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Abstract 

The need for high-energy-density Li-ion batteries has provided the impetus to replace 

graphite anodes with Li metal anodes. Unfortunately, the liquid electrolytes (LEs) used in state-

of-the-art (SOA) Li-ion batteries are unstable with Li metal. Owing to its high ionic conductivity, 

stability against Li and safety, Lithium Lanthanum Zirconium Tantalum Oxide (LLZTO), a solid 

ceramic electrolyte (SE), has been suggested as a promising alternative. However, the 

implementation of the SE in an all-solid-state battery could lead to cycling instabilities due to the 

formation of a resistive, electrochemically, and mechanically unstable cathode/SE interface. One 

potential approach to overcome the challenges is by introducing a gel polymer electrolyte (GPE) 

as a catholyte. In this hybrid electrolyte scheme, the LLZTO protects Li metal and a GPE improves 

the LLZTO/cathode interfacial stability and kinetics. The success of this approach, however, is 

reliant on two main assumptions – a) electrochemical properties of the GPE would not be affected 

by volumetric changes in the cathode during operation and b) the polymer and liquid electrolyte 

in the GPE will be (electro)chemically stable against LLZTO. The overarching goal of this thesis 

was to identify potential shortcomings of these assumptions and provide solutions to address them. 

To achieve this goal, the thesis was subdivided into three studies - 1) studying the effects 

of temperature and pressure on electrochemical performance of a model polymer electrolyte 2) 

understanding the factors controlling the polymer/LLZTO interfacial kinetics 3) evaluating the 

stability of LLZTO with potential LEs used in the GPE. With the aid of various characterization 

techniques including SEM, XRD, Raman Spectroscopy, XPS, electrochemical impedance 



 

xxi 

 

spectroscopy, and galvanostatic cycling and unique experimental designs, several important 

implications were derived from each study. 

First, the roles of temperature and pressure on the electrochemical properties of the PEO-

LiTFSI model system were evaluated. The results indicate that both, the bulk ionic conductivity 

and electrode/electrolyte charge transfer kinetics, are affected by temperature and stack pressure. 

It was observed that activation energy for Li-ion conduction shows a sharper transition at the 

melting point of the polymer for bulk conduction than for the electrode/electrolyte interface. It was 

also observed that a critical stack pressure was required to form an optimized electrode/electrolyte 

interface.  

Second, the factors controlling the kinetics and stability of LLZTO with both constituents 

of the GPE were analyzed. First, using PEO-LiTFSI the underlying factors that control the 

LLZTO/polymer interfacial kinetics were studied. It was found that the LLZTO surface impurities 

and Li-ion concentration gradient between the two electrolytes were responsible for the high 

interfacial resistance (Rinterface). The fundamental knowledge gained in this study enabled a 

reduction in the Rinterface from ~95 kOhms.cm2 down to 180 Ohms.cm2.   

Lastly, the stability of LLZTO was evaluated with different organic solvents and Li salts 

present in LEs. It was found that LiPF6-containing LE reacts with LLZTO to form LiF, LaF3, and 

ZrF4 at the interface leading to an increased SE/LE Rinterface.  It was concluded that the chemical 

instability at LLZTO/LE interface was specific to the Li salt used. Thus, by selecting Li salts that 

exhibit stable behavior with LLZTO, the potential chemical instabilities can be avoided. Further, 

the optimization of Li salt concentration resulted in a low Rinterface (~30 Ohms.cm2).  

The culmination of the knowledge gained from the studies can be used for the development 

of hybrid electrolytes for enabling Li metal anodes. 
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Chapter 1 Introduction 

1.1 Motivation 

The globally increasing energy demand1,2 and its dependence on the depleting fossil fuels 

has had calamitous environmental implications. In the last 40 years the average global surface 

temperature has risen by 1°C leading to severe and abrupt weather patterns, receding glaciers, 

extinction of several species of flora and fauna and rising sea levels.  There is scientific consensus 

that the main cause for the rise in temperature is the increasing anthropogenic CO2 emissions (82% 

of the greenhouse gases), Figure 1.1 a, in the atmosphere. United States, along with China and 

India accounted for 85% of net increase in the emissions, where the transportation sector was the 

largest contributor as shown in Figure 1.1 b1,3.  

 

Figure 1.1 a) Global energy-related carbon dioxide emissions by source. Based on IEA data 

from the IEA (2018) Global Energy & CO2 Status Report 2019, www.iea.org/data-and-statistics. 

All rights reserved; as modified by [Arushi Gupta]2 b) U.S. carbon dioxide emissions based on 

end-use sector. Source: U.S. Energy Information Administration. Annual Energy Outlook (Jan 

2020).3 
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The transportation sector has the highest emissions since it is mainly powered by 

petroleum-based fuels as shown in Figure 1.24. This has created the impetus for shifting from 

conventional vehicles, primarily dependent of petroleum, to electric vehicles (EVs) for 

transportation. Unlike the conventional vehicles, electric vehicles can be powered by cleaner 

sources of energy (solar, wind, hydro, etc.), thus making them an environmentally safer option.  

 

Figure 1.2 U.S. energy consumption by source and sector, 2018. Source: U.S. Energy 

Information Administration., Monthly Energy Review4 

 

The push for EVs is reflected by the sharp increase in their development and distribution 

over the last decade.5 However, development of energy storage devices (ESDs) which can compete 

with petroleum-based fuels is a requirement for EVs to largely replace conventional vehicles. 

ESDs must compete with petroleum-based fuels in terms of cost, driving range (energy density, 

Wh.l-1), rate of vehicular acceleration (power density - W.l-1), infrastructure and safety. The cost 
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reduction and infrastructural development are critical to the widespread utilization of EVs. 

However, the performance (energy density and power density) of the ESDs itself is not yet 

comparable to that of internal combustion (IC) engines as shown in the Ragone plot6 (Figure 1.3).  

Looking at the two extremes in the Ragone plot, fuel cells provide the highest energy density and 

capacitors provide the highest power density. None of the two, however, meet the DOE 

requirements for EVs for both, energy density and power density.7 On the contrary, Li-ion batteries 

provide a conciliation between the energy density and power density, making them the current 

dominating technology in the market for EVs.  

 

Figure 1.3 Ragone plot: Specific energy against specific power for various electrochemical 

energy storage technologies. Reprinted from [Srinivasan, V. Batteries for Vehicular 

Applications. Batter. Manuf. Electr. Hybrid Veh. 2011, 283 (September 2008), 135–152], with 

the permission of AIP Publishing. 6  

 

1.2. State-of-the-art (SOA) Li-ion battery 

Batteries are energy storage devices (ESDs) where the energy stored as chemical energy is 

converted in electrical energy by undergoing an electrochemical reaction. Based on the battery 
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chemistry and construction there are two types of batteries – primary and secondary batteries.8 The 

batteries where electrochemical reaction is irreversible are non-rechargeable. This means that once 

the battery is completely discharged, it cannot be recharged. Such batteries are known as primary 

batteries. The batteries where the electrochemical reaction is reversible, i.e., the battery can be 

repeatedly discharged/charged are rechargeable batteries or secondary batteries. Upon discharge, 

an external energy is applied to the battery for the reverse reaction to occur in order to charge the 

battery. 

State-of-the-art Li-ion batteries fall under the category of rechargeable/secondary batteries, 

where the battery is charged/discharged hundred to thousands of times.9 Akira Yoshino, (at Asahi 

Kasei Corporation) was the first to make lithium-ion rechargeable battery with LiCoO2 (LCO) 

cathode and graphite anode.10 The battery is comprised of three main components – an anode 

(negative electrode), a cathode (positive electrode) and an ionically conducting electrolyte which 

separates the two electrodes (Figure 1.4).9 

 

Figure 1.4 Schematic of a Li-ion battery.10  
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The typical anode used in Li-ion batteries is graphite. Conventional cathode materials are 

layered transition metal oxides such as LiCoO2 (LCO), LiNi1–x–yCoxMnyO2 (NCM) and LiNi1–x–

yCoxAlyO2 (NCA). Typically, organic solvent-based liquid electrolytes (LEs) are utilized in Li-ion 

batteries, like 1M LiPF6 in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) 

(50:50 vol%). Organic electrolytes are used over aqueous electrolytes (stable up to 1.5 V) due to 

larger electrochemical stability window. Additionally, a separator (porous polymer infiltrated with 

the LE) in the electrolyte is used to avoid any physical contact between the two electrodes which 

could cause a short-circuit. The electrolyte is responsible for the selective transport of Li ions 

between the two electrodes, blocking any electronic transport. Once at the electrode/electrolyte 

interface, the Li ions are reversibly inserted/extracted from the electrodes causing 

reduction/oxidation (redox) reaction of the electrode species. In response to the transfer of ions, 

electronic transport occurs in the external circuit. This has been illustrated in Figure 1.4. During 

discharge Li loses an electron to form a Li ion which deintercalates or extracts out of the graphene 

layer (anode). Then it diffuses through the electrolyte and intercalates into the cathode. 

Simultaneously the electron from the anode travels through the external circuit to the cathode and 

causes the reduction of the transition metal. During charge an external electrical energy is applied 

which causes the Li ion to deintercalate from the cathode with the simultaneous oxidation of the 

transition metal with the loss of an electron which moves through the external circuit to the anode. 

The Li ion from the cathode diffuses through the electrolyte, intercalates into graphite and gains 

an electron to form LiC6. Thus, the redox reaction causes the electronic transport which then 

powers a load such as an electric vehicle (EV).  The driving force behind this chemical reaction is 

the chemical potential difference between the two electrodes which is represented by the equation 

–  
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∆𝐆𝐫
𝐨 =  −𝒛𝑭𝑬                                                      (1.1) 

where ∆Gr
o is the standard Gibbs free energy change of the reaction, E is the voltage 

difference between the electrodes, z is the number of electrons associated with charge transfer and 

F is Faraday’s constant (96,486 coulombs). ∆Gr
o is given by Joules per mole of reaction; 1 Joule is 

the product of one Coulomb and one Volt.11  

 Although Li-ion batteries have been the leading battery technology, they still do not meet 

the DOE VTO requirements (driving range ~300 miles) for EVs7. Thus, advanced batteries with 

higher energy densities are required to meet the goals for the widespread adoption of EVs. 

1.3. Solid state batteries with Li metal anodes 

As discussed, there is still progress needed for Li-ion battery technology to meet the DOE 

targets for EVs. With the demand for reducing cost (~$100/kWh7), increasing performance (500 

Wh/l, 235 Wh/kg at systems level7) there is a need to develop advanced batteries. Since the energy 

density and power density is dependent on the energy packed in the electrodes, the common 

approach employed to the improve the performance characteristics is to replace the anodes and 

cathodes. Particularly, in graphite anodes Li is the only active species and the graphite just adds to 

the dead weight to the battery. Thus, one promising approach is the replacement of the graphitic 

anodes in conventional Li-ion batteries with Li metal anodes which would lead to a 50% increase 

in energy density.12 However, one caveat with this approach is that the organic solvent-based liquid 

electrolyte used with graphitic anodes are unstable with Li metal.13–17 The conventional liquid 

electrolytes react with Li to form an unstable solid electrolyte interphase (SEI), leading to cycling 

instabilities and safety concerns. A promising approach to overcome the challenges of 

conventional LEs is the use of solid-state electrolytes (SSEs).18 There is a plethora of solid-state 
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electrolytes which have been investigated to use with Li metal anodes.19–22 Ideally for the SSE to 

be considered promising it should fulfill the following requirements – 23,24
 

a) High Li ion conductivity; >10-4 S cm-1 at 298 K. 

b) Transference number for electronic conduction should be nearly 0 to avoid any self-

discharge; te ~ 0.25 

c) Electrochemical stability window 0 to ≥ 5V; The large electrochemical window of the SSE 

allows using high voltages cathodes without the degradation of the electrolyte.26   

d) Physically and chemically stable against the anode and the cathode. Any instability of the 

SSE with either of the electrodes would lead poor cycling performance characteristics.  

e) Thermodynamic stability for a wide operating temperature range; The temperature range 

for operation of EVs is -30oC to 52oC.27 

f) Ease of processability; Low cost of manufacturing robust thin films. 

g) High resistance to Li metal penetration during cycling 

h) Low interfacial resistance with both the electrodes28 

Considering the above criteria there have been substantial efforts made in the last decade 

towards the successful development of SSEs for implementation in a Li metal battery. Even after 

significant progress there has been no solid electrolyte which satisfies all the above criteria. To 

understand the advantages and limitations of different solid electrolytes, they have been reviewed 

below. Based on the Li ion transport there are two main categories of electrolytes which are studied 

extensively – a) organic or polymer electrolytes and b) inorganic electrolytes.  

1.3.1. Polymer electrolytes 

Polymer electrolytes have been around for almost half a century. Fenton et al in 1973 

reported the idea of the dissolution of alkali metal salts in polyethylene oxide (PEO) making it 
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ionically conducting.29 Soon after, in 1978, Armand et al proposed a PEO-Li salt solid polymer 

electrolyte (SPE) with Li ion conductivity of 10-4 S/cm at 40-60oC.30 The low flammability, ease 

of processability, low cost, mechanical compliance and high shock tolerance are a few properties 

of polymer electrolytes which make them an appealing solid electrolyte candidate for Li-based 

batteries and are responsible for their rapid development.23 However, there are properties of 

polymer electrolytes which inhibit their commercial application, two important ones being ionic 

conductivity and Li ion transference number (tLi+).31–33 Ideally, the tLi+ for a solid electrolyte should 

be close to unity, however, since in a polymer electrolyte both the cation and the anion of the Li 

salt are mobile species the tLi+ is much lower than that.33  The ionic conductivity of semi-crystalline 

polymer is described by the Arrhenius equation34 – 

𝜎 =  𝜎0exp (−
𝐸𝐴

𝑅𝑇
)                                                       (1.2) 

where σ is the ionic conductivity, EA is the activation energy, T is the temperature of 

measurement and R is the universal gas constant. Fully amorphous polymer electrolytes follow the 

temperature dependence according to the Vogel–Tammann–Fulcher VTF equation34 – 

𝜎 = 𝐴𝑇
1

2 exp[𝐸𝐴/(𝑇 − 𝑇𝑔)]                                                (1.3) 

where, σ is the ionic conductivity, A is the pre-exponential factor, T is the temperature of 

measurement, Tg is the glass transition temperature of the polymer electrolyte and EA is the 

activation energy.  

Polymer electrolytes can be further subdivided into three different categories – solid 

polymer electrolytes (SPEs) also known as dry polymer electrolytes, gel polymer electrolytes 

(GPEs) and composite polymer electrolytes (CPEs).35  
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1.3.1.1. Solid polymer electrolytes (SPEs) – SPEs are polymer electrolytes with a polymer host 

matrix and a Li salt being the main constituents. The Li salt is responsible for an increase in Li ion 

conductivity in the polymer and the polymer matrix is responsible for the Li ion transport. An ideal 

polymer matrix should have high solubility of the Li salt through cation solvation, high chain 

mobility for effective charge transport, high dielectric constant for effective Li salt cation and 

anion separation and high molecular weight for suitable mechanical properties.36 SPEs can be 

easily processed by solution casting or molding.37 There are different SPEs which have been 

studied including PEO-based SPEs30, polycarbonate-based SPEs38,  polyester-based SPEs39, and 

polysiloxane-based SPEs40. Polysiloxane-based SPE is an example of an inorganic polymer 

electrolyte.  

Polyethylene-based SPEs are the most common and well-studied SPE. Polyethylene oxide 

is a semi crystalline polymer with a melting point (m.p.) above 60oC.41 The mechanism of Li ion 

transport in a PEO-based SPE is shown in figure 1.5. As discussed, due to the high solvation and 

dielectric constant of PEO the Li ion are dissociated from the counter ions. The dissociated Li ion 

are coordinated to the oxygen atoms in the PEO backbone. On application of an electric field the 

Li ions break their coordination from an oxygen in the PEO electrolyte and hop on to another 

oxygen atom either on the same chain (intrachain hoping) or on a different chain (interchain 

hoping). The continuous rearrangement and movement of the Li ion results in long-range transport 

of the Li ions.41,42 Since the ionic transport is dependent on the segmental motion of the polymer 

it is thus dependent on the mobility of the polymer chains. Since the crystalline domain in the 

polymer has limited mobility, the amorphous domain is mainly where ionic conduction occurs. 

Thus, the ionic conductivity of the PEO-based electrolytes is dependent of temperature and 

molecular weight.43 As mentioned above, the m.p. of PEO is above 60oC, thus PEO-based SPEs 
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have a limited room temperature ionic conductivity (10-8 – 10-6 S cm-1).42 The low room 

temperature conductivity and high resistance against Li has limited the practical application of 

PEO-based electrolytes. 

 

Figure 1.5 Mechanism of ionic transport in PEO-based electrolytes. J. Mater. Chem. A, 2015,3, 

19218-19253 - Reproduced by permission of The Royal Society of Chemistry 41 

 

1.3.1.2. Gel polymer electrolytes (GPEs) – GPEs are a quasi-solid electrolyte in which a liquid electrolyte 

is trapped in a polymer matrix.  GPEs are mainly constituted of a polymer matrix, organic solvents 

as plasticizers and Li salts. Examples of common polymer matrices are polyacrylonitrile (PAN), 

polyethylene oxide (PEO), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), 

poly(methyl methacrylate) (PMMA), and polyvinylidene fluoride (PVDF). Examples of organic 

solvents are carbonates (propylene carbonate (PC), ethylene carbonate (EC), etc.), ethers (1,2-

dioxolane (DOL), dimethoxymethane (DME), etc.) and ionic liquids.23   The ionic conduction in 

GPEs is mainly through the liquid electrolyte (Li salts dissolved in organic solvent) which is 

contained in the polymer matrix giving it mechanical strength, enhanced safety and reduced risk 

of leakage.44 Since the main ionic conduction is through the liquid electrolyte, GPEs have a high 

ionic conductivity in comparison to SPEs (>10-4 S cm-4 at 25oC). One major limitation of GPEs is 
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that the liquid electrolyte not only decreases the mechanical strength but also reduces the thermal 

stability. This is what prevents the GPEs to be commercially used. 

1.3.1.3. Composite polymer electrolytes (CPEs) – CPEs are solid polymer electrolytes with 

inorganic fillers added in polymer electrolyte to improve their ionic conductivity and mechanical 

strength. There are two types of filler which can be added to the SPE – a) inactive filler: where the 

filler is non-ionically conductive b) active filler: where the filler is ionically conductive.35 The 

inactive inorganic fillers in CPEs serve two purposes – a) they act to disrupt the crystallinity of the 

SPE and thus, enhancing its ionic conductivity45 b)  they enhance the mechanical strength of the 

SPE. Examples of inactive filler used in SPEs are nanoparticles like Al2O3, SiO2, etc.46,47 The 

active inorganic fillers used in CPEs are generally fast ion conductors where the goal of adding 

them to the SPE is for mixed ionic conduction from both the SPE and the active filler. This will 

ideally significantly improve the ionic conductivity of the SPE and improve its mechanical 

properties. There are CPEs with active fillers that have a high room temperature ionic conductivity 

of 10-2 S cm-1.48 These electrolytes however, either have poor interfacial contact with the electrodes 

or do not show a significant enhancement in ionic conductivity.49 Examples of active filler used in 

SPEs are fast ion conductors like garnet-type, NASICON-type, sulfides, etc.50,51 

Even with the rapid development of polymer electrolytes their low room temperature 

conductivity, poor thermal stability, low Li ion transference number due to the presence of mobile 

anions and high interfacial resistance against Li metal still restricts their practical application in Li 

metal batteries. 
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1.3.2. Inorganic Electrolytes 

The different types of inorganic solid electrolyte which are widely studied can be divided 

into two categories sulfides and oxides.   

1.3.2.1. Sulfide-based SSE – Sulfide-based electrolytes gained a lot of traction as promising candidates 

for SSEs due to their high room temperature conductivity and low activation barrier for Li ion 

conduction and low charge transfer resistance with Li metal.52 The room temperature ionic 

conductivity of sulfides can be as high as 10-2 S cm-1. The high ionic conductivity is due to the 

larger size and higher polarization of the sulfide ions over oxide ions, forming a weaker bond with 

Li ions and hence, a higher Li ion mobility.53 They also provide a lower processing temperature 

and pressure in comparison with oxide-based electrolytes.54 However, the moisture sensitivity, low 

oxidation stability, chemical stability against Li and fragility of sulfide electrolytes are their major 

limitations.24  

The sulfide electrolytes are further subdivided into categories – amorphous, crystalline and 

glass ceramic sulfide electrolytes, where glass ceramics possess the highest conductivity. 

