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Abstract 

Synthetic microbial communities offer a variety of potential advantages over single 

species approaches for many medical, industrial, and environmental applications.  At the 

cellular level, metabolic pathways can be distributed amongst several community residents to 

lower the metabolic burden on individual cells and to enable optimization of reaction 

conditions for different parts of metabolic pathways.  At the population level, diverse microbial 

communities in different natural contexts have been shown to be more productive, efficient, 

stable, and resistant to invasion by foreign agents.  Along with these potential advantages, 

however, come a variety of new challenges as well. First, different species or cell types of 

interest must be able to coexist.  Additionally, in many scenarios the relative abundance of each 

resident can impact the overall property of the community. Beyond coexistence and 

community composition, information processing and sharing is often essential to the types of 

complex, coordinated behavior that is required for many desired medical, industrial, and 

environmental applications. 

 My dissertation has centered around the design and implementation of two novel 

systems which address some of the challenges discussed above that must be overcome to 

realize the potential of synthetic microbial communities for use in technological applications.  In 

the first system our goal was to develop a tool that can be used to enable coexistence and 

program community composition within a synthetic microbial community.  We use 
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temperature as a modality to enable coexistence of two microorganisms, Escherichia coli and 

Pseudomonas putida, with different thermal niches and to further program the composition of 

this model synthetic bi-culture.  Specifically, I developed two different approaches, referred to 

as a constant temperature regime and a cycling temperature regime.  Employing a combination 

of wet-lab experiments and mathematical modeling, I showed that a variety of parameters such 

as temperature, cycle duration, etc. can be manipulated to achieve desired community 

compositions.  Building on this work, I then used a mathematical framework developed by 

ecologists to explore design principles and specific mechanisms underlying the observed 

relationship between culture temperature and coexistence.  

In the second system, I designed a novel synthetic microbial community with a 

distributed sensing and centralized reporting architecture that is enabled by what we have 

termed bacteriophage-mediated information transfer. Our goal is to explore a novel distributed 

sensing with centralized memory system architecture that is capable of addressing limitations 

of previously developed systems.  A modular genetic circuit was developed that connects the 

input of an environmental signal of interest to activation of a lysogenic lambda bacteriophage 

which is used to transfer information about the sensing event from the sensor cell population 

to a reporter cell population.  A variety of different ways to encode and store information were 

explored. 

 While seemingly different, the lines of work described above are connected by a 

common thread of developing generalizable and modular approaches for engineering synthetic 

microbial communities to deliver the potential advantages they offer in a variety of medical, 

industrial, and environmental applications.  Synthetic microbial communities are capable of 
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performing complex and varied functions within these contexts and this dissertation is 

contributing to the rapidly growing body of research work for addressing the challenges that 

must be overcome to realize that potential. 
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Chapter 1: Background and Motivation 

1.1 The genesis and general approaches of synthetic biology 

The concept of engineering is nearly as old as human civilization.  The modern definition 

of engineering revolves around the creative application of scientific principles and 

understanding of the natural world to design and generate structures, machines, and apparatus 

relevant to humankind (Britannica, 2020).  As such, engineering has been, throughout its 

history and still, inextricably linked to the development and use of technology.  In contrast, the 

discipline of molecular biology is relatively young.  Generally accepted to have emerged in the 

1930s, the distinct discipline of molecular biology arose from a fundamentally multidisciplinary 

attempt by biochemists, geneticists, microbiologists, virologists, and importantly physicists, to 

understand the fundamental physical and chemical processes of biological systems down to the 

molecular, and even atomic, level (Kellenberger, 2004).  Between the 1930s and 1960s, in what 

is in retrospect a stunning demonstration of human ingenuity and scientific progress, the link 

between genes and proteins was established and the identity of DNA as the physical substance 

of genes was demonstrated, followed by the confirmation that DNA makes up the genetic 

material of bacteriophage, a virus which infects bacteria.  Finally in 1953 the elucidation of the 

atomic structure of DNA by James Watson, Francis Crick, and Rosalind Franklin was published 

(Franklin & Gosling, 1953; Rheinberger, 2009; Watson & Crick, 1953).  This absolute whirlwind 

of scientific progress led to two distinct concepts, one theoretical and the other technological, 



2 
 

whose consequences reverberate through human society to this day, and in all likelihood will 

continue to do so for the foreseeable future.  First the theoretical, the formulation of the 

central dogma of molecular biology, which is now understood as the process by which the 

information in DNA is converted into RNA and then into protein, which are the workhorses of 

biological cells and systems.  It is interesting to note that this fundamental process of biology, 

and life itself, is as much an informational process as a physical and energetic process.  In any 

case, this understanding of the basic organizational hierarchy of biological systems, combined 

with the second innovation, the technological ability to isolate, manipulate, and characterize 

the physical substances of DNA, RNA, and proteins have given rise to the field commonly 

referred to as genetic engineering.  Genetic engineering refers to the ability to modify DNA 

sequences and subsequently RNA and protein composition to produce desirable characteristics 

in biological systems.  This combination of advances in both the theoretical understanding of 

biological systems combined with the technology to physically manipulate and characterize 

them at the atomic level have given rise to yet another new discipline, this time one that is only 

approximately 20 years old.  This discipline, referred to as synthetic biology, endeavors to apply 

the philosophy and practices of engineering to biological systems as opposed to the more 

macromolecular structures that have been the purview of engineering throughout the course of 

its millennia old history.  Synthetic biology attempts to leverage tried and true engineering 

concepts such as modularity, robustness, the engineering design cycle, etc. and apply them to 

biological systems to produce synthetic biological systems with properties that are desirable for 

human enterprise.   
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 The first major success of synthetic biology dates to approximately 25 years before the 

concept of synthetic biology was formalized, with the cloning of the human insulin gene into 

the bacteria Escherichia coli to produce insulin for patients with diabetes (Goeddel et al., 1979).  

Descriptions of symptoms and treatments for diabetes mellitus can be dated back to ancient 

Egyptian, Chinese, and Indian civilizations (Quianzon & Cheikh, 2012).  It was not until millennia 

later, in 1921, when animal insulin was isolated and used to treat human diabetes patients for 

the first time (Ladisch & Kohlmann, 1992; Quianzon & Cheikh, 2012).  Over the next six decades 

the process for isolation and purification of insulin from animal sources was revised and refined 

but still struggled to meet the twin challenges of supply and demand and increasing 

immunological responses after repeated administration over time (Ladisch & Kohlmann, 1992).  

In 1978, in what is generally accepted as one of the first major successes for the biotechnology 

industry, the genes for the human insulin A and B chains were cloned into E. coli plasmids, 

expressed, purified, and combined to produce a molecule of (Sheth & Wang, 2018)insulin that 

is biochemically identical to human insulin despite having been manufactured by bacteria 

(Goeddel et al., 1979).  This process, developed by researchers at Eli Lilly and Co. and 

Genentech, created a virtually unlimited supply of human insulin and exemplified one of the 

core biotechnology strategies that would be iterated upon, improved, and implemented 

consistently over the next two decades (Ladisch & Kohlmann, 1992).   
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This core biotechnology development strategy is conceptually straightforward, but not 

always trivial in implementation (Figure 1.1).  First, researchers identify a gene of interest that 

codes for an RNA or protein product of perceived medical or technological value.  This gene is 

then isolated, 

cloned, and 

inserted into a 

microbial 

expression vector 

(although 

mammalian cell 

culture has also 

become a 

common production vector).  By orders of magnitude, the two most common microbial 

expression systems are Saccharomyces cerevisiae, the well-loved eukaryotic yeast microbe 

responsible for conversion of sugars into ethanol for wine and beer production, and Escherichia 

coli, the less well-loved (by the general public) prokaryotic commensal mammalian gut microbe.  

There are a multitude of reasons for the favoritism bestowed upon these two model systems, 

but the majority of those reasons boil down to a few broad characteristics.  These microbes are 

relatively robust, grow extremely rapidly (with doubling times on the order of minutes to hours) 

at temperatures which are experimentally amenable, and by virtue of a research positive 

feedback cycle as much as anything else (wherein more research was done on E. coli because 

there were more data and tools available, which led to even more data and tools, etc.), have a 

Figure 1.1 Gene of interest (insulin) is isolated. B. Gene of interest is introduced into a bacterial 
plasmid and the plasmid is transformed into a model organism for production.  C. The production 
organism is cultured for production of the target molecule. (NIH) 
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wealth of genetic tools and physiological data available for researchers.  Upon introduction of 

the gene of interest into the expression vector and model species of choice, the species can 

then be cultured at industrially relevant scales (often in culture volumes into the tens of 

thousands of liters) for production and subsequent extraction of the target molecule.  As 

mentioned previously, this general approach has been applied again and again over the past 

four decades, albeit with wildly varying degrees of success. 

1.2 Initial challenges in synthetic biology 

Beginning with the initial success with insulin and a few other targets, interest in 

biotechnology has exploded in the last 40 years (Lazonick & Tulum, 2011).  And despite what 

have certainly been a large number of success stories, expectations were soon tempered by 

reality.  The nascent field encountered many challenges and complications resulting from a 

multitude of aspects of biology across several physical scales.  First, while gene targets 

gradually became easier to identify with the development of bioinformatic tools such as 

metagenomics, isolation, and culture of many of the organisms that harbor the identified genes 

of interest can be excruciating.  Recently, one microbe of interest was finally isolated after 

2,013 days of continuous anaerobic culture and over 12 years of work (Aoki et al., 2014; Starr, 

2019).  Additionally, it is estimated that only approximately 1% of all microbial species sampled 

from natural environments have been culturable (Schloss & Handelsman, 2005).  It is currently 

proposed that one of the major difficulties in culturing many microbes of interest in isolation 

stems from obligate symbiotic relationships between the bacteria of interest and other species 

they are found within their natural context, rendering many species incapable of being cultured 

in mono-culture (at least in the absence of specialized media) (Stewart, 2012).  Even after 
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isolation of species enabling the harvest of sufficient quantities of high-quality DNA substrate of 

target genes for cloning purposes, the heterologous expression of foreign genes in model 

species offers many challenges of its own.  Codon optimization, post-transcriptional and post-

translational modification, and aggregation/inclusion bodies are just a few of the dimensions 

that must be optimized for expression of target genes in model organisms, often with very little 

in the way of a roadmaps for success (Burgess-Brown et al., 2008; Mukherji & van 

Oudenaarden, 2009; Purnick & Weiss, 2009; Slouka, Kopp, Spadiut, & Herwig, 2019).  In the 

event these obstacles are overcome, it is also the case that many biosynthetic pathways of 

medical and industrial interest can be quite large (Weathers, Elkholy, & Wobbe, 2006).  

Attempting to express such a long biosynthetic pathway heterologously in target cells can 

introduce a metabolic burden such that the intended production cells display decreased 

robustness in addition to growth defects (Glick, 1995).  Finally, at the population level, the 

industrially sized cultures can often be susceptible to invasion by foreign species of microbes as 

well as bacteriophage, resulting in culture collapse and significant cost increases.    

1.3 A new approach for synthetic biology: synthetic microbial communities 

1.3.1 Potential advantages associated with synthetic microbial communities 

Significant progress has been made on developing techniques to address each of these 

fronts in the past decades.  In the mid-to-late 2000s, however, a new strategy for the 

expression and optimization of biotechnological systems began to garner interest and 

attention.  It was proposed that instead of using a single species culture approach to produce 

biomolecules of interest, it might be possible to engineer chemistry and coordination in a 

microbial community of multiple species to address many of the challenges that had presented 
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as obstacles for the synthetic biology field whose roots reach back to the late 1970s or further.  

For example, culturing fastidious or otherwise difficult to isolate species amongst their natural 

communities may provide the symbiotic relationships that are required for those organisms to 

thrive and grow (Stewart, 2012).  Additionally, using a multi-species approach theoretically 

enables expression of target genes in their natural systems, which bypasses the plethora of 

challenges associated with heterologous expression in model systems (Glick, 1995).  It can also 

potentially aid in diminishing the metabolic burden imposed upon production cells (Figure 1.2).  

In many cases, different steps of naturally occurring pathways are sourced from a variety of 

different organisms and all combined into a single biosynthetic pathway in the final model 

production organism.  This is often at least partially responsible for imposing detrimental 

metabolic burdens on production specialists (Glick, 1995).  In a production community 

paradigm, the different pathway pieces can still be expressed individually in their natural hosts, 

with intermediates shuffled between specialists in the community.  Additionally, the 

community approach enables the concept of specialization within the production scheme.  

Instead of forcing a single species to act as a generalist, performing all the biochemical 

Figure 1.2 Adapted from Zhang et al. 2015. Division of a long metabolic pathway into two subpathways distributed amongst 2 
different cell populations within a microbial community for production of a target molecule (H. Zhang, Pereira, Li, & 
Stephanopoulos, 2015). 
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reactions and processes required for synthesis of a target, the community approach allows for 

the distribution and specialization of labor (Thommes, Wang, Zhao, Paschalidis, & Segrè, 2019).  

This enables optimization of specific reaction condition for specific pathway steps as well as 

reaction compartmentalization to minimize unwanted intermediates and carbon flux through 

non-target pathways (Brenner, You, & Arnold, 2008).  Finally, there is a wealth of data, 

generated largely by ecologists, which suggests that biodiversity in naturally occurring microbial 

communities contributes to increased efficiency and biomass production, stability, and 

resistance to invasion by foreign species in comparison to monocultures (Cardinale et al., 2012; 

McGrady-Steed, Harris, & Morin, 1997; van Elsas et al., 2012).  Each of these characteristics can 

be considered beneficial within a biotechnological context.  In short, there are clearly many 

potential benefits to a microbial community-based production strategy, as long as the 

challenges they also present can be overcome. 

1.3.2 Challenges specific to synthetic microbial communities 

While microbial communities certainly offer the potential to overcome many of the 

challenges that have been encountered with single species approaches to biotechnology, they 

also present new challenges all their own.  The first challenge can be summarized simply as 

coexistence.  To access the potential benefits associated with synthetic microbial communities, 

the species intended as residents in the community must be able to coexist together over the 

relevant time frames (e.g. the length of culture time required for a production cycle).  In 

addition to coexistence, the number of individuals of each different species in proportion to the 

total community population (also referred to as the relative abundance of each species) will 

often affect the metabolic properties of the community as a whole.  For example, as long of the 
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metabolic properties of species A differ significantly from species B, a community that is 25% 

composed of species A and 75% composed of B would be expected to exhibit different 

metabolic properties as a whole than a community composed of 25% species B and 75% species 

A.   

Within the field of synthetic biology there has been a severe shortage of tools and 

techniques developed to address challenges with enabling and regulating coexistence and 

relative abundance in synthetic microbial communities until recently (Scott et al., 2017; 

Stephens, Pozo, Tsao, Hauk, & Bentley, 2019).  In addition, very little research has been done by 

synthetic biologists regarding the basic mechanisms which affect coexistence and relative 

abundance in microbial communities despite the fact that this kind of basic research is often 

required to identify mechanisms which can form the basis of tools and strategies to manipulate 

these coexistence and relative abundance in microbial communities.   

 Despite the lack of attention to these issues from synthetic biologists, these concepts 

have been the subject of a great deal of research by ecologists over the past century and a half, 

extending all the way back to Darwin’s theory of natural selection (Darwin, 1859).  One of the 

earliest paradigms for the study of coexistence by ecologists is commonly referred to as the 

competitive exclusion principle, commonly attributed to Gause but formalized by Grinnell in 

1904 as “Two species of approximately the same food habits are not likely to remain long 

evenly balanced in numbers in the same region.  One will crowd out the other” (Grinnell, 1904).  

This concept, which was simplified by Hardin into “complete competitors cannot coexist”, was 

the subject of intense exploration and debate over the first half of the 20th century (Hardin, 

1960).  The competitive exclusion principle is predicted and supported by various mathematical 
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and theoretical models such as the Lotka-Volterra model of competition, but is often 

contradicted by empirical observations of naturally occurring communities, a juxtaposition 

famously articulated by Hutchinson in his 1960 publication ‘The paradox of the plankton,’ which 

contrasts the competitive exclusion principle with the many naturally occurring communities of 

aquatic plankton composed of multiple species of plankton which occupy very similar ecological 

niches and coexist over extended periods of time (Hutchinson, 1961).  In this article, Hutchinson 

suggests that fluctuations in environmental conditions is one mechanism that could 

theoretically enable coexistence of competitors in natural communities (Hutchinson, 1961).  

Debate and investigation continued over the rest of the 20th century and in the year 2000 the 

mathematical ecologist Peter Chesson published a seminal paper which synthesized and 

clarified much of the coexistence theory from the previous century within a mathematically 

rigorous framework (Chesson, 2000).   

Due in part to the complications and confounding factors arising in part from the 

immense diversity amongst the types of naturally occurring communities that are studied by 

ecologists, from terrestrial to aquatic environments at scales ranging from whales to microbes, 

investigation into coexistence maintenance mechanisms continues to this day, but much of the 

knowledge that has been generated by over a century of investigation is now sufficiently 

developed for application in synthetic biology as researchers attempt to engineer and 

manipulate many of the parameters that have been explored through ecological studies.  

Furthermore, it is the case that synthetic microbial communities in many cases provide a very 

useful model system to explore ecological questions due to their relatively fast generation 

times, small size, and easily scalable complexity, which allow highly complex communities to be 
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studied over many generations under experimentally amenable time frames and conditions 

(Scott et al., 2017).   

 In addition to the population level challenges with synthetic microbial communities 

discussed above, there are molecular level challenges that arise in attempting to engineer 

synthetic microbial communities for biotechnology applications as well.  At the most basic level, 

community resident species must be capable of sharing the compounds upon which they are 

meant to act, and at a more complex (and arguably more important) level, community species 

must somehow be able to coordinate their activity along relevant temporal and spatial scales to 

enable the complex community behaviors that are desired for biotechnology applications 

(Error! Reference source not found.) (DeLisa, Valdes, & Bentley, 2001; Dunn & Handelsman, 

Figure 1.3 A. Four different cell types in a microbial production community encode different parts of a biosynthetic pathway 
(four large differently colored ovals).  Pathway intermediates (represented by blue squares, orange triangles, and green circles) 
are passed between cells in the production pathway to finally produce the target product, represented by red stars.  B. 
Production of a target compound in the production cells (red ovals) is controlled by signals sent to the production cells from 
sensor cells in the community. 
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2002; Humphries et al., 2017; Scott et al., 2017; Silva & Boedicker, 2019; von Bodman, Willey, & 

Diggle, 2008).  In order to enable this coordination and cooperation within the community, the 

most important commodity that must be shared is information.   

Species must be able to regulate the correct chemical and biophysical processes at the 

appropriate times in response to the desired environmental and internal conditions of not just 

one but often multiple different types of individual species and cell types.  It is this level of 

coordination and cooperation at which one of the cutting edges of synthetic biology in 

microbial communities currently lies.   

1.3.3 Overcoming the challenges: Inspiration from naturally occurring microbial 

communities 

While these challenges appear perhaps at the outset to be daunting, there are 

thankfully a wealth of naturally occurring microbial communities which exhibit exquisite 

coordination across time 

and space to which we can 

turn for inspiration.  For 

example, the light 

generating organ of the 

Hawaiian squid Euprymna 

scolopes forms an 

association with the Gram-

negative luminous 

bacterium Vibrio fischeri that lasts over many generations of V. fischeri and for the entirety of 

Figure 1.4 A. The squid Euprymna scolopes B. The symbiotic bacterium Vibrio fischeri 
with which the squid forms a lifelong association C-D The light producing organ of 
Euprymna scolopes (Olsen, Choffnes, & Mack, 2012). 
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the lifetime of the squid (Figure 1.4) (Olsen et al., 2012).  The bacteria of the light organ emit 

luminescence that mimics the aesthetic of moonlight and starlight filtering through ocean 

waters, thus camouflaging the nocturnal squid from predators below (Nyholm & McFall-Ngai, 

2004; Olsen et al., 2012).  The association between the light organ of the squid of V. fischeri 

begins within hours of hatching and occurs only with the V. fischeri bacterium.  The association 

proceeds in stages, and at each stage the specificity between host and symbiont is increased.  

Upon completion of this colonization process, the bacterium drives development of the tissues 

within the light organ, inducing a morphology change in the squid tissue that enables a 

transition from a physiology that supports colonization to one that promotes long term 

maintenance of a long term exclusive association (Nyholm & McFall-Ngai, 2004; Olsen et al., 

2012).  While the exact molecular mechanisms of these interactions are still under 

investigation, it is certain that the exchange of information in some form, possibly some type of 

biomolecules or morphogens, must occur for this type of coordination to occur. 

 Another example of complex coordination and communication in microbial 

communities comes from the microbial communities associated with the roots of plants, 

commonly referred to as the plant rhizosphere (Figure 1.5).  The rhizosphere of a plant is 

generally a complex microbial community composed of species that exchange energy and 

nutrients with the plant in a symbiotic relationship (Ferguson et al., 2010; Long, 2001; Olsen et 
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al., 2012).  It is known that partnerships between plant roots and the diverse species of the 

rhizosphere community are established in part through chemical and genetic cross talk in which 

chemical signals can be released by plants to attract specific microbes, which upon association 

release additional signals that alter gene expression in the plant in ways that can affect plant 

morphology and biochemistry (Ferguson et al., 2010; Long, 2001; Olsen et al., 2012).  So while 

the challenges of coordinating complex behaviors between different species in a synthetic 

microbial community are certainly not trivial, it is possible to look to naturally existing microbial 

communities to see that it is indeed possible, and also to consider that strategies used in these 

natural communities and whether such strategies might be appropriate for synthetic 

communities or if they inspire new strategies that would be appropriate.  

