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ABSTRACT

We present some new results for perfectoid rings and spaces and use them to study moduli
of the following classes of complex algebraic curves: smooth, compact type, and stable. Full
level-n structures on such curves are trivializations of the n-torsion points of their Jacobians.
We give an algebraic proof that the étale cohomology groups of all three moduli spaces vanish
in high degrees at “infinite level.” For smooth curves, this yields a new perspective on a result
of Harer who showed such vanishing already at finite level using topological methods. The
statements for stable curves and curves of compact type are not covered by Harer’s methods.
Two of the main ingredients in the proofs are a vanishing statement for certain constructible
sheaves on perfectoid spaces and a comparison of the étale cohomology groups of different
towers of Deligne–Mumford stacks in the presence of ramification.
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CHAPTER 1

Introduction

In 2011, P. Scholze introduced the theory of perfectoid spaces in order to relate questions
about number systems in mixed and positive characteristics [Sch12]. Although his initial
motivation arose from problems in arithmetic geometry, perfectoid spaces have since seen
applications to a wide scope of mathematical areas, such as algebraic geometry [CS19],
commutative algebra [And18b, Bha18b], number theory and the Langlands program [Sch15],
p-adic Hodge theory [Sch13a, BMS18, BS19], algebraic topology [BMS19], and algebraic
K-theory [BCM20]. The purpose of this thesis is twofold:

1. to explain some new results for perfectoid rings and spaces;

2. to apply some of these results to an object of classical algebraic geometry, the moduli
space of algebraic curves, also known as closed Riemann surfaces.

We begin with a brief overview of the motivation behind these applications.

1.1 Moduli of curves and their cohomology

Riemann surfaces lie at the crossroads of many different mathematical disciplines; their
study extends far across the boundaries of the subject, reaching applications in fields such
as physics or cryptography. Informally, one can think of closed Riemann surfaces as two-
dimensional objects in the shape of a donut with several “holes,” or “handles,” together with
a way to measure lengths and angles between curves on them. This so-called conformal
structure arises from an additional structure over the complex numbers.

A mathematically precise characterization is the following.

Definition 1.1.1. A closed Riemann surface is a one-dimensional, compact manifold over
the complex numbers C without boundary.

Note that since complex numbers are parametrized by two different real parameters—the
real and the imaginary part—, a “real-world surface” must be a space of complex dimension
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1. By the uniformization theorem, all closed Riemann surfaces are zero sets of polynomials in
several complex variables. Thus, they fall under the umbrella of algebraic geometry, where
they are called complex algebraic curves and have been studied extensively.

Moduli of curves provide a way to classify all algebraic curves. A first attempt at such
a classification might use the genus, an integer which counts the number of holes. For a
more detailed analysis, we fix an integer g ≥ 2 and classify all algebraic curves of fixed genus
g. This can be done via a space (more precisely, a complex orbifold) Mg(C) of complex
dimension 3g − 3. The various points of Mg(C) correspond to all different curves of genus g.
Similarly, lines inside Mg(C) correspond to families of curves varying over a line, and so on.

This thesis studies an invariant of Mg(C) called its cohomology. A strong interest in
this invariant dates back as far as the 1980s. Its computation could, for example, help to
understand the enumerative geometry of Mg(C) (cf. e.g. [Mum83]) or predict the global
structure of Mg(C) (e.g., Looijenga’s conjecture that the coarse space Mg(C) can be covered
by g − 1 open affine subschemes). Unfortunately, only little is known about this invariant
for general g. In low degrees, genus-independent computations of the rational singular
cohomology Hi(Mg(C),Q) are due to Mumford [Mum67, Thm. 1] (i = 1) and Harer [Har83]
(i = 2) [Har91] (i = 2, 3). On the other extreme, Harer showed the following.

Theorem 1.1.2 ([Har86, Cor. 4.3]). For i > 4g − 5, we have Hi(Mg(C),Q) = 0.

A common thread in all these computations is the pervasive use of tools from geometric
topology and Teichmüller theory, i.e., using the construction of Mg(C) as the quotient of
contractible Teichmüller space Tg by the mapping class group Γg. There has been some
interest in finding proofs that rely on more algebro-geometric methods; see e.g. [Cor98, p. 251].
For example, Arbarello–Cornalba realized that the cohomology computations in low degrees
follow via Hodge theory from Theorem 1.1.2 [AC98] [AC09, Thm. 10]. In the next section,
we describe a new, essentially algebro-geometric perspective on Theorem 1.1.2.

1.2 Algebraic approach

In [Har86], Harer showed in fact that the virtual cohomological dimension of Γg is 4g − 5.
This has the following consequence: Let n ∈ N be a natural number such that pn ≥ 3.
Then Hi(Mg[pn](C),Λ) = 0 for all i > 4g − 5 and all coefficient systems Λ. Here, Mg[pn]
is the moduli space of smooth, complex curves of genus g ≥ 2 with full level-pn structure;
it parametrizes smooth, complex curves C of genus g ≥ 2 together with an isomorphism
H1(C,Z/pnZ) ∼−→ (Z/pnZ)2g. The natural map Mg[pn] → Mg of moduli spaces, which
corresponds on the level of classification problems to “forgetting the level structure,” is a
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finite étale cover. It thus corresponds to a finite-index subgroup of Γg, which turns out to be
torsion-free.

We will be interested in the groups Hi(Mg[pn](C),Fp) with coefficients in the finite field Fp,
where p is a fixed prime number. Since dimQ Hi(Mg[pn](C),Q) ≤ dimFp Hi(Mg[pn](C),Fp),
the Cartan–Leray spectral sequence combined with the vanishing of Hi(Mg[pn](C),Fp) in
degrees i > 4g − 5 implies Theorem 1.1.2. Our main result is a vanishing statement “at
infinite level” in this direction, proved without geometric topology, for Mg[pn] and some
(partial) compactifications thereof, which we recall in detail in § 3.2.

Theorem 1.2.1. Let g ≥ 2 and p be a prime. Let M [pn] be one of the following:

(i) the moduli space Mg[pn] of smooth curves of genus g over C with full level-pn structure,

(ii) the moduli space M c
g [pn] of curves of compact type of genus g over C with full level-pn

structure, or

(iii) the moduli space Mg[pn] of pre-level-pn curves of genus g over C with full level-pn

structure.

Then we have
colim

n
Hi

ét(M [pn],Fp) = 0

for all i > 4g − 5 in case (i) and for all i >
⌊

7g
2

⌋
− 4 in cases (ii) and (iii).

The stack Mg[pn] is a smooth, modular compactification of Mg[pn] that was first introduced
in [ACV03]; when n = 0, a pre-level-pn curve is simply a stable curve. A curve of compact
type is a stable curve whose dual graph is a tree.

Remark 1.2.2. While our bound in case (i) is the same as the one in Theorem 1.1.2, the only
known upper bound on the virtual cohomological dimension (and hence vanishing at finite
level) for M c

g is 5g−6 [Mon08, Cor. 0.4] and thus significantly higher than our bound
⌊

7g
2

⌋
−4

for vanishing at infinite level. It may be worthwile to further investigate this discrepancy.

Remark 1.2.3. The groups colimn Hi
ét(Mg[pn],Fp) are the mod p analogs of the completed

cohomology groups for the tower of spaces

· · · →Mg[pn]→ · · · →Mg[p]→Mg;

cf. [Eme06, CE12]. A dévissage argument shows that colimn Hi
ét(Mg[pn],Z/psZ) = 0 in

degrees i > 4g− 5 for all s ∈ N and thus the vanishing of the integral completed cohomology
groups

lim
s

colim
n

Hi
ét(Mg[pn],Z/psZ)
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in this range of degrees.

The beginning of Chapter 3 outlines the strategy of the proof of Theorem 1.2.1. To
conclude this introduction, we would like to highlight its connection with the theory of
perfectoid spaces.

1.3 Relation to perfectoid geometry

The significance of perfectoid spaces in regard to cohomological vanishing statements was
first observed by Scholze in his construction of Galois representations attached to torsion
classes in the cohomology of locally symmetric spaces [Sch15]. For many moduli problems
parametrized by Shimura varieties, level structures give rise to towers of moduli spaces similar
to the ones from § 1.2. Scholze realized that the inverse limits of such towers are often
similar to a perfectoid space “at infinite level”; in particular, the Fp-cohomology of this
perfectoid space is simply the direct limit of the Fp-cohomology at finite levels. He then
discovered a vanishing statement for perfectoid spaces arising from towers of proper varieties
by establishing surprising relationships between

1. their Fp-étale and coherent étale cohomologies, and

2. their coherent étale and coherent analytic cohomologies.

In Chapter 2, we give a new version of this vanishing result for more general coefficients. We
only state a special case here and refer to Theorem 2.6.3 for the most general version.

Theorem 1.3.1. Let · · · → Xn+1 → Xn → · · · → X0 be a tower of proper varieties with
finite transition maps over a complete, algebraically closed extension C of Qp. Assume there
exists a perfectoid space X over C such that X♦ ' limnX

♦
n as diamonds. Then for all

constructible sheaves of Fp-modules F0 on X0 with pullbacks Fn to Xn, we have

colim
n

Hi
ét(Xn, Fn) = 0

for all i > dim supp(F0).

Note that [Sch15, § 4.2] treats sheaves of the form F0 = j0,!Fp for some dense, open
j0 : U0 ↪→ X0. Our proof relies on the recent notions of diamonds [Sch17] and mixed
characteristic perfectoidizations [BS19], which are introduced in Chapter 2. At present, it is
not clear how to apply Theorem 1.3.1 to the tower from § 1.2 directly: while the diamond
limn Mg[pn]♦ is represented by a perfectoid space, we do not know what can be said about
the compactifications Mg[pn], which are not even varieties, but genuine Deligne–Mumford
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stacks. Instead, we will extract cohomological information about moduli of curves via the
Torelli morphism from the cohomology of moduli of principally polarized abelian varieties,
which are perfectoid at infinite level by [Sch15]. In this approach, we need the full strength
of Theorem 1.3.1 even if we are only interested in cohomology with Fp-coefficients.

1.4 Notation and conventions

Throughout this paper, we fix a prime p ∈ N. For any Deligne–Mumford stack X , we
denote the bounded derived category of constructible sheaves of Fp-modules on the small étale
site of X by D(X ); for the algebraic stacks appearing in Appendix A, we use the lisse-étale
site as developed in [Ols07b] or [LZ17] instead of the small étale site in the definition of
D(X ).
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CHAPTER 2

Perfectoid geometry

The basic building block of perfectoid geometry is the class of perfectoid rings, a mixed
characteristic version of the class of perfect rings from positive characteristic. In § 2.1, we
motivate the definition of perfectoid rings from the viewpoint of Bhatt–Scholze’s theory of
prisms [BS19] in a way that we hope illuminates the analogy with perfect rings. The general
structure of perfectoid rings is described in Corollary 2.1.17, which shows that perfectoid
rings can be decomposed into perfect rings of characteristic p and perfectoid Tate rings in
mixed characteristic.

To globalize this notion, Scholze used Huber’s theory of adic spaces from nonarchimedean
geometry, which we do not attempt to explain here; instead, we refer the reader to [Sch12,
§ 2] for a short overview and to [Con15] for a comprehensive introduction. In § 2.2, we then
define perfectoid spaces, following Scholze, as adic spaces which are locally given by the
adic spectrum of a perfectoid Huber pair. The highlight of this section is Scholze’s tilting
equivalence from [Sch12], which allowed Scholze to relate questions in positive and mixed
characteristic and forms one of the keystones of the theory.

An important method later will be the perfectoidization of a p-adically complete Zp-
algebra from [BS19], i.e., a universal morphism to a perfectoid ring, which we discuss in § 2.3.
Although perfectoidizations tend to be quite unwieldy in general, we can use the structure
theorem for perfectoid rings to explicitly describe the perfectoidization of Zcycl

p 〈x1/p∞〉/(x− 1)
in Corollary 2.3.7. In § 2.3.2, we also explain a hands-on approach to perfectoidizations
via the perfectoid Riemann extension theorem, which applies in certain nonarchimedean
situations.

Again, the notion of perfectoidizations can be globalized; to do so, we have chosen to
adopt the perspective of diamonds from [Sch17]. We present some of the salient features of
this theory in § 2.4. A concrete connection to perfectoidizations appears in Proposition 2.4.20.

In § 2.5, we describe how derived categories behave in inverse systems of perfectoid rings
that appear naturally in the perfectoid Riemann extension theorem. Although this section is
somewhat removed from the remainder of the thesis, we hope that it may prove useful in the
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future with regard to questions related to the approach to perfectoidizations from § 2.3.2.
While we were not able to locate references in the literature to several of the examples

and statements from the aforementioned sections, they are likely known to experts in the
field. The main new results of this chapter are contained in § 2.6. There, we build on the
concepts introduced so far and prove the more general version of Theorem 1.3.1 mentioned in
the introduction, which will form one of the ingredients in our study of the moduli of curves.

2.1 Perfectoid rings

Geometry in positive characteristic comes with a priceless tool: the Frobenius morphism.
Its ubiquity sparks interest in the following class of rings.

Definition 2.1.1. A ring R is perfect if its Frobenius morphism ϕR : R→ R is an isomor-
phism.

Moreover, there is a canonical operation to pass to perfect rings.

Definition 2.1.2. The (colimit) perfection of a ring R of positive characteristic is given by

Rperf := colim(R ϕR−→ R
ϕR−→ R

ϕR−→ · · · ).

Example 2.1.3. Let R := Fp[t]. Then Rperf ' Fp[t1/p
∞ ].

Since the Frobenius morphism does not change topological or étale information, perfections
can lead to elegant proofs of statements about such data even for nonperfect rings. As an
example, we just mention Bhatt–Scholze’s new proof of Kunz’s theorem that rings of positive
characteristic with flat Frobenius are regular [BS17, Cor. 11.35] (the converse is also true and
straightforward). Essentially, it suffices to show that such rings have finite Tor dimension,
which can be seen after passage to perfections and is easy for perfect rings.

Next, we consider an analog of perfect rings in mixed characteristic. First, we need to
single out a class of rings for which it still makes sense to talk about Frobenius morphisms.
Recall that we have fixed a prime p ∈ N throughout this paper.

Definition 2.1.4. Let A be a ring over Z(p). A Frobenius morphism on A is a morphism
ϕ : A→ A whose reduction ϕ : A/p→ A/p modulo p is the Frobenius of A/p.

It is technically advantageous (e.g., for the existence of equalizers in the desired category)
to record the “reason” Frobenius lifts to a mixed characteristic ring instead of simply the lift
itself.
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Definition 2.1.5 ([Joy85, Def. 1]). A δ-ring is a ring A together with a map of sets δ : A→ A

such that

• δ(1) = δ(0) = 0,

• δ(ab) = apδ(b) + δ(a)bp + pδ(a)δ(b), and

• δ(a+ b) = δ(a) + δ(b)−∑p−1
i=1

1
p

(
p
i

)
aibp−i.

The map ϕ : A → A given by ϕ(a) = ap + pδ(a) is the Frobenius of the δ-ring, and is a
morphism thanks to the previous conditions.

When A is p-torsionfree, the δ-ring structure can be completely recovered from ϕ. The
category of δ-rings enjoys many felicitous properties; e.g., it is closed under limits and colimits,
many localizations and completions, etc. We do not state them here rigorously and instead
refer to [BS19, § 2].

Definition 2.1.6. Let A be a δ-ring. We call A perfect if its associated Frobenius morphism
ϕ is an isomorphism. The (colimit) perfection of R is given by

Aperf := colim(A ϕ−→ A
ϕ−→ A

ϕ−→ · · · ).

The class of p-adically complete, perfect δ-rings can be related back to perfect Fp-algebras.

Proposition 2.1.7 ([BS19, Cor. 2.31]). Reduction modulo p induces an equivalence of
categories

{p-complete, perfect δ-rings} ∼−→ {perfect Fp-algebras}

whose quasi-inverse is given by the Witt vector construction.

Such an equivalence continues to hold if one reduces modulo other, more general elements
than p.

Definition 2.1.8 ([BS19, Def. 3.2]). A perfect prism is a pair (A, (d)) consisting of a perfect
δ-ring A and a principal ideal (d) ⊂ A such that A is (p, d)-adically complete and δ(d) is a
unit of A.

The last condition is equivalent to p ∈ (d, ϕ(d)) [BS19, Lem. 3.8.(1)] and therefore encodes
that the ideals (d) and (ϕ(d)) only meet in characteristic p. Perfect prisms still satisfy an
analog of Proposition 2.1.7, in which the full subcategory of perfectoid rings replaces the
category of perfect rings.

8



Definition 2.1.9. A perfectoid ring is a ring of the form A/d for some perfect prism (A, (d)).

As promised, this notion is justified by the following.

Theorem 2.1.10 ([BS19, Thm.3.10]). Reduction modulo d induces an equivalence of cate-
gories

{perfect prisms} ∼−→ {perfectoid rings}.

Perfectoid rings bear similarities to perfect Fp-algebras in the following sense.

Lemma 2.1.11 ([BMS18, § 3], [BS19, § 2]). Let R be a perfectoid ring. Then there exists
π ∈ R such that

(i) R is p-adically complete,

(ii) πp = p · u for some unit u ∈ R, and

(iii) the Frobenius map ϕ : R/π → R/πp (a morphism because charR/π = charR/πp = p)
is an isomorphism.

Proof. Write R = A/d for some perfect prism (A, (d)). Since A is p-adically complete
and taking cokernels preserves derived completeness, R is derived p-adically complete. A
calculation in [BS19, Lem. 2.34] shows that d ∈ A is a nonzerodivisor and R has bounded
p∞-torsion (i.e., there exists c ∈ N such that R[pc′ ] = R[pc] for all c′ ≥ c). Therefore, R is
also (classically) p-adically complete; cf. [SP20, Lem. 0923].

By Proposition 2.1.7, A ' W (A/p) for the perfect ring A/p. Let π be the image of [ā1/p
0 ]

in R, where [ā0] is the zeroth coefficient of the Teichmüller expansion d = ∑∞
i=0[āi]pi. Since

δ(d) = 1
p

(ϕ(d)− dp) = 1
p

( ∞∑
i=0

[āpi ]pi −
( ∞∑
i=0

[āi]pi
)p)
≡ āp1 mod p,

δ(d) is a unit of A if and only if ā1 is a unit of A/p. Thus, π is the desired element for (ii)
because πp = [ā0] ≡ −p · [ā1] mod p2 in R and R is p-adically complete.

Lastly, with the identification

R/π R/πp

(A/p)/ā1/p
0 (A/p)/ā0,

ϕ

' '

ϕ

(iii) follows from the perfectness of A/p.

9
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2.1.1 Classification

Finally, we provide a structure theorem which roughly states that perfectoid rings are
made up of perfect rings in characteristic p and certain rings in characteristic 0 which arise
in nonarchimedean geometry and are thus amenable to more geometric methods. The latter
class of rings is described as follows.

Definition 2.1.12. A perfectoid Huber pair is a pair (R,R+) consisting of a complete
topological ring R and a subring R+ ⊂ R such that

(i) R+ is an integrally closed, open, bounded subring of R,

(ii) the induced topology on R+ is $-adic for some $ ∈ R+ which becomes a unit in R,
and

(iii) R+ is perfectoid.

Remark 2.1.13. In the language of analytic geometry, the ring R is Tate. Whether a Huber
pair (R,R+) for some Tate ring R and an integrally closed, open ring of integral elements
R+ ⊂ R is perfectoid, turns out to be independent of the choice of R+ [BMS18, Lem. 3.20].
This explains the antecedent definitions of perfectoid rings by Scholze [Sch12] and Fontaine
[Fon13, § 1.1] as uniform Tate rings R with a topologically nilpotent unit $ ∈ R◦ such that
$p | p in R◦ and the Frobenius map R◦/$ → R◦/$p is an isomorphism (cf. Lemma 2.1.11).

Lemma 2.1.14 ([BMS18, Lem. 3.21]). Let R′ be a perfectoid ring. Assume there exists a
nonzerodivisor $ ∈ R′ for which $p | p and R′ is $-adically complete. Let R+ be the integral
closure of R′ in R′[ 1

$
]. Then (R′[ 1

$
], R+) is a perfectoid Huber pair, where R′[ 1

$
] is given the

topology in which the image of R′ → R′[ 1
$

] is an open and bounded subring.

When charR′ = 0, the element π ∈ R′ from Lemma 2.1.11 is a possible choice for $. The
next statement, which is a special case of [BS19, Cor. 8.11], provides the recipe to decompose
a perfectoid ring into a perfect and a “nonarchimedean” part.

Proposition 2.1.15. Let R′ be a perfectoid ring. Let R+ be the integral closure of the image
of R′ in R′[ 1

p
]. Set R′ := (R′/p)perf and R+ := (R+/p)perf . Then R+ is perfectoid and

R′ R+

R′ R+

(2.1)

is a homotopy fiber square of abelian groups. Moreover, the maps R′ → R′ and R+ → R+ are
surjective and R′ → R+ is integral.
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Recall that a square of abelian groups is a homotopy fiber square if the induced map
between the cones of the two horizontal (or equivalently, the two vertical) arrows is an
isomorphism. In particular, (2.1) is a fiber square of commutative rings because the forgetful
functor from commutative rings to abelian groups preserves limits and homotopy fiber squares
of abelian groups are fiber squares.

Remark 2.1.16. Note that (R′/p)perf ' R′/
√
pR′ for any perfectoid ring R′. Indeed, since

perfect rings are reduced, any map from R′/p to a perfect ring must factor through
R′/
√
pR′. On the other hand, R′/

√
pR′ is perfect: the injectivity of the Frobenius morphism

ϕ : R′/
√
pR′ → R′/

√
pR′ follows from the fact

√
pR′ is a radical ideal and its surjectivity

from the observation that the Frobenius on R′/p is surjective (Lemma 2.1.11.(iii)) and the
commutativity of

R′/p R′/p

R′/
√
pR′ R′/

√
pR′.

ϕR′/p

ϕ
R′/
√
pR′

Proof of Proposition 2.1.15. Remark 2.1.16 shows that R→ R and R+ → R+ are surjective,
and thus also the integrality of R→ R+. The diagram (2.1) is a homotopy fiber square by
[BS19, Cor. 8.11]: to apply this criterion, we need to check that any map θ′ : R′ → V to
a p-adically complete valuation ring V of rank 1 whose kernel does not contain p extends
uniquely to a map θ+ : R+ → V . Since R′[ 1

p
]→ R+[ 1

p
] is an isomorphism and p /∈ ker(θ), the

induced map R′ → Frac(V ) extends uniquely to R+ → Frac(V ). The morphism R′ → R+

is by definition integral and hence a directed colimit of finite morphisms. Therefore, the
valuative criterion for properness guarantees the existence of the desired unique extension
θ+.

