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ABSTRACT

In many real world supervised learning problems, it is easy or cheap to acquire unla-

belled data, but challenging or expensive to label it. Active learning aims to take advantage

of this abundance of unlabelled data by sequentially selecting data points to label in an

attempt to choose the best data points for the underlying prediction problem. In this thesis

we present several contributions to the field of active learning.

The first part examines active learning for regression, an under studied topic compared

with classification. We consider active learning for non-parametric regression, a partic-

ularly challenging problem since it is known that under standard smoothness conditions,

the minimax rates for active and passive learning are the same. None-the-less we provide

an active learning algorithm with provable improvement over passive learning when our

underlying estimator is a purely random decision tree. We experimentally confirm that the

gains can be substantial, and provide guidance for practitioners.

The second part returns to classification, but considers all weighted averaging estima-

tors. Here we work to provide an extension of the celebrated Stone’s Theorem for consis-

tency under actively sampled data. We provide an augmentation that can be applied to a

wide range of active learning algorithms, which allows us to replicate the results of Stone’s

Theorem in the noiseless case. However this only generalizes to the noisy case for some

classical Stone estimators, whereas for others it can catastrophically fail. We explore the

cause of this disjunctive behaviour and provide further conditions which exemplify why

some estimators remain consistent while others do not.

The final part addresses the emerging area of federated learning. We study the the

ix



problem of user selection during training, and expose the similarities to active learning.

We then propose Active Federated Learning, which adapts techniques from active learning

to this new setting, and show that the method can lead to reductions in the communication

costs of training federated models by 20-70%.
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CHAPTER I

Introduction

The intuition behind active learning is deceptively simple and extremely appealing; given a
modelling process and some labelled data, certain new data points might be more valuable
than other new data points. This difference in value can be the result of both underlying
properties of the distribution being modelled, such as having non-uniform noise or com-
plexity of the mean structure. It can also come from inadequacies in the existing sample,
such as over/under-exploration of different regions of our covariate space, or even the pres-
ence of uncharacteristically high noise in some existing samples. Of course such detailed
information of the underlying distribution is usually unknown. In this thesis we initially
study active learning under very minimal assumptions on the distribution, and where the
models being fit are also non-parametric. We also perform the first study of active learning
applied to federated learning, an emerging distributed learning setting.

1.1 Motivation from computational chemistry

Our initial motivation for studying active learning came from computational chemistry (al-
though none of our methods or results use any specific structure or assumptions specialized
to this application). Historically chemistry research involved developing an understanding
of groups of similar reactions through trial and error, working to describe the mechanism
by which those reactions occurred, and developing that understanding into mechanistic
rules for making predictions about reactions within the group. The development of Quan-
tum Mechanics has in principle given chemists the ability to mathematically calculate most
chemical properties of interest. By solving the Schrodinger equations (and various ap-
proximations of them) quantum chemists can obtain accurate and detailed descriptions of
chemical properties from first principles (ab initio), i.e. without any experimental data.
But getting solutions to these is highly resource intensive, becoming exponentially more
expensive as your molecule size and desired accuracy increases. Not only are individual
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simulations computationally expensive, but getting the answers to questions of practical
interest can require more simulations than one might initially think. Take as an example
one of the most basic questions in chemistry: when I mix two chemicals, what will happen?
Even between two simple molecules there can many possible reactions (even just enumer-
ating these potential reactions is non-trivial). The proportion with which these reactions
occur is a function of their activation energy; the smaller this activation energy, the more
likely it is a chemical reaction will occur at the micro level, meaning that often the reaction
or few reactions with the lowest activation energy will be the only ones occurring in any
relevant macro proportion. This activation energy is a property which can be calculated by
solving (approximately) the Schrodinger wave equation, but using just quantum mechanics
you would need to run simulations for all possible reactions. Further compounding this
issue is the reality that many chemical reactions of interest are not single event but involve
a chain of reactions, where at each stage of the chain there can be many possible reactions.
It is easy to see how the exponential number of simulations needed can quickly become
unmanageable.

One possible method of alleviating these issues is to use machine learning to avoid
having to do all the simulations by building a predictive metamodel of quantities of inter-
est. This model can be used to focus on reactions which are most promising. The models
uses features of the reaction which chemists consider informative, and which can be easily
obtained in an automatic and inexpensive fashion. This model requires completed simu-
lations to use as labelled data, and the generation of a single labelled point can often be
parallelized. This makes sequential generation of labelled data reasonable, so we can use
active learning to produced the most accurate metamodel given a fixed budget of simula-
tions.

1.2 Active learning overview

There are three main scenarios which dictate how the active learning algorithm can interact
with unlabelled data: streaming settings, pool settings and membership query synthesis
settings. In the streaming setting our covariates arrive one at a time and we have to choose
whether to acquire the label or discard the data point. In the pool setting we are given a
fixed set of training data, where we have all the covariates and have to pick data points
out of this fixed set to label. Finally the membership query synthesis setting allows the
algorithm to choose any point within the covariate space and sample a label for that point.
The streaming setting is a well studied and interesting problem in its own right (see Settles
(2010) and Fu et al. (2013) for excellent surveys of streaming based active learning and
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active learning in general). However we will focus on the pool setting and membership
query synthesis setting, as these are the settings which appear in the following chapters.

1.2.1 Pool setting

In the pool setting of active learning there are numerous paradigms for how to choose the
next data point to label out of your set of unlabelled data. More formally we begin with
n data points {Xi}n1 ∈ X which are fixed and always available to the algorithm. For each
Xi we have a corresponding Yi ∈ Y and these Yi are fixed (meaning we cannot sample
the same point multiple times and receive multiple samples of the conditional distribution).
Initially none or a very small fraction of these Yi are known to the algorithm. Instead
the algorithm has the ability to gain access to any of the Yi, and the goal of the active
learning algorithm is to sequentially select Yi in order to optimize some objective subject
to some constraints. The most common constraint is |D| ≤ k, where D is the set of data
points which are labeled, though generalizations of this which allow different label costs
or additional constraints have been proposed (Golovin and Krause, 2011). The objective
is usually to model the underlying function relating Xi and Yi either globally or at the
unlabelled data points, but this can be mathematically represented in a variety of ways.
We will briefly review different approaches to pool based active learning, though again we
refer interested readers to Settles (2010) for a more thorough overview. The majority of
the work done in pool based active learning has been done in classification, since one of
the archetypal uses for active learning has been to reduce the human labelling needed for
common computer science tasks such as NLP (Settles and Craven, 2008), computer vision
(Vijayanarasimhan and Grauman, 2009) and speech analysis (Tur et al., 2005).

The most intuitive method is called uncertainty sampling (Lewis and Gale, 1994) and
it works exactly how it sounds. The idea is to sample in regions where you are most un-
certain about the label on the data. For classification this uncertainty is usually measured
using posterior probabilities (Scheffer et al., 2001), entropy (Körner and Wrobel, 2006)
and margin distance (Tong and Koller, 2001). For regression this is measured using vari-
ance (Cohn et al., 1996), entropy (MacKay, 1992) and mutual information (Krause et al.,
2008). This method is particularly popular when using Gaussian Processes, such as in Seo
et al. (2000), since the variance at a given point is naturally given by the covariance matrix.
Despite being intuitively motivated, it has proven more difficult than expected to analyze
these methods theoretically. Only recently has there been successful work to provide guar-
antees for these types of active learning algorithms. In Golovin and Krause (2011) and
Cuong et al. (2014) they use generalizations of submodularity maximization (Nemhauser

3



et al., 1978) show that specific variants of these methods enjoy near-optimality guarantees.
And Mussmann and Liang (2018) showed that uncertainty sampling can be interpreted as
performing a pre-conditioned stochastic gradient step on the zero-one loss.

Another similar but more theoretically motivated approach is called Query by Com-
mittee (QBC), first proposed in Seung et al. (1992). These methods follow the structure
of statistical learning theory and assume there exists a finite set of possible hypotheses
H which represent possible labellings of the data. Algorithms then select data points for
which different hypotheses disagree more often, as knowing these data points will help
us discriminate between the hypotheses in H. This is studied in both the realizable and
non-realizable case (Dasgupta et al., 2008; Nowak, 2008). QBC is much more amiable to
theoretical analysis, as seen by the success of IWAL and it’s variants (Beygelzimer et al.,
2009). Hanneke and Yang (2015) provides general minimax bounds for active learning for
a variety of noise conditions using methods based on Cohn et al. (1994). In practice either
the full hypothesis space H is not known, or there are too many hypotheses h ∈ H to effi-
ciently evaluate all of them, as many of these algorithms require. Therefore in practice these
algorithms often use approximated using a committee of trained models as in Melville and
Mooney (2004). QBC is also applied in regression, as in Burbidge et al. (2007), however
the theoretical work and justification is not as well developed.

There are also many works that extend the ideas from traditional design of experiment
(Santner et al., 2013) to the adaptive world. The goal is to reduce the variance of the pa-
rameter estimates when our model is parametric, and is often based on using the Fisher
Information matrix. While this had been well studied in the fixed design setting, one of
the first works extending these ideas to a non-fixed setting were MacKay (1992) and Cohn
et al. (1996). It has been used other works such as Schein and Ungar (2007) where it
was used for logistic regression, or Settles and Craven (2008) where it was used for se-
quence labelling. One benefit is that these methods can be studied theoretically, and recent
work such as Chaudhuri et al. (2015) and Sourati et al. (2017) provide convergence rates
and asymptotic analysis. Unfortunately these theoretically sound methods are often com-
putationally expensive, and are restricted to parametric models where we have a Fisher
Information matrix. However augmenting novel techniques for experimental design such
as support points (Mak et al., 2018), core-sets (Sener and Savarese, 2017) and determi-
nantal point processes (Bıyık et al., 2019) to be adaptive consistently produces competitive
active learning algorithms.
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1.2.2 Membership query synthesis setting

In membership query synthesis we are not restricted to a predefined set of data points. In-
stead we have some space X and at any point in that space we can sample a label Y ∈ Y
at that point. Since we have no predefined set of interest, the objective here is almost al-
ways to accurately approximate the underlying function across the covariate space, usually
measured by ||f − f̂ ||2 =

∫
X |f(x)− f̂(x)|dx. Membership query synthesis has been most

widely studied in the service of Sequential Experimental Design for simulations (see Fe-
dorov (1972) and Sacks et al. (1989)). The main simulation task is to build a metamodel, or
a tractable data driven model (also called a surrogate model or emulator in the literature), of
a complicated process which can only be understood through simulations, and which often
have various tuning and operational variables. These models are then used to make pre-
dictions, guide further simulations, or perform sensitivity analysis. There is need for such
models in various fields of physical science and engineering, including Tsunami modelling
in Beck and Guillas (2016), industrial chemical engineering optimization in Jin et al. (2016)
and borehole flow rate modelling in Liu et al. (2016). The objective of sequential exper-
imental design is to guide the simulation process to sample parameters which would be
most informative for modelling. See Liu et al. (2017) for a survey which details advances
within this area, as well as discusses many of the key ideas and concepts. In contrast to
the pool setting, the query synthesis setting has been almost exclusively used for regression
problems, as in many classification tasks (see Baum and Lang (1992)) the algorithms were
found to produce examples which could not be classified by humans.

One key difference between regression and classification is is the greater need for ex-
ploration in the regression context as opposed to classification. Within classification, data
points far away from the classification boundary are considered by many models to be
"known" (although with non-linear, non-realizable or noisy models this can be danger-
ous, see Dasgupta (2011) for a good one dimensional example) and so less exploration is
needed away from the current boundary. However in regression it can take several data
points to understand how the function behaves in any area, and much less local behaviour
can be inferred from global properties of the function. This balance between exploration
and exploitation is a common theme in interactive machine learning tasks. Many applied
algorithms have explicitly focused on how to deal with that trade-off, and experimental
(Singh et al., 2013) and theoretical (Hoang et al., 2014) studies have been done to consider
how to optimally balance these conflicting goals.

Variants on many of the paradigms used in classification have been simply adapted
for the regression setting with uncertainty based methods (MacKay, 1992; Cohn et al.,
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1996), QBC (Viana et al., 2010; Eason and Cremaschi, 2014; Jiang et al., 2015; Golzari
et al., 2015; Jin et al., 2016) and variance reduction methods (Krause et al., 2008; Beck
and Guillas, 2016) all make an appearance. These methods are all fairly direct adaptations
of methods used for classification, except that alterations to ensure there is sufficient ex-
ploration are needed. There are also local geometry based approaches which use the fact
that our labels are not just class labels but are real numbers. The insight here is that, sim-
ilar to how in classification the most valuable data points are often the ones very close to
the classification boundary, for regression the equivalent ideas are that the most valuable
data points are in the regions "most interesting", where this can have different definitions.
In Crombecq et al. (2011) and Shahsavani and Grimvall (2009) they seek to find the area
where the functions is most locally non-linear, using the local gradient and the quadratic
term of a local polynomial regression respectively to measure non-linearity. In Pan et al.
(2014) they take a slightly more global approach and sample around the best estimates
of local maxima and minima so as to gain an understanding of the shape of the function.
As with methods adapted more directly from classification, these methods all had explicit
trade off between exploring the space where there is little information, and exploiting what
is known about the geometry of the function to further learn about these areas of geometric
interest.

1.3 Thesis structure and publications

The core material in this thesis is contained in three chapters. Each of these chapters
(Chapter II, Chapter III and Chapter IV) has been adapted from publications and preprints:

• Chapter II is based off Goetz et al. (2018), which was published in the electronic
proceedings of the Neural Information Processing Systems Conference. It studies
active learning for regression, proposing an algorithm which outperforms random
sampling with minimal assumptions.

• Chapter III is based off Goetz and Tewari (2019), a preprint to be submitted to the
Electronic Journal of Statistics. It considers consistency of weighted averaging esti-
mators after active learning has been used to sample the training data.

• Chapter IV is based off Goetz et al. (2019), which was an accepted paper at the Inter-
national Workshop on Federated Learning for User Privacy and Data Confidential-
ity in Conjunction with the Neural Information Processing Systems Conference. It
proposes Active Federated Learning, a framework for non-uniformly selecting (dis-
tributed) subsets of data during each federated learning training iteration.

6



CHAPTER II

Active Learning for Non-Parametric Regression
Using Purely Random Trees

In binary classification active learning is known to produce faster rates than passive learning
for a broad range of settings. However in regression restrictive structure and tailored meth-
ods were previously needed to obtain theoretically superior performance. In this chapter
we propose an intuitive tree based active learning algorithm for non-parametric regression
with provable improvement over random sampling. When implemented with Mondrian
Trees our algorithm is tuning parameter free, consistent and minimax optimal for Lipschitz
functions.

2.1 Introduction

In this chapter we study active learning for regression in the pool setting. In our setup
we are given a pool of unlabelled data points and want to build the best model with a
fixed number of samples, allowing selection of new points to use labels already obtained.
Active learning is motivated by scenarios where the experimenter has control over the data
labelling process and where unlabelled points are cheap but labels are expensive.

Our primary motivation comes from computational chemistry, where chemical proper-
ties of interest can be computed by solving approximations to the Schrödinger equation.
One key property to chemists, the rate of chemical reaction, can be quantified via the ac-
tivation energy, which controls the rate of reaction as a function of temperature Cramer
(2013). While calculating the activation energy is expensive, there are a small number
of readily available features of the reaction that influence the activation energy. This in-
centivizes building a metamodel for the activation energy to avoid excessive analysis of
undesirable (high activation energy) reactions. Since we are restricted in the number of
simulations used to build our metamodel, we want to use the most informative data points.
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Because chemical reactions are discrete entities, we are restricted to a finite (but often large)
pool of reactions, thus requiring pool setting active learning even though we are selecting
simulations.

Active learning methods are usually built on top of existing prediction algorithms. De-
cision trees and forests are a popular class of such predictors due to their simplicity, ex-
pressiveness, state-of-the-art performance and tuning parameter free nature. In this chapter
we focus our attention on purely random trees Breiman (2000), decision trees built inde-
pendently of any data, due to their amenability to theoretical analysis. We use a recently
proposed version called Mondrian Trees Lakshminarayanan et al. (2014), which have been
shown to produce trees with many attractive properties such as consistency and minimax
optimal rate of convergence for Lipschitz functions Mourtada et al. (2017).

As in some previous work Chaudhuri et al. (2017), our active learning algorithm will
be developed in two stages. First we introduce a simple and intuitive oracle querying algo-
rithm for purely random trees which is optimal among a natural class of sampling schemes
which includes random sampling (Theorem 2.4.1). This algorithm is not active but uses
statistics of the true joint distribution which are generally unknown. Second we propose an
active learning scheme where we first sample passively to estimate the required statistics,
and then use those estimates to approximate the oracle algorithm. We show this algorithm
is consistent for the oracle algorithm (Theorem 2.5.1) and behaves well when our labels
are normally distributed (Theorem 2.5.2). Finally we examine the empirical performance
of our active learning algorithm to show that benefits, though sometimes modest, can be
significant.

The structure of this chapter is as follows:

1. Introduce a family of sampling algorithms (Algorithm 1) and derive properties of
those algorithms.

2. Use these properties to derive the optimal algorithm in this family (Theorem 2.4.1).

3. Propose an active learning algorithm (Algorithm 2) to approximate this optimal sam-
pling algorithm.

4. Analyze the differences between the optimal algorithm and it’s active approximation
(Sections 2.5.1, 2.5.2, and 2.5.3).

5. Experimentally validate the results of our active learning algorithm (Section 2.6).

6. Provide details of all proofs (Section 2.8).
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7. Give additional information with practical recommendations, additional experiments
and possible extensions to forests (Section 2.9).