1.4 Dissertation overview 

The research and ideas discussed above provide an appropriate introduction to the 

underlying motivations and goals of my thesis work over the past six years.  The fundamental 

goal of synthetic biology has been to apply engineering philosophies and strategies to the 

Figure 1.5 A cartoon of the associated formed between plant roots and the microbiota of the rhizosphere.  Left,  a macroscopic 
view of the full plant. Middle, a close up of the associations between the microbiota (in red, blue, green, and yellow and the 
plant tissue (brown).  Right, infiltration of the plant tissue by arbuscular mycorrhizal fungi (AMF) (Philippot, Raaijmakers, 
Lemanceau, & van der Putten, 2013). 
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practice of molecular biology to develop biotechnology applications of biological systems to 

address environmentally, industrially, and medically relevant current challenges.  A recently 

evolved paradigm of synthetic biology expands the approach of using single species microbial 

cultures for implementation of desired biological systems to using synthetic microbial 

communities which offers a wide variety of potential improvements over traditional single 

species approaches alongside a host of new challenges.  The projects I have worked on in my 

thesis work have been specifically designed to leverage ecological research in addition to 

engineering and molecular biology techniques to develop strategies to enable coexistence and 

program relative species abundance within synthetic microbial communities and to introduce a 

new information sharing paradigm within synthetic microbial communities to enable 

communication and coordination in microbial communities using a variety of both wet lab 

techniques as well as computational and mathematical models.  In Chapter 2 I present data 

from a novel regulatory system we developed to enable species coexistence and program 

relative species abundance in a synthetic microbial community.  Rationally designed 

temperature regimes are used to exert control over relative species abundance by differentially 

manipulating the co-culture growth rates of community members.  In Chapter 3, I more deeply 

explore the relationship between temperature, growth rates, and population dynamics using a 

mathematical framework developed by ecologists to probe mechanisms of coexistence 

maintenance in natural communities.  Finally, in Chapter 4 I present a novel synthetic microbial 

community designed to be capable of sensing and remembering a variety of environmental 

stimuli to which it is exposed.  We accomplish this by implementing a novel distributed sensing 

system architecture paired with a centralized memory component enabled by bacteriophage-
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mediated information transfer.  Together these projects represent a significant contribution 

towards developing the ability to better engineer and program synthetic microbial communities 

for biotechnological applications. 
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Chapter 2: Temperature Regulation as a Tool to Program Synthetic 

Microbial Community Composition 

The following chapter is largely based on our manuscript currently in revision for publication in 

Biotechnology and Bioengineering. 

2.1 Introduction 

Microbial systems have been used for decades to perform functions with industrial, 

environmental, and medical relevance (Bouwer & Zehnder, 1993; Goeddel et al., 1979; Houde, 

Kademi, & Leblanc, 2004).  Traditionally, a single microbial species is cultured for a specific 

functionality.  If necessary, genetic modifications are made to this organism to enable novel 

capabilities.  As the field surrounding this paradigm has progressed, however, challenges faced 

by this monoculture approach have become increasingly apparent.  Metabolic versatility and 

complexity in a single species is limited by factors such as metabolic burden, a lack of or limited 

intracellular compartmentalization, and energetic tradeoffs (Litchman, Edwards, & Klausmeier, 

2015; K. Zhou, Qiao, Edgar, & Stephanopoulos, 2015).  At the population level, monocultures 

are susceptible to invasion and subsequent population collapse by agents such as foreign 

bacteria, fungi, and bacteriophages.  One approach to address these challenges is utilization of 

synthetic microbial communities as opposed to monocultures for biotechnology applications.  

Microbial communities enable division of labor and specialization within a population, 
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decreasing metabolic burden and enabling reaction compartmentalization.  More diverse 

microbial communities can also exhibit increased stability (Yurtsev, Conwill, & Gore, 2016) and 

resistance to invasion by foreign agents (van Elsas et al., 2012), as well as increased biomass 

production (McGrady-Steed et al., 1997) and nutrient utilization (Ptacnik et al., 2008) in certain 

contexts.   

 While the potential advantages offered by a microbial community over a monoculture 

are clear, community-based approaches face challenges of their own.  One of the most basic 

challenges is control of community composition.  Community composition can have different 

meanings in different ecological contexts, but here is used to refer specifically to the relative 

abundance of individual species within the community.  In a microbial community in which each 

species exhibits a specific and unique function within the community, the metabolic 

functionality of the community as a whole can depend greatly on the relative abundance of 

each species within the community (B. B. Hsu et al., 2019; S. A. Scholz, Graves, Minty, & Lin, 

2018; H. Zhang et al., 2015). Despite significant advances in many related research topics, 

progress in control of synthetic microbial community compositions has been slow, likely due at 

least in part to a dearth of tools capable of dynamically modulating relative species abundance.  

The most commonly used technique is manipulation of inoculation ratio (Minty et al., 2013; 

Shong, Jimenez Diaz, & Collins, 2012; Strickland, Lauber, Fierer, & Bradford, 2009), but this 

approach is not capable of dynamic control and due to differences between intrinsic growth 

rates and interspecific interactions between community residents the community composition 

often quickly shifts away from this initial condition. 
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 While synthetic biology researchers are starting to develop new approaches to address 

the aforementioned challenges, mechanisms that enable species coexistence and modulate 

relative abundance over time in complex naturally occurring communities have been a major 

theme in ecological study for almost 100 years.  The current state of the field proposes that all 

mechanisms that maintain and modulate species diversity operate through one of two broad 

classes, equalizing mechanisms and stabilizing mechanisms (Chesson, 2000).  Equalizing 

Figure 2.1 Two approaches for rationally regulating synthetic microbial community compositions. A) Under what we refer to as a 
constant temperature regime, a synthetic bi-culture is kept at a constant temperature throughout the duration of the culture 
lifetime. The selected temperature determines whether a monoculture persists or co-existence of the two microbes can occur.  B) 
Under a cycling temperature regime a bi-culture is grown in repeated cycles of high and low temperatures, enabling co-
existence of the two microbes over an extended period of time. Both the temperatures and the time intervals spent at each 
temperature can be manipulated to achieve desired outcomes. 
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mechanisms lessen the relative fitness differences between species (which can be more simply 

conceptualized as growth rates, although in truth this is a slight oversimplification), and 

stabilizing mechanisms increase the niche differences between species, which is to say they 

decrease the extent to which species compete directly with each other(Chesson, 2000).  

According to Chesson’s theory, equalizing mechanisms can support coexistence by decreasing 

the difference between growth rates, but stabilizing mechanisms are required for coexistence.  

This makes intuitive sense in that, if there is a difference between the growth rates of two 

species, no matter how small, eventually that difference will lead to competitive exclusion of 

the slower growing species in the absence of additional compensatory mechanisms.  Therefore, 

any environmental variables which differentially affect growth rates or niche partitioning would 

be expected to influence the ability of species to coexistence and/or community composition. 

In this work we have applied concepts from the ecological study of the mechanisms 

enabling maintenance of species coexistence to a synthetic microbial community in order to 

develop tools that are capable of dynamically modulating relative species abundance.  The 

modality we have implemented is temperature regulation.  Using a synthetic community 

consisting of two model microorganisms Escherichia coli and Pseudomonas putida, which 

occupy different but partially overlapping thermal niches, we demonstrate that temperature 

regulation is a tool that can be used to enable coexistence and program the community 

composition. Specifically, we develop two temperature-mediated regimes. First, using a 

constant temperature for the co-culture, we are able to identify a temperature window that 

allows co-existence of the two microbes, albeit exhibiting only a small range of achievable 

compositions. Next, we develop a novel regime of cycling between a high temperature favoring 
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E. coli and a low one favoring P. putida, which enables co-existence of the two microorganisms 

in a highly tunable manner. 

2.2 Materials and methods 

2.2.1 Microbial strains and cultivation  

E. coli K12 substr. MG1655 constitutively expressing a chromosomally integrated YFP 

construct was generated by P1 transduction as described by Thomason et al. (Thomason, 

Costantino, & Court, 2007).  Strain Y2 from Kerner et al. (Kerner, Park, Williams, & Lin, 2012) 

was used as the source of the YFP cassette.  The P. putida KT2440 strain constitutively 

expressing mCherry was a generous gift from Dr. Esteban Martinez-Garcia of the Victor de 

Lorenzo lab.  Addition of an mCherry cassette to P. putida KT2440 was performed via Tn7 

transposon assisted cloning (Koch, Jensen, & Nybroe, 2001; Martínez-García, Calles, Arévalo-

Rodríguez, & de Lorenzo, 2011).  Unless otherwise noted, all cultures were grown in minimal 

M9 media (200 mL 5x M9 salts [34 g/L Na2HPO4 anhydrous, 15 g/L KH2PO4, 2.5 g/L NaCl, 5 g/L 

NH4Cl], 20 mL 20% glucose, 2 mL 1M MgSO4, 100 uL 1M CaCl2, 780 mL sterile deionized H2O; 

autoclave all components separately then mix under sterile conditions).   

2.2.2 Visualization of strains via confocal microscopy 

50 uL of log phase bi-culture was pipetted onto a slide and a coverslip was placed on 

top.  Confocal fluorescence microscopy was performed using an upright Olympus FV1200 

confocal microscope equipped with a 60x objective and 405, 488, 515, 543, and 635 lasers.  

Images were exported and analyzed with ImageJ. 
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2.2.3 Quantification of growth rate in co-cultures 

E. coli K12 substr. MG1655-YFP and P. putida KT2440-mCh were seeded from -80 ˚C 

cryostocks and grown in monoculture overnight to stationary phase in 14 mL Corning Falcon® 

test tubes (polypropylene test tube, round bottom, 17x100mm, 14mL, graduated, with clear 

snap cap, Sterile, 25 per Pack) in a 2 mL volume of M9 minimal media.  Overnight cultures were 

diluted 1:100 into fresh M9 media and grown into exponential growth phase (OD600 ~0.4-0.6).  

The cell density of the two cultures of exponential phase cells were normalized to each other 

using OD600 and then diluted 1:100 into fresh M9 media in a Greiner Bio-one CELLSTAR™ 96 

well μClear flat bottomed microplate with a 200 uL final volume.  Strains were grown in 

monoculture and co-culture in triplicate (2 uL of the desired strain was added for monocultures, 

and 1 uL each of both strains was added for co-cultures to 198 uL M9 media).  These nine wells 

were surrounded by wells filled with 200 uL sterile deionized H2O to inhibit evaporation from 

experimental wells.  The lid was treated with a mixture of 20% ethanol + 0.5% Triton X-100 to 

avoid condensation formation on the lid (pour enough mixture to completely cover the bottom 

of the lid, let sit 5 minutes, pour off and let air dry).  The lid was taped on using Fisherbrand™ 

labeling tape.  The plate was incubated in a Biotek Synergy H1 platereader for 24 hours with 

plate reads every 10 minutes and continuous orbital shaking at 282 cpm.  At each timepoint, 

reads at 600 nm wavelength, Excitation: 510 nm Emission: 540 nm, and Excitation: 585 nm 

Emission: 620 nm were taken of each well (these wavelengths were empirically determined to 

maximize the specific signal and minimize crosstalk between the two channels for our 

constructs, media, and platereader; data not shown).  The co-culture growth rates from the co-
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culture growth curves were calculated by fitting the early exponential growth phase to an 

exponential function using Microsoft Excel. 

2.2.4 Constant temperature regime: culture growth and community composition 

quantification  

E. coli K12 substr. MG1655-YFP and P. putida KT2440-mCh were seeded from -80 ˚C 

cryostocks and grown in monoculture overnight to stationary phase in 14 mL Corning Falcon® 

test tubes (polypropylene test tube, round bottom, 17x100mm, 14mL, graduated, with clear 

snap cap, Sterile, 25 per Pack) in a 2 mL volume of M9 minimal media.  Overnight cultures were 

diluted 1:100 into fresh M9 media and grown into exponential growth phase (OD600 ~0.4-0.6).  

The cell density of the two cultures of exponential phase cells were normalized to each other 

using OD600 and then diluted into 14 mL Corning Falcon® test tubes with 2 mL fresh M9 at 

three different inoculation ratios; 1:10, 1:1, and 10:1 E. coli : P. putida (2 uL E. coli + 18 uL P. 

putida, 10 uL E. coli + 10 uL P. putida, and 18 uL E. coli + 2 uL P. putida).  Each inoculation ratio 

was performed in triplicate producing a total of nine cultures.  Cultures were incubated in a 

Lab-Line Instruments Model No. 3528 incubator with a New Brunswick Scientific C1 platform 

shaker placed inside for shaking set at a speed of 50 (no units are indicated on the shaker).  The 

temperature was monitored throughout the lifetime of each experiment using an Omega OM-

91 portable temperature data logger (see Supplemental Information).  Each culture was 

passaged 1:100 into 2 mL fresh M9 media in 14 mL Corning Falcon® test tubes twice daily (8 

hour and 16-hour growth periods).  At each passaging time point, each culture was vortexed for 

5 seconds and a 1 uL sample was taken for quantification of community composition via flow 

cytometry.  Passaging was performed after vortexing. 
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2.2.5 Cycling temperature regime: culture growth and community composition 

quantification  

E. coli K12 substr. MG1655-YFP and P. putida KT2440-mCh were seeded from -80 ˚C 

cryostocks and grown in monoculture overnight to stationary phase in 14 mL Corning Falcon® 

test tubes (polypropylene test tube, round bottom, 17x100mm, 14mL, graduated, with clear 

snap cap, Sterile, 25 per Pack) in a 2 mL volume of M9 minimal media.  Overnight cultures were 

diluted 1:100 into fresh M9 media and grown into exponential growth phase (OD600 ~0.4-0.6).  

The cell density of the two cultures of exponential phase cells were normalized to each other 

using OD600 and then diluted into a 14 mL Corning Falcon® test tube with 2 mL fresh M9 at a 

1:1 inoculation ratio (10 uL E. coli + 10 uL P. putida).  For the long-time interval cycling 

temperature program experiments, the culture was incubated at 37 ˚C for 16 hours in a New 

Brunswick Scientific Excella E24 Incubator Shaker with 225 rpm shaking, and at 31 ˚C for 8 hours 

in a Lab-Line Instruments Model No. 3528 with 225 rpm shaking.  For the short-time interval 

cycling temperature experiments, a culture was prepared as above and incubated for 

approximately 72 hours to allow adaptation to culture conditions.  The culture was then 

incubated at 27 ˚C until the community composition reached a 1:1 ratio, and then was 

incubated at the indicated temperatures for the indicated times.  After each growth period, 

cultures were vortexed for 5 seconds and a 1 uL sample was taken for quantification of 

community composition by flow cytometry, and then the culture was passaged 1:100 into 2 mL 

of fresh M9 media in a new 14 mL Corning Falcon® test tube.   
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2.2.6 Quantification of community composition via flow cytometry 

Samples taken from co-cultures were diluted to ~106 cell/mL in 1x PBS (137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4; pH 7.4) and run on an Applied Biosystems 

Attune acoustic focusing cytometer.  300 uL of sample was acquired by the device for each run 

and 10,000 events were recorded.  The instrument configuration was as follows: (Threshold 

(x1000): FSC: 10; SSC: 10; BL1: 10; BL2: 10; BL3: 10; BL4: 10; RL1: 10; RL2:10, Voltage (mV): FSC: 

3,000; SSC: 3,500; BL1: 2,400; BL2: 1,800; BL3: 2,550; BL4: 2,550; RL1: 2,900; RL2: 1,950).  

Because this machine lacks a laser with proper wavelengths for detection of our mCherry 

construct, yellow fluorescence positive cells were classified as E. coli K12 substr. MG1655-YFP 

and yellow fluorescence negative cells were classified as P. putida KT2440-mCh. 

2.2.7 Modeling of population dynamics under the cycling temperature regime 

For the cycling temperature regime, consider each cycle consists of a time interval 𝑡𝑡𝐻𝐻 at 

a high temperature favoring E. coli and then another time interval 𝑡𝑡𝐿𝐿 at a low temperature 

favoring P. putida.  Two types of models were developed. In the first one, simple exponential 

growth is assumed. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐸𝐸𝐸𝐸 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑃𝑃𝑃𝑃 

where variables 𝐸𝐸 and 𝑃𝑃 are E. coli and P. putida cell densities respectively; 𝑟𝑟𝐸𝐸  and 𝑟𝑟𝑃𝑃, their 

specific growth rates respectively, are model parameters. We further denote 𝑟𝑟𝐸𝐸𝐻𝐻 and 𝑟𝑟𝑃𝑃𝐻𝐻 as the 

specific grow rates of E. coli and P. putida respectively at the high temperature; 𝑟𝑟𝐸𝐸𝐿𝐿 and 𝑟𝑟𝑃𝑃𝐿𝐿 the 
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specific grow rates of E. coli and P. putida respectively at the low temperature. Note that 𝑟𝑟𝑃𝑃𝐻𝐻 <

𝑟𝑟𝐸𝐸𝐻𝐻 , 𝑟𝑟𝑃𝑃𝐿𝐿 > 𝑟𝑟𝐸𝐸𝐿𝐿, and we define ∆𝑟𝑟𝐻𝐻 ≡ 𝑟𝑟𝐸𝐸𝐻𝐻 −  𝑟𝑟𝑃𝑃𝐻𝐻, ∆𝑟𝑟𝐿𝐿 ≡ 𝑟𝑟𝑃𝑃𝐿𝐿 − 𝑟𝑟𝐸𝐸𝐿𝐿. 

The above ODE’s have simple analytical solutions and the two cell densities can be expressed as 

explicit functions of time: 

𝐸𝐸(𝑡𝑡) = � 𝐸𝐸0 ⋅ 𝑒𝑒𝑟𝑟𝐸𝐸
𝐻𝐻⋅𝑡𝑡,                     0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐻𝐻

𝐸𝐸0𝑒𝑒𝑟𝑟𝐸𝐸
𝐻𝐻⋅𝑡𝑡𝐻𝐻 ⋅ 𝑒𝑒𝑟𝑟𝐸𝐸

𝐿𝐿�𝑡𝑡−𝑡𝑡𝐻𝐻�, 𝑡𝑡𝐻𝐻 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿 
 

𝑃𝑃(𝑡𝑡) = � 𝑃𝑃0 ⋅ 𝑒𝑒𝑟𝑟𝑃𝑃
𝐻𝐻⋅𝑡𝑡,                     0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐻𝐻

𝑃𝑃0𝑒𝑒𝑟𝑟𝑃𝑃
𝐻𝐻⋅𝑡𝑡𝐻𝐻 ⋅ 𝑒𝑒𝑟𝑟𝑃𝑃

𝐿𝐿�𝑡𝑡−𝑡𝑡𝐻𝐻�, 𝑡𝑡𝐻𝐻 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿 
 

where 𝐸𝐸0 and 𝑃𝑃0 are the E. coli and P. putida cell densities respectively at the beginning of the 

cycle.  

To maintain the bi-culture stably, the composition at the end of each cycle needs to return to 

its value at the beginning of the cycle. Therefore, we require the following: 

𝐸𝐸(𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿)
𝑃𝑃(𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿)

=  
𝐸𝐸0𝑒𝑒𝑟𝑟𝐸𝐸

𝐻𝐻⋅𝑡𝑡𝐻𝐻𝑒𝑒𝑟𝑟𝐸𝐸
𝐿𝐿⋅𝑡𝑡𝐿𝐿

𝑃𝑃0𝑒𝑒𝑟𝑟𝑃𝑃
𝐻𝐻⋅𝑡𝑡𝐻𝐻𝑒𝑒𝑟𝑟𝑃𝑃𝐿𝐿⋅𝑡𝑡𝐿𝐿

=
𝐸𝐸0
𝑃𝑃0
⋅ 𝑒𝑒�𝑟𝑟𝐸𝐸

𝐻𝐻−𝑟𝑟𝑃𝑃
𝐻𝐻�𝑡𝑡𝐻𝐻−�𝑟𝑟𝑃𝑃

𝐿𝐿−𝑟𝑟𝐸𝐸
𝐿𝐿�𝑡𝑡𝐿𝐿 =

𝐸𝐸0
𝑃𝑃0

 

It follows that: 

(𝑟𝑟𝐸𝐸𝐻𝐻 − 𝑟𝑟𝑃𝑃𝐻𝐻)𝑡𝑡𝐻𝐻 − (𝑟𝑟𝑃𝑃𝐿𝐿 − 𝑟𝑟𝐸𝐸𝐿𝐿)𝑡𝑡𝐿𝐿 = 0 

Therefore, we have the relationship: 

𝑡𝑡𝐻𝐻

𝑡𝑡𝐿𝐿
=
𝑟𝑟𝑃𝑃𝐿𝐿 − 𝑟𝑟𝐸𝐸𝐿𝐿

𝑟𝑟𝐸𝐸𝐻𝐻 − 𝑟𝑟𝑃𝑃𝐻𝐻
=
∆𝑟𝑟𝐿𝐿

∆𝑟𝑟𝐻𝐻
 

The ratio of the two species averaged over the whole cycle can be calculated as follows: 
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�
𝐸𝐸
𝑃𝑃�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

=
∫ �𝐸𝐸0 ⋅ 𝑒𝑒

𝑟𝑟𝐸𝐸
𝐻𝐻⋅𝑡𝑡

𝑃𝑃0 ⋅ 𝑒𝑒𝑟𝑟𝑃𝑃
𝐻𝐻⋅𝑡𝑡
� 𝑑𝑑𝑑𝑑 + ∫ �𝐸𝐸0𝑒𝑒

𝑟𝑟𝐸𝐸
𝐻𝐻⋅𝑡𝑡𝐻𝐻 ⋅ 𝑒𝑒𝑟𝑟𝐸𝐸

𝐿𝐿�𝑡𝑡−𝑡𝑡𝐻𝐻�

𝑃𝑃0𝑒𝑒𝑟𝑟𝑃𝑃
𝐻𝐻⋅𝑡𝑡𝐻𝐻 ⋅ 𝑒𝑒𝑟𝑟𝑃𝑃𝐿𝐿(𝑡𝑡−𝑡𝑡𝐻𝐻)� 𝑑𝑑𝑑𝑑

𝑡𝑡𝐻𝐻+𝑡𝑡𝐿𝐿

𝑡𝑡𝐻𝐻
𝑡𝑡𝐻𝐻

0

𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿
 

Simplifications of this expression, including utilization of the relationship above between time 

intervals and growth rate differences required for maintaining the bi-culture, ultimately lead to 

the following (Eq. 3.4.2): 

�
𝐸𝐸
𝑃𝑃�average

=  
𝐸𝐸0
𝑃𝑃0
⋅  �
∆𝑟𝑟𝐿𝐿�𝑒𝑒∆𝑟𝑟𝐻𝐻⋅𝑡𝑡𝐻𝐻 − 1� + ∆𝑟𝑟𝐻𝐻�𝑒𝑒∆𝑟𝑟𝐿𝐿⋅𝑡𝑡𝐿𝐿 − 1�

∆𝑟𝑟𝐻𝐻 ⋅ ∆𝑟𝑟𝐿𝐿 ⋅ (𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿) � 

 We also developed a second type of mathematical model where logistic growth is 

assumed.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐸𝐸𝐸𝐸(1 −
𝐸𝐸
𝐾𝐾𝐸𝐸

) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑃𝑃𝑃𝑃(1 −
𝑃𝑃
𝐾𝐾𝑃𝑃

) 

where 𝑟𝑟𝐸𝐸  and 𝑟𝑟𝑃𝑃 are the maximum specific growth rates of E. coli and P. putida respectively; 𝐾𝐾𝐸𝐸 

and 𝐾𝐾𝑃𝑃 are the corresponding carrying capacities. A Mathlab script (see Supplemental 

information) was developed to simulate repeated cycles of cell growth at a high temperature 

and then low temperature using these two un-coupled ordinary differential equations.   