Alternatively, Proposition 2.1.15 can be proved with more elementary methods along the
lines of [Bha18a, § IV.3], which also contains a detailed argument why R′/R′[

√
pR′] (and

thus R+ by Lemma 2.1.14) is perfectoid. We leave the details to the reader. Next, we give
the promised classification result.

Corollary 2.1.17. The natural functor

∆: {perfectoid rings} ∼−→



pairs ((R+[ 1
p
], R+), R′ → (R+/p)perf) where

• (R+[ 1
p
], R+) is a perfectoid Huber pair over (Qp,Zp) and

• R′ → (R+/p)perf is an integral map of perfect Fp-algebras



11



(where the morphisms of the target category are given by compatible morphisms of perfectoid
Huber pairs and commutative diagrams of perfect Fp-algebras) induced by Proposition 2.1.15
is an equivalence of categories.

Proof. We construct a quasi-inverse functor Γ. Pick (R+[ 1
p
], R+) and R′ → R+ := (R+/p)perf

as above. Let (A+, (d+)) be the perfect prism corresponding to R+; the perfect prisms for
R′ and R+ are given by the Witt vector construction. Let A := A+ ×

W (R+) W (R′) in the
category of δ-rings. Since the Frobenius of A is the limit of the Frobenii of the factors and
thus an isomorphism, A is perfect.

By the proof of Lemma 2.1.11.(ii), d+ = [ā0] + p · u for some ā0 ∈ A+/p and some unit
u ∈ A+. Hence,

A+/
([
ā

1/p∞
0

]
, p
)
' R+/

([
ā

1/p∞
0

]
, p
)
' R+/

√
pR+ ' R+,

and A+/
([
ā

1/p∞
0

])
' W (R+) by Proposition 2.1.7. In particular, after replacing d+ by

d+ · u−1, we may assume that the projection A+ → W (R+) maps d+ to p.
Set d := (d+, p) ∈ A; this is well-defined by the assumption of the previous paragraph.

Then δ(d) = (δ(d+), δ(p)) is a unit. Furthermore,

lim
n
A/(p, d)n ' lim

n
A/(pn, dn) ' lim

n
(A+/pn ×

W (R+)/pn W (R)/pn)/dn

' lim
n
A+/(pn, dn)×

W (R+)/pn W (R)/pn ' A+ ×
W (R+) W (R) ' A

by the (p, d+)-adic completeness of A+ and the p-adic completeness of W (R′) and W (R+).
Thus, A is (p, d)-adically complete.

We claim that R′ := A/d is the desired perfectoid ring for the quasi-inverse functor Γ
(with values on morphisms induced by the fiber products). Indeed, since the vertical maps in
the diagram

A A+

W (R′) W (R+)

are surjective, it is a homotopy fiber square. As d is a nonzerodivisor on all rings involved,
derived reduction modulo d gives a homotopy fiber square

R′ R+

R′ R+.

12



This shows Γ ◦∆ ' id.
Conversely, if (R+[ 1

p
], R+) and R′ → R+ := (R+/p)perf are as before and R′ is their image

under Γ, then R′[ 1
p
] ' R+[ 1

p
] and the projection R′ → R+ is integral by Lemma 2.1.18. Since

R+ ⊂ R+[ 1
p
] is integrally closed, it must be the integral closure of the image of R′ in R′[ 1

p
].

Furthermore,

(R′/p)perf ' ((R+ ×
R+ R′)/p)perf ' ((R+/p)×

R+ R′)perf ' R+ ×
R+ R′ ' R′.

Thus, ∆ ◦ Γ ' id, concluding the proof.

Lemma 2.1.18. Let g : R→ S be an integral morphism of commutative rings and

R′ S ′

R S

g′

f ′ f

g

be a fiber square in which the vertical morphisms are surjective. Then R′ → S ′ is integral.

Proof. Let s′ ∈ S ′. Since g is integral, there is a monic polynomial P ∈ R[x] such that
P g(f(s′)) = 0. By the surjectivity of f ′, we can pick a lift P̃ ∈ R′[x] of P . Then f(P̃ g′(s′)) =
P g(f(s′)) = 0, giving P̃ g′(s′) ∈ ker(f). However, the vertical morphisms are both surjective
and the diagram is a fiber square, so the natural map ker(f ′)→ ker(f) is an isomorphism.
Therefore, s′ is a root of the monic polynomial Q := P̃ − P̃ g′(s′) ∈ R′[x].

2.2 Globalization: perfectoid spaces

In this section, we globalize the notion of perfectoid rings in the context of nonarchimedean
geometry. In order to use adic spaces, we will restrict to the class of perfectoid Huber pairs
from Definition 2.1.12. All definitions and statements in this section are due to [KL15] and
[Sch12].

Definition 2.2.1. An affinoid perfectoid space is an adic space of the form Spa(R,R+) for
some perfectoid Huber pair (R,R+).

In the setting of perfectoid Huber pairs, we can translate questions between mixed and
positive characteristics while retaining all topological and étale cohomological data. The
translation process relies on the tilting procedure.

Definition 2.2.2. Let (R,R+) be a perfectoid Huber pair. Let π ∈ R+ be as in Lemma 2.1.11.
The tilt of (R,R+) is the Huber pair (R[, R[+), where R[+ := limϕR

+/π is the limit perfection
of R+/π and R[ := R[+[ 1

π
].

13



An explicit computation with p-adic limits yields the following direct connection between
R and R[.

Lemma 2.2.3 ([Sch12, Prop. 5.17]). The projection R[+ → R+/$ onto the first factor
factors through a continuous morphism of multiplicative monoids ] : R[+ → R+.

Abusing notation, we sometimes denote the induced map ] : R[ → R by the same symbol.

Definition 2.2.4. A morphism (R,R+)→ (S, S+) of perfectoid Huber pairs is finite étale if
R→ S is a finite étale ring homomorphism and S+ is the integral closure of R+ in S.

One can check that any complete Huber pair which is finite étale over a perfectoid Huber
pair is itself perfectoid.

Theorem 2.2.5 (Tilting equivalence [KL15, Sch12]). Let (R,R+) be a perfectoid Huber pair.
Then tilting induces

(i) a homeomorphism |Spa(R,R+)| → |Spa(R[, R[+)| given by precomposition with ], which
is compatible with localizations at rational subsets,

(ii) an equivalence of categories between perfectoid Huber pairs over (R,R+) and over
(R[, R[+), and

(iii) an equivalence of categories between finite étale perfectoid Huber pairs over (R,R+) and
over (R[, R[+).

We now globalize the aforementioned notions.

Definition 2.2.6. A perfectoid space is an adic space that can be covered by affinoid
perfectoid spaces.

Definition 2.2.7. A morphism f : X → Y of perfectoid spaces is

(i) finite étale if for every affinoid perfectoid open Spa(R,R+) ⊂ Y the preimage X ×Y
Spa(R,R+) ' Spa(S, S+) is affinoid perfectoid and the induced morphism (R,R+)→
(S, S+) is a finite étale morphism of perfectoid Huber pairs,

(ii) étale if for every x ∈ X there exist open neighborhoods x ∈ U and f(U) ⊆ V such that
the induced morphism U → V is finite étale, and

(iii) pro-étale if for every x ∈ X there exist affinoid perfectoid open neighborhoods x ∈
U = Spa(S, S+) and f(U) ⊆ V = Spa(R,R+) such that the induced morphism
(R,R+)→ (S, S+) is the completed filtered colimit of étale morphisms.
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Corollary 2.2.8. There is a tilting functor X 7→ X[ which is given affinoid locally by the
functor of Definition 2.2.2. Moreover, for a fixed perfectoid space X, tilting induces

(i) a homeomorphism |X| → |X[| compatible with localizations at rational subsets,

(ii) an equivalence of categories between perfectoid spaces over X and over X[, and

(iii) an equivalence of categories between perfectoid spaces that are (finite) étale (thus in
particular perfectoid) over X and over X[.

2.3 Perfectoidizations

The perfection of an Fp-algebra (resp. δ-ring) R from § 2.1 is the universal perfect Fp-
algebra (resp. δ-ring) that receives a map from R. In [BS19], Bhatt–Scholze discovered that
there is a similar notion for perfectoid rings.

Theorem 2.3.1 ([BS19, Thm. 1.16.(1)]). Let R be a perfectoid ring and R→ S be an integral
morphism. Then S admits a perfectoidization S → Sperfd, i.e., a morphism to a perfectoid
ring Sperfd which is universal with that property.

Combining the previous result with Theorem 2.1.10, the category of perfect prisms (A, d)
with a morphism S → A/d admits an initial object (�init

S,perf , d
init). The original description of

Sperfd in [BS19, Def. 8.2] is as �init
S,perf/d

init; this definition lends itself to a vast generalization
for any derived p-complete simplicial R-algebra S and leads to the introduction of prismatic
cohomology. For this generality, however, Sperfd is merely a cosimplicial ring, even when the
original ring S is discrete. Concretely, Sperfd ' RlimS→T T is the homotopy limit over all
perfectoid S-algebras T [BS19, Prop. 8.5].

When S is perfectoid, Sperfd ' S. Otherwise, perfectoidizations tend to be quite hard to
compute explicitly. We demonstrate this at the following example, in which we assume more
advanced knowledge of perfectoid spaces.

2.3.1 Example: the perfectoidization of L1(Qp/Zp, K
◦)

Let K := Qcycl
p with the p-adic valuation. This is a perfectoid field with subring of

powerbounded elements K◦ = Zcycl
p . In this subsection, we compute the perfectoidization of

the K◦-algebra S+ := L1(Qp/Zp, K
◦) of functions f : Qp/Zp → K◦ such that for all ε > 0,

all but finitely many y ∈ Qp/Zp satisfy |f(y)| < ε; here, the product of two functions
f, g ∈ L1(Qp/Zp, K

◦) is given by the convolution

(f ∗ g)(y) =
∑

z∈Qp/Zp

f(z)g(y − z).
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First, we explain why S+ admits a finite morphism from the perfectoid K◦-algebra
R+ := K◦〈x1/p∞〉.

Lemma 2.3.2. The identification of the algebra of functions with finite support on a group
with its group algebra induces an isomorphism L1(Qp/Zp, K

◦) ' R+/(x− 1).

Proof. By [KL15, Lem. 2.8.8], the ideal (x− 1) ⊂ R+ is closed and the quotient R+/(x− 1)
thus p-adically separated. Since derived p-adic completeness is always preserved under taking
quotients, S+ must be p-adically complete, so

S+ ' lim
n

K◦/pn[x1/p∞ ]
(x− 1) ' lim

n
colim
m

K◦/pn[x1/pm ]
(x− 1) .

The maps x1/pm 7→
[

1
pm

]
determine isomorphisms of K◦/pn[x1/pm ]

(x−1) with the group algebras
K◦/pn

[
1
pm

Z/Z
]
. Therefore,

lim
n

colim
m

K◦/pn[x1/pm ]
(x− 1) ' lim

n
colim
m

K◦/pn
[

1
pm

Z/Z
]
' lim

n
K◦
[
Qp/Zp

]
/pn.

Identifying K◦
[
Qp/Zp

]
with the algebra of K◦-valued functions on Qp/Zp with finite sup-

port, we conclude that limnK
◦
[
Qp/Zp

]
/pn ' L1(Qp/Zp, K

◦), with the product given by
convolution.

Next, we compute S+
perfd[ 1

p
] explicitly. To do so, we need the following general statement.

Lemma 2.3.3. Let (R,R+) be a perfectoid Huber pair with charR = 0. Let $ ∈ R+ be a
pseudouniformizer and X := Spa(R,R+). Let g ∈ R+ and S+ := R+/g. Then the perfectoid
Huber pair (S̃, S̃+), where S̃ := S+

perfd[ 1
$

] and S̃+ is the integral closure of S+
perfd in S̃, is

computed as the colimit colimn∈N
(
OX(X( g

$n
)),O+

X(X( g
$n

))
)
in the category of perfectoid

Huber pairs.

Proof. Since charR = 0, S̃ is p-adically (or equivalently, $-adically) complete. Thus, the
map (R,R+) → (S̃, S̃+) is the universal morphism of perfectoid Huber pairs whose kernel
contains g. However,

(R,R+)→ (S̃ ′, S̃ ′+) := colim
n∈N

(
OX(X( g

$n
)),O+

X(X( g
$n

))
)

satisfies the same universal property. Namely, let f : (R,R+)→ (T, T+) be a morphism of
perfectoid Huber pairs with f(g) = 0. Since $n | f(g) = 0 in T+, the map f factors uniquely
through (S̃ ′, S̃ ′+). Lastly, g maps to 0 in the (S̃ ′, S̃ ′+) because colimits in the category of
perfectoid Huber pairs over (R,R+) are $-completed.
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Lemma 2.3.4. The K-algebra S̃ := S+
perfd[ 1

p
] is isomorphic to C0(Zp(1)(K), K). Under this

isomorphism, the quotient map q : R→ S̃ from Lemma 2.3.2 is identified with the “evaluation
map” given on x1/pm by sending (ζr) ∈ limr µpr(K) ' Zp(1)(K) to ζm.

Proof. By Lemma 2.3.3, the natural morphism colimn O+
X(X(x−1

pn
))→ S̃+ is an isomorphism

after p-adic completion. Consider the inverse system of rigid spaces

· · · → Xm := Spa(K〈x1/pm〉, K◦〈x1/pm〉)→ Xm−1 := Spa(K〈x1/pm−1〉, K◦〈x1/pm−1〉)→ · · ·

with transition maps induced by the natural inclusions. Each O+
X(X(x−1

pn
)) in the colimit is

itself the p-adic completion of colimm O+
Xm(Xm(x−1

pn
)). Since the O+

Xm(Xm(x−1
pn

)) are p-torsion
free, S̃+ can simply be computed as the p-adic completion of colimn,m O+

Xm(Xm(x−1
pn

)).
By [Bha17, Cor. 7.5.8.5], the p-adic completion of colimn O+

Xm(Xm(x−1
pn

)) is given by the
integral closure ofK◦〈x1/pm〉 inK〈x1/pm〉/(x−1). Under the isomorphismK〈x1/pm〉/(x−1) ∼−→∏
µpm (K) K sending x1/pm to ζ in the factor corresponding to ζ ∈ µpm(K), the image of

K◦〈x1/pm〉 is contained in the integrally closed subring ∏
K◦. On the other hand, the

composition
K◦ ↪→ K◦〈x1/pm〉 →

∏
K◦

is the diagonal map; since all factors are spanned by idempotents, it is integral. In particular,
the integral closure of K◦〈x1/pm〉 in K〈x1/pm〉/(x− 1) can be identified with ∏K◦.

Using the additional identification ∏
µpm (K) K

◦ ' C0(µpm(K), K◦), we see that S̃+ is
the p-adic completion of colimm C0(µpm(K), K◦). The first statement then follows from
Lemma 2.3.5. For the second statement, note that it suffices to verify the formula for the
map K◦〈x1/pm〉 → C0(µpm(K), K◦) at finite level, where it is a consequence of the previous
identifications.

Lemma 2.3.5. Every continuous map f : G → X from a profinite group G to a discrete
space X factors through a finite quotient.

Proof. Since the continuous image of a compact space is compact and X is discrete, the
image of f must be finite. Let G1, . . . , Gρ be the finite number of nonempty preimages. Each
Gi is open and thus contains open subspaces of the form giHi for some gi ∈ Gi and open,
normal subgroups Hi of G. Therefore, f factors through the finite quotient of G by the open,
normal subgroup ⋂Hi.

Under the identifications from Lemma 2.3.4, the “rational perfectoidization” S := S+[ 1
p
]→

S̃ := S+
perfd[ 1

p
] becomes the Fourier transform L1(Qp/Zp, K)→ C0(Zp(1)(K), K), under which

f maps to the function f̂(ζ) = ∑
x∈Qp/Zp f(x)ζx. This Fourier transform had been studied in

[FdM78] in a different language.
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Finally, in order to obtain S+
perfd from S+

perfd[ 1
p
], we record the following consequence of

the structure theorems of § 2.1.1.

Corollary 2.3.6. Let S ′ be integral over a perfectoid ring. Then S ′perfd can be described by
the fiber square

S ′perfd S+
perfd

(S ′/p)perf (S+
perfd/p)perf ,

where S+
perfd is the integral closure of S ′perfd in S ′perfd[ 1

p
].

Proof. Thanks to Proposition 2.1.15 applied to R′ = S ′perfd, it only remains to show that
(S ′perfd/p)perf ' (S ′/p)perf . We check that every perfect S ′/p-algebra S ′/p→ T factors uniquely
through a morphism (S ′perfd/p)perf → T . First, as T is perfectoid of characteristic p, there is
a unique factorization S ′/p→ S ′perfd/p→ T by the universal properties of perfectoidizations
and quotients. Then, perfectness of T gives the desired unique factorization of S ′perfd/p→ T

through (S ′perfd/p)perf .

Corollary 2.3.7. The (integral) perfectoidization of S+ := L1(Qp/Zp, K
◦) is given by

S+
perfd ' {f ∈ C0(Zp(1)(K), K◦) | f is constant mod (p1/p∞)}.

Proof. We have S̃+ ' C0(Zp(1)(K), K◦) by Lemma 2.3.4 and

(S+/p)perf '
(
(Fp[t1/p

∞ ]/(t)
)
[x1/p∞ ]/(x− 1)perf ' Fp

by Lemma 2.3.2. The fiber square of Corollary 2.3.6 therefore becomes

S+
perfd C0(Zp(1)(K), K◦)

Fp C0(Zp(1)(K),Fp),

where the bottom map is the inclusion of the constant functions. The statement follows.

2.3.2 Perfectoidizations of Huber pairs

In this subsection, we describe the perfectoidizations from Theorem 2.3.1 more concretely
in case the integral morphism arises from a finite morphism of Huber pairs. Besides its
geometric significance in the context of (global) perfectoid spaces, which we will explore in § 2.4,
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this setting can also be useful as a first step toward determining integral perfectoidizations,
as seen in § 2.3.1. Subsequently, we will discuss a related question of André.

First, recall the definition of a finite morphism of complete Huber pairs.

Definition 2.3.8 ([Hub96, (1.4.2)]). A morphism (R,R+) → (S, S+) of complete Huber
pairs is finite if S is a finite R-algebra with the induced topology and S+ is the integral
closure of R+ in S.

Theorem 2.3.1 directly implies the following statement.

Corollary 2.3.9. Let (R,R+) be a perfectoid Huber pair and (R,R+)→ (S, S+) be a finite
morphism of complete Huber pairs. Then (S, S+) admits a perfectoidization (S, S+) →
(S̃, S̃+), i.e., a morphism to a perfectoid Huber pair (S̃, S̃+) which is universal with that
property.

Proof. Choose a pseudouniformizer $ ∈ R+. Since R+ → S+ is integral, we can set
S̃ := (S+

perfd)∧[ 1
$

], where the completion is $-adic. Let S̃+ be the integral closure of (S+
perfd)∧

in S̃. The universal morphism S+ → S+
perfd induces a map (S, S+)→ (S̃, S̃+). To check that

it is universal for morphisms to perfectoid Huber pairs, let (S, S+) → (T, T+) be such a
morphism. Then the universal properties of S+ → S+

perfd and of completions yield a unique
morphism (S+

perfd)∧ → T+ and thus S̃ → T . We obtain S̃+ → T+ from the integral closedness
of T+.

Since a finite morphism is étale away from the (closed) discriminant locus, we can Zariski
locally choose g ∈ R+ such that R[ 1

g
]→ S[ 1

g
] is étale. Under additional hypotheses on g, the

perfectoidization of (S, S+) can almost be identified with a (nonderived) limit in the category
of Huber pairs.

Proposition 2.3.10. Fix a perfectoid Huber pair (R,R+). Choose a pseudouniformizer
$[ ∈ R[,+ and set $ := ]($[). Let (R,R+) → (S, S+) be a finite morphism of complete
Huber pairs and set X := Spa(S, S+). Assume there exists g[ ∈ R[,+ such that R[ 1

g
]→ S[ 1

g
]

is finite étale for g := ](g[) ∈ R+. Then the natural map

S̃+ → lim
n∈N

O+
X(X($n

g
))

is an almost isomorphism with respect to the ideal ($g)1/p∞ := ⋃
`∈N

(
]
(
($[g[)1/p`

))
. In

particular, the map S̃ → limn OX(X($n
g

)) is a (g1/p∞)-almost isomorphism.

To simplify notation, we will from here on write S〈$n
g
〉 := OX(X($n

g
)) and S〈$n

g
〉+ :=

O+
X(X($n

g
)) for the rings of functions on the rational localizations of the adic spectrum of a
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complete Huber pair (S, S+). Note that although in mixed characteristic limits in the category
of perfectoid Huber pairs need not coincide with limits in the category of complete Huber
pairs (see [And18a, § 3.8.2]), they are almost isomorphic in the setting of Proposition 2.3.10
by [And18a, § 3.8.4, Thm. 4.4.2, Prop. 3.5.4]. In the proof of Proposition 2.3.10 and in later
sections, we will need a perfectoid version of the Riemann extension theorem, due to Scholze
[Sch15, § 2.3], André [And18a, Thm. 4.4.2], and Bhatt.

Theorem 2.3.11 ([Bha18b, Thm. 4.2]). Let (R,R+) be a perfectoid Huber pair with pseu-
douniformizer $ ∈ R+. Choose g[ ∈ R[,+ and set g := ](g[). For all m ∈ N, the pro-system
of morphisms {

fn : R+/$m → R
〈
$n

g

〉+
/$m

}
n∈N

is an almost-pro-isomorphism with respect to ($g)1/p∞. Moreover, the morphisms fn are
($1/p∞)-almost injective.

We refer to § 2.5.1 for the definition of almost-pro-isomorphisms. For now, we simply
note that the almost-pro-isomorphism of the inverse systems from Theorem 2.3.11 yields a
($g)1/p∞-almost isomorphism

R+ ∼−→ lim
n∈N

R〈$n
g
〉+ (2.2)

upon taking inverse limits over m.

Proof of Proposition 2.3.10. Equation (2.2) applied to S̃+ gives a ($g)1/p∞-almost isomor-
phism

S̃+ ∼−→ lim
n∈N

S̃
〈
$n

g

〉+
.

Thus, it suffices to show that S̃〈$n
g
〉+ and S〈$n

g
〉+ are almost isomorphic.

Fix n ∈ N. Let λn : S → S($n
g

) be the initial topological S-algebra such that λn(g) is
invertible and λn($n)

λn(g) is bounded; the underlying ring of S($n
g

) is S[ 1
g
] and its completion

is S〈$n
g
〉 [Hub94, § 1]. By [BS19, Thm. 10.9], S[ 1

g
] = S+[ 1

$g
] → S̃[ 1

g
] = S+

perfd[ 1
$g

] is an
isomorphism. Hence, so is the completion S〈$n

g
〉 → S̃〈$n

g
〉, and the morphism S〈$n

g
〉+ →

S̃〈$n
g
〉+ of integral elements must be a ($1/p∞)-almost isomorphism.

