlations between 

the variants and covariates. Recall that 𝑆 asymptotically follows a 𝜒!! (𝛿!) distribution 

with non-centrality parameter 𝛿! = !
!!
𝛽!𝐺! 𝐼! − 𝐻! 𝐺. Under the null, the distribution of 𝑆 

depends only on the parameter  𝜃 = 𝑚. Asymptotically, 𝑆!"# follows the same 
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distribution as the random variable 1− 𝑅!! 𝑍!
!
!!!  where 𝑅!!,… ,𝑅!! are the distinct 

eigenvalues of 𝑅!"!  (in decreasing order so that 𝑅!! = 𝑅!"#!  and with 𝑝 possibly smaller 

than 𝑚) and the random variables 𝑍! are mutually independent with 𝑍!~𝜒!!
! 𝜆!! , 𝜈! =

!
!!!

𝑚 (see Appendix). Since  𝜃 is independent of 𝐶, we have  𝜃!"# = 𝜃 and p-values for 

𝑆!"# are calculated assuming a central 𝜒!! distribution. 

Note that the score test yields the same power for all effect size vectors 𝛽 such that 

𝛽!𝐺! 𝐼! − 𝐻! 𝛽 = 𝑐 where 𝑐 ≥ 0 is a constant. Although the actual difference in power 

between 𝑆 and 𝑆!"# depends on the true value of 𝛽, we show that, amongst all 𝛽 that 

yield the same power for the score test, the ATR analog achieves minimum power when 

𝛽 is a scalar multiple of the eigenvector of 𝑅!"!  corresponding to the maximum 

eigenvalue (see Appendix). Here, 𝜆!! = 𝛿! and 𝜆!! = 0 for 𝑖 = 2,… ,𝑝. Thus, the maximum 

possible power loss of the ATR analog of the score test (relative to the score test) is 

completely characterized by the set of canonical correlations between the variants and 

covariates. 

Figure 2-3 shows, for fixed 𝛼 = 5×10!! and 𝑠 = 10 variants, the power of ATR analog 

across a range of 𝑅!"#!  with effect size chosen to yield 80% power for the omnibus 

score test. We calculated tail probabilities for the distribution of 𝑆!"# using Davies’ 

method as implemented in the R package CompQuadForm (de Micheaux, P. L., & de 

Micheaux, M. P. L., 2017). We consider two situations. First, if the remaining canonical 

correlations are zero, the maximum possible power loss is slightly larger than that for 

the single-variant case for 𝑚 = 10 and power loss increases as 𝑚 increases (𝑚 = 100 

shown in Figure 2-3). Second, if all canonical correlations are equal to 𝑅!"#! , 𝑆!"# 

follows the scaled chi-squared distribution 1− 𝑅!"#! 𝜒!! 𝛿! , and the maximum 
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possible power loss is equal to the minimum possible power loss; thus, for a given value 

of 𝑅!"#! , this constitutes the worst-case scenario for ATR (Figure 2-3). Note that the 

maximum number of non-zero canonical correlations cannot exceed min (𝑚, 𝑘). Thus, 

the second scenario is unlikely to occur in practice. 

 

DISCUSSION 

The ATR approach is often used in genetic association studies (Randall et al., 

2013; UK10K Consortium, 2015; Tachmazidou et al., 2017; Kanai et al., 2018; 

Styrkarsdottir et al., 2019; Niarchou et al., 2020), and several papers have used 

simulation to assess its properties at modest significance thresholds (Demissie & 

Cupples, 2011; Xing et al., 2011; Che et al., 2012). However, to our knowledge no 

papers have presented analytic evaluations of ATR or considered significance 

thresholds appropriate for GWAS. The Frisch-Waugh-Lovell theorem (Frisch & Waugh, 

1933; Lovell, 2008) demonstrates that when the target of inference is confined to a  



 23 

 

Figure 2-3 Power of ATR analog of the multi-variant (omnibus) score test (Y-axis) with 
𝑚 = 10 (black) and 𝑚 = 100 (red) variants. X-axis shows the maximum canonical 
correlation between the variants and covariates. Solid line: power when the other 
canonical correlations are 0. Dashed line: power when other canonical correlations are 
equal to the maximum correlation. Effect sizes for the set of variants are chosen to yield 
80% power for the omnibus score test and minimum power for the ATR analog (see 
text) with 𝛼 = 5×10!!. 

 

subset of predictors in the multiple linear regression model (e.g. genetic variants), OLS 

analysis can be achieved as a two-stage method by regressing the covariate adjusted 

trait onto the covariate adjusted variants. Thus, the ATR strategy of adjusting the trait 

but not the variants is formally justified in the context of multiple linear regression only 

when variants and covariates are uncorrelated. 

It may seem that score-tests like those presented above or SKAT employ the 

same strategy as ATR. Indeed, for single-variant analyses the score-statistic for linear 

models (𝐺!𝑌!) is based on the adjusted trait and unadjusted variant. However, the score 

test-statistic (calculated by squaring the score-statistic and dividing by its estimated 
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variance) does depend on the adjusted variants. Indeed, it can be shown that ATR over-

estimates the variance of the score-statistic by a factor of 1− 𝑅! !! due to using 

unadjusted variants in the variance calculation. Our derivations also show that single-

variant OLS based inference can be fully recovered from the ATR based inference 

given the summary statistic 𝑅! for each variant. For multi-variant analyses, the entire 

𝑅!"!  matrix is required. 

For single-variant association tests, previous papers show by computer 

simulation that ATR is less powerful than the (theoretically justified) two-sided t and 

Wald tests when the variant is correlated with the covariates (Demissie & Cupples, 

2011; Xing et al., 2011; Che et al., 2012; Sofer et al., 2019). We extend previous results 

by deriving the exact distribution of the ATR analogs for single-variant Wald, likelihood 

ratio, score, and F tests, and the asymptotic distributions for gene-based burden and 

score tests, and assessing size and power at significance levels appropriate for GWAS.  

For single-variant tests, we show that the loss of power of the ATR method is 

completely characterized by the coefficient of determination (𝑅!) obtained by regressing 

the variant onto the covariates, with the power loss increasing with increasing 𝑅!. 

Further, we show that loss of power increases as the p-value cutoff used to declare 

significance becomes more stringent. Characterizing power loss for the ATR analogs of 

gene-based tests is more complex. For gene-based score tests, the power loss 

depends on both the (true) strength of association between each variant and the 

outcome, and the correlation between each variant and the covariates. Power loss is 

greater when the subset of variants driving the association is also the subset that is 

driving the canonical correlation between variants and covariates. For the ATR analogs 
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of the multiple linear regression omnibus test of association, we show that the maximum 

possible power loss is completely characterized by the canonical correlations between 

the variants and covariates with maximum power loss increasing with increasing values 

of any of the canonical correlations. When there is only a single non-zero canonical 

correlation, the maximum power loss is similar to the single-variant case. 

At the significance threshold of 𝛼 = 5×10!! typically used in GWAS, an 𝑅! of 0.1 

results in power decreasing from 80% (for the two-sided t test) to about 71% for the 

single-variant ATR test. Thus, we recommend that ATR based methods only be used 

when the 𝑅! for the majority of variants is expected be substantially less than 0.1. We 

re-iterate that sets of covariates not associated with the variant do not result in loss of 

power due to using ATR; in fact, they increase power if they explain some of the trait 

variance (Robinson & Jewell, 1991). Covariates that are associated with the trait but not 

genetic variants in a population based sample may be associated with genetic variants 

in studies that sample participants non-randomly (Munafo et al., 2018; Greenland et al., 

1999); for example, two variables that both cause a disease but are independent in a 

population will be associated in a case-control sample (Monsees et al., 2009).  

In GWAS, the most commonly included covariates that are likely to be correlated 

with a large number of variants are indicators of genetic ancestry (e.g. principal 

components). The distribution of correlation depends on the degree of population 

structure in the sample and the mean 𝑅! across variants is (approximately) the sample 

𝐹!". For intra-continental samples, typically 𝐹!" < 0.05 but for inter-continental samples it 

can be > 0.1 [The 1000 Genomes Project Consortium, 2015]. As a further example, we 

calculated 𝑅! between ~750,000 genotyped variants and the first 2, 5, and 10 genetic 
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principal components for ~409,000 participants with white-British ancestry in the UK 

Biobank (details of SNP QC and PCA generation in Bycroft et al., 2018) and found all 

𝑅! values were < 0.05. In the analysis including the remaining 78,000 non-white 

participants (total sample size ~487,000), 6% of variants showed 𝑅! > 0.05 and 2.5% 

showed 𝑅! > 0.10 (the results were approximately similar with 2, 5, and 10 PCs). 

Other commonly included covariates that may be correlated with variants are 

intermediate traits lying in between the gene and primary trait in the causal pathway, 

and indicators of sample processing or batch effects. For intermediate traits that are 

genetically complex, values of 𝑅! will typically be much smaller than 0.1. The situation 

with batch effects is less clear, especially for sequencing data which are sensitive to 

both sample processing and genotype calling methods. Finally, variants which are 

known to be associated with the trait may also be included as covariates, especially in 

fine mapping analyses or while searching for multiple independent signals within the 

same locus. Here, we recommend against using ATR based methods since there is 

potentially a large power loss for variants in even moderate linkage disequilibrium with 

the associated variant. 

In multiple-variant tests such as burden and omnibus tests (like the F-test or 

SKAT), we note that least-squares effect size estimator for any particular variant may be 

biased either towards or away from the null for ATR. Thus, although ATR based tests 

are valid for the omnibus hypothesis that none of the variants are associated, an ATR 

based test for the conditional effect of a variant given the remaining variants may not be 

valid. This is of particular importance for post-hoc testing when the omnibus test is 



 27 

rejected and the analyst wishes to identify the subset of variants driving the association. 

We recommend against using ATR for such purposes. 

 

When the distribution of the trait differs substantially from the normal distribution, 

ATR based methods are commonly used in conjunction with applying the inverse 

normal transform to the adjusted trait. Sofer et al. (2019) show that testing for 

association between the transformed adjusted trait and unadjusted variants may lead to 

increased Type 1 error and instead recommend using adjusted variants. McCaw et al. 

(2019) implement an omnibus test with this strategy.  

Finally, we have assumed throughout that the multiple linear model (M1) is 

appropriate to answer the research question at hand and that 𝛽 truly measures the 

effect of interest.  This necessitates including certain covariates (e.g. confounders), 

excluding others (e.g. colliders; see Greenland et al., 1999) and accounting for sample-

selection effects (Munafo et al., 2018). For example, Aschard et al. (2015) show that 

simply adjusting for heritable covariates may lead to biased estimates of the direct 

(unmediated) effect of the variant on the trait and may lead to increased Type 1 error. 

