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Abstract 

 

Many diseases and injuries irreparably harm the brain or spinal cord and result in motor 

paralysis, widespread sensory deficits, and pain. Often, there are no treatments for these injuries, 

and therapies revolve around rehabilitation and adapting to the acquired deficits.  In this work, 

we investigate brain machine interfaces (BMIs) as a future therapy to restore sensorimotor 

function, use BMIs to understand sensorimotor circuits, and use novel imaging algorithms to 

assess structural damage of somatosensory inputs into the brain.  

Brain-controlled robotic arms have progressed rapidly from the first prototype devices in 

animals; however, these arms are often slow-moving compared to normal hand and arm function. 

In the first study, we attempt to restore higher-velocity movements during real-time control of 

virtual fingers using a novel feedforward neural network algorithm to decode the intended motor 

movement from the brain. In a non-human primate, the neural network decoder was compared 

with a linear decoder, the ReFIT Kalman filter (RFKF), that we believe represents the state-of-

the-art in real-time finger decoding. The neural network decoder outperformed RFKF by 

acquiring more targets at faster velocities. This neural network architecture may also provide a 

blueprint for additional advances. 

Somatosensory feedback from robotic arms is important to achieve realistic function. The 

use of somatosensory thalamus was investigated as a site of implantation for a sensory prosthesis 

in subjects undergoing awake deep brain stimulation surgery (DBS). In this study, electrical 

stimulation of the thalamus was performed using different stimulation patterns and the evoked 

sensations were compared. We found that the sensations evoked by bursting (a burst of pulses 



 

 xii 

followed by a rest period) and tonic (regularly repeating pulses) stimulation were often in 

different anatomic regions and often evoked differing sensory qualities. These techniques for 

controlling percept location and quality may be useful in not only in BMI applications but also in 

DBS therapies to better relieve symptoms and avoid unwanted side effects.  

Given the importance of sensory integration in motor functioning, the third study 

investigated the impact of a pharmacological perturbation on somatosensory content in primary 

motor cortex measured with Utah arrays implanted in two NHPs. Specifically, during continuous 

administration of nitrous oxide (N2O), somatosensory content was assessed by using the neural 

activity in primary motor cortex to classify finger brushings with a cotton-tip applicator. N2O 

degraded but did not eliminate somatosensory content in motor cortex. These findings provide 

insight into N2O mechanisms and may lead to further study of somatosensory afferents to motor 

cortex. 

A debilitating facial pain syndrome, called trigeminal neuralgia (TN), is thought to be 

caused by vascular compression of the sensory root that provides somatosensory feedback from 

the face. In this final study, magnetic resonance diffusion tensor imaging was used to assess the 

structural damage of this sensory root. In a retrospective manner, we developed and tested an 

algorithm that predicted the likelihood of pain relief after surgical treatment of TN. This 

algorithm could help select patients for surgery with the best chance for pain relief.  

Together, these studies advance BMI technologies that attempt to restore realistic 

function to those with irreparable damage to sensorimotor pathways. Furthermore, using BMIs 

and novel imaging, this work provides a better understanding of sensorimotor circuits and how 

sensory pathways can be damaged in disease states. 



 

 1 

Chapter 1.  Introduction 

 

Injuries and illnesses that disrupt sensorimotor function can devastate lifestyle and take 

away independence. Perhaps the most severe disorder of movement is complete paralysis. Severe 

sensory dysfunction can include widespread numbness and a variety of pain syndromes. Brain-

machine interfaces (BMIs) may be capable of restoring lost sensorimotor function in the future. 

The objective of this work is to explore techniques that may enable more realistic functioning of 

sensorimotor prostheses. Furthermore, we use BMI technology and novel imaging to investigate 

important sensorimotor circuits and how sensory pathways can be assessed with non-invasive 

imaging. 

 

1.1 Motor Paralysis 

In the United states alone roughly 1.7% of Americans are living with motor paralysis 

(Armour et al., 2016). Many of these patients also experience a co-occurring numbness from loss 

of sensory feedback to the brain. The most common etiologies for motor paralysis are stroke, 

spinal cord injury, amputation, and multiple sclerosis (Ma et al., 2014; Armour et al., 2016). The 

impact of motor paralysis is profound with more severe disability leading to larger decreases in 

quality of life (Tate et al., 2002). In particular, the loss of hand function was the most troubling 

deficit in a survey of quadriplegic patients with spinal cord injury (Anderson, 2004). 

Unfortunately, current treatments for motor paralysis are largely unsatisfying and focus on 

rehabilitation and adapting to the new deficits with a variety of adaptive techniques and assistive 

technologies.  
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Given the lack of treatment options for those with motor paralysis, many future therapies 

are being investigated and largely fall into two groups: cellular therapies and brain-machine 

interfaces (n.d.). Stem cell transplantation is a promising cellular therapy. However, there 

currently remain a paucity of phase III trials investigating stem cell transplantation (Jin et al., 

2019), and widespread clinical therapies could be far into the future.  

 

1.2 Cortical Interfaces to Restore Motor Movement 

A brain-machine interface (BMI) decodes the intended motor movement from the brain 

and uses the signal to control a prosthetic device (Hochberg et al., 2012; Collinger et al., 2013) 

or reanimate the paralyzed limb (Moritz et al., 2008). However, a neural control signal can be 

accessed at other locations in the nervous system besides the brain. For example, in patients with 

amputations, intact peripheral nerves can provide a control signal for a robotic arm (Vu et al., 

2020). However, in cases with proximal injuries to the nervous system, e.g. spinal cord injury or 

brainstem infarction, the cortex can be used as a control signal since the cortical ensembles are 

known to correlate with motor movements (Georgopoulos et al., 1984).  

Many recording electrodes exist with the potential to measure brain signals and include 

electroencephalogram (EEG) leads placed on the scalp, epidural electrodes placed on the dura, 

subdural electrodes placed on the brain, and intracortical electrodes that penetrate the surface of 

the brain (Szostak et al., 2017). Although electrodes that penetrate the surface of the brain are 

more invasive, they offer the most reliable interface for single unit recordings (Schwartz et al., 

2006). Single units are thought to be the neural feature most specific for individual neuronal 

activity. The intracortical array used in this work to record neural activity is the commonly used 

Utah microelectrode array (Nordhausen et al., 1996). 
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A very common site of implantation for intracortical arrays is the primary motor cortex as 

this area is known to be highly correlated with motor movements (Carmena et al., 2003). 

Unfortunately, implantation of these intracortical arrays requires a brain surgery. Patients with 

spinal cord injury were surveyed on whether they would undergo brain surgery and reported 

more willingness to accept the risk of brain surgery if the implanted BMI device restores 

function similar to their native arm (Blabe et al., 2015). However, there currently remains a clear 

performance gap between native arm function and brain-controlled robotic arms, which can be 

slow and imprecise (Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015).  

In BMI research labs, a prosthetic device can be controlled in one of two modes. In hand-

control mode, the device is controlled by the native hand (i.e. with the manipulandum); while in 

brain-control mode, brain signals are converted to updates for a virtual finger. The algorithm that 

converts the neural signals to a control signal for the robot arm is called a motor decoder. The 

performance of motor decoders has rapidly progressed over the last two decades, and there are a 

variety of decoders that will be discussed in the following sections. For reference, brain-control 

mode is commonly denoted as either real-time, closed-loop, or online. Offline analyses denote 

analyses that use data collected during hand-control mode and compare predicted and actual 

kinematic variables. 

 

1.1.1 Linear Regression Decoders 

The first generation of motor decoding algorithms were developed to control a computer 

cursor and converted neural firing rates to cursor position through simple matrix multiplication:  

 

𝑥̂𝑡 = 𝐴𝑦𝑡 

 

Equation 1-1 
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where 𝑥̂𝑡 the horizontal and vertical positions of the cursor, and yt is a column vector of the firing 

rates from each of the recorded channels. To calculate A, the subject controls the computer 

cursor with a joystick while neural firing rates and cursor position are recorded. The matrix A is 

then calculated to minimize the mean-squared error (MSE) between 𝑥̂𝑡 and the true cursor 

position. 

 The first three studies to use a linear relationship between spiking rate and cursor position 

were experiments in non-human primates (Serruya et al., 2002; Taylor et al., 2002; Carmena et 

al., 2003). The decoder used in Taylor et al. (2002) was based on a concept called “population 

vectors.” It is conceptually similar and provides similar performance to the linear relationship in 

Eq. 1-2 but uses normalized firing rates and a different matrix to convert firing rate to cursor 

position depending on whether the firing rate increases or decreases.  

 

1.1.2 Kalman Filter Decoders 

To decode smoother trajectories, the Kalman filter was investigated as a motor decoder. The 

Kalman filter, named after Rudolf E. Kalman, was developed in the 1950-60s (Swerling, 1959; 

Kalman, 1960; Kalman and Bucy, 1961). The objective of Kalman filter is to estimate the 

position/velocity of an object being tracked (i.e. computer cursor) from noisy measurements (i.e. 

neural firing rates). The equation that describes the Kalman filter is given below in Eq. 2:  

 

𝑥̂𝑡 = 𝐴 𝑥̂𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐶 𝑥̂𝑡−1) 

 

Equation 1-2 
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where 𝑥̂𝑡 is column vector of cursor position/velocity estimates, 𝑥̂𝑡−1 is column vector of cursor 

position/velocity estimates from the previous time step, yt is a column vector of neural firing 

rates, and A, Kt, and C are learned parameters based on training data. The Markovian assumption 

of the Kalman filter assumes that the current estimate of position/velocity is independent of all 

past information except position/velocity estimates of the previous time step (𝑥̂𝑡−1). Thus, Eq. 2 

states that the estimate of position/velocity is linear combination of the previous time step’s 

position/velocity (𝑥̂𝑡−1) and the neural firing rates yt. The values of A, K, and C are chosen to 

optimize this trade off as described by Wu et al. (Wu et al., 2004). 

 Applying the Kalman filter to motor decoders was first suggested by Wu et al. (Wu et al., 

2004), and a rigorous comparison of the Kalman filter and linear regression was described by 

Kim et al. (Kim et al., 2008). In this study, human participants with motor paralysis were 

implanted with intracortical arrays in primary motor cortex. After recovering from surgery, 

participants performed a center-out cursor task with a 500 ms hold time. The differences in 

performance between the linear filter and Kalman filter were not substantial in terms of 

acquisition time or percent of missed trials. However, the target trajectories were much smoother 

with the Kalman filter and several additional numerical metrics were introduced to quantify non-

smooth trajectories.  

 

1.1.3 ReFIT Kalman Filter 

To improve the Kalman filter further, new training methods were investigated. The Kalman 

filter was designed to optimally estimate position and velocity of targets when the true target 

position is not known. However, in a BMI application, the target position is known because the 

subject can directly visualize the cursor that is being moved. Thus, the Kalman filter can be 
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improved when the estimated velocity direction is not directed toward the target. In 2012, Gilja 

et al. introduced the recalibrated feedback intention–trained Kalman filter (RFKF) (Gilja et al., 

2012). The process for training this filter involves first calculating a classic Kalman filter. The 

NHP then controls the cursor using the classic Kalman filter. From this data, an error is assigned 

whenever the estimated velocity direction is not directed toward the target. The Kalman filter 

parameters are then adjusted to minimize this error in the same manner that the original Kalman 

filter was trained. The re-trained filter is the RFKF.  

 RFKF substantially improved cursor control when compared to the classic Kalman filter. 

The cursor task described in Gilja et al. required a 500 ms hold time to be considered successful 

(Gilja et al., 2012). The calculation of the acquisition time did not include the mandatory 500 ms 

hold time. The acquisition time was around 1.6s for the Kalman filter, 0.6s for RFKF, and 0.5s 

when controlling the cursor in hand-control mode. Furthermore, the path to target was more 

direct with the RFKF than the classic Kalman filter.    

The RFKF was extended by Kao et al. by adding a hidden Markov model (Kao et al., 

2016). From the neural signals, not only is the position/velocity of the cursor calculated but the 

probability that the cursor is in certain movement or stationary states. To move the cursor, the 

cursor must be in a movement state. In this work, the cursor was moved over a grid of N boxes 

representing choices (like a keyboard). The correct choice was selected by hovering over the box 

for 200 ms. Thus, each trial conveyed 𝑙𝑜𝑔2(𝑁 − 1) bits of information. By dividing the total bits 

of information by the acquisition time, a bit rate can be calculated. Through the addition of the 

Markov model, the bit rate increased by an average of 9% over the RFKF alone to around 5 bps.  

While many groups use motor decoders based on RFKF, other decoding options are also 

in use. In human trials, Collinger et al. use ridge regression with an intention-based re-training 
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step (Collinger et al., 2013). Shanechi et al. trained a Poisson process model with an 

instantaneous firing rate that maps to kinematic variables that is also parameterized with latent 

states corresponding to possible targets (Shanechi et al., 2013). However, these methods are not 

known to outperform RFKF. 

 

1.1.4 Neural Network Decoders 

With the revolutionary use of deep learning in other fields (Krizhevsky et al., 2012), 

many believed that neural networks could be the future of motor decoding. In 2012, Sussillo et 

al. introduced a recurrent neural network decoder (RNN) that outperformed the classic Kalman 

filter (Sussillo et al., 2012). The RNN improved the time required for a brain-controlled cursor to 

acquire a target from ~ 1.5s with the Kalman filter to around ~0.9s with the RNN. However, as 

mentioned above, this improvement fell short of RFKF (with acquisition times around ~0.6 ms 

for a similar task conducted by the same research group in a follow up paper (Gilja et al., 2012)). 

Algorithm complexity has since been extended by combining RNNs with hidden states and auto-

encoders (Pandarinath et al., 2018; Hosman et al., 2019), although these implementations have 

not been demonstrated online. Two neural networks have been demonstrated during online 

testing. Schwemmer et al. decode Utah array output using a neural network architecture with 

long short-term memory, convolutional, and fully connected layer to classify movement types 

(e.g. index extension/flexion), which is then used to animate the native arm via functional 

electrical stimulation (Schwemmer et al., 2018). George et al. decode a peripheral nerve interface 

with a convolutional neural network to control a prosthetic hand and found performance similar 

to that of a Kalman filter based approach (George et al., 2018).  
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1.1.5 Motor Decoders in Clinical Trials 

Many of the aforementioned motor decoders have found their way into human clinical trials 

(Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015). Hochberg and colleagues 

(2012) use a Kalman filter (Eq. 2) while Collinger and colleagues (2013) and Aflalo and 

colleagues use regularized variants of linear regression. Training the filter is accomplished by 

automatically moving the robot arm and instructing the subject to imagine he/she is controlling 

the movements. Just as the Kalman filter can be retrained to provide the RFKF, linear regression 

can also be retrained with an intention-based training step by controlling the robot arms in brain-

control mode and penalizing the algorithm when it causes the arm to move away from the target 

(Collinger et al., 2013).  

 

1.2 Sensory Prosthesis using Somatosensory Thalamus 

Realistic motor prostheses should not only allow for accurate motor movements but should 

also provide somatosensory feedback. A variety of loci exist for placement of sensory prosthetic 

devices including peripheral nerve sites and central sites such as the cortex, thalamus, and spinal 

cord (Lebedev and Nicolelis, 2017). Wilder Penfield conducted some of the first experiments in 

human subjects by electrically stimulating somatosensory cortex during awake brain-surgery 

cases (Penfield, 1960). The well-organized and well-understood somatotopy of the 

somatosensory cortex allows the location of evoked sensation, called percepts, by stimulation of 

a specific region of cortex. Experiments using intracortical microelectrode arrays implanted in 

somatosensory cortex demonstrate the feasibility of focal hand percepts with electrical 

stimulation (Flesher et al., 2016). Most percepts in this study were described as “possibly 

naturalistic.” There have also been non-tingling percepts reported in small intraoperative studies 
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using electrical stimulation through cortical grids, and the percepts are described with terms such 

as “wind running down the hand” (Johnson et al., 2013). Peripheral nerve interfaces have also 

been employed for somatosensory restoration (Tan et al., 2014; Wendelken et al., 2017). In one 

patient, patterned stimulation through a peripheral interface produce naturalistic percepts (Tan et 

al., 2014).  

Somatosensory percepts from electrical stimulation of somatosensory thalamus (ventral 

caudal nucleus Vc) have also been studied in detail during awake deep-brain stimulation 

surgeries (DBS) (Tasker et al., 1982; Lenz et al., 1988; Lenz et al., 1993; Davis et al., 1995; Lenz 

et al., 2000; Ohara et al., 2004; Chien et al., 2017). Stimulation of somatosensory thalamus was 

often required to localize the site of final lead implantation. Studies have revealed that modalities 

(i.e. pressure, touch, and vibration) can be clustered spatially (Ohara et al., 2004; Chien et al., 

2017). Another advantage for using somatosensory thalamus as a locus of stimulation is its 

compact structure, which allows access to all facial and body somatotopy in a small volume. 

Furthermore, DBS implantation procedures are routinely performed in a large number of surgical 

centers.  

Many of the initial studies reported that thalamic percepts were primarily described as 

“tingling” or “pins and needles” (Lenz et al., 1988; Dostrovsky et al., 1993; Davis et al., 1996). 

However, Ohara et al. reported that naturalistic percepts are more frequently encountered 

posterior (p < 0.05) or inferior (p = 0.07) to the core region when compared to unnatural percepts 

(Ohara et al., 2004). Additionally, out of 122 percepts described as mechanical or movement, 

percepts were more frequently naturalistic at sites with overlapping projected and receptive 

fields. Projected field refers to the location of the sensation evoked with electrical stimulation 

while receptive field refers to the location where tactile stimulation evokes or modulates a single-
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unit response at the recording electrode. More recently, by reducing stimulation amplitude to 

around the threshold of perception, Swan et al. found that a majority of percepts (55%) were 

perceived as “natural” to patients during intraoperative testing with a microwire bundle 

implanted in somatosensory thalamus (Swan et al., 2017). Furthermore, they found that 

stimulation patterns using increasing frequency ramps were “slightly more” naturalistic than 

constant frequency, tonic stimulation. Heming et al. similarly found naturalistic (possibly to 

totally) percepts in 23% of the microstimulation sites. However, 333 Hz tonic patterns were 

found to be more often naturalistic than a variety of unconventional patterns that included 

thalamic spike trains recorded from previous patients (Heming et al., 2010). 

As described above, percept quality is likely affected by both stimulation site and stimulation 

patterns; however, stimulation site, pattern, and waveform are coupled in their effect on 

somatosensory quality. As described in detail by Plonsey and Barr (Plonsey and Barr, 2007), the 

activating function approximates the likelihood of initiating a neuronal action potential at a given 

distance from the electrode for a given stimulation waveform. The activating function describes 

an infinite neural axon along the z-axis and an idealized point source on the x-axis and is given in 

Eq. 1.3.  

𝐴(𝑧) =  
𝜕2𝜙𝑒

𝜕𝑧2⁄  

Equation 1-3 

 

According to this expression for the activating function, the segment of the axon closest to the 

electrode is most likely to initiate an action potential with a cathodic stimulation (negative 

polarity, monophasic waveforms), and computational models support this conclusion (McIntyre 

and Grill, 1999). However, anodic stimulation (positive polarity, monophasic waveforms) has 

been shown in computational models to be more selective in activating local cells than cathodic 
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stimulation (McIntyre and Grill, 1999; Miocinovic and Grill, 2004). Furthermore, high-

frequency patterns more efficiently activate axons of passage while low-frequency stimulation 

better activates local cells when the soma is closer to the electrode than the axon (McIntyre and 

Grill, 2002; Yi and Grill, 2018). Thus, a coupling exists between the location of activated neural 

elements, stimulation waveform, and stimulation pattern and must be considered when trying to 

achieve naturalistic somatosensory percepts. 