Example 2.3.12. Let K be a perfectoid field and K[ be its tilt. Choose a pseudouniformizer
$[ ∈ K[ and set $ := ]($[). Assume that charK[ 6= 2.

Let (R,R+) := (K〈x1/p∞〉, K◦〈x1/p∞〉) be the perfectoid Huber pair corresponding to the
perfectoid closed unit disk. We consider the finite morphism of Huber pairs (R,R+) →
(S, S+) := (R[x1/2], R[x1/2]+), where R[x1/2]+ is the integral closure of R+ in R[x1/2]. Then
R[ 1

x
]→ S[ 1

x
] is finite étale. Since x lies in the image of ] : R[,+ → R+, we can compute the

perfectoidization of S+ via Proposition 2.3.10.
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For any n ∈ N, the natural inclusion of perfectoid K-algebras

S〈$n
x
〉 ↪→ K

〈
x1/(2p∞), ($n

x
)1/(2p∞)

〉
:=
( ⋃
`∈N

K◦
[
x1/(2p`), ($n

x
)1/(2p`)

])∧[
1
$

]

is an isomorphism because x1/(2p`) = 1
$n(p`−1)/(2p`) · x1/2 ·

(
($n
x

)1/p`
)(p`−1)/2

and ($n
x

)1/(2p`) =
1

$n/(2p`)
· x1/(2p`) · ($n

x
)1/p` are contained in S〈$n

x
〉 and powerbounded. Thus, S〈$n

x
〉+ →

K〈x1/(2p∞), ($n
x

)1/(2p∞)〉+ must be a ($1/p∞)-almost isomorphism. Since K◦〈x1/(2p∞)〉 is
perfectoid, another application of the perfectoid Riemann extension theorem as in the proof of
Proposition 2.3.10 shows that the natural map K◦〈x1/(2p∞)〉 ∼−→ limnK

◦〈x1/(2p∞), ($n
x

)1/(2p∞)〉
is an ($x)1/p∞-almost isomorphism. All in all, Proposition 2.3.10 then shows that S̃+ can
($x)1/p∞-almost be identified with K◦〈x1/(2p∞)〉.

One of the ingredients in the proof of Proposition 2.3.10 can be phrased by saying that
under the given hypotheses, S̃+ is almost isomorphic to its image under the counit of an
adjunction

R+,a-Perfd 2-limnR〈$
n

g
〉+,a-Perfd.

Λ

lim\

Here, R+,a-Perfd denotes the category of $-complete, $-torsionfree perfectoid R+-algebras,
up to ($g)1/p∞-almost isomorphism, and R〈$n

g
〉+,a-Perfd denotes the category of $-complete,

$-torsionfree perfectoid R〈$n
g
〉+-algebras, up to ($1/p∞)-almost isomorphism. The top, left

adjoint functor Λ is given by the localizations S+ 7→ {S〈$n
g
〉+}n∈N, the bottom, right adjoint

functor lim\ by the perfectoid inverse limit {S+
n }n∈N 7→ (limn∈N S+,[

n )].1 By [And18a, § 4.4.2],
the counit of this adjunction is always an almost isomorphism, or equivalently, Λ is fully
faithful. This naturally leads to the following question.

Question 2.3.13 ([And18a, Qn. 4.4.3]). Is Λ also essentially surjective (and thus an equiva-
lence)?

As the following example due to Lütkebohmert and Lütkebohmert–Schmechta shows, the
analog of this question in positive characteristic rigid geometry has in general a negative
answer.

Example 2.3.14 ([Lüt93, Ex. 2.10],[LS05, Ex. 5.3]). Consider the Tate algebra R = K〈x〉
over a (complete) nonarchimedean field K of characteristic p with uniformizer $. Inside the

1We describe the inverse limit via the tilting equivalence (i.e., the equivalence of Theorem 2.2.5.(ii)) so
that its image lies in the correct category: limits in perfectoid Huber pairs coincide with limits in complete
Huber pairs in positive characteristic, but not necessarily in mixed characteristic (cf. also [And18a, § 3.8.4]).
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rigid closed unit disk D := Spa(R,R◦) over K, we have annuli D( tn
x

) with associated rings of
functions Rn := R〈$n

g
〉 = H0(D($n

x
),OD) and the punctured disk D∗ := Dr{0} = ⋃

n D($n
x

)
with ring of functions R̃ = H0(D∗,OD). Let h := ∑∞

i=1$
i2x1−pi ∈ R̃; it has an essential

singularity at the origin. For each n ∈ N, we can rewrite h = ∑∞
i=1$

i2+n(1−pi)($n
x

)pi−1 as an
element of Rn.

Let Rn → Sn := Rn[y]/(yp − y− h) be the Artin–Schreier covers associated with h. Then
the Sn form a compatible inverse system of finite étale extensions of Rn that do not extend
to R.

Here, we show that this example does not carry over to the perfectoid setting, leaving open
Question 2.3.13. Let us take up some of the notation of Example 2.3.12 and Example 2.3.14.
Fix a perfectoid field K of characteristic p > 0 with pseudouniformizer $. Let R := K〈x1/p∞〉
be the perfectoid Tate algebra and D := Spa(R,R◦).

We can represent elements of Rn := R〈$n
x
〉 ' K◦[x1/p∞ , ($n

x
)1/p∞ ]∧[ 1

$
] (where the comple-

tion is $-adic) by formal power series f = ∑
i∈Z[p−1] aix

i with the constraint that for all ε > 0,
we have |ai| < ε and |a−i$−ni| < ε for all but finitely many i ∈ Z[p−1]>0. The transition
morphisms Rn+1 → Rn are injective and given by the natural inclusions.

Consider the limit R̃ := limnRn '
⋂
nRn in the category of topological rings. If

D∗ := D r {0} denotes the punctured perfectoid closed unit disk, we have

R̃ = H0(D∗,OD) =

f =
∑

i∈Z[p−1]
aix

i

∣∣∣∣∣∣
for all ε > 0, |ai| < ε and |a−i|1/(i+1) < ε

for all but finitely many i ∈ Z[p−1]>0

 . (2.3)

In this concrete description, we used that all the Rn admit compatible inclusions into the
K-module Map(Z[p−1], K) of formal expressions f = ∑

i∈Z[p−1] aix
i; their filtered limits and

filtered colimits can thus be computed as intersections and unions inside Map(Z[p−1], K).
Note that although the Cauchy product does not equip Map(Z[p−1], K) with a ring structure
due to the appearance of infinite sums, the sums occuring in the Cauchy products of series
coming from the various Rn do converge and recover the product structure.

Fix any h := ∑
i∈Z[p−1] hix

i ∈ R̃ and consider the associated Artin–Schreier extension
R̃→ S̃. In the rigid setting of Example 2.3.14, a suitable choice of hi yielded an extension
which does not arise via base change from a map R→ S. We now exhibit the contrasting
behavior in the perfectoid setting.

Lemma 2.3.15. The étale extension R̃→ S̃ is an Artin–Schreier extension associated with
some m ∈ R[ 1

x
].

Proof. By Artin–Schreier theory, we need to findm ∈ R[ 1
x
] and e ∈ R̃ such that h = m+ep−e.

Since we are free to add the degree ≥ −1 part of h to m, we may assume without loss of
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generality that hi = 0 for all i ≥ −1. Further, we can only have |hi| ≥ 1 for finitely many i,
so we may also assume that |hi| < 1 for all i. Denote by log the logarithm with base p. Set

m :=
∑

i∈Z[p−1]<−1

h
1/pdlog(−i)e

i xi/p
dlog(−i)e and e :=

∑
i∈Z[p−1]<−1

dlog(−i)e∑
j=1

h
1/pj
i xi/p

j

.

First, we check that e ∈ R̃ and m ∈ R[ 1
x
] using the concrete descriptions of these rings

from above. Under the standing assumption |hi| < 1, we have for all i ∈ Z[p−1]<−1 and all
1 ≤ j ≤ dlog(−i)e,

|h1/pj
i |

1
1−i/pj = |hi|

1
pj−i ≤ |hi|

1
−(p+1)i ≤

(
|hi|

1
1−i
)1/(p+1)

.

For all ε > 0, there exist only finitely many i ∈ Z[p−1]<−1 such that |hi|
1

1−i ≥ εp+1 because
h ∈ R̃. Hence, the coefficients of e meet the criterion of (2.3). Likewise, we have

|h1/pdlog(−i)e

i | ≤ |hi|1/−pi ≤
(
|hi|

1
1−i
)p
< ε

for all but finitely many i ∈ Z[p−1]<−1, so that x ·m ∈ R and thus m ∈ R[ 1
x
].

These convergence properties ensure that products and sums of m and e can be calculated
via the usual formal Cauchy product and formal sum formulas for formal series. Therefore, a
telescoping sum argument shows

m+ ep − e =
∑
i

h
1/pdlog(−i)e

i xi/p
dlog(−i)e +

∑
i

dlog(−i)e∑
j=1

h
1/pj−1

i xi/p
j−1 −

∑
i

dlog(−i)e∑
j=1

h
1/pj
i xi/p

j

=
∑
i

(
h

1/pdlog(−i)e

i xi/p
dlog(−i)e + h

1/p0

i xi/p
0 − h1/pdlog(−i)e

i xi/p
dlog(−i)e) =

∑
i

hix
i = h.

Corollary 2.3.16. The system of integral rings corresponding to the inverse system {Rn →
Sn}n∈N of Artin–Schreier extensions associated with h lies in the essential image of the
localization functor Λ.

Proof. Follows from [And18a, Prop. 4.4.4].

In § 2.5, we will see that Question 2.3.13 has a positive answer if one considers derived
categories instead of categories of perfectoid algebras.
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2.4 Globalization: diamonds

In this section, we describe a procedure to perfectoidify general analytic adic spaces over
a perfectoid base. To do so, we rely on the notion of diamonds, which has been developed by
Scholze in [Sch17]; although we give all necessary definitions, we refer to [SW20] for a more
comprehensive introduction. We begin by recasting the perfection functor for rings from
Definition 2.1.2 in more abstract terms. Fix a perfect ring R. Denote the opposite category
of R-algebras by Algop

R , and the opposite category of perfect R-algebras by Algperf,op
R , both

with the structure of a site via the étale topology.

Lemma 2.4.1. The perfection functor Algop
R → Algperf,op

R defines an embedding of topoi
ι : Shv(Algperf,op

R ) ↪→ Shv(Algop
R ) given by (ι∗F )(S) = F (Sperf) and (ι−1G)(S) = G(S). This

embedding admits a retraction ρ : Shv(Algop
R ) → Shv(Algperf,op

R ) with (ρ∗G)(S) = G(S),
induced by the inclusion Algperf,op

R ↪→ Algop
R as full subcategory. Moreover, ι∗ and ρ∗ both

preserve representable sheaves. In particular, the perfection of any R-algebra S can be
identified with ρ∗HomAlgop

R
(−, S).

Proof. The statement follows from general results in topos theory; see e.g. [SP20, Lem. 00XU,
Lem. 00XY]. We need to use that Algperf,op

R admits fiber products (tensor products of perfect
R-algebras are perfect), the full embedding Algperf,op

R ↪→ Algop
R is continuous (preserves covers

and fiber products), cocontinuous (an étale cover of a perfect R-algebra is perfect because
étale morphisms are relatively perfect) and has the perfection functor as continuous right
adjoint, and that R is perfect.

Remark 2.4.2. Since the limit perfection functor R 7→ Rperf := lim(· · · ϕR−→ R
ϕR−→ R

ϕR−→ R) is
left adjoint to the inclusion Algperf,op

R ↪→ Algop
R , the inverse image ρ−1F is the sheafification

of the presheaf S 7→ F (Sperf) [SP20, Lemma 00XU, Lemma 08NH].

In the global setting of § 2.2, we can mimic this description via sheaves to define the
promised perfectoidizations. Fix a perfectoid space T ; in later applications, we will take
T = Spa(K,K◦) for a perfectoid field K. Denote by AnT the category of analytic adic spaces
over T and by PerfdT the big pro-étale site of T in which the objects are all perfectoid spaces
X → T and covers are families of morphisms {fi : Xi → X}i∈I such that

• each fi is pro-étale,

• ⋃
i∈I fi(Xi) = X, and

• for each quasi-compact open subspace U ⊆ X, there exists a finite subset J ⊆ I and
quasi-compact open subspaces Uj ⊆ Xj for all j ∈ J such that U = ⋃

j∈J fj(Uj).
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Note that by the tilting equivalence (Corollary 2.2.8), PerfdT ' PerfdT [ can be manifestly
described using only positive characteristic. As in Lemma 2.4.1, we then obtain a functor

AnT → PreShv(PerfdT ), Z 7→ Z♦ : (X 7→ Hom(X,Z)) (2.4)

Scholze realized that the presheaf Z♦ has good geometric properties, analogous to those of
algebraic spaces in algebraic geometry.

Definition 2.4.3 ([Sch17, Def. 11.1]). (i) A pro-étale equivalence relation on a perfectoid
space X → T is a monomorphism of perfectoid spaces R ↪→ X ×T X such that the two
projections s, t : R ↪→ X ×T X → X are pro-étale and R(Y ) induces an equivalence
relation on X(Y )×T (Y ) X(Y ) for all perfectoid spaces Y over T .

(ii) A sheaf ∆ on PerfdT is called a diamond over T if it fits into a coequalizer diagram

R X ∆
s

t

for some perfectoid space X → T and a pro-étale equivalence relation R ⊂ X ×T X.

Despite their abstract definition, diamonds still carry topological information.

Definition 2.4.4 ([Sch17, Def. 11.14, Def. 11.17]). Let ∆ be a diamond over X.

1. The underlying topological space of ∆ is |∆| := |X|/|R| for a presentation ∆ ' X/R

as in Definition 2.4.3; this is independent of the choice of presentation by [Sch17,
Prop. 11.13].

2. ∆ is spatial if it is quasi-compact and quasi-separated (see [SGA4, § VI.I], [Sch17, § 8])
and |U | ⊂ |X| gives a basis of the topology, where U ranges over all quasi-compact
open subsheaves of X (and thus again diamonds).

The underlying topological space of a spatial diamond is a spectral space by [Sch17,
Prop. 11.18.(i)].

Lemma 2.4.5 ([Sch17, Lem. 15.6]). Let Z be a quasi-compact and quasi-separated analytic
adic space over T . Then the presheaf Z♦ defined above is a spatial diamond and |Z♦| ' |Z|.

We call Z♦ the diamondification of Z and think of it as an abstract perfectoidization.

Remark 2.4.6. For any Tate–Huber pair (A,A+), [Sch17, Lem. 15.1] defines a sheaf

Spd(A,A+) : X 7→ Hom
(
(A,A+), (OX(X),O+

X(X))
)
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in analogy with (2.4). When Z = Spa(A,A+), we have Z♦ ' Spd(A,A+); however, even
when (A,A+) is not sheafy, Spd(A,A+) can be defined and is a spatial diamond by [Sch17,
Prop. 15.4].

Remark 2.4.7. In [Sch17], Scholze studies a decidedly more flexible, absolute notion of
diamonds, which does not require a perfectoid base space. He also introduces diamondifications
Z♦ of analytic adic spaces Z over Zp in that generality. However, in this absolute case one
cannot simply think of diamondifications as perfectoidizations anymore: passing to Z♦ also
“forgets” the structure morphism to Zp. Here, we content ourselves with the simpler relative
theory over a perfectoid base, which will be sufficient for our purposes.

Besides the topological information, diamondifications also preserve étale cohomological
data. For simplicity, we will focus on a well-behaved class of adic spaces that was introduced
by Huber in [Hub96, Cond. 1.1.1] and has a good notion of étale site [Hub96, § 2.1].

Definition 2.4.8. An analytic adic space is locally noetherian if it is covered by affinoid adic
spaces Spa(R,R+) for which R is a strongly noetherian Tate ring.

A morphism of diamonds is étale if it is locally separated, representable in perfectoid
spaces, and the pullback to every perfectoid space is étale in the sense of Definition 2.2.7.(ii)
[Sch17, Def. 10.1.(ii)]. One can then define the small étale site ∆ét of a diamond ∆ as usual.

Lemma 2.4.9 ([Sch17, Lem. 15.6]). For any locally noetherian or perfectoid space Z over
T , the diamondification functor induces an equivalence of sites Z♦

ét
∼−→ Zét.

Remark 2.4.10. The statement remains true for general analytic adic spaces over T if one
defines the étale site Zét using preadic spaces; the complication arises because it is not clear
whether finite étale extensions of sheafy Huber pairs are sheafy.

2.4.1 Relation to the perfectoidizations from § 2.3

In Definition 2.3.8, we reviewed the notion of a finite morphism of complete Huber pairs.
In the locally noetherian setup, this definition can immediately be globalized.

Definition 2.4.11 ([Hub96, (1.4.4)]). A morphism f : Y → Z of locally noetherian adic
spaces is finite if the following equivalent conditions hold:

• every z ∈ Z admits an open affinoid neighborhood V such that U := f−1(V ) is affinoid
and the induced morphism (OZ(V ),O+

Z (V ))→ (OY (U),O+
Y (U)) is finite;

• for every open affinoid V ⊆ Z, the preimage U := f−1(V ) is affinoid and the induced
morphism (OZ(V ),O+

Z (V ))→ (OY (U),O+
Y (U)) is finite.
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Unfortunately, as of now it seems unclear whether there is a good notion of finite morphisms
between general analytic adic spaces that behaves nicely with respect to localizations even
in the analytic topology (e.g., so that the conditions of Definition 2.4.11 continue to be
equivalent). We can therefore only make sense of the phrase “finite morphism of perfectoid
spaces” if it is pulled back from locally noetherian spaces. The next result, which is a
direct consequence of Theorem 2.3.1, states roughly that the question whether “diamond
perfectoidizations” are indeed perfectoid spaces behaves well under finite morphisms.

Proposition 2.4.12. Let X0 = Spa(A0, A
+
0 ) be a locally noetherian, affinoid analytic adic

space over T . Let X = Spa(A,A+) → X0 be an affinoid perfectoid space over X0 and
Y0 = Spa(B0, B

+
0 ) → X0 be a finite morphism. Then the diamond Y ♦

0 ×X♦
0
X♦ is the

diamondification of an affinoid perfectoid space Y .

Proof. Let $ be a pseudouniformizer for A0. Since the diamondification functor from (2.4)
commutes with limits, Y ♦

0 ×X♦
0
X♦ ' Spd(B,B+), where (B,B+) is the finite (A,A+)-algebra

with B = B0 ⊗A0 A and B+ the integral closure of A+ in B (cf. [Hub96, Lem. 1.4.5.i)]).
Let (B,B+) → (B̃, B̃+) be the perfectoidization morphism from Corollary 2.3.9. Then
Y := Spa(B̃, B̃+) is perfectoid and the morphisms Y → Y0 and Y → X coming from the
morphisms of affinoid Tate rings (B0, B

+
0 ) → (B̃, B̃+) and (A,A+) → (B̃, B̃+) induce the

desired isomorphism of diamonds Y ♦ ∼−→ Y ♦
0 ×X♦

0
X♦.

The affinoid statement of Proposition 2.4.12 globalizes by a standard gluing argument.

Proposition 2.4.13. Let X0 be a locally noetherian analytic adic space over T . Let X → X0

be a perfectoid space over X0 and f0 : Y0 → X0 be a finite morphism. Then the diamond
Y ♦

0 ×X♦
0
X♦ is the diamondification of a perfectoid space Y .

Proof. Choose an open cover X = ⋃
α∈J Ũα by affinoid perfectoid spaces Ũα for which the

compositions Ũα → X0 factor through affinoid open subspaces Uα ⊆ X0. By Proposi-
tion 2.4.12, there are perfectoid spaces fα : Ṽα → Ũα together with isomorphisms ξα : Ṽ ♦

α
∼−→(

f−1
0 (Uα)

)♦
×U♦

α
Ũ♦
α ' Y ♦

0 ×X♦
0
Ũ♦
α ; as we work over a fixed perfectoid base, this simply means

that Ṽ [
α represents the latter sheaf.

For all α, β ∈ J , set Ũαβ := Ũα ∩ Ũβ ⊆ X, and similarly for triple intersections Ũαβγ . Let
Ṽαβ := f−1

α

(
Ũαβ

)
⊆ Ṽα. Since Ṽαβ ' Ṽα ×Ũα Ũαβ, the tilt Ṽ [

αβ represents

Ṽ ♦
α ×Ũ♦

α
Ũ♦
αβ

∼−−−−→
ξα�Ṽ [αβ

Y ♦
0 ×X♦

0
Ũ♦
α ×Ũ♦

α
Ũ♦
αβ ' Y ♦

0 ×X♦
0
Ũ♦
αβ.

The corresponding strings of isomorphisms for the perfectoid spaces Ṽ [
βα ⊆ Ṽ [

β , Ṽ [
αβ∩ Ṽ [

αγ ⊆ Ṽ [
α,
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and Ṽ [
βα ∩ Ṽ [

βγ ⊆ Ṽ [
β yield the following commutative diagram:

Mor
(
−, Ṽ [

αβ ∩ Ṽ [
αγ

)
Y ♦

0 ×X♦
0
Ũ♦
αβγ Mor

(
−, Ṽ [

βα ∩ Ṽ [
βγ

)

Mor
(
−, Ṽ [

αβ

)
Y ♦

0 ×X♦
0
Ũ♦
αβ Mor

(
−, Ṽ [

βα

)
.

∼ ∼

ξα�Ṽ [αβ
∼ ∼

ξβ�Ṽ [βα

By the full faithfulness of the Yoneda functor, the bottom lines are induced by unique
isomorphisms ϕαβ : Ṽ [

αβ
∼−→ Ṽ [

βα such that ϕ−1
αβ

(
Ṽ [
βα ∩ Ṽ [

βγ

)
= Ṽ [

αβ ∩ Ṽ [
αγ and the cocycle

condition
ϕβγ

∣∣∣
Ṽ [
βα
∩Ṽ [

βγ

◦ ϕαβ
∣∣∣
Ṽ [
αβ
∩Ṽ [αγ

= ϕαγ
∣∣∣
Ṽ [
αβ
∩Ṽ [αγ

is satisfied. Using these isomorphisms and the tilting equivalence, we can glue the various Ṽα
to a perfectoid space Y .

Moreover, the ξα glue to a morphism ξ : Y ♦ → Y ♦
0 ×X♦

0
X♦ because ξβ ◦ ϕ♦

αβ = ξα
∣∣∣
Ṽ [
αβ

essentially by definition. We can check that ξ is an isomorphism after base change along the
open cover Y ♦

0 ×X♦
0
Ũ♦
α . In that case, this follows from the fact that the ξα are isomorphisms.

