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ABSTRACT

Causal mediation analysis aims to examine the role of a mediator or a group of mediators that

lie in the pathway between an exposure and an outcome. Recent biomedical studies often

involve a large number of potential mediators, typically a large ensemble of biomarkers that

are measured via high-throughput technologies. The goal of my dissertation is to develop

novel statistical methods that can accommodate and leverage high-dimensional mediators

in mediation analysis. We provide an overview of mediation analysis and an outline of our

work in Chapter I. We elaborate our methodological developments in the following chapters.

In Chapter II, we develop a Bayesian inference method using continuous shrinkage priors

to simultaneously analyze high-dimensional mediators. Simulations demonstrate that our

method improves the power of global mediation analysis compared to simpler alternatives

and has decent performance to identify true non-null contributions to the mediation effects of

the pathway. The Bayesian method also helps us to understand the structure of the composite

null cases for inactive mediators in the pathway. We applied our method to Multi-Ethnic

Study of Atherosclerosis (MESA) and identified DNA methylation regions that may actively

mediate the effect of socioeconomic status (SES) on cardiometabolic outcomes.

In Chapter III, we develop methods to directly perform targeted penalization of the natu-

ral indirect effect (NIE) in a Bayesian paradigm. Specifically, we develop two novel prior

models for identification of the NIEs in high-dimensional mediation analysis, both with a

joint distribution on the coefficients of the exposure-mediator and mediator-outcome mod-

els: (a) four-component Gaussian mixture prior, and (b) product threshold Gaussian prior.

By jointly modeling the two parameters that contribute to the NIE, the proposed methods

xi



enable penalization on their product in a targeted way. Resultant inference can take into

account the four-component composite structure underlying the indirect effect. We show

through extensive simulations that the proposed methods improve both selection and es-

timation accuracy compared to other existing or alternative shrinkage/penalization based

methods. We applied our methods to two ongoing epidemiological studies: the MESA and

the LIFECODES birth cohort. The identified active mediators reveal important biological

pathways that may be useful for understanding disease mechanism.

In Chapter IV, we further extend the Gaussian mixture method in Chapter III to explic-

itly incorporate the useful correlation structural information among mediators in the model

building process. Instead of assuming independent prior for each mediator as in our previous

methods, we propose to (a) jointly model the mixing probabilities for correlated mediator

selection, or (b) jointly model the group indicators by a Potts distribution, both adding the

possible grouping effect across mediators through another layer in the Bayesian hierarchy.

We develop efficient sampling algorithms under non-conjugate priors and large state space.

Various simulations demonstrate that our methods enable effective identification of active

mediators with high correlations, which could be missed using independent priors. The pro-

posed methods also suggest new mediation findings in the LIFECODES and MESA data

applications.

xii



CHAPTER I

Introduction

1.1 Mediation Analysis

Mediation analysis has received great attention and are broadly applied across various disci-

plines (MacKinnon et al., 2007a; Imai et al., 2010a; Albert , 2008; Jo, 2008; Ten Have et al.,

2007). It attempts to decompose the exposure’s effect into indirect effect that acts through

an intermediate variable, called mediator, and direct effect on the outcome that is unex-

plained by the mediator. The exposure influences the mediator, which in turn influences

the outcome. This entire mediating relationship can be visually represented in the diagram

1.1. For example, in the field of educational psychology, researchers investigated the extent

to which the academic achievement could be improved by encouraging mastery achievement

goals, compared with fostering strategic learning (Diseth and Kobbeltvedt , 2010). The for-

mer concerns the direct effect of establishing achievement goals, while the latter concerns

the indirect effect mediated by strategic approaches of deep learning.

The importance of mediating variables has long been recognized in the area of psychology,

mainly owing to the historic popularity of stimulus organism response model (Woodworth,

1930). In this model, an active organism transmits messages from a stimulus to elicit a

response. Similar mediating frameworks also underlie many other psychological theories

(Fishbein and Ajzen, 1977). Later, Baron and Kenny (1986) outlined the classical causal

1



A M Y

C

exposure-mediator

effect

mediator-outcome

effect

direct effect

Figure 1.1: The visual illustration of the mediating relationship in a simple mediation model,
with an exposure A, a mediator M , an outcome Y and the potential confounders C.

steps approach to assess mediation. This approach involves a single mediator and three

regression equations, i.e. relating the exposure to the outcome, relating the exposure to the

mediator, and relating the mediator to the outcome adjusted for the exposure. This influen-

tial work has built the basic foundation for the subsequent development on mediation testing

(MacKinnon et al., 1995, 2002, 2007b; Preacher and Hayes , 2008). Those approaches treat

difference of coefficients or product of coefficients as statistics of interest and use different

approximation formulas in obtaining the standard error of its sampling distribution. Some

literature also expressed caution or criticism about Baron and Kenny’s prerequisite on a sig-

nificant exposure-outcome relationship to establish mediation (Hayes , 2009; Rucker et al.,

2011). They have argued that it was possible for an indirect effect to be significantly away

from zero even if the total effect of exposure on the outcome is not. This single-mediator

model has then been extended to a wide range of applications in psychology and psychiatry,

epidemiology, prevention and treatment research (Ditlevsen et al., 2005; MacKinnon, 2008).

It has also been extended to simple settings with a moderate number of mediators by in-

cluding multiple mediators in the outcome regression and one exposure-mediator regression

for each mediator (MacKinnon, 2000). The moderate number of mediators considered was

usually no more than 10.

The above classical mediation analysis has been formulated and conducted within the sta-

tistical linear regressions, but a general definition of casual mediation effects beyond a par-

2



ticular model is still missing. At the same time, the approach of causal modeling based on

counterfactual/potential outcome framework (Rubin, 1974) has received great attention and

interest (Schafer and Kang , 2008; Mulaik , 2009). Consequently, causal mediation analysis,

a general, unified approach built on the counterfactual framework has been proposed, with

the key assumptions for identification and causal interpretation being specified (Pearl , 2001;

Imai et al., 2010a,b). This framework allows for formal definition of natural/controlled direct

and indirect effects, and further gave rise to other possible extensions in mediation analy-

sis, such as categorical mediator/outcome (VanderWeele and Vansteelandt , 2010; Albert and

Nelson, 2011), survival data (VanderWeele, 2011a), exposure-mediator interaction (Valeri

and VanderWeele, 2013), etc.

1.2 Motivation

With the rapid advances in high-throughput biological technologies, recent studies often

involve a large number of potential mediators, such as human molecular-level traits or brain

image features. How to perform mediation analysis in a high-dimensional setting or leverage

information from the high-dimensional mediators has become an emerging topics. Most of the

previous literature focus on univariate mediator analysis or settings with a moderate number

of mediators. In this dissertation, building on the potential outcome framework for causal

inference, we attempt to develop novel Bayesian methods for mediator selection and causal

effect estimation in high-dimensional sparse mediation analysis. The sparsity assumption

implies only a small proportion of the mediators exhibit individually large mediation effects,

which we refer to as active mediators, while the majority would contribute small background

effects in mediating the exposure-outcome relationship. The sparse setup has become a

standard scheme in genetic and epigenetic studies (Zhou et al., 2013; Shen et al., 2013) and

been proven to yield better performance in detecting important features. Those Bayesian

models will enable us to jointly analyze a large ensemble of correlated mediators without
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making any causal ordering assumptions on the mediators, and provide a natural way to

induce sparsity and characterize the uncertainty in the parameters.

As pointed out in Hayes (2009), many of the previous methods for mediation analysis is not

based on a quantification of the very thing it is attempting to test: the mediation (indirect)

effect. Instead, they infer mediation from two partial associations (exposure-mediator as-

sociation and mediator-outcome association). The requirement of both associations being

significant to declare an indirect effect was shown to be stringent at the cost of possibly

missing some important mediation discoveries. The most well-known inferential technique

for quantifying indirect effects rather than their constituent effects separately is probably

the Sobel test (Sobel , 1982). But one limitation of the Sobel test is that it assumes the

sampling distribution of the indirect effect is normal. Given that the sampling distribution

is essentially a product of normal, the normality assumption may not be valid in many cases

and can lead to over-conservative results (MacKinnon et al., 2007b). As proposed in the

first chapter, a Bayesian approach in high-dimensional mediation analysis can provide an

efficient way for the identification of active mediators and the embedding of mediation struc-

ture. However, as far as we know, none of the prior distributions is designed for shrinkage

on the indirect effect in a targeted way. In addition, genome-wide mediation analysis has

been an emerging area of research that will continue to grow as more data are collected.

Testing the indirect effect for each single mediator is challenging due to the complexity in

its null distribution, which involves composite structure arising from the product-type test

statistics. Fortunately, a large number of mediators make it possible to characterize that

composite space underlying mediation mechanisms. Recent literature began to recognize

and leverage the composite structure in the null hypothesis of no indirect effect, and have

proposed effective testing procedure for one-at-a-time single mediator analysis (Huang et al.,

2019). Motivated by the underlying composite structure of indirect effect and also the goal of

directly targeting the non-null indirect effect, we are interested in seeking the Bayesian par-

allel with a joint prior on the exposure-mediator and mediator-outcome coefficients, which
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is so far lacking in the literature.

The above methods will enable a joint analysis of high-dimensional mediators and efficient

identification of active mediators in a sparse setting. However, they do not explicitly take

into account the correlation structure among the mediators. Treating mediators indepen-

dent a priori, the subsequent inference may fail to distinguish between highly correlated

mediators and result in loss of power for mediator selection. Correlated mediators presum-

ably exhibit similar association pattern with exposure and outcome, and therefore can be

grouped together to borrow strength for Bayesian learning. Incorporating correlated struc-

tural information in mediation analysis enjoys great support from previous literature on

Bayesian structural variable selection, and is promising to boost the overall performance in

the presence of high-dimensional correlated mediators.

1.3 Summary of Objectives

With an emphasis on the problems described above, in this dissertation, I present method-

ologies that aim to achieve the following objectives:

(1) To develop Bayesian shrinkage models that can simultaneously accommodate high-

dimensional mediators;

(2) To develop Bayesian sparse mediation methods that can penalize the indirect effect in a

target way;

(3) To further extend the previous methods to explicitly incorporate the correlated structural

information from mediators.

The above three objectives are addressed in Chapter II, III and IV, respectively. More details

on the background, pertinent literature review, motivation and methodology development

can be found in the introduction sections of each chapters.

5



1.4 Data Acknowledgement

The proposed methods in this dissertation are generally applicable to many settings, and

here we focus on the following epidemiological and environmental studies:

Multi-Ethnic Study of Atherosclerosis (MESA) is a population-based longitudinal

study designed to identify risk factors for the progression of subclinical cardiovascular disease

(CVD) (Bild et al., 2002). Between July 2000 and August 2002, a total of 6,814 participants

without clinically apparent CVD were recruited from six regions in the U.S. All the par-

ticipants were measured for exposure variables that include various aspects of childhood,

adulthood and neighborhood socioeconomic position. They were also measured for clinical

health outcomes, including body mass index/obesity, and diabetes/glucose/insulin/HbA1c.

Between April 2010 and February 2012 (corresponding to MESA Exam 5), DNA methyla-

tion and gene expression data were collected on a random subsample of 1,264 participants.

We hypothesize that those molecular-level omics traits are part of the mediating mechanism

through which socioeconomic and neighborhood characteristics affect physical health.

LIFECODES Birth Cohort is a cross-sectional study of approximately 1,600 pregnant

women (recruited < 15 weeks) between 2006 and 2008 at the Brigham and Womens Hos-

pital in Boston, MA. At the initial study visit, questionnaires were administered to collect

demographic and health-related information of the participants. At each of the following

four study visits, participants urine and plasma samples were collected. Environmental ex-

posure analytes, including phthalates, phenols and parabens, trace metals and polycyclic

aromatic hydrocarbons, were measured from urine samples. A large group of endogenous

biomarkers of lipid metabolism, inflammation, and oxidative stress were measured in plasma

samples. Among participants recruited in the LIFECODES cohort, 1,181 participants were

followed until delivery and had live singleton infants, with the gestational age recorded.

We hypothesize that the endogenous biomarkers may mediate the effects of prenatal expo-

sure to environmental contamination on adverse pregnancy outcomes. The integration of

6



molecular/biological data with epidemiologic data in the mediation framework will provide

interesting and important insights into underlying disease mechanisms.
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CHAPTER II

Bayesian Shrinkage Estimation of High Dimensional

Causal Mediation Effects in Omics Studies

2.1 Introduction

Causal mediation analysis has been of great interest across many disciplines (VanderWeele,

2016b; Ten Have and Joffe, 2012). It investigates how an intermediate variable, referred

to as mediator, explains the mechanism through which the exposure variable affects the

outcome. Under certain regularity conditions, mediation analysis allows us to disentangle

the exposure’s effect into two parts: effect that acts through the mediator of interest (in-

direct/mediation effect) and effect that is unexplained by the mediator (direct effect). The

state-of-the-art causal mediation analysis (Ten Have and Joffe, 2012), which is built upon the

counterfactual framework (Robins and Greenland , 1992; Imai et al., 2010a), establishes rigor-

ous assumptions regarding the exposure-outcome, exposure-mediator and mediator-outcome

relationships to justify appropriate use of the classical formulas from Baron and Kenny in

the linear regression setting (Baron and Kenny , 1986; MacKinnon, 2008) and creates a

framework for other general extensions. Many of the existing methods focus on univariate

mediator analysis that analyzes one mediator at a time in the causal inference framework,

and are applicable to both continuous (Imai et al., 2010b) and binary outcomes (Vander-

Weele and Vansteelandt , 2010). These methods have been widely applied in areas of social,
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economic, epidemiological and genetic studies (VanderWeele, 2016b; MacKinnon, 2008), in-

cluding recent extensions to multiple exposure variables that lead to more powerful single

nucleotide polymorphism (SNP) set tests in presence of gene expression data (Huang et al.,

2014). Several studies have recently extended mediation analysis models to jointly account

for multiple mediators. However, most of the literature considered settings with two or three

mediators, where each mediator is ordered along a priori known mediation pathways and

the path-specific effects are estimated (Daniel et al., 2015). In the presence of multiple un-

ordered mediators, one often has to rely on an ad hoc approach to fit a series of mediation

models with one mediator and one exposure (VanderWeele and Vansteelandt , 2014; Taguri

et al., 2015)/outcome (Huang and Pan, 2016) at a time and then summarize the mediation

effects across all the mediators. Such approach ignores correlation among mediators and

the estimated mediation effect does not necessarily have an intuitive causal interpretation,

particularly when the dimension of the potential mediators is truly large.

In this chapter, building on the potential outcome framework for causal inference, we develop

a Bayesian mediation analysis method to characterize the indirect effect through an entire

set of high-dimensional mediators. Note that Bayesian methods for mediation have also

been proposed in a principal stratification framework (Elliott et al., 2010), though there are

subsequent discussions on whether the principal stratification framework is a plausible frame-

work to estimate indirect effects (VanderWeele, 2011b). In addition, for estimating natural

direct and indirect effects, recent work applied Bayesian non-parametric models, especially

Dirichlet process mixture models (Kim et al., 2017, 2019) in both univariate and multiple

mediators analysis. In contrast, here, we rely on Bayesian variable selection models to si-

multaneously analyze a relatively large number of mediators in a pathway with potentially a

small number being truly active. With sparsity inducing priors on active coefficients, we as-

sume only a small proportion of mediators in the whole set may mediate the exposure effect

on the outcome. This sparsity assumption allows us to extend previous univariate mediator

analysis to a high-dimensional setting by framing the identification of active mediators in the
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whole set as a variable selection problem and applying Bayesian methods with continuous

shrinkage priors on the effects. Unlike previous methods developed for multiple mediators,

ours can jointly analyze much larger number of mediators without making any path-specific

or causal ordering assumptions on mediators. Our method enables us to identify the joint

indirect effects of all the mediators and the subset of active ones in the set, and propagates

uncertainty in inference in a principled way. Recently, there has been emerging interest in

high-dimensional mediation analysis, and our method adds to the burgeoning literature for

high-dimensional mediators (Chén et al., 2017; Derkach et al., 2019).

While our method is generally applicable to many settings, we examine the performance

of our method in the setting of genomics studies. Due to fast advances in high-throughput

biological technologies, genomics studies can nowadays measure a large number of molecular-

level traits such as gene expression and DNA methylation (DNAm) levels. Recent studies

have proposed these molecular traits may act as a mechanism through which various aspects

of socioeconomic status (SES) and neighborhood disadvantages affect physical health. For

example, childhood SES, adult SES, social mobility, and neighborhood crime rates have re-

cently been shown to influence DNAm in several genes related to stress and inflammation

(Needham et al., 2015; Smith et al., 2017). DNAm of inflammatory markers have also been

associated with the status of cardiovascular disease (CVD) and type 2 diabetes (T2D) (Zhong

et al., 2016). Here, we show through simulations and data analysis that our high-dimensional

mediation analysis framework can increase power of a joint analysis and facilitate the iden-

tification of active mediators in the set.

2.2 Notation, Definitions and Assumptions

In this chapter, we focus on causal mediation analysis for the setting where there is a single

exposure of interest but there exists a high-dimensional set of candidate mediators that may

mediate the effect of exposure on an outcome. Suppose our analysis is based on a study
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of n subjects and for subject i, i = 1, ..., n, we collect data on exposure Ai, p candidate

mediators Mi = (M
(1)
i ,M

(2)
i , ...,M

(p)
i )T , outcome Yi, and q covariates Ci = (C

(1)
i , ..., C

(q)
i )T .

In particular, we focus on the case where Yi and Mi are all continuous variables.

We adopt the counterfactual (or potential outcomes) framework to formally define mediators

and their causal effects. Let M
(j)
i (a) denote the potential (or counterfactual) value of the

jth mediator, j = 1, . . . , p, for subject i under exposure level at a. Suppose the exposure has

K levels, then K×p potential counterfactual random variables for mediators are defined, i.e.

M (1)(1),M (2)(1), ...,M (p)(1),M (1)(2), M (2)(2), ...,M (p)(2),M (1)(K),M (2)(K), ...,M (p)(K). Let

Yi(a,m) = Yi(a,m
(1), ...,m(p)) denote the ith subject’s potential outcome if the subject’s ex-

posure were a and mediators were m = (m(1), ...,m(p)). As this chapter focuses on the joint

effects of the whole set of mediators, for simplicity, we defineMi(a) = (M
(1)
i (a),M

(2)
i (a), . . . ,

M
(p)
i (a)). These potential (or counterfactual) variables are hypothetical variables and may

not be observed in real data. To connect potential variables to observed data, we make the

Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980), which is a commonly

made assumption for performing causal inference. Specifically, the SUTVA assumes there is

no interference between subjects and the consistency assumption, which states that the ob-

served variables are the same as the potential variables corresponding to the actually observed

treatment level, i.e.,Mi =
∑

aMi(a)I(Ai = a), and Yi =
∑

a

∑
m Yi(a,m)I(Ai = a,Mi = m),

where I(·) is the indicator function. For simplicity in notation, we define Yi(a) = Yi(a,Mi(a)),

i.e., the potential outcome had the exposure been a and the whole set of mediators been the

value that would have been observed under exposure a. Although potential or counterfactual

variables are useful concepts in order to formally define causal effects, they are hypothetical

and actually most of them are not observed in real data. For example, if Ai 6= a, then Yi(a)

or Mi(a) are not observed. Also Yi(a) and Yi(a
?) are never simultaneously observed for a

subject.

We may decompose the effect of an exposure into its direct effect and effect mediated

through the whole set of mediators (VanderWeele and Vansteelandt , 2014). The controlled
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direct effect (CDE) of the exposure on the outcome is defined as Yi(a,m) − Yi(a
?,m),

which is the effect of changing exposure from level a? (the reference level) to a while hypo-

thetically controlling mediators at level m. The natural direct effect (NDE) is defined

as Yi(a,Mi(a
?)) − Yi(a

?,Mi(a
?)), which is the CDE when mediators are controlled at

the level that would have naturally been had the exposure been a?. The natural indi-

rect effect (NIE) is defined by Yi(a,Mi(a)) − Yi(a,Mi(a
?)), capturing the effect mediated

through the whole set of mediators, i.e., the change in potential outcomes when media-

tors change from Mi(a
?) to Mi(a) while fixing exposure at a. The total effect (TE),

Yi(a)− Yi(a?), can then be decomposed into natural direct effect and natural indirect effect,

written as Yi(a)− Yi(a?) = Yi(a,Mi(a))− Yi(a?,Mi(a
?)) = Yi(a,Mi(a))− Yi(a,Mi(a

?)) +

Yi(a,Mi(a
?))− Yi(a?,Mi(a

?)) =NIE+NDE.

Causal effects are formally defined in terms of potential variables which are not necessarily

observed, but the identification of causal effects must be based on observed data. Therefore,

similar to missing data problems, further assumptions regarding the confounders are required

for the identification of causal effects in mediation analysis (VanderWeele and Vansteelandt ,

2014). We will use A |= B|C to denote that A is independent of B conditional on C. For esti-

mating the average CDE, two assumptions on confounding are needed: (1) Yi(a,m) |= Ai|Ci,

namely, there is no unmeasured confounding for the exposure effect on the outcome; (2)

Yi(a,m) |=Mi|{Ci, Ai}, namely, there is no unmeasured confounding for any of mediator-

outcome relationship after controlling for the exposure. The two assumptions are illustrated

in the left panel of Figure 2.1, and controlling for exposure-outcome and mediator-outcome

confounding corresponds to controlling for C1, C2 in the figure. In practice, both sets of co-

variates C1 and C2 need not to be distinguished from one another and can simply be included

in the overall set of C that we adjust for. The identification of the average NDE and NIE

requires assumption (1) and (2), along with two additional assumptions: (3) Mi(a) |= Ai|Ci,

namely, there is no unmeasured confounding for the exposure effect on all the mediators;

(4) Yi(a,m) |=Mi(a
?)|Ci, which can be interpreted as there is no downstream effect of
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the exposure that confounds the mediator-outcome relationship for any of the mediators.

Graphically, assumption (4) implies that there should be no arrow going from exposure A to

mediator-outcome confounder C2 in Figure 2.1(a). It is thus violated in Figure 2.1(b) since

the mediator-outcome confounder L is itself affected by the exposure. The four assumptions

are required to hold with respect to the whole set of mediators Mi(a). Finally, as in all

mediation analysis, in order for associations to represent causal effects, the temporal order-

ing assumption also needs to be satisfied, i.e., the exposure precedes the mediators and the

mediators precede the outcome.

C1 A {M (1),M (2), ...,M (p)} Y

C2

C A {M (1),M (2), ...,M (p)} Y

L

Figure 2.1: Left (a): High-dimensional mediators ((M (1),M (2), ...,M (p))) between exposure
(A) and outcome (Y ) with exposure-outcome confounders C1 and mediator-outcome
confounders C2; Right (b): An example of mediator-outcome confounder L that is affected
by the exposure A.

Now we show that if the above assumptions hold, then the average natural direct and indirect

effects can be identified from the observed data. We first notice that E[Yi(a,Mi(a
?))|Ci]

can be expressed as below (see the Supporting Information for details),

E[Yi(a,Mi(a
?))|Ci] =

∫
m

E(Yi|a,m,Ci)P (Mi = m|Ci, a
?)dm (2.1)

If we replace a with a? in E[Yi(a,Mi(a
?))|Ci], then we get E[Yi(a

?,Mi(a
?))|Ci] =∫

m
E(Yi|a?,m,Ci) ×P (Mi = m|Ci, a

?)dm . Therefore, we can express the average natural
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direct effect conditional on C as,

E[Yi(a,Mi(a
?))− Yi(a?,Mi(a

?))|Ci]

=

∫
m

{E(Yi|a,m,Ci)− E(Yi|a?,m,Ci)}P (Mi = m|Ci, a
?)dm. (2.2)

If we replace a? with a in E[Yi(a,Mi(a
?))|Ci], then we get E[Yi(a,Mi(a))|Ci] =∫

m
E(Yi|a,m,Ci)× P (Mi = m|Ci, a)dm, and thus the average indirect effect conditional

on C is given by,

E[Yi(a,Mi(a))− Yi(a,Mi(a
?))|Ci]

=

∫
m

E(Yi|a,m,Ci){P (Mi = m|Ci, a)− P (Mi = m|Ci, a
?)}dm. (2.3)

Finally, one can get the average NDE and NIE by taking expectation over C of the two

conditional effects defined in (2.2) and (2.3). Importantly, Equations (2.2), (2.3) show that,

under the assumptions we made, the average NDE and the average NIE can be identified by

modeling Yi|Ai,Mi,Ci and Mi|Ai,Ci using observed data.

We note that as the main interest of this chapter lies in the joint effect of the whole set of

mediators,thus the definition of NIE and NDE only involve the counterfactuals of the form

Mi(a) = (M
(1)
i (a),M

(2)
i (a), ...,M

(p)
i (a)). If one is interested in estimating the effect of a spe-

cific mediator, then one needs to consider the Kp counterfactuals (M
(1)
i (a1),M

(2)
i (a2), . . . ,

M
(p)
i (ap)), a1, a2, ..., ap ∈ {1, 2, ..., K}. Characterizing mediator-specific NIE is a much more

challenging task and requires stronger assumptions, in particular when the multiple media-

tors influence and interact with one another.
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2.3 Models and Estimands

As discussed in Section 2.2, effects of mediators (average NDE and NIE) defined in terms

of potential outcomes can be deduced from two conditional models for Yi|Ai,Mi,Ci and

Mi|Ai,Ci using observed data. Therefore, we propose two regression models for the two

conditional relationships and subsequently deduce the causal effects of mediators. For mod-

eling Yi|Ai,Mi,Ci, we assume for subject i (i = 1, ..., n), a continuous outcome of interest

Yi is associated with exposure Ai, p potential mediators Mi = (M
(1)
i ,M

(2)
i , ...,M

(p)
i )T that

may be on the pathway from Ai to Yi, and q covariates Ci with the first element being the

scalar 1 for the intercept:

Yi = MT

i βm + Aiβa +CT

i βc + εY i (2.4)

where βm = (βm1, ..., βmp)
T , βc = (βc1, ..., βcq)

T , εY i ∼ N(0, σ2
e). Here we assume there is

no interaction between Ai and Mi. Next for modeling Mi|Ai,Ci we consider a multivariate

regression model that jointly analyzes the p potential mediators:

Mi = Aiαa +αcCi + εMi (2.5)

where αa = (αa1, ..., αap)
T , αc = (αTc1, ...,α

T
cp)T , αc1, ...,αcp are q-by-1 vectors, εMi ∼

MVN(0,Σ), Σ captures the correlation among the mediators. εY i and εMi are assumed

independent of Ai, Ci and each other.

With assumptions made in Section 2.2 and under the regression models specified for the out-

come E(Yi|Ai,Mi,Ci) and for the mediators P (Mi|Ai,Ci), we can analytically calculate

the right-hand side of Equations (2.2), (2.3). We show in Supporting Information that the

average NDE, NIE and TE can then be computed as below, and in the rest of the chapter,
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we refer to NDE as direct effect and NIE as indirect/mediation effect.

NDE: E[Yi(a,Mi(a
?))− Yi(a?,Mi(a

?))|Ci] = βa(a− a?). (2.6)

NIE: E[Yi(a,Mi(a))− Yi(a,Mi(a
?))|Ci] = (a− a?)

p∑
j=1

(αa)j(βm)j. (2.7)

TE: E[Yi(a)− Yi(a?)|Ci] = (βa +αTaβm)(a− a?). (2.8)

As noted in Equation (2.7), under the assumptions of model (2.4) the NIE through the

whole set of mediators turns out to be the sum of the product of (αa)j and (βm)j over the

entire set. Those individual product terms do not correspond to the NIE of a specific (say

j-th) mediator. We define active mediators as the ones with non-null contribution to the

global NIE, i.e. (αa)j(βm)j being non-zero. The proposed Bayesian shrinkage and selection

methods are used to identify and estimate these active components. Any inactive mediator

will naturally fall into one of the following three categories: (βm)j is non-zero while (αa)j

is zero; (αa)j is non-zero while (βm)j is zero; both are zero. Such a refined partition for

the high-dimensional set of mediators provides useful and insightful interpretations for the

structure of the composite null.

Regarding a global measure of the indirect effects, we note that the quantity in Equation

(2.7), summation of each mediator’s marginal mediation effect, is a good summary of the

global mediation effects when the marginal mediation effect for each mediator is of the same

direction. However, when marginal mediation effects have opposite directions, their effects

may cancel out and result in a small or zero indirect effect. Considering this, we propose

to use the L2 norm of the vector of marginal mediation effects (Huang and Pan, 2016) as a
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global measure of mediation effects, i.e.,

τ = ||((αa)1(βm)1, (αa)1(βm)2, ..., (αa)p(βm)p)||2

=

p∑
j=1

{(αa)j(βm)j}2. (2.9)

2.4 Bayesian Method for Estimation

2.4.1 Prior Specification

In order to conduct high-dimensional mediation analysis, we need to make certain model

assumptions on the effect sizes. In genome-wide association studies, Bayesian sparse re-

gression models, such as Bayesian variable selection regression models (BVSR), have been

proven to yield better power in detecting relevant covariates (Guan and Stephens , 2011).

For high-dimensional mediation analysis, we also make the reasonable sparsity assumption,

which implies that only a small proportion of mediators mediate the exposure effects on

the outcome. Linear mixed models (LMM), on the other hand, assume that every mediator

transmits certain effects from exposure to outcome, with the effect sizes normally distributed.

