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frame marked by unit vectorŝy1; ŷ2; ŷ3 whereŷ1 is pointing into the page. The robot's
range of motion given control inputs de�ned in (4.14) is depicted. . . . . . . . . . . . 68

3.6 The measured position of the robot end effector over a 30 second time window (black,
dotted) superimposed with the position predicted by the Koopman-based model (blue)
given the same initial condition and control inputs. Coordinates are de�ned with re-
spect to the global coordinate frame depicted in Fig. 3.5. . . . . . . . . . . . . . . . . 70

3.7 Shown is the total NRMSE averaged across all states for each of the models, with the
standard deviation designated by the black bar. The average NRMSE of the Koopman-
based model is less than half of that of the other models, with a standard deviation of
less than one third of the other models. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 The end effector trajectories generated by each Koopman-based model predictive con-
troller superimposed over the same reference trajectory, shown in grey. . . . . . . . . 86

4.2 The mean tracking error (blue) and the mean computation time (orange) for each
controller plotted on a logarithmic scale. The K-BMPC controller has a mean tracking
error comparable to K-NMPC and a mean computation time comparable to K-MPC,
proving it to be both accurate and computationally ef�cient. . . . . . . . . . . . . . . 87

4.3 The soft robot consists of two bending segments encased in a foam exterior with a
laser pointer attached to the end effector. A set of three pressure regulators is used to
control the pressure inside of the pneumatic actuators (PAMs), and a camera is used
to track the position of the laser dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



4.4 The left plot shows the average response of our soft robot system over a single period
when the sinusoidal inputs of varying frequencies described by (4.13) are applied.
All of the particular responses are subimposed in light grey. The right plot shows
the distribution of trajectories about the mean, with all distances within two standard
deviations (0.43 cm) highlighted in grey. The width of the distribution illustrates how
it is possible for identical inputs to produce outputs that vary by almost 1 cm. . . . . . 90

4.5 As the weight of� (theL1 penalty term in (3.48)) increases, the density of the lifted
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ABSTRACT

Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits

make them well suited for highly structured industrial environments, but poorly suited for the

unstructured environments in which humans typically operate.

Soft robots are well suited for unstructured human environments because they can safely

interact with delicate objects, absorb impacts without damage, and passively adapt their shape to

their surroundings. This makes them ideal for applications that require safe robot-human interac-

tion, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots

exhibit continuous deformation and coupling between structure and actuation and these behav-

iors are not readily captured by traditional robot modeling and control techniques except under

restrictive simplifying assumptions.

The contribution of this work is a modeling and control framework tailored speci�cally to

soft robots. It consists of two distinct modeling approaches. The �rst is a physics-based static

modeling approach for systems of �uid-driven actuators. This approach leverages geometric re-

lationships and conservation of energy to derive models that are simple and accurate enough to

inform the design of soft robots, but not accurate enough to inform their control. The second is a

data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach lever-

ages Koopman operator theory to construct models that are accurate and computationally ef�cient

enough to be integrated into closed-loop optimal control schemes.

The proposed framework is applied to several real-world soft robotic systems, enabling

the successful completion of control tasks such as trajectory following and manipulating objects

of unknown mass. Since the framework is not robot speci�c, it has the potential to become the
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dominant paradigm for the modeling and control of soft robots and lead to their more widespread

adoption.
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CHAPTER 1

Introduction

1.1 Motivation

Human technology is primarily composed of stiff and rigid materials. From skyscrapers to pa-

perclips and everything in between, rigid structures are ubiquitous in engineered systems. This

preference for rigidity manifests in our robots too. The vast majority of robots in use today are

composed of rigid links actuated by strong heavy motors. They are fast and precise, but also mas-

sive and dangerous. Therefore, they are almost exclusively utilized in industrial settings where

they can be physically separated from humans by cages and other barriers. Over the last sev-

eral decades, these types of robots have facilitated increases in productivity and ef�ciency in the

manufacturing sector [2], but have been of little use outside of factories.

Robots could facilitate similar improvements to our day-to-day lives, but this will require them

to perform tasks within the unstructured environments inhabited by humans. In such settings, speed

and precision are less important than safety and reliability, making the predominant morphology

of current industrial robots poorly suited to address this challenge. For robots to operate safely and

effectively alongside humans, a new paradigm in their design and control is needed.