Example 2.4.14. When Y0 → X0 is a Zariski-closed immersion with corresponding coherent
ideal sheaf J0 ⊂ OX0 , the perfectoid space Y is given in the affinoid setting of Proposi-
tion 2.4.12 by the Zariski-closed subspace corresponding to the ideal J0(Spa(A0, A

+
0 )) ·A ⊆ A

with its perfectoid structure from [Sch15, Lem. 2.2.2]; cf. also [BS19, Rmk. 7.5]. In the general
setting of Proposition 2.4.13, these spaces glue again to Y ⊂ X by universality.

2.4.2 Structure sheaves

Away from the setting of § 2.4.1, the diamond Z♦ attached to an analytic adic space
Z over T is usually not representable by a perfectoid space anymore, corresponding to the
fact that the perfectoidization of R needs to be thought of as a cosimplicial ring. To make
statements in that generality, we need to use structure sheaves on diamonds, following e.g.
[CGH+20, § 2.3]. While they can in principle be defined similarly to those of algebraic spaces,
we have to iron out an additional wrinkle in the theory: whereas algebraic spaces can be
equivalently described as étale sheaf quotiens of schemes by étale equivalence relations or as
étale sheaves with an étale surjection from a scheme (and representable diagonal), it is no
longer true that every diamond admits a pro-étale surjection from a perfectoid space. Thus,
one cannot obtain a pro-étale structure sheaf on diamonds by simply bootstrapping from
perfectoid spaces via pro-étale covers. Instead, one needs to work with a slightly more general
class of covers, which is pro-étale local on the target.
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Definition 2.4.15 ([Sch17, Def. 10.1.(i)]). A map f : F → G of pro-étale sheaves on PerfdT
is quasi-pro-étale if it is locally on F separated and for every strictly totally disconnected
perfectoid space Y and every morphism Y → G, the product F ×G Y is a perfectoid space
and the induced morphism F ×G Y → Y is pro-étale.

This condition can be checked “pointwise”: if f is quasi-compact and separated, then f is
quasi-pro-étale if and only if the pullback F ×G Spa(C,C◦)→ Spa(C,C◦) to every geometric
point Spa(C,C◦)→ G of rank 1 is affinoid pro-étale (i.e., a profinite set) [Sch17, Lem. 7.19].

Proposition 2.4.16 ([Sch17, Prop. 11.5]). A pro-étale sheaf ∆ on PerfdT is a diamond if
and only if it admits a quasi-pro-etale surjection X � ∆ from a perfectoid space X.

Definition 2.4.17 ([Sch17, Def. 14.1]). Let ∆ be a diamond. The (small) quasi-pro-étale
site ∆qproét has the underlying category of all quasi-pro-étale maps of diamonds Γ→ ∆ and
covers given by families of morphisms {fi : Γi → Γ}i∈I such that

• each fi is quasi-pro-étale,

• the induced morphism ⊔
i∈I fi :

⊔
i∈I Γi → Γ is surjective, and

• for each quasi-compact open Γ′ ⊆ Γ, there exist a finite subset J ⊆ I and quasi-compact
open subdiamonds Γ′j ⊆ Γj for all j ∈ J such that ⊔j∈J fj∣∣∣Γ′j : ⊔j∈J Γ′J → Γ′ is surjective.

Lastly, we will need the following lemma.

Lemma 2.4.18. Let ∆ be a diamond. Let ∆ét be its étale site, ∆qproét its quasi-pro-étale
site, and ∆perfd

qproét ⊂ ∆qproét the restriction of the quasi-pro-étale site to all perfectoid spaces
which are quasi-pro-étale over ∆. Then

(i) The natural inclusion of categories ∆perfd
qproét → ∆qproét induces an equivalence of topoi

Shv(∆perfd
qproét)

∼−→ Shv(∆qproét);

(ii) If ∆ is locally spatial, the natural morphism of sites ν∆ : ∆qproét → ∆ét induces a fully
faithful functor ν∗∆ : Shv(∆ét)→ Shv(∆qproét).

Proof. Since every diamond admits a quasi-pro-étale cover by a perfectoid space, (i) follows
from general topos theory; cf. e.g. [SP20, Lem. 03A0]. Part (ii) is [Sch17, Prop. 14.8].

Definition 2.4.19. Let ∆ be a diamond. The integral structure sheaf O+
∆ on ∆qproét is given

under the equivalence of Lemma 2.4.18.(i) by the assignment

(Y ∈ ∆perfd
qproét) 7→ O+

Y (Y ).
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By means of the integral structure sheaf, we can now give a description of perfectoidizations
in mixed characteristic without the integrality constraints of Theorem 2.3.1, at least up to
almost isomorphism. Note that although this fails in positive characteristic due to completion
issues, perfectoidizations are in that case simply given by the perfections from Definition 2.1.2.
The following statement is essentially [BS19, Prop. 8.5], bar some translations from the
language of diamonds to that of integral perfectoid rings. For the proof, we assume that the
reader is familiar with the more general notion of perfectoidizations from [BS19].

Proposition 2.4.20. Let (R,R+) be a perfectoid Huber pair with charR = 0. Fix a pseu-
douniformizer $[ ∈ R[,+ and set $ := ]($[). Let (S, S+) be a p-adically complete (R,R+)-
algebra. Then there is a ($1/p∞)-almost isomorphism

S+
perfd

a' RΓ(Spd(S, S+)qproét,O
+).

Proof. Set ∆ := Spd(S, S+). Consider the big quasi-pro-étale site (Dmd/∆)qproét and the
big affinoid perfectoid quasi-pro-étale site (Aff/∆)qproét; their underlying categories are the
category of all diamonds over ∆ and the full subcategory of affinoid perfectoid spaces over ∆,
respectively, and their coverings those of Definition 2.4.17.2 As in Lemma 2.4.18, the inclusion
functor (Aff/∆)qproét → (Dmd/∆)qproét induces an equivalence of topoi Shv((Aff/∆)qproét) ∼−→
Shv((Dmd/∆)qproét) because every diamond admits a quasi-pro-étale cover by a collection of
affinoid perfectoid spaces [SP20, Lem. 03A0]. In particular, we can still define an integral
structure sheaf O+ on (Dmd/∆)qproét following the procedure of Definition 2.4.19.

On the other hand, since the inclusion functor ∆qproét → (Dmd/∆)qproét is continuous,
cocontinuous, commutes with fiber products, and preserves the final object ∆, it induces a
morphism of topoi ι : Shv(∆qproét)→ Shv((Dmd/∆)qproét); moreover, the inverse image ι−1

is given by precomposition with this inclusion, i.e., by restriction to the small site [SP20,
Lem. 00XU]. By [SP20, Lem. 03YU], we conclude that

RΓ(∆qproét,O
+
∆) ' RΓ(∆qproét, ι

−1O+) ' RΓ((Dmd/∆)qproét,O
+) ' RΓ((Aff/∆)qproét,O

+).

Next, we analyze the morphisms of sites

(Aff/∆)qproét
µ−→ (Aff/∆)proét

ν−→ (Aff/∆)

of affinoid perfectoid spaces over ∆ with the quasi-pro-étale, the pro-étale, and the indiscrete
topology, respectively. By [Sch17, Lem. 7.18], every affinoid perfectoid space U admits
an affinoid pro-étale cover Ũ → U by a strictly totally disconnected affinoid perfectoid

2We ignore all set-theoretic issues here, which have been treated at length in [Sch17].
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space Ũ . The natural morphism of sites Ũqproét → Ũproét is an isomorphism essentially by
definition, so that Hi(Uqproét,O+) ' Hi(Uproét,O+) is almost zero for all i > 0 thanks to
[Sch17, Prop. 8.5]. Since the higher direct images Riµ∗O+ are the sheafifications of the
presheaf (U → ∆) 7→ Hi(Uqproét,O+) [SP20, Lem. 072W], we can conclude that they are
almost zero for i > 0. Another application of [Sch17, Prop. 8.5] and [SP20, Lem. 072W]
shows similarly that the Riν∗O+ are almost zero for all i > 0. The Leray spectral sequence
therefore yields an almost isomorphism

RΓ((Aff/∆)qproét,O
+) a' RΓ((Aff/∆), (ν ◦ µ)∗O+) ' RΓ((Aff/∆),O+).

However, the derived global sections of the presheaf topos for the catgory (Aff/∆) are
given by the homotopy limit

RΓ((Aff/∆),O+) ' Rlim
U∈(Aff/∆)

O+(U) ' Rlim
S+→T+

T+, (2.5)

over all perfectoid S+ algebras T+ which are$-torsionfree, $-adically complete, and integrally
closed in T ′[ 1

$
]. For any perfectoid algebra S+ → T ′, the integral closure T+ of the image of

T ′ in T ′[ 1
$

] is of this form by Lemma 2.1.14; since charR = 0, the $-completeness of T ′ and
T+ is automatic. Moreover, Proposition 2.1.15 provides a homotopy fiber square

T ′ T+

T ′ T+,

where T ′ := (T ′/p)perf ' T ′/
√
$T ′ (cf. Remark 2.1.16), and similarly for T+. In particular,

the (isomorphic) cones of the two horizontal maps are ($1/p∞)-torsion so that T ′ → T+ is a
($1/p∞)-almost isomorphism. Therefore, the homotopy limit in (2.5) is almost isomorphic to
the homotopy limit over all perfectoid S+-algebras T ′ and thus S+

perfd by [BS19, Prop. 8.5].

We note for later use that if we work over a perfectoid field (K,K◦) with pseudouniformizer
$, [CGH+20, § 2.3] checks that the quotient O+/$ is well-behaved with respect to the étale
topology and the diamondification functor.

Lemma 2.4.21 ([CGH+20, Lem. 2.3.2, Lem. 2.3.3]). (i) If ∆ is a locally spatial diamond
over Spd(K,K◦), then O+

∆/$ is an étale sheaf, i.e., in the essential image of the fully
faithful functor ν∗∆ : Shv(∆ét)→ Shv(∆qproét) from Lemma 2.4.18.(ii).

(ii) If Z is a rigid space over (K,K◦), then the pullback functor for the equivalence of sites
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Z♦
ét ' Zét of Lemma 2.4.9 identifies the sheaf of almost OK-modules (O+

Z /$)a with
(O+

Z♦/$)a.

2.5 Derived categories for inverse systems of perfectoid rings

In this section, we explore the behavior of geometric objects such as derived categories in
certain inverse systems of rings. This is inspired by the discussion in § 2.3.2, in particular
André’s Question 2.3.13 on the equivalence of certain categories of almost perfectoid algebras
with inverse systems of their localizations. We answer a derived category analog of this
question positively.

Proposition 2.5.1. Let (R,R+) be a perfectoid Huber pair with pseudouniformizer $ ∈ R+.
Choose g[ ∈ R[,+ and set g := ](g[). Then the pair of adjoint functors

Dcomp(R+,a)→ lim
n

Dcomp
(
R
〈
$n

g

〉+,a)
, M 7→

{(
M ⊗L

R+,a R
〈
$n

g

〉+,a)∧}
n∈N

and
lim
n

Dcomp
(
R
〈
$n

g

〉+,a)
→ Dcomp(R+,a), {Mn}n∈N 7→ Rlim

n
Mn.

gives an adjoint equivalence of categories, where almost mathematics is with respect to
($g)1/p∞.

Here, (−)∧ denotes the derived $-completion functor and Dcomp(−) ⊆ D(−) is the full
subcategory of derived $-complete objects; see Definition 2.5.15. The starting point of our
discussion is Bhatt’s quantitative form of the perfectoid Riemann extension theorem from
Theorem 2.3.11. In § 2.5.1, we show that the conclusion of that theorem yields a comparison
of the derived categories of the reductions modulo $m in a more general setting. This
comparison is then bootstrapped to one for the integral perfectoid rings in § 2.5.2.

In order to properly work with the inverse limits of the derived categories in Proposi-
tion 2.5.1, it will be necessary to use their ∞-categorical enhancements. In this section, we
will therefore consider the derived categories of all Grothendieck abelian categories as stable
∞-categories instead of their associated homotopy categories.

2.5.1 Derived categories on almost-pro-isomorphic systems

Throughout this section, fix a basic setup for almost mathematics: a ring A together with
an ideal m ⊂ A such that m = m2. For simplicity, we assume that (A,m) satisfies hypothesis
(B) of [GR03] that for all n > 1, the n-th powers of elements of m generate m.
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In [Bha18b], Bhatt introduces a notion of almost mathematics for pro-systems of A-
modules and bounded complexes. We provide a slightly modified definition for the unbounded
derived category.

Definition 2.5.2. Let m0 ⊆ A be an ideal. An object M of D(Aa) is m0-torsion if for all
ε ∈ m0, the morphism

ε · id : M →M

induced by the A-linear structure of D(Aa) is homotopic to 0.

IfM ∈ D(Aa) is m0-torsion, then Hi(M) is an m0-torsion Aa-module for all i ∈ Z. Beware,
however, that the converse may not hold.

Definition 2.5.3. A pro-object {Mn}n∈N of D(Aa) is almost-pro-zero if for all ε ∈ m and
all n ∈ N, there exists some m ≥ n such that the diagram

Mm Mm

Mn Mn

ε·id

0

ε·id

commutes up to homotopy. A map {fn}n∈N of pro-objects in D(Aa) is an almost-pro-
isomorphism if {fib(fn)}n∈N is almost-pro-zero.

The significance of this definition to us lies in the following versions of [Bha18b, Lem. 3.5,
Lem. 3.6].

Lemma 2.5.4. Let {fn : Mn → Nn}n∈N be an almost-pro-isomorphism in D(Aa). Then the
induced morphism RlimMn → RlimNn is an almost isomorphism.

Proof. We need to show that the inverse limit of the almost-pro-zero object {fib(fn)}n∈N is
almost zero. For every i ∈ Z, we have a short exact sequence

0→ R1 lim Hi−1(fib(fn))→ Hi(Rlim fib(fn))→ lim Hi(fib(fn))→ 0

Since the outer terms are almost zero by [Bha18b, Lem. 3.4], so is the middle term and thus
Rlim fib(fn).

Lemma 2.5.5. Let {Mn}n∈N be an almost-pro-zero object of D(Aa) and F : D(Aa)→ D(Aa)
be an A-linear functor. Then {F (Mn)}n∈N is almost-pro-zero.
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Proof. Let ε ∈ m and m ≥ n. If
Mm Mm

Mn Mn

ε·id

0

ε·id

commutes up to homotopy, then so does

F (Mm) F (Mm)

F (Mn) F (Mn)

ε·id

0

ε·id

by the A-linearity of F .

Let now {An}n∈N be a pro-system of A-algebras such that the map of pro-systems
{A→ An}n∈N is an almost-pro-isomorphism. For simplicity, assume that the structure map
Aa → Aa0 (and hence every Aa → Aan) is a monomorphism of almost algebras. This is the
case in Theorem 2.3.11 if we take A = R+/$m and An = R〈$n

g
〉+/$m.

We wish to compare compatible systems of almost complexes over the An with almost
complexes over A. The former are captured by the category lim D(Aan) whose objects are
collections of complexes Mn ∈ D(Aan) together with compatible (up to higher homotopy)
isomorphisms Mm ⊗L

Aam
Aan

∼−→Mn for all m ≥ n.

Remark 2.5.6. If an object {Mn}n∈N of lim D(Aan) is almost-pro-zero, all individual Mn are
already almost zero. To see this, fix n ∈ N and ε ∈ m. Choose m ≥ n as in Definition 2.5.3.
Then Mm → Mn

·ε−→ Mn is homotopic to 0, and hence by extending scalars to An also
Mm ⊗L

Aam
Aan

∼−→Mn
·ε−→Mn.

Proposition 2.5.7. The pair of adjoint functors

D(Aa)→ lim D(Aan), M 7→ {M ⊗L
Aa A

a
n}n∈N

and
lim D(Aan)→ D(Aa), {Mn}n∈N 7→ Rlim

n
Mn.

gives an adjoint equivalence of categories.

Before we begin the proof, we take on some preparatory work. First, two facts about
stable ∞-categories which we will need.
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Lemma 2.5.8. Let D be an A-linear stable ∞-category and K → L→M an exact triangle
of D . Assume that for some ε ∈ A, two out of K, L, and M are ε-torsion. Then the third
object of the exact triangle is ε2-torsion.

Proof. The statement can be checked in the homotopy category D := hD . Rotating the
triangle, we may assume that K and M are ε-torsion. By the Yoneda lemma, it suffices to
show that for any object N of D the map

HomD(N,L) ·ε
2
−→ HomD(N,L)

induced by multiplication with ε2 on the second factor is 0. This follows from a diagram
chase in

HomD(N,K) HomD(N,L) HomD(N,M)

HomD(N,K) HomD(N,L) HomD(N,M)

HomD(N,K) HomD(N,L) HomD(N,M).

·ε =0 ·ε ·ε =0

·ε =0 ·ε ·ε =0

Lemma 2.5.9. Let D be an A-linear stable ∞-category. Let f : K → L and g : L→M be
morphisms in D such that two out of the three fibers fib(f), fib(g), and fib(g ◦f) are ε-torsion
for some ε ∈ A. Then the remaining third fiber is ε2-torsion.

Proof. Consider the diagram of pushout squares for the octahedral axiom

K L M

0 cof(f) cof(g ◦ f)

0 cof(g).

f g

Since cof(f) and cof(g) are ε-torsion by assumption, we can apply Lemma 2.5.8 to the exact
triangle that arises from the bottom square.

Now fix ε ∈ m. For every n ∈ N, let Bn,ε := A + εAn ⊆ An. Every transition map
Am → An induces a natural morphism ρmn,ε : Bm,ε → Bn,ε. First, we show a technical lemma
about ε-torsion properties of several morphisms.

Lemma 2.5.10. Let m ≥ n. There exists J ∈ N (independent of m, n, and ε) such that the
fibers of the following morphisms in D(A) are εJ-torsion:
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(i) the base change Am ⊗L
Bm,ε Bn,ε → Am ⊗L

Bm,ε An of the inclusion Bn,ε ↪→ An.

(ii) the universal morphism

µ : Am ⊗L
Bm,ε An → Am ⊗Bm,ε An → An ⊗Bn,ε An → An

induced by left truncation, the transition maps of {An}n∈N, and multiplication.

(iii) the universal morphism Am⊗L
Bm,ε Bn,ε → An given by the composition of the morphisms

from (i) and (ii).

Proof. (i). Follows from ε · (An/Bn,ε) = 0 and the A-linearity of the derived tensor product.
(ii). We compare both source and target to εAm⊗L

Bm,ε An via the morphism ι : εAm⊗L
Bm,ε

An → Am ⊗L
Bm,ε An induced by the inclusion εAm ↪→ Am. Similarly to (i), cof(ι) is ε-torsion

because ε · (Am/εAm) = 0 and the derived tensor product is A-linear. Moreover, µ ◦ ι can
alternatively be obtained by taking the derived tensor product of εAm ↪→ Bm,ε with An so
that cof(µ ◦ ι) is ε-torsion by the same argument. Lemma 2.5.9 now yields the statement.

(iii). Apply (i) and (ii) together with Lemma 2.5.9.

Since A→ {An}n∈N is an almost-pro-isomorphism and Aa → Aa0 is a monomorphism, we
can find ` ∈ N such that ρan0,ε factors through a unique Aa-algebra morphism σn,ε : Ba

n,ε → Aa

for all n ≥ `; this morphism is a section of Aa → Ba
n,ε. The uniqueness guarantees that

σm,ε = σn,ε ◦ ρamn,ε.

Lemma 2.5.11. The map of pro-Aa-modules {σn,ε : Ba
n,ε → Aa}n≥` is a pro-isomorphism

(in the almost category).

Proof. For all n ≥ `, set Kn,ε := ker σn,ε. As each σn,ε is a section and hence surjective, it
suffices to show that the induced pro-system of kernels {Kn,ε}n≥` is pro-zero. Given n ≥ `,
choose m ≥ n such that ρamn,ε factors through some Ba

m,ε → Aa. This morphism is σm,ε, once
more by uniqueness. Thus, ρamn,ε(Km,ε) = 0 as desired.

Lemma 2.5.12. Let {Mn}n≥` be a pro-system of objects of D(Aan). Then the natural base
change map

{Mn →Mn ⊗L
Ban,ε

Aa}n≥`

of pro-objects in D(Aa) is an pro-isomorphism.

Proof. The fiber of Mn → Mn ⊗L
Ban,ε

Aa is given by Mn ⊗L
Ban,ε

Ka
n,ε, where again Kn,ε :=

kerσn,ε. Since {Kn,ε}n≥` is pro-zero and the derived tensor product is a linear functor,
{Mn ⊗L

Ban,ε
Ka
n,ε}n≥` is pro-zero as well. The assertion follows.
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Lemma 2.5.13. Let {Mn}n≥` be an object of lim D(Aan). Then the fiber of the projection

Rlim
n

(Mn ⊗L
Ban,ε

A)→M` ⊗L
Ba
`,ε
Aa

is εJ-torsion for some J ∈ N (independent of m, n, and ε).

Proof. By Lemma 2.5.10.(iii), there is J ∈ N such that for each n ≥ `, the fiber of

Mn ⊗L
Ban,ε

Ba
`,ε 'Mn ⊗L

Aan
Aan ⊗L

Ban,ε
Ba
`,ε →Mn ⊗L

Aan
Aa`

∼−→M`

is εJ -torsion. Hence, so is

fib
(

Rlim
n

(Mn ⊗L
Ban,ε

Aa) ' Rlim
n

(Mn ⊗L
Ban,ε

Ba
`,ε ⊗L

Ba
`,ε
Aa)→M` ⊗L

Ba
`,ε
Aa
)

by the Aa-linearity of the functors involved.

Corollary 2.5.14. Let {Mn}n≥` be an object of lim D(Aan). Then the fiber of the natural
map

Rlim
n
Mn →M` ⊗L

Ba
`,ε
Aa

is εJ-torsion for some J ∈ N (independent of m, n, and ε).

Proof. Combine Lemma 2.5.12 and Lemma 2.5.13.

Proof of Proposition 2.5.7. We show that unit and counit are natural isomorphisms.
For the unit map, let M be an object of D(Aa). Since {A → An}n∈N is an almost-pro-

isomorphism, so is {M →M ⊗L
Aa A

a
n}n∈N; cf. Lemma 2.5.5. In particular,

M → Rlim
n

(M ⊗L Aan)

is an almost isomorphism by Lemma 2.5.4.
Let now {Mn}n∈N be an object of lim D(Aan). Let n ∈ N and ε ∈ m. In the above

discussion, we can pick ` such that ` ≥ n and ρa`n,ε factors through σ`,ε. Then the counit map
{(

Rlim
m
Mm

)
⊗L
Aa A

a
n

}
n∈N
→ {Mn}n∈N

can be decomposed in the n-th spot as(
Rlim

m
Mm

)
⊗L
Aa A

a
n →M` ⊗L

Ba
`,ε
Aa ⊗L

Aa A
a
n →Mn.
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The fiber of the first map is εJ -torsion by Corollary 2.5.14. Since

M` ⊗L
Ba
`,ε
Aa ⊗L

Aa A
a
n = M` ⊗L

Ba
`,ε
Aan = M` ⊗L

Aa
`
Aa` ⊗L

Ba
`,ε
Aan,

the fiber of the second map is εJ -torsion by Lemma 2.5.10.(ii). Thus, the fiber of the counit
map is ε2J -torsion. Since the 2J-th powers of elements of m generate m by hypothesis (B),
the counit map is an almost isomorphism as well.