Examples of sulfide electrolytes include Li7P3S11 (17 mS·cm-1)55, Li10GeP2S12 (12 mS·cm-1)53, and 

thio-LISICON conductor Li3.25Ge0.25P0.75S4 (2.2 mS·cm-1)56. 

1.3.2.2. Oxide-based electrolytes – Generally, oxide-based electrolytes provide high oxidation 

stability, chemical stability, and an ionic conductivity between polymers and sulfides.57 However, 

different oxide-based electrolytes have different advantages and limitations. The oxide-based 

electrolytes which have been studied extensively include perovskite-type, NASICON-type and 

garnet-type.  
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An example of the perovskite-type electrolyte is lithium lanthanum titanate (LLTO) which 

can have a high intragranular Li-ion conductivity (>10-3 S cm-1) depending upon the stoichiometric 

composition.58  However, the grain boundary resistance of LLTO is inherently high (~10-5 S cm-

1). LLTO also reduces in contact with Li metal where the tLi+ for reduced state is 0.0095 thus 

limiting its application as an SSE for Li metal anodes.  

Lithium aluminum titanium phosphate (LATP) is a widely studied NASICON-type oxide 

electrolyte with a high ionic conductivity of 4*10-3 S cm-1 where the Li ions move between sites 

in an interconnected channel.59 However, like LLTO, LATP has a high grain boundary resistance 

and is chemically unstable against Li metal and thus has limited application as an SSE for Li metal 

batteries.59,60  

Garnet-type oxide electrolytes – Garnet-type Li ion conducting SSE were first discovered in 

1988 as promising electrolytes with an ionic conductivity of 4*10-5 S cm-1.61 They had a general 

formula of Li5La3M2O12 where M was either Ta5+ and Nb5+. Following that there have been various 

formulations of the garnet electrolyte which have been studied, one of which is Li7La3Zr2O12 

(LLZO). This formulation of LLZO was reported, by Murugan et al. in 2007, to have a high room 

temperature ionic conductivity of 10-4 S cm-1.62  LLZO SSE exists is two polymorphs – tetragonal 

(t-LLZO) and cubic (c-LLZO). Cubic LLZO has an ionic conductivity two order of magnitude 

higher than tetragonal LLZO and hence c-LLZO is the preferred polymorph. The c-LLZO is 

stabilized by partially substituting the Li or Zr sites with a higher valent atom like Al or Ta 

respectively.63 To balance the charge imbalance, more Li vacancies are created reaching in the 

optimal range more stabilization of the c-LLZO resulting in high conductivities (10-4 to 10-3 S cm-

1).   
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Figure 1.6 Crystallographic structure of Ta-doped LLZO 

 

 The properties of all the solid electrolytes have been summarized in table 1. Amongst all 

the electrolytes LLZO is considered as the most promising SSE for enabling Li metal anodes. 

Besides its high ionic conductivity, it is also chemically stable against Li metal57, has an ultra-low 

interfacial resistance with Li metal (<10 Ohms.cm2)28, has a large electrochemical stability26 

window and it can be processed in air. Although LLZO has features which makes it very 

compatible with Li metal there are still technical challenges to be met for the application of LLZO 

in a Li metal battery. One important consideration with the implementation of LLZO in all-solid 

Li metal battery is the possible challenges with the formation of solid-solid interfaces within the 

composite cathodes (between the cathode particles and LLZO particles in the cathode) and at the 

composite cathode and solid electrolyte interface.64,65  
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Table 1. 1 Summary of properties Li-ion conducting solid electrolytes 

Electrolyte 

Type 

Conductivity 

(S cm-1) Advantages Disadvantages 

    
SPEs 

(polyethylene 

oxide)41 

10-8 to 10-6 • Stable with Li metal 

• Flexible 

• Easy to production and 

scalability 

• Low cost 

• Limited thermal stability 

• Low room temperature ionic 

conductivity 

• Low oxidation voltage 

    

Gel polymer 

electrolyte23,44 

10-4 to 10-3 • High room temperature ionic 

conductivity 

• Higher Li ion transference 

number than SPEs 

• Limited thermal stability 

• Poor mechanical strength 

• Low oxidation voltage 

    

Composite 

polymer 

electrolyte35,46,47 

10-5 to 10-2 • Higher room temperature 

ionic conductivity than SPEs 

• Better mechanical strength 

than other organic electrolytes 

• Limited thermal stability 

• Low room temperature ionic 

conductivity 

• Low Li ion transference number      

Thio-LISICON56 10-4 to 10-3 • Low grain-boundary 

resistance 

• High Li ion conductivity 

• Low processing temperature 

than oxide-based ceramic 

electrolytes 

• Low oxidation stability 

• Sensitive to moisture 

• Poor compatibility with cathode 

materials 

• Chemically unstable against Li 

metal     

Perovskite58 >10-3 • High electrochemical stability  

• High Li ion conductivity 

• Not stable against Li metal  

• Brittle  

• High grain boundary resistance      

NaSICON59 >10-3 • High electrochemical stability 

• High Li ion conductivity 

• Not stable against Li metal 

• Brittle 

• High grain boundary resistance     

Garnet62,63 10-4 to 10-3 • Stable with Li metal 

• Low grain-boundary 

resistance 

• Can be synthesized in air 

• High electrochemical 

stability 

• High Li ion conductivity 

  

• High temperature processing 

required 

• Brittle 

• High interface resistance against 

cathode materials 
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1.4. Problem Statement 

For the successful implementation of LLZO in all-solid-state Li metal batteries, LLZO 

needs to be chemically and mechanically stable with the layered transition metal cathode materials 

utilized for Li metal. However, previous studies have reported these solid-solid interfaces can lead 

to rapid capacity fade and high resistance due to chemical instabilites, contact loss, and 

uncompensated volumetric changes in the cathode.64,65 

1.4.1. Chemical instability of LLZO with cathode materials 

There have been several reports of chemical reaction of LLZO with different cathode 

materials.66 Kim et al. reported the formation of La2CoO4 intermediate layer of ~50 nm at the 

LCO/LLZO interface.67  The La2CoO4 intermediate layer formed is relatively thick and causes 

retardation of Li ion insertion and extraction from the cathode, negatively impacting the cycling 

performance. It was also found that when processed at high temperatures cubic Al-doped LLZO 

reacts with LCO to form a low ionic conductivity tetragonal LLZO interphase. It was reported that 

the Al ions diffuse out of the LLZO towards LCO destablizing the cubic phase and causing it to 

transform to tetragonal LLZO.68 Further Miara et al. have reported theoretical calculation 

indicating decomposition of LLZO at 3.8 V in contact with cathodes, higher reactivity with 

LiMnO2 and LiFePO4 than LCO.69 The reaction between LLZO and LFP leads to formation of 

Li3PO4, La2Zr2O7, LaFeO3, LaFeO3, and Fe2O3 decomposition products. The reaction of LLZO 

with different cathodes leads to polarization due to highly resistive interfaces and cycling 

instabilities.  
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1.4.2. Mechanical degradation due to volumetric changes in the cathode 

It is well known that the insertion/extraction of Li ions in the anode/cathode causes 

volumetric changes in the electrodes.70,71 Figure 1.7 shows the volumetric changes in varied 

electrodes as a function of state of lithiation. It can be observed from the figure that there is a 

significant change (2-4 %) in the volume of most electrodes which should be equivalent to the 

partial molar volume of Li, �̅�m(Li).72–74 

 

Figure 1.7 a) The unit cell volume obtained from crystallographic data vs the state of lithiation 

of positive electrode materials b) Available data for the partial molar volume �̅�m(Li) of Li72–74 

 

In Li-ion batteries with LEs a) these volumetric changes in the anode materials cause the 

deterioration of the solid electrolyte interface during charge/discharge cycling75,76 b) these 

volumetric changes in the cathode primary particles causes fracture in the agglomerates/secondary 

particles.64,76 Both the situations cause cycling instabilities and capacity fade. In Li-ion batteries 

employing LEs the stresses generated are much more localized and the LE does not transfer the 

stress over. Similar behavior can be expected from soft elastic polymer electrolyte due to their 

compliant nature.72 
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 However, in case of inorganic SE in an all-solid state Li metal battery, the impact of 

volumetric changes in the cathode will be significant.77 Due to the volumetric changes in the 

cathode there is a possibility of fracturing the SE membrane. The volumetric changes of the 

cathode particles would also create stress on the SE particles in the composite cathode which may 

cause local volume changes.64,78 If the SE exhibits a substantially higher elastic modulus than the 

cathode, it is also possible that the SE furthers the stress on the cathode causing fracture. Overall, 

solid-state batteries can undergo severe mechanical degradation due to volumetric changes in the 

cathode. The stress caused due to lithiation/delithiation is called lithium induced stress.72 This 

compressive stress can influence the reaction itself, for example it can cause a decrease in lithium 

solubility in the electrode material which would lead to a loss in capacity.79  

 

Figure 1.8 Schematic illustrating the fracture of SE due to the volume changes in the cathode.72 

 

Thus, it can be concluded that without a liquid or a soft elastic polymer these volumetric 

changes can cause delamination of the electrodes from the SE. Further repeated charging and 

discharging can cause fracture for both the cathode and the SE leading to high resistances and 

unstable cycling and eventually causing cell failure.64,80,81  
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1.5. The hybrid electrolyte approach 

After understanding the chemical and mechanical challenges with the implementation of 

LLZO SE in a solid-state battery, a hybrid electrolyte approach has been discussed as a potential 

solution to overcome these challenges.82–84 The hybrid electrolyte approach allows for the 

elimination of LLZO/rigid cathodes interfaces by the introduction of a Li ion conductor in the 

cathode like an LE, SPE or a GPE.84 Knowing the limitations of LEs and SPEs – the properties of 

a GPEs are well suited for this approach. Unlike SPEs, GPEs have a high room temperature ionic 

conductivity, and would likely comply with the volumetric changes in the cathode at room 

temperature. However, it is important to study the effects of thermal transitions and external 

pressure on the electrochemical performance of the GPE. Similarly, unlike LEs there are no 

challenges due to leakage since the LE in a GPE is trapped in the structure of the GPE. Figure 1.8 

shows the schematic of a bilaminar hybrid electrolyte scheme, where LLZO serve to protect the 

anode and a GPE overcomes the challenges of solid-solid interfaces. 

Although after the addition of the GPE the battery is not a true solid-state battery, it does 

reduce the safety concerns of LE since the quantity of the LE used in the GPE is significantly 

lower, the LE is entrapped in the polymer matrix thus leakage related problems are mitigated and  

the elimination of the LE/Li metal unstable SEI. Even though this approach provides a plausible 

solution to overcome the challenges of the LLZO and cathode interfaces, the approach introduces 

new interfaces which warrant inspection. The focus of this thesis is to investigate and resolve the 

possible challenges which might arise with this battery architecture employing the hybrid 

electrolyte approach. 



 

20 

 

 

Figure 1.9 Schematic of a Li metal battery employing a hybrid electrolyte approach.82 This 

figure is reproduced from - Kian Kerman et al 2017 J. Electrochem. Soc. 164 A1731 

 

The next chapter of this work is dedicated to identifying the possible challenges with the 

hybrid electrolyte approach and lay out the specific aims and objectives of this thesis.
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Chapter 2 Aims and Objectives 

2.1. Research Objectives 

LLZO used in combination with a GPE infiltrated composite cathode (a hybrid electrolyte 

approach) is a promising cell design to overcome the challenges with the LLZO and rigid cathode 

interfaces while enabling Li metal anodes.82 This argument is however based on two important 

underlying assumption – a) The electrochemical properties of the GPE comply well with the 

volumetric changes in the cathode and the temperature dependence of the properties has been 

neglected. b) The electrochemical stability of the LLZO/GPE interface is assumed, which has not 

been very well understood. Thus, there is a need to first systematically understand the effects of 

external factors on the electrochemical performance of a model polymer electrolyte and then an 

investigation of the chemical interactions and the electrochemical performance of the new 

interfaces that arise in this scheme is required. This work is focused on developing a fundamental 

understanding of the effects of external variables, surface treatment, carrier concentration, 

chemical reactions on the electrochemical performance of the interfaces in the cell. From the 

knowledge gained from studying the various parameters, it would enable us to provide guidelines 

for the successful implementation of this approach. 

The overarching objective of this work is mainly divided into two parts – a) studying the 

dependence of the electrochemical performance of a model polymer electrolyte on external 

variables. b) studying the kinetics, chemical and electrochemical stability of the LLZO/GPE 

interface. Since the GPE electrolyte is composed of a polymer matrix, Li salt and organic solvents, 
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it was important to study the interactions between the individual constituents and LLZO SE. The 

knowledge gained of the factors that control the interaction between LLZO and the different 

constituents, can enable us to improve the LLZO/GPE charge transfer kinetics.  

2.2. Specific aims 

To achieve overarching objective of the thesis, there are specific aims which need to be 

accomplished (illustrated in figure 2.1) – 1) studying the external factors that impact the 

electrochemical performance of a polymer electrolyte 2) understanding the factors controlling the 

polymer/LLZO interfacial kinetics 3) evaluating the stability of LLZO with potential liquid 

electrolytes used in the gel polymer electrolyte. The specific aims are explored in the subsequent 

chapters of this thesis. 

 

Figure 2.1 Schematic of a Li metal battery showing the specific aims which need to be 

accomplished for the successful implementation of the hybrid electrolyte approach 

A brief outline of the different chapters in this thesis is presented as under: 

Chapter 3 discusses the experimental methods used for the synthesis and processing of the 

electrolytes relevant to this work. It also discusses the chemical and electrochemical 
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characterization techniques and experimental designs used to investigate and evaluate the 

electrochemical performance of the different electrolyte systems.  

Chapter 4 is focused on studying the effects of temperature and stack pressure on the 

electrochemical performance of a polymer electrolyte. We chose polyethylene oxide (PEO) as our 

model polymer electrolyte since PEO is a very well-studied polymer. Thus, the goal of this work 

was to understand the effects of temperature and stack pressure on the electrochemical 

performance of the model polymer system. The importance of doing so is because a) GPEs have a 

very low tolerance to thermal transitions, thus knowing the dependence of the electrochemical 

properties of the polymer would enable us to predict the behavior of our GPE b) The stresses in 

the battery due to volumetric changes in the cathode are accompanied with external pressure 

applied on the batteries to maintain continuous contact between the different elements of the 

battery. Thus, it is important to study the effects of stack pressure on electrochemical performance 

of a polymer electrolyte since it would be responsible for charge transport from the cathode 

particles to LLZO.   

Chapter 5 is focused on understanding the factors controlling the polymer/LLZO interfacial 

kinetics. A low interfacial resistance is necessary for facile Li ion transport across the 

polymer/LLZO interface boundary. However, it has been previously reported that LLZO has a 

high interfacial resistance with a solid polymer electrolyte.85 In this work we first validate the high 

interfacial resistance between LLZO and the solid polymer electrolyte. The main goal of this work 

was to understand the underlying mechanisms that control the Li ion transport across a polymer 

electrolyte and LLZO interface and then utilize this fundamental understanding to minimize the 

interfacial resistance between the two electrolytes.    
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Chapter 6 is focused on evaluating the stability of LLZO with potential liquid electrolytes 

used in the gel polymer electrolyte. The stability of LLZO electrolyte in presence of liquid 

electrolytes is critical for the implementation of GPE as hybrid electrolytes. However, previous 

reports indicate that LLZO reacts with state-of-the-art (SOA) LE electrolyte to form a high 

resistance interphase.86,87 The goal of this study was to identify the specific component of the LE 

that reacts with the SE. We believe that by understanding the reactions  between the SE and LE, it 

is possible to develop approaches to limit or eliminate chemical side reactions at the interface. This 

further leads to a stable low interfacial resistance between the electrolytes.  

Chapter 7 provides the conclusion which summarizes the results and outcomes of the 

previous chapters. From the knowledge gained in the previous chapters preliminary data is 

provided for LLZO/GPE hybrid electrolyte which provides motivation for the future work towards 

the employment of the hybrid electrolytes in Li metal batteries.      
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Chapter 3 Experimental Methods 

This section provides the details of the synthesis and processing of the electrolytes that are an 

integral part of this dissertation. The characterization techniques used to study the 

(electro)chemical performance of the electrolytes will also be discussed. 

3.1 Materials Processing 

3.1.1 Polyethylene oxide (PEO)-based solid polymer electrolyte  

In this dissertation, polyethylene oxide (PEO)-based electrolytes were used as the model 

polymer electrolyte to study the factors that affect the electrochemical properties of polymer 

electrolytes and their interface with LLZO SE. PEO has suitable properties for an SPE, such as 

high Li ion donor number, chain mobility, ease of processability and a high dielectric constant.41 

Therefore, it is the most well-studied polymer making it a relevant model system to study. In 

addition, for the Li salt, a salt with a larger anion was preferred. This is because a larger anion 

possesses a well delocalized negative charge and lower mobility than smaller anions thus 

increasing the Li ion conductivity and Li ion transference number of the SPE respectively.41 

Therefore, in this work, Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) Li salt was chosen 

in combination of PEO. The PEO-LiTFSI electrolyte membranes were fabricated using solution 

casting and hot-pressing. A brief overview of the fabrication methods and characterization 

techniques used to study the properties of the polymer are discussed below. 
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3.1.1.1. Solution casting 

For solution casting PEO-LiTFSI electrolyte membranes Polyethylene oxide (PEO) 

(molecular weight 4,000,000, Polysciences, Inc.), LiTFSI (99.95%, Sigma Aldrich), and 

Acetonitrile, ACN (99.8%, Sigma Aldrich), were used. A high molecular weight PEO was used 

for better mechanical properties.41 A higher molecular polymer also causes chain entanglement 

which can trap large anions further impeding anionic transport. The PEO and LiTFSI were vacuum 

dried at 60oC for 24 hours to eliminate any moisture. PEO and LiTFSI were weighed in an Ar-

filled dry glove box (less than 0.5 ppm H2O andO2) to the desired [EO]:[Li] ratio. First, the LiTFSI 

was dissolved in acetonitrile to form a clear solution. Next, PEO was slowly added to the solution, 

which was stirred for 24 hours at room temperature and then at 60°C for 12 hours to assure 

dissolution. The electrolyte membranes were prepared by casting the PEO/LiTFSI solution into a 

polytetrafluoroethylene (PTFE) mold, allowed to cool to eliminate bubbles formed while stirring. 

The cast electrolyte membranes were dried under partial vacuum (127 Torr) for 24 hours then 

heated to eliminate residual solvent under high vacuum (558 Torr) for another 24 hours. The 

membranes ranged in thickness between 50 and 500 microns. 

3.1.1.2 Hot pressing 

For studying the PEO/LLZO interfacial kinetics a solvent-free hot-pressing fabrication 

technique was preferred to ensure that there was no remaining solvent molecule which would 

otherwise cause a variation in the results. For preparing PEO-LiTFSI electrolyte membranes by a 

solvent-free hot-pressing method PEO (molecular weight 4,000,000, Polysciences, Inc.) and 

LiTFSI (99.95%, Sigma Aldrich) were used. As with the previous method, both the PEO and the 

LiTFSI were dried under vacuum at 60oC for 24 hours to eliminate moisture. The polymer and salt 

were then weighed in an argon dry glove box (less than 0.5 ppm H2O and O2) to the desired 
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[EO]:[Li] ratio. PEO and LiTFSI were intimately mixed using a mortar and pestle and then hot-

pressed in a ½ inch stainless-steel die at 100oC for 10 minutes under 3.5 MPa (Figure 3.1). The 

pressure was applied using an Instron (Instron 5944 tension/compression testing unit) inside an 

argon filled glove box (0.5ppm O2 and H2O). The temperature was tracked using two type-K 

thermocouples attached to the Ni pins to ensure that there was no gradient in temperature along 

the length of the die. A heating tape was wrapped around the die for heating the die to the hot-

pressing temperature and was covered with quartz wool for insulation. Using stainless-steel 

spacers multiple samples were produced in one hot-press. Using this hot-pressing technique PEO-

LiTFSI electrolytes of the desired [EO]:[Li] ratio were fabricated. The thickness of the membranes 

could be controlled between 100 microns to as thick as desired. 