2.2 Setting and background

We begin by describing the pool based active learning setting, as well as introducing
purely random and Mondrian trees. We have a pool of m data points {Xi}m1 , with Xi ∈
[0, 1]d (rescaling our X as needed) and Xi ∼ pX , which are always available to the algo-
rithm. For each Xi we have a corresponding label Yi ∈ R with the relationship Yi =

f(Xi)+σ(Xi)εi with εi ∼ pε iid, εi ⊥ Xj∀j, E(εi) = 0,Var(εi) = 1, σ(Xi) : [0, 1]d → R+,
meaning our noise is the product of a function of X with an independent random variable.
We assume the (Xi, Yi) = Di have been drawn iid from a joint distribution pX,Y . We will
assume that f(x) and σ(x) are bounded.

Initially none of these Yi are known to the algorithm. Instead we have the ability to gain
access to any of the Yi, and the task is to select n � m labels with the goal of building a
model with the lowest quadratic risk E

[
(f̂(X)− f(X))2

]
, where the expectation is taken

over our test point X , the random process which builds our tree and the labelled data we
select. Throughout we will assume that our pool is arbitrarily large; in particular we will
assume that the marginal density pX is known, and that there is enough unlabelled data
to implement any sampling scheme for selecting n points. We use active sampling (or
learning) to describe any sampling scheme which samples in multiple batches and uses
both X ′is as well as known Y ′i s from previous batches when picking points for the next
batch. We use passive sampling to denote any sampling scheme which only uses the Xi to
pick points, and we use random sampling to denote picking the points uniformly at random
from our pool (which is the same as sampling from pX,Y ).

Our active learning method is for purely random trees Breiman (2000), which are de-
cision trees (or partitions of the space) built using a random process that is independent
of the data. We will interchangeably discuss the partition of the space generated by the
tree and the leaves of the tree. Let Ik ∈ I enumerate the leaves of a tree (partitions of the
space), where k ∈ {1...K}. We will abuse notation slightly and use the set of partitions
I to denote our tree. These partitions can be used to build regressograms, which make
predictions using the average of labelled points within the partition of the test point. With
the partitions fixed, the best (in L2) approximation to f which is piece-wise constant on
each partition predicts the conditional mean on that partition Györfi et al. (2006). We will
denote true values and estimates of this approximation using "tilde" and "hat" notation as
shown below.
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True best approximation Estimate of best approximation

f̃I(x) =
K∑
k=1

1(x ∈ Ik)β̃k f̂I(x) =
K∑
k=1

1(x ∈ Ik)β̂k

β̃k = EpX,Y [Y |X ∈ Ik] β̂k =
1∑

1(Xi ∈ Ik)
∑
Xi∈Ik

Yi

Our experiments and some results will use particular purely random trees built using
the Mondrian Process Lakshminarayanan et al. (2014). The Mondrian Process is a stochas-
tic process for partitioning a hypercube in Rd, a single realization of this process gives a
Mondrian Tree. The Mondrian Process iteratively splits existing partitions, and the number
of partitions is controlled by a parameter λ which, since the Mondrian Process is a gener-
alization of a Poisson Process, is referred to as the lifetime parameter. As this parameter
increases the number of partitions increases, and the rate at which the number of partitions
increase depends on the dimension and size of the hypercube. We will use Mondrian Trees
on a fixed domain [0, 1]d with varying lifetime as in Mourtada et al. (2017), which describes
how these random partitions are built.

2.3 Related work on active learning

The majority of theoretical work in active learning has taken place in binary classification,
and there are many approaches which have been studied (see, e.g. Golovin and Krause
(2011), Dasgupta et al. (2008), Sourati et al. (2017), Hoang et al. (2014), Balcan et al.
(2009), Awasthi et al. (2014)). These algorithms are studied under fairly nonrestrictive
assumptions (except occasionally requiring a linear classification boundary). It has been
shown that for a variety of realistic noise conditions active learning provides a better mini-
max learning rate than passive learning (Hanneke and Yang (2015)).

In contrast the theory for active learning in regression is less well developed. A nega-
tive result Willett et al. (2006) showed that for a Lipschitz regression function and constant
noise variance, the minimax learning rate for active learning was the same as that for pas-
sive (up to a constant). Additional assumptions are required to obtain better rates. Such
structure includes assumptions of piece-wise constantness of regression function Willett
et al. (2006), approximation of a non-linear model by a linear one Sabato and Munos
(2014), locally varying smoothness Bull et al. (2013), well-specified parametric model
Chaudhuri et al. (2015) or heteroskedasticity Efromovich (2008), Chaudhuri et al. (2017).
Even in these cases the results are either discouraging or restrictive. In Arias-Castro et al.
(2013) they show that if you are doing compressed sensing with sparsity, adaptively choos-
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ing your samples can lead to an order log(n
k
) improvement in the signal estimation, where k

is the sparsity of the signal (although as the authors point out, this is still only an O(log(n))

improvement). And Efromovich (2008) shows that adaptive sampling can remove the price
paid if estimating a function with heteroskedastic noise (assuming the function relating the
heterskedasticity to X is suitably regular). However this analysis was restricted to one di-
mensional covariate space, where in classification you can get an exponential improvement
over passive sampling with a generalization of binary search (see Nowak (2008)).

While many of these regression methods are able to provide provably better learning
rates in terms of n, d, they are often tailored for their specific assumptions and may perform
poorly if the assumptions do not hold. As a recent summary Liu et al. (2017) of numerous
flexible but guarantee free methods shows, there is great demand for active learning meth-
ods without such stringent conditions. Our active learning algorithm will make very mild
assumptions, but the improvement will not be in rates in n, d (since it is known this is not al-
ways possible). Rather we will adopt the approach (Golovin and Krause, 2011; Chaudhuri
et al., 2017) of comparing the sampling generated by our algorithm to an optimal sampling
scheme, as well as to random sampling.

2.4 Oracle label querying algorithm

We first describe a simple family of querying algorithms for a fixed purely random tree I
which are not active. In the first two subsections below, we will be implicitly conditioning
on the tree I, but will suppress this in the notation.

2.4.1 Generic algorithm

In our generic algorithm family, the tree is built without using any data. So we build the
tree first and query based on the tree’s structure. We call it an "oracle" algorithm since it
requires pX,Y .The algorithm is described as picking nk deterministically for simplification of nota-
tion in proofs. However it is clear that if the nk are random then it is easy (in principle)
to discuss the probabilistic properties of the algorithm, and the details of the risk under
random versions of Algorithm 1 are discussed in the proof for Corollary 2.4.2. The pool
marginal distribution pX and the proportion in each leaf qk from the querying algorithm
above induce a marginal distribution p′X , as well as a joint distribution p′X,Y = pY |Xp

′
X .

The scheme is very general, and it is worth noting that random sampling is a (randomized)
version of Algorithm 1. But this is enough structure to produce a somewhat obvious but
very important property of our sampling distribution restricted to each leaf.
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Algorithm 1: Generic "oracle" querying algorithm
Input: Leaves of our tree I, pool of data points {Xi}mi=1, label budget n and joint

distribution pX,Y
Output: The set of points to label
foreach Ik ∈ I do

Calculate qk the proportion of points to select from leaf Ik, using
I, {Xi}mi=1, n, pX,Y . ;

Select nk = n · qk points uniformly at random from the pool of unlabelled
points in that leaf. ;

end

Proposition 2.4.1. Fix a tree structure I, pool marginal density pX and version of Al-

gorithm 1, giving us an induced marginal density p′X . Let p′X(X|Ik) = p′X(X|X ∈ Ik)

denote the induced marginal density conditioned on X ∈ Ik. Then as long as qk 6= 0,

p′X(X|Ik) = pX(X|Ik) for any version of Algorithm 1.

One important property this gives us is that Ep′X,Y [β̂k] = β̃k (as long as Ik has at least 1
labelled point to estimate β̂k), meaning our sampling scheme produces unbiased estimates
of the optimal regressogram for this tree. It also allows for a bias-variance decomposition
of the risk of the tree. This decomposition was already known Genuer (2012) under the
assumption of independence between tree structure and the data. We relax this assumption
slightly as the distribution of the data depends on the structure of the tree, but still permits
this decomposition.

Corollary 2.4.1. For a fixed tree structure I, under any sampling distribution generated

by Algorithm 1 we have the following bias-variance decomposition of our risk:

E
[
(f̂I(X)− f(X))2

]
= E

[
(f̃I(X)− f(X))2

]
+ E

[
(f̂I(X)− f̃I(X))2

]
.

We will refer to these as the risk bias term and risk variance term. The risk bias term
depends only on the structure of the tree, which does not depend our sampling scheme. We
thus focus on the risk variance term. Again using Proposition 2.4.1 we show this term for
a single leaf takes a simple form.

Lemma 2.4.1. For a fixed tree structure I, under any sampling distribution generated by

Algorithm 1 we have that the variance error term on the leaf Ik is:
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E
[
(f̂I(X)− f̃I(X))2|X ∈ Ik

]
=

1

nk

(
bias2k + σ2

ε,k

)
=

1

nk
Var(Y |X ∈ Ik),

bias2k := EpX,Y

[
(f(X)− β̃k)2|X ∈ Ik

]
, σ2

ε,k := EpX,Y

[
(σ(X)ε)2|X ∈ Ik

]
.

2.4.2 Optimal algorithm

In the above lemma we have emphasized that the terms bias2k and σ2
ε,k have expectations

taken with respect to the data generating distribution pX,Y and do not depend on the induced
distribution p′X,Y . Thus the only way our sampling distribution affects the variance term
is through nk. Averaging out over the contribution of each leaf we get that our overall
variance error term is.

E
[
(f̂I(X)− f̃I(X))2

]
=
∑
k

P (X ∈ Ik)
1

nk

(
bias2k + σ2

ε,k

)
. (II.1)

Let pk = P (X ∈ Ik) under the pool marginal distribution and σ2
Y,k = bias2k + σ2

ε,k.
Now we are given a budget of n data points, and we want to minimize our variance error
term subject to this budget. This gives us the following optimization problem which can be
easily solved:

minimize
nk

∑
k

1
nk
pkσ

2
Y,k

subject to
∑
k

nk = n

→ n∗k = n

√
pkσ2

Y,k∑
k′

√
pk′σ2

Y,k′

The proportions are very intuitive; cells with high bias and/or noise, or high (test)
marginal density will get more samples. These results are summarized in the following
theorem:

Theorem 2.4.1. Let Yi = f(Xi)+σ(Xi)εi and fix the partitions I of our tree. The risk min-

imizing oracle querying algorithm out of the family of algorithms described by Algorithm

1 is the one with the following nk and error

n∗k = n

√
pkσ2

Y,k∑
k′

√
pk′σ2

Y,k′

, E
[
(f̂I(X)− f̃I(X))2

]
=

1

n
(
∑
k

√
pkσ2

Y,k)
2.

Definition 2.4.1. The distribution induced by the sampling in Theorem 2.4.1 will be re-
ferred to as p∗X .
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Remark. This has a similar flavour to uncertainty sampling methods from classification in
that regions with greater variation will get more samples. However whereas in classification
sampling can focus locally near the decision boundary, in regression sampling must remain
global.

Random sampling is a randomized version of Algorithm 1, so the risk under ran-
dom sampling is the bias term plus a weighted average of the variance terms for differ-
ent (n1, ..., nK). The sampling scheme from Theorem 2.4.1 has the same bias term, but
minimizes the variance term meaning our optimal sampling scheme is better than any ran-
domized version of Algorithm 1 (as long as m > n), including random sampling.

Corollary 2.4.2. For a fixed tree structure I, the risk from any randomized version of

Algorithm 1 is greater than the risk from sampling according to p∗X unless P (n∗1, ..., n
∗
K) =

1. In particular sampling according to p∗X is strictly better than random sampling.

We can also calculate the excess error if we use the incorrect values of σ2
Y,k. Let σ̃2

Y,k =

akσ
2
Y,k, so ak is a multiplicative error (we will see that our errors will be multiplicative).

Given fixed leaf errors a1, ..., aK we can calculate the additional risk generated by using
σ̃2
Y,k in our optimal algorithm instead of the true σ2

Y,k

Lemma 2.4.2. For a fixed tree structure I, if nk = n

√
pkσ̃

2
Y,k∑

k′

√
pk′ σ̃

2
Y,k′

and the variance error

term for each leaf is as in Lemma 2.4.1, then our risk variance is:

E
[
(f̂I(X)− f̃I(X))2

]
=

1

n
(
∑
k

√
pkσ2

Y,k)
2 +

1

n

∑
k<l

(

√
ak√
al

+

√
al√
ak
− 2)

√
pkplσ2

Y,kσ
2
Y,l

:= OPT + EXCESS.

This also lets us get a sense for the suboptimality of random sampling. If we let ak =
pk
σ2
Y,k

then we get nk = npk which is the expected number of samples per leaf under random
sampling, and so for large n the calculated EXCESS term will be close to the excess risk
under random sampling. This gives us the following excess error, which can be small (or
even zero) as expected since random sampling can be near-optimal. But if there is varying
Y variance across the space this can be large:

Corollary 2.4.3. For a fixed tree structure I let ak = pk
σ2
Y,k

. Then our excess error is:

EXCESS =
1

n

∑
k<l

(
√
pkσ2

Y,l −
√
plσ2

Y,k)
2 ≤ K

n
max
k
σ2
Y,k.
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2.4.3 Additional results using Mondrian Trees

The above results hold for any purely random tree. We will now not assume that I is
fixed, but is randomly built using the Mondrian Process and will take expectation over the
tree building process as well. Mondrian Trees trained using random sampling are minimax
optimal for Lipschitz regression functions when the sequence of lifetime parameters satisfy
λn � n1/(d+2) and Var(Y ) <∞Mourtada et al. (2017). Additionally Mondrian Trees with
random sampling are weakly universally consistent under the same lifetime sequence and
variance assumption. Since the optimal oracle algorithm has smaller risk we immediately
get minimax optimal rates in terms of n, d under the same assumptions lifetime sequence
by Proposition 4 in Mourtada et al. (2017) and Theorem 2.4.1, and weak consistency under
Theorem 1 in Mourtada et al. (2018).

Corollary 2.4.4. Let our purely random trees be Mondrian Trees with lifetime parameters

λn � n1/(d+2), and let Y = f(X) + σ(X)ε, Var(Y ) < ∞. If our training data is sampled

according to p∗X then the resulting regressogram has (as n,m → ∞) minimax optimal

rates, in terms of n, d, over Lipschitz functions with E
[
(f̂(X)− f(X))2

]
= O(n

−2
2+d ) and

is weakly consistent.

2.5 Active learning algorithm

The oracle querying algorithm has many appealing qualities. However it requires knowl-
edge of the σ2

Y,k which are never known in practice. In this section we propose a two
stage active "oracle estimating" algorithm to remedy this deficiency. In our first stage we
sample n(1) points according to Algorithm 1 and use those samples to calculate estimates
σ̂2
Y,k of σ2

Y,k, which in turn produce estimates n̂k of n∗k. In the second stage we sample
n(2) = n − n(1) points such that the total number of samples in each leaf are n̂k. We
analyze the consequences of using these estimates, and show that in the case when Y are
normal, our trees are Mondrian Trees, and our Stage 1 samples equally in each leaf, our
active algorithm is eventually near optimal with high probability. We also show that in gen-
eral this algorithm’s estimates n̂k are consistent for n∗k. Below we give the active algorithm.
By using this algorithm we have introduced two complications: One is the estimates will
have errors from using estimates σ̂2

Y,k. The other comes from reusing the data from Stage 1
in our estimates of β̂k. Since active learning is used exactly when data is difficult to label,
to make an algorithm which is practically appealing it is important to make the most out of
any labelled data. However this introduces dependency between β̂k and n̂k. These issues
will each be addressed separately.
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Algorithm 2: Active "oracle estimating" algorithm
Input: Leaves of our tree I, pool of data points {Xi}mi=1, and label budgets

n(1), n(2), n = n(1) + n(2).
Output: The set of labelled points.
Stage 1 ;
Query n(1) data points using a version of Algorithm 1. ;
Use those samples (Xi, Yi) to estimate σ̂2

Y,k = 1
n(1),k−1

∑
Xi∈Ik

(β̂(1),k − Yi)2 for each

leaf. ;
Stage 2 ;
foreach Ik ∈ I do

Calculate n̂k = n

√
pkσ̂

2
Y,k∑

k′

√
pk′ σ̂

2
Y,k′

the number of points in the leaf to sample. ;

Select uniformly at random n(2),k points to query from the leaf so the number
of points is n̂k. ;

end

2.5.1 Using estimates of n∗k
First we analyze (as n increases) the effect of using the estimates σ̂2

Y,k. Let us fix a se-
quence of trees I(n), |I(n)| = Kn. Typically our trees will contain more partitions as we
get more data. For a given tree we can estimate the required leaf variances unbiasedly
using the standard unbiased sample variance on each leaf σ̂2

Y,k. Therefore as long as our

leaf kurtosis κY,k =
σ4
Y,k

(σ2
Y,k)

2 (and thus the variance of our sample variance) are all finite, and
asymptotically our sample variances on each leaf are consistent for the true variances on
each leaf, our estimates n̂k → n∗k. We require strong consistency of our variance estimates
as a function of both our partitioning method and Stage 1 sampling method, which gives
us n̂k → n∗k almost surely. If our trees are grown according to a random process then this
strong consistency may be depend on attributes of the tree which my only be true in proba-
bility, and in this case we get n̂k → n∗k in probability. Both cases are covered in the below
theorem, where generally the bn denote statistics of the tree and B is either 0 or∞.

Theorem 2.5.1. Assume κY,k < ∞ ∀ k, n, and our sequence of trees I(n) and Stage 1

sampling algorithm is strongly consistent for estimating the conditional variance E[(Y −
f(X))2|X = x] as some statistic bn → B. Then if bn → B almost surely our estimates

n̂k → n∗k almost surely and if bn → B in probability our estimates n̂k → n∗k in probability.