2.5.2 Consequences for perfectoid rings

As mentioned, Proposition 2.5.7 applies to A = R+/$m and An = R〈$n
g
〉+/$m from

Theorem 2.3.11. Next, we would like to bootstrap this to a result for R+ and R〈$n
g
〉+. For

now, let us only assume that R+ is a ring with ideal m = m2 ⊆ R+ so that (R+,m) is a basic
setup as before. Assume further that R+ has bounded $∞-torsion for some $ ∈ R+.

Definition 2.5.15. The derived $-completion of an object M of D(R+,a) is given by

M̂ := Rlim(M ⊗L
R+,a R+,a/$n).

If the natural map M → M̂ is an isomorphism, M is called derived $-complete. Denote by
Dcomp(R+,a) ⊆ D(R+,a) the full stable ∞-subcategory of all derived $-complete objects.

We need the following lemma, in which the use of ∞-categories is essential.

Lemma 2.5.16. Let R+ be a ring and $ ∈ R+ be a nonzerodivisor. Then the pair of adjoint
functors

Dcomp(R+,a)→ lim D(R+,a/$n), M 7→ {M ⊗L
R+,a R+,a/$n}n∈N

and
lim D(R+,a/$n)→ Dcomp(R+,a), {Mn}n∈N 7→ Rlim

n
Mn.

gives an adjoint equivalence of categories.

Proof. The unit morphismM → Rlim(M⊗L
R+,aR+,a/$n) is an equivalence for every objectM

of Dcomp(R+,a) by the definition of derived $-completeness. Next, since R+ is $-torsionfree,
R+/$n is perfect for all n ∈ N . Hence, the natural morphisms

(Rlim
m
Mm)⊗L

R+,a R+,a/$n → Rlim
m

(Mm ⊗L
R+,a R+,a/$n) ' Rlim

m
(Mn) 'Mn

are equivalences. Concretely, as R+,a/$n ' (R+,a ·$−→ R+,a), the stupid truncation gives rise
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to an exact triangle R+,a[0]→ R+,a/$n → R+,a[1] and thus a commutative diagram

(RlimmMm)⊗L
R+,a R+,a (RlimmMm)⊗L

R+,a R+,a/$n (RlimmMm)⊗L
R+,a R+,a[1]

Rlimm(Mm ⊗L
R+,a R+,a) Rlimm(Mm ⊗L

R+,a R+,a/$n) Rlimm(Mm ⊗L
R+,a R+,a[1])

∼ ∼

in which the two horizontal lines are exact triangles. Since the two outer vertical maps are
equivalences, so is the middle one. Thus, we see at once that RlimnMn is derived $-complete
and the second functor hence well-defined, and that the counit map{(

Rlim
m
Mm

)
⊗L
R+,a R+,a/$n

}
n∈N
→ {Mn}n∈N

is an equivalence.

Proof of Proposition 2.5.1. This is now a combination of Proposition 2.5.7, Lemma 2.5.16,
and Theorem 2.3.11.

2.6 Perfectoid Artin vanishing

The results of this section are inspired by the following statement due to Artin and
Grothendieck.

Theorem 2.6.1 ([SGA4, Cor. XIV.3.2]). Suppose X is an affine algebraic variety over a
separably closed field. Let F be a torsion abelian étale sheaf on X. Then Hn

ét(X,F ) = 0 for
all n > dimX.

When X is proper, Theorem 2.6.1 fails; nonetheless, we can prove a similar version
for certain inverse systems of varieties. From here on, fix a complete, algebraically closed
extension C of Qp. Let OC be its ring of integers and $ be a pseudouniformizer. We will
work in the following setting.

Situation 2.6.2. Let I be a cofiltered category with final object 0 ∈ I. Let Xi, i ∈ I,
be a cofiltered inverse system of quasi-compact and quasi-separated rigid spaces over C of
dimension d with finite transition maps πji : Xj → Xi. Assume that the diamond limiX

♦
i is

representable by a perfectoid space X.

In order to have a good theory of étale cohomology, we will always identify rigid spaces
with their associated adic spaces [Hub94, Prop. 4.3]. Later in this thesis, we will mostly be
interested in the special case where the Xi are algebraic varieties and there exists a perfectoid
space X such that X ∼ limiXi in the sense of [SW13, Def. 2.4.1].
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Note that by Proposition 2.4.13, Situation 2.6.2 is preserved under base change along
any finite morphism Y0 → X0, a fact that will turn out to be crucial later in this section:
the isomorphism Y ♦ ' Y ♦

0 ×X♦
0
X♦ from Proposition 2.4.13 yields, via projection to the two

factors and the definition of the diamonds Y ♦
0 and X♦, morphisms of adic spaces Y → Y0

and Y → X. Setting Yi := Y0 ×X0 Xi for all i ∈ I, we obtain the desired inverse system of
maps Y → Yi. On the other hand, it is not even clear if the fiber product Y0 ×X0 X exists
as an adic space—we do not know whether its structure presheaf is a sheaf. Therefore, it is
really advantageous to formulate Situation 2.6.2 in the category of diamonds.

Theorem 2.6.3 (Perfectoid Artin vanishing). In Situation 2.6.2, let F0 be a Zariski-
constructible sheaf of Fp-modules on X0 and Fi := π∗i0F0 for all i ∈ I. Assume that X0

is proper. Then for all n > d

colim
i

Hn
ét(Xi, Fi) = 0.

An étale sheaf F0 of Fp-modules on X0 is Zariski-constructible if there is a finite stratifi-
cation X0 = ⊔

X0,α such that each stratum is locally closed in the Zariski topology of X0

and the restrictions F0

∣∣∣
X0,α

are finite locally constant. For example, every constructible sheaf
of Fp-modules on a scheme of finite type over C (in the usual algebro-geometric sense) gives
rise to a Zariski-constructible sheaf on its analytification. We refer to [Han20] for a detailed
account in the general rigid-analytic setting. When F0 = j0,!Fp for some dense, Zariski-open
j0 : U0 ↪→ X0, Theorem 2.6.3 was proven in [Sch15, § 4.2].

Let us briefly elucidate the connection between the cohomologies of the rigid spaces at
finite level and the inverse limit diamond.

Lemma 2.6.4. In Situation 2.6.2, let F0 be an étale sheaf on X0 with pullbacks Fi to Yi and
F to Y . Then the natural map colimi Hn(Xi, Fi)→ Hn(X,F ) is an isomorphism.

Proof. By Lemma 2.4.5 and Lemma 2.4.9, the diamonds X♦
i attached to Xi are spatial and

the diamondification functor induces a natural equivalence of sites X♦
i,ét

∼−→ Xi,ét. Denoting the
pullbacks of the Fi and F under these equivalences by F ♦

i and F ♦, respectively, it therefore
suffices to show that the natural map

colim
i

Hn
ét(X♦

i , F
♦
i )→ Hn

ét(X♦, F ♦)

is an isomorphism. This is [Sch17, Prop. 14.9].

Example 2.6.5. Lemma 2.4.21 applies to the setting of Lemma 2.6.4 as follows: When
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F0 = (O+
X0/$)a, chasing through the diagram

X♦
i,qproét X♦

i,ét Xi,ét

X♦
0,qproét X♦

0,ét X0,ét

∼

ρi

∼

shows that the pullback Fi := ρ∗iF0 is given by (O+
Xi
/$)a because the diamondification

ρ♦i : X♦
i → X♦

0 of the finite morphism Xi → X0 is quasi-pro-étale [CGH+20, Prop. 2.3.4];
virtually the same argument applies to the pullback to Xét. Therefore, the natural map
colimi Hn(Xi,O

+
Xi
/$)→ Hn(X,O+

X/$) is an almost isomorphism by Lemma 2.6.4.

2.6.1 Examples and counterexamples

Before delving into the proof of Theorem 2.6.3, we give some examples and applications.

Example 2.6.6. When X0 ⊆ PN
C is a projective variety, we obtain a natural inverse system

with the required properties by putting Xi := X0 ×PNC ,Φi
PN
C , i ∈ Z≥0, where Φ is the “mock

Frobenius”
Φ: PN

C → PN
C , [x0 : · · · : xN ] 7→ [xp0 : · · · : xpN ].

In this setting, Esnault [Esn18, Thm. 5.1] gave a proof of Theorem 2.6.3 that does not
require perfectoid techniques. In fact, her argument establishes this special case over any
algebraically closed field of characteristic not equal to p. It seems interesting to investigate
whether Theorem 2.6.3 holds true over more general algebraically closed, nonarchimedean
fields as well.

Example 2.6.7. Let A be an abelian variety, or more generally an abeloid variety, over C.
Consider the cofiltered inverse system

· · · [p]−→ A
[p]−→ A

[p]−→ A

in which the transition maps are multiplication by p. In [BGH+18], the authors construct
a perfectoid space A∞ with A∞ ∼ lim[p] A and thus A♦

∞ ' lim[p] A
♦. In particular, this

produces interesting nonalgebraic examples.

Example 2.6.8. Fix, once and for all, a smooth, GLg(Z)-admissible polyhedral decomposition
of the cone of positive semi-definite quadratic forms on Rg whose null space is defined over
Q; see [FC90, Def. IV.2.2, IV.2.3]. Let Ag[m] be the toroidal compactification of the moduli
space Ag[m] of principally polarized abelian varieties of dimension g over C with full level-m
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structure which is determined by this decomposition. By [FC90, Thm. IV.6.7], Ag[m] is a
smooth and proper algebraic stack in which Ag[m] rAg[m] is a normal crossings divisor (see
Definition 3.1.1). If m ≥ 3, it is an algebraic space [FC90, Cor. IV.6.9], and even a projective
variety under certain convexity conditions on the decomposition [FC90, § V.5].

We obtain a cofiltered inverse system Xi := Ag[pi], i ∈ Z≥0, of projective varieties with
finite transition maps “forgetting level structure.” Work of Scholze [Sch15] and Pilloni–Stroh
[PS16, Thm. 0.4] constructs a perfectoid space X ∼ limiX

ad
i . Thus, Theorem 2.6.3 applies

to this inverse system.

For later purposes, it will be beneficial to formulate Theorem 2.6.3 for arbitrary systems
of semiperverse sheaves. We only consider the case where the Xi are (the analytifications of)
proper schemes over C, in which we can use the notation set up in Appendix A.

Corollary 2.6.9. Let m ∈ Z and Ki ∈ pD(Xi)≤m for all i ∈ I. Assume that for every
morphism i → j of I, there exists ϕij : π∗ijKj → Ki such that ϕik = ϕij ◦ π∗ijϕjk for all
i→ j → k. Then

colim
i

Hn
ét(Xi, Ki) = 0

for all n > m.

Proof. By Lemma 2.6.10 below applied to the Arr(Iop)-shaped diagramHj→i := Hn
ét(Xi, π

∗
ijKj)

with transition maps induced by the natural pullback morphisms and the ϕij , we may assume
that Ki ' π∗i0K0 for all i ∈ I. Consider the hypercohomology spectral sequences

Hr
ét(Xi,H

s(Ki)) =⇒ Hr+s
ét (Xi, Ki),

which are compatible in i ∈ I. By the “colimit lemma” (cf. e.g. [Mit97, Prop. 3.3]), it suffices
to check that

colim
i

Hr
ét(Xi,H

s(Ki)) = 0

whenever r + s > m. By Theorem 2.6.3 and Proposition 2.4.13 below, the colimit is 0
when r > dim supp H s(K0), so the statement follows from the semiperversity condition
dim supp H s(K0) ≤ m− s.

It remains to prove Lemma 2.6.10. Recall that the arrow category of a category J is the
category Fun({0→ 1}, J) of functors from the interval category {0→ 1} to J whose objects
are the morphisms of J . In § 3.3, we will take J = Z≥0; in that case, Arr(J) can be identified
with the “staircase” diagram {(j, k) ∈ (Z≥0)2 | j ≤ k}, considered as a partially ordered set
via the product order.
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Lemma 2.6.10. Let C be a category that admits all filtered colimits. Let J be a filtered
category with associated arrow category Arr(J) and H : Arr(J) → C be an Arr(J)-shaped
diagram of C . Then

colim
j∈J

H(id : j→j) ' colim
j∈J

colim
(j→k)∈Arr(J)

H(j→k).

Proof. Let F : Arr(J) → J, (j → k) 7→ j be the projection onto the source and G : J → ∗
be the functor to the terminal category. Since the fully faithful “diagonal” subcategory J ⊂
Arr(J) consisting of all identity morphisms (id : j → j) is cofinal, we have colimj∈J H(id : j→j) '
colimArr(J) H. However, we can compute colimArr(J) H another way: it is the left Kan
extension LanG◦F H of H along G ◦ F , which is naturally isomorphic to LanG LanF H. By
the universal property of left Kan extensions, the functor LanF H is the J-shaped diagram
(colim(j→k)∈Arr(J) H(j→k))j∈J of colimits with fixed source, hence

LanG LanF H ' LanG
(

colim
(j→k)∈Arr(J)

H(j→k)

)
j∈J
' colim

j∈J
colim

(j→k)∈Arr(J)
H(j→k).

We conclude with two further examples to indicate the limits of our methods.

Example 2.6.11. We work in Situation 2.6.2 and assume that X0 is proper. If f0 : Y0 → X0

is a finite morphism and Yi := Y0 ×X0 Xi, Theorem 2.6.3 applied to f0,∗Fp on X0 (which is
Zariski-constructible by [Han20, Prop. 2.3]) shows that colimi Hn

ét(Yi,Fp) = 0 for all n > d.
In fact, this will be established independently in Lemma 2.6.13 as a key step toward the
proof of Theorem 2.6.3. When f0 is only required to be generically finite, the statement is
already false for the blowup of Pd

C in a point.
More precisely, let Xi := Pd

C , i ∈ Z≥0, be the inverse system whose transition maps are
the mock Frobenii from Example 2.6.6. Let Q := [1 : 1 : . . . : 1] and Y0 := BlQ Pd

C

f0−→ Pd
C .

Since blowing up commutes with flat base change [SP20, Lem. 0805], Yi is the blowup of
Pd
C in the points Qi1, . . . , Qipid whose coordinates are all pi-th roots of unity. Let E be the

exceptional divisor in Y0 and Ei1, . . . , Eipid the exceptional divisors in Yi.
On cohomology, we have

H2d−2
ét (Yi,Fp) = H2d−2

ét (Pd
C ,Fp)⊕

⊕
j

H2d−4
ét (Eij,Fp),

where the summands coming from the Eij are generated by the pushforwards of c1(OEij (1))d−2

along the inclusions Eij ↪→ Xi. Moreover, the pullback of c1(OE(1)) along Yi → Y0 is∑
j c1(OEij(1)) and different Chern classes in the sum intersect to 0, so c1(OE(1))d−2 pulls
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back to ∑j c1(OEij(1))d−2. In other words, the transition map

H2d−2
ét (Pd

C ,Fp)⊕ H2d−4
ét (E,Fp)→ H2d−2

ét (Pd
C ,Fp)⊕

⊕
j

H2d−4
ét (Eij,Fp)

is multiplication by pi on the summand H2d−2
ét (Pd

C ,Fp), but the diagonal map on H2d−4
ét (E,Fp).

In particular, colimi H2d−2
ét (Yi,Fp) 6= 0.

The next example shows why Theorem 2.6.3 does not hold for more general classes of
constructible sheaves which can be found in [Hub96].

Example 2.6.12. Let Xi := P1
Cp
, i ∈ Z≥0, with the transition maps from Example 2.6.6.

Let ji := Ui ↪→ Xi be the closed unit disc; in particular, Ui ' U0 ×X0 Xi. We claim that for
F0 := j0,!Fp, we have colimi H2

ét(Xi, Fi) 6= 0.
Let X = P1,perf

Cp
and j : U ↪→ X be the perfectoid inverse limit of the system Xi and

Ui, respectively. Likewise, let Yi := P1
C[
p
, i ∈ Z≥0, be the inverse system of projective lines

over C[
p with relative Frobenius as transition maps, ki : Vi ↪→ Yi the closed unit discs, and

Y ' P1,perf
C[
p

and k : V ↪→ Y their perfectoid inverse limits. The tilting equivalence [Sch12,
Thm. 7.12] [KL15, Cor. 8.3.6] and [Sch12, Thm. 7.17, Cor. 7.19] yield a commutative diagram
of topoi

V ∼0,ét V ∼ét U∼ét limi U
∼
i,ét U∼0,ét

Y ∼0,ét Y ∼ét X∼ét limiX
∼
i,ét X∼0,ét

k0

∼ '

k

'

j j0

∼ ' '

and thus via base change [SGA4, Lem. XVII.5.1.2] the identification

colim
i

H2
ét(Xi, Fi) ' H2

ét(X, j!Fp) ' H2
ét(Y, k!Fp) ' H2

ét(Y0, k0,!Fp).

Now we can proceed similarly to [Hub96, § 0.2]. We have a short exact sequence of étale
sheaves on Y0 = P1

C[
p

0→ k0,!Fp → Fp → ι∗Fp → 0, (2.6)

where ι : W∼
ét,Y0 ↪→ Y ∼0,ét is the inclusion of the closed subtopos complementary to V ∼0,ét [SGA4,

§ IV.9.3], which corresponds to W := {x ∈ Y0 | |x| > 1} (in the language of [Hub96], the
étale topos of the pseudo-adic space (Y0,W )). By GAGA for rigid étale cohomology in the
proper case (cf. [BM18, Cor. 6.18] or [Hub96, Thm. 3.2.10]), the Artin–Schreier sequence,
and [SGA4, Cor. X.5.2], H1

ét(Y0,Fp) ' H2
ét(Y0,Fp) ' 0. Thus, the long exact sequence in

cohomology for (2.6) gives an isomorphism

H1(Wét,Y0 ,Fp) ∼−→ H2
ét(Y0, k0,!Fp).
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Let V := OC[
p
and V {T} be the henselization of V [T ](mV ,T ). Choose a pseudouniformizer

$[ of V . As in [Hub96, Ex. 0.2.5], we can conclude from [Hub96, Thm. 0.2.4/Thm. 3.2.1]
that

H1(Wét,Y0 ,Fp) ' H1
ét

(
SpecV {T}

[
1
$[

]
,Fp

)
.

Next, we show that the étale Fp-torsor V {T}
[

1
$[

]
→

(
V {T}

[
1
$[

])
[S]/

(
Sp − S − T

$[

)
is

nontrivial; this implies H1
ét

(
SpecV {T}

[
1
$[

]
,Fp

)
6= 0 and hence finishes the proof of the claim.

Note that the map of pairs

(V [T ](mV ,T ), ($[, T ))→ (V [T ](mV ,T ), (mV , T ))

induces an isomorphism on henselizations by [SP20, Lem. 0F0L]. Therefore, V [T ](mV ,T ) and
V {T} have isomorphic ($[, T )-adic completions [SP20, Lem. 0AGU]. On the other hand, the
($[, T )-adic completion of V [T ](mV ,T ) is identified via the string of isomorphisms

lim
n
V [T ](mV ,T )/($[, T )n ' lim

a,b
V [T ](mV ,T )/($[,a, T b) ' lim

a,b
(V [T ]/($[,a, T b))(mV ,T )

' lim
a,b

V [T ]/($[,a, T b) ' lim
b

(
lim
a
V/($[,a)

)
[T ]/(T b)

' lim
b
V [T ]/(T b) ' V JT K

because the chain of ideals ($[,n, T n) is cofinal with ($[, T )n, localization is exact, (mV , T )
is maximal and rad($[,a, T b) = (mV , T ), completion commutes with finite sums, and V

is $[-adically complete, respectively. We obtain an induced map θ :
(
V {T}

[
1
$[

])
[S] →(

V JT K
[

1
$[

])
[S] ⊂ (C[

pJT K)[S].
Assume that Sp − S − T

$[
= g · h in

(
V {T}

[
1
$[

])
[S]. Set d := deg(g); this is also the

degree of θ(g) because the degree of Sp − S − T
$[

does not decrease under θ. Since the
roots of Sp − S − T

$[
in (C[

pJT K)[S] are given by α + ∑∞
ν=0

(
T
$[

)pν
, where α ranges over all

elements of Fp, the (d−1)-st coefficient of g is −∑d
µ=1 αµ−d ·

∑∞
ν=0

(
T
$[

)pν
for some (pairwise

different) α1, . . . , αd ∈ Fp. As the image of θ is contained in
(
V JT K

[
1
$[

])
[S], where the

coefficients in all appearing power series have bounded denominators, d ≡ 0 mod p and
therefore deg(g) = 0 or deg(h) = 0. However, Sp − S − T

$[
is not divisible by any nonunit of

V {T}
[

1
$[

]
, so either g or h must be a unit. In other words, Sp − S − T

$[
is irreducible and

the torsor V {T}
[

1
$[

]
→
(
V {T}

[
1
$[

])
[S]/

(
Sp − S − T

$[

)
is nontrivial.

2.6.2 Proof of Theorem 2.6.3

We begin with the following key assertion, whose proof is inspired by [Sch15, § 4.2].
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Lemma 2.6.13. In Situation 2.6.2, let Y0 → X0 be a finite morphism and Yi := Y0 ×X0 Xi

for all i ∈ I. Assume that X0 is proper. Then for all n > d

colim
i

Hn
ét(Yi,Fp) = 0.

Proof. It suffices to show that the free OC/p-module

colim
i

Hn
ét(Yi,Fp)⊗Fp OC/p

is almost zero for all n > d. By Scholze’s primitive comparison theorem [Sch13b, Thm. 3.17]
(here properness of the Xi is crucial!), the stability of Situation 2.6.2 under base change along
finite morphisms, and Example 2.6.5, there is an almost isomorphism

colim
i

Hn
ét(Yi,Fp)⊗Fp OC/p

∼−→ colim
i

Hn
ét(Yi,O+

Yi
/p) ∼−→ Hn

ét(Y,O+
Y /p),

where Y is the perfectoid space from Proposition 2.4.13. The Čech-to-derived functor
spectral sequence for an affinoid perfectoid cover of Y and [Sch12, Prop. 6.14, Prop. 7.13]
or [KL15, Prop. 8.3.2.(c)] show that there is an almost isomorphism of cohomology groups
Hn

ét(Y,O+
Y /p)a ' Hn(Y,O+

Y /p)a for the étale and analytic topology. However, since Y ♦ '
Y ♦

0 ×X♦
0
X♦ ' limi Y

♦
i and thus |Y | ' limi|Yi| [Sch17, Lem. 11.22, Lem. 15.6] and since the

cohomological dimension of the |Yi| is at most dim Yi = d [Sch92, Cor. 4.6], the statement
follows; cf. the proof of [Sch15, Cor. 4.2.2].