Here, we first assume that all the potential mediators contribute small, non-zero effects in

mediating the exposure-outcome relationship, which is aligned with the main idea of poly-

genic (Zhou et al., 2013) and omnigenic (Boyle et al., 2017) models. In genetics settings, it

has been widely argued that all genetic markers exhibit non-zero effect on disease related

complex traits. The sum of those small effects in our models capture the overall contribution

from the whole set of mediators. Besides these small effects, the sparsity assumption indi-

cates that there is a small proportion of mediators exhibiting additional/large effects. We

refer to these mediators with additional effects as active mediators, which is consistent with

the concept of core genes defined in the omnigenic model. Therefore, in this chapter, we

use the Baysian Sparse Linear Mixed Model (BSLMM), which imposes continuous shrinkage

on the effects (Zhou et al., 2013) and assumes the presence of small and additional effects,
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for high-dimensional mediation analysis. The BSLMM is capable of learning the underlying

mediation architecture from the data, producing good performances across a wide range of

scenarios. Our model assumptions are also akin to the notion of quasi-sparsity that has

become popular with continuous shrinkage priors (Ge et al., 2019). Specifically, we assume

a mixture of two normal components a priori for the jth mediator, j = 1, 2, ...p,

(βm)j ∼ πmN(0, σ2
m1) + (1− πm)N(0, σ2

m0)

(αa)j ∼ πaN(0, σ2
ma1) + (1− πa)N(0, σ2

ma0)

where σ2
m1 > σ2

m0, σ
2
ma1 > σ2

ma0, and πm, πa denote the proportion of coefficients that belong

to the normal distribution with a larger variance.

For the other coefficients, we assume,

βa ∼ N(0, σ2
a) and βc,αc ∼MVN(0, σ2

cI), σ2
c →∞

Here we use a limiting normal prior for βc,αc with its variance going to infinity, since we

often have insufficient information from the data to overwhelm any prior assumptions. For

the convenience of modeling, we set the correlation structure among mediators Σ as σ2
gI.

For the hyper-parameters of variances in the model, we use the standard conjugate priors,

σ2
ms ∼ inverse-gamma(kms, lms), s = 0, 1

σ2
a ∼ inverse-gamma(ka, la)

σ2
mas ∼ inverse-gamma(kmas, lmas), s = 0, 1

σ2
e ∼ inverse-gamma(ke, le)

σ2
g ∼ inverse-gamma(kg, lg)

We set km0 = km1 = ka = kma0 = kma1 = ke = kg = 2.0, and lm0 = lma0 = 10−4, la = lm1 =
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lma1 = le = lg = 1.0. The prior inclusion probabilities πm, πa encode the prior information

about the sparsity of the coefficients. We place a uniform prior on log(πm), log(πa),:

log(πm), log(πa) ∼ U(log(1/p), log(1))

where p is the number of mediators. The priors were chosen so that πm and πa range from

1/p to 1, and the lower and upper bounds correspond to an expectation of 1 and p covariates

in each model. A uniform prior on log(πm) and log(πa) reflects the fact that the uncertainty

in πm, πa spans orders of magnitude due to the sparsity of the models. We do not choose a

uniform prior on πm, πa since that would put appreciable prior probability on large numbers

of covariates (Guan and Stephens , 2011).

2.4.2 Posterior Sampling Algorithm

We develop a Markov chain Monte Carlo (MCMC) sampling algorithm to obtain the posterior

samples from our Bayesian method. To facilitate MCMC, we introduce indicator variables

rm, ra ∈ {0, 1}p to indicate which normal component (βm)j and (αa)j come from, and

for the jth mediator, rmj = I((βm)j ∼ N(0, σ2
m1)), raj = I((αa)j ∼ N(0, σ2

ma1)). Let

θ1 = (βm, βa, πm, rm, σ2
m1, σ

2
m0, σ

2
a, σ

2
e) denote all the unknown parameters in model (2.4),

and θ2 = (αa, πa, ra, σ
2
ma1, σ

2
ma0, σ

2
g) for model (2.5). The joint log posterior distribution is,

logP (θ1,θ2|(Yi,Mi, Ai)
n
i=1)

∝
n∑
i=1

logP (Yi|θ1, Ai,Mi) +
n∑
i=1

logP (Mi|θ2, Ai) + logP (θ1) + logP (θ2)

We use a Hastings-within-Gibbs algorithm to obtain posterior samples, and full details of

the sampling algorithm appear in Supporting Information.

For the jth mediator, we can estimate the posterior probability of both (βm)j and (αa)j

being in the normal components with larger variances as the posterior inclusion probability
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(βm)j Larger component Smaller component
(αa)j

Larger component rmj ∗ raj = 1 (Group 1) rmj = 0, raj = 1 (Group 2)
Smaller component rmj = 1, raj = 0 (Group 3) rmj = raj = 0 (Group 4)

Table 2.1: Mediators are categorized into four groups based on their relationships with expo-
sure and outcome; Group 1: Both (βm)j and (αa)j come from larger normal components;
Group 2: (αa)j from larger normal component while (βm)j from smaller normal compo-
nent; Group 3: (βm)j from larger normal component while (αa)j from smaller normal
component; Group 4: Both (βm)j and (αa)j come from smaller normal components.

(PIP), defined as P (rmj = 1, raj = 1|Data) in our model. Mediators with larger (βm)j

and (αa)j tend to be categorized into larger variance normals, and such tendency can be

quantified by the mediator’s PIP. PIP provides non-null evidence for both (βm)j and (αa)j,

and therefore, we select mediators with the highest PIP as potentially active mediators.

2.4.3 Mediator Categorization

Under the above Bayesian mediation framework, active mediators are the ones whose (βm)j

and (αa)j both come from larger normal components. The three categories for the inac-

tive mediators are: (βm)j from larger normal component while (αa)j from smaller normal

component; (αa)j from larger normal component while (βm)j from smaller normal compo-

nent; both from smaller components. In addition to identifying true mediators, our method

automatically classifies all the mediators into four groups based on their relationship with

exposure and outcome. In practice, we have the indicator variables rmj and raj to denote

which component the coefficients (βm)j, (αa)j belong to and can easily obtain the posterior

probabilities for each group. The four groups are illustrated in Table 2.1,

2.5 Simulations

We evaluate the performance of the proposed Bayesian mediation method and compare it

with other existing mediation methods in simulations. The three existing frequentist meth-
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ods include single mediation analysis, multivariate mediation analysis and high-dimensional

multivariate mediation (HDMM) methodology of Chén et al. (2017). Single mediation

analysis tests one mediator at a time for its mediation effect. We use the R package

mediation to run single mediation analysis with the nonparametric bootstrap option for

standard error estimation. Multivariate mediation analysis (VanderWeele and Vanstee-

landt , 2014), on the other hand, jointly analyzes all the mediators in both model (2.4)

and (2.5) and tests the product term (βm)j(αa)j for each j at a time while controlling

for all other variables. This method can only be fit when a multivariate ordinary least

squares regression model can be fit for the outcome model (2.4). We implement the mul-

tivariate mediation analysis and compute the standard error based on the delta method as

se((β̂m)j(α̂a)j) =
√

(β̂m)2jV ar((α̂a)j) + (α̂a)2jV ar((β̂m)j). Afterwards, we obtain a z-

statistics for the jth mediator by dividing (β̂m)j(α̂a)j with its standard error and compute

the corresponding p-value based on asymptotic normality. The HDMM is a novel method

recently developed for high-dimensional mediation analysis and aims to identify active media-

tors through dimension reduction techniques. We use p-values for univariate and multivariate

mediation analysis, estimated indirect effect for HDMM and PIP for our Bayesian method as

measures of the evidence for mediation. We compare the power to identify active mediators

based on either 5% or 10% false discovery rate (FDR).

We consider various simulation settings with n = 1, 000 samples and p mediators (p = 100

or 2,000). Since the multivariate mediation analysis can only be applied to settings where

the number of mediators is smaller than the number of observations (i.e. p < n), we first

examine the settings of p = 100 in order to include the multivariate mediation analysis

for comparison. We will later consider the high-dimensional setting of p = 2, 000. For

each simulation setting, we first simulate a set of continuous exposure variables {Ai, i =

1, ..., 1000} independently from a standard normal distribution. We then generate a p-vector

of mediators for the ith individual from Mi = Aiαa + εMi. Each element of αa, (αa)j

(j = 1, ..., p), is simulated from a point-normal prior: πaN(0, 1) + (1 − πa)δ0, where δ0 is
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a point mass at zero. The residual errors εMi are simulated from a multivariate normal

distribution with mean zero and a covariance Σ. Σ accounts for the correlation among

mediators commonly seen in real data, and we use the sample covariance estimated from the

Multi-Ethnic Study of Atherosclerosis (MESA) data to serve as Σ. Because our Bayesian

mediation model does not explicitly account for the correlation structure of mediators in the

model between mediators and exposure, the simulations with correlated mediators allow us

to examine the robustness of our modeling assumption regarding independence. We scale the

two terms Aiαa and εMi further so that the former explains a fixed proportion of variance:

PV EA = V ar(Aiαa)/V ar(Mi), where V ar denotes the sample variance.

Given the exposure and mediators, we then generate the outcome Yi from the linear model:

Yi = MT

i βm+Aiβa+εY i. Here, each element of βm, (βm)j (j = 1, ..., p), is simulated from

πmN(0, 1)+(1−πm)δ0, and βa from a standard normal distribution. The residual error εY i is

simulated independently from a standard normal distribution. We assume that only 10% of

the mediators are truly mediating the exposure effects on the outcome (i.e. active mediators),

whose (βm)j and (αa)j are both sampled from the large variance normal distribution. After

simulating MT

i βm, Aiβa and εY i, we scale these three terms further to achieve two desirable

PV Es: PV EIE = V ar(αTaβmAi)/V ar(Yi) and PV EDE = V ar(Aiβa)/V ar(Yi).

To explore a variety of simulation scenarios, we first examine a baseline scenario where we

set PV EA = 0.5, PV EIE = 0.4, PV EDE = 0.1, πa = 0.3, πm = 0.2. We then vary each of

the four parameters (PV EA, PV EIE, πa, πm) one at a time to investigate their individual

influences on the results. We perform 200 replicates for each scenario to do the power

comparison.

We first examine the settings for p = 100 and display the comparative results in Figure 2.2.

The results show that our Bayesian multivariate mediation method outperforms the other

three methods in all scenarios. For example, in the baseline setting, at 10% FDR, Bayesian

mediation method achieves a power of 0.725, while the univariate and multivariate methods,
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Figure 2.2: Power comparison among our Bayesian mediation method (yellow), multivariate
mediation method (red), single mediation method (orange) and HDMM (coral) when the
number of mediators is 100 and sample size 1,000. The x-axis marks the one parameter we
change at a time from the baseline setting. The average TPR at FDR = 0.05/0.1 and its
error bar based on ±2 standard errors are calculated across 200 replicates. The standard
error of the proportions are computed from a binomial distribution.
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and HDMM achieve a power of 0.527, 0.676 and 0.167, respectively. The power of the four

approaches increases with increasing PV EIE, which increases the effect sizes of βm. In

addition, the power of most approaches reduces with increased πa or πm, which reduces the

effect sizes of either αa or βm, respectively. As one would expect, the advantage of our

Bayesian method over the univariate and multivariate methods is more apparent in sparse

settings with smaller values of πa and πm. In terms of PV EA, which determines the effect

size of αa, we found that the power of different methods first increases slightly when PV EA

changes from 0.3 to 0.5 and then decreases slightly as PV EA changes further to 0.8. The

later decrease in power in the setting of PV EA = 0.8 is presumably due to the increased

correlation between the exposure and mediators, which makes it difficult for all the methods

to distinguish between direct and indirect effects in model (2.4). The performance of HDMM

is relatively stable to PV EA, PV EIE and πa, and improves slightly with increased πa. There

is no sparsity assumption on mediation effects in HDMM and thus it may not fare well in

relatively sparse simulations. Between the two competing methods of single and multivariate

mediation analysis method, the latter yields better power than the former in all scenarios, as

the multivariate mediation analysis properly controls for the correlation among mediators.

Next, we examine the settings for p = 2, 000. Now we select 1% of the mediators to be active

and set πm = 2%, πa = 3% as the baseline setting with all other configurations being same

as in the baseline setting of p = 100. Since the multivariate mediation analysis is unfeasible

when p > n, we compare our method with single mediation analysis and HDMM. We use a

threshold of 1% false positive rate (FPR) instead of false discovery rate due to low power in

the p = 2, 000 settings. The comparisons are shown in Figure 2.3. The Bayesian mediation

method yields more power than the single mediator analysis and HDMM in all the scenarios.

For example, in the baseline setting, at 1% FPR, Bayesian mediation method achieves a

power of 0.470, while the univariate method and HDMM have a power of 0.357 and 0.248,

respectively. The power of our method and the univariate approach again increases with

increasing PV EIE and decreases with increasing πa or πm. Increasing PV EA decreases the
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Figure 2.3: Power comparison between our Bayesian mediation method (yellow), single me-
diation method (orange) and HDMM (coral) when the number of mediators is 2,000 and
sample size 1,000. The x-axis marks the one parameter we change at a time from the base-
line setting. The average TPR at FPR = 0.01 and its error bar based on ±2 standard errors
are calculated across 200 replicates. The standard error of the proportions are computed
from a binomial distribution.
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power of the Bayesian method, while tends to improve the performance of HDMM possibly

due to the dimension reduction applied on the high-dimensional mediators. Comparing the

settings with varied πa, we note that the major power gain of our method lies in the joint

analysis of mediators in the outcome model and appropriate shrinkage on the vector of βm.

For the mediator model, we are essentially fitting a series of regression models for each

mediator and exposure. Therefore, shrinkage on the vector of αa does not help much in

mediator selection, especially if πa is relatively large, e.g. 0.1 or 0.25. Also, when πm = 0.1,

the true number of non-zero βm gets closest to the reduced dimension ofM after generalized

population value decomposition (PVD) in HDMM, which leads to its power improvement.

In the above high-dimensional settings, besides a mixture of normals prior, horseshoe prior

and spike-and-slab prior (Mitchell and Beauchamp, 1988; Carvalho et al., 2010) are also

commonly used prior specifications for Bayesian shrinkage, and it is natural to apply them

separately to the two regression models in high-dimensional mediation analysis. The com-

parative results are presented in Table A.1 and A.2 in Supporting Information. Our Bayesian

mediation method performs well in identifying active mediators in a variety of scenarios, and

remains decent power when the effects are not polygenic as we assume. Our method can

distinguish the large effects from the small effects in the polygenic model, and is also more

practically appealing than the horseshoe prior since it can directly categorize mediators into

four possible groups without the need of specifying a thresholding rule.

Finally, we examine the ability of our method to estimate the overall mediation effects and

the proportion of mediators in the four different categories as shown in Table 2.1. We use

πg1, πg2, πg3, πg4 to represent the proportion of mediators in Group 1, Group 2, Group 3 and

Group 4, respectively. We examine eight different simulation scenarios based on different

combinations of πg1, πg2, πg3 and πg4, which include four null scenarios with πg1 = 0 and four

alternative scenarios with πg1 6= 0. In these simulations, we set PV Es to be the same as in

the baseline setting (PV EA = 0.5, PV EIE = 0.4, PV EDE = 0.1; except when πg4 = 1 where

PV EA and PV EIE are zero). We provide the estimated global mediation effects (τ) and
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p πg1 πg2 πg3 πg4 π̂g1 (95% CI) τ τ̂ (95% CI)

100 0 0.2 0.1 0.7 0.003 (0.000, 0.010) 0 0.025 (0.006, 0.066)
0 0.1 0.2 0.7 0.003 (0.000, 0.010) 0 0.035 (0.006, 0.117)
0 0.1 0.1 0.8 0.001 (0.000, 0.012) 0 0.009 (0.000, 0.012)
0 0 0 1 0.001 (0.000, 0.008) 0 0.000 (0.000, 0.000)

100 0.1 0.2 0.1 0.6 0.064 (0.010, 0.092) 0.128 0.194 (0.100, 0.324)
0.1 0.1 0.2 0.6 0.058 (0.030, 0.080) 0.249 0.263 (0.159, 0.400)
0.1 0.1 0.1 0.7 0.078 (0.006, 0.110) 0.110 0.172 (0.014, 0.960)
0.1 0 0 0.9 0.051 (0.040, 0.063) 0.961 0.458 (0.215, 0.792)

2,000 0 0.03 0.02 0.95 0.000 (0.000, 0.000) 0 0.230 (0.074, 0.565)
0 0.1 0.02 0.88 0.000 (0.000, 0.000) 0 0.315 (0.149, 0.644)
0 0.1 0.1 0.8 0.000 (0.000, 0.000) 0 0.211 (0.075, 0.509)
0 0 0 1 0.000 (0.000, 0.000) 0 0.000 (0.000, 0.000)

2,000 0.01 0.02 0.01 0.96 0.001 (0.000, 0.003) 1.392 0.642 (0.408, 0.941)
0.01 0.04 0.01 0.94 0.001 (0.000, 0.004) 1.273 0.436 (0.156, 0.891)
0.01 0.09 0.09 0.81 0.001 (0.000, 0.003) 0.347 0.544 (0.217, 1.074)
0.01 0 0 0.99 0.010 (0.002, 0.015) 0.103 0.113 (0.018, 0.334)

Table 2.2: Estimation of the global mediation effects τ under different compositions. We
report the posterior mean (τ̂) of τ and its 95% credible intervals when p = 100/2, 000. We
denote πg1, πg2, πg3 and πg4 to represent the proportion of mediators in Group 1, Group 2,
Group 3 and Group 4 as defined in Table 2.1, and π̂g1 is the estimated proportion of active
mediators from our Bayesian method. We also provide the 95% credible intervals (CI) for τ̂
and π̂g1.

proportion of active mediators (πg1), as well as their 95% credible intervals from posterior

samples in Table 2.2.

From the above table, we find that our method provides decent estimates for πg1 and τ

across different scenarios, especially when p = 100. Note that our estimates for πg1 are

slightly conservative due to the fact that our model does not have full power to detect all the

mediators. The 95% credible intervals of τ also shows that the posterior distribution of τ is

asymmetric and depends on the composition of the four groups. We also show a distribution

graph from the posterior samples of τ in four different scenarios with n = 1000, p = 100 in

Figure A.2 of Supporting Information.
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2.6 Data Analysis

We applied the proposed Bayesian method to investigate the mediation mechanism of DNAm

in the pathway from adult socioeconomic status (SES) to glycated hemoglobin (HbA1c)

in the Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 2002). The exposure,

adult SES, is indicated by adult educational attainment and is an important risk factor for

cardiovascular diseases. The outcome, HbA1c, is a surrogate measurement of average blood

glucose levels and a critical variable for various diseases including T2D and CVD (Selvin

et al., 2010). Thus, understanding how methylation at different CpG sites mediates the

effects of adult SES on HbA1c can shed light on the molecular mechanisms of CVD. We

provide our detailed processing steps for MESA data in the SI. Briefly, we selected 1,231

individuals with both adult SES and HbA1c measurements as well as DNA methylation

profiles measured from purified monocytes. Due to computational reasons, we focused on a

final set of 2,000 CpG sites that have the strongest marginal associations with adult SES for

the following mediation analysis.

We applied both univariate mediation analysis and our Bayesian multivariate mediation

analysis to analyze the selected 2,000 CpG sites. For the multivariate analysis, we consider

Yi = MT

i βm + Aiβa +CT

2iβc + εY i (2.10)

Mi = Aiαa +αcC1i + εMi (2.11)

where Yi represnts HbA1c levels; Ai represents adult SES values; and Mi represnts methy-

lation level for 2,000 CpG sites. In Equation (2.10), the model controls for age, gender and

race/ethnicity, and in Equation (2.11), we adjust for age, gender, race/ethnicity and en-

richment scores for 4 major blood cell types (neutrophils, B cells, T cells and natural killer

cells). All the continuous variables are standardized to have zero mean and unit variance.

The univariate analysis is applied in a similar fashion except that it is used to analyze one
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site at a time.

We discussed the identifiability assumptions required for causal inference in high-dimensional

mediation analysis in Section 2.2. For Assumption 1 (no unmeasured exposure-outcome con-

founding), we believe that the available covariates of age, gender and race/ethnicity in model

10 are sufficient to control for confounders that are associated both to adult SES and HbA1c

(Burke et al., 2008). For Assumption 2 (no unmeasured mediator-outcome confounding

given exposure), within each of the two exposure groups (low adult SES and high adult

SES), age, gender and race/ethnicity are also sufficient to control for mediator-outcome con-

founding. For Assumption 3 (no unmeasured exposure-mediator confounding), we included

all the important potential exposure-mediator confounders (age, gender, race/ethnicity and

enrichment scores for 4 major blood cell types) in model (2.11) as in Needham et al. (2015).

Assumption 4 (no mediator-outcome confounding affected by the exposure) is very difficult

and may not hold, but it is only required for identifying the natural effects so we don’t need

to worry too much about it. The influence of violating the above identifiability assumptions

can be assessed using sensitivity analysis, which has been developed for the single mediator

setting (Imai et al., 2010b), and additional work is required to extend that to the high-

dimensional setting. Regarding the temporal assumptions, in MESA, adult SES (exposure)

was collected in Exam 1 between July 2000 and August 2002, and DNAm (mediators) and

HbA1c (outcome) were assessed in Exam 5, and all of them are one-time measurements.

While it is hard to disentangle the temporality between DNAm and HbA1c measurements,

we note that DNAm levels are relatively stable over time and thus a DNAm measurement

at Exam 5 could be highly correlated with a DNAm measurement at an earlier stage.

We display PIP values for each of the 2,000 CpG sites from the Bayesian multivariate analysis

in Figure 2.4. Two CpG sites were identified with strong evidence (PIP > 0.5) for mediating

the adult SES effects on HbA1c. They are also among the top ten sites with the smallest

p-values obtained from univariate mediation analysis. In addition, these two CpG sites are

close to genes CCDC54 and CCND2, both of which are known candidates associated with
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HbA1c. Specifically, the expression of CCND2 has been shown to be associated with risk

of T2D and the related glycemic traits of glucose, HbA1c, and insulin (Yaghootkar et al.,

2015). The gene CCDC54 interacts with valproic acid and acrylamide, both of which are

associated with diabetes and blood insulin (Lin et al., 2009). Therefore, strong evidence

from our method suggests that adult SES may act through these two genes to affect HbA1c.

We also apply the HDMM and Bayesian methods with spike-and-slab and horseshoe priors

to the data. For the HDMM, the weights for the first direction of mediation do not suggest

obvious signal or pattern, and a plot of the estimated weights is provided in Figure A.3. We

also list the top 2 sites and their nearby genes from the other competing methods in Table

A.3. We note that there is a lack of biological evidence to support a mediating role of those

genes picked out by the other methods, except for one gene (CLU ).

In addition, we estimate the global mediation effects τ̂ as 0.0084 and its 95% credible interval

from the posterior as (0.0063, 0.0115). The P̂ V EIE is 0.096, indicating that approximately

10% of the outcome variance is indirectly explained by DNAm after controlling for covariates.

In addition, we estimate the proportion of CpG sites in each of the four categories as defined

in Section 2.4.3: π̂g1 = 0.002, π̂g2 = 0.031, π̂g3 = 0.001, π̂g4 = 0.966. We find that a

small proportion of DNAm has large effects on the HbA1c level, and a small proportion

of DNAm is notably associated with adult SES. The results also suggest that adult SES

acts through certain important DNAm sites to influence HbA1c. Finally, we perform a

posterior predictive check on the outcome model, and the results are shown in Figure A.4.

The Bayesian predictive p-values (Neelon et al., 2010) are 0.5 and 0.45 for the sample mean

and variance, respectively, suggesting adequate fit of the outcome model.

2.7 Discussion

In this chapter, we develop a Bayesian sparse linear mixed model for high-dimensional medi-

ation analysis. The advantage of a Bayesian method is to propagate uncertainty for functions
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Figure 2.4: Consider the trio: Adult SES → DNAm → HbA1c. The black dots are the esti-
mated posterior inclusion probability (PIP) for each CpG site from the Bayesian mediation
method and the red dots are the estimated PIPs when we permute the outcome once and fit
the Bayesian mediation method.
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of parameters in a natural way instead of resorting to Delta methods or two-step approaches.

Our method can jointly analyze a large number of unordered mediators and characterize

their global mediation effect without making any assumptions on their joint distribution.

By imposing continuous shrinkage priors on the key regression coefficients for the mediation

analysis, our method achieves up to 30% power gain in identifying true non-null mediators

compared with univariate mediation method and approximately 10% power gain compared

with multivariate method based on simulations. The Bayesian method also provides better

interpretations of the way in which a mediator links or does not link exposure to outcome,

and automatically categorize mediators into four components based on exposure-mediator

and mediator-outcome relationship. Implementing our method to MESA, we have identified

two genes, CCDC54 and CCND2, with strong evidence for actively mediating the adult SES

effects on HbA1c. Both of them are candidate genes associated with diabetes and blood

insulin.

Although our proposed method can simultaneously analyze high-dimensional mediators, like

other posterior sampling based methods, the computation speed is not fast due to the large

number of sampling iterations required for reasonable convergence. Also, throughout the

chapter, we focus on one continuous outcome of interest. For binary outcome, we can treat

it as a quantitative trait, which is justified by recognizing the linear model as a first order

Taylor approximation to a generalized linear model (Zhou et al., 2013). One may hope to

adapt our method to directly model the nonlinear outcome through link functions within

a generalized linear model framework, but such approach will substantially increase the

computational cost and may sometimes not bring much power gain, as shown in Zhou et al.

(2013). Future development of new algorithms or methods will likely be required to scale our

method to handle thousands of individuals and millions of mediators in generalized regression

models.

Recent literature proposes a convex penalty on the product term of indirect effect (Zhao

and Luo, 2016), which improves power of pathway selection and reduces estimation bias in
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the indirect effects. Under the Bayesian framework, direct shrinkage on the product term

may be a more appropriate choice, as it takes into account the correlation between the two

models in the mediation analysis and is more straightforward when the goal is to identify

non-null mediators. Directly incorporating the correlation between the mediators will be

another avenue to pursue. In addition, the biological annotations like pathways can be

important predictors for the underlying mediation mechanism, and integrating them into

high-dimensional mediation analysis would be promising to facilitate the identification of

active mediators. Possible extensions include linking the functional annotation information

for mediators either to the mediator-specific group probabilities, e.g. πmj, πaj for the j-th

mediator through a logistic regression model (Carbonetto and Stephens , 2013), or to the effect

sizes, e.g. σ2
m1j, σ

2
ma1j for the j-th mediator (Hao et al., 2018). We leave these interesting

extensions for future work.
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CHAPTER III

Bayesian Sparse Mediation Analysis with Targeted

Penalization of Natural Indirect Effects

3.1 Introduction

This chapter describes an extension to the Bayesian shrinkage approach for high-dimensional

mediation analysis in Chapter III. Recall in Chapter III, two Bayesian Sparse Linear Mixed

Models (BSLMM) are proposed to impose continuous shrinkage on the outcome-mediator

and mediator-exposure effect, separately. In this chapter, we develop alternative approaches

in order to directly target the non-null indirect effects to identify active mediators within

the same mediation framework, and we compare the proposed methods with a different set

of competing methods from the previous chapter.

With the rapid development of high-throughput technologies and more availability of larger-

scale omics data, there is expanding interest in mediation analysis with a large number of

mediators. For example, Huang and Pan (2016) and Chén et al. (2017) transform the high-

dimensional unordered set of mediators into lower-dimensional orthogonal components using

dimension reduction techniques. The extracted low-dimensional components are then ana-

lyzed through single mediation analysis. However, it is often not straightforward to interpret

the low-dimensional components in these approaches. Shrinkage methods via regularization

have also been explored to tackle this high-dimensional regression problem involving two
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models, the exposure-mediator model and the outcome-exposure model. The Lasso (Tib-

shirani , 1996) penalty can be naturally applied to the two models in mediation analysis.

Zhang et al. (2016) also proposed a regularized regression with minimax concave penalty for

the outcome model after a sure independence screening on mediators. The above methods

penalize the mediator-outcome and exposure-mediator coefficients separately without tak-

ing into account the structure of the indirect effect. To directly target the mediators with

strong indirect effects, Zhao and Luo (2016) recently developed a new convex, Lasso-type

penalty on the indirect effect, which is the product of the two path coefficients. This di-

rect penalization on the pathway effects is shown to improve power for mediator selection

and reduce the estimation bias of indirect effects. In addition to frequentist approaches,

Bayesian non-parametric models (Kim et al., 2017, 2019) have been applied in the analysis

with single or a moderate number of mediators. Song et al. (2018) handles high-dimensional

mediators through a Bayesian variable selection method and specifies separate shrinkage

priors on both the exposure-mediator effects and mediator-outcome effects. However, not

modeling the indirect effects in a targeted way may lead to loss of power for selection of

active mediators.

The indirect effect of a mediator is known to be proportional to the product of the exposure-

mediator and mediator-outcome effects under certain assumptions (MacKinnon, 2008). Test-

ing for this product term is not easy due to the complexity in its null distribution. Recent

literature began to recognize and leverage the composite structure in the null hypothesis

of no indirect effect in the genome-wide mediation analysis setting, where a one-at-a-time

single mediator analysis is performed across the entire set of mediators (Huang et al., 2019).

Given a large number of mediators, we can characterize the composite space and learn about

the structure of mediation through the four components arising from the product of the two

effects, i.e. one component of mediators with non-zero indirect effects (active mediators),

and three components with zero indirect effects.