Remark. Note that the condition κY,k < ∞ ∀ k, n is met if f, σ(X) are bounded and
κε <∞.

Now let our sequence of trees be randomly built Mondrian Trees. If we again use
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1) Start with our Mondrain Tree and unlabelled 
data.

2) Sample Stage 1 according to a variant of the 
oracle querying algorithm.

3) Estimate the optimal number of samples in 
each leaf.

4) Sample randomly from each leaf to obtain 
optimal number of samples in each leaf..

n = 3 

n = 8 

n = 
0 

n = 1 

n = 4 

n = 7 

n = 5 

n = 6 n = 2 

Unlabelled

Stage 1

Stage 2

Figure 2.1: Visualization of Algorithm 2.

λn � n1/(d+2), as long as n(1) increases linearly with n, these conditions are met when our
first round of sampling entails sampling equally in each leaf.

Corollary 2.5.1. Let our purely random trees be Mondrian Trees with lifetime parameter

sequence λn � n1/(d+2) and let n(1) = cn, c ∈ (0, 1) a constant. Additionally let Stage 1

query by n(1),k =
n(1)

Kn
∀k. If κY,k <∞∀k, n and pX is bounded away from 0 and∞ on it’s

support, so when pX > 0 there exists c, C s.t. c ≤ pX ≤ C, then our estimates n̂k → n∗k in

probability.

Even with consistency our finite sample estimates will give us some error in n̂k. The
variance of our sample variance is Var(σ̂2

Y,k) = 1
nk

(σ4
Y,k − (σ2

Y,k)
2) + O( 1

n2
k
) ≈ 1

nk
(κY,k −

1)(σ2
Y,k)

2, so our errors will scale multiplicatively with σ2
Y,k when our kurtosis κY,k are

bounded. This allows us to use Lemma 2.4.2 to bound our excess error given bounds on
the (multiplicative) error ak = σ̂2

Y,k/σ
2
Y,k.
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2.5.2 Reusing data

Since we are using the data in Stage 1 both to estimate n̂k as well as in our estimator β̂k,
we have introduced dependence between the estimated optimal leaf sample size n̂k and leaf
mean estimate contribution from Stage 1. To understand the effects of this dependence we
will break up our estimates of the leaf mean as β̂k =

n(1),kβ̂(1),k+n(2),kβ̂(2),k
n(1),k+n(2),k

, where n(i),k, β̂(i),k

are the number and mean estimate during sampling round i ∈ {1, 2}. By writing our final
mean estimate in terms of our stage-wise mean estimates we can find an expression for this
dependence.

Lemma 2.5.1. For a fixed tree structure I, under Algorithm 2 the risk variance term be-

comes:

E[(β̂k − β̃k)2] =

En(2),k

[ n2
(1),k

(n(1),k + n(2),k)2
ED1:n(1)

[
(β̂(1),k − β̃k)2|n(2),k

]
+

n(2),kσ
2
Y,k

(n(1),k + n(2),k)2

]
.

The termED1:n(1)

[
(β̂(1),k− β̃k)2|n(2),k

]
quantifies the dependency introduced by reusing

the samples from n(1). The dependency is between the variance of part of our mean estima-
tors (β̂(1),1, ..., β̂(1),k) and (n(2),1, ..., n(2),K) = g(σ̂2

Y,1, ..., σ̂
2
Y,K). When β̂(1),k ⊥ n(2),k we

get back our risk variance term from Lemma 2.4.1. However when there is dependence we
no longer have that the n∗k from Theorem 2.4.1 are optimal over algorithms with an active
stage as in Algorithm 2, since the optimal nk will depend on the sampling during Stage 1.
This dependency can be complex and is generally unknown, though as long as the effect is
not too large the n∗k will still provide a very good solution, and the n∗k are still better than
random sampling. It is worth noting that our active algorithm can take advantage of this
dependency in some cases to outperform Algorithm 1, and we informally discuss this in
Section 2.9.1.

2.5.3 The Normal case

The complications above depend on the distribution of ak =
σ̂2
Y,k

σ2
Y,k

and the function g, which
in general are extremely complicated and hard to analyze for arbitrary f, pε, pX . However
in the case where Y are normally distributed these become tractable.

Theorem 2.5.2. Let Y ∼ N(µ(X), σ2(X)) and X queried according to Algorithm 2 for a

fixed tree I. Then the risk variance term for a leaf is as in Lemma 2.4.1 and we have that
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with probability at least 1−
K∑
k=1

e−
(n(1),k−1)α2

8 the excess error is bounded by:

EXCESS ≤ 1

n

∑
k<l

[(1 + α

1− α
)1/4 − (1− α

1 + α

)1/4]2√
pkplσ2

Y,kσ
2
Y,l .

Additionally if our trees are a sequence of Mondrian Trees with lifetime parameter se-

quence λn � n1/(d+2) and our Stage 1 sampling procedure is to sample equally in each leaf

with n(1) = cn, c ∈ (0, 1) a constant, then the above bound occurs with probability at least

1− δ1 − δ2 where

δ1 =
(1 + n1/(d+2))d

n(d+1)/(d+2)
δ2 = n(d+1)/(d+2) exp

(−α2

8
((cn)1/(d+2))− 1

)
.

First, note that a larger n allows us to choose a smaller α and the bound on excess error
goes to 0 as α → 0. Second, even for the normal case, d large requires a very large n
before we get any control on the error probability δ2. This is consistent with the empirical
observation that Mondrian Trees struggle with large d.

Finally we also note that there are many reasons why in practice it is impossible to use
the exact n∗k. These include the fact that usually n∗k will be fractional, a leaf may not have
n∗k points in it, or when using the active algorithm n(1),k > n̂k. These issues will be less
significant as n→∞ and we discuss how each is dealt with in Section 2.9.

2.6 Simulations and experiments

We now examine the benefits of active learning on both simulated and real world data.
We simulate 2 data sets, one with differing noise variance (our σ2

ε,k term), the other with
differing function complexity (our bias2k term), in different regions of [0, 1]d. We also
examine performance on the Wine quality data set from UCI and a data set of activa-
tion energies of Claisen rearrangement reactions (Cl). We compare the performance of
selecting points to label using random sampling, our active algorithm, and a naive un-
certainty sampling version of our active algorithm, where each leaf nk is proportional its
variance. In all experiments n(1) = n

2
and Mondrian Trees are grown using λn = n

2
2+d − 1,

which is theoretically motivated, but corrected so when n = 1, λn = 0. We use both
Mondrian and Breiman Trees Breiman (2017) as our final regressor. Details of the data
sets are in the appendix, which also contains forest versions of these experiments. Addi-
tionally all code and experiments (as well as other experiments) are available at https:
//github.com/jackrgoetz/Mondrian_Tree_AL.
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When using Mondrian Trees as the final regressor, the active learning method always
provides some improvement, and in the simulations this improvement persists when using
Breiman Trees. Additionally the uncertainty sampling method sometimes produces worse
sampling than random sampling, which is common for direct translations of classification
active learning methods. In the real data our benefits are less pronounced, with active learn-
ing even being slightly harmful when used with Breiman Trees (although with forests the
active learning is beneficial). We believe this performance drop may be due to the inability
of the Mondrian Tree to adapt to differing variable importance. It is also possible that our
assumptions that Y has changing variance does not hold, and even here the active algorithm
is not harmful, where as the naive uncertainty sampling algorithm can be detrimental.
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Figure 2.2: Active learning experiments

2.7 Conclusion and further directions

In this chapter we provide a theoretically justified active learning method for non-parametric
regression which can take advantage of beneficial structure when present without being
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detrimental when such structure is absent. When used with Mondrian Trees the method re-
quires no tuning parameters (which are difficult to tune while actively sampling (Attenberg
and Provost, 2011)), is asymptotically minimax optimal for Lipschitz regression functions,
and is consistent. Although the improvement for active learning in regression is often re-
stricted to constant factor improvements, these constant improvements are important in real
world applications.

Despite technical theoretical arguments needed for the theory, the method itself is sim-
ple, leading to many interesting avenues for further exploration. One direction would be
extending theory to ensembles of trees, or developing tools to deal with high dimensions.
Another possibility is to exploit the online nature of Mondrian Trees to develop a parallel
theory for streaming based active learning. Finally it may be possible to extend the ideas
here to non tree based active learning for regression.
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2.8 Appendix A: Proofs

2.8.1 Proofs for the oracle algorithm

Proof of Proposition 2.4.1. This results is nothing more than the fact that a random sub-
sample of size n < m from an initial sample of sizer m has the same distribution as a
sample of size n from that original distribution. The only issue here is if qk = 0, in which
case p′X(x) = 0 ∀ x ∈ Ik, where as pX(x) may be non-zero on a set of positive measure.

Proof of Corollary 2.4.1. We start by confirming that Ep′X,Y [β̂k] = β̃k. Let us fix I, k

with n labelled points and let nk =
n∑
i=1

1(Xi ∈ Ik). By assumption nk > 0 otherwise

β̂k = 1∑
1(Xi∈Ik)

∑
Xi∈Ik

Yi is undefined. Since Algorithm 1 is not active we have that Y |X ∈

Ik ⊥ nk.

Ep′X,Y [β̂k] = EnkEp′X,Y
[ 1∑

1(Xi ∈ Ik)

n∑
i=1

Yi1(Xi ∈ Ik)|nk
]

= Enk
1

nk

n∑
i=1

Ep′X,Y
[
Yi1(Xi ∈ Ik)|nk

]
= Enk

1

nk

n∑
i=1

P (Xi ∈ Ik|nk)Ep′X,Y
[
Yi|nk, Xi ∈ Ik

]
= Enk

1

nk
EpX,Y

[
Y |X ∈ Ik

] n∑
i=1

P (Xi ∈ Ik|nk)

= EnkEpX,Y
[
Y |X ∈ Ik

]
= EpX,Y

[
Y |X ∈ Ik

]
.

Now we use this to derive the decomposition in the standard way.

E
[
(f̂I(X)− f(x))2

]
= E

[
(f̂I(X)− f̃I(X))2

]
+ E

[
(f̃I(X)− f(X))2

]
+ 2E

[
(f̂I(X)− f̃I(X))(f̃I(X)− f(X))

]
.

E
[
(f̂I(X)− f̃I(X))(f̃I(X)− f(X))

]
=

E[f̂I(X)]f̃I(X)−E[f̂I(X)]f(X)− f̃I(X)2 + f̃I(X)f(X) = 0.
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Proof of Lemma 2.4.1. We fix nk. Given X ∈ Ik we know that f̂I(X) = β̂k and f̃I(X) =

β̃k. Let us reorder the data D1:n so that the first nk are in the leaf k for ease of notation.
Then use Proposition 2.4.1, where the cross term disappears since εi ⊥ Xi under pX,Y by
assumption.

Ep′X,Y

[
(f̂I(X)− f̃I(X))2|X ∈ Ik

]
=

1

n2
k

( nk∑
i=1

Ep′X,Y

[
(f(Xi)− β̃k)2|Xi ∈ Ik

]
+

nk∑
i=1

Ep′X,Y

[
(σ(Xi)εi)

2|Xi ∈ Ik
]

+ 2

nk∑
i=1

Ep′X,Y

[
(f(Xi)− β̃k)σ(Xi)εi|Xi ∈ Ik

])
=

1

n2
k

( nk∑
i=1

EpX,Y

[
(f(Xi)− β̃k)2|Xi ∈ Ik

]
+

nk∑
i=1

EpX,Y

[
(σ(Xi)εi)

2|Xi ∈ Ik
]

=
1

nk

(
bias2k + σ2

ε,k

)
.

Proof of Corollary 2.4.2. The proof involves looking at the expected risk under a ran-
dom version of Algorithm 1. Formally allow Algorithm 1 to generate the qi in a ran-
domized fashion (with the randomness independent from all other sources of random-
ness), potentially using the other inputs to Algorithm 1 (I, {Xi}mi=1, n, pX,Y ) as parame-
ters. Thus (q1, ..., qK) are drawn from a distribution, which in turn for all (n1, ..., nK) ∈
NK s.t.

∑
nk = n generates P (n1, ..., nK) the probability of the algorithm sampling

(n1, ..., nK) points from each of the tree leaves. Let Risk(n1, ..., nK) denote the risk when
our by leaf samples sizes are n1, ..., nk, with RiskBias and RiskV ar(n1, ..., nK) being
the bias and variance terms of the decomposition. The RiskBias does not depend on
n1, ..., nK since the risk bias term does not depend on how we sample. Then the risk of the
randomized version of Algorithm 1 is

Risk =
∑

(n1,...,nK)

P (n1, ..., nK)Risk(n1, ..., nK)

= RiskBias+
∑

(n1,...,nK)

P (n1, ..., nK)RiskV ar(n1, ..., nK).

If n∗1, ..., n
∗
K is our optimal solution then by Theorem 2.4.1 RiskV ar(n∗1, ..., n

∗
K) ≤

RiskV ar(n1, ..., nK) ∀ (n1, ..., nK) ∈ NK s.t.
∑
nk = n. For random sampling, unless

P (n∗1, ..., n
∗
K) = 1 the Risk will clearly be greater than (or equal to) that of the optimal
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since the probability weighted average is greater than (or equal to) the min term of the sum.

Proof of Lemma 2.4.2. This is all algebra. By Equation II.1

E
[
(f̂I(X)− f̃I(X))2

]
=

1

n

K∑
k=1

√
ak

√
pkσ2

Y,k ×
K∑
l=1

1
√
al

√
plσ2

Y,l

=
1

n

(∑
k

pkσ
2
Y,k +

∑
k 6=l

√
ak√
al

√
pkplσ2

Y,kσ
2
Y,l

)
=

1

n

(∑
k

pkσ
2
Y,k +

∑
k<l

(

√
ak√
al

+

√
ak√
al

)
√
pkplσ2

Y,kσ
2
Y,l

)
=

1

n
(
∑
k

√
pkσ2

Y,k)
2 +

1

n

∑
k<l

(

√
ak√
al

+

√
al√
ak
− 2)

√
pkplσ2

Y,kσ
2
Y,l

= OPT + ERROR.

Proof of Corollary 2.4.3. Again, this is just algebra.

1

n

∑
k<l

(

√
pkσ2

Y,l√
plσ2

Y,k

+

√
plσ2

Y,k√
pkσ2

Y,l

− 2)
√
pkplσ2

Y,kσ
2
Y,l =

1

n

∑
k<l

(
√
pkσ2

Y,l −
√
plσ2

Y,k)
2

≤ 1

n

∑
k<l

(2pkσ
2
Y,l + 2plσ

2
Y,k) ≤

1

n
max
k
σ2
Y,k

∑
k 6=l

(pk + pl) ≤
K

n
max
k
σ2
Y,k.

2.8.2 Proofs for the active algorithm

Proof of Theorem 2.5.1. By the assumption that our sequence of trees I(n) and Stage 1
sampling algorithm is strongly consistent for estimating the conditional variance E[(Y −
f(X))2|X = x] as some statistic bn → B we have that σ̂2

1,k → σ2
k a.s. as bn → B. To

see this let σ̂2
1,k(x) = σ̂2

1,k for x ∈ Ik, σ2
k(x) = σ2

k for x ∈ Ik and let σ2(x) = E[(Y −
f(X))2|X = x]. Then |σ̂2

1,k(x)−σ2
k(x)| ≤ |σ̂2

1,k(x)−σ2(x)|+ |σ2
k(x)−σ2(x)| → 0, where

the first term disappears due to the strong consistency, and the second term disappears due
to the size of the partitions shrinking.
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If σ̂2
1,k → σ2

k a.s. then
Kn∑
k=1

√
pkσ̂2

1,k →
Kn∑
k=1

√
pkσ2

k a.s. as bn → B. So if bn → B a.s.

then n̂k → n∗k almost surely.
Now assume bn → B in probability as n → ∞ and want to show that these implies

Kn∑
k=1

√
pkσ̂2

1,k →
Kn∑
k=1

√
pkσ2

k in probability n → ∞. We will use Lemma 6.3.1.b from

Resnick (2013) which states:

Lemma 1 (6.3.1.b in Resnick (2013)). Xn → X in probability iff for each subsequence

{Xnk}, nk →∞ there exists a further subsubsequence {Xnkt
}, nkt →∞ which converges

a.s. to X .

(The nk here are unrelated to the nk in our trees).

Let Yn = |
Kn∑
k=1

√
pkσ̂2

1,k −
Kn∑
k=1

√
pkσ2

k|, so Yn → 0 a.s. if bn → B. Thus we have a

subset of the overall probability space Ω which is

Ω ⊃ Ω∗ = {ω ∈ Ω : lim bn(ω) 6= B or Yn(ω)→ 0}

where P (Ω∗) = 1. Now take a subsequence nk → ∞ of n. By bn → B in probability
∃nkt →∞ such that bnkt → B a.s. as nkt →∞. This gives us a second subset of Ω

Ω ⊃ Ω′ = {ω ∈ Ω : bnkt (ω)→ B}

where again P (Ω′) = 1. On the intersection of these we get

Ω∗ ∩ Ω′ ⊂ {ω ∈ Ω : Ynkt (ω)(ω)→ 0}

where P (Ω∗ ∩ Ω′) = 1. nk was an arbitrary subsequence of n and so by using Lemma
6.3.1.b in the reverse direction we get that Yn → 0 in probability.

Proof of Corollary 2.5.1. Here our bn = Kn

n
d+1
d+2

and B = 0. Since E[Kn] = (1 + n
1
d+2 )d by

Markov Kn

n
d+1
d+2

→ 0 in probability.