2.3 Results  

2.3.1 Overall approach 

Our objective is to develop new tools for regulating synthetic microbial community 

compositions, by leveraging temperature-dependent growths of distinct desired community 
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members. As illustrated in Figure 2.1, for a simple community consisting of two members 

exhibiting different growth phenotypes at various temperatures, we propose two temperature-

mediated regimes for achieving co-existence and regulating community compositions. In the 

first regime (Figure 2.1 A), a constant temperature is used for growing the bi-culture.  It is 

expected that if a low temperature is selected, the microbe favored at the temperature (i.e. 

exhibiting a higher growth rate) would dominate, and vice versa at a high temperature. We 

hypothesize, however, for a small range of intermediate temperatures, the two microbes could 

co-exist. In the second regime (Figure 2.1 B), the bi-culture is cycled between a low 

temperature and a high one, which favor each of the two microbes respectively, and co-

existence of the two microbes are maintained over an extended period of time. Operating 

parameters include the high and low temperatures, and the time durations the bi-culture 

spends at each temperature. By manipulating these parameters, one would be able to regulate 

the average community composition and its variation.   

2.3.2 Design and implementation of a model microbial bi-culture  

To explore the temperature regulation regimes proposed above, we first established a 

model synthetic microbial system consisting of two well-characterized bacterial species.  One is 

the soil bacterium Pseudomonas putida KT2440 (Belda et al., 2016).  P. putida is found 

throughout the natural environment, predominantly in soil and plant rhizospheres (Belda et al., 

2016; Thomas, Okamoto, Bankowski, & Seto, 2013).  This bacterium is a mesophilic organism, 

growing optimally at relatively moderate temperatures (Munna, Zeba, & Noor, 2016), and has 

an extremely versatile metabolism which has earned it a reputation as an excellent 

bioremediation agent (Belda et al., 2016).  In this study we use a strain of P. putida which has 
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been tagged with a constitutively expressed chromosomal copy of mCherry fluorescent protein 

(mCh) (Martínez-García et al., 2011; Rochat, Péchy-Tarr, Baehler, Maurhofer, & Keel, 2010).  

The second bacterial species in our system is E. coli K12 MG1655 (Blattner et al., 1997).  One of 

the most commonly used model organisms in microbiology, E. coli can be either commensal or 

pathogenic gut colonizers of humans and other mammals (depending on the strain), growing 

optimally at relatively higher temperatures compared to P. putida.  In this study we used a 

strain of E. coli K12 MG1655 

which has been tagged with 

a constitutively expressed 

chromosomal copy of yellow 

fluorescent protein (YFP).  

Microbial species have 

naturally evolved to 

modulate their growth rate 

in response to temperature, 

often with optimal growth occurring within a small range of temperature. We consider this pair 

of bacteria as a model system of microbial communities composed of members occupying 

different but partially overlapping thermal niches. They can be grown together in a bi-culture in 

minimal M9 medium. 

We verified expression of the fluorescent proteins in each strain with confocal 

microscopy (Appendix Figure C.1 A) and flow cytometry (Appendix Figure C.1 B).  We then 

quantified the growth phenotype of each species in co-culture at various temperatures. 

Figure 2.2 Co-culture growth rates of each bacterium in co-cultures with different 
temperature profiles.  E. coli K12 substr. MG1655 grows optimally at relatively higher 
temperature and Pseudomonas putida KT2440 grows optimally at relatively lower 
temperatures.  Error bars are standard deviation from three replicates. 
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Particularly, we determined the growth rates at different temperatures (Figure 2.2 Co-culture 

growth rates of each bacterium in co-cultures with different temperature profiles.  E. coli K12 

substr. MG1655 grows optimally at relatively higher temperature and Pseudomonas putida 

KT2440 grows optimally at relatively lower temperatures.  Error bars are standard deviation 

from three replicates.Figure 2.2, referred to as temperature profiles hereafter), using growth 

curves derived from population level fluorescence from each species in bi-cultures.  The 

temperature profiles indicate that for each species there exists a temperature range in which 

the species would be expected to have a growth advantage over the other (when the 

temperature is less than ~35.5 °C, P. putida μmax > E. coli μmax and when the temperature is 

greater than ~35.5 °C then P. putida μmax < E. coli μmax).  

2.3.3 Effects on community composition of a constant temperature program 

We first explore the constant temperature regime by investigating the community 

population dynamics over time at various selected temperatures.  In this series of experiments, 

the temperature was maintained at a constant value (±0.2 ˚C, Appendix Figure D.1)  throughout 

the entire course of an experiment, and co-cultures were diluted 1:100 into fresh media twice 

daily (9 h and 15 h growth periods).  Each experiment was conducted for times ranging from 60 

to 400 hours depending upon the observed dynamics.  Community composition was quantified 

via flow cytometry with a measurement taken at each dilution time point. The dynamics of the 

bi-culture is shown in Figure 2.3 A for three representative temperatures, 35.5 ˚C, 36.5 ˚C, and 

39.5 ˚C; the full set of data for 10 temperatures in the range of 32-39.5 ˚C are provided in detail 

in Appendix Figure B.1 and summarized in Figure 2.3 B. It was found that at 35.5 °C and lower, 

the community was dominated by P. putida when the culture composition reached equilibrium 
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(which is defined herein as changing no more than ±15% over at least 3 consecutive time 

points), regardless of imposed initial ratios of the two bacteria (for example, see Figure 2.3 A 

top row).  On the other hand, at temperatures above ~39 ˚C the community was dominated by 

E. coli (for example, see Figure 2.3 A bottom row). Interestingly, at temperatures between 35.5 

˚C and ~39 ˚C, coexistence of the two bacteria was observed (for example, see Figure 2.3 A 

middle row). It is worth noting that the community composition at equilibrium of this bi-culture 

depends on the temperature in a highly nonlinear manner. Specifically, the equilibrium 

composition changed very gradually in the relatively wide temperature window of 35.7-39.1 °C; 

whereas this property changed drastically over a much narrower temperature window of 35.5-

35.7 °C. These differences have direct implications for practical applications where a constant 

Figure 2.3 Constant temperature regimes can be defined that result in competitive exclusion of either species as well as 
coexistence.  A) Representative graphs of species relative abundance over time of bi-culture with varying inoculation ratios 
grown at different constant temperatures.  Each condition has three replicates B) Mean community compositions at each 
temperature.  Error bars are standard deviation of the mean community compositions across all time points from all replicates 
at all inoculation ratios. 
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temperature is employed. Given the resolution of temperature control (e.g. ±0.2 ˚C in our 

laboratory set-up), it is practically impossible to achieve a specific desired community 

composition in the small temperature window where the composition is highly sensitive to 

fluctuations in temperature. In contrast, in the temperature window where composition 

changes are milder, it is indeed possible to select a temperature to maintain the desired 

community composition. However, it is important to note that the range of community 

compositions achievable in this temperature window (~70-95% E. coli at 36.1-39.1 °C) is rather 

limited. 

2.3.4 Regulating community composition using a cycling temperature program 

We next explored the effect of temperature on community composition using what we 

refer to as a cycling temperature regime. In this approach, two distinct temperatures are 

selected so that the higher temperature favors the growth of one species and the lower one the 

other species.  With these two temperatures selected, the bi-culture is incubated in repeated 

cycles, of which each starts with growth at the higher temperature for a specific time internal 

and then switches to growth at the lower temperature for another specific time interval. The 

key parameters we can manipulate are the two time intervals spent at the two temperatures, 

respectively. When they are selected properly, this scheme enables the two species to coexist. 

Moreover, the composition of the bi-culture can be tuned as desired and it is determined by a 

combination of the initial composition and the two time intervals. This can be illustrated 

analytically if we use a simple mathematical model where each species grows exponentially, 

which is a reasonable assumption when bacterial cells grow at low densities (i.e. far away from 

the carrying capacities). Specifically, the two species can be stably maintained provided that the 
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two time intervals are chosen such that the following relationship is satisfied (see Materials and 

Methods for details): 

𝑡𝑡𝐻𝐻

𝑡𝑡𝐿𝐿
=
∆𝑟𝑟𝐿𝐿

∆𝑟𝑟𝐻𝐻
=
𝑟𝑟𝑃𝑃𝐿𝐿 − 𝑟𝑟𝐸𝐸𝐿𝐿

𝑟𝑟𝐸𝐸𝐻𝐻 − 𝑟𝑟𝑃𝑃𝐻𝐻
 

where 𝑡𝑡𝐻𝐻 and 𝑡𝑡𝐿𝐿 are the time intervals the culture spends at the high temperature and low 

temperature respectively in each cycle. 𝑟𝑟𝑃𝑃𝐿𝐿 and 𝑟𝑟𝐸𝐸𝐿𝐿 denote the specific growth rates of P. putida 

and E. coli respectively at the low temperature. Note that 𝑟𝑟𝑃𝑃𝐿𝐿 > 𝑟𝑟𝐸𝐸𝐿𝐿 and the difference is defined 

as ∆𝑟𝑟𝐿𝐿 ≡ 𝑟𝑟𝑃𝑃𝐿𝐿 − 𝑟𝑟𝐸𝐸𝐿𝐿. Similarly, 𝑟𝑟𝑃𝑃𝐻𝐻 and 𝑟𝑟𝐸𝐸𝐻𝐻 denote the specific growth rates of P. putida and E. coli 

respectively at the high temperature. 𝑟𝑟𝑃𝑃𝐻𝐻 < 𝑟𝑟𝐸𝐸𝐻𝐻 and the difference is defined as ∆𝑟𝑟𝐻𝐻 ≡ 𝑟𝑟𝐸𝐸𝐻𝐻 −

 𝑟𝑟𝑃𝑃𝐻𝐻. The above equation shows that only the ratio of the two time intervals matters, and it is 

equal to the inverse of the ratio of specific growth rate differences between the two species at 

the corresponding temperatures. This is a specific quantitative relationship that only holds for 

the exponential growth model. However, certain qualitative aspects of this relationship are 

generalizable. In particular, it can be expected that the time interval at which there is a smaller 

grow rate difference between the two species needs to be longer.  

In addition to enabling co-existence, the cycling temperature regime also provides an 

effective means for tuning the community composition, which is determined by the two time 

intervals and the initial composition. Taking the simple exponential growth model as an 

illustrative example again and using the ratio of the two species averaged over a cycle to 

quantify the composition, we can show that the average ratio over a cycle consisting of 𝑡𝑡𝐻𝐻 at 

the high temperature and 𝑡𝑡𝐿𝐿 at the low temperature is as follows (see Materials and Methods 

for details): 
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𝑃𝑃�average

=  �
𝐸𝐸
𝑃𝑃�initial

⋅  �
∆𝑟𝑟𝐿𝐿�𝑒𝑒∆𝑟𝑟𝐻𝐻⋅𝑡𝑡𝐻𝐻 − 1� + ∆𝑟𝑟𝐻𝐻�𝑒𝑒∆𝑟𝑟𝐿𝐿⋅𝑡𝑡𝐿𝐿 − 1�

∆𝑟𝑟𝐻𝐻 ⋅ ∆𝑟𝑟𝐿𝐿 ⋅ (𝑡𝑡𝐻𝐻 + 𝑡𝑡𝐿𝐿) � 

where �𝐸𝐸
𝑃𝑃
�

initial
and �𝐸𝐸

𝑃𝑃
�

average
represent the ratio of E. coli cells to P. putida cells at the beginning 

and averaged over the cycle, respectively. A desired average ratio, therefore, can be achieved 

when one sets the initial ratio and the two time intervals appropriately. In more general cases 

where the simple exponential growth model does not apply, the above well-structured 

analytical relationship may not exist.  However, there will still be general trends. For instance, 

the shorter the two time intervals are, the closer the average ratio is to the initial one. Such 

design principles can be explored systematically through numerical simulation for specific 

systems. 

Guided by the mathematical modeling and analysis described above, we experimentally 

implemented the cycling temperature regime on the E. coli and P. putida bi-culture model 

system. We were able to 

demonstrate that the bi-

culture could be maintained 

over an extensive period of 

time when the parameter 

settings were chosen 

appropriately. A 

representative example is 

shown in Figure 2.4, where 37 ˚C was chosen as the high temperature favoring E. coli and 31 ˚C 

Figure 2.4 The cycling temperature regime is capable of maintaining coexistence of 
both species in the bi-culture.  With alternating temperatures of which one favors E. 
coli and the other P. putida, each species is spared from competitive exclusion. 
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as the low temperature favoring P. putida. The bi-culture was started with an inoculation ratio 

of 1:1 and incubated in a cycling temperature program of 16 hours at 37 ˚C and 8 hours at 31 

˚C. It was maintained stably at an average composition of 45% E. coli and 55% P. putida with a 

standard deviation of 27% for a total of 4 cycles (96 hours).   

As illustrated in Figure 2.4, the community composition exhibits dynamic oscillations under the 

cycling temperature regime. The amplitude of the oscillation, i.e. to what extent the 

composition fluctuates over time, is an important criterion that deserves closer examination. 

We investigated this first through computational simulation. Here, we assumed no direct 

interactions between the two species and used two un-coupled logistic growth equations to 

model the bi-culture incubated in a cycling temperature program and diluted at the end of each 

time interval (see Materials and Methods for details). Our results showed that the amplitude of 

the oscillation was dependent on the duration of the time intervals. Longer time intervals result 

in larger amplitude oscillations in community composition (Figure 2.5 A) and shorter time 

intervals lead to more desirable, smaller amplitude oscillations (Figure 2.5 B). We next validated 

our model predictions with wet lab experiments.  Figure 2.6 illustrated the results of an 

Figure 2.5 Effect of time intervals on the amplitude of community composition oscillation. Computational simulation shows that 
when growth related parameters are kept constant, longer time intervals lead to larger amplitude of oscillation (A: 𝑡𝑡𝐻𝐻 =
10.15, 𝑡𝑡𝐿𝐿 = 15), whereas shorter time intervals result in more desirable, smaller amplitude of oscillation (B: 𝑡𝑡𝐻𝐻 = 3.4, 𝑡𝑡𝐿𝐿 = 5). 
In each graph, the horizontal lines represent the average percentages, which are around 50%. 
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experiment in which we 

set the temperatures to 

be 27 °C and 39 °C, which 

favor P. putida and E. coli 

respectively, and 

incubated the bi-culture 

with shorter time 

intervals compared to 

those in Figure 2.4.  The bi-culture was maintained at an average composition of 51% E. coli and 

49% P. putida with a standard deviation of 11%, which was substantially smaller than that in 

Figure 2.4, 27%. This approach of employing shorter time intervals can, theoretically, reduce 

the amplitude of oscillation in community composition to any arbitrarily small value. In practice, 

however, various constraints would arise. In particular, it takes cells a certain amount of time to 

physiologically respond to changes in temperature, which sets a lower limit on the time interval 

parameter in this cycling temperature regime. 

2.4 Discussion 

Synthetic microbial communities are increasingly being used for a variety of industrial, 

medical, and environmental applications such as production of commodity chemicals, proteins, 

and bioremediation (Höffner & Barton, 2014; S. Zhang, Merino, Okamoto, & Gedalanga, 2018).  

Because microbial community function depends in part on the community composition, it is of 

inherent interest to synthetic ecology, an emerging area of synthetic biology, that 

environmental conditions have been demonstrated to affect community composition in an 

Figure 2.6 Experimental results demonstrated that shorter time intervals lead to oscillations 
of smaller amplitudes, in comparison to those in Figure 2.4. 
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ecological context.  While the synthetic biology/ecology literature has yet to treat the subject 

thoroughly, ecologists have been studying the effects of environmental factors on community 

composition for decades.  It has been proposed and demonstrated that fluctuations in 

environmental conditions such as nutrient availability and temperature can enable coexistence 

and influence compositions of various natural communities (Harder & Veldkamp, 1971; 

Hutchinson, 1961; Jiang & Morin, 2007; Tilman, 1999).  Interestingly, in the biotechnology 

context, the effect of modulating a variety of environmental parameters was explored in the 

1970’s and 1980’s (Davison & Stephanopoulos, 1986).  These previous studies, however, 

focused on the chemostat setting, which is not commonly used in biotechnological applications. 

It is known that an abundance of cellular processes such as nutrient sensing, signal 

transduction, and macromolecular synthesis are affected by the constantly changing 

environment within a batch culture (Ziv, Brandt, & Gresham, 2013).  Therefore, the population 

dynamics in a batch culture are expected to differ significantly from those seen in a chemostat 

culture.  Accordingly, here we show that in sequential batch cultures, the environmental 

condition of temperature can be used to modulate growth rates and rationally regulate 

community composition in synthetic microbial communities.   

We show that constant temperature programs can be used to enforce competitive 

exclusion or to enable co-existence in a synthetic co-culture. It is worth noting that 

interestingly, the mean community composition does not respond symmetrically to changes in 

temperature (Figure 2.3 B).  Specifically, we refer to the dramatic shift in community 

composition from 35.7 ˚C to 35.5 ˚C.  Above 35.7 ˚C, the community composition gradually 

shifts towards higher abundance of E. coli as the temperature increases. In drastic contrast, the 
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community composition changes abruptly from primarily E. coli to entirely P. putida when the 

temperature decreases by a mere 0.2˚C from 35.7˚C to 35.5˚C. We do not understand the exact 

cause of this asymmetric behavior, but speculate that interspecies interactions play a role. It is 

possible that interactions commonly observed between species in microbial co-cultures such as 

nutrient competition (Ghoul & Mitri, 2016), secretion of toxins (Ghoul & Mitri, 2016), and 

interspecies crosstalk between quorum sensing systems (Ghoul & Mitri, 2016) occur in our 

system and could have effects on community composition. It would be interesting for future 

work to investigate the underlying mechanisms of this intriguing observation. 

 Control of community composition of synthetic microbial communities is important for 

optimizing functionality in a biotechnological context.  We demonstrate here that temperature 

regulation is one modality that can be used to rationally regulate composition of synthetic 

microbial communities.  However, a variety of other modalities such as pH, salt concentration, 

etc. can theoretically be implemented similarly, assuming that the basic requirements we 

propose for temperature are met (namely that one range of conditions favors growth of one 

species, and a second range of conditions favors growth of the other species).  The advantage 

of temperature over some of these other modalities is that it can be dynamically changed 

without requiring media replacement and is readily implementable.  Other modalities for 

regulating synthetic microbial community composition have been explored in the literature, 

most notably by Spencer Scott et al. (Scott et al., 2017).  In this innovative work, the authors 

designed and implemented a self-limiting synthetic quorum sensing regulated lysis system to 

prevent competitive exclusion and enable coexistence between otherwise incompatible 

community members.  One advantage of their approach is the potential for scalability in 
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community complexity, as there are a variety of orthogonal, well-characterized quorum sensing 

systems that could be utilized with different species or groups of species in a community.  

Whereas, the alternative approach demonstrated in this work has the advantage that because 

response to temperature is one of the oldest, core physiological responses of microbes, 

although adaptation to temperature is expected to diminish its effectiveness at some point, the 

time scales at which temperature regulation is able to enable coexistence and regulate 

community composition are quite long (up to 400 hours with our experimental system).  

However, it would not be straightforward to extend the cycling temperature regime to more 

complex communities; development of significantly more complicated control schemes will be 

required.   