We note that when OLS analysis of the full regression model results in increased Type 

1 error, ATR will also be unable to fully control Type 1 error (although, the magnitude of 

Type 1 error will be lower with increasing 𝑅!). Thus, ATR is invalid whenever OLS 

analysis of the full regression model is invalid.  

In summary, we derive distributions of the ATR analogs of commonly used 

association test statistics. We show that ATR based methods are conservative when 

variants are correlated with covariates. We quantify the power loss and recommend that 
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ATR based methods be used only when the squared correlation between variants and 

covariates can be confidently bounded to be substantially smaller than 0.1. We note that 

for commonly included covariates like age, gender and known or inferred ancestry, this 

is typically true and ATR based methods will likely result in negligible power loss. 

However, we reiterate that ATR is an ad-hoc methodology. Thus, we recommend that 

analysts carefully choose covariates based on a plausible causal model (accounting for 

sample-selection effects) and employ estimation/hypothesis-testing methods that are 

theoretically justified for those models. 

APPENDIX 
All notation in the Appendix is as defined in the main text. 

ATR estimator for 𝜷 

The OLS estimator for 𝛽 is given by  𝛽 = 𝐺! 𝐼! − 𝐻! 𝐺 !!𝐺!𝑌! where 𝑌! = (𝐼! − 𝐻!)𝑌 is 

the residual vector obtained from regressing 𝑌 onto 𝐶, and 𝐻! = 𝐶 𝐶!𝐶 !!𝐶!. Note that 

𝑉𝑎𝑟 𝛽 = 𝜎! �!(𝐼! − 𝐻!)𝐺 !!. Since ATR simply replaces 𝑌 and 𝐶 with 𝑌!  and 𝐽!, we 

have 

𝛽!"# = 𝐺! 𝐼! − 𝐻! 𝐺 !!𝐺! 𝐼! − 𝐻! 𝑌!  

= 𝐺! 𝐼! − 𝐻! 𝐺 !!𝐺!𝑌!  

= 𝐺! 𝐼! − 𝐻! 𝐺 !! �! 𝐼! − 𝐻! 𝐺 𝛽 

= (𝐼! − 𝐺! 𝐼! − 𝐻! 𝐺 !! 𝐺! 𝐻! − 𝐻! 𝐺 )𝛽 

≝ 𝐼! − 𝑅!"! 𝛽 

The second equality holds because 𝐼! − 𝐻! 𝑌! = 𝑌! − 𝑌! (where 𝑌! is the sample mean 

of 𝑌!) and  𝑌! = 0. The third equality holds because 𝐺!𝑌! = [𝐺! 𝐼! − 𝐻! 𝐺]𝛽 which 

follows from the expression for 𝛽. The fourth equality follows with straightforward 
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algebra. Note that the eigenvalues of 𝑅!"! ≝ 𝐺! 𝐼! −�! 𝐺 !! 𝐺! 𝐻! − 𝐻! 𝐺  are the 

canonical correlations between 𝐺 and 𝐶. Thus, when each variant is uncorrelated with 

all the covariates, all the eigenvalues of 𝑅!"!  are 0 and  𝛽!"# = 𝛽. 

When the model contains only one variant (𝑚 = 1), we have 𝐺! 𝐼 − 𝐻! 𝐺 !! 𝐺! 𝐼 −

𝐻! 𝐺 = 1− 𝑅! where 𝑅! is the coefficient of determination obtained by regressing the 

variant onto the covariates.  

Relationship between the score test statistic and its ATR analog 

The score test-statistic for testing 𝐻!:𝛽 = 0 is given by 

𝑆 =
1
𝜎! 𝛽

!𝐺! 𝐼! − 𝐻! 𝐺𝛽 

where  𝜎! = !
!
𝑌! 𝐼! − 𝐻! 𝑌 =

!
!
𝑌!!𝑌! is the maximum likelihood estimator (MLE) for 𝜎! 

under the null (Vandaele 1981).  

Note that  𝜎!"#! = !
!
𝑌! 𝐼! − 𝐻! 𝑌! =

!
!
𝑌!!𝑌! = 𝜎! since 𝐼! − 𝐻! 𝑌! = 𝑌! − 𝑌! = 𝑌!. Thus, 

we have 

𝑆!"# =
1
𝜎! 𝛽!"#

! 𝐺! 𝐼! − 𝐻! 𝐺𝛽!"#  

=
1
𝜎!  𝛽! 𝐺! 𝐼! − 𝐻! 𝐺 𝐺! 𝐼! − 𝐻! 𝐺 !! 𝐺! 𝐼! − 𝐻! 𝐺 𝛽 

=
1
𝜎!  𝛽! 𝐺! 𝐼! − 𝐻! 𝐺 [𝐼! − 𝑅!"! ]𝛽 

= 𝑆 −
1
𝜎!  𝛽! 𝐺! 𝐼! − 𝐻! 𝐺 𝑅!"! 𝛽 

Equivalently, we have 

𝑆!"#
𝑆 =

𝛽! 𝐺! 𝐼! − 𝐻! 𝐺 [𝐼! − 𝑅!"! ]𝛽
𝛽!𝐺! 𝐼! − 𝐻! 𝐺𝛽
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Recall that, for all vectors 𝑥 such that 𝑥!𝐵𝑥 = 𝑐 (for any constant 𝑐 > 0) the generalized 

Rayleigh quotient 𝑄 = !!!"
!!!"

  is bounded below and above by the minimum and maximum 

eigenvalues of 𝐵!!𝐴. Thus, we have 

1− 𝑅!"#! 𝑆 ≤ 𝑆!"# ≤ (1− 𝑅!"#! )𝑆 

where 𝑅!"#!  and 𝑅!"#!  are the smallest and largest eigenvalues of 𝑅�!! . The lower 

(upper) bound is attained when  𝛽 is parallel to the eigenvector corresponding to 

maximum (minimum) eigenvalue of 𝑅!"! . When each variant is orthogonal to each of the 

covariates we have 𝑅!"#! = 𝑅!"#! = 0 and 𝑆!"# = 𝑆.  

When the model contains only one variant, the above relationship simplifies to the 

deterministic relationship 𝑆!"# = (1− 𝑅!)𝑆 (with 𝑅! as defined previously). For 𝑚 > 1, 

the relationship is not deterministic (that is, 𝑆!"# can take multiple values for any given 

value of 𝑆) unless all the variants are collinear. We can use the relationships between 

the score, Wald, likelihood-ratio, and F test statistics (Vandaele 1981) to derive exact 

expressions for the relationships between each of these tests and their ATR analogs for 

single variant models. We state these relationships in the main text (but omit the 

straightforward algebra). 

 

Asymptotic distribution of 𝑺𝑨𝑻𝑹 

Asymptotically, 𝑆!"# converges in distribution to the distribution of the quadratic 

form  𝛽!𝐴𝛽 with 𝐴 = 𝜎!! 𝐺! 𝐼! − 𝐻! 𝐺 𝐺! 𝐼! − 𝐻! 𝐺 !! 𝐺! 𝐼! − 𝐻! 𝐺 . With suitable 

regularity conditions, asymptotically 𝛽~𝑁(𝜇,𝑉) with 𝑉 = 𝜎! 𝐺 𝐼! − 𝐻! 𝐺 !!. Baldessari 

(1967) derived the distribution of quadratic forms in multivariate normal variables. Since 

𝐴 is symmetric and 𝑉 positive definite, there exists an invertible matrix 𝑀 such that 
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𝑀!𝑉!!𝑀 = 𝐼! and 𝑀!𝐴𝑀 = 𝛬 with 𝛬 an 𝑚×𝑚 diagonal matrix. Thus, we have that 

𝐼! − 𝑅!"! = 𝑉𝐴 = 𝑀𝛬𝑀!!; that is, the columns of 𝑀 are the eigenvectors of 𝐼! − 𝑅!"!  

(and 𝑅!"! ) and the 𝑖!! element of the diagonal of 𝛬 is 1− 𝑙!! with 𝑙!! the eigenvalue of 𝑅!"!  

corresponding to the 𝑖!! column of 𝑀. Let 𝑅!!, 1 ≤ 𝑗 ≤ 𝑝 denote the 𝑝 ≤ 𝑚 distinct 

eigenvalues of 𝑅!"!  with 𝑅!! > ⋯ > 𝑅!!. Let 𝐵! be the 𝑚×𝑚 diagonal matrix which has 

elements 1 where 𝛬 has elements 1− 𝑅!! and 0 otherwise. Then, from Baldessari (1967, 

Theorem 1) and some trivial algebra, 𝑆!"# follows the same distribution as (1−!
!!!

𝑅!!)𝑍!, where 𝑍!~𝜒!!
! (𝜆!!) (that is, a non-central chi-squared distribution with 𝜈! degrees 

of freedom and non-centrality parameter 𝜆!!), 𝜆!! = 𝑀!!𝛽 !𝐵!𝑀!!𝛽 and 𝜈! is the 

geometric multiplicity of 𝑅!!.  

Recall that, asymptotically, 𝑆~𝜒!! (𝛿!) with 𝛿! = 𝛽!𝑉!!𝛽 = 𝑀!!𝛽 !𝑀!!𝛽. Thus, we have 

𝜆!!
!
!!! = 𝛿!. When 𝛽 lies in the space spanned by the eigenvector(s) of 𝑅!"!  

corresponding to the (distinct) eigenvalue 𝑅!!, 1 ≤ 𝑘 ≤ 𝑝, we have 𝜆!! = 𝛿! and 

𝜆!! = 0, 𝑖 ≠ 𝑘. Consider the set � of vectors 𝛽 that yield the same power for the score 

test (that is, all vectors 𝛽 for which 𝛽!𝑉!!𝛽 = 𝛿! for a given 𝛿!). Unlike 𝑆, the power of 

𝑆!"# may differ when 𝛽 takes different values in this set. We use a result derived by 

Matthew and Nordstöm (1997) to find values in 𝛥 that lead to minimum power for 𝑆!"#: 

Theorem 3 (Matthew and Nordstöm, 1997). Let 𝑋! and 𝑌! be distributed, respectively, as 

𝜒!!
! (𝛿!!) and 𝜒!!

! (𝜇!!), 𝑖 = 1,… ,𝑛, with 𝑋!,… ,𝑋! independent and 𝑌!,… ,𝑌! independent. 

Then 

𝜆!𝑋!

!

!!!

≤! 𝜆!𝑌!

!

!!!
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holds for all nonnegative 𝜆! ’s satisfying 𝜆! ≥ ⋯ ≥ 𝜆! if and only if 

𝛿!!!
!!! ≤ 𝜇!!!

