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4.2.1 The Hybrid Poincaré Map . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Example: Walking with Foot-slip . . . . . . . . . . . . . . . . . . . . 54
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ABSTRACT

Constraints are ubiquitous when studying mechanical systems and fall into two

main categories: hybrid (1-sided, unilateral) and nonholonomic/holonomic (2-sided,

bilateral) constraints. A hybrid constraint takes the form h�x� C 0. An example of

a constraint of this nature is requiring a billiard ball to remain within the confines

of a table-top. The notable feature of these constraints is that when the ball reaches

the boundary of the table-top (i.e. when h�x� � 0), an impact occurs; this is a

discontinuous jump in the dynamics. Dynamical systems that have this phenomenon

generally fall under the domain of hybrid dynamical systems. On the other hand,

nonholonomic constraints take the form h�x� � 0. Generally, h will depend on both

the positions and velocities and cannot be integrated to only depend on the positions

(when it can be integrated, the constraint is called holonomic). An example of a

nonholonomic constraint is an ice skate: motion is not allowed perpendicular to the

direction of the skate. It is common that these systems are studied using tools from

differential geometry.

This thesis studies both hybrid and nonholonomic constraints together using the

language of differential (specifically symplectic) geometry. However, due to the exotic

nature of hybrid dynamics, some auxiliary results are found that pertain to the

asymptotic nature of these systems. These include the idea of a hybrid limit-set,

Floquet theory, and a Poincaré-Bendixson theorem for planar systems.

The bulk of this work focuses on finding (smooth) invariant measures for both

xiii



nonholonomic and hybrid systems (as well as systems involving both types of con-

straints). Necessary and sufficient conditions are found which guarantee the existence

of an invariant measure for nonholonomic systems in which the density depends only

on the configuration variables. Extending this idea to hybrid nonholonomic systems

requires that the impact preserves the measure as well. To build towards this, rela-

tively simple conditions to test whether or not a differential form is hybrid-invariant

are derived. In the cases where the density depends on only the configuration va-

riables, the measure is still invariant under the hybrid dynamics independent of the

choice of impacts. The billiard problem with a vertical rolling disk as the billiard ball

is one such system and is therefore recurrent for any choice of compact table-top.

This thesis concludes with optimal control of hybrid systems. First, Hamilton-

Jacobi is extended to the hybrid setting (nonholonomic constraints are not considered

here) and the idea of completely integrable hybrid systems is introduced. It is shown

that the usual billiard problem on a circular table is completely integrable. Finally,

the hybrid Hamilton-Jacobi theory is extended to a hybrid Hamilton-Jacobi-Bellman

theory which allows for the study of optimal control problems.

xiv



CHAPTER I

Introduction

Constraints in mechanical systems fall under two broad categories: hybrid and

nonholonomic. Let h �M � R be a smooth function in which M is the manifold of

all states; we can use this to impose a constraint in two different ways:

1. h�x� C 0, or

2. h�x� � 0.

In the words of Niemark and Fufaev [83], constraints of the form h C 0 are referred

to as one-sided, nonrestrictive, or nonlimiting; and constraints of the form h � 0

are referred to as two-sided, restrictive, or limiting. In the language of this thesis,

one-sided constraints will be referred to as hybrid while two-sided constraints will

be called nonholonomic. We will not make a distinction between holonomic and

nonholonomic constraints, as the former is a special case of the latter (both can be

treated as nonholonomic without any issues).

1.1 One-sided Constraints and Hybrid Systems

When a one-sided constraint is imposed, h�x� C 0, the impact (when h�x� � 0)

induces a discontinuity in the dynamics. The impact manifests as a discrete transition

and we obtain the following:

1
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� Continuous evolution when h�x� A 0, and

� Discrete evolution when h�x� � 0.

Dynamical systems which exhibit both continuous and discrete evolution are called

hybrid dynamical systems (or hybrid systems for short).

It is important to note that the field of hybrid dynamical systems encompasses

much more than systems with unilateral constraints. Hybrid dynamical systems

are used to describe a wide variety of disciplines so a comprehensive list is nearly

impossible to present. Some examples include: billiards [7, 25, 44, 97], bipedal robots

[30, 54, 82, 96], biological systems [2, 21, 67, 84, 103], hybrid automata [3, 59, 106,

109, 111], and switched systems [35, 36, 51, 60].

Due to the extensive applicability of hybrid systems, there exist many different

and nonequivalent formulations for these systems. Chapter II will outline the for-

mulation used in this thesis; the choice for this version of hybrid systems is due to

the motivating problem of understanding mechanical impacts. The definition of a

hybrid dynamical system in Chapter II will be more general than needed, as it will

be useful in Chapter IV, in which asymptotic properties of hybrid dynamical systems

are studied.

1.2 Nonholonomic Constraints

Contrary to the previous section where h�x� C 0, suppose that the constraint is of

the form h�x� � 0. For a mechanical (Lagrangian) system, the system evolves on a

tangent bundle M � TQ, in which Q is called the configuration manifold. Choosing

coordinates q > Q results in induced coordinates �q, q̇� > TQ. If we have a constraint

depending only on the base variables, i.e. h�q� � 0, then the constraint is called

holonomic. Differentiating this constraint induces a constraint involving velocities
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as well: dhq�q̇� � 0. Therefore, holonomic constraints induce a velocity constraint

given by the kernel of an exact 1-form. If, on the other hand, we have a constraint

given by the kernel of a non-exact 1-form, the constraint is called nonintegrable or

nonholonomic.

Nonholonomic constraints as explained above are inherently linear in the veloci-

ties. This restriction can be generalized to nonlinear constraints, cf. e.g. [37], but

most physical examples will fall under the linear category. As such, the majority of

the results in this work will assume that the constraints are linear in the velocity

(although many results can be extended to the nonlinear case via Chetaev’s rule).

1.3 Structure of the Thesis

There are three parts to this thesis: foundations, asymptotics and measure, and

controls. A layout of the chapters into the corresponding parts is shown in Table 1.1.

As this thesis combines the theory of hybrid systems with geometric mechanics,

there are two preliminary chapters. Chapter II outlines the version of hybrid sy-

stems studied here as well as the solution concept and basic regularity assumpti-

ons. Chapter III introduces the concepts from geometric mechanics that will be used

throughout; in particular, symplectic geometry, Hamiltonian mechanics, symmetries,

nonholonomic constraints, and Hamilton-Jacobi theory.

The second part of this thesis focuses on understanding some asymptotic proper-

ties of hybrid dynamical systems as well as trying to find invariant measures for both

nonholonomic and hybrid systems. Chapter IV contains fundamental concepts on

the stability and asymptotic behavior of hybrid systems. Specifically, this chapter

defines and proves some properties of the hybrid limit set, introduces the augmented

impact differential and uses this to determine the stability of hybrid periodic orbits in
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a fashion similar to Floquet theory, and proves a version of the Poincaré-Bendixson

theorem for hybrid systems. Chapter V examines the problem of the existence of

smooth invariant measures for nonholonomic systems and presents necessary and

sufficient conditions for an invariant density to exist that depends only on the base

variables. It is shown that the rolling disk does preserve measure while the Chaplygin

sleigh preserves no measures (with density depending only on the base variables).

Chapter VI combines the principles of Chapter II and Chapter III to study mechani-

cal hybrid systems. In particular, the billiard problem in which the billiard ball is a

vertical rolling disk is presented along with a hybrid analogue of Noether’s thoerem

[85] (or the momentum equation for nonholonomic systems [14]). The final chapter

of this part, Chapter VII, extends results from Chapter V to the systems studied in

Chapter VI. Necessary and sufficient conditions are presented for a differential form

to be invariant under a hybrid flow; elastic hybrid holonomic systems do preserve

the canonical symplectic form, in agreement with [91]. Finally, this chapter shows

that if a nonholonomic system preserves a measure with density only depending on

the base variables (cf. Chapter V), then the corresponding hybrid flow preserves

the same measure, independent of the choice of impact. This results specializes to

Corollary VII.22 which states that the nonholomic billiard problem with the vertical

rolling disk is recurrent for any choice of compact table-top.

The final part of this thesis explores Hamilton-Jacobi theory and its extension to

Hamilton-Jacobi-Bellman theory for the purposes of optimal control of hybrid dy-

namical systems. Chapter VIII develops a preliminary Hamilton-Jacobi theory for

hybrid systems; this is particularly for systems without nonholonomic constraints.

We develop this theory with so-called “hybrid Lagrangian foliations” to avoid issues

with a hybrid bracket. Using this context, we show that the elastic bouncing ball,
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as well as, the circular billiard problem are both completely integrable. This chapter

ends with a brief digression into issues with defining a “hybrid Poisson bracket.”

Chapter IX develops some optimal control theory for hybrid systems (which does

include systems subject to both types of constraints, in contrast with the previous

chapter). The principle of optimality, dynamic programming, the Hamilton-Jacobi-

Bellman equation, and Pontryagin’s maximum principle are discussed in the hybrid

framework. This chapter concludes with a numerical example of the bouncing ball;

in particular, when the controls are constrained to be weaker than gravity, opti-

mal controls are able to utilize the impacts to gain height (a phenomenon which is

impossible for the corresponding continuous system).



6

Chapter
II

Chapter
III

Chapter
IV

Chapter
V

Chapter
VI

Chapter
VII

Chapter
VIII

Chapter
IX

Hybrid MechanicsBoth

Foundations

Asymptotics
&

Measure

Controls

Table 1.1: Chapter dependency chart. The dashed line between Chapters V and VI is due to the
fact that Chapter VI only requires §5.1 and not the whole of Chapter V.



CHAPTER II

Hybrid Dynamical Systems

2.1 What is a Hybrid Dynamical System?

A hybrid dynamical system is a dynamical system that experiences both conti-

nuous and discrete transitions. There exist many different, nonequivalent, ways to

formalize this idea. However, as this thesis is concerned with modeling impact me-

chanics as hybrid systems, we will use the following definition for a hybrid system

which depends on four pieces of data. Throughout, smooth will mean Cª.

Definition II.1. A hybrid dynamical system (HDS) is a 4-tuple H � �X , S, f,∆�
such that

(H.1) X is a smooth (finite-dimensional) manifold,

(H.2) S ` X is a smooth embedded submanifold with co-dimension 1,

(H.3) f � X � TX is a smooth vector field, and

(H.4) ∆ � S � X is a smooth map.

Remark II.2. Using the symbols �X , S, f,∆� for an HDS is common notation in the

field, [54, 81, 96]. As such, in Chapters II and IV a hybrid system will be referred

to as H � �X , S, f,∆�. However, to use notation more similar to differential geome-

try/geometric mechanics an HDS will usually be referred to as H � �M,S,X,∆� in

the remaining chapters.

7
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The manifold X is called the state-space, S the impact surface, f the continuous

dynamics, and ∆ the impact map, discrete dynamics, or the reset map. The hybrid

dynamics can be informally described as

(2.1)

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ � f�x�, x ~> S,
x� � ∆�x��, x� > S.

A hybrid dynamical system obeying only the conditions (H.1)-(H.4) is still capable of

exhibiting troublesome behavior. If S9∆�S� x g, then multiple impacts can happen

instantaneously, which is called beating. In order to discourage this phenomenon, we

propose the following additional axiom.

Definition II.3. A hybrid dynamical system, H � �X , S, f,∆�, is said to be essen-

tially non-beating if, in addition to (H.1)-(H.4), it also satisfies

(H.5) S 9∆�S� � g and ∆�S� 9 S ` X has co-dimension of at least 2.

Example II.4 (The bouncing ball). Consider the case of the bouncing ball where

�x, ẋ� > R2 � X with impact surface S � ��0, ẋ� � ẋ @ 0�. Assuming that the impacts

are elastic, the impact map is ∆�x, ẋ� � �x,�ẋ� and ∆�S� � ��0, ẋ� � ẋ A 0�. We see

that ∆�S� 9 S � ��0,0�� which has co-dimension 2 in R2. For a general mechanical

system with impacts, the set ∆�S� 9 S corresponds to “grazing” impacts, cf. e.g.

§7.2 in [17]. The intention of this thesis is not to study this phenomenon and (H.5)

justifies this avoidance by ensuring that it does not happen too often.

Remark II.5. Throughout this thesis, everything will be assumed smooth unless ot-

herwise stated. Generally speaking, the continuous vector-field need only be Lipschitz

and the impact surface be C1 in order to guarantee basic regularity properties (like

existence and uniqueness). Therefore, many of the smoothness assumptions can be

relaxed.
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It is important to note that the version of hybrid systems used here is similar to

those studied in [17, 56, 82]. This is contrary to the differential inclusion formulation

described by [52]; a hybrid dynamical system of this type is given by

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ > F �x�, x > C,

x� > G�x��, x� >D,

where F and G are set-valued maps. A reason for the added level of generality is

Painlevé’s paradox [104]. However, this thesis does not deal in situations where these

paradoxes appear and as such will not use the differential inclusion approach.

2.2 Solution Concept of a Hybrid Dynamical System

Defining a solution to a hybrid system requires more care than for usual continuous

or discrete dynamics. Part of this is due to three troublesome phenomena that can

occur in hybrid dynamical systems: Zeno, beating, and confluence.

Most of the literature on hybrid dynamical systems comes from the controls com-

munity where arcs are defined to be absolutely continuous rather than smooth. The-

refore a solution is only required to be locally absolutely continuous, but in practice

it will be smooth.

2.2.1 Hybrid Time Domains and Hybrid Arcs

This subsection begins the treatment of a rigorous definition for a solution to a

hybrid dynamical system. The fundamental objects required for this definition are

hybrid time domains and hybrid arcs. Throughout, let H � �X , S, f,∆� be a hybrid

dynamical system.

Definition II.6 (Hybrid time domains, [52]). A subset E ` R� � N is a compact
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hybrid time domain if

E �

J�1

�
j�0

��tj, tj�1�, j� .
for some finite sequence of times 0 � t0 B t1 B . . . B tJ . A set E ` R� �N is a hybrid

time domain if for all �T, J� > E, E9��0, T � � �0, . . . , J�� is a compact hybrid domain.

Hybrid time domains will be the domain for a hybrid trajectory in the same way

that R is the domain for a continuous system and Z is for a discrete system. Solutions

to hybrid dynamical systems are given by hybrid arcs.

Definition II.7 (Hybrid Arc, [52]). A function ϕ � E � X is a hybrid arc if E is a

hybrid time domain and if for each j > N, the function t( ϕ�t, j� is locally absolutely

continuous on the interval Ij � �t � �t, j� > E�.

Before a solution of a hybrid dynamical system is defined, four important types

of arcs will be introduced.

Definition II.8 (Types of hybrid arcs, [52, 56]). A hybrid arc, ϕ � E � X , is called

� nontrivial if E contains at least two points,

� complete if E is unbounded, i.e. suptE � supj E �ª where

suptE � sup�t > R� � §j > N s.t. �t, j� > E� ,
supjE � sup�j > N � §t > R� s.t. �t, j� > E� ,

� Zeno if ϕ is complete and suptE @ª,

� beating if there exists an interval, Ij, with empty interior.

Therefore, roughly speaking, a hybrid arc is Zeno if it experiences an infinite

number of impacts in a finite amount of time and beating if multiple impacts occur

in zero time. We are now able to define a solution to a hybrid dynamical system.
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2.2.2 Solutions to Hybrid Systems

Definition II.9 (Solution to a hybrid dynamical system). A hybrid arc, ϕ � E � X ,

is a solution to the hybrid system �X , S, f,∆� if

1. for all j > N such that Ij �� �t � �t, j� > E� has nonempty interior,

d

dt
ϕ�t, j� � f �ϕ�t, j�� , t > intIj,

2. for all �t, j� > E such that �t, j � 1� > E,

ϕ�t, j� > S, ϕ�t, j � 1� � ∆�ϕ�t, j��.
A hybrid time domain records both the time and the number of impacts a tra-

jectory experiences. This work will not be interested in recording the number of

impacts and therefore the following definition of a forgetful hybrid arc will be used

throughout the remainder instead.

Definition II.10. For a hybrid arc, ϕ � E � X , its corresponding forgetful hybrid

arc is a left-continuous map ϕ̃ � I � X where

I �� �0, suptE� � �t1, . . . , tJ�1�, ϕ̃�t� � ϕ�t, j�,
where the hybrid arc, ϕ, is assumed to not be beating.

The forgetful hybrid arc corresponding to a solution to �X , S, f,∆� has the follo-

wing properties:

d

dt
ϕ̃�t� � f�ϕ̃�t��,

lim
ε�0�

ϕ̃�tk � ε� � ∆� lim
ε�0�

ϕ̃�tk � ε�� ,
which “match” (2.1).
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2.2.3 Regularity of Solutions

This section is concluded with a discussion on the regularity of solutions to hybrid

dynamical systems. To ensure the impact times are well-posed, we make the following

two assumptions [56]:

(A.1) If ϕ̃�t� > S � S, then there exists ε A 0 such that for all 0 @ δ @ ε, ϕ̃�t � δ� ~> S.

(A.2) If ϕ̃�t� > S, then there exists ε A 0 such that for all 0 @ δ @ ε, ϕ̃�t � δ� ~> S.

The first assumption, (A.1), prohibits the trajectory from entering S through S while

the second assumption, (A.2), requires that when a trajectory intersects S, it must

instantaneously exit S. In terms of mechanical systems, (A.1) prohibits grazing while

(A.2) states that impacts must move away from the wall . It can be seen that the

condition (H.5) is weaker than (A.2) which is slightly weaker than requiring ϕ̃ to

intersect S transversely. As will be seen in Theorem II.15, the conditions (A.1) and

(H.5) imply (A.2).

The final regularity assumption we will examine in this section deals with con-

tinuous dependence of initial conditions. Due to the fact that the impacts are not

continuous, true continuous dependence is impossible but quasi-continuous depen-

dence is still achievable. Under the assumptions (A.1) and (A.2), there exists a unique

forgetful hybrid arc corresponding to each initial condition x0 > X : this association

creates the hybrid flow.

Definition II.11. Assuming existence and uniqueness of hybrid solutions, the hybrid

flow of a hybrid dynamical system, H, is a map ϕH � R� �X � X , where ϕH��;x0� �
R�
� X is a forgetful hybrid arc with ϕH�0;x0� � x0. Moreover, let Ix0 �� R� �

�t1, t2, . . .� where tk are the impact times for ϕH��;x0�.
The hybrid flow allows for the statement of the third troublesome phenomenon of
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hybrid dynamical systems: confluence.

Definition II.12. A hybrid dynamical system H � �X , S, f,∆� has confluence if for

some t A 0, the hybrid flow ϕHt � X � X fails to be injective.

Confluence results in time-irreversibility of the dynamics. Which, although undesi-

rable, does not pose as many issues as either beating or Zeno solutions.

Due to the nature of hybrid systems, solutions will not be continuous in time (nor

on choice of initial conditions). Rather than strict continuity, many hybrid systems

will be quasi-continuous. To present this definition, we choose a distance metric, d,

for X .

Assumption II.13 (Quasi-continuous dependence property [41, 56]). Consider the

hybrid dynamical system H � �X , S, f,∆� and let ϕH�t;x0� be the hybrid flow and

let d � X � X � R be a distance function. Then, for every x0 > X � S and ε A 0 and

t > Ix0, there exists δ A 0 such that if d�x0, y� @ δ, then d�ϕH�t;x0�, ϕH�t; y�� @ ε.
Smoothness properties will be more important than continuous properties in this

work. Therefore, we can strengthen Assumption II.13 to a quasi-smooth dependence

property.

Assumption II.14 (Quasi-smooth dependence property). Consider the hybrid sy-

stem H � �X , S, f,∆� and let ϕH�t;x0� be the hybrid flow. Then for every x0 > X �S

and t > Ix0, there exists an open neighborhood x0 > U such that U 9 S � g and the

map ϕH�t; �� � U � X is smooth.

Theorem II.15. Suppose a hybrid system H � �X , S, f,∆� satisfies (H.1)-(H.5) and

(A.1). If for all x > S, we have TxX � TxS ` f�x�R, then H also satisfies (A.2) and

Assumption II.14.
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Proof. We need to show that H satisfies (A.2) and Assumption II.14. Condition

(A.2) follows from (H.5) from the following reason: Suppose ϕ̃�tk� > S, then

ϕ̃� �� lim
ε�0�

ϕ̃�tk � ε� ~> S.
If ϕ� ~> S, then we are done because X � S is an open set. If ϕ� > S � S, then (A.1)

provides such an ε.

It remains to show the quasi-smooth dependence property. Choose a t > Ix0 . If

there are no impacts in the interval �0, t� then the quasi-smooth dependence property

is trivially satisfied. Without loss of generality, assume that there exists a single

impact occurring at t1 > �0, t�. To show smoothness, we will compute the differential

of ϕH�t; ��.
Choose an open set x0 > U such that U 9S � g and let τ � U � R be the time until

impact, e.g. τ�x0� � t1. Then for x > U , we can write the hybrid flow as

ϕH�t;x� � ϕ �t � τ�x�,∆�ϕ�τ�x�;x��� ,
i.e. it can be written in terms of the continuous flow ϕ, the impact map ∆, and the

return-time τ . The continuous flow (see e.g. §2.3 in [92]) and the impact map (by

(H.4)) are smooth. Therefore, the result follows if τ is smooth. This is true by the

following theorem, which is an application of the implicit function theorem.

Theorem II.16 ([29]). Let x0 > X � S be such that there exists a time, T0 A 0,

where ϕT0�x0� > S. Additionally, assume that the flow intersects the impact surface

transversely at ϕT0�x0�. Then there exists an ε A 0 and a smooth function τ � Bε9S �

R� such that for all y > Bε�x0�, ϕτ�y��y� > S.

Proof. Let h � X � R be such that zero is a regular value and S � h�1�0� (at least

locally) and define the function F � �0,�ª��S � X by F �t, x� � h�ϕt�x��. It follows
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from Theorem 1 in Section 2.5 in [92] that �t, x�( ϕt�x� is Cª�R �X �. Combining

this with the fact that h is a smooth function, we get that their composition is. Since

F > Cª�R� � S�, we can use the implicit function theorem. At our point x0 > X , we

know that the orbit enters the set S at some minimal future time, T0. This gives

F �T0, x0� � 0. Differentiating F with respect to time yields:

∂F

∂t
�T0, x0� � ∂h

∂y
V
y�ϕT0�x0�>S

� f�ϕT0�x0�� x 0.

The first factor is nonzero because zero is a regular value and the second is nonzero

because we are away from a fixed point (if f � 0, it would not be transverse). Their

inner product is nonzero because of the transversality condition. This lets us use the

implicit function theorem (cf., e.g., Theorem 9.28 in [98] or Theorem B.2 in [107]),

to show that there exists a neighborhood of Bε�x0� of x0 and a smooth function τ

with all the desired properties.

Notice that in the proof of Theorem II.15, (H.5) and (A.1) implies (A.2) while

the quasi-smooth dependence property follows from impacts being transverse.

Definition II.17. A hybrid system, H � �X , S, f,∆�, is called smooth if it satisfies

the hypothesis of Theorem II.15.

2.3 General Hybrid Dynamical Systems

In what has been presented above, hybrid dynamical systems evolve according to

a single manifold and a single impact. However, there exist cases where multiple

different impacts may occur, e.g. multi-legged walking. This leads to the notion of a

general hybrid dynamical system where there exist multiple different manifolds each

containing continuous dynamics with impacts that move between these manifolds.

This more general framework leads naturally to the theory of directed graphs where
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each node is an individual state-space and each edge is an impact. This notion of a

hybrid system is used in, e.g. [4, 74, 102]. General hybrid dynamical systems will

appear in this thesis only in §4.3 where sufficient conditions are laid out to guarantee

periodic asymptotic behavior as in [28]. The following exposition for general hybrid

dynamical systems is similar to that as presented in [28].

2.3.1 Directed Graphs

Before the concept of a general hybrid system is introduced, hybrid systems will

first be viewed through a different lens. An HDS consists of a single state-space and

a single impact that maps back to the original state-space. This allows the HDS to

be thought of as a directed graph (digraph) of order one with a single loop [23], see

Fig 2.1.

ẋ � f�x�

x� � ∆�x��

Figure 2.1: Graphical representation of a (simple) hybrid system. This can be viewed as a directed
graph with one vertex and one edge.

With this view of a hybrid system, it seems natural to extend the definition of a

HDS to an arbitrary digraph. Before making this definition, a few important aspects

of graph theory are reviewed.

Definition II.18. A directed graph, or digraph, D � �N ,E � consists of two compo-

nents: a finite, nonempty set called the vertex set as well as a multi-set (a modified

version of a set where multiple instances of an element are allowed) of ordered pairs

of (not necessarily distinct) vertices called the (directed) edge set. The vertex set
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if denoted by V �D� � N and the directed edge set is denoted by E�D� � E . The

order of a digraph is the cardinality of the vertex set.

This definition of digraphs allows for multiple edges to connect two vertices, u

and v. This differs from the definition in [23] where this is not permitted. Because

a directed edge may not be uniquely determined by an ordered pair of vertices, an

element of E will be denoted by �u, v� if only one edge connects u to v. If e > E

connects the vertex u to v, we will call u to be the source of e and v the target of e.

This will be denoted by u � dom�e� and v � cod�e�.
There are two remaining objects to define for digraphs: degree and cycles.

Definition II.19. Let u > N . If e > E has dom�e� � u, e is said to be sourced from

u. Likewise, if cod�e� � u, e is said to be targeted to u. The outdegree, od�u�, of u

is the number of edges sourced from u. Additionally, the indegree, id�u�, of u is the

number of edged targeted to u. The degree, deg�u�, of u is defined by

deg�u� �� od�u� � id�u�.
Definition II.20. A digraph of order n is a cycle if the vertices can be labeled as

i � 1, . . . , n and the n directed edges can be written as �i, i � 1� (taken modulo n).

2.3.2 General Hybrid Systems

Definition II.1 will now be generalized to incorporate the directed graph structure

as explained above, which now depends on six pieces of data.

Definition II.21. The six-tuple, GH � �N ,E ,X , S, f,∆�, is a general hybrid dyn-

amical system (GHDS) if

(G.1) The pair, �N ,E � is a directed graph per Definition II.18.
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(G.2) X is a collection of manifolds for each vertex. That is, for each i > N , Xi is a

smooth manifold and X is the following disjoint union

X � +
i>N

Xi.

(G.3) S is a collection of impact surfaces corresponding to the edges E . Each impact

surface, Se ` Xdom�e� is a nonempty embedded codimension 1 submanifold.

(G.4) ∆ is a collection of impact maps. For each edge e > E , ∆e � Se � Xcod�e� and is

smooth.

(G.5) f is a collection of smooth vector fields on X . That is, for each i > N , fi � Xi �

TXi is a smooth vector field.

Additionally, a general hybrid dynamical system, GH, is said to be essentially non-

beating if, in addition to (G.1)-(G.5), it also satisfies

(G.6) ∆e�Se� 9 S�cod�e�,�� ` Xcod�e� has codimension at least 2. Here,

S�cod�e�,�� �� �
e�>E

dom�e���cod�e�

Se� .

This section concludes with the definition of a solution to a GHDS (this will use

the notion of a forgetful hybrid arc rather than a hybrid arc, but it can be defined

for either).

Definition II.22. An arc, x � �0, T � � X is a solution to �N ,E ,X , S, f,∆� if x is

piecewise differentiable and

1. if for all c > �a, b�, x�c� ~> Se for any e > E , then x is differentiable on �a, b�,
x�a, b� �� �x�t� � t > �a, b�� is contained in a single Xi, and ẋ�t� � fi�x�t�� for all

t > �a, b�, and

2. if limt�c� x�t� > Se for some e > E , then

lim
t�c�

x�t� � ∆e � lim
t�c�

x�t�� .
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Likewise, the notion of a hybrid flow per Definition II.11 can be extended to this

case along with the regularity assumptions (A.1), (A.2) and Assumption II.13/II.14.

A smooth GHDS is analogously defined as well.



CHAPTER III

Geometric Mechanics and Nonholonomic Mechanics

This chapter summarizes some basic concepts from geometric mechanics. We

will assume some basic knowledge of differential topology / geometry [93, 107, 108],

in particular the language of differential forms. This chapter starts with some basic

concepts from symplectic and Poisson geometry [1, 11, 34, 77]. Next, (unconstrained)

Lagrangian and Hamiltonian mechanics are introduced as well as the influence of

symmetries [1, 6]. Finally, basics of nonholonomic systems are reviewed [16, 14, 83]

with an emphasis on the Hamiltonian formalism [73, 79].

For notation, let Q be a (finite-dimensional) smooth manifold, TQ and T �Q are its

tangent and cotangent bundles respectively. X�Q� is the set of all smooth vector fields

over Q, Ωk�Q� is the set of differential k-forms, and Cª�Q� is the set of R-valued

smooth functions on Q. Moreover, let iX be interior multiplication, �X,Y � be the

vector field bracket, and LX be the Lie derivative. IfM � Q is a vector bundle overQ,

Γ�M� is the set of sections Q�M , e.g. Γ�TQ� � X�Q� and Γ�T �Q� � Ω1�Q�. Also,

Einstein summation will be used throughout: repeated indices implies summation so

aibi � Pi aibi.

20
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3.1 Symplectic and Poisson Geometry

Most of the content here can be found in [1, 11, 34, 77]. Symplectic and Poisson

structures are central to the study of Hamiltonian mechanical systems so this section

begins with their definitions and some basic properties.

3.1.1 Symplectic Manifolds

Let M be a smooth (finite-dimensional) real manifold. Endowing M with a sym-

plectic structure means distinguishing a certain 2-form.

Definition III.1. A symplectic form, ω, is a closed and non-degenerate 2-form. If a

manifold, M , admits a symplectic form then the pair �M,ω� is a symplectic manifold.

The symplectic form allows for an important identification X�M�� Ω1�M�:
ω¬ � X�M�� Ω1�M�,

where ω¬�X� � ω�X, ��. Because ω is non-degenerate, ω¬ is invertible and its inverse

is called ω®. In addition to the invertible association X � Ω1, the nondegeneracy of

the symplectic form induces a canonical volume form.

Proposition III.2 (3.1.5 in [1]). Let ω > Ω2�M� be a symplectic form. Then the

form ωn > Ω2n�M� is a volume form.

Although not every manifold possesses a symplectic form, the theorem below

shows that an important class of manifolds do have a natural symplectic form.

Theorem III.3 (3.2.10 in [1]). Let Q be a smooth manifold and M �� T �Q be its

cotangent bundle. Furthermore let πQ � M � Q be its bundle projection map and

dπQ � TM � TQ be its tangent map. Let αq > M (where q > Q) and wαq > TαqM .

Define the linear map θαq � TαqM � R by wαq ( αq �dπQ �wαq�. Then the function

θ0 � αq ( θαq is a 1-form and ω0 �� �dθ0 is a symplectic form.
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This theorem shows that every cotangent bundle has a natural symplectic struc-

ture. Additionally, the 1-form θ0 is called the tautological or Liouville 1-form.

The symplectic form provides three types of special submanifolds, one of which

will be important in Chapter VIII. We consider first symplectic vector spaces and

then generalize to manifolds.

Definition III.4. Let �V,ω� be a symplectic vector space (so ω � V � V � R is

non-degenerate and skew) and let U ` V be a subspace. The orthogonal complement

of U is given by

UÙ �� �v > V � ω�u, v� � 0, ¦u > U� .
The subspace, U , is called

� Isotropic if U ` UÙ,

� Coisotropic if UÙ ` U , and

� Lagrangian if U � UÙ, i.e. isotropic and coisotropic.

Definition III.5. A submanifold S `M of a symplectic manifold �M,ω� is

� Isotropic if for all x > S, TxS ` TxM is an isotropic subspace,

� Coisotropic if for all x > S, TxS ` TxM is a coisotropic subspace, and

� Lagrangian if for all x > S, TxS ` TxM is a Lagrangian subspace.

3.1.2 Poisson Manifolds

Poisson manifolds are a slightly more general version of symplectic manifolds as

they do not possess the non-degeneracy assumption.

Definition III.6. Let P be a manifold and Cª�P � be the set of real-valued smooth

functions on P . Consider a bracket operation

��, �� � Cª�P � �Cª�P �� Cª�P �.
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The pair, �P,��, ���, is called a Poisson manifold if for any collection of numbers

αi, βj > R and functions f i, gj, f, g, h > Cª�P � we have

(PB.1) �αif i, βjgj� � αiβj�f i, gj�, (R-bilinearity)

(PB.2) �f, g� � ��g, f�, (skew-symmetry)

(PB.3) ��f, g�, h� � ��h, f�, g� � ��g, h�, f� � 0, (Jacobi’s identity)

(PB.4) �fg, h� � f�g, h� � g�f, h�. (Leibniz’s rule)

Proposition III.7. Symplectic manifolds are naturally Poisson.

Proof. It is straight-forward to check that �f, g� � ω �ω®�df�, ω®�dg�� is a Poisson

bracket.

Additionally, if the condition (PB.3) (Jacobi’s identity) is relaxed, then the bracket

is called almost Poisson. In this situation, the failure of Jacobi’s identity is called

the Jacobiator :

(3.1) Jac�f, g, h� �� ��f, g�, h� � ��h, f�, g� � ��g, h�, f�.
Due to the fact that all symplectic manifolds are automatically Poisson, is the con-

verse true? This is true modulo degeneracy: ω must be nondegenerate but ��, �� is

allowed to be degenerate, i.e. the set of Casimir functions may be nontrivial:

Z�P � �� �f > Cª�P � � ¦g > Cª�P �, �f, g� � 0� .
We end this section with an explanation (when the bracket is nondegenerate) that

(PB.3) is equivalent to ω being closed.

Theorem III.8 (Theorem 4.3 in [34]). Let α > Ω2�M� be a nondegenerate 2-form.

Then the induced almost-Poisson bracket given by �f, g� �� α�α®�df�, α®�dg�� has the

following Jacobiator:

Jac�f, g, h� � dα �α®�df�, α®�dg�, α®�dh�� .
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In particular, Jacobi’s identity is satisfied if and only if dα � 0.

Proof. For this proof, we will use the notation Xf �� α®�df�. The first thing we will

compute is α ��Xf ,Xg�,Xh�. Due to the Lie derivative being a derivation, we have

i�Xf ,Xg�α � LXf iXgα � iXgLXfα

� LXfdg � iXg �iXfdα � diXfα�
� d �LXfg� � iXg iXfdα.