 In this work we have explored temperature as a modality for rationally regulating 

community composition of a synthetic microbial consortium.  While we do not expect the 

empirical values such as the specific temperatures employed to be applicable to different 

systems, the conceptual framework along with the associated design principles we have 

established can be applied to a wide variety of synthetic co-cultures. New approaches for 

regulating synthetic microbial community composition will continue to emerge and we envision 

that temperature based control schemes will contribute to a powerful toolbox in the future 

consisting of various well-developed modalities for regulating synthetic and natural microbial 

communities, from which researchers can choose based on the specific properties and 

performance requirements of their system. 
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Chapter 3: Distributed Sensing with Centralized Memory Utilizing 

Bacteriophage-mediated Information Transfer in Synthetic 

Microbial Communities 

3.1 Introduction 

The ability to extract information from the external or internal environment and 

transform that information into a specific biological response is vital to the survival of all living 

cells.  Consequently, biological systems have evolved a multitude of solutions to this challenge 

over millions of years.  More recently these systems have garnered interest from the 

biotechnology and synthetic biology communities for their potential to coordinate specific 

biological activities and processes with specific external and internal conditions, which is a 

valuable capability within a technological and engineering context.  Systems which are capable 

of this feat, extracting some type of information from the environment and transforming that 

information into a biological signal or process, are often broadly referred to as biosensors and 

will be referred to as such hereafter.  

3.1.1 Biosensors: extracting information from the environment 

 One of the most common types of biosensors is the inducible transcription factor.  

Transcription factors are a class of proteins that bind specific genetic sequences referred to as 

operators and help recruit additional factors (such as RNA polymerase) to operator adjacent 
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promoters to initiate transcription of downstream genes.  Sometimes, in addition to 

transcription factor binding sites, there are repressor binding sites adjacent to the promoter, in 

which specific proteins referred to as repressors will bind and physically block the transcription 

machinery, thus preventing transcription initiation.  In this way, transcription factors (and 

repressors) are able to turn gene expression on and off.  Additionally, many transcription 

factors and repressors themselves have evolved the capability to be turned on and off in 

response to specific environmental stimuli.  For example, a ligand-inducible transcription factor 

will have a specific physical conformation in the “off” state, and in that state it is physically 

incapable of binding its operator to recruit transcription initiation factors, and gene expression 

is therefore turned off.  In the presence of its ligand, the transcription factor will undergo a 

conformational change after which it is then capable of binding its operator site and recruiting 

transcription initiation machinery thereby turning on gene expression from that site.  Inducible 

transcription factors have evolved for a wide variety of ligands including metabolites, metals, 

etc. (Mahr & Frunzke, 2016).  In addition to ligand-inducible transcription factors, there are 

transcription initiation systems that respond to light, temperature, pH, etc. (Mahr & Frunzke, 

2016).  In each case, the inducible transcription factor system functions as a biosensor by 

extracting some type of information from the environment (i.e. presence or absence of light, 

temperature, presence and sometimes even concentration of a ligand) and transforming that 

information into a biological process; in this case, expression of a specific gene.  For many of 

these systems, it is possible to place nearly any gene of interest downstream of the inducible 

transcription system, which enables the coupling of expression of any gene of interest to any 

environmental signal for which there exists a biosensor.  Given their obvious potential 
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environmental, industrial, and medical applications, there is an entire subfield of synthetic 

biology that has evolved around identifying, developing, and improving biosensors (Juárez, 

Lecube-Azpeitia, Brown, Johnston, & Church, 2018). 

3.1.2 Biomemory: stable recording of information across generations 

 Perhaps even more important and fundamental to the survival of biological systems 

than the ability to sense and respond to a wide variety of environmental stimuli is the ability to 

stably record, copy, and modify information.  This capability can be interchangeably referred to 

as biomemory.  One could even argue that at their core, biological systems are simply packaged 

repositories for informational content accompanied by instructions and machinery to copy and 

make stochastic, intermittent modifications to that information such that natural selection can 

occur on these informational variants to select information packages which are most successful 

at replication and survival.  In any event, it is inarguable that the ability to store and transmit 

information is fundamental to biological systems.  The most common and well-known biological 

method for storing information is, of course, deoxyribonucleic acid (DNA).  The modern era of 

molecular biology was ushered in by the ability to make targeted modifications to DNA.  More 

recently, the discovery of CRISPR-Cas systems, which further refined that ability, has 

revolutionized the fields of molecular biology, synthetic biology, and biotechnology, among 

others.  While CRISPR initially gained fame for the ability to (more or less) precisely cut DNA 

with easily modifiable specificity, that is really only one half of the story of CRISPR.  The CRISPR 

system originally evolved as a form of microbial immunological memory (Barrangou, 2015; 

Nuñez, Lee, Engelman, & Doudna, 2015).   
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In this immunological memory system, double stranded DNA breaks are first bound by 

the recBCD complex, a very well characterized molecular machine involved in the canonical 

DNA damage repair pathway (Jon McGinn & Luciano A. Marraffini, 2019; Smith, 2012).  In an 

interaction that is 

currently not completely 

understood, the recBCD 

complex performs some 

type of preprocessing of 

the double stranded DNA 

template to produce single 

stranded DNA substrate 

which then becomes available for interaction with the CRISPR adaptation Cas1-Cas2 complex 

(Figure 3.1 top right) (Jon McGinn & Luciano A. Marraffini, 2019).  The Cas1-Cas2 complex then 

excises approximately 33 base pair fragments of the single stranded DNA and inserts those 

fragments into the CRISPR array as new spacers.  When expressed at its native concentrations, 

the Cas1-Cas2 complex exhibits specificity for foreign DNA sequences, but the molecular basis 

for this specificity is currently unknown.  It is tempting to hypothesize that some type of spatial 

sequestration of the Cas1-Cas2 complex at the membrane and away from genome replication 

machinery could contribute to this specificity.  What is known is that when the Cas1-Cas2 

machinery is overexpressed it loses its specificity for non-native DNA and will target any DNA 

substrate.   

Figure 3.1 Left, a cartoon depicted CRISPR mediated endonuclease activity followed by 
homologous recombination based repair after cleavage (Reis, Hornblower, Robb, & 
Tzertzinis, 2014).  Right, a) injection of phage DNA into a target cell followed by 
preprocessing of DNA by the recBCD complex b) excision of a DNA fragment that will 
become a new spacer in the CRISPR array by the Cas1-Cas2 complex as part of the CRISPR 
adaptation response (J. McGinn & L. A. Marraffini, 2019) 
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In any event, under naturally occurring conditions, the DNA sequences introduced into 

the CRISPR array as new spacers therefore serve as a form of molecular memory of the 

sequences of foreign DNA to which the cell has been previously exposed.  This so-called CRISPR 

adaptation response, then, provides a form of easily modifiable biological memory that can be 

used as a repository for an extremely wide array of informational content (4 possible base pairs 

at each of 33 positions gives ~7.38x1019 possible unique sequences for a single spacer, and 

arrays are composed of ~30-50 spacers on average depending on the CRISPR system class, type, 

and subtype) (Toms & Barrangou, 2017).  Importantly, new fragments are always added to the 

same end of the CRISPR locus, which enables the ability to encode chronological information 

about the order in which DNA sequences were encountered into the order in which they 

appear in the CRISPR array.   

3.1.3 Cell-to-cell information transfer in biological systems 

3.1.3.1 Introduction to information transfer in biological systems 

Having established the means to sense information from the environment, encode that 

information into biologically compatible molecules capable of inducing a specific response or 

process, and when appropriate stably recording that information, the final biological process 

that is pertinent to our discussion is the ability of cells within a community to collectively share 

and process information when necessary.  Within a single population of a single species/cell 

type, a variety of collective behaviors are known to be regulated by shared information in 

bacterial communities such as bioluminescence, the secretion of virulence factors, production 

of public goods, and the formation of biofilms (Miller & Bassler, 2001; Papenfort & Bassler, 

2016).  Arguably the most well-characterized microbial information sharing system is commonly 
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referred to as quorum sensing.  In quorum sensing systems, each cell within the population 

secretes a low concentration of a signaling molecule (Miller & Bassler, 2001; Papenfort & 

Bassler, 2016).  At low population density of that cell type, because the concentration of 

signaling molecule secreted by each cell is low, signal is unable to accumulate (Miller & Bassler, 

2001; Papenfort & Bassler, 2016).  At high population density, however, signal is able to 

accumulate above a threshold which activates quorum sensing receptors that specifically bind 

and respond to the quorum sensing molecule (Miller & Bassler, 2001; Papenfort & Bassler, 

2016).  These receptors then initiate a biological response to this population density 

information, often in the form of gene regulation (Miller & Bassler, 2001; Papenfort & Bassler, 

2016).  Evolutionarily speaking, it is understandable that cells would want to share information 

regarding population density before upregulating genes related to collective behavior such as 

colonization and invasion.  Although quorum sensing is one of the best known and well-

characterized information sharing and processing systems in bacteria, there are a variety of 

other mechanisms for information transfer in microbial communities such as vesicle-mediated 

horizontal gene transfer, conjugative transposon transfer, bacteriophage-mediated gene 

transfer, etc. (Chiang, Penadés, & Chen, 2019; Guynet, Le, Chandler, & Ton-Hoang, 2020; Tran & 

Boedicker, 2019).  However, the ways in which biosensing components, biomemory 

components, and information sharing and processing systems are linked into networks of 

multiple species or cell types in microbial communities is relatively poorly studied and 

characterized.   
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3.1.3.2 Bacteriophage lambda biology within an information transfer context 

As mentioned above, bacteriophage- mediated gene transfer (also referred to as 

transduction) is another way that information can be transmitted from one cell to another 

within microbial populations.  Bacteriophage are a diverse group of viruses that replicate within 

prokaryotic organisms (Hendrix, 1983).  It is extremely well documented that bacteriophage- 

mediated gene transfer plays an important role in horizontal gene transfer in many microbial 

communities (Eggers et al., 2016; Keen et al., 2017; Sutton & Hill, 2019; Valero-Rello, López-

Sanz, Quevedo-Olmos, Sorokin, & Ayora, 2017; von Wintersdorff et al., 2016).  Bacteriophage 

lambda is a specific bacteriophage of the family Siphoviridae genus Lambdavirus species 

Escherichia virus Lambda that replicates in E. coli cells and is one of the best studied model 

systems in molecular biology (ExPASy; Hendrix, 1983).  The availability of a wealth of 

information regarding the genetics and biochemistry of bacteriophage lambda combined with 

its ability to manufacture and package a large (~50 kb) genetic payload of double-stranded DNA 

make bacteriophage lambda an excellent candidate for a mechanism to transfer information in 

E. coli populations.   
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3.1.3.2.1 Bacteriophage lambda virion morphology and packaging 

Lambda phage particles (also referred to as virions) consist of approximately 50% 

protein and 50% DNA (Hendrix, 1983).  Each particle contains a single double-stranded DNA 

molecule encapsulated in the capsid head, 

which is an icosahedral structure 0.05 microns 

in diameter attached to a tubular tail which is 

approximately 0.15 microns long (Figure 3.2) 

(Casjens & Hendrix, 2015; Hendrix, 1983).  The 

native lambda genome is ~48 kb but DNA 

molecules ranging from ~75-105% of that size 

are competent to be packaged into a lambda 

capsid head (Hershey; B. Hohn & Murray, 1977).  

In the mid-1970s and early 1980s the DNA 

recognition sequences that are necessary and sufficient for packaging of DNA into the capsid 

head were discovered and characterized by Barbara Hohn, enabling packaging of heterologous 

DNA sequences into lambda phage capsid heads (Barbara Hohn, 1975; B. Hohn, 1983; B. Hohn 

& Murray, 1977).  Lambda phage particles are metabolically inert in isolation but can adsorb to 

a target cell via virion tail fibers which bind to receptors on the host cell (Guan, Ibarra, & Zeng, 

2019).  The primary E. coli receptor for lambda phage is the lamB receptor, an outer membrane 

porin involved in maltose uptake, although mutations in the tail fiber proteins can also allow 

the lambda virion to interact with the ompC receptor as well (Guan et al., 2019; Hendrix, 1983).  

Upon adsorption to a target cell (also referred to as host cell) the DNA payload is injected via 

Figure 3.2 Cartoon depiction of bacteriophage lambda 
particle head and tail morphology (ExPASy).  
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the lambda phage tail (Inamdar, Gelbart, & Phillips, 2006).  While the forces responsible for this 

injection event have not been completely characterized, it is proposed that a significant driving 

force results from the high degree of stress subjected upon the viral DNA by its packaging into 

the viral capsid, and that this driving force is aided by ratcheting and entropic forces associated 

with proteins that bind to the viral DNA within the host cell cytoplasm (Inamdar et al., 2006).   

3.1.3.2.2 Bacteriophage lambda life cycles 

Upon injection, expression of lambda phage genes results in entry of the cell into the 

bacteriophage lysogenic or lytic life cycles (Shao, Trinh, & Zeng, 2019).  The factors influencing 

the lysis-lysogeny decision in bacteriophage lambda are complex and have been the subject of 

extensive study but are outside the scope of this discussion (Shao et al., 2019).  In the lysogenic 

pathway, the lambda phage DNA is integrated into the host genome and replicated along with 

the host genome, resulting in stable transmission from mother to daughter cells (Campbell, 

2003).  When incorporated into the host genome in this way, the phage genome is referred to 

as the prophage, and the phage genome can be maintained by the host cell in this latent 

prophage state indefinitely (Campbell, 2003).  In the lytic life cycle, the biosynthetic machinery 

of the host cell is subverted from their normal tasks in cellular growth and division and 

reprogrammed to become phage production machinery.  Copies of the phage genome are 

produced along with new phage particles, and the phage genomes are packaged into the newly 

synthesized phage virions (Campbell, 2003).  Interestingly, and importantly for our purposes, 

cells in the lysogenic cycle harboring a prophage can be induced into the lytic cycle by a variety 

of cellular stress signals.  The core signal for induction of lysogenic cells into the lytic pathway, 

however, is DNA damage. 
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3.1.3.2.3 Induction of lysogenic cells into the lytic cycle 

The canonical signal for induction of lambda lysogens into the lytic cycle is DNA damage, 

mediated by the recA protein.  The recA protein plays a central role in the DNA damage and 

response pathways in E. coli (Lusetti & Cox, 2002).  In the absence of symptoms of DNA 

damage, recA exists in its inactivate state.  In the presence of single-stranded DNA (ssDNA) 

(which is a common biomarker of DNA damage in the cell) and ATP, recA will polymerize onto 

the ssDNA and become activated as a protease (Lusetti & Cox, 2002).  In its activated state 

(sometimes referred to as recA*), recA will catalyze autocleavage of the lexA repressor, which is 

a global regulator of the SOS response to DNA damage in E. coli (Butala, Zgur-Bertok, & Busby, 

2009; Galkin et al., 2009).  The lambda phage repressor protein cI is a structural homologue of 

lexA and also undergoes recA catalyzed self-cleavage when the SOS response is induced (Galkin 

et al., 2009).  There are constitutively active mutants of recA (specifically recA730) which are 

sufficient to induce lambda lysogens into the lytic cycle when expressed intracellularly (McCall, 

Witkin, Kogoma, & Roegner-Maniscalco, 1987).  Controlled expression of a constitutively active 

recA mutant therefore exhibits promise as the basis of a biosensor component capable of 

inducing the lytic response in lambda lysogens. 

3.1.4 Overall approach 

 The goal of this project is to develop a biological system that is capable of combining 

biosensing elements with biomemory elements to create a biological system that is 

theoretically capable of sensing a large number environmental signals and recording the nature 

or identity of those signals in addition to the order of exposure to those signals in a microbial 

community.  The capability to sense and record environmental information in a biological 
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system has been demonstrated in the past using a variety of approaches, but our system uses a 

novel distributed sensing architecture combined with a centralized memory component which 

spatially segregates the sensing components from the memory components into separate 

cellular population within a microbial community.  This distributed architecture theoretically 

enables multiplexing of biosensing components to levels not achievable with previous systems 

while preserving the ability to record information about not only the identity of signals to which 

the community is exposed, but also the order in which the community was exposed to those 

signals.  Because this separation between sensing and memory components requires 

transmission of information from the sensing components to the memory components (which 

has not previously been required, as both sensing and memory components were always 

contained within a single cell), we pioneer the use of a bacteriophage-based information 

transfer system to connect the distributed sensing components with the centralized memory 

component.   

Figure 3.3 Cartoon depiction of system architecture with distributed sensing and centralized memory components enabled by 
bacteriophage-mediated information transfer.  Sensor cells are depicted by large blue ovals, Inducer molecules for the biosensor 
component are depicted by small blue and orange extracellular circles, and the recA730 protein is depicted as a purple square.  
In the memory cells the Cas1-Cas2 complex is depicted by overlapping red ovals. 
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 In brief, we designed a plasmid-based genetic circuit in E. coli that uses a constitutively 

active recA mutant (recA730) under control of an inducible promoter to activate lysogenic 

lambda phage in response to the inducing signal for the promoter.  Upon entering the lytic 

cycle, these cells manufacture approximately 100 new virions per activated cell, after which the 

cells are lysed, releasing the virions (Greene & Rao, 1998).  The sensors cells are co-cultured 

with memory cells, which are a strain of E. coli overexpressing the CRISPR adaptation complex 

Cas1-Cas2, which is necessary and sufficient for excising and processing 33 bp  fragments from 

intracellular DNA substrate and subsequently integrating these fragments into the CRISPR array 

as new spacers.  Upon release of virions from the sensor cells, the virions adsorb to memory 

cells and inject their lambda DNA cargo which is then targeted as substrate by the CRISPR 

adaptation machinery, resulting in the addition of new spacers into the CRISPR array that map 

back to the lambda genome (Figure 3.3).  In addition to new spacers that map back to the 

lambda genome, the overexpressed Cas1-Cas2 complex also attacks the E. coli genome itself (as 

overexpression of Cas1-Cas2 leads to loss of specificity for foreign DNA fragments), and 

therefore at a population level, a mix between new spacers that map back to the lambda 

genome and new spacers that map back to the E. coli genome is observed.  

3.2 Materials and Methods 

3.2.1 Microbial strains and cultivation 

E. coli K12 MG1655 was used as a cloning chassis for plasmids unless otherwise 

indicated.  E. coli K124 was used as the lysogenic host strain for lambda prophage unless 

otherwise indicated.  Cultures were grown in sterile autoclaved Fisher Scientific Lysogeny 

Broth- Lennox (LB-Lennox) or minimal M9 media (200 mL 5x M9 salts [34 g/L Na2HPO4 
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anhydrous, 15 g/L KH2PO4, 2.5 g/L NaCl, 5 g/L NH4Cl], 20 mL 20% glucose, 2 mL 1M MgSO4, 100 

uL 1M CaCl2, 780 mL sterile deionized H2O; autoclave all components separately then mix under 

sterile conditions) as indicated.   

3.2.2 Cryostocks 

 Unless otherwise indicated, cryostocks were generated by mixing 500 uL saturated 

overnight culture with 500 uL sterile glycerol and then stored at -80 ˚C. 

3.2.3 Antibiotics and inducers 

 Unless otherwise indicated, antibiotic and inducer concentrations were as follows: 

Chloramphenicol 35 ug/mL; Kanamycin 50 ug/mL; anhydrotetracycline (aTc) 100 ng/mL (aTc 

induces the pRec plasmid encoding the Cas1-Cas2 complex in the memory strain)  

3.2.4 Miniprep 

 Minipreps were performed using the Qiagen Qiaprep Spin Miniprep Kit. 

3.2.5 Polymerase Chain Reactions (PCR) 

 Unless otherwise indicated, PCR reactions were performed using NEB Phusion High 

Fidelity DNA Polymerase (M0530) with the thermocycling conditions indicated by NEB and 

annealing temperatures suggested for each primer pair by the ThermoFisher Scientific 

annealing calculator (ThermoFisherScientific).  

3.2.6 recA constitutively active mutant generation 

 E. coli K12 MG1655 was cultured overnight in LB-Lennox at 37 ˚C with 225 rpm shaking.  

The genome was then purified using the Qiagen DNeasy Blood and Tissue kit.  Wild type recA 
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was PCR amplified from the E. coli K12 MG1655 genome as discussed in Materials and Methods 

section 3.2.5 using primers: 

recA_WT_SacI_for : acagcgGAGCTCatggctatcgacgaaaacaaaca and  

recA_WT_HindIII_rev : acagcgAAGCTTttaaaaatcttcgttagtttctg 

This amplicon and the plasmid pB33eCPX (Rice & Daugherty, 2008) were digested with SacI and 

HindIII, ligated together with T4 DNA Ligase (NEB), electroporated into E. coli K12 MG1655 and 

plated on LB + Chloramphenicol plates.  A single colony was isolated and cultured overnight in 

LB-Lennox + Chloramphenicol and cryostocked.  An overnight culture was grown from this 

cryostock in LB-Lennox + Chloramphenicol and miniprepped.  The single base pair mutation in 

recA to generated recA730 was generated with PCR using the primers: 

recAWT_E38K_for: accgttccatggatgtgAAAaccatctctaccggttcgc and  

recAWT_E38K_rev: cttcacccaggcgcatgatggag 

This amplicon digested with the restriction enzyme DpnI (NEB) to eliminate template plasmid, 

5’ phosphorylated with T4 Polynucleotide Kinase (NEB), electroporated into E. coli K12 MG1655 

and plated on LB+Chloramphenicol plates.  A single colony was isolated and cultured overnight 

in LB-Lennox + Chloramphenicol and then cryostocked and miniprepped.  Mutagenesis was 

confirmed via Sanger sequencing with the sequencing primer: 

pB33recA_WT seq for: ccagatgggcattaaacgagtat 

A ribosome binding site (RBS) for recA730 was added using the PCR primers: 

recA_RBS_for: AGGAGTAAAAatggctatcgacgaaaacaaacagaaagc 
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recA_RBS_rev: TTTTACTCCTGagctcgaattcgctagcccaaaaaaac 

This amplicon was digested with the restriction enzyme DpnI (NEB) to eliminate template 

plasmid, 5’ phosphorylated with T4 Polynucleotide Kinase (NEB), electroporated into E. coli K12 

MG1655 and plated on LB + Chloramphenicol plates.  A single colony was isolated and cultured 

overnight in LB-Lennox + Chloramphenicol and then cryostocked and miniprepped.  