 

Figure 3.1 a) Optical image of the die placed between the compression heads of an Instron; b) 

Schematic of the stainless-steel hot-pressing die configuration 

 

3.1.1.3. PEO-LiTFSI electrolyte membrane material characterization 

Raman spectroscopy (Horiba Micro Raman Spectrometer housed in an argon-filled 

glovebox) was used to characterize the film and to determine if any residual moisture and solvent 

was present. Energy Dispersive Spectroscopy (EDS) (Hitachi: S3500N SEM w/ EDAX) was 

performed to characterize the homogeneity of the Li salt in the PEO matrix.  
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3.1.1.4. Thermal properties analysis 

As discussed in section 1.3.1.1 the thermal transitions in a polymer significantly affect their 

electrochemical properties. Thus, differential scanning calorimetry (DSC) was used to correlate 

the thermal transitions of the PEO-LiTFSI with its electrochemical properties and to study the 

temperature dependence of those properties. For all the DSC measurements in this work for PEO-

LiTFSI electrolyte membranes, the samples were heated from 25°C to 80°C at a constant heating 

rate of 2°C min-1. Figure 3.2 shows the DSC thermogram for a PEO-LiTFSI electrolyte membrane 

with a salt concentration of [27]:[1]. Since the Tg of PEO-LiTFSI is below freezing temperature (-

40°C for [20]:[1] salt concentration88)  it cannot be observed in this thermogram. An endothermic 

peak at 63oC was observed, which corresponded to the melting point for the PEO-LiTFSI 

electrolyte membrane. Since the melting point corresponds to the melting temperature of 

crystalline domains in the polymer electrolyte, the ionic conductivity should be significantly higher 

above this temperature. Chapter 4 will discuss the temperature dependence of the electrochemical 

properties of polymer electrolytes in further detail.   

 

Figure 3.2 DSC thermogram of a PEO-LiTFSI electrolyte membrane 
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3.1.2 Lithium Lanthanum Zirconium Oxide (LLZO) solid ceramic electrolyte 

Lithium Lanthanum Zirconium Oxide (LLZO) powder was synthesized by a solid-state 

synthesis method. The synthesized LLZO powder was processed into dense electrolyte membranes 

by rapid induction hot-pressing (RIHP). Before electrochemical characterization, the densified 

electrolyte membrane surface was treated to eliminate any surface impurities. The details of the 

synthesis, densification and surface preparation methods are discussed below. 

 

3.1.2.1 Synthesis and powder processing 

It was discussed in section 1.3.2.2 that Al and Ta aid the stabilization of higher ionic 

conductivity cubic phase in LLZO SE. Therefore, in this work, Ta-doped LLZO (LLZTO) was 

utilized with the formulation Li6.5La3Zr1.5Ta0.5O12. For the synthesis of LLZTO powder Li2CO3 

(Alfa Aesar, 99%), La2O3 (PIDC), ZrO2 (Inframat Advanced MaterialTM, 99.9%) and Ta2O5 

(Inframat Advanced MaterialTM, 99.9%) precursors were weighed out in stoichiometric amounts. 

10 wt. % excess Li was added to compensate for Li loss during calcination and avoid formation of 

pyrochlore (La2Zr2O7). The weighed precursors were wet mixed by roller milling with ethanol 

(solvent) and 2 mm in diameter zirconia balls (media) for 24 h. The precursor mixture was dried 

for 7 h under IR lamps, collected and passed through a 400 µm sieve to separate the media and 

avoids any agglomerates. The sieved powder was then cold-pressed into 10 g pellets of 25.4 mm 

diameter under a 19.61 kN force for 2 min. The cold-pressed pellets were calcined in an MgO boat 

at 1000°C for 4 h under flowing dry air atmosphere (1.75 L∙min-1). The heating and cooling rates 

for calcination were 1.7 °C∙min-1 and 4 °C∙min-1, respectively. After calcination, the pellets were 

ground in an agate mortar and pestle and passed through a 75 µm sieve to obtain a uniform particle 

size distribution. This was followed by X-Ray Diffraction measurements for the phase purity 

analysis of the LLZTO powder.  
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3.1.2.2 Rapid Induction Hot-pressing 

The calcined and sieved LLZTO powder was cold-pressed before sintering in a 12.7 mm 

stainless steel die under 200 MPa for ten minutes. To minimize die-wall friction effects during 

ejection, Li stearate was used as a lubricant. RIHP was used to densify cold-pressed LLZTO green 

bodies into dense LLZTO pellets (≥ 97% RD). For RIHP a copper coil (inductor) heats up the die 

which resides in the middle of the coil.  For hot-pressing, ~5 g of cold-pressed LLZTO powder 

was loaded in a 12.7 mm diameter graphite die with alumina plungers under Ar atmosphere. The 

die is then placed in the middle of the inductor and hot-pressed at 1225 °C for 40 min at 47 MPa.89 

The hot-pressed pellets were then cut into 1.5 to 2 mm thick samples using a diamond saw with 

mineral oil as the cutting fluid. Samples were manually polished using a lapping fixture with 400, 

600 and 1200 grit silicon carbide sandpaper to achieve parallel faces. Then the samples were wet 

polished to a 0.1 µm surface finish. The surface was cleaned with ethanol and acetone to remove 

any excess polishing fluid left on the surface after wet polishing.  

3.1.2.3 Surface preparation 

Sharafi et al.90 demonstrated experimentally and via first-principles calculations that LLZO 

reacts with moisture and CO2 on exposure to air to form a LiOH and a Li2CO3 interfacial layer. 

This interfacial layer resulted in a high Li-LLZO Rinterface due to poor Li wettability of the surface. 

Heat-treatment of LLZO under Ar atmosphere was suggested as a simple method to eliminate the 

surface impurities.28 Immediately after wet polishing and cleaning, the LLZTO samples were heat-

treated in an Ar-filled dry glove box (less than 0.5 ppm H2O andO2) to eliminate the surface 

impurities, before any electrochemical characterization.  
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3.1.2.4 Phase purity analysis 

X-ray diffraction (XRD) (Rigaku Miniflex 600) was used to determine the crystal structure 

and phase purity of the LLZTO powder and hot-pressed samples.  A Cu Kα X-Ray radiation source 

(λ=1.54 Å) operating at 40 kV and 20 mA was used. The measurements were collected between 

15° to 65° 2θ angles with a step size of 0.02° and speed of 2°/min. Bragg’s law was used to analyze 

the X-ray diffraction patterns. The Bragg’s law calculates the angle where the scattered X-rays 

from the parallel planes of atoms of a sample constructively interfere to give a diffraction peak. It 

is given by the equation – 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃                                                                  (3.1) 

where n is an integer (1, 2, 3, ...), 𝜆 is the wavelength of the incident beam (1.54 Å), d is 

the interatomic spacing, and 𝜃 is the angle of the diffracted beam. This equation is used to create 

an XRD pattern that plots intensity as a function of 2𝜃. The weight fraction of secondary phases 

was determined by applying Rietveld structural refinements to the XRD patterns. 

3.1.2.5 Surface characterization 

The surface of LLZTO was examined using Scanning electron microscopy (SEM, 

TESCAN RISE with a 10 kV accelerating voltage) for hot-pressed samples, polished samples, 

heat-treated samples and sample exposed to different liquid electrolytes. The details of the SEM 

will be discussed in the respective Chapters.  

3.2 Electrochemical characterization 

3.2.1 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectroscopy (EIS) is a powerful characterization technique 

which can probe the physical transport phenomenon in bulk materials and interfaces in an 
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electrochemical cell. EIS applies a perturbation voltage over a broad range of frequencies (7 MHz 

to < 1 Hz) and measures the current response. A Nyquist plot is where the impedance at each 

frequency is plotted with its imaginary component (Capacitance and Inductance) on the y-axis and 

real component (Resistance) on the x-axis.  Since an electrolyte in a Li metal battery blocks 

electronic transport, no inductance occurs in the impedance measurements under idealized 

conditions. The frequency response of the impedance relating to different materials or different 

physical transport phenomenon are dependent and thus characterized according to their electrical 

relaxation times or time constants. The relaxation time or time constant, τ, of each ‘parallel RC 

(resistive/capacitive) element’ in a cell is given by the product of R and C: 

τ = R ∙ C               (3.2) 

In the frequency domain, RC elements are separable due to the relation shown in equation  

ωmax ∙ R ∙ C = 1                                                      (3.3) 

which holds at the frequency of maximum impedance, ω max, in the impedance spectrum. 

Thus, it possible to relate the physical transport phenomenon with different RC elements on the 

Nyquist plot. The capacitance for different phenomena in an electrochemical cell such as bulk, 

grain boundary and electrode-electrolyte interface, surface layer formation, etc. can be found in 

Irvine et al.91 After relating the RC element with the physical phenomenon, the ionic conductivity 

and area specific resistance can be commented on by using the equation  

𝑅 = 𝑙/𝜎𝐴                                                          (3.4) 

where 𝑅 is the resistance (Ω) taken from the Nyquist plot, 𝐴 is sample area (cm2), 𝑙 is the 

thickness of sample (cm) and σ is the conductivity of the sample (S/cm). EIS will be used to study 

different Li ion transport in different cell configuration throughout this thesis. 
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3.2.2 Trilaminar cell configuration  

To decouple the Rinterface between a polymer electrolyte and LLZTO using electrochemical 

impedance spectroscopy (EIS) a trilaminar cell configuration using blocking electrodes was 

designed. The heat-treated LLZTO electrolyte was interposed between two polymer electrolyte 

membranes. The sandwiched structures were assembled between two 1.27 cm diameter current 

collectors (Au or Ni). A 100 kPa stack pressure was applied on the cells. The cells were heat 

conditioned to form the interface between the polymer electrolyte and LLZTO. For conditioning, 

the cells were heated to 80oC on a hot stage and insulated using quartz wool. The temperature was 

tracked using two type-K thermocouples attached to the Ni pins to ensure that there was no gradient 

in temperature along the length of the cell. The impedance was tracked using EIS vs time until the 

cell impedance was stabilized. After conditioning, the cells were cooled to room temperature. 

Using EIS, the interfacial impedance between LLZTO and the polymer electrolyte was tracked vs 

temperature.  
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Chapter 4 Studying the Effects of Temperature and Pressure on Electrochemical 

Performance of a Polymer Electrolyte 

4.1. Introduction 

The demand for fossil fuel alternatives and increased electrification of the energy sector 

creates the impetus to develop higher performance energy storage systems.92 Over the last two 

decades there has been a lot of improvement in Li-ion battery technology, but significant 

challenges remain.  For example, there is an ever-increasing need to reduce cost (<$100 kWh), 

enhance safety, and increase performance (>1000 Wh/l, >500 Wh/kg, cycle life, and power 

density). One approach to improve energy density (> 1000 Wh/l) is to replace carbon-based anodes 

in Li-ion batteries with metallic Li.12 However, stabilizing the Li metal/liquid electrolyte interface 

has proven difficult.15,16  Currently, there are substantial efforts to develop solid-state electrolytes 

to physically stabilize the Li metal interface.20,47,93 In this thesis, the promising SE 

Li6.5La3Zr1.5Ta0.5O12 (LLZTO) was explored due to its high ionic conductivity at room temperature 

(RT), and its ultra-low interfacial resistance and stability with Li.28,94 However, the implementation 

of SEs leads to cycling instabilities due to the formation of highly resistive solid-solid 

interfaces.64,65  

The approach to overcome the incompatibility is the interposition of a GPE between the 

between SE and cathode or catholyte. A GPE polymer electrolyte will be comprised of a polymer 

matrix with entrained LE. For the hybrid approach to be effective, it is important to understand the 

factors that control the kinetics and stability of bulk polymer and polymer/electrode interfaces. In 
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this study, we hypothesize that temperature and stack pressure affect the stability and kinetics of 

the polymer electrolyte and electrode-polymer electrolyte interface. The effects of pressure and 

temperature were studied, since the physical properties of most polymer electrolytes are highly 

sensitive to these external variables.95,96 However, though there are myriad SPE that are well 

understood in terms of their synthesis and conductivity97–105, there have not been many studies that 

correlate the coupled effects of external variables (pressure, temperature, electrode type) with the 

electrochemical properties of the polymer and electrode-polymer interface. 

Polyethylene oxide/LiTFSI was used as a model SPE, because it is well-understood and 

relatively easy to process. For the cell, the effects of temperature and pressure were studied on a 

Li/PEO-LiTFSI/Li system as the transport mechanisms in this configuration are well-studied. 

Previous studies discuss the cycling behavior of PEO-LiTFSI electrolyte membranes at different 

current densities and at 90oC. They also study the Li dendrite penetration and evolution during 

cycling by correlating electrochemical data with in-situ optical imaging.106,107 The goal of this 

work was similar to the work of Rosso et al., however, we combined dc cycling, electrochemical 

impedance spectroscopy (EIS), and optical analysis to determine how temperature and stack 

pressure affect the kinetics and stability of PEO-LiTFSI and Li/PEO-LiTFSI interface. As will 

be discussed, we believe pressure likely affects the physical contact area at the Li-polymer 

electrolyte interface, thereby affecting interface resistance.108  In addition, temperature affects both 

kinetics and mechanical properties, as the crystallinity and stiffness of the SPE decreases with 

increasing temperature. Thus, it is likely that both pressure and temperature also affect the CCD 

(Critical Current Density) or the maximum tolerable current density subject to which Li metal 

dendrites do not cause failure during charging. The overarching goal of this work is to establish an 
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experimental platform to study the effects of stack pressure and cell temperature on the 

electrochemical properties of the polymer and the polymer/electrode interface.  

4.2. Experimental Section 

4.2.1. PEO-LiTFSI membrane fabrication and characterization 

The PEO-LiTFSI membranes were fabricated using solution casting discussed in detail in 

Section 3.1.1.1. The electrolyte membranes were characterized using Raman spectroscopy and 

Energy Dispersive Spectroscopy (EDS). Raman spectroscopy was conducted to characterize the 

fabricated membranes and to determine if any residual moisture and solvent was present. Several 

observations were made from the Raman spectra for pure acetonitrile (ACN), the PEO-LiTFSI 

solution in ACN, and dried PEO-LiTFSI film (Figure 4.1 a). First, after drying the membrane, it 

was apparent that all the ACN solvent was removed as the CN peak was no longer detectable. 

Second, the absence of the OH stretching frequency (3100-3600 cm-1, as seen in literature) peak 

confirms that no moisture was detected. Third, in the PEO-LiTFSI solution spectrum, no peaks 

were associated with pure PEO suggesting that the PEO was completely dissolved.  Scanning 

electron microscopy (SEM) with EDS was performed to characterize chemical homogeneity 

(Hitachi: S3500N SEM w/ EDAX). Based on the SEM analysis (Figure 4.1 b) it was apparent that 

overall the membrane was uniform except for some pores that formed on the film surface. Since 

the electrochemical testing was done above the melting temperature under stack pressure, we 

believe that all the pores had been eliminated and hence the porosity did not affect the 

electrochemistry. Lastly, SEM/EDS compositional analysis (Figure 4.1 c), indicated the dispersion 

of S and F in the membrane. Since S and F were present in the salt, we can conclude that the salt 

distribution was relatively uniform, which avoided any local variation in ionic conductivity.  
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Figure 4.1 a) Raman spectra for the polymer electrolyte membrane; b) SEM image of the 

polymer electrolyte membrane; c) EDS image showing the homogeneous distribution of S (pink) 

and F (yellow) (which comes from the salt) on the membrane; d) Optical image of the 12.7 mm 

diam. transparent membrane. 

 

4.2.2. Mechanical properties of PEO-LiTFSI 

The membrane mechanical properties were characterized using acoustic impulse 

excitation. To measure the elastic modulus, a longitudinal wave transducer (5073PR with M110, 

Olympus NDT, Tokyo, Japan) was placed on a membrane using mineral oil as the coupling 

medium. An oscilloscope (PicoScope 2207a, Pico Technologies, Cambridgeshire, UK) was used 

to measure the longitudinal wave velocity by dividing the thickness of the membrane by the time 

taken by the wave to travel through it. With these data, the elastic modulus was determined by 

using equation 4.1109 – 

E =  vl
2ρ

(1+ν)(1−2ν)

(1−ν)
                                                            (4.1) 

where E is the elastic modulus, v1 is the velocity of the longitudinal wave, ρ is the density and ν 

is the poisson’s ratio. The value of poisson’s ratio was taken as 0.24 from literature.110 The Shear 

modulus (G) is calculated by using equation 4.2109 – 

G =  
E

2(1+ν)
                                                              (4.2) 
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4.2.3. Electrochemical characterization of the PEO-LiTFSI 

4.2.3.1. Studying the temperature dependence of PEO-LiTFSI electrochemical properties  

Electrochemical impedance spectroscopy (EIS) was used to characterize the effect of 

temperature, pressure and electrode type on bulk and interfacial Li/PEO-LiTFSI ionic transport. 

The cells were assembled in an argon filled glove box (0.5ppm O2 and H2O) in a load frame 

fixture (Figure 4.2). The cell was prepared by sandwiching a PEO-LiTFSI electrolyte membrane 

between two 0.5 inch diameter 100μm thick Li foil (Alfa Aesar) disks. The Li foil was cleaned by 

scraping the oxide impurities from its surface immediately before cell assembly. The sandwiched 

structure was assembled between two 0.5 inch diameter Ni pins (current collectors) which were 

aligned in place using three PTFE pieces. Stack pressure was applied on the pins using a load cell 

(Imada Inc.). The cell was kept horizontally on a hotplate and then well insulated using quartz 

wool for temperature measurements. The temperature was tracked using two k-type thermocouples 

to ensure that there no gradient in temperature along the length of the cell. The cell impedances 

were calculated from the EIS data between 100mHz to 7MHz using a potentiostat/galvanostat 

(Bio-logic VMP300). A stack pressure of 100kPa was maintained while characterizing the effect 

of temperature between 30oC and 100oC. It should be noted that before the measurements the cells 

were heat-conditioned under stack pressure. This ensured that the measurements were not affected 

by interfacial contact.  
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Figure 4.2 Cell configuration used to characterize electrochemical behavior under constant 

stack pressure (σ = 100 kPa) at various temperatures. 

 

4.2.3.2. Studying the stack pressure dependence of PEO-LiTFSI electrochemical properties  

The effect of stack pressure at three different temperatures (60oC, 80oC, and 100oC) on the 

bulk and interfacial resistance of Li/PEO-LiTFSI/Li cells was studied. Cells were assembled in a 

similar configuration as was used for temperature measurements but instead of a load cell, the 

stack pressure was applied using an Instron compression unit (Figure 4.3) where the stack pressure 

could be varied in steps during electrochemical testing (Instron 5944 tension/compression testing 

unit, inside an argon filled glove box (0.5ppm O2 and H2O)). A heating tape was wrapped around 

the cell from heating the cell to testing temperature and then it was covered by quartz wool for 

insulation. The cells were galvanostatically cycled at 0.1 mA/cm2 for each temperature with 

varying stack pressure (between 0 to 900 kPa) and EIS measurements were taken at the end of 

each cycle. The contact area between Li and PEO-LiTFSI remains constant while increasing stack 

pressure as the Li does not creep beyond the area of the current collectors. 
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Figure 4.3 Cell testing apparatus used to characterize electrochemical behavior under constant 

temperature at varying stack pressure using an Instron housed in an Ar-filled glovebox. 

 

4.2.3.3. Studying the temperature dependence of PEO-LiTFSI critical current density (CCD)  

To study the effect of temperature on CCD, direct current (DC) cycling on Li/PEO-

LiTFSI/Li cells was conducted for three different temperatures; 60oC, 80oC, and 100oC. The cells 

were first preconditioned by cycling at ±0.01 mA cm−2 for 30 minutes to condition the interface111 

between the Li electrode and the polymer at the respective test temperature (60oC, 80oC, or 100oC). 

The cells were galvanostatically cycled symmetrically at varying current densities between ±0.01 

mA cm-2 and ±10 mA cm-2. EIS data was collected after each step to calculate the bulk and 

interfacial resistances. 

 

4.2.3.4. Studying the electrode type dependence of PEO-LiTFSI electrochemical properties 

Vapor deposited Li was used to minimize the contamination of the Li metal/polymer 

electrolyte interfacial resistance. The change in Li/PEO-LiTFSI interfacial resistance as a function 
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of temperature (with negligible stack pressure) and pressure (at 80oC) was studied for cells 

assembled with Li foil and vapor deposited Li as electrodes. 