We need not look far for inspiration. We are surrounded by systems in nature that safely and ef-

fectively operate within unstructured environments. These natural systems, designed by thousands

of years of trial-and-error, utilize primarily soft materials to achieve performance capabilities that

exceed the current state of the art in robotics. While human engineers prefer materials that are stiff
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and rigid, nature most often opts for softness and �exibility.

Softness has some clear and well understood bene�ts. The most immediate bene�t is the way

in which softness mitigates contact with the environment. In collision, soft materials dissipate

energy through deformation, making physical interactions with soft structures inherently safer than

with rigid ones. Softness also facilitates more robust grasping and navigation by enabling passive

conformity to the shapes of external objects and environments.

Despite the acknowledged bene�ts of softness, our af�nity for rigid structures runs deep. For

example, Robots like Boston Dynamics' Spot [3], the Fetch Mobile Manipulator [4], and others

that are intended for human collaboration are all constructed from rigid materials. These robots

may be smaller and lighter than their industrial forebearers, but they are similarly capable of induc-

ing injury [5]. If softness promotes safer interactions between robots and humans, why aren't any

of these popular commercial robots made of soft materials? The answer may lie in the way we are

conditioned to think. Our predilection for rigidity is not merely re�ected in the robots we design, it

is also re�ected in the way we model the physical world. For example, elementary physics classes

assume that masses act as if concentrated at points and that solid bodies are perfectly rigid. Such

abstractions are undoubtedly convenient, but untrue. While this way of thinking about the world is

suf�cient for designing and analyzing rigid things, it is hopelessly inadequate for describing things

that are the soft and �exible. Years of conditioning makes our imaginations, and consequently our

robots, in�exible.

The �eld of soft robotics has emerged to challenge the dominant paradigm. This �eld, which

seeks to utilize and exploit soft materials to create ever more capable robots, has grown consider-

ably over the last several years. Inspired by the way animals use soft materials to move in complex,

unpredictable environments, soft robots could revolutionize emerging robotic application domains

such as medicine, disaster response, and in-home human assistance [6].

Soft robots have the potential to exceed the capabilities of traditional rigid-bodied robots by

exploiting the inherent bene�ts of softness. Softness allows them to adapt their overall shape to

navigate unstructured environments, to safely interact with humans, to grasp delicate objects, and
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to absorb impacts without damage [7]. Already, thousands of novel soft robotic devices such as

grippers [8], crawlers [9], and swimmers [10] have been developed that exploit the �exibility of

their bodies to achieve coarse behaviors such as grasping and locomotion. Despite their promise,

however, soft robots have yet to be widely adopted. Unfortunately, softness introduces modeling

and control challenges that have so far rendered soft robots incapable of achieving the precision

needed for more useful tasks such as object manipulation.

Soft robots are fundamentally different from rigid-bodied robots in ways that demand a new

set of modeling and control approaches tailored speci�cally to them. Soft robots do not exhibit

localized deformation at discrete joints, but instead deform continuously along their bodies and

have in�nite degrees-of-freedom. In the absence of joints, there is no obvious choice of state

variables to describe the geometry of a soft robot. As a result, it is unclear how best to describe the

con�guration of a soft robot with a �nite set of parameters. Things are further complicated by the

nonlinear properties of soft materials such as compliance, damping, and hysteresis which change

a system's behavior over time. Because of these unique challenges, soft robots have yet to replace

rigid-bodied robots in applications such as feeding [11], packing boxes in a warehouse [12], and

other human assistive tasks where their inherent safety would be of value.

The central aim of this dissertation is to increase the capabilities of soft robots by developing

a universal modeling and control framework for them. Models offer valuable insight into the be-

havior of robotic systems, allowing engineers to evaluate the ef�cacy of proposed designs before

physically constructing them, or synthesize controllers that achieve desired performance speci�-

cations. For design, models are desired that can roughly predict system behavior based on a set

of design parameters before the system is constructed. For control, models are desired that can

accurately and ef�ciently predict system behavior based on a set of control inputs, and are com-

patible with existing model-based control techniques. It is dif�cult to construct models that satisfy

both of these requirements simultaneously, therefore it is often useful to construct different models

for the design and control of the same system. This dissertation presents methods for constructing

both types of models for soft robots as well as methods for synthesizing accurate model-based
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controllers from them.

