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ABSTRACT

One of the greatest challenges of modern theoretical physics is to find a quantum theory

of gravity that could unify general relativity and quantum mechanics. The microscopic

understanding of black holes plays an essential role in pursuing this goal for its unique

connection between gravity and quantum effects.

Despite the remarkable progress that has been made towards this direction, most develop-

ments rely heavily on supersymmetry and elude more realistic non-supersymmetric (nonBPS)

black holes. This thesis is to improve this situation and develop both the macroscopic and

microscopic sides of nonBPS black holes.

In the first part of this thesis, we study a special class of nonBPS black hole solutions

in supergravity theories and compute logarithmic corrections to black hole entropy. We find

that the correction is universal and independent of black hole parameters only when the

number of supercharges N ≥ 6.

In the second part, we compute the spectrum of extremal nonBPS black holes introduced

in the previous part by studying supergravity on their near-horizon geometry. We find that

the spectrum exhibits significant simplifications even though supersymmetry is completely

broken and we interpret our results in the framework of the AdS/CFT correspondence.

In the final part, we analyze AdS5 black holes that are nearly supersymmetric. They

depart from the BPS limit either by having nonzero temperature or by violating a constraint

on potentials. We study the thermodynamics of these deformations and their interplay.

We discuss microscopic computations of BPS black hole entropy in N = 4 supersymmetric

Yang-Mills theory and generalize the arguments to compute entropy of nearBPS black holes,

which agrees with results from the gravity side.

viii



CHAPTER I

Introduction

For more than half a century, quantum gravity has been one of the greatest challenges of

modern theoretical physics. A complete understanding of it requires a consistent unification

of the two backbones of modern physics: general relativity and quantum mechanics. To

find this unified theory, it is necessary to understand subjects where both gravitational and

quantum effects are significant. Black holes, a region of spacetime where the gravitational

field is so strong that not even light can escape from it, provide such a setting.

A quantum theory of gravity has to provide microscopic quantum descriptions of black

holes that are consistent with their macroscopic gravitational descriptions. The existing

microscopic understandings of black holes heavily rely on the existence of supersymmetry,

while little is known for more general non-supersymmetric (nonBPS) black holes.

The goal of this thesis is to improve this situation and quantitatively explore the entropy,

spectrum and other properties of non-supersymmetric black holes, both macroscopically and

microscopically.

In this chapter, we present a brief overview of the developments on black hole physics, as

well as the motivations that lead us to the research in later chapters. In the end we overview

and summarize key features of our results.

1.1 Black Holes

A black hole is a spacetime region where the gravitational field is so strong that nothing

can escape from it. It was first discovered by Karl Schwarzschild in 1915 as the first exact

solution to the Einstein field equations of general relativity. In astrophysics, a black hole is

one of the possible outcomes of gravitational collapse of a massive object, such as a star, at

the end of its life cycle. If the object is massive enough, its internal pressure will eventually

not be able to prevent it from collapse due to its own gravity. When the objects collapses

within its Schwarzschild radius, a black hole forms. The boundary of it is referred to as the

1



event horizon, within which everything is forced to move inward and no escape is possible.

Once the black hole achieves a stable state, its geometry is uniquely determined by its

mass, angular momenta and charges, irrespective of the original collapsing object and how

it collapses. This uniqueness statement is called the no-hair theorem [1].

1.1.1 Black Hole Thermodynamics

At first glance, the no-hair theorem seems to imply that a black hole can only have one

internal configuration, and we might be prone to get to the conclusion that the entropy of

any black hole would be S = ln 1 = 0. This, however, can not be correct because it violates

the second law of thermodynamics, which states that the entropy of a closed system can

not decrease. To illustrate the contradiction, one can imagine a closed system consisting of

a black hole and some other matter with S > 0 falling into it. Assuming our conclusion is

correct, after all the matter falls into the black hole, the closed system is left with a final

black hole, and hence has vanishing entropy, which violates the second law. Therefore our

previous conclusion is false, despite the implication from the no-hair theorem.

In the 1970’s, the puzzle mentioned above was partially understood thanks to the devel-

opment of black hole thermodynamics [2], which relates black hole parameters to thermody-

namics quantities. It was identified by Bekenstein and Hawking [3] that:

SBH =
AH
4~G

, (1.1)

where AH is the area of the event horizon. Meanwhile, Hawking [4] showed that by consid-

ering particle-antiparticle pair production in the region near the event horizon, a black hole

emits thermal radiation (known as Hawking radiation) with temperature

TBH =
~κ
2π

, (1.2)

where κ is the surafce gravity of the black hole.

Here we would like to emphasize the quantum nature of black hole thermodynamics. The

presence of ~ in the entropy and temperature of black holes clearly shows that black hole

thermodynamics is originated from quantum effects. If we take the classical limit ~ → 0,

we would see vanishing black hole temperature, no Hawking radiation and breakdown of

the entropy formula (1.1). To fully understand black hole thermodynamics, we need both

general relativity and quantum mechanics, which is exactly why black hole thermodynamics

is an ideal candidate for studying quantum gravity.

2



1.1.2 Macroscopic and Microscopic Descriptions of Black Holes

The Bekenstein-Hawking area law (1.1) tells us how to compute entropy of a black hole

from its geometry. However, it does not fully solve the puzzle implied by the no-hair the-

orem. From statistical mechanics, we know that the entropy can be derived by counting

the degeneracy Ω of all possible microscopic states given fixed macroscopic thermodynamic

quantities, i.e.

S = ln Ω . (1.3)

Therefore the statistical meaning of having a nonzero entropy is that a black hole with fixed

charges has different possible microstates. However, the no-hair theorem which fixes the

entire geometry does not leave us any room for different states.

The contradiction above is originated from a fundamental problem of modern physics:

the incompatibility of general relativity which describes the dynamics of spacetime, and

quantum mechanics which dominates microscopic quantum effects. The presence of ~ in the

black hole entropy formula (1.1) and the statistical interpretation of entropy (1.3) together

indicate that to understand a black hole as a collection of microscopic states, we need a

quantum theory of gravity.

One of the most promising quantum gravity theories is string theory. In string theory,

the fundamental objects are one-dimensional strings, and ordinary point-like particles are

nothing but different modes of string excitations. It also proposes high-dimensional objects

called D-branes, which can carry electric or magnetic charges. An important fact of string

theory is that the excitation modes of closed strings contain a massless spin-2 state, which

can be identified as graviton. Therefore string theory is naturally a quantum theory of

gravity. Meanwhile, string theory is an ultraviolet (UV) complete quantum theory, which

means it is well-defined at arbitrarily high energy scales.

With the development of string theory, the first example of black hole microstates count-

ing was given by Strominger and Vafa [5] in 1996. They studied a class of five-dimensional

black holes that has explicit string realizations and reproduced the Bekenstein-Hawking area

law SBH = AH
4~G by counting the leading degeneracies of microstates of strings and D-branes

carrying the same charges of the black holes in the large charge limit. Their success confirmed

the consistency between macroscopic and microscopic descriptions of black holes and hence

indicated a new direction of studying quantum gravity. We should be able to understand

black holes in either its macroscopic or microscopic description, and these two approaches

should be consistent with each other. Therefore, even the information on the macroscopic

side can be valuable in understanding quantum gravity on the microscopic side.

3



More precisely, to study black holes in the macroscopic approach, we can start with

a black hole background as a classical solution of some low-energy effective theory, then

quantize the gravitational field, as well as coupled matter fields, and study the quantum

fluctuations of these fields. The information contained in these quantum fluctuations can be

used to put strong constraints on any quantum gravity theory. For example, the Bekenstein-

Hawking area law (1.1) is a semi-classical result and only the leading term of the full formula

in the large area expansion,

S =
AH
4G

+ C lnAH + ... , (1.4)

for some coefficient C. Generally, the overall quantum corrections to black hole entropy

are sensitive to the details of the UV-complete quantum gravity. However, the subleading

logarithmic term in (1.4) is the one-loop quantum correction that is governed by quantum

fluctuations in the low-energy effective theory. Therefore it can be computed without any

knowledge of the UV-complete quantum gravity, whereas any quantum gravity theory has to

give microscopic counting consistent with it in order to be possibly correct. In other words,

the logarithmic correction to black hole entropy can serve as a criterion to the correctness

of any quantum gravity theory.

The logarithmic corrections have been computed for various classes of black holes in the

macroscopic side. Some of them [6–9] have also been done by microstates counting in string

theory and matched with macroscopic results. In chapter II, we compute the logarithmic

corrections for a special class of black holes, for which how to do microstates counting

is still a mystery. In order to learn more about these black holes, we compute the mass

spectrum of their quantum fluctuations in chapter III, which provides us with more detailed

information about their microstates. These computations put strong constraints on any

theory of quantum gravity that attempts to understand these black holes microscopically.

1.2 Supersymmetry and Supergravity

Supersymmetry (SUSY) is the only possible nontrivial extension of the Poincaré group

for spacetime symmetry of a realistic quantum field theory by the Haag- Lopuszański-Sohnius

theorem [10]. It is a conjectured symmetry between particles with integer spin (bosons) and

those with half-integer spin (fermions). A supersymmetry transformation turns a boson into

a fermion, and vice versa. The fermionic operators Qi that generate the transformations are

anti-commuting spinors called supercharges, with

Qi |Boson〉 = |Fermion〉 , Qi |Fermion〉 = |Boson〉 . (1.5)

4



Particles in a supersymmetric theory fall into irreducible representations of the supersymme-

try algebra. These representations are called supermultiplets. Each supermultiplet contains

an equal number of bosonic and fermionic degrees of freedom, and particles in the same

supermultiplet have the same mass.

Supersymmetry is a spacetime symmetry because the anti-commutation relation of su-

percharges {Qa, Q
†
b} = (σµ)abPµ involves the momentum operator Pµ. If we require su-

persymmetric transforamtions to be local, i.e. the transformation parameters are arbitrary

functions of spacetime coordinates, the supersymmetry algebra will involves momentum Pµ

with spacetime-dependent coefficients, which must be regarded as diffeomorphisms. There-

fore gravity is naturally required in local supersymmetry, and the result is the theory of

supergravity (SUGRA). A supergravity theory is a nonlinear field theory with supersymme-

try that contains the gravity multiplet. The gravity multiplet consists of the spin-2 graviton

and N spin-3
2

gravitinos (superpartners of graviton), as well as additional fields with lower

spins depending on the number of supercharges N . Supergravity theory combines supersym-

metry and general relativity, and more importantly, is a low energy limit of string theory,

which means black holes in supergravity should have microscopic interpretations in string

theory.

1.2.1 BPS and nonBPS Black Holes

Supersymmetry plays a cruicial role in the existing microscopic descriptions of black

holes. Examples of microstates counting in string theory are mostly based on black holes

that preserve at least some of the supersymmetries in the supergravity theory. These black

holes saturate the Bogomol’nyi-Prasad-Sommerfield (BPS) bound and therefore are referred

to as BPS black holes.

The microstates counting is difficult for general nonBPS black holes because a classical

black hole has a large radius of curvature near the horizon compared to the length scale

of strings, which makes it into the strong coupling regime of string theory, while our cur-

rent techniques and understanding of strings only allow us to do computations in the weak

coupling regime. The advantage of having a BPS black hole is that the preserved supersym-

metry can protect some physical quantities from changing when we continuously move from

weak to strong coupling, so that our results in the weak coupling regime are still valid when

applied to black holes in the strong coupling regime.

In reality, supersymmetry is broken, if it ever exists. This is basically because supersym-

metry reuqires identical mass for particles in the same supermultiplet, which is not observed

in laboratories for particles in the standard model. This means all realistic black holes in our

universe are necessarily nonBPS, and therefore the microscopic understanding of nonBPS

5



black holes is important and necessary. However, we have mentioned that the microstates

counting technique for BPS black holes does not work for general cases, so how far could we

go with nonBPS black holes? We could first consider nearBPS black holes that are infinitesi-

mally close to BPS ones. For example, because BPS black holes are necessarily extremal, i.e.

they have zero temperature, by increasing an infinitesimal amount of temperature, we get

near-extremal nonBPS black holes that are nearBPS. There are results [11, 12] indicating

that microstates counting is possible for certain near-extremal black holes by perturbative

computations. In chapter IV, we develop both microscopic and macroscopic sides of nonBPS

black holes in AdS5 space with general infinitesimal deviations from BPS considered. If we

go beyond nearBPS, it becomes much more difficult. Several results [13–15] imply that for

limited cases in string theory, microscopic computations in the weak coupling regime can

also reproduce the entropy of corresponding black holes arbitrarily far from extremality.

However, these identifications and matches are far from complete proofs, and generally only

the scaling of entropy with area can be reproduced [16].

Though we lose control over the microstates counting when adding finite temperature to

BPS black holes, some of these black holes surprisingly share certain universalities indepen-

dent of continuous black hole parameters, such as universal logarithmic corrections to entropy

[17]. This motivates us to study the extent of these universalities and their related properties

for more general cases. The class of nonBPS black holes we consider in chapters II and III is

referred to as the nonBPS branch in the sense that all of them including the extremal ones

are far from BPS. We find that the non-trivial universality of logarithmic corrections is rarer

in this case, while the mass spectrum of these black holes exhibits significant simplifications

that can be interpreted in the framework of the AdS/CFT correspondence. These results

and interpretations might serve as targets and inspirations for future microscopic research.

1.3 The AdS/CFT Correspondence

The AdS/CFT correspondence, also known as gauge/gravity duality, is a conjectured

holographic duality between theories of quantum gravity on n+1 dimensional Anti-de-Sitter

(AdS) space and n-dimensional conformal field theories (CFT). It was first proposed by Juan

Maldacena [18] in 1997. Despite the lack of rigorous proof, the majority of the community

is now convinced that this duality holds, largely because attempts to find a clear counter-

example of it all failed and these failures in return deepened our understanding of how and

why it works.

The most famous example of the AdS/CFT correspondence states that type IIB string

theory on AdS5 × S5 is equivalent to N = 4 supersymmetric Yang-Mills (SYM) theory on
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the four-dimensional boundary. It also specifies the identifications between dimensionless

parameters on two sides. These parameters are, on the AdS side, the string coupling gs and

the AdS radius in string length unit `/`s, and on the CFT side, the Yang-Mills coupling gYM

and the rank of the gauge group N . Their correspondences are given by

4πgs = g2
YM ,

(
`

`s

)4

= 4πgsN . (1.6)

It was shown by ’t Hooft [19] that the gauge theory becomes effectively classical when taking

the limit N → ∞ with λ = g2
YMN fixed. The ’t Hooft limit corresponds to taking gs → 0

in the type IIB string theory where loop contributions from strings are suppressed. If we

additionally take λ→∞ after the ’t Hooft limit, which means the AdS radius is much larger

than the string length scale (` � `5), higher-derivative corrections also become negligible.

Therefore, the limit N � λ � 1 corresponds to our classical general relativity. This shows

one of the key features of the AdS/CFT correspondence: it is a strong/weak coupling duality.

It is when the gauge coupling is strong (λ� 1) that the field theory is dual to the weakly-

coupled gravity theory.

The AdS/CFT correspondence offers a particularly useful tool for studying microscopic

descriptions of asymptotically-AdS black holes, for it rephrases black hole microstates into

corresponding states in the dual CFT. There are many successes in studying black holes

using quantum field theory, mostly based on AdS3/CFT2. However, despite the fact that

black hole solutions in AdS5 have been known for a long time [20–23], it remains a long-

standing challenge how to do microstates counting for them. It was not until recent years

that the entropy for BPS ones were reproduced microscopically [24–26]. In chapter IV, we

work on both gravitational and field theory sides of nearBPS AdS5 black holes. Our results

generalize the results on BPS cases and develop the emerging microscopics of nearBPS AdS5

black holes.

1.4 Overview of Results

The remainder of this thesis is organized as follows. In chapter II, we compute logarithmic

corrections to the entropy of black holes on the nonBPS branch. We start with a discussion

about Kaluza-Klein theory and its black hole solutions. Then we embed Kaluza-Klein black

holes into N = 8 supergravity and derive quadratic fluctuations around the background.

The background solutions do not preserve supersymmetry even in their extremal limit, and

neither do their quadratic fluctuations. They break the original SU(8) symmetry group but

still respect the subgroup USp(8). The preserved USp(8) symmetry decouples the quadratic
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fluctuations into blocks corresponding to different irreducible representations. The symmetry

structure also facilitates consistent truncations ofN = 8 results intoN = 6, 4, 2 supergravity.

For N = 2 supergravity, we also discuss embeddings with more general prepotentials. Based

on the quadratic fluctuations, we compute the resulting logarithmic corrections in various

embeddings using heat kernel expansion. Our analysis shows that only when N ≥ 6, the

logarithmic correction on the nonBPS branch is universal and independent of the parameters

of black holes, in contrast to the BPS branch where it is universal for all N ≥ 2. This

chapter is based on [27], written in collaboration with Alejandra Castro, Victor Godet and

Finn Larsen.

To better understand black holes on the nonBPS branch, chapter III focuses on the

spectrum of N = 8 (or N = 4) extremal nonBPS black holes introduced in chapter II by

studying their AdS2×S2 near horizon geometry. As we previously mentioned, the quadratic

fluctuations respect USp(8) (or USp(4)× SO(nV − 1)) symmetry and decouple into blocks

corresponding to different irreducible representations. We compute the mass spectrum of

these blocks and use the result to reproduce logarithmic corrections determined in chapter II

as a consistency check. The mass spectrum of these nonBPS black holes exhibits surprising

simplifications that are usually expected only for BPS ones. To explain this, we study the

dimensional reduction from AdS3 × S2 to AdS2 × S2 and show it reproduces either the

nonBPS spectrum or the BPS spectrum on AdS2 × S2 depending on a choice of chirality.

We end the chapter with a discussion of broken supersymmetry on both BPS and nonBPS

branches to understand these simplifications in another approach. This chapter is based on

[28], written in collaboration with Finn Larsen.

In chapter IV, we turn to study thermodynamics of AdS5 black holes that are nearly

supersymmetric. First we develop the gravitational thermodynamics of nearBPS AdS5 black

holes. There are two distinct ways to depart from the BPS limit: temperature takes them

above extremality and a potential maintains extremality but violates a certain constraint.

We study the thermodynamics of these deformations and their interplay in detail, and find an

unexpected identity between the heat capacity and the capacitance. Then on the microscopic

side, we review the partition function of N = 4 SYM in the free field limit and derive the

free energy from its leading contribution in the large-N and low-temperature limit. We

generalize the arguments to the nearBPS regime and compute the resulting nearBPS AdS5

black hole entropy by relaxing the potential constraint imposed by supersymmetry. Our

methods recover gravitational results from microscopic theory also for nearBPS black holes.

This chapter is based on [29], written in collaboration with Finn Larsen and Jun Nian.
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CHAPTER II

Logarithmic Corrections to Black Hole Entropy:

the NonBPS Branch

2.1 Introduction and Summary

A remarkable feature of the Bekenstein-Hawking entropy formula is its universality: the

leading contribution to the black hole entropy is controlled by the area of the event horizon,

regardless of the details of the solutions or the matter content of the theory. It is therefore

interesting to investigate if there is any notion of universality and/or robustness in the

quantum corrections to the entropy of a black hole.

Generically there is no expectation that the quantum corrections to the Bekenstein-

Hawking area law are universal: according to effective quantum field theory they are sensitive

to the details of the UV completion of the low energy theory in consideration. However, there

is a special class of quantum corrections that are entirely determined by the low energy theory

[30–38]: the leading logarithmic correction is governed by the one-loop effective action of the

low energy modes in the gravitational theory. These corrections, therefore, provide a powerful

infrared window into the microstates.

The claim that logarithmic corrections computed from the IR theory agree with results for

the UV completion has been successfully tested in many cases where string theory provides

a microscopic counting formula for black hole microstates. We refer to [39, 40] for a broad

overview and [41–44] for more recent developments in AdS4/CFT3. Logarithmic corrections

have also been evaluated for a plethora of other black holes [17, 45] where a microscopic

account still awaits.1

The coefficients multiplying these logarithms follow some interesting patterns. The black

1In certain cases the logarithm can be accounted for very simply by using thermodynamics [45, 46]: the
measure that controls the change from, for example, the microcanonical to the canonical ensemble correctly
reproduces the gravitational result without leading to new insight in the microscopic theory.
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hole entropy has the schematic structure

SBH =
AH
4G

+
1

2
(Clocal + Czm) log

AH
G

+ · · · , (2.1)

where we highlight the two terms (area law+logarithm) controlled by low energy gravity and

use dots to denote subleading corrections that generally depend on the UV completion. Czm

is an integer that accounts for zero modes in the path integral. Clocal refers to the constant

term in the heat kernel that captures the non-zero eigenvalues of the one-loop determinant

[47]. It is expressed as a density [48, 49]

Clocal =

∫
d4x
√
g a4(x) , (2.2)

where the integrand takes the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (2.3)

for the backgrounds we will consider. In this expression, E4 is the Gauss-Bonnet term and

Wµνρσ is the Weyl tensor. The constants c and a are familiar from related computations of

the trace anomaly of the stress tensor. Their values depend on the content of matter fields

and their couplings to the background black hole solution.2

Clocal contains non-trivial information about the background so this function generally

depends greatly on the matter content of the theory and the parameters of the black hole

[45]. However, under certain conditions Clocal has a universal structure [17, 50]: for Kerr-

Newman black holes embedded in N ≥ 2 supergravity, the c-anomaly vanishes. This leads

to a remarkable simplification since then the integral in (2.2) is just a topological invariant.

The logarithmic correction is therefore universal in the sense that its does not depend on

details of the black hole background; it is determined entirely by the content of massless

fields.

The class of backgrounds considered in [17] was constructed such that, in the extremal

limit, they continuously connect to BPS solutions. For this reason we denote this class as

the BPS branch. The black holes on the BPS branch are not generally supersymmetric, but

their couplings to matter are arranged such that supersymmetry is attained in the limit. One

of the motivations for the present chapter is to study universality of logarithmic corrections

outside of the BPS branch in D = 4 supergravity.

Supergravity (withN ≥ 2) also allows for black holes that do not approach BPS solutions

2It is important to note that the couplings are not necessarily minimal, so the values of c and a may be
nonstandard functions of the matter content.
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in the extremal limit. We refer to such solutions as the nonBPS branch. In their minimal

incarnation, they correspond to solutions of the D = 4 theory obtained by a Kaluza-Klein

reduction of five dimensional Einstein gravity [51]. In a string theory setup it is natural

to identify the compact Kaluza-Klein dimension with the M-theory circle, and then these

solutions are charged with respect to electricD0-brane charge and magneticD6-brane charge.

Such configurations break supersymmetry even in the extremal limit. Therefore, they offer

an interesting arena for studying logarithmic corrections and their possible universality.

The minimal Kaluza-Klein theory needed to describe the nonBPS branch is a four di-

mensional Einstein-Maxwell-dilaton theory where the couplings are dictated by the reduction

from five dimensions. We will refer to the black hole solutions of this theory as “Kaluza-Klein

black holes.” These solutions can be embedded in supergravity, as we will discuss in detail.

In particular, we will consider the embedding of the Kaluza-Klein theory in N = 4, 6, 8

supergravity and for N = 2 we consider ST (n) models 3, which include the well-known

STU -model as a special case.

Our technical goal is to evaluate the Seeley-DeWitt coefficient a4(x) for the Kaluza-Klein

black hole when it is embedded in one of the supergravities. This involves the study of

quadratic fluctuations around the background, potentially a formidable task since there are

many fields and generally they have non-minimal couplings to the background and to each

other. Fortunately we find that, in the cases we consider, global symmetries of supergravity

organize the quadratic fluctuations into manageable groups of fields that are decoupled from

one another. We refer to such groups of fields as “blocks”. There are only five distinct types

of blocks, summarized in Table 2.1.

Multiplet Block content

KK block 1 graviton, 1 vector, 1 scalar

Vector block 1 vector and 1 (pseudo)scalar

Scalar block 1 real scalar

Gravitino block 2 gravitini and 2 gaugini

Gaugino block 2 gaugini

Table 2.1: Decomposition of quadratic fluctuations.

The KK block comprises the quadratic fluctuations in the seed theory, i.e. the Kaluza Klein

theory with no additional matter fields. The scalar block is a single minimally coupled

spectator scalar field. The remaining matter blocks have unfamiliar field content and their

3We work out the bosonic fluctuations forN = 2 with any prepotential. It is only for fermionic fluctuations
that we restrict our attention to the ST (n) models.
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couplings to the background are non-standard. The great simplification is that the spectrum

of quadratic fluctuations of each supergravity theory we consider can be characterized by

the number of times each type of block appears. We record those degeneracies in Tables 2.4

and 2.8.

Once the relevant quadratic fluctuations are identified it is a straightforward (albeit

cumbersome) task to evaluate the Seeley-DeWitt coefficient a4(x). We do this for every

block listed above and so determine their contribution to Clocal in (2.1). Having already

computed the degeneracies of the blocks, it is elementary algebra to find the values of c and

a for each supergravity theory. Our results for individual blocks are given in Table 2.7 and

those for theories are given in Table 2.8.

One of our main motivation is to identify theories where c = 0 since for those the

coefficient of the logarithm is universal. We find that the non-trivial cancellations on the

BPS branch reported in [17] are much rarer on the nonBPS branch. For example, on the

nonBPS branch the c coefficient does not vanish for any N = 2, 4 supergravity we consider,

whatever their matter content. Therefore, as we discuss in section 2.7, this implies that the

logarithmic correction to the entropy depends on black hole parameters in a combination

different from the horizon area.

In contrast, for N = 6, 8 we find that c = 0. The vanishing of c on the nonBPS branch is

rather surprising, since it is apparently due to a different balance among the field content and

couplings than the analogous cancellation on the BPS-branch. It would be very interesting

to understand the origin of this cancellation from a more fundamental principle. In our

closing remarks we discuss some directions to pursue.

The outline of this chapter is as follows. In section 2.2, we discuss Kaluza-Klein theory

and its Kaluza-Klein black hole solution. This gives the “seed solution”, the minimal incar-

nation of the nonBPS branch. In section 2.3, we embed this theory into N = 8 supergravity,

and in section 2.4, we derive the quadratic fluctuations around the black hole in the N = 8

environment. In section 2.5, we discuss the embedding of the Kaluza-Klein black hole into

theories with less supersymmetry by truncating our previous results for N = 8 and then

exploiting global symmetries of supergravity. In section 2.6, we discuss the embedding of the

nonBPS branch directly into N = 2 supergravity, without making reference to N = 8. This

generalizes some N = 2 results to a general prepotential. In section 2.7, we evaluate the c

and a coefficients for the Kaluza-Klein black hole in its various embeddings and discuss the

resulting quantum corrections to the black hole entropy. Finally, section 2.8 summarizes our

results and discusses future directions. Appendix A contains the technical details behind the

Seeley-DeWitt coefficients presented in section 2.7.
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2.2 The Kaluza-Klein Black Hole

Our starting point is a black hole solution to Kaluza-Klein theory. It is sufficient for our

purposes to consider the original version of Kaluza-Klein theory: the compactification to

four spacetime dimensions of Einstein gravity in five dimensions. In this section, we briefly

present the theory and its black hole solutions. In the following sections we embed the theory

and its solutions into supergravity and study perturbations around the Kaluza-Klein black

holes in the framework of supergravity.

The Lagrangian of Kaluza-Klein theory is given by4

e−1LKK =
1

16πG

(
R− 2DµΦDµΦ− 1

4
e−2
√

3ΦFµνF
µν

)
. (2.4)

The scalar field Φ parametrizes the size of the compact fifth dimension and the field strength

Fµν is the 4D remnant of the metric with one index along the fifth dimension. The Lagrangian

(2.4) gives the equations of motion

D2Φ +

√
3

8
e−2
√

3ΦFµνF
µν = 0 , (2.5)

Dµ

(
e−2
√

3ΦF µν
)

= 0 , (2.6)

Rµν −
1

2
gµνR = (2DµΦDνΦ− gµνDρΦDρΦ) +

1

2
e−2
√

3Φ

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
. (2.7)

Some of our considerations will apply to any solution of the Kaluza-Klein theory (2.4)

but our primary interest is in asymptotically flat black holes. We therefore focus on the

general Kaluza-Klein black hole [51–53]. It is characterized by the black hole mass M and

angular momentum J , along with the electric/magnetic charges (Q,P ) of the Maxwell field.

Its 4D metric is given by

ds2
4 = g(KK)

µν dxµdxν = − H3√
H1H2

(dt−B)2 +
√
H1H2

(
dr2

∆
+ dθ2 +

∆

H3

sin2θ dφ2

)
, (2.8)

where

H1 = r2 + a2cos2θ + r(p− 2m) +
p

p+ q

(p− 2m)(q − 2m)

2
(2.9)

− p

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ ,

4We use e and
√
−g interchangeably, to denote the square root of the determinant of the metric.
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H2 = r2 + a2cos2θ + r(q − 2m) +
q

p+ q

(p− 2m)(q − 2m)

2
(2.10)

+
q

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ ,

H3 = r2 − 2mr + a2cos2θ , (2.11)

∆ = r2 − 2mr + a2 , (2.12)

and the 1-form B is given by

B =
√
pq

(pq + 4m2)r −m(p− 2m)(q − 2m)

2m(p+ q)H3

a sin2θ dφ . (2.13)

The matter fields are the gauge field

A(KK) = −

[
2Q

(
r +

p− 2m

2

)
+

√
q3(p2 − 4m2)

4m2(p+ q)
a cos θ

]
H−1

2 dt

−

[
2P
(
H2 + a2 sin2 θ

)
cos θ +

√
p(q2 − 4m2)

4m2(p+ q)3

×
[
(p+ q)(pr −m(p− 2m)) + q(p2 − 4m2)

]
a sin2θ

]
H−1

2 dφ , (2.14)

and the dilaton

e−4Φ(KK)/
√

3 =

√
H2

H1

. (2.15)

The superscript “KK” on g
(KK)
µν , A(KK) , and Φ(KK) refers to the Kaluza-Klein black hole.

These background fields should be distinguished from the exact fields in (2.4-2.7) which

generally include fluctuations around the background.

The four parameters m, a, p, q appearing in the solution determine the four physical

parameters M,J,Q, P as

2GM =
p+ q

2
, (2.16)

GJ =

√
pq(pq + 4m2)

4(p+ q)

a

m
, (2.17)

Q2 =
q(q2 − 4m2)

4(p+ q)
, (2.18)

P 2 =
p(p2 − 4m2)

4(p+ q)
. (2.19)
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Note that q, p ≥ 2m, with equality corresponding to the absence of electric or magnetic

charge, respectively.

The spectrum of quadratic fluctuations around the general black hole solution to Kaluza-

Klein theory is complicated. In section 2.6 we start with a general solution to the equations

of motion (2.5-2.7) such as the Kaluza-Klein black hole g
(KK)
µν , A

(KK)
µ , and Φ(KK) presented

above. We construct an embedding into N = 2 SUGRA with arbitrary cubic prepotential

and study fluctuations around the background. Although we make some progress in this

general setting it proves notable that the analysis simplifies greatly when the background

dilaton is constant Φ(KK) = 0.

In the predominant part of the chapter we therefore focus on the simpler case from the

outset and assume Φ(KK) = 0. We arrange this by considering the non-rotating black hole

J = 0 with P 2 = Q2. In this special case the metric g
(KK)
µν is (2.8) with

H1 = H2 =

(
r +

q − 2m

2

)2

,

H3 = ∆ = r2 − 2mr , (2.20)

and the gauge field (2.14) becomes

A(KK) = −2Q

(
r +

q − 2m

2

)−1

dt− 2P cos θdφ . (2.21)

In the simplified setting it is easy to eliminate the parameters m, q in favor of the physical

mass 2GM = q and charges P 2 = Q2 = 1
8
(q2 − 4m2) but we do not need to do so.

When Φ(KK) = 0 the geometry of the Kaluza-Klein black hole is in fact the same as the

Reissner-Nordström black hole. Indeed, they both satisfy the standard Einstein-Maxwell

equations

R(KK)
µν =

1

2

(
F (KK)
µρ F (KK)ρ

ν − 1

4
gµνF

(KK)
ρσ F (KK)ρσ

)
, (2.22)

DµF
(KK)µν = 0 . (2.23)

However, whereas the Reissner-Nordström solution can be supported by any combination of

electric and magnetic charges (Q,P ) with the appropriate value of Qeff =
√
P 2 +Q2, for

the Kaluza-Klein black hole we must set P 2 = Q2 so

F (KK)
µν F (KK)µν = 0 , (2.24)
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or else the dilaton equation of motion (2.5) is inconsistent with a constant dilaton Φ(KK).

This difference between the two cases is closely related to the fact that, after embedding in

supergravity, the Kaluza-Klein black hole does not preserve supersymmetry in the extremal

limit.

2.3 The KK Black Hole in N = 8 SUGRA

In this section, we review N = 8 SUGRA and show how to embed a solution of D = 4

Kaluza-Klein theory with constant dilaton into N = 8 SUGRA.

2.3.1 N = 8 Supergravity in Four Dimensions

The matter content of N = 8 SUGRA is a spin-2 graviton gµν , 8 spin-3/2 gravitini ψAµ

(with A = 1, ..., 8), 28 spin-1 vectors BMN
µ (antisymmetric in M,N = 1, ..., 8), 56 spin-1/2

gaugini λABC (antisymmetric in A,B,C = 1, ..., 8), and 70 spin-0 scalars. The Lagrangian

can be presented as [54]5

e−1L(N=8) =
1

4
R− 1

2
ψ̄Aµγ

µνρDνψAρ −
i

8
GMN
µν H̃

(F)µν
MN − 1

12
λ̄ABCγ

µDµλABC

− 1

24
PµABCDP̄

µABCD − 1

6
√

2
ψ̄Aµγ

νγµ
(
P̄ABCDν + ˆ̄PABCDν

)
λBCD (2.25)

+
1

8
√

2

(
ψ̄Aµγ

νF̂ABγµψνB −
1√
2
ψ̄CµF̂ABγµλABC +

1

72
εABCDEFGH λ̄ABCF̂DEλFGH

)
,

in conventions where all fermions are in Majorana form, the metric is “mostly plus”, and

Hodge duality is defined by

H̃
(F)µν
MN = − i

2
εµνρσH

(F)
MNρσ , ε0123 = e . (2.26)

Below we also use (R/L) superscripts on fermions, to denote their right- and left-handed

components.

We include all the glorious details of N = 8 SUGRA to facilitate comparison with other

references. The symmetry structure is the most important aspect for our applications so we

focus on that in the following. The starting point is the 56-bein

V =

(
U MN
AB VABMN

V̄ ABMN ŪAB
MN

)
, (2.27)

5To match with the conventions of many authors, when discussing N = 8 supergravity, we set Newton
constant to κ2 = 8πG = 2. In section 2.6, we will restore the explicit κ dependence.
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that is acted on from the left by a local SU(8) symmetry (with indices A,B, . . .) and from

the right by a global E7(7) duality symmetry (with indices M,N). The connection

∂µVV−1 =

(
2Q

[C
µ[A δ

D]
B] PµABCD

P̄ABCD
µ 2Q̄

[A
µ [Cδ

B]
D]

)
, (2.28)

defines an SU(8) gauge field Q B
µA that renders the SU(8) redundant. We therefore interpret

PµABCD as covariant derivatives of scalar fields that belong to the coset E7(7)/SU(8) with

dimension 133 − 63 = 70. The term in (2.25) that is quadratic in PµABCD is therefore a

standard kinetic term for the physical scalars. The terms linear in PµABCD, including

P̂µABCD = PµABCD + 2
√

2

(
ψ̄

(L)
µ[Aλ

(R)
BCD] +

1

24
εABCDEFGHψ̄

(R)E
µ λ(L)FGH

)
, (2.29)

do not contribute to quadratic fluctuations around a background with constant scalars.

The covariant derivatives Dµ that act on fermions are SU(8) covariant so at this point the

Lagrangian is manifestly invariant under the local SU(8).

The gauge fields and their duals are

GMN
µν = ∂µB

MN
ν − ∂νBMN

µ , (2.30)

H̃
(F)µν
MN =

4i

e

∂L
∂GMN

µν

. (2.31)

They enter the Lagrangian (2.25) explicitly. Their Pauli couplings are written in terms of

F̂AB = γµνFABµν , (2.32)

where

FABµν = F (F)
ABµν +

√
2

(
ψ̄

(R)
[A[µψ

(L)
[B[ν −

1√
2
ψ̄

(L)C
[µ γν]λ

(L)
ABC −

1

288
εABCDEFGH λ̄

CDE
(L) γµνλ

FGH
(R)

)
,

with (
F (F)
ABµν

F̄ (F)AB
µν

)
=

1√
2
V

(
GMN
µν + iH

(F)
MNµν

GMN
µν − iH

(F)
MNµν

)
. (2.33)

These relatives of the gauge fields encode couplings and E7(7) duality symmetries. They

satisfy the self-duality constraint

FµνAB = F̃µνAB . (2.34)
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This self-duality constraint is a complex equation that relates the real fields GMN
µν , H

(F)
MNµν

and their duals linearly, with coefficients that depend nonlinearly on scalar fields. It has a

solution of the form

H̃
(F)
MNµν =− i

(
NMNPQG

−PQ
µν + h.c.

)
+ (terms quadratic in fermions) , (2.35)

where the self-dual (anti-self-dual) parts of the field strengths are defined as

G±MN
µν =

1

2

(
GMN
µν ± G̃MN

µν

)
, (2.36)

and the gauge coupling function is

NMNPQ =
(
U MN
AB − VABMN

)−1 (
U MN
AB + VABPQ

)
. (2.37)

Using (2.35) for H̃
(F)
MNµν and (2.32–2.33) for F̂AB we can eliminate these fields from the

Lagrangian (2.25) in favor of the dynamical gauge field GMN
µν , embellished by scalar fields

and fermion bilinears.

The relatively complicated classical dynamics of N = 8 SUGRA is due to the interplay

between fermion bilinears, duality, and the scalar coset. These disparate features are all

important in our considerations but they largely decouple. For example, although we need

the Pauli couplings of fermions, we need them only for trivial scalars.

In our explicit computations it is convenient to remove the SU(8) gauge redundancy by

writing the 56-bein (2.27) in a symmetric gauge

V = exp

(
0 WABCD

W̄ABCD 0

)
, (2.38)

where the 70 complex scalars WABCD are subject to the constraint

W̄ABCD =
1

24
εABCDEFGHWEFGH . (2.39)

After fixing the local SU(8) symmetry, the theory still enjoys a global SU(8) symmetry.

Moreover, it is linearly realized when compensated by SU(8) ⊂ E7(7). We identify this

residual global SU(8) as the R-symmetry SU(8)R. This identification proves useful repeat-

edly. For example, it is according to this residual symmetry that WABCD transforms as an

antisymmetric four-tensor.
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2.3.2 The Embedding into N = 8 SUGRA

The embedding of the Kaluza-Klein black hole (2.8, 2.20, 2.21) in N = 8 SUGRA is

implemented by

g̊(SUGRA)
µν = g(KK)

µν ,

G̊MN
µν =

1

4
ΩMNF (KK)

µν ,

W̊ABCD = 0 ,

(All background fermionic fields) = 0 , (2.40)

where

ΩMN = diag(ε, ε, ε, ε) , ε =

(
0 1

−1 0

)
. (2.41)

In this section (and beyond) we shall often declutter formulae by omitting the superscript

“KK” when referring to fields of the seed solution.

To establish the consistency of our embedding, in the following we explicitly check that

the N = 8 SUGRA equations of motion are satisfied by the background (2.40). Vanishing

fermions satisfy trivially their equations of motion, because they appear at least quadratically

in the action. The equations of motion for the scalars WABCD take the form

(Terms at least linear in W̊ABCD or quadratic in fermions)

= 3 G̊+[AB
µν G̊+CD]µν +

1

8
εABCDEFGHG̊

−EF
µν G̊−GHµν . (2.42)

The scalars W̊ABCD and the fermions vanish so the right-hand side of the equation must also

vanish. Inserting G̊MN
µν from our embedding (2.40), we find the condition F

(KK)
µν F (KK)µν = 0.

This condition is satisfied by the seed solution (2.24) because the electric and magnetic

charges are equal P = Q. Therefore it is consistent to take all scalars W̊ABCD = 0 in N = 8

SUGRA.

The N = 8 Einstein equation is given by

Rµν −
1

2
gµνR =

1

6
PABCD{µP̄

ABCD
ν} − 1

12
gµνPρABCDP̄

ρABCD

+Re(NMNPQ)

(
GMN
µρ G ρPQ

ν − 1

4
gµνG

MN
ρσ GρσPQ

)
. (2.43)
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The vanishing of the scalars W̊ABCD = 0 implies

V̊ =

(
δ

[M
[A δ

N ]
B] 0

0 δ
[A
[Mδ

B]
N ]

)
, N̊MNPQ = 1MNPQ , (2.44)

so the Einstein equation simplifies to

R̊µν −
1

2
g̊µνR̊ = G̊MN

µρ G̊ ρ
νMN −

1

4
g̊µνG̊

MN
ρσ G̊ρσ

MN . (2.45)

The embedding (2.40) reduces the right-hand side so that these equations coincide with the

Einstein equation (2.22) satisfied by the seed solution.