Motivated by the goal of directly targeting the non-null indirect effects to identify active me-
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diators, we are interested in seeking the Bayesian parallel with a joint prior on the exposure-

mediator and mediator-outcome coefficients, which is so far lacking in the literature. One

common choice of the bivariate prior would be a Gaussian prior, and it is natural to as-

sume a four-component Gaussian mixture structure on the two effects, corresponding to the

composite structure underlying their product. On the other hand, a direct thresholding

prior on the indirect effects would also achieve the same goal, and we can extend the hard-

thresholding priors (Ni et al., 2019; Cai et al., 2020) to product thresholding for mediation

analysis. Therefore, in this chapter, building on the potential outcome framework for causal

inference, we develop two novel prior models for high-dimensional mediation analysis: (a)

four-component Gaussian mixture prior, and (b) product threshold Gaussian prior. Both

models can simultaneously analyze a large number of mediators without making any path-

specific or causal ordering assumptions on mediators. The mediator categorization into four

groups provides useful interpretations on the way in which a mediator links or does not

link exposure to outcome. More importantly, by jointly modeling the exposure-mediator

and mediator-outcome coefficients via either bivariate Gaussian distributions or threshold-

ing functions, we place direct shrinkage on the product of the two coefficients, i.e. indirect

effect, in a targeted way. Hence, our methods are expected to outperform other penaliza-

tion methods that apply separate shrinkage in the two regression models independently, for

identifying active mediators with non-zero indirect effects.

The proposed methods are generally applicable to many settings, and we examine their per-

formance for both large-scale genomic and environmental data. Due to fast advances in

high-throughput biological technologies, genomic studies can nowadays measure large-scale

molecular-level traits such as gene expression and DNA methylation (DNAm) levels. Re-

cent studies have proposed these molecular traits may act as a mechanism through which

neighborhood disadvantages affect physical health (Smith et al., 2017). Our methods are

implemented for a high-dimensional mediation analysis with DNAm as mediators in the

Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 2002), focusing on the relation-
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ship between neighborhood disadvantage and body mass index (BMI). BMI is a critical

risk factor for various diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD)

(Hjellvik et al., 2012), and the important scientific discoveries will advance our biological

understanding of disease etiology. Another study we examine is the LIFECODES prospec-

tive birth cohort, and our primary aim is to evaluate the mediating role of endogenous

biomarkers of lipid metabolism, inflammation, and oxidative stress in the association be-

tween prenatal exposure to environmental contamination and pregnancy outcomes. Our

methods are applied to identify multiple active biomarker mediators and reveal important

biological pathways between toxicant exposure and preterm birth, which are useful for early

detection and prevention of disease in pregnancy. Besides the data analysis, we also perform

extensive simulation studies under different structures of effects. We show through both sim-

ulations and data analysis that our proposed methods can increase power of a joint analysis

and enable efficient identification of individual mediators.

3.2 Method

We adopt the same notations and counterfactual framework as in Chapter II. We also make

the same set of identifiability assumptions as discussed in Section 2.2, including the con-

sistency assumption and four non-unmeasured confounding assumptions (VanderWeele and

Vansteelandt , 2014). It has been shown that under the required assumptions, the aver-

age NDE and NIE can be identified by modeling Yi|Ai,Mi,Ci and Mi|Ai,Ci using ob-

served data (Song et al., 2018). Therefore we still work with the two conditional models for

Yi|Ai,Mi,Ci and Mi|Ai,Ci, and subsequently deduce the causal effects of mediators. For

the outcome model, we assume

Yi = M>
i βm + Aiβa +C>i βc + εY i, (3.1)
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where βm = (βm1, . . . , βmp)
>; βc = (βc1, . . . , βcq)

>; and εY i ∼ N(0, σ2
e). For the mediator

model, we consider a multivariate regression model that jointly analyzes all p potential

mediators together as dependent variables:

Mi = Aiαa +αcCi + εMi, (3.2)

where αa = (αa1, . . . , αap)
>; αc = (α>c1, . . . ,α

>
cp)>; αc1, . . . ,αcp are q-by-1 vectors;

εMi ∼ MVN(0,Σ), with Σ capturing potential residual error covariance. εY i and εMi are

assumed to be independent of each other and independent of Ai and Ci. With the identifi-

ability assumptions and the modeling assumptions (linearity, no interaction in the outcome

and mediator model) in (3.1)-(3.2), we can compute the average NDE, NIE and TE as in

(2.6)-(2.8). Particularly, the NIE is proportional to
∑p

j=1 αajβmj. Therefore, the marginal

indirect contribution from the j-th mediator is the product of αaj and βmj. We propose to

jointly model βmj and αaj and perform targeted shrinkage on the NIE using two prior models

described in the following sections.

3.2.1 Gaussian Mixture Model (GMM)

The first model we develop to characterize the composite structure of the exposure-mediator

and mediator-outcome effects in mediation analysis and induce targeted shrinkage on NIE

is the four-component Gaussian mixture model. Mixture models have been studied vastly

for classifying subjects into different categories and inferring their association patterns or

category-specific properties (Zeng et al., 2018; Cai et al., 2019). In the context of mediation

analysis, previous mixture model approaches have primarily been proposed in the form of

a principal stratification model (Gallop et al., 2009), or focused on grouping individuals by

their covariate profiles for estimating the heterogeneous effects (Kim et al., 2018). Here, we

introduce a Gaussian mixture model for the joint modeling of βmj and αaj and the subsequent

inference of the composite association patterns. Specifically, we consider four components
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in the Gaussian mixture model: a component representing βmjαaj 6= 0, that both βmj and

αaj are non-zero; a component representing βmj 6= 0 and αaj = 0; a component representing

βmj = 0 and αaj 6= 0; and a component representing βmj = 0 and αaj = 0. To characterize

the composite structure underlying the product βmjαaj, we assume that the effects for each

mediator follow a four-component Gaussian mixture distribution as below,

[βmj, αaj]
>|{Vk}

3
k=1 ∼ π1MVN2(0,V1) + π2MVN2(0,V2) + π3MVN2(0,V3) + π4δ0

with prior probabilities πk (k = 1, 2, 3, 4) summing to one and MVN2 denoting a bivariate

normal distribution. Here, π1 represents the prior probability of being an active mediator,

with non-zero marginal mediation effect βmjαaj; and V1 models the covariance of [βmj, αaj]
>

in model (3.1) and (3.2) when both effects are non-zero. Any inactive mediator will fall

into one of the remaining three components. π2 is the prior probability of having non-

zero mediator-outcome effect but zero exposure-mediator effect; and V2 =

σ2
2 0

0 0

 is a

low-rank covariance matrix restricting that only the effect of mediator on outcome βmj is

non-zero. π3 is the prior probability of having non-zero exposure-mediator effect but zero

mediator-outcome effect; and V3 =

0 0

0 σ2
3

 is a low-rank covariance matrix restricting

that only the effect of exposure on mediator αaj is non-zero. Lastly, π4 denotes the prior

probability of zero mediator-outcome effect and zero exposure-mediator effect; and δ0 is a

point mass at zero. Our method automatically classifies all the mediators into four groups

based on their relationship with exposure and outcome. We note that the recently developed

Bayesian mediation analysis method (BAMA, Song et al. (2018)) can be viewed as a two-

component version of GMM: in BAMA, the mediator-outcome effect is non-zero and follows

a normal distribution with probability π1 + π2; while the exposure-mediator effect is non-

zero and follows another normal distribution with probability π1 + π3. Consequently, the

active mediator in BAMA has a priori probability (π1 +π2)(π1 +π3), which is determined by
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the non-zero exposure-mediator effect probability and the non-zero mediator-outcome effect

probability.

In GMM, we specify a conjugate inverse-Wishart prior on V1, V1 ∼ Inv-Wishart(Ψ0, ν),

where Ψ0 = diag{ψ01, ψ02} is a diagonal matrix, and ν is the degrees of freedom, and inverse-

gamma priors on σ2
2, σ

2
3, σ2

2 ∼ Inv-Gamma(ν/2, ψ01/2), σ2
3 ∼ Inv-Gamma(ν/2, ψ02/2). We

also assume {π1, π2, π3, π4} ∼ Dirichlet(a1, a2, a3, a4) with a1, a2 and a3 set to be smaller

than a4 to encourage sparsity of the first three components. For the coefficients of the other

covariates, we assume βa ∼ N(0, σ2
a) and βc,αc1, ...,αcp ∼ MVN(0, σ2

cI). Since we often

have inadequate information from the data to infer βc and αc, we simply use a limiting

prior by setting σ2
c → ∞. For the convenience of modeling, we also set the correlation

structure among mediators Σ as σ2
gI. We use weakly informative inverse-gamma priors on

the variance hyper-parameters (σ2
a, σ

2
e and σ2

g) in the models.

To facilitate computation, for the jth mediator, we create a membership indicator variable

γj, where γj = k if [βmj, αaj]
> is from normal component k, k = 1, 2, 3, 4. Since the priors

used here are all conjugate, we implement a standard Gibbs sampling algorithm and iterate

each mediator one at a time to obtain posterior samples. The full details of the algorithm

appear in the Appendix. With the Gibbs sampling, for the j-th mediator, we can estimate

its indirect effect as the product of the posterior mean of βmj and αaj. We also calculate the

posterior probability of both βmj and αaj being non-zero as the posterior inclusion probability

(PIP), which is P (γj = 1| Data). The PIP provides evidence for a non-zero indirect effect,

and therefore, we identify mediators with the highest PIP as potentially active mediators.

3.2.2 Product Threshold Gaussian (PTG) Prior

Although the GMM model is flexible for a range of applications, the method does not directly

impose sparsity on βmjαaj for mediator selection. To address this issue, we develop a product

threshold Gaussian (PTG) prior for the indirect effects of the jthe mediator. Threshold priors
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have been recently proposed for Bayesian variable selection. For example, Ni et al. (2019)

introduced a hard-thresholding mechanism in edge selection for sparse graphical structure;

Cai et al. (2020) performed a feature selection over networks using the threshold graph

Laplacian prior; and Kang et al. (2018) developed a soft-thresholding Gaussian process

for scalar-on-image regression. As compelling alternatives to shrinkage priors, the threshold

priors are equivalent to the non-local priors (Rossell and Telesca, 2017) which enjoy appealing

theoretical properties and excellent performance in variable selection for high-dimensional

regression, especially when the predictors are strongly correlated(Kang et al., 2018; Cai

et al., 2020). In this work, we extend the threshold priors to the product threshold priors

for mediation analysis. In particular, for the bivariate vector (βmj, αaj), j = 1, ..., p,

βmj = β̃mj max
{
I
(
|β̃mj|> λ1

)
, I
(
|β̃mjα̃aj|> λ0

)}
αaj = α̃aj max

{
I (|α̃aj|> λ2) , I

(
|β̃mjα̃aj|> λ0

)}

where the underlying un-thresholded effects (β̃mj, α̃aj)
> ∼ MVN2(0,Σu) and I(A) is the

indicator function with I(A) = 1 ifA occurs and I(A) = 0 otherwise. We denote (βmj, αaj) ∼

PTG(Σu, λ) with λ = (λ0, λ1, λ2) being thresholding parameters.

As one may note, a mediator would escape thresholding and have non-zero indirect effect

βmjαaj only when (i) both the absolute values of the marginal effects β̃mj and α̃aj are larger

than the threshold values, or (ii) the absolute value of the un-thresholded indirect effect

β̃mjα̃aj is larger than the threshold value. In practice, condition (ii) does not necessarily

indicate condition (i). The product threshold prior will facilitate the selection of active

mediators by thresholding on the indirect effects in addition to the marginal effects, and

shrinking insignificant effects to zero. Similar to GMM, one group of active mediators and

three groups of inactive ones are naturally formed. The thresholding on the product term

also adds dependency between βmj and αaj, and we impose no more dependency on the

un-thresholded values, namely setting Σu = diag
{
τ 2β , τ

2
α

}
in the rest of this chapter.
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The threshold parameters λ = (λ0, λ1, λ2) control a priori the sparsity of the non-zero effects,

and larger values tend to produce a smaller subset of active mediators. Previous literature (Ni

et al., 2019; Cai et al., 2020) have considered uniform priors on those threshold parameters,

e.g. λ0 ∼ U [0, λ0h], λ1 ∼ U [0, λ1h], λ2 ∼ U [0, λ2h], with the upper bounds λ0h, λ1h, λ2h

being some pre-defined large values. This approach is straightforward and requires little

prior knowledge, however, the control of false positives is a concern due to the common

under-estimation of λ. In this chapter, we instead determine the threshold parameters from

the un-thresholded distributions and the desired number of declared positives, and fix them

a priori. For example, if we set λ0 = 0.36, λ1 = λ2 = 0.6 under τ 2β = 0.1, τ 2α = 0.1, then

the Monte Carlo estimate of the prior proportion of active mediators is approximately 0.01,

which could also be tuned to match with π1 in the Gaussian mixture model. In practice, we

can grid search the three hyper-parameters together with priors on τ 2β and τ 2α, and find the

values that achieve desired prior proportions. The thresholds λ can also be interpreted as the

minimal detectable signal, and determined based on their practical meaning. Although the

resulting selection may be conservative and heavily informed by the pre-defined thresholds,

our specification is helpful in guarding against false positive findings. As in the GMM model

described in 3.2.1, conjugate inverse-gamma priors are used for the variance terms (τ 2β , τ
2
α, σ

2
e

and σ2
g) in the model. The full conditional distributions for βmj and αaj are mixtures of

truncated normals and can be sampled from Gibbs sampling. The full algorithm appears in

the Appendix. Similar to GMM, we can calculate the posterior mean of βmj and αaj, and

the posterior probability of both βmj and αaj being non-zero as PIP, and use the PIP to

rank and select active mediators.

The proposed GMM relies on small values of π1, π2, π3 to admit sparsity on the effects. The

Gaussian priors shrink the effects continuously toward zero, and help the model achieve

better estimation and prediction performance, but not necessarily mediator selection by the

indirect effects. On the other hand, the PTG utilizes a hard threshold function to directly

select on the product term βmjαaj and map near zero effects to zero. Instead of centering
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around zero, the effects produced from PTG will be similar to truncated normals away from

zero. As a practical procedure, we suggest median inclusion probabilities (PIP = 0.5) as the

significance threshold for mediator selection.

3.2.3 Other Approaches for High-dimensional Mediation Analysis

Besides GMM and PTG, we also explore a few other approaches. Many of them place simple

penalty functions or shrinkage priors on the natural indirect effects.

Univariate Mediation Analysis is perhaps the simplest approach to perform mediation

analysis. In univariate mediation analysis, we examine one mediator at a time and test

whether the mediator has non-zero indirect effect. We extract P -values for testing the

indirect effects using the R package mediation.

Bi-Lasso The least absolute shrinkage and selection operator (Lasso) introduced by Tib-

shirani (1996) is a widely used penalty function to perform both variable regularization

and selection. Here, we consider placing Lasso regularization on the mediator-outcome

effects and the exposure-mediator effects separately. For the mediator-outcome effects,

we attempt to minimize the following loss function based on the outcome model (3.1):

f(βm, βa,βc) = 1
2

∑n
i=1(Yi −M>

i βm −Aiβa −C>i βc)2 + λ1
∑p

j=1|βmj|. For the exposure-

mediator effects, we attempt to minimize the following loss function based on the mediator

model (3.2): f(αa,αc) = 1
2

∑n
i=1(Mi−Aiαa−αcCi)

>(Mi−Aiαa−αcCi)+λ2
∑p

j=1|αaj|.

We perform optimization in the first function using the R package glmnet and perform

optimization in the second function using soft-thresholding. We choose the two tuning pa-

rameters λ1 > 0 and λ2 > 0 through 10-fold cross validation in the two functions separately.

We refer this approach of applying Lasso separately to the outcome and mediator models as

Bi-Lasso.

Bi-Bayesian Lasso is effectively the Bayesian version of Bi-Lasso. It is equivalent to

placing a Bayesian Lasso prior (Park and Casella, 2008) on the mediator-outcome effects βm
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and a separate Bayesian Lasso prior on the exposure-mediator effects αa. Here, we specify

the Bayesian Lasso prior for the j-th element of βm or αa as a scale mixture of normal

distributions N(0, zjσ
2
z), where the scale parameter zj follows an exponential distribution

exp(s2/2) and 1/s2 is given a diffuse inverse-gamma prior. We implement the Bi-Bayesian

Lasso using a Gibbs sampler following Park and Casella (2008) and obtain posterior samples

for βm and αa.

Pathway Lasso is a method developed by Zhao and Luo (2016) for high-dimensional

mediation analysis under the linear structural equation modeling (LSEM) framework. To

see how Pathway Lasso works, we first define the squared-error loss in the joint model from

Equations (3.1) and (3.2) as l(βm,αa, βa,βc,αc) =
∑n

i=1(Yi−M>
i βm−Aiβa−C>i βc)2+∑n

i=1(Mi−Aiαa−αcCi)
>(Mi−Aiαa−αcCi). The Pathway Lasso then aims to minimize

the following penalized function,

f(βm,αa, βa,βc,αc) =
1

2
l(βm,αa, βa,βc,αc) + λ[

p∑
j=1

(|βmjαaj|+ φ(β2
mj + α2

aj)) + |βa|]

+ω[

p∑
j=1

(|βmj|+|αaj|)], φ ≥ 1/2

=
1

2
l(βm,αa, βa,βc,αc) + λP1(βm,αa, βa) + ωP2(βm,αa),

(3.3)

In Equation (3.3), the first penalty term P1 stabilizes and shrinks the estimates for the

indirect effects βmjαaj. The second penalty term P2 provides additional shrinkage on βm

and αa through a common Lasso penalty placed on both of them. We use the algorithm

from Zhao and Luo (2016) to fit Pathway Lasso. We choose the three tuning parameters (φ,

ω, and λ): φ = 2, ω = 0.1λ, and choose λ through 10-fold cross-validation as in the original

paper.

HIMA is another frequentist method developed for high-dimensional mediation analysis

(Zhang et al., 2016). HIMA first applies a sure independence screening to the outcome
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model to select a small set of potential mediators. With the selected mediators, HIMA then

places a minimax concave penalty on the mediator-outcome effects in the outcome model

(3.1) to obtain effect estimates. The method finally performs a joint significance test and

rejects the null hypothesis of no indirect effect with the j-th mediator if both βmj and αaj

are significant. Using the HIMA software, we obtain the Bonferroni corrected P -values for

testing the indirect effects.

In addition to the aforementioned methods, we note that several other approaches exist.

For example, the methods developed by Huang and Pan (2016) and Chén et al. (2017)

first perform dimension reduction on the mediators to extract low dimensional factors on

the reduced dimensional space, and then carry out mediation analysis by treating the low

dimensional factors as new mediators. Because these approaches analyze the latent factors

instead of the original mediators, we do not compare our methods with them in the present

study.

3.3 Simulations

3.3.1 Simulation Design

We consider one small sample scenario with n = 100, p = 200, and one large sample scenario

with n = 1000, p = 2000. In both scenarios, we set the proportions of the four different

mediator groups to be π1 = 0.05, π2 = 0.05, π3 = 0.10, π4 = 0.80. In each scenario, we further

explore two different settings. In Setting (I), we fix the non-zero effects of both βmj and αaj

to be 0.5, with their signs randomly assigned as positive or negative. In Setting (II), we fix

40% of the non-zero βmj (or αaj) to be 0.3, 30% of them to be 0.5, and 30% of them to be

0.7, with their signs randomly assigned as positive or negative. In both settings, we simulate

the continuous exposure {Ai, i = 1, ..., n} independently from a standard normal distribution

N(0, 1). We simulate the residual error εY i in the outcome model independently from N(0,
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1), and simulate the residual errors εMi in the mediator model from MVN(0, Σ). Here,

we use the sample covariance estimated from MESA data to serve as Σ in the simulations.

Afterwards, we generate a p-vector of mediators for the ith individual fromMi = Aiαa+εMi.

We also generate the outcome Yi for the ith individual from Yi = M>
i βm+Aiβa + εY i, with

βa = 0.5.

In the above settings, we have fixed the effect sizes to specific values across replicates. To

further examine the performance of our methods over a wide range of effect sizes, we perform

additional simulations where we simulate [βmj, αaj]
> differently in each simulation replicate.

Specifically, we generate these two effects from three different joint distributions detailed

below (Figure B.1): the first two correspond to the prior distributions assumed in PTG and

GMM, respectively, while the last one is a horseshoe distribution, i.e.

(A) Simulate effects under the PTG model: [βmj, αaj]
> ∼ PTG(diag {σ2

u, σ
2
u} , λ), where

λ = (λ0, λ1, λ2) are set to satisfy the desired proportions of the four groups (π1, π2, π3, π4).

We set σ2
u = 0.3 for p = 200, and σ2

u = 0.1 for p = 2000.

(B) Simulate effects under the GMM model: [βmj, αaj]
> ∼ π1MVN(0,

 σ2 σ2/3

σ2/3 σ2

) +

π2MVN(0,

σ2 0

0 0

)+π3MVN(0,

0 0

0 σ2

)+π4δ0. We set σ2 = 0.3 for p = 200, and σ2 = 0.1

for p = 2000.

(C) Simulate effects from a mixture of bivariate horseshoe distributions, which can be

generated from a scale mixture of normals: [βmj, αaj]
> ∼ π1MVN(0, Z2

j

 σ2 σ2/3

σ2/3 σ2

) +

π2MVN(0, Z2
j

σ2 0

0 0

) + π3MVN(0, Z2
j

0 0

0 σ2

) + π4δ0. Here, Zj ∼ halfCauchy(0, 1), but

truncated at a value of b to avoid impractically large values. We set σ2 = 0.5 for p = 200,

and σ2 = 0.3 for p = 2000, and b = 3. Note that the effect size distribution assumed here

is different from either of our proposed models, thus allowing us to study the robustness of
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our methods. With the effect size distributions, we follow the same procedure described as

in the fixed effects settings and perform 200 simulation replicates for each scenario. The

effect sizes used in the simulations here are chosen to ensure a reasonable level of selection

power for different methods. In real data, the variance explained by the exposure in the

mediator model (PV EA) and the variance explained by the mediators in the outcome model

(PV EIE) is likely to be lower than what we set in the simulations. For example, in Setting

(A), PV EIE is around 0.85 and PV EA around 0.01, while in the LIFECODES data analysis,

the estimated PV EIE is 0.75 and the estimated PV EA is 0.005.

We apply different methods to fit the simulated data. In GMM, we set the Dirichlet param-

eters a1 = 0.01p, a2 = a3 = 0.05p, a4 = 0.89p. We use an empirical Bayesian approach to set

the diagonal entries of Ψ0, which are set to be the sample variance of the non-zero βm and

αa fitted through Lasso. We set the degree of freedom ν in the inverse-Wishart distribution

to be two, which makes the distribution reasonably non-informative while still well-defined.

In PTG, we set the pre-defined minimal detectable effect sizes (λ0, λ1, λ2) to be the 90%

quantiles of the estimated |βm| and |αa| fitted through Lasso. To be consistent with the

GMM, we choose the parameter τ̂ 2 in the priors τ 2β ∼ IG(1.1, τ̂ 2), τ 2α ∼ IG(1.1, τ̂ 2) to ensure

that the prior inclusion probability is around 0.01. For example, in Setting (I) and (II), we

set λ0 = 0.15, λ1 = λ2 = 0.4, and τ̂ 2 = 0.01. Note that although the prior means of τ 2β and

τ 2α are small, their prior variances do not exist, indicating that such less informative priors

would not affect the posterior inference on effect sizes much. For the Bayesian methods, we

perform 150,000 iterations and discard the first 100,000 iterations as burn-in. We check the

MCMC convergence by running five chains with random initial values and calculating the

potential scale reduction factor (PSRF) for the PIPs. All the PSRFs fall within (1.0, 1.2),

indicating the convergence of our algorithms.
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3.3.2 Evaluation Metrics

We evaluate the performance of the two proposed methods (GMM and PTG) and compare

them with existing methods in different simulation scenarios. As described in Section 3.2,

we consider a total of eight methods: one univariate method and seven multivariate meth-

ods that include four Bayesian methods (GMM, PTG, BAMA and Bi-Bayesian Lasso) and

three frequentist methods (Bi-Lasso, Pathway Lasso, and HIMA). We examine the power

of different methods to detect true mediators in the simulations. To do so, we rely on PIP

to prioritize mediators in PTG, GMM and BAMA; rely on P -value to rank mediators in

the univariate method and HIMA; and rely on the estimated indirect effects as an measure

of evidence for mediation for the remaining methods. We calculate the true positive rate

(TPR) based on a fixed false discovery rate (FDR) of 10% for the selection accuracy. For

estimation, we measure the mean square error (MSE) for the indirect effects of the truly ac-

tive mediators (MSEnon-null), and MSE for the indirect effects of the truly inactive mediators

(MSEnull).

Under Setting (A)-(C), in each replicate, we will have a different set of underlying true effects

and truly active mediators, therefore the reported average metrics in those settings, such as

the average true positive rate, are expectations taken over the distribution of correspond-

ing random variables. Specifically, we calculate the MSE of the indirect effect for active

mediators as

MSEnon-null =
1

K

K∑
k=1

1

|C(k)|
∑
j∈C(k)

((βmj)
(k)(αaj)

(k) − (β̂mj)
(k)(α̂aj)

(k))2 (3.4)

whereK is the number of replicates. For the k-th replicate, C(k) is the set of active mediators,

(βmj)
(k) and (αaj)

(k) are the true effects of the j-th mediator, (β̂mj)
(k) and (α̂aj)

(k) are the

estimated effects. This is the expected value over the distribution of (βm,αa) and C(k).
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Similarly, the MSE of the indirect effect for inactive mediators is calculated as

MSEnull =
1

K

K∑
k=1

1

|C0(k)|
∑

j∈C0(k)

((βmj)
(k)(αaj)

(k) − (β̂mj)
(k)(α̂aj)

(k))2 (3.5)

where C0(k) is the set of inactive mediators for the k-th replicate.

3.3.3 Simulation Results: Setting (I)-(II)

Table 3.1 and 3.2 shows the results under the fixed effects for the small sample scenario

n = 100, p = 200 and the large sample scenario n = 1000, p = 2000, respectively. Overall,

our proposed methods, GMM and PTG, outperform the other methods. These two methods

achieve the highest area under the ROC curve (AUC) and are up to ∼ 30% more powerful

than the other methods in identifying active mediators, with performance gain more apparent

in the large sample scenario. Under Setting (I) where the mediation effects are large, the

PTG method has the highest average TPR for both small and large sample settings. The

performance of PTG is followed by GMM and BAMA. In contrast, under Setting (II) where

the mediation effects are uneven, PTG may fail to identify some of the active mediators

with small effects due to the thresholding set by the pre-defined parameter λ. Instead,

GMM performs the best and its performance is followed by PTG and BAMA. Importantly,

median inclusion probabilities (PIP = 0.5) in both GMM and PTG can be used as a criterion

to declare active mediators (details in the Appendix), producing decent empirical estimates

for FDR in simulations (Table B.1, B.2). Among the frequentist methods, the Bi-Lasso

performs best over the others and is also competitive in the small sample setting. HIMA

and the univariate method are among the worst methods for mediator selection, presumably

because neither models the entire set of mediators jointly in the outcome model.

In terms of the effects estimation, GMM has the lowest MSEnon-null across most simulation

scenarios. Due to hard thresholding, PTG tends to provide a conservative list of the active

mediators. Consequently, the non-zero indirect effects of some active mediators are shrunk

49



to zero in PTG, leading to relatively high MSEnon-null but small MSEnull by PTG. Mean-

while, we find that the Pathway Lasso does not appear to exhibit much advantage over the

simple alternative Bi-Lasso. Indeed, Pathway Lasso requires multiple tuning parameters for

inducing the penalty term on the indirect effects, and those tuning parameters may benefit

from more careful specifications than the algorithm default setting. The univariate method

in particular has a quite high MSEnull as it does not apply any shrinkage on the effects.

Overall, by jointly analyzing multiple mediators in a coherent statistical framework, both

PTG and GMM outperform the other methods in simulations.

3.3.4 Simulation Results: Setting (A)-(C)

Table 3.3 shows the results in the small sample scenario and Table 3.4 shows the results

in the large sample scenario. In all the settings, our proposed methods, PTG and GMM,

outperform the other methods with an approximately 10% power gain in identifying active

mediators. Between PTG and GMM, we find that both methods work preferably well in the

setting where their corresponding effect size distribution is used. Specifically, in Setting (A)

with p = 2000, the PTG method has the highest AUC (0.98) and TPR (0.40) at FDR =

10%. The performance of PTG is followed by GMM (AUC = 0.98, TPR = 0.37). In Setting

(B) with p = 2000, the GMM method has the highest AUC (0.95) and TPR (0.51). The

performance of GMM is followed by PTG (AUC = 0.92, TPR = 0.42). In Setting (C) where

the effects are simulated with a horseshoe distribution, we find that GMM performs the best

and its performance is followed by PTG and BAMA. The horseshoe distribution has a tall

spike near zero and heavy tails, and therefore leads to a particularly challenging setting for

most methods. The good performance of GMM in Setting (C) thus supports the robustness

of the method. In addition, as before, both PTG and GMM provide reasonable empirical

estimates of FDR and TPR (Table B.1, B.2 in the Appendix) based on a PIP = 0.5 cutoff.