!!!  for all 𝑘 = 1,… ,𝑛. 

In the above theorem, 𝑋 ≤! 𝑌 denotes that the random variable 𝑌 stochastically 

dominates 𝑋. From the above theorem and preceding details of the distribution of 𝑆!"#, 

it follows that distribution followed by 𝑆!"# when 𝛽 lies in the space spanned by the 

eigenvectors of 𝑅!"!  corresponding to the maximum eigenvalue 𝑅!! = 𝑅!"#!  is dominated 

by the distribution followed by 𝑆!"# when 𝛽 takes any other value in 𝛥. 
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Chapter 3 A comparison of predicted and observed imputation quality for rare 
and low-frequency rare variants 

 

INTRODUCTION 

The advent of high-throughput DNA sequencing has made it possible to assay 

nearly the complete spectrum of human genetic variation. However, genome 

sequencing remains expensive for large studies. Genome-wide genotyping with dense 

genotype arrays followed by imputation based on sequenced reference panels is a cost-

effective alternative to sequencing. This strategy is used routinely in genome-wide 

association studies (GWAS) to improve genome coverage, facilitate meta-analyses and 

increase power. Availability of larger reference panels is improving imputation accuracy 

for low-frequency (0.5% ≤ 𝑀𝐴𝐹 < 5%) and rare variants (𝑀𝐴𝐹 < 0.5%) and has the 

potential to reduce the need for sequencing. 

Genotype imputation uses information from a densely typed reference panel (e.g. 

HapMap, 1000 Genomes, Haplotype Reference Consortium, CAAPA, or TOPMed) to 

predict the genotypes at markers that are genotyped/sequenced in the reference panel 

but not in the study participants. Commonly used imputation algorithms such as Beagle 

4.1 (Browning and Browning, 2007), Impute2 (Howie et al., 2009), and Minimac3 (Das 

et al., 2016) calculate posterior probabilities for each possible genotype (at sites where 

genotypes are unobserved/missing) conditional on observed genotypes of nearby 

variants. Under the assumption of an additive genetic model, single-variant association 

analyses typically use imputed genotype dosages (predicted expected allele counts for 
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the unobserved genotypes) as a substitute for the (unknown) true genotypes since, in 

contrast to best-guess genotypes (genotypes with maximum posterior probability), 

dosages account for genotype uncertainty (Zheng et al., 2011).  

In this paper, we measure variant level imputation quality as the squared 

correlation between dosages and true genotypes since this is the most commonly used 

measure. We refer to this measure as the ‘realized imputation quality’ or the ‘realized 

RSQ’. Since true genotypes are unobserved in practice for imputed variants, the 

realized imputation quality is also unknown. Beagle, IMPUTE, and Minimac provide 

imputation quality scores (called allelic-R2, INFO, and MACH R2, respectively) for each 

imputed variant. Each of these quality scores summarizes the uncertainty in the 

genotype posterior probability distributions with apparently different metrics. Each score 

can be calculated from the output of any imputation program that provides imputed 

genotype posterior probabilities as part of its output. We note that these scores only 

reflect the genotype prediction uncertainty, and cannot reflect bias due to miscalibration 

which occurs when the imputed genotype posterior probabilities do not match the true 

posterior probabilities. However, realized imputation quality reflects both the genotype 

prediction uncertainty and miscalibration bias. 

Many studies use quality scores to filter out (presumed) poorly imputed variants 

from all downstream analyses. For example, common variants with MACH R2 < 0.3 or 

IMPUTE INFO < 0.4 are typically filtered out. All three estimated quality scores are 

highly correlated with the realized RSQ between dosages and genotypes and yield high 

sensitivity and specificity when used as classifiers of well (realized RSQ > 0.5) and 

poorly imputed common variants. Recent studies (Deelen et al., 2014; Pistis et al., 
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2015) have shown that the classification accuracy of two of these scores (MACH R2 

and INFO) decreases with decreasing minor allele frequency and have suggested that 

more stringent cutoffs are required for filtering low-frequency and rare variants. 

However, none of these studies calculated the three scores based on the results of the 

same imputation algorithms, making it impossible to attribute differences in the behavior 

of the quality scores to the scores themselves or to differences in the underlying 

imputation algorithms and the corresponding genotype posterior probabilities. Further, 

no study has assessed whether the accuracy of quality scores improves when using 

large reference panels like the Haplotype Reference Consortium (HRC) panel. 

The goal of this study is to assess the reliability of quality scores as indicators of 

observed imputation quality for low-frequency and rare variants and to assess how this 

reliability depends on the choice of imputation algorithm, quality score and reference 

panel. 

We performed whole-genome imputation (using Beagle 4.1, IMPUTE2 and Minimac 3) 

on 8,378 Finnish participants in the METSIM study (Stančáková et al., 2009) that were 

genotyped on the Illumina OmniExpress GWAS array (used as the imputation 

backbone). We also submitted these data to the Michigan Imputation Server (Das et al., 

2016) for imputation using the HRC panel (McCarthy et al., 2016). We used genotypes 

on the same participants from the separately genotyped Illumina ExomeChip array as 

the “gold-standard” or true genotypes; the exome array includes large numbers of 

common, low-frequency and rare variants. 

We calculated all three quality scores from the output from each of the three imputation 

algorithms. As expected, we found that the classification accuracy of quality scores 
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decreases as a function of minor allele frequency regardless of which imputation 

algorithm and quality score are used. The reduction in classification accuracy is 

attributable to the poorer realized imputation quality for low-frequency and rare variants. 

The classification accuracy for low-frequency and rare variants is better when using the 

HRC reference panel (relative to the classification accuracy when using 1KG) due to 

substantially better realized imputation accuracy afforded by the larger reference panel 

size. We find that that an INFO/MACH RSQ cutoff of 0.3 works as well for classification 

with HRC based imputation as does a cutoff of 0.6 for imputation using the 1KG panel. 

 

METHODS 

Description of sample and genotype data 

METSIM is a population based study of 10,197 men aged 45 to 73 years 

randomly selected from the population register of Kuopio, Finland (Stančáková et al., 

2009). We included in our analysis the 8,378 METSIM participants with less than 

second-degree relatedness to any other participant. Study participants were genotyped 

with both the Illumina HumanOmniexpress-12v1_C array (OmniExpress) and the 

Illumina HumanExome-12v1_A array (ExomeArray). The ExomeArray contains a large 

number of variants that are classified as low-frequency and rare in Europeans. 

Approximately 600,000 phased variants that passed quality control (QC) for the 

OmniExpress were used as the imputation backbone; details of QC and phasing can be 

found in Teslovich et al. (2018). We treated ExomeArray genotypes passing QC as 

“gold-standard” (true) genotypes. Details of ExomeArray QC can be found in Huyghe et 

al. (2013). 
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Imputation procedures 

We used the 1KG Phase 3 phased reference panel VCF file available from the 

minimac3 website (https://genome.sph.umich.edu/wiki/Minimac3) as the reference 

panel input for Beagle, minimac3 and IMPUTE2. We transformed the OmniExpress 

variant data using the conform-gt script available from the Beagle website 

(https://faculty.washington.edu/browning/conform-gt.html) to make strand and reference 

alleles consistent with the minimac3 reference panel VCF. We used the same 

transformed file as the backbone input to all three algorithms and ran all algorithms with 

default options. In addition, we submitted our data to the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/) for imputation using the HRC reference panel 

(which contains approximately 65,000 haplotypes).The Michigan Imputation Server 

used the minimac3 algorithm to perform imputation. 

 

Definitions of quality scores 

Three genotype imputation quality scores are commonly used. Allelic-RSQ is 

defined as the squared correlation between imputed genotype dosages and genotypes 

with maximum posterior probability (Marchini and Howie, 2010). MACH-RSQ is defined 

as the ratio between the variance of (haplotype) dosages (based on allelic posterior 

probabilities rather than genotype posterior probabilities) and the variance of a Bernoulli 

random variable with the same mean as the dosages (). The INFO quality score is 

defined as the relative information about the population allele-frequency contained in 

the imputed data (Marchini and Howie, 2010).  
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Formulae for the scores are as follows. Following the notation in Marchini and 

Howie (2010), for a given variant let e! denote the imputed dosage for individual i, and z! 

the imputed genotype with maximum posterior probability. Let p!" (j ∈ {0,1,2}) denote the 

imputed posterior probability that the alternate allele count for individual i is j. Finally, let 

ℎ!! & ℎ!! denote the imputed posterior probability of observing the alternate allele for 

two chromosomes of individual 𝑖. Define f! = p!" + 4p!", and  θ = e!! /2N (the 

estimated allele frequency), where N is the sample size. 

The MACH-RSQ quality score is calculated as 

ℎ!!! + ℎ!!!
2𝑁 −! 𝜃! 

θ(1− θ)
 

The allelic-RSQ score is calculated as  

z!e! −
1
N ( z! e!!! )!

!

f! −
1
N e!!!

!
z!! −

1
N z!!!

! 

The INFO score is calculated as  

1−
(f! − e!!)!

2Nθ(1− θ)
 

 

We note that the definition for MACH-RSQ used here differs from the one in Li et al. 

(2010) and  Marchini and Howie (2010) but matches the formula currently employed by 

the minimac software (Sayantan Das, personal communication). Note that each quality 

score can be computed given only genotype posterior probabilities (since ℎ!!! + ℎ!!! =

𝑒!! − 2𝑝!!). Thus, although Beagle, IMPUTE and minimac output different quality scores 

(allelic-RSQ, INFO and MACH-RSQ respectively), each quality score can be computed 
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on imputation results using any of the three algorithms, since each algorithm provides 

an option to output genotype posterior probabilities.  

 

To distinguish between trends in the results attributable to differences between 

scores as opposed differences between algorithms, we calculated each score on the 

output from each algorithm (to yield a total of nine score-algorithm pairs). It is easy to 

show that MACH-RSQ (as defined above) and INFO are numerically identical when 

calculated on the same imputed genotype posterior probabilities. 

 

RESULTS 

Imputation with 1KG reference panel 

43,073 imputed variants were also present on the ExomeArray. Of these, 21,790 

are rare, 10,707 low-frequency and 10,576 common. The realized RSQ decreased with 

decreasing minor-allele frequency and had a bimodal distribution for low-frequency and 

rare variants (Figure 3-1 shows results for minimac; results for Beagle and IMPUTE are 

similar). 



 42 

 

Figure 3-1 Histogram of realized RSQ stratified by allele-frequency group; rows show 
data for rare (top), low-frequency and common variants (bottom). Results are for 
imputation with minimac3 using 1KG reference panel. 