Finally, the equations of motion for the vector fields in N = 8 SUGRA are

Dµ

(
NMNPQG

−µνPQ + N̄MNPQG
+µνPQ

)
= 0 . (2.46)

The embedding (2.40) and the simplifications (2.44) reduce these equations to the Maxwell

equation DµF
(KK)µν = 0, consistent with the seed equation of motion (2.23).

In summary, the equations of motion in N = 8 SUGRA are satisfied by the embedding

(2.40). Therefore, for any seed solution that satisfies (2.22-2.24), the embedding (2.40) gives

a solution to N = 8 SUGRA. Our primary example is the Kaluza-Klein black hole with

dilaton Φ(KK) = 0.

2.4 Quadratic Fluctuations in N = 8 SUGRA

In this section we expand the Lagrangian (2.25) for N = 8 SUGRA to quadratic order

around the background (2.40). We reparametrize the fluctuation fields so that they all trans-

form in representations of the global USp(8) symmetry group preserved by the background.

We then partially decouple the quadratic fluctuations into different blocks corresponding to

different representations of USp(8).

2.4.1 Global Symmetry of Fluctuations

The N = 8 SUGRA theory has a global SU(8) symmetry, as discussed at the end of

section 2.3. The graviton, gravitini, vectors, gaugini, and scalars transform in the repre-

sentations 1, 8, 28, 56 and 70 of this SU(8) group. The 28, 56, and 70, are realized as

antisymmetric combinations of the fundamental representation 8.

A generic background solution does not respect all the symmetries of the theory, so

the global SU(8) symmetry is not generally helpful for analyzing fluctuations around the
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background. Our embedding (2.40) into N = 8 SUGRA indeed breaks the SU(8) symmetry

since G̊MN
µν = 1

4
ΩMNF

(KK)
µν is not invariant under the SU(8) group. However, the matrix

ΩMN (2.41) can be interpreted as a canonical symplectic form so our embedding respects

most of the global SU(8), it preserves a USp(8) subgroup. Therefore, different USp(8)

representations cannot couple at quadratic order and it greatly simplifies the analysis to

organize fluctuations around the background as representations of USp(8). In the following

we analyze one USp(8) representation at a time.

• Graviton

The graviton hµν = δgµν = gµν − g̊µν is a singlet of SU(8) and remains a singlet of

USp(8).

• Vectors

The fluctuations of the gauge fields δGMN
µν = GMN

µν −G̊MN
µν transform in the 28 of SU(8)

which has the branching rule to USp(8) 28→ 1⊕ 27. We realize this decomposition

directly on the fluctuations by defining

fµν = ΩMNδG
MN
µν , fMN

µν = δGMN
µν −

1

8
ΩMNfµν . (2.47)

The fMN
µν are Ω-traceless fMN

µν ΩMN = 0 by construction so they have only 2× (28− 1)

degrees of freedom which transform in the 27 of USp(8). The remaining 2 degrees of

freedom are in fµν , which transforms in the 1 of USp(8). This decomposition under

the global symmetry shows that the graviton can only mix with the “overall” gauge

field fµν and not with fMN
µν .

• Scalars

The scalars transform in 70 of SU(8) and the branching rule to USp(8) is 70 →
1⊕ 27⊕ 42. We realize this decomposition by defining

W ′ = WABCDΩABΩCD , W ′
AB = WABCDΩCD − 1

8
W ′ΩAB ,

W ′
ABCD = WABCD −

3

2
W ′

[ABΩCD] −
1

16
W ′Ω[ABΩCD] . (2.48)

W ′
ABCD is antisymmetric in all indices and Ω-traceless on any pair or pairs, so it is in the

42 of USp(8). W ′
AB is antisymmetric, Ω-traceless, and hence in the 27 of USp(8). The

remainder W ′ has no index and is in the 1 of USp(8). The obvious construction of an

antisymmetric four-tensor representation of SU(8) has 70 complex degrees of freedom,

but the scalars WABCD in N = 8 SUGRA have 70 real degrees of freedom that realize
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an irreducible representation, as implemented by the reality constraint (2.39). The

decomposition of this reality constraint under SU(8)→ USp(8) shows that the scalar

W ′ that couples to gravity is real W
′
= W ′, as expected from Kaluza-Klein theory. It

also implies the reality condition on the four-tensor

W
′ABCD

=
1

24
εABCDEFGHW ′

EFGH , (2.49)

and an analogous condition on the two-tensor W ′AB. An interesting aspect of these

reality conditions is that, just like the KK block must couple to a scalar (as opposed

to a pseudoscalar), the condition on the USp(8) four-tensor demonstrates that the

scalar moduli must comprise exactly 22 scalars and 20 pseudoscalars. The vector

multiplet couples vectors and scalars/pseudoscalars precisely so that it restores the

overall balance between scalars and pseudoscalars required by N = 8 SUGRA, with

12 scalars and 15 pseudoscalars.

The distinctions between scalars and pseudoscalars are interesting because these details

must be reproduced by viable microscopic models of black holes. Extrapolations far off

extremality of phenomenological models that are motivated by the BPS limit lead to

entropy formulae [55–57] with moduli dependence that is very similar but not identical

to the result found here. It would be interesting to construct a model for non-extremal

black holes that combines the features of the BPS and the nonBPS branch.

• Gravitini

The gravitini ψAµ transform in the fundamental 8 of SU(8). The gravitini only carry

one SU(8) index which cannot be contracted with the symplectic form ΩAB. Therefore,

the gravitini also transform in the 8 of USp(8).

• Gaugini

The gaugini λABC of N = 8 SUGRA transform in the 56 of the global SU(8). The

branching rule to USp(8) is 56 → 8 ⊕ 48. We can realize this decomposition by

introducing

λ′A =
1√
12
λABCΩBC , (2.50)

and

λ′ABC = λABC −
1

8
(λADEΩDE)ΩBC . (2.51)
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The gaugini λ′A transform in the 8 of USp(8). We will find that these gaugini are

coupled to the gravitini. This is allowed because they have the same quantum numbers

under the global USp(8). The normalization 1/
√

12 introduced in (2.50) ensures that

the gaugini retain a canonical kinetic term after the field redefinition.

The gaugini λ′ABC introduced in (2.51) satisfy the constraint λ′ABCΩBC = 0. This

ensures that they transform in the 48 of USp(8). No other fields transform in the

same way under the global symmetry so these gaugini decouple from other fields.

They can of course mix among themselves and we will find that they do in fact have

nontrivial Pauli couplings. However, the normalization of the fields is inconsequential

and we have retained the normalization inherited from the full N = 8 SUGRA.

Table 2.2 summarizes the decomposition of quadratic fluctuations according to their

representations under the global USp(8) that is preserved by the background.

Representations Fields

1 hµν , fµν , W
′

8 ψAµ, λ
′
A

27 fµνAB, W
′
AB

42 W ′
ABCD

48 λ′ABC

Table 2.2: The USp(8) representation content of the quadratic fluctuations.

2.4.2 The Decoupled Fluctuations

The quadratic fluctuations around any bosonic background decouple into a bosonic part

δ2Lbosons and a fermionic part δ2Lfermions because fermions always appear quadratically in

the Lagrangian. As we expand the Lagrangian (2.25) around the background (2.40) to

quadratic order, these parts further decouple into representations of the preserved USp(8)

global symmetry.

The bosonic fluctuations therefore decouple into three blocks

δ2L(N=8)
bosons = δ2L(N=8)

KK + δ2L(N=8)
vector + δ2L(N=8)

scalar . (2.52)

• KK block
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The first block δ2L(N=8)
KK , which we call the “KK block”, consists of all fields that are

singlets of USp(8): the graviton hµν , 1 vector with field strength fµν , and 1 scalar W ′.

The Lagrangian for this block is given by

e−1δ2L(N=8)
KK = h̄µν�h̄µν −

1

4
h�h+ 2h̄µν h̄ρσRµρνσ − 2h̄µν h̄µρR

ρ
ν − hh̄µνRµν

−FµνFρσh̄µρh̄νσ + aµ (�gµν −Rµν) a
ν + 2

√
2F ρ

ν fµρh̄
µν

−4∂µφ∂
µφ+ 2

√
3F µνfµνφ− 4

√
6Rµν h̄

µνφ , (2.53)

after the fields were redefined as hµν →
√

2hµν , fµν → 4fµν , and φ = − 1
8
√

3
W ′. We

also decomposed the graviton into its trace h = gρσhρσ and its traceless part h̄µν =

hµν − 1
4
gµνg

ρσhρσ, and further included the gauge-fixing term

e−1Lg.f. = −
(
Dµh̄µρ −

1

2
Dρh

)(
Dν h̄ ρ

ν −
1

2
Dρh

)
− (Dµaµ)2 . (2.54)

The rather complicated Lagrangian (2.53) represents the theory of fluctuations around

any solution of Kaluza-Klein theory (2.4) with constant dilaton. The fields fµν and φ

correspond to the fluctuations of the field strength and the dilaton. The gauge-fixed

theory (2.53) must be completed with additional ghost terms. We discuss those in

Appendix A.

• Vector blocks

The second block δ2L(N=8)
vector consists of all fields that transform in the 27 of USp(8):

fµνAB and W ′
AB. We use fµνa and W ′

a to denote the 27 independent vectors and scalars

respectively. It includes two slightly different parts. One part has 12 copies of a vector

coupled to a scalar W
′(R)
a with the Lagrangian

e−1δ2L(N=8)(R)
vector = −1

2
∂µW ′(R)

a ∂µW
′(R)
a − fµνa faµν −W ′(R)

a faµνF
µν , a = 1, ..., 12 ,

(2.55)

and the other has 15 copies of a vector coupled to a pseudoscalar W
′(P)
a given by

e−1δ2L(N=8)(P)
vector = −1

2
∂µW ′(P)

a ∂µW
′(P)
a − fµνa faµν − iW ′(P)

a faµνF̃
µν , a = 13, ..., 27.

(2.56)

Although these two Lagrangians are distinct, they give equations of motion that are

equivalent under a duality transformation. This is consistent with the fact that SU(8)
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duality symmetry is the diagonal combination of local SU(8) and global E7(7) duality

symmetry, where the latter is not realized at the level of the Lagrangian.

• Scalar blocks

The last bosonic block δ2L(N=8)
scalar consists of the remaining 42 scalars, transforming in

the 42 of USp(8). There are no other bosonic fields with the same quantum numbers

so, these fields can only couple to themselves. The explicit expansion around the

background (2.22-2.24) shows that all these scalars are in fact minimally coupled

e−1δ2L(N=8)
scalar = − 1

24
∂µW ′

ABCD∂µW
′ABCD

. (2.57)

We now turn to the quadratic fluctuations for the fermions. Since they appear at least

quadratically in the Lagrangian the bosonic fields can be fixed to their background values.

In this case, the N = 8 SUGRA Lagrangian (2.25) simplifies to

e−1δ2L(N=8)
fermions = −1

2
ψ̄Aµγ

µνρDνψAρ −
1

12
λ̄ABCγ

µDµλABC +
1

4
√

2
ψ̄Aµγ

νF̊ABγµψνB

−1

8
ψ̄CµF̊ABγµλABC +

1

288
√

2
εABCDEFGH λ̄ABCF̊DEλFGH , (2.58)

where all fermions are in Majorana form and

F̊AB =
1√
2

(
G̊ABµν + γ5

˚̃
GABµν

)
γµν =

1

2
√

2
ΩABFµνγ

µν . (2.59)

The field redefinitions introduced in section 2.4.1 decouple this Lagrangian as

δ2L(N=8)
fermions = δ2L(N=8)

gravitino + δ2L(N=8)
gaugino . (2.60)

• Gravitino blocks

The first block δ2L(N=8)
gravitino consists of the 8 gravitini ψAµ and the 8 gaugini λ′A singled

out by the projection (2.50). The gravitini and the gaugini both transform in 8 of

USp(8) and couple through the Lagrangian

e−1δ2L(N=8)
gravitino = −ψ̄AµγµνρDνψAρ − λ̄′AγµDµλ

′
A +

1

4
ΩABψ̄Aµ

(
F µν + γ5F̃

µν
)
ψBν

−
√

6

8
ψ̄AµFρσγ

ρσγµλ′A +
1

4
ΩABλ̄′AFρσγ

ρσλ′B . (2.61)

The indices take values A,B = 1, . . . 8. However, this block actually decouples into
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4 identical pairs, with a single pair comprising two gravitini and two gaugini. The

canonical pair is identified by restricting the indices to A,B = 1, 2 and so ΩAB → εAB.

The other pairs correspond to A,B = 3, 4, A,B = 5, 6, and A,B = 7, 8.

• Gaugino blocks

The second block δ2L(N=8)
gaugino consists of the 48 gaugini (2.51) that transform in the 48

of USp(8). These 48 gaugini decompose into 24 identical groups that decouple from

one another. Each group has 2 gaugini and a Lagrangian given by

e−1δ2L(N=8)
gaugino =− λ̄aγµDµλa −

1

8
εabλ̄aFµνγ

µνλb , (2.62)

where a, b = 1, 2 denote the 2 different gaugini in one group. It is interesting that

no fermions in the theory are minimally coupled. Moreover, the numerical strength

of the Pauli couplings to black holes on the nonBPS branch are different from the

corresponding Pauli couplings for fermions on the BPS branch [17].

2.4.3 Summary of Quadratic Fluctuations

In the previous sections we defined a seed solution (2.22-2.24) of Kaluza-Klein theory

with vanishing dilaton and embedded it into N = 8 SUGRA through (2.40). In this sec-

tion, we have studied fluctuations around the background by expanding the N = 8 SUGRA

Lagrangian (2.25) to quadratic order. In section 2.4.1, we decomposed the fluctuations in

representations of the USp(8) symmetry preserved by the background. In section 2.4.2, we

have decoupled the quadratic fluctuations into blocks corresponding to distinct representa-

tions of USp(8). They are summarized in Table 2.3.

Degeneracy Multiplet Block content USp(8) Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar 1 (2.53)

27 Vector block 1 vector and 1 (pseudo)scalar 27 (2.55)

42 Scalar block 1 real scalar 42 (2.57)

4 Gravitino block 2 gravitini and 2 gaugini 8 (2.61)

24 Gaugino block 2 gaugini 48 (2.62)

Table 2.3: Decoupled quadratic fluctuations in N = 8 supergravity around the KK black
hole.
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2.5 Consistent Truncations of N = 8 SUGRA

In this section we present consistent truncations from N = 8 SUGRA to N = 6, N = 4,

N = 2 and N = 0. These truncations are well adapted to the KK black hole in that all its

nontrivial fields are retained. In other words, the truncations amount to removal of fields

that are trivial in the background solution.

It is easy to analyse the spectrum of quadratic fluctuations around the KK black hole in

the truncated theories. In each case some of the fluctuating fields are removed, but always

consistently so that blocks of fields that couple to each other are either all retained or all

removed. Therefore, the fluctuation spectrum in all these theories can be described in terms

of the same simple blocks that appear in N = 8 supergravity. For these truncations the

entire dependence on the theory is encoded in the degeneracy of each type of block. They

are summarized in Table 2.4.

Multiplet \ Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV − 1 0

Scalar block 42 14 5n− 4 nV − 1 0

Table 2.4: The degeneracy of multiplets in the spectrum of quadratic fluctuations around
the KK black hole embedded in various theories. For N = 4, the integer n is the number of
N = 4 matter multiplets. For N = 2, the integer nV refers to the ST (nV − 1) model.

All the truncations in this section heavily utilize the SU(8)R global symmetry of N = 8

supergravity. We therefore recall from the outset that the gravitons, gravitini, vectors,

gaugini, and scalars transform in the irreducible representations 1, 8, 28, 56, 70 of SU(8)R.

2.5.1 The N = 6 Truncation

The N = 6 truncation restricts N = 8 SUGRA to fields that are even under the SU(8)R

element diag(I6,−I2). This projection preserves N = 6 local supersymmetry since the 8

gravitini of N = 8 SUGRA are in the fundamental 8 of SU(8)R and so exactly two gravitini

are odd under diag(I6,−I2) and projected out. The branching rules of the matter multiplets
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under SU(8)R → SU(6)R × SU(2)matter are

70 → (15,1)⊕ (15,1)⊕ (20,2) ,

56 → (20,1)⊕ (15,2)⊕ (6,1) ,

28 → (15,1)⊕ (6,2)⊕ (1,1) . (2.63)

These branching rules follow from decomposition of the SU(8)R four-tensor TABCD (70),

the three-tensor TABC (56), and the two-tensor TAB (28), by splitting the SU(8)R indices

as A,B, ... → (α, a), (β, b), ... where the lower case indices refer to SU(2)matter (greek) and

SU(6)R (latin). The truncation to N = 6 SUGRA retains only the fields that are invariant

under SU(2)matter so fields in the 2 are removed. Therefore the truncated theory has 30

scalar fields, 26 gaugini, and 16 vector fields. Taking the 6 gravitini and the graviton into

account as well, the total field content comprises 64 bosonic and 64 fermionic degrees of

freedom.

The claim that the truncation is consistent means that the equations of motion of the

retained fields are sufficient to guarantee that all equations of motion are satisfied, as long

as the removed fields vanish. In general, the primary obstacle to truncation is that the

equations of motion for the omitted fields may fail. This is addressed here because the

equations of motion for fields in the 2 of SU(2)matter only involve terms in the 2. Therefore

their equations of motion are satisfied when all fields in the 2 vanish.

Our interest in the consistent truncation of N = 8 SUGRA to N = 6 SUGRA is the

application to the KK black hole. The embedding (2.40) of the Kaluza-Klein black hole into

N = 8 SUGRA turns on the four field strengths on the skew-diagonal of the 28 (which is

realized by an antisymmetric 8× 8 matrix of field strengths FAB). The entries on the skew

diagonal are all contained in the SU(6)R × SU(2)matter subgroup of SU(8)R, because the

antisymmetric representation of SU(2) is trivial. The embedding of the KK black hole in

N = 8 SUGRA therefore defines an embedding in N = 6 SUGRA as well. In other words,

the truncation and the embedding are compatible.

We can find the spectrum of quadratic fluctuations in N = 6 SUGRA either by trun-

cating the spectrum determined in the N = 8 SUGRA context, or by directly analyzing

the spectrum of fluctuations around the N = 6 solution. Consistency demands that these

procedures agree.

We begin from the SU(6) content of N = 6 SUGRA: 1 graviton, 6 gravitini, 15 ⊕ 1

vectors, 20 ⊕ 6 gaugini, and 2(15) scalars. The KK black hole in N = 6 SUGRA breaks

the global symmetry SU(6) → USp(6). Therefore, the quadratic fluctuations around the

background need not respect the SU(6) symmetry, but they must respect the USp(6). Their
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USp(6) content is: 1 graviton, 6 gravitini, 14⊕ 2(1) vectors, 14⊕ 2(6) gaugini, 2(14⊕ 1)

scalars. The black hole background breaks Lorentz invariance so the equations of motion for

fluctuations generally mix Lorentz representations, as we have seen explicitly in section 2.4,

but they always preserve global symmetries. In the present context the mixing combines

the fields into 1 KK block (gravity + 1 vector + 1 scalar), 3 gravitino blocks (1 gravitino +

1 gaugino) (transforming in the 6), 14 ⊕ 1 vector blocks (1 vector + 1 scalar), 10 gaugino

blocks (transforming in the 14⊕ 6), and 14 (minimally coupled) scalars.

To verify these claims and find the specific couplings for each block, we could analyze the

equations of motion for N = 6 SUGRA using the methods of section 2.4. However, no new

computations are needed because it is clear that the fields in the truncated theory are a subset

of those in N = 8 SUGRA. In that context we established that the fluctuations decompose

into 1 (KK block), 8 (gravitini mixing with gaugini), 27 (vectors mixing with scalars), 24

(gaugini with Pauli couplings to the background), and 42 (minimal scalars) of the USp(8)

that is preserved by the background. The consistent truncation to N = 6 SUGRA removes

some of these fluctuations as it projects the global symmetry USp(8)→ USp(6). This rule

not only establishes the mixing claimed in the preceding paragraph but also shows that all

couplings must be the same in the N = 8 and N = 6 theories. It is only the degeneracy of

each type of block that is reduced by the truncation.

2.5.2 The N = 4 Truncation

The N = 4 truncation restricts N = 8 SUGRA to fields that are even under the SU(8)R

element diag(I4,−I4). This projection breaks the global symmetry SU(8)R → SU(4)R ×
SU(4)matter. It preserves N = 4 local supersymmetry since the 8 gravitini of N = 8 SUGRA

are in the 4 of SU(4)R. The branching rules of the matter multiplets under the symmetry

breaking are

70 → 2(1,1)⊕ (6,6)⊕ (4, 4̄)⊕ (4̄,4) ,

56 → (4̄,1)⊕ (6,4)⊕ (4,6)⊕ (1, 4̄) ,

28 → (1,6)⊕ (6,1)⊕ (4,4) . (2.64)

The consistent truncation preserving N = 4 supersymmetry is defined by omission of all

fields in the 4 (or 4̄) of SU(4)matter.

There is a unique supergravity with n N = 4 matter multiplets. It has a global SU(4)R

symmetry that acts on its supercharges and also a global SO(n)matter that reflects the

equivalence of all matter multiplets. The consistent truncation of N = 8 by the element

diag(I4,−I4) retains a SU(4)R × SU(4)matter symmetry so, recalling that SO(6) and SU(4)
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are equivalent as Lie algebras, the truncated theory must be N = 4 SUGRA with n = 6

matter multiplets.

Several important features of N = 4 SUGRA are succinctly summarized by the scalar

coset
SU(1, 1)

U(1)
× SO(6, n)

SO(6)× SO(n)
. (2.65)

It has dimension 6n + 2 with scalars transforming in 2(1,1) ⊕ (6,n) under SU(4)R ×
SO(n)matter. It also encodes the SU(1, 1) ' SL(2) electromagnetic duality of the 6 + n

vector fields in the fundamental of SO(6, n). The representation content obtained by re-

moval of 4 (and 4̄) from the branchings (2.64) is consistent with these expectations when

n = 6.

The N = 4 truncation has a natural interpretation in perturbative Type II string theory.

There is a simple duality frame where the diagonal element diag(I4,−I4) changes the sign

on the RR sector and interchanges the RNS and NSR sectors; so the consistent truncation

projects on to the common sector of Type IIA and Type IIB supergravity. The complete

string theory orbifold includes twisted sectors as well. It is conveniently implemented by a

flip of the GSO projection and is equivalent to T-duality between Type IIA and Type IIB

string theory.

The embedding of the KK black hole into N = 8 SUGRA is compatible with the trun-

cation to N = 4 SUGRA: the four field strengths on the skew-diagonal of the 28 are all

contained in the SU(4)R × SU(4)matter subgroup of SU(8)R and therefore retained in the

truncation to N = 4 SUGRA. The embedding of the KK black hole in N = 8 SUGRA

therefore defines an embedding in N = 4 SUGRA as well. The consistent truncation just

removes fields that are not excited by the KK black hole in N = 8 SUGRA.

The quadratic fluctuations around the KK black hole in N = 8 SUGRA similarly project

on to the N = 4 setting. As discussed in section 2.4, the KK black hole in N = 8 SUGRA

breaks the global symmetry SU(8)R → USp(8) and this symmetry breaking pattern greatly

constrains the spectrum of fluctuations around the black hole. Moreover, the symmetry

breaking pattern is largely preserved by the consistent truncation: the analogous breaking

pattern in N = 4 SUGRA is SU(4)R×SU(4)matter → USp(4)R×USp(4)matter. For example,

the entire KK block (with a graviton, a vector, and a scalar), identified as the 1 of USp(8),

is unchanged by the consistent truncation.

The 27 vector blocks (2.55-2.56), each with a vector coupled to a scalar, are perturbations

of the 8×8 matrix of field strengths FAB after its symplectic trace is removed. The branching

(2.64) of the 28 under SU(4)R × SU(4)matter shows that 16 vector blocks are projected out

by the truncation. None of these are affected by the symplectic trace so 27− 16 = 11 vector
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blocks remain in N = 4 SUGRA. Among the 38 scalars from the coset (2.65) with n = 6

there is 1 coupled to gravity and 11 that couple to the vectors, so 26 minimally coupled

scalars remain. They parametrize the coset

SU(1, 1)× SO(5, 5)

USp(4)× USp(4)
. (2.66)

The fermionic sector is simpler because the truncation removes exactly one half of the

fermions. The retained fermions are essentially identical to those that are projected away,

they differ at most in their chirality and the KK black holes is insensitive to this distinction.

The quadratic fluctuations for the fermions in N = 8 SUGRA are 4 gravitino pairs (with

each pair including two gravitini coupled to two Weyl fermions, a total of 32 degrees of free-

dom) and 24 gaugino pairs with Pauli couplings to the background field strength. In N = 4

SUGRA with 6 matter multiplets there are 4 gravitino pairs and 12 gaugino pairs.

There is a simple extension of these results to the case of N = 4 SUGRA with n 6= 6

matter multiplets. For this generalization, we recast the symmetry breaking by the field

strengths that have been designated N = 4 matter as SO(6)matter → SO(5)matter using

the equivalences SU(4) = SO(6) and USp(4) = SO(5) as Lie algebras. In this form the

symmetry breaking just amounts to picking the direction of a vector on an S5. We can

equally consider any number n of matter fields and break the symmetry SO(n)matter →
SO(n− 1)matter by picking a vector on Sn−1. The only restriction is n ≥ 1 in order to ensure

that there is a direction to pick in the first place. This more general construction gives the

scalar manifold

SU(1, 1)× SO(5, n− 1)

SO(5)× SO(n− 1)
. (2.67)

In particular, it has 5n − 4 dimensions, each corresponding to a minimally coupled scalar

field. The duality group read off from the numerator correctly indicates n+ 5 vector fields,

not counting the one coupling to gravity. Each of these vector fields couples to a scalar field,

as in (2.55-2.56).

The black hole attractor mechanism offers a perspective on the scalar coset (2.67). The

attractor mechanism is usually formulated in the context of extremal black holes in N ≥ 2

supergravity where it determines the value of some of the scalars at the horizon in terms

of black hole charges. Importantly, the attractor mechanism generally leaves other scalars

undetermined. Such undetermined scalars can take any value, so they are moduli. The

hyper-scalars in N = 2 BPS black hole backgrounds are well-known examples of black hole

moduli.

In the case of extremal (but non-supersymmetric) black holes in N ≥ 2 supergravity the
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moduli space is determined by the centralizer remaining after extremization of the black hole

potential over the full moduli space of the theory. The result for nonBPS black holes inN = 4

supergravity was obtained in [58] and agrees with (2.67). Our considerations generalize this

result to a moduli space of non-extremal KK black holes. The exact masslessness of moduli

is protected by the breaking of global symmetries so supersymmetry is not needed.

2.5.3 The N = 2 Truncation

Starting from N = 4 SUGRA with n N = 4 matter multiplets, there is a consistent

truncation to N = 2 SUGRA with n + 1 N = 2 vector multiplets that respects the KK

black hole background. It is defined by keeping only fields that are even under the SU(4)R

element diag(I2,−I2).

All fermions, both gravitini and gaugini are in the fundamental 4 of SU(4)R so the

consistent truncation retains exactly 1/2 of them. In particular, the SUSY is reduced from

N = 4 to N = 2. The bosons are either invariant under SU(4)R or they transform as

an antisymmetric tensor 6. The branching rule 6 → 2(1, 1) ⊕ (2, 2) under SU(4)R →
SU(2)2 determines that its truncation retains only the 2 fields on the skew-diagonal of the

antisymmetric 4× 4 tensor.

The truncated theory has 2(2n + 4) fermionic degrees of freedom and the same number

of bosonic ones. We can implement the truncation directly on the N = 4 coset (2.65) and

find that scalars of the truncated theory parametrize

SU(1, 1)

U(1)
× SO(2, n)

SO(2)× SO(n)
. (2.68)

This theory is known as the ST (n) model. In the special case n = 2 the ST (2) model is the

well-known STU model. This model has enhanced symmetry ensuring that its 3 complex

scalar fields are equivalent and similarly that its 4 field strengths are equivalent. The STU

model often appears as a subsector of more general N = 2 SUGRA theories, such as those

defined by a cubic prepotential. These in turn arise as the low energy limit of string theory

compactified on a Calabi-Yau manifold, so the STU model may capture some generic features

of such theories.

The consistent truncation to the ST (n) model in N = 2 SUGRA is compatible with

the embedding of the KK black hole in N = 8 SUGRA. The embedding (2.40) in N = 8

excites precisely the field strengths on the skew-diagonal, breaking SU(8)R → USp(8). As

discussed in (2.5.2), they were retained by the truncation to N = 4 SUGRA. The further

truncation of the antisymmetric representation to N = 2 SUGRA projects 6→ 2(1,1) and

so it specifically retains field strengths on the skew diagonal. Moreover, the gauge fields
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that are projected out are in the 2 of an SU(2) so they are not coupled to other fields at

quadratic order.

It can be shown that the N = 4 embedding identifies the “dilaton” of the KK black hole

with the scalar (as opposed to the pseudoscalar) in the coset SU(1, 1)/U(1). This part of

the scalar coset is untouched by the truncation to N = 2 SUGRA. Therefore, the truncation

to N = 2 does not remove any of the fields that are turned on in the background, nor any of

those that couple to them at quadratic order. This shows that the consistent truncation to

N = 2 SUGRA, like other truncations considered in this section, removes only entire blocks

of fluctuations: the fields that remain have the same couplings as they do in the N = 8

context.

The breaking pattern determines the moduli space of scalars for the black hole background

as

SU(1, 1)× SO(1, n− 1)

SO(n− 1)
. (2.69)

In particular this confirms that, among the 2n+ 2 scalars of the ST (n) model, exactly n are

moduli and so are minimally coupled massless scalars.

2.5.4 More Comments on Consistent Truncations

The natural endpoint of the consistent truncations is N = 0 SUGRA, i.e. the pure

Kaluza-Klein theory (2.4). We constructed our embedding (2.40) into N = 8 SUGRA so

that the Kaluza-Klein black hole would remain a solution also to the full N = 8 SUGRA.

Thus we arranged that all the additional fields required by N = 8 supersymmetry would be

“unimportant”, in the sense that they can be taken to vanish on the Kaluza-Klein black hole.

It is therefore consistent to remove them again, and that is the content of the “truncation

to N = 0 SUGRA”.

From this perspective, the truncations considered in this section are intermediate stages

between N = 8 and N = 0 in that only some of the “unimportant” fields are included. For

each value of N = 6, 4, 2, the requirement that the Kaluza-Klein black hole is a solution

largely determines the truncation. The resulting embedding of the STU model into N = 8

SUGRA is very simple, and possibly simpler than others that appear in the literature, in

that symmetries between fields in the STU model are manifest even without performing any

electromagnetic duality.

Having analyzed the spectrum of fluctuations around Kaluza-Klein black holes in the

context of SUGRA with N = 8, 6, 4, 2 (and even N = 0), it is natural to inquire about the

situation for SUGRA with odd N . Our embeddings in N = 6, 4, 2 rely on the skew-diagonal

nature of the embedding in N = 8 so they do not have any generalizations to odd N . This
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fact is vacuous for N = 7 SUGRA which automatically implies N = 8. Moreover, it is

interesting that N = 3, 5 SUGRA do not have any nonBPS branch at all: all extremal black

holes in these theories must be BPS (they preserve supersymmetry) [58]. This may indicate

that our examples exhaust a large class of nonBPS embeddings.

2.6 The General KK Black Hole in N = 2 SUGRA

In this section, we start afresh with an arbitrary solution to the D = 4 Kaluza-Klein

theory (2.4), such as the general Kaluza-Klein black hole (2.5-2.7). We embed this solution

into N = 2 SUGRA with a general cubic prepotential and analyze the quadratic fluctuations

around the background in this setting. Along the way we make additional assumptions

that further decouple the fluctuations, and ultimately specialize to a constant background

dilaton and ST (n) prepotential. In this case the final results of the direct computations will

be consistent with those found in section 2.5.3, by truncation from N = 8 SUGRA, and

summarized in section 2.4.3.

The setup in this section complements our discussion of the Kaluza-Klein black hole in

N = 8 SUGRA and its truncations to N < 8 SUGRA. Here we do not assume vanishing

background dilaton Φ(KK) = 0 from the outset and we consider more general theories.

2.6.1 N = 2 SUGRA with Cubic Prepotential

We first introduce N = 2 SUGRA. We allow for matter in the form of nV N = 2 vector

multiplets with couplings encoded in a cubic prepotential

F =
1

κ2

dijkX
iXjXk

X0
, (2.70)

where dijk is totally symmetric. We also include nH N = 2 hypermultiplets. The theory is

described by the N = 2 SUGRA Lagrangian

e−1L(N=2) = κ−2

(
R

2
− ψ̄iµγµνρDνψ

i
ρ

)
− gαβ̄∂µzα∂µzβ̄ −

1

2
huv∂µq

u∂µqv

+

(
−1

4
iNIJF+I

µν F
+µνJ + F−Iµν ImNIJQµν−J

−1

4
gαβ̄χ̄

α
i
/Dχiβ̄ − ζ̄A /DζA +

1

2
gαβ̄ψ̄iµ/∂z

αγµχiβ̄ + h.c.

)
, (2.71)
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where

F±µν =
1

2

(
Fµν ± F̃µν

)
, with F̃µν = − i

2
εµνρσF

ρσ , (2.72)

Qµν−J ≡ ∇ᾱX̄
J

(
1

8
gβᾱCβγδχ̄

γ
i γ

µνχδjε
ij + χ̄ᾱiγµψνjεij

)
(2.73)

+XJ

(
ψ̄µi ψ

ν
j ε
ij +

1

2
κ2ζ̄AγµνζBCAB

)
.

We follow the notations and conventions from [59]. In particular, the χαi = PLχ
α
i , α =

1, . . . , nV denote the physical gaugini and ζA = PLζ
A, A = 1, . . . , 2nH denote the hyper-

fermions. The Kähler covariant derivatives are

∇αX
I =

(
∂α +

1

2
κ2∂αK

)
XI , (2.74)

∇ᾱX
I =

(
∂ᾱ −

1

2
κ2∂ᾱK

)
XI , (2.75)

where the Kähler potential K

e−κ
2K = −i(XIF̄I − FIX̄I) , (2.76)

with FI = ∂IF = ∂F
∂XI .

The projective coordinates XI (with I = 0, . . . , nV ) are related to physical coordinates

as zi = X i/X0 (with i = 1, . . . , nV ). We split the complex scalars zi into real and imaginary

parts

zi = xi − iyi . (2.77)

With cubic prepotential (2.70) we have

gij̄ = ∂I∂J̄K = κ−2

(
−3dij

2d
+

9didj
4d2

)
, (2.78)

where we define

dij ≡ dijky
k , di ≡ dijky

jyk , d ≡ dijky
iyjyk . (2.79)

Finally, the scalar-vector coupling are encoded in

NIJ = µIJ + iνIJ , (2.80)
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with

µIJ = κ−2

2dijkx
ixjxk −3dijkx

jxk

−3dijkx
jxk 6dijkx

k

 , (2.81)

and

νIJ = κ−2

−d+ 6d`mx
`xm − 9

d
(d`x

`)2 9
d
(d`x

`)di − 6di`x
`

9
d
(d`x

`)di − 6di`x
` 6dij − 9

d
(didj)

 . (2.82)

2.6.2 The Embedding into N = 2 SUGRA

We want to embed our seed solution into N = 2 SUGRA. The starting point is a

solution to the equations of motion (2.5, 2.6, 2.7) of the Kaluza-Klein theory. We denote the

corresponding fields g
(KK)
µν , F

(KK)
µν and Φ(KK). The fields of N = 2 SUGRA are then defined

to be

g(SUGRA)
µν = g(KK)

µν ,

F 0
µν =

1√
2
F (KK)
µν , F i

µν = 0, for 1 ≤ i ≤ nV

xi = 0, for 1 ≤ i ≤ nV ,

yi = ciy0, with y0 =
exp

(
−2Φ(KK)/

√
3
)

(dijkcicjck)1/3
,

(All other bosonic fields in N = 2 SUGRA) = 0 ,

(All fermionic fields in N = 2 SUGRA) = 0 . (2.83)

This field configuration solves the equations of motion ofN = 2 SUGRA for any seed solution

to the Kaluza-Klein theory. In the following, we will often declutter formulae by omitting

the superscript “KK” when referring to fields in the seed solution.

The embedding (2.83) is really a family of embeddings parameterized by the nV constants

ci (with i = 1, . . . , nV ). They are projective coordinates on the moduli space parametrized

by the nV scalar fields yi with the constraint

d = dijky
iyjyk = exp

(
−2
√

3Φ(KK)
)
. (2.84)

In the special case of the non-rotating Kaluza-Klein black hole with P = Q, we have Φ(KK) =
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0 and so the constraint is d = 1. More generally, d is the composite field defined through

the constraints (2.79) and related to the Kaluza-Klein dilaton by (2.84).

2.6.3 Decoupled Fluctuations: General Case

The Lagrangian for quadratic fluctuations around a bosonic background always decouples

into a bosonic sector and fermionic sector,

δ2L(N=2) = δ2L(N=2)
bosons + δ2L(N=2)

fermions . (2.85)

With the above embedding into N = 2, each sector further decouples into several blocks.

The bosonic sector decomposes as the sum of three blocks

δ2L(N=2)
bosons = δ2L(N=2)

gravity + δ2L(N=2)
vectors + δ2L(N=2)

scalars . (2.86)

The “gravity block” δ2L(N=2)
gravity consists of the graviton δgµν , the gauge field δA0

µ, and the nV

real scalars δyi:

e−1δ2L(N=2)
gravity =

1√
−g

δ2

[√
−g
(
R

2κ2
− gij∂µyi∂µyj +

d

4κ2
F 0
µνF

µν0

)]
. (2.87)

Generically, the fields δgµν , δA
0
µ and δyi all mix together. This block can nonetheless be

further decoupled with simplifying assumptions, as we will discuss later.

The block δ2L(N=2)
vectors consists of the nV vector fields δAiµ and the nV real pseudoscalars

δxi:

e−1δ2L(N=2)
vectors = gij

(
−∂µδxi∂µδxj −

1

2
dFµνF

µνδxiδxj +
√

2dFµνδx
iδFµνj − dδF iµνδFµνj

)
.

The Kähler metric gij can be diagonalized and we obtain nV identical decoupled copies,

that we call “vector block”, each consisting in one vector field and one real scalar. Denoting

the fluctuating field fµν , one such copy has the Lagrangian

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx− d

4
FµνF

µνx2 +
d

2
Fµνf

µνx− d

4
fµνf

µν , (2.88)

using conventional normalizations for the scalar fields.

The last bosonic block contains the hyperbosons:

e−1δ2L(N=2)
scalars = −1

2
huv∂µδq

u∂µδqv . (2.89)
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The quaternionic Kähler metric huv is trivial on the background. Hence, this block decouples

at quadratic order into 4nH independent minimally coupled massless scalars.

We next turn to the fermions. The Lagrangian (2.71) is the sum of the decoupled La-

grangians

δ2L(N=2)
fermions = δ2L(N=2)

hyperfermions + δ2L(N=2)
gravitino-gaugino . (2.90)

The hyperfermions consist of nH identical copies, that we call “hyperfermion block”, each

containing two hyperfermions. For any two such fermions we can take CAB = εAB with

A,B = 1, 2. The resulting Lagrangian is

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /Dζ

A +

(
κ2

2
F−Iµν νIJX

J ζ̄AγµνζBεAB + h.c.

)
. (2.91)

In our background, we use (2.83, 2.82) to find

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /Dζ

A −

(
d

1
2

8
F−µν ζ̄

AγµνζBεAB + h.c.

)
. (2.92)

We used the T -gauge [59] to fix the projective coordinates XI resulting in X0 = (8d)−1/2.

The “gravitino-gaugino block” contains two gravitini and nV gaugini and has Lagrangian

e−1δ2L(N=2)
gravitino-gaugino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ +

(
− d

1
2

4κ2
F−µνψ̄

µ
i ψ

ν
j ε
ij

+
9

256κ2d
3
2

F−µνdᾱg
βᾱdβγδχ̄

γ
i γ

µνχδjε
ij − 3i

8κ2d
1
2

F−µνdᾱχ̄
ᾱiγµψνjεij

−1

4
gαβ̄χ̄

α
i
/Dχiβ̄ +

1

2
gαβ̄ψ̄ia/∂z

αγaχiβ̄ + h.c.

)
. (2.93)

Generally, all the gravitini and gaugini couple nontrivially but they can be further decoupled

in simpler cases, as we will discuss later.