Remark 2.6.14. In the proof of Lemma 2.6.13, we could have proceeded along the lines of
[CGH+20] and used Proposition 2.4.12 directly instead of referring to the global statement of
Proposition 2.4.13. Namely, we can simply define the spatial diamond Y ♦ := limi Y

♦
i ; the

natural map
colim

i
Hn

ét(Y ♦
i ,O

+
Y ♦
i

/p)→ Hn
ét(Y ♦,O+

Y ♦/p)

is still an isomorphism by [Sch17, Prop. 14.9]. The morphism π : Y ♦
ét → |Y ♦

0 | = |Y0| from the
étale site of Y ♦ to the analytic site of Y0 induces an isomorphism

RΓét(Y ♦,O+
Y ♦/p) ' RΓ(|Y0|,Rπ∗(O+

Y ♦/p)).

Since the cohomological dimension of |Y0| is at most dim Y0 = d [Sch92, Cor. 4.6], we are left
to prove that Riπ∗(O+

Y ♦/p)a = 0 for all i > 0. This statement can be checked locally on |Y0|
[Sch17, Cor. 16.10], so we may assume that we are in the affinoid situation of Proposition 2.4.12
and conclude with [Sch12, Prop. 7.13] or [KL15, Prop. 8.3.2.(c)].
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At last, we can finish the proof of Theorem 2.6.3 by reducing the assertion to Lemma 2.6.13
via a standard dévissage argument.

Proof of Theorem 2.6.3. It suffices to prove the following statement for all d ≥ 0 and all
n > d via ascending induction on d and descending induction on n:

colim
k

Hn
ét(Xk, Fk) = 0. (Vd,n)

The base case n > 2d is [Hub96, Cor. 2.8.3]. For the inductive step, we fix d > 0 and n > d

and assume (Vd′,n′) for all d′, n′ such that either d′ < d and n′ > d′, or d′ = d and n′ > n.
First, by the topological invariance of the étale site and Proposition 2.4.13, we may,

after possibly replacing Xk with X0,red ×X0 Xk, assume that X0 is reduced. Choose a dense,
Zariski-open subspace j0 : U0 ↪→ X0 for which j∗0F0 is locally constant. By shrinking U0 if
necessary, we can ensure that U0 is normal; cf. [Con99, Thm. 2.1.2]. Let i0 : Z0 ↪→ X0 be the
inclusion of the complement of U0 with its reduced closed subspace structure. For all k ∈ I,
define Uk := U0 ×X0 Xk, Zk := Z0 ×X0 Xk, and let jk : Uk ↪→ Xk and ik : Zk ↪→ Xk be the
projections to the second factor.

By Proposition 2.4.13, there is a perfectoid space Z representing limk Z
♦
k . Thus, by the

induction hypothesis, colimk Hn′

ét(Xk, ik,∗i
∗
kFk) = colimk Hn′

ét(Zk, π∗k0i
∗
0F0) = 0 for n′ > d − 1.

Taking cohomology of the direct system of short exact sequences

0→ jk,!j
∗
kFk → Fk → ik,∗i

∗
kFk → 0,

we see that the resulting map

colim
k

Hn
ét(Xk, jk,!j

∗
kFk)→ colim

k
Hn

ét(Xk, Fk)

is an isomorphism. Since jk,!j∗kFk ' π∗k0j0,!j
∗
0F0 by proper base change, we may assume that

F0 = j0,!L for some local system L on U0.
In this case, we can choose a finite étale cover f0 : V0 → U0 for which f ∗0L ' F⊕rp . Let

ν0 : X̃0 → X0 be the normalization of X0; then ν0 is an isomorphism over U0 (see e.g. [Con99,
§ 2] for basic facts about normalizations of rigid spaces). By [Han20, Thm. 1.6], f0 can be
extended to a finite cover f̄0 : Y0 → X̃0. Denote by ̄0 : V0 ↪→ Y0 the induced open immersion.
The trace map yields a surjective morphism

ν0,∗f̄0,∗̄0,!F⊕rp ' j0,!f0,∗F⊕rp ' j0,!f0,∗f
∗
0L� j0,!L. (2.7)

Let K denote the kernel of this map. For all k ∈ I, set X̃k := X̃0×X0 Xk, Vk := V0×X0 Xk,
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and Yk := Y0 ×X0 Xk. The projections νk : X̃k → Xk are still isomorphisms over Uk. We
obtain finite étale covers fk : Vk → Uk extending to finite covers f̄k : Yk → X̃k and open
immersions ̄k : Vk ↪→ Yk as base changes from the respective morphisms over X0.

Since ν0, f0, and f̄0 are finite, proper base change shows that pulling back (2.7) along πk0

yields a direct system of short exact sequences

0→ π∗k0K → νk,∗f̄k,∗̄k,!F⊕rp → π∗k0j0,!L→ 0,

From the induction hypothesis (Vd,n+1), we know that colimk Hn+1
ét (Xk, π

∗
k0K) = 0. It remains

to show that colimk Hn
ét(Xk, νk,∗f̄k,∗̄k,!F⊕rp ) = colimk Hn

ét(Yk, ̄k,!F⊕rp ) = 0 as well.
Let Ak := Zk ×Xk Yk and ı̄k : Ak ↪→ Yk be the projection to the second factor. Consider

the short exact sequences

0→ ̄k,!F⊕rp → F⊕rp → ı̄k,∗F⊕rp → 0

on Yk. Lemma 2.6.13 applied to the systems of finite morphisms Yk → Xk and Ak → Zk shows
that colimk Hn−1(Yk, ı̄k,∗F⊕rp ) = (colimk Hn−1(Ak,Fp))⊕r = 0 and colimk Hn

ét(Yk,F⊕rp ) = 0,
respectively, whence the claim.
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CHAPTER 3

Moduli of curves

In this section, we apply the perfectoid methods introduced in Chapter 2 to the study of
moduli spaces of curves. Recall from Chapter 1 that we want to prove the following statement.

Theorem 1.2.1. Let g ≥ 2 and p be a prime. Let M [pn] be one of the following:

(i) the moduli space Mg[pn] of smooth curves of genus g over C with full level-pn structure,

(ii) the moduli space M c
g [pn] of curves of compact type of genus g over C with full level-pn

structure, or

(iii) the moduli space Mg[pn] of pre-level-pn curves of genus g over C with full level-pn

structure.

Then we have
colim

n
Hi

ét(M [pn],Fp) = 0

for all i > 4g − 5 in case (i) and for all i >
⌊

7g
2

⌋
− 4 in cases (ii) and (iii).

Before we describe the content of the individual sections of this chapter, let us sketch
the strategy of the proof of Theorem 1.2.1. We reduce (i) and (iii) to statements about
M c

g . To do so, first observe that since the boundaries M c
g [pn] r Mg[pn] are Cartier divisors,

the inclusions jn : Mg[pn] ↪→M c
g [pn] are affine morphisms. In particular, the functors Rjn,∗

are right t-exact for the perverse t-structure; see Appendix A for a review of the necessary
prerequisites concerning perverse t-structures. Parts (i) and (ii) of Theorem 1.2.1 thus follow
from parts (i) and (ii), respectively, of the following, more general statement.

Theorem 3.0.1. Let g ≥ 2 and p be a prime. Let M c
g [pn] be the moduli space of curves of

compact type of genus g over C with full level-pn structure. Let πn : M c
g [pn] →M c

g be the
maps “forgetting the level structure.”
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(i) If K ∈ pD(M c
g ,Fp)≤0, we have colimn Hi

ét(M c
g [pn], π∗nK) = 0 for all i > g − 2.

(ii) If F is a constructible sheaf of Fp-modules on M c
g , we have colimn Hi

ét(M c
g [pn], π∗nF ) = 0

for all i >
⌊

7g
2

⌋
− 4.

Here, D(M c
g ,Fp) denotes the bounded derived category of constructible sheaves of Fp-

modules on M c
g . Theorem 3.0.1 is shown in three steps.

1. Analysis of the Torelli morphism. Let Ag be the moduli space of principally polarized
abelian varieties of dimension g over C. The Torelli morphism tg : M c

g → Ag sends a
curve of compact type to the product of the Jacobians of its irreducible components. An-
alyzing the fiber dimensions of tg, we produce bounds on its cohomological amplitude: in
case (i), Rtg,∗K ∈ pD(Ag,Fp)≤g−2 and in case (ii), Rtg,∗(F [3g−3]) ∈ pD(Ag,Fp)≤b

g
2c−1.

The same bounds hold in the presence of level structures. See § 3.3.1 for details.

2. Passage to toroidal compactifications. Let ρn : Ag[pn] → Ag be the natural covering
maps. By Step 1, it remains to prove that the functor

D(Ag,Fp)→ D(Fp), K 7→ colim
n

RΓ(Ag[pn], ρ∗nK)

takes pD(Ag,Fp)≤m to D(Fp)≤m for all m ∈ Z. After fixing some additional auxiliary
data, there are compatible toroidal compactifications Ag[pn] ⊂ Ag[pn] with forgetful
maps ρ̄mn : Ag[pm] → Ag[pn]. As in the case of Mg[pn], the boundaries are Cartier
divisors, and we can reduce the statement to showing that

D(Ag[pn],Fp)→ D(Fp), L 7→ colim
m

RΓ(Ag[pm], ρ̄∗mnL)

takes pD(Ag[pn],Fp)≤` to D(Fp)≤` for all n ∈ Z≥0 and ` ∈ Z.

3. Use of perfectoid covers. By work of Scholze and Pilloni–Stroh, the inverse limit of the
projective system Ag[pn], n ∈ Z≥0, is similar (in the sense of [SW13, Def. 2.4.1]) to a
perfectoid space; see Example 2.6.8. Using his “primitive comparison theorem,” Scholze
[Sch15, § 4.2] deduced from this that colimn Hi(Ag[pn],Fp) = 0 for i > dim Ag. In
§ 2.6, we proved a more general statement for Zariski-constructible sheaves on cofiltered
inverse systems of proper rigid spaces with finite transition maps whose inverse limit
is similar to a perfectoid space; this yields the claim about perverse t-structures from
Step 2.

In order to reduce Theorem 1.2.1.(iii) to a statement about M c
g , we show the following

assertion, which holds over any algebraically closed field k of characteristic not equal to p.
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Theorem 3.0.2. Let Λ0 be an étale Fp-local system on Mg, with pullbacks Λn to Mg[pn].
Then for all i ≥ 0, the natural map

colim
n

Hi
ét(Mg[pn],Λn)→ colim

n
Hi

ét(M c
g [pn],Λn)

is an isomorphism.

The key observation in the proof is that the transition maps Mg[pn+1] → Mg[pn] are
highly ramified over the boundary Mg[pn] r M c

g [pn]: on complete local rings, they are given
by

kJt1, . . . , t3g−3K→ kJt1, . . . , t3g−3K, ti 7→

t
p
i if 1 ≤ i ≤ γ,

ti if γ < i ≤ 3g − 3

after a suitable choice of coordinates ti for which Mg[pn]rM c
g [pn] corresponds to {t1 · · · tγ =

0}; see Lemma 3.2.11. The claim then follows from a careful analysis of the maps between
the excision triangles for the inclusions M c

g [pn] ⊂Mg[pn]. We refer to § 3.1 for details and a
more general statement about projective systems of smooth Deligne–Mumford stacks with
similar ramification over a system of normal crossings divisors.

In the argument, it really seems necessary to use the compactifictions via pre-level-pn

curves from [ACV03]. A “naïve” compactification of Mg[pn] as the normalization of Mg in the
function field of Mg[pn], which turns out to be the coarse moduli space of Mg[pn], does not
exhibit the same ramification behavior; see Example 3.3.12. For the toroidal compactifications
Ag[pn] ⊂ Ag[pn], such complications do not arise: the Ag[pn] are algebraic spaces for pn ≥ 3
and the maps Ag[pn+1]→ Ag[pn] are sufficiently ramified over the boundary Ag[pn] r Ag[pn]
so that

colim
n

Hi
ét(Ag[pn],Fp)→ colim

n
Hi

ét(Ag[pn],Fp)

is again an isomorphism. Thus, the aforementioned results of Scholze [Sch15] and Pilloni–
Stroh [PS16, Thm. 0.4] yield the analogous statement colimn Hi

ét(Ag[pn],Fp) = 0 for i >
dim Ag = g(g+1)

2 , as had been observed earlier by Scholze.
Now for the content of the individual sections of this chapter. In § 3.1, we prove a

general result about the étale cohomology of different towers of Deligne-Mumford stacks
in the presence of ramification (Theorem 3.1.5) which, applied to moduli of curves, yields
Theorem 3.0.2 from above. In § 3.2, we set up the necessary general theory for moduli of
curves with level structure and their compactifications from [ACV03], which may not be
well-known to a broader audience. We conclude in § 3.3 with the the proofs of Theorem 3.0.1
and Theorem 1.2.1 as sketched above.

51



3.1 Interlude: vanishing from ramification of the boundary divisor

Throughout this section, we work over a fixed algebraically closed field k.

Definition 3.1.1. Let Y be a smooth Deligne–Mumford stack over k. A normal crossings
divisor on Y is an effective Cartier divisor D ⊂ Y such that for any y ∈ Y (k), there is an
integer 0 ≤ γ ≤ d and an isomorphism

O∧Y ,y ' kJt1, . . . , tdK

under which the restriction of D to Spec O∧Y ,y is identified with {t1 · · · tγ = 0}.

Note that if Y is a scheme, Definition 3.1.1 agrees with the usual one by [SP20, Lem. 0CBS]
and Artin approximation. We will use the following notion from [AVA18, Def. 4.2].

Definition 3.1.2. Let π : Y ′ → Y be a proper and quasi-finite morphism of smooth Deligne–
Mumford stacks over k. Let D ⊂ Y be a normal crossings divisor. Then π is calledm-ramified
over D if for all y ∈ Y ′(k) the induced map π∗ : O∧Y ,π(y) → O∧Y ′,y can be identified with a
morphism

kJt1, . . . , tdK→ kJt1, . . . , tdK

such that the restriction of D to Spec O∧Y ,π(y) is given by {t1 · · · tγ = 0} and there exist units
νi ∈ kJt1, . . . , tdK with π∗(ti) = νit

m
i for all 1 ≤ i ≤ γ.

Example 3.1.3. If Y ′ = Y = PN
k , the mock Frobenius

π : PN
k → PN

k , [x0 : · · · : xN ] 7→ [xp0 : · · · : xpN ]

from Example 2.6.6 is p-ramified over the divisor of coordinate hyperplanes D := {x0 · · ·xN =
0}.

From now on assume char k 6= p. The importance of Definition 3.1.2 lies in the following
calculation.

Lemma 3.1.4. Let Y := Spec kJt1, . . . , tdK and D be the divisor {t1 · · · tγ = 0} for some
0 ≤ γ ≤ d. Set U := Y rD. Let π : Y → Y be a morphism such that for all 1 ≤ r ≤ γ there
exist units νr ∈ kJt1, . . . , tdK with π∗(tr) = νrt

p
r. Then the induced map

π∗U : Hi(U,Fp)→ Hi(U,Fp)

is 0 for all i > 0.
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Proof. For all 1 ≤ r ≤ γ, let Ur := Y r {tr = 0}. By cohomological purity (and the
assumption on char k), H1(Ur,Fp) ' Fp and the natural map

i∧(
⊕γr=1 H1(Ur,Fp)

)
→ Hi(U,Fp)

given by the cup product is an isomorphism; see e.g. [SGA4, Thm. XIX.1.2] or [ILO14,
Cor. XVI.3.1.4] for the most general version. Thus, we may assume γ = 1 and i = 1.

Since zp − t1 is irreducible in (kJt1, . . . , tdKt1)[z], the group H1(U,Fp) is (under the non-
canonical isomorphism Fp ' µp) generated by the class of the µp-torsor

Spec kJt1,...,tdKt1 [z]
(zp−t1) → Spec kJt1, . . . , tdKt1 .

Its image under π∗U is the class of µp-torsor

Spec kJt1,...,tdKt1 [z]
(zp−ν1t

p
1) → Spec kJt1, . . . , tdKt1 .

However, this torsor is trivial because the unit ν1 has a p-th root λ1 ∈ kJt1, . . . , tdK by Hensel’s
lemma and thus

zp − ν1t
p
1 =

∏
ζ∈µp(k)

(z − ζλ1t1).

Theorem 3.1.5. Let Yn, n ∈ Z≥0, be a projective system of smooth, tame Deligne–Mumford
stacks of finite type over k with proper and quasi-finite transition maps πmn : Ym → Yn for
all m ≥ n. Let Λ0 be an étale Fp-local system on Y0 and Λn := π∗n0Λ0. Assume there exist
normal crossings divisors Dn ⊂ Yn such that Dm = (π∗mnDn)red and πn+1,n is p-ramified over
Dn for all n. Set Un := Yn r Dn. Then the natural map

colim
n

Hi(Yn,Λn)→ colim
n

Hi(Un,Λn)

is an isomorphism for all i ≥ 0.

Throughout the proof, we denote by jn : Un ↪→ Yn and in : Dn ↪→ Yn the canonical
inclusions. To simplify notation, we moreover set πn := πn0. The strategy of the proof is
as follows. By the Gysin sequence, the assertion is implied by hocolimn Rπn,∗in,∗Ri!nΛn ' 0,
which amounts to the vanishing of colimn H `(Rπn,∗in,∗Ri!nΛn)y0 for all ` and all y0 ∈ Y (k).
In fact, we show that any composition of ` transition maps in the latter directed systems is 0,
which can be checked on completions by a standard reduction.

Thus, we first treat the complete, local picture. Let y0 ∈ Y0(k). Choose a system of points
ym ∈ Ym(k) with πm+1,m(ym+1) = ym for all m ≥ 0. Set Vm := Spec O∧Ym,ym . Let Zm ⊂ Vm
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be the restriction of Dm to Vm and Um := Vm r Zm ⊆ Vm be its complement.
Let Hm := Aut(ym) be the automorphism group scheme of ym. It acts naturally on

Vm. Since Dm ⊂ Ym is a substack, Um and Zm are invariant under this action. We obtain
diagrams

[Um/Hm] [Vm/Hm] [Zm/Hm]

[U0/H0] [V0/H0] [Z0/H0] ,

̂m

π̂m

ı̂m

̂0 ı̂0

where ̂m is an open and ı̂m a closed immersion. Denote the pullback of Λm to [Vm/Hm] by
Λ̂m; we have Λ̂m = π̂∗mΛ̂0 for all m ≥ 0.

Lemma 3.1.6. For any `, n ≥ 0, the pullback morphism

H `
(
(Rπ̂n,∗ı̂n,∗Rı̂!nΛ̂n)y0

)
→H `

(
(Rπ̂n+`,∗ı̂n+`,∗Rı̂!n+`Λ̂n+`)y0

)
of Fp-vector spaces is 0.

Here, the stalk at y0 is understood to be the derived pullback under y0 : Spec k → Y0.

Proof. For any m ≥ 0, the exceptional inverse image fits into the distinguished triangle

(Rπ̂m,∗Λ̂m)y0 → (Rπ̂m,∗R̂m,∗̂∗mΛ̂m)y0 → (Rπ̂m,∗ı̂m,∗Rı̂!mΛ̂m)y0 [1]→ . (3.1)

Set Km := ker(Hm → H0). Via base change (cf. e.g. [ACV03, Thm. A.0.2]) across the
diagram of fiber squares

[Um/Km] [Um/Hm]

[Spec k/Km] [Vm/Km] [Vm/Hm]

Spec k V0 [V0/H0]

̂′

α′

̂m

ρ̂

ỹm

π̂′

αm

π̂m

ỹ0 α0

(in which ỹ0 is the lift of y0 and α0 is the canonical étale atlas), (3.1) is identified with

Rρ̂∗ỹ∗mπ̂′,∗α∗0Λ̂0 → Rρ̂∗ỹ∗mR̂′∗̂′,∗π̂′,∗α∗0Λ̂0 → (Rπ̂m,∗ı̂m,∗Rı̂!mΛ̂m)y0 [1]→ .

Since V0 is strictly henselian, α∗0Λ̂0 ' F⊕rp , where r is the rank of Λ0. Thus, ỹ∗mπ̂′,∗α∗0Λ̂0 '
F⊕rp with the trivial Km-action and ỹ∗mR̂′∗̂′,∗π̂′,∗α∗0Λ̂0 ' RΓ(Um,F⊕rp ) with Km-action induced
by the Km-action on Um. Moreover, ỹ∗mπ̂′,∗α∗0Λ̂0 → ỹ∗mR̂′∗̂′,∗π̂′,∗α∗0Λ̂0 is the natural morphism

54



τ≤0(RΓ(Um,F⊕rp )) → RΓ(Um,F⊕rp ), where τ denotes the truncation with respect to the
natural t-structure on the derived category of Fp[Km]-modules [BBD82, Prop. 1.3.3]. This
proves

(Rπ̂m,∗ı̂m,∗Rı̂!mΛ̂m)y0 ' Rρ̂∗
(
τ>0(RΓ(Um,F⊕rp ))

)
[−1] ' RΓ

(
Km, τ

>0(RΓ(Um,F⊕rp ))
)
[−1]

and hence H `
(
(Rπ̂m,∗ı̂m,∗Rı̂!mΛ̂m)y0

)
' H`−1

(
Km, τ

>0(RΓ(Um,F⊕rp ))
)
.

It remains to show that the pullback morphism

π̂∗n+`,n : H`−1
(
Kn, τ

>0(RΓ(Un,F⊕rp ))
)
→ H`−1

(
Kn+`, τ

>0(RΓ(Un+`,F⊕rp ))
)

is 0 for all `. For n ≤ m ≤ n + ` − 1, π̂∗m+1,m is induced by the natural morphism of
hypercohomology spectral sequences

Hp
(
Km,H q

(
τ>0(RΓ(Um,F⊕rp ))

))
H`−1

(
Km, τ

>0(RΓ(Um,F⊕rp ))
)

Hp
(
Km+1,H q

(
τ>0(RΓ(Um+1,F⊕rp ))

))
H`−1(Km+1, τ

>0(RΓ(Um+1,F⊕rp ))
)
.

=⇒

H q(π̂∗m+1,m) π̂∗m+1,m

=⇒

This follows from the functoriality properties of the Cartan–Eilenberg resolution, which is
used in the construction of the hypercohomology spectral sequence, and of the injective
resolutions from which the pullback maps are computed.