 

1.3 Somatosensory Outflow from Somatosensory Cortex 

Somatosensory pathways do not terminate in somatosensory cortex but project to many other 

cortical areas (e.g. secondary somatosensory cortex, area 5 of parietal cortex, supplementary 

motor area, motor cortex) and subcortical areas that include somatosensory thalamus (Jones and 

Peters, 2012). Previous animal studies suggest that somatosensory afferents to M1 are largely 

mediated via corticocortical connections from S1 (Andersson, 1995; Farkas et al., 1999; Mao et 

al., 2011). Furthermore, connections from somatosensory cortex to primary motor cortex are 

hypothesized to be important in sensorimotor integration and blocking these pathways can lead 

to a variety of sensorimotor deficits and difficulties learning new motor tasks (Hoffer et al., 

2005; Petrof et al., 2015). In a gripping and lifting task, Brochier et al. showed that injecting a 

GABAA agonist into somatosensory cortex of a NHP led to an abnormal increase in gripping 

strength followed by abnormal application of gripping and lifting forces (Brochier et al., 1999). 

Pavlides et al. demonstrated that a lesion in the somatosensory cortex of a NHP lead to difficulty 

learning novel motor tasks involved with catching food pellets, although some previously 

learned motor tasks, such as picking up food pellets, were preserved (Pavlides et al., 1993). 
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The connections from somatosensory to motor cortex present an opportunity to evaluate 

whether outflow from somatosensory cortex can be modulated, in our case, with the 

pharmacologic agent, nitrous oxide (N2O). N2O is in a class of medications, like ketamine, that is 

thought to antagonize glutamatergic NMDA receptors (Jevtovic-Todorovic et al., 1998) and 

known to have anti-depressant (Tadler and Mickey, 2018), psychedelic (Icaza and Mashour, 

2013), and analgesic effects (Parkhouse et al., 1960) at subanesthetic concentrations.  While 

ketamine was found to disrupt somatosensory content in M1 at anesthetic doses, the effect of 

N2O is unknown. Understanding how S1 to M1 transfer can be affected under pharmacologic 

perturbations may one day help us introduce somatosensory feedback into BMIs to allow 

sensorimotor integration and better prosthetic function.  

 

1.4 Assessment of Somatosensory Roots with Non-Invasive Imaging 

Somatosensory pathways originate from outside the central nervous system (CNS), and these 

pathways carry information from the environment to the brain for processing. However, if the 

neural pathways into the brain are damaged, excruciating pain syndromes can result. An 

extremely debilitating facial pain syndrome, called trigeminal neuralgia (TN), is thought to be 

caused by vascular compression of the trigeminal root (Burchiel, 2003). The vascular 

compression is thought to cause demyelination in the trigeminal root that has been observed in 

histopathological studies (Love and Coakham, 2001). Fortunately, certain subtypes of this 

disease, e.g. Burchiel type 1, are well-controlled with surgical treatment, typically microvascular 

decompression (MVD). Pain-free outcome reaches 76% of patients with type 1 TN at a mean 

follow-up of 1.7 years (Holste et al., 2020). However, other subtypes of TN such as those with a 

constant pain component, are known to be less responsive to surgical intervention (Tyler-Kabara 
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et al., 2002), and surgical intervention is inherently risky (Hanakita and Kondo, 1988). To help 

identify patients most likely to respond to surgical intervention, clinical scoring algorithms have 

been proposed (Hardaway et al., 2019).  

Recently, abnormalities in magnetic resonance diffusion tensor imaging (MR-DTI) of the 

trigeminal root and root entry zone have been found in TN patients (Herweh et al., 2007; Leal et 

al., 2011). MR-DTI measures the magnitude and direction of water diffusion in human tissue and 

has been used as a non-invasive method to assess microstructural changes in human diseases 

(Horsfield and Jones, 2002). For MR-DTI in TN, several studies have suggested that this 

imaging modality may help predict the response of patients to treatment (Hung et al., 2017; 

Willsey et al., 2019). In particular, radial diffusivity (RD) represents the diffusion of water 

perpendicular to the direction of maximal diffusion while axial diffusivity is in the direction of 

maximal diffusion (Alexander et al., 2007). Increases in RD - with constant axial diffusivity – is 

often related to demyelination (Song et al., 2002). Given the known role of demyelination in the 

pathophysiology of trigeminal neuralgia (Love and Coakham, 2001), we investigate whether RD 

helps assess the trigeminal root in patients with TN.  

 

1.5 Thesis Summary 

The objective of this thesis is to leverage novel engineering technologies to better understand 

and treat disorders of sensorimotor pathways. Specifically we use neural interfaces (cortical and 

thalamic) to (1) improve decoding of motor movements for those with motor paralysis, (2) 

characterize the role of patterned thalamic stimulation when generating somatosensory percepts, 

(3) evaluate intact somatosensory to motor cortex pathways using a cortical interface during a 
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pharmacologic perturbation, and (4) assess structural changes in a sensory root with MR-DTI to 

better predict the response of patients to surgical intervention.  

In Chapter 2, an online feedforward neural network decoder is used to control finger 

prostheses in real-time and demonstrates substantially improved performance over ReFIT 

Kalman filter techniques. The decoders enable higher velocity, and thus, more naturalistic motor 

movements compared to the ReFIT Kalman filter. This work provides a blueprint to leverage 

artificial networks for the purpose of decoding biological neural networks to help restore 

naturalistic motor movements in paralyzed patients.   

Chapter 3 explores the use of tonic and bursting stimulation patterns of electrical stimulation 

in human somatosensory thalamus (ventral caudal nucleus; Vc), which is highly amenable to 

intraoperative study during awake deep brain stimulation surgeries. The percept locations for 

bursting and tonic patterns are compared during electrical stimulation and provide insight into 

how stimulation pattern may select for distinct anatomic pathways. This work can help unravel 

the coupled effect of stimulation waveform/pattern and stimulation site when generating specific 

sensory modalities. 

Using an intracortical interface implanted in primary motor cortex, we evaluate the effect of 

70% inhaled N2O on the somatosensory to motor cortex afferents in Chapter 4. This cortico-

cortical connection is hypothesized to be especially important in sensorimotor integration and in 

learning novel motor tasks. The impact of nitrous oxide on this connection may (1) provide 

mechanistic insights into the psychedelic, anti-depressive, and analgesic properties of N2O at 

subanesthetic doses and (2) help develop a methodology to evaluate the strength of this 

important cortico-cortical connection for future sensorimotor brain-machine interfaces. 
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Finally, in Chapter 5, we evaluate a non-invasive algorithm to assess the integrity of the 

sensory root that carries facial sensation in patients with trigeminal neuralgia. Specifically, MR-

DTI is used – along with symptom duration – to predict the pain response to surgical intervention 

(microvascular decompression). The algorithm developed combining MR-DTI and symptom 

duration may help select surgical patients with the greatest chance of a pain free outcome.  

Chapter 6 discusses the relevance of the thesis work to various sensorimotor pathologies and 

how the work can be further extended. 
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Chapter 2.  Artificial Neural Networks Decoding Motor Cortex Neurons Improve High-

Velocity Motor Movements in Brain Machine Interfaces 

 

A version of this manuscript is in preparation for submission using a brief communication 

format 

 

2.1 Abstract 

Brain-controlled prosthetic fingers often move slower than actual fingers. To achieve higher 

velocities, we show that a feedforward neural network (NN) can use neural activity from an 

intracortical array in a non-human primate to control virtual fingers in real-time. The NN 

outperforms a state-of-the-art decoder (ReFIT Kalman filter) by quickly acquiring targets at 

higher velocities while stopping precisely on targets. This architecture provides a blueprint for 

future high-velocity motor decoders to restore realistic movements.  

 

2.2 Main 

Brain prostheses offer hope to the very high numbers of Americans (~ 1.7%) with 

sensorimotor impairments (Armour et al., 2016). To this end, cortical brain-machine interfaces 

have been demonstrated in patients successfully using robot arms to bring a drink to the mouth 

(Hochberg et al., 2012) or to stack cups (Collinger et al., 2013). Motor decoding algorithms are 

required to convert brain signals into position and velocity updates for the prosthetic device. 

Motor decoding at many centers is based on a technique called ReFIT kalman filter estimation 

(Gilja et al., 2012; Kao et al., 2016), although other methods with similar performance have been 
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previously reported (Hochberg et al., 2012; Shanechi et al., 2013). Early neural network 

decoders, prior to recent advancements in hardware, toolboxes, and training methods, were not 

found to improve performance over standard linear methods (Wessberg et al., 2000; Carmena et 

al., 2003). Many advanced techniques employing recurrent neural networks and variational 

inference techniques show great promise for predicting prosthetic kinematics from brain signals 

(in offline testing); however, these techniques have not been used in real-time to control 

prosthetic devices (in online testing), likely because of the computational complexity 

(Pandarinath et al., 2018; Hosman et al., 2019). Online testing of a recurrent neural network 

(Sussillo et al., 2012) was demonstrated to control a computer cursor in a non-human primate 

implanted with motor cortex arrays but has not outperformed RFKF. George et al. demonstrated 

control of hand and finger movements in human amputees with peripheral nerve interfaces using 

a convolutional neural network but did not outperform a Kalman filter (George et al., 2018). In 

this work, we demonstrate, for the first time, online neural network decoding using a 

feedforward network to control finger prostheses in real-time that substantially outperforms 

ReFIT Kalman filter techniques. This work therefore may provide a starting point to leverage 

artificial networks for the purpose of decoding biological neural networks to help restore 

naturalistic motor movements in paralyzed patients.  

One male rhesus macaque was be implanted with Utah arrays (Blackrock Microsystems, 

Salt Lake City, Utah) in the hand area of primary motor cortex (M1) as shown in Fig. 1a. The 

macaque was trained to sit in a chair and perform a finger task. Using a hand manipulandum that 

maps the finger positions to virtual positions, the animal was trained to place one or more virtual 

fingers on randomly appearing circular targets. During this hand-control mode, the spike-band 

power was recorded. Spike-band power is the time-averaged power in the 300-1000 Hz 
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frequency band and provides a high SNR correlate of the dominant single unit spiking rate on 

any particular channel (Nason et al., in press). After completion of this task, a decoder was 

trained to map spike-band power to velocity estimates for the index (D2) and middle-ring-small 

finger group (D3-5) as shown in Fig. 1B. A detailed description for decoding one finger is 

described by Vaskov et al. (Vaskov et al., 2018), and the first known description of simultaneous 

control of two-degrees of freedom is described by Nason et al. (Nason et al., 2019). In this work, 

we compare performance using our novel neural network decoder using learned time features 

(NN; Fig. 1C) versus the ReFIT Kalman filter (RFKF) developed by Nason et al. (Nason et al., 

2019), which we believe is representative of the current state-of-the-art in motor decoding of 

two-dimensional fingers.  

 

Figure 2-1. Neural Network Velocity Decoder.  

(A) Image of Utah array implants. Two split Utah arrays were implanted in primary motor cortex 

immediately anterior to the central sulcus and denoted with asterisks (*). The array in primary 

somatosensory cortex was not used in this analysis. (B) Experimental Setup. The NHP is 

controlling the virtual finger with the hand manipulandum in hand-control mode or using SBP to 

control the virtual finger in brain control mode. (C) NN architecture. The network consists of 
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five layers. The input to the network is YIN that is a 62 x 3 data matrix that corresponds to 62 

input electrodes and the 3 previous 50-ms time bins. The time feature layer converts the last 

three 50-ms time bins for all the electrodes into 16 learned time features for each electrode. The 

equation representing the operation is given above the graphical description of the layer. The 

arrow indicates that each element passes through a ReLU function and is then flattened to a 

1536x1 array. The remaining four layers are fully-connected layers with an associated weight 

matrix, denoted by W. The first three layers consist of 256 hidden neurons and process the 

hidden neuron output first with 50% dropout, then batch normalization, and finally with a ReLU 

function. The final layer, FC-Layer 4 has two neurons – that are normalized – and then represent 

final velocity estimates of the two fingers a, 𝒗̂𝟏 and 𝒗̂𝟐. SBP = spike-band power. Panel B from 

(Vaskov et al., 2018) and licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/) / “spikes” replaced with SBP. 

 

The neural network architecture was designed to reduce computational complexity to 

allow same day training and online motor decoding. As most online decoders incorporate time 

history (Hochberg et al., 2012; Collinger et al., 2013), the NN was designed so that an initial 

layer constructed 16 time features per electrode from the preceding 150 ms of spike-band power 

(time feature layer in Fig. 1C). These time features were then input to into 4 fully-connected 

layers (FC Layers 1-4), and the output was a normalized velocity value for each finger. The 

network parameters were chosen to optimize performance on offline data sets. The predicted 

velocity from the neural network was normalized to unit variance which was empirically found 

to decrease the training time. Consequently, the normalized velocity values were scaled with a 

gain calculated during training so that the average peaks of the estimated and actual velocity 

were equal (see Materials and Methods for details). 

In real-time (online) testing over two consecutive days and 1326 total trials, the NN 

significantly outperformed the RFKF with 1.66 ± 0.03 bits per second (bps) for the NN and 1.30 

± 0.02 bps for RFKF (p < 10-5). The bit rate calculation excluded target hold time, but the mean 

bit rate calculation included unsuccessful trials (trial bit rate = 0). Unsuccessful trials were 

sporadic for both decoders and reflective of decreased effort (4 for RFKF, 6 for the NN). 

https://creativecommons.org/licenses/by/4.0/
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Representative raw finger tracings are depicted in Fig. 2A for the RFKF and in Fig. 2B for the 

NN. The tracings illustrate the higher target acquisition rate for the NN (31 targets in 50 sec) 

than the RFKF (20 targets in 50 sec). The NN outperformed RFKF on days where the NN was 

used first (p < 10-5) and on days when the RFKF was used first (p < 10-5) as illustrated in Fig. 

2C. To better understand why the NN outperforms the RFKF decoder, the relative distance to the 

target for the average trial was compared for each decoder (in Fig. 2D). As seen in the figure, 

virtual fingers controlled by the NN close in to the target (dashed gray line) more quickly and 

sooner than the virtual fingers controlled by RFKF. Excluding mandated target hold time, the 

mean acquisition time for the NN was 1250 ms and for RFKF was 1530 ms (p < 10-5). The NN-

controlled virtual finger was more responsive and generally achieved higher velocities than the 

RFKF-controlled finger (Fig. 2E). The time to peak of the averaged velocity was 350 ms for the 

NN and 550 ms for RFKF. The peak of the averaged velocity was 0.89 ± 0.03 u/sec for the NN 

and was 1.6 times greater than 0.56 ± 0.02 u/sec for RFKF (p < 10-5) where u denotes arbitrary 

units such that 1 was full extension and 0 was full flexion.  

To characterize the remaining difference between NN control and actual finger 

movements, the neural network decoder was then compared with the hand-controlled virtual 

finger in one day of testing with 453 trials in an A-B-A-B sequence of tests beginning with the 

NN. Controlling virtual finger movements with the native finger outperformed the NN decoder 

with a bit rate of 2.24 ± 0.11 bps for hand control and 1.91 ± 0.06 bps for NN control (p = 

0.0007). Better performance with hand control was expected since the virtual fingers track the 

position of the actual finger movements. Fig. 2G illustrates that the hand-controlled fingers more 

quickly acquired the target with an acquisition time of 863 ± 35 ms compared to 1049 ± 36 ms 

for the NN (p < 10-5). However, the time to peak of the average velocity was within one 50-ms 
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bin with the hand control occurring at 350 ms and the peak for the NN at 300 ms. The peak 

velocity was 2.95 ± 0.23 u/s for hand control and was 2.3 times greater than 1.27 ± 0.07 u/s for 

the NN decoder (p < 10-5).  

 

Figure 2-2. NN Decoder Outperforms RFKF during Real-time Tests 
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(A-B) Decoded Finger Tracings. Raw decoded position using the RFKF (red) and NN (blue) for 

the index finger (top pane) and middle-ring-pinky (MRP) fingers, which are locked together 

(bottom pane). The targets are represented as the shaded box. The x-axis denotes the elapsed 

time, 50 sec, and the y-axis denotes the proportion of finger extension, i.e. 1 is fully extended 

and 0 is fully flexed. These time windows are representative of the average decoding 

performance as measured by bit rate. (C) Bit Rate Population Data. For each run, the bit rate is 

indicated with a dot (blue = NN, red = RFKF). The black bars represent the mean and S.E.M. (D) 

Virtual Finger Distance to Target. The mean distance versus elapsed trial time (blue = NN; red = 

RFKF). The y-axis units, u, are the proportion of total range of motion with 1 being full 

extension and 0 being full flexion. The shaded color is the S.E.M. (E) Virtual Finger Velocity. 

Mean velocity versus elapsed trial time for the RFKF (red) and NN (blue). (F) Bit Rate 

population data for the NN (blue) and hand control (magenta). (G) Distance to target for NN 

(blue) and hand control (magenta). (H) Virtual finger velocity for NN (blue) and hand control 

(magenta). RF = ReFIT Kalman filter/RFKF; NN = neural network. 

 

The impact on performance of the individual network components was assessed through 

an offline analysis based on three consecutive days of recorded spike-band power during hand-

controlled finger task. Illustrative examples of predicted versus actual 2 DOF finger position 

(D3-5) are given for NN of increasing complexity: 2 layers, 2 layers with time history, 4 layers, 

and 4 layers with time history (Fig. 3A). For comparison, these networks were compared with 

Kalman Filter and ridge regression decoders. Six correlation values between estimated velocity 

and true velocity (3 days x 2 fingers) were calculated. The mean (± S.E.M.) correlation was 0.44 

± 0.02 for a 2-layer network, 0.64 ± 0.01 for a 2-layer network with time history, 0.61 ± 0.01 for 

a 4-layer network, and 0.67 ±0.01 for a learned-time-feature layer feeding 4-layer fully-

connected layers (as in Fig. 3B). Thus, transitioning from a 2-layer NN to either a 2-layer NN 

with time history or a 4-layer NN without time history resulted in a substantial increase in 

performance. Combining both time history and a 4-layer NN (i.e. the NN used in online 

demonstrations) provided the best offline performance.  Exploration of the parameter space in 

the offline analysis did not suggest obvious performance improvement with additional layers or 

time features. For comparison, the correlation of ridge regression (without time history) was 0.52 

± 0.02 and the Kalman filter was 0.59 ± 0.01 (Fig. 3C). Using one-way ANOVA analysis, the 4-
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layer NN with time history was significantly greater than ridge regression (p < 10-5), KF (p = 

0.007), and 2-layer NN (p < 10-5). The difference between the correlation for the 4-layer NN 

with time history was not statistically different from either the 2-layer NN with time history (p = 

0.67) or the 4-layer NN (p = 0.10). 

An ideal motor decoder accurately predicts low or zero velocity of a slow moving or 

stationary finger as well as high speeds for a fast-moving finger. Given that online tests show 

that the peak velocity of the RFKF was less than that of the NN decoder, we characterized the 

relationship between actual and predicted normalized velocities at both high (> 1.33) and low (< 

1.33) values using a linear regression analysis – where the velocity values are normalized by the 

standard deviation of the true velocities. First, when considering low velocities, it is extremely 

important for a motor decoder to accurately predict velocities near zero when the actual finger is 

stopping. To quantify this accuracy, the correlation coefficient between the predicted and actual 

velocity is typically used. At low velocities (< 1.33), the NN decoder is more correlated with 

actual finger velocities than the RFKF decoder with a correlation coefficient of 0.51 ± 0.01 vs. 

0.46 ± 0.01 (p = 0.001).  

At high velocities, however, the NN was also superior to the RFKF. Accurately achieving 

high velocities can allow more rapid movements and decrease the time to target, although a high-

velocity is not necessary to complete the task. For the Kalman filter at high velocities, there was 

actually not a statistically significant correlation between predicted and actual velocities (p = 

0.12, R = 0.24 ± 0.04, slope = 0.40 ± 0.04). However, the predicted high velocities were linearly 

correlated to the actual velocities for the NN decoder (p = 0.01, R = 0.33 ± 0.03, slope = 0.55 ± 

0.03). Furthermore, the slope achieved for the NN decoder was significantly greater than that of 

the Kalman filter (p = 0.001), suggesting that the NN decoder was able to match the velocity at 
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high values. Thus, in the offline analysis, the NN able to better match the high velocities of the 

actual finger without being less predictive at low velocities, which is important for stopping. 