 

4.2.3.5. Visualization cell configuration 

For operando visualization, an in-plane sample geometry was used. Two 8.0 mm long 

parallel Li electrodes (5 µm thick) separated by 1 mm were vapor-deposited in a glovebox-

integrated thermal evaporation chamber (Angstrom Engineering), onto the same side of a 500 

µm thick PEO film by shadow masking. Inside of an Ar glovebox, this film was placed onto a thin 

PTFE film with no stack pressure and heated until the temperature of the film reached 80 ̊C. The 

electrodes were contacted using tungsten microprobes connected to a Bio-logic SP-200 

potentiostat. The cell was then cycled at increasing current density from 0.1 mA/cm2 to 5.0 

mA/cm2. Current density was defined by the current divided by the cross-sectional area of the 

electrolyte film between the two electrodes. Images were captured using a 75 mm c-mount lens 

(Fujinon), 100 mm extension tube, and 5 Megapixel camera (Amscope). 

 

4.3 Results and Discussion 

4.3.1. Mechanical properties characterization of PEO-LiTFSI membranes   

Figure 4.4 shows the longitudinal wave propagation data captured during the acoustic 

analysis on the PEO-LiTFSI membranes at 40oC. By using equations 4.1 and 4.2, the elastic and 

shear moduli were determined to be 0.5 GPa and 0.2 GPa, respectively at 40oC. There are two 

implications drawn from these results. First, when used as a catholyte, a higher elasticity of the 

polymer in the GPE would be advantageous in maintaining intimate contact with the cathode. This 

can be evaluated by measuring the elastic modulus of the polymer. Second, according to the 

Newman and Monroe criterion, an isotropic electrolyte should suppress Li dendrite initiation112 if 
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the shear modulus is at least twice that of metallic Li (GLi = 4.2 GPa113). Since the shear modulus 

of PEO-LiTFSI electrolyte is less than that of Li, the electrolyte should not exhibit resistance to 

dendritic initiation according to this criterion.  

 

Figure 4.4 Longitudinal acoustic spectrum of the PEO-LiTFSI membranes at 40oC.  The time 

between reflections was 0.267µs, which was used to determine the wave velocity and the elastic 

properties.  

 

4.3.2. Effect of Temperature on Li/PEO-LiTFSI/Li symmetric cell impedance   

The electrochemical transport properties of symmetric Li-PEO/LiTFSI-Li cells were 

characterized using EIS between 30 and 80oC (Figure 4.5).  From Figure 4.5, several observations 

can be made.  First, the EIS data at 30oC (Figure 4.5 a) presents two distinct impedance components 

(represented by the two semi circles), one in the higher frequency range corresponding to the bulk 

impedance and the other in the lower frequency range corresponding to the interfacial impedance. 

The Nyquist plot was modeled using an equivalent circuit (Figure 4.5 a) to determine the separate 

impedance elements where Rbulk is the resistive component and CPE is the constant phase element. 

The fitted capacitance value for bulk impedance was 1.3*10-9F and for interfacial impedance 
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0.78*10-6F, which is in accordance with the values reported in literature for these physical 

phenomena.91 

At 80oC (above the melting point of the polymer) it is known that crystalline domains no 

longer remain, thus the semi-circle for bulk resistance decreases to an undetectable value as shown 

in Figure 4.5 b.114 The sum of the bulk and uncompensated resistance was given by point X (Figure 

4.5 b). The capacitance calculated for the lower frequency semi-circle was 0.78*10-6F, confirming 

that it corresponded to interfacial impedance. The bulk conductivity of the membranes was 

measured to be on the order of 10-4 S/cm at 60oC and 10-3 S/cm at 80oC and 100oC. Figure 4.5 c 

shows the variation of conductivity (σ) of the PEO-LiTFSI electrolyte between 30 to 100oC. It was 

observed that conductivity exhibits two temperature regimes for which the activation energies 

were calculated using the Arrhenius equation equation 4.3 –  

ln (σT) = ln (σ
0
) - (E

a
/kT)                                             (4.3) 

where T is the absolute temperature, E a  is the activation energy, and k  is Boltzmann's 

constant. By fitting this equation to the two regimes, the activation energy was calculated for the 

lower temperature range to be 1.26 eV and for the higher temperature range to be 0.37eV. Liu et 

al.47 reported the activation energy in the lower temperature range to be 1.195 eV and in the higher 

temperature range to be 0.385 eV, and the conductivity at 60oC to be in the order of 10-4. Thus, we 

believe that the values measured in this study are in accordance with previously reported values. 

This transition in regimes occurs around the melting temperature of the polymer membrane due to 

the melting of the crystalline domains, which increases chain mobility and thus bulk 

conductivity.115 Similar to bulk resistance, the interfacial resistance decreases with increasing 

temperature, which may be attributed to better wetting of the polymer film by Li and improved 
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kinetics. However, unlike bulk transport, there is a single activation energy associated with 

interfacial Li-ion transport in the temperature range of 30 to 80°C. This implies that Li/PEO-

LiTFSI interfacial charge transport does not depend on the bulk charge transport mechanism. 

 

Figure 4.5 a) Representative Nyquist plot of a Li/PEO-LiTFSI/Li cell at 30oC b) Representative 

Nyquist plot of a Li/PEO-LiTFSI/Li cell at 80oC; The marker (ο) represents the experimental 

data in a) and b) and the dotted line (…) represents the equivalent circuit modeling data of 

Li/PEO-LiTFSI/Li cells c) Arrhenius plot of a polymer membrane indicating a dramatic change 

in transport at approximately 55oC. d) Temperature dependence of Li/PEO-LiTFSI interfacial 

resistance 
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4.3.3 Effect of Stack Pressure in a Li/PEO-LiTFSI/Li symmetric cell on interfacial kinetics  

The effect of stack pressure on bulk and interfacial resistance was characterized on Li/PEO-

LiTFSI/Li cells (Figure 4.6).  Several observations can be made from Figure 4.6. From Figures 4.6 

a and 4.6 b it was apparent that the interfacial resistance exponentially decreased with increasing 

stack pressure approaching an asymptote at 400 kPa and 200 kPa, respectively. We believe that 

stack pressure plays an important role during DC cycling as it helps facilitate an increase in 

electrochemically active contact area, which leads to a reduction in electrode/electrolyte interface 

resistance. The minimum stack pressure required to establish an optimized interface is defined as 

the critical stack pressure, at and above which interfacial resistance no longer varies with 

increasing pressure as the electrode makes maximum active interfacial contact with the electrolyte. 

The critical stack pressure would also be dependent on operating cell temperature since the 

viscosity of the polymer and Li are temperature dependent. Hence, based on the asymptotic 

behavior in Figure 4.6 a and 4.6 b, 400 kPa and 200 kPa were determined to be the critical stack 

pressure for the Li/PEO-LiTFSI interface at 60 and 80°C, respectively.  Unlike at 60 and 80oC, at 

100oC (Figure 4.6 c), initially the interfacial resistance exponentially decreased with increasing 

stack pressure approaching an asymptotic value. However, at approximately 550 kPa at 100oC, a 

sudden drop in cell resistance was observed. There can be two possible reasons behind the sudden 

drop: 1) At 100oC and 550 kPa stack pressure Li metal dendrites start growing exponentially, 

increasing the surface area and hence the interfacial resistance drops. 2) At 100oC and 550 kPa 

stack pressure it is possible that the surface layer between Li and PEO mechanically fails, exposing 

Li metal to the PEO surface and hence decreasing the resistance.115 Therefore, it is critical not to 

exceed the stack pressure where any of the above failures occur, especially at elevated temperature. 
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This would be true for any polymer/electrode system. It was also observed that the bulk resistance 

decreased with increasing stack pressure, consistent with an increase in interfacial contact and 

decrease in membrane thickness.   

 

Figure 4.6 Variation of bulk and interfacial resistance with stack pressure of a typical Li/PEO-

LiTFSI/Li cell during cycling at 0.1mA/cm2 at a) 60oC b) 80oC c) 100oC.  

 Similar to the interfacial resistance, the capacitance associated with the Li/PEO-LiTFSI 

interface should also be affected by the changing active contact area with increasing stack pressure. 

Thus, the effect of stack pressure on the Li/PEO-LiTFSI interface capacitance was evaluated at the 

three different temperatures (60, 80 and 100°C). It was expected that with the increasing contact 

area with stack pressure, the capacitance should also increase. It can be observed from Figure 4.7, 

that the capacitance for Li/PEO-LiTFSI does increase with stack pressure for all three 

temperatures, however, the change is not dramatic. It is possible that the change in capacitance is 

compensated by a changing frequency dependence with temperature.  
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Figure 4. 7 Variation in capacitance of the Li/PEO-LiTFSI interface with increasing stack 

pressure at 60oC, 80oC and 100oC. 

4.3.4. Effect of temperature on the critical current density (CCD)  

The maximum tolerable current density of the Li-PEO/LiTFSI interface (CCD) was 

measured as a function of temperature.  We have observed that the CCD of a Li metal interface 

against ceramic Li7La3Zr2O12 electrolytes increases with temperature116, thus we hypothesized that 

the same will hold true for the Li-PEO/LiTFSI interface. First, in Figures 4.8 a, b, and c the voltage 

profiles followed Ohmic behavior (V=iRcell) below 0.5 mA/cm2 for each temperature, indicating 

the interface resistance was relatively unchanged during DC cycling. However, at > 0.5 mA/cm2, 

the profiles then deviated from Ohmic behavior at each temperature, possibly indicating the onset 

of dendritic growth. We believe, that current density for onset of dendritic growth is invariant of 

temperature (above the Tm) because of its lack of resistance to dendritic growth owing to its low 

shear modulus. Second, in Figure 4.8 d, the cell resistance suddenly dropped at 0.5mA/cm2 for all 

the three temperatures. We believe that the drop in resistance occurs under conditions that lead to 

dendrite growth, thus decreasing the effective distance between the two electrodes decreasing the 

bulk resistance, and hence decreasing the voltage.106 Even though the dendrite growth initiated at 

0.5 mA/cm2, no hard short was observed up to 10 mA/cm2. Rosso et al. observed similar behavior 
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referring to ‘burning’ of the polymer around the surface of the dendrites.107 There it was shown 

that the presence of the burnt polymer increases resistance between the dendritic and the Li 

electrodes, which prevents the potential from dropping to zero. To further investigate and better 

understand the Li metal propagation in PEO-LiTFSI, Operando optical imaging was conducted 

(discussed in Section 4.3.6) using a customized visualization cell. Clearly, the dramatic drop in 

potential at > 0.5 mA/cm2 was indicative of the onset of dendritic growth.  

 

Figure 4.8 Galvanostatic cycling of Li/PEO-LiTFSI/Li cells from ± 0.01 mA/cm2 to ± 10 mA/cm2 

at: a) 60oC, b) 80oC, and c) 100oC. d) Variation of total cell resistance in Li/PEO-LiTFSI/Li 

cells with current density at 60oC, 80oC, and 100oC 

4.3.5. Effect of the electrode type on electrode/electrolyte interfacial properties 

To enable consistent and low interfacial resistance, vapor deposited Li anodes were 

compared to Li foil electrodes. Figure 4.9 shows the variation in Li/PEO-LiTFSI interfacial 

resistance with temperature and stack pressure, which was measured using EIS. The resistances 
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were calculated by fitting an equivalent circuit model to the complex impedance plots. Figure 4.9 

a shows the representative Nyquist plots at 80oC for both vapor deposited Li and Li foil electrodes. 

A decrease of 67% in interfacial resistance was observed at 80oC with Li vapor deposited 

electrodes as compared to Li foil electrodes (Figure 4.9 a) and the same drop was observed for 

every other temperature (Figure 4.9 b). The decrease in interfacial resistance for the vapor 

deposited Li was likely due to improved wetting28,108 of the polymer electrolyte by the Li. We 

would expect the current density for the onset of dendritic growth to increase, which would affect 

the CCD, as a more uniform interface and increased contact reduces hot spots (centers for dendrite 

nucleation) for dendritic growth and is likely to have more uniform current density. From Figure 

4.9 b it can be observed that interfacial resistance did not vary with stack pressure when vapor 

deposited Li was used as the electrode. Hence, the critical stack pressure with vapor deposited 

lithium was much lower in comparison to Li foil. Due to the precisely controlled nature of thin 

film deposition, we hypothesize that vapor deposition will result in increased contact area 

compared to Li foil even at low values of stack pressure. 

 

Figure 4.9 a) Representative Nyquist plot of a Li/PEO-LiTFSI/Li cell at 80oC for lithium foil 

electrodes (o) and for vapor deposited lithium (*); b) Variation of Li/PEO-LiTFSI interfacial 

resistance with temperature for lithium foil electrodes (o) and for vapor deposited lithium (*); c) 

Variation of Li/PEO-LiTFSI interfacial resistance with pressure (at 80oC) for lithium foil 

electrodes (o) and for vapor deposited lithium (*). 
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4.3.6. Visualization of dendritic growth   

To better understand how Li metal penetrated the polymer electrolyte membrane during 

shorting, a customized operando visualization cell117 was used to capture optical images during dc 

cycling (Figure 4.10).106,107  From Figure 4.10, several observations were made. Compared to Li 

foil electrodes (0.5 mA/cm2 at 80oC), the onset of dendritic growth was observed at a higher current 

density (Figure 4.10 a) using vapor deposited Li electrodes (1 mA/cm2 at 80oC). This supported 

the hypothesis that increased contact and a more uniform interface would result in increased 

current density for Li metal penetration. The initiation of dendrite growth was observed in the 

operando visualization cell with vapor deposited Li at 1 mA/cm2 (Figure 4.10 c). The dendrites 

resembled fractal morphology as was observed in literature.106 No visible Li dendrites were 

observed at current densities < 0.5 mA/cm2, which corresponded to Ohmic and consistent voltage 

behavior in the polarization curve (Figure 4.10 a).  However, at 5 mA/cm2, the rate of growth of 

dendrites was much higher (Figure 4.10 d) in comparison with 1mA/cm2 (Figure 4.10 c). In Figure 

4.10 a it was also observed that the cell reached the cut-off voltage (5V) quickly at 5 mA/cm2. We 

believe that the cell reached the upper bound cut-off voltage as a result of Li depletion on the 

electrode undergoing stripping/oxidation, since no stack pressure was applied. 
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Figure 4.10 a) Galvanostatic cycling of Li/PEO-LiTFSI/Li cells from 0.01 mA/cm2 to 5 mA/cm2 

at 80oC; b) Vis cell image of the cell at the end of 0.5 mA/cm2 cycling step showing no signs of 

dendritic growth; c) Vis cell image of the cell at the end of 1 mA/cm2 cycling step showing 

initiation of dendritic growth and d) Vis cell image of the cell at the end of 5 mA/cm2 cycling step 

showing the structure of dendrites.  

 

4.4. Implications 

Observations from this study could have implications for the successful implementation of 

GPEs as catholytes. First, temperature affects both kinetics and mechanical properties of the 

polymer electrolyte, as its crystallinity and stiffness decrease with increasing temperature. 

However, the activation energy for the bulk Li-ion transport changes above the melting 

temperature of the polymer which is not the case for interfacial transport. It is important to 

remember that with a GPE the polymer matrix holds the liquid electrolyte, which is responsible 

for the Li-ion transport. The closer the temperature is to the melting temperature of the polymer 

the lower is the liquid electrolyte retention capacity of the polymer. Thus, the thermal properties 

of the polymer would play an important role while selecting the polymer for the GPE. Second, the 

elastic modulus of the GPE would be important to maintain interfacial contact between the 
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polymer and the cathode during charging/discharging related volumetric changes. Third, it was 

shown that stack pressure plays an important role for the interfacial kinetics and cell polarization, 

as it helps to maintain an intimate contact between the electrode and the electrolyte. The minimum 

stack pressure required to establish an optimized uniform interface is defined as the critical stack 

pressure. Lastly, it is critical not to exceed the stack pressure where a mechanical failure of any 

electrode/electrolyte interfacial layer can occur.  

4.5. Conclusions 

In this study we evaluated the effects of external variables on kinetics and stability of the 

solid polymer electrolyte and its interface with Li metal. From the observations made it was 

concluded that kinetics of bulk polymer was majorly dependent on temperature. The conductivity 

of the polymer increased with temperature, with 10-4 S/cm at 60°C and 10-3 at 80 and 100°C, 

however, it there was a sharp transition near the melting temperature of the polymer.  The kinetics 

of the electrode/electrolyte interface were strongly dependent on temperature, pressure and 

electrode type while the stability was independent of temperature. First, we observed that with an 

increase in temperature the interfacial resistance was reduced from 3000 Ohm.cm2 to 30 Ohms.cm2 

(100 kPa stack pressure) indicating improvement in interfacial kinetics, however, there was no 

sharp transition observed for Li-ion at the electrode/electrolyte interface. Second, it was shown that 

a critical stack pressure (pressure at and above which the interfacial resistance is invariant with 

increasing pressure) was required to establish an optimized interface between an electrode and 

PEO-LiTFSI electrolyte. The critical stack pressure evaluated at 60 and 80oC, was 400 kPa and 

200 kPa respectively where the interfacial resistance was reduced to 20 Ω.cm2. Third, we observed 

a 67% drop in interfacial resistance and double current density for onset of Li metal penetration 

(1mA/cm2) while exploring the method of incorporation of Li (vapor deposition vs Li foil 
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adhesion). We believe that method of incorporation likely affected wetting and contact between the 

electrode and electrolyte, which significantly improved cell performance.28,108  Fourth, a non-ohmic 

behavior was observed to start at 0.5 mA/cm2 for 60, 80 and 100oC. Later, with the assistance of a 

novel operando visualization cell it was shown that the non-ohmic behavior observed in the 

electrochemical data was indicative of Li dendrite initiation and propagation. We believe that 

temperature independence of the current density for Li metal initiation could be due to the low shear 

strength of PEO-LiTFSI membranes which cannot resist dendritic growth. Overall, the correlations 

and observations made in this study are useful in understanding factors that affect the kinetics and 

stability of solid-state electrolytes.  We believe the findings will help maximize the rate at which 

solid-state batteries incorporating SPEs can be safely charged and discharged. 
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Chapter 5 Understanding the Factors Controlling the Polymer/LLZTO Interfacial Kinetics 

5.1. Introduction 

The interest in increasing battery energy density has created the impetus to supplant 

carbon-based anodes in Li-ion batteries with metallic Li.12 However, side reactions and 

morphological instability that occur during cycling Li in liquid electrolyte has impeded progress 

to this end.13,17,118 One approach to enable this transition is to physically stabilize Li using a solid-

electrolyte.16 Most promising candidates actively researched for solid-electrolytes are 

sulfides119,120, ceramic oxides20,62,121 and polymers.122,123  

LLZO, a ceramic oxide consisting of the garnet crystal structure, has shown great potential 

as a solid-electrolyte owing to its high ionic conductivity (1 mS/cm) and stability against lithium; 

however, difficulty in fabricating LLZO membranes and there incompatibility with cathodes has 

slowed maturation.24 On the other hand, polymer electrolytes are relatively easy to process, but 

have an inherently low ionic conductivity at room temperature. Thus, there is interest in combining 

the two electrolytes in the form of LLZO-polymer composites (CPE) and/or LLZO-polymer 

bilaminar layers where the polymer is used as a catholyte. PEO/Lithium 

bis(triflouromethanesulfonyl)imide (PEO-LiTFSI)98–102 is a good model system to be used as the 

polymer electrolyte as it is well researched and has desirable properties. Even though there are few 

examples of studies using the bilaminar configuration, there have been several reports on the 

development of LLZO-PEO composites (CPE).  In the CPE, LLZO with higher ionic conductivity, 

acts as the primary conductive phase and PEO acts as the percolative network connecting LLZO 

particles and adding benefit of ease of fabrication.124–130 Table 5.1 reports the CPE ionic 
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conductivity of varying concentration from literature. It was observed that the conductivity of PEO 

did increase with the addition of LLZO.  However, contrary to the rule of mixtures, the CPE with 

lower volume fraction of LLZO had a higher ionic conductivity than compositions with higher 

fraction of LLZO. Hence, it was inferred that contribution from Li-ion conductivity of LLZO to 

the total conductivity of CPE was negligible. The increase in conductivity at lower volume 

fractions was due to LLZO particles disrupting PEO crystallinity. The goal of this study was to 

understand the transport mechanism(s) that govern the transport of Li ions between LLZO and 

PEO. To investigate this, we started with a CPE and considered the possible ionic pathways at 

high fractions of LLZO.126 There are three possible ionic pathways as illustrated in Figure 5.1 a: 

(1) through PEO-LiTFSI, (2) through PEO-LiTFSI and LLZO or/and (3) through LLZO.131 

Considering that typical composite studies consist of relatively low volume fractions of LLZO, 

pathway 3 cannot be the lowest resistance path. Next, if pathway 2 was predominant, the 

conductivity would increase with increasing fraction of LLZO, but based on the findings in Figure 

5.1 b, this is typically not the case.  We believe that the ionic transport across the PEO-

LiTFSI/LLZO interface was significantly more resistive than the resistance through PEO-LiTFSI 

and the dominant ionic conduction pathway was pathway (1). Thus, we believe there is a need to 

understand the factors that control ionic transport across polymer-ceramic interfaces to enable Li-

ion transport between LLZO and a polymer electrolyte.  If successful in improving the ionic 

transport at the LLZO-polymer interface, it is possible to enable pathways 2 in a CPE and/or 

introduce a polymer catholyte in combination with LLZO solid electrolyte.  