Now we need to show that if we assume Kn

n
d+1
d+2

→ 0 we get strong consistency of our
conditional variance function estimation. By Theorem 23.3 in Györfi et al. (2006) we get
that our tree is strongly consistent for estimating the mean function, since Kn log(n)

n
→ 0

so eventually every partition will have more than log(n) samples in the leaf, and the aug-
mented estimator in Theorem 23.3 is the same as the usual estimator. (The augmented
estimator in Theorem 23.3 is the usual decision tree estimator if there are more than log(n)
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data points in the partition and 0 otherwise). Finally we need the pX bounded since The-
orem 23.3 assumes that our test X density is the same as our training one, but since pX is
bounded the Radon Nikodym derivative is bounded and so we get strong consistency even
with the different test density.

So our tree and Stage 1 sampling scheme are strongly consistent for estimating the
mean function f(x) = E[Y |X = x]. Now assume we had access to a new set of random
variables Zi = (Yi = f(Xi))

2. Because of the bounded kurtosis our tree would also be
strongly consistent for estimating the mean function of the Zi which we will call fZ(x) =

E[(Y − f(X))2|X = x]. So if we had access to the Zi we could use them to estimate our
Y conditional variance function using f̂Z(x) =

∑
Zi1Xi∈I(x)∑
1Xi∈I(x)

.

We don’t have these Zi but we do have Z̃i = (Yi − f̂(Xi))
2, and it’s easy to show that∑

Z̃i1Xi∈I(x)∑
1Xi∈I(x)−1

→
∑
Zi1Xi∈I(x)∑
1Xi∈I(x)

by adding and subtracting f(x) inside the square. This gives
us a strongly consistent estimator of our conditional variance as required.

Proof of Lemma 2.5.1. Since the Stage 1 sampling uses Algorithm 1 our n(1),k are fixed
(though this could be extended to randomized version of Algorithm 1). The proof is mostly
algebra, using the fact that β̂(1),k is conditionally independent of β̂(2),k given n(2),k.

E[(β̂k − β̃k)2] = E
[(n(1)(β̂(1),k − β̃k)

n(1),k + n(2),k

+
n(2)(β̂(2),k − β̃k)
n(1),k + n(2),k

)2]
= En(2),k

[ n2
(1),k

(n(1),k + n(2),k)2
ED1:n(1)

(
(β̂(1),k − β̃k)2|n(2),k

)
+ 2

n(1),kn(2),k

(n(1),k + n(2),k)2
ED1:n(1)

(
(β̂(1),k − β̃k)|n(2),k

)
× EDn(1)+1:n

(
(β̂(2),k − β̃k)|n(2),k

)
+

n2
(2),k

(n(1),k + n(2),k)2
EDn(1)+1:n

(
(β̂(2),k − β̃k)2|n(2),k

)]
.

We have that

EDn(1)+1:n

(
(β̂(2),k − β̃k)|n(2),k

)
= 0, EDn(1)+1:n

(
(β̂(2),k − β̃k)2|n(2),k

)
=

σ2
Y,k

n(2),k

which gives us the desired result.

Proof of Theorem 2.5.2. By assumption we have that Yi’s are Normally distributed. We
first deal with the dependence ED1:n1

(
(β̂(1),k − β̃(1),k)2|n(2),k

)
. A well known property of
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the Normal distribution Sen (2012) is that the estimate of the mean β̂(1),k and the esti-
mate of the variance σ̂2

Y,k are independent. This immediately gives that ED1:n1

(
(β̂(1),k −

β̃(1),k)
2|n(2),k

)
= ED1:n1

(
(β̂(1),k − β̃(1),k)

2
)

=
σ2
Y,k

n(1),k
as there is no dependence between

β̂(1),k and n(2),k. Thus we get that the risk variance for that leaf is just as from Lemma
2.4.1.

Now we want to bound the probability n̂k above is far away from n∗k. We will do this by
bounding the ak. Another well known property of the normal distribution is

(nk−1)S2
Y,k

σ2
Y,k

=

(nk − 1)ak ∼ χ2
(nk−1). By characterization of sub-exponential random variables:

P ((nk − 1)|ak − (n− 1)| >
√

2(nk − 1)t+ 2t) ≤ e−t

P (|ak − 1| >
√

2t√
(nk − 1)

+
2t

(nk − 1)
) ≤ e−t

√
2t√

(nk − 1)
+

2t

(nk − 1)
∈ (0, 1) =⇒ 2t

(nk − 1)
≤ 1 =⇒ 2t

(nk − 1)
<

√
2t√

(nk − 1)

=⇒ P (|ak − 1| > 2
√

2t√
(nk − 1)

) ≤ P (|ak − 1| >
√

2t√
(nk − 1)

+
2t

(nk − 1)
) ≤ e−t

∀ α ∈ (0, 1)

P (|ak − 1| > α) ≤ e−
(nk−1)α2

8

P (∃k s.t. |ak − 1| > α) ≤
K∑
k=1

e−
(nk−1)α2

8 .

And now we apply Lemma 2.4.2 to bound the excess. Now we assume our purely
random tree is a Mondrian Tree with the above assumptions, so nk = cn

K
. By Markov

inequality and Proposition 2 in Mourtada et al. (2018) we have that:

P (Kn − 1 > n
d+ε
d+2 ) ≤ E[Kn]

n
d+ε
d+2

=
(1 + n

1
2+d )d

n
d+ε
d+2

= δ1

P (∃k s.t. |ak − 1| > α|Kn ≤ n
d+ε
d+2 ) ≤ n

d+ε
d+2 e−

α2

8
((cn)

2−ε
d+2−1) = δ2

By setting ε = 1 and using the union bound we get the result.

Remark. It is worth noting that in the above proof we have only used the property that
χ2 are subexponetial. A slightly stronger (in terms of n, α) inequality is possible using
Chernoff Bounds and exploiting the structure of χ2 random variables.
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2.9 Appendix B: Additional experiments and discussion

2.9.1 Dependence in non-normal case

We are interested in the question of when is ED1:n(1)

[
(β̂(1),k − β̃k)

2|n(2),k < n∗(2),k
]
<

ED1:n(1)

[
(β̂(1),k − β̃k)2

]
. Unfortunately n(2),k is a function not only of σ̂2

(1),k but of all other
σ̂2
(1),l. Let us start with a more simple and general question of when E

[
(µ̂ − µ)2|σ̂2 <

σ2
]
< E

[
(µ̂ − µ)2

]
. We present no formal arguments here but rather share our findings

and conjectures which we consider both interesting in their own right as well as excellent
candidates for further study. The first observation is that far from this being an unusual
property this seems to be a fairly common property. In fact for symmetric distributions the
relationship appears to be well behaved. From Sen (2012) the sample mean and sample
variance are asymptotically MVN (multivariate normal) with cross correlation equal to the
skew, so when our distribution is symmetric the sample mean and sample variance are
independent in the limit. For the finite sample case the relationship between σ̂2

1,k−σ2
1,k and

E
[
(µ̂− µ)2|σ̂2 − σ2

]
− E

[
(µ̂− µ)2

]
appear to be monotonic and to go through the origin

(so when the sample variance is the true variance, the conditional variance of the sample
mean is the unconditioned variance, which is what we would hope is the case). In fact it
appears both the magnitude and parity of this relationship depends on the excess kurtosis

κ−3. If κ−3 < 0 this relationship is negative and if κ−3 > 0 this relationship is positive,
with the magnitude increasing as you move further away from zero.

If these observations are true for all symmetric distributions it would be quite fortuitous,
since large values of κ imply that the estimates of our variances will be more noisy, but
those are exactly the cases where actively fitting to the sample variance of our first stage is
beneficial: If our sample variance is larger than the population variance, then the variance
of our β̂(1),k is larger than expected, so it is beneficial to use more points in the second
stage than the optimal passive sampling would have assigned. Meanwhile when a smaller
sample variance implies the variance of our β̂(1),k is larger than expected, κ is small and so
our sample variance will itself have small variance. We have not yet been able to prove this
relationship, and things become much more complicated in the more realistic case where
our distribution is skewed. However these results give us confidence that things are unlikely
to go too badly wrong when our labels are not normally distributed.
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2.9.2 Experimental data set info

For both simulations our marginal X distribution was uniform over the space [0, 1]10. Het-
eroskedastic simulation had constant regression function and Gaussian noise, with space
split into high variance region (25) and low variance region (1). Varying complexity had
sinusodial regression function f(x) = C sin( 2π

d∗F ∗
∑
xi) and Gaussian noise with constant

(1) variance. It was split into high variation region (C = 20, F = 0.05) and low variation
region (C = 5, F = 0.1). For both sets [0.1, 1]10 were the high areas, with everything else
a low area.

2.9.3 Practical considerations

Here we compile information related to actually using this active learning method in prac-
tice.

2.9.3.1 Heuristics to deal with difference between theory n∗k and possible values

There are many reason why you may not actually be able to sample according to your
estimates of the optimal n∗k. For a start our n∗k will almost always be fractional. Additionally
there may be less than n∗k points in a leaf. These issues are fairly minor and become less
influential as sample sizes increase. However a more consistent issue that occurs when
using the approximating algorithm is when a leaf is oversampled during stage 1, so that
n(1),k > n∗k. This means that some other leaf will get fewer than it is optimal number of
samples. Although this again can be dealt with asymptotically by making our stage 1 a
small fraction of the total number of samples, in practice this is a problem which often
occurs when our sample size is not large.

In our code we implemented heuristics to deal with these mismatches. We emphasize
that these heuristics are subjective and one could easily use or argue for others. After
calculating our n̂k we immediately floor them all. We then set n̂k = max(min(n̂k, ηk), n1,k)

(where ηk is the total number of points in leaf k). It is possible that
∑
n̂k 6= n after

these adjustments. If we have too many points, we reduce the largest n̂k until we achieve
the correct total. If we have too few points we increase the n̂k by 1 each, starting with
the smallest, and starting over once we have increased them all by 1. This asymmetry is
because increasing small values can have a large reduction on the variance of the estimate,
but decreasing large ones leads to a small increase in variance.
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2.9.3.2 Lifetime parameter sequence

We have found that the best general form for the lifetime parameter sequence is λn =
1
γ
(n

2
2+d −1). The γ can be fairly freely chosen with γ = 1 a reasonable default (and is what

is used in all simulations and experiments in this chapter), but the −1 is very important; it
ensures that we do not start with a lifetime = 1 for n = 1, ∀ d as when d is large this can
result in a very large number of leaves early on.

2.9.3.3 Sampling method during stage 1

During stage one our theory assumed that n1 = cn and then each leaf received the same
fraction of points, as this gives important asymptotic properties. In practice if c is too
large this can result in putting too many samples in certain small leaves during stage 1, so
that n1,k > n∗k, meaning that we have oversampled this leaf and will have to reduce other
sampling elsewhere. One way of avoiding this is by making c small, but this risks getting
bad leaf estimates and suboptimal stage 2 sampling unless n is large, where the n required
increases as d increases. Another is to sample passively. We have found that generally if
c = 0.5 then sampling passively tends to produce pretty good results unless your function
has massive amounts of variation. Another option is to use a hybrid sampling scheme in
stage 1, where each leaf is given a small number of samples, and then the rest of the samples
are distributed randomly, but empirically this seems to be worse than random sampling for
small values of n.

2.9.3.4 Final regression model

As shown in our experiments, although most the theory assumes that you are using the
same tree for your active learning as you are for your final predictions, you also get good
results doing active learning with Mondrian Forests, and then taking that data and fitting
your final model with a more data adaptive model, although not always.

2.9.3.5 Using more than 2 stages

It is of course possible to do more than 2 stages, updating your estimates of the leaf vari-
ances during each stage to guide sampling during the next stage. We found that in practice
the benefits of doing this are generally fairly small. Of course the first stage should still
be sufficiently large that you get decent initial estimates for the leaf variances. Much of
the theory could be extended to increasing number of stages as long that the number is not
increasing with n without much work. Increasing the number of stages as n increases may
require additional care and effort.
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2.9.4 Forests

Just as with Breiman decision trees you can ensemble purely random trees into forests.
These forests show improved performance at the cost of increased computational cost since
they average out the random process used to build the trees. We also have an intuitive
(though theory free) extension of our active learning method to utilize the power of multiple
Mondrian Trees. The idea is each tree determines the optimal number of samples per leaf
in the usual way, and then gives data points weights such that the expected number of
points sampled from each leaf is the optimal number. These probabilities are then averaged
out over all the trees in the forest and the new points are sampled using these averaged
probabilities. The formal algorithm is given below:

Algorithm 3: Forest version of oracle approximation algorithm
Input: Leaves of our T trees I1...IT , pool of data points {Xi}mi=1, and label

budgets n(1), n(2), n = n(1) + n(2).
Output: The set of labelled points.
Stage 1: ;
Sample n(1) data points (possibly according to the structure of the trees It) using a
version of algorithm 1. ;

foreach t do
Use those samples (Xi, Yi) to estimate σ̂2

Y,k,t for each leaf. ;
end
Stage 2: ;
foreach t do

foreach Ik,t ∈ It do

Calculate n̂k,t = n

√
pk,tσ̂

2
Y,k,t∑

k′

√
pk′,tσ̂

2
Y,k′,t

the number of points in the leaf to sample. ;

Count mk,t the number of unlabelled points in leaf Ik,t ;
foreach Unlabelled Xi ∈ Ik,t do

Assign weight Wi,t =
n̂k,t−n(1),k,t

n2∗mk,t
. ;

end
end

end
foreach Unlabelled Xi do

Final weight Wi = 1
T

∑
Wi,t. ;

end
Sample n(2) points with weights Wi.

Below we show the results of using Mondrian Forests for our active learning, and both
Mondrian Forests and Random Forests as our final regression model. Here we see some
benefit using Mondrian Forest for active learning and then Random Forests for our final
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regressor (although in fact the naive uncertainty sampling method outperforms ours). Al-
though the benefit on the real data appears to be a small constant factor, the actively learned
models provide similar accuracy with 10s of fewer data points, which can be significant.
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Figure 2.3: Mondrian Forest active learning simulations
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2.9.5 Additional experimental results
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CHAPTER III

Consistency of Weighted Averaging Estimators
Under Active Learning

Active learning seeks to build the best possible model with a budget of labelled data by
sequentially selecting the next point to label. However the training set is no longer iid,
violating the conditions required by existing consistency results. Inspired by the success of
Stone’s Theorem (Györfi et al., 2006) we aim to regain consistency for weighted averag-
ing estimators under active learning. Based on ideas in Dasgupta (2012), our approach is to
enforce a small amount of random sampling by running an augmented version of the under-
lying active learning algorithm. We generalize Stone’s Theorem in the noise free setting,
proving consistency for well known classifiers such as k-NN, histogram and kernel estima-
tors under conditions which mirror classical results. However in the presence of noise we
can no longer deal with these estimators in a unified manner; for some satisfying this con-
dition also guarantees sufficiency in the noisy case, while for others we can achieve near
perfect inconsistency while this condition holds. Finally we provide conditions for consis-
tency in the presence of noise, which give insight into why these estimators can behave so
differently under the combination of noise and active learning.

3.1 Introduction

Active learning results in training data which is neither independent, nor from the same dis-
tribution on our covariates as the test data (which we assume we have no control over and
which is drawn iid from some underlying joint distribution PX,Y ). Thus even if our classifi-
cation algorithm is well studied, standard results on consistency of that classifier, arguably
the minimal requirement for a good method, no longer apply. The loss of consistency is
of practical concern as even popular active learning algorithms can induce inconsistency
(Dasgupta, 2011). Can we recover this lost consistency?
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We begin to answer this question by focusing on weighted averaging binary classifiers,
of which k-NN, histogram and kernel estimators (Devroye et al., 2013) are the classic ex-
amples. Under iid assumptions consistency of these is largely covered by the celebrated
Stone’s Theorem (Stone, 1977), and our goal is to generalize these results to an actively se-
lected training set. However it is clear that if our active learning method can be completely
arbitrary, there is not much hope of obtaining consistency. Adapting a requirement in Das-
gupta (2012), we begin by introducing a method to augment any existing active learning
algorithm, which only influences the sampling policy a vanishing fraction of the time.

In the noiseless setting this augmentation is sufficient, and consistency of the above
classical estimators is proven using a technical condition. However in the presence of
noise the behaviour of these classical estimators diverges sharply; for histogram estima-
tors satisfying this condition guarantees consistency even with noise, whereas for k-nn we
provide a counterexample where the condition is satisfied, but we achieve maximal risk.
Finally we will provide additional conditions which provide consistency under noise, and
which illustrate the differences between histogram and k-nn which lead to starkly different
behaviour.

The structure of this chapter is as follows:

1. Give a natural augmentation to sequential active learning algorithms (Algorithm 4).

2. Prove that in the noiseless setting and under this augmentation, histogram and k-
nn are consistent for any such active learning algorithm (Proposition 3.4.1). These
are proved by providing a sufficient condition (Condition 1) for consistency for any
weighted averaging estimator under any such active learning algorithm (Theorem
3.4.1).

3. Showing the histogram estimator is still consistent under this condition even in the
noisy setting (Proposition 3.5.1).

4. Providing a counterexample in the noisy setting where k-nn satisfies our condition,
but achieves the largest Risk possible (Theorems 3.5.1 and 3.5.2) under an (aug-
mented) adversarial active learning algorithm.

5. Provide further conditions (Condition 2) which are sufficient for consistency in the
noisy setting, which show why histogram is sufficient but k-nn is not (Theorem
3.6.1).