These findings are graphically summarized in Fig. 3D, where the relationship between predicted 

velocity and actual velocity is depicted and scaled to constrain its predicted velocity to be less 

than 0.5 when the true velocity is near zero. With equivalent stopping power and matching the 

findings in online tests, the NN achieved 1.6 times greater velocities at 2.11 ± 0.04 than the 1.31 

± 0.02 of the Kalman filter (p < 10-5) when the actual velocity was 4.0. 
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Figure 2-3. NN Better Models High Velocities 

(A) Comparisons of actual velocity (grey) and decoded velocity for linear decoders (red) and NN 

decoders (blue). No units are used for velocity since velocity was normalized by the standard 

deviation of actual velocities during the entire run. (C) Mean (and S.E.M.) offline correlation 

between actual and predicted velocity for 2 fingers over 3 consecutive days. The asterisk (*) 

denotes statistical significance between the KF and 4L w/ Time. (D) True and predicted 

normalized velocity are illustrated for the Kalman Filter (red/left) and NN (blue/right). Ridge 

Reg = RR = Ridge Regression; KF = Kalman Filter; NN = neural network; 2L = 2-layer neural 

network; 2L w/ Time = 2-layer neural network with a preceding time feature layer; 4L = 4-layer 

neural network; 4L w/ Time = 4-layer neural network with a preceding time feature layer 
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2.3 Materials and Methods 

2.3.1 Implantation Procedure 

The protocols herein were approved by the Institutional Animal Care and Use Committee 

at the University of Michigan. One male rhesus macaque was implanted with Utah arrays 

(Blackrock Microsystems, Salt Lake City, Utah) in the primary motor cortex (M1). Under 

general anesthesia and sterile conditions, a craniotomy was made and M1 was exposed using 

standard neurosurgical techniques. The arcuate sulcus of M1 was visually identified, and the 

array was placed where this sulcus touches motor cortex, which is a known landmark of hand 

area. The incision was closed, and routine post-anesthesia care was administered. 

 

2.3.2 Experimental Setup and Finger Task 

The macaque was trained to sit in a monkey chair (Crist Instrument, 

http://www.cristinstrument.com), with his head secured in customized titanium posts (Crist 

Instrument), while the Utah array was connected to the Cerebus neural signal processor (NSP, 

Blackrock Microsystems). The arms were secured in acrylic restraints. The hand contralateral to 

the motor cortex implant was placed in a manipulandum, described by Vaskov et al. (2018), that 

translates finger position to a number between one (full extension) and zero (full flexion). A 

computer monitor was in plain sight for the NHP with an enlarged virtual hand. The virtual 

finger could be controlled in either hand-control mode (i.e. with the manipulandum) or in brain-

control mode (i.e. brain signals converted to updates for virtual finger). Brain-control mode is 

commonly denoted as either real-time, closed-loop, or online. The two-dimensional finger task is 

identical to the task developed by Nason et al. except performed on random instead of center-out 
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targets (Nason et al., 2019). The finger task required placing either the virtual index and/or ring 

finger on the target for 750 ms during training mode and 500 ms during testing mode (testing vs 

training modes will be explained in a subsequent section). The target size was 15% of the active 

range of motion. With target acquisition, apple juice was automatically administered through a 

tube placed in the animal’s mouth.  

 

2.3.3 Front-end Processing 

The Utah array was connected to the Cerebus neural signal processor (Blackrock 

Microsystems, Salt Lake City, UT) through a cable. Although there were 96 channels available, 

only channels where the morphology of threshold crossing was consistent with bipolar spikes in 

the time domain were included, leaving 62 channels. The Cerebus system communicated data 

sampled at 30 kHz to the xPC Target environment (Mathworks, Natick, MA) where front-end 

signal processing was performed. The output data was bandpass filtered in the 250-1000 Hz 

band. The root-mean-square power was calculated and binned at regular 50 ms time intervals. 

This binned RMS value is referred to as spike-band power. We have previously shown that this 

band is highly correlated with and specific to the spiking rate of single units near the recording 

electrode (Nason et al., in press). 

 

2.3.4 Software Architecture 

A separate computer with 2070 super NVIDIA GPUs (NVIDIA, Santa Clara, CA) was 

connected to the xPC. This computing box was called the eXternal Graphic processing unit PC 

(xGPC). The xGPC executed commands in Python (v3.7, https://www.python.org/) using the 

PyTorch library (v1.4; https://pytorch.org/). Near realtime performance was guaranteed in the 

https://www.python.org/
https://pytorch.org/
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following fashion. The xPC transmitted data to the xGPC with a timestamp, the xGPC calculated 

updates for the virtual fingers from the inputs and transmitted the data back to the xPC along 

with the original timestamp. When the xPC received the data packet, the packet was logged with 

a new timestamp. Real-time performance was guaranteed given that the time stamp received 

from xGPC (the original timestamp sent by xPC) was within 50 ms of the current xPC timestamp 

and updates to the virtual fingers occurred every 50 ms. 

 

2.3.5 ReFIT Kalman Filter 

The ReFIT kalman filter was implemented for use with fingers as described by Vaskov et 

al. and Nason et al. (Vaskov et al., 2018; Nason et al., 2019). In summary, it is a two-step 

process that involves first training a Kalman filter using spike-band power measurements from 

any 96 channels of the Utah array to predict updates to position and velocity states of the virtual 

fingers. A detailed description on the Kalman filter implementation is described by Vaskov et al. 

(Vaskov et al., 2018). Optimal lag is commonly implemented in Kalman filter motor decoders 

(Wu et al., 2004) to account for the physiologic lag between cortical activity and motor 

movement (Moran and Schwartz, 1999). Thus an optimal time lag, calculated to be one 50-ms 

bin, was applied when training and implementing the Kalman filter as detailed in previous 

work(Irwin et al., 2017; Vaskov et al., 2018). The trained Kalman filter was then used to perform 

closed-loop motor decoding. To train the RFKF, the velocities predicted in the preceding real-

time decoding session were modified by multiplying velocities by -1 when the velocity was 

oriented in the opposite direction as the target. The Kalman filter was then retrained using these 

new velocity values as described by Vaskov and colleagues to obtain the ReFIT Kalman filter 
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(Vaskov et al., 2018). As also detailed in (Vaskov et al., 2018), Kalman gain was implemented 

with no position uncertainty. 

When implementing the Kalman filter for offline analyses, the classic Kalman filter as 

described by Wu et al. was used (Wu et al., 2004). The Kalman filter used in online decoding 

described by Vaskov et al. and Irwin et al. imposed physical constraints on the relationship 

between position and velocity thought to be helpful in real-time decoding (Irwin et al., 2017; 

Vaskov et al., 2018). These constraints are not imposed on the offline Kalman filter as it may 

lower the correlation in offline analyses. 

 

2.3.6 Neural Network Velocity Decoder 

The neural network velocity decoder was designed from preliminary offline experiments 

that explored various network architectures. The final network is given in Fig. 1C. The first layer 

was the time feature layer that constructs time features from 150 ms (three 50-ms bins) from the 

62 input electrodes. This layer was implemented in Pytorch, using the torch.nn.Conv1d module, 

i.e. as a one-dimensional convolution with a kernel size of 1 (H=W=1) and 3 input channels 

(neural network channels, not electrode channels). Each channel corresponded to one 50-ms time 

bin. Although possible to construct a spatial convolution across electrodes, this was not 

performed because the spacing between electrodes was distant relative to the size of the neurons 

being recorded. The output of the time feature layer provided 16 features per electrode and, when 

flattened, provided 1536 inputs to a series of fully connected layers. Regularization for fully-

connected layers 1-3 included 50% dropout and batch normalization. Fully-connected layer 1 

converted the 1536 inputs to 256, and the remaining layers had 256 hidden neurons. The 

sequence of the modules used was torch.nn.linear, torch.nn.Dropout, torch.nn.BatchNorm1d, 
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and then finally torch.nn.functional.relu. The final layer implemented a matrix multiplication 

with torch.nn.linear to convert the 256 inputs to the two velocity estimates. The output of the 

network was normalized to zero mean and unit variance and roughly twenty times the magnitude 

of actual velocity peaks. This normalization was discovered to converge more quickly when 

training the NN then training without the normalization. The output of the neural network was 

scaled by an unlearned gain factor that equaled the average magnitude peaks of the actual 

velocity divided by the average magnitude peaks of the predicted velocity. No offset was applied 

to the final predicted velocity leaving it a zero-mean signal. A diagram of the final neural 

network is given in Fig. 1C. 

Prior to training the neural network, a training data set was collected in hand-control 

mode for roughly 400 trials with randomly appearing targets. A subsequent 100 trials were also 

performed and served as a validation set to ensure the network had converged. This validation set 

was also used to calculate the gain as described above. If there was a non-zero median, this was 

subtracted as well to approximate a zero-mean signal. The SBP and velocity data was assembled 

into data structures in Matlab (Mathworks, Natick). No optimal lag was included as the 

appropriate time history weighting was learned during the training process. The data was 

randomized in two ways. First, the time data was randomized into batches of 64 time points (and 

their 2 associated time delays). Second, a triangular distribution of velocities was imposed on the 

training data spanning the range of -4σ to 4σ where σ was the standard deviation of the actual 

velocity. A total of 20,000 training samples were randomly chosen to achieve this velocity 

distribution. In preliminary experiments, this velocity redistribution was observed to improve 

performance on the finger task when the neural network was trained on a center-out finger task. 

This redistribution of velocities was also used when training on random finger targets so that the 
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decoder could easily be generalized to other training paradigms in the future. There was no 

difference in online neural network decoding between redistributed and non-redistributed 

velocity when the network was trained on random fingers.  

In addition to the neural network used for online testing, several other neural networks 

were used to understand how individual components of the neural network affected offline 

performance. The networks included a network of only two layers and no regularization (no 

batch normalization, dropout, or output normalization). The other networks included 

regularization and parameters in a similar manner as Fig. 1C. These included a 2-layer fully 

connected network (256 hidden neurons) with a preceding time feature layer (3 input channels 

for each electrode and 16 output channels) and 4-layer fully-connected network (256 neurons) 

with a time feature layer. The offline networks were compared with the classic Kalman filter 

(without the retraining intention step) and ridge linear regression with a regularization constant 

of λ = 10-3. 

When training the network for online decoding, the neural network was optimized over 

3500 iterations using the Adam optimization algorithm (Kingma and Ba, 2014) with a learning 

rate of 10-4, weight decay of 10-2, and momentum of 0.9. When generating weights for offline 

analysis, a learning weight of 2x10-5. Kaiming initialization was used to initialize the weights of 

each layer (He et al., 2015), and the bias terms were initialized to zero. The dropout level used 

was 50% (Srivastava et al., 2014).  On each day, a training set (~400 trials) and testing set (~100 

trials) were collected, and performance on a testing set was characterized by the correlation of 

predicted and actual velocity. The number of iterations were determined for each network from 

the first of three offline testing days and chosen so that the correlation between actual and 
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estimated velocity (on the testing set) did not significantly change with additional training 

iterations (changes in correlation with additional iterations on the order of ~0.01).  

When searching for the preferred number of layers, hidden neurons, and output time 

features (Fig. 4A-B), performance was characterized by the average of the maximum of 5 

correlations with the testing set over all training iterations. This reduces the variability of the 

correlation for each combination of layers, hidden neurons, and output time features.  

 

 

Figure 2-4. Preferred Training Parameters 

(A) Heat map illustrating the offline correlation between the number of fully-connect layers 

versus the number of hidden neurons. The correlation values were calculated as the average of 

the five-best correlation during the training of the network. The networks used during online 

testing had 4 layers and 256 neurons. (B) The correlation during offline training as a function of 

the number of learned time features in the output from the time-history layer of Fig. 1C. The 

number of output features selected in online testing was 16. 

 

2.3.7 Online Training/Testing Protocol 

Targets for the fingers were not allowed to be separated by greater than 50% of the range. 

During training, the random targets spanned 100% of the finger flexion/extension range, but 
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during online decoding only 95% of the range was used. The classic Kalman filter was then used 

on a ~250 trial run from which the ReFIT KF coefficients were calculated. 

 

2.3.8 Performance Assessment 

Performance in online mode was characterized with Fitt’s law bit rate given below in Eq. 

(2.3), which accounts for both task difficulty and the time needed for completion. The variable 

Dk is the position of the k-th virtual finger at the start of the task, Tk is the target position for the 

k-th virtual finger, S is the target size (equal in both fingers), and tacq is the time to reach the 

target.  

𝐵𝑖𝑡 𝑅𝑎𝑡𝑒 =  

𝑙𝑜𝑔2 (1 +
√(𝐷1 − 𝑇1)2 + (𝐷2 − 𝑇2)2 − 𝑆 2⁄

𝑆 )

𝑡𝑎𝑐𝑞
 

Equation 2-1 

 

While bit rate was the primary performance metric, acquisition times were also reported.  

All velocities in the offline analyses were normalized by the standard deviation of the 

true velocity with 1 indicating the equivalent of 1 standard deviation of the actual velocity. The 

time plots depicting the actual versus predicted velocity were selected from one of the training 

days to illustrate the results (Fig. 2-3A). The correlation for each decoder was averaged over 2 

fingers on 3 days (Fig. 2-3B). The plots of true versus predicted velocity were calculated by 

binning the magnitude of the actual velocity into bins of size 1.0 at intervals of 0.5 and averaging 

the magnitude of the predicted velocity in each respective bin. The linear regression analysis 

utilized the fitlm.m subroutine in Matlab to evaluate the correlation between true and predicted 

velocity at low (<1.33) and high velocity (>1.33).  
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2.3.9 Statistical Analysis 

Comparing the performance metrics between groups was made with a paired t-test. 

Evaluating the linear relationship between predicted and actual velocity was made with using the 

Matlab built in function fitlm.m. 

 

 

 

 

 

  



 

 35 

Chapter 3.  Distinct Perceptive Pathways Selected with Tonic and Bursting Patterns of 

Thalamic Stimulation 

 

A version of this work was submitted for publication. 

3.1 Abstract 

Background: Novel patterns of electrical stimulation of the brain and spinal cord hold 

tremendous promise to improve neuromodulation therapies for diverse disorders, including 

tremor and pain. To date, there are few experimental studies in human subjects to help explain 

how stimulation patterns impact the clinical response.  

Objective/Hypothesis: We propose using novel stimulation patterns during electrical stimulation 

of somatosensory thalamus in awake deep brain stimulation surgeries and hypothesize that 

stimulation patterns will influence the sensory percept without moving the electrode.  

Methods: In this study of 15 fully awake patients, the threshold of perception as well as 

perceptual characteristics were compared for tonic (trains of regularly-repeated pulses) and 

bursting stimulation patterns.  

Results: In a majority of subjects, tonic and burst percepts were located in separate, non-

overlapping body regions (i.e., face vs. hand) without moving the stimulating electrode (p < 

0.001). The qualitative features of burst percepts also consistently differed from those of tonic-

evoked percepts as burst patterns were less likely to evoke percepts described as tingling 

(p=0.013, Fisher’s exact test). 

Conclusions: Because somatosensory thalamus is somatotopically organized, percept location 

can be related to anatomic thalamocortical pathways. Thus, stimulation pattern may provide a 
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mechanism to select for different thalamocortical pathways. This added control could lead to 

improvements in neuromodulation - such as improved efficacy and side effect attenuation - and 

may also improve localization for sensory prostheses. 

 

3.2 Introduction 

Novel bursting patterns of electrical stimulation have demonstrated more effective pain relief 

in spinal cord stimulation and greater motor improvement during deep brain stimulation (DBS) 

for movement disorders than traditional tonic stimulation patterns (trains with regularly repeated 

pulses) (Heming et al., 2011; Brocker et al., 2013; Adamchic et al., 2014; Cagnan et al., 2016; 

Brocker et al., 2017; Deer et al., 2018). DBS for movement disorders applies a tonic pattern with 

a frequency of 130 to 180 Hz, which has been found to best reduce symptoms for the average 

patient. Initial studies exploring temporally irregular (non-tonic) patterns failed to outperform 

tonic designs (Montgomery and Baker, 2000; Montgomery Jr, 2005; Dorval et al., 2010; Birdno 

et al., 2011; Swan et al., 2016). However, recent work has shown that temporally irregular 

patterns reduce tremor, bradykinesia, and power consumption as well as avoid thalamic 

adaptation (Heming et al., 2011; Brocker et al., 2013; Adamchic et al., 2014; Cagnan et al., 2016; 

Brocker et al., 2017). Methods to generate these patterns include use of models to generate 

patterns with the optimal trade-off between beneficial features (e.g. low power) and unwanted 

symptoms (e.g. tremor) (Brocker et al., 2013; Brocker et al., 2017; Grill, 2018). Additionally, 

others have shown that motor movement can be improved if bursts of pulses are coordinated 

across spatial macro-contacts (coordinated reset) or bursts are optimally timed to occur at 

specific time points of a patient’s tremor (Heming et al., 2011; Brocker et al., 2013; Adamchic et 

al., 2014; Brocker et al., 2017). Finally, cycled patterns have been shown to better resist thalamic 
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adaptation than traditional tonic patterns (Heming et al., 2011). Since previous modeling work 

suggests that pauses in DBS stimulation may permit brief pathological activity (Birdno et al., 

2011; Swan et al., 2016), additional experimental insights are greatly needed to help explain how 

bursting stimulation improves symptoms. 

 In this work, we explore tonic and bursting stimulation patterns in human somatosensory 

thalamus (ventral caudal nucleus; Vc), which is highly amenable to intraoperative study (Tasker 

et al., 1982; Dostrovsky et al., 1993; Chien et al., 2017). As opposed to the terminal effects of 

other DBS targets that can be challenging to quantify and measure in an intraoperative setting, 

the terminal effects of Vc stimulation are sensations, called percepts, that can be easily reported. 

All tactile information from the face and body converge in this compact structure before being 

relayed to the cortex, and Vc is somatotopically organized with face and upper-body relay 

neurons located medially and lower-body relay neurons located laterally, although individual 

variability can exist (Mountcastle and Henneman, 1952; Schmid et al., 2016; Chien et al., 2017). 

Thus, percept locations can be related to anatomic pathways via this somatotopy, and 

neurosurgeons routinely rely on this relationship for intraoperative localization (Starr et al., 

2009; Gross and Boulis, 2018). While the percept quality from Vc stimulation has been well-

studied (Tasker et al., 1982; Heming et al., 2010; Swan et al., 2017), we aim to compare percept 

locations during electrical stimulation with bursting and tonic patterns to provide insight into the 

underlying anatomic pathways and networks involved. 
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3.3 Materials and Methods 

3.3.1 Study design 

Our study included 15 consecutive subjects undergoing awake DBS placement in the 

ventral intermediate nucleus of the thalamus (VIM) for essential tremor during a 17-month 

period who were able to complete awake intraoperative testing. Three subjects had previously 

undergone VIM DBS on the contralateral side. Two patients were excluded from analysis due to 

suboptimal initial lead placement with inability to complete intraoperative experiments. The 

remaining 15 subjects included 13 males and 2 females, with ages ranging 37-82 years and a 

mean age of 67 years. The predominance of men is consistent with the known prevalence of 

essential tremor (Louis and Ferreira, 2010). The study was approved by the Institutional Review 

Board of the University of Michigan. All participants signed written informed consent. 

Twenty-seven anatomical sites, i.e. locations in the brain where macrostimulation was 

performed, were included if the location was estimated to be in sensory thalamus and subjects 

were able to feel sensations from thalamic stimulation. No sites were discarded (although one 

site could not be included because of audio recording failure) and research testing was stopped 

when intraoperative constraints dictated that we resume the clinical procedure. The subjects were 

blinded to stimulation patterns.  

 

3.3.2 Stimulation apparatus 

Stimulation was performed using an intraoperative neural targeting system, as previously 

described (Patil and Dodani, 2018), schematically illustrated in Figure 1a. LabVIEW software 

(National Instruments, Austin, TX) was programmed on a Dell T5500 computer (Dell Inc., 

Round Rock, TX) and interfaced with a commercial intraoperative electrophysiology system 
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(Neuro Omega™, Alpha Omega, Nazareth, Israel). Stimulation pattern, stimulation amplitude, 

and stimulation microelectrodes were selected with the custom LabVIEW software, which was 

interfaced with the Neuro Omega via the Alpha Omega Software Development Kit. Stimulation 

was applied through Neuroprobe microelectrodes (STR-009080-10, Alpha Omega), with a 

macro-contact length of 1 mm,  diameter of 0.56 mm, and 250–1250 kΩ impedance at 1 

kHz(Marmor et al., 2017). 