This leads to

(3.2) α ��Xf ,Xg�,Xh� � ���f, g�, h� � dα�Xf ,Xg,Xh�.
To finish the proof, we use the following identity for the differential of a 2-form:

dα�Xf ,Xg,Xh� � LXf�Xg,Xh� �LXg�Xf ,Xh� �LXh�Xf ,Xg�
� α ��Xf ,Xg�,Xh� � α ��Xf ,Xh�,Xg� � α ��Xg,Xh�,Xf� .

(3.3)

Applying (3.2) to (3.3) and collecting terms yields the result.

3.2 Unconstrained Geometric Mechanics

We now introduce two main formulations of mechanics: Lagrangian and Hamil-

tonian. Lagrangian mechanics are described by variational principles and evolve on

TQ (where Q is a smooth manifold) while Hamiltonian mechanics are described by

symplectic principles and evolve on T �Q (which always carries a symplectic/Poisson

structure, Theorem III.3). We begin with an overview of the Lagrangian side and

then the Hamiltonian. We note that the majority of this thesis will be concerned

with the Hamiltonian side.

3.2.1 Lagrangian Mechanics

Lagrangian systems evolve on the tangent bundle of a smooth manifold. For our

purposes here, we only consider natural Lagrangian systems (see §19-B of [6]).
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Recall that a coordinate choice q > Q induces bundle coordinates �q, q̇� > TQ; so

q̇ will be a coordinate in TqQ. Moreover, for a curve c � ��ε, ε� � Q where c�0� � q,
we can differentiate the curve to induce a point in the tangent space ċ�0� > TqQ.

Throughout this work, q̇ can refer to either notion.

Definition III.9. A Lagrangian function L � TQ � R on a Riemannian manifold

�Q,g� is natural if it is the difference between kinetic and potential energies, i.e.

L�q, q̇� � 1

2
gq�q̇, q̇� � V �q�.

The Lagrangian generates dynamics on TQ by Hamilton’s principle.

Definition III.10. Hamilton’s principle singles out curves q�t� by the condition

that

(3.4) δS
b

a
L�q�t�, q̇�t��dt � 0,

where the variation is over smooth curves in Q with fixed end points.

A classical result in the calculus of variations states that (3.4) can be restated as

a system of ordinary differential equations.

Proposition III.11. Hamilton’s principle is equivalent to the condition that the

curve q�t� satisfies the Euler-Lagrange equations

(3.5)
d

dt

∂L

∂q̇i
�
∂L

∂qi
� 0.

In the context where V � 0, L is only the kinetic energy and (3.5) is the geodesic

equation.
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3.2.2 Hamiltonian Mechanics

Given a natural Lagrangian function, L � TQ � R, there is an identification

between TQ and T �Q. This is given by the fiber derivative

FL � TQ� T �Q

FL�v��w� �� d

dt
V
t�0

L�q, v � tw� � gq�v,w�
The fiber derivative (which is a diffeomorphism when L is hyperregular; natural La-

grangians are hyperregular, cf. §3.6 in [1] for more details) offers a way to transform

the function L � TQ � R into a function H � T �Q � R. This process is called the

Legendre transform:

H�q, p� � `p, q̇e �L�q, q̇�, p � FL�q̇�.
While L generates dynamics on TQ variationally, H generates dynamics on T �Q

symplectically.

Definition III.12. Let �M,ω� be a symplectic manifold and H �M � R a smooth

function. A vector field XH on M is called a Hamiltonian vector field with energy

H if

(3.6) iXHω � dH.

The triple �M,ω,H� is called a Hamiltonian system.

Remark III.13. An equivalent version of (3.6) using Poisson brackets is XH � ��,H�
where XH is viewed as a derivation on Cª�M�.

An interesting property of Hamiltonian systems is that they are always volume

preserving.
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Proposition III.14. The Hamiltonian dynamics preserve the symplectic form ω,

and additionally preserve the induced volume form ωn.

Proof. This follows from Cartan’s magic formula:

LXHω � diXHω � iXHdω.

The first term disappears as diXHω � ddH while the second vanishes as ω is closed.

As will be shown later in Chapter V, determining whether or not constrained

Hamiltonian systems preserve measure is a much more involved question.

Finally, these two formulations, (3.5) and (3.6), are equivalent under FL.

Theorem III.15 (See Theorem 3.6.2 in [1]). Let L be a natural Lagrangian on Q

and H be its Legendre transform. Then the integral curves of (3.5) are mapped to

the integral curves of (3.6) under FL. Furthermore, both systems have the same base

integral curves.

3.2.3 Symmetries in Hamiltonian Systems

Hamiltonian systems where the energy, H, is invariant under some symmetry

offer a helpful way to find integrals, i.e. constants of motion. In what follows, we

recap some fundamentals of symmetries in Hamiltonian mechanics, all of which can

be found in Chapter 4 of [1], Appendix 5 of [6], and Chapter 4 of [11]. A similar

approach can be used for symmetries in Poisson systems, but that will not be pursued

here.

Symmetries

Throughout, we will assume that G is a Lie group.
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Definition III.16. A Lie group, G, acts symplectically on �M,ω� if Φ � G�M �M

is a group action, each Φg � Φ�g, �� �M �M is a diffeomorphism, and Φ�
gω � ω.

Definition III.17. Let G act on M by diffeomorphisms (not necessarily symplecti-

cally). Then for ξ > g � Lie�G�, its infinitesimal generator ξM > X�M� is given

by

(3.7) ξM�x� � d

dt
V
t�0

Φ�exp�tξ�, x�.
When the group acts symplectically, the vector field has the property that iξMω is

closed. If iξMω is exact, the infinitesimal generator has a corresponding Hamiltonian

which is the action’s momentum map.

Definition III.18. Let �M,ω� be a connected symplectic manifold and let Φ � G �

M �M be a symplectic group action. We say that the map

(3.8) J �M � g�,

is a momentum map for the action if for all ξ > g we have

dĴ�ξ� � iξMω,
where Ĵ�ξ��x� � `J�x�, ξe. The 4-tuple, �M,ω,Φ, J�, is called a Hamiltonian G-

space.

In general, momentum maps need not exist for a given group action (which is

because a symplectic vector field only requires that iξMω is closed and not exact).

However, in the special case where M � T �Q and the action is lifted from an action

on Q, momentum maps exist and can be explicitly computed.

Definition III.19. Let Φ � G�M �M be a symplectic group action with momentum

map J �M � g�. Then J is said to be Ad�-equivariant if J�Φg�x�� � Ad�
g�1J�x� for
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all g > G and x >M . Equivalently, the following diagram commutes.

M M

g� g�

Φg

J J

Ad�
g�1

Theorem III.20 (4.2.10 in [1]). Let Φ � G �M �M be a symplectic group action.

Assume that ω � �dθ and Φ�
gθ � θ for all g > G. Then J �M � g� defined by

`J�x�, ξe � �iξM θ� �x�,
is an Ad�-equivariant momentum mapping for the action.

Corollary III.21. Let Φ � G �Q � Q be a smooth action and Ψ � G � T �Q � T �Q

be the lifted action. Then Ψ is symplectic with Ad�-equivariant momentum map

(3.9) Ĵ�ξ� � P �ξQ�,
where ξQ is the infinitesimal generator of Φ on Q and for a vector field X > X�Q�,
P �X� � T �Q� R is its momentum:

P �X��x, p� � `p,X�x�e.
When the Hamiltonian is invariant under the symmetry, H X Φg � H, the mo-

mentum map is a constant of the motion; this result is known as Noether’s theorem

[85] which states that each symmetry has a corresponding conservation law. We will

state the version dealing with Hamiltonian systems, cf. §3.9 in [16]; for an alternate

version dealing with Lagrangian systems, see §20 in [50].

Theorem III.22 (3.9.2 in [16]). If H is a G-invariant Hamiltonian, then J is con-

served along the trajectories of the Hamiltonian vector field XH .
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Proof. Differentiating the invariance condition H�Φg�x�� � H�x� with respect to

g > G gives

0 � dH �ξM� � �H, Ĵ�ξ�� � �dĴ�ξ��XH�,
and so Ĵ�ξ� is conserved along the trajectories of XH for every ξ > g.

Reduction

If a Hamiltonian is invariant under the action of a symmetry, H �H XΦg, then the

momentum map is preserved under the flow. This allows us to replace the manifold,

M , with J�1�µ� ` M and effectively reduce the dynamics to a lower-dimensional

manifold. However when the momentum is Ad�-equivariant, the dynamics can be

reduced further by quotienting out the isotopy subgroup, Gµ �� �g > G � Ad�
g�1µ � µ�.

This works, in part, because J�x� � J�Φg�x�� � µ for all g > Gµ. As it turns out, this

new manifold J�1�µ�~Gµ is still a symplectic manifold as the theorem below shows.

Theorem III.23 (4.3.1 in [1]). Let �M,ω� be a symplectic manifold and Φ � G�M �

M be a symplectic group action with Ad�-equivariant momentum map J � M � g�.

Assume that µ > g� is a regular value of J and that the isotropy group Gµ acts freely

and properly on J�1�µ�. Then Mµ �� J�1�µ�~Gµ has a unique symplectic form ωµ

with the property

π�
µωµ � ι

�
µω,

where πµ � J�1�µ� � Mµ is the canonical projection and ιµ � J�1�µ� � M is the

inclusion.

The above theorem shows how to reduce the manifold while the theorem below

shows how to reduce the Hamiltonian.

Theorem III.24 (4.3.5 in [1]). Under the assumptions of Theorem III.23, let H �

M � R be a Hamiltonian such that H X Φg � H for all g > G. Then the flow of
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XH leaves J�1�µ� invariant and commutes with the action of Gµ on J�1�µ� which

induces a flow on Mµ. This flow is Hamiltonian on Mµ and its Hamiltonian, Hµ, is

called the reduced Hamiltonian.

3.3 Nonholonomic Mechanics

Suppose that a Lagrangian system L � TQ � R is subject to certain constraints,

i.e. a figure skater who cannot slide perpendicular to the direction of her skate. Con-

straints involving the velocities of the system are known as nonholonomic constraints

(holonomic constraints involve only the positions). Everything below that holds true

for nonholonomic constraints also works for holonomic constraints. For the most

part, we will assume that the constraints are linear in the velocities.

3.3.1 Constraint Distributions

Nonholonomic constraints are normally described as specifying a submanifold D `

TQ that describes the restricted motion. When the constraints are linear in the

velocities (which will be assumed throughout), the submanifold D is a distribution.

Definition III.25. A smooth distribution on a manifold M is the assignment to each

x >M a subspace Dx ` TxM , i.e. D ` TM is a vector sub-bundle. A distribution D

is involutive if for any two vector fields X,Y on M with values in D, �X,Y � also has

values in D. A distribution D is regular if dim�Dx� is the same for every x >M .

Theorem III.26 (Frobenius’ Theorem). D is involutive if and only if there is a

foliation on M whose tangent bundle equals D.

If D is involutive, it is said to be integrable and the constraints are called holo-

nomic. When D is not involutive, it is nonintegrable and the constraints are nonho-

lonomic.
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Finally, constraint distributions are usually described by a family of 1-forms ηα.

D �

m

�
α�1

kerηα, ηα > Ω1�Q�.
In this situation, the distribution is integrable if the 1-forms ηα can be chosen such

that they are all closed: dηα � 0. Integrability can also be viewed through the lens

of Definition III.5 by examining what type of submanifold D0 ` T �Q is where

D0
� ��q, p� > T �Q � p �Dq� � 0�

is the annihilator of D.

Proposition III.27. A constraint distribution D ` TQ is integrable if and only if

its annihilator D0 � Ann�D� ` T �Q is coisotropic.

Proof. Let �Xi� be a local frame for D. Then the annihilator is locally described by

the vanishing of momenta:

D0
� ��x, p� > T �Q � P �Xi� � 0, ¦i� .

Therefore for D0 to be coisotropic, we need �P �X i�, P �Xj�� to vanish on D0 as well.

Indeed (cf. 4.2.12 in [1]), �P �X i�, P �Xj�� � �P ��X i,Xj��. Therefore, the bracket

vanishes on D0 if and only if �X i,Xj� is a section of D, i.e. it is integrable.

3.3.2 Hamiltonian Nonholonomic Systems

It is important to note that nonholonomic systems are not described by variational

principles (on the Lagrangian side) nor are they symplectic (on the Hamiltonian

side). Rather than obeying Hamilton’s principle, nonholonomic systems follow the

Lagrange-d’Alembert principle. In the Hamiltonian setting, this manifests as (see

[73, 79] and §5.8 in [16]):

(3.10) iXDHω � dH � λαπ
�
Qη

α,
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where πQ � T �Q� Q is the cotangent projection and the λα are multipliers to enforce

the constraints.

Let g be the Riemannian metric underlying the natural Hamiltonian, H (a Hamil-

tonian is natural if it comes from a natural Lagrangian). For each constraining 1-form

ηα, let Wα > X�Q� such that g�Wα, �� � ηα (equivalently, Wα � FL�1ηα). This associ-

ation is given by the musical isomorphisms, ¬ � X�Q�� Ω1�Q� and ® � Ω1�Q�� X�Q�.
The constraint distribution D ` TQ on the cotangent side becomes

(3.11) D�
� ��x, p� > T �Q � P �Wα��x, p� � 0�

Therefore the multipliers λα are chosen such that XD
H is tangent to D� ` T �Q.

3.3.3 Symmetries in Nonholonomic Systems

We end this chapter with a section on how §3.2.3 relates to nonholonomic systems,

cf. §5.4-5.7 of [16] as well as [14, 22] for a similar treatment. The following is for

Lagrangian systems but can be carried over to Hamiltonian systems without too

many issues.

Definition III.28. Let L � TQ � R be a hyperregular Lagrangian (so FL is a

diffeomorphism) and D ` TQ be the constraint distribution defined by

D �� ��q, q̇� > TQ � ηα�q̇� � 0,¦α� .
(L.1) We say that the Lagrangian is invariant under the group action if L X Φg � L

for all g > G.

(L.2) We say that the Lagrangian is infinitesimally invariant if for any Lie algebra

element ξ > g, we have dL�ξP � � 0. Here, ξP is the infinitesimal generator of the

lifted action to P � TQ.
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(S.1) We say that the distribution, D, is invariant if the subspace Dq ` TqQ is

mapped by the tangent of the group action to the subspace Dgq ` TgqQ, i.e. if

TqΦg �Dq ` Dgq.

(S.2) A Lie algebra element ξ is said to act horizontally if ξQ�q� > Dq for all q > Q.

Proposition III.29. Assume that D is an invariant distribution in the sense of

(S.1). Then the following are true:

LΓ�gQ�Γ�D0� ` Γ�D0�,(3.12)

�Γ�gQ�,Γ�D�� ` Γ�D�,(3.13)

where D0 ` T �Q is the annihilator of D ` TQ and Γ denotes the sections of a vector

bundle.

Proof. First, if η > Γ�D0�, then (S.1) states that Φ�
gη > Γ�D0� as well. Differentiating

this shows that LξQη > D0. To show (3.13), we use Cartan’s magic formula for the

Lie derivative. Let X > Γ�D� and η > Γ�D0�:
�LξQη� �X� � iξQdη�X� � diξQη�X�

� LξQ �η�X�� �LX �η�ξQ�� � η ��ξQ,X�� �LX �η�ξQ��
� �η ��ξQ,X��

Due to the fact that we know LξQη > Γ�D0�, it must be the case that �ξQ,X� > D.

Remark III.30. In the case of holonomic constraints, (S.2) implies (S.1). This can be

seen in two ways. The first is noticing that the symmetries being horizontal means

that Γ�gQ� ` Γ�D� which gives (3.13) by Frobenius’s theorem:

�Γ�gQ�,Γ�D�� ` �Γ�D�,Γ�D�� ` Γ�D�.
The second way of seeing this is from (3.12). Suppose that a holonomic constraint

is given by f � 0. Then a symmetry is horizontal if df�ξQ� � 0. Computing the Lie
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derivative gives

LξQdf � diξQdf � iξQddf � 0 > D0.

Moreover, if the constraint has the form gdf so it has the same kernel but is no longer

exact, then

LξQgdf �����gLξQdf � �LξQg�df > D0.

3.3.4 The Momentum Equation

It would be desirable to have a version of Noether’s theorem for nonholonomic

systems. This will generally not be exactly possible but a slightly weaker result,

called the momentum equation, can still be achieved. First, we outline a few useful

definitions.

Definition III.31. The intersection of the tangent space of the group orbit and the

constraint distribution (in TqQ, not T �
q Q) is denoted by Sq. i.e.

Sq � Dq 9 Tq �G � q� , S � +
q>Q

Sq, G � q � �Φg�q� � g > G� .
Definition III.32. For each q > Q, define the vector subspace gq ` g to be all Lie

algebra elements whose infinitesimal generators evaluated at q lie in Sq:

gq �� �ξ > g � ξQ�q� > Sq�.
The corresponding bundle over Q whose fibers are gq is denoted by gD.

With the bundle gD, we can now modify (3.9) to a nonholonomic momentum map.

Definition III.33. The nonholonomic momentum map, JD, is the bundle map ta-

king D� to the bundle �gD�� whose fiber over the point q > Q is the dual of the vector

space gq that is defined by

(3.14) JD�pq��ξ� � `pq, ξQ�q�e.
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This can be thought of as a restricted version of the unconstrained momentum

map, J . Due to the fact that symmetries may not be horizontal, JD may not be

preserved. Even though momentum is not conserved (so Noether’s theorem does not

hold), its dynamics can still be understood (see 5.5.4 and 5.5.5 in [16]).

Theorem III.34 (The Momentum Equation). Assume that the Hamiltonian is in-

variant under the group action so H X Φ � H (which is equivalent to (L.2) via the

Legendre transform) and that ξq is a section of gD. Then a solution to (3.10) must

satisfy the momentum equation,

(3.15)
d

dt
�ĴD�ξq�t��� � P �� d

dt
ξq�t��

Q

� .
Therefore, the failure for the momentum to be conserved is a direct consequence

of ξq varying to remain in gD, i.e. failure of the symmetry to be horizontal. This

leads to a direct corollary.

Corollary III.35. If ξ is a horizontal symmetry, condition (S.2), then the following

conservation law holds:

d

dt
�ĴD�ξq�t��� � 0.

Remark III.36. In proving the above theorem and corollary, the assumption (S.1) is

not required. However, when (S.1) is assumed, the momentum map is G-equivariant.

See Remark 5 on page 263 of [16].

3.4 Hamilton-Jacobi Theory

Hamilton-Jacobi theory provides a powerful way to integrate Hamilton’s equati-

ons. This is a well-studied field of classical mechanics and below we present some

preliminaries in the spirit of [1, 77] and focus on the geometry of solutions. The ideas
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presented here will be used to define a hybrid Hamilton-Jacobi theory which is the

topic of Chapter VIII.

Everything in this section and Chapter VIII will deal with only unconstrained

mechanics. While there is a Hamilton-Jacobi theory for nonholonomic systems [38,

63, 86], we will not pursue it here and relegate that to future research.

3.4.1 The Hamilton-Jacobi Equation

We introduce the Hamilton-Jacobi partial differential equation from a geometric

viewpoint [1].

Theorem III.37 (Hamilton-Jacobi, cf. 5.2.18 in [1]). Let P � T �Q and XH > X�P �
be a Hamiltonian vector-field. Let S � Q � R � R be a smooth function. Then the

following are equivalent:

(HJ.1) For every curve c � I � Q satisfying

(3.16) ċ�t� � dπQ �XH�dSt�c�t���,
the curve t( dSt�c�t�� is an integral curve of XH .

(HJ.2) The function S satisfies the Hamilton-Jacobi equation:

(3.17) H X dSt �
∂

∂t
St � 0.

Here, πQ � T �Q� Q is the usual cotangent projection and St�x� � S�x, t�.
If W � Q � R is a smooth function that solves H X dW � E for some constant E,

then the function

S�x, t� �W �x� �E � t,

solves (3.17). Solutions of this type will be considered stationary. As we will see in

the next subsection, stationary solutions correspond to invariant Lagrangian subma-

nifolds.
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3.4.2 Lagrangian Submanifolds and Integrability

Solutions to the partial differential equation (3.17) can be interpreted as Lagran-

gian submanifolds of �T �Q,ω� where ω is the canonical symplectic form, cf. §5.3 in

[1] or §9.4 in [77].

A Lagrangian submanifold, recall Definition III.5, L ` T �Q has the property that

if ι � L0 T �Q is the inclusion, then ι�ω � 0 and dimL � n (i.e. isotropic and maximal

dimension). A broad class of these submanifolds have an elegant description based

on graphs of differential forms.

Proposition III.38 (5.3.15 in [1]). Let α > Ω1�Q� and Γα ` T �Q be its graph. Then

Γα is Lagrangian if and only if α is closed.

Proof. Recall that the standard symplectic form on T �Q is exact, ω � �dθ, where θ

has the property α�θ � α. Then

dα � α�dθ � �α�ω,

and α is closed if and only α�ω � 0, i.e. isotropic. The fact that dim Γα � n finishes

the proof.

If a Lagrangian submanifold projects diffeomorphically to Q (as the zero-section),

we obtain a one-to-one correspondence between closed 1-forms and Lagrangian sub-

manifolds.

Definition III.39. Let L ` T �Q be a Lagrangian submanifold. L is called closed if

L � Γα and exact if α is exact. Moreover, given that L � Γα on some neighborhood,

α can be integrated and the function S � Q � R such that dS � α is called the

generating function for L.
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These generating functions have a close relationship with the Hamilton-Jacobi

partial differential equation which utilizes the following proposition.

Proposition III.40 (5.3.32 in [1]). Let �M,ω� be a symplectic manifold and L `M

be a Lagrangian submanifold. Let H > Cª�M� and ϕt be the flow of the Hamiltonian

vector-field XH .

1. If H is constant on L, then L is invariant under ϕt.

2. ϕt�L� remains a Lagrangian submanifold.

Suppose that L0 has generating function S0. Then (locally and for a short time),

the manifold Lt � ϕt�L0� has a generating function St. This results in the following

observation (which follows from (HJ.1) and (HJ.2)):

The function S�x, t� � St�x� described above solves the Hamilton-Jacobi equation.

Therefore, solutions to the Hamilton-Jacobi equation (3.17) are characterized by the

orbits of Lagrangian submanifolds while stationary solutions correspond to invariant

Lagrangian submanifolds. This leads us into the final definition of this chapter:

completely integrable systems.

Definition III.41. Let �M,ω,H� be a Hamiltonian system and f1 � H,f2, . . . , fn

be constants of motion. The constants are in involution if �fi, fj� � 0 for all i, j.

The constants are independent if the set of critical points of F � f1 � . . . � fn has

measure zero in M . Finally, the system is completely integrable if there exists a set

of n constants both in involution and independent such that dimM � 2n.

In the language of Lagrangian submanifolds, a Hamiltonian system given by

�M,ω,H� is completely integrable if there exists a Lagrangian foliation �Lα� such

that each leaf has constant energy.



40

Definition III.42. A foliation F � �Lα� of dimension p on an m-dimensional

manifold M is a decomposition of M into disjoint connected subsets �Lα� called the

leaves of the foliation such that each point of M has a neighborhood U and a system

of coordinates �x, y� � U � Rp �Rm�p such that for each leaf Lα, the components of

U 9Lα are described by

y1 � constant, . . . , ym�p � constant.

Recall that finding a Lagrangian submanifold with constant energy provides a

stationary solution to the Hamilton-Jacobi equation. As we will see in Chapter VIII,

it will be natural to define hybrid systems as being completely integrable in terms of

a Lagrangian foliation.



CHAPTER IV

Stability and Asymptotic Behavior of Hybrid Systems

This chapter begins the second part and deals with some basics structure of so-

lutions to HDSs. First, the notion of a hybrid ω-limit set is introduced and is shown

to “usually” be invariant under the flow. Next, stability theory for hybrid systems

is developed and investigated via a Poincaré map and Floquet theory. Finally, a

version of the Poincaré-Bendixson theorem is proved for a general class of planar

hybrid systems.

Throughout this chapter, the following notation will be used: H � �X , S, f,∆�
is a smooth hybrid dynamical system (recall Definition II.17) with hybrid flow ϕH �

R� � X � X (or ϕHt � X � X to emphasize the dependence on initial conditions).

Additionally, ϕ � R� �X � X is the flow for just the continuous dynamics, ẋ � f�x�.
As this chapter deals mostly with periodic orbits, fixed points will generally be

ignored. For a vector field f � X � TX , fix�f� will be the fixed points of the

continuous dynamics ẋ � f�x�, that is

fix�f� �� �x > X � f�x� � 0� .
4.1 Limit Sets

For a HDS, the ω-limit set is defined in an analogous fashion to the continuous

case.

41
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Definition IV.1 (Continuous ω-limit set). The (forward) orbit and the ω-limit set

for the (complete) flow ϕt�x� are given by

o��x� �� �ϕt�x� � t > R�� ,
ω�x� �� �y > X � §tn �ª s.t. lim

n�ª
ϕtn�x� � y� .

Definition IV.2 (Hybrid ω-limit set). The (forward) orbit and the ω-limit set for

the (complete and non-Zeno) hybrid flow ϕHt �x� are given by

o�H�x� �� �ϕHt �x� � t > R�� ,
ωH�x� �� �y > X � §tn �ª s.t. lim

n�ª
ϕHtn�x� � y� .

Throughout this text, their continuous counterparts will be denoted by o�c and ωc.

Remark IV.3. Dropping the condition (H.4) on the HDS (which says that ∆ � S � X

is smooth) can result in systems where ωH�x� is not invariant under the flow. That

is, if p > ωH�x�, then o�
H
�p� ~̀ ωH�x�. The following example shows this situation.

Example IV.4. Consider the following HDS: X � �0,1��R ` R2 and the continuous

flow is determined by ẋ � 1 and ẏ � �y2. Let the impact surface be S � ��1, y� � y > R�
and the impact map be given by

∆�1, y� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
�0, y�, y A 0

�0, y � 1�, y B 0.

The ωH-limit set of the initial condition �0,1� is the interval �0,1� � �0� which is

clearly not invariant under the flow of the system because the impact moves the flow

away from ωH�0,1�.
Two properties of the ωH-limit set are shown: sufficient conditions for ωH�x� to

be nonempty and compact, and that ωH�x� is “usually” invariant under the flow.
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Proposition IV.5 ([29]). The ωH-limit set of a trajectory o�
H
�x� is a closed set.

Additionally, if R is a compact and forward invariant set, then ωH�x� is nonempty

and compact for x > R.

Proof. The proof follows the same arguments as for the continuous case (cf. [92]

pp. 193). First, let us prove that ωH�x� is closed. Let �pn�n>N be a sequence in

ωH�x�, such that pn � p when n � ª. We want to show that p > ωH�x�. Since

pn > ωH�x�, there exists a sequence of times, �t�n�k �, such that ϕH
t
�n�
k

�x� � pn when

t
�n�
k �ª. Without loss of generality, consider t

�n�1�
k A t

�n�
k . Then, for all n C 2 there

exists Kn AKn�1 such that for all k CKn

VϕH
t
�n�
k

�x� � pnV @ 1

n
.

Choose a sequence of times tn � t
�n�
Kn

. Then, by the triangle inequality, as tn �ª we

obtain that ϕHtn�x� converges to p, that is,

TϕHtn�x� � pT B TϕHtn�x� � pnT � Spn � pS B 1

n
� Spn � pS� 0 when n�ª.

For the second part, we have that ωH�x� ` R, so it is compact since it is a closed

subset of a compact set. To show that it is nonempty, we point out that the sequence

�ϕHn �x��n>N is in a compact set so by the Bolzano-Weierstrass Theorem, there exists

a convergent subsequence.

Remark IV.6. Note that ωH�x� is closed while o�
H
�x� is not.

Before we prove that ωH�x� is an invariant set, we first define two objects.

Definition IV.7. Let H � �X , S, f,∆� be a hybrid system and let d be a distance

on X . The hybrid distance, dH is defined as the pseudometric on the quotient space
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with equivalence classes

�x� �

¢̈̈̈̈
¨̈̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¨̈¤

�x�, x ~> S 8∆�S�
∆�1�x�, x > ∆�S�
∆�1 �∆�x�� , x > S.

That is,

dH�x, y� � inf
n

Q
i�1

d�zi,wi�,
where �x� � �p1�, �y� � �qn�, and �qi� � �pi�1�. Additionally, for a set Y ` X , let Ot�Y �
be the partial orbit:

Ot�Y � �� �ϕHτ �x� � τ > �0, t�, x > Y � .
Remark IV.8. The hybrid distance will satisfy the identity of indiscernibles away

from S, i.e. if x, y ~> S then dH�x, y� � 0 implies x � y.

Under fairly weak conditions we can show invariance of the limit set, similar

results are in [29, 56].

Proposition IV.9 (*). If there exists an open set U ` S such that

1. ωH�x� 9 S ` U , and

2. f is transverse to U ,

then ωH�x� is invariant under the flow, i.e. if x > X , for all y > ωH�x�, o�H�y� `

ωH�x�.
Proof. Let y > ωH�x� and �tn�ªn�0 be a sequence of times such that

lim
n�ª

ϕHtn�x� � y.
*We thank Dr. Matthew Kvalheim for insightful conversations with this proposition and proof.
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Suppose that y ~> S. Then for all ε A 0, and t A 0 (small enough that the trajecto-

ries remain within U on impacts) there exists δ A 0 such that if dH�y, z� @ δ then

dH�ϕHt �y�, ϕHt �z�� @ ε. This is true because we can choose δ small enough that

Bδ�y� 9 S � g and Ot�Bδ�y�� 9 S ` U . Then continuity follows from the implicit

function theorem, cf. Theorem II.16. We have

ϕHt �y� � ϕHt � lim
n�ª

ϕHtn�x�� � lim
n�ª

ϕHtn�t�x� > ω�x�.
To finish the proof, we need to show that this works for not only small times and for

y > S. Arbitrary times follows from repeating the above argument. If y > S, choose

ỹ � ϕ�ε�y� and choose t A ε.

Corollary IV.10. The ωH-limit set is invariant for smooth hybrid systems.

Remark IV.11. Strange things can happen when the flow is no longer transverse

to the impact surface. However for every case considered here, the flow will be

transverse.

Example IV.12 (A non-invariant ωH-limit set). Consider the hybrid system where

X � R2, S � �x2 � 1�, ∆�x1, x2� � �x1, x2 � 3� and the continuous dynamics (in polar

form)

θ̇ � 1, ṙ � 1 � r.

Then ωH�0.5,0� � ��x1, x2� � x2
1 � x

2
2 � 1�. However, this is not invariant under the

flow as it ignores the impact. The point of contention is �0,1� which is precisely

where the vector field fails to be transverse to S.

4.2 Hybrid Poincaré Map and Floquet Theory

The bulk of the literature on stability for hybrid systems revolves around con-

structing and studying hybrid Lyapunov functions, e.g. [20, 24, 39, 48, 52, 57, 58,
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62, 56, 105] to name a few. Rather than studying stability through this avenue, we

will instead focus our attention on the stability of periodic orbits via Floquet theory

[46]. By linearizing about the periodic orbit, we obtain a linear system with perio-

dic coefficients whose stability guarantees stability for the original system. We will

first discuss the Poincaré map (or first-return map) for a hybrid system and then

show how Floquet theory makes it possible to numerically approximate the stability

of this map. This theory is then applied to an example of a simple robotic walker

experiencing foot-slip.

4.2.1 The Hybrid Poincaré Map

Given a periodic orbit for a HDS, we would like to determine its stability. We will

study this by examining its Poincaré map [18, 26, 53, 82, 100].

Let γ � �0, T � � X be a periodic orbit for a HDS which (for simplicity) crosses S

once per period and without loss of generality assume that γ�T � > S (and therefore

γ�0� � ∆�γ�T ��). To construct a Poincaré map, we need to take a section that

is transverse to the flow so it seems natural to take S as the section [82]. The

problem is that for a given x > S, it is not immediate that this map should be

differentiable. However, so long as the flow intersects S transversely, it will be

differentiable by Theorem II.16. Recall that τ � Bx0 � R is the time required to reach

S, i.e. ϕτ�y��y� > S. Throughout, we will be dealing with a single impact surface;

for the case where the flow can intersect multiple impact surfaces simultaneously, see

[19].

Definition IV.13. The map P � Bε�x0� 9 S � S given by y ( ϕτ�∆�y���∆�y�� is the

Poincaré map or the first-return map.

The point x0 lies on a periodic trajectory if and only if P �x0� � x0. This offers
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a way to translate the hybrid problem to a discrete one; γ is stable under ϕH only

if x0 is stable under P (Theorem 13.1 [56]). It is therefore desirable to be able to

differentiate P . We will proceed informally for intuitive purposes.

Let x̃ be a (small) perturbation of γ by xp. Then, we will use the following

approximations to study the dynamics of xp.

˙̃x � f �γ�t� � xp�t��
� f �γ�t�� � ∂f

∂x
�x�V

x�γ�t�
� xp�t�

� f �γ�t�� �A�t�xp,
∆�x̃0� � ∆�x0 � xp� � ∆�x0� �∆��x0� � xp,

where ∆��x0� � Tx0S � T∆�x0�∆�S� is its differential. The linearization of the impact

requires that xp > Tx0S. To adjust for xp > Tx0X , we augment ∆� by including the

map f�x0�( f�∆�x0��. Call this augmented linear map ∆f
�.

Definition IV.14. Let H � �X , S, f,∆� be a hybrid system and x > S. Then the

map ∆f
� � TxX � T∆�x�X is called the augmented differential where

∆f
� � u � ∆� � u, u > TxS ` TxX ,

∆f
� � f�x� � f�∆�x��.

The linear map ∆f
� is well-defined as long as f intersects S transversely. Equiva-

lently suppose S � h�1�0�, then ∆f
� is well-defined as long as Lfh � dh�f� x 0.

4.2.2 Floquet Theory

Consider that we have the following linear HDS:

(4.1)

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ � A�t� � x, t mod T x 0

x� � ∆f
� � x�, t mod T � 0.
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What can we say about the stability of the origin in terms of the matrices A�t� and

∆f
�? For if the origin of this system is stable, then the periodic orbit of the original

hybrid system will also be stable. The following theorem shows that the derivative

of the Poincaré map is, indeed, given by the data in (4.1).