1.2 State of the Art

A canonical approach to modeling soft robotic systems does not yet exist. Therefore, many dif-

ferent approaches have been utilized to model soft robots, depending on the intended application.

These models can broadly be separated into two categories: physics-based models and data-driven

models.

Physics-based models are constructed from observations of component material properties and

�rst-principles, enabling them to make predictions about a system's behavior before the system is

physically constructed. Thus, they are often used to inform the design of soft robots intended for

particular tasks. For example, [13] and [14] present models for a class of soft actuators known

as �ber-reinforced elastomeric enclosures (FREEs) which describe their kinematics and range of

motion (respectively) in terms of design parameters such as length, diameter, and �ber angle. In

[15] and [16], kinematic models for continuum manipulators are presented which describe their

continuous geometry in terms of just a small set of design parameters. These models have proven

useful for optimal model-based design of soft robotic manipulators [17]. However, due to the dif-

�culty of representing in�nite degrees of freedom and the nonlinear properties of soft materials,

these physics-based models still fall short of completely capturing the complex behavior of soft

robots. They are fundamentally limited in accuracy by the simplifying assumptions upon which

they are based. For example, the popular piecewise constant curvature model [18] provides a

low-dimensional description of the shape of continuum robots, but only under the assumption that

bending occurs in sections of constant curvature. Other reduced-order models such as pseudo-

rigid-body mechanics [19, 20], quasi-static [21, 22, 23], or simpli�ed geometry [24, 25, 26] have

been validated on real soft robotic systems, but they are only able to describe behavior in the subset

of conditions over which their simplifying assumptions hold. Hence their accuracy is suf�cient for

informing design but still falls short of what is required to perform model-based control satisfac-

4



torily.

Data-driven models can more accurately capture the complex behavior of soft robots by utiliz-

ing observations of real systems. A primary bene�t of data-driven modeling techniques is that a

description of an input-output relationship suitable for model-based control can be obtained from

system observations without explicitly de�ning a system state. This is especially useful for ob-

taining reduced-order models of soft robots that have essentially in�nite-dimensional kinematics,

without making simplifying physical assumptions. A potential downside of data-driven model-

ing is that it requires system behavior to be observed under a wide range of operating conditions,

including those that may be dangerous to a robot or its surroundings. Fortunately, compared to

conventional rigid-bodied robots, soft robots pose much less of a physical threat to themselves and

their surroundings. It is hence possible to automatically and safely collect data under a wide range

of operating conditions, making soft robots well suited for data-driven modeling approaches.

Within the class of data-driven methods, deep learning of neural networks has been the primary

choice for describing the input-output behavior of soft manipulators. For instance, [27] used deep

reinforcement learning to achieve open-loop position control of a soft manipulator comprised of

�ber-reinforced actuators; [28] utilized a linearization of a neural network model and model predic-

tive control to control the position of a bellows-actuated manipulator; and [29] used a combination

of a recurrent neural network and supervised reinforcement learning to achieve closed-loop control

of a pneumatically-driven soft manipulator. This controller was shown to compensate for distur-

bances such as end effector loading. While these results are promising, there are fundamental

downsides to using neural network models for control. Namely, building a neural network model

requires solving a nonlinear optimization problem for which global convergence may not be guar-

anteed [30], and its accuracy depends on the number of hidden layers, number of nodes per layer,

activation function, and termination condition used during training, which must be tuned through

trial and error until acceptable results are achieved. Furthermore, utilizing a neural network model

at run-time is non-trivial since the control input usually appears nonlinearly within the computed

model.
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An alternative data-driven system identi�cation method, which will be explored in detail in

this dissertation, is based on Koopman operator theory. The Koopman operator provides a way

to describe the evolution of the states of a (potentially) nonlinear dynamical system as a linear

operation. This linearity is achieved by embedding the system's dynamics in a higher dimensional

space of scalar valued functions. Because the Koopman operator is linear, it can be approximated

via linear regression. Thus Koopman-based system identi�cation avoids some of the undesirable

features of nonlinear optimization such as the manual initialization and and tuning of training

parameters.