We found that allelic-RSQ is a poor discriminator of realized RSQ for low-

frequency and rare variants with realized RSQ typically being lower than allelic-RSQ 

except when allelic-RSQ was close to zero. Since allelic-RSQ works poorly for rare 

variants, we restrict attention to the INFO quality score for the remainder of this paper. 

The distribution of realized RSQ given INFO had larger variances and longer tails for 

rare and low-frequency variants (Figure 3-2) as compared to common variants, 

especially for lower INFO values, implying greater uncertainty about realized RSQ for a 

given INFO value. Using an INFO threshold of 0.3 (commonly employed for common 

variants) to identify variants with realized RSQ > 0.5 yields positive predictive values 

Realized	RSQ 
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(PPVs) of 99.7%, 93% and 74% for common, low-frequency and rare variants for 

imputation with minimac3; the corresponding sensitivities are 99.7%, 99% and 85%. 

These values are similar for Beagle except for rare variants where it yields PPV and 

sensitivity of 71% and 92% respectively. Using a more stringent INFO threshold of 0.6 

yields PPVs 99.9%, 97% and 87% for minimac3; the corresponding sensitivities are 

99.7%, 94% and 60%. 

IMPUTE2 tends to systematically predict larger than observed values for realized 

RSQ and has slightly lower accuracy of classification. The PPVs for INFO thresholds of 

0.3 and 0.6 are 99.5%, 89%, 49% and 99.5%, 92%, 65%. 

In summary, both the PPV and sensitivity of INFO for classifying variants with realizes 

RSQ > 0.5 decreases with decreasing minor allele frequency regardless of the 

algorithm used to perform imputation. Increasing the threshold from 0.3 to 0.6 results in 

better PPVs at the cost of sensitivity. 
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Figure 3-2 Boxplots of realized RSQ within INFO bins of width 0.2. Rows show data for 
rare (top), low-frequency and common variants (bottom). Colors represent imputation 
algorithms. Data are for imputation using the 1KG reference panel. 

Imputation with HRC reference panel 

HRC imputation yielded 65,382 imputed variants (39,799 rare, 13,317 low-

frequency, and 12,266 common) also present on the ExomeArray. The mean imputation 

quality was substantially better than imputation based on 1KG, especially for low-

frequency and rare variants (Figure 3-3). Realized RSQ was greater than 0.5 for 68% of 

rare and 99% of low-frequency variants (compared to 44% and 90% for imputation with 

1KG using minimac3). 

The conditional variance of realized RSQ given INFO was slightly larger for HRC 

compared to 1KG. Also, for rare variants, the HRC panel imputation INFO tended to 
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slightly underestimate the realized RSQ when the INFO values were low. An INFO 

threshold of 0.3 yielded PPVs of  

 

Figure 3-3 Histogram of realized RSQ stratified by allele-frequency group; rows show 
data for rare (top), low-frequency and common variants (bottom). Data are for 
imputation with minimac3 using HRC reference panel. 

99.8%, 99% and 87% for common, low-frequency and rare variants respectively with 

sensitivities of 99.9%, 99.9% and 93% respectively. Thus, for the HRC panel an INFO 

threshold of 0.3 worked as well as a threshold of 0.6 for the 1KG panel with respect to 

the PPV (and better in terms of sensitivity). 

 

DISCUSSION 

Realized	RSQ 
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We assessed the impact of imputation algorithm, reference panel size, allele 

frequency of imputed variant and quality score definition on the utility of imputation 

quality scores as an indicator of realized quality of imputed variants. We reiterate that 

imputation quality scores are  

 

Figure 3-4 Boxplots of realized RSQ within INFO bins of width 0.2. Rows show data for 
rare (top), low-frequency and common variants (bottom). Colors represent reference 
panel. Blue represents imputation with minimac3 using 1KG reference panel. Black 
represents imputation with minimac3 using HRC reference panel. 

only informative about the precision of imputed genotypes insofar as the inferred 

posterior distribution of genotypes is well calibrated. 

We showed that INFO and MACH-RSQ (as currently implemented in minimac3) are 

numerically equal when calculated on the same imputed data. Further, we showed that 

allelic-RSQ performs poorly for low-frequency and rare variants as compared to INFO 
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when calculated on the same data. Thus, we recommend implementation of INFO as a 

standard imputation quality score for any algorithm that calculates genotype posterior 

probabilities as part of the imputation procedure.  

The IMPUTE2 imputations have both slightly lower realized imputation quality 

and poorer concordance between quality scores and realized quality as compared to 

minimac3 and Beagle. This may be because we used default parameter settings to run 

each algorithm or due to inherent differences between the algorithms. For IMPUTE2, 

the k_hap parameter controls the number of reference haplotypes used to perform 

imputation, with larger values resulting in greater imputation accuracy but increased 

run-time. We re-ran imputation with IMPUTE2 on chromosome 1 changing the default 

k_hap setting from 500 to 1000. We observed a slight improvement in realized quality 

and also for classification; the PPV for rare variant classification increased from 49% 

(k_hap=500) to 54% (k_hap=1000). Increasing k_hap further could result in greater 

improvement at the cost of run-time. 

The ability of imputation quality scores to reflect realized imputation quality is 

reduced for low-frequency and rare variants for two reasons. First, the conditional 

variance of observed quality for a given imputation quality score is slightly higher for 

rarer variants (especially for variants with INFO < 0.8; see Figures 3-2 and 3-4). 

Second, the ability to classify well (realized RSQ > 0.5) and poorly imputed variants is 

reduced for rarer variants. The classification ability is influenced by the distribution of 

realized quality. Almost all common variants have realized RSQ > 0.8 (even for the 

smaller 1KG panel); the proportion of poorly imputed variants grows with decreasing 

allele frequency. Thus, a stringent INFO threshold of 0.6-0.7 should be used to filter out 
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poorly imputed rare and low-frequency variants when using the 1KG reference panel. In 

contrast, for data imputed with the HRC panel, the currently used INFO threshold of 0.3 

works well for low-frequency variants and adequately for rare variants. This result is 

driven primarily by the fact that realized RSQ values are higher for low-frequency and 

rare variants for data imputed with the HRC reference panel. Thus, using the HRC 

reference panel improves the proportion of correctly classified high quality variants (as 

compared to the 1KG reference panel) due to both, the higher average observed 

imputation quality and the lower acceptable threshold of quality score used for 

classification.  
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Chapter 4 Increasing statistical power of disease association studies by including 
external control 

 

INTRODUCTION 

The two-sample comparison framework of case-control studies has proven remarkably 

successful for uncovering genetic association with disease and genome-wide 

association studies (GWAS) have successfully identified thousands of disease-variant 

associations over the last decade. However, the percentage of heritability explained by 

currently identified loci is low for many diseases, especially polygenic diseases which 

tend to have complex genetic and environmental etiology.  

Recently, databases like the UK Biobank (Bycroft et al., 2018), Genome 

Aggregation Database (gnomAD) (Karczewski et al., 2020), and Exome Aggregation 

Consortium (ExAC) (Lek et al., 2016) with high-quality genetic information on large 

numbers of individuals have emerged. These data are freely available to the scientific 

community and may be added as additional external data into an existing internal case-

control dataset to increase sample size. This approach has been recently used for 

single variant association testing (NINDS Stroke Genetics Network and International 

Stroke Genetics Consortium, 2016) and gene-based burden tests (Guo et al., 2018; 

Hendricks et al., 2018) where, in each study, the external individuals were included as 

controls. 

Although including external data has the potential to increase power, there are 

multiple challenges to using this approach. Differences in genetic ancestry between 
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external and internal individuals may lead to bias due to confounding if disease 

prevalence varies between populations. Selection bias (Hernan et al., 2014) may occur 

due to different strategies of participant recruitment or differences in willingness of 

individuals to participate (Aigner et al., 2018) between internal and external studies. 

Bias may also occur due to differential measurement errors between the internal and 

external samples, especially differential genotyping/sequencing quality due to 

differences in sample collection, preparation and analysis (Guo et al., 2018; Hendricks 

et al., 2018). Lastly, the external sample may be missing information about case-control 

status for the particular disease of interest. 

In this paper, we focus on the consequences of missing case-control status in the 

external sample and assume that other challenges do not occur, or have been 

successfully dealt with prior to association analysis (for example, through stringent pre-

analysis quality control). Missing case-control status may be a common occurrence in 

large, public datasets since they are typically designed as a general resource rather 

than being focused on particular phenotypes. When the proportion of cases in the 

external sample is confidently known to be low, a naïve analysis strategy is to treat each 

external individual as a control. This strategy enables analysis of the combined (internal 

and external) data using existing methods and software (for example, logistic 

regression). 

Even though case-control status may be missing at the individual level, the 

proportion of individuals in the external sample that are cases may be accurately know 

(for example, when the external sample is designed to be representative of a population 

and disease prevalence of that population is accurately known). Lancaster and Imbens 
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(1994) propose a method-of-moments estimation procedure for studies with 

known/validated cases and individuals with unknown case-control status (which they 

call contaminated controls). Ward et al. (2009) present an EM algorithm to estimate 

parameters in the same setting (a design that is called “presence-only design” in 

ecology). Both of these methods cannot incorporate internal (validated) controls. 

Thornton & McPeek (2010) present a score test based on estimating equations that is 

primarily designed to deal with missing genotypes in related individuals but also 

accounts for missing case-control status in a subset of individuals by incorporating a 

presumptive case proportion (or prevalence) parameter; this method cannot incorporate 

covariates. 

We propose a method (and corresponding association test) that accounts for 

known external sample case proportion by modeling the external sample as a mixture of 

cases and controls. Analysis treating external individuals as controls occurs as a special 

case and is obtained by setting external sample case proportion to zero. The proposed 

method allows inclusion of internal controls in addition to internal cases and can also 

incorporate covariates.  

We derive a closed-form expression for the score test non-centrality parameter to 

assess analytically the efficiency of the proposed method. We show that incorrect 

specification of the external sample case proportion leads to biased effect size (odds-

ratio) estimates under the alternative but not under the null; in particular, treating 

external individuals as controls leads to underestimation of odds-ratios. Incorrect 

specification of the external sample case proportion does not lead to increased Type 1 

error but may lead to decreased power when the external sample case proportion is an 
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appreciable fraction of proportion of cases in the internal sample. In particular, when 

treating the external individuals as controls, including external data leads to decreased 

power (relative to analyzing only internal participants) when the external sample case 

proportion is more than half the internal sample case proportion. In such a situation, 

accurate specification of the external sample case proportion may still allow use of the 

external data to increase power. 