 

3.3.3 Stimulation parameters 

Stimulation patterns were created offline in MATLAB (MathWorks, Natick, MA) and 

loaded into the LabVIEW software. The pulse shape for all stimulation patterns were identical 

(Figure 1b) and consisted of a one period, 400-µs sine wave with a 200-µs positive phase 

immediately followed by a 200-µs negative phase to maintain charge balance (McIntyre and 

Grill, 2000). The sinusoidal pulse shape was selected to obviate the need for sharp on/off 

transitions and to minimize distortion in the frequency domain. Pulse width was selected to 

remain within 30µC/cm2 per phase charge density safety limits (McIntyre and Grill, 2000; 

Cagnan et al., 2016), while recruiting a maximal volume of thalamocortical neurons. The pulse 

rate for tonic stimulation was 80 Hz that is similar to the 60-Hz stimulation frequency used in 

many earlier studies to map Vc (Tasker et al., 1972) but increased slightly to avoid 60-Hz noise. 

Parameters for bursting stimulation include intraburst pulse rate, burst duration, and burst 

repetition interval. For consistency, we used an intraburst pulse rate of 80 Hz, equal to that of 

tonic stimulation. Burst duration and burst repetition intervals were empirically determined in 

Subject 1. Burst durations of around 62.5 ms and rest duration of 125 ms were perceived by 

Patient 1 as qualitatively different from the other combinations of burst/rest durations. For the 
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remaining 14 patients we continued to use this bursting pattern with a burst of 5 pulses repeated 

every 187.5 ms (Fig. 1b, bottom) given that the percepts were consistently distinct from tonic 

patterns.  

In a subset of 5 patients, low-frequency tonic patterns were created with the same 

stimulation amplitude and average number of pulses as the bursting patterns above. These 

patterns were similar to the tonic pattern in Fig. 1b except with a frequency of 27 Hz. In the final 

patient, a 30-Hz tonic pattern was compared with an 80Hz-bursting pattern of 60 ms duration and 

repetition interval of 100 ms.  

The 80-Hz tonic and bursting patterns were compared at the threshold of perception—the 

minimum amplitude needed to perceive electrical stimulation. Amplitudes greater than this have 

been shown to produce a significantly diminished perception of naturalness (Swan et al., 2017). 

The amplitude used for the low-frequency tonic pattern was equal to the threshold of perception 

of the bursting pattern so that a charge-matched comparison could be made.  

 

3.3.4 Thalamic localization 

Preoperative 3T cranial magnetic resonance imaging (MRI) of all patients was obtained 

before DBS lead placement and co-registered to MR imaging obtained on the day of surgery 

after Leksell stereotactic frame (Elekta AB, Stockholm, Sweden) placement. Computed 

tomography (CT) imaging was substituted for 3 patients with existing DBS systems, which are 

incompatible with 3T MRI. Images were co-registered using commercial software (Analyze, 

AnalyzeDirect, Inc., Overland Park, KS) and uploaded into commercial frame-based targeting 

software (Framelink, Medtronic, Minneapolis, MN).  
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Atlas-based VIM targeting was performed. The initial ventrocaudal VIM target was 

assigned as 11.5 mm lateral to the wall of the third ventricle and 5 mm anterior to the posterior 

commissure in the intercommissural plane. A cranial entry point was selected at the coronal 

suture, approximately 2.5 cm lateral to midline. The entry point to VIM target defined the “VIM 

trajectory” (Fig. 1c). 

To verify hand localization within VIM, a second “Vc trajectory” was assigned parallel 

and 2 mm posterior to the VIM trajectory. The point of transition from the VIM to the Vc 

nucleus along the Vc trajectory was estimated using the Schaltenbrand-Wahren atlas built into 

the Framelink software (Schaltenbrand and Wahren, 1977). Typically, the last 3 mm of the 

posterior trajectory localized to Vc (Fig. 1c). For notational purposes, all depths are reported 

relative to target depth: a depth of 3 mm is 3 mm above target and a depth of -3 mm is 3 mm 

below target depth (Fig. 1c). 
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Figure 3-1. System and experimental setup. 

(a) Customized LabVIEW software inputs into Neuro Omega that drives macroelectrode to 

provide electrical stimulation to brain tissue. (b) Depiction of 0.5-s segment of tonic (green) and 

bursting (blue) patterns. All pulses are identical and pictured to scale in the cutout window. (c) 

Preoperative MRI as shown on StealthStation during preoperative planning. The yellow line is 

the planned ventral intermediate nucleus of the thalamus (VIM) trajectory that ends in the star. 

The star is the estimated final position of the to-be-implanted permanent deep-brain stimulation 

lead. The green trajectory represents a parallel trajectory 2 mm posterior to the VIM trajectory 

that passes through the somatosensory nucleus of the thalamus (Vc). The star at the tip of this 

trajectory signifies the same depth on this trajectory as the star on the VIM trajectory. (d) Table 

shown to subjects prior to the experiment to provide a list of potential responses. Patients were 

verbally counselled that they could choose words not on this list. 

 

3.3.5 Testing protocol 

During the operative procedure, the stimulating microelectrodes were advanced through 

VIM and Vc. Patient responses to stimulation and stimulation parameters were recorded 

simultaneously using a high-definition video camera and a wireless microphone. Patients were 

blinded to stimulation pattern. Tonic stimulation through the macro-contact on the 

microelectrode was utilized to verify VIM localization and somatotopy, according to standard 

operative practices. Sites were excluded from the analysis if no percept was elicited by either 

tonic or burst stimulation or if the reported tonic percept was non-physiological (e.g. bilateral 

headache, ipsilateral percepts). One site could not be included in the analysis because of audio 

recording failure. In total, twenty-seven sites within Vc were analyzed. The number of test sites 

for each subject was limited by the available time for testing. The subjects were blinded to 

stimulation patterns. 

The first objective in testing a stimulation pattern was to determine the threshold 

amplitude of perception. To prevent thalamic adaptation, the initial amplitude was set to either 

0.1 or 0.2 mA and incrementally increased until a percept was reported. To minimize thalamic 

adaptation (McIntyre and Grill, 2000), stimulation was limited to either 4 s or the minimum time 

needed for a subject to report a percept. If the initial stimulation amplitude was perceived, 
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stimulation was immediately halted and the amplitude was lowered to the threshold of 

stimulation. 

The amplitude at the threshold of perception for tonic and bursting patterns were 

recorded. Additionally, the charge was recorded at the threshold of perception for tonic and 

bursting patterns. As the patterns were charge balanced, we assigned the charge per pulse as the 

area under a half sine wave period multiplied by the threshold of perception. The total charge per 

second reported as the charge per pulse multiplied by the average number of pulses per second.  

At each site in the first 6 subjects, subjects were asked if the stimulation was perceived (“Do you 

feel anything now?”). Patients usually proceeded to describe where the percept was located and 

the sensory quality. If the subject did not report location and quality, the experimenter would ask 

for location (“Where do you feel it?”) and quality (“What does it feel like?”). During the first 

few trials, subjects were shown the table in Figure 1d as a list of potential responses, which is a 

slight modification of the table used to assess sensory quality by Ohara and colleagues (Ohara et 

al., 2004). When time allowed, and simulation pattern differences produced percepts at different 

locations or with different qualities, stimulation patterns were either alternated or randomly 

varied. Stimulation lineups, when varied at a given site, are reported in the Results section.  

 

3.3.6 Statistical analysis 

To evaluate the hypothesis that bursting patterns were less likely to “tingle” than tonic 

counterparts, we used Fisher’s exact test to compare the number of non-tingling sites between 

tonic and burst percepts in the 27 sites of macrostimulation. Statistical significance for the 

amplitude values between tonic and bursting patterns at the perception threshold was determined 

with a 2-sided, 2-sample t-test. Statistical significance for the amplitude values between sites 
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with similar burst vs tonic percepts and different burst vs tonic percepts was also compared with 

a 2-sided, 2-sample t-test. Statistical significance to compare the depth of stimulation sites was 

performed with a 2-sided, 2-sample t-test. The relationship between burst/tonic percept locations 

and whether the final implanted lead required adjustments was evaluated with a fisher’s exact 

test. Statistical significance of stimulation trials comparing the location of low-frequency tonic 

and bursting percepts evaluated whether low-frequency tonic percepts avoided activation of 

percepts in the location of high-frequency tonic percepts and activated percepts in the same 

location of burst percepts. For the evaluation of this statistical significance, a Fisher’s exact test 

was used. A statistical significance level of 0.05 was used.  

 

3.4 Results 

Our analysis includes fully awake and unanesthetized patients who underwent stimulation 

of the somatosensory (Vc) thalamus during DBS surgery for essential tremor. For each patient, 

stimulation with tonic and bursting patterns were tested within Vc. Testing was performed at a 

total of 27 sites in 15 patients. The amplitude of stimulation was set to the threshold of 

perception, which is the lowest amplitude at which subjects reported a percept. 

 

3.4.1 Stimulation pattern controls percept location  

While 14/27 sites of stimulation had similar location percepts for both bursting and tonic 

waveforms, in 13/27 sites (in 8/15 subjects tested), 80 Hz tonic and bursting percepts (in Fig. 1B) 

were perceived in distinct, non-overlapping locations, specifically hand versus face. Figure 2a 

graphically illustrates typical results for the first 6 subjects, and a table of results for all subjects 

is shown in Figure 2b. Tonic percepts arose in the hand/arm in a majority of sites (19/27) as 
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expected since the hand region of VIM is targeted for DBS. Tonic percepts localized to the 

face/head in 6 sites, and arose in both hand and face regions at 2 sites. Bursting percepts 

occurred in the head/face region in 17/27 sites, occurred in the hand/arm in 7 sites and arose in 

both areas at 3 sites. Even among stimulation sites where tonic and burst percepts were located in 

close proximity, small differences in location often existed, e.g. cheek versus lip in Subject 2 and 

2nd/3rd fingers versus thumb in Subject 10. 

Percept size and location were assessed through detailed, recorded subject descriptions. 

Spontaneous patient terminology was clearly non-overlapping. Patients 4, 6 and 10-14 all 

reported tonic percepts in the hand (e.g., “thumb” or “fingers”), whereas bursting percepts were 

in the face (e.g., “jaw,” “neck,” “lip,” “side of [the] face,” and “mouth [or] throat”). Tonic 

percepts were located in the face for Patients 1 and 3 (mouth, tongue, lips or cheek) with bursting 

percepts in the fingers and arm. Patient 1, with bursting percepts in the fingers, denied any facial 

component. Patients uniformly denied overlap between tonic and bursting percepts when asked 

explicitly. Patients 4, 6, 10, 11, and 14 denied bursting percepts located in the hand, where tonic 

percepts were located. Patients 10 and 14 also denied tonic percepts where bursting percepts 

arose. Finally, and similar to macrostimulation results from Heming and colleagues (Heming et 

al., 2010), percepts for each pattern were mostly of  “medium” size since they typically covered 

parts of limbs or multiple fingers, although more focal percepts were also reported. 

Percept location as a function of tonic versus bursting stimulation pattern remained stable 

even when stimulation patterns were repeated or alternated (Fig 2c).  Stimulation trials were 

repeated in all 8 subjects where bursting and tonic percept locations differed, and 31/32 

stimulation trials remained stable with hand percepts remaining in the hand and face percepts 
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remaining in the face. Additionally, in 4 subjects (5 sites), tonic and burst patterns were 

alternated a total of 15 times, and the location remained stable.  

 

Figure 3-2. Stimulation pattern controls percept location.  

(a) A body map for the first six subjects that represents the disparate percepts between tonic 

(green) and bursting (blue) stimulation. (b) Table shows percept location for tonic and burst 

stimuli at each site tested. Sites where percept locations are widely disparate are highlighted in 

yellow. Research minus implanted lead (Res. – Imp. Lead) denotes the position of the research 

lead subtracted by the final implanted lead position. Without any adjustments to the final lead, 

the research lead would be 2 mm behind the implanted lead, i.e. (0, -2, 0) mm. Testing sites that 

differed from this planned relationship are denoted in bold font. A positive value for Δx > 0 

indicates a research lead position lateral to the implanted lead position. The * denotes that the 

lead surgeon (P.G.P.) asked to move to a more lateral trajectory given the head percepts. The ** 

denotes that testing was performed on a trajectory 2 mm lateral to the intended trajectory because 

no percepts occurred at the original trajectory (c) Table displays an illustrative example site for 

subject 6 where stimulations were randomized at a single site and stable difference in the 

location of tonic and burst percepts.  
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3.4.2 Percept locations affected by the temporal distribution of pulses   

 Bursting and 80 Hz tonic patterns have three important differences: the temporal 

distribution of pulses, the average number of pulses in time, and the amplitude at the threshold of 

perception. To determine whether percept location differences were caused by the temporal 

distribution of pulses (and not one of the other differences between bursting and tonic patterns), 

we created low-frequency (27 or 30 Hz) controls with the same number of pulses and amplitude 

as the bursting patterns. These patterns differed only in the temporal distribution of pulses. These 

patterns were compared in 6 sites (in 5 subjects) where bursting produced percepts in the face 

and 80-Hz-tonic produced percepts in the hand. As illustrated in Fig 3a-b, the percepts (blue data 

points) were located in the head at all 6 sites. However, low frequency tonic patterns (magenta 

data points) produced percepts in the hand – like 80-Hz tonic patterns – at 4/6 sites. However, at 

sites 3 and 6, the percept location was not stable and occasionally generated face percepts like 

the bursting patterns. This instability led to the proportion of head or face percepts being less 

than 1. For completeness, Fig. 3c depicts the number of stimulation trials conducted for each 

stimulation pattern at each site. Across all trials, low-frequency percepts were statistically 

different (p < 0.001; Fisher’s exact test) than bursting patterns and produced hand percepts in 12 

trials (like 80-Hz tonic), head percepts in 10 trials (like bursting), and percepts in both head and 

hand in 1 trial (see Fig. 3a-c). 

 As an illustrative example in Subject 3, bursting and 27-Hz-tonic stimulation patterns 

were compared at a constant amplitude of 1.2 mA (Fig. 3d-e). The 27-Hz tonic waveform 

produced hand percepts (similar to the 0.5 mA, 80-Hz tonic percepts), while the bursting 

stimulation produced percepts in the jaw/neck region. Six trials randomly alternating between 



 

 48 

27-Hz tonic and bursting patterns in Fig. 3b demonstrated stable, non-overlapping percepts in all 

6 attempts. Thus, the irregular distribution of pulses, independent of amplitude and number of 

pulses, led to differences in percept location.  

 
 

Figure 3-3. Controlled experiment of percept location using tonic and burst stimuli in five 

subjects.  

Six sites showing the proportion of low-frequency tonic (magenta) and bursting (blue) patterns 

that generated percepts in the head (a) and in the hand (b). LF denotes low frequency tonic 

patterns. (c) Number of stimulation trials at each site for low-frequency tonic (magenta) and 

bursting (blue) patterns. (d) A body map for Subject 6 illustrates overlapping and focal percepts 

for 80-Hz tonic (green) and low-frequency, 27-Hz tonic (magenta) stimuli compared to an 

anatomically distant bursting percept in the face (blue). (e) For the same site as (d), Table reports 
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randomized stimulation trials showing the difference in low-frequency tonic and bursting 

patterns that are controlled for amplitude and number of spikes.  

 

3.4.3 Differences in amplitude, charge, and site location 

The perception threshold was lower for high-frequency tonic patterns compared to 

bursting patterns at all sites (p < 0.001; t-test). The perception threshold was 0.50 ± 0.09 mA for 

tonic patterns and 1.17 ± 0.11 mA for bursting patterns. In the subset of sites where tonic and 

burst percepts were nearby, the mean amplitude of tonic patterns, 0.64 ± 0.14 mA, was lower 

than the mean amplitude of burst patterns, 1.34 ± 0.13 mA (p < 0.001; t-test). In the subset of 

sites where tonic and burst percepts were located in disparate body areas, the mean amplitude of 

tonic patterns, 0.33 ± 0.07 mA, was lower than the mean amplitude of burst patterns, 0.97 ± 0.18 

mA (p < 0.001; t-test) as shown in Fig. 4a, left pane. 

To understand whether perception thresholds differed between sites with nearby versus 

disparate tonic and burst percepts, the perception thresholds were compared, see Fig. 3b, middle 

pane. Combining the amplitude at perception for both stimulation patterns revealed decreased 

amplitudes at sites with disparate tonic versus burst percepts relative to sites with similarly 

located percepts (p = 0.037; t-test).  

The mean charge injected between tonic and bursting patterns, however, was not 

statistically different at all sites (p = 0.26; t-test), sites with similarly located percepts (p = 0.19; 

t-test), or sites with disparately located percepts (p = 0.995; t-test). The mean charge injected for 

the tonic pattern at threshold was 4.7 ± 0.8 µC/s for all sites, 6.0 ± 1.4 µC/s at sites with percepts 

near burst percepts, and 3.0 ± 0.7 µC/s at sites with percepts disparate from burst percepts. The 

mean charge injected for the bursting pattern at threshold was 3.7 ± 0.3 µC/s for all sites, 4.2 ± 
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0.4 µC/s at sites with percepts near tonic percepts, and 3.0 ± 0.6 µC/s at sites with percepts 

disparate from tonic percepts (Fig. 4c, right pane). 

Similarly, there were no statistically-significant differences in depth between sites with 

tonic and burst percepts located nearby and in disparate locations (p = 0.46; t-test). The mean 

depth when percepts were similarly located was 1.0 ± 0.4 mm. A positive value indicates the 

distance superficial to target (described in Section 2). The mean depth when percepts were 

disparate was 1.5 ± 0.5 mm. There were also no statistically significant differences among the 

number of sites with similarly located versus disparately located percepts that required 

adjustment of the final lead position (p = 0.45; Fisher’s exact test). 

 

Figure 3-4. Differences in amplitude and charge at the perception threshold.  

Amplitude differences in (a) demonstrate differences in tonic (green) and bursting (blue) 

amplitudes (in mA) at all sites, at sites where percept locations are similar, and at sites where 

percept locations are in disparate body regions. The asterisks represent statistical significance. 

Regrouping the tonic and bursting amplitudes together in (b) highlights the differences in similar 

and disparate sites. In (c), the different charge injected at the threshold of perception at all sites, 

those with similarly located percepts, and those with disparate percepts 

  

3.4.4 Less tingling from bursting stimulation  

For completeness, in the first 6 subjects, we asked subjects to describe the quality of 

percepts. This was not continued in the remaining 9 subjects due to intraoperative time 
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constraints. Bursting percepts were less often described by subjects as “tingling” than tonic 

percepts (p = 0.013; Fisher’s exact test). At the 8 of 14 sites where percept quality differed, tonic 

percepts were tingling in all cases, whereas bursting percepts were sometimes non-tingling. In 

particular, bursting patterns produced non-tingling percepts in 9/14 sites and in 5/6 subjects 

tested. On the other hand, tonic percepts were tingling in all but one site (see Fig. 5a). Bursting 

stimulation elicited a variety of non-tingling qualities, including pressure, sharpness, vertigo, and 

vibration, as depicted in Figure 5b. Of note, in Subject 5, bursting percepts were similar to 

pressure, but on repeated stimulation the subject reported either pressure or tingling. Figure 5c 

illustrates an example where bursting and tonic patterns were randomly alternated to give non-

tingling bursting percepts and tingling tonic percepts.  
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Figure 3-5. Tonic and burst stimuli affect percept quality.  

(a) The table lists percept quality evoked at all of the sites tested. The sites producing sensations 

of tingling, pins/needles, or electric current are highlighted in red. (b) Two pie charts 

representing the sensation quality for the least artificial percept quality in each subject. 

Specifically, 1/6 of the pie is assigned to each subject. If a non-tingling percept is produced by 

electrical stimulation, that subject’s slice is assigned to that percept quality; otherwise, the slice 

is designated as tingling. Mech., Mechanical; Vestib., Vestibular; Movt., Movement. (c) Table is 

an example of percept stability in Subject 3 when switching between stimulation patterns. 