Remark IV.15. As is the case in both continuous and discrete dynamics, in order for

eigenvalue analysis of the derivative of the Poincaré map to be helpful, it must be

hyperbolic (no eigenvalues on the unit circle).

Theorem IV.16 ([26]). Let X ` Rn and γ � �0, T � � X be a periodic solution that

impacts S exactly once. That is, γ�T � > S and γ�0� � ∆�γ�T ��. Call x0 � γ�0� and

xf � γ�T �. Assume, further, that the orbit is transverse to both S and ∆�S�. Define

the (nonorthogonal) projections

π̃ � TxfX � TxfS ` f�xf�R� TxfS

π � Tx0X � Tx0∆�S�` f�x0�R� Tx0∆�S�,
where ` is the direct sum. Then, the derivative of the Poincaré map is given by

(4.2) P ��xf� � ∆��xf� � π̃ �Φ�T �W
Tx0S

� π �∆f
� �Φ�T �W

Tx0S

,

where Φ�t� is the principal fundamental matrix solution (see Chapter 6 of [31]) to

Φ̇ � A�t�Φ.

Remark IV.17. Notice that perturbations in the flow direction result in an eigenvalue

of 1 for the stroboscopic map of equation (4.1), ∆f
� � Φ�T � (a stroboscopic map is

a special case of the Poincaré map in which the return times are constant, cf., e.g.

§13.3 of [65]). As a result, when calculating the (derivative of the) Poincaré map,

it is normal to disregard the flow direction. That is the purpose of π̃, or π, in

equation (4.2). Also, note that the requirement for the flow to intersect S and ∆�S�
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transversely is a requirement for π̃ and π to be defined. Therefore, H being smooth

is required to differentiate the Poincaré map.

Remark IV.18. The two right-sides of (4.1) are equivalent because the diagram below

commutes.

TxfM Tx0M

TxfS Tx0S

∆f
�

π̃ π

∆�

We now proceed with the proof for Theorem IV.16.

Proof. Let ϕt�x0� be the (continuous) flow. This means that

d

dt
ϕt�x0� � f �ϕt�x0�� .

Due to everything being smooth, we can use the Leibniz integration rule. Let Bx0 be

an open neighborhood of x0 and τ � Bx0 � S the the time required to get to S. By

Theorem II.16, τ is smooth. We have that τ�x0� � T and recall that ϕt�x0� � γ�t�.
∂

∂x
ϕτ�x��x�W

x�x0

� S
T

0

∂

∂x
f �ϕt�x0�� dt � f�xf� � τ ��x0�

� S
T

0

∂f

∂y
�y�W

y�γ�t�

�
∂

∂x
ϕt�x�W

x�x0

dt � f�xf� � τ ��x0�
(4.3)

Looking at the first part, we see that

∂

∂x
ϕt�x�W

x�x0

� S
t

0
A�s� � ∂

∂x
ϕs�x�W

x�x0

dt.

Therefore,

∂

∂x
ϕt�x0� � Φ�t�, Φ̇ � A�t�Φ, Φ�0� � Id.

So, equation (4.3) becomes

∂

∂x
ϕτ�x0��x0� � Φ�T � � f�xf� � τ ��x0�.
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Let v > Tx0∆�S�. If �Φ�T � � f�xf� � τ ��x0�� v > TxfS, we are done. Call τ ��x0�v � α,

then

�Φ�T � � f�xf� � τ ��x0�� v � Φ�T �v � αf�xf�.
Let h � X � R such that h�1�0� � S (which is locally possible by (H.2)). Then, we

have that h�ϕT �x0�� � 0. Differentiating with the chain rule yields

∂h

∂z
W
z�xf

� �Φ�T � � f�xf� � τ ��x0�� v � 0.

Which tells us that

�Φ�T � � f�xf� � τ ��x0�� v > ker
�
�
∂h

∂z
W
z�xf

�
� � TxfS.

In order to understand the stability of a hybrid system, ∆f
� is the correct object

to study rather than ∆�. This appears again in Chapter VII where hybrid-invariant

differential forms are studied.

Generally the Poincaré map cannot be solved analytically and must be numerically

calculated. However, in the special case where X � R2, the function P � can be solved

analytically. We first recall a helpful result about continuous flows. For what follows,

X ` Rn and © � f is the usual divergence.

Lemma IV.19 ([92], p. 86). Let ϕt�x0� be the flow of ẋ � f�x� with initial condition

x0. Then,

det � ∂

∂x
ϕt�x�V

x�x0

	 � exp�S t

0
© � f�ϕs�x0��ds� .

To understand the stability of our orbit, we want to look at the hybrid Poincaré

return map, P � Bε�x0� 9 S � S. As in Theorem II.16, let τ � ∆�Bε�x0� 9 S� � R be

the time required to return to the impact surface. Then, if we denote y �� ∆�x�, we
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can write P as

P �x� � ϕτ�y��y� � S τ�y�

0
f �ϕs�y�� ds.

Theorem IV.20 ([29]). Assume that X ` R2 and we have a hybrid periodic orbit

that intersects S once. Let x > S and y � ∆�x� be the points of intersection on the

orbit. Additionally, let θ be the angle f�x� makes with the tangent of S at x and α

be the angle of f�y� with ∆�S�. Assume that θ and α are not integer multiples of

π. If we denote the continuous flow that connects y to x by γ�t� and suppose that it

takes time T to complete the loop, the derivative of the Poincaré map is

(4.4) P ��x� � ∆��x� � Yf�y�YYf�x�Y sinα

sin θ
� exp�S T

0
© � f�γ�t��dt� .

Figure 4.1: The orbit of the periodic orbit for the system given by Theorem IV.20.

Proof. To differentiate P , let us first look at the continuous part (that is, starting at

y0 � ∆�x0�). Let n�y� be the unit normal vector to ∆�S� at y and let p be the unit

tangent vector. The assumption α x n � π leads to `f�y0�, n�y0�e x 0.

∂

∂p
ϕτ�y��y�V

y�y0

� S
τ�y�

0

∂

∂y
f �ϕs�y��V

y�y0

ds �
∂y

∂p
�
∂

∂t
�ϕτ�y0��y0�� � ∂t

∂p

� F �y0� � δy �G�y0� � δt
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Now call the flow ϕt�y� �� γ�t�, the time T � τ�y�, and recall that the final point is

ϕτ�y��y� � x. Then, G�y� � f�x� and δy is the unit vector p rooted at y0. We need

to figure out what δt and F �y� are. By Lemma IV.19, we know the determinant of

F �y�.
(4.5) det �F �y�� � exp�S T

0
© � f�γ�t��dt�

To find F (in the direction of δy), we note that we know the derivative in the direction

of the flow: F �y� � f�y� � f�x�. Knowing the determinant and this direction, we can

attempt to find F �y� in the direction of δy. We first differentiate h along S, which

is zero because S is a level set of h.

0 �
∂

∂p
h�ϕτ�y��y��V

y�y0

�
∂

∂x
h�x�V

x�x0

� �F �y� � δy � f�x� � δt�W
y�y0

This tells us that F �y� � δy � f�x� � δt lies on the tangent to S at x. Let V �u, v� be

Figure 4.2: The vector δx � F �y�δy � f�x�δt, where the horizontal line is the tangent to S at the
point x.

the area of the parallelogram spanned by the two vectors u and v. Additionally, let

Λ � det�F �y��. Then, we have

V �f�y�, δy� � Yf�y�Y � YδyY sinα

V �F �y� � f�y�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�f�x�

, F �y� � δy� � ΛYf�y�Y � YδyY sinα

� V �f�x�, F �y� � δy � f�x� � δt�
� Yf�x�Y � YδxY sin θ.
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Collecting terms, we see that

YδxYYδyY �
Yf�y�YYf�x�Y sinα

sin θ
Λ.

Combining this with equation (4.5), we arrive at equation (4.4).

Remark IV.21. If the impact surface, S, is a level-set of a function h � X � R (which

can always be done locally), then (4.4) can be written as

P ��x� � ∆��x� � Lfh�y�
Lfh�x� � exp�S T

0
© � f�γ�t��dt� .

Corollary IV.22 ([29]). Suppose now that we have a hybrid periodic orbit that

intersects S n times. Let x1, . . . , xn > S and yi � ∆�xi�. Additionally, let γi be the

flow that connects yi to xi�1, i.e. γi�0� � yi and γi�Ti� � xi�1. Also, let αi be the

angle f�yi� makes with ∆�S� and θi be the angle f�xi� makes with S. Then, the

derivative of the Poincaré map is given by

�P n���x1� � n

M
i�1

∆��xi� Yf�yi�YYf�xi�Y
sinαi
sin θi

exp�S Ti

0
© � f�γi�t��dt� .

This gives a precise test for determining the stability of planar hybrid orbits. We

would like to extend this to higher dimensions, but we can only calculate detP ��x0�
and not its individual eigenvalues.

Theorem IV.23 ([29]). Assume that X � Rn and that γ��� is a periodic orbit inter-

secting S once with x > S and y � ∆�x� and period length T . Let α and θ be described

as in Theorem IV.20. If γ is stable, then

(4.6) Wdet �∆��x�� Yf�y�YYf�x�Y sinα

sin θ
� exp�S T

0
© � f�γ�t��dt�W B 1.

Proof. Equation (4.6) is equal to detP ��x�. Thus, if the determinant is greater than

1, it must have an eigenvalue greater than 1 and the system is unstable.

Corollary IV.24. If the expression in (4.6) has value less than 1 and the orbit,

γ�t�, is unstable, the point x0 under P must be a saddle-type instability.
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4.2.3 Example: Walking with Foot-slip

We will demonstrate the above theory by examining a model of a simple passive

walker experiencing foot-slip [26]. In this model, the mass of the foot is denoted by

α
mf

mh

x

y

θ

Figure 4.3: The dowel-pin represents the center of mass for the pendulum.

mf and the hip by mh. The length is given by `. The angles of the leg are restricted

to θ > ��δ, δ� (when θ hits the boundary, �δ, a new step is taken and θ is reset to δ).

The (Cartesian) coordinates of the center of mass will be given by �xc, yc� and the

coordinates of the foot are �xf , yf�. Note that we impose the constraint yf � 0. We

will also assume that the frictional force exerted on the foot is proportional to its

velocity, that is, Ff � �bẋf . This is “viscous” friction rather than Coulomb friction.

Interestingly, there is some evidence that viscous friction may be more appropriate

for legged locomotion than previously thought [112].

We will now provide a few parameter relationships:

m �mh �mf , I �
`2mfmh

m
, `f � `

mh

m
,

xc � xf � `f sin θ, yc � yf � `f cos θ,

where I is the moment of inertia about the center of mass and `f is the distance from

the foot to the center of mass. Notice that the constraint implies that yc � `f cos θ.

Due to the hybrid nature of this model, we will split the derivation of the equations

of motion into two parts: the continuous part and the discrete part.
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Remark IV.25. The way we have set up our model, θ is constrained to be in the

interval ��δ, δ�. If θ crosses the negative boundary, we say a new step occurs and θ

is reset to δ. If θ crosses the positive boundary, specifically if θ � π~2, we say that

a crash has occurred. In this case, the model stops walking and we report a failure.

This also implies that falling forwards is not permitted; the only way to crash is by

falling backwards.

The Continuous Part

The Lagrangian for a (planar) rigid body is

L �
1

2
Iθ̇2 �

1

2
m �ẋ2

c � ẏ
2
c� � V �θ, xc, yc�.

The potential energy depends on the elevation of the center of mass.

V �mg �`f cos�α � θ� � �xc � `f sin θ� sinα� .
This system is constrained by yc � `f cos θ. The forces exerted from the friction on

the foot are given by

Fxc � �bẋf � �b �ẋc � `f θ̇ cos θ�
Fyc � 0

Fθ � �bẋf�`f cos θ� � �b`f cos θ �ẋc � `f θ̇ cos θ� .
Solving the (constrained) Euler-Lagrange equations yields the system of

mẍc �mg sinα � �b �ẋc � `f θ̇ cos θ�
mÿc � λ � 0

Iθ̈ � `f sin θ �λ �mg cosα� � �b`f cos θ �ẋc � `f θ̇ cos θ� .
Using the constraint above, we get the value for the Lagrange multiplier.

λ � �m �`f θ̈ sin θ � `f θ̇
2 cos θ� .
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The final, reduced, equations of motion are

mẍc �mg sinα � � b �ẋc � `f θ̇ cos θ�
Iθ̈ �m`f sin θ �g cosα � `f θ̈ sin θ � `f θ̇

2 cos θ� � � b`f cos θ �ẋc � `f θ̇ cos θ� .
Rearranging so the accelerations are all on the left side yields

mẍc � mg sinα � b �ẋc � `f θ̇ cos θ�
�I �m`2

f sin2 θ� θ̈ � `fm sin θ �g cosα � `f θ̇
2 cos θ�

� b`f cos θ �ẋc � `f θ̇ cos θ� .
This system has the regularity condition of m �I �m`2

f sin2 θ� x 0 which is always

satisfied. Since the equations of motion are invariant with respect to xc, we will

not deal with tracking it. We will relabel �ẋc, θ̇� ( �v,ω� to create three first-order

equations

θ̇ � ω

ω̇ �
`f

I �m`2
f sin2 θ

�m sin θ �g cosα � ω2 cos θ� � b`f cos θ �v � `fω cos θ��
v̇ � g sinα �

1

m
b �v � `fω cos θ� .

(4.7)

The Impact Part

Before we can derive an impact map, we first need to determine what S is. In this

example, we assume that the leg takes symmetric steps of angle δ, i.e. θ > �δ,�δ�.
When θ � �δ, the angle is reset to δ (corresponding to a new step taking place and

the swing legs switching). Therefore, we will take the impact set, S, to be �θ � �δ�.

To determine ∆, we will assume a rigid hip, i.e. the horizontal velocity of the foot

is continuous at impacts. i.e.,

(4.8) ẋ�f � ẋ
�
f .
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To determine the reset map for θ̇, we use conservation of momentum about the foot

(see [100] for the case where there is no foot slip)

(4.9) θ̇� � cos�2δ�θ̇�.
The equation (4.9) is in terms of the coordinates used while equation (4.8), however,

is not. To get a relationship for ẋc, we note that ẋf � ẋc � `f θ̇ cos θ.

ẋ�c � `f θ̇
� cos θ� � ẋ�c � `f θ̇

� cos θ�

Rearranging this (and relabeling as in (4.7)) gives a final impact map of

(4.10) ∆�θ,ω, v� � �θ � 2δ, cos�2δ�ω, v � `f cos δ �1 � cos�2δ��ω�
Nondimensionalization

We offer the following rescaling to nondimensionalize the system (4.7), (4.10):

ω0ξ�τ� � ω�t�, v0η�τ� � v�t�, and t0τ � t where

t0 �
m

b
, v0 �

mg

b
, ω0 �

mg

b`f
.

For the remainder of this example, ḟ will correspond to differentiating against t and

f � will mean differentiation against τ . The equations of motion become

θ� � εξ

ξ� � C �sin θ�cosα � εξ2 cos θ� � cos θ�η � ξ cos θ��
η� � sinα � η � ξ cos θ

(4.11)

where

C ��
µ

1 � µ sin2 θ
.

The parameters, �µ, ε�, are given by

µ �

m`2
f

I
�
mh

mf

, ε �
m2g

b2`f
.
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Making the appropriate changes to the impact map, we have

∆�θ, ξ, η� � �θ � 2δ, cos�2δ�ξ, η � cos δ �1 � cos�2δ�� ξ�
and the impact surface, S, is unchanged because we do not rescale θ. Our model for

foot slip now depends on 4 parameters: ε, µ, α, and δ: ε contains the information

relating gravity and frictional forces, µ is the mass ratio, α is how steep the floor is,

and δ is the width of each step.

Dynamics on the Poincaré Section

We present two numerical calculations: First, we calculate the region in parameter

space, �µ, ε,α, δ�, where a periodic orbit exists and we then calculate its largest

eigenvalue via Theorem IV.16. The second calculation involves determining which

initial conditions for fixed parameters result in a periodic orbit, i.e. the region of

attraction for a periodic orbit. For a discussion on the numerical methods used, see

Appendix A. The results for the eigenvalue calculations are shown in Figure 4.4 and

the stable initial conditions are shown in Figure 4.5.

Figure 4.4 contains two interesting features. The first is that larger steps (that is,

larger δ) result in faster exponential stability of periodic orbits. The strange aspect

of this is the boundary of the stability region cannot be computed by calculating

when the modulus of the maximum eigenvalue crosses one. The second interesting

feature is that for small ε (that is, a large coefficient of friction, so a small amount

of slip), small steps result in crashes. It is an ongoing goal to understand why this

happens.

Figure 4.5 contains two interesting features as well. The first is the emergence

of tongues where the first tongue lies on the boundary between the blue and red

regions. The emergence of tongues on stability diagrams is a common occurrence in
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Figure 4.4: The colored regions in the above figures show where a periodic orbit is found while the
white is where a crash occurs. The left image shows ε small which is high friction while the right
has large ε which corresponds to low friction.

periodically forced systems, similar to [95]. The second is that it seems that the dy-

namics map tongues to tongues. This seems to imply that if we can (approximately)

calculate the boundary between the red and blue regions, we can (approximately)

determine the location of every tongue. The next section attempts this task.

Approximating the First Tongue

We would like to find the boundary of the red region in Figure 4.5. We will

approximate this in the following way. Let x� be the fixed point of (4.11) that

corresponds to the pendulum being vertical. That is,

x� � �α,0, sinα�T .
Assuming that the stable manifold, W s�x��, for this fixed point divides the state-

space such that on one side the pendulum crashes and the other corresponds to where

a step can be completed, calculating W s�x��9∆�S� would offer all we need to know.
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Figure 4.5: The blue region corresponds to initial conditions that lie within the basin of attraction
for the periodic orbit. The red region contains initial conditions that lead to a crash. The black
asterisks indicate the forward orbit under the Poincaré map. The green line is a linear guess for
the boundary of the red region.

Using the notation ẋ � f�x�, we calculate Jf�x��, the Jacobian of the flow, to be

Jf�x�� �
<@@@@@@@@@@>

0 ε 0

C �a2C �aC

0 �a �1

=AAAAAAAAAA?
,

C �
µ

1 � µ sin2α
, a � cosα.

Its monic characteristic polynomial is

p�λ� � λ3 � �a2C � 1�λ2 �Cελ �Cε � 0

This polynomial has three roots, λ1,2,3. Descartes’ rule of signs tell us that there can

be at most one root with positive real part. There is, in fact, always a positive real

root. This is because p�0� � �Cε @ 0 and limλ�ª p�λ� � �ª.

Let W s�x�� be the stable manifold for the fixed-point x� and W u�x�� be its

unstable manifold. By the previous discussion, dim�W s�x��� � 2 and dim�W u�x��� �



61

1. By the stable manifold theorem (§2.7 of [92]), W s�x�� � Es � x� where Es is the

stable subspace of Jf�x��.
We will assume that W s�x�� is the plane spanned by the stable subspaces of

Jf�x�� (which we know is always 2-dimensional). The equation for Es �x� is (where

v1 and v2 are two independent stable eigenvectors)

`v1 � v2, x � x
�e � 0

Making this into �Es � x�� 9∆�S� results in

`v1 � v2, �δ � α, ξ0, η0 � sinα�T e � 0

Which can be rearranged to

ξ0 �
n3

n2

�sinα � η0� � n1

n2

�α � δ�
where n � v1 � v2 (and as long as n2 x 0). This relationship gives the green line in

Figure 4.5.

4.3 A Poincaré-Bendixson Theorem

While the previous section dealt with the question of stability of periodic or-

bits, this section outlines sufficient conditions such that periodic motion is the only

asymptotic behavior. We accomplish this by proving a version of the famous Poi-

ncaré-Bendixson Theorem [10] for hybrid systems. The classic version of the Poin-

caré-Bendixson Theorem states that if a planar trajectory is bounded and its limit

set does not contain any fixed points, then the limit set is a periodic orbit (cf. §3.7

in [92]).

There have been attempts to prove an analogous version for hybrid systems, par-

ticularly [76, 102]. However, the results in [76] are restricted to the situation of
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constant vector fields while in [102], the authors consider a particular class of sys-

tems with very strict assumptions that are difficult to check.

In this section, we present a different version of a hybrid Poincaré-Bendixson

Theorem as developed in [28, 29]. The version proved in [29] is for (simple) hybrid

dynamical systems while [28] extends the result to general hybrid dynamical systems.

Because the simple version is a special case of the general case, we present only the

result from [28].

Theorem IV.26 ([28]). Let �N ,E ,X , S,∆, f� be an essentially non-beating general

hybrid dynamical system. In addition, suppose the following:

(Q.1) For every i > N , ni � 2, that is Xi ` R2.

(Q.2) Each map ∆e is injective.

(Q.3) There exists a compact, forward invariant set F ` X . That is, F � @iFi where

Fi ` Xi and each Fi is compact.

(Q.4) Let the outdegree of vertex n be od�n�. Then, each Fn can be written as a

disjoint union of od�n� many compact sets,

Fn � +
e>E

dom�e��n

F e
n.

(Q.5) The set F e
n 9 Se� is only nonempty if e � e� and F e

n 9 Se is diffeomorphic to an

interval.

(Q.6) The vector fields, fn, are transverse to F e
n9Se and ∆e��F e�

i 9Se�� (when cod�e�� �
n).

Assume Fi and fix�fi� are disjoint for all i > N . Then ωH�x� is (the closure of) a

periodic orbit, for all x > F .
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Remark IV.27. The images of the impact surfaces, ∆e �F e
n 9 Se�, are not guaranteed

to be smooth manifolds (cusps can appear). In this case, transversality does not

make sense and the condition (Q.6) automatically fails.

Before we prove this theorem, we first show how conditions (Q.4) and (Q.5) are

required to combat the added complexity of GHDSs over HDSs.

Example IV.28. Consider the directed graph with three nodes as illustrated in

Figure 4.6. We choose all three state-spaces to be identical, Xi � �0,1�2 and we

1

3

2

Figure 4.6: The graph of a HDS where chaos can still occur.

define the impact surfaces as follows:

S�1,3� � ��1, y� � y > �1~2,1�� ,
S�1,2� � ��1, y� � y > �0,1~2�� ,
S�3,1� � ��1, y� � y > �0,1�� ,
S�2,1� � ��1, y� � y > �0,1�� .

Their corresponding impact maps are:

∆�1,3��1, y� � �0,2�1 � y��,
∆�1,2��1, y� � �0,2y�,
∆�3,1��1, y� � �0, y�,
∆�2,1��1, y� � �0, y�.
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Finally, we define the three vector fields to simply be uniform motion to the right,

i.e. for all three state-spaces, we let

ẋ � 1, ẏ � 0.

Notice that if we denote the first return map of �0, y� > X1 by P , then P �0, y� �

�0, T �y�� where T �y� is the tent map and is chaotic [32]. Chaos occurs here precisely

because there is mixing between the nodes.

Notice that this example violates (Q.4) and (Q.5) for the following reason: Take

Fi � Xi and by (Q.4) we must decompose F1 � F
�1,2�
1 8 F

�1,3�
1 such that each F

�1,2�
1

and F
�1,3�
1 are compact. This requires the decomposition to be

F
�1,2�
1 � �0,1� � �0,1~2 � α�,
F

�1,3�
2 � �0,1� � �1~2 � β,1�,

for some positive numbers α,β. However, this violates (Q.5) because

F
�1,3�
1 9 S�1,2� � �1� � �1~2 � β,1~2 � α� x g.

We can now proceed to the proof of Theorem IV.26, see Appendix B for some

technical lemmas.

Proof of Theorem IV.26. The proof will proceed in three steps.

Step 1: Suppose �N ,E � is a cycle. Then, the flow of our GHDS will look like the

following:

F1 S�1,2� F2 . . . Fn S�n,1�

ϕ1
t

∆�1,2� ϕnt

∆�n,1�

This allows us to collapse the dynamics to a first-return map P � U � S�1,2� for

some open set U ` S�1,2�. Then, define the set

Sª
�1,2� �� �x > S�1,2� � ¦t A 0,§T A t s.t. ϕHT �x� > S�1,2��.



65

This allows us to iterate the map P . So we have a discrete dynamical system

P � Sª
�1,2� � Sª

�1,2�

This leads to two possibilities for x > S�1,2�: either x ~> Sª
�1,2�

or x > Sª
�1,2�

.

If x ~> Sª
�1,2�

, then there exists a time, t�, large enough, that for all t A t�,

ϕHt �x� � ϕkt�t� XϕHt��x� for some k and thus, ωH�x� � ωc�ϕHt��x��. This set being

a periodic orbit follows from the classical version of the Poincaré-Bendixson

Theorem (see Theorem 1 in Chapter 3.7 of [92]). Now, assume that x > Sª
�1,2�

x g.

The set Sª
�1,2�

� �a, b� by Lemma B.3 from the appendix and the map, P , is C1

by Lemma B.4. Using Lemma B.1, this shows that ωH�x� is a periodic orbit.

Step 2: Suppose all vertices have outdegree less than or equal to 1. This allows us to

define dynamics on our vertices. Let i > N . Define η � N �N as

η�i� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
i, if od�i� � 0

j, if �i, j� > E

Then this collapses to Step 1 because finite dynamics always leads to a periodic

orbit, see Lemma B.2.

Step 3: The general case. This allows us to split up the vertices with outdegree greater

than one to multiple vertices with outdegree all being one. For an example of

splitting up a vertex with outdegree 2, see Figure 4.7.

We end this section with a brief discussion on how to check the conditions for

Theorem IV.26 in practice. The conditions (Q.1), (Q.2) and (Q.6) are straight-

forward to verify. The difficult part is finding a compact, forward invariant set that

also satisfies (Q.4) and (Q.5). The purpose for the second half of (Q.5) is just to
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Xi

Se

Se�

∆k�Sk�

∆k��Sk��

F ei

F e
�

i

Figure 4.7: An example of a node with outdegree 2. The set Xi gets partitioned into two sets via
the dashed line. Each of these now has outdegree 1.

disqualify Kronecker flows whereas (Q.4) with the first half of (Q.5) is necessary to

extract out an invariant cycle. This is generally quite difficult, but the example in

§4.3.1 provides a case where this is possible.

4.3.1 Example: The rimless wheel

The (uniform) rimless wheel is a commonly studied object in hybrid systems, [100].

We next present a variation of this, the case of the nonuniform rimless wheel, as a

demonstration of Theorem IV.26. We derive a cascade of inequalities that guarantee

the existence of a periodic orbit. Later we demonstrate two numerical examples of

randomized wheels that satisfy these inequalities.

Model setup

Here, we explicitly state what �N ,E ,X , S,∆, f� is for the nonuniform rimless

wheel. The application of Theorem IV.26 is demonstrated in the next subsection.

The underlying directed graph, �N ,E �, is simply a cycle with length equal to the

number of spokes of the wheel. That is, N � �1, . . . , n� and E � ��i, i � 1� � i �
1, . . . , n� where n is the number of spokes and it is understood that all indices are

taken modulo n. The remaining data, �X , S,∆, f�, depends on the geometry of the

wheel.
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Consider the rimless wheel with different spoke lengths and different inter-spoke

angles. For i � 1, . . . , n, let δi and `i be half the angle between spokes i and i � 1

and the spoke length of spoke i respectively. We will assume that the grade of the

slope being walked down has a constant angle of α, see Figure 4.8. In what follows,

x1 will be the angle of the wheel from vertical (with respect to the spoke in contact

with the ground) and x2 � ẋ1 is the angular velocity. Each vector field, fi, is that of

an inverted pendulum of length `i,

ẋ � fi�x� �
<@@@@@@>

x2

ζi sin�x1�
=AAAAAA?
,

where ζi � g~`i and g is the acceleration due to gravity. The impact surface, S�i,i�1�,

is given by configurations where both legs i and i�1 are in contact with the ground.

That is,

S�i,i�1� � ��x1, x2� � x1 � π~2 � ξi � 2δi � α� .
Their corresponding impact maps, ∆�i,i�1� � S�i,i�1� � Xi�1, are given by resetting the

angle and projecting the angular velocity (see [100] for a discussion for the uniform

rimless wheel case).

∆�i,i�1��x� �
<@@@@@@>

π~2 � ξi � α
ri,i�1 cos �2δi�x2

=AAAAAA?
,

where ri,i�1, ξi, and si are defined as (recall that all indices are taken modulo n)

ri,i�1 � `i~`i�1,

si �
»
`2
i � `

2
i�1 � 2`i`i�1 cos�2δi�,

ξi � sin�1 �sin�2δi� � `i
si
�� .

The final pieces of information needed are the state-spaces, Xi. These sets consist of

angles where spoke i is the only spoke making contact with the ground,

(4.12) Xi � ��x1, x2� � π~2 � ξi�1 � α B x1 B π~2 � ξi � 2δi � α� .



68

Formally, we need each Xi to be open so we only need Xi to contain each closed set

specified in (4.12).

Remark IV.29. Even though the wheel continues to rotate as it descends the ramp,

the angle x1 will never go beyond �π. This is because each impact resets the angle

to measure the current spoke.

si

`i
`i�1

α

ξi

2δi

Figure 4.8: Drawing of when both legs `i and `i�1 are on the ground.

Existence of a periodic limit cycle

With the data, �N ,E ,X , S,∆, f�, specified, we now examine the existence of pe-

riodic orbits. To use Theorem IV.26, we need to make sure (Q.1)-(Q.6) are satisfied.

Conditions (Q.1) and (Q.2) are clearly met. For the meantime, let us assume that

(Q.3) holds and that each Fi does not contain the origin. In fact, as we will show

later, each Fi will be a rectangle which guarantees (Q.5) since each S�i,i�1� is a line.

(Q.4) holds because the outdegrees of all the nodes are 1 (the directed graph for this

system is a cycle). Finally, (Q,6) holds because the only place where transversality

fails is at the origin - i.e. no motion is occurring. The only condition that needs

to be checked is (Q.3): we need a compact, forward invariant set such that each

component is rectangular and does not contain the identity. This will be done in the
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same fashion as for the simple case, [29]. We will look at the potential energy gained

over a cycle and compare it to the kinetic lost at all the impacts. For consistency,

we will compare all energies at the beginning of a step, that is right after impacts

occur. We will also set the reference point for the gravitational potential energy to

be zero at the moment before impact occurs.

In order to show the existence of F , we will show that the energy of the system is

bounded from above and below (when a system of inequalities are satisfied). First of

all, the energy of the system is bounded from above because the amount of energy

gained over each step is constant while the energy lost is linear, see equations (4.14)

and (4.15). To obtain a lower bound, we do the following: Let Ki measure the

kinetic energy lost between impacts. That is, let E� be the energy in the system

before impacting leg i�1. Then, Ki�E�� � E� is the energy of the system immediately

after impact occurs. Let us define two more quantities, Pi and Ri. Pi is the (constant)

amount of potential energy accrued over the step between legs i and i � 1. Ri is the

minimum required energy at the beginning of a step to successfully make it to the

next step. The requirement for a periodic orbit to exist is the satisfaction of the

cascade of inequalities (4.13) (first, relabel so R1 is the largest of all of the Ri’s).

Define ηi�E� ��Ki�E � Pi�.
η1�R1� A R2,

η2 X η1�R1� A R3,

�

ηn X . . . X η1�R1� A Rn�1 � R1.

(4.13)

For explicit formulas to compute ηi, we have the following:

Ri �mg`i �1 � cos�π
2
� α � ξi�1�� ,
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(4.14) Pi �mg`i �cos�π
2
� α � ξi�1� � cos�π

2
� ξi � 2δi � α�� ,

(4.15) Ki�E� � cos2 �2δi� �E.
Numerical results

For the remainder, we will take m � g � 1. Additionally, because we are modeling

a wheel, we will add two more assumptions to the parameters. The first is

(4.16)
n

Q
i�1

δi � π,

so the spokes line up to make a whole wheel. We also add the following spoke length

requirements to ensure that no spokes are skipped while the wheel is rolling.

(4.17) `i A
`i�1`i�1 sin�2δi�1 � 2δi�

`i�1 sin�2δi�1� � `i�1 sin�2δi� .
Below we present two examples, one with 5 spokes and the other with 10. All

parameters were randomly chosen, but do satisfy the inequalities (4.13) and the

additional constraints: (4.16) and (4.17). Additionally, for the plots, Figures 4.9 and

4.10, instead of resetting θ after each impact, we track it around the whole cycle.

Example IV.30. Let n � 5. A set of admissible parameters are shown in Table 4.1.

The steady-state trajectory (over two revolutions) is given in Figure 4.9.

i δi `i si ξi
1 0.6516 1.7184 2.1981 0.8540
2 0.7124 1.8985 2.3220 0.9423
3 0.6410 1.6416 1.9313 0.9524
4 0.5639 1.5872 1.7153 0.9899
5 0.5728 1.6217 1.8121 0.9531

Table 4.1: A random set of admissible parameters for the 5-spoked nonuniform rimless wheel with
α � 0.5062.

Example IV.31. Let n � 10. A set of admissible parameters are shown in Table

4.2. The steady-state trajectory (over one revolution) is given in Figure 4.10.
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i δi `i si ξi
1 0.3204 1.7662 1.0572 1.5234
2 0.2411 1.4658 0.7531 1.1261
3 0.1766 1.6226 0.5617 1.5354
4 0.3762 1.5025 1.1505 1.1029
5 0.3389 1.6158 1.1810 1.0311
6 0.3622 1.8655 1.2563 1.3920
7 0.2944 1.6204 1.0635 1.0088
8 0.3648 1.9142 1.2942 1.4033
9 0.3352 1.6427 1.1785 1.0472

10 0.3316 1.8764 1.1906 1.3268

Table 4.2: A random set of admissible parameters for the 10-spoked nonuniform rimless wheel with
α � 0.1752.

Figure 4.9: Both figures are for a 5 spoke wheel. Left: The plot of θ against time. Right: The plot
of θ̇ against time.

Figure 4.10: Both figures are for a 10 spoke wheel. Left: The plot of θ against time. Right: The
plot of θ̇ against time.