The morphisms
H q(RΓ(Um,F⊕rp ))→H q(RΓ(Um+1,F⊕rp ))

of Fp[Km+1]-modules are 0 for all q > 0: this can be checked on the étale cover Spec k →
[Spec k/Km+1], where it follows from Definition 3.1.2, Lemma 3.1.4, and the additivity of the
cohomology functors. Therefore, the morphisms between the second pages are 0, and so are
the morphisms between the graded rings associated with the induced `-step filtrations of the
abutments. Consequently, π̂∗n+`,n = π̂∗n+`,n+`−1 ◦ · · · ◦ π̂∗n+1,n = 0.

We return to the setting of Theorem 3.1.5.

Lemma 3.1.7. For all y0 ∈ Y0(k) and all `, n ≥ 0, the pullback morphism

H `(Rπn,∗in,∗Ri!nΛn)y0 →H `(Rπn+`,∗in+`,∗Ri!n+`Λn+`)y0

of Fp-vector spaces is 0.

Proof. For all m ≥ 0, let Ym be the coarse space of Ym and π̄m : Ym → Y0 be the map induced
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by πm. For any ym ∈ Ym(k), the corresponding point in Ym(k) will be denoted by ȳm. Let
Y ∧
m,ym

:= Ym ×Ym Spec O∧Ym,ȳm be the completion of Ym at ym. In the previous notation,
we have Y ∧

m,ym = [Vm/Hm], and similarly Um ×Ym Y ∧
m,ym = [Um/Hm] and Dm ×Ym Y ∧

m,ym =
[Zm/Hm] (cf. the proof of [Ols16, Thm. 11.3.1]).

The maps π̄m : Ym → Y0 are still quasi-finite and proper, hence finite. Thus, by the
theorem on formal functions

Y ∧0,ȳ0 ×Y0 Ym ' Spec(π̄∗OYm)∧ȳm '
⊔

π̄m(ȳm)=ȳ0

Y ∧m,ȳm .

As Y ∧
0,y0 ×Y0 Ym ' (Y ∧0,ȳ0 ×Y0 Ym)×Ym Ym, the diagram

⊔
πm(ym)=y0 Y ∧

m,ym Ym

Y ∧
0,y0 Y0

is cartesian.
Since y0 : Spec k → Y0 factors through Y ∧

0,y0 , Lemma 3.1.8 shows that the vector spaces
H `(Rπm,∗im,∗Ri!mΛm)y0 as well as the morphisms between them may be computed on
completions. The statement therefore follows from Lemma 3.1.6 and exactness of the stalk
functor.

Lemma 3.1.8. Let f : W → Y be a morphism of finite type between noetherian Deligne–
Mumford stacks over k. Assume the coarse moduli space Y of Y is excellent. Let y ∈ Y (k),
giving rise to the cartesian square

W ×Y Y ∧
y W

Y ∧
y Y .

h′

f̂ f

h

Let F be an étale abelian torsion sheaf on W and G be an étale abelian torsion sheaf on Y

whose torsion orders are invertible in k. Then

(i) h∗Rf∗F ' Rf̂∗h′,∗F

(ii) If f is a closed immersion, h∗f∗Rf !G ' f̂∗Rf̂ !h∗G.

Proof. (i). By Néron–Popescu desingularization [Pop86] and excellence of Y , the natural
map Y ∧y → Y is a cofiltered limit of smooth morphisms. Taking fiber products with Y , we
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see that h : Y ∧
y → Y is a cofiltered limit of smooth morphisms hν : Yν → Y . For each such

morphism, we have the following fiber square:

W ×Y Yν W

Yν Y .

h′ν

fν f

hν

Let further qν : Y ∧
y → Yν denote the canonical morphisms. By smooth base change,

h∗Rf∗F ' hocolim q∗νh
∗
νRf∗F ' hocolim q∗νRfν,∗h′,∗ν F ' Rf̂∗h′,∗F.

(ii). Let j : U ↪→ Y be the complement of W with its canonical open substack structure.
By (i), h∗Rj∗j∗G ' R̂∗̂∗h∗G. Using the distinguished triangles

h∗f∗Rf !G→ h∗G→ h∗Rj∗j∗G→ and f̂∗Rf̂ !h∗G→ h∗G→ R̂∗̂∗h∗G→,

we see that likewise h∗f∗Rf !G ' f̂∗Rf̂ !h∗G.

Proof of Theorem 3.1.5. The projective system Yn gives rise to the distinguished triangle

hocolim
n

Rπn,∗in,∗Ri!nΛn → hocolim
n

Rπn,∗Λn → hocolim
n

Rπn,∗Rjn,∗j∗nΛn → .

It suffices to show that H `(hocolimn Rπn,∗in,∗Ri!nΛn) = 0 for all `. This can be checked on
the stalks at all finite type points y0 ∈ Y0(k). By [SP20, Lem. 0CRK] and the cocontinuity of
pullback functors, H `(hocolimn Rπn,∗in,∗Ri!nΛn)y0 ' colimn H `(Rπn,∗in,∗Ri!nΛn)y0 , so that
the assertion follows from Lemma 3.1.7.

Inspired by Theorem 2.6.3, one might try to generalize Theorem 3.1.5 and ask whether
for an arbitrary constructible sheaf F0 on Y0 with pullbacks Fn to Yn, the natural map

colim
n

Hi(Yn, Fn)→ colim
n

Hi(Un, Fn)

is still an isomorphism for all i ≥ 0. Any such hope is quickly shattered by the next example.

Example 3.1.9. Let Yn := P1
k for all n ∈ Z≥0, with the transition maps given by the mock

Frobenii from Example 2.6.6 and hence p-ramified as in Example 3.1.3. Let i0 : Spec k ↪→ Y0

be the inclusion of the closed point [0 : 1] ∈ P1
k. The pullback of i0 to Yn is the closed

immersion in : Spec k[x]/(xpn) ↪→ P1
k corresponding to the pn-th infinitesimal thickening of
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[0 : 1] in P1
k. For F0 := i0,∗Fp, we have Fn = in,∗Fp. Let Un be the complement of [0 : 1] in

Yn. Then by the topological invariance of the étale site,

colim
n

H0(Yn, Fn) ' colim
n

H0
(
Spec k[x]/(xpn),Fp

)
' colim

n
H0(Spec k,Fp) = Fp,

whereas Fn
∣∣∣
Un
' 0 and thus colimn H0(Un, Fn) ' 0. Hence, the map from Theorem 3.1.5 is

not an isomorphism in this case.

3.2 Moduli spaces of curves

3.2.1 The moduli problems

We review different moduli spaces of curves from the literature, in part to fix some
notation. Let k be an algebraically closed field. Fix an integer g ≥ 2. We begin with
a stack-theoretic version of stable curves, which in this generality is taken from [AOV11,
Def. 2.1, Prop. 2.3].

Definition 3.2.1. A twisted curve is a flat, proper, tame algebraic stack C → S such that
each geometric fiber Cs̄ satisfies the following conditions:

(i) Cs̄ is purely 1-dimensional and connected;

(ii) The coarse moduli space Cs̄ is a nodal curve;

(iii) The natural map Cs̄ → Cs̄ is an isomorphism over the smooth locus of Cs̄;

(iv) For the strictly henselian local ring Osh
Cs̄,x at a node x ∈ Cs̄, there is m ∈ Z>0 such that

C sh
s̄,x := Cs̄ ×Cs̄ Spec Osh

Cs̄,x '
[
Spec(k[z, w]/(zw))sh/µm

]
,

where ζ ∈ µm acts on Spec(k[z, w]/(zw))sh by z 7→ ζz and w 7→ ζ−1w.

Definition 3.2.2 ([ACV03, Def. 6.1.1]). Let m ∈ Z>0. A pre-level-m curve is a twisted
curve C → S whose coarse moduli space is a stable curve and whose geometric fibers have
trivial stabilizer at each separating node and stabilizer µm at each nonseparating node.

Pre-level-m curves without nontrivial stabilizers are exactly the curves of compact type.

Definition 3.2.3. A stable curve C → S is of compact type if each geometric fiber Cs̄ satisfies
one of the following equivalent conditions:

(i) The Jacobian J(Cs̄) is compact;
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(ii) All nodes of Cs̄ are separating;

(iii) The dual graph of Cs̄ is a tree.

From now on, we will assume that m ∈ Z>0 is invertible in k. In that case, we can endow
pre-level-m curves with level structures.

Definition 3.2.4 ([ACV03, § 6]). Let f : C → S be a pre-level-m curve of genus g. A full
level-m structure on C is the choice of a symplectic isomorphism of local systems

R1f∗(Z/mZ) ∼−→ (Z/mZ)2g.

We consider the following smooth Deligne–Mumford stacks:

Mg moduli stack of smooth curves of genus g over k
M c

g moduli stack of curves of compact type of genus g over k
Mg moduli stack of stable curves of genus g over k

Mg[m] moduli stack of smooth curves of genus g over k with full level-m structure
M c

g [m] moduli stack of curves of compact type of genus g over k with full level-m
structure

Mg[m] moduli stack of pre-level-m curves of genus g over k with full level-m struc-
ture.

We use Roman letters (i.e., Mg, M c
g , etc.) for the corresponding coarse spaces. By covering

space theory, Mg[m] can be identified with the stack of connected (Z/mZ)2g-torsors over
twisted curves with stable coarse moduli space, rigidified along (Z/mZ)2g [ACV03, Thm. 6.2.4].
There are natural open embeddings Mg ⊂ M c

g ⊂ Mg. The natural covers Mg[m] → Mg

and M c
g [m] → M c

g are finite étale. Although the cover Mg[m] → Mg is flat, proper, and
quasi-finite [ACV03, Cor. 3.0.5], it is not representable [ACV03, Rem. 5.2.4.(b)] and highly
ramified over Mg r M c

g (see Lemma 3.2.11).

3.2.2 Local structure of Mg[m]

Next, we summarize the description of the complete, local picture from § 3.1 for a given
point y ∈Mg[m](k) in a sequence of well-known lemmas. Most of what follows can be found
in [ACV03].

Fix m ∈ Z>0 invertible in k. Set G := (Z/mZ)2g. The datum parametrized by y is a pre-
level-m curve C over k of genus g together with a full level-m structure H1(C ,Z/mZ) ∼−→ G,
or equivalently a connected G-torsor P → C . Let C be the coarse space of C . Assume that
C has nonseparating nodes x1, . . . , xγ and separating nodes xγ+1, . . . , xδ.
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Since Mg[m] is Deligne–Mumford and P → C is étale, O∧
Mg [m],y is the universal deformation

ring of C . Let C→ Spec O∧
Mg [m],y be the universal curve.

Lemma 3.2.5. (i) The completed local ring O∧
Mg [m],y is regular and of dimension 3g − 3.

(ii) There is an isomorphism O∧
Mg [m],y ' kJt1, . . . , t3g−3K such that the locus over which the

node xi persists in C is {ti = 0}.

Proof. (i). Since O∧
Mg [m],y is the universal deformation ring of C , both properties follow from

the usual analysis of the deformation theory of C ; see [ACV03, § 3].
(ii). The local-to-global Ext spectral sequence decomposes the tangent space Ext1(Ω1

C ,OC )
of O∧

Mg [m],y via the short exact sequence

0→ H1(C ,TC )→ Ext1(Ω1
C ,OC )→

δ∏
i=1

Ext1
(
Ω1,∧

C ,xi
,O∧C ,xi

)
→ 0 (3.2)

into a “global contribution” from the left and a “local contribution” from the right term; cf.
[DM69, Prop. 1.5]. To analyze the local part, note that for each node xi, the completed local
ring O∧C ,xi ' kJz, wK/(zw) of C at xi admits the universal formal deformation kJz, w, tiK/(zw−
ti). Thus, the universal deformation ring of the node is given by kJtiK and its tangent space
Ext1(Ω1,∧

C ,xi
,O∧C ,xi) is of dimension 1.

Since the O∧C,xi are deformations of O∧C ,xi , there are natural morphisms ϕi : kJtiK→ O∧
Mg [m],y.

Their completed tensor product

ϕ1⊗̂ · · · ⊗̂ϕδ : kJt1, . . . , tδK→ O∧
Mg [m],y

is formally smooth because its tangent map from (3.2) is surjective. Therefore, we can choose
an isomorphism O∧

Mg [m],y ' Spec kJt1, . . . , t3g−3K so that ϕi is identified with the inclusion of
the i-th coordinate for all 1 ≤ i ≤ δ. In particular, the node xi persists over {ti = 0} in
C.

Corollary 3.2.6. The locus Dm := Mg[m] r M c
g [m] of curves not of compact type with its

reduced closed substack structure is a normal crossings divisor in Mg[m] whose pullback to
O∧

Mg [m],y is given by {t1 · · · tγ = 0} under the isomorphism from Lemma 3.2.5.(ii).

We refer to Definition 3.1.1 for the notion of a normal crossings divisor on a smooth
Deligne–Mumford stack.

Lemma 3.2.7. When m ≥ 3, the automorphism group AutG(P → C ) of the G-torsor
P → C is G×Hy, where Hy is a subgroup of AutC(C ).
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Proof. As m ≥ 3, a lemma of Serre shows that AutG(P → C ) is contained in the group
AutC(P → C ) of automorphism of P → C which act trivially on the underlying coarse space
C [ACV03, Lem. 7.2.1]. By [ACV03, Lem. 7.3.3], the sequence

1→ AutC (P )→ AutC(P → C )→ AutC(C )→ 1

is split exact. Since AutG(P → C ) is the centralizer of AutC (P ) ' G in AutC(P → C ) and
G is abelian, the statement follows with Hy := ker(AutC(C )→ Aut(G)).

Corollary 3.2.8. The completion of Mg[m] at y for m ≥ 3 is given by

Mg[m]∧y := Mg[m]×Mg [m] Spec O∧
Mg [m],y ' [Spec kJt1, . . . , t3g−3K/Hy] ,

with the open substacks M c
g [m]×Mg [m] Mg[m]∧y and Mg[m]×Mg [m] Mg[m]∧y corresponding to

the loci [(Spec kJt1, . . . , t3g−3Kt1···tγ )/Hy] and [(Spec kJt1, . . . , t3g−3Kt1···tδ)/Hy], respectively.

Proof. As we already saw in Lemma 3.1.7, the proof of [Ols16, Thm. 11.3.1] shows that
Mg[m]∧y '

[
Spec O∧

Mg [m],y/Aut(y)
]
. Since Mg[m] is rigidified along G, we have Aut(y) ' Hy

by Lemma 3.2.7. Now use Lemma 3.2.5.

We will need a more concrete description of AutC(C ) in Example 3.3.12.

Lemma 3.2.9 ([ACV03, § 7.1]). There is an isomorphism

AutC(C ) '
γ∏
i=1

µm;

if U := Spec(k[z, w]/(zw))sh is an étale atlas for the strict henselization C sh
xi

at a nonseparating
node xi as in Definition 3.2.1, the automorphisms from the i-th factor act trivially on C r{xi},
and on C sh

xi
as

AutCsh
xi

C sh
xi
' (AutU/µm U)/(Aut[U/µm] U) ' µ2

m/µm ' µm.

Example 3.2.10. Lemma 3.2.9 leads to a hands-on description of Hy when k = C. Let
C∆ → ∆ be a deformation of C over a small polydisc ∆ with smooth general fiber Cη. For
1 ≤ i ≤ γ, let ci be the vanishing cycle of Cη corresponding to the node xi of C. A full
level-m structure on C induces an isomorphism G ' H1(Cη,Z/mZ). With this identification,
we can pick (ζ1, . . . , ζγ) ∈

∏γ
i=1 µm ' AutC(C ) such that ζi acts on G via the Dehn twist

H1(Cη,Z/mZ)→ H1(Cη,Z/mZ), α 7→ α + (α · ci)ci
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[ACV03, Lem. 7.3.3]. Since the intersection pairing on H1(Cη,Z) is unimodular and the
vanishing cycles form part of a basis, Hy ' ker

(⊕
i H1(ci,Z/mZ)→ H1(Cη,Z/mZ)

)
.

From the long exact sequence in homology for the pair (C,⋃i ci), we see further that
Hy ' im

(
H2(Cη,

⋃
i ci; Z/mZ) → ⊕

i H1(ci,Z/mZ)
)
. Let ν be the number of irreducible

components of C. Then Cη r (⋃i ci) has ν − (δ − γ) connected components C1, . . . , Cν−δ+γ.
In particular, H2(Cη,

⋃
i ci; Z/mZ) ' ⊕

j Z/mZ · [Cj], where [Cj] denotes the fundamental
class of the closure of Cj in Cη.

Let Γ be the dual graph of C. Let Γ′ be the graph obtained from Γ by contracting
all bridges. Its vertices correspond to the connected components Cj and its edges to the
nonseparating nodes xi. After fixing compatible orientations for the ci and Γ′, we can
identify the complex H2(Cη,

⋃
i ci; Z/mZ) → ⊕

i H1(ci,Z/mZ) with the cellular cochain
complex C0(Γ′,Z/mZ)→ C1(Γ′,Z/mZ). In particular, Hy is a free Z/mZ-module of rank
γ − b1(Γ′) = γ − b1(Γ) = γ − δ + ν − 1, as can also be seen directly from the long exact
homology sequence.

3.2.3 Towers of moduli spaces

Assume char k 6= p. For each n ∈ Z≥0, set Gn := (Z/pnZ)2g. We have a system of natural
flat, proper, quasi-finite maps

· · · →Mg[pn+1]→Mg[pn]→ · · · ,

which are given on S-valued points by

(Pn+1 → Cn+1 = [Pn+1/Gn+1]→ S) 7→ (Pn := Pn+1/(pnZ/pn+1Z)2g → Cn := [Pn/Gn]→ S).

The next lemma, which uses the notion of p-ramified morphisms from Definition 3.1.2, will
allow us to apply Theorem 3.1.5 to the moduli spaces of curves from above.

Lemma 3.2.11 ([BR11, Thm. 5.1.5] or [Ols07a, Rmk. 1.11]). The maps Mg[pn+1]→Mg[pn]
are p-ramified over the normal crossings divisor Dpn from Corollary 3.2.6.

The proof relies on the description of the completed local rings from Lemma 3.2.5. The
“local contributions” of the nodes to a map O∧

Mg [pn],yn
→ O∧

Mg [pn+1],yn+1
can be computed using

the universal formal deformations of the nodes described in the proof of Lemma 3.2.5.(ii);
this yields the desired ramification at every node with nontrivial stabilizer.
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3.3 Vanishing for moduli spaces of curves

In this section, we discuss how to apply the vanshing theorems from Appendix A, § 2.6,
and § 3.1 to the moduli spaces of curves reviewed in § 3.2. We retain the conventions and
notation from § 3.2.

3.3.1 The Torelli morphism

The Torelli morphism is the functor

tg : M c
g → Ag

which sends a curve of compact type to its (principally polarized) Jacobian. A detailed
account of the construction of tg is, for example, given in [Lan19]. For m ∈ Z>0 invertible
in k, let Ag[m] be the moduli space of principally polarized abelian varieties of dimension g
over k with full level-m structure. Since full level-m structures on curves of compact type
correspond to full level-m structures on their Jacobians, the stack M c

g [m] from § 3.2 fits into
a pullback square

M c
g [m] Ag[m]

M c
g Ag

tmg

πm ρm

tg

and we obtain a Torelli map tmg : M c
g [m]→ Ag[m] at level m. The scheme-theoretic image

of tmg ([SP20, § 0CMH]) is called the Torelli locus Tg[m] ⊆ Ag[m]. Set Tg := Tg[0] and
T1 := A1.

Since tmg is only generically finite, we cannot expect that colimn Hi
ét(M c

g [pn],Fp) = 0 for
all i > dim M c

g = 3g − 3, even though Ag[pn] is perfectoid at infinite level; cf. Example 2.6.8
and Example 2.6.11. In this subsection, we instead apply the results from Appendix A to tmg .
First, we recall two well-known statements.

Lemma 3.3.1. The morphism tmg is representable and proper.

Proof. Representable and proper morphisms are stable under base change, so it suffices to
show both properties for m = 0. To prove that tg is representable, we only have to see
that for every curve C of compact type over an algebraically closed field, the induced group
homomorphism Aut(C)→ Aut(J(C)) is injective; cf. e.g. [AV02, Lem. 4.4.3]. This is [DM69,
Thm. 1.13].

Since M c
g is of finite type and separated and Ag is locally noetherian with separated

diagonal, properness follows from the existence part of the valuative criterion for all discrete
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valuation rings V with fraction field K. Let A ∈ Ag(V ) (suppressing principal polarizations
from the notation) and C ∈M c

g (K) such that AK ' J(C). The stable reduction theorem for
curves produces an extension K ⊆ K ′ and a stable curve C over a valuation ring V ′ ⊂ K ′

dominating V with residue field κ whose generic fiber is isomorphic to CK′ . By Weil’s
extension theorem for rational maps into group schemes, AV ′ is the Néron model of AK′ . In
particular, a theorem of Raynaud [Ray70, Thm. 8.2.1] (cf. also [DM69, Thm. 2.5]) shows
that J(Cκ) ' Aκ, so Cκ is of compact type and C ∈M c

g (V ′) is the desired lift of AV ′ .

Lemma 3.3.2 (Torelli for compact type curves). Let C and D be two curves of compact type
of genus g over k. Let C1, . . . , Cδ and D1, . . . , Dε be their irreducible components of positive
genus. If tg(C) ' tg(D), then δ = ε and Ci ' Dσ(i) for some permutation σ ∈ Sδ.

Proof. We have ∏δ
i=1 J(Ci) ' J(C) ' J(D) ' ∏ε

j=1 J(Dj) as principally polarized abelian
varieties. Since a principally polarized abelian variety over an algebraically closed field
uniquely decomposes into an unordered product of indecomposable principally polarized
abelian varieties ([CG72, Lem. 3.20], [Deb96, Cor. 2]) and the polarization for each Ci and Dj

is induced by its irreducible theta divisor, we must have δ = ε and J(Ci) ' J(Dσ(i)) for some
σ ∈ Sδ. The statement now follows from the usual Torelli theorem for smooth, projective
curves.

In other words, tg(C) determines the irreducible components of C of positive genus, but
does not depend on the position of the nodes or the number of rational irreducible components.
A dimension analysis (keeping in mind the dimensions of the automorphism groups of curves
of genus 0 and 1) then shows the following statement.

Lemma 3.3.3 ([CV11, Prop. 5.2.1]). Let C be a curve of compact type of genus g over k.
Let δ and δ1 be the number of irreducible components of C of positive genus and genus 1,
respectively. Then

dim
(
(M c

g )tg(C)
)

= 2δ − δ1 − 2.

Although the statement is a special case of [CV11, Prop. 5.2.1], we provide the proof for
the convenience of the reader.