Artificial percept qualities are highlighted in red.  
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3.5 Discussion 

In this work, we found that bursting and tonic stimulation often activate distinct, non-

overlapping perceptive pathways. Even though burst percepts required higher stimulation 

amplitudes to be perceived, the percept was not located near tonic percepts, and instead 

generated a percept in a unique, non-overlapping location. Furthermore, bursting patterns evoked 

percepts in different locations than tonic patterns with the same average pulse rate and same 

amplitude. Hence, in many sites tested, the temporally irregular distribution of pulses provided 

control of percept location that was independent of stimulation amplitude or average pulse rate. 

In addition to the above findings, we also found that: (1) bursting percepts required increased 

amplitude but similar charge as percepts generated from tonic patterns, (2) the perception 

threshold was lower at sites with different tonic/burst percept locations than similar locations, 

and (3) tonic and bursting patterns elicited different perceptual qualities. 

 

3.5.1 Activation of distinct thalamocortical networks through patterned stimulation 

A similar phenomenon was reported by Kiss and colleagues in 2/19 sites near Vc using 

waveforms with different pulse-widths (Kiss et al., 2003). This difference was attributed to 

differential activation of local cells and axons of passage (Kiss et al., 2003; Grill et al., 2005). 

Kiss and colleagues state that, in a site presumed to be below Vc and in medial lemniscus, 

auditory sensations were produced using a 5-ms pulse width and the quality changed to tingling 

using a 500-µs pulse width. In the second site, hemibody pain at 5-ms pulse width transitioned to 

hand coolness at 3 ms and hand/leg tingling at 1 ms. Kiss and colleagues (Kiss et al., 2003) 

proposed that local cells were activated through activation of the soma with high-pulse-width 

waveforms and not low-pulse-width waveforms. However, because extracellular stimulation of 
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local cells initiates action potentials at the initial segment or at one of the nodes of Ranvier, this 

observation is likely due to relative differences in the electrode position with respect to the soma 

(Miocinovic and Grill, 2004; Grill et al., 2005). 

As opposed to varying the pulse width, we varied pulse density using either bursting or 

low-frequency stimulation patterns. In contrast to the findings of Kiss and colleagues, high-

frequency versus bursting percepts were produced in different and non-overlapping anatomical 

regions in roughly half of sites/subjects. Anatomically-distinct percepts could arise if distinct 

neural populations were activated with different stimulation patterns. Several groups have shown 

through computational models that stimulation patterns could potentially select different 

populations of neurons with neural elements that pass near the electrode (McIntyre and Grill, 

2002; Yi and Grill, 2018; Anderson et al., 2019). McIntyre and Grill showed that high-frequency 

stimulation may more efficiently activate axons of passage (because the pulse arrives at a time of 

increased axonal excitability within a depolarizing afterpotential) and less efficiently activate 

local cells (because the pulse arrives at a time of decreased axonal excitability within a 

hyperpolarizing afterpotential) (McIntyre and Grill, 2002). Yi and Grill also reported that local 

cells are less excitable with high-frequency stimulation compared to low frequency stimulation 

when the soma was closer to the electrode than the axon (Yi and Grill, 2018). Although further 

studies are needed to establish exact mechanisms, these studies provide insight into how distinct 

subpopulations of neurons (i.e. “hand” neurons versus “face” neurons) can be selectively 

activated to produce distinct percepts.  

Given that various modalities of somatosensory stimuli evoke bursting in Vc (Lee et al., 

2005), burst and tonic percept locations may be mediated differentially encoded in 

thalamocortical relay cells and interpreted differently by downstream cortical mechanisms 
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(Iremonger et al., 2006; Luczak et al., 2015; Halassa and Kastner, 2017). Some have 

hypothesized that naturally occurring thalamic spiking modes, bursting and tonic, select for 

different thalamocortical pathways (Halassa and Kastner, 2017). Iremoner and colleagues show 

that electrical stimulation of thalamic afferents of motor cortex neurons at high frequencies does 

not produce action potentials in motor cortex while low frequency stimulation reliably produces 

action potentials in cortical neurons (Iremonger et al., 2006). Finally, cortical centers may 

process sensory information differently when action potentials are quantized in bursts (or 

packets) as opposed to those repeated at constant time intervals(Luczak et al., 2015).  

 

3.5.2 Anatomical location of stimulation sites 

 Not all stimulation sites produced pattern-dependent percepts. To gain insight into the 

location of sites, we did note a small but significant lower current threshold when anatomical 

areas were disparate.  Sites of somatosensory thalamus with relatively lower amplitudes of 

perception have been found to occur in sites densely populated with neural elements (Tasker et 

al., 1972; Lenz et al., 1994b; Lenz et al., 1994a). Tasker and colleagues have shown especially 

low thresholds (0.1-0.5 mA; using 60-Hz, 3-ms pulses) at the medial-ventral base of Vc where 

medial lemniscus fibers enter (Tasker et al., 1972). Lenz and colleagues (with the same 

stimulation parameters) showed a lower threshold at sites in Vc where the receptive fields of 

numerous neurons overlapped suggesting a site densely populated with neural elements (Lenz et 

al., 1994a). Given that face and hand somatotopic centers of Vc are in close proximity (Lenz et 

al., 1988), a potentially unifying explanation for the data herein is that sites with disparate hand 

and face percepts occurs at the border of these centers and in an area densely populated with 

neural elements such as the base of Vc. Specifically, burst patterns activate local face neurons, 
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and tonic patterns activate either medial lemniscus fibers traveling to hand neurons or 

thalamocortical cell axons after leaving hand neurons.  

 

3.5.3 Potential for clinical application 

Herein bursting patterns are shown to select for distinct perceptive locations that may 

correspond to activating different subpopulations of thalamocortical-relay neurons. To this end, 

bursting patterns and multi-contact hardware designs may be combined so that a single DBS lead 

activates a high number of different neuron groups (Pollo et al., 2014; Swan et al., 2017). 

Additionally, since bursting patterns activate different neuronal populations than tonic 

stimulation, bursting patterns could be more effective than tonic patterns in stimulation of Vc for 

neuropathic pain (Starr et al., 2009; Gross and Boulis, 2018), although further studies are needed. 

Finally, selective activation of the desired neuron group may lead to fewer side-effects if 

unwanted neurons are not activated. 

Peripheral nerve stimulation with temporally irregular patterns (pulse-width modulation) 

was used for a sensory prosthesis by Tan and colleagues to restore naturalistic perception (Tan et 

al., 2014). Patterned stimulation also demonstrated more tolerable paresthesias in spinal cord 

stimulation (Tan et al., 2016). In this work, bursting patterns achieved a higher number of non-

tingling percepts (9/14) and increased percept variety compared to tonic stimulation that 

produced artificial paresthesias in all but one site. Even though the bursting percepts from 

thalamic macrostimulation were not endorsed as naturalistic, more naturalistic percepts may be 

achieved with similar temporally-irregular designs.  
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3.6 Conclusions 

Temporally patterned stimulation shows tremendous promise in advancing the field of 

neuromodulation, and tuning patterns of stimulation for specific patients and applications may 

lead to improvements in chronic pain therapies, intraoperative localization, avoidance of side-

effects, and sensory prostheses. However, a paucity of studies exists exploring patterned 

stimulation in Vc where the terminal effect of stimulation pattern can be readily observed. 

Herein, we showed that patterned stimulation selects for distinct perceptive networks, and likely 

distinct thalamocortical networks. This specificity for distinct networks provides insight into the 

underlying mechanisms of temporally irregular patterns and may allow selective activation of 

optimal neuronal targets.   
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Chapter 4.  Neural Dynamics in Primate Cortex During Exposure to Subanesthetic 

Concentrations of Nitrous Oxide 

 

A version of this work is being prepared for submission. 

 

 

4.1 Abstract 

Nitrous oxide (N2O) is a hypnotic gas with anti-depressant and psychedelic properties at 

subanesthetic concentrations. Despite longstanding clinical use, there is insufficient 

understanding of its effect on neural dynamics.  We administered subanesthetic (70%), inhaled 

N2O and studied dynamic changes of spiking rate, spectral content, and somatosensory 

information transfer to primary motor cortex (M1) in two male Rhesus macaques implanted with 

Utah microelectrode arrays in the hand area of M1. In M1, the average, sorted multi-unit spiking 

rate increased from 8.1 ± 0.99 Hz to 10.6 ± 1.3 Hz in Monkey W (p < 0.001) and from 5.6 ± 0.87 

Hz to 7.0 ± 1.1 Hz in Monkey N (p = 0.003). Power spectral densities showed an increase in beta 

and gamma band power. To evaluate somatosensory information transfer to M1, fingers were 

lightly brushed and classified using a naïve Bayes classifier. In both monkeys, the proportion of 

correctly classified fingers dropped from 0.50 ± 0.06 before N2O to 0.34 ± 0.03 during N2O 

administration (p = 0.018), although some fingers continued to be correctly classified (p = 

0.005). The decrease in correct finger classifications corresponded to decreased modulation 

depth for the population (p = 0.005) and fewer modulated units (p = 0.046). However, the 

increased single unit firing rate was not correlated with its modulation depth (R2 < 0.001 , p = 

0.93). Collectively, these data suggest that representation of somatosensory information in M1 is 
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degraded during subanesthetic N2O but this does not appear to be mediated by changes in firing 

rate. 

 

4.2 Introduction 

Nitrous oxide (N2O) and ketamine are unique anesthetics with anti-depressant (Tadler 

and Mickey, 2018) and psychedelic (Icaza and Mashour, 2013) effects at subanesthetic 

concentrations.  Unlike canonical general anesthetics, they (1) are thought to act by antagonizing 

glutamatergic NMDA receptors (Thomson et al., 1985; Jevtovic-Todorovic et al., 1998) rather 

than through the potentiation of GABAergic transmission, (2) increase cerebral metabolism 

(Takeshita et al., 1972; Deutsch and Samra, 1990), (3) enhance high-frequency 

electroencephalographic activity (Rampil et al., 1998; Lee et al., 2013; Akeju et al., 2016), and 

(4) increase cortical cholinergic tone (Shichino et al., 1998; Pal et al., 2015). There has been a 

recent focus on how large-scale brain networks are modulated by general anesthetics in terms of 

functional connectivity, dynamics, and graph-theoretical variables (Cao et al., 2018; Huang et al., 

2018; Lee and Mashour, 2018); however, there is a paucity of mesoscopic network data for 

ketamine and N2O. Network-level dynamics may provide insights into the unique properties of 

these drugs. 

We previously characterized neural firing rate, cortical oscillations, and information 

transfer in nonhuman primate cortex during exposure to anesthetic concentrations of ketamine 

(Schroeder et al., 2016). In the current study, we investigated the effects of N2O on neuronal 

spiking rate and high-frequency content of local field potentials in primary motor cortex (M1) of 

the nonhuman primate brain. Furthermore, previous animal studies suggest that somatosensory 

afferents from S1 mediate transfer of sensory information to M1 (Andersson, 1995; Farkas et al., 
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1999; Mao et al., 2011). Thus, to evaluate the effect of N2O transfer and representation in the 

cortex, the somatosensory content in M1 during a finger brushing task was measured.  

 

4.3 Materials and Methods 

 

4.3.1 Surgical procedure 

Experimental protocols were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan. Two male rhesus macaques, Monkey W and Monkey 

N, were implanted with Utah arrays (Blackrock Microsystems, Salt Lake City, Utah) in primary 

motor cortex (M1) using methods previously described (Schroeder et al., 2016). Monkey W was 

implanted with two 96-channel Utah arrays, with one in M1 and one in somatosensory cortex 

(S1). Monkey N was implanted on the left with two split arrays (total of 96 channels) in M1 and 

1 96-channel array in S1. Either before or during a wound revision procedure, the wire bundle 

from the left-sided implant of Monkey N was damaged and eliminated the signal from 32 of the 

channels. Because of this damage, Monkey N was eventually re-implanted in the contralateral 

(right) cortex with two split arrays in M1 and one in S1, shown in Fig. 1A.  There were no 

clinically significant adverse events besides wound revision surgeries for exposed hardware from 

a receding wound edge during healing. 

 

4.3.2 Experimental setup and N2O administration 

Three tests were performed on 3 days, separated by several months, for each nonhuman 

primate: one for Monkey W, one for the left implant of Monkey N (day 1 of Monkey N), and one 
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for the right implant of Monkey N (day 2 of Monkey N) . The macaques were trained to sit in a 

monkey chair (Crist Instrument, http://www.cristinstrument.com), with their head secured in 

customized titanium posts (Crist Instrument), while their Utah arrays were connected to the 

Cerebus neural signal processor (NSP, Blackrock Microsystems) and their arms were secured in 

acrylic restraints. The monkeys were also trained to tolerate finger brushings without agitation. 

Using a cotton-tip applicator, individual fingers were manually brushed without skin indentation 

at a 2-Hz rate timed to a metronome. The fingers brushed during a given trial were randomly 

selected by a computer running xPC Target (Mathworks, Natick, Massachusetts) and displayed 

on a monitor to prompt the experimenters. Brushings were conducted for 5 s, and the first 2 s 

were discarded from the analysis given that the experimenters switched fingers during the first 2 

s of each trial. Given the desire for only sensory information in motor cortex, trials in which the 

monkey moved spontaneously were noted and later discarded from the analysis. See Schroeder 

and colleagues (Schroeder et al., 2016) for further details and illustrations regarding the 

experimental set-up.  

Seventy-percent N2O was delivered at a continuous rate via sealed face mask secured 

snuggly around the head with an elastic band. Monkey W was gradually acclimated to the mask 

over several sessions with rewards. Monkey N tolerated the mask on the first day of training. The 

face mask was placed 10-20 min prior to N2O administration to allow the monkey to become 

comfortable with the face mask system. On day 1 for Monkey W before N2O administration, 

classification of finger brushings was compared for room air and 100% oxygen via sealed face 

mask that did not show significant differences in correct classification of finger brushings. This 

test was not performed on day 2 for Monkey N. 

http://www.cristinstrument.com/
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During N2O delivery, the monkeys were monitored under direct observation by lab 

technician, trained graduate student, or physician. During N2O administration, monkeys 

remained awake and cooperative; heart rate and respiratory rate were checked every 15 min. 

Respiratory rate remained adequate (always > 32 breaths per minute) throughout the 

experiments. After N2O administration, 100% O2 was administered for 5 min, and monitoring 

was continued for an additional 15 min after cessation of supplemental oxygen. The monkeys 

remained awake and did not lose consciousness, as evidenced by widely open eyes and normal 

frequency of motor movements and conjugate eye movements. There were no adverse events 

related to N2O administration.  

 

4.3.3 Front-end processing—analog to cleaned multi-units 

The output from the Utah array was processed in two distinct formats. The first data stream was 

the raw signal sampled at 30 kHz. This broadband data stream was used for the spectral analysis 

described below. The second data stream was the time stamp of all recorded spikes for all 

channels. Spikes were defined using the Cerebus neural signal processor (Blackrock 

Microsystems, Salt Lake City, UT) when the 250-Hz high-pass filtered signal crossed a threshold 

of -4.5 times the root-mean-squared (RMS) voltage. The Cerebus system then communicated the 

detection of a spike to a computer running customized software in the xPC Target environment 

(MathWorks, Natick, MA). The xPC Target computer logged the timestamp of the received 

spike in 1 ms time bins. This structure allowed replay of experimental spikes offline as well as 

trial-by-trial organization that will be discussed in subsequent sections.  

In some analyses described below, sorted units were required. Spikes were sorted using 

Offline Sorter (Plexon, Dallas, TX). Sorted clusters were scored with a number between 1 and 4. 
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The principle components of threshold crossing events were calculated and displayed in a two-

dimensional space. Sorted units with a score of 4 correspond to when the principle components 

of the cluster do not overlap with other threshold crossing events; 3, clusters with little overlap 

with other clusters; 2, non-clusters and a morphologic bipolar spike in the time domain, and 1, 

the remaining threshold crossing events. Sorted units with a score of 1 were excluded, those 

scored 2 were considered sorted multi-units, and those scored 3 and 4 were considered isolated 

single units. 

Because we wanted to include neural information from the hash unit, all threshold 

crossing events were used for population-based decoding analysis and for calculating the 

modulation depth. These unsorted multi-units were reviewed by eye and channel waveforms that 

were not consistent with a neuronal action potential were removed from the analysis. 

 Removing data at times of motor movement was a multi-step process. First, 

during finger brushing trials, times of movement were flagged by experimenters, and this data 

was not included in the subsequent analysis. Second, using an automated program, any finger 

brushing trial were removed if 30 or more channels recorded a spike at in the same 1-ms bin, as 

this high level of activity was not consistent with a motionless monkey. Third, the raw spike 

tracings during Monkey W recordings were reviewed to ensure that no times of high activity 

(corresponding to movement) were missed. Since there were not additional times flagged, this 

step was bypassed in Monkey N.   

 

4.3.4 Data analysis—spike time dynamics 

To compare the spiking rate before and during N2O administration, the neural data for 

Monkey N was combined for both days (but each monkey’s neural data was kept separate). The 
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pre-N2O data included the 15-min period prior to N2O administration, as this corresponded to the 

times the monkey was secured in the testing chair without significant motor movements. Pre-

N2O multi-units with a spiking rate greater than 2 Hz were included and the spikes in the 

remaining channels were sorted. The pre-N2O spiking rate was then determined by averaging 

across all sorted multi-units. To include only spontaneous activity, only sorted units with firing 

rate greater than 0.5 Hz were analyzed. To compute the spiking rate during N2O, we averaged 

the multi-units during the first 45 min of N2O (using the same multi-units used in the pre-N2O 

time period). A period of 45 min was chosen to keep the time under N2O the same for each day 

when computing the spiking rate. 

Since times of observed monkey movements were not recorded when finger brushings 

were not being performed, an automated algorithm was used to flag dense neural activity that 

likely corresponded to monkey movement. When the number of recorded spikes within a 3 ms 

time bin exceeded a pre-specified threshold, the surrounding 1-s interval was excluded from the 

spike rate calculation. This threshold was empirically determined by reviewing raster plots by 

visual inspection to ensure that these periods of dense neural activity were excluded. The 

distribution of sorted multi-units was plotted as a histogram. Ten-Hz bins were used for Monkey 

W and 5 Hz bins were used for Monkey N (because of a lower average spiking rate). To compute 

the trends in spiking rate versus time, the spiking rate was calculated as a running average over 5 

min. Sample raster plots at 15 min after N2O administration are shown to give a typical example. 

The multi-units are sorted in order of increasing spiking rate in the pre-N2O state and these 

sorted indices are also used to depict the raster plots generated during N2O administration. 
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4.3.5 Spectral analysis 

Spectrograms were calculated from the broadband signal, sampled at 30 kHz, from the 

Cerebus neural signal processor. Because removing data from the time series introduces 

discontinuities in the spectrogram, no time series data was removed (e.g., periods with 

movement are included in the spectrogram). The signal is first decimated using decimate.m, 

which included a 1000 order FIR low-pass filter. After decimation, the signal is high-pass 

filtered with a 1000-order FIR filter using fir1.m. The power spectrum is then calculated by 

averaging the power spectrum from all channels with a spiking rate greater than 2 Hz as given in 

section 2.4. The power spectrum for each channel was calculated using spectrogram.m and time 

window of 0.5 s, 50% overlap, and the default hamming window. The final spectrogram was 

smoothed in the time by a 15-sample moving median filter and the amplitude was normalized 

such that the maximum amplitude was at 0 dB. 

 After observing changes in the spectrogram during N2O administration, a period of 

maximal effect between 10 and 20 min after beginning N2O was compared to the period 5-15 

min before N2O. The spectra were calculated for each channel using the pwelch.m algorithm in 

MATLAB (MathWorks) using as inputs 1-s time periods and 50% overlap. The data were then 

averaged across all non-noise channels with spiking rate greater than 2 Hz in each respective 

time session. For clarity, the spectrum was normalized by the value at 10 Hz in pre-N2O time 

period for each respective monkey. 