CHAPTER V

Invariant Measures in Nonholonomic Systems

An invariant measure is a powerful tool to understand the asymptotic nature of a

dynamical system. In the case of nonholonomic systems, a smooth invariant measure

offers two key insights. The first is the usual case in dynamical systems where an

invariant measure allows for the use of the Birkhoff Ergodic Theorem (cf. e.g. 4.1.2

in [70]) as well as for recurrence. The other is unique to nonholonomic systems;

even though nonholonomic systems are not Hamiltonian, “nonholonomic systems

which do preserve volume are in a quantifiable sense closer to Hamiltonian systems

than their volume changing counterparts,” [45]. Therefore, being able to find an

invariant measure for a nonholonomic system allows for ergodic-like understanding

of its asymptotic behavior as well as provide a way to “Hamiltonize” a nonholonomic

system.

There has already been work done in finding invariant measures in systems where

symmetries are present: Chaplygin systems are studied in, e.g. [64, 72, 80, 83],

Euler-Poincaré-Suslov systems are studied in, e.g. [16, 66], and systems with internal

degrees of freedom are studied in, e.g. [15, 16, 113]. This chapter, rather, uses an all-

together different approach where no symmetries will be used. Additionally, in §5.7,

we provide necessary and sufficient conditions for when an invariant measure exists

72



73

whose density depends only on the base variables, i.e. f � π�
Qg for some g > Cª�Q�.

5.1 Global Nonholonomic Vector Fields

Given a constraint distribution, D� ` T �Q, we can determine the nonholonomic

vector field XD
H > X�D��. Commonly local, noncanonical, coordinates are chosen for

D�, §5.8 in [16] and [101]. However, we will instead work with the entire manifold

T �Q and define a global vector field Xglobal
H > X�T �Q� such that Xglobal

H SD� �XD
H . This

section outlines an intrinsic way to determine such a vector field.

Definition V.1. For a given constraint submanifold D� ` T �Q (D� need not be

a distribution), a realization of D� is an ordered collection of functions C �� �gi �
T �Q� R� such that zero is a regular value of G � g1 � . . . � gm and

D�
��

i

g�1
i �0�.

If the functions gi are given by momenta, i.e. gi � P �X i� (cf. Corollary III.21), then

the realization is called natural.

Remark V.2. Under the case where the Lagrangian is natural (which provides a

Riemannian metric on Q) and the constraint submanifold is a distribution, we can

choose the realization to be natural:

C � �P �W 1�, . . . , P �Wm��,
where W i � FL�1ηi � �ηi�®.

By replacing D� with a realization C , we can extend the nonholonomic vector

field to a vector field on T �Q that preserves the constraining functions gi. Recall

that the form of the nonholonomic vector field is iXDHω � dH �λαπ�
Qη

α. We construct

the global nonholonomic vector field, ΞC
H , by requiring that:
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(NH.1) iΞC
H
ω � dH � λαπ�

Qη
α for smooth functions λα � T �Q� R, and

(NH.2) LΞC
H
gi � 0 for all gi > C .

Under reasonable compatibility assumptions on C (cf. §3.4.1 in [80]), such a vector

field exists and is unique. However, given two different realizations, C and C �, of the

same constraints D�, it is not generally true that ΞC
H � ΞC �

H , however ΞC
H SD� � ΞC �

H SD� .

When both the Hamiltonian and realization are natural, the global field can be

explicitly computed via the constraint mass matrix.

Remark V.3. The constraint manifold is given by the joint zero level-sets of the gi

while the realization provides additional irrelevant information off of the constraint

manifold. This is why ΞC
H x ΞC �

H but they agree once restricted.

Definition V.4. For a natural realization C � �P �W 1�, . . . , P �Wm�� and natural

Hamiltonian (so �Q,g� is Riemannian), the constraint mass matrix, �mαβ�, is given

by orthogonally pairing the constraints, i.e.

mαβ
� g�Wα,W β� � ηα�W β�.

Additionally, its inverse will be denoted by �mαβ� � �mαβ��1
.

Lemma V.5. The constraint mass matrix is symmetric and positive-definite so long

as all the constraints are linearly independent.

Proof. This follows from the fact that �mαβ� is a Gram matrix for a nondegenerate

inner product.
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We can now write down a formula for ΞC
H . Using (NH.1) and (NH.2), we get that

LΞC
H
P �W β� � iX

P �Wβ�
ω�ΞC

H�
� �iΞC

H
ω�XP �Wβ��

� �dH�XP �Wβ�� � λαπ�
Qη

α�XP �Wβ��
� �P �W β�,H� � λαηα�W β� � 0

Ô� �P �W β�,H� �mαβλα.

Due to the constraint mass matrix being nondegenerate, the multipliers have a unique

solution and the global nonholonomic vector field is given by

(5.1) iΞC
H
ω � dH �mαβ �H,P �Wα��π�

Qη
β

Remark V.6. The global nonholonomic vector field given by (5.1) can be extended

to the case of nonlinear constraints via Chetaev’s rule, which will give equivalent

results to those in [37] where the “almost-tangent” structure of the tangent bundle

is utilized. For Lagrangian systems, Chetaev’s rule states that if we have a nonlinear

constraint f�q, q̇� � 0, then the constraint force takes the following form:

d

dt
�∂L
∂q̇

� � ∂L
∂q

� λ �
∂f

∂q̇
� λ � S�df,

and S � T �TQ�� T �TQ� is its almost-tangent structure. However as we are instead

on the cotangent bundle, the object we will use will be the related to the almost-

tangent structure through the fiber derivative,

C � T �T �Q�� T �T �Q�
C� �αidxi � βjdpj� � gijβjdxi.

For a constraint realization C � �g1, . . . , gm�, the nonholonomic vector field is given

by

iΞC
H
ω � dH �mαβ �H,gα�C�dgβ,
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where the multipliers are given by mαβ � C�dgβ �Xgα�.
Definition V.7. The 1-form given by

νC
H �� dH �mαβ �H,P �Wα��π�

Qη
β,

is called the nonholonomic 1-form with respect to the realization C .

Proposition V.8. Given two different natural realizations, C and C �, the global

nonholonomic vector fields given by (5.1) agree on D�.

Proof. Suppose that there is only a single constraint and C � �P �W �� and C � �

�fP �W �� for some smooth f . By Leibniz’s rule,

iΞC �

H
ω � dH �

1

f 2g�W,W � �fP �W �,H� fπ�
Qη

� dH �
1

f 2g�W,W � �f �P �W �,H� � P �W � �f,H�� fπ�
Qη

� dH �
1

g�W,W � �P �W �,H�π�
Qη �

P �W �
fg�W,W � �f,H�π�

Qη.

Therefore, we have

iΞC �

H
ω � iΞC

H
ω �

P �W �
fg�W,W � �f,H�π�

Qη,

which vanishes on D�. A similar argument works for multiple constraints.

Throughout the rest of this chapter, we will assume that C is a natural realization.

This, in turn, requires that the constraints are linear in the velocities / momenta.

5.2 Symmetries in Nonholonomic Systems

Before we introduce the nonholonomic volume form to check for measure preser-

vation, we take an aside to demonstrate how the global form (5.1) provides a clean

proof of the momentum equation, Theorem III.34. We first show a version of the

momentum equation where the Lie algebra element is constant and not assumed to

be in gD.
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Proposition V.9. Let G act on Q by diffeomorphisms and lift its action to a sym-

plectic action on M � T �Q. Then, if H � T �Q� R is a Hamiltonian invariant under

the G-action, for all ξ > g we have

˙̂
J�ξ� � LΞC

H
Ĵ�ξ� �mαβ �H,P �W β�� `J�ηα�, ξe.

Proof. We first notice that

LΞC
H
Ĵ�ξ� � dĴ�ξ��ΞC

H�
� iΞC

H
iξMω � �νC

H�ξM�.
Because the Hamiltonian is G-invariant, infinitesimally this states that dH�ξM� � 0

and therefore the above simplifies to

˙̂
J�ξ� �mαβ �H,P �W β�� �π�

Qη
α� �ξM� .

To finish the proof, we see that π�
Qη

α �ξM� � ηα �ξQ�. The result follows from applying

equation (3.9) or (3.14).

We can now proceed with the proof of Theorem III.34.

Proof of Theorem III.34. The product rule gives us

d

dt
Ĵnh�ξq�t�� �mαβ �H,P �W β�� `J�ηα�, ξq�t�e � P �� d

dt
ξq�t��

Q

� .
In order to prove the theorem, we will show that `J�ηα�, ξq�t�e vanishes. This follows

directly from the following calculation:

π�
Qη

α �ξM� � ηα�ξQ� � g�Wα, ξQ�.
Now, g�Wα�q�t��, ξq�t�Q � � 0 by definition of gD.
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5.3 Nonholonomic Volume Form

The symplectic manifold T �Q has a canonical volume form ωn. However, the non-

holonomic flow takes place on a submanifold D� ` T �Q which is 2n�m dimensional.

Therefore, ωn is not a volume form on D�. Here, we construct a volume form on D�

which is unique up to the choice of realization. The derivation of this will be similar

to the construction of the volume form on an energy surface in §3.4 of [1]. For the

realization C � �P �W 1�, . . . , P �Wm��, define the m-form

σC �� dP �W 1� , . . . , dP �Wm�.
Definition V.10. If we denote the inclusion map by ι � D�

0 T �Q, then a nonholo-

nomic volume, µC , is given by

µC � ι�ε, σC , ε � ωn.

Proposition V.11. Given an ordered collection of constraints, C , the induced vo-

lume form µC is unique.

Proof. Suppose that ε and ε� are two forms satisfying σC , ε � ωn. Then

ε � ε� � α, σC , α � 0.

Now let ι � D�
0 T �Q be the inclusion. Then from the above, we see that

ι�η � ι�η� � ι�α.

The result will follow so long as ι�α � 0. Suppose that ι�α x 0 and choose vec-

tors v1, . . . , v2n�m > TqD� ` TqT �Q such that α�v1, . . . , v2n�m� x 0. Complete this

collection of vectors to a basis of TqT �Q: v1, . . . , v2n�m, v2n�m�1, . . . , v2n such that

σC �v2n�m�1, . . . , v2n� x 0. Then we have

σC , α �v1, . . . , v2n� � ��1��2n�m�mα�v1, . . . , v2n�m� � σC �v2n�m�1, . . . , v2n� x 0,
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which is a contradiction.

Remark V.12. Notice that for an ordered collection of constraints the volume form

is unique. However, changing the order of the constraints changes the sign of the

induced volume form and rescaling constraints rescales the volume form. In this

sense, C uniquely determines µC , but D� only determines µC up to a multiple.

While examining the failure of Liouville’s theorem (Proposition III.14) for non-

holonomic systems, we will see when µC is preserved under the flow of XD
H . More

generally, we will consider the existence of a smooth density f > Cª�D�� when fµC

is preserved.

5.4 Divergence of a Nonholonomic System

Let ω � dqi ,dpi be the standard symplectic form on T �Q. This in turn induces a

volume form ωn. It is a known result that Hamiltonian flows preserve this measure,

however, nonholonomic flows generally do not.

5.4.1 Divergence Preliminaries

To understand volume preservation, we will use the notion of the divergence of a

vector field, see §2.5 of [1] or §5.1 in [70].

Definition V.13. Let M be an orientable manifold with volume form Ω and X a

vector field on M . Then the unique function divΩ�X� > Cª�M� such that LXΩ �

divΩ�X�Ω is called the divergence of X. The vector field X is called incompressible

iff divΩ�X� � 0.

This definition of divergence generalizes the familiar one from multivariate calcu-
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lus in which M � Rn and Ω � dx1 , . . . , dxn. Indeed,

LXΩ � diXΩ � d � n

Q
i�1

��1�i�1X i � dx1 , . . . , dxi�1 , dxi�1 , . . . , dxn	
� � n

Q
i�1

∂X i

∂xi
	 �Ω.

Studying the divergence is a useful test to check volume preservation via the

following proposition.

Proposition V.14 (2.5.25 in [1]). Let M be a manifold with volume Ω and vector

field X. Then X is incompressible iff every flow box of X is volume preserving.

Liouville’s theorem in this language states that for an unconstrained Hamiltonian

system, divωn�XH� � 0. That is, Hamiltonian systems preserve the volume induced

by the symplectic form. This is, in general, not the case for nonholonomic systems.

The remainder of this section deals with computing divµC
�XD

H� while the case of

finding an a density f such that divfµC
�XD

H� � 0 is postponed until §5.6.

Before we begin computing divergences, we first present a helpful lemma.

Lemma V.15. If C is a (natural) realization of a constraint D� ` T �Q, then

(5.2) divωn �ΞC
H�TD�

� divµC
�XD

H� .
Proof. Leibniz’s rule for the Lie derivative provides

LΞC
H
ωn � LΞC

H
�σC , ε�

� �LΞC
H
σC � , ε � σC , �LΞC

H
ε� .

However, LΞC
H
σC � 0 because the constraints are preserved under the flow. Applying

this, we see that

LΞC
H
ωn � σC , �LΞC

H
ε� ,

which gives

�divωn �ΞC
H��σC , ε � σC , �LΞC

H
ε� .
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Due to the fact that the Lie derivative commutes with restriction, the result follows.

5.4.2 One Constraint

Before we compute the divergence of arbitrary nonholonomic systems, we first

consider the simplified case where there is only a single constraint present, i.e. C �

�P �W ��. Here, we make the normalization η�W � � 1 to simplify equation (5.1). The

divergence of XD
H is given by

LXDH
µC � divµC

�XD
H�µC .

In order to compute this, we will invoke Cartan’s magic formula as well as Lemma

V.15 (restricting to D� will occur at the end):

LΞC
H
�ωn� � iΞC

H
dωn � diΞC

H
ωn

� n � d �iΞC
H
ω , ωn�1�

� n � d �iΞC
H
ω� , ωn�1 � n � �iΞC

H
ω� , dωn�1

� n � �diΞC
H
ω� , ωn�1.

The problem of computing the divergence collapses to calculating diΞC
H
ω (which

captures how “non-symplectic” the flow is). Let N be difference between the non-

holonomic and Hamiltonian vector fields:

N � �H,P �W �� ηk ∂

∂pk
.

Then, from Hamilton’s equations, we obtain

iΞC
H
ω � dH � iNω.
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Returning to the divergence calculation, diΞC
H
ω � diNω where iNω � �ηi �H,P �W ��dqi.

Applying the exterior derivative yields:

diNω � �� ∂ηi
∂qk

�H,P �W �� � ηi ∂
∂qk

�H,P �W ���dqk , dqi
� ηi

∂

∂p`
�H,P �W ��dp` , dqi

Notice that when we wedge diNω with ωn�1, the entire first line vanishes and only

the diagonal on the second survives. Combining everything, we see that

(5.3) divµC
�XD

H� � n � ηi ∂∂pi �H,P �W �� .
5.4.3 Multiple constraints

The exact same procedure can be carried out when there are an arbitrary number

of constraints. The divergence is then simply

(5.4) divµC
�XD

H� � n �mαβ � η
α
k

∂

∂pk
�H,P �W β�� .

5.4.4 “Curvature”

This section concludes with an intrinsic way to interpret (5.3) and (5.4). Recall

the cotangent projection πQ � T �Q� Q and the fact that

dπQ �Xf �
∂f

∂pi

∂

∂qi
.

The divergence formula (5.3) becomes:

divµC
�XD

H� � n � π�
Qη �X�H,P �W ���

� �n � π�
Qη ��XH ,XP �W ��� .

(5.5)

This can also be carried over to the multiple constraint case.

(5.6) divµC
�XD

H� � �n �mαβ � π
�
Qη

α ��XH ,XP �Wβ��� .
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The formulas (5.5) and (5.6) have a structure similar to the curvature of an Ehres-

mann connection. This is because these formulas have the structure of a projection

composed with a vector field bracket. The main difference is that while the curvature

of an Ehresmann connection is vertical-valued, these formulas are real-valued. We

proceed with computing the divergence of two examples: the Chaplygin sleigh and

the vertical rolling disk.

Remark V.16. In the same way that the nonholonomic 1-form can be extended to

the case of nonlinear constraints via Chetaev’s rule, see Remark V.6, the divergence

described above by (5.6) can also be extended to the case of nonlinear constraints.

The divergence is given by

divµC
�XD

H� � �n �mαβ � C
�dgα ��XH ,Xgβ�� .

5.5 Examples

In this section, we pause from theory and compute the divergence for two com-

monly studied nonholonomic systems: the Chaplygin sleigh and the vertical rolling

disk.

5.5.1 Chaplygin Sleigh

The Chaplygin sleigh is a nonholonomic system on the configuration space Q �

SE2 � SO2%R2, the special Euclidean group in two dimensions, and has the following

Lagrangian,

L �
1

2
�mẋ2 �mẏ2 � �I �ma2�θ̇2 � 2maẋθ̇ sin θ � 2maẏθ̇ cos θ� ,

where �x, y� > R2 is the contact point of the knife edge, θ > SO2 is its orientation, m

is the mass of the sleigh, I is the moment of inertia about the center of mass and a

is the distance from the center of mass to the contact point; see Figure 5.1.
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Figure 5.1: The Chaplygin sleigh is a rigid body attached to a sliding knife edge, §1.7 in [16].

The requirement that the knife edge can only slide in the direction it is pointing

(no orthogonal sliding is allowed) is given by the constraint

ẏ cos θ � ẋ sin θ � 0.

Which corresponds to the 1-form η � �cos θ�dy � �sin θ�dx. As the problem is stated

as Lagrangian, in order to use the results from above we must convert to the Ha-

miltonian side and transform the velocities to momenta, i.e. determine the musical

isomorphism ®. (Where g�η®, �� � η which is the fiber derivative.)

<@@@@@@@@@@>

ẋ

ẏ

θ̇

=AAAAAAAAAA?
�M�1

<@@@@@@@@@@>

px

py

pθ

=AAAAAAAAAA?
�

<@@@@@@@@@@@>

1

m
px �

1

I
�apθ sin�θ� � 1

2
a2py sin�2θ� � a2px sin2 θ�

1

m
py �

1

I
�apθ cos�θ� � 1

2
a2px sin�2θ� � a2py cos2 θ�

1

I
�pθ � apy cos�θ� � apx sin θ�

=AAAAAAAAAAA?
In terms of the momenta, the constraint (now on the cotangent bundle) is

(5.7) P �W � � ma2 � I

Im
�py cos θ � px sin θ� � a

I
pθ,

and the Hamiltonian is

H �
1

2m
�p2

x � p
2
y� � 1

2I
�p2
θ � a

2 �py cos θ � px sin θ�2
� 2apθpy cos θ � 2apθpx sin θ� .

Applying equation (5.3), we see that

(5.8) divµC
�XD

H� � 3Im

I �ma2
�� sin θ

∂

∂px
� cos θ

∂

∂py
��H,P �W �� .
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The Poisson bracket of the Hamiltonian with the constraint is

(5.9) �H,P �W �� � 1

Im
�px cos θ � py sin θ� �pθ � apy cos θ � apx sin θ� .

Combining equations (5.8) and (5.9), we get the following expression for the diver-

gence.

(5.10) divµC
�XD

H� � � 3a

I �ma2
�px cos θ � py sin θ�

The well-known phenomenon of the dissipative nature of the Chaplygin sleigh, [83,

99], is encapsulated by the fact that divµC
�XD

H� x 0 unless a � 0.

Another way to interpret the divergence is via the sleigh’s velocity,

v � ẋ cos θ � ẏ sin θ �
1

m
�px cos θ � py sin θ� .

Substituting this into the formula for the divergence, we get

divµC
�XD

H� � � 3mav

I �ma2
.

This shows that the vector field is contracting when the sleigh is moving forwards

and expanding when it is moving backwards.

5.5.2 Rolling Penny

The next example we examine is that of the vertical rolling disk (penny). This

is a system evolving on the configuration space Q � SE2 � S1 with coordinates

��x, y, θ�, ϕ�; see Figure 5.2. The Lagrangian for this system is taken to be the

kinetic energy,

L �
1

2
m �ẋ2 � ẏ2� � 1

2
Iθ̇2 �

1

2
Jϕ̇2.

Here, m is the mass of the penny, I is the moment of inertia of the disk about the

axis perpendicular to the plane of the disk, and J is the moment of inertia about an
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Figure 5.2: Configuration of the rolling penny, §1.4 in [16].

axis in the plane of the disk. If R is the radius of the penny, the conditions that the

penny rolls without slipping is given by the two constraints

η1�q̇� � ẋ �Rθ̇ cosϕ � 0,

η2�q̇� � ẏ �Rθ̇ sinϕ � 0.

Transferring to the Hamiltonian side, we get the following expressions for the Ha-

miltonian and for the constraints:

H �
1

2m
�p2

x � p
2
y� � 1

2I
p2
θ �

1

2J
p2
ϕ,

P �W 1� � 1

m
px �

1

I
Rpθ cosϕ,

P �W 2� � 1

m
py �

1

I
Rpθ sinϕ.

The constraint mass matrix is

�mαβ� �
<@@@@@@>

1

m
�

1

I
R2 cos2ϕ

1

I
R2 cosϕ sinϕ

1

I
R2 cosϕ sinϕ

1

m
�

1

I
R2 sin2ϕ

=AAAAAA?
.

The Poisson brackets of the constraints are

�H,P �W 1�� � � 1

IJ
Rpϕpθ sinϕ,

�H,P �W 2�� � 1

IJ
Rpϕpθ cosϕ.

After a lengthy but straightforward computation with (5.4), we get that

(5.11) divµC
�XD

H� � 0

Therefore, unlike the Chaplygin sleigh, the rolling penny does preserve measure.
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5.6 Invariant Measures and the Cohomology Equation

In general, the divergence of a nonholonomic system does not vanish as (5.10)

demonstrated. However, does there exist a different volume form that is invari-

ant under the flow? i.e. does there exist a smooth f A 0 (a density) such that

divfµC
�XD

H� � 0? Finding such an f requires the solution of a certain type of partial

differential equation (PDE) which is known as the smooth dynamical cohomology

equation.

5.6.1 The Cohomology Equation

What conditions need to be met for f such that fµC is an invariant volume form?

Using the formula for the divergence as well as the fact that the Lie derivative is a

derivation yields:

divfµC
�XD

H� � divµC
�XD

H� � 1

f
LXDH

�f�.
Therefore the density, f , yields an invariant measure if and only if

(5.12)
1

f
LXDH

�f� � �divµC
�XD

H� .
Notice that the left hand side of (5.12) can be integrated to

1

f
LXDH

�f� � d �ln f� �XD
H� .

Calling g � ln f , we have the following proposition.

Proposition V.17. For a nonholonomic vector field, XD
H , there exists a smooth

invariant volume, fµC , if there exists an exact 1-form α � dg such that

α �XD
H� � �divµC

�XD
H� .(5.13)

Then the density is (up to a multiplicative constant) f � eg.
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Therefore the existence of invariant volumes boils down to finding global solutions

to the PDE (5.13). The remainder of this section deals with uniqueness of solutions

and a necessary condition for solutions to exist.

Remark V.18. PDEs of the form dg�X� � f for a given smooth function f and

vector field X are called cohomology equations [47, 75]. Thus the equation (5.13) is

a cohomology equation.

5.6.2 Existence and Uniqueness

Uniqueness

Assuming that there exists a function g > Cª�D�� that solves (5.13), do there exist

other solutions? Suppose that g1 and g2 both solve (5.13). Then their difference must

be a first integral of the system: LXDH �g1�g2� � 0. Solutions of (5.13) are then unique

up to constants of motion. i.e. if g solves (5.13), then every invariant density has

the form (again, up to a multiplicative constant)

f � exp �g � constant of motion� .
Therefore invariant measures can be thought of as an affine space with dimension

being equal to the number of first integrals of the nonholonomic system.

Existence

For the purposes of this section, we examine an arbitrary cohomology equation

dg�X� � f . Using the method of characteristics, if there exists a solution, it must

take the form in the proposition below.

Proposition V.19. Consider the first-order linear PDE dg�X� � f where X >

X�M�, f > Cª�M� and denote the flow of ẋ � X�x� by ϕt. Then g is a solution if

and only if for all x >M and t > R

(5.14) g �ϕt�x�� � g�x� � S t

0
f �ϕs�x�� ds.
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Proof. First suppose that (5.14) holds. Then

dgx�X� � LXg�x� � lim
t�0

1

t
�g �ϕt�x�� � g �x��

� lim
t�0

1

t S
t

0
f �ϕs�x�� ds

� f�x�
Now assume that dg�X� � f . Fix x > M and define the function λ � R � R by

λ�t� � g �ϕt�x��. Then λ̇�t� � f �ϕt�x��. Integrating this yields:

λ�t� � λ�0� � S t

0
f �ϕs�x�� ds.

This is precisely (5.14).

In fact, if there is a periodic orbit, ϕt�x� � x for some t and x, we must have

g�ϕt�x���g�x� � 0. Using (5.14) this can be written as a necessary condition for the

existence of a solution.

Corollary V.20. Consider the PDE dg�X� � f on M . Then a necessary condition

for a global solution is f integrated along periodic orbits must be zero. i.e. if there

exists x >M and t > R such that ϕt�x� � x, then

S
t

0
f �ϕs�x�� ds � 0.

In the context of our original problem, in order for an invariant volume to exist, the

divergence need not be zero but it must average to zero along periodic orbits. That

is, the expanding and contracting parts must “cancel out.” Corollary V.20 offers a

convenient test to show invariant measures are impossible, but does a converse exist?

It turns out that with a certain other assumption the answer is yes, [55].

Theorem V.21 ([55]). Let M be a compact manifold and X a smooth vector field

on M whose associated flow is Anosov and transitive. Let f be a smooth function
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on M whose integral over every periodic orbit of X is zero. Then there exists a Cª

function u such that du�X� � f .

Therefore, if we can show that the flow is Anosov and check that the integrals

along periodic orbits vanish then an invariant measure must exist. However, this

is generally quite difficult to check and will not be pursued here. Instead, the next

section examines the case where invariant measures depend only on the configuration

variables or variables.

5.7 Special case: Measures Depending on Configuration

In general, solving the cohomology equation (5.13) is quite difficult. It turns out,

however, that it is relatively easy to determine necessary and sufficient conditions

on the solvability when the density is assumed to depend only on the configuration

variables.

Definition V.22. A density f � T �Q � R is said to depend on configuration if

f � π�
Qg for some g � Q� R.

Under this assumption, (5.6) can be presented in a surprisingly nice way. In this

case, the divergence can be described by an equivalence class of 1-forms. The density

form, defined below, is a representative element from this class.

Definition V.23. Let C be a (natural) realization of D� ` T �Q. Then, define the

density form to be the following 1-form

ϑC �mαβ �LWαηβ.

Studying the 1-form, ϑC , provides necessary and sufficient conditions for the exis-

tence of densities depending only on configuration. Recall that D0 � Ann�D� ` T �Q

is the annihilator of D ` TQ.
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Theorem V.24. There exists an invariant density depending on configuration if and

only if there exists ρ > Γ�D0� such that ϑC � ρ is exact.

Proof. To show this, we will prove that �n � π�
QϑC �XD

H� � divµC
�XD

H�. Recall that

the differential of a 1-form is given by dα�X,Y � �Xα�Y ��Y α�X��α��X,Y �� and

that π�
Qη

β�XH�SD� � 0. Returning to (5.6), we have

divµC
�XD

H� � �n �mαβ � π
�
Qη

α ��XH ,XP �Wβ���
� �n �mαβ � �XHπ

�
Qη

α�XP �Wβ�� �XP �Wβ�������π�
Qη

α�XH� � dπ�
Qη

α�XH ,XP �Wβ���
� �n �mαβ � �XHm

αβ � π�
Qdη

α�XH ,XP �Wβ���
� �n �mαβ � �dmαβ�q̇� � dηα�q̇,W β��
� �n �mαβ � �diWβηα � iWβdηα� �q̇�
� �n �mαβ �LWβηα�q̇�.

This computation shows that divµC
�XD

H� � �n �ϑC �q̇�, but q̇ cannot be arbitrary as it

must lie within D. Therefore, we can add on an element of D0 to ϑC without changing

its value on q̇: divµC
�XD

H� � �n � �ϑC � ρ��q̇� for any ρ > D0. Hence, a solution exists

depending on configuration if ϑC � ρ can be integrated, i.e. it is exact.

The above shows that exactness of ϑC determines the existence of a density de-

pending on configuration. How does this depend on the choice of C to realize the

constraints? It turns out the answer is independent of the choice of realization.

Theorem V.25. Let C and C � both be realizations of the constraint D�. If ϑC � ρ

is exact, then there exists ρ� such that ϑC � � ρ� is too. Moreover, if ϑC � ρ � df and

ϑC � � ρ� � df �, then ef � µC � ef
�

� µC �, modulo a constant of motion.

Proof. Suppose, as was in the proof of Proposition V.8, that there is a single con-
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straint such that C � �P �W �� and C � � �h � P �W ��. Computing ϑC � gives:

ϑC � �
1

h2m
LhW �hη�

�
1

h2m
�h2 �LWη � hm � dh � h � dh�W �η�

�
1

m
LWη �

1

h
dh �

dh�W �
hm

η

� ϑC � d �lnh� � α � η.
This shows that ϑC � and ϑC differ by something exact and something living in D0.

The component in D0 can be disregarded as it is absorbed into ρ�. Integrating gives

f � � f � lnh and it remains to prove that hµC � � µC . Recalling Definition V.10, we

have σC � dP �W � and σC � � P �W �dh � hdP �W �, so

dP �W � , ε � �P �W �dh � hdP �W �� , ε� � ωn, µC � ι�ε, µC � � ι�ε�.

Using the fact that P �W � � 0 under the pullback of ι, this component can be ignored

and we have µC � hµC � .

Remark V.26. It is only possible for ef � µC and ef
�

� µC � to be off by a constant of

motion if there exists an exact form in Γ�D0�. This only happens if the constraints

are not completely nonintegrable.

A reason why studying ϑC is insightful is that it immediately demonstrates why

holonomic systems systems are measure-preserving. This can be shown with the help

of a useful lemma.

Lemma V.27 (*). mαβ � dmαβ � d �ln det �mαβ��.
Proof. It suffices to check along a curve in the manifold. Let γ � I � Q be a curve

and let A�t� � �mαβ� X γ�t� be the mass matrix along the curve. Note that A�t� is

*We thank Dr. Alexander Barvinok for help with this proof.
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positive-definite and changes smoothly with t. We have

d

dt
ln detA�t� � d

dt detA�t�
detA�t� �

m

Q
i�1

detAi�t�
detA�t� ,

where Ai�t� is obtained from A�t� by differentiating the i-th row and leaving all

other rows intact, i.e.

Ai�t� �

�������������������������

a11�t� � a1m�t�
� � �

a�i�1�1�t� � a�i�1�m�t�
a�i1�t� � a�im�t�

a�i�1�1�t� � a�i�1�m�t�
� � �

am1�t� � amm�t�

�������������������������

.

Expanding detAi�t� along the i-th row:

detAi�t� � m

Q
j�1

��1�i�j�1a�ij�t�detAij�t�,
where Aij�t� is the �m � 1� � �m � 1� matrix obtained from Ai�t� and hence from

A�t� by crossing out the i-th row and j-th column.

Next, observe that ��1�i�j�1 detAij~detA�t� is the �j, i�-th entry of the inverse

matrix A�1�t� � �bij��t�, and since A�t� is symmetric, is also the �i, j�-th entry of

�bij��t�. Summarizing,

d

dt
ln detA�t� � m

Q
i,j�1

a�ij�t�bij�t�.

Proposition V.28. If the constraints are holonomic, then there exists a ρ > Γ�D0�
such that ϑC � ρ is exact. In particular, if C is chosen such that all ηα are closed,

ϑC is exact.
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Proof. When the constraints are holonomic, the 1-forms ηα can be chosen such that

they are closed. Then the density form is

ϑC �mαβ �diWβηα � iWβ���dηα�
�mαβ � dm

αβ

� d �ln det �mαβ�� ,
which is exact by Lemma V.27.

Example V.29 (The Chaplygin Sleigh). We wish to compute ϑC for the Chaplygin

sleigh and show that no measures depending on configuration exist. For this example,

W �
ma2 � I

Im
�cos θ

∂

∂y
� sin θ

∂

∂x
� � a

I

∂

∂θ
, η � �cos θ�dy � �sin θ�dx.

This gives us

ϑC �
1

η�W �LWη
�

ma

ma2 � I
��sin θ�dy � �cos θ�dx� .

We want to show that for any η̃ > Γ�D0�, ϑC � η̃ is not exact. Because there is only

one constraint, it suffices to show that there does not exist a smooth k such that

ϑC � k � η is exact, i.e. it requires the following to be zero:

d �ϑC � k � η� � ma

ma2 � I
��cos θ�dθ , dy � �sin θ�dθ , dx�

� �∂k
∂x

cos θ �
∂k

∂y
sin θ�dx , dy

� �∂k
∂θ

cos θ � k sin θ�dθ , dy
� �∂k

∂θ
sin θ � k cos θ�dθ , dx.

Separating the above, we need the following three to vanish:

0 �
∂k

∂x
cos θ �

∂k

∂y
sin θ,

0 �
∂k

∂θ
cos θ � k sin θ �

ma

ma2 � I
cos θ,

0 �
∂k

∂θ
sin θ � k cos θ �

ma

ma2 � I
sin θ.

(5.15)
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The second two lines of (5.15) are overdetermined for k in the θ-direction and are

inconsistent (unless a � 0 and we obtain the trivial solution k � 0). Therefore, there

does not exist a smooth k such that ϑC � k � η is closed.

Remark V.30. The necessary condition d �ϑC � ρ� � 0 creates a system of �n2� partial

differential equations with m unknowns. It is a straight-forward check to determine

whether or not this system is inconsistent; if it is inconsistent, then automatically no

invariant measures can exist. If this system turns out to be consistent, then actually

solving it reduces to solving another cohomology equation.

5.8 Invariant Measures Coming from a Momentum Map

As can be seen in Example V.29, the Chaplygin sleigh does not have an invariant

measure depending only on its base variables. Therefore, if any invariant measure

were to exist, it would have to depend on the fiber variables as well. We present

one way to search for solutions using the momentum map (3.8). In general for a

Lie group G, this method produces a space of possible solutions of dimG @ª while

the space of all possible solutions is infinite. However, as we will see in §5.8.1, this

technique will find an invariant measure for the Chaplygin sleigh.

Definition V.31. Let G be a Lie group which has a symplectic action on P �� T �Q.