Summarizing so far: given any Kaluza-Klein solution, the embedding (2.83) provides so-

lutions of N = 2 SUGRA. We have expanded the N = 2 Lagrangian around this background

to quadratic order and observed that the fluctuations can be decoupled as shown in Table

2.5.
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Degeneracy Multiplet Block content Lagrangian

1 Gravity block 1 graviton, 1 vector, nV scalars (2.87)

nV Vector block 1 vector and 1 (pseudo)scalar (2.88)

4nH Scalar block 1 real scalar (2.89)

1 Gravitino-gaugino block 2 gravitini and 2nV gaugini (2.93)

nH Hyperfermion block 2 hyperfermions (2.92)

Table 2.5: Decoupled quadratic fluctuations in N = 2 SUGRA around a general KK black
hole.

These results are reminiscent of the analogous structure for N = 8 SUGRA, summarized

in (2.40). However, with the more general assumptions made here, there are more scalars in

the N = 2 gravity block than in the analogous N = 8 KK block and these additional scalars

do not generally decouple from gravity. Similarly, the N = 2 gravitino-gaugino block here

includes more gaugini than the analogous N = 8 gravitino block.

2.6.4 Decoupled Fluctuations: Constant Dilaton

So far, we have been completely general about the underlying Kaluza-Klein solution. In

this section, we further decouple the quadratic fluctuations by assuming that the scalar fields

of N = 2 SUGRA are constant

yi = constant, i = 1, ..., nV . (2.94)

From the embedding (2.83), this is equivalent to taking the Kaluza-Klein dilaton to vanish

Φ(KK) = 0 , (2.95)

since we can always rescale the field strengths to arrange for d = dijky
iyjyk = 1. As noted

previously, this is satisfied by the non-rotating Kaluza-Klein black hole with P = Q. This

is the simplified background that we already studied in N = 8 SUGRA, but it is embedded

here in N = 2 SUGRA with arbitrary prepotential. As in the N = 8 case, we will use that

the background satisfies

R = 0 , FµνF
µν = 0 (2.96)

to decouple further the quadratic fluctuations.

• Gravity

39



The gravity block decouples as

δ2L(N=2)
gravity = δ2L(N=2)

KK + δ2L(N=2)
relative , (2.97)

where δ2L(N=2)
KK is the “KK block”, consisting of the graviton δgµν , the graviphoton

δA0
µ and the center-of-mass scalar δy′1. δ2L(N=2)

relative denotes nV − 1 free massless scalars

δy′i, i = 2, . . . nV . This decoupling is obtained by center-of-mass diagonalization:

the δy′i are linear combinations of δyi such that δy′1 is precisely the combination that

couples to the graviton and graviphoton at quadratic order. Then, the “relative scalars”

δy′i, i = 2, . . . , nV are minimally coupled to the background

e−1δ2L(N=2)
relative = − 2

κ2
∂µδy

′i∂µδy′i (for i = 2, . . . , nV ) , (2.98)

The center-of-mass Lagrangian turns out to be exactly the same as the N = 8 KK

block (2.53)

δ2L(N=2)
KK = δ2L(N=8)

KK , (2.99)

with the identifications

h̄µν =
1√
2

(
δgµν −

1

4
gµνg

ρσδgρσ

)
, h =

1√
2
gρσδgρσ , (2.100)

aµ =
√

2δA0
µ , fµν = ∂µaν − ∂νaµ , (2.101)

φ = δy′1 = −
√

3di
2d

δyi = δΦ . (2.102)

The equality between δ2L(N=2)
KK and δ2L(N=8)

KK is expected because the KK block is the

same for any N = 2 SUGRA and in particular for the N = 2 truncations of N = 8

SUGRA.

The nV − 1 minimally coupled massless scalars δy′i, i = 2, . . . , nV parameterize flat

directions in the moduli space, at least at quadratic order. In important situations

with higher symmetry, including homogeneous spaces constructed as coset manifolds,

it can be shown that these nV − 1 directions are exactly flat at all orders. This implies

that, in particular, these models are stable [60, 61]. In such situations the “relative”

coordinates δy′i are Goldstone bosons parameterizing symmetries of the theories.

• Vector block
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Using the fact that FµνF
µν = 0, the vector block becomes

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx+
1

2
Fµνf

µνx− 1

4
fµνf

µν . (2.103)

Again, we find that δ2L(N=2)
vector = δ2L(N=8)

vector after proper normalization of the field

strength.

• Scalar block

The Lagrangian for hyperbosons δ2L(N=2)
scalars consists of 4nH minimally coupled scalars.

In addition, the center-of-mass diagonalization has brought nV − 1 minimally coupled

“relative” scalars δ2L(N=2)
relative. This gives a total of nV + 4nH − 1 minimally coupled

scalars.

We now turn to fermions. The interactions between gravitini and gaugini simplify greatly

when scalars are constant. However, they still depend on the prepotential through the struc-

ture constants dαβγ. The fermionic fluctuations in N = 2 SUGRA are therefore qualitatively

different from the bosonic fluctuations which, as we just saw, reduce to the form found in

N = 8 SUGRA.

For fermions we need to further specialize and study the ST (n) model. This model

already appeared in section 2.5.3, as a truncation of N = 8 SUGRA to N = 2. Presently,

we introduce it as the model with nV = n+ 1 vector multiplets and prepotential

F =
1

κ2

X1(X2X2 −XαXα)

2X0
(α = 3, . . . , nV ) . (2.104)

We take the background scalars

y1 = 1, y2 =
√

2, yα = 0 (α = 3, . . . , nV ) , (2.105)

such that the normalization is d = 1 and therefore Φ(KK) = 0. As mentioned already in

section 2.5.3, this model generalizes the STU model which is equivalent to ST (2).

• Gravitino-gaugino block

The Lagrangian for the gravitino-gaugino block decouples as

δ2L(N=2)
gravitino-gaugino = δ2L(N=2)

gravitino + δ2L(N=2)
gaugino , (2.106)

after using center-of-mass diagonalization. We call χ′i1 the center-of-mass gaugini, i.e.
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the gaugini that couples to the gravitini. More precisely, we define

χ′i1 =
1

4

(√
3

3
χi1 +

√
6

3
χi2

)
, χ′i2 =

1

4

(√
6

3
χi1 −

√
3

3
χi2

)
,

χ′iα =
1

4
χiα for α = 3, . . . , nV . (2.107)

We find a center-of-mass multiplet that we call “gravitino block”

e−1δ2L(N=2)
gravitino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ +

1

κ2

(
−χ̄′1i /Dχ′i1 −

1

4
ψ̄µi F

−
µνψ

ν
j ε
ij

+
1

4
χ̄′1i F

−
µνγ

µνχ′1j ε
ij −
√

3i

2
χ̄′i1γµF−µνψ

νjεij + h.c.

)
, (2.108)

This Lagrangian couples the two gravitini to two center-of-mass gaugini. The “rela-

tive” multiplets are nV − 1 identical copies of a “gaugino block”

e−1δ2L(N=2)
gaugino = − 2

κ2
χ̄′αi /Dχ′iα −

(
1

8κ2
χ̄′αi F

−
µνγ

µνχ′jαε
ij + h.c.

)
, (2.109)

where α = 2, . . . , nV .

• Hyperfermion block

The hyperfermion Lagrangian is given in (2.92). We notice that

δ2L(N=2)
hyperfermion = δ2L(N=2)

gaugino , (2.110)

The fluctuations of “relative” gaugini are therefore the same as the fluctuations of

hyperfermions. Therefore, we call both of them “gaugino block”.

The Lagrangians (2.108) and (2.109) are written in terms of Weyl fermions. If we rewrite

them with Majorana fermions, we find that

δ2L(N=2)
gravitino = δ2L(N=8)

gravitino , (2.111)

δ2L(N=2)
gaugino = δ2L(N=8)

gaugino , (2.112)

where the right-hand sides were defined in (2.61) and (2.62). The agreement between our

explicit computations of the fermionic blocks for the ST (n) model in N = 2 SUGRA and

the analogous results in N = 8 SUGRA is an important consistency check on the trunca-

tions discussed in section 2.5.3. This also explains the agreement (2.110) between fermionic

fluctuations that are in different N = 2 multiplets. N = 2 gaugini and hyperfermions be-
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comes equivalent when embedded into some larger structure, ultimately furnished by N = 8

SUGRA.

In summary, taking the dilaton to be constant has further decoupled the fluctuations in

N = 2 SUGRA around the KK background, as shown in Table 2.6. For bosons, we recover

the results of N = 8 SUGRA as expected, although we are more general here since we allow

for an arbitrary prepotential. For fermions, we have to specialize to the ST (n) model to be

able to further decouple the fluctuations. The resulting fermionic fluctuations also reproduce

the fluctuations of N = 8 SUGRA.

Degeneracy Multiplet Block content Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar (2.99)

nV Vector block 1 vector and 1 (pseudo)scalar (2.103)

nV + 4nH − 1 Scalar block 1 real scalar (2.89, 2.98)

1 Gravitino block 2 gravitini and 2 gaugini (2.108)

nV + nH − 1 Gaugino block 2 spin 1/2 fermions (2.92, 2.109)

Table 2.6: Decoupled fluctuations inN = 2 SUGRA around the KK black hole with constant
dilaton. The decoupling in the bosonic sector holds for an arbitrary prepotential. The
fermionic sector has been further decoupled by specializing to the ST (n) model.

2.7 Logarithmic Corrections to Black Hole Entropy

The logarithmic correction controlled by the size of the horizon in Planck units is com-

puted by the functional determinant of the quadratic fluctuations of light fields around the

background solution. The arguments establishing this claim for non-extremal black holes

are made carefully in [45]. In this section we give a brief summary of the steps needed to

extract the logarithm using the heat kernel approach. It follows the discussion in [17] and

we refer to [49] for background literature on technical aspects.

Naturally, we apply the procedure to the Kaluza-Klein black holes on the nonBPS branch.

This gives our final results for the coefficients of the logarithmic corrections, summarized in

Table 2.8.

43



2.7.1 General Framework: Heat Kernel Expansion

In Euclidean signature, the effective action W for the quadratic fluctuations takes the

schematic form

e−W =

∫
Dφ exp

(
−
∫
d4x
√
g φnΛn

mφ
m

)
= det∓1/2Λ , (2.113)

where Λ is a second order differential operator that characterizes the background solution,

and φn embodies the entire field content of the theory. The sign ∓ is − for bosons and +

for fermions. The formal determinant of Λ diverges and a canonical way to regulate it is by

introducing a heat kernel: if {λi} is the set of eigenvalues of Λ, then the heat kernel D(s) is

defined by

D(s) = Tr e−sΛ =
∑
i

e−sλi , (2.114)

and the effective action becomes

W = ∓1

2

∞∫
ε

ds

s
D(s) . (2.115)

Here ε is an ultraviolet cutoff, which is typically controlled by the Planck length, i.e. ε ∼
`2
P ∼ G.

In our setting it is sufficient to focus on the contribution of massless fields in the two

derivative theory. For this part of the spectrum, the scale of the eigenvalues λi is set by the

background size which in our case is identified with the size of the black hole horizon, denoted

by AH . The integral (2.115) is therefore dominated by the integration range ε � s � AH ,

and there is a logarithmic contribution

∞∫
ε

ds

s
D(s) = · · ·+ Clocal log(AH/G) + · · · . (2.116)

with coefficient denoted by Clocal. This term comes from the constant term in the Laurent

expansion of the heat kernel D(s). Introducing the heat kernel density K(x, x; s) which

satisfies

D(s) =

∫
d4x
√
g K(x, x; s) , (2.117)

it is customary to cast the perturbative expansion in s as

K(x, x; s) =
∞∑
n=0

sn−2a2n(x) , (2.118)
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and we identify

Clocal =

∫
d4x
√
g a4(x) . (2.119)

The functions {a2n(x)} are known as the Seeley-DeWitt coefficients. The logarithmic term

that we need is controlled by a4(x). The omitted terms denoted by ellipses in (2.116) are

captured by the other Seeley-DeWitt coefficients. For example, the term a0(x) induces a

cosmological constant at one-loop and the term a2(x) renormalizes Newton’s constant.

There is a systematic way to evaluate the Seeley-DeWitt coefficients in terms of the

background fields and covariant derivatives appearing in the operator Λ [49]. The procedure

assumes that the quadratic fluctuations can be cast in the form

−Λn
m = (�)Inm + 2(ωµDµ)nm + P n

m . (2.120)

Here, Inm is the identity matrix in the space of fields, ωµ and P are matrices constructed

from the background fields, and � = DµD
µ. From this data, the Seeley-DeWitt coefficient

a4(x) is given by the expression

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩ

µν +
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
,

(2.121)

where

E = P − ωµωµ − (Dµωµ) , Ωµν = [Dµ + ωµ, Dν + ων ] . (2.122)

This is the advantage of the heat kernel approach: after explicitly expanding the action

around the background to second order, we have a straightforward formula to compute the

Seeley-DeWitt coefficients from Λ (2.120).

The preceding discussion is based on the operator Λ (2.120) that is second order in

derivatives. For fermions, the quadratic fluctuations are described by a first order operator

H so the discussion must be modified slightly. We express the quadratic Lagrangian as

δ2L = Ψ̄HΨ . (2.123)

Following the conventions in [17], we always cast the quadratic fluctuations for the fermions

in terms of Majorana spinors. The one-loop action is obtained by applying heat kernel

techniques to the operator H†H and using

log detH =
1

2
log detH†H . (2.124)
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Fermi-Dirac statistics also gives an additional minus sign. Thus, the fermionic contribution

is obtained by multiplying (2.121) with an additional factor of −1/2.

2.7.2 Local Contributions

It is conceptually straightforward to compute a4(x) via (2.121). However, it can be

cumbersome to decompose the differential operators, write them in the form (2.120) and

compute their traces. The main complication is that our matter content is not always

minimally coupled, as emphasized in sections 2.4 and 2.6.

To overcome these technical challenges we automated the computations using Mathe-

matica with the symbolic tensor manipulation package xAct6. In particular, we used the

subpackage xPert [62] to expand the bosonic Lagrangian to second order. We created our

own package for treatment of Euclidean spinors. The computation proceeds as follows:

1. Expand the Lagrangian to second order.

2. Gauge-fix and identify the appropriate ghosts.

3. Reorganize the fluctuation operator Λn
m and extract the operators ωµ and P from

(2.120).

4. Compute the Seeley-DeWitt coefficient a4(x) using formula (2.121).

5. Simplify a4(x) using the background equations of motion, tensor and gamma matrix

identities.

The results of the expansion to second order with xPert match with the bosonic Lagrangians

summarized in Table 2.3. In Appendix A we elaborate on the intermediate steps and record

the traces of E and Ωµν for each of the blocks encountered in our discussion.

A priori, the Seeley-DeWitt coefficient a4(x) is a functional of both the geometry and the

matter fields. The fact that the dilaton Φ(KK) is constant on our background simplifies the

situation greatly. By using the equations of motion, a4(x) can be recast as a functional of the

geometry alone. We list the equations that we use to simplify a4(x) explicitly in Appendix

A.

As a result, for our background, the Seeley-DeWitt coefficient at four derivative order

can be arranged in the canonical form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (2.125)

6www.xact.es
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where a and c are constants governed by the couplings and field content of the theory and the

curvature invariants are defined in (A.3) and (A.4). The values of c and a are summarized

in Tables 2.7 and 2.8.

Multiplet \ Properties Content d.o.f. c a c− a

Minimal boson 1 real scalar 1 1
120

1
360

1
180

Gaugino block 2 gaugini 4 13
960

− 17
2880

7
360

Vector block 1 vector and 1 (pseudo)scalar 3 1
40

11
120

− 1
15

Gravitino block 2 gravitini and 2 gaugini 8 −347
480

− 137
1440

−113
180

KK block 1 graviton, 1 vector, 1 scalar 5 37
24

31
72

10
9

Table 2.7: Contributions to a4(x) decomposed in the multiplets that are natural to the KK
black hole.

Multiplet / Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV + nH − 1 0

Scalar block 42 14 5n− 4 nV + 4nH − 1 0

a 5
2

3
2

1
32

(22 + 3n) 1
192

(65 + 17nV + nH) 31
72

c 0 0 3
32

(2 + n) 3
64

(17 + nV + nH) 37
24

Table 2.8: The degeneracy of multiplets in the spectrum of quadratic fluctuations around
the KK black hole embedded in to various theories, and their respective values of the c and
a coefficients defined in (2.125). For N = 4, the integer n is the number of N = 4 matter
multiplets. For N = 2, the recorded values of c and a for the gravitino and the gaugino
blocks were only established for ST (nV − 1) models.

It is worth making a few remarks.

1. The value of c − a in each case is independent of the couplings of the theory. In

other words, c− a can be reproduced by an equal number of minimally coupled fields

on the same black hole background. This property is due to the fact that none of

the non-minimal couplings appearing in our blocks involve the Riemann tensor Rµνρσ.

Therefore, the coefficient of RµνρσR
µνρσ is insensitive to the non-trivial couplings.
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2. The values of c for blocks recorded in Table 2.7 do not have any obvious regularity,

they are not suggestive of any cancellations. The vanishing of the c-anomaly for the

N = 6 and N = 8 theories, exhibited in Table 2.8, seems therefore rather miraculous.

Somehow these embeddings with large supersymmetry have special properties that are

not shared by those with lower supersymmetry.

2.7.3 Quantum Corrections to Black Hole Entropy

The logarithmic terms in the one-loop effective action of the massless modes correct the

entropy of the black hole as

δSBH =
1

2
(Clocal + Czm) log

AH
G

. (2.126)

In this subsection we gather our results and evaluate the quantum contribution for the

Kaluza-Klein black hole.

The local contribution is given by the integrated form of the Seeley-DeWitt coefficient

a4(x):

Clocal =
c

16π2

∫
√
g d4xWµνρσW

µνρσ − a

16π2

∫
√
g d4xE4 . (2.127)

The second term is essentially the Euler characteristic

χ =
1

32π2

∫
d4x
√
g E4 = 2 , (2.128)

for any non-extremal black hole. It is a topological invariant so it does not depend on black

hole parameters. In contrast, the first integral in (2.127) depends sensitively on the details

of the black hole background. Using the KK black hole presented in section 2.2 with J = 0

and P = Q we find

1

16π2

∫
d4x
√
gWµνρσW

µνρσ = 4 +
8

5 ξ(1 + ξ)
, (2.129)

where ξ ≥ 0 is a dimensionless parameter related to the black hole parameters as

Q

GM
=

P

GM
=

√
2(1 + ξ)

2 + ξ
. (2.130)

In this parametrization the extremal (zero temperature) limit corresponds to ξ → 0 and the

Schwarzschild (no charge) limit corresponds to ξ →∞.

We also need to review the computation of Czm, the integer that captures corrections to
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the effective action due to zero modes. In our schematic notation zero modes λi = 0 are

included in the heat kernel (2.114) and therefore contribute to the local term Clocal. However,

the zero mode contribution to the effective action is not computed correctly by the Gaussian

path integral implied in (2.113) and should instead be replaced by an overall volume of the

symmetry group responsible for the zero mode. It is the combination of removing the zero-

mode from the heat kernel and adding it back in again as a volume factor that gives the

correction Czm.

Additionally, the effective action defined by the Euclidean path integral with thermal

boundary conditions is identified with the free energy in the canonical ensemble whereas the

entropy is computed in the microcanonical ensemble where mass and charges are fixed. The

Legendre transform relating these ensembles gives a logarithmic contribution to the entropy

that we have absorbed into Czm, for brevity.

The various contributions to Czm are not new, they were analyzed in [45]. The result can

be consolidated in the formula [17]

Czm = −(3 +K) + 2NSUSY + 3 δnon-ext . (2.131)

Here K is the number of rotational isometries of the black hole, NSUSY is the number of

preserved real supercharges. δnon-ext is 0 if the black hole is extremal and 1 otherwise. The

non-extremal KK black hole with J = 0 is spherically symmetric and has K = 3, NSUSY = 0

and δnon-ext = 1. Therefore, Czm = −3 for all the non-extremal black holes we consider in

this chapter but Czm = −6 in the extreme limit.

Combining all contributions, our final result for the coefficient of the logarithmic correc-

tion to the non-extreme black hole entropy is

1

2
(Clocal + Czm) = 2(c− a)− 3

2
+

4

5 ξ(1 + ξ)
c , (2.132)

where the values of c and a for the theories discussed in this chapter are given in Table 2.8.

The expression manifestly shows that when c 6= 0, which is the case for N = 0, 2, 4, the

quantum correction to the entropy depends on black hole parameters through ξ or, by the

relation (2.130), through the physical ratio Q/GM . The cases with very high supersymmetry

are special since c = 0 when N ≥ 6 and then the coefficient of the logarithm is purely

numerical. For example, we find the quantum corrections

δS
(N=6)
non-ext = −9

2
log

AH
G

, δS
(N=8)
non-ext = −13

2
log

AH
G

, (2.133)

to the non-extremal black holes on the nonBPS branch.
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As we have stressed, the KK black hole on the nonBPS branch is not intrinsically excep-

tional. In the non-rotating case with P = Q that is our primary focus, the geometry is the

standard Reissner-Nordström black hole. However, Kaluza-Klein theory includes a scalar

field, the dilaton, and this dilaton couples non-minimally to gravity and to the gauge field.

According to Table 2.8 we find c = 37
24

for the KK black hole that is, after all, motivated by

a higher dimensional origin.

An appropriate benchmark for this result is the minimally coupled Einstein-Maxwell

theory, which has Reissner-Nordström as a solution, with an additional minimally coupled

scalar field. The KK theory and the minimal theory both have c − a = 10
9

, because these

theories have the same field content, and the zero-mode content of the black holes in the

two theories is also identical, because the geometries are the same. However, c = 55
24

for the

minimally coupled black hole, a departure from the KK black holes. Thus, as one would

expect, the quantum corrections to the black hole entropy depend not only on the field

content but also on the couplings to low energy matter.

Although the focus in this chapter has been on the non-extreme case, and specifically

whether the logarithmic corrections to the black hole entropy depend on the departure from

extremality, it is worth highlighting the extremal limit since in this special case a detailed

microscopic model is the most realistic. In the extremal case we find the quantum correction

on the nonBPS branch

δSext = −N log
AH
G

, (2.134)

for N = 6, 8. The surprising simplicity of this result is inspiring.

2.8 Discussion

In summary, we have shown that the spectrum of quadratic fluctuations around static

Kaluza-Klein black holes in four dimensional supergravity partially diagonalizes into blocks

of fields. Tables 2.7 and 2.8 give the c and a coefficients that control the Seeley-DeWitt

coefficient a4(x) for each block and, taking into account appropriate degeneracies, for each

supergravity theory. These coefficients directly yield the logarithmic correction to the black

hole entropy via (2.126-2.127).

The detailed computations are quite delicate since any improper sign or normalization can

dramatically change our conclusions. We therefore proceeded with extreme care, devoting

several sections to explain the embedding of the Kaluza-Klein black hole into a range of

supergravities and carefully record the action for quadratic fluctuations of the fields around

the background. Moreover, we allowed for considerable redundancy, with indirect symmetry

arguments supporting explicit computations and also performing many computations both
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analytically and using Mathematica. These steps increase our confidence in the results we

report.

The prospect that interesting patterns in these corrections could lead to novel insights

into black hole microstates is our main motivation for computing these quantum corrections

in supergravity theories. Our discovery that c = 0 for N = 6, 8 on the nonBPS branch

is therefore gratifying. Recall that when c vanishes, the quantum correction is universal,

it depends on the matter content of the theory but not on the parameters of the black

hole. This property therefore holds out promise for a detailed microscopic description of

these corrections. Such progress would be welcome since our current understanding of, for

example, the D0−D6 system leaves much to be desired [63–66] for the nonBPS branch.

Conversely, our analysis shows that on the nonBPS branch c 6= 0 for N ≤ 4. On the

BPS-branch not only has it been found that c = 0 for all N ≥ 2 but this fact has also

been shown to be a consequence of N = 2 supersymmetry [50]. It would be interesting to

similarly understand why c = 0 requires N ≥ 6 on the nonBPS branch.

To date, there is no known microstate counting formula that, when compared to the black

hole entropy, accounts for terms that involve c 6= 0. For example, in all cases considered in

[39, 40, 67], the object of interest is an index, or a closely related avatar, and the resulting

logarithmic terms nicely accommodate quantum corrections when Clocal is controlled by a

alone. The challenge of reproducing the logarithmic correction when c is non-vanishing

comes from the intricate dependence on the black hole parameters that the Weyl tensor

gives to Clocal. It would be interesting to understand which properties a partition function

must possess in order that the logarithmic correction to the thermodynamic limit leads to

c 6= 0.

An interesting concrete generalization of the present work would be to increase the scope

of theories considered. In section 2.6 our main obstacle to covering all N = 2 theories is the

complicated structure of fermion couplings for a generic prepotential, and hence we restrict

the discussion in section 2.6.4 to the ST (n) models. Nevertheless, we suspect that for a

generic prepotential our conclusions would not be significantly different. In particular, we

predict that c 6= 0 on the nonBPS branch for any N = 2 supergravity. It would of course be

desirable to confirm this explicitly.

A more ambitious generalization would be to consider more general black hole solutions,

specifically those where the dilaton Φ(KK) is not constant. Our assumption that Φ(KK) = 0

simplified our computations greatly by sorting quadratic fluctuations into blocks that are

decoupled from one another. By addressing the technical complications due to relaxation of

this assumption and so computing a4(x) for black holes with non-trivial dilaton we could, in

particular, access solutions with non-zero angular momentum J 6= 0. The rotating black holes
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on the nonBPS branch are novel since they never have constant dilaton, even in the extremal

limit [68]. Therefore, they offer an interesting contrast to the Kerr-Newman black hole, their

counterparts on the BPS branch [17]. Rotation is quite sensitive to microscopic details so

any differences or similarities between the quantum corrections to rotating black holes on

the BPS and nonBPS branches may well provide valuable clues towards a comprehensive

microscopic model. A nonconstant dilaton is also the linchpin to connections with the new

developments in AdS2 holography for rotating black holes such as in [69, 70].
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CHAPTER III

Black Hole Spectroscopy and AdS2 Holography

3.1 Introduction and Summary

An important step towards a detailed understanding of quantum black holes is the de-

termination of their spectrum [71]. However, with the exception of BPS black holes, it has

generally proven quite difficult to compute the black hole spectrum precisely. In this chapter

we find the spectrum of extremal nonrotating black holes on the nonBPS branch of N = 8

and N = 4 supergravity.

The black holes we consider are solutions to theories with extended supersymmetry and

have AdS2×S2 near horizon geometry, just like BPS black holes; but they are supported by

fluxes that are inconsistent with supersymmetry. In this situation it is not expected that the

spectrum is organized by supersymmetry and our explicit computations confirm this generic

expectation. However, we find that nonetheless the black hole spectrum exhibits significant

simplifications that are reminiscent of the familiar ones that are due to supersymmetry. This

finding does not conform with textbook BPS-ology but we will explain how it fits nicely with

other expectations.

The spectrum of the black holes we consider is described by the quantum numbers of the

SL(2) × SU(2) isometries of AdS2 × S2, i.e. the conformal weight h and the partial wave

number j. The conformal weight is equivalent to the mass m of the perturbations in units

of the AdS2 radius ` through

h =
1

2
+

√
1

4
+m2`2 , (3.1)

for scalar fields. For BPS black holes the supersymmetry algebra guarantees that the super-

gravity mass spectrum corresponds to conformal weights h that are integers for bosons and

half-integers for fermions. For nonBPS black holes the masses of fluctuations in supergravity

are not constrained a priori but our explicit computations establish that, in fact, the values

of m2 for scalar fields are all such that the conformal weights (3.1) are integers. This is
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part of our claim that the spectrum is reminiscent of supersymmetry. In particular, the

result suggests that the supergravity spectrum on the nonBPS branch is protected against

quantum corrections and, if so, it should offer detailed guidance towards construction of the

UV complete string theory describing extreme nonBPS black holes, despite the absence of

supersymmetry.

The technical aspects of our explicit computations follow the strategy that is very well

known from similar problems addressed in the past, such as spherical reduction of type

IIB supergravity in ten dimensions on AdS5 × S5 [72, 73]. Accordingly, we first find the

equations of motion of 4D supergravity and then linearize them around our AdS2 × S2

background solution. We then expand all fluctuating fields in their partial wave components

and impose gauge conditions. It is no surprise that the 2D equations that result from

these steps are messy, but fortunately they are sufficiently block diagonal that they can be

disentangled and solved, despite the absence of supersymmetry. The final mass matrices

therefore straightforwardly give eigenvalues for the masses of each partial wave that we can

insert in (3.1) and so identify the conformal weights in AdS2.

The only subtlety that is special to two dimensions is the spin of the fields [8, 74, 75].

In AdS2 we can generally represent vectors and tensors as scalar fields and similarly recast

gravitinos as Majorana-Weyl fermions. However, the dualization of fields with with spin

require special considerations for harmonic modes because those are generated by gauge

symmetries that are “large” in the sense that they are non-normalizable on AdS2. Therefore,

such transformations are not true symmetries, they generate field configurations that are

physical and interpreted as excitations that are localized on the boundary. They can be

identified with the modes that are described by a Schwarzian action (and its generalizations)

in the Jackiw-Teitelboim model (and its relatives) [76–81]. We refer to these modes as

boundary modes following the terminology previously used in the context of logarithmic

corrections to black hole entropy in four dimensions. Thus the spectrum of extremal black

holes on the nonBPS branch is characterized by

• Bulk modes that, from the AdS2 point of view, are organized in infinite towers of

Kaluza-Klein modes (partial waves).

• Boundary modes that, from the AdS2 point of view, are field configurations that are

physical even though they can be represented as “pure gauge” locally. These modes

are closely related to harmonic modes.

Our result for the quantum numbers of supergravity on the nonBPS branch of AdS2×S2 are

reported in table 3.2. As a test of this spectrum we have computed the quantum contributions

due to these modes by explicitly summing over all physical states. We find agreement with
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logarithmic corrections to the black hole entropy previously found using local methods [27].

This gives great confidence in the black hole spectrum we find.

We have already mentioned that on the nonBPS branch all fields in AdS2 have integral

conformal weight h and table 3.2 shows that we mean this quite literally: the conformal

weight is integral even for fermions. This assignment is unusual but not inconsistent because

the familiar relation between spin and statistics does not apply in two dimensions, at least

in its standard form. Indeed, we will confirm our finding that fermions have integral weight

on the nonBPS branch by recovering this assignment in settings where the AdS2 geometry

descends from an AdS3 factor.

The standard simplification due to supersymmetry is that, when certain conditions are

satisfied, the spectrum is organized into short multiplets that enjoy some protection against

quantum corrections. However, there is also a less frequently exploited simplification that is

due to broken supersymmetry. On the BPS branch both simplifications are relevant but on

the nonBPS branch it is only the latter one that applies. It can be interpreted as a global

supersymmetry that is implemented directly on the black hole spectrum. We discuss this

symmetry in detail in section 3.6.

Before getting to details of our computations we must carefully consider the meaning of

the spectrum of quadratic fluctuations around AdS2×S2. Indeed, several well-known results

prompt the question of whether such a spectrum makes any sense at all. For example, 1

• Finite energy excitations in AdS2 are incompatible with asymptotically AdS2 boundary

conditions: they elicit strong gravitational backreaction that modifies the asymptotic

structure of spacetime [84]. Therefore, quadratic fluctuations are not intrinsic to AdS2.

• In constructions where AdS2 arises from AdS3 through reduction along a null direction

it was argued that the excitations with the lowest energy depend on the compact null

coordinate but not on the AdS2 that is retained by the compactification [85]. Therefore,

the perturbations varying over AdS2 that we consider do not dominate in the infrared

limit.

In view of such results it is, for example, not obvious that the AdS2 conformal weight h is

a useful quantum number in AdS2 quantum gravity. However, the recent development of

nAdS2/nCFT1 correspondence [86] addresses these obstacles:

• The strict AdS2 theory is interpreted as an inert IR fixed point of a dual CFT1.

An interesting holographic theory is obtained only by perturbing away from the fixed

point by irrelevant operators. These operators dominate the far UV, corresponding

1There are closely related results for the near horizon Kerr geometry and our discussion below should
apply to that case as well [82, 83].
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to the asymptotic AdS2 boundary breaking down. However, their description of the

approach to the IR is controlled.

The spectrum we compute classifies the irrelevant operators in the IR fixed point theory

that may serve as appropriate deformations. When these operators are added to the

Lagrangian they deform the theory such that conformal symmetry is broken and new

length scales are introduced. The most important scales appearing in this manner are

associated with h = 2 operators and were discussed in [87].

• In constructions where AdS2 arises from AdS3 through a null reduction the dependence

on the null direction indeed dominates in the strict infrared limit. However, the irrel-

evant operators controlling the near infrared regime are transverse to the direction of

dimensional reduction and such excitations depend on position in the AdS2 geometry.

We identify our spectrum with such operators.

In short, the spectrum given in table 3.2 does not describe the ground state of AdS2 quantum

gravity but rather the low lying excitations above the ground state. In terms of a CFT2, the

ground state has huge degeneracy and is referred to as left moving in our conventions. The

nAdS2 theory with the spectrum we compute characterizes the leading excitations which,

for kinematic reasons, are entirely right moving and only weakly coupled to the left moving

ground state. The discussion in section 3.5 elaborates on this interpretation and related

conceptual challenges.

The simplifications we observe by explicit computations are, as mentioned, reminiscent

of those that are due to supersymmetry. In section 3.6 we develop this point of view and

identify fermionic operators that generate the black hole spectra. It would be interesting to

recover the same generators from ab initio considerations. Progress in this direction could

yield clues to the microscopic description of these black holes.

This chapter is organized as follows. In section 3.2 we describe the extremal nonBPS

black hole backgrounds we consider as solutions to N = 8 (or N = 4) supergravity in D = 4.

They all have AdS2×S2 near horizon geometry and in these contexts they respect USp(8) (or

USp(4)×SO(nV − 1)) global symmetry. This symmetry structure partially diagonalizes the

quadratic fluctuations around the backgrounds by organizing them into manageable blocks

that are decoupled from one another. In section 3.3 we compute the mass spectrum of these

blocks and obtain the conformal weights h of the corresponding fields. In section 3.4 we

compute the logarithmic correction to the black hole entropy due the one loop contributions

of all these states and find agreement with the results recently found using very different

methods [27]. In section 3.5, we study the dimensional reduction from AdS3×S2 to AdS2×S2

and show how, depending on a choice of chirality, we reproduce either the nonBPS spectrum
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or the BPS spectrum on AdS2×S2. This not only yields yet another consistency check on our

computations but, as we discuss, it also enlightens the relation between the nAdS2/nCFT1

correspondence and black holes in string theory. We finish in section 3.6 with a discussion

of broken supersymmetry.

3.2 Black Holes and Their Fluctuations

In this section we introduce the nonBPS black holes in N = 8 and N = 4 supergravity.

We exploit symmetries to establish the partial decoupling of quadratic fluctuations around

these backgrounds into blocks.

3.2.1 The AdS2 × S2 Backgrounds in N = 8 Supergravity

N = 8 supergravity in D = 4 spacetime dimensions consists of one graviton, 8 gravitini

Ψµ̂A, 28 U(1) vector fields AABµ̂ , 56 Majorana spinors ΛABC , and 70 scalars WABCD. The

hatted greek indices µ̂, ν̂ = 0, 1, 2, 3 denote 4D Lorentz indices and capital latin letters

A = 1, ..., 8 refer to the global SU(8)R symmetry of N = 8 SUGRA. The SU(8)R indices

are fully antisymmetrized so the graviton, gravitini, vectors, gaugini, and scalars transform

in representations 1, 8, 28, 56 and 70 of the SU(8)R group.

The black hole backgrounds we consider all have an AdS2 × S2 near horizon geometry,

Rµνλρ = − 1

`2
(gµλgνρ − gµρgνλ) , (3.2)

Rαβγδ = +
1

`2
(gαγgβδ − gαδgβγ) , (3.3)

where unhatted indices µ, ν = 0, 1 and α, β = 2, 3 refer to AdS2 and S2, respectively. ` is

the radius of curvature of both 2D spaces.

The scalar fields are all constant on AdS2 × S2 and the fermions vanish. Thus the

only matter supporting the geometry is the 28 field strengths GAB
µ̂ν̂ = 2∂[µ̂A

AB
ν̂] . The 28

electric charges (field components on AdS2) and 28 magnetic charges (field components

on S2) characterizing the field strengths can famously be organized into a fundamental

representation 56 of E7(7) duality symmetry [54]. However, it is convenient to focus on the

SU(8)R symmetry that is the maximal compact subgroup of E7(7) and express the charges

by the complex antisymmetric central charge matrix ZAB. After block diagonalization by an
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SU(8)R transformation we can present it as

ZAB = diag(λ1ε, λ2ε, λ3ε, λ4ε) , ε =

 0 1

−1 0

 . (3.4)

The canonical example of a charge configuration that corresponds to a BPS solution is

λ1 = `−1 and λ2 = λ3 = λ4 = 0. These skew-eigenvalues preserve a SU(2)R×SU(6) subgroup

of SU(8)R. The symmetry breaking pattern SU(8)R → SU(2)R × SU(6) constitutes a more

general characterization of the charges corresponding to BPS black holes with finite area.

A charge configuration that corresponds to the nonBPS black holes we focus on is [88, 89]

λ1 = λ2 = λ3 = λ4 =
ei
π
4

2`
. (3.5)

It realizes the symmetry breaking pattern SU(8)R → USp(8) that is characteristic of the

nonBPS branch. To see this, note that the central charge matrix (3.4) with the skew-

eigenvalues (3.5) is proportional to the symplectic matrix

Ω8 = diag(ε, ε, ε, ε) . (3.6)

The antisymmetric tensor representation of USp(8) is inherited from that of SU(8) by im-

posing tracelessness upon contraction with Ω8 so the symmetry breaking SU(8)R → USp(8)

is manifest.

The phase appearing in (3.5) ensures that the central charge matrix ZAB has determinant

+1, as it must to be an element of SU(8)R. Physically, the phase shows that the nonBPS

branch has equal electric and magnetic charges, in contrast to the BPS solutions that can

be chosen to have only electric charge. The factor 1
2

on the right hand side of (3.5) is such

that the quadratic invariant ZABZ
AB has the same magnitude for BPS and nonBPS black

holes. This means the energy momentum tensor will be the same on the two branches which

show that they share the same geometry.

In contrast, fermions enjoy Pauli couplings that depend linearly on the field strengths so

supersymmetry acts differently on the two branches. Supersymmetry is preserved when the

fermion transformations

δλABC = − 3√
2
Ĝ[ABεC] , (3.7)

δψAµ̂ =

(
δABDµ̂ +

1

2
ĜABΓµ̂

)
εB , (3.8)
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vanish, where the field strengths ĜAB ≡ 1
2
Γµ̂ν̂GAB

µ̂ν̂ . We can assume without loss of generality

that ĜAB are block diagonal in the (AB) indices, as for the central charge in (3.4). Thus

the 4 sectors (12), (34), (56), (78) do not couple to each other. On the BPS branch only

Ĝ12 is nonvanishing. In this case there are no solutions for εB in the (34), (56), (78) sectors

but, in the (12) sector, there is a solution with nontrivial ε1,2 and so the BPS solutions

preserve N = 2 supersymmetry. On the nonBPS branch the (12), (34), (56), (78) sectors

give equivalent conditions but, because of the factor 1
2

in (3.5) that was discussed in the

preceding paragraph, there is a mismatch between the magnitude of the field strength and

the AdS2 with scale `. Therefore, there are no solutions for εB on the nonBPS branch.

3.2.2 Adaptation to N = 4 Supergravity

We also want to discuss the spectrum of nonBPS black holes in N = 4 supergravity.

It will ultimately follow automatically from the results in N = 8 supergravity, after a few

modest reinterpretations.

In order to show this we first truncate N = 8 supergravity to N = 4 supergravity. This

truncation breaks the global symmetry SU(8)R → SU(4)R × SU(4)matter. The branching

rules of this symmetry breaking are

70 → 2(1,1)⊕ (6,6)⊕ (4, 4̄)⊕ (4̄,4) ,

56 → (4̄,1)⊕ (6,4)⊕ (4,6)⊕ (1, 4̄) ,

28 → (1,6)⊕ (6,1)⊕ (4,4) ,

8 → (1,4)⊕ (4,1) ,

1 → (1,1) . (3.9)

It is a consistent truncation that preserves N = 4 supersymmetry to omit all fields in the

4 (or 4̄) of SU(4)matter. The truncated theory obtained this way comprises an N = 4

supergravity multiplet (in the 1 of SU(4)matter) and nV = 6 matter multiplets (in the 6 of

SU(4)matter).

The matter supporting AdS2 × S2 solutions in N = 8 supergravity is encoded in the

spacetime central charges (3.4). The nontrivial fields can be chosen without loss of generality

as the four skew-diagonal ones and these are all retained in the truncation of SU(8)R to its

SU(4)R×SU(4)matter subgroup. Therefore these background configurations are also solutions

to the truncated theory with N = 4 supersymmetry. We focus on the nonBPS branch with

skew-eigenvalues (3.5) and the symmetry breaking pattern SU(8)R → USp(8) in N = 8

SUGRA. This case descends to a nonBPS branch of N = 4 SUGRA with the symmetry

breaking pattern SU(4)R × SU(4)matter → USp(4)× USp(4)matter.
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There is a simple generalization of this result to N = 4 SUGRA with a general number

nV ≥ 1 of matter multiplets [27]. Since SU(4) = SO(6) and USp(4) = SO(5) as Lie algebras,

the symmetry breaking pattern of the nonBPS branch found in the preceding paragraph for

nV = 6 matter multiplets is equivalent to SO(nV )matter → SO(nV − 1)matter. This is the

pattern that characterizes the nonBPS solutions of theories with any nV ≥ 1.