The ability to approximate nonlinear dynamical systems globally as linear systems is valuable

from a controls perspective, because it allows them to be controlled using linear control tech-

niques. A growing body of literature is exploring ways of exploiting Koopman representations

for control [31, 32, 33]. In [34], a low-dimensional analytical nonlinear system is converted to

a linear system via the Koopman operator, then a linear quadratic regulator (LQR) formulation

is used to construct a feedback control law. The Koopman-based linear control law is shown to

be superior to those based on local linearizations of the system. In [35], a data-driven approach

to identifying an approximation of the Koopman operator is presented called Extended Dynamic

Mode Decomposition (EDMD). In [36], Koopman models identi�ed via EDMD are combined

with model predictive control (MPC) to achieve receding horizon control of nonlinear systems. So

far, these methods have been extensively validated on simulations of dynamical systems, but rarely

applied to real physical robotic systems. Notable exceptions are [37] which used a Koopman-based

learning approach to control a Sphero SPRK robot and a Rethink Sawyer robot, and [38] which

utilized a Koopman-based LQR controller to control a swimming �sh robot. This dissertation

presents the �rst successful adaptation and application of this theory to soft robots.
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1.3 Contributions

This dissertation focuses on modeling approaches for soft robots that can inform their design or

enable accurate real-time control. Each of the presented modeling approaches is validated on a real

soft robotic system to demonstrate its real-world utility. This dissertation has four contributions.

The �rst two are distinct modeling approaches, the third is a model-based control approach, and

the �nal contribution is an extension of the previously presented modeling and control approaches

to account for loading.

The �rst contributionis a physics-based static modeling framework for arbitrary combinations

of �uid-driven actuators. Fluid-driven actuation is widely used in soft robotics, so the approach is

broadly, even if not universally, applicable. This approach is applied to �ber-reinforced �uidic ac-

tuators to illustrate its ability to predict static behavior and inform the choice of design parameters.

Much of this work originally appeared in [24] and [39].

The second contributionis a data-driven dynamic modeling framework based on Koopman

operator theory. This approach provides a way to construct global linear, bilinear, and nonlinear

realizations of the characteristically nonlinear dynamics of soft robots using standard least-squares

linear regression. The approach is validated on a simulated planar 3-link arm and a real pneumatic

soft robot arm. Much of this work originally appeared in [40].

The third contributionis a Koopman-based model predictive control framework that is capa-

ble of achieving accurate control of soft robots. This framework yields model predictive control

optimization problems that are convex, making them computationally ef�cient enough to perform

closed-loop control. This is exempli�ed by a demonstration of fully autonomous real-time control

of a simulated planar 3-link arm and a real pneumatically actuated soft manipulator. Much of this

work originally appeared in [41].

The fourth contributionis an extension of the Koopman-based modeling and control framework

to explicitly account for external loading conditions. The framework consists of a modi�ed system

identi�cation approach to incorporate loading conditions into a Koopman model, and a control

algorithm that estimates loading conditions online. This improved framework is used to achieve
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load invariant control of a simulated planar 3-link arm and the �rst successful demonstration of a

fully autonomous pick-and-place task by a real soft manipulator arm.

Each chapter corresponds to one of the contributions outlined above and has a similar structure:

A brief introduction, followed by a theoretical exposition, then one or more sections describing the

theory applied to an actual system. An effort has been made to keep mathematical notation con-

sistent across chapters, but some symbols may have been assigned more than one meaning. In

such cases, the intended meaning should be apparent from context. Although each chapter has

been adapted from a previously published manuscript, each chapter also contains new theory, ex-

periments, and results. Additionally, much of the previously published content has been expanded

upon and reorganized in an attempt to make for a more complete and coherent whole.
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CHAPTER 2

Physics-based Modeling

Physics-based models are constructed from �rst-principles and are useful for the insights they pro-

vide about a proposed robotic system without requiring it to be physically constructed �rst. Even

though most of the tasks robots are designed to perform involve dynamic movements, physics-

based static models are particularly valuable due to their interpretability and computational tractabil-

ity. Physics-based static models can be used to describe the relationship between actuator forces

and end effector forces, determine actuator requirements, and estimate a robot's workspace under

loading. The broad insights provided by such models enable roboticists to evaluate competing

robot designs, which saves time and resources in the development of novel robots.