The accuracy gain in indirect effects estimation basically follows the same pattern as the

power gain in mediator selection. The computing time of the proposed methods is reported
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n = 100, p = 200, p11 = 10, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.15,0.4,0.4) 0.99(0.001) 0.54(0.025) 0.040 0.486
GMM 0.98(0.002) 0.42(0.023) 0.054 1.336
BAMA 0.98(0.001) 0.40(0.022) 0.054 1.870

Bi-BLasso 0.90(0.005) 0.27(0.015) 0.092 21.879
PathLasso 0.75(0.004) 0.35(0.023) 0.098 17.220
Bi-Lasso 0.81(0.008) 0.38(0.019) 0.079 12.436
HIMA 0.61(0.005) 0.23(0.010) 0.081 1.832

Univariate 0.83(0.007) 0.25(0.014) 0.088 26.220
n = 100, p = 200, p11 = 10, fixed effects (II)

Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.15,0.4,0.4) 0.96(0.003) 0.34(0.017) 0.074 0.549
GMM 0.96(0.003) 0.39(0.020) 0.029 0.791
BAMA 0.96(0.003) 0.31(0.015) 0.038 1.502

Bi-BLasso 0.90(0.005) 0.25(0.013) 0.044 11.040
PathLasso 0.72(0.007) 0.23(0.011) 0.072 3.225
Bi-Lasso 0.72(0.006) 0.30(0.014) 0.041 0.445
HIMA 0.56(0.005) 0.17(0.009) 0.056 2.526

Univariate 0.81(0.006) 0.19(0.013) 0.030 46.764

Table 3.1: Simulation results for fixed effects under n = 100, p = 200, p11 is the number
of true active mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10.
MSEnon-null: mean squared error for the indirect effects of active mediators. MSEnull: mean
squared error for the indirect effects of inactive mediators. The results are based on 200
replicates for each setting, and the standard errors are shown within parentheses. For PTG,
we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs indicate
the top two performers.
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n = 1000, p = 2000, p11 = 100, fixed effects (I)
Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.15,0.4,0.4) 0.98(0.001) 0.64(0.008) 0.028 0.070
GMM 0.99(0.001) 0.61(0.009) 0.023 0.170
BAMA 0.98(0.001) 0.57(0.010) 0.038 0.141

Bi-BLasso 0.90(0.002) 0.23(0.004) 0.063 5.711
PathLasso 0.70(0.002) 0.20(0.005) 0.057 3.982
Bi-Lasso 0.76(0.001) 0.25(0.003) 0.051 0.290
HIMA 0.57(0.001) 0.16(0.003) 0.077 1.891

Univariate 0.93(0.001) 0.10(0.005) 0.092 225.056
n = 1000, p = 2000, p11 = 100, fixed effects (II)

Method AUC TPR MSEnon-null MSEnull ×10−6

PTG (0.15,0.4,0.4) 0.90(0.002) 0.40(0.008) 0.008 0.164
GMM 0.97(0.001) 0.48(0.006) 0.003 3.257
BAMA 0.96(0.001) 0.36(0.007) 0.005 7.346

Bi-BLasso 0.85(0.001) 0.18(0.004) 0.011 184.761
PathLasso 0.67(0.002) 0.19(0.003) 0.017 19.540
Bi-Lasso 0.70(0.001) 0.23(0.005) 0.007 4.925
HIMA 0.56(0.002) 0.09(0.004) 0.013 23.048

Univariate 0.90(0.002) 0.12(0.003) 0.075 208.660

Table 3.2: Simulation results for fixed effects under n = 1000, p = 2000, p11 is the number
of true active mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10.
MSEnon-null: mean squared error for the indirect effects of active mediators. MSEnull: mean
squared error for the indirect effects of inactive mediators. The results are based on 200
replicates for each setting, and the standard errors are shown within parentheses. For PTG,
we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs indicate
the top two performers.
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in Table C.1 of the Appendix, and the algorithms are relatively efficient for both p = 200

and p = 2000.

Finally, among the three frequentist methods, the bi-Lasso yields higher power as compared

to the other two in all the scenarios and has smaller MSE in almost all the settings except

for the horseshoe setting. Between bi-Lasso and bi-Bayesian Lasso, we find that the former

outperforms the latter by higher TPR and smaller MSEnull. This comparison between bi-

Lasso and bi-Bayesian Lasso suggests that the estimated indirect effects in bi-Bayesian Lasso

may not be ideal for classifying mediators as compared to that used in bi-Lasso.

In summary, the simulations demonstrate the great advantage and robustness of GMM

regarding selection and estimation accuracy, while PTG is more powerful under potentially

large non-zero effects in mediator selection.

3.4 Data Application

3.4.1 Analysis of DNA Methylation in the MESA Cohort

We applied the proposed GMM and PTG to investigate the mediation mechanism of DNAm

in the pathway from neighborhood socioeconomic disadvantage to BMI in the MESA data.

Neighborhood SES is the exposure variable and is created based on a principal components

analysis of 16 census-tract level variables reflecting dimensions of education, occupation,

income, poverty, housing, etc. Higher values on the scale indicate greater neighborhood

socioeconomic disadvantage. BMI is the outcome variable and also a critical risk factor

for various diseases including T2D and CVD (Hjellvik et al., 2012). Understanding how

methylation at different CpG sites mediates the effects of neighborhood SES on BMI can shed

light on the molecular mechanisms of complex diseases, thus leading to potential therapeutic

strategies. The detailed processing steps for MESA data are provided in the Appendix.

Briefly, we selected 1,225 individuals with non-missing data. Due to computational reasons,
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n = 100, p = 200, p11 = 10, PTG, σ2
u = 0.3

Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.15, 0.4, 0.4) 0.98(0.002) 0.45(0.020) 0.05 1.59
GMM 0.98(0.001) 0.43(0.015) 0.03 4.25
BAMA 0.98(0.001) 0.41(0.019) 0.04 2.64

Bi-BLasso 0.89(0.006) 0.35(0.017) 0.05 6.83
PathLasso 0.65(0.013) 0.31(0.015) 0.06 2.43
Bi-Lasso 0.78(0.009) 0.40(0.020) 0.05 1.12
HIMA 0.60(0.007) 0.29(0.012) 0.07 5.46

Univariate 0.85(0.008) 0.29(0.023) 0.15 76.25
n = 100, p = 200, p11 = 10, Gaussian, σ2 = 0.3

Method AUC TPR MSEnon-null ×10−3 MSEnull ×10−5

PTG (0.04, 0.2, 0.2) 0.92(0.002) 0.38(0.008) 6.24 4.05
GMM 0.94(0.003) 0.41(0.006) 3.92 3.56
BAMA 0.95(0.003) 0.38(0.011) 5.06 3.39

Bi-BLasso 0.83(0.006) 0.28(0.014) 23.31 14.38
PathLasso 0.75(0.008) 0.30(0.011) 11.57 3.09
Bi-Lasso 0.75(0.003) 0.36(0.011) 7.50 1.52
HIMA 0.65(0.005) 0.21(0.009) 14.98 7.93

Univariate 0.75(0.006) 0.26(0.025) 62.46 234.30
n = 100, p = 200, p11 = 10, Horseshoe, σ2 = 0.5, b = 3

Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.15, 0.5, 0.3) 0.80(0.009) 0.30(0.015) 0.42 7.16
GMM 0.83(0.006) 0.33(0.011) 0.03 5.21
BAMA 0.80(0.008) 0.28(0.017) 0.11 6.28

Bi-BLasso 0.76(0.011) 0.23(0.010) 0.45 42.36
PathLasso 0.65(0.019) 0.25(0.026) 0.51 6.04
Bi-Lasso 0.68(0.009) 0.27(0.017) 0.46 5.41
HIMA 0.60(0.006) 0.20(0.010) 0.41 26.51

Univariate 0.72(0.009) 0.20(0.020) 0.44 512.33

Table 3.3: Simulation results for n = 100, p = 200, p11 is the number of true active mediators.
TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared
error for the indirect effects of active mediators. MSEnull: mean squared error for the indirect
effects of inactive mediators. The results are based on 200 replicates for each setting, and
the standard errors are shown within parentheses. For PTG, we include the pre-defined
thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs indicate the top two performers.
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n = 1000, p = 2000, p11 = 100, PTG, σ2
u = 0.1

Method AUC TPR MSEnon-null ×10−4 MSEnull ×10−6

PTG (0.05,0.15,0.15) 0.98(0.001) 0.40(0.008) 5.28 2.46
GMM 0.98(0.001) 0.37(0.010) 3.86 4.26
BAMA 0.98(0.001) 0.30(0.012) 4.84 3.62

Bi-BLasso 0.92(0.003) 0.29(0.018) 7.92 11.38
PathLasso 0.77(0.009) 0.22(0.007) 7.02 1.74
Bi-Lasso 0.83(0.003) 0.28(0.014) 5.60 1.81
HIMA 0.53(0.002) 0.14(0.004) 9.96 4.96

Univariate 0.85(0.003) 0.11(0.023) 60.24 214.57
n = 1000, p = 2000, p11 = 100, Gaussian, σ2 = 0.1

Method AUC TPR MSEnon-null ×10−3 MSEnull ×10−5

PTG (0.02,0.2,0.1) 0.92(0.002) 0.42(0.006) 4.76 0.874
GMM 0.95(0.001) 0.51(0.007) 2.09 0.712
BAMA 0.90(0.003) 0.41(0.018) 2.85 0.722

Bi-BLasso 0.88(0.002) 0.32(0.007) 4.85 1.632
PathLasso 0.78(0.011) 0.25(0.003) 4.88 1.256
Bi-Lasso 0.81(0.002) 0.38(0.010) 2.53 0.368
HIMA 0.55(0.002) 0.19(0.004) 8.41 1.544

Univariate 0.82(0.003) 0.19(0.017) 34.08 20.05
n = 1000, p = 2000, p11 = 100, Horseshoe, σ2 = 0.3, b = 3

Method AUC TPR MSEnon-null MSEnull ×10−4

PTG (0.03,0.3,0.1) 0.74(0.002) 0.29(0.008) 0.18 10.04
GMM 0.80(0.001) 0.38(0.007) 0.14 2.94
BAMA 0.75(0.002) 0.27(0.006) 0.25 3.88

Bi-BLasso 0.71(0.002) 0.09(0.003) 0.26 127.55
PathLasso 0.66(0.008) 0.05(0.002) 0.41 2.03
Bi-Lasso 0.72(0.003) 0.24(0.007) 0.24 1.57
HIMA 0.55(0.002) 0.09(0.004) 0.39 1.56

Univariate 0.77(0.003) 0.09(0.015) 0.59 644.07

Table 3.4: Simulation results for n = 1000, p = 2000, p11 is the number of true active
mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10, MSEnon-null: mean
squared error for the indirect effects of active mediators. MSEnull: mean squared error for
the indirect effects of inactive mediators. The results are based on 200 replicates for each
setting, and the standard errors are shown within parentheses. For PTG, we include the
pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded TPRs indicate the top two
performers.
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we focused on a final set of 2,000 CpG sites that have the strongest marginal associations

with neighborhood SES. We applied various methods for the mediation analysis. In the

outcome model, we adjust for age, gender, race/ethnicity, childhood socioeconomic status

(SES) and adult SES. In the mediator model, we control for age, gender, race/ethnicity,

childhood SES, adult SES, and enrichment scores for 4 major blood cell types (neutrophils,

B cells, T cells and natural killer cells). All the continuous variables are standardized to

have zero mean and unit variance.

We display the PIP values for each of the 2,000 CpG sites from PTG and GMM in Figure 3.1.

GMM identified nine CpG sites with significance evidence for mediating the neighborhood

SES effects on BMI based on 0.5 cutoff of PIPs. In contrast, PTG identified twelve significant

CpG sites at the same threshold, which include all the nine sites selected by GMM method.

The top five CpG sites identified by the two methods are identical. The rank correlation for

the mediator rank lists obtained from both methods is 0.87, supporting the high consistency

between the two methods. We carefully examine the nearby genes of the detected methylation

sites by GMM and PTG. Among them, the protein-coding gene PTK2 has been previously

discovered as BMI risk loci (Zeller et al., 2018); PCID2 and NFE2L1 have been shown to be

associated with obesity, glucose, diabetes and related metabolic diseases (Zheng et al., 2015;

Erdmann et al., 2018); COX6A1P2 was robustly recognized to link with obesity development

in multiple epigenome-wide studies (Kvaløy et al., 2018) and EVI2B was reported as one of

the regulatory genes related to obesity (Kogelman et al., 2014). Therefore, the genes nearby

the detected CpG sites may play an important role in transmitting the effects of neighborhood

SES to BMI. For the other competing methods, BAMA, HIMA and the univariate methods

do not have sufficient power to identify any significant CpG sites at 0.10 FDR. Bi-Lasso and

Pathway Lasso tend to produce a large number of false positives in simulations, and thus it

is hard to verify their findings in the real data application.
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Figure 3.1: Data analysis results for the trio Neighborhood SES → DNAm → BMI in
MESA data. The upper panel shows the PIPs obtained from the GMM method, and the
lower panels shows the PIPs obtained from the PTG method. The blue lines mark the PIP
= 0.5 threshold, and we include the nearby genes of the selected CpG sites. Most of the sites
are identified by both methods, and the three genes in green are additional findings from
PTG.
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3.4.2 Analysis of Endogenous Biomarkers and Environmental Data in the LIFE-

CODES Birth Cohort

As another data example, we study the collective impact of endogenous signaling molecules

derived from lipids, peptides, and DNA in mediating prenatal exposure to environmental

contaminants on the risk of preterm birth in the LIFECODES birth cohort. Detailed de-

scription of the study is provided in the Appendix. Briefly, we consider n = 161 pregnant

women registered at the Brigham and Women’s Hospital in Boston, MA between 2006 and

2008. Subjects’ urine and plasma specimens were collected at one study visit occurring be-

tween 23.1 and 28.9 weeks gestation. Four classes of environmental contaminants, including

phthalates, phenols, polycyclic aromatic hydrocarbons, and trace metals, were measured in

each urine sample. Among them, phthalates are the high-production volume chemicals com-

monly used as plasticizers in numerous consumer products. Previous studies have shown

that everyday exposure to phthalates during pregnancy would increase risk of delivering

preterm (Ferguson et al., 2014b). Recent studies have also uncovered associations between

multiple lipid biomarkers and preterm birth (Aung et al., 2019). Based on these previous

literature, we aim to understand the molecular mechanism underlying the effects of phtha-

lates on preterm. To do so, we follow Aung et al. (2020) to create an environmental risk

score for the phthalate class and treat such risk score as the exposure variable. We recorded

the gestational age at delivery as the continuous birth outcome. In terms of mediators, we

obtained 61 endogenous biomarkers from urine and plasma that included 51 eicosanoids,

five oxidative stress biomarkers and five immunological biomarkers. With these variables,

we examine if any of these 61 available biomarkers mediates the effects of phthalate expo-

sure on gestational age at delivery. In the analysis, we perform log-transformation on all

measurements of the exposure metabolites and endogenous biomarkers. We adjust for age

and maternal BMI from the initial visit, race, and urinary specific gravity levels inside both

models of the mediation analysis. Since the cohort is oversampled for preterm cases (< 37

weeks gestation), we multiply the data by the case-control sampling weights to adjust for
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that.

We applied the proposed methods to the data and summarize the results in Table 3.5. Both

PTG and GMM identified significant mediators that mediate the effects of the phthalate

exposure on gestational age at delivery based on PIP = 0.5 cutoff (Figure 3.2), with rank

lists of mediators positively correlated with each other (rank correlation = 0.48). Specifically,

GMM identified two significant biomarkers (9-oxooctadeca-dienoic acid [9-oxoODE], 12,13-

epoxy-octadecenoic acid [12(13)-EpoME]). PTG identified three significant biomarkers (8-

hydroxydeoxyguanosine [8-OHdG], 12(13)-EpoME, leukotriene D4 [LTD4]), one of which

(12(13)-EpoME) overlaps with those identified by GMM. Among the identified biomarkers, 8-

OHdG is commonly utilized as a marker of oxidative stress generated upon repair of oxidative

DNA damage and has been found strongly associated with decreased gestational length and

increased risk of preterm (Ferguson et al., 2015; Hsieh et al., 2012); while LTD4 has been

shown to exhibit significant associations with preterm birth, and 9-oxoODE and 12(13)-

EpoME had an important protective effect on preterm birth (Aung et al., 2019). Therefore,

our results help improve the understanding of the molecular mechanisms underlying the

effects of environmental exposure on preterm, and could further lead to improvement of

treatment and prevention strategies.

3.5 Discussion

In this chapter, we present two novel joint modeling methods, PTG and GMM, for high-

dimensional mediation analysis. Our methods can jointly model a large number of mediators

and enable penalization on the indirect effects in a targeted way. Our methods effectively

characterize the high-dimensional set of potential mediators into four groups based on the

exposure-mediator and mediator-outcome effects: the active mediating group and three non-

mediating groups. These group categorizations are in consonance with the composite struc-

ture for testing the indirect effect recently proposed in genome-wide mediation analyses
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Method Selected Mediators
MESA: Neighborhood SES → DNAm → BMI

GMM CRHR2, NFE2L1, PTK2, PCID2, MNDA,
SLK, CREB1, CASZ1, EVI2B

PTG (0.01,0.05,0.1) CRHR2, NFE2L1, PTK2, PCID2, MNDA, CREB1,
SLK, EVI2B, OR2M5, SLC18B1, COX6A1P2, CASZ1

LIFECODES: Phthalates → Biomarkers → Gestational age
GMM 12(13)-EpoME, 9-oxoODE

PTG (3.0,2.0,1.5) 12(13)-EpoME, 8-OHdG, LTD4

Table 3.5: Summary of the identified active mediators from the data application on MESA
and LIFECODES study. For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) for the
two real datasets.

Figure 3.2: Data analysis results for the LIFECODES cohort. The panel shows the PIPs
obtained from GMM and PTG methods for the trio Phthalates→ Biomarkers→ Gestational
Age. The blue line marks the PIP = 0.5 threshold.
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(Huang et al., 2019). With extensive simulations, we show that our methods achieve up

to 30% power gain in identifying true non-null mediators compared with other alternatives,

including several recently developed penalized and Bayesian methods for mediation analysis.

We have demonstrated the benefits of our methods in the MESA and LIFECODES cohorts.

For example, in the MESA cohort, we identify several methylation sites and their nearby

genes, such as NFE2L1 and PTK2, with strong evidence for mediating the neighborhood

SES effects on BMI.

Bayesian FDR control is of great importance to safeguard false positives in the scientific

discovery. For PTG and GMM, we rely on median inclusion probabilities (PIP = 0.5) to

identify active mediators while maintaining a reasonable FDR. For bi-Bayesian Lasso and

other continuous shrinkage methods, such as the scale mixture of normals prior (Carvalho

et al., 2009), we have also attempted to estimate the Bayesian FDR using shrinkage factors

following Carvalho et al. (2010). However, we find it challenging to adapt the shrinkage

factors in these methods as an optimal strategy for ranking correlated mediators and to

identify a significance threshold for declaring signals while bounding the false discoveries.

Therefore, coming up with an analog of PIP in the global-local shrinkage framework as the

selection criterion and developing a thresholding rule for determining significance levels in

mediation analysis remains a topic of future investigation.

One limitation of this current work is that the proposed methods do not explicitly incor-

porate the correlation structure among mediators in the model building process. Treating

mediators independent a priori, the models may fail to distinguish among highly correlated

mediators and lose power in mediator selection when active mediators tend to correlate with

each other. Correlations among mediators are commonly seen in modern data analysis; such

examples include genomic data that measure hundreds of thousands of gene expressions/sin-

gle nucleotide polymorphisms (SNPs), and brain image data that contain a large number of

voxels/regions. Incorporating mediator correlation information into our Bayesian paradigm

could be a promising direction to pursue, and we explore more on that in the next chapter.
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CHAPTER IV

Bayesian Hierarchical Modeling of High-Dimensional

Mediation Analysis for Coordinated Selection of

Correlated Mediators

4.1 Introduction

In the last two chapters, we have introduced multiple Bayesian methods developed in high-

dimensional sparse mediation analysis. They enable a joint analysis of high-dimensional

correlated mediators and exhibit great advantages and flexibility in a wide range of scenar-

ios. However, one common issue with the previous described methods is that mediators

are assumed to be independent a priori and the specified priors ignore the possible corre-

lation structure among the mediators. In modern data applications, thanks to the tech-

nology advances, the substantial correlation has been frequently seen in the increasingly

high-dimensional mediators. For example, in large-scale genomic studies, hundreds of thou-

sands of single nucleotide polymorphisms (SNPs) were measured and shown highly correlated

within linkage disequilibrium (LD)-based blocks; and in functional MRI (fMRI) studies, the

brain images are composed of a large number of voxels/regions and true signals usually rep-

resent connected regions. As far as we know, none of the existing methods for mediation

analysis has incorporated the useful correlation structural information in the model build-
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ing process. Intuitively, positively correlated mediators tend to transmit similar mediation

effects and should be grouped together when modeled simultaneously. Incorporating prior

knowledge on the structure of the mediators is expected to improve active mediator detection

and strengthen Bayesian learning.

Bayesian variable selection with covariate structural information has received much attention

over the years. Bayesian group Lasso (Raman et al., 2009) and Bayesian sparse group selec-

tion method (Chen et al., 2016) allow for the inclusion of grouping effects and lead to more

parsimonious models with reduced estimation error compared with standard Lasso. Yuan

and Lin (2005) also develop a correlation prior on the binary selection indicators to distin-

guish models with the same size. Bayesian graphical models represent another stream of

work on structural variable selection. Both Liu et al. (2014) and Cai et al. (2018) utilize the

graph Laplacian matrix to encode the network information into the regression coefficients.

Stingo et al. (2011) and Peng et al. (2013) propose the simultaneous selection of pathways

and genes, using the pathway summaries of the group behavior and structure dependency

within pathways to inform the selection. Chang et al. (2018) assume a multivariate normal

prior on the shrinkage parameters in the Laplace priors for a informative network based

prior. Along with the above methods, emerging literature considers the extension of the

“spike-and-slab” type of mixture prior (Mitchell and Beauchamp, 1988) in combination with

Markov random field (MRF) prior to incorporate graph information. Ising prior, a binary

spatial MRF, and its variations have been effectively applied to induce sparsity and accom-

modate selection dependency. Li and Zhang (2010) and Chekouo et al. (2016) show that

the structural information through Ising priors can greatly improve selection and prediction

accuracy over the independent priors. In addition to smoothing over the latent selection

indicators, recent studies deploy different types of “slab distribution”, such as the Dirichlet

Process (Li et al., 2015), the Gaussian MRF (Goldsmith et al., 2014), the group fused Lasso

prior (Zhang et al., 2014), etc., to include the grouping and smoothing effect in the non-zero

regression coefficients due to local dependence or high correlation.
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In the last chapter, we have introduced the Gaussian mixture model (GMM) for a joint

prior on the exposure-mediator and mediator-outcome effects and consequently a targeted

shrinkage on their products, i.e. the indirect effect. GMM assumes that each mediator can

be independently categorized into one of the four components based on association pattern,

and its group indicator follows the same multinomial distribution as the other mediators.

In this chapter, with the goal of utilizing the correlation structure among mediators in the

modeling process, we may replace the independent priors on the mediators’ group indicators

with a joint Potts prior. The Potts distribution (Potts , 1952), a generalization from the Ising

distribution, allows for more than two groups and complex dependency between neighbors,

which can be spatially or statistically correlated. On the other hand, we can also jointly

model the mediator-specific mixing probabilities via a logistic normal distribution (Atchison

and Shen, 1980), with the group probabilities reflecting the underlying correlation structure.

To sum up, we develop two methods: Potts mixture model and correlated multinomial model

for high-dimensional mediation analysis, adding the possible grouping effect across mediators

through another layer in the Bayesian heirachy. Both methods are built off the GMM

introduced in Chapter 3, and thus inherit the merits of the GMM method. Furthermore, the

proposed methods incorporate the structural information into a prior favoring selection of

correlated mediators, and are expected to allow the identification of mediators that could be

missed otherwise. The proposed method will also facilitate the interpretation of the results,

particularly for the selected mediators with high correlations.

We illustrate the advantage of proposed method on the LIFECODES prospective birth co-

hort. Preterm birth remains the leading cause of infant mortality in the U.S. (Callaghan

et al., 2006), and one suspected risk factor for preterm delivery is exposure to environmental

contaminants (Vrijheid et al., 2016). Those toxicants (e.g. phthalates, toxic heavy met-

als) were also shown to disturb receptor activity and induce their responses, which could

affect the signaling molecules related to inflammation and metabolism (Kiyama and Wada-

Kiyama, 2015; Milnerowicz et al., 2015). Meanwhile, recent studies revealed associations
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between preterm birth and certain biomarkers of inflammation and oxidative stress (Fergu-

son et al., 2014a, 2015). In light of those multiple lines of evidence, we hypothesize that

the relationship between toxicant exposure during pregnancy and preterm may be mediated

by endogenous biomarkers of lipid metabolism, inflammation, and oxidative stress. In the

present study, moderate to strong correlations across biomarkers are observed and not only

occur within the same biological pathways. The whole correlation structure will be utilized

to inform biomarker selection and interpretation. Another application on the MESA data

will demonstrate our methods under a larger number of mediators and relatively weak cor-

relation structure. In this application, DNA methylations are hypothesized to mediate the

effect of neighborhood factors on clinical health outcomes. Previous studies have provided

evidence of the associations between neighborhood conditions and changes in DNA methy-

lation (Smith et al., 2017), as well as associations between changes in DNA methylation and

diabetes/CVD risks (Rakyan et al., 2011; Dayeh et al., 2014; Abi Khalil , 2014; Zhong et al.,

2016). Understanding the molecular basis of those complex diseases through the integrative

mediation analysis will facilitate the development of prevention and treatment strategies,

where the interventions can be designed to target the mediating DNAm or nearby genes.

4.2 Method

We start with a brief review of our high-dimensional mediation models. For the outcome

model, i = 1, 2, ..., n,

Yi = M>
i βm + Aiβa +C>i βc + εY i, (4.1)

where βm = (βm1, . . . , βmp)
> is the mediator-outcome effect for the p mediators; βc =

(βc1, . . . , βcq)
> is the coefficient for the q covariates; and εY i ∼ N(0, σ2

e).

For the mediator model,

Mi = Aiαa +αcCi + εMi, (4.2)
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where αa = (αa1, . . . , αap)
> is the exposure-mediator effect for the p mediators; αc =

(α>c1, . . . ,α
>
cp)>; αc1, . . . ,αcp are q-by-1 vectors of coefficients for the q covariates; εMi ∼

MVN(0,Σ), with Σ capturing potential residual error covariance. εY i and εMi are assumed

to be independent of each other and independent of Ai and Ci.

With the same rationale as discussed in Chapter III, we consider a four-component Gaussian

mixture model for the effects of the j-th mediator,

[βmj, αaj]
> ∼ π1jMVN2(0,V1) + π2jMVN2(0,V2) + π3jMVN2(0,V3) + π4jδ0 (4.3)

with a prior probabilities πkj (k ∈ Ω,Ω = {1, 2, 3, 4}) summing to one for the jth medi-

ator. We also introduce a membership indicator variable γj for the j-th mediator, where

γj = k if [βmj, αaj]
> is from normal component k, k ∈ {1, 2, 3, 4}.The other parameters

are defined similarly as in Chapter III. If we assume independent prior distributions across

πk1, πk2, ..., πkp (or γ1, γ2, ..., γp), then each mediator is independent a priori and the prior

distribution on [βm,αa]> after integrating out πkj (or γj) is essentially a separable prod-

uct of distributions of [βmj, αaj]
>. This is also akin to the concept of “separable prior” in

Ročková and George (2018). Recall that in the previous developed GMM method, we have a

common set of π1, π2, π3, π4 for all the mediators. This specification enables the information

borrowing across mediators and tie mediators together through the mixing probabilities,

making the prior “non-separable”. However, since this approach assumes the same mixing

probabilities for all the mediators a priori, it does not differentiate highly correlated me-

diators from uncorrelated ones to inform mediator categorization. For example, if the j-th

mediator and the (j + 1)-th mediator are highly correlated, then presumably γj and γj+1

are more likely to be the same. To improve the flexibility of the previous GMM, we turn to

mediator-specific {πkj, k = 1, 2, 3, 4} and γj, and instead of independent, separable prior, we

consider embedding the correlated information to {πkj, k = 1, 2, 3, 4}’s or γj’s for mediator

selection. In the following sections, we describe the proposed methods with more details.
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4.2.1 Hierarchical Potts Mixture Model: GMM-Potts

The Potts model (Potts , 1952) was initially developed as a generalization of the Ising model

in statistical physics (Ising , 1925; Winkler , 2012). However, it has enjoyed great success

as a prior model for the spatial modeling in image analysis (Feng et al., 2012; Li et al.,

2019), disease mapping (Best et al., 2005), genetics studies (Thomas et al., 2003; Yu et al.,

2012), etc. In those applications, Potts models incorporate spatial Markovian dependency

by assigning homogeneous relationships for the “neighboring” regions. In the context of

mediation analysis, we can allocate the high-dimensional mediators into four clusters based

on their exposure-mediator and mediator-outcome effects. To further draw the connection,

we may think of highly correlated mediators as neighbors, and they tend to be assigned to

the same cluster (Gaussian component) through Potts model.

To specifically formulate our Potts mixture model, we assume γ = (γ1, γ2, ..., γp) follows a

Potts distribution,

p(γ|θ0,θ1) = c(θ0,θ1)
−1exp

{ p∑
i=1

θ0kI[γi = k]
}
× exp

{ p∑
i=1

∑
i∼j

4∑
k=1

θ1kI[γi = γj = k]
}

(4.4)

where i ∼ j indicates neighboring pairs and I(·) is the indicator function. The neighboring

relationship can be defined in terms of domain knowledge or in our case, the correlated

information. θ0 = (θ01, θ02, θ03, θ04) represents the relative group distributions a priori with-

out any neighboring information and controls the overall sparsity. θ1 = (θ11, θ12, θ13, θ14)

represents the prior belief on the strength of association between neighboring pairs. For

θ1k > 0, the Potts distribution encourages configurations where “neighboring mediators”

belong to the same cluster, and the larger θ1k, the tighter this coupling. When θ1 = 0,

cluster membership of one mediator is independent of its neighbors. The exact calculation

of the normalizing constant c(θ0,θ1) in Potts distribution requires the summation over the

entire space of γ, which consists of 4p states. Even for a moderate number of mediators,

c(θ0,θ1) is computationally intractable, and this complicates the Bayesian inference unless
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θ0,θ1 are assumed as fixed hyperparameters. Based on the full probability distribution in

Equation 4.4, the probability for the j-th mediator belonging to cluster k conditional on its

neighbors is,

p(γj = k|{γi}i 6=j,θ0,θ1) =
exp{θ0k} × exp{

∑
i∼j θ1kI[γi = γj = k]}∑4

k=1 exp{θ0k} × exp{
∑

i∼j θ1kI[γi = γj = k]}
(4.5)

This conditional probability depends on the neighbors of the j-th mediator and demonstrates

the Markov property of the Potts distribution.