While there have been studies of the interface between LLTO and PEO-LiCF3SO3,
132 

polymer electrolyte and glass,133 and LLZO and liquid electrolyte,134 there have been relatively 

few investigations of the PEO-LiTFSI/LLZO interface. Langer et al. was the first to study this 
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interface85 and determined the resistance was relatively high. However, their study focused on the 

effects of surface irregularities rather than the origins of high Rinterface. The objective of this work 

was to 1) understand the underpinning mechanisms that control ionic transport between the model 

polymer PEO-LiTFSI and LLZO and 2) develop a systematic approach to extend the fundamental 

understanding of this interface transport for CPEs and polymer catholytes used in combination 

with LLZO.  Achievement of these goals could result in a significant step forward for the 

developments of high conductivity CPEs and batteries employing polymer catholyte and LLZO 

protecting Li metal anodes. 

To analyze the interfacial kinetics, a trilaminar cell configuration was designed to 

accurately de-convolute and measure PEO/LLZO interfacial resistance, Rinterface. Electrochemical 

impedance spectroscopy (EIS) was used to determine Rinterface between the two electrolytes. It was 

shown that the Rinterface between PEO-LiTFSI and as-densified LLZO is too high for facile charge 

transport at that interface. We believe the two factors that primarily limit interfacial kinetics are 

surface impurities on the LLZO and the abrupt change in Li-ion concentration between the 

electrolytes. Thus, effects of the two factors on Rinterface and methods to control and minimize the 

impedance were studied. We believe the results of this study could guide future efforts to develop 

systems requiring facile charge transport across ceramic/polymer interfaces. 
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Table 5. 1 The ionic conductivity of CPE with varying LLZO fractions; Molecular weights of the 

PEO were excluded since they were in the range where ionic conductivity of PEO was independent 

of molecular weight.128 

Solid Electrolyte Temperature (oC) σ (mS/cm) 

PEO-LiTFSI (8:1)/c-LLZO (7.5 wt %)124 30 0.55 

PEO-LiTFSI (8:1)/c-LLZO (10 wt %)125 30 0.18 

PEO-LiTFSI (15:1)/c-LLZO (70 wt %)126 30 0.01 

PEO-LiClO4 (8:1)/c-LLZO (15 wt %)127 20 0.95x10-2 

PEO-LiClO4 (8:1)/c-LLZO (20 wt %)128 30 0.44 

PEO-LiClO4 (20:1)/c-LLZO (40 vol %)129 20 0.7x10-5 

PEO-LiClO4 (15:1)/t-LLZO (52.5 wt %)130 35 0.01 

 

 

Figure 5.1 (a) Possible ionic pathways in a PEO-LiTFSI/Ta-doped LLZO (LLZTO) composite 

electrolyte – Through (1) PEO-LiTFSI matrix (2) both the electrolytes (3) LLZO; (b) Effect of the 

volume percentage of LLZO on the ionic conductivity of CPE. 
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5.2. Experimental Section 

5.2.1.Materials synthesis and processing 

5.2.1.1. Synthesis procedure for hot-pressed LLZTO (Ta-doped LLZO) and PEO-LiTFSI 

electrolytes  

LLZTO powder was synthesized by a solid-state synthesis method. The details of the 

method are described in the section 3.1.2.1. The LLZTO powder received from synthesis was 

sintered to provide high density pellets using rapid induction hot-pressing at 1225oC for 40min at 

47 MPa.89 Samples were cut using a diamond saw and then wet polished to 0.1 µm surface 

finish.  

A solvent-free hot-pressing method was used to fabricate the PEO-LiTFSI electrolytes of 

desired [EO]:[Li] ratio, to ensure that residual solvent does not affect the electrochemical behavior. 

The details of the method are described in the section 3.1.1.2.  

5.2.1.2.  Li-ion Density Calculations  

The Li-ion mass density was calculated for LLZTO and PEO-LiTFSI electrolyte 

membranes. There were three main assumptions made for the density calculations – 1) The 

theoretical density of the electrolytes was used for the electrolytes. Thus, the porosity was 

neglected; 2) The effect of chemical interactions between the Li salt and PEO on the density of the 

electrolyte were neglected; 3) It is important to remember that at higher Li salt concentrations the 

salt starts to precipitate in the polymer and does not participate in the Li-ion conduction. This is 

not reflected in the calculated density since it does include the precipitated Li.  

The Rule of Mixtures was used to calculate the density of the PEO-LiTFSI electrolyte 

membranes. The calculated Li-ion mass densities are reported in Table 5.2. 
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5.2.1.3. Solid-state cell assembly and electrochemical testing procedure 

To decouple the PEO-LiTFSI/LLZTO Rinterface, a trilaminar cell configuration using 

blocking electrodes was used (Figure 5.4). The LLZTO electrolyte was interposed between two 

PEO-LiTFSI electrolytes. The sandwiched structure was assembled between two 1.27 cm diameter 

Au-coated Ni pins (current collectors) and heat-conditioned at 80oC under a 100kPa pressure to 

form the PEO-LiTFSI/LLZTO interface. After conditioning, the cells were brought back to RT. 

Then, using EIS PEO-LiTFSI/LLZTO Rinterface was tracked at the desired temperature. A detailed 

description of cell assembly has been discussed in section 3.2.2.  

For the heat-treatment study, LLZTO was heat-treated in argon at temperatures between 

100 and 800oC, in 100oC increments, for 3 hours at each temperature. The [EO]:[Li] ratio in PEO 

was fixed to avoid any variability in the results due to the salt concentration of PEO. 27:1 [EO]:[Li] 

ratio was selected because it was the lowest salt concentration in the concentration range studied 

for this work. Thus, the concentration gradient would be the largest, resulting in the highest 

Rinterface, between PEO and LLZTO for the 27:1 ratio. 

For the salt concentration study, PEO-LiTFSI with different salt concentrations, were 

prepared via a solvent-free hot-pressing process. The cells were integrated in a trilaminar 

configuration and were conditioned as described above. The LLZTO pellets for this study were 

heat-treated at 400oC. 400oC was selected based of on previous study where, the lowest Li-LLZTO 

impedance was observed for 400 HT LLZTO.28  

5.2.2.Materials Characterization techniques 

The purity of LLZTO was confirmed with X-ray diffraction (XRD) (Rigaku Miniflex 600) 

using Cu Kα radiation (Figure 5.2). Figure 5.2 a shows XRD data for representative cubic LLZTO 
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and an untreated densified LLZTO disk. The absence of any impurity peaks in the XRD pattern 

for untreated LLZTO indicated that it was pure cubic-LLZTO. Scanning electron microscopy 

(TESCAN MIRA3) was used to characterize the surface of LLZO. Figure 5.2 b shows the SEM 

image of an untreated LLZTO disk. The untreated sample had a few pores, but overall the surface 

was smooth and dense.  

 

Figure 5.2 a) X-ray diffraction (XRD) of cubic-LLZTO (JCPDS 45-1109) and Untreated LLZTO 

b) Scanning electron microscopy (SEM) image of polished untreated LLZTO sample 

 

Raman spectroscopy (Horiba Micro Raman Spectrometer housed in an argon-filled 

glovebox) was used to confirm the purity of PEO-LITFSI. The presence of peaks (Figure 5.3) 

which only corresponded to PEO-LiTFSI confirmed the purity of the electrolyte membrane. The 

absence of the OH stretching frequency (3100-3600 cm-1, as seen in literature) peak confirms that 

no moisture was detected, which if present would affect the electrochemical behavior. 

Electrochemical Impedance Spectroscopy (EIS: Biologic VMP-300 galvanostat/potentiostat) was 

used to track impedance between 30-80oC from 100 mHz to 7 MHz frequency with a perturbation 

voltage of 100mV.  
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Figure 5.3 Raman spectra for the PEO-LiTFSI membrane (27:1 [EO]:[Li] ratio) 

5.3. Results and discussion 

5.3.1. Interfacial impedance analysis using a trilaminar cell configuration 

To study the PEO-LiTFSI and LLZTO interface, a trilaminar cell was used (Figure 5.4). 

The frequency-dependent transport phenomena were characterized using EIS at 30oC (Figure 

5.4a).  From Figure 5.4a, it can be observed that the EIS data consist of two distinct frequency-

dependent phenomena represented by the two semi-circles and a capacitive tail representing the 

blocking behavior of the Au electrodes. An equivalent circuit (Figure 5.4b) consisting of three 

elements - Rbulk, (total of PEO-LiTFSI and LLZTO), Rinterface and MAu was used to analyze the 

impedance plots. The grain boundary resistance of the LLZTO was excluded since its contribution 

to LLZTO bulk resistance was negligible (2.5%). By comparing these values with literature, it was 

confirmed that the higher frequency semi-circle corresponded to the bulk resistance (~0.71*10-9 

F/cm2) from PEO and LLZTO while the lower frequency semi-circle corresponded to the Rinterface 

(0.55x10-6 F/cm2).91 The magnitude of the average Rinterface from the impedance spectra was 

measured to be 96 kOhms.cm2 which is high for facile charge transport. 

For facile ionic transport across the PEO-LiTFSI/LLZTO interface, the Rinterface should be 

around 100 Ohms.cm2. We believe that by understanding the underlying mechanisms that govern 
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interface transport, Rinterface could be controlled and reduced to enable facile charge transport across 

the PEO-LiTFSI/LLZTO interface.  

 

Figure 5.4 (a) Impedance plot of an Au/PEO-LiTFSI/LLZTO/PEO-LiTFSI/Au symmetric cell at 

30oC; inset shows the schematic of a trilaminar cell configuration (b) equivalent circuit for the 

trilaminar cell consisting of three elements- the bulk impedance, Rbulk, (total of PEO-LiTFSI and 

LLZTO), the interfacial impedance from two PEO-LiTFSI and LLZTO interfaces, Rinterface, and the 

capacitive behavior from the Au blocking electrode (MAu) (c) Impedance parameters obtained by 

fitting the impedance plot using the equivalent circuit 

 

5.3.2. Factors affecting the interfacial impedance between PEO-LiTFSI and LLZTO   

In this study it was hypothesized that two factors which largely affect the Rinterface are 

LLZTO surface impurities and the abrupt change in Li-ion concentration between the electrolytes. 

Other factors such as chemical interactions between the two electrolytes,135 surface roughness of 

the LLZTO surface,132 and external factors such as temperature and stack pressure might also 

influence Rinterface.  

5.3.2.1. Surface impurities on the LLZTO surface  

Sharafi et al. reported that a Li2CO3 surface layer on LLZTO exposed to air resulted in a 

high Li-LLZO Rinterface.
90 Figure 5.5 depicts the PEO-LiTFSI/LLZTO phase with three layers 
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representing PEO-LiTFSI, Li2CO3 and LLZTO. We believe there are a few ways in which the 

Li2CO3 (Figure 5.5) layer can impede the interfacial kinetics. First, Li2CO3 is highly resistive and 

does not allow for facile charge transfer. The presence of the highly resistive Li2CO3 layer on 

LLZTO would result in a high Rinterface (Figure 5.4 a). Secondly, it can be observed in Figure 5.5 

that the presence of Li2CO3 likely increases the oxygen density on LLZTO surface. The increased 

oxygen density could increase electrostatic repulsion between the oxygen in PEO where Li-ion is 

attached and LLZTO.135 Due to the repulsion, the Li-ion hopping distance from PEO to LLZTO 

would increase, thus, impeding charge transfer kinetics. Heat-treatment of the LLZTO was shown 

to be successful in removing the Li2CO3 surface layer. Sharafi et al. reported that heat-treating the 

LLZTO at 400oC resulted in lowering of Li-LLZTO Rinterface.
28 Li et al. prescribed heat-treatment 

at 700oC, in the presence of carbon, to eliminate the carbonate layer for pairing liquid electrolyte 

with LLZTO.134 Building upon previous work, in this study the effect of heat-treatment 

temperature on PEO-LiTFSI/LLZTO interface was systematically studied. The optimum heat-

treatment temperature was determined to remove the Li2CO3 while minimizing Li loss from the 

LLZTO. Essentially, we believe that removal of the impurity layer through heat-treatment reduces 

the Rinterface for two reasons.  First, it eliminates the resistive Li2CO3 layer. Second, elimination of 

the Li2CO3 reduces the electrostatic repulsion between the LLZTO surface and PEO-LiTFSI, thus 

decreasing the Li-ion hopping distance between electrolytes, thereby facilitating transport across 

the interface.  

 

5.3.2.2. Li-ion concentration disparity between PEO-LiTFSI and LLZTO 

Figure 5.5 illustrates the large disparity in Li-ion concentration between PEO-LiTFSI and 

LLZTO; the Li-ion concentration in LLZTO was much higher than in PEO and hence, LLZTO 

was referred to as the higher Li-ion concentration phase (HLIC) and PEO as the lower Li-ion 
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concentration phase (LLIC). The Li ion concentration was found to be 46 times higher in LLZTO 

than 27:1 PEO-LiTFSI, Table 5.2. We believe that charge transfer kinetics are dependent on the 

direction of Li-ion transfer which can be opposite to the chemical gradient. To homogenize the Li-

ion concentration at the PEO-LiTFSI/LLZTO interface, the Li-ion concentration in PEO can be 

easily modulated by increasing the Li salt concentration. Hence, we studied the effect of Li-ion 

concentration in PEO on the Rinterface. 

 

Figure 5. 5 Schematic of a PEO-LiTFSI and LLZTO interface (to atomic scale). (1) LLZTO; (2) 

Impurity layer (Li2CO3); (3) PEO-LiTFSI (3’) PEO-LiTFSI (higher salt concentration); Step A – 

Removal of the impurity layer; Step B – Increase in the salt concentration of PEO-LiTFSI 

 

We believe that by carefully studying the effects of interfacial chemistry and electrolyte 

concentration the PEO-LiTFSI/LLZTO Rinterface can be reduced to 100 Ohms.cm2; or comparable 

to Li-ion cell impedance.  A low Rinterface would allow for facile ionic transfer across the interface 

and hence, enabling systems benefitting from PEO/LLZO interfaces.  

5.3.3. Effect of Heat-treatment temperature of LLZTO on the interfacial impedance  

To study the effect of heat-treatment temperature of LLZTO on Rinterface, trilaminar cells 

were used. The heat-treatment temperature ranged from untreated to a temperature where evidence 

of Li loss was observed.  To minimize storage time, thereby minimizing the chance of 
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contamination in the glove box, the trilaminar cells were assembled immediately after heat-

treatment. The Rinterface was measured as a function of heat-treatment temperature. Three trilaminar 

cells were characterized at 30oC for each HT; the average and standard deviations are shown in 

Figure 5.6a. 

 

Figure 5.6 (a) Effect of LLZTO HT temperature on the interfacial impedance between PEO-

LiTFSI and LLZTO at 30oC (b) Nyquist plots comparing two Au/PEO-LiTFSI/LLZTO/PEO-

LiTFSI/Au symmetric cells at 30oC; one with untreated LLZTO and the other with LLZTO heat 

treated at 700oC (b) Impedance parameters obtained by fitting the Nyquist plot using the 

equivalent circuit in Figure 5.4 b  

 

Multiple observations were made from Figure 5.6a. First, it was observed that Rinterface was 

the highest for untreated LLZTO samples. The high resistance was likely due to the presence of a 

Li2CO3 surface layer which acts as a barrier for charge transfer between PEO-LiTFSI and LLZTO. 

Also, for untreated samples, because the initial thickness of the impurity layer cannot be controlled 

precisely, the variability (2.38 kOhms) in Rinterface was highest for these samples. Second, the 

higher the heat-treatment temperature (closer to the decomposition temperature of Li2CO3; 730-

1270oC), the lower was the Rinterface of the cell. Thus, with increasing heat-treatment temperature 

some Li2CO3 was removed, leading to a thinner insulating layer, which then resulted in lower 

Rinterface. Lastly, the Rinterface decreased with increasing heat-treatment temperature reaching a 

minimum at 700oC. Above 700oC the resistance increased for cells with LLZTO heat-treated at 
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800oC. It has been further discussed that 800oC was the temperature where LLZTO starts to 

decompose.  

The change in Rinterface with cell temperature for LLZTO heat-treated at different 

temperatures was also studied (Figure 5.7). It was observed that the improved interfacial kinetics 

with increasing cell temperature for each heat-treatment temperature led to a decrease in Rinterface. 

It was also observed that the temperature-dependent transport was linear for all heat-treatments 

between 30 and 80oC. This result has an important implication. Typically, PEO-LiTFSI has two 

temperature-dependent conductivity regimes (low temperature and high temperature) attributed to 

its melting point.  Thus, the absence of two regimes indicates that Rinterface does not have a strong 

dependence on PEO-LiTFSI ionic conductivity. 

 

Figure 5.7 Effect of temperature on the interfacial resistance between PEO-LiTFSI and LLZTO 

 

Figure 5.6b compares the impedance behavior of trilaminar cells consisting of untreated 

and 700HT LLZTO. It was observed that the Rinterface semi-circle, clearly visible for the untreated 

LLZTO, was not apparent for 700HT LLZTO. Removal of the surface impurity layer from LLZTO 
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led to the reduction in Rinterface. Because there was no decomposition of LLZTO by the heat-

treatment, the bulk impedance did not dramatically change. The average Rinterface at 30oC was 180 

Ohms.cm2. This value is the lowest PEO-LiTFSI/LLZTO Rinterface, which has been reported in 

literature. By carefully studying the effect of heat-treatment temperature of LLZTO on Rinterface we 

were able to reduce the impedance by a factor of ~250 from our initial results. 

Because a change in behavior was observed above 700oC, X-ray diffraction (XRD) and 

scanning electron microscopy (SEM) were used to characterize LLZTO. Figure 5.8a shows XRD 

data for representative cubic LLZTO, 700HT and 800HT LLZTO. The absence of any impurity 

peaks in the XRD pattern for 700HT LLZTO indicated that there was no apparent chemical 

decomposition of the sample at that temperature. However, a peak at 2θ=29o, corresponding to 

La2Zr2O7, was observed for the 800HT LLZTO indicating Li loss from the LLZTO.  

Although the XRD analysis indicated that Li loss was observed for 800HT LLZTO, it does 

not provide information about how that affects the LLZTO surface. SEM was used to analyze the 

effect of Li loss on the LLZTO surface.  For the SEM analysis three polished samples were 

analyzed – untreated, 700HT and 800HT LLZTO (Figure 5.2a, 5.8b and 5.8c). The untreated 

sample had a few pores, but overall the surface was smooth and uniform. Compared to the 

untreated sample, the 700HT LLZTO showed some evidence of growth on its surface, but no 

significant change was observed. However, unlike the untreated and 700HT LLZTO samples, a 

significant change in morphology was observed for the 800HT LLZTO (Figure 5.8c). We believe 

the change in morphology was primarily due to Li loss, which is consistent with the formation of 

La2Zr2O7 as observed in the XRD analysis. The increase in Rinterface with an 800HT LLZTO was 

likely caused by the formation of a resistive layer of La2Zr2O7. Thus, the XRD and SEM analysis 
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confirmed that 700oC was the highest temperature at which LLZTO could be heat-treated without 

any deleterious effect on LLZTO. 