3.2.3 Structure of Fluctuations

As we have stressed, our background solution breaks the global SU(8)R ofN = 8 SUGRA

theory to a USp(8) subgroup. This greatly simplifies the analysis of fluctuations around

the background because it shows that different USp(8) representations cannot couple at

quadratic order. We can therefore organize the spectrum as representations of USp(8).

The branchings of SU(8)R → USp(8) for the matter representations in N = 8 SUGRA

can be realized explicitly by removing contractions with the symplectic invariant (3.6) from

SU(8)R representations. This gives

70 → 42⊕ 27⊕ 1 ,

56 → 48⊕ 8 ,

28 → 27⊕ 1 ,

8 → 8 ,

1 → 1 . (3.10)

Collecting all singlets we find that on the nonBPS branch gravity can mix with one linear

combination of the vector fields and similarly with one scalar. This is the field content of

minimal Kaluza-Klein gravity in 4D, obtained by dimensional reduction of Einstein gravity

in 5D. Truncation of N = 8 SUGRA to this sector is consistent and identifies the black holes

on the nonBPS branch with the black holes in Kaluza-Klein theory [51, 52]. Moreover, the

quadratic fluctuations of these fields is identical whether we consider the nonBPS branch of

N = 8 SUGRA or minimal Kaluza-Klein theory. We therefore refer to the singlet sector as

the “Kaluza-Klein block”.

The other USp(8) representations similarly present “blocks” that do not mix with each

other. We summarize these decoupled sectors in table 3.1. The partial diagonalization of

quadratic fluctuations into blocks was previously established away from extremality [27].

The spectrum of the KK black hole in N = 4 SUGRA can be computed directly, or by

truncating the fluctuations analyzed for N = 8 SUGRA. The blocks of decoupled quadratic

fluctuations are unchanged, it is only their degeneracy that is modified. Table 3.1 lists the

multiplicity of block in N = 4 SUGRA with nV ≥ 1 matter multiplets and their representa-
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tions under the global USp(4)× SO(nV − 1)matter symmetry.

Multiplet Block content d.o.f.
N = 8 N = 4 with nV matter multiplets

USp(8) # USp(4)× SO(nV − 1)matter #

KK block 1 graviton, 1 vector, 1 scalar 5 1 1 (1,1) 1

Gravitino block 2 gravitini and 2 gaugini 8 8 4 (4,1) 2

Vector block 1 vector and 1 (pseudo)scalar 3 27 27 (5,1) ⊕ (1,nV − 1) ⊕ (1,1) nV + 5

Gaugino block 2 gaugini 4 48 24 (4,nV − 1) ⊕ (4,1) 2nV

Scalar block 1 real scalar 1 42 42 (5,nV − 1) ⊕ (1,1) 5nV − 4

Table 3.1: Decoupled quadratic fluctuations around the KK black hole in N = 8 and N = 4
supergravity. The columns # denote the multiplicity of the blocks.

3.3 Mass Spectrum

In this section we compute the mass spectrum of fields on AdS2×S2. Global symmetries

partially decouple the fluctuations so we can consider one block at a time, as discussed

in section 3.2 and summarized in table 3.1. For each block we start from the linearized

equations of motion in 4D and expand the perturbations in spherical harmonics on S2, before

diagonalizing the resulting 2D equations of motion explicitly. Bulk modes are analyzed in

section 3.3.2 through 3.3.6 and boundary modes are considered in section 3.3.7. From now

on, we set the AdS2 radius ` to 1 for simplicity.

This section is long and relatively technical. Readers who are not interested in the

detailed computations can jump directly to section 3.3.8 where the results are summarized.

3.3.1 Partial Wave Expansion on S2 and Dualization of AdS2 Vectors

The standard basis elements for the partial wave expansion of a scalar field on S2 are

the spherical harmonics Y(lm), i.e. the eigenfunctions of the 2D Laplacian ∇2
S on S2 with

eigenvalues −l(l + 1). The analogous spherical harmonics for vector (or tensor) fields on

S2 are easily formed by taking one (or two) derivatives of Y(lm) along the S2. Thus we can
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expand a 4D scalar w, a 4D vector aµ̂, and 4D gravity hµ̂ν̂ as

w =
∑
lm

ϕ(lm)Y(lm) , (3.11)

aµ =
∑
lm

b(lm)
µ Y(lm) , (3.12)

aα =
∑
lm

(
b

(lm)
1 ∇αY(lm) + b

(lm)
2 εαβ∇βY(lm)

)
, (3.13)

hµν =
∑
lm

H(lm)
µν Y(lm) , (3.14)

hµα =
∑
lm

(
B

(lm)
1µ ∇αY(lm) +B

(lm)
2µ εαβ∇βY(lm)

)
, (3.15)

hαβ =
∑
lm

(
φ

(lm)
1 ∇{α∇β}Y(lm) + φ

(lm)
2 ε γ

{α ∇β}∇γY(lm) + φ
(lm)
3 gαβY(lm)

)
. (3.16)

Curly brackets indicate traceless symmetrization of indices such as ∇{α∇β} = 1
2
(∇α∇β +

∇β∇α − gαβ∇2). The coefficient functions H
(lm)
µν , B

(lm)
1µ , . . . are fields on the AdS2 base with

AdS2 tensor structure given by the indices µ, ν, . . . and degeneracy enumerated by the angular

momentum quantum numbers (lm).

Fermion fields can similarly be expanded on a basis of spinor spherical harmonics η(σlm)

satisfying γαDαη(σlm) = i(l+ 1)η(σlm) where γα denotes gamma matrices on S2. We will use

γµ for gamma matrices on AdS2 and Γµ̂ for 4D gamma matrices. The partial wave expansion

of a gaugino Λ and a gravitino Ψµ̂ are

Λ = λ
(σlm)
+ ⊗ η(σlm) + λ

(σlm)
− ⊗ γSη(σlm) , (3.17)

Ψµ = ψ
(σlm)
µ+ ⊗ η(σlm) + ψ

(σlm)
µ− ⊗ γSη(σlm) , (3.18)

Ψα = ψ
(σlm)
+ ⊗D(α)η(σlm) + ψ

(σlm)
− ⊗D(α)γSη(σlm)

+χ
(σlm)
+ ⊗ γαη(σlm) + χ

(σlm)
− ⊗ γαγSη(σlm) , (3.19)

where the summation symbol is suppressed for brevity. The chirality operator γS is the S2

analogue of Γ5 in 4D and the symbol D(α) = Dα − 1
2
γαγ

βDβ. The indices ± on the fields on

AdS2 thus refer to chirality and the four terms in (3.17) correspond to projection on to the

four helicities, ±3
2
,±1

2
. There is a detailed discussion of spinors on S2 in [90].

It will be sufficient to discuss bulk modes on-shell. Therefore, we can impose gauge

conditions from the outset. The Lorentz-deDonder (LdD) gauge

∇αhαµ = ∇αh{αβ} = 0 , ∇αaα = 0 , γαΨα = 0 , (3.20)
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amounts to the conditions on AdS2 fields

φ
(lm)
1 = φ

(lm)
2 = 0 , B

(lm)
1µ = 0 , (3.21)

b
(lm)
1 = 0 , (3.22)

χ
(σlm)
+ = χ

(σlm)
− = 0 . (3.23)

This simplifies the expansions (3.13, 3.15, 3.16, 3.19). Importantly, the LdD gauge (3.20) is

complete only for partial waves with l ≥ 2. For l = 0, 1 some of the LdD gauge conditions

are vacuous so additional gauge fixing is needed. We will discuss this on a case by case basis.

A vector field in AdS2 can be dualized to two scalars as

b(lm)
µ = εµν∇νa

(lm)
⊥ +∇µa

(lm)
‖ . (3.24)

This decomposition into transverse and longitudinal modes is unique when there are no

normalizable harmonic scalars, as in Euclidean AdS2. In Lorentzian signature there are non-

trivial harmonic modes but they are not physical as they can be presented in longitudinal

form where they manifestly decouple from physical processes. The determination of bound-

ary modes in section 3.3.7 will further refine these statements by considering nonnormalizable

harmonic modes.

3.3.2 Bulk Modes of the Scalar Block

The scalar block consists of just one 4D scalar that is minimally coupled. Upon expansion

in partial waves following (3.11), the 4D Klein-Gordon equation becomes

(
∇2
A − l(l + 1)

)
ϕ(lm) = 0 , l ≥ 0 . (3.25)

The effective 2D mass is therefore m2 = l(l+ 1) = j(j + 1) after identification of the orbital

angular momentum l with the total angular momentum j, as usual for scalar fields. Therefore

(3.1) gives the conformal weight

h = j + 1 . (3.26)

This result applies for all integral j ≥ 0.
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3.3.3 Bulk Modes of the Vector Block

The 4D vector block couples a scalar field x and a gauge field through the Lagrangian

[27]

e−1Lvector = −1

2
∇µ̂x∇µ̂x− 1

4
fµ̂ν̂f

µ̂ν̂ + xfµ̂ν̂G
µ̂ν̂ , (3.27)

where the background gauge field Gµ̂ν̂ has AdS2 and S2 components Gµν = 1√
2
εµν and

Gαβ = 1√
2
εαβ. The resulting 4D equations of motion for the scalar and the vector are

∇2x+ fµ̂ν̂G
µ̂ν̂ = 0 , (3.28)

∇µ̂
(
fµ̂ν̂ − 2xGµ̂ν̂

)
= 0 . (3.29)

Applying partial wave expansions of the form (3.12, 3.13), the gauge condition (3.22), and

dualization (3.24) we find[(
∇2
A − l(l + 1)

)
x+
√

2l(l + 1)b2 +
√

2∇2
Aa⊥

]
Y = 0 , (3.30)

ενµ∇µ
[(
∇2
A − l(l + 1)

)
a⊥ +

√
2x
]
Y +∇ν

[(
∇2
A − l(l + 1)

)
a‖
]
Y = 0 , (3.31)[

−∇2
Aa‖
]
∇αY +

[(
∇2
A − l(l + 1)

)
b2 +

√
2x
]
εαβ∇βY = 0 . (3.32)

The partial wave numbers (lm) on the 2D fields x, b2, a⊥, a‖ and on the spherical harmonics

Y are suppressed for brevity. Since Y(00) is a constant on S2 (3.32) has no content for l = 0.

For the same reason, the expansion (3.13) in vector harmonics on S2 leaves the component

b
(00)
2 undefined. Importantly, the combination l(l+ 1)b

(00)
2 unambiguously vanishes for l = 0,

so (3.30) is meaningful for all l ≥ 0.

The 4D equations of motion (3.30, 3.31, 3.32) are equivalent to the vanishing of each

expression in square bracket by itself, due to orthogonality of the spherical harmonics. For

(3.31) we also appeal to uniqueness of dualization in order to remove the gradients on AdS2.

In the following we diagonalize these 2D equations of motion. We first discuss modes with

l ≥ 1 and then address the special case l = 0.

Vector block: l ≥ 1 modes

For l ≥ 1 we can apply (3.32). In particular, the first equation shows that a‖ = 0, due to
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the absence of propagating harmonic modes. Then (3.30, 3.31, 3.32) give

(
∇2
A − l(l + 1)

)
x+
√

2l(l + 1)b2 +
√

2∇2
Aa⊥ = 0 , (3.33)(

∇2
A − l(l + 1)

)
a⊥ +

√
2x = 0 , (3.34)(

∇2
A − l(l + 1)

)
b2 +

√
2x = 0 , (3.35)

which can be reordered into the diagonal form

(
∇2
A − (l − 1)l

) (√
2x+ (l + 1)(a⊥ + b2)

)
= 0 , (3.36)(

∇2
A − l(l + 1)

)
(a⊥ − b2) = 0 , (3.37)(

∇2
A − (l + 1)(l + 2)

) (√
2x− l(a⊥ + b2)

)
= 0 , (3.38)

The eigenvalues of the AdS2 Laplacian ∇2
A thus give the scalar masses

m2 = (l − 1)l , l(l + 1) , (l + 1)(l + 2) , (3.39)

and so the conformal weights (3.1) become

h = j , j + 1 , j + 2 , (3.40)

for all integral j ≥ 1. We identified the angular quantum number j = l by noting that

each value of the conformal weight has degeneracy (2l+ 1), the dimension of the irreducible

representation of SU(2) with j = l.

Vector block: l = 0 modes

In the l = 0 sector The 4D gauge field bµ̂ has no components on the S2 so the only non-

vanishing field components are a⊥, a‖, and x. Since Y(00) = 1 the LdD gauge condition (3.20)

is empty for l = 0. On the other hand, the standard 4D gauge transformation bµ̂ → bµ̂+∂µ̂Λ

reduces to a 2D symmetry acting on the AdS2 components bµ because for l = 0 it does not

act on the (non-existent) components bα of the vector field on S2. We can exploit this gauge

symmetry to set the longitudinal component a‖ = 0. The equations of motion (3.30, 3.31)

then give ∇2
Ax+

√
2∇2

Aa⊥ = 0

∇2
Aa⊥ +

√
2x = 0

⇒

(∇2
A − 2)x = 0

∇2
A

(√
2a⊥ + x

)
= 0

. (3.41)

The lower equation becomes a constraint
√

2a⊥ + x = 0 up to a harmonic solution for
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a⊥ which is equivalent to a‖ that vanishes due to the gauge condition. The l = 0 sector

therefore reduces to one degree of freedom which we can identify as the scalar field x. This is

the expected result because the vector block consists of a scalar and a vector but 2D vector

fields have no degrees of freedom.

The upper equation in (3.41) identifies the eigenvalue of the scalar as m2 = 2 which

corresponds to conformal weight h = 2. We can present this in terms of the result (3.40)

for j ≥ 1: the tower with h = j + 2 is completed so it includes an entry for j = 0 while the

other two towers have no j = 0 mode.

3.3.4 Bulk Modes of the KK Block

Expansion of the Kaluza-Klein Lagrangian to quadratic order around the AdS2 × S2

background supported by nonBPS fluxes yields a Lagrangian for the quadratic fluctuations

(given explicitly in [27]). This in turn gives the equations of motion for the KK block,

summarized in the following.

KK block: Einstein equation

The 4D Einstein equation is given by

∇2hµ̂ν̂ +∇µ̂∇ν̂h− 2∇(µ̂∇α̂hν̂)α̂ − 2Rα̂
(µ̂hν̂)α̂ − 2Rα̂µ̂ν̂β̂h

α̂β̂ + hµ̂ν̂R

+gµ̂ν̂(−∇2h+∇α̂∇β̂h
α̂β̂ − hα̂β̂Rα̂β̂) = −8G α̂

(µ̂ fν̂)α̂ + 4Gµ̂α̂Gν̂β̂h
α̂β̂

+2gµ̂ν̂(G
α̂β̂fα̂β̂ −G

ν̂
α̂ Gβ̂ν̂h

α̂β̂) + hµ̂ν̂G
α̂β̂Gα̂β̂ + 8

√
3ϕG α̂

µ̂ Gν̂α̂ . (3.42)

The background is described by the 4D metric gµ̂ν̂ with Riemann curvature Rα̂
β̂γ̂δ̂

as well as

the gauge fields Gµν = 1√
2
εµν along AdS2 and Gαβ = 1√

2
εαβ through S2. The fluctuations

are the metric hµ̂ν̂ , the field strength fµ̂ν̂ , and the scalar field ϕ.

The partial wave expansions of the 4D fields take the form (3.11-3.16). Considering first

the equations where µ̂ν̂ = µν so both indices are within AdS2 we find[
(l(l + 1) + 2)H − 2

(
∇2
A − l(l + 1)

)
φ3 + 4

√
2∇2

Aa⊥ − 4
√

2l(l + 1)b2 + 8
√

3ϕ
]
Y = 0 ,(3.43)[

−l(l + 1)H{µν} + 2∇{µ∇ν}φ3

]
Y = 0 , (3.44)

for the scalar and symmetric traceless components of the AdS2 indices µν. We suppress

the partial wave indices (lm) on the 2D fields to avoid clutter. The analogous equations for

µ̂ν̂ = αβ so both indices of the Einstein equation (3.42) are on the S2 give[
∇ρ∇σH

ρσ −
(
∇2
A −

1

2
l(l + 1)

)
H −

(
∇2
A + 2

)
φ3 − 2

√
2∇2

Aa⊥ + 2
√

2l(l + 1)b2
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−4
√

3ϕ
]
gαβY + [H] ∇{α∇β}Y −

[
2∇2

AB2‖
]
ε γ
{α ∇β}∇γY = 0 . (3.45)

Finally, the partial wave expansion of the Einstein equation with mixed indices µ̂ν̂ = µα

becomes(
εµν∇ν

[
(∇2

A − l(l + 1))B2⊥ − 2
√

2b2 − 2
√

2a⊥

]
−∇µ

[
l(l + 1)B2‖ + 2

√
2a‖

])
εαβ∇βY

+
[
∇µH −∇νHµν +∇µφ3 + 2

√
2εµνb

ν − 2
√

2∇µb2 + 2εµνB
ν
2

]
∇αY = 0 . (3.46)

KK block: vector equation

The equation of motion for the vector field in KK theory is

∇µ̂

(
fµ̂ν̂ − hµ̂ρ̂Gρ̂

ν̂ + hν̂ρ̂G
ρ̂
µ̂ +

1

2
hGµ̂ν̂ − 2

√
3ϕGµ̂ν̂

)
= 0 , (3.47)

after linearizing around our background. For ν̂ = ν the 4D index is along AdS2 and the

partial wave expansions (3.11-3.16) give(
ενµ∇µ

[(
∇2
A − l(l + 1)

)
a⊥ −

1√
2
l(l + 1)B2⊥ +

1

2
√

2
H − 1√

2
φ3 +

√
6ϕ

]
−∇ν

[
∇2
Aa‖ +

1√
2
l(l + 1)B2‖

])
Y = 0 . (3.48)

We used the identity ∇µH
{µρ}ερν = ∇µH{νρ}ε

ρµ. The partial wave expansion of the 4D field

equation (3.47) for ν̂ = α similarly gives[(
∇2
A − l(l + 1)

)
b2 +

1√
2
φ3 −

1√
2
∇2
AB2⊥ −

1

2
√

2
H +

√
6ϕ

]
εαβ∇βY

−∇2
A

[
a‖ +

1√
2
B2‖

]
∇αY = 0 . (3.49)

KK block: scalar equation

The last equation of motion for KK theory is the one for the KK scalar:

8∇2ϕ+ 8
√

3Gµ̂ν̂fµ̂ν̂ − 4
√

3Rµ̂ν̂hµ̂ν̂ = 0 . (3.50)

The partial wave expansion gives[(
∇2
A − l(l + 1)

)
ϕ+
√

6∇2
Aa⊥ +

√
6l(l + 1)b2 +

√
3

2
H −

√
3φ3

]
Y = 0 . (3.51)
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At this point we must solve all these equations. Orthogonality of spherical harmonics

show that all terms in square brackets vanish. However, we must take into account that

gradients ∇αY of the spherical harmonics vanish for l = 0 and traceless combinations of the

double gradients ∇α∇βY vanish also for l = 1. Therefore we first discuss the equations for

l ≥ 2 and then address l = 1, 0.

KK block: l ≥ 2 modes

From (3.45) and (3.49) we find

∇2
AB2‖ = ∇2

Aa‖ = 0 , (3.52)

H = 0 . (3.53)

The uniqueness of AdS2 dualization (up to modes that decouple) means we can take all

these fields to vanish B2‖ = a‖ = H = 0 . Additionally (3.44) shows that the graviton

perturbations H{µν} can be expressed in terms of φ3 so they do not represent independent

degrees of freedom.

Taking these simplification into account, we gather the equations of motions (3.43, 3.46,

3.48, 3.49, 3.51) and find

(
∇2
A − l(l + 1)

)
φ3 = 2

√
2∇2

Aa⊥ − 2
√

2l(l + 1)b2 + 4
√

3ϕ , (3.54)(
∇2
A − l(l + 1)

)
B2⊥ = 2

√
2b2 + 2

√
2a⊥ , (3.55)(

∇2
A − l(l + 1)

)
a⊥ =

1√
2
l(l + 1)B2⊥ +

1√
2
φ3 −

√
6ϕ , (3.56)(

∇2
A − l(l + 1)

)
b2 = − 1√

2
φ3 +

1√
2
∇2
AB2⊥ −

√
6ϕ , (3.57)(

∇2
A − l(l + 1)

)
ϕ = −

√
6∇2

Aa⊥ −
√

6l(l + 1)b2 +
√

3φ3 . (3.58)

We can reorganize these equations as

(
∇2
A − (l + 2)(l + 3)

) [
2
√

3ϕ− l(l + 1)B2⊥ − 2
√

2la⊥ − 2
√

2lb2

]
= 0 , (3.59)(

∇2
A − (l + 1)(l + 2)

) [
−φ3 − lB2⊥ −

√
2la⊥ +

√
2lb2

]
= 0 , (3.60)(

∇2
A − l(l + 1)

) [
2ϕ+

√
3(l2 + l − 1)B2⊥ +

√
6a⊥ +

√
6b2

]
= 0 , (3.61)(

∇2
A − (l − 1)l

) [
φ3 − (l + 1)B2⊥ −

√
2(l + 1)a⊥ +

√
2(l + 1)b2

]
= 0 , (3.62)(

∇2
A − (l − 2)(l − 1)

) [
2
√

3ϕ− l(l + 1)B2⊥ + 2
√

2(l + 1) (a⊥ + b2)
]

= 0 . (3.63)
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The scalar masses read off from the eigenvalues of ∇2
A are

m2 = (l − 2)(l − 1) , (l − 1)l , l(l + 1) , (l + 1)(l + 2) , (l + 2)(l + 3) . (3.64)

Each of the AdS2 scalars have degeneracy (2l+1) so we identify j = l, where j is the angular

quantum number labeling the irreducible representation of SU(2). The conformal weights

(3.1) of the 1D conformal fields dual to the five partial wave towers of the KK block become

h = j − 1 , j , j + 1 , j + 2 , j + 3 . (3.65)

This result is valid for j ≥ 2.

KK block: l = 1 modes

The l = 1 sector is special because εαβ∇βY(1m) / ∇αY(1m) are Killing Vectors (KVs) /

Conformal Killing Vectors (CKVs) on S2. Therefore ε γ
{α ∇β}∇γY(1m) = ∇{α∇β}Y(1m) = 0

and so the partial wave expansion (3.16) does not include the coefficient functions φ
(1m)
1 and

φ
(1m)
2 . Moreover, the gauge conditions ∇αh{αβ} = 0 are automatic, they fail to constrain

diffeomorphisms ξα on the S2.

We gauge fix the diffeomorphisms along the KVs by setting B
(1m)
2‖ = 0 and those along

the CKVs by taking φ
(1m)
3 = 0. With these conditions (3.44) becomes a constraint that

sets H
(1m)
{µν} = 0 and the vanishing of the second square bracket in (3.46) demands that also

a
(1m)
‖ = 0.

After gauge fixing the 15 partial wave components in the generic KK-block have been

reduced to only 5. We gather the remaining terms in (3.43, 3.46, 3.48, 3.49, 3.51) for l = 1

and get the equations of motion for these 5 fields in AdS2:

H(1m) = −
√

2∇2
Aa

(1m)
⊥ + 2

√
2b

(1m)
2 − 2

√
3ϕ(1m) , (3.66)(

∇2
A − 2

)
B

(1m)
2⊥ = 2

√
2b

(1m)
2 + 2

√
2a

(1m)
⊥ , (3.67)(

∇2
A − 2

)
a

(1m)
⊥ = − 1

2
√

2
H(1m) +

√
2B

(1m)
2⊥ −

√
6ϕ(1m) , (3.68)(

∇2
A − 2

)
b

(1m)
2 =

1√
2
∇2
AB

(1m)
2⊥ +

1

2
√

2
H(1m) −

√
6ϕ(1m) , (3.69)

(
∇2
A − 2

)
ϕ(1m) = −

√
6∇2

Aa
(1m)
⊥ − 2

√
6b

(1m)
2 −

√
3

2
H(1m) . (3.70)

Simplifying the first of these equations using the others we find

H(1m) = −4
√

2a
(1m)
⊥ + 4

√
2b

(1m)
2 − 4B

(1m)
2⊥ . (3.71)
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Therefore H(1m) is not an independent field. We diagonalize the remaining equations as

(∇2
A − 12)

(
−B(1)

2⊥ −
√

2a
(1)
⊥ −

√
2b

(1)
2 +

√
3ϕ(1)

)
= 0 , (3.72)

(∇2
A − 6)

(
−B(1)

2⊥ −
√

2a
(1)
⊥ +

√
2b

(1)
2

)
= 0 , (3.73)

(∇2
A − 2)

(√
3B

(1)
2⊥ +

√
6a

(1)
⊥ +

√
6b

(1)
2 + 2ϕ(1)

)
= 0 , (3.74)

∇2
A

(
−B(1)

2⊥ + 2
√

2a
(1)
⊥ + 2

√
2b

(1)
2 +

√
3ϕ(1)

)
= 0 . (3.75)

The final equation amounts to the constraint

−B(1)
2⊥ + 2

√
2a

(1)
⊥ + 2

√
2b

(1)
2 +

√
3ϕ(1) = 0 . (3.76)

up to a harmonic function that can be fixed by residual symmetry.

The three eigenvectors that remain represent propagating modes. This is the expected

net number of physical fields from a gauge field and a scalar, the field content in the l = 1

sector of the KK block. The source of all the complications addressed here is the mixing of

these degrees of freedom with gravity and with each other.

Therefore, for j = l = 1, the eigenvalues of ∇2
A are m2 = 12, 6, 2, corresponding to the

conformal weights h = 4, 3, 2 respectively. Among the five towers in (3.65), we thus find that

those with h = j + 1, j + 2, j + 3 are extended to j = 1 while the towers with h = j − 1, j do

not include modes j = 1. Indeed, the three eigenvectors (3.72, 3.73, 3.74) with eigenvalues

12, 6, 2 found for l = 1 extend those identified in (3.59, 3.60, 3.61) for l ≥ 2.

KK block: l = 0 modes

The spherical harmonic Y(00) = 1 is constant, so for l = 0 the only non-vanishing terms

defined by the partial wave expansions (3.11-3.16) are the 2D metric H
(00)
µν , the 2D gauge

field b
(00)
µ , the KK scalar ϕ(00) and the S2 volume φ

(00)
3 . This is a total of 7 non-vanishing

2D field components for l = 0. In the l = 0 sector the LdD gauge conditions (3.20) place no

restrictions on the fields. The 2D diffeomorphism symmetry generated by an AdS2 vector

ξµ is therefore unfixed, as is the 2D gauge symmetry. We fix these three symmetries by

imposing

∇µ∇νH
(00)
{µν} = 0 , a

(00)
‖ = 0 . (3.77)

Notice that there are still residual diffeomorphisms that satisfy ∇µ∇ν∇{µξ(00)
ν} = 0, which

we will take advantage of later.

The 2D equations of motion (3.43, 3.44, 3.45, 3.48, 3.51) of the remaining 4 field compo-
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nents a
(00)
⊥ , φ

(00)
3 , H(00), and ϕ(00) can be organized as

∇2
A

(
√

6a
(00)
⊥ + ϕ(00) +

√
3

4
H(00) + 2

√
3φ

(00)
3

)
= 0 , (3.78)

∇{µ∇ν}φ
(00)
3 = 0 , (3.79)

(∇2
A − 2)φ

(00)
3 = 0 , (3.80)

(∇2
A − 2)H(00) = −12φ

(00)
3 , (3.81)(

∇2
A − 6

)
ϕ(00) = 0 . (3.82)

Now (3.78) amounts to a constraint that expresses a
(00)
⊥ in terms of other fields, up to

a harmonic mode that is inconsequential for the physical spectrum. Similarly, (3.79) define

Conformal Killing Vectors (CKVs) ∇µφ
(00)
3 but, since there are no normalizable CKVs on

(Euclidean) AdS2, we must have φ
(00)
3 = 0. Then (3.81) becomes

(∇2
A − 2)H(00) = 0 . (3.83)

However, the gauge conditions (3.77) permit residual diffeomorphisms ξµ satisfying

∇µ∇ν∇{µξ(00)
ν} = 0 ⇔ (∇2

A − 2)δH(00) = 0 . (3.84)

Such ξµ are CKVs that are necessarily nonnormalizable, but they correspond to normalizable

δH
(00)
µν . Comparison of (3.83) and (3.84) shows that H(00) is pure gauge; it can be set to be

zero by residual diffeomorphisms ξ
(00)
µ .

In summary, in the l = 0 sector of the KK-block there is only one physical degree of

freedom which can be identified as ϕ(00). This mode generalizes the partial wave tower

(3.59) to l = 0. It is an eigenfunction of ∇2
A with eigenvalue m2 = 6, corresponding to h = 3.

Thus it extends the final entry h = j + 3 in (3.65) to the value j = 0.

3.3.5 Bulk Modes of the Gaugino Block

The gaugino block has the 4D Lagrangian [27]

e−1δ2Lgaugino = −Λ̄AΓµ̂Dµ̂ΛA −
1

2
εABΛ̄AĜΛB , (3.85)
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where Ĝ ≡ 1
2
Γµ̂ν̂Gµ̂ν̂ , summation over the indices A,B = 1, 2 is implied, and εAB is antisym-

metric with ε12 = +1. It gives the 4D equation of motion

Γµ̂Dµ̂ΛA +
1

2
ĜεABΛB = 0 . (3.86)

Applying the partial wave expansion (3.17) to the two Majorana gaugini ΛA we find

Λ
(L/R)
A =

1

2
(1± Γ5)ΛA =

1

2
(λA+ ± γAλA−)⊗ η +

1

2
(λA− ± γAλA+)⊗ γSη . (3.87)

for their left- and right-handed components. The indices (σlm) on the 2D fields λA± and

the spinor harmonics η are suppressed for brevity. Inserting the expansion in spinor partial

waves (3.87) into the 4D equations of motion (3.86) projected on to the right helicity by the

operator 1
2

(1− Γ5) we get

0 =

[
γµDµ (λA− + γAλA+) + i(l + 1) (λA+ + γAλA−)− 1

2
ei
π
4 εAB (λB− − γAλB+)

]
⊗ η

+

[
γµDµ (λA+ + γAλA−)− i(l + 1) (λA− + γAλA+)− 1

2
ei
π
4 εAB (λB+ − γAλB−)

]
⊗ γSη .

Orthogonality of spinor harmonics then give us the 2D equation of motion

γµDµλ̂
(L)
A − (l + 1)λ̂

(L)
A −

1

2
ei
π
4 εABλ̂

(R)
B = 0 , (3.88)

γµDµλ̃
(L)
A + (l + 1)λ̃

(L)
A −

1

2
ei
π
4 εABλ̃

(R)
B = 0 , (3.89)

for every spinor harmonic index (σlm). Here λ̂
(L/R)
A and λ̃

(L/R)
A are defined by

λ̂
(L/R)
A ≡ (λA+ ± γAλA−) + i (λA− ± γAλA+) , (3.90)

λ̃
(L/R)
A ≡ (λA+ ± γAλA−)− i (λA− ± γAλA+) . (3.91)

Similarly acting with the left projection operator 1
2

(1 + Γ5) on the 4D equations of motion

(3.86), we find the 2D wave equations that are conjugate of (3.88, 3.89):

γµDµλ̃
(R)
B + (l + 1)λ̃

(R)
B +

1

2
e−i

π
4 εBAλ̃

(L)
A = 0 , (3.92)

γµDµλ̂
(R)
B − (l + 1)λ̂

(R)
B +

1

2
e−i

π
4 εBAλ̂

(L)
A = 0 . (3.93)
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Combining (3.88) and (3.93), as well as (3.89) and (3.92) with A = 1, B = 2, we get

(γµDµ − (l + 1))

(
λ̂

(L)
1

λ̂
(R)
2

)
=

1

2

(
0 ei

π
4

e−i
π
4 0

)(
λ̂

(L)
1

λ̂
(R)
2

)
. (3.94)

(γµDµ + (l + 1))

(
λ̃

(L)
1

λ̃
(R)
2

)
=

1

2

(
0 ei

π
4

e−i
π
4 0

)(
λ̃

(L)
1

λ̃
(R)
2

)
. (3.95)

We are giving these results in full gory detail because the phases e±i
π
4 in the final result

are physical consequences of the interplay between electric and magnetic fields which can be

technically challenging to account for.

The matrices on the right hand side of (3.94) have eigenvalues ±1
2
. Therefore, the

eigenvalues of the Dirac operator γµDµ give the four AdS2 spinor masses

m = ±(l +
1

2
) , ±(l +

3

2
) . (3.96)

The sign of the fermion mass is formal and has no physical meaning. The conformal weight

of the 1D conformal operator dual to an AdS2 spinor is given by the relation hspinor = |m|+ 1
2
,

so we find h = l + 1, l + 2, each with multiplicity 2.

The harmonic expansion for spinor fields has degeneracy 2(l + 1), while the irreducible

representation of SU(2) labeled by the angular quantum number j has (2j + 1) states. We

therefore identify j = l + 1
2

for spinors. This gives our final result for the spectrum of the

gaugino block

h = 2× (j +
1

2
) , 2× (j +

3

2
) , (3.97)

where “2×” denotes multiplicity 2, not the normal multiplication. This result is valid for all

j ≥ 1
2
.

3.3.6 Bulk Modes of Gravitino Block

The gravitino block has the 4D Lagrangian [27]

e−1δ2Lgravitino = −Ψ̄Aµ̂Γµ̂ν̂ρ̂Dν̂ΨAρ̂ − 2Λ̄AΓµ̂Dµ̂ΛA −
1

2
εABΨ̄Aµ̂

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)

ΨBν̂

−
√

3

2

(
Ψ̄Aµ̂ĜΓµ̂ΛA + Λ̄AΓµ̂ĜΨAµ̂

)
+ 2εABΛ̄AĜΛB , (3.98)
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where G̃µ̂ν̂ ≡ − i
2
εµ̂ν̂ρ̂σ̂Gρ̂σ̂. It gives the 4D equations of motion

Γµ̂ν̂ρ̂Dν̂ΨAρ̂ +
1

2

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)
εABΨBν̂ +

√
3

2
ĜΓµ̂ΛA = 0 , (3.99)

2Γµ̂Dµ̂ΛA − 2εABĜΛB +

√
3

2
Γµ̂ĜΨAµ̂ = 0 . (3.100)

In the following we work out the corresponding 2D equations of motion.

Gravitino block: gravitino equation

We first act with the right projection operator 1
2

(1− Γ5) on the 4D equations of motion

for gravitini (3.99) and then insert partial wave expansions in spinor harmonics (3.17-3.18).

The S2 components µ̂ = α of the equations become

0 =

[
1

2
i(l + 1)γµ

(
ψµA− + γAψ

µ
A+

)
+ γµνD

µ
(
ψνA+ + γAψ

ν
A−
)

+

√
3

2
ie−i

π
4 (λA− + γAλA+)

]
⊗ γαη

+

[
−1

2
i(l + 1)γµ

(
ψµA+ + γAψ

µ
A−
)

+ γµνD
µ
(
ψνA− + γAψ

ν
A+

)
+

√
3

2
ie−i

π
4 (λA+ + γAλA−)

]
⊗ γαγSη

+

[
−γµ

(
ψµA− + γAψ

µ
A+

)
+ γµDµ (ψA− + γAψA+)− 1

2
iei

π
4 εAB (ψB− − γAψB+)

]
⊗D(α)η

+

[
−γµ

(
ψµA+ + γAψ

µ
A−
)

+ γµDµ (ψA+ + γAψA−)− 1

2
iei

π
4 εAB (ψB+ − γAψB−)

]
⊗D(α)γSη .(3.101)

The AdS2 components µ̂ = µ of the equations similarly give

0 =

[
−i(l + 1)γµν

(
ψνA+ + γAψ

ν
A−
)

+
1

2
((l + 1)2 − 1)γµ (ψA− + γAψA+)

−
√

3

2
iei

π
4 γµ (λA+ + γAλA−) +

1

2
e−i

π
4 γµνεAB

(
ψνB− − γAψνB+

)]
⊗ η

+

[
i(l + 1)γµν

(
ψνA− + γAψ

ν
A+

)
+

1

2
((l + 1)2 − 1)γµ (ψA+ + γAψA−)

−
√

3

2
iei

π
4 γµ (λA− + γAλA+) +

1

2
e−i

π
4 γµνεAB

(
ψνB+ − γAψνB−

)]
⊗ γSη . (3.102)

Again, we suppress the indices (σlm) of the spinor harmonics. Orthogonality of the spinor

harmonics mean each square bracket vanishes by itself. This gives four towers of equations

from the S2 but only two from the AdS2 because the µ̂ = α index incorporates spin-3
2

components on S2 while the µ̂ = µ index only includes spin-1
2

components. To present the
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equations we define

ψ̂
(L/R)
Aµ ≡ (ψAµ+ ± γAψAµ−) + i (ψAµ− ± γAψAµ+) , (3.103)

ψ̃
(L/R)
Aµ ≡ (ψAµ+ ± γAψAµ−)− i (ψAµ− ± γAψAµ+) , (3.104)

in analogy with the variables λ̂
(L/R)
A and λ̃

(L/R)
A introduced for the gaugino block in (3.90).

This gives the three coupled equations

γµνDµψ̃
(L)
Aν −

1

2
(l + 1)γµψ̃

(L)
Aµ +

√
3

2
e−i

π
4 λ̂

(L)
A = 0 , (3.105)

−γµψ̃(L)
Aµ + γµDµψ̃

(L)
A −

1

2
iei

π
4 εABψ̃

(R)
B = 0 , (3.106)

(l + 1)ψ̃
(L)
Aρ −

1

2
((l + 1)2 − 1)γρψ̃

(L)
A +

√
3

2
e−i

π
4 λ̂

(L)
A −

1

2
e−i

π
4 εABψ̃

(R)
Bρ = 0 , (3.107)

as well as the three coupled equations

γµνDµψ̂
(L)
Aν +

1

2
(l + 1)γµψ̂

(L)
Aµ −

√
3

2
e−i

π
4 λ̃

(L)
A = 0 , (3.108)

−γµψ̂(L)
Aµ + γµDµψ̂

(L)
A −

1

2
iei

π
4 εABψ̂

(R)
B = 0 , (3.109)

−(l + 1)ψ̂
(L)
Aρ −

1

2
((l + 1)2 − 1)γρψ̂

(L)
A −

√
3

2
e−i

π
4 λ̃

(L)
A −

1

2
e−i

π
4 εABψ̂

(R)
Bρ = 0 .(3.110)

Similarly, starting out by acting with the left projection operator 1
2

(1 + Γ5) on the 4D

equations of motion we find the complex conjugate of the preceding six equations.

Gravitino block: gaugino equation

Acting with the right projection operator 1
2

(1− Γ5) on the 4D equations of motion for

gaugini (3.100) and expanding it in partial waves, we get

[
γµDµ (λA− + γAλA+) + i(l + 1) (λA+ + γAλA−) + ie−i

π
4 εAB (λB− − γAλB+)

−
√

3

4
iei

π
4 γµ

(
ψµA+ + γAψ

µ
A−
)]
⊗ η +[

γµDµ (λA+ + γAλA−)− i(l + 1) (λA− + γAλA+) + ie−i
π
4 εAB (λB+ − γAλB−)

−
√

3

4
iei

π
4 γµ

(
ψµA− + γAψ

µ
A+

)]
⊗ γSη = 0 . (3.111)

Again, orthogonality implies that each square bracket vanishes by itself. After introduction
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of the variables (3.90) the 2D equation of motion become

γµDµλ̂
(L)
A − (l + 1)λ̂

(L)
A + ie−i

π
4 εABλ̂

(R)
B +

√
3

4
ei
π
4 γµψ̃

(L)
Aµ = 0 , (3.112)

γµDµλ̃
(L)
A + (l + 1)λ̃

(L)
A + ie−i

π
4 εABλ̃

(R)
B −

√
3

4
ei
π
4 γµψ̂

(L)
Aµ = 0 . (3.113)

Similarly, starting out by acting with the left projection operator 1
2

(1 + Γ5) on the 4D

equations of motion we find the complex conjugate of these two equations.

We next proceed to solve the 2D equations of motion and compute the mass spectrum

of gravitino block. We first discuss modes with l ≥ 1 modes and then deal with the special

case l = 0.

Gravitino block: l ≥ 1 modes

We begin by considering (3.105, 3.106, 3.107, 3.112) and the equations conjugate to

(3.108, 3.109, 3.110,3.113) since only ψ̃
(L/R)
Aµ , ψ̃

(L/R)
A and λ̂

(L/R)
A are involved.in this system.