Mutagenesis was confirmed via Sanger sequencing with the sequencing primer: 

pB33recA_WT seq for: ccagatgggcattaaacgagtat 

to generate plasmid pB33recA730RBS.   

3.2.7 recA730 phenotype characterization 

Plasmid pB33recA730RBS was then electroporated into E. coli K124 lambda lysogen and 

plated on LB + Chloramphenicol plates.  A single colony was isolated and cultured overnight in 

LB-Lennox + chloramphenicol and cryostocked.  E. coli K12-pB33recA730 was then seeded from 

the -80 ˚C cryostock into LB + Chloramphenicol and cultured overnight at 37 ˚C with shaking at 

225 rpm.  The next day the saturated overnight culture was sub-cultured into fresh LB + 

Chloramphenicol media and grown to OD600 = 0.4 at 37 ˚C with 225 rpm shaking.  At this point, 

the culture was split into two conditions, a negative control and the experimental condition; for 

each condition 2 mL of culture was added to a 14 mL round-bottom Falcon tube.  1% arabinose 

was added to the experimental condition and an equal quantity of sterile de-ionized water was 

added to the negative control.  The cultures were then cultured for 2.5 hours.   
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3.2.8 Lambda virion isolation 

Lambda lysogens were overnighted in LB-Lennox + chloramphenicol at 37 ˚C with 225 

rpm shaking.  This overnight was passaged into fresh LB-Lennox + chloramphenicol media and 

grown to OD600 = 0.4.  Cultures were then induced with either 1% arabinose (if carrying 

pB33recA730) or 2 ug/mL mitomycin C and cultured for 2-3 hours at 37 ˚C with 225 rpm shaking 

until culture clearing was observed.  Cultures were then centrifuged at 3,000 x g for 3 minutes 

at room temperature in a tabletop centrifuge.  The supernatant was then filtered with a 0.22 

μm filter and stored at 4 ˚C protected from light. 

3.2.9 Sensor strain co-culture with memory strain 

   Sensor strain E. coli K124-pB33recA730RBS and memory strain E. coli BL21(DE3)-pRec 

were cultured overnight in LB-Lennox + chloramphenicol at 37 ˚C with 225 rpm shaking.  

Overnights were sub-cultured into fresh LB-Lennox + chloramphenicol the next day and grown 

to OD600 ~ 0.4; the cell densities were then normalized to each other using their OD600 

reading.  Sensor and memory cells were inoculated 1:250 in fresh LB-Lennox + chloramphenicol 

+ aTc + 0.2% arabinose + 0.2% maltose + 10 mM MgSO4 or a no arabinose control.  The ratio of 

sensor to memory cells was 1:100.  Cultures were incubated overnight at 37 ˚C with 225 rpm 

shaking.  The next day 800 uL of culture was spun down at 3,000 x g for 3 minutes, the 

supernatant was discarded and the cells were resuspended in 500 uL deionized water, and 

boiled for 15 minutes at 95 ˚C.  

3.2.10 PCR amplification of newly expanded CRISPR arrays 

 0.2 uL of the boiled lysate from the sensor strain co-culture with memory strain is added 

to a 50 uL PCR reaction with Phusion (NEB) polymerase.  The primers used were: 
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oYZ696: GTTGGTAGATTGTGACTGGC 

oYZ694-MG7F: ATTTTGCGTTTCGTTCAGGT 

The amplicon was run out on a 1.5% agarose gel and the band at ~420 bp was gel extracted 

using the QIAquick Gel Extraction Kit and eluted in 20 uL EB.   

3.2.11 Sequencing of expanded CRISPR array amplicons 

Samples of CRISPR expanded array amplicons were submitted to the Massachusetts General 

Hospital CRISPR sequencing core and results were analyzed with the Integrative Genomics 

Viewer (IGV) computer program. 

3.2.12 Cosmid generation 

 E. coli K124 was inoculated from cryostock and cultured overnight at 37 ˚C with 225 rpm 

shaking.  The next day the genome was extracted using the Qiagen DNeasy Blood and Tissue kit.  

The lambda packaging sequence was PCR amplified from the E. coli K124 genome with the 

primers: 

Fragment.FOR: ccaaatactgtccttctagtgtagccgtagttaggccacCatacgatacctgcgtcataattgattatttgac 

Fragment.REV: gctacagagttcttgaagtTTAATTAAcgctgtacagcgCacttccattgttcattccacggac 

Plasmid pB33rec730RBS was amplified with primers: 

pB33recA730RBS_packadd_for: acagcgTTAATTAAacttcaagaactctgtagca 

pB33recA730RBS_packadd_rev: acagcgCTCGAGgtggcctaactacggctaca 
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These amplicons were combined in a NEBuilding HiFi DNA Assembly reaction and transformed 

into NEB® 5-alpha Competent E. coli (Subcloning Efficiency) and plated onto LB + 

chloramphenicol.  Single colonies were isolated and cultured overnight in LB-Lennox + 

chloramphenicol and miniprepped.  The resulting sample was submitted for Sanger Sequencing 

using primer: 

lambda_chi_check_rev: gtaacctgtcggatcaccgg 

This plasmid was then transformed into E. coli K124 and co-cultured with a memory strain, the 

expanded CRISPR array was amplified and submitted for sequencing as described above. 

3.2.13 Lambda phage infection with isolated virions 

 Indicator cells are inoculated from cryostock and cultured overnight at 37 ˚C in tryptone 

broth (1% Bacto-tryptone; 0.5% NaCl; mixed in deionized water and autoclaved).  The next day 

cultures are centrifuged at 3000 x g for 3 minutes at room temperature and the supernatant is 

discarded.  The cell pellet is resuspended in ½ volume TMG (10 mM Tris-HCl pH 8; 10 mM 

MgSO4; 10 ug/mL gelatin) and incubated with shaking at 37 ˚C for 1 hour with 225 rpm shaking.  

Cultures are then pipetted into 100 uL aliquots in 14 mL round bottom Falcon tubes and chilled 

on ice.  50 uL of isolated phage virion is added to the aliquots and mixed gently.  The mixture is 

let stand at room temperature for 15-20 minutes and then mixed with 3 mL TOP agar (tryptone 

broth + 7.5 g/L agar; autoclaved and maintained molten at 52 ˚C in a water bath) and 

immediately plated onto a tryptone plate (tryptone broth + 15 g/L agar) and incubated 

overnight at 37 ˚C. 
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3.2.14 Recombinant lambda phage genomes 

 Recombinant lambda genomes were generated as follows.  For insertion of chi sites, the 

kanamycin cassette from pSAS31 (Scott A. Scholz et al., 2019) was amplified and inserted into 

pB33recA730RBS with NEBuilder HiFi DNA assembly.  Four tandem chi sites were then inserted 

into the plasmid adjacent to the kanamycin cassette.  The kanamycin cassette + chi sites were 

amplified using primers that included 40 bp homology domains for the lambda phage genome.  

This amplicon was electroporated into cells which had been prepared for lambda red 

recombineering according to the Court lab protocol (Sharan, Thomason, Kuznetsov, & Court, 

2009) and plated onto LB + chloramphenicol + kanamycin plates.  Single colonies were isolated 

and cultured overnight in LB + kanamycin at 37 ˚C and then induced for lambda virion isolation 

as described above.  Lambda virions were used to infect naïve E. coli K12 MG1655 cells as 

described above.  All TOP agar and plaques generated from this infection were scraped into 14 

mL round bottomed Falcon tubes with 5 mL LB-Lennox + kanamycin and cultured overnight.  

This liquid culture was then plated on Kanamycin plates and restreaked to isolate single 

kanamycin resistant colonies.  For insertion of mNeonGreen, the mNeonGreen + kanamycin 

cassette was PCR amplified from pSAS31 (Scott A. Scholz et al., 2019) and electroporated into 

lambda red recombineering competent cells prepared according to the Court lab protocol 

(Sharan et al., 2009) and plated onto LB + chloramphenicol + kanamycin plates.  Single colonies 

were isolated and cultured overnight in LB + kanamycin at 37 ˚C with 225 rpm shaking and then 

cryostocked. 
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3.2.15 Lambda red recombineering 

Lambda red recombineering is a technique developed by the Court lab at MIT to insert 

or delete regions of the E. coli chromosome ranging from tens of base pairs to several kilobases 

(Sharan et al., 2009).  Briefly, three genes from the lambda phage genome are expressed from a 

plasmid to facilitate homologous recombination of a desired DNA targeting construct into the E. 

coli genome (Sharan et al., 2009).  The DNA targeting construct is electroporated into cells 

which are already expressing the lambda red genes from a plasmid and usually includes the 

gene cassette of interest and an antibiotic selection cassette flanked by 40-50 bp homology 

domains to the desired E. coli genomic site for integration of the targeting construct.  The three 

lambda red proteins are the same three proteins used by lambda red phage to insert its own 

genome into the E. coli genome (Sharan et al., 2009).  The Exo enzyme is a nuclease initiates 

degradation from 5’ ends of linear dsDNA creating 3’ ssDNA overhangs (Sharan et al., 2009).  

The beta protein is a ssDNA binding protein which then binds the ssDNA overhangs and protect 

them while also annealing them to complementary ssDNA in the cell (Sharan et al., 2009).  Beta 

has also been reported to have strand invasion activity (Sharan et al., 2009).  The gam protein 

inhibits the E. coli RecBCD and SbcCD exonuclease complexes to prevent degradation of linear 

ds DNA substrates (e.g. the targeting constructs) (Sharan et al., 2009).  After electroporation of 

the targeting construct cells are recovered and plated on appropriate antibiotics (Sharan et al., 

2009).   

3.2.16 Recombinant lambda genome fluorescence characterization 

 Fluorescence evolution was characterized in the mNG recombinant lambda strain as 

follows.  Cultures were inoculated from cryostock and incubated overnight at 37 ˚C in LB + 
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kanamycin with 225 rpm shaking.  Saturated overnight cultures were then pipetted into 200 uL 

volumes in a 96 well plate and measured for fluorescence with Excitation= 485 nm and 

Emission= 515 nm.  E. coli K124 cells with the chi site kanamycin cassette inserted via lambda 

red recombineering were used as a negative control.   

3.3 Results 

3.3.1 Biosensor activator for lysogenic lambda phage 

For a biosensor component that is compatible with our overall design, we required a 

sensor that is capable of activating lysogenic lambda prophage in the sensor cells in response to 

a specific stimulus.  To accomplish this, we started with the ligand-inducible promoter pBAD 

and the corresponding regulatory protein araC.  In this commonly used promoter system, the 

inducing ligand is the sugar arabinose.  In the absence of arabinose, the araC protein adopts a 

conformation that binds to its operator adjacent to the pBAD promoter and prevents 

transcription machinery from binding the promoter by inducing a DNA looping architecture 

(Martin & Rosner, 2001; Schleif, 2010).  Upon binding to arabinose, the regulatory protein araC 

undergoes a conformational change that results in dissolution of the DNA looping structures 

and converts araC from a repressor into an activator protein, which actively recruits 

transcription machinery to the pBAD promoter, resulting in expression of any open reading 

frames downstream of the promoter (Martin & Rosner, 2001).   

To connect the promoter with lambda phage induction, we utilized a constitutively 

active mutant of the recA protein, recA730 (McCall et al., 1987).  Within a natural context, 

lysogenic phage maintains its latent state through activity of the phage repressor cI which 
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represses transcription/translation of the phage genes responsible for activating the lytic cycle 

(Hendrix, 1983).  Cellular stress, specifically DNA damage, is a signal that will normally activate 

lysogenic prophage into the lytic cycle by converting the recA protein into its active 

conformation (Hendrix, 1983).  Within the canonical DNA damage pathway, the protein recA is 

constitutively expressed but remains in an inactive conformation in the absence of DNA 

damage.  Upon binding single-stranded DNA (ssDNA) and ATP (which are common substrate by-

products generated by DNA damage), recA polymerizes and adopts its active conformation 

(commonly denoted as recA*).  Upon activation, recA* interacts with the lambda phage 

repressor cI and catalyzes its auto-cleavage resulting in activation of lysogenic prophage into 

the lytic cycle (Galkin et al., 2009).     

We therefore identified a constitutively active mutant of recA (recA730) and cloned this 

gene downstream of the arabinose inducible pBAD promoter in our plasmid  (McCall et al., 

1987).  Conveniently, only a single base pair mutation (G112A) resulting in a single amino acid 

substitution (E38K) is required to 

convert wild-type recA into the 

constitutively active recA730 

mutant (McCall et al., 1987).  In 

Figure 3.4, a cartoon of E. coli 

K12-MG1655 harboring a lambda 

prophage and a plasmid with our 

recA70 mutant under control of 

the pBAD promoter is shown.  In Figure 3.4 A-B, a culture of these sensor cells was grown and 

Figure 3.4 Left, a cartoon depiction of the sensor cells. The cell is represented by 
the large, blue oval.  The inducing molecule arabinose is represented by the 
small, blue, extracellular circles.  The black circle with promoter symbol 
represents the plasmid encoding the recA730 mutant under control of the pBAD 
promoter, and the lambda prophage is represented as a blue rectangle.  Right, A) 
a culture of sensor cells without arabinose added and B) with arabinose added, 
resulting in phage production, cell lysis, and culture clearing. 
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then split into two conditions.  In Figure 3.4 A, no arabinose is added and the culture continues 

to grow normally.  In Figure 3.4 B, upon addition of arabinose the constitutively active recA 

mutant is expressed which results in induction of the lambda prophage, activation of lytic cycle, 

and consequent clearing of the culture after virion production and cellular lysis.   

3.3.2 Memory component compatible with bacteriophage-mediated information transfer 

For the memory component in our system we utilized the pRec plasmid developed by 

Sheth et al. 2017 and purchased from Addgene (Sheth, Yim, Wu, & Wang, 2017).  This plasmid 

expresses the Cas1-Cas2 complex from a plasmid under tetR regulation.  As the plasmid was 

initially developed to express Cas1-Cas2 for targeting plasmid DNA, we first sought to confirm 

that injection of lambda phage DNA into cells overexpressing Cas1-Cas2 would result in the 

addition of new spacers to the CRISPR array that map back to the lambda phage genome.  We 

transformed the pRec plasmid into an E. coli BL21 strain and cultured in the presence of 

tetracycline.  We then introduced previously harvested and purified lambda phage virions 

(Figure 3.5).  After 24 hours we PCR amplified the CRISPR locus in the BL21 cells and gel 

extracted the band corresponding to CRISPR loci which harbored a new spacer (the addition of 

a new spacer results in the insertion of a new 33 bp spacer in addition to replication of a 31 bp 

repeat, resulting in a 64 bp total addition to the PCR product which is easily resolvable with a 

1.5% agarose gel) (Figure 3.5).  The gel extracted PCR product was then submitted for 
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sequencing.  In this initial experiment, we identified ~8% of new spacers that mapped back to 

the lambda genome (Figure 3.6) (the rest mapped back to the E. coli genome; in this system it is 

always expected that a portion of new spacers will map back to the E. coli genome as Cas1-Cas2 

lose their specificity for foreign DNA when overexpressed and will target the E. coli genome in 

addition to foreign DNA fragments for spacer acquisition) (Sheth et al., 2017).   

After 

optimizing our 

infection conditions 

by including maltose 

in our culture media 

for higher expression 

of the lambda phage 

receptor lamB we 

detected ~25% of 

new spacers that 

mapped back to the 

lambda genome.  Lastly, we directly co-cultured our sensor cells with the memory cells and 

induced the culture with arabinose.  Under these conditions we identified ~50% of new spacers 

from the CRISPR array that mapped back to the lambda genome (Figure 3.6).  While these 

experiments were preliminary and therefore only a single replicate was performed, these 

results provide evidence that the concept for our distributed sensing/centralized memory 

microbial community-based biosensor is viable.  They also provide evidence that the genetic 

Figure 3.5 Top, a cartoon depiction of infection of the memory cells by lambda, followed by 
injection of lambda DNA and targeting of DNA by the Cas1-Cas2 CRISPR adaptation machinery 
for spacer excision and integration into the CRISPR array.  Bottom left, a representation of the 
CRISPR array, including the region amplified by our primer set highlighted in blue.  Bottom right, 
an agarose gel depicting the two product bands from a PCR reaction using an expanded CRISPR 
array as template.  The product running at 350 bp is the amplicon from unexpanded CRISPR 
arrays and the production running around 420 bp is the amplicon from expanded CRISPR arrays 
with a new spacer. 
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circuit we developed 

for our biosensor 

component exhibits 

low/no activity in the 

absence of signal (i.e. 

arabinose), and upon 

introduction of signal 

the system is activated 

resulting eventually in 

introduction of new 

spacers into the CRISPR 

memory locus of the 

memory cells that map back to the lambda genome.  By simply cloning the recA constitutively 

active mutant under the control of any biosensor components that control expression of a gene 

of interest, it should be possible to generate a pool of sensor cells that can be co-cultured with 

the memory population.   

3.3.3 Encoding unique information into each memory event that correlates to the 

corresponding sensing event 

3.3.3.1 Recording information correlated to sensing events as new spacers in CRISPR arrays 

 The final requirement to enable a biosensing/biomemory system with our architecture 

to record the identity and order of exposure of signals to which the community is exposed is 

that some type of unique identifying information which corresponds to the activating signal for 

Figure 3.6 Bar graph depicting the fraction of new spacers identified in expanded CRISPR 
arrays that map back to the lambda genome.  Results from three separate experiments, 
differentiated by color.  Due to the preliminary nature of these experiments, only a single 
replicate was performed, therefore error bars are not possible. 
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each sensor strain must be encoded into the information packaged into the virions produced by 

each different sensor strain population.  Crucially, this unique identifying information must also 

be included in the new spacers added to the CRISPR array in memory cells during the 

adaptation response.  If each biosensor activated an identical lambda phage signal, there would 

be no way to determine from which signals were introduced to the community and in what 

order by sequencing out the new spacers in the CRISPR array.  We therefore began the process 

of developing a method to introduce this unique identifying information into the packaged 

information in each sensor strain by analyzing our system for opportunities.   

 We first investigated which sites in the lambda genome were selected as templates for 

excision and integration as spacers by the CRISPR adaptation response.  Our idea was that if we 

could identify a region from 

which spacers were 

preferentially selected (so-

called hotspots), we could 

clone unique DNA 

sequences into the 

particular region to impose 

uniqueness into the spacer 

acquired from each genome.  Unfortunately, as can be seen in Figure 3.7, when the new spacer 

reads from the CRISPR locus are mapped back onto the lambda genome, the distribution and 

frequency of lambda genomic sites targeted as template for spacers appears to be entirely 

Figure 3.7 Frequency chart depicting the relative frequency with which sequences from  
different regions of the lambda phage genome are observed in new spacers of 
expanded CRISPR arrays.  The lambda phage genome is spread across the X-axis and 
frequency is depicted along the Y-axis.  The missing section of the lambda genome is 
due to replacement of a section of the B2 non-essential region of the phage genome 
with a kanamycin cassette (which was not incorporated into the reference genome).  
Colors and dotted lines to not depict relevant information. 
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stochastic.  This feature of the system makes introducing uniqueness into the lambda genome 

challenging.  We conceptualized two alternative approaches to overcome this obstacle.   

3.3.3.1.1 Cosmid packaging 

 The first idea was that if we could package entirely different genetic information into 

the virions produced by each type of sensor cell, it would not matter what fragment of that 

DNA is targeted as template for new spacer acquisition because each signal would generate 

completely orthogonal sequences without homology.  To implement this idea, we explored the 

use of cosmids, a technique developed in the late 1970s (Hohn 1977).  Briefly, the DNA 

sequence that the lambda packaging machinery uses to identify substrate to be packaged into 

lambda virions was identified and characterized by Hohn et al. in the mid-1970s and early 

1980s.  The necessary and sufficient sequence was found to be approximately ~150 bp.  Upon 

introduction of this sequence into any plasmid, the plasmid will subsequently undergo rolling 

circle replication until enough concatenated plasmid copies have been generated to fill a 

lambda virion head (~37.5-50 kb) and then be packaged.  By introducing a different plasmid 

containing the lambda packaging sequence (without any homology to other plasmids used in 

the sensor pool) into each different sensor strain, it would be possible to package entirely 

orthogonal sequences into virions generated by different sensor cell types, and it therefore 

would not matter what region of that signal is targeted as spacer template by the CRISPR 

adaptation machinery in the memory cells after injection by the virions.   

  Subsequently we PCR amplified the lambda packaging sequence from the prophage in a 

E. coli lysogen and cloned it into the same expression plasmid we used for expression of our 

recA mutant (this first vector choice was for the sake of simplicity; in the future it could be 
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cloned into plasmids with no sequence homology to other plasmids used in different sensor cell 

types).  We then co-cultured this sensor cell type with the memory population and sequenced 

the new spacer population that was PCR amplified from the memory cells.  We found that very 

few new spacers mapped back to the lambda genome (0.2%), and approximately 2% of new 

spacers mapped back to the recA730 expression plasmid (30 reads mapping back to the lambda 

genome, 277 reads mapping to plasmid, and 10329 mapping to E. coli genome out of 10636 

total reads).  Due to the exploratory nature of this experiment, only a single replicate was 

performed.  Additional replicates are needed to verify this result.   

Assuming the result is valid, however, it is unclear whether the relatively small 

percentage of new spacer mapping back to plasmid DNA (compared to the proportion we 

usually find mapping back to the lambda genome) is due to inefficiency in packaging of plasmid 

DNA into virions or inefficient targeting of the injected DNA by the CRISPR adaptation response.  