 

Figure 5.8 (a) X-ray diffraction (XRD) on LLZTO heat-treated at different temperatures – cubic-

LLZTO, 700oC and 800oC; Unknown impurity peak for 800oC  indicated by a star; Scanning 

electron microscopy using for polished LLZTO pellets heat-treated at (b) 700oC (c) 800oC 

 

5.3.4. Effect of salt concentration in PEO ([EO]:[Li] ratio) on the interfacial resistance between 

LLZTO and PEO-LiTFSI 

As discussed earlier, by increasing the Li-salt concentration in PEO, the abrupt change in 

Li-ion concentration gradient can be reduced, which should facilitate transport.  To study the effect 

of Li-ion concentration of PEO-LiTFSI on the PEO-LiTFSI/LLZTO interfacial kinetics, Rinterface 

was characterized as a function of Li-salt concentration. PEO-LiTFSI with different salt 

concentrations; [EO]:[Li] 3:1, 6:1, 9:1, 12:1, 18:1, 27:1, were prepared.  Three membranes of each 

composition were tested using the trilaminar cell configuration.  

Table 5.2 shows change in the mass density of Li (g/cm3) in PEO-LiTFSI with increasing 

LiTFSI concentration. As expected, the Li-ion concentration in the electrolyte increases with 

increasing salt concentration in the polymer. The increase in Li-ion concentration in the polymer 

would decrease the difference in Li-ion concentration between LLZTO and PEO-LiTFSI 
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electrolyte and perhaps lead to a reduction in Rinterface. However, it is important to remember, as 

mentioned the section 5.2.1.2, that at higher Li salt concentrations the salt starts to precipitate in 

the polymer and does not participate in the Li-ion conduction. This is not reflected in the calculated 

density since it does include the precipitated Li.  

Figure 5.9a shows the variation in Rinterface at 30oC with salt concentration. It was observed 

that with increasing salt concentration from 27:1 to 3:1, the Rinterface first decreased reaching a 

minimum value at 15:1 salt concentration and then increased again. When the salt concentration 

increased from 27:1 to 15:1, the Li-ions participating in Li-ion transport in PEO increased and thus 

the Rinterface decreased. Beyond 15:1 concentration towards higher salt concentration, the Rinterface 

increased again. Ideally, by increasing the salt concentration the carrier concentration disparity 

should decrease and thus the Rinterface should decrease, but that was not the case. We believe this 

could be explained by the precipitation of Li-salt in the PEO.  The Li-ions in the precipitated salt 

do not participate in ionic conduction and instead acts as inactive filler or worse.  It is possible that 

the LLZTO surface promoted heterogeneous nucleation causing the LiTFSI to precipitate and 

passivate the interface.  Subsequent studies could analyze this, but clearly the Rinterface does increase 

above the 15:1 [EO]:[Li] ratio. Thus 15:1 was the optimum salt concentration for minimizing the 

Rinterface. 

Figure 5.9b shows the decrease in Rinterface achieved by optimizing the salt concentration in 

PEO. Two impedance plots are shown for PEO with salt concentration of 27:1 (which was used 

for the heat-treatment study) and 15:1. It was observed that the Rinterface, was smaller for the cell 

with 15:1 compared to 27:1 salt concentration. The average PEO-LiTFSI/LLZTO Rinterface at 30oC 

was 421 Ohms.cm2 for the 15:1 sample (Figure 6.c). Thus, by carefully studying the effect of Li-
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ion concentration in PEO-LiTFSI on the PEO-LiTFSI/LLZTO Rinterface we were reduced the 

impedance by a factor of ~4 from the heat-treatment study results for 400HT LLZTO. 

Table 5. 2 Mass density of Li (g/cm3) in LLZTO and PEO-LiTFSI 

Mass density of Li (g/cm3) 

LLZTO (Li6.5La3Zr1.5Ta0.5O12) 0.276 

PEO-LiTFSI (EO:Li - 27:1) 0.006 

PEO-LiTFSI (EO:Li - 18:1) 0.008 

PEO-LiTFSI (EO:Li - 15:1) 0.009 

PEO-LiTFSI (EO:Li - 12:1) 0.011 

PEO-LiTFSI (EO:Li - 9:1) 0.013 

PEO-LiTFSI (EO:Li - 6:1) 0.016 

PEO-LiTFSI (EO:Li - 3:1) 0.022 

 

 

 

Figure 5.9 (a) Effect of salt concentration in the PEO-LiTFSI electrolyte on the interfacial 

resistance between PEO-LiTFSI and LLZTO electrolytes (b) Nyquist plots comparing two 

Au/PEO-LiTFSI/LLZTO/PEO-LiTFSI/Au symmetric cells at 30oC; one with 27:1 salt 

concentration and the other with 15:1 salt concentration in the PEO-LiTFSI electrolyte (c) 

Impedance parameters obtained by fitting the Nyquist plots using the equivalent circuit in Figure 

5.4b. 
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5.4. Implications 

In section 5.1 it was shown that Li-ion transport in a hybrid electrolyte configuration was 

likely to be limited by the high PEO/LLZTO Rinterface. In addition, to achieve parity with state-of-

the-art Li-ion cell resistance, transport through the PEO/LLZO interface should be < 100 

Ohms.cm2. The results of this study show that by addressing the root cause behind the high Rinterface 

(surface impurities and abrupt change in Li-ion concentration at the interface) the goal of 100 

Ohms.cm2 interfacial resistance was nearly achieved (180 Ohms.cm2).  The progress made in this 

work will have implications for a hybrid electrolyte approach.  A low Rinterface allows for facile 

ionic transfer across the model polymer and LLZTO interface. Thus, the systematic approach used 

to study the model polymer system in this work, can provide guidelines for engineering a 

GPE/LLZTO interface with facile charge transport kinetics.  

5.5. Conclusion 

In this study, it was shown that high PEO-LiTFSI/LLZTO Rinterface (~95 kOhm.cm2) limits 

the total conductivity of CPE.  This study focused on understanding transport across the PEO-

LiTFSI/LLZTO interface with the goal of enabling systems that benefit from facile charge 

transport across polymer-LLZTO interfaces like CPEs and bilaminar/hybrid electrolyte 

configurations. The PEO/LLZO interface kinetics was analyzed using a trilaminar cell 

configuration that accurately measured impedance across each interface. First, it was shown that 

LLZTO surface impurities and abrupt change in Li-ion concentration between PEO-LiTFSI and 

LLZTO were the underlying causes of the high Rinterface between the two electrolytes. The effect 

of the heat-treatment temperature of the LLZTO on the Rinterface was studied to remove surface 

impurities. It was observed that Rinterface was inversely proportional to LLZTO heat-treatment 

temperature up to 800oC at which Li loss occurred causing an increase in Rinterface. By optimizing 
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the LLZTO surface, the Rinterface was reduced to 180 Ohms.cm2 at 30oC (700HT), which is the 

lowest reported in literature. Second, the disparity in Li-ion concentration between PEO and 

LLZTO was reduced by increasing the salt concentration in PEO. By carefully studying the effect 

of salt concentration on PEO-LiTFSI/LLZTO interface an optimal salt concentration (15:1) was 

determined. The Rinterface was reduced by a factor of four compared to 27:1 salt concentration. We 

believe that by combining the results from the heat-treatment and the salt concentration study and 

using the optimized conditions from both the studies, we can achieve Rinterface values, which could 

enable total cell resistance comparable to Li-ion (~ 10-100 Ohms.cm2). Thus, to achieve the lowest 

Rinterface it would be recommended to heat-treat the LLZTO samples at 700oC and use 15:1 

[EO]:[Li] salt concentration for the PEO-LiTFSI electrolyte membranes.  The results of this study 

are valuable to achieve the objectives of this thesis and provides an important framework for the 

successful development of kinetically favorable GPE/LLZTO interfaces for hybrid electrolyte 

configurations.  
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Chapter 6 Electrochemical and Surface Chemistry Analysis of Lithium Lanthanum 

Zirconium Tantalum Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces  

6.1. Introduction  

The need for high-energy-density Li-ion batteries has provided the impetus to replace 

graphite anodes with Li metal anodes.12 However, as mentioned in Chapter 1, the conventional 

liquid electrolytes [LE] utilized with graphite anodes form an unstable solid electrolyte interphase 

(SEI) with Li metal, which leads to cycling instabilities and safety issues.13,15–17,118 To overcome 

the challenges faced with conventional LE, fast-ion conducting ceramic electrolytes have emerged 

as promising alternatives, since they provide high ionic conductivities, compatibility with Li metal 

and safety.62,136 In particular, there has been considerable progress made in reducing the interfacial 

resistance (Rinterface) and improving stability between solid electrolytes (SEs) and Li metal.20,54 

However, the implementation of SEs in all solid-state batteries leads to formation of solid-solid 

interfaces within composite cathodes and at the interface of the composite cathode and the solid 

electrolyte. These interfaces can lead to rapid capacity fade and high resistance due to chemical 

instabilites, contact loss, and uncompensated volumetric changes in the cathode.64,65  

The approach suggested in this thesis to overcome the incompatibility between SE and 

cathode is the introduction of a GPE, a hybrid electrolyte approach. Since the Li-ion conduction 

in a GPE in through the LE entrapped in the polymer matrix, it is important to study the stability 

of the SE with the LEs present in the GPE. Thus, this chapter is dedicated to studying the 

(electro)chemical stability and kinetics of the SE and LE interface.  
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Recently, in literature, the performance of cells with small quantities of LE at the 

SE/cathode interface have been evaluated. In that configuration the SE would protect the Li metal 

and LE eliminates the challenges at the solid electrolyte and cathode interface.137,138 Unfortunately, 

previous reports in literature show that the SE/LE interface poses challenges due to the 

(electro)chemical instability at that interface. First, it has been reported that the La0.55Li0.35TiO3 

(LLT) SE/various LEs interface resistance is high (10,000 Ohms.cm2 for 1 M LiClO4 in PC), which 

is related to the slow desolvation kinetics of the LE from the solvent.139  Second, Busche et al137 

have reported the formation of a solid-liquid electrolyte interphase (SLEI) when the studying the 

compatibility between the SE Li1+xAlxGe2−x(PO4)3 (LAGP) and an LE, which indicates possible 

chemical reactions causing increasing interfacial resistances. In this work the hybrid electrolyte 

scheme using the promising SE based on Li-garnet was investigated. Here, we explore the 

promising Li6.5La3Zr1.5Ta0.5O12 (LLZTO) SE due to its high ionic conductivity at room 

temperature (RT), and its ultra-low interfacial resistance and stability with metallic Li.28,94 

Recently, three studies86,87,140 have reported the formation of an unstable SLEI between LLZTO 

and different LEs leading to similar cycling instability and high resistance.137,139 In particular Liu 

et al86 reported growth of LLZTO/LE interfacial resistance with time due to the formation of an 

interphase composed of LiF and other decomposition products. While the study by Liu et al was 

the first to uncover this incompatibility, the underlying source of instability and associated 

solutions to address the chemical reactions are still unknown. From the outcomes of these studies, 

it is clear that for a stable SE/LE interface there is a need to understand the factors that affect 

SE/LE interface stability.   

The goal of this study is to identify the specific component of the LE that reacts with the 

SE.  By understanding the reactions  between the SE and LE, it is possible to develop approaches 
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to limit or eliminate chemical side reactions at the interface.  First, this study aims to identify the 

chemical interactions and reactive species between LLZTO and an state-of-the-art (SOA) liquid 

electrolyte. The second goal is to apply the knowledge gained on the cause of LE/SE instability to 

demonstrate a stable LE/SE interface.  To achieve this, we attempted to isolate the effects of 

organic solvents and Li salts.  The results indicate that although organic solvents do form a carbon 

compound on LLZTO, this layer does not significantly affect the electrochemical performance of 

the cell. Conversely, it was determined that the chemical reactions and high Rinterface between the 

LE and LLZTO are highly sensitive to the Li salt. LiPF6 and LiBOB exhibit unstable behavior 

against LLZTO, whereas LiTFSI was shown to be dramatically more stable (as will be discussed 

in section 6.3.3). This further confirms that the Li salt plays a more important role in the LE and 

LLZTO interfacial reaction than the organic solvents.  

Overall, by understanding the reaction pathways between the LE and LLZTO SE, we 

identified a compatible LE solvent/salt combination to achieve a stable interface with Rinterface less 

than 50 Ohms.cm2, which is comparable to electrode interfaces in Li-ion technology.  We further 

demonstrate preliminary full-cell cycling utilizing the dual electrolyte with a Li metal anode, 

which exhibits minimal capacity fade. We demonstrate that by carefully studying the possible 

chemical interactions between the LE and SE, it is possible to effectively eliminate the instability 

between the two electrolytes. The knowledge gained in this chapter can then be used for the 

implementation of  the hybrid electrolyte approach to enable batteries with Li metal anodes.  

6.2. Experimental Methods 

6.2.1 LLZTO (Ta-doped LLZO) preparation.  

A solid-state synthesis method was used to synthesize the Li6.5La3Zr1.5Ta0.5O12 (LLZTO) 

powder.141  The powder was then sintered using rapid induction hot-pressing at 1225oC for 40min 
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at 47 MPa.89 The high-density pellet produced by hot-pressing was then cut into 1-1.2 mm 

electrolyte membranes using a diamond saw. The membranes were then faced and wet polished 

using an auto polisher to 0.1 µm surface finish. For the full cells (Li/LLZTO/LE/cathode) a thin 

pellet was hot-pressed and cut to give two membranes of 1.5-1.7 mm thickness. Before any 

electrochemical testing, the LLZTO electrolyte membranes were heat-treated at 400oC in an inert 

atmosphere to eliminate the impurities on the surface of LLZTO.28 

 

6.2.2 Liquid electrolyte preparation.  

For the conventional liquid electrolyte, a dried 1M LiPF6 in 1,3-dioxolan-2-one (EC)/ethyl 

methyl carbonate (EMC) (50:50 v%) liquid electrolyte from Soulbrain MI was used. To study the 

stability of LLZTO with LEs of varying compositions, anhydrous organic solvent and Li salts were 

used to synthesize the LEs. The stability of LLZTO was tested with five different anhydrous 

solvents - 4-methyl-1,3-dioxolan-2-one (PC), dimethyl carbonate (DMC), acetonitrile (ACN), 1,2-

dimethoxyethane (DME) and 1,3-dioxolane (DOL) (Sigma Aldrich). All the solvents were stored 

in an Ar-filled glovebox. The stability of LLZTO was also evaluated with LE prepared with 

different anhydrous Li salts [Lithium hexafluorophosphate (LiPF6) (Sigma Aldrich), Lithium 

bis(oxalate)borate (LiBOB) (Alfa Aesar), and Lithium bis(trifluoromethanesulfonyl)imide 

(LiTFSI) (Sigma Aldrich)]. The Li salts were dried (LiPF6 at 60oC, LiBOB and LiTFSI at 120oC) 

under vacuum for 24 hours before the electrolyte preparation. For the preparation of the LE with 

a required molarity, a measured amount of Li salt was mixed with the solvent for 24 hours. All the 

LE preparation was performed in an Ar-filled glovebox. 

6.2.3 Electrochemical testing.  

6.2.3.1 H-cell configuration  
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An H-cell configuration (graphite foil/LE/LLZTO/LE/graphite foil) was used to measure 

the LLZTO/LE Rinterface (Figure 6.1). The H-cell consists of two 5 ml glass compartments (filled 

with LEs) separated by the LLZTO membrane. Viton rings were used on each side of the LLZTO 

to prevent leakage. Two graphite strips were used as electrodes (0.4 cm2), one in each 

compartment. The electrodes were dried under vacuum for 24 hours before cell assembly to ensure 

that there was no moisture contamination. All the materials in the H-cell configuration were inert 

to the solvent in use (ACN). Electrochemical Impedance Spectroscopy (EIS: Biologic VMP-300 

galvanostat/potentiostat) was used to track cell resistance at room temperature from 0.5 Hz to 7 

MHz, with a perturbation voltage of 100mV. The EIS analysis was performed every ½ hour for 48 

hours to track the LLZTO/LE Rinterface. Control cells were tested in the same configuration without 

LLZTO for reference. It was observed from the EIS measurements on the control cell that there 

was no additional resistance contribution from the graphite foil/LE interface (Figure 6.2). 

 

 

Figure 6.1 H-cell configuration: graphite foil/LE/LLZTO/LE/graphite foil 

 

6.2.3.2 Full cell configuration 

Full cells with the configuration Li/LLZTO/LE/NCA (Lithium nickel cobalt aluminum 

oxide) cathode were assembled in a Swagelok cell (Figure 6.11 a). The first step in preparing the 

cells was integration of the Li metal on LLZTO (on the polished surface), followed by heat 
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conditioning.111 A 700um thick Li foil (Alfa Aesar) was used, which was cleaned by scraping the 

oxide impurities from the surface immediately before integrating with LLZTO. The Li was 

integrated on masked LLZTO with a contact area of 0.5 cm2. The LLZTO disk with Li was then 

assembled between two Ni pins, which were aligned using PTFE fixtures. The cells were heated 

at 1700C overnight on a hotplate and insulated using quartz wool. The temperature was tracked 

using two type-K thermocouples attached to the Ni pins. After conditioning, the LLZTO disk was 

transferred into a polyetherimide (PEI) sleeve that sits in the body of a Swagelok cell. The edge 

of the sample was sealed using a glue (compatible with the LE), to the walls of the sleeve, in order 

to ensure that there was no risk of side leakage of the LE to the Li electrode. A 2M LiTFSI in PC  

LE was prepared  for the full cell. After the addition of the LE/GF-D (Glass fiber filter) and NCA  

cathode (3 mAh/cm2 loading) an Al pin was placed on top of the cathode and the end caps were 

screwed on the body of the Swagelok under a 3 MPa stack pressure (using a load cell from Imada 

Inc.). All electrochemical testing was done on a Biologic VMP-300 galvanostat/potentiostat. 

Galvanostatic cycling was performed by polarizing the NCA cathode between 2.5 and 4.2 V versus 

Li/Li+ at a C/20 rate (current density – 0.15 mA/cm2).   
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Figure 6.2 EIS analysis of control H-cells without LLZTO: graphite foil/LE/graphite foil. There 

was no additional resistance contribution oberved for the graphite foil/LE interface which was 

confirmed by the absence of a semi-circle at lower frequencies 

6.2.4 Materials’ surface and structural characterization.  

The purity of LLZTO samples was confirmed with X-ray diffraction (XRD) (Rigaku 

Miniflex 600) using Cu Kα radiation. X-ray diffraction (XRD) data for a densified LLZTO 

electrolyte and representation cubic LLZTO (JCPDS 45-1109) in shown in Figure 6.3a. It was 

observed that there were no impurities peaks present in the XRD pattern for densified LLZTO, 

showing that it was pure cubic-LLZTO. Before the characterization, the LLZTO electrolytes were 

first heat-treated and then exposed to different organic solvents and liquid electrolytes for 48 hours. 

Scanning electron microscopy (SEM) (TESCAN RISE) was used to characterize the surface of 

LLZTO on exposure to organic solvents and LEs. The heat treated LLZTO sample had an overall 

smooth and dense surface with a few pores observed in the Scanning electron microscopy (SEM) 

image in Figure 6.3b.  
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Figure 6.3 a) X-ray diffraction (XRD) of cubic-LLZTO (JCPDS 45-1109) and densified LLZTO 

b) Scanning electron microscopy (SEM) image of heat treated LLZTO electrolyte 

 

X-ray photoelectron spectroscopy (XPS) was performed to study the effects of organic 

solvents and liquid electrolytes on the surface of LLZTO. The XPS spectra were collected on a 

Kratos Axis Ultra 8-channel detector system. A monochromated Al x-ray source was used, along 

with a pass energy of 160 eV for survey scans and 20 eV for core scans. Samples were transferred 

into the UHV chamber of the XPS (<1*10-9 torr) through a connected Ar glovebox, thereby 

completely avoiding air exposure. Sputtering was performed using a Minibeam III ion gun with 

an accelerating voltage of 4 kV and an extractor current of 150 A. All the compositions reported 

in this study were after 110 s of sputtering to remove most of the adventitious C layer and enable 

comparison with the stoichiometric composition of the LLZTO. Spectra were analyzed using 

CasaXPS and fit with Tuoguaard backgrounds. All spectra were calibrated to the C-C bonding 

peak in the C 1s core scan at 284.8 eV.  