We develop a Markov chain Monte Carlo (MCMC) sampling strategy for the proposed model.

Due to the intractable normalizing constant in Potts distribution, the update of θ0,θ1 cannot

be handled by the standard Metropolis Hastings (MH) algorithm. To address this issue, we

employ the double MH sampler (Liang , 2010) to generate auxiliary variables via the MH

transition kernels and eliminate the normalizing constants. For θ0,θ1, we consider normal

priors, and the prior means of {θ0k} are set to have the desired inclusion probability while

the prior means of {θ1k} are set to be the same positive number. This prior information

favors the grouping of correlated mediators. According to Equation 4.5, the updating of γ

can be realized through single site Gibbs sampling. Since the sampling space of γ is huge and

discrete, the efficiency of the standard Gibbs updates can be improved by the Swendsen-Wang

(SW) algorithm (Higdon, 1998). The SW algorithm partitions the whole set of mediators

into blocks within which the mediators belong to the same normal component, and then

updates each block independently. Following the strategy in Higdon (1998), we alternate

between the single site Gibbs updates of γ and SW updates to ensure movement in large

patches and fast mixing of the algorithm. The detailed algorithm is given in the Appendix.

In our Potts mixture model, the “neighboring” mediators are predefined to capture the cor-

relation structure among mediators. Based on our experience, including too many neighbors

into the model will cause irrelevant noises to the group probabilities and blur the cluster

boundary; while including too few neighbors will certainly lose some of the important struc-
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tural information. In this work, we apply the common clustering method on the p(p− 1)/2

pairwise correlations among mediators to divide them into two groups: high correlation and

background noise. This procedure essentially sets a correlation threshold for neighbors and

non-neighbors in a data dependent way, and we define the i-th mediator and j-the mediator

as neighbors if their pairwise correlation is above this threshold. The threshold should reflect

the prior knowledge on the neighborhood structure and relationships across mediators.

The Potts mixture model translates the correlation structure and incorporates the local de-

pendency through mediators’ predefined neighbors. For each mediator, its four-component

group probabilities will only smooth over the most correlated mediators with this one, and

ignore the non-neighboring ones. This local property does not incur much additional com-

putational burden compared to the previous GMM, and more importantly, filters out the

uncorrelated information. However, if the neighbors and non-neighbors are hard to distin-

guish through a clustering method, e.g. within a weak correlation structure, the inaccurately

specified neighbors may adversely affect the performance of the method. To avoid the need of

neighborhood pre-specification and also for a more direct and general position of the overall

correlation structure, we consider a different approach as described in the next section.

4.2.2 Hierarchical GMM with Correlated Selection: GMM-CorrS

In this section, we take another approach to accounting for the correlation among mediators

in mediator selection. For each mediator, the selection/group indicator γj follows a multi-

nomial distribution with parameters π1j, π2j, π3j, π4j, and
∑4

k=1 πkj = 1. We propose to

jointly model all the mediators’ mixing probabilities and their continuous dependence struc-

ture via latent logistic normal distributions. The logistic normal (Atchison and Shen, 1980)

has been studied in the context of analyzing compositional data, such as bacterial compo-

sition in human microbiome data (Xia et al., 2013) and topics proportions associated with

document collections in correlated topics model (Chen et al., 2013a). In mediation analysis,
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it will allow for a flexible covariance structure among the mediators and give a more realistic

model where correlated mediators will have similar group probabilities a priori, including

the prior inclusion probability. However, adding this Gaussian correlation structure among

multinomial parameters breaks the Dirichlet-multinomial conjugacy as used in the previ-

ous chapters, and poses a challenge in Bayesian computation. Approximation techniques,

such as variational inference are feasible, but they do not always come with the theoretical

guarantees as MCMC and may require additional modeling assumptions (Blei et al., 2007).

On the other hand, Bayesian inference with binomial likelihood or Bayesian logistic regression

has long been explored given its inconvenient analytic form of the likelihood and the non-

existence of a conjugate prior for parameters of interest. To solve the computational issue,

Holmes et al. (2006) develops auxiliary variable approaches using normal-scale mixture for

the noise process as an extension to the probit model; and Frühwirth-Schnatter and Frühwirth

(2010) approximates the noise process with a discrete mixture of normals. More recently,

Polson et al. (2013) constructs a new data-augmentation strategy based on the novel class

of Pólya-Gamma (PG) distributions, and the method is notably simpler and more efficient

than the previous schemes for Bayesian hierarchical models with binomial likelihoods. To

achieve a multinomial generalization, we leverage a logistic stick-breaking representation

in the Pólya-Gamma augmentation (Linderman et al., 2015) to formulate the multinomial

distribution in terms of latent variables with jointly Gaussian likelihoods.

We rewrite 4-dimensional multinomial in terms of 3 binomial densities π̃j1, π̃j2 and π̃j3,

p(γj = 1) = π̃j1 = πj1

p(γj = 2|γj 6= 1) = π̃j2 = πj2/(1− πj1)

p(γj = 3|γj 6= 1 or 2) = π̃j3 = πj3/(1− πj1 − πj2)

p(γj = 4|γj 6= 1 or 2 or 3) = π̃j4 = πj4/(1− πj1 − πj2 − πj3) = 1

Multinomial(γj|1, {πj1, πj2, πj3, πj4}) =
3∏

k=1

Binomial(I(γj = k)|njk, π̃jk)
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where njk = 1 −
∑

k′<k I(γj = k
′
), nj1 = 1. The multinomial distribution is now expressed

with three binomial distributions and each π̃jk describes the faction of the remaining prob-

ability for the k-th group (details in the Appendix). To better aid the interpretation of the

above stick-breaking representation, consider a testing strategy for the indirect effect βmjαaj

implemented on each mediator, and we get the subset of active mediators with γj = 1. For

the remaining mediators, we further look into their marginal effects: p(γj = 2|γj 6= 1) is the

conditional probability of having non-zero βmj effect given it is not an active mediator; and

p(γj = 3|γj 6= 1 or 2) is the conditional probability of having non-zero αaj effect given that

βmj = 0. The rest of the mediators will surely have γj = 4. We note that under the sparsity

assumption, for most of the mediators, π̃j2 ≈ πj2, π̃j3 ≈ πj3 due to the small values of πj1

and πj2.

We define bjk = logit(π̃jk) for k = 1, 2, 3 and j = 1, 2, . . . , p. We then stack the 3× p bjk’s as

one random vector, and assume a multivariate normal prior on it, that is,

b := {bjk}j=1,...,p;k=1,2,3

b ∼ MVN(a, diag{σ2
d1, σ

2
d2, σ

2
d3} ⊗D) (4.6)

where ⊗ denotes the Kronecker product. The logistic transformation maps the trans-

formed multinomial parameters to the 3p-dimensional open real space. The prior mean

a = {ajk}j=1,...,p;k=1,2,3, and it is chosen such that ajk = aj′k for k = 1, 2, 3 and 1 ≤ j < j′ ≤ p.

It reflects our prior belief on the overall group proportions and induces sparsity. The D is

a p-by-p covariance matrix and will incorporate the mediator-wise correlation/structure de-

pendency to the transformed mixing probabilities. In our setting, we estimate the correlation

matrix among mediators from data and replace the negative correlations with their absolute

values. We then find the nearest positive definite matrix to the absolute correlation matrix,

and use that as D matrix in the model fitting. Since the variation may be different for

logit(π̃j1), logit(π̃j2) and logit(π̃j3), we introduce the group-wise σ2
dk, k = 1, 2, 3 for a more
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general pattern. This correlation embedded GMM exploits the whole correlation information

from all the mediators and does not require the predefined neighbors as in the Potts mixture

model.

Following the idea of data augmentation (Polson et al., 2013), we introduce the Pólya-

Gamma variables for an effective fully Bayesian approach. The augmented posterior leads

to conditional distributions from which we can easily draw samples and the entire vector b

can be sampled as a block in a single Gibbs update. The detailed derivation and algorithm

can be found in the Appendix.

4.3 Simulations

We evaluate the performance of the proposed models compared with existing methods under

different scenarios through simulations.

4.3.1 Small Sample Scenarios: n = 100, p = 200

Simulation Design

Following settings in the previous chapters, we adopt the four-component structure to gen-

erate the exposure-mediator and mediator-outcome effects, i.e. simulate [βmj, αaj]
> from

[βmj, αaj]
> ∼ π1MVN(0,

[
0.5 0.2

0.2 0.5

]
) + π2MVN(0,

[
0.5 0

0 0

]
) + π3MVN(0,

[
0 0

0 0.5

]
) + π4δ0

To introduce sparsity, we assume the proportion of active mediators π1 = 0.05, and the

other three null components π2 = 0.05, π3 = 0.10, π4 = 0.80. We generate a p-vector of

correlated mediators for the ith individual from Mi = Aiαa + εMi
, where the continuous

exposure {Ai, i = 1, ..., n} are independently from a standard normal distribution. The

residual errors εMi
∼ MVN(0,Σ) and Σ models the correlation structure across mediators.
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For the outcome, we simulate it from the linear model: Yi = M>
i βm + Aiβa + εYi , with

βa = 0.5, and the residual error εYi ∼ N(0, 1).

For the correlation structure, we assume 10 highly-correlated blocks of size 10 × 10, within

which the pairwise correlation of mediators is ρ1, e.g. ρ1 = 0.5−0.03|i−j| or 0.9−0.05|i−j|,

and the correlation between blocks (ρ2) is relatively weak (e.g. ρ2 = 0 or 0.1). Such cor-

relation structure mimics the local dependency due to physical adjacency or biologically

functional pathway of biomarkers, which is commonly seen in the high-dimensional medi-

ators. There are 10 active mediators, and they are assumed to cluster within one block

or scatter over a few blocks, while the other blocks contain no active mediators. We also

consider settings where there is no correlation or such structural information underlying ac-

tive mediators, that is, setting Σ to be identical matrix or estimated covariance based on a

random subset of DNAm from MESA.

The Potts mixture model needs the input of a reliable neighborhood matrix. In practice,

we may not be able to specify a completely precise neighborhood structure, but instead a

deviated version of that. To examine how sensitive our Potts mixture model is to the incorrect

neighborhood relationship, we randomly convert a proportion of r neighboring mediator pairs

to be non-neighboring, and randomly convert the same amount of non-neighboring pairs to

be neighbors. The other configurations are same as in the previous simulations. We vary

the perturbation rate r from 0.05 to 0.5 to mimic different degrees of bias. In addition,

for the Gaussian mixture model, since it directly takes the correlation matrix as an input,

we examine its sensitivity to the observed correlation matrix by adding mild changes from

N(0, σ2) to the estimated matrix. We vary σ from 0.1 to 0.3 for different levels of noise.

Evaluation Metrics

To examine the mediator selection accuracy, for the proposed GMM-based methods, we use

PIP to prioritize mediators as we did in the last two chapters. We calculate the true positive

rate (TPR) for active mediators based on the fixed 10% false discovery rate (FDR). For
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the estimation accuracy, we calculate the mean square error (MSE) of the indirect effects

for both non-null and null mediators, denoted as MSEnon-null and MSEnull. We perform 200

replicates for each scenario and report the means of those metrics in the result tables.

Competing Methods

In addition to the proposed methods, we consider the following existing methods: GMM

with no correlated information included, Bi-Lasso (apply two separate Lasso (Tibshirani ,

1996) regression to the outcome and mediator model, respectively), Bi-Ridge (apply two

separate ridge (Hoerl and Kennard , 1988) regressions to the outcome and mediator model,

respectively), and Pathway Lasso (Zhao and Luo, 2016). In Bi-Lasso and Bi-Ridge, we

adopt 10-fold cross validation to choose the tuning parameter in each regression separately.

The three frequentist methods provide optimized solutions of βm, αa to the three different

penalized likelihoods, and the marginal indirect contribution from each mediator, i.e. βmjαaj

is used to rank mediators for these methods.

Simulation Results

Table 4.1 shows the results under the small sample scenarios with n = 100, p = 200. Overall,

by leveraging mediators’ correlation structure, the two proposed approaches, GMM-Potts

and GMM-CorrS, substantially improve the selection accuracy over the other methods.

When the active mediators are concentrated within one block, the GMM-Potts achieves

the highest TPR (> 0.90) at a fixed 10% FDR for identifying this whole block, followed

by GMM-CorrS (∼0.80 TPR). The advantage of the proposed methods grows with stronger

correlations. Without such “group selection” ability, the GMM under independent priors

tends to lose half of the power for detecting correlated mediators. On the other hand, if the

active ones are evenly distributed into two blocks, then highly correlated mediators within

the same block may not be concurrently active. This could happen if their correlation does

not mainly link with mediation as we assume, and therefore may disturb mediator selection.

Under those settings, we do observe power decrease for the proposed methods. Particularly,
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the GMM-Potts model becomes less preferable as it smoothes over non-mediating neighbors

to infer active mediators; while GMM-CorrS uses a more flexible Gaussian distribution for

dependent group probabilities and thus has the best TPR. In the settings where there is

no systematic correlation structure underlying mediators, we find that GMM-CorrS behaves

quite similarly to the GMM, and outperforms the others. GMM-Potts is less robust pre-

sumably due to the inclusion of irrelevant neighbors, but still better than the frequentist

methods. The three frequentist methods have relatively poor selection performance with

highly correlated mediators, and Bi-Lasso is most competitive under zero or weak correla-

tion. In terms of the effects estimation, the proposed methods mostly achieve the smallest

MSEnon-null and a reasonable level of MSEnull. Among the three frequentist methods, since

in general Lasso tends to select less correlated variables than the elastic net type penalty,

Bi-Lasso has a relatively larger MSEnon-null but noticeably smaller MSEnull than the pathway

Lasso. Given the sparse setup in the above simulations, Bi-Ridge does not exhibit much

advantage over the other methods.

Tables 4.2 and 4.3 summarize the sensitivity analysis for GMM-Potts and GMM-CorrS,

respectively, regarding the input correlation structure. As expected, with increasing noise

added to the correlation structure, the overall accuracy of GMM-Potts and GMM-CorrS gets

reduced. However, the power of our methods remains 75% of the original level for reasonable

r and σ (r < 0.3, σ < 0.3). Even with large r = 0.5 and σ = 0.3, GMM-CorrS still has

better performance (TPR, MSEnon-null) over methods with no structural information in all

the settings, and GMM-Potts does for most of the settings. Generally speaking, the proposed

methods are not sensitive to small alteration of the input correlation structure.

4.3.2 Large Sample Scenarios: n = 1000, p = 2000

Simulation Design

Next, we examine the settings for n = 1000, p = 2000. We simulate the exposure, exposure-
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ρ1 = 0.5− 0.03|i− j|, ρ2 = 0
(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.78 0.029 1.360 0.62 0.039 1.919
GMM-Potts 0.93 0.035 2.251 0.49 0.040 2.112

GMM 0.45 0.042 1.211 0.46 0.047 1.203
Bi-Lasso 0.26 0.238 0.520 0.23 0.238 0.584
Bi-Ridge 0.22 0.283 2.639 0.21 0.286 2.642

Pathway Lasso 0.24 0.233 2.598 0.23 0.180 6.405

ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1
(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.81 0.208 1.146 0.49 0.182 4.080
GMM-Potts 0.92 0.171 3.515 0.41 0.233 1.651

GMM 0.33 0.206 2.158 0.22 0.201 3.112
Bi-Lasso 0.11 0.342 0.173 0.13 0.343 0.179
Bi-Ridge 0.15 0.322 2.170 0.16 0.326 1.690

Pathway Lasso 0.21 0.237 5.495 0.19 0.264 3.457

No systematic correlation structure (signals in two blocks)
(A) ρ1 = 0 (B) Weak correlation from MESA

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.52 0.020 1.042 0.44 0.023 1.780
GMM-Potts 0.46 0.043 1.970 0.40 0.030 3.041

GMM 0.52 0.021 0.805 0.45 0.023 1.642
Bi-Lasso 0.45 0.081 0.542 0.35 0.139 0.740
Bi-Ridge 0.35 0.238 3.645 0.28 0.247 4.003

Pathway Lasso 0.35 0.164 0.314 0.32 0.177 0.400

Each block contains only one signal
(A) ρ1 = 0.5− 0.03|i− j|, ρ2 = 0 (B) ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.46 0.022 1.488 0.39 0.025 2.284
GMM-Potts 0.48 0.027 2.336 0.39 0.028 3.035

GMM 0.47 0.021 1.291 0.41 0.025 2.089
Bi-Lasso 0.36 0.101 0.753 0.26 0.195 0.763
Bi-Ridge 0.27 0.251 3.298 0.22 0.277 2.363

Pathway Lasso 0.29 0.160 0.344 0.27 0.194 0.286

Table 4.1: Simulation results of n = 100, p = 200 under different correlation structures.
TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared
error for the indirect effects of active mediators. MSEnull: mean squared error for the indirect
effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded
TPRs indicate the top two performers.

mediator and mediator-outcome effects using the same distribution as above. For the corre-

lation structure, we now consider 50 blocks of size 20 × 20, with relatively high within-block
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ρ1 = 0.5− 0.03|i− j|, ρ2 = 0
(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.93 0.035 2.251 0.49 0.040 2.112
0.05 0.78 0.076 1.496 0.44 0.091 1.733
0.1 0.72 0.077 1.578 0.43 0.091 1.827
0.2 0.69 0.087 1.568 0.42 0.086 1.822
0.3 0.61 0.097 1.736 0.41 0.088 2.019
0.4 0.53 0.102 1.525 0.40 0.085 1.952
0.5 0.49 0.094 2.082 0.41 0.081 1.847

ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1
(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.92 0.171 3.515 0.41 0.233 1.651
0.05 0.91 0.180 0.819 0.33 0.191 1.876
0.1 0.91 0.181 1.203 0.35 0.183 2.156
0.2 0.91 0.175 1.393 0.32 0.201 1.815
0.3 0.89 0.174 1.129 0.32 0.177 2.081
0.4 0.88 0.173 1.395 0.32 0.200 1.492
0.5 0.83 0.166 2.046 0.30 0.188 1.884

Table 4.2: Sensitivity analysis for Potts mixture model (GMM-Potts) for n = 100, p = 200.

ρ1 = 0.5− 0.03|i− j|, ρ2 = 0
(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull

0 0.78 0.029 1.360 0.62 0.039 1.919
0.1 0.71 0.029 2.481 0.56 0.036 2.246
0.2 0.60 0.031 2.575 0.50 0.037 2.043
0.3 0.53 0.033 2.235 0.47 0.037 1.910

ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1
(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.81 0.208 1.146 0.49 0.182 4.080
0.1 0.72 0.168 4.017 0.40 0.127 3.288
0.2 0.63 0.170 3.442 0.37 0.130 3.370
0.3 0.54 0.176 3.413 0.34 0.133 3.283

Table 4.3: Sensitivity analysis for the Gaussian mixture model with correlated selection
(GMM-CorrS) for n = 100, p = 200.

mediator correlation ρ1 and zero between-block correlation. We first set the four group pro-

portions same as in the small sample scenarios, and the resultant 100 active mediators are
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assumed to evenly distribute over five blocks. The other blocks contain no active media-

tors. In one of the settings, we use the covariance matrix estimated from a random subset

of DNAm in MESA as Σ to simulate mediators with no underlying systematic correlation

structure.

Then we study a much sparser setting with only 10 active mediators to better reflect the

situation we observe in the MESA application. The 10 active mediators exist in two blocks,

each of which contains five active ones and 15 inactive ones. Furthermore, we consider

another worse-case scenario for GMM-Potts model by reducing ρ1 to 0.2 and remaining the

high sparsity. The weak correlation makes it hard for GMM-Potts model to identify the true

neighboring relationship via the clustering method, and the performance of the Potts model

is quite dependent on the smoothing effects from neighbors.

Simulation Results

Table 4.4 shows the results under the large sample scenarios with n = 1000, p = 2000. Our

methods enjoy up to 30% power gain on mediator selection utilizing the correlation structure

compared to the other methods. In the first setting, both methods identify almost all the

active blocks, and GMM-Potts has a slightly higher TPR (0.97) at 10% FDR than GMM-

CorrS (TPR = 0.92). When the mediator correlation has no implication for mediation effects

in the second setting, the overall performance of GMM-CorrS is similar to that of GMM, and

better than GMM-Potts. Those patterns are consistent with what we have observed in the

small sample scenarios. Under the much sparser settings with only 10 active mediators and

varied correlation ρ1, the GMM-CorrS maintains good and stable performance with TPR

around 0.80. By contrast, the performance of GMM-Potts is dependent on how obvious the

correlation patterns are and subsequently how well the clustering method does in defining

neighbors and non-neighbors. For example, with ρ1 = 0.5 − 0.02|i − j|, the GMM-Potts

models can accurately identify the underlying correlation structure and achieve the highest

TPR (0.85), smallest MSE (MSEnon-null = 0.002, MSEnull = 7.607 ×10−7). However, as the
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within-block correlation ρ1 reduces to 0.25, it becomes challenging for the clustering method

to separate true correlation versus noise, and we do observe many noisy pairs in the neigh-

borhood matrix. As a consequence, the results of GMM-Potts model get compromised by

the inclusion of those irrelevant neighbors. This setting is actually in agreement with our

observation of the ambiguous correlation structure and sparse signals in the MESA appli-

cation, which may not fare well for GMM-Potts model. Among the other three frequentist

methods, Bi-Lasso performs best regarding to the selection and estimation accuracy.

p11 = 100, Signals in five blocks
(A) ρ1 = 0.5− 0.02|i− j| (B) Weak correlation from MESA

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.92 0.031 0.440 0.83 0.002 0.240
GMM-Potts 0.97 0.030 0.018 0.76 0.004 1.013

GMM 0.76 0.077 0.630 0.84 0.002 0.176
Bi-Lasso 0.73 0.031 0.199 0.65 0.042 0.446
Bi-Ridge 0.32 0.244 2.680 0.36 0.202 3.795

Pathway Lasso 0.44 0.112 1.162 0.42 0.107 1.427

p11 = 10, Signals in two blocks
(A) ρ1 = 0.5− 0.02|i− j| (B) ρ1 = 0.25

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.83 0.003 0.015 0.82 0.002 0.017
GMM-Potts 0.85 0.002 0.008 0.61 0.018 0.228

GMM 0.80 0.003 0.013 0.81 0.002 0.016
Bi-Lasso 0.73 0.013 0.036 0.76 0.010 0.035
Bi-Ridge 0.41 0.061 1.508 0.39 0.063 1.517

Pathway Lasso 0.55 0.046 0.133 0.56 0.047 0.141

p11 = 10, Each block contains only one signal
(A) ρ1 = 0.5− 0.02|i− j|, ρ2 = 0 (B) ρ1 = 0.9− 0.03|i− j|, ρ2 = 0.1

Method TPR MSEnon-null × 10−3 MSEnull × 10−6 TPR MSEnon-null × 10−3 MSEnull × 10−6

GMM-CorrS 0.81 2.317 1.484 0.78 4.501 4.920
GMM-Potts 0.81 2.892 0.724 0.73 7.257 4.076

GMM 0.81 2.396 1.256 0.78 4.511 4.970
Bi-Lasso 0.72 10.425 3.761 0.64 17.676 5.053
Bi-Ridge 0.50 14.084 15.273 0.41 28.471 14.049

Pathway Lasso 0.56 13.507 14.001 0.50 25.940 14.609

Table 4.4: Simulation results of n = 1000, p = 2000 under different correlation structures, p11
is the number of true active mediators. TPR: true positive rate at false discovery rate (FDR)
= 0.10. MSEnon-null: mean squared error for the indirect effects of active mediators. MSEnull:
mean squared error for the indirect effects of inactive mediators. The results are based on
200 replicates for each setting. Bolded TPRs indicate the top two performers.

Finally, we examine the empirical FDR estimates using the local FDR approach (Efron et al.,
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2007) , median PIP cutoff, and 0.90 PIP cutoff for a targeted 10% FDR. For the local FDR

approach, we compute the local false discovery rate for each mediator following Efron et al.

(2007). We define the local false discovery rate for the j-th mediator being in the active

group as locfdrj1, and it can be expressed as 1−P (γj = 1| Data). We first sort locfdrj1 from

the smallest to the largest, where the jth ordered value is locfdr
(j)
1 , j = 1, ..., p. Then the

cutoff value c1 for locfdrj1 to guarantee a 10% FDR can be identified from,

argmax
c1

1∑p
j=1 I(locfdr

(j)
1 < c1)

p∑
j=1

I(locfdr
(j)
1 < c1)locfdr

(j)
1 < 0.1

where I is an indicator function. Following Newton et al. (2004), we declare mediators with

an locfdrj1 smaller than the threshold c1 as active mediators.

To evaluate the performance of those significance rules, we report the empirical FDR and

TPR in Table 4.5 and 4.6 under all the simulation scenarios. Under the small sample

scenarios (Table 4.5), the local FDR approach provides decent and well-controlled empirical

FDR for both of the proposed methods, while the estimates by median PIP cutoff and

0.90 PIP cutoff tend to be either slightly overestimated or very conservative. Under the

large sample scenarios (Table 4.6), the local FDR approach and median PIP cutoff still

produces reasonable FDR estimates for GMM-CorrS across different settings and for GMM-

Potts when neighbors reflect connected signals. However, including irrelevant neighbors in

GMM-Potts could lead to increased false discoveries, and instead a more stringent 0.90 PIP

cutoff may be used if one seeks a lower limit on the false discovery. Without accounting for

correlation structure, the GMM method does not tend to select correlated mediators and

therefore mostly has lower empirical FDR estimates, accompanied with lower TPR estimates

when active mediators are correlated. Therefore in practice, we would recommend the local

FDR and median PIP cutoff for reasonable FDR estimates and control, and we recognize

the potential caveat concerning inflated FDR for GMM-Potts.