Inspection of (3.107) with A = 1 and the conjugate of (3.110) with A = 2 shows that the

2D gravitino ψ̃
(L/R)
Aµ is not an independent field. It can be expressed by ψ̃

(L/R)
A and λ̂

(L/R)
A as

(
ψ̃

(L)
1µ

ψ̃
(R)
2µ

)
=

(
4(l+1)

4(l+1)2−1
2e−i

π
4

4(l+1)2−1

2ei
π
4

4(l+1)2−1
4(l+1)

4(l+1)2−1

)
γµ

[
1

2
((l + 1)2 − 1)

(
ψ̃

(L)
1

ψ̃
(R)
2

)
−
√

3

2

(
e−i

π
4 λ̂

(L)
1

ei
π
4 λ̂

(R)
2

)]
.(3.114)

Inserting this into (3.106, 3.112) with A = 1 and the conjugates of (3.109, 3.113) with A = 2
we find

γµDµ


λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2

 =


l + 1 −eiπ4 0 0

−e−iπ4 l + 1 0 0

0 0 0 − 1
2e
−iπ4

0 0 − 1
2e
iπ4 0



λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2

+ γµ


−
√
3
4 e

iπ4 ψ̃
(L)
1µ

−
√
3
4 e
−iπ4 ψ̃

(R)
2µ

ψ̃
(L)
1µ

ψ̃
(R)
2µ

 (3.115)

=


(l + 1) + 3(l+1)

4(l+1)2−1

(
3(l+1)

8(l+1)2−2 − 1
)
ei
π
4 −

√
3(l+1)((l+1)2−1)

4(l+1)2−1 ei
π
4 −

√
3((l+1)2−1)
8(l+1)2−2(

3(l+1)
8(l+1)2−2 − 1

)
e−i

π
4 (l + 1) + 3(l+1)

4(l+1)2−1 −
√
3((l+1)2−1)
8(l+1)2−2 −

√
3(l+1)((l+1)2−1)

4(l+1)2−1 e−i
π
4

4
√
3(l+1)

4(l+1)2−1e
−iπ4 − 2

√
3

4(l+1)2−1 (l + 1)− 3(l+1)
4(l+1)2−1 − 3

8(l+1)2−2e
−iπ4

− 2
√
3

4(l+1)2−1
4
√
3(l+1)

4(l+1)2−1e
iπ4 − 3

8(l+1)2−2e
iπ4 (l + 1)− 3(l+1)

4(l+1)2−1



λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2

 .

The matrix on the right hand side appears very complicated but, remarkably, it has simple

eigenvalues: l − 1
2
, l + 1

2
, l + 3

2
, and l + 5

2
.

Similarly, taking equations (3.108, 3.109, 3.110, 3.113) with A = 1 and the conjugates of

(3.105, 3.106, 3.107, 3.112) with A = 2 we find a matrix equation for λ̃
(L)
1 , λ̃

(R)
2 , ψ̂

(L)
1 , ψ̂

(R)
2 .

The matrix again has simple eigenvalues: −
(
l − 1

2

)
, −

(
l + 1

2

)
, −

(
l + 3

2

)
, and −

(
l + 5

2

)
.

Thus the complete result for the eigenvalues of γµDµ can be expressed as eight AdS2 spinor
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masses

m = ±(l − 1

2
) , ±(l +

1

2
) , ±(l +

3

2
) , ±(l +

5

2
) . (3.116)

For spinors we use the relations jspinor = l + 1
2

for the SU(2) quantum number and hspinor =

|m| + 1
2

for the conformal weight and so our result for the spectrum of the gravitino block

becomes

h = 2× (j − 1

2
) , 2× (j +

1

2
) , 2× (j +

3

2
) , 2× (j +

5

2
) , (3.117)

where “2×” denotes multiplicity 2, not the normal multiplication. This result is valid for

j ≥ 3
2
.

Gravitino block: l = 0 modes

The l = 0 mode is special for gravitini because the helicity ±3
2

components in the partial

wave expansion (3.19) vanish identically. Therefore, the fields ψA± are not defined for l = 0.

The manipulations giving (3.114) for the AdS2 gravitini remain valid for l = 0 and

we see that, in this special case, the term involving the nonexistent ψA± has vanishing

coefficient. Therefore, all components of the 2D gravitini ψAµ are determined by the gaugini

λA. Accordingly, the first equation in (3.115) depends only on gaugini for l = 0. The

resulting equation of motion can be read off from the upper left 2 × 2 submatrix of the

second equation in (3.115) by taking l = 0:

γµDµ

(
λ̂

(L)
1

λ̂
(R)
2

)
=

(
2 −1

2
ei
π
4

−1
2
e−i

π
4 2

)(
λ̂

(L)
1

λ̂
(R)
2

)
. (3.118)

The matrix on the right hand side has eigenvalues 3
2

and 5
2

and the analogous equations

for λ̃
(L/R)
A similarly give −3

2
and −5

2
. This corresponds to two modes with conformal weight

h = 2 and another two with h = 3. These modes extend the towers h = 2×(j+ 3
2
), 2×(j+ 5

2
)

in (3.117) so they apply for all j ≥ 1
2
.

3.3.7 Boundary Modes

Boundary modes are harmonic modes on AdS2 which are formally pure gauge but in

fact physical because the gauge functions that generate them are non-normalizable. There

are no boundary modes for the scalar block or gaugino block because they involve no gauge

symmetries. Thus all boundary modes come from vector blocks, the KK block, and gravitino

blocks. This subsection determines the boundary modes of these three types of blocks in
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turns.

Since boundary modes are somewhat subtle we proceed with special care. In each case we

add gauge fixing terms and compute the full off-shell spectrum, along with the appropriate

ghosts. This requires some additional effort. On the other hand, since the gauge functions

underlying boundary modes are harmonic, they generally do not couple to bulk modes so

the relevant field content remains manageable.

Boundary modes in vector blocks

For boundary modes in vector blocks we add the gauge fixing term
(
∇µ̂a

µ̂
)2

to the

Lagrangian (3.27), with hatted variables denoting 4D indices as in previous sections. We

can consistently ignore the scalar field in the vector block because it couples to ∇µb
µ which

vanishes in the boundary sector due to the harmonic condition. The effective Lagrangian of

the boundary modes in the vector block becomes

Lbndy
vector = bµ

(
∇2
A + 1− l(l + 1)

)
bµ . (3.119)

Harmonic vector modes satisfy ∇2
A+1 so this is equivalent to a tower of nondynamical fields

with m2 = l(l + 1), l ≥ 0 with degeneracy 2l + 1. This result is unsurprising because the

residual gauge transformations underlying these modes satisfy the massless Klein-Gordon

equation in 4D ∇2
4Λ = 0.

Boundary modes in the KK block

In this sector we must consider gravity as well as the KK vector field. We add the gauge

fixing term

Lg.f.
KK = −

(
∇µ̂hµ̂ρ̂ −

1

2
∇ρ̂h

)(
∇ν̂h ρ̂

ν̂ −
1

2
∇ρ̂h

)
− 4

(
∇µ̂a

µ̂
)2

, (3.120)

to the 4D Lagrangian of the KK block. We then compute the corresponding 2D Lagrangian

Lbndy
KK = H ′{µν}

(
∇2
x + 2− l(l + 1)

)
H ′{µν} (3.121)

+
(
b′µ B′2µ B′1µ

)
(
∇2
A + 1− l(l + 1)

)
δµν −

√
2l(l + 1)δµν −

√
2l(l + 1)εµν

−
√

2l(l + 1)δµν
(
∇2
A + 1− l(l + 1)

)
δµν −2εµν√

2l(l + 1)εµν 2εµν
(
∇2
A + 1− l(l + 1)

)
δµν


 b′ν

B′ν2
B′ν1

 ,

where we introduced conveniently normalized fields H ′{µν} = 1√
2
H{µν}, b

′
µ = 2bµ and B′µ1/2 =√

l(l + 1)Bµ
1/2. We consistently ignored scalar fields because their couplings to AdS2 vectors

all contain ∇µb
µ or ∇µB

µ
1/2 which vanish for boundary modes.

We can diagonalize the mass matrix in Lbndy
KK above and so determine the eigenvalues of

∇2
A. The scalars that are equivalent to AdS2 tensors and vectors have masses given by the
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eigenvalues of ∇2
A + 2 and ∇2

A + 1, respectively. The eigenvectors and the corresponding

scalar masses become:

m2 = l(l + 1) : H ′{µν} , l ≥ 0 , (3.122)

m2 = l(l − 1) :

√
1 + l

1 + 2l
b′µ −

√
l

1 + 2l

1√
2

(
B′2µ + εµνB

′ν
1

)
, l ≥ 0 , (3.123)

m2 = (l + 1)(l + 2) :

√
l

1 + 2l
b′µ +

√
1 + l

1 + 2l

1√
2

(
B′2µ + εµνB

′ν
1

)
, l ≥ 1 , (3.124)

m2 = l(l + 1) + 2 :
1√
2

(
B′1µ + εµνB

′ν
2

)
, l ≥ 1 . (3.125)

The last three entries deserve some comments: the matrix in the second line of (3.121) acts

on AdS2 vectors so it is 6× 6 and it allows 6 eigenvectors. However, harmonic modes satisfy

a duality condition so, in order to avoid overcounting we should take either the eigenvector

or the dual eigenvector, not both. Since the formalism is off-shell there is some scheme-

dependence to this choice. The analogous treatment of boundary modes for BPS black holes

by Sen [8] includes all contributions and divide by two in the end. We elect instead to pick

an orthogonal set that diagonalizes the off-diagonal terms in (3.121) and cancels the ghost

tower determined below. This choice seems more physical to us but the final on-shell results

are at any rate independent of scheme.

Tensors H{µν} have degeneracy three [8, 75], therefore the boundary modes in the KK

block are 3 towers of m2 = l(l + 1) with l ≥ 0, 1 tower of m2 = l(l − 1) with l ≥ 0, 1 tower

of m2 = (l + 1)(l + 2) with l ≥ 1, and 1 tower of m2 = l(l + 1) + 2 with l ≥ 1.

In the off-shell formalism that we apply for boundary modes we must consider also the

contribution from the ghost that generates the diffeomorphism δH{µν} = ∇µξν + ∇νξµ −
gµν∇ρξρ. The ghost equation of motion follows by variation of the gauge condition under a

diffeomorphism:

δ

(
∇µ̂hµ̂ρ̂ −

1

2
∇ρ̂h

)
= 0 ⇒

(
∇2
A − 1− l(l + 1)

)
ξρ = 0 . (3.126)

Since eigenvalues of ∇2
A + 1 acting on a vector can be identified with the mass of the dual

scalar we find that the boundary ghosts have m2 = l(l+ 1) + 2, l ≥ 0 with degeneracy 2l+ 1.

These contributions effectively cancel one of the 6 towers of KK boundary modes.

Boundary modes in gravitino blocks

In the off-shell formalism that we apply to boundary modes we add the gauge fixing

term 1
2

(
Ψ̄Aµ̂Γµ̂

)
Γν̂Dν̂

(
Γρ̂ΨAρ̂

)
to the gravitino Lagrangian (3.98) and redefine the field as
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ΦAµ̂ = ΨAµ̂ − 1
2
Γµ̂Γρ̂ΨAρ̂. The Lagrangian for the gravitini then becomes

e−1δ2Lbndy
gravitino = −Φ̄Aµ̂H

µ̂ν̂
ABΦBν̂ = −Φ̄Aµ̂

[
Γρ̂Dρ̂g

µ̂ν̂ − 1

2
εAB

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)]

ΦBν̂ ,

after consistently ignoring the gaugini which do not couple to harmonic modes.

The square of the quadratic fluctuation operator H µ̂ν̂
AB is

Λµ̂ν̂
AB = H µ̂ρ̂†

ACH
ν̂
ρ̂ CB = −

(
Γρ̂Dρ̂Γ

σ̂Dσ̂ +
1

4

)
gµ̂ν̂δAB . (3.127)

Only the components of Φµ̂
A with µ̂ = µ have boundary modes. Using the partial wave

expansion Φµ
A = φµA+⊗η+φµA−⊗γSη , the equation of motion Λµν̂

ABΦBν̂ = 0 can be expanded

as

−
(
γρDργ

σDσ − (l + 1)2 +
1

4

)
φµA+ ⊗ η −

(
γρDργ

σDσ − (l + 1)2 +
1

4

)
φµA− ⊗ γSη = 0 .

Thus we find that there are 4 towers of gravitino boundary modes with identical mass squared

m2 = (l + 1)2 − 1
4
, each with the degeneracy 2l + 2.

3.3.8 Summary of the Mass Spectrum

As conclusion to this long section we summarize our results.

Blocks Bulk Modes Spectrum (h, j)

Scalar (k + 1, k)

Gaugino 2(k + 2, k + 1
2) 2(k + 1, k + 1

2)

Vector (k + 2, k) (k + 2, k + 1) (k + 1, k + 1)

Gravitino 2(k + 3, k + 1
2) 2(k + 2, k + 1

2) 2(k + 2, k + 3
2) 2(k + 1, k + 3

2)

KK (k + 3, k) (k + 3, k + 1) (k + 2, k + 1) (k + 2, k + 2) (k + 1, k + 2)

Table 3.2: Mass spectrum of bulk modes in nonBPS blocks. The label k = 0, 1, . . .

The mass spectrum (h, j) for the bulk modes is given in table 3.2. In all cases the

conformal weight h is related to an effective scalar mass as m2 = h(h − 1) for bosons or

m2 = (h− 1
2
)2 for fermions. For scalar fields m2 is the on-shell eigenvalue of ∇2

A. However,

for vectors and tensors we identify m2 as the eigenvalue of ∇2
A + 1 and ∇2

A + 2, respectively.

This is justified by the action of the operators ∇2
A + 1, ∇2

A + 2 on vectors and tensors being
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equivalent to the action of ∇2
A on the corresponding scalar field obtained by the appropriate

dualization in AdS2. Thus we can use the formula for the conformal weight (3.1) for all

bosons.

A notable feature of the results recorded in table 3.2 is that the conformal weight h is

integral in all cases. Since h is determined for each entry by solving the quadratic m2 =

h(h − 1) or m2 = (h − 1
2
)2 this is a rather nontrivial result. It requires that all effective

masses are such that the discriminant of the quadratic is a perfect square. This property

would be expected if the spectrum was organized in supermultiplets but, in the present

context, supersymmetry is entirely broken by the background. We will develop this point

further in sections 3.5 and 3.6.

The angular momentum quantum number j labels the irreducible representation of

SU(2). There are (2j + 1) states for each value of j. The values of j are integral (half-

integral) for bosons (fermions), as expected. It is interesting that, in contrast, the conformal

weight h is integral for both bosons and fermions. In our context states are not organized in

supermultiplets so there is no general expectation that h must be half-integral for fermions

but the result seems surprising nonetheless. We will also develop this point further in section

3.5.

The scalars in the vector block generally mix with the vector field. However, the vector

field does not include a spherically symmetric mode so the j = 0 sector has just one mode,

an effective 2D scalar with h = 2. A minimally coupled scalar would have h = 1, as for the

scalar block, so these scalars are non-minimally coupled even in the spherically symmetric

sector. This is an aspect of the attractor mechanism which determines the horizon value

of the scalars in the vector block as a function of the charges and therefore inhibits their

fluctuations around the preferred attractor value. This is a nonBPS version of the mechanism

familiar from BPS black holes where these fields are known as fixed scalars [91].

The analogous scalar mode in the j = 0 sector of the KK block is also interesting. It has

conformal weight h = 3. Thus the coupling between the KK scalar and gravity is stronger

than the analogous coupling between gauge fields and their scalar partners. This effect has

no analogue on the BPS branch but the h = 3 mode was previously identified for rotating

black holes [70].

Boundary modes are more subtle since they are based on harmonic modes which have no

bulk kinetic term. For these modes we worked out the full off-shell spectrum, to circumvent

any ambiguity. The result is present in terms of “masses” in table 3.3. The mass indicates

the departure from a true zero-mode so m2 is the eigenvalue appropriate for computing

functional determinants.
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Blocks Masses of Boundary Modes Degeneracy Multiplicity Range

KK m2 = l(l + 1) 2l + 1 3 l ≥ 0

KK m2 = (l − 1)l 2l + 1 1 l ≥ 0

KK m2 = (l + 1)(l + 2) 2l + 1 1 l ≥ 1

KK m2 = l(l + 1) + 2 2l + 1 1 l ≥ 1

KK m2 = l(l + 1) + 2 2l + 1 −1 l ≥ 0

Vector m2 = l(l + 1) 2l + 1 1 l ≥ 0

Gravitino m2 = (l + 1)2 − 1
4

2l + 2 4 l ≥ 0

Table 3.3: Mass spectrum of boundary modes in nonBPS blocks. (Multiplicity −1 denotes
contribution from ghosts.)

3.4 Heat Kernels

In this section we use the mass spectrum determined in the previous section to compute

the 4D heat kernel and the associated logarithmic corrections to black hole entropy. There

are three distinct contributions:

• Bulk modes : The propagating degrees of freedom summarized in table 3.2.

• Boundary modes : The global degrees of freedom due to the harmonic modes of AdS2

vectors, gravitini, and tensors. They are summarized in table 3.3.

• Zero mode corrections : On-shell boundary modes that were already counted as bound-

ary modes need corrections to their counting weights.

3.4.1 Heat Kernel Preliminaries

The action for quadratic fluctuations around a background has the generic form

S = −
∫
d4x
√
−g φnΛn

mφ
m , (3.128)

where {φn} is a complete set of fields and Λn
m is a matrix that encodes the action of quadratic

fluctuations around the background. The heat kernel of the operator Λ is then defined by

K4(s) = Tr e−sΛ =
∑
i

e−sλi , (3.129)

where {λi} is the set of eigenvalues of Λ.
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We denote the heat kernel of a massless field on AdS2 by KA(s). The result for a mode

with effective 2D mass m2 is suppressed by an additional factor e−m
2s so, upon summing

over a complete tower of states with masses m2
j and SU(2) quantum number j, we find

K4(s) = KA(s)KS(s) = KA(s)
1

4π

∑
j

(2j + 1)e−m
2
js , (3.130)

for the 4D heat kernel on AdS2×S2. The sum over the tower can be interpreted as a field on

S2 and so we divide it by the area 4π of the unit S2 and denote it by KS(s). The masses are

related to conformal weights as m2 = h(h− 1) for bosons and m2 = (h− 1
2
)2 = h(h− 1) + 1

4

for fermions.

The Laurent expansion of the heat kernel K4(s) around s = 0 generally has poles of order

s−2 and s−1, followed by a constant that we denote Kconst
4 . It is related to the central charge

a of the 4D conformal anomaly by

a = 2π2Kconst
4 . (3.131)

The other central charge c is immaterial here because the AdS2 × S2 background is confor-

mally flat.

3.4.2 Bulk Modes

All bulk bosons in 2D are represented as scalars. A massless scalar on Euclidean AdS2

has continuous eigenvalues λA = p2 + 1
4
, p ∈ R weighted by the Plancherel measure µ(p) =

p tanh(πp). It has heat kernel [74]:

Kb
A(s) =

1

2π

∞∫
0

dp p tanh (πp) exp

[
−s
(
p2 +

1

4

)]
=

1

4πs

(
1− 1

3
s+

1

15
s2 +O(s3)

)
. (3.132)

For sums over towers of modes an essential benchmark is the heat kernel of a minimally

coupled scalar on S2. The standard result from introductory quantum mechanics is that the

eigenvalues of −∇2
S are l(l+ 1) with degeneracy 2l+ 1 and range l = 0, 1. . . .. This gives the

heat kernel:

Kb
S(s) =

1

4π

∞∑
k=0

(2k + 1)e−k(k+1)s =
1

4πs

(
1 +

1

3
s+

1

15
s2 +O(s3)

)
. (3.133)
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With these results the spectrum for bulk bosons given in table 3.2 yields the following

heat kernels:

Scalar block

The scalar block is just a minimal scalar with spectrum (h, j) = (k+ 1, k) for k ≥ 0. For

bosons, we have m2 = h(h− 1) with degeneracy 2j + 1, therefore

Kscalar
4 = Kb

AK
scalar
S = Kb

A

1

4π

∑
k=0

(2k + 1)e−k(k+1)s

=
1

16π2s2

(
1 +

1

45
s2 +O(s3)

)
. (3.134)

where we used (3.133) for the sum over the tower. The constant term Kconst
4 = 1

720π2 corre-

sponds to the conformal anomaly ascalar.bulk = 1
360

according to (3.131). This is the standard

answer for a minimally coupled scalar (1 d.o.f.) [92, 93].

Vector block

The spectrum of the vector block has 3 towers: (h, j) = (k+2, k), (k+2, k+1), (k+1, k+1)

for k ≥ 0. Therefore we have

Kvector
4 = Kb

AK
vector
S

=
Kb
A

4π

(∑
k=0

(2k + 1)e−(k+1)(k+2)s +
∑
k=1

(2k + 1)
(
e−k(k+1)s + e−(k−1)ks

))

= Kb
A

1

4π

(
3
∑
k=0

(2k + 1)e−k(k+1)s

)
= 3Kscalar

4 . (3.135)

Thus the vector block (3 d.o.f.) has the same heat kernel as 3 minimally coupled scalars:

avector.bulk = 1
120

.

KK block

The spectrum of the KK block has 5 towers: (h, j) = (k+3, k), (k+3, k+1), (k+2, k+1),
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(k + 2, k + 2), (k + 1, k + 2) for k ≥ 0. Therefore we have

Kgravity
4 = Kb

AK
gravity
S

=
Kb
A

4π

(∑
k=0

(2k + 1)e−(k+2)(k+3)s +
∑
k=1

(2k + 1)
(
e−(k+1)(k+2)s + e−k(k+1)s

)
+
∑
k=2

(2k + 1)
(
e−(k−1)ks + e−(k−2)(k−1)s

))

= Kb
A

1

4π

(
5
∑
k=0

(2k + 1)e−k(k+1)s

)
= 5Kscalar

4 . (3.136)

Thus the KK block (5 d.o.f.) has the same heat kernel as 5 minimally coupled scalars:

aKK.bulk = 1
72

.

The heat kernel of a massless minimally coupled spinor (1 d.o.f.) on AdS2 is given by

[94]

Kf
A(s) = − 1

2π

∞∫
0

dp p coth (πp) exp
(
−sp2

)
= − 1

4πs

(
1 +

1

6
s− 1

60
s2 +O(s3)

)
, (3.137)

where the overall sign incorporates fermionic statistics. With this result as starting point,

the spectrum for bulk fermions given in table 3.2 yields:

Gaugino block

The spectrum of the gaugino block has 4 towers: two copies of (h, j) = (k + 2, k + 1
2
),

(k+ 1, k+ 1
2
) for k ≥ 0. For fermions we have m2 = (h− 1

2
)2 = h(h− 1) + 1

4
with degeneracy

2j + 1, therefore

Kgaugino
4 = Kf

AK
gaugino
S

= Kf
A

2

4π
e−

1
4
s

(∑
k=0

(2k + 2)e−k(k+1)s +
∑
k=1

2ke−k(k+1)s

)
= Kf

A

4

4π
e−

1
4
s
∑
k=0

(2k + 1)e−k(k+1)s

= − 1

4π2s2

(
1 +

1

4
s+

17

1440
s2 +O(s3)

)
. (3.138)

We used (3.133) for the sum over the tower, as for bosons. The constant term Kconst
4 =
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− 17
5760π2 and (3.131) give the conformal anomaly agaugino.bulk = − 17

2880
for the gaugino block

(4 d.o.f.).

Gravitino block

The spectrum of the gravitino block has 8 towers: two copies of (h, j) = (k + 3, k + 1
2
),

(k + 2, k + 1
2
), (k + 2, k + 3

2
), (k + 1, k + 3

2
) for k ≥ 0. It gives the heat kernel

Kgravitino
4 = Kf

AK
gravitino
S

= Kf
A

2

4π
e−

1
4
s

(∑
k=0

(2k + 4)e−k(k+1)s +
∑
k=1

(2k + 2)e−k(k+1)s

+
∑
k=1

2ke−k(k+1)s +
∑
k=2

(2k − 2)e−k(k+1)s

)
= Kf

A

8

4π
e−

1
4
s
∑
k=0

(2k + 1)e−k(k+1)s = 2Kgaugino
4 . (3.139)

Thus the gravitino block (8 d.o.f.) has the same heat kernel as 2 gaugino blocks: agravitino.bulk =

− 17
1440

.

It is interesting that in all cases the results are equivalent to free massless bosons or

fermions with the appropriate number of degrees of freedom. This amounts to a delicate

conspiracy between non-minimal couplings and ranges of partial wave towers. The origin of

these simplifications is not clear to us.

For N = 8 SUGRA, there are 1 KK block, 27 vector blocks, 42 minimally coupled scalars,

4 gravitino blocks, and 24 gaugino blocks. In this case the total contribution from the bulk

modes becomes:

abulk
N=8 = (5 + 27× 3 + 42)× 1

360
− (4× 2 + 24)× 17

2880
=

1

6
. (3.140)

For N = 4 SUGRA with nV matter multiplets, there are 1 KK block, (nV + 5) vector

blocks, (5nV − 4) minimally coupled scalars, 2 gravitino blocks, and 2nV gaugino blocks,

which give the bulk contribution abulk
N=4 = n+2

96
.

3.4.3 Boundary Modes

As discussed in subsection 3.3.7, boundary modes are due to the harmonic modes on

AdS2 of vectors, gravitini, and tensors. The scalar and gaugino blocks do not have bound-

ary modes. These modes are constant on the AdS2 space with (renormalized) volume 2π.
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Therefore, the heat kernel for a single boundary mode is given by

Kzero
A (s) = ± 1

2π
, (3.141)

where ± is for bosons/fermions. The contributions to the heat kernel from the entire towers

of boundary modes are then computed as follows.

Vector block

The spectrum of boundary modes for the vector block given in table 3.3 is m2
l = l(l+ 1)

with integral l ≥ 0. This is equivalent to a single scalar field on the S2. Their contribution

to the heat kernel become

Kvector.bndy
4 = Kzero

A KS

=
1

2π

1

4π

∑
k=0

(2k + 1)e−k(k+1)s

=
1

8π2s

(
1 +

1

3
s+O(s2)

)
, (3.142)

where we used the sum (3.133).

According to (3.131) the constant term in this expression gives conformal anomaly

avector.bndy = 1
12

, so, adding the bulk contribution of a single vector block avector.bulk = 1
120

from table 3.2, our explicit sum over modes gives avector.bulk+bndy = 11
120

. This agrees with the

result found in [27] using a very different method.

KK block

The boundary modes listed for the KK block in table 3.3 comprise 6 towers as well as a

single ghost tower. Their heat kernel becomes

KKK.bndy
4 =

1

2π

1

4π

(
3
∞∑
k=0

(2k + 1)e−sk(k+1) +
∞∑
k=0

(2k + 1)e−s(k−1)k

+
∞∑
k=1

(2k + 1)e−s(k+1)(k+2) + e−2s

∞∑
k=1

(2k + 1)e−sk(k+1) − e−2s

∞∑
k=0

(2k + 1)e−sk(k+1)

)

=
1

8π2

(
5
∞∑
k=0

(2k + 1)e−sk(k+1) + 2− 2e−2s

)
=

1

8π2

(
5

s
+

5

3
+

13

3
s+O(s2)

)
. (3.143)

Reading off the constant term KKK.bndy
4 we find aKK.bndy = 5

12
from (3.131). Adding the bulk

contribution aKK.bulk = 1
72

, we get aKK.bulk+bndy = 31
72

, which also agrees with the result in
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[27].

Gravitino block

According to table 3.3, the gravitino block comprises 4 towers of boundary modes with

m2
l = (l + 1)2 − 1

4
, l ≥ 0, each with degenracy 2l + 2. This spectrum gives the heat kernel

Kgravitino.bndy
4 = Kzero

A KS

= − 1

2π

4

4π

∑
k=0

(2k + 2)e−((k+1)2− 1
4)s

= − 4

8π2s

(
1− 1

6
s+O(s2)

)
e

1
4
s

= − 4

8π2s

(
1 +

1

12
s+O(s2)

)
, (3.144)

corresponding to agravitino.bndy = − 1
12

. With the bulk contribution agravitino.bulk = − 17
1440

.

Again, the sum agravitino.bulk+bndy = − 137
1440

agrees with that of [27].

For N = 8 SUGRA, there are 1 KK block, 27 vector blocks, and 4 gravitino blocks. In

this case the total contribution from the boundary modes becomes:

aboundary
N=8 = 27× 1

12
+

5

12
− 4× 1

12
=

7

3
. (3.145)

For N = 4 SUGRA with nV matter multiplets, there are 1 KK block, (nV + 5) vector

blocks and 2 gravitino blocks, which give the boundary modes contribution aboundary
N=4 = nV +8

12
.

3.4.4 Zero Mode Corrections

Almost all of the modes we encounter are suppressed in the heat kernel (3.129): their

eigenvalue is strictly positive. The zero modes are the exceptions: they are constant on

the AdS2 like all boundary modes but they are also constant on the S2; so they are zero-

modes on the full spacetime AdS2 × S2. The canonical relation between the heat kernel

and the effective action which is implicitly presumed in the formula (3.131) for the anomaly

coefficient a requires damping for large s of an integral over the Feynman parameter s and

this assumption fails in the case of zero-modes.

The correct treatment of zero-modes takes advantage of their relation to symmetries

which means their contributions to the path integral are given by integrals over the volume

of the appropriate symmetry group, rather than Gaussian integrals over damped modes [8].

Therefore, the correct contribution to the conformal anomaly a depends on the dimension of

the symmetry parameter which is ∆ = 1, 3
2
, 2 for vectors, gravitini, tensors. The heat kernel
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(3.129) includes all modes with weight 1 but the correct scaling dimension is ∆ for bosons

and 2∆ for fermions. The zero mode correction takes this effect into account.

Gauge symmetry generators have ∆ = 1 so their zero-modes are, by chance, already

accounted for correctly in the näıve heat kernel, in the sense that the formula for a (3.131)

can be trusted. Moreover, on the nonBPS branch the gravitino has no zero-modes, because

supersymmetry is entirely broken. Therefore, the KK-block is the only one affected by zero

mode corrections. For diffeomorphisms ∆ = 2 so, since they were already counted with

weight one, the contributions of these zero modes should be doubled.

In the KK block, there are in total 6 zero modes from non-normalizable diffeomorphisms

that need zero mode corrections: 3 zero modes from the AdS2 tensor H{µν} and 3 more from

the mixed vector modes (3.123) with l = 1. This gives the zero mode correction

aKK.zero = 2π2 × 6× 1

8π2
=

3

2
(3.146)

This is the same as the contribution from m2 = 0 modes to the sum (3.143) over KK

boundary modes. Thus, by adding this zero mode correction their contribution is doubled,

as it should be.

3.4.5 Summary of Anomaly Coefficients

Blocks d.o.f. abulk abndy azero abulk
+bndy atotal

Scalar 1 1
360

0 0 1
360

1
360

Gaugino 4 − 17
2880

0 0 − 17
2880

− 17
2880

Vector 3 1
120

1
12

0 11
120

11
120

Gravitino 8 − 17
1440

− 1
12

0 − 137
1440

− 137
1440

KK 5 1
72

5
12

3
2

31
72

139
72

N = 4 32 + 16nV
nV +2

96
nV +8

12
3
2

3nV +22
32

3nV +70
32

N = 8 256 1
6

7
3

3
2

5
2

4

Table 3.4: Anomaly Coefficients of the NonBPS Blocks.

As summary of this section we give our results for the anomaly coefficients a in table

3.4. The entry for boundary modes abndy includes näıve zero modes and azero denotes the

corrections determined by the more careful treatment. The sum abulk
+bndy is of interest since it

can be compared with results from the local method [27]. We find agreement for each of the
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5 type of blocks. This gives great confidence in all our computations.

3.5 Compactifications with an AdS3 Factor

In this section we consider the special case where the AdS2 × S2 geometry arises from

AdS3 × S2 with (0, 4) supersymmetry through a reduction along a direction that is nearly

null. We recover the black hole spectrum on the BPS (or nonBPS) branch depending on

whether the reduction is along the “0” (or the “4”) direction.

3.5.1 String Theory on AdS3 × S2 ×M

We consider M-theory compactified to 5D on a Calabi-Yau manifold M in the super-

gravity limit. The 5D N = 2 content of this theory was worked out in [95]. We include cases

with enhanced holonomyM = K3×T 2 andM = T 6 so, in the long distance approximation,

we effectively study 5D SUGRA with N ≥ 2 supersymmetry. It is useful to describe this

theory as N = 2 SUGRA coupled to nS = N − 2 gravitino multiplets (corresponding to

supersymmetry extended beyond N = 2) and also to N = 2 matter in nV vector multiplets

and nH hypermultiplets.

In the setting of these 5D theories we consider field configurations with magnetic fluxes

through an S2. They correspond to black string solutions in 5D that are interesting for our

purposes because, after further compactification of the string on a circle, they correspond to

black holes in 4D [96]. We focus on fluxes such that the world-volume of the 5D black strings

preserve (0, 4) supersymmetry while their gravitational description features an AdS3 × S2

near horizon geometry. Supergravity fluctuations in this background can be classified by

the quantum numbers of primary fields (hL, hR; jR), where hL is the scaling dimension with

respect to an SL(2)L isometry of AdS3 and hR, jR are the quantum number under SL(2)R

and SU(2)R isometries of AdS3 and S2, respectively.

Because the 5D black string solution preserves (0, 4) supersymmetry we can organize

its spectrum into supermultiplets. The supergravity fluctuations are all in short multiplets

characterized by chiral primaries (states with hR = jR but any hL) and their descendants

under the preserved N = 2 supersymmetry are

(hL, hR; jR) , 2(hL, hR +
1

2
; jR −

1

2
) , (hL, hR + 1; jR − 1) , (3.147)

with appropriate truncations of the multiplet for small values of jR. The short multiplet

numerically has hR = jR but we retain both notations to emphasize that these are quantum

numbers of two distinct operators. The short multiplet structure applies to all fluctuations
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in the supergravity approximation so it is common to present the black hole spectrum in

terms of the chiral primaries, with descendants under supersymmmetry (3.147) implied. A

standard computation (see e.g. [97]) yields the spectrum of chiral primaries for the AdS3×S2

compactification of 5D supergravity given in table 3.5. We want to deduce the implications

of this spectrum on AdS3 × S2 for theories on AdS2 × S2.

5D multiplets Spectrum (hL, hR, jR) of chiral primaries (hR = jR)

Hyper 2(k + 1, k + 1
2
; k + 1

2
)

Vector (k + 2, k + 1; k + 1) (k + 1, k + 1; k + 1)

Gravitino (k + 2, k + 1
2
; k + 1

2
) (k + 2, k + 3

2
; k + 3

2
) (k + 1, k + 3

2
; k + 3

2
)

Gravity (k + 3, k + 1; k + 1) (k + 2, k + 1; k + 1) (k + 2, k + 2; k + 2) (k + 1, k + 2; k + 2)

Table 3.5: The spectrum of chiral primaries on AdS3 × S2 ×M. The label k = 0, 1, . . .

3.5.2 nNull Reduction: Thermodynamics

Many versions of the reduction from AdS3/CFT2 to AdS2/CFT1 have appeared in the

literature over the years, including [85, 98–101]. However, the recent advent of nAdS2/nCFT1

correspondence [76, 102] justifies renewed scrutiny of this point.

We first describe the dimensional reduction from a thermodynamic point of view, that is

more familiar. Because of the chiral nature of CFT2’s it is useful to introduce two indepen-

dent “temperatures” TL,R that incorporate both “the” temperature T (the thermodynamic

potential for energy E = (hL + hR)/`3)

1

T
=

1

2

(
1

TL
+

1

TR

)
, (3.148)

and an independent chemical potential (the difference of “temperatures”) for the spin s =

hL − hR.

Implementing the low temperature limit T → 0 by taking TR → 0 with TL fixed, the

semiclassical entropy of the theory takes the form

S =
π2

3
(cLTL + cRTR) `3 = S0 +

1

2
πTL+O(T 2) , (3.149)

where the extremal entropy S0 = π2

3
cLTL`3 is independent of the temperature and the length

scale L = 2π
3
cR`3 that characterizes the linear term in the temperature is proportional to

the inverse mass gap of the theory [76, 103, 104]. Our normalization for the length scale L
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follows [87] and ensures that it agrees with the “long string scale” that is characteristic of

the (0, 4) models underlying microscopics of 4D black holes.

The strict extremal limit T → 0 clearly retains states of the form |anything, gs〉 where

the R-sector is in its ground state (except perhaps for a finite ground state multiplicity) and

“anything” is the origin of the extremal entropy S0. In the standard BPS limit “anything”

are the states counted by the elliptic genus.

The near extremal limit is qualitatively different: it is the theory of excitations above the

strict extremal limit T → 0. If focusses on states that take the schematic form |anything, δgs〉.
The right-moving excitations |δgs〉 are responsible for the term in the entropy (3.149) that

is linear in T . It is the spectrum of these excitations that we study.

The upshot of our discussion of near-extreme thermodynamics is that reduction from

AdS3 × S2 to AdS2 × S2 amounts to a basic prescription: simply disregard the left moving

weight hL corresponding to the “anything” that specifies the extremal state and retain the

right moving weight hR that characterizes the excitation. Simple as this algorithm may

be, it is quite unusual. The canonical set-up for Kaluza-Klein compactification considers a

small Kaluza-Klein circle S1 and finds that the low energy approximation retains only modes

that are constant on the compactification circle because higher Fourier modes on the S1 are

“heavy”. In contrast, our prescription keeps all modes on the Kaluza-Klein circle, we omit

a “momentum” quantum number rather than insisting that it vanishes.

The nNull reduction is chiral in that it (nearly) projects to either the L(eft) or the R(ight)

moving sector, depending on whether we study TL → 0 or TR → 0. Its two versions are

equivalent a priori but, when we apply the construction to the (0, 4) CFT2’s that we have

in mind, there is an asymmetry between the two chiralities. In this subsection, we elected

to focus on the nNull reduction TR → 0 that (nearly) projects on the BPS branch, since

that facilitates comparison with the literature. However, our interest in this chapter will

ultimtaely is primarily in the analogous discussion for the nonBPS branch. It follows by

interchanging L and R labels.

3.5.3 nNull Reduction: Kinematics

The thermodynamic reasoning above establishes features that reduction from AdS3/CFT2

to AdS2/CFT1 must exhibit in order to describe the facts we have established by explicit

computations in AdS2 × S2. They are not consistent with standard Kalaza-Klein reduction

on a spatial circle so their geometrical implementation must be nonstandard. In the folliow-

ing we show that they can be recovered from null reduction, i.e. “compactification” on a

null circle. The details will not only prove illuminating conceptually but also yield precise

consequences that we can test.
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A Lorentzian CFT2 on a spatial circle with radius R is obviously invariant under simul-

taneous shift of the two null coordinates xR,L = t± x by ±2πR. However, due to invariance

under a boost (with rapidity η) it is also invariant under shifts of these null coordinates

by unequal amounts ±2πRe±η. Therefore, as in the DLCQ description of M(atrix)-theory

[85, 105], there is a family of equivalent theories that all have the same fixed periodicity

of the coordinate xL but variable periodicity of xR. As this periodicity get smaller, states

with large “momentum” hR become heavy, as the intuition from standard Kaluza-Klein com-

pactification suggests. However, in contrast to the standard construction, the value of the

“momentum” hL is inconsequential in this limit.

In the language of effective quantum field theory, the nNull-reduction presents operators

in the theory as (pR
Λ

)hR−1

O(hL,hR;jR)(xL, xR) , (3.150)

where pR is the typical frequency corresponding to the xR dependence and Λ is the “R” cutoff.

The dependence on xL is inconsequential. The strict IR limit takes the cut-off Λ→∞ with

the physical momenta pL,R fixed so only operators with hR = 1 remain. These ground states

of the R sector are the BPS states in the case of a CFT2 with (0, 4) supersymmetry. These

important operators form the chiral ring of the CFT2 and they are counted by the the elliptic

genus. However, the near IR limit describes the approach to the IR limit by operators (3.150)

with hR > 1. Geometrically, this corresponds to compactification along a direction that is

nearly null. We refer to this construction as a nNull reduction.

In the nNull reduction procedure, the wave functions on AdS3 generally depend on the xL

coordinate but we are instructed to ignore this dependence and instead focus exclusively on

the R direction. Therefore, the effective 2D wave functions that follow from nNull reduction

depend on the position in AdS2. We interpret our computations directly in 2D as the

identification of this dependence.

The nNull reduction thus ignores the L sector and describes the dynamics of the R sector

as a self-contained theory. It is a consistency condition on this procedure that operators

with identical xR dependence but distinct xL dependence realize physics that is largely

independent of the latter. This is indeed the expectation: the L sector is in a thermal

state characterized by temperature TL and, according to standard arguments in statistical

mechanics, the precise state of this thermal background is inconsequential.