The La 3d core scans at the surface were used to avoid any artifacts or bonding environment 

changes due to the Ar sputtering. The LiF standard spectra were collected from an LiF film 
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deposited via atomic layer deposition using lithium tert-butoxide and titanium tetrafluoride.142 The 

LiF reference was used to establish the peak locations and relative intensities for the Fluorine auger 

peak that overlaps with the La 3d when using an AL x-ray source. These peak locations were 

constrained to within 0.1 eV of the values measured for pure LiF, and the relative peak intensities 

were fixed at the measured values from the standard when fitting the electrolyte exposed LLZTO 

sample. The bulk LLZTO spectra was also fitted using 3 pairs of peaks, representing the multiplet 

splitting and spin-orbit coupling behavior of the La 3d peak, as has been observed previously.143 

The component peak locations and relative intensities were again constrained to the measured 

values when using those components to fit the electrolyte exposed sample for Figure 6.4. The peak 

locations for each of the standard samples are shown in Table 6.1.  

Table 6.1 The peak locations for each of the standard samples in the XPS analysis 

Material Peak # Component 
Peak Position 

(eV) 

LiF 

1 F  KLL - 1 831.5±0.2 

2 F  KLL - 2 834.2±0.2 

3 F  KLL - 3 857.5±0.2 

4 F  KLL - 4 837±0.2 

5 F  KLL - 5 849.7±0.2 

6 F  KLL - 6 841±0.2 

7 F  KLL - 7 828.6±0.2 

LLZO 

1 La 3d 5/2 833.2±0.2 

2 La 3d 3/2 850±0.2 

3 La 3d 5/2 L bonding 837.8±0.2 

4 La 3d 3/2 L bonding 854.7±0.2 

5 La 3d 5/2 plasmon 847.2±0.2 

6 La 3d 5/2 L antibonding 835±0.2 

7 La 3d 3/2 L antibonding 851.5±0.2 

LaF3 

1 La 3d 5/2 838±0.2 

2 La 3d 3/2 854.4±0.2 

3 La 3d 5/2 840.4±0.2 

4 La 3d 3/2 856.8±0.2 

5 F KLL 830±0.2 
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6.3. Results and Discussion 

6.3.1 Chemical instability between LLZTO and 1 M LiPF6 in EC:EMC.  

EIS was performed to characterize the interfacial resistance between LLZTO and a 

conventional LE (1 M LiPF6 in EC:EMC 50:50 vol%) (Rinterface). For this, an H-cell configuration 

(graphite foil/LE/LLZTO/LE/graphite foil) with graphite electrodes was used (Figure 6.4a). 

Immediately after cell assembly, Rinterface was measured at 407 Ohms.cm2, which is significanly 

higher than what is typically considered to be an acceptable limit (~ 100 Ohms.cm2). To determine 

if Rinterface changed with time, the cell was analyzed every half hour using EIS over a period of 24 

hours. It can be observed from Figure 6.4a that the Nyquist plot consisted of two semi-circles that 

correspond to two distinct frequency-dependent physical phenomena, and a Warburg tail from the 

graphite electrodes. From the capacitance values of the two semi-circles it was confirmed that the 

higher frequency semi-circle corresponded to bulk impedance (Rbulk) (10-10 F) from LLZTO and 

the lower frequency semi-circle corresponded to interfacial impedance (10-6 F).91 The Warburg 

element does not affect measurement of the interface impedances as addressed in the experimental 

section. The EIS measurements on the control cell (graphite foil/LE/graphite foil) show that there 

was no additional resistance contribution from the graphite foil/LE interface (Figure 6.2). Thus, 

the lower frequency semi-circle solely corresponds to LLZTO/LE interfacial resistance (Rinterface). 

The high-frequency intercept on the x-axis represents the ohmic drop from the LE and 

uncompensated resistance. Additionally, a dramatic increase in Rinterface was observed in Figure 

6.4a after 24 hours (from 407 Ohms.cm2 to 830 Ohms.cm2),  whereas the Rbulk for LLZTO remains 

constant. The constant Rbulk indicates that the bulk LLZTO was unaffected. On the other hand, the 

increase in Rinterface indicates a chemical instability between LLZTO and LE (surface layer 

formation or chemical reaction).  This agrees with previous reports that show similar instability 
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between LLZTO and conventional LEs.86,87 The nature of the instability can not be established 

alone from EIS, which motivated an in-depth surface characterization of the LLZTO after exposure 

to LE. 

To investigate the LLZTO-LE interfacial instability, SEM analysis was conducted for an 

LLZTO electrolyte membrane exposed to 1M LiPF6 in EC:EMC LE for 24 hours. The surface was 

then rinsed with ethanol for cleaning before loading it in the SEM. As a point of reference, SEM 

images of a heat-treated sample (Figure 6.3) and a heat-treated rinsed sample (Control) (Figure 

6.6) were used. There were no distinct features observed in the SEM analysis of the heat-treated 

and control samples. However, upon exposure to conventional LE, there were two distincts 

features observed in the SEM (Figure 1.b); surface growth and surface degradation.  Surface 

growth features were aprroximately < 20 um diameter and were present all over the LLZTO 

surface. The surface degradation was less prominent, and it appeared to be a result of etching the 

LLTZO due to chemical reaction or dissolution in the LE.  Clearly, the results from the EIS 

analysis are corroborated by the instability observed in the SEM between LLZTO and LE, which  

manifested as surface growth and degradation. 
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Figure 6.4 a) EIS analysis of a graphite foil/LE/LLZTO/LE/graphite foil cell b) SEM image of 

LLZTO exposed to LE showing surface growth and degradation c) Composition of LLZTO before 

and after exposure to LE measured using XPS after 110s Ar sputtering d) Surface La 3d core 

spectra of bulk, control, commercial electrolyte exposed LLZTO and LiF showing the formation 

of LaF3 

 

X-ray photoelectron spectroscopy (XPS) was used to characterize the LLZTO and LE 

interphase to understand the chemical interactions and compositional changes of the LLZTO 

surface. Figure 6.4c shows the LLZTO surface composition from the XPS anlaysis before (control) 

and after exposure to LE (1M LiPF6 in EC:EMC LE). It was observed that the surface composition 

of fluorine increased from <1.0 at% to 19 at% after exposure to the LE. Since the only source of 

fluorine was  LiPF6, this provides direct evidence that the LiPF6 salt participates in the reaction.  

However, it was difficult to determine the initiation mechanism of the reaction – whether from 

residual moisture, organic solvent, or reaction with the Li salt itself. The absence of a P signal 

confirmed that the source of F was not salt precipitation on the surface of LLZTO.  
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The changes in the La 3d core spectra after exposure to the 1M LiPF6 in EC:EMC LE also 

provide insight into the nature of the reaction between the liquid electrolyte and the LLZTO. There 

are several possible F-containing compounds that could form and lead to the observed increase in 

F content, including compounds with Li, La, and Zr. As shown in Figure 6.4d, the La 3d core 

spectra after exposure to the LiPF6 electrolyte cannot be fit using only the La 3d peaks from bulk 

LLZTO (blue) and the F auger peaks from LiF. As the survey scans suggested a decrease in Li 

content and increases in the La:Zr ratio and F content, LaF3 species were identified as a potential 

additional constituent required to achieve a satisfactory fit of the experimental spectra. Peak 

locations for LaF3 were established using previously-reported values for both peaks in the La 5/2 

and 3/2, and also for the F KLL auger peak at 830 eV.144 Once these component peaks were added, 

the improved fit shown in Figure 6.4 was achieved. The fluorine from LiPF6 reacts to form 

compounds with both Li (red peaks) and the La (green) from LLZTO. Further evidence for 

multiple F-containing species is observed as additional component peaks in the F 1s and Zr 3d 

core spectra, as shown in Figure 6.5. The LiF, LaF3 and other F-containing species are likely 

formed by the decomposition products of LiPF6 and further reaction with LLZTO. Liu et al86 have 

previously reported instability and interphase formation when LLZTO is exposed to SOA LiPF6-

based LE, however, no formation of F-compounds with La or Zr was reported. Instead, the 

interphase was reported to be predominantly composed of Li2CO3, LiF, Li2O, and organic 

carbonates. The interfacial resistance was shown to increase over time due to formation of the solid 

electrolyte interphase as is observed in this work. Thus, through complimentary EIS, SEM and 

XPS analysis it could be confirmed that LLZTO was unstable against the conventional LE. This 

implies that an hybrid electrolyte system based on this SE/LE combination might have poor 

interfacial kinetics which will have a detrimental effect on the rate capability. Therefore, for the 
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development of a viable hybrid electrolyte approach there is a need to systematically study the 

chemical interactions and sources of instability between the two electrolytes.  

 

Figure 6.5 a) Surface F 1s core spectra of standard LiF, commercial electrolyte exposed and 0.2 

M LiPF6 in acetonitrile exposed LLZTO b) Surface Zr 3d core spectra of bulk, control, 

commercial electrolyte exposed LLZTO  

 

6.3.2 Evaluation of the stability of LLZTO in organic solvents.  

To provide further insight into the reaction mechanism, we performed a set of experimnets 

to first isolate and study the effects of different organic solvents on LLZTO, and then to study the 

effects of the Li salts. SEM and XPS were used to characterize the effects of organic solvents on 

the surface of LLZTO.  For the SEM analysis, LLZTO  was exposed to five relevant organic 

solvents (PC, DMC, ACN, DME and DOL) for 48 hours. The samples were cleaned with ethanol 

before SEM to ensure that there was no residual organic solvent. Figure 6.6.a shows the SEM 

image of LLZTO (cleaned with ethanol), which was not exposed to any organic solvent (control). 

From the SEM images in Figure 6.6, surface growth features were observed on the samples that 

were exposed to the different organic solvents. The surface growth on the LLZTO in contact with 
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DMC and DOL was worse than for PC, ACN and DME; however, all solvents tested showed signs 

of surface growth features.  

 

Figure 6.6 a) SEM image of a heat-treated LLZTO samples rinsed with ethanol before SEM 

(control) b) c) d) e) and f) SEM images of LLZTO samples exposed to PC, DMC, and ACN, DME 

and DOL, respectively for 48 hours showing surface growth features g). Surface composition of 

LLZTO showing increase in C content before and after exposure to different organic solvent 

measured using XPS.  

 

XPS was used to characterize the surface composition of LLZTO electrolyte membrane 

after exposure to solvents. It can be noted from the XPS analysis that the carbon content on the 

surface of LLZTO was ~8-11% higher after exposure for all solvents, which displaced La, Zr and 

some Li. From C 1s core scans, this layer consists predominently of C-C bonding, with a small 

amount of lithium carbonate (Figure 6.7). The increase in carbon indicates the formation of a 

carbon compound upon exposure to the solvents. Since, the LLZTO surface layer composition for 

all the organic solvents was similar, it was concluded that LLZTO shows comparable stability with 

the different organic solvents. However, it is not possible to determine whether the presence of the 

surface layer would affect the cell resistance and the cycling performance of the cell since we 

could not conduct meaningful electrochemical testing without the Li salt.   
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Figure 6.7 C 1s core scans predominently of a) C-C bonding at the surface with a small amount 

of lithium carbonate b) C-C bonding and carbonate after 110 s sputtering  

 

6.3.3 Evaluation of the stability of LLZTO with different Li salts.  

We further show that the interaction between LLZTO electrolyte and LEs are specific to 

the Li salt in the LE. To evaluate the interactions between different Li salts and LLZTO, three 

different salts were used – a) LiPF6 – A fluorinated Li salt with a smaller and more reactive anion 

b) LiTFSI - A fluorinated Li salt with a larger and less reactive anion c) LiBOB – A non-fluorinated 

Li salt. The purpose of evaluating three different salts was to understand whether the instabilities 

were due to fluorinated salts or were salt-specific.  

The first step was to use a common organic solvent for comparing the behavior of the 

different Li salts. Since the different solvents in the previous section seemed to have a similar 

effect on LLZTO, ACN was selected as the solvent maintain a single solvent system.  ACN 
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exhibits facile desolvation kinetics for Li ions (relatively low donor number145), and it also exhibits 

a sufficiently high solubility for each Li salts and different concentration used in the study.  

Separate solutions of 0.2 M LiPF6, LiTFSI, and LiBOB, were prepared in ACN. These 

solutions were used to study the LLZTO (heat-treated at 400oC) and LE interfacial kinetics and 

stability under static conditions. This molarity was selected to ensure that the concentration was 

below the solubility limit of the different salts in ACN.146,147 The LLZTO/LE Rinterface was studied 

over a 48 hour period for each of the salts at room temperature in an H-cell configuration.  

The EIS data for three cells of the same configuration show the average Rinterface values 

with the respective standard deviations (Figures 6.8 a, b).  It can be observed from resistance 

measurements taken immediately after cell assembly that the Rinterface between LLZTO and 0.2 M 

LiBOB in ACN was unexpectedly high. It was also shown that LiPF6 and LiTFSI initially have a 

relatively low Rinterface with LLZTO (28 Ohms.cm2 and 22 Ohms.cm2, respectively).  However, it 

was observed that the Rinterface increases with time for all the three salts, and stabilization was only 

observed for LiTFSI (Figure 6.8 a, b). The resistance continually increases for LiBOB and LiPF6 

and was 20 times larger for LiBOB than with LiPF6. In contrast, the rate of increase in resistance 

with LiTFSI is significantly lower than LiPF6 and begins to level off after 40 hours at 55 

Ohms.cm2. Thus, from the EIS analysis LiTFSI is the most stable salt against LLZTO, which is 

further confirmed via XPS analysis below. 
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Figure 6.8 a) Nyquist plots showing the LLZTO/LE Rinterface in an H-cell configuration (graphite 

foil/LE/LLZTO/LE/graphite foil) for three different salt compositions after 48 hours of assembly 

b)&c) LLZTO-LE Rinterface measured with time for 0.2M LE for three different salts, LiPF6, 

LiTFSI and LiBOB in ACN; n=3 for each Li salt 

 

XPS analysis was performed to identify changes in composition and bonding environment 

on the LLZTO surface. Heat-treated LLZTO samples were exposed to the three LE for 48 hours 

and then rinsed with ethanol to remove residual LE on the surface of LLZTO. The composition of 

a heat-treated LLZTO sample rinsed with ethanol (control) was also analyzed to confirm that the 

changes in the surface composition were not related to exposure to the ethanol that was used to 

clean the surface. Figure 6.9 a shows the compositional analysis of bulk, control, and LLZTO 

samples exposed to pure ACN and a 0.2 M solution of LiPF6, LiTFSI and LiBOB in ACN. From 

Figure 6.9, it can be confirmed that the surface composition of the control sample was very similar 

to stoichiometric LLZTO, with a slight (2-3%) decrease in La and Zr, displaced by C and O from 

an adventitious surface layer. Thus, it was concluded that there was no significant change in the 

composition of LLZTO due to ethanol cleaning. Similarly, from the effects of pure ACN on 

LLZTO it was concluded that there was formation of carbon and oxygen enriched layer, but no 

other significant changes. (Figure 6.9 b).  
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After evaluating the baseline samples, changes in the surface compositions of the samples 

exposed to the different LEs were observed using XPS. First, it was observed that upon exposure 

to an LE containing LiPF6, the surface composition of LLZTO changed significantly with 43.9% 

increase in F and 10% decrease Li (Figure 6.9 b & 6.9 c). This was consistent with what was 

observed for the LiPF6 SOA electrolytes above (Section 6.3.1). Thus, it was concluded that a 

similar reaction occurs here forming LiF, LaF3, and possibly ZrF4 on the surface leading to 

increasing resistances as observed in the EIS measurements. The sample exposed to the LiBOB 

LE exhibited no F (as expected), but a decrease in the Li content by 10% was observed. This 

reduced Li content may be responsible for the dramatic increase in interface resistance observed 

by EIS above.  Additionally, the La and Zr content (Figure 6.9 e) was slightly higher than in 

samples exposed to ACN alone, more closely matching to the bulk LLZTO composition. This 

indicates that the presence of the salt reduces the interaction between the solvent and LLZTO. In 

contrast to the LiPF6 and LiBOB, LLZTO exposed to LE with LiTFSI does not exhibit any 

significant change in composition. Samples exposed to LiTFSI also show La and Zr (Figure 6.9 e) 

concentrations higher than samples exposed to ACN alone and closer bulk LLZTO composition. 

Overall, LiTFSI exhibits significantly higher stability and low Rinterface against LLZTO. The XPS 

data are consistent with the results from the EIS analysis on LEs with the different salts, and 

support our hypothesis that the interactions between LLZTO and liquid electrolytes are salt 

specific. 



 

92 

 

 

Figure 6.9 a) Compositional analysis after 110 s of Ar sputtering for baseline LLZTO and 

LLZTO exposed to LE with different Li salts b) c) d) & e) Composition of different elements (Li, 

F, O, La, and Zr) on baseline LLZTO and LLZTO post exposure to LE with different Li salts 

 

6.3.4 The effect of LiTFSI salt concentration on LLZTO/LE interfacial resistance.  

After evaluating the stability of LLZTO with different Li salts, it was concluded that 

LLZTO shows improved stability and lower interfacial resistance against LiTFSI under open 

circuit conditions. However, the resistance did grow over 48 hours to 55 Ohms.cm2. We 

hypothesized that the concentration of the LiTFSI salt in the solvent may affect both the kinetics 

and stability of LLZTO against the LE, and thus optimizing salt concentration could further lead 

to reduction in Rinterface.  This hypothesis is motivated by following reasons: a) The effect on 

interfacial kinetics - i) As mentioned in section 1, the charge transfer kinetics at this interface are 

dependent on the de-solvation of the Li ion from the organic solvent which is dependent upon salt 

concentration;139 ii) The wettability of LE to LLZTO surface and cathode could be impacted by 

increasing the concentration of the LE (higher concentrations would lead to poor wettability)148, 
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b) The effect of interfacial stability - the voltage stability and reactivity of the LE is negatively 

impacted by the fraction of solvent molecules that are not coordinated to any salt species.149,150 

Clearly, the stability and kinetics of the interface is complex and affected by numerous factors. 

Therefore, we performed a series of experiments to test whether an optimal concentration exists to 

minimize the SE/LE interfacial resistance.  

To investigate the effects of salt concentration, an H-cell configuration was used with LEs 

composed of varying concentrations of LiTFSI in ACN. From Figure 6.10 a it was observed that 

the Rinterface decreased from 50 Ohms.cm2 (0.2 M LiTFSI) to <30 Ohms.cm2 (3 M LiTFSI) as the 

salt concentration increased. We believe that this is due to increasing charge carrier concentration 

and lower free solvent concentration. However, there was an exception at 1 M LiTFSI in ACN 

(the reason is not well understood) where the Rinterface was observed to be higher than other 

concentrations. Another observation was the increase in Rinterface for 4 M concentration, which 

close to the solubility limit of LiTFSI in ACN. This might be due to the compromised wettability 

at such high concentrations.  

 As a general trend, it was observed that higher salt concentrations lead to a lower and more 

stable Rinterface. The lowest Rinterface of around 20 Ohms.cm2 was observed for a 3 M LiTFSI in 

ACN. The stability of LLZTO with a 3 M LiTFSI in ACN was evaluated for 7 days and it was 

observed that the Rinterface stabilizes within the first 2 days of assembly to 28 Ohms.cm2. Overall, 

by systematically studying the effect of various organic solvents and salts, the LLZTO/LE Rinterface 

was reduced to 20-35 Ohms.cm2 at RT for both 2M and 3M LiTFSI in ACN LE. It is important to 

note that for full cells, the utilization of a 2 M LiTFSI LE would be beneficial over 3M LiTFSI LE 

since a higher molarity would lead to increased polarization in the cell and negatively affect the 
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wettability of the LE. Note that the slight fluctuations in the Rinterface over time were likely due to 

the changes in ambient temperature. 

 

Figure 6.10 a) LLZTO-LE Rinterface measured with time for different LiTFSI concentration in LE: 

n=3 for each molarity, b) LLZTO-LE Rinterface measured with time over a period of 7 days for a 

3M LiTFSI in ACN 

 

6.3.5 Galvanostatic cycling of Li/LLZTO/LE/Cathode cells using LiTFSI based LE.  

In the previous sections, the LLZTO/LE interface was systematically studied, and the 

Rinterface was successfully minimized to practical values (20-30 Ohms.cm2) under static open circuit 

conditions. The next step was to evaluate the stability and performance of the LLZTO/LE interface 

during cycling. As a proof-of-concept demonstration, cycling was performed of a full 

Li/LLZTO/LE-GF/D/NCA cell in the configuration shown in Figure 6.a. A Swagelok cell was 

utilized for the full cell assembly (details are given in the experimental section (Section 6.2.3.2)). 