The fact that we have observed a robust CRISPR adaptation response previously for phage 

injected DNA and that the same plasmid we used in our system has previously been used to 

generate Cas1-Cas2 that targeted plasmid DNA with high efficiency suggests that the problem is 

more likely related to inefficient packaging of plasmid DNA into virions in the sensor cells.  Due 

to the extremely well characterized understanding of the lambda packaging sequences and 

associated mechanisms, it should be possible to optimize this approach to achieve a higher 

packaging efficiency of plasmid.   

While this experiment (upon validation by subsequent replicates) could provide proof of 

principle for this approach, it is clear that optimization would be required before this approach 

would be viable.  Additionally, the requirement that an entirely new plasmid be utilized in each 
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different sensor cell type with no sequence homology to any of the other plasmids used in any 

of the other sensor cell types is a fundamental limitation of this approach that would be nice to 

avoid if possible. 

3.3.3.1.2 Chi site-directed specificity in the CRISPR adaptation response  

The second approach we conceptualized to introduce unique information into signals 

generated by different sensor strains was to introduce specificity to the CRISPR adaptation 

machinery to target it to a specific site in the lambda genome.  If this were possible, we could 

introduce a short segment of unique information (e.g. a DNA barcode) to that specific site and 

simply modify that information in the phage generated by each different sensor strain.  The 

advantages of this approach include the fact that it would be highly scalable and require 

relatively small resource investment for each new sensor strain.   

To accomplish this, we employed the use of χ (chi; crossover hotspot instigator) sites 

(Smith, 2012; Wigley, 2013).  A chi site is a short (8 bp) DNA recognition sequence that 

regulates activity of the recBCD DNA repair complex in E. coli (Smith, 2012).  The recBCD 

complex is a DNA repair complex that binds to double stranded DNA breaks in E. coli (Smith, 

2012).  The recBCD complex binds to double stranded DNA breaks and proceeds processively up 

the DNA strand until it encounters a chi site (Smith, 2012; Taylor & Smith, 1999; Wigley, 2013).  

Chi sites for recBCD function similarly to terminator sequences for polymerases; upon 

encountering the chi sequence, the recBCD complex stalls and eventually dissolves and 

dissociates from the DNA strand (Smith, 2012; Taylor & Smith, 1999; Wigley, 2013).  As a result 

of interactions between the recBCD complex and the DNA at the chi site before dissociation, 

the site becomes primed for a DNA recombination (i.e. crossover) event at the chi site (giving 
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rise to its name, crossover hotspot instigator) (Smith, 2012; Wigley, 2013).  The functions of chi 

sites are conserved across Gram-negative and positive species, although the exact recognition 

sequence differs between species (and in Gram-positive species the DNA repair complex is the 

addAB complex instead of the recBCD complex) (Wigley, 2013).   

The currently accepted model for new spacer acquisition in CRISPR systems is that 

preprocessing of DNA by the recBCD complex is required to generate substrate that can 

subsequently be targeted by the CRISPR adaptation machinery (Figure 3.1 top right) (J. McGinn 

& L. A. Marraffini, 2019).  A study in the Gram-positive species Staphylococcus aureus using the 

φ12 phage showed that during the CRISPR adaptation response, new spacers were 

preferentially acquired from chi site adjacent regions of the phage genome, and that chi sites 

acted to limit the region of genome sampled by the adaptation machinery for spacer acquisition  

(Modell, Jiang, & Marraffini, 2017).  We therefore proposed that we might be able to insert E. 

coli chi site(s) into the lambda phage genome to impose specificity for the CRISPR adaptation 

machinery to chi site-adjacent loci.  We used lambda red recombineering (see Materials and 

Methods section 3.2.15) and a kanamycin selection cassette to introduce 4 tandem chi sites 

into the lambda phage genome just upstream of the right end cos site as that end is always 

injected first into infected cells. 

 Integration of the chi site containing construct appears to have been successful as in 

two separate experiments, significantly more kanamycin resistant colonies were generated 

from our chi-site containing construct than a control construct without chi sites.  Due to the 

natural function of chi sites as crossover hotspot instigators, this (along with kanamycin 

resistance) indicates successful introduction of our construct into the phage genome.  A single 
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colony was selected, cultured under antibiotic selection, and induced to produce lambda phage 

virions.  These virions were competent to successfully infect naïve E. coli K12-MG1655 indicator 

cells.  These plaques had small colonies of stably lysogenic cells at their center.  The lysogens 

from an entire plate were harvested and grown in liquid culture with antibiotic selection and 

then plated onto LB and kanamycin plates, resulting in a lawn of cells. The generation of 

kanamycin resistant colonies from lysogens resulting from a plaque infection experiment using 

virions from recombineered colonies strongly suggests that we were successfully able to 

introduce a genetic construct containing chi sites and a kanamycin selection marker into the 

lambda phage genome.  Furthermore, these results strongly suggest that this recombinant 

phage genome is capable of induction from the lysogenic state, production of recombinant 

phage genomes which are packaged into virions followed by cell lysis, and that the resulting 

virions containing recombinant phage genome are competent for infection of naïve cells, 

resulting in new stable lysogens harboring the recombinant lambda phage genome.  We look 

forward to performing a co-culture experiment with this recombinant strain and investigating 

the distribution of new spacer sequences along the lambda phage genome.  It is our 

expectation that the sequences of new spacers will preferentially map back to lambda genome 

sequences that are adjacent to the newly incorporated chi sites.  

3.3.3.2 Recording information correlated to sensing events as the evolution fluorescent 

activity in the memory population 

3.3.3.2.1 Construction of recombinant fluorescent lambda phage 

 There are specific advantages to the sequencing-based read-out we have discussed so 

far.  Specifically, because new spacers are always added to the same side of the CRISPR locus, 
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chronological information regarding the order of spacer addition is inherently encoded into the 

CRISPR array.  However, it is not always optimal for resource/time intensive readouts like deep 

sequencing to be required for decoding information from biosensor devices.  In many situations 

there are neither the resources nor personnel to perform these types of analytic pipelines.  

Another important dimension can be time; there are situations when it is not optimal or even 

viable to have to wait for days/weeks to decode the information from a memory component.  

Finally, it is interesting to consider the compatibility of our system with a more functional 

genetic payload (i.e. a cassette for expression of a gene of interest) as opposed to simply 

information transfer.  We therefore endeavored to explore alternative readout modes that 

would allow for low resource decoding, real time feedback of signaling events, and or transfer 

of functional gene cassettes. 

 The most obvious and commonly used real time reporters in biological systems are 

fluorescent proteins.  Fluorescent protein expression can often be used as a dynamic readout 

parameter to measure any biological activity or process that can be linked to protein 

expression, through any variety of transcription, translation, post transcription, translation, 

post-translation, protein-protein interactions, etc.  We therefore sought a way to couple our 

distributed biosensor architecture with a real-time fluorescent protein readout, which could 

also conveniently be used to demonstrate compatibility of our system with transfer of 

functional gene cassettes.  

The approach we designed is to clone a fluorescent protein expression into the lambda 

phage genome of our sensor cells.  When inducer is added to the sensor cells (using our same 

previously discussed biosensor component), the recombinant lambda phage genome encoding 
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the fluorescent reporter cassette will be copied and packaged into virions that can 

subsequently infect memory cells, delivering the fluorescence cassette to the memory cells for 

expression of the fluorescent marker.  Evolution of fluorescent signal can be used as a real time 

readout of a signaling event. 

To implement this design, we first introduced a targeting construct with a fluorescent 

protein expression cassette under a tetR promoter and a kanamycin selection cassette into the 

lambda prophage in our sensor cell lysogens.  To initially determine whether our fluorescence 

marker would be expressed 

strongly enough to be detected 

from its integration site in the 

lambda genome, we used lambda 

red recombineering to insert our 

fluorescence cassette into an E. 

coli K124 lysogen (a commonly 

used lambda phage chassis strain).  

A single colony from this 

recombination experiment was cultured under antibiotic selection overnight and was assayed 

for fluorescence compared to a control non-fluorescent strain.  As seen in Figure 3.8, the 

resulting recombinant strain exhibits a strong fluorescent signal at the canonical green 

fluorescent protein wavelengths whereas the control strain does not.   

Figure 3.8 Bar graph depicting population level fluorescence detected from 
sensor cells encoding a recombinant lambda phage genome expressing 
mNeonGreen, a GFP variant.  Population level fluorescence (right) is compared 
to fluorescence detected in a control strain (left) (error bar from overnight 
cultures of three separate colonies; fluorescence detected via Biotek 
platereader). 
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3.3.3.2.2 Future directions 

Having established that our fluorescent protein is expressed strongly enough to be 

detected by population level fluorescence in a plate reader, the next important step is to 

demonstrate that this recombinant phage genome is competent for induction by our biosensor 

component, packaging into virions, and that those virions are capable of infecting host cells.  

This can be confirmed for the strain developed above using techniques already discussed 

(similar to experiments described in section 3.3.3.1.2). 

Next we will introduce our recombinant fluorescent lambda genome into a sensor cell 

chassis strain that constitutively expresses the tet repressor from the genome, E. coli K12 

MG1655-Z1 (Sekar, Gentile, Bostick, & Tyo, 2016).  Consequently, in sensor cells the 

fluorescence cassette integrated into the lambda genome (controlled by the tetR promoter) will 

be repressed by the constitutively expressed tet repressor.  When these sensor cells are 

induced by signal, the recombinant lambda will be packaged into virions and subsequently 

infect the memory cells.  Once inside the memory cells, which do not express the tet repressor, 

the fluorescence cassette will be expressed resulting in the evolution of a fluorescent signal 

from the community and allowing for the use of fluorescence evolution to be used as a readout 

of signal introduction.  It is possible we will have to express the lambda phage repressor cI from 

plasmid in the memory cells to prevent the majority/all of the cells entering the lytic cycle after 

infection.  Although with this system the ability to record order of exposure of signals to the 

community is lost without constant monitoring, what is gained is the ability to pair the system 

with a real time readout that is accessible in low resource setting (especially if a colorimetric 
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readout is used as opposed to a fluorescent one).  This system also demonstrates compatibility 

of our system architecture with a functional gene cassette payload.   

3.4 Discussion 

 The ability to extract information from internal and external environments, encode the 

information into biologically compatible molecules, transmit and share the information with 

adjacent cells, and eventually store some types of information stably over generations is vital to 

the success and survival of microbial communities.  Each of these capabilities is also desirable 

within certain biotechnological contexts.  Biosensors have been used for a wide variety of 

diagnostic and therapeutic applications (Song, Xu, & Fan, 2006; Vigneshvar, Sudhakumari, 

Senthilkumaran, & Prakash, 2016).  Similarly, biomemory systems have been applied to 

diagnostic and therapeutic applications (Kotula et al., 2014; Sheth & Wang, 2018).  Systems to 

integrate information from biosensors and share that information with an output or memory 

component are currently underexplored but are beginning to receive attention (Silva & 

Boedicker, 2019).  Here we have developed a novel synthetic biosensing and biomemory 

system based on bacteriophage-mediated information transfer.   

Our system integrates the three components (biosensing, information transfer, 

biomemory) within a single architecture in a design that is theoretically capable of sensing and 

responding to a large number of unique environmental signals and recording their order of 

exposure, which is not true of any currently or previously proposed biosensing/biomemory 

system.  Immediate applications of such a system include contexts such as a persistent, 

clandestine sensor in remote environments.  Development of a complimentary microfluidic 
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device could potentially enable such implementation.  Additionally, however, with its 

distributed sensing array combined with the centralized memory component, our system 

begins to address the challenge of integrating multiple streams of information into a single 

analog or threshold output.  This capability, which is characteristic of other biological systems 

such as neurons, could be a significant enabling technology within the context of in situ therapy 

production and delivery.   

Currently drug delivery is one of the most complex challenges facing many potential 

promising therapies (Council, 2014; Homayun, Lin, & Choi, 2019; Hooven, 2017).  To deliver 

biologically active forms of therapeutic compounds to their sites of interest in therapeutically 

relevant concentrations is extremely challenging (Council, 2014; Homayun et al., 2019; Hooven, 

2017).  In pill form, compounds must make it through the incredibly harsh digestive system 

until they can be absorbed into the blood stream in the gut and subsequently be transported to 

their sites of activity without being degraded or converted into inactive forms (Homayun et al., 

2019).  Therapies injected into the blood stream face similar challenges in addition to getting 

through the blood-brain barrier for neural therapies, and with average lifespan increases 

neurodegenerative disorders are one of the fastest growing illnesses in the world (Hooven, 

2017).   

In situ production of therapeutic compounds by cells in various human microbiome 

communities is one way to address some of these challenges.  Compounds produced by 

bacteria in the gut, for example, could be immediately absorbed into the blood stream for 

transport or could be used to target illnesses such as inflammation and irritable bowel 

syndrome in the gut.  Recent findings in the gut-brain axis have shown that pathogenically 



76 
 

relevant compounds produced in the gut are delivered to the brain via the vagal nerve, opening 

the possibility of delivery of neural therapeutics from gut microbiome produced compounds 

(Kim et al., 2019).  Bacteria have also been engineered to target cancer tumors in certain 

contexts (S. Zhou, Gravekamp, Bermudes, & Liu, 2018).   

In most of these scenarios, many of the components are already developed or relatively 

close to development, with one glaring exception.  Each of these drug delivery systems would 

require a robust, stable, control system capable of integrating a variety of biological signals to 

diagnose a condition into a single response element to produce a therapy.  Currently such 

systems do not exist.  Our distributed sensing network coupled with a centralized memory 

components provides a framework for a way to begin thinking about what systems that can 

integrate multiple streams of information from different sensor sensor into a single output 

might look like. 
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Chapter 4: Conclusions and Future Directions 

4.1 Review of motivations 

 Synthetic biology is a field which combines molecular biology with technology and 

engineering to facilitate and accelerate the design of biological systems for medical, industrial, 

and environmental applications (Shapira, Kwon, & Youtie, 2017).  Although generally agreed to 

have emerged around the turn of the millennium, the roots of synthetic biology reach back to 

advances in the 1970s (and further) when the tools for what we think of as modern genetic 

engineering were first being discovered and explored.  Following several grand medical and 

monetary biotechnology success stories such as the cloning of the human insulin gene into a 

bacterial plasmid for the microbial production of human insulin, investment of time, money, 

and resources into the field have been steadily increasing (CBInsights, 2019; Chen, Liu, & Chen, 

2009; Medicine, 1995; Shapira et al., 2017).  As the field has progressed, the biological 

complexity and scale of systems of interest has also increased significantly, from the expression 

of single gene targets in model organisms to the expression of biosynthetic pathways 

containing tens of genes, at times requiring macromolecular assembly and organization (Dutta 

et al., 2014; Paddon & Keasling, 2014; Sachdeva, Garg, Godding, Way, & Silver, 2014).  Many 

orthogonal tools and technologies have been developed to accommodate the requirements 

imposed by this increase in complexity.   
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In the first decade of the new millennium, a novel approach was proposed to address 

many of these challenges simultaneously.  Instead of choosing a single model organism to 

express all components and processes of target systems, it was suggested that systems could 

be distributed amongst several different species and/or cell types within a microbial 

community.  There are a variety of potential advantages and challenges to this type of approach 

which have been discussed at length in chapters 1-3.   

4.2 Specific contributions to the field of synthetic biology 

Throughout the course of my thesis work, my goal has been to develop tools and 

strategies to address some of the challenges of engineering microbial communities that we 

might better be able to access their advantages.  Specifically, chapter 2 focuses on developing 

and characterizing a tool that can be used to enable species coexistence and to program 

relative species abundance in a synthetic microbial community.  Tools to accomplish this task 

are important because programming this parameter of synthetic microbial communities can be 

a useful approach to optimize community performance for biotechnological applications.  

Chapter 3 focuses on the development and characterization of a novel synthetic 

microbial community with a distributed sensing and centralized memory architecture that relies 

on bacteriophage-mediated information transfer to sense and record the environmental stimuli 

to which the community was exposed.  This project introduces not just a novel system but a 

novel theoretical approach within the field, combining a distributed sensing network with a 

centralized memory component.  This approach is theoretically significantly more amenable to 
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a variety of potential therapeutic applications of synthetic microbial communities in the human 

microbiome.   

4.2.1 Compare and contrast to existing technologies 

4.2.1.1 Temperature regulation as a tool to program synthetic microbial community 

composition 

The ability to control synthetic microbial community composition is desirable within a 

biotechnological context.  Until recently, this issue has gone almost completely unaddressed 

within the synthetic biology field.  However, within the past three years, several studies have 

been published that demonstrate a variety of approaches to address this issue.  A pair of 

studies published by Scott et al. in the Hasty lab at the University of California, San Diego in 

2017 and Stephens et al. in the Bentley lab at the University of Maryland in 2019 used quorum 

sensing to control expression of genes that controlled cell death and cell growth, respectively, 

to control community composition in synthetic microbial communities (Scott et al., 2017; 

Stephens et al., 2019). 

Briefly, the paper from Scott et al. placed a circuit regulating expression of a lysis gene 

under regulation of a quorum sensing circuit.  When the population density of one strain 

reaches a designated level, expression of the lysis circuit is induced, resulting in cell death.  This 

self-limiting control strategy is used to affect population control and regulate community 

composition.  This concept is a variation on a theme published by You et al. in 2004 for 

population control by quorum sensing mediated cell killing (You, Cox, Weiss, & Arnold, 2004).   
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One advantage to the community composition control system published by Scott et al. is 

that because there are many well characterized, orthogonal quorum sensing systems, their 

approach can theoretically scale well to communities with many more than just two species.  

However, the main drawback to the system developed by Scott et al. (and by You et al.) is that 

cell death imposes a very strong evolutionary selection pressure to escape whatever genetic 

circuit is controlling the cell death.  Consequently, both the Scott et al. and You et al. systems 

are plagued by very short culture lifetimes, because relatively quickly mutations emerge to 

escape expression of gene resulting in cell death.   

In comparison to the system developed by Scott et al., our system has strengths and 

weaknesses.  The major weakness of our system is that the control mechanism does not likely 

scale well.  It should be possible to develop a temperature control regime for up to three 

species, but developing a control regime for any additional species would be a daunting task.  

However, the major strength of our approach is that because response the temperature is such 

a deeply ingrained, hard-wired response in bacteria, evolution and adaptation to minimize 

responses to temperature is very slow.  We were able to demonstrate that our systems were 

functional for up to 400 hours (constant temperature) and 96 hours (cycling temperature).  And 

even in the event of adaptation to temperature changes which affects the rate at which 

bacteria adapt to temperature changes, the response to temperature overall can be maintained 

for hundreds or thousands of generations (Bennett, Lenski, & Mittler, 1992).   

In 2019 Stephens et al. published a system that is a relatively fresh approach to using 

quorum sensing to control community composition.  Instead of using quorum sensing to control 

cell death, they used quorum sensing molecules to regulate expression of a gene that increases 
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cell growth.  Because the phenotypic behavior controlled by the synthetic circuit in this case is 

increased growth, the circuit developed by Stephens et al. is significantly less likely to be quickly 

escaped by mutation.  However, overexpression of the growth factor in their system represents 

a significant diversion of resources away from any biosynthetic production pathway of interest, 

likely resulting in a consequent negative impact on yield in a production strain.  Additionally, 

despite the fact that their system regulates cell growth instead of cell death to control 

community composition, it is not clear whether their system would last as long as our 

temperature-based system before mutations emerge in their circuitry.  Their system has the 

same strength as the system from Scott et al., however, which is that due to the number of 

orthogonal quorum sensing systems available, their system potentially scales well to larger 

numbers of species. 

Therefore, the weaknesses of our system compared to that of Stephens et al. are the 

same as with Scott et al., that scalability of our system is poor compared to quorum sensing 

based systems.  The strength of our system compared to Stephens et al. is that we do not rely 

on overexpression of any cellular component that would significantly divert resources away 

from the biosynthetic pathways of interest, and the lifetime of our control system is likely 

longer. 

4.2.1.2 Distributed sensing with centralized memory utilizing bacteriophage-mediated 

information transfer in synthetic microbial communities 

A variety of biosensing and biomemory systems have been previously developed and 

demonstrated in the literature.  Overwhelmingly the approach has been to use a signal cell to 

express all components of the system, including any and all sensor and memory related 



82 
 

components (Farzadfard & Lu, 2014; Kotula et al., 2014).  The most recent, and best, iteration 

of this approach was published by Sheth et al. in 2017 (Sheth et al., 2017).  In their ingenious 

system, Sheth et al. use the CRISPR adaptation machinery as a memory component to record 

DNA barcodes that are generated in response to biosensor activation.  However, because the 

Sheth et al. system uses a single cell architecture, they face a choice to record the order of 

exposure of signals for a large number of biosensors.  Either they can insert as many biosensors 

as possible into a single cell line (centralized sensing with centralized memory), or they can use 

a number of different cell lines, each with a single biosensor and memory component, but 

include a time keeping mechanism so that exposure profiles of the different cell lines can be 

compared to one another, producing an exposure profile for the community (distributed 

sensing with distributed memory).  Sheth et al. opted for the latter, and demonstrated their 

approach works (mostly) with three biosensor cell types, but due to the nature of their system 

design and the problems encountered with only three sensor strains, it is unlikely their system 

can scale significantly beyond that number.   