 

4.3.6 Finger classification 

Finger brushings were performed while N2O was administered. The first day of Monkey 

W and the second day of Monkey N (right-sided implant) were selected for a more detailed 
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analysis. Day 1 for Monkey N (left-sided implant) could not be used for a finger brushing 

analysis because too many of these trials were corrupted by recording noise. In both monkeys, 

finger-brushing sessions were conducted for 10 min with 5-10 min breaks between sessions. In 

Monkey W, the first finger-brushing session was not included since there was no equivalent 

period in Monkey N. Also, times after 66 min could not be analyzed because the mask was 

intermittently unsealed and there were software-related recording errors. The first session of 

finger brushings for Monkey N on day 2 was excluded from the analysis because most trials 

were contaminated by movement and the following section was removed as there was no finger 

brushing session in Monkey W at the equivalent time period. 

The three brushing sessions for each monkey were labeled as the pre-N2O, early, and 

late sessions. In Monkey W, the early session began 23 min after starting N2O, and the late 

session began at 45 min. In Monkey N, the early session began 22 min after N2O, and the late 

session at 38 min. Differences in timing in each session were attributed to roughly 10-min breaks 

between sessions for Monkey W and roughly 5-min breaks between sessions for Monkey N.  

A naïve Bayes classifier with leave-one-out cross validation was used to classify three 

distinct finger brushings as previously described (Schroeder et al., 2016) using unsorted multi-

units. Again, unsorted multi-units (as opposed to sorted multi-units) were used to retain 

information in the neural hash unit. The multi-units used to classify finger brushings all had 

spiking rates greater than 2 Hz. Units were not pre-screened with analysis of variance (ANOVA) 

to include units with potentially small amounts of information. Specifically, during the pre-N2O 

state, the differences in spiking rate between brushed fingers were evaluated with one-way 

ANOVA, and those with a p-value greater than 0.05 were excluded from the analysis.  
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On both days, 4 fingers were brushed and the results of classifying all fingers were included in 

the following analyses. Three fingers for which the effect could be clearly illustrated were 

selected for visualization. In both monkeys, fingers 2, 3, and 5 were selected as this combination 

of fingers in both monkeys had high numbers of modulated units. Because testing periods 

required motionless and cooperative behavior from the monkey, no attempt was made to use the 

exact number of trials each day. 

 

4.3.7 Tuning curves and normalized modulation depth 

Modulation depth for each brushing session was calculated. The modulation depth 

between digits i and j is given below in Eq. 1, where µi denotes the mean firing rate when digit i 

is brushed and σi denotes the standard deviation. The normalized modulation depth (MDN) is 

given in Eq. 2, where MDrand is the calculated modulation depth when the fingers associated with 

the brushing trials are randomly permutated and averaged over 1,000 trials within the finger-

brushing session being analyzed. Normalization was necessary because the spiking rates differed 

across finger brushing trials and because a finger-brushing session with fewer trials would be 

biased toward higher modulation depths (for the same reason that the standard error of the mean 

decreases with an increasing number of samples).  

𝑀𝐷𝑖,𝑗 =
|𝜇𝑖 − 𝜇𝑗|

√𝜎𝑖
2 + 𝜎𝑗

2
 

 

Equation 4-1 

 

𝑀𝐷𝑁 =
𝑀𝐷𝑖,𝑗

𝑀𝐷𝑟𝑎𝑛𝑑
 

 

Equation 4-2 
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 Tuning curves were calculated for all discriminated single units (scores of 3 or 4). The 

mean and standard error of the mean (SEM) for the spiking rate vs. finger brushed are calculated 

for each of these multi-units. 

 

4.3.8 Experimental design and statistical analysis 

The experimental design, including animal descriptions, is detailed in the preceding sections. 

Statistical analyses were performed on a desktop computer using MATLAB. Unless otherwise 

described, statistical significance was deemed as α < 0.05. A one-tail, binomial test was used to 

evaluate whether finger-classification sessions during N2O administration performed better than 

chance rate. The chance rate was 1/3 when brushing 3 equally likely fingers and 1/4 for four 

equally likely fingers. The calculation was made using binocdf.m in MATLAB. When two finger 

combinations were examined for statistical significance (Section 3.3.1), a Bonferroni correction 

was applied to lower the level for statistical significance to 0.025. Otherwise, the level of 

statistical significance was α = 0.05. Fisher’s exact test was used to compare categorical random 

variables. Parameterized statistical tests between two groups were made with a one-sample, two-

tailed t-test. 

 

4.4 Results 

 

4.4.1 Increased spiking rate with administration of N2O 

In motor cortex, spiking rate increased after exposure to N2O. After excluding all 

channels with a spiking rate less than 2 Hz and then spike sorting, Monkey W had 72 sorted 
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multi-units, the left implant of Monkey N had 19 sorted multi-units, and the right implant of 

Monkey N had 24 sorted multi-units. The raw tracings from channel 25 in Monkey W in Fig. 1B 

illustrated the increase spiking rate of a discriminated single unit 15 min into N2O administration 

compared to before N2O administration.  The raster plots in Fig. 1D also illustrate the typical 

increased spiking rate of the total population after 15 min of N2O administration. 

Previous studies suggest that the maximal effect of N2O occurs within 15-20 min of onset 

(Stevens et al., 1983; Schroter et al., 2012), and Fig. 1D shows that the change in baseline 

spiking rate in motor cortex follows this previously reported trend. There is a rapid increase in 

spiking rate within the first 15-20 min of N2O administration. In all cases, the firing rate either 

peaks or plateaus at around 20-30 min. The pre-N2O baseline firing rate was 8.1 Hz for Monkey 

W, 4.7 Hz for the left cortex of Monkey N, and 6.4 Hz for the right cortex of Monkey N. The 

average sorted multi-unit spiking rate was increased from 8.1 ± 0.99 Hz to 10.6 ± 1.3 Hz in 

Monkey W (p < 0.001; two-tailed t-test) and increased from 5.6 ± 0.87 Hz to 7.0 ± 1.1 Hz in 

Monkey N (p = 0.003; two-tailed t-test). The change in firing rate is shown in Fig. 1A. 

Although firing rate generally increased, with a spiking rate increase in 80% of the units 

analyzed, the effect was not uniform. Fig. 1C shows a histogram of change in firing rate in 

individual multi-units. As can be seen in Fig. 1C, the histogram is centered right of zero, 

indicating that, as a group, multi-units showed increased firing rate. In some multi-units, there 

was a substantial increase in firing rate (>10 Hz), while the majority of multi-units increased by 

only a few Hz. Of note, the firing rate decreased in only 11 multi-units (15%) in Monkey W and 

12 multi-units (28%) in Monkey N with N2O. There were no observed differences in the 

waveform morphology in isolated units with increased versus decreased firing rate.  
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Figure 4-1. Influence of nitrous oxide on spiking rate.  

The pre-N2O states are indicated by the purple background and green indicates continuous N2O 

administration. (A) Image of the implanted arrays in primary motor cortex. Central sulcus is 

indicated with a solid black line and asterisks denote the split motor arrays used in this analysis. 

The sensory array was not analyzed.  (B) The raw data from channel 25 shows discriminated 
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single units at 10 min prior to N2O administration (top) and 15 min after beginning continuous 

N2O administration (bottom). The raw data depict increased spiking rate for this channel. The 

blue triangles indicate the time of an action potential. The single-unit insets adjacent to the raw 

data show the mean (in black) and standard deviation (in gray) for spike waveforms from 15 to 5 

min before N2O (top inset) and 10 to 20 min after N2O initiation (bottom inset) and indicate 

waveform stability prior to and during N2O. The y-axis of the inset is in microvolts (µV). (C) 

One-s raster of Monkey W plot for 1 min before (pre-N2O, purple) and 15 min after the start of 

N20 administration (green) is given to illustrate representative results. (D) The trend of firing rate 

(FR) is depicted for each monkey. The spiking rate is normalized by the baseline firing rate 

before N2O administration. The pre-N2O baseline firing rate was 8.1 Hz for Monkey W, 4.7 Hz 

for the left cortex of Monkey N, and 6.4 Hz for the right cortex of Monkey N. The number of 

sorted multi-units for each day, N, is indicated with each subplot. The dashed lines indicate when 

N2O was initiated. (E) The bar plot depicts the change in spiking rate when combining both days 

for Monkey W and Monkey N. There is a statistically significant increase in spiking rate for both 

monkeys, as indicated by the asterisk (p < 0.001 for Monkey W and p = 0.003 for Monkey N). 

(D) The histograms depict how the spiking rate of sorted multiunits changes with N2O 

administration. For both monkeys, the histogram is shifted to the right, indicating an increase in 

spiking rate.  

 

4.4.2 N2O modulation of beta and gamma band frequencies 

In both monkeys, N2O administration increased spectral power at frequencies within 20-

45 Hz that included both beta (15 – 30 Hz) and low gamma band (30 – 70 Hz). Spectrograms for 

Monkey W and Monkey N (right implant) are shown in Figs. 2A and 2B, respectively, to 

illustrate the time evolution of spectral changes with N2O. Power in the beta and low-gamma 

band increases beginning around 5-10 min in both animals. Fig. 2C and 2D depict, respectively, 

the power spectra for Monkey W and the right implant of Monkey N chosen at the time of 

maximal effect from the spectrogram, 10 – 20 min after beginning administration. The 

comparison of the power spectra before and during N2O also highlights the increase in spectral 

power between 20 and 45 Hz. Although times with movement are not excluded from the 

spectrogram and spectrum, the results are consistent with the results of the power spectra when 

instances of motor movement are excluded. 
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Figure 4-2. Increased high-frequency power during nitrous oxide.  

Averaged spectrograms for 55 channels in Monkey W (A) and for 21 channels of the right cortex 

implant in Monkey N (B). The corresponding averaged power spectrum from 15 to 5 min before 

N2O (purple) and 10-20 min into N2O administration for Monkey W (C) and Monkey N (D). 

Standard error of the mean is displayed with dashed lines.  

 

 

4.4.3 N2O degrades but does not eliminate classification of finger brushings 
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4.4.3.1 Population analysis  

To evaluate information processing associated with spiking and spectral changes, we 

evaluated the ability to decode sensory information in motor cortex, which is known to represent 

somatosensory information transferred from S1. Finger brushings were classified using M1 

neurons (Fig. 3A). As shown in Fig. 3B, these somatosensory stimuli were classified at three 

times: pre-N2O (purple), early during N2O (blue) and late (red). To prevent introduction of bias, 

classification was performed on all unsorted multi-units with a firing rate greater than 2 Hz in all 

finger-brushing sessions. This selection process left 53 units in Monkey W and 19 units in 

Monkey N. Across trials in Monkey W, there were statistically significant differences in spiking 

rate: pre-N2O, at 13.41 ± 0.27 Hz and N2O at 19.20 ± 0.27 (p < 0.001; t-test). Across all trials in 

Monkey N, there were also statistically significant differences: pre-N2O at 8.82 ± 0.19 Hz and 

N2O at 11.35 ± 0.19 (p < 0.001; t-test). 

In both monkeys and prior to N2O, brushings of four fingers could be classified better 

than chance (chance level at 0.25). In Monkey W, the proportion of correct classification was 

0.50 ± 0.11 (p = 0.014; binomial test, 20 trials). In Monkey N, brushings of four fingers were 

correctly classified at 0.43 ± 0.067 (p = 0.003; 56 trials). To increase the effect for visualization, 

the confusion plots shown in Fig. 3C illustrate the distribution of correct classification using the 

same three fingers, D2, D3, D5. For fingers D1, D2, and D3, there were 16 modulated units in 

Monkey W and 8 in Monkey N (screened with ANOVA test using α = 0.05). 

To determine whether N2O impacted the encoding of somatosensory information in M1, 

the Naïve Bayes classifier trained in the pre-N2O session was used to classify finger brushings 

during N2O administration. For the illustrative fingers (D2, D3, D5), the proportion of correct 

finger classifications when combining early and late drops to 0.33 ± 0.06 (p = 0.54) in Monkey 
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W and 0.43 ± 0.06 in Monkey N (p = 0.05), illustrated in Fig. 3D. However, the correct 

classification improves when the Naïve Bayes classifier is trained using trials from the current 

brushing session under N2O (using leave-one-out cross validation). For fingers D2, D3, and D5, 

the percent correct improved to 0.49 ± 0.06 for both Monkey W (p = 0.005) and Monkey N (p = 

0.004), and the confusion matrices are shown in Fig. 3E. For reference, the correct classification 

using four fingers was 0.38 ± 0.05 for Monkey W (p = 0.005) and 0.30 ±0.05 for Monkey N (p = 

0.10). Combining trials between both monkeys, there was a statistically significant drop in the 

correct finger classifications from 0.50 ± 0.06 before N2O to 0.34 ± 0.03 during N2O (p = 0.018). 

Thus, N2O administration degrades but does not eliminate the transfer and/or representation of 

somatosensory content in M1.   
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Figure 4-3. Transient degradation of somatosensory information in motor cortex.  
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(A) Experimental setup consisted of random stimulation of individual fingers at 2-Hz strokes in 

trials of 5-s duration. (B) Trends of sorted multiunit firing rate for each monkey. The shaded 

regions highlight the times when fingers were decoded to compare performance in pre-N2O state 

(purple) and early (blue) and late (red) N2O administration. (C) Confusion plots for each 

monkey illustrate performance of the Naïve Bayes classifier when classifying finger brushings in 

the pre-N2O state. The vertical axis is the true finger brushed while the horizontal axis is the 

decoded finger. The percent correct is given above each respective plot. Tr, number of trials 

classified. The insert to the right of the confusion plots is the legend. (D) Confusion plot during 

N2O (combined early and late brushing sessions) when the classifier is trained using data from 

the pre-N2O finger-brushing session. (E) Confusion plot during N2O (combined early and late 

sessions) when training the classifier on the current session (early and late) using leave-one-out 

cross validation. (F) Normalized modulation depth (MDN) for all multi-units in the pre-N2O 

(purple) and N2O (green) brushing sessions. The MDN of multi-units during N2O sessions was 

averaged for both the early and late sessions. W denotes Monkey W, and N denotes Monkey N. 

Each filled circle represents one multi-unit. The horizontal bar (in black) and error bars represent 

the mean and standard error of the mean. The asterisk (*) denotes statistical significance. The y-

axis is in log scale to better visualize the data. (G) The mean modulation depths for the pre-N2O 

(purple), early N2O (blue), and late N2O (red) finger-brushing sessions. The asterisks and error 

bars indicate the mean and standard error of the mean. The solid line denotes Monkey W and the 

dashed line denotes Monkey N. Panel A is adapted and reprinted (Schroeder et al., 2016). 

 

4.4.3.2 Multi-unit modulation depth analysis 

Although the encoding of somatosensory information is clearly affected by N2O, the 

effect on individual multi-units requires separate analysis. The normalized modulation depth 

(MDN) of all multi-units is shown in Fig. 3F, where MDN < 1 corresponds to no modulation. In 

both monkeys, the mean MDN is greater before than during N2O (p = 0.005). MDN decreases 

from 1.63 ± 0.09 to 1.40 ± 0.10 in Monkey W and from 1.76 ± 0.24 to 1.38 ± 0.17 in Monkey N. 

Despite this drop, combining the number of modulated channels (MDN > 2) across both channels 

revealed an average of 11 modulated units per N2O brushing session. However, this is less than 

the 22 modulated units across both monkeys during the pre- N2O brushing session (p = 0.046). 

When the well-modulated units (MDN > 2) are removed, the classification of D2, D3, and D5 

during N2O (as shown in Fig. 3E) drops to 0.43 ± 0.06 in Monkey W (p = 0.054) and to 0.26 ± 

0.05 in Monkey N (p = 0.92) and neither was statistically better than chance. 
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During N2O, there was no correlation between the modulation depth and the change in 

firing rate during N2O (R2 < 0.001 , p = 0.93) – meaning that units with large increases in firing 

rate were not more likely to have a low MDN. As will be illustrated with discriminated single 

units in the next section, some units lost modulation despite no change in spiking rate and some 

units maintained modulation despite increased firing rate.  

When the early and late N2O finger-brushing sessions are separated (Fig. 3G), MDN does 

not continue to decrease with continued N2O administration, despite increasing concentration of 

N2O in the brain. The modulation depth, in fact, increases although the increase is not 

statistically significant (p = 0.28).  

 

4.4.3.3 Discriminated single unit examples 

To better understand how individual neurons representing somatosensory information are 

affected by N2O, we examined the tuning curves of the discriminated single units for each 

monkey by comparing the pre-N2O with the early and late epochs. In both monkeys, 12 

discriminated units were modulated (ANOVA with α < 0.05). Four illustrative examples of the 

tuning curves for modulated single units are given in Fig. 4A. The curves illustrate the mean 

firing rate when one of the three fingers (D2, D3, and D5) was brushed. As mentioned above, 

despite the increased firing rate, these units retained their tuning for finger brushings. In the raw 

voltage tracings in Fig. 4B, the example for Channel 5 in Monkey N illustrates how brushing D5 

continues to evoke a higher firing rate than D3 despite an increased baseline firing rate. 

Additionally, there were examples where fingers not tuned in the pre-N2O brushing session 

became tuned to finger brushings, as in channel 89 in Monkey W. 
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As described in the preceding section, tuning is lost in many single units during N2O 

administration (Fig. 4C). This loss in tuning occurred both in units with increased firing rate 

(channel 82, Monkey N) and in units with similar firing rates as the pre-N2O brushing session 

(channel 96, Monkey W). Raw tracings of channel 82 in Monkey N illustrate how single-unit 

activity does not clearly differentiate the brushings of finger D3 and D5 during N2O, although 

differentiable in the pre-N2O session. Thus, regardless of changes in firing rate, many units were 

no longer modulated during N2O. 
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Figure 4-4. Discriminated single-unit tuning curves.  

(A) Tuning curves for 4 modulated (ANOVA with α < 0.1), discriminated single units during 

N2O administration. Single units are presented on the left for Monkey W and on the right for 

Monkey N. Each single unit is labeled with the channel on the array, the average waveform 

tracing (black line = mean, shaded gray = standard deviation), and the tuning curve. The tuning 

curve depicts the mean firing rate of the single unit as a function of the finger brushed both in the 
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pre-N2O period (purple) and during N2O (green). The error bars denote the standard error of the 

mean. The p-values calculated with one-way ANOVA are given for both the pre-N2O and N2O 

tuning curves. (B) Raw voltage tracings for the modulated discriminated single unit in channel 5 

for Monkey N in the pre-N2O (purple) and N2O (green) periods. In each pane, the top tracing 

resulted when the second digit (D2) was brushed and the bottom plot resulted when the fifth digit 

(D5) was brushed. (C) Four discriminated single units that were originally modulated (ANOVA 

with α < 0.1) in the pre-N2O period but lost modulation during N2O administration. (D) Raw 

voltage tracings illustrating a typical-finger brushing trial for channel 82 in Monkey N. 

 

4.5 Discussion 

We have demonstrated, that with continuous inhalation of N2O: (1) the spiking rate of 

motor cortex neurons increases, (2) high-frequency power (in beta and low gamma bands) 

increases, and (3) measurable somatosensory information transferred to the motor cortex persists 

but is degraded while a smaller number of persistently tuned units remain. The change in 

somatosensory encoding in M1 is explained by a loss of modulated multi-units and a general 

decrease in modulation across the population. However, there is not a strong link between the 

increase in single unit activity and its modulation depth under N2O suggesting a possible 

dissociation of representation and changes in firing rate.  

 

4.5.1 Time-frequency dynamics 

Only a paucity of data exists concerning the effects of NMDA-receptor antagonists, like 

N2O, on mesoscopic neural networks. Recently, canonical agents that potentiate GABA, like 

propofol and isoflurane, have been shown to decrease spiking rate in cortical mesoscopic 

networks (Lewis et al., 2012; Ishizawa et al., 2016; Wenzel et al., 2019). Wenzel and colleagues 

administered isoflurane to achieve various depths of anesthesia and found a depression of 

spiking activity in somatosensory and visual cortex that is inversely related to anesthetic depth 

(Wenzel et al., 2019). Lewis and colleagues administered bolus doses of propofol to induce loss 
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of consciousness and observed decreased spiking activity in temporal lobes (Lewis et al., 2012). 