 

 

METHODS 

Model 

We model the data as consisting of three groups: internal (that is, truly affected) 

cases, internal (truly unaffected) controls and the external sample. For ease of 

exposition, we assume no misclassification of case/control status in the internal sample 

(but, as we describe in the discussion, our model is easily extended to relax this 

assumption). We assume that external individuals (with missing case/control status) are 

recruited from the same pools/populations of cases and controls from which internal 

cases and internal controls are recruited (that is, we assume that selection bias is 

absent); thus, the external sample differs from the internal sample only due to missing 

case/control status. Further, we assume that each external individual is a case with 

probability 𝜋 or control with probability 1− 𝜋. When the external sample is a simple 

random sample from the same population from which the internal cases and controls 

are recruited, 𝜋 is simply the prevalence (𝛱) of the disease in that population. This 

model can be conceptualized as a partially missing data model, with case/control status 
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missing in the external sample. Alternatively, when external individuals are assumed to 

be true controls (but may contain some non-zero proportion of cases), the model can be 

conceptualized as a misclassification model with misclassification present only in 

external sample. 

We model the dependence of the probability of case/control status on the vector 

of predictors 𝐱 via logistic regression: 𝑃 case 𝐱 = 𝑒! 𝐱 ∕ (1+ 𝑒!(𝐱))  where 𝜃 𝐱 = 𝛼 +

𝐱!𝛃. In the Appendix, we derive the prospective likelihood for data with 𝑛! internal 

controls, 𝑛! internal cases, and 𝑛! external individuals as 

𝑃 internal case 𝐱 = 1− 𝛾!
𝑒! 𝐱

1+ 𝑒! 𝐱 , 

𝑃 internal control 𝐱 = 1− 𝛾!
1

1+ 𝑒! 𝐱 , 

𝑃 external 𝐱 = 𝛾!
1

1+ 𝑒!(𝐱)
+ 𝛾!

𝑒! 𝐱

1+ 𝑒!(𝐱)
, 

where  𝛾! =
!!! !!

!!! !!! !!
 , 𝛾! =

!!!
!!!!!!

, and 𝛿 𝐱 = 𝛼! + 𝐱!𝛃. The prospective model 

intercept 𝛼! = α+ log [!!!!!!][!!!]
[!!! !!! !!]!

 accounts for the proportion of total cases (both 

known internal cases and unknown external cases) in the dataset as dictated by the 

design parameters 𝑛!,𝑛!,𝑛! and the external sample case proportion 𝜋. We treat 𝜋 as a 

fixed (or known) quantity. When 𝜋 = 0 (or 𝜋 = 1) the external individuals are treated as 

controls (or cases) and the usual (prospective) logistic-regression likelihood is 

recovered. 

Straightforward calculus shows that the score with respect to 𝛃 is 𝐱!(𝑌!∗ −!
!!!

𝜇!). Here 𝑛 = 𝑛! + 𝑛! + 𝑛! is the total sample size, 𝜇! = 𝑒! 𝐱! /(1+ 𝑒! 𝐱! ) is the 

(prospective model) conditional probability of being a case given 𝐱!, and 𝑌!∗ = 0 for 
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internal controls, 𝑌!∗ = 1 for internal cases, and 𝑌!∗ = 𝑒!(𝐱!)/(1+ 𝑒!(𝐱!)) for external 

individuals, with 𝜂 𝐱! = log ![!!! !!! !!]
[!!!][!!!!!!]

+ 𝛿 𝐱! = α+ log ! !!!
!!! !

+ 𝐱!!𝛃. For external 

individuals, 𝑌!∗ can be interpreted as the conditional probability of being a case, given 𝐱!, 

in a population that is constructed by including cases with probability 𝜋 and controls with 

probability 1− 𝜋. When the external sample is a simple random sample from the same 

population from which cases and controls are recruited, 𝑌!∗ = 𝑒! 𝐱! /(1+ 𝑒! 𝐱! ); that is, 

𝑌!∗ is simply the conditional probability of being a case (given 𝐱!) in the population from 

which all individuals are drawn. The score statistic is computed by replacing the 

parameter values in the expression for the score by their maximum-likelihood estimates 

(MLEs) under the null. Here, the  𝑌!∗ (with the hat indicating MLEs) values computed for 

the external individuals can be interpreted as mean imputations (under the null model) 

for the unknown case-control status. 

 

Score test-statistic for single-variant tests 

To derive a closed-form non-centrality parameter, we focus on score tests for 

single-variant association analysis with no covariates. That is, we consider an 

association model with 𝜃 𝐺 = 𝛼 + 𝛽𝐺, where 𝐺 is a (scalar) random variable 

representing allele count or imputation dosages for a bi-allelic genetic variant. Our 

interest is in testing the null hypothesis 𝛽 = 0 (that is, the disease and variant are not 

associated). We assume an additive model, so the test described below is an extension 

of the trend-test for binary data. 

  Since the exact external sample case proportion (𝜋) will rarely be known in 

practice, we assume that a presumptive value 𝜋∗ is used for the analysis. Setting 𝜋∗ = 0 
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is equivalent to treating the external individuals as controls; thus, the family of tests 

defined by the range of permissible 𝜋∗ values (0 ≤ 𝜋∗ ≤ 1) represents a generalization 

of this naïve strategy. 

In the absence of any covariates, the null model includes only an intercept. In the 

Appendix, we show that  𝜇! = 𝜇 = (𝑛! + 𝜋∗𝑛!)/𝑛 and, for external individuals, 𝑌!∗ = 𝜋∗. 

The score statistic can then be expressed as 

𝑆!∗ = 𝑛! 1− 𝜇 𝐺! − 𝑛!𝜇𝐺! + 𝑛! 𝑛! + 𝑛! 𝜋∗ − 𝑃!! 𝐺! 

 

where  𝐺!,𝐺!, and  𝐺! are the mean dosages in the internal controls, the internal cases, 

and the external sample, respectively, and 𝑃!! = 𝑛!/(𝑛! + 𝑛!) is the proportion of cases 

in the internal case-control sample. Note that when 𝜋∗ = 𝜋!! the score statistic depends 

only on the internal sample. The score statistic can be represented equivalently as 

𝑆!∗ = 𝑆! + 𝜋∗𝑆!|!!, where 𝑆!|!! = 𝑛! 1− 𝑃! 𝐺! − 𝑃!(𝑛!𝐺! + 𝑛!𝐺!) and 𝑃! = 𝑛!/𝑁. Note 

that 𝑆!|!! is the score statistic obtained for a logistic-regression model that treats 

external individuals as cases and internal individuals as controls. Thus, the score 

statistic 𝑆!∗ is a linear combination of two score statistics; one that compares internal 

cases to the combined group of internal controls and external individuals (𝑆!) and one 

that compares the external sample to the internal sample (𝑆!|!!). 

The model-based estimator of the variance of the score statistic ( 𝑉!∗) is provided 

in the Appendix. The score test-statistic is given by 𝑇!∗ = 𝑆!∗
! /𝑉!∗. For 𝜋∗ = 0, the test-

statistic is well defined when 𝑛! > 0 and at least one of 𝑛!,𝑛! are non-zero. In contrast, 

for 𝜋∗ > 0, the test-statistic is well defined if any two of 𝑛!,𝑛!, and 𝑛! are non-zero; 

indeed, when 𝜋∗ > 0, we can in principle build a valid test by comparing internal controls 
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to the external sample in the absence of internal cases, although this approach will 

likely have low power. Finally, we note that when 𝑛! = 0 or 𝜋∗ = 0, the resulting test is 

simply the usual trend-test for binary data. 

 

Asymptotic non-centrality parameter and relative efficiency 

From standard likelihood-theory, 𝑇!∗ asymptotically follows a chi-squared 

distribution with one degree of freedom. In the Appendix we show that the expectation 

of the score statistic 𝔼𝑆!∗ = 𝑛𝐶!,!∗𝔼(𝐺! − 𝐺!) where 𝐶!,!∗ = 1− 𝜋∗ 1− 𝜋 𝑃! 1− 𝑃! +

𝜋𝜋∗𝑃! 1− 𝑃! + 𝜋 + 𝜋∗ − 2𝜋𝜋∗ 𝑃!𝑃! and 𝑃! = 𝑛!/𝑛 for 𝑖 = 1,2. Under the null 

hypothesis, 𝔼𝑆!∗ = 0 regardless of the value of 𝜋∗, since 𝔼 𝐺! − 𝐺! = 0. Further, we 

show that under the null and local alternatives (that is, 𝛽 = O(√𝑛!!)), the estimated 

variance 𝑉!∗ converges to 𝑉!∗ = 𝑛𝐾!∗𝑉! where 𝑉! is the variance of 𝐺 (in the population) 

and 𝐾!∗ = 1− 𝜋∗ !𝑃! 1− 𝑃! + 𝜋∗!𝑃! 1− 𝑃! + 2𝜋∗ 1− 𝜋∗ 𝑃!𝑃!. Straightforward 

algebra shows that 𝑉!∗ is the exact (finite sample) variance of the score statistic under 

the null. 

The asymptotic non-centrality parameter is 𝜆!∗ = 𝔼!𝑆!∗/𝑉!∗ = [𝐶!,!∗
! /𝐾!∗]𝛥! 

where 𝛥! = lim!→! 𝑛𝔼 𝐺! − 𝐺! /𝑉!. Under the null, 𝜆!∗ = 0 for 0 ≤ 𝜋∗ ≤ 1; that is, the 

score test is valid (controls Type 1 error) regardless of the specific value 𝜋∗ used for the 

analysis. Further, it is easy to verify that, for a fixed design that includes external 

individuals (that is, fixed 𝑃!,𝑃!,𝑃! with 𝑃! > 0) with fixed effect size, the non-centrality 

parameter is maximized when 𝜋∗ = 𝜋, that is, when the presumptive external sample 

case proportion is equal to the true external sample case proportion. Thus, for a fixed 



 59 

design, the test based on the test-statistic 𝑇! is most powerful amongst the class of 

tests based on 𝑇!∗ with 0 ≤ �∗ ≤ 1. 

In this paper, we compare two tests by assessing the relative efficiency of one 

with respect to the other. The relative efficiency of test 𝑇! with respect to a reference 

test 𝑇! is defined as 𝜆!/𝜆!, the ratio of their non-centrality parameters. In contrast to a 

comparison of power, the (asymptotic) relative efficiency does not depend on either the 

effect size 𝛽 or the variance of the genetic variant 𝑉!. The relative efficiency can be 

interpreted as a ratio of (effective) sample sizes. A relative efficiency greater (less than) 

than one indicates that 𝑇! is more (less) powerful than 𝑇!. 