6. Describe the k-nn case (Section 3.8).

7. Give details of all proofs (Section 3.9).
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3.2 Setting and background

Our results contain both positive and negative results. Positive results give conditions under
which we maintain consistency under any (possibly adversarial) active learning algorithm.
Our negative results provide counterexamples showing when such conditions are not suf-
ficient for consistency. Our positive results will be in the query synthesis setting, as this
allows for the strongest possible family of adversarial active learning algorithms (as the
adversary can select arbitrary points). Conversely our negative results will be in the pool
setting, restricting ourselves to a weaker family of active learning algorithms (as the adver-
sary will be restricted to a pool of points generated by nature). Each result is proved in the
more challenging setting (and will also be valid for the less challenging setting), confirming
that the results are not just artifacts of our choice of active learning setting.

Our setup will be fairly standard for active learning (Settles, 2012). In the query syn-
thesis setting the active learning algorithm can select any point within the support of the
marginal test distribution PX . In the pool setting the algorithm will select n data points to
label out of a pool of mn data points, where the size of our initial pool depends on how
many labelled points we will select. Let Dn = {(Xi, Yi)}mni=1 be our pool with known co-
variates Xi ∈ X ⊂ Rd and hidden labels Yi ∈ {0, 1}, where (Xi, Yi)

iid∼ PX,Y = PY |XPX ,
f(x) = P (Y = 1|X = x) and with Bayes classifier f ∗(x) = 1f(x)>1/2. We will assume
that X is a bounded subset of Rd, however if this does not hold then many of our results
can be applied on a sphere centered at the origin with all but an arbitrary ε of the probability
mass to extend the results beyond bounded X . Additionally let Dn(X) and Dn(Y ) denote
just the X and Y of the pool respectively. Note that the pool setting is slightly different
from the setup in Hanneke (2014); Hanneke et al. (2019), as our setting assumes mn <∞
while theirs assumes mn =∞∀ n.

The algorithm will create a labelled subset Sn with the goal of minimizing the risk
E
[
1fn(X,Sn) 6=Y

]
. The notation fn(x, Sn) indicates the prediction given at point x when

trained on the labelled data Sn (with Sn(X), Sn(Y ) as just the covariates and labels). We
use lower case letter x to denote non-random quantities and upper caseX to denote random
ones. We will use passive sampling to refer to sampling according to the marginal PX . In
the pool setting given Sn, let Scn be the remaining mn − n unlabelled data points, with
∅c = Dn(X) (so it’s not exactly a true complement operator but has a similar flavor).
Our (potentially randomized) active learning algorithm selecting the ith point will be A :

Si−1 → supp(PX) in the query synthesis setting and A : Si−1 × Sci−1 → Sci−1 in the pool
setting. Technically Sn is a multiset and so can contain identical 2-tuples (Xi, Yi). Unless
otherwise specified, all references to consistency will be weak (in probability) consistency.
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We will focus on weighted averaging estimators for classification (Devroye et al., 2013),
where the estimators take the following form (where Wni(x) = Wni(x, Sn(X))):

fn(x, Sn) =


0 if

∑
(Xi,Yi)∈Sn

YiWni(x) ≤ 1
2

1 otherwise

We will make the following assumptions about the structure of our functions Wni(x).

Wni(x) ≥ 0,
∑

Wni(x) ≤ 1

The inconsistency introduced during active learning is well studied (Beygelzimer et al.,
2011), and even in the one dimensional case popular and intuitive algorithms can be in-
consistent in non-pathological examples (Dasgupta, 2011). One of the first and best known
general augmentations for providing consistency in active learning is importance weighting
(Beygelzimer et al., 2009; Sugiyama and Kawanabe, 2012). This technique is very success-
ful, but requires that probabilities of selecting points be non-zero, and therefore cannot be
applied to deterministic active learning algorithms. In contrast our results do apply to deter-
ministic and non-deterministic algorithms. A recent study (Loog and Yang, 2016) showed
that while most active learning methods examined performed well on many data sets, they
also had data sets on which they do not appear to be converging to the performance of ran-
dom sampling. Our work extends that of Dasgupta (2012), which studied consistent active
learning for nearest neighbor estimators in the streaming setting.

3.3 Augmented algorithm

Without any structure on the sampling process it would be impossible to provide conditions
on the estimator which guarantee consistency for an arbitrary active learning algorithm A.
For example it is clear that an algorithm which samples the same location forever will not
(in general) be consistent. At the same time we do not want to constrain our active learning
algorithm too much. Our proposal, based on (R1) in Dasgupta (2012), is a simple and
intuitive augmentation which is relatively inexpensive. The idea is to occasionally ignore
our active learning algorithm and instead sample according to the underlying PX . In query
synthesis this is done directly, and in the pool setting this is done by sampling uniformly
from the unlabelled data.

The augmented algorithm is still an active learning algorithm. However we will refer
to it as the augmented algorithm to avoid confusion with the active learning algorithm A

which it augments. We impose the following requirements on our sequence of pi:
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Algorithm 4: Augmented Algorithm for pool setting
Input: Active learning algorithm A, number of samples n, probability sequence

(p1, ..., pn), unlabelled data Dn(X)
Output: Labelled data set Sn
S0 = ∅ ;
for i from 1 to n do

Draw an independent Bernoulli random variable Zi with P (Zi = 1) = pi;
if Zi = 1 then

Select Xi uniformly at random from Sci−1
else

Select Xi according to A(Si−1, S
c
i−1)

end
Query selected point and receive Yi ;
Si = Si−1 ∪ (Xi, Yi) ;

end
Remark. In the Query Synthesis setting, if Zi = 1 then our augmented algorithm
will simply draw X according to PX and Y from PY |X , and the full algorithm is in
the appendix.

pi ↘ 0,
∞∑
i=1

pi =∞

The first requirement ensures that asymptotically the fraction of your data set which
is sampled randomly goes to 0, and that as you collect more data, you are more likely to
exploit the information you have and sample actively. The second requirement ensures
we will sample at random infinitely often, even though the fraction of samples chosen
randomly is asymptotically negligible. These are very similar to requirements for the ε-
greedy approach (Sutton and Barto, 1998) with decaying εn for multi-armed bandits.

3.4 Sufficiency in the noise free case

We first consider the more simple noise free case, where f(x) = P (Y = 1|X = x) ∈
{0, 1}. We impose the following Regularity Condition on our underlying distribution: that
the boundary between the two classes has [PX ]−measure 0:

Regularity Condition 1. Assume we are in the noise free setting, i.e., Y = f(X) almost
surely. Use Bx,r to denote the ball of radius r centered at x. Let X0 ⊂ X be X0 = {x ∈
X : ∃ B = Bx,r, r > 0, PX(B) > 0, f(z) = 0 ∀ z ∈ B} and define X1 similarly. Then
PX(X0 ∪ X1) = 1.
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Under this Regularity Condition and using the augmentation in Algorithm 4, classic
weighted averaging estimators (Györfi et al., 2006) can all be made consistent for any base
active learning algorithm A.

Proposition 3.4.1. Assume Regularity Condition 1, and sample using Algorithm 4 with any

active learning algorithm A. Let sn =
n∑
i=1

pi. Then the following estimators are consistent:

• The histogram estimator with cell lengths hn if hn → 0, hdnsn →∞.

• k-nn with neighbor cardinality kn if kn
sn
→ 0.

Additionally similar results can be proven for many standard bounded support kernel
estimators under the condition that the bandwidth hn → 0, hdnsn → ∞. These conditions
are almost the same as the conditions derived using Stone’s Theorem under iid sampling,
except n the number of samples has been replaced by sn the (expected) number of random
(iid from PX) samples.

The consistency of these is provided by a single unifying condition. The statement of
the condition is somewhat technical, and we will discuss why such technicality is needed.
Let X̃i = X̃i(Xi,1Ei , Vi) = Xi1Ei + Vi(1 − 1Ei). We will define a (family of) function
gn : X ×R+ ×X n × {0, 1}n → [0, 1] by:

gn(x, r, {Xi}n, {1Ei}n) = inf
{Vi}∈supp(X )

n∑
i=1

Wni(x, {X̃i}n)1X̃i∈Bx,r

Note that if 1Ei = 0 then the value of Xi does not matter. That is

gn(...xi = a...1Ei = 0...) = gn(...xi = b...1Ei = 0...) ∀ a, b, {xj}j 6=i{1Ej}j 6=i

Now assume we are sampling (Zi, Xi) according to our augmented active learning al-
gorithm, and let Ei = {Zi = 1} ∩ {Xi ∈ Bx,r}. Then our Condition is the following:

Condition 1. Let X,Xi ∼ PX and Zi ∼ B(pi). Assume ∃Hn s.t.
Hn
sn
→ 0 and ∀ r > 0:

E
X
E
Zi
E
Xi

[
gn(X, r, {Xi}n, {1Ei}n)|

∑
1Ei ≥ Hn

]
→ 1

Theorem 3.4.1. Assume Regularity Condition 1, that data is sampled according to Algo-

rithm 4 with any Active Learning algorithm A. If predictions are made with a weighted

averaging estimator satisfying Condition 1 then E
[
1fn(X,Sn)6=Y

]
→ 0.
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Condition 1 ensures that predictions are eventually made only using data within an
arbitrarily small neighborhood, that those small neighborhoods are non empty, and that
the weight of all data in these neighborhoods cannot be nullified by adversarial placement
of additional points. The families of estimators which satisfy Stone’s Theorem but not this
are largely pathological. One example would be a version of the histogram estimator where
data points which are within a certain distance dn (decreasing as n → ∞) of another data
point are givenWni(x) = 0∀x. If dn decreases quickly enough then under random sampling
the fraction of data which is nullified will be vanishing and so this estimator would behave
the same way as the standard histogram. However an adversarial active learning algorithm
can sample within dn of every randomly sampled data point, giving all randomly sampled
data weight of 0 and nullifying the augmentation.

3.5 Examples in the noisy case

We now move beyond the noise free setting and allow for f(x) = P (Y = 1|X = x) ∈
[0, 1]. Following Dasgupta (2012) we will assume a Regularity Condition on f(x):

Regularity Condition 2. If the support of PX is {x ∈ X : PX(Bx,r) > 0 ∀ r > 0} then ∀x
in the support of PX x is a continuity point of f(x).

This condition gives us the following property: for all x except on a set of PX measure
0, and for any ε > 0 there is a ballBx,r with PX(Bx,r) > 0 such that |f(x)−f(z)| < ε∀z ∈
Bx,r. We will also assume that PX({x ∈ X : f(x) = 1

2
}) = 0 to remove uninteresting

qualifications during statements and proofs. Under these assumptions, is Condition 1 still
sufficient for consistency?

3.5.1 Histogram Estimators

We begin with the positive case by showing that for the histogram estimator, properties
required for Condition 1 also give consistency in the noisy setting. As shown in the proof
of Proposition 3.5.1, Condition 1 holds for the histogram iff hn → 0, hdnsn → ∞, and
the proof shows that if Condition 1 is satisfied, the probability of our test point falling in a
partition with onlyM data points goes to 0 for allM <∞. Under our Regularity Condition
2 this is sufficient for consistency

Proposition 3.5.1. Under Regularity Condition 2, a histogram classifier with

hn → 0, hdnsn →∞
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is consistent for any base active learning algorithm.

Therefore properties of our histogram required to satisfy Condition 1 (and therefore
give consistency in the noise free case) also give consistency in the noisy case.

3.5.2 Nearest Neighbor Estimators

We now present an example where you can satisfy Condition 1 but are not consistent in the
noisy setting, using nearest neighbors as our underlying estimator. In our counterexample
the Bayes Risk will be η for some η > 0 but arbitrarily small, but the risk of our augmented
algorithm will be 1 − η. We will present the example for 1-NN since the intuition is
strongest here, but the example generalizes when kn → ∞, knsn → 0, and we will give
the corresponding theorem and proof in the appendix. Although 1-NN is not consistent
when there is noise present under passive sampling, it achieves within a factor of 2 from
the optimal risk R∗ of the Bayes classifier (Cover and Hart, 1967) whereas in our counter
example it has risk close to 1.

Let X = [0, 1], Xi ∼ U [0, 1] and Yi|Xi ∼ Bern(η), 0 < η < 1
2

(so we trivially satisfy
Regularity Condition 2). Note here that the Bayes classifier f ∗(x) always predicts the class
0 and has risk η. Let f(x, Sn) be the prediction of a 1-NN learner at point x trained on the
data set Sn. This example will assume we are in the pool setting (although the translation
of the example to the query synthesis setting is clear). Recall that mn is the size of our
unlabelled pool from which we select n points. We assume that acquiring unlabelled data
is effectively free compared with the cost of labelling the data. In particular we will assume
that n

mn
→ 0.

We will again use augmented Algorithm 4. However our base active learning algo-
rithm will be a specific active learning algorithm A† defined in the next section, which is
an adversarial active learning algorithm, developed purely to test the sufficiency claim of
Theorem 3.4.1 when we do not assume Regularity Condition 1. We will first describe infor-
mally what the algorithm does and how it achieves it’s asymptotically near perfect riskiness
before presenting the proof.

3.5.2.1 Informal proof outline

During this subsection, we will let Xi be the ith point sampled, and let the ordered random
variables X(i) denote ordering of the unlabelled data on the interval [0, 1]. We will sample
according to Algorithm 4, with a specific active learning AlgorithmA†. The active learning
algorithm A† will work in the following way: Given St and Sct , we can define open points

as unlabelled data points whose left or right neighbor are labelled as 0:
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Definition 3.5.1. Let Lt(X) denote the known label of point X at some time t, with
Lt(X) =? if the point is unlabelled at iteration t. Then a point X(i) is an open point at
time t if Lt(X(i)) =?, Lt(X(i+1)) = 0 or Lt(X(i)) =?, Lt(X(i−1)) = 0.

Algorithm 5: Adversarial Active Learning algorithm A†

Input: Currently labelled data St, unlabelled data Sct
Output: The next point to label
if There is at least one open point then

Sample the smallest open point.
else

Sample the unlabelled data point which is furthest from a labelled data point.
end

Notice that whenever an open point is labelled, it is no longer an open point. If the label
of that (former) open point is 0 then it (usually) creates another open point adjacent to it,
and if it is 1 then it does not create a new open point. The results of this is that we will
sample consecutive points in a line, creating interior points which are labelled point who’s
left and right neighbor are both labelled:

Definition 3.5.2. X(i) is an interior point at time t if Lt(X(i−1)), L
t(X(i)), and Lt(X(i+1))

are all labelled at time t.

These interior points (plus the two points at each end) form intervals:

Definition 3.5.3. An interval is a groups of consecutive labelled points (and we allow
singleton points to be intervals of length 1).

Our active learning algorithm A† samples consecutive points until we get a point who’s
label is 1, which can be thought of as having ’closed off’ that side of the interval. The
expected distance between these interior points is 1

mn+1
. By construction all points with

label 0 are interior points, or are adjacent to open points. We will show that eventually
almost all points with the label 0 are interior points.

We then define the coverage of a point as the area where they are the nearest neighbor:

Definition 3.5.4. The coverage of a point x is I(x, Sn) =
∫
1x=argmin

x′∈Sn
|z−x′| dz

Note that the expected area covered by our points with label 1 is:

E[1f(X,Sn)=1] =
∑
x∈Sn

E[I(x, Sn)1Ln(x)=1]
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Figure 3.1: Visualization of intervals for 1-nn

.
The coverage of all interior points is ≤ n

mn+1
→ 0. And we show that the coverage of

each open point’s labelled neighbor (which has label 0) also→ 0. Thus the area covered
by points with label 1 goes to 1, and so the risk goes to 1 − η as the resulting estimator
approaches 1− f ∗(x).

3.5.2.2 Formal proof

The structure of the proof will be based around corollary 3.5.1 and corollary 3.5.3. Since
all points with label 0 are either interior or adjacent to open points, we just need to control
the coverage of these two types of points. First we will bound the expected coverage of n
interior points and see that it goes to 0. Next we will show that with high probability the
number of open points will eventually be bounded. Finally we will show that each point
adjacent to an open point has coverage going to 0.

Since n
mn
→ 0 the coverage of all interior points decreases faster than the number of

interior points can grow.

Proposition 3.5.2. If X(i) is an interior point, then the expected area covered by that point

is E[I(X(i), Sn)] = 1
mn+1

.

Corollary 3.5.1. The expected area covered by all interior points approaches 0 as n→∞.

Now we want to show that asymptotically the probability of there being many open
points at time n, when we stop sampling, is small. Let On be the number of open points

at time n and let Ui be the change in the number of open points at time i So On =
n∑
i=1

Ui

and by construction On ≥ 0 ∀ n. Since the behaviour of Ui is different depending on
whether Oi−1 is 0 or not, we analyze Ui by analyzing it’s behaviour between times when it
returns to 0. We will call these returns to 0 cycles. Let τj be the jth time that Oi = 0, with
τ1 = 0 (since with no labelled points we have no open points). We first want to show that
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τj <∞∀ j with probability 1, that is that our number of open points returns to 0 infinitely
often with probability 1.

To do this we will bound Ui by an ’idealized’ process U ′i . This bound will only hold
between cycles (since Ui has different behaviour when the number of open points is 0).

U ′i =


2 if Zi = 1 and Yi = 0

−1 if Zi = 0 and Yi = 1

0 otherwise

Proposition 3.5.3. If Oi−1 6= 0 then Ui ≤ U ′i a.s.

Note that for i sufficiently large E[U ′i ] < 0 and so
∞∑
i=i0

U ′i
a.s.→ −∞. Thus the number of

open points will always return to 0 in a finite number of iterations (with probability 1).

Proposition 3.5.4. P (Oi = 0 i.o.) = 1.

So we know we return to 0 open points infinitely often with probability 1. We want to
show that the probability of having a large number of open points any time during cycle j0
goes to zero as j0 →∞.

Proposition 3.5.5. Let T̃1,i0 be the first time after i0 that
T̃1,i0∑
i=i0+1

Zi = 1 and let T1,i0 =

T̃1,i0 − i0. Let T̃2,i0 be the first time after i0 that
T̃2,i0∑
i=i0+1

Yi = 1 and let T2,i0 = T̃2,i0 − i0.