To summarize our findings from the simulations, GMM-CorrS takes the overall correlation
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Method TPR TPR(locfdr) FDR(locfdr) TPR(PIP>0.5) FDR(PIP>0.5) TPR(PIP>0.9) FDR(PIP>0.9)
ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, Signals in one block

GMM-CorrS 0.78 0.69(0.021) 0.05(0.008) 0.82(0.019) 0.12(0.012) 0.49(0.016) 0.02(0.006)
GMM-Potts 0.93 0.79(0.019) 0.05(0.007) 0.86(0.014) 0.07(0.010) 0.61(0.017) 0.01(0.002)

GMM 0.45 0.35(0.011) 0.03(0.009) 0.41(0.012) 0.08(0.013) 0.29(0.009) 0.02(0.007)
ρ1 = 0.5− 0.03|i− j|, ρ2 = 0, Signals in two blocks

GMM-CorrS 0.62 0.52(0.018) 0.07(0.010) 0.67(0.021) 0.14(0.012) 0.40(0.015) 0.01(0.005)
GMM-Potts 0.49 0.34(0.041) 0.06(0.025) 0.66(0.023) 0.22(0.022) 0.24(0.032) 0.02(0.017)

GMM 0.46 0.36(0.011) 0.02(0.007) 0.44(0.013) 0.07(0.011) 0.29(0.009) 0.01(0.004)
ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1, Signals in one block

GMM-CorrS 0.81 0.49(0.020) 0.06(0.013) 0.83(0.014) 0.17(0.007) 0.36(0.018) 0.02(0.015)
GMM-Potts 0.92 0.51(0.043) 0.05(0.015) 0.83(0.049) 0.08(0.014) 0.23(0.014) 0.01(0.012)

GMM 0.33 0.19(0.014) 0.03(0.014) 0.25(0.014) 0.09(0.018) 0.017(0.010) 0.01(0.008)
ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1, Signals in two blocks

GMM-CorrS 0.49 0.31(0.032) 0.09(0.023) 0.55(0.032) 0.23(0.023) 0.22(0.021) 0.05(0.020)
GMM-Potts 0.40 0.27(0.006) 0.06(0.005) 0.43(0.038) 0.17(0.022) 0.17(0.006) 0.04(0.008)

GMM 0.22 0.19(0.012) 0.06(0.030) 0.28(0.012) 0.15(0.022) 0.14(0.009) 0.03(0.032)
ρ1 = 0, Signals in two blocks

GMM-CorrS 0.52 0.44(0.015) 0.03(0.008) 0.50(0.015) 0.07(0.012) 0.35(0.012) 0.01(0.004)
GMM-Potts 0.46 0.42(0.022) 0.06(0.016) 0.50(0.016) 0.19(0.019) 0.33(0.016) 0.02(0.011)

GMM 0.52 0.42(0.014) 0.02(0.006) 0.48(0.014) 0.05(0.008) 0.33(0.010) 0.01(0.003)
Weak correlation from MESA, Signals in two blocks

GMM-CorrS 0.44 0.32(0.009) 0.03(0.009) 0.39(0.011) 0.08(0.013) 0.27(0.007) 0.01(0.006)
GMM-Potts 0.40 0.35(0.014) 0.07(0.015) 0.45(0.017) 0.23(0.022) 0.27(0.010) 0.03(0.011)

GMM 0.45 0.33(0.010) 0.03(0.009) 0.39(0.011) 0.06(0.011) 0.27(0.007) 0.01(0.005)
Each block contains only one signal, ρ1 = 0.5− 0.03|i− j|, ρ2 = 0

GMM-CorrS 0.46 0.36(0.012) 0.06(0.011) 0.44(0.016) 0.10(0.013) 0.28(0.009) 0.01(0.005)
GMM-Potts 0.48 0.38(0.016) 0.04(0.010) 0.53(0.015) 0.17(0.017) 0.29(0.012) 0.02(0.007)

GMM 0.47 0.37(0.013) 0.04(0.009) 0.43(0.014) 0.08(0.012) 0.29(0.009) 0.01(0.005)
Each block contains only one signal, ρ1 = 0.9− 0.05|i− j|, ρ2 = 0.1

GMM-CorrS 0.39 0.29(0.008) 0.04(0.010) 0.35(0.011) 0.08(0.013) 0.24(0.006) 0.01(0.005)
GMM-Potts 0.39 0.31(0.013) 0.06(0.013) 0.41(0.015) 0.17(0.023) 0.24(0.010) 0.02(0.008)

GMM 0.41 0.29(0.008) 0.04(0.009) 0.36(0.011) 0.07(0.012) 0.24(0.006) 0.01(0.005)

Table 4.5: Empirical estimates of TPR and FDR in simulations of n = 100, p = 200. The
results are based on 200 replicates for each setting, and the standard errors are shown within
parentheses. TPR is the true positive rate controlled at a fixed FDR of 10%; TPR(locfdr) and
FDR(locfdr) are the empirical estimates based on the local FDR approach; TPR(PIP>0.9)
and FDR(PIP>0.9) are the empirical estimates when the PIP threshold for identifying active
mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5) are the empirical estimates when the
PIP threshold for identifying active mediators is 0.5.

structure among the mediators directly into modeling process, and shows excellent per-

formance and robustness under different correlation structures. On the other hand, the

performance of GMM-Potts is related to how well the specified neighborhood matrix reflects

the underlying connection of active mediators. When the correlation-based neighboring has

good implication on the mediation effects, then GMM-Potts usually achieves the best selec-

tion and estimation accuracy. Its performance will likely get compromised by the inclusion
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Method TPR TPR(locfdr) FDR(locfdr) TPR(PIP>0.5) FDR(PIP>0.5) TPR(PIP>0.9) FDR(PIP>0.9)
ρ1 = 0.5− 0.02|i− j|, p11 = 100, Signals in five block

GMM-CorrS 0.92 0.90(0.001) 0.08(0.002) 0.88(0.002) 0.02(0.012) 0.80(0.003) 0.00(0.001)
GMM-Potts 0.97 0.96(0.002) 0.09(0.002) 0.96(0.002) 0.01(0.002) 0.93(0.002) 0.00(0.002)

GMM 0.76 0.49(0.004) 0.04(0.002) 0.48(0.003) 0.03(0.002) 0.36(0.004) 0.01(0.001)
Weak correlation from MESA, p11 = 100, Signals in five blocks

GMM-CorrS 0.83 0.83(0.002) 0.12(0.003) 0.81(0.003) 0.04(0.003) 0.77(0.003) 0.00(0.001)
GMM-Potts 0.76 0.86(0.017) 0.33(0.022) 0.88(0.010) 0.35(0.024) 0.82(0.011) 0.16(0.017)

GMM 0.84 0.84(0.002) 0.10(0.002) 0.81(0.002) 0.03(0.002) 0.77(0.002) 0.00(0.001)
ρ1 = 0.5− 0.02|i− j|, p11 = 10, Signals in two blocks

GMM-CorrS 0.83 0.82(0.007) 0.09(0.006) 0.81(0.007) 0.05(0.007) 0.74(0.009) 0.01(0.003)
GMM-Potts 0.85 0.88(0.007) 0.34(0.012) 0.95(0.007) 0.65(0.008) 0.83(0.008) 0.04(0.012)

GMM 0.80 0.80(0.006) 0.08(0.007) 0.78(0.007) 0.03(0.006) 0.74(0.008) 0.00(0.002)
ρ1 = 0.25, p11 = 10, Signals in two blocks

GMM-CorrS 0.82 0.80(0.006) 0.09(0.007) 0.80(0.006) 0.06(0.007) 0.74(0.007) 0.01(0.003)
GMM-Potts 0.61 0.79(0.018) 0.35(0.043) 0.81(0.011) 0.56(0.037) 0.75(0.010) 0.15(0.047)

GMM 0.81 0.81(0.006) 0.08(0.006) 0.80(0.006) 0.05(0.007) 0.77(0.007) 0.01(0.003)
Each block contains only one signal, ρ1 = 0.5− 0.02|i− j|, ρ2 = 0, p11 = 10

GMM-CorrS 0.81 0.81(0.007) 0.10(0.007) 0.80(0.006) 0.05(0.008) 0.76(0.007) 0.00(0.002)
GMM-Potts 0.81 0.80(0.006) 0.06(0.007) 0.79(0.006) 0.04(0.007) 0.74(0.007) 0.00(0.000)

GMM 0.81 0.81(0.006) 0.08(0.006) 0.80(0.006) 0.04(0.007) 0.76(0.007) 0.00(0.002)
Each block contains only one signal, ρ1 = 0.9− 0.03|i− j|, ρ2 = 0.1, p11 = 10

GMM-CorrS 0.78 0.78(0.008) 0.07(0.007) 0.77(0.008) 0.04(0.007) 0.69(0.009) 0.01(0.003)
GMM-Potts 0.73 0.73(0.009) 0.10(0.019) 0.72(0.010) 0.09(0.023) 0.66(0.009) 0.04(0.016)

GMM 0.78 0.78(0.008) 0.08(0.007) 0.77(0.008) 0.05(0.007) 0.70(0.009) 0.01(0.003)

Table 4.6: Empirical estimates of TPR and FDR in simulations of n = 1000, p = 2000, p11 is
the number of true active mediators. The results are based on 200 replicates for each setting,
and the standard errors are shown within parentheses. TPR is the true positive rate controlled
at a fixed FDR of 10%; TPR(locfdr) and FDR(locfdr) are the empirical estimates based on
our PIP approach; TPR(PIP>0.9) and FDR(PIP>0.9) are the empirical estimates when the
PIP threshold for identifying active mediators is 0.9; TPR(PIP>0.5) and FDR(PIP>0.5) are
the empirical estimates when the PIP threshold for identifying active mediators is 0.5.

of irrelevant neighbors.

4.4 Data Application

In this section, we study two real data applications of the proposed methods: the LIFE-

CODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA).

4.4.1 The LIFECODES Birth Cohort

In this application, we consider a subset set of n = 161 pregnant women registered at the

Brigham and Women’s Hospital in Boston, MA between 2006 and 2008. We are interested
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in the mediation mechanism linking environmental contaminant exposure during pregnancy

to preterm birth through endogenous signaling molecules. Those endogenous biomarkers are

derived from lipids, peptides, and DNA, and were measured with subjects’ urine and plasma

specimens collected at one study visit between 23.1 and 28.9 weeks gestation. We focus on

p = 61 available endogenous biomarkers as potential mediators, including 51 eicosanoids,

five oxidative stress biomarkers and five immunological biomarkers. The correlation struc-

ture across mediators are shown in Figure 4.1, and clear pattern with moderate to strong

correlations can be observed. For the prenatal exposure to environmental toxicants, we focus

the attention of this present study on one class of environmental contaminants, polycyclic

aromatic hydrocarbons (PAHs). PAHs are a group of organic contaminants that form due

to the incomplete combustion of hydrocarbons, and commonly present in tobacco smoke,

smoked and grilled food products, polluted water and soil, vehicle exhaust gas (Alegbeleye

et al., 2017). Previous studies have suggested association between PAH exposure and ad-

verse birth outcomes (Padula et al., 2014). Since the PAH class contains multiple chemical

analytes in our study, we follow Aung et al. (2020) to construct an environmental risk score

for the PAH class and use that risk score as the exposure variable. The continuous birth out-

come, gestational age, was recorded at delivery for each participant, and preterm is defined

as delivery prior to 37 weeks gestation. Since the cohort is oversampled for preterm cases, we

multiply the data by the case-control sampling weights to adjust for that. We log-transform

all measurements of the exposure metabolites and endogenous biomarkers. We apply the

proposed methods with the aforementioned exposure, mediator and outcome variables, con-

trolling for age and maternal BMI from the initial visit, race, and urinary specific gravity

levels in both regressions of the mediation analysis.

The results are summarized in Table 4.7. Based on 10% FDR using the local FDR approach,

GMM-Potts identifies four biomarkers for actively mediating the impact of PAH exposure

on gestational age at delivery, 8,9-epoxy-eicosatrienoic acid (8(9)-EET), 9,10-dihydroxy-

octadecenoic acid (9,10-DiHOME), 12,13-epoxy-octadecenoic acid (12(13)-EpoME), 9-oxooctadeca-
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Figure 4.1: Correlations among biomarkers in LIFECODES birth cohort. The negative
correlations (∼37% of all the pairwise correlations) were replaced with their absolute values.
The 61 biomarkers were grouped by biological pathways (black lines).
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dienoic acid (9-oxoODE); while both GMM-CorrS and GMM only identifies two of them,

8(9)-EET and 9,10-DiHOME. Among the four biomarkers, 8(9)-EET, 9,10-DiHOME and

12(13)-EpoME belong to the same Cytochrome p450 (CYP450) Pathway; while 9-oxoODE

is within Cyclooxygenase (COX) Pathway. CYP450 is a family of enzymes that function to

metabolize environmental toxicants, drugs, and endogenous compounds (Sadler et al., 2016),

and thus the PAH exposure may cause perturbations in the functions of these enzymes. It

has also been suggested that the group of CYP450 metabolites as well as the related genes

may play a role in the etiology of preterm delivery (Banerjee et al., 2014), and the underly-

ing mechanisms involve increased maternal oxidative stress and inflammation (Ferguson and

Chin, 2017). Those evidence helps explain the potential mediating mechanism of CYP450

metabolites from PAH exposure to preterm delivery. Additionally, single biomarker analysis

also demonstrated the protective effect of 12(13)-EpoME on preterm (Aung et al., 2019). We

also performed the posterior predictive checks on the outcome model for the three methods,

in which the data generated from the posterior predictive distribution are compared with

the observed outcome. We find the Bayesian predictive P -values (Neelon et al., 2010) of

the GMM-Potts model are 0.72 and 0.48 for sample first and second moments, respectively,

which are closest to 0.5 among the three methods and indicate the most adequate fit of the

outcome model.

Besides the estimated correlation structure, we also consider the input of biological pathway

based structural information. That is, only mediators within the same biological pathway are

neighbors in GMM-Potts and has non-zero pairwise correlation in GMM-CorrS. The findings

are shown in the last two rows in Table 4.7. GMM-Potts identifies a subset of the above four

biomarkers: 8(9)-EET, 9,10-DiHOME, and GMM-CorrS declares the other two biomarkers

as active mediators: 12(13)-EpoME, 9-oxoODE. The overlapping lists of active mediators

add confidence to our findings, and also reveal the fact that only adjusting for biological

pathways may lose the correlated information between different pathways. In addition to

PIP, we also report the indirect effect estimates and their 95% credible intervals for selected
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mediators. We note that the direction of effects are consistent among different methods.

Method Selected Mediators PIP β̂mjα̂aj (95% CI)
Polycyclic aromatic hydrocarbons → Biomarkers → Gestational Age
GMM-Potts0 12(13)-EpoME 0.99 0.419(0.295, 0.579)

8(9)-EET 0.98 0.368(0.179, 0.567)
9-oxoODE 0.97 -0.296(-0.441, 0.000)

9,10-DiHOME 0.87 -0.185(-0.383, 0.000)
GMM-CorrS0 8(9)-EET 1.00 0.698(0.391, 1.005)

9,10-DiHOME 0.85 -0.345(-0.688, 0.000)
GMM-Potts1 8(9)-EET 0.99 0.698(0.391, 1.005)

9,10-DiHOME 0.91 -0.359(-0.671, 0.000)
GMM-CorrS1 12(13)-EpoME 1.00 1.132(0.867, 1.426)

9-oxoODE 0.99 -0.834(-1.119, -0.535)
GMM 8(9)-EET 1.00 0.698(0.407, 0.990)

9,10-DiHOME 0.99 -0.394(-0.693, -0.091)

Table 4.7: Summary of the identified active mediators from the data application on LIFE-
CODES study based on 10% FDR with the local FDR approach. GMM-Potts0: define neigh-
boring based on biomarker correlation clustering; GMM-Potts1: define neighboring based on
biological pathways; GMM-CorrS0: use the estimated correlation matrix from data; GMM-
CorrS1: use the neighborhood structure based on biological pathways; GMM-CorrS2: use
the neighborhood structure based on biomarker correlation clustering. Besides the PIP, we
also report the effect estimation β̂mjα̂aj and its 95% credible interval.

4.4.2 The MESA Cohort

In this application, we study the mediation mechanism of DNAm in the pathway from neigh-

borhood socioeconomic disadvantage to glucose. We focus on n = 1226 participants with

no missing data, and a subset of p = 2000 CpG sites that have the strongest marginal

associations with neighborhood disadvantage for computational reasons. As the exposure,

neighborhood socioeconomic disadvantage evaluates the neighborhood physical and social

conditions from dimensions of education, occupation, income and wealth, poverty, employ-

ment, and housing. Previous literature has demonstrated the relationship between DNA

methylation patterns and socially patterned stressors including low adult socioeconomic sta-

tus (SES) (Needham et al., 2015), unfavorable neighborhood conditions (Smith et al., 2017),

and neighborhood crime (Lei et al., 2015). It has also been long known that disadvantaged
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neighborhood conditions can lead to a variety of health problems, such as chronic psycho-

logical distress (Ross and Mirowsky , 2009), obesity (Moore et al., 2013) and increased risk

of cardiovascular disease (Kaplan and Keil , 1993). The outcome, glucose, is one of the most

important blood parameters and should be kept within a safe range in order to support

vital body functions and reduce the risk of diabetes and heart disease (Sasso et al., 2004).

Multiple evidence has supported the association between glucose metabolism and differential

DNAm patterns (Zheng et al., 2014; Kriebel et al., 2016). However, the underlying molec-

ular mechanisms that link neighborhood conditions to physical health profiles are not fully

elucidated. To take a step forward, we apply the proposed methods for high-dimensional

mediation analysis. In the outcome model, we adjust for age, gender, race/ethnicity, child-

hood SES and adult SES. In the mediator model, we control for age, gender, race/ethnicity,

childhood SES, adult SES, and enrichment scores for 4 major blood cell types (neutrophils,

B cells, T cells and natural killer cells). All the continuous variables are standardized to

have zero mean and unit variance. In general, the correlation among DNAm is relatively

weak, and only 3% of DNAm pairs have correlation larger than 0.2.

The results can be found in Table 4.8. Because of the relatively ambiguous correlation

structure observed across mediators in MESA, we do not expect big improvement from

our methods. Indeed, the GMM-CorrS identifies one more CpG site as active mediators

compared to GMM, and three other CpG sites are detected by both GMM-CorrS and GMM.

The rank correlation for the mediator rank lists obtained from the two methods is 0.74,

indicating the high consistency between them. The indirect effect estimates from the GMM-

CorrS are also close to those from the GMM model. The one additional finding of CpG

site by GMM-CorrS, cg27090988, is close to the gene OGG1. This gene, which is involved

in the repair of oxidative DNA damage, has been shown up-regulated in type 2 diabetic

islet cell mitochondria, and studies have suggested a crucial role of oxidative DNA damage

in the pathogenesis of type 2 diabetes (T2D) (Tyrberg et al., 2002; Pan et al., 2007). We

also examine the nearby genes to the other three jointly selected CpG sites. Among them,
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MYBPC3 is a known cardiomyopathy gene (Dhandapany et al., 2009), and the increased risk

of cardiac hypertrophy and heart failure is likely to alter the glucose metabolism (Tran and

Wang , 2019); the expression level of CD101 was found associated with T2D in a Mendelian

randomization analysis (Xue et al., 2018). As shown in the simulations, GMM-Potts is not

quite suitable for a weak correlation structure as in the MESA data, and the method does

not identify any active mediators based on 10% FDR.

Method Selected Mediators Nearby Genes PIP β̂mjα̂aj (95% CI)
Neighborhood SES → Biomarkers → Glucose

GMM-CorrS cg19515398 EIF2C2 0.97 -0.013(-0.026, 0.000)
cg04000940 MYBPC3 0.96 0.016(0.000, 0.029)
cg17907003 CD101 0.88 0.016(0.000, 0.034)
cg27090988 OGG1 0.84 -0.011(-0.024, 0.000)

GMM cg04000940 MYBPC3 0.97 0.015(0.000, 0.028)
cg19515398 EIF2C2 0.94 -0.012(-0.024, 0.000)
cg17907003 CD101 0.85 0.015(0.000, 0.032)

Table 4.8: Summary of the identified active mediators from the data application on MESA
study based on 10% FDR using the local FDR approach. We include the nearby gene and
PIP for each selected CpG site. The GMM-Potts does not identify any active mediators
based on 10% FDR. Besides the PIP, we also report the effect estimation β̂mjα̂aj and its 95%
credible interval.

We note that the validity of identifiability assumptions cannot be verified empirically from

the observed data (Little and Rubin, 2019), and we can only justify our selection of covariates

based on scientific knowledge. The influence of violating those identifiability assumptions can

be assessed using sensitivity analysis, which has been well-developed for the single mediator

setting (Imai et al., 2010b; Smith and VanderWeele, 2019). For example, if we just focused

on the single mediator of 9-oxoODE, then a correlation of 0.1 between the residuals of the

mediator and outcome models would explain away the indirect effect. Additional work is

required to extend that approach to the high-dimensional mediator setting.
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4.5 Discussion

In this chapter, we present two hierarchical Bayesian approaches to incorporating the cor-

relation structure across mediators in high-dimensional mediation analysis: (1) through a

logistic normal for mixing probabilities (GMM-CorrS), or (2) through a Potts distribution on

the group indicators (GMM-Potts). The consequent “non-separable” priors of both methods

inform the grouping and selection of correlated mediators under the composite structure

of mediation. The simulation studies show that utilizing the correlation pattern in medi-

ators, the proposed methods greatly enhance the selection and estimation accuracy over

the methods that do not account for such correlation, and maintain decent and comparable

performance under no obvious or mis-specified correlation structure. In addition, the anal-

ysis on the LIFECODES birth cohort and MESA cohort indicates that our methods can

promote the detection of new active mediators, which may have important implications on

future research in targeted interventions and treatment for preterm birth and diabetes.

There are several limitations of the proposed methods. First, for GMM-Corr, it requires the

inversion of a p × p matrix in each iteration of the sampling algorithm, and as p increases

to the scale of hundreds of thousands, that step could become the computational bottleneck

of the method. Techniques on matrix approximation or fast parallel matrix inversion will

be required to speed up the computing time and reduce the memory footprint. Second,

for GMM-Potts, smoothing over arbitrary or inaccurately specified neighbors may have a

negative effect on its performance, and this can be further improved by imposing adaptive

weight for each neighbor to reflect their relative importance. Moreover, the method can be

extended to allow for simultaneous inference of both the active mediators and the neigh-

borhood/network structure linking them. In that way, the neighborhood/network structure

among mediators does not need to be known a priori.

As promising directions for future work, we note that there may be other ways to incorporate

mediators’ correlation into the modeling process. Recently, testing the multivariate media-
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tion effects from groups of potential mediators has received growing attention (Djordjilović

et al., 2019), and the variance component tests developed by Huang (2019) can naturally

take into account the correlation within groups. Also, Bobb et al. (2015) develops a Bayesian

kernel machine regression to incorporate the structure of the multi-pollutant mixtures into

the hierarchical model. Those methodologies may provide insightful perspectives to apply-

ing correlation kernels under the global testing setup in the context of high-dimensional

mediation analysis.
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CHAPTER V

Conclusion

The use of rigorous causal mediation analysis has been limited for studying the indirect effects

of social/neighborhood/environmental factors on health outcomes, mediated through mark-

ers of biological pathways. Mediation analysis can help understand mechanisms underlying

the etiology of chronic diseases. Most of the existing methods for causal mediation analysis

can only analyze one or a moderate number of multiple mediators. In this dissertation,

our main goal is to develop Bayesian methods that can handle high-dimensional mediators

and perform efficient selection of active mediators. We first described the counterfactual

framework for multiple-mediator analysis, and justified estimands with causal interpreta-

tion and the conditions that are needed for such interpretation. Estimation under a causal

mediation analysis involves regression coefficients from two models: one with the outcome-

mediator-exposure and the other with mediator-exposure. Since the natural indirect effect

involves sum of products of coefficients from these models (summed over the mediator set),

any shrinkage method for identifying active mediators needs to target this estimand. Due

to the nature of the composite null hypothesis underlying a mediation analysis, one has

to be thoughtful while specifying appropriate priors for selection and shrinkage. Motivated

by this objective, in each chapter we proposed Bayesian shrinkage methods with a sparsity

assumption to jointly analyze high-dimensional mediators and identify individual non-null

indirect effects. Since our proposed methods rely on exact posterior sampling, we can char-
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acterize uncertainty in estimation and provide estimates of other quantities of interest (e.g.

proportion mediated) without relying on large-sample approximations.

The method proposed in Chapter II introduces Bayesian variable selection models using

continuous mixture priors to high-dimensional mediation analysis, and is shown to yield

excellent performance in mediator selection. The flexibility of a mixture prior specification

in a Bayesian framework allows for penalization of regression coefficients from the two key

models. Since our goal is identification of important mediators, the desired target is the

contribution of each mediator to the composite NIE. Therefore, in Chapter III, we improve

upon existing methods by proposing novel joint priors on exposure-mediator effects and

mediator-outcome effects to enable targeted penalization on the indirect effect. In Chapter

IV, we build on the work in Chapters II and III to explicitly incorporate the correlation

structure among mediators to inform active mediator selection. The proposed methods are

shown to have superior group selection ability when active mediators are correlated and

robustness under different correlation structures. In all of the above Bayesian methods, the

mediator-specific posterior inclusion probability provides a valid selection criterion for active

mediators that contribute to the NIE. Our methodologies developed in this dissertation

bridge an important gap in the literature for high-dimensional mediation analysis. The

advantage of our methods over state-of-the-art existing methods has been illustrated in

the applications of both genetic and environmental data. The proposed methods identified

multiple genes/biomarkers for mediating the social/neighborhood/environmental factors on

health outcomes. Those are important findings as researchers try to characterize how the

insults from our external/social environment impact the internal cellular environment, and

finally manifest into development of chronic diseases. To reach a broader audience, we have

been working on easy-to-use R packages for our methods, and you can find the latest updates

in https://github.com/umich-cphds.

The work presented in this dissertation points to many areas of potential future research.

With the increasing availability of multi-platform data, it would be desirable to extend our
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methods to accommodate discrete outcome/mediators in a principled way and place the

methods into the generalized linear model framework. That will lead to wider applications

of our methods. We ignored the possible presence of exposure-mediator interactions. How

to interpret the causal mediation effects and perform efficient inference to characterize each

component of a four-way decomposition (VanderWeele, 2016a) would be another direction

of future work. Due to the large number of sampling iterations required for reasonable con-

vergence, the current software for Bayesian mediation analysis is not quite computationally

efficient in ultra-high dimensional settings. Approximation techniques such as variational

Bayes or fast matrix computation could be explored to further improve the efficiency of our

algorithms as the dimension increases to the scale of hundreds of thousands of mediators.

Additionally, when individual-level data is not readily available, we will need to adapt our

high-dimensional mediation analysis methods to construct models based on summary statis-

tics only. We can take the approach in Zhu and Stephens (2017) for inference and extend that

to regression with multivariate dependent variables for the mediator model. How to reduce

the dimension of multiple exposures is also something we have been grappling with (Aung

et al., 2020). Another concern from a methodological perspective is that we do not have a

good way to control the false discovery rate beyond computationally intensive permutation-

based approach. This is a problem that prevails in all chapters, and a valid procedure to

assess the false discovery rate is important for the error rate control and an objective com-

parison across different methods. The approach adopted in this dissertation work (Newton

et al., 2004) tends to be sensitive to prior specification, while the ordering of the PIP’s is

relatively robust. Ranking-based selection rules may be developed, and efficient methods for

empirical null construction may also be possible directions to address this problem.

The proposed methods in this dissertation can be applied to a wide spectrum of mediation

problems. We believe these methods will facilitate our understanding of the underlying

biological mechanisms of complex diseases/traits and advance discovery of intervention and

prevention strategies. We hope that this dissertation contributes to statistical methods for
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mediation analysis and provides important insights to future research on high-dimensional

mediation models.
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APPENDIX A

Supplement for Chapter II

A.1 Detailed Proofs

A.1.1 Proof of Equation (2.1)

Given the assumptions in 2.2, we can express E[Yi(a,Mi(a
?)|Ci] as below,

E[Yi(a,Mi(a
?))|Ci]

=

∫
m

E[Yi(a,m)|Ci,Mi(a
?) = m]P (Mi(a

?) = m|Ci)dm

=

∫
m

E[Yi(a,m)|Ci]P (Mi(a
?) = m|Ci, Ai = a?)dm

(by assumption (4) & (3))

=

∫
m

E[Yi(a,m)|Ai = a,Ci]P (Mi(a
?) = m|Ci, Ai = a?)dm

(by assumption (1))

=

∫
m

E[Yi(a,m)|Ai = a,Mi = m,Ci]P (Mi = m|Ci, Ai = a?)dm

(by assumption (2) and consistency)

=

∫
m

E(Yi|a,m,Ci)P (Mi = m|Ci, a
?)dm

(by consistency)
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A.1.2 Proof of Equation (2.6), (2.7)

NDE: E[Yi(a,Mi(a
?))− Yi(a?,Mi(a

?))|Ci]

=

∫
m

{E(Yi|a,m,Ci)− E(Yi|a?,m,Ci)}P (Mi = m|Ci, a
?)dm

=

∫
m

(aβa − a?βa)P (Mi = m|Ci, a
?)dm

= βa(a− a?)

NIE: E[Yi(a,Mi(a))− Yi(a,Mi(a
?))|Ci]

=

∫
m

E(Yi|a,m,Ci){P (Mi = m|Ci, a)− P (Mi = m|Ci, a
?)}dm

=

∫
m

(mTβm + aβa +CT

i βc){P (Mi = m|Ci, a)

−P (Mi = m|Ci, a
?)}dm

= {E(Mi|Ci, a)− E(Mi|Ci, a
?)}Tβm

= αTaβm(a− a?)

= (a− a?)
p∑
j=1

(αa)j(βm)j

A.2 Posterior Sampling Algorithm Details for Bayesian Mediation

Analysis

Sampling βmj and rmj

logp(βmj|rmj = 1, .) = −
β2
mj

2σ2
m1

−
n∑
i=1

{(M
(j)
i βmj)

2

2σ2
e

+σ−2e M
(j)
i (Yi−Aiβa−

∑
s 6=j

M
(s)
i βms−CT

i βc)βmj}

p(βmj|rmj = z, .) = N(µmjz, s
2
mjz), z = 0, 1

µmjz =

∑n
i=1M

(j)
i (Yi − Aiβa −

∑
s 6=jM

(s)
i βms −CT

i βc)

σ2
e/σ

2
mz +

∑n
i=1(M

(j)
i )2

, s2mjz =
1

1/σ2
mz +

∑n
i=1(M

(j)
i )2/σ2

e
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p(rmj = z|.) ∝ exp(µ2
mjz/2s

2
mjz + log(smjz)− log(σmz) + log(p(rmj = z)))

Sampling βa

logp(βa|.) = − β2
a

2σ2
a

−
n∑
i=1

{(Aiβa)
2

2σ2
e

+ σ−2e Ai(Yi −MT

i βm −C
T

i βc)βa}

p(βa|.) = N(µa, s
2
a)

µa =

∑n
i=1Ai(Yi −MT

i βm −C
T

i βc)

σ2
e/σ

2
a +

∑n
i=1A

2
i

, s2a =
1

1/σ2
a +

∑n
i=1A

2
i /σ

2
e

Sampling αaj and raj

logp(αaj|raj = 1, .) = −
α2
aj

2σ2
ma1

−
n∑
i=1

{(Aiαaj)
2

2σ2
g

+ σ−2g Ai(M
(j)
i − (αcCi)j)αaj}

p(αaj|raj = z, .) = N(

∑n
i=1Ai(M

(j)
i − (αcCi)j)

σ2
g/σ

2
maz +

∑n
i=1A

2
i

,
1

1/σ2
maz +

∑n
i=1A

2
i /σ

2
g

)

p(raj = z|.) ∝ exp(µ2
αjz/2s

2
αjz + log(sαjz)− log(σmaz) + log(p(raj = z))), z = 0, 1

Sampling σ2
m1, σ

2
m0

logp(σ2
m1|.) = −(

∑q
j=1 rmj

2
+ km + 1)log(σ2

m1)− (

∑q
j=1 rmjβ

2
mj

2
+ lm)σ−2m1

logp(σ2
m0|.) = −(

∑q
j=1(1− rmj)

2
+ km + 1)log(σ2

m0)− (

∑q
j=1(1− rmj)β2

mj

2
+ lm)σ−2m0

p(σ2
m1|.) ∼ inverse-gamma(

∑q
j=1 rmj

2
+ km,

∑q
j=1 rmjβ

2
mj

2
+ lm)

p(σ2
m0|.) ∼ inverse-gamma(

∑q
j=1(1− rmj)

2
+ km,

∑q
j=1(1− rmj)β2

mj

2
+ lm)

Sampling σ2
a
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logp(σ2
a|.) = −(

1

2
+ ka + 1)log(σ2

a)− (
β2
a

2
+ la)σ

−2
a

p(σ2
a|.) ∼ inverse-gamma(

1

2
+ ka,

β2
a

2
+ la)

Sampling σ2
ma1, σ

2
ma0

logp(σ2
ma1|.) = −(

∑
j raj

2
+ kma + 1)log(σ2

ma1)− (

∑
j rajα

2
aj

2
+ lma)σ

−2
ma1

logp(σ2
ma0|.) = −(

∑
j(1− raj)

2
+ kma + 1)log(σ2

ma0)− (

∑
j(1− raj)α2

aj

2
+ lma)σ

−2
ma0

p(σ2
ma1|.) ∼ inverse-gamma(

∑
j raj

2
+ kma,

∑
j rajα

2
aj

2
+ lma)

p(σ2
ma0|.) ∼ inverse-gamma(

∑
j(1− raj)

2
+ kma,

∑
j(1− raj)α2

aj

2
+ lma)

Sampling σ2
e

logp(σ2
e |.) = −(

n

2
+ ke + 1)log(σ2

e)− (

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ le)σ

−2
e

p(σ2
e |.) ∼ inverse-gamma(

n

2
+ ke,

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ le)

Sampling σ2
g

logp(σ2
g |.) = −(

qn

2
+ kg + 1)log(σ2

g)− (

∑n
i=1

∑
q(M

(q)
i − Aiαaq − (αcCi)q)

2

2
+ lg)σ

−2
g

p(σ2
g |.) ∼ inverse-gamma(

qn

2
+ kg, (

∑n
i=1

∑
q(M

(q)
i − Aiαaq − (αcCi)q)

2

2
+ lg))

Sampling βcw
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logp(βcw|.) = −
n∑
i=1

{(Ciwβcw)2

2σ2
e

+ σ−2e Ciw(Yi −MT

i βm − Aiβa −
∑
s6=w

Ciwβcw)βcw}

p(βcw|.) = N(

∑n
i=1Ciw(Yi − Aiβa −MT

i βm −
∑

s 6=w Ciwβcw)∑n
i=1C

2
iw

,
σ2
e∑n

i=1C
2
iw

)

Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1

{(Ciw(αcw)j)
2

2σ2
g

+ σ−2g Ciw(M
(j)
i − Aiαaj −

∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(

∑n
i=1Ciw(M

(j)
i − Aiαaj −

∑
s 6=w Cis(αcs)j)∑n

i=1C
2
iw

,
σ2
g∑n

i=1C
2
iw

)

Sampling πm, πa

For πm, πa, their conditional distributions don’t appear to be of any known form, so we use

a random-walk standard Metropolis-Hastings algorithm to draw posterior samples of them.