Our system represents a significant improvement in this regard.  Due to our distributed 

sensing system combined with a centralized memory component, our system can theoretically 

incorporate a large number of sensor cell lines while preserving the ability to record the order 

of exposure to signals for the entire community.  Additionally, our separation of the sensing and 

memory components enables another improvement over the system from Sheth et al.  The 

time keeping device used in the Sheth et al. system relies on constitutive overexpression of the 

CRISPR adaptation complex Cas1-Cas2, leading to genome instability in the sensor/memory 

cells.  Because our system design does not require this feature, we can theoretically dispense 
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with this constitutive overexpression by using a quorum sensing regulated system to only 

express the CRISPR adaptation machinery when necessary.  This would theoretically increase 

the maximum culture lifetime of our biosensor/biomemory system significantly over Sheth et 

al.   

The weakness of our system is that because we have separated the sensory and 

memory components into different populations, we are forced to develop a novel information 

transfer system.  It has been difficult to optimize a variety of aspects of this design, first and 

foremost the ability to encode unique information into the signals produced by each sensor cell 

strain.  However, upon surmounting this obstacle our system will be superior to previous 

systems in multiple ways.  Additionally, the intellectual shift from thinking about these 

biosensor systems as single cell systems to distributed systems enables a new way of thinking 

about potential applications for biosensor/biomemory systems, which is exciting. 

Both of these projects add to the toolbox available to researchers to manipulate and 

program coordinated behavior within synthetic microbial communities.  The naturally emerging 

next question is, therefore, for which types of applications are the capabilities of synthetic 

microbial communities best suited?  Which of the multitude of pressing challenges currently 

facing the human species are synthetic microbial communities best suited to address?   
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4.3 Future directions  

4.3.1 Temperature regulation as a tool to program synthetic microbial community 

composition 

4.3.1.1 Feedback control for temperature regulation 

In Chapter 2 we developed temperature regulation as a tool to enable coexistence and 

program community composition within a synthetic microbial community.  We developed two 

separate techniques to use temperature regulation to program community composition, which 

we refer to as constant and cycling temperature regimes.  In the cycling temperature regime 

approach, one challenge we encountered was biological adaptation to repetitive exposure to 

stimuli.  It has been documented that some bacteria are able to develop transient and/or 

sustained adaptations to cyclical exposure to certain stimuli (Forbes, Dobson, Humphreys, & 

McBain, 2014; Fridman, Goldberg, Ronin, Shoresh, & Balaban, 2014).   We also observed 

variations in the lag times and overall response to temperature changes in some of our cycling 

temperature regime experiments (Figure 2.4, Figure 2.6).  Even relatively small variations in 

these parameters of the adaptation response to temperature changes make it difficult to 

calculate a priori a sequence of time intervals at specific temperatures to achieve a certain 

community composition.  However, the phenotypic response to temperature is deeply 

hardwired into bacterial organisms, persisting for hundreds and even thousands of generations 

(Bennett et al., 1992). 

One approach that would theoretically allow us to circumvent these variations in the time 

course of the response of bacteria to temperature change while still enabling the use of 

temperature regulation to program community composition is incorporation of a feedback 
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control unit.  The basic design for such a control system is relatively straightforward.  One 

design for such a system would require two components, a community composition monitoring 

component, and a temperature control component.  For monitoring community composition, in 

our system it would be possible to simply use fluorescence, either at the population level or by 

real time flow cytometry monitoring (Broger, Odermatt, Huber, & Sonnleitner, 2011).  A 

software interface with this monitoring system would allow the user to set a desired target 

community composition.  If and when the measured community composition were to deviate 

from the target composition, this information would be forwarded to the temperature control 

component, which would adjust the temperature in such a way so as to return the community 

composition back to the target. 

While simple in design, there would almost certainly be non-trivial optimization required 

for this type of a feedback control system.  One crucial parameter to optimize would be the 

amount by which the temperature is changed in response to deviations in community 

composition, and the frequency with which these temperature steps are applied in response to 

deviations in composition.  However, in theory this feedback system would enable a 

temperature regulation approach to maintain a wide variety of target community compositions 

in spite of variations in the time course with which species response to temperature changes. 

An additional benefit to this approach would be that for many industrial sized culture 

volumes (which are sometimes in the tens of thousands of liters), the amount of energy and 

therefore money required to change the temperature of the culture media is significant.  

Implementing a real-time feedback system as described above would allow the system to 
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minimize the temperature changes required to maintain the target composition, potentially 

resulting in significant environmental and monetary improvements. 

4.3.2 Quorum sensing-controlled expression of CRISPR adaptation machinery 

In chapter 3 we developed a novel biosensor/biomemory system that uses a distributed 

sensing array with a centralized memory component and bacteriophage-mediated information 

transfer.  In the system we have developed, we co-opt the use of the CRISPR adaptation 

response based memory component developed by Sheth et al. (Sheth et al., 2017).  One aspect 

of the component as developed by Sheth et al. is that the CRISPR adaptation machinery are 

constitutively expressed.  This feature is required in their system as it is part of the time-

keeping device they use that is necessitated by their distributed memory approach.  However, 

as discussed previously, over expression of the Cas1-Cas2 CRISPR adaption complex at the 

levels required for this application causes the complex to lose its specificity for foreign DNA and 

attack the E. coli genome in addition to any foreign DNA fragments.  Unsurprisingly, this leads 

to genome instability and significantly limits the stability of the system, resulting in unstable 

cultures that only last days/weeks.   

However, because our system uses a centralized memory component enabled by our 

bacteriophage-mediated information transfer, we do not require the time keeping device that 

Sheth et al. relied on and can therefore avoid the constitutive expression of the CRISPR 

adaptation complex.  The question becomes, then, is there a better expression scheme that 

would enable greater system stability? 
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One approach that would capitalize on our distributed sensing and centralized memory 

system architecture is to regulate expression of the CRISPR adaptation machinery via quorum 

sensing.  The basic system design is depicted in Figure 4.1.   As seen in Figure 4.1 A, the system 

from Sheth et al. utilizes a constitutive promoter for the Cas1-Cas2 complex (depicted by the 

black promoter symbol).  Under the proposed quorum sensing regulated system, expression of 

Cas1-Cas2 would be placed under the quorum sensing promoter pLux (green promoter symbol 

in Figure 4.1 B).  Transcription initiation from the pLux promoter is controlled by the regulatory 

protein LuxR, an inducible transcription factor.  In the absence of its inducer, AHL (depicted by 

Figure 4.1 Cartoon depiction of the putative scheme to control expression of the Cas1-Cas2 complex with quorum sensing. A) the 
biosensor/biomemory system described in chapter 3.  B) modifications required for quorum sensing controlled expression of 
CRISPR adaptation machinery.  LuxI, the AHL synthase is depicted by a green square.  The quorum sensing signaling molecule 
AHL is depicted by green stars.  The quorum sensing controlled promoter pLux is depicted by a green promoter symbol.  
Production of LuxI (and therefore AHL and eventually the Cas1-Cas2 complex) is initiated by presentation of biosensor inducer 
(represented by small blue extracellular circles). 
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green stars in Figure 4.1 B), LuxR will remain inactive, and expression of genes downstream of 

the pLux promoter is repressed.  In the presence of AHL, LuxR binds AHL and assumes a 

conformation which allows it to interact with the pLux promoter, initiating transcription at the 

promoter.   

For quorum sensing controlled expression of the CRISPR adaptation machinery, all that 

is required would be for the AHL synthase LuxI to be cloned into the operon downstream of 

recA730 in our sensor cell strain (green rectangle in Figure 4.1 B).  With this circuit design, in 

response to sensor strain inducer, not only would recA730 be expressed to induce the lytic 

cycle of lambda phage but the LuxI synthase would also be expressed, resulting in production of 

AHL.  The diffusible AHL would then interact with LuxR and activate expression of the CRISPR 

adaptation machinery in memory cells, which would then target the injected phage genomes 

from the sensor strain. 

The benefit of this expression system is that it would act to extend the culture lifetime 

of the system indefinitely.  Constitutive expression of the CRISPR adaptation machinery results 

in genome instability and culture collapse, but intermittent, pulse expression of the adaptation 

machinery only when a signal is encountered by the community would avoid this genome 

instability.  This quorum sensing regulated control of the CRISPR adaptation machinery would 

therefore capitalize on a unique feature of our system to address a significant limitation of a 

previous approach. 
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4.3.3 In situ temporally and spatially appropriate microbial production of therapeutics in 

the human microbiome 

4.3.3.1 Challenges in therapeutic drug delivery 

Synthetic microbial communities have been and should continue to be used to address 

challenges across a variety of medical, industrial, and environmental applications.  One current 

significant challenge in the medical care field is the delivery of clinically relevant concentrations 

of active therapeutic compounds to the site of action (Council, 2014; Homayun et al., 2019; 

Hooven, 2017).  One of the most common routes of administration, oral delivery, must contend 

with problems including fabrication protocols that avoid use of organic solvents, shear stresses, 

and local temperature increase to avoid drug inactivation, in addition to which delivery 

material, design, size, and polydispersity must be accurately controlled due to their influence 

on treatment efficacy.  Additionally, designing drugs that can survive the route of delivery and 

still effectively cross various biological barriers such as the lumen, mucus, tissue of the GI tract, 

and the blood brain barrier can be difficult.  A relatively new approach to these problems is to 

genetically engineer living bacteria in the human microbiome and cancer tumor 

microenvironments as diagnostic and therapeutic agents (Charbonneau, Isabella, Li, & Kurtz, 

2020; Lim & Song, 2019).   

There are a number of technological and ethical concerns with respect to these 

approaches, but given the potential advantages to in situ production and delivery of 

therapeutics and recent advances in related technologies, it is currently appropriate to begin 

thinking about the practical and ethical hurdles inherent to such approaches (Charbonneau et 

al., 2020).  In fact, some bacteria have already been successfully engineered for such 
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applications and are currently in phase I, II, and III clinical trials (Lim & Song, 2019; Riglar & 

Silver, 2018).  Currently a number of therapeutic agents are already developed and waiting to 

be paired with appropriate bacterial production chassis and regulatory control systems for in 

situ therapy production and delivery.   

4.3.3.2 In situ microbial production of therapeutics 

One system architecture that could potentially enable in situ production of therapeutic 

would be a system of therapeutic production strains that are governed by a distributed system 

of biosensor strains.  The production strains would exist as therapeutic nodes and would 

encode biosynthetic pathways responsible for production of therapy that addresses a specific 

pathogenic state.  Activation of these biosynthetic pathways and production of therapy would 

be controlled by signals sent from any number of sensor strains which would be activated by 

biomarkers and/or environmental conditions associated with the relevant pathogenic state.  

For implementation of such a system, several looming questions must be addressed.  Among 

the most important of these are 1) what might an optimal information transfer mechanism 

from the sensor cells to the therapeutic nodes look like and 2) what might some of these 

therapies look like? 

4.3.3.2.1 Membrane-bound vesicle-mediated information transfer 

In the system we developed in Chapter 3, we pioneered a bacteriophage-mediated 

information transfer system.  When thinking about system requirements for an information 

transfer mechanism within our in situ microbially produced therapy context, there are some 

advantages and disadvantages to a bacteriophage-mediated information transfer system.  One 

of the advantages is that bacteriophages are generally highly specific in terms of the target cells 
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they are capable of interacting with.  The tail fibers of a specific species of bacteriophage are 

generally only capable of interacting with a single or a very small range of receptor types (Yehl 

et al., 2019).  Within this context that is an advantage because depending on the payload of 

these phage, it might be important that the signal generated by sensor strains be delivered only 

to the therapeutic node cells.  However, in this context that specificity might also be a 

disadvantage, for two reasons.   

First, a range of E. coli strains are known to be commensal residents of the human gut 

microbiome, and it might be important to limit delivery of signal from sensor strains to these 

cells, or at least limit the signal dilution that might occur.  Secondly, it is not currently clear 

what model organisms will be optimal for the therapeutic production strains.  For many of the 

reasons discussed throughout this thesis, it is entirely possible that a variety of species might be 

desirable as production strain chasses.  One final disadvantage of bacteriophage-mediated 

information transfer in this context is that generally only nucleic acid encoded information is 

competent for packaging into bacteriophages.  While this is not necessarily always a 

disadvantage, a more optimal vector for information transfer in this context would be able to 

theoretically package a wider variety of compounds.  Additionally, in this context it might be 

desirable to integrate information from multiple sensor cell strains into a single output in a 

therapeutic node (as many pathogenic states can only be correctly diagnosed by the 

simultaneous presence of several symptoms), and while not necessarily impossible, it is not 

immediately apparent how that might be accomplished with nucleic acid based information 

transfer.  So, a more optimal information transfer vector in this context would be able to 

package a wide variety of compounds and would be able to deliver those compounds with 
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specificity to a wide variety of target species.  On both of these counts, membrane bound 

vesicles offer opportunities that bacteriophage-mediated information transfer cannot. 

Membrane bound vesicles bleb off from almost all known cell types and are one of the 

most conserved characteristics observed in cellular life (Deatherage & Cookson, 2012).  While 

the molecular packaging mechanisms have yet to be elucidated, a wide variety of molecules 

ranging including periplasmic and cytosolic proteins, DNA, RNA, virulence factors, and quorum 

sensing molecules have been isolated in membrane bound vesicles (Deatherage & Cookson, 

2012; Toyofuku, Nomura, & Eberl, 2019).  Additionally, not only interspecific but also inter-

kingdom vesicle mediated transfer of compounds has been observed (Cai et al., 2018).  Finally, 

the combination of membrane bound vesicle mediated information transfer with quorum 

sensing controlled regulation of gene expression offer one path forward to integrate multiple 

information streams into a single output.  A recently published study by Silva et al. demonstrate 

that a combination of different quorum sensing molecules and quorum sensing receptors can 

be used to create gene expression systems that are dependent on the community level 

signaling state as opposed to the signaling state of a single signaling system, which provides a 

mechanism to integrate multiple information streams into a single output (Silva & Boedicker, 

2019).  Vesicle mediated quorum sensing molecule transfer could be one way to implement this 

type of system within a human microbiome therapy production system. 

While the characterization and optimization of vesicle loading mechanisms as well as 

the targeting mechanisms used to direct vesicles to specific cells or cell types that will be 

required to develop this modality as a viable information transfer mechanism in the context of 
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a human microbiome therapeutic community, in the long term membrane bound vesicle offer 

unique opportunities as an information transfer mechanism. 

4.3.3.2.2 Therapeutic nodes        

The next important question in regard to how in situ therapy production can be 

implemented is what the specific therapeutic nodes might look like.  One excellent example of a 

strain that could be deployed as a therapeutic node was recently published by Hsu et al. and 

involves bacteriophage-mediated delivery of a repressor protein that prevents expression of a 

virulence factor in a pathogenic bacterium .  While we have already discussed the potential role 

of bacteriophage as information carriers in our putative system (and more specifically their 

shortcomings with compared to the potential of membrane bound vesicles), it is now 

appropriate to discuss their role in therapy delivery. 

As discussed previously, one of the key characteristics of bacteriophages are their target 

cell specificity.  This characteristic has already made “phage therapy” an extremely active area 

of research.  Under the phage therapy paradigm, pathogen specific bacteriophage are used to 

eliminate pathogens instead of antibiotic treatment in cases of life-threatening bacterial 

infection.  Phage therapy offers distinct advantages over antibiotic therapy in that it can be 

effective even in the face of the evolution of antibiotic resistance and also in that it can target 

pathogens for killing much more specifically than antibiotics, which often target a wider range 

of species for killing, sometimes including important human microbiome symbionts.   

However, even phage-mediated killing can result in the relatively quick evolution of 

bacterial resistance due to the fact that such a strong selection pressure is being applied 
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(Oechslin, 2018).  Consequently, an emerging field of phage therapy involves phage mediated 

delivery of a genetic payload that targets the pathogenic virulence factor without killing the 

pathogen.  This approach could theoretically greatly reduce the evolution of bacteriophage 

resistance as it removes one of the strongest pressures selecting for resistance (pathogen cell 

death).  The previously mentioned therapy developed by Hsu et al. employs just such a 

virulence factor targeting therapy (Bryan B. Hsu, Way, & Silver, 2020).  But their approach is not 

at all modular, and is only capable of targeting a very specific set of virulence factors. 

A recent significant discovery has paved the way for an almost entirely modular system 

to target virulence factors in pathogens that is theoretically entirely deliverable by 

bacteriophage.  A pair of papers published within a few weeks of each other in 2019 described 

a CRISPR guided transposon system (CAST system) that allows a genetic payload to be 

integrated into a genomic site of choice targeted by a CRISPR guide RNA.  Because the entire 

system consists of less than 10 kb of genetic material, it is theoretically plausible for the system 

to be encoded and delivered to a pathogen via bacteriophage.  The CAST can be programmed 

to target any specific virulence factor and insert a genetic payload that knocks out expression of 

the virulence factor.  It might even be possible to use a genetic payload that would undergo 

slight positive selection to ensure reversion to wild-type does not occur.   

However, there is still one significant problem with this therapy approach.  As discussed 

previously, most bacteriophage are very specific.  So, while the CAST system is easily re-

targetable to different virulence factors, for each different pathogen a new bacteriophage 

chassis must be found.  Often these bacteriophages are necessarily hosted in the pathogen 

strain of interest, and genetic tools to modify these non-model strains can be difficult, 
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expensive, and time-consuming to develop.  For this reason, it would be optimal to create a 

modular phage chassis that is capable of packaging a genetic payload of interest (that does not 

necessarily include the phage genome but could include a CAST system) and that includes easily 

modifiable, modular tail fiber proteins to enable targeting of the phage chassis to different 

receptor types.  As discussed previously, phage specificity is governed almost entirely by the 

phage tail fiber proteins, which largely determine the receptor(s) with which phage can 

interact.   

Unsurprisingly, there are already attempts underway to use directed evolution to 

modify these phage tail fiber proteins to modify phage target cell specificity (Yehl et al., 2019).  

While directed evolution of existing biological systems is often an extremely powerful tool, it 

can also be limited by the recent evolutionary trajectory of said systems.  Additionally, in many 

cases, billions of years of evolution have resulted in systems that favor efficiency over 

modularity, as evidenced by bacteriophage (Butterfield et al., 2017).  In such cases, synthetic 

systems rationally designed from first principles can potentially provide a modular chassis that 

can then be subsequently evolved to generated desired properties for modular delivery of 

genetic payloads to a variety of cell types (Butterfield et al., 2017).  Butterfield et al. used just 

such an approach to develop a synthetic, computationally designed nucleocapsid that packages 

its own full length mRNA genome (Butterfield et al., 2017).  This type of an approach could 

theoretically be applied to generate a CAST system delivery vector that would be extremely 

modular and could be targeted to a wide variety of cell types. 
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4.3.4 Conclusions 

In this thesis I have discussed two novel systems that address specific current challenges 

regarding the development of synthetic microbial communities for industrial, environmental, 

and medical applications.  In one system we demonstrate that temperature regulation can be 

used to enable coexistence and program community composition in a synthetic microbial 

community, and in the second system we explore a novel biosensor/biomemory system 

architecture that uses a distributed sensing component coupled with a centralized memory 

component enabled by bacteriophage-mediated information transfer.  These systems address 

current and emerging challenges relating to coexistence, community composition, and 

communication in synthetic microbial communities.  Additionally, the distributed architecture 

and information transfer component of the second system lay the intellectual groundwork for 

potential therapeutic applications of the system.  In total we have presented data and analysis 

that represents a significant contribution to the field of synthetic biology and that lays the 

foundation for future contributions. 
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Appendix A 

The Relationship Between Temperature and Relative Fitness Differences and Niche 

Differences in a Synthetic Microbial Community 

A.1 Introduction  

A.1.1 Brief history of coexistence theory 

In chapter 2 we demonstrated that temperature regulation can be used to enable 

coexistence between species in a synthetic bi-culture and it can also be used to modulate 

species relative abundance in that community in a programmable way.  We showed that the co-

culture growth rates change as a function of temperature and that the relative abundance of 

species in consecutive batch cultures is correlated to these growth rate changes.  However, as 

mentioned previously and as illustrated in Figure 2.3 B, the species relative abundance at 

equilibrium in the bi-culture responds to temperature in a highly nonlinear manner.  This 

observation suggests that more factors influence relative species abundance in the bi-culture 

than just the changes in growth rate in response to changes in temperature, which is an idea 

that is compatible with over a century of coexistence theory by natural and mathematical 

ecologists.  As the mechanisms influencing coexistence of species in communities have been 

relatively unexplored by synthetic biologists, for a deeper understanding of how and why the 

relative abundance of species in our bi-culture responded to temperature changes as it did we 

turned to the wealth of coexistence research produced by the field of ecology since the early 

20th century.   
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 Modern coexistence theory arose in large part from the competitive exclusion principle, 

which is commonly attributed to Gause but is a consequence of the dynamic model of 

competition proposed by Volterra in 1931 (Gause, 1934; Godwin, Chang, & Cardinale, 2020; 

Volterra, 1928).  The competitive exclusion principle can be briefly stated as “complete 

competitors cannot coexist” (Hardin, 1960) and contends that no two species with identical 

niche requirements can coexist indefinitely (Gause, 1934).  Within this context, niches are 

commonly defined as responses of an organism or population to the distribution of resources 

and competitors, and when two species differentiate their niches, they often compete less 

strongly with each other (i.e. the effect of intra-specific competition rises relative to the effect 

of inter-specific competition) (Beals, Gross, & Harrell, 1999).   

The impact of the competitive exclusion principle was such that, for a time, much of the 

work produced by the field focused on characterizing the impact of niche differences on 

community population dynamics.  Concurrent to this focus on the role of niche differences in 

coexistence theory, however, was theoretical work which suggested that niche differentiation 

by itself was insufficient to fully explain coexistence in several cases (Godwin et al., 2020; 

Macarthur & Levins, 1967; Roughgarden, 1976; Slatkin, 1980; Vandermeer, 1975).  The field 

would have to wait until the turn of the millennium for this inconsistency to be resolved. 