Ishizawa and colleagues administered propofol at a continuous rate to induce loss of 

consciousness and also observed decreased spiking activity in somatosensory and frontal ventral 

premotor cortices with loss of consciousness (Lewis et al., 2012). NMDA-receptor antagonists 

are well known to variably modulate neuronal firing rate, depending on neuron type and 

anatomic location (Patel and Chapin, 1990; Homayoun and Moghaddam, 2007; Wang et al., 

2013; Schroeder et al., 2016).  

Unlike GABA-potentiating medications, N2O, an NMDA-receptor antagonist, has 

previously been observed to increase spiking rate in reticular activating system but decrease 

spiking rate of somatosensory thalamic relay neurons (Kawamoto et al., 1990). In our study, the 

spiking rate of motor cortex neurons increased with subanesthetic N2O. The mechanism for the 

observed increase in spiking rate is likely due to preferential antagonism of NMDA receptors on 

inhibitory interneurons, resulting in a disinhibition of pyramidal neurons (Homayoun and 

Moghaddam, 2007). In contrast to N2O producing increased spiking rates of M1 neurons, 

previously reported spiking rate of M1 neurons remained unchanged in nonhuman primates at 

anesthetic doses of ketamine, also an NMDA-receptor antagonist (Schroeder et al., 2016). 

However, at subanesthetic doses of ketamine, Mori et al. previously showed that multi-unit 

activity increased in the thalamus and reticular activating system of a cat (Mori et al., 1971). 

Nitrous oxide has spectral properties unlike typical anesthetics potentiating GABA. With 

microarray recordings, Ishizawa and colleagues showed gamma and high beta oscillations lasting 

a few minutes with propofol-induced loss of consciousness, followed by slow frequency delta 

oscillations (Ishizawa et al., 2016). In particular, after beginning propofol infusion but prior to 

loss of consciousness (i.e. subanesthetic doses), spectral plots suggest an increase in high beta 
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(18-25 Hz) in S1 and in low gamma (25-34 Hz) in ventral pre-motor cortex that is similar to our 

spectral findings with subanesthetic N2O. Lewis and colleagues likewise found the appearance of 

slow (< 1 Hz) oscillations in local field potentials after loss of consciousness induced by 

propofol (Lewis et al., 2012). In spectral analyses of anesthetic doses of ketamine, Lee and 

colleagues showed a relative increase in gamma band and decrease in beta band power in 

frontal/parietal EEG data (Lee et al., 2013). Schroeder and colleagues demonstrated the same 

trends in LFPs of S1 and less obvious trends in M1 (Schroeder et al., 2016). Likewise, 

Ballesteros et al. found a gradually increase in high beta, low gamma power in ventral premotor 

cortex, S1, and secondary somatosensory cortex (Ballesteros et al., 2020). Although there are no 

mesoscopic LFP spectral data with N2O, previous spectral analyses with EEG data show that 

N2O modulates high-frequency power both up and down (Yamamura et al., 1981; Rampil et al., 

1998; Foster and Liley, 2011, 2013; Pelentritou et al., 2019). Our finding of increased high-

frequency (>20-45 Hz) power in motor cortex is similar to the increased gamma power of 

Yamamura et al., who reported a peak at 34 Hz with 70% N2O (Yamamura et al., 1981), and 

Rampil and colleagues, who reported dual peaks at 40-50 and 70-110 Hz with 50% N2O (Rampil 

et al., 1998). The gamma power differences in the literature may be attributed to regional 

variation or to the lower spatial resolution of EEG leads, as suggested by others (Ray et al., 2008; 

Eagleman et al., 2018).  

 

4.5.2 N2O Degrades M1 Somatosensory Representation  

Anesthetic agents are diverse in terms of their molecular targets and effect on neuronal 

activity. Despite these differences, they all share a similar functional property of reversibly 

suppressing consciousness at anesthetic doses or suppressing cognition at subanesthetic doses. 



 

 83 

The mechanism by which GABAergic anesthetics disrupt neural function appears to be clear—

they potentiate inhibition and reduce neural activity (Boveroux et al., 2010; Schrouff et al., 2011; 

Hudetz, 2012). However, it is not clear how non-GABAergic medications affect consciousness 

or cognition. As discussed above, the NMDA-receptor antagonists, ketamine and N2O, increase 

high-frequency oscillations and neural firing rates. It has been suggested that, while GABAergic 

drugs depress information transfer, non-GABAergic drugs like ketamine and N2O disinhibit 

pyramidal neurons leading to dysregulated activity that disrupts information processing 

(Homayoun and Moghaddam, 2007; Icaza and Mashour, 2013). Our data show that there is 

decreased somatosensory content that is not simply explained by interference from the increases 

in firing rate because firing rate changes were not correlated with modulation depth, i.e., neuron 

tuning. Thus, our data in nonhuman primate cortex do not support the hypothesis of a causal link 

between increased neural firing patterns and disruptions in information transfer/representation. 

 

4.5.3 Limitations 

One limitation of this study is that only motor cortex was studied. However, motor cortex 

was chosen to emphasize the effects of corticocortical somatosensory pathways, although other 

somatosensory pathways exist, including thalamocortical, or corticothalamocortical pathways 

(Petrof et al., 2015; Mo and Sherman, 2019). However, sensory brushings used herein have been 

previously validated as a model of S1 to M1 information transfer. Furthermore, great care was 

taken to avoid skin indentation with finger brushings and motor movements were discarded to 

reduce the contribution of thalamocortical inputs. The delineation of a more detailed effect of 

N2O on specific somatosensory afferents requires further study. Finally, a possible confounder to 

interpreting the drop in accuracy of finger classification would be if an alternate process (e.g., 
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agitation, fear) interfered with somatosensory content. However, preliminary control tests did not 

show significant differences in the number of finger brushings correctly classified with or 

without the face mask. 

 

4.6 Conclusions 

In this study, we investigated the effects of subanesthetic concentrations of N2O on 

mesoscopic networks in primary motor cortex of the nonhuman primate. Both spiking rate and 

high-frequency spectral content of motor cortex neurons increased in response to N2O. With 

ongoing N2O, measurable somatosensory content and number of modulated units in M1 decrease 

but are not eliminated. The shift to faster dynamics is not clearly associated with the 

somatosensory representation on a neuronal level and suggest other mechanisms of N2O that 

alter perception. 
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Chapter 5.  Classifier Using Pontine Radial Diffusivity and Symptom Duration Accurately 

Predicts Recurrence of Trigeminal Neuralgia after Microvascular Decompression: A Pilot 

Study and Algorithm Description 

 

A version of this work was submitted for publication. 

 

 

5.1 Abstract 

OBJECTIVE:  To evaluate the utility of pontine-segment diffusion-tensor MRI radial diffusivity 

(DTI RD), a known biomarker for demyelination and trigeminal neuralgia (TN) subtype, to 

predict TN recurrence following microvascular decompression (MVD). 

METHODS:  Pontine-segment trigeminal tract RD was computationally extracted in blinded 

fashion and normalized to background pontine RD. Following validation against published 

results, the relationship of normalized RD to symptom duration (DS) was measured. Both 

parameters were then introduced into machine-learning classifiers to group patient outcomes as 

TN remission or recurrence. Performance was evaluated with leave-one-out cross-validation to 

calculate accuracy, sensitivity, specificity, and receiver operating characteristic curves. 

RESULTS:  The study population included 22 patients with type 1 TN (TN1), of whom 13 had 

suitable trigeminal root visualization on DTI. There was a negative correlation of normalized RD 

to preoperative symptom duration (p = 0.035, R2 = 0.20). When pontine-segment RD and DS 

were included as input variables, two classifiers predicted pain-free remission versus eventual 

recurrence with 85% accuracy, 83% sensitivity, and 86% specificity (leave-one-out cross-

validation; p = 0.029).  
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CONCLUSIONS:  Pontine-segment RD and DS accurately predict MVD outcomes in TN1. Use 

of a classifier may allow more accurate risk stratification for neurosurgeons and patients 

considering MVD as a treatment for TN1. These findings provide further insight into the 

relationship of pontine microstructure, represented by RD, and the pathophysiology of TN. 

 

5.2 Introduction 

Trigeminal neuralgia is a severe facial pain syndrome associated with vascular compression 

of the trigeminal root at or around the root entry zone (REZ) (Hilton et al., 1994; Love and 

Coakham, 2001; Devor et al., 2002). In well selected patients with classic trigeminal neuralgia 

(Type 1, TN1), the severe lancinating pain is readily treated with surgical intervention (Burchiel, 

2003; Maarbjerg et al., 2014). Although a variety of interventions exist, the definitive surgical 

treatment has been microvascular decompression (MVD), which leads to a pain-free outcome in 

76% of patients at mean follow-up of 1.7 years (Holste et al., 2020). However, several studies 

indicate that the pain-free cohort drops to 44-64% after 10 years (Burchiel et al., 1988; Barker et 

al., 1996; Wang et al., 2017; Hardaway et al., 2019), and operative decompression of the 

trigeminal root carries significant risk (Hanakita and Kondo, 1988). To stratify patient benefits 

for MVD, some have proposed preoperative scoring algorithms (Hung et al., 2017; Hardaway et 

al., 2019). For example, Hardaway and colleagues assign a score from 0-3 using pain type, 

presence of vascular compression, and compression severity, and find pain-free response rates of 

36%, 43%, 56%, and 67% for groups 0, 1, 2, and 3, respectively (Hardaway et al., 2019). In a 

recent meta-analysis, Holste and colleagues reported that pain-free predictors include disease 

duration, arterial compression, superior cerebellar artery involvement, and a TN1 classification 

(Holste et al., 2020). 
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Recently, diffusion tensor magnetic resonance imaging (DTI) has proven useful in the 

evaluation of TN patients. DTI studies reveal differences in anatomic microstructure between the 

affected and unaffected nerve (Herweh et al., 2007; Fujiwara et al., 2011; Leal et al., 2011; Chen 

et al., 2012; Liu et al., 2013; DeSouza et al., 2014; Lutz et al., 2016; Neetu et al., 2016), and 

these differences can normalize after successful treatment (Unal et al., 2017; Zhang et al., 2018; 

Chai et al., 2019; Leal et al., 2019). Hung and colleagues used DTI measurements to stratify 

patients undergoing Gamma Knife and MVD into responders and non-responders (Hung et al., 

2017). In that study, DTI measurements from the pontine segment and trigeminal root informed a 

linear discriminant analysis classifier to sort TN1 patients into responders and non-responders at 

a statistically significant level and with 71% accuracy. Furthermore, the DTI measurement of 

radial diffusivity (RD) has also been shown to differ between trigeminal neuralgia subtypes 1 

and 2, which respond differently to MVD (Willsey et al., 2019). RD represents the diffusion of 

water perpendicular to the direction of maximal diffusion, which is measured by axial diffusivity 

(Alexander et al., 2007). Increases in RD - with constant axial diffusivity – is often related to 

demyelination (Song et al., 2002). Given the known role of demyelination in the 

pathophysiology of trigeminal neuralgia (Love and Coakham, 2001) and previous studies that 

suggest a link between RD and outcomes (Willsey et al., 2019), we hypothesized that RD may 

contain prognostic information. 

 In this report, we investigate using RD in a novel classifying algorithm to predict 

remission (pain-free outcome) and recurrence in a cohort of 13 TN1 patients undergoing MVD. 

We developed a computer-assisted approach to locate and to measure pontine-segment 

trigeminal RD. RD and symptom duration informed machine-learning algorithms to assign each 

patient into remission or recurrent pain groups. Compared to the earlier study (Hung et al., 
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2017), this study not only demonstrates the feasibility of these classifiers in MVD patients but 

also achieves improved sensitivity and specificity in predicting pain-free response from symptom 

duration and preoperative RD. 

 

5.3 Materials and Methods 

5.3.1 Subject Selection and Classification 

The study was approved by the University of Michigan Institutional Review Board 

(HUM00027829). A total of 29 patients with TN1 without comorbid pain symptoms underwent 

high-resolution diffusion-tensor MRI (described below). TN1 patients were defined as those 

where the episodic/lancinating pain occurred more often than constant pain (> 50% episodic 

pain) (Burchiel, 2003). Five patients were excluded from the study for inadequate visualization 

of the exiting trigeminal root on imaging, and two patients were excluded for lack of clinical 

details in the electronic medical record. The remaining 22 patients comprised the TN1 group, 

which had 15 females. The mean age ± the standard error of the mean (S.E.M.) was 60.1 ± 3.4 

years. To evaluate the novel semi-automated technique to calculate pontine-segment RD, the 

study group included an additional 8 patients with TN2, 6 of whom had adequate trigeminal root 

visualization on MRI (all female, mean age of 60.1 ± 6.5 years), as well as 15 patients imaged 

for non-TN conditions  to serve as controls (13 females, mean age of 57.5 ± 3.9 years). Control 

subjects included patients with headaches, fibromyalgia, migraines, rheumatologic disease, and 

myoclonus of tensor tympani/stapedius.  

Of the TN1 group of 22 patients, a total of 13 patients (8 females, mean age of 58 ± 3.5 

years) underwent MVD performed by the senior authors (P.G.P. and O.S.). The other 9 patients 

did not undergo MVD: 3 underwent radiofrequency ablation, 2 underwent glycerol injection, 2 
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were treated conservatively, 1 pursued treatment at an outside institution, and 1 was lost to 

follow-up. Patients were labeled as recurrent for any residual or recurrent pain and were labeled 

as remission only if completely free of pain. To avoid confounding the analysis with subjective 

pain scores, a strict pain-free requirement is used for those in remission, i.e., Barrow Neurologic 

Institute pain score of 1. This approach is typical of other studies evaluating the relationship of 

DTI and treatment outcomes (Hung et al., 2017). In this observational study, routine patient 

follow-up occurred at 6 weeks and 6 months, and patients were also referred back to the 

neurosurgery clinic at later time points for evaluation if pain recurred.  

 

5.3.2 Measuring Normalized Pontine Trigeminal Radial Diffusivity  

Diffusion tensor MRI imaging was obtained on a 3T system (Achieva Quasar Dual, 

Philips, Andover, MA) with maximum gradient amplitude = 80 mT/m, rise time = 0.80 ms, and 

slew rate = 100 T/m/s. DTI protocol included an echo planar single–shot technique, TR = 4956 

ms, TE = 62 ms, flip angle = 90°, 16 motion probing gradient orientations, and b = 800 s/mm2 

using 2x image averaging. Two-mm axial slices were obtained with a parallel imaging technique 

(sensitivity encoding [SENSE]). A 112 x 112 matrix with isotropic voxels was employed to 

record the measurements. 

MRI images were loaded first into Analyze software (AnalyzeDirect Inc., Overland Park, 

KS), and the axial slice with the best view of the trigeminal root exiting the brainstem was 

manually selected. This axial slice was then transferred to MATLAB (MathWorks, Natick, MA), 

as shown in Fig. 1A. A MATLAB subroutine was created to allow the user to place a 

parameterized line on the dark ridge at the pontine edge, as shown in Fig. 1B. The root entry 

zone is defined as the portion of the root between where it exits from the brainstem to the distal 
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point where the central myelination transitions to peripheral myelination.(Peker et al., 2006) 

Since our analysis was performed only on fibers within the brainstem, we denote this region as 

the pontine segment. Furthermore, to ensure analysis of pontine segment fibers that exit with the 

trigeminal root, patients without a well-visualize root exiting the brainstem were excluded. To 

control for potential patent-to-patient variations in measurement, the peak value of RD along this 

parameterized line was then selected and normalized by the mean background level of the pons 

(Fig. 1C). This normalized peak RD value was denoted as PRD, and the remaining analysis was 

conducted using this value. The protocol described in this section allowed for a semi-automated 

method for extracting PRD to reduce the variability caused by human measurement. 

 
 

Figure 5-1. Workflow for calculating PRD and predicting response.  

(A) Raw radial diffusivity image from diffusion tensor imaging (DTI) MRI. (B) Raw radial 

diffusivity MRI depicting how the image was parameterized. The solid white thin line indicates a 

spline fit curve that estimates the position of the dark ridge at the edge of the pons. The solid 

white thick line indicates the gap between the dark ridge where the trigeminal fibers likely exit. 

The fine white dots in the pons indicate the voxels used to calculate the average radial diffusivity 

in the pons. (C) The radial diffusivity normalized by the pontine background level. The 

normalized peak radial diffusivity value, PRD, is indicated by the red dot. (D) The flow chart 

illustrates the workflow for extracting the value of PRD, using a classifier to convert this to a 

score, SC, comparing SC to a threshold, τ, to make a prediction of either “Remission” or 

“Recurrence”. 
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5.3.3 Validation of PRD Metric against Previously Published Results 

The current method differs from our previously published method, which examined DTI 

parameters in a small region of interest in the pontine segment of the trigeminal tract.(Willsey et 

al., 2019) To validate this new method, we compared PRD for the 22 TN1, 6 TN2, and 15 control 

patients to verify that PRD was elevated in the TN1 group compared to TN2 and control patients, 

as previously reported.(Willsey et al., 2019) PRD ipsilateral to the pain was also compared with 

PRD contralateral to the pain to verify that ipsilateral was greater than contralateral PRD. Authors 

were blinded to diagnosis and sidedness of the trigeminal pain. TN1 patients, TN2 patients, and 

controls were randomly mixed together prior to PRD determination. 

 

5.3.4 Machine Learning Classification and Cross-Validation 

To assess whether preoperative PRD predicts treatment response, two machine learning 

classifiers were used to group patients as remission or recurrence. Both PRD and the duration of 

symptoms (DS) – as PRD was found to be correlated with DS – were input into each classifier. The 

objective for the machine-learning classifiers was to create a linear boundary in two-dimensional 

space (DS versus PRD) between remission and recurrence groups. We relied on the linear least 

squares classifier (LLSC) to provide this linear delineation to avoid overfitting our data with 

more sophisticated machine learning classifiers and so that results generalized to higher numbers 

of patients. The LLSC can be calculated with a closed-form expression and is equivalent to the 

linear discriminant analysis classifier (used by Hung and colleagues (Hung et al., 2017)) when 

there are only two classes with equal numbers of patients (Hastie et al., 2009). The LLSC is 
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mathematically described by Eq. 5-1 where w is calculated according to the minimization in Eq. 

5-2. 

𝒚̂𝒊 = 𝒔𝒊𝒈𝒏(𝒘𝑻𝒙𝒊) 

 

Equation 5-1 

 

𝐦𝐢𝐧𝒘[𝑱(𝒘)] = 𝐦𝐢𝐧𝒘 [∑(𝒚𝒊 − 𝒘𝑻𝒙𝒊)
𝟐

𝑵

𝒊=𝟎

] 

Equation 5-2 

 

N is the number of patients, xi is a 3x1 array (1,Ds
(i),PRD

(i)), Ds
(i) is the symptom duration of the ith 

patient, PRD
(i) is the normalized peak radial diffusivity of the ith patient, and yi is 1 for remission 

and -1 for a recurrence. The weights, w, for the LLSC are calculated directly in Python using the 

function LinearRegression in the sklearn.linear_model toolbox. Detailed discussions of the 

LLSC are provided in Section 4.2 by Hastie and colleagues (Hastie et al., 2009) or in Section 5.8 

by Duda and colleagues (Duda et al., 2000). 

To ensure that performance was not entirely dependent on the choice of classifier, a 

support-vector machine (SVM) was also used to classify patients (Hastie et al., 2009). Similar to 

the LLSC, SVM was chosen to avoid overfitting the data. Unlike LLSC, SVM attempts to 

minimize errors at a boundary instead of allowing all the data to influence calculation of the 

boundary. The width of the border zone is parameterized by a parameter, C, and high C values 

correspond to narrow border zone widths. Normally, C is determined empirically through cross-

validation, but this was not possible because of our limited sample size. We chose the value to be 

high as we expected the two classes of remission and recurrence to be clustered close together. 

The SVM weights were calculated in Python using the svm subroutine from sklearn toolkit. 

Detailed review of the classifiers is described by Hastie and colleagues (Hastie et al., 2009). 
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 The performance of each classifier was evaluated with leave-one-out cross-validation and 

consisted of (1) removing one patient, (2) generating two classifiers with the remaining 12 

patients, and (3) classifying the removed patient into either the remission or recurrent group. This 

served to control the retrospective nature of the study and approximate prospective results. 