As for the proposal distribution, we update the parameters by adding a random variable

from U(-0.07, 0.07) to the current value. New values that lie outside the boundary [0,1] are

reflected back.

A.3 Convergence Diagnosis

We used the potential scale reduction factor (PSRF) (Gelman and Rubin, 1992) to quantify

the mixing property of the proposed MCMC algorithm. With multiple MCMC chains, PSRF

for a parameter is essentially the ratio between the overall-chain variance and the average

within-chain variance. A PSRF value in the range of (0.9, 1.2) suggests that the MCMC

algorithm has good mixing property and the posterior samples converge well. As an example,

in Figure A.1, we present the PSRFs for the PIPs of 60 top significant mediators identified

from univariate analysis in the baseline simulation setting with the number of mediators

p = 2, 000. We find that all the PSRFs from our MCMC algorithm fall within (0.9, 1.2),
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which indicates the good mixing property of our algorithm.

A.4 Power Comparison with Spike-and-slab Priors and Horseshoe

Priors

Both horseshoe priors and spike-and-slab priors (Mitchell and Beauchamp, 1988; Carvalho

et al., 2010) are widely used methods for Bayesian shrinkage, and it is natural to apply

them to the two regression models in high-dimensional mediation analysis. The horseshoe

prior can be represented as a scale mixture of normals, with the mixing distribution being a

standard half-Cauchy distribution. The horseshoe prior is not a discrete mixture prior and

therefore it does not directly categorize mediators into one actively mediating group and

three inactive (null) groups. To achieve categorization and selection of mediators, one can

use the shrinkage factors (Carvalho et al., 2010) for the coefficients and develop a thresholding

rule on the continuous values to determine inclusion or not. For the spike-and-slab prior, we

can directly use the posterior inclusion probability to perform mediator selection.

We implemented both horseshoe priors and spike-and-slab priors for high-dimensional me-

diation analysis and compared them with our method in simulations. We first simulated

(βm)j (j = 1, ..., p) from a mixture of two normals: πmN(0, 1) + (1 − πm)N(0, 0.001), and

(αa)j (j = 1, ..., p) from πaN(0, 1) + (1−πa)N(0, 0.001). The other configurations are same

as the baseline setting for p = 2, 000. We find that our Bayesian method with normal-normal

priors outperforms the other two methods. For example, when PV EIE = 0.8, at 0.01 FPR,

our method achieves a power of 0.528, while the methods with point-normal priors and

horseshoe priors have a power of 0.484 and 0.467, respectively. The full results are shown in

Table A.1.

In addition, we also performed simulations in which (βm)j (j = 1, ..., p) from point-normal

priors: πmN(0, 1) + (1− πm)δ0, and (αa)j (j = 1, ..., p) from πaN(0, 1) + (1− πa)δ0, where

δ0 is a point mass at zero. The other configurations are same as the baseline setting for
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Figure A.1: Potential scale reduction factors (PSRF) of the Bayesian posterior inclusion
probabilities of 60 top marginally significant mediators with 3, 8, 15, and 20 MCMC chains,
where PSRF within (0.9, 1.2) suggests good mixing property.
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p Setting Normal-normal priors Point-normal priors Horseshoe priors
2,000 PV EA = 0.3 0.509 0.461 0.437

PV EA = 0.5 0.474 0.424 0.461
PV EA = 0.8 0.512 0.413 0.479

PV EIE = 0.2 0.473 0.415 0.453
PV EIE = 0.4 0.474 0.424 0.461
PV EIE = 0.8 0.528 0.484 0.467

πa = 0.03 0.474 0.424 0.461
πa = 0.1 0.146 0.131 0.092
πa = 0.25 0.072 0.062 0.042

πm = 0.02 0.474 0.424 0.461
πm = 0.1 0.471 0.420 0.454
πm = 0.25 0.462 0.401 0.440

Table A.1: Power comparison among our normal-normal priors, the point-normal priors and
horseshoe priors when p = 2, 000, n = 1, 000, and the effect sizes are sampled from a mixture
of two normals. In each setting, we change one parameter at a time from the baseline setting.
The average TPR at FPR = 0.01 is calculated across 200 replicates.

p = 2, 000. Now the effect size distribution is not a mixture of two normals, and favors the

spike-and-slab priors. The results (in Table A.2) show that all the three methods have similar

performance in most scenarios, and our method remains decent power when the effects are

not polygenic.

Therefore, our Bayesian mediation method with mixture of normals prior performs well in

identifying active mediators in a wide range of scenarios, and is relatively robust to the effect

size distribution.

A.5 Posterior Distribution of the Global Mediation Effects τ

We examine the posterior distribution of τ , which is bounded at zero and not symmetric.

The distribution also depends on the composition of the four groups. In below we show a

distribution graph (Figure A.2) based on the posterior samples of τ in four different scenarios
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Figure A.2: The distribution from the posterior samples of τ in four different scenarios
with n = 1000, p = 100. We denote πg1, πg2, πg3 and πg4 to represent the proportion
of mediators in Group 1, Group 2, Group 3 and Group 4 as defined in Table 1 in the
main Chapter II. The four settings are: A: πg1 = 0.1, πg2 = 0.2, πg3 = 0.1, πg4 = 0.6; B:
πg1 = 0.1, πg2 = 0.1, πg3 = 0.2, πg4 = 0.6; C: πg1 = 0.1, πg2 = 0.1, πg3 = 0.1, πg4 = 0.7; D:
πg1 = 0.1, πg2 = 0, πg3 = 0, πg4 = 0.9;
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p Setting Normal-normal priors Point-normal priors Horseshoe priors
2,000 PV EA = 0.3 0.525 0.526 0.465

PV EA = 0.5 0.483 0.503 0.490
PV EA = 0.8 0.470 0.513 0.493

PV EIE = 0.2 0.456 0.488 0.476
PV EIE = 0.4 0.483 0.503 0.490
PV EIE = 0.8 0.510 0.543 0.491

πa = 0.03 0.483 0.503 0.490
πa = 0.1 0.135 0.145 0.106
πa = 0.25 0.047 0.094 0.052

πm = 0.02 0.483 0.503 0.490
πm = 0.1 0.468 0.488 0.486
πm = 0.25 0.450 0.465 0.470

Table A.2: Power comparison among our normal-normal priors, the point-normal priors and
horseshoe priors when p = 2, 000, n = 1, 000, and the effect sizes are sampled from point-
normal priors. In each setting, we change one parameter at a time from the baseline setting.
The average TPR at FPR = 0.01 is calculated across 200 replicates.

with n = 1000, p = 100 as in Table 2 in the main manuscript.

A.6 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the pro-

gression of subclinical cardiovascular disease (CVD) (Bild et al., 2002). A total of 6,814

non-Hispanic white, African-American, Hispanic, and Chinese-American women and men

aged 45−84 without clinically apparent CVD were recruited between July 2000 and August

2002 from the following 6 regions in the US: Forsyth County, NC; Northern Manhattan and

the Bronx, NY; Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago, IL; and

Los Angeles County, CA. Each field center recruited from locally available sources, which in-

cluded lists of residents, lists of dwellings, and telephone exchanges. At Exam 1, respondents

reported the highest level of education they completed. We created a dichotomous measure

of respondent’s educational attainment (less than college, low adult SES = 1; college degree

or more = 0). The descriptive statistics for the exposure and outcome can be found in Table

C.2.
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In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam

5), DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-

American, and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County,

New York, and St. Paul field centers. After excluding respondents with missing data on

one or more variables, we had phenotype and DNAm data from purified monocytes on a

total of 1,231 individuals and we focused on this set of individuals for analysis. The detailed

description of DNAm data collection, quantitation and data processing procedures can be

found in Liu et al (Liu et al., 2013). Briefly, the Illumina HumanMethylation450 BeadChip

was used to measure DNAm, and bead-level data were summarized in GenomeStudio. Quan-

tile normalization was performed using the lumi package with default settings (Du et al.,

2008). Quality control (QC) measures included checks for sex and race/ethnicity mismatches

and outlier identification by multidimensional scaling plots. Further probe filtering criteria

included: “detected” DNAm levels in <90% of MESA samples (detection p-value cut-off

= 0.05), existence of a SNP within 10 base pairs of the target CpG site, overlap with a

non-unique region, and suggestions by DMRcate (Chen et al., 2013b) (mostly cross-reactive

probes). Those procedures leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +CT

1iψc +ZT

i ψu + εi, i = 1, ..., n (A.1)

where Ai represents adult SES value for the i’th individual and ψa is its coefficient; C1i is a

vector of covariates that include age, gender, race/ethnicity and enrichment scores for each

of 4 major blood cell types (neutrophils, B cells, T cells and natural killer cells) to account

for potential contamination by non-monocyte cell types; ZT

i ψu represent methylation chip
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and position random effects and are used to control for possible batch effects. The error

term εi ∼ MVN(0, σ2In) and is independent of the random effects. We obtained p-values

for testing the null hypothesis ψa = 0 from the above model. We further applied the

R/Bioconductor package BACON (van Iterson et al., 2017) to these p-values to further adjust

for possible inflation using an empirical null distribution. Based on these marginal p-values,

we selected top 2,000 CpG sites with the smallest p-values for our Bayesian multivariate

analysis.

We implemented our proposed methods as well as methods with different prior specifications

and HDMM on the MESA data. The current HDMM cannot handle covariates, so we apply

it to the residuals after regressing the Y and M on the covariates. There may exist certain

numerical stability issue with the HDMM on the MESA data, and the resulting weights of

the first direction of mediation do not suggest obvious signal or pattern. The estimated first

direction of mediation across the selected 2,000 sites is presented in Figure A.3.

We also listed the top 2 sites and nearby genes identified by the four methods in the Table

A.3,

Method Top 2 sites Nearby genes
Our method cg19582614 CCND2

cg04514392 CCDC54

Spike-and-Slab Priors cg19582614 CCND2
cg26610247 RP11-10J21.3

Horseshoe Priors cg15531249 C16orf74
cg15149205 TRIB1

HDMM cg13488078 CLU
cg12880602 MAP3K7

Table A.3: The top 2 sites and their nearby genes identified by our proposed method as well
as methods with different prior specifications and HDMM for mediation analysis on Adult
SES → DNAm → HbA1c.

We do not know the truth in the real data so it is hard evaluate the effectiveness of different

methods here. In addition to the genes CCDC54 and CCND2, which are associated with
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Figure A.3: Consider the trio: Adult SES → DNAm → HbA1c. The black dots are the
weights for the first direction of mediation for the selected 2,000 sites across the genome
from HDMM.
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the outcome HbA1c as discussed in Chapter II, CLU is associated with diabetes, probably

through an increase in insulin resistance (Daimon et al., 2011). There is a lack of biological

evidence to support a mediating role of the other genes.

After fitting the Bayesian mediation models, we then empirically check whether models 11

and 12 in the main manuscript are reasonable. We perform the posterior predictive checks

on the outcome model, and create the following graphical displays comparing the observed

outcome to the replications drawn from the posterior predictive distribution.

In Figure A.4, we compare the distribution of the observed outcomes HbA1c (y) and the

kernel density estimates of replications of the outcome, yrep from the posterior predictive

distribution. Those plots makes it easy to see that the distributions of the simulated out-

comes do not deviate much from the true distribution of HbA1c in the data and our model is

relatively reasonable. The Bayesian predictive p-values (Neelon et al., 2010) are 0.5 and 0.45

for the sample mean and variance, respectively, also suggesting adequate fit of the outcome

model.

Full
Sample
(n, %)

Low Adult
SES
%

HbA1c
Mean (SD)

Full sample 1231 (100) 67 5.99 (0.92)
Age

55−65 years 466 (38) 64 5.92 (0.97)
66−75 years 398 (32) 68 6.08 (0.98)
76−85 years 301 (24) 67 5.98 (0.80)
86−95 years 66 (5) 74 5.95 (0.72)

Race
Non-Hispanic white 582 (47) 51 5.76 (0.65)

African-American 263 (22) 72 6.23 (1.03)
Hispanic 386 (31) 86 6.16 (1.11)

Gender
Female 633 (51) 73 5.99 (0.88)

Male 598 (49) 60 5.99 (0.97)

Table A.4: Descriptive statistics for adult SES measures and HbA1c. n: number of subjects.
%: proportion in the corresponding category. SD: standard deviation.
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Figure A.4: The top panel shows the distribution of the observed outcomes HbA1c (y, the
dark line) and each of the 100 lighter lines is the kernel density estimate of one of the
replications of y, yrep from the posterior predictive distribution. The bottom panel displays
the separate histograms of y and five of the yrep datasets.

110



APPENDIX B

Supplement for Chapter III

B.1 Identifiability Assumptions for Causal Mediation Analysis

We use the same counterfactual notation as in the first chapter. To connect potential vari-

ables to observed data, we make the Stable Unit Treatment Value Assumption (SUTVA)

(Rubin, 1980, 1986). Specifically, the SUTVA assumes there is no interference between

subjects and the consistency assumption, which states that the observed variables are the

same as the potential variables corresponding to the actually observed treatment level, i.e.,

Mi =
∑

aMi(a)I(Ai = a), and Yi =
∑

a

∑
m Yi(a,m)I(Ai = a,Mi = m), where I(·) is

the indicator function.

Causal effects are formally defined in terms of potential variables which are not necessarily

observed, but the identification of causal effects must be based on observed data. Therefore

further assumptions regarding the confounders are required for the identification of causal

effects in mediation analysis (VanderWeele and Vansteelandt , 2014). We will use A |= B|C

to denote that A is independent of B conditional on C. To estimate the average NDE and

NIE from observed data, the following assumptions are needed: (1) Yi(a,m) |= Ai|Ci, no

unmeasured confounding for exposure-outcome relationship; (2) Yi(a,m) |=Mi|{Ci, Ai}, no
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unmeasured confounding for any of mediator-outcome relationship after controlling for the

exposure; (3) Mi(a) |= Ai|Ci, no unmeasured confounding for the exposure effect on all the

mediators; (4) Yi(a,m) |=Mi(a
?)|Ci, no downstream effect of the exposure that confounds

any mediator-outcome relationship. The four assumptions are required to hold with respect

to the whole set of mediators. Finally, as in all mediation analysis, the temporal ordering

assumption also needs to be satisfied, i.e., the exposure precedes the mediators, and the

mediators precede the outcome.

B.2 Posterior Sampling Algorithm Details for Gaussian Mixture

Model (GMM)

Let ΘGMM = (βm,αa,Vk, βa,βc,αc, {γj}
p
j=1, πk, k = 1, 2, 3, 4, σ2

e ,Σ, σ
2
a) denote all the

unknown parameters in our Gaussian mixture model. The joint likelihood of {Yi,Mi}
n
i=1

given ΘGMM is,

logP ({Yi,Mi}
n
i=1|ΘGMM , {Ai,Ci}

n
i=1)

=
n∑
i=1

logP (Yi,Mi|ΘGMM , Ai,Ci)

=
n∑
i=1

logP (Yi|Mi,βm, σ2
e , βa,βc, Ai,Ci) + logP (Mi|αa,αc,Σ, Ai,Ci)

=
n∑
i=1

−1

2
logσ2

e −
1

2σ2
e

(Yi −MT

i βm − Aiβa −C
T

i βc)2

−1

2
log|Σ|−1

2
(Mi − Aiαa −αcCi)

TΣ−1(Mi − Aiαa −αcCi)

The joint log posterior distribution is,

logP (ΘGMM |{Yi,Mi, Ai,Ci}
n
i=1)

∝
n∑
i=1

logP (Yi|Mi,βm, σ2
e , βa,βc, Ai,Ci) + logP (Mi|αa,αc,Σ, Ai,Ci)

+logP (ΘGMM)
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=
n∑
i=1

−1

2
logσ2

e −
1

2σ2
e

(Yi −MT

i βm − Aiβa −C
T

i βc)2

−1

2
log|Σ|−1

2
(Mi − Aiαa −αcCi)

TΣ−1(Mi − Aiαa −αcCi)

+

p∑
j=1

4∑
k=1

I(γj = k)(−d
2

log2π − 1

2
log|Vk|−

1

2

(βm)j

(αa)j


T

V −1
k

(βm)j

(αa)j

)

−q
2

log2πσ2
c −

βTcβc
2σ2

c

− pq

2
log2πσ2

c −
p∑
j=1

αTcjαcj

2σ2
c

+

p∑
j=1

4∑
k=1

I(γj = k)log(πk)

+
4∑

k=1

aklog(πk) +
4∑

k=1

(−ν + d+ 1

2
log|Vk|+

1

2
tr(Ψ0V

−1
k

)))

Sampling

(βm)j

(αa)j

 and γj

logp(

(βm)j

(αa)j

 |γj = k, ·) ∝ −1

2

(βm)j

(αa)j


T

(Wj + V −1
k

)

(βm)j

(αa)j

+wT

j

(βm)j

(αa)j



where Wj =

∑n
i=1(σ

2
e)
−1M2

ij 0

0
∑n

i=1 Σ−1A2
i

 (Σ need to be diagonal, and can be replaced

as σ2
g), and wj = (

∑n
i=1(σ

2
e)
−1(Yi − Aiβa −

∑
j′ 6=jMij′ (βm)j′ )Mij,

∑n
i=1 Σ−1MijAi)

T

p(

(βm)j

(αa)j

 |γj = k, ·) ∼MVN2((Wj + V −1
k

)−1wj , (Wj + V −1
k

)−1)

logp(γj = k|.) ∝ −1

2
log|WjVk + I2|+

1

2
wT

j(Wj + V −1
k

)−1wj + log(πk)

Sampling πk

{π1, π2, π3, π4}
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∝ Dirichlet(a1 +

p∑
j=1

I(γj = 1), a2 +

p∑
j=1

I(γj = 2), a3 +

p∑
j=1

I(γj = 3), a4 +

p∑
j=1

I(γj = k))

Sampling Vk

logp(Vk|.) ∝ −1

2
(

p∑
j=1

I(γj = k) + ν + d+ 1)log|Vk|−
1

2
tr(Ψ0V

−1
k

)

+

p∑
j=1

I(γj = k)(−1

2

(βm)j

(αa)j


T

V −1
k

(βm)j

(αa)j

)

p(Vk|.) ∼ Inv-Wishart(Ψ0 +

p∑
j=1

I(γj = k)

(βm)j

(αa)j


(βm)j

(αa)j


T

,

p∑
j=1

I(γj = k) + ν)

Sampling βa

logp(βa|.) ∝ −
β2
a

2σ2
a

−
n∑
i=1

{(Aiβa)
2

2σ2
e

− σ−21 Ai(Yi −MT

i βm −C
T

i βc)βa}

p(βa|.) ∼ N(

∑n
i=1Ai(Yi −MT

i βm −C
T

i βc)

σ2
e/σ

2
a +

∑n
i=1A

2
i

,
1

1/σ2
a +

∑n
i=1A

2
i /σ

2
e

)

Sampling σ2
a

logp(σ2
a|.) ∝ −(

1

2
+ ha + 1)log(σ2

a)− (
β2
a

2
+ la)σ

−2
a

p(σ2
a|.) ∼ inverse-gamma(

1

2
+ ha,

β2
a

2
+ la)

Sampling σ2
e

logp(σ2
e |.) = −(

n

2
+ h1 + 1)log(σ2

e)− (

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ l1)σ

−2
1

p(σ2
e |.) ∼ inverse-gamma(

n

2
+ h1,

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ l1)
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Sampling σ2
g

logp(σ2
g |.) = −(

pn

2
+ h2 + 1)log(σ2

g)

−(

∑n
i=1(M

T

i − Aiαa −C
T

i αc)(MT

i − Aiαa −C
T

i αc)T

2
+ l2)σ

−2
2

p(σ2
g |.) ∼ inverse-gamma(

pn

2
+h2,

∑n
i=1(M

T

i − Aiαa −C
T

i αc)(MT

i − Aiαa −C
T

i αc)T

2
+l2)

Sampling βcw

logp(βcw|.) = −
n∑
i=1

{(Ciwβcw)2

2σ2
e

+ σ−2e Ciw(Yi −MT

i βm − Aiβa −
∑
s6=w

Ciwβcw)βcw}

p(βcw|.) = N(

∑n
i=1Ciw(Yi − Aiβa −MT

i βm −
∑

s 6=w Ciwβcw)∑n
i=1C

2
iw

,
σ2
e∑n

i=1C
2
iw

)

Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1

{(Ciw(αcw)j)
2

2σ2
g

+ σ−2g Ciw(M
(j)
i − Aiαaj −

∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(

∑n
i=1Ciw(M

(j)
i − Aiαaj −

∑
s 6=w Cis(αcs)j)∑n

i=1C
2
iw

,
σ2
g∑n

i=1C
2
iw

)

B.3 Posterior Sampling Algorithm Details for Product Threshold

Gaussian (PTG) Prior

Let ΘPTG = (βm,αa, β̃m, α̃a, τ
2
β , τ

2
α, βa,βc,αc, σ

2
e ,Σ) denote all the unknown parameters

in the model. Under the PTG prior, the joint log posterior distribution is,

logP (ΘPTG|{Yi,Mi, Ai,Ci}
n
i=1)

∝
n∑
i=1

logP (Yi|Mi,βm, σ2
e , βa,βc, Ai,Ci) + logP (Mi|αa,αc,Σ, Ai,Ci)
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+ logP (ΘPTG)

=
n∑
i=1

−1

2
log σ2

e −
1

2σ2
e

(Yi −MT

i βm − Aiβa −C
T

i βc)2

−1

2
log|Σ|−1

2
(Mi − Aiαa −αcCi)

TΣ−1(Mi − Aiαa −αcCi)

+

p∑
i=1

−1

2
log τ 2β −

(β̃m)2j
2τ 2β

+

p∑
i=1

−1

2
log τ 2α −

(α̃a)2j
2τ 2α

−q
2

log 2πσ2
c −

βTcβc
2σ2

c

− pq

2
log 2πσ2

c −
p∑
j=1

αTcjαcj

2σ2
c

Sampling (βm)j

For (β̃m)j, we denote its threshold conditional on the other parameters as

u(β̃m)j
=
{ min(λ1, λ0/|(α̃a)j|), for (α̃a)j 6= 0

λ1, for (α̃a)j = 0

logp((β̃m)j||(β̃m)j|< u(β̃m)j
) ∝ −(β̃m)2j/(2τ

2
β)

(β̃m)j||(β̃m)j|< u(β̃m)j
∼ TN(0, τ 2β ,−u(β̃m)j

, u(β̃m)j
)

where TN(µ, σ2, a, b) denotes a truncated normal distribution with mean µ, variance σ2

truncated between [a, b].

logp((β̃m)j||(β̃m)j|>= u(β̃m)j
)

∝ −
(β̃m)2j

2τ 2β
−

n∑
i=1

{(M
(j)
i (β̃m)j)

2

2σ2
e

+ σ−2e M
(j)
i (Yi − Aiβa −

∑
s 6=j

M
(s)
i (β̃m)s −CT

i βc)(β̃m)j}

(β̃m)j|(β̃m)j >= u(β̃m)j
∼ TN(µmj, s

2
mj, u(β̃m)j

,∞)

(β̃m)j|(β̃m)j <= −u(β̃m)j
∼ TN(µmj, s

2
mj,−∞,−u(β̃m)j

)
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µmj =

∑n
i=1M

(j)
i (Yi − Aiβa −

∑
s 6=jM

(s)
i (β̃m)s −CT

i βc)

σ2
e/τ

2
β +

∑n
i=1(M

(j)
i )2

, s2mj =
1

1/τ 2β +
∑n

i=1(M
(j)
i )2/σ2

e

And,

p(|(β̃m)j|< u(β̃m)j
) =

B1

B1 +B2 +B3

p((β̃m)j >= u(β̃m)j
) =

B2

B1 +B2 +B3

p((β̃m)j <= −u(β̃m)j
) =

B3

B1 +B2 +B3

where B1 =
∫ u(β̃m)j

−u(β̃m)j

1√
2πτ2β

exp(− (β̃m)2j
2τ2β

) = 1 − 2Φ(−
u(β̃m)j

τ2β
), Φ(x) is the CDF for stan-

dard normal distribution, B2 = exp(µ2
mj/2s

2
mj + log(smj) − log(τβ))(1 − Φ(

u(β̃m)j

τ2β
)), B3 =

exp(µ2
mj/2s

2
mj + log(smj)− log(τβ))Φ(−

u(β̃m)j

τ2β
).

(βm)j =
{ (β̃m)j, for |(β̃m)j|>= u(β̃m)j

0, for |(β̃m)j|< u(β̃m)j

Sampling (αa)j

For (α̃a)j, we denote its threshold conditional on the other parameters as

u(α̃a)j =
{ min(λ2, λ0/|(β̃m)j|), for (β̃m)j 6= 0

λ2, for (β̃m)j = 0

logp((α̃a)j||(α̃a)j|< u(α̃a)j) ∝ −(α̃a)2j/(2τ
2
α)

(α̃a)j||(α̃a)j|< u(α̃a)j ∼ TN(0, τ 2α,−u(α̃a)j , u(α̃a)j)

logp((α̃a)j||(α̃a)j|>= u(α̃a)j) ∝ −
(α̃a)2j

2τ 2α
−

n∑
i=1

{(Ai(α̃a)j)
2

2σ2
g

+σ−2g Ai(M
(j)
i −(αcCi)j)(α̃a)j}

(α̃a)j|(α̃a)j >= u(α̃a)j ∼ TN(µaj, s
2
aj, u(α̃a)j ,∞)

(α̃a)j|(α̃a)j <= −u(α̃a)j ∼ TN(µaj, s
2
aj,−∞,−u(α̃a)j)
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µaj =

∑n
i=1Ai(M

(j)
i − (αcCi)j)

σ2
g/τ

2
α +

∑n
i=1A

2
i

, s2aj =
1

1/τ 2α +
∑n

i=1A
2
i /σ

2
g

And,

p(|(α̃a)j|< u(α̃a)j) =
A1

A1 + A2 + A3

p((α̃a)j >= u(α̃a)j) =
A2

A1 + A2 + A3

p((α̃a)j <= −u(α̃a)j) =
A3

A1 + A2 + A3

where A1 =
∫ u(α̃a)j

−u(α̃a)j

1√
2πτ2α

exp(− (α̃a)2j
2τ2α

) = 1 − 2Φ(−
u(α̃a)j

τ2α
), Φ(x) is the CDF for stan-

dard normal distribution, A2 = exp(µ2
aj/2s

2
aj + log(saj) − log(τα))(1 − Φ(

u(α̃a)j

τ2α
)), A3 =

exp(µ2
aj/2s

2
aj + log(saj)− log(τα))Φ(−

u(α̃a)j

τ2α
).