The situation is similar to the well-known description of quasiparticles in the effective field

theory of Fermi liquids. In that context the vast majority of the electrons reside deep under

the Fermi surface but these “typical” electrons are not the interesting ones: the nontrivial

dynamics is captured by the quasiparticles corresponding to low energy excitations on top

93



of the Fermi surface. It is consistent that the Fermi liquid theory ignores the vast number of

states under the Fermi surface as long as the quasiparticles are long lived, a condition that

is satisfied at low temperature. Similarly, in our black hole context, the coupling between

left- and right-moving sectors will also be suppressed thermally. We can interpret the small

residual interaction as the origin of Hawking radiation from the black hole [106].

3.5.4 Explicit Comparison Between AdS3 × S2 and AdS2 × S2

We can use the prescription from the preceding subsection to compare results from explicit

computations in 4D with dimensional reductions from 5D. It is important to distinguish two

cases from the 4D point of view: the BPS branch that was already discussed in the literature

[107, 108] and the nonBPS branch that this chapter analyzes in detail. They correspond to

two distinct dimensional reductions of the spectrum on AdS3 × S2. In terms of the labels

(hL, hR; jR) employed in table 3.5 for bulk 5D representations they are:

• The BPS branch: the dimensional reduction removes the hL quantum number. It is

manifest that the spectrum is organized into short multiplets of the form (3.147) also

after reduction. Starting from the 5D spectrum in table 3.5 we recover the bulk BPS

spectrum on AdS2 × S2 presented in table 3.6 for reference and comparison.

• The nonBPS branch: the reduction removes the hR quantum number from the labels

(hL, hR; jR). Thus, to find the spectrum on the nonBPS branch of AdS2 × S2 we

first augment the chiral primaries in table 3.5 with the structure of short multiplets

(3.147) and only then omit the index hR. The spectrum of primaries that follows from

this procedure retains no simplifications that can be obviously traced to supersymme-

try. Nonetheless, the result for primaries identified this way agree with our explicit

computations on AdS2 × S2 presented in table 3.2.

In the discussion of CFT2’s in this chapter we have assigned the theory (0, 4) super-

symmetry. This convention implies no loss of generality by itself but, once we have it, it

is consequential that in subsections 3.5.2 and 3.5.3 we discussed reduction along the null-

direction with label L, corresponding to the thermodynamic limit TR → 0. This choice

preserves supersymmetry so it amounts to focus the BPS branch of AdS2 × S2. The discus-

sion of the nonBPS branch is entirely analogous but, as noted in the end of subsection 3.5.2,

the labels L and R must be interchanged throughout. In the introduction we similarly opted

to assign labels L,R such that they are appropriate for the more familiar BPS branch.

With these potential confusions in mind, we spell out the details for each 5D N = 2

multiplet at a time:
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4D supermultiplet Spectrum (h, j) of BPS solutions SU(6)

Hypermultiplet 2(k + 1
2
, k + 1

2
) 4(k + 1, k) 2(k + 5

2
, k + 1

2
) 20

Vector multiplet 2(k + 1, k + 1) 4(k + 3
2
, k + 1

2
) 2(k + 2, k) 15

Gravitino multiplet 2(k + 3
2
, k + 3

2
) 4(k + 2, k + 1) 2(k + 5

2
, k + 1

2
) 6

Gravity multiplet 2(k + 2, k + 2) 4(k + 5
2
, k + 3

2
) 2(k + 3, k + 1) 1

Table 3.6: Bulk spectrum of BPS solutions. The integral label k ≥ 0. In each line the first
entry is the chiral primary and the remaining entries reflect the structure (3.147) of a short
multiplet.

• Hypermultiplet

The on-shell field content of a 5D hypermultiplet in N = 2 supergravity is two gaugini

(2× 2 d.o.f), and four scalars (4× 1 d.o.f.). On the BPS branch this amounts precisely

to a 4D hypermultiplet but on the nonBPS branch the fields split so fermions are in

one gaugino block (with two gaugini) and the bosons are in four scalar blocks (each

with one real scalar).

Table 3.5 indicates that on AdS3 × S2 an N = 2 hypermultiplet is organized in two

towers of chiral primaries that both have (hL, hR; jR) = (k + 1, k + 1
2
; k + 1

2
) where

k = 0, 1, . . .. The structure of short multiplets given in (3.147) then yields 8 towers of

primary fields with (hL, hR; jR) = 2(k + 1, k + 1
2
; k + 1

2
), 4(k + 1, k + 1; k), 2(k + 1, k +

3
2
; k − 1

2
). In the last towers the entry with k = 0 is empty so we may replace these

tower with 2(k + 2, k + 5
2
; k + 1

2
) with k = 0, 1, . . ..

Dimensional reduction to the BPS branch of AdS2×S2 simply omits hL. The resulting

8 towers indeed reproduce the BPS spectrum found directly in 4D that is summarized

in table 3.6 [97, 109].

On the nonBPS branch we must instead remove the quantum number hR. This results

in 4 bosonic towers with the quantum numbers given in table 3.2 for a scalar block,

i.e. a minimally coupled scalar field. Importantly, it also gives 4 fermion towers with

the assignments previously found for a gaugino block on the nonBPS branch.

• Vector multiplet

The on-shell field content of a 5D vector multiplet in N = 2 supergravity is one 5D

vector field (3 d.o.f.), two gaugini (2× 2 d.o.f), and one scalar (1 d.o.f.). Dimensional

reduction of a 5D vector field gives a 4D vector field and a real scalar so an N = 2
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vector multiplet in 5D corresponds to an N = 2 vector multiplet in 4D on the BPS

branch, comprising one 4D vector, two gaugini and a complex scalar. On the nonBPS

branch these 8 degrees of freedom are organized into one vector block (a 4D vector

plus one real scalar), one gaugino block (two gaugini), and one scalar block (one real

scalar).

On AdS3 × S2 an N = 2 vector multiplet gives chiral primaries that, according to

table 3.5, are organized in two towers with (hL, hR; jR) = (k + 2, k + 1; k + 1) and

(k + 1, k + 1; k + 1) where k = 0, 1, . . .. The structure of short multiplets given in

(3.147) then yields 8 towers of primary fields.

On the BPS branch our algorithm instructs us to omit the hL index so it is immediately

clear that the reduction of the 5D spectrum to AdS2×S2 yields two copies of (hR; jR) =

(k + 1; k + 1), each with the descendants prescribed by (3.147). This agrees with the

BPS result exhibited in table 3.6.

The nonBPS branch is less familiar, but equally simple. Upon omission of the quantum

number hR, the 8 aforementioned towers of primary fields each give unambiguous values

for the pair (hL, jR). The quantum numbers found by this procedure can be organized

into the sum of the spectra presented in table 3.2 for a vector block, a gaugino block,

and a scalar block.

• Gravitino multiplet

The 5D gravitino multiplet consists of one 5D gravitino (4 d.o.f.), two 5D vectors

(2 × 3 d.o.f.) and a gaugino (2 d.o.f.). Dimensional reduction of a 5D gravitino

gives a gravitino and a gaugino in 4D. An N = 2 gravitino multiplet in 5D therefore

corresponds to one 4D gravitino, two 4D vectors, two gaugini, and two scalars. On the

BPS branch these fields amount to the sum of an N = 2 gravitino multiplet and an

N = 2 1
2
-hypermultiplet in 4D. However, on the nonBPS branch, they decompose as

the sum of half a gravitino block (one gravitino plus one gaugino in 4D), two vector

blocks (two vectors plus two scalars in 4D) and half a gaugino block (one gaugino).

The 5D quantum numbers on AdS3×S2 given in table 3.5 indeed reduce to the sum of

a gravitino multiplet and half a hypermultiplet entries given for the 4D BPS branch in

table 3.6, upon omission of the hL index. After omission of the hR index they similarly

agree with the sum of half a gravitino block, two vector blocks, and half a gaugino

block given for the 4D nonBPS branch in table 3.2 .

• Gravity multiplet

The gravity multiplet in 5D N = 2 SUGRA consists of the 5D graviton (5 d.o.f.), two
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5D gravitini (2× 4 d.o.f), and the 5D graviphoton (3 d.o.f). On the BPS branch these

fields are represented in 4D as the sum of an N = 2 gravity multiplet (4+4 d.o.f.) and

an N = 2 vector multiplet (4 + 4 d.o.f.). On the nonBPS branch, they are represented

instead as the sum of a KK-block (5 d.o.f.), one gravitino block (2× 4 d.o.f), and a 4D

vector block (3 d.o.f).

The 5D quantum numbers on AdS3 × S2 given in table 3.5 for the gravity multiplet

indeed reduce to the sum of the gravity and hypermultiplet entries given for the 4D

BPS branch in table 3.6, upon omission of the hL index. After omitting the hR index

they similarly agree with the sum of a KK block, two gravitino blocks, and a vector

block given for the 4D nonBPS branch in table 3.2.

It is interesting that the decomposition into decoupled blocks on the nonBPS branch

faithfully reflect their 5D origin: the 5D graviton reduces to the KK block, the two 5D

gravitini reduce to a gravitino block, and the 5D vector field reduces to the vector block.

The dimensional reduction from 5D to 4D illuminates the unsettling feature that fermions

on the nonBPS branch all have integral conformal weight in AdS2. A 5D spinor on AdS3×S2

has half-integral spin on AdS3 and S2 independently. Projection of the half-integral spin

vector in AdS3 on to the periodic spatial coordinate give a half-integral value of s = hL−hR.

Since hR is tied by supersymmetry to the half-integral spin jR on S2 it must be that hL is

integral. Since the reduction from AdS3 to AdS2 on the nonBPS branch omits hR we see that

“the” conformal weight on AdS2 is the integral hL. The integral weights in 2D are therefore

perfectly consistent with the spin-statistics theorem. Indeed, on the nonBPS branch they

are required by its 5D version.

Theories on AdS2×S2 that arise through dimensional reduction from AdS3×S2 are not

the most general ones, specific assumptions on the moduli of the 5D theory must be imposed.

However, for the purpose of computing primary fields in supergravity, this situation does not

imply any limitations. This is obvious from a practical point of view: there is a canonical

equivalence between the allowed supermultiplets of N = 2 supergravity in 4D and in 5D to

the extent that, allowing ourselves some abuse of terminology, we apply identical names to

analogous representations in 4D and in 5D: supergravity, gravitino, vector, hyper. Therefore,

since consistency requires that the black hole spectrum agrees for the AdS2×S2 theories that

descend from AdS3×S2, it must in fact agree for all black holes. A more abstract approach

reaches the same conclusion: since chiral primaries are robust under motions in moduli space

it is sufficient to establish the correspondence when AdS2×S2 descends from AdS3×S2 and

then we can conclude that the chiral primaries determined these two ways must agree. From

either point of view our explicit computation of the black hole spectrum on the nonBPS

branch at some level amounts to a consistency check, albeit a rather nontrivial one.
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3.6 Global Supersymmetry

Although our focus is on black holes that do not preserve any supersymmetry it is sig-

nificant that they are solutions to supergravity. One aspect of this setting is that a remnant

of the symmetry persists in the spectrum where it acts as a global supersymmetry.

3.6.1 Global Supercharges: the BPS Branch of N=8 Theory

Recall that on the BPS branch there are two spinors ε1,2 such that the supersymmetry

transformation (3.8) vanishes. This indicates preserved local supersymmetry and forces the

black hole spectrum into short multiplets with the structure (3.147). The nonBPS branch

has no analogous symmetries and so its spectrum is not organized into short multiplets.

However, on both branches we can exploit the global part of supersymmetry, i.e. the actions

of the transformations (3.8) (and analogous actions on the bosons) that do not depend on

spacetime position.

On the BPS branch of N = 8 SUGRA the R-symmetry is partially broken as SU(8)R →
SU(2)R × SU(6). The 2 preserved and the 6 broken supersymmetries transform as (2,1)

and (1,6) under the unbroken SU(2)R × SU(6). In this section we write the generators of

the broken supersymmetry as Q
( 1

2
, 1
2

)

A where superscripts refer to (hR, jR) and A is an SU(6)

index. These global supersymmetries (anti)commute with the preserved ones so they leave

the structure (3.147) of short multiplets intact.

The chiral primaries are the first entries in each line of table 3.6. Their multiplicities 20,

15, 6, 1 can be identified with dimensions of SU(6) representations. For example, the towers

of hypermultiplets are in the antisymmetric 3-tensor of SU(6) and their chiral primaries are

gaugini with quantum numbers (hR, jR) = (k + 1
2
, k + 1

2
) that we can write as ΛABC

(k+ 1
2
,k+ 1

2
)
.

With this notation the obvious contractions

V AB
(k+1,k+1) = Q

( 1
2
, 1
2

)

C ΛABC
(k+ 1

2
,k+ 1

2
)
, (3.151)

SA
(k+ 3

2
,k+ 3

2
)

=
1

2
Q

( 1
2
, 1
2

)

B Q
( 1

2
, 1
2

)

C ΛABC
(k+ 1

2
,k+ 1

2
)
, (3.152)

G(k+2,k+2) =
1

6
Q

( 1
2
, 1
2

)

A Q
( 1

2
, 1
2

)

B Q
( 1

2
, 1
2

)

C ΛABC
(k+ 1

2
,k+ 1

2
)
, (3.153)

reproduce the remaining chiral primaries in table 3.6. In each case indices indicate (hR, jR)

so note that, while generally an SU(2) quantum number j can combine with the jR = 1
2

of

the supercharge and give j± 1
2
, for the broken supersymmetry we select just the upper sign.

This defines global supersymmetry as an operator in the ring of chiral primary fields.
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3.6.2 Global Supercharges: the nonBPS Branch of N=8 Theory

We now apply the analogous considerations to the nonBPS branch of N = 8 SUGRA.

In this case the local supersymmetry is entirely broken but we can exploit the global super-

symmetry that remains. Its manifestation is a set of global charges Q
(0, 1

2
)

A where the index

A denotes the fundamental representation of the preserved global USp(8) symmetry and,

as usual, (hL, jR) = (0, 1
2
) denote the SL(2) × SU(2) quantum numbers of the AdS2 × S2

isometries.

We start with the 42 moduli, the minimally coupled real scalar fields assembled in a 42 of

the global USp(8). We denote this antisymmetric four-tensor of USp(8) as WABCD
(k+1,k). Upon

action with the global supercharges we find

Q
(0, 1

2
)

A WABCD
(k+1,k) = ΛBCD

(k+1,k+ 1
2

)
⊕ ΛBCD

(k+2,k+ 1
2

)
. (3.154)

In this formula, and generally on the nonBPS branch, we refer by definition to an entire

tower with indices k = 0, 1, . . .. In other words, for a given value of k the product of the

SU(2) representations jR = k and jR = 1
2

generally allows the values jR = k ± 1
2
. However,

in the special case of k = 0 the option of “-” is absent so, for the second tower in (3.154),

we must shift the indices k → k+ 1. We stress that, on the nonBPS branch, we take towers

for both the “+” and “−” of jR = k ± 1
2
. This is in contrast with the BPS branch where

multiplets are shortened so that only the “−” applies for preserved supersymmetries and

only the “+” is active for broken supersymmetries. In the context of the global symmetry

group USp(8), the contraction of the antisymmetric four-tensor 42 with the supercharge

yields an antisymmetric three-tensor 48. Thus the gaugino spectrum (3.154) agrees with the

one we find by explicit computation in section 3.3 and summarized in table 3.2.

Action with two global supercharges on the minimal scalar fields similarly gives

Q
(0, 1

2
)

A Q
(0, 1

2
)

B WABCD
(k+1,k) = V CD

(k+2,k) ⊕ V CD
(k+2,k+1) ⊕ V CD

(k+1,k+1) . (3.155)

Since supercharges anticommute and the fields are antisymmetric in the indices A,B, . . .,

the product of the global supersymmetries is effectively symmetric and so corresponds to

spin 1. Generically the product of spin 1 and spin k gives three towers with spin k + 1, k,

and k− 1. However, for k = 0 there is obviously just one tower in this product so, according

to our convention that the index k has range k = 0, 1, . . ., we redefined the label k → k + 1

in the first two towers of (3.155). Since the two USp(8) indices of the fields V CD place the

fields in the 27 of USp(8) we recover the spectrum of a vector block reported in table 3.2,

as claimed.
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For three global supercharges we similarly reason that, when acting on an antisymmetric

representation, we effectively multiply spin k of the scalar field with spin 3
2

of the generators.

This gives the decomposition

Q
(0, 1

2
)

A Q
(0, 1

2
)

B Q
(0, 1

2
)

C WABCD
(k+1,k) = SD

(k+3,k+ 1
2

)
⊕ SD

(k+2,k+ 1
2

)
⊕ SD

(k+2,k+ 3
2

)
⊕ SD

(k+1,k+ 3
2

)
. (3.156)

The smallest values are easily checked by hand: the hL = 1 state in WABCD
(k+1,k) has jR = 0 so,

after taking the product with spin 3
2

of the generators, we find that the hL = 1 level has just

one state and that state has jR = 3
2
. The only hL = 1 on the right hand side is the fourth

term for k = 0 and this term indeed has jR = 3
2
. Similarly, the hL = 2 states on the left hand

side arise from the spin composition 3
2
⊗ 1 = 1

2
⊕ 3

2
⊕ 5

2
, in agreement with the jR values of

the k = 0 states in the 2nd and 3rd tower and the k = 1 state in the 4th tower. The result

for the spectrum (3.156) generated by global supersymmetry agrees with that given in table

3.2 for half a gravitino block.

Finally, we act with four global supercharges and get

Q
(0, 1

2
)

A Q
(0, 1

2
)

B Q
(0, 1

2
)

C Q
(0, 1

2
)

D WABCD
(k+1,k) = G(k+3,k) ⊕G(k+3,k+1) ⊕G(k+2,k+1) ⊕G(k+2,k+2) ⊕G(k+1,k+2) .

We find the structure of the right hand side by multiplication of spin 2 and spin k, and then

adjust the indices on states with hL = 1 and hL = 2 following the model from the preceding

paragraph. Our result matches the spectrum of the KK block given in table 3.2, as expected.

3.6.3 Global Supercharges in AdS3

We have shown that the black hole spectrum on the BPS branch is generated by global

supercharges Q
( 1

2
, 1
2

)

A while on the nonBPS branch it is organized by Q
(0, 1

2
)

A . It is interesting

to inquire whether these charges acting on the AdS2 spectra can descend from AdS3.

The AdS3 × S2 near horizon geometry of triply self-intersecting strings in 5D N = 8

theory [56, 110] features a supercharge of the form Q
(0, 1

2
; 1
2

)

A where (hL, hR; jR) = (0, 1
2
; 1

2
).

According to the rules for dimensional reduction introduced in section 3.5.2 omission of hL

yields the BPS branch while omission of hR gives the nonBPS branch. Therefore, a single

AdS3 supercharge gives appropriate supercharges on both branches of the AdS2 theory. This

construction explains the unusual feature that the supercharge on the nonBPS branch has

h = 0. This is possible because the energy hR is unimportant after the reduction to the

nonBPS branch and is closely related to the reason that fermions have integral conformal

weights.

However, the global symmetry encoded in the index A is not entirely clear. The moduli

space of AdS3 × S2 vacua in 5D N = 8 SUGRA is F4(4)/USp(2) × USp(6) [110] and from
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this perspective the index A transforms according to the USp(2) × USp(6) group in the

denominator. Upon dimensional reduction to AdS2 × S2 this global symmetry must be

enhanced to SU(2) × SU(6) (on the BPS branch) or USp(8) (on the nonBPS branch). It

is unsurprising that the global symmetry is enhanced upon restriction to one sector or the

other but the details have confusing aspects (see [56, 57] for discussion).

3.6.4 Global Supersymmetry in the N = 4 Theory: the nonBPS Branch

It is also interesting to determine the global supersymmetry realized by the spectrum of

nonBPS black holes in N = 4 SUGRA with nV matter multiplets. The situation is similar

to N = 8 SUGRA but for N = 4 SUGRA the entire spectrum is not unified into a single

representation so we encounter several distinct multiplets.

The structure of global symmetries for the nonBPS branch of N = 4 SUGRA with nV

matter multiplets was summarized in table 3.1. The black hole breaks the global symmetry

group of the theory SU(4)R × SO(nV )matter to USp(4) × SO(nV − 1)matter so the global

supercharges Q
(0, 1

2
)

A have USp(4) index A.

• N = 4 superKK Vector Blocks

There are nV − 1 decoupled blocks in the fundamental of the SO(nV − 1) global

symmetry. Each superKK vector block has field content of 5 scalar blocks, 4 1
2

gaugino

blocks, and 1 vector block. Table 3.2 gives their spectrum as

5(k + 1, k)

4(k + 2, k + 1
2
) , 4(k + 1, k + 1

2
)

(k + 2, k) , (k + 2, k + 1) , (k + 1, k + 1) . (3.157)

We can fit this spectrum into a supermultiplet generated by global supercharges Q
(0, 1

2
)

A

acting once or twice on a scalar block WAB in the 5 of USp(4). The spin-1 USp(4)

singlet ΩABQ
(0, 1

2
)

A Q
(0, 1

2
)

B acts trivially in this representation.

• The N = 4 SuperKK Gravity Block.

This is the minimal theory with a KK solution: N = 4 SUGRA with nV = 1 vector

multiplets. Our discussion in section 3.2 decomposes the N = 4 matter content into

fields that decouple in the KK background: 1 KK block, 4 1
2

gravitino blocks, 6 vector

blocks, 4 1
2

gaugino blocks, and 1 scalar block. Boldfaced letters refers not only to

the multiplicity but also to the USp(4) representation. These fields are all singlets of

SO(nV − 1) so there is just one N = 4 superKK-block, as expected because gravity is
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unique. Table 3.2 gives their spectrum as

(k + 1, k)

4(k + 2, k + 1
2
) , 4(k + 1, k + 1

2
)

6(k + 2, k) , 6(k + 2, k + 1) , 6(k + 1, k + 1)

4(k + 3, k + 1
2
) , 4(k + 2, k + 1

2
) , 4(k + 2, k + 3

2
) , 4(k + 1, k + 3

2
)

(k + 3, k) , (k + 3, k + 1) , (k + 2, k + 1) , (k + 2, k + 2) , (k + 1, k + 2) .

We can fit all these fields into a tower of supermultiplets generated by supercharges

Q
(0, 1

2
)

A . Antisymmetric representations formed by tensoring 0, 1, 2, 3, 4 vectors under the

global USp(4) (labelled by 0, 1, 2, 3, 4 indices A,B, . . .) account for the degeneracies

1,4,6,4,1. The middle entry is reducible as an USp(4) representation 6 = 5 ⊕ 1.

However, both components are kept when the singlet ΩABQ
(0, 1

2
)

A Q
(0, 1

2
)

B is represented

nontrivially. Moreover, symmetric combinations of 0, 1, 2, 3, 4 supercharges of this form

transform as spin 0, 1
2
, 1, 3

2
, 2. These spins act on the first line of the equation using the

standard product rule of angular momenta and, after compensating for missing entries

with small spin by adjusting the index k so k = 0, 1, . . . in all cases, the remaining lines

follow precisely.
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CHAPTER IV

AdS5 Black Hole Entropy near the BPS Limit

4.1 Introduction and Summary

The microscopic understanding of black hole entropy is the linchpin for progress in quan-

tum gravity. However, studies of black hole entropy have been quantitatively successful only

in a few systems with a high degree of supersymmetry, e.g. [5, 111]. Such settings offer

great control but they appear far removed from the studies of black hole dynamics that is

focus of much current research, such as the study of the SYK model, e.g. [76, 112, 113] or

other fashionable spects of holography e.g. [114–116]. The main motivation for this chapter

is to develop an arena that has the potential to bridge this gap. Our strategy is to leverage

results on BPS ground states established in 4d N = 4 SYM to study the nearBPS properties

of these systems as well.

Supersymmetric black holes in AdS5 offer a particularly important setting for the study of

holography. The relevant classical geometries have been known for quite some time [20–23].

It is an unfortunate technical complication that these black hole solutions are necessarily

somewhat complicated. For example, all supersymmetric AdS5 black holes with regular event

horizon must rotate. On the other hand, the entropy of these black holes is relatively simple

[117]:

S = 2π

√
Q1Q2 +Q2Q3 +Q3Q1 −

1

2
N2(J1 + J2) , (4.1)

where QI (with I = 1, 2, 3) denote the R-charges and Ji (with i = 1, 2) the angular momenta

within AdS5. The conserved charges of supersymmetric AdS black holes must satisfy not

only a conventional BPS mass condition

M =
3∑
I=1

QI +
2∑
i=1

Ji , (4.2)
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but also a certain nonlinear constraint.

Q1Q2Q3 +
1

2
N2J1J2 =

(
1

2
N2 +Q1 +Q2 +Q3

)(
Q1Q2 +Q2Q3 +Q3Q1 −

1

2
N2(J1 + J2)

)
.

(4.3)

The full significance of the constraint is somewhat mysterious. On the gravity side, some

researchers impose it as the condition that closed timelike curves are absent. In subsection

4.2.2 we show that it follows from the BPS condition (4.2) without any additional assump-

tions.

It was long thought that supersymmetric indices fail at counting the BPS states underly-

ing the entropy of supersymmetric AdS5 black holes. For example, all possible indices were

constructed [118] and their growth was estimated as O(1). This result was interpreted as

due to large cancellations in the partition function that preclude the O(N2) growth that is

needed to account for the black hole entropy. Further work included [119–121].

There has been progress on this research direction over the last few years. A central

insight was the recasting of the entropy (4.1) and the constraint (4.3) in terms of the free

energy [122]:

ln Z = −1

2
N2 ∆̃1∆̃2∆̃3

ω̃1ω̃2

, (4.4)

with the potentials satisfying a complex constraint. A straightforward Legendre transform

of this expression from the potentials for R-charge ∆I and the rotational velocities ωi gives

the entropy (4.1). Moreover, the constraint (4.3) on charges follows in the process, from a

reality condition on the entropy. Subsequently, the free energy (4.4) and its accompanying

constraint were derived from the on-shell action of supergravity [24]. These results (and their

generalizations to other dimensions) appear deeply interrelated with the supersymmetric

Casimir energy [123, 124] and its relation to anomalies [125, 126].

Over the last few months several microscopic derivations of the BPS entropy of AdS5

black holes have been presented:

• Supersymmetric Localization [24]. This ab initio computation is principled: the central

point is the deformation of the path integral away from the physical surface while

preserving fermion boundary conditions consistent with supersymmetry. However,

the argument relies on a somewhat mysterious “generalized supersymmetric Casimir

energy” that relates the supersymmetric partition function (which is of order O(N2))

and the supersymmetric index (which is of order O(1)).

• Free Field Construction [25]. This is the simplest derivation by far, involving nothing

but the free field representation of N = 4 SYM at vanishing coupling. However, it is
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not clear to us that the computation is justified in the regime where it is applied.

• Superconformal Index [26]. This computation relies on the earlier rewriting of the

N = 4 SYM localization on S1 × S3 in terms of a complex integral over a circle, with

poles inside the disc determined by certain Bethe Ansatz equations [127]. Manipulating

the contour and taking advantage of known poles of the integrand [128, 129], the free

energy (4.4) is extracted from the supersymmetric index. This derivation is the most

rigorous but it is technically more involved and was so far completed only for simplified

values of the angular momenta.

A key technical feature of all these derivations is that they invoke complexified potentials ∆I ,

ωi in an essential manner. However, it is not obvious to us that the details of these papers

are consistent with one another 1. Further research prompted by [24–26] has generalized

details of the results in various directions [131–138] but no consensus has emerged yet.

Summary of this Chapter

In this chapter we take the substantiation of the BPS free energy (4.4) for granted. Given

that basis, we make a significant leap and study the entropy of AdS5 black holes away from

the supersymmetric limit. We develop both gravitational and microscopic considerations,

and we find several new agreements between these holographically dual descriptions. Our

success in this direction develops the emerging microscopics of AdS5 black holes directly in

the regime that is physically relevant.

It is important to recognize that AdS5 black holes allow two distinct deformations away

from the BPS limit. Conceptually, the extremal limit M = Mext indicates the lowest possible

mass for given conserved charges. The low lying excitations with energy M in the range

0 < M −Mext �Mext are characterized quantitatively by the low temperature behavior

M −Mext =
1

2

(
CT
T

)
T 2 , (4.5)

where CT is the specific heat.2 The regime where this mass formula applies is also studied

in research inspired by the SYK model [112, 113], such as [76, 87, 102, 104].

However, in the context of AdS5 black holes, it is equally possible to consider excitations

away from the BPS limit that remain on the extremal surface M = Mext but with the

1For some discussions see [24, 130].
2The specific heat CT at low temperature is proportional to the temperature so the combination CT

T is

a constant in the regime we study. In our notation CT
T is the coefficient in front of 1

2T
2, evaluated with all

charges QI , Ji kept fixed. Some might refer to this variable as CQ,J but that is not what we do.

105



conserved charges QI , Ji taking values that violate the constraint (4.3). We find that such

excitations have mass

M −MBPS =
1

2

(
Cϕ
T

) (
ϕ

2π`5

)2

, (4.6)

where ϕ is a potential parametrizing departures from the BPS surface that preserve ex-

tremality and so have T = 0. The coefficient Cϕ is the capacitance of the black hole. 3 We

give the precise relation between the deformations ϕ within the extremal surface and the

generic potentials ∆I , ωi in (4.137) with T = 0. To complete the set of parameters describing

linear response we also introduce a thermoelectric coefficient CE that quantifies the interplay

between the temperature T and the potential ϕ.

The computation of the response parameters CT , Cϕ, and CE is conceptually straightfor-

ward on the supergravity side, albeit not trivial from a technical point of view. Surprisingly,

we find that the heat capacity and the capacitance are identical

CT = Cϕ. (4.7)

Each of these physical quantities are quite nontrivial functions of black hole parameters so

this agreement can hardly be an accident. They may be related by the broken supersymmetry

but the realization of this mechanism in supergravity is not entirely straightforward and we

did not pursue it here. Whatever its origin, this type of relation is novel and interesting in

N = 4 SYM.

On the microscopic side any progress may seem implausible because advances in the

BPS limit rely heavily on supersymmetry, not to mention that they face some unresolved

questions. However, the nonrenormalization due to supersymmetry may well generalize to

the linear order that we study. Certainly the low temperature heat capacity is subject to a

nAttractor mechanism [87] so CT
T

can be interpreted as a symmetry breaking parameter of

scale invariance and Cϕ
T

as its partner under broken extended supersymmetry. It is therefore

reasonable to expect that the parameters we compute are protected. Although we have

not worked out a detailed argument in the present context we note that the mass terms

depending quadratically on potentials were previously derived from BPS considerations in

the case of asymptotically flat black holes [56, 139].

In our microscopic computations we proceed pragmatically. The BPS free energy (4.4)

is justified only in the strict supersymmetric limit but smoothness is sufficient to find the

linear dependence on temperature even away from the BPS limit. Moreover, our gravitational

3It is admittedly
Cϕ
T that is the capacitance according to the definition (4.5) and standard terminology

in electrodynamics. We find this abuse of language an acceptable price for making the symmetry between
CT and Cϕ manifest.
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study motivates relaxing the constraint imposed by supersymmetry as well. It is satisfying

that the two independent deformations combine nicely, to a complex parameter ϕ + 2πiT .

With these minimal and conservative ingredients we recover gravitational results through a

Legendre transform.

This chapter is organized as follows. In section 4.2 we develop the gravitational thermo-

dynamics of nearBPS AdS5 black holes. We carefully distinguish between the near-extremal

limit and the extremal nearBPS limit, and we study their interplay. In section 4.3 we review

the partition function of N = 4 SYM in the free field limit, which can be written as a matrix

model. We derive the free energy (4.4) from its leading contribution in the large-N and low-

temperature limit. In section 4.4 we study the resulting AdS5 black hole entropy function.

We derive some of its implications beyond the regime where it was originally derived, by

relaxing constraints on potentials and exploiting general principles such as the first law of

thermodynamics. This leads to statistical physics of nearBPS AdS5 black holes that agrees

with results from the gravity side. Some open questions and future directions are discussed

in section 4.5.

4.2 Black Hole Thermodynamics

In this section we develop the thermodynamics of AdS5 nearBPS black holes. As bench-

marks, we first review the general AdS5 thermodynamics and its BPS limit. We then study

small but finite deviations from the strict BPS limit by allowing for temperature and for

physical charges that violate the constraint. Specifically, in subsection 4.2.3 we consider the

near-extremal regime (the mass exceeding the BPS value but the constraint between charges

retained), in subsection 4.2.4 we study the extremal nearBPS regime (keep vanishing tem-

perature but allow for small violations of the charge constraint), and then in subsection 4.2.5

we take on the general two-parameter deviations from the BPS surface.

The general AdS5 black hole solution (for any M , QI , Ji) is known [23] but has not been

analyzed in much detail [140]. In this section we follow most of the literature and focus on

diagonal R-charges Q1 = Q2 = Q3.

4.2.1 General AdS5 Black Holes

We consider the most general charged rotating black holes in five-dimensional minimal

gauged supergravity [22]. The solutions are identified by the mass M , the charge Q, and

two independent angular momenta Ji (with i = 1, 2). These physical quantum numbers are
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parametrized by four variables (m, q, a, b) as

M =
π

4G5

m(2Ξa + 2Ξb − ΞaΞb) + 2qabg2(Ξa + Ξb)

Ξ2
aΞ

2
b

, (4.8)

Q =
π

4G5

q

ΞaΞb

, (4.9)

J1 =
π

4G5

2ma+ qb(1 + a2g2)

Ξ2
aΞb

, (4.10)

J2 =
π

4G5

2mb+ qa(1 + b2g2)

ΞaΞ2
b

. (4.11)

Here G5 is Newton’s gravitational constant in five dimensions, the coupling of gauged super-

gravity g = `−1
5 with `5 the AdS5 radius, and

Ξa ≡ 1− a2g2 , Ξb ≡ 1− b2g2 . (4.12)

The coordinate r+ that locates the event horizon is the largest real root of ∆r = 0, where

∆r is given by

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m . (4.13)

We can expresses m in terms of r2
+ and other variables using this equation. Thus the

temperature and entropy are presented conveniently in terms of (r+, q, a, b). They are

T =
r4

+[1 + g2(2r2
+ + a2 + b2)]− (ab+ q)2

2πr+[(r2
+ + a2)(r2

+ + b2) + abq]
, (4.14)

S = 2π
π

4G5

(r2
+ + a2)(r2

+ + b2) + abq

(1− a2g2)(1− b2g2)r+

. (4.15)

The electric potential and angular velocities on the horizon are given in the same notation

by

Φ =
3qr2

+

(r2
+ + a2)(r2

+ + b2) + abq
,

Ω1 =
a(r2

+ + b2)(1 + g2r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
,

Ω2 =
b(r2

+ + a2)(1 + g2r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
.

(4.16)
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4.2.2 BPS AdS5 Black Holes

The general black holes introduced in the previous subsection depend on independent

physical variables (M,Q, J1, J2). Supersymmetry of the theory guarantees that their mass

satisfies

M − (3Q+ gJ1 + gJ2) ≥ 0 .

The BPS black holes saturate this inequality so their mass M is given by the BPS condition

M∗ = 3Q∗ + g(J∗1 + J∗2 ) . (4.17)

We use the starred symbols (M∗, Q∗, J∗1 , J
∗
2 ) instead of (M,Q, J1, J2) when we stress that

the variables refer to the BPS case. 4

The general formula for the mass can be written as

M − (3Q+ gJ1 + gJ2) =
π

4G5

3 + (a+ b)g − abg2

(1− ag)(1 + ag)2(1− bg)(1 + bg)2
[m− q(1 + g(a+ b)] ,

(4.18)

in terms of the parameters (m, q, a, b). The coefficient in front of the square bracket is always

positive, so the physical BPS condition (4.17) is equivalent to the relation

q∗ =
m∗

1 + ag + bg
. (4.19)

It turns out that once we saturate the BPS bound we must further impose a constraint

between the black hole charges. This constraint takes the form

q∗ =
1

g
(a+ b)(1 + ag)(1 + bg) , (4.20)

when expressed in terms of the parameters (q, a, b). When the BPS conditions (4.19-4.20)

are imposed, the largest root r+ of the horizon equation ∆r(r+) = 0 where ∆r is given in

(4.13) is a double root that has the simple value:

r∗ ≡ r+ =

√
1

g
(a+ b+ abg) . (4.21)

It is important to stress that the constraint (4.20) is a consequence of the BPS mass for-

mula (4.17) rather than an additional requirement due to an independent physical principle.

4The star must not be confused with complex conjugation.
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To see this, we rewrite the horizon equation ∆r(r+) = 0 as

m− q[1 + g(a+ b)] =
1

2r2
+

(r2
+ − r2

∗)
2 +

1

2

[
(1 + g(a+ b))2(r2

+ − r2
∗)− (q − q∗)

]2
, (4.22)

without any restrictions on black hole parameters (m, q, a, b). It follows from (4.18) that

the left hand side of this equation vanishes when the physical BPS bound is saturated.

Since the right hand side is the sum of two complete squares we then establish the constraint

(4.20) without further assumptions, along with finding the coordinate position of the horizon

(4.21). Thus saturation of the BPS bound implies both the BPS mass formula (4.17) and

the constraint. 5

The two conditions (4.19-4.20) that must be satisfied by BPS black holes together yield

starred variables (m∗, q∗) that are specified functions of the “rotation” parameters (a, b). It

is therefore convenient to pick (a, b) as the two independent coordinates on the BPS surface.

This choice gives the physical variables:

M∗ =
π

4G5

(3(a+ b)− (a3 + b3)g2 − ab(a+ b)2g3)

g(1− ag)2(1− bg)2
, (4.23)

Q∗ =
π

4G5

a+ b

g(1− ag)(1− bg)
, (4.24)

J∗1 =
π

4G5

(a+ b)(2a+ b+ abg)

g(1− ag)2(1− bg)
, (4.25)

J∗2 =
π

4G5

(a+ b)(a+ 2b+ abg)

g(1− ag)(1− bg)2
. (4.26)

These expressions satisfy the BPS condition (4.17) for any (a, b), as they must.

For BPS black holes the mass M∗ is never an independent parameter and in our setting

it is the linear function (4.17) of the other charges. It is a less familiar feature that the

condition (4.20) imposes an additional relation. This is the reason that the three conserved

charges Q∗, J∗1,2 (4.24 - 4.26) are expressed in terms of just two coordinates (a, b) on the

BPS surface. It means these charges are not independent in the BPS limit, they satisfy the

constraint:

Q∗3 +
π

4G5

J∗1J
∗
2 =

(
π

4g2G5

+ 3Q∗
)(

3Q∗2 − π

4gG5

(J∗1 + J∗2 )

)
. (4.27)

5Specifically, we do not appeal to the absence of closed time-like curves (CTCs). It was shown in [22] that
black holes satisfying both the BPS condition (4.19) and the constraint (4.20) do not have CTCs outside
the event horizon. On the other hand, supersymmetric “solutions” satisfying M = ±3Q ± gJ1 ± gJ2 with
positive charges Q, J1,2 do have CTCs unless all signs are “+” [141]. Regular black holes correspond to “all
+” so CTCs do not play any role and the supersymmetry algebra is sufficient to impose the constraint.
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This is the special case of the constraint (4.3) with diagonal R-charges Q1 = Q2 = Q3.

The general formulae (4.16) for the electric potential and the angular velocities are nearly

trivial in the BPS limit: they give Φ∗ = 3 and Ω∗1 = Ω∗2 = g for all BPS black holes, indepen-

dent of the values of (a, b). These values are guaranteed by the first law of thermodynamics

T ∗dS∗ = dM∗ − Φ∗dQ∗ − Ω∗1dJ
∗
1 − Ω∗2dJ

∗
2 , (4.28)

because in the BPS case T ∗ = 0 and the mass M = M∗ is given by (4.17).

As we have noted already, when the BPS conditions (4.19-4.20) are imposed, the largest

root r+ of the horizon equation ∆r(r) = 0 is a double root. This situation corresponds to

temperature T = 0 and is expected for any extremal black hole. Moreover, with the value

for r+ given in (4.21) and the BPS value for q∗ given in (4.19), the general formula (4.15)

gives the black hole entropy entirely in terms of the rotation parameters (a, b):

S∗ = 2π · π

4G5

a+ b

g(1− ag)(1− bg)

√
1

g
(a+ b+ abg) . (4.29)

In our manipulations we will often need the inverse of (4.24-4.26) and so express (a, b) in

terms of the physical variables Q∗ and J∗1,2 of the BPS black hole. The resulting formulae are

not unique, because the BPS charges are subject to the constraint (4.27). A simple version

is

a =
2gQ∗2 − π

4G5
J∗2

Q∗(2g2Q∗ + π
4G5

)
, (4.30)

b =
2gQ∗2 − π

4G5
J∗1

Q∗(2g2Q∗ + π
4G5

)
. (4.31)

As an example, we can use these equations and the constraint (4.27) to recast the BPS

entropy (4.29) as [117]

S∗ = 2π

√
3(`5Q∗)2 − π

4G5

`3
5 (J∗1 + J∗2 ) . (4.32)

In this section we have so far made the effort to retain the dimensionful scales G5 and

g = `−1
5 in all our equations. This is common in supergravity equations that are written

in terms of parametric variables (m, q, a, b), and not terribly inconvenient. However, the

practice becomes cumbersome when rewriting formulae in terms of conserved charges M∗,
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Q∗, and J∗1,2. It is better to employ the dimensionless quantity

1

2
N2 =

π

4G5

`3
5 , (4.33)

where N is the rank of the dual SU(N) gauge group. For example, it is superior to express

the BPS entropy (4.32) as

S∗ = 2π

√
3(`5Q∗)2 − 1

2
N2 (J∗1 + J∗2 ) . (4.34)

To compare with microscopic results we additionally record that the supergravity charge

Q (with dimension length−1) and the (dimensionless) angular momenta J1,2 are normalized

such that Q`5 and J1,2 can be identified with the quantized charges in the microscopic theory.