 

RESULTS 

Asymptotic bias 

Denote by 𝛽!,!∗ the value to which the MLE asymptotically converges when 

assuming 𝜋∗ is the external sample case proportion and the true external sample case 

proportion is 𝜋. We say that the MLE is asymptotically unbiased when 𝛽!,!∗ = 𝛽, where 

𝛽 is the true single-variant effect size. From asymptotic likelihood-theory, we know that 

𝛽!,! is consistent (since the MLE for a correctly specified model is consistent under the 

usual regularity conditions). Using the results in the Methods and the fact that the Wald 

and score tests are asymptotically equivalent under the null and under local 

alternatives, in the Appendix we show that 𝛽!,!∗/𝛽 ≈ 𝑏!,!∗ where 𝑏!,!∗ = (𝐶!,!∗𝐾!)/

(𝐶!,!𝐾!∗). When 𝛽 ≠ 0, 𝑏!,!∗ is a measure of the relative asymptotic bias; values greater 

than one indicate bias away from the null and values less than one indicate bias 
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towards the null. Note that when 𝛽 = 0, 𝛽!,!∗ is also equal to 0 for all 𝜋 and 𝜋∗; that is, 

under the null, misspecification of 𝜋∗ does not result in bias. 

Figure 4-1 shows how the relative bias 𝑏!,!∗ varies with 𝜋∗ for various values of 𝜋 

for a design with equal number of internal cases and internal controls (𝑃!! = 0.5) and 

equal external  

 

Figure 4-1 Dependence of relative bias 𝑏!,!∗ (Y-axis) on the presumptive external 
sample case proportion (𝜋∗, X-axis) used for analysis for three different values of true 
external sample case proportion (𝜋). Black, orange, and blue curves depict 𝜋 values of 
0.1, 0.2, and 0.3 respectively. The values in this plot were calculated for a study in 
which the external sample comprises half of the total sample (𝑃! = 0.5) and the number 
of internal cases is equal to the number of internal controls (𝑃! = 𝑃!). The relative bias is 
defined as 𝑏!,!∗ = 𝛽!∗/𝛽 where 𝛽 is the true effect size and 𝛽!∗ is (asymptotically) the 
expectation of the effect size estimator for analysis with presumptive external sample 
case proportion set to 𝜋∗. 

and internal sample sizes (𝑃! = 0.5). Note that all displayed values of 𝜋 are less than 

𝑃!!, a situation that we believe will be typical in practice. The figure illustrates some 

general properties. First,  𝑏!,!∗ < 1 when 𝜋∗ < 𝜋 or 𝜋∗ > 𝑃!!; that is, underspecifying 𝜋∗ 

or setting 𝜋∗ to be greater than internal sample case proportion results in under 
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estimation of 𝛽 (on average). Second, 𝑏!,!∗ > 1 when 𝜋 < 𝜋∗ < 𝑃!!; that is, setting 𝜋∗ to 

any value between the external and internal sample case proportions results in 

overestimation of 𝛽 (on average). When 𝜋∗ = 0 (analysis assuming external individuals 

are true controls), the under-estimation becomes worse (that is, 𝑏!,! decreases) as 𝜋 

increases. 

Bias increases (𝑏!,!∗ moves away from one) as the proportion of external 

individuals increases. When 𝜋∗ = 0, we have lim!!→! 𝑏!,! = 1− 𝜋. Thus, for analysis 

with 𝜋∗ = 0, we have 1− 𝜋 < 𝑏!,! ≤ 1 for all designs, so that for analysis treating 

external individuals as controls, the underestimation can be no worse than 𝜋%. 

 

Conditions under which including the external sample increases power 

Although treating the external individuals as controls results in bias towards the 

null when 𝜋 > 0, the increase in sample size due to including the external sample may 

still result in increased power for association tests (compared to analyzing internal 

samples only) if the external sample case proportion is small. Figure 4-2 shows the 

relative efficiency of tests applied to designs obtained by adding varying number of 

external individuals to 𝑛! = 5000 internal controls and 𝑛! = 5000 internal cases; the 

reference design contains no external individuals (𝑛! = 0). We consider analysis with 

𝜋∗ = 0 (solid lines) and 𝜋∗ = 𝜋 (dashed lines) when true external sample case 

proportions (𝜋) are 0, 0.1, 0.2, and 0.3. Figure 4-2 shows that, when 𝜋 is sufficiently low, 

adding external individuals increases efficiency even when external individuals are 

incorrectly assumed to be controls, although efficiency relative to a design with equal 𝑛! 

decreases with increasing 𝜋. However, if 𝜋 is large, treating external individuals as 
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controls may actually lead to decreased efficiency relative to analysis that avoids the 

external sample entirely. In contrast, analysis with 𝜋∗ = 𝜋 yields increased power even 

when 𝜋 is large. 

To provide useful guidance for how accurately 𝜋∗ must be specified so that 

including the external sample increases efficiency and power, we focus on situations 

where 𝜋 ≤ 𝑃!!, the situation that we expect to be typical in practice. In the Appendix, we 

derive the exact range of 𝜋∗ values that result in increased power for a given design 

(𝑛!,𝑛!,𝑛!) relative to the internal-only design (𝑛!,𝑛!, 0). While the range is a complex 

function of 𝑛!,𝑛!,𝑛! and 𝜋, it is uniformly true that including external controls increases  

power whenever max (2𝜋 − 𝑃!! , 0) < 𝜋∗ < 𝑃!!; in other words, 𝜋∗ needs to be 

accurately specified to within a (one-sided) margin of length 𝑃!! − 𝜋 from the true value 

𝜋 for increased power with addition of the external sample. In particular, treating 

external individuals as controls yields increased power compared to not  

 

Figure 4-2 Relative efficiency (Y-axis) of analysis including the external sample 
compared to internal-only analysis as a function of external sample size (X-axis, log 



 63 

scale). Internal sample consist of 5000 cases and 5000 controls. Colors depict different 
external sample case proportions (𝜋). Dashed lines show relative efficiency for analysis 
with 𝜋∗ = 𝜋. Solid lines represent analysis assuming external individuals are true 
controls (𝜋∗ = 0). Black line depicts relative efficiency of 1. 

including the external sample when 𝜋 < 𝑃!!/2; that is, the internal case proportion 

should be at least twice the external case proportion. 

Note that, the range max (2𝜋 − 𝑃!! , 0) < 𝜋∗ < 𝑃!! includes 𝜋 when 𝜋 < 𝑃!!. Thus, 

the test based on 𝑇! (setting 𝜋∗ = 𝜋) results in increased power with the external 

sample for all values 𝜋 < 𝑃!!. However, as noted above, when 𝜋∗ = 𝑃!! the test-statistic 

𝑇! does not depend on the external sample; thus, when 𝜋 = 𝑃!! the optimal testing 

procedure discards the external sample entirely. Here, any test 𝑇!∗ with 𝜋∗ ≠ 𝑃!! will 

result in decreased power upon adding external controls. Indeed, for a given external 

sample case proportion, the range of 𝜋∗ values for which including the external sample 

increases power becomes smaller as 𝜋 gets closer to 𝑃!! and the set is empty when 

𝜋 = 𝑃!!. 

 

Power gain due to accurate specification of 𝝅∗ 

As noted earlier, analysis with 𝜋∗ = 𝜋 yields the most powerful test amongst all 

possible 𝜋∗ values. Figure 4-2 shows that the power gained due to accurate 

specification of 𝜋∗ (relative to treating external individuals as controls, 𝜋∗ = 0) is modest 

for small 𝜋 but can be more appreciable when 𝜋 approaches or exceeds 𝑃!!/2. Figure 

4-3 further illustrates this pattern as 𝑃!! varies for fixed 𝑃! = 0.5 and a fixed external 

sample case proportion 𝜋 = 0.25 that we expect to be at the upper end of possible 

values in typical circumstances. Here, correctly specifying 𝜋∗ = 0.25 results in an 

efficiency gain of 8%, 4% and 1% when the internal sample case proportions are 0.5, 
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0.75 and 0.95 respectively. Thus, when internal sample contains a large proportion of 

cases, treating external individuals as controls is not substantially less powerful than the 

optimal testing procedure. Indeed, it is easy to verify that when the internal sample 

consists of only cases (𝑃!! = 1), the non-centrality parameter 𝜆!∗ does not vary with 𝜋∗; 

that is, when 𝑃!! = 1, tests based on different 𝜋∗ values all have the same power. 

However, estimation bias does depend on 𝜋∗. In the Appendix we show that the 

(conservative) range of 𝜋∗ values that yield tests more powerful than tests setting 𝜋∗ = 0 

is 0 < 𝜋∗ < 2𝜋/(1+ 𝜋). Thus, as 𝜋 becomes smaller, 𝜋∗ needs to be specified more 

accurately for 𝑇!∗ to be more powerful than the naïve test 𝑇!. 

 

DISCUSSION 

We provide an analytical evaluation of a general testing strategy that 

incorporates knowledge about the proportion of cases in an external sample with 

missing case-control status. The method is a generalization of the naïve strategy that 

treats all external individuals as controls. We show that inaccurate specification of the 

external sample case proportion leads to biased estimation of effect sizes (except under 

the null). We provide an approximation for the  
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Figure 4-3 Relative efficiency (Y-axis) of tests with varying 𝜋∗ (X-axis) compared to the 
test that treats external individuals as controls (𝜋∗ = 0) for designs with equal internal 
and external sample sizes (𝑃! = 0.5). The true external sample case proportion is 
𝜋 = 0.25. Colors depict different internal sample case proportions (𝑃!! = 𝑛!/(𝑛! + 𝑛!)). 

bias and show that treating external individuals as controls leads to underestimation of 

the effect size. 

Inaccurate specification of the external sample case proportion does not increase 

Type 1 error, but may lead to decreased power relative to analysis that avoids the 

external sample. We show that the accuracy with which the external sample case 

proportion needs to be specified to prevent power loss increases as the true proportion 

approaches the internal sample case proportion. In particular, for analyses that treat 

external individuals as controls, the internal case proportion needs to be larger than 

twice the external case proportion to prevent loss of power upon including external 

individuals. We note this condition is likely to be satisfied in practice since most case-

control studies tend to be close to balanced. When this condition is not satisfied, the 

external sample can still be included (using the proposed method to model 𝜋) to 
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increase power if the external sample case proportion is known to within a range of 

𝑃!! − 𝜋 around either side of 𝜋. Our results show that, when the internal sample is 

balanced between cases and controls, treating external individuals as controls is a 

powerful strategy for including external individuals with unknown case-control status 

even when external sample case proportions are as large as 20%.  