Then:

i P (T1,i0 < T2,i0) ≤ pi0
1
η

ii P (T1,i0 = T2,i0) ≤ pi0

The first result can be generalized to find the probability of getting
∑
Zi0+t = a before∑

Yi0+t = b. Since the Zi and Yi are all independent, these can be calculated recursively.

Corollary 3.5.2. Let T̃ (a)
1,i0

be the first time after i0 that
T̃

(a)
1,i0∑

i=i0+1

Zi = a and let T (a)
1,i0

= T̃
(a)
1,i0
−

i0. Let T̃ (b)
2,i0

be the first time after i0 that
T̃

(b)
2,i0∑

i=i0+1

Yi = b and let T (a)
2,i0

= T̃
(a)
2,i0
− i0. If we denote

p
(a,b)
i0

= P (T
(a)
1,i0

< T
(b)
2,i0

). Then we have the following recursive relationship:

45



p
(1,b)
i0
≤ p

(1,1)
i0

+ (1− p(1,1)i0
)p

(1,b−1)
i0

≤ bp
(1,1)
i0

p
(a,1)
i0
≤ p

(1,1)
i0

p
(a−1,1)
i0

≤ (p
(1,1)
i0

)a

p
(a,b)
i0

= p
(1,1)
i0

p
(a−1,b)
i0

+ P (T1,i0 = T2,i0)p
(a−1,b−1)
i0

+ (1− p(1,1)i0
− P (T1,i0 = T2,i0))p

(a,b−1)
i0

≤ p
(1,1)
i0

p
(a−1,b)
i0

+ ηp
(1,1)
i0

p
(a−1,b−1)
i0

+ p
(a,b−1)
i0

In particular we have that p(a,b)i0
≤ 3a+b(p

(1,1)
i0

)a.

This shows that the probability of increasing beyond 4 open points before dropping
back down to 0 open points p(2,4)i0

is decreasing to 0.

Lemma 3.5.1. P (On > 4)→ 0 as n→∞.

We already know that points with label 0 which are not adjacent to open points are
interior points. So we just need to show the contribution from the (up to 4) non-interior
points with label 0 is shrinking to 0. We will do this by showing that the maximal distance
between two intervals goes to 0.

Proposition 3.5.6. Let dt be the maximum of all distances between consecutive intervals

at time t. Then dn
a.s.→ 0.

Corollary 3.5.3. The coverage of labelled points adjacent to open points
a.s.

→ 0.

With corollaries 3.5.1 and 3.5.3 we can now prove Theorem 3.5.1.

Theorem 3.5.1. Let X iid∼ U(0, 1) and let f(x) = η, 0 < η < 1
2
. We sample Sn using

augmented Algorithm 4, and with base active learning algorithmA† described in Algorithm

5. If our estimator f(x, Sn) is 1-NN then E
[
1f(X,Sn)=Y

]
→ 1− η.

Remark. It is clear that a similar result for regression (with squared loss) could be obtained
using the same idea, with f ∗(X) = E[Y |X] = 0, Yi = εi (where εi is our iid E[ε] = 0

noise) by using the above algorithm. Let a point have a pseudo-label of 0 if |Y | ≤ c ∈
|supp(ε)| and 1 otherwise, and run the above algorithm on the pseudo-labels. You would
again get intervals of low value points enclosed by high value points and could get MSE
≥ c2.

As stated earlier, this counterexample persists even if you require kn → ∞ and only
stipulate that kn

sn
→ 0, which is required by Condition 1 (and which gives consistency if

our data is sampled passively). Although the result for the kn → ∞ case is slightly less
general, and the definitions and techniques are more complex, the main idea behind the
proof is the same, and the proof can be found in the appendix.
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Theorem 3.5.2. Let X iid∼ U(0, 1) and let f(x) = η, 0 < η < 1
2

and fix ε > 0. We create

our labelled training set Sn using augmented Algorithm 4, with P (Zi = 1) = 1
i
, and with

base active learning algorithm A† described in Algorithm 5. If our estimator is k-NN then

∃ {kn}∞n=1 which satisfies Condition 1 and lim inf E
[
1fn(x,Sn)=Y

]
≥ 1− η − ε.

3.6 Sufficiency for bounded support estimators

We now aim to extract the properties of the histogram estimator which make it immune
to the type of attack used in the nearest neighbor counterexample. Our conditions will as-
sume that the weight functionsWni(x, Sn(X)) take a simplified form, where which training
points have non-zero weight only depends on x,Xi and n. Similar to Condition 1, these
conditions will be complex to state mathematically, but will have interpretable effects.

Condition 2.

1. Wni(x, Sn(X)) = wn(x,Xi)∑
j
wn(x,Xj)

.

2. if suppn(x) = {y ∈ X : wn(x, y) > 0} then diam(suppn(x))→ 0.

3. wn(x, y) ≤ K ∀ n, x, y.

4.
n∑
i=1

wn(X,Xi)Zi
P→∞ (X,Xi ∼ PX).

By enforcing this structure on Wni(x), we allow the unnormalized weight of each point
to depend only on the location of the training point Xi and the test point x, preventing the
relative weight of a point from being affected after the label has been observed. By forcing
the support to shrink in size we ensure that the method is sufficiently local (Zakai and Ritov,
2009). Finally by bounding the maximum relative weight of any single point and requiring
that the relative weights of our randomly sampled points is unbounded (in probability), we
ensure that no finite amount of actively sampled data can overwhelm our passively sampled
data. Although this generalization only includes certain partition estimators and bounded
support regular kernel estimators who’s kernel function is also bounded away from 0 on
their support, the proof itself illuminating.

Theorem 3.6.1. Assume our classifier and augmented algorithm satisfy Condition 2. Then

under Regularity Condition 2 our estimator is consistent for any active learning algorithm

A.
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3.7 Conclusions and further directions

We have seen that in the noiseless setting under mild conditions the classical weighted av-
eraging estimators, specifically those based on partitions, smoothing kernels and nearest
neighbors, are consistent with a small amount of data sampled randomly. However once
even a little noise is introduced there is a bifurcation, where some estimators such as the
histogram retain this consistency while others such as k-nn can be made highly inconsis-
tent even if they are consistent in the noiseless case. The structure of the counterexample
in Section 3.5 and the Condition in Section 3.6 suggests this divergence stems from how
dramatically the relative weight of a data point can be affected after its label has been ob-
served, and how few data points determine the final prediction. This explains why both
adversarial sampling and label noise were needed to highlight the differences in behaviour.
As seen in the 1-NN counterexample (the structure of which can also give counterexamples
for unbounded kernel estimators with sufficiently quickly shrinking hn), if the influence of
one data point can be too easily manipulated (after observing it’s label) by the placement of
other data points, we can get inconsistency even with our randomly sampled data. Condi-
tion 2 strongly protect against this, and less strenuous conditions can likely be found for lo-
cal averaging estimators. However more interestingly the intuition behind these properties
may provide guidance when using more modern estimators, and exploring and formalizing
this is the subject of future work.

One direction would be to explore whether this disjunction in the vulnerability of
different estimators is mirrored for more advanced methods. Under passive sampling
SVMs and Random Forests are both competitive classifiers (Caruana and Niculescu-Mizil,
2006), but given the similarities between SVM and Nearest Neighbors, and Random Forests
and Histograms, their guarantees may be very different under active sampling. Another
potential avenue would be finding ways to adapt complex methods to maintain consis-
tency under Algorithm 4 or similar schemes. For example the soft-margin SVM dual
form optimization variables αi encode the influence of a data point on the prediction of
nearby points. The high level ideas in Condition 2 suggest additional constraints (such as
maxi αi−Bn

∑
αi ≤ 0, Bn → 0) may result in a version of the SVM which is more robust

under a similar augmented active learning algorithm.
Orthogonally it would be interesting to see how these Conditions change if we put

constraints on the underlying active learning algorithm being augmented. The counter
examples explored were extreme, and it is unlikely that adversarial behaviour would be in-
duced by most active learning algorithms used in practice. It is an interesting open question
whether constraints can be place on the underlying active learning algorithm in Algorithm
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4 which are not too constricting, but which allow for an extension of Theorem 3.4.1 to the
noisy case.
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3.8 Appendix A: Counterexample for nearest neighbors
with kn →∞

In order to more accurately mirror the consistency conditions under passive sampling we
now add the requirement that kn →∞.

Property 1. kn →∞, knsn → 0

Our counterexample will be similar to in the 1-NN case, but we will work with pi = 1
i

instead of a generic pi. The only difference will be in the definition of an open point, which
will need to be generalized to depend on kn. If kn = k then an open point will be an
unlabelled point with at least one labelled neighbour, and without bk

2
c+ 1 = k′ 1 labels in

a row to the left or right.

Definition 3.8.1. A point X(i) is an open point at time t if Lt(X(i)) =?, Lt(X(i+1)) ∈
{0, 1} and (Lt(X(i+1), ..., L

t(X(i+k′)) 6= 1k′ or Lt(X(i)) =?, Lt(X(i−1)) ∈ {0, 1} and
(Lt(X(i−1), ..., L

t(X(i−k′)) 6= 1k′ , where 1k′ is a k′-vector of 1’s.

Note that when k = 1 this is the same as our previous definition, and that intervals will
have the same effect as before, where two consecutive intervals without any open points
between them will cause any test points between them to be predicted 1. Similarly we
will extend our definition of coverage to be the area where a set of size k are the k closest
labelled points.

Definition 3.8.2. Let Ck(x, Sn) = arg min
C⊂Sn,|C|=k

∑
x′∈C
|x′ − x|. Then the k-coverage of a set C

is Ik(C, Sn) =
∫
1C=Ck(z,Sn) dz

Note that the only sets with non-zero coverage are sets of consecutive (within Sn) la-
belled points. This again partitions the real line and we get a decomposition of our expected
coverage by 1.

E[1fn(X,Sn)=1] =
∑
C∈Ck

E
[
Ik(C, Sn)1 ∑

x∈C
Ln(x)≥k′

]
(where 1+? = 1, 0+? = 0)

Ck = {C ⊂ Sn : C = {X(i), ..., X(i+k)}}

Where this ordering is only over X ∈ Sn

For each k fixed the proof will follow largely the same structure; although getting k′

1’s in a row is a much lower probability event than just getting a single 1, the probability is
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Figure 3.2: Visualization of intervals for 3-nn

still constant (for fixed k), where as the probability of sampling randomly is shrinking, and
so eventually the number of open points will be small.

Our strategy will be very similar to in the 1-NN case, which was to show that the
expected area covered by point with label 1 E

[
1fn(X,Sn)=1

]
→ 1, as this gives us a risk of

1− η.
We again use Ui to denote the change in the number of open points, and will again use

an idealized version U ′i which dominates Ui to simplify analysis.

U ′i =



2 if Zi = 1 and Yi = 0

−1 if Zj = 0 ∀ j ∈ {i, ..., i− k′} and

Yj = 1 ∀ j ∈ {i, ..., i− k′} and

Yi−k′−1 = 0

0 otherwise

The following propositions all have the same proofs as in the 1-NN case, since P (U ′i =

2) → 0 and P (U ′i = −1) → ηk
′
(1 − η). Our U ′i are no longer independent, but they do

have finite range independence, and so we still have a SLLN for them.

Proposition 3.8.1. If Ol 6= 0 for l ∈ {i− k′ − 2, ..., i− 1} then Ui ≤ U ′i a.s.

Proposition 3.8.2. P (Oi = 0 i.o.) = 1.

Now we will get the equivalent to proposition 3.5.5.

Proposition 3.8.3. Assume P (Zi = 1) = 1
i
, P (Yi = 1) = η and k fixed. Let T̃1,i0 be the

first time after i0 that
T̃1,i0∑
i=i0+1

Zi = 1 and let T1,i0 = T̃1,i0 − i0. Let T̃2,i0 be the first time after

i0 that
T̃2,i0∑

i=i0+T̃2,i0−k′
Yi = k′ and let T2,i0 = T̃2,i0 − i0. Then:
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i P (T1,i0 < T2,i0) ≤ c
2
√
i0

[
1

1−η

(
1
ηk′
− 1
)]

ii P (T1,i0 = T2,i0) ≤ 1
i0

And if we generalize we have the same recursive relationships.

Corollary 3.8.1. Let T̃ (a)
1,i0

be the first time after i0 that
T̃

(a)
1,i0∑

i=i0+1

Zi = a and let T (a)
1,i0

= T̃
(a)
1,i0
−

i0. Let T̃ (b)
2,i0

be the first time after i0 that we’ve had k′ out of the last k queries be error

terms on b disjoint occasions (so starting over each time) and let T (a)
2,i0

= T̃
(a)
2,i0
− i0. If we

denote p(a,b)i0
= P (T

(a)
1,i0

< T
(b)
2,i0

). Then we have the following recursive relationship:

p
(1,b)
i0
≤ p

(1,1)
i0

+ (1− p(1,1)i0
)p

(1,b−1)
i0

≤ bp
(1,1)
i0

p
(a,1)
i0
≤ p

(1,1)
i0

p
(a−1,1)
i0

≤ (p
(1,1)
i0

)a

p
(a,b)
i0
≤ p

(1,1)
i0

p
(a−1,b)
i0

+
1

i0
p
(a−1,b−1)
i0

+ p
(a,b−1)
i0

In particular we have that p(a,b)i0
≤ 3a+b(p

(1,1)
i0

)a

Now we have a (slightly stronger) equivalent to lemma 3.5.1.

Lemma 3.8.1. For any k, P (On > 6 i.o.) = 0.

This means 1On>6
a.s.→ 0. Therefore by an equivalent definition of almost sure conver-

gence (Chung, 2001) ∃ nk,ε s.t. P (1On>6 6= 0 ∀n ≥ nk,ε) ≤ ε. Of course we have no way
of knowing what nk,ε is for each values of k, ε, but we know they exist. Therefore we will
allow kn to increase in the following manner (which we denote k(n, ε)):

• kn = 1 for n < n2,ε

• kn = 2 for n ∈ [n2,ε, n3,ε]

• ...

• kn = k for n ∈ [nk,ε, nk+1,ε]

Of course we also need to satisfy kn
sn
→ 0 and so we can just take kn = min(k(n, ε), log log(n)).

The rest of the proof follows as in the 1-NN case.

Proof of theorem 3.5.2. Let the sequence {kn}∞n=1 be as described above. Then for n ≥ n2

we know that when we have finished taking our n samples, P (1On>6 6= 0 ∀n ≥ nk,ε) ≤ ε.
We therefore split our expected coverage with 1 into

E[1fn(X,Sn)=1] = E[1fn(X,Sn)=11On>6] + E[1fn(X,Sn)=11On≤6].
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Trivially E[1fn(X,Sn)=11On>6] ≥ 0. So we focus on E[1fn(X,Sn)=11On≤6].
Again all area which may be predicted as 0 are on the interior of intervals, or are covered

by the points next to open points. The expected k-coverage of a set C ∈ Ckn of all interior
points is again 1

mn+1
and there are fewer than n such sets. This leaves up to 6 C that are

not all interior points, and which could have
∑
x∈C

Ln(x) < k′. These are all on the edges

of intervals, and the lengths between intervals are still approaching 0 with probability 1 by
proposition 3.5.6. Thus we have E[1fn(X,Sn)=11On≤6] → 1 − ε, and so E[1fn(X,Sn)=1] ≥
1− ε, which gives us E[1fn(X,Sn) 6=Y ] ≥ (1− 2η)(1− ε) + η ≥ 1− η − ε.

3.9 Appendix B: Proofs

Algorithm 6: Augmented Algorithm for query synthesis
Input: Active learning algorithm A, number of samples n, probability sequence

(p1, ..., pn), underlying marginal distribution PX
Output: Labelled data set Sn
S0 = ∅ ;
for i from 1 to n do

Draw an independent Bernoulli random variable Zi with P (Zi = 1) = pi;
if Zi = 1 then

Draw Xi from PX
else

Select Xi according to A(Si−1)
end
Query selected point and receive Yi ;
Si = Si−1 ∪ (Xi, Yi) ;

end

3.9.1 Sufficiency in the noise free case

Why is Condition 1 our requirement? FixX = x and let φ be the distribution on (X1, ..., Xn)

induced by our augmented AL algorithm. By the definition ofEi we have that 1Ei = 1 =⇒
Zi = 1 and so:

E
Zi∼B(pi)

(
E
X∼φ

[
gn(x, r, {Xi}n, {1Ei}n)|{Zi}n

])
= E

Zi∼B(pi)
E

Xi∼µ

[
gn(x, r, {Xi}n, {1Ei}n)

]
And from this and the definition of gn we have that ∀ k:
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E
Zi∼B(pi)

E
X∼φ

[ n∑
i=1

Wni(x, {Xi}n)1Xi∈Bx,r |
∑

1Ei = k
]

≥ E
Zi∼B(pi)

E
Xi∼µ

[
gn(x, r, {Xi}n, {1Ei}n)|

∑
1Ei = k

]
Proof of Theorem 3.4.1.

We want to show that
∫
ESn

[
(fn(x, Sn)− f(x))2

]
PX(dx)→ 0.

∫
ESn

[
(fn(x, Sn)− f(x))2

]
PX(dx) =

∫
ESn

[
(
∑

Wni(x)f(xi)− f(x))2
]
PX(dx)

≤ 2

∫
ESn

[
(
∑

Wni(x)f(xi)−
∑

Wni(x)f(x))2
]
PX(dx)

+ 2

∫
ESn

[
(f(x)[

∑
Wni(x)− 1])2

]
PX(dx)

We will work on bounding the first term since the second term trivially goes to 0 due to
Condition 1.