The nonholonomic system is said to have an invariant G-measure if there exists a

ξ > g such that Ĵ�ξ� solves the cohomology equation (5.13), cf. Definition III.18.

As nice as it would be if a G-measure existed, it seems unlikely due to the fact

that the space of smooth functions that might solve dg�X� � f is infinite-dimensional

while the dimension of momentum maps is dimG @ ª. As such, we will widen our

search by introducing integrating factors in the following sense: Suppose α > Ω1�D��
solves α�XD

H� � divµC
�XD

H� and define the vector field Xα via iXαω � α. Then α
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being exact is equivalent to Xα being Hamiltonian and α being closed is equivalent

to Xα being symplectic. We will therefore relax our search and only require Xα to

be symplectic (i.e. closed solutions to (5.13)). Rewriting (5.13), we have to find a

symplectic vector field X such that

(5.16) νC
H�X� � divµC

�XD
H�,

where νC
H � dH � mαβ�H,P �W β��π�

Qη
α is the nonholonomic 1-form. For a given

infinitesimal generator on M � T �Q, ξM , we wish to determine an integrating factor

such that hξM remains symplectic.

Lemma V.32. Let h > Cª�M�, then the vector field hξM is symplectic if and only

if there exists a smooth function k � R� R such that h � k X Ĵ�ξ�.
Proof. In order for hξM to be symplectic, we need hiξMω to be closed. A straight-

forward computation yields:

d �hiξMω� � d �h � dĴ�ξ��
� dh , dĴ�ξ�.

Therefore, hξM is symplectic if and only if dh is linearly dependent on dĴ�ξ�, i.e.

dh � k��Ĵ�ξ��dĴ�ξ�.
By replacing ξM with hξM with the help of Lemma V.32, we have drastically

expanded the scope of our search.

Definition V.33. A nonholonomic system has a twisted G-measure if there is a

smooth function k � R� R such that k �Ĵ�ξ�� ξM solves (5.16).

As it turns out, there is a reasonable test to see if a twisted G-measure exists and

the resulting symplectic vector field, k X Ĵ�ξ�ξM , is Hamiltonian.
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Theorem V.34. There exists a twisted G-measure for (5.16) if and only if

�ln �νC
H�ξM�� , Ĵ�ξ�� � �ln�divµC

�XD
H��, Ĵ�ξ�� ,

for some ξ > g. Moreover, the resulting symplectic vector field, k �Ĵ�ξ�� ξM is Hamil-

tonian with Hamiltonian (the a is a constant of integration)

(5.17) G�p, q� � S Ĵ�ξ��p,q�

a
k�s�ds.

Proof. To simplify calculations, we will call f �� divµC
�XD

H�. Let us suppose that

k�Ĵ��ξ��νC
H�ξM� � f . Differentiating gives

k� �Ĵ�ξ��νC
H�ξM�dĴ�ξ� � k �Ĵ�ξ��d �νC

H�ξM�� � df.
This provides us with the two following equations:

k �Ĵ�ξ��d �νC
H�ξM�� �ξM� � df �ξM�

k �Ĵ�ξ��νC
H �ξM� � f.

Dividing these equations gives

d �ln �νC
H�ξM��� �ξM� � d �ln�f�� �ξM� .

The first result follows. To show the second result, suppose the symplectic vector

field has a Hamiltonian of the form h�Ĵ�ξ��. Differentiating this gives

h��Ĵ�dĴ�ξ� � k �Ĵ�ξ��dĴ�ξ�.
Therefore k is an antiderivative of h.

5.8.1 The Chaplygin Sleigh Revisited

We conclude our work with proving the following theorem.

Theorem V.35. The Chaplygin sleigh has a twisted S1-measure.



98

Proof. Recall the Chaplygin sleigh where the Hamiltonian is

H �
1

2m
�p2

x � p
2
y��

�
1

2I
�p2
θ � a

2 �py cos θ � px sin θ�2
� 2apθpy cos θ � 2apθpx sin θ� ,

with constraint

P �W � � I �ma2

Im
�py cos θ � px sin θ� � a

I
pθ.

Also recall that the divergence of this system is

divµC
�XD

H� � � 3a

I �ma2
�px cos θ � py sin θ� .

We will next introduce the S1 action that will generate the invariant measure.

Let S1 act on SE2 in the following way: for t > S1 � R~2πZ, and �x, y, θ� > SE2

t.

<@@@@@@@@@@>

x

y

θ

=AAAAAAAAAA?
�

<@@@@@@@@@@>

�a � cos�θ � t� � a � cos θ � x

a � sin�θ � t� � a � sin θ � y
θ � t

=AAAAAAAAAA?
.

The infinitesimal generator for this action is

ξQ � a � sin θ
∂

∂x
� a � cos θ

∂

∂y
�
∂

∂θ
.

The momentum map for the lifted action to T �SE2 is

(5.18) Ĵ�u� � u �pθ � apy cos θ � apx sin θ� ,
where u > Lie�S1� � R. The action chosen here seems unnatural until it is realized

that Ĵ�u� � u � FL�θ̇�, i.e. this is the action giving rotation about the contact point.

A computation provides:

νC
H�uM� � dH�uM� � 1

η�W � �P �W �,H�π�
Qη�uM�

��������H, Ĵ�u�� � 1

ma2 � I
�px cos θ � py sin θ� �pθ � apy cos θ � apx sin θ� η�u � ξQ�

�
au

ma2 � I
�px cos θ � py sin θ� �pθ � apy cos θ � apx sin θ�
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Checking the condition of Theorem V.34, we see that

�ln �νC
H�uM�� , Ĵ�u�� � u � py cos θ � px sin θ

px cos θ � py sin θ

� �ln�f�, Ĵ�u�� .

It remains a computation to find the invariant measure for the Chaplygin sleigh.

Theorem V.36. Ĵ�u��3 is an invariant (singular) density for the Chaplygin sleigh.

Proof. We know that there exists a smooth function k � R � R such that k X

Ĵ�u�νC
H�uM� � f . By inspection and using (5.17), we get that �3 ln �Ĵ�u�� is a

solution to (5.13). Therefore, its exponential is the invariant density.

Remark V.37. Notice that the measure is singular on the set pθ�apy cos θ�apx sin θ �

0. This corresponds to motion in a straight line with zero rotation - which is the set

where the trajectories asymptotically approach. This is why asymptotic stability is

still compatible with an invariant measure.



CHAPTER VI

Mechanical Hybrid Systems

This chapter begins to attempt to fuse the ideas of Chapters II and III, i.e. to

analyze mechanical impacts using the theory of geometric mechanics. A mecha-

nical hybrid system will have the form H � �M,S,X,∆� where M � TQ or T �Q

(depending on Lagrangian/Hamiltonian), S ` M is the location of impact, X is a

Lagrangian/Hamiltonian/nonholonomic vector field, and ∆ is a mechanical impact

map. Understanding the vector field was the object of study in Chapters III and V

while this chapter deals with understanding ∆. In order to construct this map, we

make the following assumption (cf. §3.5 in [17]):

Assumption VI.1. A mechanical impact is the identity on the base and satisfies

variational/Lagrange-d’Alembert principles on the fibers. In particular, the impact

map will have the form ∆ � �Id, δ�, e.g. for Hamiltonian systems we have πQX∆ � πQ

where πQ � T �Q� Q is the cotangent projection.

6.1 Mechanical Impact Maps

With a the continuous dynamics understood from either (3.5), (3.6), or (5.1), we

can develop the impact map. Our discussion considers first the case of unconstrained

systems before examining nonholonomic systems. We first outline the definition of a

hybrid mechanical system [5].

100
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Definition VI.2. A hybrid Lagrangian system is a triple �Q,L,S� where L � TQ� R

is a Lagrangian and S ` Q is a smooth, embedded submanifold of codimension 1.

Similarly, a hybrid Hamiltonian system is a triple �Q,H,S� where H � T �Q� R is the

Legendre transform of L. A hybrid mechanical system is either a hybrid Lagrangian

or hybrid Hamiltonian system.

Remark VI.3. Equivalently, a hybrid Lagrangian system can be given via a realiza-

tion, h, of S where h � Q � R such that S � h�1�0�. It will be evident later on that

the impact dynamics are derived using a realization but invariant under the choice

of such a realization.

Hybrid mechanical systems, either Lagrangian or Hamiltonian, induce a hybrid

dynamical system H � �M,S,X,∆� as described below. We abuse notation for S ` Q

in the definition for a hybrid mechanical system and S ` TQ for a hybrid dynamical

system; this notation will be straightened out in Remark VI.4.

� Lagrangian: M � TQ, S � ��q, q̇� > TQ � h�q� � 0, dh�q̇� @ 0�, and X is given by

the Euler-Lagrange equations (3.5),

� Hamiltonian: X � T �Q, S � ��q, p� > T �Q � h�q� � 0, P �©h� @ 0�, and X � XH

is the Hamiltonian vector field (3.6).

The map ∆ is currently undefined and will be the focus of §6.1.1 and §6.1.2; the

impact map will be fully determined by the data �Q,L,S�. The reason for the

inequality dh�q̇� @ 0 (and analogously for P �©h� @ 0) for the Lagrangian impact

surface is to say that an impact only occurs when the trajectory is moving outwards,

i.e. S is the set of outward pointing vectors along the set h�1�0�.
Remark VI.4. To assist with consistent notation, the following will be used for the

remainder of this thesis:
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� S � �q > Q � h�q� � 0� ` Q,

� Ŝ � ��q, q̇� > TQ � h�q� � 0, dh�q̇� @ 0� ` TQ, and

� S� � ��q, p� > T �Q � h�q� � 0, P �©h� @ 0� ` T �Q.

This work is interested in understanding mechanical impacts while under the

influence of nonholonomic constraints. For this reason we also define hybrid nonho-

lonomic systems.

Definition VI.5. A nonholonomic hybrid Lagrangian system is a tuple �Q,L,S,D�
such that �Q,L,S� forms a hybrid Lagrangian system and D ` TQ is a regular

distribution. Additionally, a nonholonomic hybrid Hamiltonian system is a tuple

�Q,H,S,D�� where H is the Legendre transform on L and D� � FL�D�.
Remark VI.6. For notation purposes, we will use the following symbols for nonholo-

nomic impact surfaces:

� ŜD �� Ŝ 9D, and

� S�
D
�� S� 9D�.

Problems can emerge if dh > D0 where S � h�1�0�. If this happens h is preser-

ved under the flow and impacts never (or constantly) occur, i.e. S�
D

no longer has

codimension 1 because

S�
D � ��q, p� > T �Q � h�q� � 0, P �©h� A 0, p > D�� ,

and p > D� implies that P �©h� � 0 which is contradictory. Therefore, for nonholono-

mic hybrid systems we will make the following assumption.

Assumption VI.7 (Nontrivial impact condition). Suppose that S ` Q is given by

S � h�1�0�. Then dhSS ~> D0SS.
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x

tt1 t1 � δt1t0

x0

tf
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x��t1�

x��t1� � δx1

Figure 6.1: The black curve is the continuous, piece-wise differentiable trajectory with an impact
at t1 while the red curve shows a virtual displacement.

Nonholonomic hybrid mechanical systems induce hybrid dynamical systems in the

same way as their unconstrained counterparts.

6.1.1 Holonomic Impacts

We begin with the observation that the Euler-Lagrange equations are variational.

With this, we assume that the impact map is variational as well. This is realized by

the Weierstrass-Erdmann corner conditions, cf. e.g. §3.5 of [17] or §4.4 of [71]:

FL� � FL�
� ε � dh,

L� � `FL�, q̇�e � L� � `FL�, q̇�e,
(6.1)

where S � �q > Q � h�q� � 0� and the multiplier ε is chosen such that both equations

are satisfied. These conditions have a cleaner interpretation on the Hamiltonian side:

p� � p� � ε � dh,

H�
�H�,

(6.2)

i.e. energy is conserved and the change in momentum is perpendicular to the impact

surface. This is precisely specular reflection. In the case where L is natural (the

difference of kinetic and potential energy), the corner conditions can be explicitly

solved. Recall that ©h � dh®, or equivalently dh � g�©h, ��.
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Theorem VI.8. Given a natural Lagrangian L�q, q̇� � 1
2gq�q̇, q̇� � V �q�, the impact

map is given by ∆ � �q�, q̇��( �q�, δ�q�, q̇��� where

(6.3) δ�q, q̇� � q̇ � 2
dh�q̇�

g�©h,©h�©h.
Proof. For a Lagrangian having the form L�q, q̇� � 1

2gq�q̇, q̇��V �q�, the corresponding

Hamiltonian is

H�q, p� � 1

2
g̃q�p, p� � V �q�, g̃�p, p�� � g�p®, p� ®�.

Using the fact that q� � q� along with energy conservation, we get

g̃�p�, p�� � g̃�p�, p��.
Coupling this with the first half of (6.2), we get

g̃�p�, p�� � g̃�p� � ε � dh, p� � ε � dh�
� g̃�p�, p�� � ε2 � g̃�dh,M�1dh� � 2ε � g̃�p�1, dh�.

This results in a quadratic equation in ε with a trivial solution ε � 0 as well as

ε � �2 �
g̃�p�, dh�
g̃�dh, dh� .

In terms of the momenta, the impact map is

(6.4) p� � p� � 2 �
g̃�p�, dh�
g̃�dh, dh�dh.

Flipping (6.4) back to the Lagrangian side with the musical isomorphism, p � q̇¬ and

dh � ©h¬, we see

q̇� � q̇� � 2 �
dh�q̇��

g�©h,©h�©h.
This matches (6.3).

Remark VI.9. The mechanical impact map, (6.3), is precisely a Householder matrix.
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Plastic Holonomic Impacts

Notice that (6.3) matches the impact equation in [5] with the exception of the

coefficient of restitution 0 B e B 1, that is

(6.5) q̇� � q̇� � �1 � e� dh�q̇��
g�©h,©h�©h.

Remark VI.10. In equation (6.5), e � 1 is precisely the variational case (elastic).

When e � 0, the impact is the orthogonal projection (with respect to g) TQ� kerdh

(plastic).

6.1.2 Nonholonomic Impacts

The study of nonholonomic impacts falls into two distinct categories: elastic and

plastic. Elastic impacts arise from the Lagrange-d’Alembert principle while plastic

impacts come from an orthogonal projection.

Elastic Impacts

Consider the variational impact equations (the corner conditions):

�FL� � FL�� δq � 0,

�H� �H�� δt � 0.

If the impact time is free, δt x 0, then we have conservation of energy which is

the second corner condition. However, unlike before, the spatial variations δq must

satisfy two sets of constraints: the nonholonomic constraints ηk �δq� � 0, and the

impact constraint dh �δq� � 0. This leads to a modified version of (6.1),

FL� � FL�
� λk � η

k � ε � dh,

L� � `FL�, q̇�e � L� � `FL�, q̇�e,
ηk �q̇�� � 0.

(6.6)
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Proposition VI.11. Assuming that L is a natural Lagrangian and all ηk are linearly

independent, there exists at most one nontrivial solution to (6.6).

Proof. Using the fact that p� � p� � λk � ηk � ε � dh and substituting in the other

constraints, we get m linear equations and one quadratic equation.

(6.7) λk � g̃�ηk, η`� � ε � g̃�dh, η`� � 0, ¦`,

2λk � g̃�p�, ηk� � 2ε � g̃�p�, dh� � λiλj � g̃�ηi, ηj�
� 2λkε � g̃�ηk, dh� � ε2 � g̃�dh, dh� � 0.

(6.8)

Assume that the linear system (6.7) has a solution, which then depends linearly on ε.

When substituted into (6.8), the resulting equation is quadratic in a single variable,

ε, with ε � 0 as a solution. Therefore there can be at most one nonzero solution.

Definition VI.12. Let �Q,g� be Riemannian and �Q,L,S,D� a corresponding na-

tural nonholonomic Lagrangian system. Then the impact map given by Proposition

VI.11 is called the elastic nonholonomic impact map.

Due to the Riemannian structure, (6.6) is solvable and hence the elastic nonholo-

nomic impact map is well-defined. As it turns out, the multipliers λk and ε can be

explicitly solved for.

Theorem VI.13. Suppose that there are constraints P �Wα� � 0. Then the elastic

nonholonomic impact map is

(6.9) q̇� � q̇� � λk �W
k � ε � ©h,

where

(6.10) ε �
2 �mαβ � g�©h,W β�P �Wα� � 2 � P �©h�
g�©h,©h� �mαβ � g�©h,Wα�g�©h,W β� ,

(6.11) λk � �mk` � g�©h,W `� � 2 �mαβ � g�©h,W β�P �Wα� � 2 � P �©h�
g�©h,©h� �mαβ � g�©h,Wα�g�©h,W β� .
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Remark VI.14. When we apply the constraints P �Wα� � 0, the above reduces to

ε �
�2 � P �©h�

g�©h,©h� �mαβ � g�©h,Wα�g�©h,W β� ,
λk �

2 �mk` � g�©h,W `�P �©h�
g�©h,©h� �mαβ � g�©h,Wα�g�©h,W β� .

(6.12)

Proof of Theorem VI.13. Solving (6.7) gives

(6.13) λk � �mk` � g̃�dh, η`�ε.
Substituting this into (6.8) to obtain a quadratic equation in ε provides

� 2 �mk` � g�©h,W `�g̃�p, ηk� � ε
� 2 � g̃�p, dh� � ε �mi`mjrm

ij � g�©h,W `�g�©h,W r� � ε2

� 2 �mk` � g�©h,W `�g�©h,W k� � ε2 � g�©h,©h� � ε2
� 0.

Notice that g̃�p, ηk� � P �W k�, g̃�p, dh� � P �©h�, and mi`mjrmij � m`r. Using this

and collecting in terms of powers of ε, we obtain

0 � �2 � P �©h� � 2 �mk` � g�©h,W `�P �W k�� ε
� �m`r � g�©h,W `�g�©h,W r� � 2 �mk` � g�©h,W `�g�©h,W k� � g�©h,©h�� ε2.

This has the trivial root ε � 0 as well as the nontrivial root (6.10). Finally, (6.11)

comes from combining (6.10) and (6.13).

It is possible to rewrite (6.9) in a form that is strikingly similar to the unconstrai-

ned case, (6.3). To do this, we need the following linear algebra lemma.

Lemma VI.15. Let �V, `�, �e� be an inner product space and �vi� ` V be a basis.

Define the matrix mij � `vi, vje. Then we have the following property:

`x, ye �mij`x, vie`y, vje.
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Proof. This proof proceeds by expanding x and y in terms of the basis: x � xivi and

y � yjvj. Taking their inner product yields

`x, ye � xiyj`vi, vje � xiyjmij.

Expanding the other side gives

mij`x, vie`y, vje �mijxk`vk, viey``v`, vje
� xky`mijm

kim`j.

The two sides agree because mijmkim`j �mk`.

Proposition VI.16. The elastic nonholonomic impact given in Theorem VI.13 can

be written as

(6.14) p� � p� � 2 �
P �πD©h�
dh�πD©h�π�

Ddh,

where πD � TQ� D is the orthogonal projection.

Proof. By Lemma VI.15, mαβ �g�©h,Wα�g�©h,W β� � g�πDÙ©h,πDÙ©h�. Due to the

fact that orthogonal projections are self-adjoint, we get that

g�©h,©h� �mαβ � g�©h,Wα�g�©h,W β� � g�πD©h,πD©h� � dh�πD©h�.
By similar reasoning, we have ©h�mαβg�©h,W β�Wα � πD©h. This allows for (6.9)

to be written as

p� � p� � 2 �mk` � g�©h,W `� � P �πD©h�
dh�πD©h�ηk � 2 �

P �πD©h�
dh�πD©h�dh

� p� � 2 �
P �πD©h�
dh�πD©h� �dh �mk` � dh�W `�ηk�

� p� � 2 �
P �πD©h�
dh�πD©h�π�

Ddh,

which matches (6.14).
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Definition VI.17. The impact map given by (6.10) and (6.11) provides the global

impact map ∆C � S�
� T �Q while the map given by (6.12) provides the restricted

impact map ∆D � S�
D
� D�.

The global impact map serves the same purpose as the global nonholonomic vector

field. In the same way that the global nonholonomic vector field made computing

the divergence straight-forward, the global impact map will make the corresponding

“hybrid Jacobian” easier to compute in Chapter VII.

Plastic Impacts

Unconstrained elastic impacts are defined to be variational while nonholonomic

elastic impacts are defined to satisfy the Lagrange-d’Alembert principle. Likewise,

since unconstrained plastic impacts are given by an orthogonal projection, nonholo-

nomic plastic impacts will be too.

Given the unconstrained impact, q̇� � δ�q, q̇�, it is not generally true that δ�q, q̇� >
Dq. In order to enforce the constraint, we orthogonally project δ onto the subspace

D. This inspires the following definition.

Definition VI.18. Let �Q,g� be a Riemannian manifold and �Q,L,S,D� be a corre-

sponding natural nonholonomic Lagrangian. Denote πD � TQ� D as the orthogonal

(with respect to g) projection onto the constraint distribution. Then the plastic

nonholonomic impact map is given by

(6.15) �q, q̇�( �q, πD X δ�q, q̇�� ,
where δ is the variational impact given by (6.3).

So long as the Lagrangian is natural, we can determine an explicit formula for the

plastic impact, πD X δ.
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Elastic wall Plastic wall
Elastic Constraint Elastic Impact plastic
Plastic Constraint Nonholonomic plastic Totally plastic

Table 6.1: Four types of nonholonomic impact maps.

Proposition VI.19. The plastic nonholonomic impact map πD X δ is given by

(6.16) q̇ ( q̇ � 2 �
dh�q̇�

g�©h,©h� �©h �mijη
i �©h�W j� .

Proof. This follows from the fact that the orthogonal projection is given by

πD�q̇� � q̇ �mijη
i �q̇�W j,

and the fact that πD�q̇�� � q̇� since the constraints are assumed to be satisfied before

impact.

To contrast the above with (6.14), the plastic impact map is

p� � p� � 2 �
P �©h�
dh�©h�π�

Ddh.

This plastic impact map is a projection onto D� while the plastic map given by (6.5)

is a projection onto TS. During a nonholonomic impact, the reaction impulses can

be viewed to fall into two categories: impulses from the constraints, ηα, and impulses

from the wall, dh. As such, we can think of each being elastic or plastic (Definition

VI.18 is for an elastic impact and plastic constraints). This prompts the following

definition based on the four options in Table 6.1.

Definition VI.20. Let ∆ � S�
� T �Q be an impact map of the form ∆�x, p� �

�x, δ�x, p��. ∆ is called

� Elastic if

δ�x, p� � p � 2 �
P �πD©h�
dh�πD©h�π�

Ddh,
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� Nonholonomic plastic if

δ�x, p� � p � 2 �
P �©h�
dh�©h�π�

Ddh,

� Impact plastic if

δ�x, p� � p � P �πD©h�
dh�πD©h�π�

Ddh,

� Totally plastic if

δ�x, p� � p � P �©h�
dh�©h�π�

Ddh.

6.2 Regularity of Mechanical Hybrid Systems

This section proves that elastic mechanical hybrid systems are smooth as per

Definition II.17. We first prove for unconstrained systems and nonholonomic systems

immediately follow.

Proposition VI.21. Let H � �T �Q,S�,XH ,∆� be a hybrid dynamical system indu-

ced by the hybrid Hamiltonian �Q,H,S�. Then H is smooth.

Proof. We must show that H satisfies (H.1)-(H.5), (A.1), and the transverse condi-

tion. Conditions (H.1)-(H.4) are easily verified. For (H.5), we notice that

S�
� ��q, p� > T �Q � h�q� � 0, P �©h� @ 0� ,

∆�S�� � ��q, p� > T �Q � h�q� � 0, P �©h� A 0� ,
S� 9∆�S�� � ��q, p� > T �Q � h�q� � P �©h� � 0� .

Therefore S� 9∆�S�� � g and S� 9∆�S�� has codimension 2 so (H.5) is satisfied.

For (A.1) assume that �q�0�, p�0�� > S� 9 ∆�S�� � S� � S� and that there exists

ε A 0 such that for all δ > �0, ε�, we have �q�δ�, p�δ�� > S�. Since q�δ� > S and

P �©h��q�δ�, p�δ�� @ 0, q�t� must intersect S transversely at δ. This leads to a

contradiction.
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To finish the proof, we need to show that for �q, p� > S�, we have the direct sum:

T�q,p�T
�Q � T�q,p�S

� `XH �R,

i.e. XH is not tangent to S�. This follows from similar reasoning as for (A.1); let

γ�t� be a base curve of XH , then γ intersects S transversely.

The above proof works exactly the same for nonholonomic hybrid systems.

Corollary VI.22. Let H � �D�, S�
D
,XD

H ,∆
D� be a hybrid dynamical systems induced

by the hybrid nonholonomic system �Q,H,S,D��. Then H is smooth.

6.3 Systems with Symmetry

There are many different notions of symmetry in a hybrid system. Each of the flow,

the impact surface, the impact map, or any combination of the above can experience

a symmetry. When all three have the same symmetry, everything is straightforward

[4]. We will be interested in the case where not all objects obey the same symmetry.

6.3.1 Momentum Equation

Before we discuss symmetries, we first examine how momentum maps evolve with

time. Let X > X�Q� be a smooth vector field and call its momentum P � T �Q� R.

Proposition VI.23. Let X > X�Q� be a smooth vector field. Then the (hybrid)

dynamics of its momentum is given by

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
Ṗ �X� � �H,P �X�� �mαβ �H,P �Wα�� ηβ�X�, h�q� x 0,

P ��X� � P ��X� � 2 �
P �πD©h�
dh�πD©h� � dh�πDX�, h�q� � 0.

Another way to view the above is to use the linearity of momentum to transfer
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the dynamics to X:

(6.17)

¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

Ṗ �X� � �H,P �πDX�� , h�q� x 0,

P ��X� � P �X � 2 �
dh�πDX�
dh�πD©h�πD©h� , h�q� � 0.

The momentum dynamics (6.17) immediately show that each of the P �Wα� are

conserved.

This also provides insight into Zeno states. Notice that a Zeno state occurs when

P �©h� � 0 during impact [74], i.e. Zeno states in mechanical systems occur during

grazing impacts (the converse is not necessarily true) . This says that understanding

Zeno solutions requires understanding the following dynamics:

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
Ṗ �©h� � �H,P �πD©h�� , h�q� x 0,

P � �©h� � P �©h � 2 � πD©h� , h�q� � 0.

6.3.2 The Mechanical Connection

Studying the effect of symmetries in hybrid systems will, in effect, by studying

(6.17) where X � ξQ is the infinitesimal generator for some group action. In this sense

P �ξQ� � Ĵ�ξ� will become the momentum map, recall Definition III.18. Therefore,

we can view (6.17) as dynamics on g�. In order to understand the impacts on g�,

we need to provide this space with a metric. This will be accomplished with the

following two objects: the locked inertia tensor and the mechanical connection (see

§3.12 in [16]).

Definition VI.24. Let �Q,g� be a Riemannian manifold and suppose that g is

invariant under the group action. For each q > Q, we define the locked inertia tensor

to be the map I�q� � g� g� defined by

Iη �ζ� � g �ηQ�q�, ζQ�q�� .
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Definition VI.25. Let J � T �Q � g� be the momentum map in Corollary III.21.

The mechanical connection is the map As � T �Q� g given by

As�q, p� � I�q��1J�q, p�.
As will be seen in §6.3.4, the mechanical connection is used to describe how the

momentum changes across an impact.

6.3.3 Hybrid Reduction

We review Chapter 3 in [4] which is the case where the flow, impact surface, and

impact map all satisfy the symmetries.

Definition VI.26. Let �M,S,X,∆� be a hybrid dynamical system. A group action

Φ � G � Diff�M� is called a hybrid group action if ΦSS is an action on S and

∆ XΦg SS � Φg X∆.

Notice that this requires the impact surface, S, to be symmetric and for the impact

map to be G-equivariant.

Definition VI.27. An Ad�-equivariant momentum map J �M � g� is called hybrid

Ad�-equivariant if J X∆�s� � J�s� for all s > S.

The above states that in addition to being Ad�-equivariant, the impacts must also

preserve the momentum.

Definition VI.28. The tuple �M,ω,S,∆,Φ, J� is called a hybrid Hamiltonian G-

space if

1. �M,ω,Φ, J� forms a Hamiltonian G-space where �M,ω� is a symplectic ma-

nifold, Φ � G � Diff�M� is a symplectic group action with Ad�-equivariant

momentum map J ,
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2. Φ is a hybrid group action, and

3. J is a hybrid Ad�-equivariant momentum map.

This allows us to carry out hybrid reduction as described by Theorem 3.4 and 3.5

in [4]. First, we define what a hybrid regular value is.

Definition VI.29. Let J � M � g� be a momentum map. Suppose that µ > g� is

a regular value of J . We say that µ is a hybrid regular value if it is also a regular

value of J SS.

Theorem VI.30. Let �M,ω,S,∆,Φ, J� be a hybrid Hamiltonian G-space with a G-

invariant Hamiltonian H � M � R. Assume µ > g� is a hybrid regular value of the

hybrid Ad�-equivariant momentum map J and the action of Gµ on J�1�µ� is free,

proper, and hybrid. Then there is a reduced Hamiltonian hybrid system:

�Mµ, Sµ,Xµ,∆µ�,
where Mµ � πµ �J�1�µ�� as in Theorem III.23, Sµ � πµ �S 9 J�1�µ��, ∆µ satisfies

π�
µ∆µ � ∆, and Xµ is defined by

dHµ � iXµωµ, Hµ X πµ �H X ιµ.

6.3.4 Nonsymmetric Hybrid Impacts

In order to reduce the hybrid dynamics as in Theorem VI.30, it is needed that

S inherits the same symmetry as Q and that the impact preserves the momentum.

However, in practice this is not always the case. Assume that �M,ω,Φ, J� is a

Hamiltonian G-space but is not hybrid. This means that momentum will not be

conserved across impacts; although during the continuous portion, we still have J̇ � 0.

Now we are not assuming that the momentum is hybrid Ad�-equivariant which

means that the momentum can change across impacts.
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Theorem VI.31. Let η � S � g� be such that η�ξ� � dh�ξQ�. Then the impact map

for the momentum is given by

(6.18) J X∆ � J � 2
η �As�
η �I�1η�η,

where I � g � g� is the locked inertia tensor and As � M � g is the mechanical

connection.

Remark VI.32. When the group action is hybrid, we see that η � 0 and thus momen-

tum is conserved across impacts.

In the nonsymmetric case, the flow between impacts is described on the reduced

space Mµ but jumps to a different leaf, Mδ�µ�, upon impact. This induces dynamics

between the different constant momentum leaves. When the impact dynamics (6.18)

do not depend on the configuration, the dynamics end up being periodic.

Proposition VI.33. Suppose that η x 0 and (6.18) does not depend on q > Q. Then

J X∆ � J if and only if η �I�1J� � 0. Moreover, whenever (6.18) does not depend on

q > Q, we have that J X∆2 � J .

Proof. The first part is just stating that η�As� � 0. For the second, we notice that

J X∆ � J � J�λ�η where λ > g and η�λ� � �2. Computing:

J X∆2
� J X∆ � J�λ�η X∆

� J � J�λ�η � J�λ� �η � η�λ�η�
� J � J�λ�η � J�λ�η
� J.

Therefore, the momentum impact equation is 2-periodic.
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Nonholonomic Impacts

As a last note, we modify (6.18) to nonholonomic mechanical systems. In order

to do this, we first construct a metric on g�. Let q > Q and define t�, �yq � g� � g� � R

such that tη, µyq � η �I�q��1µ�. Using this language with Theorem VI.13, we obtain

the following for the momentum impact equation.

Theorem VI.34. Let η � S � g� such that η�ξ� � dh�ξQ� and βk � S � g� such that

βk�ξ� � ηk�ξQ�. Then the nonholonomic impact map is given by

(6.19) J X∆C
� J � λk � β

k � ε � η,

where

ε �
�2 � η�As�tη, ηy �mk` � tη, βkytη, β`y ,

λk �
2 �mk` � tη, β`y � η�As�tη, ηy �mij � tη, βiytη, βjy .

Here the matrix �mij� � �mij��1 where mij � tβi, βjy.

The expression (6.19) can be simplified when we use the nonholonomic momentum

map.

Proposition VI.35. Using the notation in Theorem VI.34, equation (6.19) becomes

(6.20) JD X∆D
� JD � ε � η,

where it is understood that η is restricted to �gq��.

Proof. Let ξ > gq. Then we have βk �ξ� � ηk �ξQ� � 0.

The multiplier, ε, has a clean interpretation in the nonholonomic case.

Definition VI.36. Define the constrained locked inertia tensor as ID � gD � �gD��
by

ID �ξ� �ζ� � g�ξQ, ζQ�.



118

Likewise, define a metric t�, �yD � �gD�� � �gD�� � R by ID.

Theorem VI.37 (Nonholonomic Hybrid Momentum Equation). Let η � S � �gD��
such that η�ξ� � dh�ξQ� for all ξ > gD. The nonholonomic impact map is given by

(6.21) JD X∆D
� JD � 2 �

tη, JDyDtη, ηyD η.

Proof. Proving this requires showing that

tη, ηy �mk` � tη, βkytη, β`y � tηSD, ηSDyD.
This follows from Lemma VI.15.

6.4 Example: Nonholonomic Billiards - Rolling Disk

The vertical rolling disk is a simple example for illustrating nonholonomic dy-

namics and we will examine the billiard problem where the particle moves as the

rolling disk in between impacts [27]. We will work with the somewhat nonphysical

case where the disk is not permitted to tilt. The configuration space and local coor-

dinates for the rolling disk are given by q � �x, y, θ,ϕ� > Q � R2 � S1 � S1, denoting

the position of the contact point, the rotation angle of the disk, and the orientation

of the disk, respectively, cf. Figure 5.2.

6.4.1 Dynamic nonholonomic equations

The Lagrangian for the vertical disk is taken to be the kinetic energy (no potential

force will be included), i.e.

L �
1

2
m �ẋ2 � ẏ2� � 1

2
Iθ̇2 �

1

2
Jϕ̇2.

Here, m is the mass of the disk, I is the moment of inertia of the disk about the axis

perpendicular to the plane of the disk, and J is the moment of inertia about an axis

in the plane of the disk.
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If R A 0 is the radius of the disk, the nonholonomic constraints for rolling without

slipping are

ẋ � Rθ̇ cosϕ,

ẏ � Rθ̇ sinϕ.