The theory of statics for rigid-bodied robots is well developed [42]. Joint torques are propor-

tionally related to end effector forces by a Jacobian matrix whose derivation is based on the law of

conservation of energy and the duality of force and velocity. However, these well-established re-

sults are not compatible with soft robotic systems since they are premised upon the assumption of

rigid-bodies and localized deformation at joints. The goal of this chapter is to present an analogous

Jacobian-based theory of statics for systems that exhibit continuous and distributed deformation,

like soft robots. The key contribution of the proposed framework is an extension of the concept of

the Jacobian to �uid-driven systems.

Although not all soft robots are �uid-driven, most are actuated by �uid-driven soft actuators

that can produce forces without imposing a rigid structure [43, 44, 10, 9]. In these actuators, a

pressurized �uid such as water or air creates a targeted deformation of a soft structure that encloses
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a �uid-�lled cavity. To achieve a desired type and direction of deformation, and not merely a

homogeneous expansion, the stiffness of the soft structure is patterned in a speci�c way by adding

reinforcing elements such as �bers, beams, or plates [45, 46, 7]. Prevalent examples of this type of

actuator are bellows [47] McKibben actuators [48], and pneu-nets [49].

Due to their deformable structure, �uid-driven soft actuators differ in a fundamental way from

traditional actuators. An electric motor, for example, essentially combines a kinematic constraint

(the rotation axis of the motor, which is physically de�ned by a pair of bearings) with a force

generating element (the electromagnetic forces, which create the motor torque). Since the motion

of such an actuator is inherently limited to one dimension, multiple actuator stages are typically

combined inseriesto achieve multiple degree of freedom (DOF) motions (Fig. 2.1a). This is the

prevalent design, for example, in industrial robotic arms. In contrast, in a soft actuator, the force

generating element is not supported by any physical kinematic constraints. The actuator produces

a spatial force without constraining the motion to happen exclusively in the direction of this force.

Because of this, soft actuators are particularly well suited to be combined inparallel, where the

forces of the individual actuators are superimposed to generate a multi-dimensional spatial force

(Fig. 2.1b). Such parallel combinations enable particularly compact designs of multi-DOF motion

stages, which are prevalent in soft robotic manipulators [43, 46, 50].

This chapter introduces a generalized static model of parallel combinations of �uid-driven

actuators. It is an adaptation of work originally presented in [24] and [39]. Section 2.1 presents the

derivation of a static model for a single actuator and validation experiments on a real soft actuator.

Section 2.3 extends this approach to arbitrary parallel combinations of �uid driven actuators and

investigates how such combinations can be con�gured to enable effective control of multi-DOF

forces.
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(a) (b)

Figure 2.1: (a) A linear actuator and motor combined inserieshas the ability to generate 2-
dimensional forces at the end effector (shown in red), but is constrained to motions only in the
directions of these forces. (b) Three soft actuators combined inparallel can generate the same
2-dimensional forces at the end effector (shown in red), without imposing kinematic constraints
that prohibit motion in other directions (shown in blue).
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2.1 Force Generation by a Single Fluid-driven Actuator

The static modeling approach for �uid-driven robots is based on the notion of a�uid Jacobian,

which maps the geometrical deformation of a soft actuator, or of a system of actuators, to a change

in their volume. Under certain assumptions, the transpose of this Jacobian linearly maps the in-

ternal �uid pressure to the spatial forces that the actuator generates. One can think of this �uid

Jacobian as the soft and multi-dimensional equivalent of the cross sectional area of a traditional

pneumatic or hydraulic cylinder, since this cross section similarly relates cylinder pressure to force,

and piston movement to �uid displacement.

Fluid-driven actuators contain a �uid-�lled cavity and operate on the principle of converting

�uid energy into mechanical work. This transmission of energy is mediated by the geometric

structure of the actuator. The �uid Jacobian captures the way in which an actuator's structure

constrains the volumev of the �uid cavity so that speci�c motions can be induced by changing the

volume.

We denote byq a generalized vector of spatial deformations that fully describe the geometry

of an actuator. Then, the volume of its �uid-�lled cavity can be represented as a function ofq, i.e.

v = v (q). The derivative of this volume yields an expression_v for the volumetric �uid �ow into

the actuator:

_v(q; _q) =
@v
@t

=
@v
@q

@q
@t

= Jq(q) _q; (2.1)

where the �uid Jacobian is de�ned asJq = @v
@q with respect to the deformationq.