For clarity, we will retain the scale g = `−1
5 explicitly in the remainder of this section, but

these units will be dropped later in the chapter.

4.2.3 Near-Extremal Limit

Conceptually, the simplest way to deform away from the BPS surface is by adding energy

to the BPS black hole, while keeping electric charge and angular momenta fixed. Such

deviations take the black hole away from extremality and lead to nonzero temperature.

Since all charges are kept fixed the constraint is satisfied in this region of parameter space.

This is the situation we consider in this subsection.

Since we consider charges that are fixed at their BPS values Q∗, J∗1,2 we can write the

first law of thermodynamics in the near-extremal limit as

TdS = dM − ΦdQ∗ − Ω1dJ
∗
1 − Ω2dJ

∗
2 . (4.35)

Subtracting the corresponding BPS expression (4.28) we have

TdS = d(M −M∗)− (Φ− Φ∗)dQ∗ − (Ω1 − Ω∗1)dJ∗1 − (Ω2 − Ω∗2)dJ∗2 . (4.36)

Variations along the BPS surface have M = M∗ identically and correspond to the limit

T → 0 so they are described by [142]

dS = −(∂TΦ)dQ∗ − (∂TΩ1)dJ∗1 − (∂TΩ2)dJ∗2 . (4.37)

This formula describes the dependence on charges of the BPS entropy (4.34). That is inter-

esting but not our focus in this subsection.
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Instead, we keep the charges strictly fixed and consider the heat added to the black hole

as we raise the temperature from T = 0 [103]. After dividing by the small temperature T ,

we have

dS =

(
∂S

∂T

)
Q,J1,2

dT =
CT
T

∣∣∣∣
nearExt

dT , (4.38)

where CT is the heat capacity that was introduced already in (4.5), along with comments on

our notation. The ratio CT
T

is constant in the near-extremal regime so:

dM = TdS =
1

2

CT
T

∣∣∣∣
nearExt

d
(
T 2
)
. (4.39)

After integration we have the leading behavior at small temperature

M −M∗ =
1

2

CT
T

∣∣∣∣
nearExt

T 2 , (4.40)

where M∗ = 3Q∗ + g(J∗1 + J∗2 ) is our reference point on the BPS surface.

We can compute CT explicitly from the definition (4.38) by brute force. We first use

the general entropy formula (4.15) to evaluate the dependence of the entropy on black hole

parameters through ∂S
∂(r+,q,a,b)

. We similarly compute the entries of the matrix ∂(T,Q,J1,J2)
∂(r+,q,a,b)

,

from the general formulae for temperature (4.14) and charges (4.9-4.11), with the parameter

m eliminated in terms of (r+, q, a, b) using the horizon equation (4.13). Inversion of this

matrix (using Mathematica) gives the Jacobian ∂(r+,q,a,b)
∂(T,Q,J1,J2)

and then we can form

CT
T

∣∣∣∣
nearExt

=

(
∂S

∂r+

)
q,a,b

(
∂r+

∂T

)
Q,J1,2

+

(
∂S

∂q

)
r+,a,b

(
∂q

∂T

)
Q,J1,2

+

(
∂S

∂a

)
r+,q,b

(
∂a

∂T

)
Q,J1,2

+

(
∂S

∂b

)
r+,q,a

(
∂b

∂T

)
Q,J1,2

=
π

4G5

π2(a+ b)2(3 + (a+ b)g − abg2)

g2(1− ag)(1− bg) (1 + 3(a+ b)g + (a2 + 3ab+ b2)g2)
. (4.41)

In the final step we exploited (4.20) and (4.21) to eliminate q and r+ .

The result for the heat capacity (4.41) can be expressed as a function of BPS physical

charges Q∗ and J∗1,2. We first rewrite (a, b) using (4.30-4.31) and then simplify using the

constraint (4.27) between charges. The result is not unique, because of the constraint, but

we find the manageable expression

CT
T`5

∣∣∣∣
nearExt

= π2 8(Q∗`5)3 + 1
4
N4(J∗1 + J∗2 )

3(Q∗`5)2 − 1
2
N2 (J∗1 + J∗2 ) +

(
3Q∗`5 + 1

2
N2
)2 . (4.42)
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It is this form of the heat capacity that we can compare with microscopic considerations.

There is an alternative computation that leads to the heat capacity (4.41) with less effort

and more insight. It is known as the nAttractor mechanism [87]. The key observation is

that for fixed conserved charge the derivative with respect to temperature T and the horizon

coordinate r+ are equivalent. Therefore, it is sufficient to consider the effect caused by the

change of r+ for computation of the heat capacity. Moreover, the departure from the BPS

mass M−M∗ given in (4.40) is quadratic in the temperature while the entropy is only linear.

Therefore, at the linear order, it is sufficient to consider the BPS geometry, there is no need

for the general black hole solution. This leads to the economical computation

CT
T

∣∣∣∣
nearExt

=

(
∂S

∂T

)
Q,J1,2

=

(
∂S

∂r+

)
q,a,b

(
∂T

∂r+

)−1

q,a,b

. (4.43)

This expression can be evaluated by hand in a few lines and gives the same result as (4.41).

It is similarly useful to think of the electric potentials Φ and rotational velocities Ωi as

radially dependent “attractor flows” that take their fixed values Φ∗ = 3, Ω∗1 = Ω∗2 = g at the

horizon. The final approach to the horizon is determined in each case by a radial derivative

along the flow. For the electric potential we have(
∂Φ

∂T

)
Q,J1,2

=

(
∂Φ

∂r+

)
q,a,b

(
∂T

∂r+

)−1

q,a,b

= − 3π(a+ b) (1− abg2)

g
√

abg+a+b
g

(1 + 3(a+ b)g + (a2 + 3ab+ b2) g2)

= −π
2N2`5

S∗
(J1 + J2)

(
3Q`5 + 1

2
N2
)
− 2

(
S∗

2π

)2(
S∗

2π

)2
+
(
3Q`5 + 1

2
N2
)2 . (4.44)

In the final formula we used the BPS entropy S∗ given in (4.34) as a preferred combination

of charges, in order to avoid an expression that is overly unwieldy.

For the temperature dependence of the rotational velocity we similarly find(
∂Ω1

∂T

)
Q,J1,2

=

(
∂Ω1

∂r+

)
q,a,b

(
∂T

∂r+

)−1

q,a,b

= − π(1− ag)(a+ 2b+ (2a+ b)bg)√
abg+a+b

g
(1 + 3(a+ b)g + (a2 + 3ab+ b2) g2)

= −π
2N2

S∗
J2

(
3Q`5 + 1

2
N2
)
−
(
S∗

2π

)2(
S∗

2π

)2
+
(
3Q`5 + 1

2
N2
)2 . (4.45)
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There is an analogous formula for ∂TΩ2 given by exchanging a↔ b (or J1 ↔ J2).

The temperature dependence of the potentials given in (4.44-4.45) is such that the BPS

limit of the first law (4.37) is satisfied. It is also interesting that

g

(
∂Φ

∂T

)
Q,J1,2

=

(
∂Ω1

∂T

)
Q,J1,2

+

(
∂Ω2

∂T

)
Q,J1,2

. (4.46)

We will see shortly that this is a consequence of temperature respecting the constraint on

charges (4.27).

4.2.4 Extremal NearBPS Limit

In this subsection we consider departures from the BPS surface that preserve extremality

T = 0. This situation is somewhat unusual. The nearBPS black holes we study remain

extremal in the conventional sense of the black hole attaining its minimal possible mass for

given charges. However, charges are modified such that the constraint (4.27) is violated.

We recall that preserved supersymmetry requires BPS saturation which in turn implies the

constraint on charges. We therefore conclude that these black holes break supersymmetry

and their the mass must exceed the BPS bound (4.17).

The most important challenge will be to understand the extremal surface in more detail.

According to (4.18), the mass M generally exceeds the BPS mass M∗ by an amount that is

proportional to (4.22) which we now write as

m− (1 + ag + bg)q

=
g2r2

+(q − q∗)2 +
( [

(1 + ag + bg)2 + g2r2
+

]
(r2

+ − r∗2)− (1 + ag + bg)(q − q∗)
)2

2 r2
+

. (4.47)

We previously applied this expression to show that the BPS mass formula implies the con-

straint on charges. Presently we consider instead the extremal surface which is characterized

by vanishing temperature, not by the BPS condition. Near the BPS surface we can take

r2
+ − r∗2 ∼ q − q∗ ∼ ε , (4.48)

small and approximate the temperature T (4.14) as

T =

[
1 + 3(a+ b)g + (a2 + b2 + 3ab)g2

]
(r2

+ − r∗2)− (1 + (a+ b)g) (q − q∗)

πr∗q∗
. (4.49)
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Thus extremality corresponds to a correlation between the magnitudes of r2
+− r∗2 and q− q∗

such that the two terms in the temperature (4.49) cancel at linear order. In this regime the

second term in the numerator of (4.47) vanishes, since it is proportional to the temperature,

but the first term does not. Thus the BPS condition is preserved at linear order in ε, but

it is broken at quadratic order. This structure is reminiscent of the nAttractor arguments

reviewed in the preceding subsection, but with departures from the BPS surface now due to

charges that violate the constraint, rather than nonzero temperature. 6

We previously determined that the potentials are constants Φ = Φ∗ = 3 and Ω1,2 =

Ω∗1,2 = g on the BPS surface. The combination of potentials,

ϕ = Φ− Ω1 + Ω2

g
− 1 , (4.50)

therefore vanishes there and otherwise gives a physical measure of the “distance” away from

the BPS configurations. Departure of the potentials from their BPS values due to a small

temperature cancels from the expression due to (4.46) so the variable ϕ measures distance

along the extremal surface, maintaining vanishing temperature. The general expressions for

Φ, Ω1,2 (4.16) give:

ϕ =
(3r2

+ − r∗2)(q − q∗)− (1 + ag + bg)(r2
+ − r∗2)2

(r2
+ + a2)(r2

+ + b2) + abq
, (4.51)

after some rewriting. The second term in the numerator is negligible near the BPS surface

where (4.48) instructs us to take q − q∗ and r2
+ − r∗2 small and of the same order. We find

ϕ =
2(q − q∗)

q∗
, (4.52)

at leading order. Therefore the difference q − q∗ is a good measure of departures from the

BPS surface that preserve extremality.

To summarize so far, within the extremal surface we can take

m = (1 + ag + bg)q , (4.53)

at the linear order and we can relate the horizon coordinate r2
+ − r2

∗ to q − q∗ through the

condition that the temperature (4.49) vanishes. This leaves q − q∗ as the only variable that

is sensitive to the deviation from the BPS surface. It is equivalent to ϕ through (4.52). The

6The formula (4.49) facilitates explicit comparison with Silva’s early study of thermodynamics above the
BPS limit [142]. It corresponds to µ ≡ m− (1 + ag + bg) and q = q∗. It thus involved temperature alone.
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remaining variables (a, b) parametrize the base point on the BPS surface, equivalent to Q,

J1,2 subject to the constraint (4.27).

After this lengthy discussion of principles, we can return to the general formulae (4.16)

for the potentials Φ, Ω1,2. In each expression we take fixed (a, b) and expand around r2 = r2
∗,

q = q∗. We then eliminate r2
+− r2

∗ in favor of q− q∗ by imposing vanishing temperature and

introduce ϕ through (4.52). The resulting deviations away from the BPS values Φ∗ = 3 and

Ω∗1,2 = g can be presented at linear order in ϕ as derivatives of the potentials with respect

to ϕ:

∂Φ

∂ϕ
=

3(a+ b)(2 + (a+ b)g)

2[1 + 3(a+ b)g + (a2 + 3ab+ b2)g2]
(4.54)

= 1− 1

4
N2J1 + J2 + 2(3Q`5 + 1

2
N2)(

S∗

2π

)2
+ (3Q`5 + 1

2
N2)2

, (4.55)

and

∂Ω1`5

∂ϕ
= − (1− a2g2)g

2[1 + 3(a+ b)g + (a2 + 3ab+ b2)g2]
(4.56)

= −1

4
N2 J2 + 3Q`5 + 1

2
N2(

S∗

2π

)2
+ (3Q`5 + 1

2
N2)2

. (4.57)

The analogous expression for ∂ϕΩ2 is obtained by the substitutions a↔ b and J1 ↔ J2. As

a consistency check, we have

∂ϕΦ− ∂ϕ(Ω1 + Ω2)`5 = 1 (4.58)

as expected from the definition (4.50).

Having computed the potentials Φ− Φ∗ and Ω1,2 − Ω∗1,2 at linear order in ϕ, we turn to

the first law of thermodynamics

0 = TdS = d(M −M∗)− (Φ− Φ∗)dQ− (Ω1 − Ω∗1)dJ1 − (Ω2 − Ω∗2)dJ2 , (4.59)

where T = 0 because we consider extremal black holes. The charges are given by the general

expressions (4.9-4.11) with m eliminated in favor of q through (4.53). The differentials dQ,

dJ1,2 therefore become linear combinations of dq and da, db. We are only interested in the

first of these, because the others correspond to motion within the BPS surface. Introducing
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ϕ though (4.52) we then find:

− (Φ− Φ∗)dQ− (Ω1 − Ω∗1)dJ1 − (Ω2 − Ω∗2)dJ2 = −Cϕ
T

ϕdϕ

(2π`5)2
, (4.60)

with the temperature independent combination Cϕ
T

given by

Cϕ
T

=
π

4G5

π2(a+ b)2

g2(1− ag)(1− bg)

3 + (a+ b)g − abg2

1 + 3(a+ b)g + (a2 + b2 + 3ab)g2
. (4.61)

After integration of the first law (4.59) we have

M −M∗ =
1

2

Cϕ
T

(
ϕ

2π`5

)2

, (4.62)

to the leading order. The identical result can be derived directly from the general mass

formula (4.18). Indeed, the central manipulation is given already in (4.22), with the 2nd

term in the numerator absent when the temperature vanishes T = 0.

We refer to Cϕ as the capacitance. This terminology is motivated by standard electromag-

netism insofar as ϕ can be identified with the electric potential. The capacitance quantifies

the energy (4.62) required to violate the constraint by an amount measured by the potential

ϕ. Physically, this is quite distinct from the heat capacity CT , a measure of the energy

needed to increase the temperature. It is therefore surprising that

Cϕ = CT ,

for the black holes we consider.

We have repeatedly invoked the intuition that the potential ϕ introduced in (4.52) mea-

sures the violation of the constraint (4.27) that must be satisfied by all BPS configurations.

To make this precise we define the height function:

h ≡
(

3Q`5 +
1

2
N2

)(
3(Q`5)2 − 1

2
N2(J1 + J2)

)
− (Q`5)3 − 1

2
N2J1J2 , (4.63)

that quantifies the distance from the constraint surface h = 0 explicitly. The differential

form

dh = 3

(
8(Q`5)2 +N2Q`5 −

1

2
N2(J1 + J2)

)
dQ`5−

1

2
N2

(
J2 + 3Q`5 +

1

2
N2

)
dJ1+J1 ↔ J2 ,

(4.64)

realizes the surfaces h = const as 2D planes that are generated by the three one-forms
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dQ, dJ1, dJ2 subject to the constraint dh = 0. In this construction h literally measures the

distance along the normal to the 2D constraint surface h = 0. The BPS surface can be

viewed as the intersection of the constraint surface h = 0 with the extremal surface T = 0.

Near the BPS surface we can eliminate the parameter m through (4.53) and then (4.9-

4.11) express the three charges Q, J1,2 as functions of the parameters (q, a, b). On general

grounds, the differential form dh above becomes a linear combination of dq, da, db after

inserting these formulae for the charges. Explicit computation gives

dh =

[
8(Q`5)3 +

1

4
N4(J1 + J2)

]
dq

q∗
.

The absence of da, db in this formula shows that the curve dh has no components along the

BPS surface, as expected. The nontrivial component along dq relates the normalization of

h and ϕ through (4.52). We find

h =
1

2

[
8(Q`5)3 +

1

4
N4(J1 + J2)

]
ϕ . (4.65)

In the next subsection we will uncover a term in the entropy that is proportional to ϕ

with a positive coefficient. Stability therefore motivates us to focus on the halfline where

both height functions are nonnegative

ϕ ≥ 0 . (4.66)

4.2.5 General NearBPS Limit

In this subsection we consider the general nearBPS regime where deviations from the

BPS surface may have neither fixed charge nor vanishing temperature. Some aspects of this

amount to reconsidering the effects discussed in the previous two subsections at the same

time. However, their interplay gives important new insights.

The energy of excitations is the thermodynamic quantity that is conceptually most

straightforward in the nearBPS limit. A good starting point is the general mass formula

(4.18). It depends on the combination of parameters m− (1 + (a+ b)g)q that was rewritten

in (4.22) without invoking any assumptions black hole variables. Inserting the first order

expressions (4.49) for the temperature T and (4.52) for the potential ϕ we immediately find

the excitation energy above the BPS bound:

M −M∗ =
1

2

CT
T

∣∣∣∣
nearExt

[
T 2 +

(
ϕ

2π`5

)2
]
, (4.67)
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at quadratic order. We have highlighted the identity of the heat capacity and the electric

capacitance by avoiding reference to the latter altogether. The new fact featured in the

general nearBPS limit is the absence of any cross-terms Tϕ in the mass formula (4.67).

This demonstrates some sort of rotational symmetry that must be present in the regime we

explore. The existence of a continuous structure is much stronger than the equality of CT

and Cϕ that we stressed in the preceding subsection.

We next consider the additional entropy due to simultaneously allowing small temper-

ature and violation of the constraint. Starting from the general expression (4.15) for the

entropy, we apply the procedure explained around (4.53). Thus we first eliminate the pa-

rameter m using (4.53) and expand to linear order in q − q∗ and r2
+ − r2

∗. We then take

appropriate linear combinations so those two variables are eliminated in favor of the tem-

perature T (4.49) and the potential ϕ (4.52). These steps give an entropy of the excitations

taking the form

S − S∗ =
CT
T
T +

CE
T

ϕ

2π`5

, (4.68)

where the heat capacity CT agrees with the expression (4.41) found previously by considering

temperature on its own and

CE
T

=
2π(Q`5)2

S∗
π2

g

(1 + 2(a+ b)g + abg2)(3 + (a+ b)g − abg2)

1 + 3(a+ b)g + g2(a2 + b2 + 3ab)

=
2π

S∗

(
CT
T

)
(3Q+

1

2
N2) . (4.69)

The value of CE is subject to a subtle ambiguity. The expression (4.68) gives the en-

tropy S − S∗ that is in excess of the BPS entropy S∗. However, the BPS entropy is not a

proper function of charges, it is only defined modulo the constraint (4.27). This caveat is

inconsequential on the BPS surface where the constraint is satisfied identically. In contrast,

the constraint is proportional to ϕ so, for the additional entropy S − S∗ the ambiguity can

shift the coefficient of CE arbitrarily, potentially rendering this quantity unphysical.

This issue must be addressed consistently in computations. For example, we variously

express the BPS entropy S∗ as a function of parameters (a, b) (4.29) or as a function of

the charges Q, J1,2 (4.34). The differential dS∗ computed from the former only gives terms

proportional to da and db but when it is evaluated from the latter we get terms of the

form dQ, dJ1,2 that, because charges depend on all of the parameters (q, a, b), also yield the

differential dq. The two forms of the BPS entropy therefore give different coefficients in front

of the term d(q − q∗) = 2q∗dϕ even though they agree if we impose the BPS relation q = q∗

before computing the differentials.

We “gauge fix” the ambiguity by insisting that the BPS entropy takes the canonical form
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(4.34) in terms of Q, J1,2, rather than something that is equivalent to this formula upon

imposing the constraint. Our result for CE (4.69) is predicated on this convention.

The final aspects of the general nearBPS limit that we consider are the potential terms

in the first law of thermodynamics:

TdS = d(M −M∗)− (Φ− Φ∗)dQ− (Ω1 − Ω∗1)dJ1 − (Ω2 − Ω∗2)dJ2 . (4.70)

We can compute the potentials using the procedure described around (4.53), as in the pre-

vious examples. However, for the potentials the results for the general nearBPS limit can

equally be inferred from the near extremal (T 6= 0 and ϕ = 0) and nearBPS extremal (T = 0

and ϕ 6= 0) special cases that we studied in the last two subsections. For example, combining

(4.45) and (4.57) we find the correct result

(Ω1 − Ω∗1)`5 =
1

4
N2

[
J2 + (3Q`5 + 1

2
N2)

]
ϕ− (2π)2

S∗

[
J2

(
3Q`5 + 1

2
N2
)
−
(
S∗

2π

)2
]
T(

S∗

2π

)2
+
(
3Q`5 + 1

2
N2
)2 ,(4.71)

for the angular velocity in the general nearBPS limit. The analogous equation for Ω2 − Ω∗2

follows by taking J1 ↔ J2. The one for Φ − Φ∗ can be computed similarly from (4.44) and

(4.55) or by invoking the sum rule

(T∂T + ϕ∂ϕ) [Φ− (Ω1 + Ω2)`5] = ϕ , (4.72)

that consolidates (4.46) and (4.58) for derivatives with respect to T and ϕ, respectively.

The explicit formula (4.71) for Ω1 − Ω∗1 and its analogues for other nearBPS potentials

are somewhat lengthy and not very illuminating independently. However, they become more

instructive when considered together, as a vector in the space of charges. The first law of

thermodynamics (4.70) motivates construction of the differential form

TdS∗ + (Φ− Φ∗)dQ+ (Ω1 − Ω∗1)dJ1 + (Ω2 − Ω∗2)dJ2

=

(
2π

S∗
(3Q`5 +

1

2
N2)T +

ϕ

2π`5

)
πdh(

S∗

2π

)2
+ (3Q`5 + 1

2
N2)2

, (4.73)

where dh is the one-form (4.64) generated by the height function. Thus the relative strength

of the three potentials is precisely the same as the one appearing in the height function h,

except for the components taken into account by dS∗ that are within the BPS surface and

only relevant for BPS physics.
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Introducing ϕ using (4.65) the potential terms become

TdS∗+ (Φ−Φ∗)dQ+ (Ω1−Ω∗1)dJ1 + (Ω2−Ω∗2)dJ2 =

[(
CE
T

)
T +

(
CT
T

)
ϕ

2π`5

]
d

(
ϕ

2π`5

)
,

(4.74)

where CT and CE agree with the functions of charges defined in (4.61) and (4.69). This

is precisely what is needed to satisfy the first law of thermodynamics. Importantly, the

values for CE match only when using the canonical form (4.34) of the BPS entropy S∗ when

evaluating TdS∗ in (4.74). This illustrates the necessity of treating the ambiguity discussed

below (4.69) consistently.

4.3 The BPS Partition Function

In this section, we review the recent progress on the microscopic origin of the AdS5

black hole entropy. We focus on the free field approach applied to N = 4 SYM and closely

follow [25, 118].

In this and subsequent sections we adopt microscopic units with `5 = g−1 = 1 and

eliminate all references to Newton’s constant G5 in favor of the rank of the gauge group N

through (4.33).

4.3.1 The Partition Function

Following recent work, we seek to compute the physical partition function

Z(β, ∆I , ωi) = Tr
[
e−βEe∆IQI+ωiJi

]
. (4.75)

The electric charges and the angular momenta are denoted by QI and Ji and the correspond-

ing chemical potentials are ∆I and ωi. Sums over repeated indices I and i are implied. We

stress that we do not consider the supersymmetric index since no grading (−1)F has been

inserted.

The fermionic symmetries Q and S transform as spinors under both the SU(4)R sym-

metry and the SO(4) little group. We denote the quantum numbers of the supercharge

Q ≡ Qs1,s2,s3−t1,−t2 with respect to these groups 1
2
sI and −1

2
ti where sI = ±1 and ti = ±1.

The signs of the spinorial indices are explicitly flipped for the conformal supercharges

S ≡ S−s1,−s2,−s3t1,t2 which have opposite chirality so we can take the products
∏
sI
∏

i ti = +1

in both cases.
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We write the superalgebra in component form as

{Q, S} = E −
3∑
I=1

sIQI −
2∑
i=1

tiJi . (4.76)

The anticommutator {Q, S} = 0 when acting on 1
16

-BPS states so we have the BPS condition

E =
∑
I

QI +
∑
i

Ji , (4.77)

when we restrict to the sector where all sI , ti = +1 without loss of generality. We can adapt

the physical partition function (4.75) to this sector as

Z(β, ∆I , ωi) = Tr
[
e−β(E−

∑
I QI−

∑
i Ji)e∆̃IQI+ω̃iJi

]
, (4.78)

where we introduced

∆̃I ≡ ∆I − β , ω̃i ≡ ωi − β . (4.79)

Then only the states satisfying the BPS condition (4.77) contribute to the partition function

in the limit β →∞ with fixed ∆̃I and ω̃i.

The quantum numbers QI , Ji are half-integer valued for all states in the theory so the

corresponding chemical potentials satisfy the periodicity conditions

∆I ≡ ∆I + 4πi , ωi ≡ ωi + 4πi . (4.80)

However, the operator O = e∆̃·Q+ω̃·J that is inserted in the partition function (4.78) generally

does not anticommute with the supercharge

QO = e−
1
2
s·∆̃+ 1

2
t·ω̃OQ . (4.81)

Anticommutation imposes the additional condition:

s · ∆̃− t · ω̃ = 2πi (mod 4πi) . (4.82)

Therefore supersymmetry demands that the potentials satisfy

∆̃1 + ∆̃2 + ∆̃3 − ω̃1 − ω̃2 = 2πi (mod 4πi) , (4.83)

for projection to the BPS sector we focus on.

The complex condition (4.83) on the potentials is essential. It is closely related to the
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supersymmetric index, since insertion of (−)F in the partition function is equivalent to the

shift ωi → ωi + 2πi for either i = 1 or i = 2. However, following recent literature we will

maintain reference to the partition function rather than the supersymmetric index and we

will consider complex potentials. In this terminology the partition function counts protected

states (and so is independent of β) on the surface defined by the complex supersymmetry

condition (4.83).

4.3.2 Single Particle Enumeration

We now turn to the central problem of computing the partition function (4.75) of N = 4

SYM on S1 × S3. We impose anti-periodic boundary conditions for fermions along S1, as

usual for any partition function but in contradistinction to the supersymmetric index. We

work perturbatively at weak coupling and express the result as a matrix model following

[118, 143, 144].

The first step is to enumerate “single-particle states”, in the terminology of the bulk

AdS5 theory. In the quantum field theory description these are the individual operators

that generate the operator algebra. They can be realized as elementary fields, possibly with

derivatives since those do not change the particle number. It is useful to decompose the field

content of N = 4 SYM under an N = 1 subalgebra and represent is matter as an N = 1

vector multiplet, three N = 1 chiral multiplets, and three N = 1 anti-chiral multiplets. In

components, a N = 1 vector multiplet contains a gauge boson and a real spinor, while a

N = 1 chiral multiplet contains a complex scalar and a real chiral spinor.

We first consider a chiral multiplet with the spectrum:

Fields (E, J1, J2; Q1, Q2, Q3)

X = 1√
2
(φ1 + iφ2) (1, 0, 0; 1, 0, 0)

Y = 1√
2
(φ3 + iφ4) (1, 0, 0; 0, 1, 0)

Z = 1√
2
(φ5 + iφ6) (1, 0, 0; 0, 0, 1)

ψ̄α̇, a (3
2
, 0, ±1

2
; −1

2
, +1

2
, +1

2
)

(3
2
, 0, ±1

2
; +1

2
, −1

2
, +1

2
)

(3
2
, 0, ±1

2
; +1

2
, +1

2
, −1

2
)
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The corresponding partition functions become

f cB(β, ∆I , ωi) =
3∑
I=1

e∆I
e−β(1− e−2β)

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)
, (4.84)

f cF (β, ∆I , ωi) =
3∑
I=1

e∆I
e−

3
2
β−∆

(
(eω+ + e−ω+)− e−β(eω− + e−ω−)

)
(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

, (4.85)

where

∆ ≡ ∆1 + ∆2 + ∆3

2
, ω± ≡

ω1 ± ω2

2
. (4.86)

The common denominators of (4.84-4.85) incorporate the quantum numbers of the four

components in the gradient ∇µ, each resummed as a geometric series to take into account

any number of derivatives. The positive terms in the numerators encode the data from the

table, while the negative ones remove operators that satisfy their equations of motion.

The anti-chiral multiplet can be obtained from the chiral multiplet by

J1 ↔ J2 , QI → −QI . (4.87)

For bosons this just changes the overall factor giving the R-charge, but for fermions the

Lorentz indices of the fields and the equation of motion exchange their chirality ω+ ↔ ω−,

in addition to the R-charges changing sign:

faB(β, ∆I , ωi) =
3∑
I=1

e−∆I
e−β(1− e−2β)

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)
, (4.88)

faF (β, ∆I , ωi) =
3∑
I=1

e−∆I
e−

3
2
β+∆

(
(eω− + e−ω−)− e−β(eω+ + e−ω+)

)
(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)

. (4.89)

The vector multiplet has the spectrum:

Fields (E, J1, J2; Q1, Q2, Q3)

Aµ (µ = 1, · · · , 4) (1, ±1, ±1; 0, 0, 0)

ψaα (3
2
, ±1

2
, 0; +1

2
, +1

2
, +1

2
)

ψ̄α̇, a (3
2
, 0, ±1

2
; −1

2
, −1

2
, −1

2
)
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with the single particle partition functions:

f vB(β, ∆I , ωi) =
e−β(eω1 + eω2 + e−ω1 + e−ω2)− 1− e−2β

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)
(1− e−2β) + 1 , (4.90)

f vF (β, ∆I , ωi) =
e−

3
2
β(e∆ − e−∆e−β)(eω+ + e−ω+) + e−

3
2
β(e−∆ − e∆e−β)(eω− + e−ω−)

(1− e−β+ω1)(1− e−β+ω2)(1− e−β−ω1)(1− e−β−ω2)
.

(4.91)

The terms in the boson numerator indicate the vector field Aµ (that has the same quantum

numbers as ∇µ in the denominator), with subtractions for the neutral scalar gauge function

Λ and Lorentz condition ∇µA
µ = 0. The overall factor (1− e−2β) imposes the Klein-Gordon

equation on all operators and the additional +1 corrects for the fact we erroneously counted

Λ with no derivative acting on it as a pure gauge degree of freedom. The gaugini follow from

the fermions in chiral and anti-chiral multiplets, upon omission of the overall
∑3

I=1 e
−∆I and

subsequent reversal of the correlation between chirality and R-charge.

In order to focus on states that satisfy the BPS condition (4.77) we rewrite the physical

partition function as (4.78) by introducing the shifted “tilde” potentials (4.79). The low

temperature limit β → ∞ taken with these variables fixed is exceptionally simple, because

only a few single particle operators contribute. Considering bosons and fermions separately,

we have

fB = f vB + f cB + faB =

∑
I e
−∆̃I + e−ω̃1−ω̃2

(1− e−ω̃1)(1− e−ω̃2)
,

fF = f vF + f cF + faF =

∑
I e

∆̃I−∆̃e−ω̃+ + e−∆̃+ω̃+

(1− e−ω̃1)(1− e−ω̃2)
− e−∆̃+ω̃+ . (4.92)

The analogous expressions for general β are much more complicated. However, if we impose

the constraint (4.83) by taking e−∆̃+ω̃+ = −1, the dependence on β simplifies and in fact the

total single particle partition function

fB + fF = 1−
∏

I(1− e−∆̃I )

(1− e−ω̃1)(1− e−ω̃2)
, (4.93)

becomes independent of β. Equivalently, the supersymmetric index fB − fF is temperature

independent on the constraint surface e−∆̃+ω̃+ = +1. In fact, it is identical to (4.93). These

results verify by explicit computations the expectations from the general arguments familiar

from the Witten index. The demonstate that the partition function computed at vanishing

temperature β =∞ applies at any temperature when the constraint is satisfied.
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4.3.3 Multiparticle Enumeration

All of the “letters” realized by single particle operators can be multiplied together to form

“words”. Starting from any of the operators enumerated by the single particle partition

function f(β, ∆I , ωi) we can form n-particle products counted by f(nβ, n∆I , nωi). An

overall trace must be imposed to ensure gauge invariance but then n-fold cyclicity of the

trace must be taken account so, after summing over any number of operators, the single

trace partition function becomes

ZST =
∞∑
k=1

f(nβ, n∆I , nωi)

n
. (4.94)

Furthermore, having determined all single trace operators, taking multi-trace operators into

account exponentiates the counting. The full partition function becomes

ZMP(β, ∆I , ωi) = exp

[
∞∑
n=1

1

n

[
fB(nβ, n∆I , nωi) + (−1)n+1 fF (nβ, n∆I , nωi)

]]
. (4.95)

This result is purely combinatorial so the statistics of fermions only enter through the ex-

clusion principle. This accounts for the prefactor (−1)n+1 in front of the fermionic terms.

The brief justification of the multiparticle partition function (4.95) presented in this sub-

section has been cavalier about the combinatorics. The relative ordering of operators within

traces is important for the detailed enumeration and somewhat elaborate combinatorics

(Polya theory) must be invoked. However, for large N the correct result is in fact (4.95) and

the heuristic arguments given in this subsection serve to motivate the key features of the

formula.

4.3.4 The N = 4 SYM Perturbative Matrix Model

One additional feature must taken into account. All of the quantum fields transform in

the adjoint of U(N) and we must incorporate their gauge indices. We (somewhat prema-

turely) imposed a singlet condition on the operators already in the preceding subsection.

Incorporation of the full gauge structure gives the unitary matrix model [118, 143, 144]

Z(β, ∆I , ωi) =

∫
[dU ] exp

{
∞∑
n=1

1

n
fn(nβ, n∆I , nωi)χAdj(U

n)

}
, (4.96)
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where U denotes a U(N) matrix, χAdj the character in the adjoint representation, and

fn(nβ, n∆I , nωi) = fB(nβ, n∆I , nωi) + (−1)n+1 fF (nβ, n∆I , nωi) . (4.97)

For completeness, we recall that in the case of weakly coupled N = 4 SYM the single particle

partition functions are

fB = f vB + f cB + faB ,

fF = f vF + f cF + faF , (4.98)

where the constituent functions were given in (4.84, 4.88, 4.90) and (4.85, 4.89, 4.91), re-

spectively. Their explicit expressions are not illuminating in general but for β = ∞ they

greatly simplify and reduce to (4.92).

The standard strategy for integrating over all unitary matrices is to represent them in

terms of their eigenvalues eiαa (so those of the adjoint representation become eiαab where

αab ≡ αa − αb) and change variables to an integral over eigenvalues

Z(β, ∆I , ωi) =
1

N !

∮ N∏
a=1

dαa
2π

∏
a<b

(
2 sin

αab
2

)2

exp

[ N∑
a,b=1

∞∑
n=1

1

n
fn(nβ, n∆I , nωi) e

inαab

]
.

(4.99)

The factor involving sin αab
2

is the van der Monde determinant that arises as a Jacobian due

to the change of variables.

We stress that the BPS constraint (4.83) has not yet been imposed on the matrix model

so the chemical potentials ∆I and ωi are still independent parameters and the partition

function (4.99) includes contributions from nonBPS states.

4.3.5 The BPS Limit

The analysis of matrix models is a highly developed science [145, 146]. The established

intuition is that the eigenvalues of the matrices experience a universal repulsion because

of the van der Monde determinant that may be balanced by attraction due to a model-

dependent potential, which in the current context is closely related to the single particle

distribution f . The repulsion favors a uniform eigenvalue distribution that corresponds to a

confined phase with free energy of order O(1) while attraction can prompt localization that

gives rise to a deconfined phase where free energy increases to order O(N2) [147].

Early studies of the matrix model for N = 4 SYM failed to identify a deconfined phase

appropriate for the description of macroscopic black holes [118], but recent research makes
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claims to the contrary [131]. We will refrain from a nuanced discussion of the evidence one

way or another and simply assume a deconfined phase where the phases einαab do not give

cancellations at the leading order. Then the matrix model (4.99) yields the partition function

lnZ(β, ∆I , ωi) = N2

∞∑
n=1

1

n
fn(nβ, n∆I , nωi) .

The BPS limit requires vanishing temperature and we must also impose the BPS con-

straint (4.83). We already computed the single particle partition function f in this limit

with the result (4.93). The fermion phase factor (−)n+1 in (4.97) conspires with signs from

the constraint e−∆̃+ω̃+ = −1 such that the multiparticle generalization becomes

fn(nβ, n∆I , nωi) = 1−
∏

I(1− e−n∆̃I )

(1− e−nω̃1)(1− e−nω̃2)
. (4.100)

This is exactly the result reported in [25]. There the analysis focussed on the high tem-

perature limit β → 0 while we have discussed the low temperature regime β → ∞. The

agreement of the results is due to the temperature independence along the BPS surface.

We further restrict the discussion to the Cardy limit |ω̃i| � 1. In this situation it has

been argued that all significant contributions to the sum over n are from sufficiently small

n that n|ω̃i| � 1. Therefore

lnZ(β, ∆I , ωi) =
N2

ω̃1ω̃2

∞∑
n=1

1

n3

∏
I

(1− e−n∆̃I )

=
N2

ω̃1ω̃2

∑
s1s2s3=+1

[
Li3

(
−e

sI ∆̃I
2

)
− Li3

(
−e−

sI ∆̃I
2

)]
. (4.101)

The identity

Li3(−ex)− Li3(−e−x) = −x
3

6
− π2x

6
for − π < Im(x) < π , (4.102)

finally gives the free energy

lnZ(β, ∆I , ωi) = − N2

6 ω̃1ω̃2

∑
s1s2s3=+1

[
1

8

(
sI∆̃I

)3

+
1

2
π2
(
sI∆̃I

)]
= −1

2
N2 ∆̃1∆̃2∆̃3

ω̃1ω̃2

. (4.103)
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4.3.6 Discussion

The partition function (4.103) with the complex constraint on potentials (4.83) undoubt-

edly describes N = 4 SYM in the regime relevant for comparison with AdS5 BPS black

holes. It was first inferred from black hole thermodynamics [122] and recently derived from

the Euclidean path integral and supersymmetric localization [24], from free field analysis [25],

and from computation of the superconformal index using a sum over Bethe vacua [26]. All

these works pursue similar ideas but some aspects of the computations and their interrelation

remains unclear, at least to the author.

The simple computations we presented in this section following [25] give an interesting

free field representation that appears to capture some aspects of physics in the strongly

coupled region. The situation is akin to a model that represents a CFT2 with central charge

c as a free model such as c free bosons. Such a toy model of CFT2 generally misses many

detailed features of the theory, but it captures some aspects of the CFT2 robustly (such as

the Casimir energy and the entropy) and so it serves as a useful benchmark.

In other words, we are not committed to the free field derivation, but the upshot one way

or another is that the partition function for the BPS limit is

lnZ = −1

2
N2 ∆̃1∆̃2∆̃3

ω̃1ω̃2

. (4.104)

Our goal in the subsequent section is to leverage this result, whichever way it came about,

to account also for nonBPS physics.

4.4 Black Hole Statistical Physics

In this section we discuss thermodynamics of black holes starting from the BPS result

for the microscopic free energy (4.104). Our emphasis is on thermodynamic variables for

nearBPS black holes.

4.4.1 Studying nearBPS using BPS data: Introduction

The microscopic considerations in section 4.3 studied the partition function (4.78) which

we reproduce here for convenience: 7

Z(β, ∆I , ωi) = Tr
[
e−β(E−E∗)e∆̃IQI+ω̃iJi

]
. (4.105)

7The potentials (∆I , ωi) in the microscopic theory can be identified with (ΦI ,Ωi) in supergravity. Using
different symbols let us stress the distinct provenance of various results and allows for easier comparison
with some key references.
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The notation strongly suggests that this partition function depends on all the variables

β,∆I , ωi but in fact the computations in section 4.3 were restricted to the BPS limit, a

surface of real codimension two. The restriction on the domain of Z can be specified by the

constraints β =∞ and
∑

I ∆̃I −
∑

i ω̃i = 2πi.

The goal of this section is to generalize the microscopic description beyond BPS and so

allow deformations of both these constraints by small amounts. Our strategy is to make mild

smoothness assumptions on the partition function, which are then validated by comparison

with our results from gravity. To clarify how it is possible to learn anything interesting from

such minimal assumptions, it is instructive to consider a simple example.