∫
ESn

[
(
∑

Wni(x)f(xi)−
∑

Wni(x)f(x))2
]
PX(dx)

≤
∫
ESn

[∑
Wni(x)(f(xi)− f(x))2

]
PX(dx)

Define X (δ) = {x : |f(Bx,δ)| = 1}, δε = sup δ s.t. PX(X (δ)) ≥ 1− ε.

≤
∫
X (δε)

ESn
[∑

Wni(x)(f(xi)− f(x))2
]
PX(dx) + ε

Let Sn = S(a)
n ∪ S(r)

n where the first is actively selected data and the second is

the randomly selected.

|Bx,δε ∩ S(r)
n | → PX(Bx,δε)

n∑
pi.

For each x ∃ n0(x) s.t. PX(Bx,δε)
n∑
pi ≥ Hn ∀n ≥ n0(x).

∃n0 s.t. PX({x : PX(Bx,δε)
n∑
pi ≤ Hn}) ≤ ε.

Let n be sufficiently large and denote the intersection of the complement of the above
set with X (δε) by X̃ .
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≤
∫
X̃
ESn

[∑
Wni(x)(f(xi)− f(x))2

]
PX(dx) + 2ε.

Let Fn be the event that |Bx,δε ∩ S(r)
n | ≥ Hn.

=

∫
X̃
P (Fn)ESn

[∑
Wni(x)(f(xi)− f(x))2|Fn

]
+ P (F c

n)ESn
[∑

Wni(x)(f(xi)− f(x))2|F c
n

]
PX(dx) + 2ε

≤
∫
X̃
ESn

[∑
Wni(x)(f(xi)− f(x))2|Fn

]
PX(dx) + 3ε

For n ≥ n1 since PX(Bx,δε) bounded away from 0).

≤
∫
X̃
E
S
(r)
n

[
sup
S
(a)
n

∑
Wni(x)1||Xi−x||≥δε|Fn

]
PX(dx) + 3ε

→ 3ε.

Proof of Proposition 3.4.1. In the proof of part i) we will actually prove that the condition
is if-and-only-if since this will be needed in section 4.

Let N (R)
n =

∑
Zi be the number of labelled points selected randomly. Let An(x)

denote the cell containing the point x and let Nn(x) =
∑

1Xi∈An(x) be the number of
labelled points in the same cell as x, and let N (R)

n (x) =
∑

1Xi∈An(x)Zi be the number of
labelled points in the same cell as x which were selected randomly.

We first prove the forward direction by showing we satisfy Condition 1. Let Hn =⌊ √
sn√
hdn

⌋
, noting that Hn

sn
= 1√

hdnsn
→ 0 and Hnh

d
n =

√
hnsn → ∞. Since hn → 0, for

any r > 0 eventually the entire cell a data point is in will be within r of the point. Then
repeat the proof of Theorem 6.2 in Devroye et al. (2013), replacing n with Hn, to show that
P (N

(R)
n (X) ≤M)→ 0∀M <∞. This completes the proof since a non-empty histogram

has
∑
Wni(x) = 1, and for n sufficiently large all the training points with non-zero weight

will be within r.
If hn 6→ 0 then clearly the Condition cannot hold for r sufficiently small as the ballBx,r

can be made arbitrarily small compared to the minimum size of the cell.
If hdnsn → 0, then the number of cells is growing at a faster rate than the number of

randomly sampled data points, and if our active algorithm just samples the nearest neighbor
to the point last sampled, then the majority of cells would end up with no data and would
thus have

∑
Wni(x) = 0.

This leaves us with the case where hdnsn ∈ [α1, α2], 0 < α1 ≤ α2 < ∞. We can study
this using the theory of Random Allocations Kolchin et al. (1978), which characterizes the
properties of counts of urns with k balls after n balls are placed iid into urns. If we have a
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uniform distribution on X then we are in the Central Domain with equiprobable allocation,
and from Theorem 1 (p.18) of Kolchin et al. (1978), we have that for any ε > 0, for n
sufficiently large P (N

(R)
n (X) = 0) ≥ e−h

d
n(1+ε)sn almost surely. This is because the num-

ber of cells with no randomly sampled points is normally distributed around 1
hn
e−h

d
n(1+ε)sn

with variance that is O( 1
hn

). Thus as above satisfying the Condition is impossible if, for
example, our active algorithm just samples the nearest neighbor to the point last sampled.

For part ii) Condition 1 is satisfied with Hn = kn as long as for any fixed r > 0 and
any x, random sampling puts more than kn data points Bx,r, and this is proved in Lemma 1
in Dasgupta (2012).

3.9.2 Examples in the noisy case

Proof of Proposition 3.5.1. By Regularity Condition 2, for n large enough all but an ε > 0

PX-measure of cells will be such that f ∗(x1) = f ∗(x2) ∀ x1, x2 ∈ Anj , where Anj is an
arbitrary cell in our histogram. Therefore we need to show that P (N

(R)
n (X) ≤ M) →

0∀M . But if we fix N (R)
n , this is exactly the result in Theorem 6.2 of Devroye et al. (2013),

with n replaced by N (R)
n . And by Levy’s extension to Borel-Cantelli Williams (1991) we

know that for any δ > 0, for n sufficiently large N (R)
n ∈ [(1 − δ)sn, (1 + δ)sn] with

probability 1. Thus with probability 1 we have that hdnN
(R)
n → ∞, so the conditions of

Theorem 6.2 in Devroye et al. (2013) hold with probability 1, ensuring that P (N
(R)
n (X) ≤

M)→ 0 ∀M thereby completing the proof.

3.9.3 Nearest Neighbor counterexample

Proof of proposition 3.5.2. Since X(i) is an interior point, both of these neighbors are la-
belled, and so X(i) will only be the closest point on an area half of the distance between its
neighbors on either side. Since the Xi ∼ U(0, 1) the expected distance between X(i) and
its neighbor on either side is 1

mn+1
. Therefore the expected coverage is 1

mn+1
.

Proof of corollary 3.5.1. Each interior point covers 1
mn+1

and the number of interior points
is trivially bounded by n, and by our assumptions n

mn+1
→ 0.

Proof of proposition 3.5.3. Note that the only way to increase the number of open points
is to query a point which is not open, and for that point to have label 0. In this case we
increase the number of open points by at most 2. This is the event {Zi = 1, Yi = 0}.
Conversely if we query an open point and it’s label is 1 then we decrease the number of
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open points by at least 1. This is the event {Zi = 0, Yi = 1}. And even when neither of
these happens the number of open points can still decrease, but cannot increase. Thus we
have that U ′i = max{supp(Ui|Yi = y, Zi = z)}.

Proof of proposition 3.5.4. We will prove by induction that τj < ∞ ∀ j with probability
1. Note for our base case that τ1 = 0 < ∞. Now assume τj−1 = i0 < ∞. If Ui0+1 = 0

(which can happen if for example our new data point has label 1) then τj = i0 + 1 < ∞.
Now assume Ui0+1 > 0. Thus we know that Oi0+1 > 0, and will remain above 0 until τj

giving us that
τj∑

i=i0+2

Ui ≤
τj∑

i=i0+2

U ′i . But for some i1 E[U ′i ] < 0 ∀ i ≥ i1. Therefore by

SLLN
∞∑
i=i0

U ′i
a.s.→ −∞ and so there exists some T < ∞ s.t.

∞∑
i=i0

U ′i ≤ 0 with probability 1.

Therefore τj ≤ T <∞ with probability 1, and so P (Oi = 0 i.o.) = 1.

Proof of proposition 3.5.5. i

P (T1,i0 < T2,i0) =
∞∑
t=1

P (T1,i0 = t)P (T1,i0 < T2,i0 |T1,i0 = t)

=
∞∑
t=1

pi0+t

t−1∏
j=1

(1− pi0+j)[(1− η)t−1] ≤ pi0

∞∑
t=1

[(1− η)t−1] = pi0
1

η

ii

P (T1,i0 = T2,i0) =
∞∑
t=1

P (T1,i0 = t)P (T2,i0 = t)

=
∞∑
t=1

pi0+t

t−1∏
j=1

(1− pi0+j)[P (T2,i0 = i0 + t)] ≤ pi0

∞∑
t=1

[P (T2,i0 = i0 + t)] = pi0

Proof of corollary 3.5.2. The three inequality relationships come straight from the inde-
pendence of our random variables Yi, Zi. The final statement can be shown by induction.
It is clearly true for the case a = 1, b = 1. Assume true for all a ≤ a0 − 1, b ≤ b0.

p
(a0,b0)
i0

≤p(1,1)i0
× 3a0−1+b0(p

(1,1)
i0

)a0−1 + ηp
(1,1)
i0
× 3a0−1+b0−1(p

(1,1)
i0

)a0−1+

3a0+b0−1(p
(1,1)
i0

)a0

≤3a0+b0(p
(1,1)
i0

)a0

And finally note that in the above there is symmetry between the roles of a and b so the same
calculations show that if it’s true for all a ≤ a0, b ≤ b0− 1 then it’s true for a ≤ a0, b ≤ b0.
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Proof of lemma 3.5.1. Let Ej be the event that during the jth cycle we have more than 4
open points. So if the jth cycle starts at time τj then Ej = { max

τj≤j≤τj+1

Oj > 4}. Also

∀ t ∈ [τj ≤ j ≤ τj+1], {Ot > 4} ⊂ Ej . Note that P (Ej) ≤ p
(2,4)
τj ≤ cp2τj ≤ cp2j−1

since each cycle must have length at least 1. Thus if we hit n during the jth cycle then
P (On > 4) ≤ cp2j → 0 as j →∞. And by proposition 3.5.4 we have that if j0 is the cycle
we are in at time n then j0 →∞ a.s. as n→∞. Thus P (Ej0)→ 0.

Proof of proposition 3.5.6. Fix ε > 0 and δ < ε
2
. Define two events:

1. Ω1 = {we return to 0 infinitely often}

2. Ω2 = {∀ i X(i+1) −X(i) ≤ δ and X(1), 1−X(n) ≤ δ}

then {dn > ε ∀ n} ⊂ (Ω1 ∩ Ω2)
c. This is because returning to 0 infinitely often means that

infinitely often we act according to A† when the number of open points is 0. This action
samples the unlabelled point which is furthest from any labelled point. We will show that
just these actions are enough to prevent dn ≥ ε ∀ n when (2) is also true. We will also
ignore the fact that our labelled intervals take up length as this length is negligible and only
forces the empty interval (the interval of consecutive unlabelled points) to be smaller.

By (2) if the empty interval containing the unlabelled point which is furthest from any
labelled point is of size l then the point which is newly labelled must be within δ

2
of the

center of the interval, and so the maximum size of the two new empty intervals created
is l+δ

2
. If l ≥ ε then we get that the new empty intervals have length ≤ 3

4
l, so we’re

guaranteed to produce empty intervals of length no more than 3
4

of the original intervals
length. Additionally since ε > 2δ there are no empty intervals which cannot be cut to size
smaller than ε due to there not being two consecutive points with distance greater than ε.
So any interval of finite size > ε can be split into intervals all of size less than ε in a finite
number of cuts. Thus if at any time t we have N < ∞ empty intervals of size > ε (which
must be the case since the sum of our interval lengths is bounded by 1) they will all be
reduced to intervals of size < ε in a finite number of cuts.

By proposition 3.5.4 P (Ω1) = 1. By Glivenko-Cantelli P (Ω2) = 1, since otherwise
∃xs.t.Fn(x) = Fn(x+δ)∀n, where Fn(x) is the usual empirical cdf. But F (x) 6= F (x+δ)

and so Glivenko-Cantelli would be violated, which happens with probability 0. Therefore
with probability 1 we cannot have that dn > ε ∀ n and so dn

a.s.→ 0.

Proof of corollary 3.5.3. The coverage of each labelled point adjacent to an open point is
half the distance to the next interval. However by 3.5.6 this distance a.s.→ 0.
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Proof of theorem 3.5.1. Let In be the set of all interior points and let An be the set of all
labelled points adjacent to open points.

E[1f(X,Sn)=1] = E
[ ∑
x∈Sn

I(x, Sn)1L(x)=1

]
=

E
[ ∑
x∈In

I(x, Sn)1L(x)=1 +
∑
x∈An

I(x, Sn)1L(x)=1 +
∑

x∈Sn\In∪An

I(x, Sn)1L(x)=1

]
We know that all points with label 0 are either in In or An. By corollary 3.5.1 we

have that E
∑
x∈In

I(x, Sn) → 0, and by corollary 3.5.3 E
∑
x∈An

I(x, Sn) → 0. Thus since

E
∑
x∈Sn

I(x, Sn) = 1 we have that E
∑

x∈Sn\In∪An
I(x, Sn)→ 1, and since 1L(x)=1 = 1 ∀ x ∈

Sn \ In ∪ An we have that E[1f(X,Sn)=1]→ 1, and so E[1f(X,Sn) 6=Y ]→ 1− η.

Proof of proposition 3.8.3. i

P (T1,i0 < T2,i0) =
∞∑
t=1

P (T1,i0 = t)P (T1,i0 < T2,i0|T1,i0 = t)

P (T1,i0 = t) ≤ 1

i0 + t

By Markov

P (T2,i0 > t) ≤ E[T2,i0 ]

t+ 1
≤ E[T2,i0 ]

t
E[T2,i0 ] =

1

1− η
( 1

ηk′
− 1
)

By AM-GM inequality

P (T1,i0 < T2,i0) ≤
∞∑
t=1

1

i0 + t

1

t

1

1− η
( 1

ηk′
− 1
)
≤ 1

2
√
i0

1

1− η
( 1

ηk′
− 1
) ∞∑
t=1

1

t
3
2

=
c

2
√
i0

1

1− η
( 1

ηk′
− 1
)

ii Proof is same as for proposition 3.5.5

Proof of lemma 3.8.1. Let Ej be the event that during the jth cycle we have more than 6
open points. So if the jth cycle starts at time τj then Ej = { max

τj≤j≤τj+1

Ok > 6}. Also ∀ t ∈

[τj ≤ j ≤ τj+1], {Ot > 6} ⊂ Ej . Note that P (Ej) ≤ p
(3,6)
τj ≤ (cpτj)

3 ≤ (cpj−1)
3 = c3 1

j
3
2

.
By proposition 3.5.4 we have that if j0 is the cycle we are in at time n then j0 →∞ a.s. as
n→∞. And by Borel-Cantelli we have that P (Ej i.o.) = 0.
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3.9.4 Sufficiency for bounded support estimators

Proof of Theorem 3.6.1. For convenience of notation, we will let Yi ∈ {1,−1}, using the
usual transformation from our current Yi ∈ {0, 1} setting. Under this transformation, and
by the assumptions on the structure of our Wni(x, Sn(X)),

fn(x, Sn) = sign(
∑

Wni(x, Sn(X))Yi)

= sign(
∑

wn(x,Xi)Yi)

Therefore for consistency we want to show P (f ∗(X)fn(X,Sn) = −1) → 0. For x
fixed this occurs iff

∑
wn(x,Xi)Yif

∗(x) < 0. Define γn = {x ∈ X : sup
z∈suppn(x)

|f(z) −

f(x)| ≤ |0.5−f(x)|
2
}. By the assumption that diam(suppn(x)) → 0 and Regularity Condi-

tion 2, PX(γn)→ 1 , and so for some ε > 0, for n sufficiently large

P (f ∗(X)fn(X,Sn) = −1) ≤ P (f ∗(X)fn(X,Sn) = −1|X ∈ γn) + ε.

Also define the following:

Sn(x) =
∑

wn(x,Xi)Yif
∗(x) = S(R)

n (x) + S(A)
n (x)

S(R)
n (x) =

∑
wn(x,Xi)ZiYif

∗(x)

S(A)
n (x) =

∑
wn(x,Xi)(1− Zi)Yif ∗(x)

We want to show that P (S
(R)
n (X) ≤ M |X ∈ γn) → 0 ∀M < ∞. To do this we will

lower bound S(R)
n (x) by a sum which is easier to analyze, and prove that sum diverges in

probability if x ∈ γn. Let

S̃(R)
n (x) =

∑
wn(x,Xi)ZiỸi(x,Xi, Yi)f

∗(x)

Ỹi(x,Xi, Yi) = Yi1Yi 6=f∗(x) + Y ′i (x,Xi)1Yi=f∗(x)

Y ′n(x,Xi) ∈ {1,−1}

P (Y ′n(x,Xi) = f ∗(x)) =
inf

z∈suppn(x)
f(z)

f(Xi)
if f ∗(x) = 1, Xi ∈ suppn(x)

inf
z∈suppn(x)

1−f(z)

1−f(Xi) if f ∗(x) = −1, Xi ∈ suppn(x)

0 otherwise

Where the randomness in Y ′i is independent of everything

So by construction we have that P (Ỹi = f ∗(x)|Xi ∈ suppn(x)) = inf
z∈suppn(x)

P (Ỹi =
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f ∗(z)|Xi ∈ suppn(x)), Ỹi|Xi ∈ suppn(x) ⊥ Xi and Yif
∗(x) ≥ Ỹif

∗(x). Since x ∈
γn, P (Ỹif

∗(x) = 1|Xi ∈ suppn(x)) > 1
2

+ |0.5−f(x)|
2

. By Condition 2 we have that
n∑
i=1

1Xi∈suppn(X),Zi=1
P→∞ and wn(x,Xi)|Zi = 1

d
= wn(x,Xj)|Zj = 1, which gives us

that P (S̃
(R)
n (X) ≤ M |X ∈ γn) → 0 ∀M < ∞ which in turn gives us that P (S

(R)
n (X) ≤

M |X ∈ γn)→ 0 ∀M <∞. And since ε was arbitrary this gives us P (S
(R)
n (X) ≤ M)→

0 ∀M <∞.
Now in order for Sn(x) < 0 we need that S(A)

n (x) → −∞. By defining S̃
(A)
n (x)

similarly, the same argument shows that this cannot happen. Since wn(x, y) ≤ K we
would require an infinite number of active samples in suppn(x). For each of these we
would have P (Yif

∗(x) = 1|Xi ∈ suppn(x)) > 1
2

+ |0.5−f(x)|
2

, and so even though we can
stop as soon as we are smaller than M , P (S̃

(A)
n (x) ≤ M) → 0 as M → −∞. Therefore

P (Sn(X) > 0)→ 1 and P (f ∗(X)fn(X,Sn) = −1)→ 0.
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CHAPTER IV

Active Federated Learning

Federated Learning allows for population level models to be trained without centralizing
client data by transmitting the global model to clients, calculating gradients locally, then
averaging the gradients. Downloading models and uploading gradients uses the client’s
bandwidth, so minimizing these transmission costs is important. The data on each client
is highly variable, so the benefit of training on different clients may differ dramatically.
To exploit this we propose Active Federated Learning, where in each round clients are se-
lected not uniformly at random, but with a probability conditioned on the current model
and the data on the client to maximize efficiency. We propose a cheap, simple and intu-
itive sampling scheme which reduces the number of required training iterations by 20-70%
while maintaining the same model accuracy, and which mimics well known resampling
techniques under certain conditions.