Let � q denote the vector of generalized forces exerted by the actuator. It is important to note that

� q and _q live in dual spaces. That is, forces in� q correspond to linear motion in_q, and moments

in � q correspond to angular motion in_q. In the most general case, these are 6-dimensional vectors

with three translations and three rotations. In such a case,Jq is a1 � 6 matrix.

Assuming that the actuator does not store energy, energy conservation dictates that the me-

chanical powerPmech generated by the actuator must equal the �uid powerP�uid that goes into the
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actuator:

Pmech = P�uid =) _q T � q = _vp; (2.2)

wherep > 0 is the gauge pressure of the �uid inside the actuator. Substituting (2.1) into (2.2),

yields an expression for the generalized actuator force that is linear with respect to the �uid pres-

sure:

� q(q; p) = J >
q (q)p (2.3)

The �uid Jacobian thus describes the directions in which a �uid-driven actuator can produce forces

and moments. Since the input pressurep needs to be strictly positive to avoid collapsing of the

�uid cavity, forces can only be produced in the positive direction de�ned byJq.

2.2 Application: Fiber-Reinforced Elastomeric Enclosure

A particularly versatile type of �uid-driven soft actuator is the �ber-reinforced elastomeric enclo-

sure (FREE) [13, 51, 52], also known as the �ber-reinforced soft actuator (FRSA) [45, 53, 54].

A FREE consists of a �uid-�lled elastomeric tube wound with reinforcing �bers that pattern its

stiffness to yield a desired mode and direction of deformation upon pressurization. By changing

the angles and arrangement of these �bers, a FREE can be customized to yield a large variety

of desired deformations and forces [13]. This customizability combined with their �exibility and

tube-like shape makes these actuators well suited for applications such as a pipe inspection [53],

catheter devices [55], or continuum manipulators [43].

One of the bene�ts of using FREEs as actuators is their mechanical programmability. By

changing the �ber angle,� , of a single set of evenly distributed parallel �bers (Fig. 2.2), a FREE

can be con�gured to produce a variety of combinations of forces along its main axis as well as

twisting moments about this axis. The principle behind this adaptability can best be understood
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Figure 2.2: A �ber-reinforced elastomerc enclosure (FREE) is a soft �uid-driven actuator com-
posed of an elastomer tube with �bers wound around it to impose deformations such as extension
and twisting under an increase in volume.

by considering a �ber being pulled in a plane (Fig. 2.3a). For a given �ber tension,T, the ratio

between thex andy components ofT is determined by the angle� (Fig. 2.3b). In the case of a

FREE, this plane is wrapped into a cylinder (Fig. 2.3c). Now thex-component of the force pulls

along the direction of the central axis of the cylinder, while they-component exerts the twisting

moment. Additional effects, such as the changing radius of the FREE and the �uid pressure acting

on its end-caps introduces deformation dependence [24], but the ratio between the axial force and

twisting moment at the initial undeformed state is fully determined by the �ber angle� (Fig. 2.3d).

A number of researchers have developed ways of modeling �ber-reinforced actuators. Kr-

ishnan et. al. characterized the range of achievable motions based on �ber angles [51], explor-

ing beyond the scope of previous literature which had focused on McKibben actuators only [48].

Bishop-Moser et. al. formalized a geometry-based kinematic model of FREEs [13], which was

subsequently codi�ed and expanded upon by others [14, 56]. Connolly et. al. took another ap-

proach, using �nite element methods to predict the motions of �ber-reinforced actuators [53].

Bishop-Moser [52], Bruder [24], and Sedal [25], introduced force prediction models based upon

the principle of virtual work, force balance, and continuum mechanics, respectively. Furthermore,
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Figure 2.3: By changing the �ber angle of a FREE, it can be con�gured to produce a large range
of force/moment combinations. To understand this, we consider how (a) the angle at which a �ber
is pulled in a plane affects (b) the ratio between thex and y components of the pulling force.
Similarly, by (c) wrapping the plane into a cylinder and accounting for an internal pressure force
pushing out on the end-cap, the (d) ratio between axial force and twisting moment can be arbitrarily
set by changing the �ber angle.
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several papers have been written describing kinematic models of parallel combinations of �ber-

reinforced actuators [26, 57, 58]. The distinguishing trait of the �uid Jacioan approach is that it

can be applied to any �uid-driven actuators whereas these previous models apply speci�cally to

FREEs.