Proof. It suffices to show that the preimage of J(C) under the Torelli map M c
g → Ag of

coarse spaces has dimension 2δ − δ1 − 2. Let δ0 be the number of irreducible components of
C of genus 0 and Γ be the dual graph of C. Let DΓ ⊂M c

g be the locally closed subvariety
corresponding to curves with dual graph Γ. If we denote the irreducible components of C by
C1, . . . , Cn, then J(C) = J(C1)× · · · × J(Cn). In particular, J(C) does not depend on the
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position of the nodes so that the preimage of J(C) in DΓ has dimension

2 ·#E(Γ)− 3δ0 − δ1

(keeping in mind the dimensions of the automorphisms groups of curves of genus 0, 1, and at
least 2). Therefore, if Γ′ is a graph that is obtained from Γ by succesively contracting edges
with a vertex of weight 0, then the preimage of J(C) in DΓ′ has maximal dimension. Since
Γ′ is a tree and thus #E(Γ′) = #V (Γ′)− 1 = δ − 1, we obtain the desired formula.

Next, we describe a stratification on |Tg| that is suitable to determine the defect of
semi-smallness of tg (see Definition A.0.5).

Lemma 3.3.4. Let λ = (λ1, . . . , λδ) be a partition of g, that is, λ1 ≥ λ2 ≥ · · · ≥ λδ and∑δ
i=1 λi = g. Then the product morphism ξλ : ∏δ

i=1 Tλi → Tg is finite.

Proof. We show that ξλ is representable, proper, and locally quasi-finite. Representability
follows from the faithfulness of the product functor [SP20, Lem. 04Y5]. Since the domain is
separated and of finite type and the target has separated diagonal, ξλ is separated and of
finite type.

For universal closedness, we can again verify the existence part of the valuative criterion
for all discrete valuation rings V with fraction field K because Tg is locally noetherian. Let
A ∈ Tg(V ) and Ai ∈ Tλi(K) such that AK '

∏
Ai. The Néron–Ogg–Shafarevich criterion

[ST68, Thm. 1] and the compatibility of Tate modules with products show that the Ai have
good reduction. Furthermore, their principal polarizations extend to the integral models; cf.
e.g. the argument in [FC90, p. 6]. Since Tλi ⊆ Aλi is closed, we thus obtain Ai ∈ Tλi(V )
with generic fiber isomorphic to Ai. Separatedness of Ag gives A ' ∏Ai as wanted.

Finally, to prove that ξλ is locally quasi-finite, we can check that for every morphism
Spec(K)→ Tg from a field K, the space |SpecK ×Tg

∏
Tλi | is discrete [SP20, Lem. 06UA].

Since the base change morphism |SpecK ×Tg

∏
Tλi | → |SpecK ×Tg

∏
Tλi | is surjective and

integral (hence closed), it suffices to show that |SpecK ×Tg

∏
Tλi | is discrete. This follows

from the uniqueness of the indecomposable factors of principally polarized abelian varieties
used in the proof of Lemma 3.3.2.

Below, we will use the partial order on the set of integer partitions given by refinement,
as introduced in [Bir67, Ex. I.8.10].

Definition 3.3.5. Let λ = (λ1, . . . , λδ) and µ = (µ1, . . . , µε) be two partitions of g. Then
µ refines λ, or µ ≤ λ, if there exists a set partition {1, . . . , ε} = I1 ∪ · · · ∪ Iδ such that
λj = ∑

i∈Ij µi for all 1 ≤ j ≤ δ.
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Definition 3.3.6. For each partition λ of g, let Tλ be the scheme-theoretic image of ξλ. Set

Sλ := |Tλ|r
⋃
µ<λ

|Tµ|.

Lemma 3.3.7. (i) The subspaces Sλ ⊂ |Tg| associated with the partitions λ of g are locally
closed and parametrize the Jacobians of curves of compact type whose geometric fibers
have exactly δ irreducible components of positive genus λi, giving rise to a finite
stratification |Tg| =

⊔
λ Sλ.

(ii) For each integer partition λ of g into δ parts, we have dimSλ = 3g − 3δ + δ1, where
δ1 := #{i | λi = 1}.

Proof. (i). Since ξλ is closed by Lemma 3.3.4, it surjects onto its scheme-theoretic image.
Thus, the closed substack Tλ ⊆ Tg parametrizes those families whose geometric fibers are
products of δ Jacobians of compact type curves of genus λ1, . . . , λδ. By Lemma 3.3.2, the
geometric fibers are the Jacobians of exactly those curves of compact type that have δ (not
necessarily irreducible) components of genus λ1, . . . , λδ. This yields the first statement as
|Tµ| ⊆ |Tλ| if µ ≤ λ and |Tµ| ∩ |Tλ| = ∅ if not.

(ii). Since ξλ is finite by Lemma 3.3.4, tλi is generically finite, and Tλ is Deligne–Mumford,

dim|Tλ| = dim Tλ =
δ∑
i=1

Tλi =
∑
λi≥2

(3λi − 3) +
∑
λi=1

1 = 3g − 3δ + δ1;

cf. [SP20, Rem. 0DRK]. The number of summands of a partition increases with refinement,
hence dimSλ = dim|Tλ| = 3g − 3δ + δ1.

Remark 3.3.8. The preceding arguments also show the existence of a finite stratification of
Ag by number and dimension of indecomposable principally polarized factors.

Proposition 3.3.9. The Torelli morphism tg : M c
g → Ag has maximal fiber dimension g− 2

and defect of semi-smallness r(tg) =
⌊
g
2

⌋
− 1.

Proof. The claim about the fiber dimension follows from Lemma 3.3.3 and Lemma 3.3.10.(i)
below. For the defect of semi-smallness, we use the stratification from Lemma 3.3.7.(i).
Let λ = (λ1, . . . , λδ) be an integer partition of g. As before, set δ1 := #{i | λi = 1}. The
dimension of Sλ is 3g − 3δ + δ1 by Lemma 3.3.7.(ii) and the relative dimension of tg over
Sλ is 2δ − δ1 − 2 by Lemma 3.3.3. The statement about r(tg) is therefore a consequence of
Lemma 3.3.10.(ii) and the equality

2 · (2δ − δ1 − 2) + (3g − 3δ + δ1)− (3g − 3) = δ − δ1 − 1.
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Lemma 3.3.10. Let C be a curve of compact type of genus g over k. Let δ and δ1 be the
number of irreducible components of C of positive genus and genus 1, respectively. Then

(i) 2δ − δ1 ≤ g

(ii) δ − δ1 ≤
⌊
g
2

⌋
and both bounds are sharp.

Proof. Since both 2δ− δ1 and δ− δ1 do not change under contraction of rational components,
we may assume that C does not have any rational components. Moreover, since both
expressions do not decrease when a component of genus g′ ≥ 3 specializes to a union of a
component of genus g′ − 2 and 2, we may further assume that all irreducible components
of C have genus 1 or 2. In that case, 2δ − δ1 = g and δ − δ1 is maximal when C has

⌊
g
2

⌋
irreducible components of genus 2, with one component of genus 1 if g is odd, yielding the
inequalities.

Corollary 3.3.11. Let K ∈ D(M c
g [m]). Then

(i) Rtmg,∗K ∈ pD(Ag[m])≤n+g−2 if K ∈ pD(M c
g [m])≤n and

(ii) Rtmg,∗K ∈ pD(Ag[m])≤b
g
2c−1 if K = F [3g − 3] for some constructible sheaf F of Fp-

modules on M c
g [m].

Proof. Since the forgetful maps ρm : Ag[m]→ Ag are finite, the direct image functors ρm,∗ are
t-exact for the perverse t-structure ([BBD82, Cor. 2.2.6.(i)]) and conservative. Consequently,
Rtmg,∗K ∈ pD(Ag[m])≤` if and only if ρm,∗Rtmg,∗K ∈ pD(Ag)≤`, and it suffices to show the
statement when m = 0. In that case, it follows from Lemma 3.3.1, Proposition A.0.4,
Lemma A.0.7, and Proposition 3.3.9.

3.3.2 Proof of the main results

From here on, we additionally assume that k = C. By fixing a (noncanonical) isomorphism
C ' Cp, we then have all results of § 2.6 at our disposal. We are now ready to prove
Theorem 3.0.1 and Theorem 3.0.2, which we restate for the convenience of the reader.

Theorem 3.0.1. Let g ≥ 2 and p be a prime. Let M c
g [pn] be the moduli space of curves of

compact type of genus g over C with full level-pn structure. Let πn : M c
g [pn] →M c

g be the
maps “forgetting the level structure.”

(i) If K ∈ pD(M c
g ,Fp)≤0, we have colimn Hi

ét(M c
g [pn], π∗nK) = 0 for all i > g − 2.
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(ii) If F is a constructible sheaf of Fp-modules on M c
g , we have colimn Hi

ét(M c
g [pn], π∗nF ) = 0

for all i >
⌊

7g
2

⌋
− 4.

Proof. Let ρn : Ag[pn] → Ag be the natural maps forgetting the level structure. Since
the canonical maps ρ∗nRtg,∗K → Rtpng,∗π∗nK are isomorphisms for all n ≥ 0 and all K ∈
D(M c

g ) by proper base change, Corollary 3.3.11 reduces the assertion to showing that
colimn Hi

ét(Ag[pn], ρ∗nL) = 0 for all L ∈ pD(Ag)≤` and all i > `.
As in Example 2.6.8, we denote by Ag[pn] the toroidal compactifications of Ag[pn]

determined by a fixed smooth, projective GLg(Z)-admissible polyhedral decomposition of the
cone of positive semi-definite quadratic forms on Rg whose null space is defined over Q. Let
ρmn : Ag[pm]→ Ag[pn] be the natural transition maps. The inclusions ιn : Ag[pn] ↪→ Ag[pn]
cut out the complement of a Cartier divisor and are thus affine morphisms. Therefore,
Rιn,∗ρ∗nL ∈ pD(Ag[pn])≤` (Theorem A.0.3) and

colim
n

Hi
ét(Ag[pn], ρ∗nL) ' colim

n
Hi

ét(Ag[pn],Rιn,∗ρ∗nL) = 0

for all i > ` by Example 2.6.8 and Corollary 2.6.9 applied to Kn = Rιn,∗ρ∗nL and the natural
base change maps ϕ∗mn : ρ∗mnRιn,∗ρ∗nL→ Rιm,∗ρ∗mL.

Theorem 3.0.2. Let Λ0 be an étale Fp-local system on Mg, with pullbacks Λn to Mg[pn].
Then for all i ≥ 0, the natural map

colim
n

Hi
ét(Mg[pn],Λn)→ colim

n
Hi

ét(M c
g [pn],Λn)

is an isomorphism.

Proof. By Corollary 3.2.6, the locus Dpn ⊂Mg[pn] of curves not of compact type is a normal
crossings divisor. Lemma 3.2.11 shows that the transition maps Mg[pn+1] → Mg[pn] are
p-ramified over Dpn . Thus, the assertion follows from Theorem 3.1.5.

Theorem 1.2.1 is a consequence of these two results.

Theorem 1.2.1. Let g ≥ 2 and p be a prime. Let M [pn] be one of the following:

(i) the moduli space Mg[pn] of smooth curves of genus g over C with full level-pn structure,

(ii) the moduli space M c
g [pn] of curves of compact type of genus g over C with full level-pn

structure, or

(iii) the moduli space Mg[pn] of pre-level-pn curves of genus g over C with full level-pn

structure.
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Then we have
colim

n
Hi

ét(M [pn],Fp) = 0

for all i > 4g − 5 in case (i) and for all i >
⌊

7g
2

⌋
− 4 in cases (ii) and (iii).

Proof. Cases (ii) and (iii) are immediate from Theorem 3.0.1.(ii) and Theorem 3.0.2. For (i),
note that Mg[pn] ⊂M c

g [pn] is the inclusion of the complement of a Cartier divisor and the
derived direct image of Fp[3g − 3] is therefore semiperverse by Theorem A.0.3. We conclude
from Theorem 3.0.1.(i) and smooth base change.

Example 3.3.12. When pn ≥ 3, the stack M c
g [pn] is isomorphic to its coarse space M c

g [pn].
Another compactification Mg[pn] of M c

g [pn] due to Mumford is given by the normalization of
Mg inside the function field of M c

g [pn]. This is the coarse space of Mg[pn].
Since Mg[pn] is in general singular at the boundary Dpn := Mg[pn] rM c

g [pn] (as follows
for example from (3.3) below), Dpn with its induced reduced subscheme structure cannot be
a normal crossings divisor and it does not make sense to ask if the transition maps of the
projective system Mg[pn] are p-ramified over Dpn . However, one might wonder if methods
akin to those of § 3.1 can still be used to prove a version of Theorem 3.0.2. We show now
that this is in fact not the case.

Let y ∈M3(C) be a closed point corresponding to a “wheel” of two smooth genus 1 curves
attached at two points. Let yn ∈M3[pn](C) be a compatible system of lifts of y. For any n,
there is an isomorphism θn : O∧

M3[pn],yn
' CJt1, . . . , t6K, with the singular curves parametrized

by the locus {t1t2 = 0}. Since the vanishing cycles corresponding to the two nodes are
homologous, the description of Hyn for k = C via Dehn twists from Example 3.2.10 shows
that Hyn is given by the antidiagonal in AutC(C ) ' µpn × µpn . By [Ols07a, Lem. 5.3] (or a
direct tangent space calculation), θn can be chosen such that the action of (ζ, ζ−1) ∈ Hyn on
O∧

M3[pn],yn
from Lemma 3.2.7 is identified with

ti 7→

ζ
3−2iti if 1 ≤ i ≤ 2,

ti if 3 ≤ i ≤ 6,

and the transition maps become

ti 7→

t
p
i if 1 ≤ i ≤ 2,

ti if 3 ≤ i ≤ 6.

The completed local ring of the coarse moduli space at yn is computed as theHyn-invariants
of O∧

M3[pn],yn
, and thus in these coordinates as the C-subalgebra of CJt1, . . . , t6K generated by
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tp
n

1 , t1t2, tp
n

2 , and ti for i ≥ 3. In other words,

O∧
M3[pn],yn ' CJtp

n

1 , t
pn

2 , t3, . . . , t6, zK/(tp
n

1 t
pn

2 − zp
n), (3.3)

with the transition maps given as before and by z 7→ zp. Further, the complement of Dpn in
Spec O∧

M3[pn],yn
is Spec kJt, t3, . . . , t6, zKtz via the isomorphism taking tp

n

1 to t and tp
n

2 to zp
n

t
.

Here, the transition maps are (t, t3, . . . , t6, z) 7→ (t, t3, . . . , t6, zp). Thus,

hocolim(̂ın,∗Rı̂!nΛ̂n)yn ' hocolim RΓ̃(S1 × S1,F⊕rp )[−1]

does not vanish.
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APPENDIX A

Vanishing from perverse sheaves

In this appendix, we discuss some vanishing results for perverse sheaves on algebraic
stacks, which are without doubt known to the experts, but for which we could not track
down a suitably general reference in the literature. Throughout, we fix a separably closed
field k of characteristic not equal to p. Recall the following definition from [LO09, § 4].

Definition A.0.1. Let X be an algebraic stack of finite type over k. Let π : X →X be a
smooth surjection from a scheme X of finite type over k. Denote the relative dimension of π
at a point x ∈ X by dπ(x) := dimx(Xπ(x)) and set dim(x) := trdeg(κ(x)/k). For any n ∈ Z,
the category of complexes bounded above n for the perverse t-structure is the full subcategory

pD(X )≤n := {K ∈ D(X ) |H j((π∗K)x) = 0 ∀x ∈ X, j > n+ dπ(x)− dim(x)} ⊂ D(X ),

where (π∗K)x is the derived pullback of π∗K under the inclusion of x into X,

By [LO09, Lem. 4.1], Definition A.0.1 is independent of the choice of π : X → X .
Moreover, since the restriction functor induces an equivalence between the categories of
constructible sheaves on Xlis-ét and Xét, we identify π∗K with a sheaf on the small étale site
of X.

In this section, we collect some known foundational results about the derived direct image
of pD(X )≤n under certain morphisms for later reference. Although not strictly necessary, it
will be convenient later on to work in the generality of stacks. We use the dimension theory
for stacks developed in [SP20, § 0DRE].

Remark A.0.2. The relative dimension of any smooth morphism is locally constant on the
domain [SP20, Lem. 0DRQ]. In order to show that a given K ∈ D(X ) is contained in
pD(X )≤n, it therefore suffices to check that π∗K ∈ pD(X)≤n+dπ for every smooth (not
necessarily surjective) morphism π : X →X from a connected scheme X of finite type with
constant relative dimension dπ at every x ∈ X.
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Theorem A.0.3. Let f : X → Y be an affine morphism between algebraic stacks of finite
type over k. Then Rf∗(pD(X )≤n) ⊆ pD(Y )≤n for all n ∈ Z.

Proof. Let K ∈ pD(X )≤n. By Remark A.0.2, it suffices to check that π∗Rf∗K ∈ pD(Y )≤n+dπ

for every smooth morphism π : Y → Y from a connected scheme Y of finite type over k
of relative dimension dπ. Since f is affine, X := X ×Y Y is a scheme as well. Denote the
projection to the first and second factor by π′ and f ′, respectively. By [SP20, Lem. 0DRN],
dπ′ is constant and equals dπ. In particular, π′,∗K ∈ pD(X)≤n+dπ . By [Ols07b, Prop. 9.8.(i)],
π∗Rf∗K ' Rf ′∗π′,∗K as complexes on Yét, so the assertion follows from [SGA4, Thm. XIV.3.1].

We will mainly use Theorem A.0.3 when f is the inclusion of the complement of a Cartier
divisor.

Proposition A.0.4. Let f : X → Y be a proper morphism between algebraic stacks of finite
type over k which is representable by algebraic spaces. Assume that for any y ∈ |Y |, the fiber
dimension dim(Xy) is at most d. Then Rf∗(pD(X )≤n) ⊆ pD(Y )≤n+d for all n ∈ Z.

Proof. As in the proof of Theorem A.0.3, choose a smooth morphism π : Y → Y from a
connected scheme of finite type over k with relative dimension dπ at all y ∈ Y . The fiber
product X := X ×Y Y is an algebraic space, again of constant relative dimension dπ over
X . By [Ols07b, Prop. 9.8.(i)], it therefore suffices to prove the statement in case Y is a
scheme and X an algebraic space.

We proceed by induction on dim X , the case dim X = 0 being trivial. For the inductive
step, since the assertion is local on Y , we may assume that Y , and hence X , is separated.
In particular, X has dense, open schematic locus; we can choose a dense, open subscheme
U ⊆ Y such that f−1(U) ⊂X is represented by a scheme because f is closed.

Denote by j : U ↪→ Y and j′ : f−1(U) ↪→X the open immersions and by i and i′ the closed
immersions of their complements with their reduced subspace structures, respectively. For
any K ∈ pD(X )≤n, the induction hypothesis ensures i∗i∗Rf∗K ' i∗Rf∗i′,∗K ∈ pD≤n+d(Y ).
On the other hand, j!j

∗Rf∗K ' j!Rf∗j′,∗K ∈ pD≤n+d(Y ) by [BBD82, § 4.2.4]. The assertion
then follows from the long exact excision sequence for Rf∗K.

Under stricter assumptions on the allowable loci with a given fiber dimension, more can
be said about the direct image of Fp[dim X ].

Definition A.0.5. Let f : X → Y be a proper morphism between algebraic stacks of
finite type over k which is representable by algebraic spaces. Let |Y | = ⊔

i∈I Si be a finite
stratification of |Y | into locally closed subspaces Si. Let Yi be the corresponding locally
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closed substacks with their reduced induced substack structure (cf. [SP20, Remark 06FK]).
Assume that f has constant relative dimension di over Yi. Then the defect of semi-smallness
of f is

r(f) := max
i∈I
{2di + dim Yi − dim X }.

Example A.0.6. If f is the blowup of a closed subvariety of codimension c ≥ 2 in a variety
Y , we have r(f) = c− 2.

Lemma A.0.7. Let f : X → Y and |Y | = ⊔
i∈I Si be as in Definition A.0.5. Let F be a

constructible sheaf of Fp-modules on X . Then Rf∗(F [dim X ]) ∈ pD(Y )≤r(f).

Proof. Choose a smooth surjection Y → Y from a scheme Y of finite type over k, giving rise
to a fiber square

X := X ×Y Y Y

X Y .

f ′

π′ π

f

Let y ∈ Y . Then

(π∗Rf∗(F [dim X ]))y ' (Rf ′∗π′,∗(F [dim X ]))y ' RΓ(Xy, π
′,∗F [dim X ])

by proper base change. If π(y) ∈ Si, we have dimXy = di and hence

H j
(
(π∗Rf∗(F [dim X ]))y

)
' Hj+dim X (Xy, π

′,∗F ) = 0

for all j > 2di − dim X . The assertion thus follows from the inequality

2di − dim X ≤ r(f)− dim Yi ≤ r(f) + dπ(y)− dim(y).

Remark A.0.8. In fact, a combination of Lemma A.0.7 and Proposition A.0.4 shows that
Rf∗(F [dim X ]) ∈ pD(Y )≤r, where r := min{r(f), 2 dim suppF − dim X }. On the other
hand, the bound of Lemma A.0.7 is sharp in general. For example, choose i ∈ I such
that dim Yi = r(f) + dim X − 2di. Let y ∈ π−1(Si) be the generic point of an irreducible
component such that dim Yi = dimπ(y) Yi. Then equality holds at every step of the last
inequality in the proof and thus Rf∗(Fp[dim X ]) /∈ pD(Y )≤r(f)−1.

73

https://stacks.math.columbia.edu/tag/06FK


BIBLIOGRAPHY

[AC98] E. Arbarello and M. Cornalba. Calculating cohomology groups of moduli spaces
of curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math., 88:97–127,
1998.

[AC09] E. Arbarello and M. Cornalba. Divisors in the moduli spaces of curves. In Geometry
of Riemann surfaces and their moduli spaces, volume 14 of Surv. Differ. Geom.,
1-22. Somerville: Int. Press, 2009.

[ACV03] D. Abramovich, A. Corti, and A. Vistoli. Twisted bundles and admissible covers.
Comm. Algebra, 31(8):3547–3618, 2003. Special issue in honor of Steven L. Kleiman.

[And18a] Y. André. Le lemme d’Abhyankar perfectoide. Publ. Math. Inst. Hautes Études
Sci., 127:1–70, 2018.

[And18b] Y. André. La conjecture du facteur direct. Publ. Math. Inst. Hautes Études Sci.,
127:71–93, 2018.

[AOV11] D. Abramovich, M. Olsson, and A. Vistoli. Twisted stable maps to tame Artin
stacks. J. Algebraic Geom., 20(3):399–477, 2011.

[AV02] D. Abramovich and A. Vistoli. Compactifying the space of stable maps. J. Amer.
Math. Soc., 15(1):27–75, 2002.

[AVA18] D. Abramovich and A. Várilly-Alvarado. Level structures on Abelian varieties,
Kodaira dimensions, and Lang’s conjecture. Adv. Math., 329:523–540, 2018.
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