In 2000, mathematical ecologist Peter Chesson published a synthesis of modern 

coexistence theory that provided a mathematically rigorous framework for the integration of 

many of the extant concepts into a single paradigm (Chesson, 2000).  Within Chesson’s 

framework all coexistence mechanisms can be separated into two broad classes, which he 

referred to as equalizing forces and stabilizing forces (Chesson, 2000).  Equalizing forces are 
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defined by Chesson as those mechanisms that minimize average fitness differences between 

species, where average fitness differences are a function of species specific biological traits 

such as potential growth rates, carrying capacities, and resistance to consumers (Chesson, 

2000; Godwin et al., 2020).  Equalizing forces were initially referred to as average fitness 

differences by Chesson but have more recently been termed relative fitness differences (RFDs), 

and will be referred to as such throughout the remainder of this thesis (Godwin et al., 2020).  

Stabilizing forces were defined by Chesson as those mechanisms that tend to increase negative 

intraspecific interactions relative to negative interspecific interactions (Chesson, 2000).  

Stabilizing forces can therefore be more easily conceptualized as niche differences (NDs) and 

have come to be commonly referred to as such and will be for the remainder of this thesis 

(Godwin et al., 2020).  Chesson showed that under most models of competition, whether or not 

coexistence will occur is ultimately determined by the relative magnitudes of the applicable 

RFDs and NDs (Chesson, 2000; Godwin et al., 2020).  Specifically, Chesson developed a 

coexistence criterion in the form of an inequality (denoted here according to notation from 

Carroll et al. 2011 and Narwani et al. 2013 (Carroll, Cardinale, & Nisbet, 2011; Narwani, 

Alexandrou, Oakley, Carroll, & Cardinale, 2013) 

1 − 𝑁𝑁𝑁𝑁 < 𝑅𝑅𝑅𝑅𝑅𝑅 <
1

1 − 𝑁𝑁𝑁𝑁
 

 

 and proposed that coexistence can only occur when the magnitudes of the RFDs and NDs in the 

system are such that the inequality is satisfied (Chesson, 2000; Godwin et al., 2020).  It is 

important to note here that Chesson’s theory is not a new model of species interaction but 



101 
 

instead is a framework that can be generalized across a wide variety of competition models to 

predict coexistence, nor did Chesson initially propose an empirical method to quantify RFDs and 

NDs in practice (Godwin et al., 2020).  However, there are at least two important aspects of the 

framework that set it apart from previous efforts.  The first is that it elegantly reduces the 

dimensionality of a variety of models down to two terms (RFD and ND) which have clear 

ecological interpretations (Godwin et al., 2020).  The second is that due to the nature of those 

two terms, knowledge of the specific competition mechanism(s) active within a given system is 

not required to quantify the RFDs and NDs.  This brings us to the subject of RFD and ND 

quantification. 

A.1.2. Quantification of RFDs and NDs 

 Quantification of RFDs and NDs is central to this entire exercise as the magnitudes of the 

RFDs and NDs become the final arbiters for coexistence prediction within Chesson’s framework.  

And while as indicated above, knowledge of specific competition mechanisms within the 

system is not required to quantify RFDs and NDs, this is not to say quantification is necessarily 

trivial.  Since the proposal of the framework, a number of approaches have been developed to 

quantify RFDs and NDs.  Many of these methods have been derived from different models of 

species interaction and therefore require different assumptions and different study designs to 

obtain the relevant data (Godwin et al., 2020).  Recently an in-depth analysis has been 

published which evaluates the different strategies and the extent to which each is appropriate 

for specific experimental systems (Godwin et al., 2020).  Of the approaches discussed by 

Godwin et al., there are two which are generally most appropriate for liquid microbial cultures, 

the sensitivity method and the method based on the Lotka-Volterra model for continuous 
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reproduction.  The sensitivity method calculates the RFDs and NDs by comparing the growth 

rate of each species in monoculture to the growth rate of that same species trying to invade a 

steady-state culture of the other species (Godwin et al., 2020).  

The relative reduction in growth rate of a species in monoculture compared to the 

growth rate of that same species invading another at steady state is used to quantify the 

sensitivity of that species to interspecific competition, and it has been shown that NDs are 

proportional to the geometric mean of the sensitivities of each species whereas the RFDs are 

represented by variation around the mean (Carroll et al., 2011; Godwin et al., 2020; Narwani et 

al., 2013).  Despite the enviable and elegant simplicity of this approach, certain systems are 

more amenable to quantification of RFDs and NDs via sensitivity analysis than others.  

Specifically, monoculture populations must be maintained at steady-state population for the 

invasion assays.  While this is often achievable for relatively slower growing organisms such as 

algae, it is less straightforward for certain relatively faster growing species of bacteria, often 

requiring chemostat conditions which are not available in the Lin lab.  Because the 

experimental approach required for the sensitivity analysis is not easily implementable in the 

Lin lab, we looked more closely at the other RFD and ND quantification method appropriate for 

microbial liquid cultures, the method based on the Lotka-Volterra model for continuous 

reproduction.   

 To quantify RFDs and NDs with the method based on the Lotka-Volterra model for 

continuous reproduction, high resolution growth curves of species in both monoculture and co-

culture must be available.  While generating growth curves of sufficiently high resolution is 

often painstakingly time consuming for some slower growing organisms such as algae, in the 
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case of some relatively faster growing species of bacteria it is relatively straight forward.  

Species can be inoculated into 200 uL volumes in a 96-well plate and cultured for ≤24 hours in a 

platereader which can automatically take optical density and/or fluorescence measurements at 

the desired interval (every 10 minutes, every 1 minute, etc.).  The resulting growth curves are 

often of sufficiently high resolution and quality that the Lotka-Volterra continuous reproduction 

equations can be fit to the data to estimate the interspecific competition coefficients.   

The RFD and ND quantification method based on the Lotka-Volterra model for 

continuous reproduction therefore best compliments the experimental approaches available 

with the model system we developed in Chapter 2, and so we decided to implement this 

workflow to interrogate our system that we might better understand the ways in temperature 

affected coexistence and species relative abundance within the framework of modern 

coexistence theory.  Our expectation was that the insights gained from this approach would 

provide a deeper understanding of the coexistence mechanisms at work in our model system 

from Chapter 2 which may augment our ability to control that system and in addition 

contribute to the quickly adapting body of work on modern coexistence theory by interrogating 

the effect of temperature on RFDs and NDs and coexistence. 

To accomplish this, we cultured both species from our synthetic microbial bi-culture in chapter 

2 in monoculture and co-culture, then used the method based on the Lotka-Volterra model for 

continuous reproduction to estimate the intra- and inter-specific competition coefficients and 

from those the RFDs and NDs for our system across a range of different temperatures.  We then 

looked for any correlation between the RFDs and NDs and temperature changes. 
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A.2. Materials and Methods 

A.2.1. Generation of growth curve raw data 

 E. coli K12 substr. MG1655-YFP and P. putida KT2440-mCh were seeded from -80 ˚C 

cryostocks and grown in monoculture overnight to stationary phase in 14 mL Corning Falcon® 

test tubes (polypropylene test tube, round bottom, 17x100mm, 14mL, graduated, with clear 

snap cap, Sterile, 25 per Pack) in a 2 mL volume of M9 minimal media.  Overnight cultures were 

diluted 1:100 into fresh M9 media and grown into exponential growth phase (OD600 ~0.4-0.6).  

The cell density of the two cultures of exponential phase cells were normalized to each other 

using OD600 and then diluted 1:100 into fresh M9 media in a Greiner Bio-one CELLSTAR™ 96 

well μClear flat bottomed microplate with a 200 uL final volume.  Strains were grown in 

monoculture and co-culture in triplicate (2 uL of the desired strain was added for monocultures, 

and 1 uL each of both strains was added for co-cultures to 198 uL M9 media).  These nine wells 

were surrounded by wells filled with 200 uL sterile deionized H2O to inhibit evaporation from 

experimental wells.  The lid was treated with a mixture of 20% ethanol + 0.5% Triton X-100 to 

avoid condensation formation on the lid (pour enough mixture to completely cover the bottom 

of the lid, let sit 5 minutes, pour off and let air dry).  The lid was taped on using Fisherbrand™ 

labeling tape.  The plate was incubated in a Biotek Synergy H1 platereader for 24 hours with 

plate reads every 10 minutes and continuous orbital shaking at 282 cpm.  At each timepoint, 

reads at 600 nm wavelength, Excitation: 510 nm Emission: 540 nm, and Excitation: 585 nm 

Emission: 620 nm were taken of each well (these wavelengths were empirically determined to 

maximize the specific signal and minimize crosstalk between the two channels for our 

constructs, media, and platereader; data not shown).   
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A.2.2. Raw data processing 

A.2.2.1 Stationary phase adjustment 

 One of the drawbacks of using fluorescence data as a proxy for cell density is that due to 

irregularities of gene regulation associated with stationary phase, fluorescence can continue to 

increase after bacteria in the population are no longer dividing (before stationary phase there is 

generally a linear relationship between OD600 optical density and fluorescence).  To adjust for 

this, at each temperature we identify the time point at which bacteria are no longer dividing 

based on OD600 data.  We use the fluorescence value at that time point in the fluorescence 

data set as the maximum value for fluorescence.   

A.2.2.2. Data normalization 

 The relative fluorescence units (r.f.u.) of raw fluorescence data for the YFP molecule are 

on a scale from ~0-60,000 whereas the r.f.u. for the mCherry molecule are on a scale from ~0-

5,000.  We therefore employed a normalization protocol to convert the units of each to a 

common scale.  To normalize, all raw fluorescence units were converted to the scale of r.f.u. 

from the E. coli 32 ˚C fluorescence data set and then divided by 10,000 to increase numeric 

compatibility with our fitting scripts. 

A.3 Results 

A.3.1. Estimation of intrinsic growth rates and competition coefficients from growth curves 

across temperatures using custom R scripts 
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To investigate the effect (if any) temperature has on the RFDs and NDs in our synthetic 

microbial bi-culture from chapter 2, we cultured E. coli K12 MG1655 (expressing YFP) and P. 

putida KT2440 (expressing mCh) in monoculture and co-culture across a range of temperatures 

from 32-40 ˚C (Figure A.1).  

We used custom R scripts to fit the monoculture growth curves to a logistic growth differential 

equation: 

𝑑𝑑𝑁𝑁𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑖𝑖𝑁𝑁𝑖𝑖(1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖) 

𝑑𝑑𝑁𝑁𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑗𝑗𝑁𝑁𝑗𝑗�1 − 𝛼𝛼𝑗𝑗𝑗𝑗𝑁𝑁𝑗𝑗� 

Figure A.1 Representative monoculture growth curves from E. coli. Raw data is shown in black lines and fitted curves are shown 
in black dots. 
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where Ni represents the cell number of species i at a given time t, ri represents the μmax of 

species i and αii represents the intraspecific competition coefficient for species i (with the 

subscript ii notation indicating that competition coefficient α corresponds to the effect that 

species i has on itself).  We used a linear regression with a least squares error minimization to 

estimate the intrinsic growth rates (ri and rj) at each temperature and to determine the 

intraspecific competition coefficients αii and αjj.   

Having determined estimates for the intrinsic growth rates and intraspecific competition 

coefficients for each species we next used those estimates as parameters in custom R scripts to 

fit the Lotka-Volterra model for continuous reproduction to co-culture growth curves: 

𝑑𝑑𝑁𝑁𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑖𝑖𝑁𝑁𝑖𝑖�1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑁𝑁𝑗𝑗� 

𝑑𝑑𝑁𝑁𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑗𝑗𝑁𝑁𝑗𝑗�1 − 𝛼𝛼𝑗𝑗𝑗𝑗𝑁𝑁𝑗𝑗 − 𝛼𝛼𝑗𝑗𝑗𝑗𝑁𝑁𝑖𝑖� 
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where the interspecific competition coefficients αjj and αji refer to the effect species j has on 

species and the effect species i has on species j, respectively).  Again we used a linear 

regression with a least squares error minimization to fit the model to the data and generate 

parameter estimates. 

 Using this approach, the intra- and inter-specific competition coefficients estimates we 

generated can be found in Table 1.  

Temperature (˚C) αii αjj αjj αji 

32 7.98 0.41 -0.84 -0.94 

34 4.48 0.40 -0.37 -1.25 

Figure A.2 Co-culture growth curves across temperatures with the Lotka-Volterra continuous reproduction model fits in black 
lines. E. coli is represented by the green, brown, and orange curves (replicates) whereas P. putida is represented by the pink, 
cyan, and blue curves (replicates). 
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36 1.32 0.18 -0.029 -0.4 

38 0.8 1.18 -0.58 -0.15 

40 0.25 6.25 1.57 -0.03 

Table A.1 Intra- and inter-specific competition coefficient estimates from the R scripts. 

A.3.2. Estimation of intrinsic growth rates and competition coefficients from growth curves 

across temperatures using difference equations and Excel Solver 

As seen in Table 1, the intraspecific competition coefficients generally agree with the 

expected trends.  Specifically, as temperature increases the intraspecific competition 

coefficients for E. coli decrease, whereas the intraspecific competition coefficients for P. putida 

increase, which agree with a qualitative analysis of the growth curves in Figure A.2.  However, 

despite qualitatively good fits, 80% of the estimates generated for the interspecific competition 

coefficients are negative.  The ecological interpretation of negative interspecific competition 

coefficients is that facilitation is occurring, where one species has a positive effect on the 

growth of the other.  Not only is there no indication of facilitation from a qualitative analysis of 

the different between monoculture and co-culture growth curves for all species at all 

temperatures in this data set, but every single set of growths curves indicates the opposite 

(Figure A.3). 

 Although the fits our R scripts generate are qualitatively good, because they generate 

parameter estimates that do not make biological or ecological sense, we attempted to use a 
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different approach to reproduce competition coefficient estimates.  We used a set of difference 

equations combined the with Excel Solver function to generate estimates for the intra- and 

interspecific competition coefficients (Figure A.4).  Again, despite qualitatively excellent fits, the 

several of the parameter estimates that are generated with the difference equations and Excel 

solver do not make biological or ecological sense (Table 2).  

As can be seen in Table 2 of the parameter estimates generated using the difference 

equations and Solver in Excel, the intraspecific competition coefficient estimates agree in the 

direction of trends but not in magnitude with the estimates generated from the R script, but 

Figure A.3 Representative growth curves comparing monoculture to co-culture growth for E. coli and P. putida across 
temperatures.  Across all temperatures co-culture growth qualitatively appears to be inhibited compared to monoculture 
growth. 
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again a significant percentage (40%) of the interspecific competition coefficient estimates are 

negative, which as discussed previously disagrees with a qualitative analysis of growth curves 

(Figure A.3). 

Temperature (˚C) αii αjj αjj αji 

32 12.12 0.15 -1.06 6.94 

34 8.68 0.38 -0.11 4.78 

36 4.22 0.81 -0.14 1.09 

Figure A.4 Representative growth curves and the fits generated using difference equations in Excel.  Data represented in dots 
and fits in red lines. 
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38 3.32 2.65 -1.76 0.09 

40 1.45 14.76 0.62 0.17 

Table A.2 Intra- and inter-specific competition coefficient estimates generated using difference equations and Solver. 

Because the interspecific competition coefficients estimates we have generated with 

two orthogonal approaches produce negative interspecific competition coefficients, which 

contradict a qualitative analysis of growth curve data (Tables 1-2, Figure A.3) we do not feel it is 

appropriate to use the competition coefficient parameter estimates to generate or discuss RFD 

and ND estimates.  Additionally, as the equations to generate RFDs and NDs require taking the 

square root of a ratio of competition coefficient products:  

𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝛼𝛼𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖
𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗

  

𝑁𝑁𝑁𝑁 = 1 −�
𝛼𝛼𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗
𝛼𝛼𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗

 

in many cases negative competition coefficients result in RFD and ND estimates that are not 

real numbers.   

A.4. Discussion 

 In Chapter 2 we demonstrated a novel technique to enable coexistence and program 

relative species abundance in synthetic microbial communities by regulating temperature.  

However, aspects of the ways in which community population dynamics responded to 

temperature were unexpected and intriguing.  Due to the dearth of investigation by the 

synthetic biology and synthetic ecology communities into this type of phenomena, we turned to 



113 
 

over a century of research performed by natural ecologists on mechanisms of species 

coexistence in naturally occurring communities.   

 Modern coexistence theory has provided a broadly applicable, mathematically rigorous 

framework to probe coexistence mechanisms across a wide variety of communities displaying 

various categories of species interactions.  This approach uses community population dynamics 

data in monoculture and co-culture to estimate two parameters, relative fitness differences 

(RFDs) and niche differences (NDs).  While a number of empirical methods are available to 

generate RFD and ND estimates from experimental data, we chose the method based on the 

Lotka-Volterra model for continuous reproduction because it is most amenable to our 

experimental design.  We used two different workflows to implement this approach with our 

experimental monoculture and co-culture data from the synthetic microbial system we 

developed in Chapter 2.  However, both of these approaches generated estimates of 

interspecific competition coefficients that do not make sense within a biological or ecological 

context.  Specifically, many of the interspecific competition coefficient parameter estimates we 

generated are negative, which suggests facilitation between species, and a qualitative analysis 

of the difference between monoculture and co-culture growth curves at almost every 

temperature indicate an inhibitory as opposed to facilitative interaction.  In light of this, it is 

important to consider possible explanations that might explain the discrepancy between our 

quantitative and qualitative analyses.  

 One potential explanation is that our implementation of the model is flawed.  It is 

possible that either bugs in our R-code or a mistake in the way we have input the model 

equations is resulting in some systemic error.  However, the fact that two independent 
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approaches for parameter estimation generate intraspecific competition coefficients with 

trends that agree, and that those trends agree with what we would expect for the intraspecific 

competition coefficient trends suggests in my opinion that the negative values generated for 

the interspecific competition coefficients are not due to a systemic error.  There is no systemic 

error I can think of that would affect the interspecific but not the intraspecific competition 

coefficients in our two different parameter estimation techniques. 

 Assuming there is no systemic error in our work, another possible explanation for this 

discrepancy is that our system does not meet one or more of the assumptions for Chesson’s 

model.  For example, one assumption that must be met for Chesson’s theory to apply is that 

the products of the intraspecific competition coefficients must be greater than the interspecific 

competition coefficients.  While this is sometimes but not always the case for the competition 

coefficients we have generated, if this assumption is not met it would mean the competition 

coefficients cannot be used to calculate accurate RFDs and NDs, but it would not necessarily 

explain our inability to generate competition coefficients that agree with our qualitative 

expectations. 

 In light of this line of thinking, it is also important to consider whether our system meets 

the assumptions of the Lotka-Volterra interspecific competition model.  One crucial assumption 

for the Lotka-Volterra model is that the carrying capacities and competition coefficients for 

both species be constants (Beals et al., 1999; Begon, Harper, & Townsend, 1996).  In retrospect, 

it is entirely possible that this assumption is not met within our system.  Because we do not 

know the specific interspecific competition mechanisms at work in our system (and indeed, it is 

one of the strengths of Chesson’s model that one need not know the precise competitive 
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mechanisms), we certainly cannot rule out the possibility that the strength of the competition 

changes with respect to parameters such as population density.  So, the prospect that the 

interspecific competition coefficients in our system are not constant is one possible explanation 

for the dissonance between our quantitative and qualitative analyses.   

Due to our failure thus far to generate parameter estimates that pass a “sense check”, 

we cannot yet meaningfully discuss the ways in which (if at all) RFDs and NDs change in 

response to temperature.  However, it is still possible to use a qualitative analysis of growth 

curve data to hypothesize what such a relationship might look like (if it exists).  As discussed 

above, the trend we observe in the intraspecific competition coefficients using parameter 

estimates from both our R script and the Excel Solver approach make sense in that as species 

growth is increasingly negatively affected by temperature, their intraspecific competition 

coefficient increases.  It was our initial hypothesis that a trend would also be observed in the 

interspecific competition coefficients.  Specifically, as temperature increases, the interspecific 

competition coefficient for the effect of P. putida on E. coli (αjj) would decrease and the 

interspecific competition coefficient for the effect of E. coli on P. putida (αji) would increase.  It 

is also tempting to predict that there might be some type of parabolic relationship between 

temperature and RFDs.  At relative temperature extremes (e.g. 32 and 40 ˚C) it is possible that 

RFDs would be highest, whereas as the temperature increases from 32 ˚C the RFDs would be 

expected to decrease and then begin to increase again.  It is not immediately clear whether NDs 

will be affected in any way by temperature.  If significant shifts in ND are observed in response 

to temperature, one possible explanation is that the activity of specific proteins, enzymes, 

receptors, and transporters related to resource and nutrients uptake and utilization may 
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change with temperature, which could potentially affect niche differences.  However, without 

reliable parameter estimates, it is impossible to discuss the effects of temperature on RFDs and 

NDs with any certainty.  We look forward to exploring new ways to optimize our models to 

generate parameter estimates that make sense within biological and ecological contexts.   
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Appendix B 

Time series data from all constant temperature regime experiments 
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Figure B.1 Time series data from all constant temperature regime experiments.  
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Appendix C 

Representative confocal microscopy and flow cytometry data from fluorescent strains 

 

Figure C.1 a) Confocal microscopy image of co-culture.  b) Constitutive expression of a chromosomally integrated cassette for 
Yellow fluorescent protein (E. coli) and mCherry (P. putida) were used quantify the community composition of bi-cultures via 
flow cytometry. 
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Appendix D 

Representative temperature fluctuation data 

 

Figure D.1 Representative graph of temperatures over time as recorded inside the incubator when the incubator was set to 36.3 
˚C. 
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