(αa)j =
{ (α̃a)j, for |(α̃a)j|>= u(α̃a)j

0, for |(α̃a)j|< u(α̃a)j

Sampling βa

logp(βa|.) ∝ −
β2
a

2σ2
a

−
n∑
i=1

{(Aiβa)
2

2σ2
1

− σ−21 Ai(Yi −MT

i βm −C
T

i βc)βa}

p(βa|.) ∼ N(

∑n
i=1Ai(Yi −MT

i βm −C
T

i βc)

σ2
1/σ

2
a +

∑n
i=1A

2
i

,
1

1/σ2
a +

∑n
i=1A

2
i /σ

2
1

)

Sampling σ2
a

logp(σ2
a|.) ∝ −(

1

2
+ ha + 1)log(σ2

a)− (
β2
a

2
+ la)σ

−2
a

p(σ2
a|.) ∼ inverse-gamma(

1

2
+ ha,

β2
a

2
+ la)
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Sampling σ2
e

logp(σ2
e |.) = −(

n

2
+ h1 + 1)log(σ2

e)− (

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ l1)σ

−2
e

p(σ2
e |.) ∼ inverse-gamma(

n

2
+ h1,

∑n
i=1(Yi −MT

i βm − Aiβa −C
T

i βc)2

2
+ l1)

Sampling σ2
g

logp(σ2
g |.) = −(

pn

2
+ h2 + 1)log(σ2

g)

−(

∑n
i=1(M

T

i − Aiαa −C
T

i αc)(MT

i − Aiαa −C
T

i αc)T

2
+ l2)σ

−2
g

p(σ2
g |.) ∼ inverse-gamma(

pn

2
+h2,

∑n
i=1(M

T

i − Aiαa −C
T

i αc)(MT

i − Aiαa −C
T

i αc)T

2
+l2)

Sampling τ 2β

logp(τ 2β |.) = −(
q

2
+ km + 1)log(τ 2β)− (

∑q
j=1(β̃m)2j

2
+ lm)τ−2β

p(τ 2β |.) ∼ inverse-gamma(
q

2
+ km,

∑q
j=1(β̃m)2j

2
+ lm)

Sampling τ 2α

logp(τ 2α|.) = −(
q

2
+ kma + 1)log(τ 2α)− (

∑q
j=1(α̃a)2j

2
+ lma)τ

−2
α

p(τ 2α|.) ∼ inverse-gamma(
q

2
+ kma,

∑q
j=1(α̃a)2j

2
+ lma)

Sampling βcw

logp(βcw|.) = −
n∑
i=1

{(Ciwβcw)2

2σ2
e

+ σ−2e Ciw(Yi −MT

i βm − Aiβa −
∑
s6=w

Ciwβcw)βcw}
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p(βcw|.) = N(

∑n
i=1Ciw(Yi − Aiβa −MT

i βm −
∑

s 6=w Ciwβcw)∑n
i=1C

2
iw

,
σ2
e∑n

i=1C
2
iw

)

Sampling (αcw)j

logp((αcw)j|.) = −
n∑
i=1

{(Ciw(αcw)j)
2

2σ2
g

+ σ−2g Ciw(M
(j)
i − Aiαaj −

∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) = N(

∑n
i=1Ciw(M

(j)
i − Aiαaj −

∑
s 6=w Cis(αcs)j)∑n

i=1C
2
iw

,
σ2
g∑n

i=1C
2
iw

)

B.4 Effects Distribution, Empirical FDR Results and Computing

Time in Simulations

To better understand the generated effects under the three different data generating mech-

anism in the simulation Setting (A)-(C), we examine the corresponding distributions of the

simulated non-zero marginal effects, (βm)j (or (αa)j) and indirect effects, (βm)j(αa)j in

Figure B.1.

The PTG prior model essentially produces effects truncated away from zero, where the

thresholding parameter λ = (λ0, λ1, λ2) is determined by the proportion of non-zero effects

(Setting (A)). For example, choosing λ0 = |α̃aβ̃m|(95), λ1 = |β̃m|(85), λ2 = |α̃a|(93) approx-

imately makes π1 = 0.05, π2 = 0.10, π3 = 0.05, π4 = 0.80. The relatively small non-zero

marginal effects are picked up by its indirect effects exceeding the product threshold. The

Setting (B) with four components of bivariate Gaussian mixture is straightforward, and the

resulting indirect effects distribute as a product of two normal distributions. Under the

Setting (C), we can see that the horseshoe distribution has a tall spike near zero and heavy

tails on large effects, and this generates uneven effects different from either PTG or GMM

prior model. The distribution of the corresponding indirect effects show a stronger contrast

between small and large effects.
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Figure B.1: The distributions of the simulated non-zero marginal effects, (βm)j (or (αa)j)
and indirect effects, (βm)j(αa)j under the three simulation settings when n = 100, p = 200.
Each row represents one scenario, i.e. effects under prior model PTG, GMM and Mixture
of Horseshoe. We include marginal effects from normals with the same variances as the
simulation distributions and the corresponding indirect effects as a comparison.121



As a practical procedure, we suggest a cutoff on the posterior inclusion probabilities (PIP) to

identify a significance threshold for declaring active mediators. To evaluate the performance

of this significance rule, we report the empirical FDR and TPR in Table B.1 and B.2 under

all the simulation scenarios. We find that at PIP = 0.5 cutoff, the two proposed methods,

PTG and GMM, exhibit good selection performance while maintaining a reasonable FDR in

most scenarios. At PIP = 0.9 cutoff, the two methods provide over conservative estimates of

FDR, leading to reduced power in mediator selection. Therefore, we will use the 0.5 cutoff

on the PIPs as a selection criterion in the following applications.

Method TPR(FDR=0.1) TPR(PIP>0.9) FDR(PIP>0.9) TPR(PIP>0.5) FDR(PIP>0.5)
n = 100, p = 200, p11 = 10, fixed effects (I)

PTG 0.54(0.025) 0.27(0.017) 0.03(0.014) 0.55(0.017) 0.13(0.016)
GMM 0.42(0.023) 0.17(0.022) 0.03(0.021) 0.44(0.023) 0.16(0.017)

n = 100, p = 200, p11 = 10, fixed effects (II)
PTG 0.34(0.017) 0.27(0.008) 0.04(0.019) 0.37(0.013) 0.14(0.019)
GMM 0.39(0.020) 0.21(0.010) 0.03(0.016) 0.39(0.013) 0.11(0.017)

n = 100, p = 200, p11 = 10, PTG
PTG 0.45(0.020) 0.19(0.014) 0.01(0.007) 0.49(0.018) 0.18(0.015)
GMM 0.43(0.015) 0.26(0.011) 0.03(0.012) 0.45(0.014) 0.11(0.012)

n = 100, p = 200, p11 = 10, Gaussian
PTG 0.38(0.008) 0.26(0.008) 0.01(0.006) 0.56(0.010) 0.39(0.011)
GMM 0.41(0.006) 0.27(0.005) 0.01(0.002) 0.35(0.006) 0.06(0.008)

n = 100, p = 200, p11 = 10, Horseshoe
PTG 0.30(0.015) 0.24(0.014) 0.08(0.016) 0.37(0.016) 0.38(0.019)
GMM 0.33(0.011) 0.26(0.011) 0.03(0.008) 0.35(0.012) 0.16(0.014)

Table B.1: Empirical estimates of TPR and FDR in simulations under n = 100, p = 200,
p11 is the number of true active mediators. The results are based on 200 replicates for
each setting, and the standard errors are shown within parentheses. TPR(FDR=0.1) is the
true positive rate controlled at a fixed FDR of 10%; TPR(PIP>0.9) and FDR(PIP>0.9)
are the empirical estimates when the PIP threshold for declaring active mediators is 0.9;
TPR(PIP>0.5) and FDR(PIP>0.5) are the empirical estimates when the PIP threshold for
declaring active mediators is 0.5.

We performed simulations on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @

2.10GHz, and the runtime comparison of the proposed methods is shown in Table C.1. For

both the small sample scenario with n = 100, p = 200, and the large sample scenario with

n = 1000, p = 2000, the proposed algorithms can be finished in a reasonable amount of

time. We still acknowledge that future development of new algorithms and/or new methods
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Method TPR(FDR=0.1) TPR(PIP>0.9) FDR(PIP>0.9) TPR(PIP>0.5) FDR(PIP>0.5)
n = 1000, p = 2000, p11 = 100, fixed effects (I)

PTG 0.64(0.008) 0.49(0.017) 0.01(0.002) 0.55(0.017) 0.06(0.016)
GMM 0.61(0.009) 0.40(0.004) 0.01(0.003) 0.55(0.005) 0.07(0.010)

n = 1000, p = 2000, p11 = 100, fixed effects (II)
PTG 0.40(0.008) 0.20(0.004) 0.01(0.003) 0.37(0.012) 0.07(0.010)
GMM 0.48(0.006) 0.29(0.003) 0.01(0.002) 0.43(0.004) 0.06(0.007)

n = 1000, p = 2000, p11 = 100, PTG
PTG 0.40(0.008) 0.19(0.004) 0.01(0.011) 0.44(0.007) 0.13(0.006)
GMM 0.37(0.010) 0.10(0.004) 0.05(0.008) 0.47(0.006) 0.17(0.007)

n = 1000, p = 2000, p11 = 100, Gaussian
PTG 0.42(0.006) 0.20(0.005) 0.03(0.002) 0.51(0.005) 0.17(0.004)
GMM 0.51(0.007) 0.36(0.005) 0.01(0.002) 0.49(0.006) 0.10(0.004)

n = 1000, p = 2000, p11 = 100, Horseshoe
PTG 0.29(0.008) 0.30(0.004) 0.05(0.006) 0.39(0.008) 0.24(0.004)
GMM 0.38(0.007) 0.35(0.004) 0.03(0.003) 0.45(0.004) 0.18(0.015)

Table B.2: Empirical estimates of TPR and FDR in simulations under n = 1000, p = 2000,
p11 is the number of true active mediators. The results are based on 200 replicates for
each setting, and the standard errors are shown within parentheses. TPR(FDR=0.1) is the
true positive rate controlled at a fixed FDR of 10%; TPR(PIP>0.9) and FDR(PIP>0.9)
are the empirical estimates when the PIP threshold for declaring active mediators is 0.9;
TPR(PIP>0.5) and FDR(PIP>0.5) are the empirical estimates when the PIP threshold for
declaring active mediators is 0.5.

will likely be required to scale our method to handle thousands of individuals and millions

of mediators.

B.5 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the pro-

gression of subclinical cardiovascular disease (CVD) Bild et al. (2002). A total of 6,814

Method n = 100, p = 200 n = 1000, p = 2000
PTG 30.5sec 23.0min
GMM 88.8sec 29.8min

Table B.3: The average runtime of the proposed methods for n = 100, p = 200 and n = 1000,
p = 2000 in the simulations. Comparison was carried out on a single core of Intel(R)
Xeon(R) Platinum 8176 CPU @ 2.10GHz. For the proposed methods, we in total ran 150,000
iterations.
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non-Hispanic white, African-American, Hispanic, and Chinese-American women and men

aged 45−84 without clinically apparent CVD were recruited between July 2000 and August

2002 from the following 6 regions in the US: Forsyth County, NC; Northern Manhattan

and the Bronx, NY; Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago,

IL; and Los Angeles County, CA. Each field center recruited from locally available sources,

which included lists of residents, lists of dwellings, and telephone exchanges. Neighborhood

socioeconomic disadvantage scores for each neighborhood were created based on a principal

components analysis of 16 census-tract level variables from the 2000 US Census. These vari-

ables reflect dimensions of education, occupation, income and wealth, poverty, employment,

and housing. For the neighborhood measures, we use the cumulative average of the measure

across all available MESA examinations. The descriptive statistics for the exposure and

outcome can be found in Table C.2.

In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam 5),

DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-American,

and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County, New York,

and St. Paul field centers. After excluding respondents with missing data on one or more

variables, we had phenotype and DNAm data from purified monocytes on a total of 1,225

individuals and we focused on this set of individuals for analysis. The detailed description

of DNAm data collection, quantitation and data processing procedures can be found in Liu

et al Liu et al. (2013). Briefly, the Illumina HumanMethylation450 BeadChip was used to

measure DNAm, and bead-level data were summarized in GenomeStudio. Quantile normal-

ization was performed using the lumi package with default settings Du et al. (2008). Quality

control (QC) measures included checks for sex and race/ethnicity mismatches and outlier

identification by multidimensional scaling plots. Further probe filtering criteria included:

“detected” DNAm levels in <90% of MESA samples (detection p-value cut-off = 0.05), ex-

istence of a SNP within 10 base pairs of the target CpG site, overlap with a non-unique

region, and suggestions by DMRcate Chen et al. (2013b) (mostly cross-reactive probes).
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Those procedures leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +CT

1iψc +ZT

i ψu + εi, i = 1, ..., n (B.1)

where Ai represents neighborhood SES value for the i’th individual and ψa is its coefficient;

C1i is a vector of covariates that include age, gender, race/ethnicity, childhood socioeco-

nomic status, adult socioeconomic status and enrichment scores for each of 4 major blood cell

types (neutrophils, B cells, T cells and natural killer cells) to account for potential contami-

nation by non-monocyte cell types; ZT

i ψu represent methylation chip and position random

effects and are used to control for possible batch effects. The error term εi ∼MVN(0, σ2In)

and is independent of the random effects. We obtained p-values for testing the null hypothe-

sis ψa = 0 from the above model. We further applied the R/Bioconductor package BACON

van Iterson et al. (2017) to these p-values to further adjust for possible inflation using an

empirical null distribution. Based on these marginal p-values, we selected top 2,000 CpG

sites with the smallest p-values for our Bayesian multivariate analysis.

B.6 Detailed Description of LIFECODES Data

The LIFECODES prospective birth cohort enrolled approximately 1,600 pregnant women

between 2006 and 2008 at the Brigham and Womens Hospital in Boston, MA. Participants

between 20 and 46 years of age were all at less than 15 weeks gestation at the initial study

visit, and followed up to four visits (targeted at median 10, 18, 26, and 35 weeks gesta-

tion). At the initial study visit, questionnaires were administered to collect demographic

and health-related information. Subjects’ urine and plasma samples were collected at each
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Full
Sample
(n, %)

Neighborhood
Socioeconomic
Disadvantage
Mean (SD)

Body Mass Index (BMI)
Mean (SD)

Full sample 1225 (100) -0.32 (1.11) 29.5 (5.49)
Age

55−65 years 462 (38) -0.18 (0.96) 30.3 (6.02)
66−75 years 397 (32) -0.30 (1.16) 30.1 (5.21)
76−85 years 300 (24) -0.47 (1.15) 28.2 (4.65)
86−95 years 66 (5) -0.67 (1.46) 26.6 (4.66)

Race/ethnic group
Non-Hispanic white 580 (47) -0.56 (1.18) 28.7 (5.40)

African-American 263 (22) -0.16 (0.98) 30.5 (5.69)
Hispanic 382 (31) -0.05 (1.00) 30.0 (5.32)

Gender
Female 633 (52) -0.24 (1.09) 30.1 (6.20)

Male 592 (48) -0.40 (1.12) 28.9 (4.54)

Table B.4: Characteristics of 1225 participants from MESA. %: proportion in the corre-
sponding category. SD: standard deviation.

study visit. Among participants recruited in the LIFECODES cohort, 1,181 participants

were followed until delivery and had live singleton infants. The birth outcome, gestational

age, was also recorded at delivery, and preterm birth was defined as delivery prior to 37

weeks gestation. This study received institutional review board (IRB) approval from the

Brigham and Womens Hospital and all participants provided written informed consent. All

of the methods within this study were performed in accordance with the relevant guidelines

and regulations approved by the IRB. Additional details regarding recruitment and study

design can be found in McElrath et al. (2012); Ferguson et al. (2014b).

In this study, we focused on a subset of n = 161 individuals with their urine and plasma

samples collected at one study visit occurring between 23.1 and 28.9 weeks gestation (median

= 26 weeks). Characteristics of the subset sample is described in Table B.5. Subjects’ urine

samples were refrigerated (4◦C) for a maximum of 2 hours before being processed and stored

at −80◦C. Approximately 10mL of blood was collected using ethylenediaminetetraacetic acid

plasma tubes and temporarily stored at 4◦C for less than 4 hours. Afterwards, blood was
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centrifuged for 20 minutes and stored at −80◦C. Environmental exposure analytes were mea-

sured from urine samples by NSF International in Ann Arbor, MI, following the methods

developed by the Centers for Disease Control (CDC) (Silva et al., 2007). Those exposure

analytes includes phthalates, phenols and parabens, trace metals and polycyclic aromatic

hydrocarbons. To adjust for urinary dilution, specific gravity (SG) levels were measured in

each urine sample using a digital handheld refractometer (ATAGO Company Ltd., Tokyo,

Japan), and was included as a covariate in regression models. Urine and plasma were subse-

quently analyzed for endogenous biomarkers, including 51 eicosanoids, five oxidative stress

biomarkers and five immunological biomarkers in the present study. For a detailed descrip-

tion of the biomarkers that we analyzed and the media (urine or plasma) in which they were

measured, please refer to Aung et al. (2019).

Full
Sample

(n = 161)

Preterm
(<37 weeks gestation,

n = 52)

Control
(n = 109)

Agea 32.7 (4.4) 32.1 (5.0) 33.0 (4.2)
BMI at Initial Visita 26.7 (6.4) 28.5 (7.6) 25.8 (5.6)
Race/ethnic groupb

White 102 (63%) 29 (56%) 73 (67%)
African-American 18 (11%) 7 (13%) 11 (10%)

Other 41 (26%) 16 (31%) 25 (23%)
Gestational weeksa 37.5 (3.1) 34.1 (3.2) 39.1 (1.1)

Table B.5: Characteristics of all participants in the subset sample from the LIFECODES
prospective birth cohort(n = 161). aContinuous variables presented as: mean (standard
deviation). bCategorical variables presented as: count (proportion).
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APPENDIX C

Supplement for Chapter IV

C.1 Posterior Sampling Algorithm Details for GMM-Potts

Sampling

(βm)j

(αa)j

 and γj

logp(
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 |γj = k, .) ∝ −1

2
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p(σ2
g |.) ∼ inverse-gamma(
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Sampling θ0,θ1

We update each of the θ0k, θ1k, k ∈ {1, 2, 3, 4} using a double Metropolis-Hastings (DMH)

algorithm (Liang , 2010). For example, for updating θ0k, we first propose a new θ?0k from

N(θ0k, τ
2
θ ) and then simulate an auxiliary variable γ? starting from γ based on the new θ?0,θ1

where all the elements are the same as θ0,θ1, excluding θ0k. The proposed value θ?0k will be

accepted with probability min(1, rθ) and the Hastings ratio is,

rθ =
φ(θ?0k;µ0k, σ

2
0k)p(γ

?|θ0,θ1)p(γ|θ?0,θ1)
φ(θ0k;µ0k, σ2

0k)p(γ|θ0,θ1)p(γ?|θ?0,θ1)

where φ(θ0k;µ0k, σ
2
0k) is the pdf for the normal distribution N(µ0k, σ

2
0k). The form of p(γ|θ0,θ1)

is given by Equation (4.5) as in the main text and the normalizing constants are canceled in

the ratio.
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i=1

{(Ciw(αcw)j)
2

2σ2
g

+ σ−2g Ciw(M
(j)
i − Aiαaj −

∑
s 6=w

Cis(αcs)j)(αcw)j}

p((αcw)j|.) ∼ N(

∑n
i=1Ciw(M

(j)
i − Aiαaj −

∑
s 6=w Cis(αcs)j)∑n

i=1C
2
iw

,
σ2
g∑n

i=1C
2
iw

)

Swendsen-Wang algorithm
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We propose to use Swendsen-Wang algorithm (Higdon, 1998) to update the Markov random

field, γ. It is a particular case of auxiliary variable methods. In applying SW, we introduce

“bond variables”, u = {uij, i ∼ j}, for each neighbor pair i ∼ j. Given γ, the non-negative

random variable uij are assumed to be independent and uniformly distributed as below,

p(uij|γ) = exp{−
4∑

k=1

θ1kI[γi = γj = k]} × I[0 ≤ uij ≤ exp{
4∑

k=1

θ1kI[γi = γj = k]}]

p(u|γ) =
∏
i∼j

exp{−
4∑

k=1

θ1kI[γi = γj = k]} × I[0 ≤ uij ≤ exp{
4∑

k=1

θ1kI[γi = γj = k]}] (C.1)

Furthermore,

p(γ|u, ·) ∝ p(βm,αa|γ)exp{
p∑
i=1

4∑
k=1

θ0kI[γi = k]}×
∏
i∼j

I[0 ≤ uij ≤ exp{
4∑

k=1

θ1kI[γi = γj = k]}]

(C.2)

To sample from the joint posterior of γ and u = {uij, i ∼ j}, we can iteratively sample from

Equation (C.1) and (C.2). To sample from (C.2), we note that uij > 1 implies that γi = γj,

so that the bond variable u partitions mediators into same-labeled clusters, and this happens

with a probability of 1 − exp{−
∑4

k=1 θ1kI[γi = γj = k]}. For a particular cluster, C, the

probability of belonging to component k is ∝
∏

i∈C p((βm)i, (αa)i|γi)exp{θ0kγi}, and each

cluster can be updated independently in turn according to its conditional distribution. The

SW implementation can be described as below:

1. Update each bond variable according to a uniform distribution:

uij|γ ∼ U [0, exp{
4∑

k=1

θ1kI[γi = γj = k]}]

Bonds are forbidden from forming wherever the two neighbors are in different groups.

2. Form the same-labeled clusters (connected components) induced by uij

i. The Union-Find algorithm
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ii. Simplifies in the 1-D case

3. For each cluster C, update its label according to its conditional distribution,

p(γC = k|·) ∝
∏
i∈C

p((βm)i, (αa)i|γi)exp{θ0kγi}, k = 1, 2, 3, 4

We alternate between Swendsen-Wang updates of γ and single site Gibbs updates to ensure

movement in large patches.

C.2 Posterior Sampling Algorithm Details for GMM-CorrS

To sample from the posterior distribution using the Pólya-Gamma method, simply iterate

two steps:

Sampling wjk for each j and k

wjk|· ∼ Pólya-Gamma(njk, bkj)

where njk = 1 −
∑

k′<k I(γj = k
′
), nj1 = 1. The samples from Pólya-Gamma distribution

can be generated using the algorithm and software in Polson et al. (2013).

Sampling bk

We can rewrite 4-dimensional multinomial in terms of 3 binomial densities π̃j1, π̃j2 and π̃j3.

Specifically,

p(bk) ∝
∏
j

π̃
I(γj=1)
j1 ((1− π̃j1)π̃j2)I(γj=2)((1− π̃j1)(1− π̃j2)π̃j3)I(γj=3)

×((1− π̃j1)(1− π̃j2)(1− π̃j3)π̃j4)I(γj=4)MVN(ak, σ
2
dkD)

∝
∏
j

π̃
I(γj=1)
j1 (1− π̃j1)1−I(γj=1)π̃

I(γj=2)
j2 (1− π̃j2)I(γj=3)+I(γj=4)π̃

I(γj=3)
j3 (1− π̃j3)I(γj=4)

MVN(ak, σ
2
dkD)
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I(γj = 1) ∼ Binom(1, expit(b1j)),

I(γj = 2) ∼ Binom(nj2, expit(b2j)),

I(γj = 3) ∼ Binom(nj3, expit(b3j))

The multinomial distribution is now expressed with three binomial distributions involving

bkj, k = 1,2,3. Following the derivation in Polson et al. (2013), we will have,

bk|· ∼ MVN(µbk,Vbk)

Vbk = (Ω + (σ2
dk)
−1D−1)−1

µbk = Vbk(κk + (σ2
dk)
−1D−1ak)

where Ω is the diagnol matrix of wjk’s, and κk = (I(γ1 = k) − n1k/2, I(γ2 = k) −

n2k/2, ..., I(γp = k)− npk/2). Then we can update πj accordingly.

Sampling σ2
dk

σ2
dk|· ∼ IG(u+

p

2
, v +

(bk − ak)TD−1(bk − ak)

2
)

The other parameters can be sampled in a similar way as in the GMM-Potts, with details

described in the previous section.

C.3 Computing Time in Simulations

We performed simulations on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @

2.10GHz, and the runtime comparison of the proposed methods is shown in Table C.1. For

both the small sample scenario with n = 100, p = 200, and the large sample scenario with

n = 1000, p = 2000, the proposed algorithms can be finished in a reasonable amount of

time. We still acknowledge that future development of new algorithms and/or new methods

will likely be required to scale our method to handle thousands of individuals and millions
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Method n = 100, p = 200 n = 1000, p = 2000
GMM-CorrS 3.5 min 9.8 hr
GMM-Potts 2.2 min 4.0 hr

Table C.1: The average runtime of the proposed methods for n = 100, p = 200 and n = 1000,
p = 2000 in the simulations. Comparison was carried out on a single core of Intel(R)
Xeon(R) Platinum 8176 CPU @ 2.10GHz. For the proposed methods, we in total ran 150,000
iterations.

of mediators.

C.4 Detailed Description of MESA Data

MESA is a population-based longitudinal study designed to identify risk factors for the pro-

gression of subclinical cardiovascular disease (CVD) Bild et al. (2002). A total of 6,814

non-Hispanic white, African-American, Hispanic, and Chinese-American women and men

aged 45−84 without clinically apparent CVD were recruited between July 2000 and August

2002 from the following 6 regions in the US: Forsyth County, NC; Northern Manhattan

and the Bronx, NY; Baltimore City and Baltimore County, MD; St. Paul, MN; Chicago,

IL; and Los Angeles County, CA. Each field center recruited from locally available sources,

which included lists of residents, lists of dwellings, and telephone exchanges. Neighborhood

socioeconomic disadvantage scores for each neighborhood were created based on a principal

components analysis of 16 census-tract level variables from the 2000 US Census. These vari-

ables reflect dimensions of education, occupation, income and wealth, poverty, employment,

and housing. For the neighborhood measures, we use the cumulative average of the measure

across all available MESA examinations. The descriptive statistics for the exposure and

outcome can be found in Table C.2.

In the MESA data, between April 2010 and February 2012 (corresponding to MESA Exam 5),

DNAm were assessed on a random subsample of 1,264 non-Hispanic white, African-American,

and Hispanic MESA participants aged 55−94 from the Baltimore, Forsyth County, New York,

and St. Paul field centers. After excluding respondents with missing data on one or more
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variables, we had phenotype and DNAm data from purified monocytes on a total of 1,225

individuals and we focused on this set of individuals for analysis. The detailed description

of DNAm data collection, quantitation and data processing procedures can be found in Liu

et al Liu et al. (2013). Briefly, the Illumina HumanMethylation450 BeadChip was used to

measure DNAm, and bead-level data were summarized in GenomeStudio. Quantile normal-

ization was performed using the lumi package with default settings Du et al. (2008). Quality

control (QC) measures included checks for sex and race/ethnicity mismatches and outlier

identification by multidimensional scaling plots. Further probe filtering criteria included:

“detected” DNAm levels in <90% of MESA samples (detection p-value cut-off = 0.05), ex-

istence of a SNP within 10 base pairs of the target CpG site, overlap with a non-unique

region, and suggestions by DMRcate Chen et al. (2013b) (mostly cross-reactive probes).

Those procedures leave us 403,713 autosomal probes for analysis.

For computational reasons, we first selected a subset of CpG sites to be used in the final

multivariate mediation analysis model. In particular, for each single CpG site in turn, we

fit the following linear mixed model to test the marginal association between the CpG site

and the exposure variable:

Mi = Aiψa +C>1iψc +Z>i ψu + εi, i = 1, ..., n (C.3)

where Ai represents neighborhood SES value for the i’th individual and ψa is its coefficient;

C1i is a vector of covariates that include age, gender, race/ethnicity, childhood socioeco-

nomic status, adult socioeconomic status and enrichment scores for each of 4 major blood cell

types (neutrophils, B cells, T cells and natural killer cells) to account for potential contami-

nation by non-monocyte cell types; Z>i ψu represent methylation chip and position random

effects and are used to control for possible batch effects. The error term εi ∼MVN(0, σ2In)

and is independent of the random effects. We obtained p-values for testing the null hypothe-

sis ψa = 0 from the above model. We further applied the R/Bioconductor package BACON
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van Iterson et al. (2017) to these p-values to further adjust for possible inflation using an

empirical null distribution. Based on these marginal p-values, we selected top 2,000 CpG

sites with the smallest p-values for our Bayesian multivariate analysis.

Full
Sample
(n, %)

Neighborhood
Socioeconomic
Disadvantage
Mean (SD)

Glucose
Mean (SD)

Full sample 1225 (100) -0.32 (1.11) 29.5 (5.49)
Age

55−65 years 462 (38) -0.18 (0.96) 30.3 (6.02)
66−75 years 397 (32) -0.30 (1.16) 30.1 (5.21)
76−85 years 300 (24) -0.47 (1.15) 28.2 (4.65)
86−95 years 66 (5) -0.67 (1.46) 26.6 (4.66)

Race/ethnic group
Non-Hispanic white 580 (47) -0.56 (1.18) 28.7 (5.40)

African-American 263 (22) -0.16 (0.98) 30.5 (5.69)
Hispanic 382 (31) -0.05 (1.00) 30.0 (5.32)

Gender
Female 633 (52) -0.24 (1.09) 30.1 (6.20)

Male 592 (48) -0.40 (1.12) 28.9 (4.54)

Table C.2: Characteristics of 1225 participants from MESA. %: proportion in the corre-
sponding category. SD: standard deviation.
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pólya–gamma latent variables, Journal of the American statistical Association, 108 (504),
1339–1349.

Potts, R. B. (1952), Some generalized order-disorder transformations, in Mathematical pro-
ceedings of the cambridge philosophical society, vol. 48, pp. 106–109, Cambridge University
Press.

145



Preacher, K. J., and A. F. Hayes (2008), Asymptotic and resampling strategies for assessing
and comparing indirect effects in multiple mediator models, Behavior research methods,
40 (3), 879–891.

Rakyan, V. K., et al. (2011), Identification of type 1 diabetes–associated dna methylation
variable positions that precede disease diagnosis, PLoS Genet, 7 (9), e1002,300.

Raman, S., T. J. Fuchs, P. J. Wild, E. Dahl, and V. Roth (2009), The bayesian group-
lasso for analyzing contingency tables, in Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 881–888.

Robins, J. M., and S. Greenland (1992), Identifiability and exchangeability for direct and
indirect effects, Epidemiology, pp. 143–155.
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