Up to this point in the study, ACN was used as solvent for studying the effect of different Li salt 

composition and salt concentration on interfacial resistance, due to its sufficiently high solubility 

for the respective salt and different concentrations used (as mentioned in Section 6.3.3). However, 
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ACN posed two main challenges when we attempted to use it as a solvent in a full cell 

configuration – a) ACN reacted with the components of a Swagelok configuration and the seal 

used to isolate  the liquid from the Li electrode; b) Due to its high vapor pressure, there was a loss 

of electrolyte observed over time from the cell. Thus, PC was chosen over ACN as the solvent for 

full cells due to its low vapor pressure, compatibility with the Swagelok similar 

solvation/desolvation kinetics to ACN.151  

The cell was galvanostatically cycled for 10 cycles between 2.5 and 4.2 V versus Li/Li+ at 

a C/20 rate (0.15 mA/cm2 current density).  Figure 6.11 b shows the EIS measurement of full-cell 

impedance after the 1st and 10th cycle. Rinterface grows by a factor of 2 after 10 cycles. However, in 

a two-electrode configuration it was difficult to determine whether the increase in resistance is due 

the Li/LLZTO, LLZTO/catholyte, or LE/cathode interface. Figure 6.11 c shows the voltage profile 

for the 1st, 2nd and the 10th cycle. It was observed from Figure 6.11 c that there was an irreversible 

capacity loss in the 1st cycle, which we commonly observe for NCA cathodes. After the 1st cycle, 

the utilization of the cathode was approximately 100%, with a capacity retention of 98.5% over 10 

cycles and minimal overpotentials. Although the overall capacity retention and Coulombic 

efficiency were high, there was some deviation in the voltage profile at high voltages during a few 

charge cycles (Figure 6.11 d). These deviations led to excess capacity for those charge cycles and 

low Coulombic efficiencies. However, the performance was recovered in consequent cycles. We 

believe that the deviations in the voltage profile may be related to the stability of the LLZTO/LE 

interface under cycling conditions. From these data it can be concluded that higher concentration 

LiTFSI based electrolytes are compatible with LLZTO and could provide a viable route for the 

successful implementation of the LE in the GPE used for hybrid electrolytes. 
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Figure 6.11 a) Schematic of a Swagelok cell for full cell cycling b) EIS plots of a full cell after 

1st and 10th cycle step c) Voltage profile of a cell with capacity for three cycles d) Evolution of 

capacity and coulombic efficiency with cycle number for a full cell configuration. 

 

6.4. Implications 

There are several important implications of the formation of an intermediate surface layer between 

LLZTO and the LE.  First, the reaction between the LLZTO and the LEs was spontaneous and 

took place under open circuit conditions;  it occurred even on exposing the LLZTO sample to the 

LE alone. Also, in contrast to previous studies, we observed a direct reaction between bulk LLZTO 

and a 1M LiPF6 EC/EMC LE , which led to the formation of LaF3 and Zr-F side products in 

addition to LiF. Second, from the observations of this study, it is clear that the Li salts are what 

leads to propogation of a reaction between LLZTO and LE, and not the solvent alone. This was 
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concluded from the varying interaction of LLZTO with LEs containing different Li salts and the 

same organic solvent. If the interfacial layer were  instead formed as a result of reactivity between 

LLZTO and the solvent, then instability should be observed for all of the salts tested, which was 

not the case. Thus, by selecting the Li salts that exhibit stable behavior with LLZTO, it could be 

possible to successfully implement the hybrid electrolyte approach. Third, from the experimental 

data and chemical characterization, it is possible to propose a potential reaction pathway between 

the LLZTO and the LEs. However, further study is required to elucidate the exact mechanism of 

initiation. Further insights into the reaction mechanism could be gained through theoretical 

modelling. Finally, there are still both scientific and engineering challenges to overcome, however, 

this study provided promising results which demonstrate stability between LLZTO and LE. Thus, 

it is crucial to consider the results of this work while selecting an LE for a gel polymer electrolyte 

since the LE would be in contact with the LLZTO at the interface even though most of it would be 

entrapped in the GPE.  

6.5. Conclusion  

In this study we first validated the instability between LLZTO and SOA LE (1M LiPF6 EC/EMC), 

which was observed in previous reports.86,87 However, the goal of this study was to identify the 

constituent of the LE that causes the instability.  To do this, the effects of each constituent were 

isolated for a range of solvents and salts. It was found that upon exposure to organic solvents, 

LLZTO forms a C-rich layer on its surface, which may have benign effects on the electrochemical 

performance. Most importantly, it was found that the stability of LLZTO was highly dependent on 

the Li salt. The least compatible salts were LiPF6 and LiBOB, resulting in a high resistance that 

increased over time (Rinterface with (a) LiPF6- 120 Ohms.cm2 and (b) LiBOB – 2000 Ohms.cm2). 

Conversely, the greatest stability was achieved using LiTFSI (0.2 M) (Rinterface,55 Ohms.cm2).   
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The range of reactiviy between LLZTO and the Li salts (all in the same organic solvent) 

provides further evidence that the solvent alone does not play a major role in the chemical 

reactions. Having identified a compatible salt, the effect of molarity on interface stability and 

kinetics was studied. It was determined that the 3 M LiTFSI minimized the interfacial resistance 

to < 30 Ohm.cm2 and maximized stability with LLZTO. Stable preliminary cycling performance 

of a Li/LLZTO/LE/NCA cathode cell was demonstrated using a 2M LiTFSI LE. The cell was 

cycled at a C/20 rate for ten cycles at room temperature with close to 100% cathode utilization and 

minimal capacity fade.  While these cycling data demonstrate progress in stabilizing the LE/SE 

interfae, further efforts to better understand the interface are needed.  Specifically, computational 

modeling is needed to better understand reaction pathways.  Overall, it was shown that through 

the rational selection of the LE composition, it is possible to achieve low and stable interface 

resistance for LLZTO and LE which can then be used in hybrid electrolytes for enabling metallic 

Li anodes. 
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Chapter 7 Conclusions and Future Work 

7.1. Conclusions 

The primary objective of this thesis was to investigate and resolve the possible challenges 

which might arise in Li metal batteries employing a hybrid electrolyte. To do so, the underlying 

assumptions for the successful implementation of the hybrid electrolyte approach were studied. 

The two main assumptions considered were – a) the electrochemical properties of the GPE will 

comply with the cathode with any changes in temperature and pressure; b) the LLZTO would have 

favorable kinetics and be (electro)chemically stable against the GPE interface. To evaluate the 

validity of these assumptions, first, a comprehensive understanding of the (electro)chemical 

behavior of a model polymer electrolyte was developed and then the transport kinetics and 

(electro)chemical performance of the LLZTO/GPE interface that arises in a hybrid electrolyte 

approach was investigated. Since the GPE is composed of a polymer and an LE, the interfacial 

properties of LLZTO with both the electrolytes were evaluated independently. With the knowledge 

gained from this approach, guidelines and engineering approaches can be provided for the 

successful implementation of the hybrid electrolyte in Li metal batteries.  

Specifically the goals of this dissertation were laid out in three separate Chapters which 

constitute the Chapters 4, 5 and 6 of this thesis document - Chapter 4)  Studying the effects of 

temperature and pressure on electrochemical performance of a polymer electrolyte (PEO-LiTFSI); 

Chapter 5) Understanding the factors controlling the polymer/LLZTO interfacial kinetics; Chapter 

6) Electrochemical and Surface Chemistry Analysis of Lithium Lanthanum Zirconium Tantalum 
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Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces. There were several important conclusions 

made from these studies which have been discussed below. 

7.1.1. Studying the effects of temperature and pressure on electrochemical performance of 

a polymer electrolyte 

As discussed, for the implementation of GPEs in a cathode it is important to understand 

the external variables (temperature and pressure), which may govern the electrochemical 

performance of the GPE.  The approach used in this thesis was to first study the effects of external 

variables on the kinetics and stability of a model polymer electrolyte (PEO-LiTFSI) and then this 

knowledge can be further used to select and successfully integrate a GPE with appropriate 

properties for the catholyte. A symmetric cell configuration Li/PEO-LiTFSI/Li was used in the 

study. From the results it was concluded that the bulk and interfacial kinetics were strongly 

dependent on temperature and stack pressure. First, the bulk conductivity of the polymer improved 

by three order of magnitude (10-6 to 10-3 S cm-1) with increasing temperature from 30 to 80°C, with 

a sharp decrease in activation energy around the melting temperature (55°C). This is because, 

above the melting point the lower conductivity crystalline domains in the polymer melt thus, 

leading to a higher conductivity amorphous polymer. This also compromises the elastic properties 

of a polymer due to the loss of the hard-crystalline domains. In contrast, the Li/PEO-LiTFSI 

interfacial kinetics did improve with temperature, however, there was no sharp change in activation 

energy observed. Thus, from these results it was concluded that while selecting a gel polymer 

electrolyte it would be important to consider the temperatures for thermal transitions of the GPE. 

Second, it was observed that a critical stack pressure (pressure at and above which the interfacial 

impedance is invariant with increasing pressure) was required to establish a good 

electrode/electrolyte interfacial contact. Since the cathode undergoes volumetric expansion and 
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contraction during cycling, it is possible to lose the interfacial contact between the GPE and 

cathode particles. Thus, a similar approach can be used to evaluate a critical stack pressure required 

to maintain a good interfacial contact between the GPE and cathode particles during cycling. We 

believe the correlations and observations made in this study would provide guidance for the 

successful implementation of the gel polymer catholytes.   

7.1.2. Understanding the factors controlling the GPE/LLZTO interfacial kinetics  

The new interfaces formed between the ionic conductors in a hybrid electrolyte can result 

in significant charge transfer resistances, limiting the kinetics at those interfaces. Thus, it is critical 

to evaluate the factors that control the LLZTO/GPE interface kinetics, chemical and 

electrochemical stability, for the viability of a hybrid electrolyte approach. In this thesis the 

approach was to study the interface of LLZTO with each of the constituent of the GPE – polymer 

electrolyte and LE. This would enable us to identify and mitigate the challenges and limitations of 

each the interfaces. The knowledge gained by studying the factors that control the polymer/LLZTO 

interface and the LLZTO/LE interface can then be used to improve the LLZTO/GPE charge 

transfer kinetics. 

7.1.2.1. Understanding the factors controlling the polymer/LLZTO interfacial kinetics 

A low interfacial resistance (<~100 Ohms cm2) is required for facile charge transport across 

a polymer electrolyte/LLZTO interface. However, it has been previously reported that the polymer 

electrolyte/LLZTO Rinterface was high.125,152,153 Thus, the goal in Chapter 5 was to validate the 

results of the previous reports and investigate the origin of this high Rinterface. Using a model 

polymer electrolyte (PEO-LiTFSI, 27:1 [EO]:[Li] ratio) in trilaminar cell configuration, the PEO-

LiTFSI/LLZTO Rinterface was evaluated to be 95 kOhms.cm2.  It was determined that LLZTO 
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surface impurities and abrupt changes in Li-ion concentration between the PEO-LiTFSI/LLZTO 

electrolyte contributes to the high resistance. On removing surface impurities using heat-treatment 

of LLZO, the Rinterface was reduced to 180 Ohms.cm2 at 30°C. Optimization of Li salt concentration 

in PEO to 15:1, resulted in reduction of Rinterface from 1.6 kOhms.cm2 to 421 Ohms.cm2. Thus, by 

systematically studying the polymer/LLZTO interface and understanding the underpinning 

mechanisms that govern that interface the charge transfer kinetics were significantly improved. 

We believe that the comprehensive knowledge gained in this study, provides guidelines for the 

successful implementation of a GPE with LLZTO SE in a Li metal battery. 

7.1.2.2. Electrochemical and Surface Chemistry Analysis of  Lithium Lanthanum Zirconium 

Tantalum Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces 

The stability of the LLZTO/LE interface is essential to enable hybrid electrolytes, since the 

LE in the GPE would be in contact with the LLZTO SE. However, it has been previously shown 

that the LLZTO reacts with LiPF6-based SOA LEs.86 The goal in Chapter 6 was to identify the 

source of this instability, and to propose approaches to ameliorate the incompatibility. This was 

achieved by studying and isolating the effects of organic solvents and Li salts present in the LE on 

LLZTO.  The results indicated that Li salts lead to propogation of a reaction between LLZTO and 

LE, and not the solvent alone. This was concluded from the varying interaction of LLZTO with 

LEs containing different Li salts and the same organic solvent. If the interfacial layer were instead 

formed as a result of reactivity between LLZTO and the solvent, then instability should be 

observed for all of the salts tested, which was not the case. Thus, by selecting the Li salts that 

exhibit stable behavior with LLZTO, the charge transport at the LLZTO/LE interface can be 

significantly improved.  For example, LiPF6 salt reacts with LLZTO to form LiF, LaF3 and ZrF4, 

which leads to an increased SE/LE interfacial resistance (Rinterface).  The Rinterface after reacting with 
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LiPF6 and LiBOB salts were ~120 and 2000 Ohms.cm2, respectively. However, LiTFSI salt is 

compatible with LLZTO with Rinterface ~55 Ohms.cm2.  Further, optimization of the LiTFSI salt 

concentration (3M) resulted in an Rinterface of ~30 Ohms.cm2.  Thus, from these results we believe 

that LiTFSI is compatible with LLZTO. We also demonstrate preliminary cycling of 

Li/LLZTO/LiTFSI-basedLE/NCA cells with ~100% utilization and 98.5% capacity retention over 

10 cycles.  

 The results of Chapter 5 & 6 show a significant progress of the charge transfer kinetics of 

the new interfaces that will be formed in a hybrid electrolyte approach and thus, are a step towards 

the successful implementation of hybrid electrolytes in Li metal batteries. 

7.2. Future work 

Overall, with the methodology, results and conclusions of this thesis a fundamental 

understanding of the effects of external variables, surface treatment, charge carrier concentration 

and chemical reactions on the electrochemical performance of the different components which will 

be employed in a hybrid electrolyte cells were developed. With this comprehensive knowledge 

gained on the different aspects of a hybrid electrolyte approach in this thesis, there are several 

future steps proposed, with the support of preliminary data, for the implementation of GPE with 

LLZTO SE. 

7.2.1. GPE-based Catholyte development 

Since in a GPE, the major charge transport is through the LE entrapped in the gel polymer 

matrix – we suggest selecting a polymer electrolyte with a high melting point (> 100°C) and 

suitable elastomeric properties to maintain good interfacial contact with the cathode particles. 

Additionally, the GPE should have a high ionic conductivity (~10-4 S cm-1) at room temperature, 
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excellent ion solvating ability, a high Li ion transference number and a high resistance to oxidative 

degradation. The compatibility of the GPE with LLZTO SE should then be evaluated. For example, 

an LiTFSI based LE would be preferred in the GPE based on the results of Chapter 6. Based on 

our preliminary results, Polyacrylonitrile (PAN)-based catholyte composed of PAN, LiTFSI Li 

salt and propylene carbonate (PC) and ethylene carbonate (EC) liquids immobilized in the PAN 

gel looks promising.  

 

Figure 7.1 a) Nyquist plot for PAN-based catholyte at RT. The conductivity measurements were 

conducted over five samples.  b) Voltage stability of PAN-based catholyte evaluated over to voltage 

ranges – 2 to 4.2 V, 10 cycles and 2 to 4.5 V, 10 cycles 

 

The PAN-based catholyte was fabricated by mixing the precursors at a 100oC and then 

cast. Then, preliminary results for the room temperature conductivity and voltage stability of the 

catholyte were evaluated. The conductivity of the PAN-based catholyte was 2.1*10-3 S.cm-1 at RT 

(Figure 7.1 a). The cell configuration used for evaluating the voltage stability was Li/PAN-based 

catholyte/Graphoil. From Figure 7.1 b it was observed that the catholyte was stable up to 4.2V 

however, at 4.5 V we start to observe a reduction peak. The origin of the peak was unclear and 
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might be pertaining to impurities. Further analysis to determine the origin of the reduction peak is 

required. However, since the cut-off for operating voltages for NCA cathode in a full cell was 4.2 

V, the catholyte should be stable in that range.  

After evaluating the ionic conductivity and voltage stability, next the interfacial kinetics 

between the catholyte and LLZTO were evaluated. A trilaminar cell configuration with blocking 

electrodes (Ni/catholyte/LLZO/catholyte/Ni) was used for measuring the Rinterface between the two. 

The LLZTO samples were heat treated at 700°C to eliminate surface impurities before cell 

assembly and the composition of the catholyte was evaluated by studying the ionic conductivity 

as a function of salt concentration (methodology used from Chapter 5). The cells were then tested 

in a Swagelok® using electrochemical impedance spectroscopy at RT to minimize the loss of LE 

from the gel. The Rinterface starts around 60 Ohms.cm2 and then increases (Figure 7.2 a) to stabilize 

at around 68 Ohms.cm2. From these results the Rinterface between LLZTO and the catholyte shows 

stable behavior as can be observed in Figure 7.2 b. Slight variation in the bulk and the interfacial 

impedances can be due to the temperature changes in the environment.   
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Figure 7.2 a) Nyquist plot showing the interfacial impedance (Rinterface) between the catholyte 

and LLZO in a trilaminar cell configuration with blocking electrodes.  b) Interfacial impedance 

measured using EIS over a period of 7 days 

 

The preliminary results of the PAN-based catholyte’s ionic conductivity, electrochemical 

stability and interfacial kinetics are promising. However, a comprehensive study should be done 

to further characterize the performance PAN-based catholytes. A few important studies would 

include a) Since the retention of the LE in the PAN matrix can significantly change with 

temperature and pressure, it is important to study the rate at which the LE is lost from the polymer 

matrix with temperature and pressure and how does that impact the electrochemical performance 

of the catholyte; b) An electrochemical voltage stability up to 4.7 V would allow for the utilization 

of high voltage cathodes. Thus, due to the instability observed in CV, the cause for the 

electrochemical instability of the catholyte should be evaluated.  

7.2.2. Composite Cathode development 

After showing the promising results with the PAN-based catholyte we wanted to 

demonstrate the steps for the development of a composite cathodes employing PAN-based 
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catholytes. First, the composite cathodes were fabricated by infiltration of a PAN-based catholyte 

in commercial NCA cathode by hot calendaring at 100°C.  

 

Figure 7.3 Schematic showing fabrication of composite cathode by infiltrating GPE in cast 

commercial NCA cathode 

 

After the fabrication of the composite cathode the next step was to study its interfacial 

resistance (Rinterface) against LLZTO to evaluate the viability of the hybrid electrolyte approach. 

EIS measurement were recorded at room temperature over a week using a trilaminar configuration 

Al/infiltrated-cathode/LLZO/infiltrated-cathode/Al (Figure 7.4). We found that Rinterface increases 

with time (Figure 7.4 b) from around 30 Ohms.cm2 to around 80 Ohms.cm2 after a week for 

different samples. The data here has error bars representing the lowest and the highest resistance 

for different samples since in our experience the Rinterface is sensitive to the sample preparation. 

The change in the bulk resistance can be related to variation in ambient temperature. Although the 

Rinterface is still within the target resistance of <100 Ohms cm2, the increase in resistance over time 

shows some incompatibility.  Thus, with the systematic approach used in Chapter 6, there is a need 

to evaluate the cause for the increase in resistance.   
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Figure 7.4 a) Nyquist plot for infiltrated cathode/LLZO thin film/infiltrated cathode at RT. The 

Rinterface was measured over 3 cells. b) Infiltrated cathode-LLZO thin film average Rinterface over 7 

days. 

 

After the optimization of composite cathode/LLZTO interface the next steps towards the 

implementation of hybrid electrolytes would include evaluating – a) the stability of the composite 

cathode using cyclic voltammetry b) the cycling performance of a composite cathode half-cell, 

with the configuration Li/GPE/composite cathode, using galvanostatic cycling at relevant C-rates 

(C/10 to 1C) at room temperature; c) the effects of infiltration of GPE in the cathode on capacity 

utilization and fade using SEM and galvanostatic cycling; d) the cycling performance of a full cell 

employing the hybrid electrolyte  approach, with the configuration Li/LLZTO/composite cathode, 

using galvanostatic cycling at relevant C-rates (C/10 to 1C) at room temperature.
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