The structure of this chapter is as follows:

1. Briefly introduce federated learning (Section 4.1).

2. Propose the Active Federated Learning framework (Section 4.5).

3. Provide experimental comparisons of Active Federated Learning with standard fed-
erated learning (Section 4.6).

4.1 Federated learning overview

As machine learning models are deployed in the real world, the assumptions under which
they were developed are often shown to be incompatible with user requirements. One such
assumptions is unrestricted access to the training data, either on a single machine or dis-
tributed over many researcher controlled machines. Over the past few years there has been
widespread backlash against indiscriminate acquisition of personal data. Due to privacy
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concerns users may not want to transmit data from their own devices, making standard
centralized training impossible. Federated learning (McMahan et al., 2016) enables the
training of a single model on a central server with contributions from data on many users
(also called clients) without any transmission of data. The basic methodology for train-
ing gradient optimized empirical risk minimization models (a class which includes many
common deep neural networks) is quite simple:

1. At iteration t, broadcast the server model parameters w(t) to each client selected for
that training round.

2. Each client makes a small update to the parameters using their own data to produce
local updated parameters w(t+1)

k (where k is the client index). This could be as simple
as a single step of gradient descent, but in practice it is often more complicated.

3. Each client transmits their locally updated model parameters to the server, which
aggregates them to produce the next iteration of the server model parameters w(t+1).

Client Server

Model 
parametersPrivate data

Local 
update

Updated model 
parameters

Update from 
client 

Update 
aggregation

Model 
parameters

Updates from 
other clients

Transmission to client

Transmission to server

Figure 4.1: Federated learning schematic. Color (abstractly) represents the private information of
the data at different stages of the update procedure.

Since being introduced in McMahan et al. (2016) federated learning has been identi-
fied as an important tool in privacy-preserving machine learning, with applications in tech
(Yang et al., 2019), finance (Li et al., 2019a) and healthcare (Sheller et al., 2018). For
excellent overviews we refer readers to Kairouz et al. (2019); Li et al. (2019b); Yang et al.
(2019).

4.2 Introduction to Active Federated Learning

Federated Learning enables the training of models on this private data. However the pro-
cedure requires broadcasting all the model parameters to each client taking part in that
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training round. These models can contain millions of parameters, making transmission
costs between the server and the client are high. Additionally for many applications, the
users own the broadband connecting their device to the internet, so broadcasting model
parameters to clients utilizes the clients private resources. This makes reducing commu-
nication costs vitally important. In this chapter we introduce Active Federated Learning

(AFL) to preferentially train on users which are more beneficial to the model during that
training iteration. Motivated by ideas from Active Learning, we propose using a value
function which can be evaluated on the user’s device and returns a valuation to the server
indicating the likely utility of training on that user. The server collects these valuations and
converts them to probabilities with which the next cohort of users is selected for training.
By using simple a value function related to the loss the user’s data suffers under the current
model, we can reduce the number of training rounds required.

4.3 Related work

Since its introduction (McMahan et al., 2016; Yang et al., 2019), reducing the communica-
tion costs of Federated Learning has been an important goal (Konečnỳ et al., 2016; Caldas
et al., 2018). However as discussed in Li et al. (2019b) there are few existing techniques
which change the method of selecting users. In Hartmann (2018) the author suggests strati-
fication based on contextual information about the users, and in Nishio and Yonetani (2019)
the authors group users based on hardware characteristics. In contrast this work is closer to
active learning (Settles, 2009) where the selection policy is dependant on the current state
of the model and the data on each user. It is also similar in spirit to non-uniform mini-
batching for SGD in Zhang et al. (2019). However the methods proposed in that paper rely
on the selector having full access to the data itself, which is not possible in the federated
setting.

Active learning and AFL share many similar structures, as in both the algorithm for se-
lecting training data must act under imperfect information; in active learning the covariates
are fully known, but the label of candidate data points is unknown, whereas in AFL both
labels and covariates are fully known on each client, but only a summary is returned to the
server. Additionally, in standard active learning individual data points may be selected in
an unconstrained manner, whereas in AFL we train on all data points on each selected user,
creating predetermined subsets of data.
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4.4 Background and notation

Assume we have labelled data (x, y) and a model for predicting y ∈ Y given x ∈ X
which we denote by ŷ = f(x;w), where w ∈ Rd are our model parameters. These
model parameters will be learned by minimizing some loss function l(x, y;w). Assume
our training data is distributed over multiple clients (or users) U = {U1, ..., UK}, where we
denote the data of clientUk by (xk,yk) ∈ X nk×Ynk . Our model parameters will be learned
during training iterations, so we will let w(t) denote the value of our parameters at training
iteration t. During each training iteration we select a subset of users S(t) ⊂ U , |S(t)| = m

and send w(t) to each user in the set. Each user then performs some training T using
their local data and produce updated model parameter values w

(t+1)
k = T (xk,yk;w

(t)).
In its most simple form this training could be a single step of gradient descent, though
in practice it is often more complicated, such as multiple passes of SGD. In traditional
Federated Learning the subsets S(t) are selected uniformly at random and independently
at each iteration. Our goal in AFL is to select our subsets S(t) such that fewer training
iterations are required to obtain a good model.

4.5 Active Federated Learning (AFL)

Inspired by the structure of classical AL methods, we propose the AFL framework which
aims to select an optimized subset of users based on a value function that reflects how
useful the data on that user is during each training round. Formally, we define a function
V : X nk × Ynk × Rd → R which is evaluated on each user. Once evaluated, each user
Uk returns a corresponding valuation vk ∈ R to the server, which is used to calculate the
sampling distribution for the next training iteration. The valuations are a function of w(t),
but since transmitting the model is expensive we only get fresh valuations of users during
an iteration in which we train on them, meaning that

v
(t+1)
k =

V(xk,yk;w
(t)) if Uk ∈ St

v
(t)
k otherwise.

Ideally the computation of the value function should require minimal additional com-
putation, since the computations are done using the clients hardware, and should not reveal
too much about the data on each client. Once the server has all valuations it converts them
into a sampling distribution.

65



Server

Client probabilities
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Client Client

Active Federated Learning algorithm for a 
binary classification problem. The red and 
blue dots on each client show the private 
data on the client. At each training step the 
following happens:

1. Clients send their valuations to the 
server.

2. Server converts individual client 
valuations into probability of each 
client being selected in the next batch.

3. Server selects next training batch 
randomly using these client 
probabilities.

Figure 4.2: Active Federated Learning framework for a binary classification problem.

4.5.1 Loss valuation

One very natural value function is to use the loss of the users data

vk =
1
√
nk
l(xk,yk;w)

.
It is already calculated during model training and is increasing with how poorly the model
performs on the clients data. Additionally it mimics common resampling techniques when
the required structure is present in the data. If there is extreme class imbalance and weak
separation of the classes, data points of the minority class will have significantly higher
loss than majority class data points. Therefore we will prefer users with more minority
data, mimicking resampling the minority class data. Similarly if the noise depends on the
distance from the classification boundary such as in (Blaschzyk et al., 2018), using the
loss replicates margin based resampling techniques. Finally if all data points are equally
valuable then users with more data will be given higher valuations. Most importantly these
adaptations to the data do not require the practitioner to know the specific structure being
exploited. This is particularly important in the Federated setting, where information about
the data is limited.

4.5.2 Differential Privacy

Even summarizing the client data with a single float may reveal too much information.
To properly protect users the value function should be reported using a Differentially Pri-
vate mechanism Dwork et al. (2014). The noise introduced to maintain Differential Pri-
vacy may mislead the server into selecting sub-optimal clients. However there is structure
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which might be exploited to reduce the corruption while still maintaining privacy. One
is that many value functions, such as the loss, are not expected to change dramatically
within a small number of training rounds. Thus we may be able to query whether a valua-
tion has changed dramatically before querying the new value, similar to the Sparse Vector
technique, to reduce the number of queries. We may also be able to adapt our value func-
tion to be more amenable to Differential Privacy. For example the loss value function has
unbounded sensitivity and requires clipping to provide Differential Privacy. However re-
turning a count of high loss data points has sensitivity 1 and may be less affected by the
privacy providing noise. Adding privacy guarantees is an important challenge in AFL and
is the subject of much future work.

4.6 Experimental results

We compared AFL to the standard uniform selection on two datasets; one on the Reddit
dataset, the other on the Sticker Intent dataset. The Reddit dataset is a publicly avail-
able Baumgartner (2019) dataset consisting of comments from users on reddit.com. The
authors were not involved in collecting this dataset. For the Reddit dataset we predicted
the binary label ’controversially’ based on the comment text, and selected 8K users at
random from the November 2017 data set, similar to Bagdasaryan et al. (2018) but only
excluding users with +100K messages. We removed comments being responded to from
the messages, and empty messages. The Reddit dataset has many users who post few com-
ments, but a long tail of power users. The Sticker Intent dataset has randomly selected,
anonymized messages from a popular messaging app. The task was binary classification
- predict whether a message was replied to using a sticker. Messages in this set were col-
lected, de-identified, and annotated automatically; the messages were not read or labeled
by human annotators.

Algorithm 7 for converting the valuations into a sampling distribution has 3 tuning pa-
rameters: The α1 proportion of users with the smallest valuations will have their valuations
set to −∞. They can still be selected by random sampling. α2 is our softmax temperature.
α3 is the proportion of users which are selected uniformly at random. In our experiments
we used α1 = 0.75, α2 = 0.01, α3 = 0.1. We chose α2 to ensure that the softmax did
not produce pk = 0 from underflow errors, and α1, α3 were both chosen based on initial
experiments on Sticker Intent dataset. The underlying model trained with Federated Learn-
ing used a 64 dimensional character level embedding, a 32 dimensional BLSTM, and an
MLP with one 64 dimensional hidden layer. The number of users in each Federated round
was 200, and on each user 2 passes of SGD was performed with a batch size of 128. The
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Algorithm 7: Sampling algorithm
Input: Client Valuations {v1, ..., vK}, tuning parameters α1, ..., α3, number of

clients per round m
Output: Client indices {k1, ..., km}
Sort users by vk
For the α1K users with smallest vk, vk = −∞
for k from 1 to K do

pk ∝ eα2vk

end
Sample (1− α3)m users according to their pk, producing set S ′
Sample α3m from the remaining users uniformly at random, producing set S ′′
return S = S ′ ∪ S ′′

messages users % label 1 mean messages/user median messages/user
Train 124638 7527 0.021 16.6 3
Test 15568 3440 0.021 4.5 2

Table 4.1: Reddit dataset statistics

updated model parameter values are returned to the server and aggregated to produce the
next model parameters using Federated ADAM Leroy et al. (2019). The learning rates for
both local SGD and Federated ADAM were tuned separately for Random Sampling and
AFL and the optimal learning rates were used for each.

Figure 4.3 shows the AUC after each Epoch under uniform random selection of users,
and with AFL selection, showing mean and standard errors from 10 repetitions on test
data. AFL trains models of the same performance using 20-70% fewer Epochs (where one
Epoch is enough training rounds to train on each client once in expectation under random
sampling).
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Figure 4.3: Comparison of AUC increase on Reddit and Sticker Intent datasets
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4.6.1 Comparison with Resampling of minority class

One difference between AFL and server-side resampling techniques is that AFL selects
data points by user, whereas server-side resampling can select arbitrary subsets. To explore
the significance of this restriction we compared the gains from oversampling of label 1 data
(He and Garcia, 2008) and server-side learning against AFL using the value function vk =∑

1yi,k=1 and Federated training, using the Reddit dataset. The level of resampling and
learning rates were tuned for server training, as were the temperature α2 and the learning
rates for Federated training, and all other tuning parameters were kept the same. The
difference between Random Sampling and Active Sampling is much larger for server-side
learning with data point selection, compared to federated learning with user selection. Our
results suggest that being restricted to sampling pre-defined subsets of data, as opposed to
being able to select arbitrary sets of points, is a significant hindrance.

Random Sampling Active Sampling
Server selection of data points 0.559 0.615
Federated selection of clients 0.552 0.578

Table 4.2: Comparison of AFL and server side resampling

4.7 Conclusion and further directions

In this chapter we proposed Active Federated Learning (AFL), the first user cohort selec-
tion technique for FL which actively adapts to the state of the model and the data on each
client. This adaptation allows us to train models with 20-70% fewer iterations for the same
performance. Giving formal privacy guarantees is vital future work, but there are many
other interesting extensions as well. These experiments were done under simplifying con-
ditions which do not take into account many problems Federated Learning faces in practice,
and which AFL may be able to help alleviate. For example clients may have different rates
of availability for training. This availability may be correlated with the data on the client,
resulting in bias in our model if not corrected. AFL which also takes reliability into account
may be used to reduce this bias by increasing the rate at which we try to train on unreliable
users. Another challenge is that clients are constantly gathering (and potentially forgetting)
data, and in many cases the distribution may be non-stationary. Maintaining the benefits of
AFL may require a principled way of ensuring no user goes too long without having their
valuation refreshed. Finally our experiments and analyses focused on the classification set-
ting, but the loss value function can be used for any supervised problem, and understanding
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AFL with more complex models would be an interesting research direction.
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CHAPTER V

Concluding remarks

5.1 Future work

There are a few general directions of active learning research which are more than direct
extensions of the work in the above chapters of this thesis, but which these works suggest
may be particularly interesting in the future.

5.1.1 Codifying the difference between population driven active learn-
ing, and sample driven active learning

As alluded to at the beginning of this thesis, there are multiple strategies active learning
algorithms can take. Some of these mechanisms can be seen as population driven, attempt-
ing to replicate an optimal experimental design, the details of which depend on unknown
population structure of the distribution. Algorithm 2 is an example of this, attempting to
approximate (a specific example of) Algorithm 1, as are most margin based active learning
methods. Other mechanisms can be seen as sample driven, adapting to the details of the
existing samples. An example of this is Algorithm 5, and similar ideas come up in active
teaching (Zhu et al., 2018). This distinction is not excluding as some methods, such as
uncertainty sampling, implicitly do both. Such categorization can be useful for studying
properties of active learning methods. In particular for sample based methods it is un-
likely that the algorithm will produce the desired effect for all underlying distributions (see
Section 2.9.1), and closer study of the conditions under which the algorithm behaves as
intended would help practitioners select between available methods.

5.1.2 Generalizing methods for more diversity in information content

As active learning (and related ideas like AFL) are applied to increasingly complex real
world situations, using methods for selecting a single point from a relatively simple X ×Y
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may miss some valuable structure. In particular for some applications different points might
intuitively contain different amounts of information. In AFL we see this when different
clients have different numbers of samples, but similar structure appears in NLP (Siddhant
and Lipton, 2018) where different documents will contain different numbers of words, and
multi label classification (Reyes et al., 2017) where different samples will have different
numbers of labels. Universal methods which can capture this difference in information
content and effectively use it will be important for these applications.

5.1.3 Active learning under more complex constraints and structure

The majority of active learning work still assumes a classical statistical setup with data
(X, Y ) and unrestricted access to training data, with the exception of the labels which
must be queried. However this is increasingly not the case. As is the case for AFL, there
may be more complicated restrictions on what information you have access to about your
training data. While there has been some work on active learning under privacy concerns
Florina Balcan and Feldman (2013), this is likely to be an increasingly important consider-
ation in machine learning as a whole, and so much be addressed in active learning. There
may also be more complex structure in what part of the training data is being actively se-
lected. An interesting situation is one where it is not the label, but a subset of the covariates
which must be requested.

5.2 Conclusion

In this thesis we studied active learning in a variety of settings, and the types of results
achieved in the different settings illustrates the persistent gulf between theory and appli-
cation in active learning. Theoretical results were restricted to classical non-parametric
estimators, whereas work using more modern methods such as neural nets and federated
optimization contained no theoretical guarantees. This divide exists throughout the active
learning field, and bridging that divide, though extremely challenging, is an important task
as machine learning is applied to a wider range of domains.

Despite the the intuitive appeal of active learning, applying it in reality is a challenging
and sometimes risky endeavour. Seemingly reasonable (and even theoretically guaranteed)
methods can produce worse results than random sampling, so incorporating active learn-
ing into an existing modelling workflow often requires consideration and effort from the
practitioner. Although the results in the thesis largely make minimal assumptions, produc-
ing truly significant gains from active learning almost always requires the existence (and
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sometimes the prior knowledge of) special structure that can be exploited. Active learning
should not be treated as a ’go to’ or ’off the shelf’ technique for improving the efficiency
of any modelling pipeline, but instead as a situational technique to be used with care.
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