Quantification of loss of efficiency and bias due to misclassification of case-

control status across all individuals has been addressed in both the statistics (Neuhaus, 

1999) and genetic epidemiology (Edwards et al., 2005) literature. We extend these 

results to the situation where only a subset of observations are missing/misclassified for 

case-control status. Note that our likelihood expression for external individuals matches 

that provided in Neuhaus (1999) under a prospective design. In Neuhaus (1999), 𝛾! is 

the probability that a control is incorrectly classified as a case and 𝛾! is the probability 

that a case is incorrectly classified as a control. Neuhaus (1999) assumed that the 

constants 𝛾! and 𝛾! are known in a prospective study setting; we clarify how they relate 

to 𝜋,𝑛!,𝑛! and 𝑛! in a retrospective study with external controls. Further, we note that 

the likelihood presented here can be easily modified to incorporate misclassification in 

the internal sample by considering internal cases and internal controls as mixtures. 

The proposed method is based on and is an extension of other methods that deal 

with missing case-control status in a subset of samples. Lancaster and Imbens (1994) 

propose a method-of-moments estimation procedure for studies with known/validated 

cases and individuals with unknown case-control status (which they call contaminated 

controls). Ward et al. (2009) present an EM algorithm to estimate parameters in the 

same setting (a design that is called “presence-only design” in ecology). We extend the 
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model proposed by them to include known (internal) controls. Availability of the 

information matrix reveals that the proposed likelihood can be maximized by the 

Newton-Raphson or iteratively re-weighted least-squares algorithm. Further, we derive 

the score test that is computationally more efficient than the Wald or likelihood ratio 

tests in a GWAS setting. Thornton & McPeek (2010) present a score test based on 

estimating equations that is primarily designed to deal with missing genotypes in related 

individuals but also accounts for missing case-control status in a subset of individuals 

by incorporating a presumptive case proportion (or prevalence) parameter; their method 

cannot incorporate covariates. Our proposed score test is equivalent to their test 

statistic in the absence of covariates, missing genotypes and relatedness. 

We reiterate that our model and power/Type 1 error calculations assume that, 

apart from missing case-control status, no other systematic differences exist between 

internal and external samples. This assumption is unlikely to hold in practice given 

expected differences in ancestry, sample recruitment (selection bias), biological sample 

collection and assay techniques (differential measurement error) between internal and 

external samples. The SiGN study (NINDS Stroke Genetics Network and International 

Stroke Genetics Consortium, 2016) with external controls performed multiple rounds of 

variant quality control and genomic control corrections before genomic inflation factors 

reduced to acceptable levels. Guo et al. (2018) recommend multiple rounds of stringent 

quality control based on sequencing read depths, sequencing quality scores, variant 

pathogenicity filters and ancestry for burden tests with external controls. Hendricks et al. 

(2018) present a burden testing method that uses burdens of benign (presumed null) 

variants to control for test statistic inflation. Lee et al. (2017) propose a method (iECAT) 
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that controls for systematic differences between internal and external samples by down-

weighting external samples according the allele-frequency differences between internal 

and external controls. We note that appropriately controlling for systematic differences 

between internal and external samples will likely reduce power; thus, our power 

calculations are therefore likely optimistic. 

In summary, we present a method to account for known case proportion in the 

external sample and present associated power calculations. We show that, in the 

absence of other challenges and for internal designs with a suitably large proportion of 

cases, making use of external data with missing case-control status can be a useful 

strategy even when external individuals are incorrectly treated as controls. 

 

APPENDIX 

Derivation of the prospective likelihood 

Let 𝑌 be a binary random variable identifying cases (𝑌 = 1) and controls (𝑌 = 0) in a 

population of interest. Let 𝐱 denote a vector of predictors and 𝑓(𝐱) denote the probability 

density function (PDF) for 𝐱 in this population. We assume that 𝑃 𝑌 = 1 𝐱 = 𝑒! 𝐱 ∕

(1+ 𝑒!(𝐱))  where 𝜃 𝐱 = 𝛼 + 𝐱!𝛃. Let 𝑃 𝑌 = 1 = 𝛱; that is, 𝛱 is the prevalence of the 

disease in the population of interest. Denote by 𝑓!(𝐱) and 𝑓!(𝐱) the conditional PDFs of 

𝐱 in controls and cases, respectively. Then, by Bayes Theorem, 𝑓!(𝐱) =
!(𝐱)

(!!!)(!!!!(𝐱))
 

and 𝑓!(𝐱) =
!(𝐱)!!(𝐱)

!(!!!!(𝐱))
. 

We assume that the internal sample is constructed by recruiting 𝑛! individuals (internal 

controls) by simple random sampling from the subset of controls in the population and 

𝑛! individuals (internal cases) by simple random sampling from the subset of cases. We 
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assume that each individual in the external sample is, with probability 𝜋, a randomly 

sampled case or, with probability 1− 𝜋, a randomly sampled control. Case-control 

status is not recorded for any individual in the external sample. Then, 𝑓! 𝐱 = 1−

𝜋 𝑓! 𝐱 + 𝜋𝑓!(𝐱) is the PDF of 𝐱 for an individual in the external sample, where 𝑓!(𝐱) 

and 𝑓!(𝐱) are the PDFs of 𝐱 for internal controls and internal cases, respectively. The 

study sample is the collection of 𝑛! internal controls, 𝑛! internal cases and 𝑛! external 

individuals with total sample size 𝑛 = 𝑛! + 𝑛! + 𝑛!. 

Let 𝑍 be a categorical variable taking values “internal control”, “internal case”, 

and “external”. Define 𝑃! = 𝑛!/𝑛, 𝑃! = 𝑛!/𝑛, and 𝑃! = 𝑛!/𝑛. Consider an alternative 

sampling scheme in which a total of 𝑛 independent observations (𝑍, 𝐱) are obtained in 

the following manner: 𝑍 is recorded as “internal control” and 𝐱 is sampled from 𝑓!(𝐱) 

with probability 𝑃!, or 𝑍 is recorded as “internal case” and 𝐱 is sampled from 𝑓!(𝐱) with 

probability 𝑃!, or 𝑍 is recorded as “external” and 𝐱 is sampled from 𝑓!(𝐱) with probability 

𝑃!. Define 𝐷 𝐱 = 𝑃!𝑓! 𝐱 + 𝑃!𝑓! 𝐱 + 𝑃!𝑓!(𝐱). For this sampling scheme, 

𝑃 𝑍 = "internal control" 𝐱 = 𝑓!(𝐱)/𝐷 𝐱 , 𝑃 𝑍 = "internal case" 𝐱 = 𝑓!(𝐱)/𝐷 𝐱  and 

𝑃 𝑍 = "external" 𝐱 = 𝑓!(𝐱)/𝐷 𝐱 . Straightforward algebra yields the expressions 

presented in the Model section of the main text. 

The function 𝐿 𝛼! ,𝛃 = 𝑃(𝑍!|𝐱!)!
!!!  is called the prospective likelihood. It is well 

known that maximizing the prospective likelihood yields a consistent estimator (𝛃) for 𝛃 

and the usual variance-covariance matrix for 𝛃 is asymptotically correct (Prentice & 

Pyke, 1979; Scott & Wild, 1997). However, we note that since we treat 𝜋 as a known 

parameter, consistent estimation is dependent on correctly specifying 𝜋. That is, when 𝜋 

is incorrectly specified, 𝛃 may not be asymptotically unbiased. 
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Let 𝐗 be the design matrix (with the first column being the intercept) and 

𝛬! = (𝛼! ,𝛃!) be the vector of parameters for the prospective likelihood. Straightforward 

calculations show that the score corresponding to the prospective likelihood is 

𝐒 = ! !"# !
!"

= 𝐘∗ − 𝛍 !𝐗 where 𝐘∗ and 𝛍 are the vectors 𝑌!∗,… ,𝑌!∗ ! and 𝜇!,… , 𝜇! ! with 

𝑌!∗ and 𝜇! as defined in the main text. Similar calculations show that the prospective 

likelihood Fisher-Information matrix is 𝑖! = 𝐗!𝐕!𝐗 where 𝐕! is a diagonal matrix with 𝑖, 𝑖!! 

entry 𝜇!(1− 𝜇!) if the 𝑖!! individual is an internal case or internal control and 𝜇! 1− 𝜇! −

𝑌!∗(1− 𝑌!∗) if the 𝑖!! individual is external. 

 

Score test for single variant analysis with no covariates  

For a single variant model with no covariates, the null model contains only an 

intercept. Thus, under the null model, 𝜇! = 𝜇 = 𝑒!!/(1+ 𝑒!!) for 𝑖 = 1,… ,𝑛. Further, 

under the null we have 𝛼 = log !
!!!

 and, for external individuals 

𝜂 𝐺! = α+ log !∗ !!!
!!!∗ !

= log !∗

!!!∗
 so that, for external individuals, 𝑌!∗ = 𝜋∗ under the 

null. The null MLE for 𝜇 is obtained by solving the score equation (𝑌!∗ −! 𝜇) = 0 which 

yields  𝜇 = (𝑛! + 𝜋∗ 𝑛!)/𝑛. The score statistic for single variant association is given by 

𝑆!∗ = 𝐺!(𝑌!∗ −! 𝜇). Straightforward algebra yields the two expressions provided in the 

Methods section. 

Define 𝑝 = 𝜇(1− 𝜇)/𝐾!∗,  𝐺 = 𝐺!/𝑛!
! ,  𝐺! = 𝐺!!/𝑛!

!  and 𝐺!! = 𝐺!!/𝑛!∈!"#!$%&' . 

For the single variant model with no covariates, the estimated information matrix 

is 𝚤! = 𝑛𝐾!∗𝚤 where 𝚤 is a 2×2 matrix with entries 𝚤!,! = 1, 𝚤!,! = 𝚤!,! = 𝑝𝐺 − 1− 𝑝 𝑃!𝐺! 
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and 𝚤!,! = 𝑝𝐺! − 1− 𝑝 𝑃!𝐺!!. Define  𝑉! = 𝚤!,!!!/(𝑛𝐾!∗). The usual estimator for the 

variance of the score statistic under the null is 𝑉!∗ = 𝑉!
!!. 

 

Asymptotic variance of the score statistic and 𝜷 

  Under a model with no covariates, the genotypes for internal controls, internal 

cases, and external individuals are three independent, identically distributed samples 

from the distributions defined by the densities 𝑓! 𝐺 , 𝑓! 𝐺 , and 𝑓!(𝐺), respectively; 

under the null, 𝑓! = 𝑓! = 𝑓!. To calculate the expectation of the score, we make use of 

the fact that 𝔼𝐺! = 1− 𝜋 𝔼𝐺! + 𝜋𝔼𝐺!; straightforward algebra yields the expression for 

expectation provided in the Methods section. 