(6.22)

This can be expressed as D � kerη1 9 kerη2 where

η1
� dx �R �cosϕ�dθ,

η2
� dy �R �sinϕ�dθ.

(6.23)

The equations of motions for this (uncontrolled) system are given by two dynamic

equations and the two constraining equations (see §1.4 of [16] for the derivation).

Jϕ̈ � 0,

�I �mR2� θ̈ � 0,

ẋ � Rθ̇ cosϕ,

ẏ � Rθ̇ sinϕ.

These equations can be easily integrated. Let the initial conditions be �x0, y0, θ0, ϕ0�
and call ω � ϕ̇, Ω � θ̇, which are constants. Then, the (continuous) equations of

motion are

ϕ � ωt � ϕ0,

θ � Ωt � θ0,

x �
Ω

ω
R sin �ωt � ϕ0� � Ω

ω
R sinϕ0 � x0,

y � �
Ω

ω
R cos �ωt � ϕ0� � Ω

ω
R cosϕ0 � y0.

6.4.2 Impact map

Below, we will construct both the elastic (6.9) and nonholonomic plastic (6.16)

impact maps. Before we proceed with their derivations, we first lay out the impact
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surface, S. Suppose that the edge of the table is described by the level-set S� �

��x, y� > R2 � h̃�x, y� � 0� for some smooth h̃ � R2
� R. Then an impact occurs not

when h̃�x, y� � 0, rather when

h��x, y, θϕ� �� h̃�x �R cosϕ, y �R sinϕ� � 0,

for when the leading edge makes contact and

h��x, y, θϕ� �� h̃�x �R cosϕ, y �R sinϕ� � 0,

for when the tailing edge makes contact. Each of these impacts will be the same

(modulo a sign difference). As such, we will only construct the impact maps for

when the leading edge makes contact, i.e. h � h�.

Both impact maps require the constraining vector fields, W i, as well as the con-

straint mass matrix, mij.

W 1
�

1

m

∂

∂x
�
R

I
cosϕ

∂

∂θ
,

W 2
�

1

m

∂

∂y
�
R

I
sinϕ

∂

∂θ
,

and

�mij� �
<@@@@@@>
m �K cos2ϕ �K sinϕ cosϕ

�K sinϕ cosϕ m �K sin2ϕ

=AAAAAA?
, K �

m2R2

I �mR2
.

Elastic Impact

Using (6.9), the elastic nonholonomic impact map is given by

ẋ� � ẋ� �
1

m
λ1 �

1

m

∂h̃

∂x
ε

ẏ� � ẏ� �
1

m
λ2 �

1

m

∂h̃

∂y
ε

θ̇� � θ̇� �
R

I
cosϕ � λ1 �

R

I
sinϕ � λ2

ϕ̇�
� ϕ̇� �

R

J
�∂h̃
∂y

cosϕ �
∂h̃

∂x
sinϕ� ε,
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where the multipliers are chosen such that the constraint are preserved and energy

is conserved, which are given by (6.12).

Nonholonomic Plastic Impact

Using (6.3) to determine the (pre-) impact map, we see that

ẋ� � ẋ� �
C

m

∂h̃

∂x
,

ẏ� � ẏ� �
C

m

∂h̃

∂y
,

θ̇� � θ̇�,

ϕ̇�
� ϕ̇� �

C

J
R�cosϕ

∂h̃

∂y
� sinϕ

∂h̃

∂x
� .

(6.24)

Here, the number C � C�ϕ, ẋ, ẏ, ϕ̇� has the value

C �

�2 �h̃xẋ � h̃yẏ �R �h̃y cosϕ � h̃x sinϕ� ϕ̇�
1
m
�h̃2

x � h̃
2
y� � 1

JR
2 �h̃y cosϕ � h̃x sinϕ�2 ,

where h̃x and h̃y are the x and y partial derivatives of h̃. Notice that at impact

the rotation angle of the disk, θ̇, is unchanged. This is because the constraint of no

sliding has not yet been imposed. In order to apply the constraints, we compute πD.

We can write πD as a matrix with coordinates �ẋ, ẏ, θ̇, ϕ̇�:

(6.25) �I �mR2� � πD �

<@@@@@@@@@@@@@@@>

mR2 cos2ϕ mR2 sinϕ cosϕ IR cosϕ 0

mR2 sinϕ cosϕ mR2 sin2ϕ IR sinϕ 0

mR cosϕ mR sinϕ I 0

0 0 0 I �mR2

=AAAAAAAAAAAAAAA?

.

The impact map is then given by composing (6.25) with (6.24).

Remark VI.38. The projection map πD given by (6.25) can be used to computing the

two remaining types of impacts given by Table 6.1. The data we need, in particular,
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are ©h, πD©h, and π�
D
dh. These are:

©h �
1

m

∂h̃

∂x

∂

∂x
�

1

m

∂h̃

∂y

∂

∂y
�
R

I
�∂h̃
∂y

cosϕ �
∂h̃

∂x
sinϕ� ∂

∂ϕ
,

πD©h �
R2

2�I �mR2� �∂h̃∂x �1 � cos 2ϕ� � ∂h̃
∂y

sin 2ϕ	 ∂

∂x

�
R2

2�I �mR2� �∂h̃∂y �1 � sin 2ϕ� � ∂h̃
∂x

cos 2ϕ	 ∂

∂y

�
R

I �mR2
�∂h̃
∂x

cosϕ �
∂h̃

∂y
sinϕ	 ∂

∂θ
�
R

I
�∂h̃
∂y

cosϕ �
∂h̃

∂x
sinϕ	 ∂

∂ϕ
,

π�
Ddh �

mR2

2�I �mR2� �∂h̃∂x �1 � cos 2ϕ� � ∂h̃
∂y

sin 2ϕ	dx
�

mR2

2�I �mR2� �∂h̃∂y �1 � sin 2ϕ� � ∂h̃
∂x

cos 2ϕ	dy
�

IR

I �mR2
�∂h̃
∂x

cosϕ �
∂h̃

∂y
sinϕ	dθ �R �∂h̃

∂y
cosϕ �

∂h̃

∂x
sinϕ	dϕ.

6.4.3 The Momentum Equation

Next, we derive the nonholonomic hybrid momentum equation (6.21). When

analyzing the impacts, two different types can happen: the leading or tailing edge

can make contact. In the same spirit as the preceding section, we will only consider

the leading edge impact as the other case is nearly identical. In this example, Q �

SE2 � S1 which is itself a Lie group. Therefore, we can let G � Q and let it act

via left-translations. We identify g � R4 via the local coordinates �x, y,ϕ; θ�. The

corresponding infinitesimal generators are

�1,0,0,0�Q �
∂

∂x
,

�0,1,0,0�Q �
∂

∂y
,

�0,0,1,0�Q �
∂

∂ϕ
� y

∂

∂x
� x

∂

∂y
,

�0,0,0,1�Q �
∂

∂θ
.

(6.26)
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To determine the bundle, gD, we use (6.26) to determine which elements of g map

to the kernels of η1 and η2 in (6.23). Solving this system of equations produces

gq � span��y,�x,1,0�, �R cosϕ,R sinϕ,0,1�� .
Let us call ξ1 �� �y,�x,1,0� and ξ2 �� �R cosϕ,R sinϕ,0,1�. To determine the con-

strained locked inertia tensor, ID, we use the metric on Q, i.e. ID�ξi��ξj� � g�ξiQ, ξjQ�.
The matrix with respect to the basis B � �ξ1, ξ2� is

IDB �

<@@@@@@>
J 0

0 mR2 � I

=AAAAAA?
.

The last piece of information required for the nonholonomic hybrid momentum equa-

tion is the map η � S̃ � �gD��,

η �ξ1� � R�cosϕ
∂h

∂y
� sinϕ

∂h

∂x
� ,

η �ξ2� � R�cosϕ
∂h

∂x
� sinϕ

∂h

∂y
� .

To describe the evolution of JD � T �Q� �gD��, let us choose a dual basis �µ1, µ2� to

�ξ1, ξ2�, so µi�ξj� � δji . With respect to these coordinates,

JDB � �pϕ Rpx cosϕ �Rpy sinϕ � pθ� .
By the momentum equation (3.15), the continuous evolution of the momentum is

d

dt
JDB � �0 Rpy cosϕ �Rpx sinϕ� .

Before we construct the impact map, we can simplify the expression for the mo-

mentum by substituting in the constraints (6.22). This simplifies the momentum

to

(6.27) JDB � �pϕ pθ� , d

dt
JDB � �0 0� .
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A slightly different derivation of (6.27) can be found in [14] and §5.6 of [16]. The

impact map is linear so it can be written as JD
B
X∆D � JD

B
� �I2 � 2 �RB� where

(6.28) RB �
1�mR2 � I�c2

1 � Jc
2
2

<@@@@@@>
�mR2 � I�c2

1 �mR2 � I�c1c2

Jc1c2 Jc2
2

=AAAAAA?
c1 � hy cosϕ � hx sinϕ,

c2 � hx cosϕ � hy sinϕ.

This shows that the momentum is conserved during the continuous case while it is

shuffled during impacts, which only depend on the angle the disk makes with the

wall.

6.4.4 Numerical Results

Assume that the table-top is elliptical. i.e.

h̃�x, y� � x2

a2
�
y2

b2
� 1.

We will also assume that the disk is homogeneous and thin so I � 1~2mR2 and

J � 1~4mR2. For the remaining parameters, we would like R @@ a, b so the coin

has ample room to explore. The values are in the table below and are chosen to be

similar to a US penny.

Parameter Value
R 0.01 m
m 0.0025 kg
I 1.25 � 10�7 kg m2

J 6.25 � 10�8 kg m2

a 0.15 m or 0.20 m
b 0.20 m

Table 6.2: The chosen set of parameters for the time step example; a takes the first value for the
elliptical cases and the latter for the circular ones.
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(a) Elastic impacts on a circular table. (b) Plastic impacts on a circular table.

(c) Elastic impacts on an elliptical table. (d) Plastic impacts on an elliptical table.

Figure 6.2: The first 20 impacts for elastic/plastic impacts on a circular/elliptical table.

Plastic vs Elastic

For the simulations, Figure 6.2, the same initial conditions are chosen: x0 � y0 �

θ0 � 0, ϕ0 � π~2, θ̇0 � 10, and ϕ̇0 � 0.2 rad/sec.

Hints of Chaos

In addition to comparing trajectories of the elastic and plastic impacts, we com-

pare how changes in initial conditions propagate with time. All 100 initial conditions

are taken to be those chosen in §6.4.4 except that θ̇0 and ϕ̇0 are randomly perturbed

by @ 0.005 rad/sec. These results are shown in Figure 6.3.

The Momentum Equation

We finish this section with examining the momentum of the disk (6.27) and (6.28).

Due to the fact that energy is conserved during both continuous and impact phases,



126

Figure 6.3: Plots of 100 different initial conditions at various times.

the momentum must remain on the ellipse of constant energy,

�mR2 � I

2I2
�p2

θ �
1

2J
p2
ϕ � constant.

Plots of the trajectories of the nonholonomic momentum are shown in Figure 6.4.

Figure 6.4: Left: The momentum for a circular table is 2-periodic which is representative of the
order seen in Figure 6.2 (a). Center: The 2-periodicity is slightly destroyed with a slightly elliptical
table. Right: All order in the momentum is lost which which demonstrates the lack of order in
Figure 6.2 (c).



CHAPTER VII

Invariant Measures in Hybrid Systems

In the same way that Chapter V examined the problem of invariant measures in

nonholonomic systems, this chapter attempts to find invariant measures for hybrid

dynamical systems. We first examine invariant differential forms before specializing

to volume forms. This chapter concludes with a result that the hybrid (vertical)

rolling disk is always volume-preserving independent of the choice of table-top.

We will tacitly assume that ∆�S� `M is also a smooth embedded submanifold.

7.1 Invariant differential forms

Before we deal with invariant volume forms, we first determine criteria for when

an arbitrary differential form is preserved.

Theorem VII.1. Let H � �M,S,X,∆� be a smooth hybrid system. Let ϕHt be the

hybrid flow. Then for a given α > Ωm�M�, we have �ϕHt ��α � α if and only if LXα � 0

and

α∆�x� �∆X
� � v1, . . . ,∆

X
� � vm� � αx �v1, . . . , vm� ,

where ∆X
� is the augmented differential, recall Definition IV.14.

Proof. For simplicity of calculations, we will assume that α is a 1-form. Let x0 >M ,
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then the condition that �ϕHT ��α � α means

αϕHT �x0� ��ϕHT �� v� � αx0 �v� .
Choose x0 and T such that a single impact occurs along the path �ϕHt �x0� � t > �0, t��
and call this time t1 and location y0, i.e. y0 � ϕt1�x0� > S. Additionally, call z0 ��

∆�y0� and w0 �� ϕT�t1�z0� � ϕHT �x0�. Because the vector field is transverse to S at

y0, we can split up the tangent space at x0 in the following way:

Tx0M � T Sx0M `X�x0� �R, �ϕt1�� �T Sx0M� � Ty0S.
To compute �ϕHT �� v, we split into the cases where v > T Sx0M and v >X�x0� �R (which

can be taken as v � X�x0� by linearity). See Figure 7.1 for an illustration of the

setup.

Let v > T Sx0M . Therefore, we can choose a curve γ � ��ε, ε� � M such that

ϕt1 �γ�s�� > S for all s > ��ε, ε�. Then ϕHT �γ�s�� � ϕT�t1X∆Xϕt�γ�s��. Differentiating

this provides

�ϕHT �� v � �ϕT�t1�� �∆� � �ϕt1�� v.
Therefore, for v > T Sx0M ,

αϕHT �x0� ��ϕHT �� v� � αϕHT �x0� ��ϕT�t1�� �∆� � �ϕt1�� v� .
Which, if LXα � 0, invariance is equivalent to α∆�y0� �∆� � v� � αy0�v� for v > Ty0S `

Ty0M .

Let v � X�x0�. To complete the proof, we need to show that �ϕHT ��X�x0� �

X�ϕHT �x0��. Let γ � ��ε, ε� �M be given by γ�t� � ϕt�x0� such that ε @ t1 (so γ is
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S S̃

Ty0S

y0

X�y0�
TSx0

M

x0 X�x0�

Tz0 S̃

z0
X�z0�

�ϕT�t1�� �Tz0 S̃�

w0
X�w0�

Figure 7.1: Diagram for the proof of Theorem VII.1. The set S̃ �� ∆�S� and TSx0
M �� �ϕ�t1�� Ty0S.

also the hybrid flow). Then we have

�ϕHT �� v � d

dt
V
t�0

ϕHT X ϕHt �x0�
�
d

dt
V
t�0

ϕHT�t�x0�
�X�w0�,

which completes the proof.

Definition VII.2. A differential form α is called hybrid-invariant if �ϕHt ��α � α.

Let the set AH ` Ω�M� be all the hybrid-invariant forms.

7.1.1 A Formula for the Augmented Differential

We take a brief digression to write down an explicit formula for the augmented

differential ∆X
� . Let v > TxM such that h�x� � 0 (so x > S). If the impact map is

∆ � S �M , then the augmented impact is given by

(7.1) ∆X
� v �

dh�v�
dh�X�x��X�∆�x�� �∆� �v � dh�v�

dh�X�x��X�x�� .
In practice computing ∆X

� will be quite tedious. The next subsection provides ne-

cessary and sufficient conditions for α > AH without the need to explicitly compute

∆X
� from (7.1).
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7.1.2 Properties of Invariant Forms

Rather than having to compute ∆X
� , the following theorem provides a way to test

whether or not α > AH without computing ∆X
� .

Theorem VII.3. A differential form α is hybrid-invariant if and only if LXα � 0

and

∆�ι�
S̃
iXα � ι�SiXα,(7.2)

∆�ι�
S̃
α � ι�Sα,(7.3)

where S̃ � ∆�S� and ιS � S 0M , ιS̃ � S̃ 0M are the inclusion maps.

Proof. Suppose that α > Ω2�M� (the proof is almost identical for forms of different

degrees). For u, v > Ty0M , decompose them in the following way:

u � a �X�y0� � ũ, ũ > Ty0S

v � b �X�y0� � ṽ, ṽ > Ty0S.

Under this decomposition, the augmented differential is

∆X
� � u � a �X�z0� �∆�ũ

∆X
� � v � b �X�z0� �∆�ṽ.

Therefore, according to Theorem VII.1 invariance is equivalent to

αy0�a �X�y0� � ũ, b �X�y0� � ṽ� � αz0�a �X�z0� �∆�ũ, b �X�z0� �∆�ṽ�.
Using the bi-linearity of α results in

0 � a � α�X�y0�, ṽ� � a � α�X�z0�,∆�ṽ�
� b � α�ũ,X�y0�� � b � α�∆�ũ,X�z0��
� α�ũ, ṽ� � α�∆�ũ,∆�ṽ�.
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This condition is equivalent to

iX�y0�α�ṽ� � iX�z0�α�∆�ṽ�
α�ũ, ṽ� � α�∆�ũ,∆�ṽ�

for all ũ, ṽ > Ty0S. These are equivalent to (7.2) and (7.3).

It is interesting to point out that hybrid-invariance requires two additional con-

ditions, not one. For reasons that will be apparent in §7.1.3, condition (7.2) will be

called the energy condition while (7.3) will be called the specular condition.

The previous theorem provides a geometric way to check whether or not a given

form is hybrid-invariant. This allows for a way to study some algebraic properties of

AH.

Corollary VII.4. The set AH ` Ω�M� is a ,-subalgebra closed under d and iX .

Proof. If we denote A �� �α > Ω�M� � LXα � 0�, then it is already known that A `

Ω�M� is a ,-subalgebra closed under d and iX (see Corollary 3.4.5 in [1]). Therefore,

in order to prove the theorem, it suffices only to check (7.2) and (7.3). Let α,β > AH.

We only need to check that dα, iXα, and α , β obey (7.2) and (7.3).

Consider iXα. This satisfies (7.3) because α satisfies (7.2) and (7.2) is satisfied

because iXiXα � 0.

Consider dα. Condition (7.3) follows from the fact that d commutes with pull-

backs:

∆�ι�
S̃
dα � d �∆�ι�

S̃
α� � d �ι�Sα� � ι�Sdα.

Condition (7.2) requires Cartan’s magic formula:

∆�ι�
S̃
iXdα � ∆�ι�

S̃
����LXα � diXα� � �∆�ι�

S̃
diXα

� �d �∆�ι�
S̃
iXα� � �d �ι�SiXα�

� �ι�SdiXα � ι�SiXdα.
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Finally, consider α , β. The condition (7.3) holds because pullbacks distribute

over the wedge product: f��α , β� � f�α , f�β. For condition (7.2), we see that

∆�ι�
S̃
iX �α , β� � ∆�ι�

S̃
�iXα , β � α , iXβ�

� �∆�ι�
S̃
iXα� , �∆�ι�

S̃
β� � �∆�ι�

S̃
α� , �∆�ι�

S̃
iXβ�

� �ι�SiXα� , �ι�Sβ� � �ι�Sα� , �ι�SiXβ�
� ι�SiX �α , β� ,

which completes the proof.

7.1.3 Invariant Forms for Hybrid Mechanical Systems

It is known that (unconstrained) elastic mechanical impacts are symplectic [91].

In that work, the authors show symplecticity via variational principles. Here, on the

contrary, we can show symplecticity directly via (7.2) and (7.3).

Theorem VII.5. Elastic impacts are symplectic.

Proof. The first condition is a consequence of conservation of energy:

∆�ι�
S̃
dH � ι�SdH.

The second condition is a little more subtle. Choose coordinates such that xn � h.

In these coordinates,

ι�
S̃
ω � dx1 , dp1 � . . . � dx

n�1 , dpn�1.

The elastic impact map is the identity on every coordinate with the exception of

pn, but this is invisible to the restricted form ι�
S̃
ω. Therefore, it is preserved across

impacts.

In order for the impacts to be symplectic, H need not be conserved, only dH.

Another way of viewing this is symplecticity as a result of H being a relative inva-

riant. This means that H X∆ � H � constant rather then H X∆ � H, so energy can
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be injected, or sapped, across impacts without breaking the symplectic structure. In

particular, being symplectic is weaker than being variational.

Corollary VII.6. Elastic impacts are volume preserving.

Proof. Elastic impacts preserve the symplectic form and consequently preserves the

volume form by Corollary VII.4.

Due to the fact that nonholonomic systems are generally not symplectic (this is

actually a deep question, see e.g. [13] and [45] for an in-depth discussion), volume

will generally not be preserved.

7.2 Hybrid-Invariant Measures

Before we address the issue of nonholonomic hybrid volume preservation, we first

examine the problem of finding a smooth invariant measure for an arbitrary hybrid

system. Instead of having to solve a (continuous) cohomology equation (5.13), we

will now have to solve a “hybrid cohomology equation.”

An invariant measure for a smooth hybrid system H � �M,S,X,∆� is given by a

hybrid-invariant volume form, i.e. µ is an invariant volume if µ > AH 9Ωn�M�. The

following theorem gives conditions on such a µ.

Theorem VII.7. Let H � �M,S,X,∆� be a smooth hybrid system. A volume form

µ > Ωn�M� is invariant under the hybrid dynamics if and only if

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

divµ�X� � 0

∆�ι�
S̃
iXµ � ι�SiXµ

Proof. These conditions match those of Theorem VII.3 with the exception of the

specular term (7.3). This is because µ is an n-form and dimS � n � 1 and therefore

ι�Sµ � 0 so the specular term is trivially satisfied.
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In a manner similar to §5.6, suppose µ > Ωn�M� but µ ~> AH. What conditions

can be placed on a function f �M � R to guarantee f � µ > AH?

Definition VII.8. Let H � �M,S,X,∆� be a smooth hybrid system and let µ be a

volume form on M . The unique function Jµ�∆� > Cª�S� such that

(7.4) ∆�ι�
S̃
iXµ � Jµ�∆� � ι�SiXµ,

is called the hybrid Jacobian of ∆ with respect to µ.

Proposition VII.9. For a smooth hybrid system H � �M,S,X,∆�, there exists a

smooth hybrid-invariant volume, f � µ, if there exists a smooth function g � M � R

such that

dg�X� � �divµ�X�
g X∆ � gSS � � ln �Jµ�∆�� .

(7.5)

Then the density is (up to a multiplicative constant) f � eg.

Proof. The first condition is precisely (5.13). To see the second, we apply the energy

condition to f � µ.

∆�ι�
S̃
iX�f � µ� � �∆�ι�

S̃
f� � �∆�ι�

S̃
iXµ�

� �f X∆� � �Jµ�∆� � ι�SiXµ�
� f SS � ι�SiXµ.

So the energy condition is satisfied if and only if Jµ�∆� � �f X ∆� � f SS. Taking the

logarithm of both sides yields the result.

The system of equations in Proposition VII.9 is a differential-algebraic equation

which reflects the dual nature of hybrid systems.
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Definition VII.10. Let H � �M,S,X,∆� be a smooth hybrid system. Suppose

f > Cª�M� and k > Cª�S�. The differential-algebraic equation

(7.6)

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
dg�X� � f
g X∆ � gSS � k

is called a hybrid cohomology equation.

Just as in §5.6, finding an invariant measure is equivalent to solving a cohomology

equation. In general, we expect solving (7.6) to be very difficult if not impossible.

This is because merely the continuous cohomology equation is difficult to solve, let

alone the additional algebraic boundary conditions that must be satisfied.

7.3 Invariant Measures for Nonholonomic Hybrid Systems

Theorem VII.5 shows that unconstrained hybrid mechanical systems automati-

cally preserve measure. In the language of Proposition VII.9, divωn�XH� � 0 and

Jωn�∆� � 1 and the corresponding cohomology equation has a trivial solution. On

the other hand, for a nonholonomic system it is no longer true that divµC
�XD

H� � 0

and determining invariant measures becomes a nontrivial task. Likewise, it is no

longer obvious that JµC
�∆D� � 1. In what follows, we compute the hybrid Jacobian

and attempt to solve the corresponding hybrid cohomology equation.

7.3.1 The Hybrid Jacobian

In order to find invariant measures for nonholonomic hybrid systems, we need to

be able to compute JµC
�∆D�. In order to calculate this, we will use a similar trick

as we did to compute the divergence: calculate Jωn�∆C � and restrict to D�. This

will require a tool similar to Lemma V.15.
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Lemma VII.11. Let HC � �T �Q,S�,ΞC
H ,∆

C � be the global version of the nonholo-

nomic hybrid system H � �D�, S�
D
,XD

H ,∆
D� and let µC be the nonholonomic volume

form. Then

Jωn�∆C �SD� � JµC
�∆D�.

Proof. The proof will be similar in spirit to Lemma V.15. A computation yields:

∆C�ι�
S̃
iΞC
H
ωn � ∆C�ι�

S̃
iΞC
H
�σC , ε�

� ∆C�ι�
S̃
�iΞC

H
σC , ε � ��1�mσC , iΞC

H
ε�

� ��1�m �∆C�ι�
S̃
σC � , �∆C�ι�

S̃
iΞC
H
ε�

� ��1�m �ι�SσC � , �∆C�ι�
S̃
iΞC
H
ε� ,

which uses the fact that the constraints are preserved under the flow. That is,

iΞC
H
σC � 0 and ∆C�ι�

S̃
σC � ι�SσC . The right side of (7.4) produces

Jωn�∆C � � ι�SiΞC
H
�σC , ε� � Jωn�∆C � � ι�S �iΞC

H
σC , ε � ��1�mσC , iΞC

H
ε�

� ��1�mJωn�∆C � � �ι�SσC � , �ι�SiΞC
H
ε� .

Combining both of the above gives

�ι�SσC � , �∆C�ι�
S̃
iΞC
H
ε� � Jωn�∆C � � �ι�SσC � , �ι�SiΞC

H
ε� .

The result follows from restricting to D�.

Therefore, to calculate Jωn�∆C �, we need to understand ∆C�ι�
S̃
iΞC
H
ωn. Expanding

gives

∆C�ι�
S̃
iΞC
H
ωn � ∆C�ι�

S̃
�n � νC

H , ωn�1� � n � �∆C�ι�
S̃
νC
H� , �∆C�ι�

S̃
ω�n�1

.

Therefore, the hybrid Jacobian is determined by how much the nonholonomic 1-form

and the symplectic form fail the specular condition (7.3). We next present a helpful

computational lemma which will be useful for computing the above.
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Lemma VII.12. Let x1, . . . , xn�1, p1, . . . , pn be local coordinates and let A � �αij� be

an �n � 1� � n matrix. Then

�n�1

Q
j�1

n

Q
i�1

αij � dx
j , dpi�

n�1

� ��1�
n�12 � � �n � 1�! � n

Q
k�1

det�Ak� �Ωk,

Ωk �� dx
1 , . . . , dxn�1 , dp1 , . . . , Ãdpk , . . . dpn,

(7.7)

where Ak is the �n� 1�� �n� 1� matrix from deleting the kth-column from A and the

caret Ãdpk means that dpk is omitted from the wedge product.

Proof. Recall the multinomial theorem which states that

(7.8) �n�1

Q
j�1

n

Q
i�1

αij � dx
j , dpi�

n�1

� Q
S�dij��n�1

� n � 1

d1
1, . . . , d

n
n�1

�M
ij

�αij � dxj , dpi�dij ,
where

S�dij� � n�1

Q
j�1

n

Q
i�1

dij, � n � 1

d1
1, . . . , d

n
n�1

� � n!

d1
1! � . . . � dnn�1!

.

Notice that for any i, j we have �αij � dxj , dpi�2
� 0. This implies that the only

nonzero terms in (7.8) have dij > �0,1�. This simplifies (7.8) to

(7.9) �n�1

Q
j�1

n

Q
i�1

αij � dx
j , dpi�

n�1

� �n � 1�! � Q
S�dij��n�1

dij>�0,1�

M
ij

�αij � dxj , dpi�dij .

In order to evaluate (7.9), we wish to understand the structure of the matrices

d � �dij� that contribute a nonzero term. In addition to having coefficients in �0,1�,

they also have the following property: if dij � 1, then dkj � d
i
k � 0 for all k. This is due

to the fact that �dxj , dpi� , �dx` , dpk� � 0 whenever j � ` or i � k. In other words,

the matrix d must have a single nonzero entry in each row and at most one in each

column. The matrix d is then given as a column permutation of the matrix

d0 �

<@@@@@@@@@@@@@@@>

1 0 � 0 0

0 1 � 0 0

� � � � �

0 0 � 1 0

=AAAAAAAAAAAAAAA?

.
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Let D be the set of all such matrices and partition it as D � @nk�1Dk where d > Dk if

its kth-column is identically zero. The expression (7.9) becomes

(7.10) �n�1

Q
j�1

n

Q
i�1

αij � dx
j , dpi�

n�1

� �n � 1�! � n

Q
k�1

Q
�dij�>Dk

M
i,j�dijx0

αij � dx
j , dpi.

By deleting the kth-row from Dk there is a natural isomorphism Sn�1 � Dk, where

Sn�1 is the symmetric group of n�1 elements. A matrix �dij� > Dk if and only if there

exists σ > Sn�1 such that dij � 1 if and only if σk�j� � i where

σk�j� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
σ�j�, σ�j� @ k
σ�j� � 1, σ�j� A k.

(This modified permutation keeps track of the kth-column deletion.) Before we finish

the calculation of (7.7), we notice that (see 3.1.3 in [1])

n�1

M
j�1

dxj , dpσk�j� � ��1�
n�12 � � dx1 , . . . , dxn�1 , dpσk�1� , . . . , dpσk�n�1�

� ��1�
n�12 � � sgn�σ� � dx1 , . . . , dxn�1 , dp1 , . . . , Ãdpk , . . . dpn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
��Ωk

.

Using this, we see that (7.10) becomes

�n�1

Q
j�1

n

Q
i�1

αij � dx
j , dpi�

n�1

� ��1�
n�12 � � �n � 1�! � n

Q
k�1

Q
σ>Sn�1

sgn�σ� n�1

M
j�1

α
σk�j�
j �Ωk

� ��1�
n�12 � � �n � 1�! � n

Q
k�1

det�Ak� �Ωk,

which is precisely (7.7).

Proposition VII.13. In local coordinates where h � xn, we have

ι�S �νC
H , ωn�1� � ��1�
n�12 � � �n � 1�! � �∂H

∂pn
� � dx1 , . . . , dxn�1 , dp1 , . . . , dpn.

Proof. By Lemma VII.12 we can compute �ι�Sω�n�1 where αij � δ
i
j. This provides

�ι�Sω�n�1
� ��1�
n�12 � � �n � 1�! �Ωn.
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Due to the fact that Ωn depends on every dxj and dpi with the exception of dpn, the

only component of νC
H that wedges with �ι�Sω�n�1 to produce a nonzero term is the

pn term, i.e.

νC
H , �ι�Sω�n�1

� �∂H
∂pn

� dpn� , �ι�Sω�n�1

� ��1�
n�12 � � �n � 1�! � ∂H
∂pn

�Ωn , dpn,

where Ωn , dpn � dpn ,Ωn because Ωn has even degree.

Corollary VII.14. In coordinate-free language, we have

ι�S �νC
H , ωn�1� � ��1�
n�12 � � �n � 1�! � π�

Qdh �ΞC
H� �Ωh,

where Ωh is a volume on S� given by

Ωh � ι
�
Sε, dh , ε � ��1�n�1 � dx1 , . . . , dxn , dp1 , . . . , dpn.

We are now ready to proceed with calculating the hybrid Jacobian.

Theorem VII.15. The hybrid Jacobian is given by

(7.11) Jωn�∆C � � �2 � π�
Qπ

�
D
dh � π�

Qdh��ΞC
H�

π�
Qdh�ΞC

H� .

In particular, JµC
�∆D� � 1.

Proof. We will choose local coordinates such that h � xn in a manner similar to

Proposition VII.13 and later translate to a coordinate-free language as in Corollary

VII.14. We will first compute �∆C�ι�
S̃
ω�n�1

. In coordinates where h � xn, this

becomes

�∆C�ι�
S̃
ω�n�1

� �dx1 , d�p1 X∆C � � . . . � dxn�1 , d�pn�1 X∆C ��n�1
.

The map ∆C given by Theorem VI.13 depends on both x and p:

d �pj X∆C � � αijdpi � βijdxi.
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With this notation, we have

�∆C�ι�
S̃
ω�n�1

� �αij � dxj , dpi � βij � dxj , dxi�n�1

� �αij � dxj , dpi�n�1
,

where the βij � dxj , dxi terms do not contribute because any piece containing them

will necessarily have a repeated term. Therefore if we can determine the coefficients

αij, Lemma VII.12 shows how to compute the product. The expression (6.14) shows

that the impacts are linear in the momentum and so the coefficients are

αij � δ
i
j � 2

�πD©h�i
dh �πD©h� �π�

Ddh�j ,
where �πD©h�i is the ith-component of the vector πD©h and similarly for π�

D
dh.

We must now calculate the determinants of the matrices Ak. For the remainder

of the proof, we will deal with the n � 4 case but the general case works in the same

way. For ease of notation, let u �� πD©h and v �� π�
D
dh. Notice that in our choice of

local coordinates,

dh�πD©h� � dxn�πD©h� � �πD©h�n � un �� 1

κ
.

The matrix A � �αij� is given by

A �

<@@@@@@@@@@>

1 � 2κu1v1 �2κu2v1 �2κu3v1 �2κu4v1

�2κu1v2 1 � 2κu2v2 �2κu3v2 �2κu4v2

�2κu1v3 �2κu2v3 1 � 2κu3v3 �2κu4v3

=AAAAAAAAAA?
.