To apply the �uid Jacobian approach to a FREE, we make a number of simplifying assump-

tions. They are consistent with those made in prior work on the modeling and control of individual

FREEs [13, 24]. In particular, we assume that the �bers are inextensible and that they are uniformly

distributed around an elastomeric cavity with negligible wall thickness. Under these assumptions,

a FREE can be modeled as a composition of an energy transforming element (the �bers) and an en-

ergy storing element (the compliance of the elastomer body). The generalized forces generated by

each of these separate elements can be superimposed to characterize the net force� FREE produced

by the FREE:

� FREE = � q + � elast (2.4)

where� q and � elast are the generalized forces and torques attributed to the �ber and elastomer,

respectively. The �uid Jacobian approach exclusively describes the active general forces� q that

are generated by the �bers and that can be controlled by varying the pressure of the �uid. A

supplementary elastomer model is needed to describe the elastomer force contribution.

2.2.1 Derivation of the Fluid Jacobian

The formulation of the �uid Jacobian for a FREE stems from the idea that the reinforcing �bers

create a kinematic constraint on the internal volumev of the �uid cavity. Without the reinforc-

ing �bers, this cavity could expand freely, since it is made from soft material. With the �bers,

however, the volume is limited. This limitation on volume depends on the mechanical parameters

of the FREE (e.g., the relaxed �ber angle or �ber length) and on the current state of geometric

deformation of the FREE, represented by the generalized vecotr of spatial deformationsq.
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(a)

(b)

Figure 2.4: Geometric parameters of an ideal cylindrical FREE in (a) the relaxed con�guration
whereq = 0 (top), and (b) a deformed con�guration whereq = [� l ; � � ]T (bottom).

To make the computation of the �uid Jacobian more tractable, we rely on another common

assumption for FREES: that they maintain the geometry of an ideal cylinder [13]. This neglects

the tapering of a FREE towards the end-caps and any potential bending along its main axis. An

ideal cylindrical FREE in its relaxed con�guration (i.e. when gauge �uid pressure is zero and no

external loads are applied) can be described by a set of three parameters,L, R, and� , whereL

represents the relaxed length of the FREE,R represents the radius, and� the �ber angle (Fig. 2.4).

For notational convenience, we de�ne two other constants from these parameters:

B =

�
�
�
�

L
cos �

�
�
�
� (2.5)

N = �
L

2�R
tan � (2.6)

whereB is the length of one of the FREE �bers, andN is the total number of revolutions the �ber

makes around the FREE in the relaxed con�guration.

The assumption that a FREE is cylindrical with inextensible �ber-reinforcements implies that

changes in its radius, length, and twist are coupled via the right triangle relationship shown in Fig.

2.5. Therefore, its geometrical deformation can be fully de�ned in terms of just two parameters,
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(a) (b) (c)

Figure 2.5: (a) A FREE contains many parallel �bers, all part of the same �ber family. (b) One
isolated �ber forms a helical constraint. (c) The FREE radiusr , twist � � , and length change� l
are geometrically related via the right triangle formed by unwinding a �ber and laying it �at.

a change in its length� l and a twist about its main axis� � . These two values constitute the

vector of generalized deformationsq = [� l; � � ]T . Consequently, the generalized torque vector

� = [ F; M ]T describes a force along the main axis,F , and a torsional moment about that axis,M .

Using this notation, the lengthl, radiusr , and volumev of a deformed FREE are given by the

following expressions:

l = L + � l; (2.7)

r =
B

j2�N + � � j

s

1 �
�

L + � l
B

� 2

; (2.8)

v(q) = �r 2l =
� (L + � l)(B 2 � (L + � l)2)

(2�N + � � )2
: (2.9)

The �uid Jacobian, which is the partial derivative of volumev with respect to deformationq, then

evaluates to:

Jq(q) =
@v
@q

=
�

� (B 2 � 3(L +� l )2)
(2�N +� � )2

2� (L +� l )((L +� l )2 � B 2)
(2�N +� � )3

�
: (2.10)
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