Asymptotically, by the law of large numbers, the matrix 𝐼 = 𝚤!/𝑛 converges to the 

matrix 𝐾!∗𝔼𝚤. Noting that 𝔼𝐺!! = 1− 𝜋 𝔼𝐺!! + 𝜋𝔼𝐺!!, straightforward algebra yields 

𝔼𝚤!,! = 1− 𝑄 𝔼𝐺! + 𝑄𝔼𝐺!, and 𝔼𝚤!,! = 1− 𝑄 𝔼𝐺!! + 𝑄𝔼𝐺!!, where 𝑄 = {𝜇(1− 𝜇)(𝑛! +

𝜋𝑛!)/𝑛 –𝜋𝑃!𝜋∗(1− 𝜋∗)}. 

Let 𝑉! and 𝑉! denote the variances of 𝐺 amongst internal controls and internal 

cases, respectively. Noting that 𝔼𝐺!! = 𝑉! + 𝔼!𝐺! for 𝑖 = 0,1, it is straightforward to show 

that 𝔼𝚤 !,!!! = 1− 𝑄 𝑉! + 𝑄𝑉! + 𝑄 1− 𝑄 𝔼! 𝐺! − 𝐺! !!. Under the null (and 

approximately, for local alternatives with small effect size), 𝑉! = 𝑉! = 𝑉! and  𝐺! = 𝐺!, 

so that 𝔼𝚤 !,!!! = 𝑉!!!. The asymptotic variance of  𝛽!,!∗ is, thus, 𝑉!!,!∗ = 𝑛𝐾!∗𝑉! !! and 

the asymptotic variance of the score statistic is 𝑉!∗ = 𝑛𝐾!∗𝑉!.  

 

Asymptotic bias 
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We make use of the well-known result that the score and Wald tests are 

asymptotically equivalent under the null and local alternatives (Cox and Hinkley, 1974). 

Thus, for large sample sizes and small effect sizes, the non-centrality parameters for 

the two tests (applied to the same data) are approximately equal: 𝜆!∗
!"#$ ≈ 𝜆!∗ . Note that 

𝜆!∗
!"#$ = 𝛽!,!∗

! /𝑉!!,!∗ . Further, we have 𝜆!∗
!"#$/𝜆!!"#$ ≈ 𝜆!∗/𝜆! which yields 𝛽!,!∗/𝛽!,! ≈

𝜆!∗𝑉!∗/𝜆!𝑉!. Note that 𝛽!,! = 𝛽, since the MLE is consistent when the model is 

correctly specified. Straightforward algebra yields the result presented in the asymptotic 

bias section of the main text. 

 

Ranges for efficient 𝝅∗ values 

For a given reference non-centrality parameter value 𝜆!"#, we wish to find all 

values 𝜋∗ such that 𝜆!∗ > 𝜆!"#. Define 𝑎 = 𝑃! 𝜋 1− 𝑃! − 𝑃! ! − 𝜆!"#𝑃!(1− 𝑃!)/𝛥!, 

𝑏 = 2𝑃!𝑃!{ 𝜋 1− 𝑃! − 𝑃! 1− 𝑃! − 𝜋𝑃! + 𝜆!"#/𝛥!} and 𝑐 = 𝑃!(1− 𝑃! − 𝜋𝑃!) ! −

𝑃! 1− 𝑃! 𝜆!"#/𝛥!. The equation 𝜆!∗ = 𝜆!"# implies the quadratic constraint 𝑎𝜋∗ + 𝑏𝜋 +

𝑐 = 0. The two roots of this equation define the limits of range of efficient 𝜋∗ values. 
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Chapter 5 Conclusion 
 

This thesis characterized bias, precision and power for three statistical 

techniques used in GWAS. In Chapter 2, we compare adjusted-trait regression (ATR) to 

traditional techniques of analysis for multiple linear regression. We show, through 

analytical calculations, that ATR is biased towards the null when the genetic variants 

included in the association test are correlated with covariates. In this situation, ATR is 

less powerful than traditional tests that appropriately account for this correlation and the 

loss of power increases as stringency for controlling Type 1 error increases 

(equivalently, as the size of the test decreases). We show that, for single variant tests, 

the loss of power is completely determined by the coefficient of determination of the 

regression of variant onto covariates. For the multi-variant omnibus test, we show that 

the maximum possible loss of power is completely determined by the canonical 

correlation between the set of variants and covariates. 

ATR is an ad-hoc methodology that is not justified by a formal statistical 

framework. Despite previous work that outlines its shortcomings (Demissie & Cupples, 

2011; Xing et al., 2011; Che et al., 2012) through simulations and approximations, 

multiple studies in the last decade continue to use this method. We show, via exact 

power calculations, that at the Type 1 error thresholds commonly used in genome-wide 

analyses, even relatively small correlations between variants and covariates can lead to 

substantial power loss. Although the correlation between genetic variants and the most 
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commonly included confounder (genetic ancestry) is expected to be low on average, 

correlations may be large for ancestry informative variants. These variants may be 

enriched for causal associations due to population specific selection. We hope our 

results encourage the statistical genetics community to use theoretically justified 

methods in favor of ad-hoc ones. 

We note that our results for multi-variant (gene-based) tests other than the 

burden-test are limited to comparisons between the traditional omnibus test and its ATR 

analog. Many published papers rely on the SKAT framework (Lee et al., 2014) to 

perform gene-based testing. We were unable to derive closed-form results to compare 

SKAT and its ATR analog. I intend to carry out simulations to assess whether our 

results hold, at least approximately, for this comparison. 

In Chapter 3, we assessed three commonly used imputation quality scores 

(allelic-RSQ, MACH-RSQ and INFO) as predictors of realized quality for low-frequency 

and rare variants. In addition, we assessed whether choice of imputation algorithm and 

reference panel size affected the relationship between imputation quality scores and 

realized quality. To achieve this, we performed genome-wide imputation on 8378 

participants from the METSIM study using three different imputation algorithms (Beagle 

4.2, IMPUTE 2 and minimac3) with the 1000 Genomes Phase 3 reference panel (1KG 

reference panel). We also imputed genotypes into the same set of individuals using the 

much larger Haplotype Reference Consortium (HRC) reference panel with minimac3.  

We show that MACH-RSQ and INFO are identical when calculated on the same 

dataset. We observed that allelic-RSQ is a poorer predictor of realized quality compared 

to MACH-RSQ/INFO. We observed that average realized quality decreases as MAF 
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decreases and the average difference between imputation quality scores and realized 

quality increases as MAF decreases; this necessitates utilizing relatively more stringent 

thresholds to classify low-frequency and rare variants based on realized quality as 

compared to thresholds appropriate for common variants. Since average realized 

quality for low-frequency and rare variants is substantially higher for HRC based 

imputation compared to 1KG based imputation, less stringent thresholds (e.g. MACH-

RSQ/INFO = 0.3) for HRC based imputation yield similar classification operating 

characteristics to higher thresholds (e.g. MACH-RSQ/INFO=0.6) for 1KG based 

imputation. 

Imputation quality scores are an important measure of how much information 

imputed genotypes carry. Our work clarifies that two commonly used quality scores 

(MACH-RSQ and INFO) are, in fact, numerically equivalent when evaluated on the 

same dataset; the different thresholds used for classifying well/poorly imputed common 

variants for MACH-RSQ and INFO in the extant literature are, thus, attributable to 

differences in the imputation algorithms that use each score (Minimac for MACH-RSQ 

and IMPUTE for INFO). Further, our work clarifies that as realized imputation quality 

increases due to availability of larger reference panels, stringency of thresholds used to 

classify well/poorly imputed variants can be reduced due increased realized qualities for 

low-frequency and rare variants.     

We noted that our study relies on variants genotyped on the Illumina Exomechip 

for gold-standard genotypes. It is likely that the distribution of MAF for variants included 

on the Exomechip differs from the distribution of MAF of all imputable variants (that is, 

variants present in the reference panel) due to the variant selection strategy used to 
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include variants on the Exomechip. We are currently performing the same analysis 

presented in Chapter 3 on a subset of approximately 3000 METSIM participants that 

have been sequenced at high depth. This analysis will offer a less biased view across 

the entire genome. Further, we will assess the calibration of genotype imputed posterior 

probabilities by performing posterior predictive checks to compare predicted and 

realized quality scores and MAFs. 

In Chapter 4, we proposed a method to account for known/presumed proportion 

of cases in external samples that are missing case-control status. We presented 

analytical power calculations that acknowledge that the exact external sample case 

proportion is unknown in practice. Our power calculations include the important and 

easily implementable strategy that assumes the external sample contains only controls. 

We provided clear guidelines about when inclusion of a mixed sample is beneficial in 

terms of power. Specifically, for analyses assuming external participants are controls, 

we showed that including external samples increases power (relative to avoiding them) 

when the internal sample case proportion (or proportion of known cases to total known 

case-control samples) is greater than twice the external sample case proportion. We 

showed that this condition can be weakened (that is, the internal sample case 

proportion can be closer to the external sample case proportion) based on how 

accurately the external sample case proportion is known. We showed that the strategy 

of treating external participants as controls is close to the best possible analysis (under 

the proposed framework) in a wide variety of situations. 

We note two important limitations of the proposed method. First, the method 

does not accommodate related individuals. This could be achieved by extending the 
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CERAMIC framework (Zhong et al., 2016) that implements a score test based on 

estimating equations. The estimating equations can be modified to reflect the 

constraints introduced into the score equations derived from the proposed model. 

CERAMIC properly accounts for relatedness and, additionally, improves power by 

incorporating information about affected relatives on whom genotypes are missing. 

Second, I propose to make the method suitable for rare variants by implementing 

calculation of p-values based on the saddle-point approximation (Dey et al., 2017). P-

values for the logistic regression score test are known to be poorly calibrated for 

variants with low minor allele counts under designs with a large imbalance between 

cases and controls (Ma et al., 2013). The saddle-point approximation ameliorates this 

deficiency by utilizing a second-order approximation to the distribution of the score test. 

Our work shows that missing case-control status/misclassification in the external 

sample is not a major concern (in terms of decreased efficiency) when the proportion of 

cases in the internal sample is low. Thus, we advocate that future development of 

methods and designs utilizing external data focus on addressing challenges (like 

differential genotyping error, selection bias etc.) that lead to increased Type 1 error.   

In summary, this thesis discusses bias, precision and power for three statistical 

methods employed in GWAS. As datasets become even larger and complex, 

understanding (and controlling) the sources and mechanisms of bias will become 

crucial. Indeed, as sample sizes increase, biases of fixed magnitude exert larger 

negative effects relative to sampling variability (Meng, 2018). I look forward to this and 

other challenges!  
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