The determinants detAk are

detA1 � �2v1,

detA2 � 2v2,

detA3 � �2v3,

detA4 � 1 � 2κ �u1v1 � u
2v2 � u

3v3� � 2v4 � 1.
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Lemma VII.12 asserts that

(7.12) �∆C�ι�
S̃
ω�3

� ��1�
n�12 � � �n � 1�! � 2 ���v1 �Ω1 � v2 �Ω2 � v3 �Ω3 � v4 �Ω4� �Ω4� .
To finish the theorem, we need to compute the wedge product of ∆C�ι�

S̃
νC
H with

(7.12). It turns out that ∆C�ι�
S̃
νC
H , �∆C�ι�

S̃
ω�3

� ι�Sν
C
H , �∆C�ι�

S̃
ω�3

. This is because

∆C�ι�
S̃
νC
H � ∆C�ι�

S̃
dH �∆C�ι�

S̃
�mαβ�H,P �Wα��π�

Qη
β�

� ι�SdH �∆C�ι�
S̃
�mαβ�H,P �Wα��π�

Qη
β� ,

by conservation of energy. Notice that the second term above has the form γi � dxi

which pairs to zero when wedged with any Ωk. Therefore,

∆C�ι�
S̃
�νC

H , ωn�1� � ι�SdH , �∆C�ι�
S̃
ω�n�1

� ��1�
n�12 � � �n � 1�! � �2�vj � ∂H
∂pj

� � ∂H
∂p4

	 �Ω
� ��1�
n�12 � � �n � 1�! � �2 � π�

Ddh �ΞC
H� � dh �ΞC

H�� �Ω.
The result follows from applying Proposition VII.13 which says

ι�S �νC
H , ωn�1� � ��1�
n�12 � � �n � 1�! � dh �ΞC

H� �Ω.
The quotient of coefficients is (7.11).

Since JµC
�∆D� � 1, we need an invariant density to be conserved across impacts:

if fµC is invariant then f X ∆D � f SS�
D

. As it turns out, there is a clear qualitative

difference between nonholonomic systems with measures depending on configurations

versus those who do not. Before we demonstrate this with examples, we will quickly

address the Zeno issue in measure-preserving systems.

7.4 The Zeno Issue in Measure Preserving Systems

Invariant measures provide information about asymptotic properties of flows. Ho-

wever, hybrid dynamical systems can exhibit a Zeno solution which prevents ϕHt �x�
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making sense as t � ª. This section shows that, although they may exist, a given

trajectory will almost never be Zeno.

Any Zeno issue will occur within the set Z �� S 9 ∆�S�, which by (H.5) has

codimension at least 2 (exactly 2 for mechanical systems). We will therefore focus

our attention on trajectories that intersect this set; let N be all points in M that

eventually move to Z,

N �� �x >M � §t A 0 s.t. lim
s�t�

ϕHs �x� > Z  .
Our goal is to show that N has zero measure. A key to proving this is to introduce

the following assumption.

Assumption VII.16 (Boundary identity property). Consider a smooth hybrid dyn-

amical system H � �M,S,X,∆�. Then for any sequence �sn� > S such that sn � s > Z

we have ∆�sn�� s.

This assumption is useful because it allows us to “complete” the hybrid flow in

a manner similar to [5]. Essentially, suppose x0 is Zeno so lims�t� ϕHs �x0� � z0 > Z.

Then we define ϕHt �x0� �� z0 and we can extend it via assumption (A.1). Let ε A 0

such that ϕt�z� does not intersect S for all t > �0, ε�. We define the completed flow

to be ϕHt�δ�x0� � ϕδ �z0�. If a hybrid flow is measure-preserving then its associated

completed flow is too precisely due to the boundary identity property; we are ignoring

any impacts at z0 which comes from continuously extending the impact map from S

to S. We can now state the following theorem.

Theorem VII.17. Suppose that H � �M,S,X,∆� is a smooth hybrid dynamical

system with the boundary identity property, Assumption VII.16. If H preserves a

smooth measure µ, then µ�N � � 0.
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Proof. Partition Z into a countable collection of compact sets, �Vα�, and partition

N in the following way:

Nα,δ � �x > N � §t > �0, δ� s.t. ϕHt �x� > Vα� .
It follows that if each Nα,δ has zero measure then all of N has zero measure, since

a countable union of null sets is still a null set. In particular, we only need to prove

that for all α, there exists δ such that Nα,δ has zero measure. This is because for

δ A s

ϕHs �Nα,δ �Nα,s� � Nα,δ�s.

Fix an α. By (A.1), for each z > Vα, there exists ε A 0 such that ϕt�z� ~> S for all

t > �0, ε�. Let δ be the infimum of all such ε which is positive due to the compactness

of Vα. By the measure-preserving property of the flow, we get

µ �Nα,δ~4� � µ �ϕHδ~2 �Nα,δ~4�� B µ �O�Vα, δ�� ,
where

O�Vα, δ� � �
t>�0,δ�

ϕt�Vα�.
Because zero impacts occur, the set O�Vα, δ� is a manifold with codimension at least

1 which necessarily has zero measure.

Hybrid mechanical systems are smooth and satisfy Assumption VII.16 so if a

smooth invariant measure exists, Zeno states are negligible. We will use this result

to justify that our ignorance of Zeno states is essentially benign.

7.5 Examples

For a nonholonomic hybrid system, a density f solves the hybrid cohomology

equation (7.5) if and only if f solves the continuous cohomology equation (5.13) and



144

is invariant under impacts, f X ∆D � f SS�
D

. It turns out that there is an important

distinction between densities depending only on configuration versus those who do

not. To demonstrate this we consider both the Chaplygin sleigh (with invariant den-

sity given by Theorem V.36) and the rolling disk (which trivially preserves measure,

recall (5.11)).

7.5.1 Chaplygin Sleigh

An invariant density for the Chaplygin sleigh is

Ĵ�u��3
�

1

u3
�

1

�pθ � apy cos θ � apx sin θ�3 .

Without loss of generality, we will take Iu � I �ma2. The above can be simplified

using the constraint (5.7).

ρsleigh �� Ĵ �I �ma2

I
��3

� p�3
θ .

In order for measure to be conserved across impacts, we need pθ to be conserved

across impacts. Proposition VI.16 states that this is true if and only if π�
D
dh has

zero pθ component, i.e.

0 � π�
Ddh� ∂∂θ� � �dh � 1

η�W �dh�W �η�� ∂
∂θ

�
� dh� ∂

∂θ
� � ∂h

∂θ
.

In practical situations, this is impossible. Recall the construction of the impact map

for the rolling disk in §6.4.2. If the boundary of the table (or rink if the sleigh is

thought of as an ice-skate) is given by h̃�x, y� � 0, then an impact occurs when

h�x, y, θ� �� h̃�x �L cos θ, y �L sin θ� � 0,

where L is the length of the sleigh. Differentiating with respect to θ yields

∂h

∂θ
� L�∂h̃

∂y
cos θ �

∂h̃

∂x
sin θ� .
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This is only zero when the sleigh impacts the wall perpendicularly, which cannot

be guaranteed to always happen. Therefore, the Chalpygin sleigh does not preserve

hybrid measure.

7.5.2 Rolling Disk

The issue with the Chaplygin sleigh is that even though there exists an invariant

measure, it fails to satisfy the impact conditions, f X ∆D � f SS�
D

. When the non-

holonomic system has an invariant measure depending only on configuration, this

condition is automatically satisfied.

Proposition VII.18. Let HC � �T �Q,S�,ΞC
H ,∆

C � be a global realization of H �

�D�, S�
D
,XD

H ,∆
D�. If the density form ϑC can be integrated, i.e. there exists ρ > Γ�D0�

such that ϑC � ρ is exact, then the resulting density is hybrid-invariant.

Proof. Let dg � ϑC � ρ. Then by Theorem V.24, g has the form g � g̃ X πQ. This

is clearly a hybrid-invariant density because the impact is the identity on the base

variables: πQ X∆C � πQ.

As we saw in §5.5.2, µC is an invariant measure for the rolling disk. The cor-

responding density is f � 1 which clearly depends on configuration. Therefore, the

rolling disk always preserves measure independent of the choice of impact surface

S `M . This allows for the following result. We first need to define the energy set.

Definition VII.19. Let �Q,S,H� be a hybrid Hamiltonian system. The energy set

is

Σe �� ��x, p� > T �Q �H�x, p� � e� ,
Moreover, let µeC be the measure on Σe given by

µeC � ι�eε, dH , ε � µC .
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where ιe � Σe 0 D� is the inclusion.

Lemma VII.20. If µC is an invariant measure for �D�, S�
D
,XD

H ,∆
D�, then µeC is an

invariant measure for the system restricted to Σe.

Proof. This proof will be similar essentially identical to 3.4.12 in [1]. Due to the fact

that µC is invariant under XD
H , we have

0 � LXDH
µC � dH ,LXDH

ε.

Thus LXDHε must have the form LXDH
ε � dH , τ , for some τ . The volume µeC is

invariant since

LXDH
µeC � ι�eLXDHε � ι

�
e �dH , τ� � 0.

Theorem VII.21. Let fµC be an invariant measure depending only on configuration

for �D�, S�
D
,XD

H ,∆� and Σe be compact. Then for any open E ` Σe and time T A 0,

there exists a time t A T such that

ϕHt �E� 9E x g.

Proof. This proof is essentially the Poincaré recurrence theorem (see, e.g. 4.1.19 in

[70], [40] for a version for impulsive systems, or [42] for a version for nonsmooth

vector fields). The measure fµeC is invariant on the dynamics restricted to Σe and

the result follows so long as Σe is compact.

This allows for the following statement about nonholonomic billiards.

Corollary VII.22. Let S� ` R2 be a smooth closed curve. Then for any open set

E > Σe and time T A 0 there exists a time t A T such that

ϕHt �E� 9E x g,



147

where ϕHt is the hybrid dynamics for the elastic rolling disk laid out in §6.4.

Proof. The form µC is an invariant volume (so f � 1 which clearly depends only

on configuration). The energy set Σe is compact because H is convex and Q is

compact.

This result states that the rolling disk billiards is recurrent for any table-top so

long as it is bounded.



CHAPTER VIII

Hamilton-Jacobi Theory for Hybrid Systems

This chapter begins the third and final part of this thesis and extends the ideas

from §3.4 to hybrid mechanical systems in preparation for Chapter IX. In particular

we will show a hybrid version of Theorem III.37, as well as provide a way to have

completely integrable hybrid systems. For notation purposes, the action will be

called A rather than S as S is already used to describe the impact surface.

There has been work done with nonholonomic Hamilton-Jacobi theory [38, 63, 86],

which could be extended to the hybrid situation as well (in the same spirit that

Chapters VI and VII extend nonholonomic dynamics to include impacts). However,

we postpone that for future work.

8.1 The Hybrid Hamilton-Jacobi Equation

Our first task is to extend Theorem III.37 to hybrid systems. This will essentially

be (3.17) along with the impact conditions: dA�
t � ∆�dA�

t �. Solutions to this partial

differential equation are necessarily multi-valued because for x > S, dA has (at least)

two distinct values.

Definition VIII.1. Let A � �Ak� be a family of smooth functions Ak � Uk � R

where Uk ` �Q � S� � R are open sets. The family A solves the hybrid Hamilton-

Jacobi equation if:

148
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1. For each k, Ak solves the Hamilton-Jacobi equation on Uk.

2. Suppose x > ∂Uk 9 S. Then there exists an m such that x > ∂Um 9 S and

(8.1) lim
y�x

dAm�y� � ∆�lim
y�x

dAk�y�� , lim
y�x

Am�y� � lim
y�x

Ak�y�.
Remark VIII.2. We require continuity in the solutions at impact points because that

will be a property of the optimal cost function discussed in Chapter IX.

As we will see in §8.1.1, the sets Uk can be nontrivial and nonequal. We can now

state the hybrid Hamilton-Jacobi theorem. For a concise formulation, we will assume

there is a single impact but it holds for any number of impacts.

Theorem VIII.3. Let �Q,H,S� be a hybrid Hamiltonian system and A � �Ak� be

a collection of smooth functions. Then the following are equivalent:

(HHJ.1) For every curve c � �t0, tf� � Q such that c only intersects S at t� > �t0, tf� that

satisfies

ċ�t� � dπQ �XH �dAk,t�c�t��� , t @ t�

ċ�t� � dπQ �XH �dAm,t�c�t��� , t A t�

where Ak�c�t��, t�� � Am�c�t��, t��, the curve c is an integral curve of the hybrid

dynamics.

(HHJ.2) The family A solves the hybrid Hamilton-Jacobi equation.

Proof. Away from impacts, this follows directly from Theorem III.37. At impacts,

we only need to apply (8.1).

8.1.1 Example: The Bouncing Ball

To demonstrate the above theory, we will examine the case of the bouncing ball.

Although this example is very simple, it offers the ability to be solved exactly so

results can be compared.
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No Impacts

Before we tackle the hybrid case, we first compute the action functional for the

falling ball. The Lagrangian for this system is

L �
1

2
mẋ2 �mgx,

where m is the mass and g is gravity. Suppose that the ball starts at �x0, t0� � �0,0�
and ends at a point �x, t�. The trajectory that connects these two points is

x�s� � �1

2
gs2 � v0s, v0 �

x

t
�

1

2
gt, s � t � t0.

Integrating the Lagrangian over this path yields:

A0�x, t� � mx2

2t
�
mgt

24
�gt2 � 12x� .

The subscript indicates that zero impacts are present. Notice that A0 satisfies the

Hamilton-Jacobi equation:

(8.2)
∂A0

∂t
�

1

2m
�∂A0

∂x
�2

�mgx � 0.

Impacts

Assume that the ball makes k impacts between �0,0� and �x, t�. In order to

achieve this, let the initial velocity be v�0� � vk0 A 0. Let t� be the time of the initial

impact; the final impact will take place at k � t�. Solving the shooting problem for

�0, k � t�� to �x, t� gives the following system:

vk0 �
x

t � k � t�
�

1

2
g �t � k � t�� ,

t� �
2vk0
g
.

Solving this system produces two solutions:

vk0 �
�1 � 2k�gt �»

g2t2 � 8gk�1 � k�x
4k�k � 1� ,

t� �
�1 � 2k�t �»

t2 � 8k�k � 1�g�1x

2k�k � 1� .

(8.3)



151

Remark VIII.4. The reason for two solutions in (8.3) is that �x, t� can be arrived at

via either ascent or descent. This can be seen in Figure 8.1 where each color has two

curves: one is rising and one is falling.

The problem of computing the action requires integrating the Lagrangian in the

following sense:

A�
k�x, t� � k � S t�

0
Ldt � S

t�k�t�

0
Ldt,

where the superscript of � indicates which solution in (8.3) we take. Calculating this

integral yields:

A�
k�x, t� � 1

k2�k � 1�3
�mg2δ3

�

24
�
mα2

�δ�
64

�
mgα�δ2

�

16
�

�
mg2γ3

�

3
�

mα2
�γ�

32k2�k � 1�2
�
mgα�γ2

�

4k�k � 1� ,
where

α� � gδ�,

γ� � t �
kδ�

2k�k � 1� ,
δ� � �1 � 2k�t �»

t2 � 8k�k � 1�xg�1.

It is interesting to note that A�
k does solve the Hamilton-Jacobi equation (8.2) when

k x 0. We can see that the family �A�
k�, along with A0, solves the hybrid Hamilton-

Jacobi equation as per Definition VIII.1.

Reachability

Notice that the solutions to (8.3) are not always real; there is an envelope where

the solutions provide real answers:

(8.4) x B
gt2

8k�k � 1� .
This envelope defines the sets Uk:

Uk � ��x, t� > R �R � x B
gt2

8k�k � 1�¡ .
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Figure 8.1: Left: The reachability bounds for the bouncing ball depending on the number of
bounces. Right: Every trajectory that starts at x � t � 0 and ends at x � 0.2, t � 5 with no more
than three bounces. The two solutions for each number of bounces corresponds to the two solutions
to (8.3).

The Full Solution

We finish this example by plotting the whole solution. A plot of the functions A�
k

for k B 5 is shown in Figure 8.2. To clarify the presentation of the plot, cross-sections

depending on time are shown in Figure 8.3.

8.2 Integrability

Here, we extend the notion of Lagrangian submanifolds and complete integrability

as described in §3.4.2. To show the applicability of this extension, we show that the

bouncing ball is the hybrid equivalent of the harmonic oscillator as well as show the

well-known result that the standard billiard problem on a circular table is integrable,

see [69] and the references therein. We begin with defining a hybrid Lagrangian

submanifold and then completely integrable hybrid systems.

Definition VIII.5. A submanifold (with boundary) L `M is a hybrid Lagrangian

submanifold if

1. L � ∂L `M is a Lagrangian submanifold, cf. Definition III.5, and

2. πQ �∂L� ` S.
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Figure 8.2: The plot of A�k for k up to 5. The color-coding records the number of bounces: black
means zero bounces, red (both light and dark) records a single bounce and so on.

Figure 8.3: Cross-sections of Figure 8.2 at various times. The corners on the left correspond to
impacts while the cusps on the right are reachability bounds, corresponding to (8.4).
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This allows for the definition of an integrable hybrid system.

Definition VIII.6. A hybrid Hamiltonian system �Q,H,S� is completely integrable

if there exists a hybrid Lagrangian foliation �Lα� of T �Q such that each leaf satisfies:

(HL.1) Lα `H�1�E� for some E > R, and

(HL.2) if �x, p� > ∂L 9 S�, then ∆�x, p� > L.

Remark VIII.7. We define integrability for hybrid systems via Lagrangian foliations

rather than by constants of motion. This is due to the fact that the constants of

motion must be in involution (Poisson commute) which requires some type of “hybrid

bracket.”

Before we present examples, we first prove a hybrid version of Proposition III.40.

Proposition VIII.8. Let �Q,H,S� be a hybrid Hamiltonian system and L ` T �Q

be a hybrid Lagrangian submanifold. Call ϕHt the flow of the hybrid Hamiltonian

dynamics.

1. If L satisfies (HL.1) and (HL.2), then L is invariant under ϕHt .

2. ϕHt �L� remains a Lagrangian submanifold.

Proof. To show the first claim, we recall that (HL.1) implies that XH is tangent to

L, cf. the proof of 5.3.32 in [1], XH is tangent to L. Invariance follows from this as

well as closure under impacts, (HL.2).

The second follows immediately from the fact that ϕHt is symplectic; recall The-

orem VII.5.

8.2.1 Example: Harmonic Oscillator and Bouncing Ball

Here, we show that the bouncing ball is essentially the hybrid version of the

harmonic oscillator. We find a Lagrangian foliation for the 1-dimensional harmonic

oscillator first for reference.
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Figure 8.4: Left: The Lagrangian foliation for the harmonic oscillator. Right: The (multi-valued)
action for the harmonic oscillator.

Harmonic Oscillator

Here, we examine the (non-hybrid) harmonic oscillator with Q � R and

H �
1

2m
p2 �

1

2
kx2.

The stationary Hamilton-Jacobi equation is

1

2m
�∂A
∂x

�2

�
1

2
kx2

� E.

This can be solved by integrating

∂A

∂x
� �

º
2mE �mkx2.

This produces a Lagrangian foliation of T �Q � R2 into concentric circles.

Bouncing Ball

We repeat the same procedure as above but with the (hybrid) bouncing ball. The

stationary Hamilton-Jacobi equation is

1

2m
�∂A
∂x

�2

�mgx � E.

Integrating this yields

A�x� � � 1

3m2g
�2Em � 2m2gx�3~2

�C.
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Figure 8.5: Left: The hybrid Lagrangian foliation for the bouncing ball. Right: The (multi-valued)
action for the bouncing ball.

Instead of a foliation of concentric circles, the bouncing ball has a foliation of nes-

ted parabolas. Topologically, this is equivalent to circles once we glue the impacts

together.

Remark VIII.9. We note that every hybrid Hamiltonian system with one degree of

freedom is completely integrable in the same sense that their continuous counterparts

are. Indeed, let A be a solution to the Hamilton-Jacobi equation H X dA � E. This

means that the graph,

ΓdA � ��q, dAq� � q > Q� ` T �Q

has constant energy. The corresponding Lagrangian foliation will be the foliation

given by the level-sets of H. This foliation is also hybrid as energy is conserved

across impacts.

8.2.2 Example: Billiards on a Circular Table

The classical billiard problem is known to be integrable when the table-top is

circular or elliptical. In this example, we show that the circular billiard problem is

integrable according to Definition VIII.6.

The circular billiard problem is given by the following hybrid Hamiltonian system
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�Q,S,H� where

1. Q � ��x, y� > R2 � x2 � y2 B R2�,

2. S � ��x, y� > R2 � x2 � y2 � R2�,

3. H �
1

2m
�p2

x � p
2
y�.

Theorem VI.8 states that the (elastic) impact map is given by

px ( px �
2x

R2
�xpx � ypy� ,

py ( py �
2y

R2
�xpx � ypy� .

(8.5)

In order to get complete integrability, we need to find a Lagrangian foliation of

T �Q that is invariant under the impact map (8.5). By construction the impact map

preserves energy, which provides one first integral. For the other integral, we will

choose angular momentum:

f1 �
1

2m
�p2

x � p
2
y� ,

f2 � xpy � ypx.

These functions Poisson commute and therefore their joint level-set is Lagrangian,

LE,ν � ��x, y, px, py� > T �Q � f1 � E, f2 � ν� .
These Lagrangian submanifolds satisfy both (HL.1) and (HL.2) since both energy

and angular momentum are conserved across impacts (8.5). Therefore, the circular

billiard problem is integrable.

Remark VIII.10. We need f1 and f2 to be in involution for their joint level-set to

be Lagrangian. For this Lagrangian submanifold to be hybrid, we need f1 and f2 to

be preserved under impacts. However, it is important to point out that the impact

map is constructed from f1. Let this association be

D � Cª�T �Q�� Cª�S�, T �Q�
D�H� � ∆H ,
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where ∆H satisfies (6.2). If the Lagrangian foliation defined by f1 �� H � c1 and

f2 � c2, to be hybrid we need

� �f1, f2� � 0, and

� D�f1��f2 � f2.

This seems to imply a definition for a hybrid bracket via the following:

(8.6) �f, g�
H
�

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
�f, g� , x ~> S,
D�f��g � g, x > S.

This is problematic for (at least) four reasons.

(P.1) It is not clear that the hybrid bracket is smooth nor continuous.

(P.2) The hybrid bracket may not be skew.

(P.3) Certain conditions are needed for H to guarantee a single, nontrivial, solution

to (6.2) (e.g. H being quadratic).

(P.4) Impacts might not occur. The Hamiltonian flow with Hamiltonian xpy � ypx

never impacts the circular table as the integral curves are circles.

It is an object of future research to address these problems.



CHAPTER IX

Optimal Control of Mechanical Hybrid Systems

This thesis concludes with a chapter on optimal control for hybrid dynamical

systems. In particular we will show that the principle of optimality still holds for

hybrid dynamical systems [56] which allows for dynamic programming. Moreover, we

state the (strong) Hamilton-Jacobi-Bellman equation along with an accompanying

maximum principle.

This problem has been covered extensively in the literature, e.g. [8, 33, 88, 89, 91,

110]. However, our approach will be somewhat different as we will focus on the geo-

metric aspects of hybrid optimal control with an emphasis on systems whose continu-

ous components are mechanical systems (Hamiltonian or nonholonomic). The main

result from this chapter is the construction of the strong hybrid Hamilton-Jacobi-

Bellman equation. This has been studied in [87, 90]; however the presentation here

is much more geometric and is explicitly adapted for optimal control of mechanical

systems.

The main restrictive assumption made throughout this chapter is that the controls

do not influence the impact nor does the impact have any influence on the cost.
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9.1 Hybrid Optimal Control Problem

We consider control problems of the form

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ � f�x,u�, x ~> S,
x� � ∆�x��, x > S.

That is, we assume that there is no influence of the controls on the impact dynamics.

Definition IX.1 (Hybrid Control System). A hybrid control system is a 5-tuple

HC � �M,U , S, f,∆� such that

(HC.1) M is a smooth manifold,

(HC.2) S `M is a smooth embedded submanifold with co-dimension 1,

(HC.3) U ` Rm a closed subset,

(HC.4) f �M � V � TM is smooth where U ` V is an open neighborhood, and

(HC.5) ∆ � S �M is a smooth map.

The set U ` Rm is called the control set and a piece-wise smooth curve u � R�
� U

is an admissible control (here piece-wise smooth means u can be broken into a finite

number of smooth curves). Let Cª
PW �X,Y � be the set of all piece-wise smooth

functions X � Y . Therefore, an admissible control is u > Cª
PW �R�,U�. The concept

of a solution to a hybrid control system completely mimics that of the usual hybrid

dynamical systems as laid out in §2.2.2.

Definition IX.2 (Performance Measure). A performance measure is a function J �

M �Cª
PW ��t0, tf �,U� � �t0, tf �� R with the form

(9.1) J�x0, u���, s� � S tf

s
`�x�t�, u�t�, t�dt � g�x�tf��,
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¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ�t� � f�x�t�, u�t��, x ~> S,
x� � ∆�x��, x > S,

with the initial condition x�s� � x0 and smooth functions ` �M �Rm �R�
� R and

g �M � R called the continuous Lagrangian and terminal conditions, respectively.

Without changing the set up too much, we can also include a discrete Lagrangian,

`d � S �RM �R�
� R and add an impact cost to (9.1). However, this will add subtle

technicalities because the impact times are not free, rather predetermined by the

initial condition and previous controls. This makes the impact times undefinable until

after the controls are chosen. Another issue that a discrete Lagrangian introduces

is that the performance measure will no longer be continuous along trajectories. We

will postpone the study of these performance measures for future work.

Problem IX.3 (Optimal Control Problem). Given a hybrid control system, HC �

�M,U , S, f,∆�, and a performance measure J �M�Cª
PW ��t0, tf �,U���t0, tf �� R, the

optimal control problem is to find, for a fixed x0 >M and s > �t0, tf �, an admissible

control u�x0,s > C
ª
PW ��t0, tf �,U� which solves

(9.2) u�x0,s � arg min
u���

J�x0, u���, s�.
Remark IX.4. It is important to stress that existence and uniqueness of solutions

to (9.2) does not always hold and can be difficult to determine. There is a natural

way in which uniqueness fails; let u�x0,s be a solution to the optimal control problem,

then any other ũ > Cª
PW ��t0, tf �,U� such that u�x0,s�τ� � ũ�τ� for τ A s is also clearly

a solution. Because these are the same function when restricted to �s, tf � we will

regard them as the same as to not further interfere with uniqueness, although other

causes for non-uniqueness may still arise. As for existence, since Cª
PW ��t0, tf �,U� is

infinite-dimensional, minimizers may fail to exist e.g. weak solutions can appear.
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If we assume that for a given x0 >M and s > �t0, tf � there exists a unique solution

u�x0,s, then we can define the optimal cost function as

Definition IX.5. The optimal cost function, J� �M � �t0, tf �� R is given by

J��x0, s� � J�x0, u
�
x0,s, s�.

Assumption IX.6. For all x0 > M and s > �t0, tf �, there exists a unique (in the

sense of Remark IX.4) solution u�x0,s to the optimal control problem. Moreover, the

optimal cost function is piece-wise smooth.

9.2 Principle of Optimality

The Bellman’s principle of optimality allows us to solve for the optimal cost J�

backwards in time and is the fundamental principle behind dynamic programming.

It states:

“An optimal policy has the property that whatever the initial state and

initial decisions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decisions,” [9].

In the language of this chapter, the principle of optimality takes the form of the

following proposition.

Proposition IX.7 (Principle of Optimality). Let u�x0,s be an optimal solution. For

an arbitrary ξ > �s, tf � let xξ � x�ξ� be the trajectory of the controlled system at time

ξ. Then

u�x0,s � arg min
u���

J�xξ, u���, ξ�.
The proof of this depends on the structure of the performance measure and not

on the dynamics; cf. §22.7.1 in [94] or §9.2 in [56] for a hybrid specific version. It

is important to note that the converse is also true; if all tails are optimal then the
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entire path must be too. A useful result of Proposition IX.7 is the “weak hybrid

Hamilton-Jacobi-Bellman equation.”

Theorem IX.8 (Weak Hybrid Hamilton-Jacobi-Bellman). Let J� �M � �t0, tf �� R

be the optimal cost function. Then

(9.3) 0 �
∂

∂t
J��x�t�, t� �min

u>U
H�x�t�, dJ�x�t�, t�, u, t�, x ~> S,

where dJ is the differential with respect to M only and H � T �Q � U �R�
� R where

H�x, p, u, t� � `�x,u, t� � `p, f�x,u�e.
Moreover when x > S, we have J�∆�x�, t� � J�x, t�.
Proof. This proof is similar to that shown in [56]. Choose �x�t�, t� >M � �t0, tf � such

that x�t� ~> S. Let t� A t be small enough for no impact to occur on the interval �t, t��.
Then the principle of optimality states that

J��x�t�, t� � min
u���
S

tf

t
`�x�s�, u�s�, s�ds � g�x�tf��

� min
u���
S

t�

t
`�x�s�, u�s�, s�ds �min

u���
S

tf

t�
`�x�s�, u�s�, t�ds � g�x�tf��

� min
u���
S

t�

t
`�x�s�, u�s�, s�ds � J��x�t��, t��.

Moving terms and dividing by t� � t gives

0 �
1

t� � t
�J��x�t��, t�� � J��x�t�, t�� �min

u���

1

t� � t S
t�

t
`�x�s�, u�s�, s�ds

Passing to the limit t� � t yields

0 �
d

dt
J��x�t�, t� �min

u
`�x�t�, u, t�.

The result follows from the fact that

d

dt
J��x�t�, t� � ∂

∂t
J��x�t�, t� � dJ�x�t�, t� � f�x,u�.

The continuity condition J�∆�x�, t� � J�x, t� follows from the fact that integrating

over a jump discontinuity still yields a continuous function.
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The above theorem only describes what happens away from impacts and we are

therefore lacking a boundary condition, thus the “weak” part. It is stated in [56]

that J� is continuous at impacts but stronger conditions can be found. Notice that

(9.3) is precisely the continuous part of the hybrid Hamilton-Jacobi equation. This

seems to suggest that dJ� � δ X dJ� for some impact map δ. This will be postponed

to §9.4 and used in §9.5 where we will work with a hybrid maximum principle.

9.3 Dynamic Programming

Dynamic programming is the method of solving the optimal control problem

by discretizing the partial differential equation (9.3) with the terminal conditions

J�x, tf� � h�x�. Discretize �t0, tf � with a sequence of times t0 @ t1 @ . . . @ tN � tf and

call J�
K��� � J���, tK�. Then the principle of dynamic programming states that the

optimal cost function satisfies the (backward) recurrence relation:

J�
N�k�xN�k� � min

uN�k>U
`d�xN�k, uN�k, tN�k� � J�

N�k�1�ad�xN�k, uN�k��,
J�
N�xN� � g�xN�,

where xk�1 � ad�xk, uk� is a discretization of the dynamics and `d is a discretization

of the Lagrangian.

9.3.1 Discretization of the Dynamics

For the purposes of this section, let us work within a coordinate chart so x > Rn.

This allows for the continuous dynamics to be approximated by

xk�1 � xk �∆t � f�xk, uk�.
Therefore, the discrete dynamics is given by ad�xk, uk� � xk � ∆t � f�xk, uk� if no

impact occurs. What happens if an impact occurs within �tk, tk�1�? If the impact is
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given by S � h�1�0� then an impact occurs if

h�xk� � h �ad�xk, uk�� @ 0.

The impact time can be approximated via a first-order Taylor expansion:

0 � h �xk � t� � f�xk, uk�� � h�xk� � t� � dh �f�xk, uk��
Ô� t� � �

h�xk�
dh �f�xk, uk�� .

In order for the first-order approximation of the impact time to be finite, we need

that the flow is transverse to the surface for any choice of controls. For dynamic

control problems (as opposed to kinematic controls) we will see that this will not be

a problem.

Using the above approximations, we get the discrete dynamics to be

aHd �xk, uk� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
xk �∆tk � f�xk, uk�,
∆�x̃k� � �∆tk � t�� � f�∆�x̃k�, uk�,

x̃k � xk � t
� � f�xk, uk�

(9.4)

where the first line is used if there is no impact and the second is used otherwise. In

a similar manner, the discrete Lagrangian is

`Hd �xk, uk� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

∆tk � `�xk, uk�,
t� � `�xk, uk� � �∆tk � t��` �∆�xk � t� � f�xk, uk��, uk� .

In practice due to approximations, x̃k ~> S and thus ∆ needs to be defined on some

tubular neighborhood of S.

We present an application of hybrid dynamic programming: the controlled boun-

cing ball.
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9.3.2 Example: Bouncing Ball

Let the controlled bouncing ball be given by

ẋ �
1

m
p,

ṗ � �mg � u,

along with the impact map ∆�x, p� � �x,�p� and impact surface S � ��0, p��. Sup-

pose the optimization problem is to minimize

(9.5) J � S
T

0

1

2
κu2 dt � α �x�T � � 1�2

.

We want the final state to be x�T � � 1 while p�T � is free and is chosen to mini-

mize the L2-norm of the controller effort. We will solve this problem via dynamic

programming. Using (9.4), the discrete dynamics are given by

x�t � δt� � x�t� � δt
m
p�t�,

p�t � δt� � p�t� � δt �u �mg� ,
if no impact happens and

x�t � δt� � �� p
m

�
x

p
�mg � u���δt � mx

p
� ,

p�t � δt� � �u �mg� �δt � 2mx

p
� � p,

if an impact occurs.

Results

For this numerical example, we will take κ � 0 and α � 10; the only performance

we care about is that x�T � � 1. To make this problem interesting, and truly utilize

the hybrid setting, we set m � 2, g � 1 and bound the controls so u > ��1,1�. This

makes it impossible for the controls to actually support the ball, i.e. if this problem

was purely continuous x�t� must be monotone decreasing. Below, we demonstrate

that if x�0� @ 1 we can still have x�T � � 1.
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Variable Min Max # of samples
x 0.01 3 200
p -5 5 200
u -1 1 200
t 0 5 500

Table 9.1: The discretization used for the bouncing ball optimal control problem.

Figure 9.1: Optimal trajectories for the bouncing ball optimal control problem with various initial
conditions x0 with parameters α � 10 and κ � 0. The effect of the noisy control is not visible in the
above trajectories since the second-order nature of the dynamics mollifies the control input.

For the results in Figure 9.1, we choose T � 5 and use the uniform discretization

as shown in Table 9.1. Notice that neither the number nor location of impacts are

known a priori. The optimal controls seem to be bang-bang at the beginning and then

become noisy. This is, in part, because the only objective is to have x�T � � 1 with no

restriction on the controls. Choosing a positive κ has the property of “regularizing”

the problem as can be seen in Figure 9.2 with κ � 1 (the discretization of Table 9.1

is still used).
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Figure 9.2: Optimal trajectories for the bouncing ball optimal control problem with various initial
conditions x0 with parameters α � 10 and κ � 1.