Sensitivity and specificity with leave-one-out cross-validation were then calculated on this data 

set. Finally, ROC curves were also generated with leave-one-out cross-validation. 

 

5.3.5 Statistical Analysis 

A p-value of 0.05 was used for statistical significance. Statistical significance between 

TN1, TN2, and control groups was conducted with one-way ANOVA analysis, and 

homoscedasticity was verified with Bartlett’s test. Post-hoc comparisons between groups was 

conducted with Tukey’s honestly significant difference test. Python functions used were: 

statsmodels.stats.multicomp.tukeyhsd, scipy.stats.f_oneway, and scipy.stats.bartlett. Statistical 

differences between the ipsilateral and contralateral pontine segment in TN1 patients was 

evaluated with a paired, two-tailed t-test using scipy.stats.ttest_ind. 

Parameterized random variables (symptom duration and patient age) were compared with 

PRD using a univariate regression analysis to determine a p-value. The PRD values for gender was 

evaluated with a two-sided, two-sample t-test to determine a p-value. Only one random variable, 

symptom duration, had a p-value less than 0.1, so a univariate regression analysis was used to 

evaluate the relationships between PRD and symptom duration. The p-values for linear regression 

and t-tests were calculated with stats.linregress and stats.ttest_ind from the scipy Python library.  

The statistical significance of the classifiers was evaluated with Fisher’s exact test using 

stats.fisher_exact function from the scipy Python library. Post-hoc comparisons between gender, 
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age, and symptoms duration in remission and recurrence groups were made with either a paired, 

two-tailed t-test or Fisher’s exact test. To assess the relative contributions of the independent 

variables in the models predictive power, the outcome data were regressed over the independent 

variables (PRD and symptom duration) using a generalized linear-least squares model. The 

calculation was performed in python using the gls function in the statsmodels.formula.api 

toolbox. 

Receiver-operating characteristic (ROC) curves and area under the curve (AUC) were 

calculated. The x-axis of the ROC curve illustrates the false positive rate (FPR), which equals 1 

minus the specificity. The y-axis of the ROC curve illustrates the true positive rate, which equals 

the sensitivity. The ROC curves illustrate, for range of operating points, the sensitivity and 

specificity. ROC curves were calculated in Python programming language (version 3.7.3, Python 

Software Foundation, http://www.python.org/) using the roc_curve and auc subroutines in the 

sklearn.metrics toolbox. 

 

5.4 Results 

5.4.1 Surgical Outcomes for TN1 Patients 

 Of 13 TN1 patients undergoing MVD, there were 6 patients in remission (46%) and 7 

with recurrent pain (54%). Mean recurrence time of was 1.7 yrs and a maximum recurrence time 

was 8 yrs. Two patients with recurrent pain were noted to have venous instead of arterial 

compression at the time of surgery, which may have contributed to a suboptimal response in 

these two patients. These results are similar to previous reports of long-term success after MVD 

ranging from 44% to 64% at 10 years using a strict pain-free criterion for success (Burchiel et 

al., 1988; Barker et al., 1996; Wang et al., 2017). Patient and outcome demographics are given in 

http://www.python.org/
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Table 1. There were no statistically significant differences in a post-hoc comparison between 

patients in remission and recurrence groups with respect to gender (p = 0.27), age (p = 0.08), or 

symptom duration (p = 0.23). 

 

Patient Group Sex 

Age 

(yrs) 

Pain 

Distribution 

Pain 

Duration 

(yrs) 

Recurrence 

Onset (yrs) 

1 Remission F 72 V1/2/3 4 - 

2 Remission F 45 V1 1 - 

3 Remission F 67 V2/3 0.5 - 

4 Remission M 76 V1/2/3 6.5 - 

5 Remission F 66 V2/3 7 - 

6 Remission F 62 V2/3 7.5 - 

7 Recurrence M 37 V1/2 3 0.1 

8 Recurrence F 51 V2/3 2 0.1 

9 Recurrence M 63 V1/2 10 6 

10 Recurrence F 67 V2/3 12.5 4 

11 Recurrence F 49 V2/3 11 0.8 

12 Recurrence M 62 V1 1.5 2 

13 Recurrence M 38 V1/2/3 10 0.1 

 

Table 1. Outcome demographics 
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5.4.2 Updated PRD Calculation Differentiates TN1 from TN2 and Pain-Free Controls 

In our previous work, we found differences in RD between TN1 and TN2 patients 

(Willsey et al., 2019). To ensure that our new method for extracting radial diffusivity still allows 

differentiation between TN1 and TN2, PRD was compared for 22 TN1 patients, 6 TN2 patients, 

and 15 controls in order to validate the updated method for calculating PRD. Fig. 2A illustrates 

the values of PRD for patients with TN1, TN2, and controls. As previously reported, PRD was 

different between the groups (one-way ANOVA, p < 0.001). The post-hoc analysis revealed PRD 

for TN1 (1.57 ± 0.09) was greater than for TN2 (1.11 ± 0.14, p = 0.008) and for controls (1.05 ± 

0.06, p = 0.001). The ROC curve to differentiate TN1 from controls is given in Fig. 2B, and the 

AUC is 0.88. To serve as an internal control, PRD was also compared ipsilateral and contralateral 

to the TN pain. As expected from previous findings, PRD ipsilateral to the pain (1.53 ± 0.09) was 

greater than contralateral to the pain (1.21 ± 0.08; p = 0.010, t-test). 
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Figure 5-2. Comparing PRD in TN1 to TN2 plus controls.  

(A) Illustrates the values of PRD for the TN1, TN2, and control groups (n = 22, 6, and 15, 

respectively). The horizontal blue ticks indicate the value of PRD for an individual patient. The 

red dot and error bars indicate the mean and standard error of the mean. for the group, 

respectively. The asterisk denotes statistical significance. P-values are given in the table using 

two-sample, two-sided t-test. Two control patients had the same value of 0.94 for PRD. (B) The 

receiver operating characteristic curve describing the classification of TN1 versus controls. AUC 

= area under the curve; FPR = false positive rate (1 – specificity); PRD = peak radial diffusivity; 

TN1 = type 1 trigeminal neuralgia; TN2 = type 2 trigeminal neuralgia; TPR = true positive rate 

(sensitivity). 

 

5.4.3 Radial Diffusivity and Symptom Duration Predict Surgical Outcome  

Given the relationship between radial diffusivity and demyelination (Song et al., 2002), 

the effect of symptom duration on PRD was examined to explore the potential role of 

demyelination in the pontine segment. As shown in Fig. 3, PRD is negatively correlated with 

symptom duration among our 22 patients with TN1 (p = 0.035). The calculated slope was -

0.029/yr and the y-intercept was 1.7. The correlation coefficient, R, was calculated to be -0.45. 

An R2 value of 0.20 indicates the linear regression with symptom duration captures only about 

20% of the variance in peak PRD. There were no statistically significant associations between age 

(p = 0.21; R2 = 0.04) or gender (p = 0.72). Furthermore, PRD of the contralateral side was not 

correlated with symptom duration (p = 0.22; R2 = 0.08). 
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Figure 5-3. PRD correlated with symptom duration.  

The blue dots represent the PRD for each of the 22 patients. The black line is the calculated linear 

regression line. R is the correlation coefficient, and p denotes the p-value for the linear 

regression. 

 

5.4.4 Radial Diffusivity Predicts Response to Intervention  

Since radial diffusivity differs between TN1 and TN2 trigeminal neuralgia subtypes, 

which are known to respond differently to MVD (Willsey et al., 2019), PRD was hypothesized to 

predict MVD outcome. To evaluate this hypothesis, both preoperative symptom duration and 

preoperative PRD (found to depend on symptom duration) were used to predict patient outcome. 

Both the LLSC and SVM were used to classify patients into remission and recurrence. The 

boundary between predicted remission and recurrence for each of the two classifier types is 

overlaid on the patient outcome data and shown in Fig. 4A. As can be seen in the figure, each 

classifier separates most outcomes correctly into remission and recurrence groups. A complete 

evaluation, with cross-validation, for each classifier is shown using the ROC curves in Fig. 4B. 

The AUC is 0.81 for LLSC and 0.71 for SVM. Evaluating each classifier on this data set with 

leave-one-out cross-validation produces percent correct of 85% for linear regression (p = 0.029) 

and 85% for SVM (p = 0.029). Both LLSC and SVM operate with a sensitivity of 83% and a 

specificity of 86%. The sensitivity/specificity operating point for each classifier is indicated by 

the color-coded dot in Fig. 4B. In a post-hoc analysis of the complete data, regressing recurrence 

outcomes over PRD and symptom duration were statistically significant (p = 0.02, adjusted R2 = 

0.44) and revealed relative equal predictive contribution of PRD (t = 2.96) and symptom duration 

(t = 2.92). 
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Figure 5-4. PRD and symptom duration predict outcome.  

(A) The classifiers are shown separating remission and recurrence based on symptom duration 

and PRD. Linear-least-squares classifier (LLSC) is in dark green and support-vector machine 

classifier (SVM) is in orange. Open blue dots indicate recurrence, and solid blue dots indicate 

remission after intervention. (B) Receiver operating characteristic curves are given for each 

classifier in A. The area under the curve (AUC) for each classifier is color coded as in A and 

given in the bottom right corner. FPR = false positive rate (1 – specificity); TPR = true positive 

rate (sensitivity). 

 

5.5 Discussion  

Given previous reports of the prognostic value of DTI in trigeminal neuralgia (Hung et al., 

2017; Wang et al., 2017; Willsey et al., 2019), the value of radial diffusivity to predict MVD 

outcome is evaluated in this study. Radial diffusivity may be an especially useful DTI 

measurement given its relationship to demyelination and the role of demyelination in trigeminal 

neuralgia. Radial diffusivity was evaluated using a computer-assisted method for locating the 

pontine segment of the trigeminal tract. We have demonstrated that (1) symptom duration, DS, is 

negatively correlated with peak radial diffusivity, PRD, and (2) DS and PRD can be inputs to a 

machine-learning classifier that correctly predicts long-term response with 85% accuracy and a 

sensitivity of 83% and specificity of 86%.  
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5.5.1 DTI Abnormalities in the Pontine Segment of the Trigeminal Tract 

While there are multiple DTI studies of the trigeminal root and REZ (Herweh et al., 

2007; Leal et al., 2011; Lutz et al., 2011; Liu et al., 2013; DeSouza et al., 2014; Lummel et al., 

2014; DeSouza et al., 2015; Lin et al., 2016; Lutz et al., 2016; Neetu et al., 2016), few studies 

examine DTI parameters in the pontine segment of the trigeminal tract (Chen et al., 2016; Hung 

et al., 2017; Willsey et al., 2019). The lack of studies likely results from the sophisticated 

methods needed to differentiate between crossing fibers in the brainstem (Qazi et al., 2009). 

However, in this and our previous work (Willsey et al., 2019), extracting DTI measurements 

adjacent to the exiting trigeminal root may select for trigeminal fibers without requiring 

sophisticated tractography algorithms. In particular, by using this semi-automated method to 

calculate PRD from the region of the pons adjacent to the exiting root (Fig. 1A-B), the PRD may 

be specific for fibers originating from the chief sensory nucleus of V (Chen et al., 2016) and may 

account for the improvement in differentiating between TN1 versus controls in this work 

compared to our previous work (Willsey et al., 2019). 

Studies that have not found correlations between DTI changes in TN for symptom 

duration did not include DTI measurements of the pontine segment (Fujiwara et al., 2011; Liu et 

al., 2013). Herein, we find that the increase in radial diffusivity is negatively correlated with 

symptom duration. Since radial diffusivity is a non-invasive marker of demyelination (Song et 

al., 2002), the negative correlation may be explained by an initial insult to the trigeminal root, 

which leads to demyelination that progressively remyelinates with time. Remyelination is known 

to occur in the REZ (Hilton et al., 1994). Regardless, more studies are needed to understand the 

time evolution of DTI changes in the pontine segment of the trigeminal tract.  
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5.5.2 Predicting Response to Intervention with Preoperative DTI Measurements 

 Two groups have used DTI measurements in TN patients to predict responses to 

treatment. Tohyama and colleagues showed post-procedure fractional anisotropy, when 

measured after Gamma-Knife radiosurgery, predicts a long-term (12 mo.) response (Tohyama et 

al., 2018). Hung and colleagues retrospectively compared preoperative DTI measurements of 14 

responders and 17 nonresponders to either MVD or Gamma-Knife radiosurgery (Hung et al., 

2017). While no individual DTI measurement alone classified responders and nonresponders 

better than chance, linear combinations of DTI measurements from both the pontine segment and 

trigeminal root (determined by linear discriminant analysis) correctly classified responder and 

nonresponders with 71% accuracy when using leave-one-out cross-validation.  

 In this study, we used PRD and DS to inform LLSC and SVM that correctly classified 85% 

of MVD patients with a sensitivity of 83% and a specificity of 87%. Given that the linear 

discriminant classifier used by Hung et al. is very similar to our LLSC (equivalent for equal 

numbers of responders versus non-responders), improvement in accuracy (85% versus 71%) 

could be attributed to (1) including symptom duration in the classifier, (2) including only MVD 

patients, and/or (3) the semi-automated algorithm to measure radial diffusivity (Hung et al., 

2017). Specifically, the semi-automated algorithm to extract radial diffusivity from pontine 

segment may only include values most predictive of MVD response. 

 Previous studies support prognostic information both in symptom duration and radial 

diffusivity. First, Hung et al. found that the majority of the predictive power was derived from 

the pontine segment, with radial diffusivity being the most important DTI measurement (Hung et 

al., 2017). Second, in a recent meta-analysis, preoperative symptom duration was found to 
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predict response to treatment (Holste et al., 2020). Thus, our success in classification grouping 

patients into remission and recurrence groups may result from optimal combinations of radial 

diffusivity and symptom duration.  

 

5.5.3 Limitations 

The limitations of this study are the relatively small number of patients treated at our 

center, the number of patients who could not be analyzed due to inadequate visualization of the 

pontine segment of the trigeminal tract, and the variable follow-up for patients in this 

observational study. Regardless, radial diffusivity is a promising biomarker for prediction of 

surgical outcomes and may assist with surgical decision making. Definite validation is possible 

through a prospective, multicenter study with defined inclusion and exclusion criteria and 

follow-up time periods. 

 

5.6 Conclusions  

In this study, we present a semi-automated method to extract a single DTI measurement, 

normalized radial diffusivity, from the pontine segment of the trigeminal tract. A statistically 

significant negative correlation between radial diffusivity and preoperative symptom duration 

was found and then used to predict remission and recurrence with 85% accuracy in an MVD-

only cohort. Combining this DTI-based decision tool with other clinical decision tools may 

improve the selection of patients most likely to achieve a pain-free outcome after MVD. 

Furthermore, the insights gained suggest a role for demyelination of the pontine segment in the 

disease pathophysiology, since RD with constant axial diffusivity is often considered a non-

invasive surrogate for demyelination (Song et al., 2002).  
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Chapter 6.   Discussion 

 

6.1 Conclusions  

Sensorimotor pathways are important to everyday functioning and, when dysfunctional, the 

impact on patient quality of life can be substantial (Tate et al., 2002). The cortical and thalamic 

interfaces investigated herein may be useful in restoring lost sensorimotor function and help 

answer important neuroscience questions related to sensorimotor function. Further, novel 

imaging was shown to assess the structural integrity of sensory roots in a non-invasive manner.  

The focus of Chapter 2 was to achieve higher-velocity motor movements with a neural 

network decoder. In particular, a feedforward neural network decoder was compared with the 

ReFIT Kalman filter – representative of currently used motor decoders (Gilja et al., 2012; 

Vaskov et al., 2018). The neural network decoder in both real-time and in offline analyses 

achieved higher velocities and reached random targets more quickly than the ReFIT Kalman 

filter.  

While these results require validation with additional animals and across other labs, the 

approach herein may provide a blueprint for further improvements. Neural networks could be 

recalibrated with intention-based retraining similar to the ReFIT Kalman filter. There also exists 

potential for network architectures to be further optimized. For example, convolutions could be 

performed temporally or spatially across electrodes. Furthermore, improved feature engineering 

input into the network may also improve performance as the only features explored herein were 

spike-band power in 50-ms bins (Nason et al., in press). 
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In Chapter 3, we explored patterned stimulation during electrical stimulation of 

somatosensory thalamus. In doing so, the stimulation pattern was found to select for distinct 

perceptive pathways that may correspond to distinct anatomical thalamocortical pathways. For a 

sensory prosthetic, naturalistic percepts may be dependent on both stimulation pattern/waveform 

and site of stimulation (Ohara et al., 2004; Heming et al., 2010; Swan et al., 2017), and this work 

may suggest a relationship between the pattern of stimulation and site of activated neurons. In 

DBS applications, patterned stimulation may steer neuron activation to reduce unwanted 

symptoms and side effects. These stimulation patterns could be further optimized to generate 

more “naturalistic” percepts or select more than 2 distinct pathways. While these results apply to 

macrostimulation, microstimulation could also be explored.  

Accessing neural pathways with brain machine interfaces allow study of sensorimotor 

pathways in new ways previously not possible. Specifically, in Chapter 4, the somatosensory 

content in motor cortex, likely from somatosensory cortex afferents, was measured during a 

pharmacological perturbation with nitrous oxide. In response to nitrous oxide, the somatosensory 

content was degraded, which helps connect the molecular target of this NMDA receptor 

antagonist to M1 neuron behavior and likely to the S1 to M1 circuit. These basic neuroscience 

findings may also be helpful in future motor BMIs attempting to incorporate somatosensory 

feedback (Chien et al., 2017). These results could be extended to include additional medications 

or additional implant locations or studied in human patients capable of reporting sensory 

disturbances. 

 Finally, Chapter 5 describes novel use of magnetic resonance diffusion tensor imaging to 

predict patient response to surgical intervention for patients with trigeminal neuralgia – thought 

to be caused by compression of the root providing sensation to the face. These results require 
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validation with prospective clinical trials, and the classifiers could be expanded to include other 

important patient variables including gender and age.  

 

6.2 The Future for BMIs 

 BMIs have progressed rapidly from initial demonstrations in animal studies (Serruya et 

al., 2002; Taylor et al., 2002), and today there are multiple centers with human clinical trials 

(Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015). However, there is still 

substantial work left to be done before these devices are widely accepted by the general patient 

population. There currently exists no cost-effective, basic prototype where the daily benefit 

outweighs the risk and limitations. In analogous terms, Henry Ford’s Model T provided an easily 

manufactured, cost-effective automobile to help consumers through daily life that established a 

new standard. There is no Model T for BMIs. Not only would such a device benefit patients at-

large, it would also help consolidate the field and provide a launching point for additional 

improvement and investment. 

Likely prohibitive limitations include unmet performance and functionality minimums, 

device durability, and device convenience and safety. Device performance may not need to 

enhance or even match the functionality of native hands, but performance is a priority to patients 

and must allow patients to efficiently complete important activities (Blabe et al., 2015). 

Designing devices around a core group of tasks important to the typical patient will help clarify 

the needed speed, degrees of freedom, and additional functionality. Furthermore, stable 

functionality is needed without long re-training periods to fine tune the device. Device durability 

is needed so that implanted arrays last for many years as current devices are limited by gliosis 

and scarring that limits the life expectancy of implanted arrays (Bullard et al., 2019). This 
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process is thought to be irreversible and may exclude that neural tissue from future use. Finally, 

convenience/safety factors include development of fully implanted devices. Transcutaneous 

devices risk infection, and patients have strong preferences not to be wired to a machine (Blabe 

et al., 2015).  

Further neuroscience and engineering research are needed to address these fundamental 

limitations. To name only a few, outstanding neuroscience questions include: Why do motor 

decoders need to be retrained before each session? And how can we minimize the daily 

retraining and fine tuning? (Irwin et al., 2017; Vaskov et al., 2018) Engineering advances are 

needed to further develop wireless technology and low-power devices so that these devices can 

be fully implantable (Nason et al., in press). Despite the work left to be done, progress will 

surely continue up to and past the point where neuroprosthetic devices become widely adopted, 

since providing humans intuitive neural access to the control machines provides tremendous 

potential to restore lost function.  
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