As a start, we must address an issue of conventions. In our gravitational computations,

the thermodynamic variables satisfy the first law (4.70). Comparison with the microscopic

partition function (4.78) indicates a relative factor of β in the potentials, leading to the

identifications β(ΦI−Φ∗I) ∼ ∆̃I and β(Ωi−Ω∗i ) ∼ ω̃i.
8 The shift of the gravitational potentials

by their BPS values Φ∗I , Ω∗i corresponds precisely to the definition (4.79) of microscopic

potentials with a tilde from those without tilde.

The meticulous tracking of conventions gives an immediate payoff in the extremal limit

T → 0. The limit is taken such that variables with tilde are kept fixed. Therefore, the

potentials that appear in the microscopic partition function are identified with the thermal

derivative of the potentials employed in the gravity description [117, 142]:

Re ∆̃I = ∂TΦI ,

Re ω̃i = ∂TΩi . (4.106)

The microscopic partition function (4.105) gives values for the left hand side that should

coincide with the gravitational results on the right hand side. We will verify this expectation

in subsection 4.4.3.

The identifications (4.106) also illustrate the strategy for going beyond BPS. These equa-

tions were found by taking the extremal limit T → 0 but supersymmetry was not invoked.

This provenance suggests their validity also when the constraint is violated. We will confirm

this expectation below. This successful comparison is a simple example of leveraging BPS

results to study the nearBPS regime.

Recall that the supersymmetry condition (4.83) is complex and by continuity potentials

remain complex in the entire nearBPS region. In our identifications (4.106) we identified the

8The gravitational computations in section 4.2 were restricted to the diagonal case where the three
potentials are equal but this limitation does not apply to formulae in this section. When we “compare” with
section 4.2 we only literally compare for diagonal charges. The generic formula we derive in this section
constitute microscopic predictions for the gravitational side.
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real part of the potentials with the corresponding physical field in spacetime. This is justified

because the physical charges are real and so their conjugate potentials are real, according to

the partition function (4.105). We will later find more data about the nearBPS by exploiting

both the real and imaginary parts of the potential, as well as their interplay.

BPS configurations have energy E = E∗ and so the saddlepoint approximation to the

partition function (4.105) gives the entropy

S = lnZ − ∆̃IQI − ω̃iJi − Λ
(∑

I

∆̃I −
∑
i

ω̃i − 2πi
)
. (4.107)

The constraint on potentials (4.83) was imposed by introducing a Lagrange multiplier Λ.

The expression (4.107) is referred to as the entropy function. Unlike the usual entropy it is a

function of potentials but, after they are extremized over, it gives the black hole entropy as

function of charges. In the present context there is little more to the terminology than a basic

change of thermodynamic ensemble through Legendre transform (but there are impressive

generalizations [148]). In the next subsection we will extremize the entropy function (4.107)

for BPS black holes explicitly. Later, in subsection 4.4.4, we will generalize the entire entropy

function to the nearBPS regime using minimal assumptions.

4.4.2 Entropy Extremization for BPS Black Holes

In this subsection we review the computation of BPS black hole entropy. We start from

the entropy function S (4.107) derived from the BPS partition function (4.104). Our analysis

mainly follow [24].

Extremization of the entropy function (4.107) with lnZ given by (4.104) gives

∂S

∂∆̃I

= −1

2
N2 1

∆̃I

∆̃1∆̃2∆̃3

ω̃1ω̃2

− (QI + Λ) = 0 , (4.108)

∂S

∂ω̃i
=

1

2
N2 1

ω̃i

∆̃1∆̃2∆̃3

ω̃1ω̃2

− (Ji − Λ) = 0 , (4.109)

∂S

∂Λ
=
∑
I

∆̃I −
∑
i

ω̃i − 2πi = 0 . (4.110)

The last equation imposes the constraint (4.83) on ∆̃I and ω̃i.

We obtain the BPS entropy by simplifying the entropy function (4.107) using the ex-

tremization conditions (4.108, 4.109):

S∗ = 2πiΛ . (4.111)
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It is therefore essential to find the Lagrange multiplier Λ. To do so, we combine (4.108) and

(4.109) to find ∏
I

(QI + Λ) +
1

2
N2
∏
i

(Ji − Λ) = 0 . (4.112)

This is a cubic equation that yields the Lagrange multiplier Λ, and so the BPS entropy S∗,

as a function of the black hole charges QI and Ji. The explicit form of the cubic equation is

Λ3 + AΛ2 +BΛ + C = 0 , (4.113)

where

A = Q1 +Q2 +Q3 +
1

2
N2 ,

B = Q1Q2 +Q2Q3 +Q3Q1 −
1

2
N2(J1 + J2) ,

C = Q1Q2Q3 +
1

2
N2J1J2 .

(4.114)

Imposing reality of the physical entropy (4.111) demands a purely imaginary Λ. Since

the charges QI and Ji are all real, the purely imaginary roots of (4.113) appear in pairs and

the cubic equation must factorize as

(Λ2 +B)(Λ + A) = 0 . (4.115)

Thus coefficients in the cubic satisfy C − AB = 0 or(
Q1Q2Q3+

1

2
N2J1J2

)
−

(
Q1+Q2+Q3+

1

2
N2

)(
Q1Q2+Q2Q3+Q3Q1−

1

2
N2(J1+J2)

)
= 0 .

(4.116)

This is the constraint on black hole charges (4.27) that must be satisfied on the BPS surface,

as a consequence of the BPS formula for the mass. It generalizes the constraint (4.27)

previously found from gravity, with perfect agreement when the three charges are identical.

When the constraint is satisfied, the root for Λ with negative imaginary part gives the BPS

entropy

S∗ = 2πiΛ = 2π

√
Q1Q2 +Q2Q3 +Q3Q1 −

1

2
N2(J1 + J2) . (4.117)

This formula similarly generalizes the result from gravity (4.34) with agreement when the

three charges are identical.

We also need the potentials ∆̃I and ω̃i at the extremum of the entropy function. We

consider Λ = S∗

2πi
the known function of the charges given through (4.117). The extremization
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conditions (4.108, 4.109) give the ratios

∆̃I

ω̃i
= − Ji − Λ

QI + Λ
, (4.118)

for any I = 1, 2, 3 and i = 1, 2. Comparing (4.109) with i = 1 and i = 2 we also find the

ratio
ω̃1

ω̃2

=
J2 − Λ

J1 − Λ
. (4.119)

The constraint (4.83), i.e. the equation of motion for Λ (4.110), now gives

ω̃1 + ω̃2 + 2πi

ω̃i
=

∆̃1 + ∆̃2 + ∆̃3

ω̃i
= −(Ji − Λ)

(
1

Q1 + Λ
+

1

Q2 + Λ
+

1

Q3 + Λ

)
, (4.120)

where we have used the ratios ∆̃I/ω̃i given in (4.118). The ratio between the ω̃i’s (4.119) let

us reorganize as

2πi

ω̃i
= −(Ji − Λ)

(
1

J1 − Λ
+

1

J2 − Λ
+

1

Q1 + Λ
+

1

Q2 + Λ
+

1

Q3 + Λ

)
, (4.121)

2πi

∆̃I

= (QI + Λ)

(
1

J1 − Λ
+

1

J2 − Λ
+

1

Q1 + Λ
+

1

Q2 + Λ
+

1

Q3 + Λ

)
. (4.122)

The second line was found by invoking the ratio (4.118). The inverses of these equations

give

ω̃i
2πi

=
1

2
N2

∏
k(Jk − Λ)

Ji − Λ

1

2Λ(Λ +Q1 +Q2 +Q3 + 1
2
N2)

, (4.123)

∆̃I

2πi
=

∏
K(QK + Λ)

QI + Λ

1

2Λ(Λ +Q1 +Q2 +Q3 + 1
2
N2)

. (4.124)

We used (4.112) to simplify the algebra. These are the explicit results for the potentials on

the BPS surface expressed in terms of charges. We recall that Λ = S∗

2πi
is the known function

of the charges given through (4.117).

4.4.3 NearBPS Microscopics

We now want to leverage the microscopic results derived in the BPS limit to study

nearBPS black holes as well.
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The real part of the potentials (4.123) are

Re ω̃1 = −π
2N2

S∗
J2(Q1 +Q2 +Q3 + 1

2
N2)−

(
S∗

2π

)2(
S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

, (4.125)

with an analogous expression for Re ω̃2, and the real part of the potentials (4.124) similarly

are

Re ∆̃1 = −2π2

S∗
(Q2Q3 −

(
S∗

2π

)2
)(Q1 +Q2 +Q3 + 1

2
N2) +

(
S∗

2π

)2
(Q2 +Q3)(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

, (4.126)

with analogous equations for Re ∆̃2 and Re ∆̃3. These formulae for the potentials Re ω̃i,

Re ∆̃I in the microscopic theory all agree precisely with the corresponding gravitational

formulae for ∂TΦI and ∂TΩi given in (4.44-4.45). This confirms the identifications (4.106).

It is significant that these comparisons all agree. The differentials (dRe ω̃i, dRe ∆̃I) form

a vector in the five dimensional space that is generated (locally) by the direct sum of the

tangent space to the BPS surface and its normal, and the latter violates the constraint. It

is also noteworthy that the comparisons agree precisely. Formulae in the BPS limit are only

defined modulo the constraint on charges but the agreements found here apply with no need

for the constraint. These facts suggest that the microscopic description goes beyond BPS.

We can make these observations quantitative by forming the differential

dS∗ + Re ∆̃I dQI + Re ω̃i dJi =
2π2

S∗
(Q1 +Q2 +Q3 + 1

2
N2) dh(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)

, (4.127)

where the height function h defined through

h =

(
Q1+Q2+Q3+

1

2
N2

)(
Q1Q2+Q2Q3+Q3Q1−

1

2
N2(J1+J2)

)
−

(
Q1Q2Q3+

1

2
N2J1J2

)
,

(4.128)

is a measure of the violation of the constraint (4.116) on black hole charges. The addition of

the differential dS∗ on the left hand side of (4.127) removes the terms that are attributable

to BPS physics. We can interpret the remainder as a formula for the entropy in excess of

the BPS entropy

S − S∗ =
2π2h

S∗
Q1 +Q2 +Q3 + 1

2
N2(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)

, (4.129)

due to the violation of the constraint h = 0. This formula is consistent with the gravitational

result (4.73). Our definition (4.128) of the height function is such that h ≥ 0 corresponds to
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positive entropy.

It is also well worth the effort to extract the imaginary parts of the complex potentials

(4.123-4.124) found in the microscopic computation. Representative components are

Im ω̃1

2π
= −1

4
N2 J2 +Q1 +Q2 +Q3 + 1

2
N2(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

, (4.130)

Im ∆̃1

2π
=

(Q2 +Q3)(2Q1 +Q2 +Q3 + 1
2
N2)− 1

2
N2(J1 + J2)

2
[ (

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

] , (4.131)

and the complete set of potentials follow by appropriate permutation of indices. We have

mentioned that the real parts of these potentials correspond to thermal derivatives of physical

potentials in the near-extremal limit, now we point out that their imaginary parts correspond

to ϕ derivatives of physical potentials in the extremal nearBPS limit, that is,

Im ω̃1

2π
=
∂Ω1

∂ϕ
,

Im ∆̃1

2π
=
∂Φ1

∂ϕ
. (4.132)

It is instructive to collect the entire vector of imaginary potentials as a one-form

Im ∆̃IdQI + Im ω̃idJi
2π

= − dh

2[
(
S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2]

. (4.133)

The entropy function formalism for the BPS black holes in AdS5 [122] employs complex

potentials and identify their real part as the physical potential, but their imaginary part is

enigmatic. It is therefore satisfying that the imaginary potentials computed in the micro-

scopic description of BPS black holes vanish on the constraint surface h = 0 but increase

proportionally to violations of the constraint.

Combining the real and imaginary parts of the potentials (4.127, 4.133), we can write

the first law of thermodynamics as a complex-valued expression:

TdS∗ + (TRe ∆̃I +
ϕ

2πi
Im ∆̃I)dQI + (TRe ω̃i +

ϕ

2πi
Im ω̃i)dJi

=

(
2π

S∗
(Q1 +Q2 +Q3 +

1

2
N2)T − ϕ

2πi

)
π dh(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

. (4.134)

It is not a coincidence that this formula is a close analogue of (4.73), the consolidated

formula for all the potentials we computed from gravity in the nearBPS region. In the

following subsection we relate them quantitatively.
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4.4.4 Extremizing Free Energy near BPS

In this subsection, we generalize the BPS entropy extremization reviewed in subsection

4.4.2 to an extremization principle that describes the nearBPS region.

4.4.4.1 The Free Energy Function

As we stressed repeatedly in section 4.3, all microscopic computations of the BPS arrive

at the partition function (4.104) subject to the subsidiary condition (4.83) and the black hole

entropy is subsequently extracted therefrom through the extremization procedure reviewed

in subsection 4.4.2. The variables of the BPS partition function are potentials that must be

interpreted as thermal derivatives of physical potentials. Our discussion in subsection 4.4.1

arrived at this identification in the course of comparing microscopic conventions with those of

gravity, but it applies equally as a general relation between the extremal and near-extremal

partition functions. Thus the adaptation of the BPS partition function (4.104) to a notation

appropriate for the nearBPS regime is

lnZ(β,∆I , ωi) = −N
2

2T

(∆1 −∆∗1)(∆2 −∆∗2)(∆3 −∆∗3)

(ω1 − ω∗1)(ω2 − ω∗2)
. (4.135)

It is significant to note that there are no tilde’s on the variables in this formula: ∆I and

ωi refer to the full potentials rather than their thermal derivatives. The BPS reference

values ∆∗I and ω∗i all equal 1 numerically, because the BPS mass is the sum of the conjugate

conserved charges with coefficient 1 (in units where `5 = 1). We maintain the more elaborate

notation for conceptual clarity. The original BPS partition function (4.104) is recovered in

the extremal limit T → 0, as it should be.

The microscopic partition function (4.105) was introduced generally, without restricting

to the BPS (or even the nearBPS) regime. In the saddle point approximation it gives

lnZ = S − β(M −M∗) + β(∆I −∆∗I)QI + β(ωi − ω∗i )Ji . (4.136)

It is tempting to identify lnZ in this formula with the BPS partition function (4.135) but

that is incorrect even in the strict BPS limit where it is crucial that we require the potentials

to satisfy the complex constraint (4.83). Moreover, in the BPS limit the real part of the

potentials satisfy
∑

I(∆I −∆∗I)−
∑

i(ωi − ω∗i ) = 0 by definition but this equation must be

relaxed in the nearBPS region. We impose the constraint∑
I

(∆I −∆∗I)−
∑
i

(ωi − ω∗i ) = ϕ+ 2πiT . (4.137)

137



The imaginary part of this equation reformulates the BPS condition (4.83) in a manner that

is meaningful also for small but nonvanishing temperature. The real part allows potentials

to depart from their BPS values and parametrize this violation by ϕ, in conformity with the

convention in gravity (4.50).

We now combine the general saddle point approximation (4.136) with the microscopic

computation of the free energy (4.135) and subject the result to the complex constraint

(4.137). This gives the free energy in the nearBPS regime

F ≡ (M −M∗)− TS

=
1

2
N2 (∆1 −∆∗1)(∆2 −∆∗2)(∆3 −∆∗3)

(ω1 − ω∗1)(ω2 − ω∗2)
+ (∆I −∆∗I)QI + (ωi − ω∗i )Ji

+ Λ
(∑

I

(∆I −∆∗I)−
∑
i

(ωi − ω∗i )− ϕ− 2πiT
)
. (4.138)

We have not attempted to argue that there can be no additional contributions to the free

energy in the nearBPS regime. On the contrary, we conservatively claim that it at least

includes the ingredients incorporated in (4.138).

An effective theory of nearBPS black holes can be found be extremizing the free en-

ergy (4.138) over the potentials ∆I , ωi, and the Lagrange multiplier Λ. It will depend on

the remaining potentials ϕ, T , the dynamical fields in the effective description. As usual,

the effective theory will also feature dimensionful parameters that are unspecified a priori

but computable from the UV completion in principle. In the present context a complete

microscopic theory relates the effective parameters (CT , Cϕ, CE) to conserved charges.

4.4.4.2 Extremization of Free Energy

The free energy (4.138) differs from the entropy function (4.107) only by an overall factor

−T and the addition of a simple term −Λϕ. Therefore the extremization is nearly unchanged

from the BPS computation in subsection 4.4.2. The equations of motion (4.108-4.109) are

entirely unchanged so the ratios (4.118-4.119) remain, and so the steps needed for finding the

potentials explicitly are exactly the same. The key modification is the equation of motion

for Λ, ie. the constraint (4.137). For the potentials the constraint enters in (4.120) where its

role is to provide an overall normalization for the potentials that are otherwise determined

by relations between their ratios. The new (complex) normalization modifies the potentials
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from (4.123 - 4.124) to

ωi − ω∗i
ϕ+ 2πiT

=
1

2
N2

∏
k(Jk − Λ)

Ji − Λ

1

2Λ(Λ +Q1 +Q2 +Q3 + 1
2
N2)

, (4.139)

∆I −∆∗I
ϕ+ 2πiT

=

∏
K(QK + Λ)

QI + Λ

1

2Λ(Λ +Q1 +Q2 +Q3 + 1
2
N2)

. (4.140)

Consider ω1 for definiteness. For small ϕ the constraint on the charges is only violated

mildly so we assume that Λ is unchanged to leading order, and then the right hand of the

first equation is 1
2πi

(Re ω̃1 + iIm ω̃1) where Re ω̃1 and Im ω̃1 are the BPS values for these

variables given in (4.125, 4.130). The physical potential is the real part so the leading

dependence on the constraint violation ϕ is due to the imaginary part of ω̃1:

Re(ω1 − ω∗1)|ϕ dependence = ϕ
Im ω̃1

2π
= −1

4
N2 J2 +Q1 +Q2 +Q3 + 1

2
N2(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

ϕ . (4.141)

This agrees exactly with the gravitational computation of the change of the rotational ve-

locity Ω1 due to small violations of the constraint (4.57). The dependences of all other

potentials on ϕ similarly agree with gravitational results.

At this point we have showed that the extremization principle based on the free energy

(4.138) reproduces the dependence of all physical potentials on temperature and on violations

of the constraint parametrized by the field deformation ϕ. We now turn to to the mass and

entropy in the nearBPS regime.

As we mentioned earlier in this subsection, the equations of motion are entirely unchanged

from the BPS case (4.108-4.109), except for the equation of motion for the Lagrange mul-

tiplier Λ, ie. the constraint (4.137). Therefore the cubic equation (4.112) for Λ still holds.

However, since the potentials ∆I , ωi do not satisfy the BPS constraint (4.83) in the nearBPS

theory, the charges QI , Ji may also violate their constraint (4.116).

We already anticipated this situation in the preceding subsection when introducing a

height function h (4.128) parametrizing the violation of the constraint (4.116). In the

schematic notation introduced in (4.113-4.114) the height function h ≡ C − AB deforms

the cubic equation to

Λ3 + AΛ2 +BΛ + C = (Λ2 +B)(Λ + A) + h = 0 . (4.142)

Modifying charges and Λ away from h = 0 at first order in perturbation theory

(2ΛδΛ + δB)(Λ + A) + h = 0 ,
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and recalling that Λ is purely imaginary at leading order we find

Im δΛ =
Ah

2ImΛ(B + A2)
+

δB

2ImΛ
. (4.143)

The second term
δB

2ImΛ
= −δS∗

2π
, (4.144)

takes into account the change of the BPS entropy due to changes of the conserved charges.

Therefore the entropy in excess of the BPS entropy due to the violation of the constraint

becomes

δ(S − S∗) = −2πIm δΛ =
2π2h

S∗
Q1 +Q2 +Q3 + 1

2
N2(

S∗

2π

)2
+ (Q1 +Q2 +Q3 + 1

2
N2)2

. (4.145)

This formula agrees with the expression (4.129) inferred from applying the thermodynamic

potentials derived in the BPS case also off the BPS surface. Moreover, the same expression

was found also from gravity considerations (4.73). The considerations here are based on a

minimal generalization of the microscopic theory.

4.4.4.3 Parameters in Effective Field Theory

We have expressed possible violations of the constraint in two distinct ways. We defined

the height function h (4.128) that measures departures from the constraint h = 0 on charges,

and the effective potential ϕ introduced through the deformed constraint (4.137) that is

required to take the value ϕ = 0 by the conditions for supersymmetry (4.83). The “charge”

h and the “potential” ϕ are proportional near the BPS surface we computed their constant

of proportionality (4.65) on the gravity side. It is interesting to understand their relation

more generally.

The height function h (4.128) is fairly elaborate so the expression for small departures

δh = ∂QIhδQI + ∂JihδJi from the constraint h = 0 due to general variations δQI , δωi of the

charges is lengthy and not illuminating. However, variations that are proportional to the

charges themselves δQI = λQI , δJi = λJi yield a manageable formula

δh =
[ (
Q2

1(Q2 +Q3) + cyclic
)

+ 2Q1Q2Q3 +
1

4
N4(J1 + J2)

]
λ , (4.146)

after simplifications using the constraint h = 0. However, the transformation of the effective

potential is canonical (with dimension 2 relative to the charge):

δϕ = 2λϕ . (4.147)

140



Comparison of the two preceding equations gives

h =
1

2

[ (
Q2

1(Q2 +Q3) + cyclic
)

+ 2Q1Q2Q3 +
1

4
N4(J1 + J2)

]
ϕ . (4.148)

This generalizes the constant of proportionality (4.65) computed in the gravity to the case

of three distinct charges.

We can now consolidate our results by presenting the first law of thermodynamics in a

coherent manner. We collected most of them already in the complex form of the first law

(4.134). In the course of this subsection we have rederived each of the terms in this equation

from free energy extremization. Additionally, the imaginary part of the potentials acquired

a more satisfying interpretation through its relation with the deformation parameter ϕ given

in (4.141) and its analogues for other potentials. The conversion (4.148) between h with ϕ

finally let us rewrite (4.134) as

TdS∗+Re(∆I−∆∗I)dQI+Re(ωi−ω∗i )dJi =
CT
T

[
2π

S∗
(Q1+Q2+Q3+

1

2
N2)T+

ϕ

2π

]
dϕ

2π
, (4.149)

where CT is the heat capacity that is linear in temperature with proportionality constant

CT
T

∣∣∣∣
nearExt

= π2Q
2
1(Q2 +Q3) +Q2

2(Q3 +Q1) +Q2
3(Q1 +Q2) + 2Q1Q2Q3 + 1

4
N4(J1 + J2)

Q1Q2 +Q2Q3 +Q3Q1 − 1
2
N2 (J1 + J2) + (Q1 +Q2 +Q3 + 1

2
N2)2

.

We previously computed this expression in gravity (4.42). In some parts of this chapter we

introduced the effective field theory parameters Cϕ and CE in addition to CT . They all have

different physical significance but numerically Cϕ = CT and(
CE
T

)
=

2π

S∗

(
CT
T

)
(Q1 +Q2 +Q3 +

1

2
N2) , (4.150)

so in the presentation of these final results we opt for writing the formulae more explicitly.

The first law of thermodynamics

TdS = d(M −M∗)− (∆I −∆∗I)dQI − (ωi − ω∗i )dJi , (4.151)

now gives the energy and the entropy of the excitations above the BPS ground state as

M −M∗ =
1

2

CT
T

( ϕ
2π

)2

, (4.152)

S − S∗ =
2π

S∗
CT
T

(Q1 +Q2 +Q3 +
1

2
N2)

ϕ

2π
. (4.153)
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These expressions agree with results earlier in the chapter, including computations in gravity

(4.62, 4.68).

Our microscopic discussion in this section has not at all touched on the conventional

heat capacity, ie. the term in the entropy that is linear in temperature (and correlated with

a mass term that is quadratic in the temperature). What is needed to get this term is an

equation of motion where the height parameter h in the cubic equation (4.142) is traded for

ϕ through (4.148) and subsequently complexified to ϕ+ 2πiT . The last step is very natural

in that much of the theory apparently depends holomorphically on a complex symmetry

breaking parameter. However, we are not yet able to present a principled argument based

on microscopic theory.

4.5 Summary and Outlook

In this chapter we have discussed the thermodynamics and the statistical physics of AdS5

black holes, addressing both the BPS and the nearBPS configurations. In the nearBPS

region, we made an important distinction between the near-extremal (T 6= 0, ϕ = 0), the

extremal nearBPS (T = 0, ϕ 6= 0), and the general nearBPS (T 6= 0, ϕ 6= 0) black holes.

The unfamiliar potential ϕ parametrizes the possible violation of a constraint on charges

that must be imposed in the strict BPS limit.

In the gravitational theory we studied all thermodynamic potentials in great detail, es-

pecially their interrelation through the first law of thermodynamics, in the entire BPS and

nearBPS domain. In the holographically dual theory, we reviewed an elementary version of

the microscopic description, based on the free field representation of N = 4 SYM. It yields

the semiclassical partition function found in [122] that is common to all the recent proposals

for a microscopic theory of BPS black holes in AdS5 [24–26].

We found that, with minor additional assumptions, the same semiclassical partition func-

tion also describes aspects of nearBPS black holes. This approach to the theory without su-

persymmetry is particularly successful for extremal nonBPS black holes. It is the main basis

for our claim of a microscopic description of the nearBPS black holes. Our generalization

of the entropy function to a free energy function captures the effective field theory of the

nearBPS region succinctly and in a manner that relates directly to the microscopic theory.

The recent progress towards a statistical description of BPS black holes [24–26] is not yet

fully satisfactory. It is not even clear that the reports are consistent with one another. Our

study gives general support for these advances. For example, we find that the BPS limit is

robust in that it can be approached from any direction.

However, there are still many open questions, particularly on the microscopic side. The
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free energy function could surely be improved. The more important open problem is why

the microscopic description of nearBPS black holes is even possible. It appears that some

non-renormalization due to supersymmetry persists also away from the BPS limit. We

suspect this follows from softly broken superconformal symmetry but we have not developed

a principled argument.

Furthermore, we expect that the additional microscopic degrees of freedom in the nearBPS

region can equally be modeled by a simple gas of free particles, much like the free model of

the BPS limit that we review. However, it might well be necessary to invoke other sectors of

N = 4 SYM that are BPS, but preserving different supersymmetries than the ground state.

This is the structure of successful microscopic models for near-extremal black holes with flat

asymptotic space, such as the D1-D5 system [12].

There are also problems in gravitational physics that we leave for the future. We found

that the potential for constraint violations ϕ exhibits entropic preference for ϕ ≥ 0, remi-

niscent of the behavior of conventional temperature T . It would be interesting to develop

the geometric underpinnings of ϕ. Additionally, the near horizon AdS2 expected for any

near-extremal black hole must have an analogue for extremal nearBPS configurations and

the full nearBPS region of parameter space promises an interesting interplay between the

low temperature limit and a mildly violated constraint.

We look forward to pursue these and related directions in future research.
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APPENDIX A

Computations of Seeley-DeWitt Coefficients

In this appendix, we give the details on the computation of the Seeley-DeWitt coeffi-

cients for Kaluza Klein black holes and their embeddings in N ≥ 2 supergravity. Most of

the computations were done using the Mathematica package xAct. We present our results

according to the organization of quadratic fluctuations into blocks that was introduced in

section 2.4.

The basic steps of our implementation are:

1. We expand the Lagrangian to second order.1 This was done in sections 2.4 and 2.6 for

the supergravity theories of interest. The bosonic Lagrangian can also be expanded

using xPert.

2. We gauge-fix and add the corresponding ghosts. The gauge-fixing and the ghosts were

detailed for each block in sections 2.4 and 2.6. In this appendix, we highlight and

record their contributions to the heat kernel.

3. We rearrange the fluctuation operator Λn
m so that it takes the canonical form (2.120).

We then read off the operators ωµ and P and compute the operators E and Ωµν . These

are the most cumbersome steps so they are executed primarily using Mathematica.

Since some expressions are rather lengthy for the matrix operators due to the non-

minimal couplings, we mostly present the traces of these operators.

4. We compute the Seeley-DeWitt coefficient a4(x) using formula (2.121). This also in-

cludes the ghosts from the second step.

1For fermions we always write the quadratic fluctuations with Majorana spinors, following the conventions
of [17].
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5. We simplify a4(x) using the equations of motion, tensor and gamma matrix identities.

This brings a4(x) to its minimal form (2.125), where we can read off the coefficients c

and a.

A.1 Preliminaries

We use the following formula to compute the Seeley-DeWitt coefficient

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩ

µν +
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
.

(A.1)

This object further simplifies due to the equations of motion, Bianchi, and Schouten identi-

ties. These simplifications imply that we can cast (A.1) in the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (A.2)

where the square of the Weyl tensor is

WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 , (A.3)

and the Euler density is

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 . (A.4)

For each block, as summarized in Table 2.3, we will report both (A.1) and (A.2). The

identities used to simplify (A.1) to its minimal form (A.2) are listed below. For fermionic

fluctuations, we also use many gamma matrix identities which are well known and not re-

peated here.

On-shell conditions: The equations of motion background with constant dilaton are

FµαF
α
ν = 2Rµν , R = 0 , (A.5)

FµνF
µν = 0 , DµF

µν = 0 .

Bianchi identities: Starting from

∇µF̃
µν = 0 , Rµ[ναβ] = 0 , (A.6)
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where F̃µν = − i
2
εµναβF

αβ we find

RµναβR
µανβ =

1

2
RµναβR

µναβ , (A.7)

(DαFµν)(D
νF µα) =

1

2
(DαFµν)(D

αF µν) ,

Fαν(DαFµν) =
1

2
F να(DµFνα) ,

RµανβF
µνFαβ =

1

2
RµναβF

µνFαβ ,

εµναβD
αF ρβ =

1

2
εµναβD

ρFαβ .

Schouten identities: The Schouten identity is gµ[νερστλ] = 0. From this, we can derive

F̃µαF
α
ν =

1

4
gµνF̃αβF

αβ (A.8)

Derivative relations: The following identity is also useful

(DαFµν)(D
αF µν) = −2RµνF

µαF ν
α +RµναβF

µνFαβ (A.9)

and holds up to a total derivative.

A.2 KK Block

The quadratic Lagrangian is given in (2.53). To evaluate the Seeley-DeWitt coefficient,

the kinetic term of hµν is analytically continued to

hnew
µν = − i

2
hµν , (A.10)

for the kinetic term to have the right sign. In addition, in order to project onto the traceless

part of a symmetric tensor, we define

Gµν
ρσ =

1

2

(
δµρδ

ν
σ + δµσδ

ν
ρ −

1

2
gµνgρσ

)
. (A.11)

Traces of operators must be taken after contraction with this tensor. For example, for a four

index operator O we use

TrO = Gµν
ρσO

ρσ
µν . (A.12)
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The relevant traces that appear in (A.1) for the KK block are

TrE = 3FµνF
µν − 7R , (A.13)

TrE2 =
33

16
F µ

ρF
νρFµσF

σ
ν +

21

16
FµνF

µνFρσF
ρσ − 5RµνR

µν

−5

2
RµνF

µ
ρF

νρ − 1

2
RFµνF

µν + 5R2 + 2RµνρσR
µνρσ

+2RµρνσR
µνρσ − 2F µν

;µF
ρ
ν ;ρ +

1

2
Fµρ;νF

µν;ρ +
1

2
Fµν;ρF

µν;ρ ,

Tr ΩµνΩ
µν = −7

8
F µ

ρF
νρFµσF

σ
ν −

23

8
FµνF

µνFρσF
ρσ + 2RµνF

µ
ρF

νρ

+RFµνF
µν + 3RµρνσF

µνF ρσ − 7RµνρσR
µνρσ

−F µν
;µF

ρ
ν ;ρ + 4Fµρ;νF

µν;ρ − 8Fµν;ρF
µν;ρ .

The gauge-fixing also introduces ghosts with the Lagrangian

e−1Lghosts = 2bµ (�gµν +Rµν) cν + 2b�c− 4bF µνDµcν , (A.14)

where bµ, cµ are vector ghosts associated to the graviton and b, c are scalar ghosts associated

to the graviphoton. The contribution of the ghosts are

TrE = 2R , (A.15)

TrE2 = 2RµνR
µν ,

Tr ΩµνΩ
µν = −2RµνρσR

µνρσ .

The total ghost contribution is

(4π)2aghost
4 (x) =

1

9
RµνρσR

µνρσ − 17

18
RµνR

µν − 17

36
R2 . (A.16)

Combining the contributions (A.13) and (A.16) gives

(4π)2a4(x) =
23

24
F µ

ρF
νρFµσF

σ
ν +

5

12
FµνF

µνFρσF
ρσ − 127

36
RµνR

µν − 13

12
RµνF

µ
ρF

νρ

+
1

3
RFµνF

µν +
77

72
R2 +

1

4
RµρνσF

µνF ρσ +
11

18
RµνρσR

µνρσ +RµρνσR
µνρσ

−13

12
F µν

;µF
ρ
ν ;ρ +

7

12
Fµρ;νF

µν;ρ − 5

12
Fµν;ρF

µν;ρ . (A.17)

We use the identities listed in (A.5-A.8) to obtain

(4π)2a4(x) =
10

9
RµνρσR

µνρσ − 49

36
RµνR

µν , (A.18)
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and from here we find

aKK =
31

72
, cKK =

37

24
. (A.19)

A.3 Vector Block

The vector block in its minimal form is described by the quadratic Lagrangian (2.103)

and for the matter content of N = 8 by (2.55). The matrices that appear in the quadratic

fluctuation operator are

E =


1
4
F ρ
µ Fνρ −Rµν

1
2
F ρ
ν ;ρ

1
2
F ρ
µ ;ρ −1

4
FρσF

ρσ

 ,

Ωρσ =

Rµνρσ + 1
4
FµσFνρ − 1

4
FµρFνσ

1
2
Fµσ;ρ − 1

2
Fµρ;σ

−1
2
Fνσ;ρ + 1

2
Fνρ;σ 0

 ,

where the first row/column corresponds to the vector field and the second row/column to

the scalar field. The relevant traces are

TrE = −R , (A.20)

TrE2 =
1

16
F µ

ρF
νρFµσF

σ
ν +

1

16
FµνF

µνFρσF
ρσ +RµνR

µν (A.21)

−1

2
RµνF

µ
ρF

νρ − 1

2
F µν

;µF
ρ
ν ;ρ ,

Tr ΩµνΩ
µν =

1

8
F µ

ρF
νρFµσF

σ
ν −

1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ (A.22)

−RµνρσR
µνρσ + Fµρ;νF

µν;ρ − Fµν;ρF
µν;ρ .

The ghosts for the vector block are two minimally coupled scalars with fermionic statis-

tics. Their contribution to the Seeley-DeWitt coefficient is

(4π)2aghost
4 (x) = − 1

180
(2RµνρσR

µνρσ − 2RµνR
µν + 5R2) . (A.23)
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We combine the contributions of the vector block and its associated ghosts and get

(4π)2a4(x) =
1

24
F µ

ρF
νρFµσF

σ
ν +

1

48
FµνF

µνFρσF
ρσ +

29

60
RµνR

µν (A.24)

−1

4
RµνF

µ
ρF

νρ − 1

8
R2 +

1

12
RµρνσF

µνF ρσ − 1

15
RµνρσR

µνρσ

−1

4
F µν

;µF
ρ
ν ;ρ +

1

12
Fµρ;νF

µν;ρ − 1

12
Fµν;ρF

µν;ρ

After using the identities (A.5-A.8), we obtain

(4π)2a4(x) = − 1

15
RµνρσR

µνρσ +
19

60
RµνR

µν . (A.25)

This leads to

avector =
11

120
, cvector =

1

40
. (A.26)

When the vector block contains a pseudoscalar instead of a scalar, such as in (2.56), the

result remains the same because of simplifications due to our background.

A.4 Gravitino Block

The gravitino block is characterized by the quadratic Lagrangian (2.61). After using

gamma matrix identities, the relevant traces are

TrE =
1

2
FµνF

µν +
1

2
F̃µνF̃

µν − 10R , (A.27)

TrE2 = −105

128
F µ

ρF
νρFµσF

σ
ν +

81

128
FµνF

µνFρσF
ρσ +

43

64
F µνF ρσF̃µρF̃νσ (A.28)

−13

32
F µ

ρF
νρF̃ σ

µ F̃νσ +
7

128
F̃ µ

ρF̃
νρF̃ σ

µ F̃νσ −
21

64
FµνF

µνF̃ρσF̃
ρσ

+
9

128
F̃µνF̃

µνF̃ρσF̃
ρσ − 1

4
RFµνF

µν − 1

4
RF̃µνF̃

µν +
5

2
R2

−3

2
RµρνσF

µνF ρσ +
3

2
RµρνσF̃

µνF̃ ρσ + 4RµνρσR
µνρσ

−7

2
Fµρ;νF

µν;ρ + 3Fµν;ρF
µν;ρ +

3

2
F̃µρ;νF̃

µν;ρ − 2F̃µν;ρF̃
µν;ρ ,
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Tr ΩµνΩ
µν =

185

64
F µ

ρF
νρFµσF

σ
ν −

185

64
FµνF

µνFρσF
ρσ − 27

32
F µνF ρσF̃µρF̃νσ (A.29)

− 3

16
F µ

ρF
νρF̃ σ

µ F̃νσ +
9

64
F̃ µ

ρF̃
νρF̃ σ

µ F̃νσ +
33

32
FµνF

µνF̃ρσF̃
ρσ

− 9

64
F̃µνF̃

µνF̃ρσF̃
ρσ + 7RµρνσF

µνF ρσ − 3RµρνσF̃
µνF̃ ρσ − 13RµνρσR

µνρσ

+7Fµρ;νF
µν;ρ − 7Fµν;ρF

µν;ρ − 3F̃µρ;νF̃
µν;ρ + 3F̃µν;ρF̃

µν;ρ .

The gauge-fixing produces fermionic ghosts bA, cA, eA with Lagrangian

e−1Lghost = b̄Aγ
µDµcA + ēAγ

µDµeA , (A.30)

where A = 1, 2 is the flavor index. This simply corresponds to six minimally coupled Ma-

jorana fermions which contribute with an opposite sign. Their Seeley-DeWitt contribution

is

(4π)2aghost
4 (x) = − 1

120

(
7RµνρσR

µνρσ + 8RµνR
µν − 5R2

)
. (A.31)

Combining (A.27) and (A.31) gives

(4π)2a4(x) =
65

768
F µ

ρF
νρFµσF

σ
ν −

29

768
FµνF

µνFρσF
ρσ − 17

128
F µνF ρσF̃µρF̃νσ (A.32)

+
7

64
F µ

ρF
νρF̃ σ

µ F̃νσ −
5

256
F̃ µ

ρF̃
νρF̃ σ

µ F̃νσ +
5

128
FµνF

µνF̃ρσF̃
ρσ

− 3

256
F̃µνF̃

µνF̃ρσF̃
ρσ +

2

45
RµνR

µν +
1

48
RFµνF

µν +
1

48
RF̃µνF̃

µν

− 1

36
R2 +

1

12
RµρνσF

µνF ρσ − 1

4
RµρνσF̃

µνF̃ ρσ − 113

180
RµνρσR

µνρσ

+
7

12
Fµρ;νF

µν;ρ − 11

24
Fµν;ρF

µν;ρ − 1

4
F̃µρ;νF̃

µν;ρ +
3

8
F̃µν;ρF̃

µν;ρ .

Using the identities (A.5-A.8) gives

(4π)2a4(x) = −113

180
RµνρσR

µνρσ +
767

720
RµνR

µν , (A.33)

and this leads to

agravitino = − 137

1440
, cgravitino = −347

480
. (A.34)
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A.5 Gaugino Block

The gaugino block is given by the Lagrangian (2.62). In this case, the relevant traces are

TrE =
1

4
FµνF

µν − 2R , (A.35)

TrE2 = − 1

32
F µ

ρF
νρFµσF

σ
ν +

3

128
FµνF

µνFρσF
ρσ − 1

8
RF µνFµν +

1

2
R2 (A.36)

−1

2
Fµρ;νF

µν;ρ +
1

4
Fµν;ρF

µν;ρ ,

Tr ΩµνΩ
µν =

1

8
F µ

ρF
νρFµσF

σ
ν −

1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ −RµνρσR
µνρσ(A.37)

+Fµρ;νF
µν;ρ − Fµν;ρF

µν;ρ .

The Seeley-DeWitt coefficient is

(4π)2a4(x) =
1

384
F µ

ρF
νρFµσF

σ
ν −

1

1536
FµνF

µνFρσF
ρσ +

1

45
RµνR

µν +
1

96
RF µνFµν (A.38)

− 1

72
R2 − 1

24
RµρνσF

µνF ρσ +
7

360
RµνρσR

µνρσ +
1

12
Fµρ;νF

µν;ρ − 1

48
Fµν;ρF

µν;ρ .

and gives after simplification

(4π)2a4(x) =
7

360
RµνρσR

µνρσ − 73

1440
RµνR

µν , (A.39)

which leads to

agaugino = − 17

2880
, cgaugino =

13

960
. (A.40)
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