9.4 The Strong Hybrid Hamilton-Jacobi-Bellman Equation

The principle of optimality, Proposition IX.7, allows for the optimal cost function

to be described by the weak hybrid HJB equation (9.3). Discretizing this produces

dynamic programming. Alternatively, we can solve (9.3) via the method of charac-

teristics (cf. e.g. §3.2 in [43]) to produce a system of ordinary differential equations.

The characteristics will provide the trajectories to the optimal control problem (Pon-

traygin’s Maximum Principle).

Just as the continuous Hamilton-Jacobi-Bellman equation leads to continuous

characteristics, the hybrid Hamilton-Jacobi-Bellman equation leads to hybrid cha-

racteristics. The continuous part of these characteristics can be determined from the

weak hybrid HJB equation (9.3), but this offers no information about what happens
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at impacts. To accomplish this, we will need a “strong” HJB equation, i.e. (9.3)

along with a map dJ� � δ X dJ� which encodes what happens at impacts.

9.4.1 Inspiration of a Strong HJB

To determine the map dJ� � δ X dJ�, we recall the principles that constructed

this map for “usual” Hamiltonian systems studied in Chapter VI. Specifically, the

map δ was defined variationally. Consider the case of a simple hybrid mechanical

system: �Q,H,S� where Q is a smooth manifold, H � T �Q � R is a hyperregular

Hamiltonian, and S ` Q is an embedded submanifold of codimension 1. Suppose

S � h�1�0� for some function h � Q � R such that 0 is a regular value. Then the

impact is taken to be variational and given by the following rules:

p� � p� � ε � dh,

H�
�H�,

(9.6)

which states that the change in momentum is proportional to dh and energy is

conserved. In the language of the hybrid HJB equation, we get the following impact

rules:

dJ�
� dJ� � ε � dh,

H�
�H�.

An implicit assumption made here is that the trajectory is still continuous at impact,

i.e. x� � x�. Unlike mechanical systems, this is no longer true for control systems

where, generally, ∆�x� x x.
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9.4.2 Impacts with Discontinuous Base

We want to construct a generalization of (9.6) when impacts are not continuous

on the base. Consider the case where we have a hybrid control system described by

(9.7)

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ � f�x,u�, x >M � S,

x� � ∆�x��, x > S.

The characteristics to the hybrid HBJ (9.3) are given by

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
ẋ �

∂H

∂p
, ṗ � �

∂H

∂x
, x >M � S,

x� � ∆�x��, p� � δ�x�, p��, x > S.

Determining the function δ will require a more general version of (9.6), in which

jumps in the base are allowed.

Suppose that we have a trajectory with a forced discontinuity: x � �t0, tf � � M

such that t1 > �t0, tf� is the only point of discontinuity and

lim
t�t�1

x�t� � ∆�lim
t�t�1

x�t�� ,
for some smooth map ∆ � S � M . Determining the variations pre-jump can be

done by considering the end point to be free in both space and time. However, the

beginning of the second path is not free; it must obey the jump condition. Due to

the infinitesimal nature of this problem, we can use

∆ �x��t1� � δx1� � ∆ �x��t1�� �∆� �x��t1�� � δx1.

Taking this into consideration, the variational “corner conditions” become (on the

Lagrangian side)

�∂L
∂ẋ

�

�
∂L

∂ẋ

�

X∆�	 � δx � 0,

�E�
L �E

�
L� � δt � 0.
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x

tt1 t1 � δt1t0

x0

tf

xf

x��t1�

∆ �x��t1��

x��t1� � δx1

∆ �x��t1� � δx1�

Figure 9.3: The black curve is the trajectory with a jump at t1 while the red curve shows a virtual
displacement.

The impact times are free so δt is arbitrary while the impact location is constrained

to be on S so δx > TS. This produces the general corner conditions as

FL� � FL� X∆� � ε � dh,

E�
L �E

�
L � 0.

This is able to produce the jump conditions for the hybrid HJB equation:

dJ� X∆� � dJ
� � ε � dh,

H�
�H�.

(9.8)

In this derivation, we used ∆� and not the augmented version ∆f
�. As it turns out,

as long as the impact is hit transversely, it does not matter which version is used.

This is because the variations are assumed to be δx > TS and ∆f
��u� � ∆��u� for all

u > TS. Any discrepancies in the transverse direction are handled via the multiplier

ε in (9.8) as the following example demonstrates.

Example IX.9. Consider the simple case of the bouncing ball with ẋ � v and v̇ � �g

with impact ∆�x, v� � �x,�v� when x � 0. For the purpose of this example, suppose
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H � pxv � pvg. Using (7.1), the augmented differential is

∆f
� �α ∂

∂x
� β

∂

∂v
� � α

v
��v ∂

∂x
� g

∂

∂v
� �∆� �α ∂

∂x
� β

∂

∂v
�
α

v
�v ∂
∂x

� g
∂

∂v
��

� �α
∂

∂x
�
αg

v

∂

∂v
�∆� ��β � αg

v
� ∂

∂v
�

� �α
∂

∂x
� β

∂

∂v
.

The pre- and post-impact momenta are given by

p��vx, vv� � pxvx � pvvv,
p� X∆f

��vx, vv� � �p�xvx � p�vvv.
The “specular” condition provides: �p�xvx � p

�
vvv � p

�
xvx � p

�
vvv � ε � vx. In particular,

p�v � �p�v and p�x � �p�x � ε. To determine the multiplier ε, we use conservation of

energy which gives the impact map to be

p�x � �p
�
x �

2g

v
� p�v ,

p�v � �p
�
v .

Likewise, if we use the ordinary differential, ∆�, we see that

p� X∆��vx, vv� � p�xvx � p�vvv.
The new impact equations are then p�x � p

�
x � ε and p�v � �p

�
v . Although the impact

dynamics seem to be off by a sign, this is not a problem because the value of ε

changes accordingly. Using conservation of energy, we see that

p�x � p
�
x �

2

v
�p�xv � p�vg� � �p�x � 2g

v
� p�v .

Therefore, we obtain the same impact map for either ∆� or ∆f
�.

9.4.3 The Strong Hybrid HJB Equation

The corner condition (9.8) allows for a strong version of the hybrid Hamilton-

Jacobi-Bellman equation. We note that the following makes use of time-dependent
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Hamiltonians which have not been studied thus far in this thesis. Hamilton’s equa-

tions, (3.6) still hold although they are no longer autonomous.

Theorem IX.10 (Strong Hybrid Hamilton-Jacobi-Bellman). Let J� �M � �t0, tf ��
R be the optimal cost function. Define the Hamiltonian H � T �Q�U �R�

� R where

H�x, p, u, t� � `�x,u, t� � `p, f�x,u�e,
and the optimal Hamiltonian, H� � T �Q �R�

� R where

H��x, p, t� � min
u

H�x, p, u, t�.
Then the optimal cost function satisfies

(9.9) 0 �
∂

∂t
J��x, t� �H��x, dJ�x, t�, t�, x ~> S,

(9.10)

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤
dJ�∆�x�, t� X∆� � dJ�x, t� � ε � dh,
H��∆�x�, dJ�∆�x�, t�� �H��x, dJ�x, t��,

x > S.

9.5 Maximum Principle

The maximum principle [49] is a way to solve the optimal control problem via the

method of characteristics. For the continuous case, the characteristics of (9.9) are

determined via the system of ordinary differential equations:

ẋ �
∂H�

∂p
, ṗ � �

∂H�

∂x
.

Pontryagin’s maximum principle states that necessary conditions for a trajectory to

be optimal is for it to be a solution to the above characteristic equation. This is

extended to the hybrid situation by incorporating (9.10).
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Theorem IX.11 (Hybrid Maximum Principle). Let u�x0,t0 be an optimal control.

Then the solution x�t� satisfies

ẋ �
∂H�

∂p
, ṗ � �

∂H�

∂x
, x ~> S,

(9.11)

¢̈̈̈̈
¨̈̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¨̈¤

x� � ∆�x��,
p� X∆� � p� � ε � dh,

�H��� � �H���
x > S.

9.5.1 Optimal Control of a Mechanical System

Suppose now that the underlying hybrid system is of mechanical type; so ∆ in

(9.11) is given by (9.6). Also, let us assume that the Lagrangian is natural: kinetic

minus potential. The impact map, ∆, is thus linear in the velocities / momentum.

Here, we use coordinates �q, y� >M � T �Q and �q, y, pq, py� > T �M . The impact map

is

∆�q, y� � �q,R�q�y�,
with differential

∆� �

<@@@@@@>
Id 0

R�y R

=AAAAAA?
, R�y �

∂

∂q
�R�q�y� .

Using the impact rule (9.11), we get an impact map of

q� � q�

y� � R�q��y�

�p�q , p�y�
<@@@@@@>

Id 0

R�y R

=AAAAAA?
� �p�q , p�y� � ε � �dh,0�.
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Solving this last equation provides us with the following:

q ( q

y ( R�q�y
pq ( pq � py �R

�1R�y � ε � dh

py ( py �R
�1.

(9.12)

Recall that the linear map R�q�y (for unconstrained systems) is given by

R�q�y � y � 2
g̃�dh, y�
g̃�dh, dh�dh.

Recall that the matrix R is Householder which implies that R � R�1. Writing (9.12)

in terms of adjoints, we get the following for the impact map.

Proposition IX.12. The impact map is given by

q ( q

y ( R�q�y
pq ( pq � �R�y��R�py � ε � dh

py ( R�py.

Definition IX.13. An impact is called flat if R�y � 0.

Corollary IX.14. If the impact is flat, the impact map simplifies to

pq ( pq � ε � dh,

py ( R�py.

9.6 Example: Bouncing Ball

For this example, we revisit the controlled bouncing ball as discussed in §9.3.2. In

particular, we will compute the trajectories of the maximum principle to show that

the optimal controls are piece-wise linear, as suggested by Figure 9.2. We will then

use the results from the maximum principle to compute the optimal cost function.
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9.6.1 Maximum Principle

Recall the controlled bouncing ball dynamics (here, we relabel p as y),

ẋ �
1

m
y,

ẏ � �mg � u,

where impact occurs at x � 0 and the map is Ry � �y. Suppose we have the cost we

wish to minimize (which is precisely (9.5) with κ � 1)

J � S
tf

t0

1

2
u2 dt � α �x�tf� � 1�2

.

The Hamiltonian is given by

H��x, y, px, py� � min
u

�1

2
u2 �

1

m
pxy � �u �mg�py�

� �
1

2
p2
y �

1

m
pxy �mgpy.

Therefore, the continuous dynamics are given by

ẋ �
1

m
y, ṗx � 0,

ẏ � �mg � py, ṗy � �
1

m
px.

(9.13)

It remains to determine what the impact map is; the impact is flat so Corollary IX.14

provides the following.

x( x,

y ( �y,

px ( �px � 2m2g
py
y

py ( �py.

(9.14)

Where the map for px comes from conservation of energy.

Remark IX.15. The optimal control is given by u� � �py. During the continuous

phase px is constant and py is linear, i.e. u� is piece-wise linear with jumps during

impacts. This explains the piece-wise linear nature of the controls in Figure 9.2.
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Figure 9.4: The figures above compare the optimal trajectories computed via dynamic programming
along with those found via the maximum principle. For this problem m � 2, g � 1, t0 � 0, tf � 5,
and α � 10.

To solve the optimal control problem, we need to solve the following mixed

boundary-value problem:

x�t0� � x0, px�tf� � 2α �x�tf� � 1� ,
y�t0� � p0, py�tf� � 0.

In Figure 9.4, we compare the results from dynamic programming in §9.3.2 with the

results from the maximum principle.

9.6.2 The Hybrid Hamilton-Jacobi-Bellman Equation

The (strong) hybrid HJB equation for the bouncing ball is

0 �
∂J

∂t
�

1

2
�∂J
∂y

�2

�
1

m
y �∂J

∂x
� �mg �∂J

∂y
� , x x 0,
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with the “impact condition,”

x( x,
∂J

∂x
( �

∂J

∂x
�

2m2g

y
�∂J
∂y

� ,
y ( �y,

∂J

∂y
( �

∂J

∂y
,

x � 0.

We will (numerically) solve this via the method of characteristics where the cha-

racteristics arise from the maximum principle, (9.13) and (9.14). We will compute

trajectories backwards in time with final conditions

J�x, y; tf� � α�x � 1�2,
∂

∂x
J�x, y; tf� � 2α�x � 1�, ∂

∂y
J�x, y; tf� � 0.

As before, we choose m � 2, g � 1, t0 � 0, tf � 5, and α � 10. For the purposes of

numerical analysis, we choose final conditions xf > �0.9,1.1� and yf > ��4,4� (that

is, we backwards propagate this rectangle through time). The solutions are shown

in Figure 9.5. Notice that as time recedes backwards, the optimal cost function

becomes increasingly more multi-valued and complicated.

Optimal Number of Impacts

As we are able to compute the (multi-valued) optimal cost function, it is natural

to ask how many impacts are in the optimal trajectory. For the parameters chosen

for this example, a trajectory will require either none, one, or two impacts; see Figure

9.6.

9.6.3 Comparison with the Continuous Problem and Collision Loss

We have examined the problem of optimal control of a bouncing ball with elastic

collisions. How does this compare to the purely continuous case or with inelastic

collisions? To simplify the following computations, we will change the performance

measure to remove the terminal condition but to now require that x�T � � 1.

u� � arg min
u
S

T

0

1

2
u2 dt, x�T � � 1, y�T � � 0.
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Figure 9.5: Left column: Plots of the function J�x, p; t� at various time steps. Right column:
Cross-sections of the solutions at x � 0.5.
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Figure 9.6: Left: A plot of J�x, p; 0� as seen in Figure 9.5. Center: A plot of J�x, p; 0� where the
color corresponds to the number of impacts; zero impacts is dark blue, one impact is light blue, and
two impacts is yellow. Right: A plot showing how many bounces is needed to obtain the minimum
cost.

Continuous Case

Let us first solve the above problem for the purely continuous case. The dynamics

(9.13) can be exactly solved:

x�t� � 1

m
�1

2
��mg � p0

y�t2 � 1

6m
p0
xt

3 � y0t� � x0,

y�t� � ��mg � p0
y�t � 1

2m
p0
xt

2 � y0,

px�t� � p0
x,

py�t� � p0
y �

1

m
p0
xt.

(9.15)

Solving for p0
q and p0

y such that the boundary conditions are satisfied (i.e. x�tf� � 1)

gives p0
q � 0 and p0

y � �mg. This can be used to determine the cost since u � �py �mg:

Jcont �
1

2
m2g2T.

It would be interesting to see if Jhybrid @ Jcont.

Inelastic Collisions

To determine the optimal cost, we must now solve the boundary value problem

with the full hybrid dynamics rather than merely the continuous dynamics. Although

this should be possible to do in closed-form with the help of (9.15), we will instead

solve this numerically via shooting. Suppose now that energy is lost during each
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Figure 9.7: The optimal costs for the bouncing ball with various coefficients of restitution.

impact: Ry � �c2y for some c > �0,1�. The impact map now becomes:

q ( q,

y ( �c2y,

pq ( �
1

c2
pq �

m

2c2

p2
y

y
�1 � c�4� � m2g

c2

py
y
�1 � c�2� ,

py ( �
1

c2
py.

Although Figure 9.7 shows that hybrid controls outperform their continuous coun-

terpart, the results shown are not necessarily the optimal cost for the hybrid problem;

it only shows a local minimum for the multi-valued nature of J makes finding a true

minimum difficult to find.



CHAPTER X

Conclusions

10.1 Summary

This thesis dealt with understanding the asymptotic nature, existence of inva-

riant measures, and control for constrained systems - both unilateral (hybrid) and

nonholonomic. However, as there are fewer results on the differential geometry of

hybrid systems, more emphasis has been placed on translating hybrid systems to

this context. To this end, Chapter IV is an auxiliary chapter which studied proper-

ties of hybrid dynamical systems (which are already standard for their continuous

counterparts). These properties include: limit sets (Propositions IV.5 and IV.9), Flo-

quet theory (Theorem IV.16), and an extension of the famous Poincaré-Bendixson

theorem (Theorem IV.26).

The main results from this work dealt with finding (smooth) invariant measures for

both nonholonomic and hybrid systems. To achieve this, Chapter VI outlined hybrid

mechanical systems as well as systems experiencing both nonholonomic and hybrid

constraints; in particular, hybrid versions of Noether’s theorem are proved (Theo-

rems VI.31 and VI.37). To find invariant measures, nonholonomic systems (without

impacts) are discussed first in Chapter V in which reasonably testable, necessary,

and sufficient conditions are laid out for the existence of invariant measures depen-
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ding only on the configuration variables (Theorem V.24). Incorporating impacts,

Chapter VII extends the idea of invariant measures to hybrid systems. Verifiable

conditions are laid out (Theorem VII.3) to determine when a given differential form

is preserved under the hybrid flow. This provides an extension to the nonholonomic

case in which an invariant measure depending only on the configuration variables is

preserved in the presence of any impact (Theorem VII.21).

The final part of this work is on integrability and control of hybrid systems.

Chapter VIII extends Hamilton-Jacobi theory to hybrid systems, as well as, the

notion of complete integrability. Both of these concepts utilize hybrid Lagrangian

submanifolds. These submanifolds are the hybrid analogue of the usual Lagrangian

submanifolds and obey many of the usual properties (Proposition VIII.8). To serve

as a test-bed, the billiard problem on a circular table is proven to be integrable in

this sense (§8.2.2) by constructing a hybrid Lagrangian foliation. Finally, Chapter

IX extends the idea of hybrid Hamilton-Jacobi theory to optimal control problems

with the hybrid Hamilton-Jacobi-Bellman equation (Theorem IX.10) and the hybrid

maximum principle (Theorem IX.11).

10.2 Future Work

10.2.1 Hybrid Tongues

Continuous dynamical systems subject to periodic forcing, e.g. differential equa-

tions of the form ẍ�f�t�x � 0 where f is periodic - known as Hill’s equations [61], are

known to have “tongues” in their stability diagrams. A similar structure appears in

the stability domain for the hybrid model of walking with foot slip (Figure 4.5). This

seems to make sense from the point of view that periodic walking induces periodic

forcing (where we can think of f�t� above as an impulse).

We note that the stability diagrams in Figure 10.1 do have some important diffe-
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Figure 10.1: Left: Stability plot for the walker with foot-slip, cf. Figure 4.5. Right: Stability plot
for Mathieu’s equation ẍ � �δ � ε � cos�t��x � 0, taken from §9.2 in [78].

rences; the stability plot for foot-slip is based on initial conditions and the tongues

appear on the stable part while the stability plot for Mathieu’s equation is based in

parameter space and the tongues are regions of instability. To make the comparison

more apt, Figure 10.2 shows the stability plot for the foot-slip model in parameter

space based off of the fixed initial condition �ξ0, η0� � ��1,0� rather than the adaptive

scheme discussed in Appendix A. However, the tongues are still backwards in the

sense that they denote regions of stability rather than instability.

A powerful way to study Hill’s equations (and in particular Matheiu’s equation,

cf. §9.2 in [78]) is by computing an asymptotic approximation for the solution. An

object of future study is to explore this connection in better detail; particularly to

apply ideas from asymptotic analysis to study stability domains in hybrid systems.

10.2.2 Measure Shaping Controls

Suppose we have a single constraint η > Ω1�Q�. The density form is given by

ϑ �
1

η�η®�Lη®η,
where g �η®, �� � η and g is the metric coming from the Lagrangian. Lagrangians have

been chosen to obtain certain stability properties by shaping their energies [12], so
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Figure 10.2: Left: A modified version of the results from Figure 4.4 where stability is based off
of the initial conditions �ξ0, η0� � ��1,0� rather than the adaptive initial conditions discussed in
Appendix A. Right: A zoomed in version of the left figure.

we will choose a Lagrangian that shapes measure instead, i.e. such that ϑ is exact.

This reduces to solving

1

gijηiηj

∂ηk
∂x`

�gi`ηidxk � gikηidx`� � gi`ηi
gijηiηj

�∂ηk
∂x`

�
∂η`
∂ηk

�dxk �� dα.
Then we have an invariant density

DL �� η �η®� � exp �α� ,
which depends on the chosen Lagrangian. Denote the corresponding measure by µL

and suppose that the flow is now ergodic on an invariant set E with µL�E� @ ª.

Then the ergodic theorem states that

lim
t�ª

1

t S
t

0
χA �ϕt�x�� dt � µL�A�

µL�E� ,
where χA is the characteristic function for the set A. In particular if A is a null set,

then the flow will (on average) almost never enter A. This can be used for safety

purposes by the following recipe:

1. Let A be a set of “dangerous” states.

2. Find a Lagrangian with a corresponding density, DL, which is “small” on A.
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Another interesting application of measure-preserving flows is a result from [68]

which states that for an affine control system, in which the drift vector field is

measure-preserving and the state-space is Riemannian and compact, then accessibi-

lity implies controllability. This is helpful because if we can choose a Lagrangian such

that measure is preserved, then if we subject the system to controls which implies

accessibility we automatically get controllability.

10.2.3 Hybrid Integrators

The work done in [91] shows that elastic mechanical impacts preserve the sym-

plectic form and constructs a hybrid integrator which preserves this form. An object

of future work will be to attempt to construct numerical hybrid integrators which

will preserve an arbitrary form α > AH.

For nonholonomic systems, it is no longer generally true that the symplectic form

is preserved but numerical integrators can still be constructed that preserve impor-

tant structures, cf. Chapter 7 of [80] and the references therein. Specific examples of

forms to be preserved under hybrid integrators include: ω and H for holonomic sys-

tems, and fµC and H for nonholonomic systems (which have an invariant measure

depending only on base variables such as the vertical rolling disk).

10.2.4 Hybrid Bracket

The definition of a completely integrable hybrid system, Definition VIII.6, involves

hybrid Lagrangian submanifolds rather than constants of motion in involution as is

normal with their continuous counterparts. The reason for this is that defining a

hybrid bracket has some inherent difficulties which include; at least, the four issues

at the end of §8.2.2. Uniqueness issues with (P.3) and (P.4) might be overcome by

requiring skewness (P.2) to extend beyond quadratic Hamiltonians.
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Skewness of the bracket in mechanics is paramount to providing energy-conservation

which is a fundamental requirement for elastic impacts as in (6.2) for holonomic or

(6.6) for nonholonomic. Therefore, we hope that we can resolve (P.2) in the case

of only quadratic Hamiltonians so (P.3) and (P.4) do not interfere. The following

example, however, demonstrates that this is not the case.

Example X.1. Let Q � R2 and S � �x2 � 0�. Choose two Hamiltonians:

f�x1, x2, p1, p2� � 1

2
�p2

1 � p
2
2� ,

g�x1, x2, p1, p2� � 3

2
�p2

1 � p
2
2� � p1p2.

As these are both regular Hamiltonians, we can compute their impact maps according

to (6.2):

D�f��x1, x2, p1, p2� � �x1, x2, p1,�p2�,
D�g��x1, x2, p1, p2� � �x1, x2, p1,

2
3p1 � p2�.

Checking the “hybrid bracket,” we get

D�f��g � g � 2p1p2,

D�g��f � f �
2

9
p2

1 �
2

3
p1p2,

which is clearly not skew.

This example shows that something more subtle is happening with the hybrid

bracket. Therefore more work needs to be done to understand and hopefully to

resolve this phenomenon.
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APPENDIX A

Numerical Methods for the Foot-slip Model

In this appendix, we explain the numerical methods and algorithms used to determine

the dynamics on the Poincaré section for the foot-slip walking model studied in §4.2.3.

The contents here can also be found in [26].

Recall that the hybrid dynamical system under consideration has continuous dy-

namics

θ� � εξ

ξ� � C �sin θ �cosα � εξ2 cos θ� � cos θ �η � ξ cos θ��
η� � sinα � η � ξ cos θ

where

C �
µ

1 � µ sin2 θ
.

The impact occurs when θ � �δ and the impact map is

∆ �θ, ξ, η� � �θ � 2δ, cos�2δ�ξ, η � cos δ �1 � cos�2δ�� ξ� .
This model includes four parameters: ε, µ, α, and δ.

Below, we discuss the numerical implementation for finding regions in parameter

space where a periodic orbit exists as well as finding the basin of attraction for a

given periodic orbit exists, see Figures 4.4 and 4.5.
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A.1 Stable Parameters

Determining which parameters result in the basin of attraction of a periodic or-

bit being non empty generally requires an expensive computation. This requires

searching for fixed points of the Poincaré map (each evaluation requires integrating

equation (4.11) which is expensive). Due to this issue, we will only test a single initial

condition for each set of parameters. To accomplish this, we will need a systematic

way to compute meaningful guesses for initial conditions that lie within the basin of

attraction for the stable periodic orbits. In the case where the foot does not slide,

the equations of motion can be expressed as

θ̈ �
g

`
sin�θ � α� � g

`f
� µ

1 � µ
� sin�θ � α�.

We would, of course, like to rescale time so this matches with equation (4.11). Doing

so yields

θ�� � ε� µ

1 � µ
� sin�θ � α�.

This allows us to come up with our approximating hybrid system:

θ� � z

z� �
εµ

1 � µ
sin�θ � α�.

With the impact surface and map being, S̃ � �θ � �δ� and

∆̃�θ, z� � �θ � 2δ, cos�2δ�z�.
Call the steady-state values for θ and z (immediately after impact) to be θ̄ and z̄.

Clearly θ̄ � δ. Using (4.11), we can turn z to ξ. Additionally, assuming that we start
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with zero foot slip, we get the initial conditions to be:

θ�0� � δ,
ξ�0� � 1

ε
z̄,

η�0� � �1

ε
z̄ cos δ.

We will then explore parameter space to see when these initial conditions achieve a

steady-state periodic orbit.

A.2 Stable Initial Conditions

We present two calculations: determining the region of initial conditions on ∆�S�
(i.e. �ξ0, η0�) that result in stable walking, and finding the corresponding discrete

dynamics P � ∆�S��∆�S�.
To determine which initial conditions yield a (stable) periodic orbit, we implement

the following numerical algorithm: Let G � R2
� N 8 �ª�, where G�ξ0, η0� is the

number of steps the walker takes with initial conditions �δ, ξ0, η0� before it crashes.

If no crashes occur, G � ª. For practicality, we say that a periodic orbit exists if

G A 50. These initial conditions are recorded as blue in Figure 4.5. On the other

hand, if G � 0, a crash happens immediately, which is recorded as red. The white

region corresponds to initial conditions where 0 @ G @ 50.
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APPENDIX B

Technical Lemmas from Continuous and Discrete Dynamics

In this appendix, we present a collection of technical lemmas that are used in proving

Theorem IV.26 in §4.3.

Before we state the following lemmas, we need to define the discrete ω-limit set.

Given a discrete dynamical system, P � S � S, the discrete ωd-limit set is defined as

ωd�x;P � � �y > S � §Nn �ª s.t. lim
n�ª

PNn�x� � y� .
When the map P is understood, the limit-set will be called ωd�x�.
Lemma B.1 (See Lemma 4.2 in [29]). Let P � �a, b� � �a, b� be C1 and injective.

Then for all x > �a, b�, ωd�x� is either a single point or two points. In either case, all

trajectories approach a periodic orbit.

Proof. By being injective, the map P is automatically monotone. Let I �� �a, b�, and

define the fixed-point set F �� �x > I � P �x� � x�, and consider x > I. If x > F we are

done, so assume x ~> F .

First, assume that P is nondecreasing. Then, since P �x� C x implies P 2�x� C P �x�
and P �x� B x implies P 2�x� B P �x�, it follows (since x ~> F ) that �P n�x�� is a

monotone and bounded sequence and therefore converges. Hence ωd�x� is a singleton.

To complete the proof, consider the case where P is nonincreasing. Since ωd�x;P � �
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ωd�x;P 2� 8 ωd�P �x�;P 2�, the previous paragraph shows that ωd�x� is either two

points or a singleton.

Lemma B.2 (See Lemma 6.1 in [29]). Let S ` R be a finite set and P � S � S.

Then, for all x > S there exists N xM large enough such that PN�x� � PM�x� where

PN�x� � P X P X . . . X P´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N times

�x�.

In particular, ωd�x� is a periodic orbit.

Proof. This follows immediately from the Pigeonhole principle. We have a function

fx � Z�
� S, m ( Pm�x�, which cannot be injective. Therefore, there exists N and

M such that fx�N� � fx�M�.
The following lemma is central to Theorem IV.26 so we will first review how this

lemma fits into the theorem. Let �N ,E ,X , S,∆, f� be an essentially non-beating

general hybrid dynamical system such that �N ,E � is a cycle. Define the set

Sª
�1,2� �� �x > S�1,2� � ¦t A 0,§T A t s.t. ϕHT �x� > S�1,2�� .

Ffor a compact, invaraint set F � @iFi ` X , two assumptions in Theorem IV.26 that

will appear in this proof are:

(Q.4) Let the outdegree of vertex n be od�n�. Then, each Fn can be written as a

disjoint union of od�n� many compact sets,

Fn � +
e>E

dom�e��n

F e
n.

(Q.5) The set F e
n 9 Se� is only nonempty if e � e� and F e

n 9 Se is diffeomorphic to an

interval.

Lemma B.3. The set Sª
�1,2�

is either a point or an interval.
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Proof. We start by defining the sets Sm
�1,2�

. Let P be the return map, P � U ` S�1,2� �

S�1,2�. Then, S1
�1,2�

�� �x > S�1,2� � P �x� > S�1,2��, that is, points in S�1,2� that return to

S�1,2� at least once. Similarly, Sm
�1,2�

are points of S�1,2� that return to S�1,2� at least

m times. This allows us to express Sª
�1,2�

as

Sª
�1,2� �

ª

�
m�1

Sm�1,2�.

If we can show that each Sm
�1,2�

is an interval, then the desired result follows due to nesting
¯

.

The base case is satisfied by (Q.4) via S0
�1,2�

�� S�1,2�. We will continue by induction.

For each m, we can iterate by

Sm�1
�1,2� � S

m
�1,2� 9 P

�1 �Sm�1,2�� .
Therefore, if Sm

�1,2�
and P �1 �Sm

�1,2�
� are both intervals, so is Sm�1

�1,2�
. All that is left to

prove is P �1 �Sm
�1,2�

� is an interval. Before we can study the structure of P �1 �Sm
�1,2�

�,

we first define the family of functions

µi � Di ` Xi � S�i,i�1�.

Where Di � �x > Xi � §t A 0 with ϕit�x� > S�i,i�1�� and µi�x� � ϕit�x� > S�i,i�1�. These

functions can be thought of as “projecting” onto the sets S�i,i�1�. What remains to

show is that ∆n�S�n,1��9D1 is an interval. If we can show this, we are done because

∆�1
�n,1�

�∆�n,1��S�n,1�� 9D1� is also an interval, and we can march backwards around

the cycle and end up on with a subinterval of S�1,2�.

Since S�n,1� is diffeomorphic to an interval, so is the set ∆�n,1��S�n,1��. Let the

map h � ∆�n,1��S�n,1��� �a, b� be a diffeomorphism. Define the points ã and b̃ as

b̃ � max�x > �a, b� � o�c �h�1�x�� 9 S�1,2� x g�,
ã � min�x > �a, b� � o�c �h�1�x�� 9 S�1,2� x g�.
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We claim that ∆�n,1��S�n,1��9D1 � h�1�ã, b̃�. By the choice of ã and b̃, we know that

∆�n,1��S�n,1�� 9 D1 ` h�1�ã, b̃�. To show the other direction, we consider the region

bounded by the four curves: h�1�ã, b̃�, õ�c �h�1�ã��, õ�c �h�1�b̃��, and S�1,2� (where

õ��x� is the forward orbit of x until it impacts S�1,2�). By assumption (Q.5) and

uniqueness of solutions, any curve starting on h�1�ã, b̃� must intersect S�1,2� before

leaving the region described above (see Lemma 10 in [29]). Therefore, h�1�ã, b̃� `
∆n�Sn� 9D1.

Lemma B.4. Let �N ,E ,X , S,∆, f� be a GHDS where �N ,E � is a cycle. Let

x0 > S�i�1,i��fix�fi�1� be such that there exists a time, T0 A 0, where ϕiT0�∆�i�1,i��x0�� >
S�i,i�1� (ϕit is the continuous flow corresponding to ẋ � fi�x� in vertex i). Additionally,

assume that the flow intersects the surface, S�i,i�1�, transversely. Then there exists an

ε A 0 and a C1 function τ � Bε�x0�9S�i�1,i� � R� such that for all y > Bε�x0�9S�i�1,i�,

ϕi
τ�y�

�∆�i�1,i��y�� > S�i,i�1�.

Proof. Define the function

Fi � �0,�ª� � S�i�1,i� � Xi,

by Fi�t, x� � h�i,i�1��ϕit�∆�i�1,i��x��� where h�1
�i,i�1�

�0� � S�i,i�1� with zero as a regular

value. It follows from Theorem 1 in Section 2.5 in [92] that Fi > C1�R� � S�i�1,i��.
This allows the use of the implicit function theorem. By the assumptions of the

lemma, we know that Fi�T0, x0� � 0. Differentiating Fi with respect to time yields:

∂Fi
∂t

�T0, x0� � ∂h�i,i�1�

∂y
W
y�ϕiT0

�∆�i�1,i��x0��>S�i,i�1�

� fi �ϕiT0�∆�i,i�1��x0��� x 0.

The first factor is nonzero because zero is a regular value and the second is nonzero

because we are away from fixed points of the continuous flow. Their inner product is

nonzero because of the transversality condition. This allows the use of the implicit
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function theorem (see Theorem 9.28 in [98]) to show that there exists a neighborhood

of x0 and a C1 function τ with the desired properties.

Note that this implies that the maps Pi � Ui ` S�i�1,i� � S�i,i�1� are all C1. Because

the composition of C1 maps is still C1, the map P �� P1 X . . . XPn � U ` S�1,2� � S�1,2�

is C1.



BIBLIOGRAPHY

197



198

BIBLIOGRAPHY

[1] R. Abraham and J.E. Marsden. Foundations of Mechanics. AMS Chelsea publishing. AMS
Chelsea Pub./American Mathematical Society, 2008.
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